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Kurzzusammenfassung

Diese Dissertation umfasst Arbeiten zu verschiedenen Themen aus der Theorie
der Modulformen. Als Erstes untersuchen wir Divisoren von meromorphen
Modulformen höherer Stufe mithilfe von polaren harmonischen Maaßformen
vom Gewicht 2. Danach setzen wir diese Maaßformen setzen in Beziehung zu
Modulformen, die imaginär-quadratischen Zahlkörpern zugeordnet sind. Wir
zeigen, dass Fourierkoeffizienten dieser Funktionen durch Spuren singulärer
Moduln gegeben sind und berechnen ihre regularisierten inneren Produkte.
Danach untersuchen wir die p-adischen Eigenschaften der Fourierkoeffizienten
von verallgemeinerten Eta-Quotienten. Insbesondere zeigen wir, dass diese
Koeffizienten keine linearen Kongruenzen erfüllen können, deren Reste nicht
bestimmten quadratischen Gleichungen genügen. Schließlich konstruieren wir
Polynome für motivische L-Funktionen von ungeradem motivischen Gewicht,
die die bekannten Periodenpolynome für L-Funktionen von Hecke-Eigenformen
verallgemeinern. Wir zeigen, dass fast alle Nullstellen dieser Polynome auf dem
komplexen Einheitskreis liegen und gegen eine Gleichverteilung streben, falls
die Stufe oder das Gewicht des entsprechenden Motivs genügend groß sind.

Abstract

This thesis contains research articles on various topics in the theory of modular
forms. First we investigate divisors of meromorphic modular forms of higher
level using polar harmonic Maass forms of weight 2. We continue by relating
these Maass forms to modular forms associated to imaginary quadratic fields.
We show that the Fourier coefficients of these functions are given by traces
of singular moduli and compute their regularized inner products. After that
we investigate p-adic properties of the Fourier coefficients of generalized eta-
quotients. In particular, we show that these coefficients cannot satisfy any
linear congruences whose residues do not fulfill certain quadratic equations.
Finally we construct polynomials for motivic L-functions that generalize the
well-known period polynomials for Hecke eigenforms. We show that these
polynomials have almost all of their zeros on the complex unit circle and that
the zeros tend to be equidistributed as the level or the weight of the motive
are sufficiently large.
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in jeder Lebensphase dazu ermutigt und dabei unterstützt haben, diesen Weg
zu gehen.

3



Contents

I Introduction 6
I.1 Preliminary Definitions and Results . . . . . . . . . . . . . . . . 6

I.1.1 Meromorphic modular forms and their expansions . . . . 6
I.1.2 Modular forms associated to imaginary quadratic fields . 9
I.1.3 L-functions and period polynomials . . . . . . . . . . . . 10
I.1.4 Polar Harmonic Maass Forms . . . . . . . . . . . . . . . 12

I.2 Scope of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 13
I.2.1 On divisors of modular forms . . . . . . . . . . . . . . . 13
I.2.2 Niebur-Poincaré series
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Chapter I

Introduction

I.1 Preliminary Definitions and Results

I.1.1 Meromorphic modular forms and their expansions

Modular forms, and more generally harmonic Maass forms, are of fundamental
significance in modern number theory. To define them, we have to introduce
some standard notation. Let H denote the complex upper half-plane {τ ∈ C :
Im(τ) > 0} and let

Γ0(N) := {( a bc d ) ∈ SL2(Z) : N |c}

be the Hecke congruence subgroup of level N . For M = ( a bc d ) ∈ Γ0(N) and
τ ∈ H, we define

Mτ :=
aτ + b

cτ + d
and j(M, τ) := cτ + d.

Then, for a function f : H→ C∪{∞} and k ∈ Z, the weight k Petersson slash
operator is given by

(f |k M) (τ) := j(M, τ)−kf(Mτ).

A meromorphic modular form of weight k and level N is a meromorphic function
f on H satisfying f |k M = f for every M ∈ Γ0(N) which satisfies certain
growth conditions at the cusps of Γ0(N) (see [34], Chapter III, §3 for a precise
definition).

In particular, modular forms are meromorphic and invariant under the
translation τ 7→ τ + 1, and therefore can be expanded into a Fourier series

f(τ) =
∑

n�−∞

af (n)qn, (I.1.1)

where here and throughout we write q := e2πiτ . The expansion (I.1.1) is
associated to the cusp i∞ and similar expansions exist for the other cusps
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CHAPTER I. INTRODUCTION 7

of Γ0(N). A modular form is called cusp form if all non-positive Fourier
coefficients at all cusps vanish. The Fourier coefficients af(n) often encode
interesting sequences of numbers, which allows for far reaching applications to
various areas of mathematics and mathematical physics such as number the-
ory, algebraic geometry, representation theory, combinatorics, and string theory.

An interesting example of this is the partition function p(n), which counts
the number of ways to write a positive integer n as a sum of positive integers.
The values p(n) are Fourier coefficients of the inverse of the Dedekind eta-
function, which is a modular form of weight −1

2
(see [34], Chapter IV., §1 for a

definition of half-integral weight modular forms).

η(τ)−1 := q−
1
24

∏
n≥1

(1− qn)−1 = q−
1
24

∑
n≥0

p(n)qn.

A variety of information on the partition function, such as asymptotic growth
[30, 53], p-adic properties [47, 55], or even explicit formulas [13] can be deduced
from the modularity of η−1.

The most prominent example of the significance of Fourier coefficients of
modular forms in group theory is the (normalized) modular j-invariant. This
function can be defined as the unique modular form of weight 0 and level 1
that is holomorphic on H and has a Fourier expansion of the form

J(τ) = q−1 +
∑
n>0

c(n)qn = q−1 + 196884q + 21493760q2 + 864299970q3 + . . . .

A phenomenon called Monstrous Moonshine relates the coefficients c(n) to
dimensions of irreducible representations of the sporadic Monster group (see
[23] for a recent survey). It was proven by Borcherds [5] and has now been
extended and generalized to other groups and types of modular forms, see e.g.
[15], [24], and [27] for Umbral Moonshine.

To state a product expansion for J , we define a certain system of modular
functions. Namely, for every positive integer n, we let jn be the unique SL2(Z)-
invariant holomorphic function on H that has a Fourier expansion of the form

jn(τ) = q−n +
∑
m>0

cn(m)qm. (I.1.2)

These functions can be explicitly given as so-called Faber polynomials of J or
acting on J with normalized Hecke operators.

7



CHAPTER I. INTRODUCTION 8

The modular function J(τ)− J(z) has a Borcherds product expansion, also
known as the denominator formula for the Monster Lie algebra [5]. It can also
be given in terms of the functions jn evaluated at z [2].

J(τ)−J(z) = e(−τ)
∏
m>0
n∈Z

(1−e(mτ)e(nz))c(mn) = q−1 exp

(
−
∑
n≥1

jn(z)

n
qn

)
,

where we let e(w) := e2πiw for w ∈ C. Taking the logarithmic derivative with
respect to τ , we obtain a weight 2 meromorphic modular form

Hz(τ) := − 1

2πi

J ′(τ)

J(τ)− J(z)
=
∑
n≥1

jn(z)qn. (I.1.3)

with simple poles at SL2(Z)-equivalent points to z. The series on the right-hand
side converges for Im(τ) > Im(z).

In general, if a weight k modular form f has a pole in H, then the expansion
(I.1.1) can only converge if Im(τ) is sufficiently large. Therefore, it can be more
natural to consider elliptic expansions around a point ρ ∈ H. These are of the
form

f(τ) = (τ − ρ)−k
∑

n�−∞

af,ρ(n)Xn
ρ (τ)

with

Xρ(τ) :=
τ − ρ
τ − ρ

(I.1.4)

and converge if Xρ(τ) is sufficiently small. It is common to choose ρ to be a
pole of f . The elliptic expansion of the function Hz from (I.1.3) around the
pole z has the form

Hz(τ) =
1

(τ − z)2

(
−wz Im(z)

π
Xz(τ)−1 +

∑
n≥0

az(n)Xz(τ)n

)
,

where

wz :=


3 if z is SL2(Z)-equivalent to −1+

√
3i

2
,

2 if z is SL2(Z)-equivalent to i,

1 otherwise.

(I.1.5)
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CHAPTER I. INTRODUCTION 9

I.1.2 Modular forms associated to imaginary quadratic
fields

For a fixed z ∈ H and k ∈ Z, k > 1, Petersson [51] defined meromorphic elliptic
Poincaré series given by

Ψk,z(τ) := Im(z)k
∑

M∈SL2(Z)

(
(τ − z)−k(τ − z)−k

)
|2k,τ M,

where |2k,τ means that we apply the slash-operator with respect to the variable
τ . The functions Ψk,z are meromorphic modular forms of weight 2k for SL2(Z)
with poles of order k at every point that is SL2(Z)-equivalent to z. Although it
is straightforward to generalize these functions to higher level, we will restrict
ourselves to the full modular group in this section.

The functions Ψk,z can be used to construct meromorphic modular forms
associated to imaginary quadratic fields as follows. Let ∆ < 0 be a discriminant,
i.e. an integer congruent to 0 or 1 (mod 4). The group SL2(Z) acts on the set
Q∆ of all binary integral quadratic forms

Q(X, Y ) = aX2 + bXY + cY 2

that satisfy b2 − 4ac = ∆ via(
Q ◦

(
α β
γ δ

))
(X, Y ) := Q(αX + βY, γX + δY ).

We denote by zQ the CM-point of Q, which is the unique zero of Q(τ, 1) in
H. One can show that the action of SL2(Z) on Q∆ has only finitely many
orbits. Now tracing the functions Ψk,z in the z-variable over a (finite) set of
representatives of CM-points of Q∆/ SL2(Z), we obtain

∑
Q∈Q∆/SL2(Z)

Ψk,zQ(τ)

wzQ
=
|∆| k2
2k−1

∑
Q∈Q∆

Q(τ, 1)−k =: fk,∆(τ) (I.1.6)

with wzQ as in (I.1.5). Note that the function Ψk,zQ does not depend on the
choice of the representative Q, since the CM-point of M ◦Q is M−1zQ. The
functions fk,∆ are meromorphic modular forms of weight 2k with poles of order
k at the CM-points of discriminant ∆.

The sum on the right-hand side in (I.1.6) is also defined for ∆ > 0 and
yields cusp forms of weight 2k that were introduced by Zagier [60]. Kohnen
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CHAPTER I. INTRODUCTION 10

and Zagier [37] used these functions to construct the kernel function for the
Shimura lift and to prove non-negativity of twisted central L-values. The fk,∆
for negative discriminants were introduced by Bengoechea [3], who showed that
their Fourier coefficients are algebraic for small values of k.

Bringmann, Kane, and von Pippich [11] computed regularized inner products
of the fk,∆ and related them to evaluations of higher Green’s functions at CM-
points (see Subsection 2.6 of loc. cit. for a definition of higher Green’s functions).
Namely, for k > 1, two different negative fundamental discriminants d, δ and
the higher Green’s function Gk, we have

〈fk,d, fk,δ〉 =
(−1)kΓ

(
k − 1

2

)√
π

2k(k − 1)!

∑
Q∈Qd/ SL2(Z)

Q∈Qδ/ SL2(Z)

Gk (zQ, zQ)

wzQwzQ
. (I.1.7)

I.1.3 L-functions and period polynomials

Let f(τ) =
∑

n≥1 af(n)qn be a cusp form of weight k and level N . Then the
L-function associated to f is given by

L(s, f) :=
∑
n≥1

af (n)

ns
,

which converges for Re(s) > k+1
2

. The completed L-function

Λ(s, f) =

(√
N

2π

)s

Γ(s)L(s, f)

has an analytic continuation to all of C and can be written as a period integral

Λ(s, f) = N s/2

∫ ∞
0

f(iy)ys−1dy, (I.1.8)

which converges for Re(s) ≥ 1. One then defines the period polynomial of f by

rf (z) :=

∫ i∞

0

f(τ)(τ − z)k−2dτ,

which is a polynomial of degree k − 2 in z. Expanding (τ − z)k−2 we obtain,
using (I.1.8),

rf (z) =

(
i√
N

)k−1 k−2∑
j=0

(
k − 2

j

)
(iz
√
N)jΛ(k − 1− j, f). (I.1.9)
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CHAPTER I. INTRODUCTION 11

Therefore, up to simple factors, the coefficients of the period polynomial rf are
given by the special values L(1, f), L(2, f), . . . , L(k− 1, f). These are precisely
the critical values for L(s, f) (see Subsection V.2.2).

If f is a Hecke eigenform (see [34], Chapter III, §5 for a definition), meaning
that the Fourier coefficients of f are multiplicative, then L(s, f) has an Euler
product expansion given by

L(s, f) =

∏
p|N

1

1− af (p)p−s

∏
p-N

1

1− af (p)p−s + pk−1−2s

 (I.1.10)

and the completed L-function satisfies a functional equation

Λ(s, f) = ε(f)Λ(k − s, f) (I.1.11)

for some ε(f) ∈ {−1, 1}.

More generally, an important class of L-functions attached to modular
forms are the symmetric power L-functions, which are constructed from the
expansion (I.1.10) as follows. By Deligne’s proof of the Weil Conjectures [19],
we know that |af (p)| ≤ 2p(k−1)/2. We denote the roots of the polynomial

X2 − af (p)X + pk−1

by αpp
(k−1)/2 and βpp

(k−1)/2 and rewrite the Euler product of L(s, f) as

L(s, f) =

∏
p|N

1

1− af (p)p−s

∏
p-N

1∏
j=0

1

1− αjpβ1−j
p p(k−1)/2−s

 .

If N is square-free, the Euler product of the n-th symmetric power of f ,
which we denote by Symnf , is given by

L(s, Symnf) =

∏
p|N

1

1− af (p)np−s

∏
p-N

n∏
j=0

1

1− αjpβn−jp pn(k−1)/2−s


(I.1.12)

and converges for Re(s) > n(k−1)
2

+ 1 The symmetric power L-functions are
conjectured to have an analytic continuation to all of C and to satisfy a
functional equation like (I.1.11). This is part of the more fundamental Langlands
Program (see Subsection V.6.1 for more details and [14] for an introduction to
the Langlands Program).
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CHAPTER I. INTRODUCTION 12

I.1.4 Polar Harmonic Maass Forms

Harmonic Maass forms are real-analytic generalizations of holomorphic modular
forms that become increasingly important in number theory. We refer the
reader to [7] for an introduction to the theory and various applications of these
functions. Polar harmonic Maass forms were introduced by Bringmann and
Kane [8], but already studied by Fay [26] in a broader setting. They generalize
both meromorphic modular forms and harmonic Maass forms. To define them,
we let Ĉ := C∪{∞} be the Riemann sphere, equipped with the usual topology
as the one-point compactification of C.

Definition I.1.1. For k ∈ Z, a polar harmonic Maass form of weight k
on Γ0(N) is a continuous function F : H → Ĉ with the following properties
(τ = u+ iv).

• F−1(∞) is discrete with respect to the hyperbolic measure dudv
v2 on H and

F is real-analytic on H\F−1(∞).

• For every M ∈ Γ0(N), we have F |kM = F .

• The function F is annihilated by the weight k hyperbolic Laplacian

∆k := −v2

(
∂2

∂u2
+

∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂v

)
.

• For every ρ ∈ H, there exists an n ∈ N0 such that (τ−ρ)nF (τ) is bounded
in some punctured neighborhood of z.

• The function F grows at most linearly exponentially at the cusps of
Γ0(N).

Just like meromorphic modular forms, polar harmonic Maass forms have a
Fourier expansion at every cusp as well as elliptic expansions around every point
ρ ∈ H. However, as in the case of harmonic Maass forms, these expansions
split into a meromorphic and a non-meromorphic part.

If k ≤ 0, then the Fourier expansion of F at i∞ has the shape (convergent
for Im τ sufficiently large)

F (τ) = F+
i∞(τ) + F−i∞(τ),

where
F+
i∞(τ) :=

∑
n�−∞

a+
F,i∞(n)e(nτ)

12



CHAPTER I. INTRODUCTION 13

and

F−i∞(τ) := a−F (0) Im(τ)1−k +
∑
n�∞
n6=0

a−F (n)Γ (1− k,−4πnv) e(nτ)

for some a±F,i∞(n) ∈ C. Here Γ(a, w) denotes the incomplete Gamma-function,

defined as the analytic continuation of s 7→
∫∞
w
ts−1e−tdt to s = a. Again there

exist similar expansions at the other cusps of Γ0(N).

A polar harmonic Maass form F of weight k ≤ 0 also has an elliptic
expansion around each point ρ ∈ H of the form

F (τ) = F+
ρ (τ) + F−ρ (τ)

with a meromorphic part F+
ρ given by

F+
ρ (τ) := (τ − ρ)−k

∑
n�−∞

a+
F,ρ(n)Xn

ρ (τ) (I.1.13)

with Xρ as in (I.1.4), and a non-meromorphic part F−ρ . In case that k = 0, the
non-meromorphic part has the form

F−ρ (τ) := a−F,ρ(0) log(|Xρ(τ)|2) +
∑
n�∞
n 6=0

a−F,ρ(n)Xρ(τ)
−n
. (I.1.14)

For k < 0, the non-meromorphic part has a more complicated shape given
in Proposition III.6. The series in (I.1.13) and (I.1.14) converge if Xρ(τ) is
sufficiently small. For a survey on polar harmonic Maass forms and their
applications, we refer the reader to Section 13.3 of [7] and to [9], where also
some of the results of Chapter II are presented.

I.2 Scope of this thesis

This thesis is cumulative and contains research in various areas related to
modular forms. In the following, we give a motivation for the different research
projects contained in this thesis.

I.2.1 On divisors of modular forms

Given any modular form, it is a problem of general interest to determine its
zeros and poles. The picture can be entirely different in different situations.

13



CHAPTER I. INTRODUCTION 14

For example, Rankin and Swinnerton-Dyer [56] showed that the zeros in the
fundamental domain of Eisenstein series for the full modular group all lie on
the complex unit circle, whereas it follows from holomorphic Quantum Unique
Ergodicity, proven by Holowinsky and Soundarajan [32], that the zeros of Hecke
eigenforms tend to be equidistributed as the weight increases. A useful tool
in complex analysis for studying divisors of the logarithmic derivative, which
converts the points in the divisor of a meromorphic function into simple poles
with the respective orders as residues.

Using the functions Hz from (I.1.3), Bruinier, Kohnen, and Ono [12] associ-
ated to a meromorphic modular form f of level k for SL2(Z) a divisor modular
form

fdiv(τ) :=
∑

z∈SL2(Z)\H

ordz(f)

wz
Hz(τ),

with wz as in (I.1.5), and showed the identity

fdiv(τ) = −Θ(f (τ))

f(τ)
+
kE2(τ)

12
, (I.2.1)

where Θ(f(τ))
f(τ)

is the logarithmic derivative of f and E2 is the holomorphic weight
2 Eisenstein series defined in Section II.1. These results rely on the fact that the
modular curve SL2(Z)\H has genus 0, because weakly holomorphic analogues
of the j-function, so-called Hauptmoduln, do not exist on modular curves of
positive genus.

The work presented in Chapter II is joint work with Kathrin Bringmann,
Ben Kane, Ken Ono, and Larry Rolen and treats the divisor problem in higher
levels. In Theorem II.1 we construct higher level generalizations H∗N,z to the
functions Hz. These are polar harmonic Maass forms of weight 2 that also play
a crucial role in work of Bringmann and Kane [8] on the explicit Riemann-Roch
Theorem in weight 0. We obtain in Theorem II.3 a generalization of (I.2.1)
to the compactified higher level modular curves X0(N). From this, one can
determine the points in the divisor of f , because these are exactly the poles
where the coefficients of H∗N,z grow exponentially.

I.2.2 Niebur-Poincaré series
and traces of singular moduli

The right-hand side of (I.1.6) does not converge for k = 1. However, one can
use Hecke’s trick, introduced in [31] to show modularity properties of the weight

14



CHAPTER I. INTRODUCTION 15

2 Eisenstein series, to obtain weight 2 analogues of the functions fk,∆. For this
we define

fs,∆(τ) :=
∑
Q∈Q∆

Q(τ, 1)−1 |Q(τ, 1)|−s ,

which converges for Re(s) > 0 and defines an analytic function in s. We then
define f ∗∆ to be the analytic continuation of fs,∆ to s = 0, which has been
shown to exist for ∆ > 0 by Kohnen [35]. For a split negative discriminant
−dD and a level N , there are straightforward generalizations f ∗d,D,N of f ∗d given
in Definition III.3.1.

In Chapter III, we show that the Fourier coefficients of f ∗d,D,N are given by
twisted traces of singular moduli of the Niebur-Poincaré series jN,n, which makes
them algebraic integers in Q(

√
D) if X0(N) has genus 0 (see Theorem III.4).

We also compute regularized inner products 〈fd, fδ〉 for two (not necessarily
distinct) negative discriminants d, δ. Here fd denotes a meromorphic modular
normalization of f ∗d,1,1 (see (III.1.2)). This gives an analogue for formula (I.1.7)
in weight 2.

I.2.3 Linear congruences for modular forms

Many p-adic properties of the Fourier coefficients of modular forms, such as
the partition function, are still unknown. For example, it is conjectured that
the asymptotic densities of n ∈ N for which p(n) is even, resp. odd, are
both 1

2
[50], but it is still unknown whether either of these sets even has a

positive density. However, Subbarao [58] conjectured that for every arithmetic
progression t (mod m), there are infinitely many even and odd values of the
partition function. This was proven by Ono [48] for even and by Radu [54]
for odd values. Adapting the methods of Radu’s proof, Ahlgren and Kim [1]
showed analogous results for the mock theta functions f(q) and ω(q), as well
as for other classes of modular forms, including (classical) eta-quotients.

By considering instead the number of partitions in which all parts are
congruent to a certain residue ±g (mod δ) for fixed δ ∈ Z+ and g ∈ {0, . . . , δ},
we obtain the functions

ηδ,g(z) := q
δ
2
P2( gδ )

∏
m>0

m≡g (mod δ)

(1− qm)
∏
m>0

m≡−g (mod δ)

(1− qm) ,

where P2 denotes the second Bernoulli polynomial (see Section IV.1). Quotients
of products of these functions are called generalized eta-quotients.

15
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In Chapter IV, we apply Radu’s approach to show that, for a given gener-
alized eta-quotient, the Fourier coefficients on linear progressions of the form
t (mod m) cannot vanish modulo any prime if t satisfies certain quadratic
equations depending on m and certain parameters of the eta-quotient. This
recovers known results for classical eta-quotients like the partition function, but
also yields linear incongruences for more general weakly holomorphic modular
forms, such as the Rogers-Ramanujan functions. The precise statement of the
theorem and several examples and applications are given in Section IV.1.

I.2.4 Motivic L-functions and period polynomials

Using the functional equation (I.1.11) for the completed L-function of a Hecke
eigenform f , one can show that the period polynomial rf defined in (I.1.9)
satisfies a symmetry of the form

rf (z) = −ikε(f)
(√

Nz
) k−2

2
rf

(
− 1

Nz

)
.

Jin, Ma, Ono, and Soundarajan [33] showed that for all Hecke eigenforms f
of weight k and level N , all zeros of rf lie on the circle |z| = 1√

N
and they tend

to be equidistributed as k ·N →∞ (meaning that k or N goes to infinity). This
result is known as the “Riemann hypothesis for period polynomials” (RHPP)
and was shown for the odd part of the period polynomial by Conrey, Farmer,
and Imamoglu [18] and for N = 1 by El-Guindy and Raji [25].

Chapter V is joint work with Wenjun Ma and Jesse Thorner and concerns
polynomials associated to motivic L-functions, in particular the symmetric
power L-functions defined in (I.1.12). We associate to a motivic L-function
of odd motivic weight a polynomial whose coefficients are given by special
values (including all the critical values) of the L-function and certain data
associated to the motive (see Section V.2 for details). We then show that, under
certain automorphicity assumptions on the motive stated in Hypothesis V.5,
this polynomial has all (resp. almost all) its zeros equidistributed on the com-
plex unit circle as the conductor (resp. weight) of the motive is sufficiently large.

For simplicity, we now focus on odd symmetric power L-functions of rational
elliptic curves. Let E is an elliptic curve of conductor N over Q and L(s, SymnE)
be its symmetric power L-function (see for example [45]). Then E corresponds
to a Hecke eigenform fE of weight 2 and level N by the Modularity Theorem
[6] and we have

L(s, SymnE) = L(s, SymnfE).

16
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In this case, our polynomial takes the form (see Section V.3 for more general
motives)

pSym2m+1E(z) :=
2m∑
j=0

[
m∏
`=0

(
2m− `

m− |m− j|

)]
Λ(2m+ 1− j, Sym2m+1E)zj.

For example, we consider the odd symmetric powers of the weight 2 and
and level 11 Hecke eigenform

f(τ) := η(τ)2η(11τ)2 = q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 − 2q9 + . . .

associated to the elliptic curve with Weierstrass equation

E : Y 2 + Y = X3 −X2 − 10X − 20.

The central values of the completed symmetric power L-functions stored in the
L-functions and Modular Forms Database [39] are given by

Λ(Sym1(f), 1) = Λ(f, 1) ≈ 0.267985,

Λ(Sym3(f), 2) ≈ 24.473227,

Λ(Sym5(f), 3) = 0,

Λ(Sym7(f), 4) = 0.

We also have to assume that the symmetric power L-functions satisfy Hypothesis
V.5, which is predicted to be true by the Langlangs Program. Then we obtain
the polynomials

pSym1(f)(z) ≈ 0.267985,

pSym3(f)(z) ≈ 44.903139 + 48.946454z + 44.903139z2,

pSym5(f)(z) ≈ 7.668627 · 106 + 5.161982 · 106z

− 5.161982 · 106z3 − 7.668627 · 106z4,

pSym7(f)(z) ≈ 1.814679 · 1016 + 6.551373 · 1015z + 1.538730 · 1014z2

− 1.538730 · 1014z4 − 6.551373 · 1015z5 − 1.814679 · 1016z6.

These were computed in SAGE [57] and have zero sets

ZSym1(f) = { } ,
ZSym3(f) ≈ {−0.545023± 0.838421i} ,
ZSym5(f) ≈ {±1,−0.336565± 0.941660i} ,
ZSym7(f) ≈ {±1,−0.596246± 0.802802i, 0.415735± 0.909486i, } .

We observe that all of these zeros lie in the unit circle, which illustrates Theorem
V.1.

17



Chapter II

On Divisors of Modular Forms

This chapter is based on a manuscript submitted for publication and is joint
work with Prof. Dr. Kathrin Bringmann, Prof. Dr. Ben Kane, Prof. Dr. Ken
Ono and Prof. Dr. Larry Rolen [10].

II.1 Introduction and statement of results

As usual, let J(τ) be the SL2(Z) Hauptmodul defined by

J(τ) =
∞∑

n=−1

c(n)e2πinτ :=
E4(τ)3

∆(τ)
− 744 = e−2πiτ + 196884e2πiτ + · · · ,

where Ek(τ) := 1 − 2k
Bk

∑∞
n=1 σk−1(n)e2πinτ is the weight k ∈ 2N Eisenstein

series, σ`(n) :=
∑

d|` d
`, Bk is the kth Bernoulli number, and ∆(τ) := (E4(τ)3−

E6(τ)2)/1728. By Moonshine (for example, see [DGO15]), J(τ) is the McKay-
Thompson series for the identity (i.e., its coefficients are the graded dimensions
of the Monster module V \). Moonshine also offers the striking infinite product

J(z)− J(τ) = e−2πiz
∏

m>0, n∈Z

(
1− e2πimze2πinτ

)c(mn)
,

the denominator formula for the Monster Lie algebra. Here we let τ, z ∈ H. This
formula is equivalent to the following identity of Asai, Kaneko, and Ninomiya
(see Theorem 3 of [AKN97])

Hz(τ) :=
∞∑
n=0

jn(z)e2πinτ =
E4(τ)2E6(τ)

∆(τ)

1

J(τ)− J(z)
= − 1

2πi

J ′(τ)

J(τ)− J(z)
.

(II.1.1)
The functions jn(τ) form a Hecke system. Namely, if we let j0(τ) := 1 and
j1(τ) := J(τ), then the others are obtained by applying the normalized Hecke
operator T (n)

jn(τ) := j1(τ) | T (n). (II.1.2)

18
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Remark 1. The functions Hz(τ) and jn(τ) played central roles in Zagier’s
[Zag02] seminal paper on traces of singular moduli and the Duncan-Frenkel
work [DF11] on the Moonshine Tower. Carnahan [Car12] has obtained similar
denominator formulas for completely replicable modular functions.

If z ∈ H, then Hz(τ) is a weight 2 meromorphic modular form on SL2(Z)
with a single pole (modulo SL2(Z)) at the point z. Using these functions, the
divisor modular form of a normalized weight k meromorphic modular form f(τ)
on SL2(Z) was defined in [BKO04] as1

fdiv(τ) :=
∑

z∈SL2(Z)\H

ezordz(f)Hz(τ), (II.1.3)

where ez := 2/# Stabz (SL2(Z)) With Θ := 1
2πi

d
dτ

, Theorem 1 of [BKO04]
asserts that

fdiv(τ) = −Θ(f (τ))

f(τ)
+
kE2(τ)

12
. (II.1.4)

Although these results rely on the fact that X0(1) has genus 0, there is
a natural extension for congruence subgroups. This extension requires polar
harmonic Maass forms, which are harmonic Maass forms with poles in the
upper half-plane (see [BFOR] for details). Here we consider the modular
curves X0(N). For n ∈ N, we define a Hecke system of Γ0(N) harmonic Maass
functions jN,n(τ) in Section II.3 which generalize the jn(τ).

In Section III.2.3 we construct weight 2 polar harmonic Maass forms H∗N,z(τ)
which generalize the Hz(τ). We have two cases for the H∗N,z(τ), according to
whether z ∈ H or z is a cusp, which we consider separately. The following
theorem summarizes the essential properties of these functions when z ∈ H.

Theorem II.1. If z ∈ H, then H∗N,z(τ) is a weight 2 polar harmonic Maass
form on Γ0(N) which vanishes at all cusps and has a single simple pole at z.
Moreover, the following are true:

(1) If z ∈ H and Im(τ) > max{Im(z), 1
Im(z)
}, then we have that

H∗N,z(τ) =
3

π [SL2(Z) : Γ0(N)] Im(τ)
+
∞∑
n=1

jN,n(z)e2πinτ .

(2) For gcd(N, n) = 1, we have jN,n(τ) = jN,1(τ) | T (n).

(3) For n | N , we have jN,n(τ) = jN
n
,1(nτ).

1Note that this summation does not include the cusp i∞.
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(4) As n→∞, we have

jN,n (τ) =
∑
λ∈Λτ
λ≤n

∑
(c,d)∈Sλ

e
(
−n
λ
rτ (c, d)

)
e

2πnIm(τ)
λ +Oτ (n) (II.1.5)

for some real numbers rτ (c, d) (see (II.3.2)), Λτ a lattice in R (see (II.3.3)),
and Sλ the set of solutions to Qτ (c, d) = λ for a certain positive-definite
binary quadratic form Qτ (see (II.3.4)).

Four Remarks.
(1) In Theorem II.1 (1), the inequality on Im(τ) is required for convergence.

(2) For N = 1, we have that H∗1,z(τ) = Hz(τ) − E∗2(τ), where E∗2(τ) :=
− 3
πIm(τ)

+ E2(τ) is the usual weight 2 nonholomorphic Eisenstein series, and

we have that j1,n(τ) = jn(τ) + 24σ1(n).

(3) The sums (II.1.5) were introduced by Hardy and Ramanujan [HR18] (see
also [BBY02,Bia95]) to study the Fourier coefficients of 1/E6. Their formulas
have been generalized [BK2, BK3] to negative weight meromorphic modular
forms. Theorem II.1 (4) extends these results to weight 0 where the series are
not absolutely convergent.

(4) Theorem II.1 (4) gives asymptotics for jN,n(z) in the n-aspect. If Im(z) ≥
Im (Mz) for all M ∈ Γ0(N), then

jN,n(z) = e−2πinz +
∑
c≥1
N |c

∑
d∈Z

gcd(c,d)=1
|cz+d|2=1

e

(
n
d− a
c

)
e2πinz +Oz(n) (II.1.6)

as n→∞.

The second case we consider are those H∗N,ρ(τ) where ρ is a cusp of X0(N).
These functions are compatible with the H∗N,z(τ) considered in Theorem II.1.
More precisely, since z 7→ H∗N,z(τ) is continuous (even harmonic) and Γ0(N)-
invariant, it follows that

H∗N,ρ(τ) := lim
z→ρ

H∗N,z(τ) (II.1.7)

is well-defined and only depends on the equivalence class of ρ. The next
result summarizes these functions’ properties. We use the Kloosterman sums
Ki∞,ρ(0,−n; c) of (II.2.4) and the weight 2 harmonic Eisenstein series E∗2,N,ρ(τ)
for Γ0(N) defined in Section III.2.3. These have constant term 1 at ρ and
vanish at all other cusps.
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Theorem II.2. We have that H∗N,ρ(τ) = −E∗2,N,ρ(τ). Moreover, the following
are true:

(1) We have

H∗N,ρ(τ) =
3

π [SL2(Z) : Γ0(N)] Im(τ)
− δρ,∞ +

∞∑
n=1

jN,n(ρ)e2πinτ , with

jN,n(ρ) := lim
τ→ρ

jN,n(τ) =
4π2n

`ρ

∑
c≥1
N |c

Ki∞,ρ(0,−n; c)

c2
,

where `ρ denotes the cusp width of ρ and δρ,∞ := 1 if ρ = i∞ and 0
otherwise.

(2) For gcd(N, n) = 1, we have jN,n(ρ) = limτ→ρ jN,1(τ) | T (n).

(3) For n | N , we have jN,n(ρ) = limτ→ρ jN
n
,1(nτ).

Two Remarks.
(1) Recall that the Fourier expansion in Theorem II.1 (1) is not valid as z → i∞.

(2) The jN,n(ρ) are divisor sums, which we leave to the interested reader
to verify. From a generalization of the Weil bound (II.3.9) one can obtain

jN,n(ρ) = O(n
3
2 ).

We turn to the task of extending (II.1.4) to generic Γ0(N). Suppose that f
is a weight k meromorphic modular form on Γ0(N). In analogy with (II.1.3),
we define the divisor polar harmonic Maass form

fdiv(τ) :=
∑

z∈X0(N)

eN,zordz(f)H∗N,z(τ), (II.1.8)

where eN,z := 2/# Stabz(Γ0(N)) and eN,ρ := 1 when ρ is a cusp. Generalizing
(II.1.4), we show the following.

Theorem II.3. If S2(Γ0(N)) denotes the space of weight 2 cusp forms on
Γ0(N), then

fdiv(τ) ≡ k

4π Im(τ)
− Θ(f(τ))

f(τ)
(mod S2(Γ0(N))). (II.1.9)
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Three Remarks.
(1) The coefficient of 1/ Im(τ) in H∗N,z(τ) is independent of z. By the valence
formula, summing over every element of X0(N) in the definition of fdiv(τ)
multiplies this constant by k

12
[SL2(Z) : Γ0(N)], giving the nonholomorphic

correction term on the right-hand side of Theorem II.3.

(2) At first glance, definitions (II.1.3) and (II.1.8) might appear different for
N = 1. Indeed, H∗1,z(τ) = Hz(τ)− E∗2(τ), and the sum in (II.1.8) includes the
cusp i∞ whereas (II.1.3) omits it. The quasimodular Eisenstein series E2(τ)
in (II.1.4) and the valence formula guarantee that they coincide.

(3) The formula in Theorem II.3 has already been obtained by Choi using a
regularized inner product due to Petersson, but without relating the Fourier
coefficients of fdiv to the polar harmonic Maass forms H∗N,z (see Theorem 1.4
of [Cho10]).

Theorem II.3 can be used to numerically compute divisors of meromorphic
modular forms f(τ), which, in general, is a difficult task (for example, see

[Del05]). The series −Θ(f(τ))
f(τ)

is the logarithmic derivative of f(τ), and this fact

converts the points z ∈ H in the divisor of f(τ) into simple poles. These can
be identified by the asymptotic properties of the coefficients of H∗N,z(τ) given
in Theorem II.1. This follows from Theorem II.3 and the fact that coefficients
of cusp forms satisfy Deligne’s bound. In the case of the modular functions
j(τ)−α, where α ∈ C, this has been carried out recently by Alwaise [Alw]. The
method is based on the following immediate corollary to Theorems II.1–II.3.

Corollary II.4. Suppose that f(τ) is a meromorphic modular form of weight k
on Γ0(N) whose divisor is not supported at cusps. Let y1 be the largest imaginary

part of any points in the divisor of f(τ) lying in H. Then if −Θ(f(τ))
f(τ)

=:∑
n�−∞ a(n)qn (q = e2πiτ ), we have that

y1 = lim sup
n→∞

log |a(n)|
2πn

. (II.1.10)

Two Remarks.
(1) We require lim sup in Corollary II.4 because the a(n) can vanish on arithmetic
progressions.

(2) It would be interesting to develop a practical algorithm for numerically
computing modular form divisors. The idea would be to carefully peel away
poles of fdiv(τ) in descending order until one is left with a linear combination
of functions E∗N,ρ(τ).
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Example II.5. For the Eisenstein series E4(τ), we have

−Θ(E4(τ))

E4(τ)
= −240q + 53280q2 − 12288960q3 + 2835808320q4 + · · · .

The sequence {b(n)}n≥1 =
{

log |a(n)|
2πn

}
n≥1

converges rapidly. Indeed, b(2) =

0.866066794 . . . , and b(10) = 0.866025404 . . . matches the first 16 digits of the
limiting value. The divisor of E4(τ) is supported on a zero at ω := (−1+

√
−3)/2.

By (II.1.6), since ω lies on the unit circle (implying that the second term on
the right-hand side of (II.1.6) appears) for large n, a(n) should very nearly be
1
3

(e−2πinω + 2e2πinω) = e−2πinω, which is very easily seen numerically.

Example II.6. We consider f(τ) := E4(2τ)+ η16(2τ)
η8(τ)

, where η(τ) is Dedekind’s

eta-function. By the valence formula for Γ0(2), it has a single zero, say z0, in
X0(2). We find that

−Θ(f(τ))

f(τ)
= −q − 495q2 + 659q3 + 113233q4 − 261211q5 + · · · .

After the first 3000 terms the sequence
{

log |a(n)|
2πn

}
n≥1

stabilizes and offers

Im(z0) ≈ 0.4357. As f(τ) has real coefficients and there is only one zero,
−z0 must be Γ0(2)-equivalent to z0. We choose the fundamental domain{

z ∈ H: −1

2
≤ Re(z) ≤ 1

2
and ∀M ∈ Γ0(2):

(
Im (Mz) ≥ Im(z) and Im (Mz) > Im(z) if Re(z) < 0

)}
.

Thus, either Re(z) ∈ {0, 1
2
}, or z lies on the arc |2z − 1| = 1. The first two

cases are easily excluded by the sign patterns of a(n), and the zero on the arc is
easily approximated as z0 ≈ 0.2547 + 0.4357i.

This paper is organized as follows. In Section III.2.3 we construct the weight
2 polar harmonic Maass forms H∗N,z(τ). In Section II.3 we relate their Fourier
coefficients to the values of the weight 0 weak Maass forms at τ = z, proving
Theorems II.1, II.2, and II.3.
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II.2 Weight 2 Polar Harmonic Maass forms

II.2.1 The H∗N,z(τ) when z ∈ H
Define for z, τ ∈ H and s ∈ C with Re(s) > 0

PN,s(τ, z) :=
∑

M∈Γ0(N)

ϕs (Mτ, z)

j (M, τ)2 |j (M, τ) |2s
(II.2.1)

with j(( a bc d ) , τ) := cτ + d and

ϕs(τ, z) := Im(z)1+s(τ − z)−1(τ − z)−1 |τ − z|−2s .

These functions were introduced and investigated in the z-variable in [BK],
where it was shown that these are polar harmonic Maass forms. These functions
are allowed to have poles in the upper half plane instead of only at the cusps.
In this paper, we are interested in properties of PN,s(τ, z) as functions of τ . A
direct calculation shows that for L ∈ Γ0(N)

PN,s (Lτ, z) = j (L, τ)2 |j (L, τ) |2sPN,s(τ, z).

In [BK] it was shown, by a lengthy calculation, that the function PN,s(τ, z)
has an analytic continuation to s = 0, which we denote by Im(z)Ψ2,N (τ, z). Let
Hk(Γ0(N)) be the space of weight k polar harmonic Maass forms with respect to
Γ0(N). Lemma 4.4 of [BK] then states that z 7→ Im(z)Ψ2,N (τ, z) ∈ H0(Γ0(N)).
In the τ variable, these functions are also polar harmonic Maass forms, as the
next proposition shows. For this, for w ∈ C, let e(w) := e2πiw, and

K(m,n; c) :=
∑

a,d (mod c)
ad≡1 (mod c)

e

(
md+ na

c

)
.

Moreover, Ik and Jk denote the usual I- and J-Bessel functions. The following
proposition can be obtained by a careful inspection of the proof of Theorem
3.1 of [BK].

Proposition II.7. We have that τ 7→ Im(z)Ψ2,N(τ, z) ∈ H2(Γ0(N)). For
Im(τ) > max{Im(z), 1

Im(z)
}, its Fourier expansion (in τ) has the form

Im(z)Ψ2,N(τ, z) = − 6

[SL2(Z) : Γ0(N)] Im(τ)
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− 2π
∑
m≥1

(
e−2πimz − e−2πimz

)
e2πimτ − 8π3

∑
m≥1

m
∑
c≥1
N |c

K(m, 0; c)

c2
e2πimτ

− 4π2
∑
m≥1

∑
n,c≥1
N |c

√
m

n

K(m,−n; c)

c
I1

(
4π
√
mn

c

)
e2πinze2πimτ

− 4π2
∑
m≥1

∑
n,c≥1
N |c

√
m

n

K(m,n; c)

c
J1

(
4π
√
mn

c

)
e−2πinze2πimτ .

We then set

H∗N,z(τ) := −Im(z)

2π
Ψ2,N(τ, z). (II.2.2)

Remark 2. We have, as τ → z,

H∗N,z(τ) =
1

2πieN,z

1

τ − z
+O(1) (II.2.3)

with eN,z as defined after (II.1.8).

II.2.2 The H∗N,z(τ) for cusps

We require the Fourier expansion of the functions H∗N,ρ(τ) defined in (II.1.7).
For any cusp ρ of Γ0(N), denote by `ρ the cusp width and let Mρ be a matrix
in SL2(Z) with ρ = Mρi∞. For two cusps a, b of Γ0(N), the generalized
Kloosterman sums are

Ka,b(m,n; c) :=
∑

( a bc d )∈Γ`a∞\M−1
a Γ0(N)Mb/Γ

`b∞

e

(
md

`bc
+
na

`ac

)
(II.2.4)

with Γ∞ := {± ( 1 n
0 1 ) : n ∈ Z}. Note that we have Ki∞,i∞(m,n; c) = K(m,n; c).

Lemma II.8 (Lemma 5.4 of [BK]). We have

H∗N,ρ(τ) =
3

π [SL2(Z) : Γ0(N)] Im(τ)
− δρ,∞+

4π2

`ρ

∑
n≥1

n
∑
c≥1

Kρ,i∞(n, 0; c)

c2
e2πinτ .

The Fourier expansions in Lemma II.8 yield a relation with the harmonic
weight 2 Eisenstein series E∗2,N,ρ(τ) for Γ0(N). For Re(s) > 0, define

E∗2,N,ρ,s(τ) :=
∑

M∈Γρ\Γ0(N)

j (MρM, τ)−2 |j (MρM, τ)|−2s . (II.2.5)
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Using the Hecke trick, it is well-known (cf. Satz 6 of [Hec24]) that E∗2,N,ρ,s(τ)
has an analytic continuation to s = 0, denoted by E∗2,N,ρ(τ). Applying equations
(5.3) and (5.4) in Theorem 1 of [Sma65] with v = 1, Aj = Mρ, Γ=Γ0(N), and
µ = 0 to obtain the Fourier expansion of E∗2,N,ρ, we see that

H∗N,ρ(τ) = −E∗2,N,ρ(τ). (II.2.6)

II.3 The jN,n(z) and the proofs of Theorems

II.1 and II.2

II.3.1 The functions jN,n(z)

The functions jN,n(z) are constructed as analytic continuations of Niebur’s
Poincaré series [Nie73]. To be more precise, set for n ∈ N and Re(s) > 1

FN,−n,s(z) :=
∑

M∈Γ∞\Γ0(N)

e (−nRe(Mz)) Im(Mz)
1
2 Is− 1

2
(2πn Im(Mz)) .

These functions are weak Maass forms of weight 0; instead of being annihilated
by ∆0, they have eigenvalue s(1− s). To obtain an analytic continuation to
s = 1, one computes the Fourier expansion of FN,−n,s(z) and uses

lim
s→1

y
1
2 Is− 1

2
(2πny) = y

1
2 I 1

2
(2πny) =

1

π
√
n

sinh (2πny) =
e2πny − e−2πny

2π
√
n

.

Proposition II.9 (Theorem 1 of [Nie73]). The function FN,−n,s(z) has an
analytic continuation FN,−n(z) to s = 1, and FN,−n(z) ∈ H0(Γ0(N)). It has the
Fourier expansion

FN,−n(z) =
e−2πinz − e−2πinz

2π
√
n

+ cN(n, 0)

+
∑
m≥1

(
cN(n,m)e2πimz + cN(n,−m)e−2πimz

)
,

where the coefficients are given by

cN(n,m) :=
∑
c≥1
N |c

K(m,−n; c)

c
×


1√
m
I1

(
4π
√
mn
c

)
if m > 0,

2π
√
n

c
if m = 0,

1√
|m|
J1

(
4π
√
|m|n
c

)
if m < 0.
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We then define the functions jN,n(z) by

jN,n(z) := 2π
√
nFN,−n(z). (II.3.1)

For N = 1, we recover the jn(z) from the introduction up to the constant
2π
√
nc1(n, 0) = 24σ1(n).

II.3.2 Proofs of Theorems II.1 and II.2

In order to formally state Theorem II.1 (4), for an arbitrary solution a, b ∈ Z
to ad− bc = 1, we define

rz(c, d) := ac|z|2 + (ad+ bc) Re(z) + bd, (II.3.2)

Λz :=
{
α2|z|2 + β Re(z) + γ2 > 0 : α, β, γ ∈ Z

}
, (II.3.3)

Qz(c, d) := c2|z|2 + 2cdRe(z) + d2,

Sλ := {(c, d) ∈ NZ× Z : c ≥ 0, gcd(c, d) = 1, and Qz(c, d) = λ} .
(II.3.4)

Note that although rz(c, d) is not uniquely determined, e(−nrz(c, d)/Qz(c, d))
is well-defined.

Proof of Theorem II.1. (1) For n ∈ N, inspecting the expansions in Propo-
sitions II.7 and II.9 yields that 2π

√
nFN,−n(z) is the coefficient of e2πinτ in

− 1
2π

Im(z)Ψ2,N(τ, z), yielding the claim.
(2) Since gcd(N, n) = 1, T (n) commutes with the action of Γ0(N), and so it
suffices to show that (by analytic continuation) fn(z) = f1(z) | T (n), where

fn(z) = fn,s(z) := e (−nRe(z)) (n Im(z))
1
2 Is− 1

2
(2πn Im(z)) .

Let f be a nonholomorphic modular form of weight 0 with Fourier expansion

f(z) =
∑
m∈Z

a(Im(z),m)e2πimz.

Then for gcd(n,N) = 1, the action of T (n) on f is given by

f(z) | T (n) = n
∑
m∈Z

∑
d|gcd(m,n)

a
(
d2

n
Im(z), mn

d2

)
d

e2πimz. (II.3.5)

Write fn(z) = f ∗n(Im(z))e−2πinz with f ∗n(y) := (ny)
1
2 Is− 1

2
(2πny)e−2πny. The

mth coefficient in (II.3.5) vanishes unless m = −n. Moreover, only d = n
contributes, giving
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f1(z) | T (n) = f ∗n (n Im(z)) e−2πinz

= (n Im(z))
1
2 Is− 1

2
(2πn Im(z)) e−2πinRe(z) = fn(z).

(3) For n | N , we rewrite∑
M∈Γ∞\Γ0(N)

fn(Mz) =
∑

M∈Γ∞\Γ0(N)

f1(nMz).

Now, with M = ( a bc d ) ∈ Γ0(N), we have nMz = anz+bn
c
n
nz+d

and
(
a bn
c
n

d

)
runs

through Γ∞ \ Γ0(
N
n

) if M runs through Γ∞ \ Γ0(N), implying the claim for
n | N .
(4) We first rewrite the claimed asymptotic formula in terms of the corresponding
points Mz with M = ( a bc d ) ∈ Γ∞\Γ0(N). Directly plugging in and simplifying
yields rz(c, d)/Qz(c, d) = Re(Mz) and Im(z)/Qz(c, d) = Im(Mz), so the claim
in Theorem II.1 (4) is equivalent to

jN,n(z) =
∑

M∈Γ∞\Γ0(N)
n Im(Mz)≥Im(z)

e−2πinMz +Oz(n). (II.3.6)

In order to show (II.3.6), we only expand the Fourier expansion for large c.
That is to say, we write

jN,n(z) = 2
∑

1≤c≤
√
n

Im(z)

N |c

∑
d∈Z

gcd(c,d)=1

e(−nRe(Mz)) sinh(2πn Im(Mz))

+ 2π
√
n
∑

c>
√
n

Im(z)

N |c

∑
m≥1

K(m,−n; c)√
mc

I1

(
4π
√
mn

c

)
e2πimz

+ 4π2n
∑

c>
√
n

Im(z)

N |c

K(0,−n; c)

c2

+ 2π
√
n
∑

c>
√
n

Im(z)

N |c

∑
m≥1

K(−m,−n; c)√
mc

J1

(
4π
√
mn

c

)
e−2πimz.

(II.3.7)

In order to obtain (II.3.6), we split the main terms with n Im(Mz) ≥ Im(z)
off and rewrite

2 sinh(2πn Im(Mz)) = e2πn Im(Mz) − e−2πn Im(Mz). (II.3.8)
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The second term above is obviously bounded. Since

Im(z) ≤ n Im(Mz) =
n Im(z)

c2 Im(z)2 + (d+ cRe(z))2

implies that c ≤
√
n/ Im(z) �z

√
n and |d| ≤ |cRe(z)| +

√
n Im(z) �z

√
n,

the contribution to the error from the sum of the second terms in (II.3.8) yields
an error of at most Oz(n).

For the second, third, and fourth sums in (II.3.7), we use the Weil bound
for Kloosterman sums

|K(m,−n; c)| ≤
√

gcd(m,n, c)σ0(c)
√
c�

{√
nc

1
2

+ε if m = 0,√
|m|c 1

2
+ε if m 6= 0.

(II.3.9)

For the third sum in (II.3.7), this gives

2π
√
n
∑

c>
√
n

Im(z)

N |c

K(0,−n; c)

c2
� n

∑
c>

√
n

Im(z)

N |c

c−
3
2

+ε �z n
3
4

+ε. (II.3.10)

Next note that for x ≥ 0 we have |J1(x)| ≤ I1(x) by their series expansions.

Since x 7→ I1(x)
x

is monotonically increasing and grows at most exponentially,
the contribution from the second and fourth terms in (II.3.7) may be bounded
by, using (II.3.9),

�
∑

c>
√
n

Im(z)

N |c

∑
m≥1

|K(±m,−n; c)|√
mc

I1

(
4π
√
mn

c

)
e−2πm Im(z)

�
√
n
∑

c>
√
n

Im(z)

N |c

∑
m≥1

|K(±m,−n; c)|
c2

I1 (4π Im(z)
√
m)

4π Im(z)
√
m

e−2πm Im(z)

�
√
n
∑
m≥1

I1

(
4π Im(z)

√
m
)
e−2πm Im(z) �

√
n.

(II.3.11)

It remains to bound the terms in the first sum in (II.3.7) with |cz+ d|2 > n.
Since each term gives a constant contribution, the terms with |d| <

√
n +

|cRe(z)| give an error term of at most Oz(n).

We finally assume that |d| ≥
√
n+ |cRe(z)|. Since x 7→ sinh(x)

x
is monotoni-

cally increasing and |cz + d|2 > n, the remaining terms contribute∣∣∣∣∣ ∑
c≤
√
n

Im(z)
N|c

∑
|d|≥
√
n+|cRe(z)|

gcd(c,d)=1

e (−nRe (Mz)) sinh (2πn Im (Mz))

∣∣∣∣∣
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≤
∑

c≤
√
n

Im(z)

∑
|d|≥
√
n+|cx|

sinh

(
2πn Im(z)

|cz + d|2

)
≤

∑
c≤

√
n

Im(z)

∑
|d|≥
√
n

sinh

(
2πn Im(z)

d2

)

≤ 2π
√
n
∑
d≥
√
n

n

d2

sinh (2π Im(z))

2π Im(z)
= Oz(n).

This implies that the terms in the first sum in (II.3.7) with |cz + d|2 > n
contribute Oz(n).

Remark.
By replacing c >

√
n/ Im(z) with c > C in (II.3.10) and (II.3.11), one finds

that the terms decay like C−
1
2

+ε times a power of n. For c ≤ C, the expansions
in Proposition II.9 decay exponentially in m.

Proof of Theorem II.2. (1) Let Ks denote the usual K-Bessel function. Ex-
panding FN,−n,s(z) at the cusp ρ as in Section 3.4 of [Iwa02], we obtain

FN,−n,s (Mρz) =
cρ,s(n, 0)

2s− 1
(Im(z))1−s

+
∑

m∈Z\{0}

cρ,s(n,m)e
2πim

Re(z)
`ρ (Im(z))

1
2 Ks− 1

2

(
2π|m| Im(z)

`ρ

)
,

with

cρ,s(n,m) :=
∑
c≥1

Ki∞,ρ(m,−n; c)×


2

c
√
`ρ
I2s−1

(
4π
√
mn

`ρc

)
if m > 0,

2πsns−
1
2

`sρc
2sΓ(s)

if m = 0,

2

c
√
`ρ
J2s−1

(
4π
√
|m|n

`ρc

)
if m < 0,

The right-hand side is analytic at s = 1, which gives the expansion of FN,−n(z)

at ρ. Plugging in K 1
2
(y) =

√
π
2y
e−y and taking the limit z → i∞, we obtain

jN,n(ρ) = 2π
√
n lim
s→1+

cρ,s(n, 0) =
4π2n

`ρ

∑
c≥1

Ki∞,ρ(0,−n; c)

c2
. (II.3.12)

We have Ki∞,ρ(0,−n; c) = Kρ,i∞(n, 0; c), since M = ( a bc d ) runs through

Γ0(N)Mρ/Γ
`ρ
∞ iff −M−1 =

( −d b
c −a

)
runs through Γ

`ρ
∞\M−1

ρ Γ0(N) in (II.2.4).
Hence (II.2.6) yields the claim.
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Parts (2) and (3) follow by taking limits τ → ρ in Theorem II.1 (2) and (3),
respectively. Using the growth in n of jN,n(ρ) from (II.3.12), these limits may
be taken termwise.

Proof of Theorem II.3. We show that the difference of both sides has no poles
in H and decays towards the cusps. We start by considering the points in H.
One easily computes that the residue of −Θ(f(τ))

f(τ)
at τ = z equals 1

2πi
ordz(f).

Using (II.2.3) gives that the principal part at z agrees. At a cusp ρ one similarly

sees that Θ(f(τ))
f(τ)

has no pole and its constant term equals ordρ(f). Using that

the constant term of H∗N,z(τ) at ρ is −1 then gives the claim.
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[Cho10] D. Choi, Poincaré series and the divisors of modular forms, Proc.
Amer. Math. Soc. 138 (2010), no 10, 3393–3403

[Del05] C. Delaunay, Critical and ramification points of the modular
parametrization of an elliptic curve, J. Théor. Nombres Bordeaux 17 (2005),
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Chapter III

Niebur-Poincaré Series and
Traces of Singular Moduli

This chapter is based on a manuscript submitted for publication [41].

III.1 Introduction

For a positive discriminant ∆ and an integer k > 1, Zagier [Zag75] introduced
the weight 2k cusp forms (in a different normalization)

fk,∆(τ) :=
∆k− 1

2

2π

∑
Q∈Q∆

Q(τ, 1)−k, (III.1.1)

where Q∆ denotes the set of binary integral quadratic forms of discriminant
∆. The functions fk,∆ were extensively studied by Kohnen and Zagier and
have several applications. For example, they used these functions to construct
the kernel function for the Shimura and Shintani lifts and to prove the non-
negativity of twisted central L-values [KZ81]. Furthermore, the even periods∫ ∞

0

fk,∆(it)t2ndt, (0 ≤ n ≤ k − 1)

of the fk,∆ are rational [KZ84]. Bengoechea [Ben15] introduced analogous
functions for negative discriminants and showed that their Fourier coefficients
are algebraic for small k. These functions are no longer holomorphic, but
have poles at the CM-points of discriminant ∆. They were realized as regu-
larized theta lifts by Bringmann, Kane, and von Pippich [BKvP] and Zemel
[Zem16]. Moreover, Bringmann, Kane, and von Pippich related regularized in-
ner products of the fk,∆ to evaluations of higher Green’s functions at CM-points.

The right-hand side of (III.1.1) does not converge for k = 1. However, one
can use Hecke’s trick to obtain weight 2 analogues of the fk,∆. These were
introduced by Zagier [Zag75] and further studied by Kohnen [KO92]. The aim
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of this paper is to analyze these weight 2 analogues for negative discriminants.
Here we deal with generalizations f ∗d,D,N for a level N , a discriminant d, and
a fundamental discriminant D of opposite sign (see Definition III.3.1). The
f ∗d,D,N transform like modular forms of weight 2 for Γ0(N) and have simple
poles at the Heegner points of discriminant dD and level N . Let QdD,N

denote the set of quadratic forms [a, b, c] of discriminant dD with a > 0 and
N |a, χD the generalized genus character associated to D, and H(d,D,N) the
twisted Hurwitz class number of discriminants d, D and level N (see Subsection
III.2.2 for precise definitions). Then we obtain the following Fourier expansion
(v := Im(τ) throughout).

Theorem III.1. For v >

√
|dD|
2

, we have

f ∗d,D,N(τ) = − 3H(d,D,N)

π [SL2(Z) : Γ0(N)] v

− 2
∑
n≥1

∑
a>0
N|a

Sd,D(a, n) sinh

(
πn
√
|dD|
a

)
e(nτ),

where e(w) := e2πiw for all w ∈ C and

Sd,D(a, n) :=
∑

b (mod 2a)

b2≡dD (mod 4a)

χD

([
a, b,

b2 − dD
4a

])
e

(
nb

2a

)
.

Remark 3. The exponential sums Sd,D also occur for example in [DIT11] and
[KO92].

Note that we obtain a non-holomorphic term in the Fourier expansion of
f ∗d,D,N , just like in the case of the non-holomorphic weight 2 Eisenstein series E∗2
(see Subsection III.2.1). Therefore, in contrast to the higher weight case, the
f ∗d,D,N are in general no longer meromorphic modular forms, but polar harmonic
Maass forms. This class of functions is defined and studied in Subsection III.2.3.

We also use a different approach to compute the coefficients of the f ∗d,D,N ,
writing them as traces of certain Poincaré series denoted by H∗N(z, ·) (see
Proposition III.8). The H∗N (z, ·) are weight 2 analogues of Petersson’s Poincaré
series and were introduced by Bringmann and Kane [BK16] to obtain an explicit
version of the Riemann-Roch Theorem in weight 0. We obtain the following
different Fourier expansion of the f ∗d,D,N , realizing their coefficients as twisted
traces of the Niebur-Poincaré series jN,n (see Definition III.2.1 and Theorem
III.7).
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Theorem III.2. For v > max

{√
|dD|
2

, 1

}
, we have

f ∗d,D,N(τ) = − 3H(d,D,N)

π [SL2(Z) : Γ0(N)] v
−
∑
n>0

trd,D,N (jN,n) e(nτ).

An interesting phenomenon occurs when Γ0(N) has genus 0. Subgroups
of this type and their Hauptmoduln play a fundamental role in Monstrous
Moonshine (see for example [CN79] for a classical and [DF11] for a more
modern treatment). When we apply the suitably normalized n-th Hecke
operator Tn to the Hauptmodul JN for Γ0(N), then the Niebur-Poincaré series
jN,n coincides with TnJN , up to an additive constant. Zagier [Zag02] showed
that, for discriminants d < 0 and D > 0, the functions

qd +
∑
D>0

trd,D,N(TnJN)qD and q−D +Bn(D, 0) +
∑
d>0

trd,D,N(TnJN)qd

are weakly holomorphic modular forms for Γ0(4N) of weight 1
2

resp. 3
2

in the
Kohnen plus-space. Now summing over n instead of D or d, Theorem III.2
states that the twisted Hecke traces {trd,D,N(TnJN)}n>0 give rise to Fourier

coefficients of the meromorphic modular forms f ∗d,D,N −
H(d,D,N)

[SL2(Z):Γ0(N)]
E∗2 .

We give three applications of Theorem III.2. First, comparing Theorems
III.1 and III.2, we obtain explicit series expressions for traces of Niebur-Poincaré
series.

Corollary III.3. We have

trd,D,N (jN,n) = 2
∑
a>0
N|a

Sd,D(a, n) sinh

(
πn
√
|dD|
a

)
.

Corollary III.3 was obtained by Duke for N = D = 1 ([Du06], Proposition 4)
and Jenkins for N = 1 and D > 1 ([Jen06], Theorems 1.5 and 2.2). Choi, Jeon,
Kang, and Kim [CJKK08] obtained an analogous formula for the subgroups
Γ0(p)+ for p prime, later generalized by Kang and Kim [KK10] to Γ0(N)+ for
arbitrary N .

Next we examine algebraicity properties of the Fourier coefficients of f ∗d,D,N .
Bengoechea [Ben15] showed that for ∆ < 0 and k ∈ {2, 3, 4, 5, 7} (so that
S2k = {0}), the Fourier coefficients of fk,∆ lie in the Hilbert class field of
Q(
√

∆). We have the following extension to the weight 2 case.
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Theorem III.4. If Γ0(N) has genus 0, then the Fourier coefficients of the

meromorphic part of f ∗d,D,N are real algebraic integers in the field Q
(√

D
)

.

Eventually, we compute regularized inner products of meromorphic ana-
logues of the f ∗d,D,N . For this we restrict to the case D = N = 1 and consider
the meromorphic modular forms

fd(τ) := f ∗d,1,1(τ)−H(d, 1, 1)E∗2(τ). (III.1.2)

The usual inner product 〈fd, fδ〉 for negative discriminants d, δ does not converge,
so we need to use a regularization by Bringmann, Kane, and von Pippich.
Moreover, since the fd do not decay like cusp forms towards i∞, we also have to
apply Borcherds’s regularization near the cusp i∞ (see Section III.4 for a precise
definition). We obtain the following evaluations, where J(z) := j1,1(z) − 24
denotes the normalized modular j-invariant.

Theorem III.5. Let d be a negative discriminant and Qd := Qd,1.

(i) If δ < d is another negative discriminant such that δ
d

is not a square, then

〈fd, fδ〉 =
1

2π

∑
Q∈Qd/ SL2(Z)

Q∈Qδ/ SL2(Z)

1

wQwQ
log |J(zQ)− J(zQ)| .

(ii) If neither −d
3

nor −d
4

is a square, then

〈fd, fd〉 =
1

2π

∑
Q∈Qd/ SL2(Z)

log

∣∣∣∣√|d| J ′(zQ)

Q(1, 0)

∣∣∣∣
+

1

2π

∑
Q,Q∈Qd/ SL2(Z)

Q 6=Q

log |J(zQ)− J(zQ)| .

(iii) We have

〈f−3, f−3〉 =
1

18π
log

∣∣∣∣∣
√

3

2
J
′′′

(
1 + i

√
3

2

)∣∣∣∣∣ ,
〈f−4, f−4〉 =

1

8π
log
∣∣∣2J ′′(i)∣∣∣ .

Note that log |J(z)− J(z)| is a Green’s function on the modular curve X0(1).
The double traces over CM-values of Green’s functions occurring in Theorem
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III.5 have been related to heights of Heegner points on modular curves by Gross
and Zagier [GZ86]. Since the fd are modular forms of weight 2, it would be
enlightening to find a geometric interpretation of their inner products and see
how they relate to height functions. In higher weight, Bringmann, Kane, and
von Pippich [BKvP] wrote regularized inner products of the functions fk,∆ for
∆ < 0 in terms of double traces over CM-values of higher Green’s functions, so
we can see Theorem III.5 as an extension of their result to the weight 2 case.

The paper is organized as follows: In Section III.2, we introduce the necessary
notation and definitions. In Section III.3, we prove Theorems III.1, III.2, and
III.4. Eventually, in Section III.4, we compute the regularized inner products,
proving Theorem III.5.
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III.2 Definitions and Preliminaries

III.2.1 General notation

Throughout this paper, we denote variables in the complex upper half-plane H
by τ , z, and % with v := Im(τ), y := Im(z), η := Im(%) and for w ∈ C we write
e(w) := e2πiw. For a matrix M = ( a bc d ) ∈ Γ0(N) and τ ∈ H, we set

Mτ :=
aτ + b

cτ + d
and j(M, τ) := cτ + d.

For each point % ∈ H we let ΓN,% denote the stabilizer of % in Γ0(N) and set

wN,% := 1
2
#ΓN,%. Note that if ρ := 1+i

√
3

2
denotes the sixth order root of unity

in H, then we have

w% := w1,% =


3, if % ∈ SL2(Z)ρ,

2, if % ∈ SL2(Z)i,

1, otherwise.
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Furthermore, we define the divisor sum function σ(m) :=
∑

d|m d and the
weight 2 Eisenstein series

E2(τ) := 1− 24
∑
m≥1

σ(m)e(mτ),

as well as its non-holomorphic completion

E∗2(τ) := − 3

πv
+ E2(τ),

which transforms like a weight 2 modular form for SL2(Z). In general, we will
use a star to denote non-holomorphic modular forms (cf. Proposition III.8 and
Definition III.3.1).

III.2.2 Quadratic forms and traces of singular moduli

We denote an integral binary quadratic form Q(X, Y ) = aX2 + bXY + cY 2 ∈
Z[X, Y ] by Q = [a, b, c]. The group SL2(Z) acts on the set of binary quadratic
forms via (

Q ◦
(
α β
γ δ

))
(X, Y ) := Q(αX + βY, γX + δY ), (III.2.1)

leaving the discriminant ∆ = b2 − 4ac invariant. For a positive integer N and
a discriminant ∆, we write Q∆,N for the set of all binary integral quadratic
forms Q = [a, b, c] of discriminant ∆ with a > 0 and N |a. Then the group
Γ0(N) acts on Q∆,N . For ∆ < 0 and Q ∈ Q∆,N , we denote by zQ the Heegner
point of Q, which is the unique zero of Q(τ, 1) in H.

For ∆ < 0, we consider a splitting ∆ = d ·D into a discriminant d and a
fundamental disriminant D that are both congruent to squares modulo 4N
(meaning that d,D ≡ 0 or 1 (mod 4) and D is not a proper square multiple
of an integer congruent to 0 or 1 (mod 4)) and denote by χD the generalized
genus character corresponding to the decomposition ∆ = d ·D as defined in
[GKZ87].

Definition III.2.1. For a Γ0(N)-invariant function g : H→ C, we define the
twisted trace of singular moduli of discriminants d and D of g as

trd,D,N(g) :=
∑

Q∈QdD,N/Γ0(N)

χD(Q)

wN,Q
g(zQ),
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where wN,Q := wN,zQ . Moreover, we call

H(d,D,N) := trd,D,N(1) =
∑

Q∈QdD,N/Γ0(N)

χD(Q)

wN,Q

the Hurwitz class number of discriminants d and D and level N .

III.2.3 Polar Harmonic Maass Forms

Now we define polar harmonic Maass forms and study their elliptic expansions,
which we will need to compute the regularized inner products in Section III.4.
See [BFOR], Section 13.3 for an introduction to polar harmonic Maass forms
and their applications.

Definition III.2.2. For k ∈ Z, a polar harmonic Maass form of weight k for
Γ0(N) is a continuous function F : H→ C∪{∞} which is real-analytic outside
a discrete set of points and satisfies the following conditions:

i) For every M ∈ Γ0(N) and τ ∈ H, we have

F (Mτ) = j(M, τ)kF (τ).

ii) The function F is annihilated by the weight k hyperbolic Laplacian

∆k := −v2

(
∂2

∂u2
+

∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂v

)
.

iii) For every z ∈ H, there exists an n ∈ N0 such that (τ−z)nF (τ) is bounded
in some neighborhood of z.

iv) The function F grows at most linearly exponentially at the cusps of
Γ0(N).

We denote by Hk(N) the space of weight k polar harmonic Maass forms for
Γ0(N).

Polar harmonic Maass forms have elliptic expansions around every point
% ∈ H, which converge if

X%(τ) :=
τ − %
τ − %

(III.2.2)

is sufficiently small. These can be seen as counterparts to the more common
q-series expansions at the cusps and also break into two pieces.
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Proposition III.6 (Proposition 2.2 of [BK16], see also Subsection 2.3 of
[BKvP]). A polar harmonic Maass form F of weight k ≤ 0 has an expansion
around each point % ∈ H of the form F = F+

% + F−% , where the meromorphic
part F+

% is given by

F+
% (τ) := (τ − %)−k

∑
n�−∞

A+
F,%(n)Xn

% (τ) (III.2.3)

and the non-meromorphic part F−% by

F−% (τ) := (τ − %)−k
∑
n�∞

A−F,%(n)β0

(
1− |X%(τ)|2; 1− k,−n

)
Xn
% (τ). (III.2.4)

These expressions converge for |X%(τ)| � 1. Here, we have that

β0 (w; a, b) := β (w; a, b)− Ca,b with Ca,b :=
∑

0≤j≤a−1
j 6=−b

(
a− 1

j

)
(−1)j

j + b
,

where the incomplete β-function is defined by β(w; a, b) :=
∫ w

0
ta−1(1− t)b−1dt.

We refer to the terms in (III.2.3) and (III.2.4) which grow as τ → % as the
principal part of F around %.

Remark 4. The hyperbolic Laplacian splits as

∆k = −ξ2−k ◦ ξk, where ξk := 2ivk
∂

∂τ
. (III.2.5)

If F satisfies weight k modularity, then ξk(F ) is modular of weight 2 − k.
Moreover, ξk annihilates the meromorphic part of a polar harmonic Maass
form, so that it maps weight k polar harmonic Maass forms to weight 2− k
meromorphic modular forms and its kernel is given by the space of weight k
meromorphic modular forms.

III.2.4 Niebur-Poincaré series

Here we introduce Niebur-Poincaré series and give their explicit Fourier expan-
sion. Following [Nie73], we define for n > 0

FN,−n,s(z) := 2π
√
n

∑
M∈Γ∞\Γ0(N)

e(−nRe(Mz)) Im(Mz)
1
2 Is− 1

2
(2πn Im(Mz)),
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SINGULAR MODULI 42

where Is− 1
2

denotes the I-Bessel function and Γ∞ := {± ( 1 n
0 1 ) : n ∈ Z}. This

series converges absolutely and locally uniformly for Re(s) > 1. The function
FN,−n,s is a Γ0(N)-invariant eigenfunction of the hyperbolic Laplacian with
eigenvalue s(1 − s). Niebur showed that FN,−n,s is analytic in s and has an
analytic continuation to s = 1.

Proposition III.7 (Theorem 1 of [Nie73]). The function FN,−n,s has an ana-
lytic continuation jN,n to s = 1, and jN,n ∈ H0(N). It has a Fourier expansion
of the form

jN,n(z) = e(−nz)− e(−nz) + cN(n, 0)

+
∑
m≥1

(cN(n,m)e(mz) + cN(n,−m)e(−mz)) .

The coefficients are given by

cN(n,m) := 2π
√
n
∑
c≥1
N |c

K(m,−n; c)

c
×


1√
m
I1

(
4π
√
mn
c

)
, if m > 0,

2π
√
n

c
, if m = 0,

1√
|m|
J1

(
4π
√
|m|n
c

)
, if m < 0,

where

K(m,n; c) :=
∑

a,d (mod c)
ad≡1 (mod c)

e

(
md+ na

c

)

denotes the Kloosterman sum and I1, J1 are the first order I- and J-Bessel
functions, respectively.

The constants cN (n, 0) can be explicitly evaluated. For example, for N = 1
we obtain

c1(n, 0) = 24σ(n)

and for p prime we have

cp(n, 0) = − 24

p2 − 1

(
σ(n)− p2σ

(
n

p

))
, (III.2.6)

where σ(`) := 0 if ` /∈ Z (see [CJKK08] for a similar calculation).
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III.2.5 Petersson’s Poincaré series

For w, s ∈ C, w 6= 0, we let

φs(w) := w−1|w|−s (III.2.7)

and define

HN,s(z, τ) := − v
s

2π

∑
M∈Γ0(N)

φs

(
j(M, τ)2 (Mτ − z)(Mτ − z)

y

)

= − v
s

2π

∑
M∈Γ0(N)

φs

(
(τ −Mz)(τ −Mz)

Im(Mz)

)
. (III.2.8)

These sums converge locally uniformly for Re(s) > 0 and define analytic
functions in s. They satisfy modularity of weight 0 in z and of weight 2 in τ .
Bringmann and Kane showed that they have an analytic continuation H∗N to
s = 0, which are a polar harmonic Maass forms of weight 2 with simple poles
at Γ0(N)-equivalent points to z. For this, they used a splitting of the sum due
to Petersson and obtained an analytic continuation of the Fourier expansion of
every part by Poisson summation and locally uniform estimates.

Proposition III.8 (Lemma 4.4 of [BK16]). The function HN,s has an analytic
continuation H∗N to s = 0. We have

z 7→ H∗N(z, τ) ∈ H0(N) and τ 7→ H∗N(z, τ) ∈ H2(N).

Furthermore, the function

τ 7→ HN(z, τ) := H∗N(z, τ) +
1

[SL2(Z) : Γ0(N)]
E∗2(τ)

is a meromorphic modular form of weight 2 for Γ0(N) with only simple poles
at points that are Γ0(N)-equivalent to z.

Remark 5. Note that H∗N(z, ·) has principal part −wN,z
2πi

1
τ−z at τ = z.

The Fourier coefficients of H∗N(z, ·) were computed in [BKLOR], where it
was shown that they are given by the Niebur-Poincaré series jN,n of Proposition
III.7, evaluated at z.

Proposition III.9 (Theorem 1.1 of [BKLOR]). For v > max
{
y, 1

y

}
, we have

H∗N(z, τ) =
3

π[SL2(Z) : Γ0(N)]v
+
∑
n>0

jN,n(z)e(nτ).

43



CHAPTER III. NIEBUR-POINCARÉ SERIES AND TRACES OF
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III.3 Weight 2 Modular Forms Associated to

Imaginary Quadratic Fields

Now we define and study the weight 2 analogues of the functions fk,∆.

Definition III.3.1. For N ∈ N, discriminants d, D that are congruent to
squares modulo 4N with D fundamental and dD negative, and s ∈ C with
Re(s) > 0, we let

fd,D,N,s(τ) :=
(|dD|) 1+s

2 vs

21+sπ

∑
Q∈QdD,N

χD(Q)φs(Q(τ, 1))

with φs as in (III.2.7) and define f ∗d,D,N to be the analytic continuation of
fd,D,N,s to s = 0.

Remark 6. The existence of the analytic continuation is established by combin-
ing Lemma III.10 with the analytic continuation of HN,s stated in Proposition
III.8.

With the trace operation from Definition III.2.1, we obtain the following
relation.

Lemma III.10. We have

fd,D,N,s(τ) = − trd,D,N (HN,s(·, τ)) .

Proof. For M ∈ Γ0(N), Q ∈ QdD,N , and the group action defined in (III.2.1),
we have zQ◦M = M−1zQ and

Q(τ, 1) =

√
|dD|
2

(τ − zQ)(τ − zQ)

Im(zQ)
,

since Im(zQ) =

√
|dD|
2a

for Q = [a, b, c]. Thus it follows

HN,s(zQ, τ) = − v
s

2π

∑
M∈Γ0(N)

φs

(
(τ −MzQ)(τ −MzQ)

Im(MzQ)

)

= − v
s

2π

∑
M∈Γ0(N)

φs

(
(τ − zQ◦M)(τ − zQ◦M)

Im(zQ◦M)

)

= − v
s

2π

∑
M∈Γ0(N)

φs

(
2√
|dD|

(Q ◦M)(τ, 1)

)
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= −v
s(|dD|) 1+s

2

22+sπ

∑
M∈Γ0(N)

φs ((Q ◦M)(τ, 1))

Taking the twisted trace we obtain

trd,D,N (HN,s(·, τ)) = −v
s|dD| 1+s

2

22+sπ

∑
Q∈QdD,N/Γ0(N)

χD(Q)

wN,Q

×
∑

M∈Γ0(N)

φs ((Q ◦M)(τ, 1))

= −v
s(|dD|) 1+s

2

22+sπ

∑
Q∈QdD,N

χD(Q)

wN,Q
· 2wN,Qφs (Q(τ, 1))

= −fd,D,N,s(τ)

Theorem III.2 now follows directly from Proposition III.9 and taking the
analytic continuation to s = 0 in Lemma III.10.

We now move on to compute the Fourier expansion of f ∗d,D,N directly and
prove Theorem III.1.

Proof of Theorem III.1. We follow the approach of Appendix 2 of [Zag75]. For

v >

√
|dD|
2

, we obtain by Poisson summation

fd,D,N,s(τ) =
(|dD|) 1+s

2 vs

21+sπ

∑
a>0
N|a

∑
b∈Z

b2≡dD (mod 4a)

χD

([
a, b,

b2 − dD
4a

])

× φs
(
aτ 2 + bτ +

b2 − dD
4a

)
=

(|dD|) 1+s
2 vs

21+sπ

∑
a>0
N|a

∑
n∈Z

∑
b (mod 2a)

b2≡dD (mod 4a)

χD

([
a, b,

b2 − dD
4a

])

×
∫
R
φs

(
a(τ + t)2 + b(τ + t) +

b2 − dD
4a

)
e(−nt)dt.

Here we used that

aτ 2 + (b+ 2an)τ +
(b+ 2an)2 − dD

4a
= a(τ + n)2 + b(τ + n) +

b2 − dD
4a
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and that χD is invariant under translation. Together with∫
R
φs

(
a(τ + t)2 + b(τ + t) +

b2 − dD
4a

)
e(−nt)dt

= a−1−se(nτ)

∫
R+iv

φs

(
t2 − dD

4a2

)
e(−nt)dt

we obtain

fd,D,N,s(τ) =
(|dD|) 1+s

2 vs

21+sπ

∑
a>0
N|a

∑
n∈Z

Sd,D(a, n)a−1−se(nτ)

×
∫
R+iv

φs

(
t2 − dD

4a2

)
e(−nt)dt.

First we consider terms with n 6= 0. We have to show locally uniform
convergence in s of the double sum. For this we will bound the integral locally
uniformly for σ := Re(s) > −ε for some ε > 0 and independently of a and n.
First we write∫

R+iv

φs

(
t2 − dD

4a2

)
e(−nt)dt

=

∫
R

((
t2 − v2 − dD

4a2

)2

+ 4v2t2

)− s
2

e(−nt)dt
(t+ iv)2 − dD

4a2

.

Note that the integrand is holomorphic in t in the region Im(t) >

√
|dD|
2
− v.

Thus for n < 0, we may shift the path of integration to R+ i∞ and the integral
vanishes.

For n > 0, we may fix α ∈
(

0, v −
√
|dD|
2

)
and shift the path of integration

to R− iα. This yields∣∣∣∣∫
R−iα

φs

(
(t+ iv)2 − dD

4a2

)
e(−nt)dt

∣∣∣∣
≤ 2e−2πnα

∫ ∞
0

((
t2 − (v − α)2 − dD

4a2

)2

+ 4(v − α)2t2

)− 1+σ
2

dt.

Now we apply the estimates(
t2 − (v − α)2 − dD

4a2

)2

+ 4(v − α)2t2 ≥

{(
(v − α)2 + dD

4

)2
, for every t,

(t2 + (v − α)2)
2
, for t > v − α,

46



CHAPTER III. NIEBUR-POINCARÉ SERIES AND TRACES OF
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to obtain

∫ ∞
0

((
t2 − (v − α)2 − dD

4a2

)2

+ 4(v − α)2t2

)− 1+σ
2

dt

≤
∫ v−α

0

(
(v − α)2 +

dD

4

)−1−σ

dt+

∫ ∞
v−α

(
t2 + (v − α)2

)−1−σ
dt.

The last bound is locally uniform for σ > −1
2

and independent of a and n.
Thus the overall sum is uniformly bounded by

�
∑
n≥1

∑
a>0
N|a

Sd,D(a, n)a−1−σe−2πnα.

We define the half-integral weight Kloosterman sum as

K∗(m,n, c) :=
∑

a,d (mod c)∗
ad≡1 (mod c)

( c
d

)(−4

d

)3/2

e

(
na+md

c

)
,

where ( ··) denotes the Kronecker symbol. Plugging c 7→ 4a into Proposition 3
of [DIT11] and noting that the definition of S given there differs from ours by
a factor 2, we obtain

Sd,D(a, n) =
1− i

4

∑
r|(a,n)

(
D

r

)√
r

a

(
1 +

(
4

a/r

))
K∗
(
d,
n2D

r2
,
4a

r

)
,

and hence

∑
a>0
N|a

Sd,D(a, n)a−1−σ =
1− i

4

∑
r|n

r−1−σ
(
D

r

)∑
a>0
N|a

(
1 +

(
4

a

)) K∗
(
d, n

2D
r2 , 4a

)
a

3
2

+σ
.

It has been observed in the remark following Theorem 2.1 of [FO08] that the
Selberg-Kloosterman zeta function

Sm,n(s) :=
∑
a>0

K∗ (m,n, a)

as

has an analytic continuation to s = 3
2

for mn < 0. Since Sm,n has only finitely
many poles in [1, 2], there is an ε > 0 such that the function S

d,n
2D
r2

(
3
2

+ σ
)
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has an analytic continuation to σ > −ε. This gives a locally uniform bound for
σ > −ε and we obtain the analytic continuation for the sum over the positive
n by just plugging in s = 0.

Now we have, for v >

√
|dD|
2

and n > 0,∫
R+iv

(
t2 − dD

4a2

)−1

e(−nt)dt = − 4πa√
|dD|

sinh

(
πn
√
|dD|
a

)
,

since t 7→ sinh(κt) is the inverse Laplace transform of s 7→ κ
s2−κ2 (see for

example (29.3.17) of [AS64]). So all in all we obtain that for n > 0, the n-th
Fourier coefficient of f ∗d,D,N equals

−2
∑
a>0
N|a

Sd,D(a, n) sinh

(
πn
√
|dD|
a

)
.

Finally, it follows from Proposition III.9 and Lemma III.10 that the remaining
part of the Fourier expansion, i.e. the n = 0 term, equals

− trd,D,N

(
3

π[SL2(Z) : Γ0(N)]v

)
= − 3H(d,D,N)

π[SL2(Z) : Γ0(N)]v
.

Proof of Theorem III.4. By Theorem III.2, the n-th Fourier coefficient of f ∗d,D,N
is − trd,D,N(jN,n). If Γ0(N) has genus 0, then jN,n is weakly holomorphic on
the modular curve X0(N). Lemma 5.1 (v) of [BO10] states that the twisted
Heegner divisor

Zd,D,N :=
∑

Q∈QdD,N/Γ0(N)

χD(Q)

wN,Q
zQ

is defined over Q(
√
D). This means that

〈Zd,D,N , jN,n〉 :=
∑

Q∈QdD,N/Γ0(N)

χD(Q)

wN,Q
jN,n(zQ) = trd,D,N(jN,n) ∈ Q(

√
D).

By Theorem I of [CY96], jN,1(zQ) is an algebraic integer for every quadratic form
Q ∈ QdD,N . Now jN,n is a polynomial in jN,1, so the twisted sum trd,D,N(jN,n)
is also an algebraic integer, which implies the statement.
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III.4 Regularized Inner Products

In this section we restrict to the full modular group and therefore drop the sub-
script N throughout. Let f , g be meromorphic modular forms of weight k which
decay like cusp forms at i∞ and have poles at z1, . . . , zr ∈ SL2(Z)\H. We choose
a fundamental domain F such that for every j ∈ {1, . . . , r}, the representative
of zj in F lies in the interior of ΓzjF . We identify the z1, . . . , zr ∈ SL2(Z)\H
with their representatives in F .

For an analytic function A(s) in s = (s1, . . . , sr), denote by CTs=0A(s) the
constant term of the meromorphic continuation of A(s) around s1 = · · · = sr =
0. Then the regularized inner product introduced in [BKvP] is given by

〈f, g〉 := CTs=0

(∫
F
f(τ)

r∏
`=1

|Xz`(τ)|2s` g(τ)vk
dudv

v2

)
. (III.4.1)

Note that, as z → z`, we have Xz`(z)→ 0, so the integral in (III.4.1) converges
if we have Re(s`)� 0 for every 1 ≤ ` ≤ r. One can show that the regularization
is independent of the choice of fundamental domain. Since the functions we
integrate do not decay like cusp forms, we need to use another regularization
by Borcherds [Bor98]. Namely for holomorphic modular forms f, g of weight k,
we define

〈f, g〉 := CTs=0

(
lim
T→∞

∫
FT
f(τ)g(τ)vk−s

dudv

v2

)
, (III.4.2)

whenever it exists. Here, for a fundamental domain F and T > 0, we set

FT := {z ∈ F : Im(z) ≤ T} .

To compute the inner products in Theorem III.5, we split the domain of
integration into a part which contains all the poles of the integrands, where
we apply the regularization of Bringmann, Kane, and von Pippich, and a part
around the cusp i∞, where we apply Borcherds’s regularization. Therefore,
the regularized integral will look like

〈f, g〉 = CTs=0

(∫
FY
f(τ)

r∏
`=1

|Xz`(τ)|2s` g(τ)vk
dudv

v2

)

+ CTs=0

(
lim
T→∞

∫
FT \FY

f(τ)g(τ)vk−s
dudv

v2

)
, (III.4.3)
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where f, g are meromorphic modular forms of weight k and Y > 1 a fixed
constant, such that all poles of f and g lie in FY . Here we can assume that F
contains all the poles of f and g as well as [0, 1] + i[Y,∞].

To prepare the proof, we first look at elliptic expansions of the polar
harmonic Maass forms Hz(τ) := H1(z, τ). For X%(τ)� 1, we have

Hz(τ) = − 1

2πi

J ′(τ)

J(τ)− J(z)

=
1

(τ − %)2

(
−δz,%wzy

π
X%(τ)−1 +

∑
n≥0

az,%(n)X%(τ)n

)
, (III.4.4)

where δz,% is defined to be 1 if z ∈ SL2(Z)% and 0 otherwise (cf. the remark
following Proposition III.8). Furthermore, let

Gz(τ) := − 1

2π
log |J(τ)− J(z)| ,

so that ξ0(Gz) = Hz with ξ0 as in (III.2.5).

Lemma III.11. The function Gz is a weight 0 polar harmonic Maass form.
For every % ∈ H, it has an elliptic expansion

Gz(τ) = −δz,%wz
2π

log(|X%(τ)|) +
∑
n≥0

A+
z,%(n)X%(τ)n +

∑
n>0

A−z,%(n)X%(τ)
n
,

(III.4.5)
which converges for |X%(τ)| � 1. Moreover, we have

A−z,%(n) =
az,%(n− 1)

4ηn

with az,%(n) as in (III.4.4) and

A+
z,%(0) = − 1

2π
×


log |J(%)− J(z)| , if % /∈ SL2(Z)z,

log |2yJ ′(z)| , if % ∈ SL2(Z)z and i, ρ /∈ SL2(Z)z,

log |2J ′′(i)| , if %, z ∈ SL2(Z)i,

log
∣∣∣√3

2
J ′′′(ρ)

∣∣∣ , if %, z ∈ SL2(Z)ρ.

(III.4.6)
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Proof. One easily checks that Gz is a polar harmonic Maass form of weight 0.
By Proposition III.6, it has for every % ∈ H an elliptic expansion

Gz(τ) =
∑

n�−∞

A+
z,%(n)X%(τ)n +

∑
n�∞

A−z,%(n)β0

(
1− |X%(τ)|2 , 1,−n

)
X%(τ)n

for X%(τ)� 1. Noting that

β0(1− r2; 1,−n) =

∫ 1−r2

0

(1− t)−n−1dt+ δn6=0 ·
1

n
=

{
r−2n

n
, if n 6= 0,

− log(r2), if n = 0,

we obtain an elliptic expansion of the shape

Gz(τ) = A−z,%(0) log(|X%(τ)|2) +
∑

n�−∞

A+
z,%(n)X%(τ)n +

∑
n�∞
n 6=0

A−z,%(n)X%(τ)
−n

Now using

ξ0

(
X%(τ)

)
= 2i∂τ

τ − %
τ − %

= − 4η

(τ − %)2

and

ξ0

(
log(|X%(τ)|2)

)
= 2i∂τ log(|X%(τ)|2) = 2i

∂τ |X%(τ)|2
|X%(τ)|2

= 2iX%(τ)
∂τX%(τ)

|X%(τ)|2
= − 4η

(τ − %)2
X%(τ)−1

gives

ξ0 (Gz(τ)) = − 4η

(τ − %)2

A−z,%(0)X%(τ)−1 +
∑
n�∞
n6=0

nA−z,%(n)X%(τ)−n−1

 .

We compare with (III.4.4) and obtain A−z,%(n) = 0 for n > 0,

A−z,%(0) = −δz,%wz
2π

, and − 4ηnA%,z(n) = a%,z(−n− 1).

for n < 0. We also have A+
z,%(n) = 0 for n < 0 since the principal part of Gz at

% comes entirely from the n = 0 term.
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For the evaluation of A+
z,%(0), note that

A+
z,%(0) = − 1

2π
lim
τ→%

(log |J(τ)− J(z)| − δz,%wz log(|X%(τ)|)) ,

which equals

Gz(%) = − 1

2πwz
log |J(τ)− J(z)|

if % 6= z. If % = z, note that

lim
τ→z

(log |J(τ)− J(z)| − wz log(|X%(τ)|))

= lim
τ→z

(
log |J(τ)− J(z)|+ log

(∣∣∣∣τ − zτ − z

∣∣∣∣wz))
= lim

τ→z
log

∣∣∣∣J(τ)− J(z)

(τ − z)wz

∣∣∣∣+ log ((2y)wz) = log

∣∣∣∣(2y)wz

wz!
J (wz)(z)

∣∣∣∣ ,
which implies the statement.

Lemma III.12. For every z, z ∈ H, we have

〈Hz, Hz〉 = −A+
z,z(0)

with A+
z,z(0) as in (III.4.6).

Proof. Applying Stokes’s Theorem to the second summand of (III.4.3), we
obtain for Re(s) > 1∫

FT \FYHz(τ)Hz(τ)v−sdudv = −
∫
FT \FY

Hz(τ)ξ0

(
Gz(τ)

)
v−sdudv

= −
∫
FT \FY

ξ0

(
Hz(τ)Gz(τ)v−s

)
dudv − s

∫
FT \FY

Hz(τ)Gz(τ)v−s−1dudv

= −
∫
∂(FT \FY )

Hz(τ)Gz(τ)v−sdτ − s
∫
FT \FY

Hz(τ)Gz(τ)v−s−1dudv

=

∫ 1

0

Hz(u+ iT )Gz(u+ iT )T−sdu−
∫ 1

0

Hz(u+ iY )Gz(u+ iY )Y −sdu

+ s

∫ T

Y

∫ 1

0

Hz(u+ iv)Gz(u+ iv)v−s−1dudv.

Now we have Gz(τ) = v +O(1) and Hz(τ) = O(1) as v →∞. Hence, the
first summand vanishes as T → ∞, provided that Re(s) is sufficiently large,
and the limit as T →∞ of the third integral has a meromorphic continuation
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to C with the only pole at s = 1. Therefore the contributions of the first
and third summand vanish in the analytic continuation to s = 0. The second
summand is analytic in s = 0, so in total we have

CTs=0

∫
F\FY

Hz(τ)Hz(τ)v−sdτ = −
∫ 1

0

Hz(u+ iY )Gz(u+ iY )du. (III.4.7)

To compute the first summand of (III.4.3), note that the functions Hz and
Hz have simple poles only at z and z. Thus the regularized inner product equals

〈Hz, Hz〉 = CT(s1,s2)=(0,0)

∫
F
Hz(τ)|Xz(τ)|2s1|Xz(τ)|2s2Hz(τ)dudv

= −CT(s1,s2)=(0,0)

∫
F
Hz(τ)|Xz(τ)|2s1|Xz(τ)|2s2ξ0

(
Gz(τ)

)
dudv,

By Stokes’s Theorem, the integral equals

−
∫
F
Hz(τ)ξ0 (|Xz(τ)|2s1|Xz(τ)|2s2)Gz(τ)dudv

−
∫
∂FY

Hz(τ)|Xz(τ)|2s1|Xz(τ)|2s2Gz(τ)dτ. (III.4.8)

Since there are no poles on FY , the analytic continuation of the second summand
is given by just plugging in (s1, s2) = (0, 0). Now note that∫

∂FY
Hz(τ)Gz(τ)dτ = −

∫ 1

0

Hz(u+ iY )Gz(u+ iY )du,

which cancels with (III.4.7). Therefore the contribution from the cusp i∞
vanishes.

We are left to compute the analytic continuation of the first summand of
(III.4.8). For this, we closely follow the proof of Theorem 6.1 in [BKvP]. For
δ > 0 and % ∈ H, we let Bδ(%) denote the closed disc of radius δ around % and
split the domain of integration into Bδ(z)∩F , Bδ(z)∩F , and F\(Bδ(z) ∪Bδ(z)).
The integral over F\(Bδ(z) ∪Bδ(z)), away from the poles, vanishes at (s1, s2) =
(0, 0). Similarly, in the integral over Bδ(z) (resp. Bδ(z)) we can plug in s2 = 0
(resp. s1 = 0). By construction of F , the points z and z lie in the interior of
ΓzF , resp. ΓzF . For % ∈ {z, z}, we decompose

Bδ(%) =
⋃
M∈Γ%

M (Bδ(%) ∩ F)
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to write

−
∫
Bδ(%)∩F

Hz(τ)ξ0 (|X%(τ)|2s)Gz(τ)dudv

= − 1

w%

∫
Bδ(%)

Hz(τ)ξ0 (|X%(τ)|2s)Gz(τ)dudv.

Now using

ξ0

(
|X%(τ)|2s

)
= −4sη|X%(τ)|2s−2 X%(τ)

(τ − %)2
,

we have to compute

Ress=0

(
4η

w%

∫
Bδ(%)

Gz(τ)|X%(τ)|2s−2 X%(τ)

(τ − %)2
Hz(τ)dudv

)
(III.4.9)

for % ∈ {z, z}. Plugging in the elliptic expansions (III.4.4) and (III.4.5) around
%, we obtain

4η

w%

∫
Bδ(%)

Hz(τ)|X%(τ)|2s−2 X%(τ)

(τ − %)2
Gz(τ)dudv

=
4η

w%

∫
Bδ(%)

(
−δz,%wzη

π
X%(τ)−1 +

∑
n≥0

az,%(n)X%(τ)n

)
|X%(τ)|2s−2X%(τ)

(τ − %)2(τ − %)2

×

(
−wz

2π
log(|X%(τ)|) +

∑
n≥0

A+
z,%(n)X%(τ)n +

∑
n>0

A−z,%(n)X%(τ)
n

)
dudv

We substitute X%(τ) = Re(θ) and use 4η2

|τ−%|4dudv = 2πR dθdR to obtain

2π

ηw%

∫ δ

0

∫ 1

0

(
−δz,%wzη

π
+
∑
n≥0

az,%(n)Rn+1e((n+ 1)θ)

)
R2s−1

×

(
−δz,%wz

2π
log(R) +

∑
n≥0

A+
z,%(n)Rne(nθ) +

∑
n>0

A−z,%(n)Rne(−nθ)

)
dθdR

=

∫ δ

0

(
δz,%δz,%wzwz

πw%
log(R)− 2δz,%wz

w%
A+

z,%(0)

+
2π

ηw%

∑
n≥0

A−z,%(n+ 1)az,%(n)R2n+2

)
R2s−1dR
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=
δz,%δz,%wz

π

∫ δ

0

log(R)R2s−1dR− δz,%A+
z,%(0)

δ2s

s

+
2π

ηw%

∑
n≥0

A−z,%(n+ 1)az,%(n)
δ2(n+s+1)

2(n+ s+ 1)
.

The last sum is analytic in s = 0 and we have∫ δ

0

log(R)R2s−1dR =
δ2s log(δ)

2s
− δ2s

4s2
= − 1

4s2
+O(1),

so only the second term contributes to the residue in (III.4.9), yielding the
statement.

Proof of Theorem III.5. It follows from Lemmas III.10 and III.12 that

〈fd, fδ〉 =
∑

Q∈Qd/ SL2(Z)

Q∈Qδ/ SL2(Z)

1

wzQwzQ

〈
HzQ , HzQ

〉
= −

∑
Q∈Qd/ SL2(Z)

Q∈Qδ/ SL2(Z)

1

wzQwzQ
A+
zQ,zQ

(0).

(i) Note that if two quadratic forms Q, Q have the same CM-point, then

one has to be an integer multiple of the other. The factor has to be
√

δ
d
.

So conversely, if δ
d

is not a square, then we have

A+
zQ,zQ

(0) = − 1

2π
log
(
|J(zQ)− J(zQ)|

1
wQwQ

)
for any Q ∈ Qd and Q ∈ Qδ by the first case of (III.4.6).

(ii) By the same argument as above, if neither d
3

nor d
4

is a square, then
neither ρ nor i is a CM-point of any quadratic form of discriminant d.
Thus by the first two cases of (III.4.6), we have for any Q 6= Q ∈ Qd

A+
zQ,zQ

(0) = − 1

2π
log |J(zQ)− J(zQ)|

and

A+
zQ,zQ

(0) = − 1

2π
log |2 Im(zQ)J ′(zQ)| = − 1

2π
log

∣∣∣∣√|d| J ′(zQ)

Q(1, 0)

∣∣∣∣ .
(iii) This follows directly from the last two cases of A+

zQ,zQ
(0) given in (III.4.6).
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Chapter IV

Linear Incongruences for
Generalized Eta-Quotients

This chapter is based on a manuscript published in Research in Number Theory
[40].

IV.1 Introduction and Statement of Results

Ever since Ramanujan established his famous linear congrucences

p(5n+ 4) ≡ 0 (mod 5)

p(7n+ 5) ≡ 0 (mod 7)

p(11n+ 6) ≡ 0 (mod 11)

(IV.1.1)

for the partition function p(n), the challenge of proving and generalizing them
triggered a vast amount of research. For instance, Ono [Ono00] found ana-
logues of (IV.1.1) for every modulus coprime to 6. See also [AO01] and the
sources contained therein for further results. However, recent work of Radu
[Rad12] proved that there are no linear congruences of p(n) modulo 2 and 3,
affirming a famous conjecture of Subbarao. The main ingredients of his proof
are skillful computations and the q-expansion principle due to Deligne and
Rapoport [DR73]. Adapting the methods of Radu’s proof, Ahlgren and Kim
[AK15] showed analogous results for the mock theta functions f(q) and ω(q),
as well as for certain classes of weakly holomorphic modular forms, including
(classical) eta-quotients. In this paper, we extend their approach to generalized
eta-quotients.

These functions are defined as follows: For δ ∈ Z+ and a residue class g
(mod δ), we set

ηδ,g(z) := q
δ
2
P2( gδ )

∏
m>0

m≡g (mod δ)

(1− qm)
∏
m>0

m≡−g (mod δ)

(1− qm) ,
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CHAPTER IV. LINEAR INCONGRUENCES FOR GENERALIZED
ETA-QUOTIENTS 59

where z ∈ H and q := e2πiz throughout. Here, for x ∈ R and {x} := x− bxc,
we let

P2(x) := {x}2 − {x}+
1

6

be the second Bernoulli function.

Note that if
η(z) := q1/24

∏
m>0

(1− qm)

denotes the usual Dedekind eta-function, then

ηδ,0(z) = η(δz)2 and ηδ, δ
2
(z) =

η
(
δ
2
z
)2

η(δz)2
.

Furthermore, for g /∈
{

0, δ
2

}
we have

ηδ,g(z)−1 = q−
δ
2
P2( gδ )

∑
n≥0

pδ,g(n)qn,

where pδ,g(n) denotes the number of partitions of n with all parts congruent to
±g (mod δ).

For δ = 5, these functions occur in the well-known Rogers-Ramanujan
identities, which state that

q
1
60η−1

5,1(z) =
∑
n≥0

qn
2

(q; q)n
= 1 + q + q2 + q3 + 2q4 + 2q5 + 3q6 + . . .

and

q−
11
60η−1

5,2(z) =
∑
n≥0

qn
2+n

(q; q)n
= 1 + q2 + q3 + q4 + q5 + 2q6 + . . . ,

where (q; q)n :=
∏n

j=1(1− qj).

For N ∈ Z+, a residue class a (mod N), let r := (rδ,g)δ|N,g (mod δ) be a tuple
of half-integers, indexed by the divisors of N and their residue classes, with
rδ,g ∈ Z unless g = 0 or g = δ

2
. In this paper, we study generalized eta-quotients

of the form

Hr(z) :=
∏
δ|N

g (mod δ)

ηδ,g(z)rδ,g =: qP (r)
∑
n≥0

cr(n)qn,
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where

P (r) :=
1

2

∑
δ|N

g (mod δ)

δrδ,gP2

(g
δ

)
.

Note that the denominator of P (r) divides 12N .

For every modulus m ∈ Z+ and residue class t (mod m), we give conditions
on prime numbers p that guarantee that the linear progression t (mod m) does
not satisfy a linear congruence mod p for the generalized eta-quotient Hr. Here,
for any residue class a (mod N), we denote by ra the tuple (rδ,ag)δ|N,g (mod δ).

Theorem IV.1. Let m ∈ Z+ and t ∈ {0, . . . ,m−1}. For a, d ∈ Z with ad ≡ 1
(mod 24Nm), let n be the smallest nonnegative integer for which

d2(n+ P (ra))− P (r) ≡ t (mod m).

Then for every prime p not dividing cra(n), we have∑
n≥0

cr(mn+ t)qn 6≡ 0 (mod p).

Remark 7. Since we always have cr(0) = 1, the linear incongruence is satisfied
for any prime p if

d2P (ra)− P (r) ≡ t (mod m).

Remark 8. By work of Ahlgren and Boylan [AB08], if the conditions of Theorem
IV.1 are satisfied, we even have that

# {n ≤ X : cr(mn+ t) 6≡ 0 (mod p)} �p,r,m,t,K

√
X

logX
(log logX)K

for every positive integer K.

Theorem IV.1 has several immediate applications.

Example IV.2. Let N = a = 1 and r = −1
2
. Then

H− 1
2
(z) = η−1(z) = q−

1
24

∑
n≥0

p(n)qn.

Since p(0) = p(1) = 1, Theorem IV.1 then implies that∑
n≥0

p(mn+ t)qn 6≡ 0 (mod `)
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for every prime ` if there is a d coprime to 6m with

t ≡ 1− d2

24
(mod m) or t ≡ 1 + 23d2

24
(mod m).

Now assume that ` ≥ 5 is prime with
(−23

`

)
= −1. Then the classes d2

(mod `) and −23d2 (mod `) together run over all residue classes except for 0
as d runs over residue classes coprime to `. Since (`, 24) = 1, the classes 1−d2

24

and 1+23d2

24
cover every residue class modulo ` except for 1−`2

24
. It follows that

we can only have a linear congruence∑
n≥0

p(`n+ t)qn ≡ 0 (mod `)

if t ≡ 1−`2
24

(mod `). This result was shown by Kiming and Olsson for every
prime ` [KO92]. In particular, for ` ∈ {5, 7, 11}, this implies that the residues
in (IV.1.1) are the only ones for which such a congruence can hold.

Example IV.3. More generally, Theorem IV.1 specializes to classical eta-
quotients if rδ,g = 0 for g 6= 0. Then we have P (ra) = 1

12

∑
δ|N δrδ for all a.

Since we always have ca(0) = 1, we obtain that for every prime p, we have∑
n≥0

cr(mn+ t)qn 6≡ 0 (mod p) if t ≡ d2 − 1

12

∑
δ|N

δrδ (mod m)

for some d coprime to 6Nm.

Example IV.4. Another interesting example are partitions occurring in Schur’s
Theorem [Sch26]. These are given by

q
1
12η−1

6,1(z) =
∑
n≥0

p6,1(n)qn = 1 + q + q2 + q3 + q4 + 2q5 + 2q6 + . . .

with N = 6, r6,1 = −1 and rδ,g = 0 otherwise, and P (ra) = − 1
12

for every a
coprime to 6. Thus Theorem 1 implies that∑

n≥0

p6,1(mn+ t)qn 6≡ 0 (mod p)

for any prime p if there is a d coprime to 6m and j ∈ {−1, 11, 23, 35, 47} with

t ≡ 1 + jd2

12
(mod m).

As in Example 1, if ` ≥ 5 is a prime with at least one of
(−11

`

)
,
(−23

`

)
,
(−35

`

)
,

or
(−47

`

)
equal to −1, then there can only be a linear congruence if t ≡ 1−`2

12

(mod `).
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Example IV.5. Now we take a closer look at the Rogers-Ramanujan functions
η−1

5,1 and η−1
5,2. If Hr1 = Hr4 = η−1

5,1, then we have N = 5, r5,1 = −1, r5,2 = 0,

Hr2 = Hr3 = η−1
5,2, and

P (ra) =

{
− 1

60
if a ≡ 1 or 4 (mod 5),

11
60

if a ≡ 2 or 3 (mod 5).

Hence Theorem 1 states that
∑

n≥0 p5,1(mn+ t)qn 6≡ 0 (mod p) for every prime
p, if

t ≡ nd2 +
1− d2

60
(mod m),

for n ∈ {0, 1, 2, 3} and d ≡ 1, 4 (mod 5) coprime to 6m, or

t ≡ nd2 +
11d2 + 1

60
(mod m),

for n ∈ {0, 2, 3, 4, 5} and d ≡ 2, 3 (mod 5) coprime to 6m.

If we switch the roles of η−1
5,1 and η−1

5,2, we obtain that
∑

n≥0 p5,2(mn+t)qn 6≡ 0
(mod p) for every prime p, if

t ≡ nd2 − d2 + 11

60
(mod m),

for n ∈ {0, 1, 2, 3} and d ≡ 2, 3 (mod 5) coprime to 6m, or

t ≡ nd2 +
11(d2 − 1)

60
(mod m),

for n ∈ {0, 2, 3, 4, 5} and d ≡ 1, 4 (mod 5) coprime to 6m.

In contrast, applying work of Gordon [Gor12], Hirschhorn [Hir16] found
linear congruences (mod 2) for p5,1 and p5,2. For example, Theorem 3 of
[Hir16] states that

p5,1(98n+ t) ≡ 0 (mod 2)

for t ∈ {23, 37, 51, 65, 79, 93} and

p5,2(98n+ t) ≡ 0 (mod 2)

for t ∈ {6, 20, 34, 62, 76, 90}. The above discussion precludes all the other
residues (mod 98) except for t ∈ {9, 16, 58, 72, 86} resp. t ∈ {13, 27, 48, 55, 97}
from satisfying these congruences.
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The paper is organized as follows: In Section 2 we define generalized eta-
quotients and study their transformation behavior under Γ0(12N), slightly
adapting a result of Robins [Rob94]. This will lead to modularity properties
for the functions Hm,r,t whose Fourier coefficients are given by those of Hr on
the arithmetic progression t (mod m). In Section 3 we prove Theorem IV.1
using the q-expansion principle.

Acknowledgements

We thank Ken Ono for suggesting this project and for his advice and support.
We also thank Min-Joo Jang, Wenjun Ma, and the referee for helpful comments,
the Fulbright Commission for their generous support, and the Department of
Mathematics and Computer Science at Emory University for their hospitality.

IV.2 Transformation properties

of Eta-Quotients

We begin by studying modularity properites of ηδ,g. For A = ( a bc d ) ∈ Γ0(δ) we
define µA,g,δ by

ηδ,g (Az) = e (µA,g,δ) j(A, z)
δg,0ηδ,ag(z),

where j(A, z) := cz + d and e(w) := e2πiw throughout. An analogue of the
following proposition for the subgroup Γ1(δ) was shown in Theorem 2 of [Rob94].

Proposition IV.6. For A = ( a bc d ) ∈ Γ0(12δ) we have

µA,g,δ ≡
1

2
dbδP2

(ag
δ

)
− a− 1

4
+

1

2

⌊ag
δ

⌋
(mod 1).

Proof. An equation on p. 122 of [Rob94] states that (note the different normal-
ization of µA,g,δ)

µA,g,δ =
a−1∑
µ=1

((µ
a

))((c
δ

µ

a
+
g

δ

))
+
δb

2a
P2

(ag
δ

)
− c

12δa

with

((x)) :=

{
{x} − 1

2
if x 6= 0,

0 if x = 0.

63



CHAPTER IV. LINEAR INCONGRUENCES FOR GENERALIZED
ETA-QUOTIENTS 64

By Eqn. (34) of [Sch74], Ch. VIII §4, the denominator of µA,g,δ divides 12δ.
This implies that for A ∈ Γ0(12δ) we have, using that ad ≡ 1 (mod 12δ),

µA,g,δ ≡ ad

a−1∑
µ=1

((µ
a

))((c
δ

µ

a
+
g

δ

))
+
δdb

2
P2

(ag
δ

)
(mod 1).

We compute

ad
a−1∑
µ=1

((µ
a

))((c
δ

µ

a
+
g

δ

))
= d

a−1∑
µ=1

(
µ− a

2

)((c
δ

µ

a
+
g

δ

))
= d

a−1∑
µ=1

µ
((c

δ

µ

a
+
g

δ

))
− ad

2

a−1∑
µ=1

((µ
a

+
g

δ

))
.

Now

d
a−1∑
µ=1

µ
((c

δ

µ

a
+
g

δ

))
≡ d

a−1∑
µ=1

µ

(
c

δ

µ

a
+
g

δ
− 1

2

)
≡ a− 1

2

(
g

δ
− 1

2

)
(mod 1)

and

ad

2

a−1∑
µ=1

((µ
a

+
g

δ

))
≡ 1

2

a−1∑
µ=1

(
µ

a
+
g

δ
−
⌊µ
a

+
g

δ

]
− 1

2

)
≡ a− 1

4
+
a− 1

2

(
g

δ
− 1

2

)
− 1

2

⌊ag
δ

⌋
(mod 1),

using that
∑a−1

µ=0

⌊
µ
a

+ x
⌋

= baxc.

Let

Hr,m,t(z) :=
1

m

∑
λ (mod m)

e

(
− λ
m

(t+ P (r))

)
Hr

((
1 λ

m

)
z

)
, (IV.2.1)

so that
Hr,m,t(z) = q

t+P (r)
m

∑
n≥0

cr(mn+ t)qn

and for every λ (mod m) and ( a bc d ) ∈ Γ0(m) choose λ′ with

aλ′ ≡ b+ dλ (mod m).

Note that λ′ runs over all residue classes modulo m with λ.

Moreover, let k :=
∑

δ|N rδ,0, so that k is the weight of Hr.
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Proposition IV.7. For A ∈ Γ0(24Nm), we have

Hr,m,t(Az) = j(A, z)k
ζ

m

∑
λ (mod m)

e

(
λ

m

(
d2P (ra)− P (r)− t

)
− λ′

m
P (ra)

)

×Hra

((
1 λ′

m

)
z

)
,

where ζ is a 24Nm-th root of unity depending on r, m, and A. In particular,
H24Nm
r,m,t is a weakly holomorphic modular form of weight 24Nmk for Γ1(24Nm),

i.e. a meromorphic modular form whose poles are supported at the cusps.

Proof. Let

Aλ :=

(
a+ cλ 1

m
(b+ dλ− λ′(a+ cλ))

mc d− cλ′
)
,

so that (
1 λ

m

)
A = Aλ

(
1 λ′

m

)
Then for A ∈ Γ0(24Nm), we have by Proposition IV.6

ηδ,g

((
1 λ

m

)
Az

)rδ,g
= ηδ,g

(
Aλ

(
1 λ′

m

)
z

)rδ,g
= e (rδ,gµAλ,g,δ) j

(
Aλ,

(
1 λ′

m

)
z

)δg,0rδ,g
ηδ,ag

((
1 λ′

m

)
z

)rδ,g
= ζ0e

(
rδ,gδ

2
P2

(ag
δ

)
(d− cλ′) 1

m
(b+ dλ− λ′(a+ cλ))

)
× j(A, z)δg,0rδ,gηδ,ag

((
1 λ′

m

)
z

)rδ,g
= ζ0e

(
rδ,gδ

2m
P2

(ag
δ

) (
db+ d2λ− λ′

))
j(A, z)δg,0rδ,gηδ,ag

((
1 λ′

m

)
z

)rδ,g
,

where ζ0 is a fourth root of unity depending on rδ,g and A. Thus,

Hr

((
1 λ

m

)
Az

)
= ζj(A, z)ke

(
P (ra)

m

(
d2λ− λ′

))
Hra

((
1 λ′

m

)
z

)
.

Together with (IV.2.1), this yields the formula in the proposition.

Moreover, note that for A ∈ Γ1(24Nm), we have λ′ ≡ λ+ b (mod m) and
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Hr,m,t(Az) = j(A, z)k
ζ

m

∑
λ′ (mod m)

e

(
λ′ − b
m

(
(d2 − 1)P (r)− t

)
− λ′

m
P (r)

)

×Hr

((
1 λ′

m

)
z

)
= j(A, z)k

ζ1

m

∑
λ′ (mod m)

e

(
−λ

′

m
(t+ P (r))

)
Hr

((
1 λ′

m

)
z

)
= ζ1j(A, z)kHr,m,t(z)

with ζ1 := e
(
bt
m

)
ζ. Since ζ1 is a 24Nm-th root of unity, we conclude that H24Nm

r,m,t

is a weakly holomorphic modular form of weight 24Nmk for Γ1(24Nm).

IV.3 Proof of Theorem IV.1

Proof. For j large enough, we have that H24Nm
r,m,t ∆j is a holomorphic modular

form for Γ1(24Nm). Let A = ( a bc d ) ∈ Γ0(24Nm) and let |k denote the Petersson
slash-operator, i.e. (f |kA)(z) := j(A, z)−kf(Az). Then since

Hra

((
1 λ′

m

)
z

)
= e

(
λ′

m
P (ra)

)
q
P (ra)
m

∑
n≥0

cra(n)e

(
λ′

m
n

)
q
n
m ,

we obtain by Proposition IV.7

(Hr,m,t|kA) (z) =
ζ

m

∑
λ (mod m)

e

(
λ

m

(
d2P (ra)− P (r)− t

)
− λ′

m
P (ra)

)

×Hra

((
1 λ′

m

)
z

)
=

ζ

m

∑
λ (mod m)

e

(
λ

m

(
d2P (ra)− P (r)− t

))
q
P (ra)
m

∑
n≥0

cra(n)e

(
λ′

m
n

)
q
n
m

=
ζ

m
q
P (ra)
m

∑
n≥0

cra(n)e

(
dbn

m

) ∑
λ (mod m)

e

(
λ

m

(
d2(P (ra) + n)− P (r)− t

))
q
n
m ,

since λ′ ≡ db+ d2λ (mod m).

Now assume that n is the smallest nonnegative integer with d2(P (ra) +n)−
P (r) ≡ t (mod m). Then we have

(Hr,m,t|kA) (z) = ζ2cra(n)q
P (ra)+n

m

(
1 +O

(
q

1
m

))
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with ζ2 := e
(
dbn
m

)
ζ.

Suppose that Hr,m,t ≡ 0 (mod p). Then

(p−1Hr,m,t)
24Nm∆j ∈M24Nmk+12j(Γ1(24Nm)) ∩ Z[ζ24Nm][q].

The q-expansion principle from Corollaire 3.12 of [DR73], Ch. VII states that if
f is a modular form of weight κ for Γ1(N) whose Fourier coefficients at i∞ lie
in Z[ζN ], then for any A ∈ Γ0(N), also f |κA has Fourier coefficients in Z[ζN ]
(see also Corollary 5.3 of [Rad12]). Thus it follows that(

(p−1Hr,m,t)
24Nm∆j

)
|24Nmk+12jA ∈ Z[ζ24Nm][q]

for every A ∈ Γ0(24Nm). By the above computation we have((
(p−1Hr,m,t)

24Nm∆j
)
|24Nmk+12jA

)
= p−24Nm((Hr,m,t|A) (z))24Nm∆(z)j

=

(
cra(n)

p

)24Nm

q24N(P (ra)+n)+j (1 +O(q)) ∈ Z[ζ24Nm][q].

This can only hold if p divides cra(n).
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Chapter V

Special Values of Motivic
L-functions

This chapter is based on a manuscript published in Research in the Mathematical
Sciences and is joint work with Dr. Wenjun Ma and Dr. Jesse Thorner [42].

V.1 Introduction and statement of results

Let f(z) =
∑∞

n=1 af (n)qn be a normalized holomorphic cuspidal modular form
of even weight k ≥ 2 and level N , and trivial nebentypus. Assume further that
f is an eigenform for the Hecke operators Tp for p - N and Up for all p | N . We
call such a modular form a newform. The L-function L(s, f) associated to a
newform f , which is given by

L(s, f) :=
∞∑
n=1

af (n)

ns
=
(∏
p|N

1

1− af (p)p−s
)∏
p-N

1

1− af (p)p−s + pk−1−2s
,

(V.1.1)
has an analytic continuation to C. The completed L-function

Λ(s, f) =
(√N

2π

)s
Γ(s)L(s, f) (V.1.2)

is an entire function of order one and satisfies the functional equation Λ(s, f) =
ε(f)Λ(k − s, f), where ε(f) ∈ {−1, 1}. The completed L-function arises as a
period integral of f :

Λ(s, f) = N s/2

∫ ∞
0

f(iy)ys−1dy. (V.1.3)

One defines the period polynomial associated to f by rf(z) :=
∫ i∞

0
f(τ)(τ −

z)k−2dτ , which is a polynomial of degree at most k − 2 in z. Using (V.1.3), we
expand (τ − z)k−2 to obtain

rf (z) =
( i√

N

)k−1
k−2∑
j=0

(
k − 2

j

)
(iz
√
N)jΛ(k − 1− j, f). (V.1.4)
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By expressing Λ(s, f) in terms of L(s, f) via (V.1.2), we see that rf(z) is a
generating function for the critical values L(1, f), L(2, f), . . . , L(k − 1, f). For
additional background and details, see [JMOS16] and the sources contained
therein.

It follows from the functional equation for Λ(s, f) that rf(z) satisfies a
functional equation of its own, relating rf ( z

i
√
N

) to rf ( 1
iz
√
N

) and fixing the unit

circle S1 = {z ∈ C : |z| = 1}. In analogy with the expected behavior of the
nontrivial zeros of the Riemann zeta function ζ(s) or the nontrivial zeros of
L(s, f), one might expect that all of the zeros of rf ( z

i
√
N

) lie on S1. Because of
the similarity with the Riemann hypothesis, this has been called the Riemann
hypothesis for period polynomials. Conrey, Farmer, and Imamoglu [CFI13]
proved a result of this sort for the odd part of rf(

z
i
√
N

), and the Riemann
hypothesis for the period polynomials associated to newforms of level 1 and
even weight k ≥ 2 was established by El-Guindy and Raji [EGR14]. The
Riemann hypothesis for period polynomials is now a theorem due to Jin, Ma,
Ono, and Soundararajan [JMOS16] for all newforms of weight k ≥ 2 with
trivial nebentypus; furthermore, they proved that if either k or N is sufficiently
large, then the zeros of rf (

z
i
√
N

) are equidistributed on S1.
The truth of the Riemann hypothesis for period polynomials, along with the

statement of equidistribution, introduces strong conditions on the sizes of the
critical values L(1, f), L(2, f), . . . , L(k − 1, f); these values have significance
in algebraic number theory and arithmetic geometry. For newforms f of weight
2 associated to elliptic curves, rf (z) is a constant polynomial with a non-zero
factor of L(1, f). If the Birch and Swinnerton-Dyer conjecture is true, then
L(1, f) encapsulates much of the arithmetic of the elliptic curve, including
order of the Tate-Shafarevich group and whether or not the rank of the Mordell-
Weil group is positive. Unfortunately, the results in [JMOS16] cannot provide
insight into the Birch and Swinnerton-Dyer conjecture, because for k = 2,
the period polynomial is constant. Thus the Riemann hypothesis for period
polynomials when k = 2 is trivially satisfied without shedding light on L(1, f).
If k ≥ 4, the critical values hold similar importance in the context of the Bloch-
Kato conjecture [BK90], which generalizes of the Birch and Swinnerton-Dyer
conjecture.

In this paper, we use the ideas in [JMOS16] to study critical values of
motivic L-functions. It is well-known that each modular L-function L(s, f) is
attached to a certain pure motive over Q of weight k − 1, conductor N , and
rank 2; furthermore, L(s, f) is the L-function of a certain cuspidal automorphic
representation of GL2(AQ). (Here, AQ denotes the ring of adeles of Q.) The
critical values of motivic L-functions carry similar arithmetic significance in
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the context of the Bloch-Kato conjecture. When motivic L-functions coincide
with automorphic L-functions, they have important analytic properties which
generalize those of L(s, f). However, there does not appear to be a canonical
generating polynomial for critical values of motivic L-functions that generalizes
the properties of rf(z). Thus we construct a polynomial pM(z) (see (V.3.1))
which mimics rf (

z
i
√
N

) and prove the following.

Theorem V.1. Let M be a pure motive over Q of odd motivic weight w =
2m+ 1 ≥ 3, even rank d ≥ 2, global conductor N , and Hodge numbers hν for
0 ≤ ν ≤ m (see Section V.2). Suppose that the L-function L(s,M) of M
coincides with the L-function of an algebraic, tempered, cuspidal symplectic
representation of GLd(AQ). Let pM(z) be the polynomial defined in (V.3.1).

1. If m = 1 and h0 ∈ {0, 1}, then the zeros of pM(z) lie on S1 and tend to
be equidistributed as N →∞.

2. If m ≥ 2, 2mhm ≥ (1 + 1/m)h0, and N > Adm (where Am is defined by
(V.4.4)), then the zeros of pM(z) lie on S1 and tend to be equidistributed
as N →∞.

3. If m is sufficiently large, then nearly all of the zeros of pM(z) lie on S1.
(See Theorem V.9 for a more precise statement.)

Remark 9. If L(s,M) is the L-function of a newform of (modular) weight
k ≥ 4, then pM(z) reduces to a constant multiple of rf (

z
i
√
N

), whose zeros are

studied in [JMOS16].

It is unclear how to ensure that all of the zeros lie on S1 while maintaining
uniformity in d when m ≥ 2 and d is large compared to logN . Despite
this setback, we already have a result that is strong enough to address a
natural family of examples, namely the odd symmetric power L-functions
L(s, Symnf) of the newforms f considered in [JMOS16] that do not have
complex multiplication (CM). The next result follows from Theorem V.1 in
case of M = Symnf and n odd.

Corollary V.2. Let n ≥ 3 be an odd integer and f a non-CM newform of even
integral weight k ≥ 2, squarefree level N ≥ 13, trivial nebentypus, and integral
Fourier coefficients. We assume that N ≥ 46 if (k, n) = (2, 5) and N ≥ 17
if (k, n) ∈ {(2, 7), (4, 3)}. If L(s, Symnf) is the L-function of an algebraic
tempered cuspidal symplectic representation of GLn+1(AQ), then all of the zeros
of pSymnf(z) lie on S1. The zeros tend to be equidistributed as n or N goes to
∞.
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We find the most interesting case of Corollary V.2 to be where k = 2. In this
case, the period polynomial of f is constant, and the results in [JMOS16] are
trivial. When considering the odd symmetric power L-functions L(s, Symnf),
we see that L(s, Symnf) has only one critical value at s = n+1

2
but many special

values. By numerically checking the cases that are not covered by Corollary
V.2, we obtain the following result.

Theorem V.3. Let E/Q be a non-CM elliptic curve of squarefree conductor
N , and let n ≥ 3 be an odd integer. If L(s, SymnE) is the L-function of an
algebraic, tempered, cuspidal symplectic representation of GLn+1(AQ), then
all of the zeros of pSymnE(z) given by (V.3.1) lie on S1. The zeros tend to be
equidistributed as n or N goes to ∞.

In [Man16], Manin speculated on the existence of zeta-polynomials Z(s)
which (in analogy with expected behavior of the Riemann zeta function and
L(s, f)) satisfy a functional equation of the form Z(s) = ±Z(1−s) and have all
of their zeros lie on the line <(s) = 1/2. Furthermore, there should be a “nice”
generating function for the sequence {Z(−n)}∞n=1 along with an arithmetic-
geometric interpretation of Z(−n). Manin constructed zeta-polynomials by
applying the “Rodriguez-Villegas transform” [RV02] to the odd part of the
period polynomial of a newform using the results in [CFI13]; he suggests that
these polynomials arise from non-Tate motives and geometric objects lying
below Spec Z but not over F1.

Manin asked whether there exist zeta-polynomials which can be canonically
constructed from the full period polynomial. Ono, Rolen, and Sprung [ORS17]
recently used the results in [JMOS16] to address this question, producing a
large class of zeta-polynomials canonically constructed from the critical values
of classical newforms f . Assuming the Bloch-Kato conjecture, these zeta-
polynomials encode further Galois cohomological structure of Selmer groups
for Tate-twists that have been assembled as Stirling complexes. Moreover, in
analogy with the Maclaurin expansion

t

et − 1
= 1− t

2
+ t

∞∑
`=1

ζ(−n) · (−t)`

`!
,

the zeta-polynomials Zf (s) constructed in [ORS17] satisfy

(
√
N
i

)k−1rf (
z

i
√
N

)

(1− z)k−1
=
∞∑
`=0

Zf (−`)z`.

Using Theorem V.3, we construct zeta-polynomials arising from the special
values of odd symmetric power L-functions of semistable elliptic curves over Q.
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Using the Bloch-Kato conjecture, one can express the coefficients of these zeta-
polynomials in terms of Tamagawa numbers and generalized Shafarevich-Tate
groups of the symmetric powers.

Theorem V.4. Let E/Q be a non-CM elliptic curve, and let n ≥ 3 be odd.
Suppose that L(s, SymnE) is the L-function of an algebraic, tempered, cuspidal
symplectic representation of GLn+1(AQ). Let ZSymnE(s) be the polynomial
defined by (V.7.1). The following are true.

1. For all s ∈ C, we have that ZSymnE(s) = ε(SymnE)ZSymnE(1− s), where
ε(SymnE) is the sign of the functional equation for L(s, SymnE).

2. If ZSymnE(ρ) = 0, then <(ρ) = 1/2.

3. We have the Maclaurin expansion

pSymnE(z)

(1− z)n
=
∞∑
`=0

ZSymnE(−`)z`.

We review motivic L-functions and their conjectured analytic properties
in Section V.2. In Section V.3, we prove some lemmas that are needed for
the proofs of Theorem V.1, which we prove in Sections V.4 and V.5. We
then discuss symmetric power L-functions and prove Theorems V.3 and V.4 in
Sections V.6 and V.7.
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V.2 Motivic L-functions

We begin by recalling the conjectural properties of motivic L-functions. For
more details, see Serre [Ser94] and Iwaniec and Kowalski [IK04, Chapter 5].
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V.2.1 Conjectured analytic properties

Define a pure motive M over Q of weight w, rank d, and global conductor N
by specifying Betti, de Rham, and `-adic realizations (for each prime `)

HB(M), HdR(M), H`(M)

which are vector spaces of dimension d over Q, Q, and Q`, respectively; each
is endowed with additional structures and comparison isomorphisms as in
[CPR89,Del79]. In particular, HB(M) admits an involution ρB, H`(M) is a
Gal(Q̄/Q)-module, and there is a Hodge decomposition into C-vector spaces

HB(M)⊗ C =
⊕
i+j=w
i,j≥0

H i,j(M).

The involution ρB acts on H i,j(M) by ρB(H i,j(M)) = Hj,i(M). When w is
even, this tells us that Hw/2,w/2(M) is invariant under ρB; when w is odd,
we take Hw/2,w/2(M) = {0}. If w is even and Hw/2,w/2(M) 6= {0}, then the
involution ρB acts on Hw/2,w/2(M) by α ∈ {−1, 1}; we then define the quantity
b±(M) by

bα(M) := dimC{x ∈ Hw/2,w/2(M) : ρB(x) = α(−1)w/2x}, α ∈ {−1, 1}.

We denote by ρ` the representation which induces the Gal(Q̄/Q)-module struc-
ture on H`(M).

For any prime p, let Frobp ∈ Gal(Q̄/Q) be the Frobenius element at p,
which is defined modulo conjugation and modulo the inertia subgroup Ip ⊂
Gp ⊂ Gal(Q̄/Q) of the decomposition group Gp. Define

L`,p(X,M) := det(1−X · ρ`(Frob−1
p )|H`(M)Ip )−1 =

d∏
j=1

(1− αM(j, `, p)X)−1.

One typically assumes (and expects) that L`,p(X,M) and αM(j, `, p) are in
fact independent of `; as such, we write Lp(X,M) and αM(j, p) instead of
L`,p(X,M) and αM(j, `, p) for convenience. (If this is not true, our results are
only affected notationally.) The Euler product and Dirichlet series representa-
tions of L(s,M) are now given as

L(s,M) :=
∏
p

Lp(p
−s,M) =:

∑
n≥1

λM(n)

ns
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with λM(n) ∈ C. Both the Euler product and the Dirichlet series converge
absolutely in the half-plane Re(s) > w/2 + 1.

Define the ν-th Hodge number of M by hν := dimCH
ν,w−ν(M). Let

ΓR(s) = π−s/2Γ(s/2) and ΓC(s) = 2(2π)−sΓ(s), and define

L∞(s,M) = ΓR(s− w/2)b
+(M)ΓR(s+ 1− w/2)b

−(M)
∏

0≤ν<w/2

ΓC(s− ν)hν .

Because we consider M over Q, the degree of L(s,M) also equals

d = b+(M) + b−(M) + 2
∑

0≤ν<w/2

hν . (V.2.1)

We now describe the hypotheses for L(s,M) which are crucial to our
arguments.

Hypothesis V.5. Let M be a self-dual motive of weight w ≥ 1, rank d ≥ 1,
and global conductor N . Let L(s,M) be the L-function of M. The following
are true.

1. Self-duality: For all n ≥ 1, we have that λM(n) ∈ R.

2. The generalized Ramanujan conjecture (GRC): We have that |λM(n)| ≤
d(n)nw/2 for every n ≥ 1, where d(n) is the usual divisor function.

3. Analytic continuation: The function Λ(s,M) := N s/2L∞(s,M)L(s,M)
is entire of order 1.

4. Functional equation: There exists ε(M) ∈ {−1, 1} such that for every
s ∈ C, we have that Λ(s,M) = ε(M)Λ(w + 1 − s,M). We call ε(M)
the root number of M.

5. We have Λ(w+1
2
,M) ≥ 0.

Property 5 follows from the Generalized Riemann Hypothesis for L(s,M),
and it is known unconditionally in many cases. Every other property of
Hypothesis V.5 is immediately satisfied when L(s,M) coincides with the L-
function L(s, πM) of an algebraic, self-dual, tempered, cuspidal automorphic
representation πM of GLd(AQ), where d is the rank of M. This is predicted
by the Langlands program but is known unconditionally for a small (though
highly important and useful) collection of motivic L-functions, such as the
L-functions associated to newforms. In what follows, we will always assume that
L(s,M) = L(s, πM) for some πM in Ad(Q), the set of all algebraic, self-dual,
tempered, cuspidal automorphic representations of GLd(AQ), where d is the
rank of M.

75



CHAPTER V. SPECIAL VALUES OF MOTIVIC L-FUNCTIONS 76

V.2.2 Critical values and Hodge numbers

Following Deligne [Del79], we define an integer n to be critical forM if neither
L∞(s,M) nor L∞(w+1−s,M) has a pole at s = n; if n is critical forM, then
we call L(n,M) a critical value of L(s,M). With this definition, the critical
integers are purely dictated by the Hodge numbers. The simplest situation
occurs when b+(M) and b−(M) both equal zero; then the set of integers n
which are critical for M are precisely those which lie in the interval(

max
hν 6=0

0≤ν<w/2

ν, w − max
hν 6=0

0≤ν<w/2

ν
]
. (V.2.2)

(WhenM corresponds with a newform f of (modular) weight k, then w = k−1,
h0 = 1, and hν = 0 for all 1 ≤ ν < k−1

2
. Thus the critical values of L(s, f)

are L(n, f) for integers 1 ≤ n ≤ k − 1.) On the other hand, if at least one
of b+(M) and b−(M) is nonzero, then the distribution of critical integers is
slightly more complicated. Briefly stated, if just one of b+(M) and b−(M) are
nonzero, then the critical integers of M will not be consecutive integers; if
both b+(M) and b−(M) are nonzero, then L(s,M) has no critical values. For
simplicity, we only consider motivesM such that w is odd and hν ≥ 1 for some
0 ≤ ν < w/2. Thus b+(M) = b−(M) = 0, the integers that are critical for M
are symmetric about the critical line for L(s,M), and d ≥ 2. We will study
polynomials that generate the special values L(1,M), L(2,M), . . . , L(w,M),
which, by our hypotheses, includes all of the critical values.

When w is odd, we see that d must be even (see (V.2.1)). Now, consider
now the exterior square representation Ext2(πM) and the Euler product

L(s,Ext2(πM)) =
∏
p

Lp(p
−s,Ext2(πM)),

where at each prime p - N we have

Lp(p
−s,Ext2(M)) =

∏
1≤j<k≤n

(1− αM(j, p)αM(k, p)p−s)−1. (V.2.3)

We know that L(s,Ext2(πM)) has a meromorphic continuation to C with no
poles outside of the set {w′

2
, w
′

2
+ 1}, where w′ is the weight of Ext2(πM) [MS12].

If L(s,Ext2(πM)) has a pole at s = w′

2
+ 1, then πM is a cuspidal symplectic

representation of GLd(AQ); let As
d(Q) denote the set of such representations.

For any πM ∈ As
d(Q), Lapid and Rallis [LR03] proved that Λ(w+1

2
, πM) ≥ 0.

(This vastly generalizes a result of Waldspurger [Wal85] for L-functions of
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newforms.) Therefore, the hypotheses of Theorem V.1 succinctly describe the
most natural class of motivic L-functions for which the methods in [JMOS16]
can be used for studying special and critical values.

In Theorem V.1, we require that 2mhm ≥ (1 + 1/m)h0 . This is not true
of all M. In fact, for any integer m ≥ 0 and any collection of nonnegative
integers h0, . . . , hm, there exists a motive of weight 2m+ 1 with Hodge numbers
h0, . . . , hm; see Arapura [Ara16] and Schreieder [Sch15] for explicit constructions.
However, for newforms and their symmetric powers (see Section V.6) as well as
many other interesting cases, we have hν ∈ {0, 1} for each 1 ≤ ν ≤ m.

V.3 Preliminary Lemmas and Setup

Let M be a pure motive over Q of rank d ≥ 2 with global conductor N , odd
weight w = 2m + 1 ≥ 3, root number ε = ε(M), and Hodge numbers hν for
0 ≤ ν ≤ m. (It will be more notationally convenient for us to use m instead of
w.) For convenience, we let S1 := {z ∈ C : |z| = 1} and D := {z ∈ C : |z| < 1}.

We now define our first analogue of (V.1.4) by letting

pM(z) :=
2m∑
j=0

[ m∏
ν=0

(
2m− ν

m− |m− j|

)hν]
Λ(2m+ 1− j,M)zj. (V.3.1)

Using the functional equation of Λ(s,M) in Part (3) of Hypothesis V.5, we
have that

pM(z) = εzm(PM(z) + εPM(1/z)), (V.3.2)

where

PM(z) :=
1

2

[ m∏
ν=0

(
2m− ν
m

)hν]
Λ(m+ 1,M)

+
m∑
j=1

[ m∏
ν=0

(
2m− ν
m− j

)hν]
Λ(m+ 1 + j,M)zj.

If z = eiθ ∈ S1, then PM(z) + εPM(1/z) is a trigonometric polynomial in
either cos(θ) or sin(θ) (depending on the sign of ε). Therefore, to prove that
the zeros of pM(z) are equidistributed on S1, we find the correct number and
placement of sign changes of PM(z) + εPM(1/z) as θ varies along [0, 2π).

Since Λ(s,M) is an entire function of order one, there exist constants
A = AM and B = BM such that Λ(s,M) has the Hadamard factorization

Λ(s,M) = eA+Bs
∏
ρ

(
1− s

ρ

)
es/ρ, (V.3.3)
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where the product runs over the zeros ρ of Λ(s,M). Self-duality and the
functional equation of Λ(s,M) imply that if ρ is a zero of Λ(s,M), then so are
ρ̄ and w + 1− ρ. Self-duality also implies that Λ(s,M) is real-valued on the
real line, and in view of the functional equation of Λ(s,M), we have that B is
real-valued and B = −

∑
ρ Re(ρ−1) = −

∑
ρ Re(ρ)|ρ|−2. Thus if s ∈ R, then

Λ(s,M) = eA
[∏
ρ∈R

(
1− s

ρ

)]
·
[ ∏

Im(ρ)>0

∣∣∣1− s

ρ

∣∣∣2]. (V.3.4)

Lemma V.6. The function Λ(s,M) is monotonically increasing for s ≥
m+ 3/2; moreover,

0 ≤ Λ(m+ 1,M) ≤ Λ(m+ 2,M) ≤ Λ(m+ 3,M) ≤ Λ(m+ 4,M) ≤ . . .

If ε = −1, then Λ(m+ 1,M) = 0 and

0 ≤ Λ(m+ 2,M) ≤ 1

2
Λ(m+ 3,M) ≤ 1

3
Λ(m+ 4,M) ≤ . . .

Proof. All of the zeros in the product (V.3.4) lie in the vertical strip |m+ 1−
Re(s)| < 1/2, and we see that |1 − s/ρ| is increasing for s ≥ m + 3/2. Thus
by (V.3.4), we have that Λ(s,M) is increasing for s ≥ m + 3/2. Moreover,
|1 − m+1

ρ
| ≤ |1 − m+2

ρ
|, so Λ(m + 1,M) ≤ Λ(m + 2,M). When ε = −1, we

apply the same reasoning and take into account that Λ(s,M) has a zero of
odd order at s = m+ 1.

Lemma V.7. For 0 < a < b, we have

L(m+ 3/2 + a,M)

L(m+ 3/2 + b,M)
≤
(ζ(1 + a)

ζ(1 + b)

)d
,

where ζ(s) is the Riemann zeta function.

Proof. The Euler product for L(s,M) gives rise to the function ΛM(n) which
is defined by the Dirichlet series identity

−L
′

L
(s,M) =

∞∑
n=1

ΛM(n)

ns
.

One sees that |ΛM(n)| ≤ dnw/2Λ(n) for all n ≥ 1, where Λ(n) is the usual von
Mangoldt function; this estimate follows from Part (4) of Hypothesis V.5.
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Let 0 < a ≤ t ≤ b. By the above discussion,∣∣∣− L′

L
(m+ 3/2 + t,M)

∣∣∣ ≤ ∞∑
n=1

∣∣∣ ΛM(n)

n1+t+w/2

∣∣∣ ≤ d

∞∑
n=1

Λ(n)

n1+t
= −dζ

′

ζ
(1 + t).

Consequently,

L(m+ 3/2 + a,M)

L(m+ 3/2 + b,M)
= exp

(∫ b

a

−L
′

L
(m+ 3/2 + t,M)dt

)
≤ exp

(
− d

∫ b

a

ζ ′

ζ
(1 + t)dt

)
,

which equals the right hand side of the desired inequality.

We will also use the following lemma due to Pólya [Pol18] and Szegö [Sze36]
on the zeros of trigonometric polynomials.

Lemma V.8. If 0 ≤ a0 ≤ a1 ≤ · · · ≤ an−1 < an, then the polynomial∑n
j=0 an cos(nθ) has exactly one zero in each interval ( 2j−1

2n+1
π, 2j+1

2n+1
π) for 1 ≤

j ≤ n. Also, the polynomial
∑n

j=1 an sin(nθ) has a zero at θ = 0 and exactly

one zero in each interval ( 2j
2n+1

π, 2(j+1)
2n+1

π) for 1 ≤ j ≤ n− 1.

V.4 Proof of Theorem V.1 when N is large

Our proof of Theorem V.1 is broken into two cases. First we consider the case
when m = 1, in which case PM(z) is linear. Then we consider the case where
m ≥ 2.

V.4.1 Case 1: m = 1

We have PM(z) = Λ(3,M)z + 2h0−1Λ(2,M). If ε = −1, then

pM(z) = zm(PM(z) + εPM(1/z)) = (z2 − 1)Λ(3,M).

Since −1 and 1 are the roots and they are clearly equidistributed on S1, Theorem
V.1 is proven for all d and all N .

On the other hand, if ε = 1 and z = eiθ for some θ ∈ [0, 2π), then

zm(PM(z) + εPM(1/z)) = 2eiθ(cos(θ)Λ(3,M) + 2h0−1Λ(2,M)). (V.4.1)
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Since Λ(2,M) < Λ(3,M) by Lemma V.6, (V.4.1) has two roots for θ ∈ [0, 2π);
these are the two values of θ for which cos θ = −2h0−1Λ(2,M)/Λ(3,M),
provided that h0 ∈ {0, 1}. This places the roots of pM(z) on S1.

We now show that the zeros of (V.4.1) are equidistributed when N is large.
By the definition of Λ(s,M) and Lemma V.6, we have that Λ(3,M)� N3/2,
whereas

Λ(2,M) ≤ sup
t∈R
|Λ(5/2 + ε+ it,M)| � N5/4+ε

for any ε > 0. (This uses the Phragmén-Lindelöf convexity bound for L(s,M)
in the critical strip is given by [IK04, Equation 5.21].) Therefore,
Λ(2,M)/Λ(3,M) � N−1/4+ε, and so the corresponding values of θ tend to
π/2 and 3π/2. Thus if ε = 1, then the zeros of pM(z) are ±i+O(N−1/4+ε).

V.4.2 Case 2: m ≥ 2

We will show that if N is sufficiently large and 2mhm ≥ (1 + 1/m)h0 , then the
zeros of pM(z) are equidistributed on S1. This follows as soon as we show that
we can apply Lemma V.8 to the real and imaginary parts of PM(eiθ)+εPM(e−iθ).
So that we may apply Lemma V.8, we will verify that[ m∏
ν=0

(
2m− ν
m− j

)hν]
Λ(m+ 1 + j,M) <

[ m∏
ν=0

(
2m− ν

m− (j + 1)

)hν]
Λ(m+ 2 + j,M)

for all 1 ≤ j ≤ m− 1 and

1

2

[ m∏
ν=0

(
2m− ν
m

)hν]
Λ(m+ 1,M) ≤

[ m∏
ν=0

(
2m− ν
m− 1

)hν]
Λ(m+ 2,M).

By the definitions of Λ(s,M) and d, this is equivalent to

1

(m− j)d/2
L(m+ j + 1,M) <

( N

(2π)d

)1/2

L(m+ j + 2,M) (V.4.2)

for each 1 ≤ j ≤ m− 1 and

1

2

[ m∏
ν=0

1

mhν

]
Λ(m+ 1,M) ≤

[ m∏
ν=0

1

(m+ 1− ν)hν

]
Λ(m+ 2,M). (V.4.3)

By Lemma V.7 we have

L(m+ j + 1,M)

L(m+ j + 2,M)
≤
(ζ(j + 1/2)

ζ(j + 3/2)

)d
.
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Therefore, (V.4.2) is satisfied when N > Adm, where

Am := max
1≤j≤m−1

2π

m− j
·
(ζ(j + 1/2)

ζ(j + 3/2)

)2

. (V.4.4)

Since Λ(m+1,M) ≤ Λ(m+2,M), (V.4.3) is satisfied when 2mhm ≥ (1+1/m)h0 ,
as can be seen using term-by-term comparison. This completes the proof.

It is straightforward to compute A2 ≤ 23.83, A3 ≤ 11.92, Am ≤ 8 for m ≥ 4,
and limm→∞Am = 2π. Thus the above proof cannot produce a lower bound
for N better than (2π)d; we must handle the cases where N ≤ Adm differently.

V.5 Proof of Theorem V.1 when m is large

On the unit circle, rf(z) is well-approximated by an exponential function
[JMOS16, Section 6], but ifM is arbitrary, then pM(z) is well-approximated on
the unit circle by a certain generalized hypergeometric function. Unfortunately,
it is computationally intractable to locate the zeros of the real and imaginary
parts of generalized hypergeometric functions, and Rouché’s Theorem only
gives us the zeros of the real and imaginary part simultaneously. Therefore, we
can only prove that “most” zeros (depending on d and N) lie on the unit circle
as the weight becomes large.

Let d be fixed. If we define

QM(z) := zm
m−1∑
j=0

1

(j!)
d
2

(2π)
dj
2

(
√
Nz)j

L(2m+ 1− j,M)

L(2m+ 1,M)

+
1

2(m!)d/2

((2π)d/2√
N

)m L(m+ 1,M)

L(2m+ 1,M)
, (V.5.1)

then we may write PM(z) as

PM(z) =
[ m∏
ν=0

((2m− ν)!)hν
]( √N

(2π)d/2

)2m+1

L(2m+ 1,M)QM(z). (V.5.2)

Define

Fd,N(z) :=
∞∑
j=0

1

(j!)d/2

((2π)d/2√
N

z
)j
, (V.5.3)

which we approximate by its partial sums Tm,d,N(z) :=
∑m

j=0
1

(j!)d/2
( (2π)d/2√

N
z)j.
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Now we decompose QM(z) into the sum

QM(z) = zmTm,d,N(1/z)+S(z)+
1

2(m!)d/2

((2π)d/2√
N

)m L(m+ 1,M)

L(2m+ 1,M)
(V.5.4)

with

S(z) := zm
m−1∑
j=0

1

(j!)d/2

((2π)d/2√
Nz

)j(L(2m+ 1− j,M)

L(2m+ 1,M)
− 1
)
.

It follows from [EGR14, Theorem 2.2] that pM(z) has as many zeros on S1 as
QM(z) has inside D. Thus Part 3 of Theorem V.1 follows from the following
statement.

Theorem V.9. Let cd,N denote the number of zeros of Fd,N (z) inside D. If m
is sufficiently large, then QM(z) has m− cd,N zeros inside D.

Proof. We use Rouché’s Theorem. First, for |z| = 1, we estimate with Lemma
V.7

|S(z)| ≤
m−1∑
j=0

1

(j!)d/2

((2π)d/2√
N

)j(L(2m+ 1− j,M)

L(2m+ 1,M)
− 1
)

≤
m−1∑
j=0

1

(j!)d/2

((2π)d/2√
N

)j(
ζ
(
m+

1

2
− j
)d
− 1
)

The function x 7→ 2x(ζ(1
2

+ x)d − 1) is monotonically decreasing for x ≥ 1, so

|S(z)| ≤
m−1∑
j=0

4

(j!)d/2

((2π)d/2√
N

)j
2j−m(ζ(3/2)d − 1) < 22−m(ζ(3/2)d − 1)Fd,N(2).

(V.5.5)
Furthermore,

1

2(m!)d/2

((2π)d/2√
N

)m L(m+ 1,M)

L(2m+ 1,M)
� 1

(m!)d/2

((2π)d/2√
N

)m
. (V.5.6)

If d is fixed, then both (V.5.5) and (V.5.6) can be made arbitrarily small if m
is sufficiently large.

We first assume that Fd,N has no zeros on S1. Since Tm,d,N (z) converges to
Fd,N(z) locally uniformly as m tends to infinity, we have

min
z∈S1
|zmTm,d,N(1/z)| = min

z∈S1
|Tm,d,N(z)| > 1

2
min
z∈S1
|Fd,N(z)|
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for m large enough. We conclude for these m, the functions QM(z) and
zmTm,d,N(1/z) have the same number of zeros inside D by Rouché’s Theorem.
Every zero of zmTm,d,N (1/z) inside D is the inverse of a zero of Tm,d,N (z) outside
D. Again using locally uniform convergence, we see that, if m is sufficiently
large, then Fd,N(z) and Tm,d,N(z) have the same number of zeros inside D,
namely cd,N . This implies that zmTm,d,N (1/z), and hence QM(z), has m− cd,N
zeros inside D.

If Fd,N has zeros on S1, then we choose an r > 1, such that all the zeros of
Fd,N in the region {r−1 ≤ |z| ≤ r} lie on S1 and slightly modify the argument
above by applying Rouché’s Theorem to the circle {|z| = r}.

By taking d = 2, we have that F2,N(z) = exp( 2π√
N
z). Since F2,N(z) has no

zeros in D, we have that cd,N = 0; thus pM(z) has all of its zeros on S1, as shown
in [JMOS16]. However, for d = 4, the situation already becomes noticeably
more complicated; when d = 4, we have that F4,N(z) = I0(4πN

−1/4
√
z),

where I0 denotes the I-Bessel function. When d ≥ 6, Fd,N(z) is a generalized
hypergeometric function. To illustrate the difficulty when d ≥ 4, we directly
compute

c4,N =



4 if N = 1,

3 if 2 ≤ N ≤ 4,

2 if 5 ≤ N ≤ 26,

1 if 27 ≤ N ≤ 745,

0 if 746 ≤ N,

c6,N =



5 if N = 1,

4 if 2 ≤ N ≤ 6,

3 if 7 ≤ N ≤ 37,

2 if 38 ≤ N ≤ 494,

1 if 495 ≤ N ≤ 45606,

0 if 45607 ≤ N.

To see how these compare with those of the previous section, we observe that
746 ≈ 1

2
(2π)4 and 45607 ≈ 3

4
(2π)6. Thus it appears that the weight aspect of

the results in [JMOS16] do not readily generalize to our setting when d is large.

V.6 Symmetric Power L-functions and the

Proof of Theorem V.3

V.6.1 Symmetric power L-functions of non-CM new-
forms

Let f be a non-CM newform of even weight k ≥ 2, squarefree level N , and trivial
nebentypus. It is well-known that L(s, f) is a motivic L-function satisfying
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Hypothesis V.5 with weight w = k − 1, rank d = 2, and global conductor N .
(See [JMOS16] and the sources contained therein).

For each prime `, Deligne proved that there exists a representation ρ` :
Gal(Q̄/Q) → GL2(Z`) with the property that if p is a prime not dividing
`N and Frobp is the Frobenius automorphism of Gal(Q̄/Q) at p, then the
characteristic polynomial of ρd(Frobp) is x2−af (p)x+ pk−1. By Deligne’s proof
of the Weil Conjectures (which establishes Part 2 of Hypothesis V.5), we know
that |af(p)| ≤ 2p(k−1)/2. Thus the roots of the characteristic polynomial are
αpp

(k−1)/2 and βpp
(k−1)/2, where βp = ᾱp and αpβp = 1. We recast the Euler

product of L(s, f) in (V.1.1) as

L(s, f) =
(∏
p|N

1

1− af (p)p−s
)∏
p-N

1∏
j=0

1

1− αjpβ1−j
p p(k−1)/2−s

,

When N is squarefree, the Euler product of the n-th symmetric power of f ,
which we denote by Symnf , is given by

L(s, Symnf) =
(∏
p|N

1

1− af (p)np−s
)∏
p-N

n∏
j=0

1

1− αjpβn−jp pn(k−1)/2−s
.

(See Cogdell and Michel [CM04, Section 1.1].) This is the L-function attached
to the `-adic realizations of M = SymnH1(f); note that L(s, Sym0f) = ζ(s)
and L(s, Sym1f) = L(s, f). The symmetric power L-functions of newforms
determine the distribution of af(p)/(2p

(k−1)/2) in [−1, 1], but very little is
known about their analytic properties (cf. [BLGHT11,Maz08], for example).
Their critical values are important in the context of the Bloch-Kato conjecture,
much like those of L(s, f). (See [DW09] for an accessible overview along with
some convincing computations.) The weight of Symnf is n(k − 1), the rank is
n+ 1, and the global conductor is Nn. (It is for this reason, and this reason
alone, that we restrict N to be squarefree.) When n = 2r + 1 is odd, the
integers which are critical for Sym2r+1f are r(k − 1) + j for 1 ≤ j ≤ k − 1.
The Hodge numbers all lie in {0, 1}; see [CM04] for an exact expression for
L∞(s, Symnf). From this we can check that the conditions of Theorem V.1 (1)
or (2) are satisfied under the assumptions of Corollary V.2.

Conjecturally, we have Symnf ∈ An+1(Q) for each n ≥ 0, and Symnf ∈
As
n+1(Q) for each odd n ≥ 1. Unconditionally, we know that Symnf ∈ An+1(Q)

for each n ≤ 8 (see Clozel and Thorne [CT17], [CM04], and the sources
contained therein). Moreover, as part of the celebrated proof of the Sato-
Tate conjecture [BLGHT11], we know that L(s, Symnf) can be analytically
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continued to the line <(s) = 1 for each n ≥ 1. It follows from the Euler product
representation of L(s, Symnf) and (V.2.3) that if n ≥ 1 is odd, then

L(s,Ext2(Symnf)) = ζ(s)

n−1
2∏
j=1

L(s, Sym4jf).

In particular, if n is odd and Symnf ∈ An+1(Q), then L(s,Ext2(Symnf)) has a

pole at s = 1. Thus by Lapid and Rallis [LR03], we have that Λ(n(k−1)+1
2

, f) ≥ 0.
For n = 1 and n = 3, these results were proved by Waldspurger [Wal85] and
Kim [Kim03], respectively. Regardless of whether N is squarefree, we expect
that L(s,Ext2(Symnf)) has a pole at s = 1 for all odd n ≥ 1, in which case
Symnf ∈ Asn+1(Q) and we obtain the desired nonvanishing at the central
critical point.

V.6.2 Proof of Theorem V.3

By the modularity theorem, if E is a semistable elliptic curve of squarefree
conductorN , then E corresponds to a weight 2 newform of levelN , trivial neben-
typus, and integral Fourier coefficients. Thus L(s, SymnE) = L(s, Symnf). By
Corollary V.2, the only cases left to check are

n = 5, 11 ≤ N ≤ 43

and
n = 7, 11 ≤ N ≤ 15.

We observe that in all of these exceptional cases except for
(n,N) ∈ {(5, 37), (5, 43)}, corresponding to the isogeny classes 37.a and 43.a
in Cremona’s table, the root number ε(Symnf) is −1; these are stored on the
L-function and Modular Form Database (LMFDB) website at http://www.

lmfdb.org.
In the cases with ε(Symnf) = 1 (resp. n = 7), we explicitly compute the

zeros of PSym5f (resp. PSym7f) and observe that all of them lie in the open
unit disc. For this, we use the critical value L(3, Sym5f) and the Dirichlet
coefficients of L(s, Sym5f) (resp. L(s, Sym7f)), which are stored in the Lcalc
files on http://www.lmfdb.org.

If n = 5 and ε(Sym5f) = −1, we have

PSym5f (z) = Λ(5, Sym5f)z2 + 24Λ(4, Sym5f)z,
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so PSym5f has all zeros inside the unit disc, if∣∣∣24Λ(4, Sym5f)

Λ(5, Sym5f)

∣∣∣ ≤ 1.

This can again be checked by computing L(4, Sym5f) and L(5, Sym5f) in these
cases.

V.7 Proof of Theorem V.4

We first present some corollaries of the results in [RV02]. Let U(z) be a
polynomial of degree e with U(1) 6= 0. Consider the rational function V (z) :=
U(z)(1 − z)−(e+1). It is easily shown that there exists a polynomial H(z)

of degree e such that H(`) = 1
`!
d`

dz`
V (z)

∣∣
z=0

for each integer ` ≥ 0. Define
Z(s) := H(−s).

Theorem V.10 (Rodriguez-Villegas). If all of the roots of U lie on S1, then
all of the roots of Z(s) lie on the line <(s) = 1/2. Moreover, if U has
real coefficients and U(1) 6= 0, then Z(s) satisfies the functional equation
Z(1− s) = (−1)eZ(s).

We now show that under the hypotheses of Theorem V.3, pSymnE(z) satisfies
the hypotheses of Theorem V.10.

Lemma V.11. Let E/Q be a semistable elliptic curve, and suppose that SymnE
satisfies the hypotheses of Theorem V.3. If ε(SymnE) = 1, then pSymnE(1) 6= 0.
If ε(SymnE) = −1, then pSymnE(z) has a simple zero at z = 1.

Proof. Let n ≥ 3 be odd, let m = n−1
2

, and let ε = ε(SymnE). By (V.3.2) and
the fact that L(s, SymnE) is self-dual, we have that pSymnE(1) equals

[ m∏
ν=0

(
2m− ν
m

)hν]
Λ(m+ 1, SymnE)

+ 2
m∑
j=1

[ m∏
ν=0

(
2m− ν
m− j

)hν]
Λ(m+ 1 + j, SymnE)

if ε = 1 and pSymnE(1) = 0 if ε = −1.
When ε = 1, it follows from Lemma V.6 and Hypothesis V.5 (both of which

hold whenever SymnE satisfies the hypotheses of Theorem V.3) that the sum
defining pSymnE(1) has only nonnegative terms. If pSymnE(1) = 0, then it would
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follow that all Deligne periods of SymnE would equal zero. This implies that
the Deligne periods of E are both zero, which is not true. (For the relationship
between the periods of E and the periods of SymnE, see [DW09], for example.)
Thus pSymnE(1) 6= 0.

Now, suppose that ε = −1. Note that the sum defining p′SymnE(z) is a sum
of nonpositive terms. Much like the case where ε = 1, if all of these terms
equal zero simultaneously, then all of the Deligne periods of E are zero, which
cannot happen. Thus pSymnE(z) has a simple zero at z = 1.

Define s(m,n) by
∏n

j=0(x− j) =
∑n

m=0 s(n,m)xm. Let

MSymnE(j) :=
1

(n− 1)!

n−1∑
m=0

[ n−1
2∏

ν=0

(
n− 1− ν

n−1
2
− |n−1−2m

2
|

)hν]
Λ(m+ 1, SymnE)mj

and

ZSymnE(s) := ε
n−1∑
h=0

(−s)h
n−1−h∑
j=0

(
h+ j

h

)
s(n− 1, h+ j)MSymnE(j). (V.7.1)

Proof of Theorem V.4. If n ≥ 1 is an integer, then we have the Maclaurin
expansion

(1− z)−n =
∞∑
`=0

(
n− 1 + `

n− 1

)
z`.

Sending j to n − 1 − j in the sum defining pSymnE(z), using the functional
equation for Λ(s, SymnE), and sending ` to `+ j − (n− 1) yields the identity

pSymnE(z)

(1− z)n
= ε

∞∑
`=0

z`
( n−1∑
j=0

[ n−1
2∏

ν=0

(
n− 1− ν

n−1
2
− |n−1−2j

2
|

)hν]
Λ(j+1, SymnE)

(
`+ j

n− 1

))
.

(V.7.2)
Let h` be the coefficient of z` in (V.7.2). With s(n− 1,m) defined above, we
have

h` =
ε

(n− 1)!

n−1∑
h=0

[ n−1
2∏

ν=0

(
n− 1− ν

n−1
2
− |n−1

2
− j|

)hν]
× Λ(j + 1, SymnE)

n−1∑
m=0

s(n− 1,m)(`+ j)m
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which equals ZSymnE(−`) (see [ORS17] for a similar manipulation). This proves
Part 3.

Let

p̂SymnE(z) =
pSymnE(z)

(1− z)−δ−1,ε
,

where δi,j is the Kronecker delta function. By Theorem V.3 and Lemma V.11,
we see that p̂SymnE(z) is a polynomial of degree n− 1− δ−1,ε, all of whose roots
lie on S1. Moreover, p̂SymnE(1) 6= 0. Thus

pSymnE(z)

(1− z)n
=

p̂SymnE(z)

(1− z)n−δ−1,ε
.

Parts 1 and 2 follow from an application of Part 3 and Theorem V.10 with
e = n− 1− δ−1,ε.

88



Bibliography

[Ara16] D. Arapura. Geometric Hodge structures with prescribed Hodge num-
bers. In Recent advances in Hodge theory, volume 427 of London Math.
Soc. Lecture Note Ser., pages 414–421. Cambridge Univ. Press, Cambridge,
2016.

[BLGHT11] T. Barnet-Lamb, D. Geraghty, M. Harris, and R. Taylor. A family
of Calabi-Yau varieties and potential automorphy II. Publ. Res. Inst. Math.
Sci., 47(1):29–98, 2011.

[BK90] S. Bloch and K. Kato. L-functions and Tamagawa numbers of motives.
In The Grothendieck Festschrift, Vol. I, volume 86 of Progr. Math., pages
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phic forms, representations and L-functions (Proc. Sympos. Pure Math.,
Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure
Math., XXXIII, pages 313–346. Amer. Math. Soc., Providence, R.I., 1979.

[DW09] N. Dummigan and M. Watkins. Critical values of symmetric power
L-functions. Pure Appl. Math. Q., 5(1):127–161, 2009.

[EGR14] A. El-Guindy and W. Raji. Unimodularity of zeros of period polyno-
mials of Hecke eigenforms. Bull. Lond. Math. Soc., 46(3):528–536, 2014.

[IK04] H. Iwaniec and E. Kowalski. Analytic number theory, volume 53 of
American Mathematical Society Colloquium Publications. American Mathe-
matical Society, Providence, RI, 2004.

89



BIBLIOGRAPHY 90

[JMOS16] S. Jin, W. Ma, K. Ono, and K. Soundararajan. The Riemann
hypothesis for period polynomials of modular forms. Proc. Nat. Acad. Sci.,
113(10):2603–2608, 2016.

[Kim03] H. Kim, Functoriality for the exterior square of GL4 and the symmetric
fourth of GL2, With appendix 1 by Dinakar Ramakrishnan and appendix
2 by Kim and Peter Sarnak. J. Amer. Math. Soc., 16(1):139–183, 2003.

[LR03] E. Lapid and S. Rallis. On the nonnegativity of L(1
2
, π) for SO2n+1.

Ann. of Math. (2), 157(3):891–917, 2003.

[Man16] Y. I. Manin. Local zeta factors and geometries under Spec Z. Izv.
Ross. Akad. Nauk Ser. Mat., 80(4):123–130, 2016.

[Maz08] B. Mazur. Finding meaning in error terms. Bull. Amer. Math. Soc.
(N.S.), 45(2):185–228, 2008.

[MS12] S. D. Miller and W. Schmid, The Archimedean theory of the exterior
square L-functions over Q J. Amer. Math. Soc., 25(2):465–506, 2012.

[ORS17] K. Ono, L. Rolen, and F. E. Sprung. Zeta-polynomials for modular
form periods. Adv. Math., 306(14), 2017.
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Chapter VI

Summary and Discussion

In this section, we summarize the work presented in this thesis and discuss
possible future directions to pursue.

Divisors of modular forms

In Chapter II we constructed generalizations H∗N,z of the functions Hz from
(I.1.3) to higher level. For this we used Poincaré series jN,n introduced by
Niebur [46] to take over the role of the functions jn from (I.1.2). The jN,n are
harmonic Maass forms of weight 0, but in general not weakly holomorphic
anymore. However, the evaluations jN,n(z) at a point z ∈ H still constitute
the n-th Fourier coefficients at i∞ of the weight 2 polar harmonic Maass
forms H∗N,z. Together with functions H∗N,ρ for every cusp ρ of Γ0(N), which
are shown to be weight 2 Eisenstein series in Theorem II.2, we generalized
formula (I.2.1) to higher level. From the growth of Fourier coefficients of
polar harmonic Maass forms, Eisenstein series, and cusp forms, we then de-
duced a procedure to determine the imaginary part of the highest zero or pole
of a meromorphic modular form for Γ0(N) in the standard fundamental domain.

It would be interesting for make Corollary II.4 into an algorithm that ef-
fectively computes the divisor of any given meromorphic modular form. The
idea would be to determine the imaginary part of the highest zero or pole
z0 of f and then find its real part using linear algebra. After that one can
subtract the corresponding summand eN,z0 ordz0(f)H∗N,z0(τ) from (II.1.9) and
then repeat the process until only the cuspidal components H∗N,ρ are left in the
sum. However, this algorithm is susceptible to rounding errors if there is more
than one zero or pole in H and the convergence of (II.1.10) seems to be slow
when the imaginary part of the zero or pole is small. Moreover, if z0 lies on the
boundary of the standard fundamental domain, non-trivial matrices may occur
on the right-hand side of (II.3.6), so that the main asymptotic term on the
left hand-side of (II.1.9) in Theorem II.3 will exhibit a more delicate growth
behavior.
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An interesting application would be to derive results on the divisors of
theta functions, about which very little is known in general. For example,
[17] asks for the vanishing of certain theta series at the point i. Note that
the results in Chapter II can also be applied to half-integral weight modu-
lar forms, since squaring them does not change the locus of their zeros and poles.

Both sides of (II.1.9) differ by a cusp form depending on f , which would
be worthwhile to describe explicitly. In Theorem 1.4 of [16], the coefficients of
this cusp form have been rewritten as a regularized inner product of Θf

f
and

ξ0(jN,n) = P2,N,n, the exponential Poincaré series of weight 2, degree n and
level N . This series was introduced by Petersson [52] and is defined to be the
analytic continuation of

P2,N,n,s(τ) :=
∑

M∈Γ∞\Γ0(N)

|j(M, τ)|−2s (qn |2 M)

to s = 0. The Fourier expansion of this Poincaré series converges absolutely
and locally uniformly and can also be obtained by applying the ξ0-operator
to the Fourier expansion of jN,n given in Theorem II.9. Theorem II.3, and
also Lemma 3.1 of [16], then follows by applying Stokes’ Theorem to these
regularized inner products.

Niebur-Poincaré series and traces of singular moduli

In Chapter III we showed that twisted analogues of the functions fk,∆ from
(I.1.6) of weight 2 and level N are given by twisted traces of singular moduli in
the z-variable of the weight 2 polar harmonic Maass forms H∗N,z from Chapter
II. This allowed us to deduce known formulas for traces of singular moduli
and show algebraicity results of the Fourier coefficients that correspond to the
higher weight case.

Furthermore, we applied the approach of Bringmann, Kane, and von Pippich
to compute regularized inner products of the normalized meromorphic modular
forms fd of level 1 and showed that they are given by double traces over
CM-values of

Gz(τ) = log |j(τ)− j(z)| ,

which is a Green’s function for the modular curve X0(1). To make the inner
products converge, we had to use two regularizations, one by Borcherds [4] to
account for the non-vanishing of fd at i∞ and one by Bringmann, Kane, and
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von Pippich [11] to account for the poles of fd.

Evaluations of Green’s functions at Heegner points have been related to
heights of Heegner points on modular curves by Gross and Zagier [28]. Since the
fd are modular forms of weight 2, it would be enlightening to find a geometric
interpretation of their inner products and see how they fit into this picture.
Furthermore, in light of the results of Duke, Imamoğlu, and Tóth [22] on
cycle integrals of the j-invariant, it might be worthwhile to also consider cycle
integrals of the Niebur Poincaré series jN,n, which can be seen as traces for
positive discriminants.

Theorem III.5 implies that not only the Fourier coefficients of fd, but also
their inner products 〈fd, fδ〉 have interesting algebraicity properties. For exam-
ple, if no two CM-points of discriminants d and δ coincide, meaning that none
of discriminants is a square multiple of the other, then the inner products are
essentially logarithms of algebraic numbers, namely norms of differences of sin-
gular moduli. This is case (i) of Theorem III.5. Norms of singular moduli were
studied by Gross and Zagier [29], who showed that their prime factorization
contains only small primes and gave an explicit formula.

On the other hand, if some CM-points coincide and none of them are equiv-
alent to i or −1+

√
3i

2
, we obtain contributions from the weight 2 modular form

j′ evaluated at CM-points, which are algebraic numbers up to the square of
the Chowla-Selberg period of discriminant D (see [59], Section 6.3 for details).

In case that at least one of the discriminants have i or −1+
√

3i
2

as CM-points,
we obtain higher derivatives of j evaluated at CM-points and their algebraicity
properties can be determined by applying suitable differential operators.

Although we restricted ourselves to the Hecke congruence subgroups Γ0(N),
one can define analogues of the H∗N,z for other Fuchsian groups Γ in the same
way. This gives a method to explicitly construct weight 2 meromorphic modular
forms with prescribed simple poles on other modular curves. Especially in the
case when Γ has genus 0, the weight 2 polar harmonic Maass forms H∗Γ,z can
still be written in terms of the logarithmic derivative of a Hauptmodul for Γ.
In the proof of Theorem III.5 we needed the description of the functions H∗1,z
as logarithmic derivatives in order to construct an explicit preimage Gz under
the ξ0-operator. This approach should generalize to other modular curves of
genus 0, but it would be interesting to compute the regularized inner products
also in case of positive genus.
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Linear congruences for modular forms

In Chapter IV we gave an explicit condition on an arithmetic progression that
prevents a the Fourier coefficients of a generalized eta-quotient from satisfying
any linear congruence. Namely, the residue class t (mod m) of the progression
(mn+ t)n∈N has to be given by a certain quadratic expression with coefficients
depending on the parameters of the eta-quotient. We gave many examples
that follow from Theorem IV.1 in case of the partition function, classical eta-
quotients, and Schur and Rogers-Ramanujan partitions.

Radu’s and our proof rely on the q-expansion principle by Deligne and
Rapoport, stated in [21], Section 5.VII, Corollaire 3.12 and 3.13. The version
of the q-expansion principle that we used is Corollary 5.3 of [54]. It states
that if the Fourier coefficients of a modular form for Γ(N) at i∞ are algebraic
integers, then so are the Fourier coefficients at cusps associated to Γ0(N).

The primes 2 and 3 play a special role in linear congruences for the partition
function. These are the residues treated in the papers of Radu [54] and Ahlgren
and Kim [1] and also the prime divisors of the denominator 24 in the rational
exponent of η−1. It would be interesting to see whether this role can be taken
over by larger primes if we study generalized eta-quotients. These primes
should be the ones that divide the denominator P2

(
g
δ

)
of the eta-quotient ηg,δ,

for example the primes 2, 3, and 5 in case of the Rogers-Ramanujan functions.

One might also be able to extend Radu’s method and establish linear
incongruences for other kinds of (mock) modular forms. On the other hand,
results like Theorem IV.1 could be used to systematically find linear congruences
by narrowing down possible residues or to prove further theorems on linear
congruences for a generalized eta-quotient of interest.

Motivic L-functions and period polynomials

In Chapter V we showed that, for every motivic L-function of odd motivic
weight that satisfies the automorphicity assumptions in Hypothesis V.5, the
zeros of the polynomial pM defined in (V.3.1) all lie on the unit circle if the
level is large enough and all but a fixed number lie on the unit circle if the
weight is large enough. Furthermore, they tend to be equidistributed as at
least one of these parameters tends to infinity.
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The results in [33] have recently been employed by Ono, Rolen, and Sprung
[49] to study zeta-polynomials of Manin [43] for Hecke eigenforms, where also a
connection to Ehrhart polynomials has been drawn. Our results imply that such
a theory of zeta-polynomials also exists for odd symmetric power L-functions
of elliptic curves (see Theorem V.4). Namely, their zeta-polynomials satisfy
a functional equation and have all of their zeros on the “critical strip” Re(s) = 1

2
.

An obvious task would be to show an similar statement for motives of even
motivic weight. However, in this case already in the decomposition (V.3.2)
of the polynomial pM, the polynomials PM are not trigonometric anymore.
Moreover, one has to consider real Gamma-factors, which do not occur for odd
motivic weight and render the shape of pM considerably more difficult. In that
sense, the assumption of odd motivic weight is crucial to our work.

Since the critical values modular L-functions satisfy interesting transcen-
dence properties, it would be enlightening to determine to what extent the
polynomials pM generalize period polynomials of Hecke eigenforms. Manin [44]
showed that for any Hecke eigenform f of weight k and level 1 with integral
Fourier coefficients, there are two real numbers ω±, such that the even periods
Λ(1, f),Λ(3, f), . . . ,Λ(k−1, f) are rational multiples of ω+ and the odd periods
Λ(2, f),Λ(4, f), . . . ,Λ(k − 2, f) are rational multiples of ω− (the shift in the
argument of Λ comes from the expression in (I.1.8)). Kohnen and Zagier [36]
showed that the even periods of the cusp forms fk,∆ for ∆ > 0 introduced in
(I.1.6) are rational (using a different normalization).

If f is a weight 2 modular form, then by the Modularity Theorem f
corresponds to an elliptic curve and the geometric interpretation of the periods
is clear. For higher weights. Kontsevich and Zagier [38] wrote the critical
L-values of L(∆, s) for the weight 12 cusp form ∆ and s = 1, . . . , 12 as integrals
of rational functions over rational domains. Deligne [20] conjectured that
critical values of symmetric power L-functions can also be given in terms of
periods.

Conjecture (Deligne). Let f be a Hecke eigenform of weight k and level 1
with integral Fourier coefficients. If j is a critical value for Sym2m+1 f , then
L
(
Sym2m+1 f, j

)
is a non-zero rational multiple of

(2πi)1−k+j(m+1)ω
(m+1)(m+2)

2
± ω

m(m+1)
2

∓ ,

where ± = (−1)m.
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The more complicated original form of the conjecture also involves higher
levels and even symmetric powers. In light of Deligne’s conjecture, Don Zagier
suggested of find an interpretation of the coefficients of pSymn f as period
integrals in the sense of [38].
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[42] S. Löbrich, W. Ma, and J. Thorner, Special Values of Motivic L-Functions
and Zeta-Polynomials for Symmetric Powers of Elliptic Curves, Res. Math.
Sci. 4 (2017), Art. 26, 16.

[43] Y. Manin, Local zeta factors and geometries under Spec Z, Izv. Ross. Akad.
Nauk Ser. Mat. 80 (2016) no. 4, 123–130.

[44] Y. Manin, Periods of parabolic forms and p-adic Hecke series, IMat. Sb.
(N.S.) 21 (1973), 371–393.

[45] P. Martin and M. Watkins, Symmetric powers of elliptic curve L-functions,
Algorithmic number theory, 377–392, Lecture Notes in Comput. Sci. 4076,
Springer, Berlin, 2006.

[46] D. Niebur, A class of nonanalytic automorphic functions, Nagoya Math. J.
52 (1973), 133–145.

[47] K. Ono, Distribution of the partition function modulo m, Ann. of Math.
(2) 151 (2000), no. 1, 293–307.

[48] K. Ono, Parity of the partition function, Electron. Res. Announc. Amer.
Math. Soc. 1 (1995), no. 1, 35–42.

[49] K. Ono, L. Rolen, and F. Sprung, Zeta-polynomials for modular form
periods, Adv. Math. 306 (2017), 328–343.

[50] T. Parkin and D. Shanks, On the distribution of parity in the partition
function, Math. Comp. 21 (1967), 466–480.
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Geburtsdatum 28. Januar 1990
Geburtsort Lich
Staatsangehörigkeit deutsch

Ausbildung

Apr 2015 – Dez 2017 Promotionsstudent und wissenschaftlicher Mit-
arbeiter von Prof. Dr. Kathrin Bringmann an
der Universität zu Köln
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