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Abstract 

In nature plants are surrounded by a diverse set of beneficial and harmful microbes. 

Plants can recognize these microbes by sensing conserved microbe-associated molecular 

patterns (MAMPs) via cell surface-localized receptors, leading to the activation of pattern-

triggered immunity (PTI). PTI protects plants from potential microbial pathogens through 

induction of a myriad of defence responses including massive transcriptional reprogramming 

in Arabidopsis thaliana. Despite the significance of PTI responses for the plant adaptation to 

diverse microbes, we currently do not understand the importance of this massive transcriptional 

reprogramming, whether PTI responses are conserved, and how they evolved. Here I used 

comparative transcriptomics to analyse the responses of six A. thaliana accessions and three 

additional Brassicaceae species to the bacterial MAMP flg22. This analysis revealed that large 

parts of the transcriptional response to flg22 are conserved among Brassicaceae species, 

suggesting that these are under purifying selection over the Brassicaceae evolution and that 

flg22-triggered transcriptional reprogramming during PTI is important. At the same time, I 

found that a considerable fraction of flg22-responsive genes showed species-specific 

expression signatures. Moreover, variation in flg22-triggered transcriptional reprogramming 

was incongruent with the Brassicaceae phylogeny, suggesting that adaptive evolution acts on 

subsets of flg22-responsive genes. In contrast, flg22-triggered transcriptional responses among 

genetically and geographically diverse A. thaliana accessions were extremely conserved. Thus, 

inter-species clearly exceeds intra-species transcriptome variation in response to flg22. This 

further suggests the adaptive nature of gene expression evolution and points to a small 

contribution of neutral transcriptome evolution during PTI within Brassicaceae. Regulatory 

regions of conserved flg22-inducible genes were highly enriched for WRKY transcription 

factor (TF)-binding motifs throughout all tested species. Interestingly, regulatory regions of 

genes specifically induced in A. thaliana or Capsella rubella were enriched for WRKY-binding 

motifs only in A. thaliana or C. rubella, respectively. This indicates that WRKY TFs play an 

important role in flg22-triggered gene induction and that the gain of WRKY-binding motifs in 

regulatory regions accounts for some species-specific expression changes. Taken together, this 

study advances the field of comparative transcriptomics by providing empirical analysis for the 

evolution of stress-induced transcriptome changes within and across plant species with a 

defined phylogenetic framework. 
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Zusammenfassung 

In der Natur sind Pflanzen von einer Vielzahl verschiedenartiger Mikroorganismen 

umgeben. Pflanzen können diese Mikroorganismen anhand von konservierten Mikroben-

Molekülen sogenannten „microbe associated molecular patterns“ (MAMPs) wahrnehmen, 

welche von Pflanzenrezeptoren auf der Zelloberfläche erkannt werden. Dies aktiviert das 

Pflanzen-Immunsystem, eine sogenannte „pattern triggered immunity“ (PTI) wird in der 

Pflanze ausgelöst. PTI schützt die Pflanze vor einer Vielzahl schädlicher Mikroben und löst 

zahlreiche Abwehrreaktionen, unter anderem eine heftige Transkriptions-Antwort, aus. 

Obwohl PTI ein wichtiger Prozess für die Adaptierung von Pflanzen auf unterschiedliche 

Mikroorganismen darstellt, ist unklar wie bedeutend diese massive Transkriptionsantwort ist, 

in wieweit diese Reaktion in anderen Pflanzenarten konserviert ist und wie PTI evolviert. Um 

diese offenen Fragen zu klären, habe ich die Transkriptionsantworten zwischen drei A. thaliana 

verwandten Brassicaceae Spezies sowie von fünf A. thaliana Ökotypen auf das bakterielle 

MAMP flg22 untersucht und miteinander vergleichen.  

Diese Analyse ergab das große Teile der Transkriptionsantwort auf flg22-indizierte PTI 

zwischen den getesteten Brassicaceae Arten, durch stabilisierende Selektion während der 

Brassicaceae Evolution, konserviert wurden. Dies verdeutlicht die Bedeutung dieser massiven 

Transkriptionsantwort während PTI. Gleichzeitig weisen Arten-spezifische 

Transkriptionsmuster, welche inkongruent mit der Brassicaceae Phylogenese sind, darauf hin, 

dass adaptive Evolution einige Diversifizierungen der flg22-induzierten 

Transkriptionsantworten beeinflusst hat. Im Gegensatz dazu waren flg22-induzierte 

Transkriptionsantworten zwischen verschiedenen A. thaliana Ökotypen hoch konserviert. Die 

inter-Spezies Variation der Transkriptionsantwort, welche die intra-Spezies Variation weit 

übersteigt, zeigt zum einen, dass die die kurze evolutive Zeit innerhalb einer Art nicht 

ausreichend ist, um solch eine Diversifizierung zu erzeugen, und andererseits das neutrale 

Evolution vermutlich einen geringen Einfluss auf die beobachteten Diversifizierungen 

zwischen den Arten gehabt hat. Regulatorische Sequenzen konservierter flg22-induzierter Gene 

waren in allen getesteten Arten mit WRKY Transkriptiosfaktor(TF)-Motiven angereichert. 

Interessanterweise waren A. thaliana und C. rubella spezifisch induzierten Gene nur in A. 

thaliana und C. rubella regulatorischen Sequenzen für WRKY TF Motive angereichert. Dies 

deutet darauf hin, dass WRKY TFs eine wichtige Rolle bei der flg22-induzierten Geninduktion 

spielen und dass der Gewinn von WRKY-Bindungsmotiven in den regulatorischen Sequenzen 

für einige artspezifische Expressionsänderungen verantwortlich ist. Insgesamt treibt diese 

Studie das Feld der komparativen Transkriptionsanalyse voran, da hier zum ersten Mal Stress-
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induzierte Transkriptionsantworten mehrere Ökotypen innerhalb einer Pflanzenart mit denen 

zwischen mehreren Pflanzenarten, in einem phylogenetisch definierten Rahmen, verglichen 

wurden. Dabei untermauerten evolutiv konservierte Transkriptionsantworten ihre Bedeutung 

für das Pflanzenimmunsystem, wohingegen Arten-spezifische Transkriptionsmuster potenziell 

adaptive Merkmale hervorhoben.  
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1. Introduction 

1.1. The plant immune system 

In nature, plants are surrounded by a myriad of diverse microbes which can be beneficial 

or harmful for the plant (Bulgarelli et al., 2013; Agler et al., 2016). In order to stay healthy and 

grow, plants must recognize non-self or altered-self and mount the appropriate responses when 

sensing microbes in their surroundings (Jones and Dangl, 2006; Couto and Zipfel, 2016). Since 

plants lack an adaptive immune system, they rely on an innate immune system enabling plant 

cells to recognize pathogens via different types of receptors (Spoel and Dong, 2012). Plants 

detect pathogens via cell surface localized pattern recognition receptors (PRRs) by utilizing the 

presence of conserved structures, called pathogen- or microbe-associated molecular patterns 

(PAMPs or MAMPs) (Jones and Dangl, 2006; Spoel and Dong, 2012; Ranf, 2017). Since 

MAMPs are often relevant for the microbial fitness, plants exploit that MAMPs cannot be easily 

changed by the microbes (Martin and Kamoun, 2012). MAMP recognition results in pattern-

triggered immunity (PTI), which is effective against the vast majority of potential pathogens 

(Zhang and Zhou, 2010; Macho and Zipfel, 2014; Bigeard et al., 2015). Moreover, plants can 

activate PTI by sensing plant-derived molecules called damage-associated molecular patterns 

(DAMPs) via PRRs (Gust et al., 2017). 

To increase virulence, microbes evolved virulence factors called effectors, which are 

delivered inside the plant cell to modify the plant's behaviour to the microbe’s benefit; often by 

perturbing plant immune responses (Toruño et al., 2016; Varden et al., 2017). As a 

countermeasure, plants evolved a second layer of immunity to not only directly recognize 

virulence effectors, but also perturbation caused by them via intracellular receptors called 

nucleotide-binding domain leucine-rich repeat proteins (NLRs) (Jones and Dangl, 2006; Cui et 

al., 2015). In addition, some NLR receptors even present so-called decoy domains which mimic 

plant immune components such as WRKY transcription factors that are targeted by effectors 

and thus trick the pathogen as it activates the NLR receptor rather than perturbing its intended 

target (Le Roux et al., 2015; Sarris et al., 2015). Successful detection of effector actions 

activates effector-triggered immunity (ETI), which shares many overlapping features with PTI 

but is considered stronger and more robust as compared to PTI (Katagiri and Tsuda, 2010). In 

plant cells surrounding the infection site, ETI often leads to a programmed cell death called 
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hypersensitive response (HR) to limit further pathogen spread. Taken together, PTI and ETI 

represent two distinct layers of immunity which help plants to fight against pathogens. 

1.1.1. Pattern triggered Immunity (PTI) 

In the past three decades, various MAMPs and their cognate PRRs have been identified (Tang 

et al., 2017). PRRs belong to either of two large protein families called receptor-like kinases 

(RLKs) or receptor-like proteins (RLPs) (Couto and Zipfel, 2016). RLKs are composed of an 

ectodomain responsible for specific ligand binding, a transmembrane domain, and an 

intracellular kinase domain transducing the signal inside the cell (Ranf, 2017). The kinase 

domain is absent in RLPs (Wang et al., 2008). PRRs can be further classified by the nature of 

their extracellular ligand-binding domain which can consists of leucine-rich repeat domains 

(LRR), lysin motifs (LysM), or lectin-like motifs (Ranf, 2017). These different ectodomain 

structures mostly bind to specific ligand classes; peptides, carbohydrates, and lipids are often 

recognized by LRR, LysM and lectin-containing PRRs, respectively (Couto and Zipfel, 2016). 

The MAMPs recognized by PRRs are conserved structures that are often important for 

the microbial fitness. The two best described MAMPs to date are the bacterial oligo-peptides 

flg22 and elf18. Flg22 is derived from the bacterial flagellin, hence it is important for motility, 

whereas elf18 originates from the bacterial elongation factor Tu, one of the most abundant 

bacterial proteins with a major function in protein biosynthesis (Felix et al., 1999; Kunze et al., 

2004). Flg22 and elf18 are detected by the two corresponding LRR-type PRRs FLAGELLIN 

SENSING 2 (FLS2) and EF-TU RECEPTOR (EFR), respectively (Gómez-Gómez and Boller, 

2000; Kunze et al., 2004; Chinchilla, 2006; Zipfel et al., 2006). Other PTI-triggering structures 

sensed by plants include peptidoglycans, forming bacterial cell walls and chitin, the main 

component of fungal cell walls (Kaku et al., 2006; Gust et al., 2007). Both MAMPs are 

perceived by LysM-PRRs. In A. thaliana, chitin is perceived by a heterodimer consisting of 

CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) and LysM-CONTAINING 

RECEPTOR KINASE 5 (Lyk5) (Cao et al., 2014). CERK1 is also associated with the two 

redundant RLPs LysM DOMAIN-CONTAINING GPI-ANCHORED PROTEIN 1 (LYM1) 

and LYM3, which sense peptidoglycan (PGN), although CERK1 itself does not directly bind 

to PGN (Gimenez-Ibanez et al., 2009b; Willmann et al., 2011). Recently an S-lectin-domain 

receptor called LIPOOLIGOSACCHARIDE-SPECIFIC REDUCED ELICITATION (LORE) 

was found to contribute to immunity in Brassicaceae plants by sensing the lipid A moiety of 

bacterial Lipopolysaccharides (LPS) (Ranf et al., 2015). The previously mentioned examples 

described PRRs and MAMPs identified in A. thaliana, but several other PRR/MAMP pairs 
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have been described for other plants species for example: an epitope from bacterial cold-shock 

protein (csp22) sensed by the PRRs RECEPTOR-LIKE PROTEIN REQUIRED FOR CSP22 

RESPONSIVENESS (NbCSPR) (Saur et al., 2016) and COLD SHOCK PROTEIN 

RECEPTOR (CORE) in Nicotiana benthamiana and tomato (Wang et al., 2016), respectively; 

a Xanthomonas oryzae protein called RaxX which is perceived by the rice PRR XA21 (Song et 

al., 1995; Pruitt et al., 2015); or the fungal MAMP ethylene-inducing xylanase 1 (EIX1) which 

is sensed by the tomato PRRs LeEix1 and LeEix2 (Ron and Adi, 2004; Bar et al., 2010). Taken 

together, different PRRs can detect a broad spectrum of microbe-derived molecules. 

In addition to MAMPs, some PRRs evolved to detect DAMPs. DAMPs are host-derived 

molecules originating from presumably damaged plant cells or can be produced by plants after 

pathogen recognition (Gust et al., 2017). For example, the two RLKs PEP 1 RECEPTOR 1 

(PEPR1) and PEPR2 redundantly perceive a group of small peptides called AtPep1-AtPep6 

produced by A. thaliana, to boost PTI (Yamaguchi et al., 2006; Huffaker et al., 2006; Huffaker 

and Ryan, 2007; Yamaguchi et al., 2010). 

PRRs often form sophisticated heteromeric receptor complexes, through interaction 

with co-receptors or signal transducers. For example, BRI1-ASSOCIATED RECEPTOR 

KINASE 1 (BAK1), as well as several related SOMATIC EMBRYOGENESIS RECEPTOR 

KINASES (SERK) family members, interact with multiple PRRs including FLS2, EFR and 

PEPR1, in a ligand-dependent manner and in case of FLS2, BAK1 acts as a co-receptor (Heese 

et al., 2007; Chinchilla et al., 2007; Schulze et al., 2010; Roux et al., 2011). Moreover, many 

known RLPs lacking an intracellular signalling domain interact with SUPPRESSOR OF BIR1-

1 (SOBIR1) to transduce the signal inside the cell (Zhang et al., 2013a; Liebrand et al., 2014; 

Albert et al., 2015). Thus, MAMPs are perceived by receptor complexes rather than by single 

PRRs. 

After MAMPs are successfully sensed, multiple PTI responses are triggered in a 

temporally coordinated manner (Yu et al., 2017). Within minutes after MAMP perception, Ca2+ 

influx, reactive oxygen species (ROS) burst, and mitogen-activated protein kinase (MAPK) 

phosphorylation are triggered (Blume et al., 2000; Asai et al., 2002; Sagi et al., 2006; 

Jeworutzki et al., 2010; Yu et al., 2017). These responses are often mediated and coordinated 

by receptor-like cytoplasmic kinases (RLCKs) associating with PRR receptor complexes (Tang 

et al., 2017). For example, BOTRYTIS-INDUCED KINASE 1 (BIK1) is a RLCK interacting 

with multiple PRRs including FLS2, BAK1, EFR, PEPR1, and CERK1 (Tang et al., 2017) and 

directly connects MAMP perception with the ROS burst by activating the plasma membrane-

resident NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOGUE PROTEIN D 
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(RBOHD) after MAMP perception (Nühse et al., 2007; Li et al., 2014b; Kadota et al., 2014; 

Tang et al., 2017). 

These early responses are followed by intermediate responses including a massive 

transcriptional reprogramming (Li et al., 2016) and increased accumulation of different 

phytohormones. Multiple phytohormones such as ethylene, salicylic acid (SA), or jasmonate 

(JA) modulate a complex downstream signalling network after MAMP perception (Tsuda et 

al., 2008; Pieterse et al., 2012; Anver and Tsuda, 2015). This enables plants to integrate other 

processes like growth, development, and abiotic stresses to optimize their responses (Vos et al., 

2013; Berens et al., 2017). Depending on the type of invading microbes, phytohormones 

accumulate to different levels and synergistic as well as antagonistic interactions between them 

enable plants to fine tune the appropriate defence responses (Pieterse et al., 2012; Berens et al., 

2017). For example, SA-mediated signalling is classically believed to be active against biotroph 

or hemibiotroph pathogens whereas JA signalling is important to fight against necrotrophic 

pathogens or insect pests (Glazebrook, 2005). Many studies reported an antagonistic crosstalk 

between SA and JA responses (Van der Does et al., 2013; Robert-Seilaniantz et al., 2011), but 

recent studies also demonstrated positive contributions of either pathway to the other (Liu et 

al., 2016; Mine et al., 2017). For instance, we recently demonstrated a positive effect of JA on 

SA signalling if PAD4, an important component for SA accumulation, is mutated (Mine et al., 

2017). Importantly, a positive effect of JA on SA is also observed when the PAD4 function is 

disturbed by high temperatures reflecting a condition often faced by plants in nature. Thus, 

positive interactions of otherwise antagonistically acting phytohormones in perturbed immune 

networks illustrate an important mechanism to ensure robust signalling protected from 

pathogens or environmental perturbations. Taken together, the SA-JA crosstalk exemplifies 

how positive and negative interactions between phytohormone pathways can fine tune and 

ensure robust PTI signalling, enabling the plant to integrate multiple information to mount the 

appropriate defence responses. 

The signalling cascades triggered by MAMPs finally lead to physiological responses 

including stomatal closure, callose deposition, plant growth inhibition, and production of 

secondary metabolites which function together to limit infections of non-adapted pathogens 

(Yu et al., 2017). Although these responses help plants to fight against attackers, they are costly; 

hence they need to be tightly controlled to prevent unnecessary resource loss (Belkhadir et al., 

2014; Lozano-Durán and Zipfel, 2015; Couto and Zipfel, 2016). Below, further detailed 

mechanisms are described in the context of flg22 perception by FLS2 as an example. 
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1.1.2. Flg22 perception, signalling and control via FLS2 

Nearly 20 years ago, flg22 and its cognate receptor FLS2 were the first discovered 

MAMP and PRR pair (Felix et al., 1999; Gómez-Gómez et al., 1999). Today this pair is still 

under investigation and likely the best-described PRR/MAMP pair in plants. The flg22 epitope 

of the bacterial flagellin can be sensed by many plant species including Brassicaceae species, 

tomato, and rice (Gómez-Gómez et al., 1999; Dunning et al., 2007; Robatzek et al., 2007; Takai 

et al., 2008). Interestingly, some pathogens managed to evade recognition by FLS2 through 

sequence variation in their flagellin (Cai et al., 2011). Vice versa some plants are able to sense 

additional flagellin epitopes, for example, tomato sensing flgII-28 by an additional receptor 

named FLS3 (Clarke et al., 2013; Hind et al., 2016). These examples demonstrate that MAMP 

recognition is influenced by the co-evolution of microbes and plants.  

A. thaliana FLS2 is essential to sense flg22 (Gómez-Gómez and Boller, 2000), but the 

effective perception of flg22 requires many more components. Upon flg22 binding, FLS2 

associates with BAK1 and the crystal structure of this complex revealed that flg22 acts like a 

molecular glue to stabilize the FLS2/BAK1 heterodimer (Chinchilla et al., 2007; Sun et al., 

2013). BAK1 serves as a co-receptor, consequently, bak1 mutants are impaired in flg22-

mediated responses and resistance to Pseudomonas syringae (Roux et al., 2011). Upon 

heterodimerization, FLS2 and BAK1 rapidly phosphorylate each other (Schulze et al., 2010), 

which is required for early flg22 responses (Schwessinger et al., 2011; Cao et al., 2013).  

Besides BAK1, recent publications identified other plasma membrane-localized RLKs 

interacting with FLS2 to regulate MAMP perception. The LRR-RLK IMPAIRED 

OOMYCETE SUSCEPTIBILITY1 (IOS1) not only constitutively interacts with both FLS2 and 

BAK1 but also positively regulates their complex formation upon MAMP perception (Yeh et 

al., 2016). Furthermore, mutation in IOS1 decreased P. syringae resistance and impaired 

multiple PTI responses including MAPK phosphorylation and callose deposition (Yeh et al., 

2016). The second recently identified interactor of FLS2, which is required for effective 

immunity, is LORELEI-LIKE GPI-ANCHORED PROTEIN 1 (LLG1). LLG1 interacts with 

both FLS2 and EFR and forms complexes with BAK1 in a ligand-dependent manner (Shen et 

al., 2017). Interestingly, llg1 mutants compromise the flg22-induced ROS burst but do not 

affect other PTI responses such as MAPK phosphorylation or defence marker gene expression. 

LLG1 likely mediates ROS burst by regulating flg22-induced phosphorylation of BIK1 (Shen 

et al., 2017). Moreover, LLG1 influences accumulation as well as ligand-dependent 

degradation of FLS2. The third recently discovered interactor of FLS2 is the malectin-like 

receptor kinase FERONIA (FER). FER seems to act as a scaffold to modulate receptor complex 
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formation by weakly interacting with FLS2 and EFR and by facilitating their ligand induced-

complex formation with BAK1 (Stegmann et al., 2017). Interestingly, overexpression of the 

FER ligand RAPID ALKALINIZATION FACTOR 23 (RALF23) reduced not only flg22-

induced BAK1/FLS2 but also elf18-induced BAK1/EFR complex formation, providing a 

possible negative regulatory mechanism for PRR complex formation. Together these recent 

publications demonstrate that the flg22 perception by FLS2 involves a multicomponent 

receptor complex. 

Despite aforementioned plasma-membrane localized interactors of FLS2, there are 

several intracellular proteins interacting with the FLS2 receptor complex to mediate 

downstream signalling. These are often RLCKs like BIK1, which is phosphorylated upon flg22 

binding and thereby released from its constitutive interaction with FLS2 to phosphorylate 

RBOHD, connecting flg22 perception with the ROS burst (Lu et al., 2010a; Zhang et al., 2010; 

Kadota et al., 2014; Li et al., 2014b). BIK1 is the first example of a direct connection between 

PRRs and downstream responses, and early PTI signalling converges on BIK1 as a multitude 

of PRR complexes described until today interact with BIK1 including FLS2/BAK1, EFR, 

PEPR1, CERK1 (Tang et al., 2017). The only other example of a direct connection between 

PRRs and downstream signalling is PBS1-LIKE KINASE 27 (PBL27) which connects CERK1 

with a downstream MAPK cascade (Shinya et al., 2014; Yamada et al., 2016). However, PBL27 

does not interact with FLS2. Hence, the connection between FLS2 and the MAPK cascade 

remains elusive. Two other RLCKs interacting with FLS2 and positively regulating PTI are 

PTI-COMPROMISED RLCK 1 (PCRK1) and PCRK2 (Sreekanta et al., 2015; Kong et al., 

2016). pcrk1 prck2 double mutants exhibit reduced SA accumulation and increased 

susceptibility against bacterial pathogens (Kong et al., 2016). However, mechanistic insights 

concerning the connection of these RLCKs to downstream signalling are still obscure. BR-

SIGNALING KINASE 1 (BSK1) is another RLCK interacting with FLS2 (Shi et al., 2013). 

BSK1 knock out mutants increase susceptibility to a variety of pathogens and similar to LLG1, 

BSK1 is genetically required for ROS burst but not for flg22-induced MAPK phosphorylation 

(Shi et al., 2013). Taken together, RLCKs are major components of PRR complexes and play 

important roles in signal transduction from the plasma membrane to the cytoplasm after MAMP 

perception. 

FLS2 complex formation and signalling are tightly controlled in order to mount the 

appropriate strength of defence and to save resources from unwanted immune elicitation 

(Belkhadir et al., 2014; Lozano-Durán and Zipfel, 2015; Couto and Zipfel, 2016). Recently 

several regulatory mechanisms affecting MAMP perception were discovered. Two redundant 
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ubiquitin E3 ligases of the Plant U-box (PUB) family, PUB12, and PUB13, are phosphorylated 

by BAK1 upon flg22 perception and subsequently ubiquitinate FLS2 for proteasomal 

degradation (Lu et al., 2011). In contrast to PUB12/13, the alpha-subunit EXTRA- LARGE 

GUANINE NUCLEOTIDE-BINDING PROTEIN 2 (XLG2) of a heteromeric G-proteins 

complex formed by GUANINE NUCLEOTIDE-BINDING PROTEIN SUBUNIT-β (AGB1) 

and GUANINE NUCLEOTIDE-BINDING PROTEIN SUBUNIT-γ1/2 (AGG1/2) interact with 

FLS2 and BIK1 to prevent the proteasomal degradation of BIK1, thereby positively affecting 

PTI (Liang et al., 2016). 

Apart from proteasomal degradation, not only FLS2 but also EFR and PEPR1/2 undergo 

BAK1-dependent endocytosis in a ligand-specific manner (Robatzek et al., 2006; Mbengue et 

al., 2016). However, it is not yet clear whether this promotes or attenuates flg22 responses 

(Khaled et al., 2015). 

The phosphorylation status of the FLS2 receptor complex is an important signalling 

component and consequently presents a major control mechanism of flg22 perception and 

signalling. For instance, the A. thaliana Ser/Thr PHOSPHATASE TYPE 2A (PP2A) negatively 

regulates flg22-triggered PTI by controlling BAK1 phosphorylation levels (Segonzac et al., 

2014). Similarly, the Ca2+-dependent protein kinase CPK28 attenuates flg22-activated immune 

responses by controlling BIK1 turnover via phosphorylation in both the presence and absence 

of flg22 (Monaghan et al., 2014). In contrast, the protein phosphatase PP2C38 negatively 

regulates BIK1-mediated signalling by controlling the BIK1 phosphorylation status only in the 

absence of flg22 (Couto et al., 2016). This likely prevents auto-activation of FLS2 signalling 

in the basal state while allowing effective PTI signalling upon pathogen attack. These recent 

publications describing the regulation of BIK1 by heteromeric G protein, CPK28, and PP2C38 

indicate a key role of BIK1 in the regulation of FLS2-mediated immune signalling. Taken 

together FLS2 activation is tightly controlled by multiple proteasomal degradation and 

phosphorylation mechanisms to prevent PTI misfire. 

Interestingly, many above described regulatory mechanisms are also targeted by 

pathogens. For example, the P. syringae effector AvrPtoB has a dual mode of action acting as 

a kinase inhibitor to inactivate BAK1 (Cheng et al., 2011) and encoding a ubiquitin E3 ligase 

which promotes proteasome-mediated degradation of targeted PRRs including FLS2, EFR, and 

CERK1 (Abramovitch et al., 2006; Göhre et al., 2008; Gimenez-Ibanez et al., 2009a). In 

addition, it was recently reported that this effector also targets NPR1, a key signalling 

component of SA and systemic acquired resistance, providing evidence that the same effector 

can target a multitude of sequence-unrelated immune signalling components at the same time 
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(Chen et al., 2017). In contrast to ubiquitination-mediated degradation, other effectors directly 

cleave its target such as the AvrPphB effector targeting BIK1 (Zhang et al., 2010). Both BAK1 

and BIK1 present PTI-hubs targeted by virulence effectors, exemplifying the previous finding 

that hubs in immune networks are frequently targeted by pathogen effectors (Mukhtar et al., 

2011). These and many other effectors enable pathogens to circumvent PTI responses and 

render the plant susceptible. 

1.1.3. Transcriptional reprogramming during PTI 

Transcriptional reprogramming is one of the hallmarks of PTI activation and thousands 

of genes rapidly change their expression upon MAMP perception within an hour (Zipfel et al., 

2004, 2006; Denoux et al., 2008; Frei dit Frey et al., 2014; Lewis et al., 2015; Li et al., 2016). 

Large parts of the transcriptional responses triggered by different MAMPs or DAMPs overlap 

with each other. For example, expression changes in response to flg22 or elf-26 in A. thaliana 

seedlings are highly similar to each other (Zipfel et al., 2006). Similar overlaps of differentially 

expressed genes were observed in comparisons of flg22 with peptidoglycan (PGN)(Gust et al., 

2007), chitin (Wan et al., 2008) or oligogalacturonide (OG) (Denoux et al., 2008) treatments, 

indicating a large overlap in transcriptional responses between different MAMPs and DAMPs. 

Typical for this early MAMP responsive transcriptomes are overrepresentations of genes 

connected to signal perception (many RLK), signal transduction (kinase-

activity/phosphorylation), posttranslational modification (ubiquitination), and transcriptional 

regulation (WRKY transcription factors) (Denoux et al., 2008; Navarro et al., 2004; Frei dit 

Frey et al., 2014).  

Although most previous studies reported no obvious sets, Wan et al. detected some 

MAMP specific expression changes. However, they compared transcriptome data from 

different studies, potentially introducing experimental biases and distinguished MAMP-

specific DEGs only by Venn-diagrams, which were dependent on subjective significance cut-

offs and thus did not indicate qualitative expression similarity between different treatments. In 

contrast, a recent study identified many genes with flg22-specific expression changes compared 

to elf18-induced expression changes (Briggs et al., 2017). These results indicate that subsets of 

genes could be MAMP-specific regulated at specific time points although the authors noted a 

strong correlation between the flg22 and elf18 transcriptome responses. 

In contrast to Briggs et al, all previously mentioned studies used microarray technology 

and only a few recent studies used RNAseq to capture transcriptional responses upon MAMP 

treatment. A recent study compared transcriptional responses induced by short trimer-OGs and 
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longer OGs. Long OGs altered the expression of approximately 3500 genes 1 h after treatment, 

whereas shorter OGs only regulated approximately 650 genes (Davidsson et al., 2017). Two 

other recent studies also investigated flg22-triggered transcriptional responses and showed the 

importance of a CAMTA TFs (Jacob et al., 2017) and the complex interactions between 

different phytohormone signalling sectors on the regulation of flg22-triggered transcriptional 

responses (Hillmer et al., 2017). 

Transcriptional responses to MAMPs in other species than A. thaliana have not received 

much attention yet. In tomato, flgII-28 treatment triggers a massive transcriptional 

reprogramming altering expression of over 3500 genes (Rosli et al., 2013). nterestingly, 

flagellin-derived MAMPs had the greatest impact on tomato gene expression since most of the 

transcriptional responses induced by Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) 

was absent in a Pto DfliC mutant, lacking flagellin. To my knowledge, no other studies 

investigated transcriptional responses after MAMP treatments in plants other than A. thaliana, 

thus a comprehensive knowledge about the conservation of MAMP induced transcriptional 

responses is lacking. 

The transcriptional regulation after MAMP perception is partly connected to the rapid 

Ca2+ signalling and MAPK cascades activated after MAMP perception (Boudsocq et al., 2010; 

Frei dit Frey et al., 2014; Li et al., 2016). For example, individual mpk3, mpk4, and mpk6 knock 

out mutants affect the expression of about 36% induced and 68% repressed flg22-responsive 

genes, despite functional redundancy described for these MAPKs (Frei dit Frey et al., 2014). 

Similarly to MAPKs, calcium dependent protein kinases (CPKs) are rapidly activated after 

flg22 treatment and cpk5 cpk6 cpk11 triple mutants abolish transcriptional induction of several 

flg22-responsive marker genes (Boudsocq et al., 2010). Thus, both MAPKs and CPKs have 

important functions in PTI-activated transcriptional responses.  

Co-expressed genes often share common cis-regulatory motifs within their 5’-

regulatory regions, connecting specific expression patterns with certain transcriptional 

regulators. Different analysis for enriched sequence-motifs within regulatory regions of early 

MAMP responsive genes consistently revealed an enrichment for WRKY transcription factor 

(TF) binding sites (Navarro et al., 2004; Lewis et al., 2015; Jacob et al., 2017). This is in line 

with the fact that expression of many WRKY TFs is upregulated by MAMP treatments 

(Navarro et al., 2004; Gust et al., 2007; Wan et al., 2008; Birkenbihl et al., 2017). MPK3 and 

MPK6 directly target WRKY33, a key TF regulating many downstream targets during 

immunity, suggesting a direct link between MAPK dependent flg22-responsive transcriptional 

changes and WRKY mediated transcriptional reprogramming during PTI (Mao et al., 2011; Liu 
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et al., 2015; Tsuda and Somssich, 2015). Another recent publication identified a large subset of 

early responsive PTI genes with overrepresented calmodulin-binding transcriptional activator 

(CAMTA) motifs within their cis-regulatory regions (Jacob et al., 2017). Consequently, a 

dominant negative camta3-D mutation altered flg22-triggered transcriptional responses. This 

provides additional evidence for the importance of Ca2+ signalling during MAMP induced 

transcriptional reprogramming.  

Besides activation of specific TFs, the general transcriptional machinery itself is 

modulated after MAMP perception. A recent study demonstrated targeted phosphorylation of 

specific residues in the carboxyl-terminal domain of RNA polymerase II which positively 

regulated immune gene induction (Li et al., 2014a). Moreover, multiple mediator subunits, 

regulators of transcription interacting with RNA polymerase II, are involved in immune gene 

regulation (Zhang et al., 2013b; Lai et al., 2014; Li et al., 2016). Although many studies 

investigated the massive transcriptional reprogramming after MAMP perception, there is no 

direct evidence that these transcriptional responses are required for an effective PTI. To solve 

this question remains a challenging endeavour since transcriptional responses can hardly be 

cancelled if they can be blocked at all. 

1.1.4. Conservation and Evolution of PTI 

Most immunity research has been performed with the model plant A. thaliana as well 

as in crop species such as tomato and rice and comparative studies on the evolution of plant 

immunity remain scarce. In a recent study addressing the conservation of ETI-mediating NLR 

receptors, only 5 out of 528 tested NLR genes were conserved across five tested Brassicaceae 

species (Peele et al., 2014), indicating strong variation in the NLR repertoire even within the 

Brassicaceae family. In contrast, the perception of MAMPs by PRRs and some early signalling 

events seem to be conserved in closely related species and some are conserved among land 

plants (Zipfel et al., 2006; Lacombe et al., 2010). For example, the FLS2 receptor is highly 

conserved in many plant species including rice, tomato or potato (Boller and Felix, 2009). 

Despite its conservation, a recent study indicated that FLS2 orthologs from A. thaliana 

accessions and Brassicaceae vary in their flg22 binding capacity (Vetter et al., 2012). Some 

Brassicaceae FLS2 orthologs e.g. the C. hirsuta one did not bind flg22 in their assay. Thus, it 

appears that sensitivity to specific MAMPs cannot necessarily be inferred from conservation of 

their cognate PRR receptors. The perception of elf18 by EFR is restricted to the Brassicaceae 

family, although several homologs of EFR with very similar architecture exist in rice or poplar, 

suggesting that these might function in MAMP perception as well (Boller and Felix, 2009). 
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Thus, even highly similar PRRs possibly sense different MAMPs. Interestingly, stable 

expression of the A. thaliana EFR receptor in tomato confers elf18 sensitivity and increased 

bacterial resistance to tomato, indicating some conservation of downstream signalling between 

Brassicaceae and tomato after elf18 perception (Lacombe et al., 2010). Similarly, stable 

expression of the A. thaliana RLP23 receptor in potato (Solanum tuberosum) confers sensitivity 

to nlp20 and increased resistance to Phytophthora infestans (Albert et al., 2015). Furthermore, 

swapping of kinase domains from A. thaliana EFR with the related rice PRR XA21 does not 

affect their functions, providing evidence that downstream components directly interacting with 

PRRs to transduce the signal are likely conserved, even between dicots and monocots (Holton 

et al., 2015). This is coherent with the extraordinarily high conservation of the PTI signalling 

hub BAK1 which even has a homolog in the moss Physcomitrella (Boller and Felix, 2009). 

Taken together, PTI evolution was mainly addressed on the receptor levels and PRR swapping 

experiments indicate some degree of conservation of immediate downstream signalling 

components. 

However, PTI responses can be affected by many other physiological processes such as 

growth and especially by the environment including abiotic stresses (Pieterse et al., 2009; Vos 

et al., 2013; Berens et al., 2017). Therefore, it is conceivable that different plants evolved 

different PTI responses, which are adaptive to specific environments. For example, long-term 

adaptation to specific abiotic stresses or specific pathogen pressures in a given environment can 

act as a strong selective force leading to adaptive evolution of the immune system in different 

plant species. Nevertheless, we actually don’t know to what extent PTI responses are conserved 

in Brassicaceae or any other plant family. Moreover, it is unknown how PTI evolved within a 

plant family such as Brassicaceae. 

1.2. Comparative transcriptomics and evolution of gene expression 

Evolution are the genetic changes over time within heritable traits that lead to the 

adaptation of species to certain environments over multiple generations and ultimately 

determines the species we face today on our planet. In eukaryotes, the major basis of genome 

evolution is genetic variation within populations, which can arise from genetic changes such as 

mutations or changes in the genepool of a population; that is changes in the number and 

frequencies of alleles for a specific locus within the population. 

Mutations can create new alleles whereas different mechanisms such as gene flow and 

genetic drift change the frequencies of alleles within a population. The concept of natural 

selection describes the forces that act on this genetic variation to create new phenotypes. 
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Favourable traits arising from natural selection are also called adaptations. Selection of genetic 

variation can be positive, selecting for beneficial traits, or purifying (sometimes called negative 

selection), selecting against deleterious changes. In contrast to adaptive evolution mediated by 

positive or purifying selection, some mutations result in alleles that do not affect fitness, called 

selectively neutral alleles, leading to genetic variability within and between species described 

as neutral evolution (Kimura, 1983). Over time natural selection can change or stabilize traits 

within a population by directional or stabilizing selection. Stabilizing selection generally 

reduces genetic variation within a population.  

Molecular evolution studies the mechanisms of evolution on macromolecules. By 

comparing genomic sequences between closely related species, the mechanisms of evolution 

acting on DNA can be determined; hence neutral and adaptive evolution can be distinguished. 

If a genomic sequence evolves neutrally, the number of mutations leading to synonymous 

(without an effect on amino acid sequence) or non-synonymous (with amino acid changes) 

should be approximately equal at a given protein-coding locus; hence their ratio is close to one. 

A sequence under positive selection is expected to harbour more non-synonymous than 

synonymous mutations, whereas in a sequence under purifying selection the rate of 

synonymous exceeds the rate of non-synonymous mutations (Miyata and Yasunaga, 1980; 

Yang and Bielawski, 2000; Delport et al., 2009). These analyses help to understand gene 

functions as they can identify genomic regions important for the species adaptation, thereby 

potentially connecting genetic variation with phenotypic variation. 

For many organisms sharing almost identical genetic information, genetic differences 

such as mutations in protein-coding genes cannot fully explain phenotypic variation (Haygood 

et al., 2010; Harrison et al., 2012). It has been demonstrated that transcriptome variation can be 

a key to understand phenotypic variation. The melanisation in Drosophila (Rebeiz et al., 2009) 

and camouflage in beach mice (Manceau et al., 2011) are classical examples of phenotypes that 

are the result of gene expression changes rather than protein structure changes. However, in 

contrast to the latter examples, many complex or condition-dependent phenotypes are 

influenced by a myriad of genes and can therefore not be explained by single quantitative trait 

loci (QTLs) (Harrison et al., 2012). Here comparative transcriptomics provides great 

advantages compared to comparative genomics to identify sets of genes controlling phenotypes 

or influencing adaptation. Consequently, comparative transcriptomics have been applied to 

many newly established model systems to gain new insights into the respective process under 

investigation (Taji et al., 2004; Slotte et al., 2013; Gan et al., 2016). Furthermore, understanding 

existing variation in gene expression is important since it may transfer into phenotypic variation 
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allowing organisms to respond to novel stresses and adapt to a new environment (Alvarez et 

al., 2015; Whitehead, 2012). 

Already 15 years ago with the rise of the microarray technique, first comparative 

transcriptomic studies were conducted. For example, human and closely related ape 

transcriptomes were compared revealing species-specific expression patterns especially 

pronounced in the brain, suggesting that cognitive differences between these species might be 

connected to diversified gene expression in the brain (Enard et al., 2002). In plants, an early 

comparative microarray study compared A. thaliana with its metal tolerant relative A. halleri 

and found elevated expression of multiple genes associated with metal homeostasis in A. halleri 

compared to A. thaliana (Weber et al., 2004). 

Together with these first studies comparing transcriptomes from multiple species, a 

theory of neutral evolution was proposed to explain gene expression variation. This hypothesis 

expected that most expression variation between species arises from selectively neutral 

evolution combined with genetic drift rather than from positive selection reflecting adaptive 

evolution (Yanai et al., 2004; Khaitovich et al., 2004, 2005). Following this hypothesis, 

expression variation should increase with phylogenetic distances between species. However, 

this hypothesis is under debate and was criticized for several constraints in sampling as well as 

quantifying and normalizing polymorphic genome sequences (Gilad et al., 2006). Moreover, 

other studies in the animal field proposed that transcriptional regulation between species is 

largely affected by natural selection and that large subsets of gene expression evolved under 

stabilizing/purifying selection (Rifkin et al., 2003; Lemos et al., 2005; Whitehead and 

Crawford, 2006; Romero et al., 2012). Regarding plants, Broadley and his colleagues found 

evidence for a general neutral transcriptome evolution (Broadley et al., 2008). Thus, there is 

evidence for and against a theory of neutral evolution of gene expression changes between 

species.  

In comparison to the existence of powerful evolutionary models to predict adaptive 

footprints in DNA sequences (Yang, 2007; Delport et al., 2009), similar models describing gene 

expression evolution are still premature (Harrison et al., 2012). Although a neutral evolutionary 

model for gene expression evolution was already proposed over ten years ago, the nature of 

comparative transcriptomic data makes it challenging to create an appropriate null hypothesis 

for neutral evolution; yet there is no consensus on a null model allowing statistical tests for 

adaptive signatures of expression changes (Brawand et al., 2011; Harrison et al., 2012). 

However, since transcriptional variation arising from a neutral evolutionary process should 

increase with phylogenetic distance between species, large transcriptional variation that is 
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incongruent with phylogenetic relationships can be understood as a sign of adaptive evolution 

(Whitehead, 2012). Thus, including multiple species with different phylogenetic relationships 

is prerequisite for distinguishing neutral from adaptive variation (Whitehead, 2012).  

One problem which complicates these analyses is to distinguish transcriptional variation 

resulting from environmental differences from variation with a genetic basis (Romero et al., 

2012). This is especially a problem in the animal field when dead individuals which did not live 

under controlled environmental conditions are sampled. Consequently, expression variation 

may arise from different diets, disease status, or environmental influences which cannot be 

controlled (Harrison et al., 2012; Romero et al., 2012; Voelckel et al., 2017). Here plant science 

offers a great advantage as it is considerably easier to minimize variation in environmental 

conditions between compared species. 

Up to now multiple studies have compared transcriptomes of different plant species, 

initially using heterologous microarray hybridisation technology. This technique was 

successfully applied to compare A. thaliana with E. salsugineum transcriptomes suggesting 

elevated gene expression of abiotic stress-related genes as a potential mechanism of salt stress 

adaptation in E. salsugineum (Taji et al., 2004; Gong et al., 2005). ATH1 microarrays, designed 

for the A. thaliana accession Col-0, were even used to compare the metal hyperaccumulator 

Thlaspi caerulescens with the metal sensitive Thlaspi arvense species revealing candidate 

genes involved in Zn hyper-accumulation (Hammond et al., 2006). Despite opening the world 

for comparative transcriptomics, microarray-based studies have the disadvantage of using the 

same probes for multiple strains or even species which can bias the measured expression levels 

due to sequence or splice variation between species (Whittle et al., 2014; Buckley, 2007). 

The development of more and more powerful sequencing and omics methods in 

combination with decreasing prices facilitates multi species transcriptome comparisons 

(Whitehead, 2012; Alvarez et al., 2015). Furthermore, RNAseq eliminates multiple drawbacks 

like hybridisation biases immanent to microarray studies. Up to now a variety of studies 

compared transcriptomes from multiple plant species with each other investigating 

diversification of gene expression in C3 versus C4 photosynthesis (Brautigam et al., 2011), 

Poaceae gene expression evolution (Davidson et al., 2012), tomato domestication (Koenig et 

al., 2013) or transcriptome conservation among Lolium/Festuca species (Czaban et al., 2015). 

Despite these and other studies, RNAseq is still under-utilized for comparative transcriptomic 

studies in plants (Voelckel et al., 2017). 

Several aspects of comparative transcriptomics have not received much attention up to 

now. For example, most studies compared strains rather than different species with a defined 
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phylogenetic framework. Even fewer studies not only compared inter-species but also included 

intra-species expression variation alongside to gain insights into how transcriptional regulation 

evolved within and between species. This is important because it can help to distinguish 

evolutionary forces acting on expression changes. If expression is highly conserved within and 

between species, it likely evolved under purifying selection, whereas conserved expression 

within species and large expression variation between species point to adaptive evolution. 

Neutral evolution can be indicated by expression variations within as well as between species 

(Harrison et al., 2012; Romero et al., 2012). In addition, this comparison helps to assess how 

short-term adaptation versus long-term adaptation to different environments affects gene 

expression responses. Furthermore, recent studies concentrated predominantly on basal 

expression changes between species. Consequently, we lack a comprehensive understanding of 

transcriptome responses to environmental perturbations within and between related species and 

how these responses might have evolved. 

1.3. Brassicaceae as a model family for comparative genomics and 

transcriptomics 

As discussed in the previous section comparative genomics and transcriptomics are 

powerful tools to study the evolution of complex traits by identifying common but also 

diversified genes and their regulations, providing a basis for adaptation of species (Touchman, 

2010). To compare genomic features and their regulation, orthologous relationships need to be 

defined as an underlying framework for comparison (Emms and Kelly, 2015; Tekaia, 2016; 

Nichio et al., 2017). Related species facilitate the identification of valuable orthologous 

relationships. As indicated previously, including closely as well as more distantly related 

species with rich genomic resources facilitates the discovery of evolutionary transitions in the 

investigated processes and hold the potential to discriminate neutral from adaptive expression 

variation (Evans, 2015; Whitehead, 2012). For these reasons, the Brassicaceae family provides 

an excellent framework for comparative studies. 

Brassicaceae, alternatively called mustards or Cruciferae based on their cross-like 

flower architecture, is a diverse plant family harbouring over 3700 species, which can be found 

throughout all temperate zones (Koenig and Weigel, 2015; Franzke et al., 2016). Different 

publications date the origin of Brassicaceae between 30 to 100 million years ago but a generally 

accepted hypothesis for a temporal framework of the family is still debated (Franzke et al., 

2016). Most recent publications estimated the Brassicaceae origin between 32 and 38 million 
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years ago (Hohmann et al., 2015; Edger et al., 2015; Huang et al., 2016). Brassicaceae not only 

include important crops such as cabbage (Brassica oleracea), canola (Brassica napus, Brassica 

rapa), and mustard (Sinapis alba, Brassica nigra) but also the most prominent plant model A. 

thaliana. Its superior genome annotation, a multitude of genomic tools, and a large mutant 

collection for reverse genetic screens helped to reveal numerous concepts and mechanisms in 

nearly every aspect of plant science (Somerville and Koornneef, 2002; Koornneef and Meinke, 

2010; Koenig and Weigel, 2015). However, investigations of a single model species cannot 

reflect the whole diversity of a plant family not to mention a genus (Koenig and Weigel, 2015). 

Moreover, comparative analysis is required to understand evolutionary processes. 

Consequently, many other A. thaliana-related Brassicaceae species were recently introduced as 

model systems for a variety of traits ranging from development to stress responses. 

Model species within the Brassicaceae include the selfing species Capsella rubella and 

its outcrossing sister species Capsella grandiflora both used to investigate the transition from 

outcrossing to selfing (Slotte et al., 2013). Cardamine hirsuta is another recently established 

model species that is analysed for its developmental programs affecting the leaf shape and pot 

shattering (Hay et al., 2014) and whose genome was recently sequenced (Gan et al., 2016). 

Comparative genomics and transcriptomics with A. thaliana revealed important key genes 

whose duplication, loss, changed transcriptional regulation, and neofunctionalisation led to the 

complex leaf forms in C. hirsuta (Vlad et al., 2014). Besides developmental processes, abiotic 

stress responses have been investigated using multiple salt and drought adapted Brassicaceae 

species like Eutrema salsugineum (former Thellungiella halophila or Thellungiella salsuginea; 

for more information on pervious names see Koch and German, 2013) or Schrenkiella parvula 

(former Thellungiella parvula) to understand adaptation to extreme abiotic stress environments 

(Inan et al., 2004; Gong et al., 2005; Dassanayake et al., 2011; Wu et al., 2012). Along with the 

development of these model systems, genomes of new model species were sequenced in recent 

years, facilitating comparative genomics and transcriptomics (Koenig and Weigel, 2015). 

Taken together, rich genomic resources, many model species, and a clear phylogenetic 

framework are key advantages of the Brassicaceae family to conduct comparative genomic and 

transcriptomic studies. 

1.4. Thesis aims 

Numerous studies have investigated the molecular mechanisms of MAMP perception, 

downstream signalling, and the MAMP-triggered defence responses that increase the pathogen 

resistance in A. thaliana. Moreover, A. thaliana PRRs can be transformed to distantly related 
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crops like tomato or rice to confer increased resistance. Although this indicates that crucial 

components for MAMP perception identified in A. thaliana also function in distantly related 

species, we still lack a comprehensive understanding to what extent downstream PTI responses 

are conserved or diversified and how they evolved. Therefore, the general aim of my PhD thesis 

was to use comparative approaches between A. thaliana and related Brassicaceae species to 

address the evolution of PTI responses. 

Although flg22 perception is generally conserved in angiosperm, recent studies indicate 

major variation in flg22 binding and responses within A. thaliana accessions and among closely 

related Brassicaceae species (Vetter et al., 2012, 2016). Therefore, the first aim of my thesis 

was to establish a system to robustly trigger PTI in Brassicaceae species and compare typical 

PTI responses among Brassicaceae species. I used comparative genomics to reveal sequence 

conservation of important MAMP perception complexes and compared PTI responses 

including MAPK phosphorylation, marker gene expression, phytohormone accumulation, and 

seedling growth inhibition in different Brassicaceae species. In addition, I investigated the 

effect of flg22 on resistance against the bacterial pathogen P. syringae. 

Comparative transcriptomics were often utilized to reveal effects of environmental 

perturbation on gene expression only within one species or to investigate gene expression 

variation across species in a static environment (Whitehead, 2012). Thus, comparisons of gene 

expression across species after environmental perturbation have not received much attention. 

Several studies investigated transcriptional reprogramming after MAMP perception in A. 

thaliana and tomato, but we still do not know how transcriptional reprogramming during PTI 

is conserved in other species. Therefore, the second goal of my thesis was to generate a 

comparative transcriptome dataset to compare dynamic transcriptome responses to flg22 among 

multiple Brassicaceae species. 

The importance of massive transcriptional reprogramming during PTI is obscure since 

MAMP-induced transcriptional reprogramming cannot be specifically blocked. Moreover, it is 

unknown to what extent other species evolved specific transcriptome responses during PTI. 

Consequently, my third aim was to investigate the importance of flg22-triggered transcriptional 

reprogramming during Brassicaceae evolution by determining the degree of conservation. At 

the same time, I aimed at identifying diversified transcriptome responses to flg22 across 

Brassicaceae and within A. thaliana. This allowed me to tackle my fourth aim: to create new 

insights into the evolutionary mechanisms affecting PTI responses. On one hand, comparing 

intra- with inter-species expression variation in response to flg22 indicated how long-term 

compared to short-term evolution drives diversification of flg22-transcriptome responses. On 
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the other hand, it facilitated to distinguish whether diversifications in the flg22-triggered 

transcriptome response evolved under neutral or adaptive evolution. 

In summary, this PhD thesis provides new insights into the gene expression evolution 

during environmental perturbation by comparative transcriptomics within a species and 

between species with a defined phylogenetic framework. 

. 
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2. Results 

To understand the conservation and evolution of PTI responses, I employed 

Brassicaceae species including A. thaliana (Ath), Arabidopsis lyrata (Aly), Capsella rubella 

(Cru), Cardamine hirsuta (Chi), Eutrema salsugineum (Esa) and Aethionema arabicum (Aar). 

These Brassicaceae species offer a defined phylogenetic framework that can be utilized for 

comparative analyses; C. rubella represents a close A. thaliana relative, splitting about 9 Mio 

years ago from A. thaliana, while the more distantly related E. salsugineum has been evolving 

for about 26 Mio years independently from A. thaliana (Figure 2A). Importantly, compared for 

instance to the distance between A. thaliana and tomato (approximately 118 Mio years) or rice 

(approximately 160 Mio years), these are relatively close phylogenetic relationships. Together 

with the rich genomic resources for these Brassicaceae species, this close relationship facilitates 

comparative approaches (Koenig and Weigel, 2015). Therefore, the Brassicaceae family 

provides an excellent platform to study conservation and diversification of PTI in an 

evolutionary framework. A prerequisite for comparative genomics and transcriptomics is solid 

orthologous relationships of genes between species. Therefore, I determined 1 to 1 orthologous 

genes for each Brassicaceae using best reciprocal blast between A. thaliana and corresponding 

Brassicaceae species, building the basis for my subsequent analysis. 

2.1. MAMP perception and initial signalling components are 

generally conserved among Brassicaceae species 

To reveal the sequence conservation of different PRRs as well as interacting 

components, I compared Brassicaceae amino acid sequences to their corresponding A. thaliana 

sequences. I extracted genes coding for PRRs, co-receptors, and proteins directly interacting 

with those receptors from the current literature and extracted corresponding ortholog sequences 

from A. lyrata, C. rubella, C. grandiflora, C. hirsuta, Brassica rapa fastplant, Brassica rapa 

chifu, and E. salsugineum. The function and mean sequence identity across all analysed 

Brassicaceae species compared to A. thaliana is represented by a schematic overview (Figure 

1A) and an additional heatmap indicates pairwise conservation of the proteins for each tested 

Brassicaceae species compared to A. thaliana (Figure 1B). Overall, most PTI components 

exhibited a high sequence identity to their A. thaliana orthologs and their sequence conservation 
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was generally congruent with the Brassicaceae phylogeny (Figure 1A, B). The mean amino 

acid sequence identities ranged from 68% to nearly 97%.  

 
Figure 1: Conservation of MAMP perception components across Brassicaceae species. A: Schematic 
representation of known components in PRR complexes. The colour-code of the components indicates the mean 
amino acid-sequence conservation of A. lyrata, C. rubella, C. grandiflora, C. hirsuta, B. rapa fastplant, B. rapa 
chifu, and E. salsugineum compared with A. thaliana. B: Heatmap showing conservation of the individual proteins 
depicted in A in each Brassicaceae species compared to A. thaliana. Names of PRRs are highlighted in red. White 
colour in the heatmap indicates genes without a clear 1to1 ortholog match in the species compared to A. thaliana. 
For full names of genes included in this overview please refer to Table 5. 

Interestingly, hierarchical clustering of pairwise amino acid sequence identities as well 

as the mean sequence identities indicated a generally lower sequence conservation of MAMP 

receptors compared to their co-receptors and interacting partners that connecting receptors and 

downstream signalling (Figure 1 A, B). Especially RLPs, lacking an intracellular kinase 

domain, exhibited a relatively low amino acid sequence identity compared to other proteins. 

Thus, in particular PRRs which confer ligand specificity to MAMPs are more diversified than 

intracellular signalling components. In line with this, most RLCKs including BIK1, BSK1, 

PBL27, and PCRK1/2 are highly conserved with on average over 90% amino acid sequence 

identity to A. thaliana orthologs across tested Brassicaceae. Especially, PBL27, which directly 

connects chitin perception with a MAPK cascade, was extremely conserved with an average 
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conservation of 97%. Although less conserved compared to other tested components PRRs were 

still relatively well conserved between Brassicaceae. Altogether, many known MAMP 

perception and PTI signalling components of A. thaliana are conserved in Brassicaceae species, 

suggesting that tested Brassicaceae species likely respond to MAMPs identified with A. 

thaliana. At the same time, the data suggests different selective pressures on sequence variation 

of PRRs interacting with microbial ligands and intracellular signalling components connecting 

MAMP perception to downstream responses. 

2.2. Brassicaceae species respond to flg22 in a conserved manner 

Flg22 perception is conserved in many plant species and its receptor, FLS2, is one of 

the best studied PRRs to date (Boller and Felix, 2009). To ensure a robust activation of PTI in 

the selected Brassicaceae species, I investigated whether flg22 treatment induces 

phosphorylation of MPK3 and MPK6, reflecting an early signalling event during PTI (Asai et 

al., 2002). Treatment of 12-day-old seedlings with 1 µM flg22 induced a rapid (15 min) 

phosphorylation of MPK3 and MPK6 in all tested Brassicaceae species, which was absent in 

the A. thaliana fls2 mutant, lacking the flg22 receptor (Figure 2B). To elucidate whether 

transcriptional responses are triggered similarly, I analysed expression of a flg22-responsive 

transcription factor WRKY29 (Asai et al., 2002), at early (1 h), intermediate (9 h), and late stages 

(24 h) of the PTI response. At all time-points, flg22 treatment significantly induced WRKY29 

expression in all tested Brassicaceae species except the fls2 mutant (Figure 2C). Thus, flg22 is 

sensed to trigger typical PTI responses in all tested Brassicaceae. 

Next, I tested whether flg22 treatment results in physiological alterations after initial 

signalling events. A typical feature of PTI is the prioritization of defence over growth resulting 

in a reduced growth rate (Gómez-Gómez et al., 1999; Huot et al., 2014). Indeed, growing 

Brassicaceae seedlings for 12 days in flg22 solution significantly reduced fresh weights of each 

species compared to corresponding control samples (Figure 2D). Yet, the flg22-triggered 

growth reduction varied among Brassicaceae with a significantly lower impact on E. 

salsugineum. This observation might be influenced by lower growth rates of E. salsugineum 

compared to the other Brassicaceae, potentially lowering the capacity for flg22-mediated 

growth reduction, or reflects a lower impact of flg22 on seedling growth in E. salsugineum. 

Taken together these results reveal that all tested Brassicaceae seedlings robustly respond to 

flg22 with certain differences. Therefore, treatment of Brassicaceae seedlings with flg22 is a 

robust test system for a deeper analysis of PTI responses among the tested Brassicaceae species. 
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Figure 2: All tested Brassicaceae species respond to flg22. A: Phylogenetic tree generated with Treeview.org 
indicating the evolutionary distance between the Brassicaceae species used in this study. B: Phosphorylation of 
MPK6/3/4 15 min after the treatment of 12-day-old seedlings with mock or 1 µM flg22 was detected by 
immunoblotting using an anti-p42/44 antibody. Ponceau staining is shown as a loading control. The experiment 
was repeated 3 times with similar results. C: Expression of WRKY29 was analysed by RT-qPCR at 1, 9, and 24 h 
after mock or 1 µM flg22 treatment of 12-day-old seedlings. Bars represent the means ±SE from 3 independent 
experiments (for fls2 bars represent one independent experiment). Asterisks indicate significant differences to the 
respective mock sample (mixed linear model followed by Student´s t-test *, p < 0.05; **, p < 0.01; ***, p < 0.001). 
D: 7-day-old seedlings were grown in liquid medium containing mock or 1 µM flg22 for additional 12 days. The 
fresh weight (fw) of 12 pooled seedlings was measured. The bars represent the mean percentage of fw ±SE from 
flg22-treated seedlings compared to mock seedlings from 3 independent experiments. Statistical analysis was 
performed with log2-transformed raw fw. Asterisks indicate significant flg22 effects in each genotype (mixed 
linear model followed by Student´s t-test, **, p<0.01; ***, p<0.001). Different letters indicate significant 
differences of flg22 effects between different genotypes (mixed linear model followed by Student´s t-test, adjusted 
p < 0.01). 

2.3. Phytohormone levels and their responses to flg22 drastically 

differ between Brassicaceae species 

The crosstalk of different phytohormones such as salicylic acid (SA), jasmonic acid 

(JA), and abscisic acid (ABA) is one of the key regulatory mechanisms to fine-tune immunity 

by integrating information from environment and the characteristics of intruders to mount the 

appropriate level of immunity with minimized resource losses (Vos et al., 2015; Berens et al., 

2017). Therefore, phytohormone levels might reflect certain adaptations of different 

Brassicaceae species with potential impact on PTI outcomes. To capture dynamic changes of 

phytohormone-levels in different Brassicaceae species, we determined SA, JA, and ABA levels 

at an early (1 h), intermediate (9 h), and late (24 h) time-point after PTI activation by flg22. SA 
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has a major influence on immunity and SA levels increase around 6 hours after flg22 treatment 

of A. thaliana (Tsuda et al., 2008). In line with the previous literature, SA accumulation slightly 

increased in A. thaliana 9 h after flg22 treatment and was significantly induced after 24 hpt 

(Figure 3A). A similar trend was observed for C. hirsuta. However, in C. rubella, SA levels 

were significantly increased 1 h after flg22 treatment, but slightly decreased after 9 and 24 h. 

(Figure 3). This decreased trend of SA accumulation at 9 and 24 hpt was also observed in E. 

salsugineum although SA levels were not affected 1 hpt (Figure 3A).  

There was a general trend that flg22 treatment decreased ABA levels of all 

Brassicaceae, except C. hirsuta, at all time-points, especially at 1 hpt (Figure 3B). Interestingly, 

the basal ABA level of E. salsugineum was significantly elevated at the 9 and 24 hpt compared 

to other Brassicaceae. This might be connected to its adaptation to saline environments (Inan 

et al., 2004; Gong et al., 2005) and is consistent with the notion that its adaptation might be 

mediated by enhanced ABA responses (Taji et al., 2004; Wu et al., 2012). 

JA levels significantly increased in C. rubella and E. salsugineum 1 h after flg22 

treatment but not later time-points (Figure 3C). In contrast, flg22 treatment did not alter JA-

levels in A. thaliana or C. hirsuta (Figure 3C). Strikingly, basal JA levels were more than a 

100-fold higher in A. thaliana compared to other species. In summary, phytohormone levels 

can greatly vary between Brassicaceae not only on a basal level, but also in their responsiveness 

to flg22. Thus, different hormone levels may affect PTI responses in Brassicaceae species and 

may reflect evolutionary adaptation to different environments. 

2.4. Reduction of Pto growth by flg22 varies between species 

Although flg22 elicited typical PTI responses in all tested Brassicaceae species, the 

variable effect on seedling growth-inhibition and phytohormone levels queries whether flg22 

treatment can effectively protect different Brassicaceae species against bacterial infection. In 

A. thaliana, flg22-triggered PTI significantly reduces growth of the bacterial pathogen 

Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) (Tsuda et al., 2009). Therefore, I 

tested whether flg22-pretreatment similarly reduces Pto DC3000 growth in other Brassicaceae 

species. Flg22-pretreatment of 5-week-old plants greatly reduced Pto DC3000 titres in 

A. thaliana, A. lyrata, C. rubella, and A.  arabicum compared to mock treated samples (Figure 

4A). In contrast, Pto DC3000 titres were only slightly reduced in C. hirsuta and not altered in 

E. salsugineum and A. thaliana fls2 mutants. Thus, the robust induction of early PTI responses 

by flg22 observed in all tested Brassicaceae (Figure 2B, C, D) does not necessarily lead to 

inhibition of Pto DC3000 growth.  
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Figure 3: Distinct accumulation and flg22-responsiveness of phytohormone in Brassicaceae species. 
Phytohormone levels of 12-day-old seedlings were determined via HPLC-MS at the indicated time-points after 
mock or 1 µM flg22 treatment. A: Free salicylic acid (SA) B: Abscisic acid (ABA) C: Jasmonic acid (JA). Bars 
represent the means ±SE from 3 independent experiments. A and B Asterisks indicate significant difference to 
mock (mixed linear model followed by Student´s t-test; *, p<0.05). C The data violated the assumptions to apply 
a mixed linear model. Therefore, the data was analysed by pairwise Student t-test (flg22 compared to mock treated 
samples; *, p<0.05). 

In mock conditions, Pto DC3000 titres were significantly lower in E. salsugineum 

compared to other species (Figure 4A). This suggests an incompatible interaction between Pto 

DC3000 and E. salsugineum possibly mediated by effector recognition in E. salsugineum, 

leading to ETI activation. Alternatively, Pto DC3000 effectors might be less adapted to E. 
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salsugineum targets causing reduced virulence. In any case, this incompatibility might have 

masked the flg22 effect on Pto DC3000 growth in E. salsugineum. To test this hypothesis, I 

conducted a second experiment using a type-3-secretion system (T3SS) deficient Pto hrcC 

mutant. In mock samples, Pto hrcC grew to a similar level in A. thaliana and E. salsugineum, 

whereas flg22-pretreatment reduced bacterial titres in A. thaliana but not in E. salsugineum 

(Figure 4B). Similar to the Pto DC3000 assays, flg22-pretreatment of C. hirsuta did not affect 

Pto hrcC titres. Interestingly, Pto hrcC did not grow in C. rubella, both in mock and flg22 

treated leaves. Together these results indicate that flg22-triggered PTI responses in E. 

salsugineum were insufficient to lower Pto DC3000 or hrcC titres and that flg22-induced PTI 

in C. hirsuta only marginally affected Pto DC3000 growth, which was not confounded by 

variation in the effector recognition of these two species.  

 
Figure 4: flg22-triggered bacterial growth inhibition in Brassicaceae species. 5-week-old Brassicaceae plants 
were syringe-infiltrated with 1 µM flg22 or mock 24 h prior to infiltration with Pto DC3000 (OD600 = 0.0002) (A) 
or Pto hrcC (OD600 = 0.001) (B). A: The bacterial titer was determined 48 hours after bacterial infiltration by 
measuring the DNA amount of the Pseudomonas syringae specific OprF gene relative to the plant ACT2 gene by 
qPCR. Bars represent the means ±SE from 3 independent experiments with each 3 biological replicates (n = 9). 
B: Bacterial titre was determined 0 and 48 hours after bacterial infiltration by serial dilution and counting colony 
forming unit on plates. Bars represent the means ±SE from 2 independent experiments with each 12 replicates (n 
= 24). Different letters indicate statistically significant differences (mixed linear model followed by Student´s t-
test; adjusted p < 0.01). 

2.5. Flg22 triggers a massive transcriptional reprogramming in tested 

Brassicaceae  

Phenotypic variation between species is often achieved by diversification of 

transcriptional regulation and flg22 is known to activate massive transcriptional reprogramming 

in A. thaliana (Navarro et al., 2004; Zipfel et al., 2004; Briggs et al., 2017). However, the 

evolutionary conservation of flg22-triggered transcriptional responses is not understood. In 

addition, the importance of the massive PTI-induced transcriptional reprogramming remains 

obscure because specifically blocking the entire transcriptional reprogramming is challenging 

if not unfeasible. Alternatively, the importance of a biological process can be inferred by its 
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evolutionary conservation. Therefore, if flg22-triggered transcriptional reprogramming is 

conserved, evolutionary theory predicts that it is important. 

To investigate temporal dynamics of transcriptional responses, I captured early (1 h), 

intermediate (9 h), and late (24 h) transcriptome responses of Brassicaceae seedlings to flg22 

using RNA-seq (Figure 5A). Mapping the RNA-seq reads to individual Brassicaceae genomes 

resulted in high mapping efficiencies (Supplement Table 1). To further check the quality of the 

data, I performed a principle component analysis (PCA) with normalized gene expression 

values. In all species, except A. lyrata, mock and flg22-treated samples were clearly separated 

and independent replicates were clustered together, indicating the high quality of the dataset 

(Supplement Figure 1). I removed A. lyrata transcriptome data from further analysis, due to its 

poor reproducibility among biological replicates (Supplement Figure 1F). 

For each species and time-point, I determined differentially expressed genes (DEGs) 

with a q-value < 0.01 and a minimum fold-change of 2 in response to flg22. Flg22 treatment 

triggered a massive transcriptional reprogramming in each species, significantly changing the 

expression of 4964 (Ath), 4398 (Cru), 4038 (Chi) and 2861 (Esa) DEGs, suggesting the 

importance of flg22-triggered transcriptional responses for Brassicaceae plants (Figure 5B). 

The number of upregulated genes at 1 h was similar among species (2000 to 3000), whereas 

numbers of downregulated genes varied more drastically; C. rubella downregulated 

approximately three times more genes than E. salsugineum. Further, the number of DEGs at 

later time-points was different: A. thaliana and C. rubella showed expression changes of about 

2000 genes at 24 h, whereas in C. hirsuta and E. salsugineum, only 300 to 500 genes were 

affected 24 h after flg22 treatment (Figure 5B). 

To compare expression changes between Brassicaceae species, I used a set of 17,857 

orthologous genes showing a clear 1 to 1 relationship between A. thaliana and each of the three 

Brassicaceae. From a total of 6106 DEGs, 868 DEGs (14.2 %) were shared among all four 

Brassicaceae species (Figure 5C). The number of shared DEGs was the highest at 1 hpt, 

suggesting that late transcriptome responses diverged among Brassicaceae compared to early 

ones (Supplement Figure 2). This was consistent with the variable number of DEGs at later 

time-points (Figure 5B) and the stronger conservation of early flg22 responses like MAPK 

phosphorylation compared to more variable late responses such as seedling growth inhibition 

or Pto growth reduction (Figure 2). Approximately one third of flg22-induced transcriptional 

changes (34.6% with Cru, 35.9% with Chi and 31.3% with Esa) were shared between A. 

thaliana and each of the other species (Figure 5D).  
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Despite this core fraction of shared expression changes, many genes were differentially 

expressed in just one of the species. The specific regulation of 460 (minimum) and 1102 

(maximum) DEGs, in C. rubella and E. salsugineum, respectively, suggests that substantial 

parts of the transcriptomic response might have diversified (Figure 5C). Together, these 

findings suggest that a large number of genes might be conserved for their response to flg22, 

whereas, at the same time, each species has evolved a specific set of genes that are not 

significantly affected in other species. 

 
Figure 5: All tested Brassicaceae species induce massive transcriptional reprogramming upon flg22 
perception. A: Schematic representation of the experimental design. B: Differentially expressed genes (DEGs) 
were determined using following criteria: q-value < 0.01 and |log2 fold change| > 1. The bars represent the number 
of up- or down-regulated DEGs at the indicated time points for each species. C: A Venn-diagram showing shared 
DEGs between species. All DEGs which are at least differentially expressed at 1 time point in 1 species were used. 
D: Venn diagrams showing shared DEGs between Ath and the indicated species. 

2.6. A core set of genes is conserved for its flg22-responsivness 

The Venn-diagram indicated a high overlap of 868 shared DEGs between all four 

Brassicaceae (Figure 5C). However, the overlap in a Venn-diagram does not necessarily 

indicate whether the overlapping genes are similarly regulated between species; for instance, 

shared DEGs might change their expression in opposite directions. To investigate the 

expression conservation and possible functions of shared DEGs, I extracted the 868 overlapping 

DEGs (Figure 5C) and clustered them (Figure 6A). Overall these genes behaved similar 

between species: genes induced in one species were also induced in other species (Figure 6A). 

Most shared DEGs were strongly upregulated 1 h after flg22 treatment, suggesting an important 

function of gene induction shortly after flg22 perception. In contrast, only a small number of 
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DEGs were commonly downregulated, indicating a minor role of transcript reduction during 

PTI. 

To get additional insights into possible functions of shared DEGs, I visualized their 

expression in A. thaliana under a variety of stresses using publicly available datasets from 

Genevestigator. The shared DEGs were similarly expressed in MAMP (flg22, elf18, and OGs) 

or DAMP (Pep2) treated A. thaliana plants, suggesting that the conserved flg22-responsive 

genes in Brassicaceae are involved in various MAMP or DAMPs responses (Figure 6A, right 

heatmap). Likewise, many genes were induced after pathogen attack by Pto DC3000 or Botrytis 

cinerea and, to a lesser extent, by SA treatment. In contrast, expression of these genes was 

barely affected by ABA or MeJA treatment or abiotic stresses, including drought, hypoxia or 

heat. 

 
Figure 6: Conserved flg22-responsive genes are associated with immune responses. A: Heatmap of 868 DEGs 
shared among all tested Brassicaceae species (see Figure 5C). The right heatmap displays expression changes of 
the 868 DEGs under the indicated stress conditions in publicly available A. thaliana datasets (Genevestigator). 
B: The most enriched GO terms of 868 genes grouped using ClueGO Cytoscape plugin. The circle sizes represent 
significance levels. C: Arbitrary selected genes known to be associated with plant immunity. D: Heatmap of top 
25 induced genes after flg22 treatment based on the mean induction over all samples. Red indicates DEGs that 
previously have not been implicated in immune responses. 

In line with the highly similar expression changes induced by MAMPs, DAMPs and 

pathogen treatments in publicly available datasets, many highly enriched GO terms within 

shared DEGs were associated to immune responses or signalling mechanisms, including 

“defense response to bacterium”, “defense response by callose deposition”, “response to chitin” 

and “protein phosphorylation” (Figure 6B). Moreover, genes connected to SA, JA, and ethylene 

responses were significantly enriched. Consistently, many well-known genes responsible for 

key processes during immunity including MAMP perception (CERK1, BAK1, BIK1, SOBIR1), 
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ROS burst (RBOHD), signal transduction (MKK4, MPK3), SA accumulation and responses 

(CBP60G, NPR1, NPR3), and transcriptional reprogramming (WRKY13/33/40/62, ERF6/104, 

MYB51/122) are among these conserved flg22-responsive genes (Figure 6C). These results 

indicate that the shared DEGs represent a core set of evolutionary conserved PTI components 

within Brassicaceae. 

Despite the large number of known immunity genes among flg22-responsive conserved 

genes, many shared DEGs among Brassicaceae had no annotation or were not previously 

described in relation to immunity. For example, half of the top 25 common upregulated genes 

were previously not connected to immunity (Figure 6D, red boxes), suggesting that a substantial 

number of genes likely playing roles in plant immunity have yet to be characterized. 

2.7. Transcriptomic responses to flg22 differ in their temporal 

dynamics between species 

In contrast to the similar number of genes affected 1 h after flg22 treatment in all 

Brassicaceae species, there was a substantial diversification at later time points. The total 

number of DEGs substantially drops at 9 hpt in all Brassicaceae except A. thaliana (Figure 7A). 

In C. rubella, the sharp drop at 9 hpt is followed by an increase in the number of DEGs, whereas 

the number of DEGs in E. salsugineum remained around 500 DEGs at 24 hpt. Similar, to E. 

salsugineum, few C. hirsuta genes responded to flg22 at 24 hpt. Thus, C. hirsuta and 

E. salsugineum showed a rather transient transcriptional response, in contrast to a sustained 

response in A. thaliana and C. rubella. Strikingly, the latter observation was correlated with the 

higher efficacy of flg22 treatment to reduce Pto DC3000 growth in A. thaliana and C. rubella 

(Figure 4). Notably the total number of expressed genes was very similar among all four species 

and thus does not explain variation in expression dynamics between species (Figure 7B). 

Likewise to the lower number of DEGs in C. hirsuta and E. salsugineum, the induction 

level of many shared DEGs was also lower at later time points (Figure 6A). To understand the 

species-specific kinetics of gene expression, I extracted genes initially induced in A. thaliana 

and E. salsugineum (log2 induction > 0.6), with sustained induction in A. thaliana (log2 

induction > 0.6), but transient induction in E. salsugineum (log2 induction < 0.5), resulting in 

187 genes (Figure 7C). To reveal possible functions of this gene set, I determined 

overrepresented GO-terms and found an enrichment for SA-responsive genes (Figure 7D). In 

line with this, nearly all of these genes are responsive to SA treatment in A. thaliana according 

to publicly available data (Figure 7E). This encouraged me to further extract known immune 
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genes following the same expression dynamics. I found many genes coding for key genes 

involved in SA inducting (SARD1, CBP60G), biosynthesis (SID2), transport (EDS5) and 

signalling (NPR1,3,4) (Figure 7F). Importantly, other flg22 responsive genes like the PTI 

marker gene FRK1 were expressed at all time-points even in E. salsugineum (the bottom row 

Figure 7F), suggesting that 24 h flg22 treatment is still capable of inducing immunity genes in 

E. salsugineum. Together, these results present accumulating evidence that the distinct temporal 

dynamics may be explained by distinct activities of SA signalling in different Brassicaceae 

species. 

 
Figure 7: Distinct sustainability of transcriptional response to flg22 in Brassicaceae species is associated 
with SA-responsive genes. A: Temporal dynamics of transcriptional response to flg22 differs in Brassicaceae 
species. The numbers of DEGs (q-value < 0.01; |log2 fold change| > 1) at each time point in each species are 
plotted. B: Bars indicate the numbers of expressed genes analysed with RNAseq. C: Heatmap visualizing 188 
genes induced at 1 hpt in Ath and Esa (log2 induction > 0.6) with sustained induction in Ath (log2 induction > 0.6 
at 9 and 24 hpt) but transient induction in Esa (log2 induction < 0.5 at 9 and 24 hpt). D: GO-terms connected to 
SA and defence are overrepresented among the 188 genes in C. GO enrichment analysis with BinGO plugin for 
Cytoscape. E: Most of the 188 genes (missing genes are caused by missing probes on microarrays of public 
datasets) are responsive to SA in publically available expression data of A. thaliana (Genevestigator). F: Heatmap 
visualizing selected immune genes known as PRRs or SA-related genes of the 188 genes in C.  
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2.8. SA levels do not explain distinct temporal transcriptome 

dynamics 

The significant induction of SA levels at 24 hpt in A. thaliana which was absent in 

E. salsugineum, is in line with the hypothesis that different temporal transcriptome dynamics 

may be connected to SA signalling (Figure 3A). However, the missing induction in C. rubella 

at 24 hpt, together with a slight SA induction in C. hirsuta, suggests that SA accumulation at 

24 h after flg22 treatment does not fully explain dynamic transcription patterns in these two 

species (Figure 3A). To further test the hypothesis that SA signalling dictates distinct temporal 

transcriptional dynamics, I selected three maker genes (SARD1, CBP60G, and PBS3) exhibiting 

sustained induction in A. thaliana but transient induction in E. salsugineum and tested their 

expression in the sid2 mutant of A. thaliana, which lacks the SA-biosynthesis enzyme 

(isochorismate synthase 1) responsible for immunity induced SA-biosynthesis (Wildermuth et 

al., 2001). In line with our RNA-seq results, expression of SARD1, CBP60G and PBS3 was 

induced at 9 and 24 h after flg22 treatment of wild-type A. thaliana and was absent in the fls2 

mutant (Figure 8A, B, C). All three genes were similarly induced in the sid2 mutant at 9 and 24 

hpt, suggesting that SID2-mediated SA accumulation is dispensable for the sustained induction 

of these genes by flg22.  

In addition, I checked the induction of 185 out of 187 extracted genes in Figure 7C, in 

a previously published RNAseq dataset which quantified flg22-responsive expression in the 

sid2 mutant at different time-points (Hillmer et al., 2017). In agreement with the previous RT-

qPCR results, flg22 induced most of the genes shown in Figure 7C in the sid2 mutant after 9 or 

18 hpt (Figure 8D). Nevertheless, the induction level in the sid2 mutant was slightly lower at 9 

and 18 h after flg22 treatment compared to wildtype; hence, I cannot exclude a minor role of 

SA in later transcriptional responses. However, despite the clear link between SA responsive 

genes and observed transcriptional patterns, these results indicate that the sustained 

transcriptional response in A. thaliana cannot be fully explained by SA accumulation. In line 

with these results, flg22 treatment efficiently reduced Pto DC3000 growth in the sid2 mutant 

of A. thaliana, but not in the wildtype of C. hirsuta and E. salsugineum (Figure 4A). 
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Figure 8: SID2-mediated SA production is not required for sustained flg22-triggered transcriptional 
response in A. thaliana. 12-day-old seedlings of A. thaliana wt (Ath), fls2, and sid2 were treated with mock or 
1µM flg22 for 1, 9, or 24 h. Expression of three marker-genes extracted from the heatmap in Figure 6C namely 
SARD1 A, PBS3 B, and CBP60g C was quantified via RT-qPCR. Bars represent the means ±SD from 2 
independent experiments. D: 185 genes showing transient induction in Esa (Figure 7C) were analysed for their 
expression induction in 31 to 32 day-old Col-0 and sid2 leaves at the indicated time points compared to 0 h after 
1 µM flg22 treatment (Hillmer et al., 2017). 

2.9. Analysis of Brassicaceae accessions and sister species revealed 

no correlation between sustained gene activation and the flg22 capacity 

to reduce Pto growth 

Sustained transcriptional induction of flg22-responsive genes correlated well with a 

significant growth reduction of Pto DC3000 in flg22-preatreated A. thaliana and C. rubella 

plants. In contrast, flg22 had a weak or no effect on Pto DC3000 growth in C. hirsuta and E. 

salsugineum which exhibited transient gene induction after flg22 (Figure 4). Interestingly, a 

previous study uncovered a mutant with intact early elf18-induced PTI responses but transient 

immune-gene expression which was more susceptible to Pto DC3000 compared to the wildtype, 

suggesting that early responses were insufficient, whereas late responses might be crucial for 

plant-bacterial interaction (Lu et al., 2009). To clarify whether these observations resulted from 

coincidence or whether sustained transcriptional responses are correlated to effective flg22-

triggered immunity to Pto DC3000, I performed bacterial growth assays in combination with 
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marker gene expression analysis in a set of available Brassicaceae accessions and sister species 

of tested Brassicaceae. I included Capsella grandiflora, two additional C. hirsuta accessions 

OLI and GR2 (Chi_OLI; Chi_GR2), another E. salsugineum accession YT (Esa_YT), a sister 

species of E. salsugineum Thellungiella halophyla (Tha) and Schrenkiella parvula (Spa) 

another Brassicaceae closely related to E. salsugineum. Flg22 pre-treatment significantly 

reduced Pto DC3000 titres only in A. thaliana, C. hirsuta GR2, and Thellungiella halophyla 

(Supplement Figure 3A). However, marker gene expression at 24 hpt was only induced in A. 

thaliana and S. parvula, but not in C. hirsuta GR2 or Thellungiella halophyla (Supplement 

Figure 1 B, C, D). Consequently, effective flg22-induced growth reduction of Pto DC3000 and 

sustained marker gene expression were not correlated, suggesting that sustained flg22-induced 

transcriptome responses are insufficient and unnecessary for effective flg22-induced resistance. 

2.10. Early flg22 transcriptomic responses diversified qualitatively 

between Brassicaceae 

A substantial number of DEGs was differentially expressed only in one of the species 

(Figure 5C). To determine whether the large number of species-specific DEGs is the 

consequence of the stringent cut-off criteria applied or reflects qualitative differences in flg22 

responses among these species, I clustered and visualized expression changes of all 6106 DEGs 

(Supplement Figure 4). Most DEGs showed qualitatively similar expression changes between 

species, particularly for early induced genes, indicating that a large proportion of species-

specific DEGs resulted from quantitative differences. This also suggests that many early flg22-

triggered expression changes evolved under purifying selection, pointing to their importance 

for PTI. 

However, I also found that four out of 15 clusters exhibited species-specific expression 

signatures (Figure 9A). These four clusters contained 1086 genes, representing about 18% of 

all DEGs (Figure 9A). To understand their potential functions, I investigated publicly available 

expression data and analysed GO term overrepresentation in these clusters. Publicly available 

gene expression data of A. thaliana in a variety of conditions did not infer specific functions 

associated with these species-specific genes (Figure 9B). Analysis of enriched GO terms among 

species-specific expression patterns revealed a weak but significant enrichment of 

“phenylpropanoid metablic process” and “lignin metabolic process” in the A. thaliana specific 

pattern and “coumarin metabolic process” in the C. hirsuta specific pattern, indicating an 

enrichment of genes associated with secondary metabolites, which are known to be involved in 
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plant-microbe interactions (Piasecka et al., 2015) (Figure 9C, D). The distinct expression 

changes of these genes might affect the production of certain secondary metabolites. I found no 

enriched GO term for C. rubella and E. salsugineum specific expression signatures. This may 

be due to the fact that GO-term annotations strongly depend on A. thaliana research and other 

Brassicaceae species have previously barely been studied in the context of plant immunity. 

Hence, poorer GO-term annotation of species-specific flg22-responsive genes might impede 

GO-term analysis of these expression clusters. In summary, large parts of the flg22 

transcriptional responses are conserved, but some expression changes diversified during the 

Brassicaceae evolution, which may be associated to potential adaptations of PTI in different 

Brassicaceae species. 

 
Figure 9: A large fraction of DEGs exhibited species specific expression signatures. A: All 6025 DEGs were 
clustered by k-means and 4 clusters exhibiting species-specific expression signatures are shown (see also 
supplemental Figure 3). Colored bars with the number of genes indicate Ath (green), Cru (orange), Chi (purple) 
and Esa (magenta) specific flg22-responsive genes. B: The heatmap displays expression changes of genes within 
species-specific clusters under indicated stress conditions in publicly available A. thaliana datasets 
(Geneinvestigator). C and D: Significantly enriched GO terms for Ath specific (C) and Chi specific (D) clusters 
determined with BinGO plugin of Cytoscape. For Cru and Esa specific clusters no significantly enriched GO-
terms could be determined.  

2.11. Flg22 transcriptome responses are highly conserved between 

genetically and geographically distinct A. thaliana accessions 

To understand expression evolution and distinguish neutral from adaptive evolutionary 

processes, it is important to also analyse within species variation of gene expression (Harrison 

et al., 2012; Romero et al., 2012). Expression under purifying selection is similar within and 

between species, whereas selectively neutral expression changes are predicted to show a high 

variation both within and between species. In contrast, evolutionary adaptive expression 
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changes should vary specifically between species but not within species (Harrison et al., 2012; 

Romero et al., 2012). Moreover, regarding the large impact of environmental variation on 

immunity, it is unclear whether inter-species transcriptome variation needs long-term evolution 

over several Mio years associated with species diversification or whether short-term evolution 

within a species can lead to similar degree of variation. To disentangle these possibilities, I 

analysed flg22-induced transcriptome responses in a set of genetically and geographically 

diverse A. thaliana accessions.  

First, I tested the responsiveness of 24 A. thaliana accessions to flg22 using a MAPK 

phosphorylation assay. Flg22 treatment induced MAPK phosphorylation in all accessions 

except CVI-0, which lacks a functional FLS2 receptor (Dunning et al., 2007), and therefore 

serves as a natural negative control (Figure 10A). To avoid underestimation of diversity in flg22 

responses within A. thaliana, I further picked 12 accessions that belong to distinct genetic 

groups (based on admixture groups from 1001genomes.org) and are geographically distributed 

over the USA, Europe and Asia (Figure 10B). To test whether flg22 triggers transcriptional 

responses in these accessions, I determined the PROPEP3 expression 1 h after flg22 treatment. 

All 12 accessions significantly induced PROPEP3 expression to similar levels (Figure 10C). I 

selected five of these accessions to capture their transcriptome 1 h after flg22 treatment using 

RNAseq. This included Can-0, Gy-0, Kn-0, Kon and No-0 A. thaliana accessions. Importantly, 

these five accessions were collected from geographically distant regions (Figure 10B), are 

genetically diverse, and present variable growth phenotypes (Figure 10D). 

The transcriptional response of A. thaliana accessions to flg22 treatment was similar in 

magnitude compared to the Brassicaceae response, ranging from 2443 (Kn0) to 4372 (Kon) 

DEGs (compared to 2861 to 4964 for Brassicaceae) (Figure 10E). However, the overlap of 

DEGs between A. thaliana accessions exceeded the overlap between Brassicaceae, as 1232 

DEGs, 26% of all DEGs, were shared by all the accessions as compared to 15.7% overlap 

between Brassicaceae species at 1 hpt (Figure 10F and Supplement Figure 2A). To detect 

accession specific expression signatures, I applied K-mean clustering, with the same parameters 

used to analyse Brassicaceae DEGs. Consistent with the high overlap of DEGs between 

accessions, expression changes of all 4733 DEGs (being differentially expressed in at least one 

accessions) were highly conserved between A. thaliana accessions without obvious accession-

specific expression signatures (Figure 10G). Thus, in contrast to Brassicaceae, diverse A. 

thaliana accessions, adapted to different environments, exhibited little variation in their early 

transcriptional response to flg22, indicating that short-term adaptation within a species barely 

influences diversification of flg22 induced transcriptional reprogramming. In addition, the little 
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expression variation within A. thaliana accessions suggests a low number of neutral evolving 

expression changes, suggesting that species-specific expression changes may resulted from 

adaptive evolution. 

 
Figure 10: flg22 triggered transcriptional responses are highly conserved among A. thaliana accessions with 
diverse genetic backgrounds. A: Phosphorylation of MPK3/6/4 was detected 15 min after treatment of 12-day-
old seedlings with mock or 1 µM flg22 in the indicated A. thaliana accessions by immunoblotting using an anti-
p42/44 antibody. B: Geographic origins of the 5 accessions chosen for RNAseq analysis are shown on the map 
created from 1001genomes.org. Colours of the markers indicate different genetic groups determined in The 1001 
Genome Consortium (2016) Cell. C: Expression of the PTI marker PROPEP3 1 h after treatment of 12-day-old 
A. thaliana accessions with mock or 1 µM flg22. The accessions highlighted in colour were used for RNAseq 
experiments. Bars represent the means ± SE from 3 independent experiments and asterisks indicate significant 
differences between flg22 and mock samples (mixed linear model followed by Student´s t-test; ***, p <0.001). D: 
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Representative pictures of the 4-week-old A. thaliana accessions, chosen for RNAseq. E, F, G: 12-day-old A. 
thaliana seedlings were treated with mock or 1 µM flg22 for 1 h and extracted RNA was subjected to RNAseq. 
The analysis was limited to the list of 17,856 genes showing 1 to 1 orthologs in all tested Brassicaceae species to 
directly compare inter- and intra-species variation in transcriptome responses. DEGs were defined using following 
criteria: q-value < 0.01 and |log2 fold change| > 1. E: Bars represent the number of up- or down-regulated DEGs. 
F: A Venn diagram showing shared DEGs between accessions. G: Heatmap of DEGs in at least 1 accession 
clustered by k-means. Expression changes are shown. H: 5-week-old plants were syringe-infiltrated with mock or 
1 µM flg22 24 h prior to infiltration with Pto DC3000 (OD600 = 0.0002). The bacterial titer was determined 48 h 
after bacterial infiltration by measuring the DNA amount of the Pseudomonas syringae specific OprF gene relative 
to the plant ACT2 gene using qPCR. Bars represent the means ±SE from 2 independent experiments with each 3 
biological replicates (n = 6). Different letters indicate significant differences (mixed linear model followed by 
Student´s t-test; adjusted p < 0.01). 

Initially, I mapped the RNAseq reads of the five different A. thaliana accessions to the 

Col-0 reference (TAIR10) genome. To exclude that less flg22-induced expression variation 

between the A. thaliana accessions was biased by this mapping approach, I re-mapped the 

RNAseq reads to SNP corrected accession-specific genome sequences. Analysis of the data 

mapped to individual accession genomes revealed comparable results (Supplement Figure 5), 

indicating that the same conclusion can be drawn regardless of the reference genome used, and 

thus I further used the initial mapping result with the Col-0 reference. 

In Brassicaceae, flg22 differentially affected in vivo Pto DC3000 growth, which might 

be connected to diversification of transcriptional responses during flg22-triggered PTI. 

Therefore, I speculated that flg22 pre-treatment of A. thaliana accessions, sharing very similar 

transcriptional reprogramming after flg22, might more robustly reduce bacterial titres. Indeed, 

flg22 significantly reduced Pto DC3000 titres in all accessions, although the basal growth of 

bacteria in mock conditions was variable, with reduced growth in Gy-0 and Kon and enhanced 

growth in No-0 compared to the Col-0 reference accession (Figure 10H). The variation of 

bacterial growth in mock-treated A. thaliana accessions might be influenced by constitutively 

activated immune signalling in Gy-0 (Todesco et al., 2010) and reduced defence gene 

expression in No-0, which were previously reported (Gangappa et al., 2017). However, this did 

not affect the capability of flg22-pretreatment to reduce Pto DC3000 growth. This data 

demonstrates that together with the highly conserved flg22-triggered transcriptome responses, 

the capacity of flg22 to reduce Pto D3000 growth was highly conserved between genetically 

and geographically distinct A. thaliana accessions. 

2.12. Inter-species transcriptome variation exceeds intra-species 

variation in response to flg22 

Species-specific flg22-responsive genes might reflect neutral evolution driven by 

genetic drift or adaptive evolution by natural selection. Generally, selectively neutral variation 



2. Results 

  38 

of expression changes should follow the phylogeny, whereas adaptively evolving expression 

changes can be incongruent with the phylogeny and can show less variation within a species 

(Romero et al., 2012; Harrison et al., 2012). To disentangle these possibilities, I normalized and 

analysed the 1 h transcriptome-data of Brassicaceae species together with the A. thaliana 

accession data. A principal component analysis (PCA) including all DEGs across Brassicaceae 

and A. thaliana accessions, clustered A. thaliana accessions closely together, whereas other 

Brassicaceae were clearly separated, mirroring the conserved transcriptional response to flg22 

between A. thaliana accessions contrary to the diversified response across Brassicaceae (Figure 

11A). This is supported by high Pearson correlation coefficients of flg22-induced fold changes 

between A. thaliana accession, ranging from 0.86 to 0.94, which dropped to 0.73 to 0.77 

between Brassicaceae and all other samples (Figure 11B). Although the A. thaliana Col-0 

accession was handled in the same experimental trials with the other Brassicaceae species, and 

the other A. thaliana accessions were handled in independent experimental trials, Col-0 still 

clustered together with the other A. thaliana accession. Together, these analyses demonstrate 

that inter-species transcriptome variation exceeds intra-species transcriptome variation of 

flg22-triggered PTI. 

To define and analyse diversified transcriptome responses, I recovered species-specific 

expression signatures similar to the clusters obtained from the individual analyses of 

Brassicaceae, using K-mean clustering of all DEGs (Figure 11C). In contrast to specific 

expression signatures present in each Brassicaceae species, I was unable to identify A. thaliana 

accession-specific expression clusters (Supplement Figure 6A). Around 20% of all DEGs 

across Brassicaceae and A. thaliana accessions (1295 of 5961 DEGs) exhibited species-specific 

expression signatures among Brassicaceae. C. rubella specific DEGs represented the largest 

cluster (451 DEGs). Moreover, some genes were less flg22-responsive in A. thaliana compared 

to all of the other Brassicaceae species (black cluster Figure 11C).  

These species-specific flg22-responsive expression clusters could be potentially biased 

by ambiguously selected orthologous relationships. Determining orthologous genes is 

especially challenging for genes belonging to a large gene family with many homologs. 

Therefore, if misassignments of orthologous genes explain species-specific expression patterns, 

species-specific expression clusters should be enriched for genes belonging to larger gene 

families compared to other clusters. To test this possibility, I compared gene family sizes in 

each cluster. Importantly, the species-specific expression clusters were not enriched for large 

gene families, making it unlikely that species-specific expression patterns resulted from 

misassignments of orthologous genes (Supplement Figure 7A). Further, the basal expression 
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pattern of these genes does not explain their selective induction signature in different 

Brassicaceae species (Supplement Figure 7B). Together, these results demonstrate that the 

expression variation between Brassicaceae species is not biased by gene-family sizes or basal 

expression and clearly exceeds the variation within A. thaliana accessions.  

If the transcriptome variation between Brassicaceae arises from neutral evolution, 

transcriptome variation should correlate with phylogenetic distance between the species 

(Broadley et al., 2008). However, C. rubella, representing the closest relative to A. thaliana 

within the tested species, clustered most distantly from A. thaliana compared to the other 

Brassicaceae species in the PCA using DEGs (Figure 11A) and presented a much larger number 

of specifically regulated genes compared to other Brassicaceae (Figure 11C). Moreover, the 

flg22-induced transcriptional changes did not clearly separate C. hirsuta and E. salsugineum 

although their ancestor split approximately 25 Mio years ago (Figure 2A). Thus, the 

transcriptional variation among Brassicaceae species is incongruent with their phylogeny, 

suggesting that differences in transcriptome responses to flg22 may be adaptive traits arisen 

from selective pressures during the Brassicaceae evolution.  

Clustering flg22-induced expression changes revealed inter-species expression 

variation exceeded intra-species expression variation. To further strengthen this observation by 

statistics, I fitted a mixed linear model to the expression changes after flg22 treatment to 

determine the number of genes that significantly diversified their flg22-response between A. 

thaliana accessions or between Brassicaceae species. About 2000 genes responded 

significantly differently to flg22 across the Brassicaceae species (Figure 11D). In stark contrast 

and in line with the results obtained by clustering, only 131 genes were statistically diversified 

in response to flg22 among A. thaliana accessions. Thus, the number of genes with diversified 

flg22 responses is more than 15 times higher among Brassicaceae compared to A. thaliana 

accessions.  

In addition, I determined the number of genes whose expression change by flg22 is 

significantly different from all other tested Brassicaceae species or all other A. thaliana 

accessions. Only the Can0 accession harbours one gene that was differentially affected 

compared to all other accessions. Among Brassicaceae, many genes were specifically regulated 

in only one of the species and, in accordance with the large size of the C. rubella specific cluster, 

flg22 specifically regulated 262 C. rubella genes compared with all other Brassicaceae (Figure 

11E).  
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Figure 11: Inter-species variation exceeds intra-species variation in transcriptome response to flg22 and is 
incongruent with phylogenetic relationships. A to F: Only 1 hour samples were analysed. A: Principal 
component analysis of 1 to 1 orthologous genes that are differentially expressed (q-value < 0.01; |log2 fold change| 
> 1) in at least 1 species or accession. B: Correlation plot displaying the Pearson correlation between samples 
based on the gene-expression of differentially induced genes. C: All 5961 DEGs were clustered using k-means 
and 5 selected clusters exhibiting lineage-specific expression signatures [Ath (green), non-Ath (black), Cru 
(orange) Chi (purple), Esa (magenta)] 1 h after 1 µM flg22 treatment are shown. The number of genes within each 
cluster is represented by colored bars below the clusters. The mean expression changes ±SD of each cluster in C 
(Visualized with Genesis) are also shown. D: The number of DEGs in flg22 response between Brassicaceae species 
(Brass) and between A. thaliana accessions (Ath access) in at least one comparison. E: The number of genes 
responding to flg22 differently in each Brassicaceae species compared to all of the other 3 Brassicaceae species. 
F: Heatmap showing genes which are significantly induced in 3 species but not in the other. Coloured bars indicate 
specificity for Ath (green), Cru (orange), Cru (purple) and Esa (magenta).  
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Inspection of these specifically affected genes between Brassicaceae additionally 

revealed some genes whose expression is significantly less affected by flg22 compared to other 

Brassicaceae (Figure 11F). These genes were previously not captured by the clustering and 

might as well play a role for diversified outcomes of plan-microbe interactions. The number of 

genes which have specifically lost their flg22 responsiveness was much lower compared to 

specifically induced genes. This further strengthens that the majority of species-specific flg22-

induced genes are no artefact since this should result in comparable numbers of specifically 

induction gain and loss. These specific losses of gene induction in individual Brassicaceae 

species provide another example how different Brassicaceae adapted their flg22-triggered PTI 

responses.  

2.13. Species-specific flg22-responsive genes are connected to 

potential diversification of secondary metabolism 

If the large amounts of species-specific expressed genes confer an adaptive advantage 

during evolution, certain biological processes within species-specific genes might be enriched. 

Unfortunately, I could not detect significant enrichment of specific GO terms within the clusters 

presented in Figure 11 (Supplement Table 3). Thus, it is likely that the potential adaptive 

advantage conferred by the species-specific expression signatures is not relying on few 

important functions but is rather mediated by smaller distinct functions that might additively 

help adaptation to certain environments. 

Despite the absence of significantly enriched biological processes, certain GO-terms 

were slightly enriched. Some of these GO-terms were associated with secondary metabolism 

once more, including: “secondary metabolic process” and “glucosinolate biosyntethis process”, 

“phenylpropanoid metabolic process” and “phenylpropanoid biosynthetic process” enriched 

within A. thaliana, C. rubella and E. salsugineum specific expression clusters, respectively 

(Supplement Table 3). As secondary metabolites can have direct influence on the interactions 

of plants with pathogens, these genes are potentially interesting candidates that might influence 

the outcome of plant-pathogen interactions. Therefore, I focussed my analysis on genes known 

to be involved in the secondary metabolism.  

Interestingly, a number of genes connected to tryptophan and indole glucosinolate 

metabolism showed significantly larger induction upon flg22 treatment in C. rubella compared 

with other Brassicaceae. These genes include ASB1, TSA1, TSB1, CYP79B2/B3, MYB51, PEN3, 

and IGMT5 (For full names refer to Table 5). This is surprising giving the finding that C. rubella 



2. Results 

  42 

does likely not produce indole glucosinolates at detectable amounts (Bednarek et al., 2011). I 

hypothesized that these genes might be significantly higher induced in C. rubella since they are 

lowly expressed in the basal state. Indeed, extraction of the normalized basal expression levels 

of corresponding genes revealed that most of these genes, except of the tryptophan biosynthetic 

genes, exhibited extremely low basal expression levels compared to their orthologous genes in 

other Brassicaceae (Supplement Figure 8). For example, the expression level of IGMT5 in 

control samples was at least 250 times lower in C. rubella compared to the other Brassicaceae 

(Supplement Figure 8). This reduced basal expression might explain the undetectable indole 

glucosinolates in C. rubella and might reflect potential adaptations of C. rubella to certain 

microbial interactions. Furthermore, the conserved high flg22-responsivness of these genes 

may suggest additional functions during immunity. 

2.14. Species-specific expression signatures are conserved in 

Brassicaceae accessions and sister species and can be partially triggered 

by elf18. 

To investigate whether the species-specific expression signatures present novel 

innovations just within one species or accession, or whether they are conserved in accessions 

or sister species, I tested selected marker genes via RT-qPCR for species-specific expression 

signatures in Capsella grandiflora (Cgr, sister species of Cru), two additional C. hirsuta 

accessions (OLI and GR2), one additional E. salsugineum accession (YT) and Thellungiella 

halophyla (Tha, Esa sister species). I selected PR4, CYP79B2 and NAC32 as C. rubella-specific 

markers. All three genes were significantly induced in C. rubella and as well in its sister species 

C. grandiflora (Figure 12). PR4 and NAC32 were specifically induced in these two species 

whereas CYP79B2 was significantly induced in A. thaliana as well (Figure 12). The two C. 

hirsuta-specific marker genes RAC7 and “AT3G60966” (as there is no common name for 

“AT3G60966” I used the AGI code of this gene to designate its orthologs in other Brassicaceae 

which refer to Carubv10018513m; Cagra.0239s0006; Thhalv10006444m; CARHR170490.1) 

were specifically induced in all three C. hirsuta accessions, with exception of a specific 

“AT3G60966” induction in C. grandiflora. Finally, all three E. salsugineum specific marker 

genes (APK4; bZipTF an unknown bZip domain transcription factor; CYP77A4) were 

specifically induced in the Shandong and Yukon accessions as well as in its sister species T. 

halophyla (Figure 12). Together, these findings confirm our RNAseq results and indicate that 

the genes specifically regulated in the tested Brassicaceae are also responsive to flg22 in sister 
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species and other accessions, strengthening their potential role in an adaptation of these species 

during evolution. 

 
Figure 12: Species-specific expression signatures are preserved in sister species and Brassicaceae accessions. 
Expression of selected genes, showing species-specific expression signatures depicted in Figure 6C, was 
determined in available sister species or accessions by RT-qPCR. The colored bars to the right indicate genes 
showing Cru (orange)-, Chi (purple)-, or Esa (magenta)-specific expression signatures. The heatmap represents 
the mean log2 changes upon flg22 compared to mock treatment from 3 independent experiments with each 2 
biological replicates (n = 6). Asterisks indicate significant flg22 effects (mixed linear model followed by Student’s 
t-test; p < 0.01). Ath, Arabidopsis thaliana Col-0; Cru, Capsella rubella; Cgr, Capsella grandiflora; Chi_Ox, 
Chi_GR, Chi_Ol, different Cardamine hirsuta accessions; Esa_Sh, Eutrema salsugineum Shandong; Esa_YT, Esa 
Yukon; Tha, Thellungiella halophyla. 

 

Figure 13: A subset of the species-specific expression changes triggered by flg22 is conserved after elf-18 
treatment. Expression changes of selected genes showing species-specific expression signatures depicted in 
Figure 6C, after elf18 compared to mock treatment in 12-day-old seedlings determined by RT-qPCR. PROPEP3 
expression indicates responsiveness to elf18, with induction levels indicated by small numbers within the heatmap. 
The colored bars to the right indicate genes showing Cru (orange), Chi (purple) or Esa (magenta) specific 
expression signatures. The heatmap shows the mean log2 changes upon elf18 compared to mock from 3 
independent experiments with each 2 biological replicates (n = 6). Asterisks indicate significant elf18 effects 
(mixed linear model followed by Student’s t-test; p < 0.01).  

Although flg22 and elf18 are perceived by a similar perception machinery (Figure 1) 

and trigger similar responses such as MAPK phosphorylation, ROS burst, and callose 

deposition, transcriptional reprogramming, exhibits distinct features between these two 

MAMPs (Briggs et al., 2017). To reveal whether the species-specific expression signatures are 

a general PTI feature or might be specific to flg22-PTI, I tested the expression of previously 

identified marker genes after elf18 treatment. The C. hirsuta specific marker genes did not show 

their C. hirsuta-specific induction, whereas some of the C. rubella and E. salsugineum specific 

genes exhibited a species-specific induction after elf18 treatment (PR4, NAC32, BzipX, 

CYP77A4) (Figure 13). Noteworthy, all species responded to elf18 as PROPEP3 expression 

was significantly induced in each Brassicaceae (Figure 13). However, induction of PROPEP3 
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was lower in C. hirsuta (2.6 log2-fold change) compared to other Brassicaceae (6.1 to 10.2 log2-

fold change). This suggests a lower sensitivity of C. hirsuta towards elf18 which might explain 

why C. hirsuta specific marker genes were not induced by elf18. Taken together, these findings 

suggest that parts of the species-specific expression signatures are a general feature of PTI, 

while some may be specific for flg22-triggered PTI. 

2.15. WRKY TF motifs are highly enriched in commonly induced 

clusters and present in some species-specific expression signatures.  

Transcriptional regulation is often mediated by TF binding to specific motifs in the 5´-

regulatory regions, near the transcriptional start site (also called cis-regulatory region), to 

activate or repress transcription. Consequently, similar expression patterns of flg22-responsive 

genes might be associated with the conservation of similar cis-regulatory motifs controlling the 

transcription of these genes. Vice versa, species-specific expression signatures might be 

achieved by gaining or losing specific cis-regulatory motifs. To test this hypothesis, I screened 

the 5´regulatory regions of genes within each expression cluster for enrichment of known TF-

motifs. Regulatory regions of commonly flg22-induced genes were highly enriched for WRKY 

TF motifs in all four Brassicaceae species (Figure 14A, Supplement Table 4-7). The WRKY 

TF-family is one of the largest with over 70 members in A. thaliana plants and WRKYs are key 

players during plant immune responses (Pandey and Somssich, 2009; Tsuda and Somssich, 

2015; Birkenbihl et al., 2017). Especially, clusters 4, 13 and 14 are strongly enriched for many 

WRKY TF motifs in all four Brassicaceae species (Figure 14A, Supplement Figure 6, 

Supplement Table 4-7), suggesting that regulation by WRKY TFs is a conserved feature of 

transcriptional induction during Brassicaceae PTI.  

In addition, A. thaliana, C. rubella and C. hirsuta regulatory sequences were also 

significantly enriched for several CAMTA TFs in clusters 13, 6, 14, respectively (Supplement 

Table 4-7). A recent study suggested an important role of CAMTA motifs during the early 

transcriptional immune response and showed that genetic perturbation of CAMTA3 influences 

ETI and PTI transcriptome responses (Jacob et al., 2017). Only in clusters 6 and 12, no 

significantly enriched WRKY motif was detected within E. salsugineum and C. rubella 

regulatory sequences. This might be connected to the only moderate expression induction of 

genes within these two clusters. Overall most flg22-responsive expression changes conserved 

within A. thaliana and across Brassicaceae are connected to WRKY TF regulation. 
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Regulatory regions of flg22-downregulated genes were enriched for different ATHB TF 

motifs in each Brassicaceae and AHL TF (AT-hook motif nuclear-localized proteins) in A. 

thaliana and C. hirsuta (Figure 14B). In particular, cluster 8 with moderately downregulated 

genes exhibited multiple enriched TF binding motifs in each Brassicaceae. In contrast, the 

largest cluster 15 was not enriched for any known TF-motif in neither of the species. Although 

ATHB TF motifs were commonly found in each of the Brassicaceae, much less common motifs 

were detected for downregulated genes, suggesting less conservation in transcriptional 

regulatory mechanisms of flg22-downregulated compared to flg22-upregulated genes. 

Interestingly, 5´regulatory regions of some species-specific expression signatures were 

specifically enriched for certain TF-binding motifs only in the species showing species-specific 

expression. Whereas C. hirsuta specific expression signatures were not enriched for TF-motifs, 

5´-regulatory regions of A. thaliana and E. salsugineum specific flg22-responsive genes were 

significantly enriched for WRKY TF-motifs (Figure 14C). This was especially pronounced in 

E. salsugineum specific expression signatures (Supplemental table 5, cluster 10). In addition, 

5´-regulatory regions of genes with a lower induction in all A. thaliana accessions compared to 

the other three Brassicaceae species were enriched for WRKY3 and WRKY33 motifs in C. 

rubella. This is in line with higher induction of these genes in C. rubella compared to other 

species. The C. rubella specific expression signatures were linked to enrichment of AHL12 and 

AHL25 TF-motifs (Figure 14C). Taken together, WRKY TFs were not only associated with 

conserved flg22-responsive expression signatures, but also with some of the species-specific 

flg22-responsive expression signatures, highlighting the importance of WRKYs TF for PTI and 

suggesting that gain of WRKY TF might be associated with the gain of species-specific flg22-

responsive expression changes.  
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Figure 14: Enrichment of TF-motifs within the 5´regulatory regions of DEG clusters. Enrichment of known 
TF-binding motifs in DEGs clusters (see Supplemental Figure 4) was determined using the -500 bp region 
upstream of the transcriptional start site separately for each Brassicaceae. Cluster name, DEG numbers and mean 
flg22-induced expression changes vs. mock ±SD are shown on the left site. Logos, TF and adjusted p-values for 
up to the 4 most significantly enriched motifs are shown for each Brassicaceae species. A: clusters with commonly 
induced DEGs. B: Clusters with commonly downregulated genes. C: clusters with species-specific expression 
signatures. For a complete list of all enriched TF-binding motifs, please see Supplement Table 4-7. 
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2.16. Coding sequence and promoter variation does not correlate with 

expression variation 

Some previous comparative transcriptome studies connected transcriptome variation to 

amino acid sequence variation between species (Hunt et al., 2013; Whittle et al., 2014; Necsulea 

and Kaessmann, 2014). Since these studies focussed on basal expression levels, the relationship 

of stress-responsive expression changes and sequence conservation between species has not 

been investigated. Therefore, I tested whether the amino acid sequence-identity correlates with 

variation of flg22-induced expression changes between Brassicaceae species. I divided the SD 

of basal expression values by their means across the four Brassicaceae species as a measure of 

expression variation. The SD/mean of basal gene expression did not correlated with the 

sequence variation, suggesting that amino acid sequence diversification is not connected to the 

diversification of expression changes between the tested Brassicaceae species (Figure 15A). 

Thus, the results obtained here are not in line with a previous publication reporting a correlation 

between basal expression variation and amino acid sequence conservation (Broadley et al., 

2008).  

Similarly, plotting the SD/mean of flg22-induced expression changes against mean 

amino acid sequence identities did not result in a clear correlation (Figure 15B) and limiting 

the analysis to DEGs (all DEGs in the combined analysis of Brassicaceae and A. thaliana 

accession) resulted in a similar result (Figure 15C). This suggests that diversification of flg22-

induced expression changes is not correlated to coding sequence evolution.  

Furthermore, I tested whether pairwise differences of flg22-induced expression between 

A. thaliana and individual Brassicaceae were linked to AA sequences diversification. Separate 

analysis including all expressed genes or only DEGs both indicated that flg22-induced 

expression changes were not coupled to sequence divergence in any of the pairwise 

comparisons (Figure 15D-I). Together, this data indicates that the basal expression variation as 

well as the flg22-responsive expression variation between Brassicaceae species did not 

correlate with coding-sequence variation. 

Moreover, I was interested whether species-specific or core flg22-responsive genes 

show altered sequence variation compared to other genes. I plotted percentages of amino acid 

identities from pairwise comparisons of each Brassicaceae with A. thaliana next to the k-mean 

expression clusters determined previously (Supplement Figure 6). Neither species-specific 

expression clusters nor the core flg22-responsive genes exhibited a clear pattern of sequence 

variation diverging from other expression clusters, except of cluster 5 which exhibited a lower 
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amino-acid sequence conservation in each Brassicaceae compared to other clusters. Cluster 5 

contained 70 highly induced and conserved DEGs. This may indicate that highly induced genes 

faced a stronger selective pressure to diversify their sequence compared to other flg22-

responsive genes. 

 
Figure 15: Gene expression variation does not correlate with coding sequence variation. A: mean amino acid 
(AA) sequence identities of C. rubella, C. hirsuta and E. salsugineum to A. thaliana (y axis) was plotted against 
the SD/mean of the expression values in mock samples of all four Brassicaceae plants for all expressed genes (x 
axis). B, C: mean AA identities of C. rubella, C. hirsute, and E. salsugineum to A. thaliana were plotted against 
the SD/mean of flg22-induced expression changes in all four Brassicaceae plants for all expressed genes with 1to1 
orthologs (16100 genes) (A) or 5961 DEGs (B). D - I: Pairwise AA sequence identity of C. rubella (D, G), C. 
hirsuta (E, H) and E. salsugineum (F, I) to A. thaliana was plotted against the flg22-induced expression changes 
between the compared species for all expressed genes (D-F) or DEGs (G-I). 

Diversified expression changes between species may be mediated by changes in cis-

regulatory sequences which can influence gene expression levels. To test a potential influence 

of cis-regulatory variation on species-specific expression signatures, I extracted -500 bp 5´-
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regulatory sequences and plotted their identities next to the K-mean clusters of all DEGs 

between Brassicaceae and A. thaliana accessions (Supplement Figure 6C). In line with previous 

observation of amino acid sequence variation, there was no clear correlation between 

expression variation and promoter sequence variation, except for cluster 5. Interestingly and in 

contrast to the amino acid sequence identity, the promoter sequence identity was higher in 

cluster 5 compared to that of the other clusters. Thus the 70 conserved and highly flg22-

responsive genes seem to have a more conserved 5´regulatory region compared to other flg22-

responsive genes but a lower coding sequence conservation. Expression variation between 

species within other clusters might be either mediated by trans-acting regulatory sequences or 

by small differences in TF binding sites that are masked by the high sequence variation in 5´-

regulatory regions. For example, the gain of WRKY TF in some of the species-specific flg22-

responsive genes might have affected their expression without a strong impact on the overall 

variation of the 5´-regulatory regions. Taken together coding and promoter sequence 

conservation were not clearly correlated with conservation of flg22-responsive expression 

signatures. 

2.17. Heat stress-induced transcriptome responses vary among 

Brassicaceae similarly as flg22-triggered responses 

The considerable variation of flg22-responsive expression changes between 

Brassicaceae species might be a unique feature of PTI or alternatively a more general 

phenomenon which similarly applies to other stress-induced transcriptome responses. To 

resolve this question, I captured the transcriptomic changes after a strong heat stress, since a 

similar comparative-transcriptomic study with a defined input stress is lacking. I placed 12-

day-old seedlings for 1 h at 22°C or 38°C. This stress significantly induced the heat-stress 

marker genes HEAT STRESS PROTEINs 70 and 90.1 (HSP70 and HSP90.1) in all tested 

Brassicaceae species (Supplement Figure 9). The subsequent RNAseq analysis revealed a high, 

but slightly lower number of heat-stress affected DEGs compared to the flg22-induced 

transcriptional response, with 3249, 3889, 2271 and 4563 DEGs in A. thaliana, C. rubella, C. 

hirsuta and E. salsugineum, respectively (Figure 16A). In stark contrast to the flg22-induced 

transcriptome, heat-stress downregulated a much higher number of genes in each species. These 

results demonstrate, that despite generally similar extent of expression changes, transcript 

reduction seems to play a more important role in heat- compared to flg22-triggered 

transcriptional reprogramming. 
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Figure 16: The transcriptome response to heat stress is diversified across Brassicaceae. 12-day-old 
Brassicaceae seedlings were transferred for 1 h to 22°C (control) or 38°C (heat-stress) and extracted RNA was 
subjected to RNAseq. Differentially expressed genes (DEGs) were determined using the following criteria: q-
value < 0.01 and |log2 fold change| > 1. A: Bars represent the number of up- or down-regulated DEGs for each 
species. B: A Venn diagram showing shared DEGs between species. All DEGs which are at least differentially 
expressed in 1 species were used. C: Principal component analysis of 1to1 orthologous genes that are differentially 
expressed (q-value < 0.01; |log2 fold change| > 1) in at least 1 species. D: Heatmap of 331 shared DEGs among all 
Brassicaceae species generated by k-means clustering. The right heatmap displays expression changes of the 331 
DEGs under indicated stress conditions in publicly available A. thaliana datasets (Geneinvestigator). E: GO term 
enrichment for heat-induced and heat-repressed genes, showing the most enriched GO terms grouped using 
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ClueGO Cytoscape plugin. The circle sizes represent significance levels. F: Heatmap showing expression changes 
of all 6782 DEGs, generated using k-means clustering. G: Enlarged clusters showing species-specific expression 
signatures observed in F. 

Only 331 DEGs were overlapped in all Brassicaceae species, which is a small fraction 

of 4.88% compared to 15.7% overlap of DEGs after flg22 treatment (Figure 16B, Supplement 

Figure 2A). A PCA based on all DEGs that were expressed in each species (5256) clearly 

separated the four species from each other. The transcriptional response of C. rubella was most 

diversified from the other Brassicaceae (Figure 16C), which was in agreement with previous 

observations for the flg22-induced transcriptome changes. Thus, as observed for flg22-induced 

expression changes, the variation in heat-stress induced transcriptional responses is incongruent 

with the phylogenetic relationship between the tested Brassicaceae species. 

The 331 shared DEGs between the Brassicaceae species were similarly regulated not 

only in each species, but also in two previous heat- or drought-stress studies conducted in 

A. thaliana (Figure 16D). Moreover, upregulated genes were significantly enriched for the GO 

terms “heat acclimation”, “response to heat” and “chaperone-mediated protein folding”, 

whereas downregulated genes were enriched for “regulation of cell differentiation”, presenting 

typical processes connected to heat-stress (Figure 16E). The GO-term “response to chitin” was 

as well among the overrepresented GO terms of upregulated genes. This was in line with the 

observation that many of these genes were similarly upregulated in publically available flg22 

and oligogalacturonides (OG) induced A. thaliana transcriptomes and suggests that certain 

heat-stress responsive expression changes overlap with MAMP induced expression changes 

(Figure 16D, E). In summary, the DEGs conserved for their responsiveness to heat-stress 

overlap to a certain degree with MAMP responsive genes but present typical genes previously 

associated to heat-stress. 

To resolve whether the large diversification of transcriptional responses to heat-stress, 

indicated by the small overlap DEGs among Brassicaceae and the large variance visualized in 

the PCA of DEGs (Figure 16B, C), results in species-specific expression signatures I clustered 

all DEGs using K-mean clustering. Indeed, large parts of the species-specific DEGs translate 

to expression clusters with species-specific expression signatures (Figure 16 F). Extracting only 

the most obvious of these clusters results in nearly 3000 genes exhibiting species-specific 

expression changes after heat-stress (Figure 16 G). C. rubella, closely followed by E. 

salsugineum, specifically regulated the largest number of DEGs. To exclude that the substantial 

amount of species-specific expressed genes was biased by not or lowly expressed genes in 

individual species, I re-analysed the data, based on the 17,857 1 to 1 orthologous genes and 

excluded lowly expressed genes. This analysis revealed a comparable amount of species-
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specific expression signatures, suggesting that the considerable number of species-specific 

regulated genes was not explained by lowly expressed genes (Supplement Figure 10). Taken 

together, compared to the species-specific responses induced by flg22, heat-stress 

transcriptional responses diversified even more drastically between Brassicaceae species and 

were incongruent with phylogeny. This suggests that major diversifications of transcriptional 

responses during both biotic and abiotic stresses may play an important role during adaptation. 



  



3. Discussion 

 55 

3. Discussion 

3.1. Flg22 perception machinery and flg22-triggered early responses 

are conserved in Brassicaceae 

3.1.1. Sequence conservation of PTI perception machinery 

PTI is activated after the perception of MAMPs by plasma membrane-localized PRRs. 

Comparing amino acid sequences of PRRs as well as interacting proteins revealed in general a 

high conservation of these components among tested Brassicaceae species. The high sequence 

conservation emphasises the importance of these components across the Brassicaceae family. 

This is in general congruent with the literature describing conservation of elf18 or nlp20 

perception across Brassicaceae and flg22 perception in multiple other plant families (Zipfel et 

al., 2006; Takai et al., 2008; Boller and Felix, 2009; Böhm et al., 2014). However, even within 

a species, individual receptors can lose their function as observed for the A. thaliana accessions 

WS-0 and CVI-0, which harbour premature stop codons in their FLS2 sequences (Gómez-

Gómez et al., 1999; Dunning et al., 2007; Vetter et al., 2016). Interestingly, for some A. thaliana 

accessions, the loss of flg22-responsiveness was associated with lower protein abundance or 

changes in catalytic sites rather than the complete loss of the FLS2 gene (Vetter et al., 2016). 

This opens up the question why these accessions do not lose the FLS2 receptor completely. One 

possible explanation is that those receptors, impaired in flg22 perception, might recognize other 

flagellin epitopes than flg22. Alternatively, even catalytically impaired PRRs might conserve 

their interaction with other RLKs which might be important to control and fine-tune various 

other functions mediated by RLKs. In recent years, it was noticed that many RLKs work in 

bigger complexes at the plasma membrane (Macho and Zipfel, 2014; Ranf, 2017). For example, 

BAK1 not only interacts with FLS2 but also many other RLKs involved in immunity and 

brassinosteroid signalling (Nam and Li, 2002; Li et al., 2002; Yasuda et al., 2017; Lozano-

Durán and Zipfel, 2015). Thus, the interaction of FLS2 with BAK1 could potentially influence 

other processes as well for example by modulating available BAK1 levels. 

Interestingly, protein sequences of PRRs seem to be less conserved than those of 

intracellular components connecting ligand perception to subsequent signalling cascades. This 

lower sequence conservation of PRRs among Brassicaceae species might reflect a functional 

diversification in ligand recognition specificities of the PRRs. Different plant species or 
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accessions evolving in diverse environments were conceivably exposed to distinct microbes 

possessing different MAMPs. Thus, changes in receptor recognition specificities may provide 

evolutionary advantages to plants. For example, it is known that Agrobacterium tumefaciens 

has an altered FliC sequence thereby escaping from flg22 and flgII-28 perception by A. thaliana 

and tomato plants, respectively (Felix et al., 1999; Rosli et al., 2013). Hence, it would be 

beneficial for plants to evolve flagellin receptors with different ligand specificities. 

Alternatively, plants may evolve additional PRRs to sense different epitopes of the same 

microbial molecule like tomato which senses multiple flagellin epitopes by an additional PRR 

called FLS3 sensing flgII-28 (Hind et al., 2016). It is conceivable that sequence variation among 

PRRs, especially in the extracellular domain, might help the plant to adapt to invading 

pathogens. In line with this idea, the RLP23 and RLP30 which lack an intracellular kinase 

domain, exhibit the lowest conservation of all tested PRRs over Brassicaceae (Figure 1A). 

Interestingly, for the intracellular NLR receptors, multiple studies indicated that the NB-ARC 

domain, important for ATP binding, is generally more conserved by purifying selection among 

NLR genes within and between species, whereas positive diversifying selection acts in regions 

encoding LRR domains responsible for effector binding (Mondragón-Palomino et al., 2002; 

Ashfield et al., 2012; Jacob et al., 2013). Further studies comparing sequence conservation of 

different PRR domains will help to understand whether different RLK domains evolve under 

different selection pressures similarly to NLRs. 

Apart from keeping up with pathogenic microbes, changing ligand perception 

specificity might also help plants differentiate between pathogenic and beneficial microbes. 

Additional investigations concerning the relationship of sequence variation to ligand 

recognition specificity in PRRs among different species would advance our understanding of 

co-evolution between plants and microbes. The natural diversity in extracellular PRR domains 

might enable plants to recognize additional MAMPs, which paves the ways to broadening 

pathogen resistance and fine-tuning microbiota assembly of crop species. This could provide 

substantial advantages as it might allow tailoring PRRs by combining desired extracellular and 

intracellular PRR domains which have increased recognition specificity and are resilient to 

pathogen perturbation, respectively. 

In contrast to PRRs, cofactors like BAK1 which interact with various different PRRs 

were highly conserved among Brassicaceae species. BAK1 is even conserved in the moss 

Physcomitrella patens (Boller and Felix, 2009). A possible explanation for this might be that 

BAK1 is not only a key player in immunity but also crucial for developmental processes by 

modulating brassinosteroid signalling (Nam and Li, 2002; Li et al., 2002; Chinchilla et al., 
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2009; Yasuda et al., 2017). However, PBL27 is not known to be involved in other processes 

besides chitin-induced PTI responses but is still highly conserved. Hence, components 

interacting with PRRs downstream of MAMP perception might be more conserved as they do 

not confer ligand specificity and might be consequently less affected by selection pressure 

arising from MAMP evolution on the microbial side. Moreover, the general conservation of 

components acting directly downstream of MAMP perception is in line with recent findings 

that the transfer of PRRs such as EFR or RLP23 to plants lacking these receptors is functional 

and confers additional resistance (Lacombe et al., 2010; Albert et al., 2015). 

3.1.2. All Brassicaceae tested in this study sensed flg22 

Previously it was shown that FLS2 orthologs from different C. hirsuta accessions, 

including the Oxford, GR2 and OLI accessions that were used in this study, did not bind flg22 

(Vetter et al., 2012). However, in my hands, all tested Brassicaceae species sensed flg22 and 

induced early PTI responses like MPK3/6 phosphorylation or marker gene expression after 

flg22 treatment (Figure 2, Figure 12), which was in line with the generally high sequence 

conservation of FLS2 and its interacting partners (Figure 1). Vetter and colleges used in vitro 

assays in which the competitive binding of radioactively labelled flg22 epitopes was recorded 

(Vetter et al., 2012). Flg22 binding to C. hirsuta FLS2 orthologs was not detected by this 

method, but no further downstream responses were analysed in this study. In contrast, I 

specifically investigated flg22-induced responses. One possibility is that the C. hirsuta FLS2 

ortholog senses flg22 but the method used by Vetter et al. was not sensitive enough to detect 

this binding. For example, C. hirsuta might sense flg22 by a more transient flg22 binding. 

Another possibility is that indeed the C. hirsuta FLS2 ortholog does not sense flg22, but another 

C. hirsuta receptor is capable of sensing flg22 and triggering downstream responses. A way to 

distinguish these two possibilities is to create a fls2 knock-out mutant in C. hirsuta for example 

by using CRISPR-Cas9 and subsequently test its flg22-responsiveness. If a C. hirsuta fls2 

mutant still responds to flg22, it would be very interesting to investigate which PRR might have 

taken over this function. The data presented here clearly demonstrate that all three C. hirsuta 

accessions sense flg22. Whether this is indeed mediated by their FLS2 orthologs remains to be 

addressed. 
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3.2. Variation in flg22-mediated responses among Brassicaceae 

3.2.1. Variable effect of flg22 on growth reduction 

All tested Brassicaceae responded to flg22 treatment, demonstrated by MPK3/6 

phosphorylation, marker gene expression, and seedling growth inhibition (Figure 2). However, 

the effect of flg22 on seedling growth varied between Brassicaceae species. These differences 

might be in part influenced by diversified growth rates between these species; e. g. E. 

salsugineum grows relatively slow compared to C. hirsuta. Thus, the relative fresh weight 

differences between mock- and flg22-treated seedlings of fast-growing Brassicaceae species 

might be larger if flg22 treatment leads to a nearly complete stop of seedling growth. 

Differences might be as well explained by other factors influencing growth defence 

crosstalk. The growth-immunity trade-off might be beneficial for the plant as it can prioritize 

between growth and defence in order to regulate its resource allocation accordingly (Yang et 

al., 2012; Meldau et al., 2012; Belkhadir et al., 2014). It is known that even within A. thaliana 

there can be substantial variation in flg22-induced seedling growth inhibition between 

accessions (Vetter et al., 2016). This might be mediated by variations in flg22-sensitivity but 

could be also explained by diversifications of the growth-immunity trade-off across accessions. 

For example, BAK1 not only acts as a co-receptor for FLS2 but also for the brassinosteroid 

receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) (Nam and Li, 2002; Li et al., 2002). 

Brassinosteroids are phytohormones involved in many developmental processes including cell 

expansion (Kim and Wang, 2010). Thus, it has been suggested that BAK1 might play an 

important role in integrating growth signals with immunity by preferentially interacting with 

BRI1 or FLS2 to induce growth or immunity (Belkhadir et al., 2012; Wang, 2012). 

Environmental factors may have a strong impact on this crosstalk as species that face high 

pathogen pressure might adapt this crosstalk in favour of defence, whereas species whose 

fitness relies on high growth rates might favour growth instead. Consequently, alterations in 

the growth-defence trade-off might differentially affect flg22-mediated seedling growth 

inhibition in different Brassicaceae. 

3.2.2. Variation in hormone levels 

SA, JA, and ABA levels not only responded differently after flg22 treatment but also 

differed in mock-treated samples among tested Brassicaceae (Figure 3). Phytohormones are 

involved in the regulation of various processes such as growth, development, abiotic and biotic 
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stress responses and build up a complex network with synergistic as well as antagonistic 

relationships (Pieterse et al., 2009). Hence, phytohormone levels can be affected by multiple 

signals and might need to be adjusted according to the lifestyle of an individual species or even 

accession. Indeed, basal phytohormone levels were recently measured in 17 A. thaliana 

accessions and substantial variation in gibberellin and SA levels were detected in some of the 

accessions (Nam et al., 2017). For example, the SA levels in the C24 accession were 

approximately ten times higher compared to Col-0 SA-levels. Another study investigated 

variation in phytohormone levels in roots of 13 A. thaliana accessions and noted high variation 

in some cytokinins and gibberellin levels across the tested accessions (Lee et al., 2018). Yet, to 

my knowledge, there are no studies comparing phytohormone levels between species in a 

controlled environment. However, the two previously mentioned studies demonstrated 

considerable variation in basal phytohormone levels even within a species. Thus, it is 

conceivable, that the substantial variation in basal phytohormone levels between Brassicaceae 

species observed here, might be a more general phenomenon between plant species, which may 

reflect adaptations to different environments. 

Interestingly, E. salsugineum accumulated ABA at higher levels compared to other 

Brassicaceae species (Figure 3B). Plants increase ABA levels in response to abiotic stresses 

like drought or salt stress and ABA is important for the tolerance to these stresses (Qin et al., 

2011). E. salsugineum was isolated from saline environments and is extremely tolerant to 

drought and salt stress (Zhu, 2001; Taji et al., 2004; Inan et al., 2004; Gong et al., 2005). Indeed, 

it was suggested that the high salt stress tolerance of E. salsugineum might be achieved by a 

gene number expansion within gene families involved in ABA biosynthesis pathways, 

combined with a higher sensitisation for abiotic stresses (Taji et al., 2004; Wu et al., 2012). 

However, despite pointing out the potential role of ABA in the stress adaptation of E. 

salsugineum, this hypothesis has not been tested up to now and ABA levels in E. salsugineum 

in comparison to other plant species have not been reported. The higher ABA levels in E. 

salsugineum compared to other Brassicaceae species observed here indeed point to an important 

role of ABA in the extreme abiotic stress tolerance of E. salsugineum. However, to clarify the 

role of ABA in this process genetic perturbation of ABA biosynthesis or ABA signalling is 

needed to create causal links between salt stress adaptation and ABA. In A. thaliana ABA2 

encodes a key enzyme in the ABA biosynthesis pathway and aba2 knockout mutants have 

reduced ABA levels (Koornneef et al., 1998; Gonzalez-Guzman et al., 2002; Adie et al., 2007; 

Finkelstein, 2013). Therefore, I currently use CRISPR-Cas9 targeted genome editing to create 

aba2 mutants in E. salsugineum. If aba2 mutations in E. salsugineum lead to reduced ABA 
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levels, these mutants will be an important future resource to test the involvement of ABA on 

abiotic stress tolerance of E. salsugineum. 

SA and ABA have been shown to act antagonistically with each other (Robert-

Seilaniantz et al., 2011). Numerous studies demonstrated that abiotic stress or ABA application 

negatively affects resistance against pathogens which are sensitive to SA-mediated immunity 

(Yasuda et al., 2008; Fan et al., 2009; De Torres Zabala et al., 2009; Pye et al., 2013; Ueno et 

al., 2015; Liu et al., 2015). For example, ABA application not only reduces SA accumulation 

by inhibiting expression of the SA biosynthesis gene ISOCHORISMATE SYNTHASE 1 (ICS1; 

also named SID2) (De Torres Zabala et al., 2009), but also blocks SA signalling by initiating 

proteasome degradation of the key SA regulator NONEXPRESSER OF PR GENES 1 (NPR1) 

(Ding et al., 2016). This crosstalk might be beneficial under individual stress situations by 

prioritizing the appropriate stress response (Asselbergh et al., 2008; Vos et al., 2015; Ueno et 

al., 2015). Consequently, E. salsugineum might prioritize abiotic stress responses by higher 

ABA levels which may negatively affect PTI responses. This assumption is consistent with the 

relatively transient flg22-induced transcriptome responses in E. salsugineum compared to the 

other Brassicaceae species (Figure 7C) and with the inability of flg22 to trigger growth 

reduction of Pto DC3000 and Pto hrcC in E. salsugineum compared to A. thaliana (Figure 4). 

However, until we can gain a genetic proof, e.g. by mutation of ABA synthesis, it remains 

speculation whether elevated ABA levels are connected to an inefficient flg22-triggered PTI in 

E. salsugineum. Thus, the previously mentioned aba2 mutants created by CRISPR-Cas9 might 

help to clarify the role of ABA not only for abiotic stress tolerance of E. salsugineum but also 

for its impact on PTI responses. Since E. salsugineum responds to flg22, can be infected with 

Pto and has a sequenced genome it is an excellent model to study the evolutionary trade-off 

between abiotic and biotic stress responses. 

Phytohormone measurements further revealed strongly elevated JA levels in A. thaliana 

that were up to 100-fold higher compared to other Brassicaceae species. These high JA levels 

seem to be generally conserved in A. thaliana accession as a recent study measured comparable 

JA levels in various A. thaliana accessions (Nam et al., 2017). This suggests that the 

exceptionally high JA levels in A. thaliana compared to other Brassicaceae species are 

stabilized over evolution and thus presumably present an important adaptive trait of A. thaliana. 

Moreover, JA levels strongly increased 1 h after flg22 treatment in C. rubella and in E. 

salsugineum but not in A. thaliana and C. hirsuta (Figure 3C). Contrasting this observation, a 

recent publication detected elevated JA levels in A. thaliana 1 h after flg22 treatment (Hillmer 

et al., 2017). Major differences in the experimental setup might account for this discrepancy. 
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Hillmer et al. infiltrated flg22-solution in leaves of four-week-old plants. Water-infiltration into 

leaves can trigger wound responses in A. thaliana, for example MPK3 activation (Kohler et al., 

2002; Beckers et al., 2009). JA normally accumulates after wounding and during interactions 

with necrotrophic pathogens as well as upon herbivore attack (De Vos et al., 2005; Glauser et 

al., 2008; Koo et al., 2009; Campos et al., 2014). Since Hillmer et al. compared the JA levels 

to a 0 h time-point rather than to mock infiltrated leaves, the early increase in JA levels might 

be confounded by an infiltration elicited wound-response. Usually, JA signalling antagonizes 

SA signalling (Robert-Seilaniantz et al., 2011; Thaler et al., 2012; Van der Does et al., 2013). 

This crosstalk is often exploited by pathogens like Pto DC3000 producing the JA-isoleucine 

mimic coronatine, which can bind to the JA-receptor COI1 and activate JA-signalling (Katsir 

et al., 2008). This JA-signalling activation suppresses SA signalling which is effective against 

hemibiotroph pathogens (Glazebrook, 2005; Brooks et al., 2005; Zheng et al., 2012). Hence it 

seems counterintuitive that plants increase JA levels upon treatment with flg22, a MAMP 

present in hemibiotroph Pto DC3000. However, JA is important for the immune responses 

against necrotrophic pathogens and it is conceivable that certain necrotrophic pathogens as well 

have flg22 epitopes (Mengiste, 2012). Thus, different plant species might modulate the 

phytohormone accumulation downstream of MAMP perception based on the pathogen pressure 

in their native environments. 

3.2.3. Variation in bacterial growth 

Flg22 treatment reduced Pto DC3000 growth in all tested Brassicaceae except 

E. salsugineum. Moreover, in C. hirsuta the reduction was much lower compared to other 

Brassicaceae (Figure 4). This might be explained by a better adaptation of Pto DC3000 to C. 

hirsuta and E. salsugineum enabling a more efficient inhibition of PTI responses. It was 

previously proposed that the failure of effectors to find their appropriate host targets might be 

positively associated with non-host resistance (Schulze-Lefert and Panstruga, 2011). Indeed, it 

was recently shown that Phytophthora infestans effectors targeting proteases in potato are 

specifically tailored to potato proteases and fail to target orthologous proteases of the potato 

relative Mirabilis jalapa, rendering P. infestans non-virulent on Mirabilis jalapa (Dong et al., 

2014). Hence, a more efficient inhibition of flg22-triggered PTI responses in specific 

Brassicaceae is in principle possible. However, in E. salsugineum and C. hirsuta, flg22 

treatment did not inhibit growth of Pto hrcC, lacking the functional delivery of pathogen 

effectors (Figure 4 B). Thus, the inability of flg22 to reduce Pto DC3000 growth in E. 
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salsugineum and C. hirsuta is not explained by the possibility that Pto DC3000 effectors can 

effectively suppress pre-activated PTI in E. salsugineum and C. hirsuta. 

Pto DC3000 titres were also lower in E. salsugineum compared to the other 

Brassicaceae species (Figure 4A). The repertoire of NLR genes to detect pathogen effectors 

varies greatly across Brassicaceae species with only a few conserved NLRs among A. thaliana, 

A. lyrata, C. rubella and E. salsugineum (Peele et al., 2014). In contrast to A. thaliana, Pto 

DC3000 triggers ETI in several tomato strains which can recognize the Pto DC3000 effector 

AvrPto by a receptor complex comprised of the protein kinase Pto and the NLR Prf (Salmeron 

et al., 1996; Tang et al., 1996; Gutierrez et al., 2010). Thus, the lower Pto DC3000 growth in 

E. salsugineum may result from recognition of Pto DC3000 effectors which are not recognized 

by the other Brassicaceae. An effective ETI response in E. salsugineum might preclude further 

reduction of bacterial titres by flg22 treatment. However, this is very unlikely since flg22-

treatment did not reduce Pto hrcC which grew to comparative levels in untreated A. thaliana 

and E. salsugineum. Furthermore, bacterial titres in flg22 treated A. lyrata and A. arabicum 

were much lower compared to E. salsugineum (Figure 4A), indicating that further reduction of 

bacterial titres is in principle possible. A previous publication reported lower Pto DC3000 

growth in E. salsugineum compared to A. thaliana and bacterial titres were further reduced in 

ETI triggering Pto AvrRpt2 and AvrRps4 strains (Yeo et al., 2015). However, inoculation levels 

between different Pto strains were already significantly different at 0 hpi and consequently later 

differences in the bacterial titres may arise from different starting inocula. Thus, it is unclear 

whether the bacterial titres in E. salsugineum can be further reduced by additional ETI 

responses. 

The most obvious explanation for the observed inefficiency of flg22 to reduce Pto titres 

in C. hirsuta and E. salsugineum might be that flg22 induced a less potent PTI in these species. 

This is in line with the lower amplitude of transcriptional regulation at 24 h observed in C. 

hirsuta and E. salsugineum compared to the other species (Figure 7A). However, marker gene 

expression combined with Pto DC3000 growth assays in several Brassicaceae accessions and 

sister species indicated that the latter correlation is not generally applicable and was likely 

observed by chance (Supplement Figure 3). Moreover, SA was ruled out as a regulator of 

sustained transcriptional responses in A. thaliana compared to E. salsugineum, since the sid2 

mutant exhibits nearly unaltered transcriptional responses 18 h after flg22 treatment (Figure 8). 

However, it cannot be ruled out that the lower transcriptional induction of many SA-responsive 

genes observed in E salsugineum (Figure 7F) might influence the efficacy flg22-mediated 

bacterial growth reduction. 
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In C. rubella Pto hrcC was not able to grow, whereas Pto DC3000 grew normally in 

mock condition. This might be explained by DC3000 effectors that modulate the apoplastic 

space to make it habitable for the bacteria, e.g. by modifying the water status of the apoplast or 

releasing nutrients from the plant, whereas Pto hrcC which lacks these functions might face an 

unfavourable environment in the C. rubella apoplast that impedes its growth. For example, the 

apoplastic water status is critical for Pto DC3000 proliferation and is actively modulated by the 

two Pto DC3000 effectors HopM1 and AvrE1 which cause water soaking (Xin et al., 2016). 

Thus, a lower water content in the C. rubella apoplast compared to the other Brassicaceae 

species might be one possibility why Pto hrcC did not grow in C. rubella. In addition, multiple 

results indicated that C. rubella might trigger a very strong PTI response since it induced SA 

accumulation and exhibited the largest transcriptome changes early after flg22 treatment. 

Moreover C. rubella might recognize additional MAMPs from Pto hrcC. Consequently, C. 

rubella might trigger strong PTI responses upon Pto hrcC infection, that are sufficient to inhibit 

Pto hrcC growth, in the absence flg22 pre-treatment. 

3.3. Comparative transcriptomics after a defined stress – a dataset 

advancing the field of comparative transcriptomics 

In this thesis, I compared transcriptome responses of four Brassicaceae species during 

flg22-triggered PTI. This enabled me to identify not only core genes, which conserved their 

flg22-responsiveness during Brassicaceae evolution, but also species-specific expression 

patterns. Since the rise of microarray technology, comparative transcriptomics between species 

have been commonly used to reveal candidate genes regulating important traits or investigate 

the correlation of expression changes to phenotypic differences, by defining conserved and 

diversified gene regulations (Whitehead, 2012; Romero et al., 2012). Yet, this study extends 

previous studies in various aspects. 

Many studies compared gene expression levels in different species at the “basal” state 

(Weber et al., 2004; Hammond et al., 2006; Davidson et al., 2012; Perry et al., 2012; Koenig et 

al., 2013; Hunt et al., 2013; Whittle et al., 2014; Czaban et al., 2015; Morandin et al., 2016). 

Some comparative transcriptome studies noted that biotic and abiotic stresses are main drivers 

of expression variation between and within species (Koenig et al., 2013; Kawakatsu et al., 

2016). However, a comprehensive understanding how stress-induced transcriptomes differ 

between species is lacking. The comparison of flg22-triggered transcriptional responses among 

four Brassicaceae species addresses this previously unanswered question. 
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Moreover, my experimental approach overcomes multiple concerns which complicate 

interpretation of many previous comparative transcriptomic studies. Especially in animal 

studies, multiple problems may introduce noise to gene expression variation which cannot be 

distinguished from heritable variation (Romero et al., 2012). Usually, samples need to be taken 

from dead organisms which did not live in the same controlled environments. It is conceivable 

that a variety of uncontrollable factors including diet, disease and other environmental 

influences, will introduce gene expression variation between species (Romero et al., 2012; 

Breschi et al., 2017). I excluded these biases by growing the Brassicaceae species under the 

same controlled environments, minimizing potential noise in gene-expression introduced by 

environmental factors. Furthermore, by sampling all species at the same time of the day, I 

excluded biases arising from circadian and diurnal gene regulations. These controlled 

environmental conditions are important to measure gene expression differences with a genetic 

basis (Voelckel et al., 2017). Thus, the substantial inter-species variation in gene induction that 

I observed likely reflects genetically encoded variation across species. 

Only a few studies compared transcriptional responses towards a stress between 

different strains, ecotypes or species. For instance, transcriptome responses of different E. 

salsugineum accessions during salt stress were characterized to find candidates genes mediating 

salt-stress tolerance (Taji et al., 2004). Another study compared transcriptome responses of 

different tomato varieties towards salt stress (Sun et al., 2010). However, in contrast to the four-

species comparison I used, the previous mentioned and many other studies used binary systems 

comparing only two species or compared strains within a species (Mangelsen et al., 2011; 

Lenka et al., 2011; Schroder et al., 2012; Zhang et al., 2014; Lindlöf et al., 2015; Yang et al., 

2015; Amrine et al., 2015; Clauw et al., 2015; Gleason and Burton, 2015; Van Veen et al., 

2016; Zhang et al., 2016; Mondragón-Palomino et al., 2017). Two species comparisons are 

valuable to identify candidate genes mediating increased stress resistance, but cannot 

distinguish neutral from adaptive expression evolution (Evans, 2015). In other words, it cannot 

be interpreted whether expression changes are selectively neutral or of adaptive advantage for 

these species. I compared stress-responsive transcriptome responses between four Brassicaceae 

with a defined phylogenetic framework to fill this previously neglected knowledge gap in the 

field of comparative transcriptomics. 

A handful of studies compared stress-responsive expression changes in more than two 

species. For example, cold-stress induced transcriptome responses of two Solanum species with 

variable cold stress tolerance were compared to A. thaliana, identifying conserved cold stress 

responses (Carvallo et al., 2011). Another study compared salt stress-responsive gene 
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expression changes of six Lotus species differing in their salt tolerance and found only very few 

conserved transcriptional responses, indicating a highly variable Lotus response to salt stress 

(Sanchez et al., 2011). The conservation of low-oxygen stress induced transcriptomes was even 

compared across four different kingdoms including plant, fungi, animal and bacterial 

expression datasets (Mustroph et al., 2010). However, the first two studies both lack a clear 

phylogenetic framework comparing either very distantly related species such as A. thaliana and 

tomato or only very closely related species, whereas the third study compared only publicly 

available datasets impeding comparability between different samples due to differences in 

experimental conditions between samples. Thus, up to now there is no study comparing stress-

responsive transcriptomes across multiple species that include both closely- and distantly-

related species in the same experimental setup. Therefore, this dataset opens up the door for 

more in-depth analysis regarding gene expression evolution among related species during stress 

responses. For example, the data produced here can be further used to build up co-expression 

networks and interfere ancestral gene regulatory networks of PTI. 

3.3.1. Massive transcriptional reprogramming shows importance of flg22 induced 

transcriptional reprogramming 

Despite variation in hormone levels and flg22-triggered Pto DC3000 growth reduction, 

flg22 treatment induced a massive early transcriptional reprogramming in all tested 

Brassicaceae changing the expression of 2575 to 4209 DEGs (Figure 5). Most previous 

publications investigating flg22-triggered transcriptional changes detected a smaller, but still 

substantial number of DEGs ranging from approximately 1000 to 2500 DEGs at a single time-

point within the first hour after flg22 treatment (Zipfel et al., 2004; Denoux et al., 2008; Frei 

dit Frey et al., 2014). In contrast, two more recent studies detected approximately 8500 or 7000 

DEGs one or two hours after flg22 treatment and over 5800 DEGs one hour after elf18 treatment 

of A. thaliana seedlings (Briggs et al., 2017; Birkenbihl et al., 2017). The large quantitative 

differences between these studies are likely explained by a combination of different statistical 

methods to determine DEGs and newer microarray or RNAseq technologies with higher 

detection sensitivity. Similarly, the higher number of flg22-responsive genes here compared to 

older microarray-based studies is likely explained by a higher detection sensitivity of the 

RNAseq approach combined with the powerful statistical framework used in my analysis.  

Previous flg22 transcriptome studies exclusively investigated transcriptional responses 

within the first hours after treatment; hence a comparative dataset investigating later time-points 

is lacking. However, RT-qPCR analysis in another study indicated that marker gene expression 



3. Discussion 

  66 

returns to basal expression levels about 24 h after flg22 treatment (Denoux et al., 2008). In 

contrast, I still detected not only marker gene expression (Figure 8A, B, C) but also many DEGs 

24 h after flg22 treatment (Figure 5B). A recent study investigated transcriptional responses to 

elf18 or pep2 treatment 10 hpt and detected around 1100 DEGs or 400 DEGs, respectively 

(Ross et al., 2014) This is within the same range as transcriptional responses detected at 9 h 

after flg22 treatment here (Figure 5B). In contrast to previous studies I could show here that 

especially in A. thaliana and C. rubella, there are still many genes differentially expressed at 9 

and 24 h after flg22 treatment (Figure 5B). Importantly the number of DEGs as well as their 

induction levels varied between different Brassicaceae suggesting that different temporal 

dynamics in different species might play an important role in the adaptation of PTI responses 

in different species. Although transcriptomic data for later time-points are missing for most 

MAMPs, transcriptional responses of A. thaliana to Pto hrpA infection have been investigated 

over an extensive time course (Lewis et al., 2015). Since Pto hrpA lacks functional effector 

delivery, it resembles a PTI transcriptional response. This study revealed that some 

transcriptional responses towards Pto hrpa are still sustained 17.5 h after inoculation but on the 

other hand stated that from 11 h on no novel transcripts are regulated anymore. However, it is 

difficult to compare this data with MAMP triggered transcriptome studies since we do not know 

which MAMPs at which concentrations are present in the bacteria. 

Interestingly, E. salsugineum induced a massive transcriptional reprogramming in 

response to flg22, although flg22 did not trigger effective resistance against Pto DC3000 and 

Pto hrcC. This opens up the question what selective pressures forced E. salsugineum to keep 

this massive transcriptional response if it does not result in increased resistance against 

pathogens. One possibility is that flg22-triggered transcriptional reprogramming does not lead 

to inhibition of Pto growth but effectively limits the growth of other bacterial species. E. 

salsugineum colonizes saline environments (Zhu, 2001; Inan et al., 2004; Wu et al., 2012). It is 

conceivable that different types of microbial pathogens colonize these extreme environmental 

conditions and consequently E. salsugineum adapted its defence responses downstream of 

transcriptional reprogramming to these specific environments. For example, it was shown that 

different sets of defence secondary metabolites are produced in E. salsugineum compared to A. 

thaliana (Pedras and Adio, 2008; Pedras et al., 2010; Pedras and Zheng, 2010; Bednarek et al., 

2011), which might differentially affect interactions with bacterial pathogens. 

Alternatively, pathogen pressure may be low in these extreme environments and 

therefore E. salsugineum can afford a weaker defence against pathogens. The soil microbiome 

composition varies with salinity and salt-stress was associated to shifts in the microbial 
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communities of plants (Canfora et al., 2014; Yaish et al., 2016; Yang et al., 2016). Moreover, 

it has been hypothesized that the plant microbiome plays important role in the salt-stress 

adaptation of plants growing in saline environments (Ruppel et al., 2013; Qin et al., 2016). 

Thus, conserved flg22 transcriptional responses in E. salsugineum might be required for 

recruiting specific microbiota members. Consistently, several studies implicated a role of the 

plant immune system to coordinate the establishment of microbiota (Hacquard et al., 2017). For 

example, production of tryptophan-derived secondary metabolites in A. thaliana affects the 

colonisation by beneficial fungal microbiota (Kei Hiruma et al., 2016). However, the role of 

MAMP perception and PTI responses in the microbiota establishment is not well understood. 

Future research will be required to understand the link between MAMP-triggered massive 

transcriptional reprogramming and the establishment of functional microbiota. 

3.3.2. Purifying selection conserved flg22-responsiveness of a core set of genes 

during Brassicaceae evolution 

Many studies investigated the massive transcriptional reprogramming triggered during 

PTI (Navarro et al., 2004; Zipfel et al., 2004, 2006; Gust et al., 2007; Denoux et al., 2008; Rosli 

et al., 2013; Lewis et al., 2015; Jacob et al., 2017; Briggs et al., 2017; Birkenbihl et al., 2017). 

Nevertheless, we do not understand how essential and important these massive transcriptional 

responses are for PTI. Genetically removing flg22-induced transcriptional reprogramming 

would be desirable to test its relevance for plant-microbe interactions. However, flg22-induced 

transcriptional reprogramming cannot be easily cancelled without severe side effects. Yet, 

another way to test the importance of transcriptional responses during PTI is to investigate 

whether they are precious enough to be conserved during evolution. 

Indeed, over 800 genes conserved their flg22-responsiveness across the four tested 

Brassicaceae indicating that a large part of the flg22-responsive transcriptome evolved under 

purifying selection. In addition to the 868 genes which are differentially expressed after flg22 

treatment in all species, many genes show qualitatively similar expression patterns between 

species (Supplement Figure 4). The species-specific appearance of these genes in the Venn-

diagram (Figure 5C) is likely caused by the stringed cut-off criteria I applied. This strong 

conservation of transcriptional responses over approximately 30 Mio years of Brassicaceae 

evolution suggests that these transcriptional responses are essential for their fitness. 

Many previous publications stated that large parts of expression patterns between 

species are conserved by purifying selection (Rifkin et al., 2003; Lemos et al., 2005; Gilad et 

al., 2006; Whitehead and Crawford, 2006; Romero et al., 2012). However, these publications 
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compared expression variation between unstressed organisms. Thus, information about the 

number of genes that are likely under purifying selection for their regulation during particular 

stress responses is so far unknown. Unfortunately, many studies comparing stress responsive 

transcriptomes between multiple species only used Venn-diagrams to compare the overlap of 

DEGs and determine species-specific gene regulations (Carvallo et al., 2011; Sanchez et al., 

2011; Zhang et al., 2014). However, as it largely depends on significance cut-offs this approach 

excludes important information on the similarity of gene expression changes between species. 

Thus, in my view, it is not sufficient to solely rely on Venn-diagrams as justification to define 

conserved or distinct gene expression across species. Therefore, this study provides the first 

evidence that the regulation of many genes between related Brassicaceae during a complex 

stress-response like PTI is stabilized by evolution and therefore likely crucial during their 

evolution. 

3.3.3. Regulatory mechanisms controlling conserved flg22-responsive 

transcriptional reprogramming 

Co-expressed genes are often regulated by similar mechanisms. Indeed, 5´regulatory 

regions of conserved flg22-responsive genes were highly enriched for WRKY TF motifs 

(Figure 14A, Supplement Table 4-7). Multiple previous publications found WRKY TF motifs 

enriched in the 5´regulatory regions of MAMP responsive genes (Navarro et al., 2004; Zipfel 

et al., 2004; Lewis et al., 2015; Jacob et al., 2017) and it is known that WRKY TF are key 

regulators of plant immune transcriptional reprogramming (Pandey and Somssich, 2009; Tsuda 

and Somssich, 2015; Li et al., 2016; Birkenbihl et al., 2017). 

A recent study suggested that the fast and massive transcriptional response during PTI 

might be partly mediated by de-repression (Jacob et al., 2017). Since treatment with the protein 

synthesis inhibitor cycloheximide trigger very similar transcriptional changes as MAMP 

treatments, the authors speculated that a block in the continuous protein synthesis of short-lived 

transcriptional repressors might cause these similar cycloheximide and MAMP induced 

transcription responses. Yet it is unclear what TFs or motifs might be connected to this potential 

de-repression. A recent study investigating genome-wide binding sites of WKRY18, WRKY33 

and WRKY40 by Chip-Seq experiments noted that WKRY33 and WRKY40 binding is 

dependent on flg22 treatment, whereas WRKY18 binding was also detected in untreated A. 

thaliana seedlings (Birkenbihl et al., 2017). However, the authors noted that this was likely 

mediated by higher protein levels in their complementation lines and that flg22 treatment 

increased binding of WRKY18 at previously bound sites. This suggests that these induced 
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WRKY TFs are not bound to targets in the resting state but mainly bind upon MAMP elicitation. 

However, the authors as well found several constitutively expressed WRKY TF that are bound 

to target genes in untreated samples (personal communication with Imre Somssich). These 

constitutively bound WRKYs seem to be replaced by induced WRKYs upon flg22 treatment. 

Therefore, WRKY TFs might regulate PTI transcriptional responses by de-repression coupled 

with activation, mediated by distinct WRKYs. 

Just recently a calmodulin-binding transcriptional activator called CAMTA3 was 

proposed to be involved in the early transcriptional reprogramming during PTI and ETI (Jacob 

et al., 2017). However, although CAMTA motifs were overrepresented within the promoters of 

immediate response genes not all of these genes exhibited this motif. Here, CAMTA TF-motifs 

were as well slightly enriched in the regulatory regions of A. thaliana, C. rubella and C. hirsuta 

in certain flg22-induced expression clusters (Supplement Table 4, 5, 6). Thus, CAMTA TF-

motifs seem to participate in the early transcriptional regulation of multiple Brassicaceae. In A. 

thaliana, this was genetically proven by alterations of the flg22-induced transcriptional 

responses in a dominant camta3-D mutant (Jacob et al., 2017). However, many flg22-

responsive genes lack a CAMTA motif and the enrichment of CAMTA motifs compared to 

WRKY-motifs was comparably weak. Therefore, the exact role of CAMTA TFs in PTI needs 

further experimentation. 

Other regulatory mechanisms that mediate flg22-triggered transcriptional 

reprogramming await their discoveries. The evolutionary conserved core set of flg22-

responsive genes provide an excellent resource to mine regulatory regions to discover 

additional regulatory mechanisms. For instance, phylogenetic shadowing might help to identify 

evolutionary conserved non-coding DNA regions in conserved flg22-responsive genes. When 

non-coding gene regulatory DNA sequences, often in the proximity of transcriptional start sites, 

show signs of purifying selection, they are likely important for gene regulation (Schranz et al., 

2007; Davies et al., 2015; Van de Velde et al., 2016). Identifying these conserved non-coding 

DNA sequences will allow me to test whether they are required and/or sufficient for gene 

regulation by, for instance, transient reporter assays or genetic manipulation analysis. These 

analyses should provide new mechanistic insights how gene expression is regulated during PTI 

and how gene regulatory mechanisms evolved in plants. 
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3.3.4. Factors that might influence detection of species-specific expression 

signatures 

In contrast to the majority of DEGs whose flg22-responsive expression changes were 

conserved by purifying selection across Brassicaceae, many genes exhibited species or lineage-

specific expression patterns (Figure 9, Figure 11). As described in previous sections, my 

approach overcame several problematic issues faced by previous studies comparing multiple 

species. However, there are still factors which can influence the results of comparative 

transcriptomics and which should be considered when interpreting the data. 

To compare transcriptomic responses generated by RNAseq between species, 

orthologous genes need to be defined, which is not trivial (Li et al., 2003; Emms and Kelly, 

2015; Tekaia, 2016; Nichio et al., 2017). In this study, we used the best reciprocal blast to define 

1to1 orthologous genes among the Brassicaceae species. Although we carefully assigned 1to1 

orthologs, we cannot fully exclude the possibility that some orthologous relationships were 

misassigned. Especially for large gene families in which many genes share similar sequences, 

wrong assignment of 1to1 orthologs could have been introduced. For instance, gene A and B 

have similar sequences, yet only gene A is flg22-responsive. If gene A of species 1 and gene B 

of species 2 are assigned as an orthologous pair, these genes show species-specific expression 

patterns. However, my analysis showed that the size of gene families does not explain species-

specific expression patterns. I compared the size of gene families for each gene within each of 

the 15 k-mean clusters determined for all DEGs (Supplement Figure 7). This analysis suggested 

that the gene-family sizes of species-specific clusters did not differ from those clusters 

exhibiting conserved flg22-responsive expression pattern and from all DEGs. Furthermore, 

much less species-specific loss of gene regulation compared to the species-specific gain of gene 

regulation suggests that the large numbers of species-specific gene regulation that I observed 

are very unlikely artefacts. Thus, although individual misassignments cannot be fully excluded, 

the majority of species-specific gene regulations is a true feature of the flg22 transcriptional 

response among Brassicaceae species. 

Another factor potentially affecting gene expression patterns in different species is 

distinct developmental stages. Comparing species at the same age, one cannot fully exclude 

that different developmental stages between species influence variation in gene expression 

among those species. Hence, I used seedlings to minimize the effects of developmental 

variation on transcriptome responses as proposed by another comparative transcriptome study 

in plants (Koenig et al., 2013). Moreover, I focussed my analysis on relative expression changes 
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between mock- and flg22-treated samples which further minimizes biases introduced by 

variation in developmental stages. In addition, the comparison between A. thaliana accessions 

revealed almost no accession-specific regulated genes although developmental differences 

between these accessions are macroscopically visible (Figure 10D). Together these findings 

make it unlikely that the substantial number of species-specific flg22-responsive genes is based 

on developmental differences between seedlings. However, to fully exclude this possibility 

additional experiments are needed to compare transcriptome responses at different 

developmental stages e.g. on different days after germination and investigate whether similar 

species-specific regulated genes can be detected independently of the developmental stage. 

Species-specific expression signatures might reflect qualitative differences in the 

transcriptome response to flg22 across Brassicaceae species. However, since I only took a 

snapshot of the transcriptional response at 1 hpt I cannot exclude that diversified temporal 

dynamics between the Brassicaceae species led to the detection of species-specific expression 

changes at 1 hpt. To exclude this possibility a more stringent time-course experiment would be 

needed, detecting transcriptome responses at multiple time-points around 1 hpt. However not 

only qualitative differences in the transcriptional response, but also differences in the 

transcriptional dynamics between Brassicaceae species might reflect adaptive processes during 

Brassicaceae evolution. 

3.3.5. Lineage-specific gene expression as a sign of adaptive evolution 

Variation in gene expression between species might have arisen from two different 

evolutionary processes. On one hand, gene expression changes between species might be 

selectively neutral and accumulate with genetic drift over evolution. On the other hand, gene 

expression changes might be adaptive. Indeed, expression changes between species have 

previously been associated to adaptive advantages (López-maury et al., 2008; De Nadal et al., 

2011). Concerning sequence evolution, robust null models for neutral evolution exist to 

adequately identify sequences affected by adaptive evolution (Yang and Bielawski, 2000; 

Delport et al., 2009). However, there is still no consensus for an appropriate null hypothesis of 

neutral gene expression evolution (Harrison et al., 2012; DeBiasse and Kelly, 2016). 

The nature of current transcriptome data introduces multiple problems that complicate 

the design of appropriate models. For example, expression data is largely affected by 

environmental conditions (Romero et al., 2012). Therefore, especially when samples are taken 

from different environments in nature, observed gene expression variation between species may 

simply result from different environmental factors but not genetic differences (Romero et al., 
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2012; Voelckel et al., 2017). If this is not properly accounted for, gene expression variation that 

is classed as heritable would be overestimated (Harrison et al., 2012). Thus, minimizing 

environmental variation is crucial to model gene expression evolution. In this study, I 

performed the experiments in the same experimental setup. Hence my dataset, as opposed to 

ecological studies, provides a basis to analyse heritable gene expression variation between 

species. 

However, a major remaining problem for modelling gene expression evolution is the 

relationship between genetic changes and expression changes. Whereas for coding sequence 

evolution, it can be predicted which DNA mutations lead to altered protein sequences, which 

is an important assumption for modelling coding sequence evolution (Gilad et al., 2006), it is 

challenging to link genetic changes with gene expression (Harrison et al., 2012; Hodgins-Davis 

et al., 2015). For example, changes in regulatory regions, alternative splicing, RNA stability, 

or DNA methylation can have substantial influences on gene expression (De Nadal et al., 2011; 

Romero et al., 2012; Voss and Hager, 2014). Consequently, these mechanisms would need to 

be considered in appropriate models. Given these problems, it is not surprising that different 

modelling approaches lead to a contrasting interpretation of gene expression evolution. For 

example, Khaitovich et al. interpreted most expression changes between human and primates 

as selectively neutral, whereas Gilad et al. proposed that most expression changes between 

human and primates evolved under purifying selection (Khaitovich et al., 2004; Gilad et al., 

2006). For these reasons, I decided not to model gene expression evolution since these 

modelling approaches are premature to robustly conclude gene expression evolution. 

One alternative way to understand gene expression evolution is to assume that the 

degree of expression variation should correlate with phylogenetic distance if expression 

changes are neutral (Gilad et al., 2006; Romero et al., 2012; Harrison et al., 2012). When the 

variation in expression changes is larger than expected from the phylogenetic distance, this 

implies that some of these expression changes evolved under positive selection and are adaptive 

(Romero et al., 2012; Harrison et al., 2012). Based on phylogeny, C. rubella is the closest 

relative of A. thaliana among the Brassicaceae species included in this study. Therefore, we 

would expect less variation in flg22-induced expression changes between C. rubella and A. 

thaliana than those between A. thaliana and the other two Brassicaceae species if most 

expression changes are neutral. However, flg22-induced expression changes in C. rubella are 

most different from A. thaliana compared to the other Brassicaceae species (Figure 11A); hence 

flg22-triggered expression changes in these species is incongruent with phylogeny. This 

suggests that a large part of variation in flg22-triggered transcriptional reprogramming of 
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Brassicaceae does not reflect neutral but adaptive evolution. Consequently, the lineage-specific 

expression signatures observed in this study likely arose from directional selection and possibly 

reflect adaptive evolutionary processes. These presumably adaptive gene expression changes 

might be important for the individual Brassicaceae species to effectively deal with the diverse 

microbial environments that they faced over million years of evolution. 

3.3.6. Regulatory mechanisms affecting lineage-specific gene expression 

To elucidate potential mechanisms regulating the lineage-specific expression changes, 

I searched within the -500 bp 5´-regulatory regions of lineage-specific expression patterns for 

an enrichment of known TF-motifs. Interestingly, A. thaliana specific expression signatures 

were specifically enriched for WRKY TF binding motifs in A. thaliana regulatory regions but 

not in regulatory regions of other Brassicaceae (Figure 14C). Similarly, genes specifically 

induced by flg22 in E. salsugineum were highly enriched for WRKY TF motifs only in E. 

salsugineum regulatory regions but not in other Brassicaceae species. In addition, C. rubella 

regulatory regions were enriched for WRKY TF motifs only in genes which were specifically 

highly induced in C. rubella (Figure 14C). Considering that WRKY TF motifs are commonly 

enriched in the regulatory regions of all species (cluster 2,4,5) for evolutionary conserved flg22-

inducible genes, it is conceivable that at least some of the species-specific expression patterns 

are mediated by the gain of WRKY TF-binding motif(s) within 500 bp 5’-regulatory regions of 

these genes. Similarly, for the C. rubella-specific expression gene cluster, AHL12 and AHL25 

binding sites were enriched only in C. rubella promoters but not in the other Brassicaceae 

promoters. AHL TFs are conserved in land plants and have been mostly linked to plant 

development (Zhao et al., 2013; Lou et al., 2014; Zhao et al., 2014). However, some AHL TFs 

were shown to inhibit MAMP-induced gene expression. For instance, overexpression of AHL20 

negatively regulated defence responses in A. thaliana (Lu et al., 2010b). In addition, our group 

has recently found that multiple AHL TF-motifs are enriched in the promoters of immune-

upregulated genes and that expression of multiple AHL genes was repressed during immunity. 

Together, these data suggest that repression of AHL TF might be coupled to upregulation of 

MAMP responsive genes. This mechanism may explain C. rubella-specific regulation of flg22-

responsive genes. 

However, by far not all species-specific expression changes can be explained by these 

motifs. For example, for C. hirsuta specific expression changes, no enriched cis-regulatory 

motifs were identified. This might have been caused by various reasons. My analysis was based 

on enrichment of known motifs and therefore would not identify cis-regulatory motifs with low 
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frequency in a set of regulatory sequences (multiple different mechanisms account for 

individual gene expression) or novel regulatory motifs. In addition, I focussed my analysis on 

regulatory regions, 500 bp upstream of transcriptional start sites, since previous studies 

indicated that this region is generally conserved across related species and that functional cis-

regulatory motifs are often found within this region (Baxter et al., 2012; Korkuc et al., 2014; 

Van de Velde et al., 2016; Yu et al., 2016). For example, many WRKY binding sites are found 

within the first -400 bp from the transcriptional start site (Birkenbihl et al., 2017). Nevertheless, 

this does not exclude that additional motifs, important for the species-specific flg22-responsive 

expression regulation, are located outside this – 500 bp region. A more precise definition of 

regions enriched for potential TF motifs might be advantageous to search for additional TF 

motifs. This could be achieved by determining conserved non-coding regions in regulatory 

sequences of DEGs among Brassicaceae species. Determination of conserved non-coding 

regions in individual genes (sometimes called phylogenetic shadowing) has proven helpful to 

elucidate regulatory motifs controlling gene expression (Herrero et al., 2012; Baxter et al., 

2012; Van de Velde et al., 2016). Unfortunately, the tools to determine conserved non-coding 

regulatory regions have been designed to determine these regions in individual genes across 

multiple species and are not yet designed to be applied to analysis of expression clusters 

containing hundreds of DEGs. 

Besides cis-regulatory motifs, other transcriptional regulatory mechanisms might affect 

the species-specific expression patterns observed. Trans-regulatory mechanisms such as distant 

enhancers or chromatin structure and modifications can have strong impacts on gene expression 

(Tirosh et al., 2009; Field et al., 2009; Tsankov et al., 2010; Shi et al., 2012). Moreover, 

differential RNA stability might affect species-specific expression patterns (Dori-Bachash et 

al., 2011; Staiger et al., 2013). Taken together species-specific expression signatures are 

probably regulated by a combination of different expression regulatory mechanisms and it is 

conceivable that individual genes are not regulated by the same mechanisms. Nevertheless, the 

gain of WRKY TF motifs in some of the species-specific flg22-responsive genes likely 

contributes to their specific expression regulation. 

3.3.7. Potential functions of species-specific expression signatures 

My results indicated that at least some of the species-specific expression changes in 

response to flg22 are a consequence of adaptive evolution. Therefore, some of these specific 

gene inductions should provide fitness advantages in the specific environments where these 

Brassicaceae species evolved. The functions of species-specific flg22-responsive genes might 
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point to potential processes involved in this adaptation. However, in stark contrast to the 

conserved flg22-responsive genes, only a few weakly overrepresented GO-terms could be 

determined for A. thaliana and C. hirsuta specific expression signatures (when Brassicaceae 

were analysed separately, Figure 9C, D) and no GO-terms were significantly enriched within 

the species-specific expression signatures determined in the combined analysis of Brassicaceae 

with A. thaliana accessions (Supplement Table 3). This suggests that potential adaptation 

resulting from expression changes is not explained by a small number of dominant biological 

processes but rather by a multitude of diverse biological processes. Alternatively, biological 

functions of genes important for the adaptation of other Brassicaceae species might be still 

unknown. Thus GO-terms of species-specific flg22-responsive genes might be poorly 

annotated, since GO-term annotations heavily rely on A. thaliana research.  

Identifying causal relationships between gene expression and phenotypes is a major 

problem of comparative transcriptomics (Evans, 2015; Voelckel et al., 2017). One difficulty is 

that complex and conditional phenotypes like PTI are often regulated by multitudes of genes, 

each of which often fulfils a small contribution to the investigated phenotype (Feder and 

Walser, 2005; MacKay et al., 2009), a phenomenon described “marginal benefit” hypothesis 

(Thatcher et al., 1998). This may be one reason why I did not observe enrichment of a particular 

biological process within the species-specific expression signatures. In addition, these 

contributions might be detected only under certain circumstances e.g. when pathogens perturb 

other components or in certain environmental conditions, known as the “contingent function” 

hypothesis (Feder and Walser, 2005; Thatcher et al., 1998). Consequently, the function of these 

genes for the investigated phenotype may not be uncovered in laboratory conditions. Thus, 

functions for some of the species-specific flg22-responsive genes may be difficult to reveal 

with genetic perturbation. For example, in yeast, it is known that perturbation of genes 

upregulated by a certain stress often do not change the response to this stress (López-maury et 

al., 2008; Giaever et al., 2014). Yet, the observation that some of the tested species-specific 

expression responses are conserved within species or in sister species (Figure 12) suggests that 

these are unlikely random observations but truly adaptive in nature. 

Despite the absence of significantly enriched GO-terms, some genes in A. thaliana, C. 

rubella and E. salsugineum specific expression clusters were connected to defence secondary 

metabolism (Supplement Table 3). It is known that Brassicaceae plants are capable of 

synthesizing a diverse set of often antimicrobial secondary metabolites that can function as 

phytoanticipins or phytoalexins to protect plants from pathogen infection (Bednarek et al., 

2011; Piasecka et al., 2015). For example, 4-methoxy indol-3-ylmethylglucosinolate (4MI3G) 
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or camalexin are two tryptophan-derived secondary metabolites which are important for A. 

thaliana immunity (Thomma et al., 1999; Bednarek et al., 2009; Clay et al., 2009). 4MI3G 

belongs to the group of tryptophan-derived indole-glucosinolates, which have been well 

described in different Brassicaceae and whose pathway genes are activated by flg22 treatment 

(Clay et al., 2009; Bednarek et al., 2011). Although indole-glucosinolates can be detected in 

many Brassicaceae, a recent study did not detect any indole-glucosinolates in C. rubella 

(Bednarek et al., 2011). Interestingly, several genes involved in indole-glucosinolate 

metabolism are significantly stronger induced in C. rubella upon flg22 treatment but they are 

very lowly expressed compared to the other Brassicaceae species in mock samples (Supplement 

Figure 8). This is exemplified by the expression profile of MYB51 which encodes a major 

transcriptional regulator of camalexin and indole-glucosinolate pathway genes (Gigolashvili et 

al., 2007; Frerigmann et al., 2016). The low basal expression is in line with the previously 

undetected indole glucosinolates, but why are these genes still induced by flg22 in C. rubella? 

One explanation might be that the level of indole glucosinolates that are still produced by these 

components in C. rubella are below the detection limit and that these components were 

previously not detected does not allow the conclusion that these are not produced at all in C. 

rubella. Another explanation is that some of these components might have diversified their 

function to participate in the biosynthesis of new, potentially unknown, secondary metabolites. 

It is known that these secondary metabolites can have a strong impact not only on defence 

against pathogenic microbes (Bednarek et al., 2009; Rajniak et al., 2015; Piasecka et al., 2015) 

but also on the recruitment of beneficial microbes potentially influencing the microbiome 

composition (Kei Hiruma et al., 2016; Hacquard et al., 2017). Thus, gene expression evolution 

for secondary metabolite genes suggests new innovations in secondary metabolite metabolisms 

that might directly affect plant-microbe interactions thereby providing adaptive advantages. 

3.3.8. Conservation of flg22-triggered transcriptional responses between A. 

thaliana accessions was robust to a diverse geographic distribution and diversified 

basal immune levels in certain accessions. 

Despite variation in geographical distribution, genetic background and morphological 

phenotype, the transcriptional responses 1 h after flg22 treatment are extremely conserved 

among the five A. thaliana accessions (Figure 10F, G; Figure 11A, B). As discussed earlier 

environment can have a strong impact on immunity e.g. abiotic stresses can sometimes supress 

immune responses. However, my results indicate that adaptations of these A. thaliana 

accessions, to the different environments, did not strongly associate with changes in the early 
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transcriptional responses upon flg22 treatment. This is not obvious since some of the chosen 

accessions exhibit very specific variation in immunity-related traits. For example, not only 

expression of defence marker genes, but also resistance against Pto DC3000 is significantly 

reduced in the No-0 accession compared to Col-0 (Gangappa et al., 2017). Moreover, 

transcriptome profiling revealed that downregulated genes in No-0 compared to Col-0 are 

enriched for defence-related GO terms. This is in agreement with the significantly increased 

Pto DC3000 growth in No-0 compared to most other accessions (Figure 10H). Gy-0 constitutes 

another accession with altered basal immunity since it carries a hyperactive ACD6 allele, 

originally identified in the Est-1 accession. In Est-1, this allele leads to increased basal 

immunity with the cost of negatively influencing growth and producing spontaneous necrosis 

on fully developed leaves (Todesco et al., 2010). Consistently, I observed that adult Gy-0 plants 

developed similar lesions and were significantly more resistant against Pto DC3000 compared 

to Col-0 plants. Interestingly, these differences among A. thaliana accessions seem to be 

uncoupled from flg22-induced inhibition of Pto DC3000 growth and early transcriptional 

responses. 

The high conservation of flg22-induced transcriptional responses among diverse A. 

thaliana accessions might be specific for PTI or common for stress-induced transcriptome 

responses. Two recent studies comparing transcriptomic responses after flooding stress or mild-

drought stress showed a similar degree of conservation to my study (Van Veen et al., 2016; 

Clauw et al., 2015). Van Veen et al. investigated transcriptional responses to flooding stress 

between eight A. thaliana accessions from diverse geographic regions. The magnitude of 

transcriptome response to flg22 and to flooding stress was similar (2443 to 4372 DEGs affected 

by flg22 and 2356 to 3102 DEGs affected by flooding, depending on accession). Although the 

authors noted that the transcriptional response to flooding and darkness was very similar 

between the eight A. thaliana accessions, 562 genes exhibited significant variation in their 

response among the accessions. In comparison, I found 131 DEGs across the five tested A. 

thaliana accessions in response to flg22 (Figure 11D). However, it is conceivable that the more 

stringed significance cut-off applied in this study (padj < 0.01 compared to padj < 0.05) and the 

different numbers of accessions included (five compared with eight) presumably explain the 

different numbers of DEGs detected in these two studies. Thus, the degree of variation between 

stress-induced transcriptomes compared across different A. thaliana accessions seems to be 

moderate as well for flooding and darkness stress. Similarly, a recent study investigated 

transcriptional variation in response to mild drought stress among six A. thaliana accessions 

(Clauw et al., 2015). The authors detected 60 accession specific DEGs out of 439 DEGs in 
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response to mild drought-stress. However, the authors noted that in pairwise tests between 

accessions, none of the 60 accession-specific genes responded significantly different from all 

other five accessions. This is in agreement to my analysis that identified only one gene in the 

Can-0 accession with significantly different response to flg22 compared to all other four 

accessions. These results indicate that the stress-responsive transcriptional reprogramming is 

highly conserved between A. thaliana accessions. 

3.3.9. Within and between species variation in gene expression – Interspecies 

variation exceeds intra species variation 

An important observation of this work was that inter-species transcriptome variation 

exceeds intra-species variation in response to flg22. This suggests that short-term adaptation to 

diverse environments within a species is not sufficient to diversify early transcriptional 

responses during PTI and that longer evolutionary times between species led to increased flg22-

responsive transcriptome variation which reflects adaptive processes during Brassicaceae 

evolution.  

Research investigating transcriptome conservations within and between species is 

currently scarce. Early studies in the animal field investigated transcriptome conservation 

within and between species to identify genes evolving under neutral, purifying or positive 

(adaptive) evolution (Oleksiak et al., 2002; Rifkin et al., 2003). Genes with little variation 

within and between species are likely under purifying selection, whereas genes with little 

variation within species but large variation between species evolved presumably under positive 

selection. Genes with variable expression within and across species are probably affected by 

neutral evolution and genetic drift (Harrison et al., 2012; Romero et al., 2012). Using this 

assumption, a study on Drosophila noted that the majority of expression changes likely evolved 

under purifying selection, while at the same time substantial number of expression changes 

showed signs of positive evolution and a smaller subset was associated with neutral evolution 

(Rifkin et al., 2003). In contrast, a study on killifish determined much more expression variation 

within compared to between species suggesting that these expression changes evolved under 

neutral evolution (Oleksiak et al., 2002). These opposing conclusions might be affected by the 

effect of environment on gene expression noise discussed earlier. Alternatively, different modes 

of gene expression evolution may exist in different species.  

More recent studies found less expression variation between species in the same organ 

than expression variation in different organs within species (Brawand et al., 2011; Gilad and 

Mizrahi-Man, 2015; Uebbing et al., 2016). However, these studies investigated basal 
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expression levels and it is not clear whether stress-induced expression changes show a high 

organ specificity. Unfortunately, there are yet no transcriptome studies investigating expression 

changes within and between plant species. Therefore, future studies will be required to 

understand whether inter-species transcriptional variation exceeding intra-species 

transcriptional variation is a general phenomenon for other species and whether it is restricted 

to certain plant tissues or stress responses. 

3.3.10. Specificity of lineage-specific flg22-responsive transcriptional 

signatures 

Expression profiles of selected genes showing species-specific expression signatures in 

available accessions and sister species of the four tested Brassicaceae revealed that species-

specific expression signatures are mostly conserved among tested accessions and sister species 

(Figure 12). These results strengthened my RNAseq analysis of species-specific innovations 

and extended them to closely-related species in the case of C. rubella and E. salsugineum. This 

suggests that some specific flg22-resposnsice expression changes might be lineage-specific 

rather than species-specific. However, the C. hirsuta specific marker gene, orthologous to 

AT3G60966, was also significantly induced in C. grandiflora. This suggests that a species-

specific innovation might occur independently in multiple species. Investigating transcriptome 

responses of a larger set of sister species and accessions would certainly define the range of 

conservation of species-specific innovations. Nevertheless, my study clearly showed that 

species-specific expression signatures detected in the RNAseq are not peculiar phenotypes of 

the accession that I picked but conserved features within species or related species. This is in 

line with the high conservation of flg22-responsive transcriptome changes among A. thaliana 

accessions.  

Elf18 specifically triggered two out of three marker genes tested for C. rubella and E. 

salsugineum, whereas the two C. hirsuta specific marker genes did not respond to elf18 

treatment. This indicates that parts of the lineage-specific expression changes triggered by flg22 

are common for elf18-induced PTI. A recent study indicated that despite strong correlation of 

flg22 and elf18 activated transcriptome responses, a large number of genes exhibit a flg22-

specific response which was absent in elf18-treated seedlings (Briggs et al., 2017). Vice versa 

much fewer genes were specifically responsive to elf18. Given these recent insights, it is not 

surprising that only a subset of lineage-specific flg22-responsive genes was activated by elf18 

in C. rubella and E. salsugineum. In the perspective of plant adaptation, diversified responses 

to different MAMPs might be used by plants to fine tune their immunity depending on different 
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ratios of MAMPs in microbial communities. It was recently hypothesized that the repertoire of 

PRRs that can sense different MAMPs might be a driving factor of local adaptation to specific 

microbial communities (Hacquard et al., 2017). Moreover, flg22 and elf18 have presumably 

different accessibility for the host plant as flagellin is on the outside of bacterial cells, whereas 

Ef-Tu is one of the most abundant proteins inside bacterial cells. Hence in a natural infection 

context, it is likely that such MAMPs might be perceived in temporally distinct manner and 

consequently trigger some specific responses that help the plant to distinguish the current state 

of infection. These are potential reasons why species-specific flg22-specific transcriptome 

responses might only be partly conserved for other MAMP triggered transcriptional responses. 

It would be interesting to see whether similar species-specific responses can be also detected in 

PTI triggered by different for example fungal-derived MAMPs like chitin.  

Furthermore, an additional transcriptome analysis after heat-stress suggested that the 

large transcriptome variation in flg22-response among Brassicaceae species is not specific for 

PTI but can be rather a general phenomenon in early stress responsive transcriptomes. 

Compared to the variation of flg22-induced transcriptome changes among Brassicaceae, the 

heat-induced transcriptional changes were even more variable among the tested species with 

large numbers of species-specific heat-responsive genes (Figure 16F, G). However, these heat-

stress RNAseq results must be analysed with caution since the mapping quality in some samples 

was inferior compared to the flg22 dataset, potentially affected by lower RNA integrity 

(Supplement Table 2). This probably lowered the number of reliably expressed genes, which 

might have inflated the number species-specific expressed genes. Consequently, I re-analysed 

the heat-stress data, normalizing expression data of all species together and excluding lowly 

expressed genes. Excluding lowly expressed genes still resulted in a substantial number species-

specific heat stress-responsive expression changes (Supplement Figure 10). Thus, it is unlikely 

that variation solely arose from RNA quality issues and therefore indicates that large variations 

in early stress-responsive transcriptomes between different species are a more general 

phenomenon. Since both biotic, as well as abiotic stress responses, are heavily affected by each 

other and environmental conditions it is conceivable that these variations reflect genetically 

encoded long-term adaptations to different environments which are still visible under controlled 

growth conditions. 

3.4. Connection of sequence and expression variation.  

Several previous studies connected the variation at the expression level with the 

diversification of DNA sequences (Hunt et al., 2013; Whittle et al., 2014; Necsulea and 
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Kaessmann, 2014). In this study, we did not detect a clear correlation between them (Figure 

16), suggesting that gene expression variation is uncoupled with protein coding sequence 

divergence. In contrast, protein sequence evolution was associated with gene expression 

variation between and within different fire ant species (Hunt et al., 2013). Another study 

compared expression variation of sexual and vegetative tissues between the model fungal 

species Neurospora crassa and Neurospora tetrasperma (Whittle et al., 2014). Comparison of 

sexual tissues revealed a correlation between transcriptome and genome evolution, whereas in 

vegetative tissues, expression variation was not connected with sequence variation between the 

Neurospora species. This suggests that the positive relationship between expression and 

sequence evolution is tissue dependent in some cases. Therefore, sampling whole seedlings 

including different organs might have precluded the detection of a clear correlation between 

expression variation and protein sequence variation. Separating different tissues like root and 

shoot tissue might help future studies investigating this phenomenon in plants. Nevertheless, 

several studies in the animal field did not detect a correlation of gene expression variation with 

sequence variation (Renaut et al., 2012; Uebbing et al., 2016). Thus, it is still under debate 

whether protein coding sequence evolution is correlated with gene expression evolution.  

Another possible explanation why expression and coding sequence divergence did not 

correlate might be that adaptive changes in sequences or expression present alternative routes 

in response to selection pressure since expression changes might prevent negative pleiotropic 

effects when sequences are constraint and vice versa (Shapiro et al., 2004; Harrison et al., 2012). 

Consequently, expression evolution would allow plasticity for genes that are constraint for 

sequence evolution. If this would be the case expression evolution and sequence evolution 

would likely not be correlated with each other. Further studies investigating the relationship of 

sequence evolution and expression evolution, on one hand, should incorporate more species 

along a phylogenetic relationship and resolve the sampling for different organs and on the other 

hand specifically investigate how expression behaves in genes with a constraint sequence 

evolution.  

3.5. Concluding remarks and future perspectives 

Although PTI is crucial for plants to deal with pathogens surrounding them, the 

conservation and evolution of PTI responses between species is poorly understood. In this 

thesis, I investigated flg22-induced responses within A. thaliana and across multiple 

Brassicaceae species with a defined phylogenetic framework.  
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I found that all tested Brassicaceae species sensed flg22 and activated typical PTI 

responses including MPK3/6 activation and seedling growth inhibition. Comparisons of 

phytohormone levels between the Brassicaceae species showed substantial variation not only 

on the basal level but also in their flg22-responsivness. Moreover, the flg22-induced reduction 

of Pto growth was variable among Brassicaceae species. Investigating how flg22-treatment 

affects interactions of Brassicaceae species with other pathogens, such as necrotrophic 

pathogens, might clarify whether flg22 pre-treatment of E. salsugineum and C. hirsuta 

effectively reduces pathogen growth or whether flg22 treatment elicits a weaker PTI response 

in these species compared to the other Brassicaceae species. Moreover, elevated ABA levels in 

E. salsugineum compared to other species might be connected to its extreme salt stress tolerance 

and could affect PTI responses. Future experiments with aba2 mutants of E. salsugineum, 

generated by CRISPR-Cas9 technology, will help to understand the role of ABA in the abiotic 

stress tolerance as well as the potential influence on PTI responses in E. salsugineum. 

It was previously unknown to what extent MAMP-responsive and more generally 

stress-responsive transcriptional changes are conserved within and between species and how 

gene expression evolved. Here I showed that most flg22-induced expression changes are 

advantageous enough to be conserved over approximately 30 Mio years of evolution, since 

speciation between the tested Brassicaceae occurred. This conservation indicates the 

importance of this massive transcriptional reprogramming during PTI and suggests a pivotal 

role of purifying selection on flg22-triggered transcriptomic responses. In addition, a 

substantial number of genes exhibited a species/lineage-specific expression signature in the 

early response to flg22. These specific expression patterns were absent in geographically and 

genetically distinct A. thaliana accessions. Thus, inter-species exceeded intra-species 

expression variation. Importantly, the expression variation between Brassicaceae was 

incongruent with their phylogeny. In addition to the extremely conserved transcriptome 

responses within A. thaliana this indicates that parts of the species-specific expression 

signatures evolved adaptively. Moreover, heat stress also induced considerable expression 

variation between species, suggesting that substantial inter-species variation might be a 

common phenomenon of stress-induced transcriptomic responses. This thesis revealed 

unprecedented insights into the evolution of flg22-triggered transcriptomic reprogramming and 

provides the first dataset comparing stress-induced transcriptomes within and between species 

with a defined phylogenetic framework in plants. This dataset can be utilized for subsequent 

analyses such as the implementation of co-expression networks to infer ancestral expression 

networks of PTI. 
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The complex and conditional nature of PTI probably precluded the determination of 

specific processes which might mediate the adaptive advantage of these specific expression 

signatures, but diversification of secondary metabolism might be a possibility. An in-depth 

analysis of secondary metabolites produced during PTI in different Brassicaceae might help to 

connect expression changes with diversification in secondary metabolite synthesis.  

Analysis of 5´regulatory regions indicated an important role of WRKY TF motifs, not 

only in the regulation of conserved flg22-induced genes, but also in the gain of certain species-

specific expression changes. Determining conserved non-coding regions across Brassicaceae 

species in regulatory sequences of conserved as well as species-specific flg22-responsive genes 

will help to reveal additional regulatory mechanisms associated with conserved and species-

specific flg22-responsive genes. 

To reach a comprehensive understanding of how plants interact with microbes in their 

environment, we need to understand which of the plant responses to microbial invasion are 

evolutionary conserved and how diversification of responses enables plants to adapt their 

immune system to new environments. If we understand how plant responses are modified in 

order to adapt and which responses are essential, we can apply this knowledge to tackle 

upcoming challenges like climate change and improvement of crop production. However, we 

are just beginning to understand how transcriptome responses evolve within and between plant 

species and what impact diversifications might have on complex phenotypes such as PTI. This 

study paves the way for future studies investigating consequences and molecular mechanisms 

for gene expression evolution in the interaction of plants with microbes. 
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4. Material and Methods 

4.1. Materials 

4.1.1. Plant Material 

Table 1: Brassicaceae species and accessions used in this study 
Bold entries indicate species used for RNAseq. 

Species Accession Abbreviation Source 
Arabidopsis thaliana Col-0 Ath Kenichi Tsuda lab 
Arabidopsis lyrata MN47 Aly Hu et al., 2011 
Capsella rubella N22697 Cru Slotte et al., 2013 
Capsella grandiflora unknown Cgr Slotte et al., 2014 
Cardamine hirsuta Oxford Chi Tsiantis/Janne Lempe 
Cardamine hirsuta OLI OLI Tsiantis/Janne Lempe 
Cardamine hirsuta GR2 GR2 Tsiantis/Janne Lempe 
Eutrema salsugineum Shandong Esa Tsiantis/Janne Lempe 
Eutrema salsugineum Yukon Eyt Tsiantis/Janne Lempe 
Thellungiella halophyla unknown Tha  
Shrenkiella parvula unknown Spa Dassanayake et al., 2011 
Aethionema arabicum unknown Aar Haudry et al., 2013 

 

Table 2: A. thaliana accessions used in this study 
Bold entries indicate accessions used for RNAseq. 

Accession Cs number Country Admixture group1 Source 
An-1 CS76435 BEL admixed Jane Parker lab (MPIPZ) 
Bla-1 CS76451 ESP spain Jane Parker lab (MPIPZ) 
Can-0 CS76740 ESP relict Eric Kemen lab (MPIPZ) 
Col-0 CS76778 USA germany Eric Kemen lab (MPIPZ) 
CVI-0 CS76789 CPV relict Eric Kemen lab (MPIPZ) 
Edi-0 CS76831 UK admixed Eric Kemen lab (MPIPZ) 
Gy-0 CS78901 FRA western europe Jane Parker lab (MPIPZ) 
HR10 CS76940 UK western_europe Eric Kemen lab (MPIPZ) 
Kas-2 CS78905 IND asia Jane Parker lab (MPIPZ) 
Kn-0 CS76969 LTU central_europe Jane Parker lab (MPIPZ) 
Kondara CS76532 TJK asia Jane Parker lab (MPIPZ) 
Ms-0 CS76555 RUS asia Jane Parker lab (MPIPZ) 
No-0 CS77128 GER central_europe Eric Kemen lab (MPIPZ) 
Pna-17 CS76575 USA germany Eric Kemen lab (MPIPZ) 
Rsch4 CS77222 RUS germany Eric Kemen lab (MPIPZ) 
Se-0 CS76597 ESP spain Eric Kemen lab (MPIPZ) 
Sf-2 CS77247 ESP spain Eric Kemen lab (MPIPZ) 

                                                
1 Admixture group based on 1001 genomes consortium Cell, 2016 
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Accession Cs number Country Admixture group1 Source 
Sorbo CS78917 TJK asia Jane Parker lab (MPIPZ) 
Tamm-27 CS77341 FIN north_sweden Jane Parker lab (MPIPZ) 
Ts-1 CS76615 ESP spain Eric Kemen lab (MPIPZ) 
Tsu-0 CS77389 JPN admixed Eric Kemen lab (MPIPZ) 
Van-0 CS76623 CAN western_europe Eric Kemen lab (MPIPZ) 
Wil-2 CS78856 LTU central_europe Eric Kemen lab (MPIPZ) 
Wu-0 CS78858 GER germany Eric Kemen lab (MPIPZ) 

 

Table 3: A. thaliana mutants used in this study 

Species Mutant allele Locus Source 
Arabidopsis thaliana sid2-2 AT1G74710  Tsuda et al., 2008 
Arabidopsis thaliana fls2 (SAIL_691C4) AT5G46330 Zipfel et al., 2004 

 

4.1.2. Bacterial Material 

Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) and a Pto DC3000 mutant 

lacking hrcC gene (Pto hrcC) were grown on NYGA agar plates for three days at 28°C. For 

infection, the bacteria were transferred to liquid NYGA medium and incubated overnight at 

28°C and 200 rpm until they reached an OD600 between 0.8 and 1. 

4.1.3. Primer 

All nucleotides in the table below were ordered from Sigma-Aldrich (Steinheim, 

Germany) 

Table 4: Primers used in this study 

Name Locus Sequence (5'-3') 
qP_Br_ACT2_fw AT3G18780; Carubv10013961m; 

CARHR094190.1; Thhalv10020949 
TAAGGTCGTTGCACCACCTG 

qP_Br_ACT2_rv AT3G18780; Carubv10013961m; 
CARHR094190.1; Thhalv10020949 

GCTGGAATGTGCTGAGGGAA 

qP_Br_WRKY29_fw AT4G23550, Carubv1000515, 
CARHR230930, Thhalv10025799 

TCAAGAGCTGATCATATCCGAAT 

qP_Br_WRKY29_rv AT4G23550, Carubv1000515, 
CARHR230930, Thhalv10025799 

GCGTCCGACAACAGATTCTC 

qP_At_PROPEP3_fw AT5G64905 CTTGCGATCTTTCGTCATCA 
qP_At_PROPEP3_rv AT5G64905 GTTCTTCCCTCTCGCTTTGA 
qP_Cr_PROPEP3_fw Carubv10027429 TCTTCATCTCACAGCGAGGA 
qP_Cr_PROPEP3_rv Carubv10027429 TGGGCCTACTCTTCTGCAAC 
qP_Es_PROPEP3_fw Thhalv10005182 CGACCGTTGAAATCACAGAG 
qP_Es_PROPEP3_rv Thhalv10005182 TTTTGCCTCCTTTTCCTGAG 
qP_Ch_PROPEP3_fw CARHR278940.1 TGAGGAAGATGAGGGTATGGTT 
qP_Ch_PROPEP3_rv CARHR278940.1 GTTTTCCTGTGCTTGGTGGT 
qP_AtCg_PR4_fw AT3G04720.1; Cagra.9490s0001.1 TAGTGGACCAATGCAGCAAC 
qP_AtCg_PR4_rv AT3G04720.1; Cagra.9490s0001.1 AGATGGCCTTGTTGATAGCC 
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Name Locus Sequence (5'-3') 
qP_Cr_PR4_fw Carubv10014707 AAGTGCTTGAGGGTGAGGAA 
qP_Cr_PR4_rv Carubv10014707 ATTGAACATCGCAACATCCA 
qP_EsCh_PR4_fw Thhalv10021503; CARHR078970.1 TCCTCGTGGTCAAGCTTCTT 
qP_EsCh_PR4_rv Thhalv10021503; CARHR078970.1 AATCCAATCCTCCATTGCTG 
qP_AtEs_CYP79B2_fw AT4G39950; Thhalv10024861 CCGCCGATGAAATCAAACCC 
qP_AtEs_CYP79B2_rv AT4G39950; Thhalv10024861 TTTGTTCACCATCTCCGCCA 
qP_CrCg_CYP79B2_fw Carubv10004524; Cagra.5414s0021.1 CAAGGACGAACAAGGCAACC 
qP_CrCg_CYP79B2_rv Carubv10004524; Cagra.5414s0021.1 TTTGATGGATTGTCTGGCGC 
qP_Ch_CYP79B2_fw CARHR246750.1 GCGCCAGACAATCCATCAAA 
qP_Ch_CYP79B2_rv CARHR246750.1 TCTTCCATTGCTTTCCGGAGA 
qP_AtCrCg_NAC32_fw AT1G77450; Carubv10020834; 

Cagra.0096s0087.1 
ATGCACGAATACCGGCTAGC 

qP_AtCrCg_NAC32_rv AT1G77450; Carubv10020834; 
Cagra.0096s0087.1 

CGACACAATACCCAATCGTCC 

qP_Es_NAC32_fw Thhalv10018998 CGGTCGGTTCGCATGAAAAA 
qP_Es_NAC32_rv Thhalv10018998 CGGTCATAGGCTTCACGTCA 
qP_Ch_NAC32_fw CARHR070970.1 TATCGAGAAGCAACGGAGCG 
qP_Ch_NAC32_rv CARHR070970.1 TAATCCCGCCACAGATACCG 
qP_AtEs_RAC7_fw AT4G28950.1; Thhalv10026246 GGGAGAGGAATTGAGGAAGC 
qP_AtEs_RAC7_rv AT4G28950.1; Thhalv10026246 CTTGGAGGCTGAAGAACCAC 
qP_CrCg_RAC7_fw Carubv10005734; Cagra.5133s0005.1 TCAGGGAGAGGAGTTGAGGA 
qP_CrCg_RAC7_rv Carubv10005734; Cagra.5133s0005.1 TTTTCCGTGTGACCTCCTTC 
qP_Ch_RAC7_fw CARHR236700 GTGGTTCTTCAGCCTCCAAG 
qP_Ch_RAC7_rv CARHR236700 ATACTCGCAATGGAGCAACC 
qP_AT3G60966fw AT3G60966.1 GATGAGGCGATTGACGATTT 
qP_AT3G60966rv AT3G60966.1 ACACAACGGACACTTGGACA 
qP_Cr_AT3G60966fw Carubv10018513 AGAATGGCTGCGAAAGATCA 
qP_Cr_AT3G60966rv Carubv10018513 AAATCGTCAATCGCCTCATC 
qP_Cg_AT3G60966fw Cagra.0239s0006 TTTCCACGCTGATTGTATCG 
q_PC_gAT3G60966rv Cagra.0239s0006 AACAATAAGCGCGAGGAGAG 
qP_Es_AT3G60966fw Thhalv10006444 GATGAGGCGATTGACGAAGT 
qP_Es_AT3G60966rv Thhalv10006444 GGCGGTAAAGGAGGAATCTC 
qP_At_APK4_fw AT5G67520.1 GCCACTCCATGTTTGTGAAG 
qP_At_APK4_rv AT5G67520.1 ACAATCTCGCAATCCAAAGG 
qP_Cr_APK4_fw Carubv10026887 GCTAGAGACCCGAAGGGATT 
qP_Cr_APK4_rv Carubv10026887 ACAATCTCGCAGTCCAAAGG 
qP_Es_APK4_fw Thhalv10004693 CGGAAGGAGATTTCATCGAG 
qP_Es_APK4_rv Thhalv10004693 GCAATCCAAAGGTGGTTCAT 
qP_Ch_APK4_fw CARHR280070 TGGATGTGCCACTTCATGTT 
qP_Ch_APK4_rv CARHR280070 CAATCTCGCAATCCAAAGGT 
qP_Cg_APK4_fw Cagra.0342s0040.1 CCTTTGGACTGCGAGATTGT 
qP_Cg_APK4_rv Cagra.0342s0040.1 TGCCATTTCAGACAGAGACG 
qP_Br_bZIPX_fw AT1G02110; Carubv10008455; 

Cagra.1968s0147.1; CARHR000220 
CAATAAAGCAGGCGGAAGAG 

qP_Br_bZIPX_rv AT1G02110; Carubv10008455; 
Cagra.1968s0147.1; CARHR000220 

CCTATCCCAACCGTCGAGTA 

qP_Es_bZIPX_fw Thhalv10006946 AGAGTGCAGGAAAGGAGCTG 
qP_Es_bZIPX_rv Thhalv10006946 CGTCGAATACGCCTGGTAAT 
qP_At_CYP77A4_fw AT5G04660.1 CAATGGCAACCATACACGTC 
qP_At_CYP77A4_rv AT5G04660.1 ACTTCCTGGTGGATGAGCAC 
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Name Locus Sequence (5'-3') 
qP_CrCg_CYP77A4_fw Carubv10003366 GATCTGTCCAGGGCTTACGA 
qP_CrCg_CYP77A4_rv Carubv10003366 CGGCGAAATCAATCTCACTT 
qP_Es_CYP77A4_fw Thhalv10016078 GGTTCAGGAGTTCGAGTGGA 
qP_Es_CYP77A4_rv Thhalv10016078 AACGGGTTCTTCATCACCAC 
qP_Ch_CYP77A4_fw CARHR208640.1  GTGTTGGCCGTAGGATCTGT 
qP_Ch_CYP77A4_rv CARHR208640.1  ATACGCGCTCCACTCAAACT 
Pto_OPRF_fw NC_004578.1 AACTGAAAAACACCTTGGGC 
Pto_OPRF_rv NC_004578.1 CCTGGGTTGTTGAAGTGGTA 

 

4.1.4. Genes described in this study 

Table 5: Genes described in this study 

Abbreviation Full name AGI 
AGB1 GTP BINDING PROTEIN BETA 1 AT4G34460 
AGG1 GGAMMA-SUBUNIT 1 AT3G63420 
APK4 ADENOSINE-5-PHOSPHOSULFATE KINASE 4 AT5G67520 
ASB1 ANTHRANILATE SYNTHASE BETA SUBUNIT 1 AT1G25220 
BAK1 BRI1-ASSOCIATED RECEPTOR KINASE AT4G33430 
BIK1 BOTRYTIS-INDUCED KINASE1 AT2G39660 
BSK1 BRASSINOSTEROID-SIGNALING KINASE 1 AT4G35230 
CAD1 CADMIUM SENSITIVE 1 AT5G44070 
CBP60g CAM-BINDING PROTEIN 60-LIKE G AT5G26920 
CERK1 CHITIN ELICITOR RECEPTOR KINASE 1 AT3G21630 
CPK28 CALCIUM-DEPENDENT PROTEIN KINASE 28 AT5G66210 
CYP77A4 CYTOCHROM P450 FAMILY PROTEIN 77A4 AT5G04660 
CYP79B2 CYTOCHROM P450 FAMILY PROTEIN 79B2 AT4G39950 
DORN1 DOES NOT RESPOND TO NUCLEOTIDES 1 AT5G60300 
EFR EF-TU RECEPTOR AT5G20480 
FER FERONIA AT3G51550 
FLS2 FLAGELLIN-SENSITIVE 2 AT5G46330 
IGMT5 INDOLE GLUCOSINOLATE O-METHYLTRANSFERASE 5 AT1G76790 
IOS1 IMPAIRED OOMYCETE SUSCEPTIBILITY 1 AT1G51800 
LLG1 LORELEI-LIKE-GPI-ANCHORED PROTEIN 1 AT5G56170 
LORE IPOOLIGOSACCHARIDE-SPECIFIC REDUCED ELICITATION AT1G61380 
LYK5 LYSM-CONTAINING RECEPTOR-LIKE KINASE 5 AT2G33580 
LYM1 LYSM DOMAIN GPI-ANCHORED PROTEIN 1 PRECURSOR AT1G21880 
LYM3 LYSIN-MOTIF DOMAIN PROTEIN 3 AT1G77630 
MKKK7 MITOGEN-ACTIVATED PROTEIN KINASE KINASE KINASE 7 AT3G13530 
MYB51 MYB DOMAIN PROTEIN 51 AT1G18570 
NAC32 NAC DOMAIN CONTAINING PROTEIN 32 AT1G77450 
NPR1 NONEXPRESSER OF PR GENES 1 AT1G64280 
PBL27 PBS1-LIKE KINASE 27 AT5G18610 
PBS3 AVRPPHB SUSCEPTIBLE 3 AT5G13320 
PCRK1 PTI COMPROMISED RECEPTOR-LIKE CYTOPLASMIC KINASE 1 AT3G09830 
PCRK2 PTI COMPROMISED RECEPTOR-LIKE CYTOPLASMIC KINASE 2 AT5G03320 
PEN3 PENETRATION 3 AT1G59870 
PEPR1 PEP1 RECEPTOR 1 AT1G73080 
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Abbreviation Full name AGI 
PEPR2 PEP1 RECEPTOR 2 AT1G17750 
PP2A SERINE/THREONINE PROTEIN PHOSPHATASE 2A AT1G69960 
PP2C38 PROTEIN PHOSPHATASE 2C 38 AT3G12620 
PR4 PATHOGENESIS-RELATED 4 AT3G04720 
PUB12 PLANT U-BOX 12 AT2G28830 
PUB13 PLANT U-BOX 13 AT3G46510 
RAC7 RAC-LIKE GTPASE 7 AT4G28950 
RLP23 RECEPTOR LIKE PROTEIN 23 AT2G32680 
RLP30 RECEPTOR LIKE PROTEIN 30 AT3G05360 
RPOPEP3 ELICITOR PEPTIDE 3 PRECURSOR AT5G64905 
SARD1 SAR DEFICIENT 1 AT1G73805 
SOBIR1 SUPPRESSOR OF BIR1 AT2G31880 
TSA1 TRYPTOPHAN SYNTHASE ALPHA CHAIN 1 AT3G54640 
TSB1 TRYPTOPHAN SYNTHASE BETA-SUBUNIT 1 AT5G54810 
WRKY29  AT4G23550 
XLG2 EXTRA-LARGE GTP-BINDING PROTEIN 2 AT4G34390 

 

ASB1, TSA1, TSB1, CYP79B2/B3, MYB51, PEN3, and IGMT5 

4.1.5. Chemicals, Kits, Enzymes and Buffers 

Table 6: Chemicals used in this study 

Chemical Company 
Rifampicin Duchefa (Haarlem, Netherlands) 
Salicylic acid (SA) Duchefa (Haarlem, Netherlands) 
Abscisic acid (ABA) Sigma-Aldrich (St. Louis, USA) 
Tween 20 Sigma-Aldrich (St. Louis, USA) 
TritonX Sigma-Aldrich (St. Louis, USA) 
NaClO Sigma-Aldrich (St. Louis, USA) 
flg22 EZBiolab Inc. (Westfield, USA)  
elf18 EZBiolab Inc. (Westfield, USA) 
peqGOLD TriFastTM Peqlab (Darmstadt, Germany) 
L-012 Wako Chemicals (Neuss, Germany) 
EvaGreen DNA Dye Biotium (Hayward, USA) 

 

Table 7: Kits used in this study 

Kit Company 
FastDNATM Spin Kit for Soil MP Biomedicals (USA, Santa Ana) 
Coomassie Protein assay Biorad (Hercules, USA) 

 

Table 8: Enzymes used in this study 

Enzyme Company 
SuperScript II Reverse Transcriptase ThermoFischer Scientific (USA, Waltham) 
SuperScript IV Reverse Transcriptase ThermoFischer Scientific (USA, Waltham) 
T7 Endonuclease I NewEnglandBiolabs (USA, Ipswich) 
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Enzyme Company 
RNAse OUT Thermo Scientific (USA, Waltham) 
DNaseI Roche (Mannheim, Germany) 

 

Table 9: Media and Buffers 

Name Components 
NYGA (pH 7.0) 2% (v/v) glycerol 

0.5% (w/v) Bactopeptone 
0.3% (w/v) yeast extract 
(1% (w/v) bacto agar) 

Murashige and Skoog Medium (MS) Agar 2.45 g/L M&S Medium (Duchefa, Netherlands) 
1% Sucrose 
0.5% Plant Agar (Duchefa, Netherlands) 
pH 5.8 

MAPK Extraction Buffer 
 
 
 
 
 
 
 
 

50 mM Tris-HCL [pH 7.5] 
5 mM EDTA 
5 mM EGTA 
2 mM DTT 
10 mM NaF 
50 mM b-glycerolphosphate 
10% glycerol 
Complete proteinase inhibitor (Roche, Germany) 
Phosstop phosphatase inhibitor (Roche, Germany) 

PAGE Buffer 25 mM Tris 
190 mM Glycin 
0.1% (w/v) SDS 

Blotting Buffer 3.03 g/L Tris 
14.41 g/L Glycin 
800 ml milipore water 
200 ml methanol 

TBS (10x) 23.23 g/L Tris 
80.6 g/L NaCl 
adjusted pH to 7.6 with HCL 

TBST 100 ml 10xTBS 
900 ml Milipore water 
1 ml Tween20 

PCR Buffer (10x) 200 mM tris-HCL (pH 8.8) 
100 mM KCl 
100 mM (NH4)2SO4 

 20 mM MgCl2 
10% Triton X100 

4.2. Methods 

4.2.1. Plant Growth 

Seeds were sterilized by vortexing in 70% ethanol for 5 min and then 6% NaClO for 10 

min, washed 5 times with sterile water and stratified in sterile water for five to seven days. 

Sterilized seeds were grown on ½ Murashige and Skoog (MS)-Agar plates and grown in 

Percival growth chamber (CU-36LX5D, Percival, USA) at 22 °C, 10 h L/D for eleven days if 

not stated otherwise. Eleven-day-old seedlings were transferred to liquid ½ MS-Medium (same 
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composition as MS-Agar) one day before chemical treatments. Alternatively, 12-day-old 

seedlings were transferred to commercial soil (Stender, Schermbeck Germany) and grown at 

23 °C/20 °C with 10 h/14 h (light/dark) and 60% relative humidity. Soil-grown-plants were 

transferred to another chamber at 22 °C with a 12 h photoperiod and 60% relative humidity 

three days before bacterial inoculation. 

4.2.2. Flg22 and heat-stress treatment 

Eleven-day-old seedlings were transferred from ½ MS-Agar to 24-well plates each with 

1.6 ml of ½ MS-Medium 24 h prior to treatments. If not otherwise stated, five to ten seedlings 

per sample were transferred to each well. For the flg22 treatment, 800 µl of 3 µM flg22 solution 

was added to the medium containing the seedlings resulting in a final concentration of 1 µM 

flg22. For the heat treatment, the whole 24-well plate was transferred for one hour to another 

growth chamber at 22°C (control) or 38°C without light. Three wells were combined for one 

sample to reduce experimental variance when the seedlings were harvested in liquid nitrogen 

at indicated time points. The samples were stored at –80°C until use. 

4.2.3. Seedling growth inhibition assay 

Seven-day-old seedlings grown on ½ MS-Agar were transferred to 1.6 ml of ½-MS-

Medium with and without 1 µM flg22 and grown for another 12 days in these solutions. Then, 

the fresh weight of 12 pooled seedlings was measured. The experiment was independently 

repeated three times and statistics were calculated with log2-transformed fresh weight values. 

This experiment was performed by Shajahan Anver.  

4.2.4. Hormone quantification 

Phytohormone extraction and quantification was performed in the lab of 

Hitoshi Sakakibara at the Riken institute Japan as previously described (Kojima and 

Sakakibara, 2012).  

4.2.5. Bacterial Growth Assays 

For preparation of bacterial inoculum, Pseudomonas syringae pv. tomato DC3000 (Pto 

DC3000) or the T3SS deficient Pto DC3000 mutant Pto hrcC was grown on NYGA agar 

containing 25 µg/ml rifampicin for 3 days at 28°C. Then, bacterial strains were transferred to 

liquid NYGA medium containing 25 µg/ml rifampicin and incubated over night at 28°C with 



4. Material and Methods 

  92 

shaking at 200 rpm to a final OD600 between 0.8 and 1. The bacteria were pelleted by 

centrifugation at 5000 rpm and washed twice with sterile 5 mM MgSO4 before diluting the 

bacteria to an OD600 of 0.0002 or 0.001 for Pto DC3000 and Pto hrcC, respectively. 

Four to five-week-old plants were used. Two leaves per plant were infiltrated with 1 

µM flg22 or sterile water (mock) using a needleless syringe. One day later, leaves treated with 

flg22 or mock solution were infiltrated at early afternoon with the bacterial suspension. Two 

days after bacterial infiltration, two leaf disks (0.565 cm2) per sample from two leaves were 

crushed in 400 µl sterile MgSO4 using a Retsch mixer mill. Dilution series were made and 

streaked on NYGY agar plates containing 25 µg/ml rifampicin. The plates were incubated for 

two days at 28°C before colony forming units (cfu) were counted. 

Alternatively, bacterial growth was quantified using a qPCR based method as 

previously described (Ross and Somssich, 2016). In brief, DNA of Pto infiltrated leaves was 

extracted using a FastDNATM Spin Kit from (MP biomedicals). Extracted DNA was quantified 

and adjusted to 8.75 µg/µl to achieve a final concentration of 35 µg DNA in a qPCR reaction. 

Bacterial DNA was quantified using the Pto specific OPRF gene relative to plant ACTIN2 

(ACT2) DNA. ∆Ct values were calculated subtracting the target gene expression from ACT2 

expression and statistics were calculated using these ∆Ct values which correspond to log2 

expression values of a gene of interest relative to ACTIN2. 

4.2.6. MAP kinase phosphorylation assay 

MAPK3/4/6 phosphorylation assay was performed as previously described (Tsuda et 

al., 2009). In short, 12-day-old seedlings were treated with 1 µM flg22 or mock for 15 min, 

frozen in liquid nitrogen and ground with four metal beads in a Retsch MM 400 mixing mill 

(Retsch, Germany). Then 150 µl of MAPK extraction buffer was added to the sample and 

protein was extracted by centrifugation at 4°C and 12000 rpm. Protein concentrations were 

determined by Coomassie Protein Assay Kit with an albumin starndard curve (both 

ThermoFisher Scientific, USA) and 25 µg of protein was separated by SDS-PAGE for one hour 

at 100V. MAPK phosphorylation was detected via Immunoblotting using an antiphospho-

p44/42 MAPK antibody (dilution 1:5000 in TBST, Cell Signaling Technology, USA) as first 

and HRP-conjugated anti-rabbit IgG (1:10000 in TBST, Sigma-Aldrich, USA) as second 

antibody. Luminescence was detected using supersignal west femto chemiluminescent reagent 

(Thermo Fisher Scientific) and a ChemiDoc MP imaging system (Biorad, USA). 
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4.2.7. RNA extraction, cDNA synthesis and RT-qPCR 

Seedling samples were ground in 2 mL Eppendorf reaction tubes with 4 metal beads 

using a Retsch MM 400 mixing mill (Retsch, Germany). RNA was extracted using peqGOLD 

TriFastTM with an additional DNA digestion step using DNase I (Roche, Germany). Further, 

RNA was precipitated overnight at 4°C in 100% ethanol containing 115 mM Na-Ac (pH 5.2; 

Sigma Aldrich, Germany) to further clean up and increase RNA yield. RNA quality and 

quantity was determined using a NanoDrop photometer (Thermo Fisher Scientific). 

Subsequently cDNA was synthesized from 4000 ng DNAse-treated total RNA using oligo 

dT(20) primers and Superscript II or IV reverse transcriptase according to manufactures 

instructions. The 20 µl cDNA yielded were further diluted with RNAse free water to 200 µl. 

For the qPCR, 4 µl of diluted cDNA was used with the master mix described in table 8. qPCR 

was performed on a CFX Connect Real-Time PCR Detection System (Biorad, USA) using 

EvaGreen. The qPCR cycle program is depicted in table 9. The target gene was quantified 

relative to the expression of ACTIN2 (ACT2) from Arabidopsis or other Brassicaceae. ∆Ct 

values were calculated subtracting the Ct value for the target from that for ACT2 expression. 

These ∆Ct values, which correspond to log2 expression values of a gene of interest relative to 

ACTIN2, were further used for statistical analysis. 

Table 10: qPCR Master Mix 

Compound Volume 
10x PCR buffer 2.5 µl 
10 mM dNTPs 0.5 µl 
EvaGreen DNA Dye 1.25 µl 
2.5 µM primer forward 2 µl 
2.5 µM primer reverse 2 µl 
Hommade Taq polymerase 0.5 µl 

 

Table 11: qPCR cycling program 

PCR step Time Temperature 
Initial denaturation 3 min 95 °C 
Denaturation 
Annealing               x40 
Elongation 

15 sec 95 °C 
30 sec 60 °C 
30 sec 72 °C 

Final elongation 1 min 55 °C 
Melting curve 10 sec/step 55 – 95 °C in 0.5 °C steps 

4.2.8. Statistical analysis 

Statistical analysis of RT-qPCR, bacterial growth assays and seedlings growth 

inhibition was performed using a mixed linear model function lmer implemented in the lme4 
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package within the R environment. To meet assumptions of the mixed linear model, we log 

transformed raw data when needed. The following model was fit to the data: 

measurementgyr = GYgy + Rr + egyr, where GY equals the genotype:treatment interaction, R 

equals independent replicate and e equals a residual factor. The p-values obtained from the 

mixed linear model were corrected for multiple testing calculating the false discovery rate using 

the qvalue (v.2.4.2) package. The obtained q-values were used to assign significant differences 

to the mean estimate values using the multcompLetters function of the multcompView package 

(v.0.1-0) with a q-value threshold <0.01 if not otherwise stated. 

4.2.9. RNAseq: sequencing, read mapping and read counting 

The RNA quality was checked with a capillary electrophoresis method using an Agilent 

2100 Bioanalyzer or Caliper LabChip GX device. Library preparation, including polyA 

enrichment of total RNA samples, was performed by the Max Planck Genome Centre (Cologne, 

Germany). The libraries were sequenced with single 100 bp (A. thaliana Col-0, C. rubella, C. 

hirsuta, E. salsugineum) or 150 bp reads (A. thaliana accessions except Col-0) using Illumina 

HiSeq2500 or HiSeq3000 platform, respectively. After quality control, raw sequencing reads 

were mapped to respective reference genomes (Table 12) using TopHat2 (v2.1.1) with default 

parameters except from parameters described in (Table 13). The resulting .bam files were used 

to count the number of reads per gene using HtSeq (v 0.6.0) software with default parameters. 

To exclude biases caused by mapping sequence reads of different A. thaliana accessions to the 

Col-0 genome, mapping genome files for each A. thaliana accession were created by correcting 

the Col-0 reference genome with SNP data available for these accessions. The variants table 

for each accession was downloaded from the website of 1001 Genomes Project 

intersection_snp_short_indel_vcf V3.1 dataset. The pseudo-genome sequence of each 

accession was inferred by replacing the reference allele with the corresponding alternative allele 

using the getGenomeSequence function implemented in software AnnotationLiftOver 

(https://github.com/baoxingsong/AnnotationLiftOver). Further general feature format files 

(GFF) were created by projecting the coordinates of the TAIR10 gene annotations to the 

coordinates of each accession with the function gffCoordinateLiftOver of AnnotationLiftOver. 

The SNP corrected genome files and GFF files were created by Baoxing Song. With these files, 

a second mapping was performed. As these two mapping methods had only marginal effects on 

gene expression patterns (Supplemental Figure 8), the further analyses were performed using 

data mapped to the Col-0 reference genome for A. thaliana accessions.  
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Table 12: Reference genomes used for RNAseq analysis 

Species Reference genome publication Source 
Arabidopsis thaliana TAIR 10 Lamesch et al., 2012 Phytozome 10 
Ath accessions TAIR 10 Lamesch et al., 2012 Phytozome 10 
Ath accessions SNP corrected TAIR10  This study 
Capsella rubella v1.0 Slotte et al., 2013 Phytozome 10 
Cardamine hirsuta v1.0 Gan et al., 2016 Miltos Tsiantis 
Eutrema salsugineum v1.0 Yang et al., 2013 Phytozome 10 

 

Table 13: Tophat2 parameters used for mapping RNAseq reads 

TopHat2 parameter Value 
--read mismatches 10 
-- read-gap-length 10 
-- read-edit-dist 20 
--min-anchor-length 5 
--splice-mismatches 2 
--min-intron-length 30 
--max-intron-length 1000 
--max-insertion-length 20 
--max-deletion-length 20 
--max-multihits 10 
--segment-mismatches 3 
--min-coverage-intron 30 
--max-coverage-intron 10000 
--library-type fr-firstrand 
--b2 very sensitive 

4.2.10. Bioinformatics analysis of RNAseq data 

The readcounts determined by Htseq were analysed in the R environment (v.3.3.1) using 

the edgeR (version 3.14.0) and limma (version 3.28.14) packages. Lowly expressed genes were 

excluded from analysis by filtering out genes with a mean readcount below 10 counts per 

sample. Then reads were normalized using TMM normalization embedded in the edge R 

package and the data was log2 transformed using voom function within the limma package 

resulting in log2-counts per million. For individual analysis of Brassicaceae species and 

A. thaliana accession data, a linear model was fit to each gene using the lmFit function of limma 

with the following terms: Sgyr = GYgy + Rr + ɛgyr, where S, log2 expression value, GY, 

genotype:treatment interaction, and random factors; R, biological replicate; ɛ, residual. For the 

combined analysis of Brassicaceae species and A. thaliana accession data the replicate effect 

was removed from the linear model resulting in the following terms: Sgy = GYgy + ɛgy. 

For variance shrinkage of calculated p-values, eBayes function of limma was used. The 

resulting p-values were corrected for multiple testing by calculating the false discovery rate (or 
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q-value) using the qvalue (v.2.4.2) package. Genes with a q-value < 0.01 and fold change >2 

compared to control samples were defined as differentially expressed genes (DEGs). 

Normalization and determination of DEGs were performed separately for each 

Brassicaceae species and each A. thaliana accession. To compare expression changes mediated 

by flg22 between Brassicaceae species, Best Reciprocal Blast was used to determine genes 

having a 1to1 ortholog to a corresponding A. thaliana gene and genes which have a 1to1 

ortholog in all Brassicaceae species were kept. This resulted in a set of 17857 1to1 ortholog 

genes. The analysis of A. thaliana accessions was restricted to the same set of 17857 genes to 

enable a direct comparison of results obtained from Brassicaceae species and A. thaliana 

accessions analysis (E.g. comparing numbers of overlapping genes in Venn Diagrams of Figure 

2C and 5F). To directly compare Brassicaceae species with A. thaliana accessions, the set of 

17857 ortholog genes was used to normalize and determine DEGs for all 1 h samples together.. 

This approach enables us as well to compare basal expression levels between Brassicaceae 

species and A. thaliana accessions.  

The R-packages and software used for further analysis of the sequencing data are listed 

in Table 14. The expression clusters of DEGs determined for the combined RNAseq analysis 

of A. thaliana accessions together with Brassicaceae species were investigated for enrichment 

of GO-terms corresponding to biological processes using BinGO plugin within the Cytoscape 

environment. GO-term enrichment was calculated using a Hypergeometric test followed by a 

Benjamini and Hochberg False Discovery Rate correction implemented in the BinGO plugin. 

The whole annotation was used as a background.  

Known TF-motifs enriched in individual expression clusters of DEGs determined for 

the combined RNAseq analysis of A. thaliana accessions together with Brassicaceae species 

were determined using the AME tool within the MEME suite. Therefore 5’-regulory-regions -

500 bp upstream of the transcription start site were extracted for each tested Brassicaceae 

species. Enrichment of TF-motifs was determined in each of the 15 k-mean clusters for all 

tested Brassicaceae species using 500 bp 5’regulatory-regions of all expressed genes having a 

clear 1to1 ortholog (16100) as background. Known TF-motifs were retrieved from the Jaspar 

core plants (2018) database that is implemented in AME. 

To compare amino acid sequence conservation with expression variation, all amino acid 

sequences of expressed genes with 1to1 orthologs in all species were extracted for each 

Brassicaceae species. The sequences were aligned using Clustal Omega and percent identity 

matrices were extracted. The amino acid sequence identity output of Clustal Omega was used 

to calculate the mean amino acid identity across C. rubella, C. hirsuta and E. salsugineum 
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compared to A. thaliana as a proxy of sequence conservation. The mean amino acid sequence 

identities were subsequently plotted against the SD/mean of flg22-expression changes across 

all four Brassicaceae species, which served as a proxy for expression variation among the tested 

Brassicaceae species. Similarly, the mean amino acid sequence identity was also plotted against 

the SD/mean of the normalized expression value in control samples. In addition, pairwise amino 

acid sequence identities between A. thaliana and each Brassicaceae species were plotted against 

the absolute difference in flg22-induced expression changes between the compared species. 

This analysis was performed for all expressed genes or only for DEGs. 

Table 14: Software and packages used in this study 

Software/Package  Version Citation Use 
AME 4.12.0 McLeay and Bailey, 2010 TF-motif enrichment 
BinGO 3.0.3 Maere et al., 2005 GO enrichment 
ClueGO 2.2.5 Bindea et al., 2009 GO enrichment + grouping 
Clustal Omega 1.2.4 Sievers et al., 2011 Multiple sequence alignment 
Corrplot 0.77 Murdoch and Chow, 1996 Correlation plots 
Cytoscape 3.3.0 Shannon et al., 2003 Run ClueGO 
EdgeR 3.14.0 Robinson et al., 2009 Analysing DEGs 
Genevestigator  Hruz et al., 2008 Comparison to public 

transcriptome data 
Genesis 1.7.7 Sturn et al., 2002 Heatmaps, clustering 
Htseq 0.6.0 Anders et al., 2015 Count RNSeq reads 
limma 3.28.14 Ritchie et al., 2015 Analysing DEGs 
MixOmics 6.0 Rohart et al., 2017 PCA  
RStudio 0.99.489   
TopHat 2.1.1 Trapnell et al., 2009 Map RNAseq reads 
VennDiagramm 1.6.17 Chen and Boutros, 2011 Venn Diagramms 
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6. Supplement 

 
Supplement Figure 1: Principal component analysis of normalized RNAseq data. PCA was performed with 
normalized expression values (log2-transformed counts per million) using MixOmics R package. Time points are 
indicated by different colours and mock and flg22 treatment are indicated by pale and deep colour, respectively. 
Time-points are indicated by circles (1 h), crosses (9 h) and triangles (24 h) A-E show the PCA from A. thaliana, 
A. lyrata, C. rubella, C. hirsuta and E. salsugineum, respectively. F: A. lyrata PCA is further plotted with 
individual replicates indicated by r1-r3.  
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Supplement Figure 2: Overlap of DEGs at different time-points. Venn diagrams showing shared DEGs 
between species at 1 h (A), 9 h (B), and 24 h (C) after flg22-treatment. All DEGs which are differentially expressed 
in at least 1 species at the respective time points were used. 
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Supplement Figure 3: flg22-triggered bacterial suppression does not correlate with marker gene induction 
24 h after flg22 treatment. A: 5-week-old Brassicaceae plants were syringe-infiltrated with 1 µM flg22 or mock 
24 h prior to infiltration with Pto DC3000 (OD600 = 0.0002). The bacterial titer was determined 48 h after bacterial 
infiltration by measuring the DNA amount of the Pseudomonas syringae specific OprF gene relative to the plant 
ACT2 gene by qPCR. Bars represent the means ±SE from 2 independent experiments with each 3 biological 
replicates (n = 6). Different letters indicate statistically significant differences (mixed linear model followed by 
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Student´s t-test; adjusted p < 0.01). B, C, D: 12-day-old Brassicaceae seedlings grown on 1⁄2 MS-medium were 
treated with 1⁄2 MS media (mock) or 1 µM flg22 for 1, 9 or 24 h. Expression of three marker-genes extracted from 
the heatmap in Figure 7C namely SARD1 C, CBP60g C and PBS3 D was quantified via RT-qPCR. Bars represent 
the means ±SE from 2 independent experiments and asterisks indicate significant differences between flg22 and 
mock samples (mixed linear model followed by Student´s t-test; **, p <0.01) Ath, Arabidopsis thaliana Col-0; 
Cru, Capsella rubella; Cgr, Capsella grandiflora; Chi_Ox, Chi_GR, Chi_Ol, different Cardamina hirsuta 
accessions; Esa_Sh, Eutrema salsugineum Shandong; Esa_YT, Esa Yukon; Tha, Thellungiella halophila. 
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Supplement Figure 4: Heatmap for all DEGs in Brassicaceae species after flg22 treatment. Heatmap of all 
6106 DEGs in all Brassicaceae species generated using k-means clustering. All DEGs which are at least 
differentially expressed at 1 time point in 1 species were used. Expression changes are shown. Species-specific 
expression signatures shown in Figure 9A are indicated by coloured bars on the right side. 
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Supplement Figure 5: Comparison of two different mapping approaches for A. thaliana accessions RNAseq 
reads. RNAseq reads were mapped to the Col-0 (TAIR10) reference genome (left) or to individual A. thaliana 
accession genomes generated in this study using SNP data (right). This comparison was made to test whether 
highly similar transcriptome responses were caused by mapping RNAseq reads of different accessions onto the 
single Col-0 genome. Since both mapping methods yielded similar results, the data mapped to the Col-0 reference 
genome was used throughout this study. 
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Supplement Figure 6: Variation in coding and upstream sequences does not explain lineage –specific 
expression signatures in response to flg22. A: Brassicaceae and A. thaliana accession expression changes 1 h 
after flg22 treatment were normalized and analysed together. All 5961 DEGs were clustered using k-mean 
clustering and lineage-specific expression signatures are highlighted by coloured bars on the right side of the 
heatmap as shown in Figure 6A. B, C: Coloured lines represent the mean % identity of amino acid sequences (B) 
and 500 bp sequences upstream of the transcription start site (C) for each cluster in each species compared to A. 
thaliana Col-0. 
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Supplement Figure 7: The size of gene family and basal gene expression levels do not explain species-specific 
expression signatures. A: The sizes of gene families among the 4 tested Brassicaceae species are plotted for each 
of the 15 clusters (See Figure 7). Species specific clusters are highlighted by colours (Ath = green, non-Ath = 
black, Cru = orange, Chi = purple, Esa = magenta). B: Basal (mock condition) expression levels (normalized and 
log2-transformed counts per million) of genes showing species-specific expression signatures are shown in the 
upper heatmap. Expression changes after flg22 treatment are shown in the bottom heatmap. 
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Supplement Figure 8: Some of key secondary metabolism genes are lowly expressed in C. rubella compared 
to other Brassicaceae species. Mean expression values ± SE (log2-transformed counts per million) of mock and 
flg22-treated samples in RNAseq for genes exhibiting significantly different flg22-triggered expression changes 
in C. rubella compared to other Brassicaceae species were plotted. 

 

Supplement Figure 9: Conserved heat-stress responses in tested Brassicaceae species. 12-day-old 
Brassicaceae seedlings were transferred for 1 h to 22°C (control) or 38°C (heat-stress) and expression of heat-
responsive marker genes HSP70 and HSP90.1 was quantified using RT-qPCR. Bars represent the means ±SE from 
3 independent experiments (n = 3). Different letters indicate significant differences (mixed linear model followed 
by Student´s t-test; adjusted p < 0.01). 

 
Supplement Figure 10: Heatmap for all DEGs in Brassicaceae species after heat stress treatment. Heatmap 
visualizing expression changes of all 5186 DEGs after 1 h heat stress in all tested Brassicaceae species generated 
using k-means clustering. In contrast to Figure 16, the RNAseq data depicted here was normalized and analyzed 
together for all four Brassicaceae, excluding genes with low expression in specific species.  
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Supplement Table 1: Mapping statistics of RNAseq reads from flg22 RNAseq dataset 

Species reference genome mean No reads [Mio] % mapped reads % counted 
Ath (Col-0) Col-0 (TAIR10) 33.63 98.27 85.07 
Cru v1.0 33.53 94.72 87.44 
Chi v1.0 33.76 98.09 83.42 
Esa v1.0 32.23 96.88 87.87 
Can-0 Col-0 (TAIR10) 20.40 97.66 92.02 
Gy-0 Col-0 (TAIR10) 23.59 98.03 92.59 
Kn-0 Col-0 (TAIR10) 21.43 98.08 92.30 
Kondora Col-0 (TAIR10) 21.27 97.94 92.37 
No-0 Col-0 (TAIR10) 20.85 97.94 92.12 
Can-0 Ca0 20.40 96.78 92.01 
Gy-0 Gy0 23.59 96.90 91.13 
Kn-0 Kn0 21.43 97.18 92.26 
Kondora Kon 21.27 97.16 92.35 
No-0 No0 20.85 96.77 91.98 

 
Supplement Table 2: Mapping statistics of RNAseq reads from heat-stress RNAseq dataset 

Species reference genome mean No reads [Mio] % mapped reads % counted 
Ath (Col-0) Col-0 (TAIR10) 21.86 98.67 91.25 
Cru v1.0 20.78 95.96 83.46 
Chi v1.0 19.71 90.96 73.08 
Esa v1.0 21.37 92.63 83.35 

 
 

Supplement Table 3: Overrepresented GO-terms for DEGs expression clusters 1h after flg22 treatment. 
The top 30 most significantly enriched biological processes were determined for each expression cluster depicted 
in Supplemental Figure 4. Grey terms have a adjusted p-value over 0.05 and are not considered significantly 
enriched.  

Cluster  adj. p-value GO_ID No. Genes Description 
1 7.70E-02 50896 73 response to stimulus 
1 2.33E-01 6790 9 sulfur metabolic process 
1 2.33E-01 9733 12 response to auxin stimulus 
1 2.33E-01 9719 24 response to endogenous stimulus 
1 2.33E-01 44272 6 sulfur compound biosynthetic process 
1 2.33E-01 44281 32 small molecule metabolic process 
1 2.33E-01 44283 19 small molecule biosynthetic process 
1 2.33E-01 9611 7 response to wounding 
1 2.33E-01 6950 42 response to stress 
1 2.33E-01 9725 21 response to hormone stimulus 
1 2.33E-01 42221 38 response to chemical stimulus 
1 2.33E-01 44242 4 cellular lipid catabolic process 
1 2.33E-01 16559 2 peroxisome fission 
1 2.33E-01 42762 2 regulation of sulfur metabolic process 
1 2.33E-01 19758 3 glycosinolate biosynthetic process 
1 2.33E-01 19761 3 glucosinolate biosynthetic process 
1 2.33E-01 16144 3 S-glycoside biosynthetic process 
1 2.33E-01 19748 11 secondary metabolic process 
1 2.33E-01 96 4 sulfur amino acid metabolic process 
1 2.33E-01 44282 7 small molecule catabolic process 
1 2.33E-01 43289 2 apocarotenoid biosynthetic process 
1 2.33E-01 9688 2 abscisic acid biosynthetic process 
1 2.33E-01 50794 50 regulation of cellular process 
1 2.33E-01 10033 25 response to organic substance 
1 2.33E-01 16042 4 lipid catabolic process 
1 2.33E-01 31668 6 cellular response to extracellular stimulus 
1 2.33E-01 42545 6 cell wall modification 
1 2.33E-01 71496 6 cellular response to external stimulus 
1 2.33E-01 724 2 double-strand break repair via homologous recombination 
1 2.33E-01 725 2 recombinational repair 
2 3.56E-18 10200 19 response to chitin 
2 3.15E-15 9743 20 response to carbohydrate stimulus 
2 5.78E-13 42221 48 response to chemical stimulus 
2 5.30E-12 10033 36 response to organic substance 
2 2.95E-10 50896 62 response to stimulus 
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Cluster  adj. p-value GO_ID No. Genes Description 
2 7.93E-10 50832 13 defense response to fungus 
2 1.96E-09 9620 14 response to fungus 
2 2.56E-09 6952 25 defense response 
2 7.54E-08 51707 21 response to other organism 
2 1.40E-07 9607 21 response to biotic stimulus 
2 3.09E-07 51704 23 multi-organism process 
2 4.79E-06 6950 37 response to stress 
2 1.74E-05 2376 13 immune system process 
2 1.79E-05 43687 26 post-translational protein modification 
2 2.54E-05 16998 5 cell wall macromolecule catabolic process 
2 2.68E-05 31347 7 regulation of defense response 
2 2.68E-05 6468 22 protein amino acid phosphorylation 
2 4.57E-05 6464 27 protein modification process 
2 4.92E-05 6955 12 immune response 
2 4.92E-05 2679 3 respiratory burst involved in defense response 
2 4.92E-05 51865 3 protein autoubiquitination 
2 4.92E-05 10185 3 regulation of cellular defense response 
2 6.68E-05 80134 7 regulation of response to stress 
2 6.77E-05 16310 22 phosphorylation 
2 7.10E-05 42742 10 defense response to bacterium 
2 7.60E-05 60548 4 negative regulation of cell death 
2 9.96E-05 45730 3 respiratory burst 
2 1.33E-04 10941 5 regulation of cell death 
2 1.76E-04 6796 22 phosphate metabolic process 
2 1.76E-04 6793 22 phosphorus metabolic process 
3 7.36E-02 6468 12 protein amino acid phosphorylation 
3 7.36E-02 16310 12 phosphorylation 
3 7.36E-02 9901 2 anther dehiscence 
3 7.36E-02 6796 12 phosphate metabolic process 
3 7.36E-02 6793 12 phosphorus metabolic process 
3 8.33E-02 9900 2 dehiscence 
3 8.33E-02 8219 5 cell death 
3 8.33E-02 16265 5 death 
3 8.33E-02 6950 17 response to stress 
3 8.33E-02 43687 12 post-translational protein modification 
3 8.33E-02 6464 13 protein modification process 
3 1.11E-01 1561 1 fatty acid alpha-oxidation 
3 1.26E-01 50896 24 response to stimulus 
3 1.28E-01 70882 3 cellular cell wall organization or biogenesis 
3 1.28E-01 6952 8 defense response 
3 1.28E-01 43412 13 macromolecule modification 
3 1.28E-01 5975 9 carbohydrate metabolic process 
3 1.28E-01 12501 4 programmed cell death 
3 1.40E-01 45490 1 pectin catabolic process 
3 1.47E-01 48653 2 anther development 
3 1.47E-01 44262 6 cellular carbohydrate metabolic process 
3 1.47E-01 9830 1 cell wall modification involved in abscission 
3 1.47E-01 43650 1 dicarboxylic acid biosynthetic process 
3 1.47E-01 9423 1 chorismate biosynthetic process 
3 1.47E-01 44277 1 cell wall disassembly 
3 1.47E-01 15700 1 arsenite transport 
3 1.47E-01 60871 1 cellular cell wall disassembly 
3 1.76E-01 6915 3 apoptosis 
3 1.76E-01 46713 1 boron transport 
3 1.76E-01 6094 1 gluconeogenesis 
4 3.89E-07 10033 24 response to organic substance 
4 4.69E-07 50896 43 response to stimulus 
4 5.78E-07 10200 9 response to chitin 
4 5.78E-07 9607 17 response to biotic stimulus 
4 1.79E-06 51707 16 response to other organism 
4 2.73E-06 9743 10 response to carbohydrate stimulus 
4 2.84E-06 6952 17 defense response 
4 1.21E-05 42221 27 response to chemical stimulus 
4 1.50E-05 6950 28 response to stress 
4 3.63E-05 51704 16 multi-organism process 
4 2.03E-03 9867 4 jasmonic acid mediated signaling pathway 
4 2.03E-03 71395 4 cellular response to jasmonic acid stimulus 
4 3.58E-03 6955 8 immune response 
4 3.64E-03 31348 3 negative regulation of defense response 
4 3.95E-03 2376 8 immune system process 
4 3.95E-03 9753 6 response to jasmonic acid stimulus 
4 6.50E-03 9814 5 defense response, incompatible interaction 
4 6.99E-03 2238 2 response to molecule of fungal origin 
4 7.24E-03 9617 7 response to bacterium 
4 7.53E-03 23052 15 signaling 
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Cluster  adj. p-value GO_ID No. Genes Description 
4 8.55E-03 31347 4 regulation of defense response 
4 8.55E-03 9697 2 salicylic acid biosynthetic process 
4 8.80E-03 45087 7 innate immune response 
4 9.06E-03 23033 11 signaling pathway 
4 1.03E-02 42742 6 defense response to bacterium 
4 1.03E-02 23046 10 signaling process 
4 1.03E-02 23060 10 signal transmission 
4 1.28E-02 80134 4 regulation of response to stress 
4 1.88E-02 42762 2 regulation of sulfur metabolic process 
4 1.88E-02 35556 4 intracellular signal transduction 
5 1.46E-06 10200 7 response to chitin 
5 2.85E-05 9743 7 response to carbohydrate stimulus 
5 2.37E-03 45449 13 regulation of transcription 
5 2.37E-03 10556 13 regulation of macromolecule biosynthetic process 
5 2.37E-03 19219 13 regulation of nucleobase, nucleoside, nucleotide and nucleic 

acid metabolic process 
5 2.37E-03 31326 13 regulation of cellular biosynthetic process 
5 2.37E-03 9889 13 regulation of biosynthetic process 
5 2.37E-03 51171 13 regulation of nitrogen compound metabolic process 
5 3.07E-03 80090 13 regulation of primary metabolic process 
5 3.48E-03 10468 13 regulation of gene expression 
5 3.50E-03 31323 13 regulation of cellular metabolic process 
5 3.50E-03 60255 13 regulation of macromolecule metabolic process 
5 3.50E-03 10033 10 response to organic substance 
5 3.71E-03 42221 13 response to chemical stimulus 
5 6.47E-03 19222 13 regulation of metabolic process 
5 2.22E-02 50896 17 response to stimulus 
5 2.43E-02 46864 1 isoprenoid transport 
5 2.43E-02 46865 1 terpenoid transport 
5 3.63E-02 9723 3 response to ethylene stimulus 
5 3.68E-02 6355 7 regulation of transcription, DNA-dependent 
5 3.68E-02 51252 7 regulation of RNA metabolic process 
5 6.02E-02 50794 13 regulation of cellular process 
5 7.57E-02 15692 1 lead ion transport 
5 1.52E-01 50789 13 regulation of biological process 
5 1.73E-01 6979 3 response to oxidative stress 
5 2.04E-01 65007 14 biological regulation 
5 2.23E-01 6536 1 glutamate metabolic process 
5 2.57E-01 43562 1 cellular response to nitrogen levels 
5 2.57E-01 9725 5 response to hormone stimulus 
5 2.57E-01 9751 2 response to salicylic acid stimulus 
6 7.27E-07 42221 87 response to chemical stimulus 
6 1.06E-05 10033 58 response to organic substance 
6 1.06E-05 50896 131 response to stimulus 
6 2.71E-05 35466 14 regulation of signaling pathway 
6 2.71E-05 9607 37 response to biotic stimulus 
6 2.00E-04 51707 34 response to other organism 
6 2.22E-04 10646 13 regulation of cell communication 
6 2.80E-04 51704 40 multi-organism process 
6 3.38E-04 70887 26 cellular response to chemical stimulus 
6 3.53E-04 48583 16 regulation of response to stimulus 
6 4.40E-04 65007 123 biological regulation 
6 9.70E-04 6950 78 response to stress 
6 9.70E-04 70297 5 regulation of two-component signal transduction system 

(phosphorelay) 
6 9.70E-04 10104 5 regulation of ethylene mediated signaling pathway 
6 1.21E-03 6464 57 protein modification process 
6 1.21E-03 9787 7 regulation of abscisic acid mediated signaling pathway 
6 1.55E-03 9651 24 response to salt stress 
6 1.69E-03 6970 25 response to osmotic stress 
6 1.69E-03 50794 95 regulation of cellular process 
6 1.71E-03 9719 42 response to endogenous stimulus 
6 1.92E-03 23033 34 signaling pathway 
6 1.95E-03 35467 7 negative regulation of signaling pathway 
6 2.17E-03 10648 7 negative regulation of cell communication 
6 2.17E-03 9725 39 response to hormone stimulus 
6 3.67E-03 43067 6 regulation of programmed cell death 
6 4.32E-03 22622 17 root system development 
6 4.32E-03 48364 17 root development 
6 4.67E-03 70298 4 negative regulation of two-component signal transduction 

system (phosphorelay) 
6 4.67E-03 42631 4 cellular response to water deprivation 
6 4.67E-03 10105 4 negative regulation of ethylene mediated signaling pathway 
7 2.00E-01 42219 4 cellular amino acid derivative catabolic process 
7 2.00E-01 9861 3 jasmonic acid and ethylene-dependent systemic resistance 
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Cluster  adj. p-value GO_ID No. Genes Description 
7 2.00E-01 15893 4 drug transport 
7 2.00E-01 42493 4 response to drug 
7 2.50E-01 48468 9 cell development 
7 2.50E-01 9888 11 tissue development 
7 2.50E-01 19439 3 aromatic compound catabolic process 
7 2.50E-01 22622 10 root system development 
7 2.50E-01 48364 10 root development 
7 2.50E-01 6575 10 cellular amino acid derivative metabolic process 
7 2.50E-01 38 3 very long-chain fatty acid metabolic process 
7 2.50E-01 44281 32 small molecule metabolic process 
7 2.50E-01 9698 7 phenylpropanoid metabolic process 
7 2.50E-01 16126 3 sterol biosynthetic process 
7 2.50E-01 9719 23 response to endogenous stimulus 
7 2.50E-01 6725 11 cellular aromatic compound metabolic process 
7 2.50E-01 272 3 polysaccharide catabolic process 
7 2.50E-01 6855 3 drug transmembrane transport 
7 2.50E-01 9653 16 anatomical structure morphogenesis 
7 2.50E-01 6810 36 transport 
7 2.50E-01 44262 14 cellular carbohydrate metabolic process 
7 2.50E-01 32989 10 cellular component morphogenesis 
7 2.50E-01 16125 3 sterol metabolic process 
7 2.50E-01 50896 67 response to stimulus 
7 2.50E-01 51179 37 localization 
7 2.50E-01 51234 36 establishment of localization 
7 2.50E-01 904 6 cell morphogenesis involved in differentiation 
7 2.50E-01 6913 4 nucleocytoplasmic transport 
7 2.50E-01 51169 4 nuclear transport 
7 2.50E-01 9734 3 auxin mediated signaling pathway 
8 2.89E-04 65007 105 biological regulation 
8 2.02E-03 50794 81 regulation of cellular process 
8 2.91E-03 50789 88 regulation of biological process 
8 6.79E-03 19219 54 regulation of nucleobase, nucleoside, nucleotide and nucleic 

acid metabolic process 
8 6.79E-03 10556 53 regulation of macromolecule biosynthetic process 
8 6.79E-03 45449 52 regulation of transcription 
8 6.79E-03 51171 54 regulation of nitrogen compound metabolic process 
8 8.56E-03 31326 53 regulation of cellular biosynthetic process 
8 8.56E-03 9889 53 regulation of biosynthetic process 
8 8.56E-03 7389 10 pattern specification process 
8 8.56E-03 31323 56 regulation of cellular metabolic process 
8 1.00E-02 80090 54 regulation of primary metabolic process 
8 1.00E-02 60255 56 regulation of macromolecule metabolic process 
8 1.22E-02 9719 33 response to endogenous stimulus 
8 1.49E-02 10468 54 regulation of gene expression 
8 1.96E-02 19222 58 regulation of metabolic process 
8 2.19E-02 9938 3 negative regulation of gibberellic acid mediated signaling 

pathway 
8 2.29E-02 6869 10 lipid transport 
8 2.50E-02 48878 9 chemical homeostasis 
8 2.56E-02 3002 8 regionalization 
8 3.27E-02 42592 12 homeostatic process 
8 3.36E-02 6833 3 water transport 
8 3.36E-02 42044 3 fluid transport 
8 3.46E-02 9725 29 response to hormone stimulus 
8 3.89E-02 10876 10 lipid localization 
8 4.07E-02 51457 2 maintenance of protein location in nucleus 
8 6.33E-02 9937 3 regulation of gibberellic acid mediated signaling pathway 
8 6.33E-02 50896 87 response to stimulus 
8 6.33E-02 10033 35 response to organic substance 
8 9.77E-02 45165 4 cell fate commitment 
9 5.12E-02 9926 4 auxin polar transport 
9 5.12E-02 60918 4 auxin transport 
9 5.12E-02 9914 4 hormone transport 
9 8.70E-02 10540 2 basipetal auxin transport 
9 8.70E-02 6820 4 anion transport 
9 1.85E-01 6817 2 phosphate transport 
9 1.85E-01 15698 3 inorganic anion transport 
9 1.85E-01 65008 10 regulation of biological quality 
9 1.85E-01 43086 3 negative regulation of catalytic activity 
9 1.85E-01 51346 1 negative regulation of hydrolase activity 
9 1.85E-01 43666 1 regulation of phosphoprotein phosphatase activity 
9 1.85E-01 10921 1 regulation of phosphatase activity 
9 1.85E-01 10923 1 negative regulation of phosphatase activity 
9 1.85E-01 32515 1 negative regulation of phosphoprotein phosphatase activity 
9 1.85E-01 60191 1 regulation of lipase activity 
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Cluster  adj. p-value GO_ID No. Genes Description 
9 1.85E-01 51004 1 regulation of lipoprotein lipase activity 
9 1.99E-01 44092 3 negative regulation of molecular function 
9 1.99E-01 10817 4 regulation of hormone levels 
9 1.99E-01 10315 1 auxin efflux 
9 1.99E-01 80055 1 low affinity nitrate transport 
9 1.99E-01 10119 2 regulation of stomatal movement 
9 1.99E-01 6464 15 protein modification process 
9 1.99E-01 9734 2 auxin mediated signaling pathway 
9 1.99E-01 6810 17 transport 
9 1.99E-01 51234 17 establishment of localization 
9 1.99E-01 10289 1 homogalacturonan biosynthetic process 
9 1.99E-01 46477 1 glycosylceramide catabolic process 
9 1.99E-01 46479 1 glycosphingolipid catabolic process 
9 1.99E-01 46514 1 ceramide catabolic process 
9 1.99E-01 46521 1 sphingoid catabolic process 
10 2.22E-01 10345 2 suberin biosynthetic process 
10 2.22E-01 9312 3 oligosaccharide biosynthetic process 
10 2.22E-01 16051 7 carbohydrate biosynthetic process 
10 2.22E-01 42546 4 cell wall biogenesis 
10 2.22E-01 80090 24 regulation of primary metabolic process 
10 2.22E-01 70882 4 cellular cell wall organization or biogenesis 
10 2.22E-01 50794 33 regulation of cellular process 
10 2.22E-01 19219 23 regulation of nucleobase, nucleoside, nucleotide and nucleic 

acid metabolic process 
10 2.22E-01 31326 23 regulation of cellular biosynthetic process 
10 2.22E-01 9889 23 regulation of biosynthetic process 
10 2.22E-01 51171 23 regulation of nitrogen compound metabolic process 
10 2.22E-01 7131 2 reciprocal meiotic recombination 
10 2.22E-01 10273 1 detoxification of copper ion 
10 2.22E-01 6216 1 cytidine catabolic process 
10 2.22E-01 6279 1 premeiotic DNA synthesis 
10 2.22E-01 80142 1 regulation of salicylic acid biosynthetic process 
10 2.22E-01 30397 1 membrane disassembly 
10 2.22E-01 9972 1 cytidine deamination 
10 2.22E-01 10184 1 cytokinin transport 
10 2.22E-01 45449 22 regulation of transcription 
10 2.22E-01 31323 24 regulation of cellular metabolic process 
10 2.22E-01 6310 3 DNA recombination 
10 2.22E-01 10556 22 regulation of macromolecule biosynthetic process 
10 2.22E-01 9311 3 oligosaccharide metabolic process 
10 2.22E-01 46688 2 response to copper ion 
10 2.22E-01 9699 4 phenylpropanoid biosynthetic process 
10 2.22E-01 6725 7 cellular aromatic compound metabolic process 
10 2.22E-01 9832 3 plant-type cell wall biogenesis 
10 2.22E-01 16138 3 glycoside biosynthetic process 
10 2.22E-01 50789 35 regulation of biological process 
11 5.49E-08 9416 33 response to light stimulus 
11 6.77E-08 9314 33 response to radiation 
11 2.30E-05 31326 60 regulation of cellular biosynthetic process 
11 2.30E-05 9889 60 regulation of biosynthetic process 
11 3.91E-05 10556 58 regulation of macromolecule biosynthetic process 
11 3.91E-05 51171 59 regulation of nitrogen compound metabolic process 
11 4.60E-05 19219 58 regulation of nucleobase, nucleoside, nucleotide and nucleic 

acid metabolic process 
11 4.60E-05 80090 60 regulation of primary metabolic process 
11 4.89E-05 65007 100 biological regulation 
11 5.07E-05 45449 56 regulation of transcription 
11 5.86E-05 9725 36 response to hormone stimulus 
11 1.02E-04 31323 60 regulation of cellular metabolic process 
11 1.16E-04 9638 5 phototropism 
11 1.23E-04 9719 37 response to endogenous stimulus 
11 1.23E-04 60255 60 regulation of macromolecule metabolic process 
11 1.72E-04 19222 63 regulation of metabolic process 
11 2.09E-04 10468 58 regulation of gene expression 
11 3.09E-04 9739 11 response to gibberellin stimulus 
11 9.57E-04 10033 40 response to organic substance 
11 1.34E-03 9628 43 response to abiotic stimulus 
11 2.34E-03 9639 12 response to red or far red light 
11 2.62E-03 16556 3 mRNA modification 
11 2.83E-03 50794 73 regulation of cellular process 
11 5.05E-03 10374 5 stomatal complex development 
11 7.98E-03 48367 16 shoot development 
11 8.69E-03 22621 16 shoot system development 
11 8.69E-03 65008 24 regulation of biological quality 
11 8.92E-03 9606 6 tropism 
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11 9.02E-03 50789 78 regulation of biological process 
11 1.04E-02 48827 13 phyllome development 
12 7.22E-05 2376 16 immune system process 
12 7.22E-05 45087 15 innate immune response 
12 7.22E-05 10200 10 response to chitin 
12 1.02E-04 6955 15 immune response 
12 1.05E-04 9617 14 response to bacterium 
12 4.06E-04 48584 7 positive regulation of response to stimulus 
12 4.06E-04 6952 22 defense response 
12 4.06E-04 8219 12 cell death 
12 4.06E-04 16265 12 death 
12 4.06E-04 12501 11 programmed cell death 
12 4.31E-04 50896 63 response to stimulus 
12 4.31E-04 2218 5 activation of innate immune response 
12 4.31E-04 2253 5 activation of immune response 
12 4.64E-04 42221 40 response to chemical stimulus 
12 4.64E-04 51707 19 response to other organism 
12 4.64E-04 45089 5 positive regulation of innate immune response 
12 4.64E-04 45089 5 positive regulation of immune response 
12 4.64E-04 45089 5 positive regulation of immune system process 
12 4.82E-04 45089 42 response to stress 
12 6.76E-04 45089 19 response to biotic stimulus 
12 8.07E-04 45089 5 positive regulation of defense response 
12 8.93E-04 45089 3 detection of biotic stimulus 
12 1.12E-03 45089 10 response to carbohydrate stimulus 
12 1.65E-03 45089 27 response to organic substance 
12 1.88E-03 45089 5 regulation of innate immune response 
12 2.06E-03 45089 10 defense response to bacterium 
12 2.35E-03 45089 6 regulation of defense response 
12 2.35E-03 45089 5 regulation of immune response 
12 2.35E-03 45089 5 regulation of immune system process 
12 2.39E-03 45089 19 signaling pathway 
13 6.36E-11 6468 35 protein amino acid phosphorylation 
13 7.11E-11 6796 37 phosphate metabolic process 
13 7.11E-11 6793 37 phosphorus metabolic process 
13 9.93E-11 9743 17 response to carbohydrate stimulus 
13 9.93E-11 10200 14 response to chitin 
13 9.93E-11 16310 35 phosphorylation 
13 1.72E-10 43687 38 post-translational protein modification 
13 1.59E-09 6464 39 protein modification process 
13 2.74E-08 50896 65 response to stimulus 
13 2.74E-08 43412 39 macromolecule modification 
13 2.39E-07 9611 12 response to wounding 
13 5.05E-07 10033 31 response to organic substance 
13 8.74E-07 42221 41 response to chemical stimulus 
13 2.57E-06 6950 42 response to stress 
13 1.25E-03 6952 18 defense response 
13 1.34E-03 9719 21 response to endogenous stimulus 
13 1.34E-03 51707 16 response to other organism 
13 1.69E-03 9737 11 response to abscisic acid stimulus 
13 1.94E-03 9607 16 response to biotic stimulus 
13 8.52E-03 51704 17 multi-organism process 
13 9.51E-03 31347 5 regulation of defense response 
13 1.90E-02 23033 15 signaling pathway 
13 1.90E-02 80134 5 regulation of response to stress 
13 1.90E-02 15695 2 organic cation transport 
13 1.90E-02 15696 2 ammonium transport 
13 2.01E-02 9725 17 response to hormone stimulus 
13 2.62E-02 10555 2 response to mannitol stimulus 
13 3.11E-02 23052 20 signaling 
13 3.59E-02 44267 41 cellular protein metabolic process 
13 3.63E-02 6904 3 vesicle docking involved in exocytosis 
14 1.56E-13 43687 50 post-translational protein modification 
14 3.80E-13 6796 46 phosphate metabolic process 
14 3.80E-13 6793 46 phosphorus metabolic process 
14 4.44E-13 16310 44 phosphorylation 
14 5.69E-13 6468 42 protein amino acid phosphorylation 
14 9.30E-13 6464 51 protein modification process 
14 4.62E-11 43412 51 macromolecule modification 
14 3.98E-04 9611 10 response to wounding 
14 1.21E-03 45860 4 positive regulation of protein kinase activity 
14 1.21E-03 33674 4 positive regulation of kinase activity 
14 2.53E-03 51347 4 positive regulation of transferase activity 
14 1.22E-02 43549 4 regulation of kinase activity 
14 1.22E-02 45859 4 regulation of protein kinase activity 
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14 1.22E-02 50896 60 response to stimulus 
14 1.55E-02 44267 53 cellular protein metabolic process 
14 1.55E-02 51338 4 regulation of transferase activity 
14 1.55E-02 6950 39 response to stress 
14 1.55E-02 48317 2 seed morphogenesis 
14 1.61E-02 43085 4 positive regulation of catalytic activity 
14 1.61E-02 42325 4 regulation of phosphorylation 
14 1.74E-02 44093 4 positive regulation of molecular function 
14 1.82E-02 9620 8 response to fungus 
14 1.86E-02 19220 4 regulation of phosphate metabolic process 
14 1.86E-02 51174 4 regulation of phosphorus metabolic process 
14 1.86E-02 42221 36 response to chemical stimulus 
14 1.86E-02 6952 18 defense response 
14 2.59E-02 9607 16 response to biotic stimulus 
14 3.23E-02 9743 8 response to carbohydrate stimulus 
14 3.30E-02 19538 56 protein metabolic process 
14 3.50E-02 10200 6 response to chitin 
15 1.11E-10 90304 97 nucleic acid metabolic process 
15 5.45E-09 6139 109 nucleobase, nucleoside, nucleotide and nucleic acid metabolic 

process 
15 6.21E-09 6259 47 DNA metabolic process 
15 8.61E-08 34641 130 cellular nitrogen compound metabolic process 
15 1.49E-07 6807 133 nitrogen compound metabolic process 
15 2.26E-06 32501 140 multicellular organismal process 
15 8.59E-06 6974 27 response to DNA damage stimulus 
15 8.95E-06 6281 26 DNA repair 
15 9.22E-06 7275 132 multicellular organismal development 
15 1.36E-05 48608 71 reproductive structure development 
15 1.49E-05 9791 81 post-embryonic development 
15 2.06E-05 6260 19 DNA replication 
15 2.10E-05 32502 140 developmental process 
15 2.15E-05 9314 51 response to radiation 
15 4.01E-05 9416 49 response to light stimulus 
15 4.01E-05 7167 19 enzyme linked receptor protein signaling pathway 
15 4.01E-05 7169 19 transmembrane receptor protein tyrosine kinase signaling 

pathway 
15 5.82E-05 48856 111 anatomical structure development 
15 1.10E-04 7018 12 microtubule-based movement 
15 1.37E-04 48316 46 seed development 
15 1.46E-04 3006 73 reproductive developmental process 
15 1.56E-04 7166 20 cell surface receptor linked signaling pathway 
15 1.79E-04 8033 11 tRNA processing 
15 1.92E-04 9658 14 chloroplast organization 
15 2.00E-04 6298 7 mismatch repair 
15 2.75E-04 9793 40 embryonic development ending in seed dormancy 
15 3.11E-04 9790 44 embryonic development 
15 3.42E-04 10154 46 fruit development 
15 5.16E-04 7017 17 microtubule-based process 
15 5.32E-04 3 77 reproduction 
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Supplement Table 4: Known TF-motifs enriched in A. thaliana 5´regulatory regions of DEGs.  
Known TF-motifs were determined using AME for the -500 bp region upstream of the transcriptional start site. 
The motifs were determined separately for each expression clusters depicted in Supplemental Figure 4.  

Cluster Motif ID Binding TF Motif p-val adj. p-val 
1 MA1079.1 WRKY21 (NNRGTCAACG) 2.59E-05 0.01256 
1 MA1386.1 AT1G25550 (RGAATMTTCND) 6.21E-05 0.02992 
1 MA1164.1 AT4G37180 (HARAAGATTCY) 6.45E-05 0.03103 
1 MA1089.1 WRKY57 (DWRGTCAAMN) 9.86E-05 0.04706 
2 MA1094.1 WRKY8 (NRGTCAAMN) 3.99E-11 1.95E-08 
2 MA1089.1 WRKY57 (DWRGTCAAMN) 6.77E-11 3.31E-08 
2 MA1088.1 WRKY48 (NNRGTCAAMN) 8.45E-11 4.13E-08 
2 MA1317.1 WRKY50 (YKTTGACTTTTTH) 5.57E-10 2.72E-07 
2 MA1079.1 WRKY21 (NNRGTCAACG) 1.91E-09 9.33E-07 
2 MA1086.1 WRKY43 (HRGTCAAMVN) 2.37E-09 1.16E-06 
2 MA1076.1 WRKY15 (NRGTCAACSN) 2.41E-09 1.18E-06 
2 MA1085.2 WRKY40 (HWAGTCAANN) 3.91E-09 1.91E-06 
2 MA1311.1 WRKY28 (DDCGTTGACTTTT) 9.95E-09 4.87E-06 
2 MA1077.1 WRKY18 (NHRGTCAAVV) 1.42E-08 6.95E-06 
2 MA1316.1 WRKY71 (AAAAGTCAACG) 2.51E-08 1.23E-05 
2 MA1304.1 WRKY59 (HAAAAGTCAAMN) 3.14E-08 1.54E-05 
2 MA1315.1 WRKY24 (NCGTTGACTTTTTW) 6.31E-08 3.09E-05 
2 MA1295.1 WRKY20 (DNCGTTGACYWDD) 7.89E-08 3.86E-05 
2 MA1298.1 WRKY29 (AAAAGTCAACK) 8.81E-08 4.31E-05 
2 MA1302.1 WRKY65 (AAAAGTCAACG) 9.02E-08 4.41E-05 
2 MA1313.1 WRKY7 (DNCGTTGACTTTTT) 1.88E-07 9.19E-05 
2 MA1310.1 WRKY42 (BWTDMHHHNNCGTTGACTWWD) 1.99E-07 9.74E-05 
2 MA1305.1 WRKY55 (DNCGTTGACTTT) 2.49E-07 0.0001215 
2 MA1303.1 WRKY22 (AAAAGTCAACKNH) 2.55E-07 0.0001244 
2 MA1314.1 WRKY14 (AAAAGTCAACGNH) 2.66E-07 0.0001298 
2 MA1306.1 WRKY11 (DNCGTTGACTTTTD) 3.70E-07 0.0001808 
2 MA1083.1 WRKY30 (RGTCAACGNN) 3.70E-07 0.000181 
2 MA1309.1 WRKY3 (AAAAGTCAACG) 5.85E-07 0.0002859 
2 MA1301.1 WRKY33 (AAAAGTCAACG) 6.49E-07 0.0003174 
2 MA1093.1 WRKY75 (HRGTCAAC) 7.69E-07 0.0003758 
2 MA1078.1 WRKY2 (BGGTCAAM) 8.59E-07 0.00042 
2 MA1308.1 WRKY70 (DNCGTTGACTTTT) 1.17E-06 0.0005722 
2 MA1090.1 WRKY60 (NYGGTCAACSN) 2.33E-06 0.001137 
2 MA1081.1 WRKY25 (YGGTCAAC) 2.93E-06 0.001434 
2 MA1300.1 WRKY6 (CGTTGACTWWDDYWDWNHH) 4.33E-06 0.002113 
2 MA1092.1 WRKY63 (HGGTCAAC) 5.03E-06 0.002458 
2 MA1318.1 WRKY27 (ANCGTTGACTTTT) 5.25E-06 0.002562 
2 MA1299.1 WRKY17 (AAAAAGTCAACGNH) 6.76E-06 0.003298 
2 MA1091.1 WRKY62 (TGGTCAAC) 9.18E-06 0.004479 
2 MA1080.1 WRKY23 (AGTCAACG) 9.57E-06 0.004668 
2 MA1084.1 WRKY38 (CGTTGACC) 1.05E-05 0.005098 
2 MA1087.1 WRKY45 (CGTTGACY) 1.77E-05 0.008601 
2 MA1297.1 WRKY26 (AAAAGTCAACGNY) 1.95E-05 0.009502 
2 MA1307.1 WRKY31 (DDNNHWRHHAAAGTCAACG) 2.52E-05 0.01226 
2 MA1075.1 WRKY12 (CGTTGACC) 2.67E-05 0.01297 
2 MA1162.1 TCX2 (WTTYAAAATTYAAAW) 3.17E-05 0.0154 
4 MA1089.1 WRKY57 (DWRGTCAAMN) 7.95E-08 3.89E-05 
4 MA1088.1 WRKY48 (NNRGTCAAMN) 8.06E-08 3.94E-05 
4 MA1077.1 WRKY18 (NHRGTCAAVV) 9.98E-08 4.88E-05 
4 MA1094.1 WRKY8 (NRGTCAAMN) 1.39E-07 6.78E-05 
4 MA1315.1 WRKY24 (NCGTTGACTTTTTW) 2.50E-07 0.0001224 
4 MA1079.1 WRKY21 (NNRGTCAACG) 3.32E-07 0.0001625 
4 MA1318.1 WRKY27 (ANCGTTGACTTTT) 3.87E-07 0.0001894 
4 MA1083.1 WRKY30 (RGTCAACGNN) 4.37E-07 0.0002138 
4 MA1305.1 WRKY55 (DNCGTTGACTTT) 4.96E-07 0.0002425 
4 MA1076.1 WRKY15 (NRGTCAACSN) 5.72E-07 0.0002797 
4 MA1317.1 WRKY50 (YKTTGACTTTTTH) 7.91E-07 0.0003869 
4 MA1295.1 WRKY20 (DNCGTTGACYWDD) 8.22E-07 0.0004018 
4 MA1086.1 WRKY43 (HRGTCAAMVN) 9.17E-07 0.0004481 
4 MA1087.1 WRKY45 (CGTTGACY) 1.08E-06 0.0005285 
4 MA1080.1 WRKY23 (AGTCAACG) 1.21E-06 0.0005895 
4 MA1309.1 WRKY3 (AAAAGTCAACG) 1.34E-06 0.0006524 
4 MA1085.2 WRKY40 (HWAGTCAANN) 1.46E-06 0.0007128 
4 MA1316.1 WRKY71 (AAAAGTCAACG) 1.73E-06 0.0008437 
4 MA1308.1 WRKY70 (DNCGTTGACTTTT) 1.78E-06 0.0008701 
4 MA1311.1 WRKY28 (DDCGTTGACTTTT) 1.97E-06 0.0009624 
4 MA1093.1 WRKY75 (HRGTCAAC) 2.23E-06 0.00109 
4 MA1306.1 WRKY11 (DNCGTTGACTTTTD) 2.69E-06 0.001314 
4 MA1304.1 WRKY59 (HAAAAGTCAAMN) 2.89E-06 0.001414 
4 MA1091.1 WRKY62 (TGGTCAAC) 3.23E-06 0.001576 
4 MA1084.1 WRKY38 (CGTTGACC) 3.28E-06 0.001601 
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4 MA1303.1 WRKY22 (AAAAGTCAACKNH) 3.30E-06 0.001613 
4 MA1300.1 WRKY6 (CGTTGACTWWDDYWDWNHH) 3.49E-06 0.001707 
4 MA1301.1 WRKY33 (AAAAGTCAACG) 3.95E-06 0.001932 
4 MA1314.1 WRKY14 (AAAAGTCAACGNH) 3.97E-06 0.00194 
4 MA1092.1 WRKY63 (HGGTCAAC) 4.05E-06 0.001979 
4 MA1081.1 WRKY25 (YGGTCAAC) 5.62E-06 0.002745 
4 MA1313.1 WRKY7 (DNCGTTGACTTTTT) 7.10E-06 0.003465 
4 MA1299.1 WRKY17 (AAAAAGTCAACGNH) 7.43E-06 0.003625 
4 MA1090.1 WRKY60 (NYGGTCAACSN) 7.52E-06 0.00367 
4 MA1075.1 WRKY12 (CGTTGACC) 9.60E-06 0.004681 
4 MA1298.1 WRKY29 (AAAAGTCAACK) 1.43E-05 0.00695 
4 MA1302.1 WRKY65 (AAAAGTCAACG) 1.74E-05 0.008489 
4 MA1078.1 WRKY2 (BGGTCAAM) 2.20E-05 0.01068 
4 MA1307.1 WRKY31 (DDNNHWRHHAAAGTCAACG) 3.63E-05 0.01758 
4 MA1312.1 WRKY47 (MYYKNCGTTGACYW) 6.11E-05 0.02943 
4 MA1297.1 WRKY26 (AAAAGTCAACGNY) 6.77E-05 0.03256 
4 MA1036.1 MYB111 (GKTAGGTR) 7.75E-05 0.03718 
4 MA1040.1 MYB46 (GKTAGGTR) 9.06E-05 0.04335 
4 MA1310.1 WRKY42 (BWTDMHHHNNCGTTGACTWWD) 0.0001007 0.04806 
5 MA1081.1 WRKY25 (YGGTCAAC) 2.10E-12 1.03E-09 
5 MA1078.1 WRKY2 (BGGTCAAM) 3.37E-11 1.65E-08 
5 MA1092.1 WRKY63 (HGGTCAAC) 3.96E-11 1.94E-08 
5 MA1088.1 WRKY48 (NNRGTCAAMN) 1.22E-10 5.94E-08 
5 MA1090.1 WRKY60 (NYGGTCAACSN) 3.06E-09 1.50E-06 
5 MA1077.1 WRKY18 (NHRGTCAAVV) 3.44E-09 1.68E-06 
5 MA1094.1 WRKY8 (NRGTCAAMN) 3.56E-09 1.74E-06 
5 MA1295.1 WRKY20 (DNCGTTGACYWDD) 1.40E-08 6.83E-06 
5 MA1076.1 WRKY15 (NRGTCAACSN) 1.43E-08 7.00E-06 
5 MA1091.1 WRKY62 (TGGTCAAC) 2.25E-08 1.10E-05 
5 MA1093.1 WRKY75 (HRGTCAAC) 5.42E-08 2.65E-05 
5 MA1086.1 WRKY43 (HRGTCAAMVN) 6.21E-08 3.04E-05 
5 MA1084.1 WRKY38 (CGTTGACC) 1.07E-07 5.21E-05 
5 MA1089.1 WRKY57 (DWRGTCAAMN) 1.30E-07 6.37E-05 
5 MA1079.1 WRKY21 (NNRGTCAACG) 3.39E-07 0.0001659 
5 MA1310.1 WRKY42 (BWTDMHHHNNCGTTGACTWWD) 7.01E-07 0.0003428 
5 MA1075.1 WRKY12 (CGTTGACC) 7.95E-07 0.0003886 
5 MA1300.1 WRKY6 (CGTTGACTWWDDYWDWNHH) 8.20E-07 0.0004008 
5 MA1309.1 WRKY3 (AAAAGTCAACG) 1.09E-06 0.0005348 
5 MA1301.1 WRKY33 (AAAAGTCAACG) 1.32E-06 0.0006439 
5 MA1304.1 WRKY59 (HAAAAGTCAAMN) 1.53E-06 0.0007458 
5 MA1083.1 WRKY30 (RGTCAACGNN) 1.59E-06 0.0007766 
5 MA1087.1 WRKY45 (CGTTGACY) 2.72E-06 0.001327 
5 MA1307.1 WRKY31 (DDNNHWRHHAAAGTCAACG) 2.83E-06 0.001382 
5 MA1305.1 WRKY55 (DNCGTTGACTTT) 3.38E-06 0.001652 
5 MA1311.1 WRKY28 (DDCGTTGACTTTT) 4.84E-06 0.002363 
5 MA0589.1 ZAP1 (TTGACCGAGYY) 7.44E-06 0.003633 
5 MA1080.1 WRKY23 (AGTCAACG) 1.02E-05 0.004985 
5 MA1315.1 WRKY24 (NCGTTGACTTTTTW) 1.11E-05 0.005413 
5 MA1302.1 WRKY65 (AAAAGTCAACG) 1.12E-05 0.005449 
5 MA1314.1 WRKY14 (AAAAGTCAACGNH) 1.49E-05 0.007257 
5 MA1298.1 WRKY29 (AAAAGTCAACK) 1.80E-05 0.008759 
5 MA1317.1 WRKY50 (YKTTGACTTTTTH) 1.92E-05 0.009337 
5 MA1297.1 WRKY26 (AAAAGTCAACGNY) 3.71E-05 0.01798 
5 MA1303.1 WRKY22 (AAAAGTCAACKNH) 5.98E-05 0.02884 
5 MA1316.1 WRKY71 (AAAAGTCAACG) 6.14E-05 0.0296 
5 MA1306.1 WRKY11 (DNCGTTGACTTTTD) 7.93E-05 0.03805 
5 MA0930.1 ABF3 (ACACGTGT) 9.59E-05 0.04581 
6 MA1089.1 WRKY57 (DWRGTCAAMN) 9.53E-10 4.66E-07 
6 MA1094.1 WRKY8 (NRGTCAAMN) 1.67E-09 8.14E-07 
6 MA1090.1 WRKY60 (NYGGTCAACSN) 1.05E-08 5.15E-06 
6 MA1086.1 WRKY43 (HRGTCAAMVN) 1.34E-08 6.53E-06 
6 MA1079.1 WRKY21 (NNRGTCAACG) 1.93E-08 9.44E-06 
6 MA1304.1 WRKY59 (HAAAAGTCAAMN) 2.65E-08 1.30E-05 
6 MA1076.1 WRKY15 (NRGTCAACSN) 2.69E-08 1.32E-05 
6 MA1077.1 WRKY18 (NHRGTCAAVV) 3.14E-08 1.54E-05 
6 MA1311.1 WRKY28 (DDCGTTGACTTTT) 4.69E-08 2.30E-05 
6 MA1302.1 WRKY65 (AAAAGTCAACG) 5.61E-08 2.75E-05 
6 MA1088.1 WRKY48 (NNRGTCAAMN) 7.53E-08 3.68E-05 
6 MA1316.1 WRKY71 (AAAAGTCAACG) 7.80E-08 3.82E-05 
6 MA1091.1 WRKY62 (TGGTCAAC) 7.88E-08 3.85E-05 
6 MA1314.1 WRKY14 (AAAAGTCAACGNH) 7.93E-08 3.88E-05 
6 MA1087.1 WRKY45 (CGTTGACY) 9.30E-08 4.55E-05 
6 MA1295.1 WRKY20 (DNCGTTGACYWDD) 1.15E-07 5.65E-05 
6 MA1310.1 WRKY42 (BWTDMHHHNNCGTTGACTWWD) 1.92E-07 9.40E-05 
6 MA1305.1 WRKY55 (DNCGTTGACTTT) 1.97E-07 9.64E-05 
6 MA1298.1 WRKY29 (AAAAGTCAACK) 2.04E-07 9.96E-05 
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6 MA1301.1 WRKY33 (AAAAGTCAACG) 2.80E-07 0.0001371 
6 MA1303.1 WRKY22 (AAAAGTCAACKNH) 3.06E-07 0.0001497 
6 MA1309.1 WRKY3 (AAAAGTCAACG) 5.84E-07 0.0002857 
6 MA1315.1 WRKY24 (NCGTTGACTTTTTW) 8.02E-07 0.0003919 
6 MA1081.1 WRKY25 (YGGTCAAC) 8.60E-07 0.0004203 
6 MA1306.1 WRKY11 (DNCGTTGACTTTTD) 1.08E-06 0.0005298 
6 MA1093.1 WRKY75 (HRGTCAAC) 1.09E-06 0.0005322 
6 MA1083.1 WRKY30 (RGTCAACGNN) 1.91E-06 0.0009341 
6 MA1080.1 WRKY23 (AGTCAACG) 2.47E-06 0.001208 
6 MA1308.1 WRKY70 (DNCGTTGACTTTT) 3.05E-06 0.001488 
6 MA1092.1 WRKY63 (HGGTCAAC) 3.49E-06 0.001706 
6 MA1075.1 WRKY12 (CGTTGACC) 3.50E-06 0.001708 
6 MA1084.1 WRKY38 (CGTTGACC) 5.90E-06 0.00288 
6 MA1312.1 WRKY47 (MYYKNCGTTGACYW) 6.42E-06 0.003135 
6 MA1078.1 WRKY2 (BGGTCAAM) 8.40E-06 0.004097 
6 MA1300.1 WRKY6 (CGTTGACTWWDDYWDWNHH) 1.29E-05 0.006281 
6 MA1318.1 WRKY27 (ANCGTTGACTTTT) 3.14E-05 0.01524 
6 MA1297.1 WRKY26 (AAAAGTCAACGNY) 3.40E-05 0.01648 
6 MA1317.1 WRKY50 (YKTTGACTTTTTH) 5.00E-05 0.02414 
8 MA1329.1 ATHB25 (THAYTAATTAHNHWW) 2.27E-05 0.01102 
8 MA1330.1 ATHB24 (AAWHRTAATTAAKDW) 2.87E-05 0.01395 
8 MA1326.1 ATHB33 (NHGTRATTARB) 4.06E-05 0.01968 
8 MA0933.1 AHL20 (AATTAAWT) 4.91E-05 0.0237 
8 MA0934.1 AHL25 (AWTTAAWT) 4.98E-05 0.02404 
11 MA1272.1 AT2G28810 (TTYTTTTTTTTTWACTTTTTB) 6.81E-05 0.03276 
12 MA1094.1 WRKY8 (NRGTCAAMN) 1.59E-13 7.75E-11 
12 MA1076.1 WRKY15 (NRGTCAACSN) 9.01E-13 4.40E-10 
12 MA1079.1 WRKY21 (NNRGTCAACG) 9.19E-13 4.50E-10 
12 MA1080.1 WRKY23 (AGTCAACG) 1.09E-12 5.34E-10 
12 MA1088.1 WRKY48 (NNRGTCAAMN) 1.25E-12 6.13E-10 
12 MA1086.1 WRKY43 (HRGTCAAMVN) 1.84E-12 9.02E-10 
12 MA1077.1 WRKY18 (NHRGTCAAVV) 2.61E-12 1.28E-09 
12 MA1093.1 WRKY75 (HRGTCAAC) 2.88E-12 1.41E-09 
12 MA1295.1 WRKY20 (DNCGTTGACYWDD) 2.96E-12 1.45E-09 
12 MA1087.1 WRKY45 (CGTTGACY) 4.56E-12 2.23E-09 
12 MA1089.1 WRKY57 (DWRGTCAAMN) 1.18E-11 5.76E-09 
12 MA1091.1 WRKY62 (TGGTCAAC) 5.48E-11 2.68E-08 
12 MA1305.1 WRKY55 (DNCGTTGACTTT) 8.87E-11 4.34E-08 
12 MA1301.1 WRKY33 (AAAAGTCAACG) 9.00E-11 4.40E-08 
12 MA1300.1 WRKY6 (CGTTGACTWWDDYWDWNHH) 9.05E-11 4.43E-08 
12 MA1084.1 WRKY38 (CGTTGACC) 1.71E-10 8.37E-08 
12 MA1081.1 WRKY25 (YGGTCAAC) 2.03E-10 9.94E-08 
12 MA1083.1 WRKY30 (RGTCAACGNN) 2.16E-10 1.05E-07 
12 MA1078.1 WRKY2 (BGGTCAAM) 2.34E-10 1.15E-07 
12 MA1298.1 WRKY29 (AAAAGTCAACK) 3.73E-10 1.83E-07 
12 MA1090.1 WRKY60 (NYGGTCAACSN) 4.68E-10 2.29E-07 
12 MA1314.1 WRKY14 (AAAAGTCAACGNH) 5.66E-10 2.77E-07 
12 MA1307.1 WRKY31 (DDNNHWRHHAAAGTCAACG) 6.45E-10 3.15E-07 
12 MA1315.1 WRKY24 (NCGTTGACTTTTTW) 6.47E-10 3.16E-07 
12 MA1309.1 WRKY3 (AAAAGTCAACG) 1.20E-09 5.85E-07 
12 MA1311.1 WRKY28 (DDCGTTGACTTTT) 1.43E-09 7.01E-07 
12 MA1075.1 WRKY12 (CGTTGACC) 2.24E-09 1.09E-06 
12 MA1302.1 WRKY65 (AAAAGTCAACG) 3.08E-09 1.51E-06 
12 MA1308.1 WRKY70 (DNCGTTGACTTTT) 4.02E-09 1.97E-06 
12 MA1303.1 WRKY22 (AAAAGTCAACKNH) 8.02E-09 3.92E-06 
12 MA1306.1 WRKY11 (DNCGTTGACTTTTD) 9.53E-09 4.66E-06 
12 MA1310.1 WRKY42 (BWTDMHHHNNCGTTGACTWWD) 1.18E-08 5.75E-06 
12 MA1316.1 WRKY71 (AAAAGTCAACG) 1.82E-08 8.90E-06 
12 MA1092.1 WRKY63 (HGGTCAAC) 2.29E-08 1.12E-05 
12 MA1297.1 WRKY26 (AAAAGTCAACGNY) 4.50E-08 2.20E-05 
12 MA1304.1 WRKY59 (HAAAAGTCAAMN) 4.77E-08 2.33E-05 
12 MA1085.2 WRKY40 (HWAGTCAANN) 2.85E-07 0.0001394 
12 MA1312.1 WRKY47 (MYYKNCGTTGACYW) 4.88E-07 0.0002386 
12 MA1299.1 WRKY17 (AAAAAGTCAACGNH) 4.98E-06 0.002432 
12 MA1318.1 WRKY27 (ANCGTTGACTTTT) 9.37E-06 0.004573 
12 MA0589.1 ZAP1 (TTGACCGAGYY) 1.35E-05 0.00656 
12 MA1317.1 WRKY50 (YKTTGACTTTTTH) 3.24E-05 0.01572 
13 MA1088.1 WRKY48 (NNRGTCAAMN) 1.30E-13 6.36E-11 
13 MA1094.1 WRKY8 (NRGTCAAMN) 1.44E-13 7.03E-11 
13 MA1076.1 WRKY15 (NRGTCAACSN) 2.14E-12 1.05E-09 
13 MA1086.1 WRKY43 (HRGTCAAMVN) 1.63E-11 7.96E-09 
13 MA1089.1 WRKY57 (DWRGTCAAMN) 1.93E-11 9.46E-09 
13 MA1093.1 WRKY75 (HRGTCAAC) 1.13E-10 5.53E-08 
13 MA1079.1 WRKY21 (NNRGTCAACG) 1.44E-10 7.04E-08 
13 MA1077.1 WRKY18 (NHRGTCAAVV) 1.46E-10 7.11E-08 
13 MA1090.1 WRKY60 (NYGGTCAACSN) 1.82E-10 8.89E-08 



6. Supplement 

  132 

Cluster Motif ID Binding TF Motif p-val adj. p-val 
13 MA1083.1 WRKY30 (RGTCAACGNN) 3.01E-10 1.47E-07 
13 MA1075.1 WRKY12 (CGTTGACC) 4.88E-10 2.39E-07 
13 MA1078.1 WRKY2 (BGGTCAAM) 9.69E-10 4.74E-07 
13 MA1311.1 WRKY28 (DDCGTTGACTTTT) 2.02E-09 9.85E-07 
13 MA1084.1 WRKY38 (CGTTGACC) 2.03E-09 9.90E-07 
13 MA1305.1 WRKY55 (DNCGTTGACTTT) 2.60E-09 1.27E-06 
13 MA1092.1 WRKY63 (HGGTCAAC) 5.89E-09 2.88E-06 
13 MA1315.1 WRKY24 (NCGTTGACTTTTTW) 1.18E-08 5.75E-06 
13 MA1300.1 WRKY6 (CGTTGACTWWDDYWDWNHH) 1.37E-08 6.71E-06 
13 MA1091.1 WRKY62 (TGGTCAAC) 1.65E-08 8.06E-06 
13 MA1309.1 WRKY3 (AAAAGTCAACG) 3.11E-08 1.52E-05 
13 MA1295.1 WRKY20 (DNCGTTGACYWDD) 3.22E-08 1.58E-05 
13 MA1299.1 WRKY17 (AAAAAGTCAACGNH) 4.05E-08 1.98E-05 
13 MA1314.1 WRKY14 (AAAAGTCAACGNH) 4.27E-08 2.09E-05 
13 MA1081.1 WRKY25 (YGGTCAAC) 4.52E-08 2.21E-05 
13 MA1313.1 WRKY7 (DNCGTTGACTTTTT) 5.56E-08 2.72E-05 
13 MA1087.1 WRKY45 (CGTTGACY) 5.79E-08 2.83E-05 
13 MA1308.1 WRKY70 (DNCGTTGACTTTT) 7.20E-08 3.52E-05 
13 MA1302.1 WRKY65 (AAAAGTCAACG) 7.83E-08 3.83E-05 
13 MA1301.1 WRKY33 (AAAAGTCAACG) 8.65E-08 4.23E-05 
13 MA1303.1 WRKY22 (AAAAGTCAACKNH) 9.26E-08 4.53E-05 
13 MA1316.1 WRKY71 (AAAAGTCAACG) 9.98E-08 4.88E-05 
13 MA0589.1 ZAP1 (TTGACCGAGYY) 1.18E-07 5.79E-05 
13 MA1310.1 WRKY42 (BWTDMHHHNNCGTTGACTWWD) 1.77E-07 8.68E-05 
13 MA1298.1 WRKY29 (AAAAGTCAACK) 1.82E-07 8.87E-05 
13 MA1312.1 WRKY47 (MYYKNCGTTGACYW) 2.04E-07 9.97E-05 
13 MA1085.2 WRKY40 (HWAGTCAANN) 2.32E-07 0.0001136 
13 MA1318.1 WRKY27 (ANCGTTGACTTTT) 2.35E-07 0.0001151 
13 MA1317.1 WRKY50 (YKTTGACTTTTTH) 2.58E-07 0.0001261 
13 MA1304.1 WRKY59 (HAAAAGTCAAMN) 4.10E-07 0.0002002 
13 MA1307.1 WRKY31 (DDNNHWRHHAAAGTCAACG) 5.98E-07 0.0002921 
13 MA1306.1 WRKY11 (DNCGTTGACTTTTD) 7.23E-07 0.0003537 
13 MA1297.1 WRKY26 (AAAAGTCAACGNY) 8.58E-07 0.0004196 
13 MA1197.1 CAMTA1 (AAARCGCGTGDD) 1.47E-06 0.0007161 
13 MA0970.1 CMTA3 (CCGCGTNNN) 2.05E-06 0.001002 
13 MA1080.1 WRKY23 (AGTCAACG) 3.19E-06 0.001557 
13 MA0969.1 CMTA2 (NNDVCGCGT) 4.04E-06 0.001972 
13 MA1296.1 WRKY46 (CGTTGACTTTK) 3.40E-05 0.01647 
14 MA1316.1 WRKY71 (AAAAGTCAACG) 2.81E-10 1.37E-07 
14 MA1306.1 WRKY11 (DNCGTTGACTTTTD) 5.16E-10 2.52E-07 
14 MA1089.1 WRKY57 (DWRGTCAAMN) 8.13E-10 3.98E-07 
14 MA1298.1 WRKY29 (AAAAGTCAACK) 8.89E-10 4.35E-07 
14 MA1311.1 WRKY28 (DDCGTTGACTTTT) 1.19E-09 5.82E-07 
14 MA1317.1 WRKY50 (YKTTGACTTTTTH) 2.62E-09 1.28E-06 
14 MA1094.1 WRKY8 (NRGTCAAMN) 2.73E-09 1.33E-06 
14 MA1303.1 WRKY22 (AAAAGTCAACKNH) 2.85E-09 1.40E-06 
14 MA1299.1 WRKY17 (AAAAAGTCAACGNH) 5.70E-09 2.79E-06 
14 MA1088.1 WRKY48 (NNRGTCAAMN) 6.12E-09 2.99E-06 
14 MA1304.1 WRKY59 (HAAAAGTCAAMN) 6.16E-09 3.01E-06 
14 MA1314.1 WRKY14 (AAAAGTCAACGNH) 1.59E-08 7.78E-06 
14 MA1301.1 WRKY33 (AAAAGTCAACG) 1.94E-08 9.47E-06 
14 MA1076.1 WRKY15 (NRGTCAACSN) 2.00E-08 9.77E-06 
14 MA1318.1 WRKY27 (ANCGTTGACTTTT) 3.36E-08 1.64E-05 
14 MA1309.1 WRKY3 (AAAAGTCAACG) 3.75E-08 1.84E-05 
14 MA1315.1 WRKY24 (NCGTTGACTTTTTW) 4.57E-08 2.23E-05 
14 MA1310.1 WRKY42 (BWTDMHHHNNCGTTGACTWWD) 1.60E-07 7.81E-05 
14 MA1297.1 WRKY26 (AAAAGTCAACGNY) 1.68E-07 8.19E-05 
14 MA1086.1 WRKY43 (HRGTCAAMVN) 1.81E-07 8.84E-05 
14 MA1093.1 WRKY75 (HRGTCAAC) 1.88E-07 9.20E-05 
14 MA1079.1 WRKY21 (NNRGTCAACG) 1.90E-07 9.31E-05 
14 MA1302.1 WRKY65 (AAAAGTCAACG) 2.14E-07 0.0001047 
14 MA1313.1 WRKY7 (DNCGTTGACTTTTT) 2.89E-07 0.0001414 
14 MA1300.1 WRKY6 (CGTTGACTWWDDYWDWNHH) 7.11E-07 0.0003477 
14 MA1077.1 WRKY18 (NHRGTCAAVV) 9.78E-07 0.000478 
14 MA1307.1 WRKY31 (DDNNHWRHHAAAGTCAACG) 1.07E-06 0.0005205 
14 MA1295.1 WRKY20 (DNCGTTGACYWDD) 1.32E-06 0.0006472 
14 MA1083.1 WRKY30 (RGTCAACGNN) 3.25E-06 0.00159 
14 MA1305.1 WRKY55 (DNCGTTGACTTT) 4.95E-06 0.002418 
14 MA1091.1 WRKY62 (TGGTCAAC) 9.88E-06 0.004819 
14 MA1308.1 WRKY70 (DNCGTTGACTTTT) 1.10E-05 0.00538 
14 MA0937.1 NAC055 (ACACGTAA) 1.16E-05 0.005662 
14 MA1078.1 WRKY2 (BGGTCAAM) 1.18E-05 0.00577 
14 MA1085.2 WRKY40 (HWAGTCAANN) 1.31E-05 0.006386 
14 MA1296.1 WRKY46 (CGTTGACTTTK) 1.45E-05 0.007077 
14 MA1090.1 WRKY60 (NYGGTCAACSN) 1.58E-05 0.007689 
14 MA1087.1 WRKY45 (CGTTGACY) 1.71E-05 0.008343 
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14 MA1383.1 KAN2 (HTHRGAATATTCTTT) 4.82E-05 0.02328 
14 MA0982.1 DOF2.4 (DWAAAGB) 6.16E-05 0.02965 
14 MA1075.1 WRKY12 (CGTTGACC) 8.89E-05 0.04253 
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Supplement Table 5:	 Known TF-motifs enriched in C.rubella 5´regulatory regions of DEGs.  
Known TF-motifs were determined using AME for the -500 bp region upstream of the transcriptional start site. 
The motifs were determined separately for each expression clusters depicted in Supplemental Figure 4. 

Cluster Motif ID Binding TF Motif p-val adj. p-val 
2 MA1089.1 WRKY57 (DWRGTCAAMN) 1.23E-16 5.99E-14 
2 MA1298.1 WRKY29 (AAAAGTCAACK) 1.50E-16 7.36E-14 
2 MA1302.1 WRKY65 (AAAAGTCAACG) 3.61E-16 1.76E-13 
2 MA1303.1 WRKY22 (AAAAGTCAACKNH) 5.38E-16 2.63E-13 
2 MA1314.1 WRKY14 (AAAAGTCAACGNH) 6.21E-16 3.04E-13 
2 MA1308.1 WRKY70 (DNCGTTGACTTTT) 1.02E-15 4.98E-13 
2 MA1311.1 WRKY28 (DDCGTTGACTTTT) 1.08E-15 5.29E-13 
2 MA1306.1 WRKY11 (DNCGTTGACTTTTD) 2.01E-15 9.80E-13 
2 MA1094.1 WRKY8 (NRGTCAAMN) 3.01E-15 1.47E-12 
2 MA1318.1 WRKY27 (ANCGTTGACTTTT) 5.53E-15 2.70E-12 
2 MA1310.1 WRKY42 (BWTDMHHHNNCGTTGACTWWD) 1.50E-14 7.35E-12 
2 MA1316.1 WRKY71 (AAAAGTCAACG) 1.63E-14 7.97E-12 
2 MA1086.1 WRKY43 (HRGTCAAMVN) 1.82E-14 8.90E-12 
2 MA1305.1 WRKY55 (DNCGTTGACTTT) 2.33E-14 1.14E-11 
2 MA1079.1 WRKY21 (NNRGTCAACG) 3.47E-14 1.70E-11 
2 MA1304.1 WRKY59 (HAAAAGTCAAMN) 7.32E-14 3.58E-11 
2 MA1301.1 WRKY33 (AAAAGTCAACG) 8.30E-14 4.06E-11 
2 MA1088.1 WRKY48 (NNRGTCAAMN) 1.01E-13 4.92E-11 
2 MA1076.1 WRKY15 (NRGTCAACSN) 2.25E-13 1.10E-10 
2 MA1077.1 WRKY18 (NHRGTCAAVV) 2.34E-13 1.14E-10 
2 MA1317.1 WRKY50 (YKTTGACTTTTTH) 2.38E-13 1.16E-10 
2 MA1093.1 WRKY75 (HRGTCAAC) 3.17E-13 1.55E-10 
2 MA1309.1 WRKY3 (AAAAGTCAACG) 4.38E-13 2.14E-10 
2 MA1085.2 WRKY40 (HWAGTCAANN) 4.47E-13 2.18E-10 
2 MA1295.1 WRKY20 (DNCGTTGACYWDD) 5.17E-13 2.53E-10 
2 MA1300.1 WRKY6 (CGTTGACTWWDDYWDWNHH) 6.02E-13 2.94E-10 
2 MA1297.1 WRKY26 (AAAAGTCAACGNY) 7.27E-13 3.56E-10 
2 MA1315.1 WRKY24 (NCGTTGACTTTTTW) 7.37E-13 3.60E-10 
2 MA1313.1 WRKY7 (DNCGTTGACTTTTT) 2.06E-12 1.01E-09 
2 MA1083.1 WRKY30 (RGTCAACGNN) 5.33E-12 2.61E-09 
2 MA1307.1 WRKY31 (DDNNHWRHHAAAGTCAACG) 5.44E-12 2.66E-09 
2 MA1087.1 WRKY45 (CGTTGACY) 1.25E-11 6.09E-09 
2 MA1299.1 WRKY17 (AAAAAGTCAACGNH) 3.17E-11 1.55E-08 
2 MA1090.1 WRKY60 (NYGGTCAACSN) 2.32E-10 1.14E-07 
2 MA1078.1 WRKY2 (BGGTCAAM) 2.45E-10 1.20E-07 
2 MA1091.1 WRKY62 (TGGTCAAC) 2.74E-10 1.34E-07 
2 MA1092.1 WRKY63 (HGGTCAAC) 5.76E-10 2.82E-07 
2 MA1296.1 WRKY46 (CGTTGACTTTK) 1.25E-09 6.12E-07 
2 MA1081.1 WRKY25 (YGGTCAAC) 1.44E-09 7.02E-07 
2 MA1080.1 WRKY23 (AGTCAACG) 2.21E-09 1.08E-06 
2 MA1075.1 WRKY12 (CGTTGACC) 3.06E-09 1.49E-06 
2 MA1084.1 WRKY38 (CGTTGACC) 5.81E-09 2.84E-06 
2 MA1312.1 WRKY47 (MYYKNCGTTGACYW) 9.30E-09 4.55E-06 
2 MA1027.1 KAN1 (RNWTATTC) 1.53E-08 7.50E-06 
2 MA0982.1 DOF2.4 (DWAAAGB) 1.52E-06 0.0007441 
2 MA1385.1 AT2G40260 (TWWWAAHATTCTYTT) 8.20E-06 0.004001 
2 MA0082.1 squamosa (MCAWAWATRGWAAN) 1.51E-05 0.007333 
2 MA1167.1 AT2G03500 (RGAATATTCND) 1.78E-05 0.00867 
2 MA0932.1 AHL12 (AAWWWWTT) 1.82E-05 0.008853 
2 MA1383.1 KAN2 (HTHRGAATATTCTTT) 2.11E-05 0.01025 
2 MA0934.1 AHL25 (AWTTAAWT) 3.75E-05 0.01819 
2 MA0933.1 AHL20 (AATTAAWT) 3.85E-05 0.01865 
2 MA0981.1 DOF1.8 (NNWAAAGBNN) 4.05E-05 0.01959 
2 MA1071.1 DOF5.3 (NNWAAMG) 4.47E-05 0.02162 
2 MA1389.1 AT5G29000 (AARGAATATTCBNWW) 5.56E-05 0.02684 
2 MA1166.1 AT3G12730 (AAARRGAATATTCY) 9.77E-05 0.04667 
2 MA0953.1 ATHB-6 (NCAATHATD) 9.94E-05 0.04744 
3 MA1309.1 WRKY3 (AAAAGTCAACG) 8.46E-05 0.04054 
3 MA1301.1 WRKY33 (AAAAGTCAACG) 8.61E-05 0.04122 
4 MA1303.1 WRKY22 (AAAAGTCAACKNH) 3.40E-05 0.01646 
4 MA1308.1 WRKY70 (DNCGTTGACTTTT) 3.54E-05 0.01716 
4 MA1298.1 WRKY29 (AAAAGTCAACK) 6.83E-05 0.03284 
4 MA1306.1 WRKY11 (DNCGTTGACTTTTD) 7.88E-05 0.0378 
4 MA1302.1 WRKY65 (AAAAGTCAACG) 7.96E-05 0.03817 
4 MA1314.1 WRKY14 (AAAAGTCAACGNH) 9.70E-05 0.04633 
5 MA1091.1 WRKY62 (TGGTCAAC) 1.53E-08 7.48E-06 
5 MA1295.1 WRKY20 (DNCGTTGACYWDD) 3.60E-08 1.76E-05 
5 MA1077.1 WRKY18 (NHRGTCAAVV) 7.31E-08 3.57E-05 
5 MA1088.1 WRKY48 (NNRGTCAAMN) 7.79E-08 3.81E-05 
5 MA1094.1 WRKY8 (NRGTCAAMN) 1.23E-07 6.00E-05 
5 MA1090.1 WRKY60 (NYGGTCAACSN) 1.39E-07 6.78E-05 
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5 MA1081.1 WRKY25 (YGGTCAAC) 1.54E-07 7.54E-05 
5 MA1093.1 WRKY75 (HRGTCAAC) 2.20E-07 0.0001077 
5 MA1078.1 WRKY2 (BGGTCAAM) 2.52E-07 0.0001232 
5 MA1076.1 WRKY15 (NRGTCAACSN) 3.67E-07 0.0001796 
5 MA1086.1 WRKY43 (HRGTCAAMVN) 6.30E-07 0.000308 
5 MA1089.1 WRKY57 (DWRGTCAAMN) 1.87E-06 0.0009134 
5 MA1092.1 WRKY63 (HGGTCAAC) 2.11E-06 0.00103 
5 MA0589.1 ZAP1 (TTGACCGAGYY) 5.00E-06 0.002443 
5 MA1309.1 WRKY3 (AAAAGTCAACG) 5.18E-06 0.002532 
5 MA1300.1 WRKY6 (CGTTGACTWWDDYWDWNHH) 6.30E-06 0.003074 
5 MA1311.1 WRKY28 (DDCGTTGACTTTT) 6.41E-06 0.003129 
5 MA1079.1 WRKY21 (NNRGTCAACG) 9.32E-06 0.004545 
5 MA1304.1 WRKY59 (HAAAAGTCAAMN) 1.15E-05 0.005615 
5 MA1301.1 WRKY33 (AAAAGTCAACG) 1.19E-05 0.005805 
5 MA1315.1 WRKY24 (NCGTTGACTTTTTW) 1.30E-05 0.006359 
5 MA1087.1 WRKY45 (CGTTGACY) 2.27E-05 0.01103 
5 MA1305.1 WRKY55 (DNCGTTGACTTT) 2.52E-05 0.01224 
5 MA1080.1 WRKY23 (AGTCAACG) 3.11E-05 0.01511 
5 MA1314.1 WRKY14 (AAAAGTCAACGNH) 4.27E-05 0.02064 
5 MA1083.1 WRKY30 (RGTCAACGNN) 4.45E-05 0.02154 
5 MA1084.1 WRKY38 (CGTTGACC) 4.76E-05 0.023 
5 MA1310.1 WRKY42 (BWTDMHHHNNCGTTGACTWWD) 4.80E-05 0.0232 
5 MA1075.1 WRKY12 (CGTTGACC) 6.12E-05 0.02947 
5 MA1302.1 WRKY65 (AAAAGTCAACG) 8.91E-05 0.04263 
5 MA1316.1 WRKY71 (AAAAGTCAACG) 9.49E-05 0.04533 
6 MA1090.1 WRKY60 (NYGGTCAACSN) 1.40E-08 6.86E-06 
6 MA1087.1 WRKY45 (CGTTGACY) 3.60E-08 1.76E-05 
6 MA1094.1 WRKY8 (NRGTCAAMN) 4.26E-08 2.08E-05 
6 MA1086.1 WRKY43 (HRGTCAAMVN) 5.25E-08 2.57E-05 
6 MA1080.1 WRKY23 (AGTCAACG) 5.42E-08 2.65E-05 
6 MA1076.1 WRKY15 (NRGTCAACSN) 5.56E-08 2.72E-05 
6 MA1083.1 WRKY30 (RGTCAACGNN) 7.25E-08 3.54E-05 
6 MA1078.1 WRKY2 (BGGTCAAM) 7.48E-08 3.66E-05 
6 MA1077.1 WRKY18 (NHRGTCAAVV) 7.51E-08 3.67E-05 
6 MA1305.1 WRKY55 (DNCGTTGACTTT) 9.70E-08 4.74E-05 
6 MA1084.1 WRKY38 (CGTTGACC) 1.36E-07 6.64E-05 
6 MA1295.1 WRKY20 (DNCGTTGACYWDD) 1.52E-07 7.44E-05 
6 MA1088.1 WRKY48 (NNRGTCAAMN) 1.54E-07 7.53E-05 
6 MA1092.1 WRKY63 (HGGTCAAC) 2.24E-07 0.0001097 
6 MA1081.1 WRKY25 (YGGTCAAC) 2.33E-07 0.0001139 
6 MA1075.1 WRKY12 (CGTTGACC) 2.39E-07 0.0001166 
6 MA1302.1 WRKY65 (AAAAGTCAACG) 3.35E-07 0.0001636 
6 MA1079.1 WRKY21 (NNRGTCAACG) 3.40E-07 0.000166 
6 MA1316.1 WRKY71 (AAAAGTCAACG) 4.76E-07 0.0002325 
6 MA1093.1 WRKY75 (HRGTCAAC) 6.22E-07 0.0003043 
6 MA1089.1 WRKY57 (DWRGTCAAMN) 6.65E-07 0.000325 
6 MA1315.1 WRKY24 (NCGTTGACTTTTTW) 7.19E-07 0.0003517 
6 MA0589.1 ZAP1 (TTGACCGAGYY) 7.52E-07 0.0003674 
6 MA1310.1 WRKY42 (BWTDMHHHNNCGTTGACTWWD) 1.34E-06 0.0006568 
6 MA1311.1 WRKY28 (DDCGTTGACTTTT) 1.36E-06 0.0006621 
6 MA1314.1 WRKY14 (AAAAGTCAACGNH) 1.37E-06 0.0006718 
6 MA1301.1 WRKY33 (AAAAGTCAACG) 1.40E-06 0.000683 
6 MA1309.1 WRKY3 (AAAAGTCAACG) 3.13E-06 0.001529 
6 MA1304.1 WRKY59 (HAAAAGTCAAMN) 3.76E-06 0.001836 
6 MA1297.1 WRKY26 (AAAAGTCAACGNY) 7.94E-06 0.003873 
6 MA1303.1 WRKY22 (AAAAGTCAACKNH) 8.93E-06 0.004356 
6 MA1312.1 WRKY47 (MYYKNCGTTGACYW) 9.34E-06 0.004555 
6 MA1298.1 WRKY29 (AAAAGTCAACK) 1.06E-05 0.005163 
6 MA1091.1 WRKY62 (TGGTCAAC) 1.08E-05 0.005258 
6 MA1317.1 WRKY50 (YKTTGACTTTTTH) 1.15E-05 0.0056 
6 MA1197.1 CAMTA1 (AAARCGCGTGDD) 1.70E-05 0.008297 
6 MA1306.1 WRKY11 (DNCGTTGACTTTTD) 1.84E-05 0.008952 
6 MA1300.1 WRKY6 (CGTTGACTWWDDYWDWNHH) 1.85E-05 0.009001 
6 MA1308.1 WRKY70 (DNCGTTGACTTTT) 2.31E-05 0.01121 
6 MA0969.1 CMTA2 (NNDVCGCGT) 3.36E-05 0.01631 
6 MA0045.1 HMG-I/Y (VWAVAAAHRVMRAMAY) 4.47E-05 0.02163 
6 MA1307.1 WRKY31 (DDNNHWRHHAAAGTCAACG) 6.43E-05 0.03093 
6 MA1299.1 WRKY17 (AAAAAGTCAACGNH) 7.82E-05 0.03752 
6 MA0984.1 DOF5.7 (DAAARRKB) 7.87E-05 0.03773 
6 MA0970.1 CMTA3 (CCGCGTNNN) 8.73E-05 0.04181 
6 MA0559.1 PI (CCAAAARWRGAAAR) 0.0001001 0.04777 
7 MA0932.1 AHL12 (AAWWWWTT) 1.98E-05 0.00962 
7 MA0934.1 AHL25 (AWTTAAWT) 4.93E-05 0.0238 
8 MA0953.1 ATHB-6 (NCAATHATD) 3.06E-07 0.0001497 
8 MA0990.1 EDT1 (HAWTWAATGC) 2.59E-06 0.001265 
8 MA1214.1 ATHB40 (DHACCAATAATTGDDNHHWWW) 5.65E-06 0.002757 
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8 MA0578.1 SPL8 (WWDWHYGTACHHYWWW) 1.15E-05 0.005624 
8 MA1213.1 ATHB21 (NCAMCAATWATTGD) 1.90E-05 0.009255 
8 MA1375.1 ANL2 (GCATTAATTRY) 2.06E-05 0.01004 
8 MA1046.1 NTL9 (TTAAGTAAT) 2.39E-05 0.0116 
8 MA1369.1 HDG1 (RYAATTAATGM) 3.28E-05 0.01592 
8 MA0932.1 AHL12 (AAWWWWTT) 4.87E-05 0.02352 
8 MA0934.1 AHL25 (AWTTAAWT) 6.35E-05 0.03059 
8 MA1211.1 ATHB18 (NYAATYATTDD) 6.55E-05 0.0315 
8 MA1330.1 ATHB24 (AAWHRTAATTAAKDW) 0.0001038 0.04949 
8 MA0952.1 ATHB-51 (AATWATTG) 0.000104 0.04958 
13 MA1086.1 WRKY43 (HRGTCAAMVN) 3.75E-10 1.84E-07 
13 MA1295.1 WRKY20 (DNCGTTGACYWDD) 4.11E-10 2.01E-07 
13 MA1089.1 WRKY57 (DWRGTCAAMN) 6.24E-10 3.05E-07 
13 MA1094.1 WRKY8 (NRGTCAAMN) 9.96E-10 4.87E-07 
13 MA1093.1 WRKY75 (HRGTCAAC) 2.49E-09 1.22E-06 
13 MA1315.1 WRKY24 (NCGTTGACTTTTTW) 2.87E-09 1.41E-06 
13 MA1298.1 WRKY29 (AAAAGTCAACK) 4.09E-09 2.00E-06 
13 MA1079.1 WRKY21 (NNRGTCAACG) 4.76E-09 2.33E-06 
13 MA1088.1 WRKY48 (NNRGTCAAMN) 6.52E-09 3.19E-06 
13 MA1076.1 WRKY15 (NRGTCAACSN) 7.04E-09 3.44E-06 
13 MA1301.1 WRKY33 (AAAAGTCAACG) 1.09E-08 5.31E-06 
13 MA1078.1 WRKY2 (BGGTCAAM) 1.24E-08 6.07E-06 
13 MA1309.1 WRKY3 (AAAAGTCAACG) 2.70E-08 1.32E-05 
13 MA1305.1 WRKY55 (DNCGTTGACTTT) 3.01E-08 1.47E-05 
13 MA1311.1 WRKY28 (DDCGTTGACTTTT) 5.19E-08 2.54E-05 
13 MA1300.1 WRKY6 (CGTTGACTWWDDYWDWNHH) 5.45E-08 2.67E-05 
13 MA1080.1 WRKY23 (AGTCAACG) 5.76E-08 2.82E-05 
13 MA1302.1 WRKY65 (AAAAGTCAACG) 6.52E-08 3.19E-05 
13 MA1304.1 WRKY59 (HAAAAGTCAAMN) 7.57E-08 3.70E-05 
13 MA1091.1 WRKY62 (TGGTCAAC) 7.59E-08 3.71E-05 
13 MA1306.1 WRKY11 (DNCGTTGACTTTTD) 8.70E-08 4.25E-05 
13 MA1312.1 WRKY47 (MYYKNCGTTGACYW) 8.86E-08 4.33E-05 
13 MA1084.1 WRKY38 (CGTTGACC) 1.17E-07 5.72E-05 
13 MA1087.1 WRKY45 (CGTTGACY) 1.26E-07 6.15E-05 
13 MA1077.1 WRKY18 (NHRGTCAAVV) 1.61E-07 7.88E-05 
13 MA1081.1 WRKY25 (YGGTCAAC) 2.23E-07 0.0001088 
13 MA1314.1 WRKY14 (AAAAGTCAACGNH) 2.43E-07 0.0001187 
13 MA1297.1 WRKY26 (AAAAGTCAACGNY) 4.24E-07 0.0002073 
13 MA1308.1 WRKY70 (DNCGTTGACTTTT) 4.65E-07 0.0002275 
13 MA1303.1 WRKY22 (AAAAGTCAACKNH) 5.30E-07 0.000259 
13 MA1310.1 WRKY42 (BWTDMHHHNNCGTTGACTWWD) 5.55E-07 0.0002713 
13 MA1083.1 WRKY30 (RGTCAACGNN) 7.61E-07 0.0003719 
13 MA1316.1 WRKY71 (AAAAGTCAACG) 8.28E-07 0.0004048 
13 MA1307.1 WRKY31 (DDNNHWRHHAAAGTCAACG) 9.69E-07 0.0004738 
13 MA1317.1 WRKY50 (YKTTGACTTTTTH) 2.25E-06 0.0011 
13 MA1085.2 WRKY40 (HWAGTCAANN) 2.51E-06 0.001228 
13 MA1090.1 WRKY60 (NYGGTCAACSN) 3.83E-06 0.001869 
13 MA1313.1 WRKY7 (DNCGTTGACTTTTT) 5.88E-06 0.002872 
13 MA1092.1 WRKY63 (HGGTCAAC) 1.01E-05 0.004931 
13 MA1075.1 WRKY12 (CGTTGACC) 2.89E-05 0.01401 
13 MA1299.1 WRKY17 (AAAAAGTCAACGNH) 4.91E-05 0.02374 
13 MA1318.1 WRKY27 (ANCGTTGACTTTT) 5.34E-05 0.02578 
13 MA1027.1 KAN1 (RNWTATTC) 5.44E-05 0.02624 
13 MA0982.1 DOF2.4 (DWAAAGB) 7.71E-05 0.03698 
14 MA1317.1 WRKY50 (YKTTGACTTTTTH) 2.31E-09 1.13E-06 
14 MA1316.1 WRKY71 (AAAAGTCAACG) 1.49E-08 7.29E-06 
14 MA1308.1 WRKY70 (DNCGTTGACTTTT) 1.53E-08 7.48E-06 
14 MA1318.1 WRKY27 (ANCGTTGACTTTT) 1.60E-08 7.83E-06 
14 MA1314.1 WRKY14 (AAAAGTCAACGNH) 3.19E-08 1.56E-05 
14 MA1089.1 WRKY57 (DWRGTCAAMN) 3.61E-08 1.77E-05 
14 MA1311.1 WRKY28 (DDCGTTGACTTTT) 4.26E-08 2.08E-05 
14 MA1086.1 WRKY43 (HRGTCAAMVN) 7.89E-08 3.86E-05 
14 MA1094.1 WRKY8 (NRGTCAAMN) 8.41E-08 4.11E-05 
14 MA1302.1 WRKY65 (AAAAGTCAACG) 9.83E-08 4.81E-05 
14 MA1299.1 WRKY17 (AAAAAGTCAACGNH) 9.89E-08 4.84E-05 
14 MA1306.1 WRKY11 (DNCGTTGACTTTTD) 1.05E-07 5.15E-05 
14 MA1303.1 WRKY22 (AAAAGTCAACKNH) 1.10E-07 5.35E-05 
14 MA1088.1 WRKY48 (NNRGTCAAMN) 1.61E-07 7.86E-05 
14 MA1305.1 WRKY55 (DNCGTTGACTTT) 2.65E-07 0.0001295 
14 MA1298.1 WRKY29 (AAAAGTCAACK) 2.71E-07 0.0001327 
14 MA1304.1 WRKY59 (HAAAAGTCAAMN) 2.83E-07 0.0001384 
14 MA1315.1 WRKY24 (NCGTTGACTTTTTW) 3.38E-07 0.0001651 
14 MA1310.1 WRKY42 (BWTDMHHHNNCGTTGACTWWD) 5.53E-07 0.0002705 
14 MA1083.1 WRKY30 (RGTCAACGNN) 6.12E-07 0.0002991 
14 MA1309.1 WRKY3 (AAAAGTCAACG) 6.94E-07 0.0003393 
14 MA1090.1 WRKY60 (NYGGTCAACSN) 9.20E-07 0.0004496 
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14 MA1079.1 WRKY21 (NNRGTCAACG) 9.40E-07 0.0004596 
14 MA1076.1 WRKY15 (NRGTCAACSN) 1.04E-06 0.0005086 
14 MA1301.1 WRKY33 (AAAAGTCAACG) 1.13E-06 0.0005516 
14 MA1077.1 WRKY18 (NHRGTCAAVV) 1.71E-06 0.0008361 
14 MA1297.1 WRKY26 (AAAAGTCAACGNY) 1.98E-06 0.0009663 
14 MA1085.2 WRKY40 (HWAGTCAANN) 2.76E-06 0.001347 
14 MA1300.1 WRKY6 (CGTTGACTWWDDYWDWNHH) 5.66E-06 0.002763 
14 MA1296.1 WRKY46 (CGTTGACTTTK) 6.59E-06 0.003215 
14 MA1313.1 WRKY7 (DNCGTTGACTTTTT) 7.13E-06 0.003478 
14 MA1084.1 WRKY38 (CGTTGACC) 1.78E-05 0.008663 
14 MA1093.1 WRKY75 (HRGTCAAC) 1.91E-05 0.009277 
14 MA1295.1 WRKY20 (DNCGTTGACYWDD) 3.93E-05 0.01905 
14 MA1075.1 WRKY12 (CGTTGACC) 4.38E-05 0.02118 
14 MA1307.1 WRKY31 (DDNNHWRHHAAAGTCAACG) 7.37E-05 0.03542 
14 MA1087.1 WRKY45 (CGTTGACY) 8.32E-05 0.03987 
14 MA1092.1 WRKY63 (HGGTCAAC) 9.26E-05 0.04425 
14 MA0951.1 ATHB-16 (TAATMATT) 9.93E-05 0.04739 
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Supplement Table 6 Known TF-motifs enriched in C. hirsuta 5´regulatory regions of DEGs.  
Known TF-motifs were determined using AME for the -500 bp region upstream of the transcriptional start site. 
The motifs were determined separately for each expression clusters depicted in Supplemental Figure 4.  

Cluster Motif ID Binding TF Motif p-val adj. p-val 
1 MA0930.1 ABF3 (ACACGTGT) 4.90E-06 2.39E-03 
1 MA1041.1 MYB55 (ACCTACCG) 9.10E-05 4.35E-02 
2 MA1088.1 WRKY48 (NNRGTCAAMN) 1.25E-08 6.13E-06 
2 MA1094.1 WRKY8 (NRGTCAAMN) 2.32E-08 1.14E-05 
2 MA1077.1 WRKY18 (NHRGTCAAVV) 4.31E-08 2.11E-05 
2 MA1086.1 WRKY43 (HRGTCAAMVN) 6.89E-08 3.37E-05 
2 MA1076.1 WRKY15 (NRGTCAACSN) 1.09E-07 5.32E-05 
2 MA1089.1 WRKY57 (DWRGTCAAMN) 2.28E-07 1.12E-04 
2 MA1083.1 WRKY30 (RGTCAACGNN) 2.31E-07 1.13E-04 
2 MA1079.1 WRKY21 (NNRGTCAACG) 2.35E-07 1.15E-04 
2 MA1090.1 WRKY60 (NYGGTCAACSN) 3.13E-07 1.53E-04 
2 MA1311.1 WRKY28 (DDCGTTGACTTTT) 3.17E-07 1.55E-04 
2 MA1300.1 WRKY6 (CGTTGACTWWDDYWDWNHH) 5.28E-07 2.58E-04 
2 MA1078.1 WRKY2 (BGGTCAAM) 7.81E-07 3.82E-04 
2 MA1093.1 WRKY75 (HRGTCAAC) 7.82E-07 3.82E-04 
2 MA1091.1 WRKY62 (TGGTCAAC) 7.97E-07 3.90E-04 
2 MA1305.1 WRKY55 (DNCGTTGACTTT) 1.28E-06 6.24E-04 
2 MA1317.1 WRKY50 (YKTTGACTTTTTH) 1.53E-06 7.49E-04 
2 MA1081.1 WRKY25 (YGGTCAAC) 1.76E-06 8.60E-04 
2 MA1084.1 WRKY38 (CGTTGACC) 1.98E-06 9.70E-04 
2 MA1092.1 WRKY63 (HGGTCAAC) 2.04E-06 9.98E-04 
2 MA1304.1 WRKY59 (HAAAAGTCAAMN) 2.60E-06 1.27E-03 
2 MA1309.1 WRKY3 (AAAAGTCAACG) 2.63E-06 1.29E-03 
2 MA1295.1 WRKY20 (DNCGTTGACYWDD) 2.68E-06 1.31E-03 
2 MA1085.2 WRKY40 (HWAGTCAANN) 2.69E-06 1.31E-03 
2 MA1316.1 WRKY71 (AAAAGTCAACG) 2.93E-06 1.43E-03 
2 MA1303.1 WRKY22 (AAAAGTCAACKNH) 4.02E-06 1.97E-03 
2 MA1310.1 WRKY42 (BWTDMHHHNNCGTTGACTWWD) 4.11E-06 2.01E-03 
2 MA1301.1 WRKY33 (AAAAGTCAACG) 4.19E-06 2.05E-03 
2 MA1314.1 WRKY14 (AAAAGTCAACGNH) 4.70E-06 2.30E-03 
2 MA1302.1 WRKY65 (AAAAGTCAACG) 5.19E-06 2.54E-03 
2 MA0589.1 ZAP1 (TTGACCGAGYY) 6.75E-06 3.30E-03 
2 MA1298.1 WRKY29 (AAAAGTCAACK) 6.83E-06 3.33E-03 
2 MA0932.1 AHL12 (AAWWWWTT) 6.97E-06 3.40E-03 
2 MA1308.1 WRKY70 (DNCGTTGACTTTT) 8.20E-06 4.00E-03 
2 MA1315.1 WRKY24 (NCGTTGACTTTTTW) 8.74E-06 4.27E-03 
2 MA1087.1 WRKY45 (CGTTGACY) 1.12E-05 5.48E-03 
2 MA1307.1 WRKY31 (DDNNHWRHHAAAGTCAACG) 1.55E-05 7.53E-03 
2 MA1306.1 WRKY11 (DNCGTTGACTTTTD) 1.75E-05 8.52E-03 
2 MA1075.1 WRKY12 (CGTTGACC) 1.90E-05 9.24E-03 
2 MA1379.1 SOL1 (WTTWAAAATTTAAAW) 2.87E-05 1.39E-02 
2 MA1380.1 AT2G20110 (WTTTAAATTTTTWAA) 3.01E-05 1.46E-02 
2 MA1161.1 TSO1 (WWTTWAAAATTTAAA) 3.34E-05 1.62E-02 
2 MA1080.1 WRKY23 (AGTCAACG) 4.08E-05 0.01975 
2 MA1318.1 WRKY27 (ANCGTTGACTTTT) 4.54E-05 0.02195 
2 MA0934.1 AHL25 (AWTTAAWT) 5.68E-05 0.0274 
4 MA1302.1 WRKY65 (AAAAGTCAACG) 2.23E-07 0.000109 
4 MA1305.1 WRKY55 (DNCGTTGACTTT) 2.94E-07 0.0001438 
4 MA1300.1 WRKY6 (CGTTGACTWWDDYWDWNHH) 3.49E-07 0.0001705 
4 MA1308.1 WRKY70 (DNCGTTGACTTTT) 6.01E-07 0.000294 
4 MA1315.1 WRKY24 (NCGTTGACTTTTTW) 6.57E-07 0.000321 
4 MA1295.1 WRKY20 (DNCGTTGACYWDD) 6.89E-07 0.0003366 
4 MA1314.1 WRKY14 (AAAAGTCAACGNH) 6.90E-07 0.0003373 
4 MA1092.1 WRKY63 (HGGTCAAC) 8.02E-07 0.0003922 
4 MA1309.1 WRKY3 (AAAAGTCAACG) 9.34E-07 0.0004566 
4 MA1084.1 WRKY38 (CGTTGACC) 1.05E-06 0.0005139 
4 MA1081.1 WRKY25 (YGGTCAAC) 1.53E-06 0.0007494 
4 MA1301.1 WRKY33 (AAAAGTCAACG) 1.65E-06 0.0008055 
4 MA1317.1 WRKY50 (YKTTGACTTTTTH) 1.75E-06 0.0008538 
4 MA1303.1 WRKY22 (AAAAGTCAACKNH) 1.89E-06 0.0009214 
4 MA1083.1 WRKY30 (RGTCAACGNN) 2.39E-06 0.001166 
4 MA1078.1 WRKY2 (BGGTCAAM) 2.41E-06 0.001175 
4 MA1310.1 WRKY42 (BWTDMHHHNNCGTTGACTWWD) 2.93E-06 0.001431 
4 MA1093.1 WRKY75 (HRGTCAAC) 3.12E-06 0.001526 
4 MA1306.1 WRKY11 (DNCGTTGACTTTTD) 4.46E-06 0.00218 
4 MA1316.1 WRKY71 (AAAAGTCAACG) 4.51E-06 0.002202 
4 MA1311.1 WRKY28 (DDCGTTGACTTTT) 4.92E-06 2.40E-03 
4 MA1304.1 WRKY59 (HAAAAGTCAAMN) 5.39E-06 2.63E-03 
4 MA1075.1 WRKY12 (CGTTGACC) 5.55E-06 2.71E-03 
4 MA1298.1 WRKY29 (AAAAGTCAACK) 6.31E-06 3.08E-03 
4 MA1089.1 WRKY57 (DWRGTCAAMN) 8.00E-06 3.90E-03 
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4 MA1077.1 WRKY18 (NHRGTCAAVV) 8.89E-06 4.34E-03 
4 MA1318.1 WRKY27 (ANCGTTGACTTTT) 9.53E-06 4.65E-03 
4 MA1087.1 WRKY45 (CGTTGACY) 1.02E-05 0.004997 
4 MA1313.1 WRKY7 (DNCGTTGACTTTTT) 2.06E-05 0.01004 
4 MA1299.1 WRKY17 (AAAAAGTCAACGNH) 2.14E-05 0.01042 
4 MA1307.1 WRKY31 (DDNNHWRHHAAAGTCAACG) 2.18E-05 0.01062 
4 MA1079.1 WRKY21 (NNRGTCAACG) 2.67E-05 0.01299 
4 MA1086.1 WRKY43 (HRGTCAAMVN) 2.99E-05 0.01449 
4 MA1076.1 WRKY15 (NRGTCAACSN) 5.60E-05 0.02703 
4 MA1090.1 WRKY60 (NYGGTCAACSN) 5.77E-05 0.02781 
4 MA1094.1 WRKY8 (NRGTCAAMN) 7.14E-05 0.03432 
4 MA1297.1 WRKY26 (AAAAGTCAACGNY) 9.34E-05 0.04466 
5 MA1092.1 WRKY63 (HGGTCAAC) 5.98E-05 0.02881 
5 MA1088.1 WRKY48 (NNRGTCAAMN) 9.01E-05 0.04309 
6 MA1086.1 WRKY43 (HRGTCAAMVN) 3.25E-06 0.001586 
6 MA1079.1 WRKY21 (NNRGTCAACG) 3.44E-06 0.001678 
6 MA1094.1 WRKY8 (NRGTCAAMN) 3.69E-06 0.001801 
6 MA1093.1 WRKY75 (HRGTCAAC) 4.02E-06 0.001963 
6 MA1089.1 WRKY57 (DWRGTCAAMN) 6.23E-06 0.00304 
6 MA1088.1 WRKY48 (NNRGTCAAMN) 7.45E-06 0.003634 
6 MA1087.1 WRKY45 (CGTTGACY) 1.72E-05 0.008387 
6 MA1076.1 WRKY15 (NRGTCAACSN) 2.29E-05 0.01111 
6 MA1091.1 WRKY62 (TGGTCAAC) 3.43E-05 0.01662 
6 MA1310.1 WRKY42 (BWTDMHHHNNCGTTGACTWWD) 3.89E-05 0.01886 
6 MA1302.1 WRKY65 (AAAAGTCAACG) 5.79E-05 0.02793 
6 MA1080.1 WRKY23 (AGTCAACG) 7.94E-05 3.81E-02 
6 MA1314.1 WRKY14 (AAAAGTCAACGNH) 8.12E-05 3.89E-02 
8 MA0934.1 AHL25 (AWTTAAWT) 1.01E-06 4.95E-04 
8 MA0953.1 ATHB-6 (NCAATHATD) 1.21E-06 5.92E-04 
8 MA0933.1 AHL20 (AATTAAWT) 1.72E-06 8.38E-04 
8 MA0578.1 SPL8 (WWDWHYGTACHHYWWW) 2.97E-06 1.45E-03 
8 MA0952.1 ATHB-51 (AATWATTG) 9.53E-06 4.65E-03 
8 MA0990.1 EDT1 (HAWTWAATGC) 1.17E-05 5.70E-03 
8 MA1215.1 ATHB53 (HCAATAATTGD) 1.40E-05 6.82E-03 
8 MA1212.1 ATHB13 (HYAATAATTDW) 1.71E-05 8.30E-03 
8 MA1209.1 ATHB20 (HYAATAATTRA) 4.88E-05 2.36E-02 
8 MA1274.1 OBP3 (TTTWCTTTTTHHYTTTTTTTT) 5.83E-05 2.81E-02 
8 MA0932.1 AHL12 (AAWWWWTT) 7.12E-05 0.03422 
8 MA1211.1 ATHB18 (NYAATYATTDD) 7.66E-05 0.03675 
8 MA1268.1 AT1G69570 (TTTTYACTTTTTYTTTTTTTTTTTTTW) 8.10E-05 0.03885 
8 MA1213.1 ATHB21 (NCAMCAATWATTGD) 9.18E-05 0.04391 
11 MA1026.2 ATHB15 (RAWDRTAATGATKAY) 9.41E-07 0.0004599 
11 MA1372.1 STZ (CACTNHCACTN) 6.18E-06 0.00302 
11 MA1326.1 ATHB33 (NHGTRATTARB) 3.02E-05 0.01466 
11 MA1329.1 ATHB25 (THAYTAATTAHNHWW) 3.40E-05 0.0165 
11 MA1369.1 HDG1 (RYAATTAATGM) 5.89E-05 0.0284 
11 MA1405.1 SIZF2 (BACTGACAGT) 7.56E-05 0.03627 
11 MA1375.1 ANL2 (GCATTAATTRY) 8.19E-05 0.03924 
11 MA0990.1 EDT1 (HAWTWAATGC) 8.69E-05 0.0416 
12 MA1079.1 WRKY21 (NNRGTCAACG) 1.11E-05 0.005421 
12 MA1094.1 WRKY8 (NRGTCAAMN) 1.49E-05 0.007279 
12 MA1089.1 WRKY57 (DWRGTCAAMN) 1.51E-05 0.007378 
12 MA1370.1 IDD5 (TTTTTGTCGTTTWSTG) 1.97E-05 0.009564 
12 MA1086.1 WRKY43 (HRGTCAAMVN) 2.48E-05 0.01207 
12 MA1088.1 WRKY48 (NNRGTCAAMN) 2.84E-05 0.01377 
12 MA1160.1 AT1G14580 (WWWWTTTTTGTCGTTTTSTK) 5.30E-05 0.02557 
12 MA1371.1 IDD4 (MASAAAAMGACAAAAAW) 6.25E-05 0.03012 
13 MA1086.1 WRKY43 (HRGTCAAMVN) 4.33E-12 2.12E-09 
13 MA1094.1 WRKY8 (NRGTCAAMN) 1.15E-11 5.62E-09 
13 MA1077.1 WRKY18 (NHRGTCAAVV) 2.55E-11 1.25E-08 
13 MA1089.1 WRKY57 (DWRGTCAAMN) 7.35E-11 3.60E-08 
13 MA1088.1 WRKY48 (NNRGTCAAMN) 1.33E-10 6.52E-08 
13 MA1079.1 WRKY21 (NNRGTCAACG) 1.49E-10 7.29E-08 
13 MA1076.1 WRKY15 (NRGTCAACSN) 1.82E-10 8.89E-08 
13 MA1300.1 WRKY6 (CGTTGACTWWDDYWDWNHH) 7.38E-10 3.61E-07 
13 MA1301.1 WRKY33 (AAAAGTCAACG) 8.09E-10 3.96E-07 
13 MA1315.1 WRKY24 (NCGTTGACTTTTTW) 9.34E-10 4.57E-07 
13 MA1295.1 WRKY20 (DNCGTTGACYWDD) 1.08E-09 5.30E-07 
13 MA1093.1 WRKY75 (HRGTCAAC) 2.53E-09 1.24E-06 
13 MA1309.1 WRKY3 (AAAAGTCAACG) 2.74E-09 1.34E-06 
13 MA1078.1 WRKY2 (BGGTCAAM) 2.78E-09 1.36E-06 
13 MA1305.1 WRKY55 (DNCGTTGACTTT) 3.82E-09 1.87E-06 
13 MA1092.1 WRKY63 (HGGTCAAC) 6.04E-09 2.95E-06 
13 MA1081.1 WRKY25 (YGGTCAAC) 8.97E-09 4.39E-06 
13 MA1090.1 WRKY60 (NYGGTCAACSN) 1.93E-08 9.45E-06 
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13 MA1307.1 WRKY31 (DDNNHWRHHAAAGTCAACG) 2.88E-08 1.41E-05 
13 MA1311.1 WRKY28 (DDCGTTGACTTTT) 3.01E-08 1.47E-05 
13 MA1304.1 WRKY59 (HAAAAGTCAAMN) 4.78E-08 2.34E-05 
13 MA1087.1 WRKY45 (CGTTGACY) 5.44E-08 2.66E-05 
13 MA1298.1 WRKY29 (AAAAGTCAACK) 6.98E-08 3.42E-05 
13 MA1080.1 WRKY23 (AGTCAACG) 7.08E-08 3.46E-05 
13 MA1302.1 WRKY65 (AAAAGTCAACG) 7.16E-08 3.50E-05 
13 MA1084.1 WRKY38 (CGTTGACC) 1.11E-07 5.43E-05 
13 MA1316.1 WRKY71 (AAAAGTCAACG) 1.26E-07 6.14E-05 
13 MA1314.1 WRKY14 (AAAAGTCAACGNH) 1.50E-07 7.32E-05 
13 MA1091.1 WRKY62 (TGGTCAAC) 1.79E-07 8.77E-05 
13 MA1303.1 WRKY22 (AAAAGTCAACKNH) 5.80E-07 2.84E-04 
13 MA1310.1 WRKY42 (BWTDMHHHNNCGTTGACTWWD) 7.75E-07 3.79E-04 
13 MA1083.1 WRKY30 (RGTCAACGNN) 8.11E-07 3.96E-04 
13 MA1306.1 WRKY11 (DNCGTTGACTTTTD) 8.85E-07 4.33E-04 
13 MA1075.1 WRKY12 (CGTTGACC) 1.22E-06 5.94E-04 
13 MA1317.1 WRKY50 (YKTTGACTTTTTH) 2.38E-06 1.16E-03 
13 MA1312.1 WRKY47 (MYYKNCGTTGACYW) 2.60E-06 1.27E-03 
13 MA1085.2 WRKY40 (HWAGTCAANN) 4.17E-06 2.04E-03 
13 MA1308.1 WRKY70 (DNCGTTGACTTTT) 4.29E-06 2.10E-03 
13 MA1297.1 WRKY26 (AAAAGTCAACGNY) 5.81E-06 2.84E-03 
13 MA1318.1 WRKY27 (ANCGTTGACTTTT) 6.55E-06 3.20E-03 
13 MA0982.1 DOF2.4 (DWAAAGB) 7.83E-06 3.82E-03 
13 MA1299.1 WRKY17 (AAAAAGTCAACGNH) 9.76E-06 4.76E-03 
13 MA1071.1 DOF5.3 (NNWAAMG) 1.97E-05 9.60E-03 
13 MA1313.1 WRKY7 (DNCGTTGACTTTTT) 6.24E-05 3.00E-02 
14 MA1089.1 WRKY57 (DWRGTCAAMN) 1.18E-12 5.79E-10 
14 MA1306.1 WRKY11 (DNCGTTGACTTTTD) 8.42E-12 4.12E-09 
14 MA1308.1 WRKY70 (DNCGTTGACTTTT) 1.01E-11 4.92E-09 
14 MA1303.1 WRKY22 (AAAAGTCAACKNH) 1.93E-11 9.44E-09 
14 MA1316.1 WRKY71 (AAAAGTCAACG) 3.70E-11 1.81E-08 
14 MA1086.1 WRKY43 (HRGTCAAMVN) 4.17E-11 2.04E-08 
14 MA1094.1 WRKY8 (NRGTCAAMN) 4.83E-11 2.36E-08 
14 MA1302.1 WRKY65 (AAAAGTCAACG) 4.89E-11 2.39E-08 
14 MA1314.1 WRKY14 (AAAAGTCAACGNH) 6.58E-11 3.22E-08 
14 MA1315.1 WRKY24 (NCGTTGACTTTTTW) 8.52E-11 4.16E-08 
14 MA1305.1 WRKY55 (DNCGTTGACTTT) 1.14E-10 5.60E-08 
14 MA1311.1 WRKY28 (DDCGTTGACTTTT) 1.46E-10 7.15E-08 
14 MA1299.1 WRKY17 (AAAAAGTCAACGNH) 2.51E-10 1.23E-07 
14 MA1304.1 WRKY59 (HAAAAGTCAAMN) 2.66E-10 1.30E-07 
14 MA1077.1 WRKY18 (NHRGTCAAVV) 3.11E-10 1.52E-07 
14 MA1088.1 WRKY48 (NNRGTCAAMN) 3.95E-10 1.93E-07 
14 MA1298.1 WRKY29 (AAAAGTCAACK) 4.43E-10 2.17E-07 
14 MA1313.1 WRKY7 (DNCGTTGACTTTTT) 5.73E-10 2.80E-07 
14 MA1079.1 WRKY21 (NNRGTCAACG) 1.21E-09 5.93E-07 
14 MA1317.1 WRKY50 (YKTTGACTTTTTH) 1.55E-09 7.57E-07 
14 MA1295.1 WRKY20 (DNCGTTGACYWDD) 2.24E-09 1.10E-06 
14 MA1076.1 WRKY15 (NRGTCAACSN) 2.30E-09 1.13E-06 
14 MA1318.1 WRKY27 (ANCGTTGACTTTT) 2.35E-09 1.15E-06 
14 MA1301.1 WRKY33 (AAAAGTCAACG) 3.26E-09 1.60E-06 
14 MA1083.1 WRKY30 (RGTCAACGNN) 3.42E-09 1.67E-06 
14 MA1310.1 WRKY42 (BWTDMHHHNNCGTTGACTWWD) 3.88E-09 1.90E-06 
14 MA1309.1 WRKY3 (AAAAGTCAACG) 4.88E-09 2.39E-06 
14 MA1093.1 WRKY75 (HRGTCAAC) 1.16E-08 5.66E-06 
14 MA1085.2 WRKY40 (HWAGTCAANN) 1.36E-08 6.66E-06 
14 MA1090.1 WRKY60 (NYGGTCAACSN) 2.21E-08 1.08E-05 
14 MA1300.1 WRKY6 (CGTTGACTWWDDYWDWNHH) 5.57E-08 2.72E-05 
14 MA1084.1 WRKY38 (CGTTGACC) 7.08E-08 3.46E-05 
14 MA1297.1 WRKY26 (AAAAGTCAACGNY) 7.65E-08 3.74E-05 
14 MA1092.1 WRKY63 (HGGTCAAC) 8.55E-08 4.18E-05 
14 MA1312.1 WRKY47 (MYYKNCGTTGACYW) 2.01E-07 9.84E-05 
14 MA1087.1 WRKY45 (CGTTGACY) 5.16E-07 2.52E-04 
14 MA1091.1 WRKY62 (TGGTCAAC) 6.43E-07 3.14E-04 
14 MA1080.1 WRKY23 (AGTCAACG) 7.03E-07 3.44E-04 
14 MA1307.1 WRKY31 (DDNNHWRHHAAAGTCAACG) 2.65E-06 1.29E-03 
14 MA1075.1 WRKY12 (CGTTGACC) 3.04E-06 1.49E-03 
14 MA1078.1 WRKY2 (BGGTCAAM) 8.25E-06 4.02E-03 
14 MA1081.1 WRKY25 (YGGTCAAC) 1.43E-05 6.97E-03 
14 MA0990.1 EDT1 (HAWTWAATGC) 4.45E-05 0.02152 
14 MA0969.1 CMTA2 (NNDVCGCGT) 5.94E-05 0.02863 
14 MA1296.1 WRKY46 (CGTTGACTTTK) 7.77E-05 0.0373 
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Supplement Table 7: Known TF-motifs enriched in E. salsugineum 5´regulatory regions of DEGs.  
Known TF-motifs were determined using AME for the -500 bp region upstream of the transcriptional start site. 
The motifs were determined separately for each expression clusters depicted in Supplemental Figure 4. 

Cluster Motif ID Binding TF Motif p-val adj. p-val 
2 MA1089.1 WRKY57 (DWRGTCAAMN) 1.76E-13 8.58E-11 
2 MA1094.1 WRKY8 (NRGTCAAMN) 3.27E-13 1.60E-10 
2 MA1088.1 WRKY48 (NNRGTCAAMN) 5.93E-12 2.90E-09 
2 MA1079.1 WRKY21 (NNRGTCAACG) 7.82E-12 3.82E-09 
2 MA1308.1 WRKY70 (DNCGTTGACTTTT) 1.45E-11 7.10E-09 
2 MA1083.1 WRKY30 (RGTCAACGNN) 2.64E-11 1.29E-08 
2 MA1076.1 WRKY15 (NRGTCAACSN) 3.48E-11 1.70E-08 
2 MA1086.1 WRKY43 (HRGTCAAMVN) 4.57E-11 2.24E-08 
2 MA1306.1 WRKY11 (DNCGTTGACTTTTD) 4.86E-11 2.38E-08 
2 MA1297.1 WRKY26 (AAAAGTCAACGNY) 6.76E-11 3.31E-08 
2 MA1314.1 WRKY14 (AAAAGTCAACGNH) 7.45E-11 3.64E-08 
2 MA1302.1 WRKY65 (AAAAGTCAACG) 8.14E-11 3.98E-08 
2 MA1313.1 WRKY7 (DNCGTTGACTTTTT) 1.53E-10 7.46E-08 
2 MA1318.1 WRKY27 (ANCGTTGACTTTT) 1.88E-10 9.21E-08 
2 MA1305.1 WRKY55 (DNCGTTGACTTT) 2.31E-10 1.13E-07 
2 MA1075.1 WRKY12 (CGTTGACC) 2.56E-10 1.25E-07 
2 MA1315.1 WRKY24 (NCGTTGACTTTTTW) 3.21E-10 1.57E-07 
2 MA1310.1 WRKY42 (BWTDMHHHNNCGTTGACTWWD) 5.42E-10 2.65E-07 
2 MA1317.1 WRKY50 (YKTTGACTTTTTH) 5.54E-10 2.71E-07 
2 MA1303.1 WRKY22 (AAAAGTCAACKNH) 6.27E-10 3.07E-07 
2 MA1295.1 WRKY20 (DNCGTTGACYWDD) 6.64E-10 3.25E-07 
2 MA1077.1 WRKY18 (NHRGTCAAVV) 7.21E-10 3.53E-07 
2 MA1311.1 WRKY28 (DDCGTTGACTTTT) 7.33E-10 3.58E-07 
2 MA1298.1 WRKY29 (AAAAGTCAACK) 8.83E-10 4.32E-07 
2 MA1087.1 WRKY45 (CGTTGACY) 1.22E-09 5.95E-07 
2 MA1085.2 WRKY40 (HWAGTCAANN) 1.26E-09 6.18E-07 
2 MA1304.1 WRKY59 (HAAAAGTCAAMN) 1.50E-09 7.32E-07 
2 MA1084.1 WRKY38 (CGTTGACC) 1.54E-09 7.52E-07 
2 MA1316.1 WRKY71 (AAAAGTCAACG) 1.82E-09 8.91E-07 
2 MA1300.1 WRKY6 (CGTTGACTWWDDYWDWNHH) 1.85E-09 9.07E-07 
2 MA1307.1 WRKY31 (DDNNHWRHHAAAGTCAACG) 1.94E-09 9.50E-07 
2 MA1093.1 WRKY75 (HRGTCAAC) 2.37E-09 1.16E-06 
2 MA1312.1 WRKY47 (MYYKNCGTTGACYW) 4.35E-09 2.13E-06 
2 MA1301.1 WRKY33 (AAAAGTCAACG) 5.25E-09 2.57E-06 
2 MA1299.1 WRKY17 (AAAAAGTCAACGNH) 6.60E-09 3.23E-06 
2 MA1080.1 WRKY23 (AGTCAACG) 9.06E-09 4.43E-06 
2 MA1309.1 WRKY3 (AAAAGTCAACG) 2.03E-08 9.93E-06 
2 MA1090.1 WRKY60 (NYGGTCAACSN) 3.64E-08 1.78E-05 
2 MA1091.1 WRKY62 (TGGTCAAC) 1.92E-06 0.0009393 
2 MA1383.1 KAN2 (HTHRGAATATTCTTT) 2.57E-06 0.001254 
2 MA1078.1 WRKY2 (BGGTCAAM) 3.73E-06 0.001822 
2 MA1092.1 WRKY63 (HGGTCAAC) 7.83E-06 0.003821 
2 MA0933.1 AHL20 (AATTAAWT) 1.14E-05 0.005559 
2 MA1296.1 WRKY46 (CGTTGACTTTK) 1.20E-05 0.005838 
2 MA1081.1 WRKY25 (YGGTCAAC) 1.65E-05 0.008037 
2 MA0934.1 AHL25 (AWTTAAWT) 2.39E-05 0.0116 
2 MA1027.1 KAN1 (RNWTATTC) 3.20E-05 0.01552 
2 MA0953.1 ATHB-6 (NCAATHATD) 3.52E-05 0.01708 
2 MA0127.1 PEND (AYTTCTTATK) 4.38E-05 0.02117 
2 MA0932.1 AHL12 (AAWWWWTT) 4.38E-05 0.02121 
2 MA1162.1 TCX2 (WTTYAAAATTYAAAW) 4.99E-05 0.0241 
2 MA0990.1 EDT1 (HAWTWAATGC) 5.52E-05 0.02662 
2 MA1214.1 ATHB40 (DHACCAATAATTGDDNHHWWW) 9.58E-05 0.04576 
4 MA1093.1 WRKY75 (HRGTCAAC) 5.60E-05 0.02703 
5 MA1307.1 WRKY31 (DDNNHWRHHAAAGTCAACG) 1.02E-06 0.0004962 
5 MA1309.1 WRKY3 (AAAAGTCAACG) 1.58E-06 0.0007709 
5 MA1310.1 WRKY42 (BWTDMHHHNNCGTTGACTWWD) 2.00E-06 0.000977 
5 MA1300.1 WRKY6 (CGTTGACTWWDDYWDWNHH) 2.20E-06 0.001077 
5 MA1302.1 WRKY65 (AAAAGTCAACG) 2.21E-06 0.001078 
5 MA1305.1 WRKY55 (DNCGTTGACTTT) 2.54E-06 0.001239 
5 MA1077.1 WRKY18 (NHRGTCAAVV) 3.85E-06 0.00188 
5 MA1301.1 WRKY33 (AAAAGTCAACG) 5.06E-06 0.002472 
5 MA1085.2 WRKY40 (HWAGTCAANN) 5.25E-06 0.002565 
5 MA1297.1 WRKY26 (AAAAGTCAACGNY) 5.36E-06 0.002618 
5 MA1089.1 WRKY57 (DWRGTCAAMN) 5.85E-06 0.002857 
5 MA1314.1 WRKY14 (AAAAGTCAACGNH) 6.53E-06 0.003187 
5 MA1094.1 WRKY8 (NRGTCAAMN) 6.85E-06 0.003343 
5 MA1315.1 WRKY24 (NCGTTGACTTTTTW) 9.15E-06 0.004463 
5 MA1308.1 WRKY70 (DNCGTTGACTTTT) 1.02E-05 0.004956 
5 MA1316.1 WRKY71 (AAAAGTCAACG) 1.09E-05 0.00529 
5 MA1295.1 WRKY20 (DNCGTTGACYWDD) 1.30E-05 0.006328 
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Cluster Motif ID Binding TF Motif p-val adj. p-val 
5 MA1076.1 WRKY15 (NRGTCAACSN) 1.95E-05 0.009473 
5 MA1093.1 WRKY75 (HRGTCAAC) 2.11E-05 0.01028 
5 MA1087.1 WRKY45 (CGTTGACY) 3.49E-05 0.0169 
5 MA1086.1 WRKY43 (HRGTCAAMVN) 3.61E-05 0.01748 
5 MA1083.1 WRKY30 (RGTCAACGNN) 3.78E-05 0.01832 
5 MA1080.1 WRKY23 (AGTCAACG) 4.04E-05 0.01956 
5 MA1088.1 WRKY48 (NNRGTCAAMN) 5.54E-05 0.02675 
5 MA1311.1 WRKY28 (DDCGTTGACTTTT) 5.69E-05 0.02745 
5 MA1318.1 WRKY27 (ANCGTTGACTTTT) 6.37E-05 0.03067 
5 MA1303.1 WRKY22 (AAAAGTCAACKNH) 6.64E-05 0.03196 
5 MA1296.1 WRKY46 (CGTTGACTTTK) 7.82E-05 0.0375 
5 MA1079.1 WRKY21 (NNRGTCAACG) 9.13E-05 0.04365 
5 MA1091.1 WRKY62 (TGGTCAAC) 0.0001023 0.0488 
6 MA0932.1 AHL12 (AAWWWWTT) 3.50E-05 0.01694 
8 MA0953.1 ATHB-6 (NCAATHATD) 2.29E-05 0.01112 
8 MA0982.1 DOF2.4 (DWAAAGB) 0.0001044 0.04976 
10 MA1079.1 WRKY21 (NNRGTCAACG) 8.14E-07 0.0003981 
10 MA1088.1 WRKY48 (NNRGTCAAMN) 1.05E-06 0.0005108 
10 MA1309.1 WRKY3 (AAAAGTCAACG) 1.66E-06 0.0008112 
10 MA1086.1 WRKY43 (HRGTCAAMVN) 1.83E-06 0.0008953 
10 MA1076.1 WRKY15 (NRGTCAACSN) 1.97E-06 0.0009648 
10 MA1301.1 WRKY33 (AAAAGTCAACG) 3.18E-06 0.001555 
10 MA1310.1 WRKY42 (BWTDMHHHNNCGTTGACTWWD) 3.44E-06 0.001683 
10 MA1094.1 WRKY8 (NRGTCAAMN) 3.47E-06 0.001696 
10 MA1300.1 WRKY6 (CGTTGACTWWDDYWDWNHH) 3.59E-06 0.001756 
10 MA1316.1 WRKY71 (AAAAGTCAACG) 3.70E-06 0.001809 
10 MA1089.1 WRKY57 (DWRGTCAAMN) 3.95E-06 0.00193 
10 MA1087.1 WRKY45 (CGTTGACY) 4.99E-06 0.002438 
10 MA1093.1 WRKY75 (HRGTCAAC) 6.61E-06 0.003229 
10 MA1080.1 WRKY23 (AGTCAACG) 7.19E-06 0.00351 
10 MA1083.1 WRKY30 (RGTCAACGNN) 7.21E-06 0.003519 
10 MA1091.1 WRKY62 (TGGTCAAC) 9.75E-06 0.004756 
10 MA1078.1 WRKY2 (BGGTCAAM) 1.12E-05 0.005439 
10 MA1314.1 WRKY14 (AAAAGTCAACGNH) 1.15E-05 0.005584 
10 MA1295.1 WRKY20 (DNCGTTGACYWDD) 1.21E-05 0.005899 
10 MA1311.1 WRKY28 (DDCGTTGACTTTT) 1.41E-05 0.006872 
10 MA1305.1 WRKY55 (DNCGTTGACTTT) 1.65E-05 0.008013 
10 MA1081.1 WRKY25 (YGGTCAAC) 1.79E-05 0.008727 
10 MA1307.1 WRKY31 (DDNNHWRHHAAAGTCAACG) 2.37E-05 0.01152 
10 MA1303.1 WRKY22 (AAAAGTCAACKNH) 3.16E-05 0.01531 
10 MA1297.1 WRKY26 (AAAAGTCAACGNY) 3.92E-05 0.01898 
10 MA1298.1 WRKY29 (AAAAGTCAACK) 4.74E-05 0.02293 
10 MA1302.1 WRKY65 (AAAAGTCAACG) 4.99E-05 0.02409 
10 MA1304.1 WRKY59 (HAAAAGTCAAMN) 5.16E-05 0.02494 
10 MA1308.1 WRKY70 (DNCGTTGACTTTT) 6.12E-05 0.02947 
10 MA1317.1 WRKY50 (YKTTGACTTTTTH) 6.66E-05 0.03202 
10 MA1090.1 WRKY60 (NYGGTCAACSN) 6.77E-05 0.03255 
11 MA1192.1 At5g58900 (WDWRGATAAGRTTWD) 2.07E-05 0.01007 
12 MA1311.1 WRKY28 (DDCGTTGACTTTT) 1.13E-06 0.0005509 
12 MA1327.1 ATHB23 (AWWNWTAATTAATDAWWWAWTW) 2.82E-06 0.001378 
12 MA1314.1 WRKY14 (AAAAGTCAACGNH) 4.25E-06 0.002076 
12 MA1089.1 WRKY57 (DWRGTCAAMN) 4.67E-06 0.002279 
12 MA1316.1 WRKY71 (AAAAGTCAACG) 8.90E-06 0.004341 
12 MA1305.1 WRKY55 (DNCGTTGACTTT) 1.13E-05 0.00549 
12 MA1302.1 WRKY65 (AAAAGTCAACG) 1.33E-05 0.006499 
12 MA1306.1 WRKY11 (DNCGTTGACTTTTD) 1.85E-05 0.009018 
12 MA1301.1 WRKY33 (AAAAGTCAACG) 2.37E-05 0.01153 
12 MA1298.1 WRKY29 (AAAAGTCAACK) 2.83E-05 0.01374 
12 MA1317.1 WRKY50 (YKTTGACTTTTTH) 3.30E-05 0.016 
12 MA1093.1 WRKY75 (HRGTCAAC) 3.35E-05 0.01624 
12 MA1080.1 WRKY23 (AGTCAACG) 3.71E-05 0.01798 
12 MA1076.1 WRKY15 (NRGTCAACSN) 3.85E-05 0.01865 
12 MA1308.1 WRKY70 (DNCGTTGACTTTT) 3.98E-05 0.01926 
12 MA1094.1 WRKY8 (NRGTCAAMN) 4.10E-05 0.01983 
12 MA1297.1 WRKY26 (AAAAGTCAACGNY) 4.35E-05 0.02106 
12 MA1309.1 WRKY3 (AAAAGTCAACG) 4.39E-05 0.02122 
12 MA1079.1 WRKY21 (NNRGTCAACG) 4.82E-05 0.02331 
12 MA1303.1 WRKY22 (AAAAGTCAACKNH) 5.55E-05 0.02678 
12 MA1304.1 WRKY59 (HAAAAGTCAAMN) 6.02E-05 0.02899 
12 MA1315.1 WRKY24 (NCGTTGACTTTTTW) 6.21E-05 0.02991 
12 MA1086.1 WRKY43 (HRGTCAAMVN) 6.95E-05 0.03343 
12 MA0953.1 ATHB-6 (NCAATHATD) 7.10E-05 0.0341 
12 MA1077.1 WRKY18 (NHRGTCAAVV) 8.24E-05 0.03951 
12 MA1300.1 WRKY6 (CGTTGACTWWDDYWDWNHH) 8.75E-05 0.04189 
12 MA1083.1 WRKY30 (RGTCAACGNN) 9.95E-05 0.04749 
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Cluster Motif ID Binding TF Motif p-val adj. p-val 
12 MA1295.1 WRKY20 (DNCGTTGACYWDD) 0.0001033 0.04925 
13 MA1089.1 WRKY57 (DWRGTCAAMN) 5.49E-12 2.69E-09 
13 MA1086.1 WRKY43 (HRGTCAAMVN) 2.09E-11 1.02E-08 
13 MA1094.1 WRKY8 (NRGTCAAMN) 7.27E-11 3.55E-08 
13 MA1088.1 WRKY48 (NNRGTCAAMN) 7.34E-11 3.59E-08 
13 MA1079.1 WRKY21 (NNRGTCAACG) 4.45E-10 2.18E-07 
13 MA1093.1 WRKY75 (HRGTCAAC) 6.07E-10 2.97E-07 
13 MA1301.1 WRKY33 (AAAAGTCAACG) 1.29E-09 6.29E-07 
13 MA1309.1 WRKY3 (AAAAGTCAACG) 1.59E-09 7.79E-07 
13 MA1076.1 WRKY15 (NRGTCAACSN) 1.64E-09 8.04E-07 
13 MA1077.1 WRKY18 (NHRGTCAAVV) 2.08E-09 1.02E-06 
13 MA1317.1 WRKY50 (YKTTGACTTTTTH) 2.17E-09 1.06E-06 
13 MA1315.1 WRKY24 (NCGTTGACTTTTTW) 2.42E-09 1.18E-06 
13 MA1300.1 WRKY6 (CGTTGACTWWDDYWDWNHH) 5.57E-09 2.72E-06 
13 MA1316.1 WRKY71 (AAAAGTCAACG) 6.62E-09 3.24E-06 
13 MA1314.1 WRKY14 (AAAAGTCAACGNH) 1.01E-08 4.96E-06 
13 MA1302.1 WRKY65 (AAAAGTCAACG) 1.03E-08 5.04E-06 
13 MA1305.1 WRKY55 (DNCGTTGACTTT) 1.36E-08 6.65E-06 
13 MA1303.1 WRKY22 (AAAAGTCAACKNH) 1.49E-08 7.29E-06 
13 MA1308.1 WRKY70 (DNCGTTGACTTTT) 1.87E-08 9.13E-06 
13 MA1091.1 WRKY62 (TGGTCAAC) 3.27E-08 1.60E-05 
13 MA1311.1 WRKY28 (DDCGTTGACTTTT) 3.53E-08 1.72E-05 
13 MA1084.1 WRKY38 (CGTTGACC) 3.73E-08 1.82E-05 
13 MA1092.1 WRKY63 (HGGTCAAC) 4.70E-08 2.30E-05 
13 MA1075.1 WRKY12 (CGTTGACC) 5.95E-08 2.91E-05 
13 MA1087.1 WRKY45 (CGTTGACY) 6.26E-08 3.06E-05 
13 MA1306.1 WRKY11 (DNCGTTGACTTTTD) 7.13E-08 3.48E-05 
13 MA1295.1 WRKY20 (DNCGTTGACYWDD) 8.22E-08 4.02E-05 
13 MA1298.1 WRKY29 (AAAAGTCAACK) 8.52E-08 4.17E-05 
13 MA1304.1 WRKY59 (HAAAAGTCAAMN) 8.54E-08 4.17E-05 
13 MA1297.1 WRKY26 (AAAAGTCAACGNY) 9.84E-08 4.81E-05 
13 MA1083.1 WRKY30 (RGTCAACGNN) 1.09E-07 5.34E-05 
13 MA1299.1 WRKY17 (AAAAAGTCAACGNH) 1.28E-07 6.26E-05 
13 MA1318.1 WRKY27 (ANCGTTGACTTTT) 1.41E-07 6.88E-05 
13 MA1080.1 WRKY23 (AGTCAACG) 2.70E-07 0.0001322 
13 MA1307.1 WRKY31 (DDNNHWRHHAAAGTCAACG) 3.68E-07 0.0001798 
13 MA1085.2 WRKY40 (HWAGTCAANN) 5.71E-07 0.0002793 
13 MA1310.1 WRKY42 (BWTDMHHHNNCGTTGACTWWD) 7.39E-07 0.0003613 
13 MA1090.1 WRKY60 (NYGGTCAACSN) 7.69E-07 0.0003758 
13 MA1081.1 WRKY25 (YGGTCAAC) 9.26E-07 0.0004525 
13 MA1313.1 WRKY7 (DNCGTTGACTTTTT) 9.37E-07 0.000458 
13 MA1078.1 WRKY2 (BGGTCAAM) 1.12E-06 0.0005471 
13 MA0982.1 DOF2.4 (DWAAAGB) 9.70E-05 0.04633 
14 MA1088.1 WRKY48 (NNRGTCAAMN) 6.33E-12 3.10E-09 
14 MA1094.1 WRKY8 (NRGTCAAMN) 7.79E-12 3.81E-09 
14 MA1076.1 WRKY15 (NRGTCAACSN) 4.85E-11 2.37E-08 
14 MA1090.1 WRKY60 (NYGGTCAACSN) 1.49E-10 7.27E-08 
14 MA1089.1 WRKY57 (DWRGTCAAMN) 1.57E-10 7.67E-08 
14 MA1079.1 WRKY21 (NNRGTCAACG) 1.74E-10 8.50E-08 
14 MA1083.1 WRKY30 (RGTCAACGNN) 2.82E-10 1.38E-07 
14 MA1298.1 WRKY29 (AAAAGTCAACK) 2.91E-10 1.42E-07 
14 MA1077.1 WRKY18 (NHRGTCAAVV) 3.18E-10 1.56E-07 
14 MA1300.1 WRKY6 (CGTTGACTWWDDYWDWNHH) 4.04E-10 1.98E-07 
14 MA1302.1 WRKY65 (AAAAGTCAACG) 1.45E-09 7.09E-07 
14 MA1078.1 WRKY2 (BGGTCAAM) 1.83E-09 8.95E-07 
14 MA1314.1 WRKY14 (AAAAGTCAACGNH) 1.83E-09 8.95E-07 
14 MA1092.1 WRKY63 (HGGTCAAC) 2.19E-09 1.07E-06 
14 MA1093.1 WRKY75 (HRGTCAAC) 2.90E-09 1.42E-06 
14 MA1081.1 WRKY25 (YGGTCAAC) 3.08E-09 1.51E-06 
14 MA1303.1 WRKY22 (AAAAGTCAACKNH) 3.55E-09 1.74E-06 
14 MA1307.1 WRKY31 (DDNNHWRHHAAAGTCAACG) 3.62E-09 1.77E-06 
14 MA1316.1 WRKY71 (AAAAGTCAACG) 4.59E-09 2.24E-06 
14 MA1311.1 WRKY28 (DDCGTTGACTTTT) 4.84E-09 2.37E-06 
14 MA1309.1 WRKY3 (AAAAGTCAACG) 5.83E-09 2.85E-06 
14 MA1086.1 WRKY43 (HRGTCAAMVN) 5.91E-09 2.89E-06 
14 MA1306.1 WRKY11 (DNCGTTGACTTTTD) 7.31E-09 3.57E-06 
14 MA1301.1 WRKY33 (AAAAGTCAACG) 8.81E-09 4.31E-06 
14 MA1305.1 WRKY55 (DNCGTTGACTTT) 1.00E-08 4.90E-06 
14 MA1295.1 WRKY20 (DNCGTTGACYWDD) 1.12E-08 5.47E-06 
14 MA1304.1 WRKY59 (HAAAAGTCAAMN) 1.15E-08 5.64E-06 
14 MA1075.1 WRKY12 (CGTTGACC) 1.31E-08 6.41E-06 
14 MA1087.1 WRKY45 (CGTTGACY) 1.84E-08 9.01E-06 
14 MA1308.1 WRKY70 (DNCGTTGACTTTT) 2.11E-08 1.03E-05 
14 MA1084.1 WRKY38 (CGTTGACC) 3.12E-08 1.52E-05 
14 MA1310.1 WRKY42 (BWTDMHHHNNCGTTGACTWWD) 3.72E-08 1.82E-05 
14 MA1318.1 WRKY27 (ANCGTTGACTTTT) 4.03E-08 1.97E-05 
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Cluster Motif ID Binding TF Motif p-val adj. p-val 
14 MA1315.1 WRKY24 (NCGTTGACTTTTTW) 6.03E-08 2.95E-05 
14 MA1313.1 WRKY7 (DNCGTTGACTTTTT) 3.49E-07 0.0001707 
14 MA1296.1 WRKY46 (CGTTGACTTTK) 4.22E-07 0.0002065 
14 MA1091.1 WRKY62 (TGGTCAAC) 5.19E-07 0.0002536 
14 MA1299.1 WRKY17 (AAAAAGTCAACGNH) 5.87E-07 0.0002868 
14 MA1317.1 WRKY50 (YKTTGACTTTTTH) 7.17E-07 0.0003505 
14 MA1297.1 WRKY26 (AAAAGTCAACGNY) 1.12E-06 0.0005466 
14 MA1080.1 WRKY23 (AGTCAACG) 1.69E-06 0.0008239 
14 MA1312.1 WRKY47 (MYYKNCGTTGACYW) 2.58E-06 0.001259 
14 MA0589.1 ZAP1 (TTGACCGAGYY) 2.56E-05 0.01243 
14 MA1085.2 WRKY40 (HWAGTCAANN) 7.08E-05 0.03404 
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