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“Nature uses only the longest threads to weave her patterns, so that each small piece
of her fabric reveals the organization of the entire tapestry.”

Richard Feynman
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Abstract
Temperature gradients trigged force on colloid (or fluid) is referred to as thermophoretic
(thermoosmotic) force. This driven mechanism offers rich transport phenomena out of ther-
modynamic equilibrium. With a mesoscale hydrodynamic simulations method, this thesis
focuses on thermophoretic response of colloids with geometric and compositional asym-
metries, and their resulting net flows, from both fundamental mechanism and application
viewpoints.

Firstly, combined analytical theory and simulation, we study thermophoretic / diffusio-
phoretic flows and forces, and related finite size effects for spherical colloids. Local quan-
tities such as slip flow and associated local pressure at the solid-liquid boundary layer
are obtained which explicitly explain the microscopic mechanisms of thermophoresis.
Then, we exploit how the particle shape influences thermophoresis. The elongated col-
loids exhibit an orientation dependent thermophoretic response, i.e. the anisotropic ther-
mophoresis. We introduce a linear decomposition scheme to show and understand this
anisotropic phenomenon. Quite contradictory from anisotropic friction, we realize that
the thermophoretic force of a rod oriented with the temperature gradient can be larger or
smaller than when oriented perpendicular to it. This transition depends not only on the
geometric details of the surface, also on the colloid-solvent interaction. Then the depen-
dence on the rod aspect ratio is studied. Later, we move our attention to the heterodimer
composed of two beads with different thermophoretic properties. The resulting alignment
is linearly dependent on temperature gradient, and strongly relies on the size ratio. Addi-
tionally, the interacting heterodimers in a confined slit with walls are investigated in the
presence of a temperature gradient. The colloids first align to the gradient due to ther-
mophoretic torques, then accumulate at the wall. We observed the exponential decay of
both positional and orientation order as the distance to the accumulation walls increases.
This is reminiscent of "sedimentation-diffusion equilibrium" phenomenon. Hydrodynamic
interaction in the case of phoretic heterodimers seems to be of importance when colloids
are close to the wall.

With an application perspective, we propose two types of micropumps which use ther-
mophoresis as surface forcing mechanism, but with different symmetry breaking by in-
corporating obstacles at the middle of the microchannel. In the first micropump, the tem-
perature gradient is applied perpendicular to the channel walls; and elongated obstacles
are fixed and tilted to the gradient. This geometric asymmetry and thermophoresis enable
fluid to flow along the channel. The resulting flow patterns, the magnitude and direc-
tion of the net flux density rely on the channel geometric parameters. The flow strength,
path and direction can be tunned by the length, rugosity, and thermophobic/thermophilic
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properties of the obstacles. The net flow flux for obstacles with various interfacial prop-
erties can be captured by anisotropic thermophoresis. The second micropump uses fixed,
metallic / non-metallic compositional obstacles aligned with the channel walls. By laser
illumination, temperature gradient can be established due to the higher heat absorption
in the metallic composition, which consequently leads to a net flow flux. The resultant
far field flow resembles Poiseuille flow. Its pumping capability strongly depends on the
length of the non-metallic part as well as the inter-separation distance of the obstacles, but
is only slightly dependent on the channel width. Finally, a comparison of the pumping
capability between different phoreticpumps is made.



Kurzzusammenfassung
Eine Kraft, welche durch einen Temperaturgradienten auf ein Kolloid oder eine Flüs-
sigkeit ausgeübt wird, bezeichnet man als thermophoretische (thermoosmotische) Kraft. Dieser
getriebene Mechanismus bietet vielfältige Transportphänomene im thermodynamischen
Nichtgleichgeweicht. Diese Arbeit verwendet mesoskalige hydrodynamische Simulatio-
nen, um dieses Phänomen zu studieren. Der Fokus der Arbeit liegt auf der thermophoretis-
che Reaktion des Kolloids, dessen Asymmetrie und Struktur systematisch verändert wird.
Der resultierenden Nettofluss, der zugrundeliegende Mechanismus und dessen Anwen-
dungen werden diskutiert.

Zunächst untersuchen wir sowohl mittels analytischer Theorien als auch mit Simula-
tionen thermophoretische/diffusiophoretische Flüsse und Kräfte sowie Auswirkungen
für sphärische Kolloide und bestimmen den Einfluss der endlichen Abmessungen der
untersuchten Systeme. Lokale Größen wie der Schlupffluss und der zugehörige lokale
Druck an der Festkörper-Flüssigkeits-Grenzschicht werden berechnet und verwendet, um
den mikroskopischen Mechanismus der Thermophorese explizit zu erklären. Darauffol-
gend bestimmen wir den Einfluss der Teilchenform auf die Thermophorese. Die gestreck-
ten Kolloide zeigen eine orientierungsabhängige thermophoretische Reaktion, welche als
anisotrope Thermophorese bezeichnet wird. Wir führen ein lineares Zerlegungsschema ein,
um das anisotrope Phänomen zu illustrieren und zu verstehen. Im Gegensatz zur aniso-
tropen Reibung, erkennen wir, dass die thermophoretische Kraft eines in Richtung des
Temperaturgradienten orientierten Stabes größer oder kleiner sein kann als die der senk-
rechten Orientierung. Dieser Übergang hängt nicht nur von den geometrischen Details
der Oberfläche ab, sondern ebenfalls von der Kolloid-Lösungsmittel Wechselwirkung.
Danach wird die Abhängigkeit des Längen- zu Dicken-Verhältnisses erforscht. Später
wenden wir unsere Aufmerksamkeit den Hetero-Dimeren zu. Diese sind aus zwei Mono-
meren mit unterschiedlichen thermophoretischen Eigenschaften zusammengesetzt. Die
resultierende Ausrichtung ist linear abhängig vom Temperaturgradienten und wird stark
durch das Größenverhältnis beeinflusst. Im Weiteren werden wechselwirkenden Het-
erodimere in einem Spalt in der Anwesenheit eines Temperaturgradienten untersucht.
Die Kolloide richten sich zuerst aufgrund des thermophoretischen Drehmomentes zum
Gradienten aus und lagern sich dann an einer Wand des Spaltes an. Wir beobachteten
den exponentiellen Abfall der Positions- und Orientierungsordnung mit zunehmendem
Abstand zu dieser Wand. Dies erinnert an ein Sedimentation-Diffusionsgleichgewicht.
Hydrodynamische Wechselwirkungen scheinen eine große Bedeutung für die phoretis-
chen Heterodimere zu haben, wenn die Kolloide sich in der Nähe von Wänden befinden.
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In Hinblick auf mögliche Anwendungen schlagen wir zwei Typen von Mikropumpen vor,
die Thermophorese als den Oberflächen als Antriebsmechanismus nutzen. Hierzu wer-
den verschiedene die Symmetrie brechende Hindernisse in der Mitte des Kanals position-
iert. Bei der ersten Mikropumpe wird der Temperaturgradient senkrecht zu den Kanal-
wänden angelegt und gestreckte Hindernisse werden lokal fixiert und zum Gradienten
geneigt. Diese geometrische Asymmetrie und die Thermophorese ermöglichen es der
Flüssigkeit am Kanal entlang zu fließen. Die resultierenden Strömungsmuster, die Stärke
und die Richtung der Nettostromdichte hängen von den geometrischen Kanalparame-
tern ab. Die Stromflussstärke, der Strompfad und die Stromrichtung können durch die
Länge, Rauheit und die thermophobischen/thermophilen Eigenschaften der Hindernisse
angepasst werden. Der Nettostromfluss für Hindernisse mit verschiedenen Grenzflächen-
eigenschaften kann durch die anisotrope Thermophorese bestimmt werden. Die zweite
Mikropumpe verwendet räumlich fixierte Metall-Nichtmetall Verbindungen als Hinder-
nisse, welche zu den Kanalwänden ausgerichtet sind. Durch Laserbeleuchtung entsteht
ein Temperaturgradient aufgrund der höheren Wärmeabsorption des metallischen Endes
der heterogenen Verbindungen, der zu einem Nettostromfluss führt. Der resultierende
Fernfeldfluss ähnelt dem Poiseuille-Fluss. Die Pumpleistung hängt stark von der Länge
der nicht - metallischen Anteile sowie dem Abstand zwischen den Hindernissen ab - je-
doch nur geringfügig von der Kanalbreite. Zum Abschluss stellen wir eine genauere über-
sicht und den Vergleich der Pumpleistungen zwischen den verschiedenen phoretischen
Pumpen vor.
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Chapter 1

Background: asymmetry, soft
matter and thermophoresis

1.1 Asymmetry and soft matter

The subject of this thesis is what we may simply call "Asymmetric thermophore-
sis/thermoosmosis". Before embarking on the analysis of this topic, it is instruc-
tive to recap briefly of asymmetry, soft matter and related thermally induced
mass transport effects.

In the first place, the human mind is always fascinated by symmetry over
asymmetry. Most of us prefer patterns or objects that are in some way sym-
metrical. For instance, both adults and infants like faces with higher symme-
try [2, 3]. More interestingly, the appreciation of symmetry have evolved in
different species [4].

1.1.1 Symmetry in nature

Nature reveals various symmetrical objects around us. Sphere, the most
symmetrical shape, has different counterparts in the universe such as wa-
ter droplets, fruits and stars etc.. Antimatter, chiral molecular structures, all
manifest symmetry in nature. Figuratively, multitudinous examples of sym-
metry can be found in nature. From galaxy systems to human body (Fig. 1.1),
even downsize to atoms [5]. Deeping down into physical laws, they translate
through space and time symmetrically and have no preferred directions. In
this sense, symmetry means uniformity or invariance [6].
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a) b)

c)

d)

e)

Figure 1.1: Nature exhibits the beauty of symmetry everywhere. (a)
Spherical shape of earth, (b) snow crystals with complex symmetries, (c) a
“Fibonacci spiral” is formed in the shell of a nautilus, (d) a human’s face
demonstrates mirror symmetry. (e) Dazzling symmetry of the
Nasir-Al-Mulk Mosque in Shiraz, Iran. Figure credits give to GOOGLE [7]
and Mohammad Reza Domiri Ganji [8].
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1.1.2 Asymmetry in soft matter

However, we shall notice that in soft matter — a research area that encom-
passes colloidal suspensions, (bio) polymer solutions, liquid crystals and am-
phiphilic mixtures, as well as self-propelled objects etc.— broken symmetries
are ubiquitous. For instance, in a liquid crystal solution, the fact that the
building blocks are elongated (or disk-like) largely enriches the phase be-
haviors with respect to the systems made by spherical particles, as drawn in
Fig. 1.2.

Figure 1.2: Phase transitions in liquid crystals. From left to right with
increasing of temperature: Ordinary crystals. Smectic liquid crystals with
layered translational order; smectic-C phase with tilted arrangement to the
normal z of the layers, while the directions z and −z are equivalent in
smetic-A phase. Nematic liquid crystals with a rotational order. Both
continuous translational and rotational symmetry are stored in isotropic
liquids. (Adapted from Ref. [9])

In the soft matter field, "biological systems present additional challenges be-
cause they are often far from equilibrium and are driven by strong spatially
and temporally varying forces [10]". Lipids, proteins, self-organized super-
structures, and tissues are highly asymmetric in shapes and chemistry (com-
positions) under complex biological processes [11]. Cells for example, are
driven out of equilibrium due to the energy fed by the chemical reactions
inside the cell. Additionally, external signals such asymmetric chemical con-
centration (Chemotaxis), or even internal asymmetric myosin motors induced
cortex relaxation can lead to cell polariztion and directional protrusive mo-
tions of cells [12].

In a nutshell, soft matter systems accompanied with asymmetry take many
forms to be far from equilibrium, this thesis focuses on one particular form:
thermophoresis, in which temperature gradient triggers directional transport
phenomena.



4 Chapter 1. Background: asymmetry, soft matter and thermophoresis

1.2 Thermophoresis: beating Brownian dance by

temperature gradient

Thermal gradient is of vital relevance to a lot of interesting phenomena in
soft matter. The first example would be “the Origin of Life” scenario [13, 14].
Recent studies have shown that temperature gradient on the earth might pro-
vide a favorable environment for molecular accumulation with high enough
concentration, to form the nucleotide and RNA at the origin of life stage. An-
other example is the existence of temperature gradient in living cells, which
is intrinsically related to fundamental cellular processes, such as the cell cy-
cle and the stimulation of the mitochondria [15]. In colloidal suspensions,
the existence of temperature gradient leads to colloidal migration and accu-
mulation, as well as the slip flow in the ambient fluid, this is the so-called
thermophoresis.

1.2.1 Brownian motion

When a colloidal particle immersed in a fluidlike environment, it suffers
chaotic collisions from the solvent particles. Below the certain timescale, say,
inertial timescale τγ,trans = M/γt (here γt is the translational friction coeffi-
cient and M the colloid mass), a colloid suffers unbalanced collisional forces
from the solvent, and is accelerated moving forward due to inertia effect; on
the other hand, it is subject to the friction from the surrounding fluid. Be-
yond such time scale, the inertial force is counterbalanced (damped) by the
solvent friction.

Theoretical interpretation of this phenomenon is reported by Paul Langevin
in 1908 [16], this random, rapid “kicks” by solvent particles induce so-called
thermal fluctuating forces drive colloid forward. The energy scale of these
fluctuations is on the order of kBT , and transfers this energy to the colloid
which is dissipated by the fluid friction. Collisions of the fluid molecules
relax much faster than the colloid moves (the typical relaxation time for fluids
are of the order 10−14s, while the Brownian particles are 10−9s [17]). This
large separation in time scales is sufficient to provide a description in terms
of effective random forces f(t) as follows [17],

〈f(t)〉 = 0, (1.1)
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and
〈f(t)f(t′)〉 = Gδ(t− t′), (1.2)

where δ is the delta distribution and G measures the strength of these fluc-
tuating force f(t) which is a 3 × 3 matrix. During this stochastic process, the
fluctuation of forces is regarded as Guassian white noise. Considering all the
mechanisms aforementioned, the time evolution of the linear momentum p

of translational motion is described by the Langevin equation [16],

dp/dt = −γp/M + f(t). (1.3)

Likewise, the rotational Brownian motion can be expounded as Newton’s
equation of motion, supplemented with fluctuating torques resulting from
collisions of solvent molecules with the colloids. The mathematical form is
written as,

dJ/dt = −γrΩ + T(t), (1.4)

where J is the angular momentum and γr the rotational friction coefficient.
T(t) is termed as fluctuating torque, which obeys,

〈T(t)〉 = 0, (1.5)

and,
〈T(t)T(t′)〉 = Grotδ(t− t′), (1.6)

where Grot is the strength of the fluctuation torque.

A typical value of the relaxation time of the traslational and rotational motion
of a colloid is both of the order of a nanosecond. In the following, we specialize
to the time scales which beyond those relaxation time τtrans and τγ,rot = I/γr

(where I is the moment of inertia), at which the inertial forces and torques
on the colloid can be neglected. Here we dubbed a time scale as Brownian or
diffusive time scale τD which is larger than τtrans (or τrot) but small enough to
resolve position and orientation in sufficient detail.
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Short time Brownian motion

Conventionally, the thermal fluctuating force is assumed to be random and
characterized by a Gaussian white noise spectrum. From Einstein’s assump-
tion, the kinetic energy of the colloid is damped into fluid by solvent friction
with a constant friction coefficient. However, the fact is the ambient fluid is
rearranged when the colloid collides with the ambient fluid particles. The
momentum transferred from colloid to fluid particles, acts back on the col-
loid beyond the commonly named hydrodynamic timescale τh = R2ρ0/η,
such that the long range correlation has built [18, 19]. This phenomena is
also termed as hydrodynamic memory effect [17], as the this stochastic pro-
cess stores the “memory” of the movement of the colloid. Experimentally,
Franosch [20] teases out the colored noise of solvent by trapping colloid with
a harmonic potential. These studies confirm that the memory effect of sol-
vent and the friction coefficient is dependent on the moving velocity of the
colloid.

1.2.2 Transport effects induced by temperature gradient

Brownian motion is chaotic and therefore increases entropy to reach thermo-
dynamic equilibrium. However, once a colloidal system driven out of equi-
librium by a temperature gradient, the entropy decreases as the colloids un-
dergo directional motion. Temperature gradient, is understood as a general
thermodynamic force which beats chaotic Brownian dances. Since Ludwig
found thermal diffusion in molecular mixture in 1856, all present researches
about mass transport in temperature gradient somewhat share some com-
mon features but discrepant subtly. Therefore it is important to take a glance
at thermal gradient induced mass transport effects.

Thermal diffusion in liquid mixtures

As stated above, thermal gradient plays a significant role in soft matter. In
the framework of molecular mixtures, this transport effect is termed as ther-
mal diffusion, or Ludwig–Soret effect [21, 22]. It describes that the component
of the mixture and molecular counterpart travel in different directions along
temperature gradient. It has been largely used to separate mixtures or for
solute accumulation. In a binary mixture, two opposite mass fluxes counter-
acting each other in non-equilibrium steady states. The total mass flux Jm
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of component 1 vanishes at the stationary state, which is expressed as the
following phenomenological equation,

Jm = 0 = −ρD∇c− ρc(1− c)DT∇T. (1.7)

D is the Fickian diffusion coefficient, c the concentration of component 1 in
weight fractions, ρ the mass density and DT is the so-called thermal diffusion
coefficient. Eq. (1.7) provides the definition of the well-known Soret coefficient
ST

ST ≡ −
1

c(1− c)
∇c
∇T

. (1.8)

Here ST > 0 means component 1 prefers cold area, while ST < 0 is in the op-
posite and this is the standard sign convention. Thermal diffusion in liquid
mixtures has been a hot topic for several decades and arises many fundamen-
tal questions. For instance, the sign of ST is determined by many parameters
such as mass, moment of inertia, size, molecular interaction, although the relation
between them is not always clear [21].

Thermally driven motion in gases

Thermally directed motion of solid in gas phase has been studied over one
century. Due to historic reason, it is also termed as “thermophoresis”, as the
mechanism is similar but much simpler than what in the liquid phases. Aerosol
colloids, or dust particles suspended in gases, was first observed by Tyndall
in 1870 that promote to the cold side; Crookes found similar effect in ra-
diometer.

The mechanism of thermophoresis in gases is relatively trivial, but subtly
related to thermophoresis in liquids. Particularly, in the gas kinetic theory
the thermophoretic force is calculated by solving the Boltzmann equation
with the specular or diffusive reflection rule for the gas-colloid coupling. The
gas kinetic theory usually considers a moderate or large Knudsen number
Kn = λ/R, this is the ratio between the mean free path of gas molecular λ
and aerosol particle radios, as illustrated in Fig. 1.3. In the case of low den-
sity gases Kn � 1, the direction of motion can be predicted intuitively. The
momentum transferred by collision at the hot side of dust particle is signifi-
cantly larger than that at the cold side, such that the dust particle maneuvers
to the cold area. In the opposite limit, when Kn � 1 and gas at moderate
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pressure, sometimes is termed as “quasi-hydrodynamic regime”. This prob-
lem is actually fundamentally resolved by Maxwell [23]. With the presence
of temperature gradient, and a solid boundary (aerosol particle) surface S
submersed in rarefied gases, molecules suffer no molecular collision before
hitting the wall within a length of λ. Taking the equilibrium distribution f0(v)

of the molecular speed, the total momentum exchange can be estimated with
the first order of Boltzmann equation [24],

f(v) =

[
1 + Cvz

(
5/2− mv2

2kBT

)]
f0(v), (1.9)

here m is the molecular mass, C is a normalized constant, and the ther-
mal gradient is taken along z. Eq. (1.9) indicates that even in this quasi-
hydrodynamic regime (Kn� 1), the momentum transfer turns out to be larger
for those molecules coming from the hot side. Shortly after Maxwell’s result,
Epstein [25]derived the thermal drift velocity vT as a function of gas viscosity
η, number density ρ, and solid, gas thermal conductivity κp and κg respec-
tively [24, 25]:

vT =
3η

2ρT

(
κg

2κg + κp

)
∇T∞, (1.10)

Figure 1.3: Particle suspended in a gas under a temperature gradient∇T .
The dashed circle indicates the distance corresponding to the molecular
mean free path λ. A thermal creep flow (not shown) in side this layer is
formed and slides to higher temperature; accordingly the suspended
particle moves to the lower T . (Adapted from Ref. [26])

We would like to underline that (i) within a thickness of the order of mean
free path the λ, pressure tensor becomes anisotropic around the suspended
particle; (ii) dust particle effectively drifts towards the cold side; (iii) bulk gas
properties enter the problem only through the thermal conductivity κp of the
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particle couples with κg, also influence the local temperature field around the
particle via heat equation [27].

Gas thermophoresis can be understood by means of kinetic theory, the ten-
dency of movement of the particle is always to the cold side. Nevertheless,
the study of areal colloids in gases plays an vital role in aerosol industry [28,
29], and has been largely explored also for the dust particles of within differ-
ent shapes. As we expect, the anisotropic effects of thermophoresis in gases
is intuitive and easily exploited in the framework of kinetic theory and low
Reynolds number hydrodynamics [30].

Colloidal thermophoresis

As we discussed before, the large separation of time scales in colloidal ther-
mophoresis enables us to coarsening the non-equilibrium thermodynamic
equations. Furthermore, it has been discovered that the timescale for ther-
mal diffusivity is much shorter than that for Brownian motion. In this sense
the temperature profile can be understood to equilibrate instantaneously, in
the time scale where the colloid moves. A simple linear dependence T (z) =

T0 + z∇T of temperature various is employed here. In dilute suspensions,
the modified Smoluchowski equation describes the probability distribution
function P under external field [17],

∂P

∂t
= ∇ ·

[
−P
γt

FT +Dt∇P
]
, (1.11)

where FT is referred to as thermophoretic force, γt the translational friction
coefficient and Dt = kBT/γt the translational diffusion coefficient. This is
a naive interpretation of thermophoresis which equalizes FT as an external
global body force, just like system suffers gravitational field, electric field
and magnetic field. If the solution contains a low density suspension of N
Brownian particles of mass M , then linear superposition applies. cFT = kBT ,
and c(r) = NMP . Recalling the definition of Soret coefficient,

dc

dz
= −cST

dT

dz
. (1.12)

Substitution of Eq. (1.12) and the expressions above into Eq. (1.11), one ob-
tained [31],

ST∇T = − 1

kBT0

FT . (1.13)
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Using thermal diffusion factor αT = STT0, which is a dimensionless number
characterized the thermophoretic force. Then Eq. (1.13) is rewritten as,

FT = −αTkB∇T. (1.14)

Albeit the later discussions in Chapter 3 will reveal that FT is quite differ-
ent from body force (e.g. Stokes drag), and stress that thermophoresis is the
consequence of surface forces rather than a body force. Specifically, Eq. (1.14)
denotes the relation between macroscopic thermophoretic force and exter-
nal temperature gradient. αT also plays an important role in asymmetric
colloidal systems. This theoretical derivation here is sufficient for us to un-
derstand linearized thermophoretic behaviors, which covers the major part
of colloidal thermophoresis.

As a step further, Piazza [24] discussed thermophoresis with linear response
theory. The temperature fields T (r), auxiliary field w(r) and external poten-
tial V (r) are assumed vary slowly in space and basically constant on the cor-
relation length scale of the fluid. Thus, the local equilibrium can be defined
and the distribution function is perturbed in the linear order. This based
on the assumptions that the equilibrium free energy and chemical potential
are still valid outside equilibrium but with local temperature. Due to large
viscous dissipation, local equilibrium picture holds as long as mechanical
equilibrium is satisfied [24]. In stationary states this leads to the linearized
hydrodynamic equations: the continuity equation, the Navier-Stokes (NS)
equation and the heat transport equation. Both local equilibrium and hydro-
dynamic approaches are delicately applied on thermophoresis [27, 32, 33].
Interestingly, a unified description which combines those two approaches
has been reported in Burelbach et.al [34].

However, as also described by Piazza, the microscopic interpretation is not
clear for thermophoretic phenomena. Despite this, his linear response de-
scription shows that colloidal thermophoresis, both in gases and in liquids,
can be interpreted in the framework of continuum hydrodynamics.

1.2.3 Low Reynolds number hydrodynamics

As outlined above, thermophoresis is also understood in the framework of
continuum low Reynolds number hydrodynamics. Before we derive the so-
lution of thermophoresis which is the slip velocity via continuum approach
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explicitly in Chapter 3, the basic concept of low Reynolds number hydrody-
namics are presented below.

The Navier-Stokes equations provide a continuum description of the flow of
a Newtonian, incompressible fluid [35]

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇P + η∇2v + f , ∇ · v = 0, (1.15)

where v(r, t) is the fluid velocity at position r and time t of a fluid of density
ρ and dynamic viscosity η driven by a pressure gradient ∇P and a body
force (force per unit volume) f . The terms on the left hand side of Eq. (1.15)
are the inertial terms which describe the transport of momentum and η∇2v

describes the viscous dissipation that results from velocity gradients.

Dimensionless variables denoted by a tilde, can be defined by choosing a
length scale L0 and a velocity scale V0

ṽ =
v

V0

, x̃ =
x

L0

, ∇̃ = L0∇, t̃ =
V0

L0

t,
∂

∂t̃
=
L0∂

V0∂t
, (1.16)

In terms of the dimensionless variables the Navier-Stokes equation becomes

[
∂ṽ

∂t̃
+ (ṽ · ∇̃)ṽ

]
= − L0

V 2
0 ρ
∇P +

η

L0V0ρ
∇̃2ṽ +

L0

V 2
0 ρ

f , (1.17)

Eq. (1.17) shows that relative magnitude of the inertial and viscous terms in
the Navier Stokes equation is characterized by a dimensionless number, the
Reynolds number

Re =
inertial response
viscous response

∼ ρL0V0

η
(1.18)

For water ρ/η ∼ 106s/m2, so colloids, polymers or microswimmers mov-
ing in microflows with length scales ∼ 1 − 100µm and velocity scales ∼
1 − 100µms−1 have Reynolds numbers Re ∼ 10−6 − 10−2. Thus the inertia
terms can be neglected, and the Navier Stokes equations reduce to the Stokes
equations

−∇P = η∇2v + f , ∇ · v = 0, (1.19)

The Stokes equations dominate the dynamics of the fluids in- and out-of
equilibrium, which plays a crucial role in a lot of soft matter systems.



12 Chapter 1. Background: asymmetry, soft matter and thermophoresis

1.3 Applications: separation, synthetic swimmers

and microfluidics

Thermophoresis not only challenges the fundamental non-equilibrium statis-
tical physics, also is of importance on several directions of application such as
separation techniques, microfluidics, and synthetic microswimmers. As they
are closely related, the applications of thermodiffusion in liquid mixture are
also briefly reviewed.

1.3.1 Separation techniques

Even though the micromechanism of thermophoresis or thermodiffusion is
still elusive, it has been utilized on separation science since early of last
century [36]. In liquid mixtures, the components can be driven apart by
the presence of temperature. As the result of drift motion induced by tem-
perature gradient, different components react to the gradient disparately.
Hence, thermodiffusion has been applied on isotope separation [37, 38]. Be-
sides this, combining a capillary channel flow with orthogonally applied
temperature gradient, the suspended particles (colloids, macromolecules and
supramolecular assemblies) can be accumulated at the different positions at
the channel walls along the channel. This is used in the well-known thermal
Field-flow Fractionation (TFFF) [39, 40]. The separation mechanism is mainly
that particles response differently to temperature gradient and shear rate.
This technique has provided novel and efficient approach on fractionation.

1.3.2 Synthetic microswimmers

Thermophoresis has also been used as the basic principle to fabricate mi-
croswimmers, which is the synthetic analogy to natural swimmers such as
paramecium, bacteria and sperm. By way of example, colloids with patchy
metal coating of spherical particles under laser illumination, can create non-
uniform temperature field and results in self-propulsion. These thermally
active colloids exhibit exotic stochastic behaviors due to thermophobic and
thermophilic properties [41, 42]. This strategy also can be applied in dimeric
swimmers, as studied by Yang [43] and Wagner [44], dimeric swimmers with
more degrees of tunability show different flow patterns from spherical Janus
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swimmers, they also can form novel cluster structures due to lateral hydro-
dynamic attraction and size ratio.

1.3.3 Micromachines and micropumps

In the last years has been a large research activeity in the development, opti-
mization and miniaturization of thermophoretic microdevices, which aim to
rectify recover unused heat into directed motions. By virtue of mesoscale hy-
drodynamics simulation, several pioneer woks on fabrications of microma-
chines and micropumps have been reported by Ripoll’s group. A microgear
and microturbine are proposed in Ref. [45] and Ref. [46] respectively. The
introduced microgear constructed by circular walls and circular ratchet with
higher temperature in the center. Hence, different surface temperature gradi-
ents are formed along the asymmetric ratchet teeth. The gradient asymmetry
results in unbalanced thermophoretic force and torque. Eventually the gear
undergoes directional rotation at the steady state, perpendicular to the tem-
perature gradient. Different from this, the microturbine, which takes the ad-
vantage of anisotropic thermophoresis and cross asymmetry of two blades,
rotates parallel to the temperature gradient. Moreover, thermophoresis is
rephrased as thermoosmosis in the sense of fluid manipulation. Ref. [47]
suggests a series of micropumps which employ thermoosmosis and ratchet
walls with five geometric descriptions. Consequently, the resulting diverse
flow fields are reminiscent of shear flow, capillary flow, elongational flow,
Rayleigh-Bénard convection flow and Couette flow.

1.4 The structure of this thesis

As reviewed above, thermophoretic mechanism offers a wide range of scien-
tific insights in soft matter field. In this thesis, we aims to probe thermophore-
sis in the case of colloidal particles with geometric asymmetry (i.e particles
with asymmetrical shape and rugosity) and/or compositional asymmetries
(i.e. particles are composed of different materials [11]), and their applications
in microfluidics. In Chapter 2 we outline the basic simulation algorithm and
how it models correct thermophoresis. Chapter 3 focuses thermophoresis in
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spherical colloids, from both theory and simulation viewpoints. We espe-
cially elucidate how our simulation method properly captures the underly-
ing physics of thermophoresis. In Chapter 4, we investigate thermophore-
sis beyond spherical shape, which is termed as anisotropic thermophore-
sis. Chapter 7 explores the thermophoretic orientation a heterodimer via
both theory and simulations. Chapter 5 employs the basic mechanism of
anisotropic thermophoresis for fluid pumping. In Chapter 6, inspired by the
study of synthetic Janus particles, we propose and investigate the flow and
flux of micropump fabricated by patchily coated pillars. Finally, in Chapter 8,
we summarise our findings and discuss some avenues for future research in
this area.
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Chapter 2

Multi-Particle Collision Dynamics

2.1 Motivation

Complex fluids like colloidal suspensions, polymer solutions, as well as wide
range of biological systems, contain billions of atoms with length scales range
from nanometer to micrometer. Most related systems are out-of-equilibrium
and elusive to theoretical and experimental studies. Computer simulations
allow us to explore numerous systems and geometries at relatively low cost
and at various levels of detail. Thus, computational physics is widely seen
as a third approach to scientific discovery, complementing traditional exper-
imental and theoretical techniques.

In thermophoresis, random, diffusive motion, hydrodynamics and solid-liquid
interactions and often together with complex geometries must be all accounted
for. Therefore, simulation study on thermophoresis is computationally acces-
sible and feasible but with delicate considerations of coarse graining. On one
hand, ordinary full atomic approach such as molecular dynamics (MD) is still
computationally expensive; and continuum mechanics model such as finite
element method (FEM) lacks the simplicity to describe thermal fluctuations
and complex geometries. On the other hand, not all the molecular details of
the colloid and the liquid are significant to influence the understanding of
phoretic phenomena. In this Chapter, we sketch out one very efficient parti-
cle based algorithm known as multi-particle collision dynamics (MPC) and
how it is coupled into complex colloidal systems.
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2.2 Multi-particle collision dynamics and its cou-

pling

2.2.1 Algorithm

It has been a fast and important development of several mesoscale hydrody-
namic simulation techniques and their applications on soft matter systems
since the past decades. They all aim to a coarse-grain description of the fluid,
while maintaining the essential physics on the length and/or time scales of
interest. In parallel with Lattice Boltzmann method (LB), Dissipative Particle
Dynamics (DPD), MPC method with its efficient routine for implementation
draws numerous attention since it was developed.

The MPC fluid is described by N point particles where two essential steps
involved [10, 48, 49]. One is streaming step, at which all particles move bal-
listically, this is,

ri(t+ h) = ri(t) + vi(t)h, (2.1)

here ri(t) and vi(t) indicate the position and velocity of i th particle at time
t, respectively; h is the collision time which indicates time interval between
two consecutive collisions. In the language of kinetic theory, it is termed
as mean free time. The other step is collision step, particles are grouped
into cubic collision cells with size of a, and each particle interacts with other
members in the same cell by performing stochastic collision, i.e. redirecting
the relative velocity of particle by a certain angle α with respect to the center
of mass velocity in that certain cell. In three dimensions, this procedure can
be explicitly expressed as,

vi(t+ h) = vcm(t) + ṽi,⊥(t) cos(α)+

(ṽi,⊥(t)×<) sin(α) + ṽi,‖(t),
(2.2)

where α is the fixed rotational angle, vcm the center-of-mass velocity of a cer-
tain collision cell, ṽ the particle’s relative velocity with respect to the center-
of-mass of a certain cell, its parallel and perpendicular components along
the randomly picked rotation axis < (a unit vector) are distinguished by ‖
and ⊥ symbols. Moreover, to guarantee the Galilean invariance, all parti-
cles are shifted by the same random vector with components uniformly dis-
tributed in the interval [−a/2, a/2] before the collision step [50]. As we show
here, MPC method intrinsically contains thermal fluctuations, and conserves
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energy and linear momentum both globally and at the collision box level.
The angular momentum conservation for MPC in this work has not been
comprised, since recent work provided the evidence that angular momen-
tum conservation in MPC fluid does not influence the hydrodynamics of
phoretic behavior [51]. Moreover, the simple scheme of the MPC algorithm
allows us to calculate various analytical expressions of transport coefficients
of MPC fluid with high numerical stability and accuracy [10]. In contrast,
other mesoscale particle-based algorithms such as DPD, provide 50% devia-
tion of the computing of the fluid viscosity.

2.2.2 Temperature gradient

To study thermophoresis, proper heat transport behavior of the fluid should
be accounted for in the simulated algorithm. The heat transport properties
in MPC solvent have been systematically studied by simulations as well as
analytical calculations [52–57]. The fluid environment rendered by MPC sol-
vent can transfer heat with well-defined thermal conductivity. Temperature
gradient in MPC fluid can be established via imposing thermostats or energy
flux like a Maxwell demon at boundaries [57–60]. Here we settle the non-
isothermal environment for colloidal particles by rescaling the temperature
at two boundaries with layers of thickness a close to the walls by Tc = T −δT
and Th = T + δT after every collision step. To mimic no-slip boundary condi-
tions, bounce back rule (the velocity of a particle is reversed from v to−v if it
intersects a wall) is performed. After some relaxation time, the constant tem-
perature gradient∇T is constructed. Afterwards, we repeat the same routine
to maintain a stationary temperature profile.

The boundary conditions mostly used in the following chapters (i.e. from
Chapter 3 to 7) are thermostats at the walls with no-slip boundary condi-
tions. Alternatively, periodic boundary condition along temperature gradi-
ent direction is also employed to study thermoosmotic flow, pressure along
walls or finite size study of thermal diffusion factor (Chapter 3).

2.2.3 Hybrid coarse grained methods

Colloids interact with MPC solvent via molecular dynamics scheme. The
colloid solvent interaction is then accounted for as Lenard-Jones type po-
tentials. Other coupling protocols are also possible to mimic the physics of
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phoretic behaviors, such as MPC coupling, in which colloid is considered
as heavier point particles and interplay with fluid particle via SRD [61]; or
coupling with hard sphere with no-slip boundary conditions on the colloid
surface [62–65] with proper thickness of boundary layer. In this thesis, the
reason we consider Lenard-Jones type potentials for solid-liquid potential is
twofold. One is that the soft potential can create the boundary layer nearby
the colloid outer surface. Thus, a pressure gradient is formed inside the
boundary layer in the occurrence of the local temperature gradient or con-
centration gradient, which captures the physics of phoretic phenomena. The
other reason is it computationally straightforward, compared with those con-
sider no-slip boundary conditions plus boundary layer or soft potentials.

Molecular dynamics

In molecular dynamics simulations, the dynamics of the system are explic-
itly taken into account, and the particles move according to Newton’s Law
which defines the equations of motion of the particles in the system. In con-
ventional MD, where the potential continuously changes as a function of the
distance between particles, the equations of motion of the particles can be
integrated with fixed time steps. The evolution of the system is then driven
by time steps. The velocity-Verlet integration algorithm, has been used to
update the equation of motion of particles since it provides a simple and ac-
curate integration of the equations . Applying velocity-Verlet algorithm on a
particulate system contains N particles with mass mi, the update of particle
position ri(t) and velocity vi(t) takes the form [66]

ri(t+ dt) = ri(t) + vi(t)dt+
1

2mi

fi(t)dt
2 (2.3)

vi(t+ dt) = vi(t) +
1

2mi

[fi(t) + fi(t+ dt)]dt. (2.4)

Here the instantaneous net force on particle i exerted by other surrounding
particles are obtained from fi(t) = −∇ri

∑N
i=1,i 6=j U(rij), when a pair-wised

potential U(rij) is applied. A complete update of particle position and veloc-
ity, the force fi should be renewed twice before and after employing Eq. (2.3).

In this thesis, the colloid (or solid obstacle) is modeled as one or multiple
spherical beads. The excluded volume interactions between beads and the
ambient solvent are performed via generalized Mie-Kihara type potentials [58,
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67–69]

Ucs(r) =


∞; r ≤ ∆

4ε

[(
d

2(r−∆)

)2n

−
(

d
2(r−∆)

)n]
+ C; ∆ < r < rc

0; rc ≤ r

(2.5)

Here r = |rcs| is the distance between the bead center and the fluid particle,
ε refers to the potential intensity, is taken as ε = kBT . The bead diameter is
d = 2R (R the bead radio), and n is a positive integer describing the potential
stiffness. Eq. (2.5) gives the well-known Lennard-Jones potential when n = 6

and C = 0 [70]; and renders the Weeks-Chandler-Andersen potential if n = 6

and C = ε [71]. The parameter ∆ referes to a potential displacement [72,
73], which we fixed as ∆ = 0 unless specified. The repulsive or attractive LJ
potentials are obtained by simply considering C = ε or c = 0 respectively,
together with the adequate cutoff distance rc. For the repulsive potential in
Eq. (2.5), rc = 21/nR. For attractive potential, rc = 2.5R if n = 6; in this case
Ucs,n=6(rc) → 0. For n with other integers, the potential is truncated at the
position where the Ucs(rc) = Ucs,n=6(2.5R) [58].

The repulsive and attractive potentials with stiffness n = 6 and ∆ = 0 will
be denoted as r6 and a6 respectively, and similar for other n values. If the
potential is displaced by a distance 2, i.e. ∆ = 2 for instance, these will be
(∆2, r6) and (∆2, a6) instead. The mass of colloid is chosen such that the it
is neutrally buoyant, although our results are not really depending on this
value at the over damped limit. Moreover, a cell-Verlet list is combined into
MD integration to speed up the MD simulations.

MPC-MD coupling

To couple the dynamics of colloids with MPC fluid, the outline of the MPC-
MD simulation for colloidal system is described below:

1. Initialize the velocities and positions of the particles in the system. Make
sure the MPC point particles at the outside of the colloid-solvent inter-
action range.

2. Initialize the cell-Verlet list for the system

3. Perform the molecular dynamics part.
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4. After everyNMD MD time steps, say,NMDdt = h, perform MPC stream-
ing step for particles outside of the cell-Verlet list. Update the cell-Verlet
list.

5. Perform the collision step for all of the MPC particles.

6. If necessary, employ isothermo- or nonisothermostats.

7. Repeat steps 3 6.

Given that the computation of the MD part is still time consuming and the
system size hasa to be big enough to decrease influence of finite size effects,
a parallelized code can largely accelerate the speed of simulations. Here we
implemented the OpenMP computing for this hybrid code. This parallelized
technique enables multiple threads in a computer to perform computations
simultaneously for one simulation job, and the speed of computation can be
accelerated to over fivefold.

2.2.4 Simulation parameters in this thesis

We choose m = kBT = a = 1 in all the simulation implementations. Such
that the length is measured in cell length unit a (or more practically the bead
diameter d = 2.5a). Time is quantified in unit of

√
ma2/(kBT ). The other

physical parameters can be represented by length, mass, time. Although sev-
eral parameters are different for specific setups, the most frequently used
ones are following described: h = 0.1

√
ma2/(kBT ), ∆t = 0.002

√
ma2/(kBT ),

ε = 1.0kBT . These are the standard parameters which are employed in this
thesis, unless otherwise stated. With this simplification, we can directly omit
the MPC units. Table 2.1 summarizes the basic units in MPC algorithm and
their meanings, also shows how to arrive other units. For convenience, we
call this procedure as “MPC units convention”.
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Basic Units
Scale Natural Unit comment value

Length a Cell size 1
Mass m Solvent particle mass 1

Energy kBT Thermal energy 1
Rotation angle α Rotation angle in SRD 130◦

Collision time h Mean free time 0.1

Derived Units
Scale Derived Unit comment value

Density ρ =< Nc > /a3 Solvent particle density 10

Time
√
ma2/(kBT ) Alternatively h = 0.1 none

MD time dt MD time interval 0.002

Diffusivity & Viscosity
√
a2kBT/m none none

Table 2.1: MPC units convention: Units associated with MPC algorithm.
After Ripoll and Shendruk [18, 74].

2.3 Transport properties of MPC fluid

The previous section outlines the simulation scheme of MPC. Compared with
explicit expressions and detailed simulation procedures, we hereby quantify
important physical quantities such as self-diffusion coefficientDs, shear viscosity
η at different values of the mean free time h.

2.3.1 Self diffusivity

D

h

(a)

h

(b)

Figure 2.1: Self-diffusion coefficient D of a simple solvent simulated with
MPC as a function of the collision time h. Adapted from Ripoll [18].
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Self-diffusion describes the displacement of a single particle affected by the
thermal interactions. In the MPC solvent, self-diffusion coefficient D can be
derived analytically by kinetic theory. We calculate D by measuring mean
square displacement(MSD) numerically. The agreement between analytical
prediction and simulation is depicted in 2.1, where it is shown that when col-
lision time h is larger than 0.1, the theoretical predictions describe numerical
results nicely. However, deviation occurs when h is smaller than 0.1. This
can be explained because small collision time results in the breakdown of
molecular chaos assumption in the theory [10].

2.3.2 From Poiseuille flow to shear viscosity

Poiseuille flow [35], refers to the flow of a fluid along a channel with width of
H , driven by a pressure gradient ∂P/∂x between two parallel no-slip walls.
Given that we are in the low Reynolds number regime, the flow velocity
satisfies the Stokes equation

η
∂2vx(z)

∂z2
=
∂P

∂x
, (2.6)

with boundary conditions vx(0) = vx(H) = 0. Solving this equation we ob-
tain,

vx(z) =
(H − z)z

2η

∂P

∂x
, (2.7)

which results in a maximum of vx(z) at the channel center,

vx,max(z) =
H2

8η

∂P

∂x
, (2.8)

The applied pressure (stress) gradient, can be expressed as the average force
fx per unit volume of fluid element. Therefore, the averaged force per parti-
cle is g = fx/ρ. According to Eq. (2.8), we can compute the shear viscosity of
the solvent.

Shear viscosity η can be expressed as the sum of the kinetic and the collisional
contributions. Here we measure the kinematic viscosity ν = νkin + νcoll = η/ρ.
Kinetic viscosity, νkin, is related to the transverse momentum transport of the
flow of particles. Whilst, collisional viscosity νcoll comes from the momentum
transport of particles within collision cells [10].
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Figure 2.2: (a) Parabolic velocity profile of Poiseuille flow Simulation data
with and without virtual particles, and analytical prediction are shown for
comparison. (b) Shear viscosity as a function of h. Solid lines correspond to
the kinetic theory, while symbols represent simulation results. Adapted
from Ripoll [19].

Poiseuille flow in MPC simulation can be realized by implementing no-slip
walls along x direction, and updating velocity with an acceleration g/m along
the walls before streaming step. To enforce strict no-slip boundary condi-
tions, virtual particle procedure has to be considered(for details, go to Ref.
[75]). As shown in Fig.2.2(a), the simulation of velocity profile (symbols)
along z direction nicely agree with the analytical calculation. Similarly, nice
agreement between analytical and numerical results of viscosity is depicted
in Fig.2.2(b). At h� 1 region, νkin dominates shear viscosity, while collisional
contribution dominates h� 1 area (solid green lines in (b)).

Moreover, Poiseuille flow is a typical paradigm of channel flow, such as in
macroscale like water flow in a pipe at laminar regime, and blood flows in
vessels at microscale.

2.3.3 Study on Brownian motion at short time scales

As briefly reviewed in Chapter 1, at short time scales, colloid receives mo-
mentum from the fluctuating fluid molecules, it also displaces the fluid in its
immediate vicinity. The entrained fluid acts back on the particle and gives
rise to long range correlations. This hydrodynamic ‘memory’ translates to
thermal fluctuating forces, which have a colored noise spectrum [20].
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MPC intrinsically incorporates thermal fluctuations, which can be used to
study Brownian motion at short time scales. This can be elucidated by mod-
eling a colloid trapped by a harmonic potential. We measure the position
(x, y, z coordinates) time series and perform Discrete Fourier Transformation
(DFT), then the power spectrum density can be computed. Here is an ex-
ample that the hydrodynamic memory resonance peak has been found by
MPC-MD coupling simulation, as shown in Fig.2.3. This result is consistent
with a theory includes hydrodynamic vortex effect and differentiate from
Lorenzian theory [76]. Compared with other mesoscale algorithms such as
Langevin Dynamics, DPD, in which the noise is usually implemented by in-
troducing a delta-correlated stationary Gaussian process with zero-mean and
therefore is white, MPC doesn’t need extra consideration of thermal fluctuation for
the investigation of short time scale Brownian motion.
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Figure 2.3: The displacement power spectrum density (S(x)) in a MPC-MD
simulation of particle suspended in solvent with a harmonic spring
connected. Green symbols refer to simulation result, the blue line is the
calculation with the hydrodynamic theory; the red line indicates harmonic
oscillator solution, which is a standard Lorentzian curve. Here we set the
spherical colloid with radio R = 2a, and the trapping stiffness (spring
constant) to 60kBT/a

2 in a (Lx, Ly, Lz) = (30a, 30a, 30a) box with periodic
boundary conditions. Adapted from Ref. [20].

2.3.4 Hydrodynamical dimensionless numbers

Hydrodynamics are essential for the study of thermophoresis. MPC, as one
of the most representative mesoscale hydrodynamics can capture hydrody-
namics. Hereby, we show the most frequently used dimensionless numbers
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in our simulations.

Schmit number Sc is the ratio between viscous damping and mass diffusing.

Reynolds number Re describes the competition between particle moving a
certain length scale driven by inertia forces, and the viscous forces in fluids.

Mach number Ma is the ratio of the flow velocity to the speed of sound
(uc ∼

√
kBT/m [77]) in the fluid medium. When the Mach number is small,

the compressibility will not be an issue, excerpt for fluids inside the boundary
layers.

Péclet number Pe, which describes the competition between the transport
capability driven by convection flow and by an appropriate gradient. In the
context of mass transfer, for instance in this thesis, is the ratio of flow over a
length scale to the self diffusion.

Prandtl number Pr is defined as the ratio of momentum diffusivity to ther-
mal diffusivity. For example in thermophoresis in our simulations, the Pr =

5.6 is comparable with water (≈ 7).

Table 2.2 presents the values of those aforementioned dimensionless num-
bers calculated by using the frequently used simulation parameters (shown
in Table 2.1). These calculations show that the simulations in this thesis are
properly performed in liquid regime, with low Re, Ma; combined with ade-
quate values of Pe and Pr. Thus, it ensures that all the simulation set ups are
favorable for the study of phoretic behaviors.

Sc Re Ma Pe Pr

17 ∼ 10−2 ∼ 10−3 ∼ 1 5.6
ν/Ds ufR/ν uf/uc uR/Dc ν/κT

Table 2.2: Typical values (or order of magnitudes) of dimensionless
numbers in this thesis. ν = 0.87 is the kinematic viscosity; Ds = 0.05 the
self-diffusion coefficient of MPC solvent; uf ∼ 10−3 the flow velocity; uc = 1
the speed of sound; u ∼ 10−3 colloid velocity; R ∼ 3 the typical size of a
colloid; Dc ∼ 10−3 the self-diffusion coefficient of colloid; κT = 0.15. All
calculations are reduced to MPC units (Table 2.1), related analytical
expressions can be found [10, 56, 57].
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2.4 MPC simulation of thermophoresis

Combining colloid temperature gradient and colloid-MPC fluid coupling, we
can probe thermophoresis of colloids in our system. Even if the mechanism
of thermophoresis in liquids is intricate, the relationship between driving
force and external temperature gradient in colloidal thermophoresis can al-
ways can simplified. Firstly, the heat transfer of solvent is much faster than
the motion of the colloid. To reveal this in simulations, we estimate their dif-
fusive times by kinetic theory. By way of example, for a simple MPC fluid
with h = 0.1, a = 1 = m = kBT and αT = 130◦, the thermal diffusivity
can be calculated as κT ≈ 0.15a

√
kBT/m. For heat transport time, tκT , over a

length comparable with radius R = 3a of colloids is tκT ∼ 101
√
ma2/(kBT ).

Similarly, the self-diffusion coefficient Ds of a spherical colloid can be ob-
tained by the Stokes law, since the viscosity η of fluid media can be calcu-
lated by kinetic theory as well, which is η ≈ 8.7

√
mkBT/a

2. The diffusion
time tdiff of a colloid with the same radius due to Brownian motion is around
103
√
ma2/(kBT ). This comparison can clarify that the solvent via heat trans-

port relaxes much faster than colloids move due to Brownian motion, and
maintain a stationary linear temperature gradient. Secondly, the tempera-
ture difference between two walls is always considered small such that the
temperature in our simulation is treated as a constant but the temperature
gradient effect remains. (For larger temperature differences, the spatial de-
pendent temperature is considered.) Furthermore, the size of colloid is much
heavier than single solvent particle, the driving force term from solvent par-
ticle is negligible [31]. Additionally, here we consider the infinite dilute col-
loidal system, such that the interactions between colloids are negligible. In
the case that the excluded volume interaction between colloids plays a sig-
nificant role, larger excluded volume should be taken into account to avoid
algorithm-based depletion interaction [78].

2.4.1 Thermophoretic force measurement

The discussion above shows that in our simulations, we can readily employ
linear response between the ∇T and the thermophoretic drift force on the
colloids (Eq. (1.14)). The positions of the colloids (composed of spherical
beads) are fixed such that the thermophoretic force FT can be obtained by
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directly summing the net temporal averaged force of all beads [58, 60],

FT =
N∑
i=1

Nb∑
j=1

fbs, (2.9)

where fbs indicates pairwise forces due to beads-solvent potential in Eq. (2.5),
Nb the number of solvent particles around the i th beads, N is the number of
beads in the constructed colloid or polymer we studied.

An equivalent way is trapping the position of colloids by harmonic springs,
where FT is counterbalanced by harmonic force, and the friction will be av-
eraged out as well as the thermal fluctuations. Experimentally, colloids can
be confined by external force(like laser tweezers) [79, 80].

2.5 Color coding in flow stream line patterns

To show the flow intensity, the background is color coded in the stream lines
plots in this thesis (in Chapter 3, 7, 5 and 6 ). Hence, here and in what follows,
the background color is prescribed via rescaling the magnitudes of local ve-
locities |v(x, z)|with a factor Θ,

Θ =
log(|v|/|v|min)

log(|v|max/|v|min)
, (2.10)

here |v|max and |v|min denote the maximum and minimum of the magnitudes
of velocities in the certain flow field. For example in Chapter 5 Fig 5.2(a), the
legend tick labels indicate the rescaled component of |v(x, z)|with respect to
the maximum of |v|max in logarithmic scale. In this simulation, |v(x, z)| spans
two orders of magnitude. The flow close to obstacles, of course, has higher
intensity; decays to almost zero when it is far away from obstacles or close to
boundary walls. This rule of color coding will also be used in Chapter 3,7, 5
and 6, but with different color schemes.

The color-coded background for other figures is simply linear.
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Chapter 3

Thermophoresis of spherical
colloids

Synopsis

Phoretic drift as well as associated osmotic flow, can be understood as being
originated from an inhomogeneous pressure induced by local gradient at the
solid-liquid interface. This chapter revisits the macroscopic theoretical descrip-
tion on phoresis based on the model of spherical colloid. The general solution of
slip velocity on thermophoresis and diffusiophoresis is microscopically derived.
To illustrate the general laws between different phoretic mechanisms, a precise
comparison has been made between thermophoretic and diffusiophoretic behav-
iors simulated by MPC-MD model. Moreover, a simplified model is introduced
which explicitly explains the microscopic mechanisms of thermophoretic simu-
lations. We further show how physical quantities such as flow velocity, local
pressure inside solid-liquid boundary layers can be calculated from both simula-
tion and analytical theory viewpoints. Combined hydrodynamic simulation with
analytical theory, the finite size effects on thermophoretic forces are unearthed.

3.1 Introduction

Different phoretic behaviors share macroscopic features [81]. Before inves-
tigating colloids with asymmetries, we shall firstly review and investigate
the dynamics in thermophoresis of spherical colloids. Regarding meso-scale
simulations, numerous studies with various methods on different phoretic
phenomena have been so far reported [58, 60, 82–85]. Multi-Particle collision
dynamics, has been employed to study diffusiophoresis and thermophore-
sis from both fundamental and practical viewpoints [43, 46, 47, 58, 60, 86–
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89]. However, albeit it is macroscopically intuitive to accept that simulation
approach must reveal the same physical mechanisms of phoresis, the quan-
titative comparison between diffusiophoresis and thermophoresis based on
MPC algorithm has not been explicitly made so far. Moreover, given that
different microfluidic devices based on both phoretic principles indeed give
similar behaviors, the generalized illustration of thermophoresis and diffus-
sionphoresis emphasized from simulation viewpoint is timely.

In this Chapter, we mainly how MPC-MD model reveal correct thermophoretic
behaviors, yet the microscopic structure of liquid has been coarse grained.
Starting from a theoretical description, we derive the generalized slip veloc-
ity expression of the simulation mode. As the essence of thermophoresis is
the local pressure gradient generated by temperature gradient at solid liq-
uid interface, we show this pressure in simulation in both simplified model
and spherical colloid model. Moreover, the finite size effects from different
boundary conditions are precisely quantified.

3.2 Phoretic mechanisms: theory

It is generally accepted that colloidal thermophoresis can be understood in
the framework of continuum hydrodynamics [27, 80, 90]. Instead of local
equilibrium approach, the mechanical equilibrium of hydrodynamic stress
and surface forces is applied [27, 81]. Usually there are two types of limit
discussed:

1) One is the so-called Huc̈kel" limit at which the particle radios R << δ,
where δ is the thickness of the transition (boundary) layer where the colloid-
solvent interactions are significant. In this case, such interactions are long
ranged, and therefore the pressure gradient in Stokes’ equation is negligible.
In this case, we obtain that the drift velocity is essentially a Stokes drag, and
therefore reads,

vT =
FT

ΓπηR
, (3.1)

where Γ = 4 for slip boundary conditions and Γ = 6 for no-slip boundary
conditions.

2) The other limit is boundary layer limit which is the opposite case of thin
boundary layer and/or large particle size that R/δ >> 1. In this thesis, we
mainly focus on boundary layer limit. The dynamical processes within this thin



3.2. Phoretic mechanisms: theory 31

boundary layer always determine the fluid dynamics outside. Specifically, the solid-
fluid interactions in our simulations are mainly Weeks-Chandler-Anderson like re-
pulsive potential, or short-ranged Lennard-Jones-like potential(Eq. (2.5)). This is
more important for the case that the double layer is thin and electrostatic interac-
tions are screened out.

3.2.1 Macroscopic linear transport

Anderson [81] detailedly reviewed phoretic processes based on boundary
layer assumption within the framework of continuum theory. One param-
eter, the interfacial tension γτ , accounts for all of phoretic phenomena. The
main idea is that applying electrical field, temperature gradient or solution
concentration difference, the interfacial tension inside this transition (bound-
ary) layer becomes inhomogeneous along the interface. The gradient of in-
terfacial tension ∇γτ drags the fluid and pushes the colloid towards the area
where its interfacial tension could be reduced.

Phoretic movements of a particle are induced by the gradient of an external
field Y∞, which are described by

vY = b∇Y∞, (3.2)

where vY is the drift velocity, and b is the material parameter, determined
by the interplay between colloid and solvent the type of gradient, and other
local thermodynamic conditions.

Usually the slip boundary conditions are formed at the outer edge of the
boundary layer where colloid-fluid interaction vanishes. On the other hand,
the flow along the surface at the upper bound of the boundary layer is termed
as slip velocity, denoted here as vs(τ) (τ denotes the tangential direction). Lo-
cally, this parameter b also relates vs(τ) and the gradient decomposed along
the (outer edge) surface∇Y s, namely

vs(τ) = −b∇Y s. (3.3)

Note that only linear transport phenomena are discussed here. The slip flow
vs(τ) is characterized in the reference frame which is opposite to the direc-
tion of vY . Thus leads to a minus sign in Eq. (3.3). It is usually considered
that b is a constant. However, the description of flow inside the transition
area is intractable, although models for no-slip and slip boundary conditions
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of colloidal particle have been discussed [26, 27]. These linear relations are
valid for phoresis in general, however, modification needed to account for
polarization effect (the interfacial layer has a finite capacity to transport solute
molecules) [81].

In our simulation model, b relies on the applied potential. For a spherical
colloid interacting with fluid via LJ potential, b is a constant at the surface.
Hence, it is instructive to observe the microscopic relation between micro-
scopically the applied potential, local (pressure, density) gradient and the
macroscopically resulting phoretic force, the associated slip flow, and the
flow field in the surrounding viscous fluid.

3.2.2 General solutions of slip velocities for phoresis

Former discussion on phoresis encourages us to find general solutions for
our MPC-MD coupling model. Based on fluid dynamics, we derive the so-
lution of vs(τ) for thermophoresis and diffusiophoresis, which have been al-
ready studied via MPC method [43, 46, 47, 58, 60, 86–89].

Motion in a viscous continuum is governed by low-Reynolds number hydro-
dynamics [26]. The flow field v of the fluid (which is normally considered
incompressible ∇ · v = 0) and is described by Stokes’ equation (Eq. (1.19)).
Within Smoluchowski limit, we firstly discuss the ordinary no-slip boundary
conditions for the colloids.

n

b

τδ
θ

Figure 3.1: Schematic representation of spherical particle in an applied
gradient∇Y∞ (left). When δ/R << 1, the boundary layer is planar like
(right). The figure is adapted from Wüger [26].

In the case of δ/R� 1, the boundary layer is treated as a plane and the local
coordinate (τ, n) is applied. As indicated in Fig. 3.1, n and τ are the unit of
the normal and tangential. Accordingly, n and τ are the lengths described
along normal and tangential. Close to the interface, the normal component
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of velocity vanishes, i.e. vn = 0. Thus, the normal component of Stokes’
equation is writen as

0 =
∂P

∂n
− fn, (3.4)

The integral of Eq. (3.4) gives the pressure

P (n) = P∞ +

∫ R+δ

0

fndn, (3.5)

here P∞ is the pressure out of the boundary layer (which satisfies the equa-
tion of the sate of ideal gas in MPC fluid). Moreover, one should notice that
fn = 0 when n > δ. Since the boundary layer is treated planar like, the
dependence on the normal direction of vτ is much larger than that on tan-
gential direction. Here we consider vτ = vτ (n). Consequently, the tangential
component is written as

η
d2vτ
dn2

=
∂P

∂τ
− fτ . (3.6)

Inserting boundary conditions (i) vτ |n=0 = 0 and (ii) dvτ/dτ |τ=δ = 0, we
obtain the apparent slip velocity

vs(τ) =
1

η

∫ R+δ

0

dnn

(
fτ −

∂P

∂τ

)
. (3.7)

Most of our studies use central potentials, such that no lateral component for
body force density exists, namely fτ = 0. The integral of Eq. (3.7) is then
determined by pressure gradient.

Following Eq. (3.4), the central potential inside the boundary layer is encoded
as U(n). The potential gives rise to the local force acting on the fluid, read as

fn = −ρ(τ, n)
dU(n)

dn
, (3.8)

here ρ(τ, n) the local density inside the boundary layer. We calculate the
ρ(τ, n) by the product of outer edge density ρ(s) = ρ∞ which is the bulk density
and a Boltzmann weight:

ρ(τ, n) = ρ(s) · exp

(
− U(n)

kBT (τ, n)

)
, (3.9)

here local thermodynamic equilibrium is considered to cover the position
dependence of temperature. Substituting Eq. (3.8) and Eq. (3.9) into Eq. (3.5),
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the excess pressure reads,

P ∗ = P (τ, n)− P∞ = ρ(s)kBT (s) ·
[
exp(− U(n)

kBT (τ, n)
)− 1

]
. (3.10)

To obtain Eq. (3.10), the approximation that temperature inside the boundary
layer hardly changes along normal direction is adopted. Hence, Eq. (3.7) can
be rewritten as

vs(τ) = −1

η

d

dτ

{
ρ(τ)kBT (τ)

∫ R+δ

0

[
exp

(
− U(n)

kBT (τ, n)

)
− 1

]
ndn

}
. (3.11)

Eq. (3.11) agrees with the expression used on the study of thermophoresis in
colloid-polymer mixtures [26]. Moreover, using the solution of slip velocity,
we can also obtain the thermal diffusion factor αT (see Appendix A).

Here we derived the generalized expression of slip velocity which is valid
not only for thermophoresis but also for diffusiophoresis. The only difference is
that the temperature (concentration) is position dependent along the surface
in thermophoresis (diffusiophoresis). Hence, different micro-mechanisms re-
sult in the similar (macroscopic) slip velocities. Moreover, it is logical to think
that this feature also holds for simulation models of thermophoresis and dif-
fusiophoresis. In the following, I further show that thermophoresis is akin to
diffusiophoresis at macroscopic level.

3.3 Simulation studies on macroscopic phoresis

By virtue of mesoscale hydrodynamic simulations, we show that different
microscopic phoretic origins can eventually lead to same features microscop-
ically. The comparison is made between thermophoresis and diffusiophoresis.
• Diffusiophoresis [89]:

FD = αD∇c =
γDDP

c
∇c. (3.12)

Here FT (or FD) is named thermophoretic (diffusiophoretic) force, αT (or αD)
is a dimensionless factor characterizes the force. Due to historical reasons,
αT is also often expressed as the product of the Soret coefficient ST and cor-
responding average temperature T . Likewise, γ and DDP refer to the friction
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coefficient and diffusiophoretic mobility [91]. Basically, Eq. (1.14) and (3.12)
are just different expressions of Eq. (3.2), in terms of phoretic forces.

In the following, we show simulation results of linear transport properties
driven by both phoretic mechanisms.

3.3.1 Simulation implementation

For thermophoresis, the realization of temperature gradient is meticulously
discussed in Chapter 2, and also in various references [57, 60].

To implement the system for the study of diffusiophoresis, we consider two
types of solvent particles A and B with equi-molar fractions in a cuboid
simulations box interact with colloids. Within the employed coarse grained
scheme, different species are distinguished only when interacting with the
colloid. From now on, we mostly apply r3 potential between colloid and
particle A, and r24 potential for particle B, respectively. The interaction be-
tween the same and different solvent species are included in the collision
step of MPC. Similar with the boundary conditions applied in Ref. [89], two
walls with no-slip boundary conditions are realized by bounce back rules.
Additionally, the wall at z = 0 acts as a chemical reservoir and enable chem-
ical reaction B + W1 −→ A + W1. Likewise, reaction A + W2 −→ B + W2

happens at z = Lz. The reaction rate 0 < ζ < 1 for both chemical reactions
are employed. At steady state, the linear concentration gradients of species
A and B are established.

As shown in Fig. 3.2, the constant concentration gradient is established at the
steady states and cA+cB = 1. WithLz = 30, we obtained∇cA = ∇cB = 0.0133

for ζ = 0.7 and 0.0345 for ζ = 1.0.

The phoretic forces are obtained via temporal average of colloid-fluid inter-
action forces; correspondingly, the flow field is calculated by time-averaging
particle velocity inside every binned cell.

3.3.2 Results

Simulations of a colloid in both a temperature gand a concentration gra-
dient are performed to evaluate the phoretic force with various values of
the gradients. Results for a colloid of R = 3 in a cubic box with size of
(Lx, Ly, Lz) = (30a, 30a30a) are shown in Fig. 3.3. For thermophoresis, r3
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Figure 3.2: Linear concentration profiles of different particle species along z
direction. Green circles refer ζ = 1.0, and red triangles to ζ = 0.7. Open
symbols refer to concentration of B and close symbols to species B.
Simulations are performed in cubic box with size of
(Lx, Ly, Lz) = (30, 30, 30) (a spherical colloid with radius R = 3 is placed in
the center of the box).

Figure 3.3: Simulation results of phoretic forces Fph as a function of external
gradient∇Y . Here∇Y represents∇T and∇c. In all simulations, the system
size is (Lx, Ly, Lz) = (30, 30, 30). The logarithmic coordinate is used to
emphasize the strict linear behavior (the slope of both lines is 1) of phoresis.
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potential is employed; whilst r3 and r12 potentials for diffusiophoresis. The
phoretic forces Fph are measured in different external gradients. Although
the ∇Y varies over one decade, Fph obeys linear relation with ∇Y . There-
fore, in MPC simulations, thermophoresis and diffusiophoresis macroscopi-
cally indeed obey linear transport laws. Moreover, using thermal diffusion
factor αT as a role model, it is reasonable to introduce diffusion phoretic fac-
tor αD.

3.3.3 Far field flow around phoretic colloids

Turning now to the phoretic responses of the fluid. Selected from the simula-
tion results from the previous subsection, the representative flow patterns of
fixed colloids induced by thermophoresis and diffusiophoresis are illustrated
in Fig. 3.4. For thermophoresis, Tc = 0.8 and Th = 1.2 are applied. Hence
we obtain thermophoretic force FsimT ≈ 3.0 and αsimT ≈= −218 without finite
size effects correction, which will be comprehensively discussed in the next
section. In contrast, with the same boundary conditions, the concentration
gradients for particle species A and B are ∇cA = ∇cB = 0.03448, respec-
tively. We measure the diffusion phoretic force FsimD ≈ 3.69, and diffusion
phoretic factor αsimD = −217.5 to the side has higher concentration of species
B.

The flow maps induced by thermophoretic and diffusiophoretic mechanisms
at far field are almost identical. We can compute the comparable drift velocity
of freely moving colloids: vT = 0.0091 and vC = 0.0113.

Following the work by Braun [90], Würger [27] and Leonardo [80], the flow
field of spherical colloid in ∇T can be analytically resolved [26, 35]. To keep
such a particle stationary in the temperature gradient, an external body force
applied on the colloid to counter balance the thermophoretic force FT . Solv-
ing the Stokes equation with (i) vanishing flow at infinity, (ii) the application
of a net forceFT , and (iii) the normal component of fluid flow at the particle
surface vanishing in the laboratory frame, such that the flow field is given
by [51, 60, 80],

v(r) = − 1

8πηr
(r̂r̂ + I) · FT +

R2

8πηr3
(3r̂r̂− I) · FT , (3.13)

where r is the distance between fluid particle and the colloid center, r̂ the
unit vector of r, I the unit tensor. The first term at the right side of Eq. (3.13)
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is a Stokeslet, which describes the Stokes drag nature of thermoosmotic flow
at far field, and decays as 1/r being long range. The second term is so called
source dipole, contributes the surface flow which decays as 1/r3 being short
range. In particularly, Ref. [60] shows that the analytical calculation of ther-
mophoretic flow field for a moving colloid quantitatively agrees with simu-
lation results, even though without PBCs corrections.

The quantitative comparison of both phoretic mechanisms is mad in Fig. 3.4,
where it can be seen that the shape of the stream lines is identical in both
cases. The quantitative compasison of the velocity field is shown in Fig. 3.5.
the far field flow determined by different phoretic mechanisms is made in
Fig. 3.5. Fig. 3.5(a) indicates the z (gradient direction) component of flow ve-
locity profiles in the cross sections a (distinguished by ac − ah in Fig. 3.4(a),
the subscripts "c" and "h" denote the "cold" and "hot" sides) and al − ah in
Fig. 3.4(b) (the subscripts "l" and "h" denote the "low" and "high" concen-
tration sides of particle species B, see in Fig. 3.2), respectively. Like wise,
Fig. 3.5(b) refers to vz profile in the cross sections b (namely bd − bu), sub-
scripts "d" and "u" denote the "down" and "up" sides. The results in Fig. 3.5
show that the data of simulations for thermophoresis diffusiophoresis and
theoretical calculation collapse when the velocity is rescaled by the associ-
ated phoretic force FP , despite the theoretical calculation is obtained from
thermophoresis. This is because that the slip boundary conditions at the up-
per edge of the boundary layer for different phoretic phenomena are akin to
each other [81], thus their resultant flows are very similar as well.
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Figure 3.4: Flow field and stream lines representations of phoretic colloids
in simulations with PBCs. Background color coding (flow intensity) is
prescribed in Chapter 2 Sec. 2.5. (a) Thermophoresis. (b) Diffusiophoresis.
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a) b)

Figure 3.5: Flow velocities component vz as a function of relative distance to
colloid center. Values are normalized by phoretic force FP at (a) cross
section a and (b) cross section b (indicated in Fig. 3.4). Open and solid
symbols represent vz at different sides (left or right, up or down) of colloids.

3.4 Microscopic mechanism of thermophoretic sim-

ulation

To reveal the microscopic mechanism, and compare with theory, we mea-
sure the local pressure, as well as the slip velocity at the boundary layer. It
is an essential step for particle based simulation, as all the theories assume
that macroscopic thermodynamics or hydrodynamics only hold close to the
interface. This would not be a reasonable postulation, if for example, the vis-
cosity inside the boundary layer in Eq. (3.11) is not constant [92]. Therefore,
it is of great importance to compute the local pressure in simulation. Instead
of dealing with the redundant mathematical integration of a spherical col-
loid, we firstly introduce a simplified model composed by two planar solid
walls filled with liquid in between, to illustrate thermophoretic mechanism
in MPC-MD approach. In the limit of δ � R, this of course will be a good
simplification(Fig. 3.1).

3.4.1 Inhomogeneous pressure

In MPC-MD coupling model, the interaction between colloid with radius R
and solvent forms the boundary layer (Fig. 3.6(a)). The local variables (pres-
sure or flow) are measured inside of each bin by temporal average. In order
to increase resolution, we choose a bin size 5 times smaller than MPC colli-
sion cell size a. Before studying the spherical model (Fig. 3.6(a)), a similar
but simplified system is proposed here to elucidate phoretic mechanism. As
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a)

b)

Figure 3.6: Sketches of the MPC-MD coupling model for a (a) spherical
geometry, and (b) the wall geometry. Solid orange denotes excluded
volume area, light blue shaded area is the boundary layer.solid lines
indicate the MPC collision boxes and dashed lines the refined binning grids.

sketched in Fig. 3.6(b), the MPC fluid is constrained between two solid planar
walls interact with walls via aforementioned Lennard-Jones potential. The
periodic temperature gradient along the walls (z axis direction) is imposed
such that the thermophoretic flows are obtained [58, 60].

The local scalar pressure inside a certain local bin is given by the equation of
state of MPC fluid,

P (~r) = 〈N(~r)kBT (~r)

V
〉. (3.14)

The virial contribution to the fluid pressure vanishes since there are no po-
tential interactions between fluid particles. The density and temperature are
position dependent, which is a consequence of both the potential and the
temperature gradient. In Fig. 3.7 (a) we show the simulation of thermophobic

a) b)

Figure 3.7: The flow fields of the simplified model for thermophoresis. With
other standard simulation parameters, (Lx, Ly, Lz) = (20, 20, 20) and
∇T ≈ 0.0502 applied along the walls is periodic [58]. (a) Left, thermophobic
walls with a48 potential with σ = 3; (b) right, thermophilic walls with r3
potential with σ = 3. The background color codes the local temperature.
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osmotic flow along the solid walls combined with periodic boundary condi-
tions form the symmetric flow stream lines pattern. The warmest position
is the middle position of the system along z axis. With thermophobic prop-
erty of solid walls, the flow close to the walls tends to warn side; in contrast,
thermophilic walls enable flow go to cold area (Fig 3.7(b)).

In order to clearly understand the underlying physics in this simplified model,
here we calculate the pressure gradient along the walls. In the bulk the pres-
sure is constant, and the bulk solvent density obeys the equation of the state
of MPC fluid, ρ∞(z) = P∞/kBT (z). On the base of the local thermodynamic
equilibrium (LTE), inside the boundary layer near the wall, Eq. (3.9) is satis-
fied, rewritten as,

ρ(x, z) = ρ∞(z) exp(−U(x)/kBT (z)). (3.15)

Using Eq. (3.15) and the ideal gas equation of state, we have the pressure
tensor in z direction,

Pzz(x, z) = ρ(x, z)kBT (z) = P∞ exp(−U(x)/kBT (z)). (3.16)

Hence, the pressure gradient is,

∂Pzz(x, z)

∂z
= P∞ exp(−U(x)/kBT (z))

U(x)

kBT 2(z)

∂T

∂z
= Pzz(x, z)

U(x)

kBT 2(z)

∂T

∂z
∼ fT .

(3.17)
where fT is the force density of the fluid. Clearly, for a general U(x) the pres-
sure gradient is nonvanishing within the boundary layer (vanishing when
U(x) = 0 in the bulk and U(x) = ∞ inside the wall). The nonzero pressure
gradient drives the fluid flow, and constitutes the thermodynamic contribu-
tion of the thermophoresis. The slip velocity can also be calculated by substi-
tuting Eq. (3.17) into Eq. (3.7). In addition, the thermophoretic force FT can
be calculated via local pressure gradient. (Different solutions for FT and αT are
presented in Appendix A.)

To avoid poor statistics of exact local pressure in simulation, we calculate
the local pressure inside boundary layers average perpendicular to∇T , both
numerically and analytically (based on Eq. (3.16)). Hence, the average local
pressure P̂zz is written as,

P̂zz(z) = P∞(
1

δ

∫ R+δ

R

exp(−U(x)/kBT (z))dx). (3.18)
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Figure 3.8: Local pressure profile calculated from simulation and analytical
theory in thermophobic and thermophilic cases.

Fig. 3.8 shows the local average pressure as a function of position. ∂Pzz/∂z,
which is opposite from the osmotic flow direction (Fig. 3.7). Specifically, the
analytical theory curves based on Eq. (3.18) for both thermophobic (a48 po-
tential) and thermophibic (r3 potential) behaviors agree with simulation re-
sults (Temperature can be analytically calculated by solving Laplace equa-
tions, as will be done in Chapter 6 section 2. But we can also directly use
T (z) from simulation results). Some deviations are still observed, this might
be due to the employed large temperature gradient which breaks down the
local equilibrium assumption, also the impact from finite system size effects.

The above theoretical rendition is based on the LTE, similar to the studies by
Derjaguin and by Frenkel and their collaborators [92]. Therefore, the physi-
cal mechanism underlying thermophoresis is correctly captured by MPC-MD
coupling simulation method. Besides this thermodynamic contribution, our
results also naturally include the kinetic contribution of the thermophoresis
which is ignored in the LTE-type calculations (might also explains the devia-
tion in Fig. 3.8).

• Thermophilic or thermophobic? As we discussed above, the local pres-
sure gradient ∂Pzz/∂z is the thermophoretic response from the fluid in
Eq. (3.17). It indicates how much thermophoretic (or thermoosmotic)
force per volume of fluid is suffered (fT ). The direction of total ther-
mophoretic force FT is the same as ∂Pzz/∂z close to the interfacial layer.
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The sign of FT is therefore determined by the sign of the potential in-
side the boundary walls. With the common used Lennard-Jones po-
tentials we applied, repulsive one gives positive sign is the same as
∂Pzz/∂z, such that the same as ∂T/∂z; while, attractive L-J potential
inside boundary layer is negative sign (note that in most of cases, the
contribution of short ranged repulsion to FT is negligible), thus ∂Pzz/∂z
is opposite from ∂T/∂z. In nutshell, Eq. (3.17) numerically explains the
reason of thermophilic and thermophobic behaviors due to different
potentials.

Local pressure computation around spherical colloid

Despite that the physical mechanism can be revealed from the aforemen-
tioned simplified model, the pressure gradient effect is of interest for the
understanding of the simulation study on thermophoresis of spherical col-
loids. Simulations are performed in a (Lx, Ly, Lz) = (30, 30, 30) box, with r3

and a24 potentials and ∇T = 0.0216 along z axis applied. The temporal as-
semble average is refined into cubic bins with size of 0.2, collected with an
cylindrical average. Therefore extensive statistics are required. Likewise, the
flow field inside the boundary layer is also measured in this way which is
shown below.

a) b)

Figure 3.9: Pressure field: (a) and (b) are thermophobic and thermophilic
cases, respectively. The pink solid line distinguishes the outer edge of the
boundary layer. For better visualization, in (b) the pressure at the bulk P∞
is subtracted, the excess pressure is shown here.
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Apparently, the pressure field in Fig. 3.9 show that out of boundary (inter-
action) layer (the pink solid line), the pressure is homogeneous everywhere.
The radial gradient of the pressure from the colloid surface until the edge of
the boundary layer is easy to identify, but not so much the gradient along the
tangential direction, although a slight effect has been seen when looking care-
fully at the thermophobic case. However, we realize that the thermophibic
case is hardly to distinguish the tangential gradient effect, even though the
bulk pressure P∞ is subtracted.

To quantify the pressure gradient effect, we calculate the average local pres-
sure inside boundary layer using the same protocol as in planar walls model
and Eq. (3.18). The local pressure (to obtain the less noisy value, block av-
erage is applied) as a function of polar angle for thermophobic and ther-
mophilic colloids are shown in Fig. 3.10. The green dashed lines correspond
to theoretical prediction by Eq. (3.18), the only modification is that the tem-
perature term is polar angle dependent. The pressure gradient directions
are consistent with (opposite from) the thermophoretic flow directions. This
measurement accompanied with thermoosmotic flow, reveal how our model
is able to capture the physical mechanism of thermophoresis. In MPC-MD
simulations, the thermophoretic force, is dominated by the tangential pres-
sure gradient, rather than by the asymmetric density distribution (due to
temperature gradient) resulted net central forces.

a) b)

Figure 3.10: Pressure averaged at the colloid surface as a function of polar
angle θ in (a) thermophobic and (b) thermophilic colloids. The green dashed
lines refer to analytical prediction in Eq. (3.18) for spherical colloid case.
Note that θ = 0o corresponds to at the warm side of colloid, and θ = 180◦ to
the cold side.
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(a)

(b)

Figure 3.11: Flow inside boundary layer. (a) Time averaged vector field of
flow velocities around boundary layer. The blue line indicates the outer
edge of interaction range or interfacial layer. (b) Magnitude of the averaged
slip velocity at the interfacial area.

3.4.2 Near field flow maps induced by phoretic forces

At steady state, the slip velocity varies with the sine of the polar angle [26],

vs = vB sin θ, (3.19)

with the maximum of vB at the polar angle θ = π/2. The thermophoretic
force FT can be obtained from thermophoretic drift velocity vT since this is
the velocity that the colloid will reach when the hydrodynamic friction force
Fγ counterbalances FT . Namely rewriting Eq. (3.1),

FT = Fγ = ΓπηRvT . (3.20)
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We now measure the flow field near by the colloid boundary layer with bin
size 10 times smaller of the collision cell size. Fig. 3.11(a) illustrates the
flow vector field around a fixed colloid in temperature gradient. Concerning
flow close to the boundary layer, the normal components are negligible while
the tangential components varies along the spherical surface. We show that
the magnitude of vs changes with polar angle θ, which is consistent with
Eq.( 3.19).

The simulation have been performed also serves us to check the validity of
the first equality in Eq (3.20). Here we obtain the maximum of slip velocity
of fixed colloid vB ≈ −0.0052. This value together with Γ = 4, η = 8.7 known
from our simulation parameters, and taking that vB ≈ vT (colloid with slip
boundary conditions in Eq. (3.13)), allow us to calculate FT = −4πηRvB ≈
1.14, which resonablely compares with the value FT = 1.3 calculated directly
in the simulations. This larger value obtained in simulation is due to the effet
of the back flow induced by the PBCs or walls. This effects will be studied in
detail in the next section.

3.5 Hydrodynamic origin of finite size effects

Numerical simulations of particulate systems are unavoidably limited to a
finite system sizes. Different boundary conditions of a system with finite size
seem play significant role on the measurement of thermophoretic force [58,
60]. However, the origin is still elusive. By fixing a colloid in temperature
gradient, its thermophoretic force can be attained in simulations via sum-
ming all of colloid-solvent individual forces (Chapter 2) [60]. Physically, the
temperature gradient brings in the inhomogeneity of solvent at the colloid-
solvent interface, what results in a directed force (thermophoretic force). In
the case of colloids with boundary conditions such as being confined between
walls [60] or in open periodic systems [58, 60], the presence of a back flow orig-
inated at the walls or at the periodic images, influence the measurement of
thermophoretic force. According to a previous simulation study [58] which
combines empirical fitting, with the measured thermophoretic forces, Fsim

T

are always larger than its value extrapolated to an unconfined system F∞T
due to finite system size. Hence, it is also termed as finite size effects (FSEs).
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• The origin and calculation of effective friction: In the framework of hy-
drodynamics, we ascribe the enhancement in measured FT (or its correspond-
ing thermal diffusion factor αT ) to an effective additional friction FγT . This
FγT is essentially exerted by a net hydrodynamic flow vγT induced by all the
periodic images and confinements. We adopt an analytical calculation ap-
proach to quantify FγT . Here vγT can be calculated analytically considering
influence from the periodic images and the boundary walls. By Stokes’ law
FγT = 4πη ·R · vγT (slip boundary condition), FγT is obtained.

• FSEs correction via analytical calculation: The system size dependence
of thermal diffusion factor αsimT can be readily measured via simulation [58].
With the aforementioned protocol, we achieve this by analytical calculation
as well. To confirm the correctness of calculation, an essential step is to con-
struct the thermophoretically induced flow fields (which have been studied
in simulations [60]) of colloids via analytical calculation. Moreover, we in-
vestigate the system size dependence of FγT .

3.5.1 Analytical evaluation of FSEs factor

The thermodiffusion factor αT is measured in the simulations, αsimT is known
to depend on the system size what can be characterized by measurements at
various system sizes from which an extrapolation of the factor for a system
of infinite size α∞T [58] can be obtained,

αsimT = α∞T (1 + λ
d

Lz
), (3.21)

where λ is termed as FSEs factor which quantifies the significance of FSEs.
When the colloid is confined at the middle of two parallel walls and tempera-
ture gradient ∇T is employed perpendicular to wall-planes, thermophoretic
flow velocity at the boundaries vanishes due to stick boundary conditions
(with slip boundary conditions at walls, the component along∇T of velocity
vanishes). As mentioned previously, due to the finite system sizes, measured
thermophoretic force FsimT is represented by,

FsimT = FT + FγT . (3.22)

Assuming that a constant back flow v(Lz/2) along ∇T direction (calculated
from Eq. (3.13)) bounces back at the walls has proven to be a very reasonable
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approach [60]. Such back flow exerts an additional friction on the colloid,

vγT = v
(
Lz
2

)
=

1

8πηLz

2

· 2 · FT =
−α∞T kB∇T

2πηLz
. (3.23)

Substituting the Stokes friction coefficient γ = 4πηR into Eq. (3.22), and com-
paring with Eq. (1.14) and Eq. (3.21), allows us to obtain λ = 1.0.

3.5.2 Flow field: simulation vs. analytical theory

a) b)

Figure 3.12: Cross-section of the thermophoretic flow field of a colloid
confined between walls. Parameters and setups: cuboid box with
Lx = Ly = 40, Lz = 50, thermophoretic force applied in Eq.( 3.23) is the
same as in Ref. [60], i.e. FT = 2.5. (a) Flow field measured via simulation,
taken from Ref. [60]. (b) Analytical calculation of flow field with slip wall
boundary conditions. Background color coding (flow intensity) is
prescribed in Chapter 2 Sec. 2.5.

We analytically calculate the flow velocity induced by a thermal gradient ap-
plied on a confined colloid, by considering the solution of the Stokes equation
in Eq. (3.13) and supper-positing with constant back flow (along gradient di-
rection), and numbers of images along two directions perpendicular to ∇T .
Note that the simulations in Ref. [60], bounce back rule is applied at the walls
which satisfies no-slip boundary conditions. However, the measurement of
thermophoretic force FT is only influenced by the z-component of the flow
velocity, and independent the wall is slip or no-slip. Therefore, the above
treatment of flow field is still sufficient for the evaluation of the effective fric-
tion FT . (Detailed calculations for two types of boundary conditions are presented
in Appendix B.)

For boundary conditions where the colloid is confined between walls, cen-
tral image we found that the analytical calculation of thermophoretic flow
fields resemble very nicely the simulation results in reference [60] (Fig. 3.12
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a)

b)

Figure 3.13: Cross-section of the thermophoretic flow field induced by twin
colloids in periodic temperature gradient [60]. (a) Flow field visualized
from simulation, taken from Ref. [60]. (b) Analytical calculation of flow
field, parameters: cuboid box with Lx = Ly = 40, 2Lz = 50, FT = 2.5 is
applied in Eq.( 3.23). Background color coding (flow intensity) is prescribed
in Chapter 2 Sec. 2.5.

(a)). This further confirms the validation of back flow assumption in Ref. [60].
With full PBCs, the twin colloids are placed in a periodic temperature gradi-
ent [58, 60], a discrete Fourier transformation (DFT) is applied to obtain the
flow field analytically. Importantly, we notice that the source dipole term
in Eq. (3.13) decays much faster (with r−3) than the Stokeslet term (with
r−1), such that the DFT is only applied on the Stokeslet term (Appendix B).
The thermophoretic flow stream lines and analytical calculation show to be
qualitatively the same. Interestingly, the flow pattern with symmetrically
placed colloids in periodic temperature gradient resembles the flow induced
by force dipole, which is a standard flow field model for microswimmers [93].

3.5.3 Finite system size scaling

Applying the aforementioned protocol, we analytically quantify the enhanced
contribution in FT measurement by calculating vγT (Eq. (3.23)). In this way,
αsimT (analytically) in Eq( 3.21) can compare with simulation results.
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(a) (b)

Figure 3.14: Thermal diffusion factor as a function of system size with
different boundary conditions. (a) Colloids confined between walls (Fig.
3.12). Open circles are the analytical calculation, red symbols and red line
correspond to simulations and a linear fit with λ = 1.1. Here r3 potential is
applied, and α∞T = −53 (b) Colloids with r6 potential symmetrically placed
in periodic∇T , open squares refer to analytical calculation, red solid
symbols are simulation results with linear fit indicated by solid blue line,
with λ = 0.98 and α∞T = −89.

For colloids confined between two boundary walls (see in Fig. 3.12), λ = 1.1.
The nice agreement of FSEs study in Fig. 3.14(a) indicates that our quantita-
tive approach is robust.

For open periodic boundary conditions, we gain λ ≈ 1.0 via both analytical
calculation and simulation results(see in Fig. 3.14(b)). According to the au-
thor’s experience, the approach to calculate the error bar by measuring the
force component perpendicular to the gradient might not be very accurate.
Therefore, our linear fitting also fluctuates significantly. We speculate that
this might be the reason that the previous simulation [58] study provides
λsim ≈ 2.2. Nevertheless, in the framework of hydrodynamics, we validate
analytically and theoretically that λ = 1.0 would be a favorable estimation of
finite size effect on simulation study of phoresis. It is also interesting to not
that this finite size effects are not dependent on the algorithm we use, but on
the confinement or the boundary conditions.

3.6 Conclusions

In this Chapter, we have derived the expression of the fluid slip velocity
around a colloid immersed in a fluid with a temperature (concentration)
gradient which reveals the mechanism of phoretic behaviors. By means of
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MPC-MD simulations, we have shown that thermophoresis is akin to diffu-
siophoresis at macroscopic level. Their transport forces, together with asso-
ciated flow velocity, obey the same linear relations.

A simplified model, which consists of two solid planar walls and filled with
viscous fluid in between in the presence of temperature gradient, has been in-
troduced to illustrate the microscopic mechanism of thermophoresis simula-
tion. It is theoretically and numerically shown that repulsive or attractive LJ
potential leads to different direction of pressure gradient, yet the temperature
gradient is the same. This is because the sign of the repulsive or attractive po-
tential is opposite inside the boundary layer. Therefore, macroscopically re-
pulsive potential results in thermophilic behavior, while attractive one causes
thermophobic behavior. We have further shown that the measurement of the
local pressure around spherical colloids as well as the directions of the resul-
tant pressure gradients are also consistent with the results of the simplified
model. Therefore, we have explicitly shown that the MPC-MD model nicely
captures the physics of thermophoresis in liquids. The local pressure gradi-
ent expression can be used to evaluate the local slip velocity and the total
thermophoretic force for spherical colloids (Appendix A). Finally, we point
out that our present model does not consider the effect of solvent-solvent po-
tential interactions (such the solvent microscopic details as polarization effect
can not be accounted for) on the thermophoresis.

Finally, we analytically obtained the flow fields considering the boundary
conditions such as solid walls and PBC images, which agree well with previ-
ous simulation results. More importantly, calculating the flow field and the
resulting effective friction, we have found that the finite size enhancement
factor λ ≈ 1.0 can be directly calculated from flow field and effective friction
due to two different boundary conditions, which means that the phoretic fi-
nite size effects don’t depend on specific potentials or any other algorithm
detail.
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Chapter 4

Anisotropic thermophoresis 1

Synopsis

In contrast to particles with spherical shape, we show that elongated colloids
may have a thermophoretic response that varies with the colloid orientation. Re-
markably, this can translate into a non-vanishing thermophoretic force in the
direction perpendicular to the temperature gradient. Oppositely to the friction
force, the thermophoretic force of a rod oriented with the temperature gradient
can be larger or smaller than when oriented perpendicular to it. The precise
anisotropic thermophoretic behavior clearly depends on the colloidal rod aspect
ratio, and also on its surface details, which provides an interesting tunability
to the devices constructed based on this principle. By means of mesoscale hy-
drodynamic simulations, we characterize this effect for different types of rod-like
colloids.

4.1 Introduction

As we know, the study of mass transport phenomena in temperature gradi-
ent ranges from liquid mixtures to colloid suspensions. Questions about the
influences of moment of inertia and shape have been accessed via simula-
tion or experimental techniques. In fluid mixtures the effect of the particle
moment of inertia has been extensively studied [94–96], concluding that in-
creased moment of inertia facilitates migration. Rodlike colloids have been
experimentally investigated [97, 98] and characterized as a function of their
electrostatic interactions. Nevertheless, no systematic study has been yet

1 A paper based on some of the work described in this chapter has been published by Soft
Matter. (ZT, M. Yang and M. Ripoll, 2017)

http://pubs.rsc.org/en/content/articlelanding/2017/sm/c7sm01436h
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done to investigate the thermophoretic properties of colloids as a function
of their shape.

The major question we want to address is how is the thermophoretic be-
havior of colloids affected when their shape is not spherical but elongated. A
valuable and interesting parallelism can be made here between thermophoretic
and friction forces. An elongated object moving with constant velocity in a
fluid in a fluid along its axis is known to experience frictional force propor-
tional to γ‖, which is typically much smaller than the friction experienced by
the same rod moving perpendicular to its axis proportional to γ⊥. This is a
well-know fact, which in the case of a shish-kebab model of adjacent beads
has been calculated to be γ⊥ = 2γ‖ for aspect ratios larger than 20 [99].

It is therefore intuitive, that an elongated object with its axis aligned with
a temperature gradient, will not have the same thermophoretic response as
when the axis is perpendicular to the gradient. Hence and in contrast to
colloids with spherical symmetry, colloids with an anisotropic shape should
be characterized by two or more thermal diffusion factors, which is the main
concept of the anisotropic thermophoresis [46]. The corresponding effect was
already predicted for elongated particles in gases, where the propulsion of
particles aligned with the gradient was expected to be larger than that of
particles perpendicular to the temperature gradient [29, 100]. Therefore, the
effect for elongated colloids in liquid solutions still remains to be explored.

Practical applications of thermophoresis have developed over several decades
and are currently in a significant expansion stage. Some relevant examples
are crude oil characterization [101], separation techniques [39], strong com-
ponents accumulation in prebiotic conditions [13, 102], the precise character-
ization of proteins, for which thermophoresis can even distinguish betweeen
different binding states [103]; also various application in microfluidics [47,
104], or the fabrication of synthetic microswimmers [41, 43, 62]. The tra-
ditional versatility of thermophoresis is therefore importantly increased by
considering different shaped objects.

In this work we investigate the anisotropic thermophoretic properties of col-
loidal rods by means of hydrodynamic computer simulations. We study
the dependence of the thermophoretic forces for moving rods and for fixed
rods at different orientations, with various aspect ratios and surface prop-
erties. The anisotropic effect can for example be reversed by changing the
surface rugosity, which can be understood in terms of the associated tem-
perature properties of the fluid in the vicinity of the colloid. Interestingly,
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this anisotropy can induce a thermophoretic effect non-aligned with the tem-
perature gradient. This thermophoretic force perpendicular to the tempera-
ture gradient has already shown to be the basic mechanism that allows the
construction of thermophoretic turbines, which rotate in the presence of an
external temperature gradient [46]. The anisotropic thermophoretic effect is
also especially promising for microfluidic applications where significantly
large and well-localized temperature gradients can be generated and pre-
cisely controlled in time and space. Applications of anisotropic thermophore-
sis in the presence of external temperature gradients offer then the possibility
of engineering devices able to harvest waste heat energy.

4.2 Model of rods

The rod is constructed with the “shish-kebab” model built by N connected
beads in a linear disposition as shown in Fig. 4.1. The excluded volume in-
teractions between colloid and solvent are performed via MD with Lennard-
Jones (LJ) type potentials (Eq.(2.5)). The bead diameter is taken as d = 4a. The
mass of each bead is chosen such that the rod is neutrally buoyant, although
results are not really depending on this value. The equations of motion of
the beads and interacting fluid are integrated with a velocity-Verlet MD al-
gorithm. The rod length L is given by L = d + (N − 1)l, such that the aspect

b)l

L L

d

la)

Figure 4.1: Sketch of the “shish-kebab” model of a colloidal rod of aspect
ratio L/d = 3.7 with variable number of beads N , and variable inter-bead
separation l. (a) “Rough” rod with N = 4 beads and l = 0.9d. (b) “Smooth”
rod with N = 10 beads and l = 0.3d.

ratio L/d can be fixed for more than one combination of N and l. Besides
the particular solvent-bead potential, the rod surface properties are going to
be determined by the interbead separtion, which we characterize with l/d,
the rugosity parameter. As can be seen in Fig. 4.1, a rough rod is obtained
when l ' d, while a smooth rod is obtained when l � d. In order to prevent
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the penetration of the fluid inside the rod, the maximum value of the rugos-
ity parameter we employ is l/d = 0.9. We consider a three-dimensional box
with periodic boundary conditions changing from 3 to 4 times the rod length
L. Two types of simulations are performed. Simulations with fixed rods only
need the collod solvent interactions to be specified. Simulation with freely ro-
tating rods and fixed central of mass, in which the rod motion is additionally
accounted with rigid body dynamics [66].

4.3 Results

The migration of a particle in a temperature gradient is driven by the ther-
mophoretic force FT [31, 105, 106].

A straightforward generalization of FT in Eq.(1.14) for a rodlike colloid can
be written in terms of the thermodiffusion tensor ΛT , reads,

FT = −ΛT · ∇T. (4.1)

In a very general case, colloids with arbitrary shape and arbitrary surface
properties can be defined by a symmetric tensor with independent coeffi-
cients. Of particular interest is the case of an homogeneous colloidal rod with
cylindrical symmetry. In this case, two independent coefficients are expected
to be enough to determine the thermodiffusion tensor as

ΛT = αT,‖ûû + αT,⊥(Î− ûû), (4.2)

with û the unit vector of long axis of rod. Here αT,‖ is the thermodiffusion
factor of the long rod axis, or equivalently the thermophoretic factor that
characterizes a rod with the long axis aligned with the temperature gradient,
as displayed in Fig. 4.2a. Reciprocally, αT,⊥ is the thermodiffusion factor of
the short rod axis, or of a rod with the long axis oriented perpendicular to the
temperature gradient (see Fig. 4.2b).

4.3.1 Linear decomposition of the thermophoretic force

The thermophoretic force acting on a rod with arbitrary orientation can be
determined by the linear superposition of the two components with orthog-
onal thermodiffusion factors FT = F‖+F⊥. The temperature gradients along
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Figure 4.2: Sketch of the thermophoretic force of a colloidal rod fixed with
different orientations with respect to the temperature gradient: a) parallel,
b) perpendicular, c) with an arbitrary θ angle.

the long and short axis are respectively ∇Tl = cosθ∇T and ∇Ts = sinθ∇T ,
with θ the angle between the particle long axis and the temperature gradi-
ent, as displayed in Fig. 4.2c. The total force can then be expressed in terms
of its components, parallel and perpendicular to the temperature gradient
FT = Fz + Fx as,

Fz = −
(
αT,⊥ sin2 θ + αT,‖ cos2 θ

)
kB∇T, (4.3)

Fx =
(
αT,⊥ − αT,‖

)
sin θ cos θkB|∇T |nx (4.4)

where nx is the unit vector perpendicular to ∇T . Equation (4.4) comes as a
straightforward result of the tensorial character of the thermodiffusion tensor
in Eq. (4.1), and strikingly implies that a non-vanishing thermophoretic force
exists in the direction perpendicular to the temperature gradient. This force
can in fact be easily measured in our simulations as shown in Fig. 4.3, such
that it could also be measured experimentally [79, 107]. The measured force
perpendicular to the temperature gradient is cleary non-vanishing, and it
increases linearly with the applied tempeature gradient, as expected from
Eq. (4.4). This nicely confirms the tensorial character of the thermophoretic
effect for objects without spherical symmetry.

Simulations with single rods fixed by an angle θ with respect to the temper-
ature gradient are performed for different orientations, as shown in Fig. 4.4.
The values of αT,‖ and αT,⊥ can be obtained by fitting the expressions Eqs. (4.3)
and (4.4) to the simulation results, or more efficiently, just by fixing the rod
parallel (θ = 0) or perpendicular(θ = π/2) to the temperature gradient. The
linear decomposition of the thermophoretic force in Eqs. (4.3) and (4.4) is
clearly verified by these simulation results.
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Figure 4.3: Thermophoretic force obtained from simulations as a time
average for a fixed smooth rod (l/d = 0.3), of aspect ratio L/d = 3.7, and
interaction potential r6. The rod is fixed with an angle θ = 45◦ with respect
to ∇T . The force perpendicular to∇T , FT,x, is non-vanishing as predicted
by Eq. (4.4). The inset shows the value of FT,x for various values of∇T .
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Figure 4.4: Thermophoretic force for fixed smooth (l/d = 0.3) and rough
(l/d = 0.9) rods with L/d = 3.7 and r6. The angle θ denotes the rod
orientation with respect to∇T , as sketched in Fig. 4.2c. The force FT,z is
measured in the direction parallel to∇T and FT,x perpendicular to it.
Symbols correspond to simulation results and lines to the expressions in
Eq. (4.3) and (4.4).

Results in Fig. 4.4 also show that, depending on the simulated rods, FT,‖ can
be larger or smaller than FT,⊥, such that the force perpendicular to the gra-
dient, FT,x, can appear in both directions. This is in strong contrast to the
friction force, which is always larger for rods oriented perpendicular to the
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flow than for those parallel to it. Hence, the anisotropic thermophoretic effect
is fundamentally different from the anisotropy of the translational friction.

4.3.2 Does thermophoretic anisotropy induce orientation?

As just discussed, elongated particles fixed aligned with the temperature gra-
dient or perpendicular to it, can experience well-differentiated thermophoretic
forces. Nevertheless, a freely moving rod in a temperature gradient, suffers a
force exerted on one half of the rod which is exactly the same as in the other
half, such that there is no net torque on the particle. For the same reason, fric-
tion forces are also known not to induce any orientation effects on elongated
particles, in spite of their anisotropy. Orientation is induced only in the case
that the flow field is in itself not homogeneous, as it is the case of a shear
flow. The thermophoretic anisotropy does therefore induce no particle align-
ment. A freely rotating rod in a temperature gradient, will then change its
orientation only due to stochastic interactions, being then characterized by
a unique thermodiffusion factor, αT,iso, which would be determined by the
average over all possible rod orientations. Simulations allowing particle ro-
tation limited to two dimesions confirm this statement for the two parameter
sets in Fig. 4.4, and the measured thermodiffusion factors verify that

αT,iso =
1

2

(
αT,⊥ + αT,‖

)
= αT,‖|θ=45. (4.5)

This can be generalized to rods freely moving in three dimensions as

αT,iso =
1

3

(
2αT,⊥ + αT,‖

)
. (4.6)

While alignment refers to the first moment of the induced orientation, we
could wonder if the effect exist in higher moment orders. It is therefore in-
teresting to investigate if the presence of an external temperature gradient
could modify the particle rotational diffusion. We measure the rotational
diffusion coefficient by characterizing the long time behaviour of the mean
squared orientation displacement. For computational efficiency, these simu-
lations consider rods composed of smaller beads, d = 2a. The normalizing
factor D0

r ' 8× 10−4 is obtained for the rough rods in the absence of temper-
ature gradient. In the presence of non-vanishing temperature gradients, sim-
ulations are performed by keeping the rod center of mass fixed in the middle
of the simulation box where the solvent average temperature is kBT = 1. The
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Figure 4.5: Normalized diffusion coefficient for a freely rotating rod (with
l/d = 0.3, L/d = 3.7, and r6) at various temperature gradients. Bullets
correspond to the direct simulation measurements Dr, and triangles to the
coefficient rescaled with the density correction D̃r.

simulation data in Fig. 4.5 show to increase with the applied temperature, but
this is mainly due to the particular equation of state of the employed MPC
fluid, which is that of an ideal gas. Given a spatial linear increase of the tem-
perature, the related position dependent density will be only approximately
linear [57]. The density in the middle of the simulation box will then differ
from the average one, which will affect the rotational diffusion coefficient. If
we consider that Dr ∝ 1/η, and that η ∝ (ρ− 1) [108] we can explain the ma-
jorDr by considering the rescaled coefficient D̃r = Dr(ρ|LZ/2−1)/(ρ−1). The
factor ρ|LZ/2 can be measured in the simulations, or calculated from the ideal
gas equation of state as ρ/ρ|LZ/2 = T ln(Th/Tc)/(Th − Tc) [57]. The rescaled
coefficient D̃r in Fig. 4.5 shows to be mostly independent of the applied tem-
perature gradient within the precision of the data, which demonstrates that
the temperature gradient has no effect in the particle orientation.

It is interesting to mention that thermomolecular orientation has been previ-
ously reported in diatomic fluids [109–111]. In these cases, elongated molecules
made of two atoms with unequal sizes show to display certain average orien-
tation towards the direction of the temperature gradient. This does not con-
tradict the discussed lack of orientation induced by anisotropic thermophore-
sis, since the particules we discuss are elongated but intrinsically symmetric,
namely composed of indistinguisable building blocks.
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4.3.3 Aspect ratio effect

For spherical colloids, the size is well-known to influence αT , the particle
thermodiffusion factor [58, 112, 113]. The overall increase of size of the rod
will therefore also translate into an increase of αT , but how does the rod as-
pect ratio influence the anisotropic effect, still needs to be clarified.

Simulations of rods with orientations parallel and perpendicular to the tem-
perature gradient are performed for different aspect ratios and for two ru-
gosities as shown in Fig. 4.6 and Fig. 4.7. In order to compare with two
different experimental approaches, we change the rod aspect ratio follow-
ing two different strategies. The first strategy consists in fixing the particle
diameter and changing its length. This is the case of polymeric rods made
out of different number of monomers. We simply simulate rods with various
numbers of adjacent beads, results are shown in Fig. 4.6. Obtained measure-
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Figure 4.6: Normalized thermodiffusion factors for rods of fixed diameter d
and varying length L. Parallel (open symbols), perpendicular (filled
symbols), and freely rotating (crosses, calculated from Eq. (4.6))
thermodiffusion factors are presented together with linear fits. Results are
presented for both smooth and rough rods (rugosity parameters l/d = 0.3
and 0.9) with r6 interaction potential.

ments are normalized with α0
T , the thermal diffusion factor of a single bead

of the same characteristics as the ones employed to build the rod, such that
for L = d, αT,⊥ = αT,‖ = α0

T by definition. The four analyzed cases in Fig. 4.6
show a very clear linear increase of αT with the aspect ratio L/d, although
with different slopes. This linear increase means that by characterizing the
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values of αT at two different aspect ratios with enough precision, would al-
low us to easily extrapolate to other aspect ratios; also in the case that one of
those values is the limiting spherical case α0

T .

Interestingly, in the case of a freely rotating colloidal rod, the overall ther-
modiffusion factor also increases linearly with the aspect ratio of the colloidal
rod, given the verified expression in Eq. (4.5) and Eq. (4.6). This is very in-
teresting by itself, and reminiscent of the well-known effect of the particle
moment of inertia on the thermal diffusion in molecular mixtures [94–96].
The linear increase agrees with the theoretical expression in Ref. [98] in the
case of very thin double layer. The increase is also consistent with the exper-
imental results in Ref. [114] for double and single stranded DNA with two
different number of monomers.

The second strategy to investigate the effect of the aspect ratio consists in
keeping the colloid surface area constant, such that the increasing the length
is accompained by a decrease of the particle diameter. This can correpond to
deformable structures such as vesicles, droplets, or polymeric globules [114].
In order to keep similar thermophoretic effect per unit area [58, 59], we the
maintain the interaction range constant for increasing bead size by making
use of the displaced potential in Eq. (2.5). We fixed d = 4 and increase ∆ such
that the effective bead diameter is def = d+ 2∆. We approximate the surface
of simulated shish-kebab rod in Fig. 4.1, by that of an spherocylinder such
that S = πdefL, quantity that we keep then constant together with the rod
rugosity. We take as reference the rod simulated in Fig. 4.6 with L/d = 6.4,
then we decrease the number of beads by increasing the rod thickness by
increasing ∆. Figure 4.7 shows that in this case all thermophoretic factors de-
crease in magnitude with aspect ratio L/def which agrees with the theoretical
expression in Ref. [114].

To understand the linear increase of αT,⊥ and αT,‖ with L for fixed d, we can
employ a geometrical argument by approximating the rod to an elongated
parallelepiped of dimensions d× d× L. The surface aligned with the tem-
perature gradient for a rod aligned with the gradient is 4dL, while for a rod
perpendicular to the gradient this surface is 2dL + 2d2, both increasing with
L. Then, if we assume that each αT is directly proportional to the surface
aligned with the temperature gradient, the effect would be explained. Sim-
ilar reasoning for the case of fixed S would predict an increasing αT,‖, and
decreasing both αT,⊥, and αT,iso. This is still very reasonable, since the as-
sumed direct proportionality of the surface and the thermophoretic force is
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Figure 4.7: Thermodiffusion factors for rods of fixed surface area S.
Symbols, potential, and rugosity parameters are similar to Fig. 4.6. Lines
connect symbols as guide to the eye.

not necessarily precise; as well as the contribution of the balance of the two
surfaces at constant temperature might not be negligible.

4.3.4 Surface effects

The rod surface is modified in our model in two different manners. On the
one hand, the surface shape as described in Fig. 4.1 modifies its rugosity with
the parameter l/d. On the other hand, the choice of the employed potential,
attractive-repulsive, soft-steep will also modify the thermophoretic proper-
ties of the rod. To analyze more in detail these effects, further simulations
calculate αT,‖ and αT,⊥ as a function of the different potential interactions
and the rugosity parameter l/d, as shown in Fig. 4.8 and Fig. 4.9. In the case
of spherical colloids, the thermodiffusion factor α0

T is known to depend on
the colloid-surface interactions, and on the colloid size [24, 58]. With rods
of fixed aspect ratio, we perform simulations with repulsive and attractive
potentials, and with different n values in Eq. (2.5), for which α0

T is also eval-
uated. The parallel αT,‖, and perpendicular αT,⊥, thermodiffusion factors are
compared with α0

T , as displayed in Fig. 4.8. Values larger than the reference
linear increase in Fig. 4.8, in absolute numbers, indicate the enhancement of
the thermal diffusion factors due to the increase elongation of the rod. This
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Figure 4.8: Parallel and perpendicular thermodiffusion factors for rods
with L/d = 3.7 with various interaction potentials (indicated in the labels)
as a function of α0

T , the thermodiffusion factor of a single bead. Results are
provided for the same two rugosity parameters as in Fig. 4.6. The dashed
line has slope one and is a guide to the eye.

enhancement is clear in all investigated cases, although its magnitude dif-
fers for the different potentials, rugosities, and orientations. In general, the
increase of αT,‖ and αT,⊥ shows to be larger, the larger the α0

T .

The effect of the surface rugosity can already be observed in Fig. 4.4 and
Fig. 4.6 where simulation results of two well-differentiated rod rugosities are
presented. For the repulsive potential and aspect ratio here employed, the
rough rod shows |αT,‖| < |αT,⊥|; i. e. the thermophoretic force for the rod
aligned with the temperature gradient is smaller than for the perpendicular
one. Meanwhile the smooth rod with the same potential shows the oppo-
site behavior, |αT,‖| > |αT,⊥|. This means that by changing the rugosity of
the rod, the forces perpendicular to the temperature gradient can invert their
direction, as shown in Fig. 4.4. This is though not the case for the rods simu-
lated with attractive interactions where αT,‖ < αT,⊥ for both the smooth and
the rough surfaces. Note that the sign of the thermodiffusive factors is never
modified, such that the thermophilic/thermophobic character of the colloids
does not change with its shape change from spherical into elongated, and it
will be therfore the same for both components αT,‖ and αT,⊥.

The dependence of the thermal diffusion factors with the rugosity param-
eter l/d, is shown in Fig. 4.9. With increasing rugosity of the rod surface,
the thermal diffusion factor shows to decrease, or to remain unchanged. In
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Figure 4.9: Normalized parallel and perpendicular thermodiffusion factors
for rods with L/d = 3.7 as a function of the rugosity parameter l/d.
Simulations with various interaction potentials are reported and indicated
in the corresponding labels. The horizontal line is a guide to the eye.

other words, smoother surfaces produce larger thermophoretic responses or
eventually similar than their rough counterparts. The clear decrease of αT,‖
with increasing rugosity is what eventually changes the relative importance
of both factors and the direction of the force perpendicular to the temperature
gradient.

To explain these dependencies, we should discuss two types of contributions,
which are again related to the rod-solvent interaction potentials and the sur-
face shape. The finite range of the solvent-bead interactions results in over-
lapping regions, in which solvent particles can simultaneously interact with
more than one neighboring bead. The size of these overlapping areas de-
creases with increasing roughness, or potential steepness, modifying the ef-
fective rod-solvent potential. This effect is smaller for rough rods, for which
the thermodiffusion factors in Fig. 4.9 have little dependence of the type of
potential. Smooth rods interestingly show a difference between attractive
(thermophobic) potentials, and repulsive (thermophilic) ones, but not be-
tween those with different steepness. The second type of contribution is in
this case dominant, and related to the surface shape, and in particular with
the presence of surface indentations which can explain the decrease of αT,‖
with increasing roughness. To estimate the contribution to thermophoretic
force between two arbitrary points at the rod surface, we consider first that
the thermophoretic factor along a wall, can be assumed to be directly propor-
tional to the wall length, which has been shown in Fig. 4.6. By considering
Eq. (1.14), and that the gradient depends on the inverse of the distance, the
contribution to thermophoretic force can then be determined by the differ-
ence of temperatures between these two points Tc and Th. Fig 4.10 illustrates
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the thermophoretic forces along a wall with an indentation, FA, and a flat
wall FB, which are both considered to be the sum of two contributions by
considering the temperature at the middle of the wall Tm. Indented and flat
walls have different lengths, but the temperatures at their ends are the same.
The wall length increase exactly cancels with the decrease of the temperature
gradient, such that the wall thermophoretic forces are precesely the same,
this is FA1 = FB1 and FA2 = FB2. The total force in both cases is though not
the same due to the angle θ that determines the indentation, as sketched in
Fig. 4.10, such that the force in the indented surface FA is a factor cosθ smaller
than the force in the perfectly smooth surface FB = FA/cosθ. This effect is

TmTc Th

F
A1 A2

F

B1
F

B2
F

θ θ

F
B B2

F
B1
F +=

F
A A2

F
A1
F += ( (cosθ

Figure 4.10: Sketch illustrating the decrease of the thermophoretic force
along an indented surface.

very clear when the rod is aligned with the temperature gradient, and ex-
plains the clear decrease of αT,‖ with l/d for all potentials in Fig. 4.9b). When
the rod is perpendicular to the gradient, the effect of the indentation is sub-
tly different but still present due to employed three-dimensional structure.
However, the overall contribution is smaller which explains the unchanged
or decreasing dependence of αT,⊥ with l/d in Fig. 4.9a). In AppendixB, an
detailed explanation has been provided.

4.3.5 Thermophoretic anisotropy factor

The importance of the anisotropic effect is determined by how different are
the thermophoretic forces of the rods aligned and perpendicular to the tem-
perature gradient. We therefore define the dimensionless thermophoretic anisotropy



4.3. Results 67

factor as
χT = αT,⊥ − αT,‖. (4.7)

The intensity and the sign of the force perpendicular to the temperature gra-
dient is simply determined by χT , as already shown in Eq. (4.4). The direction
of the perpendicular force will have crucial importance in applications of the
effect, determining for example the rotation direction of the thermophoretic
turbines [46]. This means that the sign of α0

T will not be enough to know the
direction of the perpendicular force; or, in other words, the thermophilic or
thermophobic character of the surface does not determine the direction of the
transverse phoretic effect.
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Figure 4.11: a) Asymmetric thermophoretic factor χT as function of the rod
rugosity parameter, for various interaction potentials, with L/d = 3.7 from
the data in Fig. 4.9. b) χT as a function of the aspect ratio for r6 interaction
potential and rugosities L/d = 0.3 and 0.9. Circles and triangles correspond
to the data in Fig. 4.6 for rods of fix diameter. The insets correspond to the
ratio χT/α0

T for the same data. Pluses and crosses correspond to the data in
in Fig. 4.7 for rods of fixed surface area.

The value of χT is displayed for various potentials and rugosities in Fig. 4.11,
where it can be observed that χT > 0 in the majority of the cases. This means
that the perpendicular force happens most of the time in the same direc-
tion, which is positive with the convection in Fig. 4.2. In the thermophobic
case, where the thermodiffusion factor is positive, χT > 0 corresponds to
|αT,⊥| > |αT,‖|. This resembles the well-know translational friction case and
provides the opposite trend as the predictions for aerosols [29, 100], show-
ing to be an effect specific of colloids in solution. On the other hand, in the
thermophilic case, where the thermodiffusion factors are negative, χT > 0

corresponds to |αT,⊥| < |αT,‖|. For comparison, the insets in Fig. 4.11 show
the ratio χT/α0

T , which will be positive in the friction-like cases, and negative
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otherwise. This normalization also provides a rapid estimation of the mag-
nitude of the effect which can be as expected to be as large as the phoretic
effect itself, even for the small aspect ratios here considered. Note though
that these are the results obtained by means of computer simulation and that
in practical experiments, the results can show a much richer behavior. With
our simulation results, we observe that by changing the surface rugosity, the
anisotropic effect can reverse its direction in the case of thermophilic rods.
We expect this behavior to be reproducible experimentally by changing the
surface coating, electrostatic interactions, average temperature, or any of the
factors that are known to affect the thermophoretic behavior.

4.4 Conclusions

Anisotropic thermophoresis refers to the different phoretic thrust that an
elongated particle suffers when aligned with the temperature gradient and
when perpendicular to it. This difference results in the thermophoretic force
perpendicular to the temperature gradient when the rod is fixed oblique to
the gradient. This anisotropy does not have any relevant effect on the par-
ticle orientation, nor on the rotational diffusion of the particle, given the
considered symmetry of the colloidal rod. The existence of anisotropic ther-
mophoresis is relatively intuitive, especially by comparing with the transla-
tional friction of a rod which is also noticeable different if aligned with the
flow, or perpendicular to it. Here we analyze this effect in detail, showing
that the intensity and the direction of the force is a function of the aspect ratio,
the surface geometry, and the colloid-fluid interactions. Increasing aspect ra-
tio by fixing the particle radius, increases the anisotropic phoretic effect in an
straightforward manner. The rugosity of the colloidal surface is also relevant,
being smooth surfaces the ones with larger anisotropic thermophoretic effect.
In general, surfaces with larger phoretic effect also have larger anisotropic
phoretic effect. Interestingly, for the simulation potentials employed in this
work, the direction of the phoretic force perpendicular to the gradient is the
same for both thermophobic and thermophilic colloids. Only rods with ther-
mophilic and rough surface have shown in our simulations to display the
perpendicular forces with opposite direction. We expect that experimental
results will show an even richer behavior, in which the intensity and the di-
rection of the effect could depend on many factors such as intrinsic surface
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properties, eventual coatings, average fluid temperature and density, pres-
ence of salt ions, and various other factors. Note that since our simulation
model does not include any of these aspects, only qualitative trends can be
predicted. For example, the model has already been able to explain the exper-
imentally observed dependence of the isotropic thermophoretic factor with
the rod aspect ratio, with two types of DNA [114]. Two first practical ap-
plications of anisotropic thermophoresis have already been proposed for the
construction of phoretic microturbines and micropumps. In the presence of
external temperature gradients, the blades of a microturbine will rotate when
being anisotropic [46], and a microchannel will experience some spontaneous
directed fluid motion when including elongated tilted obstacles [115].

Although the work presented here has been exclusively focused in the ther-
mophoretic effect, very similar results are expected with other phoretic effect
such as diffusiophoresis. A direct proof for this is the fact that a similar micro-
turbine placed in an external concentration gradient has shown to display
similar behavior due to the related anisotropic diffusiophoresis [89]. In sum-
mary, with this investigation, we provide a deep insight into the anisotropic
thermophoresis of elongated micro-meter size objects; effect that we hope
will be soon experimentally verified, and find applications in different fields
like particle characterization, microfluidics, or biomedicine.
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Chapter 5

Microfluidic pump driven by
anisotropic thermophoresis 1

Synopsis

We propose a microfluidic pump that converts external heat into directed fluid
motion on the base of anisotropic thermophoresis. An external temperature gra-
dient is applied perpendicularly to the microchannel replete with viscous fluid;
equidistant-elongated obstacles are fixed tilted to the walls. The fluid is driven
continuously along the channel due to the thermophoretic forces perpendicular to
the gradient. We investigate the resulting flow via mesoscale hydrodynamic sim-
ulations. Besides channel geometrical effects such as the obstacle inter-separation
and channel width, the magnitude, the flow path and the direction of the net flux
are determined by the obstacle aspect ratio, the surface structure and the na-
ture of the solvent-solute interactions. We additionally relate thermophoretic
anisotropy factor to the flux density in a linear fashion. This relation also under-
pins the linear nature of anisotropic thermophoresis.

5.1 Introduction

Manipulating a small amount of fluids at nano- and microscales has become
one of the most challenging goals of physics and engineering [116, 117]. The
most extended approach to generate fluid flow in a channel is global forc-
ing, namely mechanically exerting external forces by a pressure difference
between an inlet and an outlet flows [118–120]. In contrast, local forcing,

1 A German patent application 102017003455.9 is pending for the work described in this
chapter. (M. Ripoll, ZT and M. Yang, 2017)
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such as those found in biological systems, provides higher efficiency on mi-
crofluid pumping [47]. Numerous microorganisms move elongated flexible
ancillaries such as cilia or flagella at the boundaries in an organized fashion to
generate localized stresses. For instance, the self-propulsion of Paramecium
is strongly correlated to the directional flow induced by regulated waving of
cilia tied up on the cell walls [121–123].

Recently, a plethora of modern micromachines driven by surface forcing have
sprung out in both experimental and theoretical studies [47, 124, 125]. Their
motions are triggered by either local fields or gradients. Thermophoresis,
as one of the local driving mechanisms, has become a versatile means for
maneuvering colloidal suspensions and fluid pumping [41, 47]. For instance,
thermophoresis can be applied to pump fluids in a microchannel with proper
solid-liquid boundaries or periodic temperature inhomogeneities [60, 126].

Besides accurate driven mechanism, some degrees of spatial symmetry break-
ing is another essential factor to harness flow. Typical broken spatial symme-
tries are chemical asymmetry [127], spontaneous symmetry breaking [128,
129] and geometric broken symmetry [47, 124, 130]. Geometric asymmetry
such as a ratchet interface, has been broadly utilized on micromotors and mi-
crompumps. First example is the Bénard-Marangoni convection based flu-
idic [131], with temperature difference orthogonally crossing ratcheted solid-
fluid and fluid-fluid interfaces, the thermally driven convection can be recti-
fied to a net global flow. Another example is rarefied gas pump [132–134],
whose net flow is produced by asymmetric temperature profile and ther-
mal creep. Similar to gas pumping, ratchet effect has been transplanted into
phoretic, osmotic and even bacteria thrust [135] microfluidics mediated by
liquid. Yang et.al and other pioneers proposed a series of ratchet phoretic
pumps or motors [45, 47, 124, 125, 136, 137]. These works share two com-
mons: (i) They make use of precise and versatile phoretic mechanisms. (ii)
Ratchet surface does the job of breaking the geometric symmetry.

Nonetheless, all these aforementioned phoretic fludics either have difficulties
on construction of intricate differentiated compositions [125, 126] or ratchet
geometries of channel walls, or on applying complex gradients [60]. Several
very recent observations on anisotropic phoresis [46, 89] highlight their ap-
plication capability on microfluidics with simplicity and versatility. Instead
of considering the complicity of the channel walls or external gradients, we
present a micropump focuses on the tunable properties of immersed solid ob-
stacles with thermophoretic anisotropy inside the channel. Specifically, with
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the non-zero thermophoretic force components along the microchannel, a net
flow propagates continuously through the channel under a lateral tempera-
ture gap across it. We structure the script as follows. Firstly we describe the
construction and the simulation setups of this micropump. Then the result-
ing flow, flux and its mechanism of this machine are discussed quantitatively.
We further explore the effects of the channel geometries along both longitudi-
nal and transverse directions of the channel. Moreover, the role of interfacial
properties such as aspect ratio, rugosity and colloid-solvent interactions on
flows and pumping capability are extensively investigated. Finally, we show
that different from ratchet pumps, the flux density of the present micropump
is linearly related to the thermophoretic anisotropy factor.

5.2 Model and methods

5.2.1 Device setup

The thermophoretic micropump is sketched in Fig. 5.1(a) (3D) and Fig. 5.1(b)(2D
x − z cross section). The device consists of a microchannel with width of H
replete with fluid, with embedded solid elongated obstacles (pillars) tilted at
an angle θ = 45o with respect to the walls which are placed with separation
(or inter-pillar separation) D to each other. Opposite walls have fixed different
temperatures, such that the obstacles feel temperature gradients along obsta-
cle surface (Fig. 5.1(b)). The thermophoretic properties of the surface of the
obstacles will induce a net flow along the microchannel, parallel to the walls.

5.2.2 Simulation setups and parameters

Most simulations are performed in a cuboid box (Lx, Ly, Lz) = (30, 20, 30)

(note that Lz ≡ H) unless specified to other values, and with PBCs applied
along x and y directions. The temperature at the no-slip walls are Th = 1.2

and Tc = 0.8 then ∇T ≈ 0.0138 in MPC units (Chapter 2). Moreover, as
indicated in Fig. 5.1(c), obstacles are modeled by spherical beads with di-
ameter of d on triangular lattices. The bead-fluid interactions are simulated
by Molecular Dynamics (MD) with Lennard-Jones (LJ) potentials as denoted
in Eq. (2.5). The rugosity parameter, can be modified by adjusting the bond
length (or lattice length) l and number of beads, is denoted as l/d, the same as
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a)

b)

Smooth Neutral Roughc)

Figure 5.1: Schematic representations of the model of micropump and
obstacles with various rugosities. (a) 3D scheme of anisotropic micropump.
A microchannel modeled by two planar walls with different temperatures,
replete viscous fluid (unshown) in between. Solid obstacles (obstacles) act
as pump and inclined to the gradient with an angle θ. (b) A sketch of the
device at x− z cross section. The channel width is H . The obstacle with
length of W and thickness of d are separated by a distance D. The obstacles
suffer surface temperature gradients∇Td and∇TW along the long and short
axes, respectively. (c) Schematic representations of obstacles with 3 different
rugosities: "Smooth", l/d = 0.4; "Neutral", l/d = 0.8; "Rough", l/d = 1.
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Chapter 4. The obstacle length isW ( 5.1(b)), the thickness (or the diameter of
beads) d = 2.5. The obstacle extends over the whole box, which togetherwith
the effect of PBC models the effect of a very long pillar. Consequently, the
detected flow at an arbitrary x − z section is identical, such that we average
the flow field at each x − z section to enhance the statistics of measurement.
The flow field at steady state are temporal average over 5× 105

√
ma2/(kBT )

with at least 24 simulation measurements. Note that the temperature gra-
dient perpendicular to the channel is not the same than along the obstacle
walls, not along the long and short walls, which are ∇TW and ∇Td as indi-
cated in Fig. 5.1(b).

5.3 Results

To elucidate the feasibility of the micropump, we show the flow pattern and
its corresponding flow flux in a typical simulation. Later, the discussion of
the influence from PBCs is provided.

5.3.1 Flow pattern and flow flux

A representative simulation output of the temporally averaged flow stream
lines of a cross-section in x− z plane with (Lx, Ly, Lz) = (36d, 8d, 12d) is illus-
trated in Fig. 5.2(a). This flow pattern shows two differentiated types of re-
gions, one is the “effective flow” region, distinguished by black stream lines,
where fluid passes through the obstacles along the microchannel periodically
sinusoidal-likely; the second type of region is the “vortex” region, labeled by
green stream lines, where the flow rotates around an stagnation points with
flow velocity zero. Fig 5.2(a) shows three obstacles in a primary simulation
box with length ofW = 2.73dwhich are equal-distantly placed withD = 12d.
Hence, the flow pattern around each obstacle is identical.

To characterize the pumping ability of the microdevice, we calculate the flux
density Jρ(x) defined as the particle flux per unit volume, that is,

Jρ(x) =

∫ H
0
ρ(x, z) · vx(x, z)dz

H
, (5.1)

Eq. (5.1) can be discretized into the collision cell level, namely δ = dxdydz =

a3 is the volume element for flux density calculation, and “(·, ·)” represents
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quantities in Cartesian coordinate at ·−· (e.g. x−z) cross section. The position
is simplified due to the identity along y axis direction. ρ(x, z) and vx(x, z) are
the average density and velocity of the fluid in the position (x, z). Given
that the dimensions of the microchannel also influence the flux even with the
same obstacle, here we choose the flux density rather than the flux as the
measure of the capability of fluid pumping.

Fig. 5.2(b) indicates the Jρ(x) along the channel at the steady state. Note that
the data here is rescaled by ∇T , since according to our previous study, Jρ
linearly relies on ∇T . Most important is that Jρ(x) is a constant along the
channel and its average Jρ = 0.001233. Hence, here and in what follows, Jρ
refers to the average flux density.

(a)
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Figure 5.2: (a) The flow stream lines of this device. Background color
coding relates to the fluid flow intensity as described in Chapter 2 Sec. 2.5.
(b) The corresponding flux density (rescaled by∇T ) is constant along the
channel. Simulations are performed with D = H = 12d, W = 2.93d.
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5.3.2 Influence of PBCs
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Figure 5.3: Normalized flux density Jρ/J0
ρ calculated with different number

of obstacles in the primary simulation box (called Nobs). J0
ρ is the flux

density with one obstacle in the primary box. Other parameters similar as
Fig. 5.2.

Due to the PBCs along the channel, different number of obstacles in the pri-
mary simulation box (Nobs) should give almost the same simulation results
when all the other parameters are kept constant. In particular, if the dimen-
sions along the channel Lx results in a constant separation of the obstacles, it
should be of irrelevance how many obstacles are simulated. However, PBCs
also lead to fluid correlation and it is enhanced in smaller system sizes [138].
This intrinsic correlation may differ Jρ and the flow field. With fixing other
parameters, we measure Jρ by placing different Nobs with D = 12d = 30 with
the same in the primary simulation box. According to Fig. 5.3, Jρ has some
fluctuations around a constant value. Besides their comparable flux density,
flow patterns around each obstacle are identical for differentNobs, we thereby
conclude that flux density and flow field are essentially independent on the
fluid correlation or Nobs in a primary simulation box.

5.3.3 Mechanism: anisotropic thermophoresis

To understand the underlying mechanisms of this micropump, we recap the
concept of anisotropic thermophoresis in Chapter 4. In the microchannel
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configuration of Fig. 5.1(a), the ambient fluid of solid obstacles endures ther-
moosmotic forces and flows around them. If obstacles are elongated struc-
tures (with (W 6= d) and 0◦ < θ < 90◦, a net fluid flow will be generated
parallel to the channel walls (Fig. 5.2(a)) due to the anisotropic effect. As il-
lustrated in Fig. 5.1(b), this resulting flow is induced by the immersed solid-
fluid interfaces under the environment with temperature gradients along the
length axis (long axis) and short axis of obstacle∇TW and ∇Td, respectively.

To estimate the flow flux density, we hereby relate the thermophoretic anisotropy
factor which is a function of obstacle aspect ratio W/d, rugosity l/d and po-
tential parameters (ε and stiffness parameter n etc. in Eq. (2.5)), to Jρ,

Jρ = χTkB|∇T | sin θ cos θ
ρ

A0η
∝ FT,x, (5.2)

As shown in Eq. (5.2), χT influences not only the magnitudes, also the direc-
tion of the flux. The prefactor A above is used to modify the effective friction
at the obstacle-liquid interface. the expression above takes the aspect ratio
effect into account, as well as the fluid viscosity. Moreover, to simplify the
analysis of PBCs along y direction (the obstacles expand infinitely), both αT,⊥
and αT,‖ are redefined as thermal diffusion factors per length a along y axis.

The flow patterns are dependent on geometrical facts such as H and D. The
flux density can be described as proportional to the perpendicular phoretic
force in Eq. (4.4) and a geometrical function its associated parameters, based
on the relation,

Jρ = χTkB|∇T | sin θ cos θ
ρ

A0η
g0(H/W,D/W ), (5.3)

where g0(H/W,D/W ) represents the effects of channel width and inter-separation
distance. In the following chapter we observe the effects of channel width H ,
inter-pillar separation distance D and interfacial properties χT on flow pat-
tern and the net flux.

5.3.4 Channel geometrical properties

Based on previous discussions, the direction and intensity of the flow depend
on quantities related to the geometrical description of the microchannel, they
areD,H . Besides the optimal aligning angle θ = 45o is known(Eq. (5.2),Eq. (5.3)
and Eq (4.4)), we discuss how Jρ relies on these parameters.
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Transverse direction: effect of channel width
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Figure 5.4: The flow field varies with channel width H . Background color
coding is prescribed in Chapter 2 Sec. 2.5. (a) H = 2.93W . This figure shows
the description of the stagnation points with the associated angle ϕ and ithe
separation. (b) H = 4.39W . (c) H = 5.86W . (d) H = 7.32W . (e) H = 8.78W .
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Figure 5.5: (a) Jρ/∇T as a function of H . (b) ϕ as a function of H .
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Figure 5.6: Velocity profiles vx at different cross sections for various channel
widths. (a) vx profile at the cross section of x = 0 (e.g. A− A′ in Fig. 5.4(a)).
To obtain a clear comparison, a polynomial fit is performed on the data. (b)
vx profile at the cross section z = 0.5H (e.g. B −B′ in Fig. 5.4(a)).

To study the channel width effect, we keep the temperatures at walls Th =

1.3125 and Tc = 0.6875, but vary the channel width sequentially by keeping
constant the obstacle aspect ratio and the inter-obstacle separation. The flow
patterns with different H are illustrated in Fig. 5.4. Note that the channel
width is varied from approximatedly 3 to 9 times the obstacle length. From
Fig. 5.4(a) to (f), it is clearly distinguishable that the percentage of the effec-
tive flow region expands as H increases, albeit the velocity at the area far
from the phoretic obstacle strongly decreases (Fig. 5.4(f)). At the same time
the vortex region is also importantly affected, by changing its location and
size with the channel width. Hence the increasing of Jρ with increases H is
expected as well. In order to study the flow patterns quantitatively, we char-
acterize the stagnation points (points of zero flow velocity) by defining the
stagnation angle ϕ and the normalized stagnation distance Sd/W . As indi-
cated in Fig. 5.4 (a), Sd is the stagnation distance represented as the distance
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between two stagnation points S1 and S2 around the same obstacle. Hence,
enlarging of H , results in ϕ and the accompanied Sd tend bigger. Specifically,
smaller ϕ and Sd are observed in Fig. 5.4(a) than what in Fig. 5.4(f).

Fig. 5.5(a) indicates that Jρ/∇T grows gradually with channel width reach-
ing an optimum at H/d ≈ 20 (or H/W ≈ 7.32), then decreases as the channel
gets wider. According to the flow patterns in Fig. 5.4(a)-(e), the occurrence
of this optimal channel width, say Hm, is explained as follows. The confine-
ment provided by the no-slip channel walls influence the flow in two dif-
ferent ways. It restricts the expanding of the effective flow domain but also
adjusts fluid flows horizontally rather than orthogonal to the channel direc-
tion. When H is as small as shown in Fig. 5.4(a), the "vortex" region takes up
large part of the microchannel due to the significant confinement in the gra-
dient direction, the distance between two associated stagnation points along
∇T axis (i.e.

−−→
S1S2 · ez) is very close. In turn, as the channel gets wider, the

enlarged distance along the diagonal where the long axis of obstacle located,
enables the “effective flow” region to expand. Hence, the flux rises to a peak
at Hm = 7.32W where ϕ is almost 90◦ (Fig. 5.5(b)). Further, the intensity of
the flow, however, degenerates to 10−2 |v|max, at the areas far away from the
obstacles and in the vicinity of the channel walls. This situation somewhat
weakens the role of the confining walls and leads to a decrease of flux density
(Fig. 5.4(d) and Fig. 5.4(e)). These two effects result in the Hm. Interestingly,
the shapes of the curves, which represent the H dependence of both the stag-
nation angle ϕ and the stagnation distance Sd in Fig. 5.5(b), basically ensem-
ble that of flux density in Fig. 5.5(a).This can be understood since increasing
the channel width does not only favor the expanding of effective flow, but
also creates more space for vortex regions to orient on the walls. Therefore,
larger channel width is beneficial for fluid pumping, and also leads to larger
values of ϕ and Sd.

To show the H dependence quantitatively, we analyze the velocities vx(z) in
the cross sections with different H at two cross sections along the channel.
The first cross section is chosen at the midpoint between two neighboring
obstacles (denoted as A − A′ as the representative in Fig. 5.4(a)), where the
flow is dominated by the effective flow. As shown in Fig. 5.6(a), the vx(z)

rescaled by ∇T is clearly dependent on H and exhibits maximum at posi-
tion close to 0.5H . Therefore, we can conclude that each obstacle size has an
optimal channel width; since the channel has to be wide enough to increase
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the effective flow region and it should be narrow enough to confine the or-
thogonal flow along the channel. Thus, vx(z)/∇T forH = 7.32W is relatively
higher than the others. Since the average fluid density in the cross section
of different H is the same, larger vx(z) contributes to higher Jρ. Similarly,
Fig. 5.6(b) gives vx(z) at the cross section crosses the middle of the channel
at z = 0.5H (denoted as B − B′ as the representative in Fig. 5.4(a)). The
normalized velocity of H = 7.32W is also generally higher than the other
velocities in concordance with previous quantities. Hence, the investigation
of the velocity profile also confirms the occurrence of Hm.

This observation shows that an optimum of H for micropump which en-
hances the flux flow most. However, we speculate this value might not be
an unique ratio H/W ≈ 7, in the sense that interfacial properties and other
confinement effects also vary the pumping capability.

Longitudinal direction: the role of the separation between obstacles

It is intuitive to understand that the separation between obstacles has an im-
portant impact. Fig. 5.2(a) already shows that the effective flow region needs
to occupy certain space in between obstacles. Therefore, in the limit of van-
ishing separation, no net flux will be generated. In the opposite limit, it is
clear that one single obstacle will not be able to generate a considerable flux
in an arbitrary long channel. In Figure 5.7, we show results for various sim-
ulations performed with three obstacles placed at various separations. The
first observation that can be made is that the tortuosity of the stream lines
decreases with increasing obstacle separation. This can be understood since
the flow field in the most immediate proximity of the obstacle is mostly inde-
pendent on the presence of neighbouring obstacles and has an intensity and
direction determined by the surface rod properties. The flow further away
from the rod just needs to adapt to the given boundary conditions.

The dependence of normalized flux, J/∇T , with increasing obstacle sepa-
ration, D/W , is shown in Fig. 5.8(a). These results show that small but not
vanishing separation of the obstacles the direction of the net flow can even be
reverted. This can be also seen in the stream lines in Fig. 5.7 (a),(b) where the
contribution provided by the vortex region shows to be larger than that of
the effective flow region. Since the rotation in the vortexes occurs in opposite
direction as the effective flow region the net flow results to have opposite di-
rection. For larger separations (from D/W ≈ 2.5), the flux quickly increases
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until a maximum value is obtained (D/W ≈ 7, for the parameters here em-
ployed). For separations larger than this optimal value, the flux decays with
increasing separation but interestingly, this decay occurs very slowly. In this
way, for the case with largest separation where simulation have been here
performed (D/W ≈ 18) the total flux is just 50% smaller than that with the op-
timal separation. This result can be practically advantageous, since devices
with a smaller number of obstacles will be easier and cheaper to produce.

To understand in depth the shape of the flow, we also first quantify the po-
sition of the stagnation points via the stagnation angle ϕ and the stagnation
distance Sd as can be seen in Fig. 5.8(b). These results show how the location
of the vortexes center changes with increasing obstacle separation until they
reach an stable location which is not anymore modified with increasing sep-
aration. With fixed channel width, the location of the vortex seems then to
determine that separation with maximum flow flux.

The velocity profile at a cross section also reveals the overall flow flux for
each separation distance. Fig. 5.9(a) shows the velocity profiles in the cross
section in between the pillars. Although the trend is not straightforwardly
monotonous, we can conclude that for moderate inter-pillar distances (D/W
ranges from 2.93 to 10.98), the velocity is positive (towards right) and occu-
pies almost the whole cross section with a maximum velocity occurs close to
the middle. Their similar profiles suggest their comparable flow flux. How-
ever, larger D means weaker thermoosmotic force per unit length of fluid
along the channel, therefore vx(z) gets flattened with smaller flow velocities
when D = 17.57W . On the other hand, when obstacles get closer such as
D < 2W , the velocity towards left cancels the one to the right, and even flips
the overall velocity direction at D = 1.46W . Also instructive is to analyze
the flow parallel to the walls and in the middle of the channel (z = 0.5H)
as shown in Fig. 5.9(b). As we observed that the left half of the profile is
akin to the right half, only the right half profile has been shown here. It can
be seen that increasing of the separation distance elevates the velocity profile
(D < 2.9W ) and then leads to the profile collapse(D > 2.9W ), until the profile
starts to have a noticeable decrease at D = 17.57W .

Therefore, varying the separation distance can enhance or weaken flux as
well as the flow velocity. In the case that inter obstacle distance is extremely
close, the vortex flow domain seems to play a dominant role that suppresses
or even reverses the flow flux. Interestingly, this observation also suggests
the flux density reaches maximum at D/W ≈ 7.
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Figure 5.7: The flow patterns vary with changing of obstacle separation D.
Background color coding is prescribed in Chapter 2 Sec. 2.5 (a)D = 1.46W ,
the flow is redirected when the stagnation points close to each other; (b)
D = 1.95W , the flux is almost zero; (c)D = 2.93W ; (d)D = 5.86W ;
(e)D = 7.32W .
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Figure 5.8: (a) Jρ/∇T dependence with obstacle inter-separation distance
D. (b)Corresponding ϕ and Sd as a function of the separation distance D.
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Figure 5.9: (a) vx of the cross section at x = 0 (just in between too pillars,
similar to A− A′ in Fig. 5.4(a)). To obtain a clear comparison, a polynomial
fit is performed on the data. (b) vx profile at the cross section z = 0.5H
(similar to B −B′ in Fig. 5.4(a)). Due to the periodicity of obstacles, the
origin of the coordinate is shifted to a obstacle center, and only the data in
the range of [0.0, 0.5D] are considered. The color legend is the same as
Fig. 5.9(a)
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5.3.5 Interfacial properties

Relating thermophoretic anisotropy factor to flux density

We analyze in depth the dependence of surface properties when the geom-
etry of the micropump is fixed. The intensity and direction of the flow will
then be strongly influenced by the length of the obstacle, the rugosity of ob-
stacles and the solid-liquid interaction (e.g. thermophilic or thermophobic
properties), which are all included in χT . The thermophoretic anisotropy fac-
tor χT defined in Eq. (4.7) characterizes the anisotropic thermophoretic effect,
determinates the flow intensity. As discussed in Subsection 5.3.3, the inter-

(rough,r3) (neutral,r3) (smooth,r3) (smooth,a12) (smooth,a24)
χT −2.88 0.050 2.700 4.8 11.950
Jρ/∇T −0.086 0.011 0.104 0.103 0.249

Table 5.1: χT and corresponding rescaled flow flux Jρ/∇T of micropump
with different rugosities and interaction properties. Interfacial properties of
obstacle are represented by and rugosity ("rough", "neutral" and "smooth"
are associated with l/d = 1, 0.8 and 0.4 in Fig. 5.1(a)), and potential
parameters (Chapter 2 Eq. (2.5)).

facial properties of obstacles is closely related to thermophoretic anisotropy
factor χT (Eq. (5.3)). With fixed the channel geometrical parameters (H =

D = 30a), the simulation results (see Table 5.1 and Fig. 5.10) reveal that the
normalized flux density Jρ/∇T exhibits linear scaling with χT , which corre-
sponds to various types of interfacial properties of obstacles.
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Figure 5.10: Jρ/∇T calculated with different χT . The blue colored labels
denote the rugosity and interaction potential, namely (“rugosity”,
“potential”). Other simulation parameters are fixed the same as the
standard values. Note that the aspect ratio W/d smooth, neutral and rough
obstacle are 2.73, 3.08 and 3.60, respectively.

The role of the obstacle aspect ratio

In Chapter 4 we discussed how the thermophoretic force on a rod varied with
its aspect ratio. Similar dependence is expected in the thermoosmotic effect
close to the obstacle surface. Here we investigate how this affects the flow
field in the microchannnel.

To fairly compare the flow fields, considering our previous results, together
with the length of the obstacle W , we vary the hot and cold temperatures of
the channel walls, keeping ∇T = 1.05 × 10−2, and we also change the chan-
nel width H and obstacle separation D such that H = D and D/W = 2.93.
Interestingly, Fig. 5.11 shows that the flow stream lines with different W/d
exhibit similar patterns. What verifies that the shape of the flow stream lines
is determined by the ratio H/D and D/W . As shown in Fig. 5.12(a), Jρ vs.
W/d agrees with linear relation very well, as could be expected from Eq. (4.7)
and the relation is χ ∝ W/d. Note that the red dash line (obtained from
linear fitting) crosses Jρ = 0 where W/d = 1, this is consistent with zero den-
sity flux when the pillar with cylindrical shape. Moreover, this similarity can
be inferred also from the constant stagnation angle ϕ as well as the rescaled
stagnation distance Sd/W for different aspect ratios (Fig. 5.12(b)). This is be-
cause that thermoosmotic force on fluid increases linearly with W/d, and is
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Figure 5.11: Flow stream lines in microchannels with obstacles of varying
aspect ratio W/d. With fixed∇T = 1.05× 10−2 and D(= H)/w = 2.93, we
sequentially vary W and the corresponding channel width H and D (to
emphasize the similarity of their flow patterns, the actual figure sizes are
rescaled by W ). (a)W/d = 2.73; (b)W/d = 4.81; (c)W/d = 6.89;
(d)W/d = 8.97; (e)W/d = 11.05. Background color coding is prescribed in
Chapter 2 Sec. 2.5
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to x− z cross section in our simulation, which leads to the flow field various
linearly both in x and z directions.

The flow velocity profile vx(z) with polynomial fitting at the middle of two
consecutive obstacles with different W/d are shown in Fig. 5.12(c). These
curves display similar shape with different magnitude, reflecting the differ-
ent obstacle dimensions and fluxes. Interestingly, as illustrated in Fig. 5.12(d),
data collapse into one master curve when they are normalized by W/d with
a small deviation for the smallest aspect ratio. This is due to the aforemen-
tioned statement that larger aspect ratio linearly strengthens the thermoos-
motic flow velocity.
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Figure 5.12: (a)Jρ/∇T as a function of aspect ratio W/d. (b) Stagnation
angle ϕ as a function of W/d. (c) Flow velocity profile vx at the cross section
of x = 0 (similar to A− A′ in Fig 5.4(a)). (d) The same data collapse into one
master curve when both velocity and position are both normalized by W/d.
To obtain a clear comparison, a polynomial fit is performed on the data in
(c) and (d).

This linear behavior implies that even with small aspect ratio, we still obtain
the same features of the study on the flow patterns and the Jρ. The cases of
larger W/d therefore can also be predicted by the study of smaller W/d. It is
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important to emphasize that the linear relation between Jρ and W/d relies on
varying H concurrently with D.

Rugosity dependence: flow direction variation
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Figure 5.13: Flow field variation with changing of the obstacle rugosity
(Fig. 5.1(c)). Background color coding is prescribed in Chapter 2 Sec. 2.5 (a)
Obstacles with smooth (i.e l/d = 0.4) surface and W = 2.93d.
(Lx, Ly, Lz) = (30, 20, 30) and ∇T = 0.0138 is applied. (b) Obstacles with
rough (l/d = 1.0) surface, in this case the flow can penetrate the obstacles.
(Lx, Ly, Lz) = (30, 25, 30) and ∇T = 0.0207. (c) Obstacles with neutral
(l/d = 0.8) surface. (Lx, Ly, Lz) = (30, 20, 30) and ∇T = 0.0138.
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Besides changing the χT and the flux density, varying rugosity also results
in various flow patterns. Fig. 5.13 shows three examples of micropumps, all
with the standard geometrical dimensions but obstacle with various rugosi-
ties. Given that the results in Chapter 4, where a change of the sign in χ

was described, with varying rugosity, we expect the flow field will also be
qualitatively different. Here the pillar with thermophilic property (r3), the
flow stream lines display a clear l/d dependence. In the smooth obstacle case
(with l/d = 0.4 in Fig. 5.13(a)), the flow starts at the warm side then passes
along the long side of the obstacle surface, towards the cold side but con-
vected by the channel wall; quite the contrarily, rough-porous micropump
(with l/d = 1.0 Fig. 5.13(c) generates flow from the warm side, penetrates the
loose obstacle, to the cold and left-hand side. Figuratively, the “hot-to-cold”
protocol comes from the nature of thermophilic property; while the differ-
ent directions of the “effective flow” reveals that rough obstacle has opposite
sign of FT,x from smooth one (Chapter 4). Concerning the “vortex” region,
the locations of these two stagnation points are opposite. They cross the long
axis of the obstacle orthogonally in the smooth pump, while align to it in the
rough pump. More interestingly, when l/d = 0.8(Fig. 5.13(b)), the flow veloc-
ity is every small, and the flow field shows symmetric pattern and ensembles
the one induced by isotropic colloid [60]. Since with l/d = 0.8, the anisotropic
thermophoresis effect barely exists. Quantitatively, we obtain the consistent
opposite signs of the Jρ/∇T for smooth and rough types of pump in Fig. 5.10.
Noticeably, for the neutral (i.e. l/d = 0.8, neither smooth nor rough) pump
Jρ/∇T is almost zero, since FT,x ≈ 0kBT/a vanishes at l/d ≈ 0.8(Chapter 4).
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Figure 5.14: Flow pattern of obstacles composed with thermophobic
property, n24 potential, l/d = 0.4 and∇T = 0.0172. Background color
coding is prescribed in Chapter 2 Sec. 2.5. To distinguish the flow pattern
from therophilic obstacles in Fig. 5.13(a), the vortex region is highlighted.

Thermophilic or thermophobic: flow path alternation

Now we investigate how the micropump behaves under different solid-liquid
interactions. Interestingly, the smooth (l/d = 0.4) obstacles in Fig. 5.13(a)
with thermophilic and Fig. 5.14 with thermophobic properties, the net flow
directions are both right-hand sided due to the same sign of χT , but the
flow paths are different. Compared to the thermophilic pump, the "effective
flow" path in the thermophobic pump is “left-right-down-up” like. The “left-
right” feature is due to the emergence of thermophoretic force component
FT,x points to left handed side; while the “down-up” scenario is determined
by its thermophobic nature. Therefore, the resulting Jρ/∇T for both types
of pumps are positive, as shown in Fig. 5.10. Their positive signs for ther-
mophilic and thermophobic confirm the directions of the Jρ are both right-
hand sided.
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5.4 Conclusions

In this work, we systematically investigate a novel micropump based on
anisotropic thermophoresis [46, 139]. With the simplicity of construction, our
device exhibits exotic traits on pumping capability and flow patterns, even
though something very special of this micropump is that it does not require
any movable part.

The previously proposed phoretic micropumps usually break the spacial sym-
metry at the channel walls (e.g. ratchet surface), which may have intractable
difficulties on either intricate compositions/geometries or complex gradient
realizations. In contrast, the present device requires solid obstacles fixed at
the channel center. In this way, the gemetrical asymmetry is induced by the
obstacles tilting to the gradient. The separation between walls and obstacles
enables flexible tunability of the flow by adjusting the obstacles in the mi-
crochannel. For example the flow direction, magnitude can be precisely con-
trolled by regulating the tilting angle, separation distance or even replaced
by other type of solid obstacles in the same channel. Furthermore, obstacles
fully immersed inside the liquid, contributes more surface forces than the
case of ratchet walls, in which the wall surface only partially contact with the
fluid.

Anisotropic thermophoresis is viewed as the underlying mechanism to build
the current phoretic pump. The resulting net flow flux along the channel
originated by the superposition of surface thermoosmotic flow at the ob-
stacle edges. This surface flow is induced by local temperature gradients
at the solid-liquid interface along the obstacle edges. Geometric asymme-
try together with phoresis result in non-zero thermophoretic force or ther-
moosmotic flow perpendicular to thermal gradient. Based on the study in
Chapter 4, we found that the flux density is proportional to thermophoretic
anisotropy factor and temperature gradient. Furthermore, it relies on the
channel geometrical parameters: channel width and inter-pillar separation
distance.

More specifically, the surface detail of the obstacle plays a vital role for fluid
pumping. With fixed other parameters, the flux can be enhanced linearly
with increasing of aspect ratio. The rugosity is related to a direction change
of the flow. This is ascribed to the third dimension of the fixed obstacles can
be fabricated with more complicated geometry. In this study we design the
obstacles as smooth or rough loose structures. The rough pump allows the
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surface flow to go through between beads, which results in the flow opposite
to the one induced by smooth and impenetrable obstacles. Experimentally,
intensity and direction of the flow can also be reversed or modified in several
other ways as for instance changing the surface coating of the obstacle, and
with it its composition or by adding an additional component to the fluid; or
by tuning the rod orientation or modifying the average temperature [41, 137,
140].

The optimal set up of micromachine is dependent on the specific require-
ments and purposes. Note that the micromachine we reported here not only
services for driving fluid but also renders environment for colloidal parti-
cle mixing [119, 141–143]. To obtain an optimum of pumping capability, our
investigations suggest that obstacles which have stronger anisotropic effect,
namely larger thermophilic or thermophobic properties, rugosity and larger
aspect ratio, together with favorable channel width H and separation dis-
tance are important.

Furthermore, the current micropump needs only the presence of the walls
and a simple fluid, but it will also be effective in the presence of a multi-
component fluid in a single phase or in a multiphase situation, where the
obstacles can interact with interfaces and their properties in the presence of
the gradients. Additionally, thermal gradient driven motion has promising
prospectives since it works equally well in charged and neutral solutions,
and it is pollution-free due to the absence of surfactants or chemical fuels,
which enables the way to bio-compatible applications. Thermal gradient-
driven motion allows optical microscale operations with optical heating which
is the basic principle of the emerging field of optofluidics [144]. Finally, our
study focuses particularly on the case of thermophoresis. Given the shared
features of phoretic phenomena, our results can therefore be generalized into
the cases of diffusiophoresis and electrophoresis.
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Chapter 6

Pumping fluid by partially heated
pillars

Synopsis

An alternative micropump is driven by periodically aligned obstacles in a mi-
crochannel is suggested here. With laser illumination technique, a temperature
gradient can be established due to the different heat conductivity of the metal and
the non-metal compositions. Our simulation results show that temperature field
is almost not deformed by changing the length of non-metal part in the obstacle.
The corresponding far field flow resembles Poiseuille flow but with a more precise
surface forcing control. By studying the flux density, we observed the pumping
capability strongly depends on the length of the non-metal part and the inter-
separation distance of the obstacles, but is not so strongly dependent on channel
width. Compared with other thermophoretic pumps, our research suggests that
partially heated micropump has higher pumping capability, but requires more
delicate techniques on construction.

6.1 Introduction

As discussed intensively in Chapter 5, phoretic local forcing approach has
been recently promoted as basic mechanism to design novel microfluidics.
The anisotropic thermophoretic micropump, with thermophoretic forces in-
duced by immersed tilted pillars, can drive fluid moving along the microchan-
nel. Instead of breaking symmetry geometrically as in Chapter 5, an alterna-
tive micropump based on compositional asymmetry debuts in this Chapter.
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Specifically, this is inspired by recent researches on fabrication of Janus par-
ticles.

Janus particles (JPs), named after a roman god with two (or many) faces,
bring asymmetry and can thus provide dramatically distinct chemical or
physical properties within a single particle. Scientists have witnessed the
rapid development of Janus particles on research areas ranging from single
particle nanomotors [145] to collective self-assembly structures [11]. Due to
symmetry breaking of individual particles, the motility and hydrodynamic
interactions of these JPs enrich the phase behaviors of colloidal suspensions [146,
147].

Focusing at the single particle level, JPs have served as synthetic microswim-
mers, whose natural counterparts are micro-organisms such as parameci-
ums, E.coli or sperm cells etc.. With advanced synthetic methods, different
types of JPs can be manufactured, including simple spherical shape, cylin-
ders, disks, dumbbell shapes, and even vesicles, or capsules (Fig. 6.1). As
stated before, thermophoresis is non-toxic and environmental friendly, and
therefore is an excellent resource for particle or fluids manipulation at nano-
and micro-scales. The phoretic transport mechanism has shown that they can
be used in designing self-propelled particles [41, 148]. A spherical phoretic
JP swims in a viscous fluid, the ambient fluid forms a source dipole like ve-
locity field, which also resembles the flow field of moving particle driven by
phoresis [60, 62, 83]. Self-thermophoretic spherical JP has been fabricated
via half-metal coating (made of silica and half-coated with gold in Ref. [41]).
Under laser irradiation, the higher efficiency on heat adsorption at the metal-
coated side of the particle creates local temperature gradient which induces
thermophoretic force on the non-metal part of the particle. Collective behav-
iors such as polarization in an external gradient have been characterized in
Ref. [149].

Most of the current research focuses on synthetic self-thermophoretic parti-
cles. Immobilized phoretic particles can also be employed for fluid pump-
ing [150], especially due to the long range attenuation of the strength of the
flow.
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Figure 6.1: Different types of JPs can be fabricated with modern synthetic
techniques. Spherical(a), two types of cylindrical (b,c), and disc-shaped
(d-e) JPs. (f-k) Various kinds of dumbbell-shaped JPs with asymmetric or
certain size ratio(f), symmetric appearance (g,k), attached nodes (h), and
eccentric encapsulation(i). (l)Janus vesicles or capsules. Figures are taken
from Ref. [11].

6.2 Model and method

6.2.1 Composition of the device

The device is composed with pillars immersed in fluid environment and con-
fined in a long microchannel, as shown in Fig. 6.2(a). For briefness, we main-
tain the parameters’ notation in Chapter 5. Compared with the anisotropi-
cally thermophoretic pump, the main difference of construction here is the
heating protocol. Instead of walls with different fixed temperatures, the tem-
perature inhomogeneity is brought to the microchannel by the difference of
external-energy-to-heat transfer between coated and non-coated pieces when
the channel is illuminated by lasers. Due to phoretic mechanism, those pe-
riodically distributed pillars induce thermoosmotic flow which propagates
along the channel.

6.2.2 Simulation implementation

As illustrated in Fig. 6.2 (a), the pillars are constructed by fixing spherical
beads on the nodes of triangular lattices with lattice size l. To realize higher
temperature at the coated surfaces, we directly thermalize a thin layer of sol-
vent particles with thickness of 0.2a around the first column of beads along y
axis direction [43]. The thermostat keeps the temperature of solvent around
heated beads Thb = 1.5kBT . Similarly, for the cylindrical pillar case (modeled
by , a single column), half of the pillar is heated (Fig. 6.1(c)). To avoid over-
heating of the system, we keep the temperatures lower at the channel walls,
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(a)

(b)

Figure 6.2: (a) Schematic representation of micropump realized by partially
heating. Relevant sizes are specified, (with notation similar to Fig. 5.1) (b)
Pillar sketch. The orange segment of the pillar is coated with gold, which
can adsorb heat much faster than the green colored material (e.g. silica).

namely thermalizing Tw = 0.9. Such that T of the system will be approxi-
mately 1.0kBT . This local heating protocol is applied at every MPC time step.
Since heat conduction of the solvent is much faster than the mass diffusiv-
ity, after some relaxation time, a stable temperature gradient will be formed.
With the same MPC-MD coupling routine as in Chapter 5, all the simula-
tion results are obtained with the following parameters: d = 2.5a, l = 1.0a,
Lx × Ly × Lz = 30× 20× 30a3 and r3 type colloid-solvent potential.

6.3 Discussion

6.3.1 Influences of aspect ratio

Temperature field

As shown in Fig. 6.3, two examples of temperature filed for pillars with dif-
ferent aspect ratio at x− z cross sections are well established at steady state,
simulation data are computed by temporal averaging. The temperature gra-
dients show to be radially distributed in the bulk solvent media. Given that
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the PBCs are applied along the x and y axis directions, the temperature field
will be the same for heating at different positions along the middle z axis of
primary box, as long as D is fixed.

One related issue is how much do pillars with different W influence the tem-
perature field? To elucidate this, hereby we plot temperature at x − z cross
section along different axes. The axes are specified in Fig. 6.4(a). Three of
them are placed parallel to the walls in three positions: close to the obstacle,
close to the walls and between obstacle and wall; together with other two
perpendicular to the channel: crosses heated part of pillar and cross mid-
dle point between two pillars respectively. Due to symmetry, the tempera-
ture along axis with prime notation (A′1 − A′2) is the same as that along the
one without it (A1 − A2). We collect the data by taking the average of both
axes, but only present them as “A1 − A2” axis in the following text. To give
a clearer comparison of the quantity, observation window (whose size is the
same as that of the primary simulation box) is shifted along x axis to keep the
heated point at the center. Analytically, the expected temperature field can be
obtained by solving the Laplace equation with different Dirichlet boundary
conditions, read as, 

∂2T (x,z)
∂x2

+ ∂2T (x,z)
∂y2

= 0; at the bulk
T (x, 0) = T (x,H) = Tc ;

T (x, y) = Thb; (x, y) ∈ ςΓ
(6.1)

where Γ is a circular boundary at the middle of modeled system represented
by (x − 0.5Lx)

2 + (x − 0.5H)2 = (R + 0.2a)2. In our simulations one single
column of metal beads are heated partially, then the prefactor 0 ≤ ς ≤ 1

comes in. For example in the cylindrical pillar case ς = 0.5, the other cases
ς ≈ 0.7.

The temperature profile at a1 − a2 axis as a function of distance to the heated
center |rh| is shown in Fig. 6.4(b). The dashed black curve is theoretical cal-
culation with full-circular heating (Fig. 6.3(c)), and magenta one with half-
circular heating (Fig. 6.3(d)). The temperature shows to be independent on
W ; the slight discrepancies in the cylindrical case (W/d = 1) come from the
difference of heating region. Besides small deviations, all the simulation re-
sults of different obstacle aspect ratioW/d agree with theoretical curves with-
out considering embedded obstacles.

Similarly, the temperature along A1 −A2 axis with different W/d is shown in
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Fig. 6.4(c). They are also consistent with theoretical calculations. Note that
the left sided temperature is marginally higher than the right one, because of
the heat adsorption in both solvent and non-heated (coated) part of pillar on
the right side. Fig. 6.4(d) shows the temperature variation close to the walls
at axis C1−C2. We observe the temperature variation here is around 6× 10−3

and ∇Twall ≈ 6 × 10−4. Since the temperature gradient at the walls is tiny,
thermal creep effect [60] is negligible. In conclusion, the temperature field
is correctly described by simulation and is determined by the presence of
the heated elements, the deformation introduced by the pillars is negligible.
This happens since the thermal conductivity of colloid or pillars is similar
with that of the solvent.

Flow fields and velocity quantification

Once the steady temperature gradient is established, a thermoosmotic flow
is generated. The flow stream lines of micropumps with different W are pre-
sented in Fig. 6.5. As r3 potential is applied, the thermoosmotic flow is ther-
mophilic thus propagates to the cold area.

The flow in the cylindrical pillar case in Fig. 6.5(a) is almost identical to the
flow field around fixed spherical self-thermophoretic Janus particle [62, 83,
150], since they have the same composition structure in 2D. The flow pat-
terns far away from the pillars are independent on W which shows that the
long range hydrodynamic interaction are not perturbed by the pillar shape.
The background color in Fig. 6.5 indicates the magnitude of the flow velocity
around cylindrical shaped pillar, and it shows the flow decays faster (with re-
spect to the maximum velocity close to the heat source.) the more elongated
is the pillar. decays slower than that of the elongated ones. These results
with flow lines straightforward along the channel are the first proof that this
device can serve as an efficient pump.

In Fig. 6.6 we further plot the flow velocity vx(x, z) in the different cross sec-
tions. The flow profiles at a1 − a2 and b1 − b2 axes are displayed in Fig. 6.6(a)
and Fig. 6.6(b). The data show that the overall flow velocity monotonously
increases as increasing of W/d saturating at large values of W/d, except for
W/d = 8.97. This tendency is due to the competition between the aspect ratio
dependence of phoretic mechanism and friction. When W/d is large enough,
the non-heated part of the pillar far away from the heat source feels negligi-
ble temperature gradient (the gradient decays as 1/|rh|, with rh the distance to
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the hot area). Thus the phoretic force of this area is insignificant. In contrast,
the large W/d pillar undergoes larger overall friction. The inset of Fig. 6.6(a)
shows the corresponding maximum flow velocity vmaxx as a function of W/d.
This maximum velocity is directly related to the surface force and vmaxx is of
relevance to surface force, reaches a plateau as increasing of aspect ratio. This
is also a consequence that the previously explained phoresis-friction compe-
tition.

The flow far away from the solid pillar is parabolic-like for different W/d as
shown in Fig. 6.6 (b) (due to friction and PBCs, the maximum of vx is sup-
pressed or flattened for W/d > 2.73), similar observations can be found in
Ref. [60] about periodic pumping by fixed spherical colloid. The solid lines
refer to a parabolic fit (similar in the following cases along b1 − b2 axis). It
is a reminiscent of aforementioned Poiseuille flow in Chapter 2, which inter-
prets the laminar flow driven by a constant pressure gradient. In the present
microfluidic case, the fluid is pumped by periodic phoretic forces.

Along the flow direction in Fig. 6.6 (c), vx of the cylindrical pillar at the back
of heated area is almost the same as that at the front. In contrast, the flow ve-
locities of elongated pillars, due to stronger thermophoretic forces at the non-
heated part, are largely enhanced, as well as display a spatial decay. More-
over, the periodical distribution of those pillars along the channel also elevate
the total flow. Similarly, the pillar with larger W endures larger friction and
results in lower vx where fluid is close to the axes A1 − A2. Interestingly, the
heated part of solid pillar endures zero gradient and thus results in the (local)
minimums of vx at axes B1 −B2 (Fig. 6.6(d)).

Flux density

The pumping capability can be quantified by flux density Jρ(x) as introduced
in Eq. 5.1. As illustrated in Fig. 6.7 (a), Jρ(x) is constant along the channel
which is actually a consequence of the momentum conservation in the fluid.
The average flux density Jρ (we omit the bar symbol in the following) as a
function of W/d is illustrated in Fig. 6.7 (b). For small values of the obstacle
aspect ratio, Jρ increases with increasing W/d, until it seems to saturate for
intermediate W/d. For large enough values of W/d, Jρ starts to decrease. As
described before, the surfaces far away from heated part have a negligible
contribution to the phoretic effect but additionally leads to larger friction.
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(a) (b)

Figure 6.3: Temperature fields around pillars within similar microchannels.
For comparison, analytical calculations of temperature field are also
presented (with boundary conditions at walls and the center, while PBCs
are neglected). (a) W/d = 1, cylindrical Janus like pillars, (b) W/d = 8,
elongated pillars, the background is color coded as in Fig. 6.3(a).
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Figure 6.4: Temperature profiles along different axes for different W/d:(a)
Locations of different axes in the device. (b) a1 − a2 axis, (c) A1 −A2 axis, (d)
C1 − C2 axis. The dashed lines denote the theoretical calculations. The black
one represent full circular heated, and the magnate one is the half heated.

(a) (b)

Figure 6.5: Maps of flow stream lines for pillars with different aspect ratios
(corresponding to Fig. 6.3). Background color coding is prescribed in
Chapter 2 Sec. 2.5. (a) W/d = 1, namely cylindrical pillars, (b) W/d = 6.889.
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Figure 6.6: Flow velocity profiles vx along different axes for different aspect
ratios. (a) Flow velocity profile at a1 − a2 (y − z) axis where bead is heated;
the inset illustrates the corresponding vmaxx as a function of W/d. (b) Flow
velocity profile at b1 − b2 cross section, the solid lines correspond to
parabolic fit, the same below. (c) Flow velocity profile at A1 − A2 cross
section close to pillar surface. (d) Flow velocity profile at B1 −B2 cross
section. For convenience, observation window is shifted to keep heated
patch at the middle for (c) and (d).

(a) (b)

Figure 6.7: (a)Flow flux density Jρ at y − z cross section as a function of
channel position x. (b) The W/d dependence of Jρ (we omit the bar symbol
in the following) .
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This investigation shows that local heated thermophoretic mechanism is ap-
pealing for fluid pumping. Although the local flow velocity is intricate, the
flow far away from the pillar is Poiseuille-like. This may inspire the precise
controlling of fluid pumping as an alternative approach to generate capil-
lary flow. In the following section, the effects of the channel dimensions are
discussed.

6.3.2 Channel geometrical effects

The role of channel width

Figure 6.8: Temperature profiles for different channel width H in axis
A1 − A2.
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Figure 6.9: Flow velocities profiles and flux with different channel width H .
(a) Velocity profile in axis a1 − a2. Dash line indicates the decay of the
velocity peak. The inset illustrates the vmaxx as a function of H . (b) Velocity
profiles at axis A1−A2, the inset shows the flux densityJρ as a function of H .
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By fixingW/d = 2.73, we study the channel width dependence of the induced
flux density. The thermophoretic force, determines the flow flux, and associ-
ated with the local temperature gradient along the solid pillar axis. Hence,
we firstly compare the temperature profile along A1 − A2 axis for different
channel width (Fig. 6.8). The temperature gradient for narrower channel is
stronger, what is influenced by the thermostating at the walls where Tw = 0.9.
Thus we expect the larger flow velocity close to pillars for narrower channel.
This can be seen in Fig. 6.9(a) and its inset, where the flow close to solid
pillar (vx,max) decays as H increases ( except for H = 10a). Interestingly, as
shown in Fig. 6.9(b), when the fluid is far away from the solid pillar, the max-
imums of vx in the parabolic profiles are roughly the same for different H .
The aforementioned Poiseuille flow approximation (Eq. (2.7) and (2.8)), where
vmax ∝ H2 seems not explain the channel width dependence of the velocity
profiles as shown in Fig. 6.9. Increasing the channel width also deceases the
overall Jρ what very accurately balances with the velocity increase. The inset
in Fig. 6.9(b) shows an almost constant value of flux density for different val-
ues of H . As shown in Fig. 6.9(b), the flow is also differed little with different
H . Therefore, we detected Jρ roughly constant for different H (Fig. 6.9(b)
inset).

Dependence of the obstacle interseparation

To study how the inter-pillar distance D influences the pumping, we plot the
temperature profile for different values of D in Fig. 6.10. The shape of the
curves shown in Fig. 6.10 indicates that within finite distance to heated part
of pillars, the temperatures are almost the same. Therefore, the magnitudes
of vx close to hot area (namely vmaxx ) of the pillars in the inset of Fig. 6.11(a)
are very close. When pillars are very close (with smaller values of D), the
average thermophoretic (thermoosmotic) force per unit volume of fluid is
larger, thus the flow profile in the middle of two neighboring pillars is en-
hanced, as shown in Fig. 6.11(b). However, in the case of D/W = 1.46 the
flow profile exhibits double peaks. Moreover, when D gets larger, the flow
velocity at the position with distance of D to the pillar gets weaker for larger
D. This is because of the longer ranged decay of hydrodynamics with larger
D. As shown in the inset of Fig. 6.11(b), the Jρ linearly decays as increasing
of D, what can be understood since the obstacle density decreases linearly.
This tendency doesn’t hold for D/W = 1.46, since the adjacent obstacles are
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almost contact, in which case the flow along the channel would be symmetric
and the average Jρ is zero.

Figure 6.10: Temperature profiles in A1 − A2 axes for different D.
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Figure 6.11: The inter-pillar separation D dependencies of flow velocity
profiles and flux densities. (a) Velocity profiles at axis a1 − a2, the inset
indicates vmaxx as a function of D. (b)Velocity profiles in axis b1 − b2, the inset
shows Jρ as a function of D.

6.3.3 Comparison with other thermophoretic micropumps

Here we provide a comparative discussion of three types of thermophoretic
micropumps recently have been developed: the ratchet pump (RP) [47], the
anisotropic pump (AP) (Chapter 5) and the partially heated pump (PP) pre-
sented in this chapter. Therefore, it is constructive to address the compar-
isons of the potential and versatility between them.
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Figure 6.12: Flow flux density of two types of micropumps as a function of
channel positions.

Pumping capability

The most straightforward approach is to compare the pumping capability, or
the flow flux density Jρ in the same environment. As an initial comparison
between AP and PP, we fix ∆T = Th − Tc = 0.6kBT , the interaction poten-
tial parameter n = 3 and the rugosity parameter l/d = 0.4. Surprisingly, as
illustrated in Fig. 6.12, the Jρ of partially heated pump is one order of magni-
tude larger than the anisotropic phoretic pump. The reason can be explained
from two aspects. One is that partially heating approach in PP establishes
non-linear temperature gradient and much stronger local gradient at pillar-
solvent interfaces close to heated part. This implies that partially heating
renders significant phoretic thrust on fluid close to the coated area. While
in AP, the external gradient is always constant in the whole solvent every-
where. The energy cost for establishing temperature gradient in the solely
solvent area doesn’t contribute to osmotic flow. The other reason is that the
pumping of AP is dominated by the parameter χT = αT,⊥ − αT,‖ (Chapter 5),
which is quite small compared with the overall αT values. This effect leads
to large portion of energy is consumed at the orthogonal direction of chan-
nel. In contrast to that is the partially heated pump with total thermophoretic
forces along the channel which is much more profitable for fluid pumping.

This primary comparison encourages us to make a fair comparison between
these three micropumps. As noticed in all our simulation results, the flux
density is majorly determined by the effective thermal diffusion factors, i.e.
χT for ATP and α̂T for PP. To a large extent, the channel geometrical parame-
ters, such as channel width H (an effective height of the sawteeth in RP [47]
should be considered) and interseparationD, only modify the flux density up
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to 50%. Since different approaches to fluid pumping lead to various strength
of local temperature gradient, especially in ref. [47] the fluid parameters are
different from what we used in this thesis, drastic but reasonable approxima-
tions are made to make a proper comparison. Namely we approximate that
the flow flux density is proportional to the effective thermal diffusion factor
α̂T , the reciprocal of viscosity 1/η, fluid density ρ and temperature difference
∆T , but rarely dependent on H and D. Additionally, the obstacle parame-
ters (potential, bead diameter and l/d) are the same in three types of pumps.
Only differed by obstacle length W , which is linearly related to α̂T . With
these considerations, we obtain the expression of the flux,

Jρ ≈
ρ

γeff
α̂TkB|∇effT |, (6.2)

where α̂T is the effective thermal diffusion factor, γeff the effective friction
factor per unit length of obstacle (ratchet wall), which depends on the vis-
cosity η of the fluid. Albeit the temperature gradient in different devices are
applied differently, here we assume them all various linearly along the ob-
stacle. Hereby ∇effT = ∆effT/H = (Th − Tc)/H . Thus the comparison of
pumping capability between RP, AP and HP devices is made by displaying
the normalized flux density J∗ρ = (Jρ·η)/(ρ·W ·|∇effT |) with different channel
geometrical parameters, as depicted in Table 6.1. Indeed, for the same type
of micropump, the pumping capability is minorly dependent on the channel
geometrical parameters. However, the pumping capability of PP seems to be
an order of magnitude higher than both the RP and AP, while RP and AP are
roughly the same (One should notice that the simulations in ref. [47] are per-
formed in 2D, such that an ehancement of around 5 times of J∗ρ in 3D should
be taken into account).

Laser illumination [41, 137], with endowment of accurate temporal and spa-
tial control of temperature and flows, can be applied on all three microp-
umps. For example, when the pumped flow is only required at one part of
microfluidic devices or a specific period of time, the precise manipulation on
laser irradiation would be of great benefit [47]. An alternative approach is
employing heat reservoirs at the boundary walls of the microchannel [104,
151]. Contact heating might not be readily achieved in PP device, as the
coated obstacles are placed in the middle of the channel. But this can be eas-
ily realized in the other two micropumps. This contact heating might have
practical advantages like for built is devices, but an interesting additional
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advantage of this approach is that those existing residual temperature differ-
ences in nano- or microscale, can be harnessed into flow motion. On the other
hand, the heat sources at microscale such as microelectronic chips, also can
be cooled down by boundary heating. Distinguished from the other two mi-
cropumps which may require coating techniques, AP can directly be realized
by boundary heating.

RP AP PP
H D J∗ρ J3D∗

ρ H D J∗ρ H D J∗ρ
15 31 0.00395 0.01973 20 20 0.00748 10 30 0.05441
20 31 0.00639 0.03168 30 20 0.00941 20 30 0.13617
30 31 0.00728 0.0364 20 30 0.0958 30 30 0.2098
50 31 0.01061 0.05307 30 30 0.01235 40 30 0.2767
90 31 0.01167 0.05835 40 30 0.01412 50 30 0.33152
20 10 0.001 0.00501 50 30 0.01692 60 30 0.37633
20 20 0.00614 0.03068 60 30 0.01451 30 10 0.14979
20 62 0.00438 0.02191 30 40 0.01197 30 20 0.22783

30 50 0.01206 30 40 0.18247
30 65 0.00942 30 50 0.16013
30 75 0.00975 30 60 0.14079
30 120 0.00612

Table 6.1: Pumping capability of three types of micropumps. The pumping
capability parameter from left to right shows the values of RP (ratched
pump), AP (anisotropic pump) and PP (partially heated pump) with
different channel geometrical parameters. The data of RP are taken from
ref. [47], J3D∗

ρ considers the approximated correction in 3D.

Comparison of microfluidic pumping to physical parameters

To provide an estimation of physical units of the microchannels and fluxes
investigated here is not trivial since it is not possible to match all related
dimensionless numbers at the same time. A fist possibility is to match the
geometry of our model micropump with a microfluidic pump with chan-
nel width H = 15µm leads to the physical length a = 0.5µm of a colli-
sion cell (the most representative value of H is 30a), and the bead radios
σ ' 0.6µm. We consider the density of bead is similar with water, then the
mass of spherical bead can be evaluated M ' 9 × 10−16kg. The mass of a
fluid particle in our simulation is considered as m = M . Thermal energy
is kBT ' 4.114pNnm at T = 300K. This leads the velocity unit in MPC is
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√
kBT/m ' 2 × 103µm/s. Therefore the flow velocities in all the simula-

tions ranges from 0.5µm/s to 10µm/s. Likewise, the employed temperature
gradient is 5 ∼ 10K/µm in all the simulations, which is comparable to exper-
imental set up around 1K/µm [41].

Another relevant fact is that in our simulations, the thermal diffusion fac-
tor, or Soret coefficient and viscosity are all underestimated compared with
αT in real material such as carboxyl-modified polystyrene bead. Taking all
these factors into account, the pumping flow velocity of a micropump could
be around 20 ∼ 400µm/s [47], which is very competitive for microfluidic
pumping.

6.4 Summary

In this Chapter, we analyze the performance of a self-thermophoretic mi-
cropump inspired by synthetic technology for Janus particles. We character-
ized the temperature field and flow patterns in different circumstances with
various aspect ratio, channel width and separation distance. Although this
pumping architecture is similar to several studies on spherical shaped obsta-
cles [60, 83, 150], our research has focused on the microfluid capability of the
geometry and it has been extended to elongated shaped and characterized
systematically. The features are summarized as follows:

The temperature field is radial-like but modified by the thermostats at chan-
nel walls. Interestingly, the temperature field is rarely influenced by pillar
length. Since the pillars always have finite length and the non coated part
endures temperature gradient, when the pillar is aligned to the channel di-
rection which is the optimal orientation for fluid pumping. The gradient
at positions far away from the heated part is negligible, such that to obtain
an optional pumping ability, the pillar should be designed adequate long to
serve larger thermophoretic force, but not too long to induce friction that
hampers the fluid flow. The flow profile far away from the pillar is parabolic,
which ensembles the capillary flow in micro- and nano-scales. This parabolic
flow is equivalent as applying external pressure gradient, but due to surface
forcing of phoresis, the present micropump can become much more precise
and efficient on quantitative fluid pumping [47].

The optimal pumping of fluid is found at W/d = 7 (H = D = 12d), when
W/d > 7, larger friction will decrease the pumping capability. Moreover,



112 Chapter 6. Pumping fluid by partially heated pillars

with the combination of thermostats at walls and coated or heated part of
pillars, and no-slip boundary walls, for the range of channel width we ob-
served, the flux density varies little. However, due to decaying of the flow
at long-ranged distance, larger separation distance also lows the pumping
capability.

Compared with other two previous micropumps based on thermophoretic
mechanism, partially heated micropump provides higher pumping capabil-
ity. Due to the optimized orientation of the pillars and higher local temper-
ature gradient at the phoretic part of pillars, stronger thermophoretic forces
are generated and pump larger flow flux. Technically, compared to boundary
heating approach, the coating and laser illumination protocols might not be
easily achieved.

In all, this microdevice provides high pumping capability and also can be
generalized into other phoretic mechanisms.
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Chapter 7

Thermophoretic orientation of
heterodimers

Synopsis

This Chapter studies how dimers composed of two non-identical monomers be-
have in temperature gradients. Due to the different thermophoretic forces on
individual monomers, heterodimers are subjected to a net phoretic torque, and
therefore to an alignment in the presence of a gradient of temperature. Firstly,
we provide a theoretical description of the alignment based on linear response
theory. Our simulation results nicely agree with theory in the case of weak ther-
mopohretic torque. Non-linear behavior is observed in the case of large phoretic
torque. Furthermore, the effect of size asymmetry, and the how the alignment
modifies isotropic thermophoretic force are discussed. Finally, a concentrated so-
lution of heterodimers confined in a slit and driven by thermophoresis is studied.
The concentration and orientation as a function of the distance to the aggrega-
tion wall are investigated. The hydrodynamic attraction between dimers induced
by thermophoretic flow fields, is shown to be amplified close to the wall, which
enhances the packing of colloids. At low dimer density cases, the hedgehog-like
cluster with horizontal sweeping and rhythmic cluster are observed.

7.1 Inroduction

Besides of formerly discussed the thermal mass transport effect, recent molec-
ular dynamics simulations have shown that, thermal gradients can also trig-
ger a preferential orientation in diatomic fluids (the “thermomolecular orien-
tation” effect) [109–111]. However, attempts to investigate similar effects in
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colloidal systems have not yet been performed. As stated by Lee [111], the-
oretical approach in the framework of local-equilibrium is only valid in the
case of molecular mixtures in which the two components have similar sizes.
In colloidal suspensions, the solute and the solvent particle sizes are sepa-
rated several orders of magnitude. The colloid-fluid interaction range is also
much thinner than the colloid radius. Within this framework, the underlying
physics is dominated by hydrodynamics.

This chapter discusses the thermophoretic orientation (alignment) of heterodimers.
We describe how the torque exerted by the external gradient inhibits rota-
tional diffusion and favors the orientation with an external thermal gradient.

7.2 Alignment

7.2.1 Linear response theory

A schematic representation of a general heterodimer is shown in Fig. 7.1. A
heterodimer embedded in a liquid is composed by two monomers with non-
identical thermophoretic properties. Monomers A and B are connected by
a rigid bond of length LD. Monomer A (B) is subjected to thermophoretic
force FT,A (FT,B) under temperature gradient ∇T . These forces are related
to their own thermophoretic properties by Eq. (1.14). Because of the differ-
ent thermophoretic responses of two monomers, an orientational dependent
thermophoretic torque ΨT (Eq. (7.1)) is exerted on the dimer what results in
the dimer alignment. The thermophoretic inhomogeneity of the composition
in the dimer results in ΨT , reads,

ΨT =
LD
2

û× (FT,B − FT,A) =

−LD
2

û× (αT,B − αT,A)kB∇T,
(7.1)

where αT,i the thermal diffusion factor of monomer i (i = A,B) (which can
be measured in experiments. In our simulation model, those values also can
be analytically estimated by the recipes in Appendix A), and û the unit ori-
entation vector along

−→
AB = LDû. The factor (αT,B − αT,A) = χH is viewed as

thermophoretic heterogeneity of the dimer.

As discussed previously, the translational Brownian motion is not coupled
with rotational Brownian motion of rod-like colloid (Chapter 1). Thus, the
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Figure 7.1: Schematic representation of a heterodimer in temperature
gradient.

problem of thermal orientation is reduced to the rotational Brownian motion,
supplemented with thermophoresis. Accordingly, the Langevin equation for
the rotational motion in temperature gradient can be written as,

dJ
dt

= −γrΩ + Ψth(t)−ΨT (t), (7.2)

with Ω the angular velocity and J the angular momentum. For a particle with
momentum of inertia Id, J is expressed as

J = Id ·Ω. (7.3)

In Eq. (7.2) γr is the rotational friction coefficient, Ψth(t) denotes the fluc-
tuation torque comes from thermal noise (also termed as Brownian torque),
ΨT (t) the thermophoretic torque of the dimer in the presence of temperature
gradient.

The time scale of colloidal thermophoretic behavior is beyond Brownian time
scale τD (Chapter 1 Section 1.2.1) [17, 20], such that the colloid dynamics
is overdamped, namely the inertial forces can be neglected and Eq. (7.2) is
rewritten as,

γrΩ + ΨT (t) = Ψth(t). (7.4)

Within the overdamped limit, the fluctuating Brownian torque can be evalu-
ated in terms of the probability distribution function (pdf) p(û, t) [152],

Ψth(t) = −kBT R̂ ln p(r, û, t). (7.5)
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where R̂ is the orientational operator defined as,

R̂(· · ·) = û×∇û(· · ·), (7.6)

here∇û is the gradient operator with respect to the Cartesian coordinates ûx,
ûy and ûz,

∇û =

(
∂

∂ûx
,
∂

∂ûy
,
∂

∂ûz

)
. (7.7)

The logarithm of p in the expression of Ψth in Eq. (7.5) relates to its entropic
nature, which drives the system towards equilibrium. Eq. (7.4) reveals the
torque free nature in the overdamped limit. Substitution of Eq. (7.5) into (7.4)
results in,

Ω = βDr[−kBT R̂ ln p(û, t) + ΨT (t)], (7.8)

with β = 1/kBT and Dr = kBT/γr the rotational diffusion of heterodimer in
thermal equilibrium. As discussed in Chapter 4, Dr is almost independent
on external thermal gradient. Therefore, the extended single particle Smolu-
chowski equation for rotational motion [17] is written as,

∂

∂t
p(û, t) = DrR̂ · [R̂p(û, t)− βΨT (t)p(û, t)], (7.9)

We consider a constant (or oscillating) temperature gradient as a linear per-
turbation. The probability distribution function is then written as,

p(û, t) = p0 +∇Tp1(û, t), (7.10)

where p0 is the pdf in the absence of temperature gradient, and p1 the temper-
ature gradient induced perturbation of the pdf. Note that p0 is a normalizing
constant,

p0 =
1

4π
. (7.11)

In the absence of ∇T the colloid undergoes purely rotational Brownian mo-
tion, such that the expectation of orientation is zero, i.e. 〈ûx(t)〉 = 〈ûy(t)〉 =

〈ûz(t)〉 = 0. In the presence of temperature gradient, however, alignment (i.e.
thermophoretic orientation) of the heterodimer will be triggered by temper-
ature gradient and the intrinsic particle asymmetry. Thus, we introduce an
order parameter to quantify alignment: the average of the z component of
the orientation vector of the dimer 〈ûz〉, which is equivalent to 〈cos θ〉 (with
θ is the polar angle between gradient axis and the orientation vector û) as
shown in Fig. 7.1. Note that here we follow the same convention as with
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the standard spherical coordinates such that θ ∈ [0, π] and conditions with
symmetric opposite orientations in x would be described by the same angle
θ. Since 〈û〉 =

∮
dûp(û, t)û, multiplying both sides of Eq. (7.9) with û and

integrating over all orientations, the equation to describe the time evolution
of û is obtained as,

d〈û〉(t)
dt

= Dr

∮
dûûR̂ · [R̂p(û, t)− βΨT (t)p(û, t)]

= Dr

∮
dûp(û, t)[R̂2û− βLD

2
χTkB(û×∇T ) · R̂û]

(7.12)

where partial integrations have been performed in the second equality. As
explained in appendix of the lecture notes B1 [152], R̂2û = −2R̂ and (û ×
∇T ) · R̂û = (Î− ûû) · ∇T , with what Eq. (7.12) can be rewritten as,

d〈û〉(t)
dt

= −Dr[2〈û〉(t)− β
LD
2
χHkB(Î− ûû(t)) · ∇T ]. (7.13)

Considering the linear perturbation of temperature gradient, 〈û〉(t) can be
evaluated with respect to the pdf p0 and disregarding higher order terms in
the linear expansion (7.10), which gives 〈ûû〉(t) = (1/3)Î. Note that only the
component of û along the gradient is nonzero, i.e. ûx = ûy = 0. The equation
of the expectation value of the ûz yields,

d〈ûz〉(t)
dt

= −Dr[2〈ûz〉(t)−
1

3
βLDχHkB|∇T |]. (7.14)

Now this is an ordinary differential equation. At the stationary state, Eq. (7.14)
is independent on time, thus the solution is,

〈ûz〉 =
βLD

6
· ζ · χHkB|∇T |, (7.15)

here the parameter ζ ∈ (0, 1] is introduced to consider the additional surface
correction when the (colloid-solvent) interaction area of two monomers is
overlapped. For simplicity, as also the monomers are not allowed to overlap
in the following simulations (at most perfectly touch), we simplify ζ = 1.
Interestingly, this formula is very similar to the alignment suggested by Lee
[111], who derived < ûz >=< cos θz > from a local equilibrium perspective
by assuming the probability distribution function obeys Boltzmann weight
of surface energy.

Note that the theoretical prediction via Eq. (7.15) solely considers thermophoretic
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forces act on the two individual beads as point forces. This assumption ig-
nores the local effects of thermophoretic forces and the anisotropy induced
by the non-spherical geometry.

Although we will not investigate here the case of the temperature varies sinu-
soidally, it is interesting to briefly consider it here. A sinusoidal temperature
results in a sinusoidal temperature gradient, which can be expressed as

∇T = cos(ωt)∇T0, (7.16)

the solution of Eq. (7.14) in this case can be expanded to,

< ûz > (t) =
1

3

βDr

(2Dr)2 + ω2
LDζ · χHkB[2Dr cos(ωt) + ω sin(ωt)]|∇T |, (7.17)

where ω is the frequency of oscillatory temperature, a constant temperature
gradient is the case when ω = 0.

The sign of the alignment: As indicated in Fig. 7.1, the orientation of the
unit vector defined from the center of monomer A to monomer B. In this
case, the sign of the alignment depends on how û is chosen initially. For
simplicity, we define the alignment with some additional considerations to
unify the sign of 〈û〉: Imagine the heterodimer aligns with ∇T due to ther-
mophoresis without Brownian motion, we denote the monomer at the warm
side (with respect to the center of the colloid) asB, then the orientation vector
is marked as

−→
AB = LDû. In such a way,< ûz >will be no less than 0 and such

that easier to compare with different dimers. This definition holds in most
of the following content, except in the case of dimers with size asymmetry
which will be redefined.

Visualization of the probability distribution function: Note that the pdf in-
terprets how the tip of the orientation unit vector û distributes on the surface
of the unit sphere. Given that the pdf here is cylindrically symmetric along
the gradient axis, in what follows, the pdf is represented by the probability
distribution function in a plane crosses the gradient axis.
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7.2.2 Simulation vs. linear response theory

The alignment of two types of heterodimers is explored by considering a
fixed bead-bead distance LD = 4a. The first type with a48 − r6 potential,
contains a thermophilic bead at one side and a thermophobic one at the
other side, such that both FT,A and FT,B contribute positively to the torque
(Eq. (7.1)). The pdf in this case is shown in Fig. 7.2 (a) under different temper-
ature gradients is relatively large (p > 0.5), and peaks at θ = 0 (the singular
peak is due to the poor statistics at the axis direction). Likewise, the r12− r6
type with both thermophilic beads rotate oppositely and result in a smaller
thermophoretic torque (Eq. (7.1)) (χH is smaller than the a48−r6 dimer). The
corresponding pdf in different ∇T in Fig. 7.2(b) is clearly much smaller than
for the a48 − r6 potential. With Fig. 7.2(a) and Fig. 7.2(b), we calculate the
alignment order parameter 〈ûz〉 = 〈cos θ〉 as a function of ∇T and depicted
in Fig. 7.2(c). The alignment for both heterodimers increases with increasing
∇T , what is intuitive since ΨT grows monotonously with∇T .

Moreover, for the r12 − r6 dimer, ΨT is relatively small and can be treated
as external linear perturbation (which was the assumption of the theoretical
derivation in the previous section), therefore we observed the nice agreement
between the simulation data and linear response theory (green data in Fig.
7.2(c)). Note that in spite of the error of estimating αT,A and αT,B from their
obtained colloidal values the prediction for the r6 − r12 potential is quanti-
tatively correct. That is though not the case for the a48 − r6 potential where
the linear slope is underestimated by the same approximation. However, this
weak perturbation assumption breaks down for larger ΨT such as a48 − r6

dimer (blue data in Fig. 7.2(c)) at∇T > 0.008. We observe a non-linear behav-
ior of the alignment at larger gradient and ΨT . Thus the theoretical solution
requires higher order of modification in Eq. (7.10).
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(a) (b)

(c)

Figure 7.2: The alignment of heterodimers in different temperature
gradients. (a) The pdf of heterodimer with a48− r6 potential in different
temperature gradients. (b) Similar curves, but with r12− r6 potential. (c)
The alignment uz as a function of∇T . Symbols corespond to simulation
results and solid lines to the prediction of the linear response theory in
Eq. (7.15). The magenta dash line indicates the linear region in the
simulation data of a48− r6 dimer.
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7.3 Size ratio effect

To evaluate the thermophoretic orientation of dimers composed of two monomers
made of the same material and different sizes, it is necessary to know what is
the dependence of the thermophoretic factor αT on the bead size (see Eq. (7.1)
and Eq. (7.15)) which is yet under debate in both molecular mixture and col-
loidal dispersions. The scaling of the ST with particle diameter has shown to
be both linear or quadratic, various by molecular species or colloid-solvent
interactions [24, 26, 94, 111, 153]. Similarly, the interaction details influence
size dependence in coarse-graining simulation study. The scaling law of the
size dependence of the thermal diffusion factor are not the same if different
types of potential are applied. (i) With conventional Lenard-Jones potential,
has shown αT ∝ R3 [59]; (ii) if displaced Lenard-Jones potential employed,
αT ∝ R2 (2.5).

In this section, we initialize the orientation of the dimer along the gradient,
and encode the initial position of the monomer at the cold area as A, the
other one as B. We discuss the size ratio dependence based on the parameter
<r = RB/RA and bond length LD.

Simulations: we mainly performed two types of simulations and the results
are shown in Fig. 7.3 (a): A) Fixing RA and δ = LD − (RA + RB) = 0.8 but
varying RB in a r6 − r6 heterodimer (blue circles). B) Fixing LD and δ = 0

(two beads are just in contact with each other) but varying <r = RB/RA. We
examined three kinds of heterodimers. The r6−r6 dimers withLD = 4 (upper
solid triangles), r6 − r6 dimers with LD = 6 (lower solid triangles), and the
a48 − a48 dimers with LD = 4 (diamond symbols). According to the data of
r6− r6 dimer with δ = 0.8 and RA = 2 fixed, the tendency of size ratio effect
is qualitatively captured by Eq. (7.15) which is indicated by the cyan curve,
as we expected. The sign change of alignment occurs where the <r changes
from smaller to larger than 1. The deviation between theory and simulation
results in Fig. 7.3 (a) due to the theoretical approximation since the theory
where the thermophoretic force has been considered as point force. Then the
accuracy of the geometry (size) is lost.

In the B) type simulation, the alignment 〈ûz〉 increases as increasing of <r =

RB/RA in all three kinds of dimers. Compared with “(r6 − r6, 4)” dimers,
“(r6−r6, 6)” dimers induce stronger thermophoretic torque ΨT at a fixed size
ratio. This means the effect of size asymmetry on the alignment of the dimer
is more pronounced in the cases of dimers with larger size. Namely instead
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(a)
(b)

Figure 7.3: Size ratio dependence of thermophoretic orientation under
temperature gradient. (a) < uz > is depicted as a function of <r. Symbols
correspond to simulation results; the solid line refers analytical evaluation
via Eq. (7.15). The label “(r6-r6, 4)” denotes r6− r6 dimers with fixed bond
length. The rest are similar to “(r6− r6, 4)”. The convention of the sign of
the alignment 7.2.1 is applied on the cases of fixed bond length. (b) < uz >
as a function of <r when dimers with fixed nearest surface distance 0.8, and
r12− r6 type potential applied at∇T = 0.0125.

of large size asymmetry, large colloids are of significant importance to obtain
strong thermophoretic orientation. Interestingly, we observed that the mag-
nitude of alignment in (r6− r6, 4) dimers is close to the what in (a48−a48, 4),
albeit the former dimers are thermophilic and the latter are thermophobic.
This might be due to their similar colloid-solvent interaction range and sizes.

A similar discussion could have also been performed with case (ii) namely
the colloids interacting with the fluid via displaced Lennard-Jones (dLJ) po-
tential. The size ratio dependence is expected to behave akin to the results
in Ref. [111]. In which the thermophoretic orientation of size differentiated
diatomic, non-polar molecular mixture has been exploited.

If the potential type of individual beads are differentiated as for example
r6− r12 type potential, the size dependence is significantly different. Essen-
tially because the two effects (size and composition) will have opposite or
additive effects. As indicated in Fig. 7.3(b), the alignment exhibits non-zero
peak value at <r = 1 rather than zero but with a large negative value, since
the r6 bead has stronger thermophoretic force. Besides this, < uz > increases
after <r is above one, and results in a positive sign. As the thermophoretic
force on r12 bead becomes significant enough to reverse the preferred orien-
tation. On the other hand, according to the data we obtained, the orientation
effect is indistinguishable when <r < 1, as the Brownian motion of the dimer
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dominates over the thermophoretic torque ΨT for such small structures.

7.4 Isotropic thermal diffusion factor of heterorod

A heterodimer or heterorod not only shows preferred orientation in temper-
ature gradient, also exhibits a gradient dependence of isotropic thermal dif-
fusion factor αT,iso. Different from a rod composed with identical segments
(beads) as discussed in Chapter4, a heterorod which comprises two types of
monomers, induces alignment which will modifies the isotropic thermal dif-
fusion factor of the freely rotating heterorod in Eq. (4.6). The estimation is
that the alignment, < ûz >, linearly contributes to the weight of αT,‖. Note
that in the case that < ûz >= 1 (fully aligned) leads to αT,iso = αT,‖. Thus the
expression of αT,iso can be approximated by,

αT,iso =
2− 2| < ûz > |

3
αT,⊥ +

1 + 2| < ûz > |
3

αT,‖, (7.18)

as | < uz > | is linearly related to ∇T , αT,iso is proportional to ∇T . Eq. (7.18)
indicates that if |αT,⊥| > |αT,‖|, then αT,iso would be underestimated by using
Eq. (4.6) in Chapter 4.

As an example depicted by the cartoon in Fig. 7.4, a heterorod is composed
of two r6 beads at one side and two r12 beads at the other. Beads with equal
radius R = 2, and separated by inter-distance of 4.8. We measure the cor-
responding thermophoretic forces FT,⊥ (black), FT,‖ (red) and Fsim

T,iso (olive)
for fixed and freely rotating heterorods under different temperature gradi-
ents. Interestingly, after considering the modification of alignment effect in
Eq. (7.18), the temperature gradient dependence is readily captured, as the
values FT,iso obtained by Eq. (7.18) (magenta solid line) overlap the mea-
sured Fsim

T,iso. This shows that the thermophoretic force of a (hetero)rod is
the linear combination of two orthogonal thermal diffusion factors with pre-
ferred orientation consideration. Note that in Fig. 7.4 we are still within the
linear response regime where the orientation is not so large, such that the
linear combination works nicely. Further simulations with other potentials
or larger ∇T will show this effect more clearly. In the nonlinear regime, we
expect the values of Fsim

T,iso will be much closer to FT,‖.
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Figure 7.4: Thermophoretic forces of a heterorod as a function of
temperature gradient. The solid symbols connected with dashed lines refer
to measured thermophoretic forces of heterorod perpendicular (FT,⊥ ,
black), parallel (FT,‖, red) and freely rotating (Fsim

T,iso, olive) in different
temperature gradients. The magenta symboled data are obtained by using
Eq. (7.18).

7.5 Phoretic motion of heterodimeric dispersions

in confinement

Previous sections based on heterodimers are discussed in the infinite dilute
limit. In which no interactions between them are considered (except for the
PBCs induced long-ranged hydrodynamic interactions). When the concen-
tration increases, dimer-dimer interactions play a vital role. The collective
behavior of asymmetric colloidal particles driven by thermophoresis is of
fundamentally interest. In this section we investigate how the heterodimers
accumulate and align near confining walls at different concentration and
temperature gradients. Special interest will be devoted to elucidate how the
hydrodynamic interactions between colloids influence their dynamic behav-
ior.

An interesting parallelism in this case can be found with a system of sedi-
menting colloids, such that we here summarize the so-called Sedimentation-
Diffusion Equilibrium [17]. Colloids in gravitational field and in confinement
are driven to approach and accumulate at the container wall. This results in a
concentration gradient of the colloids in the opposite direction of the driven
force. At the stationary state, the flux of sedimentation cancels the flux from
the (Fickian) diffusion. Usually, a concentrated liquid-like phase is formed
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close to the aggregation wall; whilst the colloids far away from the wall have
more degrees of freedom to diffuse to the gas-like phase. As previously men-
tioned in Chapter 3, phoretic force is always treated as an analogy to the body
forces, albeit the it is governed by local hydrodynamics stress. An interesting
question that we can ask is what if this sedimentation process is replaced by
thermophoretic driven? Especially, Sedimentation-Diffusion Equilibrium has
also been recently applied as an approach to achieve self-assembly [154].
Another interesting factor is that one can expect hydrodynamic flow field
of phoretic particles might play a role on sedimentation equilibrium. Sev-
eral work reported that phoretic colloids accumulated at walls can induce
strong hydrodynamic interaction to form phoretic colloidal crystal [80, 90,
155]. Therefore, it is constructive to probe the dynamics of thermally driven
heterodimeric suspensions in the similar container. As discussed above, het-
erodimers or heterorods, exhibit rich translational and orientational dynam-
ical behaviors, might be suitable candidates of building blocks for colloidal
self-assembly.

We take the interactions between heterodimers (prescribed in Chapter 2) into
account. The container is considered as a slit with walls perpendicular to
it. Temperature gradient is perpendicularly applied to the walls. The het-
erodimers will be accumulated at the hot or cold container wall depending
on the net phoretic drift of the dimer. Besides the translational motion, the
thermophoretically induced orientation of the heterodimer will also affect
the colloidal structure formation. In particular, in two dimensional configu-
ration, the mutual alignment effect is strongly pronounced when dimers or
rods are approaching each other.

7.5.1 Concentration and orientation order

We start with many heterodimers confined in a quasi-two dimensional box
with an applied temperature gradient. As indicated in Fig. 7.5(a), 150 num-
ber of a48 − r6 heterodimers (the r6 bead is colored with red, and the a48

bead with green, their radius RA = RB = 1.25) are initially distributed at the
nodes of triangular lattice, with random orientation in x − z plane. We con-
strain the particles in a slit with cuboid simulation box (the blue frame in Fig.
7.5) size of (Lx, Ly, Lz) = (100, 10, 150). A strong, repulsive potential (r6 with
σ = 0.5Ly, formulation as prescribed in Chapter 2) are symmetrically applied
at walls parallelly to the y axis, such that the heterodimers are only allowed
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Figure 7.5: Snapshots of simulations with a48− r6 heterodimers, with
volume fraction φ ≈ 25.5% and∇T ≈ 0.0107. The blue contour indicates the
simulation box. PBCs are applied along left-right direction. Here and in
what follows, the direction of the external temperature gradient is indicated
by "COLD" and "HOT". (a) 150 heterodimers are initially distributed at the
triangular lattice sites, with random orientation in x− z plane. (b) At
t = 2000.(c) At t = 25000. (d) At t = 100000, heterodimers are separated into
gas and cystal-like phases with an orientation order.
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to move in the x− z plane at y = 0.5Ly. Along the gradient axis, the colloids
are confined between the hot (z = 150) and cold (z = 0) walls with symmet-
ric shifted repulsive potential ((∆2, r6) potential, as prescribed in Chapter
2). The MPC solvent particles are confined between the walls along both the
gradient and the y axes by the realization of bounce back rule, what ensures
no-slip boundary conditions. Purely repulsive r6 potential between colloids
is used with σ = Rcc = 2.25R. The larger colloid-colloid interaction radius
Rcc is considered to avoid artificial depletion interactions and resolve lubri-
cation forces, which are intrinsic in the MPC algorithm [78]. Note that this
separation is still small to preserve the importance of hydrodynamic interac-
tions.

Fig. 7.5(b) shows a snapshot at t = 2000, the particles driven by phoretic
forces towards the cold wall (z = 0) with some alignment along the gradient
axis. This reveals that the onset of the aligning and the drifting motion hap-
pen simultaneously. This is a reasonable fact since both effects are originated
from thermophoretic forces on different monomers. Fig. 7.5(c) at t = 25000

shows that some dimers reach the cold wall keeping a significant alignment;
the first layer of the dimers forms an ordered crystal-like structure. Not just
the ordered position is formed in this layer, the strong orientation is also built
with a48 beads face the wall. We checked the time-averaged orientations
relax faster than the concentrations reach the steady states. This is because
the concentration steady state is strongly influenced by the spatial distance between
two walls. The simulation results in Fig. 7.5(d) show the steady state of both
orientation and concentration. In this particular case, heterodimers form a
crystal-like structure with an orientation order. This layered structure con-
stitutes smectic-A liquid-crystalline phase. According to the flow field data
of a heterodimer pair, the near wall phoreticaly induced flow field can also
induce attraction and therefore to enhance the crystallization.

We further investigate the system under different temperature gradients. Quan-
titatively, both concentration and orientation decay for increasing separation
to the cold wall, as shown in Fig7.6. Interestingly, as the local orientation
order has relaxed into steady state, and an exponentially decay of the ori-
entation is observed in Fig. 7.6 (b). The concentration profile of different
temperature gradients also obeys exponentially decay, except for the case
∇T = 0.0107. Note that the concentration of heterodimers very close to the
wall at ∇T = 0.0040, 0.0053, 0.0067 and 0.0080, has not reached the station-
ary state (in nablaT = 0.0107 is at the stationary state), this will be further
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discussed in Sec. 7.5.3. Hence a concentration drop at those positions is ob-
served. These exponential concentration and orientation profiles, is reminis-
cent of Sedimentation-Diffusion Equilibrium [17]. Since the solution of the pdf
in the Smoluchowski equation is also exponential.

Following the theoretical derivation in sedimentation, one can construct the
Smoluchowski equation in our heterorod system. The assumption is that the
thermophoretic forces act on the beads are treated as point forces, the same
as what applied in Section 7.2.1. Hydrodynamic interactions between het-
erodimers or heterorods are neglected. As the volume fraction is very low in
most simulations, which is lower than d/l where the isotropic-nematic phase
transition can happen, the those hetero-colloids are very far apart. Moreover,
when the potential interactions between colloids play a role, the accurate
description based on slip flow of thermophoresis seems to be unnecessary.
Therefore, treating the phorectic force on the bead as point loading should be
reasonable. However, the fact that thermophoretic forces and thermal fluc-
tuations of these heterodimers are temperature dependent should be bear
in mind. To solve this, one need the interaction potential in non-spherical
particle systems is not trivial. One possible way is connecting with density
function theory approach as described in Ref. [156].

More interestingly, it seems that the non-exponential concentration profile
signals a transition from nematic phase to smectic phase in the system.

(a) (b)

Figure 7.6: (a) The concentration and (b) the orientation order parameter a
function of distance to the aggregation (cold) wall.
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Figure 7.7: The flow fields of (a) a48− r6 dimer pairs with separation
distance 5.3R, and (b) a48− r6 dimer pairs with separation distance 2.6R.
Yellow arrows indicate the direction and the numbers the value of the
measured forces perpendicular to the gradient, on each individual bead.
Background color coding is prescribed in Chapter 2 Sec. 2.5. (c) The
hydrodynamic interaction FH of dimer (green open symbol line) and
phobic monomer (red solid symbol line) as a function of dimer-pair
distance rd. Note that the bead radius R = 3, so a qualitative comparison of
this data with the simulation of collective behaviors can be made.
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7.5.2 Confirming the effects of hydrodynamic interaction

When phoretic beads stay against the wall, the phoretic flow field (Fig. 7.7
(a) and Fig. 7.7 (b)) of the phobic beads (green) can induce attraction which
is long-ranged, specially in comparison with steric interaction which will en-
hance the structure close to the wall. Keeping two a48 − r6 dimers aligned
along the gradient direction at different separation distances rd, with pho-
bic (a48) bead facing the cold wall to a distance of 5, we measure first the
velocity field and the corresponding stream lines as indicated in Fig. 7.7 (a)
and Fig. 7.7 (b) where certain inter-particle attraction can be inferred. To be
more precise we also measure the force that each individual bead experi-
ences as well as the total force on the dimer. The hydrodynamic force as a
function of rd between two dimers and two phobic beads is shown in Fig. 7.7
(c), which is almost the same order of the thermal energy kBT (as the hydro-
dynamic interaction length scale is the oder of a cell size a). Especially, when
two phobic beads are close to each other near the cold wall, strong hydrody-
namic attraction is observed. This attractive force can lead to the aggregation
of colloids close to the wall and enhance the stability of the colloidal struc-
ture [80, 90, 155]. The philic beads (red) create repulsion then lead to a net
hydrodynamic torque on the dimer. However, the hydrodynamic torque is
one order of magnitude smaller than the phoretic torque ΨT such that can be
neglected. Therefore the lateral attraction is strong and play a vital role for
heterocolloids aggregation.

7.5.3 Relaxation time of position and orientation

According to the second snapshot in Fig. 7.5, when dimers are driven by net
phoretic forces towards the cold wall (due to the stronger thermophilic force),
the thermophoretic torque aligns them simultaneously to the gradient axis.
As the spatial movement for aligning is much smaller than the dimers travel
towards the wall, the steady state of orientation is much faster than density
arrangement. Indeed, the concentration and orientation relaxation can be
investigated by the temporal average process, as indicated in Fig. 7.8. The
concentration at positions very close to the cold wall with various of temper-
ature gradients is not fully relaxed in the performed simulations, especially
for ∇T = 0.0040 close to the aggregation wall. However, the orientation has
relaxed even with ∇T = 0.0040 at different positions. Therefore we still ob-
served the nice exponentially decay of orientation order at the steady state.
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(a) (b)

(c) (d)

Figure 7.8: Temporal average of concentration and orientation at different
gradients. (a) Concentration at the cold wall (first slab z = 7.5), the middle
of the container(z = 72.5), and the hot wall (z = 145.5) with∇T = 0.0040.
(b)Concentration at the same positions with∇T = 0.0080 (c) ∇T = 0.0107
(d) The local temporal average of orientation < ûz > at different positions
with∇T = 0.0040.
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7.5.4 Aggregation for different dimer densities

To further confirm the role of hydrodynamic attraction, as well as investi-
gate how the dimer density dependence of the aggregation, we study the
collective behavior of the same systems only differed by the number of het-
erodimers. The dynamic behaviors of heterocolloids are different in different
systems. The hydrodynamic interaction seems to enhance the aggregation,
since the colloid-colloid interaction is purely repulsive. Here we show and
explain the dynamic cluster formation in three different densities. The snap-
shots and associated director fields are shown below.

Fig. 7.9 shows the case in which 10 dimers reach the bottom of the container
with a clear homeotropic alignment in the system, and seems to gather to-
gether due to hydrodynamic attraction close to the wall.
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Figure 7.9: (a)Snapshot of 10 heterodimers aggregate at the wall. (b) The
corresponding director field.

Hedgehog-like cluster with near-wall sweeping (Fig. 7.10): 20 dimers are driven
by thermophoretic forces towards the cold wall. Part of the colloidal parti-
cles were stopped by the wall earlier than the others. The homeotropic order
is found in most of the near wall heterodimers which is similar to the sce-
nario in Fig. 7.9 (a). Then a small group of heterodimer complex is formed
with successively sweeping as a whole along the wall due to anisotropic ther-
mophoretic driving force. This near-wall sweeping can take up the speed of
other near wall dimers. More heterodimers are picked up and join into the
cluster. Some of the particles drift to the wall until they reach the near-wall
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cluster such that a hedgehog-like cluster is formed [156], especially the ori-
entation order is also established due to thermophoretic torque in the het-
erodimers. This self-assembled cluster is also stable (with overall sweeping),
which can be understood by the aforementioned hydrodynamic attraction
between phobic beads close to the wall. Interestingly, this Hedgehog-like clus-
ter, which is formed by passive colloids under external fields in our simu-
lations, has also been observed in active systems without sweeping move-
ment [156].
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Figure 7.10: (a)Snapshot of 20 heterodimers aggregate at the wall. (b) The
corresponding director field.

Rhythmic cluster formation (Fig. 7.11): When the dimer density is higher (50
dimers in the simulation box with the same size as before), the clustering for-
mation becomes unstable and exhibits a clustering instability. At this dimer
density, an early stage cluster is formed and also generates some mechanical
instabilities. Because the heterodimers are not perfectly aligned and packed
as the situation in Fig. 7.5 near the wall. This instability leads to the rolling of
part of the cluster (Fig. 7.11 (a) or Fig. 7.11 (b)). This sub-cluster has weaker
hydrodynamic attraction since it is further away from the wall, such that a
small fluctuation is able to detach it from the wall and dissolve into gas-like
phase (Fig. 7.11 (c) or Fig. 7.11 (d)). These particles will be driven to the wall
and the process start again. Therefore,

the phenomena of the cluster formation is rhythmic in time, i.e. a typical
frequency is expected to be identified, which is associated with the cluster
formation and release [157].
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Figure 7.11: (a)Snapshot of 50 heterodimers aggregate near the wall at
t = 121250 units of time; (b) the corresponding director field. (c)Snapshot at
t = 122741 units of time; (d) the corresponding director field.
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7.6 Conclusions and outlook

On basis of rotational Brownian motion, supplemented with thermophore-
sis, a theoretical expression of the alignment of a heterodimer in tempera-
ture gradient is derived. A linear relation between the alignment and ex-
ter6.8.3nal temperature gradient can be predicted. This expression is clearly
consistent with the theoretical work about molecular thermal diffusion by
Lee [111] in the framework of local equilibrium approach. Moreover, this lin-
ear dependence of alignment also agrees with the simulation study of Römer
et.al. [109] in the case of non-polar diatomic fluids.

Interestingly, our simulation study reveals that temperature gradient, com-
bined with thermophoretic heterogeneity influence the thermophoretic ori-
entation strongly. More specifically, the theoretical prediction holds for the
case at weak temperature gradient, or the thermophoretic heterogeneity is
small. On the contrary, this prediction breaks down when the thermophoretic
heterogeneity is strong. In this case the alignment can easily get saturated
even at small gradient. The reason is that our derivation is based on linear
response theory, namely the probability distribution function is slightly per-
turbed and proportional to applied temperature gradient.

We further investigated the size ratio dependence of the alignment in the het-
erodimer. Our simulation study qualitatively captures this tendency. Addi-
tionally, instead of large size asymmetry, thermophoretic orientation prefers
large monomer size with the same size asymmetry. However, combined with
interfacial interaction asymmetry, the alignment evolves non-monotonically
when size asymmetry changes. Compared with the heterodimer contains
solely size asymmetry, the sign changing scenario of the alignment appears at
an asymmetric size case. As our analytical prediction includes thermophoretic
effect as point force and omits the fact of its local forcing mechanism, this
might leads to inaccurate calculation of the thermophoretic torque. We sug-
gest that a precise way is integrating the local pressure gradient induced
torque of the heterodimer under a bi-spherical coordinate system [87].

The isotropic thermal diffusion factor of a heterorod shows a temperature gra-
dient dependence. This is intuitive because a freely rotating heterorod ex-
hibits thermal orientation. The isotropic thermal diffusion factor of a het-
erorod should account for the enhanced weight of thermal diffusion factor
along the gradient direction, which is proportional the applied temperature
gradient.
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Finally, we investigated concentrated systems of hetero-dimers confined in
a slit between walls, and driven by thermophoresis. The particle distribu-
tion at the steady state is a reminiscent of well-know Sedimentation-Diffusion
Equilibrium phenomenon. As the concentration and orientation of hetero-
colloids as functions of the distance far away to the aggregation walls, both
obey exponentially decay, together exhibit smectic liquid-crystalline phase.
However, according to the flow field data we obtained, we speculate that the
hydrodynamic attraction effects of phoretic heterodimeric colloids close to
the walls enhances crystallization.

The investigation of thermally driven colloids towards wall opens several
possibilities for future explorations. These thermophoretic heterocolloids ex-
hibit rich phase behaviors at different temperature gradients and concen-
trations. We can perform more intensive simulation study to construct the
phase diagram, in different wall temperatures, temperature gradients and col-
loid densities. By the research so far, we have observed nematic and smectic
phases, hedgehog-like cluster and rhythmic cluster. Thermophoretic hete-
rocolloids, are therefore novel building blocks for self-assembled structures
have promising potential to practical applications.
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Chapter 8

Epilogue

“Le vrai point d’honneur [d’un scientifique] n’est pas d’être toujours dans le vrai. Il
est d’oser, de proposer des idées neuves, et ensuite de les vérifier.”

Pierre-Gilles de Gennes

8.1 Synopsis

In this thesis, we have studied the thermophoretic responses of asymmetric
particles, and their resulting net flows in microchannels. These asymmetries
can be geometric such as shape, length, and even surface roughness; and also
can be compositional i.e the particle can be made of different materials which
have disparate thermophoretic properties.

As an essential step, we have shown in Chapter 3, using simulations of MPC-
MD methods and continuum theory, that the physics of thermophoresis of
spherical colloids, i.e. the local pressure gradient and the resultant slip flow
at the colloid-liquid boundary layer, can be correctly captured by simula-
tions. As a parallel numerical model of diffusiophoresis, our model for ther-
mophoresis describes similar hydrodynamics and driving forces in the frame-
work of phoresis in general. We have discussed the finite system size effects
under two types of boundary conditions, both offer similar enhancement on
the measurement of thermal diffusion factor.

Then we moved to rod-like colloids. The elongated geometry induced anisotropic
thermophoresis is readily captured in terms of linear decomposition approach.
We extended this interpretation that colloids with arbitrary geometry, the
thermophoretic response can be characterized by three orthogonal thermal
diffusion factors. More importantly, our investigations highlighted that the
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geometrical details can significantly influence this anisotropic effect, which
results in thermophoretic force for rod align the gradient axis can be larger
or smaller than the rod perpendicular to it. To quantitatively describe the
anisotropic thermophoresis, we proposed the thermal anisotropy factor which
is the difference between the two orthogonal thermal diffusion factor of the
rod. From the application point of view, this quantification offers an interest-
ing tunability of anisotropic thermophoresis.

As a step further, we have studied the dimer model contains two parts with
different thermophoretic properties. Especially we have focused on the ther-
mophoretic torque induced orientation order. In the infinite dilute region,
we observed the alignment is linearly dependent on the applied temperature
gradient, despite the thermophoretic properties of two different monomers.
The size ratio seems to play a less significant role than the inherent individual
particle size on the alignment. Our simulation studies on the hetero-colloids
confined in a slit between walls, and driven by thermophoresis, is reminis-
cent of well-know Sedimentation-Diffusion Equilibrium phenomenon. Since the
concentration and orientation of hetero-colloids as functions of the distance
to the accumulation walls, both obey exponentially decay. However, our sim-
ulations also emphasized that the hydrodynamic attraction effects of phoretic
colloids close to the walls can enhance crystallization.

Now turning to application part, we proposed two schemes of micropumps
with spatial symmetry breaking in the middle of the microchannels. In pi-
ratical, one can design and exchange the material of the obstacles without
modifications of the channel walls. Based on the study of anisotropic ther-
mophoresis, we designed micropumps with elongated obstacles tilted to gra-
dient but placed in the middle of the microchannel. We have shown that this
novel phoretic pump provides sinusoidal-like effective flow lines. Besides
the dependence of channel width, to gain the optimized net flow flux, we also
observed that the obstacles can be fixed in different positions in the middle
of the channel. More interestingly, as the phoretic response of the fluid, the
flux density in this micropump can be perfectly captured by the anisotropic
thermophoresis of obstacles. We have observed that the magnitudes and the
direction of the resultant flux density closely depend on interfacial properties
of elongated obstacles such as aspect ratio, surface rugosity and thermophilic
or thermophobic properties, and is linearly related to thermal anisotropy fac-
tor.

Finally, we studied the fluid pumping of Janus-particle-like obstacles in the
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middle of microchannels. The local temperature gradient is generated due
to the higher heat adsorption at the metal part of the obstacles, with the
technique of laser illumination. We revealed that the resulting far-field flow
resembles the external pressure gradient induced Poiseuille flow. The net
flow flux strongly relies on the obstacle length rather than the channel width.
In comparison with other micropumps such as the former anisotropic ther-
mophoretic pump, and ratcheted wall pump, this partially heated phoretic
pump has higher pumping capability due to the higher local temperature
gradient.

8.2 Outlook

We outline two main possible directions of future research for this thesis.

Thermal fluctuations in non-equilibrium Thermodynamics: From funda-
mental point of view, the study of thermophoresis in asymmetric colloids is
of significant importance for non-equilibrium thermodynamics. One possi-
ble study is that how the Fluctuation-dissipation theorem (FDT) is modified
in the presence of temperature gradient. Meanwhile, the resultant fluctuation
acts on asymmetric colloid is of interest to exploit.

Colloidal self-assembly: Why do we study the mechanicals and hydrody-
namics of colloids with different types of asymmetry in temperature gradi-
ent? On one hand, as already has been addressed in the beginning of the
thesis, it is a step further to study and underpin the fundamental physics of
thermophoresis, the mechanism obtained is very useful. On the other hand,
novel phoretic behaviors can be used to form self-assembled colloidal struc-
tures. External gradient induces phoretic thrust on colloids and interact with
other individuals via hydrodynamics, is promising route for fabrication of
nanostructures. The potential use of phoresis developed spontaneous self-
organisation of colloid provides versatile tunability of the effective interac-
tions between the colloidal particles. One promising approach is first study
the individual building blocks under temperature gradient. According to
the observations in this thesis, the colloids with geometrical and/or compo-
sitional asymmetries show an unusual thermophoretic behavior. As suitable
candidates for colloidal self-assembly, these phoretic building blocks can be
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tunned to form colloidal crystal, liquid crystal or disordered structures. One
interesting feature for this kind of self-assembly is that the interaction be-
tween building blocks are dependent on both colloidal collision and long
ranged hydrodynamics. The hydrodynamic interaction can be treated as ef-
fective colloid-colloid potential interaction. As presented in the Chapter 7,
the building blocks hetrocolloids are used to form different types of colloidal
structures. Specifically, combining with confinement, asymmetric building
blocks with different composition form closed anisotropic crystal structure
close to the wall; far away from the wall, the thermophoretic hydrodynam-
ics mediated interaction and movement between building blocks are weaker,
resulting a less ordered structure. Consequently, these heterodimeric build-
ing blocks are attracted to the walls and with a orientation order. The space
between individuals and their orientation orders can be tuned by external
gradient and colloid-solvent interactions, as their thermophoretic responses.
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Appendix A

Analytical calculation for
thermophoretic force

In Chapter 3, we analytically calculated the slip flow velocity, the local pres-
sure gradient for MPC-MD model. This can be used to evaluate the ther-
mophoretic force in different ways. The following solutions can be applied
to evaluate the thermal diffusion factor of spherical bead (from Chapter 4 to
7).

A.1 The slip flow solution

Substituting Eq.(3.17) into Eq.(3.7), we found that the slip velocity vs(z) in
MPC fluid is expressed as,

vs(z) = −1

η

P∞
kBT 2(z)

∂T

∂z

∫ R+δ

0

{
U(x) exp

[
− U(x)

kBT (z)

]
x

}
dx. (A.1)

Here the ideal gas equation of the state is applied. Note Eq.(A.1) is also
valid for spherical colloid by replacing the notation z with τ (the tangential
direction). A theoretical estimation of FT = −4πηR(2/3)vB, where vB is the
maximum of the slip velocity of colloid in external temperature gradient.
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A.2 Local pressure gradient solution

The flow is barely induced by tangential pressure gradient. Therefore the re-
sulting thermophoretic force can be computed by integrating the local pres-
sure gradient around a colloid.

FT =− 2πP∞∇T
kB

∫ π

0

sin3 θdθ∫ R+δ

0

{
n2 U(n)

(T + n cos θ∇T )2
exp

[
− U(n)

kB(T + n cos θ∇T )

]}
dn,

(A.2)

where T is the temperature at colloid center. In Eq.(A.2) spherical coordinate
is applied, θ is the polar angle.

A.3 Force balance solution: summing all the po-

tential interacting forces

Different from the former two approaches, the thermophoretic force can be
obtained by summing all of the central interacting forces (i.e. −∂U(n)/∂n)
along gradient direction. This is due to the force balance condition, namely
how much external force we should apply on colloid in temperature gradient
to fix the position.

FT =

∫ R+δ

0

n2dn

∫ π

0

sin θdθ

∫ 2π

0

ρ(n, θ)
∂U(n)

∂n
cos θdφ

=
2πP∞
kB

∫ π

0

sin θ cos θdθ∫ R+δ

0

{
n2 1

T + n cos θ∇T
exp

[
− U(n)

kB(T + n cos θ∇T )

]
∂U(n)

∂n

}
dn,

(A.3)
Similarly, the spherical coordinate is applied. The prefactor cos θ in the first

line of Eq. (A.3) indicates the force is projected along the gradient direction.
Due to the asymmetric density distribution, the unbalanced central forces
come into the thermophoretic calculation. This is different from the two pre-
vious approaches.
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Appendix B

Analytical flow field for different
boundary conditions

This appendix services as the detailed analytical calculation for finite size
effect correction in Chapter 3. Based on Eq. (3.13), the solutions to analyt-
ically construct the thermophoretic flow field with different boundary con-
ditions has been presented. Recalling the boundary conditions result in an
additional friction force on the measurement of phoretic force, this methods
provide a way to calculate the effective friction Fγ

T . In this way, the finite size
effects factor λ in Eq.(3.21) for different boundary conditions is quantified by
analytical calculation.

B.1 Thermophoretic flow field of fixed colloid con-

fined between walls

The first boundary condition we considered is colloid confined between walls
in the center.

The flow field of fixed colloid is a combination of a Stokeslet and a source
dipole. Colloids pump the fluid forward (opposite from FT ) but bounces
back when it hits the wall and act on the central colloid. Meanwhile, the
cooperation with other images perpendicular to the gradient leads to con-
vection flow pattern in Ref.[60] and Fig.3.12(a).

Fig. B.1(b) indicates the schematic diagram of analytical calculation of flow
pattern via including effects from walls (applying constant back flow as-
sumption) and periodic boundary conditions along other two(x and y) di-
rections.
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Figure B.1: (a) Model consideration for measurement of thermophoretic
force: colloid is fixed in the center of simulation box, temperature gradient
is applied in z-direction with walls (were not visualized). (b) Schematic
representation of calculation route for flow field considering periodic
boundary conditions (x− y directions are considered).

To characterize Fγ
T to thermophoresis, the calculation procedure is consid-

ered as follows: the first part comes from the thermophoretic flow at the walls
bouncing back (constant back flow assumption) without changing the mag-
nitudes, in which contributions from all images and center box are counted;
the second part is the thermophoretic flow excited by other images whose
directions are the same as the thermophoretic flow which decrease the mea-
sured net force. Specifically,FγT (r) is the sum of the hydrodynamic interac-
tions from the back flow of the colloid itself as well as its periodic images,
and the thermophoretic flow of periodic images (which is opposite from the
back flow direction). Hence the effective friction is represented by,

FγT (r) = 4πηR(vcenterb (r) + vimgb (r)− vimgc (r)). (B.1)

Fig.B.2(a) indicates the flow interactions between images and walls is long
ranged, which doesn’t vanish crossing simulation boxes. This long range hy-
drodynamic interaction due to Stokes term in eqn.(3.23) which is well known.
In contrast, the second source dipole term decays 1

R3 which dominates near-
field flow and is thereby short ranged. Fig.3.14(b) renders the correspond-
ing averaged z component of effective friction velocity calculated analyti-
cally. Basing on the calculation outlined in Fig. B.2(b), we examined the
value of effective flow velocity converges as the number of layers of images
goes to 10. In this way, we make sure 10 layers of images (total number is



B.1. Thermophoretic flow field of fixed colloid confined between walls 145

-40 -20 0 20 40 60 80
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

 

 
v z

x

 flow at walls
(data is collected
 at z=50.0)

(a)

100 101 102 103

0.00090

0.00095

0.00100

0.00105

0.00110

0.00115

0.00120

0.00125

 

 

v f,
z

Number of layers

Effective stokes friction: 
Feff=4 R(vself

back+v
img
back-v

img
th )=4 Rvf

(b)

Figure B.2: (a)Analytical calculation of z component of flow along x axis at
walls without considering walls’ effect. Blue solid lines distinguish the
center box boundaries along x or y direction, the gray dash lines mark the
two nearest images, spheres are the representations of colloids.(b)
Convergence of average flow velocity acting on fixed colloid is calculated
by averaging all of the fluid velocities in the colloid domain; the effective
friction is therefore obtained by Stokes law.

(2× 10 + 1)2 = 441) is sufficient to consider the effect of all the images. Then
we apply the previously mentioned back flow assumption to obtain the en-
hanced part of thermophoretic force.

Using the same protocol as in simulations in reference [58], we vary the cubic
box size into different values and measure the thermal diffusion factors by
considering the effective friction contribution. Comparing the results with
simulation data, we found a nice agreement between these two by applying
the empirical linear fitting. It is important to note that the strongly depends
on the error of the simulation results, thus the changing of potential type,
radius of colloids leads to different λ. Therefore the numerical errors may
lead to deviations from theoretical results (always are larger).

The comparison between simulation and analytical calculation reveals con-
sistency of constant considerations of back flow assumption and periodic
boundary conditions. And the characterization parameter λ ≈ 1.0 manifests
the correctness of Stokes flow approximation.
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B.2 Thermophoretic flow field of fixed colloid in

open PBCs

In open PBCs as illustrated in Fig.3.13. The corresponding effective friction
is calculated analytically as follows: we focus on one colloid target in a half
simulation box, and consider the hydrodynamics induced by twin colloid
and infinite number of images; i.e. calculating the average flow velocity at
positions where colloid covers. Latter, repeating the procedure as in previous
subsection, we evaluate the thermal diffusion factor characterization factor
analytically. The results denotes that λ ≈ 1.0 which confirms the FSEs in full
PBCs is the same as in boundary conditions with walls.

Numerically, the calculation is different from what we applied on bound-
ary conditions with walls. Since the influence from images not only along x
and y directions, but also along z direction where the temperature gradient
applied. We perform the Discretized Fourier Transformation. As depicted
in Fig. When looking at the flow field in Fourier k space, the theoretical
calculation is a continuous integration over all k; in numerical simulation,
the theory doesn’t serve the continuous form since periodic boundary con-
ditions applied. In this case, we adopt a discrete Fourier transformation in
space. Meanwhile, the source dipole term (∼ r−3) decays much faster than

(a) (b)

Figure B.3: (a)Stokes term (green) and source dipole term (magenta) in
Eq.(3.13) decay as a function of the distance to the colloid center along (‖)
the gradient axis. (b)Stokes term (green) and source dipole term (magenta)
in Eq.(3.13) decay as a function of the distance to the colloid center
perpendicular (⊥) to the gradient axis.

the Stokeslet term (∼ r−1) in Fig.B.3, such that the far field flow, intimately re-
lated to finite size effects, is dominated by the Stokeslet. Thereby the Fourier
transformation is only applied on the Stokes (point force) term. In this par-
ticular full PBCs simulations, the DFT is applied on the force dipole.
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The system is considered in a primary box with size of (Lx, Ly, 2Lz) = (40, 40, 100).
The tow stokes terms are associated with two thermophoretic forces oppo-
sitely, located at r1 = (0.5Lx, 0.5Ly, 0.5Lz) and r2 = (0.5Lx, 0.5Ly, 1.5Lz),
respectively. The resulting flow field is described by

v(r) = O(r− r1) · FT +O(r− r2) · (−FT ), (B.2)

with the Oseen tensor
O(r) =

1

8πηr
(I + r̂r̂) , (B.3)

the notations are the same as in Eq.(3.13). To compute the flow field in
a cuboid box with PBCs, we consider the Oseen tensor in Fourier space
(k−space)[99]

Õ(k) =
1

ηk2

(
I− k̂k̂

)
, (B.4)

here k = (k1, k2, k3) the wave number vector. The flow field in k−space is
formulated as

ṽ(r) = Õ(k)F̃T (k) + Õ(k)(−F̃T (k)), (B.5)

here the Fourier transformation is also applied on the point force, which
gives F̃T (k) = 1

V

∫
FT δ(x− rj) exp(−ik · x)d3x = 1

V
FT exp(−ik · rj), j = 1, 2.

The flow field with PBCs is therefore obtained by inversing Fourier transfor-
mation, yields,

v′(r) =
∑
k 6=0

ṽ(k)eik·r, (B.6)

with the corresponding three components of k multiples of 2π/Lx,2π/Ly,2π/2Lz,
respectively. The calculation of Fγ

T on the left side colloid is the sum of the
hydrodynamic interactions from the right side colloid as well as its periodic
images, and the periodic images of the left side colloid. Which is given by

FγT (r) = 4πηR(vright(r) + vright,img(r) + vleft,img(r)). (B.7)
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Appendix C

Further discussion on the rugosity
dependence of αT

The model of rod is sort of “shish-kebab” like which is a series of soft spher-
ical beads connected with rigid bonds. We formally mentioned that the ru-
gosity is tuned by adjusting overlapping of beads. This model counts for
the geometrical effects of interfacial properties which have been shown to be
the dominant mechanism of unusual anisotropic thermophoresis. To com-
pensate the explanation about rugosity dependence of αT,‖ in Chapter 4, we
discuss the geometrical effect in detail in the following text. Furthermore, we
discuss the influences of the model such as employed attractive/repulsive in-
teraction, interaction range, effective potential differed by the overlapping of
neighboring beads, which subtlety modify the anisotropy of thermophoresis.

(a) (b)

Figure C.1: Schematic diagrams of thermophoretic surface forces (yellow
arrows) with rods aligned perpendicularly to∇T . (a)View of surfaces of
cross sections along long axis; (b) View of surfaces of cross sections
perpendicular to long axis.
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C.1 Geometric effects on αT,⊥ and αT,‖

C.1.1 The perpendicular factor αT,⊥

(a)

(b)

Figure C.2: The flow velocity fields of rod perpendicular to∇T in different
cross sections. (a)The view of the flow velocity in a cross section along the
long axis and gradient axis of the rod. (b)The view of the flow velocity in
cross sections at different positions and perpendicular to the long axis of the
rod.

Since the rod ends are identical for both rough and smooth ones, only the in-
termediate surfaces differentiate their contributions to FT for the rod aligned
perpendicularly to ∇T . Here are two scenarios about geometrical effects
summarized in the following.

Scenario one: When cross sections are taken parallel to the long axis of rods,
the immersed surfaces of rough (double triangular shape) and (perfectly)
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Figure C.3: The magnitudes of the averaged slip flow in different cross
sections perpendicular to the long axis of the rod, in this case the rod is
placed perpendicular to∇T .

smooth (rectangular shape) rods are indicated in Fig.C.1(a). Apparently, the
indentation area of rough rod feels the temperature gradient and undergoes
surfaces forces (depicted with yellow arrows). In contrast, no local gradient
at the perfectly smooth surfaces. Hence, Fcross,‖Rough > Fcross,‖Smooth. Here Fcross,‖Rough and
Fcross,‖Smooth denote aforementioned thermophoretic force contributions.

Scenario two: When the cross sections are perpendicular to the long axis in
Fig.C.1(b), the contribution to FT,‖ of surface forces in the rough rod case is
less than the smooth one due to less surface close to indented area.

This leads to Fcross,⊥Rough < Fcross,⊥Smooth. The competition between these two effects
result in αT,⊥ undetermined.

Moreover, the resultant flows around the rod surface in Fig.C.2 also support
the above arguments. Fig.C.3 shows the magnitudes of the averaged tangen-
tial flow for different cross sections are similar.

C.1.2 The parallel factor αT,‖
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Figure C.4: The local temperature gradient along the long axis of the rough
and smooth rods which align to∇T (as indicated in the carton in
Fig.C.5(a)).

(a)

(b)

Figure C.5: The flow velocity fields of rod parallel to∇T with different
rugosities. (a)The flow velocity field. (b)The comparison of the magnitudes
of averaged slip velocities between rods with different rugosities.
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C.2 Non-geometric effects on αT,⊥ and αT,‖

(a) (b)

Figure C.6: Schematic representations of overlapping interacting area of
rough and smooth rods with different potentials. (a)r6 or a48 potentials
result in solvent particles at indentation interact 2 neighboring beads; (b)
while r3 or a24 potentials lead to ONE solvent particle may interacts with 2
or 3 beads.

Overlapping of beads and types of potential. Interestingly, the rugosity
dependence of r6 and r3 (or a48 and a24) behave similarly with respect to
their corresponding single bead thermal diffusion factor αoT . This means that
the enhanced thermophoretic forces (compared with spherical colloids) don’t
rely on the interaction stiffness n of solo repulsive or attractive potentials.
However, the difference between repulsive and attractive potentials are ap-
parent. This is the consequence of the nature of attractive and repulsive po-
tential combined with the overlapping of bead-solvent interaction (the finite
range of the solvent-bead interactions results in overlapping potential area
which is illustrated in FigC.6), although the overlapping effects on rough
rods is very weak and also shown in the data Chapter 4. Generally, over-
lapping of beads strengthens the rigidity of the (effective) repulsive potential
and deepens the well of the attractive (effective) potential in the vicinity of
indentation area. When the rod is aligned along the gradient, solvent par-
ticles located at the overlapping indentation area contribute oppositely to
FT,‖. This explains the data of repulsive potentials are above attractive po-
tentials. Likewise, the perpendicular thermophoretic force decreases with the
rogusity in the attractive case, while changes slightly in the repulsive case. It
is important to note that this explanation relies on the argument that FT is
positively correlated to number of particles within bead-solvent interaction
range and potential barely deforms the temperature field.

As it has been found that thermophoresis is sensitive to minor modifications
of interfacial properties [21, 26], our investigations on rugosity dependence
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of rods also enrich the diversity of thermophoretic properties. Neverthe-
less, we mainly emphasize the geometrical effects rather than homogeniz-
ing the effective surface potential in the model of rods. Because in exper-
iments, the interaction at indentation area might be different from what at
non-indentation area. The further detailed experimental studies on interfa-
cial factors of rod such as repulsive or attractive potentials might be of inter-
est and importance in theory and application.
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