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MONOLITHIC OVERLAPPING SCHWARZ DOMAIN
DECOMPOSITION METHODS WITH GDSW COARSE SPACES FOR

SADDLE POINT PROBLEMS

ALEXANDER HEINLEIN†‡ , CHRISTIAN HOCHMUTH† , AND AXEL KLAWONN†‡

Abstract. Monolithic overlapping Schwarz preconditioners for saddle point problems of Stokes,
Navier-Stokes, and mixed linear elasticity type are presented. For the first time, coarse spaces ob-
tained from the GDSW (Generalized Dryja–Smith–Widlund) approach are used in such a setting.
Numerical results of our parallel implementation are presented for several model problems. In partic-
ular, cases are considered where the problem cannot or should not be reduced using local static con-
densation, e.g., Stokes, Navier-Stokes or mixed elasticity problems with continuous pressure spaces.
In the new monolithic preconditioners, the local overlapping problems and the coarse problem are
saddle point problems with the same structure as the original problem. Our parallel implementation
of these preconditioners is based on the FROSch (Fast and Robust Overlapping Schwarz) library,
which is part of the Trilinos package ShyLU. The implementation is algebraic in the sense that the
preconditioners can be constructed from the fully assembled stiffness matrix and information about
the block structure of the problem. Parallel scalability results for several thousand cores for Stokes,
Navier-Stokes, and mixed linear elasticity model problems are reported. Each of the local problems
is solved using a direct solver in serial mode, whereas the coarse problem is solved using a direct
solver in serial or MPI-parallel mode or using an MPI-parallel iterative Krylov solver.

Key words. Saddle point problems, Stokes, Navier-Stokes, almost incompressible linear elastic-
ity, GDSW, monolithic overlapping Schwarz, algebraic preconditioner, parallel computing, domain
decomposition

AMS subject classifications. 65F10, 65M55, 65Y05, 65F08

1. Introduction. Saddle point problems arise in many physical applications,
e.g., in the simulation of fluid flow or almost incompressible materials. We consider
finite element discretizations of the underlying partial differential equations which can
result in large and ill-conditioned linear systems. In addition to the required inf-sup
conditions for finite element discretizations of saddle point problems, special care has
to be taken when constructing preconditioners for the discrete problem. In particular,
the block structure and the coupling blocks have to be handled appropriately to
guarantee fast convergence of iterative methods.

In this paper, we propose a monolithic two-level overlapping Schwarz precondi-
tioner with discrete harmonic coarse space. Specifically, we extend GDSW (General-
ized Dryja–Smith–Widlund) coarse spaces, which were originally introduced for scalar
elliptic problems in [18, 19], to general saddle point problems. For elliptic problems,
the GDSW coarse basis functions are energy minimal extensions representing the null
space of the elliptic operator. In the previous works [20, 21] by Dohrmann and Wid-
lund on GDSW preconditioners for saddle point problems, only discontinuous pressure
spaces were considered. Consequently, the saddle point problems could be reduced
to elliptic problems by static condensation of the pressure. In contrast, our method
is inspired by the monolithic Schwarz preconditioners with Lagrangian coarse basis
functions introduced by Klawonn and Pavarino in [48, 49], which operates on the
full saddle point problem. The coarse basis functions of our new monolithic GDSW
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preconditioner are discrete saddle point harmonic extensions of interface functions.
One significant advantage of our new method is that it can be applied to arbitrary
geometries and domain decompositions, whereas the use of Lagrangian coarse basis
functions requires a coarse triangulation. This limits the use of Schwarz methods with
Lagrangian coarse spaces for arbitrary geometries.

In [21, 22, 23], different approaches for reducing the dimension of GDSW coarse
spaces have been introduced and some of them have been proven to significantly im-
prove the parallel scalability compared to standard GDSW coarse spaces; cf. [40].
Alternatively, the parallel scalablity could be improved by solving the coarse level in-
exactly using another GDSW preconditioner resulting in a three-level GDSW method;
cf. [39]. For highly heterogeneous multiscale problems, GDSW coarse spaces were en-
hanced using local generalized eigenvalue problems in [34, 33], resulting in a method
that is robust with respect to the contrast of the coefficients.

As described in [36], in a parallel implementation, GDSW coarse spaces can be
constructed in an algebraic fashion directly from the fully assembled matrix. The
parallel implementation of our new Schwarz preconditioners with GDSW coarse spaces
for saddle point problems is based on the FROSch software [35] in the package ShyLU
of the Trilinos library [41]. FROSch is a framework for Schwarz preconditioners in
Trilinos and one of its main contributions is a parallel and algebraic implementation of
the GDSW preconditioner for elliptic problems; see also [31, 38, 37, 36, 40]. Therefore,
the parallel implementation described here is also algebraic, i.e., the preconditioner
can be easily built requiring only few input parameters, and will be described in more
detail in section 7. The functionality of our new implementation will be added to
FROSch in the near future and will therefore be available as open source as part of
Trilinos.

In our approach, we solve saddle point problems of the form (1) using the GM-
RES Krylov subspace method. We consider the Stokes and Navier-Stokes equa-
tions as well as a mixed formulation for linear elasticity in two and three dimen-
sions. An extensive overview of numerical methods for saddle point problems is
given in [6]. Older approaches for the iterative solution of those saddle point prob-
lems are, e.g., the exact and inexact Uzawa algorithm [1, 3, 12, 27, 55, 69], where
velocity and pressure are decoupled and solved in a segregated approach. Other
physically based approaches are the SIMPLE (Semi-Implicit Method for Pressure
Linked Equations) method and its generalizations, i.e., SIMPLEC and SIMPLER;
cf. [25, 51, 52]. Block preconditioners for the (generalized) minimum residual method
and conjugate residual method are presented in [26, 56, 60, 62, 66, 46, 49, 47, 50].
Further block preconditioners are the PCD (Pressure Convection-Diffusion) precondi-
tioner [61, 45, 29], the LSC (Least-Squares Commutator) preconditioner [24], Yosida’s
method [53, 54], the Relaxed Dimensional Factorization (RDF) preconditioner [8] and
the Dimensional Splitting (DS) preconditioner [7, 17]. Domain decomposition meth-
ods for Stokes and Navier-Stokes problems were studied in [11, 69]. Schwarz pre-
conditioners for saddle point problems have already been used for the approximation
of the inverse matrices of blocks in [15, 2, 16, 36] and as monolithic preconditioners
in [63, 14, 4, 5, 68]. Alternative solvers for saddle point problems are, e.g., multigrid
methods; cf. [65, 64, 67, 10, 13, 43, 30]. Let us note that there are several other
publications on iterative solvers for saddle point problems.

The paper is arranged as follows. In section 2, we present the model problems. In
section 3, we describe the mixed finite elements used in our discretization. Then, we
recapitulate the definition of two-level Schwarz preconditioners for elliptic problems
in section 4 and explain energy-minimizing GDSW coarse spaces. In section 5, we de-
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scribe monolithic two-level Schwarz preconditioners for saddle point problems. First,
we introduce a monolithic Schwarz preconditioner with Lagrangian coarse space and
the new monolithic GDSW preconditioner. Furthermore, we discuss how we account
for a nonunique pressure in the preconditioner in section 6. Details on the parallel
and algebraic implementation of the monolithic preconditioner based on the FROSch
framework is given in section 7. In section 8, we present numerical results for the
three model problems.

2. Saddle point problems. We construct our monolithic preconditioner for
the three model problems presented in this section. In the following we assume that
Ω ⊂ Rd, d = 2, 3 is a polygonal or polyhedral open set.

2.1. Stokes equations. Our first model problem is given by the Stokes equa-
tions in two and three dimensions. We seek to determine the velocity u ∈ Vg with
Vg = {v ∈ (H1(Ω))d : v|∂ΩD

= g} and the pressure p ∈ L2
0(Ω) of an incompress-

ible fluid with negligible advective forces by solving the variational formulation: find
(u, p), such that

µ

∫
Ω

∇u : ∇v dx −
∫

Ω

div v p dx =

∫
Ω

f v dx ∀v ∈ (H1
0 (Ω))d,

−
∫

Ω

divu q dx = 0 ∀q ∈ L2(Ω),

with dynamic viscosity µ and ∂ΩD = ∂Ω.
In our numerical tests, we consider the (leaky) lid-driven cavity Stokes problem;

cf. [28, Sec. 3.1], which we will denote as LDC Stokes problem: let Ω be the unit
square or cube in two or three dimensions, respectively. We prescribe the velocity
boundary conditions by

d = 2 : g = (1, 0)T if x2 = 1, g = (0, 0)T if x2 < 1,

d = 3 : g = (1, 0, 0)T if x3 = 1, g = (0, 0, 0)T if x3 < 1.

and choose µ = 1 and f ≡ 0.

2.2. Mixed linear elasticity. Second, we consider mixed linear elasticity prob-
lems describing the displacement u ∈ V and the pressure p = −λ divu ∈ L2

0(Ω) of a
body consisting of an almost incompressible material with Lamé constants λ and µ.
We fix the body along Γ0 ⊂ ∂Ω and subject material to the external body force f :
find (u, p), such that

2µ

∫
Ω

ε(u) : ε(v) dx −
∫

Ω

div v p dx =

∫
Ω

f v dx ∀v ∈ V,

−
∫

Ω

divu q dx − 1

λ

∫
Ω

p q dx = 0 ∀q ∈ L2(Ω),

with V = {v ∈ H1(Ω)d : v|Γ0
= 0}. The components of the linearized strain tensor

ε(u) are ε(u)ij = 1
2 (∂ui/∂xj + ∂uj/∂xi).

While a pure displacement formulation for the linear elasticity problem suffers
from volume locking in the incompressible limit, the above mixed formulation is a
good remedy; cf. [9, Sec. 6.3]. We consider a three-dimensional model problem: let
Ω be the unit cube, f = (0.1, 0, 0)T , and Γ0 = ∂Ω. The incompressibility of the
material is modeled by λ approaching infinity or by the Poisson ratio ν = λ/2(λ+ µ)
approaching 0.5. In particular, we fix µ = 1.0 and increase λ accordingly for our
numerical tests. Further, we chose a uniformly distributed random right hand side.
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Fig. 1. Velocity of the Navier-Stokes benchmark problem; Re = 20.

2.3. Navier-Stokes equations. Third, we consider the steady-state Navier-
Stokes equations modeling the flow of an incompressible Newtonian fluid with kine-
matic viscosity ν > 0. We seek to determine the velocity u ∈ Vg and the pressure
p ∈ Q ⊂ L2(Ω) by solving the variational formulation: find (u, p), such that

ν

∫
Ω

∇u : ∇v dx +

∫
Ω

(u ·∇u) · v dx−
∫

Ω

div v p dx =

∫
Ω

f v dx ∀v ∈ V0,

−
∫

Ω

divu q dx = 0 ∀q ∈ Q,

with V0 ⊂ (H1(Ω))d. The presence of the convection term u ·∇u leads to a nonlinear
system that is solved by Newton’s method or Picard iterations; cf. [28, Sec. 8.3].

We will consider two different Navier-Stokes model problems for the numerical
experiments. In both cases, the source function is f ≡ 0.

The first model problem is a regularized lid-driven cavity Navier-Stokes problem,
similar to the two-dimensional problem in [28, Sec. 3.1], with ∂ΩD = ∂Ω and Q =
L2

0(Ω). We refer to as LDC Navier-Stokes problem. The boundary values of the
problem are given by

d = 2 : g = (4x1(1− x1), 0)T if x2 = 1, g = (0, 0)T if x2 < 1,

d = 3 : g = (16x1(1− x1)x2(1− x2), 0, 0)T if x3 = 1, g = (0, 0, 0)T if x3 < 1.

The second model problem is the three-dimensional Navier-Stokes benchmark for
the flow around a cylinder with circular cross-section, to which we will refer as the
Navier-Stokes benchmark ; cf. [59], where a detailed description of the simulation
setup is given. See Figure 1 for the benchmark geometry and the velocity of the
solution of the Navier-Stokes benchmark. The length of the domain is 2.5m, A =
0.41m is the height and width of the domain. Further, ν = 10−3m/s, and we define
Vg = {v ∈ H1(Ω)d : v|∂ΩD

= g} , V0 = {v ∈ H1(Ω)d : v|∂ΩD
= 0}, and Q = L2(Ω).

The inflow and outflow boundary conditions are

u = (16umaxx2x3(A− x2)(A− x3)/A4, 0, 0)

on ∂ΩDin = {(0, x2, x3) ∈ R3 : 0 < x2, x3 < A} and

ν
∂u

∂n
− pn = 0 on ∂ΩN = {(2.5, x2, x3) ∈ R3 : 0 < x2, x3 < A},

respectively, with the outward pointing normal vector n and Neumann boundary ∂ΩN .
Then, the maximum velocity across the inflow is umax = 0.45m/s. On the remainder
of the boundary, we set no-slip boundary conditions.
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In a dimensionless reformulation of the Navier-Stokes equations, the Reynolds
number Re specifies the relative contributions of convection and diffusion. For the
LDC Navier-Stokes problem in two and three dimensions, we obtain Re = 1/ν. The
Reynolds number of the benchmark problem is Re = 20.

3. Finite element discretization. In general, we will use the terminology of
the Stokes and Navier-Stokes equations, and therefore, we refer to u as velocity and
to p as pressure. For the discretization of the saddle point problems considered here
we use mixed finite elements. Therefore, we first introduce a triangulation τh of Ω
with characteristic mesh size h, which can be non-uniform. Then, we introduce the
conforming discrete piecewise quadratic velocity and piecewise linear pressure spaces

V h(Ω) = {vh ∈ (C2(Ω))d ∩ V : vh|T ∈ P2 ∀ T ∈ τh} and

Qh(Ω) = {qh ∈ C(Ω) ∩Q : qh|T ∈ P1 ∀ T ∈ τh},

respectively, of P2-P1 Taylor-Hood mixed finite elements.
A discrete saddle point problem has the form

Ax =

[
A BT

B −t2C

] [
uh
ph

]
=

[
Fh
0

]
= b.(1)

Note that, in contrast to mixed finite element discretizations with discontinuous pres-
sure, the pressure cannot be eliminated by static condensation on the element level
for continuous pressure.

For simplicity, we will drop the index h of the discrete variables for the remainder
of this paper.

For the model problems considered here, the matrix BT arises from the discretiza-
tion of the divergence term ∫

Ω

div v p dx .

Therefore, the null space of BT consists of all constant pressure functions. If t 6= 0
and the matrix C is symmetric positive definite, the pressure is uniquely determined.
Otherwise, the pressure has to be normalized, e.g., by restricting the pressure to the
space

Q
h

= Qh ∩ L2
0(Ω),

i.e., to zero mean value. In order to do so, we can introduce a Lagrange multiplier λ
to enforce

(2)

∫
Ω

p dx = 0.

This results in the block system

(3) Ax =

A BT 0
B 0 aT

0 a 0

up
λ

 =

F0
0

 ,
where the vector a arises in the finite element discretization of the integral (2). Al-
ternatively, we can use the projection

P = Ip − aT (aaT )−1a,(4)
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Fig. 2. Structured mesh and domain decomposition (first, second) and unstructured mesh and
domain decomposition (third, fourth) of a unit cube: different colors for each subdomain (first, third)
and one subdomain with one highlighted layer of overlap (second, fourth). The unstructured mesh is
generated as presented in Figure 6 and the unstructured domain decomposition is performed using
ParMETIS [44].

onto the space Q
h
, where Ip is the pressure identity matrix.

In our derivations of the new monolithic preconditioners, we concentrate on the
case where t = 0 and ∂ΩD = ∂Ω, such that the pressure has to be normalized; we
use the projection P given in (4) to do so. In section 6, we will give a brief overview
of other approaches to enforce a zero mean value for the pressure. In case of a non-
singular global problem, e.g., with natural boundary conditions on ∂ΩN = ∂Ω \ ∂ΩD,
the pressure is uniquely determined and we need no further modifications.
We solve the discrete saddle point problem iteratively using a Krylov subspace method.
Since the system becomes very ill-conditioned for small h, we need a scalable precon-
ditioner to guarantee fast convergence of the iterative method. Therefore, we will use
monolithic two-level Schwarz preconditioners; cf. section 5.

4. Two-level overlapping Schwarz methods for elliptic problems. Before
we define monolithic overlapping Schwarz preconditioners for saddle point problems,
we recall their definition for elliptic model problems. Therefore, we consider the linear
equation system

(5) Ax = b

arising from a finite element discretization of an elliptic problem, e.g., a Poisson or
elasticity problem on Ω with sufficient Dirichlet boundary conditions.

Let Ω be decomposed into nonoverlapping subdomains {Ωi}Ni=1 with typical diam-

eter H and corresponding overlapping subdomains {Ω′i}
N
i=1 with k layers of overlap,

i.e., δ = kh; cf. Figure 2 for a visualization of a cubic sample domain. The overlapping
subdomains can be constructed from the nonoverlapping subdomains by recursively
adding one layer of elements after another to the subdomains. Even if no geometric
information is given, this can be performed based on the graph of the stiffness matrix
A. Furthermore, let

Γ =
{
x ∈ (Ωi ∩ Ωj) \ ∂ΩD : i 6= j, 1 ≤ i, j ≤ N

}
be the interface of the non-overlapping domain decomposition.

We define Ri : V h → V hi , i = 1, ..., N , as the restriction from the global finite
element space V h = V h (Ω) to the local finite element space V hi := V h (Ω′i) on the
overlapping subdomain Ω′i; R

T
i is the corresponding prolongation from V hi to V h. In

addition, let V0 be a global coarse space.
For the time being, we will use exact local solvers; in section 8, we will also

present results for inexact coarse solvers. For exact local and coarse solvers, the
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additive Schwarz preconditioner in matrix-form can be written as

B−1
OS−2 = RT0 A

−1
0 R0︸ ︷︷ ︸

coarse level

+

N∑
i=1

RTi A
−1
i Ri︸ ︷︷ ︸

first level

,(6)

where the local and coarse stiffness matrices Ai are given by

Ai = RiAR
T
i , for i = 0, ..., N.

One typical choice for the coarse basis functions are Lagrangian basis functions
on a coarse triangulation. However, a coarse triangulation may not be available for
arbitrary geometries and domain decompositions. Therefore, we consider GDSW
coarse spaces, which do not require a coarse triangulation.

4.1. The GDSW coarse space. The GDSW preconditioner, which was in-
troduced by Dohrmann, Klawonn, and Widlund in [18, 19], is a two-level additive
overlapping Schwarz preconditioner with energy minimizing coarse space and exact
solvers. Thus, the preconditioner can be written in the form

(7) B−1
GDSW = ΦA−1

0 ΦT +

N∑
i=1

RTi A
−1
i Ri,

where Ai and Ri are defined as before and

A0 = R0AR
T
0 = ΦTAΦ

is the coarse problem. This corresponds to (6), whereas we replace RT0 by Φ, as is
standard in the context of GDSW preconditioners.

For the GDSW preconditioner, the choice of the matrix Φ is the main ingredient.
In order to define the columns of Φ, i.e., the coarse basis functions, a partition of unity
of energy-minimizing functions and the null space of the operator A are employed.

In particular, the interface Γ is divided into M connected components Γj , which
are common to the same set of subdomains, i.e., into vertices, edges, and, in three
dimensions, faces. Now, let Z be the null space of the global Neumann matrix and ZΓj

the restriction of Z to the degrees of freedom corresponding to the interface component
Γj . Then, we construct corresponding matrices ΦΓj

, such that their columns form a
basis of the space ZΓj .

Let RΓj be the restriction from Γ onto Γj , then the values of the GDSW basis
functions Φ on Γ can be written as

ΦΓ =
[
RTΓ1

ΦΓ1
... RTΓM

ΦΓM

]
.

The basis functions of the GDSW coarse space can be written as discrete harmonic
extensions of ΦΓ into the interior degrees of freedom:

(8) Φ =

[
ΦI
ΦΓ

]
=

[
−A−1

II A
T
ΓIΦΓ

ΦΓ

]
.

Note that AII = diagNi=1(A
(i)
II ) is a block diagonal matrix containing the local matrices

A
(i)
II from the non-overlapping subdomains. Its factorization can thus be computed

block by block and in parallel.
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The condition number estimate for the GDSW preconditioner

κ
(
B−1

GDSWA
)
≤ C

(
1 +

H

δ

)(
1 + log

(
H

h

))2

,

holds also for the general case of Ω decomposed into John domains (in two dimensions),
and thus, in particular, for unstructured domain decompositions; cf. [18, 19]

5. Monolithic two-level overlapping Schwarz preconditioners for sad-
dle point problems. Monolithic two-level Schwarz preconditioners for saddle point
problems are characterized by the fact that the local problems and the coarse problems
have the same block structure as the global saddle point problem.

In contrast, block preconditioners typically omit some of the blocks. Conse-
quently, the convergence of monolithic preconditioners is typically significantly faster
compared to block preconditioners; cf., e.g., [49, 32].

5.1. Schwarz preconditioners with Lagrangian coarse spaces. We first
introduce a monolithic two-level overlapping Schwarz preconditioner that is based on
the monolithic preconditioner by Klawonn and Pavarino described in [48, 49], where
the coarse basis consists of Taylor-Hood mixed finite elements; the same discretization
is also used for the fine level. We decompose the spaces V h and Qh into local spaces

V hi = V h ∩ (H1
0 (Ω′i))

d and

Qhi = Qh ∩H1
0 (Ω′i),

i = 1, ..., N , respectively, defined on the overlapping subdomains Ω′i.
We define restriction operators

Ru,i : V h −→ V hi and

Rp,i :Qh −→ Qhi ,

to overlapping subdomains Ω′i, i = 1, ..., N , for velocity and pressure degrees of free-
dom, respectively. Consequently, RTi,u and RTi,p are prolongation operators from local
spaces to the global spaces. The monolithic restriction operators

Ri : V h ×Qh −→ V hi ×Qhi ,

i = 1, ..., N , have the form

Ri :=

[
Ru,i 0

0 Rp,i

]
,

In addition to that, we introduce local projections

Pi : V hi ×Qhi −→ V hi ×Q
h

i ,

where Q
h

i is the local pressure space with zero mean value:

Q
h

i = {qh ∈ Qh ∩ L2
0(Ω′i) : supp(qh) ⊂ Ω′i} ⊂ Qhi .

Similar to the global projection (4), we define local projections

P i = Ip,i − aTi (aia
T
i )−1ai, i = 1, ..., N,(9)
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where Ip,i is the local pressure identity operator and ai corresponds to the discretiza-
tions of (2) on subdomain Ω′i. Further, the local velocity identity operators are Iu,i.
Then, we can enforce zero mean value on the local problems using the projection

Pi :=

[
Iu,i 0
0 P i

]
.

The monolithic two-level overlapping Schwarz preconditioner with Lagrangian coarse
space reads

(10) B̂−1
P2−P1 = RT0A+

0 R0 +

N∑
i=1

RTi PiA−1
i Ri,

where A+
0 is a pseudo-inverse of the coarse matrix A0 = R0A0RT0 . Since the pressure

may not be uniquely determined by the coarse problem, in general, we have to use

a pseudo-inverse. In practice, we restrict the coarse pressure to Q
H

for the solution
of the coarse problem. Otherwise, if A is non-singular, A+

0 = A−1
0 . Also note that,

due to the projections Pi, the preconditioner B̂P2−P1 is not symmetric. The local
matrices

Ai = RiARTi , i = 1, ..., N,(11)

are extracted from the global matrix A and have homogeneous Dirichlet boundary
conditions for both, velocity and pressure. As we will describe in section 6, there are
several ways to treat the pressure in the local overlapping problems. Here, we ensure
zero mean value for the pressure of the local contributions using projections Pi in
addition to the Dirichlet boundary data in the pressure.

Similar to the local problems, the coarse problem with Lagrangian basis func-
tions is defined on a corresponding product space V h0 × Qh0 , resulting in the coarse
interpolation matrix

(12) RT0 =

[
RT0,u 0

0 RT0,p

]
,

which contains the interpolations of the coarse Taylor-Hood basis functions. There-
fore, a coarse triangulation is needed for the construction of the coarse level. This is
problematic for arbitrary geometries and, in particular, cannot be performed in an
algebraic fashion.

Since the coarse pressure has zero mean value due to the specific pseudo-inverse

A0, we can omit a projection of the coarse solution onto Q
H

.
The local overlapping problems and the coarse problem are saddle point problems

of the structure (1). However, the coarse basis functions do not couple the u and p
variables; this is different in the monolithic GDSW preconditioner.

5.2. Schwarz preconditioners with GDSW coarse spaces. The new mono-
lithic GDSW preconditioner for saddle point problems is a two-level Schwarz precon-
ditioners with discrete saddle point harmonic coarse space. Therefore, it can be seen
as an extension of the GDSW for elliptic problems, as described in subsection 4.1, to
saddle point problems. Its first level is defined as in subsection 5.1, and therefore, the
preconditioner can be written as

(13) B̂−1
GDSW = φA−1

0 φT +

N∑
i=1

RTi PiA−1
i Ri.
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Φu,u0
Φp,u0

Φu,p0 Φp,p0

Fig. 3. Velocity Φu,u0 (first) and pressure Φp,u0 (second) components of a velocity edge basis
function in y-direction. Velocity Φu,p0 (third) and pressure Φp,p0 (fourth) components of the pres-
sure basis function corresponding to the same edge; see (15) for the block structure of Φ. Saddle
point harmonic extension for the Stokes equations in two dimensions with 9 subdomains.

The coarse operator reads

A0 = φTAφ,

with the coarse basis functions being the columns of the matrix φ. Here, in contrast to
the classical Lagrangian coarse space, the constant pressure functions are not repre-
sentable by the coarse space. Therefore, the coarse problem is nonsingular. The coarse
space is constructed in a similar way as in subsection 4.1. In a first step, the problem
is partitioned into interface (Γ) and interior (I) degrees of freedom. Correspondingly,
the matrix A can be written as

A =

[
AII AIΓ
AΓI AΓΓ

]
.

Each of the submatrices A∗∗ is a block matrix of the form (1).
The coarse basis functions are then constructed as discrete saddle point harmonic

extensions of the interface values φΓ, i.e., as the solution of the linear equation system[
AII AIΓ

0 I

] [
φI
φΓ

]
=

[
0
φΓ

]
.(14)

The interface values of the coarse basis

φΓ =

[
ΦΓ,u0 0

0 ΦΓ,p0

]
are decomposed into velocity (u0) and pressure (p0) based basis functions.

In particular, the columns of ΦΓ,u0
and ΦΓ,p0 are the restrictions of the null

spaces of the operators A and BT to the interface components Γj , j = 1, ...,M ;
cf. subsection 4.1. Typically, the null space of the operator BT consists of all pressure
functions that are constant on Ω; cf. section 3. Therefore, the columns of ΦΓ,p0 are
chosen to be the restrictions of the constant function 1 to the faces, edges, and vertices.
Note that, in contrast to the Lagrangian coarse basis functions (12), where the basis
functions do not couple the velocity and pressure degrees of freedom, the off-diagonal
blocks in the block representation

φ =

[
Φu,u0

Φu,p0
Φp,u0

Φp,p0

]
(15)

are, in general, not zero for the discrete saddle point harmonic coarse spaces; cf. Fig-
ure 3. This is essential for the scalability of the method: if the blocks Φu,p0 and Φp,u0

are omitted, we lose numerical scalability.
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N 4 9 16 25 36

uDpD, δ = 1h 23 39 62 83 101
uDpN , δ = 1h 18 28 44 61 79
uDpD, δ = 2h 16 26 37 52 64
uDpN , δ = 2h 12 24 35 44 57

Table 1
LDC Stokes problem in two dimensions, H/h = 8; GMRES iteration counts for both versions

of local problems for a one-level Schwarz preconditioner without coarse level. Stopping criterion is
a residual reduction of 10−6. ∗D and ∗N indicate Dirichlet and Neumann boundary of the local
problems, respectively, for the velocity u or the pressure p.

Construction of φΓ for the model problems. For Stokes and Navier-Stokes prob-
lems in two dimensions, each interface node is set to

(16) ru,1 :=

[
1
0

]
, ru,2 :=

[
0
1

]
, rp,1 :=

[
1
]
.

In three dimensions, each interface node is set to

(17) ru,1 :=

 1
0
0

 , ru,2 :=

 0
1
0

 , ru,3 :=

 0
0
1

 , rp,1 :=
[

1
]
.

Additionally, we add one basis function for the Lagrange multiplier as will be explained
in section 6 for the LDC Stokes, elasticity, and the LDC Navier-Stokes problems;
cf. (20).

For the two-dimensional elasticity problem the coarse basis functions are defined
by (16) and further by the linearized rotation

ru,3 :=

[
−(x2 − x̂2)
x1 − x̂1

]
.

In the three-dimensional case the coarse basis functions are defined by (17) and
by the linearized rotations

ru,4 :=

 x2 − x̂2

−(x1 − x̂1)
0

 , ru,5 :=

 −(x3 − x̂3)
0

x1 − x̂1

 , ru,6 :=

 0
x3 − x̂3

−(x2 − x̂2)

 ,
with the origin of the rotation x̂ ∈ Ω. For straight edges in three dimensions, only
two linearized rotations are linear independent. Therefore, we only use two rotations
for each of these edges. Further, all rotations are omitted for vertices and we add a
basis function for the Lagrange multiplier.

6. Treating the pressure. As already mentioned in section 3, there are several
ways to make the pressure unique. In particular, imposing Dirichlet boundary condi-
tions for the pressure or restricting the pressure to the space L2

0(Ω) are possible ways.
As pointed out in subsection 5.1, the local overlapping problems possess homogeneous
Dirichlet boundary conditions for the pressure. Additionally, we impose zero mean
value by projecting the local pressure onto the subspace L2

0(Ωi), i = 1, ..., N .
Another way of imposing zero mean value locally is to introduce local Lagrange
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N 16 64 196

System A using local projections 54 57 58
System A not using local projections 87 196 515

System A with global Lagrange multiplier 56 60 61
Table 2

Iteration counts for the system A with and without local projections as well as for the system
A. Latter is the system with global Lagrange multiplier. Two-dimensional LDC Stokes problem,
H/h = 50, δ = 6h. Iteration counts for the monolithic preconditioner with GDSW coarse space.
GMRES is stopped when a residual reduction of 10−6 is reached.

multipliers, resulting in local matrices

(18) Ai =

Ai BTi 0
Bi 0 aTi
0 ai 0

 , i = 1, ..., N,

where the vector ai arises in the finite element discretization of the integral
∫

Ω′
i
p dx.

In this case, we omit the projections Pi in (10).
On the other hand, the matrix Ai remains non-singular even if, instead of Dirich-

let boundary conditions, Neumann boundary conditions are imposed for the local
pressure. Comparing both approaches separately for a monolithic one-level Schwarz
preconditioner, we can observe that imposing Neumann boundary conditions performs
slightly better; cf. Table 1. However, this approach is not suitable for an algebraic im-
plementation since, in general, we do not have access to the local Neumann matrices.
Therefore, we use the variant with Dirichlet boundary conditions.

Further, for the construction of the monolithic Schwarz preconditioners described
in section 5, the local projections P i have to be built. In practice, we do not compute
the local projection matrices (9) explicitly but just implement the application of P i,
i = 1, ..., N , to a vector, requiring access to the local vectors ai; they could be extracted
from the global vector a, which arises in the discretization of (2). If a is not available,
geometric information is necessary for the construction of ai.

For the saddle point problem with Lagrange multiplier (3), we can define an
algebraic version of the monolithic GDSW preconditioner. Therefore, we omit the
local projections Pi in (13). The resulting two-level preconditioner is then symmetric.
In addition, we modify the definition of the restriction operators Ri such that the
Lagrange multiplier is also added to the local problems:

(19) Ri =

Ri,u 0 0
0 Ri,p 0
0 0 1

 ,
Consequently, the local overlapping matrices are of the form (18).

The construction of the GDSW coarse space is also slightly modified. Since the
Lagrange multiplier is shared by all subdomains, we treat the Lagrange multiplier as
a vertex of the domain decomposition, which is therefore part of the interface Γ. We
add one coarse basis function corresponding to the Lagrange multiplier and modify
the definition of φΓ accordingly:

φΓ =

ΦΓ,u0
0 0

0 ΦΓ,p0 0
0 0 ΦΓ,λ0

 =

ΦΓ,u0
0 0

0 ΦΓ,p0 0
0 0 1

(20)
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Then, these interface values are extended saddle point harmonically into the interior
degrees of freedom; cf. (14). This monolithic GDSW preconditioner can be built
in a purely algebraic fashion from system (3). We observe that both variants, i.e.,
using local projections and a global Lagrange multiplier, perform equally well; cf.
Table 2. Further, without restricting the the local pressure to L2

0(Ω), the numerical
scalability of the two-level monolithic Schwarz preconditioner with GDSW coarse
space deteriorates.

7. Implementation details. In this section, we present details on our parallel
implementation of the two-level monolithic Schwarz preconditioners for saddle point
problems; cf. sections 5 and 6. We refrained from a parallel implementation of the
Lagrangian coarse spaces for practical reasons. In particular, the Lagrangian coarse
space cannot be constructed in an algebraic fashion for arbitrary geometries; cf. sub-
section 5.1.

Our parallel implementation is based on the GDSW implementation for elliptic
problems in the FROSch framework which is part of the Trilinos package ShyLU. In
particular, we used the earlier Epetra version of FROSch which was described in [36]
and Trilinos 12.10.0 [41]. First, we will briefly review the GDSW implementation
in [36], and then discuss its extension to GDSW preconditioners for saddle point
problems. We will concentrate on the fully algebraic version described in section 6
for discrete saddle point problems of the form (3). We use one subdomain per MPI
rank, and in general, we assume that the global matrix A is distributed according to
the nonoverlapping subdomains of the decomposition; otherwise, we repartition the
matrix based on the graph of the matrix using a mesh partitioner in advance.

7.1. GDSW implementation based on Trilinos. The GDSW implementa-
tion described in [36] is partitioned into the two classes SOSSetUp and SOS. The class
SOS implements

• the computation of the coarse matrix A0,
• the factorization of the local matrices Ai, i = 1, ..., N , and the coarse matrix
A0, and

• the application of the preconditioner.
The two levels of the Schwarz preconditioner are first applied separately and then
summed up. The class SOSSetUp sets up the preconditioner, i.e., it

• identifies the overlapping subdomains, builds the local overlapping matrices
Ai, i = 1, ..., N , from the global stiffness matrix A, and

• constructs the matrix Φ that contains the coarse basis.
In [36], exact local solvers are used, i.e., the local overlapping matrices Ai, i = 1, ..., N ,
are extracted from the global stiffness matrix and direct solvers are used for the
solution of the local problems. The coarse basis functions are constructed as described
in subsection 4.1.

As the current GDSW implementation in FROSch, our GDSW implementation
was restructured compared to [36]. In particular, it is now partitioned into a class
for the first level, AlgebraicOverlappingOperator, and a class for the coarse level,
GDSWCoarseOperator. Each of the classes contains both, setup and application of
the level. Both levels are coupled in an additive way using a SumOperator. For more
details on the new structure of the implementation, we refer to [35].

For our extension of the GDSW implementation to saddle point problems, we
introduce the class BlockMat that implements block operators for Epetra objects; see
subsection 7.2. This class is used for the implementation of the saddle point problem
itself as well as the implementation of the monolithic preconditioner.
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1 Teuchos ::RCP <SOS:: SumOperator > additiveSchwarz;

2 std::vector < in t > excludeRow (1,3);

3 std::vector < in t > excludeCol (1,3);

4 Teuchos ::RCP <SOS:: OverlappingOperator > firstLevel

5 (new SOS:: AlgebraicOverlappingOperator(stokesMatrix ,overlap ,

excludeRow ,excludeCol));

6 additiveSchwarz ->AddOperator(firstLevel);

Fig. 4. Setup of the first level of the monolithic two-level Schwarz preconditioner using the
BlockMat for the Stokes matrix stokesMatrix; cf. subsection 7.2. The object additiveSchwarz is a
pointer to the SumOperator which handles the additive coupling of the both levels.

7.2. A class for block matrices. To handle the block structure of saddle
point problems, we implemented the BlockMat class. It is derived from the class
Epetra Operator, which defines an abstract interface for arbitrary operators in Epetra.
To keep the implementation of the BlockMat class as general as possible, we allow
for various types of blocks, e.g., Epetra Operator or Epetra MultiVector objects.
Objects derived from Epetra Operator are, e.g., Epetra CrsMatrix objects, precon-
ditioners like Ifpack, ML, and the GDSW implementation in [36], or even BlockMat

objects.
Therefore, the class BlockMat could also be used to define block precondition-

ers, such as block-diagonal or block-triangular preconditioners, with Ifpack, ML, or
GDSW preconditioners as blocks; cf. [32]. We use the BlockMat class throughout the
implementation of the monolithic preconditioners to maintain the block structure of
all occurring matrices.

7.3. Setup of the first level. As for elliptic problems, in the construction of
the monolithic Schwarz preconditioner for saddle point problems, we extract the local
overlapping matrices Ai from the global matrix A.

In our algebraic implementation, we set up the index sets of the overlapping
subdomains by adding layers of elements recursively based on the graph of the matrix
A. In each recursive step, the nonzero pattern of the subdomain matrices has to be
gathered on the corresponding MPI ranks, whereas the values of the matrix entries
can be neglected. Even if a Lagrange multiplier is introduced to ensure zero mean
value of the pressure, we only consider the submatrix A of A because the Lagrange
multiplier couples all pressure degrees of freedom.

Then, the local overlapping submatrices Ai, i = 1, ..., N , are communicated and
extracted from A using an Epetra Export object based on the aforementioned lo-
cal index sets of overlapping subdomains. Then, the matrices are stored in serial
Epetra CrsMatrix objects and factorized using direct solvers in serial mode.

A code sample for the setup of the first level is given in Figure 4. The setup
is performed by passing the global BlockMat A and a user specified size of overlap.
In addition to that, we specify the rows and columns of the block matrix which are
excluded from the identification of the overlapping subdomains, i.e., the rows and
columns corresponding to the Lagrange multiplier.

7.4. Setup of the coarse level. For the user interface of the coarse level setup,
we refer to lines of code depicted in Figure 5. Each variable, i.e., velocity, pressure,
and Lagrange multiplier, is added to the coarse space separately; see lines 2–5.

As described in section 6, we add one coarse basis function with ΦΓ,λ0
= 1,

that corresponds to the Lagrange multiplier, to the coarse space. Therefore, we use
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1 Teuchos ::RCP <SOS:: GDSWCoarseOperator > secondLevel(new SOS::

GDSWCoarseOperator(stokesMatrix));

2 secondLevel ->AddBlock(dimension ,dofsPerNode ,P2MapReplicated ,” cont ”);
3 secondLevel ->AddBlock(dimension ,P1MapReplicated);

4 secondLevel ->AddIdentityBlock ();

5 secondLevel ->SetUpCoarseGDSWOperator ();

6 additiveSchwarz ->AddOperator(secondLevel);

Fig. 5. Second level setup of the two-level Schwarz preconditioner using the BlockMat for the
Stokes matrix stokesMatrix; cf. subsection 7.2. The setup of the first level and the SumOperator

additiveSchwarz is depicted in Figure 4. After adding both levels, additiveSchwarz corresponds to
the monolithic GDSW preconditioner.

Communication Avg. apply 1st lvl. Avg. apply 2nd lvl.

Standard 1.42s 0.59s
Modified 1.28s 0.12s

Table 3
LDC Stokes problem in two dimensions with 4 096 subdomains; H/h = 160, δ = 16h. Timings

for critical parts w.r.t. communication time of the two-level preconditioner with GDSW coarse
problem. Standard communication uses Epetra Import and Epetra Export objects only. Modified
communication uses additional communication; cf. subsection 7.4. ‘Avg. apply 1st lvl.’ and ‘Avg.
apply 2nd lvl.’ are times averaged over the number of iterations.

the method AddIdentityBlock() in line 4. The velocity and pressure variables are
previously added using the AddBlock(), specifying, i.e., the dimension of the domain,
number of degrees of freedom per node, and the ordering of the degrees of freedom
in the system. The ordering options are “cont” (continuous), “sep” (separated), and
“user” (user defined). Continuous ordering corresponds to a nodewise ordering and
separated ordering corresponds to dimensionwise ordering, whereas in the user defined
ordering, Epetra Maps have to be provided by the user to define the ordering of
the degrees of freedom. The Epetra Maps P2MapReplicated and P1MapReplicated

correspond to the velocity and pressure index sets of the nonoverlapping subdomains,
respectively. In combination with the ordering, these maps are used to identify the
vertices, edges, and, in three dimensions, faces of the domain decomposition; see [36]
for a detailed description of this process.

For the computation of the discrete harmonic extensions, we extract the ma-

trices A(i)

II and A(i)

IΓ , i = 1, ..., N , from A; since we assume that A is distributed
according to the nonoverlapping subdomains, no communication is needed for this

step. Now, we factorize each A(i)

II in serial mode and solve −A(i)

II φ
(i)
I = A(i)

IΓφ
(i)
Γ col-

umn by column for φ
(i)
I ; cf. (14). Then, the global Blockmat φ is assembled. When

SetUpCoarseGDSWOperator() is called, the coarse matrix is computed as A0 = φTAφ
and the resulting globally distributed coarse matrix is reduced to a smaller number of
processes using multiple communication steps; cf. [36] for a more detailed discussion.
Here, we used three communication steps in all numerical results; in general, this led
to the best total performance. Finally, if a direct coarse solver is used, the coarse
matrix is factorized in serial or parallel mode.

7.5. Application of the preconditioner. Our global Epetra Map of the solu-
tion is uniquely distributed. Therefore, the Lagrange multiplier λ is assigned to only
one MPI rank although it belongs to each overlapping subdomain. Also, the coarse
basis function corresponding to the Lagrange multiplier couples all subdomains. Con-
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Fig. 6. Structured (left) and unstructured (right) mesh and decomposition, H/h = 5.

sequently, the handling of the Lagrange multiplier in the monolithic preconditioners
requires all-to-one and one-to-all communication. As already mentioned in [36], such
communication patterns are, in general, not handled well by Epetra Export and
Epetra Import objects. One way to overcome this issue is to introduce multiple
communication steps. Here, we use MPI Broadcast and MPI Reduce for the commu-
nication related to the Lagrange multiplier and Epetra Export and Epetra Import

objects for the remaining degrees of freedom. In Table 3, we report the speed up
due to separate communication of the Lagrange multiplier. We save 10% and 80%
time in each application of the first and second level, respectively, for the LDC Stokes
problem in two dimensions on 4 096 MPI ranks.

Besides this, the application of the monolithic GDSW preconditioner is handled
as for elliptic problems; cf. [36].

8. Numerical results. In this section, we present numerical results of our paral-
lel implementation of the monolithic GDSW preconditioner. All parallel computations
were carried out on the magnitUDE supercomputer at University Duisburg-Essen,
Germany. A normal node on the magnitUDE has 64GB of RAM and 24 cores (Intel
Xeon E5-2650v4 12C 2.2GHz), interconnected with Intel Omni-Path switches. Intel
compiler version 17.0.1 and Intel MKL 2017 were used.

The two- and three-dimensional Navier-Stokes problems are solved with New-
ton and Picard iteration, respectively, as we could not observe good convergence
with Newton’s method without applying globalization techniques in three dimen-
sions. Both methods are started with zero initial guess and the stopping criterion is

‖r(k)
nl ‖/‖r

(0)
nl ‖ ≤ 10−8, with r

(k)
nl being the k-th nonlinear residual.

When using a direct solver for the coarse problem, we employ GMRES (General-
ized minimal residual method) [58] for the solution of the linear systems. We use the
stopping criterion ‖r(k)‖ ≤ ε‖r(0)‖, where r(k) is the k-th unpreconditioned residual
and ε = 10−6 is the tolerance for Stokes and elasticity problems. For Navier-Stokes
problems, we use the tolerance ε = 10−4 for the linear systems. In case of inexact
coarse solves, we employ Flexible GMRES (FGMRES) [57] for the outer iterations;
cf. subsection 8.1.3. For both Krylov methods, we use the implementations in the
Trilinos package Belos. As a direct solver, we use MUMPS 5.1.1 through the Trilinos
Amesos interface. The local problems are solved in serial mode, whereas in case of
exact coarse solves, the coarse problems is solved in serial or parallel mode. For inex-
act coarse solves, we iterate with GMRES up to a tolerance εc. The number of MPI
ranks for exact and inexact coarse solves is determined by the formula

(21) 0.5(1 +min{NumProcs,max{NumRows/10 000, NumNonZeros/100 000}}),

where NumRows and NumNonZeros are the numbers of rows and nonzeros of A0,
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δ = 1h δ = 2h

N 4 9 16 25 36 49 64 4 9 16 25 36 49 64

#its. B̂−1
GDSW 25 33 35 37 38 39 40 21 27 29 32 32 32 33

#its. B̂−1
P2−P1 21 25 27 28 28 29 29 18 29 21 22 22 22 22

Table 4
Iteration counts for LDC Stokes problem in two dimensions, varying number of subdomains N

and overlap δ, H/h = 8. Stopping criterion ‖e(k)‖ ≤ 10−6, e(k) = x(k) − x∗ with reference solution
x∗.

# cores 64 256 1 024 4 096 8 100

# its. 66 70 69 68 67
δ = 16h Time 154.7s 166.4s 172.9s 185.5 202.6s

Effic. 98% 91% 88% 82% 75%

# its. 55 56 57 56 56
δ = 20h Time 151.7s 157.1s 166.9s 180.5 197.2

Effic. 100% 97% 91% 86% 77%

# its. 50 51 51 51 50
δ = 24h Time 156.6s 160.9s 169.7s 185.1s 199.4

Effic. 97% 94% 89% 82% 76%
Table 5

Iteration counts and weak scalability for two-dimensional LDC Stokes problem, H/h = 160,
serial coarse solves. Baseline for the efficiency is the fastest time on 64 cores with overlap δ = 20h.

respectivly; cf. [36]. In our context, this formula tends to be dominated by the number
of nonzeros. If not stated otherwise, we use above formula to determine the number
of MPI ranks used in the coarse solution phase.

Unstructured meshes are constructed from structured meshes by moving the in-
terior nodes; cf. Figure 6. To partition the unstructured meshes in parallel, we use
ParMETIS 4.0.3 [44]. For the sake of clarity, we characterize all meshes and decompo-
sitions by uniform parameters H and h throughout this section.

In the following numerical results, we report first level, second level, and total
times. The first level time is the sum of construction and application time for the first
level of the preconditioner, where the application is performed in every outer GMRES
or FGMRES iteration. The total time is the sum of both levels.

8.1. Numerical results for Stokes problems. First, we present a comparison
of monolithic Schwarz preconditioners with GDSW and standard Lagrangian coarse
spaces; cf. subsections 5.1 and 5.2. Further, parallel scalability results for the mono-
lithic GDSW preconditioner are presented for serial and parallel direct coarse solves
and inexact coarse solves.

8.1.1. Comparison of Lagrangian and GDSW coarse spaces. Iterations
counts for the solution of the LDC Stokes problem in two dimensions using mono-
lithic Schwarz preconditioners with GDSW and Lagrangian coarse spaces are given
in Table 4; the results were computed with Matlab on a structured meshes and do-
main decompositions. GMRES terminates if the error e(k) = x(k) − x∗ of the current
iterate x(k) to the reference solution x∗ of the linear system satisfies ‖e(k)‖ ≤ 10−6;
as reference solution we used the one obtained by a direct solver.

We observe that the performance of Lagrangian coarse spaces is slightly better
for structured domain decompositions. In contrast, the use of Lagrangian coarse
spaces for unstructured decompositions requires additional coarse triangulations and
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Fig. 7. First level, second level, and total time for two- and three-dimensional LDC Stokes
problems with structured meshes and decompositions, 2D H/h = 160, 3D H/h = 10.

overlap
#cores 64 216 1 000 4 096 64 216 1 000 4 096

NumProc 1 1 1 1 2 9 55 255

δ = 1h Time 23.5s 26.4s 33.4s 78.4s 24.7s 26.3s 32.2s 53.5s
Effic. 100% 89% 70% 30% 95% 89% 73% 44%

δ = 2h Time 34.7s 36.9s 44.3s 87.9s 33.1s 35.9s 40.7s 62.5s
Effic. 67% 64% 53% 27% 71% 65% 58% 38%

Table 6
Weak scalability for three-dimensional LDC Stokes problem with a structured mesh and de-

composition, H/h = 10. Different settings for the coarse problem: Mumps used with one MPI rank
(serial) and varying number of MPI ranks (parallel) for the coarse problem; ‘NumProc’ denotes the
number of MPI ranks used for the computation of the coarse problem determined by (21). Baseline
for the efficiency is the fastest time on 64 cores with overlap δ = 1h and Mumps in serial mode.

is therefore unfeasible in the context of an algebraic implementation.
Hence, we will focus on the performance of our parallel implementation of the

new monolithic GDSW preconditioners for the remainder of section 8.

8.1.2. Parallel scalability using an exact coarse solver. In Table 5, we
compare the weak scalability of our monolithic GDSW preconditioner for different
levels of overlap δ for the two-dimensional LDC Stokes problem with structured sub-
domains of constant size H/h = 160. We observe very good parallel scalability for
every choice of δ, the best efficiency of 77% from 64 to 8 100 MPI ranks is obtained
with δ = 20h. Corresponding detailed timers are depicted in Figure 7 (left) for up to
8 000 MPI ranks. The time for the first level stays almost constant, whereas a slight
increase of the second level time can be observed due to the increasing size of the
coarse problem.

In Figure 7 (right), the corresponding times for the three-dimensional LDC Stokes
problem with subdomain sizeH/h = 10 are depicted. Again, the time for the first level
stays constant, whereas a more significant increase of the second level time makes the
weak scalability worse compared to the two-dimension case. In particular, the time
for the second level exceeds that of the first level when more than 1 000 processor
cores are used; see Figure 7 (right). This is a typical behavior for two-level methods
due to an increased size of the coarse problem and the fact that a direct solver is
applied to solve it. A remedy, in order to improve the parallel efficiency, is either
to reduce the size of the coarse problem [40] or to introduce a third level [39]. Both
approaches, [40] and [39], were successfully applied to second-order elliptic partial
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#cores 64 216 512 1 000

Structured

NumRows 1 117 4 461 11 453 23 437
NumNonZeros 165 929 830 409 2 352 361 5 086 985

Vertices 55 251 687 1 459
Edges 216 900 2 352 4 860
Faces 288 1 080 2 688 5 400

Unstructured

NumRows 3 432 15 210 40 757 85 214
NumNonZeros 1 466 640 8 729 840 26 303 223 58 576 054

Vertices 389 1 932 5 421 11 587
Edges 677 2 995 7 887 16 468
Faces 558 2 254 5 809 11 883

Table 7
Number of rows and nonzero entries of the GDSW coarse matrix for the LDC Stokes problem

in three dimensions. Interface components of structured and unstructured decompositions.

Coarse solve
mesh & partition structured unstructured

#cores 64 216 1 000 4 096 64 216 512 1 000

Exact
Time 22.8s 24.7s 28.1s 49.1s 95.2s 118.9s 135.1s 191.1s
Effic. 100% 92% 81% 46% 98% 78% 69% 49%

GMRES its. 40 40 38 36 51 52 62 63

εc = 10−1
Time 24.3s 26.4s 33.0s 49.4s 95.0s 125.9s 140.1s 143.7s
Effic. 94% 86% 69% 46% 98% 74% 66% 65%

FGMRES its. 48 56 75 101 62 68 79 97

εc = 10−2
Time 23.0s 25.9s 28.5s 39.4s 93.0s 120.3s 134.6s 149.3s
Effic. 99% 88% 80% 58% 100% 77% 69% 62%

FGMRES its. 43 53 52 56 54 58 68 79

Table 8
Weak scalability the three-dimensional LDC Stokes problem δ = 1h. The coarse problem is

solved exactly with Mumps or with GMRES up to a tolerance εc. Baselines for the efficiencies are
the fastest times on 64 cores for structured and unstructured meshes and decompositions.
Left: structured mesh and decomposition, H/h = 10, using 24 MPI ranks per node.
Right: unstructured mesh and decomposition, H/h = 13, using 12 MPI ranks per node.

differential equations. It is a current subject of further investigations to apply them
also to the case of saddle point problems as considered in the present work.

As can be observed from Table 6, the parallel scalability can already be improved
slightly by using Mumps in parallel mode as the coarse solver; the number of processors
used is determined by the formula (21). Consequently, we will always use Mumps in
parallel mode for the following results with direct coarse solves.

As can be observed in Table 7 for the three-dimensional LDC Stokes, the dimen-
sion of the coarse problem becomes very large for an increasing number of subdo-
mains. In particular for unstructured domain decompositions, the dimension of the
coarse problem and the connectivity of the coarse matrix increase significantly; the
dimension can be almost four times and the number of nonzeros more than ten times
as large as for the structured case.

Therefore, the factorization of the coarse problems with Mumps becomes very
costly. In the next subsection 8.1.3, we investigate inexact coarse solves for GDSW
coarse problems, where the coarse problems are only solved up to a tolerance εc. A
similar approach was used in [42] for two-dimensional, stabilized Stokes and Navier-
Stokes problems.
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Coarse solve
coarse space with rotations without rotations

#cores 64 216 1 000 4 096 64 216 1 000 4 096

Exact
Time 35.7s 38.1s 44.5s 93.4s 35.8s 37.4s 42.8s 98.7s
Effic. 100% 94% 80% 38% 100% 96% 83% 36%

GMRES its. 50 50 50 50 69 70 71 72

εc = 10−1
Time 40.4s 48.7s 61.1s 104.6s 38.2s 45.2s 58.4s 90.9s
Effic. 87% 73% 58% 34% 94% 79% 61% 39%

FGMRES its. 90 122 157 226 93 125 139 203
Table 9

Weak scalability with and without rotations for the elasticity problem in three dimensions with
structured mesh and decomposition, H/h = 11, δ = 1h, ν = 0.49999; 12 MPI ranks per node. The
coarse problem is solved with Mumps or GMRES up to a tolerance εc. Baseline for the efficiency is
the fastest time on 64 cores with rotations and exact coarse solves.

with rotations without rotations

N
ν

0.3 0.49 0.4999 0.49999 0.3 0.49 0.4999 0.49999

64 36 43 45 45 41 52 56 56
216 45 51 51 51 54 68 69 69
512 50 55 55 55 63 79 78 78

1 000 53 60 59 67 68 86 82 82
Table 10

Iteration counts for three-dimensional elasticity problem with an unstructured mesh and decom-
position, H/h = 11, δ = 2h.

8.1.3. Parallel scalability using an inexact coarse solver. Instead of solv-
ing the coarse problem with a direct method, we solve A0 iteratively using GMRES,
and we use FGMRES for the outer Krylov iterations. In FGMRES, B̂ is used as
a right preconditioner and the k-th residual is r(k) = b − AB̂−1(B̂x(k)). The coarse

problem is solved with GMRES and ‖r(k)
c ‖ ≤ εc‖r(0)

c ‖, with coarse residual r
(k)
c , is

used as the stopping criterion.
In Table 8, we compare inexact coarse solves using εc = 10−1, 10−2 with exact

coarse solves for structured and unstructured decompositions. Here, we use right
preconditioned GMRES as the iterative Krylov solver in the case of exact coarse solves,
such that the residual and the stopping criterion are the same as for FGMRES. We
observe that using an inexact coarse solver can be beneficial for both, structured and
unstructured decompositions. For structured decompositions, inexact coarse solves
with εc = 10−2 start to be more efficient when using more than 1 000 subdomains,
whereas for unstructured decomposition, it is already more efficient for more than 512
cores to use inexact solves.

8.2. Numerical results for mixed linear elasticity problems. In this sub-
section, we consider the three-dimensional elasticity problem. In Table 9, we compare
the weak scalability using an exact coarse solve and the full coarse space with com-
binations of using inexact coarse solves and neglecting the linearized rotations from
the coarse space. If rotations are omitted from the the coarse space, inexact coarse
solves are most efficient for 4 096 cores. Only results for εc = 10−1 are shown, as
for lower tolerances, the total time becomes worse with and without rotations. For
inexact coarse solves, we can observe that the number of iterations are similar for
coarse spaces with and without rotations. In the case of 1 000 and 4 096 MPI ranks,
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Reynolds number Re = 20 Re = 200
# cores 64 256 1 024 4 096 64 256 1 024 4 096

Time 78.6s 78.0s 86.4s 94.8s 87.4s 84.5s 98.3s 104.0s
Effic. 100% 102% 90% 84% 100% 103% 89% 84%

Avg. GMRES its. 78.8 77.3 74.5 71.5 101.3 93.3 107.8 99.0
Newton its. 3 3 2 2 4 4 4 4

Table 11
Weak scalability for the two-dimensional LDC Navier-Stokes problem, H/h = 130, δ = 13h.

Baseline for the efficiencies is the time on 64 cores for each Reynolds number. Times are averages
over the number of Newton iterations.

Reynolds number Re = 20 Re = 200
# cores 64 216 1 000 4 096 64 216 1 000 4 096

Time 26.0s 27.8s 35.0s 53.7s 28.3s 32.0s 36.7s 59.0s
Effic. 100% 93% 74% 48% 100% 88% 77% 48%

Avg. GMRES its. 61.8 63.8 63.0 62.3 77.4 86.9 89.9 87.1
Newton/Picard its. 4 4 3 3 18 14 11 7

Table 12
Weak scalability for the three-dimensional LDC Navier-Stokes problem, H/h = 10, δ = 1h.

Baseline for the efficiencies is the time on 64 cores for each Reynolds number. Times are averages
over the number of Picard iterations.

we even need less iterations without rotations. This can be explained with the high
coarse tolerance εc, as the coarse GMRES problem is often solved in a single iteration.
Furthermore, we only report results for overlap δ = 1h, as larger overlaps decreased
the overall efficiency. However, as discussed in subsection 8.1.2, the parallel efficiency
can be improved for larger numbers of cores by speeding up the computations on
the coarse level. Let us note that the coarse problem in the case of elasticity using
rotations is even larger than in the case of Stokes’ equations. For an elliptic linear
elasticity problem with ν = 0.3 and exact coarse solves, it was reported in [36] that
it is more efficient to set up the GDSW coarse problem without rotations. Here, for
ν = 0.49999, the coarse space with rotations and exact coarse solves is slightly more
efficient than the coarse space without rotations and exact coarse solves. In total,
using an inexact coarse solver, the coarse space without rotations, and an overlap of
δ = 1h, is the most efficient approach for a large number of MPI ranks. Moreover,
from the implementation and usability point of view, neglecting the rotations in the
coarse space should be preferred since coordinates of mesh nodes or basis vectors of
the null space are needed as input to set up the coarse space with rotations. For an
algebraic setup of our preconditioner, the approach without rotations should thus be
preferred.

Table 10 shows iteration counts with and without rotations for an unstructured
decomposition and ν approaching 0.5. We observe very good numerical scalability
for both coarse spaces. The observed iterations counts for the coarse problem with
rotations are comparable to those reported in [20], where the pressure was eliminated
on the element level; no parallel timings are reported in [20].

8.3. Numerical results for Navier-Stokes problems. The scalability results
for the LDC Navier-Stokes problems with Reynolds number Re = 1 are comparable to
the results for the LDC Stokes problems presented in subsection 8.1 and are therefore
not reported. In this section, we use Re = 20 or Re = 200. Inexact coarse solves, as
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Fig. 8. Strong scalability for the monolithic GDSW preconditioner applied to the Navier-Stokes
benchmark problem with an unstructured decomposition.

presented in subsection 8.1.3 for the LDC Stokes problem, are not as beneficial for
the LDC Navier-Stokes problem. The number of coarse GMRES iterations to reach
an acceptable tolerance εc is too high, and thus, an additional preconditioner for the
coarse problem would be required; cf., e.g., [42]. Therefore, we only consider exact
coarse solvers and left preconditioning.

In Table 11 and Table 12, we present weak scalability results for two- and three-
dimensional LDC Navier-Stokes problems, respectively. All weak scalability times are
averaged over the number of nonlinear Newton or Picard iterations. For Re = 20
and a structured decomposition, we observe a slight reduction in iterations counts
for finer meshes, as also observed for the LDC Stokes problem; see, e.g., Table 8.
Further, the number of Newton or Picard iterations may be reduced when the problem
is solved on finer meshes. For two-dimensional problems, we observe 84% parallel
efficiency from 64 to 4 096 processor cores, whereas the efficiency deteriorates to 48%
in three dimensions; cf. subsection 8.1.2 for a brief discussion on the improvement of
computing times for three-dimensional problems. Similar to the results of the LDC
Stokes and elasticity problems, we observed that an overlap of roughly 10% is most
efficient.

Finally, we present results for the flow around a cylinder benchmark with circular
cross-section andRe = 20; see Figure 1 for the velocity of the solution. We obtain good
values for the drag and lift coefficients, cD = 6.178, cL = 0.0095, for a problem with
2.9M degrees of freedom (2.8M velocity, 127K pressure). The domain was partitioned
using METIS. Both coefficients are calculated with the volume integrals given in [43].
With an overlap smaller than 2h, we observed high iteration counts in the case of few
subdomains. Strong scalability results for the monolithic GDSW preconditioner with
δ = 2h, 3h are presented in Figure 8. The perfect strong scalability deteriorates for
more than 480 cores since the additional time to construct and solve the larger coarse
problem exhausts the other time savings.

9. Conclusion. We have presented a new monolithic GDSW preconditioner for
saddle point problems and its efficient parallel implementation based on the FROSch
framework in Trilinos. The monolithic approach provides robustness and good parallel
scalability for up to several thousand cores. Nonetheless, the preconditioner can be
constructed in an algebraic fashion from the fully assembled saddle point system,
and we are therefore able to provide a very reduced and simple user interface to
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our implementation. Furthermore, unstructured meshes und domain decompositions
are no restriction as they are handled in the same way as structured cases. Our
extension of GDSW preconditioners to saddle point problems will be added to the
FROSch framework in Trilinos in the near future and will therefore be available to
the public. Further improvements of the parallel scalability, in particular for three-
dimensional saddle point problems, using reduced coarse spaces, cf. [40], and multi-
level approaches, cf. [39], are open topics for future research.
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