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Abstract

Numerical methods are often well-suited for the solution of (elliptic) partial

differential equations (PDEs) modeling naturally occuring processes. Many dif-

ferent solvers can be applied to systems which are obtained after discretization

by the finite element method.

Parallel architectures in modern computers facilitate the efficient use of di-

verse divide and conquer strategies. The intuitive approach, to divide a large

(global) problem into subproblems, which are then solved in parallel, can sig-

nificantly reduce the solution time. It is obvious that the solvers on the local

subproblems then should deliver the contributions of the global solution re-

stricted to the subdomains of computational region. The class of domain de-

composition methods provides widely-used iterative algorithms for the parallel

solution of implicit finite element problems. Often, an additional coarse space,

which introduces a coupling between the subdomains, is used to ensure a global

transport of information between the subdomains across the entire domain.

The FETI-DP and BDDC domain decomposition methods are highly scal-

able parallel algorithms. However, when the parameter or coefficient distri-

bution in the underlying partial differential equation becomes highly heteroge-

neous, classical methods, with a priori chosen coarse spaces, might not converge

in a limited number of iterations. A remedy is offered by problem-dependent

coarse spaces. These coarse spaces can be provided by adaptive methods, which

then can improve the convergence at the cost of additional constraints.

In this thesis, we introduce robust FETI-DP and BDDC methods for three-

dimensional problems. These methods incorporate constraints, which are com-

puted from local eigenvalue problems on faces and edges between subdomains,

into the coarse space. The implementation of the constraints is performed

by a deflation or balancing approach or by partial finite element assembly af-

ter a transformation of basis. For the latter, we introduce the generalized

transformation-of-basis approach and show its correspondence to a deflation or

balancing approach.

An efficient parallel implementation of adaptive FETI-DP is discussed in the

last part of this thesis. We provide weak and strong parallel scalability results

for our adaptive algorithm executed on the supercomputer magnitUDE of the

University of Duisburg-Essen. For weak scaling, we can show very good results

up to 4 096 cores. We can also present very good strong scaling results up to

864 cores.
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Zusammenfassung

Numerische Verfahren sind häufig geeignete Verfahren zur Lösung (elliptis-

cher) partieller Differentialgleichungen (PDGLen), welche natürlich auftretende

Prozesse beschreiben. Viele unterschiedliche Löser können dabei auf Systeme

angewandt werden, die zuvor durch eine Diskretisierung mittels der Finiten

Elemente Methode enstanden.

Die parallelen Architekturen in modernen Computern ermöglichen die ef-

fiziente Verwendung verschiedenster Teile-und-herrsche-Verfahren. Der intu-

itive Ansatz, ein großes (globales) Problem in viele kleine Teilprobleme zu zer-

legen und diese parallel zu lösen, kann die Rechenzeit immens reduzieren. Es

ist klar, dass die lokalen Lösungen dann der globalen Lösung, eingeschränkt

auf die zugehörigen Teilgebiete, entsprechen müssen. Die Klasse der Gebietsz-

erlegungsverfahren bietet weitverbreitete iterative Algorithmen zur parallelen

Lösung impliziter Finite Elemente Problemstellungen. Häufig werden Grobgit-

terräume, die die verschiedenen Teilgebiete koppeln, eingeführt, um einen glob-

alen Informationsaustausch zwischen den Teilgebieten zu ermöglichen.

Die Gebietszerlegungsverfahren FETI-DP und BDDC sind hochskalierbare

parallele Algorithmen. Allerdings ist die Konvergenz des iterativen Verfahrens,

in einer begrenzten Anzahl Iterationen, nicht mehr zwangsläufig sichergestellt,

wenn die Verfahren mit klassischen Grobgitterräumen auf Probleme mit stark

heterogenen Parametern oder Koeffizienten in der zugrundeliegenden Differen-

tialgleichung angewandt werden. Einen Ausweg bieten in diesen Fällen prob-

lemabhängige Grobgitterräume. Diese Grobgitterräume können in adaptiven

Verfahren berechnet werden und ermöglichen, auf Kosten zusätzlicher Nebenbe-

dingungen, eine schnelle Konvergenz des iterativen Lösers.

In dieser Arbeit führen wir robuste FETI-DP und BDDC Verfahren zur

Lösung dreidimensionaler Problemstellungen ein. Diese Verfahren integrieren

Nebenbedingungen aus lokalen Eigenwertproblemen auf Flächen und Kanten

zwischen Teilgebieten in den Grobgitterraum. Die Nebenbedingungen wer-

den entweder mithilfe eines Deflations- oder Balancing-Ansatzes oder mittels

partieller Finite Elemente Assemblierung nach einer Transformation der Basis

erzwungen. Für letzteres führen wir den verallgemeinerten Transformation-

der-Basis Ansatz ein und zeigen seine Korrespondenz zum Deflations- und

Balancing-Ansatz.

Eine effiziente parallele Implementierung des adaptiven FETI-DP Verfahrens

wird im letzten Teil der Arbeit diskutiert. Wir stellen Ergebnisse der schwachen

und starken parallelen Skalierbarkeit für unseren Algorithmus vor, der auf dem

Supercomputer magnitUDE der Universität Duisburg-Essen ausgeführt wurde.
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Wir können sehr gute Resultate der schwachen Skalierbarkeit bis hin zu 4096

Kernen zeigen. Zur starken Skalierbarkeit können sehr gute Ergebnisse für bis

zu 864 Kerne gezeigt werden.
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1 Introduction

Many naturally occuring processes can be modeled by partial differential equa-

tions (PDEs). Among others, popular applications of partial differential equa-

tions are flows in porous media, modeled by the diffusion equation, or the

deformation of an elastic body under the application of volume and surface

forces, modeled by the equilibrium equations of (linear) elasticity in solid and

structural mechanics; see, e.g., [33, 19, 130, 13]. For most problems, classical

solutions cannot be derived analytically; see [33].

Numerical algorithms can be used to compute approximate solutions. A

widely-used technique is the discretization of the variational problem in finite

element spaces by the finite element method (FEM); see, e.g, [13, 136]. To an

a priori defined precision, an accurate approximate solution can be computed

using the finite element method. Though, an accurate numerical approxima-

tion to the solution of a given boundary value problem often requires a fine

discretization of the computational domain. Direct methods such as Gaussian

elimination are memory consuming and have a high computational complexity.

For large-scale linear systems, also sparse direct solvers might be not suitable,

anymore. Then, iterative methods such as Krylov subspace methods come into

play. Commonly used Krylov subspace methods are the preconditioned conju-

gate gradient (PCG) and the generalized minimal residual (GMRES) method,

where the convergence can be accelerated if adequate preconditioners are used;

see, e.g., [114].

With the parallel architectures in modern computers and supercomputers,

an intuitive approach to solve large-scale problems is a divide and conquer

strategy to divide the global problem into smaller subproblems to be computed

in parallel. The global solution then should be obtained from all the local

solutions. Domain decomposition methods [119, 130, 96] are widely-used (it-

erative) methods for the parallel solution of implicit finite element problems.

In these methods, the finite element problem is decomposed into decoupled or

only slightly coupled local problems. As already stated in [61], domain de-

composition methods can be classified by the presence or absence of a coarse

problem. Although being (almost) perfectly parallelizable, methods lacking a

coarse space lose their advantage over methods with a coarse space if the num-
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ber of subdomains grows. The condition number of coarse space-free methods

usually grows with the number of subdomains; see, e.g., [61, 40, 130]. In two- or

multi-level domain decomposition methods, a coarse space ensures global trans-

port of information to obtain scalability in the number of iterations (numerical

scalability); see, e.g., [61, 40, 130].

Domain decomposition methods can also be categorized by the type of the

decomposition itself, i.e., the decomposition can be overlapping or nonoverlap-

ping; see, e.g., [61]. One-, two- or even multi-level overlapping Schwarz methods

belong to the first group and have been studied extensively; see, e.g., [119, 130]

and the references therein. In this thesis, however, we only consider nonover-

lapping methods also referred to as (iterative) substructuring methods; see,

e.g., [119, 130, 52] and the references therein.

The Finite Element Tearing and Interconnecting (FETI ; also denoted

FETI-1 ) method is a dual nonverlapping method, which was introduced

in [41]. The FETI method can be characterized as a Dirichet-Dirichlet type

method enriched by a coarse space given by, at least, the null space of the

subdomains without essential Dirichlet boundary conditions; see, e.g, [130].

The convergence properties of the FETI method were already studied in detail

in [42, 40]. Additionally, comparisons between the FETI method and direct

solvers for problem settings on finite element meshes of a high speed aircraft or

a space antenna connector were carried out. In [34, 39, 35], studies of the FETI

method applied to time-dependent, plate and shell problems were carried out

and the two-level FETI method was introduced in [39]. A new preconditioner

for the FETI method was then introduced in [81] such that the condition

bound could be improved significantly.

The corresponding primal method to FETI is given by a balancing variant

of a Neumann-Neumann method; see, e.g., [130]. For the first works on Balanc-

ing Neumann-Neumann (also denoted as Balancing Domain Decomposition or

BDD) methods, see [31, 90], which are based on, i.a., [11, 21].

Following the works on FETI and Balancing Neumann-Neumann, the meth-

ods FETI-DP (FETI-Dual-Primal) and BDDC (BDD by constraints) were

introduced. The FETI-DP method was originally introduced in [38, 37]. The

BDDC method was proposed in different articles by different authors; see [20,

23, 43]. As FETI and BDD, the methods FETI-DP and BDDC are related (see,

e.g., [81, 43, 53, 92, 89]) and many results, which have been found for one of the

methods, can or could be transfered to the related other method. FETI-DP and

BDDC are highly scalable domain decomposition methods tested extensively on

thousands and even up to half a million of cores; see, i.a., [79, 2, 73, 131, 3, 134].
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If the coefficients or parameters of the underlying partial differential equa-

tions become highly heterogeneous, standard FETI-DP and BDDC methods

with classical coarse spaces might not converge anymore. Highly heterogeneous

coefficient distributions can, e.g., occur when modeling composite materials in

solid or structural mechanics, sometimes even combined with almost incom-

pressible material behavior. To cope with such situations, the use of adaptive

or automatic coarse spaces have been proposed. In methods using adaptive

coarse spaces, spectral information of local matrices of pairs or more general

sets of adjacent subdomains are used. To the best of our knowledge such adap-

tive coarse spaces have been introduced to domain decomposition in [9, 10], by

integrating specific eigenvectors into the coarse space of Neumann-Neumann

methods.

About a decade ago, in [93, 120], adaptive coarse spaces for FETI-DP

and BDDC domain decomposition methods were proposed for two-dimensional

problems, at this time without a theoretical bound. Later, in [44, 45], eigen-

value problems on complete subdomains, which replaced a Poincaré estimate,

were proposed to set up adaptive coarse spaces for additive Schwarz methods.

The authors of [94, 132, 122] implemented the adaptive coarse space introduced

in [93, 120] in parallel and tested it with BDDC for chosen three-dimensional

problems.

Based on local Dirichlet-to-Neumann maps, Schwarz preconditioners with

adaptive coarse spaces were introduced and analyzed numerically and theo-

retically in [98, 99, 25]. The use of generalized eigenproblems in the overlaps

(GenEO) was then proposed and analyzed in [125, 126, 123]. This approach was

also transfered to the nonoverlapping FETI and Balancing Neumann-Neumann

domain decomposition methods; see [127, 123].

For FETI-DP and BDDC methods applied to two-dimensional problems, an

adaptive coarse space replacing a Poincaré inequality and an extension theorem

was introduced in [72]. The complete theory was given in [74, 109]. In [75, 109],

this adaptive coarse space and those of [93, 120] and [22] were compared for two-

dimensional problems, studying their strengths and weaknesses as well as their

performance in numerical simulations. Additionally, in [75, 109], a condition

number bound for FETI-DP using the coarse space of [93, 120] could be provided

for two-dimensionsal problems. For BDDC, an adaptive coarse space for two-

dimensional problems was introduced in [63].

In [64], it was shown that the coarse space of [93, 120] can lead to large

condition numbers and iteration counts when considering highly heterogeneous

three-dimensional problems. However, in [64], it was also shown that an en-
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richment of the coarse space of [93, 120] by a small number of constraints from

specific edge eigenvalue problems yields a theoretically and numerically robust

method for all kinds of heterogeneities and almost incompressible materials.

Moreover, different strategies were proposed to reduce the number of eigen-

value problems and the number of adaptive constraints. The publication [64] is

based on Chapter 5 of this thesis.

Adaptive overlapping Schwarz preconditioners in two dimensions were con-

sidered in [46, 54]. For BDDC and three-dimensional problems, different au-

thors considered related adaptive approaches at about the same time; see [7,

101, 17]. The author of [134] offered a highly scalable PETSc [4, 5] implemen-

tation of adaptive BDDC, with experimental support for FETI-DP, using the

adaptive constraints from the face eigenvalue problems of [22] and a heuristical

generalization thereof for edges in three dimensions; see also [135].

In [62], an adaptive coarse space was considered for BDDC and FETI-DP

likewise. For FETI-DP, the adaptive coarse space was implemented as in [64]

by a balancing approach. An overview on several approaches to adaptive coarse

spaces for BDDC was given in [103]. Recently, adaptive coarse spaces for over-

lapping Schwarz methods in three dimensions were considered in [32].

Another adaptive approach, which does not set up any eigenvalue problem,

was proposed in [124]. In this method, the constraints are computed directly

inside the Krylov scheme. Scalability results can be found in [12].

In [67], it was shown that the use of a generalized approach to the trans-

formation of basis with partial finite element assembly results in essentially the

same spectrum as the use of a corresponding deflation or balancing approach,

even when nondiagonal scalings are used or arbitrarily heterogeneous problems

are considered. The adaptive coarse space of [64] was then implemented using

the generalized transformation-of-basis approach; cf. [68]. The results of [67] are

based on Section 4.5 of this thesis. The publication [68] is based on Chapter 6

of this thesis.

Using the generalized transformation-of-basis approach and the PETSc [4, 5]

and SLEPc [56, 113] high performance libraries, preliminary parallel results for

adaptive FETI-DP, excelling the standard FETI-DP method with a classical

coarse space, were presented in [68]. Details on the efficient parallel implemen-

tation of adaptive FETI-DP and weak and strong scalability studies for our

method can be found in Chapter 7 and will be published in [69].

The remaining part of this thesis is organized as follows. In the next chapter,

we introduce three different model problems for which the algorithms presented

in this thesis are studied theoretically and numerically. In Chapter 3, we outline

4



the widely-used domain decomposition methods FETI-DP and BDDC with a

more detailed discussion of different scalings, which are commonly employed in

these methods. In the first parts of Chapter 4, we shortly present popular tech-

niques to implement coarse space enrichments for FETI-DP and BDDC. Then,

in Section 4.5, the new and generalized transformation-of-basis approach is in-

troduced. Chapter 5 introduces robust FETI-DP methods for three-dimensional

problems using adaptive coarse spaces implemented by deflation or balancing.

An extensive set of numerical results is provided. In Chapter 6, the adaptive

coarse spaces are combined with the generalized transformation-of-basis ap-

proach. Within the numerical results, comparisons of the different scalings and

different a priori chosen tolerances for the adaptive coarse spaces are consid-

ered. Subsequently, we explain necessary modifications for a scalable parallel

implementation using the PETSc [4, 5] and the SLEPc [56, 113] high perfor-

mance libraries in Chapter 7. We present results of weak and strong scaling

for our parallel implementation of adaptive FETI-DP. Eventually, we draw a

conclusion in Chapter 8.
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2 Model problems

2.1 Preliminaries

In this chapter, we present three different model problems that are considered

in this thesis. For a more detailed description and theoretical consideration of

the model problems, see, e.g., [19, 15, 130, 14, 13], especially in the context of

finite element based methods.

For all problems, let Ω ⊂ Rd, d = 2, 3, be a bounded polyhedral domain and

let ∂ΩD ⊂ ∂Ω be a closed subset of nonvanishing measure where we prescribe

Dirichlet boundary conditions. On the remaining part of the boundary ∂ΩN :=

∂Ω \ ∂ΩD, we prescribe Neumann boundary conditions.

We also define the Sobolev space H1
0 (Ω, ∂ΩD)

n := {v ∈ H1(Ω)n : v =

0 on ∂ΩD} of weakly differentiable functions on Ω. For the scalar diffusion

problem, we have n = 1 regardless of the dimension d. For the case of linear

elasticity, we have n = d and vector valued functions.

Note that the ideas presented in this thesis can equally be adapted for d = 2

dimensions, in general, however, we consider the three-dimensional case.

2.2 Diffusion equation

The first model problem considered in this thesis is the well known diffusion

equation. For a sufficiently smooth coefficient function ρ : Ω → R and adequate

functions f : Ω → R and g : ∂ΩN → R, we have the boundary value problem

−∇ · (ρ∇u) = f in Ω,

u = 0 on ∂ΩD,

ρ∇u · n = g on ∂ΩN

(2.1)

where n denotes the outer unit normal on ΩN . For a piecewise constant param-

eter distribution ρ ∈ L∞(Ω) with ρ ≥ ρmin > 0, f ∈ L2(Ω), and g ∈ L2(∂Ω),

we then study the weak formulation: Find u ∈ H1
0 (Ω, ∂ΩD) such that

a(u, v) = F (v) ∀v ∈ H1
0 (Ω, ∂ΩD),

7



2 Model problems

where

a(u, v) :=

∫

Ω
ρ∇u · ∇vdx and F (v) :=

∫

Ω
fvdx+

∫

∂Ω
gvds. (2.2)

For the numerical solution of diffusion problems, in this thesis, we use con-

forming P1 finite elements.

Parts of the description of this model problem have already been published

in modified or unmodified form by the author of this thesis and his coauthors

in [66, 67].

For details on the existence and uniqueness of the solution, derived from

Lax-Milgram’s theorem, we refer to, e.g., [130, 13].

2.3 Compressible linear elasticity

The second model problem is that of compressible linearized (in the following

simply linear) elasticity. The domain Ω can then be regarded as a material

body to be deformed under the application of a body force f : Ω → Rd and a

surface force g : ∂ΩN → Rd. The sufficiently smooth solution u : Ω → Rd of

the pure displacement model

−2µdiv(ε(u)) − λ∇(div(u)) = f in Ω,

u = 0 on ∂ΩD,
(
λtr(ε(u))I + 2µε(u)

)
· n = g on ∂ΩN

(2.3)

is called the displacement from the reference configuration to the deformed con-

figuration. In (2.3), the linearized strain tensor ε(v) is defined by the symmetric

gradient

ε(v) :=
1

2

(
∇v +∇vT

)
and εij(v) :=

1

2

( ∂vi
∂xj

+
∂vj
∂xi

)
, 1 ≤ i, j ≤ d, (2.4)

and λ and µ are the material dependent Lamé constants. The Lamé constants

can be calculated easily from Young’s modulus E > 0 and Poisson’s ratio ν ∈

(0, 12) by

λ =
Eν

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
.

For piecewise constant and bounded material parameters E and ν, f ∈

L2(Ω), and g ∈ L2(∂Ω), we obtain the variational formulation of compressible

8



2.4 Almost incompressible linear elasticity

linear elasticity: Find u ∈ H1
0 (Ω, ∂ΩD)

d such that

a(u, v) = F (v) ∀v ∈ H1
0 (Ω, ∂ΩD)

d, (2.5)

where

a(u, v) : =

∫

Ω
2µε(u) : ε(v)dx+

∫

Ω
λdiv(u)div(v)dx

and F (v) : =

∫

Ω
f · vdx+

∫

∂ΩN

g · vds.
(2.6)

The product of the linearized strain tensor is given by

ε(u) : ε(v) =
∑d

i,j=1 εij(u)εij(v).

For the numerical consideration of compressible linear elastic materials, in

this thesis, we use conforming P1 or P2 finite elements.

Parts of the description of this model problem have already been published

in modified or unmodified form by the author of this thesis and his coauthors

in [64, 65, 68, 70].

For more details on the derivation of the equations and the statements of

existence and uniqueness of solutions of linear elasticity, see, e.g., [19, 130, 13].

2.4 Almost incompressible linear elasticity

Our third model problem is that of almost incompressible linear elasticity. Al-

most incompressible linear elasticity is strongly related to compressible linear

elasticity since this model problem is obtained from (2.3) by introducing the

pressure variable p := λdiv(u). The reason to do so, is a locking phenom-

ena that can occur for the low order standard finite element formulation when

Poisson’s ratio ν approaches 0.5, which corresponds to the fully incompressible

limit. Typical for the occurence of locking is the absence of uniform conver-

gence for the low order standard finite element formulation when h → 0 and

large errors might occur for ν ≈ 0.5; from the mathematical point of view, [13]

then proposes to rather speak of a badly conditioned problem than of locking.

To avoid this phenomenon, we derive the weak form of the mixed formulation

in (u, p): Find (u, p) ∈ H1
0 (Ω, ∂ΩD)

d × L2(Ω) such that

a(u, v) + b(v, p) = F (v) ∀v ∈ H1
0 (Ω, ∂ΩD)

d,

b(u, q)− c(p, q) = 0 ∀q ∈ L2(Ω),
(2.7)

9
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where

a(u, v) :=

∫

Ω
2µε(u) : ε(v)dx, b(v, p) :=

∫

Ω
p div(v)dx, c(p, q) :=

∫

Ω

1

λ
p qdx,

(2.8)

and F (v) as in (2.6). Special care has to be taken when choosing the finite

elements for solving the mixed formulation. It has to be ensured that the chosen

finite elements fulfill the discrete Ladyženskaya-Babuška-Brezzi condition to

remain stable.

For the numerical consideration of almost incompressible linear elastic ma-

terials, in this thesis, we use Q2 − P0 finite elements with conforming Q2 and

discontinuous pressure elements. These elements are inf-sup stable. We stati-

cally condensate the pressure variable elementwise.

Parts of the description of this model problem have already been published

in modified or unmodified form by the author of this thesis and his coauthors

in [64].

For more details on almost incompressible linear elasticity, we refer to,

e.g., [14, 13, 130].

10



3 Standard FETI-DP and BDDC

3.1 Preliminaries

The FETI-DP (Finite Element Tearing and Interconnection - Dual Primal)

and BDDC (Balancing Domain Decomposition by Constraints) methods are

divide and conquer algorithms. To be more specific, they are nonoverlap-

ping domain decomposition methods. Domain decomposition methods (see,

e.g., [119, 130, 96]) are widely-used iterative methods for the parallel solution

of discretized partial differential equations. In domain decomposition methods,

the discretized problem is decomposed into overlapping or nonoverlapping lo-

cal problems. In FETI-DP and BDDC, the local problems are finite element

problems only coupled in a few degrees of freedom. In both methods, a coarse

space ensures a global transport of information such that scalability in the

number of iterations is obtained; see, e.g., [61, 40]. Fundamental for FETI-

DP and BDDC are the previously developed methods FETI (also FETI-1) and

Balancing Neumann-Neumann (also Balancing Domain Decomposition); see,

e.g., [11, 41, 129, 31, 90, 42]. The FETI-DP method was originally introduced

in [38, 37]. The BDDC method was proposed by different authors in [20, 23, 43].

In order to introduce the classical FETI-DP and BDDC methods, we first

present some discretization and domain decomposition preliminaries which are

essential for the following sections. For a more detailed introduction, we again

refer to, e.g., [119, 130, 96]. Parts of this chapter have already been published

in modified or unmodified form by the author of this thesis and his coauthors

in [64, 65, 67, 68].

For a given domain Ω ⊂ Rd, d = 2, 3, we conduct a decomposition into N

nonoverlapping subdomains Ωi, i = 1, . . . , N such that Ω =
⋃N

i=1Ωi and where

each Ωi is discretized by the finite element method. In our case, each subdomain

is an union of shape regular elements of diameter O(h). The diameter of a

subdomain Ωi is denoted by Hi or, generically, by H. Furthermore, we define

the interface Γ as the set of values that belong to at least two subdomains,

i.e., Γ := {x ∈
(
Ωi ∩ Ωj

)
\ ∂ΩD; i 6= j} and always require that finite element

nodes of neighboring subdomains match across the interface. We further define

11



3 Standard FETI-DP and BDDC

Γh and ∂Ωi,h, i = 1, . . . , N , as the set of finite element nodes on Γ and ∂Ωi,

respectively.

Note that the ideas presented in this thesis can equally be adapted for d = 2

dimensions, in general, however, we consider the three-dimensional case.

For three-dimensional problems, the interface consists of vertices, edges, and

faces; see, e.g., [77, Def. 2.1, Def. 2.2] and [82, Def. 3.1]. Note that vertices are

sometimes also called corners or corner nodes. For the case of regular subdo-

mains, these definitions coincide with our intuitive geometric understanding.

In a regular decomposition, vertices are the endpoints of edges. In general, this

also applies to irregular decompositions. However, in irregular decompositions,

vertices not being the endpoint of an edge or edges with less than two vertices

can appear. As already mentioned in [77], for automatic mesh partitioners such

as METIS (see [60]) the situation can become quite complex. In these cases, it

might be necessary to modify the definition slightly. We comment on this in de-

tail and use a slightly modified definition, when it comes to the use of automatic

mesh partitioners in combination with our adaptive methods; see Chapter 5.

With both definitions, edges and faces are considered as open sets. We denote

a face between the two subdomains Ωi and Ωj by F ij, an edge between Ωi, Ωj,

Ωk and possible other subdomains by E ik and a vertex of Ωi touching several

subdomains by V il. Sometimes, we also use the generic index F for an arbitray

face, E for an arbitrary edge, and Z for Z being either face or edge. Eventually,

for an arbitrary face F and an arbitrary edge E , we introduce the standard

finite element cutoff functions θF and θE , which are equal to one on F and E ,

respectively, and which are zero otherwise.

Troughout the thesis, we use different kinds of finite elements. For the

diffusion equation and the case of compressible linear elasticity in Chapters 5

and 6, we use conforming P1 finite elements. In Chapter 7, we only consider

compressible linear elasticity and conforming P2 finite elements. For the case

of almost incompressible linear elasticity, we use Q2 − P0 finite elements with

conforming Q2 and discontinuous pressure elements. These elements are inf-

sup stable. In our experiments, we statically condensate the pressure variable

elementwise. The space of our finite elements on Ωi is denoted byW h(Ωi\∂ΩD);

independently of the choice of the finite elements. In all cases, the finite element

functions vanish on ∂ΩD. For a part of the interface Γ′ ⊂ Γ with nonvanishing

measure, we define the finite element trace space W h(Γ′) and, in particular,

Wi := W h(∂Ωi). Finally, we define W := ΠN
i=1Wi and denote by Ŵ ⊂ W the

space of functions in W that are continuous on Γ.

12



3.2 Standard FETI-DP

For FETI-DP and BDDC, we partition the degrees of freedom on the subdo-

mains Ωi ⊂ Ω, i = 1, . . . , N , into interior, (a priori) dual, and (a priori) primal

degrees of freedom, denoted by I, ∆′, and Π′, respectively. Interior degrees of

freedom are all degrees of freedom belonging to nodes not touching the interface

Γ. We have Γh = ∆′ ∪ Π′. The choice of Π′ is problem-dependent and then

defines the remaining index set ∆′. In contrast to many other works on stan-

dard FETI-DP and BDDC, we use the notations ∆′ and Π′ instead of ∆ and Π

since the latter is reserved for the generalized transformation-of-basis approach;

see Section 4.5. To avoid misunderstandings, we clearly differentiate between

two kinds of primal variables: a priori primal (Π′) and a posteriori primal (Π)

variables. The sets of a priori and a posteriori dual (∆′ and ∆) degrees of free-

dom are the respective complementary sets on the interface. To conclude this

preliminary section, we introduce the space W̃ , consisting of functions w ∈ W

that are continuous in the a priori primal variables. We thus have

Ŵ ⊂ W̃ ⊂ W. (3.1)

3.2 Standard FETI-DP

As mentioned before, the FETI-DP method was introduced in [38, 37].

In a first step, we now compute the local stiffness matrices K(i) and the

right hand sides f (i) for every subdomain Ωi, i = 1, . . . , N . The local solution

vectors, e.g., the displacements for the case of linear elasticity (cf. Section 2.3),

are denoted by u(i), i = 1, . . . , N . Then, the local problems K(i)u(i) = f (i)

are decoupled. Due to the absence of a global coupling or Dirichlet bound-

ary conditions for subdomains Ωi with ∂Ωi ∩ ∂ΩD = ∅, these subdomains are

also called floating subdomains. Consequently, the local solutions on floating

subdomains are, in general, not unique and different from the solution u of

the partial differential equation, restricted to the local subdomain u|Ωi
. For

problems of linear elasticity, the null space of the stiffness matrix of a floating

subdomain consists of the rigid body modes, i.e., shifts of the entire subdomain

as well as (linear approximations to) rotations of the entire subdomain. For the

diffusion problem, the null space of the corresponding domains only consists

of the constant functions. That means, for both problems, when solving the

decoupled problems, we would obtain nonunique and discontinuous solutions;

see Figure 3.1 (left). The FETI-DP domain decomposition approach tackles

this issue as follows.

We use the subdivision of the degrees of freedom introduced in the previous

section to assume the following partitioning of the local stiffness matrices K(i),

13



3 Standard FETI-DP and BDDC

∂ΩD
Ωi

Ωj

Ωl Ωk

∂ΩD
Ωi Ωj

Ωl Ωk

I ∆′ Π′ λ

Figure 3.1: Nonoverlapping domain decomposition, subdivision of the local de-

grees of freedom, and visualization of the FETI-DP approach: Sec-

tion of four subdomains Ωi, Ωj, Ωk, Ωl ⊂ Ω for Ω ⊂ R2, Dirichlet

boundary conditions on ∂ΩD on the left, and with nine exemplary

nodes for each subdomain. Without global coupling, the local so-

lutions on the floating subdomains Ωj and Ωk are not unique and

detached from the solutions on Ωi and Ωl (left). The subdivision of

the nodes and the coupling in the primal variables (black circles)

attaches the solution on the floating subdomains to the unique

solution on the nonfloating subdomains; for FETI-DP, continuity

in the dual variables (blue circles) is enforced by Lagrange multi-

pliers λ (blue arrows) (right). Continuity on the whole interface

is only obtained at convergence of the iterative solver.

the local load vectors f (i), and the local solutions u(i):

K(i) =:




K
(i)
II K

(i)T
∆′I K

(i)T
Π′I

K
(i)
∆′I K

(i)
∆′∆′ K

(i)T
Π′∆′

K
(i)
Π′I K

(i)
Π′∆′ K

(i)
Π′Π′


 , u(i) =:



u
(i)
I

u
(i)
∆′

u
(i)
Π′


 , and f (i) =:



f
(i)
I

f
(i)
∆′

f
(i)
Π′


 .

By grouping interior (I) and a priori dual (∆′) variables, denoted by the

index B′, we obtain

K
(i)
B′B′ :=

(
K

(i)
II K

(i)T
∆′I

K
(i)
∆′I K

(i)
∆′∆′

)
, K

(i)T
Π′B′ :=

(
K

(i)T
Π′I

K
(i)T
Π′∆′

)
,

u
(i)
B′ :=

(
u
(i)
I

u
(i)
∆′

)
, and f

(i)
B′ :=

(
f
(i)
I

f
(i)
∆′

)
.

(3.2)
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By grouping a priori dual and a priori primal indices denoted by the index

Γ, we obtain

K
(i)
ΓΓ :=

(
K

(i)
∆′∆′ K

(i)T
Π′∆′

K
(i)
Π′∆′ K

(i)
Π′Π′

)
, K

(i)
ΓI :=

(
K

(i)
∆′I

K
(i)
Π′I

)
,

u
(i)
Γ :=

(
u
(i)
∆′

u
(i)
Π′

)
, and f

(i)
Γ :=

(
f
(i)
∆′

f
(i)
Π′

)
.

(3.3)

We then can introduce the block diagonal matrices

KII : = blockdiagNi=1K
(i)
II ,

KB′B′ : = blockdiagNi=1K
(i)
B′B′ ,

and KΓΓ : = blockdiagNi=1K
(i)
ΓΓ

(3.4)

as well as the corresponding off-diagonal block KΓI . The global right hand side

f and the global solution vector u can be partitioned accordingly.

As discussed before, the solution of the decoupled block diagonal system is

not unique. Therefore, we now introduce the inter-subdomain assembly opera-

tor RT
Π′ :=

(
R

(1)T
Π′ , . . . , R

(N)T
Π′

)
, which consists of values in {0, 1} and performs

the partial finite element assembly in the a priori primal variables u
(i)
Π′ .

Traditionally, Π′ was chosen to be the subdomain vertices (also corners or

corner nodes) or as a subset of these, possibly enriched by edge averages or

first order moments on edges if the considered problem required this; also face

averages have been considered; see, e.g., [38, 107, 37, 84, 77, 82, 78]. The choice

of an appropriate coarse space is a problem-dependent task. Since we mean

to overcome this challenge by adaptive coarse spaces, we choose a minimal a

priori coarse space, i.e., we set all vertices to be primal, and do not discuss in

detail the advantages of other specific a priori coarse spaces. For more details

on a priori coarse spaces; see, e.g., [77, 82, 78, 130] and the yet nonexhaustive

enumeration at the end of this section on FETI-DP.

By assembly in the a priori primal variables, we obtain

K̃Π′Π′ =
N∑

i=1

R
(i)T
Π′ K

(i)
Π′Π′R

(i)
Π′ , K̃Π′B′ =

(
R

(1)T
Π′ K

(1)
Π′B′ , . . . , R

(N)T
Π′ K

(N)
Π′B′

)
,

ũΠ′ =

N∑

i=1

R
(i)T
Π′ u

(i)
Π′ , and f̃Π′ =

N∑

i=1

R
(i)T
Π′ f

(i)
Π′ .

The assembly in the vertices is exemplarily shown by the black circles in Fig-

ure 3.1 (right).
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3 Standard FETI-DP and BDDC

In order to enforce continuity in the a priori dual degrees of freedom, we

introduce a signed Boolean jump operator B =
(
B(1), . . . , B(N)

)
with one +1

and one -1 per row such that Bu = 0 if and only if u is continuous on the inter-

face. The operator BB′ =
(
B

(1)
B′ , . . . , B

(N)
B′

)
is defined as the part of B where

the columns corresponding to primal variables are removed. The restriction to

the interface BΓ = [B
(1)
Γ , . . . , B

(N)
Γ ] is also obtained by elimination of trivial

columns from B. Thus, B, BB′ , and BΓ contain exactly one +1 and one −1

per row such that Bu = 0, BB′uB′ = 0, and BΓuΓ = 0 if and only if u, uB′ ,

and uΓ are continuous on the interface. Related to the jump operator B are the

Lagrange multipliers λ, which act between two degrees of freedom each. The

Lagrange multipliers are exemplarily indicated by the blue arrows in Figure 3.1

(right).

Note that the jump operator B is not uniquely determined. In addition to

the orientation of the Lagrange multipliers, i.e., the rows of B can be multi-

plied by −1, without changing the continuity constraint, the number of rows

in B depends on the number of Lagrange multipliers introduced. For exam-

ple, on an edge in three dimensions, which is shared by four subdomains, for

each degree of freedom between a minimum of three and usually six Lagrange

multipliers can be implemented without changing the solution; see Figure 3.2

for a nonredundant (three Lagrange multipliers) and the fully redundant (six

Lagrange multipliers) choice. In practice, we always use the fully redundant

implementation.

The dual part of the FETI-DP method corresponds to a Dirichlet-Dirichlet

algorithm with continuous flux approximations at each step of the iterative

solver while the local solution vectors corresponding to the iterates λ(k), k =

1, 2, . . . , are continuous only at convergence; cf., e.g., [130, Sec. 1.3.5] for an

elementary description of Dirichlet-Dirichlet methods.

The FETI-DP master system is then given by



KB′B′ K̃T

Π′B′ BT
B′

K̃Π′B′ K̃Π′Π′ 0

BB′ 0 0






uB′

ũΠ′

λ


 =



fB′

f̃Π′

0


 . (3.5)

By block Gaussian elimination, we obtain the (unpreconditioned) standard

FETI-DP system

Fλ = d (3.6)
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Ωl

Ωi Ωj

Ωk Ωl

Ωi Ωj

Ωk

Figure 3.2: Nonredundant and redundant choice of Lagrange multipliers for

FETI-DP: Cross-sectional view of four subdomains sharing an

edge. Arrows symbolize Lagrange Multipliers in FETI-DP. Shown

are a nonredundant choice of Lagrange multipliers (left) and the

fully redundant choice (right).

with

F : = BB′K−1
B′B′B

T
B′ +BB′K−1

B′B′K̃
T
Π′BS̃

−1
Π′Π′K̃Π′B′K−1

B′B′B
T
B′ ,

d : = BB′K−1
B′B′fB′ +BB′K−1

B′B′K̃
T
Π′B′ S̃−1

Π′Π′

(
f̃Π′ − K̃Π′B′K−1

B′B′fB′

)
.

(3.7)

Here, the Schur complement S̃Π′Π′ is defined as

S̃Π′Π′ := K̃Π′Π′ − K̃Π′B′K−1
B′B′K̃

T
Π′B′ . (3.8)

As can be seen from (3.7), the application of F can be divided into two

additive parts. The first part can be executed completely in parallel while the

expression S̃−1
Π′Π′ requires the solution of a coupled coarse problem. Conse-

quently, S̃Π′Π′ represents the initial (or a priori) coarse space.

Based on the definition of the assembly operator RT
Π′ , we define RT

Γ as the

identity on ∆′ and as the assembly operator RT
Π′ on Π′. By computing the local

Schur complements

S(i) := K
(i)
ΓΓ −K

(i)
ΓI

(
K

(i)
II

)−1
K

(i)T
ΓI (3.9)

and by using the operator RT
Γ introduced right before, we obtain the assembled

Schur complement

S̃ := RT
ΓSΓΓRΓ for SΓΓ := blockdiagNi=1S

(i). (3.10)

This enables the use of the identity

F = BΓS̃
−1BT

Γ . (3.11)
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3 Standard FETI-DP and BDDC

Let us note that the expression (3.7) is needed for the implementation of

FETI-DP while (3.11) might be a more convenient expression for an analytic

examination of the method.

The considered system of equations (3.6) is then solved by a Krylov subspace

method such as the (preconditioned) conjugate gradient algorithm (PCG). The

error estimate of the conjugate gradient algorithm can be bounded from above

by a function depending on the spectral condition number κ(M−1F ), with M−1

an (adequate) preconditioner. Precisely, for λ∗, the solution of (3.6), and λ(k),

the approximation at the k-step of the PCG algorithm, we have

‖λ∗ − λ(k)‖F ≤ 2

(√
κ(M−1F )− 1√
κ(M−1F ) + 1

)k

‖λ∗ − λ(0)‖F ; (3.12)

see, e.g., [108, 114]. Therefore, to speed up the convergence of the iterative

solver, we now introduce a preconditioner for (3.6).

The standard Dirichlet preconditioner M−1
D is commonly used in the FETI-

DP method; see already the first works on FETI-DP [38, 37]. A key ingredient

in this preconditioner are (diagonal) scaling matrices D(i) : rangeB → rangeB,

i = 1, . . . , N . In contrast to the original choice of diagonal matrices D(i) (see,

e.g., [115, 112, 38, 81, 130, 78, 105] for FETI-DP and earlier related works on

other domain decomposition methods), there are recent works using nondiag-

onal matrices; see, e.g., [24, 22, 6, 18, 16]. Nondiagonal scalings were initially

introduced for BDDC (see [24]) but they are easily transferable and have already

been used in FETI-DP methods; see, e.g., [18, 75, 62, 68].

Note that, in FETI-DP a degree of freedom based scaling D
(i)
u : ∂Ωi,h ∩

Γh → ∂Ωi,h ∩ Γh is also possible (see, e.g., the corresponding ideas for FETI-1

in [81, 130]). Then, the operator BD,Γ introduced in the following (see (3.18))

had to be defined differently. We do not further focus on this case here.

The diagonal scalings for FETI-DP are strongly related to the scalings al-

ready used in BDD and FETI-1 methods; see, e.g., [81, 130]. To define the

range of diagonal scaling matrices, we define the set

Nx = {j ∈ {1, . . . , N} : x ∈ ∂Ωj} (3.13)

for x ∈ Γh. The diagonal scaling matrices D(i), i = 1, . . . , N , are then built

from local weighting functions d
(i)
u : ∂Ωi,h ∩ Γh → (0, 1) with the partition of

unity feature

∑

i∈Nx

d(i)u (x) = 1 ∀x ∈ ∂Ωi,h ∩ Γh (3.14)
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3.2 Standard FETI-DP

such that

(
D(i)

)
rr

:= d(j)u (x). (3.15)

Here, r is the row index of the nontrivial row of B(i) corresponding to the

Lagrange multiplier λ, which couples Ωi and Ωj at x.

The nondiagonal scaling matrices used in [24, 22, 6, 18, 75, 63, 16, 7, 101,

17, 134, 103, 62, 68] are, however, block diagonal with respect to the underlying

geometry, i.e., the blocks are of the size of the edges and the faces. Consider

either an (open) face F ij shared by the two subdomains Ωi and Ωj or an (open)

edge E ik shared by the subdomains Ωi, Ωj , Ωk. Multiplicities greater than three

can be handled analogously. For the scaling matrices on the degrees of freedom

u, i.e., D
(i)
u,F ij ,D

(j)
u,F ij defined on F ij and D

(i)

u,Eik ,D
(j)

u,Eik ,D
(k)

u,Eik defined on E ik,

instead of (3.14), we require

D
(i)
u,F ij +D

(j)
u,F ij = I and D

(i)

u,Eik +D
(j)

u,Eik +D
(k)

u,Eik = I (3.16)

i.e., the respective sum of all blocks corresponding to a certain edge or face has

to reduce itself to the identity.

For the scaling on the Lagrange multipliers, we have to distinguish two

cases. In the simple case, the orientations of the Lagrange multipliers are

chosen consistently between two subdomains. Then, if R is the set of row

indices in B that couple Ω(i) and Ω(j) on either the face F ij or the edge E ik,

the corresponding part of the scaling matrix is given by

(
D(i)

)
RR

:=





D
(j)
u,F ij , if F ij is coupled by the rows R,

D
(j)

u,Eik , if E ik is coupled by the rows R.
(3.17)

The other entries of D(i) as well as the entries of D(j) and D(k) are obtained

correspondingly.

We speak of nonconsistent orientations of the Lagrange multipliers if the

signs of the rows in B are not chosen consistently. An example is given by

the following choice. Assume R = [R1, R2] and that the Lagrange multipliers

R1 on a face or an edge coupling Ω(i) and Ω(j) are oriented such that their

corresponding entries in B(i) have a positive sign. Assume on the other hand

that the remaining Lagrange multipliers R2 are oriented such that their cor-

responding entries in B(i) have a negative sign. In this case, the off-diagonal

blocks
(
D(i)

)
R1R2

and
(
D(i)

)
R2R1

in
(
D(i)

)
RR

have to be scaled by −1. Again,
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3 Standard FETI-DP and BDDC

the other entries of D(i) as well as the entries of D(j) and D(k) are obtained

correspondingly.

Note that (3.15) is obviously a special case of (3.17).

We can now define the scaled version of BΓ,

BD,Γ :=
(
B

(1)
D,Γ, . . . , B

(N)
D,Γ

)
:=
(
D(1)TB

(1)
Γ , . . . ,D(N)TB

(N)
Γ

)
(3.18)

and the standard FETI-DP Dirichlet preconditioner

M−1
D := BD,ΓR

T
ΓSΓΓRΓB

T
D,Γ = BD,ΓS̃B

T
D,Γ. (3.19)

An operator BD could be obtained by inserting the zero columns corresponding

to interior variables into BD,Γ.

The standard FETI-DP method is the preconditioned conjugate gradient

method applied to

M−1
D Fλ = M−1

D d. (3.20)

Remark 3.1. Note that the columns of B can be reordered such that B =(
0, BΓ

)
. In order to simplify the notation and to avoid a proliferation of indices,

we neglect the trivial part of B on the interior variables and set B = BΓ and

BD = BD,Γ for the rest of the thesis.

Eventually, let us introduce the operator

PD = BT
DB (3.21)

which is essential for the condition number estimate of FETI-DP. For arbitrary

λ and w := S̃−1BTλ ∈ W̃ , one has

〈M−1
D Fλ, λ〉F
〈λ, λ〉F

=
〈BDS̃B

T
D BS̃−1BTλ,BS̃−1BTλ〉

〈S̃−1BTλ, S̃−1BTλ〉S̃
=

〈PDw,PDw〉
S̃

〈w,w〉S̃
=

|PDw|
2
S̃

|w|2
S̃

.

The lower bound of this Rayleigh quotient is given by one and thus one is

interested in constructing an upper bound of the type

|PDw|S̃ ≤ C|w|
S̃

∀w ∈ W̃ ; (3.22)

see, e.g., [130].

At the end of this section on FETI-DP, we now give a short and nonexhaus-

tive enumeration of results for standard FETI-DP with different a priori coarse
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spaces obtained, in particular, for the diffusion problem and compressible linear

elasticity.

In two dimensions, the preconditioned FETI-DP method with a standard

vertex coarse space satisifies

κ(M−1
D F ) ≤ C

(
1 + log

(
H

h

))2

(3.23)

with C independent of H and h; see [95].

In three dimensions, the preconditioned FETI-DP method with a standard

vertex coarse space performs less well and cannot retain the condition number

bound from (3.23); see [38] and [83]. Therefore, enforcing additional constraints

such as continuous edge averages (and first-order moments on the edges) was

proposed; cf. [37, 107, 83, 82]. Then, for heterogeneous coefficients that are

constant on each subdomain, the estimate (3.23) holds with C independent of

H, h, and the coefficients; see, e.g., [83] and [82]. For the diffusion equation with

heterogeneous coefficients, primal edge averages are sufficient ([83]) while for

linear elasticity additional first-order moments can be indispensable; cf. [82, 78].

Note that similar coarse space enrichments were proposed for other domain

decomposition methods earlier; see, e.g., [30, 115, 29, 28, 36].

In [78], weighted edge averages for heterogeneities not aligned with the in-

terface were studied numerically.

For materials with a stiff material at a minimum distance of η > 0 from

the interface and included in a soft hull, a comparable condition number bound

taking also η into consideration was given in [49, 48]. For the diffusion prob-

lem, related patch techniques and condition number bounds for one-level and

all-floating FETI methods, depending only on the coefficient jumps in the neigh-

borhood of the interface, were already considered in [104, 105].

In order to establish condition number bounds for the diffusion problem,

Poincaré inequalities are used and constant coefficients on the subdomains are

assumed. In [106] weighted Poincaré inqualities for quasi monotonous coefficient

distributions (see [115, 29]) were considered.

For almost incompressible linear elasticity, a zero net flux condition has to

be considered; without further going into detail, we refer to, e.g., [102, 49] for

almost incompressible materials and FETI-DP and BDDC.

We end this section without going further into detail since the coefficient

distributions considered in this thesis are in general arbitrarily heterogeneous

and do not fulfill the previous assumptions on the coefficients. The condition
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3 Standard FETI-DP and BDDC

number bounds established in this thesis are based on adaptively computed

coarse spaces.

3.3 Standard BDDC

As noted in the preliminary section, the BDDC method was proposed by dif-

ferent authors; see [20, 23, 43].

For BDDC, as for FETI-DP, we use the subdivision of the degrees of freedom

introduced before.

On the dual interface nodes, the BDDC method corresponds to a Neumann-

Neumann algorithm with continuous iterates and noncontinuous flux approxi-

mations which become continuous at convergence only; cf., e.g., [130, Sec. 1.3.4]

for an elementary description of Neumann-Neumann methods. In this sense,

the BDDC method is dual to FETI-DP and therefore both methods are related.

To define the BDDC method, it is convenient to introduce a modified

ordering, i.e., (uT∆′ , uTΠ′)T :=
(
u
(1)T
∆′ , . . . , u

(N)T
∆′ , u

(1)T
Π′ , . . . , u

(N)T
Π′

)T
instead of(

u
(1)T
∆′ , u

(1)T
Π′ , . . . , u

(N)T
∆′ , u

(N)T
Π′

)T
. Consequently, for theoretical considerations

only, we have to assume a different ordering of the corresponding submatrices.

We use calligraphic letters to distinguish matrices used in BDDC from the

corresponding matrices used in FETI-DP. Instead of KΓΓ, we use

KΓΓ :=




K
(1)
∆′∆′ 0 · · · 0 K

(1)T
Π′∆′ 0 · · · 0

0
. . .

. . .
... 0

. . .
. . .

...
...

. . .
. . . 0

...
. . .

. . . 0

0 · · · 0 K
(N)
∆′∆′ 0 · · · 0 K

(N)T
Π′∆′

K
(1)
Π′∆′ 0 · · · 0 K

(1)
Π′Π′ 0 · · · 0

0
. . .

. . .
... 0

. . .
. . .

...
...

. . .
. . . 0

...
. . .

. . . 0

0 · · · 0 K
(N)
Π′∆′ 0 · · · 0 K

(N)
Π′Π′




and the corresponding off-diagonal block KΓI such that we can compute the

Schur complement

SΓΓ := KΓΓ −KΓIK
−1
II K

T
ΓI

from the matrix

(
KII KT

ΓI

KΓI KΓΓ

)
. (3.24)
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3.3 Standard BDDC

Note that we use the matrix KII as defined in (3.4). The right hand side is

obtained with the corresponding elimination of the interior degrees of freedom

from f and is denoted by
(
gT∆′ , gTΠ′

)T
; see below.

For BDDC, instead of the Boolean jump operator from FETI-DP, we use

RT
∆′ :=

(
R

(1)T
∆′ , . . . , R

(N)T
∆′

)
, which performs the finite element assembly in the

dual variables u
(i)
∆′ .

The (unpreconditioned) BDDC system corresponds to a primal Schur com-

plement method. For uTΓ =
(
uT∆′ , uTΠ′

)T
, the system writes

SuΓ :=

(
RT

∆′ 0

0 IΠ′

)(
I∆′ 0

0 RT
Π′

)
SΓΓ

(
I∆′ 0

0 RΠ′

)(
R∆′ 0

0 IΠ′

)
uΓ = g

(3.25)

with right hand side

g :=

(
RT

∆′ 0

0 RT
Π′

)(
g∆′

gΠ′

)
:=

(
RT

∆′ 0

0 RT
Π′

)(
f∆′ −K∆′IK

−1
II fI

fΠ′ −KΠ′IK
−1
II fI

)
.

As in FETI-DP, we introduce a preconditioner to speed up the conver-

gence of the iterative solver. A key ingredient in the standard preconditioner

are again (diagonal) scaling matrices D
(i)
u : ∂Ωi,h ∩ Γh → ∂Ωi,h ∩ Γh, i =

1, . . . , N . The scaling in BDDC is very straight-forward, once the functions

d
(i)
u : ∂Ωi,h ∩ Γh → (0, 1) from the previous section are defined; see (3.14).

For a diagonal scaling, if r is the local index of a degree of freedom on Γ, we

obtain

(
D(i)

u

)
rr

:= d(i)u (x). (3.26)

The other entries of D(i) as well as the entries of D(j) and D(k) are obtained

correspondingly.

The nondiagonal scaling matrices used in BDDC also consist of blocks of the

size of the edges and the faces. Consider either an (open) face F ij shared by

the two subdomains Ωi and Ωj or an (open) edge E ik shared by the subdomains

Ωi, Ωj, Ωk. Multiplicities greater than three can be handled analogously. Then,

the scaling on Ωi, restricted to F ij and E ik, respectively, is easily given by

D(i)
u |F ij := D

(i)
u,F ij and D(i)

u |Eik := D
(i)

u,Eik , (3.27)

23



3 Standard FETI-DP and BDDC

respectively, with D
(i)
u,F ij and D

(i)

u,Eik as introduced before equation (3.16).

Again, the other entries of D(i) as well as the entries of D(j) and D(k) are

obtained correspondingly.

As before, (3.27) is a generalization of (3.26).

With Du defined, we can introduce the scaled assembly operator RT
∆′,Du

in

the a priori dual variables which results from scaling the operator R
(i)
∆′ by D

(i)
u ,

i = 1, . . . , N . The standard BDDC preconditioner then writes

M−1
BDDC :=

(
RT

∆′,Du
0

0 IΠ′

)
S̃−1

(
R∆′,Du

0

0 IΠ′

)
(3.28)

and the preconditioned BDDC system is given by

M−1
BDDCSuΓ = M−1

BDDCg. (3.29)

As in FETI-DP, the operator PD is essential for establishing a condition

number bound of the corresponding BDDC method. This comes from the fact,

that the challenge of estimating the eigenvalues of M−1
BDDCS can be reduced to

the problem of estimating the eigenvalues of

EDu := I − PD; (3.30)

see [81, 43, 53, 92, 89].

3.4 Scaling variants for FETI-DP and BDDC

For heterogeneous problems, the use of an appropriate scaling is important; see,

e.g., [112]. To be effective, the scaling best depends on the coefficient distri-

bution of the underlying PDE. The scaling is of equal importance in adaptive

FETI-DP and BDDC methods since, for a bad scaling, the resulting adaptive

coarse space can be very large; see, e.g., [74, 68].

In this thesis, we consider four different scalings and present an extensive

numerical comparison of these for three-dimensional problems in Section 6.5.3.

ρ-Scaling. First, we introduce the standard ρ-scaling; see, e.g., [88, 31, 91, 115,

81, 130, 78, 105], also for domain decomposition methods other than FETI-DP

and BDDC. For i ∈ {1, . . . , N} and x ∈ ∂Ωi ∩ Γh, we introduce the local
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3.4 Scaling variants for FETI-DP and BDDC

ρ-coefficient or Young’s modulus evaluation by

ρ̂i(x) :=





sup
x∈supp(ϕx)∩Ωi

ρ(x), for diffusion,

sup
x∈supp(ϕx)∩Ωi

E(x), for linear elasticity,
(3.31)

where ϕx is the nodal finite element function at x and supp(ϕx) its support.

The functions d
(i)
u : ∂Ωi,h ∩ Γh → (0, 1) introduced generically before (3.14)

are then defined as

d(i)u (x) :=
ρ̂i(x)∑

k∈Nx
ρ̂k(x)

. (3.32)

Let for example Ωi and Ωj share either a face or an edge and let

x ∈ ∂Ωi ∩ ∂Ωj. Then, in FETI-DP the corresponding nontrivial row

of B(i), coupling Ωi and Ωj at x, is multiplied by the scaling d
(j)
u (x) =

ρ̂j(x)/
(∑

k∈Nx
ρ̂k(x)

)
to obtain the corresponding row of B

(i)
D ; vice versa for

Ωj. On the other hand, in BDDC the degrees of freedom on ∂Ωi are scaled by

d
(i)
u = ρ̂i(x)/

(∑
k∈Nx

ρ̂k(x)
)
.

Stiffness-Scaling. Second, we introduce stiffness- (or K-, or super-lumped-)

scaling (see, e.g., [21, 31, 91, 112]), which is a heuristic approximation of ρ-

scaling. There, we replace the coefficient ρ̂i(x) by the corresponding diagonal

element of the local stiffness matrix K(i). By replacing the definition in (3.31),

we obtain stiffness-scaling with the same definitions of d
(i)
u , D(i) and D

(i)
u , i =

1, . . . , N .

Multiplicity-Scaling. Third, we introduce multiplicity-scaling (see, e.g., [90,

42, 39, 112, 38]), which does not rely on the coefficients of the PDE. In

multiplicity-scaling, the inverse of the multiplicity of a node is used. We obtain

multiplicity-scaling from ρ-scaling by setting the coefficient evaluation to one,

i.e., redefining

ρ̂i(x) := 1

for all x ∈ ∂Ωi,h ∩ Γh and i = 1, . . . , N . We can again use the same definitions

of d
(i)
u , D(i) and D

(i)
u , i = 1, . . . , N .

For coefficient jumps only along but not across subdomain boundaries, ρ-

scaling reduces to multiplicity-scaling.
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3 Standard FETI-DP and BDDC

Deluxe-Scaling. Last, we consider deluxe-scaling, which was introduced re-

cently; see [24] and, e.g, [22, 6, 18, 75, 16]. Deluxe-scaling is a nondiagonal

scaling and therefore computationally more expensive.

Consider either a face F ij shared by the two subdomains Ωi and Ωj or an

edge E ik shared by the subdomains Ωi, Ωj, and Ωk. Multiplicities greater than

three can be handled analogously.

The Schur complement S(l) can be partitioned as

S(l) =




S
(l)
F ijF ij S

(l)T

F ijCF ij

S
(l)

F ijCF ij
S
(l)

F ijCF ijC


 , l ∈ {i, j}, (3.33)

and S(l) =




S
(l)

EikEik S
(l)T

EikCEik

S
(l)

EikCEik
S
(l)

EikCEikC


 , l ∈ {i, j, k}, (3.34)

where the sets F ijC and E ikC are the complements of F ij and E ik with respect

to the local interface; see, e.g., [75]. For l ∈ {i, j}, we define S
(l)
F ij ,0

:= S
(l)
F ijF ij ,

and for l ∈ {i, j, k}, we define S
(l)

Eik,0
:= S

(l)

EikEik .

For the face F ij, deluxe-scaling is defined by

D
(i)
u,F ij := (S

(i)
F ij ,0

+ S
(j)
F ij ,0

)−1S
(i)
F ij ,0

(3.35)

as well as (3.17) for FETI-DP and (3.27) for BDDC, respectively.

That means that nontrivial rows of B(i) corresponding to the Lagrange mul-

tipliers on this face are multiplied by D
(j)T
u,F ij =

(
(S

(i)
F ij ,0

+ S
(j)
F ij ,0

)−1S
(j)
F ij ,0

)T
if

the orientation of the constraints in B is chosen consistently. Otherwise, certain

entries have to be scaled by −1.

For the edge E ik, deluxe-scaling is defined by

D
(i)

u,Eik = (S
(i)

Eik ,0
+ S

(j)

Eik,0
+ S

(k)

Eik,0
)−1S

(i)

Eik,0
(3.36)

as well as (3.17) for FETI-DP and (3.27) for BDDC, respectively.

Again, that means that nontrivial rows of B(i) corresponding to the Lagrange

multipliers coupling Ωi and Ωj on this edge are multiplied byD
(j)T

u,Eik =
(
(S

(i)

Eik,0
+

S
(j)

Eik,0
+S

(k)

Eik,0
)−1S

(j)

Eik,0

)T
if a consistent orientation of the Lagrange multipliers

is assumed.
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4 An implementational view on coarse

space enrichments for FETI-DP and

BDDC

4.1 Preliminaries

In this chapter, we present different approaches to implement coarse space en-

richments for FETI-DP and BDDC. The idea of an enrichment of the a priori

coarse space of FETI-1 was already discussed in [36] and in one of the first

works on FETI-DP; see [37]. Our specific choice of additional constraints to

enrich the a priori coarse space is outlaid in the following chapters. Parts of

this chapter have been published in modified or unmodified form by the author

of this thesis and his coauthors in [64, 67, 68].

Theoretically elegant ways to enforce additional constraints in the FETI-

DP method are given by the deflation and the balancing approach. Deflation

(see [100]) is also known as projector preconditioning; see [26]. Deflation and

balancing have already been used extensively in the context of domain decom-

position methods; see, e.g., [97, 58, 80]. In this thesis, the deflation and the

balancing approach are only considered for FETI-DP since the BDDC method

using deflation is not equivalent to the BDDC method using a transformation

of basis; see [80].

A second and intuitive way in the context of finite element methods, to

enforce additional constraints, is the transformation-of-basis approach. In this

approach, the nodal basis is transformed such that general constraints can be

enforced by partial nodal assembly; see, e.g., [83, 89, 82, 77, 80]. The standard

approach can be proven to be equivalent to a corresponding deflation approach

if constant scaling on any face and any edge is assumed, e.g., multiplicity-scaling

or ρ-scaling for certain coefficient distributions; see [80].

Third, we present a technique introduced in [82] to retain the sparsity of

the matrix K
(i)
B′B′ which is otherwise affected by the explicit transformation of

basis. Similar techniques using optional Lagrange multipliers and saddle point
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4 An implementational view on coarse space enrichments

formulations were also used in, e.g., [37, 51, 92, 93]. These techniques are not

treated in detail in this thesis.

Last in this chapter, we present the generalized transformation-of-basis ap-

proach; see [67]. This generalized approach offers a remedy for arbitrary coef-

ficient distributions and scalings where assumptions of the standard theory do

not hold anymore. We prove that for every FETI-DP or BDDC method us-

ing the generalized transformation-of-basis approach, there is a corresponding

FETI-DP method using the deflation or the balancing approach with essen-

tially the same spectrum. On the other hand, for a given FETI-DP method

using balancing or deflation (under a few assumptions, see Section 4.5), we can

construct a FETI-DP method using the generalized transformation-of-basis ap-

proach, which again has essentially the same spectrum.

4.2 FETI-DP with deflation and balancing

In this section, we briefly explain the deflation and the balancing approach.

These approaches provide a mechanism to enrich the coarse space by adding

additional constraints. Parts of this section have already been published in

modified or unmodified form by the author of this thesis and his coauthors

in [64, 67].

For an introduction to deflation and balancing, in parts especially in the

context of FETI-DP and other domain decomposition methods, see [100, 26,

27, 97, 80, 58] and the references therein.

For a matrix A, in the following, we denote by A+ an arbitrary generalized

inverse satisfying AA+A = A and A+AA+ = A+. By elementary linear algebra,

it can be shown that A+A is a projection onto rangeA+ with null space kerA;

cf., e.g., [8]. These properties are used (implicitly) in the following reasonings.

The following description is based on [80] extended to the case of a semidef-

inite matrix F . Note that F is symmetric.

In the context of deflation and balancing, we refer to cTλBw = 0 as a con-

straint while we refer to cλ as a constraint vector for the Lagrange multipliers.

Let U = (cλ,1, . . . , cλ,m) be given as the matrix where the constraint vectors are

stored as columns.

Then, we define

P := U(UTFU)+UTF. (4.1)

We have rangeP = range (U(UTFU)+) and kerP = ker(UTFU)+UTF ). Next,

we multiply the FETI-DP system (3.6) by (I − P )T , which yields the deflated

28



4.2 FETI-DP with deflation and balancing

system

(I − P )TFλ = (I − P )Td. (4.2)

The deflated system is consistent. Moreover, rangeU ⊂ ker((I−P )TF ). By con-

sidering the orthogonal and complementary spaces, we still have range (F (I −

P )) ⊂ kerUT for a semidefinite matrix F . Since (I − P )T is also a projection,

we can show that

(I − P )TF = F (I − P ) = (I − P )TF (I − P ). (4.3)

Therefore, only components of the dual variable in range (I − P ) are relevant

to the construction of the Krylov spaces. By λ∗ we denote the solution of the

original system Fλ = d, which is unique only up to an element in kerBT . Let

λ̂ ∈ range (I − P ) be a solution of (4.2). Then, λ̂ is identical to (I − P )λ∗ up

to an element in kerBT . We have the decomposition

λ∗ = Pλ∗ + (I − P )λ∗ =: λ̄+ (I − P )λ∗,

where λ̄ can be expressed by

λ̄ = Pλ∗ = U(UTFU)+UTFF+Fλ∗ = PF+d.

Since BT (I − P )λ∗ = BT λ̂, we can then show that the solution in terms of

the displacements does not change if (I − P )λ∗ is replaced by λ̂, i.e.,

u∆ = S̃−1
(
f̃∆ −BTλ∗

)
= S̃−1

(
f̃∆ −BT (λ̄+ λ̂)

)
.

Preconditioning the resulting system of equations by the Dirichlet precon-

ditioner M−1
D gives

M−1
D (I − P )TFλ = M−1

D (I − P )T d.

Another multiplication with I − P from the left gives the new symmetric pre-

conditioner

M−1
PP := (I − P )M−1

D (I − P )T , (4.4)

which can also be denoted deflation preconditioner. As shown in [80, Theo-

rem 6.1], we do not change the nonzero eigenvalues of the former left hand

side when multiplying with I − P . Therefore, the deflated problem reads:
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4 An implementational view on coarse space enrichments

Find λ ∈ range (I − P ), such that

M−1
PPFλ = M−1

PP d.

Instead of computing λ̄ a posteriori, the computation can be included into

each iteration. This leads to the balancing preconditioner

M̃−1
BP := M−1

PP + PF+.

Although the balancing preconditioner for a semidefinite matrix F is then of

the form M̃−1
BP = M−1

PP + U(UTFU)+UTFF+, we can equivalently use

M−1
BP = M−1

PP + U(UTFU)+UT (4.5)

since it is applied to Fλ = d and FF+F = F as well as d ∈ rangeF .

Let us note that the Theorems 6.2 and 6.3 in [80] can be proven for a

semidefinite matrix F by replacing F−1 by F+ and by following the arguments

given in [80]. As a result, we obtain that the eigenvalues of M−1
BPF and M−1

PPF

are essentially the same.

In order to provide a condition number bound for the deflation and the bal-

ancing approach let us first assume that a standard Rayleigh quotient estimate

for the PD-operator (see (3.21) and (3.22)) is given on the deflated space, i.e.,

‖PDw‖
2
S̃

‖w‖2
S̃

≤ C for all w ∈ {w ∈ W̃ : UTBw = 0} (4.6)

and C = const > 0. An estimate of this type is established in Lemma 5.5.

Then, based on results of [80], it was shown in [75, Lemma 3.2] that the con-

dition number of the FETI-DP operator preconditioned by deflation/projector

preconditioning or balancing can be bounded from above by C.

Let us define

W̃U = {w ∈ W̃ : UTBw = 0}, (4.7)

then, with (3.1), we have

Ŵ ⊂ W̃U ⊂ W̃ ⊂ W. (4.8)

Let us briefly comment on the computational cost. We use deflation or bal-

ancing as a second, independent mechanism (in addition to an initial coarse

space from partial assembly; see (3.8)) to implement the coarse space con-
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structed from our eigenvalue problems in Chapter 5. Other approaches to im-

plement this coarse space would also be possible; see, e.g., Chapters 6 and 7.

For the deflation or balancing approach, the coarse operator UTFU has to be

formed as a sparse matrix and, during the iteration, the application of (UTFU)+

to a vector has to be computed. When forming the Galerkin product UTFU ,

it is essential for the efficiency to exploit the sparsity of U and the structure of

F . The generalized inverse (UTFU)+ can be computed at essentially the same

cost as a sparse Cholesky factorization. However, for large adaptive coarse

problems, the computational cost can still be large.

4.3 FETI-DP and BDDC with the (standard)

transformation-of-basis approach

In this section, we recall the standard approach of the transformation of basis

for FETI-DP and BDDC; see, e.g., [83, 89, 82, 77, 80]. Parts of this section

have already been published in modified or unmodified form by the author of

this thesis and his coauthors in [67, 68].

For this approach, we assume a constant scaling on any face and any edge,

e.g., multiplicity-scaling or ρ-scaling for certain coefficient distributions. For an

example violating the assumption of constant scaling per face or per edge, see

Figure 4.3.

Using partial finite element assembly, continuity across the subdomain

boundary on certain degrees of freedom of u can be enforced for the corre-

sponding finite element basis function. However, when using a transformation

of basis from a nodal to a different basis, also general constraints can be

enforced using the same technique.

In order to simplify the visualization, we demonstrate the approach with

the following two-dimensional example. Let the edge E be shared by the sub-

domains Ωi and Ωj. During the Krylov iteration, the iterates u now should

fulfill a constraint involving the nodes of the edge E . For the sake of simplic-

ity, we further assume that this constraint is the only additional constraint to

implement by a transformation of basis and partial assembly.

Suppose that the constraint vector for the transformation-of-basis approach

is given by the normalized vector cu defined on ∂Ωi ∩E and ∂Ωj ∩E (and equal

on both sets). Then, the constraint writes

cTu

(
u
(i)
E − u

(j)
E

)
= 0 ⇔ cTuu

(i)
E = cTuu

(j)
E (4.9)
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E
Ωi Ωj

Π′
1 Π ∆1∆2Π′

2 Π′
1 Π ∆1∆2Π′

2 Π′
1 Π ∆1∆2Π′

2

Figure 4.1: Example of transformed, nonnodal basis functions: Two subdo-

mains Ωi and Ωj sharing the edge E (left). Transformed, nonnodal

basis functions on the edge E belonging to the degrees of freedom

Π, ∆1, and ∆2 (from second to left to right). In all images, a priori

primal vertices (Π′) are indicated by gray squares. A priori dual

variables (∆′) are indicated by circles. The average constraint is

enforced at the red degree of freedom (Π); yellow circles represent

the remaining dual variables ∆1 and ∆2.

for u
(l)
E = u|∂Ωl∩E

, l ∈ {i, j}.

For instance, cu = 1
nE

(1, . . . , 1)T means a continuous edge average shared

by Ωi and Ωj, where nE is the length of cu. This corresponds to the use of

a nonnodal basis function; see Figure 4.1 for an edge with three degrees of

freedom.

We then define a (square) transformation matrix

T
(l)
E =

(
cu, C

(l)⊥
u

)
, l ∈ {i, j} (4.10)

where C
(l)⊥
u is computed such that T

(l)
E is orthogonal. We then define the

transformation matrix T (l), which acts on the complete subdomain, and which

is identical to T
(l)
E on the edge E and the identity elsewhere.

We obtain the transformed variables u(l), the transformed stiffness matrices

K
(l)
, and the transformed load vectors f

(l)
on Ωl as

K
(l)

= T (l)TK(l)T (l), u(l) = T (l)Tu(l), f
(l)

= T (l)T f (l), l ∈ {i, j}. (4.11)

After the transformation of basis has been performed, assembly in the new

primal variables is used to enforce the given constraint.

This procedure indeed enforces our original constraint corresponding to cu

as follows. With (4.10) and (4.11), we have

cTuu
(l)
E = cTuT

(l)
E u

(l)
E = cTu

(
cu, C

(l)⊥
u

)
u
(l)
E = (1, 0, . . . , 0) u

(l)
E = u

(l)
E,1, l ∈ {i, j},
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4.4 An alternative formulation of the transformation of basis for FETI-DP and BDDC

where u
(l)
E,1 is the displacement at the first degree of freedom on the edge E∩∂Ωl.

Let us now reduce the variables u
(i)
E,1 and u

(j)
E,1 by using partial finite element

assembly in the specific degree of freedom. For the transformed and assembled

variables, we use û instead of u. Precisely, we have

ûE,1 := û
(i)
E,1 := û

(j)
E,1 := u

(i)
E,1 + u

(j)
E,1 (4.12)

by partial assembly in the first degree of freedom and û
(l)
E,k := u

(l)
E,k for k > 1.

For the values transformed back to the initial basis, we now see by

cTuT
(i)
E û

(i)
E = u

(i)
E,1 + u

(j)
E,1 = cTuT

(j)
E û

(j)
E ⇔ cTu

(
T
(i)
E û

(i)
E − T

(j)
E û

(j)
E

)
= 0

that the constraint is enforced.

Note that it is not necessary for T
(l)
E of (4.10) to be orthogonal. The rows or

columns only have to represent the basis of the transformation. Then, instead of

T T , T−1 would be necessary to realize the corresponding inverse transformation.

Faces in three dimensions can be handled completely analogously. However,

it should be noted that explicit transformations on faces affect the sparsity

pattern of the (transformed) stiffness matrices to a larger extent than explicit

transformations on edges. For edges in three dimensions, only the additional

transformation matrices T
(l)
E and T (l) (l /∈ {i, j}) have to be defined accordingly

and the partial assembly simply assembles more than two degrees of freedom.

4.4 An alternative formulation of the transformation of

basis for FETI-DP and BDDC

In [82], a technique was introduced to avoid affecting the sparsity of the ma-

trix K
(i)
B′B′ by the explicit transformation of basis. This is important for face

constraints. To resolve this issue, as in [82, Sec. 4.2.2], we can alternatively

introduce additional, local Lagrange multipliers µ(i) and consider local saddle

point problems. Parts of this section have already been published in modified

or unmodified form by the author of this thesis and his coauthors in [68].

Let us briefly consider this strategy. By applying the operator F with trans-

formed stiffness matrices, the expression BB′K
−1
B′B′vB′ has to be evaluated lo-

cally, i.e., B
(i)
B′

(
K

(i)
B′B′

)−1
v
(i)
B′ has to be computed. Obviously, the minimization

of u
(i)T
B′ K

(i)
B′B′u

(i)
B′ leads to the same result as the minimization of

(
u
(i)T
B′ 0

)(K(i)
B′B′ K

(i)T
Π′B′

K
(i)
Π′B′ K

(i)
Π′Π′

)(
u
(i)
B′

0

)
, (4.13)
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where the values at the a priori primal variables Π′ are set to zero. This is

admissible since the jump operator is applied afterwards and thus the values at

the primal variables are set to zero.

Then, instead of minimizing the expression (4.13) in the transformed vari-

ables u
(i)
B′ , we introduce a corresponding constraint Q(i)Tu(i) = 0 for the non-

transformed variables. This consequently leads to the following saddle point

problem



K

(i)
II K

(i)T
ΓI 0

K
(i)
ΓI K

(i)
ΓΓ Q(i)

0 Q(i)T 0






u
(i)
I

u
(i)
Γ

µ(i)


 =



v
(i)
I

v
(i)
Γ

0


 , (4.14)

with additional local Lagrange mutipliers µ(i) (cf. [82, Sec. 4.2.2] for more de-

tails) and where the right hand side (v
(i)T
I , v

(i)T
Γ ) corresponds to (vTB′ , 0) trans-

formed back to the initial basis and restricted to the local subdomain.

Similar techniques of using saddle point problems to enforce (primal) con-

straints have been used by other authors in [37], the Lagrange multipliers are

global; in [51, 92, 93], the saddle point problems are local, which is also the case

in our approach. In the case presented here, however, the coarse Schur com-

plement operator is assembled from the local subdomain contributions rather

than built from a triple matrix product; see, e.g., [92, 93].

4.5 FETI-DP and BDDC with the generalized

transformation-of-basis approach

Parts of Section 4.5 have already been published in modified or unmodified

form by the author of this thesis and his coauthors in [67, 68]. This section, in

particular, is essentially based on [67].

4.5.1 Preliminaries

When FETI-DP and BDDC methods are set up, an initial coarse space is de-

fined to introduce sufficient coupling to obtain invertibility of the subdomain

problems. A simple vertex coarse space can suffice as an initial coarse space.

At the same time, an initial scaling is chosen; see Sections 3.2-3.4. For het-

erogeneous problems, the scaling used in the preconditioner is an important

ingredient to obtain a robust iterative method. Then, if hard problems are con-

sidered, a second coarse space might be of interest to obtain fast convergence.

To the first coarse space defined by the a priori primal variables we also refer as
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4.5 FETI-DP and BDDC with the generalized transformation-of-basis approach

a priori coarse space, and to the second coarse space, defined after the scaling

had been chosen, we refer to as a posteriori coarse space.

As introduced in Section 3.1, we denote the index set of a priori primal

variables by Π′ and the index set of a priori dual variables by ∆′. The index

set of a posteriori primal variables is denoted by Π, i.e., the final set of primal

variables is Π̂ = Π′ ∪Π and the remaining (or a posteriori) set of dual variables

∆ = ∆′ \ Π.

In adaptive FETI-DP and BDDC methods [93, 94, 22, 74, 75, 63, 64, 7,

101, 17, 134, 62, 103, 68], the a posteriori coarse space is highly dependent on

the a priori scaling, i.e., the computation of the approximate eigenvectors for

the a posteriori coarse space makes use of the a priori scaling. Indeed, the

choice of an inappropriate a priori scaling (e.g., the use of multiplicity-scaling

for heterogeneous problems) leads to an unnecessary large a posteriori coarse

space. This can be observed in, e.g., [75, 68] and Section 6.5.3.

For FETI-DP, the implementation of a second coarse space by deflation or

balancing (see, e.g., [80, 58]) is less critical in that context since partial finite

element assembly is only used for nodal basis functions; for a combination of

adaptive FETI-DP methods with deflation and balancing; cf., e.g. [75, 64, 62].

Though, using a transformation of basis, the a priori scaling might be trans-

formed, too, since it was established for the nodal basis. The use of additional

partial finite element assembly in the index set Π then makes the analysis of

the new method quite complex.

However, for the different implementations of the constraints, a correspon-

dence of the spectra is of interest. Then, the results of one method can be

transfered to the other and vice versa.

Let us briefly illustrate the difference between the a priori and a posteriori

coarse space by considering a corresponding deflation method. Assume that

an initial coarse space and a scaling D have been defined. Let us assume

further that a deflation vector cD := c(D), i.e., a constraint on the Lagrange

multipliers, based on the a priori scaling has been chosen to further accelerate

convergence. As an example, cD could be defined by the solution of local

eigenvalue problems, as they appear in adaptive domain decomposition methods

(see, e.g., [93, 94, 22, 74, 75, 63, 64, 7, 101, 17, 134, 62, 103, 68]), where the

a priori scaling enters the eigenvalue problems explicitly or implicitly. The

deflated method using the constraint cTDBw = 0 may allow the construction of

a bound

|PDw|
2
S̃
≤ C|w|2

S̃
∀w ∈ {w ∈ W̃ : cTDBw = 0}; (4.15)
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cf. Section 4.2. However, the estimate (4.15) depends on the use of the scaling

D in combination with the constraint cTDBw = 0 and may not be valid anymore

if a different scaling D̃ is used.

Departing from a deflation method with certain assumptions on the con-

straint set (see the following subsections), we derive the corresponding approach

using a change of variables. Unfortunately, with the standard transformation-

of-basis approach this correspondence could not be shown since necessary infor-

mation between a posteriori primal and a posteriori dual variables are dropped

within the standard approach. Though, a correspondence between deflation and

a change-of-variables approach can be shown under certain assumptions on the

constraints if the generalized transformation-of-basis approach, as introduced

here, is used.

The assumptions on the constraints can be explained visually. In Figure 4.2,

we see the difference between constraints in the deflation approach and an ap-

proach using partial assembly. To obtain an equivalence between both methods,

we have to assume that the constraint from partial assembly is enforced for all

Lagrange multipliers coupling the corresponding degree of freedom. Addition-

ally, we assume that the constraints in the deflation approach do not span

several edges or faces as in [50, 48].

In order to obtain a corresponding estimate to (4.15) for FETI-DP and

BDDC using, both, a change of variables and partial assembly, we show how

the scaling has to be transformed for heterogeneous problems. For the scaling in

BDDC, see Definition 4.13. For FETI-DP, the scaling is transformed implicitly;

see (4.38). This is different from the homogeneous context in [80], where it was

shown that the scaling in the new basis is identical to that of the old basis. Note

that the theory of [80] also covers specific heterogeneous cases, where, e.g., ρ-

scaling reduces to multiplicity-scaling. A priori nondiagonal scaling matrices

had not been yet introduced then.

Remark 4.1. It is an important consequence that, after transformation, an a

priori diagonal scaling may not be diagonal anymore and results in an a posteri-

ori nondiagonal scaling. This occurs for nonnodal degrees of freedom, e.g., edge

averages, if the scaling is different from multiplicity-scaling. For nodal degrees

of freedom an interaction between dual and primal variables results if an a pri-

ori nondiagonal scaling such as deluxe-scaling or an a posteriori nondiagonal

scaling is used. The interaction between dual and primal variables is not present

in classical theory, and a standard argument used in the classical theory, i.e.,

that iterates are zero in the primal variables, cannot be used, anymore. In our

theory, the use of Lemma 4.8 and Lemma 4.9 replaces this standard argument.
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Ωi Ωj

Ωk

Ωi Ωj

Ωk

Ωi Ωj

Ωk

Ωi Ωj

Ωk

Figure 4.2: Constraints of the direct deflation approach, the generalized

transformation-of-basis approach, and the corresponding deflation

approach: Cross-sectional view of three subdomains sharing an

edge. Arrows symbolize redundant Lagrange Multipliers in FETI-

DP (left). Assume that, using deflation directly, one primal con-

straint is introduced, involving the Lagrange multiplier depicted

in bold red color (second to left). Using partial assembly, after a

transformation of the initial basis, the primal constraint is now en-

forced between all three subdomains, effectively involving all three

Lagrange multipliers (second to right). The deflation or balancing

approach corresponding to the generalized transformation-of-basis

approach involves all three Lagrange multipliers depicted in bold

red color with the same constraint vector (right). [67]

Constructing the scaling for the transformed displacements only in the remain-

ing dual variables does, in general, not give the desired results; see Section 6.1.

This discussion is relevant for FETI-DP and BDDC methods with adaptive

coarse spaces where first a scaling is chosen (e.g., ρ-, stiffness- or deluxe-scaling)

and then a coarse space is constructed based on this scaling and using partial

assembly. Several papers in the literature implicitly rely on the existence of

a transformation-of-basis approach for FETI-DP corresponding to the method

using deflation. This includes our own paper [68] as well as [7, 101, 17, 62, 103],

where adaptive FETI-DP or BDDC methods are combined with, both, a change

of variables and partial assembly. We discuss the implications for adaptive

FETI-DP and BDDC methods in detail in Chapter 6.

Let us now revisit the classical theory considering an example where the

assumption of diagonal and constant scaling on any face and any edge (as

assumed in [80]) is not fulfilled anymore.

Example 4.1. In this example, we motivate that the transformation approach

can lead to nonzero values in nonnodal primal variables; even if the a priori

scaling is diagonal.
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E
Ω1 Ω2

Figure 4.3: Heterogeneous coefficient distribution to motivate the need for the

generalized transformation-of-basis approach: Decomposition of

Ω = [0, 1] × [0, 12 ] into two subdomains Ω1, Ω2 with given co-

efficient distribution. A nonhomogeneous coefficient distribution

with ρ1 = 1 (white) and ρ2 = 1e + 6 (black) is considered. Ini-

tial primal variables (Π′) are indicated by gray squares. Initial

dual variables are indicated by circles. The red circle represents

an a posteriori primal variable (Π), where we enforce a scaling-

dependent constraint by a change of variables and partial assem-

bly. The yellow circle represents the remaining dual variable. [67]

Consider the edge E with first degree of freedom Π (red circle) and second

degree of freedom ∆ (yellow circle) between the two subdomains Ω1 and Ω2 as

depicted in Figure 4.3.

The ρ-scaling for the degrees of freedom in the nodal basis is given by

D(1)
u = diag

(
1

1 + 1e6
,
1

2

)
, and D(2)

u = I −D(1)
u .

Then, assuming a (nondiagonal) transformation T of the form

T =

(
trr try

tyr tyy

)
(4.16)

with tyr, try 6= 0, T TT = I, and where the first column is given by a (scaling

dependent) constraint vector cTD = (trr, tyr)
T enabling an estimate as of (4.15).

The constraint is scaling-dependent in the way that the estimate in (4.15) can

only be obtained if the constraint is used in combination with the given scaling.

This is, e.g., typically the case in methods with adaptive coarse spaces. If the

scaling in the adaptive methods is changed, e.g., by restriction (see below), the

condition number bound of the adaptive method may not be valid anymore.

The indices r and y in (4.16) denote the relation to the nodes colored red

and yellow in Figure 4.3.
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4.5 FETI-DP and BDDC with the generalized transformation-of-basis approach

In the new basis, the transformed ρ-scaling on the degrees of freedom (see

Definition 4.13) is

D̂(1)
u =

(
1

1+1e6t
2
rr +

1
2t

2
yr

1
1+1e6 trrtry +

1
2 tyrtyy

1
1+1e6 trrtry +

1
2 tyrtyy

1
1+1e6 t

2
ry +

1
2t

2
yy

)
=:

(
d̂rr d̂ry

d̂yr d̂yy

)

and D̂(2)
u = I − D̂(1)

u =

(
1− d̂rr −d̂ry

−d̂yr 1− d̂yy

)
.

After enforcing continuity in the a posteriori primal variable, we have with

wΠ = w
(1)
Π = w

(2)
Π ,

(P̂Dw)
(1)
Π = ((I − ÊDu)w)

(1)
Π = wΠ − (d̂rrwΠ + d̂ryw

(1)
∆ + (1− d̂rr)wΠ − d̂ryw

(2)
∆ )

= −d̂ry(w
(1)
∆ −w

(2)
∆ ).

Since in general d̂ry 6= 0 and w
(1)
∆ 6= w

(2)
∆ , we obtain a nonzero value in the a

posteriori primal variables after P̂D = I − ÊDu is applied; this is contrary to

the assumptions of the standard theory. The interaction of a posteriori primal

and dual variables was also observed in [62].

Neither the use of the standard scaling (D
(1)
u )∆ = 1

2 nor the transformed and

restricted scaling (D̂
(1)
u )∆ = 1

1+1e6t
2
ry +

1
2t

2
yy on the remaining dual variables is

adequate, here. In Section 6.1, we show for a minimal example of adaptive

FETI-DP and BDDC that, for a cropped scaling such as (D̂
(1)
u )∆, i.e., setting

d̂ry = 0, the theory of the adaptive method is violated since the developed

condition number bound does not hold anymore.

4.5.2 Correspondence of FETI-DP with the generalized

transformation-of-basis approach to FETI-DP using deflation

or balancing

4.5.2.1 Transformation and a posteriori assembly

In this section, we introduce the transformation matrices and the a posteriori

assembly operator to afterwards discuss different (characterizations of) solution

spaces.

For the sake of simplicity, we restrict ourselves to the transformation of one

single face or edge. The transformation on all other faces and edges is assumed

to be trivial, i.e., the identity matrix. Thus, let us consider an edge Z1 common

to the three subdomains Ωi, Ωj , and Ωk with a nontrivial transformation, i.e.,

we assume that a posteriori constraints are only associated with the edge Z1.
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The calculations realized in the following can be transfered easily to the general

case; just by accepting a notational and calculational overhead.

Without loss of generality, we can assume that the transformations T
(i)
Zi1

,

T
(j)
Zj1

, and T
(k)
Zk1

on the edge Zl1 := Z1 ∩ ∂Ωl, l ∈ {i, j, k}, are identical. This

implies that the numbering of the edge nodes is consistent for all three subdo-

mains.

We implicitly use the assumption that a constraint vector does not span

several faces and/or edges, which is not valid, e.g., for the FETI-DP method

in [50, 48] for almost incompressible elasticity using only one deflation vector

for each almost incompressible subdomain. For the important application of

adaptive coarse spaces based on local eigenvalue problems where the constraints

are already computed locally, this is no restriction to our method.

We describe all steps in detail and for general scalings. Our results are

therefore also of interest for the adaptive BDDC methods in [7, 101, 17, 62]

which combine deluxe-scaling with a transformation of basis and partial finite

element assembly.

For simplicity, we always assume an initial (a priori) coarse space with all a

priori constraints enforced by partial assembly as in [83, 89, 82, 77]. Then, our

a posteriori coarse space consisting of a posteriori constraints is implemented

using the generalized transformation-of-basis approach using additional partial

assembly.

As motivated before, the construction of a transformation-of-basis approach

with a posteriori constraints that yields the same condition number as the

deflation approach requires some modifications of the theory compared to the

standard approach where only a priori constraints are used. This results from

the fact that the (a posteriori) primal components of PDw do, in general, not

vanish – opposed to standard theory; cf. the motivation in Section 4.5.1.

Now consider an orthonormalized set of constraint vectors (q1Zl1
, . . . , qrZl1

)

on Zl,1. Then, introduce

TZl1
,ΠZl1

:=
(
q1Zl1

, . . . , qrZl1

)
. (4.17)

Using an algorithm such as modified Gram-Schmidt, we compute TZl1
,∆Zl1

so

that TZl1
:=
(
TZl1

,ΠZl1
, TZl1

,∆Zl1

)
is a square matrix and T T

Zl1
TZl1

= I, i.e.,

TZ,∆Z
is orthogonal to the constraint space span

(
q1Zl1

, . . . , qrZl1

)
. For conve-

nience, we order the primal variables in the whole section first.

For each subdomain Ωl, we denote the faces and edges by Zl1 , . . . ,Zls . Since

we have assumed only one nontrivial transformation, for n > 1 the matrix

TZln ,ΠZln
is void and TZln

=
(
TZln , ∆Zln

)
= I, 2 ≤ n ≤ s. Without loss of
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generality, we assume that the degrees of freedom of all the corresponding faces

and edges of Ωl are ordered such that the degrees of freedom on Zl1 are ordered

first, those of Zl2 are ordered second, etc. Then,

T
(l)
∆′

l

:=
(
T
(l)
Πl

| T
(l)
∆l

)
:=




TZl1
,ΠZl1

TZl1
,∆Zl1

0 . . . . . . 0

0 0 I 0 . . . 0
...

... 0
. . .

. . .
...

...
...

...
. . .

. . . 0

0 0 0 . . . 0 I




(4.18)

represents the transformation on ∆′
l from the new basis to the old basis, i.e.,

w
(l)
∆′

l

= T
(l)
∆′

l

w
(l)
∆′

l

, (4.19)

where the vectors in the new basis still lack an assembly operation. The identity

matrices in (4.18) are of the size of the faces and edges Zl2 , . . . ,Zln , l ∈ {i, j, k}.

As mentioned before, the transformations are chosen consistently, i.e., for

the three subdomains, we have for the local transformations on Z1 (shared by

Ωi, Ωj , and Ωk) that

TZi1
,ΠZi1

= TZj1
,ΠZj1

= TZk1
,ΠZk1

and TZi1
,∆Zi1

= TZj1
,∆Zj1

= TZk1
,∆Zk1

.

(4.20)

It also holds T
(l)T
∆′

l

T
(l)
∆′

l

= I, l ∈ {i, j, k}, and that the columns of T
(l)
Πl

span

the range of all a posteriori constraint vectors associated with Ωl, l ∈ {i, j, k}.

Therefore, using (4.18) and (4.19), we have

T
(l)T
Πl

w
(l)
∆′

l
=
(
I 0 . . . 0

)




w
(l)
ΠZl1

w
(l)
∆Zl1
...

w
(l)
∆Zls




= w
(l)
ΠZl1

for l ∈ {i, j, k}. (4.21)

The global transformation matrix writes

T =

(
IΠ′ 0

0 blockdiagl=1,...,N (T
(l)
∆′

l
)

)
. (4.22)

We often use T T . Note that T T has to be replaced by T−1 if the columns of T

are not orthonormalized.
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Remark 4.2. Let us remark that the corresponding identity of (4.20) has to

hold for all faces and all edges, i.e., the transformation matrices restricted to

any particular face or edge have to be equal on all adjacent subdomains. This

property is explicitly needed for the proof of Lemma 4.8 and can be assumed

without loss of generality since the set of constraints can easily be modified or

extended if the property did not yet hold.

The transformed variables then still lack an assembly operation. In the

following, we also use the simplified index Z1 instead of Zl1 for l ∈ {i, j, k}

since this edge is shared by these three subdomains and since (4.20) holds. In

order to enforce

w
(i)
ΠZ1

!
= w

(j)
ΠZ1

!
= w

(k)
ΠZ1

, (4.23)

we introduce the global restriction operator R, which replicates the a posteriori

primal degrees of freedom (given by the index set Π), and its transpose RT ,

which sums a posteriori primal degrees of freedom.

The restriction operator R is of the form

R =




IΠ′ 0 0 . . . . . . 0

0 (∗)Π1 (∗)∆1 0 . . . 0
...

... 0
. . .

...
...

...
...

. . . 0

0 (∗)ΠN
0 . . . 0 (∗)∆N




(4.24)

where the matrix ((∗)Πi
, (∗)∆i

), i = 1, . . . , N , is a permutation of the columns

of the identity matrix. The operator R replicates the a posteriori degrees of

freedom to the different subdomains but does not change the a priori set of

primal variables.

The multiplicity-weighted assembly operator for the a posteriori primal vari-

ables is defined as

RT
µ := (RTR)−1RT (4.25)

and therefore RT
µR = I. Here, the index µ stands for multiplicity.
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The local version of RT , restricted to the considered edge Z1, is given by

RT
Z1

: =

(
RT

ΠZ1

RT
∆Z1

)
:=




Ii,ΠZ1
0 Ij,ΠZ1

0 Ik,ΠZ1
0

0 Ii,∆Z1
0 0 0 0

0 0 0 Ij,∆Z1
0 0

0 0 0 0 0 Ik,∆Z1




,

and the local version of the multiplicity-weighted operator is

RT
Z1,µ : =

(
1
3R

T
ΠZ1

RT
∆Z1

)
.

For the variables, both, transformed to the new basis and assembled in the

a posteriori primal variables, we then have

ŵ
(i)
ΠZ1

= ŵ
(j)
ΠZ1

= ŵ
(k)
ΠZ1

; (4.26)

cf. (4.23) for the variables, which are only transformed, for which this property

does not hold.

Note that RT
µ is used in the FETI-DP Dirichlet preconditioner using the gen-

eralized transformation-of-basis approach and does not appear in the standard

theory; cf. (3.19) and (4.36).

4.5.2.2 Solution spaces

For w ∈ W̃ , ŵ := RT
µT

Tw is also continuous in the a posteriori set of primal

variables given by the index set Π as required by (4.26). We then introduce the

corresponding space

W̃T,a := {ŵ = RT
µT

Tw : w ∈ W̃}. (4.27)

In the space W̃T,a all displacements are transformed to the new basis and are

continuous in all primal variables, i.e., in the a priori (Π′) as well as in the a

posteriori (Π) primal variables. We also recall the definition of the space

W̃U := {w ∈ W̃ : UTBw = 0}

from the context of deflation and balancing; see (4.7). Another characterization

of the same space is given by

W̃Q := {w ∈ W̃ : QTw = 0} (4.28)
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with Q = BTU , i.e., the constraint vectors for the degrees of freedom are stored

in the columns of Q.

For our theoretical considerations, we would like to work with W̃Q, but

in the implementation, the space is obtained via partial assembly and scat-

tering of the corresponding continuous values, i.e., we iterate in W̃T,a. The

two spaces correspond to different methods. The space W̃T,a corresponds to a

transformation-of-basis approach and W̃Q corresponds to a deflation or balanc-

ing approach.

However, in general, we have

W̃T,a ( W̃Q. (4.29)

This results from the assumption mentioned in Remark 4.2 and the fact that

the deflation and balancing approach enforces the constraints on a Lagrange

multiplier basis. For a better understanding, see Figure 4.2. Let an edge be

shared by the three subdomains Ωi, Ωj, and Ωk and assume that a deflation or

balancing approach enforced one constraint on the Lagrange multiplier connect-

ing Ωi and Ωk. Introducing the same constraint also for the other jumps on the

edge and using partial assembly then involves all three Lagrange multipliers.

Effectively, this corresponds to the deflation or balancing approach enforcing

the constraint given on the jump w(i)−w(k) for all other jumps across the edge;

here, w(i) − w(j) and w(j) − w(k). Accordingly, W̃T,a becomes a strict subset of

W̃Q. On the other hand, we can always extend the columns of Q to Q̂ :=
(
Q, ∗

)

with rangeQ ⊂ range Q̂ such that it holds

W̃T,a = W̃
Q̂
= {w ∈ W̃ : Q̂Tw = 0} ⊂ W̃Q. (4.30)

Another notation for the space W̃T,a in the context of deflation and balancing

is

W̃Û := {w ∈ W̃ : ÛTBw = 0}, (4.31)

i.e., we have Q̂ = BT Û and Û then contains the constraint vectors for the

Lagrange multipliers of the corresponding deflation or balancing approach; see

Figure 4.2 (right).

Remark 4.3. We refer to the deflation or balancing approach using W̃U = W̃Q

as the direct deflation or balancing approach and to the approach using W̃Û =

W̃Q̂ as the corresponding deflation or balancing approach. This results from

the fact that W̃Û is obtained in correspondence to the generalized transforma-
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tion approach which generally enforces more constraints than a direct deflation

approach in W̃U ; cf. Figure 4.2.

We complete this subsection with a short résumé:

Ŵ ⊂ W̃T,a = W̃
Q̂
= W̃

Û
⊂ W̃Q = W̃U ⊂ W̃ ⊂ W. (4.32)

4.5.2.3 FETI-DP in transformed and assembled operators

Note that our orthogonal transformation T performs the change of basis from

a new, nonnodal basis, e.g., with explicit averages, to the standard nodal finite

element basis. The inverse T T then changes back to the nodal basis.

In the new basis, the assembled variables are given by

ŵ := RT
µT

Tw = RT
µw; (4.33)

see (4.27).

By construction, ŵ is continuous in the a posteriori set of primal variables

given by Π and in the a priori set of primal variables given by Π′. For these

transformed and assembled variables, we also define the transformed and as-

sembled operators P̂D and
̂̃
S by

P̂D := RT
µT

T PD TR and
̂̃
S := RTT T S̃ TR, (4.34)

where PD = BT
DB, i.e., the operator PD corresponds to the jump operator B

and the a priori scaling D used with the a priori coarse space corresponding to

the index set Π′; see Section 3.2. For the theory, we also introduce

B̂ := BTR and B̂D := BDTRµ. (4.35)

In practice, we do not implement a transformed version of B or BD. Instead we

use the applications of the transformation T and the scatters R and Rµ. With

the new notation, we also have

P̂D = B̂T
DB̂.

The transformed, preconditioned FETI-DP system matrix, using the trans-

formed Dirichlet preconditioner

M̂−1
T := B̂D

̂̃
SB̂T

D (4.36)
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for

F̂ := B̂
̂̃
S
−1

B̂T (4.37)

is thus given by

M̂−1
T F̂ = (B̂D

̂̃
SB̂T

D) (B̂
̂̃
S
−1

B̂T )

=
(
BD TRµ

̂̃
SRT

µT
T

︸ ︷︷ ︸
=replaces S̃

BT
D

) (
B TR

̂̃
S
−1

RTT T

︸ ︷︷ ︸
=replaces S̃−1

BT
)
.

(4.38)

where
̂̃
S = RTT T S̃TR is the transformed Schur complement assembled also in

the a posteriori primal variables; see (4.34)

The preconditioned system (4.38) is different from the standard FETI-DP

method using a transformation of basis, as, e.g., in [83, 89, 82, 77, 78, 80] which

can be written, iterating in the transformed basis,

M−1
D F = (BD,∆

̂̃
SBT

D,∆) (B∆
̂̃
S
−1

BT
∆), (4.39)

where the operatorB∆ only enforces continuity on the a posteriori dual variables

and zeroes primal variables; BD,∆ is its scaled variant, effectively scaling only

a posteriori dual variables; cf., e.g., [83, 89].

Note that the expression (4.38) is missing an explicit transformed scaling D̂

but the scaling is transformed implicitly by applying T before B and BD as

well as T T after BT and BT
D. In the next section, in a short digression, we show

that an equivalent, explicitly transformed scaling D̂ exists. However, we do not

see any advantages of building it explicitly.

4.5.2.4 Digression: Transformation in the space of the Lagrange

multipliers and explicit scaling transformation for FETI-DP

In the previous section, we introduced the new preconditioned FETI-DP system

matrix using the generalized transformation-of-basis approach. In the expres-

sion (4.38) the scaling is transformed implicitly. We now show that T TBT
DBT

could be written as BT
D̂
B with transformed scaling D̂; see Definition 4.5.

For the case of nonredundant Lagrange multipliers, by [80, Theorem 6.5],

we know that there exists a matrix Tλ so that BT = TλB. We now consider

the case of redundant Lagrange multipliers.

Lemma 4.4 (Transformation in the space of Lagrange multipliers [67]). Let

us assume the case of redundant Lagrange multipliers and of transformation

46
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matrices T (i), i = 1, . . . , N , such that T
(i)
|Z = T

(s)
|Z for any face or any edge Z and

any adjacent pair {Ωi,Ωs}, 1 ≤ i, s ≤ N . Then, there exists a transformation

of basis Tλ in the space of Lagrange multipliers such that

BT = TλB.

For the scaled jump operator, we only have

BDT = (D(1),TTλB
(1), . . . ,D(N),TTλB

(N)). (4.40)

Proof. As in [80, Theorem 6.5], we state that the product BT can be considered

face by face and edge by edge. This results from the form of B and T , i.e., T

contains blocks TZ of the size of the face or edge Z.

The case of edges in two dimensions or faces in three dimensions (i.e., mul-

tiplicity of two) is already covered by [80, Theorem 6.5]. Here, we extend the

proof to the case of multiplicities greater than two. For simplicity, let us con-

sider an edge Z1 in three dimensions shared by three subdomains Ωi, Ωj, and

Ωk and its corresponding blocks in B and T . Other cases can be handled analo-

gously. In the following, we just consider rows of B that belong to the Lagrange

multipliers on the specific edge Z1.

We have

B
(i)
Z1

=



Î1

Î2

0


 , B

(j)
Z1

=



−Î1

0

Î3


 , and B

(k)
Z1

=




0

−Î2

−Î3


 ,

where Îl, l ∈ {1, 2, 3}, is a permutation of

(
I 0

0 −I

)
.

The sign reflects the orientation chosen in the construction of the Lagrange

multiplier constraints.

Then, by Tu,Z1 := blockdiag
s∈{i,j,k}

(T
(s)
|Z1

) and TZ1 := T
(i)
|Z1

= T
(j)
|Z1

= T
(k)
|Z1

, we obtain

BZ1Tu,Z1 :=
(
B

(i)
Z1

B
(j)
Z1

B
(k)
Z1

)



T
(i)
|Z1

0 0

0 T
(j)
|Z1

0

0 0 T
(k)
|Z1



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=



Î1 −Î1 0

Î2 0 −Î2

0 Î3 −Î3






TZ1 0 0

0 TZ1 0

0 0 TZ1




=



Î1TZ1 −Î1TZ1 0

Î2TZ1 0 −Î2TZ1

0 Î3TZ1 −Î3TZ1




=:



Tλ,Z1,ij 0 0

0 Tλ,Z1,ik 0

0 0 Tλ,Z1,jk






Î1 −Î1 0

Î2 0 −Î2

0 Î3 −Î3




=: Tλ,Z1

(
B

(i)
Z1

B
(j)
Z1

B
(k)
Z1

)

= Tλ,Z1BZ1

where

Tλ,Z1,ij =

(
TZ1,ij,1,1 −TZ1,ij,1,2

−TZ1,ij,2,1 TZ1,ij,2,2

)
, (4.41)

where the blocks TZ1,ij,1,1 and TZ1,ij,2,2 and the corresponding off-diagonal

blocks are determined by the blocks in TZ1 and the size of I and −I in Î1.

This holds for Tλ,Z1,ik and Tλ,Z1,jk, analogously.

By defining a global matrix Tλ from the local contributions on the faces and

the edges, we obviously have

BDT =
(
D(1),TB(1)T (1), . . . ,D(N),TB(N)T (N)

)

=
(
D(1),TTλB

(1), . . . ,D(N),TTλB
(N)
)
.

Definition 4.5 (Transformed Lagrange multiplier scaling [67]). For a scaling

matrix D(i) the explicitly transformed scaling matrix D̂(i) is defined by

D̂(i) := T T
λ D(i)Tλ for i = 1, . . . , N. (4.42)

For problems with constant coefficients on edges or faces the transformed scal-

ing remains diagonal if the original scaling was diagonal. For heterogeneous

problems this is not generally the case.

Let us eventually note that this transformed scaling is actually never formed.

The intention of this section is to show that the implicitly transformed scaling

48



4.5 FETI-DP and BDDC with the generalized transformation-of-basis approach

corresponds to an explicitly transformed scaling which, in general, is nondiag-

onal.

4.5.2.5 Eigenvalues of FETI-DP with the generalized

transformation-of-basis approach

In this section, we show that FETI-DP using our generalized transformation-

of-basis approach results in essentially the same eigenvalues as FETI-DP using

the corresponding deflation or balancing approach, i.e., in both approaches

eigenvalues of the preconditioned operator are the same, except, possibly, for

eigenvalues zero and one.

Remark 4.6. The generalized transformation-of-basis approach also results in

the same number of zero eigenvalues as FETI-DP using deflation; cf. Figure 6.4,

and analogously to (I−P )TF U = 0 on range (UTFU)+, we also have F̂ U = 0.

Note again that the FETI-DP and BDDC methods using a generalized

transformation-of-basis approach are different from the ones using the stan-

dard approach [83, 89, 82, 77] in that it allows an interaction of dual and

primal variables in the scaling.

To establish the equality of eigenvalues (greater than one) of FETI-DP (and

BDDC) using the generalized transformation-of-basis approach and of FETI-

DP using deflation, we show

〈M̂−1
T F̂ λ̂, F̂ λ̂〉 = 〈P̂Dû, P̂Dû〉̂̃

S

!
= 〈PDu0, PDu0〉S̃ = 〈M−1

PPF (I − P )λ̂, F (I − P )λ̂〉

(4.43)

where û ∈ W̃T,a and u0 ∈ W̃
Q̂
; see Theorem 4.12.

For this, we show that for any assembled and transformed displacement

ŵ ∈ W̃T,a we have a w0 = TRŵ ∈ W̃
Q̂
such that

|P̂Dŵ|
2
̂̃
S
= |PDw0|

2
S̃
. (4.44)

Vice versa, we show that for any w0 ∈ W̃Q̂ a ŵ = RT
µT

Tw0 ∈ W̃T,a exists such

that (4.44) holds, too.

We therefore have, for arbitrary scalings and coefficients, the same eigenval-

ues (greater than one) for the generalized transformation-of-basis approach as

for the corresponding deflation approach.

Remark 4.7. In FETI-DP and BDDC theory, bounds of the form |PDw|
2
S̃
≤

C|w|2
S̃
are established; cf. Section 3.2 and Section 4.2. For the adaptive coarse
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space approach in Chapter 5, we have C = 4max{NF , NEME}
2TOL, where NF

denotes the maximum number of faces of a subdomain, NE the maximum num-

ber of edges of a subdomain, ME the maximum multiplicity of an edge, and TOL

an user-defined tolerance. For an application of the generalized transformation-

of-basis approach in the context of adaptive domain decomposition methods, we

refer the reader to Chapter 6 or [68].

Using the definitions (4.33), (4.34), and (4.35), we have

|P̂Dŵ|
2
̂̃
S
= ŵT (B̂T B̂D)

̂̃
S (B̂T

DB̂) ŵ

= wTTRµ (R
TT TBTBDTRµ) R

TT T S̃TR (RT
µT

TBT
DBTR)RT

µT
Tw

(4.45)

with w ∈ W̃ .

Given w0 ∈ W̃Q̂, we would like to show TRRT
µT

TBT
DBw0 = BT

DBw0. This,

however, is not directly clear and is the subject of Lemma 4.8.

Classically, it is argued (see, e.g., [84, 89, 82, 130]) that the operator

TRRT
µT

T reduces to the identity on the dual variables and that RT
µT

TBT
DBw0

is zero in the primal variables; although the operator RT
µ does not appear

in classical theory. This latter argument, however, is not valid, here, since

RT
µT

TBT
DBw0 is not zero in the a posteriori set of primal variables if the

transformation of basis and the partial assembly is established in the gener-

alized way, corresponding to the deflation approach; cf. Example 4.1 and, for

a combination with adaptive coarse spaces, Table 6.1. Lemma 4.8 essentially

states that TRRT
µT

T can be seen as a projection onto span {BT
DBw0} with w0

given as before.

In the following lemma, we also show the identity TRRT
µT

Tw0 = w0, which

is of use in Lemma 4.9.

Lemma 4.8 ([67]). Given w0 ∈ W̃
Q̂
, we have

TRRT
µT

T w0 = w0 and TRRT
µT

T BT
DBw0 = BT

DBw0.

Proof. In the following, we use u ∈ {w0, B
T
DBw0} in order to realize certain

calculations for w0 and BT
DBw0 simultaneously. The variable u is replaced by

the corresponding function when necessary.

First, consider TRRT
µT

Tu. From uT = (u(1)T , . . . , u(N)T )T , we obtain the

local functions u(l) ∈ Wl, l = 1, . . . , N , and for l ∈ {i, j, k}, we define u
(l)
Z1

as the

values at the degrees of freedom on the edge Z1. For l = {i, j, k}, the values of
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the local function u(l) on all remaining degrees of freedom on (∂Ωl,h ∩ Γh) \ Z1

are denoted by u
(l)

ZC
1
. For l /∈ {i, j, k}, we have u(l) = u

(l)

ZC
1
.

Thus,

T Tu =




uΠ′

A(1)

...

A(N)




with A(l) :=





T
(l)
∆l

T
u
(l)

ZC
1
, l /∈ {i, j, k},




T
(l)
Πl

T

(
u
(l)
Z1

u
(l)

ZC
1

)

T
(l)
∆l

T

(
u
(l)
Z1

u
(l)

ZC
1

)



, l ∈ {i, j, k},

since ∆′
l = ∆l for l /∈ {i, j, k}, and therefore, we also have

RRT
µT

Tu =




uΠ′

Â(1)

...

Â(N)




with

Â(l) :=





A(l), l /∈ {i, j, k},



1
3

(
T
(i)
Πi

T

(
u
(i)
Z1

u
(i)

ZC
1

)
+ T

(j)
Πj

T

(
u
(j)
Z1

u
(j)

ZC
1

)
+ T

(k)
Πk

T

(
u
(k)
Z1

u
(k)

ZC
1

))

T
(l)
∆l

T

(
u
(l)
Z1

u
(l)

ZC
1

)



, l ∈ {i, j, k}.

Here, we have used (4.18), (4.24), and (4.25).

From (4.18) in compact form, we have

T
(l)
∆′

l
=
(
T
(l)
Πl

T
(l)
∆l

)
=

(
TZ1,ΠZ1

TZ1,∆Z1
0

0 0 T
(l)

ZC
1

)
=

(
TZ1,ΠZ1

TZ1,∆Z1
0

0 0 I

)

(4.46)

for l ∈ {i, j, k} and T
(l)
∆′

l
= T

(l)
∆l

= I otherwise.

We now apply T to RRT
µT

Tu or, locally, T
(l)
∆′

l

to Â(l). We restrict ourselves

to the case of l ∈ {i, j, k} since there is nothing to show for l /∈ {i, j, k}, i.e.,
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T
(l)
∆′

l

Â(l) = u
(l)

ZC
1
= u(l). Then, for l ∈ {i, j, k}, we obtain

T
(l)
∆′

l

Â(l) =
1

3
T
(l)
∆′

l




T
(i)
Πi

T

(
u
(i)
Z1

u
(i)

ZC
1

)

T
(l)
∆l

T

(
u
(l)
Z1

u
(l)

ZC
1

)




+
1

3
T
(l)
∆′

l




T
(j)
Πj

T

(
u
(l)
Z1

u
(l)

ZC
1

)

T
(l)
∆l

T

(
u
(l)
Z1

u
(l)

ZC
1

)




+
1

3
T
(l)
∆′

l




T
(k)
Πk

T

(
u
(k)
Z1

u
(k)

ZC
1

)

T
(l)
∆l

T

(
u
(l)
Z1

u
(l)

ZC
1

)




(4.46)
=

1

3
T
(l)
∆′

l




(
T T
Z1,ΠZ1

0
)(u

(i)
Z1

u
(i)

ZC
1

)

(
T T
Z1,∆Z1

0

0 I

)(
u
(l)
Z1

u
(l)

ZC
1

)




+
1

3
T
(l)
∆′

l




(
T T
Z1,ΠZ1

0
)(u

(j)
Z1

u
(j)

ZC
1

)

(
T T
Z1,∆Z1

0

0 I

)(
u
(l)
Z1

u
(l)

ZC
1

)




+
1

3
T
(l)
∆′

l




(
T T
Z1,ΠZ1

0
)(u

(k)
Z1

u
(k)

ZC
1

)

(
T T
Z1,∆Z1

0

0 I

)(
u
(l)
Z1

u
(l)

ZC
1

)



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Without loss of generality, we consider l = i. Then, the last equation be-

comes

T
(i)
∆′

i
Â(i) =

1

3

(
TZ1,ΠZ1

TZ1,∆Z1
0

0 0 I

)



T T
Z1,ΠZ1

0

T T
Z1,∆Z1

0

0 I




(
u
(i)
Z1

u
(i)

ZC
1

)

+
1

3

(
TZ1,ΠZ1

TZ1,∆Z1
0

0 0 I

)



T T
Z1,ΠZ1

0 0 0

0 0 T T
Z1,∆Z1

0

0 0 0 I







u
(j)
Z1

u
(j)

ZC
1

u
(i)
Z1

u
(i)

ZC
1




+
1

3

(
TZ1,ΠZ1

TZ1,∆Z1
0

0 0 I

)



T T
Z1,ΠZ1

0 0 0

0 0 T T
Z1,∆Z1

0

0 0 0 I







u
(k)
Z1

u
(k)

ZC
1

u
(i)
Z1

u
(i)

ZC
1




=
1

3

(
u
(i)
Z1

u
(i)

ZC
1

)
+

1

3


TZ1,ΠZ1

T T
Z1,ΠZ1

u
(j)
Z1

+ TZ1,∆Z1
T T
Z1,∆Z1

u
(i)
Z1

u
(i)

ZC
1




+
1

3


TZ1,ΠZ1

T T
Z1,ΠZ1

u
(k)
Z1

+ TZ1,∆Z1
T T
Z1,∆Z1

u
(i)
Z1

u
(i)

ZC
1




=




1
3

((
I + 2TZ1,∆Z1

T T
Z1,∆Z1

)
u
(i)
Z1

+
∑

n∈{j,k} TZ1,ΠZ1
T T
Z1,ΠZ1

u
(n)
Z1

)

u
(i)

ZC
1


 .

(4.47)

This shows that we can focus on the degrees of freedom on the edge Z1 since

TRRT
µT

T reduces to the identity on the degrees of freedom on Γ \ Z1, i.e.,

uT S̃u = uTTRµ
̂̃
SRT

µT
Tu for u with u|Z1

= 0.

By a short computation, we obtain

(
I + 2TZ1,∆Z1

T T
Z1,∆Z1

)
u
(i)
Z1

+
∑

n∈{j,k}

TZ1,ΠZ1
T T
Z1,ΠZ1

u
(n)
Z1

=
(
I + 2TZ1,∆Z1

T T
Z1,∆Z1

+ 2TZ1,ΠZ1
T T
Z1,ΠZ1

)
u
(i)
Z1

− 2TZ1,ΠZ1
T T
Z1,ΠZ1

u
(i)
Z1

+
∑

n∈{j,k}

TZ1,ΠZ1
T T
Z1,ΠZ1

u
(n)
Z1

=3u
(i)
Z1

+ TZ1,ΠZ1
T T
Z1,ΠZ1

(
u
(j)
Z1

+ u
(k)
Z1

− 2u
(i)
Z1

)
.

53



4 An implementational view on coarse space enrichments

Thus, (4.47) reduces to

T
(l)
∆′

l
Â(l) =


u

(i)
Z1

+ 1
3TZ1,ΠZ1

T T
Z1,ΠZ1

(
u
(j)
Z1

+ u
(k)
Z1

− 2u
(i)
Z1

)

u
(i)

ZC
1


 . (4.48)

In the two following parts of the proof, we have to distinguish between

u = w0 and u = BT
DBw0.

First, for u = w0 with w
(l)
0,Z1

:= w0|∂Ωl∩Z1
for l ∈ {i, j, k}, it yields

u
(j)
Z1

+ u
(k)
Z1

− 2u
(i)
Z1

= w
(j)
0,Z1

+ w
(k)
0,Z1

− 2w
(i)
0,Z1

= (w
(j)
0,Z1

− w
(i)
0,Z1

) + (w
(k)
0,Z1

− w
(i)
0,Z1

)

Due to w0 ∈ W̃Q̂ = W̃T,a (see (4.32)) we know from (4.21) and (4.26) that the

jump across Z1 of (w
(r1)
0 , w

(r2)
0 ) (r1, r2 ∈ {i, j, k}, r1 6= r2) is orthogonal to the

constraint vectors introduced before. Hence,

TZ1,ΠZ1
T T
Z1,ΠZ1

(
u
(j)
Z1

+ u
(k)
Z1

− 2u
(i)
Z1

)

=TZ1,ΠZ1
T T
Z1,ΠZ1

((w
(j)
0,Z1

− w
(i)
0,Z1

) + (w
(k)
0,Z1

− w
(i)
0,Z1

))

=TZ1,ΠZ1

(
T T
Z1,ΠZ1

(w
(j)
0,Z1

− w
(i)
0,Z1

)
︸ ︷︷ ︸

=0

+ T T
Z1,ΠZ1

(w
(k)
0,Z1

− w
(i)
0,Z1

)
︸ ︷︷ ︸

=0

)
= 0.

(4.49)

Second, consider u = BT
DBw0. Using u

(i)
Z1

=
(
BT

DBw0

)
|∂Ωi∩Z1

, we have

u
(i)
Z1

= D
(j)
u,Z1

(w
(i)
0,Z1

− w
(j)
0,Z1

) +D
(k)
u,Z1

(w
(i)
0,Z1

− w
(k)
0,Z1

);

cf. the general definition of the scaling in (3.17). With corresponding formulas

for u
(j)
Z1

and u
(k)
Z1

and (3.16), we obtain
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u
(j)
Z1

+ u
(k)
Z1

− 2u
(i)
Z1

= D
(i)
u,Z1

(w
(j)
0,Z1

− w
(i)
0,Z1

) +D
(k)
u,Z1

(w
(j)
0,Z1

− w
(k)
0,Z1

)

+D
(i)
u,Z1

(w
(k)
0,Z1

− w
(i)
0,Z1

) +D
(j)
u,Z1

(w
(k)
0,Z1

− w
(j)
0,Z1

)

+ 2D
(j)
u,Z1

(w
(j)
0,Z1

− w
(i)
0,Z1

) + 2D
(k)
u,Z1

(w
(k)
0,Z1

− w
(i)
0,Z1

)

=(D
(i)
u,Z1

+D
(j)
u,Z1

)(w
(j)
0,Z1

− w
(i)
0,Z1

)

+ (D
(i)
u,Z1

+D
(k)
u,Z1

)(w
(k)
0,Z1

− w
(i)
0,Z1

)

+D
(k)
u,Z1

(w
(j)
0,Z1

− w
(k)
0,Z1

) +D
(k)
u,Z1

(w
(k)
0,Z1

− w
(i)
0,Z1

)

+D
(j)
u,Z1

(w
(k)
0,Z1

− w
(j)
0,Z1

) +D
(j)
u,Z1

(w
(j)
0,Z1

− w
(i)
0,Z1

)

=
(
D

(i)
u,Z1

+D
(j)
u,Z1

+D
(k)
u,Z1︸ ︷︷ ︸

=I

)
(w

(j)
0,Z1

− w
(i)
0,Z1

)

+
(
D

(i)
u,Z1

+D
(j)
u,Z1

+D
(k)
u,Z1︸ ︷︷ ︸

=I

)
(w

(k)
0,Z1

− w
(i)
0,Z1

)

=(w
(j)
0,Z1

−w
(i)
0,Z1

) + (w
(k)
0,Z1

− w
(i)
0,Z1

).

(4.50)

As before, the orthogonality to the constraint vectors of the jump across Z1 of

(w
(r1)
0 , w

(r2)
0 ), r1, r2 ∈ {i, j, k}, r1 6= r2, implies with (4.50)

TZ1,ΠZ1
T T
Z1,ΠZ1

(
u
(j)
Z1

+ u
(k)
Z1

− 2u
(i)
Z1

)
= 0; (4.51)

see (4.49).

Therefore, for u = w0 and u = BT
DBw0, from (4.48) with (4.49) and (4.51)

we likewise have

T
(l)
∆′

l

Â(l) =

(
u
(l)
Z1

u
(l)

ZC
1

)
,

which finally yields

TRRT
µT

Tu = u

for any w0 ∈ W̃
Q̂
and u = w0 or u = BT

DBw0.

Let us now have a closer look at B̂ŵ = BTRRT
µT

Tw.
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Lemma 4.9 ([67]). For ŵ ∈ W̃T,a there exists a w0 := TRŵ ∈ W̃Q̂ with

B̂ŵ = Bw0. (4.52)

Vice versa, for w0 ∈ W̃Q̂ there exists a ŵ := RT
µT

Tw0 ∈ W̃T,a satisfying (4.52).

Proof. Let ŵ ∈ W̃T,a be given. We define

w0 := TRŵ = TRRT
µT

Tw = T




∗
1
3

(
w

(i)
Πi

+ w
(j)
Πj

+ w
(k)
Πk

)

w
(i)
∆i

∗
1
3

(
w

(i)
Πi

+ w
(j)
Πj

+ w
(k)
Πk

)

w
(j)
∆j

∗
1
3

(
w

(i)
Πi

+ w
(j)
Πj

+ w
(k)
Πk

)

w
(k)
∆k

∗




. (4.53)

By construction, we have B̂ŵ = BTRŵ = Bw0. Then, with ŵ0,Π := 1
3(w

(i)
Πi

+

w
(j)
Πj

+ w
(k)
Πk

) and

w
(l)
0,∆′

l
:=
(
T
(l)
Πl

T
(l)
∆l

)(ŵ0,Π

w
(l)
∆l

)
, l ∈ {i, j, k}, (4.54)

we also have

ŵ0,Π = T
(r1)T
Πr1

w
(r1)
0,∆′

r1
= T

(r2)T
Πr2

w
(r2)
0,∆′

r2
(4.55)

for r1, r2 ∈ {i, j, k}, r1 6= r2. From the construction of T
(l)
Πl

, l ∈ {i, j, k}, it

follows that the jump across Z1 of (w
(r1)
0 , w

(r2)
0 ) is orthogonal to the constraint

vectors; cf. (4.17), (4.21), and (4.26). Since the constraints are local and we have

assumed that a posteriori constraints are only associated with the edge common

to Ωi, Ωj, and Ωk, also all other local combinations (w
(r1)
0 , w

(r2)
0 ), r1 6= r2,

r1, r2 ∈ {1, . . . , N}, satisfy the constraints. Thus, w0 fulfills all constraints

introduced before, i.e., w0 ∈ W̃Q̂.

More general cases can be treated analogously.

The other direction is shown as follows. Let w0 ∈ W̃Q̂ be given.

By the first identity of Lemma 4.8, we have w0 = TRRT
µT

Tw0. Define
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4.5 FETI-DP and BDDC with the generalized transformation-of-basis approach

ŵ := RT
µT

Tw0 ∈ W̃T,a. Then, it yields

Bw0 = BTRRT
µT

Tw0 = B̂ŵ.

Again, more general cases can be treated analogously.

We now prove the main relation between the deflation or the balancing and

the generalized transformation-of-basis approach; see equation (4.44).

Lemma 4.10 ([67]). For ŵ ∈ W̃T,a there exists a w0 := TRŵ ∈ W̃Q̂ such that

|P̂Dŵ|
2
̂̃
S
= |PDw0|

2
S̃

(4.56)

holds. Vice versa, for w0 ∈ W̃
Q̂

there exists a ŵ := RT
µT

Tw0 ∈ W̃T,a such that

(4.56) holds too.

Proof. Let ŵ ∈ W̃T,a be given. Define w0 := TRŵ. Then, by using the first

part of Lemma 4.9, the second part of Lemma 4.8, and the definitions of the

corresponding operators, we have

|P̂Dŵ|
2
̂̃
S
= ŵT B̂T B̂D

̂̃
SB̂T

DB̂ŵ = w0B
T B̂D

̂̃
SB̂T

DBw0

= w0B
TBDTRµ︸ ︷︷ ︸

=B̂D

RTT T S̃TR︸ ︷︷ ︸
=
̂̃
S

RT
µT

TBT
D︸ ︷︷ ︸

=B̂T
D

Bw0

= w0B
TBDS̃B

T
DBw0 = |PDw0|

2
S̃

with w0 ∈ W̃Q̂.

Let w0 ∈ W̃Q̂ be given. Define ŵ := RT
µT

Tw0. Then, by using the second

part of Lemma 4.8, the second part of Lemma 4.9, and the definitions of the

corresponding operators, we have

|PDw0|
2
S̃
= wT

0 B
TBDS̃B

T
DBw0 = ŵT B̂T B̂D

̂̃
SB̂T

DB̂ŵ = |P̂Dŵ|
2
̂̃
S

with ŵ ∈ W̃T,a.

The following lemma is also needed in the condition number proof. It is

essentially based on Lemma 4.9, Lemma 4.8, and [82, equation (8.1)].

Lemma 4.11 ([67]). For ŵ ∈ W̃T,a, we have B̂P̂Dŵ = B̂ŵ.

Proof. By the arguments from Lemma 4.9, Lemma 4.8, and the identity

BPDw = Bw for w ∈ W̃ from [82, equation (8.1)], for w0 := TRŵ ∈ W̃Q̂ ⊂ W̃ ,
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we have,

B̂P̂Dŵ = B̂B̂T
DB̂ŵ = B̂B̂T

DBw0

= BTRRT
µT

TBT
DBw0 = BBT

DBw0 = Bw0 = B̂ŵ.

Note that Lemma 4.10 and Lemma 4.11 provide all the tools to prove

identical condition numbers for FETI-DP with the generalized transformation-

of-basis approach and the corresponding FETI-DP method with deflation or

balancing: From Lemma 4.10, we have |P̂Dŵ|
2
̂̃
S

= |PDw0|
2
S̃
. The relation

|ŵ|̂̃
S

= |w0|S̃ for ŵ ∈ W̃T,a and w0 ∈ W̃Q̂ can also be proven. The stan-

dard Rayleigh quotient estimate, e.g., [110, Theorem 2.4.2], [75, Lemma 3.2],

and [82, Theorem 8.2], then gives the desired bound. However, with Theo-

rem 4.12, we give a more general statement on the equality of the eigenvalues

of the preconditioned operators where the relation between |w0|S̃ and |ŵ|̂̃
S
is

not needed explicitly.

We can now formulate and proof the main theorem of our work.

Theorem 4.12 ([67]). Let an a priori coarse space, which ensures the invert-

ibility of the local problems, be given. Then,

σ(M̂−1
T F̂ ) = σ(M−1

PPF ), (4.57)

i.e., the eigenvalues of the preconditioned FETI-DP system matrix (M̂−1
T F̂ )

using the generalized transformation-of-basis approach are the same as for the

preconditioned FETI-DP system matrix (M−1
PPF ) using the deflation approach.

Furthermore,

σ(M̂−1
T F̂ ) \ {0} ⊂ σ(M−1

BPF ), (4.58)

i.e., all nontrivial eigenvalues of the preconditioned FETI-DP system matrix

(M̂−1
T F̂ ) using the generalized transformation-of-basis approach are equal to

eigenvalues of the preconditioned FETI-DP system matrix (M−1
BPF ) using the

balancing approach.

Proof. For arbitrary λ̂, we define û :=
̂̃
S
−1

B̂T λ̂ ∈ W̃T,a. Then, we have

〈M̂−1
T F̂ λ̂, F̂ λ̂〉 = 〈B̂D

̂̃
SB̂T

D B̂
̂̃
S
−1

B̂T λ̂ , B̂
̂̃
S
−1

B̂T λ̂〉 = 〈P̂Dû, P̂Dû〉̂̃
S

(4.59)
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as, e.g., in [82, Theorem 8.2]; cf. the definitions in (4.36), (4.37), (4.35),

and (4.34).

With u0 := TRû ∈ W̃Q̂ (cf. Lemma 4.9) consider

RTT T S̃TR︸ ︷︷ ︸
=

̂̃
S

RT
µT

Tu0 =
̂̃
Sû = B̂T λ̂ = RTT TBT λ̂. (4.60)

Now, we argue as in the proof of [80, Theorem 6.8], only the operators are

slightly adapted. So, equivalently to (4.60), we may solve the saddle point

problem

(
S̃ Q̂

Q̂T 0

)(
u0

µ

)
=

(
BT λ̂

0

)
(4.61)

where the assembly was replaced by the constraint Q̂Tu0 = 0, i.e., we have

Q̂TTR = 0 which explicitly uses the matrix Q̂ of W̃Q̂ := {w ∈ W̃ : Q̂Tw =

0}. Note that this is connected to the deflation constraint matrix Û by Q̂ =

BT Û ; see Section 4.5.2.2. Note that we can split any µ = µ1 + µ2 with µ1 ∈

range (Q̂T S̃−1Q̂)+ and µ2 ∈ ker(Q̂T S̃−1Q̂) = ker Q̂. Thus, we can directly

consider µ ∈ range (Q̂T S̃−1Q̂)+. From solving the saddle point system (4.61),

we obtain with µ ∈ range (Q̂T S̃−1Q̂)+

u0 = (I − S̃−1Q̂(Q̂T S̃−1Q̂)+Q̂T )S̃−1BT λ̂

= (I − S̃−1BT Û(ÛTBS̃−1BT Û)+ÛTB)S̃−1BT λ̂.

Thus, we obtain

Bu0 = (I − FÛ(ÛTFÛ)+ÛT )Fλ̂ = (I − P̂ )TFλ̂ = (I − P̂ )TF (I − P̂ )λ̂

(4.62)

with P̂ := Û(ÛTFÛ)+ÛTF ; see (4.1) and (4.3). Note that P̂ holds the same

properties with respect to Û as P with respect to U .

Using Lemma 4.10, (4.59), and (4.62), we obtain

〈M̂−1
T F̂ λ̂, F̂ λ̂〉

(4.59)
= 〈P̂Dû, P̂Dû〉̂̃

S

Lemma 4.10
= 〈PDu0, PDu0〉S̃

(4.4),(4.62)
= 〈M−1

PPF (I − P̂ )λ̂, F (I − P̂ )λ̂〉.

(4.63)
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Then, using (4.63) and following the Courant-Fischer-Weyl min-max prin-

ciple, we obtain for the eigenvalues of M̂−1
T F̂ and M−1

PPF , the equality

µk(M̂
−1
T F̂ ) = min

dim(V )=k
max

λ̂∈V : ‖λ̂‖=1
〈M̂−1

T F̂ λ̂, F̂ λ̂〉

= min
dim(V )=k

max
λ̂∈V : ‖λ̂‖=1

〈M−1
PPF (I − P )λ̂, F (I − P )λ̂〉 = µk(M

−1
PPF )

where µk(M̂
−1
T F̂ ) and µk(M

−1
PPF ) denote the k-th eigenvalue each, sorted in

increasing order.

The relation between the eigenvalues of M−1
PPF and M−1

BPF can be found

in [97] or, in our notation, in [80].

Note that we have 0 ∈ σ(M̂−1
T F̂ ) also for the case of nonredundant Lagrange

multipliers if Û is not an empty matrix; cf. Remark 4.6. This is a difference

to the classical FETI-DP methods using a transformation of basis and results

from the fact that the Lagrange multiplier constraints in B are applied to vec-

tors which are already continuous in the a posteriori primal variables. These

Lagrange multipliers are not discarded since they allow to implement an inter-

action of a posteriori primal and a posteriori dual variables through the scaling

in BD; see the preconditioned system in (4.38).

4.5.3 Modified operators and eigenvalues of BDDC with the

generalized transformation-of-basis approach

In the previous sections, we have shown that we can use the generalized

transformation-of-basis approach in order to derive a FETI-DP approach using

a change of variables and partial assembly with essentially the same eigenval-

ues as a corresponding FETI-DP method with the deflation or the balancing

approach. Given the close relations between FETI-DP and BDDC methods,

a corresponding BDDC method using a generalized transformation-of-basis

approach can also be constructed.

We use the assembly operator RT
∆′ assembling all degrees of freedom on

∆′ = Π∪∆, i.e., all a posteriori primal (Π) and all a posteriori dual (∆) degrees

of freedom; cf. the presentation of standard BDDC in Section 3.3. Then, we

introduce the short notation

R′ :=

(
IΠ′ 0

0 R∆′

)
, (4.64)
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such that R′T leaves the initial coarse space variables unchanged and performs

the assembly in all other interface variables. The BDDC system matrix is thus

given by the Schur complement on the interface

S = R′T S̃R′; (4.65)

cf. (3.25). Note that, since the transformations are chosen consistently for every

face and every edge (cf. (4.20)), and since R′R′T assembles and redistributes

information in both, a posteriori primal and remaining dual degrees of freedom,

we have

TR′R′T = R′R′TT and T TR′R′T = R′R′TT T . (4.66)

We now use the scaling matrix Du (see (3.27)) for the untransformed degrees

of freedom u in BDDC corresponding to the untransformed scaling D of the

Lagrange multipliers in FETI-DP.

Definition 4.13. (Transformed degree of freedom scaling [67]) For a scaling

matrix D
(i)
u the transformed scaling matrix D̂

(i)
u is defined by

D̂(i)
u := T (i)TD(i)

u T (i) for i = 1, . . . , N. (4.67)

The transformed BDDC scaling, then, is defined by D̂u := T TDuT and obtained

from the local contributions. Note again, for problems with constant coefficients

on edges or faces the transformed scaling remains diagonal if the original scaling

was diagonal. For heterogeneous problems this is not generally the case.

The BDDC preconditioner for the system matrix (4.65) is defined by

M̂−1
BDDC : = R′TTD̂uR

̂̃
S
−1

RT D̂uT
TR′

= R′TDuTR (RTT T S̃TR)−1RTT TDuR
′,

(4.68)

where R′ was introduced in (4.64) and R, defined in (4.24), replicates the a

posteriori primal variables. Thus, the preconditioned BDDC system matrix is

M̂−1
BDDC S =

(
R′TTD̂uR

̂̃
S
−1

RT D̂uT
TR′

)(
R′T S̃R′

)
. (4.69)

Since the scaling D̂u affects a posteriori dual and a posteriori primal vari-

ables likewise, the method is clearly different from BDDC with the standard

transformation-of-basis approach and a transformed scaling, which can be writ-
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ten as follows

M−1
BDDC S =

(
IΠ′∪Π 0

0 RT
∆,D̂u,∆

)
̂̃
S
−1
(
IΠ′∪Π 0

0 R
∆,D̂u,∆

)
S (4.70)

and where D̂u,∆ is a transformed but restricted scaling acting only on the

remaining (a posteriori) dual variables ∆ and IΠ′∪Π is the identity on all primal

variables Π′ ∪ Π. In our preconditioner, however, an interaction between a

posteriori dual and primal variables can be implemented by using a nondiagonal

D̂u and not neglecting the a posteriori primal part. This interaction can be

necessary; cf. Example 4.1 and Section 6.1.

The operator EDu of (3.30), which is central to the condition number proof

of BDDC, also writes EDu = R′R′TDu. We now define

ÊDu := RT
µT

TR′R′TDuTR. (4.71)

Lemma 4.14 ([67]). For ÊDu = RT
µT

TR′R′TDuTR, it holds

i) ÊDu = RT
µED̂u

R,

ii) P̂D = I − ÊDu .
(4.72)

Proof. i) By (4.66) and Definition 4.13, we obtain

ÊDu = RT
µT

TR′R′TDuTR = RT
µR

′R′TT TDuTR = RT
µR

′R′T D̂uR = RT
µED̂u

R.

ii) Since RT
µ = (RTR)−1RT , we have RT

µR = I. Combining the definition of

P̂D in (4.34), the standard relation PD = I − EDu , again (4.66), and the

previous statement, we also have

P̂D = RT
µT

TPDTR = RT
µ (I − ED̂u

)R = I − ÊDu .

Theorem 4.15 ([67]). Let an a priori coarse space, which ensures the invert-

ibility of the local problems, be given. Then,

σ(M̂−1
BDDC

S) \ {0, 1} ⊂ σ(M̂−1
T F̂ ) = σ(M−1

PPF ), (4.73)

i.e., except for zeros and ones, the preconditioned BDDC system matrix

M̂−1
BDDC

S has the same eigenvalues as the preconditioned FETI-DP system
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4.5 FETI-DP and BDDC with the generalized transformation-of-basis approach

matrix using either the generalized transformation-of-basis or the deflation

approach.

Proof. The proof is based on the known relation between BDDC and FETI-DP;

see [81, 43, 53, 92, 89]. The preconditioned BDDC system operator is given by

M̂−1
BDDC S = (R′TTD̂uR

̂̃
S
−1

RT D̂uT
TR′) (R′T S̃R′)

which, except for zeros, has the same eigenvalues as

̂̃
S
−1

RT D̂uT
TR′R′T S̃R′R′TTD̂uR.

From (4.66), Definition 4.13, (4.71), and RRT
µR

′ = R′, we obtain

̂̃
S
−1

RT D̂uT
TR′R′T S̃R′R′TTD̂uR

=
̂̃
S
−1

RT D̂uR
′R′TRµ︸ ︷︷ ︸

=ÊT
Du

RTT T S̃TR︸ ︷︷ ︸
=
̂̃
S

RT
µR

′R′T D̂uR︸ ︷︷ ︸
ÊDu

=
̂̃
S
−1

ÊT
Du

̂̃
SÊDu ,

which then has the same eigenvalues as

ÊDu

̂̃
S
−1

ÊT
Du

̂̃
S.

By using P̂D = I− ÊDu from Lemma 4.14 and the estimate from Theorem 4.12,

we obtain that the eigenvalues (except for zero and one) of the BDDC method

using the generalized transformation-of-basis approach are identical to that

of FETI-DP using the generalized transformation-of-basis or the deflation ap-

proach.

Implementational remarks for BDDC

Let us note that, as in the case of adaptive FETI-DP, the a posteriori set

of primal degrees of freedom (given by the index set Π) have to be scaled

by the transformed scaling D̂u, too. Thus, compared to the standard BDDC

preconditioner, we replace S̃−1 by
̂̃
S
−1

, Du by D̂u, and assemble, using RT , the

a posteriori primal degrees of freedom between the application of the scaling

D̂u and the solution of the system of equations associated with
̂̃
S. In other

words, in the preconditioner, we solve systems of the form
̂̃
Sx = RT D̂uw for

the unknown x ∈ W̃T,a; see (4.69).
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4 An implementational view on coarse space enrichments

4.5.4 Conclusion on the relation of the generalized

transformation-of-basis approach and deflation and balancing

To conclude this section, we summarize the established results.

For every FETI-DP or BDDC method using the generalized transformation-

of-basis approach, a corresponding FETI-DP method using the deflation or

the balancing approach exists with essentially the same eigenvalues; see The-

orems 4.12 and 4.15. The reverse is true under certain conditions. First, a

constraint vector should not span several faces and edges (which is not true,

e.g., in [50, 48]). In case such constraints exist, they would have to be split up

and the partial assembly would enforce more constraints than intended by the

deflation or balancing approach; see the relation of the solution spaces in (4.32)

and the discussion around Figure 4.2. Second, for any face and any edge, the

local constraint vectors have to be identical for all adjacent subdomains. If the

second assumption cannot be assumed, additional local constraint vectors have

to introduced – without generally creating a larger coarse space. Note that the

number of constraint vectors does not equal the size of the coarse space since

the partial finite element assembly determines the size of the coarse space.
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5 FETI-DP with adaptive coarse

spaces using deflation and balancing

5.1 Preliminaries

In the past, different, sophisticated nonadaptive coarse spaces have been de-

veloped for FETI-DP and BDDC given different problems and specific hetero-

geneity; cf., e.g., [37, 107, 83, 84, 23, 89, 77, 82, 78, 102, 49, 48, 130]. However,

if the heterogeneity becomes arbitrary, assumptions on the coefficients might

not be valid anymore and the classical methods might not converge.

At the beginning of this section, we present a simple model problem where

the FETI-DP (or BDDC) method with a traditional coarse space does not

converge. We also discuss a basic idea to develop problem-dependent adaptive

coarse spaces. The coarse spaces are established in a local fashion, exploiting

the parallel structure of the underlying domain decomposition.

Parts of this chapter have already been published in modified or unmodified

form by the author of this thesis and his coauthors in [64, 65, 66].

Let us consider two small examples of linear elasticity on the unit cube,

partitioned into N = 64 and N = 216 subdomains, respectively. In these

examples, N2/3 (i.e., 16 and 36, respectively) beams of a stiff material with

E2 = 1e + 6 span from the face with x = 0 to the face with x = 1 and are

surrounded by a soft matrix material with E1 = 1; see Figure 5.1 (top). In

a regular (domain) decomposition into cubes, we have precisely one centered

beam per subdomain. In this thesis, we refer to this material as composite

material no. 1.

On the face with x = 0, we enforce homogeneous Dirichlet boundary condi-

tions, for all other faces on ∂Ω, we enforce homogeneous Neumann boundary

conditions. By using the METIS mesh partitioner (see [60]), we obtain arbi-

trary heterogeneity on the interface since the beams then cut through many

different faces and edges; see Figure 5.1 (bottom). Consequently, although the

problem is kept quite simple, the heterogeneity introduced by the partitioning

leads to a complex problem.
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5 FETI-DP with adaptive coarse spaces using deflation and balancing

Figure 5.1: Composite material no. 1 on the unit cube for 64 and 216 sub-

domains: 16 and 36 beams of a stiff material with E2 = 1e + 6,

shown in dark purple, are surrounded by a soft matrix material

with E1 = 1, shown in light, half-transparent gray, (top). Irregular

decomposition using METIS [60] for 64 and 216 subdomains; high

coefficients are again shown in dark purple; subdomains shown in

different colors; left quarter of the domain (x > 3
4 ) made half-

transparent (bottom). [64]
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5.2 A family of adaptive coarse spaces

Table 5.1: Standard FETI-DP with ρ-scaling and a classical (nonadaptive)

vertex and edge average coarse space. Compressible linear elasticity

of composite material no. 1 with E1 = 1 and N2/3 beams with

E2 = 1e+ 6 on the unit cube; ν = 0.3 for the whole domain; con-

forming P1 finite element discretization with 1/h = 6N1/3 and

irregular partitioning of the domain; see Figure 5.1. N denotes

the number of subdomains, |λ| the size of the dual problem, |Π′|

the size of the nonadaptive coarse space, κ the condition number

of the preconditioned operator (eigenvalue estimates from the un-

derlying PCG iteration), its the number of iterations of the PCG

algorithm, and ‖M−1
D r‖2 the norm of the preconditioned residual

after the last iteration (here: 2 000). [65]. Copyright Wiley-VCH

Verlag GmbH & Co. KGaA. Reproduced with permission.

Standard FETI-DP with Vertex and Edge Average Coarse Space

1/h = 6N1/3 – composite material no. 1 – irregular partitioning

N |λ| |Π′| κ its ‖M−1
D r‖2

43 20 991 2 367 1.10e+6 > 2 000 5.37e-2

63 80 199 9 168 1.57e+6 > 2 000 1.02e-0

As Table 5.1 shows, a standard FETI-DP method with a classical nonadap-

tive coarse space, in which all vertex variables and all edge averages are made

primal, cannot ensure convergence in less than 2 000 iterations. The precondi-

tioned residual then is still large.

Note that single heterogeneities, such as a discontinuity not aligned with a

specific edge, can be controlled numerically by a weighted edge average; see [78].

For irregular decompositions, however, discontinuities on the interface are,

in general, arbitrary and problem-dependent coarse spaces might be necessary.

In the following sections, we present different problem-dependent coarse spaces.

For one of them, we can prove a condition number bound not depending on the

discontinuous material parameters. Two others are heuristical modifications

thereof and the last two are from the literature.

5.2 A family of adaptive coarse spaces

Problem-dependent, adaptive coarse spaces have gained more and more interest

over the last years. For FETI-DP and BDDC, different adaptive coarse spaces

were introduced or considered in [93, 120, 94, 72, 22, 74, 109, 75, 63, 64, 7, 101,

17, 134, 103, 62, 68].
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5 FETI-DP with adaptive coarse spaces using deflation and balancing

In the following, we present different sorts of adaptive constraints and then

introduce adaptive algorithms based on the use of (subsets of) these constraints.

5.2.1 Various adaptive constraints

In order to guarantee the convergence of the iterative solver, we bound the con-

dition number of the preconditioned FETI-DP system matrix, which is problem-

and coarse space-dependent. In Sections 3.2 and 4.2, we mentioned the rela-

tion between the condition number estimate of the FETI-DP method and an

estimate on the PD-operator, i.e., we can reduce the problem of bounding the

condition number to the problem of finding a constant C ∈ R such that

‖PDw‖
2
S̃

‖w‖2
S̃

≤ C for all w ∈ W̃U ;

see the references given in these sections.

In order to bound C from above, a straightforward approach would then be

to consider the generalized eigenvalue problem

〈PDv, S̃PDw〉 = µ〈v, S̃w〉 (5.1)

for all v ∈ W̃ = range S̃. With an a priori coarse space ensuring the invertibility

of the local problems, S̃ is symmetric positive definite and thus 0 ≤ µ < ∞.

Assume 0 ≤ µ1 ≤ . . . ≤ µn for the eigenvalues and denote the corresponding

eigenvectors by w1, . . . , wn. For an user-chosen tolerance TOL, let s be given

such that µs ≥ TOL and µs−1 < TOL. By defining the matrix

U :=
(
BDS̃PDws, . . . , BDS̃PDwn

)
, (5.2)

it yields

‖PDw‖
2
S̃

‖w‖2
S̃

≤ TOL for all w ∈ W̃U = {w ∈ W̃ : UTBw = 0} (5.3)

since the eigenvectors can be chosen to be orthogonal with respect to the

(semi)inner products defined by 〈·, P T
D S̃PD ·〉 and 〈·, S̃ ·〉. This can be proven

by arguments from standard linear algebra and using (5.1).

In the context of domain decomposition methods, however, the solution of

(5.1) is not feasible since this equation represents a global eigenvalue problem.

Thus, we make use of the structure of the nonoverlapping decomposition and

establish local versions of (5.1) on faces and on edges. This reduces the number
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5.2 A family of adaptive coarse spaces

Ωi Ωj

Ωl Ωk

Figure 5.2: Cross-sectional view of four subdomains sharing an edge (repre-

sented by the node) in a regular partition. Ωi shares faces F ij

and F il with Ωj and Ωl, respectively, but only an edge E ik with

Ωk. [64]

of subdomains affected by each local eigenvalue problem dramatically. In Sec-

tion 5.3, we then prove a condition number bound for an adaptive algorithm

based on local generalized eigenvalue problems. In the following, we consider

the case of four cubic subdomains sharing an edge; see Figure 5.2 for a cross-

sectional view. More general cases can be treated completely analogously. Note

that this is already a more general case of the example considered in Section 4.5,

which still satisfies the assumption of Ωi, Ωj, and Ωk sharing an edge E ik.

In this chapter, we often use the expression rigid body modes when referring

to the null space of Schur complements originated from the stiffness matrices.

For the diffusion problem, the corresponding reasonings can be adapted easily.

Note that for both problems we assume the existence of an a priori coarse space

that ensures invertibility of the local problems, e.g., the coarse space where all

vertices are made primal.

Note that adaptive coarse spaces for FETI-DP and BDDC are not always

related to the PD-operator. In [74], the eigenvalue problems replace a local

extension theorem and local Poincaré inequalities.

As in [93, 120, 94], we first introduce local generalized eigenvalue problems

on faces, based on a localized version of the PD-operator. We extend this for

three dimensions by some new edge eigenvalue problems of similar pattern;

see [64].

Let us consider the following motivation of local generalized eigenvalue prob-

lems for linear elasticity problems. For the diffusion equation, only the argu-

ments on the null space of the local matrices have to be adapted.

For the face eigenvalue problem based algorithm we proceed in the following

sections as in [93] by using the notation from [75].
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5 FETI-DP with adaptive coarse spaces using deflation and balancing

(a) Two subdomains sharing a face (not coupled): Ωi (orange) and Ωj (blue) share the

face F ij (left). Arbitrary rigid body modes of the single substructures indicated

by black arrows and half-transparent copies of the cubic subdomains (right).

(b) Two subdomains sharing a face (coupled in primal vertices): Ωi (orange) and Ωj

(blue) share the face F ij and are coupled in the primal vertices (left). Arbitrary,

common rigid body mode of the coupled substructures indicated by black arrow

and half-transparent copies of the cubic subdomains (right).

Figure 5.3: Two cubic subdomains sharing a face.

Let us consider the face F ij between the subdomains Ωi and Ωj as well as

its closure F
ij
; see Figure 5.3a (left). We define

B
F

ij :=
(
B

(i)

F
ij B

(j)

F
ij

)
(5.4)

as the submatrix of
(
B(i) B(j)

)
consisting of all the rows that contain exactly

one +1 and one −1. Analogously,

B
D,F

ij :=
(
B

(i)

D,F
ij B

(j)

D,F
ij

)
(5.5)

is the submatrix of
(
B

(i)
D B

(j)
D

)
, i.e., the scaled variant of B

F
ij . We then define

Sij :=

(
S(i) 0

0 S(j)

)
∈ R(ni+nj)×(ni+nj) and P

D,F
ij := BT

D,F
ijBF

ij , (5.6)
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where nl, l ∈ {i, j}, is the number of degrees of freedom on the local part of the

interface.

Remark 5.1. Let us note that the scalings used in the local generalized edge

eigenvalue problems are the localized scalings from the FETI-DP algorithm,

i.e., for a node on the edge between the four subdomains Ωi, Ωj, Ωk, and Ωl

the scaling for the jump w(i) − w(j) in the corresponding eigenvalue problem is

ρ̂j/(ρ̂i+ ρ̂j + ρ̂k+ ρ̂l) if ρ-scaling is used. That means that although the face (or

later also the edge) eigenvalue problems are established pairwise, information of

the other subdomains sharing the edges is included. Thus, for deluxe-scaling, we

(implicitly) need the Schur complements of Ωj, Ωk, and Ωl; cf. (3.17) and (3.36).

We then have the local generalized face eigenvalue problem: Find wij ∈

Rni+nj such that

〈P
D,F

ijvij, SijPD,F
ijwij〉 = µij〈vij , Sijwij〉 ∀vij ∈ Rni+nj . (5.7)

However, the solution and theoretical consideration of this problem then com-

prises the additional difficulty that neither the left hand side nor the right hand

side operator is positive definite. Since the Schur complements originate from

the local stiffness matrices, we know that both operators are at least symmetric

positive semidefinite and that the null space of Sij is given by the single rigid

body modes of the two substructure interfaces; see Section 3.2 and Figure 5.3a

(right).

As done for the a priori coarse space, we couple the two subdomains in

the primal vertices; see Figure 5.3b (left). However, if neither Ωi nor Ωj have

Dirichlet boundary conditions prescribed on an essential part of their boundary,

e.g., ∂ΩD ∩
(
∂Ωi ∪ ∂Ωj

)
= ∅, the common rigid body modes (common shifts

and common rotations) are still in the null space of the coupled right hand side

operator; see Figure 5.3b (right).

We eventually remove the common rigid body modes and consider (5.7) on

the subspace
(
kerSij

)⊥
: Find wij ∈

(
kerSij

)⊥
such that

〈P
D,F

ijvij , SijPD,F
ijwij〉 = µij〈vij , Sijwij〉 ∀vij ∈

(
kerSij

)⊥
. (5.8)

On the right hand side, we then have an inner product defined on a subspace,

where Sij is positive definite.

As seen in the preceding part of this section, this eigenvalue problem can be

motivated by the localization of the global PD-operator, which is at the center

of the proofs on the condition number bound of FETI-DP and BDDC methods.
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Another motivation, based on the upcoming estimate for faces (cf. (5.21)), can

be found in [93, Sections 4 and 5] and [94, Section 3].

In practice, in order to obtain a positive definite operator on the right hand

side, two separate projections are established to manage the single and common

rigid body modes. By W̃ij , we denote the space of functions in Wi×Wj that are

continuous in the primal variables shared by Ωi and Ωj and by Πij , we denote

the ℓ2-orthogonal projection from Wi ×Wj to W̃ij. We introduce a second ℓ2-

orthogonal projection from Wi × Wj to range (ΠijSijΠij + σ(I − Πij)), which

is denoted by Πij and where σ is a positive constant used for stability reasons,

e.g., the maximum of the diagonal entries of Sij; see [93, 94].

Completely analogously to [109], we build Πij and Πij . Note that Πij and

Πij are set up so that they are symmetric.

By definingR
(l)T
ij , l = i, j, as the local part of the assembly operator of primal

variables on ∂Ωi∩∂Ωj and as the identity on the rest of
(
Γ∩∂Ωi

)
×
(
Γ∩∂Ωj

)
,

we obtain

Rij :=

(
R

(i)
ij

R
(j)
ij

)

and the orthogonal projection onto W̃ij,

Πij := Rij(R
T
ijRij)

−1RT
ij . (5.9)

We note that the inverse can be computed cheaply since Rij contains a large

identity block and a very small block of the size of the number of the primal

degrees of freedom that are common to the two subdomains.

For the construction of Πij we exploit the fact that I −Πij is an orthogonal

projection onto the rigid body modes that are continuous on Wi × Wj . If

{r̃1, . . . , r̃s} is the largest set of linear independent rigid body modes that are

continuous on Wi ×Wj we use a modified Gram-Schmidt method to create an

orthonormal basis {r1, . . . , rs} and define

Πij := I −
s∑

p=1

rpr
T
p . (5.10)

We now establish and solve the following generalized eigenvalue problems

ΠijΠijP
T

D,F
ijSijPD,F

ijΠijΠijwij

= µij(Πij(ΠijSijΠij + σ(I −Πij))Πij + σ(I −Πij))wij ,
(5.11)
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for µij ≥ TOL. Thus, for any of these eigenvalue problems with wij ∈ Wi ×

Wj, we just consider the jumps w(i) − w(j) across the closure F
ij

of the face

F ij . We remark again that Πij removes the rigid body modes of each of the

single substructures Ωi and Ωj while I − Πij is an orthogonal projection onto

the space of rigid body modes that are continuous on Wi × Wj and move Ωi

and Ωj as a connected entity; see Figure 5.3a (right) and Figure 5.3b (right).

Consequently, the right hand side of the eigenvalue problem (5.11) is symmetric

positive definite; cf. [93].

Note that the eigenvalue problems are defined for closed faces. As already

proposed in [94, p.1819], we split the computed face constraint vectors. Assume

µr
ij ≥ TOL, then the constraint vector crλ,ij := B

D,F
ijSijPD,F

ijwr
ij is split into

several edge parts crλ,ij,Em and a part on the open face crλ,ij,F , all extended by

zero to the closure of the face. We then enforce not only the open face constraint

but all the constraints

cr Tλ,ij,FBF
ijwij = 0, (5.12)

cr Tλ,ij,EmBF
ijwij = 0, m = 1, 2, . . . . (5.13)

We refer to the edge constraints in (5.13) as edge constraints from face eigen-

value problems; cf. also the definition of the different adaptive algorithms in

Section 5.2.2.

Clearly, since crλ,ij = crλ,ij,F+
∑

m crλ,ij,Em , we then also have cr Tλ,ijBF
ijwij = 0.

With this approach, we avoid a coupling of constraints across the closures of the

faces which would spoil the block structure of the constraint matrix U ; cf. [94].

In contrast to (5.2), coupling then only occurs between the degrees of freedom

on the open faces and open edges. Thus, from a single eigenvector defined on a

closed face, in case of a structured decomposition into cubes, we would obtain

one face constraint and four edge constraints.

Considering again Figure 5.2, we also have to control the jumps w(i) − w(k)

across the edge E ik. Note that the jumps w(i) − w(j) and w(i) − w(l) across

the edge E ik are handled within the face eigenvalue problems considered on the

closure of the corresponding faces. However, the jump w(i) − w(k) across the

edge cannot be assigned to any corresponding face eigenvalue problem since Ωi

and Ωk do not share any face.

Remark 5.2. Note that, in the following, we always assume that all vertices

are chosen to be primal. If this was not the case, and certain corner nodes

were not primal, the adjacent edge eigenvalue problems have to be extended

to the closure of the edge. Additionally, a vertex eigenvalue problem might be
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(a) Two subdomains sharing an edge (not coupled): Ωi (orange) and Ωk (blue) share

the edge E ik (left). Arbitrary rigid body modes of the single substructures indicated

by black arrows and half-transparent copies of the cubic subdomains (right).

(b) Two subdomains sharing an edge (coupled in primal vertices): Ωi (orange) and Ωk

(blue) share the edge E ik and are coupled in the primal vertices (left). Arbitrary,

common rigid body mode of the coupled substructures indicated by black arrows

and half-transparent copies of the cubic subdomains (right).

Figure 5.4: Two cubic subdomains sharing an edge.

necessary; cf. Remark 5.6. However, since vertex eigenvalue problems had to be

built and solved over the whole interface of the two connected subdomains they

might be more expensive than choosing the vertex to be primal. By assuming all

vertices to be primal, we can use the index E ik instead of E
ik

for the operators

related to the edge eigenvalue problem on E ik.

We define

BEik :=
(
B

(i)

Eik B
(k)

Eik

)
(5.14)

as the submatrix of
(
B(i) B(k)

)
consisting of all the rows corresponding to E ik

that contain exactly one +1 and one −1. Analogously,

BD,Eik :=
(
B

(i)

D,Eik B
(k)

D,Eik

)
(5.15)
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is the submatrix of
(
B

(i)
D B

(k)
D

)
corresponding to the Lagrange multipliers on

E ik, i.e., the scaled variant of BEik . Note that Ωi can share more than one edge

eigenvalue problem with Ωk when automatic mesh partitioners are used. Thus,

not all the rows of
(
B(i) B(k)

)
having one +1 and one -1 entry correspond to

the eigenvalue problem on E ik. We then should rather write E ik,1, E ik,2, ... for

the multiple edges. To avoid a proliferation of indices, we refrain from doing

this.

Then, as for the face eigenvalue problems, we define

Sik :=

(
S(i) 0

0 S(k)

)
∈ R(ni+nk)×(ni+nk), PD,Eik := BT

D,EikBEik , (5.16)

where nl, l ∈ {i, k}, is the number of degrees of freedom on the local part of

the interface.

As for the face eigenvalue problems, we have the local generalized edge

eigenvalue problem: Find wik ∈ Rni+nk such that

〈PD,Eikvik, SikPD,Eikwik〉 = µik〈vik, Sikwik〉 ∀vik ∈ Rni+nk . (5.17)

Again, neither the left hand side nor the right hand side operator is positive

definite. We know that both operators are at least symmetric positive semidef-

inite and that the null space of Sik is given by the rigid body modes of the two

subdomains; see Section 3.2 and Figure 5.4a (right).

Analogously to the face eigenvalue problems, we couple the two subdomains

in the primal vertices; see Figure 5.4b (left). Though, in contrast to the face

eigenvalue problems, if Ωi or Ωk has no Dirichlet boundary conditions prescribed

on an essential part of its boundary, e.g., ∂ΩD ∩ ∂Ωi = ∅, the common rigid

body modes include an additional hinge mode around the shared edge; see

Figure 5.4b (right).

We eventually remove the common rigid body modes and consider (5.17) on

the subspace
(
kerSik

)⊥
: Find wik ∈

(
kerSik

)⊥
such that

(
PD,Eikvik, SikPD,Eikwik

)
= µik

(
vik, Sikwik

)
∀vik ∈

(
kerSik

)⊥
. (5.18)

We thus obtain a formulation with symmetric positive definite right hand side.

With the corresponding projections Πik and Πik, (5.18) writes

ΠikΠikP
T
D,EikSikPD,EikΠikΠikwik

= µik(Πik(ΠikSikΠik + σ(I −Πik))Πik + σ(I −Πik))wik.
(5.19)
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5 FETI-DP with adaptive coarse spaces using deflation and balancing

Again, we are only interested in eigenvectors wik of eigenvalues µik≥TOL. For

edge eigenvalue problems without essential Dirichlet boundary the correspond-

ing hinge mode is in fact a rigid body mode and is used to establish the projec-

tion Πik. Note that for bent (i.e., nonstraight) edges we use a different treatment

than for straight edges and that the hinge mode is eliminated in advance by

making a third node on the edge primal; cf. Remark 5.3.

Clearly, the construction and solution of edge eigenvalue problems only has

to be carried out for edges shared by more than three subdomains and in rare

occasions where the open face does not contain any discretization nodes. We re-

fer to [110] where experiments showed that typically more than 99% of the edges

are common to exactly three subdomains when an automatic graph partitioner

is used. Hence, for automatically partitioned domains, which we consider as

the standard case, these new eigenvalue problems just come into play for either

a small number of edges or a slightly larger number of small edges. Therefore,

the extra work for solving the edge eigenvalue problems is small. We come back

to this matter and discuss the cost and necessity of edge eigenvalue problems

in practice in Section 5.4.

Finally, for all µr
ik ≥ TOL, the constraints resulting from edge eigenvalue

problems are

wr T
ik P T

D,EikSikPD,Eikwik = cr Tλ,ikBEikwik = 0, (5.20)

with wr
ik the corresponding eigenvectors and crλ,ik := BD,EikSikPD,Eikwr

ik the

corresponding constraint vectors.

Next, we consider the local estimates obtained by using the adaptively com-

puted constraints. We can argue as in the two-dimensional case; see [76] for the

face estimate analogon. From (5.11) and (5.19), we obtain the local estimates

wT
ijΠijΠijP

T

D,F
ijSijPD,F

ijΠijΠijwij ≤ TOLwT
ijΠijΠijSijΠijΠijwij , (5.21)

wT
ikΠikΠikP

T
D,EikSikPD,EikΠikΠikwik ≤ TOLwT

ikΠikΠikSikΠikΠikwik, (5.22)

for all wij ∈ Wi × Wj or wik ∈ Wi × Wk, which satisfy the constraints (5.12)

and (5.13) or (5.20). Obviously, (5.22) only appears for subdomains Ωi where

no common face F ik but only an edge E ik with Ωk exists.

For s ∈ {j, k}, these estimates can be proven, by splitting Wi × Ws =

range (Πis) ⊕ range (I − Πis) and range (Πis) = range (Πis|range (Πis)
) ⊕

range (Πis|range (I−Πis)
). The estimates (5.21) and (5.22) are derived sep-

arately for the complementary subspaces. Analogously to [76] (the more

detailed technical report version of [75]), we use the orthogonal projection
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5.2 A family of adaptive coarse spaces

property of Πis and Πis, the fact that Πis(I − Πis)wis = (I − Πis)wis, [8,

Section 2.7], and consequently that Πis and Πis commute. Let us give some

more details. The identity Πis(I − Πis)wis = (I − Πis)wis is obtained since

(I − Πis) is an orthogonal projection onto the space of rigid body modes that

are continuous on Wi ×Ws. For orthogonal projections P and Q, we can prove

the equivalence of

i) QP = P ,

ii) PQ = P ,

iii) range (P ) ⊂ range (Q);

mentioned, e.g., in [8, Section 2.7]; by using elementary projection properties.

By substituting Q = Πis and P = I −Πis, we have

I −Πis = Πis(I −Πis) = (I −Πis)Πis,

which implies

Πis −ΠisΠis = Πis −ΠisΠis,

i.e., that Πis and Πis commute. Note that the same arguments can be used for

face and edge eigenvalue problems likewise.

We now take a closer look at the local estimates from above for functions

fulfilling the constraints and derived from a restriction of w ∈ W̃ to Wi ×Ws.

This is necessary for the use in the proof on the FETI-DP condition number

bound. For w ∈ W̃ we have

(
R(i)w

R(s)w

)
∈ W̃is, and therefore Πis

(
R(i)w

R(s)w

)
=

(
R(i)w

R(s)w

)
. (5.23)

Exactly as in [75], only extended to edge eigenvalue problems in three di-

mensions, we argue as follows. Let s ∈ {j, k} be as above, we now use the

generic expression P
D,Z

is representing P
D,F

ij and PD,Eik likewise. Since I−Πis

is the projection onto the common rigid body modes, we have Πis(I−Πis)wis =

(I − Πis)wis. Both arguments together yield P
D,Z

is(I − Πis)wis = 0 and thus

Sis(I − Πis)wis = 0. Since we can split any eigenvector wr
is resulting from the

local eigenvalue problem (5.11) or (5.19) as wr
is = (I − Πis)w

r
is + Πisw

r
is, it

therefore holds

wT
isΠisP

T

D,Z
isSisPD,Z

isΠiswis ≤ TOLwT
isΠisSisΠiswis (5.24)
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5 FETI-DP with adaptive coarse spaces using deflation and balancing

for all wis in Wi ×Ws with wr T
is P T

D,Z
isSisPD,Z

iswis = 0 for all µr
is ≥ TOL.

Note that P
D,Z

is(I − Πis)wis = 0 also holds for a priori nondiagonal scal-

ings since the common rigid body modes are continuous in all the interface

variables. The situation therefore is different from Example 4.1, where we also

considered nondiagonal scalings, in another context, however. Here, we have(
(I −Πis)wis

)(i)
∆

=
(
(I −Πis)wis

)(s)
∆

.

Hence, the estimate (5.24) is valid for wis ∈ W̃is, which satisfies the con-

straints; cf. [93].

Alternatively, to obtain (5.24), [93, Theorem 9] and [93, Theorem 11] can

be used; see also [75, 109].

Remark 5.3. In order to guarantee that TOL is finite, for all wis ∈ W̃is, we

have to treat the kernel of Sis correctly. As already mentioned in [93, Assump-

tion 8] or [120, Assumption 29], we have to ensure that

∀wis ∈ W̃is : Siswis = 0 ⇒ Biswis = 0. (5.25)

As mentioned before, we have possibly to be aware of dim(Πis ker(Sis)Πis) = 7

if kerSis = 12 or dim(Πis ker(Sis)Πis) = 1 if kerSis = 6. This results from an

additional hinge mode, i.e., a rigid body rotation of the two subdomains around

the common edge. In order to ensure the assumption in (5.25), we select at least

two primal vertices on straight edges. For nonstraight or bent edges we select

a third primal vertex that is not located on the straight line between the other

two vertices on the edge. Thus, hinge modes that violate (5.25) are eliminated.

We remark that the existence of sufficient vertices on an edge is, in general,

not ensured if we use a graph partitioner and a common understanding of edges

and vertices; see, e.g., [77, Def. 2.1] and [82, Def. 3.1]. We thus transform

arbitrary dual nodes that fulfill the given restrictions into primal vertices.

Based on the previous paragraphs, we now introduce five different algorithms

of adaptively preconditioned FETI-DP. The two heuristically optimized algo-

rithms (Algorithm Ib and Algorithm Ic) are defined by similar strategies which

can help to keep the number of eigenvalue problems as well as the size of the

coarse problem small – while still obtaining an acceptable condition number.

Algorithms II and III were proposed in in [93, 120, 94].

5.2.2 Various adaptive algorithms

In this section, we use (subsets of) the adaptively computed constraints intro-

duced before to define five different algorithms of adaptive FETI-DP.
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5.2 A family of adaptive coarse spaces

Algorithm Ia. In Algorithm Ia, compared to all subsequently introduced al-

gorithms, we use of the largest number of eigenvalue problems. We use face

eigenvalue problems on all faces F ij as well as edge eigenvalue problems on all

edges E ik, where the jumps across the edge cannot be assigned to any corre-

sponding face eigenvalue problem. We enforce all constraints obtained by these

eigenvalue problems, i.e., (5.12), (5.13), and (5.20). Consequently, Algorithm Ia

also leads to the most generous coarse problem when compared to the other

algorithms presented in this thesis. Though, all eigenvalue problems and con-

straints are necessary to prove the condition number bound in the upcoming

Section 5.3 and Theorem 5.7. In Algorithm Ia, the local estimate (5.24) holds

for all faces and all edges.

Algorithm Ib. In Algorithm Ib, we eliminate certain edge eigenvalue problems

where neither homogeneously stiff materials nor heterogeneities are present.

This can be conducted in different ways. In Chapters 5 and 6, we assume

that the distribution of the coefficient ρ (for the diffusion equation) or E (for

compressible linear elasticity) is known. In Chapter 7, we proceed to the more

realistic assumption that these values are not known and use the diagonal ele-

ments of the stiffness matrices to infer the existence of heterogeneities.

The idea for the elimination of edge eigenvalue problems is based on slab

techniques; see, e.g., [104, 105, 49, 48, 75]. If we imply a completely homoge-

neous, soft or diffusive material (for linear elasticity or the diffusion problem)

within a distance of one element around the edge of the eigenvalue problem, we

discard the whole eigenvalue problem with all possible constraints. Thus, all

the constraints (5.12), (5.13) from the face eigenvalue problems are enforced,

the constraints (5.20) are only computed and enforced if the edge eigenvalue

problem is not discarded.

Let us note that, after reducing the number of edge eigenvalue problems,

our explicit condition number bound of Theorem 5.7 might not hold anymore.

Nevertheless, based on the theory of slab techniques (see, e.g., [104, 105, 49, 48,

75]), the condition number is expected to stay bounded independently of the

coefficient jumps. This is confirmed by our numerical experiments.

If the Young modulus or the ρ-coefficient is known, the strategy can be

implemented by traversing the nodes on the edge while evaluating the coefficient

function. If no large heterogeneities are encountered then the edge eigenvalue

problem can be discarded. If the coefficient function is not available the diagonal

entries of the stiffness matrices are used, instead.

In presence of coefficient jumps combined with almost incompressible com-

ponents, the technique based on the Young modulus E is not advisable since
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5 FETI-DP with adaptive coarse spaces using deflation and balancing

constraints enforcing the essential zero net flux condition may be removed from

the coarse space.

The number of coefficient jumps encountered while traversing the edge can

also be used to define the number of eigenvectors to be used for the edge,

i.e., as an alternative to defining a tolerance TOL. If a single heterogeneity is

encountered, e.g., if a single channel with a high coefficient crosses the edge,

then only one eigenvector (per dimension of the solution) is added to the coarse

problem. This corresponds to the use of a single weighted edge average as first

suggested in [78]. Of course, for a larger number of channels more eigenvectors

have to be used. In the classical approach [78], it is then necessary to split the

weighted edge average [78] into several weighted averages, defined on subsets of

the edge, or to introduce additional primal vertex constraints.

Algorithm Ic. Algorithm Ic takes up the idea of Algorithm Ib in order to

further reduce the size of the coarse problem. Here, the strategy explained

for Algorithm Ib is used to additionally discard certain edge constraints from

face eigenvalue problems. In detail, this means that edge constraints from face

eigenvalue problems are not added to the coarse space if only low coefficients

are detected in the neighborhood of the edge. Although, the coarse space of

Algorithm Ic is usually already much smaller than that of Algorithms Ia and Ib,

the numerical results show that the condition numbers of all three algorithms

are comparable for all our test problems.

Summarized, all the constraints of (5.12) are enforced in Algorithm Ic. How-

ever, (5.13) and (5.20) are only enforced if high material parameters or hetero-

geneities are present in the neighborhood of the edge.

Note that the same number of eigenvalue problems is considered in Algo-

rithms Ib and Ic.

Algorithm II. As Algorithm II, we denote the coarse space proposed in [93,

120, 94], where all edge constraints from face eigenvalue problems are enforced

as additional constraints, i.e., the constraints of Algorithm II are those given in

(5.12) and (5.13). No edge eigenvalue problems are considered and thus, (5.20)

does not apply.

Algorithm III. As Algorithm III, we denote the “classical” adaptive approach

already tested extensively in [93, 120, 94]. In this approach, all edge constraints

from face eigenvalue problems are simply discarded, which results in a smaller

coarse problem at the cost of losing robustness. The constraints of Algorithm III
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5.2 A family of adaptive coarse spaces

are given by (5.12). The constraints given by (5.13) are not used. No edge

eigenvalue problems are considered and thus, (5.20) does not apply either.

5.2.3 Further Strategies to reduce the computational overhead of

the adaptive methods

We now describe two additional strategies to reduce the computational overhead

introduced by the eigenvalue problems and to reduce the size of the coarse space

of Algorithms Ia, Ib, Ic, II, and III further.

5.2.3.1 Reducing the number of edge eigenvalue problems on short edges

For a reasonable reduction of the number of eigenvalue problems, we consider

all eigenvalue problems related to short edges. For short edges, we set all nodes

as primal if there are not more than k dual nodes on the edge. Throughout

this thesis, we consider edges as short if they consist of only a single node, i.e.,

in our experiments, we use k = 1. Possible edge eigenvalue problems on these

edges then become superfluous.

This strategy can be used for all adaptive algorithms presented in Sec-

tion 5.2.2. For Algorithm Ia, this strategy keeps the theoretical condition num-

ber bound. For all other algorithms, there are no condition number bounds

available yet, the actual condition numbers are slightly reduced, however. This

strategy is always used in our numerical experiments.

5.2.3.2 Reducing the number of eigenvalue problems based on the residual

The following reduction approach, first suggested for 2D in [74], is based on

considering the preconditioned starting residual to detect critical edges (and

faces). This strategy was proposed but not implemented in [74]. We assume

that the residuals on faces and edges with homogeneous coefficients are several

magnitudes smaller than those on faces and edges with jumps in the coefficients

along or across the interface. Therefore, we compute the residual r := M−1
D (d−

Fλ(1)) (i.e., one iteration of the underlying PCG algorithm; but more iterations

are also possible) and restrict the preconditioned residual to the closure of the

faces and edges. Let the closure of any face or any edge generically be denoted

by Z.

For the restriction rZ = r|Z , we compute rZ,2 := n−1/2‖rZ‖2 to check its

magnitude. Here, n represents the number of Lagrange multipliers on the clo-

sure of Z. Another reasonable approach would be to compute the maximum

norm of rZ , here denoted by rZ,∞. In our experiments, we take a combination
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5 FETI-DP with adaptive coarse spaces using deflation and balancing

of these residual norms. For two user-chosen tolerances τ2 and τ∞, we check

simultaneously for every face and every edge if rZ,2 < τ2 and rZ,∞ < τ∞. If

this is the case, we do not consider the corresponding eigenvalue problem and

discard it (with all possible constraints). Otherwise, we continue as before and

compute the constraints from the corresponding eigenvalue problems. If the

energy norm is used, this approach is remotely related to the computation of

Rayleigh quotients in [124].

Note that this approach can significantly reduce the number of eigenvalue

problems but often results in a coarse space of comparable size. Due to the

smaller number of eigenvalue computations, the heuristic approach presented

here is computationally less expensive. However, the heuristic choice of τ2 and

τ∞ is not trivial and requires further studies.

5.3 Condition number estimate for adaptive FETI-DP

In the following section, we consider Algorithm Ia. The heuristically reduced

algorithms Algorithm Ib and Algorithm Ic often result in the same condition

number (see the numerical results in Sections 5.4 and 6.5) but in cases where

they do not reduce to Algorithm Ia, they are not proven theoretically. Al-

gorithm II and Algorithm III often result in higher condition numbers since

jumps across edges require special treatment by edge constraints and/or edge

eigenvalue problems; again, see Sections 5.4 and 6.5.

We now introduce the solution space for our adaptive FETI-DP method,

Algorithm Ia, with deflation or balancing. Extending the constraint vectors

crλ,ij,F , c
r
λ,ij,Em

, m = 1, 2, . . ., and crλ,ik of (5.12), (5.13), and (5.20) by zero to

the space of the Lagrange multipliers, we obtain the columns of the constraint

matrix U ; see Section 4.2. We then have the solution space

W̃U = {w ∈ W̃ : UTBw = 0}.

The subspace W̃U of W̃ then contains those elements w ∈ W̃ satisfying the

adaptive constraints and Bw ∈ kerUT .

Remark 5.4. Note that we can equally define other matrices, generically de-

noted by U , by only using the columns corresponding to the constraints of Algo-

rithm Ib, Ic, II, or III. These coarse matrices are used in the implementation

but the corresponding solution space is not considered in this section.

Before we are able to provide the theoretical bound on the condition number

of the adaptively preconditioned FETI-DP operator with deflation or balancing,
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5.3 Condition number estimate for adaptive FETI-DP

we have to present an analytical expression for the application of the localized

PD-operator; cf. the definition of the PD-operator at the end of Section 3.2 and

the introduction of the localized versions in Section 5.2.1.

The local operators P
D,F

ij and PD,Eik on the closure of the face F
ij
and the

edge E ik, respectively, are

P
D,F

ij =



B

(i)T

D,F
ijB

(i)

F
ij B

(i)T

D,F
ijB

(j)

F
ij

B
(j)T

D,F
ijB

(i)

F
ij B

(j)T

D,F
ijB

(j)

F
ij


 and PD,Eik =



B

(i)T

D,EikB
(i)

Eik B
(i)T

D,EikB
(k)

Eik

B
(k)T

D,EikB
(i)

Eik B
(k)T

D,EikB
(k)

Eik


 ;

see [75].

For a face F ij with edges E ij
1 , . . . , E ij

m, we define the cutoff function on the

closure of the face

ϑ
F

ij := θF ij +

m∑

p=1

θEij
p
. (5.26)

We can use the cutoff function θ
Eij
p
on the open edge since all vertices are chosen

to be primal; cf. Remark 5.2.

For w ∈ W̃ , it yields

P
D,F

ij

(
R(i)w

R(j)w

)
=



Ih(ϑ

F
ijD

(j)

u,F
ij (w

(i) − w(j)))

Ih(ϑ
F

ijD
(i)

u,F
ij (w

(j) −w(i)))


 , (5.27)

where Ih is the finite element interpolation operator on Ωi and Ωj , respectively

and D
(j)

u,F
ij is built from the scaling of the Lagrange multipliers on the open face

D
(j)
u,F ij and the scaling of the Lagrange multipliers on the corresponding edges;

cf. the definition of the scaling matrices in (3.15) and (3.17).

For the sake of simplicity, we assume that just E ij
1 = E ik has a multiplicity

greater than three and equal to four with w(i) − w(k) as the problematic jump

between two subdomains sharing at least one edge but no face; see Figure 5.2.

Other cases can be handled in the same way. The application of the local PD-

operator of the edge eigenvalue problem yields with the corresponding scaling

on the edge

PD,Eik

(
R(i)w

R(k)w

)
=



Ih(θEikD

(k)

u,Eik(w
(i) − w(k)))

Ih(θEikD
(i)

u,Eik(w
(k) − w(i)))


 . (5.28)
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Lemma 5.5 ([64]). Let NF denote the maximum number of faces of a subdo-

main, NE the maximum number of edges of a subdomain, ME the maximum

multiplicity of an edge, and TOL a given tolerance for solving the local general-

ized eigenvalue problems. We assume that all vertices are chosen to be primal.

Then, for w ∈ W̃U , we have

|PDw|
2
S̃
≤ 4max{NF , NEME}

2TOL|w|2
S̃
.

Proof. We first have a closer look at the global operator PD and its restriction

to a subdomain. Since all vertices are primal, we obtain

vi := R(i)PDw =
∑

F ij⊂∂Ωi

Ih(θF ijvi) +
∑

Eik⊂∂Ωi

Ih(θEikvi); (5.29)

see, e.g., [130, Sec. 6.4.3].

In contrast to other proofs on the condition number of the FETI-DP system,

where the additive terms of (5.29) are bounded separately, we now rearrange

these additive terms. This is due to the fact that the face eigenvalue problems

are solved on the closure of the faces.

Therefore, we introduce a global and N local sets of pairs of indices, where

each index pair represents an edge eigenvalue problem on E ik and vice versa,

i.e.,

E∗ := {{r, s} : 1 ≤ r, s ≤ N, λ1(∂Ωr ∩ ∂Ωs) > 0, λ2(∂Ωr ∩ ∂Ωs) = 0}

and, for i = 1, . . . , N, E∗
i := {{r, s} ∈ E∗ : r = i ∨ s = i}.

Here, λd is the d-dimensional Lebesgue measure. Thus, {r, s} ∈ E∗ means that

the subdomains Ωr and Ωs share at least one edge but no face. In general, for

subdomains obtained from graph partitioners, these sets do not contain many

elements as already mentioned before.

For a given face F ij , we denote the edges which are part of the closure of

the face by E ij
1 , . . . , E ij

m. In order to avoid the proliferation of indices we take an

arbitrary edge E ij ∈ {E ij
1 , . . . , E ij

m} that is shared by Ωi and Ωr1 , . . . ,Ωrp with

r1, . . . , rp ∈ {1, . . . , N} \ {i}. We then have the interpolation operators

Ih(θF ijvi) = Ih(θF ijD
(j)
u,F ij (w

(i) − w(j))), (5.30)

Ih(θEijvi) = Ih(θEij(D
(r1)

u,Eir1
(w(i) − w(r1)) + . . .+D

(rp)

u,Eirp
(w(i) − w(rp))).

(5.31)
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Obviously, for each edge E ij ∈ {E ij
1 , . . . , E ij

m} the term Ih(θEij(D
(j)
u,Eij (w

(i)−w(j)))

is part of (5.31). For each edge E ij, we subtract it from (5.31) and add it to

(5.30). The remaining jumps in (5.31) can then either be added analogously to

another corresponding face term

Ih(θF irsD
(rs)
u,Eirs

(w(i) − w(rs)))

(cf. (5.30)), if such a face F irs between Ωi and Ωrs exists, or they remain in

(5.31).

If this is carried out for all faces and edges analogously, (5.29) becomes

R(i)PDw =
∑

F ij⊂∂Ωi

Ih(ϑ
F

ijD
(j)

u,F
ij (w

(i) − w(j)))

+
∑

{i,k}∈E∗
i

Ih(θEikD
(k)

u,Eik(w
(i) − w(k))).

(5.32)

Note that we could also replace the cutoff functions for the open edges by

those for the closure of these edges, that is, ϑE = 1 at the endpoints of the

edge and ϑE = θE for all other nodes of the mesh and also extend the scaling

arbitrarily to the closure of the edge since all vertices are chosen to be primal.

We define the S(s)-seminorm | · |S(s) := 〈·, S(s) ·〉 for s ∈ {i, j, k}. Then, we

estimate the face terms in (5.32) similar to the edge terms in two dimensions;

see [75]. The remaining edge terms in (5.32) can be estimated by using the

constraints obtained from the edge eigenvalue problems. For w ∈ W̃U , w
(s) =

R(s)w, s ∈ {i, j, k}, we have

|PDw|
2
S̃
=

N∑

i=1

|R(i)PDw|
2
S(i)

(5.32)
=

N∑

i=1

∣∣∣∣∣∣
∑

F ij⊂∂Ωi

Ih(ϑ
F

ijD
(j)

u,F
ij (w

(i) − w(j)))

+
∑

{i,k}∈E∗
i

Ih(θEikD
(k)

u,Eik(w
(i) − w(k)))

∣∣∣∣∣∣

2

S(i)

≤ 2max{NF , NEME}
N∑

i=1


 ∑

F ij⊂∂Ωi

|Ih(ϑ
F

ijD
(j)

u,F
ij (w

(i) − w(j)))|2
S(i)

+
∑

{i,k}∈E∗
i

|Ih(θEikD
(k)

u,Eik(w
(i) − w(k)))|2

S(i)



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= 2max{NF , NEME}


 ∑

F ij⊂Γ

(
|Ih(ϑ

F
ijD

(j)

u,F
ij (w

(i) − w(j)))|2
S(i)

+|Ih(ϑ
F

ijD
(i)

u,F
ij (w

(j) − w(i)))|2
S(j)

)

+
∑

{i,k}∈E∗

(
|Ih(θEikD

(k)

u,Eik(w
(i) − w(k)))|2

S(i)

+|Ih(θEikD
(i)

u,Eik(w
(k) − w(i)))|2

S(k)

)



(5.27)
(5.28)
(5.23)
= 2max{NF , NEME}


 ∑

F ij⊂Γ

(
w(i)

w(j)

)T

ΠijP
T

D,F
ij

(
S(i) 0

0 S(j)

)
P
D,F

ijΠij

(
w(i)

w(j)

)

+
∑

{i,k}∈E∗

(
w(i)

w(k)

)T

ΠikP
T
D,Eik

(
S(i) 0

0 S(k)

)
PD,EikΠik

(
w(i)

w(k)

)


(5.24)

≤ 2max{NF , NEME}TOL


 ∑

F ij⊂Γ

(
w(i)

w(j)

)T

Πij

(
S(i) 0

0 S(j)

)
Πij

(
w(i)

w(j)

)

+
∑

{i,k}∈E∗

(
w(i)

w(k)

)T

Πik

(
S(i) 0

0 S(k)

)
Πik

(
w(i)

w(k)

)


(5.23)
= 2max{NF , NEME}TOL


 ∑

F ij⊂Γ

(
|w(i)|2

S(i) + |w(j)|2
S(j)

)

+
∑

{i,k}∈E∗

(
|w(i)|2

S(i) + |w(k)|2
S(k)

)



≤ 2max{NF , NEME}TOL

(
2max{NF , NEME}

N∑

i=1

|R(i)w|2
S(i)

)

= 4max{NF , NEME}
2TOL|w|2

S̃
.

Remark 5.6. Note that if not all vertices were chosen to be primal, we had a

more general form of (5.29) and for jumps across a vertex where the adjacent

subdomains do not share either face or edge, a vertex eigenvalue problem of

similar type as (5.8) and (5.18) might be introduced to bound the more general

expression.
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5.3 Condition number estimate for adaptive FETI-DP

In the next theorem, we provide a condition number bound for the pre-

conditioned FETI-DP algorithm with all vertices being primal and additional,

adaptively chosen edge and face constraints.

Theorem 5.7 ([64]). Let NF denote the maximum number of faces of a sub-

domain, NE the maximum number of edges of a subdomain, ME the maximum

multiplicity of an edge, and TOL a given tolerance for solving the local gen-

eralized eigenvalue problems. Let all vertices be primal. Then, the condition

number κ of the FETI-DP Algorithm Ia with adaptive constraints as described

and enforced by the deflation preconditioner M−1
PP , satisfies

κ(M−1
PPF ) ≤ 4max{NF , NEME}

2TOL.

Using the balancing preconditioner M−1
BP the same condition number bound

holds, i.e.,

κ(M−1
BPF ) ≤ 4max{NF , NEME}

2TOL.

Proof. The condition number bound for the deflation preconditioner can be

derived with Lemma 5.5 and [75, Lemma 3.2]. The relation between the eigen-

values of M−1
PPF and M−1

BPF can be found in [97], or, in our notation in [80].

Let us finally note that the constant in the condition number estimate pro-

vided by Theorem 5.7 is quite conservative. The geometrical quantities NF ,

NE , and ME enter our estimate when the Cauchy-Schwarz inequality is used to

estimate the product of functions supported on faces and edges. These func-

tions are not Si-orthogonal to each other, but, in practice, their mutual Si-inner

product is small. This is not exclusive to our approach since these quantities

already appear implicitly, in a generic constant C, in the traditional (nonadap-

tive) FETI-DP and BDDC condition number estimates; see, e.g., [89, 82, 130].

It can be observed numerically that (5.24) often provides a more realistic in-

dicator for the condition number, i.e., our results in Section 5.4 show that the

condition number is at the order of TOL in our numerical experiments rather

than at the order of 4max{NF , NEME}
2TOL. This has already been observed

in [93, 94], and the use of (5.24) (for faces) has been proposed as a condition

number indicator; see also [120, 121, 122].
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5 FETI-DP with adaptive coarse spaces using deflation and balancing

5.4 Numerical results for adaptive FETI-DP using the

balancing approach

In this section, we show numerical results for problems of linear elasticity using

FETI-DP with the adaptive coarse space strategies discussed before. We com-

pare the coarse spaces introduced in [93, 94] and our new coarse spaces with

edge constraints from edge eigenvalue problems presented in Section 5.2. We

recall that by edge constraints from face eigenvalue problems we refer to edge

constraints which result from splitting constraints originating from eigenvectors

computed on the (closed) face; see (5.13) in Section 5.2.1.

We have implemented the new coarse space (Algorithm Ia) covered by our

theory (see Theorem 5.7) and two modifications thereof (Algorithms Ib and Ic).

Algorithm Ib uses the neighborhood approach to reduce the number of edge

eigenvalue problems if they are not needed and Algorithm Ic makes use of the

same neighborhood approach to further reduce the size of the coarse space by

discarding edge constraints from face eigenvalue problems. For a more detailed

description, see Section 5.2.2. In our tables, the three approaches are denoted by

’Algorithms Ia, Ib, and Ic’ in a common column, with single rows ’a)’, ’b)’, and

’c)’ refering to these algorithms. Although Algorithms Ib and Ic are both not

covered by the theory outlined in this thesis, we show that in our experiments

they give almost the same results as Algorithm Ia.

Furthermore, we have implemented two variants of the classical approach

of [93, 94]. These approaches do not use edge eigenvalue problems. Algorithm II

refers to the coarse space proposed in [93, 94], where all edge constraints from

face eigenvalue problems are enforced as additional constraints. To the best

of our knowledge, this approach has not been implemented and tested before;

cf. [120, 121, 94, 122]. Algorithm III refers to the “classical” adaptive approach

already tested extensively in [93, 94]. In this approach, all edge constraints

from face eigenvalue problems are simply discarded, which results in a smaller

coarse problem at the cost of losing robustness. For a more detailed description,

see also Section 5.2.2. Algorithms II and III are not covered by the theory, and

our numerical results indeed show that they cannot guarantee low condition

numbers and iteration counts for all our test cases.

For all algorithms, the columns of U are orthogonalized blockwise (i.e., edge

by edge and face by face) by a singular value decomposition with a drop toler-

ance of 1e-6.
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5.4 Numerical results for adaptive FETI-DP using the balancing approach

In all cases, we use the edge eigenvalue reduction strategy from Sec-

tion 5.2.3.1. For short edges with just one dual node, the corresponding edge

eigenvalue problems then become superfluous.

In this chapter, we conduct the strategies of Algorithms Ib and Ic, to detect

heterogeneities in the neighborhood of the edge, based on the diffusion coeffi-

cient ρ and the Young modulus E, respectively, and not based on the Poisson

ratio ν. Thus, we do not use these strategies for our test problems of almost

incompressible elasticity. For these problems, we only report on Algorithm Ia.

For simplicity, we always assume the parameters ρ and E and ν, respectively,

to be constant on each fine element. In this chapter, as scaling we solely use

ρ-scaling in form of patch-ρ-scaling, and we set the diffusion coefficient and the

Young modulus, respectively, at a node to the maximum of all values over the

support of the corresponding nodal basis function; cf. [78]. For different scalings

and scaling comparisons, see the following chapters, in particular, Section 6.5.3.

In the experiments, regular as well as irregular (domain) decompositions are

tested. The irregular decompositions are performed by the METIS graph par-

titioner [60] using the options -ncommon=3 for the diffusion equation and com-

pressible linear elasticity, -ncommon=4 for incompressible elasticity and -contig

for all problems to avoid noncontiguous subdomains as well as additional hinge

modes inside single subdomains.

In the tables, κ denotes the condition number of the preconditioned FETI-

DP operator, which is estimated from the Krylov process. In our tables, we

mark (estimated) condition numbers (or largest eigenvalues) below 50 in bold

face to indicate that a sufficiently large coarse space has been found by the

adaptive method. In Sections 5.4.1 and 5.4.7, we report the estimates λmin and

λmax instead of κ.

If not stated otherwise, the local generalized eigenvalue problems are solved

by the MATLAB built-in eig function. In all tables, its is the number of itera-

tions used by the PCG algorithm and |U | denotes the size of the corresponding

adaptive (or a posteriori) coarse space implemented by deflation or balancing;

see Section 4.2. By N we denote the number of subdomains. For regular de-

compositions, we give H/h in order to measure the size of the local problems.

For irregular decompositions, we give 1/h = mN1/3 where m reduces to H/h

for a comparable regular decomposition.

For our new coarse spaces (Algorithms Ia, Ib, and Ic), we also give the

number of edge eigenvalue problem as #Eevp and in parentheses the percentage

of these with respect to the total number of eigenvalue problems.
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5 FETI-DP with adaptive coarse spaces using deflation and balancing

Except for Section 5.4.1, where we push the deflation and balancing approach

to their limits, the stopping criterion for the PCG algorithm is set to a relative

reduction of the preconditioned starting residual by a factor of 1e-10 and the

maximum number of iterations is set to 500. If no convergence is reached,

we simply write “500” instead of “>500” for the iterations. In Section 5.4.1,

the chosen stopping criterion is denoted by tolcg and the maximum number of

iterations is set to 250.

In Section 5.4.1, we also report the preconditioned residual ‖M−1
PP r‖2 and

‖M−1
BP r‖2, respectively, as well as the error err, which is the relative difference

between the solution of the adaptively preconditioned FETI-DP approach and

a direct finite element solution obtained by assembling the stiffness matrix on

the entire computational domain.

For the numerical experiments presented in this chapter, we solely use

TOL = 10 to establish the adaptive coarse space. The resulting condition

number then typically is at the order of TOL; cf. the remark at the end of

Section 5.3 on the use of (5.24) as a condition number indicator and the

numerical results. Note that, although our algorithm is algebraic and thus

appears to be black-box, the efficiency of the method relies on properties of

the underlying PDE. Therefore, in practice, TOL should be adapted to H/h,

i.e., to the classical condition number bound κ ≤ C(1 + log(H/h)2. Otherwise,

for growing H/h, the coarse problem can become large. For a small tolerance,

the adaptive FETI-DP method can even degenerate to a direct solver. For

different choices of the tolerance, see the Chapters 6 and 7.

It is clear that Algorithms Ia, Ib, and II result in a larger coarse space than

Algorithm III or Algorithm Ic. For simple examples, Algorithm Ic should reduce

to Algorithm III. Our numerical results show that, in certain difficult cases, the

larger coarse space is indeed necessary.

For all experiments in this section, we enforce homogeneous Dirichlet bound-

ary conditions on the face with x = 0 and zero Neumann boundary condi-

tions elsewhere. For compressible linear elasticity, we always apply the volume

force f := (0.1, 0.1, 0.1)T , for the diffusion equation, we choose f := 0.1. For

almost incompressible linear elasticity, we change the volume force to f :=

(−1,−1,−1)T , pushing the domain towards the Dirichlet boundary. We always

use a structured fine mesh consisting of cubes. For the diffusion equation and

the case of compressible linear elasticity, the fine cubes are each decomposed

into five tetrahedral finite elements. For almost incompressible linear elasticity,

we use brick elements for the whole domain.

90



5.4 Numerical results for adaptive FETI-DP using the balancing approach

For the case of compressible linear elasticity, we always use ν = 0.3 for the

entire computational domain.

Now, we give a short overview on the next subsections.

1. Section 5.4.1: Deflation versus balancing. In this section, we highlight

differences in the convergence behaviour of adaptive FETI-DP with the

balancing and the deflation approach. We explain our choice of adap-

tive FETI-DP with the balancing approach for the following sections by

considering examples of compressible linear elasticity.

2. Section 5.4.2: A composite material with a regular decomposition.

In this section, we consider a simple example of linear elasticity with a

regular decomposition such that no heterogeneity is present around any

edge. In this case, Algorithm Ic reduces to Algorithm III and the classical

Algorithm III of [93, 94] can suffice. Since this simplified case is rarely on

hand, we show the robustness of Algorithms Ia, Ib and Ic for arbitrary

heterogeneity and/or irregular decompositions in the following sections.

3. Section 5.4.3: Composite materials with irregular decompositions.

In this section, we consider composite materials with irregular decomposi-

tions into subdomains. We show for the diffusion equation and compress-

ible linear elasticity that our extended coarse space of Algorithms Ia, Ib,

and Ic is often indispensable if arbitrary heterogeneity is on hand.

4. Section 5.4.4: Steel microstructure. In this section, we consider a

representative volume element (RVE) of a modern steel. We consider a

regular as well as an irregular decomposition into subdomains.

5. Section 5.4.5: Randomized coefficient distributions. In this section,

we consider random coefficient distributions (ρ and E) for the diffusion

equation and compressible linear elasticity combined with irregular de-

compositions into subdomains. For compressible linear elasticity, we also

vary the volume fraction of the stiff material. We always consider 100 ran-

dom coefficient distributions with a comparable volume fraction of stiff

material. We again see that our extended coarse space is indispensable.

6. Section 5.4.6: Almost incompressible linear elasticity. In this sec-

tion, we consider different sample materials with almost incompressible

components using irregular decompositions into subdomains. Here, for

some examples, the classical adaptive approach of [93, 94] is sufficient but

other examples require our enriched coarse space.
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7. Section 5.4.7: Heuristic approach based on the residual. In this

section, we consider examples from the previous sections, combined with

the heuristic approach of Section 5.2.3.2. We show that our strategy can

work well although Theorem 5.7 is not valid anymore.

8. Section 5.4.8: Efficiently solving the eigenvalue problems. In this

section, we briefly consider the cost of building and solving the eigenvalue

problems exactly and use favorable iterative solvers to show that approx-

imate solutions of the eigenvectors also give low condition numbers and

iteration counts.

Remark 5.8. We always use the strategy described in Section 5.2.3.1, i.e., on

short edges (i.e., one dual node) we never compute edge eigenvalue problems but

rather set the corresponding edge node as primal. For the case of linear elastic-

ity, we also have to take care of the issue described in Remark 5.3. This means

that our initial coarse space for all algorithms, i.e., Algorithms Ia, Ib, Ic, II,

and III, is richer than the standard vertex coarse space.

5.4.1 A short comparison of deflation and balancing

In Section 5.3, we have shown equal condition number bounds for adaptive

FETI-DP using either deflation or balancing.

In this section, we consider some small examples to show an exemplary

convergence behaviour of adaptive FETI-DP with either deflation or balancing;

cf. Section 4.2 for a detailed description. With this comparison, we want to

highlight possible advantages and disadvantages of the particular approaches.

We conduct the comparison for the case of compressible linear elasticity. We

consider the linear elastic and compressible material with N2/3 beams with a

Young modulus of E2 = 1e + 6 inside a soft matrix material of E1 = 1. This

material was introduced before as composite material no. 1; see Figure 5.1. In

order to evaluate the potential of the two approaches, we stress the deflation

and balancing approach up to convergence criterion of the iterative solver of

tolcg = 1e − 13. Consequently, in both tables, Table 5.2 and 5.3, we obtain

results where the convergence criterion cannot be reached anymore, e.g., if the

preconditioned residual reaches a plateau. In these cases, we report a second

line with the corresponding values (λmin, λmax, its, ‖M−1
PP r‖2, or ‖M−1

BP r‖2,

respectively, and err) in parentheses at the corresponding PCG iteration step

before the preconditioned residual stagnates or even deteriorates.

Tables 5.2 and 5.3 show that mostly the same errors with respect to the

global finite element solution are obtained. However, for really small toler-
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Table 5.2: Adaptive FETI-DP (Alg. Ia) with ρ-scaling and deflation ap-

proach with different convergence criteria for the conjugate gradi-

ent scheme. Compressible linear elasticity of composite material

no. 1 with E1 = 1 and N2/3 beams with E2 = 1e+ 6 on the unit

cube; ν = 0.3 for the whole domain; conforming P1 finite element

discretization with 1/h = 6N1/3 and irregular partitioning of the

domain; see Figure 5.1. Coarse spaces for TOL = 10 for all gener-

alized eigenvalue problems. N denotes the numer of subdomains,

tolcg the relative reduction of the preconditioned residual required

for convergence of the PCG algorithm, λmin, λmax the minimum and

maximum eigenvalue estimates from the underlying PCG iteration

(if the iterative scheme became unstable due to the not attained

convergence criterion, the values before the occurence of the insta-

bilities are given in parentheses), its the number of iterations until

convergence or max its=250 otherwise, ‖M−1
PP r‖2 the 2-norm of the

preconditioned residual in the deflation/projector preconditioning

approach, err the relative difference between the domain decom-

position solution and a direct finite element solution on the whole

domain. Eigenvalues λmax below 50 are marked in bold face.

Adaptive FETI-DP: Algorithm Ia (Deflation)

1/h = 6N1/3 – composite material no. 1 – irregular partitioning

N |U | tolcg λmin λmax its ‖M−1
PP r‖2 err

23 86

1e-7 1.01 8.66 24 1.40e-8 2.38e-9
1e-9 1.01 8.66 28 3.20e-8 1.33e-10

1e-11
0.21 3.99e+4 250 6.47e-11 3.00e-11

(1.00) (8.66) (30) (6.66e-10) (4.14e-11)

1e-13
0.21 3.99e+4 250 6.47e-11 3.00e-11

(1.00) (8.66) (30) (6.66e-10) (4.14e-11)

43 1761

1e-7
1.01 9.82e+7 250 2.54e-7 1.16e-9

(1.01) (9.74) (32) (2.54e-7) (1.11e-9)

1e-9
1.01 9.82e+7 250 2.54e-7 1.16e-9

(1.01) (9.74) (32) (2.54e-7) (1.11e-9)

1e-11
1.01 9.82e+7 250 2.54e-7 1.16e-9

(1.01) (9.74) (32) (2.54e-7) (1.11e-9)

1e-13
1.01 9.82e+7 250 2.54e-7 1.16e-9

(1.01) (9.74) (32) (2.54e-7) (1.11e-9)

63 5514

1e-7 1.01 10.01 27 1.04e-7 4.54e-9

1e-9
1.00 4.82e+5 250 9.38e-8 1.27e-9

(1.00) (10.05) (30) (9.40e-8) (1.53e-9)

1e-11
1.00 4.82e+5 250 9.38e-8 1.27e-9

(1.00) (10.05) (30) (9.40e-8) (1.53e-9)

1e-13
1.00 4.82e+5 250 9.38e-8 1.27e-9

(1.00) (10.05) (30) (9.40e-8) (1.53e-9)
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Table 5.3: Adaptive FETI-DP (Alg. Ia) with ρ-scaling and balancing ap-

proach with different convergence criteria for the conjugate gradi-

ent scheme. Compressible linear elasticity of composite material

no. 1 with E1 = 1 and N2/3 beams with E2 = 1e+ 6 on the unit

cube; ν = 0.3 for the whole domain; conforming P1 finite element

discretization with 1/h = 6N1/3 and irregular partitioning of the

domain; see Figure 5.1. Coarse spaces for TOL = 10 for all gener-

alized eigenvalue problems. ‖M−1
BP r‖2 the 2-norm of the precondi-

tioned residual in the balancing approach; all other notation as in

Table 5.2.

Adaptive FETI-DP: Algorithm Ia (Balancing)

1/h = 6N1/3 – composite material no. 1 – irregular partitioning

N |U | tolcg λmin λmax its ‖M−1
BP r‖2 err

23 86

1e-7 1.00 8.66 23 6.10e-8 6.19e-9
1e-9 1.00 8.66 27 3.76e-10 2.05e-10

1e-11 1.00 8.66 32 5.64e-12 4.39e-11
1e-13 1.00 8.66 41 4.50e-14 4.42e-11

43 1761

1e-7 1.00 9.74 26 6.16e-8 6.71e-9
1e-9 1.00 9.74 32 8.60e-10 1.92e-9

1e-11 1.00 9.74 39 7.38e-12 1.91e-9

1e-13
3.70e-15 1.20e+5 250 16.12 2.59

(1.00) (9.74) (42) (1.19e-12) (1.91e-9)

63 5514

1e-7 1.00 9.98 26 8.62e-8 8.81e-9
1e-9 1.00 10.04 33 7.88e-10 1.01e-9

1e-11 1.00 10.04 39 8.56e-12 1.01e-9

1e-13
4.16e-16 13.47 250 3.60e-10 0.25

(1.00) (10.05) (46) (5.46e-13) (1.01e-9)

94



5.4 Numerical results for adaptive FETI-DP using the balancing approach

0 50 100 150 200 250
10

−15

10
−10

10
−5

10
0

10
5

Iterations

P
re

c
o
n
d
it
io

n
e
d
 r

e
s
id

u
a
l

tol_cg=1e−11

 

 

Deflation/PP, N=2
3

Balancing, N=2
3

Deflation/PP, N=6
3

Balancing, N=6
3

0 50 100 150 200 250
10

−15

10
−10

10
−5

10
0

10
5

Iterations

P
re

c
o
n
d
it
io

n
e
d
 r

e
s
id

u
a
l

tol_cg=1e−13

 

 

Deflation/PP, N=2
3

Balancing, N=2
3

Deflation/PP, N=6
3

Balancing, N=6
3

Figure 5.5: Comparison of the convergence behaviour of adaptive FETI-DP

(Alg. Ia) with deflation and balancing. Plot of the history of the

(log-scaled) 2-norm of the preconditioned residuals for the defla-

tion and the balancing approach with tolcg = 1e − 11 (left) and

tolcg = 1e − 13 (right) for N = 23 and N = 63 subdomains each;

cf. Tables 5.2 and 5.3.
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Figure 5.6: Comparison of the preconditioned residuals and the relative errors

for adaptive FETI-DP (Alg. Ia) with deflation and balancing. Plot

of the history of the (log-scaled) 2-norm of the preconditioned

residuals and the corresponding relative error for the deflation and

the balancing approach in each iteration step (until max its=250)

and N = 63 subdomains each; cf. Tables 5.2 and 5.3.
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ances such as 1e-13 the balancing approach can converge to a wrong solution.

Although the residual at convergence is really small, the error is large. We

observed this behaviour for really small tolerances where the preconditioned

residual develops as in Figure 5.5 (right); see Figure 5.6 for the simultane-

ous development of the error of the computed domain decomposition solution

at each iteration step. In [80], it was already observed that the balancing

approach might converge to the wrong solution if (UTFU)+ is solved approx-

imately, although the preconditioned residual at the last step of the iterative

solver indicates stable convergence. However, when using a tolerance of 1e-11

or smaller, the balancing approach remained stable with respect to the error. In

order to validate our algorithm, the balancing approach seems more adequate

since the eigenvalue estimates of the underlying conjugate gradient scheme de-

teriorate fast when a plateau for the preconditioned residual is reached. Thus,

in this chapter, we use the balancing approach to implement the adaptively

computed constraints; cf. Sections 4.2 and 5.2.1.

5.4.2 A simple example of a composite material with a regular

decomposition

In this section, we consider a linear elastic and compressible material similar

to the composite material no. 1 introduced before. In contrast to composite

material no. 1, for composite material no. 2, we have 4N2/3 instead of N2/3

beams of a stiff material.

The beams of composite material no. 2 are also arranged in a regular pattern

and span from the face with x = 0 straight to the face with x = 1; see Figure 5.7

(top). The intersection of the beams with the face x = 0 represents 4/25th of

the area of the face. In a regular decomposition four centered beams intersect

the two corresponding faces of a considered subdomain; see Figure 5.7 (bottom).

If a regular decomposition is used with these coefficient configurations, al-

ready the classical approach from [93, 120] performs well. We see that for this

simple case, where the jumps do not cut through edges, all approaches lead to

low condition numbers and a low number of iterations. The most simple algo-

rithm, i.e., Algorithm III performs well while resulting in the smallest coarse

space. Algorithm Ic automatically reduces to Algoritm III, and therefore gives

the same performance. This illustrates the effectiveness of the neighborhood

strategies presented in Section 5.2.2. For this problem, the use of edge con-

straints can reduce the number of iterations further but not significantly. This

shows that edge constraints from face eigenvalue problems (Algorithms Ia, Ib,
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Figure 5.7: Composite material no. 2 on the unit cube for 8 and 64 subdo-

mains (coefficients and regular partitioning). 16 and 64 beams of

a stiff material with E2 = 1e + 6, shown in dark purple, are sur-

rounded by a soft matrix material with E1 = 1, shown in light,

half-transparent gray, (top). Regular decomposition for 16 and

64 subdomains; high coefficients are again shown in dark purple;

subdomains shown in different colors; left quarter of the domain

(x > 3
4) made half-transparent (bottom). [64]
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5 FETI-DP with adaptive coarse spaces using deflation and balancing

Table 5.4: Adaptive FETI-DP (Alg. Ia-III) with ρ-scaling and balancing ap-

proach. Compressible linear elasticity of composite material no. 2

with E1 = 1 and 4N2/3 beams with E2 = 1e+ 6 on the unit cube;

ν = 0.3 for the whole domain; conforming P1 finite element dis-

cretization with H/h = 10 and regular partitioning of the domain;

see Figure 5.7. Coarse spaces for TOL = 10 for all generalized

eigenvalue problems. κ denotes the condition number estimates

from the underlying PCG iteration and #Eevp the number of eigen-

value problems computed (in parentheses the percentage of edge

eigenvalue problems w.r.t. the total number of eigenvalue prob-

lems); all other notation as in Table 5.3. Condition numbers below

50 are marked in bold face. [64]

Adaptive FETI-DP: Algorithms Ia, Ib, Ic, II, and III (Balancing)
H/h = 10 – composite material no. 2 – regular partitioning

Algorithms Ia, Ib, and Ic Algorithm II Algorithm III
N κ its |U | #Eevp κ its |U | κ its |U |

33
a) 3.37 15 2548 72 (57.1%)

3.37 15 2548 3.55 18 556b) 3.37 15 2548 0 (0%)
c) 3.55 18 556 0 (0%)

43
a) 3.36 15 7332 216 (60%)

3.36 15 7332 3.54 18 1536b) 3.36 15 7332 0 (0%)
c) 3.54 18 1536 0 (0%)

53
a) 3.39 15 15896 480 (61.5%)

3.39 15 15896 3.55 17 3272b) 3.39 15 15896 0 (0%)
c) 3.55 17 3272 0 (0%)

and II) are not needed, here. The same is true for the edge eigenvalue problems

of Algorithm Ia.

In structured decompositions, we have a high number of edge eigenvalue

problems in Algorithm Ia, i.e., around 50%; for our composite materials, if the

strategy to reduce the number of edge eigenvalue problems from Algorithms Ib

and Ic is applied, all edge eigenvalue problems are discarded while the results

remain good; cf. Algorithms Ib and Ic and column 6 (#Eevp) in Table 5.4. This

is possible in this simple setting where there are no cuts of coefficient jumps

through any edges. Note that, in this case, we do not reduce the coarse problem

size with Algorithm Ib. Only Algorithm Ic reduces to Algorithm III in these

cases.
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Figure 5.8: Composite material no. 2 on the unit cube for 8 and 64 subdomains

(irregular partitioning). 16 and 64 beams of a stiff material with

E2 = 1e + 6, shown in dark purple, are surrounded by a soft

matrix material with E1 = 1 (not shown); subdomains shown in

different colors; left quarter of the domain (x > 3
4 ) made half-

transparent. [64]

5.4.3 Composite materials with irregular decompositions

In a next step, we consider adaptive FETI-DP with an irregular decomposition

of the considered domain. We consider composite material no. 1 for compress-

ible linear elasticity and different sizes of the local subdomains; see Figure 5.1

for 64 and 216 subdomains. Additionally, we test adaptive FETI-DP for com-

posite material no. 2 and the diffusion equation as well as compressible linear

elasticity; see Figure 5.7 (top) for the coefficient distribution and Figure 5.8

for the irregular decomposition for 8 and 64 subdomains. In all of these cases,

jumps along and across subdomain edges are very likely to occur.

For the results on composite material no. 1, see Tables 5.5 and 5.6 for linear

elasticity with 1/h = 3N1/3 and 1/h = 6N1/3.

For composite material no. 2, see Table 5.7 for the diffusion equation with

1/h = 5N1/3 and Tables 5.8 and 5.9 for linear elasticity with 1/h = 5N1/3 and

1/h = 10N1/3.

For all these test cases, discarding the edge constraints from face eigenvalue

problems (Algorithm III) never seems to be a good option and often results in

nonconvergence (its = 500); but also for Algorithm II large condition numbers

and large number of iterations are observed. On the other hand, our Algo-

rithm Ia, which makes use of our new coarse space, in accordance with the

theory, results in small condition numbers for all cases – while, compared to

Algorithm II, adding around or fewer than 5% of additional constraints to the

coarse space. Algorithms Ib and Ic can reduce the number of edge eigenvalue
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Table 5.5: Adaptive FETI-DP (Alg. Ia-III) with ρ-scaling and balancing ap-

proach. Compressible linear elasticity of composite material no. 1

with E1 = 1 and N2/3 beams with E2 = 1e+ 6 on the unit cube;

ν = 0.3 for the whole domain; conforming P1 finite element dis-

cretization with 1/h = 3N1/3 and irregular partitioning of the do-

main; see Figure 5.1. Coarse spaces for TOL = 10 for all generalized

eigenvalue problems. Notation as in Table 5.4. [64]

Adaptive FETI-DP: Algorithms Ia, Ib, Ic, II, and III (Balancing)

1/h = 3N1/3 – composite material no. 1 – irregular partitioning

Algorithms Ia, Ib, and Ic Algorithm II Algorithm III
N κ its |U | #Eevp κ its |U | κ its |U |

33
a) 8.55 30 93 7 (11.9%)

8.55 30 90 8.43e+5 56 50b) 8.55 30 93 4 (7.1%)
c) 8.55 31 84 4 (7.1%)

53
a) 14.48 37 278 14 (5.2%)

14.48 37 264 3.35e+5 211 153b) 14.48 37 278 8 (3.0%)
c) 14.48 37 227 8 (3.0%)

73
a) 14.08 40 605 48 (6.0%)

2.97e+5 118 569 3.00e+5 434 358b) 14.08 41 602 21 (2.7%)
c) 14.08 41 506 21 (2.7%)

93
a) 16.45 42 1076 90 (5.2%)

3.61e+5 115 1029 4.76e+5 500 704b) 16.45 42 1075 45 (2.7%)
c) 16.45 42 932 45 (2.7%)

113
a) 15.87 43 1774 167 (5.2%)

2.69e+5 190 1668 3.72e+5 500 1174b) 15.87 43 1770 95 (3.0%)
c) 15.87 43 1580 95 (3.0%)

133
a) 17.32 45 3070 303 (5.6%)

2.79e+5 345 2911 3.42e+5 500 2032b) 17.32 45 3068 171 (3.3%)
c) 17.32 45 2753 171 (3.3%)

problems significantly, e.g., around 50%. However, for Algorithm Ib this still

results in an almost identical coarse space. The coarse space of Algorithm Ic

is always significantly smaller than the one of Algorithm Ib and Algorithm II.

Nevertheless, condition numbers and iteration counts of Algorithm Ic are com-

parable to those of Algorithm Ia while Algorithm II cannot ensure this.

Let us highlight a subtle difference in the data reported for linear elasticity

and the diffusion equation. Note that the number of edge eigenvalue problems

for the diffusion equation (see Table 5.7) is larger than in the case of linear

elasticity (see Table 5.8). This is due to the fact that, in case of elasticity,

we select additional primal vertices to remove hinge modes on curved edges;

cf. Remark 5.3. Then, edge eigenvalue problems on certain short edges become

superfluous. Since this is not necessary for the diffusion equation, and since
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Table 5.6: Adaptive FETI-DP (Alg. Ia-III) with ρ-scaling and balancing ap-

proach. Compressible linear elasticity of composite material no. 1

with E1 = 1 and N2/3 beams with E2 = 1e+ 6 on the unit cube;

ν = 0.3 for the whole domain; conforming P1 finite element dis-

cretization with 1/h = 6N1/3 and irregular partitioning of the do-

main; see Figure 5.1. Coarse spaces for TOL = 10 for all generalized

eigenvalue problems. Notation as in Table 5.4. [64]

Adaptive FETI-DP: Algorithms Ia, Ib, Ic, II, and III (Balancing)

1/h = 6N1/3 – composite material no. 1 – irregular partitioning

Algorithms Ia, Ib, and Ic Algorithm II Algorithm III
N κ its |U | #Eevp κ its |U | κ its |U |

33
a) 8.70 34 642 2 (2.0%)

8.70 34 642 1.37e+6 81 188b) 8.70 34 642 1 (1.0%)
c) 8.72 34 405 1 (1.0%)

53
a) 9.78 36 3323 25 (4.2%)

11.43 36 3316 5.54e+5 213 924b) 9.78 36 3323 12 (2.1%)
c) 10.62 36 2092 12 (2.1%)

73
a) 10.91 37 9388 65 (3.6%)

10.91 37 9350 1.22e+6 455 2672b) 10.91 37 9388 27 (1.5%)
c) 13.48 39 6308 27 (1.5%)

it enlarges the primal coarse space unnecessarily for the diffusion equation, we

did not carry this out for the results in Table 5.7 and accept a higher number

of eigenvalue problems.

For problems of linear elasticity and irregularly partitioned domains, we see

that that the amount of edge eigenvalue problems is generally between 0% and

12% for Algorithm Ia while this can be reduced to 0 to 7% by Algorithms Ib

and Ic. For Algorithm Ib, in the mean, we get about 2% to 3% edge eigenvalue

problems and, compared to Algorithm II, 1% to 2% additional constraints; see

Tables 5.5, 5.6, and 5.8, and 5.9. There are also cases, when Algorithms Ia, Ib

and II coincide; see, e.g., Table 5.9.

For irregularly partitioned domains the computational overhead of Algo-

rithm Ic, compared to the “classical” approach in Algorithm III, might be of

up to 7% of extra eigenvalue problems and up to 2-3 times as many constraints

but is then mostly mandatory for convergence and to reduce the condition num-

ber from approximately 1e+5 to approximately TOL = 10; see, Tables 5.5, 5.6

as well as 5.7, 5.8, and 5.9. However, compared to Algorithm II we can save up

to 40% of the constraints by using Algorithm Ic.

We conclude that the additional edge eigenvalue problems and the resulting

constraints are often necessary to obtain a small condition number and even
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Table 5.7: Adaptive FETI-DP (Alg. Ia-III) with ρ-scaling and balancing ap-

proach. Diffusion equation of composite material no. 2 with ρ1 = 1

and 4N2/3 beams with ρ2 = 1e+ 6 on the unit cube; conforming

P1 finite element discretization with 1/h = 5N1/3 and irregular

partitioning of the domain; see Figure 5.8. Coarse spaces for

TOL = 10 for all generalized eigenvalue problems. Notation as in

Table 5.4. Adapted by permission from Springer International Pub-

lishing AG: [Springer] [Domain Decomposition Methods in Science

and Engineering XXIII] [66] [COPYRIGHT] (2017).

Adaptive FETI-DP: Algorithms Ia, Ib, Ic, II, and III (Balancing)

1/h = 5N1/3 – composite material no. 2 – irregular partitioning

Algorithms Ia, Ib, and Ic Algorithm II Algorithm III
N κ its |U | #Eevp κ its |U | κ its |U |

43
a) 9.54 36 1784 41 (14.9%)

9.78 37 1765 2.23e+6 500 609b) 9.78 36 1783 30 (11.3%)
c) 10.68 39 1475 30 (11.3%)

63
a) 11.72 38 6455 166 (15.1%)

5.13e+5 98 6364 3.13e+6 500 2057b) 11.72 38 6455 134 (12.6%)
c) 11.72 39 5701 134 (12.6%)

83
a) 12.34 39 15292 390 (14.1%)

2.27e+5 62 15120 2.99e+6 500 4921b) 12.34 39 15292 334 (12.4%)
c) 12.34 40 13682 334 (12.4%)

mandatory if PCG is expected to converge in a small number of iterations. The

only configurations when Algorithm III converged in fewer than 100 iterations

were cases when coefficient jumps did not appear at subdomain edges, or in

small examples with fewer subdomains, when the influence of the Dirichlet

boundary was still strong.

5.4.4 A steel microstructure

In this section, we consider a representative volume element (RVE) representing

the microstructure of a modern steel; see Figure 5.9.

The RVE has been obtained from the one in [87, Fig. 5.5], which again is a

part of the structure in [117, Fig. 2], by resampling. As in [87], we use ν = 0.3,

E1 = 210, and E2 = 210 000 as (artificial) material parameters. There, about

12% of the volume is covered by the high coefficient E2. We have resampled

the RVE from 64× 64× 64 to 32× 32× 32 voxels. Here, the coefficient is set to

E2 if at least three of the original voxels have a high coefficient. This procedure

guarantees that the ratio of high and low coefficients is not changed.
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Table 5.8: Adaptive FETI-DP (Alg. Ia-III) with ρ-scaling and balancing ap-

proach. Compressible linear elasticity of composite material no. 2

with E1 = 1 and 4N2/3 beams with E2 = 1e+ 6 on the unit cube;

ν = 0.3 for the whole domain; conforming P1 finite element dis-

cretization with 1/h = 5N1/3 and irregular partitioning of the do-

main; see Figure 5.8. Coarse spaces for TOL = 10 for all generalized

eigenvalue problems. Notation as in Table 5.4. [64]

Adaptive FETI-DP: Algorithms Ia, Ib, Ic, II, and III (Balancing)

1/h = 5N1/3 – composite material no. 2 – irregular partitioning

Algorithms Ia, Ib, and Ic Algorithm II Algorithm III
N κ its |U | #Eevp κ its |U | κ its |U |

33
a) 14.12 37 1312 0 (0%)

14.12 37 1312 2.39e+5 463 523b) 14.12 37 1312 0 (0%)
c) 14.12 37 1114 0 (0%)

53
a) 13.91 39 5675 23 (4.1%)

13.91 39 5639 5.46e+5 500 2261b) 13.91 39 5675 19 (3.5%)
c) 13.92 39 4840 19 (3.5%)

73
a) 14.58 42 15250 89 (5.5%)

1.81e+5 84 15104 4.93e+5 500 6420b) 14.58 42 15250 70 (4.4%)
c) 14.58 42 13336 70 (4.4%)

93
a) 16.24 43 32083 165 (4.6%)

6.74e+3 66 31897 3.16e+5 500 13591b) 16.24 43 32083 138 (3.9%)
c) 16.24 43 28372 138 (3.9%)

Figure 5.9: Representative volume element (coefficients and irregular parti-

tioning). Resampled element of [87, Fig. 5.5], [117, Fig. 2];

(artificial) material parameters E1 = 210, shown in light, half-

transparent gray, and E2 = 210 000, shown in dark purple (left).

Irregular decomposition for 512 subdomains; high coefficients are

again shown in dark purple; subdomains shown in different colors;

left half of the domain (x > 1
2) made half-transparent (right). [64].

Data courtesy of Jörg Schröder.
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Table 5.9: Adaptive FETI-DP (Alg. Ia-III) with ρ-scaling and balancing ap-

proach. Compressible linear elasticity of composite material no. 2

with E1 = 1 and 4N2/3 beams with E2 = 1e+ 6 on the unit cube;

ν = 0.3 for the whole domain; conforming P1 finite element dis-

cretization with 1/h = 10N1/3 and irregular partitioning of the do-

main; see Figure 5.8. Coarse spaces for TOL = 10 for all generalized

eigenvalue problems. Notation as in Table 5.4. [64]

Adaptive FETI-DP: Algorithms Ia, Ib, Ic, II, and III (Balancing)

1/h = 10N1/3 – composite material no. 2 – irregular partitioning

Algorithms Ia, Ib, and Ic Algorithm II Algorithm III
N κ its |U | #Eevp κ its |U | κ its |U |

33
a) 9.86 35 4441 1 (1.0%)

9.86 35 4441 3.46e+5 243 1101b) 9.86 35 4441 0 (0%)
c) 11.25 36 3364 0 (0%)

43
a) 9.60 35 10524 0 (0%)

9.60 35 10524 8.88e+5 379 2583b) 9.60 35 10524 0 (0%)
c) 11.57 37 7417 0 (0%)

53
a) 9.90 36 22704 13 (2.0%)

9.90 36 22704 1.04e+6 500 5490b) 9.90 36 22704 2 (0.3%)
c) 11.12 37 17219 2 (0.3%)

We see from our results in Table 5.10 that Algorithms Ia, Ib, and II do

behave quite the same. The amount of extra work for our modified coarse

space in Algorithms Ia and Ib compared to Algorithm II is small. Algorithm Ic

uses a reduced coarse space that still guarantees small condition numbers and

convergence within a comparable number of PCG iterations while the smallest

coarse space, represented by Algorithm III, gives larger condition numbers and

iteration counts.

5.4.5 Randomly distributed coefficients

We turn towards randomly distributed coefficients and now perform 100 runs

with different coefficients for every configuration. We consider the diffusion

equation and a linear elastic and compressible material.

Besides N , the number of subdomains, we vary the number of tetrahedra

with a high coefficient. We test a 50/50 and 80/20 ratio of low and high

coefficients; see Figure 5.10.

In Tables 5.11, 5.12, and 5.13, we present the arithmetic mean x, the median

x̃, the standard deviation σ, the minimum min and the maximum max over all

100 runs and for different numbers N of subdomains with 1/h = 5N1/3.
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Table 5.10: Adaptive FETI-DP (Alg. Ia-III) with ρ-scaling and balancing ap-

proach. Compressible linear elasticity of representative volume

element with E1 = 210 and E2 = 210 000 on the unit cube; ν = 0.3

for the whole domain; conforming P1 finite element discretization

with 1/h = 4N1/3 for N = 83 and reg. and irregular partitioning

of the domain; see Figure 5.9. Coarse spaces for TOL = 10 for all

generalized eigenvalue problems. Notation as in Table 5.4. [64].

Data courtesy of Jörg Schröder.

Adaptive FETI-DP: Algorithms Ia, Ib, Ic, II, and III (Balancing)

N = 83 – 1/h = 4N1/3 – representative volume element – (ir)regular partitioning

Algorithms Ia, Ib, and Ic Algorithm II Algorithm III
part. κ its |U | #Eevp κ its |U | κ its |U |

reg.
a) 10.04 34 5950 2352 (63.6%)

10.04 35 5246 244.60 80 1066b) 10.04 34 5950 736 (35.4%)
c) 10.06 34 4769 736 (35.4%)

irreg.
a) 13.97 37 700 114 (5.6%)

13.97 37 689 361.85 98 344b) 13.97 37 700 27 (1.4%)
c) 13.97 38 579 27 (1.4%)

Since Algorithms Ia, Ib, and Ic behave almost identically for our test cases

of randomized coefficients, we just report Algorithms Ia and Ic (as well as

Algorithms II and III). Naturally, the results of Algorithm Ib are within the here

small intervals of the only minimally differing results obtained by Algorithms Ia

and Ic. In most of the runs, the three algorithms coincide. In Table 5.11, even

all the results for the three algorithms are identical.

Again, we see that discarding the edge constraints resulting from face eigen-

value problems can result in large condition numbers and iteration counts; see

the results for Algorithm III in Tables 5.11, 5.12, and 5.13. Nonetheless, keep-

ing these edge constraints does, again, not always guarantee a small condition

number and fast convergence, as the results for Algorithm II show. The number

of extra eigenvalue problems for Algorithms Ia and Ic is either 0% or around

4% for our test cases of linear elasticity and between 10% and 15% for the

diffusion problem; cf. the note on the higher number of eigenvalue problems for

the diffusion equation in Section 5.4.3.

Since there are no edge eigenvalue problems for the linear elastic material

on N = 27 subdomains Algorithms Ia, Ib and II coincide in that case. More-

over, since the edge eigenvalue problems always produce fewer or around 1% of

additional constraints the computational overhead for Algorithms Ia, Ib and Ic

is quite moderate compared to Algorithm II; see Tables 5.11, 5.12 and 5.13.
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Figure 5.10: Randomly distributed coefficients on the unit cube for 64 subdo-

mains (coefficients and irregular partitioning). 50% (top left)

and 20% (top right) of the tetrahedra possess coefficient E2 =

1e + 6 (or ρ2 = 1e + 6), shown in dark purple. The remaining

numbers of tetrahedra possess coefficient E1 = 1 (or ρ1 = 1),

shown in light, half-transparent gray. Irregular decomposition

for 64 subdomains with 50% (bottom left) and 20% high coef-

ficients (bottom right), respectively; high coefficients are again

shown in dark purple; subdomains shown in different colors; left

half of the domain (x > 1
2) made half-transparent. [64]
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Table 5.11: Adaptive FETI-DP (Alg. Ia, Ic, II, and III) with ρ-scaling and

balancing approach. Compressible linear elasticity of randomly

distributed coefficients with 50% coefficients with E1 = 1 and 50%

coefficients with E2 = 1e+ 6 on the unit cube; ν = 0.3 for the

whole domain; conforming P1 finite element discretization with

1/h = 5N1/3 and irregular partitioning of the domain; see Fig-

ure 5.10. Coarse spaces for TOL = 10 for all generalized eigen-

value problems. x denotes the arithmetic mean, x̃ the median, σ

the standard deviation, min the minimum and max the maximum

over all runs. All other notation as in Table 5.4. [64]

Adaptive FETI-DP: Algorithms Ia, Ic, II, and III (Balancing)

1/h = 5N1/3 – random coefficients (50/50) – irregular partitioning

Algorithm Ia Algorithm Ic
N κ its |U | #Eevp κ its |U | #Eevp

33

x 10.20 35.17 180.94

0 (0%)

10.20 35.17 180.94 0 (0%)
x̃ 10.09 35 179.5 10.09 35 179.5 0 (0%)

min 9.00 34 136 9.00 34 136 0 (0%)
max 12.67 37 248 12.67 37 248 0 (0%)

σ 0.68 0.67 24.12 - 0.68 0.67 24.12 0.00

43

x 10.80 36.09 383.77

9 (3.7%)

10.80 36.09 383.77 9 (3.7%)
x̃ 10.53 36 381 10.53 36 381 9 (3.7%)

min 9.50 35 310 9.50 35 310 9 (3.7%)
max 14.42 37 450 14.42 37 450 9 (3.7%)

σ 1.00 0.51 29.10 - 1.00 0.51 29.10 0.00

53

x 11.38 36.70 721.46

23 (4.1%)

11.38 36.70 721.46 23 (4.1%)
x̃ 11.13 37 717 11.13 37 717 23 (4.1%)

min 9.74 36 595 9.74 36 595 23 (4.1%)
max 16.02 39 855 16.02 39 855 23 (4.1%)

σ 1.20 0.72 54.54 - 1.20 0.72 54.54 0.00

Algorithm II Algorithm III
N κ its |U | κ its |U |

33

x 10.20 35.17 180.94 7.53e+5 135.06 59.65
x̃ 10.09 35 179.5 6.89e+5 134 59

min 9.00 34 136 4.38e+5 72 44
max 12.67 37 248 1.46e+6 204 85

σ 0.68 0.66 24.12 2.19e+5 27.39 7.76

43

x 6.85e+4 37.52 382.58 1.02e+6 222.96 137.37
x̃ 10.84 36 380 1.01e+6 221 137

min 9.50 35 309 5.33e+5 141 110
max 7.99e+5 57 449 1.57e+6 294 164

σ 1.83e+5 3.74 29.01 2.31e+5 30.70 11.43

53

x 9.42e+5 39.35 719.27 8.54e+5 276.70 243.58
x̃ 11.62 37 717 8.12e+5 269.5 241.5

min 9.97 36 594 6.00e+5 187 194
max 8.40e+5 67 851 1.84e+6 394 288

σ 2.13e+5 5.64 54.47 1.90e+5 39.56 17.85
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Table 5.12: Adaptive FETI-DP (Alg. Ia, Ic, II, and III) with ρ-scaling and

balancing approach. Diffusion equation of randomly distributed

coefficients with 80% coefficients with ρ1 = 1 and 20% coeffi-

cients with ρ2 = 1e+ 6 on the unit cube; conforming P1 finite el-

ement discretization with 1/h = 5N1/3 and irregular partitioning

of the domain; see Figure 5.10. Coarse spaces for TOL = 10 for

all generalized eigenvalue problems. Notation as in Table 5.11.

Adapted by permission from Springer International Publishing

AG: [Springer] [Domain Decomposition Methods in Science and

Engineering XXIII] [66] [COPYRIGHT] (2017).

Adaptive FETI-DP: Algorithms Ia, Ic, II, and III (Balancing)

1/h = 5N1/3 – random coefficients (80/20) – irregular partitioning

Algorithm Ia Algorithm Ic
N κ its |U | #Eevp κ its |U | #Eevp

43

x 8.81 30.64 1913.92

41 (14.9%)

8.81 30.64 1913.72 41 (14.9%)
x̃ 8.76 31 1918 8.76 31 1918 41 (14.9%)

min 7.00 27 1816 7.00 27 1816 41 (14.9%)
max 14.53 34 2003 14.53 34 2003 41 (14.9%)

σ 0.88 1.32 43.57 - 0.88 1.32 43.67 0.00

53

x 9.26 32.19 3992.86

61 (10.3%)

9.26 32.19 3992.55 60.99 (10.3%)
x̃ 9.20 32 3997.5 9.20 32 3996 61 (10.3%)

min 7.71 30 3833 7.71 30 3833 60 (10.1%)
max 15.01 35 4153 15.01 35 4153 61 (10.3%)

σ 0.86 0.88 69.31 - 0.86 0.90 69.38 0.10

Algorithm II Algorithm III
N κ its |U | κ its |U |

43

x 3.92e+5 43.61 1889.83 2.62e+6 500 675.53
x̃ 2.31e+5 42.5 1893.5 2.57e+6 500 676

min 7.91 28 1795 1.29e+6 500 624
max 3.61e+6 71 1977 5.65e+6 500 722

σ 5.12e+5 10.41 43.25 7.42e+5 0 22.05

53

x 2.29e+5 55.35 3954.50 2.96e+6 500 1357.53
x̃ 2.01e+5 52.5 3955.5 2.79e+6 500 1359.5

min 8.34 32 3796 1.57e+6 500 1279
max 9.21e+5 100 4109 5.46e+6 500 1424

σ 2.09e+5 15.05 68.58 7.52e+5 0 33.67
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Table 5.13: Adaptive FETI-DP (Alg. Ia, Ic, II, and III) with ρ-scaling and

balancing approach. Compressible linear elasticity of randomly

distributed coefficients with 80% coefficients with E1 = 1 and 20%

coefficients with E2 = 1e+ 6 on the unit cube; ν = 0.3 for the

whole domain; conforming P1 finite element discretization with

1/h = 5N1/3 and irregular partitioning of the domain; see Fig-

ure 5.10. Coarse spaces for TOL = 10 for all generalized eigen-

value problems. Notation as in Table 5.11. [64]

Adaptive FETI-DP: Algorithms Ia, Ic, II, and III (Balancing)

1/h = 5N1/3 – random coefficients (80/20) – irregular partitioning

Algorithm Ia Algorithm Ic
N κ its |U | #Eevp κ its |U | #Eevp

33

x 8.40 30.74 1311.94

0 (0%)

8.40 30.74 1311.54 0 (0%)
x̃ 8.38 31 1311.5 8.38 31 1311.5 0 (0%)

min 6.91 29 1144 6.91 29 1144 0 (0%)
max 10.16 32 1473 10.16 32 1473 0 (0%)

σ 0.61 0.79 66.14 - 0.61 0.79 65.95 0.00

43

x 9.01 32.68 2680.69

9 (3.7%)

9.01 32.68 2680.16 9 (3.7%)
x̃ 9.04 33 2678 9.04 33 2678 9 (3.7%)

min 8.09 31 2485 8.09 31 2479 9 (3.7%)
max 10.05 34 2894 10.05 34 2894 9 (3.7%)

σ 0.50 0.63 81.22 - 0.50 0.63 81.40 0.00

53

x 9.12 32.96 6015.56

23 (4.1%)

9.12 32.96 6014.32 22.99 (4.1%)
x̃ 9.08 33 6009 9.08 33 6005.5 23 (4.1%)

min 7.93 32 5577 7.93 32 5571 22 (4.0%)
max 11.16 34 6449 11.16 34 6449 23 (4.1%)

σ 0.56 0.61 148.91 - 0.56 0.61 149.22 0.10

Algorithm II Algorithm III
N κ its |U | κ its |U |

33

x 8.40 30.74 1311.94 3.89e+5 486.03 499.76
x̃ 8.38 31 1311.5 3.78e+5 500 501

min 6.91 29 1144 1.99e+5 395 408
max 10.16 32 1473 8.29e+5 500 579

σ 0.61 0.79 66.14 1.21e+5 24.67 33.36

43

x 6.93e+4 39.58 2663.58 5.57e+5 500 1100.85
x̃ 2.90e+3 38 2661.5 5.22e+5 500 1103

min 8.16 32 2473 2.97e+5 500 998
max 5.93e+5 67 2875 1.34e+6 500 1201

σ 1.16e+5 8.04 81.16 1.85e+5 0 42.15

53

x 9.39e+4 58.14 5969.77 4.98e+5 500 2360.64
x̃ 7.12e+4 55 5959.5 4.62e+5 500 2359

min 7.93 32 5525 2.88e+5 500 2147
max 4.32e+5 123 6392 1.07e+6 500 2570

σ 9.33e+4 18.12 148.19 1.38e+5 0 70.92
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For problems of linear elasticity, the median shows for N ∈ {64, 125} (in Ta-

ble 5.11) and N = 64 (in Table 5.13) subdomains that the majority of problems

bears a condition number below 1e+4 when the coarse space of Algorithm II is

used. However, the arithmetic mean points out that there are several problems

with higher condition numbers if this coarse space is used. Let us just note

that “several problems” for N = 64 subdomains and Table 5.13 even means 46

of 100 runs. Even worse, for N = 125 subdomains, Algorithm II exhibited in

21 and in 87 of 100 runs, respectively, a condition number of at least 1e+4; in

21 and in 33 cases, respectively, even a condition number of 1e+5 or higher is

observed; see Tables 5.11 and 5.13.

Using Algorithm II for the diffusion equation leads in 71 (N = 64) and 73

(N = 125) of 100 runs to condition numbers of 1e+5 or larger. Except for the

larger number of local eigenvalue problems, Algorithms Ia, Ib, and Ic perfom

comparably for diffusion and linear elasticity. For the diffusion problem, the

condition number of these algorithms is always lower than ≈ 15, and conver-

gence is reached within 35 iterations.

We see that, by investing fewer or around 1% of additional constraints re-

sulting from our edge eigenvalue problems, our Algorithms Ia, Ib, and Ic can

guarantee a condition number around TOL. This shows that this additional

amount of work is worthwile and can guarantee a small condition number and

convergence within a reasonable number of PCG iterations.

5.4.6 Almost incompressible linear elasticity

In this section, we consider a linear elastic material which consists of compress-

ible and almost incompressible parts. The compressible material parts have a

Poisson ratio of ν = 0.3 and for the almost incompressible parts we consider dif-

ferent values of Poisson’s ratio with 0.45 ≤ ν < 0.5. We also consider different

distributions of Young’s modulus in the material, allowing for large coefficient

jumps, too. Let us note that such large coefficient jumps in the Young modu-

lus, and simultaneously letting the Poisson ratio ν approach the incompressible

limit 0.5, can lead to very ill-conditioned local matrices K
(i)
BB .

We use inf-sup stable Q2−P0 finite elements for both, the compressible and

the almost incompressible parts. We present numerical results for three different

material distributions. Note that the decomposition by METIS (see [60]) is less

irregular in these experiments since the irregular partitioning is performed based

on brick elements instead of tetrahedrons; see Figure 5.11 (right).

In our first set of experiments, we consider a distribution of the Poisson

ration in layers of ν1 and ν2. The layers have a thickness of two elements in x3
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Figure 5.11: Layered distribution on the unit cube for 64 subdomains (coef-

ficients and irregular partitioning). Layers of an almost incom-

pressible material with varying ν1, shown in dark purple, alter-

nate with layers of a compressible material with ν2 = 0.3, shown

in light, half-transparent gray (left). Irregular decomposition for

64 subdomains; higher values ν1 are again shown in dark purple;

subdomains shown in different colors; left quarter of the domain

(x > 3
4) made half-transparent (right). [64]

Table 5.14: Adaptive FETI-DP (Alg. Ia, II, and III) with ρ-scaling and balanc-

ing approach. Almost incompressible linear elasticity of layered

distribution with layers of ν1 as given alternating with layers

of ν2 = 0.3 on the unit cube; E = 1 for the whole domain;

Q2−P0 finite element discretization with 1/h = 5N1/3 for N = 43

and irregular partitioning of the domain; see Figure 5.11 (right).

Coarse spaces for TOL = 10 for all generalized eigenvalue prob-

lems. Notation as in Table 5.4. [64]

Adaptive FETI-DP: Algorithms Ia, II, and III (Balancing)

N = 43 – 1/h = 5N1/3 – layered distribution – irregular partitioning

Algorithm Ia Algorithm II Algorithm III
ν1 κ its |U | #Eevp κ its |U | κ its |U |

0.45 6.83 27 3804 15 (4.8%) 6.83 27 3800 7.72 29 712
0.499 7.11 28 4042 15 (4.8%) 7.11 28 4038 8.41 31 757

0.49999 7.12 28 4051 15 (4.8%) 7.12 28 4047 8.62 31 759
0.4999999 7.12 28 4051 15 (4.8%) 7.12 28 4047 8.62 31 759

0.499999999 7.12 28 4051 15 (4.8%) 7.12 28 4047 8.62 32 759
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Table 5.15: Adaptive FETI-DP (Alg. Ia, II, and III) with ρ-scaling and balanc-

ing approach. Almost incompressible linear elasticity of composite

material no. 2 with E1 = 1 and ν2 = 0.3 surrounding 4N2/3 beams

with E2 = 1e+ 3 and ν1 as given on the unit cube; Q2 −P0 finite

element discretization with 1/h = 5N1/3 for N = 43 and irregular

partitioning of the domain; see Figure 5.11 with different material

parameters (right). Coarse spaces for TOL = 10 for all generalized

eigenvalue problems. Notation as in Table 5.4. [64]

Adaptive FETI-DP: Algorithms Ia, II, and III (Balancing)

N = 43 – 1/h = 5N1/3 – composite material no. 2 – irregular partitioning

Algorithm Ia Algorithm II Algorithm III
ν1 κ its |U | #Eevp κ its |U | κ its |U |

0.45 9.04 31 6560 15 (4.8%) 9.04 31 6556 12.27 37 1239
0.499 13.08 34 7330 15 (4.8%) 13.08 34 7326 34.71 50 1402

0.49999 8.84 31 7571 15 (4.8%) 8.84 31 7564 589.80 98 1460
0.4999999 8.80 31 7576 15 (4.8%) 8.80 31 7569 796.50 106 1461

0.499999999 8.80 31 7576 15 (4.8%) 8.80 31 7569 799.90 120 1461

Table 5.16: Adaptive FETI-DP (Alg. Ia, II, and III) with ρ-scaling and

balancing approach. Almost incompressible linear elasticity of

homogeneous material with E = 1 and ν as given on the unit

cube; Q2 − P0 finite element discretization with 1/h = 5N1/3 for

N = 43 and irregular partitioning of the domain; see Figure 5.11

with different material parameters (right). Coarse spaces for

TOL = 10 for all generalized eigenvalue problems. Notation as

in Table 5.4. [64]

Adaptive FETI-DP: Algorithms Ia, II, and III (Balancing)

N = 43 – 1/h = 5N1/3 – homogeneous material – irregular partitioning

Algorithm Ia Algorithm II Algorithm III
ν κ its |U | #Eevp κ its |U | κ its |U |

0.45 6.52 27 4085 15 (4.8%) 6.52 27 4081 7.69 29 764
0.499 7.34 30 4736 15 (4.8%) 7.34 29 4732 22.17 43 892

0.49999 6.81 28 4909 15 (4.8%) 12.18 29 4900 1.98e+3 88 933
0.4999999 6.81 28 4913 15 (4.8%) 1.06e+3 38 4903 1.97e+5 119 934

0.499999999 6.81 28 4913 15 (4.8%) 1.06e+5 59 4903 1.97e+7 144 934
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direction. Here, ν1 takes different values whereas ν2 = 0.3; see Figure 5.11. We

set E = 1 on the complete domain Ω. For all three algorithms, the condition

numbers and iteration counts are uniformly bounded, independently of ν1 ap-

proaching 0.5. All algorithms also yield condition numbers and iteration counts

of a comparable size; see Table 5.14. For the material distributions considered

in this example, Algorithm III seems to be sufficient.

The second example is composite material no. 2; see Figure 5.7. Note again

that, here, the irregular partitioning differs from the decomposition used in

Section 5.4.3 (depicted in Figure 5.8) since the partitioning is performed based

on brick elements instead of tetrahedrons. Here, we use E1 = 1 and E2 = 1e+3

instead 1e+6. We consider a variable Poisson ratio ν1 ∈ [0.3, 0.5) for all finite

elements with E1 = 1 and a fixed Poisson ratio ν2 = 0.3 for those finite elements

with E2 = 1e + 3. Table 5.15 indicates uniformly bounded condition numbers

and iteration counts for Algorithms Ia and II. For Algorithm III, the condition

number and the iteration counts still seem to be bounded but at a higher level.

Algorithms Ia and II perform as in the compressible case but at the cost of a

larger coarse space.

In our third set of experiments, we consider an almost incompressible ma-

terial with both, ν and E = 1 constant on the complete domain. Table 5.16

shows that this becomes a hard problem for Algorithm III and also for Algo-

rithm II. With ν approaching the incompressible limit, the condition number

of the mentioned algorithms is several magnitudes larger than this of Algo-

rithm Ia. In contrast to the other algorithms, Algorithm Ia can guarantee a

small condition number and an almost constant number of PCG iterations.

Remark 5.9. Note that the automatic coarse space constructed here for the

almost incompressible case is slightly larger than the a priori coarse spaces con-

structed in [48] and [50], which introduce only a single (additional) constraint

for each subdomain in 2D to cope with almost incompressible elasticity [48], or

where all face constraints can be summed to a single constraint in 3D [50, 48].

5.4.7 Reducing the number of eigenvalue problems based on the

residual

We now consider the heuristic approach described in Section 5.2.3.2 to reduce

the number of eigenvalue problems. We apply this approach to our Algorithm Ib

for compressible elasticity and to Algorithm Ia for test problems with almost

incompressible contributions. Note that this approach can equally be adopted

for the coarse spaces of Algorithms Ic, II, or III.
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Table 5.17: Adaptive FETI-DP (Alg. Ib with residual heuristic) ρ-scaling and

balancing approach. Compressible linear elasticity of composite

material no. 1 with E1 = 1 and N2/3 beams with E2 = 1e+ 6

on the unit cube; ν = 0.3 for the whole domain; conforming

P1 finite element discretization with 1/h = 6N1/3 and irregular

partitioning of the domain; see Figure 5.1. Coarse spaces for

TOL = 10 for all generalized eigenvalue problems. #EVPU de-

notes the number of solved eigenvalue problems, #EVPdisc res de-

notes the number of eigenvalue problems discarded by the resid-

ual heuristics, and #EVPdisc Ib denotes the number of eigenvalue

problems discarded by the neighborhood strategy. All other no-

tation as in Table 5.4. For the results without residual heuristic

of Section 5.2.3.2, see Table 5.6. [64]

Adaptive FETI-DP: Algorithm Ib w/ residual heuristic (Balancing)

1/h = 6N1/3 – composite material no. 1 – irregular partitioning

τ2 = 0.01, τ∞ = 10τ2
N λmin λmax its |U | #EVPU #EVPdisc res #EVPdisc Ib

33 1.00 8.79 35 629 63 36 1
53 1.00 15.71 40 3229 312 267 13
73 1.00 120.10 72 9095 937 812 38

τ2 = 0.001, τ∞ = 10τ2
N λmin λmax its |U | #EVPU #EVPdisc res #EVPdisc Ib

33 1.00 8.79 35 632 64 35 1
53 1.00 10.63 37 3260 326 253 13
73 1.00 15.50 40 9269 998 751 38

We report the number of eigenvalue problems solved and denoted by #EVPU

as well the number of eigenvalue problems discarded by our heuristic approach

of Section 5.2.3.2, denoted by #EVPdisc res; see Tables 5.17, 5.18, and 5.19. For

the cases, where Algorithm Ib is used, we also report the number of edge eigen-

value problems discarded inherently by this algorithm as #EVPdisc Ib; cf. Sec-

tion 5.2.2. Here, we report λmin and λmax instead of κ.

For the computation of the residual r (see Section 5.2.3.2), we use λ(0) = 0

and conduct one iteration of the underlying conjugate gradient algorithm.

We also consider different values of τ2, namely τ2 ∈ {0.01, 0.001}, each with

τ∞ = 10τ2. Using a larger value of τ2, e.g., setting τ2 = 0.1, does not give

acceptable results anymore in about half of our test cases. We refrain from

reporting the details.
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Table 5.18: Adaptive FETI-DP (Alg. Ib with residual heuristic) ρ-scaling and

balancing approach. Compressible linear elasticity of randomly

distributed coefficients with 80% coefficients with E1 = 1 and 20%

coefficients with E2 = 1e+ 6 on the unit cube; ν = 0.3 for the

whole domain; conforming P1 finite element discretization with

1/h = 5N1/3 and irregular partitioning of the domain; see Fig-

ure 5.10. Coarse spaces for TOL = 10 for all generalized eigen-

value problems. Notation as in Table 5.11 and 5.17. For the

results without heuristic of Section 5.2.3.2, see Table 5.13. [64]

Adaptive FETI-DP: Algorithm Ib w/ residual heuristic (Balancing)

1/h = 5N1/3 – random coefficients (80/20) – irregular partitioning

τ2 = 0.001, τ∞ = 10τ2
N λmin λmax its |U | #EVPU #EVPdisc res #EVPdisc Ib

53

x 1.00 9.16 32.97 6010.63 530.42 24.57 0.01
x̃ 1.00 9.09 33 6005 530.5 24.5 0

min 1.00 8.02 32 5574 520 17 0
max 1.00 11.16 34 6441 538 34 1

σ 0 0.55 0.64 149.97 4.35 4.33 0.10

The choice τ∞ = 10τ2 is heuristic and motivated from initial testing. The use

of τ∞ and τ2 is motivated by the fact that localized high peaks and widespread

heterogeneities with a (10 times) lower value should both trigger the adaptivity.

For our composite material no. 1, we observe good or acceptable behavior of

our heuristics, and up to roughly 50% of the eigenvalue problems are saved; see

Table 5.17. Nevertheless, to keep the condition number at the order of TOL,

we have to use τ2 = 0.001.

We again turn towards randomly distributed cofficients which turned out to

be the most challenging problem in the previous sections. For the corresponding

Table 5.18, we additionally report that with τ2 = 0.001 the condition number

is low in all runs, and the iteration number does not exceed 40. The heuristics

works well but the savings are modest. Note that Algorithm Ib is identical to

Algorithm Ia in 99 of the 100 runs for the randomized coefficients. Due to the

high oscillation, high coefficients are likely to be present at all edges.

From our results in Table 5.19, we see that we can save a substantial number

of eigenvalue problems when ν is still far away from the incompressible limit.

As ν approaches the incompressible limit, the computational savings are more

modest.
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Table 5.19: Adaptive FETI-DP (Alg. Ia with residual heuristic) ρ-scaling, and

balancing approach. Almost incompressible linear elasticity of

composite material no. 2 with E1 = 1 and ν2 = 0.3 surround-

ing 4N2/3 beams with E2 = 1e+ 3 and ν1 as given on the unit

cube; Q2 − P0 finite element discretization with 1/h = 5N1/3 for

N = 43 and irregular partitioning of the domain; see Figure 5.11

with different material parameters (right). Coarse spaces for

TOL = 10 for all generalized eigenvalue problems. Notation as

in Table 5.17. For the results without heuristic of Section 5.2.3.2,

see Table 5.15. [64]

Adaptive FETI-DP: Algorithm Ia w/ residual heuristic (Balancing)

N = 43 – 1/h = 5N1/3 – composite material no. 2 – irregular partitioning

τ2 = 0.01, τ∞ = 10τ2
ν1 λmin λmax its |U | #EVPU #EVPdisc res

0.45 1.00 30.09 55 4038 93 217
0.499 1.00 67.27 56 6535 253 57

0.49999 1.00 37.98 50 6988 272 38
0.4999999 1.00 38.00 50 6993 272 38

5.4.8 Approximate solutions of the local eigenvalue problems

The numerical solution of the local generalized eigenvalue problems can be

expensive but their “exact” solution is required by the current theory. Addi-

tionally, the construction of the operators of the eigenvalue problem can also

be expensive if an eigensolver is used that needs the matrices in explicit form.

However, an approximation of the extreme eigenvectors by an iterative method

is sufficient in practice. This was already reported to be successful for adaptive

BDDC using LOBPCG; see [120, 121].

In Tables 5.20 and 5.21, we show results for 1/h = 15N1/3 using an iterative

eigenvalue problem solver. We use an implementation of LOBPCG (see [86, 85])

with a block size of 10, preconditioned by a Cholesky decomposition of the right

hand side of the eigenvalue problem. We conduct a given number of maximum

iterations as indicated in the tables. If the smallest computed eigenvalue of the

considered block exceeds the tolerance TOL, we proceed with another pass of

the algorithm and search for 10 new eigenvectors in a subspace orthogonal to the

previously computed eigenvector approximations. All approximate eigenvectors

corresponding to approximate eigenvalues above TOL are added to the coarse

space.

In Table 5.20, we consider a variable number of subdomains N ∈ {33, 43, 53}

and use a single iteration of LOBPCG. This already seems to work acceptably.

For N = 33 subdomains, we also consider different values for the maximum
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Table 5.20: Adaptive FETI-DP (Alg. Ia-III with one iteration LOBPCG) with

ρ-scaling and balancing approach. Compressible linear elasticity

of composite material no. 1 with E1 = 1 and N2/3 beams with

E2 = 1e+ 6 on the unit cube; ν = 0.3 for the whole domain; con-

forming P1 finite element discretization with 1/h = 15N1/3 and

irregular partitioning of the domain; see Figure 5.1. Coarse spaces

for TOL = 10 for all generalized eigenvalue problems. Solution of

the local eigenvalue problems by LOBPCG with one iteration.

Notation as in Table 5.4. [64]

Adaptive FETI-DP: Algorithms Ia, Ib, Ic, II, and III (Balancing)

1/h = 15N1/3 – composite material no. 1 – irregular partitioning

Algorithms Ia, Ib, and Ic Algorithm II Algorithm III
N κ its |U | #Eevp κ its |U | κ its |U |

33
a) 26.74 50 2360 0 (0%)

26.74 50 2360 8.028e+5 150 462b) 26.74 50 2360 0 (0%)
c) 26.77 50 1228 0 (0%)

43
a) 28.37 54 4472 2 (0.7%)

28.37 54 4472 4.315e+5 215 863b) 28.37 54 4472 0 (0%)
c) 28.39 55 1962 0 (0%)

53
a) 43.87 61 10178 8 (1.2%)

43.87 61 10178 6.86e+5 288 1941b) 43.87 61 10178 0 (0%)
c) 43.93 62 5334 0 (0%)

iteration count, i.e., {1, 2, 5, 10, 200} and with a requested tolerance for conver-

gence of the LOBPCG solver of 1e-5; see Table 5.21. We see that, in terms

of resulting global PCG iterations, exceeding a number of five LOBPCG itera-

tions does not seem to be worthwhile. Note that the METIS decomposition for

N = 33 subdomains here does not lead to any edge eigenvalue problem. There-

fore, Algorithms Ia, Ib, and II behave identically. Note that in some cases,

too many iterations of the LOBPCG solver might not be helpful and even lead

to worse convergence behavior of the adaptive FETI-DP approach than just

several iterations; for details see the numerical results in Chapter 6.

5.5 Conclusion on adaptive FETI-DP using balancing

and deflation

In this chapter, we have presented an adaptive coarse space approach for FETI-

DP methods (Algorithm Ia) including a condition number bound for general

coefficient jumps inside subdomains and across subdomain boundaries as well

as for almost incompressible elastic materials in 3D. The bound only depends
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Table 5.21: Adaptive FETI-DP (Alg. Ia-III with LOBPCG) with ρ-scaling and

balancing approach. Compressible linear elasticity of composite

material no. 1 with E1 = 1 and N2/3 beams with E2 = 1e+ 6 on

the unit cube; ν = 0.3 for the whole domain; conforming P1 finite

element discretization with 1/h = 151/3 for N = 33 and irregular

partitioning of the domain; see Figure 5.1. Coarse spaces for

TOL = 10 for all generalized eigenvalue problems. Solution of the

local eigenvalue problems by LOBPCG with different maximum

iteration numbers. Notation as in Table 5.4. [64]

Adaptive FETI-DP: Algorithms Ia, Ib, Ic, II, and III (Balancing)

N = 33 – 1/h = 15N1/3 – composite material no. 1 – irregular partitioning

Algorithms Ia, Ib, and Ic Algorithm II Algorithm III
LOBPCG

κ its |U | #Eevp κ its |U | κ its |U |
max. its

1
a) 26.74 50 2360 0 (0%)

26.74 50 2360 8.03e+5 150 462b) 26.74 50 2360 0 (0%)
c) 26.77 50 1228 0 (0%)

2
a) 17.65 41 2623 0 (0%)

17.65 41 2623 7.76e+5 123 505b) 17.65 41 2623 0 (0%)
c) 17.65 42 1322 0 (0%)

5
a) 10.04 37 2762 0 (0%)

10.04 37 2762 7.71e+5 126 531b) 10.04 37 2762 0 (0%)
c) 12.86 38 1374 0 (0%)

10
a) 12.61 38 2782 0 (0%)

12.61 38 2782 7.70e+5 128 541b) 12.61 38 2782 0 (0%)
c) 12.85 40 1396 0 (0%)

200
a) 11.55 38 3108 0 (0%)

11.72 38 3108 7.70e+5 113 686b) 11.55 38 3108 0 (0%)
b) 12.86 38 1665 0 (0%)

on geometrical constants and a prescribed tolerance from local eigenvalue prob-

lems. Our approach is based on the classical adaptive approach from [93, 120]

but we use a small number (fewer than 5 percent) of additional edge eigen-

value problems. Our experiments support our theory and show that the new

method is able to cope with situations where the classical approach fails. We

have also introduced two adaptive algorithms reducing the number of eigenvalue

problems and constraints from Algorithm Ia which work very well, i.e., Algo-

rithms Ib and Ic; see Section 5.2.2. Moreover, we have presented two additional

strategies to further reduce the number of eigenvalue problems and adaptively

computed constraints; see Sections 5.2.3.1 and 5.2.3.2.

We have seen in our numerical experiments that the classical coarse space

of [93, 120] (Algorithm III) can be sufficient if coefficient jumps do only occur

at subdomain faces. However, if jumps are present across or along subdomain
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edges, in general, neither a small condition number nor a low count of Krylov

iterations (or even convergence) can be guaranteed by Algorithm III, which

does not use any edge constraints. For difficult coefficient distributions, at

least the edge constraints resulting from face eigenvalue problems should be

added to the coarse space. The resulting approach (Algorithm II) then can

cope with a larger number of test problems. However, only Algorithms Ia, Ib,

and Ic have been able to guarantee a low condition number for all our test cases.

Although only Algorithm Ia is covered by our provable bound, Algorithm Ib

performs almost identically. Algorithm Ic performs still comparably but can

also save a considerable number of constraints; e.g., up to 40%. In simple

cases, where Algorithm III is already successful, Algorithm Ic indeed reduces

to Algorithm III.

Our experiments show that the condition number can quite precisely be

controlled by the tolerance TOL even if the reduction strategies of Algorithm Ib

or Ic are used.

For our problems from almost incompressible elasticity, among Algo-

rithms Ia, II, and III, only Algorithm Ia performed well for all our test

problems. Algorithms Ib and Ic have not been tested. If the neighborhood

strategies of Algorithms Ib and Ic are adapted such that not only the Young

modulus but also the Poisson ratio is considered, these algorithms are expected

to cope with the situation, too.

For regular decompositions, the number of edge eigenvalue problems in Al-

gorithm Ia is quite high, but can be reduced considerably by switching to Al-

gorithms Ib and Ic. For irregular decompositions, which is the more relevant

case, the number of additional edge eigenvalue problems to be computed by Al-

gorithm Ia is often only in a low single-digit percentage range and can further

be reduced by switching to Algorithms Ib and Ic.

Compared to Algorithm II, the number of additional constraints in Algo-

rithms Ia and Ib is typically small, i.e., for our test problems, the mean is only

between 1% to 3% of additional constraints. Furthermore, compared to Algo-

rithm II, Algorithm Ic reduces the number of edge constraints from face eigen-

value problems. Comparing the computational overhead of Algorithms Ia, Ib,

and Ic to Algorithm III is difficult in some way since the additional constraints

are mostly necessary to obtain convergence.

Our heuristic strategy from Section 5.2.3.2 to reduce the number of eigen-

value problems can save a substantial amount of computational work but re-

quires some tuning of tolerances. In our numerical experiments, selecting a
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specific tolerance 0.001 ≤ τ2 ≤ 0.01 with τ∞ = 10τ2 saved work while keeping

the algorithm stable and reliable.

Considering the computational overhead for the solution of the eigenvalue

problems, we have also shown that already an application of an iterative eigen-

problem solver with just a few iterations results in a robust coarse space.

Altogether, the adaptive FETI-DP Algorithms Ia, Ib, and Ic with balancing

or deflation can be used to solve hard problems which could not be solved

with standard FETI-DP or even adaptive FETI-DP without edge eigenvalue

problems (Algorithm II or III). Nevertheless, if a large and hard problem is

considered, the adaptive coarse space can become large and an inexact solution

of the coarse problem might be attractive. However, as shown in [80], the

deflation or balancing approach is fragile with respect to inexactness of the

coarse problem solution and the method can become unstable or even converge

to a wrong solution. Therefore, the goal of the next chapter is to develop

a corresponding FETI-DP approach using the generalized transformation-of-

basis approach from Section 4.5. Then, the results can be also transfered to

obtain an adaptive BDDC method.
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6 FETI-DP and BDDC with adaptive

coarse spaces using the generalized

transformation-of-basis approach

6.1 Preliminaries

In this section, we revisit the adaptive FETI-DP method from the previous

chapter and construct a corresponding method without using deflation or bal-

ancing. Central to this transition is the generalized transformation-of-basis

approach presented in Section 4.5. By using the generalized transformation-

of-basis approach, we also develop a corresponding adaptive BDDC method.

Parts of this chapter have already been published in modified or unmodified

form by the author of this thesis and his coauthors in [67, 68, 70].

In the previous chapter, in Section 5.1, we have reflected that for highly het-

erogeneous problems, the a priori coarse space might not be sufficient to ensure

convergence and therefore adaptive strategies, as established in Section 5.2, are

needed.

In this chapter, we explain how to define the new adaptive constraint vec-

tors (in the space of displacements) for the generalized transformation-of-basis

approach. We also relate those vectors to the deflation vectors for FETI-DP,

which have been used in the previous chapter and which are defined in the

Lagrange multiplier space.

In order to demonstrate the need of the generalized transformation-of-basis

approach, we consider a preliminary example and anticipate results for adaptive

FETI-DP and BDDC using the standard and the generalized transformation-

of-basis approach. In the standard approach, we only have one set of primal

constraints. In the generalized transformation-of-basis approach, we use two

different sets of primal variables and we allow an interaction of a posteriori

dual and a posteriori primal variables through the scaling.

Let us consider the diffusion equation on Ω = [0, 1]3 partitioned into eight

cubic subdomains and with homogeneous Dirichlet boundary for the face with

x = 0 and homogeneous Neumann boundary elsewhere; see Figure 6.1 (Dirichlet
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6 Adaptive coarse spaces using the generalized transformation-of-basis appr.

Figure 6.1: Minimal example to motivate the need for the generalized

transformation-of-basis approach (regular decomposition of the

unit cube into eight subdomains). On two tetrahedra, we have

high coefficients E2 = 1e + 6, shown in dark purple, all other

tetrahedra have E1 = 1 and are not shown; of the front part

of the domain (y < 1
2 ) only the faces and edges are shown in

half-transparent colors. Initial (or a priori) primal vertex con-

straints (Π′) are indicated by gray cubes. Initial dual variables

are indicated by spheres. Red spheres indicate a posteriori primal

variables (Π) that are assembled for the transformed basis and

yellow spheres represent the remaining dual variables. Adaptive

approach for multiplicity-scaling (left) and ρ-scaling (right).

boundary on the left; face with y = 0 in front). We consider the closed face (the

open face plus a bent edge on the Neumann boundary) with four dual variables

(yellow and red spheres) that yielded three and two constraints, respectively, for

multiplicity- (left) and ρ-scaling (right), respectively. After a transformation of

basis, the variables at the red nodes are assembled and thus, made primal.

We present results for four different algorithms. The rows in Table 6.1 refer

to the results for the algorithms described in the following enumeration. Note

that the iteration counts are always small since we only consider a minimal

example with a small number of eight subdomains and only 125 global nodes.

1. Adaptive FETI-DP and BDDC with multiplicity-scaling: If

multiplicity-scaling is used, the scaling needs not to be transformed (even

for heterogeneous coefficients) since the theory of [80] applies and the

standard transformation-of-basis approach can be used. However, for
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6.2 A family of adaptive coarse spaces

heterogeneous coefficients, the adaptive coarse space can become large

and another scaling is advised; see, e.g., [75, 68] or Section 6.5.3.

2. Adaptive FETI-DP and BDDC with ρ-scaling:

a) For ρ-scaling, we present results for the case if the scaling is not trans-

formed and consequently no interaction between a posteriori dual and

a posteriori primal variables is admitted.

b) For ρ-scaling, we also present results for the case if the scaling is trans-

formed but no interaction between a posteriori dual and a posteriori

primal variables is admitted. This corresponds to the case described in

Example 4.1 where d̂ry = 0 is set. For the standard theory, d̂ry = 0 has

to be assumed since, otherwise, we would generally obtain continuous

but nonzero values in the a posteriori primal variables after B̂T
D had

been applied.

c) Last, for ρ-scaling, we present results for the generalized transformation-

of-basis approach to show the difference in the condition numbers of

the generalized approach and of the approaches of the two previous

items.

As can be seen from this example, although the convergence is fast for this

small example, the incorrect handling of a posteriori primal variables can result

in a high condition number. Thus, for arbitrary constraints from generalized

eigenvalue problems based on an a priori scaling, which is not multiplicity-

scaling, the standard theory cannot be applied.

6.2 A family of adaptive coarse spaces

As in the previous chapter, we now introduce local adaptive constraints for

FETI-DP; see Section 6.2.1. As in Section 5.2.2, we can introduce adap-

tive methods with (almost) the same adaptive coarse space, only some minor

restrictions on the constraints of the generalized transformation-of-basis ap-

proach have to be respected; see Sections 4.5 and 6.2.3. Additionally, we derive

adaptive BDDC methods with essentially the same spectrum. We again refer

to [93, 94, 72, 22, 74, 75, 63, 64, 7, 101, 17, 134, 103, 62] for (other) adaptive

coarse spaces used in FETI-DP and BDDC methods.

6.2.1 Various adaptive constraints

Let us note that the local operators and the local generalized eigenvalue prob-

lems used in this chapter are identical to the ones from the previous chapter. To
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6 Adaptive coarse spaces using the generalized transformation-of-basis appr.

Table 6.1: Adaptive FETI-DP and BDDC (Alg. Ia) with multiplicity- and ρ-

scaling and standard versus generalized transformation-of-basis ap-

proach. Diffusion equation of material as in Fig. 6.1 with ρ1 = 1

and ρ2 = 1e+ 6 on the unit cube; conforming P1 finite element

discretization with 1/h = 2N1/3 and regular partitioning of the do-

main. Coarse spaces for TOL = 10 for all generalized eigenvalue

problems. 1.) untransformed multiplicity-scaling, 2a.) untrans-

formed ρ-scaling without interaction of a posteriori dual and a

posteriori primal variables, 2b.) transformed ρ-scaling without in-

teraction, 2c.) transformed ρ-scaling with interaction (generalized

transformation-of-basis appr.). Other notation as in Table 5.4.

Adaptive FETI-DP and BDDC:
(Standard and generalized transformation-of-basis approach)

N = 23 – 1/h = 2N1/3 – material as in Fig. 6.1 – regular partitioning

FETI-DP BDDC
λmin λmax its λmin λmax its

1.) 1.00 1.33 7 1.00 1.33 7
2a.) 1.00 6.03e+3 10 1.00 6.03e+3 13
2b.) 1.00 1.42e+4 7 1.00 1.42e+4 12
2c.) 1.00 1.38 8 1.00 1.38 8

improve the readability of this section, we shortly rephrase the elementary op-

erators already introduced in Section 5.2.1. For the motivation of the localized

adaptive methods and detailed remarks, see Section 5.2. For the algorithms

based on face eigenvalue problems, we also refer to [93, 120, 75].

We assume that all vertices of the decomposition are chosen to be primal

and, additionally, that each nonstraight edge has at least three primal vertices;

cf. Remark 5.3.

The face between the subdomains Ωi and Ωj is denoted by F ij and its closure

by F
ij
. We define

B
F

ij :=
(
B

(i)

F
ij B

(j)

F
ij

)
(6.1)

as the submatrix of
(
B(i) B(j)

)
consisting of all the rows that contain exactly

one +1 and one −1. Analogously,

B
D,F

ij :=
(
B

(i)

D,F
ij B

(j)

D,F
ij

)
(6.2)
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6.2 A family of adaptive coarse spaces

is the submatrix of
(
B

(i)
D B

(j)
D

)
, i.e., the scaled variant of B

F
ij . We then define

Sij :=

(
S(i) 0

0 S(j)

)
∈ R(ni+nj)×(ni+nj) and P

D,F
ij := BT

D,F
ijBF

ij . (6.3)

By removing all rigid body modes of either the single subdomains or the

coupled pair of subdomains (cf. Figure 5.3), we obtain the local generalized

eigenvalue problem: Find wij ∈
(
kerSij

)⊥
such that

〈P
D,F

ijvij , SijPD,F
ijwij〉 = µij〈vij , Sijwij〉 ∀vij ∈

(
kerSij

)⊥
. (6.4)

To obtain an explicit expression for the (positive definite) right hand side

operator on the subspace
(
kerSij

)⊥
, we use the two separate projections Πij

and Πij . We denote the ℓ2-orthogonal projection from Wi ×Wj to W̃ij by Πij .

The space W̃ij is the space of functions in Wi × Wj that are continuous in

the primal variables shared by Ωi and Ωj. The ℓ2-orthogonal projection from

Wi×Wj to range (ΠijSijΠij+σ(I−Πij)) is denoted by Πij. Here, σ is a positive

constant used for stability reasons; see [93, 94].

We then solve the following generalized eigenvalue problems

ΠijΠijP
T

D,F
ijSijPD,F

ijΠijΠijwij

= µij(Πij(ΠijSijΠij + σ(I −Πij))Πij + σ(I −Πij))wij ,
(6.5)

for µij≥TOL.

To avoid a coupling of the different closed faces in the coarse matrix, we

split the constraints on the similar to (5.12) and (5.13).

Assume µr
ij ≥ TOL, then the constraint vector cru,ij := P T

D,F
ijSijPD,F

ijwr
ij =

BT

F
ijc

r
λ,ij is split into a part on the open face

cru,ij,F := BT

F
ijc

r
λ,ij,F (6.6)

and several edge parts

cru,ij,Em := BT

F
ijc

r
λ,ij,Em, m = 1, 2, . . . , (6.7)

all extended by zero to the closure of the face. We can then enforce the open

face constraint and the edge constraints

cr Tu,ij,Fwij = 0, (6.8)

cr Tu,ij,Emwij = 0, m = 1, 2, . . . . (6.9)
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6 Adaptive coarse spaces using the generalized transformation-of-basis appr.

Note that the constraint vectors in (6.8) and (6.9) differ from the constraint

vectors in (5.12) and (5.13) since, here, we constrain degrees of freedom while

in the previous chapter we constrained the Lagrange multipliers. However, the

constraints are identical.

As before, we also want to control control the jumps w(i) − w(k) across the

edge E ik between subdomains Ωi and Ωk that do not share any face. As in the

previous chapter, we define

BEik :=
(
B

(i)

Eik B
(k)

Eik

)
(6.10)

as the submatrix of
(
B(i) B(k)

)
consisting of all the rows, which correspond to

E ik and that contain exactly one +1 and one −1. Analogously,

BD,Eik :=
(
B

(i)

D,Eik B
(k)

D,Eik

)
(6.11)

is the submatrix of
(
B

(i)
D B

(k)
D

)
, i.e., the scaled variant of BEik . As in the

previous chapter, two subdomains, Ωi and Ωk, can share more than one edge

eigenvalue problem. Consequently, not all the rows of
(
B(i) B(k)

)
that contain

exactly one +1 and one −1 correspond to Lagrange multipliers on E ik.

As for the face eigenvalue problems, we have

Sik :=

(
S(i) 0

0 S(k)

)
∈ R(ni+nk)×(ni+nk) and PD,Eik := BT

D,EikBEik . (6.12)

By again introducing the two projections Πik and Πik to remove the single

and common rigid body modes of the two subdomains, we solve

ΠikΠikP
T
D,EikSikPD,EikΠikΠikwik

= µik(Πik(ΠikSikΠik + σ(I −Πik))Πik + σ(I −Πik))wik

(6.13)

for eigenvectors wik with eigenvalue µik≥TOL.

As in the previous chapter, this only has to be carried out for edges shared

by more than three subdomains and in rare occasions, where thin faces do not

contain any interior discretization nodes.

For all µr
ik ≥ TOL, the constraints resulting from the edge eigenvalue prob-

lems are

wr T
ik P T

D,EikSikPD,Eikwik = cr Tλ,ikBEikwik =: cr Tu,ikwik = 0, (6.14)
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6.2 A family of adaptive coarse spaces

where wr
ik are the corresponding eigenvectors and cru,ik = P T

D,EikSikPD,Eikwr
ik

are the corresponding constraint vectors.

Hence, for face and edge eigenvalue problems likewise, we obtain the con-

straint vectors in the displacement space by a multiplication of the constraint

vector in the Lagrange multiplier space by the localized (and transposed) ver-

sion of the jump operator B.

Properties of the adaptively computed constraint vectors. Due to the form

of the given constraints (see (6.6)–(6.9), (6.14)) and the definition of the local-

ized jump operators (see (6.1) and (6.10)), we have for cru,ij,F , c
r
u,ij,Em

(m =

1, 2, . . .), and cru,ik

(wij , c
r
u,ij,F ) = 0 ⇔ (B

(i)

F
ijw

(i), crλ,ij,F ) = −(B
(j)

F
ijw

(j), crλ,ij,F ),

(wij , c
r
u,ij,Em) = 0 ⇔ (B

(i)

F
ijw

(i), crλ,ij,Em) = −(B
(j)

F
ijw

(j), crλ,ij,Em),

(wik, c
r
u,ik) = 0 ⇔ (B

(i)

Eikw
(i), crλ,ik) = −(B

(k)

Eikw
(k), crλ,ik).

(6.15)

Since B
(i)

F
ij and B

(j)

F
ij are closely related, i.e., both operators only differ by their

sign when restricted to the face (i.e., when all zero columns are removed), the

constraint vector on the face is identical for both sides of the face. The same

argument applies to the edge eigenvalue problems and the edge constraints from

face eigenvalue problems, since, again, B
(i)

Eik and −B
(k)

Eik are identical if restricted

to the jumps w(i) − w(k) on the corresponding edge.

6.2.2 Coarse space adjustments for the generalized

transformation-of-basis approach

For the generalized transformation-of-basis approach, minor restrictions on the

set of constraints apply and, thus, the sets of adaptive constraint vectors might

have to be enriched slightly. In this section, we explain how the computed sets

have to be adjusted to satisfy the assumptions of the generalized transformation-

of-basis approach.

Let us assume to have computed sets or a set of constraints on an open face

F ij and on its related edges Em (m = 1, 2, . . .) or just on an edge E ik. These

constraints are orthonormalized edge by edge and separately for the open face.

The orthonormalized results are denoted by TF ij ,Π and TEm,Π, m = 1, 2, . . .,

and TEik,Π. The matrices TF ij :=
(
TF ij ,Π TF ij ,∆

)
and TEm :=

(
TEm,Π TEm,∆

)
,

m = 1, 2, . . ., and TEik :=
(
TEik,Π TEik,∆

)
then are computed such that they

are orthogonal.

127



6 Adaptive coarse spaces using the generalized transformation-of-basis appr.

Given a face F ij , the sets of orthogonalized constraints TF ij ,Π and TEm,Π

(m = 1, 2, . . .) can then be used as constraint vectors for both subdomains

Ωi and Ωj. This results from the form of B and that the constraint vector,

restricted to one subdomain, equals the negative of the constraint vector, re-

stricted to the other subdomain; cf. (6.15). Given an edge E ik, the same applies

to the two subdomains considered in the edge eigenvalue problem.

In order to satisfy the assumptions of the generalized transformation-of-basis

approach (see (4.20)), we also enforce the same constraints for all other jumps

between two arbitrary subdomains at any considered edge (for a face, there are

only two subdomains, of course). Then, for a face F ij with jumps w(i) − w(j)

across the face and across the edges Em (m = 1, 2, . . .) or a single edge E ik

with jumps w(i) − w(s) across the edge E ik, the local transformations have to

be identical for all subdomains sharing the face or the edge. Precisely, we have

T
(i)
|F ij = T

(j)
|F ij = TF ij , T

(i)
|Em

= T
(s)
|Em

= TEm , T
(i)

|Eik = T
(s)

|Eik = TEik , (6.16)

and all pairs of subdomains {Ωi,Ωs} sharing the edges Em or E ik. This equality

is trivially true for our adaptive constraints on the faces; see (6.15). For the

edges, this property analogously holds for the two subdomains considered in

the eigenvalue problem. For other adjacent subdomains we just introduce a,

generally, nonnodal constraint vector.

Thus, the constraint set obtained from the local eigenvalue problems can

be extended such that the local transformations satisfy condition (6.16) of the

generalized transformation-of-basis approach, as it has been introduced in Sec-

tion 4.5 or [67].

6.2.3 Various adaptive algorithms

Subsequently to the previous section and as in Section 5.2.2, we can define the

Algorithms Ia, Ib, Ic, II, and III for adaptive FETI-DP by respecting the neces-

sary slight enrichment of the adaptive coarse spaces to satisfy the assumptions

of the generalized transformation-of-basis approach. Corresponding algorithms

can be defined for BDDC, too.

Algorithm Ia uses the coarse space for which the theoretical condition num-

ber bound is established, Algorithms Ib and Ic often yield the same numerical

results but use a heuristic neighborhood strategy to discard edge eigenvalue

problems (Algorithms Ib and Ic) and edge constraints from face eigenvalue

problems (Algorithm Ic) if the edge is completely embedded in a soft material;

for more details, see Section 5.2.2.
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6.3 Adaptive FETI-DP and BDDC operators for the gen. transf.-o.-basis appr.

Algorithms II and III are the algorithms based on face eigenvalue problems as

introduced in [93, 120]. Algorithm II uses all constraints from face eigenvalue

problems, Algorithm III only enforces the constraints on the open face and

discards all edge constraints (from face eigenvalue problems).

6.3 Adaptive FETI-DP and BDDC operators for the

generalized transformation-of-basis approach

The adaptive constraints in the FETI-DP and BDDC method with a gener-

alized transformation-of-basis approach are enforced by partial finite element

assembly. Thus, we introduce the operator RT that assembles in all a poste-

riori degrees of freedom to enforce the adaptive constraints and that leaves all

other degrees of freedom (interior, a priori primal and remaining (or a posteri-

ori) dual variables) unchanged. In accordance to the theory of the generalized

transformation-of-basis approach, we also need a multiplicity-weighted assem-

bly operator RT
µ = (RTR)−1RT .

The adaptively preconditioned FETI-DP method is then given by

M̂−1
T F̂ λ := (B̂D

̂̃
SB̂T

D) (B̂
̂̃
S
−1

B̂T )λ

:= (BDTRµ(R
TT T S̃TR)RT

µT
TBT

D) (BTR(RTT T S̃TR)−1RTT TBT )λ

= d̂

(6.17)

with the corresponding right hand side d̂. Now, the finite element vectors

and matrices are, both, transformed and assembled in the a posteriori primal

variables.

Introducing another operator R′T which assembles in all a posteriori primal

and all remaining (or a posteriori) dual variables (and leaves the a priori primal

variables unchanged), the preconditioned adaptive BDDC method is given by

M̂−1
BDDC Su := (R′TTD̂uR

̂̃
S
−1

RT D̂uT
TR′) (R′T S̃R′)u

:= (R′TDuTR (RTT T S̃TR)−1RTT TDuR
′) (R′T S̃R′)u = ĝ

(6.18)

with the corresponding right hand side ĝ. The BDDC scaling Du scales the

degrees of freedom and corresponds to the Lagrange multiplier scaling D of the

FETI-DP method.
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6 Adaptive coarse spaces using the generalized transformation-of-basis appr.

6.4 Condition number estimate for adaptive FETI-DP

and BDDC

As in the previous chapter, where we have extended all the constraint vectors

crλ,ij,F , c
r
λ,ij,Em

, m = 1, 2, . . ., and crλ,ik by zero to the space of the Lagrange

multipliers to define the columns of the matrix U , we extend all the constraint

vectors cru,ij,F , c
r
u,ij,Em

, m = 1, 2, . . ., and cru,ik by zero to W̃ . These vectors

define the columns of the matrix Q.

Obviously, the spaces

W̃Q := {w ∈ W̃ : QTw = 0} and W̃U = {w ∈ W̃ : UTBw = 0} (6.19)

are the same but their constraint vectors (given by Q and U) are defined dif-

ferently. The space W̃U corresponds to the solution space for deflation or

balancing; cf. the previous chapter. The solution space for the generalized

transformation-of-basis approach is, generally, a subset of this space. In or-

der to define the solution space, we refer to our explanation on how to enrich

the set of adaptively computed constraints to meet the requirements of the

transformation approach; see Section 6.2.2. With the additionally introduced

constraint vectors, we then have Q̂ := [Q, ∗] with rangeQ ⊂ range Q̂, thus,

ker Q̂T ⊂ kerQT and the solution space

W̃Q̂ = {w ∈ W̃ : Q̂Tw = 0} ⊂ W̃Q = W̃U . (6.20)

In Section 4.5.2.2, we have given a detailed and generic explanation of the

solution spaces.

In our implementation, the constrained elements of W̃
Q̂

are represented

by W̃T,a = {ŵ = RT
µT

Tw : w ∈ W̃} where RT
µ = (RTR)−1RT and T =

blockdiagi=1,...,NT (i). The operator T (i) reduces to the identity on all interior

degrees of freedom and is blockdiagonal on the interface with blocks TF ij and

TEik for all faces F ij and edges E ik shared by Ωi; cf. (4.27) and Section 4.5.2.1.

Corollary 6.1. Let NF denote the maximum number of faces of a subdomain,

NE the maximum number of edges of a subdomain, ME the maximum multi-

plicity of an edge, and TOL a given tolerance for solving the local generalized

eigenvalue problems. Let all vertices be primal. Then, for w ∈ W̃Q̂, we have

|PDw|
2
S̃
≤ 4max{NF , NEME}

2TOL|w|2
S̃
.
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Ωl

Ωi Ωj

Ωk Ωl

Ωi Ωj

Ωk Ωl

Ωi Ωj

Ωk Ωl

Ωi Ωj

Ωk

Figure 6.2: Constraints of the direct deflation approach, the generalized

transformation-of-basis, and the corresponding deflation approach:

Cross-sectional view of four subdomains sharing an edge. Arrows

symbolize redundant Lagrange multipliers in FETI-DP (left). As-

sume that, using deflation directly, one constraint is introduced,

involving the Lagrange multiplier depicted in bold red color (sec-

ond to left). Using partial assembly, after a generalized transfor-

mation of basis, the primal constraint is now enforced between

all four subdomains, effectively involving all six Lagrange mul-

tipliers (second to right). The deflation or balancing approach

corresponding to the generalized transformation-of-basis approach

constrains all six Lagrange multipliers depicted in bold red color

with the same constraint vector (right). [68]. Copyright Electronic

Transactions on Numerical Analysis.

Proof. The constraints are enforced by partial assembly; cf. Figure 6.2 for the

examplary case of an edge E ik shared by four subdomains. Thus, the solution

space W̃
Q̂
is in general a strict subset of the solution space W̃U and we obtain

our PD-estimate from Lemma 5.5 for W̃Q̂.

We can now formulate the following theorem for our adaptive Algorithm Ia

using the generalized transformation-of-basis approach.

Theorem 6.2. Let NF denote the maximum number of faces of a subdomain,

NE the maximum number of edges of a subdomain, ME the maximum multi-

plicity of an edge, and TOL a given tolerance for solving the local generalized

eigenvalue problems. Furthermore, let all vertices be primal. Then, the condi-

tion number κ(M̂−1
T F̂ ) of the FETI-DP Algorithm Ia, with adaptive constraints

enforced by the generalized transformation-of-basis approach, satisfies

κ(M̂−1
T F̂ ) ≤ 4max{NF , NEME}

2TOL.

The condition number κ(M̂−1
BDDC

S) of the BDDC Algorithm Ia, with adaptive

constraints enforced by the generalized transformation-of-basis approach, satis-
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6 Adaptive coarse spaces using the generalized transformation-of-basis appr.

fies

κ(M̂−1
BDDC

S) ≤ 4max{NF , NEME}
2TOL.

Proof. The proof is complete by acknowledging that this is a special case of

Theorem 4.12 for FETI-DP and Theorem 4.15 for BDDC if the transformations

are built according to the assumptions of the generalized transformation-of-

basis approach (i.e., they are identical for all sides of any considered edge;

cf. Sections 4.5.2.1 and 6.2.2) and by using Corollary 6.1.

Note that the bound in Theorem 6.2 is algebraic in the sense that the con-

dition number bound holds under very weak assumptions. However, under

unfavorable conditions, for small tolerances TOL, the coarse space can be so

large that the method reduces to a direct solver.

Remark 6.3. Note that the explicit condition number of the FETI-DP or

BDDC method with our generalized transformation-of-basis approach is always

smaller or equal to that of the direct deflation or balancing approach. This re-

sults from the fact that in our generalized transformation-of-basis approach, in

the partial assembly, we often enforce additional constraints compared to the

direct deflation or balancing approach – without creating a larger coarse space;

cf. (6.20), (6.16), and Figure 6.2.

Nevertheless, for every method using the generalized transformation-of-basis

approach, we can always find an equivalent balancing or deflation method by

expanding the constraint columns U such that all the constraints from W̃Q̂ are

implemented and such that κ(M−1
PPF ) = κ(M̂−1

T F̂ ); cf. Section 4.5.

6.5 Numerical results for adaptive FETI-DP and BDDC

As in Section 5.4, we consider examples of the diffusion equation and compress-

ible linear elasticity on the unit cube Ω = [0, 1]3. We present numerical results

for the adaptive coarse spaces as defined in Section 6.2.3 with references to

Section 5.2.2 and the description of the classical variants of [93, 120, 94], rely-

ing on face eigenvalue problems only. Here, we use the implementation of the

coarse space by the generalized transformation-of-basis approach for FETI-DP

and BDDC.

For the diffusion equation, we consider jumps of ρ ∈ {1, 1e+6}. For problems

of linear elasticity, the Poisson ratio is set to ν = 0.3 and the Young modulus

is E ∈ {1, 1e + 6}. We assume constant values of ρ, E, and ν on each finite

element.
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6.5 Numerical results for adaptive FETI-DP and BDDC

The initial coarse space for all methods contains all vertex constraints. We

then add several other nodes (turned into vertices) such that each nonstraight

edge has at least three primal vertices. This choice is identical to that of

Section 5. We consider irregular decompositions of the unit cube. These de-

compositions are obtained from the METIS graph partitioner (see [60]) using

the options -ncommon=3 and -contig to avoid noncontiguous subdomains and

unwanted hinge modes between sets of tetrahedra inside single subdomains;

again, cf. Chapter 5.

Except for Section 6.5.1 and 6.5.5, where we only study Algorithm Ia and

Algorithms Ia, Ib, and Ic, respectively, we show results for all five adaptive

algorithms defined before; see Section 6.2.3.

In all tables, we denote either by κ the condition number of the precondi-

tioned FETI-DP and BDDC operator or by λmin and λmax the minimum and

maximum eigenvalue. By its, we denote the number of preconditioned conju-

gate gradient (PCG) iterations that are needed until convergence. The iteration

is also stopped if no convergence is observed within 500 iterations. We then

simply write “500” instead of “>500” for the iterations. In Sections 6.5.2–6.5.5,

we require a relative reduction of 1e-10 of the preconditioned residual of the

PCG algorithm. In Section 6.5.1, we also use the deflation approach and there-

fore a moderate stopping criterion; cf. Section 5.4.1 for a short discussion on

stopping criteria for deflation combined with FETI-DP. The condition numbers

(or maximum and minimum eigenvalues), shown in the table, are the standard

estimates obtained from PCG. The condition number estimates for FETI-DP

and BDDC can differ to a minor degree since, in most cases, the estimates of

the smallest eigenvalue differ slightly, typically starting in the second or third

digit.

By |Π′| we denote the size of the standard coarse space while by |Π| we

present the size of the corresponding adaptive coarse space implemented by the

generalized transformation-of-basis approach; see the previous sections and, in

particular, Section 4.5. For the deflation runs in Section 6.5.1, we denote the

adaptive coarse space size by |U |. By N we denote the number of subdomains.

For the Algorithms Ia, Ib, and Ic, we also present the number of edge eigen-

value problems as #Eevp and in parentheses the percentage of these in the total

number of eigenvalue problems.

For all runs, we highlight small condition number estimates (or maximum

eigenvalue estimates) below 50 in bold face. If not stated otherwise, all eigen-

value problems are solved by the MATLAB built-in eig function. In Sec-

tion 6.5.4, the eigenvalue problems are solved by the LOBPCG eigensolver [86,
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6 Adaptive coarse spaces using the generalized transformation-of-basis appr.

85]. Except for Table 6.14, we always use TOL = 10. The resulting condition

number is typically at the order of TOL.

If ρ-scaling is used, we apply the standard ρ-scaling, where the nodal coef-

ficient values are given by the maximum value of the coefficient function on all

neighboring tetrahedra inside the same subdomain.

For all test problems, we enforce zero Dirichlet boundary conditions for the

face with x = 0 and zero Neumann boundary conditions elsewhere. We apply

the body force f = 0.1 for the diffusion problem and f = (0.1, 0.1, 0.1)T for

problems of linear elasticity.

We give short overview over the following sections.

1. Section 6.5.1: Generalized transformation-of-basis approach and

its equivalent deflation approach. In accordance to our theory, for

the diffusion equation, we show that for each adaptive approach using

the generalized transformation-of-basis approach an equivalent deflation

approach exists. In this section, we only test Algorithm Ia.

2. Section 6.5.2: Comparison with the results of adaptive FETI-DP

with the balancing approach. In this section, we consider compressible

linear elasticity and some of the materials already considered in Section 5.4

with the balancing approach.

3. Section 6.5.3: Scaling comparisons. In this section, we compare adap-

tive FETI-DP methods with four different scalings; cf. Section 3.4. Re-

sults for adaptive BDDC are not presented, but similar results are ex-

pected.

4. Section 6.5.4: Approximate solutions of the local eigenvalue prob-

lems: In this section, the influence of approximate solutions of the lo-

cal generalized eigenvalue problems to the convergence of the adaptive

method is studied; composite material no. 1 and randomly distributed

coefficients are considered.

5. Section 6.5.5: Preconditioners for iterative solvers of the local

generalized eigenvalue problems: Eventually, we study different local

preconditioners for iterative solvers of the local generalized eigenvalue

problems for composite material no. 2. Here, we only compare runs of

Algorithms Ia, Ib, and Ic.

Remark 6.4. In the first of the following sections, we construct the equiva-

lent deflation approach for a the adaptive Algorithm Ia using the generalized
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6.5 Numerical results for adaptive FETI-DP and BDDC

Table 6.2: Adaptive FETI-DP and BDDC (Alg. Ia) with ρ-scaling and the

generalized transformation-of-basis approach and its equivalent de-

flation approach. Diffusion equation of composite material no. 1

with ρ1 = 1 and N2/3 beams with ρ2 = 1e+ 6 on the unit cube;

conforming P1 finite element discretization with 1/h = 6N1/3 and

irregular partitioning of the domain; see Figure 5.1. Coarse spaces

for TOL = 10 for all generalized eigenvalue problems. |Π′| denotes

the size of a priori coarse space, |Π| the number of adaptive, a

posteriori constraints in the generalized transformation-of-basis ap-

proach, |U | the number of adaptive constraints in the deflation ap-

proach. Other notation as in Table 5.4. [67]

Adaptive FETI-DP and BDDC:
(Generalized transformation-of-basis approach and equivalent deflation)

1/h = 6N1/3 – composite material no. 1 – irregular partitioning

Adaptive FETI-DP Adaptive FETI-DP Adaptive BDDC
(Deflation) (Gen. t.-o.-b. appr.) (Gen. t.-o.-b. appr.)

N |Π′| λmin λmax its |U | λmin λmax its |Π| λmin λmax its |Π|
23 30 1.00 7.59 14 32 1.00 7.59 14 20 1.00 7.59 13 20
33 165 1.00 8.19 18 203 1.00 8.19 18 135 1.00 8.19 14 135
43 468 1.00 10.27 23 545 1.00 10.27 23 336 1.00 10.27 18 336
53 1066 1.00 10.88 23 1071 1.00 10.88 22 645 1.00 10.88 18 645
63 1878 1.00 9.20 23 1837 1.00 9.20 23 1099 1.00 9.20 18 1099

transformation-of-basis approach. In Sections 6.5.2–6.5.5, we only use the gen-

eralized transformation-of-basis approach. For these results, we do not construct

an equivalent deflation or balancing approach. If these results are compared to

an adaptive algorithm using balancing (see Section 5.4), the condition number of

the approach using the generalized transformation-of-basis is always smaller or

equal to that of the adaptive projection (deflation or balancing) method; cf. Sec-

tion 6.2.2 (in particular, Figure 6.2) or, in a more general description, Sec-

tion 4.5.

6.5.1 The generalized transformation-of-basis approach and its

equivalent deflation approach

We now present results for the diffusion equation with highly varying coefficients

ρ ∈ [1, 1e+6] on the unit cube Ω = [0, 1]3 and an irregular METIS (see [59, 60])

decomposition forN subdomains. We consider two materials. First, we consider

a soft matrix material with ρ1 = 1 and an embedded stiff material in the form

of N2/3 beams with ρ2 = 1e + 6 running from the face with x = 0 to the face
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6 Adaptive coarse spaces using the generalized transformation-of-basis appr.

Table 6.3: Adaptive FETI-DP and BDDC (Alg. Ia) with ρ-scaling and the

generalized transformation-of-basis and its equivalent deflation ap-

proach. Diffusion equation of 3D checkerboard distribution with

ρ1 = 1 and ρ2 = 1e+ 6 on the unit cube; conforming P1 finite el-

ement discretization with 1/h = 6N1/3 and irregular partitioning

of the domain; see Figure 6.3. Coarse spaces for TOL = 10 for all

generalized eigenvalue problems. Notation as in Table 6.2. [67]

Adaptive FETI-DP and BDDC:
(Generalized transformation-of-basis approach and equivalent deflation)

1/h = 6N1/3 – 3D checkerboard distribution – irregular partitioning

Adaptive FETI-DP Adaptive FETI-DP Adaptive BDDC
(Deflation) (Gen. t.-o.-b. appr.) (Gen. t.-o.-b. appr.)

N |Π′| λmin λmax its |U | λmin λmax its |Π| λmin λmax its |Π|
23 30 1.00 7.31 17 14 1.00 7.31 17 9 1.00 7.31 14 9
33 165 1.00 8.35 20 45 1.00 8.35 20 29 1.00 8.35 16 29
43 468 1.00 8.93 22 188 1.00 8.93 22 120 1.00 8.93 18 120
53 1066 1.00 12.36 22 245 1.00 12.36 22 150 1.00 12.36 18 150
63 1878 1.00 9.72 23 545 1.00 9.72 23 326 1.00 9.72 19 326

Figure 6.3: Checkerboard on the unit cube for 64 subdomains (coefficients and

irregular partitioning). Cubes of high coefficients E2 = 1e + 6,

shown in dark purple, and cubes of a soft material E1 = 1, shown

in light, half-transparent gray, are arranged in a 3D checkerboard

pattern (left). Irregular decomposition using METIS [60] for 64

subdomains; high coefficients are again shown in dark purple;

subdomains shown in different colors; left quarter of the domain

(x > 3
4) made half-transparent (right). [67]
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Figure 6.4: Eigenvalues for the generalized transformation-of-basis approach

and the equivalent deflation approach. Eigenvalues of the pre-

conditioned operators for FETI-DP with deflation (M−1
PPF ) and

the generalized transformation-of-basis approach (M̂−1
T F̂ ) (top

left), BDDC with the generalized transformation-of-basis ap-

proach (M̂−1
BDDCS) (top right) and the largest 50 eigenvalues of

the preconditioned operators (bottom center) for the composite

material no. 1, an irregular decomposition of the unit cube into

eight subdomains, and 1/h = 12. The eigenvalues greater than

one are identical for all three algoritms. [67]
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6 Adaptive coarse spaces using the generalized transformation-of-basis appr.

with x = 1; see Figure 5.1. This material is denoted as composite material

no. 1. In the second material, the Young modulus is distributed in a regular

3D checkerboard pattern; see Figure 6.3.

Our convergence criterion for the preconditioned conjugate gradient is a

relative reduction of the preconditioned residual by a factor of 1e-6. Our results

in Tables 6.2 and 6.3 show identical estimates for λmin and λmax for all three

methods in accordance with the theory. In Figure 6.4, all eigenvalues of the

three preconditioned operators were computed numerically for 1/h = 12. We see

that, indeed, all eigenvalues other than zero and one are identical, as predicted

by the theory.

6.5.2 Comparison with the results of adaptive FETI-DP with the

balancing approach

In this section, we test three different distributions of the Young modulus E;

namely the composite material no. 1 (see Figure 5.1), the representative volume

element (see Figure 5.9), and randomly distributed coefficients (see Figure 5.10).

We also deliver an insight into the local spectra for the different materials; see

Figure 6.5.
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Figure 6.5: Local eigenvalues greater 0.1 from all local generalized eigenvalue

problems for selected runs and different materials. The three ma-

terials are depicted in Figures 5.1, 5.9, and 5.10: composite ma-

terial no. 1 for N ∈ {53, 73, 93, 113} (left; cf. Table 6.4), repre-

sentative volume element for N = 83 (center; cf. Table 6.6), and

randomized coefficients for N = 63 and the first five runs (right;

cf. Tables 6.7 and 6.8). [68]. Copyright Electronic Transactions on

Numerical Analysis.
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6.5 Numerical results for adaptive FETI-DP and BDDC

6.5.2.1 Composite materials

We first consider our composite material no. 1. The material consists of a soft

matrix material with E1 = 1 that surrounds N2/3 beams with E2 = 1e+6 that

run in a straight line from the face with x = 0 to the face with x = 1 and that

occupy 1/9 of the cross-section of the material; cf. Figure 5.1 and Section 5.4.3

for the results of the adaptive methods with a direct balancing approach.

We see that FETI-DP and BDDC behave almost identically. Clearly, the

coarse spaces for FETI-DP and BDDC are of the same size and the itera-

tion count is almost the same for both methods. We see that the size of the

second level coarse space is quite modest compared to the standard coarse

space. Compared to the adaptive coarse space implemented by the balancing

approach (cf. Chapter 5), the adaptive coarse space implemented by the gen-

eralized transformation-of-basis approach in Table 6.4 is up to twice the size

of the first one. This is due to the fact that we always make all three degrees

of freedom, which belong to a given node, primal, even if only one or two con-

straints are required. Nevertheless, the coarse spaces of Table 5.6 and Table 6.5

do have a comparable size, regardless of the implementation. For our parallel

results, we have implemented a more efficient version by also making single

degrees of freedom primal; cf. Chapter 7.

As expected, the adaptive Algorithms II and III cannot ensure small con-

dition numbers and iteration counts, Algorithms Ia, Ib, and Ic, however, are

robust and yield good results for all test problems.

For a more detailed consideration of the computational overhead of addi-

tional edge eigenvalue problems, see the detailed discussion in Chapter 5.

For a distribution of the local eigenvalues for some of the runs, see Fig-

ure 6.5 (left). We can observe a gap in the spectrum somewhere between the

minimum and maximum value taken by the Young modulus.

6.5.2.2 A steel microstructure

In this section, we consider the representative volume element of a modern

dual phase steel microstructure already considered with adaptive methods in

Section 5.4.4. The RVE has been obtained from the one in [87, Fig. 5.5], which

again is a part of the structure in [117, Fig. 2], by resampling. As in [87], we

use ν = 0.3, E1 = 210 and E2 = 210 000 as artificial material parameters. The

FETI-DP and BDDC algorithms tested here and the FETI-DP algorithm with

a balancing approach show almost identical convergence behavior. The general-

ized transformation-of-basis approach gives a larger coarse space. As mentioned

in the previous section this could be improved so that the balancing approach
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6 Adaptive coarse spaces using the generalized transformation-of-basis appr.

Table 6.4: Adaptive FETI-DP and BDDC (Alg. Ia-III) with ρ-scaling and

generalized transformation-of-basis approach. Compressible linear

elasticity of composite material no. 1 with E1 = 1 and N2/3 beams

with E2 = 1e+ 6 on the unit cube; ν = 0.3 for the whole domain;

conforming P1 finite element discretization with 1/h = 3N1/3 and

irregular partitioning of the domain; see Figure 5.1. Coarse spaces

for TOL = 10 for all generalized eigenvalue problems. |Π′|: size of

a priori coarse space, |Π|: number of additional a posteriori con-

straints in the generalized transformation-of-basis approach, other

Notation as in Table 5.4. [68]. Copyright Electronic Transactions

on Numerical Analysis.

Adaptive FETI-DP and BDDC: Algorithms Ia, Ib, Ic, II, and III (Gen. t.-o.-b. appr.)

1/h = 3N1/3 – composite material no. 1 – irregular partitioning

Adaptive FETI-DP
Algorithms Ia, Ib, and Ic Algorithm II Algorithm III

N |Π′| κ its |Π| #Eevp κ its |Π| κ its |Π|

53 3084
a) 14.30 36 459 14 (5.2%)

14.30 36 453 3.29e+5 187 303b) 14.30 36 459 8 (3.0%)
c) 14.30 37 375 8 (3.0%)

73 8781
a) 13.92 40 1098 48 (6.0%)

2.93e+5 84 1074 2.96e+5 373 780b) 13.92 40 1089 21 (2.7%)
c) 13.93 41 942 21 (2.7%)

93 19029
a) 16.27 41 2070 90 (5.2%)

2.66e+5 71 2043 4.69e+5 482 1572b) 16.28 42 2067 45 (2.7%)
c) 16.28 42 1812 45 (2.7%)

113 35214
a) 15.05 43 3582 167 (5.2%)

2.66e+5 142 3504 3.60e+5 500 2724b) 15.05 43 3570 95 (3.0%)
c) 15.05 43 3192 95 (3.0%)

133 58179
a) 17.12 44 5895 303 (5.6%)

2.74e+5 225 5739 3.01e+5 500 4557b) 17.12 44 5889 171 (3.3%)
c) 17.13 44 5346 171 (3.3%)

Adaptive BDDC
Algorithms Ia, Ib, and Ic Algorithm II Algorithm III

N |Π′| κ its |Π| #Eevp κ its |Π| κ its |Π|

53 3084
a) 14.44 35 459 14 (5.2%)

14.44 37 453 3.33e+5 241 303b) 14.44 35 459 8 (3.0%)
c) 14.45 36 375 8 (3.0%)

73 8781
a) 14.08 40 1098 48 (6.0%)

2.97e+5 98 1074 3.00e+5 459 780b) 14.08 40 1089 21 (2.7%)
c) 14.08 41 942 21 (2.7%)

93 19029
a) 16.44 41 2070 90 (5.2%)

2.69e+5 76 2043 4.75e+5 500 1572b) 16.44 41 2067 45 (2.7%)
c) 16.44 42 1812 45 (2.7%)

113 35214
a) 15.22 40 3582 167 (5.2%)

2.69e+5 162 3504 3.72e+5 500 2724b) 15.22 41 3570 95 (3.0%)
c) 15.22 42 3192 95 (3.0%)

133 58179
a) 17.32 41 5895 303 (5.6%)

2.77e+5 250 5739 3.40e+5 500 4557b) 17.32 41 5889 171 (3.3%)
c) 17.32 41 5346 171 (3.3%)
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Table 6.5: Adaptive FETI-DP and BDDC (Alg. Ia-III) with ρ-scaling and

generalized transformation-of-basis approach. Compressible linear

elasticity of composite material no. 1 with E1 = 1 and N2/3 beams

with E2 = 1e+ 6 on the unit cube; ν = 0.3 for the whole domain;

conforming P1 finite element discretization with 1/h = 6N1/3 and

irregular partitioning of the domain; see Figure 5.1. Coarse spaces

for TOL = 10 for all generalized eigenvalue problems. Notation as

in Table 6.4. [68]. Copyright Electronic Transactions on Numerical

Analysis.

Adaptive FETI-DP and BDDC: Algorithms Ia, Ib, Ic, II, and III (Gen. t.-o.-b. appr.)

1/h = 6N1/3 – composite material no. 1 – irregular partitioning

Adaptive FETI-DP
Algorithms Ia, Ib, and Ic Algorithm II Algorithm III

N |Π′| κ its |Π| #Eevp κ its |Π| κ its |Π|

33 960
a) 8.65 34 699 2 (2.0%)

8.65 34 699 1.36e+6 68 243b) 8.65 34 699 1 (1.0%)
c) 8.67 34 450 1 (1.0%)

43 2517
a) 9.64 36 1818 18 (6.6%)

9.64 36 1818 6.94e+5 131 588b) 9.64 36 1818 7 (2.7%)
c) 9.65 36 1059 7 (2.7%)

53 5433
a) 9.16 35 3675 25 (4.2%)

9.16 35 3669 5.50e+5 190 1242b) 9.16 35 3675 12 (2.1%)
c) 10.49 36 2325 12 (2.1%)

63 10110
a) 9.89 36 6156 32 (3.0%)

9.89 36 6153 7.22e+5 252 2142b) 9.89 36 6156 14 (1.3%)
c) 12.97 38 3996 14 (1.3%)

73 16248
a) 10.76 37 10101 65 (3.6%)

10.76 37 10089 1.21e+6 424 3606b) 10.76 37 10101 27 (1.5%)
c) 13.36 39 6693 27 (1.5%)

Adaptive BDDC
Algorithms Ia, Ib, and Ic Algorithm II Algorithm III

N |Π′| κ its |Π| #Eevp κ its |Π| κ its |Π|

33 960
a) 8.68 32 699 2 (2.0%)

8.68 32 699 1.37e+6 77 243b) 8.68 32 699 1 (1.0%)
c) 8.69 32 450 1 (1.0%)

43 2517
a) 9.69 33 1818 18 (6.6%)

9.69 33 1818 6.98e+5 159 588b) 9.69 33 1818 7 (2.7%)
c) 9.69 34 1059 7 (2.7%)

53 5433
a) 9.22 33 3675 25 (4.2%)

9.22 33 3669 5.53e+5 216 1242b) 9.22 33 3675 12 (2.1%)
c) 10.53 34 2325 12 (2.1%)

63 10110
a) 9.95 35 6156 32 (3.0%)

9.95 35 6153 7.27e+5 285 2142b) 9.95 35 6156 14 (1.3%)
c) 13.04 39 3996 14 (1.3%)

73 16248
a) 10.84 35 10101 65 (3.6%)

10.84 35 10089 1.22e+6 492 3606b) 10.84 35 10101 27 (1.5%)
c) 13.44 38 6693 27 (1.5%)
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Table 6.6: Adaptive FETI-DP and BDDC (Alg. Ia-III) with ρ-scaling and

generalized transformation-of-basis approach. Compressible linear

elasticity of representative volume element with E1 = 210 and

E2 = 210 000 on the unit cube; ν = 0.3 for the whole domain;

conforming P1 finite element discretization with 1/h = 4N1/3 for

N = 83 and irregular partitioning of the domain; see Figure 5.9.

Coarse spaces for TOL = 10 for all generalized eigenvalue problems.

Notation as in Table 6.4. [68]. Copyright Electronic Transactions

on Numerical Analysis. Data courtesy of Jörg Schröder.

Adaptive FETI-DP and BDDC: Algorithms Ia, Ib, Ic, II, and III (Gen. t.-o.-b. appr.)

N = 83 – 1/h = 4N1/3 – representative volume element – irregular partitioning

Adaptive FETI-DP
Algorithms Ia, Ib, and Ic Algorithm II Algorithm III

|Π′| κ its |Π| #Eevp κ its |Π| κ its |Π|

18888
a) 13.75 37 1275 114 (5.6%)

13.75 37 1263 354.30 98 699b) 13.75 37 1275 27 (1.4%)
c) 13.75 38 990 27 (1.4%)

Adaptive BDDC
Algorithms Ia, Ib, and Ic Algorithm II Algorithm III

|Π′| κ its |Π| #Eevp κ its |Π| κ its |Π|

18888
a) 13.94 31 1275 114 (5.6%)

13.94 31 1263 359.20 84 699b) 13.94 31 1275 27 (1.4%)
c) 13.94 33 990 27 (1.4%)

does not have significant advantages over the transformation approach; we did

not do so because of the ease of the implementation. However, in our paral-

lel, high performance implementation, we have implemented the more efficient

version; cf. Chapter 7.

For a distribution of the local eigenvalues, see Figure 6.5 (center). In contrast

to composite material no. 1, we cannot observe any essential gap in the spectrum

although the values of the Young modulus are well separated.

6.5.2.3 Randomly distributed coefficients

In this section, we test randomly distributed coefficients. We let 20% of the

tetrahedra in the unit cube take the value E2 = 1e+6 while the other tetrahe-

dra take E1 = 1; cf. Section 5.4.5. Both, FETI-DP and BDDC behave almost

identically; see Tables 6.7 and 6.8. The coarse spaces implemented by the gen-

eralized transformation-of-basis and the balancing approach are of comparable

size; cf. Table 5.13. Compared to the results using the balancing approach, we

have also computed results for N = 63 where it can be seen that not only the
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Table 6.7: Adaptive FETI-DP (Alg. Ia, Ic, II, and III) with ρ-scaling and

generalized transformation-of-basis approach. Compressible linear

elasticity of randomly distributed coefficients with 80% coefficients

with E1 = 1 and 20% coefficients with E2 = 1e+ 6 on the unit

cube; ν = 0.3 for the whole domain; conforming P1 finite element

discretization with 1/h = 5N1/3 and irregular partitioning of the

domain; see Figure 5.10. Coarse spaces for TOL = 10 for all gener-

alized eigenvalue problems. Notation as in Table 5.11. [68]. Copy-

right Electronic Transactions on Numerical Analysis.

Adaptive FETI-DP: Algorithms Ia, Ic, II, and III (Gen. t.-o.-b. appr.)

1/h = 5N1/3 – random coefficients (80/20) – irregular partitioning

Algorithm Ia Algorithm Ic
N |Π′| κ its |Π| #Eevp κ its |Π| #Eevp

43

x

2442

8.83 32.48 2421.99

9 (3.7%)

8.83 32.48 2421.39 9 (3.7%)
x̃ 8.78 32 2421 8.78 32 2421 9 (3.7%)

min 7.48 31 2268 7.48 31 2262 9 (3.7%)
max 9.92 34 2553 9.92 34 2553 9 (3.7%)

σ - 0.48 0.63 59.68 - 0.48 0.63 59.76 0.00

53

x

5058

8.94 32.76 5134.77

23 (4.1%)

8.94 32.76 5133.42 22.99 (4.1%)
x̃ 8.88 33 5143.5 8.88 33 5140.5 23 (4.1%)

min 7.90 31 4815 7.90 31 4809 22 (4.0%)
max 11.13 35 5364 11.13 35 5364 23 (4.1%)

σ - 0.56 0.73 88.17 - 0.56 0.73 88.40 0.10

63

x

9078

9.18 33.44 8797.38

57 (5.8%)

9.18 33.44 8795.94 56.95 (5.8%)
x̃ 9.12 33 8812.5 9.12 33 8812.5 57 (5.8%)

min 8.40 32 8454 8.40 32 8454 56 (5.7%)
max 10.93 35 9015 10.93 35 9015 57 (5.8%)

σ - 0.48 0.57 114.73 - 0.48 0.57 114.84 0.22

Algorithm II Algorithm III
N |Π′| κ its |Π| κ its |Π|

43

x

2442

6.42e+4 36.28 2420.10 5.57e+5 500 1317.60
x̃ 9.37 33 2416.5 5.22e+5 500 1323

min 7.48 31 2265 2.97e+5 500 1200
max 5.93e+5 61 2553 1.34e+6 500 1425

σ - 1.17e+5 5.71 59.68 1.85e+5 0 46.06

53

x

5058

8.40e+4 46.92 5128.53 4.98e+5 500 2831.28
x̃ 5.40e+4 44 5139 4.61e+5 500 2830.5

min 7.90 31 4806 2.88e+5 500 2583
max 4.32e+5 87 5361 1.07e+6 500 3030

σ - 9.66e+4 11.99 88.32 1.37e+5 0 70.15

63

x

9078

2.06e+5 76.19 8778.66 6.55e+5 500 4949.40
x̃ 2.03e+5 74.5 8794.5 6.05e+5 500 4957.5

min 1.72e+4 41 8442 3.53e+5 500 4686
max 7.41e+5 139 8988 2.07e+6 500 5142

σ - 1.17e+5 20.60 115.27 2.54e+5 0 93.87
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6 Adaptive coarse spaces using the generalized transformation-of-basis appr.

Table 6.8: Adaptive BDDC (Alg. Ia, Ic, II, and III) with ρ-scaling and

generalized transformation-of-basis approach. Compressible linear

elasticity of randomly distributed coefficients with 80% coefficients

with E1 = 1 and 20% coefficients with E2 = 1e+ 6 on the unit

cube; ν = 0.3 for the whole domain; conforming P1 finite element

discretization with 1/h = 5N1/3 and irregular partitioning of the

domain; see Figure 5.10. Coarse spaces for TOL = 10 for all gener-

alized eigenvalue problems. Notation as in Table 5.11. [68]. Copy-

right Electronic Transactions on Numerical Analysis.

Adaptive BDDC: Algorithms Ia, Ic, II, and III (Gen. t.-o.-b. appr.)

1/h = 5N1/3 – random coefficients (80/20) – irregular partitioning

Algorithm Ia Algorithm Ic
N |Π′| κ its |Π| #Eevp κ its |Π| #Eevp

43

x

2442

8.82 31.06 2421.99

9 (3.7%)

8.82 31.06 2421.39 9 (3.7%)
x̃ 8.78 31 2421 8.78 31 2421 9 (3.7%)

min 7.48 30 2268 7.48 30 2262 9 (3.7%)
max 9.91 33 2553 9.91 33 2553 9 (3.7%)

σ - 0.48 0.71 59.68 - 0.48 0.71 59.76 0.00

53

x

5058

8.94 31.59 5134.77

23 (4.1%)

8.94 31.61 5133.42 22.99 (4.1%)
x̃ 8.88 32 5143.5 8.88 32 5140.5 23 (4.1%)

min 7.90 30 4815 7.90 30 4809 22 (4.0%)
max 11.13 33 5364 11.13 33 5364 23 (4.1%)

σ - 0.56 0.65 88.17 - 0.56 0.67 88.40 0.10

63

x

9078

9.18 32.55 8797.38

57 (5.8%)

9.18 32.56 8795.94 56.95 (5.8%)
x̃ 9.12 32 8812.5 9.12 32 8812.5 57 (5.8%)

min 8.40 31 8454 8.40 31 8454 56 (5.7%)
max 10.93 34 9015 10.93 34 9015 57 (5.8%)

σ - 0.48 0.66 114.73 - 0.48 0.66 114.84 0.22

Algorithm II Algorithm III
N |Π′| κ its |Π| κ its |Π|

43

x

2442

6.41e+4 36.60 2420.10 5.57e+5 500 1317.60
x̃ 9.37 32 2416.5 5.20e+5 500 1323

min 7.48 30 2265 2.96e+5 500 1200
max 5.93e+5 68 2553 1.34e+6 500 1425

σ - 1.17e+5 7.85 59.68 1.84e+5 0 46.06

53

x

5058

8.40e+4 49.42 5128.53 4.94e+5 500 2831.28
x̃ 5.40e+4 44.5 5139 4.59e+5 500 2830.5

min 7.90 30 4806 2.87e+5 500 2583
max 4.32e+5 94 5361 1.07e+6 500 3030

σ - 9.66e+4 14.48 88.32 1.37e+5 0 70.15

63

x

9078

2.06e+5 83.36 8778.66 6.48e+5 500 4949.40
x̃ 2.03e+5 81.5 8794.5 6.00e+5 500 4957.5

min 1.72e+4 43 8442 3.51e+5 500 4686
max 7.41e+5 156 8988 2.03e+6 500 5142

σ - 1.17e+5 24.33 115.27 2.49e+5 0 93.87
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6.5 Numerical results for adaptive FETI-DP and BDDC

condition number but also the iteration count of Algorithm II deteriorates with

a growing number of subdomains; we expect even worse results for N > 63.

We conduct 100 runs for each algorithm and different coefficient distributions

and present the arithmetic mean x, the median x̃, the minimum and maximum

value and the standard deviation σ. For purposes of clarity, we refrain from

reporting the results for Algorithm Ib since the results of Algorithms Ia and Ic

are already almost identical.

For a distribution of the local eigenvalues for some of the runs, see Fig-

ure 6.5 (right). Although the coefficients only take two strongly separated

values, the spectrum is continuous without showing any gap as it has been

observed for the composite material no. 1.

6.5.3 Scaling comparisons

In this section, we compare the performance of the adaptive algorithms in-

troduced before with four different kinds of scalings. Besides ρ-scaling, for

which we already have given extensive perfomance results, we study deluxe-,

stiffness/K-, and multiplicity-scaling.

We restrict ourselves to present results for adaptive FETI-DP but we can

expect the same coarse space sizes and comparable convergence behavior for

the corresponding BDDC methods.

6.5.3.1 Composite materials

First, we test the four different scalings for the composite material no. 1 and

1/h = 6N1/3 as in Section 6.5.2.1; cf. Table 6.9 and 6.10 for the different scaling

results.

Except for one run with Algorithm II, Algorithms Ia, Ib, Ic, and II work well

for all examples and all scalings, Algorithm III cannot be recommended for any

scaling. As expected, the most expensive scaling (deluxe) also gives the smallest

coarse space. However, the diagonal scalings ρ- and stiffness-scaling only result

in an adaptive coarse space that is about 10-15% larger. Multiplicity-scaling

cannot be recommended for any algorithm since it doubles the coarse space size

compared to deluxe-scaling.

6.5.3.2 Randomly distributed coefficients

Second, we test the four different scalings for five different distributions of

randomly distributed coefficients with 80% low and 20% high coefficients as in

145



6 Adaptive coarse spaces using the generalized transformation-of-basis appr.

Table 6.9: Adaptive FETI-DP (Alg. Ia-III) with ρ- and deluxe-scaling and

generalized transformation-of-basis approach. Compressible linear

elasticity of composite material no. 1 with E1 = 1 and N2/3 beams

with E2 = 1e+ 6 on the unit cube; ν = 0.3 for the whole domain;

conforming P1 finite element discretization with 1/h = 6N1/3 and

irregular partitioning of the domain; see Figure 5.1. Coarse spaces

for TOL = 10 for all generalized eigenvalue problems. Notation as

in Table 6.4. [68]. Copyright Electronic Transactions on Numerical

Analysis.

Adaptive FETI-DP: Algorithms Ia, Ib, Ic, II, and III (Gen. t.-o.-b. appr.)

1/h = 6N1/3 – composite material no. 1 – irregular partitioning

Algorithms Ia, Ib, and Ic Algorithm II Algorithm III
N |Π′| κ its |Π| #Eevp κ its |Π| κ its |Π|

ρ-scaling

33 960
a) 8.65 34 699 2 (2.0%)

8.65 34 699 1.36e+6 68 243b) 8.65 34 699 1 (1.0%)
c) 8.67 34 450 1 (1.0%)

53 5433
a) 9.16 35 3675 25 (4.2%)

9.16 35 3669 5.50e+5 190 1242b) 9.16 35 3675 12 (2.1%)
c) 10.49 36 2325 12 (2.1%)

73 16248
a) 10.76 37 10101 65 (3.6%)

10.76 37 10089 1.21e+6 424 3606b) 10.76 37 10101 27 (1.5%)
c) 13.36 39 6693 27 (1.5%)

93 35838
a) 10.13 36 19632 144 (3.6%)

10.13 36 19626 7.77e+5 500 7053b) 10.13 36 19632 52 (1.3%)
c) 12.85 39 12921 52 (1.3%)

deluxe-scaling

33 960
a) 7.51 20 603 2 (2.0%)

7.51 20 603 7.52 27 207b) 7.51 20 603 1 (1.0%)
c) 7.51 20 393 1 (1.0%)

53 5433
a) 9.61 29 3129 25 (4.2%)

9.61 29 3126 9.98e+3 77 1002b) 9.61 29 3129 12 (2.1%)
c) 9.63 29 2004 12 (2.1%)

73 16248
a) 7.69 30 8721 65 (3.6%)

7.69 30 8709 3.04e+4 178 2976b) 7.69 30 8721 27 (1.5%)
c) 7.70 30 5859 27 (1.5%)

93 35838
a) 10.76 34 16671 144 (3.6%)

10.76 34 16656 8.57e+4 221 5718b) 10.76 34 16671 52 (1.3%)
c) 10.77 34 11022 52 (1.3%)
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6.5 Numerical results for adaptive FETI-DP and BDDC

Table 6.10: Adaptive FETI-DP (Alg. Ia-III) with stiffness- and multiplicity-

scaling and generalized transformation-of-basis approach.

Compressible linear elasticity of composite material no. 1 with

E1 = 1 and N2/3 beams with E2 = 1e+ 6 on the unit cube;

ν = 0.3 for the whole domain; conforming P1 finite element

discretization with 1/h = 6N1/3 and irregular partitioning of

the domain; see Figure 5.1. Coarse spaces for TOL = 10 for all

generalized eigenvalue problems. Notation as in Table 6.4. [68].

Copyright Electronic Transactions on Numerical Analysis.

Adaptive FETI-DP: Algorithms Ia, Ib, Ic, II, and III (Gen. t.-o.-b. appr.)

1/h = 6N1/3 – composite material no. 1 – irregular partitioning

Algorithms Ia, Ib, and Ic Algorithm II Algorithm III
N |Π′| κ its |Π| #Eevp κ its |Π| κ its |Π|

stiffness-scaling

33 960
a) 7.84 26 654 2 (2.0%)

7.84 26 654 7.23e+4 55 228b) 7.84 26 654 1 (1.0%)
c) 7.85 27 423 1 (1.0%)

53 5433
a) 11.16 32 3393 25 (4.2%)

11.16 32 3390 3.45e+4 148 1107b) 11.16 32 3393 12 (2.1%)
c) 11.19 32 2151 12 (2.1%)

73 16248
a) 9.12 33 9255 65 (3.6%)

9.12 33 9240 9.74e+4 342 3174b) 9.12 33 9255 27 (1.5%)
c) 9.15 34 6132 27 (1.5%)

93 35838
a) 9.92 34 17718 144 (3.6%)

9.92 34 17712 1.04e+5 395 6138b) 9.92 34 17718 52 (1.3%)
c) 9.93 34 11583 52 (1.3%)

multiplicity-scaling

33 960
a) 8.63 33 1029 2 (2.0%)

5.51e+5 54 1026 1.36e+6 345 426b) 8.63 33 1029 1 (1.01%)
c) 8.66 35 696 1 (1.01%)

53 5433
a) 9.10 35 5172 25 (4.2%)

9.10 35 5169 1.62e+6 500 2115b) 9.10 35 5172 12 (2.07%)
c) 10.46 36 3420 12 (2.07%)

73 16248
a) 10.73 37 14625 65 (3.6%)

10.73 37 14619 1.72e+6 500 6183b) 10.73 37 14625 27 (1.54%)
c) 13.34 39 10023 27 (1.54%)

93 35838
a) 10.09 36 29598 144 (3.6%)

10.09 36 29592 1.58e+6 500 12477b) 10.09 36 29598 52 (1.3%)
c) 12.77 39 20010 52 (1.3%)
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6 Adaptive coarse spaces using the generalized transformation-of-basis appr.

Table 6.11: Adaptive FETI-DP (Alg. Ia-III) with ρ- and deluxe-scaling and

generalized transformation-of-basis approach. Compressible linear

elasticity of randomly distributed coefficients with 80% coefficients

with E1 = 1 and 20% coefficients with E2 = 1e+ 6 on the unit

cube; ν = 0.3 for the whole domain; conforming P1 finite ele-

ment discretization with 1/h = 8N1/3 for N = 43 and irregular

partitioning of the domain; see Figure 5.10. Coarse spaces for

TOL = 10 for all generalized eigenvalue problems. Notation as in

Table 6.4. [68]. Copyright Electronic Transactions on Numerical

Analysis.

Adaptive FETI-DP: Algorithms Ia, Ib, Ic, II, and III (Gen. t.-o.-b. appr.)

N = 43 – 1/h = 8N1/3 – random coefficients (80/20) – irregular partitioning

Algorithms Ia, Ib, and Ic Algorithm II Algorithm III
run |Π′| κ its |Π| #Eevp κ its |Π| κ its |Π|

ρ-scaling

1

2646

a) 9.24 33 7350 8 (2.8%)
12.21 34 7347 5.00e+5 500 3543b) 9.24 33 7350 8 (2.8%)

c) 9.24 33 7350 8 (2.8%)

2
a) 9.40 33 7278 8 (2.8%)

1.57e+5 52 7272 4.74e+5 500 3480b) 9.40 33 7278 8 (2.8%)
c) 9.40 33 7278 8 (2.8%)

3
a) 8.32 33 7320 8 (2.8%)

6.52e+4 67 7308 4.72e+5 500 3525b) 8.32 33 7320 8 (2.8%)
c) 8.32 33 7320 8 (2.8%)

4
a) 9.44 34 7230 8 (2.8%)

9.44 34 7227 4.67e+5 500 3408b) 9.44 34 7230 8 (2.8%)
c) 9.44 34 7230 8 (2.8%)

5
a) 9.26 33 7416 8 (2.8%)

2.54e+5 73 7407 4.69e+5 500 3588b) 9.26 33 7416 8 (2.8%)
c) 9.26 33 7416 8 (2.8%)

deluxe-scaling

1

2646

a) 6.08 21 6174 8 (2.8%)
7.09 22 6171 1.86e+5 358 2769b) 6.08 21 6174 8 (2.8%)

c) 6.08 21 6174 8 (2.8%)

2
a) 5.65 22 5997 8 (2.8%)

5.65 22 5997 6.90e+4 285 2643b) 5.65 22 5997 8 (2.8%)
c) 5.65 22 5997 8 (2.8%)

3
a) 4.89 23 6069 8 (2.8%)

3.12e+4 42 6057 2.35e+5 433 2703b) 4.89 23 6069 8 (2.8%)
c) 4.89 23 6069 8 (2.8%)

4
a) 5.94 24 5979 8 (2.8%)

5.94 24 5976 2.07e+5 336 2601b) 5.94 24 5979 8 (2.8%)
c) 5.94 24 5979 8 (2.8%)

5
a) 4.70 22 6207 8 (2.8%)

3.14e+4 36 6201 1.37e+5 320 2799b) 4.70 22 6207 8 (2.8%)
c) 4.70 22 6207 8 (2.8%)
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Table 6.12: Adaptive FETI-DP (Alg. Ia-III) with stiffness- and multiplicity-

scaling and generalized transformation-of-basis approach.

Compressible linear elasticity of randomly distributed coefficients

with 80% coefficients with E1 = 1 and 20% coefficients with

E2 = 1e+ 6 on the unit cube; ν = 0.3 for the whole domain;

conforming P1 finite element discretization with 1/h = 8N1/3 for

N = 43 and irregular partitioning of the domain; see Figure 5.10.

Coarse spaces for TOL = 10 for all generalized eigenvalue

problems. Notation as in Table 6.4. [68]. Copyright Electronic

Transactions on Numerical Analysis.

Adaptive FETI-DP: Algorithms Ia, Ib, Ic, II, and III (Gen. t.-o.-b. appr.)

N = 43 – 1/h = 8N1/3 – random coefficients (80/20) – irregular partitioning

Algorithms Ia, Ib, and Ic Algorithm II Algorithm III
run |Π′| κ its |Π| #Eevp κ its |Π| κ its |Π|

stiffness-scaling

1

2646

a) 7.82 29 6921 8 (2.8%)
7.82 29 6918 2.15e+5 500 3177b) 7.82 29 6921 8 (2.8%)

c) 7.82 29 6921 8 (2.8%)

2
a) 7.40 27 6876 8 (2.8%)

2.86e+4 43 6870 3.05e+5 500 3171b) 7.40 27 6876 8 (2.8%)
c) 7.40 27 6876 8 (2.8%)

3
a) 9.97 30 6903 8 (2.8%)

6.47e+4 61 6891 2.72e+5 500 3195b) 9.97 30 6903 8 (2.8%)
c) 9.97 30 6903 8 (2.8%)

4
a) 7.80 30 6738 8 (2.8%)

7.80 30 6735 2.19e+5 500 3033b) 7.80 30 6738 8 (2.8%)
c) 7.80 30 6738 8 (2.8%)

5
a) 8.49 29 6987 8 (2.8%)

3.63e+4 60 6978 2.15e+5 500 3228b) 8.49 29 6987 8 (2.8%)
c) 8.49 29 6987 8 (2.8%)

multiplicity-scaling

1

2646

a) 8.48 32 12744 8 (2.8%)
6.12e+5 116 12732 9.70e+5 500 8574b) 8.48 32 12744 8 (2.8%)

c) 8.48 32 12744 8 (2.8%)

2
a) 9.02 33 12900 8 (2.8%)

9.69e+5 130 12885 1.31e+6 500 8721b) 9.02 33 12900 8 (2.8%)
c) 9.02 33 12900 8 (2.8%)

3
a) 9.42 33 13092 8 (2.8%)

6.32e+4 64 13080 1.42e+6 8922b) 9.42 33 13092 8 (2.8%)
c) 9.42 33 13092 8 (2.8%)

4
a) 9.13 33 13074 8 (2.8%)

2.69e+5 140 13059 1.35e+6 500 8895b) 9.13 33 13074 8 (2.8%)
c) 9.13 33 13074 8 (2.8%)

5
a) 7.78 31 12972 8 (2.8%)

2.48e+5 67 12963 1.85e+6 500 8805b) 7.78 31 12972 8 (2.8%)
c) 7.78 31 12972 8 (2.8%)
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6 Adaptive coarse spaces using the generalized transformation-of-basis appr.

Section 6.5.2.3 but with 1/h = 8N1/3 instead of 1/h = 5N1/3; cf. Tables 6.11

and 6.12 for the different scaling results.

Algorithms II and III are not robust for any scaling. Considering Algo-

rithms Ia, Ib, and Ic, the coarse space for deluxe-scaling is again the smallest

and the fewest iterations are needed for convergence, but deluxe-scaling is also

far more costly than ρ- or stiffness-scaling and the latter two use an coarse

space, which is only about 10-15% larger, to achieve similar convergence re-

sults. Once again, multiplicity-scaling cannot be recommended since it uses a

coarse space that is about twice as large as that of deluxe-scaling.

6.5.4 Approximate solutions of the local eigenvalue problems

In this section, we present results for the adaptive FETI-DP and the adaptive

BDDC algorithms in combination with the iterative eigenvalue solver LOBPCG;

see [86, 85]. For LOBPCG, we choose a block size 10 and use a Cholesky decom-

position of the right hand side of the eigenvalue problem as local preconditioner.

We limit the number of maximum iterations of the iterative eigensolver in the

following subsection as indicated in the tables and also study our methods

for different random materials with just two iterations of LOBPCG. We use

a stopping criterion of 1e-5 for LOBPCG which, in combination with highly

ill-conditioned local matrices, can already lead to instability of the solver. The

implementation of LOBPCG already states that “excessively small requested

tolerance may result in often restarts and instability”; see [85]. On one hand,

we see that for a maximum number of 200 iterations in LOBPCG, the global

PCG algorithm can become unstable; see Table 6.13. On the other hand, it

should be noted that convergence does not seem to be necessary since 2-5 iter-

ations already seem to give a stable domain decomposition algorithm with fast

convergence. In Figure 6.6, we present some insights into the convergence or

nonvergence behavior of the residuals and given a posteriori error estimates in

the LOBPCG eigensolver, preconditioned by a Cholesky decomposition of the

right hand side, for 27 subdomains, 1/h = 15N1/3, composite material no. 1,

and an irregular decomposition of the unit cube; see Tables 5.20 and 5.21 for

the results of the corresponding runs of adaptive FETI-DP with balancing.

6.5.4.1 Composite materials

We test the larger example, i.e., N = 53, of Table 5.20 with different numbers of

maximum iterations of the iterative eigensolver to show that a larger admissible

number of iterations does not necessarily lead to faster convergence and can even

lead to an instable global PCG scheme; see the results for LOBPCG with up
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6.5 Numerical results for adaptive FETI-DP and BDDC

to 200 iterations in Table 6.13. Again, we also refer to Figure 6.6 for insights

on the local convergence or nonconvergence of the residuals for the comparable

test problem with just 27 subdomains.

6.5.4.2 Randomly distributed coefficients with different user-defined

tolerances for the solution of the local eigenvalue problems

We test three different random coefficient distributions of a heterogeneous mate-

rial composed out of seven different homogeneous materials. In these examples,

30% of the tetrahedra have a Young modulus of E1 = 1, 20% have a Young

modulus of E2 = 10, and another 10% each have a Young modulus of E3 = 100,

E4 = 1000, E5 = 1e + 4, E6 = 1e + 5, and E7 = 1e + 6; see Figure 6.7 and

Table 6.14. As can be seen from Figure 6.7 (right) the approximated spectrum

of the local eigenvalue problems is continuous such that we can expect different

results for different choices of the tolerance TOL.

We first observe that for all tolerances, convergence is achieved using just

two iterations of the LOBPCG eigensolver.

Considering the different tolerances, for all runs the approximated condition

number is of the size of the chosen tolerance TOL. We state that only TOL = 10

ensures convergence within less than 50 iterations but it also uses a coarse space

that is three times as large as that of TOL = 100 and nine to ten times as large

as that of TOL = 1000. A trade-off between fast convergence and a manageable

size of the coarse space remains a problem- and facility-dependent task.

6.5.5 Preconditioners for iterative solvers of the local eigenvalue

problems

Eventually, we present some results for different preconditioning choices for the

iterative solution of the local generalized eigenvalue problems. As a test case,

we use the composite material no. 2 with an irregular decomposition of the unit

cube; cf. Figure 5.8. This section is essentially based on the results already

published by the author of this thesis and his coauthors in [70].

In practice, when using two projections Πis and Πis to remove the rigid

body modes from Sis for ∂Ωi ∩ ∂Ωs 6= ∅, the matrix built from the local Schur

complements S(i) and S(s), the right hand side of the eigenvalue problems writes

Πis(ΠisSisΠis + σis(I −Πis))Πis + σis(I −Πis); (6.21)

cf. (6.5) and (6.13). The projection I −Πis consists of the sum of several rank

one matrices, and we usually avoid to build the matrix explicitly.
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6 Adaptive coarse spaces using the generalized transformation-of-basis appr.

Table 6.13: Adaptive FETI-DP and BDDC (Alg. Ia-III with LOBPCG)

with ρ-scaling and generalized transformation-of-basis approach.

Compressible linear elasticity of composite material no. 1

with E1 = 1 and N2/3 beams with E2 = 1e+ 6 on the unit

cube; ν = 0.3 for the whole domain; conforming P1 finite ele-

ment discretization with 1/h = 15N1/3 for N = 53 and irregular

partitioning of the domain; see Figure 5.1. Coarse spaces for

TOL = 10 for all generalized eigenvalue problems. Solution of the

local eigenvalue problems by LOBPCG with different maximum

iteration numbers. Notation as in Table 6.4. [68]. Copyright Elec-

tronic Transactions on Numerical Analysis.

Adaptive FETI-DP and BDDC: Algorithms Ia, Ib, Ic, II, and III (Gen. t.-o.-b. appr.)

N = 53 – 1/h = 15N1/3 – composite material no. 1 – irregular partitioning

Adaptive FETI-DP
Algorithms Ia, Ib, and Ic Algorithm II Algorithm III

LOBPCG
|Π′| κ its |Π| #Eevp κ its |Π| κ its |Π|

max. its

1

6159

a) 43.59 59 10677 8 (1.2%)
43.59 59 10677 6.82e+5 269 2259b) 43.59 59 10677 0 (0%)

c) 43.70 59 5673 0 (0%)

2
a) 15.00 42 12768 8 (1.2%)

15.00 42 12768 6.82e+5 189 2781b) 15.00 42 12768 0 (0%)
c) 15.01 42 6675 0 (0%)

5
a) 18.37 40 13437 8 (1.2%)

18.37 40 13437 6.81e+5 184 2928b) 18.37 40 13437 0 (0%)
c) 18.39 41 6954 0 (0%)

200
a) 4.77e+4 500 13734 8 (1.2%)

4.77e+4 500 13734 6.16e+5 500 3105b) 4.77e+4 500 13734 0 (0%)
c) 4.78e+4 500 7194 0 (0%)

Adaptive BDDC
Algorithms Ia, Ib, and Ic Algorithm II Algorithm III

LOBPCG
|Π′| κ its |Π| #Eevp κ its |Π| κ its |Π|

max. its

1

6159

a) 43.72 55 10677 8 (1.2%)
43.72 55 10677 6.84e+5 282 2259b) 43.72 55 10677 0 (0%)

c) 43.79 55 5673 0 (0%)

2
a) 15.05 40 12768 8 (1.2%)

15.05 40 12768 6.84e+5 210 2781b) 15.05 40 12768 0 (0%)
c) 15.05 41 6675 0 (0%)

5
a) 18.43 38 13437 8 (1.2%)

18.43 38 13437 6.83e+5 208 2928b) 18.43 38 13437 0 (0%)
c) 18.42 39 6954 0 (0%)

200
a) 4.82e+4 500 13734 8 (1.2%)

4.82e+4 500 13734 6.55e+5 500 3105b) 4.82e+4 500 13734 0 (0%)
c) 4.81e+4 500 7194 0 (0%)
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6.5 Numerical results for adaptive FETI-DP and BDDC
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Figure 6.6: Convergence or nonconvergence behavior of the residuals (left) and

given a posteriori error estimates (right) of the local LOBPCG

solver with a block size of 10 for compressible linear elasticity.

Residuals (left) and error estimates (right) for the first and sig-

nificant iterations of the LOBPCG eigensolver and three local

generalized eigenvalue problems. Compressible linear elasticity

of composite material no. 1 with E1 = 1 and N2/3 beams with

E2 = 1e+ 6 on the unit cube; ν = 0.3 for the whole domain; con-

forming P1 finite element discretization with 1/h = 15N1/3 for

27 subdomains and irregular partitioning of the domain; see Fig-

ure 5.1.
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6 Adaptive coarse spaces using the generalized transformation-of-basis appr.
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Run 1

Run 2

Run 3

Figure 6.7: Randomly distributed material coefficients with seven different co-

efficient values and an irregular decomposition of the unit cube. Ir-

regular decomposition of the unit cube into 64 subdomains (left),

randomly distributed material coefficients from E1 = 1e + 0 in

lightgray to E7 = 1e+6 in black (center), and approximated local

eigenvalues greater 0.1 from all generalized eigenvalue problems,

i.e., estimates from two iterations with LOBPCG on the local

eigenvalue problems (right). [68]. Copyright Electronic Transac-

tions on Numerical Analysis.

0 500 1000 1500 2000

0

500

1000

1500

2000

nnz = 162248

Sis −

(

ΠisSisΠis + σis(I − Πis)
)

nonzero pattern

Figure 6.8: Representative nonzero pattern of the matrices Sis (left) and

Sis −
(
ΠisSisΠis + σis(I − Πis)

)
(right). Plot for two randomly

chosen subdomains Ωi, Ωs and composite material no. 2 with an

irregular decomposition of the unit cube, conforming P2 finite el-

ement discretization for 1/h = 6N1/3; see Figure 5.8. [70]
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6.5 Numerical results for adaptive FETI-DP and BDDC

Table 6.14: Adaptive FETI-DP and BDDC (Alg. Ia-III with LOBPCG) with

ρ-scaling and balancing approach. Compressible linear elasticity of

a heterogeneous material with seven coefficient values from E1 = 1

to E7 = 1e+ 6 on the unit cube; ν = 0.3 for the whole domain;

conforming P1 finite element discretization with 1/h = 12N1/3 for

N = 43 and irregular partitioning of the domain; see Figure 6.7.

Coarse spaces for TOL ∈ {10, 100, 1000} for all generalized eigen-

value problems. Solution of the local eigenvalue problems by

LOBPCG with two iterations. Notation as in Table 6.4. [68].

Copyright Electronic Transactions on Numerical Analysis.

Adaptive FETI-DP: Algorithms Ia, Ib, Ic, II, and III (Gen. t.-o.-b. appr.)

N = 43 – 1/h = 12N1/3 – heterogeneous material with seven coefficient values
E1 = 1 (30%), E2 = 10 (20%), Ei = 10i−1, i = 3, . . . , 7 (10% each) – irregular partitioning

Algorithms Ia, Ib, and Ic Algorithm II Algorithm III
run |Π′| κ its |Π| #Eevp κ its |Π| κ its |Π|

TOL=10

1

2820

a) 14.11 41 12084 2 (0.7%)
14.11 41 12084 1.12e+5 500 4842b) 14.11 41 12084 2 (0.7%)

c) 14.11 41 12084 2 (0.7%)

2
a) 13.18 40 12186 2 (0.7%)

13.18 40 12186 2.12e+5 500 4920b) 13.18 40 12186 2 (0.7%)
c) 13.18 40 12186 2 (0.7%)

3
a) 18.89 42 12147 2 (0.7%)

18.89 42 12147 1.04e+5 500 4863b) 18.89 42 12147 2 (0.7%)
c) 18.89 42 12147 2 (0.7%)

TOL=100

1

2820

a) 107.26 113 4278 2 (0.7%)
107.26 113 4278 1.11e+5 500 987b) 107.26 113 4278 2 (0.7%)

c) 107.26 113 4278 2 (0.7%)

2
a) 100.32 110 4299 2 (0.7%)

100.32 110 4299 2.11e+5 500 1041b) 100.32 110 4299 2 (0.7%)
c) 100.32 110 4299 2 (0.7%)

3
a) 115.62 114 4329 2 (0.7%)

115.62 114 4329 1.04e+5 500 1041b) 115.62 114 4329 2 (0.7%)
c) 115.62 114 4329 2 (0.7%)

TOL=1000

1

2820

a) 970.55 321 1311 2 (0.7%)
970.55 321 1311 1.11e+5 500 321b) 970.55 321 1311 2 (0.7%)

c) 970.55 321 1311 2 (0.7%)

2
a) 993.08 320 1260 2 (0.7%)

993.08 320 1260 2.08e+5 500 318b) 993.08 320 1260 2 (0.7%)
c) 993.08 320 1260 2 (0.7%)

3
a) 1609.10 343 1158 2 (0.7%)

1609.10 343 1158 1.03e+5 500 273b) 1609.10 343 1158 2 (0.7%)
c) 1609.10 343 1158 2 (0.7%)
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6 Adaptive coarse spaces using the generalized transformation-of-basis appr.

The operator ΠisSisΠis + σis(I − Πis), however, can be built cheaply by

only scaling a few rows and columns of the Schur complements and adding

some constants; see Figure 6.8 for the nonzero pattern of Sis and the difference

Sis −ΠisSisΠis + σis(I −Πis). The sparsity is only changed slightly and, here,

the resulting sparsity is about 55%.

We test five different preconditioners for the iterative eigensolver. First, we

take a Cholesky decomposition of the fully assembled right hand side (6.21) as

the (expensive) base line to compare against. This choice has been used in all

previously presented results using the iterative eigensolver LOBPCG. We also

test an LU and ILU(0) decomposition of ΠisSisΠis + σis(I − Πis) and use the

projection Πis to remove the corresponding kernel from the preconditioner, i.e.,

we apply the projection Πis before and after the forward-backward substitution.

If ΠisSisΠis + σis(I − Πis) is only semidefinite, we automatically compute a

generalized inverse by means of the MATLAB function.

The preconditioner using an LU decomposition, is denoted by

ΠisLU
(
ΠisSisΠis + σis(I −Πis)

)
Πis.

For the ILU(0) preconditioner, we write

ΠisILU(0)
(
ΠisSisΠis + σis(I −Πis)

)
Πis.

Finally, we also test two different local lumped versions, i.e., an LU and

an ILU(0) decomposition of KΓΓ,is = blockdiag(K
(i)
ΓΓ,K

(s)
ΓΓ ) and also apply the

projection Πis before and after the forward-backward substitution. For the LU

decomposition, we write

ΠisΠisLU
(
KΓΓ,is

)
ΠisΠis

and for the ILU(0) preconditioner, we write

ΠisΠisILU(0)
(
KΓΓ,is

)
ΠisΠis

Obviously, the most expensive algorithm, the Cholesky decomposition of

the assembled right hand side of the eigenvalue problem yields the best results

with respect to the condition numbers and the iteration counts of the FETI-

DP algorithm. In this case, only a few iterations (e.g., 1-5) of the LOBPCG

solver are sufficient; cf. also our previous results. However, from Table 6.15,

we also see that an LU or ILU(0)-factorization of ΠisSisΠis + σis(I − Πis)

with a few more iterations can suffice. The slight differences in the condition
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6.5 Numerical results for adaptive FETI-DP and BDDC

Table 6.15: Adaptive FETI-DP (Alg. Ia-Ic) with ρ-scaling and generalized

transformation-of-basis approach. Compressible linear elasticity

of composite material no. 2 with E1 = 1 and 4N2/3 beams with

E2 = 1e+ 6 on the unit cube; ν = 0.3 for the whole domain; con-

forming P1 finite element discretization with 1/h = 10N1/3 and

irregular partitioning of the domain; see Figure 5.8. Coarse spaces

for TOL = 10 for all generalized eigenvalue problems. Notation

as in Table 6.4. Adapted by permission from Springer Interna-

tional Publishing AG: [Springer] [Domain Decomposition Methods

in Science and Engineering XXIV] [70] [COPYRIGHT] (2018).

Adaptive FETI-DP: Algorithms Ia, Ib, Ic (Gen. t.-o.-b. appr.)

1/h = 10N1/3 – composite material no. 2 – irregular partitioning

Local Preconditioner: Chol
(
Πis(ΠisSisΠis + σis(I −Πis))Πis + σis(I −Πis)

)
.

Algorithm Ia Algorithm Ib Algorithm Ic

N
LOBPCG

|Π′| κ its |Π| κ its |Π| κ its |Π|
max. its

33
5

168
3.35 16 1905 3.35 16 1905 3.53 19 594

25 8.89 18 2025 8.89 18 2025 9.12 21 684
100 10.59 18 2013 10.59 18 2013 10.78 21 672

43
5

351
3.34 16 5259 3.34 16 5259 3.56 19 1674

25 14.95 24 5535 14.95 24 5535 15.33 25 1869
100 5.07 18 5496 5.07 18 5496 5.08 21 1848

Local Preconditioner: ΠisLU
(
ΠisSisΠis + σis(I −Πis

)
Πis.

Algorithm Ia Algorithm Ib Algorithm Ic

N
LOBPCG

|Π′| κ its |Π| κ its |Π| κ its |Π|
max. its

33
5

168
110.84 38 1872 110.84 38 1872 163.73 43 603

25 3.84 18 1926 3.84 18 1926 3.84 20 660
100 3.84 18 1938 3.84 18 1938 3.85 21 666

43
5

351
471.97 62 5074 471.97 62 5074 521.66 67 1647

25 54.34 30 5259 54.34 30 5259 90.89 33 1830
100 56.50 30 5328 56.50 30 5328 99.32 32 1884

Local Preconditioner: ΠisILU(0)
(
ΠisSisΠis + σis(I −Πis

)
Πis.

Algorithm Ia Algorithm Ib Algorithm Ic

N
LOBPCG

|Π′| κ its |Π| κ its |Π| κ its |Π|
max. its

33
5

168
5.36 17 2088 5.36 17 2088 5.45 21 711

25 3.82 20 1995 3.82 20 1995 3.84 21 678
100 3.35 17 1998 3.35 17 1998 3.52 20 675

43
5

351
24.35 26 6225 24.35 26 6225 26.50 30 2394

25 3.82 20 5964 3.82 20 5964 3.83 22 2277
100 4.37 20 5850 4.37 20 5850 4.42 22 2181
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6 Adaptive coarse spaces using the generalized transformation-of-basis appr.

Table 6.16: Adaptive FETI-DP (Alg. Ia-Ic) with ρ-scaling and generalized

transformation-of-basis approach. Compressible linear elasticity

of composite material no. 2 with E1 = 1 and 4N2/3 beams with

E2 = 1e+ 6 on the unit cube; ν = 0.3 for the whole domain; con-

forming P1 finite element discretization with 1/h = 10N1/3 and

irregular partitioning of the domain; see Figure 5.8. Coarse spaces

for TOL = 10 for all generalized eigenvalue problems. Notation

as in Table 6.4. Adapted by permission from Springer Interna-

tional Publishing AG: [Springer] [Domain Decomposition Methods

in Science and Engineering XXIV] [70] [COPYRIGHT] (2018).

Adaptive FETI-DP: Algorithms Ia, Ib, Ic (Gen. t.-o.-b. appr.)

1/h = 10N1/3 – composite material no. 2 – irregular partitioning

Local Preconditioner: ΠisΠisLU
(
KΓΓ,is

)
ΠisΠis.

Algorithm Ia Algorithm Ib Algorithm Ic

N
LOBPCG

|Π′| κ its |Π| κ its |Π| κ its |Π|
max. its

33
5

168
1.81e+6 500 0 1.81e+6 500 0 1.81e+6 500 0

25 3.83e+4 500 441 3.83e+4 500 441 1.56e+5 500 102
100 452.95 126 442 452.95 126 442 468.46 129 81

43
5

351
1.06e+6 500 0 1.06e+6 500 0 1.06e+6 500 0

25 5.97e+4 500 1254 5.97e+4 500 1254 1.72e+5 500 273
100 677.56 181 936 677.56 181 936 685.30 183 213

Local Preconditioner: ΠisΠisILU(0)
(
KΓΓ,is

)
ΠisΠis.

Algorithm Ia Algorithm Ib Algorithm Ic

N
LOBPCG

|Π′| κ its |Π| κ its |Π| κ its |Π|
max. its

33
5

168
1.81e+6 500 0 1.81e+6 500 0 1.81e+6 500 0

25 3.26e+4 500 462 3.26e+4 500 462 8.40e+4 500 111
100 197.47 108 324 197.47 108 324 200.09 110 75

43
5

351
1.06e+6 500 0 1.06e+6 500 0 1.06e+6 500 0

25 4.56e+4 500 1236 4.56e+4 500 1236 8.51e+4 500 282
100 2.54e+4 316 978 2.54e+4 316 978 6.15e+4 329 222
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6.6 Conclusion on adaptive FETI-DP and BDDC w. t. gen. transf.-o.-basis appr.

numbers and iteration counts result from the larger coarse space size for the

ILU preconditioner. The results for the lumped preconditioner, an LU or ILU

decomposition of KΓΓ,is are given for completeness and to show that the results

are not satisfactory; cf. Table 6.16.

6.6 Conclusion on adaptive FETI-DP and BDDC with

the generalized transformation-of-basis approach

In Chapter 5, an adaptive coarse space for the FETI-DP domain decompo-

sition method applied to heterogeneous elliptic problems in three dimension

has been introduced. The method is based on numerically solving local gen-

eralized eigenvalue problems on faces and edges of subdomains and on using

these eigenvectors as deflation vectors. The condition number of the result-

ing preconditioned operator using deflation is bounded independently of the

heterogeneity.

In Section 4.5, for heterogeneous problems and general scalings, a correspon-

dence is shown between FETI-DP methods using deflation and FETI-DP and

BDDC methods using the generalized transformation-of-basis approach with

partial finite element assembly.

In this chapter, we have combined the adaptive approach with the general-

ized transformation-of-basis approach to obtain FETI-DP and BDDC methods

with a condition number bound independent of heterogeneities but using a gen-

eralized transformation-of-basis approach instead of deflation or balancing.

For the new approach, it will be easier to extend the parallel scalability to

a large number of subdomains on large supercomputers, also for heterogeneous

problems, by solving the coarse problem inexactly. This is not possible in

projection approaches like deflation or balancing, which are fragile with respect

to inexact solves of the coarse problem; see, e.g., [80].

We have presented comparisons of the adaptive method with different scal-

ings such as ρ-, deluxe-, stiffness-, and multiplicity-scaling. For our test cases,

we state that ρ-scaling only needs about 10-15% of additional constraints com-

pared to deluxe-scaling. The findings of stiffness-scaling are comparable to

those of ρ-scaling. Multiplicity-scaling on the other hand gives significantly

larger coarse spaces.

We have again shown that, also for hard problems including those with

random coefficients with seven different materials, a few iterations of an iterative

eigensolver on the local eigenvalue problems can be sufficient to obtain fast

convergence of the overall method.
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6 Adaptive coarse spaces using the generalized transformation-of-basis appr.

We have also shown that the use of an LU or ILU decomposition of

ΠisSisΠis + σis(I − Πis), instead of a Cholesky decomposition of the fully

assembled right hand side of the eigenvalue problem, is a reasonable choice

since this matrix can be built easily but just manipulating a few rows and

columns of Sis.
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7 A parallel implementation of

FETI-DP with adaptive coarse

spaces using the generalized

transformation-of-basis approach

7.1 Preliminaries

In this chapter, we describe our parallel implementation of adaptive FETI-DP.

We discuss and present details for an efficient implementation of the adaptive

FETI-DP Algorithms Ia and Ic using the generalized transformation-of-basis

approach; cf. Sections 6.2.3 and 4.5.

The FETI-DP algorithms are implemented in C/C++ using PETSc 3.8.0 [4,

5] and MPI. Direct solves are generally carried out by means of the PARDISO

solver [116] from the Intel MKL [57]. The local generalized eigenvalue prob-

lems are solved by the SLEPc software library 3.8.0 [56, 113]. In some cases,

we also use the SLEPc interface to LAPACK [1]. However, since the assembly

and direct solution are memory- and time-consuming, we also present strategies

for the alternative handling of these cases. We use nonblocking point-to-point

MPI communication to set up the eigenvalue problems and to collect the com-

puted constraints. The adaptive software is implemented based on the parallel

implementation of standard FETI-DP of [73].

The data and index sets used in the standard FETI-DP implementation

are sufficient to construct the generalized eigenvalue problems in the adap-

tive version. To store the data of each eigenvalue problem, we define a data

structure EigenvalueProblem. It then consists of an std::vector subdomains

which stores the two corresponding subdomains in the eigenvalue problem, an

std::vector subdomain neighbors that stores additional neighbors for edge

eigenvalue problems and is empty for face eigenvalue problems. We also need

an std::vector edges that holds the edges in the eigenvalue problem in a local

numbering and an integer corresponding to the face in the eigenvalue problem

(or -1 if the eigenvalue problem is based on an edge); see Figure 7.1. In order
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7 A parallel implementation of FETI-DP with adaptive coarse spaces

struct EigenvalueProblem

int comm tag: individual communication tag

std::vector subdomains : pair of subdomains in the eigenvalue problem

std::vector subdomain neighbors : other adjacent subdomains on the edge
(empty for face eigenvalue problems)

int face: face index (in local list of faces; or -1 for edge eigenvalue problem)

std::vector edges : edges’ indices (in local list of edges)

Figure 7.1: Data structure EigenvalueProblem which holds the elementary in-

formation of the eigenvalue problems.

to build these structures, for each face and each edge, we have to know the

adjacent subdomain indices. For these latter sets, we make use of the catego-

rization of nodes, which is already necessary in standard FETI-DP to set up

the application of the jump operator B. In order to communicate the data, we

have to create a consistent ordering of the eigenvalue problems and set up an

individual communication tag.

In Section 7.2, we present details of the process to set-up and solve the

local generalized eigenvalue problems using PETSc, plain MPI, and SLEPc. In

Section 7.3, we discuss the obligatory modifications from the standard FETI-DP

implementation to adaptive FETI-DP using the generalized transformation-of-

basis approach.

Before discussing the parallel implementation in detail, let us shortly com-

ment on another optimization for adaptive FETI-DP and BDDC if Neumann

boundary conditions are used.

Remark 7.1 (Edges on the Neumann boundary and adaptive FETI-DP). Ac-

cording to the commonly used definitions of faces, edges and vertices in three

dimensions (see, e.g., [77, Def. 2.2] and [82, Def. 3.1]), the degrees of free-

dom on the Neumann boundary with multiplicity two form edges on the Neu-

mann boundary. However, when splitting up the face constraints as mentioned

in (5.12) and (5.13) (or in (6.8) and (6.9)) the coarse space is enlarged unnec-

essarily if an edge in a face eigenvalue problem lies on the Neumann boundary

and its nodes only have multiplicity two. By using the constraint on the face

and the Neumann edge without splitting, no additional coupling is introduced

and the size of the adaptive coarse space can be kept smaller. In our parallel

implementation, we use this strategy and consequently reduce the coarse space

size of Algorithm Ia significantly. For Algorithm Ic, this has made no differ-
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7.2 Parallel implementation details of the local generalized eigenvalue problems

• local and global numbering for all a priori primal variables Π′ on ∂Ωs

• local (in the space of the degrees of freedom) and global (one-to-one from
the corresp. degree of freedom to the space of Lagrange multipliers) for
all a priori dual variables ∆′ on ∂Ωs

• a mapping from the local edges to the primal indices on the closure of
the edge

• the Schur complement S(s)

• the degrees of freedom on ∂Ωs ∩ ∂ΩD

(to detect the common rigid body modes incl. possible hinge modes)

• the coordinates of the nodes on ∂Ωs

(to detect the rigid body modes incl. possible hinge modes)

• the edge(s) and the possible face considered in the eigenvalue problem
(one send per eigenvalue problem between two adjacent subdomains!)

Figure 7.2: Data sent from the rank of Ωs to the rank of Ωi (for i < s).

ence for our test examples since we have never set high coefficients next to the

boundary of the domain.

7.2 Parallel implementation details of the local

generalized eigenvalue problems

Before the set-up of the local generalized eigenvalue problems can take place,

certain information have to be interchanged between adjacent pairs of subdo-

mains. The send and receive processes are executed with nonblocking point-to-

point communication using MPI Isend and MPI IRecv. For each adjacent pair

of subdomains {Ωi, Ωs}, the data is sent from the rank with the higher index

to the rank with the lower index. Integers and doubles are sent separately. In

most cases, two subdomains only share one eigenvalue problem. However, it can

occur that two subdomains share more than one edge eigenvalue problem. In

these cases, one additional send and receive process is initiated per additional

eigenvalue problem between these two subdomains. Otherwise, we cannot ex-

tract the correct subset of corresponding rows from the jump operator B.

Let us assume i < s. The data sent, in the current implementation, from

the rank of Ωs to the rank of Ωi is illustrated in Figure 7.2. Note that for

deluxe-scaling, for any edge and any adjacent subdomain Ωk, we also need to

communicate the Schur complement S(k) from the processes of Ωk to the process

of Ωi. This applies likewise to edges in face eigenvalue problems as to edges in

edge eigenvalue problems.
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7 A parallel implementation of FETI-DP with adaptive coarse spaces

We use P
D,Z

is as a generic representation for P
D,F

ij and PD,Eik . The SLEPc

built-in Krylov-Schur eigensolver is then applied to the local generalized eigen-

value problem

Ax = µBx

with A = ΠisΠisP
T

D,Z
isSisPD,Z

isΠisΠis and B = Πis(ΠisSisΠis + σ(I −

Πis))Πis + σ(I −Πis) ; cf. (6.5) and (6.13).

The left hand side, A, is not formed explicitly, only the local Schur com-

plements are assembled. For each application of A, we need one matrix-vector

multiplication with S(i) and S(s) each. We apply both projections by several

vector operations and just use two matrix-vector multiplications with the lo-

calized BD- and B-operator.

For the right hand side B, after successful reception of the data from Ωs, we

assemble the matrix Sis−
(
ΠisSisΠis+σis(I−Πis)

)
as a sparse sequential matrix.

For assembling this matrix, we use the arrays of the dense Schur complements

which are in column-major order and exploit the symmetry of the resulting

matrix to set the column entries as row entries. Within this process only several

rows and columns of Sis have to be manipulated to obtain Sis −
(
ΠisSisΠis +

σis(I − Πis)
)
; cf. the representative nonzero pattern in Figure 6.8. In case of

sufficient Dirichlet boundary conditions to prevent Ωi or Ωs from moving as a

rigid body, the corresponding block in Πis is empty. Otherwise, we exploit the

fact that I−Πis is an orthogonal projection onto the rigid body modes that are

continuous on Wi×Ws. Thus, the application of the right hand side operator of

the generalized eigenvalue problem can be executed with just one matrix-vector

multiplications with Sis −
(
ΠisSisΠis + σis(I −Πis)

)
and several vector-vector

or scalar-vector operations.

Inside the SLEPc EPS (Eigenvalue Problem Solver) object, the ST (Spectral

Transformation) object handles the spectral transformations. Since we do not

use any shift of the eigenvalues, the generalized problem is internally handled

as B−1Ax = µx where the solution of the linear system defined by B is exe-

cuted via the KSP object inside the spectral transformations object; see [113]

and Figure 7.3. In our case, we set the preconditioner of the KSP to an LU

decomposition of the (approximated) right hand side. The LU decomposition

is performed inplace by Intel MKL PARDISO [57, 116]. If the two subdomains

have sufficient Dirichlet boundary, the matrix Sis−
(
ΠisSisΠis+σis(I−Πis)

)
is

positive definite and an LU decomposition can be computed. If this is not the

case, we conduct an LU factorization of Sis −
(
ΠisSisΠis + σis(I − Πis)

)
+ εI

with a standard choice of ε = 1e− 4 in order to prevent zero pivots.
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7.2 Parallel implementation details of the local generalized eigenvalue problems

EPS ST KSP PC

KrylovSchur B−1Ax = µx By = z ΠB̃−1Π

Figure 7.3: Chosen settings for the object structure in the SLEPc EPS solver.

The ST object is used to build a basis for the Krylov decomposi-

tion. Π removes the common rigid body modes, B̃−1 represents

an LU-decomposition of Sis−
(
ΠisSisΠis+σis(I−Πis)

)
+εI. The

solution of the Ritz problem is performed by a direct solver and

not illustrated, here.

Inside the Krylov-Schur method, a Krylov decomposition is established be-

fore applying the Rayleigh-Ritz procedure; see [128]. As [55] states, in the sym-

metric case, the Krylov-Schur method is equivalent to the thick-restart Lanczos

method; see [133]. Consequently, in SLEPc, a Lanczos factorization is com-

puted by using the left hand side A and the ST-owned KSP object for the right

hand side B. The orthogonalization of the basis vectors is carried out via a

(modified) Gram-Schmidt algorithm with respect to the inner product 〈·, B·〉;

see [55]. We always use the modified Gram-Schmidt algorithm. Though, due

to highly ill-conditioned right hand sides B, the local iterative solver of the

preconditioned KSP object might not converge or even break down if large coef-

ficient jumps of 1e+6, irregular decompositions, the preset divergence tolerance,

and a relative convergence tolerance of 1e-5 for the KSP object are used. The

breakdown mostly occurs due to large jumps in the residual. However, we have

already documented a similar behavior for LOBPCG in Figure 6.6. Note that

the condition number of the local right hand sides B can exceed the condition

number of the global system matrix by several orders of magnitude.

For cases, when the iterative solver of the KSP object breaks down, we offer

two workarounds. The first workaround consists of an assembly of the left and

the right hand side of the eigenvalue problem and the use of a direct solver

via the SLEPc interface to LAPACK; see [1]. The SLEPc interface then calls

LAPACKgetrf to solve the generalized eigenvalue problem by an LU decom-

position with partial pivoting. A second workaround is obviously offered by

(re)starting the iterative solver wit a very rough convergence criterion and a

very high divergence tolerance dtol for the KSP object. If the workaround fails,

we can still make a large part (e.g., every second or third degree of freedom)

of the face or edge primal. We factually deactivate the breakdown test of the
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7 A parallel implementation of FETI-DP with adaptive coarse spaces

KSP object via dtol by setting it to, e.g., 1e12. We refer to [121, Fig. 5.1] and

Figure 6.6, where large jumps in the residual of the first steps of the iterative

solver have already been observed, even if an adequate preconditioner is used.

The iterative solver is only used to build the Lanczos factorization. Bad ap-

proximations to eigenvectors of large eigenvalues, i.e., approximations that do

not point into the direction of the eigenvector, are removed after the Ritz-values

have been computed by a direct solver and when the Krylov decomposition is

truncated; cf. [128, 55]. The promising results of Tables 5.20, 5.21, 6.13, 6.14,

and 6.15 proposed to use only very rough approximations to the eigenvectors.

We use a block Krylov-Schur method with a block size of 10. If the

smallest eigenvalue in the computed block of (approximate) eigenvalues

is still larger than our choice of TOL, we use the SLEPc functionality

EPSSetDeflationSpace to compute another block of eigenvalues and -vectors

in a deflated search space.

For some test cases, we let the Krylov-Schur algorithm iterate until a relative

reduction of the residual of 1e-5 or until a maximum number of 100 iterations

is attained. For other cases, we only allow five iterations of the iterative eigen-

solver and use the rough approximations to the eigenvectors to compute the

adaptive constraints. Similar settings have been used in our experiments with

LOBPCG (see [85]) in Section 6.5.5.

After all eigenvalue problems are solved, we collect the number of constraints

and their global indices by one call to MPI Allgather and MPI Allgatherv

each. The more expensive communication of the constraints itself is performed

by nonblocking point-to-point communication. They are then orthogonalized

edge by edge and face by face with the modified Gram-Schmidt algorithm with

a drop tolerance of 1e-1 and redistributed point-to-point.

7.3 Parallel implementation details of adaptive FETI-DP

7.3.1 General adaptive method

For theoretical considerations of FETI-DP as it is done in the previous chapters,

it is often more handy to consider the equations based on the Schur complements

and the jump operator on the interface, i.e.,

F = BΓS̃
−1BT

Γ ;

cf. (3.11). However, in the implementation, the identity

F = BB′K−1
B′B′B

T
B′ +BB′K−1

B′B′K̃
T
Π′BS̃

−1
Π′Π′K̃Π′B′K−1

B′B′B
T
B′
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comes into play; cf. (3.7). Thus, in order to define an adaptive version of (3.7)

and to describe the efficient parallel implementation of adaptive FETI-DP, we

have to redefine the operators introduced for the generalized transformation-of-

basis approach. This redefination is only based on the introduction of additional

identity matrices to fit the dimension (and a reordering of the submatrices).

Hence, the equivalent definitions can be carried over into one another easily. For

the ease of understanding, we refrain from introducing new operator symbols

or additional indices.

Let us recall the index sets B′ = (I, ∆′) and ∆′ = (∆, Π) with ∆ denoting

the a posteriori dual and Π the a posteriori primal variables. Using the repre-

sentation B′ = (I, ∆′), the system matrix of the FETI-DP master system as

given in (3.5) writes




KII KT
∆′I K̃T

Π′I 0

K∆′I K∆′∆′ K̃T
Π′∆′ BT

∆′

K̃Π′I K̃Π′∆′ K̃Π′Π′ 0

0 B∆′ 0 0




. (7.1)

Note that a further subdivision of K∆′∆′ does not make much sense since the

constraints in the transformation matrix are columns defined on ∆′ = (∆, Π).

The global transformation matrix from (4.22), reordered and extended by

the identity to the interior variables, is

T =



II 0 0 0

0 T∆ TΠ 0

0 0 0 IΠ′


 (7.2)

where TΠ is defined by all adaptively computed constraint vectors and T∆ can

be obtained by blockwise orthogonalization (i.e., edge by edge and face by face)

of the identity matrix against the constraint vectors.

The global restriction operator R and the corresponding second level assem-

bly operator RT are given by

R =




II 0 0 0

0 I∆ 0 0

0 0 RΠ 0

0 0 0 IΠ′




, (7.3)
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7 A parallel implementation of FETI-DP with adaptive coarse spaces

where RT
Π assembles the a posteriori degrees of freedom; cf. (4.24). We also de-

fine the multiplicity-scaled variant of RT
Π by RT

Π,µ. The operator Rµ is obtained

from R by replacing RΠ with RΠ,µ.

To obtain the system matrix of the adaptive FETI-DP master system, the

leading 3 × 3 block of (7.1) has to be transformed and assembled, i.e., RTT T

has to be applied from the left and TR has to be applied from the right. Cor-

respondingly, we also have to adapt the application of the jump operator B

to be in the correct basis; cf. the definition in (4.35). Note that for several

submatrices, the multiplication with the submatrices of T and the application

of R is trivial and has not be carried out.

With the transformation, the assembly, and the restriction applied to (7.1) as

well as the adaptation of the jump operator, the system matrix of the adaptive

FETI-DP master system is




KII KT
∆′IT∆ KT

∆′ITΠRΠ K̃T
Π′I 0

T T
∆K∆′I T T

∆K∆′∆′T∆ T T
∆K∆′∆′TΠRΠ T T

∆K̃T
Π′∆′ T T

∆BT
∆′

RT
ΠT

T
ΠK∆′I RT

ΠT
T
ΠK∆′∆′T∆ RT

ΠT
T
ΠK∆′∆′TΠRΠ RT

ΠT
T
Π K̃T

Π′∆′ RT
ΠT

T
ΠBT

∆′

K̃Π′I K̃Π′∆′T∆ K̃Π′∆′TΠRΠ K̃Π′Π′ 0

0 B∆′T∆ B∆′TΠRΠ 0 0




.

(7.4)

Equivalently, we can write




K̂BB
̂̃
K

T

Π̂B B̂T
B

̂̃
KΠ̂B

̂̃
KΠ̂Π̂ B̂T

Π̂

B̂B B̂
Π̂

0


 (7.5)

if grouping interior and a posteriori dual variables to B := (I, ∆) and a priori

and a posteriori primal variables to Π̂ := (Π, Π′), i.e., merging the denoted

submatrices inside the horizontal and vertical delimiters to the new notations.

Note that B̂Π is only nontrivial on the a posteriori primal degrees of freedom

and enables the necessary interaction between these and the a posteriori dual

variables as explained in Section 4.5 for the generalized transformation-of-basis

approach.

Thus, after solving the local generalized eigenvalue problems and distributing

the computed constraints, the second step of the adaptive algorithm consists of

establishing the new operators and matrices. The assembly in the primal vari-

ables is realized by setting up two VecScatters. The first scatter is necessary

to assemble in all primal variables Π̂ and, for the preconditioner, the second
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scatter is needed to assemble only the a posteriori primal variables Π; cf. the

subsequent paragraphs.

In a next step, the transformed matrices

• T T
∆K∆′I

• T T
ΠK∆′I

• T T
∆K∆′∆′T∆

• T T
∆K∆′∆′TΠ

• T T
ΠK∆′∆′TΠ

• KΠ′∆′T∆

• KΠ′∆′TΠ

are obtained block by block, where the blocks are local submatrices of

T (i)TK(i)T (i). Note that K̃Π′∆′T∆ and K̃Π′∆′TΠ can be obtained from

KΠ′∆′T∆ and KΠ′∆′TΠ since the order of the first level scatter (defined by

RΠ) and the transformation T can be inversed. The first level scatter and the

transformation act on disjoint sets.

By Gaussian elimination, we then obtain from (7.5)

F̂ : = B̂BK̂
−1
BBB̂

T
B −

(
B̂Π̂ − B̂BK̂

−1
BB
̂̃
K

T

Π̂B

)̂̃
S
−1

Π̂Π̂

(
B̂T

Π̂
−
̂̃
KΠ̂BK̂

−1
BBB̂

T
B

)

with
̂̃
SΠ̂Π̂ : =

̂̃
KΠ̂Π̂ −

̂̃
KΠ̂BK̂

−1
BB
̂̃
K

T

Π̂B .

(7.6)

In (7.6), the first part of F̂ , i.e., B̂BK̂
−1
BBB̂

T
B , remains perfectly parallelizable.

Furthermore, as in standard FETI-DP, we need one coarse solve per iteration.

The scatter to realize the application of the jump operator does not need

any new set-up. Only the application has to be changed by applying the local

(transposed) transformation matrices before and after the scatter, respectively.

By using the scatter structure of B∆′ and BT
∆′ already established a priori, a

posteriori dual and a posteriori primal variables are processed simultaneously.

Thus, the application of F̂ gets a bit tricky. For instance, for the solution of

the linear system

K̂BBx = B̂T
Bλ̂

the values B̂T
Bλ̂ = T T

∆BT
∆′λ̂ are extracted from T T

∆′BT
∆′λ̂ (note the additional

prime!). The complementary (and assembled) part, i.e., B̂T
Π̂
λ̂ = RT

ΠT
T
ΠBT

∆′λ̂
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7 A parallel implementation of FETI-DP with adaptive coarse spaces

is added afterwards to the vector −
̂̃
KΠ̂Bx. The assembly in the a posteriori

primal variables is naturally performed by the scatter operation. Then, the

coarse solve can be executed. Before the application of B∆′ , the values in the

a posteriori dual and a posteriori primal variables have to be collected.

Note that ∆′ ∩ Π̂ = Π. As a consequence, in the iterative scheme, we

always work with two vectors u∆′ and u
Π̂
. The values in the a posteriori primal

variables have to be transfered from one to the other, depending on the next

matrix-vector multiplication or KSPSolve process to execute.

The Dirichlet preconditioner of adaptive FETI-DP writes

M̂−1
T := BDT RµR

T T TST R︸ ︷︷ ︸
=
̂̃
S

RT
µ T TBT

D. (7.7)

The preconditioner then is the sum of local operators with communication be-

tween neighboring subdomains via B, as before, and minimal additional com-

munication via the scatter RΠR
T
Π,µ (inside RRT

µ ). For the definition of M̂−1
T , see

also (4.36) and (3.19), respectively, for the related Dirichlet preconditioner M−1
D

for standard FETI-DP. In the application of RΠ,µ, the conducted multiplicity-

scaling is independent of the actually chosen scaling in BD; cf. Section 4.5. Our

numerical experiments show that the runtime of the Krylov process in total, and

therefore also the time consumption of the additional communication process,

is negligible.

7.3.2 Computation of the solution in the displacement variables

Given the appropriately transformed right hand side f̂ = (f̂T
B ,
̂̃
f
T

Π̂, 0)
T , assem-

bled in the primal variables, the master system of adaptive FETI-DP reads




K̂BB
̂̃
K

T

Π̂B B̂T
B

̂̃
KΠ̂B

̂̃
K

Π̂Π̂
B̂T

Π̂

B̂B B̂
Π̂

0






ûB
̂̃u
Π̂

λ̂


 =




f̂B
̂̃
f Π̂

0


 ; (7.8)

cf. (7.5). When computing the solution in the displacement variables, we have

to keep in mind that B̂Π̂ 6= 0. In contrast to standard FETI-DP, the Gaussian

elimination then yields

̂̃uΠ̂ =
̂̃
S
−1

Π̂Π̂

(̂̃
f Π̂ −

̂̃
KΠ̂BK̂

−1
BB f̂B − B̂T

Π̂
λ̂+

̂̃
KΠ̂BK̂

−1
BBB̂

T
Bλ̂
)
, (7.9)

ûB = K̂−1
BB

(
f̂B − B̂T

Bλ̂−
̂̃
K

T

Π̂B
̂̃u
Π̂

)
. (7.10)
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Figure 7.4: 24 tetrahedra forming the support of the finite element basis func-

tion ϕx at x = (1, 1, 1)T . View of an irregular domain decom-

position restricted to the support of ϕx with Ωi (turquois), Ωj

(green), Ωk (purple), and Ωl (red) sharing a nonstraight edge E ,

where x is an inner node (left). Two arbitrary coefficient distri-

butions restricted to the support of the basis function ϕx (center

and right).

Thus, the term −
̂̃
S
−1

Π̂Π̂B̂
T
Π̂
λ̂ adds to the solution in the primal variables.

7.3.3 Parallel implementation details of Algorithm Ic with unknown

coefficient values and based on stiffness-scaling

In this short section, we want to discuss the parallel implementation of the

neighborhood strategy of Algorithm Ic (see Section 5.2.2) if the exact coefficient

distribution is not available and stiffness-scaling is used. Let us consider struc-

tured or “relatively structured” meshes, where the ratio between the largest

and the smallest element is close to one. For unstructured meshes, where we

cannot give a parameter h, which is close to the diameter of all tetrahedral

elements, the situation becomes more complex.

Let us consider an irregular domain decomposition and an edge eigenvalue

problem between Ωi and Ωk on an edge E with interior node (1, 1, 1)T ; see

Figure 7.4. Assume that this node is shared by these two subdomains as well

as Ωj and Ωl. Now, the neighborhood strategy is applied to this edge. In

Figure 7.4, we have depicted the situation by visualizing the support of the

finite element basis function ϕx at x = (1, 1, 1)T . In the first image (left), a

selected, irregular domain decomposition is shown. Only a single tetrahedron

of the support belongs to Ωi (turquois), Ωj (green), and Ωk (purple) each.

The remaining 21 tetrahedra belong to Ωl (red). The other two pictures show

two different coefficient distributions with high (black) and low (light-gray)
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7 A parallel implementation of FETI-DP with adaptive coarse spaces

coefficients on the specific tetrahedra. In a structured mesh with six tetrahedra

per cube, a node lies on the boundary of at most 24 tetrahedra.

There are several difficulties to be addressed if the coefficients are not know

but Algorithm Ic should be used. The first difficulty is given by the fact that

only the diagonal entry of the stiffness matrix k
(i)
x and not the coefficient ρ(i)(x)

is available. Additionally, we may avoid to send the entries of the stiffness

matrices of Ωj and Ωl to the rank of Ωi. If the Schur complements are sent for

the set-up of the local eigenvalue problem between Ωi and Ωk (which has been

found to be faster than to send the local stiffness matrices), the entries of the

stiffness matrix of Ωk are not available, either. Another difficulty results from

the fact that the entries of the stiffness matrices are obtained by integration

over the local support of the finite element basis functions. For the second

distribution (Figure 7.4 (right)), for instance, the entry k
(l)
x is 21 times larger

than k
(i)
x although the corresponding coefficient is actually identical.

We now want to argue on how to decide that the eigenvalue problem between

Ωi and Ωk is not discarded.

The first coefficient distribution represents the simple case; see Fig-

ure 7.4 (center). We have a large entry k
(i)
x in the stiffness matrix on Ωi and if,

e.g., k
(i)
x ≥ 1000h3 is satisfied, we do not discard the eigenvalue problem since,

at least, one large jump exists in the neighborhood of the edge.

Now, consider the second coefficient distribution; see Figure 7.4 (right). We

see that k
(i)
x is small. We always keep the eigenvalue problem if the ratio between

the largest and the smallest diagonal entry of K(i), which correspond to nodes

in the neighborhood of the edge, is larger than 24. If this is not the case, our

last check relies on the scaling. However, except for the entries of the stiffness

matrix of Ωi, we only have the communicated scaling values

d(i)x =
k
(k)
x

k
(i)
x + k

(j)
x + k

(k)
x + k

(l)
x

and d(k)x =
k
(i)
x

k
(i)
x + k

(j)
x + k

(k)
x + k

(l)
x

at each local interface node x. Thus, we do not have direct access to the other

stiffness matrix entries in the nominator or denominator on the rank of Ωi.

Let us denote by k
(i)
max,E the largest diagonal entry of the stiffness matrix K(i),

which corresponds to a node in the neighborhood of the edge. Assume that

we already know that an homogeneous coefficient distribution is given in the

entire neighborhood of the edge E in subdomain Ωi. Otherwise, we keep the

eigenvalue problem anyway.
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For the maximum support of ϕx of 24 tetrahedra and a homogeneous, low

coefficient distribution on all adjacent subdomains, it holds

k(s)x ≤ 24k
(i)
max,E for s ∈ {j, k, l} as well as

1

24
≤

k
(i)
x

k
(i)
max,E

≤ 1.

If the minimum jump of the coefficients in the PDE is larger than just one or

two orders of magnitude, we have an equivalence between these bounds and a

homogeneous coefficient distribution with low coefficients around the nodes x

of the edge.

The bound

d(k)x =

k
(i)
x

k
(i)
max,E

k
(i)
x +k

(j)
x +k

(k)
x +k

(l)
x

k
(i)
max,E

≥
1
24

1 + 24(ME − 1)
=

1

24 + 242(ME − 1)
(7.11)

holds for all edge nodes x. Here, ME denotes the multiplicity of the edge. For

heterogeneous problems with jumps of several orders of magnitude, this bound

is broken if coefficients jumps are present around the edge.

Note that the bound (7.11) is very conservative and smaller jumps of 100 or

1000 are not detected by it. A more accurate heuristic using smaller constants

might be more adequate. On the other hand, for a structured mesh with six

tetrahedra per voxel and a regular domain decomposition the constant 24 can

be replaced by 6, without using any heuristic.

7.4 Numerical results

In this section, we present numerical results for our parallel implementation of

adaptive FETI-DP and compressible linear elasticity.

We have implemented the new coarse space (Algorithm Ia) covered by our

theory (see Theorem 6.2) and a modified variant (Algorithm Ic). Algorithm Ic

uses the neighborhood approach to reduce the number of edge eigenvalue

problems as well as the number of constraints by also discarding edge con-

straints from face eigenvalue problems. For a more detailed description, see

Section 5.2.2.

For all algorithms, the constraint vectors are orthogonalized blockwise (i.e.,

edge by edge and face by face) by a modified Gram-Schmidt algorithm with

a drop tolerance of 1e-1. Note that, already in MATLAB, we observed bet-

ter convergence properties with less strict drop tolerances than with tolerances

of, e.g., 1e-7. We have observed a certain influence of the drop tolerance on
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the obtainable precision of the global PCG algorithm. In any case, the con-

dition number estimates from the Krylov scheme are good error indicators.

If a requested convergence criterion cannot be attained by the algorithm, the

eigenvalue estimate λmin fast deteriorates.

For short edges consisting of only one dual node, we convert the single dual

node into a primal node, to make the corresponding edge eigenvalue problem

superfluous; see Section 5.2.3.1.

In this chapter, we always use stiffness-scaling and we follow the strategy of

Algorithm Ic to detect heterogeneities in the neighborhood of the edge, based

on the scaling; see Section 7.3.3.

For simplicity, we always assume the parameters E and ν to be constant on

each finite element.

In the tables, κ denotes the estimated condition number of the precondi-

tioned FETI-DP operator. The condition number estimates are obtained from

the Krylov scheme. By N we denote the number of subdomains. Additionally,

we report the number of iterations of the PCG algorithm by its, by |Π′| the size

of the a priori and by |Π| the size of the adaptive coarse space, respectively. All

a posteriori constraints are implemented using the generalized transformation-

of-basis approach; see Section 4.5. We also list the number of nonzeros in the

final coarse matrix as nnz. For the regular decompositions, we report H/h. For

irregular decompositions, we only list 1/h and N in order to measure the mean

size of the local problems. We also report the number of the global degrees of

freedom as d.o.f. and the total time needed by the algorithm. A more detailed

breakdown of the time needed for the single phases, e.g., the set-up and the so-

lution time for the eigenvalue problems or the solution time of the global PCG

algorithm can be found in some corresponding diagrams.

In the experiments, regular as well as irregular decompositions are tested.

The irregular decompositions are set up by the METIS graph partitioner [60]

using the options -ncommon=3 and -contig for all problems to avoid noncon-

tiguous subdomains as well as additional hinge modes inside single subdomains.

The regular decompositions are directly performed by our C/C++ software, the

irregular decompositions are imported after being exported from our MATLAB

software. In these cases, the corresponding total time, which is given in the

tables, does not include the basic set-up of the geometry. In Section 7.4.1, we

also present the norm of the preconditioned residual at the last step of the PCG

scheme as ‖M−1r‖.

174



7.4 Numerical results

The local generalized eigenvalue problems are set up and solved via the

PETSc [4, 5] and SLEPc [56, 113] high-performance computing libraries v3.8.0;

see Section 7.2.

In a few number of larger runs, we observed that a relative reduction of

the preconditioned residual by a factor of 1e-10 was slightly missed. Thus, the

stopping criterion for the PCG algorithm is set to a relative reduction of the

preconditioned residual by a factor of 1e-8. The maximum number of iterations

is set to 10 000 to show that the standard approach does not even converge after

several thousands of iterations.

For the numerical experiments presented in this chapter, we use TOL =

50 log(H/h) for regular decompositions. For the irregular decompositions, we

use TOL = 50 log
(
N/ni

)1/3
, with ni denoting the number of local nodes on Ωi.

The tolerance is therefore adapted to the estimate of edge terms in standard

FETI-DP; see, e.g., [130]. It is slightly increased compared to most results from

the previous chapters. See Table 6.14, for a comparison of the algorithms with

different tolerances. Similar adaptations of the tolerance were already used for

another adaptive coarse space; see [62]. See also [12], for detailed study of the

influences of the a priori tolerances on the coarse space dimension for another

adaptive approach.

For all experiments with a regular decomposition, we enforce homogeneous

Dirichlet boundary conditions on the whole boundary ∂Ω of the computational

domain Ω. For irregular decompositions and composite material no. 1, we

enforce homogeneous Dirichlet boundary conditions on the face with x = 0 and

zero Neumann boundary conditions elsewhere. For the hemisphere considered

in Section 7.4.4, we enforce homogeneous Dirichlet boundary conditions on the

upper part, satisfying z = 0, and, on the remaining part of the boundary, we

enforce zero Neumann boundary conditions. We always apply the volume force

f := (0.1, 0.1, 0.1)T . Except for the last example, we always use a structured

fine mesh consisting of cubes. The fine cubes are each decomposed into five

(irregular decomp.) and six (reg. decomp.) tetrahedra, respectively.

We always use ν = 0.3 for the entire computational domain.

All computations are conducted with one subdomain per core on the super-

computer magnitUDE at the Center for Computational Sciences and Simulation

(CCSS) of the University of Duisburg-Essen. The supercomputer magnitUDE

has 14 976 cores (Xeon E5-2650v4 12C 2.2GHz; 624 nodes with 24 cores each).

All computing nodes hold, at least, 64 GB of main memory. Intel compilers

v17.0.1 with the corresponding MKL are used.

The remaining part of the section is organized as follows.
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7 A parallel implementation of FETI-DP with adaptive coarse spaces

1. Adaptive FETI-DP versus standard FETI-DP in parallel: In Sec-

tion 7.4.1, we consider composite material no. 1 and consider different

convergence criteria for the solution of the local generalized eigenvalue

problems. We also show that our parallel implementation is able to excel

standard FETI-DP methods.

2. Weak scaling on irregular decompositions: In Section 7.4.2, we

consider irregular decompositions and weak scalability of our parallel im-

plementation with a very rough convergence criterion for the solution of

the local generalized eigenvalue problems.

3. Weak scaling on regular decompositions: In Section 7.4.3, we con-

sider regular decompositions and weak scalability of our parallel imple-

mentation with a very rough convergence criterion for the solution of the

local generalized eigenvalue problems. For regular decompositions, the a

priori coarse can be chosen much smaller and the adaptive method can

be tested on a larger number of subdomains.

4. Strong scaling on irregular decompositions: In Section 7.4.4, we

consider the strong scaling of our parallel implementation on an irregularly

decomposed cubic domain and an unstructured mesh on a hemisphere.

7.4.1 Adaptive FETI-DP versus standard FETI-DP in parallel

In this section, we consider composite material no. 1 and compare our paral-

lel implementation of adaptive FETI-DP Algorithms Ia and Ic and a standard

FETI-DP algorithm with a coarse space of primal vertices and edge averages.

In Table 5.1, we have already shown that the classical approch does not con-

verge within 2 000 iteratios. The results of our MATLAB implementation on

composite material no. 1 and H/h = 6 can be found in Table 6.5. Compared to

our MATLAB implementation, the size of the coarse space of Algorithm Ia is

reduced; see Remark 7.1. Also note that the tolerance is not fixed to TOL = 10,

here. The geometry is exported from MATLAB and imported by our C/C++

implementation. Then, the index sets of the local eigenvalue problems are col-

lected and the eigenvalue problems are solved as described in Section 7.2. The

results of the nonadaptive method have already been published as preliminary

results by the author of this thesis and his coauthors in [68]. The preliminary

results of our adaptive methods in [68] have been improved with respect to the

timings. We only report the improved results, here.

We consider different solution strategies for the eigenvalue problems. For

Algorithm Ia, we set maximum iteration number of the Krylov-Schur solver to
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7.4 Numerical results

Table 7.1: Standard (Vert.+edge av.) and adaptive (Algorithms Ia

and Ic) FETI-DP in parallel with stiffness-scaling and generalized

transformation-of-basis approach. Compressible linear elasticity

of composite material no. 1 with E1 = 1 and N2/3 beams with

E2 = 1e+ 6 on the unit cube; ν = 0.3 for the whole domain; con-

forming P2 finite element discretization with 1/h = 6N1/3 and

irregular partitioning of the domain; see Figure 5.1. Coarse spaces

for TOL = 50 log
(
N/ni

)1/3
for each generalized eigenvalue prob-

lem. N denotes the numer of subdomains, κ the condition numer

estimates from the underlying PCG iteration, its the number of

iterations until convergence or at cancellation of the process at the

maximum wall time of 60 minutes (max its=10 000), ‖M−1r‖ the

norm of the preconditioned residual after the last step of PCG, |Π′|

the size of the a priori and (for adaptive) |Π| the size of the adap-

tive coarse space. The number of nonzeros in the coarse matrix

is given by nnz and the total runtime in minutes is denoted by

time (min). [68]. Copyright Electronic Transactions on Numerical

Analysis.

Standard and adaptive FETI-DP:
Standard: vertices+edge averages, adaptive: Algorithms Ia and Ic (Gen. t.-o.-b. appr.)

1/h = 6N1/3 – composite material no. 1 – irregular partitioning

N = 64, #cores=64, d.o.f.=3.11e+5

κ its |Π′| |Π| nnz time (min) ‖M−1r‖
Standard

2.06e+6 >6373 2346 - 8.59e+5 >60 5.22e-5
FETI-DP
Adaptive

83.90 51 2277 981 1.38e+6 16.65 3.78e-9
Alg. Ia

Adaptive
83.89 51 2277 972 1.37e+6 16.66 3.63e-9

Alg. Ic
Adaptive

83.84 50 2277 998 1.39e+6 12.32 2.24e-9Alg. Ic
(loc. inex)

N = 216, #cores=216, d.o.f.=1.02e+6

κ its |Π′| |Π| nnz time (min) ‖M−1r‖
Standard

2.09e+6 >6033 9828 - 4.46e+6 >60 7.56e-4
FETI-DP
Adaptive

55.08 62 9483 4144 7.39e+6 25.35 6.93e-9
Alg. Ia

Adaptive
55.11 62 9483 4132 7.38e+6 25.30 7.01e-9

Alg. Ic
Adaptive

54.82 60 9483 4252 7.49e+6 18.95 7.65e-9Alg. Ic
(loc. inex)
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7 A parallel implementation of FETI-DP with adaptive coarse spaces

Figure 7.5: Number of subdomains (top) and summed solution time (bottom)

per number of local eigenvalue problems on one subdomain for Al-

goritm Ic (loc. inex.) and 216 subdomains and cores. Plot of the

distribution of the number of the local eigenvalue problems (top)

and the summed solution time (bottom) for composite material

no. 1 and an irregular decomposition of the unit cube; cf. Fig-

ure 5.1 and Table 7.1.
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7.4 Numerical results

100 and require a relative reduction of the residual by a factor of 1e-5. When

the iterative solver of the ST-owned KSP object breaks down, we make use of the

SLEPc interface to LAPACK and solve the eigenvalue problem after assembly

of the left and the right hand side operators by means of LAPACK; see Sec-

tion 7.2. For the KSP solver, we also require a relative reduction of the residual

by a factor of 1e-5 and allow up to 200 iterations. For Algorithm Ic, we first

present results with the same settings. Additionally, we consider Algorithm Ic

with very rough requirements on the accuracy of the approximated solution of

the eigenvalue problems. We still require a relative reduction of the residual

by a factor of 1e-5 for the Krylov-Schur algorithm, however, we only allow a

maximum of five iterations. If the fifth iteration is attained, we use the current

approximations regardless of convergence at that point. For the internal KSP

object, we practically deactivate the divergence check via dtol, set it to 1e12,

and only require a relative reduction of the residual by a factor of 1e-2. By this,

we minimize or even eliminate the need for re-set-ups of the EPS object, restarts

of the KSP solver with modified options, and the utilization of LAPACK for the

solution of the eigenvalue problems to speed up our method. Note that the

convergence behavior of the iterative eigensolver might not be straightforward

for the highly ill-conditioned problems considered here and that large jumps in

the residual can appear; see Figure 6.6. If the local solver does not converge

anyway, we make every second node of the corresponding face or edge primal.

This almost never occurs. In all our examples, we have found three faces where

this occured. The condition numbers in the numerical results show that the

final set of constraints remains comparable if this workaround, with roughly

approximated eigenvectors, is used.

To distinguish the results of Algorithm Ic with accurate and with rough

approximations to the eigenvectors, we write Algorithm Ic (loc. inex.) for the

results with only rough convergence requirements for the local iterative solvers.

The maximum wall time for all algorithms is set to one hour. Within this

time the classical method with a standard vertex and edge average coarse space

does not converge.

From the results in Table 7.1, we see that all adaptive methods excel the

standard approach, which does not converge to the required tolerance. We also

see that the locally inexact version of Algorithm Ic can still reduce the runtime

by about 25%, only a very low number of additional constraints (about 2%

compared to the adaptive coarse space and even less compared to the total

coarse space size) is (accidentally) incorporated. Compared to the preliminary

results in [68], the adaptive algorithms have been speeded up significantly.
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7 A parallel implementation of FETI-DP with adaptive coarse spaces

In Figure 7.5, we see that the number of local generalized eigenvalue prob-

lems is not distributed evenly and that a certain load imbalance exists. Though,

Figure 7.5 (bottom) also shows that the number of eigenvalue problems per

subdomain and the expected solution time for the entire set of local eigenvalue

problems per subdomains is not necessarily correlated. Thus, it remains a dif-

ficult task to establish a load balance a priori. More elaborated strategies to

distribute the local eigenvalue problems will be focussed.

7.4.2 Weak parallel scaling for adaptive FETI-DP on irregular

decompositions

In this section, we present weak scaling results for our parallel implementation

of adaptive FETI-DP Algorithm Ic with a very rough solution of the local

eigenvalue problems, i.e., Algorithm Ic (loc. inex.). As before, we consider

composite material no. 1, which means that the results for N = 64 and N = 216

are identical to those of Table 7.1. In Table 7.2, we present the results from

64 to 512 subdomains and cores. Figure 7.6 gives detailed information on the

weak scaling for the most expensive stages of the adaptive algorithm.

In Table 7.2, we recognize good weak scalability from 64 to 512 irregular

subdomains. We have a certain drop in the efficiency from 100% to 67% when

increasing the number of subdomains from 64 to 125, from 125 to 512 subdo-

mains, however, we then have very good scaling behavior.

7.4.3 Weak parallel scaling for adaptive FETI-DP on regular

decompositions

In the previous section, we have presented weak scaling results for our parallel

implementation and irregular decompositions into subdomains. For irregular

decompositions our a priori coarse space is already quite large (cf. Remark 5.3

and Table 7.2) and the current implementation, which uses exact coarse solves,

is limited by the available memory. Thus, the method runs out of memory for

irregular decompositions and, e.g., thousand cores or more.

In this section, we consider a regular decomposition into subdomains, where

the a priori coarse space is significantly smaller. We then present weak scaling

results up to 4096 cores and subdomains; see Table 7.3 and Figure 7.8. The

material considered here is a composite material denoted as composite material

no. 3, which is similar to material no. 1. In composite material no. 3, the

N2/3 beams are cut at the interface. Then, they arranged with an offset as

depicted in Figure 7.7 (left). This is performed in order to obtain coefficient
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7.4 Numerical results

Table 7.2: Weak parallel scaling for adaptive FETI-DP (Algorithm Ic (loc.

inex.)) with one subdomain per core, stiffness-scaling and gen-

eralized transformation-of-basis approach. Compressible linear

elasticity of composite material no. 1 with E1 = 1 and N2/3 beams

with E2 = 1e+ 6 on the unit cube; ν = 0.3 for the whole domain;

conforming P2 finite element discretization with 1/h = 6N1/3 and

irregular partitioning of the domain; see Figure 5.1. Coarse spaces

for TOL = 50 log
(
N/ni

)1/3
for each generalized eigenvalue prob-

lem. The efficiency is given by eff.. All other notation as in Ta-

ble 7.1.

Adaptive FETI-DP: Algorithm Ic (loc. inex.) (Gen. t.-o.-b. appr.)

1/h = 6N1/3 – composite material no. 1 – irregular partitioning

N (#cores) κ its |Π′| |Π| nnz d.o.f. time (min) eff.
64 83.84 50 2277 998 1.39e+6 3.11e+5 12.32 100%

125 72.08 59 5127 2247 3.71e+6 6.00e+5 18.37 67%
216 54.82 60 9483 4252 7.49e+6 1.02e+6 18.95 65%
343 75.41 64 15579 7349 1.30e+7 1.62e+6 24.64 50%
512 60.58 65 24705 10811 2.10e+7 2.41e+6 26.92 46%

Figure 7.6: Weak scaling details for Algoritm Ic (loc. inex.) with one subdo-

main per core, stiffness-scaling, and generalized transformation-

of-basis approach for compressible linear elasticity (composite ma-

terial no. 1; irregular partitioning). Plot of the weak scaling of

the most expensive code parts of adaptive FETI-DP for compos-

ite material no. 1 with an irregular decomposition of the unit

cube (cf. Figure 5.1 and Table 7.2). The parts EPSSolve and

EPSGetEigenpair refer to the multiple calls of the corresponding

SLEPc functions (timed in total per subdomain).
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7 A parallel implementation of FETI-DP with adaptive coarse spaces

Figure 7.7: Composite material no. 3 on the unit cube for 216 subdomains

(coefficients and regular partitioning). 36 beams of a stiff material

with E2 = 1e+6, shown in dark purple, are cut at the interface and

arranged with offset. The surrounding material is a soft matrix

material with E1 = 1, shown in light, half-transparent gray, (left).

Regular decomposition for 216 subdomains; high coefficients are

again shown in dark purple; subdomains shown in different colors;

left half of the domain (x > 1
2) made half-transparent (right).

jumps also on edges in a regular decomposition; see Figure 7.7 (right). Note that

the edge eigenvalue problems on the other edges are discarded by Algoritm Ic.

For the regular decomposition, our adaptive algorithm shows very good weak

scalability from 216 to 4096 subdomains; see Table 7.3.

7.4.4 Strong parallel scaling for adaptive FETI-DP on irregular

decompositions

Eventually, we now present strong scaling results for irregularly decomposed do-

mains. We consider two different geometries and coefficient distributions. The

strong scaling is conducted with one subdomain per core. The numbers of cores

are all multiples of 24 in order to exploit the structure of the supercomputer

magnitUDE with 24 cores per node.

The first example is that of composite material no. 1 with 64 beams of high

coefficients with E2 = 1e+6 (see the corresp. run in Table 7.1 forN = 216). The

global geometry consists of 1 027 083 degrees of freedom and 233 280 tetrahedral

elements.

The second example is motivated by [78]. We consider the hemisphere Ω :=

{(x, y, z) ∈ R3 : 0.8 < ‖(x, y, z)T ‖2 < 1, z < 0} with different layers of a stiff

and a soft material; see Figure 7.10 (left). The geometry and the unstructured

surface mesh are created by means of SALOME v8.3.0 [111] and the NETGEN

1D-2D [118] algorithm. The surface mesh still retains a certain structure. For
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7.4 Numerical results

Table 7.3: Weak parallel scaling for adaptive FETI-DP (Algorithm Ic (loc.

inex.)) with one subdomain per core, stiffness-scaling and gen-

eralized transformation-of-basis approach. Compressible linear

elasticity of composite material no. 3 with E1 = 1 and N2/3 beams

arranged with offset with E2 = 1e+ 6 on the unit cube; ν = 0.3

for the whole domain; conforming P2 finite element discretization

with 1/h = 6N1/3 and regular partitioning of the domain; see Fig-

ure 7.7. Coarse spaces for TOL = 50 log
(
N/ni

)1/3
for each gener-

alized eigenvalue problem. Notation as in Table 7.2.

Adaptive FETI-DP: Algorithm Ic (loc. inex.) (Gen. t.-o.-b. appr.)

1/h = 6N1/3 – composite material no. 3 – regular partitioning

N (#cores) κ its |Π′| |Π| nnz d.o.f. time (min) eff.
216 11.25 32 375 1813 2.30e+5 1.17e+6 7.23 100%
512 14.97 34 1029 4581 6.18e+5 2.74e+6 7.87 92%
1000 18.85 37 2187 9479 1.35e+6 5.31e+6 7.97 91%
1728 22.50 41 3993 17214 2.57e+6 9.15e+6 8.08 89%
2744 25.69 44 6591 28430 4.36e+6 1.45e+7 8.93 81%
4096 28.34 47 10125 43694 6.84e+6 2.16e+7 9.57 76%

Figure 7.8: Weak scaling details for Algoritm Ic (loc. inex.) with one subdo-

main per core, stiffness-scaling, and generalized transformation-

of-basis approach for compressible linear elasticity (composite ma-

terial no. 3; regular partitioning). Plot of the weak scaling of the

most expensive code parts of adaptive FETI-DP for composite ma-

terial no. 3 with a regular decomposition of the unit cube (cf. Fig-

ure 7.7 and Table 7.3). The parts EPSSolve and EPSGetEigenpair

refer to the multiple calls to the corresponding SLEPc functions

(timed in total per subdomain).
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7 A parallel implementation of FETI-DP with adaptive coarse spaces

Table 7.4: Strong parallel scaling for adaptive FETI-DP (Algorithm Ic (loc.

inex.)) with one subdomain per core, stiffness-scaling, and gen-

eralized transformation-of-basis approach. Compressible linear

elasticity of composite material no. 1 with E1 = 1 and N2/3 beams

with E2 = 1e+ 6 on the unit cube; ν = 0.3 for the whole domain;

conforming P2 finite element discretization with 1/h = 6N1/3 and

irregular partitioning of the domain; see Figure 5.1. Coarse spaces

for TOL = 50 log
(
N/ni

)1/3
for each generalized eigenvalue prob-

lem. Notation as in Table 7.2.

Adaptive FETI-DP: Algorithm Ic (loc. inex.) (Gen. t.-o.-b. appr.)
1.02e+6 d.o.f. – composite material no. 1 – irregular partitioning

N (#cores) κ its |Π′| |Π| nnz time (min) eff.
144 52.04 60 6219 3062 5.07e+6 30.50 100%
288 63.67 67 12504 3314 7.74e+6 16.67 91%
432 58.44 65 17823 3499 9.60e+6 8.53 119%
576 64.68 61 24090 3433 1.27e+7 5.50 138%
720 61.28 65 29691 3815 1.47e+7 4.61 132%
864 66.14 63 35277 2977 1.63e+7 4.64 110%

Figure 7.9: Strong scaling for Algoritm Ic (loc. inex.) with one subdomain per

core, stiffness-scaling, and generalized transformation-of-basis ap-

proach for compressible linear elasticity. Plot of the strong scaling

of adaptive FETI-DP for composite material no. 1 with an irreg-

ular decomposition of the unit cube (cf. Figure 5.1) with approx.

one million degrees of freedom, from 144 to 864 cores and subdo-

mains.
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Table 7.5: Strong parallel scaling for adaptive FETI-DP (Algorithm Ic (loc.

inex.)) with one subdomain per core, stiffness-scaling, and gen-

eralized transformation-of-basis approach. Compressible linear

elasticity of a layered hemisphere with E1 = 1 and thin layers

with E2 = 1e+ 6; ν = 0.3 for the whole domain; conforming P2

finite element discretization with 2.58e+6 d.o.f. and irregular

partitioning of the domain; see Figure 7.10. Coarse spaces for

TOL = 50 log
(
N/ni

)1/3
for each generalized eigenvalue problem.

Notation as in Table 7.2.

Adaptive FETI-DP: Algorithm Ic (loc. inex.) (Gen. t.-o.-b. appr.)
2.58e+6 d.o.f. – layered hemisphere – irregular partitioning

N (#cores) κ its |Π′| |Π| nnz time (min) eff.
72 100.70 85 1248 4821 3.06e+6 59.20 100%
144 74.90 76 3003 9557 6.62e+6 29.42 101%
288 74.31 79 9843 13807 1.34e+7 27.70 53%
576 72.04 74 24033 16262 2.17e+7 11.21 66%

the NETGEN algorithm, the discretization parameter h is only allowed to be

in the narrow interval [0.01, 0.018]. The entire mesh then is created from the

surface mesh by the Gmsh mesh generator [47]. The resulting geometry consists

of 2 576 073 degrees of freedom and 581 538 tetrahedral elements.

Our hemisphere consists of five different layers of the Young modulus. As

before, we always assume the Young modulus to be constant on each finite

element. For each tetrahedron, we calcualte its mass center cT and set the

coefficient on the element to E2 = 1e + 6 if cT > 0.98, cT < 0.82, or cT ∈

(0.89, 0.91) and thus obtain thin layers of a stiff material at the boundary and

inside the geometry. As a consquence of the unstructured mesh, the layers are

not smooth; see Figure 7.10 (left) for the coefficient distribution.

In Table 7.5, we have optimal speedup from 72 to 144 cores. We also see

that the gain in speedup from 144 to 288 cores is very low. However, we again

have a significant speedup when stepping to 576 cores; see also Figure 7.11

(left). This results from the fact that, although the solution time per eigenvalue

problem reduces when chosing 288 instead of 144 cores, the maximum number

of local eigenvalue problems increases significantly. From 288 to 576, there is

no significant increase in the maximum number of eigenvalue problems per core

and the maximum solution time can be reduced from approx. 23 or 21 (for

144 and 288 subdomains, respectively) minutes to approx. nine minutes; see

Figure 7.11 (right). We clearly benefit from the superlinear complexicity of the

eigensolver and the reduced size of the local problems.
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7 A parallel implementation of FETI-DP with adaptive coarse spaces

Figure 7.10: Layered hemisphere with an unstructured mesh (coefficients and

irregular partitioning). Layered hemisphere with thin layers of

a stiff material at the boundary and inside the hemisphere with

E2 = 1e + 6, shown in dark purple, and thicker layers of a soft

matrix material with E1 = 1, shown in light, half-transparent

gray, (left). Hemisphere geometry for 576 subdomains, certain

subdomains shown in different solid colors, for the remaining

subdomains the corresponding mesh is shown in different colors

(right).

Figure 7.11: Strong scaling for Algoritm Ic (loc. inex.) with one subdo-

main per core, stiffness-scaling, and generalized transformation-

of-basis approach. Plot of the strong scaling of adaptive FETI-

DP for linear elasticity on a layered hemisphere with an irregular

decomposition (cf. Figure 7.10) and approx. 2.58 million degrees

of freedom, from 72 to 576 cores and subdomains (left). Details

for the maximum and the arithmetic mean of the numbers of

local eigenvalue problems and of the summed solution time both

per core (right).
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Note that, for the considered geometry on the hemisphere, the main memory

of the normal computing nodes on magnitUDE (64 GB per node, 2.6 GB per

core) might not be sufficient and computing nodes with increased main memory

(256 GB per node, 10.6 GB per core) have been requested. For N ∈ {72, 144}

subdomains the high memory demand arises from the local generalized eigen-

value problems, which are very large, then. For 72 subdomains and cores, the

peak memory consumption is approx. 200 GB per node (8.3 GB per core). For

144 subdomains and cores, the peak memory consumption is about 125 GB per

node (5.2 GB per core). For N = 576, the increased memory demand comes

from the coarse problem, which is already very large, a priori.
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8 Conclusion and Future Work

8.1 Conclusion

In this thesis, the nonoverlapping domain decomposition methods FETI-DP

and BDDC, to solve large-scale finite element problems, have been consid-

ered. These methods are widely-used and highly scalable domain decomposition

methods, which have been studied extensively. Depending on the considered

problem, which is defined by the underlying partial differential equation, dif-

ferent, sophisticated techniques to obtain fast and robust methods have been

introduced in the past.

Important ingredients for fast and robust FETI-DP and BDDC methods

are scalings of the variables shared between multiple subdomains as well as

coarse space enrichments. In Chapter 4, we have given an overview of popular

techniques to implement coarse space enrichements. From a theoretical point of

view, it is naturally of interest to have a correspondence between these methods

to transfer information of the spectra from one method to the other. In [80],

a correspondence between the deflation or balancing approach and the stan-

dard transformation-of-basis approach was proven for the case of a constant

scaling on any face and any edge. Though, if a nondiagonal or nonconstant

scaling and a second set (also a posteriori set) of constraints are used, an in-

teraction between dual and primal variables can occur in the deflation and the

balancing approach. This interaction can violate the assumptions used in the

proofs of FETI-DP and BDDC methods using the standard transformation-

of-basis approach. The interaction is generally necessary if scaling-dependent

constraints are chosen for the second set of constraints. Allowing for this inter-

action, the condition number bound can be retained for the transformed and

assembled system. For diagonal scalings, the mentioned interaction only occurs

for nonnodal constraints. In Section 4.5, we have thus introduced the general-

ized transformation-of-basis approach, which admits those interactions between

dual and primal variables and for which a corresponding deflation or balancing

approach can be derived.

If the parameters of the underlying partial differential equation become arbi-

trarily or highly heterogeneous, classical methods might not converge anymore,
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even if sophisticated a priori coarse spaces and scalings are used. A remedy is

given by adaptive domain decomposition methods. In these methods, (problem-

dependent) eigenvalue problems are solved to set up an additional set of (a

posteriori) constraints. In Chapter 5, based on [93, 120, 94, 75], we have in-

troduced a robust adaptive method for three-dimensional problems. We have

also presented different strategies to (heuristically) reduce the computational

overhead. Then, the adaptive coarse spaces have been implemented by the bal-

ancing approach. The extensive set of numerical simulations has shown that

the previously known coarse spaces of [93, 120, 94, 75] might not be sufficient

to obtain convergence if highly heterogeneous three-dimensional problems are

considered. In contrast, our method, which is theoretically proven to be ro-

bust, as well as all the heuristical variants introduced here have been found

to be robust for any problem setting that was considered. We have seen that

the heuristics can reduce the computational overhead of the adaptive methods

significantly.

If the considered problem becomes arbitrarily difficult, the coarse space of

an adaptive method can become very large. Then, the direct solution of the

coarse problem can become impossible due to memory limitations. However,

the deflation and the balancing approach are fragile with respect to inexact-

ness of the coarse solution; see, e.g., [80]. The use of partial finite element

assembly, after a transformation of basis, is more adequate to implement the

constraints. In Chapter 6, we use the generalized transformation-of-basis ap-

proach to derive an adaptive algorithm corresponding to the algorithm using

the balancing approach. We have presented results to show that the methods

using the generalized transformation-of-basis and the balancing approach con-

verge correspondingly at essentially the same costs. We have also presented

results for different a priori chosen scalings and shown that the widely-used

(diagonal) ρ- and stiffness-scaling, respectively, only produce about 10-15% ad-

ditional adaptive constraints compared to the popular nondiagonal scalings. It

has been shown that the size of the adaptive coarse problem can be reduced

significantly if slightly larger condition numbers and larger numbers of itera-

tions are allowed. For the solution of the eigenvalue problem, the user-defined

tolerance should not be chosen too small.

In Chapter 7, we have presented an efficient parallel implementation of our

adaptive algorithms. We have considered weak and strong parallel scalability of

some of our adaptive Algorithm Ic using only rough approximates to the local

eigenvectors. Algorithm Ic discards edge eigenvalue problems and edge con-

straints from face eigenvalue problems if the neighborhood of the edge consists
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of an homogeneously soft material; cf. the detailed description in Section 5.2.2.

For regular as well as irregular domain decompositions, we have shown good

weak parallel scalability of our adaptive algorithm. For regular decompositions,

we still achieve an efficiency of 76% if the number of cores and subdomains is

increased from 216 to 4096. We have also considered strong parallel scalability

for different geometries and irregular domain decompositions. Specifically, we

have considered the unit cube with an irregular decomposition as well as an

unstructured mesh of a hemisphere and obtained good results for the strong

parallel scalability. For the unstructured mesh of the hemisphere with about

2.6 million degrees of freedom, we achieve 66% efficiency if the number of sub-

domains and cores is increased from 72 to 576.

8.2 Future Work

We have presented an efficient parallel implementation of a robust FETI-DP

method for three-dimensional problems. However, we have also shown that a

certain load imbalance exists if the eigenvalue problems of pairs of subdomains

are solved on the rank of the subdomain with the lower index. More sophisti-

cated ideas for the distribution of the eigenvalue problems, without creating a

communication overhead, should be studied.

To further reduce the coarse space dimension and the computation time,

additional strategies to detect and discard eigenvalue problems, which do not

accelerate the convergence significantly, should be studied. These eigenvalue

problems need not to be communicated, set up and solved. Their possible

constraints would only enlarge the coarse space unnecessarily and they should

not be used.

Another very interesting field of study is that of adaptive Newton-Krylov

methods. In these methods, a Newton method is used to compute the solution

of a discretized nonlinear partial differential equation. In each Newton step,

we can solve a linearized system by the FETI-DP method using the precondi-

tioned conjugate gradient method. Although, theoretically, the adaptive coarse

space had to be computed for every single Newton step, a reuse of the coarse

space of the previous step or steps is possible; see [71]. Then, the dominating

computational costs of the solution of the eigenvalue problems can be saved for

several Newton steps while still maintaining enhanced convergence properties

for the different calls to the PCG solver.
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