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It is thus that, except for the rare cases of plastid inheritance, the inheritance of all known characters 

can be sufficiently accounted for by the presence of genes in the chromosome. In a word the cytoplasm 

may be ignored genetically. –Thomas H. Morgan (Am.Nat. 1926) 
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ZUSAMMENFASSUNG 

Alle Metazoen besitzen Mitochondrien, subzelluläre Organellen α-proteobaketeriellen Ursprungs, 

welche eine Vielzahl zellulärer Prozesse wie zum Beispiel Zellatmung, Apoptose, Signalkaskaden und 

Fettsäureoxidation regulieren. Die meisten mitochondrialen Proteine sind zellkernkodiert und werden 

posttranslational importiert. Mitochondrien besitzen auch ein eigenes zirkuläres und doppelsträngiges 

Multikopie-Genom (mtDNA), welches für 13 essentielle Proteine der oxidativen Phosphorylierung 

(OXPHOS), sowie mitochondrienspezifische Transfer RNAs (tRNAs) und ribosomale RNAs (rRNAs) 

kodiert, welche zur Translation der OXPHOS-Proteine benötigt werden. Aufgrund dessen ist die 

Aufrechterhaltung und Regulation der mtDNA essentiell für die Funktion der Mitochondrien und 

damit auch der Lebensfähigkeit der Zelle. 

Mitochondriale Dysfunktion kann in verschiedenen Organismen Alterungsprozesse beschleunigen und 

zur Entstehung von alterungsassoziierten Krankheiten beitragen. Eine Klasse dieser mitochondrialen 

Krankheiten wird durch zufällig auftretende Replikationsfehler der mitochondrialen DNA polymerase 

(POLγ) induziert. Mutationen in der mitochondrialen DNA korrelieren positiv mit steigendem Alter 

im Menschen und ein vielfach erhöhter mtDNA-Mutationslevel in Säugetieren, wie der Hausmaus, 

führt zur Entstehung eines einen Progerie-Phänotyps. Einige Aspekte der zugrundeliegenden 

molekularen Ursachen sind jedoch unerforscht, so ist zum Beispiel nicht bekannt ob somatische 

mtDNA Mutationen die Lebensdauer von kurzlebigen Organismen, wie der Fruchtfliege, direkt 

beeinflussen. Zur Beantwortung dieser Frage wurden im Rahmen dieser Doktorarbeit zunächst POLγ 

Varianten mit gesteigerter oder reduzierter Korrektur- bzw. Polymeraseaktivität in vitro 

charakterisiert. Um die Funktion dieser POLγ Varianten in vivo zu untersuchen wurden diese mittels 

gentechnischer Methoden in das Genom der Fruchtfliege integriert. Die transgenen Fruchtfliegen mit 

erhöhtem mtDNA Mutationslevel waren weder physiologisch noch hinsichtlich ihrer der 

Lebenserwartung negativ beeinflusst. Auch die Kreuzverpaarung mehrerer Fruchtfliegen-

Filialgenerationen induzierte keinen vorzeitigen Alterungsphänotyp. Dies basiert auf der relativ 

langsamen Akkumulation von mtDNA Mutationen innerhalb des kurzen Lebenszyklus der 

Fruchtfliege. Diese Ergebnisse zeigen, dass mtDNA Mutationen wahrscheinlich nicht die 

Lebenserwartung von Wildtyp-Fruchtfliegenpopulationen beeinflussen. 

Aufgrund der Multikopien Natur der mtDNA können Mutationen in einigen wenigen mtDNA 

Molekülen der Zelle präsent sein (Heteroplasmie) oder in allen (Homoplasmie), wobei der 

Heteroplasmiegrad als der prozentuale Anteil an mtDNA Molekülen mit Mutationen definiert ist. Es 

ist bekannt, dass mtDNA Mutationen hohe Heteroplasmiegrade erreichen müssen um mitochondriale 

Dysfunktion auszulösen und um phänotypisch in Erscheinung zu treten. Es stellt sich jedoch weiterhin 

die Frage, ob der relative Heteroplasmiegrad oder die absolute Anzahl von Wildtyp-mtDNA Kopien in 

der gesamten Zelle für die phänotypische Erscheinung von mitochondrialen Krankheiten verursacht. 
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Um diese Hypothese zu untersuchen wurde die sogenannte mtDNA-Mutator Maus, welche eine 

korrekturdefiziente POLγ Variante exprimiert und durch männliche Infertilität charakterisiert ist, mit 

einer Maus verpaart welche den mitochondrialen Transkriptionsfaktor A (TFAM) überexperimiert. 

Interessanterweise, konnte der Grad der mitochondrialen Dysfunktion und die Infertilität männlicher 

mtDNA-Mutator Mäuse, ausgelöst durch mtDNA Mutationen, partiell durch die Überexpression von 

TFAM reduziert werden. Diese Ergebnisse zeigen zum ersten Mal, dass die absolute Anzahl an 

Wildtyp-mtDNA Molekülen entscheidend für die phänotypische Ausprägung von mitochondrialen 

Krankheiten ist und ermöglicht die Entwicklung neuer Strategien zur Behandlung von mtDNA 

Mutationen-basierter Krankheiten. 
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ABSTRACT 

All metazoans possess subcellular organelles of α-proteobacterial origin called mitochondria. These 

organelles participate in various cellular functions including cellular respiration, apoptosis, cell 

signaling and fatty acid oxidation. Although most mitochondrial proteins are encoded by the nuclear 

DNA and imported into mitochondria post-translationally, mitochondria still retain a small circular 

double-stranded multicopy genome (mtDNA) which encodes 13 essential proteins of the oxidative 

phosphorylation system (OXPHOS) in addition to the transfer RNAs (tRNAs) and ribosomal RNAs 

(rRNAs) needed to translate the mtDNA-encoded messenger RNAs (mRNAs) within mitochondria. 

Therefore, faithful maintenance of mtDNA is essential for mitochondrial function and organismal 

viability. 

Mitochondrial dysfunction has been linked to ageing and ageing-associated diseases in various 

organisms. One group of dysfunctions is caused by mtDNA mutations, which are thought to originate 

from random replication errors of the mitochondrial DNA polymerase (POLγ). The amount of mtDNA 

mutations increases with age in humans and experimentally increasing mtDNA mutation load in mice 

results in a progeria phenotype. However, it is still unclear whether mtDNA mutations are limiting the 

lifespans of short-lived organisms such as fruit flies. To answer this question we first characterized 

POLγ variants with modified proofreading or polymerase activities in vitro. These variants were 

thereafter introduced into fruit flies using genetic engineering. Surprisingly, increasing mtDNA 

mutation load had no effect on fly physiology or ageing due to the slow accumulation of mtDNA 

mutations within the short lifespan of fruit flies and even across generations. These results suggest that 

mtDNA mutations are not limiting the lifespan of wild type fruit fly populations. 

Due to the multicopy nature of mtDNA, mutations can be present in only some of the molecules 

(heteroplasmy) or all of the molecules (homoplasmy) in a cell or tissue. It has been reported that 

pathogenic mtDNA mutations only cause mitochondrial dysfunction if they are present above a certain 

threshold level that depend on the type of mutation and the energetic requirement of the affected 

tissue. The heteroplasmy level is defined as the percentage of all molecules carrying the mutation. 

However, it has been also argued that the heteroplasmy level is, to some extent, irrelevant and that it is 

the absolute number of WT mtDNA copies that determines disease penetrance. To test this theory we 

took advantage of the mtDNA mutator mouse model, which carries proofreading-deficient POLγ and 

presents with male sterility. Overexpressing mitochondrial transcription factor A (TFAM), a well-

characterized regulator of mtDNA copy number, was sufficient to partially rescue mitochondrial 

dysfunction and to cure the male infertility of this mouse model without affecting the mtDNA 

mutation load. These results provide the first experimental evidence that the absolute number of WT 

mtDNA molecules determines disease penetrance and offers a strategy to rescue mitochondrial 

dysfunction originating from mtDNA mutations. 
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INTRODUCTION 
 

1.1 MITOCHONDRIA: THE ORIGIN 

The mitochondrion is a cellular organelle, which originates from the engulfment of an α-

proteobacterium by an archaeon forming an endosymbiotic partnership. This integration was further 

deepened by eukaryogenesis whereby ~600 of the 3000 – 5000 genes of the original α-

proteobacterium moved into the nucleus of the archaeon slowly converting the bacterium into a 

mitochondrion (Boussau et al., 2004). Most genes of the α-proteobacterium were therefore either lost 

or replaced by genes from other prokaryotes or eukaryotes. Indeed, the mitochondrial genome of the 

last eukaryotic common ancestor (LECA) was thought to encode only ~70 proteins. To some extent 

this substantial decrease in the number of genes encoded by the LECA is expected because some 

genes important for the free-living α-proteobacterium would not be needed anymore once it became a 

genetic endosymbiont. These dispensable genes would include among others genes needed to make 

the bacterial cell wall and genes involved in many metabolism pathways. Currently, mammalian 

mitochondria have been estimated to contain ~1200 proteins (Calvo et al., 2016) and only 20% of 

those are of α-proteobacterial origin (Gray, 2015). Interestingly several proteins required for 

replication and transcription of mtDNA are of bacteriophage origin (Oliveira et al., 2015), showing 

that metazoan mitochondria are composed of proteins of several origins. 

In most metazoans mtDNA encodes only 13 proteins, which are core components of the OXPHOS, 

and 13 tRNAs and 2 rRNAs needed to translate the mRNAs encoding these proteins. It has been a 

long-standing question why mitochondria still retain their own genetic material. After all, translocating 

genes from mitochondria into nuclear DNA (nDNA) should have several advantages owing to 

recombination and sexual reproduction to avoid Muller’s ratchet (irreversible accumulation of 

deleterious mutations) and faster fixing of beneficial mutations (Adams and Palmer, 2003). Integration 

of mtDNA into nDNA is unlikely the limiting step in this process as nuclear copies of mtDNA 

(NUMTs) are known to be abundant (Dayama et al., 2014, Rogers and Griffiths-Jones, 2012) and even 

cause diseases when disrupting nDNA encoded genes (Hazkani-Covo et al., 2010). Indeed, gene 

transfers between mtDNA and nDNA are unidirectional with a few possible exceptions (Szafranski, 

2017, Pont-Kingdon et al., 1998). Three main hypotheses have been put forward to explain why 

mitochondria still retain some genetic material. According to the first theory, the 13 protein coding 

genes of mtDNA have not translocated into nDNA due to differences in the genetic code between 

nucleus and mitochondria. However, the fact that hundreds of genes of the α-proteobacterium have 

already translocated from mitochondria into the nucleus suggests this process can take place 

successfully. The second theory suggests that proteins still encoded by mtDNA are so hydrophobic 

that it would not be possible to import and sort them post-translationally from the cytosol into 

mitochondria if they were encoded by the nDNA, and that these proteins could even have toxic effects 
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if mislocalized to wrong subcellular compartments (Björkholm et al., 2015). The third hypothesis, also 

known as the colocalization for redox regulation (CoRR) hypothesis (Allen, 2015), suggests that the 

intramitochondrial control of the production of these 13 core components of the OXPHOS system 

allows individual mitochondria to dynamically optimize their function in response to changing 

conditions. It should be noted that these theories are not necessarily mutually exclusive. A recent 

analysis of more than 2000 mtDNA genomes suggested that hydrophobicity and the CoRR hypothesis 

have the highest explanatory power for current mtDNA gene compositions (Johnston and Williams, 

2016). 

 

1.2 MITOCHONDRIA: FUNCTION 

One central question behind endosymbiosis remains still unanswered: cui bono? From the point-of-

view of the α-proteobacterium endosymbiosis can be seen as an efficient way to outsource many of its 

functions to the host, but it is unclear how this arrangement benefits the host. Mitochondria are often 

referred as the powerhouses of the cell because they are known to produce most of cell’s ATP. Indeed, 

it has been argued that owing to the compartmentalized mitochondrial energy production an 

eukaryotic nuclear gene controls almost 5000 times more energy flux in comparison with a 

prokaryotic gene (Lane and Martin, 2010). Additionally, a great part of this difference in the energetic 

flux between prokaryotes and eukaryotes is contributed to the presence and proximity of mtDNA to 

the OXPHOS system, which enables eukaryotes to rapidly react in response to changes in environment 

as suggested by the CoRR hypothesis (Allen, 2015, Lane and Martin, 2010). Therefore the 

endosymbiosis can be seen as highly beneficial and it seems that all eukaryotes have once had 

mitochondria although some carry only relict mitochondria; called mitochondrion-related organelles 

(MROs); and others have completely lost them (Makiuchi and Nozaki, 2014). Interestingly, 

eukaryotes that have lost mtDNA have also lost the ability to carry out OXPHOS (Adams and Palmer, 

2003) further emphasizing the importance of mtDNA in controlling OXPHOS. 

Some eukaryotes lack OXPHOS but nevertheless possess mitochondria suggesting that mitochondria 

have some additional functions besides OXPHOS. In fact, one of the most important processes taking 

place in mitochondria and MROs is the synthesis of iron-sulfur (Fe-S) clusters. Fe-S clusters have 

unique biochemical properties like the ability to accept and donate single electrons, perform 

oxidation/reduction (redox) reactions, function as redox sensors, catalyze ligation reactions and 

stabilize protein structures (Paul et al., 2017, Rouault, 2015). Studies have shown this cofactor to be 

essential for various cellular functions in- and outside of mitochondria. These processes include 

multiple metabolic processes, antiviral responses, genome maintenance, and protein translation 

(Braymer and Lill, 2017). Because Fe-S cluster synthesis takes place essentially in all eukaryotes, it is 

sometimes considered as the “minimal” function of mitochondria. Why does this biosynthesis pathway 

reside within mitochondria? It has been suggested that mitochondria functions as an iron storage 
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organelle. In support of this mitochondria are known to contain 20% of total cellular iron and most of 

the metabolically available iron (Paul et al., 2017). Moreover, through the control of Fe-S cluster 

synthesis mitochondria can also control cellular iron uptake and thereby control cellular iron levels 

(Lill et al., 2012). Therefore, mitochondria function as subcellular compartments to control iron 

storage and availability in the eukaryotic cell. Another reason for mitochondrial Fe-S cluster synthesis 

could be the lower oxygen concentration in mitochondria relative to the rest of the cell (Kurokawa et 

al., 2015). Indeed, Fe-S clusters can be assembled in vitro but only in in anaerobic conditions because 

oxygen oxidizes iron in Fe-S clusters resulting in disassembly of the cluster (Rouault, 2015). Thirdly, 

metabolically free iron can react with the reactive oxygen species (ROS) such as hydrogen peroxide 

and convert it into highly reactive hydroxyl radical (Halliwell and Gutteridge, 1992). Therefore, 

concentrating Fe-S cluster synthesis into mitochondria could limit cellular ROS damage to this 

organelle. In summary, it seems that mitochondria can sequester iron, especially metabolically active 

iron, for cofactor synthesis and also to minimize unwanted cellular damage. 

Several mitochondrial metabolic pathways are linked, including Fe-S-cluster synthesis and fatty acid 

synthesis (Boniecki et al., 2017). Fatty acids are important constituents of membranes, precursors of 

hormones and a major energy source. One common function of mitochondria is fatty acid oxidation 

(FAO)/beta-oxidation which is a major energy source for some of the most energy demanding tissues 

such as heart, skeletal muscle and kidney (Houten et al., 2016). Additionally, liver uses FAO to 

produce ketones for brain in the absence of glucose. In any given tissue, the level of FAO dependency 

is not fixed but instead varies during development and in response to nutritional changes. In FAO 

flavin adenine dinucleotide (FAD) is reduced to FADH2, which can feed electrons to ubiquinone. In 

addition to FAO feeding electrons to OXPHOS, these two processes might be even more linked as 

several FAO enzymes are known to interact with OXPHOS complexes (Nsiah-Sefaa and McKenzie, 

2016). The significance of these interactions is currently a heavily studied subject. 

Endotherms (warm-blooded animals) are able to maintain a constant body temperature. This heat 

originates from both uncontrolled exothermic reactions and regulated thermogenic reactions taking 

place in the body. The main form of regulated thermogenesis takes place within mitochondria of the 

brown adipose tissue in the form of proton leak across the mitochondrial inner membrane. Instead of 

using the proton gradient to produce ATP, proton leakage dissipates the membrane potential resulting 

in heat production. The main regulator of this process is uncoupling protein 1 (UCP1), which is a 

transporter of protons and fatty acid anions (Bertholet and Kirichok, 2017). UCP1 knockout mice do 

not have adaptive thermogenesis showing that UCP1 is essential in controlling body temperature 

(Golozoubova et al., 2001). 

Another interesting function of eukaryotic mitochondria is the activation of intrinsic pathway of 

apoptosis. The apoptotic machinery is composed of several evolutionary conserved caspases, adaptor 

proteins and B-cell lymphoma 2 (Bcl-2) family of proteins. However, the actual steps and importance 
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of various players varies between organisms. For instance, in mammals the mitochondrial outer 

membrane permeabilization (MOMP) followed by the release of cytochrome C (CytC) is an essential 

requirement for the activation of caspases and apoptosis (Tait and Green, 2013). In contrast, studies 

done in fruit flies suggest that instead of mitochondria releasing apoptotic factors, such as CytC, fruit 

fly mitochondria participate in apoptosis by concentrating several regulators of apoptosis on the outer 

membrane (Clavier et al., 2016). Therefore mitochondria from flies to mammals play a different yet an 

important role in programmed cell death 

In summary, mitochondria have multiple important functions that take place in many tissues 

(apoptosis, Fe-S cluster synthesis, OXPHOS, ROS signaling) and also tissue specific functions 

(thermogenesis, hormone synthesis). These functional differences are reflected at the mitochondrial 

proteome as only 57% of mitochondrial proteins are common between different tissues (Mootha et al., 

2003). Similar tissue specific differences can be seen in the mitochondrial lipidome (Fleischer et al., 

1967) which together contribute to tissue specific mitochondrial ultrastructures (Benard et al., 2006). 

Only the last of the mitochondrial macromolecules, mtDNA, does not vary, at least qualitatively, 

between various tissues. 

 

1.3 MITOCHONDRIAL DNA 

1.3.1 Structure of mtDNA 

MtDNA was first visualized in chick embryos already in the 60’s by electron microscopy (Nass and 

Nass, 1963), several years before the Lynn Marguli’s (then Sagan) seminal paper on endosymbiont 

hypothesis (Sagan, 1967). With a few known exceptions (some classes of cnidarians), metazoan 

mtDNA is a circular double-stranded DNA generally between 15-20 kb of size (Boore, 1999). MtDNA 

is extremely gene dense with several genes overlapping and minimal intergenic regions. Extensive 

sequencing of metazoan mtDNAs has shown that the gene content, but not necessarily the gene order, 

is highly conserved. In mammals, the two mtDNA strands have been named heavy (H) and light (L) 

strands because they can be separated in CsCl2 gradients due to differences in guanine content (Berk 

and Clayton, 1974). In fruit flies the corresponding heavy and light strands are called minor- and 

major coding strands, respectively (Garesse, 1988). In mammals, most genes are encoded by the heavy 

strand whereas in fruit flies the genes are more evenly distributed between the two strands (Fig. 1.1). 

In most metazoans, mtDNA encodes 11 mRNAs (two of which are polycistronic) translated to 13 

proteins as well as two rRNAs and 22 tRNAs that are necessary for mitochondrial translation.  

The highest variability in mtDNA is in the single large non-coding control region, which, in mammals, 

contains one of the replication origins (OH) and both the heavy and light strand promoters for 

transcription (HSP, LSP) (Fig. 1.1 and 1.2). Despite the high variability among mammals the control 

region includes several conserved regions such as the conserved sequence blocks (CSB1-3) and 
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termination-associated sequence (TAS). In addition, mammalian mtDNA contains a third DNA strand 

in the control region, also known as the 7S DNA, creating a displacement loop (D-loop) structure 

extending from the OH to the TAS (Gustafsson et al., 2016)(Fig. 1.2). The percentage of mtDNA 

molecules containing annealed 7S DNA varies from 8% to 55% between cell types (Brown et al., 

1978) and the precise function of the 7S DNA is not known as most 7S DNA molecules do not engage 

in replication but are constantly synthesized and turned over (Bogenhagen and Clayton, 1978, Berk 

and Clayton, 1974). The 7S DNA may have some regulatory function to control mtDNA replication 

(Nicholls and Minczuk, 2014). 

 

Figure 1.1: Schematic views of the mtDNAs of Mus musculus and Drosophila melanogaster. 
The heavy (OH) and light (OL) strand origins of replication are depicted in the mouse mtDNA. In fruit flies the corresponding replication 

origins are designated the minority (ON) and majority (OJ) strand origins of replication. Note that in mouse mtDNA the rRNA genes are the 

last ones to be replicated whereas in fruit flies they are the first ones. In mice the OH is located in the control region and OL is located within 
a tRNA cluster. In contrast, in fruit flies both replication origins have been mapped to the control region. 

We have a poor understanding of the structure and function of fruit fly control region owing largely to 

the high adenine and thymine content of the fly mtDNA (82%), particularly in the control region (90-

95%), which is also known as the A+T-rich region (Garesse and Kaguni, 2005, Lewis et al., 1995). 

The fruit fly control regions vary in size between 1 kb to 4.8 kb depending on Drosophila subspecies 

in question and there is even variability within any given species (Salminen et al., 2017) some of 

which is caused by the intracellular microbe Wolbachia (Chen et al., 2012). Neither the mammalian 

control region elements nor the 7S DNA are conserved in flies (Tsujino et al., 2002, Goddard and 

Wolstenholme, 1980, Goddard and Wolstenholme, 1978, Rubenstein et al., 1977) which instead have 

type I and type II repeat elements in addition to long poly-dT stretches that are thought to control 

mtDNA transcription and replication (Fig. 1.2). Support for poly-dT stretches as regulators of mtDNA 

replication and transcription comes from studies done in nucleus where homopolymeric stretches are 

known to be important for the transcriptional control of many nuclear genes and origins of replication 

in the vicinity of these structures are more likely to be used in DNA replication (Segal and Widom, 
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2009). In addition, in mammalian mitochondria poly-dT stretches are known to stimulate the primer 

synthesis by mitochondrial RNA polymerase (POLRMT) (Fusté et al., 2014), which in mammals is 

known to prime mtDNA replication (Gustafsson et al., 2016). Furthermore, in fruit flies, free 5’-ends 

of mtDNA have been mapped to these poly-dT stretches suggesting a function as replication origins 

(Saito et al., 2005). Although there are substantial differences between the control region structures of 

mammalian and fruit fly mtDNA, the proteins responsible for the replication of mtDNA are conserved 

from flies to humans (Oliveira et al., 2015). 

 

Figure 1.2: Schematic view of the mtDNA control regions (A+T-rich region) of Mus musculus and Drosophila melanogaster. 
The replication of the heavy strand of mouse mtDNA begins by creating a RNA primer by POLRMT using the light strand promoter (LSP). 

This RNA primer is used by POLγA to produce the 7S DNA, which in most cases stops at the TAS region and is degraded. Although the 

control mechanism is yet unclear, sometimes replication extends pass the TAS region and engages in productive replication. In flies, the 
A+T-rich region does not contain any triple-stranded DNA structures and both replication origins have been mapped to the control region. 

The poly-dT stretches in the fly control region are believed to be used to initiate the minor (ON) and major (OJ) strand replications. 

MtDNA is not composed only of deoxyribonucleotides (dNTPs) because mtDNA extracted from HeLa 

or mouse L cells is sensitive to alkaline conditions, suggesting that mtDNA contains ribonucleotides 

(Margolin et al., 1981, Wong-Staal et al., 1973). A more recent thorough analysis of ribonucleotides in 

mtDNA suggested that they are evenly distributed between both strands and occur randomly 

throughout the mtDNA (Berglund et al., 2017). These ribonucleotides incorporated into mtDNA could 

have severe consequences due to the inherent instability of ribonucleotides, and may be especially 

relevant in diseases with changes in mitochondrial nucleotide pools (Berglund et al., 2017). Although 

a completely unexplored area, it will be interesting to see in the future how the tissue- and cell type 

specific variations in mitochondrial nucleotide pools (Gandhi and Samuels, 2011b, Bradshaw and 

Samuels, 2005) affect ribonucleotide incorporation and thereby maintenance and expression of 

mtDNA. 

1.3.2 Mitochondrial nucleoids 

Nuclear DNA is packed into regularly spaced nucleosomes. In contrast, DNA-protein crosslinking 

studies have suggested that mtDNA from flies to humans is packed more randomly into dense 
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nucleoprotein particles also known as nucleoids (Pardue et al., 1984, Potter et al., 1980, DeFrancesco 

and Attardi, 1981, Albring et al., 1977). Recent advances in high-resolution microscopy have provided 

us with insights to the size, shape and distribution of these particles (Kukat et al., 2015, Kukat et al., 

2011, Brown et al., 2011). The size of nucleoids is somewhat elongated with the mean size of ~100 

nm and most nucleoids have been estimated to contain only a single mtDNA molecule (Kukat et al., 

2011). This one mtDNA per nucleoid state seems to be regulated as experimentally increasing mtDNA 

copy number increases the number of nucleoids but not the number of mtDNA molecules per nucleoid 

(Kukat et al., 2015). 

If mtDNA is not wrapped by histones, what then are the constituents of mitochondrial nucleoids? A 

plethora of putative nucleoid proteins have been shown to colocalize with nucleoids (Rajala et al., 

2015, Bogenhagen et al., 2008, Wang and Bogenhagen, 2006), although most of these interactions are 

likely transient or experimental artifacts caused by strong overexpression of labeling proteins (Han et 

al., 2017). Both in vitro and in vivo studies have suggested that a single protein, mitochondrial 

transcription factor A (TFAM), is sufficient to pack mtDNA (Kukat et al., 2015, Farge et al., 2014, 

Kaufman et al., 2007). TFAM has two high mobility group (HMG)-box domains that bind DNA with 

some specificity towards mitochondrial transcription promoters but also without sequence specificity 

inducing occasionally sharp U-turns (Ngo et al., 2014, Ngo et al., 2011, Rubio-Cosials et al., 2011). 

TFAM is highly abundant in cells (1000:1 TFAM to mtDNA ratio) and covers the whole mtDNA 

evenly (Fusté et al., 2014, Wang et al., 2013, Takamatsu et al., 2002). Studies in model organisms 

have shown it to be an essential protein involved both in mtDNA transcription and mtDNA 

maintenance (Ekstrand et al., 2004, Larsson et al., 1998).  

1.3.3 Mitochondrial DNA polymerase (POLγ) 

The minimal mitochondrial replisome (Korhonen et al., 2004) is formed by three proteins: 

mitochondrial DNA polymerase (POLγ), mitochondrial single-stranded DNA binding protein (mtSSB) 

and mitochondrial DNA helicase (TWINKLE)(Fig, 1.3). POLγ is the main DNA-dependent DNA 

polymerase in mitochondria and is absolutely necessary for mtDNA replication from yeast to mice 

(Bratic et al., 2015, Bratic et al., 2009, Hance et al., 2005, Iyengar et al., 1999, Genga et al., 1986). 

Recently, a new dual-localized (mitochondria and nucleus) primase polymerase (PRIMPOL) was 

described in mammals (Bailey and Doherty, 2017). The mouse PRIMPOL knockout is viable without 

any obvious phenotype suggesting this polymerase is not needed for mtDNA replication. Several 

species, including yeast and fruit flies, have even lost this protein. Therefore POLγ is thought to be the 

only polymerase responsible for replication and repair of mtDNA. The structure of the POLγ 

holoenzyme varies from the monomeric yeast (MIP1) and nematode (polg-1) polymerases to the 

heterodimeric DmPOLγA/DmPOLγB and heterotrimeric POLγA/POLγB2 polymerases of fruit flies 

and vertebrates, respectively (Oliveira et al., 2015). The catalytic subunit of POLγ (POLγA) belongs to 

the family A DNA polymerases, which also includes the DNA polymerase I of E. coli and 
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bacteriophage T7 DNA polymerase. POLγA possesses a DNA-dependent DNA polymerase activity 

for DNA synthesis, a 3’-5’ exonuclease activity for proofreading and a 5’-deoxyribose phosphate lyase 

activity, which might participate in base excision repair (BER) (Kaguni, 2004). POLγA can also use 

short stretches of RNA as a template for DNA synthesis (Kaguni, 2004) suggesting that 

ribonucleotides in mtDNA would not stall the polymerase. 

 

Figure 1.3: Schematic view of the minimal mtDNA replisome 
The catalytic (POLγA) and accessory (POLγB) subunits of POLγ, mtSSB and TWINKLE constitute the minimum number of proteins needed 

to produce full length replication products in vitro. TWINKLE unwinds the dsDNA into 5’ to 3’ direction, whereas heterodimeric POLγAB 
(fly) or heterotrimeric POLγAB2 (vertebrates) uses the other strand as a template for DNA synthesis. MtSSB increases the activity of both 

POLγ and TWINKLE and protects the single-stranded portions of DNA. TWINKLE and POLγ have been also shown to stimulate each 

other. 

The bacteriophage T7 DNA polymerase contains an accessory subunit, thioredoxin (Lee and 

Richardson, 2011). The thioredoxin does not directly interact with DNA but instead reorganizes to 

flexible regions of the T7 DNA polymerase to increase protein-DNA interaction surface and thus 

functions as a processivity factor. In a similar manner the accessory subunit of POLγ (POLγB) has 

been shown to function as a processivity factor in mtDNA replication (Fig. 1.3) and is essential for 

mtDNA maintenance in all species studied (Euro et al., 2017, Humble et al., 2013, Iyengar et al., 

2002). Structurally POLγB resembles class IIa aminoacyl-tRNA synthetases but it is not able to bind 

ATP or recognize anticodons (Carrodeguas et al., 2001). POLγB is interesting from the evolutionary 

point-of-view as it is not orthologous to the two-subunit tRNA synthetases present in α-

proteobacterium. Instead POLγB was likely gained through horizontal gene transfer from another 

group of bacteria by a later eukaryotic lineage explaining why it is not present in yeast, nematodes and 

fungi (Wolf and Koonin, 2001). The ability to form homodimers seems to also be unique to vertebrate 

POLγB owing to the acquisition of a new domain (Oliveira et al., 2015). This is in line with the results 

showing that only POLγB homodimer, but not the fruit fly monomer, has the ability to bind double 

stranded DNA (dsDNA) though the biological relevance of this, if any, is unknown (Lim et al., 1999). 
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1.3.4 Mitochondrial DNA helicase (TWINKLE) 

POLγ has no strand-displacement activity and cannot therefore use dsDNA as a substrate for 

replication (Farge et al., 2007, Korhonen et al., 2004, Wernette and Kaguni, 1986). Instead, mtDNA 

has to be unwound first for mtDNA replication to proceed. This is performed by the hexameric 

mtDNA helicase (TWINKLE) which unwinds DNA in the 5’ to 3’ direction in a NTP-dependent 

manner (Fig. 1.3) and is essential for mtDNA maintenance (Milenkovic et al., 2013). TWINKLE has 

evolved from bifunctional primase-helicases found in T-odd bacteriophages such as the gp4 helicase 

of T7 bacteriophage (Shutt and Gray, 2006). In most metazoans, residues needed for the primase 

activity are not conserved and therefore TWINKLE retains only the helicase activity (Kaguni and 

Oliveira, 2016). In T7 bacteriophage, the primase-helicase gp4 is known to interact with the T7 DNA 

polymerase increasing the processivity of both enzymes (Lee and Richardson, 2011). Similarly, 

TWINKLE alone is a slow DNA helicase but its activity can be stimulated by both POLγ and mtSSB 

(Korhonen et al., 2004) probably through a specific interactions (Euro et al., 2017). Of note, the insect 

TWINKLE is an interesting anomaly among the metazoan mitochondrial DNA helicases in that it 

coordinates an Fe-S cluster not found in other metazoans (Stiban et al., 2014). Further studies are 

needed to understand whether this Fe-S cluster has a regulatory function or whether it is only a passive 

structural element. 

Other DNA helicases in addition to TWINKLE have been reported to localize in mitochondria. One of 

them is the dual-localized PIF1 helicase (Bannwarth et al., 2016). The mouse PIF1 knockout is viable 

without any changes in mtDNA copy number (Bannwarth et al., 2016) suggesting it is not essential to 

mtDNA maintenance. DNA2 is yet another dual-localized helicase/nuclease which has been suggested 

to participate in mtDNA replication and repair (Zheng et al., 2008). In support of its function in 

mitochondria, mutations in DNA2 have been shown to lead to mtDNA instability (Ronchi et al., 

2013). Importantly, neither of these helicases can compensate for the absence of TWINKLE 

emphasizing that TWINKLE is the main replicative mitochondrial DNA helicase (Milenkovic et al., 

2013). 

1.3.5 Mitochondrial single-stranded DNA binding protein (mtSSB) 

Unwinding of dsDNA to its single-stranded constituents by dedicated DNA helicases makes DNA 

vulnerable to chemical and nucleolytic attacks that can lead to DNA mutations and increase DNA 

instability. Single-stranded DNA (ssDNA) binding proteins (SSBs) are important for the replication, 

recombination and repair of DNA because they can prevent DNA damage by covering any ssDNA 

regions (Shereda et al., 2008). They have a passive function in protecting DNA but they can also 

interact with multitude of proteins to recruit them to DNA. Mitochondria have their own SSB (mtSSB) 

(Fig. 1.3) and similar to POLγ and TWINKLE it is also essential for mtDNA maintenance (Maier et 

al., 2001). Interestingly, while POLγ and TWINKLE resemble bacteriophage enzymes, mtSSB shares 

structural and biochemical similarities with the SSB of E. coli (Qian and Johnson, 2017, Morin et al., 
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2017). MtSSB binds mtDNA as a homotetramer and it is a highly abundant protein (mtSSB:mtDNA 

ratio is 3000:1) to the extent that in can coat any ssDNA regions during mtDNA replication (Fusté et 

al., 2014, Takamatsu et al., 2002). It has been also observed that mtSSB is enriched in the D-loop 

region (Fusté et al., 2014) where it might participate in regulating the 7S DNA (Ruhanen et al., 2010, 

Takamatsu et al., 2002) and it is excluded from a secondary DNA structure in the OL probably to allow 

POLRMT to prime mtDNA replication (Fusté et al., 2014). As elucidated before, although mtSSB has 

no intrinsic enzymatic activity, it has an important function in stimulating both POLγ and TWINKLE 

(Ciesielski et al., 2015, Korhonen et al., 2003). The interactions between these proteins are specific as 

distinct mutations on the surface of mtSSB can impair its ability to stimulate POLγ without affecting 

the unwinding activity of TWINKLE and vice versa (Oliveira and Kaguni, 2011). 

1.3.6 MtDNA replication 

MtDNA has to be replicated in mitotic tissues to enable sufficient mtDNA transmission for both 

progeny cells in cytokinesis but in addition mtDNA is replicated in post-mitotic tissues due to constant 

mtDNA turnover. The estimations for mtDNA turnover rates vary widely depending on the method of 

choice. For instance, mtDNA half-life in rat heart was estimated to be 7 days using tritium labeled dT 

(Gross et al., 1969) and 350 days using heavy water labeling (Collins et al., 2003). Electron 

microscopy (EM) studies have suggested that in flies 1-3% of all mtDNA molecules are engaged in 

replication at any given moment (Goddard and Wolstenholme, 1980). Original pulse-chase labeling 

studies suggested that the complete replication time of mtDNA in mouse cells is ~120 min (270 

bp/min), which is close to the observed in vitro rates of 180 bp/min (Korhonen et al., 2003, Berk and 

Clayton, 1974). Significantly faster replication times (<15 min) have been reported in fruit flies 

(Rubenstein et al., 1977). 

Even among mammals, where we have the best understanding of mtDNA replication, the actual mode 

of mtDNA replication has been debated for years (Ciesielski et al., 2016). Original studies suggested 

that replication starts sequentially from two origins of replication (Berk and Clayton, 1974, Robberson 

and Clayton, 1972)(Fig. 1.4). First, replication of the heavy strand is initiated from the OH taking 

advantage of the RNA primer synthesized upstream starting from LSP by POLRMT. The replication 

proceeds unidirectionally with continuous displacement of the parental heavy strand and synthesis of 

the daughter strand, hence the name strand-displacement model (SDM) (Fig. 1.4). While single-

stranded, the displaced heavy strand is coated by mtSSB likely protecting it from chemical or 

nucleolytic damage (Fusté et al., 2014). Once the replication reaches two thirds of the molecule the OL 

in the middle of a tRNA cluster becomes single-stranded and is able to form a stem-loop structure 

(Fig. 1.4). This stem-loop structure is used by POLRMT to synthesize a short primer, which is further 

used to replicate the light strand. Most evidence to date suggests that SDM is the main replication 

mode in mammalian tissues: 1) There is a well-known mutation skew at the fourfold redundant sites of 

mtDNA which correlate with the duration some segments have to remain single-stranded during 
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replication (Faith and Pollock, 2003). 2) In support of the previous mutation skew, some fish that have 

inverted control region relative to other vertebrates show also inverted mutation skewness (Fonseca et 

al., 2014). 3) A recent study quantifying mtSSB binding to mtDNA showed a gradient along the 

displaced paternal heavy strand, another result fitting the SDM (Fusté et al., 2014). 4) A recent single 

molecule analysis of mtDNA replication using DNA combing also supported the SDM (Phillips et al., 

2017). 5) Experimental studies using the mtDNA mutator mouse have shown how the OL is essential 

for mtDNA maintenance as mutations in this element are under strong negative selection in vivo 

(Wanrooij et al., 2012) and 6) single large deletions of mtDNA always retain both OH and OL in 

human patients. 

Two alternative replication models are based on studies done using two-dimensional agarose gel 

electrophoresis (2D-AGE). In the first alternative model known as the ribonucleotide incorporation 

throughout the lagging strand (RITOLS), the paternal heavy strand is coated by RNA instead of 

mtSSB (Yasukawa et al., 2006). However, it was recently shown that if separately purified mtDNA 

and mitochondrial transcripts are mixed in a test tube, similar RITOLS replication intermediates can 

be observed in 2D-AGE questioning the validity of this approach and therefore the RITOLS model 

(Fusté et al., 2014). The second alternative model, strand-coupled model (SCM), suggests that the 

replication of heavy and light strand is coupled (Holt et al., 2000). As listed above, however, most 

results using various methods are in support of the SDM. 

Results regarding the mode on replication in fruit flies have also provided contradictive results. The 

first EM studies suggested that fruit flies have a minor strand origin of replication located in the 

middle of the control region (Goddard and Wolstenholme, 1980, Goddard and Wolstenholme, 

1978)(Fig. 1.1, 1.2 and 1.4) and that the replication would use the similar SDM as observed in 

mammals. In fruit flies, however, replication of the minor strand seems to proceed up to 97% before 

the initiation of major strand replication, suggesting that in fruit flies both replication origins are 

located in the control region (Fig. 1.1, 1.2 and 1.4). This replication model is also supported by the 

findings that strand- and position specific nucleotide biases exist across the whole mtDNA coding 

region of several insects (Stewart and Beckenbach, 2006) and mapping of free 5’-ends to two 

conserved poly-dT stretches in the control regions likely representing the replication origins for the 

minor and major strands (Saito et al., 2005, Tsujino et al., 2002). In contrast to most EM studies and 

mapping of the free 5’-end, a recent 2D-AGE based study suggested that the fruit fly mtDNA would 

replicate using the SCM (Joers and Jacobs, 2013). Similar experiments to those done in mammalian 

systems (single-molecule analysis, mtSSB occupancy, in vivo mutagenesis) would clearly increase our 

understanding of the mtDNA replication in fruit flies if applied to this model organism. 
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Figure 1.4: Schematic view of the strand-displacement model (SDM) of replication in vertebrates and fruit flies 
In vertebrates, mtDNA replication begins from the OH and continues in a strand-asynchronous manner towards OL. The parental heavy strand 

displaced by TWINKLE is covered by mtSSB. After reaching OL the parental heavy strand forms a hairpin structure which POLRMT uses to 

synthesize a short RNA primer. POLγ uses this primer to synthesize the light strand. In flies, mtDNA replication is similar with the 
difference that both replication origins are located in the control region. Therefore the heavy strand replication if nearly finished before the 

light strand replication engages.  
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It is poorly understood whether collisions between replication and transcription machineries take place 

in mitochondria, and if so, whether they are controlled. In other systems, these collisions are known to 

cause abortive DNA synthesis and mutagenesis (Lang et al., 2017) hence some mechanisms to control 

these collisions are likely to exist also in mitochondria. Mitochondria contain a family of 

mitochondrial transcription termination factor (MTERF) proteins that are participating in regulation of 

mitochondrial transcription, ribosome assembly and translation (Wredenberg et al., 2013, Terzioglu et 

al., 2013, Joers et al., 2013, Bruni et al., 2012, Cámara et al., 2011, Roberti et al., 2009, Park et al., 

2007, Roberti et al., 2006, Roberti et al., 2005, Roberti et al., 2003). Interestingly, both in mammals 

and fruit flies, some of these proteins have been suggested to control replication-transcription 

collisions. For instance, MTERF2 and MTERF3 can bind mtDNA unspecifically and overexpression 

of either protein increases the amount of replication intermediates (Hyvärinen et al., 2011). A more 

interesting protein is MTERF1 which normally binds downstream of the ribosomal transcription unit 

and stops antisense transcription over the rRNA genes (Terzioglu et al., 2013) but in addition it can 

arrest mtDNA replication at the same site by inhibiting TWINKLE (Shi et al., 2016). The fruit fly 

ortholog of MTERF1, DmTTF, has two binding sites in fruit fly mtDNA where it can block 

mitochondrial transcription bidirectionally (Roberti et al., 2006, Roberti et al., 2005, Roberti et al., 

2003). Fruit flies possess also an insect specific DmTTF paralog, MTERF5, which interacts with 

DmTTF binding sites and has the opposite effect on transcription in comparison with DmTTF (Bruni 

et al., 2012). It was recently shown that DmTTF and MTERF5 can affect mtDNA replication as 

DmTTF knockdown decreased whereas MTERF5 knockdown increased site-specific pausing (Joers et 

al., 2013). These results support the idea that mitochondria possess mechanism to avoid collisions 

between replication and transcription machineries. How common are these collisions, how they are 

resolved and what are their consequences is not yet known. 

1.3.7 Regulation of mtDNA copy number 

MtDNA is a multicopy genome within a eukaryotic cell and depending on the cell and tissue type its 

numbers can vary between 200 and 100 000 per nucleus (Wolff et al., 2013, Masuyama et al., 2005, 

Shmookler Reis and Goldstein, 1983, Bogenhagen and Clayton, 1974). It is still poorly understood 

what are the molecular factors controlling mtDNA copy number. On the one hand a certain amount of 

mtDNA is required to provide templates for mitochondrial gene expression and to ensure that each 

daughter cell receives sufficient amount of mtDNA during cytokinesis. On the other hand maintaining 

surplus of mtDNA could be considered energetically wasteful due to the high requirement of 

deoxynucleotides needed for mtDNA replication (Gandhi and Samuels, 2011a, Bradshaw and 

Samuels, 2005). Nevertheless, there are several examples in different species where changes in 

mtDNA integrity are known to lead to a compensatory upregulation of the total mtDNA copy number 

(Jiang et al., 2017a, Tsang and Lemire, 2002, Beziat et al., 1997, Bogenhagen and Clayton, 1974) 

pointing towards the existence of specific regulatory mechanisms. Because all proteins required to 

maintain mtDNA are encoded by the nDNA, the control of mtDNA copy number is bound to be under 
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nuclear control and we know already a great deal about the factors controlling the expression of these 

genes in multiple systems (Fernandez-Moreno et al., 2013, Scarpulla, 2008, Lefai et al., 2000b). 

Perhaps surprisingly, studies performed using the hemizygous PolγA mice suggest that at least in mice 

the control of PolγA expression is not under tight control as the expression from the remaining allele is 

not upregulated (Hance et al., 2005). POLγA is also constitutively expressed in the absence of mtDNA 

(Davis et al., 1996) and its overexpression has no effect or mtDNA copy number in vitro (Schultz et 

al., 1998) or can even lead to mtDNA depletion in vivo (Lefai et al., 2000a). Of course, the presence of 

nuclear control does not exclude the possibility of post-translational control mechanisms within 

mitochondria that could be used to fine tune mtDNA copy number in response to changes in cellular 

environment. It also noteworthy that mtDNA copy number does not necessarily correlate with 

mitochondrial transcript levels as 50% decrease in mtDNA copy number does not affect RNA steady 

state levels in mice or flies (Sanchez-Martinez et al., 2012, Larsson et al., 1998). This would suggest 

that mitochondria have yet uncharacterized mechanisms to either increase mtDNA transcription or 

decrease transcript degradation in response to changing mtDNA copy number.  

Currently, there are only two proteins verified to regulate mtDNA copy number: TFAM and 

TWINKLE. As described above, mtDNA replication and transcription are connected because the 

transcription machinery is needed to synthesize the RNA primers used by the replication machinery. 

TFAM levels are known to correlate well with the mtDNA copy number with one known exception 

(Kuhl et al., 2016) but it has been difficult to separate whether this regulation is taking place through 

its effects on mitochondrial transcription or packaging of mtDNA. An interesting insight was provided 

by a study where human TFAM was expressed in mice. Human TFAM cannot interact properly with 

the mouse transcription machinery but was nevertheless able to increase mtDNA copy number 

suggesting that TFAM has a direct role in regulating mtDNA copy number independently of its 

function in mtDNA transcription (Ekstrand et al., 2004). Therefore, there has been a considerable 

interest to better understand how TFAM levels are controlled. Several studies have shown that TFAM 

levels seem to be regulated by a mitochondrial matrix protease Lon and two studies have described 

how unbound “free” TFAM would be targeted for degradation through phosphorylation. (Zhang et al., 

2015, Lu et al., 2013, Matsushima et al., 2010). Interestingly, too high TFAM levels can have 

detrimental effects as high TFAM/mtDNA ratio can block mtDNA replication and transcription (Khan 

et al., 2016, Farge et al., 2014) and lead to developmental lethality in flies (Cagin et al., 2015) showing 

that the TFAM levels need to be controlled to ensure organelle function. It will be of high interest in 

the future to better understand what are the signaling pathways controlling TFAM phosphorylation, 

degradation and thereby mtDNA levels. 

TWINKLE remains the only protein that, in addition to TFAM, can increase mtDNA copy number 

when overexpressed in mice (Ylikallio et al., 2010b, Tyynismaa et al., 2004). Because TWINKLE is 

part of the mitochondrial replisome (Fig. 1.3), these results would suggest TWINKLE is a limiting 
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factor in mtDNA replication. Interestingly, the effects of TWINKLE and TFAM overexpression on 

mtDNA copy number are additive resulting in ~5 fold increase in mtDNA levels (Ylikallio et al., 

2010b). This double overexpression mouse presented with mtDNA deletions, decreased mitochondrial 

transcription and respiration showing that inducing high mtDNA copy number by overexpressing 

mtDNA maintenance proteins can have detrimental effects. One possibility for the observed mtDNA 

maintenance defects could stem from inadequate dNTP pools to support high mtDNA copy number 

(Gandhi and Samuels, 2011a, Bradshaw and Samuels, 2005), leading to replication stalling and 

mutagenesis. Not all studies support the view that TWINKLE is a limiting factor in mtDNA 

replication. For instance, overexpressing DmTWINKLE in fruit flies has no effect on mtDNA copy 

number (Sanchez-Martinez et al., 2012) suggesting organism or dosage specific differences. 

In addition to the replisome proteins, mtDNA replication requires also dNTPs as building blocks and 

indeed nucleotide pool imbalances are known to cause numerous cellular problems (Pai and Kearsey, 

2017, El-Hattab et al., 2017a, Da-Re et al., 2014, Bourdon et al., 2007). It has therefore been 

suggested that the size of nucleotide pools determines mtDNA copy number in any given cell type 

(Tang et al., 2000). This theory has gained recent support from transgenic models where 

overexpression of some of the enzymes involved in nucleotide pool maintenance led to increased 

mtDNA copy number (Tufi et al., 2014, Hosseini et al., 2007) but it should be noted that 

overexpression of other related enzymes has no effect (Krishnan et al., 2013) or can even lead to 

mtDNA depletion (Ylikallio et al., 2010a). Therefore, dNTPs as regulators of mtDNA copy number 

remains a controversial subject. 

 

1.4 MITOCHONDRIA IN DISEASE AND AGEING 

1.4.1 MtDNA point mutations 

As described above, mitochondria have maintained only the minimal number of genes to produce 

some of the essential core components of the OXPHOS. Studies done almost 40 years ago 

counterintuitively showed that despite the importance of these genes, the mtDNA of primates evolves 

10 times faster than the nuclear DNA (Brown et al., 1979). It was recognized already then that this 

rapid evolution could be caused by two, not mutually exclusive, processes; high mutation rate or high 

fixation rate of mutations. Although we have increased our understanding by leaps and bounds 

regarding the relative contributions of these mechanisms, even today both of these mechanisms remain 

highly studied subjects. The multicopy nature of mtDNA makes it a challenging target to study 

because mutations homoplasmic or heteroplasmic. Recent advances in next-generation sequencing 

(Stewart and Chinnery, 2015) have increased interest in this area of research as it has become apparent 

that all humans carry some level of heteroplasmic mtDNA mutations, many of which are pathogenic 

(Ye et al., 2014, Payne et al., 2013). 
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To better understand the mechanism affecting the formation of mtDNA mutations it is helpful to 

categorize the type of changes to extrinsic sources, such as environmental toxins, and intrinsic sources, 

such as DNA replication mistakes. Additionally, the contribution of both sources to mtDNA 

mutagenesis is further modulated by the presence, or in the case of mitochondria, absence of DNA 

repair pathways (Kazak et al., 2012). Extrinsic factors potentially leading to mtDNA mutations include 

ultraviolet (UV) radiation, environmental toxins and nucleotide analogs. However, in vitro studies 

have shown that POLγ rarely bypasses various types of DNA damage and in the rare cases POLγ 

bypasses adducts, it inserts the correct base (Table 1.1). Some data suggest that stalling of POLγ is not 

mutagenic. For instance, cigarette smoke and UV-light, both highly mutagenic in nDNA, do not 

increase mtDNA mutation load (Ju et al., 2014). Similarly, it was recently shown that although one 

type of PAH, benzo[a]pyrene (B[a]P) and an alkylating agent N-ethyl-N-nitrosourea (ENU), can both 

create DNA adducts both in nDNA and mtDNA, these adducts are converted into mutations only in 

nDNA (Valente et al., 2016). Although less studied, it has been also suggested that TWINKLE might 

have difficulties in bypassing bases with oxidative damage (Khan et al., 2016), which is expected to 

have similar consequences as the stalling of POLγ. Because mtDNA is a multicopy genome, stalling 

of the replisome likely results in degradation of the damaged DNA without further consequences. 

Although stalling of the mitochondrial replisome is not mutagenic per se, it might increase the clonal 

expansion of already existing mtDNA mutations as has been observed in HIV patients. 

 

Table 1.1: Publications reporting POLγ stalling at damaged sites 

Damage Effect Publication 

UV-damage Stall/Bypass (Kasiviswanathan et al., 2012) 

8-oxoG Stall/Bypass 
(Stojkovic et al., 2016, Garcia-Gomez et al., 2013, 

Graziewicz et al., 2007, Pinz et al., 1995) 

Abasic site Stall 
(Kozhukhar et al., 2016, Garcia-Gomez et al., 2013, Pinz 

et al., 1995) 
Polycyclic aromatic 

hydrocarbons (PAH) 
Stall (Graziewicz et al., 2004) 

Acrolein Stall (Kasiviswanathan et al., 2013) 
Platinum-DNA-adduct Stall (Vaisman et al., 1999) 

 

Some pharmacological compounds are known to inhibit POLγ such as nucleotide analog HIV reverse 

transcriptase inhibitors (NRTIs) leading to mitochondrial toxicity (Szymanski et al., 2015, Lewis and 

Dalakas, 1995, McKenzie et al., 1995). It was later observed that HIV patients treated with NRTIs 

show premature ageing phenotypes and that this might be caused by mtDNA mutations (Payne et al., 

2011). Interestingly, this increase in mtDNA mutation load was not caused by increased mutagenesis 

but increased mtDNA turnover which in turns accelerates the random drift of already existing mtDNA 

mutations leading to focal mitochondrial dysfunctions. It will be interesting to see in the future 

whether other compounds inhibiting POLγ or mtDNA damage could also result in increased mtDNA 

mutation loads by affecting mtDNA turnover. This clonal expansion of low level mtDNA mutations 
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could be also relevant in the case of therapeutic manipulations of mtDNA as removing mtDNA 

molecules carrying a pathogenic mutation (Pereira and Moraes, 2017) could result in the expansion of 

these mutations.  

One of the intrinsic causes for mtDNA mutations is imbalance in mitochondrial nucleotide pools. It is 

known that imbalances in nucleotide pools can decrease POLγ replication fidelity in vitro, cause 

mtDNA deletions in HeLa cells and mtDNA depletion in mice (Dalla Rosa et al., 2016, Ylikallio et al., 

2010a, Song et al., 2005, Song et al., 2003, Kunkel and Soni, 1988). Nucleotide pools are different in 

various tissues and change depending on the cell cycle (Ferraro et al., 2005). In humans, imbalances in 

cellular nucleotide pools are known to cause several mitochondrial diseases (El-Hattab et al., 2017a, 

Da-Re et al., 2014). One of these diseases is mitochondrial neurogastrointestinal encephalomyopathy 

(MNGIE). This disease is caused by mutations in thymidine phosphorylase (TP) which degrades 

thymidine. Decreased or abolished of TP activity leads to elevated dTTP levels relative to other 

nucleotides and in patients this nucleotide pool imbalance leads to mtDNA point mutations, deletions 

and depletion (González-Vioque et al., 2011, Nishigaki et al., 2003). It is still unclear how these dNTP 

pool differences lead to mtDNA instability and why certain fluctuations lead to mtDNA depletion 

whereas others cause mtDNA point mutations and deletions. It is also possible that the intrinsic dNTP 

pool asymmetries observed in different tissues might contribute to tissue specific mtDNA mutagenesis 

patterns and frequencies (Wheeler and Mathews, 2011, Ferraro et al., 2006, Song et al., 2005). 

Nucleotide pool imbalances likely cause mutations through their effect on POLγ. In fact, increasing 

amount of evidence suggests that most mtDNA mutations originate from replication errors. Most of 

these studies are based of interpreting mtDNA mutation patterns as oxidative damage creates usually 

G>T transversion mutations whereas most polymerase errors are transition mutations (Zheng et al., 

2006, Lindahl, 1993). A recent sequencing study of mtDNA from young and old individuals showed a 

clear increase in mtDNA mutation load with age but the mutation pattern observed was inconsistent 

with oxidative damage (Kennedy et al., 2013). Similar absence of hallmarks of oxidative damage has 

also been observed in tumors and ageing mice (Ju et al., 2014, Pereira et al., 2012, Ameur et al., 2011). 

In addition, a recent study quantified mtDNA mutations in a fly model with reduced SOD2 activity 

and OGG1-deficiency, which led to increased levels of ROS and decreased removal of oxidized 

guanosine, respectively (Itsara et al., 2014). There was no increase in transversion mutations 

suggesting that ROS is not a major player in mtDNA mutagenesis. In summary, most studies suggest 

that mtDNA mutations originate from replication errors (Szczepanowska and Trifunovic, 2017, 

Kauppila et al., 2017). 

1.4.2 MtDNA deletions 

The first mtDNA deletions were characterized already in 1988 in patients with mitochondrial 

myopathy (Holt et al., 1988) and it has been intensively researched ever since whether these deletions 
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are associated with decreased mitochondrial function in ageing tissues and what are the mechanisms 

leading to the formation of mtDNA deletions. In mitochondrial disease patients these deletions are 

often caused by mutations in nuclear genes necessary for mtDNA maintenance or nucleotide synthesis 

and transport (Ahmed et al., 2015). However, in many cases there is no clear nuclear trait to be 

identified. Mapping of the breakpoints of circular mtDNA deletions has provided us with hints on how 

these molecules might originate. Interestingly, the ends of these deletions are not randomly distributed 

along the mtDNA but instead show rather specific distributions (Dong et al., 2014, Samuels et al., 

2004). Most of the deletions (~90%) are flanked by homologous or near-homologous repeats 

suggesting the involvement of replication slippage in the formation of these deletions. Additionally, 

the majority of the detected deletions are missing a part of the major arc of mtDNA probably for two 

reasons. First, the major arc encompasses most of the short homologous regions with the potential to 

cause a replication slippage (Krishnan et al., 2008). Secondly, for a deleted molecule to propagate it 

would have to include both origins of replications (OH and OL). Therefore a deletion lacking one or 

both origins of replication would never be able to accumulate to a significant level. 

What is leading to replication slippage during mtDNA replication? There are two prerequisites for 

replication slippage to take place, namely the presence of a single-stranded template and pausing of 

the replication machinery. The presence of a single-stranded template allows the repeat regions to 

mispair. This mispairing can create various DNA secondary structures such as hairpins, cruciforms 

and G-quadruplex structures (Dong et al., 2014, Damas et al., 2012). In the strand-displacement model 

of replication, large portions of the mtDNA can be single-stranded enabling the formation of 

secondary structures than can induce stalling of the replisome (Bharti et al., 2014) although the 

formation of these structures should be prevented by mtSSB (Fusté et al., 2014). Stalling of the 

replisome would allow the end of the newly synthesized strand to reanneal with downstream repeats. It 

is largely an unexplored area, what factors cause the replisome to pause. One factor could be the 

formation of secondary structures in the template DNA. Another possibility would be stalling of the 

replisome due to various types of DNA damage although to date efforts to detect mtDNA deletions in 

the presence of for example increased oxidative stress have provided mixed results (Wanagat et al., 

2015, Zhang et al., 2002). However, there seems to be a link between catecholamine metabolism and 

mtDNA deletions both in neurons and adrenals (Neuhaus et al., 2017, Neuhaus et al., 2014). As 

mentioned above, not all deletion breakpoints are localized with flanked repeats. Several other 

mechanisms can also contribute to the formation of these deletions such as replication products from 

partial mtDNA duplications and repair of double-strand breaks (Fukui and Moraes, 2009). 

Studies reporting the presence of circular mtDNA molecules with deletions vary greatly in their 

deletion abundance estimations raising the question whether the deletions have any biochemical 

impact (Brierley et al., 1998). As is the case with mtDNA point mutations, deletions have to also reach 

a certain threshold level (~60%), often lower than that of point mutations (~80%), before impairing 
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mitochondrial function. Some of the variation between different studies can be at least partially 

explained by the different approaches used to quantify deletion levels as has been previously shown in 

humans (Brierley et al., 1998) and more recently in a mouse model with a mosaic mitochondrial 

deficiency (Baris et al., 2015). For instance, long-range PCR reactions using tissue homogenates often 

show that less than 1% of the mtDNA molecules carry deletions. More sensitive real-time PCR 

methods of the same tissue homogenate produce estimates in the 10-30% range. Furthermore, when 

deletions are quantified specifically from cytochrome c oxidase (COX) deficient muscle fibers their 

levels reach or even surpass the common threshold levels needed to cause a biochemical defect, 

underlining the importance of using single cell analysis as opposed to the use of tissue homogenates 

(Zambelli et al., 2017). These COX deficient regions of muscle fibers with high deletion levels are 

also accompanied by muscle atrophy (Wanagat et al., 2001, Cao et al., 2001). These results strongly 

suggest that the mtDNA deletions are the driving force behind these OXPHOS dysfunctions. 

Two relevant mouse models have been engineered to study the biological significance of mtDNA 

deletions. The first model, also known as the mtDNA deletor mouse, expresses TWINKLE with 

dominant mutation leading to the accumulation of low level but large-scale mtDNA deletions and 

progressive OXPHOS deficiency (Tyynismaa et al., 2005). The second mouse model expresses 

mitochondrial targeted restriction enzyme (Fukui and Moraes, 2009). These mice accumulate mtDNA 

deletions leading to decreased OXPHOS capacity therefore showing that mtDNA deletions can have 

detrimental effects when present at high relative heteroplasmy levels. A fly model expressing 

mitochondrial targeted restriction enzymes has also been used to introduce mtDNA deletions in 

postmitotic tissues (Kandul et al., 2016). 

A special subclass of deleted mtDNA molecules is linear molecules with deletions. Linear mtDNA 

with deletions have been detected in the mtDNA mutator mouse (Bailey et al., 2009, Trifunovic et al., 

2004) in addition to patients with mutations in the mitochondrial genome maintenance exonuclease 1 

(MGME1). In the mtDNA mutator mouse, these deletions were detectable already in the embryo, the 

amount of deletions did not change with time and was similar in all tissues (Kukat and Trifunovic, 

2009). In addition, it has been shown in other models that linear mtDNA is quickly degraded within 

mitochondria (Moretton et al., 2017, Bayona-Bafaluy et al., 2005) suggesting that the mtDNA mutator 

mouse deletions represent failed and transient replication products. A model was recently put forward 

suggesting how these linear deletions are formed in both mtDNA mutator mice and MGME1 patients 

(Uhler et al., 2016, Macao et al., 2015). These linear deletions are unlikely to have an effect on ageing 

due to their relatively low abundance and the much more significant effect of the inherited mtDNA 

point mutations (Ross et al., 2013, Edgar et al., 2009). Linear deletions have not been detected in the 

ageing tissues suggesting they are not contributing to ageing and are specific for the above-mentioned 

genetic defects. 
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1.4.3 MtDNA inheritance and purifying selection 

In most metazoans, mtDNA is transmitted exclusively down the maternal line. Paternal leakage has 

been described in flies, mice and in a single male patient (Carelli, 2015) but these are more exceptions 

that prove the rule. Indeed, there is an array of species-specific mechanisms ensuring the exclusion of 

paternal mtDNA from oocytes. For instance, in nematodes, paternal mitochondria are engulfed by 

autophagosomes whereas in fruit flies paternal mtDNA is degraded by EndoG endonuclease during 

spermatogenesis (Sato and Sato, 2013). In mammals, mtDNA copy number is strongly downregulated 

during spermatogenesis (Rantanen et al., 2001, Larsson et al., 1997, Larsson et al., 1996) and paternal 

mitochondria are ubiquitinylated and targeted for degradation (Sato and Sato, 2013). In addition to 

these active mechanisms the oocyte contains several orders of magnitude more mtDNA than the sperm 

and therefore the paternal mtDNA can be diluted out. This does not still explain what is the advantage 

of uniparental inheritance of mtDNA. One benefit of excluding the paternal mtDNA is that DNA 

mutations are known to accumulate much faster in the male than female germline due to the constant 

production of male gametes (Kong et al., 2012). Another benefit could be to retain mtDNA in 

homoplasmic state as uniparental inheritance combined with random segregation of mitochondria 

seems to help in avoiding mutational meltdown (Radzvilavicius et al., 2017). As described below, 

there are mechanisms in the female germline returning mtDNA into the homoplasmic state and mice 

carrying two different mtDNAs show negative physiological effects (Sharpley et al., 2012, Hirose et 

al., 2017). 

Although POLγ has a tendency to introduce preferably certain mutations and this mutagenesis might 

be affected by the surrounding sequence context, from a functional point-of-view mtDNA mutations 

introduced by POLγ are random. It is only afterwards that selection can limit the propagation of 

mtDNA molecules carrying harmful mutations. Indeed it has been observed that in somatic tissues 

mtDNA mutations show neutral drift (Baines et al., 2014, Greaves et al., 2012, Pereira et al., 2012, 

Elson et al., 2001) unless they affect regions essential for mtDNA maintenance (Wanrooij et al., 

2012). Therefore the levels of individual mtDNA mutations can increase or decrease stochastically 

within the lifetime of a cell and individual. If the level of a pathogenic mutation surpasses a certain 

mutation and cell type specific threshold, usually 60% to 90%, it can lead to OXPHOS dysfunction 

(Rossignol et al., 2003, Boulet et al., 1992, Larsson et al., 1992). This random drift of mtDNA 

mutations is rather slow process as supported both computational models and human studies (Taylor et 

al., 2003, Elson et al., 2001, Brierley et al., 1998, Muller-Hocker, 1990, Muller-Hocker, 1989). 

Although there does seem to be any negative selection against pathogenic mutations in somatic 

tissues, it is widely known that in populations mtDNA protein coding genes show selection against 

amino acid changing mutations (Rand, 2008), a sign of purifying selection. 

MtDNA mutations exist in a “hierarchy of populations” (Rand, 2011) meaning that there are multiple 

mtDNAs within a mitochondrion, multiple mitochondria in each cell, multiple oocytes in each 
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reproducing female and multiple females in a population. The (presumably) random sampling of 

mtDNAs for replication, random segregation of mitochondria in cytokinesis (for a contradictive result 

see (Katajisto et al., 2015)) and random sampling of oocytes combined with bottlenecks provide raw 

material for natural selection to work on. Indeed there has been a considerable interest in 

understanding purifying selection taking place in females (Stewart and Larsson, 2014). Several not 

mutually exclusive mechanisms have been proposed to explain this phenomenon. First, among the 10
5
 

copies of mtDNA, only a subset is set aside for the germline development creating essentially a 

bottleneck. Secondly, there seems to be a negative selection against amino acid changing mutations 

(Stewart et al., 2008). Thirdly, high heteroplasmy level tRNA mutations show negative selection in 

developing embryo (Freyer et al., 2012). Lastly, abundant mtDNA mutations have been shown to 

decrease female fertility (Ross et al., 2013). Most studies focusing on elucidating the mechanisms of 

purifying selection have focused on mammals. However, fruit flies have been also suggested to 

possess purifying selection. It was shown using two complementing mtDNAs that there is some 

selection against mtDNA carrying a temperature sensitive mutation in the late germarium stage (Ma et 

al., 2014) and that this selection might take place through selective replication of mtDNA molecules 

(Hill et al., 2014). Whether this selection is only specific to this temperature sensitive mutant is not 

known. There might also be selection in later stages of fly development as it was described recently 

how only a subset of mitochondria are selected to form fly primordial germ cells (PGCs) during 

cytoplasmic streaming (Hurd et al., 2016) but further studies are needed to show whether this affects 

the purifying selection of mtDNA. Because flies are ectotherms, temperature of the environment can 

greatly affect their physiology. Indeed, fluctuations in environmental temperature can have as far 

reaching consequences as affecting the speed of segregation of mtDNA molecules (De Stordeur, 1997, 

Matsuura et al., 1993). 

In the context of purifying selection and mtDNA deletions, there are some interesting differences 

between humans and model organisms. In humans, mtDNA deletions are almost never inherited 

(Chinnery et al., 2004), whereas there are several populations of nematodes and flies carrying large 

mtDNA deletions for multiple generations (Tsang and Lemire, 2002, Beziat et al., 1997). Some results 

suggest that the limited population size of model organisms in laboratory conditions is limiting 

negative selection of deleted molecules (Phillips et al., 2015). In addition, some of these deletions are 

linked to unidentified nuclear traits suggesting constant formation of deletions (Farge et al., 2002, Le 

Goff et al., 2002). The modest negative selection against mtDNA deletions in the model organism 

could also stem from the differences in oocyte development in these organisms (Strome and Updike, 

2015). For instance, fruit fly oocytes possess substantially more mtDNA in comparison with humans 

(Wolff et al., 2013), which might limit the strength of negative selection. 
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1.4.4 Mitochondria and ageing 

Ageing can be defined as the slow decline in organismal fitness with advancing age. These chances 

are not limited to humans and animals in captivity, but instead most metazoans are known to present 

with some signs of ageing (Nussey et al., 2013). To some extent this decline in fitness with age is 

expected as evolutionary selection is minimal against traits that are harmful after reproduction age. 

Last decades have provided us with valuable insights into the changes that take place at the cellular 

level with age. These characteristics include, but are not limited to, shortening of the telomeres, 

genome instability, stem cell exhaustion, loss of proteostasis and mitochondrial dysfunction (Lopez-

Otin et al., 2013).  

Denham Harman hypothesized already in the 50’s that ROS might be a major contributor to the 

natural ageing process as ROS can damage all cellular macromolecules (Harman, 1956). When it was 

later discovered that mitochondria are the major source of cellular ROS, this theory was refined into 

mitochondrial theory of ageing (Alexeyev, 2009, Harman, 1972). Originally ROS was considered to 

be only a harmful side product of cellular respiration and it took years to understand that ROS can also 

function as a signaling molecule (Scialo et al., 2017, Lagouge and Larsson, 2013). There is 

considerable evidence now that cells accumulate oxidative damage with age (Bokov et al., 2004). 

However, it has not been shown that this damage would contribute to ageing and in some models 

increasing ROS can have even lifespan extending effects (Scialo et al., 2016). Current mitochondrial 

ageing research is slowly moving past the idea that ROS damage is the cause for age-associated 

mitochondrial dysfunction. Instead, ROS should be handled as signaling molecules that can affect for 

instance stem cell maintenance (Kauppila et al., 2017). 

Studying cellular changes in ageing tissues is challenging because the relative levels of different cell 

types and tissue composition change with age due to inflammations, increasing fibrosis, regeneration 

and changing environment (Vaitkus et al., 2015, Gram et al., 2015, Kular et al., 2014, Velarde, 2014). 

Nevertheless, multiple studies have tried to identify consistent changes in mitochondria with age. 

Some of the more robust changes include changes in mitochondrial morphology, abundance and 

OXPHOS activity (Shigenaga et al., 1994) whereas others, such as changes in mtDNA copy number, 

have provided mixed results (Kazachkova et al., 2013). One of the most consistent age-associated 

changes in mitochondria is the accumulation of mtDNA mutations and deletions which segregate 

randomly within each cell resulting in mosaic tissue OXPHOS defects (Greaves et al., 2014, Kennedy 

et al., 2013, Larsson, 2010, Bua et al., 2006). For example, based on the serial cross-sectioning of 

skeletal muscles of rats, monkeys and humans show that in older individuals 5%-15%, 28%-60% and 

31% of fibers have biochemical defects at some point along their length, respectively (Bua et al., 2006, 

Wanagat et al., 2001, Lopez et al., 2000). Alone, however, these studies only show a positive 

correlation between mtDNA mutation load and ageing. More sophisticated studies using coupled 

mtDNA mutation load analysis and tissues histology have shown that individual cells with high 
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mtDNA mutation load correlate with impaired OXPHOS function and cell death (Herbst et al., 2007, 

Cao et al., 2001) and increasing the rate of mutation segregation by inducing mitochondrial biogenesis 

worsens the ageing effects (Herbst et al., 2016). 

This random drift of mtDNA mutations within a cell is a relatively slow process as OXPHOS 

dysfunction is rarely seen in individuals below the age of 30. It has been therefore suggested that only 

inherited mtDNA mutations or mutations introduced early in life have sufficient amount of time to 

expand clonally and lead to OXPHOS dysfunction. It is interesting to note that in all metazoans 

studied so far mtDNA mutations seem to be introduced early in life, including zebra fish, mice and 

humans (Otten et al., 2016, Greaves et al., 2014, Ameur et al., 2011). However, it seems that in 

comparison to humans, some shorter lived organisms, like mice and flies, show limited age-associated 

clonal expansion of mtDNA mutations probably due to the shorter lifespan of these organism (Itsara et 

al., 2014, Greaves et al., 2011, Yui and Matsuura, 2006, Yui et al., 2003). It has been therefore 

questioned whether mtDNA mutations, especially somatic, can limit the lifespan of short-lived species 

such as fruit flies (Kowald and Kirkwood, 2013). 

It was only the engineering of proofreading deficient PolgA
mut/mut

 mouse (mtDNA mutator mouse) that 

brought mtDNA mutations to the limelight of ageing research (Kujoth et al., 2005, Trifunovic et al., 

2004). These knock-in mice have a single aspartate to alanine mutation (MmD257A) in the 

exonuclease domain of PolgA and this residue is critical in controlling catalytic magnesium ions 

needed for exonuclease activity from yeast to humans (Longley et al., 2001, Vanderstraeten et al., 

1998). At the phenotype level these mice show several signs of ageing, including progressive hair loss, 

curvature of the spine, reduced body size and increased mortality. At the molecular level the mtDNA 

of these mice carry mtDNA point mutations, linear deletions between the origins of replication and 

control region multimeres (Williams et al., 2010, Vermulst et al., 2008, Trifunovic et al., 2004). It was 

later shown that the premature ageing phenotype is largely caused by the inherited and clonally 

expanded mtDNA mutations (Ross et al., 2013) and even nuclear WT progeny of heterozygous 

mtDNA mutator females, which inherit on average two mutations per mtDNA, have shortened 

lifespan (Ross et al., 2014). An elegant biochemical characterization of the mtDNA mutator mice 

showed that the premature ageing phenotype is driven by decreased OXPHOS stability due to 

increased turnover of OXPHOS subunits (Edgar et al., 2009). 

All in all, there is now correlative evidence showing that the level of mtDNA mutations increases with 

age in various organisms and that experimentally increasing mtDNA mutation load leads to a 

premature ageing phenotype. To unequivocally show that mtDNA mutations are contributing to the 

natural ageing process one would have to experimentally decrease mtDNA mutation load and test 

whether this would lead to lifespan extension. Decrease in mtDNA mutation load could be, at least in 

theory, achieved by increasing the absolute number of WT mtDNA copies, improving mtDNA repair 
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mechanisms or increasing the accuracy of POLγ, which is responsible for the introduction of most, if 

not all, mtDNA mutations. 

 

1.5 ANTIMUTATOR DNA POLYMERASES 

During evolution polymerases have been optimized for accuracy and speed. The error rates of DNA 

polymerases seem to reflect the amount of DNA synthesized per generation (Lynch, 2011). This feels 

intuitive because when DNA polymerase has more chances to introduce errors (replicating a 

substantial proportion of cellular DNA) there will be also higher selection pressure to increase the 

accuracy of the polymerase and vice versa. In this light it is interesting to note that despite the 

miniscule size of the mtDNA in comparison with nuclear chromosomes, POLγ is the most accurate 

mammalian DNA polymerases (Lynch, 2011). This could stem from the fact that there are thousands 

of mtDNA copies per cell (~1% of all cellular DNA) and that mtDNA replication is relaxed, i.e. it is 

cell cycle independent. Nevertheless, from flies to humans mtDNA has been shown to accumulate 

mutations several times faster than the nuclear DNA (Haag-Liautard et al., 2008, Howell et al., 2003). 

These mutations are probably caused by constant mtDNA turnover and inadequate repair mechanisms 

in mitochondria (Kazak et al., 2012). In addition, due to the multicopy nature of mtDNA even harmful 

mutations can drift at low level without any significant fitness cost and would not therefore be under 

strong negative selection in contrast to mutations in nDNA. 

DNA replication is an astonishingly precise process and composed of several steps. First, polymerases 

have a tight nucleotide selection in the catalytic core to ensure proper Watson-Crick geometry with the 

accuracy of 10
-4

-10
-5

 mut/bp for accurate polymerases like POLγ (Johnson and Johnson, 2001). The 

replication error rate is further decreased by exonucleolytic proofreading of misincoporated bases 

which in the case of POLγA decreases error rate up to 20 to 1500-fold depending on the system 

(Longley et al., 2001, Vanderstraeten et al., 1998). The last mechanism to increase replication 

accuracy is post-replicative mismatch repair (MMR). However, MMR has not been reported to exist in 

mitochondria to date (Kazak et al., 2012). 

Targeted and random mutagenesis have been used extensively in the past to better understand the 

function of DNA polymerases (Herr et al., 2011). Although most mutations have negative effects such 

as decreased DNA binding or lack of polymerase activity, some mutations have been shown to 

increase proofreading efficiency of DNA polymerases. The “antimutator” phenotype of these mutated 

polymerases could stem from increased nucleotide selection, decreased polymerase activity or higher 

propensity to dissociate upon mismatch insertion (Reha-Krantz, 2010). The latter two both increase 

the proofreading/polymerase ratio giving the polymerase more opportunities to proofread. Engineering 

antimutator DNA polymerases is further complicated by the observations that amino acid changes 
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increasing the proofreading/polymerase ratio of certain DNA mutations might even decrease the ratio 

of other mutations (Reha-Krantz, 2010). 

Several single amino acid mutations in E. coli Pol I have been shown to produce an antimutator 

phenotype (Minnick et al., 1999). Two of these Pol I mutations, Q849A and H881A, are of special 

interest as they are conserved in family A DNA polymerases, including POLγA. These residues are 

both on the catalytic core of the polymerase and interact with the incoming nucleotide or with the 

template base. Mutating one of these residues into alanine makes the catalytic core more specious and 

decreased the fidelity on the mutants. In the case of both mutations it seems that they increase the 

propensity of the polymerase to drop off upon mismatch insertion (Minnick et al., 1999) thereby 

giving the polymerase more opportunities to proofread. Although these mutations in the polymerase 

domain make polymerases more accurate, it is yet to be investigated whether the decreased fidelity 

would be sufficient to maintain adequate DNA replication speed in vivo. 

Recently, an elegant genetic screening accompanied by thorough biochemical characterization was 

carried out by Foury and Szczepanowska to discover antimutator variants of yeast mitochondrial DNA 

polymerase MIP1 (Foury and Szczepanowska, 2011). Screening 3000 yeast transformants in a 

mismatch-deficient background resulted in 8 potential antimutator clones. As expected, all mutants 

showed changed exonuclease/polymerase ratios and many of them presented with decreased DNA 

synthesis resulting in mtDNA depletion in vivo. Interestingly, all but one candidate antimutator lost 

their antimutator phenotype in WT background suggesting that any mutation changing the 

exonuclease/polymerase ratio has to be extremely subtle not to limit DNA replication speed with 

detrimental effects. 

 

1.6 MITOCHONDRIA AND STEM CELLS 

During development some of the somatic stem cells are sequestered into so called stem cell niches 

where these cells are known to acquire quiescence (Li and Bhatia, 2011). Staying in quiescence is 

essential for maintaining stem cell self-renewal potential and loss of quiescence can lead to stem cell 

depletion, which would limit tissue regeneration upon damage (Cheung and Rando, 2013). The 

quiescent state correlates often with the presence of an extrinsically hypoxic niche, their dependency 

on glycolytic metabolism and presence of only a few mitochondria (Shyh-Chang and Ng, 2017). It has 

been hypothesized that this low dependency on OXPHOS would exist to minimize the production of 

ROS, which as a signaling molecule is known to promote stem cell differentiation (Morimoto et al., 

2013).  

MtDNA mutations are known to accumulate with age in somatic tissues, including stem cells (Fellous 

et al., 2009, McDonald et al., 2008, Taylor et al., 2003). Mutations could be expected to accumulate 
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even faster in somatic stem cells in comparison with post-mitotic cells because in the former mtDNA 

has to be replicated during meiosis in addition to constant mtDNA turnover. Indeed, the number of 

COX-deficient cells in colonic crypts increases with age (Taylor et al., 2003) and the colonic crypts of 

mtDNA mutator mice resembles that of old humans (Baines et al., 2014).  

Both mouse and fly models have provided us with notable insights into stem cell function in the 

presence of mitochondrial dysfunction. In the mtDNA mutator mouse several stem cell pools seem to 

be affected by mtDNA mutations. For instance, small intestine-derived organoids cannot fully develop 

(Fox et al., 2012), hematopoietic stem cells present with abnormal differentiation (Ahlqvist et al., 

2012), the number of quiescent neuronal stem cells is decreased accompanied by decreased self-

renewal potential (Ahlqvist et al., 2012) and early erythroid development cannot proceed properly 

(Ahlqvist et al., 2015a, Li-Harms et al., 2015, Norddahl et al., 2011) leading to severe progressive 

anemia (Chen et al., 2009, Trifunovic et al., 2004). Some of these changes can be rescued by n-acetyl-

l-cysteine (NAC) supplementation, which functions as a precursor for glutathione and as a direct ROS 

scavenger, suggesting that altered ROS signaling in stem cells might drive some of the observed 

phenotypes (Hämäläinen et al., 2015, Ahlqvist et al., 2012). Together these studies show how 

increased mtDNA mutation load can affect cell signaling and promote cell proliferation over stemness 

with detrimental effects. 

The effects of mtDNA mutations on fruit fly stem cells have not been addressed to date due to the lack 

of proper genetic models. However, models with mutations in nuclear encoded mitochondrial proteins 

have been used to study the effects of impaired mitochondrial function on fruit fly stem cells. These 

studies have shown that stem cell reliance on glycolysis is important in maintaining stemness (Schell 

et al., 2017). Additionally, a screen trying to identify genes important for fruit fly follicle stem cell 

(FSC) maintenance discovered several mitochondrial proteins, including tam (DmPOLγA) that were 

needed for FSC maintenance (Wang et al., 2012). Some of the evidence suggested that this 

mitochondrial dysfunction would impair ROS signaling in FSCs leading to loss of stem cells. Ethyl 

methanesulfonate (EMS) screens to find cell cycle regulators discovered that proper mitochondrial 

function is also needed for cell cycle progression (Liao et al., 2006, Mandal et al., 2005). Follow-up 

studies were able to distinguish two signaling pathways by which mitochondrial dysfunction can block 

cell cycle progression and stem cell maintenance (Owusu-Ansah and Banerjee, 2009, Owusu-Ansah et 

al., 2008). In the first model, complex IV deficiency caused ATP depletion mediated activation of 

AMPK and p53 leading to loss of cyclin E. In the second model, complex I deficiency led to increased 

ROS which activated JNK-FOXO and JNK-Polycomb pathways resulting in the upregulation of cyclin 

E-CDK2 inhibitor Dacapo. These studies also showed that similar to mammals, lowering ROS levels 

decreases the differentiation of multipotent hematopoietic progenitor stem cells whereas increasing 

ROS levels has the opposite effect. 
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1.7 TREATING MITOCHONDRIAL DISEASES 

There are currently no treatments for mitochondrial diseases (El-Hattab et al., 2017b, Pfeffer et al., 

2012). Several approaches have been tested in model organisms and even in humans to rescue 

mitochondrial dysfunction (Viscomi, 2016) and can be categorized into four groups. Firstly, there are 

unspecific methods that could be potentially applied to variety of diseases. These methods are based 

on e.g. increasing mitochondrial biogenesis, affecting mitochondrial shape, modifying redox balance 

and using transgenic models to bypass OXPHOS blockages. Secondly, some promising gene therapy 

approaches have been developed to specifically eliminate mtDNA copies carrying a pathogenic 

mutation. Thirdly, a mitochondrial replacement therapy can be used to move nucleus into a cell with 

functional mitochondria and most importantly mtDNA (Richardson et al., 2015). Lastly, instead on 

focusing on the primary defect, several studies have tried to mitigate harmful secondary effects 

originating from mitochondrial dysfunction, such as removing accumulating toxic metabolites. It is 

noteworthy that in many cases approaches that improve mitochondrial function in flies also work in 

vertebrate models suggesting that fly can be used to find possible therapeutic targets for mitochondrial 

diseases. 

1.7.1 Mitochondrial nucleotide metabolism 

As discussed above, changes in dNTP pools can lead to loss of mtDNA maintenance in the form of 

mtDNA deletions, point mutations and depletion. Nucleotides are supplied both through de novo 

synthesis in cytosol followed by transport into mitochondria and through nucleotide salvage pathway 

within mitochondria. In the salvage pathway two enzymes, mitochondrial thymidine kinase 2 (TK2) 

and deoxyguanosine kinase (DGUOK), are needed to phosphorylate nucleosides. Expectedly, 

mutations in both TK2 and DGUOK are known to lead to dNTP pool imbalances. A mouse knockout 

for TK2 dies within the first few weeks of life due to severe mtDNA depletion and sequential 

OXPHOS dysfunction (Zhou et al., 2008). Interestingly, the phenotype of this mouse model can be 

partially rescued by transgenetic expression of a fruit fly nucleoside kinase (dNK), which is able to 

phosphorylate all four nucleosides (Krishnan et al., 2014, Krishnan et al., 2013). Similar to the TK2 

knockout, a mouse model carrying a pathogenic TK2 mutation H126N (HsH121N) shows short 

lifespan, impaired neuromuscular function, severe histological changes and mtDNA depletion (Garone 

et al., 2014). Surprisingly, many of these phenotypes can be alleviated by oral supplementation of 

dNTPs (Garone et al., 2014). Nucleoside injections can also improve the imbalanced dNTP pools of a 

third mouse model double knockout for thymidine phosphorylase (TP) and uridine phosphorylase 

(UP)(Cámara et al., 2014). In flies, PINK1 knockout caused mitochondrial dysfunction can be partially 

rescued by overexpressing dNK or supplementing fly food with either nucleosides or folic acid (Tufi 

et al., 2014). Although still unpublished, nucleotide supplementation has been claimed to help also 

patients with TK2 deficiency (Gorman et al., 2016). Therefore dNTP supplementation seems as a very 
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promising approach to treat specific mitochondrial diseases caused by changes in nucleotide synthesis 

and salvage pathways. 

A few other approaches in addition to supplementation have been experimented in a small number of 

patients. These include allogenic hematopoietic stem cell transplantation (AHSCT), carrier 

erythrocyte-entrapped deoxythymidine phosphorylase therapy (CEETP) and liver transplantation (De 

Giorgio et al., 2016, Di Meo et al., 2015). In the case of AHSCT and liver transplantation, performing 

large scale surgical operations to already weak patient and organ rejections are major challenges. 

Some less invasive approaches such as lentivirus and adeno-associated virus based gene replacements 

have provided promising results in mouse models but are yet to be tested in humans (Di Meo et al., 

2015). 

1.7.2 Mitochondrial biogenesis 

One of the most studied mechanisms to improve mitochondrial function is to increase mitochondrial 

biogenesis. The reasoning behind this approach is that a higher number of mitochondria, even if 

defective, could compensate for the defect. The existence of mechanism to control mitochondrial 

biogenesis is supported by the fact that controlled changes in mitochondrial biogenesis seem to happen 

already in nature (Monnot et al., 2013, Tsang and Lemire, 2002). For instance, it is well known that 

dormant somatic stem cells have only a few mitochondria but increase mitochondrial biogenesis upon 

differentiation. Also various external stimuli such as hormones, exercise and even dietary restriction 

have been shown to increase mitochondrial mass. In addition, the muscles of some patients with 

mutations in mitochondrial tRNA genes present with ragged-red-fibers (RRF) due to the loss of 

OXPHOS activity leading to compensatory increase in mitochondrial mass (Boulet et al., 1992). 

Increasing the mitochondrial mass in cells with mtDNA mutations is a double-edged sword due to the 

random drift of mtDNA mutations (Kauppila et al., 2017). In the ideal case the relative levels of 

mtDNA mutations decreases or remains the same resulting in improved cellular function. In the worst 

case the levels of the mutated mtDNA increases leading to cell death. 

Perhaps the most heavily targeted pathway to increase mitochondrial biogenesis is the AMP-

dependent kinase (AMPK)-peroxisome proliferator-activated receptor-γ1α (PGC1α)-peroxisomal 

proliferator activator receptors α/β/γ (PPARs α/β/γ) pathway. AMPK can be activated by AICAR, an 

adenosine monophosphate analog, which increased mitochondrial biogenesis and improved the 

phenotype of two mouse models with COX deficiency. Similarly, overexpressing PGC-1α in mice, 

leads to muscle fiber-type switch towards more oxidative fibers with more mitochondria (Kauppila et 

al., 2017). Although PGC-1α –mediated biogenesis might be limited to muscle, it has been shown 

improve the exercise capacity of COX deficient mice (Viscomi et al., 2011). A pan-PPAR agonist 

bezafibrate does not, however, improve the phenotype of mice with COX deficiency (Yatsuga and 

Suomalainen, 2012, Viscomi et al., 2011) although the original, now retracted, study reported 
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otherwise. Another way to increase mitochondrial biogenesis is based on creatine depletion (Schmidt 

et al., 2004) or inhibiting creatine transporter using beta-guanidinopropionic acid (GPA), a creatine 

analogue (Herbst et al., 2013, Wiesner et al., 1999). This decrease in creatine levels is thought to 

decrease also the levels of ATP leading to AMPK activation (Yang et al., 2015). However, increasing 

overall mitochondrial biogenesis in ageing muscle using GPA leads to accumulation of mtDNA 

deletions probably due to increased clonal expansion of low level deletions (Herbst et al., 2013, Herbst 

et al., 2016). Therefore increasing mitochondrial biogenesis can have negative consequences in the 

long run. 

Similar to mammals, AMPK in flies is working on the same pathway involving the fly PGC1α 

ortholog spargel (Ng et al., 2017). Studies trying to characterize the function of spargel have provided 

conflicting results. It was originally reported that neither the decreased expression of spargel nor the 

ectopic expression of spargel have any effect on mitochondrial mass (Tiefenböck et al., 2010). A later 

study using a different spargel overexpression line did however show an increase in mitochondrial 

mass (Rera et al., 2011). Nevertheless, ectopic spargel overexpression and its pharmacological 

activation by pyrroloquinoline quinone (PQQ) are able to improve neuromuscular function of several 

fly models with mitochondrial dysfunction (Ng et al., 2017). Overexpression of spargel can also 

partially rescue the mechanical stress sensitivity of sesB
1
 flies with mutation in the mitochondrial 

ADP,ATP carrier protein and tko(25t) flies carrying a mutation in mitochondrial ribosomal protein 

(Vartiainen et al., 2014, Chen et al., 2012). All in all, affecting mitochondria through PGC1α seems 

promising both in invertebrates and vertebrates. However, it is not fully understood how PGC1α 

actually affects mitochondrial function and it has multitude of other functions (Mukherjee and 

Duttaroy, 2013) making it a rather unspecific target to affect mitochondrial function. 

Although studies often focus quantifying the relative WT:mutant mtDNA ratio, some studies have 

suggested this to be too simplistic. Indeed it might be the absolute number of WT molecules that 

determines disease penetrance (Durham et al., 2007). To test this “maintenance of wild type” 

hypothesis (Stewart and Chinnery, 2015) it would be sufficient to increase specifically mtDNA copy 

number without affecting mitochondrial mass. As described above, specific increase in mtDNA copy 

number could be obtained by overexpressing TFAM or TWINKLE. Improving mitochondrial 

dysfunction originating from mtDNA mutations through this approach can be seen as highly beneficial 

as it would avoid possible complications caused by the activation of major cellular signaling 

pathways. 

1.7.3 Nicotinamide adenine dinucleotide 

Nicotinamide adenine dinucleotide (NAD
+
) has also received attention as a regulator of mitochondrial 

biogenesis (Gong et al., 2013). NAD
+
 affects the AMPK-PGC1α-PPARα/β/γ pathway by being a 

substrate to Sirtuin 1 (SIRT1), which in turn activates PGC1α by deacetylation. SIRT1 activity is 
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sensitive to changing cellular NAD
+
 levels and therefore studies have tried to increase the levels of 

NAD
+
 in various ways. An increase in NAD

+
 levels can be achieved by either increasing the amount 

of NAD
+
 precursors or inhibiting/removing other NAD

+
 utilizing enzymes, such as poly [ADP-ribose] 

polymerase 1 (PARP1). In vivo, feeding COX deficient Sco2
KOKI

 mice and mtDNA deletor mice a 

NAD
+
 precursor nicotinamide riboside (NR) showed marked improvement in mitochondrial function 

(Khan et al., 2014, Cerutti et al., 2014) as did the pharmacological inhibition or genetic removal of 

PARP1 (Cerutti et al., 2014). The phenotype of flies carrying mutations in mitochondrial Pink1 or 

park can be also improved by supplementing food with NAD
+
 precursor nicotinamide or by mutating 

the NAD
+
 consumer Parp (Lehmann et al., 2017, Lehmann et al., 2016). Mootha et al. developed 

recently an interesting tool to specifically increase mitochondrial NADH levels (Titov et al., 2016). 

This can be achieved by transgenic expression of mitochondrial targeted NADH oxidase from 

Lactobacillus brevis (LbNOX). This resulted in increased NAD
+
 recycling which was beneficial in 

rescuing cell proliferation when OXPHOS, mitochondrial translation or mitochondrial replication 

were chemically inhibited. It will be interesting to see in the future whether this approach to increase 

NADH cycling will be also beneficial in animal models with mitochondrial defects. 

It should be noted that NAD
+
 is a cofactor in numerous cellular reactions involved in glycolysis, 

lactate formation, pyruvate-to-acetyl-CoA conversion, β‐oxidation, citric acid cycle, OXPHOS and 

protein acetylations (Katsyuba and Auwerx, 2017). Additionally, its phosphorylated form NADP+ is 

involved in ROS generation and fatty acid, cholesterol and DNA synthesis (Ying, 2008). On the one 

hand, increasing NAD
+
 is a rather unspecific method to improve mitochondrial function and could 

potentially have several undesired side effects. On the other hand, to date animal models and humans 

have not shown any adverse effects (Katsyuba and Auwerx, 2017). 

1.7.4 Dietary supplements 

Dietary supplements are desirable ways to manage patients with mitochondrial diseases due to their 

low cost and availability. Some supplements often used by patients include antioxidants, modulators 

of mitochondrial electron flux, nitric acid precursors, energy buffers and promoters of fatty acid 

oxidation (Gorman et al., 2016). However, dietary supplements have several problems, including lack 

of efficacy and safety studies, limited post-marketing control and products come usually as multi-

ingredient products causing potentially undesirable interactions (Camp et al., 2016). Apart from 

treating CoQ deficiency with CoQ supplements, there is currently little evidence to support the 

efficacy of dietary supplements in treating mitochondrial diseases (Avula et al., 2014).  

It has been also hypothesized that high-fat or ketogenic diets would be beneficial in bypassing 

complex I defects by feeding electrons to CoQ through electron-transferring-flavoprotein 

dehydrogenase (ETF). Results using a fly model with a pathogenic mutation in the mitochondrial 

ATP6 gene have shown that this fly is more dependent on ketogenesis and glycolysis (Celotto et al., 
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2011). Both time-restricted feeding and ketogenic diet were later shown to improve the neuromuscular 

dysfunction of this fly model (Fogle et al., 2016). Ketogenic diet has positive effects in the mtDNA 

deletor mouse model (Ahola-Erkkilä et al., 2010) and in the Harlequin mouse with complex I 

deficiency (Schiff et al., 2011). One study showed that ketogenic diet has even some efficacy in 

children with various OXPHOS defects (Kang et al., 2007). However, a recent pilot study reported 

that high-fat diet had severe negative effects on patients with PEO including progressive muscle pain 

and fiber damage (Ahola et al., 2016). Therefore although high-fat diet might have efficacy in some 

mitochondrial disorders, more studies are needed to understand why it has such negative effects on 

others. 

1.7.5 Other pharmacological approaches 

Several other pharmacological agents have been tested to treat mitochondrial diseases with little 

success. They usually aim to modulate mitochondrial electron flux, inhibit nucleotide catabolism, 

protect cardiolipin or remove accumulating hydrogen sulfide (El-Hattab et al., 2017b, Cámara et al., 

2014). Some of these pharmacological agents have been tested also in fruit flies, especially in the fly 

model of Friedreich's ataxia (FRDA), a mitochondrial disease caused by mutations in Frataxin (FXN) 

(Tricoire et al., 2014, Soriano et al., 2013). Furthermore, flies have been used even as a drug-screening 

platform for novel drugs against FRDA (Seguin et al., 2015). 

Two recent reports showed that rapamycin, a small molecule inhibitor of mechanistic target of 

rapamycin complex 1 (mTORC1), can have positive effects in the FRDA fly model and in flies with 

homoplasmic ND2 mutation (Wang et al., 2016, Calap-Quintana et al., 2015). In line with the results 

from flies, rapamycin can also alleviate the phenotypes of NDUFS4 knockout mice, TK2 knockout 

mouse and the mtDNA deletor mice (Siegmund et al., 2017, Khan et al., 2017, Johnson et al., 2013). 

Because mTORC1 is known to affect a plethora of cellular functions ranging from immune function 

and adipogenesis to autophagy and glucose homeostasis (Saxton and Sabatini, 2017), great care should 

be taken when administering rapamycin. Indeed, in mice rapamycin is known to cause glucose 

intolerance, insulin resistance, testicular atrophy and nephrotoxicity (Neff et al., 2013, Lamming et al., 

2012, Wilkinson et al., 2012). A major challenge in rapamycin treatments is to find a dose and a 

duration of the treatment that would have a desired effect while minimizing the side effects (Johnson 

and Kaeberlein, 2016). 

1.7.6 Hypoxia 

Mitochondria are major oxygen sinks in respiring eukaryotic cells. Therefore it came as a surprise 

when a genome-wide Cas9 screen identified hypoxia response to be protective against mitochondrial 

OXPHOS defects (Jain et al., 2016). This finding was even extended to in vivo as the NDUFS4 

knockout mice showed marked increase in survival under hypoxia (Ferrari et al., 2017, Jain et al., 

2016). Whether this hypoxia-mediated improvement is specific to this mouse model is yet unclear. It 
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is probable, however, that hypoxia would not improve all mitochondrial defects. For example, mtDNA 

mutator mice suffer already from anemia due to impaired erythroid maturation (Ahlqvist et al., 2015a). 

In fruit flies, hypoxia has been shown to aggravate sensitivity to mechanical stress of several 

mitochondrial mutants, including ND2, mRpS12 (tko) and ethanolamine kinase (eas) (Burman et al., 

2014, Whelan et al., 2010) showing that hypoxia is actually harmful in these fly models. 
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1.8 AIMS OF THE THESIS 

Assessing the effects of mtDNA mutations on fruit fly physiology 

Homoplasmic mtDNA mutations are known to decrease the physiology and lifespan of fruit flies. 

However, it is not known whether somatic mtDNA mutations are limiting the natural lifespan of flies 

and especially whether it would be possible to decrease mtDNA mutation load by increasing the 

accuracy of POLγA. To this end we are going to genomically engineer the tamas (DmPOLγA) locus 

and use this genetic tool to replace the endogenous gene with DmPOLγA variants having higher and 

lower proofreading/polymerase activity ratio and assess the effects of mtDNA mutations of fly 

physiology and ageing. 

Testing the “maintenance of wild type” hypothesis in the mtDNA mutator mouse 

There are currently no treatments for diseases caused by mtDNA mutations affecting mitochondrial 

translation. To test the theory that in mtDNA diseases the absolute number of WT mtDNA copies 

determines the disease penetrance, we are going to take advantage of the observation that TFAM 

overexpression can increase mtDNA copy number. To this end we are going to establish a mouse 

model overexpressing TFAM and investigate whether it would be sufficient to alleviate male sterility 

in the mtDNA mutator mouse model. 
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MATERIALS AND METHODS 

2.1 IN VITRO EXPERIMENTS 

2.1.1 Expression and purification of the recombinant HsPOLγA 

Variant HsPOLγA constructs were engineered using QuickChange Lightning Site-directed 

mutagenesis kit (Agilent) according to manufacturer’s protocol. The presence of HsPOLγA mutations 

was verified by sequencing (Eurofins). HsPOLγA, HsPOLγB, TWINKLE and mtSSB were purified as 

described previously (Korhonen et al., 2004, Korhonen et al., 2003, Falkenberg et al., 2002). Briefly, 

HsPOLγA, HsPOLγAB, TWINKLE and mtSSB were amplified from human cDNA without the leader 

peptide and cloned into pBacPAK9 vector (Clontech) with an N-terminal His6 tag except for mtSSB. 

These constructs were used prepare A. californica nuclear polyhedrosis virus particles. S. frugiperda 

(Sf9) cells were maintained and propagated in suspension in SFM 900 medium (Invitrogen), 

containing 5% fetal calf serum, at 27°C. For purification of HsPOLγ, Sf9 cells were co-infected with 

recombinant baculoviruses encoding HsPOLγA and HsPOLγB. Sf9 cells were grown in suspension 

and collected 60-72 h post infection. Cells were frozen in liquid nitrogen and thawed in lysis buffer 

(Table 2.1) for 20 min. Cells were disrupted using Dounce homogenizer (20 strokes) and NaCl was 

added to the final concentration of 0.8 M. The homogenate was swirled for 40 min at 4°C and cleared 

by centrifugating 45 min at 45 000 rpm (Beckman TLA 100.3). 

POLγ was first purified from whole cell extracts by supplementing it with 10 mM imidazole. 2 ml of 

Ni
2+

-NTA matrix superflow (APBiotech) was pre-equilibrated with buffer A (Table 2.1) and 

supplemented with 10 mM imidazole and 1.0 M NaCl for 60 min. The matrix was collected by 

centrifugation 1500 g for 10 min and resuspended in buffer A supplemented with 40 mM imidazole 

and 1.0 M NaCl. The matrix was poured into a column and washed with 10 column volumes using the 

same buffer. POLγ was eluted with buffer A supplemented with 250 mM imidazole and 1.0 M NaCl. 

The peaks were dialyzed in buffer B (Table 2.1) supplemented with 0.1 M NaCl. For second round of 

purification, 1 ml HiTrap Heparin column (Amersham Biosciences) was equilibrated using buffer B 

supplemented with 0.1 M NaCl. The column was washed three column volumes using the same buffer 

and a linear gradient (10 ml) of buffer B (0.1-1.0 M NaCl) was used to elute POLγ which was eluted 

around 0.8 M NaCl.  

TWINKLE was purified from whole cell extracts by diluting it with equal volume of buffer C (Table 

2.1) supplemented with 20 mM imidazole. This was added to 1 ml of Ni
2+

-agarose Superflow beads 

(Qiagen) and incubated for 60 min. Beads were collected by centrifugation 2500 rpm for 10 min (JA-

17), washed once with 15 ml of buffer C supplemented with 40 mM imidazole and centrifuged as 

before. The column was washed with 10 column volumes of buffer C supplemented with 40 mM 

imidazole and the sample was loaded on top. TWINKLE was eluted with 15 column volumes of buffer 
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A supplemented with 250 mM imidazole. The peak fractions were pooled and diluted to equal volume 

of buffer D (Table 2.1). For second round of purification 2ml hydroxyapatite column (Bio-Rad) was 

equilibrated in buffer D. The column was washed with 3 volumes of buffer D and TWINKLE was 

eluted using a 20 ml linear gradient of buffer D to buffer D with 400 mM KPO4 pH 7.2. The peak 

fractions were diluted in 2 volumes of buffer E (Table 2.1) and loaded on a 1 ml HiTrap SP column 

(Amersham Biosciences), which was equilibrated with buffer E supplemented with 150 mM NaCl. 

The column was washed with 3 column volumes of buffer E supplemented with 0.3 M NaCl. 

TWINKLE was eluted and the peak fractions were pooled using a 6 ml linear gradient of buffer E with 

0.3-1.0 M NaCl. The pooled fractions were dialyzed against buffer E using 0.2 M NaCl. 

 

MtSSB whole cell lysate was clarified using buffer E supplemented with 0.1 M NaCl and loaded onto 

a 5 ml CM Superose column (Amersham Biosciences) equilibrated with buffer E supplemented with 

0.1 M NaCl. MtSSB was collected from the flow-through and loaded onto 5 ml HiTrap heparin-

Sepharose column (Amersham Biosciences) equilibrated with buffer E supplemented with 0.1 M 

NaCl. The peak fractions were collected and loaded onto 1 ml hydroxyapatite column equilibrated 

with buffer D and washed with 3 column volumes using the same buffer. MtSSB was eluted using a 

10 ml linear gradient of buffer D to buffer D with 400 mM KPO4. Peak fractions were pooled and 

dialyzed against the buffer using 0.2 M NaCl. 

Table 2.1: Buffers for protein purification 

Lysis buffer 

 

Protease inhibitors (100x)  

Tris-HCl pH 8.0 25 mM Phenylmethylsulfonylfluoride (PMSF) 1 mM 

2-mercaptoethanol 20 mM Pepstatin A 2 mM 

Protease inhibitors 1x Leupeptin 0.6 mM 

  Benzamidine 2 mM 

Buffer A   

Tris-HCl pH 8.0 25 mM Buffer B 

Glycerol 10% Tris-HCl pH 8.0 20 mM 

Protease inhibitors 1x Glycerol 10% 

2-mercaptoethanol 20 mM Protease inhibitors 1x 

  Dithiothreitol (DTT) 1 mM 

Buffer C EDTA 0.5 mM 

Tris-HCl pH 8.0 50 mM   

NaCl 0.6 M Buffer D 

Glycerol 20% KPO4 pH 7.2 10 mM 

2-mercaptoethanol 20 mM Glycerol 10% 

Protease inhibitors 1x Dithiothreitol (DTT) 1 mM 

Dithiothreitol (DTT) 1 mM NaCl 0.1 M 

EDTA 0.5 mM Protease inhibitors 1x 

  

 

Buffer E 

Tris-HCl pH 7.7 20 mM 

Glycerol 10% 

Dithiothreitol (DTT) 1 mM 

EDTA 0.5 mM 
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The estimated purity of all proteins was at least 95% by sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS–PAGE) with Coomassie blue staining. In the text, the holoenzyme containing 

both POLγA and POLγB will be referred to POLγ. 

2.1.2 EMSA and coupled exonuclease/polymerase assays 

The ability of POLγ to bind DNA was assessed by EMSA as previously described (Farge et al., 2007). 

To prepare a primed template with a 15 bp single-stranded 5’-tail, a 20 bp oligonucleotide (5′-

CGGTCGAGTCTAGAGGAGCC-3′) was annealed to a 
32

P 5’-labelled 35 bp oligonucleotide (5′-

TTTTTTTTTTATCCGGGCTCCTCTAGACTCGACCG-3′) or to the same oligonucleotide without 

poly-dT stretch (5′-GACAACCAGCAGCCGGGCTCCTCTAGACTCGACCG-3). Each reaction 

contained 10 fmol of primed template, 300 μM ddGTP, 3 mM dCTP and the shown POLγ holoenzyme 

concentrations. The reactions were run on 6% native polyacrylamide gels (0.5x TBE) for 35 min at 

180 V and visualized using autoradiography. To obtain the Kd values the band intensities were 

quantified using Fujifilm Multi Gauge V3.1 software. The fraction of bound DNA was determined as 

bound/(bound+unbound) after subtracting the background signal. The fraction of DNA bound in each 

reaction was plotted against the corresponding POLγ concentration. A non-linear regression using the 

equation (Fraction bound = (MaxB × [POLγ])/(MaxB+[POLγ]) from EXCELs add-in “Solver” was 

used to obtain Kd values (the midpoint of MaxB) with the MaxB set to 1. Coupled 

exonuclease/polymerase assay was done as described previously with minor modifications (Roos et 

al., 2013). Briefly, EMSA substrate with poly-dT stretch was used in the reaction mixture (Table 2.2). 

Fixed amount (150 fmol) of POLγA variants and 600 fmol of POLγB was used. Reactions were 

stopped using 10 μl TBE-Urea sample buffer (Bio-Rad), incubated for 3 min at 90°C and run on a 

15% denaturing polyacrylamide gel electrophoresis (PAGE) in 1xTBE and visualized using 

autoradiography. 

2.1.3 Second strand DNA synthesis 

A 5’-end 
32

P-labelled short primer (5′- CTATCTCAGCGATCTGTCTATTTCGTTCATCC -3′) was 

annealed to single stranded pBlueScript SK(+). For the reactions 150 fmol of POLγA with or without 

300 fmol of POLγB was added to the second strand DNA synthesis reaction mixture (Table 2.2). The 

reactions were incubated at 37°C and stopped by adding 10 μl TBE-Urea sample buffer (Bio-Rad) 

followed by 3 min incubation at 90°C. The products were analyzed on a 0.9% agarose gel and 

visualized by autoradiography. 
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Table 2.2: Second strand DNA synthesis reaction mixture 

DNA template 10 fmol 

Tris-HCl pH 7.8 25 mM 

Dithiothreitol (DTT) 1 mM 

MgCl2 10 mM 

BSA 0.1 mg/ml 

Glycerol 10% 

dNTP 0.2 μM 

 

2.1.4 In vitro rolling circle replication 

A 70 bp long primer (5′-42[T]-ATCTCAGCGATCTGTCTATTTCGTTCAT -3′) was annealed to a 

single-stranded pBlueScript SK(+). One cycle of DNA synthesis was done using KOD polymerase 

(Novagen) to produce a double-stranded template with a preformed replication fork. The rolling circle 

reaction mixtures (Table 2.3, 20 μl) were incubated at 37°C and stopped by adding 6 μl of stop 

alkaline gel loading buffer. Products were run on a 0.8% denaturing agarose gel electrophoresis and 

visualized by autoradiography. 

Table 2.3: Rolling circle reaction mixture 

Tris-HCl pH 8.0 25 mM dTTP 100 μM 

MgCl2 10.5 mM dCTP 10 μM 

Dithiothreitol (DTT) 1 mM α-
32

P-dCTP 2 μCi 

BSA 0.1 mg/ml RNase inhibitor 4 U 

ATP 400 μM DNA template 10 fmol 

CTP 150 μM TWINKLE 100 fmol 

GTP 150 μM POLγA 250 fmol 

UTP 150 μM POLγB 375 fmol 

dATP 100 μM mtSSB 5 pmol 

dGTP 100 μM POLRMT 250 fmol 

 

2.1.5 3’-5’ exonuclease assay 

A 
32

P 5’-labelled primer (5′- CTATCTCAGCGATCTGTCTATTTCGTTCATCG -3′) with a one-

nucleotide mismatch at the 3′-end was annealed to single stranded pBlueScript SK(+). The reactions 

were performed as in the second strand DNA synthesis assay but in the absence or presence of dNTPs. 

Reactions were incubated at 37°C for the times indicated and samples were analyzed by 

electrophoresis using a 20% denaturing PAGE and visualized by autoradiography. 

2.1.6 Processivity assay 

Processivity assay was done by mixing 10 μl of assay mixture A (Table 2.4) with 10 μl of assay 

mixture B (Table 2.4) followed by incubation at 37°C for 10 min. Reactions were stopped with 20 μl 

of stop solution (Table 2.4). Samples were analyzed on 12% denaturing PAGE. 
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Table 2.4: Solutions for processivity assay 

Processivity assay mixture A Processivity assay mixture B Stop solution 

Tris-HCl pH 7.8 25 mM MgCl2 10 mM Formamide 95% 

Dithiothreitol (DTT) 1 mM dNTP 100 μM EDTA 20 mM 

BSA 0.1 mg/ml Heparin 0.001 mg/ml Bromophenol blue 0.1% 

DNA template 25 fmol 

 POLγA 50 fmol 

POLγB 200 fmol 

 

2.2 GENERATION AND MAINTENANCE OF TRANSGENIC FLY LINES 

2.2.1 Fly maintenance and stocks 

Unless specified otherwise all flies were maintained at 25°C in 65% humidity with 12:12 h light/dark 

(LD) cycle. Flies were fed on a sucrose/yeast/agar food (Table 2.6, 1xSYA) (5% w/v sucrose, 10% 

w/v brewer’s yeast, 1.5% w/v agar) (Bass et al., 2007) unless stated otherwise. 

Table 2.6: 1xSugar/Yeast/Agar (1xSYA) food 

Ingredient For 1l Final 

Sugar 50 g 5% w/v 

Brewer’s yeast 100 g 10% w/v 

Agar 15 g 1.5% w/v 

Nipagin 30 ml 3% v/v 

Propionic acid 3 ml 0.3% v/v 

Water 896 ml  

 

Table 2.7: Fly lines used 

Fly line Chromosome From Flybase ID 

w,vas-int;;TM6B,Tb/MKRS,Sb 1 Huang et al. 2009  

w,vas-int;tamKO;; 1,2 In house  

w;tam KO/+ 2 In house FBal0323340 

w,Cre;Sco/CyO;+ 1,2 Huang et al. 2009  

w; Rescue/+; 2 In house FBal0323341 

w; DmQ1009A/+; 2 In house FBal0323342 

w; DmH1038A/+; 2 In house FBal0323343 

w; DmD263A/+; 2 In house FBal0323344 

w;Df(2L)Exel7059;+ 2 Bloomington FBab0037923 

w;Df(2L)BSC252;+ 2 Bloomington FBab0045023 

w;Df(2L)BSC694;+ 2 Bloomington FBab0045759 

w;tam3;+ 2 Bloomington FBst0003410 

w;tam4;+ 2 Bloomington FBst0025145 

w;TFAM RNAi #1;+ 2 VDRC FBst0479013 

w;;TFAM RNAi #2;+ 3 VDRC FBst0462182 

w;;daGAL4 3 Bloomington FBal0290424 

w;CyO;+ 2 Bloomington  

w;CyO GFP;+ 2 Bloomington  

 

All lines (Table 2.7) were backcrossed into Wolbachia-free white Dahomey (wDahT) wild type 

outbred genetic background for at least 6 generations with the exception of genomic deficiency lines 

and tam
3
 and tam

4
 mutants. For all experiments adult flies were allowed to mate for two days and once 
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mated flies were allocated to new vials with 1x SYA food under light CO2 anesthesia. The following 

transgenic fly lines were either made in house or ordered from the shown stock centers. 

2.2.2 Genomic engineering of DmPOLγA flies 

Genetically engineered flies were made as described by Huang et al. (Huang et al., 2009). In this two-

step process, the endogenous tamas gene is first replaced by a site-specific recombination site making 

a founder knockout line (Fig. 2.1). This knockout line is further used to introduce wild type (rescue 

control) and mutant variants of tamas to the endogenous locus (Fig. 2.2). 

To replace the tamas gene with a site-specific recombination site the 3’ and 5’ flanking regions (~4 kb 

each) of the tamas locus were first amplified from the tamas BAC clone (RP98–30I21, BACPAC 

Resource Center, Oakland, California). For ET cloning EL250 bacteria were transformed with the 

BAC clone and pBlueScript II SK(+) phagemid vector (pBS, Stratagene) was amplified with primers 

overlapping either with the 3’ or 5’ flanking regions (Table S1). The full length flanking regions were 

introduced to the pBS vector by ET cloning (Zhang et al., 2000). Following verification of the 

sequences the flanking regions were cloned into the pGX-attP targeting vector (Huang et al., 2009). 

The pGX-attP targeting vector was introduced to the third chromosome by P-element mediated germ 

line transformation (BestGene Inc) using the 3’P and 5’P sites. The targeting vector was mobilized 

using heat shock inducible expression of Flippase (FLP) and linearized using heat shock inducible 

expression of I-SceI as described by Huang et al. (Huang et al., 2008). Following this, homologous 

recombinants were screened by PCR using primers PCR3 and PCR4 (Table S2). A single founder line 

was established which was further reduced using Cre-recombinase to remove the white
hs

 marker. The 

absence of tamas in the corresponding knockout (KO) line was verified by PCR using PCR1 primers 

and PCR2 as a positive control (Table S2). To re-introduce any tamas variants to the endogenous 

tamas locus, the KO line was first crossed with the Φ31-integrase and the resulting line was used for 

injections. 
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Figure 2.1: Genomic engineering of the tamas locus 

To reintroduce WT tamas to the tamas locus (rescue control), the tamas construct was first amplified 

by PCR using primers PCR8 (Table S2). Following the sequence verification of the construct it was 

cloned into the pGEattB
GMR

 vector. The resulting pGEattB
GMR

-Rescue construct was used for 

mutagenesis to make tamas variants using the QuickChange Lightning Site-directed mutagenesis kit 

according to manufacturer’s instructions and the listed primers (Table S3). After the sequence 

verification of all the constructs, the rescue and mutant constructs were injected into the Φ31-integrase 
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tamas KO lines by in-house Drosophila transgenic core facility. A single site-specific integration was 

verified by PCR using primers PCR5 and PCR6 (Table S2) and Southern blot analyses.  

To verify that the white
hs

 marker of the genomically engineered flies did not interfere with DmPOLγA 

function, all DmPOLγA mutants were crossed with Cre-recombinase to remove the marker. Precise 

removal of the marked was verified by PCR using primers PCR5 and PCR7 (Table S2). DmPOLγA 

mutants behaved similarly with or without the marker and therefore all experiments were performed 

using flies carrying the white
hs

 marker. 

 

Figure 2.2: Genomic engineering to introduce DmPOLγA alleles to the tamas locus 

2.3 MOLECULAR CHARACTERIZATION OF TRANSGENIC FLIES 

2.3.1 Isolation of total DNA and mtDNA for qRT-PCR and Southern blot analyses 

To quantify relative mtDNA copy number total DNA extractions were prepared from L3 larvae using 

DNeasy Blood and Tissue kit (Qiagen). 10 larvae per biological replicate and 5 biological replicates 

per genotype were prepared. MtDNA gene CytB and nuclear gene RpL32 were amplified using 

SYBR-Green qPCR using primers listed in Table S5 and 7900HT Fast Real Time PCR System 

(Applied Biosystems). All data were normalized against the WT genotype.  
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For Southern blot analysis total DNA extractions were prepared from 20-30 L3 larvae. Samples were 

homogenized in 400 μl of buffer A (Table 2.8) and incubated at 65°C for 30 min before adding 800 μl 

freshly made buffer B (Table 2.8) and left on ice for 60 min. Samples were centrifuged 12000g for 15 

min. The supernatant was transferred into a new tube and 540 μl isopropanol was added and 

centrifuged as before. Resulting pellet was washed with 70% ethanol, dried and resuspended in 100 μl 

nuclease free water supplemented with 20 μg/ml RNase A. Samples were incubated for 1 h at 37°C 

and stored at 4°C. 1-3 μg of total DNA was restriction digested either with EcoRV, PstI, NdeI, NsiI or 

StyI (Table 2.8). Digestions were run on 0.8% agarose gels and blotted to Hybond-N+ membrane 

(Amersham Bioscience). 
32

P-labeled ND2, COXI and 12S rRNA probes were prepared using primers 

in Table S4 according to manufacturer’s instructions (Prime-IT II Random Primer Labeling kit, 

Agilent). To detect reintroduced tamas alleles a probe was prepared by amplifying the tamas cDNA.  

Table 2.8: Buffers for total DNA isolation and RE analysis 

Buffer A Buffer B 
Restriction enzymes 

(New England Biolabs) 

Tris-HCl pH 7.5 100 mM 
Potassium 

acetate (KOAc) 
5 M EcoRV # R0195L 

EDTA 100 mM LiCl 6 M PstI # R0140L 

NaCl 100 mM 

 

NdeI # R0111L 

SDS 0.5% NsiI # R0127L 

 StyI # R0500L 

 

2.3.2 Isolation of RNA for qPCR analysis 

5 d larvae were used for total RNA extraction using ToTALLY RNA isolation kit (Ambion). For RT-

qPCR extracted RNA was DNase treated (Turbo DNA-free kit, Ambion) and reverse transcribed 

(High capacity cDNA Reverse Transcription kit, Applied Biosystems). Gene expression was 

quantified using TaqMan probes for the below listed genes and nuclear gene RpL32 was used for 

normalization (Table 2.9). 

 

 

Table 2.9: TaqMan probes for RT-qPCR 

Gene Probe 

tamas Dm01841857_g1 

CG8978 Dm01807408_g1 

CG7833 Dm01842615_g1 

CG7811 Dm01841741_g1 

CG33650 Not available anymore 
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2.3.3 Detection of fly mtDNA point mutations 

MtDNA mutation load was quantified by post-PCR cloning and sequencing (Wanrooij et al., 2012) 

adapted to flies. Briefly, total DNA was extracted whole embryo or larvae or from adult thorax using 

DNeasy Blood and Tissue kit (Qiagen). The target region (2194-3382, GenBank U37541.1) covering 

partially COXI, tRNA Leu and COXII was amplified using a high-fidelity polymerase (New England 

Biolabs #M0530L) with primers in Table S6. PCR products were cloned using the Zero Blunt TOPO 

PCR Cloning kit (Invitrogen). For each fly 96 clones were cultured and sequenced using the M13 

primers (Table S6). Sequences were aligned using SeqScape 2.7 (Applied Biosystems). 

For only detecting heteroplasmic mutations present at high levels, total DNA extractions were done as 

above. The mtDNA coding region was amplified in two overlapping fragments (Table S7: 36 

For/6864 Rev and 6376 For/14899 Rev) by long-range PCR (TaKaRa LA Taq DNA polymerase 

#RR002M). PCR products were sequenced using primers listed in Table S7 and sequences were 

assembled using SeqScape 2.7 (Applied Biosystems). Heteroplasmy detection levels was set to 33% to 

categorize all detected mtDNA mutations to low (<33%), middle (33-66%) and high (>66%) 

heteroplasmy categories. 

2.3.4 Oxygen consumption rate measurements 

5 d larvae were collected and the functionality of OXPHOS was assessed as described elsewhere 

(Wredenberg et al., 2013). Briefly, 5 larvae were dissected just before measurements in 100 μl of 

respiration buffer (Table 2.10). Oxygen consumption was monitored at 27°C using oxygraph 

(OROBOROS). State 3 respiration was measured in the presence of proline (10 mM), pyruvate (10 

mM), malate (5 mM), glutamate (5 mM) and ADP (1 mM). This was followed by state 4 respiration 

by blocking complex V with oligomycin (250 ng/ml). Uncoupled state was reached by adding 1 μM 

CCCP. Oxygen consumption rates were normalized to total protein content (Bradford, Sigma). 

Table 2.10: Respiration buffer 

Tris-HCl pH 7.2 20 mM 

KH2PO4 4 mM 

MgCl2 2 mM 

EGTA 1 mM 

Sucrose 120 mM 

KCl 50 mM 

Digitonin 0.01% 

2.3.5 Lipid quantification from adult flies 

Lipid quantification was performed essentially as described before (Grönke et al., 2003). Flies were 

collected before and after starvation and stored at -80°C. 4 flies per each biological replicate were 

homogenized in 1 ml 1xPBS with 0.05% Tween-20 using lysing matrix (MP Biomedicals 

#116913500). Triacylglycerol (TAG) levels were quantified using the Infinity Triglyceride kit 
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(Thermo Fisher Scientific #TR22421) and a triglyceride standard (Cayman Chemicals #10010509). 

Lipid levels were normalized to total protein content of the homogenate determined by the Pierce 

BCA protein assay kit (Thermo Fisher Scientific #23225). 

2.3.6 Blue-Native PAGE 

Blue-Native polyacrylamide gel electrophoresis (BN-PAGE) was done as described before (Bratic et 

al., 2011, Schägger et al., 1994, Schägger and von Jagow, 1991). Mitochondria were isolated by 

homogenizing 2 ml of adult flies in the mitochondrial isolation buffer (Table 2.11, MIB) supplemented 

with 1% mM fatty acid free BSA. Nuclei debris was removed by centrifugation 10000g for 10 min and 

filtering the supernatant through cell strainer (Falcon #352350). Mitochondria were pelleted by 

centrifugating 3000 g for 10 min and washed once with 5 ml of MIB+BSA. Mitochondria were 

resuspended in MIB, frozen in liquid nitrogen and stored at -80°C. 

For BN-PAGE, 75μg of mitochondria were lysed in 50 μl of ice-cold solubilization buffer (Table 2.11) 

and incubated for 15 min on ice. Unsolubilized material was removed by centrifugation 16100 g for 10 

min and supernatant was transferred into new tube supplemented with 5 μl 10x loading dye (Table 

2.11). Samples were loaded to BN-PAGE using 3-13% gradient polyacrylamide gel. 

 

Table 2.11: Solutions for mitochondrial isolation and BN-PAGE 

Mitochondrial isolation buffer (MIB) Solubilization buffer 

Tris-HCl pH 7.4 5 mM Tris-HCl pH 7.4 20 mM 

EGTA 2 mM EDTA 0.1 mM 

Sucrose 250 mM NaCl 50 mM 

 
Glycerol 10% 

Digitonin 1% 

10x Loading dye Complex I reagent 

Bis-Tris pH 7.0 100 mM Tris-HCl pH 7.4 2 mM 

6-aminocaproic acid 500 mM NADH 0.1 mg/ml 

Coomassie Brilliant Blue G-250 5% w/v Iodonitrotetrazolium 2.5 mg/ml 

 Complex IV reagent 

PBS pH 7.4 0.05 mM 

3,3'-diaminobenzidine 

tetrahydrochloride (DAB) 
25 mg 

Cytochrome C 50 mg 

Sucrose 3.75 g 

Catalase 1 mg 

 

For complex I in-gel activity assays, the BN-PAGE gels were incubated for 5 min at RT in complex I 

reagent (Table 2.11) and the reaction was stopped with 10% acetic acid/10% methanol. For complex 

IV in-gel activity assays, the BN-PAGE gels were incubated for 1 h at RT in 50 ml complex IV 

reagent (Table 2.11). 
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2.3.7 Percoll gradients and LC-MS 

Flies were paralyzed on ice and homogenized in 1xMIB+BSA as above using 7 ml buffer/1 ml of flies. 

Cell debris was removed by centrifugating twice 800g for 5 min. Mitochondria were pelleted 6000 g 

for 15 min and washed once in 7 ml of 1xMIB+BSA. Two-step Percoll gradient was prepared using a 

2 ml of 40% Percoll/1xMIB cushion under 8 ml of 20% Percoll/1xMIB. Mitochondrial pellet was 

resuspended in 1xMIB and layered on top of the gradient followed by centrifugation 40 000g for 35 

min. Mitochondrial fraction was collected and washed twice with 1xMIB and stored at -80°C. 

LC-MS analysis was done as described previously (Li and Franz, 2014). Mitochondrial pellets were 

lysed and in-solution digested with trypsin (Promega # V5280). Resulting peptides were cleaned with 

StageTips before applying to LC-MS. An Orbitrap Fusion mass spectrometer (Thermo Fisher 

Scientific), coupled with an EASY-nLC 1000 UHPLC (Thermo Fisher Scientific) was used for peptide 

analysis. Peptides were separated using a 25 cm long reversed-phase C18 column with 75 μm inner 

diameter (PicoFrit, LC Packings). The gradient was from 5% to 25% of acetonitrile in 0.1% of formic 

acid over 120 min and further to 40% over 10 min. The column was subsequently washed and re-

equilibrated. The flow rate was set to 200 nl/min. MS spectra were acquired in a data-dependent 

manner with a top speed method. For MS, the mass range was set to 300−1500 m/z and resolution to 

60 K at 200 m/z. The AGC target of MS was set to 5e5, and the maximum injection time was 60 ms. 

Peptides were fragmented with HCD with collision energy of 27. The resolution was set to 30K. The 

AGC target of MSMS was 5e5 and the maximum injection time was 60 ms. 

For analyzing the LC-MS raw data MaxQuant version 1.5.3.8 (Cox and Mann, 2008) with integrated 

Andromeda search engine (Cox et al., 2011) was used. The raw data were searched against the D. 

melanogaster proteome from UniProt (knowledgebase 2016_04). The following parameters were used 

for data analysis: for ‘’digestion’’ specific with Trypsin, Max. missed cleavages 2; for label-free 

quantification, match between runs is selected. Other parameters were set as default. Protein 

quantification significant analysis was performed with the Perseus statistical framework 

(http://www.perseus-framework.org/) version 1.5.2.4. After removing the contaminants and reverse 

identifications, the intensities were transformed to log2. The replicates of each genotype were grouped 

and filtered with at least 3 validate values in at least one group. The missing values were imputed 

using normal distribution with width of 0.3 and down shift of 1.8 (Cox et al., 2014). Multi-sample 

comparison (ANOVA analysis) was performed to identify the significantly different proteins within 3 

different genotypes followed by Z-score normalization. Benjamini-Hochberg FDR 0.05 was used for 

significant truncation. 

2.3.8 Intestinal stem cell staining and stress assay 

Adult female guts were dissected in 1xPBS, incubated in fixative (Table 2.12) for 45 min at RT and 

washed using the wash buffer (Table 2.12) for 1 h at 4°C. Both primary (rabbit anti-PH3, Millipore; 
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rat anti-Delta, M.Rand) and secondary antibodies (Jackson Immunoresearch) were incubated in 

washing buffer over night at 4°C with 1 h washing between. Hoechst was used to stain DNA. 

Table 2.12: Gut staining buffers 

Fixative Washing buffer 

Glutamic acid 100 mM PBS 1x 

KCl 25 mM BSA 0.5% 

MgSO4 20 mM Triton X-100 0.1% 

Sodium phosphate 4 mM  

MgCl2 1 mM 

Formaldehyde 4% 

 

2.4 PHENOTYPICAL CHARACTERIZATION OF TRANSGENIC LINES 

2.4.1 Body weight 

To measure the larval body mass flies carrying different DmPOLγA alleles were first crossed with 

CyO GFP balancer/marker. Crosses were allowed to lay eggs on grape juice agar plates for one day 

followed by the collection of eggs. 20 μl squirts were transferred to bottles and the 6 day old 

homozygous larvae were collected based on the absence of GFP. For each genotype 10 biological 

replicates each with two larvae were weighted. In the case of adult flies 7-10 days aged mated females 

were collected. For each genotype 5-6 biological replicates each with 5 flies were weighted. For adult 

flies 4 adults/biological replicate were weighted simultaneously and total of 10 biological replicates 

per genotype were weighted. 

2.4.2 Developmental analysis 

The measure the developmental time from egg lay to eclosion, crosses were allowed to lay eggs on 

grape juice agar plates for three hours. For each cross, 5 biological replicates each with 100 eggs were 

collected and transferred into wide plastic vials with 1xSYA food. The eclosed flies were scored every 

12 hrs.  

To count the proportion of larvae reaching late L3 stage, eggs were first collected as for the 

developmental time assay followed by counting the number of larvae at 6 d AEL. At least six 

biological replicates were done per genotype. To quantify the percentage of flies reaching the pupal 

and adult stage 50 L3 larvae were collected and transferred into fresh vials. The number of pupae and 

adult flies was scored every 12 h with minimum of three replicates per genotype. 

2.4.3 Lifespan, dietary restriction and starvation assays 

For lifespan experiments 150-200 female flies were distributed equally in 10 vials with 1.0x SYA 

medium and transferred into new vials every 2-3 days. Dead flies were scored during each transfer. 

Dietary restriction (DR) experiments were done according to an optimized protocol (Bass et al., 2007) 
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in which flies are kept on 0.1x, 0.5x, 1.0x or 2.0x SYA food. For starvation assay 100 females were 

distributed to 5 vials with 1.0x SYA for 10 days. Flies were moved to starvation medium (1% agarose) 

and dead flies were scored three times per day and frozen at -80°C for lipid quantification. 

Log-rank test was used for statistical analysis to compare lifespan differences between genotypes. Due 

to the high number of flies per genotype only p<0.0001 was considered significant. Results from all 

assays are expressed as the proportion of survivors ± 95% confidence interval. To compare whether all 

genotypes respond similarly to DR parametric survival analysis with logistic distribution (lowest 

Akaike information criterion) was used. 

2.4.4 Locomotor activity 

Drosophila locomotor activity assay was performed using the locomotor activity monitor system 

(DAM2, TriKinetics). To avoid erroneous activity counts caused by crawling larvae, virgin females 

were collected and aged for 7-10 days before the experiment. Food (1x SYA) was added into the 5 

mm x 65 mm polycarbonate tubes on the morning of the experiment and sealed with paraffin. Flies 

were anesthetized with carbon dioxide and transferred into the activity tubes which were plugged with 

cotton. The tubes were inserted into the activity monitors located in a temperature (25°C), humidity 

(65 %) and light (12:12 LD) controlled incubator. The flies were monitored for four days using 5 min 

bins. Data was processed using R Studio (Version 3.4.0) and the activity during morning bout (8:00-

12:00) was used for statistical analysis. All flies dying during the experiment were completely 

removed from analysis. 

2.4.5 Mechanical stimulation “bang sensitivity” assay 

For each genotype 50 female flies were distributed in the density of 5 flies per vial. Sensitivity to 

mechanical stress was assessed by vortexing vials upside down for 10 s at maximum speed and the 

time it took for each fly to regain the ability to stand upright was recorded. All flies were analyzed 

every 7-10 days. 

2.4.6 Feeding assay 

The feeding activity of adult flies was quantified as described elsewhere (Wong et al., 2009). For each 

genotype 5 females per biological replicate (10 replicates per genotype) was sorted into vials. 

Recording of the feeding behavior was done by scoring the number of proboscis extensions (PE) for 

each vial within a 3 s time window. Each vial was recorded every 5 min total of 9 times. The 

measurement was repeated every second day total of 7 rounds. The feeding index was obtained by 

averaging the daily PE averages during the length of the experiment. 
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2.5 MOUSE MODELS 

2.5.1 Mouse husbandry 

All mice (Table 2.13) were backcrossed to inbred C57BL/6NCrl background. Mice were kept under 

12 h light/dark cycle at 21°C and fed ad libitum on standard mouse food (ssniff RM-H Low-

Phytoestrogen) except during breeding and newly weaned mice were fed enhanced diet (ssniff M-Z 

Low-Phytoestrogen). All experiments were approved and permitted by the Landesamt für Natur, 

Umwelt und Verbraucherschutz, Nordrhein-Westfalen, Germany. Animal work was carried out in 

accordance with the recommendations and guidelines of the Federation of European Laboratory 

Animal Science Associations (FELASA). 

Table 2.13: Mouse lines used 

Mouse line From MGI 

C57BL/6NCrl Charles River N/A 

PolgA
mut/mut

: PolgA
D257A/D257A

 (Trifunovic et al., 2004) 3046825 

Tfam
+/KO

 (Larsson et al., 1998) 1860956 

Tfam
+/OE

 This paper N/A 

 

2.5.2 Generation of transgenic mice 

Bacterial artificial chromosome (BAC) clone containing the whole mouse Tfam gene was identified 

using the Clone Finder from the National Center for Biotechnology Information database. BAC clone 

RP23-145J8 covering 73 kb and 117 kb regions upstream and downstream of Tfam, respectively, was 

acquired from Children’s Hospital Oakland Research Institute BACPAC Resources Center. A 

synonymous PvuI cut site was introduced to the clone by ET recombination to discriminate between 

the endogenous and transgenic Tfam genes. Modified BAC was purified by cesium chloride gradient 

and injected into the pronucleus of fertilized oocytes. Founders were identified by PCR and PvuI-

restriction analysis. Other mouse models used have been published elsewhere (Table 2.13). 

2.5.3 Testis histology 

For light microscopy testes and epididymis were fixed in Bouin’s fixative (Table 2.14), dehydrated 

and paraffin-embedded. 5 μm sections were mounted on glass slides, deparaffinized using xylene and 

stained with hematoxylin and eosin. 

Table 2.14: Bouin’s fixative 

Acetic acid 5% 

Formaldehyde 9% 

Picric acid 0.9% 
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2.5.4 Electron microscopy 

For visualizing mitochondrial ultrastructure testis samples were fixed using fixing solution (Table 

2.15) at room temperature for 30 min followed by 24 h at 4°C. Testes were postfixed using 2% OsO4 

and embedded in Araldite. 70 nm sections were stained with uranyl acetate and lead citrate and 

analyzed by electron microscopy (Zeiss). Visualized mitochondria in round spermatids were 

subcategorized into three groups based on cristae shape and matrix structure: condensed, intermediate 

and long type. Condensed mitochondria have flat cristae and large matrix volume, intermediate 

mitochondria are small and have oval shape and long type mitochondria are tubular or dumbbell 

shape. Double blind quantification was performed by two independent researchers using ImageJ. 

Table 2.15: Electron microscopy fixing solution 

Glutaraldehyde 2% 

Paraformaldehyde 0.5% 

Sodium cacodylate 0.1 M 

CaCl2 3 mM 

 

2.5.5 Immunohistochemistry 

Tissue sections prepared as in testis histology were immunostained for immunohistochemistry. 

Endogenous peroxidase activity was quenched by incubating tissue sections in methanol with 3% 

H2O2 for 10 min at 37°C. Antigen retrieval was done using antigen retrieval buffer (Dako Target 

Retrieval Solution, Citrate pH 6) followed by blocking using BSA. Primary antibody against COXI 

(1:500, Abcam, cat # 1470, RRID: AB_2084810) was used to detect mitochondrial encoded COXI. 

HRP-conjugated secondary antibody and the HRP substrate diaminobenzidine was used to produce 

brown precipitate. Slides were stained using hematoxylin, dehydrated and mounted for bright-field 

microscopy. For semiquantitative assessment of COX signal, cells were categorized into high, 

intermediate or low expressive based on COXI staining intensity. Double blind quantification was 

performed by two independent researchers using ImageJ. 

2.5.6 COX/SDH Double-labeling Enzyme Histochemistry 

Fresh testes were embedded in optimal cutting temperature (OCT) compound and cut into 10 μm 

sections using cryomicrotome and air dried. 1 ml of freshly prepare buffer A (Table 2.16) was to the 

slides and incubated for 25 min at 37°C. Slides were washed three times in 0.1 M PBS pH 7.0 and 1 

ml of buffer B (Table 2.16) was added again for 25 min at 37°C. Slides were washed as above, 

dehydrated and mounted for bright-field microscopy. 
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Table 2.16: COX/SDS solutions 

Buffer A Buffer B 

3,3′-diaminobenzidine 

tetrahydrochloride (DAB) 
4 mM Nitroblue tetrazolium 1.5 mM 

Cytochrome C 100 μM Sodium succinate 130 mM 

Catalase 20-50 μg 
Phenazine 

methosulfate 
0.2 mM 

 Sodium azide 1 mM 

 

2.5.7 Sperm motility analysis 

For sperm motility analysis the cauda region of right epididymis was clamped proximally and distally, 

excised and rinsed with pre-warmed PBS. Tissue was placed in 1.5 ml tube with pre-warmed M2 

medium (Sigma), unclamped and pierced to allow sperm to diffuse into the medium for 10 min at 

37°C. Medium was diluted with fresh medium and 10 μl of suspension was used for computer-assisted 

semen analysis (CASA, Hamilton Thorne Research Beverly). 

2.5.8 Sperm morphology analysis 

Spermatozoa were collected from cauda epididymis, spread on glass slides and fixed using 4% 

paraformaldehyde followed by hematoxylin and eosin (HE) staining. Spermatozoa deformities were 

classified categorized as described by Wyrobek and Bruce (Wyrobek and Bruce, 1975). 

2.5.9 Fluorescence-activated cell sorting (FACS) 

FACS was done essentially as described elsewhere (Biswas et al., 2013). Testes were digested using 

FACS digestion buffer (Table 2.17) for 1 h at 32°C shaking. Cell suspension was filtered through a 40 

μm cell strainer and resuspended in FACS incubation buffer (Table 2.17) at the density of 2 million 

cells/ml. Hoechst 33342 (5 mg/ml, Hoechst) was added and cells were incubated for 1 h at 32°C. 7-

AAD (eBioscience) was added before FACS analysis to exclude dead cells. FACSAria Fusion cell 

sorter (BD Biosciences) with FACSDIVA software (BD Biosciences) was used to analyze cells. 

Hoechst was excited using 355 nm UV laser and detected using two different emission filters, 379/28 

nm and 675/50 nm with a 670 nm longpass filter between them, to separate the haploid spermatids, 

diploid spermatogonia and somatic cells, and tetraploid spermatocytes according to DNA content. 7-

AAD was excited with a 561 nm yellow laser and detected using a 675/20 nm emission filter. 

PolgA
mut

Tfam
WT

 sample was always paired with a WT (Control), PolgA
mut

Tfam
KO

 or PolgA
mut

Tfam
OE

 

sample. 
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2.5.10 Relative mtDNA copy number analysis 

Total DNA extraction from FACS-sorted spermatocytes and spermatids was done using DNeasy 

Blood & Tissue kit (Qiagen). TaqMan Universal PCR master mix (Thermo Fisher Scientific) in 

combination with TaqMan probes detecting mtDNA (ATP6, ND2, 16S) or nuclear DNA (18S)(Table 

2.18). 

Table 2.18: TaqMan probes for mouse mtDNA 

copy number analysis 

Gene Probe 

ATP6 Mm03649417-g1 

ND2 Mm04225288_s1 

16S Mm03975671_s1 

18S Hs99999901_s1 

 

2.5.11 Mouse mtDNA point mutation load analysis 

MtDNA mutation load from mice was quantified as in flies with the following modifications. Total 

DNA extractions were used to amplify the WANCY region (4921-5953, GenBank JF286601.1) of 

mouse mtDNA (Table S8), cloned and sequenced using M13 primers as described above for the fly. 

Data were filtered against known NUMTs, two of which are known to overlap with the analyzed 

region and differ by 19-20 sites. 

2.5.12 Label-free quantitative proteomics 

FACS sorted spermatocytes were used for total proteome analysis as described for the proteome 

analysis of fly mitochondria with the following modifications. The gradient was from 5% to 25% of 

acetonitrile in 0.1% of formic acid over 155 min and further to 40% over 20 min. The column was 

subsequently washed and re-equilibrated. The flow rate was set to 250 nl/min. MS spectra were 

acquired in a data-dependent manner with a top speed method. For MS maximum injection time of 80 

ms was used. The raw data were searched against the mouse proteome from UniProt (knowledgebase 

2016_04). 

Table 2.17: FACS buffers 

Digestion buffer Incubation buffer 

Hanks’ balanced salt solution (HBSS) 1x HBSS 1x 

HEPES pH 7.2 20 mM HEPES pH 7.2 20 mM 

MgSO4 1.2 mM MgSO4 1.2 mM 

CaCl2 1.3 mM CaCl2 1.3 mM 

Sodium pyruvate 6.6 mM Sodium pyruvate 6.6 mM 

Lactate 0.05% Lactate 0.05% 

DNase 4 μg/ml Glutamine 0.05% 

Collagenase 0.4 mg/ml Fetal bovine serum 1% 
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3.1 Introduction 

POLγA is the main mitochondrial DNA-dependent DNA polymerase responsible for mtDNA 

replication and repair. An increasing number of studies suggest that mtDNA mutations originate from 

endogenous replication errors. Therefore, engineering POLγA to either decrease or increase its 

proofreading activity would be an attractive model to study the effects of increased or decreased levels 

of mtDNA mutations, respectively, on organismal physiology and ageing. Here, I first verified the 

functionality of HsPOLγA variants that are predicted to have decreased exonuclease activity 

(proofreading-deficient, exo
-
) or increased proofreading/polymerization ratio (polymerase-deficient, 

pol
-
). Following this I used genomic engineering to modify the tamas (DmPOLγA gene) locus enabling 

us to study the effects of absence of DmPOLγA and the presence of different DmPOLγA variants in 

the context of the endogenous gene locus. These fly models carrying mutant variants of DmPOLγA 

were further used to assess the effects of mtDNA mutations of fruit fly development, physiology and 

lifespan. 

 

3.2 Results 

3.2.1 Verifying exo
-
 and pol

-
 variants of HsPOLγA in vitro 

On the one hand, two single amino acid mutations in E. coli DNA Pol I (Q849A and H881A) known 

to increase its proofreading activity are conserved in family A DNA polymerases, including POLγA. 

The corresponding mutations in fly and human POLγA are DmQ1009A, DmH1038A and HsQ1102A, 

HsH1134A, respectively (Fig. 3.1A and B). On the other hand, the exonuclease activity of POLγA 

depends on catalytic magnesium ions coordinated by three aspartate residues. Mutating one of these 

aspartate residues to alanine (Fig. 3.1A and B, DmD263A and HsD274A) is sufficient to lose the 

coordination of the catalytic magnesium ions and thus reduce the exonuclease activity without 

impairing polymerase activity (Trifunovic et al., 2004). 

To characterize the polymerase and exonuclease activities of WT and variant polymerases in vitro, 

these fly (DmPOLγA) and human (HsPOLγA) recombinant polymerases were first expressed in insect 

Sf9 cells and purified to high purity (Fig. 3.2). Recombinant DmPOLγA is known to be an extremely 

unstable protein and can be only purified when co-expressed with the accessory subunit DmPOLγB 

(Farr and Kaguni, 2002). Despite several attempts we were not able to obtain enzymatically active 

DmPOLγA even when co-expressed with DmPOLγB. Therefore all in vitro experiments were 

performed using only the HsPOLγ. 
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Figure 3.1: POLγA sequence alignment and structure 
A) Sequence alignment of human (NP_002684.1), mouse (NP_059490.2), fruit fly (NP_476821.1), nematode (NP_496592.1) and yeast 
(NP_014975.2) POLγA sequences near the mutated residues (HsD274/DmD263, HsQ1102/DmQ1009, HsH1134/DmH1038) indicated by 

red boxes. Alignment was done using Clustal Omega (Sievers et al., 2011). B) Human POLγA structure (PDB:4ZTZ) showing the five 

POLγA domains and positioning of the mutated residues in the polymerase domain (HsQ1102, HsH1134) and exonuclease domain 
(HsD274) relative to catalytic magnesium ions and incoming nucleotide. Two catalytic magnesium ions in the exonuclease domain were 

positioned by hand. 

Several pathogenic POLγA mutations are known to decrease DNA binding affinity of this polymerase. 

Therefore we first investigated whether the WT, exo
-
 and pol

-
 variants of HsPOLγA are able to bind 

DNA in the presence and absence of HsPOLγB. In electrophoretic mobility shift assay (EMSA) all 

HsPOLγA variants showed indistinguishable ability to bind DNA and interact with HsPOLγB in 

comparison with WT polymerase (Fig. 3.2A). Further quantification of binding affinities showed 

similar values for all polymerases (Fig. 3.2C and Table 3.1) suggesting the mutations do not impair 

DNA binding ability of the polymerase or interactions with the accessory subunit. 
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Adapted from Bratic et al., 2015 
Figure 3.2: HsPOLγA purification and DNA binding 
A) Coomassie Brilliant Blue stained 4-20% SDS-PAGE using purified HsPOLγA (~140 kDa). B) EMSA to assess the DNA binding ability 

of WT and HsPOLγA variants in the absence and presence of HsPOLγB. C) EMSA using WT and mutant HsPOLγA to quantify DNA 

binding affinities. Each line contains 10 fmol of DNA substrate and the indicated amount of polymerase. Quantification shown in Table 3.1. 

 

 

 

 

Table 3.1: DNA binding affinities of WT 

HsPOLγ and HsPOLγ variants 

HsPOLγ Kd (nM) 

WT 5.5±1.4 

HsD274A 2.8±0.1 

HsQ1102A 3.8±0.2 

HsH1134A 3.5±0.5 
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Adapted from Bratic et al., 2015 

Figure 3.3: In vitro characterization of the WT, exo- (HsD274A), and pol- (HsQ1102A, HsH1134A) HsPOLγA polymerases. 
A) Short primer degradation and extension assay in the absence and presence of increasing amount of dNTPs, respectively. B) Longer primer 

extension assay using a 32 bp primer hybridized to a single-stranded pBS plasmid. C) Schematic view of the rolling circle replication assay 
in which the functionality of different HsPOLγA variants is assessed together with mtSSB and TWINKLE (minimal replisome). D) Rolling 

circle replication assay as shown in (C) using all HsPOLγA variants. The rolling circle replication was stopped at the showed time points. 

HsPOLγA has both 5’ to 3’ polymerase and 3’ to 5’ exonuclease activities. In the absence of dNTPs 

the exonuclease activity of HsPOLγA will predominate over the polymerase activity, whereas at high 

dNTP concentration the exonuclease activity is minimal (Johnson and Johnson, 2001) and the 

polymerase will engage in DNA replication. We investigated how different POLγA variants degrade 

or synthesize DNA in the absence and presence of dNTPs, respectively, using a short 35 bp filling 

assay (Fig. 3.3A). As expected, the exo
-
 HsD274A showed no primer degradation in the absence of 

nucleotides but was able to synthesize DNA in the presence of nucleotides (Fig. 3.3A). In contrast, in 

the absence of nucleotides the pol
-
 variants HsQ1102A and HsH1134A degraded the short primer even 

faster in comparison with WT HsPOLγA showing a higher exonuclease activity (Fig. 3.3A). On this 

short template the HsQ1102A variant was able to synthesize a full length product whereas the 

HsH1134A variant presented with decreased ability to synthesize DNA even in high dNTP 

concentrations (Fig. 3.3A). 
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 Adapted from Bratic et al., 2015 

Figure 3.4: HsPOLγA processivity and competition assay 
A) Single-turnover conditions to assess the processivity WT HsPOLγA and HsPOLγA variants. Excess heparin traps any dissociated 

polymerase making sure that each extension product originates from a single turnover. B) In vitro competition assay for WT and HsPOLγA 

variants during rolling circle replication in the presence of mtSSB and TWINKLE. 

To further assess the DNA replication ability of these POLγA variants we used a longer circular ~3 kb 

ssDNA template (Fig. 3.3B). Both HsD274A and HsQ1102A variants were slightly less efficient in 

synthesizing long stretches of DNA, whereas the HsH1134A showed barely any replication product 

under these conditions in comparison with the WT polymerase (Fig. 3.3B). To investigate how these 

HsPOLγA variants are able to synthesize even longer stretches of DNA we studied them in the context 

of the minimal replisome, where TWINKLE unwinds the already replicated DNA resulting in rolling 

circle replication (Fig. 3.3C). Both WT and HsD274A POLγA were able to engage in rolling circle 

replication in the presence of mtSSB and TWINKLE, although the exo
-
 mutant was somewhat less 

efficient (Fig. 3.3D). Both pol
-
 polymerases showed a drastic decrease or even absence of replication 

products (Fig. 3.3D). A processivity assay in the presence and absence of heparin showed that while 

WT and HsD274A have similar processivity, both pol
-
 mutants had decreased processivity and that 

among these two variants the phenotype of the HsH1134A variant was more severe (Fig. 3.4A). 

Additional competition assay showed that the HsH1134A mutant was slightly dominant negative 

partially explaining its poor ability to synthesize DNA whereas the HsQ1102A did not inhibit the WT 

polymerase and was therefore recessive (Fig. 3.4B). In overall, the in vitro characterization of 

HsPOLγA mutants shows that the exo
-
 (HsD274A) variant has strongly reduced exonuclease activity 

but is still able to synthesize DNA with almost same extent than the WT enzyme, whereas the two pol
- 
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variants (HsQ1102A, HsH1134A) have increased exonuclease activity and strongly reduced 

polymerase activity in comparison with the WT polymerase. 

3.2.2 Genomic engineering of the tamas (DmPOLγA) gene locus and generation of parental 

knockout lines 

In order to establish DmPOLγA knockout founder line and fly lines carrying different variants of 

DmPOLγA we took advantage of the recently developed genomic engineering technique (Huang et al., 

2009). This method has several advantages over more conventional techniques. First, using this 

technique one can establish pure knockout fly lines by removing the target gene of interest. Secondly, 

by reintroducing the target gene back to the endogenous locus it is possible to detect any aberrations 

caused by the genetic manipulation of the genomic locus. Thirdly, because all variants of interest are 

introduced to the endogenous locus the expression of the re-introduced gene will be under the control 

of the endogenous promoter. The last advantage is especially relevant in the case of DmPOLγA, 

because overexpression of catalytic subunit alone has been shown to cause mtDNA depletion and 

larval lethality (Lefai et al., 2000a). 

To establish a DmPOLγA knockout founder line we first introduced the 3’ and 5’ flanking regions of 

the DmPOLγA (tamas) gene to the pGX-attP targeting vector (Fig. 2.1). This vector was further used 

for ends-out recombination to remove the DmPOLγA gene and replace it with site-specific 

recombination site at the cytological position 34D1 (Fig. 2.1 and 3.5A). The precise replacement of 

the DmPOLγA gene with a site-specific recombination site was verified by PCR, sequencing and 

complementation crosses (Fig. 3.5B and Table 3.2). In hemizygous DmPOLγA the mRNA steady-state 

levels were decreased by 50% of the WT levels and could not be detected in the knockout (Fig. 3.5C) 

showing an efficient removal of the DmPOLγA. Importantly, excision of DmPOLγA or introduction of 

the site-specific recombination site did not disturb the expression of other genes in the DmPOLγA 

locus (Fig. 3.5C). The hemizygous DmPOLγA developed normally into adulthood whereas the 

knockout larvae presented with decreased body size (Fig. 3.5D and 3.8A) and lethality before 

pupariation (Table 3.3) showing that DmPOLγA is essential for fly survival. To verify that the 

lethality of the knockout larvae is caused by the absence of DmPOLγA , hemizygous founders were 

crossed with genomic deficiencies covering or adjacent to DmPOLγA locus. Deficiencies covering the 

DmPOLγA locus (Df(2L)Exel7059, Df(2L)BSC252) could not complement the hemizygous 

DmPOLγA larvae whereas a deficiency adjacent to DmPOLγA (Df(2L)BSC694) showed full 

complementation (Fig. 3.5A and Table 3.2). None of the used deficiencies could complement each 

other (Table 3.2). The hemizygous DmPOLγA had no changes in relative mtDNA copy number 

whereas the homozygous knockout presented with strong mtDNA depletion (Fig. 3.5E) showing that 

DmPOLγA is the main replicative DNA polymerase in fly mitochondria. These results resemble the 

ones observed in the hemizygous PolγA mouse, where the MmPolγA mRNA levels were decreased by 

50% without affecting mtDNA copy number (Hance et al., 2005). The results from both flies and mice 
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show that POLγA expression is not under tight regulation as the expression of the remaining allele 

does not show compensatory upregulation and that the POLγA levels are not limiting mtDNA copy 

number. 

 

Adapted from Bratic et al., 2015 
Figure 3.5: Genomic engineering of the DmPOLγA (tamas) locus to establish a knockout founder line 
A) Schematic view of the DmPOLγA (tamas) locus, primer positions and locations of the genomic deficiencies used to verify the absence of 

DmPOLγA in the knockout founder line. PCR1 was used to verify the excision of the DmPOLγA and PCR2 was used as a positive control. B) 
PCR1 and PCR2 to verify DmPOLγA excision shown in (A). C) The steady-state mRNA levels of all the genes in the DmPOLγA locus were 

quantified by qRT-PCR in 5-day-old WT (white bar), hemizygous DmPOLγA ((KO/+, grey bar) and homozygous knockout DmPOLγA (KO, 

black bar) larvae. ND = not detected. One-way ANOVA with Dunnett’s post hoc test. ***p<0.001, **p<0.01. Data are represented as mean 
± SD. n=5. D) Representative image of the 5-day-old WT, hemizygous (KO/+) and homozygous knockout (KO) DmPOLγA larvae. Scale bar 

= 5 mm. E) Relative mtDNA copy number was quantified by qPCR in 5-day-old WT (white bar), hemizygous DmPOLγA ((KO/+, grey bar) 

and homozygous knockout DmPOLγA (KO, black bar) larvae. One-way ANOVA with Dunnett’s post hoc test. ***p<0.001. Data are 
represented as mean ± SD. n=4–6. 
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Table 3.2: Complementation crosses with genomic deficiencies and founder line 
(# Expected eclosion rate 50 %. * Expected eclosion rate 25%) 

Genotype Df(2L)Exel7059 Df(2L)BSC252 Df(2L)BSC694 

WT 50% (213/425)
#
 49% (196/404)

 #
 52% (215/413)

 #
 

KO 0% (0/219)
*
 0% (0/211)

 *
 39% (73/185)

 *
 

Df(2L)BSC694 0% (0/68)
 *
 0% (0/277)

 *
 0% (0/277)

 *
 

Df(2L)BSC252 0% (0/387)
 *
  

 

3.2.3 Reintroduction of WT DmPOLγA and mutants to the native locus 

DmPOLγA resides in a dense 11 kb gene cluster with 4 other genes (Fig. 3.5A)(Lefai et al., 2000b). 

Therefore to make sure our genetic engineering approach does not affect the expression of the 

neighboring genes we re-introduced the WT DmPOLγA (Rescue) allele to the endogenous locus (Fig. 

3.6A). The correct re-introduction of the Rescue allele was verified by Southern blotting and PCR 

(Fig. 3.6A-C). Homozygous Rescue flies were viable demonstrating that the absence of the DmPOLγA 

caused the lethality of the knockout founder line. Rescue flies presented with no or mild increases in 

the expression levels of the neighboring genes (Fig. 3.6D) showing that genetic engineering does not 

have major effects on other genes in the DmPOLγA locus. 

The knockout founder line was further used to introduce the three DmPOLγA mutant alleles similar to 

the Rescue allele. In a strike contrast to the Rescue flies, flies homozygous for the exo
-
 (DmD263A) or 

pol
-
 (DmQ1009A, DmH1038A) alleles died mostly during the late larval stages (Table 3.3) and 

reducing genomically engineered flies, i.e. removing the mini white marker (Fig. 3.6A), had no effect 

of viability. The phenotype of the pol
-
 flies was more severe as these larvae were significantly smaller 

in comparison with WT, Rescue or exo
-
 larvae (Fig. 3.7A and B). Relative mtDNA copy number of 

genomically engineered larvae was determined to better understand the reason for developmental 

lethality. As heterozygous none of the larvae had changes in relative mtDNA copy number, but as 

homozygous the pol
-
 larvae presented with severe mtDNA depletion (Fig. 3.7C). This mtDNA 

depletion is in line with the in vitro experiments showing that in HsPOLγA these variants have 

difficulties in replicating long products (Fig. 3.3D). In addition, a patient carrying mutation 

HsH1134R in trans with HsY831C were previously showed to have mtDNA depletion (Taanman et 

al., 2009) suggesting that mutating the conserved HsH1134 can impair polymerase function. To see 

whether this mtDNA depletion in pol
-
 larvae leads to impaired OXPHOS capacity, oxygen 

consumption rates were measured from permeabilized 5-day-old larvae. Only pol
-
 larvae showed 

significant reduction in both state 3 and maximal (uncoupled) respiration (Fig. 3.7D) suggesting 

impaired mitochondrial function in these larvae probably caused by the decreased mtDNA copy 

number (Fig. 3.7C). 
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Adapted from Bratic et al., 2015 
Figure 3.6: Reintroduction of Rescue, exo- and pol- alleles 
A) Precise integration of the DmPOLγA alleles was verified by Southern blot. Presence of the mini white gene in genomically engineered 

flies results in shift in the locus size. 32P-labeled DmPOLγA cDNA was used as a probe. B) Scheme to verify specific integration of 
DmPOLγA alleles by (C) PCR and positioning of the neighboring genes used for RT-qPCR (D). C) PCR to verify specific integration of 

DmPOLγA alleles as shown in (B). D) RT-qPCR to quantify the expression level of all genes in the DmPOLγA locus shown in (B). RNA was 
extracted from 5-day-old adult flies. One-way ANOVA with Dunnett’s post hoc test. ***p<0.001, **p<0.01. Data are represented as mean ± 

SD. n=5. 

To better understand the nature of these alleles we crossed all genomically engineered flies with the 

knockout founder line, genomic deficiencies covering or adjacent to DmPOLγA, (Fig. 3.5A) in 

addition to tam3 and tam4 hypomorphic DmPOLγA alleles (Iyengar et al., 1999). Only the Rescue 

allele was able to complement hemizygous DmPOLγA, genomic deficiencies covering DmPOLγA and 

the DmPOLγA hypomorphic alleles (Table 3.4 and 3.5). Interestingly, hemizygous pol
-
 larvae 

developed further when the alleles were inherited paternally than maternally (Fig. 3.3) suggesting a 

negative maternal effect. The homozygous exo
-
 (DmD263A) larvae died before pupariation, but 

hemizygous exo
-
 larvae produced sick escapers (Table 3.3) suggesting that the exo

-
 allele might have 

some dominant negative effects. It has been shown before for instance that mtDNA mutator mice do 

not have supercoiled mtDNA (Kolesar et al., 2013) suggestive of extensive nicking of mtDNA 
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although the reason for this is unclear. Further quantification of the body mass and mtDNA copy 

number of hemizygous larvae correlated well with the developmental phenotypes (Fig. 3.8). 

 

Adapted from Bratic et al., 2015 
Figure 3.7: Homozygous exo- and pol- flies are developmentally lethal 
A) Representative image of WT and homozygous genomically engineered larvae. Scale bar = 5 mm. B) Body mass quantification of WT and 

homozygous genomically engineered 5-day-old larvae. Tukey's Multiple Comparison Test. ***p<0.001, **p<0.01. Data are represented as 

mean ± SD. n=20. C) Relative MtDNA copy number was determined by qPCR from heterozygous (black bar) and homozygous (white bar) 
genomically engineered 5-day-old-larvae. Kruskal–Wallis test with Dunnett’s post hoc test. ***p<0.001. Data are represented as mean ± SD. 

n=4–6. D) 5-day-old larvae were used to assess oxygen consumption rates at phosphorylating (state 3), non-phosphorylating (state 4) and 

uncoupled conditions. All measurements were normalized to total protein content. Mann–Whitney test, two-tailed. **p<0.01, *p<0.05. Data 
are represented as mean ± SD. n=4. 
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Table 3.3: Developmental analysis of DmPOLγA mutant flies 
(# Expected eclosion rate 50 %. * Expected eclosion rate 25%) 

Genotype 3
rd

 instar Pupae Adult 

WT 91±5% 95±1% 95±5% 

♀+/KO♂ 85±6% 78±6% 76±3% 

♀KO/+♂ 90±11% 69±9% 0% 

♀KO♂ 13±5% 0% 0% 

♀DmD263A♂ 79±16% 49% 0% 

♀DmQ1009A♂ 43±15% 2±1% 0% 

♀DmH1038A♂ 44±17% 0% 0% 

♀KO/DmD263A♂ 92±23% 77±24% 19±3% 

♀KO/DmQ1009A♂ 51±19% 35±18% 0% 

♀KO/DmH1038A♂ 91±12% 38±14% 0% 

♀DmD263A/KO♂ 70±9% 80±14% 24% 

♀DmQ1009A/KO♂ 58±18% 11±5% 0% 

♀DmH1038A/KO♂ 62±25% 0.7±1% 0% 

 

 

 

Table 3.4: Complementation crosses with genomic deficiencies and knock-in lines 
(# Expected eclosion rate 50 %. * Expected eclosion rate 25%) 

Genotype Df(2L)Exel7059 Df(2L)BSC252 Df(2L)BSC694 

Rescue 52% (368/707)
#
 49% (232/474)

 #
 51% (299/522)

 #
 

DmD263A 0% (0/139)
 *
 0% (0/110)

 *
 34% (156/466)

*
 

DmQ1009A 0% (0/485)
 *
 0% (0/125)

 *
 36% (204/568)

 *
 

DmH1038A 0% (0/513)
 *
 0% (0/145)

 *
 36% (113/318)

 *
 

 

 

 

Table 3.5: Complementation crosses with tam
3
 and tam

4
 hypomorphs 

(# Expected eclosion rate 50 %. * Expected eclosion rate 25%) 

Genotype tam
3
 tam

4
 

Rescue 62% (47/76)
 #
 56% (27/48)

 #
 

DmD263A 0% (0/140)
 *
 0% (0/93)

 *
 

DmQ1009A 0% (0/91)
 *
 0% (0/43)

 *
 

DmH1038A 0% (0/110)
 *
 0% (0/59)

 *
 

Df(2L)Exel7059 0% (0/100)
 *
 0% (0/64)

 *
 

Df(2L)BSC252 0% (0/95)
 *
 ND 

Df(2L)BSC694 0% (51/148)
 *
 21% (12/56)

 *
 

tam
4
 0% (0/71)

 *
 ND 
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Adapted from Bratic et al., Nat. Comm. 2015 
Figure 3.8: Body weight and relative mtDNA copy number of hemizygous and homozygous genomically engineered flies 
A) Body weight of genomically engineered 5-day-old larvae. Genotypes are written as “maternal allele/paternal allele”. One-way ANOVA 

with Dunnett’s post hoc test. ***p<0.001, **p<0.01, *p<0.05. Data are represented as mean ± SD. n=20. B) Relative mtDNA quantification 
from hemizygous and homozygous genomically engineered 5-day-old larvae. Genotypes are written as “maternal allele/paternal allele”. One-

way ANOVA with Dunnett’s post hoc test. ***p<0.001, **p<0.01, *p<0.05. Data are represented as mean ± SD. n=5. 

3.2.4 MtDNA mutations accumulate during development in exo
-
 flies 

Because the homozygous exo
- 
and pol

- 
flies showed developmental lethality, the heterozygous adults 

were used for extensive post-PCR cloning and sequencing to quantify mtDNA mutation loads in these 

flies. The mtDNA mutation load of the WT flies was low (∼10
−5

 mutations per bp) and was similar in 

Rescue and pol
-
 flies (Fig. 3.9A). In contrast, flies having one exo

-
 allele showed significantly 

increased mtDNA mutation load (Fig. 3.9A). MtDNA mutations have been shown to accumulate 

mostly in early development in fish, mice and humans (Otten et al., 2016, Greaves et al., 2014, Ameur 

et al., 2011). To investigate whether this is the case also in flies mtDNA mutation load was quantified 

from heterozygous exo
-
 embryos, L1 larvae, L3 larvae and adult flies (Fig. 3.9B). Interestingly, 

increase in mtDNA mutation load could be observed only in adult flies (Fig. 3.9B) suggesting a major 

mtDNA mutation burst during morphogenesis. In this light it is interesting to note that the 

homozygous exo
-
 larvae had even more mutations that the heterozygous adult flies suggesting a high 

mtDNA mutagenesis in these larvae (Fig. 3.9A). 
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Adapted from Bratic et al., 2015 
Figure 3.9: MtDNA mutation load analysis of heterozygous flies, during development and intercrossed flies 
A) MtDNA mutation load was quantified from heterozygous genomically engineered flies and homozygous exo- larvae. One-way ANOVA 

with Dunnett’s post hoc test. ***p<0.001. Data are represented as mean ± SD B) MtDNA mutation load quantified from heterozygous exo- 

eggs, L1 larvae, L3 larvae, young adults and old adults. One-way ANOVA with Tukey’s test. **p<0.01. Data are represented as mean ± SD. 
n=3–4. C) MtDNA mutation load quantified from WT flies (white bar), heterozygous exo- flies with only somatic mutations (+/D263A, grey 

bar) and 1, 4, 6 and 13-15 generations intercrossed heterozygous exo- flies. All genotypes were compared against the +/D263A genotype. 

One-way ANOVA with Dunnett’s post hoc test. **p<0.01, *p<0.05. Data are represented as mean ± SD. n=3–6. 

MtDNA mutations can be inherited when the mutagenesis takes place in the female germline. To find 

out how mtDNA mutations accumulate in the female germline, a crossing was prepare where the exo
-
 

allele is inherited paternally so that all the detected mtDNA mutations are somatic (+/DmD263A, Fig. 

3.9C). These flies were further intercrossed for 1, 4, 6 and 13-15 generations and used for mtDNA 

mutation load analysis. The accumulation of mtDNA mutation in each generation was slow as 

significant differences could be detected only after 6 generations in comparison with the flies with 

only somatic mutations (Fig. 3.9C). This result is in high contrast to mammals were rapid shifts in 

heteroplasmy levels have been detected between generations (Stewart and Larsson, 2014). 

DNA polymerases make more transition (purine>purine or pyrimidine>pyrimidine) than transversion 

(purine>pyrimidine or pyrimidine>purine) errors during DNA replication. In line with this most 

mutations observed in the heterozygous exo
-
 flies were transitions (Table 3.6) and all transitions were 

equally abundant. Among the transversion mutations observed T>A transversions were by far the most 

common (Table 3.6). A surprising finding was that up to 24% of all mutations were short insertions 

and deletions (indels) (Table 3.6). Whether this high frequency of indels is something intrinsic to the 
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fly DmPOLγA is not known but it could be also related to the AT-richness and abundant 

homopolymeric stretches of fly mtDNA. 

Table 3.6: MtDNA mutation pattern in exo
-
 flies 

Mutation Fraction 

T
ra

n
si

ti
o

n
 A>G 0.13 

0.25 

0.51 
T>C 0.12 

C>T 0.15 
0.26 

G>A 0.12 

T
ra

n
sv

e
rs

io
n

 

A>C 0.00 
0.02 

0.25 

T>G 0.02 

A>T 0.04 
0.18 

T>A 0.14 

C>A 0.01 
0.05 

G>T 0.04 

C>G 0.00 
0.00 

G>C 0.00 

Insertion/deletion 0.24 
Adapted from Bratic et al., 2015 

Table 3.6: MtDNA mutation pattern in heterozygous exo- flies. 
Mutational data was pooled from total of 18 flies and all the mutations are shown from the perspective of the heavy strand. Because it is not 
possible to identify the strand in which the mutagenesis took place. These indistinguishable mutations are combined in the second column 

and the third column compared the frequencies of transition mutations, transversion mutations and indels.  

3.2.5 Homozygous exo
-
 larvae carry linear mtDNA with deletions between replication origins 

The mtDNA mutator mouse has well described mtDNA with linear deletions between the replication 

origins (Bailey et al., 2009, Trifunovic et al., 2004). To investigate whether the mtDNA integrity is 

compromised also in exo
-
 larvae, an extensive deletion mapping was performed by restriction enzyme 

digestion and Southern (Fig. 3.10A). Only homozygous exo
-
 larvae carried two linear mtDNA 

molecules (Fig. 3.10A, B and C) and the ends of those fragments were at close proximity with the 

replication origins (Fig. 3.10A). To understand whether these linear molecules were accumulating in 

exo
-
 larvae the relative levels of linear fragments was quantified from 3d, 4d and 5d old larvae (Fig. 

3.10E) but the amount of deletions remained relative stable during this short period. Linear mtDNA is 

known to be actively degraded in mitochondria (Moretton et al., 2017, Bayona-Bafaluy et al., 2005) 

suggesting that these fragments are produced constantly. Recently, a model was put forward to explain 

how impairing the exonuclease function of POLγA allows the polymerase to perform short strand 

displacement creating unligatable DNA ends during mtDNA replication (Uhler et al., 2016, Macao et 

al., 2015). Our fly model is in line with this model as exo
-
 larvae had similar linear mtDNA deletions 

as has been observed in the mtDNA mutator mouse. 
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Adapted from Bratic et al., 2015 
Figure 3.10: Relative mtDNA copy number and mtDNA integrity analysis 
A) Schematic map of fruit fly mtDNA presenting the restriction enzyme cut sites (EcoRV, NsiI, PstI, StyI, NdeI), probe positions (red bars: 

ND2, COXI, 12S) and replication origins (OJ and ON). Dotted line shows the approximate size and positioning of the two deleted molecules 
in homozygous exo- larvae. B/C/D) Southern analysis of (B) homozygous exo- larvae, (C) homozygous rescue and DmQ1009A larvae and 

(D) homozygous DmH1038A larvae to detect linear mtDNA deletions using the shown restriction enzymes and probes. Stars designate 
deleted molecules E) Quantification of linear deletion levels in homozygous exo- larvae from 3 d, 4 d and 5 d old larvae. F) Relative mtDNA 

copy number determination by qPCR from two different TFAM knockdown lines and homozygous exo- larvae in addition to controls. All 

genotypes were compared against the homozygous exo- larvae. One-way ANOVA with Dunnett’s post hoc test. ***p<0.001. Data are 
represented as mean ± SD. n=5. G) Southern analysis of hemizygous exo- escaper flies to detect linear mtDNA deletions. 

At the age of 5 days, the linear deletions of the exo
-
 larvae reached 40% of total mtDNA. To study 

whether this amount of mtDNA depletion is sufficient to cause developmental lethality, TFAM levels 

were downregulated by RNAi and thereby also mtDNA copy number (Fig. 3.10F). TFAM knockdown 

in flies produced significant mtDNA depletion (Fig. 3.10F) but importantly these flies were still able 

to enter pupariation and even produce sick escapers (Table 3.7) suggesting that the level of mtDNA 
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depletion present in exo
-
 larvae is not sufficient alone to cause developmental lethality. Linear mtDNA 

deletions were also detectable in hemizygous exo
-
 escaper flies (Fig. 3.10G) at somewhat higher level 

in comparison with the homozygous exo
-
 larvae suggesting increased production of decreased turnover 

of the linear molecules. Unfortunately, it was not feasible to quantify the mtDNA copy number in 

hemizygous exo
-
 escapers due to the low number of flies. 

Table 3.7: Developmental analysis of TFAM RNAi flies 
(Expected eclosion rate 100%) 

Genotype 3
rd

 instar Pupae Adult 

daGAL4/+ 78.4% 78.4% 77.8% 

TFAM RNAi #1/+ 80.8% 80.8% 80.4% 

TFAM RNAi #2/+ 94% 94% 94% 

TFAM RNAi #1/daGAL4 87.8% 80.2% 11.2% 

TFAM RNAi #2/daGAL4 79.6% 36.7% 0% 
 

3.2.6 Complementation between exo
- 
and pol

-
 DmPOLγA alleles 

The fact that heterozygous exo
-
 flies have half of the mtDNA mutation load of the homozygous exo

-
 

larvae suggests that there is some level of complementation between the exo
-
 and WT allele. In 

addition, it has been debated in the literature whether POLγA has to dissociate from the primer-

template pair to switch between DNA synthesis and proofreading (intermolecular change) or whether 

the primer end can switch from polymerase site to exonuclease site within a molecule (intramolecular 

change) as in vitro studies have provided contradictive results (Johnson and Johnson, 2001, Olson and 

Kaguni, 1992). Using the pol
-
 and exo

-
 flies provides an interesting tool to address this question in vivo 

because the pol
-
 alleles are poor polymerases but have higher than WT proofreading activity whereas 

the exo
-
 allele has no proofreading activity but is a processive polymerase. Series of crosses were 

performed to obtain compound heterozygous flies and to detect genetic complementation. As 

expected, the two pol
- 
mutants did not show complementation. In contrast, flies carrying one copy of 

the exo
-
 allele and one copy either of the pol

- 
alleles were viable and apparently WT-like as reflected 

by the body mass (Fig. 3.11A), mtDNA copy number (Fig. 3.11B) and oxygen consumption rates (Fig. 

3.11C). The direction of inheritance of the alleles had no effect on these phenotypes. In addition, the 

linear deletions present in the homozygous exo
-
 larvae were absent in compound heterozygous flies 

(Fig. 3.11D). All in all, we conclude that compound heterozygote flies carrying one functional 

polymerase allele and one functional proofreading allele have no phenotype due to genetic 

complementation. 
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Adapted from Bratic et al., 2015 
Figure 3.11: Genetic complementation at the DmPOLγA locus 
A) Body weight comparison of compound heterozygote flies. In the name of each genotype the first and second alleles corresponds to 

maternally and paternally inherited alleles, respectively. Tukey’s Multiple Comparison Test. ***p<0.001, **p<0.01. Data are represented as 

mean ± SD. n=20. B) Relative mtDNA copy number in compound heterozygous flies without mtDNA mutations (white bar), with only 
somatic mtDNA mutations (grey bar) or with both somatic and inherited mtDNA mutations (black bar). Kruskal-Wallis test with Dunnett’s 

post hoc test. Data are represented as mean ± SD C) Oxygen consumption rate measurements using 5-day-old complementing larvae. Data 

are represented as mean ± SD D) Southern to detect linear mtDNA deletions in complementing 5-day-old larvae. Homozygous exo- larvae 
(DmD263A) were used as a positive control. 

A comparison between mtDNA mutation loads in larvae showed that compound heterozygous flies 

have less unique mtDNA mutations in comparison with homozygous exo
-
 larvae (Fig. 3.12D) although 

both larvae had similar amount of total mtDNA mutations (Fig. 3.12E). This suggests that 

homozygous exo
-
 larvae have higher mtDNA mutagenesis than the compound heterozygous larvae, 

but the latter is able to reach similar levels of total mtDNA mutations probably due to faster clonal 

expansion of mtDNA mutations. To test this hypothesis a series of crosses were made to generate fly 

lines with higher mtDNA mutational background (Fig. 3.12A), which would enable the detection of 

clonal expansion of mtDNA mutations. When the exo
-
 allele was inherited paternally, the 

heterozygous exo
-
 flies (+/DmD263A) and compound heterozygous flies (DmH1038A/DmD263A) 

had similar levels of unique and total mtDNA mutations (Fig. 3.12B and C). In contrast, when 

heterozygous exo
-
 flies or compound heterozygous flies inherited mtDNA mutations for one 

generation (F1), the complementing flies had a marked increase in mtDNA mutation loads (Fig. 3.12B 

and C). This difference was even higher after intercrossing the exo
-
 flies for four generations before 

made complementing (F4) (Fig. 3.12A-C). These results suggest that the presence of these DmPOLγA 

alleles as compound heterozygous either increases mtDNA turnover resulting in higher clonal 
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expansion of mtDNA mutations, or that the size of the genetic bottleneck is decreased in these flies 

causing rapid shifts in mutation loads. 

 

Adapted from Bratic et al., 2015 
Figure 3.12: Quantification of mtDNA mutation load in compound heterozygous flies 
A) Crossing scheme to obtain intercrossed compound heterozygous flies used in (B and C). B) Unique mtDNA mutation load quantification 
from WT flies (white bar), flies with only somatic mutations (grey bar), and flies with both somatic and inherited mutations (black bar). One-

way ANOVA with Dunnett’s post hoc test. ***P<0.001, **P<0.01. Data are represented as mean ± SD. n=3–6. C) Total mtDNA mutation 

load of flies shown in (B). Data are represented as mean ± SD D) Unique mtDNA mutation load quantification from heterozygous exo- 
larvae (+/D263A), compound heterozygous larvae (D263A/H1038A) and homozygous exo- larvae (D263A/D263A). Tukey's Multiple 

Comparison test. ***P<0.001, **P<0.01, *P<0.05. Data are represented as mean ± SD. n=3. E) Total mtDNA mutation load quantification 

from larvae shown in (D). Data are represented as mean ± SD 

3.2.7 In vitro complementation between exo
- 
and pol

-
 HsPOLγA variants 

To investigate whether the exo- and pol- complementation can be reconstituted in vitro the 

recombinant HsPOLγA function was studied in the context of a DNA primer containing a 3’ mismatch 

(Fig. 3.13A).The ability of different HsPOLγA polymerases to remove a mismatch and continue DNA 

replication was first studied in the absence and presence of dNTPs (Fig. 3.13B). In the absence of 

dNTPs the recombinant WT and pol
-
 HsPOLγA will remove the mismatch and degrade the primer 

(Fig. 3.13A) and as shown before this degradation is faster in the pol
-
 HsPOLγA in comparison with 

WT polymerase (Fig. 3.13B). As expected, the exo
-
 showed no primer degradation (Fig. 3.13B). In the 

presence of dNTPs the WT and pol
-
 HsPOLγA were able to remove the mismatch and continue DNA 

replication although the HsH1134A was substantially slower in DNA replication relative to WT 
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enzyme (Fig. 3.13B). Exo
-
 HsPOLγA had great difficulties in producing full length replication 

products probably due to its difficulties in bypassing 3’ mismatch of the primer. 

 

Adapted from Bratic et al., 2015 
Figure 3.13: Exo- and pol- recombinant HsPOLγA proteins complement each other in vitro 
A) Schematic model of the in vitro replication and proofreading activity assay for recombinant HsPOLγA. The assay included a single-

stranded pBS plasmid with 5’ labeled 32 bp primer carrying a single 3’ mismatch. In the absence of nucleotides a WT HsPOLγA will first 
remove the mismatch and further degrade the primer whereas in the presence of nucleotides HsPOLγA will first remove the mismatch and 

proceed with DNA replication. B) Polymerase and proofreading assays for WT, exo-, and pol- variants of HsPOLγA as shown in A. C) 

Similar to reaction shown in B) but using a single time point and combination of different HsPOLγA variants. “P” means pre-incubation and 
“5” refers to the 5 min reaction time. 

The ability of different HsPOLγA variants to complement each other in DNA replication was assessed 

with the same experimental setup as above using only a single time point (Fig. 3.13C). As before, both 

exo
-
 HsD274A and pol

-
 HsH1134A had difficulties in DNA replication using a primer carrying a 3’ 

mismatch (Fig. 3.13C). In contrast, mixing these two mutants showed a synergistic effect resulting in 

full length replication products (Fig. 3.13C). The exonuclease and polymerase activities of POLγA 

reside in different domain of the polymerase. These results support the idea that polymerases carrying 
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defects in different functional domain of the polymerase can complement each other in DNA 

replication. For this to take place in vitro and in vivo, POLγA has to frequently dissociate and 

reassociate with the template-primer pair to switch between DNA replication and proofreading. 

3.2.8 Accumulation of mtDNA mutation in flies with age 

Proper mitochondrial function is essential for fly development as illustrated by the developmental 

lethality of the homozygous exo
-
, pol

-
 and TFAM knockdown flies (Table 3.3 and 3.7). Here 

established genomically engineered fly models provide an interesting tool to study the effects of 

mtDNA mutations on fly physiology. To first verify that mtDNA is replicated in adult flies, mtDNA of 

adult flies was labeled using pulse-chase 5-bromo-2′-deoxyuridine (BrdU) labeling. Feeding BrdU 

produced a strong labeling after four days of feeding (Fig. 3.14A and B). The signal was rapidly lost 

both in males and females although the latter showed somewhat faster loss signal (Fig. 3.14C and D) 

probably owing to the exceptionally high mtDNA replication taking place in female ovaries (Hurd et 

al., 2016). To see whether this turnover is sufficient to increase mtDNA mutation load with age, 

mtDNA mutation load was quantified from the thorax of young and old flies (Fig. 3.15A). Although 

there was an increasing trend, the mtDNA mutation load was not significantly different between 

young and old flies. These results show that even though mtDNA is turned over in adult flies, this 

turnover rate is not sufficient to cause a detectable increase in fly mtDNA mutation load with age. 

Fly thorax is mostly composed of the post-mitotic flight muscle and would therefore only accumulate 

mtDNA mutations when mtDNA is turned over. In contrast, mtDNA would be expected to accumulate 

mutations faster in proliferative tissues, such as the female germline. To quantify whether mtDNA 

mutation load increases in the female germline, mtDNA mutations were detected from the progeny of 

young and old female flies (Fig. 3.15B). This avoids any biases caused by the changing ovarian 

structure with age. Almost no mutations could be detected in the progeny of young and old WT female 

flies (Fig. 3.15B). As expected, heterozygous exo
-
 transmitted mtDNA mutations to the WT progeny 

(Fig. 3.15B) and although there were no differences in the amount of unique mtDNA mutations, the 

progeny of older females had more total mutations (Fig. 3.15B), suggesting clonal expansion of 

mtDNA mutation with age in the female germline. Of note, similar accumulation of mtDNA mutations 

does not take place in mammalian female germline (Boucret et al., 2017) probably due to the 

differences in the way oocytes are produced in these organisms. 
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Adapted from Kauppila et al., manuscript 
Figure 3.14: MtDNA turnover in adult flies 

A) Schematic view of mtDNA cut from three sites using SacI. B) A Southern and southwestern to detect mtDNA and mtDNA incorporated 

BrdU, respectively. Adult flies were fed BrdU on a pulse-chase experiment, mtDNA was extracted on the showed time points, restriction 

digested into three fragments as shown in (A) and run on agarose. C/D) Quantification of BrdU turnover in (C) female and (D) male flies. 

 

 

Adapted from Kauppila et al., manuscript 
Figure 3.15: Accumulation of mtDNA mutations in adult flies 

A) Quantification of unique (white bar) and total (black bar) mtDNA mutation loads from young and old heterozygous exo- flies. Flies had 
only somatic (+/DmD263A) or both inherited and somatic (D263A/+) mtDNA mutations. Data are represented as mean ± SD. B) 

Quantification of unique (white bar) and total (black bar) mtDNA mutation loads from WT progeny of young and old WT and heterozygous 

exo- flies. Student’s two-tailed t-test. *p<0.05. Data are represented as mean ± SD. C) Lifespan of flies inheriting genomically engineered 
DmPOLγA alleles paternally. Log-rank test. D/E) Lifespan of flies originating from (D) young or (E) old WT, heterozygous Rescue or 

heterozygous exo- flies. Only flies with WT nuclear background were used for the experiments. Log-rank test. 
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The mtDNA mutator mouse has been used extensively to study how mtDNA mutations affect ageing 

(Kujoth et al., 2005, Trifunovic et al., 2004) and the results have shown that inherited mtDNA 

mutations have stronger effect on mammalian lifespan in comparison with somatic mtDNA mutations 

(Ross et al., 2013). To date there has been no efforts to study whether mtDNA mutations limit the 

lifespan of short-lived organisms. Series of genetic crosses were done to assess the role of exo
- 
, pol

-
 

DmPOLγA alleles and somatic mtDNA mutations on fly lifespan. In the experiment all the alleles were 

inherited paternally to minimize any maternal effects. The lifespan of heterozygous exo
-
 and pol

-
 flies 

were similar to WT control (Fig. 3.15C, Table S9), even though the exo
-
 flies have an increase in 

somatic mtDNA mutation load. This result suggests that although all of the exo
-
 and pol

-
 alleles are 

developmentally lethal as homozygous, as heterozygous they do not limit lifespan of flies. 

Older exo
-
 female flies transmit more clonally expanded mtDNA mutations to the progeny (Fig. 

3.15B). These progenies of young and old exo
-
 females were used to detect, whether inherited mtDNA 

mutations limit the lifespan of flies as they do in mice. Two nuclear WT strains were obtained from 

the same female population at day 1 and day 20. During 20 days each female has laid already 

hundreds of eggs and providing time for the germline cells to accumulate mtDNA mutations. The 

progeny from old females showed consistently poorer survival in comparison with progeny from 

young females (Fig. 3.15D and E). However, this effect was independent of fly genotype, and also 

from mtDNA mutations, as flies without inherited mtDNA mutations were indistinguishable for flies 

with inherited mtDNA mutations (Fig. 3.15D and E, Table S10, Table S11). The differences observed 

between the progeny from young and old females were likely contributed by the Lansing effect (Priest 

et al., 2002, Lansing, 1947). All in all, these results suggest the mtDNA mutation can clonally expand 

in the female germline but these mutations do not limit the lifespan of flies. 

3.2.9 MtDNA mutations cause developmental delay 

Mutations in several mitochondrial proteins are known to cause developmental delay in fruit flies, 

including sesB, tko, Scsα and bonsai (Quan et al., 2017, Galloni, 2003, Toivonen et al., 2001, Zhang et 

al., 1999) among others suggesting that mitochondrial function is essential during development. 

Developmental delay is also observable in flies with different mtDNA haplotypes (Salminen et al., 

2017, Meiklejohn et al., 2013) showing that even milder differences in mitochondrial function can 

have developmental effects. To study how exo
-
 and pol

-
 alleles and compound heterozygosity affect 

fruit fly development, the developmental time from egg lay to eclosion was measured. Flies with only 

somatic mtDNA mutations and flies with one generation inherited mtDNA mutations eclosed mostly 

at day 11 with subpopulation of flies inheriting the exo
-
 allele maternally showing mild developmental 

delay (Fig. 3.16A). To further increase mtDNA mutation load exo
-
 flies were intercrossed for four 

generations before made compound heterozygous (Figure 3.12A). All fly lines with maternally 

accumulated mtDNA mutations (DmD263A/Rescue, DmD263A/DmH1038A and 

DmD263A/DmQ1009A) showed clear developmental delay (Fig. 3.16A). To investigate how much 
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mtDNA mutations contribute to the observed developmental delay independently from any nuclear 

background, all flies were outcrossed twice to WT background. MtDNA mutations were either kept or 

removed depending whether WT males of females were used for these outcrosses, respectively (Fig. 

3.16B). Additionally, a heterozygous exo
-
 fly line intercrossed for two years was included in the 

experiment and as above the mutated mtDNA was either maintained (Fig. 3.16B, green line) or 

removed (Fig. 3.16B, red line). Only flies inheriting mtDNA mutations maternally showed a strong 

developmental delay (Fig. 3.16B). This was even more clear in the case of heterozygous exo
-
 flies 

intercrossed for two years showing how accumulating mtDNA mutations correlate with the severity of 

developmental delay. 

 

Adapted from Kauppila et al. manuscript 
Figure 3.16: Developmental time analysis 
A) Developmental time analysis of flies with recently introduced WT mtDNA and flies with inherited mtDNA mutations. B) Developmental 
time analysis for flies with accumulated mtDNA mutations 

The fact that flies with mtDNA mutations show developmental delay already at very low mtDNA 

mutation load levels could be caused by a combination of several factors. Firstly, the energetic 

demand during fruit fly development is exceptionally high so that even minor disturbances in 

mitochondrial ATP production could have negative effects on development. Secondly, functional 

mitochondrial Fe-S cluster synthesis is needed for steroidogenesis. In the case of fruit flies, impaired 

mitochondrial function results in failed 20-hydroxyecdysone (20E) synthesis (Llorens et al., 2015), a 

key hormone needed to enter pupariation. Thirdly, mitochondrial dysfunction can cause cell cycle 

delays (Xie and Dubrovsky, 2015) and limit cell growth (Frei et al., 2005) explaining why genetic 

screens trying to identify cell cycle regulators often discover mitochondrial proteins (Liao et al., 2006, 

Mandal et al., 2005, Frei et al., 2005). Combination of these negative effects could have interesting 

consequences at the population level as flies with clonally expanded pathogenic mtDNA mutations 

would have a competitive disadvantage. In would be interesting to investigate whether flies 

developing faster would have less pathogenic mutations in comparison with flies with strong 

developmental delay. 

 

3.2.10 Slow clonal expansion of mtDNA mutations across generations 

The observation that the exo
- 
allele does not shorten the lifespan of flies in in stark contrast to the 

mouse models carrying the analogous mutation (Ross et al., 2014, Kujoth et al., 2005, Trifunovic et 
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al., 2004). The exo
-
 flies have half of the mtDNA mutation load of the heterozygous mouse, 0.9*10

-4
 

mut/bp and 2*10
-4

 mut/bp (Ross et al., 2013), respectively, which could explain some of the observed 

differences. This difference can be circumvented by intercrossing exo
-
 flies for several consecutive 

generations (Fig. 3.9C) resulting in accumulation of mtDNA mutations. To this end exo
-
 flies were 

intercrossed for 1, 6 and 15 generations to see whether this level of increase in mtDNA mutation load 

would be sufficient to limit fly lifespan. Surprisingly, none of the intercrossed flies showed any 

consistent changes in lifespan relative to WT and Rescue controls (Fig. 3.17A-C, Table S12-14). In a 

similar manner, exo
-
 flies intercrossed for two years (~30 generations) and then outcrossed to obtain 

flies with WT nuclear background but carrying mtDNA mutations (+/+; mut mtDNA) were used for 

lifespan analysis but again there were no differences relative to control flies (Fig. 3.17D, Table S15). 

The above and published (Solignac et al., 1987) results suggest that the clonal expansion in flies 

between generations is minimal and it is only the clonally expanded mtDNA mutations that can cause 

biochemical defects. The compound heterozygous flies were shown to have increased mtDNA 

mutagenesis and rapid accumulation mtDNA between generations (Fig. 3.12B and C) and could be 

used to generate fly lines with even higher mtDNA mutation loads. Compound heterozygous flies with 

only somatic mutations had WT-like lifespan (Fig. 3.17E and F, Table S16) suggesting that the 

compound heterozygosity itself does not have negative effects on ageing. Also flies intercrossed for 

four generations before made compound heterozygous had normal lifespans (Fig. 3.17E and G, Table 

S17). 

It is somewhat surprising that flies are so tolerant against mtDNA mutations. Previous studies have 

shown that flies carrying (near) homoplasmic mtDNA mutations have severe biochemical defects and 

shortened lifespan (Burman et al., 2014, Celotto et al., 2011, Xu et al., 2008). This could suggest that 

mtDNA mutations in intercrossed exo
-
 flies or compound heterozygous flies have not clonally 

expanded to a certain level to cause biochemical defects. To detect high heteroplasmy level mtDNA 

mutations in intercrossed exo
-
 flies or compound heterozygous flies, the full mtDNA coding region of 

these flies was sequenced and any detected heteroplasmic mutations were categorized into low 

(<33%), middle (33%-66%) and high (>66%) heteroplasmy level mutations. Using this approach no 

mutations could be detected in flies with only somatic mtDNA mutations (+/DmD263A) and even 

after 15 generations only a few mutations were categorized to be at high level (Fig. 3.17K) probably 

explaining the lack of phenotype in these flies. 

To further increase mtDNA mutation load the compound heterozygous flies with increased mtDNA 

mutagenesis and faster clonal expansion of mtDNA mutations were intercrossed for 5 and more than 

35 generations (Fig. 3.17H). Compound heterozygous flies showed reduced lifespan only after 35 

generations of intercrossing (Fig. 3.17I and J, Table S18 and Table S19). In line with this result, these 

flies carry multiple high heteroplasmy level mutations (Fig. 3.17K). These results show that mtDNA 

mutations expand clonally across generations at a slow rate, but artificially increasing mtDNA 
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mutagenesis and clonal expansion can eventually result in flies with enough mtDNA mutations to 

shorten lifespan. 

 

Adapted from Kauppila et al., manuscript 
Figure 3.17: Effects of mtDNA mutations on fly lifespan 

A/B/C) Lifespans of flies transmitting genomically engineered DmPOLγA alleles for (A) one, (B) 6 and (C) 15 generations. D) Lifespan of 

flies accumulating mtDNA mutations for ~30 generations in the heterozygous exo- background followed by outcrossing of the allele. As a 
control WT mtDNA was re-introduced to the population (+/+ (clean mtDNA)). E) Crossing scheme to obtain flies intercrossed one or 4 

generations prior to making flies compound heterozygous. F/G) Lifespans of compound heterozygous flies crossed for (F) one or (G) 4 

generations before making compound heterozygous as shown in (E). H) Crossing scheme to generate 5 and >35 generations intercrossed 
compound heterozygous flies. I/J) Lifespans of compound heterozygous flies intercrossed for (I) 5 or (J) more than 35 generations as shown 

in (H). K) MtDNA mutations detected by Sanger sequencing in the shown fly genotypes. All detected mutations were categorized into low 

(<33%), middle (33-66%) or high (>66%) heteroplasmy level mutations. 
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Adapted from Kauppila et al., manuscript 
Figure 3.18: MtDNA mutations lead to loss of OXPHOS complexes 
A) Mitochondrial complex I and IV in-gel activity assays in BN-PAGE. SC=Supercomplexes, I = Complex I, IV = Complex IV, IVn = 

Complex IV supercomplex. B) Immunoblotting against complex V in BN-PAGE gel. V2 = Complex V dimer, V = Complex V monomer, F1 

= matrix portion of Complex V. C) Mitochondrial complex I and IV in-gel activity assays in BN-PAGE of flies of different ages. 

3.2.11 Clonally expanded mtDNA mutations cause OXPHOS dysfunction 

To verify that the abundant mtDNA mutations in the intercrossed compound heterozygous flies can 

cause a biochemical defect, the assembly and abundancy of OXPHOS complexes was assessed by in-

gel activity assays and western blot (Fig. 3.18). Compound heterozygous flies with only low levels of 

mtDNA mutations did not show any changes in in-gel activity assay relative to control (Fig. 3.18A) in 

line with the respiration measurements in compound heterozygous larvae (Fig. 3.7D). Only 

extensively intercrossed compound heterozygote flies presented with decreased levels of complex I 

and IV and partially disassembly of complex V (Fig. 3.18B) as well as reduced levels of 

supercomplexes (Fig. 3.18A) suggesting these defects originate from mtDNA mutations. This 

decreased OXPHOS activity did not show any age-associated changes (Fig. 3.18C). To further verify 

these results proteome analysis was performed using Percoll gradient purified mitochondria. Similar to 

the in-gel activity assays the proteomic data showed a drastic decrease in several complex I and IV 

subunits in intercrossed compound heterozygote flies (Fig. 3.19A). Some proteins involved in mtDNA 

gene expression, OXPHOS and metabolism were also significantly upregulated in intercrossed 
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compound heterozygote flies (Fig. 3.19B). Interestingly, among the OXPHOS components several 

complex V subunits were upregulated, including bellwether (blw) (Fig. 3.19B), the fly ortholog of 

mouse ATP5A1, which was shown to be upregulated also in the mtDNA mutator mouse (Edgar et al., 

2009) suggesting a conserved biochemical response in flies and mice. These data show that clonally 

expanded mtDNA mutations in flies can lead to OXPHOS dysfunction, which is likely resulting in the 

observed shortening of fly lifespan. 

 

Adapted from Kauppila et al., manuscript 
Figure 3.19: MtDNA mutations cause changes in mitochondrial proteome 

A) Mitochondrial proteins downregulated in flies with high levels of mtDNA mutations. B) Mitochondrial proteins downregulated in flies 

with high levels of mtDNA mutations. One-way ANOVA with FDR 0.05. 

3.2.12 Decreased fly healthspan due to mtDNA mutations 

In humans, mtDNA mutations affect usually first the most energy demanding tissues such as neurons 

and muscles (Chinnery, 2015). Also in model systems, mutations in nuclear encoded mitochondrial 

proteins and mutations in mtDNA are known to have negative in both of these tissues (Sen and Cox, 

2017). To compare the effects of low and high levels of mtDNA mutations on fly neuromuscular 

function, the locomotor activity of flies was quantified. All genotypes showed typical activity changes 

during the day including the morning and evening bouts (Fig. 3.20A). None of the DmPOLγA alleles 
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of the compound heterozygosity itself had any effects in locomotor activity in comparison with WT 

control (Fig. 3.20B). However, compound heterozygote flies intercrossed more than 35 generations 

showed consistently decreased locomotor activity especially during the morning bout (Fig. 3.20B) 

suggesting these flies have either muscular and/or neuronal defects. 

 

Adapted from Kauppila et al., manuscript 
Figure 3.20: MtDNA mutations decrease locomotor activity and make flies sensitive to mechanical stress 

A) A representative example of average locomotor activity of WT and DmD263A/H1038A >F35 flies during one day. Locomotor activity 
during the morning bout used for statistical analysis shown with bar. B) Total locomotor activity of flies during the morning bout (8:00-

12:00). ). One-way ANOVA with Dunnett’s post hoc test. ***p<0.001. Data as represented as box plot with whiskers showing maximum 

and minimum values. C) Mechanical stress sensitivity assay for flies during lifespan. 

Mutations in several nuclear encoded mitochondrial proteins are known to make flies sensitive to 

mechanical stress, also known as “bang sensitive”. These genes include mRpS12, ANT, citrate 

synthase and dYme1L (Qi et al., 2016, Fergestad et al., 2006). In most cases these mutant have 

decreased cellular ATP levels, which likely causes the observed phenotype as most neuronal ATP is 

consumed in maintaining ion gradients across cell membranes. Indeed, it has been suggested that the 

bang sensitivity is caused by neuronal hyperexcitability as anticonvulsants can suppress some of these 

phenotypes (Fergestad et al., 2006). To assess whether mutations in mtDNA can also sensitize flies to 

mechanical stress the sensitivity of flies carrying different DmPOLγA alleles, compound heterozygote 

flies and intercrossed compound heterozygote flies were tested. Similar to the locomotor assay only 

flies with inherited and clonally expanded mutations (DmD263A/DmH1038A >F35) showed 

substantial age-associated increase in sensitivity the mechanical stress (Fig. 3.20C). Together these 

results show that flies heterozygous for various DmPOLγA alleles or compound heterozygosity itself 

have no effect on fly physiology, whereas mutations accumulated and clonally expanded over tens of 

generations can result in marked decrease in fly health span. 
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Adapted from Kauppila et al., manuscript 
Figure 3.21: MtDNA mutations make flies starvation sensitive 

A/B) Starvation assay of flies with (A) only somatic or (B) both inherited and somatic mtDNA mutations. Log-rank test. C/D) Lipid 
quantification in adult flies (C) before or (D) before and after starvation. Student’s two-tailed t-test. E) Body weight of young adult flies. 

One-way ANOVA with Dunnett’s post hoc test. **p<0.01 F) Feeding activity of young flies. One-way ANOVA with Dunnett’s post hoc 

test. ***p<0.001. 

3.2.13 Mitochondrial dysfunction leads to starvation sensitivity 

Mitochondria are a hub for several catabolic and anabolic processes including β-oxidation, amino acid 

degradation and synthesis, TCA cycle, one-carbon metabolism and urea cycle. Impaired mitochondrial 

function does not only affect the individual cell but can have far reaching consequences when the 

function of this sensory organelle is impaired in cells controlling metabolism of the whole organism 

(Sharoyko et al., 2014). Our mass spectrometry analysis of mitochondrial proteome showed that 

mtDNA mutations result in the upregulation of several enzymes related to mitochondrial metabolism 

(Fig. 3.19B). To detect whether these changes have any physiological effects, flies with DmPOLγA 

alleles and variable levels of mtDNA mutations were exposed to starvation. The presence of different 
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DmPOLγA alleles as heterozygous, compound heterozygosity or small increase in mtDNA mutation 

load had no effect on starvation sensitivity (Fig. 3.21A, Table S20). In contrast, flies with clonally 

expanded mtDNA mutation had significantly decreased sensitivity to starvation (Fig. 3.21B, Table 

S21). This is in line with the studies done in D. simulans showing that mtDNA haplotypes can affect 

fly metabolism and that a homoplasmic ND2 mutation in D. melanogaster is known to impair fat 

storage (Wang et al., 2016, Ballard et al., 2007). 

This increase in starvation sensitivity could be caused by decreased amount of stored lipids or failure 

to mobilize and utilize those lipids upon starvation. Therefore, the fly lipid content was quantified both 

before and after starvation (Fig. 3.21C and D). The presence of any of the DmPOLγA alleles or 

compound heterozygosity did not have any effect on fly lipid content (Fig. 3.21C). Intercrossed 

compound heterozygous flies showed a small but significant decrease in the lipid content before 

starvation but these flies were able to mobilize lipid storages upon starvation (Fig. 3.21D). These 

changes in the lipid content correlated also with changes in body weight (Fig. 3.21E). Therefore the 

presence of mtDNA mutations and OXPHOS dysfunction in intercrossed compound heterozygous 

flies does not impair β-oxidation. What then could cause a decrease in fly body weight and lipid 

content? One of the simplest explanations could stem from studies done using the classical nematode 

eat-2 mutant. This nematode present with a swallowing defect due to acetylcholine receptor mutation 

leading to loss of pharyngeal pumping (Lakowski and Hekimi, 1998). Indeed flies with high 

heteroplasmy mtDNA mutations have neuromuscular defects that could also affect the feeding 

behavior of the fly. To address this possibility the proboscis-extensions onto food surface was counted 

for flies with variable levels of mtDNA mutations. Only flies with high heteroplasmy level mutations 

showed decreased feeding activity (Fig. 3.21F) which could be caused by the neuromuscular defects 

and would likely contribute to the decreased lipid content and body weight of these flies. 

3.2.14 Mitochondrial dysfunction can attenuate DR-mediated lifespan extension 

One of the most consistent ways to improve organismal health is dietary restriction, chronic reduced 

intake of dietary constituents with the exception of essential nutrients (Fontana and Partridge, 2015). 

This effect is likely achieved via multiple pathways including improved insulin signaling and target of 

rapamycin (TOR). To study whether flies with mtDNA mutations respond properly to DR, flies with 

the various DmPOLγA alleles, compound heterozygote flies and flies with clonally expanded mtDNA 

mutations were subjected to varying yeast concentrations (0.1x, 0.5x, 1.0x and 2.0x). As expected, the 

lifespan of WT flies was longest under 0.5x and 1.0x yeast conditions whereas high and low yeast 

concentrations caused mild and substantial decrease in lifespan, respectively (Fig. 3.22A and B). Flies 

with low levels of mtDNA mutations were able to respond properly to DR whereas flies with clonally 

expanded mtDNA mutations had similar lifespan under 0.5x, 1.0x and 2.0x conditions suggesting a 

failure to respond to DR (Fig. 3.22A and B, Table S22). Interestingly, some studies have shown that 

knockdown of some nuclear encoded OXPHOS proteins attenuates the effects of DR (Bahadorani et 
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al., 2010, Zid et al., 2009). These results suggest that at least in flies mitochondrial function is 

necessary for DR mediated lifespan extension as mitochondrial dysfunction originating from either 

nuclear encoded mitochondrial genes or mtDNA can suppress the effects of DR. How mitochondria 

could participate in DR-mediated lifespan extension is still an open question. This could potentially 

take place through altered ROS signaling as ROS production is decreased in rodent heart, liver and 

skeletal muscles upon dietary restriction (DeBalsi et al., 2017). This altered signaling would affect 

especially stem cells, which maintenance is highly sensitive to changes in ROS levels (Ahlqvist et al., 

2015b). 

 

Adapted from Kauppila et al., manuscript 
Figure 3.22: Dietary restriction assay for flies with mtDNA mutations 
A/B) Lifespan analysis under varying yeast concentrations (0.1x, 0.5x, 1x and 2x SYA). Flies had either (A) only somatic mtDNA mutations 

or (B) both somatic and inherited mtDNA mutations. Log-rank test. Parametric survival analysis with logistic distribution (lowest Akaike 

information criterion) was used to analyze responses to DR. 
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3.2.15 Impaired proliferation of ISCs in the presence of mtDNA mutations 

Fruit flies are mostly post-mitotic organism with the exception of few stem cell niches, such as the gut 

(Gonen and Toledano, 2014). The fruit fly gut is a single cell layer epithelium consisting of pluripotent 

ISCs, which can produce transient enteroblasts (EB) that further differentiate into enterocytes (EC) 

and enteroendocrine cells (EE). The ability of these ISCs to proliferate has been shown to be important 

for protecting the integrity of the gut in the presence of different stressors, varying dietary conditions 

and ageing (Jasper, 2015, Biteau et al., 2010). Additionally, increasing mitochondrial biogenesis in fly 

ISCs might have beneficial effects (Rera et al., 2012), whereas impaired mitochondrial function can 

cause the ISCs to enter senescence (Koehler et al., 2017). The observed attenuated DR response and 

decreased fly lipid content in flies with mtDNA mutations are often linked to impaired intestinal 

barrier function (Regan et al., 2016, Rera et al., 2012). In addition, mtDNA mutations are known to 

accumulate in the colonic crypts of ageing humans (Baines et al., 2014) leading to decreased 

proliferation and increased apoptosis (Nooteboom et al., 2010). Similar changes seen in ageing 

humans have been also observed in the mtDNA mutator mouse (Fox et al., 2012). Therefore, several 

physiological changes observed in the flies with abundant mtDNA mutations could stem from changes 

in intestinal stem cell (ISC) function. 

To study whether mtDNA mutations can impair ISC homeostasis, 7 d and 14 d flies with different 

levels of mtDNA mutations were exposed to mitogenic condition by feeding flies Erwinia carotovora 

carotovora 15 (Ecc15). This bacterium evokes a strong immune response in fly gut which is 

accompanied by increased proliferation of the ISCs (Buchon et al., 2009). In young flies only ISCs of 

flies with high levels of mtDNA mutations (DmD263A/DmH1038A >F35) were not able to proliferate 

in response to Ecc15 as verified by the lack of Delta marker and PH3
+
 cells (Fig. 3.23A and B). 

Interestingly, older flies with WT nuclear background but inherited mtDNA mutations showed also a 

slight decrease in ISC proliferation in response to the pathogenic bacteria (Fig. 3.23C and D) although 

the lifespan of these flies is not affected by the mtDNA mutations (Fig. 3.17D). These results suggest 

that somatic mtDNA mutations would not affect the maintenance of ISCs in WT flies and only 

multiple generations inherited mtDNA mutations can decrease ISCs proliferation in response to 

environmental stress. Further work would be needed to show whether DR can have positive effects on 

ISC maintenance in the presence of mtDNA mutations. 
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Adapted from Kauppila et al., manuscript 
Figure 3.23: Intestinal stem cell (ISC) proliferation 
A) DAPI (blue) staining for nDNA and Delta immunohistochemistry to detect intestinal stem cells in young flies before and after EEC15 

infection. B) Quantification of the experiment shown in (A) using immunohistochemistry against PH3+. One-way ANOVA, with Sidak’s 

post hoc test. C) Quantification of PH3+ cells as in (B) but in older females One-way ANOVA, with Sidak’s post hoc test D) 
Immunohistochemistry as in (A) but only after EEC15 infection using older females. E) Immunohistochemistry as in (A) showing Delta 

staining before and after infection for WT and intercrossed complementing flies. 

 

 

3.3 Discussion 

Accurate mtDNA replication is essential for mtDNA maintenance especially due to the absence of 

recombination (Cooper et al., 2015, Hagström et al., 2014). Nevertheless, mtDNA is known to 

accumulate mutations an order of magnitude faster than the nDNA (Haag-Liautard et al., 2008). There 

is accumulating evidence showing that these mtDNA mutations originate from replication errors and 

not, as was previously thought, from oxidative damage (Kauppila et al., 2017). This difference in the 

mutation accumulation between nDNA and mtDNA is not due to error proneness of POLγ which, in 
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fact, is one of the most accurate mammalian DNA polymerases (Lynch, 2011). Instead, the high 

mutation rate is likely contributed by the constant mtDNA turnover in mitotic and post-mitotic tissues 

and the polyploidic nature of mtDNA allows even harmful mtDNA mutations to drift in the 

population. 

Increasing the accuracy of POLγ is a tempting approach to decrease mtDNA mutagenesis. To date, all 

efforts to improve the accuracy of DNA polymerases have been performed in single cell organisms, 

such as E. coli and S. cerevisiae (Foury and Szczepanowska, 2011, Minnick et al., 1999). Therefore 

we wanted to address whether it would be possible to decrease mtDNA mutagenesis in a metazoan 

model by increasing the proofreading/polymerase activity ratio of POLγ. A detailed biochemical 

characterization showed that introducing single amino acid changes to the polymerase domain of 

POLγA (pol
-
 variants) can increase the proofreading/polymerase activity ratio of the polymerase. This, 

however, came with a cost as the in vitro polymerase activity of these variants was substantially 

decreased and in vivo led to severe mtDNA depletion. Further studies are required to assess whether 

mutations affecting, for instance, the primer partitioning between the polymerase and exonuclease 

domains (HsPOLγA amino acids 842-856) could be mutated to favor the latter (Szymanski et al., 

2015, Euro et al., 2011). Indeed, in WT POLγA the cost of proofreading is exceptionally low (Johnson 

and Johnson, 2001) so it might be possible to increase the exonuclease activity with the cost of 

increasing the removal of correctly paired bases. 

The proofreading activity of POLγA can be decreased by introducing single amino acid changes in the 

exonuclease domain from yeast to mice (Kujoth et al., 2005, Trifunovic et al., 2004, Vanderstraeten et 

al., 1998). Both in mtDNA mutator mice and flies this leads to increased mtDNA mutation load, most 

of which are transition mutations similar to observed in WT animals again suggesting that mtDNA 

mutations originate from replication errors. In exo
-
 flies, however, a quarter of all mutations detected 

were indels. Whether this high proportion of indels is caused by something intrinsic to the DmPOLγA 

or fly mtDNA (e.g. high number of poly-dT and poly-dA repeats) is not known. In addition, our 

results argue that flies are more sensitive to mtDNA maintenance defects than mice as flies 

homozygous for the exo
-
 allele die at late larval stage whereas the mtDNA mutator mouse is viable 

despite the larvae carrying threefold less mtDNA mutations than the mtDNA mutator mouse. These 

differences could stem from different levels of mtDNA with linear deletions in flies and mice or 

because DmPOLγA seems to have dominant negative phenotype as hemizygous larvae develop further 

than homozygous larvae. At the physiological levels it was also clear that mtDNA mutations have 

little effect on adult flies whereas they cause a strong developmental delay in larvae. This could be 

taken to suggest that the energy needed for fly development is so high that even mild disturbances in 

mitochondria lead to lethality. 

Interestingly, homozygous exo
-
 larvae presented with linear mtDNA deletions. It has been previously 

characterized how the mtDNA mutator mouse carries linear mtDNA with deletions spanning the major 
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arc (Bailey et al., 2009, Trifunovic et al., 2004). An explanation for these deletions comes from a 

recent elegant biochemical work showing that upon reaching 5’-end of the newly synthesized DNA, 

POLγ displaces it partially before backtracking to form ligatable DNA ends (Macao et al., 2015). 

However, exonuclease deficient POLγ cannot backtrack after displacing the 5’-end resulting in flap 

structure that cannot be ligated. Using this nicked mtDNA as a template for mtDNA replication can 

lead to the formation of mtDNA with linear deletions between the replication origins. Although the 

origins of replication of fly mtDNA have not been fully defined, free 5’-end mapping suggests both 

replication origins are located in the A+T-rich region (Saito et al., 2005). The detected linear mtDNA 

fragments in the exo
-
 larvae coincide with these sites supporting the view that fly mtDNA has 

dedicated origins of replication in the A+T-rich region. 

POLγA HsA467T is one of the most common human POLγA mutations and it is often found alone or 

in trans with other mutations (Rajakulendran et al., 2016, Tzoulis et al., 2006). Heterozygote carriers 

are healthy although this mutant has only 4% of the WT polymerase activity (Chan et al., 2005) 

suggesting that WT allele can complement this defect. Surprisingly, our complementation studies 

suggest that polymerases carrying defects in different domains can complement each other both in vivo 

and in vitro. Based on the mutation load analysis it doesn’t seem that pol
-
 variants are able to remove 

any mismatches introduced by the exo
-
 allele as the mtDNA mutation loads were similar between 

heterozygous exo
-
 flies and complementing flies with only somatic mtDNA mutations. Instead, it is 

likely that the presence of the pol
-
 allele enables the removal of flap structures formed by the exo

-
 

allele thereby creating ligatable mtDNA ends and avoiding the formation of mtDNA with linear 

deletions. In addition, it has been argued whether the switch between mtDNA synthesis and 

proofreading takes place intra- or intermolecularly (Johnson and Johnson, 2001, Olson and Kaguni, 

1992). Although our results do not provide a definitive answer, the results suggest the intermolecular 

change is sufficient to maintain WT mtDNA levels.  

MtDNA mutation load is known to increase with age in several species (Itsara et al., 2014, Williams et 

al., 2013, Yui et al., 2003, Khaidakov et al., 2003, Schwarze et al., 1995). It has been unclear, 

however, how mtDNA mutations accumulate in short-lived species and whether they contribute to 

ageing phenotypes. We showed here that fruit flies acquire most mtDNA mutations in the early 

development, which is similar to what has been observed in vertebrates. In long-lived species these 

mutations can drift randomly (Baines et al., 2014, Greaves et al., 2012) and when present above a 

critical threshold level lead to focal OXPHOS dysfunction (Larsson, 2010). Mathematical models have 

suggested that in humans it can take even decades for a de novo mutation to drift to reach this 

threshold level (Elson et al., 2001). This is supported also by mouse studies showing that rodents have 

limited mtDNA mutation accumulation with age probably owing to the relative short lifespan of the 

organisms (Kowald and Kirkwood, 2013, Greaves et al., 2011). Our results suggest that in fruit flies 
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accumulation of mtDNA mutations with age is limited. Accumulating mtDNA mutations for multiple 

generations had no effect on fly lifespan due to the slow clonal expansion of mtDNA mutations. 

Only compound heterozygote flies with increased mtDNA mutagenesis and decreased size of the 

genetic bottleneck showed high heteroplasmy level mtDNA mutations after extensive intercrossing. 

This slow clonal expansion of mtDNA mutations between generations is in stark contrast to humans 

where rapid shifts in heteroplasmy levels across generations can lead to mitochondrial diseases 

(Wilson et al., 2016, Elliott et al., 2008). The number of female germ cell divisions per generation is 

similar in flies (36.5) and mice (31) (Drost and Lee, 1995) and cannot therefore solely explain the 

observed differences. Instead contribution of the fly nurse cells to the total mitochondrial pool of the 

egg (Cox and Spradling, 2003) and differences in the formation of the primordial germ cells likely 

explain these differences (Hurd et al., 2016, Strome and Updike, 2015). 

In the mtDNA mutator mouse abundant mtDNA mutations lead to OXPHOS instability and 

mitochondrial dysfunction (Edgar et al., 2009). Similarly in intercrossed complementing flies mtDNA 

mutations lead to the loss of OXPHOS complexes causing several physiological alterations such as 

starvation sensitivity, decreased feeding and locomotor activity and increase seizure susceptibility, last 

of which has also been reported in many patients (Gorman et al., 2016). In addition, these flies mimic 

the well documented stem cell dysfunctions reported in the mtDNA mutator mice. It will be of high 

interest in the future to take advantage of the genetic tools of the fly community to better understand 

how mitochondrial dysfunction leads to loss of stem cell homeostasis. 
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4.1 Introduction 

According to the classical model, pathogenic mtDNA mutations cause a disease only when they reach 

a mutation and tissue specific threshold level. However, it has been also suggested that it is not the 

mutation levels per se that determines the disease penetrance but rather the absolute number of WT 

molecules. This theory has been called “maintenance of wild type hypothesis” (Stewart and Chinnery, 

2015). To date, there has been limited evidence to support the latter model (Durham et al., 2006, 

Chinnery and Samuels, 1999) mostly due to the experimental difficulties in addressing it.  

Mitochondrial dysfunction is a common cause for inherited diseases (Gorman et al., 2015). These 

diseases are well known to affect the most energy demanding tissues such as the neuromuscular 

system but less in known regarding the effects of mitochondrial dysfunction on fertility, a common 

human health problem (Boivin et al., 2007). Studies done in females suggests that mtDNA mutations 

do not limit the fertility of female carriers (Gorman et al., 2015, Moilanen and Majamaa, 2001), 

whereas in males the same mutation can decrease sperm motility (Spiropoulos et al., 2002) suggesting 

that sperm are more sensitive to mitochondrial dysfunction. Indeed, several lines of evidence from 

clinical studies and animal models suggest that impaired mitochondrial function can cause male 

infertility (Ji et al., 2017, Gao et al., 2016, Baklouti-Gargouri et al., 2014, Nakada et al., 2006, 

Spiropoulos et al., 2002, Ruiz-Pesini et al., 2000, Kao et al., 1998). A recent larger study discovered 

that males with mitochondrial disease have decreased fertility which correlates with the severity of the 

disease (Martikainen et al., 2017).  

The mtDNA mutator mouse carries a proofreading-deficient PolgA
mut/mut

 leading to accumulation of 

mtDNA mutations (Kujoth et al., 2005, Trifunovic et al., 2004). One of the mtDNA mutator models is 

also completely male sterile but shows partial rescue as hemizygous when the amount of maternally 

limited mutations is limited (Ross et al., 2013) suggesting that inherited and clonally expanded 

mtDNA mutations are an important factor contributing to male infertility. The mtDNA mutator mouse 

offers an interesting model to study the “maintenance of wild type hypothesis” as, at least in theory, 

increasing the mtDNA copy number in this mouse models should have beneficial effects. It is not fully 

understood how mtDNA copy number is regulated, but it has been shown to correlate well with 

TFAM levels (Ekstrand et al., 2004, Larsson et al., 1998). In this study, we took advantage of TFAM 

overexpressing mice and TFAM hemizygous mice in combination with the mtDNA mutator mice to 

study how the manipulation of TFAM levels, and thereby mtDNA copy number, affects the male 

infertility phenotype. Interestingly, increasing mtDNA copy number partially rescued male infertility 

of the mtDNA mutator mice without affecting total mtDNA mutation load suggesting that the number 

of WT mtDNA molecules determines the disease penetrance. Additionally, the rescue of this stem-

cell-driven phenotype suggests that manipulating mtDNA copy number could be a powerful 

therapeutic strategy to alleviate the effects of heteroplasmic and pathogenic mtDNA mutations. 
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4.2 Results 

4.2.1 Sperm defects correlate negatively with TFAM expression levels in mtDNA mutator mouse 

To study how decreased and increased TFAM levels affect male fertility in WT mice, litter sizes and 

various sperm parameters of TFAM hemizygous (TFAM
+/KO

) and TFAM overexpressing mice 

(TFAM
+/OE

) were studied. When mated with WT females, both TFAM
+/KO

 and TFAM
+/OE

 mice 

produced similar litter sizes to WT control (Fig. 4.1A). Also the testes weight, sperm count, sperm 

motility and testes histology were unchanged (Fig. 4.1B, C and D). These results suggest that slight 

decrease or increase in mtDNA copy number has no effect on male fertility and that these mouse 

models can be used to study how differences in mtDNA copy number affect the fertility of mtDNA 

mutator mice. 

 

Adapted from Jiang et al. 2017 
Figure 4.1: Assessing TFAMOE and TFAMKO fertility 
A) The shown phenotypes were crossed with WT females and the number of pups was scored. B) Testes relative weight. C) Relative sperm 

number and motility of the shown genotypes. D) Hematoxylin and eosin (HE) staining of testes sections. Whiskers represent SEM. Scale bar 

= 100 μm. 

Designing experiments using the mtDNA mutator mouse is challenging because maternally 

transmitted mtDNA mutations can have confounding effects (Kauppila et al., 2017, Ross et al., 2013). 

Therefore, a specific mating strategy was designed to minimize the effect of maternal contribution of 

mtDNA mutation load (Fig. 4.2A). WT, TFAM
+/KO

 and TFAM
+/OE

 females were crossed with 

heterozygous mtDNA mutator males PolgA
+/mut

 to obtain mtDNA mutator mice with decreased, 

normal or increased mtDNA copy number. One additional cross was carried out to obtain homozygous 
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mtDNA mutator mice with decreased (PolgA
mut/mut

, Tfam
+/KO

 (henceforth PolgA
mut

Tfam
KO

)), normal 

(PolgA
mut/mut

, Tfam
+/+

 (henceforth PolgA
mut

Tfam
WT

)) and increased (PolgA
mut/mut

, Tfam
+/OE

 (henceforth 

PolgA
mut

Tfam
OE

)) mtDNA copy number. 

 

Adapted from Jiang et al. 2017 
Figure 4.2: TFAM overexpression partially rescues mtDNA mutator mouse infertility 
A) Mating strategy to obtain homozygous mtDNA mutator mice with minimal amount of inherited mtDNA mutations and variable TFAM 
levels. B) Male mice of the shown genotypes were crossed with WT females and the number of pups per litter was scored. C) Relative testes 

weight. D) Relative sperm count E) Hematoxylin and eosin (HE) staining of cauda epididymis. Scale bar = 100 μm. F) Sperm motility. G) 

Examples of variable sperm morphology including a) normal sperm, b/c) sperm head defects, c/d/e) sperm tail defects. Scale bar = 20 μm. H) 
Quantification of sperm morphology. Data are represented as mean ± SEM. *p<0.05; **p<0.01; ***p<0.001. 
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PolgA
mut

Tfam
KO

, PolgA
mut

Tfam
WT

 and PolgA
mut

Tfam
OE

 mice did not show any changes in mating 

behavior as was evident by the presence of copulatory plugs in wild type females after overnight 

mating. Despite normal mating behavior PolgA
mut

Tfam
WT

 mice did not sire any offspring during a 3-

month fertility test which is in accordance with the published results (Ross et al., 2013, Trifunovic et 

al., 2004). PolgA
mut

Tfam
KO

 mice were similarly sterile but interestingly PolgA
mut

Tfam
OE

 mice were 

able to produce offspring near WT levels (Fig. 4.2B). In agreement with the infertility phenotype, the 

testes of PolgA
mut

Tfam
WT

 and PolgA
mut

Tfam
KO

 were smaller in comparison with WT control and 

PolgA
mut

Tfam
WT

 had a substantially decreased sperm count (Fig. 4.2C and D). In fact, the cauda 

epididymis of the PolgA
mut

Tfam
KO

 mice did not contain almost any sperm (Fig. 4.2E) showing even 

stronger phenotype than the mtDNA mutator mouse alone. Sperm left in PolgA
mut

Tfam
WT

 mice showed 

decreased motility (Fig. 4.2F) and significant increase in morphological defects, including typical 

hook and banana-like structure and irregular forms (Fig. 4.2G) in line with the infertility phenotype of 

this mouse model. PolgA
mut

Tfam
OE

 mice, in contrast, showed WT-like testes weight (Fig. 4.2C) and 

partial rescue in sperm count (Fig. 4.2D). The sperm motility of PolgA
mut

Tfam
OE

 mice was only 

slightly decreased (Fig. 4.2F) and higher proportion of sperm showed normal morphology (Fig. 4.2H). 

These results show that the infertility phenotype of the mtDNA mutator mice can be aggravated by 

decreasing mtDNA copy number and increasing mtDNA copy number can at least partially rescue 

many of the infertility phenotypes. 

4.2.2 Spermatogenesis and OXPHOS dysfunction partially rescued by TFAM overexpression 

Spermatogenesis can be divided into three stages: proliferation of spermatogonial stem cells, meiosis 

of spermatocytes and morphological maturation of spermatids (spermiogenesis). Spermatogenesis 

takes place within the seminiferous tubule of testes, where it is supported by Sertoli cells producing 

various growth factors and nutrients for the developing germ cells. Further histological analysis was 

carried out to better understand the effects of decreased and increased TFAM levels on mtDNA 

mutator mouse spermatogenesis. Before the onset of sexual maturity, testes of young WT, 

PolgA
mut

Tfam
KO

, PolgA
mut

Tfam
WT

 and PolgA
mut

Tfam
OE

 mice showed similar histology (Fig. 4.3A). 

After first round of spermatogenesis (6 weeks) mild and more severe loss of late stage spermatocytes 

and round spermatids was observed in PolgA
mut

Tfam
WT

 and PolgA
mut

Tfam
KO

 mice, respectively (Fig. 

4.3A and 4.4C). This phenotype was worsened by time as at 4 months of age both PolgA
mut

Tfam
WT

 and 

PolgA
mut

Tfam
KO

 mice presented with Sertoli-cell-only syndrome (Fig. 4.3A). In contrast, 

PolgA
mut

Tfam
OE

 testes were indistinguishable from WT control at 6 weeks of age and even at 4 months 

of age only mild defects were apparent reflecting a remarkable rescue of the phenotype (Fig. 4.3A and 

4.4C).  
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Adapted from Jiang et al. 2017 
Figure 4.3: TFAM overexpression partially rescues structural and OXPHOS defects in seminiferous epithelium 
A) HE staining of testis sections of 25 d (a-d), 6 weeks (e-l) and 4 month (m-p) old mice. i-l are magnifications of red frames in e-h. B) 

COX/SDH staining of testis sections of 8-10 weeks old mice. e-h are magnifications of red frames in a-d. Arrowheads and arrows indicate 
sperm tails and round spermatids, respectively. C) Immunohistochemistry of mtDNA encoded COXI from testis sections. e-h are 

magnifications of red frames in a-d. Red circles indicate round spermatids and arrows pachytene spermatocytes. Scale bar = 50 μm. 

To assess mitochondrial function in the presence of mtDNA mutations and variable TFAM levels, an 

enzyme histochemical in situ approach was chosen. Standard COX/SDH staining was performed on 

frozen tissue sections from 8-10 weeks old mice. The WT tissue sections showed infrequent COX 

negative cells (blue) whereas PolgA
mut

Tfam
WT

 presented with COX negative round and later stage 

spermatids (Fig. 4.3B). This phenotype was exacerbated in the PolgA
mut

Tfam
KO

 mice which showed 
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both COX negative spermatocytes and spermatids (Fig. 4.3B). TFAM overexpression in the 

PolgA
mut

Tfam
OE

 mice was again able to improve the observed phenotypes as reflected by the higher 

COX activity relative to mtDNA mutator mouse although small COX negative sections were still 

visible (Fig. 4.3B). 

Further immunohistochemistry and semi-quantification against mtDNA encoded COXI (COXI -IHC) 

was performed to verify that the reduction in COX activity was cause by reduction in mtDNA encoded 

proteins. COXI was highly expressed in WT control, especially in the pachytene spermatocytes (Fig. 

4.3C and 4.4A). Both PolgA
mut

Tfam
WT

 and PolgA
mut

Tfam
KO

 mice showed significant decrease in COXI 

expression both in pachytene spermatocytes and round spermatids consistent with the COX/SDH 

staining (Fig. 4.3C, 4.4A and B). PolgA
mut

Tfam
OE

 mice showed near WT level COXI expression 

although, again, some seminiferous epithelium sections showed decreased COX expression (Fig. 

4.3C). 

 
Adapted from Jiang et al. 2017 

Figure 4.4: Semi-quantification of COXI-IHC and cell count 
A) Pachytene spermatocytes and B) round spermatids were categorized into high, intermediate and low COX expression groups based on 

IHC staining. C) Total number of each cell type in seminiferous tubules. Data are represented as mean ± SEM. *p<0.05; **p<0.01; 
***p<0.001. 

4.2.2 TFAM overexpression partially rescues cristae remodeling during spermatogenesis 

Mitochondria are known to take specific mitochondrial ultrastructures in many mitochondrial diseases 

(Jiang et al., 2017b, Vincent et al., 2016) but ultrastructure also changes depending on the energetic 

state of mitochondria (Benard and Rossignol, 2008, Hackenbrock, 1966). Depending on the energetic 

state mitochondria take usually three major forms: orthodox, intermediate and condensed. The 

orthodox form has larger matrix volume and correlates with low respiratory activity whereas the 
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condensed form has decreased matrix volume, increased cristae and is associated with high respiratory 

activity. 

 

Adapted from Jiang et al. 2017 
Figure 4.5: TFAM overexpression partially rescues changes in mitochondrial ultrastructure 
A) Electron microscopy pictures of late pachytene spermatocytes and round spermatids. Black frames represent magnified regions. Scale bar 

= 2.5 μm. B) Quantification of mitochondrial ultrastructure in round spermatids, where default form in WT cells in condensed and 

intermediate and long types represent abnormal forms. Data are represented as mean ± SEM. *p<0.05; **p<0.01; ***p<0.001 C) Scheme of 
sperm structure showing the mitochondrial sheath which was used for electron microscopy. Scale bar = 500 nm. 

In testes mitochondria harbor all of these forms depending on the cell type. Sertoli cells, 

spermatogonia, and preleptotene and leptotene spermatocytes take the low respiratory orthodox forms, 

zygotene spermatocytes, late spermatids and spermatozoa take the intermediate form and pachytene 

and secondary spermatocytes and early spermatids take the high respiratory condensed form 

(Ramalho-Santos et al., 2009). Mouse knockout for mitochondrial elongation factor 4 has shown that 

mitochondrial dysfunction can disturb proper transitions between different mitochondrial forms during 

spermatogenesis (Gao et al., 2016). To study how mtDNA mutations affect mitochondrial 

ultrastructure, electron microscopy pictures were taken from mtDNA mutator mice with different 
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levels of TFAM. The mitochondrial ultrastructure was unchanged in Sertoli cells, spermatogonia and 

early-stage spermatocytes in all mtDNA mutator mouse variants relative to WT control. However, the 

cristae of late spermatids of PolgA
mut

Tfam
WT

 and PolgA
mut

Tfam
KO

 mice were either long dumbbell 

shaped or of intermediate form instead of the normal condensed form as observed in WT control and 

PolgA
mut

Tfam
OE

 mice (Fig. 4.5A and B). Additionally, mitochondrial sheath in the spermatozoa of 

PolgA
mut

Tfam
WT

 presented with abnormal cristae with vacuoles and other abnormalities (Fig. 4.5C). 

The presence of these abnormalities was partially rescued by TFAM overexpression (Fig. 4.5C). 

 

Adapted from Jiang et al. 2017 
Figure 4.6: FACS sorted spermatocytes and spermatids 
A) Spermatocytes (tetraploid) and spermatids (haploid) were FACS sorted. B) Quantification of the isolated spermatocytes and spermatids 

from each genotype. C) Relative mtDNA copy number quantified by qPCR from FACS sorted spermatocytes. Three different mtDNA genes 
(16S rRNA, ND2 and ATP6) were compared against nuclear 18S rRNA. D) Total mtDNA mutation load quantified by post-PCR cloning and 

sequencing from FACS sorted spermatocytes. Data are represented as mean ± SEM. *p<0.05; **p<0.01; ***p<0.001 

4.2.3 Modifying mtDNA levels does not affect mtDNA mutation load 

Spermatocytes and spermatids of mtDNA mutator mice show marked changes in mitochondrial 

structure (Fig. 4.5A and B) and respiration (Fig. 4.4A and B). The better understand changes taking 

place at the molecular level, spermatocytes (tetraploid) and spermatids (haploid) were separated using 

fluorescence activated cell sorting (FACS)(Fig. 4.6A). As shown above the PolgA
mut

Tfam
KO

 had barely 

any spermatocytes or spermatids whereas TFAM overexpression increased the number of both relative 

to the mtDNA mutator mouse (Fig. 4.6B). Quantification of relative mtDNA copy number in 

spermatocytes showed that the mtDNA mutations alone cause an increase in mtDNA levels (Fig. 

4.6C), probably as a compensatory biogenesis response (Kauppila et al., 2017). As expected, mtDNA 
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mutator mice hemizygous for TFAM had slightly decreased mtDNA copy number whereas TFAM 

overexpression led to increased mtDNA levels (Fig. 4.6C). MtDNA mutation load was substantially 

increased in all mtDNA mutator mouse lines relative to WT control but surprisingly decreased or 

increased levels of TFAM did not affect mtDNA mutation load (Fig. 4.6D). 

 

Adapted from Jiang et al. 2017 
Figure 4.7: Mitochondrial proteins from mass spectrometry analysis of spermatocyte proteome 
A) Mitochondrial proteins downregulated in mtDNA mutator mice spermatocytes. B) TFAM levels and mitochondrial proteins upregulated 
in mtDNA mutator mice spermatocytes. FRD = 0.05. 
 

4.2.4 TFAM overexpression reverses changes in cellular proteome 

FACS sorted spermatocytes from WT, PolgA
mut

Tfam
OE

 and PolgA
mut

Tfam
WT

 mice were further used for 

label-free quantitative proteomics. PolgA
mut

Tfam
KO

 mice were not included in this experiment as it was 

not possible to obtain sufficient amount of material for analysis due to the severe phenotype (Fig. 

4.2E). All significantly changed proteins were categorized into mitochondrial (Fig. 4.7) and non-

mitochondrial (Fig. 4.8) based on their presence or absence in MitoCarta 2.0 database, respectively 
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(Calvo et al., 2016). As expected, TFAM levels were increased in PolgA
mut

Tfam
OE

 mice (Fig. 4.7B). 

MtDNA mutator mouse showed a decrease in OXPHOS subunits, mainly complex I, and 

mitochondrial ribosomal proteins (Fig. 4.7A). In contrast, some proteins involved in apoptosis, 

metabolism and mitochondrial protein import were increased (Fig. 4.7B). Interestingly, overexpressing 

TFAM in the mtDNA mutator mouse background was sufficient to reverse many of these changes 

(Fig. 4.7A and B). 

 

Adapted from Jiang et al. 2017 
Figure 4.8: Non-mitochondrial proteins from mass spectrometry analysis of spermatocyte proteome 
A) Non-mitochondrial proteins downregulated in mtDNA mutator mice. Bolded genes have been linked to male infertility in mouse and fly 

models. B) Non-mitochondrial proteins upregulated in mtDNA mutator mice. FRD = 0.05. 

Several non-mitochondrial proteins were up- or down-regulated in mtDNA mutator mouse relative to 

WT control (Fig. 4.8). Remarkably, TFAM overexpression was able to reverse these changes in global 

cellular proteome (Fig. 4.8) suggesting that secondary changes caused by mitochondrial dysfunction 

can be reversed be partially rescuing mitochondrial function. Although some of these secondary 

changes might be adaptive, some of them might even aggravate the cellular problems. For instance, 
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several proteins connected to male infertility were downregulated in mtDNA mutator mouse, 

including Syce1 (Bolcun-Filas et al., 2009), Bag6 (Sasaki et al., 2008), Cstf2t (Dass et al., 2007), Boll 

(Xu et al., 2003), Bub1 (Perera et al., 2007), Cby1 (Enjolras et al., 2012), Zmynd10 (Moore et al., 

2013), and Xrcc4 (Li et al., 2016) (Fig. 4.8A) and are likely to contribute to the infertility phenotype. 
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4.3 Discussion 

The mtDNA mutator mouse accumulates high number of mtDNA mutations due to the abolished 

proofreading ability of POLγA (Ross et al., 2013, Trifunovic et al., 2004) leading to OXPHOS 

instability and mitochondrial dysfunction (Edgar et al., 2009). Several studies have shown that various 

stem cell pools are especially vulnerable to mtDNA dysfunction (Ahlqvist et al., 2015a). This seems to 

be the case also for the stem cells in testis as mtDNA mutations lead to male infertility in the mtDNA 

mutator mouse. However, the question remains whether it is the high mtDNA mutation levels or low 

absolute levels of WT mtDNA that leads to impaired mitochondrial function. We decided to address 

this question by modifying TFAM levels, a known regulator of mtDNA copy number, in the mtDNA 

mutator mouse. 

Decreased mtDNA levels in the TFAM hemizygous mtDNA mutator mice aggravated all of the tested 

phenotypes, including testis weight, histology and mitochondrial ultrastructure, to the extent that no 

spermatozoa could be detected. In contrast, overexpression of TFAM partially rescued the infertility 

phenotype of the mtDNA mutator mouse as illustrated by the increased litter sizes, sperm function and 

morphology, histology, mitochondrial morphology and proteome. Most importantly, this rescue took 

place without changes in the mtDNA mutation load showing that the absolute amount of functional 

mtDNA copies and not the levels of mutated mtDNA determines the disease penetrance. This increase 

in functional mtDNA copies can ensure the production of sufficient amount of functional gene 

products and thereby counter the negative effects of increased mtDNA mutagenesis. 

We have previously shown that heart specific TFAM conditional knockout mice have progressive 

OXPHOS deficiency and additionally show a metabolic switch at an early stage of the disease before 

the onset of mitochondrial changes (Hansson et al., 2004). This shift from oxidative to glycolytic 

metabolism is likely to aggravate the disease. Quantification of the spermatocyte proteome of mtDNA 

mutator mouse showed how the levels of several mitochondrial and non-mitochondrial proteins 

change upon mitochondrial dysfunction. Of special interest were several factors previously connected 

to male infertility that were downregulated in mtDNA mutator mice (Syce1, Bag6, Cstf2t, Boll, Bub1, 

Cby1, Zmynd10, and Xrcc4), which likely contribute to the male infertility of this mouse model. 

Interestingly, overexpressing TFAM not only restored changes in mitochondrial proteome but also 

changes in these secondary factors showing how rescuing the original mitochondrial defect originating 

from mtDNA mutations can have global effects on cellular function. 

There is a high interest in developing treatments against mitochondrial diseases to which there is 

currently none available (Pfeffer et al., 2012). Gene therapy base methods to specifically destroy 

mutated mtDNA molecules using transcription activator-like effector nucleases (TALENs) and zinc 

fingers are being developed (Viscomi, 2016). Although these might be functional in removing the 

mtDNA molecules with specific mutations, it has not been addressed yet whether molecules used to 
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repopulate the mitochondrial pool might carry other pathogenic mutations which is likely because all 

humans carry low level heteroplasmy (Payne et al., 2013). Several studies have been also done using 

mice overexpressing PGC-1α, which leads to muscle fiber-type switch towards more oxidative fibers 

with more mitochondria (Kauppila et al., 2017). Although this approach is limited to muscle, it has 

been shown improve the exercise capacity of mice with COX deficiency (Viscomi et al., 2011). 

Other approaches have relied on small molecule supplementation, such as nicotine amide riboside 

(NR) and n-acetyl-L-cysteine (NAC). NR is a precursor for nicotinamide adenine dinucleotide 

(NAD
+
), which has been shown to induce mitochondrial biogenesis (Cerutti et al., 2014, Khan et al., 

2014) whereas NAC increases glutathione levels which have been shown to be beneficial in multiple 

stem cell models of the mtDNA mutator mouse (Ahlqvist et al., 2015a, Ahlqvist et al., 2012). 

Although these concepts are promising, they are rather unspecific in targeting dysfunction originating 

from mtDNA mutations and might have some undesired side effects. 

Based on this study we propose an alternative way to rescue OXPHOS dysfunction caused by mtDNA 

mutations by increasing total mtDNA copy number. Screens to identify regulators of mtDNA copy 

number (Fukuoh et al., 2014) could help to find targets for pharmacological agents that directly 

increase mtDNA copy number. Indeed it has been shown previously that it is feasible to specifically 

increase mtDNA copy number without affecting mitochondrial biogenesis (Ekstrand et al., 2004). Our 

study provides a proof-of-concept that manipulating mtDNA copy number might be an efficient 

strategy to treat patients with pathogenic mtDNA mutations. 
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DISCUSSION AND FUTURE PESPECTIVES 

In this work, I characterized in vitro and in vivo several POLγA variants focusing on the proofreading-

deficient POLγA and how the negative effects of mtDNA mutations can be rescued. Most importantly, 

in vitro work using recombinant human POLγA and in vivo work in fruit flies and mice showed that 

combining these three approaches can have synergistic effects when trying to understand basic biology 

and even when developing potential treatments. 

First, in vitro characterization of POLγA variants showed that single amino acid changes are sufficient 

to increase and decrease the proofreading/polymerase activity ratio of POLγA. Next I proceeded to 

establish genomically engineered POLγA flies, which enable the introduction of any POLγA variant to 

the endogenous fly locus. By introducing in vitro characterized mutations into fruit flies I was able to 

show that increasing the proofreading/polymerase activity ratio of POLγA in vivo leads to mtDNA 

depletion whereas decreasing this ratio leads to increased mtDNA mutagenesis. Interestingly, the 

mtDNA mutations and deletions observed in mtDNA mutator fly and mtDNA mutator mouse share 

high similarity. Given our understanding regarding the formation of linear mtDNA deletions, these 

results suggest that fruit flies, like mice, use the classical strand-displacement mode of mtDNA 

replication. In addition, these in vitro and in vivo findings show that polymerase-deficient and 

proofreading-deficient POLγA variants can complement each other during DNA replication. This 

suggests that the polymerase activity and proofreading activity of POLγA do not have to be present in 

the same molecule for successful mtDNA replication to take place. 

Using these fly models I was able to show that the accumulation of mtDNA mutation is slow both 

within individuals and across generations. Indeed, I show here that mtDNA is turned over in adult flies 

resulting in random drift of already existing mutations. Flies compound heterozygous for polymerase-

deficient and proofreading-deficient alleles have increased mtDNA mutagenesis and clonal expansion 

of mtDNA mutations across generations. Using the compound heterozygote flies it is therefore 

possible to obtain fly lines with high levels of mtDNA mutations. These compound heterozygote flies 

showed several changes in fly physiology, including developmental delay, decreased lifespan and 

locomotor activity, sensitivity to mechanical stress and starvation sensitivity. Compound heterozygote 

flies presented also with failed proliferation of intestinal stem cells similar to what has been observed 

in mtDNA mutator mouse. Owing to the plethora of genetic tools and well defined cell markers in 

flies, this model can be used in to future to better assess how mtDNA mutations impair stem cell 

proliferation. Especially in natural fly populations, however, the high accuracy of WT POLγA and 

short lifespan of this model organism limits the extent of clonal expansion of mtDNA mutations. 

Therefore, it is unlikely that mtDNA mutations can reach high enough heteroplasmy levels to cause a 

focal OXPHOS dysfunction in flies with age. In other words, mtDNA mutations are not a major factor 

in determining fruit fly lifespan. 
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It is often a challenge in the clinics to identify potential variants as pathogenic due to the low number 

of patients carrying the same variant. One option to improve diagnosis would be to study potentially 

pathogenic mutation in model organisms. Using the genomically engineered POLγA founder line 

established in this work it is now possible to introduce POLγA variants of interest to the endogenous 

genetic locus and study their effects in vivo. Indeed, we have recently characterized one well studied 

and one de novo POLγA patient mutation using this fly model (Siibak et al., 2017). In addition to 

studying the effects of mtDNA mutations and characterizing potential patient mutation, the 

genomically engineered flies could be further applied to answer some basic biological questions. For 

instance, studies done in HIV patients suggest that inhibiting POLγA by anti-retroviral drugs can 

increase the clonal expansion of low level mtDNA mutations. Fly models established in this study 

could be used to analyze whether mtDNA damage normally stalling POLγA would have this same 

effect. From the developmental point-of-view, to date it has been infeasible to perform a quantitative 

or qualitative assessment of POLγA expression during development and in response to environmental 

changes due to the lack of antibodies and low expression level of POLγA. Adding an epitope tag to 

POLγA would overcome this problem. In addition, an epitope tagged POLγA could be used to 

perform co-immunoprecipitation assays to find new POLγA interaction partners.  

It is a common knowledge that pathogenic mtDNA mutations have to reach a certain mutation and 

tissue specific threshold level before causing an OXPHOS dysfunction. However, it has been also 

hypothesized that the actual threshold level is in some sense irrelevant and it is the absolute number of 

WT mtDNA copies that determines disease penetrance. To study the latter hypothesis I took advantage 

of the mtDNA mutator mouse model which shows complete male sterility. Decreasing mtDNA copy 

number of this mouse model aggravated all the observed phenotypes, including testis weight, sperm 

count, sperm morphology and histology. In contrast, increasing mtDNA copy number of the mtDNA 

mutator mice was able to partially rescue all of these phenotypes. Importantly, this rescue was not only 

observable at the mitochondrial function and proteome, but changes in global proteome were similarly 

normalized. These results suggest that increasing mtDNA copy number could be beneficial in 

alleviating mitochondrial dysfunction originating from mtDNA mutations. The question still remains 

how increasing mtDNA copy number in the presence of increased mtDNA mutagenesis can have 

beneficial effects? Comparing total mtDNA mutation load between mtDNA mutator mice and mtDNA 

mutator mice with increased mtDNA copy number did not show any differences. These results suggest 

that an increase in the amount of functional mtDNA was resulting in this phenotypic rescue of the 

mtDNA mutator mice and support the model that the absolute number of WT mtDNA molecules 

determines disease penetrance of mtDNA mutation caused diseases. 
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SUPPLEMENT 

 

Table S1: Primers used to clone DmPOLγA donor constructs for ends out homologous 

recombination 

Primer 5‘-3‘ 

ET-cloning_tamas_right_For 
atacgaaggccgagcatacaacac|CCGCGCGG|AATTGTAAACTAAAA

TGCTTATTTTTTGTAAAATAAGTCAAACGATATTT 

ET-cloning_tamas_right_Rev 
gtttatccccaaggcgcgtgta|TCCGGA|ATCGAGACGAAGACCTACC

GACACTAGTACCGGCCCTGAGCGTTAGGGAC 

ET-cloning_tamas_left_For 
atacgaaggccgagcatacaacac|CGTACG|CCGGGCACTATTGCACA

AAGGATTGGGTTGGTAGGATAGGCAAACGTCTA 

ET-cloning_tamas_left_Rev 
gtttatccccaaggcgcgtgta|GGCGCC|AGTGATACAAAAATTTATTG

GAACGTAAATTTCGTAGGACAACGGCTATG 

 

 

 

 

Table S2: Primers used for genotyping genomically engineered DmPOLγA flies 

Primer 5‘-3‘ 

PCR1 For TCATTTGGAATGTGGAGCAG 

PCR1 Rev AAGGAGGGCATGATCAAGAA 

PCR2 For CACCCGAAATTAGAGCTGGA 

PCR2 Rev GAACGCAGTGGTCCAGCTAT 

PCR3 For ACCTGCGGTAAGTGGTCATC 

PCR3 Rev CACTACGCCCCCAACTGAGAGAAC 

PCR4 For AGAAGTGACCGTGGAGCAAC 

PCR4 Rev CTCGACACCGGTATAACTTCGTATAATG 

PCR5 For TGTCAGTCAGTGGGATTGGA 

PCR5 Rev AAGGAGGGCATGATCAAGAA 

PCR6 For TCATTTGGAATGTGGAGCAG 

PCR6 Rev GGGAATAAGGGCGACACGGA 

PCR7 For TCATTTGGAATGTGGAGCAG 

PCR7 Rev GTGGAACTGCATCCTCGTTT 

PCR8 For TTTCTCGAGTTAAGTTTGCAAACCCTTAAC 

PCR8 Rev TTTGGCGCGCCGTGTTTGTTTTTTAATAATTAATCG 

 

 

 

 

Table S3: Primers for fruit fly site-specific mutagenesis 

Primer 5‘-3‘ 

DmD263A For CACAATGTCTCCTACGCCAGGGCGCGACTGAAG 

DmD263A Rev CTTCAGTCGCGCCCTGGCGTAGGAGACATTGTG 

DmQ1009A For CAATTGGGTGGTAGCGAGCGGTGCAGTG 

DmQ1009A Rev CACTGCACCGCTCGCTACCACCCAATTG 

DmH1038A For CTGCTTGAGCTTCGCTGATGAATTGCGC 

DmH1038A Rev GCGCAATTCATCAGCGAAGCTCAAGCAG 
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Table S4: Primers for fruit fly mtDNA Southern blot analysis 

Primer 5‘-3‘ 

ND2 For CTTGGTTAGGAGCTTGAATAGGT 

ND2 Rev AATGGAGGTAATCCTCCTAATGA 

12S rRNA For TCATTCTAGATACACTTTCCAGTACATC 

12S rRNA Rev ACTAAATTGGTGCCAGCAGTCGCGGT 

COXI For AATGGAGCTGGAACAGGATG 

COXI Rev TCGAGGTATTCCAGCCAATC 

 

 

Table S5: Primers for fruit fly relative mtDNA copy number determination 

Primer 5‘-3‘ 

CytB For TTAATCATATTTGTCGAGACG 

CytB Rev AATGATGCACCGTTAGCAT 

RpL32 For GACGCTTAAGGGACAGTATCTG 

RpL32 Rev AAACGCGGTTCTGCATGAG 

 

 

Table S6: Primers for fruit fly post-PCR cloning and sequencing 

Primer 5‘-3‘ 

2194 For TTGATTTTTTGGTCACCCTGAAGT 

3382 Rev TAACTTCAATATCATTGATGGCCG 

M13 For TGTAAAACGACGGCCAGT 

M13 Rev CAGGAAACAGCTATGACC 

 

 

Table S7: Primers for fruit fly mtDNA sequencing 

Primer 5‘-3‘ 

36 For AAAAAGGATTACCTTGATAGG 

498 Rev GGATGTAAAAGATTCATTAATTTC 

538 For TTACATCCATAATTATTATATCAGC 

993 Rev GGTAAAAATCCTAAAAATGG 

1124 For TTTATTTACGAATTTGTTATTCC 

1555 Rev AATTAAAATTCTTAAAGATGTTCC 

1775 Rev AAAGAGCAGGAGGTAGTAGTC 

1653 For TAATTGTAACTGCACATGCT 

1831 For AAGTAGAATAGTTGAAAATGGAG 

2191 Rev ATATAAACTTCAGGGTGACC 

2333 For GATTATTAGGATTTATTGTATGAGC 

2440 Rev TTGAGTTCCATGTAAAGTAGC 

2908 For AGAAAGTTTAGTATCACAACGAC 

3087 Rev GTAAACCTAAATTAGCTCATGTAG 

3437 Rev ATTTGTTGGAATTATATATGAATC 

3162 For ATTTTTTTTCATGATCATGC 

3726 For GATTGTAATTGAAAGTGTTCC 

3823 Rev TTTTTTATCATTAGAAGTAAGTGC 

4254 Rev TTAAAAGTAGATCCATTATGACC 

4183 For ATTTATTGATTAATACCTTCTCG 

4701 For TCAATCTTATGTGTTTGCTG 

5045 Rev CGGGTGATAAACTTCTGTG 
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5195 For AGCCCACCATAGACTTATAG 

5448 Rev GTCAATATCATGCAGCTG 

5922 Rev CCTTGATTTCATTCATGG 

5701 For TATCAAAAAAAGCTTTAATCG 

6016 For ATATAACATTTGATTTGCATTC 

6207 Rev CATTAAAAGAAAAAAGTTAGCAG 

6376 For TCCATAACATCTTCAATGTC 

6864 Rev TGATGAAAGTTGAATTATACTCC 

6735 For TCCAAATAAACCCCCTAC 

7106 Rev ATTCATATACCTTTAACTTCAGC 

7317 For CCTAATTGACTTAAAGTAGATAAAGC31 

7722 Rev CAAAATATTAAATCTTATAATGCTG 

7870 Rev TGAAAATCATATTAATCGATTC 

7779 For CTAAACAATAAGAAACAAAGTCC 

8421 For AAAATTATAGAAATTCAAGATCAAG 

8449 Rev TCCAACATTAAATTTATTAGGAG 

8863 For AATAACTCGTAATATTCCATAACC 

8976 Rev TTATATTTTTGTTTATTGTGTGC 

9472 Rev GTTTTATTAATAATATATATTGAATGGTAC 

9196 For AATAATGTAGGAATTAATCTTCTTTC23 

9641 For CCCCTTCACATACTCTAAATG 

9806 Rev TGATTATAATTTTATATTGAAGTTTACC 

10195 For GTAACATCTTTAGCCTCTAATG 

10471 Rev TTAAGATATTATTCGAATAGGTCC 

10667 Rev GAAAGCTAGATTAATATCAGCTG 

10568 For ATGCTTTAGTAGATTTACCAGC 

11030 For GATAATGCCACTTTAACTCG 

11237 Rev TCTCCCAATAAATTTGGTC 

11650 For ATTAAATTAAATAGTTAATGAGCTTG 

11835 Rev GAGTTCGAGGAACTTTACC 

12378 Rev TTTGTTTGAATATGTATGCC 

12021 For TCTTCTATATTCTACATTAAATCCTG 

12612 For TTAAAAAAGCTACACTTACTAATACAC 

12936 Rev TATCGATAAAAAAGATTGCG 

12987 For AAAAATTACGCTGTTATCCC 

13576 Rev ATTTAATAAATATATGCTTAGAATTAGC 

13391 For ACATGTTTTTGTTAAACAGG 

13877 For TTAATAAACACTGATACACAAGG 

14076 Rev CATTGAAAAGATTTTTGTGC 

14447 For AAACTGATTACAAATTTAAGTAAGG 

14716 Rev CGCGGTTATACCATTAATAC 

14899 Rev AAATTTAAAGTTTTATTTTGGC 
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Table S8: Primers for mouse post-PCR cloning and sequencing 

Primer 5‘-3‘ 

WANCY-N2-F4921 For CCTACCCCTAGCCCCCC 

WANCY-C1-R5953 Rev TCATATCATTACGGACGCCG 

M13 For TGTAAAACGACGGCCAGT 

M13 Rev CAGGAAACAGCTATGACC 

 

 

 

Table S9: Chi-squared p-values for log-rank in Fig. 3.15C 

 WT +/Rescue F0 +/DmQ1009A F0 +/DmH1038A F0 +/DmD263A F0 

median (d) 74 74 71 74 74 

mean (d) 72 72 72 72 76 

WT  0.0246 0.0348 0.118 0.514 

+/Rescue F0   0.877 0.617 0.116 

+/DmQ1009A F0    0.710 0.167 

+/DmH1038A F0     0.224 

 

 

 

Table S10: Chi-squared p-values for log-rank in Fig. 3.15D 

 WT 
+/+ 

(mother: Rescue/+ F1) 

+/+ 

(mother: DmD263A/+ F1) 

median (d) 73 75 78 

mean (d) 71 72 72 

WT  0.257 0.815 

+/+ (mother: Rescue/+ F1)   0.111 

 

 

Table S11: Chi-squared p-values for log-rank in Fig. 3.15E 

 WT 
+/+ 

(mother: Rescue/+ F1) 

+/+ 

(mother: DmD263A/+ F1) 

median (d) 74 74 74 

mean (d) 72 72 72 

WT  0.617 0.025 

+/+ (mother: Rescue/+ F1)   0.118 

 

 

Table S12: Chi-squared p-values for log-rank in Fig. 3.17A 

 WT Rescue/+ F1 
DmQ1009A/+ 

F1 

DmH1038A/+ 

F1 

DmD263A/+ 

F1 

median (d) 74 74 74 74 74 

mean (d) 73 72 73 74 71 

WT  0.550 0.370 0.809 0.010 

Rescue/+ F1   0.983 0.347 0.111 

DmQ1009A/+ F1    0.227 0.157 

DmH1038A/+ F1     0.009 
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Table S13: Chi-squared p-values for log-rank in Fig. 3.17B 

 WT Rescue/+ F6 
DmQ1009A/+ 

F6 

DmH1038A/+ 

F6 
DmD263A/+ F6 

median (d) 78 78 74 72 76 

mean (d) 77 76 74 70 76 

WT  0.0427 1.153E-06 8.546E-08 0.070 

Rescue/+ F6   0.001 1.162E-4 0.780 

DmQ1009A/+ F6    0.339 4.771E-4 

DmH1038A/+ F6     4.370E-05 

 

 

 

Table S14: Chi-squared p-values for log-rank in Fig. 3.17C 

 WT Rescue/+ F15 DmQ1009A/+ F15 DmH1038A/+ F15 DmD263A/+ F15 

median (d) 68 74 76 74 76 

mean (d) 68 74 75 73 75 

WT  1.8733E-18 2.1002E-27 2.9613E-15 7.5621E-24 

Rescue/+ F15   0.184 0.699 0.694 

DmQ1009A/+ F15    0.054 0.270 

DmH1038A/+ F15     0.400 

 

 

 

Table S15: Chi-squared p-values for log-rank in Fig. 3.17D 

 WT +/+ (clean mtDNA) +/+ (mut mtDNA) 

median (d) 69 74 67 

mean (d) 70 72 69 

WT  0.041 0.107 

+/+ (clean mtDNA)   1.525E-4 

 

 

 

Table S16: Chi-squared p-values for log-rank in Fig. 3.17F 

 
WT Rescue 

Rescue/ 

DmD263A 

DmD263A/ 

Rescue 

DmH1038A/ 

DmD263A 

DmD263A/ 

DmH1038A 

median (d) 69 71 73 76 73 77 

mean (d) 66 70 69 73 74 73 

WT  0.008 1.660E-4 5.64E-06 5.18E-07 1.04E-07 

Rescue   0.247 0.064 0.011 0.007 

Rescue/ 

DmD263A 
   0.859 0.137 0.214 

DmD263A/ 

Rescue 
    0.261 0.324 

DmH1038A/ 

DmD263A 
     0.840 
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Table S17: Chi-squared p-values for log-rank in Fig. 3.17G 

 

WT Rescue Rescue/ 

DmD263A 

DmD263A/ 

Rescue 

DmD263A/ 

DmH1038A 

F4 

DmH1038A/ 

DmD263A 

F4 

median (d) 76 80 83 78 76 80 

mean (d) 73 79 82 75 73 75 

WT  8.107E-06 3.628E-13 0.031 0.816 1.056E-4 

Rescue   4.938E-4 0.0512 2.572E-05 0.779 

Rescue/ 

DmD263A    6.941E-07 1.158E-12 0.002 

DmD263A/ 

Rescue 
    0.052 0.043 

DmD263A/ 

DmH1038A 

F4 

     2.661E-4 

 

 

 

Table S18: Chi-squared p-values for log-rank in Fig. 3.17I 

 WT DmD263A/DmH1038A F5 

median (d) 77 75 

mean (d) 75 74 

WT  0.002 

 

 

 

Table S19: Chi-squared p-values for log-rank in Fig. 3.17J 

 WT DmD263A/DmH1038A >F35 Rescue >F35 
median (d) 52 36 58 

mean (d) 53 38 58 

WT  1.531E-30 0.001 

DmD263A/ 

DmH1038A >F35 
  1.987E-44 

 

 

 

Table S20: Chi-squared p-values for log-rank in Fig. 3.21A 

 
WT 

+/Rescue 

F0 
+/DmD263A 

F0 
+/DmH1038A 

F0 
DmH1038A/ 

DmD263A F1 
DmH1038A/ 

DmD263A F5 

WT  0.246 0.285 0.540 0.017 0.010 

+/Rescue F0   0.022 0.069 1.922E-4 8.147E-05 

+/DmD263A F0    0.534 0.132 0.086 
+/DmH1038A 

F0     0.017 0.007 
DmH1038A/ 

DmD263A F1      0.983 
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Table S21: Chi-squared p-values for log-rank in Fig. 3.21B 

 

WT 

Rescue/+ 

F1 

DmD263A/+ 

F1 

DmH1038A/+ 

F1 

DmD263A/ 

DmH1038A 

F1 

DmD263A/ 

DmH1038A 

F5 

DmD263A 

/DmH1038A 

>F35 

WT  0.248 0.639 0.383 0.060 0.0233 7.98E-11 

Rescue/+ F1   0.091 0.736 0.001 6.495E-4 3.11E-14 

DmD263A/+ 

F1    0.077 0.239 0.037 4.33E-12 

DmH1038A/+ 

F1     0.004 4.836E-4 6.15E-15 

DmD263A/ 

DmH1038A 

F1      0.412 9.23E-09 

DmD263A/ 

DmH1038A 

F5       2.56E-06 
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Table S22: p-values for parametric survival analysis in Fig. 3.22B 

 WT 
+/Rescue 

F0 

Rescue/+ 

F1 

+/DmH1038A 

F0 

DmH1038A/+ 

F1 

+/DmD263A 

F0 

WT  1.098E-02 9.418E-04 1.317E-01 8.446E-02 1.161E-06 

+/Rescue F0   8.103E-01 3.595E-03 3.980E-03 1.263E-08 

Rescue/+ F1    4.405E-05 3.445E-03 1.267E-08 

+/DmH1038A 

F0 
    8.170E-04 1.701E-10 

+/DmH1038A 

F1 
     4.422E-02 

 

DmD263A/+ 

F1 

DmH1038A/ 

DmD263A 

F0 

DmD263A/ 

DmH1038A 

F1 

DmH1038A/ 

DmD263A F5 

DmD263A/ 

DmH1038A 

F5 

DmD263A/ 

DmH1038A 

>F35 

WT 8.413E-01 3.435E-03 1.999E-02 3.261E-07 3.349E-07 2.203E-92 

+/Rescue F0 4.116E-02 2.599E-01 6.777E-04 3.619E-02 1.168E-05 1.918E-95 

Rescue/+ F1 1.072E-02 2.180E-02 5.566E-06 1.406E-03 8.002E-09 8.884E-118 

+/DmH1038A 

F0 
6.456E-02 3.398E-02 7.518E-01 1.744E-05 6.890E-03 4.754E-77 

+/DmH1038A 

F1 
3.981E-01 2.127E-05 9.672E-05 5.539E-10 2.484E-10 1.964E-92 

 

DmD263A/+ 

F1 

DmH1038A/ 

DmD263A 

F0 

DmD263A/ 

DmH1038A 

F1 

DmH1038A/ 

DmD263A F5 

DmD263A/ 

DmH1038A 

F5 

DmD263A/ 

DmH1038A 

>F35 

+/DmD263A 

F0 
9.545E-05 3.033E-13 4.018E-11 6.338E-21 7.598E-21 5.715E-112 

DmD263A/+ 

F1 
 4.130E-03 8.305E-03 8.465E-07 3.218E-07 1.156E-89 

DmH1038A/ 

DmD263A F0 
  1.409E-02 3.767E-01 4.987E-03 1.174E-91 

DmD263A/ 

DmH1038A 

F1 

   1.776E-05 6.377E-02 1.858E-54 

DmH1038A/ 

DmD263A F5 
    8.308E-05 8.455E-119 

DmD263A/ 

DmH1038A 

F5 

     1.632E-76 

DmD263A/ 

DmH1038A 

>F35 

      

 

 

 

 

 

 

 

 

 



140 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ERKLÄRUNG 
 

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die 

benutzen Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit – 

einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken im Wortlaut oder 

dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; 

dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorlegen 

hat, dass sie – abgesehen von unten angegebenen Teilpublikationen – noch nicht 

veröffentlicht worden ist sowie, dass ich eine solche Veröffentlichung vor Abschluß des 

Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen dieser Promotionsordnung 

sind mir bekannt. Die von mir vorgelegte Dissertation ist von Prof. Dr. Nils-Göran Larsson 

betreut worden. 

 

Köln, 20.11.2017 

 

 

             

       Timo Kauppila 
 



141 
 

Teilpublikationen 

 

Increased total mtDNA copy number cures male infertility despite unaltered mtDNA mutation 

load. Jiang M, Kauppila TES, Motori E, Li X, Atanassov I, Folz-Donahue K, Bonekamp NA, 

Albarran-Gutierrez S, Stewart JB, Larsson NG. Cell Metabolism 2017 Aug 1;26(2):429-436. 

 

Complementation between polymerase- and exonuclease-deficient mitochondrial DNA 

polymerase mutants in genomically engineered flies. Bratic A, Kauppila TE, Macao B, 

Grönke S, Siibak T, Stewart JB, Baggio F, Dols J, Partridge L, Falkenberg M, Wredenberg A, 

Larsson NG. Nature Communications. 2015 Nov 10;6:8808. 

 

 

 

Weitere Publikationen 

 

A multi-systemic mitochondrial disorder due to a dominant p.Y955H disease variant in DNA 

polymerase gamma. Siibak T, Clemente P, Bratic A, Bruhn H, Kauppila TES, Macao B, 

Schober FA, Lesko N, Wibom R, Naess K, Nennesmo I, Wedell A, Peter B, Freyer C, 

Falkenberg M, Wredenberg A. Human Molecular Genetics 2017 Jul 1;26(13):2515-2525. 

 

Mammalian Mitochondria and Aging: An Update. Kauppila TES, Kauppila JHK, Larsson 

NG. Cell Metabolism 2017 Jan 10;25(1):57-71. 

 

Drosophila melanogaster LRPPRC2 is involved in coordination of mitochondrial translation. 

Baggio F, Bratic A, Mourier A, Kauppila TE, Tain LS, Kukat C, Habermann B, Partridge L, 

Larsson NG. Nucleic Acids Research 2014 Dec 16;42(22):13920-38. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



142 
 

CURRICULUM VITAE 
 

Personal information   

Name  Timo Eino Sakari Kauppila 

Address  Stammstraße 17, 50823 Cologne, Germany 

Telephone  +4915226631249 

E-mail  timo.kauppila@age.mpg.de 

Nationality  Finnish 

Date and place of birth  01.05.1987, Mietoinen, Finland 

   

Education   

Dates  1.9.2012-ongoing 

Name of Organization  Max Planck Institute for Biology of Ageing 

Title of qualification awarded  PhD in genetics 

Level in national classification  Doctor of Natural Sciences 

   

Dates  1.9.2010-4.10.2012 

Name of Organization  University of Tampere, Finland 

Title of qualification awarded  M.Sc. in Molecular Biology 

Level in national classification  Master of Science 

   

Dates  1.9.2006-31.08.2010 

Name of Organization  University of Tampere, Finland 

Title of qualification awarded  B.Sc. in Biochemistry 

Level in national classification  Bachelor of Science 

   

Training   

Building data products with R  2016, Cologne, DE 

Scientific presentation course  2014, Cologne, DE 

Seahorse FX advanced training  2011, Michigan, USA 

Mitochondria summer school  2011, Tampere, FI 

FELASA category C course  2011, Jyväskylä, FI 

   

Prices and awards   

DAAD Travel Grant  2016 

Finnish Cultural Foundation’s Grant  2014-2015 

Biochemistry Research Trainee 

Program Position, MSU, USA 

 
2011 

Summer scholarship for B.Sc. student  2010 

   

Peer review   

PLOS Genetics  2016 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



143 
 

Publications   

Increased total mtDNA copy number cures male infertility despite unaltered mtDNA mutation load. 

Jiang M, Kauppila TES, Motori E, Li X, Atanassov I, Folz-Donahue K, Bonekamp NA, Albarran-

Gutierrez S, Stewart JB, Larsson NG. 

Cell Metabolism 2017 Aug 1;26(2):429-436. 

 

A multi-systemic mitochondrial disorder due to a dominant p.Y955H disease variant in DNA 

polymerase gamma. 

Siibak T, Clemente P, Bratic A, Bruhn H, Kauppila TES, Macao B, Schober FA, Lesko N, Wibom R, 

Naess K, Nennesmo I, Wedell A, Peter B, Freyer C, Falkenberg M, Wredenberg A. 

Human Molecular Genetics. 2017 Jul 1;26(13):2515-2525. 

 

Mammalian Mitochondria and Aging: An Update. 

Kauppila TES, Kauppila JHK, Larsson NG. 

Cell Metabolism 2017 Jan 10;25(1):57-71. 

 

Complementation between polymerase- and exonuclease-deficient mitochondrial DNA polymerase 

mutants in genomically engineered flies. 

Bratic A, Kauppila TE, Macao B, Grönke S, Siibak T, Stewart JB, Baggio F, Dols J, Partridge L, 

Falkenberg M, Wredenberg A, Larsson NG. 

Nature Communications. 2015 Nov 10;6:8808. 

 

Drosophila melanogaster LRPPRC2 is involved in coordination of mitochondrial translation. 

Baggio F, Bratic A, Mourier A, Kauppila TE, Tain LS, Kukat C, Habermann B, Partridge L, Larsson 

NG. 

Nucleic Acids Research 2014 Dec 16;42(22):13920-38. 

 

Identification of proprotein convertase substrates using genome-wide expression correlation analysis. 

Hannu Turpeinen, Sampo Kukkurainen, Kati Pulkkinen, Timo Kauppila, Kalle Ojala, Vesa P. 

Hytönen, Marko Pesu 

BMC Genomics. 2011 Dec 20;12(1):618. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



144 
 

Participation in conferences   

Poster presentation 
 EUROMIT 

2017 

   

Poster presentation 

 Gordon Research Conference: Mitochondria & 

Chloroplasts 

2016 

   

Talk 

 Mitochondrial Medicine: Developing New Treatments 

for Mitochondrial Disease 

2016 

   

Talk 
 24

th
 European Drosophila Research Conference 

2015 

   

Poster presentation 

 ZING conferences. DNA Polymerases: Biology, 

Diseases and Biomedical Applications Conference 

2014 

   

Poster presentation 

 Wenner-Gren Foundations Symposium: DNA 

Metabolism 

2014 

   

Poster presentation 

 Recent Insights in Mitochondrial Evolution Applied to 

Health and Ageing 

2013 

   

 

 

 


