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Abstract

The propulsion mechanism and the swimming dynamics of various ciliated mi-
croorganisms are investigated. Ciliated microswimmers, ranging from a single
flagellated sperm cell to multiciliated microswimmers, propel themselves by
cilia attached to their cell membrane. The underlying complex biomachinery
of a cilium, the axoneme, employs an evolutionary developed mechanism,
which is tailored to generate an optimal beating pattern to propel the swimmer
through the environment it encounters. In this work mesoscale hydrodynamics
simulations are used to simulate the whip-like motion of the cilium at low
Reynolds numbers. The particle-based approach of multi-particle collision
dynamics enables simulations of self-propelled microswimmers in complex
confinements where steric and hydrodynamic interactions strongly influence
the swimming dynamics. Details of cilia arrangement and beat shape are criti-
cal in understanding propulsion and surface attraction. The axonemal beating
of cilia and flagella is modeled by a semi-flexible polymer with periodically
changing intrinsic curvature. In the spirit of a minimalistic modeling approach,
the axoneme is only bend along one degree of freedom, creating a defined beat
plane.

The first part discusses surface attraction and guidance of sperm cells swim-
ming in confinement. In particular, the motion of sperm in geometrically
structured (zigzag) microchannels provides an interesting geometry for the
manipulation and sorting of sperm cells. Sperm swim along the channel walls,
but are deflected from the sidewall at sharp bends. The simulation results are
in qualitative agreement with recent microfluidic experiments and provide
a better insight into the mechanisms of sperm navigation under strong con-
finement. The effective adhesion of a sperm cell to a flat surface depends
both on the envelope of its planar beat shape and on the orientation of its
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beat plane. A proposed self-propelled steric model explains the average de-
flection around corners. Further investigation of various beat patterns with
increasing wavelength results in complex surface attraction dynamics of the
sperm cell. The insight from the steric model helps to understand the surface
attraction in terms of the beat-shape envelope. It is found that when the beat
pattern exceeds a critical wavelength, the flagellum buckles and beats in a
complex three-dimensional shape, which strongly increases surface attraction.
Indeed, the analysis of three-dimensional experimental holographic data of
freely swimming human sperm cells shows that on average the beat pattern is
relatively planar but exhibits regular nonplanar components twice per beat. By
comparing this high-resolution experimental data with simulation results, a
possible explanation for the nonplanar beating is obtained. Simulated sperm
with imposed planar bends and two orders of magnitude smaller twist than
bending rigidity undergo a twist instability and exhibit a three-dimensional
beat pattern.

Simulations allow to map the phase space of the twist instability, which shows
no dependence on the bending rigidity, but a sharp transition from planar to
three-dimensional beating below a critical twist rigidity. A localized twist
wave goes through the cilium, which twists the cilium at a very narrow segment
close to the point of minimal in-plane bending. This creates essentially two
beat planes, separating the cilium in two segments of planar beating before
and after the twisting region.

In the second part, propulsion and synchronization of multi-ciliated spherical
swimmers with different cilia densities and arrangements are studied. In-
stead of pre-imposing the intrinsic curvature, a ratchet-like mechanism drives
the ciliary beat pattern. Therefore, the beat period can be influenced by the
flow generated from the motion of the other cilia. The propulsion velocity
of ciliated spherical swimmers increases sub-linearly with increasing cilia
density. Large differences in propulsion speed for equal numbers of cilia
with different arrangements on the sphere are found. For symmetric ciliated
swimmers, the emergence of a stable synchronization state is found to depend
on the initial condition. In some symmetric 9-cilia swimmers, long stable
phases of synchronization emerge. Swimmers whose phase difference in-
creases due to phase slips have a slower propulsion velocity than swimmers
which develop a constant phase-lag between cilia. Turning to an oscillator
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model for cilia synchronization, the emergence of metachronal coordination
in different topologies above a surface is studied. The oscillators are modeled
as hydrodynamically interacting spheres propelled along a circular trajectory.
Non-dimensionalization of the model provides the radial confinement strength
as the only control parameter. Boundary effects influence the synchronization
as well as the confinement strength. In open chains of oscillators as well as in
circular arrangements, stable large-scale patterns of synchronization emerge
until a critical confinement strength. No long-term coordination emerges above
a critical confinement strength in any of the studies topologies.

Finally, the cilium model is used to simulate a tuft of cilia, modeled to describe
the placement of cilia in brain ventricles of mice. It is found that the particle
flux towards the surface is located in hot-spots where the flux is significantly
enhanced compared to purely diffusive transport. This shows the important
role of ciliary beating in molecular transport towards primary cilia on the
surface of the ventricles.
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Chapter 1

Introduction

1.1 Evolution and Reproduction

In the course of evolution, over millions of years, living matter developed from
single cells into highly structured multi-cellular organisms. Individual organ-
isms separated from each other and adapted their structure to their individual
evolutionary niche. Evolution dictates that only the best adapted organism
survives (Darwin, 1859).

The selection process tailored organisms where every detail is optimized to-
wards evolutionary advantage. However, it is not easy to tell what needs
to be optimized to achieve this advantage. From a physical/chemical point
of view, the metabolism of cells is an out-of-equilibrium process which is
tailored to extract the free enthalpy of their environment. One could argue that
evolutionary optimization favors the most efficient method of extracting work
from its surrounding. On the other hand, an extremely complex metabolism
process increases the encoding complexity, making the occurrence of coding
errors more likely and adaption to new environmental condition increasingly
difficult. Thus, evolutionary optimized organisms expose an efficient, robust
mechanism for metabolism, adaption and reproduction by developing evolu-
tionary highly conserved structures, which fulfill roles within organisms but
share a very similar structure. One example of such a structure is the cilium,
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start

end

power stroke

recovery stroke

cilium sperm cell

head

�agellum

Figure 1.1 Beat pattern of cilium and sperm - Snapshots of simulations of
the beat pattern of a motile cilium (left) and a sperm cell (right). The sperm
consists of a spherical head and an actively beating flagellum. The time axis
of the snapshots ranges from light-green to dark-green. With respect to the
cilium the power stroke is more in light-green, whereas the recovery stroke is
more in dark-green.

which functions as a force sensing and flow generating device on the surface
of cells in almost all organisms. They have a critical role in embryogenesis
where cilia propel sperm cells to transport DNA to the female egg cell and are
essential in breaking left-right symmetry during development.

Substantially, hydrodynamic interactions provide a robust guiding principle
in this fascinating process. In this work the consequences of cilia beat shape
on propulsion and flow field generation are studied. The interplay of hydrody-
namic and steric interaction under strong confinement is analyzed using fluid
dynamic simulations.

1.2 Structure of the Thesis

The thesis is structured in five chapters. Chapter 1 introduces the topic of
ciliated microswimmers and describes their internal structure. Chapter 2 reca-
pitulates the fundamental theory describing hydrodynamics at low Reynolds
numbers and Langevin dynamics, followed by the presentation of computa-
tional methods to solve hydrodynamic interactions and to simulate flagellar and
ciliary beating. The results are presented in the following two main chapters:
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Chapter 3 presents the results of flagellar beating of sperm. In particular, fluid
dynamic simulations are used to explore the relationship between sperm cell
beat patterns and swimming trajectories in highly structured environments,
followed by the analysis of experimental three-dimensional human sperm cell
data and its interpretation using hydrodynamic simulations.

Chapter 4 focuses on synchronization of multi-ciliated swimmers. First, the
trajectories and states of synchronization on spherical ciliated swimmers are
studied. Due to the high variety of different synchronization states found
and the complexity of the underlying simulation, the multi-ciliated swimmer
discussion is followed by the investigations of states of synchronization in a
minimal oscillator model.

Finally, chapter 5 summarizes the results of both chapters and gives an outlook
on interesting questions, which might be further investigated.

1.3 Sperm

Sperm cells are tiny one-way machines, built only to fertilize the egg cell.
A human sperm cell, sketched in Fig. 1.2, consists of a disk-like head with
ellipsoidal cross section to which a single cilium is attached, that propels the
sperm. Due to its long length, it is often called flagellum (Gaffney et al., 2011).
The first part of the flagellum, the mid-piece, is stiff. Only the following tail
of the flagellum is bent by motor proteins.

The axoneme is a long and thin cylindrical structure (Howard, 2001; Lin-
demann and Lesich, 2010) with a length of 1− 50 µm and a radius of
250 nm− 1 µm. A schematic representation of the axoneme is shown in
Fig. 1.3. It consists of microtubules arranged in a 9+2 structure, where two
inner-doublet microtubules, called central pair, are surrounded by a ring of
nine outer-doublet microtubules. Nexin linkers strongly attach each of the
outer doublets to its neighbors building a rigid structure. The axoneme is
bend by dynein motors located along the entire axoneme which allows for a
complex beat shape dynamic. Dynein molecular motors slide two neighboring
microtubules along each other by hydrolysis of ATP (Gibbons and Rowe,
1965). Since sperm are single-purpose machines, they are optimized to
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Figure 1.2 Human sperm cell schematic - The disk-like head with ellipsoidal
cross section is attached to the flagellum. Besides the stiff midpiece the
flagellum is beating in a whip-like pattern. Cross sections at different arc-
length positions along the flagellum show the internal structure of the flagellum.
The outer dense fibers in the mid-piece are a characteristic feature of internal
fertilizers. (from: Gaffney et al. (2011)).

Figure 1.3 Axoneme cross section - Cross section of the axoneme of a cilium
with the 9+2 arrangement of microtubules. Dynein motors move along the
outer (microtubule) doublets to bend the axoneme. (from: Lindemann and
Lesich (2010)).
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transport the male DNA to the female egg. Their journey is an interactive
process where the beat pattern of the sperm cell reacts to and interacts with
the physical conditions it faces (Katz, Drobnis, and Overstreet, 1989). Active
guidance of human sperm towards the egg cell is achieved by chemotaxis and
thermotaxis (Eisenbach and Giojalas, 2006; Kaupp, Kashikar, and Weyand,
2008), as well as by rheotaxis (Bukatin et al., 2015; Kantsler, Dunkel, Blayney,
et al., 2014; Miki and Clapham, 2013). A human sperm cell actively responses
to progesterone-induced calcium influx (Strünker et al., 2011) by changing
its beat pattern (Saggiorato et al., 2017). In addition to guidance by physical
or chemical cues, sperm can be also guided passively along surfaces or walls.
Sperm cells of humans (Winet, Bernstein, and Head, 1984), mice (Woolley,
2003) and bull (Rothschild, 1963) have a tendency to accumulate at surfaces.
Simulation results confirmed a general tendency of alignment of sperm cells
(Elgeti, Kaupp, and Gerhard Gompper, 2010; Fauci and McDonald, 1995) due
to hydrodynamic and steric interactions. This has the consequence that sperm
swim along surfaces purely based on physical interaction without actively
altering their beating pattern.

Sperm move by the undulatory motion of the cilium. As head shape and length
of sperm vary between species, so do the wavelengths and frequencies of
the beat. This leads to different beat shapes of sperm. The majority of sea
urchin sperm beat planar most of the time, but occasionally switch to a helical
beat shape (Woolley and Vernon, 2001). Mammalian sperm cells undergo
several structural changes during their lifetime which affects their beat shape
(Mortimer, 1997). Free swimming human sperm cells rotate on their main
axis and their flagellum forms a three-dimensional helical beat pattern (Katz,
Drobnis, and Overstreet, 1989).

1.4 Ciliated Cells and Microswimmers

Cilia occur in two different variations and can fulfill two (mainly) distinct
purposes. Motile cilia are actively beating either to propel a microswimmer or
create a fluid flow close to cell surfaces, whereas immotile cilia do not beat
but can act as a flow sensor for the cell on which surface they are exposed. In
mammals motile cilia appear for example in the ventricles of the brain, in the
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Figure 1.4 Electron microscopy image of Opalina - Cilia on the surface
of Opalina show metachronal waves traveling from the anterior (A) to the
posterior (P) end (from: Machemer (1974)).

Fallopian tube and in the trachea. On the surface of unicellular microswimmers
like Chlamydomonas, Paramecium or Opalina they create propulsion.

The core structure of cilia, the axoneme, is very similar to that of sperm cells.
Motile cilia have a 9+2 axoneme structure, whereas immotile/primary cilia
have a 9+0 axoneme structure. Nodal cilia, which have a size of 2−3 µm, are
significantly shorter than motile cilia found for example in the brain with a
size of 12 µm. Instead of showing the almost planar beat pattern, they rotate
consistently counterclockwise (viewed from base to tip) (Charles J. Brokaw,
2005). During mammalian embryogenesis the flow generated by nodal cilia
provides essential information to determine the left-right asymmetry (Fliegauf,
Benzing, and Omran, 2007; Nonaka et al., 1998). In particular primary cilia
react to mechanical forces generated by flow with signaling responses such as
calcium influx (Berbari et al., 2009; Davenport and Yoder, 2005; Eyckmans et
al., 2011). Therefore, many genetic diseases are related to ciliary dysfunction
(Valente et al., 2013).

Cilia are also present on smaller organisms, like algae, where they are attached
to the membrane of a cell. The cilia density on such ciliated microswimmers
varies from the single flagellum of a sperm cell, over a pair of two cilia on
Chlamydomonas to hundreds of cilia that beat in a coordinated manner on the
surface of Paramecium or Opalina. Here the ciliary beating creates a flow
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field around the swimmer that transports nutrition towards the cell membrane
and propels the swimmer.

1.5 Propelling Cells by Ciliary Beating

Ciliated and flagellated microswimmers have to propel themselves on the
micrometer scale, which implies that they have to swim faster than diffusion.
As Lighthill (1989) points out, slenderness of the propulsion device mainly
determines the swimming efficiency, which is in low for low Reynolds num-
bers. Prokaryotes and eukaryotes expose long and thin appendages on their
surfaces. Even though the structure is often called flagellum for both cases,
the way they create their beat pattern is completely different. Prokaryotes, like
Escherichia coli bacteria, expose a flagellum which forms a passive helical
structure and is rotated by a molecular motor sitting in the cell membrane
(Berg, 2008; Darnton et al., 2007). They move in a run-and-tumble motion
(Berg and Brown, 1972) by reversing the applied torques. Also, they use the
flagella for mechanosensing where external forces trigger gene expression
which eventually controls morphogenesis (Kawagishi et al., 1996; McCarter,
Hilmen, and Silverman, 1988).

The beat-pattern generation of cilia is more complex than that of bacterial
flagella. Torques are generated by dynein motors along the cilia which bend
the filament locally, rendering it a self-contained biological machine (Charles J.
Brokaw, 1961). They generate the traveling wave, which is going through
the axoneme of sperm cells, and the beat pattern of cilia (Fig. 1.1). The beat
pattern of a cilium on the surface of a cell divides into an elongated power
and a recovery stroke close to the surface. The power stroke takes one third of
the beating time, whereas the slower recovery stroke takes two thirds of the
beating time.

Theoretical studies of densely ciliated microswimmers show that the emer-
gence of metachronal waves increase propulsion velocity (Elgeti and Ger-
hard Gompper, 2013; Vilfan and Jülicher, 2006). An example of the ciliary
metachronal wave on the surface of Opalina is shown in Fig. 1.4.
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1.6 Theoretical Approaches to Ciliary Beating

The active beat pattern of the flagella of sperm cells and cilia is created
by molecular motors which are distributed along the axoneme (Satir and
Christensen, 2007). These dynein motors move along microtubules in finite
steps where the energy for the motion is provided by ATP hydrolysis. The
local displacement of the microtubules leads to a bending of the axoneme due
to constraints caused by the basal body at the end of the axoneme and the nexin
links between microtubules. Different mechanisms have been proposed (Bayly
and Wilson, 2014; Hines and Blum, 1978; Howard, 2001; Satir, Pedersen, and
Christensen, 2010) how motors self-organize into the wipe-like beating pattern
observed in ciliary and sperm beating.

Table 1.1 summarizes three different proposed coupling methods between the
axoneme structure and the internal motor activity. Motor activity is modeled
as an explicit sliding force per motor (Lindemann, 2002), as a sliding force
density f (s, t) acting along the axoneme (Camalet and Jülicher, 2000) or as
motors that switch between a constant and zero torque(Charles J. Brokaw,
1972). Modeling of structural details varies from assuming an elastic filament
to resolving the full 9+2 microtubule-doublets arrangement. Since dynein
motors only walk in one direction, periodic beating patterns need an oscillating
motor activity between the left (2-5) and right (1-6) half of the microtubule-
doublets. Experiments confirmed alternating motor activity between the two
halves of the axoneme (Satir, 1985). Therefore, the underlying assumption
and main difference of the motor control models is how the motor attachment
and detachment rates depend on structural conformation of the axoneme and
thereby creates an alternating sliding force density between the two halves.
The three different motor control mechanisms of each model are visualized
in Fig. 1.5. Motor activity is controlled by either the curvature κ(s) of the
axoneme, the perpendicular forces f⊥,n(s) separating neighboring microtubule
doublets, or the sliding displacement ∆n between microtubule doublets. The
curvature-control mechanism regulates motor detachment based on a curvature
threshold, e.g. a large curvature leads to reduced motor activity and less
bending. The normal-force-control mechanism regulates the detachment of
motor based on the normal force between neighboring, curved microtubule
doublets. The sliding-control mechanism regulates detachment based on the
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Figure 1.5 Motor control - Schematic representation of the three different
Dynein (orange) control mechanisms. Signs indicate the polarity of the doublet.
Motor detachment is controlled by either the curvature, sliding of doublets or
the normal force between them (from: Sartori et al. (2016)).

tangential force along the axoneme, due to the competition between the motors
on opposing sides, oscillations emerge (Jülicher and Prost, 1997).

Mathematically speaking the dynamics of shear forces fs(s, t) have to undergo
a Hopf bifurcation leading to oscillations of the beating frequency ω . Using
Fourier decomposition, a general response function (Sartori et al., 2016)
summarizing all proposed regulation patterns can be written as:

fs(ω,s) = Rχ(ω)∆n(s)+Rβ (ω)κ(s)+Rγ(ω) f⊥n (s) (1.1)

The complex valued response functions Rχ ,Rβ and Rγ give a relation between
the sliding force and the corresponding quantity. The real part relates to the
value itself, whereas the imaginary part relates to its rate of change. Due
to the Fourier transform the imaginary part reflects the time derivative. By
fitting all three response functions, Sartori et al. (2016) show that curvature
control reproduces experimentally observed beating patterns most reliable.
Interestingly, the important ingredient is the coupling to the change of curvature
and not the absolute value of the curvature itself.

1.7 Microfluidics

Microfluidic devices allow to control experimental conditions on the scale of
microswimmers, i.e. in the order of 100 µm. Microfluidic devices range from
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Type Type of mo-
tor

Feedback structure response
function
coefficients

Curvature
(Brokaw)

positive con-
stant or zero
shear forces

Curvature
and hys-
teresis for
negative
bending
moments

Microtubules,
nexin link-
ers (single
filament)

β

Geometric
Clutch
(Lindemann)

continues
sliding force
density

normal force 4 dynein
motors per
microtubule
doublet (very
detailed)

γ

Sliding
(Jülicher)

continues
sliding force
density

sliding microtubules,
nexin link-
ers (single
filament)

χ

Table 1.1 Motor control mechanisms for axonemal beating - The table
compares theoretical models which explain the self-organization principle
leading to axonemal beating. The models implement the structure of the
axoneme with different level of detail. Motor activity is implement in a
similar way by either shear forces or bending, whereas the feedback of the
structural change to the motor activity differs between models. The three
different options are sketched in Fig. 1.5 and correspond to the three different
coefficients, as explained in the main text.
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chemical micro reactors over diffusive separation systems to micro-pumps
(Tabeling, 2005). A combination of these subsystems enables the construction
of lab-on-a chip systems, where entire bio-medical analysis can be performed
on the scale of just a few organisms.

Passive surface guidance, where microswimmers align and swim along sur-
faces, are used to rectify microswimmers along a desired direction or spatially
separated by swimming velocity. Microfluidic devices with cavities have
been shown to sort bacteria by length (Elizabeth Hulme et al., 2008) and two
slightly shifted U-shape barriers allow to direct motion of swimmers along one
direction(Guidobaldi et al., 2014). In sperm research, especially for in-vitro
fertilization, microfluidic devices are used to sort sperm according to their
health or sex. A variety of channel designs to sort sperm cells are successfully
applied in sperm research (Knowlton, Sadasivam, and Tasoglu, 2015). Rela-
tively simple junction-designs allow the separation of motile from non-motile
sperm. Flow cytometric sexing of mammalian sperm is increasingly applied
in cattle-breeding where the differences of X and Y chromosome are used
to optically identify sex and sort sperm cells by selective microfluidic flow
patterns (Vazquez et al., 2009).

The critical components for determining sperm quality are concentration,
motility, and morphology (Amann and Katz, 2004). Recent computer-aided
analysis methods allow to self-diagnose semen quality (Kanakasabapathy et al.,
2017), based on the correlation between DNA integrity and sperm motility
(Robinson et al., 2012; Zini et al., 2008). Microfluidic experiments show a
strong correlation between the ability of sperm cells to follow corners and
their DNA integrity (Eamer et al., 2016). This does not only suggest, that the
narrow channel of the Fallopian tube might have evolved in order to enhance
the chance of the “best” sperm cell to reach the egg cell, but also opens the
door for improved diagnostics and filtering devices. Experiments by Kantsler,
Dunkel, Polin, et al. (2013) highlighted the importance of steric interactions in
surface guidance and provide a starting point for the fluid dynamic simulation
of this work (section 3.1). The combination of passive structural properties and
an in-depth understanding of the swimmer mechanism provides a promising
diagnostic tool and sorting device.
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1.8 Aim of the Thesis

Flagella and cilia are ubiquitous structures throughout eukaryotic life forms.
This thesis investigates their role in the propulsion of microswimmers using
simulation of ciliated microswimmers with their complex beat shape and ex-
plores the physical mechanisms of boundary interactions. Mircoswimmers are
living organisms that have complex signaling pathways. They are potentially
able to influence the flagella/cilia beat shape in many ways.

However, the aim of this thesis is, to identify minimal models, based on
fundamental physical laws, that explain experimentally observed patterns. If
a physical, minimal model can explain the experimental observation, insight
is gained, into what the underlying process and interactions of the observed
phenomena are. In particular, these models demonstrate which patterns might
emerge based on physical laws without the need for complex biochemical
signaling.

The first part of the thesis looks at guidance of sperm cells by boundary
interactions. It considers the following questions: How do steric and/or
hydrodynamic interactions attract sperm cells towards surfaces? How do the
beat shape and the pattern of the channel walls influence surface attraction?
Can a change in beat-shape alter surface attraction?

The second part of the thesis draws the attention to hydrodynamic interactions
between multiple cilia. How does the arrangement of cilia on a spherical swim-
mer change the emergence of states of synchronization? Under which condi-
tions do metachronal waves (a constant, non-zero phase difference between
neighboring cilia) emerges? How do boundaries and topological differences
influence the emerging patterns?

The common subject is found in the emergence of complex swimming be-
havior based on the combination of the active flagellar beat, boundaries in
hydrodynamic simulations, followed by the development of a simple model
which captures the essential dynamics.



Chapter 2

Theory & Methods

2.1 Hydrodynamics at Low Reynolds Numbers

2.1.1 Notation

Notation of vectors and matrices is handled by the following convention.
Lower indices represent the particle number, whereas upper indices represent
the coordinate in index notation. The position of particle is a R3 vector with
components:

ri =

rx
i

ry
i

rz
i

 . (2.1)

Bold quantities are vectors v. Matrices←→m are marked by a double arrow. By
default, vectors are three-dimensional v ∈ R3 quantities and matrices have a
corresponding square shape←→m ∈R3×3. If their shape differs, dimensionalities
are stated explicitly. In index notation Einstein summation is used to simplify
sums.
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2.1.2 Navier Stokes Equation

Hydrodynamics describe the flow of matter in liquid or gas state. This applies
to single component Newtonian gases and fluids, but it is not limited to them.
It is a generalization of Newtonian motion to the movement of many (similar)
interacting particles under external forces. The velocity field u(r, t) and the
particle density ρ(r, t) describe the flow direction and density of particles in
space and time.

The governing equation for these fields is the Navier-Stokes equation which can
be derived using conserved quantities of the system like mass and momentum.
The production terms and fluxes in a volume equal the local change of the
corresponding quantity. Most familiar is the continuity equation for mass
conversation under the assumption of a single component and conserved total
mass: ∫

V

∂ρ(r, t)
∂ t

dV =−
∮

S(V )
ρ(r, t)u dS (2.2)

The change of particle density in a volume V equals the flow of particles
through the surface of this volume S(V ). Using Gauss theorem, the differential
form of the mass balance can be easily derived:

∂ρ

∂ t
=−∇

j(ρu j) (2.3)

This states that density change in a volume has to equal the flow of mass
in or out of it. The momentum balance follows in a similar form from a
generalization of Newtonian dynamics:∫

V
ρ

du
dt

dV =
∫

V
f dV +

∮
S(V )

P̃ dS, (2.4)

where f is the force density acting on the fluid and P̃ the tension on the surface
of the volume element. The stress tensor can be expressed as P̃i = σ i jn j,
with n being the surface normal. Using Gauss theorem, the differential of
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momentum balance explicitly yields:

ρ
dui

dt
= ρ

(
∂ui

∂ t
+u j

∇
jui
)
= ∇

j
σ

i jn j + f i

ρ
∂ui

∂ t
= ∇

j (
σ

i j−u j
ρui)+ f i, (2.5)

where in the second line the total derivative is expanded by the chain role into
the advective contribution and intrinsic variation of the velocity with time.
By applying the chain rule again and using Eq. (2.3) the equation takes the
form of a continuity equation. The momentum flux consists of two terms:
the momentum flux that is transported by the flow field and the momentum
exerted by the stress normal to the boundaries of a volume element.

For a homogenous, isotropic medium the stress tensor can only depend on
a hydrostatic pressure P and the derivatives of the strain rate. Additional
symmetry consideration leads to the Cauchy-Euler stress tensor:

σ
i j =

(
−p(ρ,T )+η

′(ρ,T )Dkk
)

δ
i j +2η(ρ,T )Di j (2.6)

Di j =
1
2

(
∂ui

∂ r j +
∂u j

∂ rl

)
linear strain rate tensor (2.7)

The dynamic viscosity η(ρ,T ) and the first Lamé coefficient η ′(ρ,T ) are
transport properties of the medium. Under isothermal conditions, pressure
and viscosity of the medium are independent of temperature which decouples
the internal state equations for the energy and entropy from the force and
momentum balance. Finally, the Navier-Stokes equation follows by inserting
the stress tensor into the local formulation of the momentum balance:

ρ

(
∂u
∂ t

+u ·∇u
)
=−∇P+η△u+(η ′+η)∇ (∇ ·u)+ f (2.8)

The left-hand side is the advective derivative of the velocity, i.e. it describes
fluid inertia. The velocity field either changes explicitly with time (partial
time derivative) or the gradient of the flow field transports matter along its
flow lines (gradient term). Forces acting on the fluid and internal stress are on
the right-hand side: the pressure gradient ∇P, a viscous friction term, a term



16 Theory & Methods

related to the compressibility and finally applied external body force densities
f.

Similar local formulation, using conserved quantities, can be derived for the
angular-momentum, energy and entropy in the system, leading to correspond-
ing balance equations. In general, pressure and viscosity couples the internal
energy change to the momentum balance.

Assuming additionally, an incompressible medium, the compressible part
in the stress tensor vanishes Dkk = 0. In the incompressible Navier-Stokes
equation the transport properties only depend on the constant viscosity of the
medium:

ρ

(
∂u
∂ t

+u ·∇u
)
=−∇P+η△u+ f. (2.9)

Finding exact solutions for this non-linear partial differential equation is
difficult and only possible for simple geometries.

2.1.3 Stokes Equation and Green’s Function

The length scales of many biophysical problems are in the range of microme-
ters. Thusm especially microswimmers have a small mass compared to the
surface area. Therefore, inertia effects are small compared to friction. The
Reynolds number Re = ρuL

η
quantifies this difference. It emerges from rewrit-

ing the incompressible Navier-Stokes equation in nondimensional units in
terms of a typical mean velocity amplitude u, a length scale L. Rescaling all
units accordingly and plugging these in Eq. (2.9), yields:

Re
(

∂u
∂ t

+u ·∇u
)
=−∇P+△u+ f . (2.10)

If the Reynolds number is small, Re≪ 1, inertia terms are negligible compared
to friction.
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In the low-Reynolds number regime the Navier Stokes equation simplifies to
the linear Stokes equations:

0 =−∇P+η△u+ f

0 = ∇ ·u (2.11)

Note that the flow field has no explicit time dependency in the low Reynolds
number limit, which has important consequences for hydrodynamic interac-
tions on the cell-scale.

In order to create a net propulsion the beat pattern of the propulsion device has
to break time-reversal symmetry (Purcell, 1977). Using the length and time
scales of typical microswimmers beating, the Reynolds number calculation
is straightforward. The fastest time scale in the motion of the flagellated
swimmers is the beating of the flagellum. Assuming oscillatory motion the
Reynolds number is Re = f L2

νwater
. Given a typical length scale of a flagellum

is L = 50µm−100µm, the beat frequency is 50−100Hz and the kinematic
viscosity of water ν = 10−6Pas, a low Reynolds number Re≈ 0.02 follows.
The squared dependency on the length makes the Reynolds number sensitive
on the chosen length scale of the problem. Therefore, the largest length scale,
the length of the flagellum, and the fastest time-scale are chosen, leading to
an upper bound, which shows that all motion is clearly in the low Reynolds
number regime.

Using the linearity of the Stokes equation a Green’s function approach is an
elegant way to solve these equations. The Green’s function

←→
G is the particular

solution of Eq. (2.11) for a delta force distribution. Though it needs to be
derived for the given boundary conditions. It allows for a straight-forward
calculation of the flow field created by arbitrary force densities f(r):

u(r) =
∫

r̸=r′

dr′
←→
G (r,r′) f(r′) (2.12)

Thus, given an appropriate Greens function, the knowledge of the forces
applied upon the medium allows straight-forward determination of the flow
field. However, it still remains difficult to obtain the Green’s function G in
complex geometries. Therefore, the relatively simple Green’s function for an
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infinite volume and an infinite boundary are discussed here. The Oseen tensor
gives the solution of the Stokes equations (Eq. 2.18) with open boundaries
u(r→ ∞) = 0 for a delta force at position r, a so called Stokeslet:

←→
G Oseen(ri,r j) =

←→
G Oseen(ri− r j) =

←→
G Oseen(ri j), (2.13)

where the indices of the matrix are:

(←→
G Oseen(ri j)

)αβ

=
1

8πη r
(1+

rα
i jr

β

i j

r2 ) for i ̸= j, (2.14)

with r = |ri j|. Similar to the electrodynamic deviation of the electric field
above a planar infinite surface with the help of image charges, the flow field
above an infinite half plane at z = 0 has been derived by Blake (1971). Starting
from a Stokeslet in the positive half space z > 0, imaginary ‘charges‘, can
be placed in the negative half space z < 0 in such a way that they fulfill the
no-slip boundary condition. Additionally, to a mirror Stokeslet with inverted
z-coordinate, a stokes-doublet and a source-doublet are needed:

←→
G Blake(r,r′) =

←→
G Oseen(r,r′)−←→G Oseen(r, r̄′)+

←→
G D(r, r̄′)−←→G SD(r, r̄′),

(2.15)

where r̄ = (rx,ry,−rz)T

The individual contributions are:

(←→
G D(ri,r j)

)αβ

=
2 (rz

j)
2(1−2δ β z)

8πη

(
δ αβ

r3 −
3rα

i jr
β

i j

r5

)
(2.16)

(←→
G SD(ri,r j)

)αβ

=
2 (rz

j)
2(1−2δ β z)

8πη

(
δ αβ rz

i j

r3 −
δ αzrβ

i j

r3 +
δ β zrα

i j

r3 −
3rα

i jr
β

i jr
z
i j

r5

)
,

(2.17)

where r = |ri j|= |ri− r j|.
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2.1.4 Mobility and Flow Field of a Sphere

The drag force needed to move a solid sphere of radius ra with a velocity u
through a resting fluid is given by the famous Stokes law. It follows from
integrating the stress tensor of the fluid over the surface of the sphere:

Fd(r) = 6πηra u(r) = (µ0)
−1 u(r). (2.18)

Here, the self-mobility of a sphere µ0 = 1.0/(6πηra) is introduced. It captures
the stickiness of the medium, i.e. how easily the sphere can be moved through
the medium. The inverse of the self-mobility is called the friction coefficient,
which is the proportionality factor between the spheres velocity and the drag
force. The drag force, exerted by the sphere on the fluid, sets the fluid in
motion and creates a flow field.

In first order the far-field of the flow u(ri) created by the sphere is described
by the drag force exerted into the fluid at the spheres center of mass position
r j.

u(ri) =
∫ ←→

G (ri,r j) Fd(r j) (2.19)

The presence of a surface, with normal orientation n, reduces the self-mobility
of the sphere and renders it direction dependent:

←→
µ0 (r) = µ⊥n⊗n+µ∥ (1−n⊗n) , (2.20)

with the reduced mobility coefficients for movement parallel to the surface µ∥
and perpendicular to the surface µ⊥:

µ∥
µ0 = 1− 9ra

16z
+o
(

ra

z

)3

µ⊥
µ0 = 1− 9ra

8z
+o
(

ra

z

)3

. (2.21)
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Note the divergences for z→ 0, where the far field approximation breaks down
and the full hydrodynamic solution yields a logarithmic dependency.

2.1.5 Swimmer as Hydrodynamic Dipoles

A macroscopic object that is moving through a resting fluid creates a flow field,
which can be constructed from the stress on its surface:

u(ri) =−
∮

S(V )

←→
σ (r j)n j

←→
G (ri,r j)dS (2.22)

The flow field created by a rigid particle can be described by a multi-pole
expansion, analogous to electrodynamics, which is limited here to the first
terms of the expansion, neglecting the effect of the size of the swimmer and
rotation:

u(ri) = f0
←→
G Oseen(r,r′)+ f1

←→
G Dipole(r,r′,e), (2.23)

where e is the orientation of the dipole. A dipole built from two forces of equal
strength, but opposing directions, separated by distances d, is shown in Fig.
2.1.

A microswimmer is force and torque free (Kim and Karrila, 2013; Lauga,
2014; ten Hagen et al., 2015). It propels by drag-induced thrust, generated
by the anisotropy of its mobility and periodic shape which are not time-
reversible. Therefore, no force monopoles can exist, f0 = 0 and the leading
order contribution to the flow field becomes a dipole. The dipole has a force
density ± f1. These coarse-grained far-field interactions distinguish swimmers
between pushers, f1 > 0, and pullers, f1 < 0. A pusher propels by pushing
the cell body through the fluid, e.g. a sperm cell, whereas a puller pulls the
cell body, like Chlamydomonas. The difference in propulsion mechanism
creates substantially different flow fields, that result in different alignments of
swimmers. The far-field of a puller type swimmer aligns pullers perpendicular
to surfaces, whereas pushers are aligned parallel. More details can be found in
the paper of Spagnolie and Lauga (2012).
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Figure 2.1 Dipole flow field - Streamlines of the flow field created by two
monopoles, separated at a distance d, describing the far field of a pusher f1 > 0
(left) and puller f1 < 0 (right) type swimmer. The color indicates the absolute
value of the velocity.
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2.2 Particle-based Simulation Methods

2.2.1 Introduction

In order to go beyond the dipole-swimmer approximation the motion of the
swimmer is modeled explicitly. In case of the beating flagellum, these are
bending and twist motion along the flagellum. These internal degrees of
freedom have to be modeled and coupled via hydrodynamic interactions.
Active swimmers exert forces onto the fluid and at the same time they move
within the flow these forces are creating. Since the swimmer has internal
degrees of freedom the forces it exerts on the fluid have to be resolved on
a smaller scale. Numerically, this is done by discretizing the shape of the
swimmer by beads (Ainley et al., 2008; Bailey et al., 2009; Lowe, 2001)
and calculate the force acting on them, due to the internal degrees of motion
in the swimmer. The motion of these beads is obtained by integrated plain
Newtonians equations of motion (section 2.2.2) with the additional adjustment
of the velocity due to the flow in the system. Different ways to obtain the flow
field in mesoscale systems from the forces exerted in the fluid are discussed in
section 2.3.

2.2.2 Newtonian Dynamics

The dynamics of the microswimmer are described by Newton’s equations of
motion. Since hydrodynamic interactions have to be incorporated, the velocity
needs to be available during integration. Eventually, this constrain leads to the
velocity-Verlet method to integrate Newton’s equations of motion.

The conservative force acting on each bead, follows from the internal energy
of the system, described by the Hamiltonian H :

Fc
i =−

dH

dri
. (2.24)

The displacement of each particle follows Newtonian dynamics:
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mMD
d2xi

dt2 = Fi(xi, t), (2.25)

which is a second order ordinary differential equation, where the force acting
on a bead depends only on its position and time.

Using the central difference method to derive the position twice gives:

xi(t + τMD) = 2xi(t)−xi(t− τMD)+
Fi(t)

m
τ

2
MD +o(τ4

MD), (2.26)

where the integration time step τMD is introduced. However, in order to cou-
ple hydrodynamics the velocity component has to be calculated separately,
rendering the method computationally complex. Instead the velocity can be in-
tegrated explicitly and used to correct position, providing the same integration
error bound (Allen and Tildesley, 1989):

xi(t + τMD) = xi(t)+vi(t)τMD +
Fi(t)
2mMD

τ
2
MD

vi(t + τMD) = vi(t)+
Fi(t)+F(t + τMD)

2mMD
, (2.27)

which is used to integrate Newtonians dynamics, when explicit velocities are
necessary, e.g. for coupling to MPC-based hydrodynamic simulations.

2.2.3 Langevin Dynamics

Instead of modeling the molecular interactions between water molecules ex-
plicitly, their effect is included by integrating over the fast time scale. Using
the result of the continues hydrodynamic theory for the mobility of a spher-
ical particle (Eq. 2.18), the equation of motion is extended to include the
interactions with the fluid:

mMD
d2xi
dt2 = Fc

i +Fd
i +δFi, (2.28)
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where Fc is the conservative force, Fd the dissipative force and δF the random
force acting on the bead. In the friction dominated regime, where the friction
force is much larger than the inertia, i.e. µ0mMD→ 0, inertia can be neglected,
leading to the equations for over-damped Brownian motion:

dri

dt
= v(t) = µ0Fi(t)+δF(t), (2.29)

where the interactions of the beads with the fluid are included in the self
mobility µ0. In a pure dissipative system, no hydrodynamic interactions are
included. The flow that the movement of the particles creates is neglected so
far.

The noise has a mean value of zero, since it should not introduce average
momentum. The correlation fulfills the fluctuation-dissipation theorem (Ermak
and McCammon, 1978):

⟨δFi(t)⟩= 0 (2.30)

⟨δFi(t)δF j(t ′)⟩= 2kBT µ0 δ (t− t ′)δi j, (2.31)

where kB is the Boltzmann constant and T the temperature of the medium.

2.3 Mesoscale Hydrodynamic Approaches

2.3.1 Introduction

The scale on which hydrodynamics are modeled depends on the system at
hand. Large systems in the range of meters and time scales of seconds are
often modeled in the continuum limit, described by the Navier-Stokes equation.
When solved numerically, this partial differential equation has to be discretized,
leading to usually quite large volumes of discretization, that allow to describe
the medium solely by transport properties such as the viscosity. By fully
neglecting the underlying molecular nature, very efficient simulations in the
macroscopic regime are achieved. On the other end of the length and time scale,
on the nanometer and nanosecond scale, molecular dynamics simulations
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simulate the motion of every water particle, including interactions on the
atomic scales.

A mesoscale object, such as a suspended polymer with a length of several
micrometers, is between these two limits. It is too small to neglect the influ-
ence of noise, due to the single particle nature of the medium, whereas the
simulation of each water molecule would need around 1019 particles, which is
computationally infeasible. Therefore, several mesoscale methods have been
developed to perform efficient simulations in this regime. The momentum
exchange between the object and the fluid is coarse-grained by replacing indi-
vidual water molecules with effective interactions, that maintain the influence
of the medium on the embedded object on a time scale, which is relevant for
its motion. In Brownian-dynamics simulations the different time scales of the
molecular and colloidal motion are exploited to omit the explicit simulation
of molecular motion. Only the average effect of the collisions between fluid
molecules and the colloid are considered by integrating over the fast, molec-
ular time-scale and determine the flow field from the continuum solution, as
described in detail in section 2.3.2.

Alternatively, the momentum exchange of water molecules can be coarse-
grained by introducing fluid particles, which transport the momentum of
several water molecules. In lattice Boltzmann simulation the fluid is described
by particle distributions that move on a fixed lattice. Particle distributions move
with a probability according to their current state from lattice site to lattice site.
Particle distributions occupying the same lattice side, exchange momentum and
mass, mimicking a collision of particles according to a Boltzmann transport
equation. The method does conserve energy and momentum. However, no
noise is introduced and the construction of the lattice can be complex especially
for complex geometries.

In dissipative particle dynamics, the fluid is described by a Boltzmann gas
model: Additional interactions give raise to hydrodynamic interactions. They
are modeled as soft and finite interactions between fluid particles. For each
pair of particles within a cut-off range a friction, a conservative and a random
force are applied. The particles can be considered as the center of mass motion
of a small volume of fluid. By conserving momentum and number of particles
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the particle distribution field couples to a continuity equation and therefore
can be tuned to simulate hydrodynamic transport.

In multi-particle collision dynamics, presented in section 2.3.3 in detail, the
fluid is again described as gas with modified collision rules. Particles move
freely in the streaming step. Space is divided in boxes of equal size on which
scale particles interact by exchange momentum. The momentum exchange is
defined by a collision rule from which the transport properties of the fluid can
be derived.

2.3.2 Tensor-based Hydrodynamic Simulations

In the tensor-based modeling approaches, hydrodynamic interactions between
the water molecules and the beads are incorporated via a modified mobility
matrix and a noise term, that includes the integrated momentum exchange
between the thermal fluctuating water molecules and the bead. The flow field
u(r, t) is composed of the forces the beads exert on the fluid, because the
average velocity of the thermal fluctuations is zero. The linear nature of the
Stokes equation allows to calculate the flow field from a superposition of the
forces of the beads, according to Eq. (2.19). The particles, described by Eq.
(2.29), now move relatively to the fluid, yielding:

dri

dt
=←→µ0 Fi +u(r, t)+δF(t)

= ∑
j

←→
µ (ri,r j) F j +δFi(t), (2.32)

where the hydrodynamic interactions between particles are incorporated by
extending the mobility matrix:

←→
µ (ri,r j) = δi, j

←→
µ0 (ri)+(1−δi, j)

←→
G (ri,r j). (2.33)

The hydrodynamic interactions introduce correlations in the mobility matrix
between beads. These correlations have to be reflected in the correlations
of the noise, according to the fluctuation dissipation theorem. The noise is
not Gaussian anymore, but is “colored” by the mobility matrix, rendering the
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generation of the noise significantly more complex:

⟨δFi(t)⟩= 0 (2.34)

⟨δFi(t)δF j(t ′)⟩= 2kBT ←→µ (ri,r j) δ (t− t ′)δi j, (2.35)

The integration is performed in four steps to exploit symmetries of the hydro-
dynamic interactions:

1. Calculating the conservative forces according to the current position and
time of each bead.

2. Determine the only position-dependent mobility tensor for the entire
system←→µ

3. Cholesky decomposition of the mobility matrix to “color” the noise

4. Move the particles according to brownian dynamics (Eq. 2.32)

The first two steps depend on the position of each bead, whereas the last step
boils down to a multiplication of the mobility matrix←→µ ∈ R3N×3N with the
combined force vector Fg ∈ R3N .

The combined force vector simply concatenates the forces acting on all parti-
cles. The mobility matrix←→µ describes the hydrodynamic interactions between
all particles. Since these interactions are symmetric, the mobility matrix is
symmetric as well µi j = µ ji. An additional symmetry for open systems is
µ

αβ

i j = µ
βα

i j . These symmetries allow to simplify the construction of the mo-
bility matrix and the time-consuming matrix multiplication, which is needed to
move the particles. The interaction tensor

←→
G (ri,r j) depends on the boundary

conditions. The tensor, used in this work, describes open boundaries (Eq. 2.14)
or motion closed to a surface (Eq. 2.15). Since the generation of the correlated
noise is computationally expensive, the simulation performed in this work
is done at the zero temperature, i.e. without noise. For simulations where
noise has to be considered multi particle collision dynamics (MPC) simulates
hydrodynamic with noise in a computational affordable manner, as explained
in section 2.3.3 in detail.

For simulations it is useful to introduce the following nondimensionalized
units: r→ r/ra and F → F/F0, where F0 is a typical force scale of the system
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and ra the radius of the beads used to model the microswimmer. The self-
mobility of the beads given by (Eq. 2.18) sets the time scale of the simulation
t→ tµ0F0/ra.

2.3.3 Multiparticle Collision Dynamics (MPC)

Multi particle collision dynamics (MPC) is a meso-scale, particle based simu-
lation method allowing for highly parallelized, efficient simulations (G. Gomp-
per et al., 2009; Malevanets and Kapral, 1999; Ripoll, Mussawisade, et al.,
2004). The fluid consists of an ensemble of point particles of mass mMPC.
Successively, in each time step, a collision and streaming step is performed.
In the streaming step, each particle moves freely with its current velocity.
Instead of calculating the collisions of each particle, particle interactions are
coarse-grained by introducing a box grid, that splits the simulation box into
equal boxes of edge length a. Particles in one box collide collectively, hence
the name “multi particle collision dynamics”.

Particles interact in the collision step, shown in Fig 2.2 . Particles in a given
box exchange momentum by applying a unitary transformation R to their
relative velocities:

v′i = ū(t)+←→R (vi(t)− ū(t)) , (2.36)

where u(t) is the center of mass velocity of all particles in the box. The unitary
transformation ensures that momentum per box is conserved. There are several
choices for

←→
R leading to different transport coefficients. Here, SRD is used,

where a collision rotates the relative velocities in each box around a randomly
chosen axis. A point on the unit sphere defines the random axis in three
dimension. Two random numbers, φ ∈ [0,2π] and u ∈ [−1,1], describe an
equal distribution of random points on the unit sphere. In each simulation step
a rotation axis per box has to be chosen randomly.

←→
R is the rotation matrix

around this axis with a fixed angle αMPC = 130◦.

In the following streaming step fluid particles move freely with the new
velocity v′. No interactions between fluid particles happen during the streaming
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time step time τMPC:

ri(t + τMPC) = v′i(t)τMPC. (2.37)

Due to the small mean free path length τMPC
√

kbT/mMPC a particle interacts
several times with the same surrounding particles, which introduces correla-
tions due to the boxing. A shift of the boxing grid at each time step restores
Galilean invariance (Ihle and Kroll, 2003). The boxing grid is shifted by a
value between 0 and a in each dimension.

The collision step introduces noise and long-range hydrodynamic correlations
between particles. The viscosity of the fluid due to the kinematic and collision
contributions η = ηkin + ηcol and the diffusion constant D depend on the
collision step, the mpc time step and the particle density ρ of the fluid and are
given by:

ηkin

ρkbT τMPC/2mMPC
=

5ρ

(ρ−1+ e−ρ) (2− cos(αMPC)− cos(2αMPC))
−1

ηcol

ρa2/τMPC
=

ρ−1+ e−ρ

18ρ
(1− cosαMPC) , (2.38)

D
kbT h/2mMPC

=
3ρ

(1− cos(αMPC))(ρ−1+ e−ρ))
−1. (2.39)

In this work all simulations use a particle density of ρ = 10a−3 particles per
box, a streaming time step τMPC = 0.05

√
kbT/(ma2) and a MPC box size

of a = 1. Since particles move much less than a box size per streaming step
transport is dominated by the collision step which ensures fluid like behavior.
Assuming thermal equilibrium with a mean velocity scale of v2 ≈ kbT/mMPC,
the mean free path length follows as 0.05

√
kbT/mMPC.

The momentum transfer between beads of the microswimmer and the fluid
particles is done by including them in the collision step. The mean velocity of
each box is calculated by adding the momentum of fluid particles and beads of
the swimmer in the box and dividing it by the total mass in the box. Beads have
a mass of five times the mass of the fluid particles: mMD = 5mMPC. Integration
of swimmer dynamics continues to follow Newtonian dynamics, integrated via
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α
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3) 4)

Figure 2.2 MPC algorithm - Sketches of the MPC steps in a box: 1) Subtract
center of mass velocity (red arrow) from all particle velocities in the box (black
arrow). 2) Rotate relative velocities (green arrow) by collision angle αMPC.
3) Adding the center of mass velocity to the rotated relative velocities (blue
arrow) leads to the final velocities (gray arrow). 4) Particles are translated
along the new velocity direction in the streaming step.
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Eq. (2.27) with the modification of using the bead velocity vi with the updated
velocity after the collision step v′ every τMPC in the position integration step.

For the simulation of sperm swimming under confinement (section 3.1) a
slightly different approach to determine the random axis of rotation is used.
Here the rotations axis is chosen only from the six coordinate axes (±x,±y,±z),
which reduces the determination of random numbers to only one per box and
time step.

Thermostats

The periodic motion of the microswimmer transfer energy into the fluid, which
increases the fluid temperature over time. Therefore, a thermostat is needed to
keep the fluid at a constant temperature T0 by taking heat out of the system.
Several different thermostats for MPC have been proposed (Huang, Varghese,
et al., 2015).

The global thermostat re-scales the velocities of all fluid particles according
to the desired temperature T0:

kbT =
1

3N

N

∑
i

miv2
i

vi→
√

T0

T
vi (2.40)

The global scaling introduces a difference in the density, distribution of fluid
particle velocities and energies along the profile of a Poiseuille flow (Huang,
Chatterji, et al., 2010). A box based rescaling of velocities overcomes this
problem. The approach of a kinetic thermostat is to re-scale the relative
kinetic energies per box according to their equilibrium distribution. Since the
relative velocities in each box follow the Maxwell-Boltzmann distribution, the
distribution of their kinetic energies P(δE) can be derived as being gamma
distributed, which depends on the (desired) temperature and the degrees of
freedom in the system.
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δE =
1
2 ∑

i
mi(vi(t)−u(t))2 (2.41)

After drawing a desired energy value δE ′ from the gamma distribution, the
velocities in each box are re-scaled by the square root of the difference of the
measured and desired energy:

vi→
√

δE ′( f ,T )
δE

vi. (2.42)

In each time step the desired kinetic energy E ′ is drawn from P(E ′;T, f ) for
each box, where T is the desired temperature and f = 3 (n−1) is the number
of degrees of freedom for the relative motion of n particles in the box.

The single sperm cell simulation (chapter 3) uses the global thermostat. For the
multi-ciliated sphere simulation (chapter 4), which induces a greater amount
of energy and local momentum into the fluid than the single sperm cell, the
kinetic thermostat is used to regulate the temperature more strictly.

Slip and No-Slip Boundaries

Boundary conditions impose conditions on the flow field. The velocity com-
ponent normal to the surface vanishes, since no flow through the surface is
possible. Slip is the flow tangential to the surface. A no-slip condition allows
no relative motion between the surface and the fluid whereas a perfect slip
boundary condition does not restrict the tangential velocity of the fluid along
the surface. In the co-moving reference frame of the surface, the Dirchlet
boundaries can be stated in the following from:

n(r) ·v(r)|r=surface = 0 (slip), (2.43)

v(r)|r=surface = 0 (no-slip), (2.44)

where n is the normal vector of the surface.

In MPC a no-slip boundary is implemented by a bounce back of the particle
that is hitting the surface. If a particle crosses the boundary in the streaming
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step, its velocity is inverted exactly at the impact point, bouncing it back to
the correct side of the boundary. Additionally, ghost particles of zero average
velocity are filled into each MPC box that contains parts of the boundary
until the particle density ρ is reached. This suppresses density fluctuation
and improves the zero velocity constrain in the box describing the no-slip
surface. Since hydrodynamic is resolved on the box level, it has been shown
that these added ghost particles provide the main contribution of the enforced
zero velocity constrain of the no-slip boundary condition. A slip boundary
is implemented by simply reversing the velocity component normal to the
surface.

No-Slip Boundary Conditions for Sperm Cells in Micro Channels

For complex boundaries the bounce-back of the no-slip boundary is simplified.
Instead of calculating the exact intersection between the trajectory of the fluid
particle and the wall, the velocity of the particle hitting the wall is inverted at
the position before it crosses the wall, i.e. the bounce back is done in a layer of
thickness v ·n τMPC, where v ·n is the particle velocity normal to the surface.
The error introduced here is small, since the fluid velocities are of the order of
one and therefore the thickness of the layer is≪ 1.

2.4 Axoneme Model

2.4.1 Introduction

In spirit of minimalistic modeling, the focus here lies on these essential features
of the beat pattern of sperm cell flagella and the cilium. In the coarse-grained
approach the beat shape is described by a semi-flexible filament. Here, two
models are presented to discretize the three-dimensional filament structure and
couple its internal dynamics to hydrodynamics.
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2.4.2 Sperm Model

Although the specific structure of sperm cells differs a lot across species they
follow a common shape. The genetic material is located in a relatively big
head, which is pushed through the fluid by the much smaller flagellum. The
pusher-type swimmer with a spherical head and beating flagellum is described
by a sperm model based on Elgeti, Kaupp, and Gerhard Gompper (2010),
which demonstrated realistic trajectories in bulk and close to planar walls. The
head of the sperm cell is approximated by a sphere of radius rh = 2 a that
is modelled by Nb = 163 beads with one bead in the center and 162 beads
uniformly covering the surface of the sphere. All surface beads are connected
to their next neighbors forming a triangulated dense mesh. They are as well
connected to the center bead. The flagellum is constructed out of four semi-
flexible filaments and is connected by stiff springs to the spherical head so
that it can still rotate around its central axis e. The first bead of each filament
is connected to the center bead, while the fourth bead of each filament is in
connection to the closest bead on the surface of the sphere.

The four filaments (0,1,2,3) mimic the flagellum structure (Fig. 2.3). They are
arranged in a rhombic cross section with a side length equal to the bond length
lb = 0.5 a. Each filament consists of N f = 100 beads which are connected by
stiff springs. This results in a total flagellum length L = 25 rh composed of 49
segments. The beat pattern is imposed along the flagellum by changing the
bond lengths of the two active filaments 0 and 2 l0,2

i , whereas the bond lengths
of filament 1 and 3 are kept constant at the bond-length value lb. The passive
filaments stabilize the structure. Two passive and two active filaments oppose
each other rendering the structure symmetric with respect to the center of the
cross section. To stabilize the structure the beads are connected by additional
springs: five springs within the cross section and two springs for four of the
face-diagonals between successive cross sections. Four cross-section springs
connect the four beads within a cross section with their two closest neighbors.
Additionally, they connect the two beads belonging to the passive filaments (1-
3). Finally, two cross-segment springs along the diagonals between successive
cross sections stabilize the three-dimensional structure. Eight additional cross
springs are added for the four outer faces 0-1, 1-2, 2-3 and 3-0. The face 1-3
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between the two passive filaments is as well connected by two cross springs to
stabilize the structure.

The beat shape is imposed along the filament by changing the bond length of
the active filaments l0,2

i = lb±δ li, where the arc length parametrization along
the filament s is discretized per segment, i.e. s = lbi. A sinusoidal beat shape is
imposed along the flagellum by δ l(s, t) = A sin(2π/λ s−ωt), where s is the
arc-length position along the filament, A the amplitude, λ the wavelength and
ω = 2π/τb the frequency (period) of the beating activity. In order to include
the stiff-neck part of the flagellum, the bond length for beads below i < 10 is
not changed. Diagonal springs connection active (0-2) and passive filaments
(1-3) are adapted as well.

The bond-length difference between the two active filaments, which are sep-
arated with a normal distance of lb sin(π/3), creates an equilibrium in-plane
curvature of the filament κ(s, t) = (l2

b sin(π/3)−1δ l1,2(s, t). The local tangent
angles Ψ describes the orientation of the filament in the beat plane. In the
limit of zero beat frequency ω = 0, the angle of the local tangent relates to
the curvature by Ψ(s) =

∫ s
s0 κ(s′)ds′, where s0 is the end of the stiff neck part.

Evaluating the integral leads to

Ψ(s, t) =− Aλ

2πl2
b sin(π/3)

cos(s 2π/λ −ωt). (2.45)

Assuming a straight orientation along the x-axis and small Ψ, the maximal
beat shape amplitude above the x-axis is:

y(s, t) =
∫ s

s0
Ψ(s′)ds′ =−B0 sin(s 2π/λ −ωt) (2.46)

The beat shape amplitude scales proportional to the squared wavelength λ

(Charles J Brokaw, 1971): B0 =−A( λ

2πlb
)2 1

sin(π/3) .

For ω > 0 the difference in imposed equilibrium curvature and actual curvature
of the flagellum leads to effective torques which bend the flagellum. Since the
bending takes place along the filaments 0 and 2, the torques define the beat
plane (Fig. 2.4). The current configuration of the sperm cell is characterized
by the center of mass of the head and the three principle axes of the gyration
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Figure 2.3 Axoneme construction - (a) Three successional segments along
the axoneme are shown in the local coordinate system, described by the
principle axes of the gyration tensor e, b and p. (b) Each cross section consists
of four beads, labeled 0, 1, 2 and 3 (blue spheres) that are arranged in the same
rhomb-shaped cross section with equal side length lb. Springs connecting these
beads are shown as thin lines with a zigzag pattern. The filaments (red) 1 and
3 are passive and provide stability, whereas the filaments 0 and 2 are actively
shortened/stretched. They define the beat plane of the sperm cell. Additional
springs provide stability for the rhomb-shaped structure: five springs within
the cross section, four diagonal springs on each of the outer faces and four
diagonal springs stabilizing the passive filaments of successive cross sections.
Note that for clarity only the four diagonal springs (red) on the outer face
2-3 (yellow) between segment i+1 and i+2 and the inner face 1-3 between
segment i and i+1 are shown. Springs connecting the faces 0-1, 1-2, 2-3, 3-0
and 1-3 between all successional segments are not shown.



2.4 Axoneme Model 37

x/
r h

2

10

20

30

y/rh

-202

z/rh

-2

0

2

e

b

p

λ

B

2rh

t

Beat Pattern

Figure 2.4 Principle axes of the sperm cell - The left side shows a snapshot of
the beating sperm cell with beat shape parameters λ = 0.63 L and A = 0.05 rh
along with the orientation of the principle axes of the gyration tensor e, b
and p in the 3D lab system. rh is the radius of the spherical head. The series
of snapshots on the right shows the time development of the beat pattern
in the eb-plane. B(s, t) ≤ B0 = 5.8 rh measures the beat amplitude along b
(in-plane).
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tensor of the flagellum: e the main axis of the flagellum, b the beating direction
and p the beat-plane normal (details in A.1).

Following the theoretical calculation from Lighthill (1989) for a sinusoidal
beating axoneme the average swimming velocity scales like v ∝ B2

0 ω/λ ∝

A2 ωλ 3.

2.4.3 Ciliary Beating

The cilium model used in this work is based on the model by Elgeti and
Gerhard Gompper (2013), which shows metachronal coordination mediated
by the hydrodynamic interactions between cilia. Technically the cilium model
is based upon the flagellum model of the sperm cell described in section 2.4.2.
But now it consists of only three rods that form a triangular cross section,
i.e. rod 3 from the sperm-flagellum model is removed. The cilium is bent
by only changing the bond length of filament 0. Instead of pre-imposing the
beat pattern, as in the sperm model, the bond-length change along the active
filament δ l0

i depends on the mean curvature of the cilium and the local tension.
The length of the diagonal springs connecting the active (0) and the passive
filaments (1-3) are adapted as well, which provides structural stability for a
wide range of cilia lengths and simulation parameters. Each filament of the
cilium of length L is described by NF = L/lb beads. The first part of the cilium,
i < n0, is passive and stays at the bond-length value δ li<n0 = lb.

The beat pattern is controlled by a heuristic model that can be controlled by a
few key parameters and allows feedback to external flow. It is regulated by
making the equilibrium curvature along the cilium depended on the mid-point.
Thus, the bond length along the active filament is defined by:

δ li(t) = A
(

1− i−n0−1
NF −n0−1

)2.5

·
(

1− 1
i0− i−1

)
for i < i0−2

δ li(t) =−
2A

(i− i0)2 +1
for i≥ i0−2 (2.47)

The start and the end of the active beat pattern is defined by the arc-length
indices n0← s0/lb and n0← L/lb. The difference between power and recovery
stroke depends on the mid-point position i0. During the power stroke, the
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mid-point is set to the first point of active beating n0. It stays at this value,
until the mean curvature of the flagellum reaches the negative power-stroke
threshold QP. Then, during the recovery stroke, the mid-point i0 moves along
the cilium with a constant velocity vrecover until the mean curvature reaches
the positive recovery-stroke threshold QR.

The mean curvature of the cilium is given by:

Q = nLl2
bC =

nL

∑
i

2 ri
2− ri

1− ri
0, (2.48)

with r j
i = |r j

i+1− r j
i | is the length of the tangent vector at position i along

filament j.

The point of highest curvature is close to the mid-point i0. The beat frequency
emerges from the movement of the mid-point in the recovery stroke and the
limiting motion due to the maximum allowed force that can be applied due to
the stall force of the motors.

A mechanism simulating the stall force of dynein motors according to Elgeti
and Gerhard Gompper (2013) is implemented. This implements a Brownian
ratchet like potential for the motors. If the local tension along the filament is
above the stall threshold the bond length is not changed. However, it always
inhibits reverse motion, i.e. a change of the bond length that would lead to a
change of mean curvature away from the mean curvature threshold. Note, that
this prohibition of backwards motion and the high noise of MPC simulation
provides the main driving mechanism of the cilia beat. During the power stroke
the system acts like a Brownian ratchet that moves towards the equilibrium
curvature, whereas the recovery-stroke is mainly dominated by the speed of
the mid-point movement vrecovery.

Control parameters of the cilia beating are the length L of the cilium, the
beat amplitude A, the maximal QP and the minimal mean curvature QR, the
speed of the mid-point vrecover and the maximal force a motor can exert before
stalling. The parameters used in the simulations are summarized in Table B.1.
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2.4.4 Kirchhoff Model of Semi-flexible Filaments

The flagellum is described as an elastic filament of constant length with
three independent deformation modes. The filament can be bend along two
perpendicular directions e1 and e2 and twisted along the tangent axis e3 (Fig.
2.5). A mathematical description of this filament is given by the space-curve
r(s, t) along the center-line and its intrinsic twist, i.e. the change of the
material-frame orientation along the space curve.

However, the normal (and bi-normal) orientation of the flagellum is difficult
to measure experimentally. Without a normal orientation, the Frenet frame
mathematically defines a normal orientation consistently along the space-curve.
In general, both frames describe a rotation along the space curve. This allows
to introduce internal twist along the filament to discuss the relation between
the Frenet frame orientation and the material frame orientation. In the second
part of this section the Hamiltonian for the elastic filament is presented which
is used to simulate sperm like beat patterns.

The Frenet frame of the curve r(s, t) is defined by choosing the frame so that
n and m are oriented in such a way that the out-of-plane curvature is zero.
The normal orientation follows from the derivative of the tangent vector t
and the bi-normal m = t×n follows by enforcing a right handed orthogonal
coordinate system. The change of the Frenet frame along the space curve is
given by the Frenet equations:

dt
ds

= κn

dn
ds

= τm−κt

dm
ds

=−τn. (2.49)

They define the curvature κ and the torsion τ of the space curve. An inversion
of these relations leads to a definition of the curvature and the twist:

κ = |dt(s)
ds
|

τ =
1
κ

dt
ds

dm
ds

(2.50)
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Figure 2.5 Space curve with material frame - Coarse-grained flagellum
model with space curve r(s) and local reference frame e1(s),e2(s),e3(s) (from:
Hilfinger (2006)).

The right-handed local coordinate system e1(s, t),e2(s, t),e3(s, t) describes the
orientation material frame along the curve r(s, t)(Fig. 2.5). It relates to the
Frenet frame by pointing e3(s, t) along the tangent vector. The perpendicular
vectors e1(s, t),e2(s, t) define the local cross section through the material.

The register ζ defines the intrinsic twist, i.e. how much the local material
frame is twisted with respect to the Frenet frame:

n(s) = cosζ e1− sinζ e2

m(s) = sinζ e1 + cosζ e2

t(s) = e3(s) (2.51)

For ζ = 0, the normal vector n is parallel to e1 and the bi-normal vector is
parallel to e2. Therefore, the local material frame follows the Frenet curve.

Locally, the change of orientation or angular velocity of the material can be
decomposed as a rotation around each of the three local coordinate axes ei.
The two local curvatures Ω1 and Ω2 and the twist Ω3 are given by the change
of the coordinate axis with respect to the arc-length. The Darboux vector
Ω = ∑i Ωiei defines a pseudo vector for the angular velocity of the material
frame. Infinitesimally small changes of the orientation relate to rotations
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around the material frame axis by Ω× ei = ∑ j ∂Ω jR(Ω j|e j) ei = ∂ei/∂ s:

∂s

e1(s)
e2(s)
e3(s)

=

 0 Ω3(s) −Ω2(s)
−Ω3(s) 0 Ω1(s)
Ω2(s) −Ω1(s) 0


e1(s)

e2(s)
e3(s)

 . (2.52)

The curvature κ(s, t) and the torsion τ(s, t) of the space curve in the Frenet
frame following Eq. (2.50) are given by:

κ = |dt(s)
ds
|=
√
(Ω1)2 +(Ω2)2, (2.53)

τ =
1
κ

dt
ds

dm
ds

= Ω
3−ζ . (2.54)

The infinitesimal rotation of the material frame around its three main axes
relates to the Frenet frame by inverting Eq. (2.54) for the torsion and using the
intrinsic twist ζ to project the curvature onto the axis of the material frame.

Ω
1(s, t) = κ(s, t)sinζ (s, t)

Ω
2(s, t) = κ(s, t)cosζ (s, t)

Ω
3(s, t) = τ(s, t)+

dζ

ds
(s, t) (2.55)

The elastic energy integrated along the elastic flagellum is given by:

H =
1
2

∫ L

0
K1 (Ω

1(s, t)−Ω
1
0(s, t))

2

+K2 (Ω
2(s, t)−Ω

2
0(s, t))

2 +K3 (Ω
3(s, t)−Ω

3
0(s, t))

2ds, (2.56)

with two bending rigidities K1, K2 and twisting rigidity K3. The rod can be
bent along the two perpendicular axes and twist along its center-line. Ωi

0

define the equilibrium configuration of minimal energy, and determine the
equilibrium shape of the filament.

Considering a Frenet curve whose torsion and curvature is known, the material
frame has an additional degree of freedom: the intrinsic twist proportional to
dζ

ds . Considering a desired space curve, several realizations are made possible
by rephrasing the Hamiltonian in terms of curvature, torsion and intrinsic
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twist:

H =
1
2

∫ L

0
K1 (κ sinζ −κ0 sinζ0)

2 (2.57)

+K2 (κ cosζ −κ0 cos0 ζ )2

+K3

(
τ +

dζ

ds
− τ0 +

dζ0

ds

)2

ds

Assuming a straight equilibrium shape of the filament (Ωi
0 = 0) this simplifies

to:

H =
1
2

∫ s

0
K1 (κ sinζ )2 (2.58)

+K2 (κ cosζ )2

+K3

(
τ +

dζ

ds

)2

ds

Several models in the literature implement this Hamiltonian in a numerically
stable way (Hilfinger, 2006; Vogel and Stark, 2012). For the approach used
here the coupling to hydrodynamics is important. Therefore, the model is
based on the work of Hu et al. (2015). The flagellum model implements this
Hamiltonian using a discretized and numerically stable approach (Fig. 2.6). By
explicitly modeling the local coordinate system along the filament by beads,
the bending and twist deformation for all configurations are well defined
and can be easily coupled to MPC simulations. Beads are placed along the
center-line separated by a bond-length distance lb. Eventually, the arc-length is
discretized by the transition Ωq(s, t)→Ω

q
i (t) for q ∈ (1,2,3). Four additional

beads standing normal on the bond vector between two beads on the center-line
form an octahedron-shaped segment that allows to define the local orientation
eq along the entire filament. The five beads forming each segment are kept
in the octahedron shape by strong springs. Using Eq. (2.52) the infinitesimal
rotations Ω

q
i can be obtained from the current configuration of the filament

in the local coordinate system. Then, the force acting on each bead of the
segment can directly be obtained from the discretized version of Eq. (2.56).

The torques applied by molecular motors along the axoneme are included in
the model by changing the equilibrium curvatures Ω

q
0 accordingly. Throughout
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Figure 2.6 Discrete flagella model - Two segments of the discrete flagella
modeled are shown. The orientation of each segment is described by the
material frame e1

n(s),e2
n(s),e3

n(s) which is modeled by the four beads in +1,
in +2, in +3, in +4. Curvature and twist along the center-line can be derived
from the orientation of the explicitly modeled material frames. The 12 springs
ensuring the perpendicular orientation of the material frame with respect to
the center-line are not shown. (from: Hu et al. (2015)).

this work motor activity is assumed to generate torques in only one bending
mode, leading to the following equilibrium configuration of

Ω
1
0(s, t) = Tactive(s, t)/K1

Ω
2
0(s, t) = Ω

3
0(s, t) = 0. (2.59)
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2.5 Mobility Coefficients of a Sphere, Rod and
Beads

The mobility of fluid and MD particles in MPC simulations is calculated
and compared to theoretical predictions, followed by the measurement of the
mobility of a sphere, in order to determine its hydrodynamic radius. Since the
diffusion constant is related to the mobility µ0 by the fluctuation dissipation
theorem, the mobility of a particle in a heat bath of temperature T can be easily
obtained from the diffusion of a particle:

D = kbT µ0. (2.60)

Therefore, a straightforward way to measure the diffusion constant D, used
here, is to calculate the mean-squared-displacement of a diffusing particle:

⟨(r(t + τ)− r(t))2⟩t = 2 f Dτ = 2 f kbT µ0, (2.61)

where f is the number of degrees of freedom the diffusive particle can move
along. In MD simulations the mobility is explicitly set, whereas in MPC sim-
ulations the mobility coefficient results from the collision step and therefore
depends on a complex combination of simulation parameters. An analytic
expression for the Brownian contribution can be derived (Ripoll, K. Mussaw-
isade, et al., 2005):

µ0,BD =
τMPC

mMD

(
1
γD
− 1

2

)
, (2.62)

where γD is the decorrelation factor:

γD =
2
3
(1− cosα)

mMPCρ

mMPCρ +mMD
(2.63)

However, the diffusion is significantly enhanced due to hydrodynamic inter-
actions, which are missing in this approximation. Therefore, the mobility
of an embedded colloids is determined by measuring their mean-squared
displacement and by using Eq. (2.61). Mobility values are summarized in
Table 2.1 and agree well with the theoretical mobility of a fluid particle, given
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Table 2.1 Mobility coefficients in MPC for different shapes and particles
masses.

Shape rs/a mass / mMPC δc Mobility µ0/µ
f l

0,th rhd [a]
particle (fluid) - 1 – 1.185±0.0002 0.12
particle (MD) - 5 0.552±0.003 0.23
sphere 2 815 0.54 0.0609±0.0002 2.1
sphere 4 815 0.13 0.0465±0.0002 2.7
sphere 4 3215 0.53 0.0328±0.0008 3.8

by Eq. (2.39) as µ
f l

0,th = 0.0257
√

a2/(kbT m). The mobility for the MPC-
simulation parameters used in this work (section 2.3.3) deviates from the
Brownian approximation by (µ0−µ0,BD)/µ0,BD = 0.63 .

In MPC, a single particle has no inherit size. However its hydrodynamic radius
can be defined from Stokes law (Eq. 2.18) by measuring its self mobility
ra = (6πηµ0)

−1. MD particles have a corresponding hydrodynamic radius
ra = 0.23 a, justifying the chosen bond-length of lb = 0.5 a to model the
flagellar structure (section 2.4).

The mean-squared displacement of an embedded MD particle and spheres of
radius rs = 2 a and rs = 4 a (Fig. 2.7) allows to define the hydrodynamic radius
rHD of the spheres via Eq. 2.18 . The radius of the sphere should roughly match
the measured hydrodynamic radius if the density of MD-particles describing
its surface is high enough. The coverage of the spherical particles via beads is
calculated by:

δc =
Nbπr2

a

4πr2
s
, (2.64)

where rs is the sphere radius, ra the hydrodynamic radius of an MD bead and
Nb the number of beads covering its surface. As seen in table 2.1, a good
approximation of the theoretical Stokes friction is achieved for δc > 1. Detailed
studies show that for too large bead coverage additional inertial effects occur
(Poblete et al., 2014) which might explain the slightly larger hydrodynamic
radius obtained for the densely covered small sphere.
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Figure 2.7 Mean-squared displacement - Mobility coefficients for a MD-
bead and spheres of different radii, modeled by triangulated particle meshes,
are obtained from a linear fit to the mean-squared displacement of the fluctuat-
ing motion, due to the thermal noise in the MPC fluid.

Long, thin and stiff filaments, called rods, provide a simple test for the accu-
racy of the simulation methods, since the drag resistance can be compared to
theoretical results. Here, the filament is simulated using tensor-based hydrody-
namic simulations (section 2.3.2). In a similar setup the match to theoretical
anisotropy values of the filament model for MPC simulations has been shown
by Elgeti and Gerhard Gompper (2008). The computational model for the
filaments is described in section 2.4.4. The filament has a size of L = 80 ra and
a height of d = 4 lb which results in a very small aspect ratio of d/L = 0.05.
In the very stiff regime (K1 = K2 = K3 = 100000 /(F0r2

a)) with a straight equi-
librium configuration (Ω0

i = 0) internal modes of the filament are suppressed.
The filament is aligned along the x-direction. It gets dragged by total force
F = 0.1 F0 either in x or y direction. The mobility coefficients of the rod
depend on the dragging direction. By measuring the corresponding velocities,
the mobility coefficient for a movement parallel µR,∥ and perpendicular µR,⊥

to the length axis can be obtained:
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Figure 2.8 Dragged filament - Tensor-based hydrodynamic simulations of a
filament which is dragged parallel and perpendicular to its main axis. Drag
coefficient agree very well with theoretical predictions (dashed lines).

dx
dt

= µR,∥F∥ (2.65)

dy
dt

= µR,⊥F⊥ (2.66)

(2.67)

Figure 2.8 shows the center-of-mass displacement. The mobility µR,∥ of the
filament is about 1.45 times larger when the filament is dragged along the
parallel direction (x-axis) than the mobility µ⊥ in perpendicular direction
(y-axis). Theoretical predictions (Löwen, 1999):

µr R,∥= log(L/d)+0.839+0.185 d/L+0.233 (d/L)2

2 µr µR,⊥ = log(L/d)−0.207+0.980 d/L−0.133 (d/L)2,

with µr = 2πηL, (2.68)

agree very well with the simulation results. Note the strong effect of finite
sized rods, due to the log scaling. In the limit of infinite small rods d/L→ 0
parallel mobility is twice the perpendicular mobility µR,∥ = 2µR,⊥.



Chapter 3

Sperm Cells

3.1 Sperm in Microfluidic Channels

3.1.1 Introduction

For fertilization mammalian sperm cells pass through the narrow windings
of the Fallopian tube. Microfluidic devices that recapitulate these confined
environments allow in-vitro experiments and provide an insight in surface
attraction mechanisms of sperm. The simulation approach presented here
shows a way to interpret these experiments and eventually understand the
mechanisms of sperm guidance along surfaces.
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Here I start with a studying how the beat pattern influences surface attraction
in planar narrow channels. This is followed by simulation of sperm trajectories
in channels with periodically modeled side walls, that closely resemble the
pattern of channels used in recent micro-fluidic experiments on sperm (Denis-
senko et al., 2012). A visualization of such a zigzag channel is shown in an
artful fashion at the beginning of the chapter. These simulations reproduce
experimental results, which allow to develop a minimal, steric model that
captures the average deflection of sperm around rectangular corners. Finally,
attraction towards curved surfaces for planar and nonplanar beating flagella
are studied.

Sperm simulated in this chapter use an imposed curvature amplitude A =

0.05 rh (section 2.4.2), whereas beat frequencies ω and imposed wavelength
λ are varied. The fluid is simulated using MPC hydrodynamic simulations
(section 2.3.3).

3.1.2 Wavelength-dependent Surface Attraction

The surface attraction of sperm depends on the flagellar beat shape and the
shape of the head. Here, the relation between flagellar beat shape and surface
attraction for a rectangular channel is studied. It is shown, that the beat shape-
envelope depends on the wavelength λ , which directly affects the surface
attraction of sperm.

The beat pattern of freely swimming sperm is simulated using the sperm
model presented in section 2.4.2. Hydrodynamic interactions are included
using MPC in a simulation box of size Lx = 70 a, Ly = 70 a and Lz = 70 a
with periodic boundaries in x, y and z-direction. Sperm with two different beat
frequencies ω = 0.05

√
kBT/(am2) and ω = 0.1

√
kBT/(am2) are simulated.

Figure 3.1 shows the projection of the beat pattern for different wavelengths
λ and ω = 0.1

√
kBT/(am2) onto the principle axis of the gyration tensor

(appendix A.1).The beat-shape envelope is quantified by two opening angles:
the in-plane opening angle δb(t) and the out-of-plane opening angle δp(t).
They are defined by the opening angles of the triangle in the corresponding
projection, which covers the beat pattern. The triangles are constructed by
finding the maximal elongation along the b- and p-direction on both sides of
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scm, which defines the arc-length position that splits the sperm in two parts of
equal mass:

tanδb(t) =
maxs′′ B(s′′ > scm, t)−maxs′ B(s′ < scm, t)

E(s′′, t)−E(s′, t)
, (3.1)

where s′,s′′ are the arc-length positions where B(s) is maximal. Doing the
same for the minimum results in the upper and lower bounds of the opening
angle δb. Because both bounds have the same value with opposing sign, due
to the axis symmetry of the beating pattern, the opening angle can be defined
by taking the mean of their absolute values. Finally, the time dependence is
omitted by averaging over several flagellar beats.

Figure 3.2 quantifies the increase of δb with an increase of wavelength λ for
both beat frequencies. When the wavelength increases above a threshold of
λ = 0.79 L, the flagellum buckles under the load of the viscous forces and
exhibits an out-of-plane component, leading to a complex three-dimensional
beating pattern (which will be considered in more detail for human sperm
cells in section 3.2). The torque generated by the in-plane beat along the
flagellum is counter-balanced by the head (Friedrich et al., 2010), leading also
to an oscillation of the head orientation relative to the flagellum. In the planar
beating regime (δp < 0), the in-plane opening angle δb increases linearly
with the wavelength. For slow beating sperm (ω = 0.05

√
kBT/(am2)) it

increases with δb(λ ) = 30◦ λ/L−6◦, whereas it increases slightly slower for
fast beating sperm (ω = 0.1

√
kBT/(am2)) with δb(λ ) = 27◦ λ/L−6◦. The

out-of-plane opening angle δp behavior depends on the beat frequency. For
the slow beating sperm the out-of-plane opening angle increases, while the
in-plane opening angle stays constant, whereas for the faster beating sperm
cell the out-of-plane opening angle increases non-linearly, almost like a short
ramp. In the intermediate regime between λ = 0.7 and λ = 0.79 both the
in-plane and the out-of-plane opening angle increase. Although this needs
further investigation, in this section, I will focus on the effect of the beat-shape
envelope on the surface attraction in close confinements.

Surface attraction is studied in an infinite planar channel by enforcing two no-
slip boundaries in z-direction at z = 0 and z = 24.5 rh and therefore reducing
the simulation box dimension in z to Lz = 24.5 rh. Trajectories of a sperm,
beating with different wavelengths and beat frequency ω = 0.1

√
kBT/(am2),
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Figure 3.1 Beat shape envelopes of sperm - Snapshots of the beating pat-
tern (ω = 0.1

√
kBT/(am2)) are projected on the three principle axis of the

gyration tensor e(main elongation), b (in-plane beating) and p (out-of-plane
beating) colored from dark to light green with increasing time. Each row
shows the beat-pattern for an imposed wavelength λ and the resulting opening
angles δb (in-plane), δp (out-of-plane). Black lines indicate the corresponding
beat-shape envelope. Note the increasing in-plane shape asymmetry with
increasing wavelength λ , that leads to a buckling of the filament, which results
in an out-of-plane beating component along the p-axis.
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Figure 3.2 Opening angles of the beat shape - The in-plane opening angle δb
of the beat-shape envelope increases linearly with wavelength λ until the out-
of-plane opening angle δp starts to increase (λ ≥ 0.79 L). Error bars indicate
the standard deviation when averages over several beats. The increase of the
in-plane opening angle for the slower beating sperm (a) is δb/λ = 30◦/L,
whereas the increase of the faster beating sperm (b) is slightly less steep with
δb/λ = 27◦/L. Note, that only the faster beating sperm shows an intermediate
regime with linear increasing out-of-plane component δp between λ = 0.7
and λ = 0.79.
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Figure 3.3 Sperm trapping - The trace of trajectories of the head of the sperm
cell, swimming in a narrow channel of height h = 24.5 rh, is projected into
the xz-plane with periodic boundaries along the x-direction. At the transition
from planar to three-dimensional beating the buckling (λ = 0.75 L) of the
flagellum leads to curved trajectory, which traps the sperm cell. Sperm with
larger out-of-plane beating (λ = 0.9 L) as well as planer beating sperm cells
(λ = 0.63 L) attach to the channel boundaries and swim along them.

are shown in Fig. 3.3. Sperm tend to attach and swim along surfaces for
λ < 0.57 L. Only sperm at the transition between planar and three-dimensional
beating at wavelengths between λ = 0.7 L and λ = 0.79 L, detach regularly
and commute between both sides of the channel. Because sperm swim on
circular trajectories, they are trapped in a small segment of the channel.

The surface attraction of sperm swimming with a particular wavelength is
quantified in Fig. 3.4. When sperm move more than 4 rh away from the
surface, this is called a detachment event. If sperm reach the opposite plane
this is counted as a crossing event. Since crossing and detachment events are
rare, they can be modeled as a Poisson process. This allows to calculate the
95%-confidence interval of both rates from the total number of events that
occurred within the simulation time.

In the planar regime, the detachment rate is not affected by the change in
wavelength. The rate fluctuates around a constant of 0.025 detachments per
beat period, which corresponds to a detachment event for every 400 beats.
None of the detachments lead to a crossing of the channel. In all cases,
sperm quickly reattach to the same surface. The out-of-plane component
increases detachment and crossing rates significantly up to a value of 40 beats
per channel crossing for λ = 0.79 L. A further increase of the wavelength
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Figure 3.4 Wavelength dependent surface attraction - The surface attraction
of sperm cells is quantified by the number of detachment events, the head of
the sperm cell surpasses a distance from the channel wall d > 4 rh (red) and
the number of successful crossings of the channel (green). Error bars mark the
95% confidence-interval assuming an underlying Poisson process.

λ ≥ 0.90 L decreases the crossing rate to zero crossing within the simulation
time.

The detachment rate affects on the overall probability distribution of the center-
of-mass of the sperm head at a certain distance from the surface (Fig. 3.5). In
the range of no channel crossings, the sperm cell swims along the sidewall
at a distance between 2 and 4 rh. For very high wavelength, λ ≥ 0.90 L, the
three-dimensional beat pattern pushes the head even more closely towards
the wall, resulting in an even stronger attraction by the surface. Between
λ ≥ 0.57 L and λ ≤ 0.79 L, the probability distribution widens. Surprisingly,
the average distance is largest for λ = 0.63 L, where detachment events
are rarely observed. Due to the very small out-of-plane component at this
wavelength, the inclination angle at which the sperm cell detaches from the
surface is smaller than the cases with larger wavelength and out-of-plane
component. In the oscillating cases, the sperm cell is almost reflected at the
surface, escaping the surface almost perpendicular.

The out-of-plane component directly influences the rate of detachment of
sperm from the surface. In the regime of almost constant out-of-plane compo-
nent λ ≥ 0.57 L, the detachment rate is constant as well. If sperm manage to
detach, the flagellum is oriented away from the surface, thereby leaving the
stable orientation of the planar beat parallel to the surface. However, sperm
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Figure 3.5 Wavelength dependent sperm distribution in a planar channel
- The wavelength of the beat pattern highly influences the probability to find
sperm at a certain distance d from one of the two surfaces of a channel with
height h = 24.5 rh. The box plot indicates the probability distribution of d
by the 25% and 75% percentile, the mean and the minimum/maximum value
(whiskers).

need to propel fast enough to escape the hydrodynamic attraction of the sur-
face. Although the origin of the parallel orientation of the beat plane with
the surface is not completely understood, the computer simulation shows that
sperm, when approaching surfaces, align their beat plane with the surface. It is
thus plausible, that the presence of an out-of-plane beating component heavily
influences surface attraction.

3.1.3 Rectangular Corner Deflection

The deflection of sperm swimming along the side-wall of a zigzag channel
with a γ = 90◦ corner is investigated. The zigzag channel is reconstructed
with the same aspect ratio as used in the experiments performed by Kantsler,
Dunkel, Polin, et al. (2013). The cubic simulation box has the dimensions
Lx = 400 a, Ly = 400 a and Lz = 25 a with periodic boundaries along the
x-direction. The specific channel pattern is embedded in the simulation box
and limits the motion in y-direction by two sidewalls, which are separated by
a normal distance of 35.4 rh. The channel is closed in z-direction at a height
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Figure 3.6 Zigzag channel - (a) The draft shows the dimensions of the zigzag
channel: d = 75 rh, h = 12.5 rh and a sidewall length l = 100 rh. The channel
has 2l-periodic boundaries in x-direction. No-slip boundaries conditions
are enforced on all four faces of the channel. (b) Top view of the γ = 90◦

corner showing trajectories of sperm cells swimming around it (blue lines).
The deflection angle α is defined by the total deflection of the sperm cell
orientation, starting from the red rhombus above the corner until the green
rhombus when it is completely detached from the sidewall.

h = 12.5rh, leading to a narrow tunnel with a cross section of aspect ratio
2.8:1. All surfaces are no-slip boundaries. The study begins with the analysis
of sperm with planar beat pattern with an imposed wavelength λ = 0.63 L and
a beat frequency ω = 0.05

√
kBT/(am2). The channel geometry and typical

trajectories of sperm deflecting around the corner are shown in Fig. 3.6. Sperm
follow the sidewall – until they detach at the edge of the corner, cross the
channel and reorient along the opposing sidewall.

The fan of sperm cell trajectories scattering off the edge of the channel look
very similar to the experimental observations (Denissenko et al., 2012).

For a more quantitative comparison, the deflection angle α is defined the same
way as in Kantsler, Dunkel, Polin, et al. (2013). The deflection α measures the
turning of the sperm cell between the position when the center of the head is
at the edge of the corner and its position 60 beats afterwards, when the entire
sperm cell is detached from the sidewall. A change of orientation towards the
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Figure 3.7 Sperm swimming in the corner - Overlay of a sperm cell swim-
ming along the zigzag channel with parallel (green), |⟨pz⟩|< 0.7, and perpen-
dicular (red), |⟨pz⟩| ≥ 0.7 beat-plane orientation to the sidewall.

originating sidewall is defined as a positive α , whereas a turn away from the
sidewall is defined as a negative α .

The distribution of deflection angles α (Fig. 3.8) matches surprisingly well
with the experimental data (Kantsler, Dunkel, Polin, et al., 2013). The mean
deflection angle is positive, ⟨α⟩ ≈ 15◦, with a very broad distribution from
slightly negative α up to α = 45◦. Nevertheless, even for the high deflections,
the sperm cell always crosses the channel and reaches the opposing sidewall,
i.e. it never follows around the corner.

In contrast to experiments, simulations allow the observation of the beat-plane
orientation with the sidewall. As shown in earlier works (Elgeti, Kaupp, and
Gerhard Gompper, 2010), sperm orient their beat plane parallel to a nearby
no-slip wall. Therefore, sperm can either align parallel to the sidewalls or
to the top/bottom walls of the channel. The orientation of the beat plane is
described by the beat-plane normal p. Intermediate orientations of the sperm
are rarely observed. Usually it beats either parallel to the sidewall of the
channel or parallel to the top/bottom wall. Hence it is quantified as parallel
|⟨pz⟩|< 0.7 or perpendicular |⟨pz⟩| ≥ 0.7.
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Figure 3.8 Deflection angle distribution - The deflection angles obtained in
the simulations (blue) agree well with the ones obtained experimentally by
Kantsler et al. (Kantsler, Dunkel, Blayney, et al., 2014) (orange). The solid
lines show the Gaussian kernel density estimate of the underlying histogram.
The distribution of deflection angles α (right plot) separates in two distinct
distributions with respect to the beat plane orientation of the sperm cell towards
the sidewall. The average beat plane orientation parallel (perpendicular) to the
sidewall is indicated by the green (red) coloring. Note the higher deflection of
the sperm cell for the perpendicular orientation. Here, the cone-like beat-shape
envelope of the flagellum is pushing the cell further around the corner.
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Figure 3.9 Beat-plane orientation - Each dot shows the tilting angle of the
beat plane relative to the top wall, acos(pz), at a distance d to the edge of
the corner. Negative (positive) distances are before (after) the head of the
sperm cell passes the corner. The green line is a weighted spline fit of the
beat-plane orientation, given that it started with parallel orientation to the
sidewall. Note the rapid loss of stability when the sperm pass the corner and
lose the coordination with the sidewall.

The distribution of deflection angles α strongly depends on the beat-plane
orientation of the sperm cell before it has reached the corner (Fig. 3.8). The
distribution separates in two almost normal-like distributions. The parallel
beat-plane orientation results in small deflections ⟨α∥⟩ ≈ 10±5◦, whereas the
perpendicular beat-plane orientation results in large deflections ⟨α⊥⟩≈ 26±7◦.
Furthermore, when the sperm cell detaches from the sidewall with a previously
parallel orientation of its beat plane to the sidewall, it immediately reorients
its beat plane parallel to the top (or bottom) walls(Fig. 3.9). This remarkable
stability of the beat-plane orientation justifies the classification of the beat-
orientation by its orientation with respect to either the sidewall (parallel) or
the top/bottom wall (perpendicular).

3.1.4 Simple Steric Swimmer

The close proximity of the sperm cell with the sidewall suggests an important
role of steric interactions. Thus, the contribution of steric interaction to the
deflection of sperm around rectangular corners is investigated. This leads to
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the development of the cone-like swimmer model, which allows to interpret
the relationship between the deflection angle of sperm, its inclination with
respect to the sidewall and the beat-shape opening angles.

The orientation of the main elongation axis e of sperm is inclined towards the
sidewall of the channel (Fig. 3.10 a, b). This inclination of the propulsion
vector of the sperm cell provides an explanation of the steric interaction of
the sperm cell with the wall and the resulting deflection angle: An inclined
propulsion force leads to a velocity component that pushes the sperm cell
towards the sidewall of the channel. Once the sperm cell passes the edge of
the corner, it is free to move in this direction and therefore turns its swimming
direction around the corner.

A minimal model allows to capture these steric interactions with the sidewall
without the need of hydrodynamic interactions. Asymmetric swimmers com-
posed of two beads with different radii are attracted to surfaces by pure steric
interactions and self propulsion along their central axis (Wysocki, Elgeti, and
Gerhard Gompper, 2015). This model is extended to a cone-like swimmer
which is propelled with a constant force along its central axis. The minimal
model follows over-damped dynamics. It includes only steric interactions and
no hydrodynamics. The cone-like swimmer is described by two parameters:
the opening angle of the cone δ and the length of the cone L′. Cone-like
swimmers that follow the average deflection dynamics of sperm are shown in
black in Fig. 3.10 a, b.

The turning behavior of the sperm is surprisingly well captured by this simple
model when the parameters of the simple model are optimized accordingly.
Figure 3.10 (c) compares the deflection simulated by the steric model to
the full hydrodynamic sperm simulations. The average deflection dynamics
of sperm are well captured by the simple model. The cone-like swimmer
describes the average deflection for both orientations well. When the beat
plane is perpendicular oriented, an effective opening angle δ⊥ = 15◦ and a
length of L′ = 14 rh result in a deflection that matches the deflection of the
full hydrodynamic model. For a sperm with parallel orientation between the
beat plane and the sidewall the beat-shape envelope does not interact sterically.
Nevertheless, a cone-like swimmer with length L

′
= 16 rh and an opening

angle δ∥ = 7◦ captures the average deflection quite well. As already suggested
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Figure 3.10 Sperm cell orientation and steric model - The beat pattern of
the sperm cell swimming along the sidewall of the channel in (a) perpendicular
and (b) parallel orientation (green) is overlaid by the corresponding cone-like
swimmer (black) with its center line marked in red. (c) The deflection angle
of a sperm cell simulated with full hydrodynamics and beat-shape dynamics is
compared to the minimal self-propelled cone-like swimmer model. The color
indicates the beat shape orientation during the time the sperm cell swims along
the sidewall: parallel (green) and perpendicular (red). The dashed lines are the
weighted spline fit to the ensemble with respect to the beat plane orientation.
The solid lines show the deflection of the simple steric model. The distance to
the corner is negative when the sperm cell approaches the corner and positive
after the center of mass of its head has passed the edge of the corner. (d)
Histogram of the inclination angle Θ between sperm symmetry axis e and the
sidewall. For the perpendicular oriented swimmer, the cone-like swimmer
opening angle of δ⊥ = 15◦ agrees with the measured average inclination of
the sperm orientation ⟨Θ⊥⟩= 13◦ (red). The inclination angle in the case of
parallel orientation ⟨Θ∥⟩= 4±5◦ (green) differs from the cone-like swimmer
opening angle δ∥ = 7◦ due to additional hydrodynamic interactions.
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by Elgeti, Kaupp, and Gerhard Gompper (2010), the effective opening angle
can be interpreted as a result of hydrodynamic repulsion of the tail of the
sperm cell.

Starting with the head passing the edge of the corner, the deflection angle in-
creases approximately linear for one sperm length, sub-sequentially it plateaus
in the total deflection angle (justifying the choice for alpha in the previous
section and in the work of Kantsler, Dunkel, Polin, et al. (2013).) The sperm
with perpendicular beat-plane orientation turns faster over a short length scale.
In contrast the sperm with parallel beat-plane orientation turns slower over
a longer length scale. Hence, the average deflection of sperm with perpen-
dicular beat-plane orientation is 2.3 times larger than for sperm with parallel
beat-plane orientation.

If the picture of dominant steric interaction holds true, this should be reflected
in the distribution of the main elongation axis e of the sperm-cell inclination
with respect to the sidewall in the hydrodynamic simulation. Indeed, sperm
with parallel and perpendicular beat-plane orientation have a large difference
in inclination (Fig. 3.10 d). For perpendicular beat-plane orientation, the
inclination angle is almost equally distributed between Θ⊥ = 4◦ to 24◦, which
can be understood by the beating of the sperm that constantly changes the ori-
entation of the main axis and thereby interacts sterically with the sidewall. The
regular beating of the flagellum creates a broad, almost uniform distribution.
In contrast, the inclination of sperm with parallel beat-plane orientation is
almost normal distributed around an average inclination of ⟨Θ∥⟩= 4±5◦. The
inclination seems to be mainly affected by hydrodynamic interactions and the
thermal noise. Both inclinations are in good agreement with the opening angle
of the cone-like swimmer, as visualized in 3.10 (a, b). In case of perpendicular
orientation the opening angle of the beat-shape envelope δb = 13◦± 2◦ for
an imposed wavelength of λ = 0.63 L (section 3.1.2) agrees with the average
inclination measured here ⟨Θ⊥⟩= 13◦. Whether the origin of the slight incli-
nation in the case of parallel beat plane orientation is due to hydrodynamic
interactions or a result of a slightly nonplanar beat is unclear at the moment
and needs further investigation.

The comparison of the minimal, steric simulations of a cone-like swimmer
and the hydrodynamic sperm simulations proves that for a given inclination



64 Sperm Cells

of the sperm cell propulsion axis e, the deflection of the sperm cell around
a sharp corner is dominated by steric interactions. Even, for the parallel
orientation where only a small inclination is observed an effective steric model
captures the average deflection dynamics well. The larger deflection in the
perpendicular orientation is therefore explained by the larger inclination, due
to the larger in-plane opening angle of the beat-shape envelope.

3.1.5 Sperm Guidance and Selection in Narrow Channels

The dominant role of steric interactions and the wavelength dependence of the
beat shape opening angles (section 3.1.2), suggests to extend the microchannel
designs to more complex sidewall patterns. Here, two channels with different
sidewall patterns are investigated.

The first channel consists of a zigzag channel with sharp corners of different
angels γ . Dependent on the inclination angle Θ of the sperm cell, due to its
beat plane orientation and opening angle, a critical corner angle γ = Θ exists,
below which the sperm cells stay attached to the originating sidewall. The
second channel has sidewalls with regions of alternating constant curvature.
An increasing radius of curvature will increase surface attraction. This might
allow to map differences in the beat-shape opening angles to changes in
deflection angles. The modulation of the sidewall of a channel allows to guide
and select sperm cells based on the shape of their beat pattern. Finally, the
beat-plane orientation, when swimming in the proximity of a surface, provides
an explanation for the altered surface attraction of curved surfaces compared
to flat ones.

Variations of the corner angle γ provide a good test, whether steric interactions
indeed dominate the deflection of sperm at corners. Since the beat-plane orien-
tation still dominates the deflection-angle probability distributions (Fig. 3.11a),
hydrodynamic interactions seem to play only a minor role here. Consistently,
similar deflection angle distributions are observed for different corner angels
γ; except for the geometric limitation α ≤ γ . For α = γ the sperm cell turns
entirely around the corner and stays at the same sidewall. However, α can be
slightly larger than γ , due to the finite distance between the sperm cell and the
wall.
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Using the result of the cone-like swimmer model (section 3.1.4), the average
deflection angle of sperm can be estimated from the parallel Θ∥ and perpen-
dicular Θ⊥ inclination of the sperm cell. If the average deflection of the sperm
cell is larger than the corner angle γ , the sperm cell stays at the same sidewall.
For a sperm cell with parallel beat-plane the corner angle has to be below
γ = δ∥ = 7◦, whereas for perpendicular beat-plane orientation the corner angle
has to be smaller than γ = δ⊥ = 15◦. Perpendicular oriented sperm cells can
reach maximal deflection values of α = 20◦ and therefore swim around cor-
ners up to γ = 20◦, whereas parallel oriented sperm cells always detach from
corners with γ ≥ 20◦ . Indeed, the crossing probability of sperm from one
sidewall to the other (Fig. 3.11b) decreases from almost complete detachment
for γ ≥ 60◦ to more than 80% attachment for γ ≤ 20◦, which agrees to deflec-
tion in the extreme cases γ = 10◦ (attachment) and γ = 60◦ (crossing), where
the steric interactions dominate and either turn sperm completely around the
corner or force them to swim straight until the originating sidewall is out of
range. For γ = 20◦ only perpendicular oriented sperm cells stay attached. For
γ = 10◦ both parallel and perpendicular oriented sperm cells manage to stay
at the originating sidewall, as reflected in the very low crossing probability.

Even though the deflection angle distribution for γ = 30◦ is almost identical
to the distributions for larger corner angles, the crossing probability is at
approximately 50 percent. In this intermediate regime around γ = 30◦ a
combination of hydrodynamics and steric interactions determines the crossing
rate of sperm. The average deflection of perpendicular beating sperm of
⟨α⟩= 15◦ is just enough, so that they turn half around the corner and swim
parallel to the main axis of the channel, whereas in the parallel case sperm are
only slightly tilted away from the main axis towards the opposing sidewall.
Therefore, sperm in both orientations detach from the originating sidewall
and swim almost parallel along the main axis of the channel, giving them an
equal chance of arriving at one of the two surfaces. In principle, a correctly
tuned corner angle would allow to filter of sperm cells corresponding to their
beat-plane orientation. However, the random nature of the two orientations
as well as the overlap of the two distribution renders this approach difficult to
realize.

The broad deflection angle distribution and the strong dependence on beat-
plane orientation suggest to explore a novel channel design, where sperm
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Figure 3.11 Varying corner angle γ - (a) The cumulative probability function
of the deflection angle α does not change significantly with increasing corner
angle γ - except for the cut-off at maximal deflection angles α = γ . The
average angle between the beat plane and the sidewall acospz is indicated by
the blue (∥) to red (⊥) coloring. Note the perpendicular orientation to the
sidewalls of the sperm cell for higher values of α . (b) The crossing probability
to the opposing sidewall increases with increasing corner angle γ .
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Figure 3.12 Detachment point distributions - Normalized probability distri-
bution of the detachment point of the sperm cell in a channel with constant
radius of curvature R. The distribution is well described by an inverse Gaus-
sian fit (red) which is the solution of the first passage time distributions of a
Wiener process with mean value p, shape parameter q and number of sperm
passing N for R = 2.0 L (p = 32.9, q = 2.5, N = 81) and for R = 2.8 L
(p = 36.7 ,q = 2.8, N = 57).

swim along sidewalls with regions of alternating, constant curvature. The
edge of the zigzag channel with 90◦ titled segments is smoothed by replacing
it with quarter-circles of constant curvature. The probability of a sperm cell
to stay attached to the sidewall can be controlled by changing the radius of
curvature R. For a curved channel the critical radius of curvature is expected to
be Rc

∥ = L′∥/δ∥ = 5.28 L for the parallel orientation and a radius of curvature
above Rc

⊥ = L′/δ⊥ = 2.14 L for the perpendicular orientation.

Because the deflection now happens along the entire surface until the sperm
cell detaches, no unique deflection point can be defined anymore. Instead, the
attachment strength is quantified by measuring the length of the path along the
quarter-circle before detachment. The position of the sperm cell is described
by the polar angle Φ(t). The region of constant curvature starts at Φ = 0◦.
After the sperm cell swims into the region of constant curvature, it continues
to swim along the curved sidewall until it orients away from the surface and
eventually detaches. Since the reorientation happens in the vicinity of the
surface, the detachment point Φ, where the center of mass of the head of the
sperm cell is more than 8 rh away from the curved surface, is employed to
measure the attraction of the sperm cell towards the surface.

Figure 3.12 shows the probability distributions of these detachment angles
for a radius of curvature of R = 2 L and R = 2.8 L. The mean detachment
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Figure 3.13 Attachment time distributions - The attachment time τ , mea-
sured in beat periods, gives the time sperm stay attached to the sidewall of the
curved channel with radius R. The mean of the distribution is shifted from
⟨τ⟩ = 20 τb for R = 2.0 L (N = 81) to ⟨τ⟩ = 33 τb for R = 2.8 L (N = 57),
which is almost proportional to the difference in radii.

angle ⟨Φ⟩ increases slightly from about ⟨Φ⟩ = 33◦ to ⟨Φ⟩ = 38◦. However,
no sperm cell swims around the curved region entirely, even though the steric
argument predicts possible attachment for R = 2.8 L The reason for this is the
destabilization of the perpendicular beat-plane orientation by the curvature of
the sidewall, which will be discussed at the end of this section. Even constant
deflection angles correspond to longer attachment times, during which the
sperm cell stays attached to the sidewall. This is because the length of the
swimming path which is needed to reach a certain polar angle increases with
the radius of curvature R, whereas the propulsion velocity remains unchanged.
Indeed, the mean attachment time τ increases by a factor of 1.67 (Fig. 3.13).

Spagnolie, Moreno-Flores, et al. (2015) suggested to model the very similar
problem of a hydrodynamic dipole swimmer trapped by a cylinder as a Wiener
process with drift. Indeed, the detachment angle distribution is well described
by an inverse Gaussian, f (Φ) = q/(2πΦ3)exp{−q(Φ−n)2/(2p2Φ)}, which
is the solution of the first passage time of a Wiener process with drift. It
describes the distribution to a reasonable agreement for both radii of curvature.

If surface attraction is sterically dominated, it should increase with wavelength,
due to the increasing beat-plane opening angle. However, sperm swimming
in the curved channel with R = 2.8 L do not exhibit major changes in surface
attraction. Only a small influence on the detachment point distribution is
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Figure 3.14 Detachment point distributions - Bar plot of the detachment
polar angle Φ at which the sperm cell detaches from the curved surface for
beat patterns with different wavelength λ . The mean of the distributions
slightly increases with increasing wavelength. (N = 26−100). For λ = 0.9 L
the beat shows a 3D-component which leads to perfect attachment.

observed for λ ≤ 0.7 L (Fig. 3.14). Surprisingly, the behavior changes
abruptly to a perfect attachment at a critical wavelength of λ = 0.9 L. The
explanation for this sudden transition lies within the three-dimensional beat
pattern of the sperm cell (section 3.1.2).

In order to complete the argument of steric interaction leading to the large
surface attraction for 3D beating sperm cells, the stability of the beat-plane
orientation while swimming in the corner between sidewall and top/bottom
wall of the channel is analyzed for the curved (R = 2.8 L) channel. The
phase-space flow (Fig. 3.16) compares the beat-plane orientations of the 2D
and 3D cases while swimming along the quarter-circle. A consistent picture
of attachment and detachment dynamics emerges. For planar beating, the
sperm cells remain at the surface while perpendicular oriented, and detach
while rotating to parallel orientation. Instead of a bi-modal distribution at
parallel and perpendicular orientation as for the planer beating pattern (2D),
the orientation of the 3D beat pattern is almost uniformly distributed (Fig.
3.15).

The distance to the sidewall of the channel and the polar Φ describe the
passage of the sperm cell along the curved region. The quarter-circle ranges
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Figure 3.15 2D vs 3D beat plane orientation - (a) The three-dimensional
beat pattern (3D) turns the sperm cell half way around its main axis e, whereas
the planer beat pattern (2D) does almost not turn (Eq. 3.2). The 3D beat
plane wobbles maximal half a turn, and thereby is switching between parallel
and perpendicular orientation to the sidewall. (b) A histogram of the beat-
plane orientation with respect to the sidewall arccos pz for the planar beating
sperm cell swimming along the γ = 90◦ (2D 90◦) and the curved channel
(2D R = 2.8 L) are compared to a sperm cell with out-of-plane beating along
a curved channel (3D R = 2.8 L). The 2D beat pattern shows a bi-modal
distribution for parallel and perpendicular orientation, whereas the wobbling
motion of the 3D beat pattern leads to an almost uniform distribution.



3.1 Sperm in Microfluidic Channels 71

from Φ = 0◦ to Φ = 90◦ with the zenith of the corner at Φ = 45◦. Sperm
attach to the sidewall at Φ≈−22◦. For the zigzag channel with a corner of
γ = 90◦, the beat plane attains a stable orientation when the sperm cell aligns
along one of the walls. During 0◦ < Φ < 45◦ the beat plane is either parallel
or perpendicularly aligned. No transitions between the two states happen until
the sperm cell approaches the sharp edge of the corner at Φ = 45◦. Once
the head passes the corner, the sperm cell departs from the sidewall, which
renders the parallel orientation unstable and the sperm cell reorients towards
the top/bottom wall of the channel.

The planar beating pattern in a curved channel starts with a similar bi-modal
distribution of beat-plane orientations as for the sharp corner. However, the
curvature of the sidewall, starting from Φ = 0◦ destabilizes the parallel beat-
plane orientation with the sidewall. When the sperm rotates to a perpendicular
aligned beat plane arccos pz = 0◦, the sperm starts to detach from the sidewall,
leading to a detachment of all sperm cells before the zenith at Φ = 45◦. Inter-
estingly, the length the sperm cell swims in parallel orientation seems to be
almost constant.

Sperm with a perpendicular beat-plane orientation from the beginning almost
manage to swim around the corner until Φ = 45◦, but loose their stable beat-
plane orientation at the zenith and detach as well.

Finally, for the almost completely attached three-dimensional beat pattern, the
beat-plane orientation keeps wobbling between 15◦ < arccos pz < 75◦ (Fig.
3.15). Since the beat-plane rotates much faster than the movement of the
sperm cell along the channel, the average change of the beat-plane orientation
is almost zero. No stable beat-plane orientation emerges. A similar argument
explains the almost unchanged distribution for increasing wavelength. Even
though the increasing nonplanarity of the beat pattern increases the surface
attachment of the perpendicular orientated sperm cell, the detachment is
already dominated by the rotation of the destabilized perpendicular orientation
around the zenith of the curved region. Therefore, only a slight increase of the
mean deflection point occurs.

Considering the strong attraction of three-dimensional beating sperm cells,
the recently proposed design of teardrop-shaped posts by Davies Wykes et
al. (2017) seems to be particularly promising. The teardrops have a large
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Figure 3.16 Phase-space flow of the beat plane orientation - The phase-
space flow of the polar angle along the corner Φ and the beat plane orientation
with the sidewall arccos pz is compared for (a) 2D beat pattern in a zigzag
channel with γ = 90◦, (b) 2D beat pattern in a curved channel (R = 2.8 L)
(c) 3D beat pattern in a curved channel (R = 2.8 L). The color indicates the
distance to the closest sidewall. Note that at Φ = 0◦ the curved region begins
and Φ = 45◦ corresponds to the edge of the γ = 90◦ corner (a) or to the the
zenith of the quarter circle (b, c). The black arrows highlight the average flux
in a grid of 18◦×12◦.
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radius of curvature at the bottom and a small radius of curvature at the top,
and thereby allow for alignment of swimmers along the low curvature area
and detachment when approaching the high curvature area. When tuned
accordingly, only sperm with large wavelength that show a three-dimensional
beat pattern align along the direction of the teardrop, whereas sperm cells with
smaller wavelength which beat planar are not.

3.1.6 Conclusions - Details Matter

The results of the fluid dynamics simulation indicate that the shape of the
beat pattern plays an important role for sperm surface interactions. Generic
swimmer models are limited in explanatory power to understand the highly
complex dynamics. Simulation results show a strong dependence on boundary
guidance and the beat-shape opening angles. Steric interaction could poten-
tially be a major factor in the function of the highly selective process of sperm
cell migration in vivo.

Nonplanar beat patterns of sperm created by planar imposed torques have been
shown. Sperm show a transition from planar to three-dimensional beat patterns
that depends on the imposed wavelength. The switching between an extended
three-dimensional beat pattern and a planar one influences the opening angle
of the beat-shape envelope and so the surface attraction. Indeed, several exper-
imental reports on switching between planar and three-dimensional beating
exist (Nosrati, Driouchi, et al., 2015; Su, Xue, and Ozcan, 2012).

Sperm swimming in narrow channels tend to swim in the corners (Nosrati,
Graham, et al., 2016). When they are in the vicinity of two planar surfaces,
their planar beat can stably orient along either of them. This bi-stable config-
uration gives rise to a deflection angle distribution around rectangular sharp
corners which depends on the beat-plane orientation. The average deflection
angle for parallel and perpendicular beat plane orientations is explained by
steric interactions of a cone-like swimmer with the sidewall.

The detachment point distribution is found to just slightly increase with radius
of curvature of the channel. However, the effect is much less dependent on
the wavelength than expected, since the sidewall curvature destabilizes the
beat-plane orientation of the sperm cell with respect to the sidewall. Above a
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critical wavelength of λ = 0.79 L a buckling instability occurs which renders
the beat pattern three-dimensional. The out-of-plane beat component induces
a rotation of the sperm cell and enhances the surface attraction so that the
sperm cell swims entirely around a curved quarter-circle.

These simulation results pose some interesting questions of how surface in-
teractions guide active swimmers, in particular sperm, through complex and
highly confined geometries. It emphasizes the importance of resolving a three-
dimensional shape of the beating pattern which determines steric interactions
with the surface.
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3.2 3D-Beat Pattern of Sperm Cell

3.2.1 Introduction

Sperm cells propel themselves by the periodic beat of their flagellum. Even
though sperm of most species share a common flagellar structure, their beat
pattern and swimming paths vary a lot, because they had to adapt during
evolution to their specific environment. The detailed description of the complex
beat pattern of the flagellum can lay the basis for understanding the structural
origin and evolutionary advantage of changes in beat shape. Small changes in
wavelength, beating amplitude or frequency have the potential to change the
resulting beat shape dramatically.

In the first part, section 3.2.2, the three-dimensional beat pattern of freely
swimming human sperm cells is analyzed, based on holographic imaging data
obtained by experimental collaborators at Forschungszentrum Caesar (Bonn).
The three-dimensional beat pattern is quantified with regard to its nonplanarity
and projected onto a local, co-moving and co-rotating reference system.

In section 3.2.3, the beat shape is qualitatively compared to simulation data of
sperm with varying elastic properties of the filament. For high twist rigidity,
the filament beats planar, whereas for low twist rigidity, it beats in a three-
dimensional beat pattern. The out-of-plane beating component emerges from
a twist of the filament which leads to a rolling of the sperm cell around its
central axis.

3.2.2 Analysis of Experimental Data

The three-dimensional space curve of the flagellum was reconstructed from
3D digital holographic microscopy (Gabor et al., 1948; Lee and Grier, 2007)
recordings of freely swimming human sperm cells. A high-speed camera ob-
tains holograms with a spatial resolution of 0.17µm/px. Rayleigh-Sommerfeld
back-propagation is used to compute the z-position under the assumption that
the flagellum of the sperm cell is a weakly scattering object. First, head
tracking separates the center of mass of the sperm from the relative motion of
the flagellum, providing a reference to align frames. Starting from the head,
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Figure 3.17 Beat pattern of a human sperm cell - Snapshots of the flagellum
taken at 10 random time frames, showing raw experimental data (colored dots)
in the lab-reference frame, overlayed by the fitted splines (black lines).

three-dimensional small volumes, voxels, along the flagellum are detected and
reconstructed. Following this scheme, a voxel cloud along the shape of the
flagellum is constructed.

The high spatial and temporal resolution of this voxel cloud allows a precise
reconstruction of the flagellar shape r(s, t). First, a 3D-spline is fitted to the
voxel data, where each voxel is weighted by the standard deviation of the
voxels in a window of 10 voxels around it. The usage of local weights smooths
out local errors in the reconstruction, due to systematic shifts introduced by
dust or other particles disturbing the optical path and provides a reasonable
smooth fit as shown in Fig. 3.17.

Because the reconstruction cannot resolve the orientation of the material
frame along the spline, an out-of-plane component due to twist cannot be
distinguished from an out-of-plane bending (section 2.4.4). However, the
rotation of the entire sperm can be approximately separated from the relative
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Figure 3.18 Nonplanarity of the beat - The nonplanarity Γ (blue) of the
beat is described by the ratio of the two minor-axis principal moments of the
gyration tensor Γ = λp/λb. It oscillates with a frequency of 48 Hz around the
mean value ⟨Γ⟩= 0.26.

motion of the flagellum using gyration-tensor based decomposition ((Eq. A.1)).
The local reference frame e(t), b(t), p(t) and center-of-mass motion decouples
the orientation of the entire body from the relative beat pattern of the flagellum
which is described by the amplitude B(s, t) of the in-plane beating and the
amplitude P(s, t) of the out-of-plane beating.

The nonplanarity of the flagellum (Fig. 3.18) measures the amplitude of
the out-of-plane beating, which is defined by the gyration-tensor analysis.
It is given by the ratio Γ(t) = λp(t)/λb(t) of the principal moments of the
gyration tensor. The mean value ⟨Γ⟩= 0.26 indicates an almost planar beat.
The mean value Γ adopts about the same value as reported by Bukatin et
al. (2015) ⟨Γ⟩ ≈ 0.2. Therefore, 70% of the average beating is within a
well-defined beat plane, which allows to decouple the planar beat from the out-
of-plane beating along p(t). The relatively high planarity of the beat justifies
the definition of the local coordinate system using the gyration tensor. In
particular, a Fourier transformation in time of the in-plane beating B(s, t) gives
the power spectrum of the beat frequency B̃(ω, t) (Fig. 3.19). A pronounced
and narrow maximum at a beating frequency of fbeat = 22±2 Hz agrees well
with previously reported values (Ooi et al., 2014). The beating amplitude
increases towards the middle of the flagellum (s = 0.5 L) and decreases again
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Figure 3.19 Power spectrum of in-plane beat frequencies in dependence
on the arc length - Power spectrum of the in-plane oscillations B̃(s, f ) of
the beat at different arc-length positions s. Human sperm cells beats with a
frequency of fbeat = 22 Hz (thick black line). A second much smaller peak at
lower frequency of fbeat/2 is also observed (thin black line).

towards the end. A much smaller, wider peak is observed at around half the
beating frequency ( fbeat/2 = 11 Hz). The beat frequency allows to define the
beating time τb = 1/ fbeat which provides the natural time scale for further
analysis of the three-dimensional beat.

The angular rolling velocity Ie(t) around the main axis e is quantified by
projecting the angular velocity of the beat-plane normal p(t) on the main axis
e(t):

Ie(t) =
(

p× d
dt

p
)
· e. (3.2)

A negative (positive) angular rolling velocity corresponds to clockwise (coun-
terclockwise) rotation around e(t), viewed from the tail towards the head.
The angular velocity of the rolling fluctuates around the average value of
⟨Ie⟩=−55 s−1 =−2.52 τ

−1
b ; it stays negative for the entire observation time,

showing that no change in the rotation direction occurs. The average frequency
of the rolling is froll = Ie/2π = 8.75 Hz =−0.40 τ

−1
b with counterclockwise

rotation. Figure 3.20 shows the rolling of the flagellum during a peak in
angular rolling velocity. A kink in the mid-piece seems to trigger a twist wave
which travels through the tail. Thereby, it quickly changes the beat-plane
orientation by almost 90◦.
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Figure 3.20 Flagellar beat shape in the local frame - The flagellar beat shape
is visualized by splines (upper part) that are colored from red towards blue
with evolving time. At the beginning, the almost planar beat (red) is oriented
parallel to the b-axis and rotates over time by almost 90◦ (blue). The local
coordinate system is fixed in the starting orientation (red) and does here not
rotate with the sperm. It is placed at the head position. Lower part shows the
angular rolling velocity of the beat plane around the main axis (red) of the
sperm, measured in turns per beat. The colors of the points match the color of
the spheres describing the beat shape.
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Figure 3.21 Rolling speed and nonplanarity - Changes in the rolling angu-
lar velocity Ie(t) (blue) and in nonplanarity Γ (red) correlate with Pearson
correlation coefficient of 0.8

Figure 3.21 shows the fluctuation of the nonplanarity and its correlation with
the angular rolling velocity with time. They correlate with Pearson correlation
coefficient of 0.8. The nonplanarity peaks at Γ = 0.52 indicate a substantial
out-of-plane component in the beat pattern.

This indicates that rolling is driven by the out-of-plane component of the
beat pattern. The nonplanarity and the rolling show peaks at a frequency of
46 Hz≈ 2 fbeat , which is about twice the beat frequency.

The regular peaks of the nonplanarity indicate a localized twist of the beat
plane which travels along the flagellum. Indeed, different parts of the flagellum
lie well within two planes (Fig. 3.22). Again, the gyration tensor is used to
quantify the planes and find the twist point st(t) along the arc length where
the flagellum changes the orientation of its beat plane. Γ1 represents the non-
planarity calculated by the gyration tensor up to the arc-length twist position
st(t), whereas Γ2 represents the nonplanarity from the arc-length twist position



3.2 3D-Beat Pattern of Sperm Cell 81

5.5 6.0 6.5 7.0 7.5
t/τb

0.00

0.25

0.50

0.75

1.00

(Γ1 + Γ2)/2

Γ

st/L

Figure 3.22 Beat-plane nonplanarity in experimental data - On the left the
two beat planes separated by the twist point for t = 6.5 τb are visualized.
On the right the time series of the nonplanarity values Γ1, Γ2 for the part
of the sperm cell lying within the corresponding planes are compared to the
overall nonplanarity Γ. The combination of (Γ1 +Γ2)/2 reduces the large
nonplanarity peaks significantly, while the twist point st moves towards the
tail of the flagellum.

till the end of the tail. The twist point st is found by minimizing the sum
(Γ1 +Γ2)/2 of both nonplanarities. If the out-of-beat component of the beat
shape were equally distributed along the flagellum, the split would not reduce
the nonplanarity value. In contrast, Fig. 3.22 shows a drastic reduction for
the combined nonplanarity (Γ1 +Γ2)/2, especially for the peaks of the overall
nonplanarity Γ. This suggest the following interpretation: the nonplanarity
peaks are the result of a localized twist at st(t), which moves along the tail.
When the twist point st reaches the end of the flagellum, the beat becomes
planar again until the flagellum starts to twist again at about s = L/2.

A kymograph of the curvature κ(s, t) along the flagellum is shown in Fig. 3.23.
The twist point occurs preferentially in regions of low curvature. A direct
quantification of the twist wave is difficult, because noise heavily affects the
twist measurement for low curvature regions and the twist is undefined along
the space curve for zero curvature. However, the twist point and the very
localized extremum of the twist seem to coincide.

Here, experiments from only a single sperm cell have been analyzed. Further
studies using a larger number of samples should address the question whether
the chirality occurs due to a spontaneously broken symmetry (“buckling in-
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Figure 3.23 Curvature and twist kymographs of the flagellum - (a) The
traveling curvature wave along the flagellum is clearly seen by the two peaks
in the unsigned curvature plot, towards the tail of the flagellum. White dots
mark the position of twist point along the flagellum st which seems to coincide
with areas of minimal curvature and a twist wave (b). Note that the error of
the twist measurement increases when curvature is small.

stability”). Previous experiments (Ishijima, Hamaguchi, et al., 1992) where
an almost equal number of clockwise and counter-clockwise rotations were
reported, hint to a dynamic buckling instability induced by hydrodynamic
interactions. Hydrodynamic simulations in the following section support this
view and provide more insight by obtaining the twist and bending energies
directly.

Because the beat period is well resolved in time, the gyration tensor provides
an appropriate measure to indirectly establish the normal vector orientation
along the flagellum. This opens the door for further analysis of the beat pattern
and its different mechanisms of its deformations.

3.2.3 Simulations

In this sub-chapter MPC simulations (section 2.3.3) are employed to find
an explanation for the out-of-plane beating component. The key idea is to
look for a transition, where the planar beat becomes unstable and where the
combination of flagellar dynamics with hydrodynamic interactions leads to
an out-of-plane component of the beat. Initially, bending and twist rigidity of
the flagellum are varied to roughly localize the transition to three-dimensional
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beating. This initial analysis is followed by a detailed investigation of three-
dimensional beat patterns for two different beating frequencies.

The flagellum is described by a Kirchhoff model (section 2.4.4), consisting
of 50 beads along its center line, which are connected with a bond-length
lb = 1µm in agreement with the length of the flagellum L≈ 50µm. The cross
section of the flagellum is assumed to be isotropic with regard to the bending
rigidities: K1 = K2 = K along the two axes. The twist rigidity K3 is varied over
several orders of magnitude to search for a twist instability. Planar bends are
imposed as a traveling wave along the flagellum with a curvature amplitude of
κ = 0.1 lb, a constant frequency ω = 0.05

√
kBT/(am2) and a wavelength of

λ = 1.26 L. The correspondence between simulation units and the respective
experimental scales for time and rigidity is not straightforward. Therefore, it
is discussed at the end of this section when interpreting the results.

To analyze the beat pattern and to compare its in-plane component B(s, t) and
out-of-plane component P(s, t), the flagellum is projected along the gyration-
tensor axes (see the fitting of the experimental sperm data in section3.2.2).
Indeed, three-dimensional beat patterns emerge for low twist rigidity. A flagel-
lum with large twist rigidity K3 = 2 ·104 kbTa beats almost planar, whereas a
flagellum with low twist rigidity K3 = 2 ·103 kbTa beats in a complex three-
dimensional shape (Fig. 3.24).

The in-plane component B(s, t) shows almost the same maximal amplitude
of 4 rh as the planar beat. However, the out-of-plane component of the three-
dimensional beat pattern follows a clockwise spiral (viewed from the tail) and
compared to the in-plane amplitude of 6 rh has a relatively small amplitude
of 1.5 rh. By following the spiral starting from the head (located at (0,0))
non-uniform bending is observed: the straight midpiece is followed by a sharp
bending, then by a straight part, and finally a second sharp bending in the
last third of the tail. Even though only planar bends are imposed along the
flagellum, a complex three-dimensional pattern emerges due to the load, which
the hydrodynamic friction creates along the flagellum.

In order to quantify this transition further and find the range of material
parameters in which three-dimensional beating occurs, a phase-space scan
was performed. The phase space in Fig. 3.25 measures the nonplanarity for
various twist and bending rigidities. The peaks in the nonplanarity, quantified
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Figure 3.24 Planar vs. nonplanar beat pattern - The flagellum of a beating
sperm cell simulation with small twist rigidity K3 = 2 ·103 kbTa (blue) that
exhibits out-of-plane beating (right column) is compared to the planar beat
shape for a flagellum of large twist rigidity K3 = 2 · 104 kbTa (red). The
in-plane beat pattern (left column) does not change significantly.

by the 95%-percentile, are used to characterize the transition between planar
and nonplanar beating. For high twist rigidities, the imposed planar bends
lead to an almost perfectly planar beat with very small nonplanarity values
Γ. However, when the twist rigidity is low K3 ≤ 103 kbTa, the in-plane bends
give rise to a three-dimensional beat. The transition is sharp and independent
of the bending rigidity K.

The bending can either be the result of an out-of-plane bending or twisting of
the flagellum. In the simulation, the three-dimensional beat can be analyzed
further by measuring the energies of the deformation of the flagellum for each
axis. The energy of active beating is reflected by the in-plane bending energy
EK1 . The out-of-plane beat must either contribute to the twist energy EK3

or the out-of-plane bending energy EK2 . The bending energies for a passive
flagellum fluctuate around the thermal equilibrium value for each degree of
freedom: 0.5 kbT . Energies originating from the active beat pattern need to lie
significantly above this value.
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Figure 3.25 Twist/bending rigidity phase space - The color in the phase
space measures the 95 percentile of the nonplanarity Γ of the beat pattern as
defined by the principal moments of the gyration-tensor. Bending rigidity K
changes along the y-axis, whereas twist rigidity K3 varies along the x-axis. At
a critical twist rigidity of K3 ≤ 103 kbTa and below peaks of nonplanar beating
develop.

Two simulations are performed using rigidities in the 3D-beat regime K =

2500 · 103 kbTa and K3 = 103 kbTa. They only differ in beat frequencies
ω = 0.1

√
ma2/kbT and ω = 0.05

√
ma2/kbT . The change in beat frequencies

imposes different viscous loads along the flagellum. A higher beat frequency
increases the friction forces acting on the flagellum which might increase the
out-of-plane beating.

As shown in Fig. 3.26, in both cases the planar bending energy EK1 is trans-
ferred only to the twist mode energy EK3 whereas the out-of-plane bending
energy EK2 stays constant and only fluctuates in the range of the thermal noise.
This result proves the existence of a twist mode in the flagellum that is induced
by an elastic instability. The maximal amplitude of the twist energy is 40 kbT
for the low-frequency beating with ω = 0.05

√
ma2/kbT , and about six times

larger at 260 kbT for ω = 0.1
√

ma2/kbT .

Even though the dissipative forces acting on the flagellum are proportional
to the beat frequency ω , the energy of the twist mode scales non-linearly.
In agreement with experimental data, maximal twist occurs for minima of
the bending energy. The curvature profile stays unchanged. As reflected
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in the higher energies, the beat pattern is more stable for higher beating
frequencies. In particular, two stable peaks of nonplanarity occur as found in
the experimental data for human sperm cells.

3.2.4 Conclusions

The hydrodynamic simulations show remarkable qualitative similarities to the
beat pattern of human sperm. Notably, the nonplanarity of the beat fluctuates
abruptly which is not expected for a beat pattern with constant twist. To
compare simulation and experimental values of bending and twist rigidities,
scales must be related to each other. The length scale of the flagellum provides
a straightforward reference, resulting in a bond length lb = 1 µm. However,
finding the appropriate energy and time scales to match the bending, twist
rigidities and the viscous forces is not so straightforward. The characteristic
time scale is determined by comparing the Reynolds numbers, where the
velocity is chosen as the in-plane beat amplitude times the beat frequency
Bω/(2π) and the diameter of the sperm as a characteristic length scale. In
the simulations the kinematic viscosity ν (Eq. 2.38) and the amplitude of
the out-of-plane beat B ≈ 4 rh gives a Reynolds number f Blb/ν = 0.04−
0.08 which ensures the low Reynolds number regime. Nevertheless, it is
much larger than the experimental Reynolds number Re ≈ 10−5 of sperm,
which is determined using a flagella diameter of ≈ 5 µm, a beat frequency
of 22 Hz and a kinematic viscosity of water ν ≈ 10−6 m2/s. Therefore, the
simulations either underestimate the viscous load or simulate sperm with
higher beat frequencies. A slower beating sperm will decrease the viscous
load, whereas a sperm beat at higher viscosity will increase the viscous load. It
is therefore difficult to predict how a change in Reynolds number will change
the twist instability. Since the mechanical properties of the flagellum model
are unaffected by the hydrodynamics and the simulation still ensures low
Reynolds hydrodynamics, it is likely that the qualitative description still holds.
Thus, only the value at which the twist instability occurs might change.

The range of K = 104−106 kbTa corresponding to 10−23−10−21 Nm2 agrees
well with measured bending rigidity of 6 ·10−21Nm2 (non-beating flagellum)
to 4 · 10−22Nm2 (beating flagellum) (Ishijima and Hiramoto, 1994). Even
though the viscous load and time scales do not match the experimental situ-
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Figure 3.26 Simulation of nonplanar beating sperm - The beat pattern of
a sperm cell in the right column (ω = 0.1

√
ma2/kbT ) is compared to a half

as fast beating one (ω = 0.05
√

ma2/kbT ) in the left column. (a) The en-
ergy of the out-of-plane component goes into the twist degree of freedom
EK3 , whereas the out-of-plane bending energy EK2 only fluctuates around
the thermal equilibrium value. The twist energy increases non-linear for the
larger beat frequency. (a) The nonplanarity peaks Γ increase with the beating
frequency. For the low beating frequency only one peak per beat is found,
whereas ω = 0.1

√
ma2/kbT shows two regular peaks per beat. The nonpla-

narity of the flagellum is reduced when split into two segments at the twist
point st . Γ1 and Γ2 are the nonplanarity values for the corresponding planes.
(c) The twist point st (white points) moves along the flagellum close to the
minimum of the curvature wave. The curvature wave is not changing with
increased beating frequency.

(a)

(b)

(c)
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ation quantitatively, the two orders of magnitude between bending and twist
rigidity at which the twist instability occurs are supported by experiments.
Atomic-force microscopy measurements (Kis et al., 2002) have determined
the mechanical anisotropy of microtubules. The shear modulus G is found to
be two orders of magnitude lower than the Young’s module E. Considering a
homogeneous cylinder, the mechanical anisotropy leads to an anisotropy in
bending K1 = K2 = E πR4/4, and twist rigidity K3 = G πR4/2. This indicates
that indeed, buckling induced out-of-plane beating is possible in flagella due
to the two orders-of-magnitude difference in Young’s and shear module.

Clearly, a more detailed observation of beat patterns under different viscosity is
needed to fully elucidate the mechanism. The presented simulations reproduce
key features observed in the experiment. The nonplanarity Γ of the beat pattern
shows regular peaks of different amplitude, and dividing the flagella into two
parts at the twist point st lowers the nonplanarity to almost zero. The reason
for observing one peak in nonplanarity per beat in the simulations of low beat
frequency ω = 0.05

√
ma2/kbT instead of two as experimentally observed and

simulation for beat frequency ω = 0.1
√

ma2/kbT , remains unclear and needs
further investigation. More experimental data and a systematic exploration of
the phase space will provide better agreement and thereby might resolve this
open question.



Chapter 4

Cilia
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4.1 Ciliated Microswimmers

4.1.1 Volvox & Chlamydomonas

Alga, like Volvox or Chlamydomonas (Drescher et al., 2009; Jeanneret, Con-
tino, and Polin, 2016) expose cilia on their surface to propel themselves and
to enhance the transportation of nutrition towards their cell membrane. The
dense cilia arrangement on the surface leads to interactions between cilia that
changes the beat pattern. Eventually, cilia beat in an organized fashion and
stable states of synchronization develop. Inspired by the complex and rich
dynamic of ciliated microswimmers like Chlamydomonas (Jeanneret, Contino,
and Polin, 2016), Paramecium (Omoto and Kung, 1980) or Volvox (Brumley,
Polin, et al., 2015) a model system to study the influence of hydrodynamic and
elastic interactions on the synchronization of cilia is proposed. The surface
of the sphere mediates the elastic interactions, whereas the hydrodynamic
interactions originate from the motion of the cilia through the fluid and the
whole-body motion of the swimmer.

The ciliated sphere described in section 4.1.2 shows different swimming
behavior depending on the placement of the cilia on its surface. Once the
swimmer is in motion the flow field surrounding the sphere influences each
cilium. Depending on the position of the cilia on the sphere, the swimmer
transforms from a puller type swimmer to a pusher type (Lighthill, 1976; Zhu,
Lauga, and Brandt, 2012). As discussed in section 2.1.5 the flow field of a
swimmer that is pushing its cell body differs from a swimmer that is pulling
its cell body, which might influence the state of synchronization. Section
4.1.3 discusses the effect on cilia placement with increasing density on the
propulsion velocity of the swimmer, followed by a discussion of different
synchronization states of cilia with symmetric arrangements on the sphere
(section 4.1.4).

4.1.2 Multi-ciliated Sphere Model

The multi-ciliated swimmer consists of a sphere of radius rh = 16 lb with cilia
anchored on its surface. The sphere is modeled by 634 beads, connected by
springs, that form a triangulated mesh. The axoneme of a cilium is longer
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Figure 4.1 Multi-ciliated sphere model - (a) The spherical body of the cili-
ated swimmer consists of beads on its surface (green), which are connected to
their neighbors by springs. Each cilium consists of two passive filaments (red)
and one active filament (rose) which defines the beat direction. The anchoring
area and its connections to the cilium are visualized in brown. (b) The red
beads of the cilium at s = 0 and s = 3 lb are anchored to the surface of the
sphere by harmonic springs. Each bead (red) connects to the closest bead of
the spherical surface (green). To distribute the force better the next neighbors
on the surface are connected to the cilium beads as well.

than the one of a sperm cell. Yet, structurally similar enough, so the modeling
approach of sperm cell can be adapted to simulated ciliary beating (section
2.4.3). Each cilium has a total length of L = 26 lb, where lb is the bond
length separating neighboring beads. The first part of the axoneme till s≤ 3 lb
(n0 = 3) is passive and embedded into the sphere, which models the basal body
of the cilium (Lindemann and Lesich, 2010). The part above the surface is
actively beating and has a length of 25 lb (nL = 28). The power stroke of all
cilia points towards the south pole of the sphere leading to a net-propulsion
of the swimmer in the direction of the north-pole. The fluid surrounding the
swimmer is simulated using MPC (section 2.3.3). Time for all simulations is
measured in units of beat periods τb of an isolated cilium attached to a solid
surface and the corresponding beat frequency f0 = 1/τb.

Figure 4.1 shows the anchoring of the cilium (red) to the sphere (green).
Harmonic springs (shown as brown tubes) attach the first particle (0) of each
cilia rod to the closest particle on the surface of the sphere and its next
neighbors. The fourth bead (3) of each rod, which lies on the surface of
the sphere, is connected in the same way. The brown area on the surface of the
sphere shows this anchoring area, where each rod is connected to the closest
bead on the sphere and its neighbors.
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The cilia positions on the surface of the sphere are specified by spherical
coordinates: the latitude ψ ∈ (−90◦,90◦) and the longitude θ ∈ (0◦,360◦).
Instead of specifying each cilium position individually, cilia are placed along
latitudes. For each latitudinal ring ψring the number of cilia Nring and the offset
of the first cilia θring on the ring are specified. Cilia are always evenly spaced
on each ring with a distance of 2π/Ni.

4.1.3 Effect of Cilia Arrangement on Propulsion Velocity

In order to study the dependence of the average propulsion velocity on cilia
arrangement, 47 swimmers with semi-random cilia placements are simu-
lated. Cilia positions are not completely chosen at random, but in a way to
ensure a minimal distance between cilia. The number of latitudinal rings
NRings = {1..8} along which the cilia are placed is defined per simulation
batch. For each number of rings NRings between 4 and 6 simulations are run.
The following algorithm generates the cilia placements for each simulation:
For each ring k its latitude ψk between −60◦ and 60◦, its number of cilia
Nk between 2 and 8, and the position of the first cilium on the ring θk are
randomly chosen. Cilia are uniformly spaced on each longitudinal ring to
ensure minimal longitudinal distance of ∆θ = 45◦. Cilia placements with a
∆ψ < 10◦ are rejected to ensure a minimal latitudinal distance as well.

Figure 4.2 shows the mean propulsion velocity of such semi-randomly con-
structed swimmers. The configurations with larger than average mean propul-
sion velocity have a larger variance in propulsion velocity as well, which
might indicate (partial) synchronization of cilia. The trend (red line) shows
a sub-linear increase of the propulsion velocity with the number of cilia. It
saturates for Ncilia > 40 as the cilia density growth. For small numbers of
cilia (up to 10) the propulsion velocity increases linear with the number of
cilia. At around 6 cilia the distribution of mean propulsion velocity becomes
highly dependent on the distribution of cilia on the surface of the sphere. Even,
swimmers with similar numbers of cilia show large differences in propul-
sion velocity that do not follow the overall increase. The combined center
of mass motion and the interaction between cilia leads to a complex coupled
interaction which will render some cilia configurations more efficient than
others. Since the propulsion velocity varies a lot for an individual swimmer
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Figure 4.2 Propulsion velocity - The average propulsion velocity and its
fluctuation of ciliated microswimmers for quasi-random placement of cilia are
measured in sphere radius rh per cilia beat period τb. It increases sub-linearly
with the number of cilia on the swimmer. The swimmers with maximal velocity
in each decade of number of cilia are marked yellow and are visualized in Fig.
4.3. The red line is a fitted spline following the weighted local average.
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Figure 4.3 Fastest ciliated microswimmers per decade - The three-
dimensional representation shows the cilia placements of the fastest mi-
croswimmer for each decade of number of cilia.

as well as between cilia configuration with similar cilia densities, the five
configurations with the highest propulsion velocity per decade are shown in
Fig. 4.3. The fast-moving swimmers do not have a common cilia distribution.
Neither a stable synchronization state is observed. Some cilia get stuck, show
short time entanglement but eventually diverge. Since no straight-forward
common features for the faster swimmers emerge, the following analysis turns
to simpler cilia arrangement.

4.1.4 Synchronization on Symmetrically Ciliated Swimmers

The states of synchronization of two types of highly symmetric swimmers
are investigated. The 3-cilia swimmer has three cilia placed equally spaced
around its equator and the 9-cilia swimmer has two additional rings of cilia
at ψ =±45◦. In order to vary initial conditions, the start position for the first
cilium on the ring is set to a latitude value of (a) θ0 = 0◦, (b) θ0 = 40◦ and
(c) θ0 = 80◦. These 3-cilia swimmers are shown in Fig. 4.4. The symmetric



4.1 Ciliated Microswimmers 95

(a) (b) (c)

Figure 4.4 Three 3-cilia swimmers - Cilia are located equidistant around the
equator of each swimmer. The N-S arrow indicates the swimming direction.
The three swimmers only differ in cilia arrangement around their equator. The
first cilium (light-blue) of each swimmer is placed at a longitude of (a) θ0 = 0◦,
(b) θ0 = 40◦ and (c) θ0 = 80◦. The longitudinal distance between all three
cilia on each swimmer is 120◦.

swimmers are identical, except for a rotation of the cilia locations along the
equator.

For each cilium its phase along the limit cycle ϕ0, ϕ1 and ϕ2 is extracted (sec-
tion A.2). This allows to quantify the state of synchronization by the difference
between the phase of each cilium and the mean phase of the swimmer:

χ̄i = ϕi(t)−
1

Ncilia
∑

i
ϕi. (4.1)

All simulations start with synchronous beating cilia, i.e. χ̄i = 0. The time
development of the phase differences over time are shown in Fig. 4.5. Only
for the swimmer (a) a constant phase difference between cilia establishes after
50 cilia beats. Thus, the three cilia beat with the same frequency 1.033±
0.005 f0. Cilium 0 (light-blue) leads with respect to cilium 2 (green) by a
phase difference of 34±1◦. Cilium 2 is followed by cilium 1 (dark-blue) with
a phase difference of 42± 3◦. For swimmer (b) and (c) no constant phase
difference emerges within the simulation time of 120 cilia beats. Instead, the
cilia beats drift apart. Cilium 0 leads in swimmer (b) with an average beating
frequency 1.038±0.005 f0, followed by cilium 2 with 1.032±0.006 f0 and
finally cilium 1 with 1.030±0.005 f0, whereas in swimmer (c) cilium 2 leads
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Figure 4.5 Phase differences of three 3-cilia swimmers - The phase differ-
ence for each cilium with respect to the mean phase of all cilia of the swimmer
is colored according to the cilium color in Fig. 4.4. Swimmer (a) synchronizes,
whereas the phase differences of swimmer (b) and (c) drift almost constantly
apart.

with an average beating frequency of 1.035± 0.005 f0, followed by cilium
0 with 1.032± 0.006 f0 and finally cilium 1 with 1.029± 0.004 f0. Even
though, the relative difference in cilia beating frequencies is small, the almost
constant phase drift results in a large phase difference between the fastest and
the slowest cilium after t = 120 τb. For swimmer (b) the phase difference
between the fastest and slowest cilium add up to 317◦, which is almost a
full beat cycle. For swimmer (c) the phase difference adds up to 244◦. One
might expect all swimmers to behave the same. However, they reach different
co-existing states of cilia synchronization.

The different synchronization states are reflected in the velocity distribution
of the swimmer (Fig. 4.6). In order to obtain a velocity vector which is not
dominated by thermal fluctuations the center-of-mass motion of the swimmer
is smoothed by taking the gliding average in a window of size ∆w along the
trajectory. By projecting the velocity vector onto the main north-south-axis
of the swimmer the propulsion velocity distribution has positive values when
the swimmer moves in the north pole direction which implies the majority of
the cilia beating towards the south pole (power-stroke). Negative velocities,
opposing the average propulsion velocity, occur when the majority of cilia
beat towards the north pole (recovery stroke). The mean propulsion velocity
stays the same at 0.2 rh/τb for all three swimmers. It is not much influenced



4.1 Ciliated Microswimmers 97

Figure 4.6 Propulsion velocity distribution - The propulsion velocity distri-
butions of the 3-cilia swimmers (a, b, c) are visualized as violin plots. The
long-dashed line indicates the mean and the short-dashed lines the quartiles of
the distribution. The propulsion vector is projected on the north-south axis of
the swimmer giving raise to positive velocities for motion in the direction of
the north pole (power stroke) and negative values when the swimmer moves in
the direction of the south pole (recovery stroke). Trajectories are smoothed
with two different windows sizes ∆w = τb/2 and ∆w = 2 τb by applying a
gliding average.

by the coordinated beating of the cilia which reflects the previous finding that
significant differences in propulsion velocity start to occur for swimmers with
more than 6 cilia. The velocity distribution quantifies the difference between
the synchronized cilia beating of system (a) and the systems with drift (b, c).
How much of the cilia coordination is captured by the distribution depends on
the averaging window size ∆w.

Figure 4.6 compares a window size of ∆w = τb/2, which still resolves the
oscillating motion of the cilia beating with the propulsion distribution for a
window size of ∆w = 2 τb where the average smooths the trajectory so that the
rocking like motion, created by the difference of power and recovery stroke, is
not resolved. The difference of synchronized cilia beating only shows in the
distribution obtained for small window size ∆w = τb/2 (Fig. 4.6 left). Here,
the propulsion velocity distribution of swimmer (a) is much more elongated
than for swimmer (b) and (c). For swimmer (a) the power-stroke velocity
peaks at almost 1.0 rh/τb and the recovery stroke velocity at−0.4 rh/τb. Since
the total phase difference between the slowest and fastest cilium is about a
quarter of the beat cycle, power and recovery strokes of all three cilia still
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overlap, which might explain the spread in propulsion velocity distribution
around the mean without effecting the average propulsion velocity.

Even the 3-cilia swimmers show several states of synchronization. System
(a) reaches a synchronization state with constant phase differences between
the cilia, which results in a broader propulsion velocity distribution, but no
significant change in the average propulsion velocity. Therefore, swimmers are
constructed with increased cilia density, which might facilitate the development
of latitudinal waves along the cilia on the surface of the swimmer.

The 9-cilia swimmer is constructed by adding two additional rings with 3 cilia.
Now, in total 9 cilia are located on three rings: the equator, and θ = ±45◦.
The start position of the first cilium on each ring is shifted by a constant offset
∆θ with respect to the proceeding ring. The longitudinal distance between
cilia on consecutive ring is thereby varied. Five different configurations with
∆θ = 10◦,20◦,40◦,60◦ and 70◦ are simulated.

The phase difference χ̄i of each cilium to the mean phase of the swimmer is
plotted in Fig. 4.8. Swimmers start with synchronized beating of all cilia. Cilia
on all swimmers except swimmer (h) desynchronize over time. The average
beat frequency of cilia on swimmers (d, e, f) (∆θ = 10◦− 40◦) fluctuates
around 1.051±0.01 f0, whereas swimmer (g, h) beat with a slower average
frequency 1.036±0.006 f0 (∆θ = 60◦) and 1.044±0.002 f0 (∆θ = 70◦). Cilia
on the surface of swimmer (h) synchronize with a constant phase lag. After
t = 40 τb the cilia beat with approximately the same frequency, explaining the
smaller fluctuations of the average beating frequency. For all other swimmers
the three cilia located near the north pole beat slower than the ones close
to the equator and south pole. The slow cilia of swimmer (d, e, f) beat
with 1.040± 0.008 f0, whereas the fast cilia near the south pole beat with
1.058±0.003 f0. However, the cilia in each group do not sync to a common
frequency. Swimmer (g) exhibits two groups of cilia which synchronize to
two different frequencies. Thus, the groups drift apart from each other. The
first group consists of the cilia on the south-ring and on the the equatorial
ring. They beat faster than the cilia on the ring close to the north pole. The
average frequency of the fast group is 1.040±0.002 f0, whereas the slower
one beats with 1.029±0.002 f0. Note the significant lower fluctuations within
each group. Only swimmer (h) shows a stable phase difference in form of a
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(d) (e) (f)

(g) (h)

Figure 4.7 9-cilia swimmers - Three cilia are located equidistant on the lat-
itudes ψ0 = 45◦, ψ1 = 0◦ and ψ2 = −45◦. The N-S arrow indicates the
swimming direction. the Each ring is shifted by ∆θ of (d) 10◦, (e) 20◦, (f) 40◦,
(g) 60◦ and (h) 70◦ with respect to the subsequent ring. The phases of each
cilium in following plots (Fig. 4.8) are colored according to its colors here.

.
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traveling wave. The wave roughly travels from the south to the north pole.
The phase difference between cilia, which is calculated as the average over
10 beats starting from t=40 τb, varies. The smallest average phase difference
between cilium 5 and 3 is ϕ5−ϕ3 = 2± 5◦, whereas the largest difference
between cilium 8 and 6 is ϕ8−ϕ6 = 40±5◦.

The propulsion velocity distribution (Fig. 4.9) reflects the enhancement due
to the coordinated beating of swimmer (h) θ = 70◦ by a shift to a 30 percent
higher average propulsion velocity. The swimmer (g) shows an enhanced
propulsion velocity by about 15 percent, whereas the higher average beat
frequency of the drifting swimmers (d, e, f) does not result in an enhancement
of mean propulsion velocity compared to swimmer (g, h).

4.1.5 Conclusion

Ciliated swimmers show a sub-linear increase with increasing cilia density.
The large fluctuations for different cilia configurations result from the fact
that even completely symmetric simple swimmers arrive in different states of
synchronization. Indeed, in a simpler oscillator model Ghorbani and Najafi
(2017) showed that in complex geometries the emergence of metachronal
coordination depends on the initial state of the oscillators. For swimmers
with high cilia densities, in particular for the symmetric 9-cilia swimmer with
∆θ = 70◦ shift between successional rings, metachronal coordination emerges
and results in an increase of the mean propulsion velocity. The slightly higher
reported beating frequencies of multi cilia arrangements compared to single
ones agree with previous theoretical studies (Gueron and Levit-Gurevich,
1999). However, studying synchronization of a few cilia on a spherical object
turned out to be more complex and dependent on initial conditions, as well as
modeling details, than anticipated.

Still, these findings are related to experimentally observed findings. Ciliary
tufts exhibit stable metachronal synchronization within tufts that rapidly de-
creases when tufts are not connected. Then, different wavelength as well as
uncorrelated cilia motion is found (Gheber and Priel, 1989). The dense and
boundary free placement of cilia on the spherical surface of Volvox leads to the
formation of stable metachronal waves around the meridian of the alga (Brum-
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Figure 4.8 Phase difference of the 9-cilia swimmers - The phase difference
between each cilium and the mean phase of the swimmer is colored according
to the color of the cilium in the swimmer sketches in Fig. 4.7. Only the
swimmer with ∆θ = 70◦ synchronizes with a constant phase lag. For all
swimmers cilia located near the north-pole (orange, yellow, purple) lag behind
or beat slower than the cilia located near the south-pole (green, blue, light-
blue).
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Figure 4.9 Propulsion velocity distributions of 9-cilia swimmers - The
propulsion velocity distributions of the 9-cilia swimmers are visualized as
violin plot where the long-dashed line indicates the mean and the short-dashed
lines the quartiles of the distribution. The velocity is obtained from a trajec-
tory with averaging windows size ∆w = 2 τb. Therefore, no sign change in
propulsion is observed, due to the different direction of power and recovery
stroke. The two swimmers (g, h) that show stable states of synchronization
show an enhanced propulsion velocity.
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ley, Polin, et al., 2015; Brumley, Wan, et al., 2014). Therefore, hydrodynamic
synchronization of cilia on the spherical surface of Volvox proved possible,
whereas phase locking of the ciliary beat of Chlamydomonas to external flow
fields is only achieved for flows which are larger than physiological condi-
tions (Quaranta, Aubin-Tam, and Tam, 2015). The two cilia on the surface of
Chlamydomonas show regions of phase-locking with significant slip-regions
in between, where the phase difference of the two cilia increases rapidly (Wan,
Leptos, and Goldstein, 2014). Recent experiments on multiciliated algae show
a complex variation of cilia beat patterns, depending on basal-body interac-
tions and cilia placement (Wan and Goldstein, 2016). Because the variety and
complexity of synchronization observed experimentally and a strong depen-
dency of the model on initial conditions, the complexity in the next section is
further reduced.
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4.2 Synchronization Patterns in Cilium Oscilla-
tors

4.2.1 Motivation

Due to the complexity of the full cilia model, a minimal model for hydrody-
namic synchronization of oscillators is studied. The most pronounced feature
of cilia dynamics is the cyclic movement. Instead of modeling the entire
dynamics of the cilium, the model is reduced to a single bead on a closed
trajectory, which mimics the motion of the tip of a cilium. In the spirit of
minimal modeling the simplest closed trajectory is chosen here: a circle. Tilt-
ing the circle towards the surface includes the different hydrodynamic drag
of the power (further away from the surface) and recovery stroke (close to
the surface). If the bead is moved along a predefined trajectory with constant
tangential driving force, no synchronization occurs. It is sufficient for the
occurrence of hydrodynamic synchronization to allow for radial flexibility
by constraining the motion of the bead along the trajectory via harmonic
potentials. This cilium oscillator model, as first suggested by Niedermayer,
Eckhardt, and Lenz (2008), allows studies of synchronization patterns in deter-
ministic systems of oscillators for different topologies: two hydrodynamically
interacting oscillators above a surface, a chain and a circular arrangement of
oscillators. The beauty of the models lies in the control of one single nondi-
mensionalized parameter λc which controls the confinement strength of the
trajectory compared to the driving force. A large value of λc results in stiff
trajectories, whereas small values allow large deviations that are critical for
long range synchronization patterns to emerge.

4.2.2 Cilium Oscillator Model

The system is modeled by N oscillating beads. They are simulated by hy-
drodynamical Langevin dynamics (section 2.3.2). Tensor-based interaction
either model an infinite fluid volume (Oseen) or a boundary at z = 0 (Blake).
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Figure 4.10 Chain of oscillators - The chain of oscillators above a surface
at z = 0 is oriented along the y-direction. Each oscillator consists of a point
particle, moving along a circular trajectory with radius R and a period τb. The
position of the beat along one beating cycle is colored from white (t = 0)
over green (t = 0.5τb) to black (t = τb). The oscillators are numbered with
increasing index along the chain in the tangential beating direction close to
the surface.

A tangential driving force Fd drives the bead around the predefined trajectory:

Fd = f0 t(ϕ), (4.2)

and two normal forces restore the beads deviation from the predefined trajec-
tory with a harmonic potential of strength γc:

Fnormal =−γc ((r− r0) ·n−R) n (4.3)

Fbi−normal =−γc(r− r0) ·m m. (4.4)

The beads move along a circular trajectory of radius R, that is tilted towards
the surface by an angle αt . The corresponding orientation vectors are given
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by:

t =

 −sin(ϕ)
cos(ϕ)cos(αt)

−cos(ϕ)sin(αt)

 (4.5)

n =

 cos(αt)sin(ϕ)
−cos(αt)sin(ϕ)
−sin(ϕ)sin(αt)

 (4.6)

m =

 0
−sin(αt)

cos(αt)

 (4.7)

(4.8)

The phase of the oscillator ϕ is given by the position of the bead along the
circle tilted by αt around the x-axis:

dx = rx− rx
0

dy = ry− ry
0

dz = rz− rz
0

ϕ = atan2(dy cos(αt)+dz sin(αt), dx) (4.9)

The oscillator equations are nondimensionalized by choosing the trajectory
radius R as a length scale r′ = r/R, the driving force f0 as a force scale
F = F/ f0 and using the self-mobility of the bead µ0 to set the time scale as
t ′ = tR/(µ0 f0)):

µ0 f0
dr′

dt ′
= µ0 f0

(
t− γcR

f0

((
r′− r′0) ·n−1

)
n
(
r′− r′0) ·m

)
m
))

, (4.10)

where λc = γcR/ f0 is the only control parameter that determines the confine-
ment strength. The undisturbed angular velocity equals ω = 2πR/ f0 due to
the nondimensionalized mobility. In order to stay in the far field limit of the
Oseen tensor, a bead size of lb/R = 0.1 is used. In the presence of a surface,
the mobility of the bead is reduced, according to Eq. (2.21).
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Figure 4.11 Circular arrangement of oscillators - Oscillators (green) are
arranged on a circle of radius Rc = 15 R at a height of z = 1.5 R above the
surface. Their beat plane lies within the xz axis. The oscillators are numbered
with increasing index in counter clockwise direction around the circle.

The phase difference between successive oscillators is defined as χi = ϕi+1−
ϕi. Oscillators of the chain are numbered from one end to N along the chain
(Fig. 4.10), whereas oscillators in the circular arrangement are numbered in
counter clockwise direction (Fig. 4.11).

The phase difference maps into the interval between ±π by applying the linear
transformation χ ← (χ +π)%2π +π . When a constant steady state value of
the phase difference develops, this is called phase lag.

4.2.3 Results

In the first part synchronization between two oscillators for confinement
strength λc = 10 and different inclinations with respect to the surface are stud-
ied. A pair of oscillators tends to synchronize with a topologically-dependent,
finite phase lag. The second part extends the simulation studies to chains of
cilia, where metachronal waves are observed. The results are compared to the
case of two interacting oscillators.

Two oscillators in an infinite fluid synchronize without a phase lag. The
vicinity of the surface breaks the symmetry and introduces a phase lag χ ,
which depends on the position above the surface z, the distance between the
two centers of the oscillators d, the orientation of the trajectory αt with respect
to the surface and the confinement strength λc.
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Figure 4.12 Time relaxation of two oscillators - The phase difference of
two oscillators with parallel orientation towards the surface and confinement
strength λc = 10 located at a distance of z above the surface with varying center-
to-center distances d synchronize with zero phase lag χ = 0 on different time
scales.

Figure 4.12 compares the synchronization behavior of two oscillators for
different distances d between oscillators and different heights above the surface
as well as the configuration for a free fluid without any boundaries (Oseen
tensor). All oscillators sync with zero phase lag χ = 0. The synchronization
time, which is the time it takes to reach zero phase difference, increases when
approaching the surface and with increasing distance between oscillators. The
further away from the surface the oscillators are, e.g. for z/R = 5.0, the
more they approach the time scales of the free fluid case. An inclination
of oscillators with respect to the surface αt ̸= 0 leads to nonzero phase lag
4.13. Maximal phase lag is reached between oscillators with perpendicular
orientation to the surface αt = 90◦. At a height of z/R = 3 the phase lag
reaches a value of χ = 40◦. The phase lag decreases with increasing distance
to the surface. Far away from the surface the phase lag approaches zero, since
the influence of the wall vanishes. The phase lag is a function of the proximity
to the surface and the inclination of the trajectory.

Turning to chains of equally spaced oscillators, the state of synchronization
is additionally influenced by boundaries. Therefore, chains with different
numbers of oscillators are simulated. For the confinement strength λc = 1.0
metachronal waves emerge in chains with 10 oscillators of parallel αt = 0◦
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Figure 4.13 Stationary phase lag of two oscillators - The steady state value
of the phase lag between two oscillators with confinement strength λc = 10
above a surface depends on the inclination angle and the height above the
surface. For inclined trajectories above a surface αt ̸= 0 the phase lag is
non-zero. Maximal phase lag is reached for αt = 90◦ and z/R = 3.

Figure 4.14 Metachronal waves in chains - The Kymograph shows the emer-
gence of metachronal waves for chains of oscillators with confinement strength
λc = 1.0 in parallel αt = 0◦ and perpendicular αt = 90◦ orientation to the sur-
face. Note, that the emergence of metachronal waves does not depend on a
finite phase lag between two oscillators.
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Figure 4.15 Chain vs. circle - Kymograph showing oscillator phase of circular
and chain arrangements of oscillators for αt = 90◦. Metachronal waves emerge
for confinement strength equal and below λc = 0.1.

and perpendicular αt = 90◦ orientation (Fig. 4.14). The initial phase lag
between two oscillators is not critical for metachronal coordination. The initial
symmetry can also be broken by the open boundaries of the chain. In the
parallel orientation the metachronal wavelength stays constant, yet the wave
reverses direction at the center of the chain. In the chain of 10 oscillators,
the wave changes direction close to the boundary, whereas for a longer chain
with 30 oscillators the traveling wave emerges from the middle of the chain.
For the perpendicular orientation of oscillators boundaries heavily influence
the synchronization pattern as well. Interestingly, this leads to two sharply
separated regions with small and large wavelength.

No metachronal waves emerge for circular arranged, parallel oriented oscilla-
tors. When symmetry is broken by tilting oscillators towards the surface by
αt = 90◦, a variety synchronization patterns emerge (Fig. 4.15). By comparing
the open chain to a circular arrangement with radius Rc = 15 R of oscillators
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Figure 4.16 Phase difference of oscillators - The phase difference of succes-
sive oscillators χi is compared for different confinement strength λc in chains
and circular arrangements. All oscillators are oriented perpendicular to the
surface αt = 90◦.
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(Fig. 4.11), the influence of boundaries on the emerging state of synchro-
nization is further investigated. Stable waves form for confinement strengths
λc ≤ 1.0. For weak confinement strength λc ≤ 0.1, perfect metachronal waves
form in the chain, whereas a chevron pattern forms in the circular arrangement.

The stable waves are analyzed by measuring the phase lag of successive oscil-
lators χi (Fig. 4.16) for all configurations that develop a stable synchronization
pattern. For the chain and weak confinements λc ≤ 0.1 the phase lag is almost
constant χ ≈−35◦, whereas for a confinement strength of λc = 1.0 the phase
lag rapidly changes from ⟨χ⟩i≤15 = 5◦ to ⟨χ⟩i≥20 = 70◦ over an almost linear
transition region of 5 oscillators. For circular arrangements no metachronal
waves emerge. For weak confinements λc ≤ 0.1 the phase lags take a sinu-
soidal form instead, which is symmetrically around zero phase lag and has an
amplitude of 25◦. For strong confinement λc = 1.0 the symmetry is broken
by a shift of the sinusoidal dependency towards negative values. The largest
phase lag between oscillator 9 and 10 is −60◦, whereas the oscillators 25 to
0 almost perfect synchronize χ = 0. The phase lag in the two-oscillator case
translates to “chaotic” motion in a chain (bottom of Fig. 4.15). Only signifi-
cantly weaker confinement strength allows for stable synchronization states
to emerge. In particular, the phase lag of zero for the planar orientation of
oscillators translates to a chevron like pattern for long chains of 30 oscillators.

4.2.4 Conclusions

The study of two oscillators above a surface quantifies the phase lag in syn-
chronization. Maximal phase lag of χ = 40◦ is achieved for oscillators beating
perpendicular to the surface (αt = 90◦). The phase lag decreased with the dis-
tance of the oscillators to the surface. Nevertheless, metachronal coordination
develops in open chains with more than 10 oscillators for all orientations with
the surface for weak confinement λc ≤ 1.0. These results are in agreement
with those of a recent study of Brumley, Polin, et al. (2012).

A strong influence of boundaries at medium confinement λc = 1 is found. The
metachronal wave compresses towards the end of the chain, which points along
the beating direction. Stronger confinement λc = 10 leads to short pair-wise
partially synchronization that shows no stable long-term correlations. The
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critical value of λc, restricting metachronal coordination, could explain the
difficulties to observe ciliary synchronization in the full cilia model (section
4.1). The high noise in MPC simulations and the relatively strong flows,
needed to slow down the beating of the cilia in the Brownian ratchet model,
create a narrow window where metachronal synchronization seems possible.
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Figure 4.17 Confocal microscopy image of ependymal tissue - The primary
cilia (yellow) is surrounded by tufts of motile cilia (white) in a quasi-hexagonal
like structure. Motile and imotile cilia are stained in green, whereas cell
junctions are stained in red. (from: A. Meunier (2016)).

4.3 Particle Transport in Cilia Tufts

4.3.1 Ciliary Tufts in Brain Ventricles

Cilia exposed on the surface of cells often occur in bunches forming tufts.
Such tufts of motile cilia cover the surface of mammalian brain ventricles. The
cerebrospinal fluid (CSF) flows through these cavities. During ependymal cilia
development, motile cilia orient along the direction of the CSF flow (Molla-
Herman et al., 2010) which is important to establish left-right symmetry. Once
cilia are fully developed, their orientation becomes fixed. The arrangement
of motile and primary cilia in ependymal tissue shows a quasi-hexagonal
arrangement (Fig. 4.17). Neuronal stem-cells expose a primary cilium into the
surface of the brain ventricles where they can interact with the fluid flow. Stem-
cell development originating from the primary cilia is important during brain
development and proper function. If the signaling cascade of the primary cilia
is knocked-out, the formation of neuronal stem-cells is inhibited (Sawamoto
et al., 2006).
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Figure 4.18 Distribution of tracked particles - The heat map shows the
enhancement of particle flux I towards the xy-surface compared to purely
diffusive transport I0. In the hot-spot area (yellow) the flux density increases
by up to 60 percent. Black dots mark the position of the individual cilia in the
tuft. The bold (dashed) black line shows the direction of the power (recovery)
stroke.
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In this section the benefit of motile cilia around primary cilia is investigated.
The fluid flow generated by the active beating of the cilia is simulated to
examine its effect on particle transport towards the surface.

4.3.2 Modeling and Data Extraction

From the experimental data, which is provided by collaborators from Nathalie
Spassky lab at ENS Paris, cilia coordination within a tuft is extracted using
image processing. A tuft is rebuilt in the simulation by placing cilia in the
same relative arrangement as in the original tuft. The base of each cilium is
fixed at the surface. The simulation uses periodic boundary conditions in x
and y direction, and a no-slip surface at the bottom and a slip surface at the
top. Tufts are modeled in a simulation box of dimensions Lx = 70a, Ly = 70a
and Lz = 30a. Therefore, the beating of cilia in an infinite array of tufts with
around 50 motile cilia creates the flow. By inserting tracer molecules, modeled
as a tetrahedron with edge length a, the enhancement of flow towards the
surface compared to passive diffusion is measured. The dimensions of the
cilia match the experimentally observed sizes in brain tissue of mice.

FET, a signaling molecule, that is part of the brain fluid, has a diffusion
constant of 0.518±0.016 µm2/s. Considering the beat parameters of the cilia,
as listed in Table 4.1, the Péclet number of the active particle transport, created
by the ciliary beat, is Pe = l2

motile fcilia/DEGF = 9000±6000.

Table 4.1 Experimental scales of cilia tufts

lmotile 12.2±2.1µm
dmotile ≈ 0.3µm
lprimary 0.9±0.3µm
Ntu f t ≈ 50
fcilia 30±10Hz
DEGF 0.518±0.016µm2/s

The mean beat period τb = 560
√

kbT/(ma2/) of a cilium in the simulated
tuft is limited by the constraint of keeping the system in the low Reynolds
limit. The low friction is reflected in the high noise of the system, leading to
a diffusion constant Dtracer = 0.012

√
a2/(kbT 3m) of free dilute tetrahedron

tracker molecules. This results in a Péclet number Pe = 82 for the simulation.
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Thus, the diffusive transport is overestimated in the simulation. Effects of
advective transport in the simulation will enhance with increasing Péclet
number.

4.3.3 Results

At the start of the simulation NT = 490 tracer particles are inserted in the
volume Vs of the top layer of the fluid at random positions. This results in an
average tracer particle density of ρT = NT/Vs = 0.1 a−3. The tracers move
in the flow field of the ciliary beating until they diffuse below the height of
the primary cilium, z = 2a. If tracer particles arrive at this critical height, they
are reinitialized by inserting them again at a random position in the starting
volume. Additionally, their traveling time and impact coordinate on the surface
are logged. This allows to determine the flux of particles towards the surface
when they get absorbed at the height of the primary cilium. In Fig. 4.18 the
flux of tracer particles towards the surface is shown. The ciliary beating has a
twofold effect. First it increases the total flux towards the surface and second
it localizes the particles in specific areas. The flux density in hot spots is about
80% higher than the influx of particle due to pure diffusion. Even though
simulation results show a significant enhancement, the location of the hot-spot
area does not coincide with the location of primary cilia. A simulation which
includes the entire pinwheel arrangement will most likely change the location
of the hot-spot area and most likely improve the result.

Due to the large noise present in MPC simulations, the diffusive transport is
highly overestimated. In the current setup, the inserted tracking participles act
more like tracers, following the flow towards the surface. Therefore, especially
the localization of the flux due to the ciliary beating is interesting. The
localization can be understood by the vortices that enhance particle transport
towards the surface in specific areas. A similar enhancement has been shown
experimentally in reef corals (Shapiro et al., 2014) using video microscopy.
Ciliary beating increases oxygen transport towards the surface by up top 300%.





Chapter 5

Summary & Conclusions

The dynamics of flagellar beating and its consequences on trajectories as well
as synchronization of ciliated microswimmers have been analyzed. Details of
the beat shape critically determine the swimming path and propulsion velocity
of ciliated microswimmers. Hydrodynamic simulations of sperm (single flag-
ellum swimmers), swimming under confinement, reproduce experimental data,
gain additional insight on the behavior of active particles in complex environ-
ments and help to propose new microfluidic experiments for the guidance of
sperm. The importance of nonplanar beating leads to the development of a
new approach to model the dynamics of flagellar beating. A Kirchhoff elastic
rod model enables the study of filaments with values for the twist and bending
rigidities of biological relevance.

The surface attraction of sperm, swimming along the sidewall of zigzag chan-
nels is mainly determined by steric interactions. A static, steric model covering
the averaged beat-shape envelope of the beating sperm cell successfully de-
scribes the average deflection around corners. Planar beat-patterns tend to
align with the nearest surface which leads to a bi-modal stability for sperm
swimming near the corner of a channel. When the sperm beats parallel to the
sidewall, the beat shape does not interact sterically with the sidewall which
results in small deflection angles. On the contrary, a beat-plane orientation
parallel to the top or bottom walls exposes the cone-like average beat-shape
towards the sidewall. This leads to an inclination of the sperm towards the
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sidewall and eventually significant higher deflection angles. Therefore, the
orientation and stability of the beat plane determines the deflection and thereby
the overall trajectory of sperm in structured micro channels. Those two possi-
ble stable orientations are found to be the reason for the broad deflection angle
distribution which is found in experiments as well as simulations. In particular
the simulation results agree to experimentally measured deflection of sperm.

Even though the model with a planar beat successfully describes propulsion
properties of sperm, it turns out that the three-dimensional beat pattern of the
flagellum is crucial in the understanding of motion under confinement. Above
a critical wavelength λ = 0.7 L the axoneme exhibits a small out-of-plane
component which depends on the beat frequency. For λ ≥ 0.9 perfect surface
attraction is achieved for both tested frequencies. Using this result, a filtering
between straight and buckled sperm cells could be achieved. While swimming
along round corners of radius R = 2.8 L, planar beating sperm detach and
cross to the opposing channel side, whereas nonplanar beating sperm swim
around the corner and stay attached to the same sidewall. These simulation
results pose interesting questions how surface interactions guide sperm through
complex and highly confined geometries. They emphasize the importance of
resolving the three-dimensional beat shape, specifically turning the interest
towards the underlying buckling dynamics.

By extending the planar beating sperm cell model to a semi-flexible polymer,
where bending and twist rigidities can be specified independently, the transition
from planar to three-dimensional beat pattern has been analyzed in more detail.

A phase-space study confirms a critical twist rigidity, which is two orders of
magnitude below the corresponding experimental bending rigidity. In this
unstable regime a twist instability, which propagates along the main axis of the
filament, leads to the splitting of the planar beat pattern into two planes. These
results agree with the performed analysis of experimental data of human sperm
cells, where the same oscillating nonplanarity as in simulations is observed.

Synchronization of the beating of many cilia on the surface of spherical
microswimmers is more difficult to achieve than expected. Even though a
constant phase lag develops for some simple configurations, the generalization
of the previously used cilium model from a planar arrangement to more
complex spherical geometries turns out to be difficult. Within the used ratchet-
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like cilia model, the switching point between power and recovery stroke
determines the change in cilia beat frequencies. In the regime of stable beating,
the hydrodynamic interactions between cilia seem to be very weak and several
states of synchronization coexist. A scan of swimmers with randomly placed
cilia shows a sub-linear increase of propulsion speed with cilia density. For
swimmers with symmetric cilia arrangement, stable coordinated cilia beating is
observed and shown to increase the propulsion efficiency by about 30 percent.
Due to the difficulties of reaching stable synchronization, a minimal model
in order to study the conditions for emergence of metachronal coordination is
investigated. The cilium oscillator model allows the control of the coupling
strength between oscillators. When operating below a critical confinement
strength, stable metachronal coordination emerges within a chain of oscillators.
Boundaries turned out to be important in determining direction and shape of
the wave.

The combination of experimental and simulation data is crucial in under-
standing the high-dimensional problem of self-propulsion of multi-ciliated
microswimmers. Finding the predicted twist instability in experimental data
helps in refining the proposed model and restricting the simulation regime to
meaningful parametric values. Simulations provide details such as twisting
and bending energies, that help to enhance the recorded data by information
which is difficult, if not impossible, to obtain experimentally. In particular, the
combination of confinement and the improved axoneme model, which under-
goes a twist instability, proposes an interesting topic for further investigation.
The sudden transition from planar to complex three-dimensional beat shapes
has been shown to effect surface attraction and swimming path of sperm cells.

By analyzing the beat-shape envelope and the rolling of sperm, the resulting
surface guidance can be predicted and eventually tested using the full hydro-
dynamic simulation techniques in confinement. Variations of beat pattern
among species could relate to the very specific environmental conditions cells
encounter. Especially, guidance and selectivity of the fittest sperm might be
accomplished via their differences in beat shape and frequency and their effect
on surface attraction. Sperm respond to signaling molecules by changes in
beat frequency as well as wavelength. The inclusion of such response in
the developed sperm model will have an effect on the out-of-plane compo-
nent and thereby influence surface attraction heavily. This further elaboration
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will improve the understanding of the surface guidance mechanism in sperm
navigation towards the egg cell.

The established ciliated-swimmer model can be extended to simulate more
complex cilia arrangements. The doublet-cilia found on many algae are
connected by elastic fibers. The altering of synchronization behavior by such
an additional coupling poses an interesting problem, which seems feasible
to address. In particular, a finer control of the beat shape of the cilia would
allow to study cilia with different intrinsic frequencies. Direct control of the
confinement strength, as discussed in the cilium oscillator model, would allow
the testing of different interaction regimes and improve the understanding
of synchronization on the propulsion velocity and swimming path of such
complex swimmers.

The study of complex cilia topologies, including defects, is feasible within the
simple oscillator model. Especially, the numerical efficiency and the single
parameter control enables simulations of even large fields. The emergence
of symmetry breaking along linear chains of oscillators looks promising in
helping to improve the understanding left-right symmetry breaking during
embryogenesis. For example, the oscillators model could be extended to allow
for induced tilting of the imposed trajectory.

Overall the combination of multi-scale approaches, starting from the cilium
oscillator model to study complex arrangement to more complex ciliated swim-
mers that might eventually allow direct mapping to experimentally observed
data, provides a way to elucidate the origin of the beautiful complex world of
ciliary synchronization patterns.
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Appendix A

A.1 Gyration Tensor Decomposition

A consistent local frame of reference can be obtained from the expansion of
the flagellum. The diagonalized gyration tensor defines a local orientation for
each time frame of the trajectory. It defines three orthogonal vectors of the
flagellum which are aligned so they form a right-handed coordinate system
with the largest eigenvalue e pointing towards the tail of the flagellum, the
eigenvector with the second largest eigenvalue b gives the direction of the
beating.

Since the beating varies periodically in time and space, this vector is only
defined up to a factor of ±1. A time resolution of the obtained data higher
than the rolling frequency of the object allows local alignment of the b vector
between succeeding frames. Finally, the beat-plane normal is defined as a right-
handed coordinate system p = e×b. Where p defines the normal orientation
of the space curve in a co-moving reference frame with respect to center of
mass translation and rotation.

The motion of the sperm cell is now described as the superposition of the
beat pattern in the local reference frame and the whole-body translation and
rotation:

r(s, t) = r0(t)+E(s, t)ê(t)+B(s, t)b̂(t)+P(s, t)p̂(t), (A.1)
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where r0 is the center of mass motion and E,B and P are the amplitudes of the
displacement along the corresponding axes.

A.2 Phase Extraction from Limit Cycle

Introducing a phase description simplifies the study of synchronization in high
dimensional systems (Kralemann et al., 2008; Ott and Antonsen, 2008). As-
suming the system has a stable limit cycle solution, which means it undergoes
stable oscillations, a one-dimensional phase description can be established.
The phase describes the position of the system along the closed trajectory of
the limit cycle.

The undisturbed motion in the limit cycle has a constant oscillation time τ

after which the motion repeats itself:

r(t + τb) = r(t) (A.2)

(A.3)

The undisturbed phase follows as:

ϕ(t) = ω0t, (A.4)

where ω0 = 2π/τb is the intrinsic frequency of the oscillator.

The following steps are applied to extract the phase of the cilium, assuming its
center line is described by the space curve r(s):

• Calculate the orientation of the cilia segment δr1 = r(L/2)− r(0) and
δr2 = r(L)− r(L/2)

• Calculate the angels between the normal of the cilia n and two local
orientations cosφi = ri ·n

• Use the phase space of the limit cycle described by φ1 and φ2 to define
a Poincaré section

• Measure the intersection times of this section

• Interpolate a phase from these intersection times.
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The details of the concrete phase dependence within one limit cycle is lost,
but the relative phase difference between oscillators with respect to the sharp
Poincaré section is well defined and extremely noise resistance. A variety of
more refined methods exit (Kralemann et al., 2008) to extract a phase from
experimental data. In the scope of global states of synchronization the method
presented here proved to be most reliable.

A.3 Adaptive Timestep

Adaptive time stepping (Söderlind, 2002) solves an ordinary differential equa-
tion numerically in such a way that the integration error is below a given
tolerance εtol . Using forward integration first and than compare the result to
backward propagation gives an estimate for the integration error. A simple
Euler step propagates the particles forward in time:

drE
i (t + τ) = µi j(r, t)Fj(r, t) τ (A.5)

The difference between the force vector obtained at the new and old position
gives rate of change of the force with the current time step. Therefore, it
provides an estimate of the integration error δF = (←→µ i j(r+dr)F j(r+dr)−
←→
µ i j(r)F j(r)).

Using the maximal error observed during integration, the time step adapts
accordingly to:

τ ← 0.9×2
εtol

max|δF j/F j|
, (A.6)

where the factor 0.9 provides a safety margin due to the error of the error
estimate itself.

Finally, the error estimate is used to expand the Euler integration schema to
a trapezoidal method, which is stable for stiff-equations (Wanner and Hairer,
1991):
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dri(t + τ) = (µi j(r+dr) F j(r+dr)+µi j(r) F j(r))
τ

2

= drE
i (t + τ)+δF j

τ

2
. (A.7)



Appendix B

B.1 Simulation Parameters

The parameters used to simulate the presented MD structures are given here.
All values are in MPC units. When not otherwise specified in the main text, the
spring constant γs is set to a large value of γs = 20000 to ensure rigid structure.
In table B.1 the parameters used to simulate cilia fixed on surfaces and on
spherical swimmers are given. The stall force threshold is set to zero, since
thermal fluctuations are strong enough in MPC to drive the cilia beat via the
ratchet.

Table B.1 Cilium simulation parameters

parameter swimmer fixed
A 0.14 0.11
QR 0.7 1.0
QP -0.7 -1.0
vrecover 5.0 50.0
rodlength 26 50
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B.2 Kurzzusammenfassung

Der Antriebsmechanismus und die Schwimmdynamiken verschiedenartiger
Mikroorganismen, die mit Zilien ausgestattet sind, werden untersucht. Diese
Organismen, die sich von der eingeißligen Spermazelle bis zu Mikroschwim-
mern mit zahlreichen Zilien erstrecken, treiben sich selbst durch diese Cilien,
die an ihrer Zellmembran befestigt sind, an. Die zugrunde liegende, vielschichtige
Biomaschinerie eines Ziliums nutzt evolutionär entwickelte Mechanismen,
welche darauf zugeschnitten sind, ein optimales Schlagmuster zu erzeugen,
damit der Schwimmer sich in seiner Umwelt bewegen kann. In dieser Arbeit
werden mesoskopische hydrodynamische Simulationen angewendet, um die
peitschenähnliche Bewegung in niedrigen Reynolds-Zahlen zu simulieren. Die
teilchenbasierte Herangehensweise an die "multi-particle collision dynamics"
ermöglicht Simulationen von sich selbst antreibenden Mikroschwimmern,
die in komplexen Strukturen eingeschlossen sind, wo sterische und hydro-
dynamische Wechselwirkungen die Schwimmdynamiken stark beeinflussen.
Einzelheiten der Anordnung und Schlagform der Zilien sind entscheidend,
um die Antriebskraft und Oberflächenanziehung zu verstehen. Der Schlag
der Zilien wird durch ein halbflexibles Polymer mit periodisch wechselnden
intrinsischen Krümmungen modelliert. Im Sinne einer minimalistischen Mod-
ellierung wird das Zilium nur in einem Freiheitsgrad gekrümmt, damit eine
definierte Schlagebene geschaffen werden kann.

Weitere Untersuchungen verschiedener Schlagmuster mit anwachsender Wellen-
länge ergeben eine komplexe Oberflächenanziehungsdynamik der Spermazelle.
Die Erkenntnisse aus dem sterischen Modell helfen dabei, diese Oberflächenanziehung
in Bezug auf die Einhüllende des Schlagmusters zu verstehen. Es lässt sich
beobachten, dass das Schlagmuster ab einer kritischen Wellenlänge dazu führt,
dass das Filament einknickt und sich dadurch ein komplexes dreidimension-
ales Schlagmuster ergibt, welches die Oberflächenanziehung stark erhöht.
Schließlich wird ein Kanaldesign mit konstanter Krümmung vorgeschlagen,
um Spermien mit einem dreidimensionalen Schlagmuster von denen mit einem
ebenen zu unterscheiden. Das zweite Kapitel analysiert dreidimensionale holo-
graphische Experimentaldaten von frei schwimmenden menschlichen Sper-
mazellen. Im Mittel ist das Schlagmuster relativ eben, aber es zeigt zweimal
pro Schlag Komponenten, die nicht eben sind. Eine mögliche Erklärung für die



140

nicht ebenen Schläge wird gewonnen, indem man die Simulationsergebnisse
mit hoch-aufgelösten Experimentaldaten des Zilium-Schlagmusters vergleicht.
Wenn man Spermazellen mit festgelegten ebenen Biegungen und einer um zwei
Größenordnungen kleineren Verdrillungs-Steifigkeit als die Biegesteifigkeit
simuliert, erfahren diese eine Verdrillungs-Instabiltät und zeigen ein dreidi-
mensionales Schlagmuster. Die Simulationen ermöglichen es, den Phasen-
raum der Verdrillungs-Instabilität abzubilden, die keine Abhängigkeit von der
Biegesteifigkeit aufweist, sondern einen scharfen Übergang von ebenen zu
dreidimensionalen Schlägen unterhalb einer kritischen Verdrillungs-Steifigkeit.
Eine örtlich begrenzte Verdrillungswelle läuft durch das Zilium, die das Zilium
in einem sehr engen Segment verdrillt, das nahe dem Punkt von minimaler
Biegung auf gleicher Ebene liegt. Dies bewirkt im Wesentlichen die zwei
Schlagebenen, indem es das Zilium in zwei Segmente unterteilt, nämlich vor
und nach der Verdrillungsregion.

Im zweiten Teil der Arbeit werden die Antriebskraft und die Synchroni-
sation von vielfach zilienbesetzten kugelförmigen Schwimmern mit unter-
schiedlichen Ziliendichten und -anordnungen untersucht. Anstatt die intrin-
sische Krümmung vorher festzulegen, treibt ein Mechanismus, der einer
Ratsche ähnelt, das Schlagmuster der Zilie an. Daher kann die Schlagpe-
riode durch die Strömung, die durch die Bewegung der anderen Zilien erzeugt
wird, beeinflusst werden. Die Antriebsgeschwindigkeit von zilienbesetzten
kugelförmigen Schwimmern steigert sich sublinear mit zunehmender Zilien-
dichte. Es lassen sich große Unterschiede in der Antriebsgeschwindigkeit
gleicher Anzahlen von Zilien mit unterschiedlicher Anordnung auf der Kugel
beobachten. Für symmetrische zilienbesetzte Schwimmer zeigt sich, dass die
Entstehung einer stabilen Synchronisation vom Anfangszustand abhängt. In
einigen symmetrischen Schwimmern mit 9 Zilien entwickeln sich lange Phasen
der Synchronisation. Schwimmer, deren Phasenunterschied aufgrund von
Phasensprüngen zunimmt, haben eine langsamere Antriebsgeschwindigkeit
als Schwimmer, die eine konstante Phasenverzögerung entwickeln. Die Entste-
hung von metachronaler Koordination in verschiedenen Anordnungen in der
Nähe einer Oberfläche werden untersucht, indem ein einfaches Oszillatormod-
ell für die Ziliensynchronisation angewendet wird. Die Oszillatoren werden
als hydrodynamisch interagierende Kugeln, die sich in einer kreisförmigen
Bahn vorwärts bewegen, modelliert. Die Entdimensionalisierung des Modells
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ergibt die radiale Begrenzung als einzigen Kontrollparameter in dem Modell.
Die Synchronisation wird ebenso durch Randeffekte wie durch die Begren-
zungsstärke beeinflusst. Bis hin zu einer kritischen Begrenzungsstärke zeigen
sich stabile großformatige Synchronisationsmuster sowohl in offenen Reihen
von Oszillatoren als auch in kreisförmigen Anordnungen. Oberhalb einer kri-
tischen Begrenzungsstärke erscheint in keiner der untersuchten Strukturen eine
langfristige Koordination. Als letzter Schritt wird das Ziliummodell genutzt,
um ein Büschel von Zilien zu modellieren, zu dem Zweck, die Platzierung
von Zilien in den Gehirnventrikeln von Mäusen zu beschreiben. Es wird
beobachtet, dass die Partikelströmung in Richtung der Oberfläche in Häu-
fungspunkten lokalisiert ist, wo die Strömung, verglichen mit bloß diffusivem
Transport, deutlich gesteigert wird. Das zeigt die wichtige Rolle des Zilien-
schlagens im molekularen Transport gegenüber den ursprünglichen Zilien auf
der Oberfläche der Ventrikel.
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