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KURZZUSAMMENFASSUNG 

Der flavonoid-basierte Pigmentbiosyntheseweg in fast allen höheren Pflanzen wird von 

einem tenären Komplex bestehend aus R2R3MYB, bHLH und WD40 Proteinen (MBW-

Komplex) aktiviert . Einige zusätzliche Funktionen des MBW-Komplexes entwickelten 

sich in der Gruppe der Rosiden: Trichommusterbildung, Wurzelhaarmusterbildung und 

Samenmantelschleimhautproduktion in Arabidopsis (A. thaliana) und Arabis (A. alpina), 

sowie Samenhaarbildung in Baumwolle (G. hirsutum). Diese neuen regulativen 

Aufgaben des MBW-Komplexes in epidermaler Zelldifferenzierung divergierten 

eventuell bei der evolutionären Trennung der Rosiden von den Asteriden, jedoch sind 

die Details dieser Entwicklung noch nicht bekannt.  

Dieser Studie vorausgehende Ergebnisse aus unserer Gruppe zeigten neue 

stereochmische Konfomationen der MBW Komponenten, die das klassische tenäre 

TTG1-GL3-GL1 Model ergänzten (z.B. alternative Dimere wie TTG1-GL3 und GL1-

GL3). Dies führte zu folgender Frage: Welche evolutive Bedeutung hat diese 

alternative Dimerformation der MBW Komponenten in Pflanzen? Hierzu haben wir in 

dieser Studie die stereochemischen Eigenschaften von MBW Proteinen aus 

verschiedenen Pflanzenspezies mithilfe von Dreifach-LUMIER-Tests charakterisiert. 

Unter Verwendung der Ergebnisse der untersuchten Wechselbeziehungen der MBW 

Komponenten, konnten wir einen sehr genauen phylogenetischen Baum 

rekonstruieren. Dieses Ergebnis hebt die evolutionäre Relevanz dieser neuen 

strereochemischen Eigenschaften der MBW Komponenten hervor. Des Weiteren 

wurden besonders relevante Bereiche für variable strereochemische Eigenschaften 

innerhalb der bHLH Proteine vorhergesagt.   

Es wird angenommen, dass Trichom- und Wurzelhaarmusterbildung neue evolutive 

Merkmale sind und dass diese aus der Duplizierung und Diversifizierung der Gene 

hervorgegangen sind, welche die Flavoniodbiosynthese regulieren. Die genaue 

Reihenfolge, in der diese Merkmale entstanden sind, ist jedoch bisher unklar.  

Wir führten artübergreifende Komplementärstudien mit homologen MBW Proteinen in 

A. thaliana Mutanten durch, um die funktionalen Unterschiede der MBW Proteine in 

den fünf TTG1 regulierten morphologischen Merkmalen besser zu definieren. 

AtTTG1-AtGL3-AtGL1 gilt als der wichtigste regulatorische MBW-Komplex für die 

Trichommusterbildung auf Blättern. Diese regulatorische Einheit liegt nicht nur in 

trimerer Konformation vor (synergistische Wechselwirkung), sondern auch in zwei 
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alternativen Dimeren (antagonistische Wechelwirkung), die wiederum verschiedene 

nachgeschaltete Gene regulieren. Ein wahrscheinlich noch wichtigerer Aspekt ist, dass 

abhänging von den relativen Konzentrationen dieser drei Proteine zu einander, 

verschiedene Promotoren differentiell aktiviert werden, was sich wiederum auf das 

Verhältnis der Konformationen auswirkt (alternative Dimere vs trimerer Komplex). Im 

Rahmen dieser Studie wurde versucht durch Simulationen ein regulatorisches Model 

aufzustellen, welches die verschiedene Proportionalität der alternativen Dimäre 

beschreibt. Dazu wurde quantitativ bestimmt, wie AtTTG1 und AtGL1 um die Bindung 

mit AtGL3 konkurrieren. Diese experimentellen Studien wurden durch mathematische 

Modelle von Anna Deneer, Waageningen, ergänzt.  
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ABSTRACT 

It is well established that a network of three classes of proteins consisting of R2R3MYB, 

bHLH factors and WD40 repeat protein acted in concert as a ternary complex (i.g. 

MBW protein complex) to activate the flavonoid-based pigment biosynthetic pathway 

in most high plants. Several additional functions evolved in rosids: e.g. trichome 

patterning, root hair patterning and seed coat mucilage production in Arabidopsis (A. 

thaliana) or Arabis (A. alpina) and seed hair formation in cotton (G. hirsutum). New 

roles of MBW complexes controlling epidermal cell fate in rosids may have diverged 

since the evolutionary separation of rosid and asterid, although the details of this are 

still not clear.  

Previous studies in our lab revealed novel stereochemistry of MBW components, i.g. 

alternative dimers TTG1-GL3 and GL1-GL3, which revised the conventional TTG1-

GL3-GL1 ternary model. However, it raises one major question: what are the 

evolutionary implications of such alternative dimers formation among MBW 

components in plants? In this study, we characterized the stereochemistry of MBW 

proteins in different plant species by triple LUMIER assay. Using the inter-relation of 

MBW components as the criterion, we achieved a highly accordant phylogenetic tree 

suggesting the evolutionary relevance of this novel stereochemistry of MBW 

components. Potential critical sites in bHLH proteins accounting for diversed MBW 

stereochemistry were predicted. 

In Arabidopsis, MBW genes which control trichome and root hair patterning traits are 

assumed to evolve from the duplication and diversification of flavonoid controlling 

genes, therefore trichome and root hair traits  are considered as evolutionary current 

inventions. However, the exact evolving order of these traits still remains to be 

confirmed. To better define functional divergence of the MBW proteins in the five TTG1 

related traits, we performed cross-species complementary assays with MBW 

homologs in Arabidopsis mutants.  

Among MBW protein complexes in Arabidopsis, AtTTG1-AtGL3-AtGL1 is considered 

to be the predominant regulatory complex in leaf trichome formation. This regulatory 

unit is not only represented by a single trimeric complex (synergetic inter-relation) but 

also by two alternative dimers (antagonistic inter-relation) that in turn regulate different 

downstream genes. Probably even more important is the finding that different 

promoters become activated depending on the relative concentration of these three 
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proteins, as this should translate into different ratios of alternative dimers and trimers. 

In this study, we attempted to simulate regulatory models in the context of differential 

proportion of alternative dimers through quantitatively determining AtTTG1 and AtGL1 

competing for the binding to AtGL3. These experimental studies were complemented 

by mathematical modeling by Anna Deneer, Waageningen.  
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1. General Introduction 

1.1 Structures of MBW proteins  

1.1.1 R2R3MYBs 

Myeloblastosis proteins (MYB) are found in all eukaryotic organisms [1, 2]. First 

identified in the v-myb oncogene of the avian myeloblastoma virus, later in the human 

proto-oncogene c-myb and other related factors. MYB proteins in general contain up 

to three imperfect repeats: R1, R2 and R3 with R2 and R3 representing the minimum 

DNA-binding domain and containing cooperative recognition helices [2-6]. Few plant 

4R-MYB proteins are reported (e.g. in soy bean) [7, 8]. R2R3-MYB proteins are the 

most abundant plant specific MYB proteins in plants [1, 4, 5, 9]. R2R3-MYBs form also 

the largest class of MYB with 126 genes in Arabidopsis. Based on the conservation of 

the DNA binding domain and variability of the C terminal domains, R2R3-MYB proteins 

have been divided into at least 25 subgroups with various biological functions [10, 11]. 

The first cloned plant MYB gene was Colorless1 (C1) from maize (Zea mays), 

whichregulates anthocyanidin accumulation [12]. C1 was the gene disrupted in 

McClintock’s experiments underlying her discovery of transposable elements [13].  

1.1.2 bHLHs 

Plant bHLH proteins of subgroup IIIf and MYB proteins containing the bHLH interaction 

motif [DE]Lx2[RK]x3Lx6Lx3R directly interact [14]. Subgroup IIIf bHLH proteins are 

already present in mosses [15]. Similar to R2R3-MYB proteins, the first cloned plant 

bHLH proteins originated from maize. In 1989 the R (Red 1) and B (Booster 1) gene 

were cloned [16, 17].The basic helix-loop-helix (bHLH) motif was first discovered and 

described in murine muscle development transcription factors and found to mediate 

dimerization and DNA binding [18]. It consists of a basic region at the N-terminus that 

binds specific DNA motifs and an HLH region that mainly forms homo- and 

heterodimers with bHLH proteins [19]. More than 130 bHLH genes are found in 

Arabidopsis and have been divided into 12 subgroups [20]. 

1.1.3 WD40 Repeats 

WD40 repeat (WDR) proteins are strongly conserved in eukaryotes within their WD40 

repeats [21]. They have evolved in plants in various protein families with divers 

function: e.g. signal transduction, cytoskeletal dynamics, chromatin modification or 

transcriptional regulation [21]. This is in part due to diversification of regulators and 

targets up- and downstream the WDR proteins that act as interaction platform, 
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constituents for protein complexes and sites of transient protein contacts [21]. WDR 

proteins are characterized by different numbers of WD40 repeats (usually 4-10 in 

plants) [21]. WDR proteins share a stretch of about 40 amino acids in one WD40 repeat 

that usually ends with Trp-Asp (WD) [22]. Four and more WD40 repeats in one protein 

can form so called β-propellers, a cylindrical formed series of four-stranded antiparallel 

beta sheets [21, 23]. In the mammalian G-protein subunit Gβ, it is shown that the first 

and last WD40 repeat contribute to the same beta-blade [23]. There are 237 WDR 

proteins with more than four repeats in Arabidopsis [21]. Six of these are 

TRANSPARENT TESTA GLABRA1 (TTG1), CONSTITUTIVELY PHOTOMORPHO- 

GENIC 1 (COP1) and the four SUPPRESSOR OF PHYA-105 (SPA) proteins [24-27]. 

As shown in Figure 1.1, each such repeat folds into a 4-strand β-sheet. Among the 

Arabidopsis WDR proteins, TTG1 has been identified for the pleiotropic phenotypes of 

the corresponding mutants affected in flavonoid biosynthesis and various epidermal 

cell fates [28].The interactions between the R2R3-MYB and the R/B-like bHLH 

(subgroup IIIf) are probably among the best-described cooperation of transcription 

factors in plants [29-35]. These involved the R3 repeat of the MYB (with a conserved 

motif [D/E]LX2[R/K]X3LX6LX3R) and the N-terminus MYB-interacting region (MIR) of 

the bHLHs, which contains an arginine residue conserved among the bHLHs of the IIIf 

subgroup.  
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Figure 1.1 Schematic depiction of the general R2R3MYB, bHLH and WD40 proteins structures. 

(Modified from [34, 36]) 

 
 

1.2 MBW complexes are conserved regulatory modules of flavoid 

biosynthesis pathway during the course of plant evolution   

The flavonoid biosynthetic pathway is found in a wide range of land plants, even in the 

bryophytes (mosses) and it has been suggested that synthesis of flavones, flavanones, 

and flavonols may have evolved first to provide chemical messengers and then UV 

sunscreens [37, 38]. Maize (Zea mays), petunia (Petunia hybrida) and snapdragon 

(Antirrhinum majus) emerged as the major models for the study of flavonoid 

biosynthesis and genes encoding R2R3-MYB and bHLH proteins were identified as 

regulators of anthocyanin structural genes, demonstrating broad conservation of this 

regulatory mechanism in these plants [39-50]. By then, the relationship between WD40 

proteins and the R2R3MYB/bHLH transcriptional regulators had not been revealed. 

The first anthocyanin regulatory locus that was cloned from petunia, AN11, encoded a 

protein containing five WD40-repeats [51]. Further support for the formation of an MBW 

complex in plants came from interaction studies conducted in A. thaliana [29]. Similarly, 
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the maize PAC1 (WD40) is specifically involved in the anthocyanin pathway but can 

complement all ttg1 phenotypes in Arabidopsis, and it became the first identified TTG1-

like protein in the monocot [42, 52]. Later WD40 proteins were found to regulate the 

anthocyanin pathway in other plants such as Arabis alpina, Perilla frutescens, Ipomoea 

nil, Medicago truncatula and Malus domestica [42, 53-57]  

Regularly, new orthologs are identified which might be of relevance for breeding 

purposes. Not only allelism tests and rescue experiments within the respective species 

are employed – if applicable - to explore the ortholog’s function when mutants or TTG1 

variants are identified. More often, the function of the orthologs is estimated using the 

model species A. thaliana. In cross-species rescue experiments, TTG1 orthologs from 

other species are expected to take over AtTTG1 function at least in part within 

respective TTG1-MBW complexes containing the ortholog of AtTTG1. This year, for 

example, ectopic expression of SiTTG1 (a newly identified TTG1 ortholog in Setaria 

italica) in the A. thaliana ttg1-13 background was shown to fully rescued the glabrous 

trichome and the anthocyanidin phenotype. This suggests that SiTTG1 is a member of 

flavonoid regulators in monocots [58]. Another example is BrTTG1, that was isolated 

from a brown-seeded hairy Brassica rapa and found to functionally complement an A. 

thaliana ttg1 mutant, while another orthologue isolated from Brassica rapa yellow-

seeded glabrous germplasm was not functional [59].  

It needs to be mentioned that promoter sequences and MBW components might have 

differentially evolved in the respective other species and thereby lead to shifts in TTG1-

MBW function, nevertheless, newly identified orthologs also provide novel insights into 

evolutionary aspects of TTG1-MBWs: MBW complexes have been identified as 

common and conserved flavonoid biosynthesis regulators, similarly reported for 

various land plants - although in several cases not all components have been identified 

or characterized (Figure 1.2 and Table 1.1). Recently, MBW complexes (PaWD40-1-

PabHLH1/2-PaMYB29/32/33/35) were characterized in Norway spruce (Picea abies) 

and shown to be involved in the regulation of the flavonoid biosynthesis pathway [60]. 

This reveals a full MBW regulator in gymnosperms which were previously thought to 

be devoid of TTG1 orthologs [61].  
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Figure 1.2 MBW proteins are common and conserved modules involved in regulating flavonoid 

biosynthesis throughout the plant kingdom. 

Phylogeny of selected land plants is reflected by time tree topology on the left (conducted in TimeTree 

database [62]). Functionally characterized MBW proteins from different plant species are listed in the 

middle (flavonoid pathway exclusive). Question marks indicate unidentified components. For a full list of 

proteins and references, please refer to Table 1.1. 

 

Interestingly, in the rosid clade, besides regulation of the flavonoid biosynthesis 

pathway,  combinatorial MBW complexes evolved several extra functions: for instance 

trichome patterning, root hair patterning and seed coat mucilage production in A. 

thaliana [35, 63-72] (Figure 1.3 ) or Arabis alpina [57] and  seed hair formation in cotton 

(Gossypium hirsutum) [73-76]. These observations imply that a common regulatory 

MBW module has been adapted for controlling specific epidermal cell fates in rosids. 

However, such pleiotropic functions of MBW complexes have neither been observed 

in the Asterid clade nor in monocots. Based on this, a speculation is raised: new roles 

of MBW complexes in controlling epidermal cell fate may have diverged since the 

evolutionary separation of these major plant groups, although the details of this are still 

not clear [77, 78]. This is supported by the findings that multicellular trichome and 

conical cell formation in asterids, like Antirrhinum and Solanaceae species, are 

regulated by MIXTA-like R2R3-MYB-related proteins in which the bHLH interaction 

motif ([DE]Lx2[RK]x3Lx6Lx3R) is devoid. MIXTA genes overexpression in rosids do not 

affect trichome formation [78-80]. AtGL1, a trichome patterning specific-R2R3-MYB 

protein, was grouped phylogenetically together with AtPAP and AtTT2, which act in the 

regulation of the flavonoid biosynthesis pathway. This clade is distinct from the MIXTA-
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like regulators branch [81-83]. It is assumed that duplication and subsequent 

divergence, as known for other protein families [84], has been the driving force to 

evolve new roles of MBW complexes and other epidermal cell fates in rosids as 

compared to asterids [85]. 

 
 

 

Figure 1.3 MBW Regulatory network model in Arabidopsis. 

This reticulated model shows all of the known bHLH and myb transcriptional regulators that function the 

TTG1-dependent pathways. (Modified from [66, 86, 87]) 
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Table 1.1 MBW (R2R3-MYB-bHLH-WDR) proteins (putatively) regulating flavonoid biosynthesis 

from different plant species. 

Species 
MBW Proteins  

References 
WD40 bHLH R2R3MYB  

Zea mays ZmPAC1 
ZmR/B 

ZmIN1(repressor) 

ZmC1; ZmPL 

ZmP1(independence of 
WDR and bHLH) 

[33, 41-43, 88-
92] 

Setaria italica SiTTG1   [58] 

Oryza sativa  

OsRa/Rb/Rc 

OsB2 

OsRc-bHLH 

OsC1; OsRc-MYB1/2 [93-96] 

Freesia 
hybrida 

 
FhTT8L 

FhGL3L 
 [97] 

Antirrhinum 
majus 

 
AmDEL 

AmMUT 

AmROS1/2; AmVE 

AmMYB308/330 
(repressors) 

[50, 98-100] 

Perilla 
frutescens 

PfWD  

(cytosol) 
PfMYC  [53] 

Petunia 
hybrida 

PhAN11 

(cytosol) 

PhAN1 

PhJAF13 

PhAN2/4; PhPH4 

PhMYB27(repressor) 
[44-49, 51, 83] 

Nicotiana 
tabacum 

 NtAN1a/b NtAN2 [101] 

Ipomoea nil 
InWDR1 

InWDR2 

InbHLH2 

InbHLH1/3 

InMYB1 

InMYB2/3 
[54] 

Arabidopsis 
thaliana 

AtTTG1 

AtTT8 

AtGL3 

AtEGL3 

AtMYC1 

AtPAP1/2; 
AtMYB113/114; AtTT2; 

AtMYB5 
AtMYB4 (repressor) 

[28, 31, 32, 66, 
102-111] 

Arabis alpina AaTTG1   [57] 

Brassica 
oleracea 

BoTTG1 
BoTT8 

BoEGL3 

BoMYB2 

BoMYB12 BoTT2 
[112] 

Brassica rapa BrTTG1 BrTT8  [113, 114] 

Gossypium 
hirsutum 

GhTTG1/3 
GhDEL61/65 

GhMYC1 
GhRLC1 [73-76] 

Prunus persica PpWD40 PpbHLH3 

PpMYB10.1/10.3; 

PpMYBPA1; PpMYB16 

PpMYB111(a repressor) 

[111, 115-117] 
 

Malus 
domestica 

MdTTG1 

MdbHLH3 

MdbHLH33 

MdGL3 

MdMYB1/9/10/11; 
MdMYBA 

[55, 118, 119] 

Humulus 
lupulus 

HlWDR1 HlbHLH2 
HlMYB2/3 

HlMYB7(a repressor) 
[120] 

Lotus 
japonicus 

LjTTG1 
LjTT8, LjEGL3 

LjRHL1 
LjTAN1; LjTT2a/b/c [121] 

Medicago 
truncatula 

MtWD40-1 
MtTT8 

MtEGL3 

MtLAP1; MtPAR; 

MtMYB5/14 

MtMYB2 (a repressor) 

[56, 122-126] 
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Table 1.1 Cont.    

Species WD40 bHLH R2R3MYB  References 

Populus 
trichocarpa 

PtrTTG1 PtrTT8 

PtrMYB134/115/116/117

/118/119; 

PtrMYB182 

 (a repressor) 

[127-129] 

Vitis vinifera VvWDR1/2 
VvMYCA1 

VvMYC1 

VvMYBPA1; VvMYBF1; 
VvMYBA1 

[130-134] 

Picea abies PaWD40-1 
PabHLH1/2  

PabHLH3 

PaMYB29/32/33/35 

PaMYB30/31/34 
[60] 

Picea mariana   PmMBF1 [135] 
Pinus taeda   PtMYB1/4/8/14 [136, 137] 

Physcomitrella 
patens 

 

PpRSL1/2 

(rhizoid 

development) 

 [138] 

* functions in flavonoid biosynthesis regulation remain to be confirmed. Note, not for all proteins full 

MBW complexes have been described (so far). Some might turn out not to be present in these species 

as MBW complexes. 

 

1.3 The molecular role of each component in the MBW protein 

complex  

The exact molecular role of each of the three components of MBW protein complexes 

is also not yet fully understood. For instance, some evidences suggest that the bHLHs 

can bind DNA, and its direct binding may be dispensable [139, 140]. On the contrary, 

mutations of the MYB-interacting region can induce bHLH transcriptional activity, 

suggesting that MYB plays the regulatory role [141]. Last, WD40 is dispensable for the 

activity MBW complexes in vitro, however we cannot exclude that some heterologous 

proteins can replace the WD40 in planta [31, 142].  

One attractive hypothesis is that the WD40 is necessary to prevent the effect of a 

negative regulator, allowing stabilization and/or nuclear localization of the MBW 

complexes, or controlling the interaction with chromatin factors [29, 31, 34, 51, 140, 

143, 144]. Nevertheless, the later hypotheses are difficult to reconciliate with the 

positive effect of WD40 in transient expression in protoplasts from Arabidopsis, maize 

or moss or in yeast experiments [31, 140, 142]. In addition, the ectopic expression of 

different bHLHs can (partially) complement ttg1 mutants in Arabidopsis [66] and TTG1 

has a quantitative effect on TT8 activity [31], suggesting that the TTG1 protein plays a 
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role at the post-translational level by regulating its activity in a quantitative manner, 

which in turn demonstrates a stabilization role for TTG1. 

1.4 The stereochemistry of MBW protein complexes in planta 

Based on plenty of former investigations, the MBW proteins are considered to act 

together in a transcriptional activating complex in which both the R2R3MYB and the 

WD40 proteins bind to the bHLH protein. Higher ordered complexes are possible due 

to homodimerization or heterodimerization of bHLH proteins [29, 33, 43, 66, 145, 146]. 

Three components of MBW complex forming a trimic complex, work in coordination to 

activate their downstream effector genes. In Arabidopsis, the concept of trimeric MBW 

activation complex was derived from yeast two-hybrid data showing that GL1 interacts 

with GL3 and that GL3 interacts with TTG1 [29]. This view was also adapted for MBW 

proteins from other plant species [34, 81, 147, 148]. 

Contrasting the current view of MBW complexes, our former study have shown that in 

the context of trichome patterning in Arabidopsis alternative dimers are formed, rather 

than a single ternary complex [149]. We have provided the evidence that these three 

MBW proteins form either GL1-GL3 or GL3-TTG1 dimers. The formation of each dimer 

is counteracted by the respective third protein in yeast three-hybrid assays, pulldown 

experiments (luminescence-based mammalian interactome), and fluorescence lifetime 

imaging microscopy-fluorescence resonance energy transfer studies. We further 

showed that two target promoters, TRIPTYCHON (TRY) and CAPRICE (CPC), were 

differentially regulated: GL1 represses the activation of the TRY promoter by GL3 and 

TTG1, and TTG1 suppressed the activation of the CPC promoter by GL1 and GL3. 

The data suggested that the transcriptional activation by the MBW complex involved 

alternative complex formation and that the two dimers could differentially regulate 

downstream genes (Figure 1.4).This finding adds another level of complexity to the 

stereochemistry of MBW protein complexes, however the precise stereochemistry of 

the MBW protein complexes still remains to be further confirmed in planta (Figure 1.5). 
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Figure 1.4 GL1 and TTG1 compete for binding to GL3 in Arabidopsis. 

The interaction between TTG1 and GL3 could be counteracted by GL1, and vice versa. Alternative dimer 

alone is sufficient to activate CPC and TRY respectively (adapted from [149]). 

 

 

 
 

 

Figure 1.5 Putative stereochemistry of MYB-bHLH-WD40 protein complexes in Arabidopsis. 
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1.5 Objectives of the thesis 

At the start of my PhD, our understanding of the regulatory model of the MYB-bHLH-

WD40 (MBW) complexes in Arabidopsis was becoming clearer, however some 

questions still needed to be answered. 

Within the framework of this PhD thesis we wished to develop evolutionary 

diversification of stereochemistry of MBW protein complexes and integrate it into their 

function in determining the epidermal cell fates in plants. For this purpose we have 

tried to answer a set of linked but different basic questions: 

 

I. What are the evolutionary implications of alternative dimer formations among 

MBW components? 

- Is it an evolutionarily conserved mechanism recruited by all plants or an occasional 

case in Arabidopsis? 

 

II. Are there any functional correlations of diverse stereochemistry of MBW 

complexes in terms of TTG1-dependent traits? 

- Are there any correlations between MBW proteins’ behavior and functions involved 

in the control of epidermal cell fates? 

 

III. How will alternative dimer formation change the current patterning models? 

- How does dynamic balance of TTG1, GL3 and GL1 determine multiple orders of 

protein complexes formation 
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2. Evolutionary diversification of the inter-relation of MBW 

components in plants 

2.1 Summary  

R2R3MYB, basic helix-loop-helix (bHLH), and WD40 factors comprise evolutionarily 

conserved MBW complexes. It is a common regulatory module controlling flavonoid 

biosynthesis throughout the plant kingdom. Interestingly, the role of the MBW complex 

evolved an extra trait in rosid: trichome formation (in the context of leaf, root or seed) 

but not in asterids, suggesting that the MBW regulatory systems may have diverged 

since the evolutionary separation of asterids and rosids. Our previous data have shown 

that in Arabidopsis MBW proteins can form two alternative dimers: MB and BW, which 

adds another level of complexity to the stereochemistry of MBW protein complexes. 

However, this raises one major question: what are the evolutionary implications of such 

alternative dimers formation among MBW components in plants? In this study, we 

characterized the inter-relation of MBW components in different plant species by triple 

LUMIER assays. Using the interaction behavior as the criterion, we arrived at the well-

established phylogenetic tree suggesting the evolutionary relevance of alternative 

dimers. Finally, potential vital sites in bHLH proteins accounting for differential inter-

relation of MBW components were predicted by amino acids alignment. 

2.2 Introduction 

Investigation of the MBW complex in plants obtains a rich and interesting research 

history beginning with genetic studies on one of the most intensely researched 

metabolic systems in plants, i.e. the flavonoid biosynthetic regulation. Identified as 

common and conserved flavonoid biosynthesis regulating complexes, MBW proteins 

have been characterized in angiosperms as well as in gymnosperms [60]. 

In all plants studied so far MBW complexes determine the spatio-temporal expression 

of target genes those account for tissue-specific accumulation of flavonoid. Apart from 

regulation of the flavonoid biosynthesis pathway in plants, combinatorial MBW 

complexes evolved several extra functions in rosids: for instance trichome patterning, 

root hair patterning and seed coat mucilage production in Arabidopsis [35, 63-72] or 

Arabis (A. alpine) [57] and  seed hair formation in cotton (G. hirsutum) [73-76] (Figure 

2.1). These observations imply that a common regulatory MBW module has been 

adapted for controlling specific epidermal cell fates in rosids. 
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Figure 2.1 Schematic representation of ternary MBW complexes regulating anthocyanin 

biosynthesis and trichome formation in plants. 

Different plant species include: Arabidopsis (A. thaliana), Arabis (A. alpina), petunia (P. hybrida), and 

maize (Z. mays). Blocks in full line indicate demonstrated regulatory mechanisms, while blocks in dotted 

lines indicated potential regulatory mechanisms. Blocks in grey line indicate negative regulation. 

(Adapted from [34, 148, 150-152]).  

 

Petunia and Arabidopsis represent model species from the two major groupings of 

dicotyledonous plants, the asterids and rosids, respectively. Studies of the role of the 

MBW complex in controlling trichome/hair production suggest that the MBW regulatory 

systems may have diverged since the evolutionary separation of these major plant 

groups, although the details of this are still not clear [77, 78].  

The study of stereochemistry of MBW protein complexes was essentially based on 

yeast two-hybrid data in different plant species [29, 34, 81, 147, 148]. It was generally 

considered that three components of MBW complex, forming a trimeric complex, work 

in coordination to activate their downstream effector genes.  

Contrasting the current view of MBW complexes, our former study has shown that in 

the context of trichome patterning alternative dimers are formed, rather than a single 

ternary complex in Arabidopsis [149]. We’ve provided the evidence that these three 

MBW proteins form either GL1-GL3 or GL3-TTG1 dimers. The formation of each dimer 

is counteracted by the respective third protein in yeast three-hybrid assays, pulldown 

experiments (luminescence-based mammalian interactome), and fluorescence lifetime 
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imaging microscopy-Förster resonance energy transfer studies. It was further shown 

that two target promoters, TRIPTYCHON (TRY) and CAPRICE (CPC), are differentially 

regulated by alternative dimers. This new observation gives rise to one major question: 

what are the evolutionary implications of such alternative dimers formation among 

MBW components in plants? In this study, we characterized the stereochemistry of 

MBW proteins in different plant species by triple LUMIER assay. After dissecting the 

interplay of the regulatory components of MBW complexes, differentially involved in 

the control of epidermal cell fates, we made a bid to elucidate the evolutionary 

relevance of alternative dimers. 

2.3 Results 

2.3.1 Both synergetic and antagonistic models are recruited by MBW 

proteins in Arabidopsis thaliana.  

Our previous finding that AtGL1 and AtWER can interfere with the interactions between 

AtTTG1 and GL3 triggered us to explore whether it is a general phenomenon in 

multiple combinations of MBW proteins or if it is specific to certain combinations. To 

this end, we initially refined a comprehensive network model of MBW proteins in 

Arabidopsis thaliana by integrating pairwise LUMIER data in our hands and other 

previous data (Table S1). This was necessary as the pairwise interaction data are not 

fully conclusive in the literature [29, 31, 32, 66, 153].  

Protein interactions were found between the 4 bHLH proteins and all R2R3MYBs 

tested, despite AtMYB61 showed weak interaction with 4 bHLH proteins. Homo- and 

hetero-dimerization were found in all bHLH proteins here. Self-interactions in AtMYC1 

and AtTT8 were novel observations (Figure 2.2A Table S1). 

Based on the network, we then proceeded to quantitatively analyze the effect of 

different R2R3MYBs on the interaction between AtTTG1 (WD40) and 4 bHLH proteins, 

respectively, by triple LUMIER (luminescence-based mammalian interactome mapping) 

pulldown assays [154]. 

The ProtA-fused bHLH proteins (AtGL3, AtEGL3, AtTT8 and AtMYC1) were 

immunoprecipitated with IgG beads and the amounts of co-immunoprecipitated Renilla 

luciferase-fused AtTTG1 were quantified when adding a certain amount of YFP-tagged 

R2R3MYB proteins. As shown in Figure 2.2B, AtTTG1/AtGL3 interaction substantially 

dropped by adding AtGL1, AtWER, AtTT2 or AtMYB61; whereas two anthocyanin 

specific R2R3MYBs, i. e. AtPAP1 and AtPAP2 enhanced their interaction. A similar 
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inter-relation was found in AtTTG1-AtEGL3 combination. Interestingly, all of the 

R2R3MYB proteins here did enhance the interaction between AtTTG1 and AtTT8, by 

contrast, AtTTG1-AtMYC1 interaction was significantly counteracted by each 

R2R3MYB protein. 

Taken together, both synergetic (trimer and/or multimer) and antagonistic (alternative 

dimers) inter-relation of MBW proteins exist in Arabidopsis. And 4 combinations of 

AtTTG1/bHLH presented 3 different inter-relation patterns.  
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 (A)   

 

Figure 2.2 Inter-relation of MBW proteins in Arabidopsis thaliana. 

(A). Comprehensive network model of MBW in Arabidopsis thaliana demonstrated by yeast two hybrids 

and pairwise LUMIER pulldown assays. It shows all known bHLHs and R2R3MYBs transcriptional 

regulators that function in five TTG1-dependent traits. Homo- and hetero-dimerization of bHLHs are 

depicted separately on upper-right. Dash lines indicate weak interaction among the proteins. 
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(B) 

 

Figure 2.2 Cont. Inter-relation of MBW proteins in Arabidopsis thaliana. 

(B) The effect of different R2R3MYBs on the interaction between AtTTG1 (WD40) and 4 bHLHs, respectively. Triple LUMIER pulldown assays are used to quantify 

relative pulldown efficiency (pulldown ratio) of Renilla Luciferase fused TTG1 and ProtA fused bHLHs in the presence of YFP tagged R2R3MYB factors. The 

pulldown ratio is normalized to the combination AtTTG1 and bHLHs without additional R2R3MYB proteins (defined as 100% in hollow columns). As a negative 

control, YFP only protein without any other CDS is also included (w/o), meanwhile YFP-tagged AtTTG1 is antagonistic-positive control. Each value represents 

mean ± standard errors (n = 3 biological replicates). *** indicates that pulldown ratio is extremely significant different from that of the reference (hollow column) by 

Student’s t test (0.0001 ≤ P < 0.001); ** indicates very significant difference (0.001 ≤ P < 0.01);* indicates significant difference (0.01 ≤ P < 0.05). 
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2.3.2 Antagonistic inter-relation of MBW components is a common 

protein behavior involved in regulating trichome development in 

rosids. 

It is assumed that the duplication of components of the MBW gene cassette and 

subsequent divergence of rosid and asterid was the driving force to evolve a new role 

of the MBW complex in trichome development of rosids [81]. As a typical representative 

in rosids, Arabisdopsis gave a perfect starting point for the stereochemistry 

investigation of MBW proteins. In order to further determine whether alternative 

complex formation is a common behavior of the MBW proteins in rosids, we 

implemented the same scheme in other two rosids: Arabis (Arabis alpina) and cotton 

(Gossypium hirsutum) as the MBW genes were well-identified in these species (Table 

2.1).  

 

Table 2.1 The profile of MBW genes in 5 plant species. 

Gene Locus 
GenBank 

Accession 

cDNA 
Length 

(bp) 
Donor References 

Arabidopsis (A.thaliana n=5)      

GL1 AT3G27920 NM_113708 687 our lab 
 
[67, 155-157] 

WER AT5G14750 NM_121479 612 our lab [63] 

PAP1 AT1G56650 NM_104541 747 our lab 
[106, 108, 158] 

PAP2 AT1G66390 NM_105310 750 our lab 

TT2 AT5G35550 NM_122946 777 our lab [31, 104] 

MYB61 AT1G09540 NM_100825 1101 our lab [72] 

GL3 AT5G41315 NM_148067 1914 our lab 
[29, 65, 66, 108, 109, 
159] 

EGL3 AT1G63650 NM_202351 1791 our lab [65, 66, 108] 

MYC1 AT4G00480 NM_001160722 1473 our lab [70, 71] 

TT8 AT4G09820 NM_117050 1557 our lab [66, 102, 103] 

TTG1 AT5G24520 NM_122360 1026 our lab [105] 

Arabis (A.alpina n=8)     

GL1 AALP_AA5G050100 LT669792 675 our lab this work 

WER AALP_AA8G149800 LT669795 618 our lab this work 

PAPL AALP_AAs71396U000200 KL980989 741 our lab this work 

GL3 AALP_AA6G320200 LT669793 1884  our lab [150] 

EGL3  Chr2 LT669789 1806  our lab [150] 

MYC1 AALP_AA6G006500 LT669793 1683 our lab  this work 

TT8  AALP_AA6G192900 LT669793 1590 our lab  this work 

TTG1 AALP_AA8G421800 KFK27728 1032 our lab [57] 

Cotton (G.hirsutum 2n=52)     

MYB2  AF034130 597 our lab [160-163] 

MYB25  AY464054 1104 our lab [164] 
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Table 2.1 Cont.     

Gene Locus 
GenBank 

Accession 

cDNA 
Length 

(bp) 
Donor References 

RLC1  NM_001327615 744 our lab [75] 

DEL65  AF336280 1863 our lab 
[76, 151] 

DEL61  AF336279 1875 our lab 

TTG1  AF530907 1032 our lab 

[74] 
TTG2  AF530909 1041 our lab 

TTG3  AF530911 1038 our lab 

TTG4   AF530912 1041 our lab 

Petunia (P.hybrida n=7)     

AN2  AAF66727 765 
Ronald 
Koes 

[44, 48, 49] AN4   EB175066 768 
Ronald 
Koes 

PH4   AY973324 843 
Ronald 
Koes 

AN1    AF020543 2007 
Ronald 
Koes 

[46, 47] 

JAF13   AF260918 1884 
Ronald 
Koes 

[45]  

AN11   U94748 1014 
Ronald 
Koes 

[51] 

Maize (Z.mays n=10)     

C1  AY237128 822 GRASSIUS 

[41, 43, 88, 89] PL  AAA19821 819 GRASSIUS 

P1  AY702552 1005 GRASSIUS 

R(Lc)  M26227 1830 GRASSIUS [40, 165] 

R(S)  X57276 1671 our lab  [166] 

B  M26227 1848 GRASSIUS [39, 167] 

PAC1   AY115485 1059 GRASSIUS 
[42] 

MP1   AY339884 1251 our lab 

 

In a first step, we confirmed the network model of MBW proteins in Arabis and cotton, 

respectively (Figure 2.3A and C, Figure S1, Table S2 and S3). Like in Arabidopsis, a 

single copy of AaTTG1 in Arabis was able to interact with 4 bHLH proteins which was 

potentially involved in five TTG1-dependent traits, although the regulatory mechanism 

was not fully understood (Figure 2.3A and Table S2) [57]. 

There were four copies of WD40 proteins in cotton (i.e. GhTTG1, GhTTG2, GhTTG3 

and GhTTG4), but only GhTTG1 and GhTTG3 could interact with bHLH proteins, which 

was consistent with the fact that only GhTTG1 and GhTTG3 function in seed fiber 

development (Figure 2.3C) [74]. 

As a second step, quantitative analyses of inter-relation were carried out. In Arabis, 

the results revealed a suppression of AaTTG1-AaGL3 and AaTTG1-AaEGL3 

interaction by AaGL1, AaWER or AaMYB23 suggested alternative complex formation, 
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however, a putative anthocyanin-specific R2R3MYB3 (i.e. AaPAPL) promoted their 

interaction suggesting a synergetic trimer or multimer formation. Similar with those in 

Arabidopsis, the combination of AaTTG1-AaMYC1 showed antagonistic exclusive 

inter-relation with any R2R3MYB here, whereas the combination of AaTTG1-AaTT8 

showed synergetic exclusive inter-relation (Figure 2.3B). As shown in Figure 2.3D, two 

fiber (seed trichome)-specific R2R3MYBs (i.e. GhMYB2 and GhMYB25) dramatically 

counteracted the interaction of GhTTG1-GhDEL65 as well as GhTTG1-GhDEL61, 

while the anthocyanin-specific GhRLC1 did not.  

These results demonstrated that alternative complex formation was a common 

behavior of  MBW components those were involved in regulating trichome develop- 

ment in rosid. 

  

(A)                                                                                                                                            

 

 

  

 

 

Figure 2.3 Inter-relation of MBW proteins in other rosids: Arabis alpina (Aa) and Gossypium 

hirsutum (Gh). 
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Figure 2.3 Cont. Inter-relation of MBW proteins in other rosids: Arabis alpina (Aa) and 

Gossypium hirsutum (Gh). 

(A) A comprehensive network model of MBW proteins in Arabis alpina demonstrated by by yeast two 

hybrids and pairwise LUMIER pulldown assays. It shows all MBW components identified up-to-date that 

potentially function in five TTG1-dependent traits.  

(B) The effect of four putative R2R3MYBs in Arabis alpina on the interaction between AaTTG1 (WD40) 

and 4 bHLH homologs, respectively. Triple LUMIER pulldown assays are used to quantify relative 

pulldown efficiency (pulldown ratio) of Renilla Luciferase fused AaTTG1 and ProtA fused bHLHs in the 

presence of YFP tagged R2R3MYB factors.  

(C) A comprehensive reticulated network model of MBW proteins in Gossypium hirsutum demonstrated 

by yeast two hybrids and pairwise LUMIER pulldown assays. MBW components presented here are 

able to regulate seed hair formation (specified by MYB2 and MYB25) or anthocyanin biosynthesis 

(specified by RLC1) potentially.   

(D) The effect of three R2R3MYBs in Gossypium hirsutum on the interaction between GhTTG1 (WD40) 

and 2 bHLH homologs, respectively. Triple LUMIER pulldown assays are used to quantify relative 

pulldown efficiency (pulldown ratio) of Renilla Luciferase fused GhTTG1 and ProtA fused bHLHs in the 

presence of YFP tagged R2R3MYB factors.  

(A) and (C) Any positive interaction is indicated by a full line (Arabis alpina in tangerine; Gossypium 

hirsutum in turquoise). Homo- and hetero-dimerization of bHLHs are depicted by arrow lines. Dash 

lines indicate weak interaction.  

(B) and (D) Each value represents mean ± standard errors (n = 3 biological replicates). *** indicates 

that pulldown ratio is extremely signigicant different from that of the reference (hollow column) by 

Student’s t test (0.0001 ≤ P < 0.001); ** indicates very significant difference (0.001 ≤ P < 0.01);* 

indicates significant difference (0.01 ≤ P < 0.05). 
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2.3.3 Stereochemistry of MBW proteins in asterids and monocots. 

It is widely known that MBW complexes in asterids and monocots are only able to 

regulate flavonoid pigmentation rather than trichome development. If indeed two 

alternative dimers are a common stereochemistry of MBW proteins in rosids, the 

question arises how they behave in asterids and monocots. Towards this end we 

studied inter-relation of MBW proteins in petunia (Petunia hydrida, representative for 

asterid) and maize (Zea mays, a representative for monocot), respectively. 

When we determined the pairwise interactions in our hands as a basis for the three 

protein interaction assays, some contradictions were found: homodimerisation of AN1 

was de novo verified by yeast two-hybrid and pairwise LUMIER assay [47, 146] (Figure 

2.4A, Table S4, and  Figure S1B); however we could not confirm the interation between 

B and R2R3MYBs in maize, for which reason we excluded B from three protein 

interaction assays [39, 43] (Figure 2.4C).  

As expected, no counteraction was observed in all combinations of AN11/AN1/MYBs 

(Figure 2.4B). Likewise, the interaction between PAC1 and R remained unchanged by 

adding C1 or even increased by adding PL (Figure 2.4D). These results suggested a 

synergetic inter-relation.   

Interestingly, AN11-JAF13 interaction was strongly reduced in the presence of any 

R2R3MYB proteins (AN2, AN4 or PH4), indicating antagonistic inter-relation of AN11-

JAF13/MYBs. JAF13 is functionally and evolutionary distinct from AN1 and R. Ectopic 

JAF13 expression induces anthocyanin accumulation in tissues that are already 

slightly pigmented, but does not alter the pattern of pigmentation; however, no loss-of-

function mutants are known for jaf13 in petunia [45-47, 146]. In our work (Chapter III), 

overexpression of JAF13 in gl3egl3tt8 could reduce N-file root hair which implied 

JAF13 is functionally similar with AtMYC1 other than AN1 (Figure 3.2B).   

Taking into account all of these results, we made the assumption that the functional 

and evolutionary divergence of bHLH proteins might determine different inter-relation 

of MBW components. 

 

 

 

 

 



____________________________________________________________ Chapter II 

 

26 
  

(A)                                                                                                                                          (C)   

  

(B)                                                                                                                                          (D) 
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Figure 2.4 Inter-relation of MBW proteins in asterid and monocot: Petunia hydrida (Ph) and Zea 

mays (Zm). 

(A) A comprehensive network model of MBW proteins in Petunia hydrida demonstrated by yeast two 

hybrids and pairwise LUMIER pulldown assays.  

(B) The effect of 3 different R2R3MYBs on the interaction between AN11 (WD40) and 2 bHLHs, 

respectively. Triple LUMIER pulldown assays are used to quantify relative pulldown efficiency (pulldown 

ratio) of Renilla Luciferase fused AN11 and ProtA fused bHLHs in the presence of YFP tagged 

R2R3MYB factors. The pulldown ratio is normalized to the combination AN11 and bHLHs without 

additional R2R3MYB proteins (hollow column). As a negative control, YFP only protein without any other 

CDS is also included (w/o), meanwhile YFP tagged AN11 is antagonistic-positive control. Each value 

represents mean ± standard errors (n = 3 biological replicates). *** indicates that pulldown ratio is 

extremely signigicant different from that of the reference (hollow column) by Student’s t test (0.0001 ≤  

P < 0.001); ** indicates very significant difference (0.001 ≤ P < 0.01); * indicates significant difference 

(0.01 ≤ P < 0.05). 

(C) A comprehensive network model of MBW proteins in Zea mays demonstrated by yeast two hybrids 

and pairwise LUMIER pulldown assays. 

(D) The effect of C1 and PL on the interaction between PAC1 (WD40) and R (bHLH), respectively. Triple 

LUMIER pulldown assays are used to quantify relative pulldown efficiency (pulldown ratio) of Renilla 

Luciferase fused PAC1 and ProtA fused bHLHs in the presence of YFP tagged R2R3MYB factors. The 

pulldown ratio is normalized to the combination PAC1 and bHLHs without additional R2R3MYB proteins 

(hollow column). As a negative control, YFP only protein without any other CDS is also included (w/o), 

meanwhile YFP tagged PAC1 is antagonistic-positive control. Each value represents mean ± standard 

errors (n = 3 biological replicates). *** indicates that pulldown ratio is extremely signigicant different from 

that of the reference (hollow column) by Student’s t test (0.0001 ≤ P < 0.001); ** indicates very significant 

difference (0.001 ≤ P < 0.01); * indicates significant difference (0.01 ≤ P < 0.05).  
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2.3.4 Proximity in bHLHs phylogenetic tree is perfectly accordant 

with their protein behavior similarity. 

Given that bHLH proteins play a bridging role in MBW complex formation, it is 

conceivable that bHLHs proteins are the overriding factor to determine the 

stereochemistry of MBW complexes. In order to confirm whether the diversification of 

MBW components  inter-relations could be categorized by evolutionary divergence of 

bHLH proteins, we generated a phylogenetic tree based on full protein sequences of  

bHLH proteins included in this work. As shown in Figure 2.5, two main clades (i.e. blue 

and orange) were classified by phylogenetic proximity of bHLH proteins.  

Intriguingly, these two clades coincided with inter-relations of the corresponding MBW 

components:  MBW combinations with bHLH proteins in orange clade behaved 

synergetically in their own species, while whose with bHLH proteins in blue clade 

behave antagonistic inter-relation. It was worth to mention that a subclade containing 

GhDEL65, GhDEL61, AtGL3, AaGL3, AtEGL3 and AaEGL3 was also a partially 

synergetic clade in the context of combinations with anthocyanin-specific R2R3MYBs, 

suggesting that synergetic inter-relation might be indispensible for MBW complexes 

regulating in anthocyanin biosynthesis pathway. 

We also predicted some important amino acids in bHLHs, whichmight feature their 

protein behavior by sequence alignment (Figure 2.6).  

  



____________________________________________________________ Chapter II 

 

29 
  

  (A)                                                                                                            (B)                                                                           (C)                                                       

 

Figure 2.5 Molecular phylogenetic analysis of bHLH proteins. 

(A) The phylogenetic trees were constructed using aligned full length of the bHLH proteins. The evolutionary history was inferred by using the Maximum 

Likelihood method based on the JTT matrix-based model [168]. Evolutionary analyses were conducted in MEGA6 [169].  

(B) MEME analysis of bHLH proteins motifs [http://alternate.meme-suite.org [170]. The motifs, numbered 1–9, are depicted as different colored boxes. The 

sequence information for each motif is provided in Figure S2. Motifs 8 correspond to the bHLH domain. P1 to P5 underlying arrows indicated predicted vital 

positions in bHLH proteins motifs. 

(C) Protein behaviors classification. Block in dotted line indicated protein behavior to be confirmed. 
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Figure 2.6 Amino acids in bHLHs might feature bHLHs behavior. 

Sequence alignment of bHLH proteins from five different plant species. Red triangles indicate vital positions in amino acids that might determine protein behavior 

difference between antagonistic clade (in dark blue bracket) and synergetic clade (in orange bracket). 
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Figure 2.6 Cont. Amino acids in bHLHs might feature bHLHs behavior. 

Sequence alignment of bHLH proteins from five different plant species. Red triangles indicate vital positions in amino acids that might determine protein behavior 

difference between antagonistic clade (in dark blue bracket) and synergetic clade (in orange bracket). 
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2.4 Discussion 

To date, studies show that throughout the plant kingdom flavonoid biosynthesis 

pathway is regulated by certain MBW (R2R3MYB-bHLH-WD40) complexes [87]. In this 

study, we examined in more detail the regulatory network that surrounds core MBW 

protein complexes, in particular with regard to stereochemistry of MBW components in 

different plant species. This has enabled an integrated MBW regulatory model to be 

developed and comparison of the data for rosid to asterid, as well as eudicot to 

monocot. 

2.4.1 Alternative dimer formation among MBW components is not an 

occasional phenomenon but bearing certain evolutionary implications 

in plants 

Previous studies in our lab revealed a new stereochemistry of MBW proteins in 

Arabidopsis, which refreshed the classic view of trimeric MBW complexes, i.e. in the 

context of trichome patterning alternative dimers were formed: GL1-GL3 and GL3-

TTG1 [149]. The formation of each dimer could be counteracted by the third protein 

(e.g. TTG1 counteracts the formation of GL1-GL3 dimer, and vice versa). Here, we 

define such competitive behavior among MBW components as the antagonistic inter-

relation. Correspondingly, non-competitive behavior is the synergetic inter-relation. As 

a typical reprensentive in rosid, Arabidopsis recuits both synergetic and antagonistic 

models in the inter-relation of MBW components  which correlates with their functional 

diversification in term of 5 AtTTG1-dependent traits (Figure 2.2). As expected, similar 

phenomenons were also observed in other rosids: Arabis (A. alpina) and cotton (G. 

hirsutum) (Figure 2.3). 

Duplication of MBW gene cassettes and subsequent divergence of rosid and asterid 

were deemed the driving force to evolve a new role of MBW complexes in rosid 

trichome development [81]. Therefore, we explored inter-relations of MBW 

components in asterid and monocot as comparison. For a strong knowledge base for 

the flavonoid-related MBW protein complexes in petunia (P. hybrida) and maize (Z. 

mays), we selected them as representive model species in asterid and monocot, 

respectively.  Based on the results for combinations of PhAN1 and ZmR, synergetic 

inter-relation only is present in their own species. However, PhJAF13 combinations 

showed strongly antagonistic inter-relation of AN11/JAF13/MYBs (Figure 2.4B) which 

acts in a AtMYC1 or AaMYC1-like manner (Figure 2.2B and Figure 2.3B).  
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These observations indicate the inter-relation of MBW components differing from one 

combination to  another is not in accordance with species divergence of asterid and 

rosid, nor eudicot and monocot.  

By establishing a phylogenetic tree of bHLH proteins, we revealed a general rule 

behind distinct inter-relations of MBW components. Two main clades classified by 

phylogenetic proximity of bHLH proteins are coincided with inter-relations of the 

corresponding MBW components, which suggests the evolutionary relevance of 

alternative dimers. 

2.4.2 MBW protein complexes regulating flavonoid biosynthesis tend 

to behave with synergetic inter-relation, while those regulating 

trichome development are antagonistic-bias. 

MBW complexes determine the spatiotemporal expression of flavonoid biosynthesis 

target genes that account for tissue-specific accumulation of flavonoids. Some MBW 

complexes from monocots can control the expression of enzymes of the entire pathway, 

while others specifically control late flavonoid biosynthesis genes in eudicots [171]. 

Nevertheless, the bHLH interaction motif ([DE]Lx2[RK]x3Lx6Lx3R) found in R2R3-MYB 

members of MBW complexes is highly conserved among higher plant species [172], 

suggesting that at least MYB and bHLH interactions arose early during the event of 

land plant evolution. 

AtTT8/AtPAP (anthocyanin-specific) and AtTT8/AtTT2 (proanthocyanidin-specific) are 

well-known predominant flavonoid biosynthesis regulators in Arabidopsis [31, 66, 103, 

104, 108, 143, 173], moreover, AtGL3/AtPAP and AtEGL3/AtPAP have minor effects 

on the anthocyanin biosynthetic pathway [66, 109]. All these MBW complexes above 

behave synergetically within their respective components (Figure 2.2B). Likewise, in 

Arabis and cotton, the inter-relation of MBW components potentially involved in the 

flavonoid biosynthetic pathway are synergetic as well, although their function in vivo 

are still not well characterized (Figure 2.3). Such correlation is also supported by data 

in maize and petunia (Figure 2.4). Interestingly, antagonistic-exclusive inter-relation 

among PhJAF13 combinations may explain why no loss-of-function mutants are known 

for jaf13 in petunia (i.g. JAF13 does not compensate for the loss of AN1, as an1 

mutants completely lack anthocyanins despite expressing JAF13) [45-47, 146]. 

In rosids, besides regulation of the flavonoid biosynthesis pathway, combinatorial 

MBW complexes evolved several extra functions: for instance, leaf trichome and root 
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hair (broad term of trichome) patterning specified by AtGL1 and AtWER, respectively, 

with its bHLH partners: AtGL3, AtEGL3 or AtMYC1 in Arabidopsis [29, 65-71]; And 

their orthologs (AaGL3, AaEGL3 and AaMYC1 with combinations of AaGL1 or AaWER) 

in Arabis are thought to regulate trichome development in Arabis despite being devoid 

of loss-of-function mutants [57]; Seed hair (broad term of trichome) formation in cotton 

is also under the control of GhDEL61/65 and their R2R3MYBs partners (e.g. well-

investigated GhMYB2 and GhMYB25) [73, 74, 76, 151, 160, 161, 164]. Interestingly, 

our data shows that all of these MBW complexes behave with antagonistic inter-

relation. These observations imply that a new regulatory MBW module has been 

adapted for controlling specific epidermal cell fates in rosids.  

Alltogether, MBW protein complexes regulating flavonoid biosynthesis tend to behave 

with synergetic inter-relation as an ancient stereochemistry, while those regulating 

trichome development are antagonistic-bias as a modern stereochemistry. Additionally, 

higher ordered complexes are possible to work as compatible structures between them 

due to homodimerization or heterodimerization of bHLH proteins (Figure 2.7)  

 

 
 

Figure 2.7 Potential evolutionary model for stereochemistry of MBW proteins in the context of 

traits regulation. 
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3. Evolutionary analysis of MBW function by phenotypic 

rescue in Arabidopsis thaliana 

3.1 Summary 

In Arabidopsis, the WD40 repeat protein is represented by the single copy gene TTG1 

comprising MBW complexes, which have been implicated in five epidermal cell traits: 

anthocyanin and proanthocyanidin biosynthesis, seed coat mucilage production, 

trichome and root hair patterning. These are so called TTG1-dependent traits. MBW 

genes which control trichome and root hair patterning traits are assumed to evolve 

from the duplication and diversification of flavonoid controlling genes, therefore 

trichome and root hair traits are considered as evolutionary current inventions. 

However, the exact evolving order of these traits still remains to be confirmed. To better 

define functional divergence of the MBW proteins in the five TTG1-dependent traits, 

and then come to address functional relevance of diverse stereochemistry of MBW 

complexes in term of TTG1-dependent traits, we performed inter-species complemen- 

tary assays with MBW homologs in Arabidopsis mutants.  

 

3.2 Introduction 

Arabidopsis flowers are naturally colorless but flavonoid-based pigments are produced 

in the seed coat (testa), giving Arabidopsis seeds particular brown color. Hence the 

identification of pigment mutants in Arabidopsis has primarily focused on convenient 

screens for yellow (no pigment) or light colored (reduced pigment) seed, otherwise 

known as transparent testa (tt) mutants [105, 174]. However, the seed coat pigments 

are not anthocyanins but a related pigment known as proanthocyanidins (PAs) 

produced in a branch of the flavonoid pathway (Figure 3.1). Although PA and 

anthocyanin biosynthesis share many steps of the flavonoid pathway, there are 

specific genes (both structural and regulatory) dedicated to the production of PAs. 

Conversely, the nature of tt screens did not allow for the isolation of anthocyanin-

specific mutants. However, the developmental profiles of anthocyanin pigment 

production and structural gene expression in young Arabidopsis seedlings have been 

well characterized [175]. 
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Figure 3.1 The flavonoid pigment biosynthetic pathway in Arabidopsis.  

(Adapted from [87, 147]) 

 

The first of the transparent testa mutants identified was transparent testa glabra1 (ttg1) 

[105] .This mutant had pleiotropic phenotypes. Not only are ttg1 seeds and plants 

devoid of all flavonoid-based pigments (PAs and anthocyanins), they also show a 

range of developmental defects: a lack of the trichome; a loss of cell patterning in the 

root epidermis resulting in the over-production of root hair cells in N-files; and 

undifferentiated cells of the epidermal layer of the seed coat resulting in a lack of seed 

coat mucilage normally produced by the testa epidermis during seed development. 

This immediately suggested a regulatory role for the TTG1 locus in the development 

of several widespread and seemingly unrelated characteristics linked only by their 

epidermal origin (Fig 1.3). Eventually, a chromosome walk to TTG1 locus was shown 

to encode a WD40 protein [28].  

The tt mutant screen approach described above yielded in a pair of TTG1-dependent 

regulators, TT8 and TT2 [102, 173]. TT8 and TT2 encode a bHLH and R2R3MYB 

protein, respectively, that together regulate specifically the biosynthesis of PA 

pigments in Arabidopsis seed coat. tt8 and tt2 mutants show no other ttg1-like mutant 
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phenotypes, even showing normal expression of anthocyanins in young seedlings 

where anthocyanins are developmentally produced and TT8 is also expressed. This 

suggested the existence of more TTG1-dependent Myb and bHLH Arabidopsis 

proteins controlling the various co-regulated epidermal pathways originally defined by 

the ttg1 mutant. Meanwhile, another pair of R2R3MYB-bHLH regulator GL1-GL3 was 

found during isolation of  the reduced trichome mutant glabra3 (gl3) and was glabra1 

(gl1) [29]. However neither gl1 nor gl3 mutants were pleiotropic like ttg1 mutants. This 

again strongly hinted other TTG1-dependent R2R3MYB and bHLH proteins in 

Arabidopsis.  

The genetic identification of enhancer of glabra3 (EGL3) gave rise to another pleitropic 

mutant gl3 egl3 that exhibited glabrous leave and differentiated root hairs in all cell files, 

as does ttg1. In addition, a clear-cut qualitative anthocyanin deficit and less mucilage 

were also found in gl3 elg3 double mutant through quantitatively weaker than ttg1. 

Later, the gl3 egl3 tt8 triple mutant, which is essentially phenotypically indistinguishable 

from the most severe ttg1 mutations, were produced as well [66]. 

Recenly, Squamosa Promoter Binding Protein-Like (SPLs) are reported to potentially 

rearrange the MBW complex, attenuating its transcriptional activity to control trichome 

distribution. Elevated SPL4/5 levels recruit TTG1, and therefore interfere with the 

stability of the MBW complex, mimicking the ttg1-like trichome disorder [176]. 

In this work, we performed cross-species rescue assays in order to reveal correlations 

between MBW proteins’ behavior and functions involved in the control of epidermal cell 

fates. 
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3.3 Results 

3.3.1 AtTTG1 orthologs functionally substitute AtTTG1 in term of all 

5 traits 

The discovery of the Arabidopsis ttg1 mutant provided an unique platform for the study 

of how TTG1 homologs functionally diverge in terms of five TTG1-dependent traits. It 

was of particular interest, whether the TTG1 like WD40 proteins from other plant 

species could complement not only ttg1 defects in anthocyanin production, but other 

ttg1 defects as well. An overexpression vector, referred to as 35S-WD40, which 

included full length of CDS, was transformed into one servere ttg1 allele, named ttg1-

1 [28, 105]. As a positive control, endogenous AtTTG1 was also cloned and 

transformed in parallel. (Figure 3.2B ). 

To determine if the 35S-WD40 transgene complements the ttg1 defect in 5 traits 

individually, we focused on various observations as follows (Figure 3.2A): 

a) Trichome: All primary transformant (T1 progeny) seedlings were screened for 

trichomes on true leaves regardless of number and patterning.  

b) Root hair: N-file hairs were counted with 1-week-old basta-resistant T2 seedlings 

(root phenotypes associated with ttg1 mutants are difficult to score, therefore were 

not examined rigorously). 

c) Anthocyanin: 4 DAG T2 progeny germinated on MS with 3% sugar were examed 

in the hypocotyl. 

d) In view of the seed phenotypes were maternally derived, we examed T2 seeds for 

both proanthocyanidin and mucilage observations regardless segregation.  

As shown in figure 3.2B, except for GhTTG2, GhTTG4 and ZmMP1, these WD40 

genes were functional homologues to the Arabidopsis thaliana TTG1 gene. The results 

presented here were congruent with previous research on maize and cotton TTG1 

homologs [52, 74]. Lastly, in rescued lines, when anthocyanin phenotype was 

complemented, all phenotypes were complemented. 

3.3.2  bHLHs have overlapping but differential regulatory capabilities 

in limitative traits  

As the gl3 egl3 tt8 triple mutant essentially phenocopied ttg1, we produced the gl3 egl3 

tt8 triple mutant in Col background by crossing. All 35S-bHLH (CDS) overexpression 
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constructs were transformed into triple mutants. Complementary analyses were carried 

out as described above.  

All of bHLHs genes here were able to suppress the mucilage defect of gl3 egl3 tt8, 

except for AtGL3 and ZmB. Our evidence reconfirmed AtGL3 played no role in 

mucilage production (Figure 3.2B) [66]. 

Out of our expectation, none of these bHLHs overexpression lines rescued transparent 

testa (i.e. yellow seed coat) of the gl3 egl3 tt8 triple mutant (Figure 3.2B) although 1 

out of 20 ZmR(Lc) overexpression lines produced light brown seeds (Data not shown). 

In view of promoter effect, 35S was swaped for the AtTT8 promoter (proTT8). 

Nevertheless, no bHLH gene could confer any brown seeds (Data not shown). 

Interestingly, after constructs were transformed into tt8 single mutant rather than gl3 

egl3 tt8 triple mutant,  we observed AtTT8, AaTT8, PhAN1 and ZmR fairly rescued 

seed coat color while proTT8-AtEGL3 lines had light brown seeds (Figure 3.2C). It 

suggested seed coat color rescue was AtGL3 and/or AtEGL3 dependent to some 

extent through unclear ways.      

Among the bHLHs tested, PhJAF13 and ZmB did not rescued anthocyanin 

biosynthesis in the Arabidopsis triple mutant (Figure 3.2B). These results were 

incompatible with the function of  these genes in their own species [45, 167]. 

Furthermore, we first discovered GhDEL61/65 were able to suppress the anthocyanin 

defect in the Arabidopisis mutant. B-Peru can substitute for R function in the seed, and 

only one functional allele at either locus is required for pigment synthesis [39, 167]. 

bHLHs (CDS) overexpression trichome phenotype was easy to be characterized: 

substantial trichomes were found in AtGL3, AtEGL3, AaGL3, AaEGL3 and ZmR 

overexpressed T1 seedlings from the first true leaf although their trichome patterning 

were irregular from wild type (Figure 3.2B and 3.3A).  

AtMYC1 is a quantitative trait gene for trichome density, when trichome is already 

initiated [70]. The genomic sequence of DEL61 or DEL65  driven by promoter AtGL3 

could complement trichome production in Arabidopsis gl3 egl3 double mutant [76, 151]. 

It implied these bHLHs might be under spatio- and temporal control by their virtual 

promoters and introns.  

Although we did not carry out intensive quantification of root hair production, all bHLHs 

which rescued the trichome phenotype were also able to significantly suppress root 

hair differentiation with varying levels in N files, but not fully suppress as wild type. In 

addition, AtMYC1, AaMYC1, GhDEL61 and GhDEL65 overexpression lines showed 



 ____________________________________ Chapter III 

 

41 
  

partial loss of N file hairs as well. To our surprise, PhJAF13 which is involved in 

anthocyanin biosynthesis in petunia did rescue the root hair phenotype moderately in 

Arabidopsis (Figure 3.2B and 3.3B) 

3.3.3  R2R3MYBs specifically rescue gl1 or pap1pap2 for one trait 

In view of the fact that ttg1 phenocopied multiple R2R3MYBs mutant has not been 

available now, we just picked trichome and anthocyanin traits for phenotypic analysis 

of R2R3MYB homologs (trichome trait is considered as a recent evolutionary invention 

while anthocyanin is an ancient trait in plants [81]). 

The specificity for these TTG1-dependent traits is ultimately bound to R2R3MYBs. gl1 

and pap mutations only affect trichome and anthocyanin, respectively, although 

phenotypes are not completely defective due to some partially redundant paralogous 

R2R3MYBs. For instance, minor trichomes are still visible on leaf margins in gl1 

mutants and faint anthocyanin can be detected in pap1 pap2 mutants. 

AaGL1, which has high sequence similarity to AtGL1, also exhibited function in 

trichome production in Arabidopsis. GhMYB2 and GhMYB25 were two R2R3MYB 

genes encoding cotton seed hair regulators, however, GhMYB25 could not rescue 

trichome phenotype of gl1 mutant. GhMYB3 was homologous to GhMYB2 and rescued 

trichomes as GhMYB2 (Figure 3.2B). It was worthwhile to note that trichomes with 

irregular patternings were initiated from 3rd and 4th leaves other than 1st and 2nd in 

AtGL1, AaGL1, GhMYB2 or GhMYB3 overexpression lines (Figure 3.3D). Interestingly, 

densed trichomes were observed on leaf margins from 5th leave in either AtTT2 or 

ZmPL overexpression lines suggesting these two R2R3MYBs might effect trichome 

phenotypes through some unknown bypasses (Figure 3.3D). 

Anthocyanin was not visible in pap1 pap2 double mutants, while AaPAPL, PhAN2, 

PhAN4 and PhPH4 restored anthocyanin biosynthesis detect of pap1pap2 at a 

comparable level with AtPAP (Figure 3.2B). Moreover, GhRLC1, ZmC1, ZmPL and 

ZmP1 overexpression lines showed substantial anthocyanin at relatively lower levels 

(Data not shown). 
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(A)

  

 

Figure 3.2 Rescue of  5 TTG1-dependent traits in Arabidopsis mutant by MBW genes from 

different plant species. 

(A) Schematic depiction of rescue strategy. 
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(B) 

 

Figure 3.2 Cont. Rescue of  5 TTG1-dependent traits in Arabidopsis mutant by MBW genes 

from different plant species 

(B) T1 or T2 lines transformed by pAMPAT-35S-GW showing phenotypic rescue (rescued lines / total 

number of lines) in ttg1, gl3/egl3/tt8, gl1 and pap1/pap2 mutant, respectively. Any trait rescued is 

indicated by grey filling block.  

a. Partially rescued; b. Trichome on leave margin is restored; c. Seed coat is light brown.  
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 (C) 

 

Figure 3.2 Cont. Rescue of  5 TTG1-dependent traits in Arabidopsis mutant by MBW genes 

from different plant species. 

(C) T1 or T2 lines transformed by pAMPAT-proTT8-bHLHs showing phenotypic rescue (rescued 

lines/total number of lines) in tt8 single mutant. 

n.d. Not done 

 

 

(A) 

 

Figure 3.3 Phenotypes of mutants rescued by different MBW genes. 

(A) The 3rd true leaf trichome phenotype of gl3egl3tt8 triple mutant rescued by 35S: bHLHs in 10-day-

old T1 seedling.(Scale bar =5 mm) 
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(B) 

 

(C) 

 

(D) 

 

 (E) 

 

Figure 3.3  Cont. Phenotypes of mutants rescued by different MBW genes 

 (B) Root hair phenotype of gl3egl3tt8 triple mutant rescued by 35S: bHLHs in T2 seedlings. (Scale bar 

=200 m) 
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(C) Seed coat mucilage phenotype of gl3egl3tt8 triple mutant rescued by 35S: bHLHs in T2 progeny. 

(Scale bar =100 m) 

(D) Trichome phenotype of gl1 single mutant rescued by 35S:R2R3MYBs in 3-week-old T1 seedlings. 

(E) Seed coat color of tt8 single mutant rescued by proTT8: bHLHs in T2 generations. (Scale bar =500 

m) 

 

3.3.4 Inter-species MBW pairwise interaction 

Since some orthologs of Arabidopsis MBW genes were able to restore TTG1-

dependent traits, we proposed that hetero-MBW complexes formation backed 

phenotypic rescue. To this end, we performed inter-species MBW proteins interaction 

assay with LUMIER.  

In the combination of bHLH proteins from Arabidopsis and AaTTG1, strong renilla 

luciferase activity signal were detected demonstrating AaTTG1 indeed interacted with 

4 bHLH proteins from Arabidopsis. Similar results were found in GhTTG1/bHLH, 

PhAN11-bHLH and ZmPAC1-bHLH combinations. GhTTG3, another ortholog of 

AtTTG1, was able to interact with AtGL3, AtEGL3 and AtMYC1 but not AtTT8. These 

results were well correlated with data in phenotypic rescue, i.e. AtTTG1 orthologs that 

could interact with 4 bHLH proteins had capacitivies in rescuing 5 TTG1-dependent 

traits, and vice versa (GhTTG2, GhTTG4 and ZmMP1 were devoid of rescuing ability). 

Additionally, GhTTG3 also weakly interacted with AtTT2, which might explain the fact 

that GhTTG3 fairly rescued seed coat color despite loss of interaction with AtTT8 

(Figure 3.4 and Table S6). 

All of bHLH proteins tested could firmly bind to AtTTG1. On the contrary, renilla 

luciferase activity of all bHLHs-AtMYB61 (a seed coat mucilage specific R2R3MYB) 

combinations were barely detectable. Except for ZmB, other bHLHs were found to 

interact with trait-specific AtR2R3MYBs, respectively, in spite of negative signals in 

AaEGL3-AtPAP2 combinations (Figure 3.4B and Table S7 ).  

Similar to intra-specific data, most of R2R3MYBs from other species were not able to 

directly interact with AtTTG1, however, the combination of ZmPL-AtTTG1 showed a 

weak signal which used to be found in AtTT2-AtTTG1 combination (Figure 3.4 and 

Table S). As expected, all of 4 Arabidopsis bHLH proteins was also confirmed to bind 

to hetero-R2R3MYBs but not to GhMYB25 or ZmP1 (Figure 3.4B and Table S8).   

To sum up, hetero-MBW complex formation was in concert with the rescue of TTG1-

dependent traits in Arabidopsis mutant by MBW orthologs.   
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(A) 

 

 

Figure 3.4 Analysis of inter-species MBW pairwise interaction by LUMIER pulldown assays. 

(A) MBW pairwise interaction in Arabidopsis thaliana as a positive control. 

w/o: Empty vector without CDS fusion.  

+ : Positive interaction (Luciferase activity ≥ 2.5%) 

w : Weak interaction (Luciferase activity = 1.5%~2.5%) 

- : No interaction (Luciferase activity < 1.5%) 
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(B) 

 

 

Figure 3.4 Cont. Analysis of inter-species MBW pairwise interaction by LUMIER pulldown 

assays.  

(B) Interaction is assessed by recombination Renilla luciferase fused MBW homologs from different 

plant species (Arabis alpine [Aa], Gossypium hirsutum [Gh], Petunia hybrid [Ph] and Zea mays [Zm]) 

with protein A (protA) fused MBW in Arabidopsis thaliana [At] and vice versa. All proteins are single-

expressed in human cells (HEK293TN) and immunoprecipitated with IgG Dynabeads. 
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3.4 Discussion 

Regularly, new orthologs are identified, which might be of relevance for breeding 

purposes. Not only are allelism tests and rescue experiments within the respective 

species conducted (if applicable) to explore the ortholog’s function, when mutants are 

identified. More often, the function of the orthologs is estimated by using the model 

species A. thaliana. In cross-species rescue experiments, MBW orthologs from other 

species are expected to take over AtMBW  function at least in part within respective 

MBW complexes.  

3.4.1 bHLH proteins redundantly and distinctly rescue AtTTG1- 

dependent traits, which provide an essential basic point for learning 

functional divergence of the MBW proteins 

AtTTG1 is the head of an evolutionarily-conserved gene regulatory network, regulating 

five AtTTG1-dependent traits with adaptive value for the plant. Similarly, AtTTG1-like 

WD40 proteins in other speices are indispensable for respective MBW regulatory traits 

in their own species as well. These AtTTG1 orthologs which are functionally active in 

their own species are able to substitute AtTTG1 in term of 5 traits, regardless of their 

intraspecific functions, and vice versa (Figure 3.2B).  

The bHLH factors act redundantly towards the different traits. All of bHLHs genes here 

(at least partially) suppress the mucilage defect of gl3 egl3 tt8 except for AtGL3 and 

ZmB, suggesting seed coat mucilage probably the most ancient and conserved trait 

during the plant evolution (Fig 3.2B). Based on the data, it seems that root hair and 

anthocyanin traits are equally positioned at the second conserved place, neverthless 

it needs to be mentioned that the function of PhJAF13 and ZmR in Arabidopsis have 

shifted and duplicated due to some unclear mechanisms (e.g. the hierarchical and 

feedback regulation of MBW genes in Arabidopsis [146]). Therefore, anthocyanin is 

a more conserved trait than root hair. Trichome and seed coat color 

(proanthocyanidin) are evolutionarily recent traits, because two distinct groups of 

bHLHs rescue the respective trait (apart from pleiotropic ZmR) (Figure 3.2B and 

3.2C). 

The highest specificity of the trait regulation by MBW protein complexes exists on the 

level of the R2R3MYB factors. All R2R3MYBs tested here still retain their intraspecific 

function in Arabidopsis without shifts or duplications, while GhMYB25 lost its function. 
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3.4.2 Hetero-MBW complex formation is in concert with rescue of  

AtTTG1-dependent traits in Arabidopsis mutant by MBW orthologs 

Most orthologs of Arabidopsis MBW genes are able to restore TTG1-dependent traits 

to varying degrees, suggesting hetero-MBW complex formation might back phenotypic 

rescue. The result of inter-species MBW proteins interaction LUMIER assay supports 

our speculation. Three AtTTG1 orthologs (i.g. GhTTG2, GhTTG4 and ZmMP1) devoid 

of rescuing any traits fail to form hetero-MBW complexes in Arabidopsis, which is 

consistent with their intra-specific data (Figure 3.4B ,Table S3 and Table S5) [74]. 

Besides, none of Arabidopsis bHLH proteins bind to GhMYB25, which is again in 

concert with the loss of its function in Arabidopsis (Figure 3.2B and Figure 3.4B). 

Similarly, in bHLH proteins, ZmB which lost its function in Arabidopsis is found not able 

to interact with trait-specific AtR2R3MYBs. Although the other bHLH proteins that are 

able to form hetero-MBW complexes in terms of all 5 traits, not every bHLH protein 

could rescue all 5 traits (Figure 3.2B and Figure 3.4B). One question might be raised 

referring to AtMYB61 combinations: why are almost bHLHs able to restore seed coat 

mucilage regardless of their negative binding with AtMYB61? One explaination might 

be that other functionally redundant R2R3MYBs probably take over AtMYB61 for the 

mucilage trait, e.g. MYB5, MYB23 and so on [104, 177]). From these results, we could 

conclude that hetero-MBW complexes formation is necessary, but not a sufficient 

condition for rescue of  TTG1-dependent traits in Arabidopsis mutants. 

In addition, the direct interaction of ZmPL-AtTTG1 and AtTT2-AtTTG1 might lead to 

minor trichome formation on the leaf border in gl1 mutants by ZmPL or AtTT2 

overexpression (Figure 3.3D and Figure 3.4B). 
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4. Quantitative Analysis of TTG1, GL3 and GL1 Protein 

Complex Formation 

4.1 Summary 

TTG1, GL3 and GL1 are three key MBW factors that regulate leaf trichome formation 

in Arabidopsis. The introduction of two alternative dimers (i.g. TTG1-GL3 and GL3-

GL1) complicates previous trichome patterning models based on one ternary protein 

complex (i.g. TTG1-GL3-GL1). In particular, it is unknown, which relative concentra- 

tions of dimers and ternary complexes are to be expected. Towards this end, I 

performed quantitative LUMIER assays to determine the relative binding affinities and 

quantified the dosage dependend competition in titration experiments. These 

experimental studies were complemented by mathematical modeling by Anna Deneer, 

Waageningen.  

4.2 Results 

4.2.1 The comparison of GL3 binding affinity with GL1, TTG1 and itself  

As TTG1 and GL1 bind to different regions of the GL3 protein [29, 66, 67], it is 

conceivable that the observed competitive binding to GL3 is due to intramolecular 

changes of protein folding, also known as an allosteric regulation. To describe the 

formation of dimers and trimers quantitatively, it is necessary to determine the binding 

constant/dissociation constant o f GL3 TTG1 and GL3 GL1. Towards this end, we 

performed pulldown experiments by LUMIER assays [149, 178]. The amount of ProtA 

tagged GL3 was kept constant and a dilution series of Luciferase-tagged GL1 and 

TTG1 was added for the titration experiments. To enable a comparison of the relative 

amounts of GL3 and GL1 or TTG1 protein all proteins carried an additional HA-tag. 

The relative amounts of the three proteins were determined by a quantitative analysis 

of western blots using the HA-antibody (Figure S3). Data analysis was done by Anna 

Deener, Wageningen University. She determined the best fit curve for my data  (Figure 

4.1) and calculated the dissociation constants (Kds). As we do not know the absolute 

protein concentrations, these Kds are relative Kds that enable a comparison of the 

binding affininty of all proteins to GL3. As showed in Figure 4.1A, she estimated the 

Kds for GL1-GL3 at 0.42 and that for TTG1-GL3 at 0.63, respectively. The difference 

between the two Kds is statistically significant suggesting that the binding affinity of 

GL3 has higher affinity with GL1 than TTG1 (Figure S4A). Additionally, the binding 
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affinity of GL3-GL3 (i.g. GL3 homodimerization) was estimated in a similar range of 

GL1-GL3 (Note that dimerization of the same tagged GL3 was not counted here) 

(Figure 4.1B and Figure S4B). Therefore, we take into account GL3 homo-dimerization 

in our analysis. 

 

(A) 

     

(B) 

 

 

Figure 4.1 GL3 binding affinity analyses 

. 
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(A) Binding affinity comparison of TTG1-GL3 (yellow) and GL1-GL3 (blue). Each value represents mean 

± standard errors (n = 3 technical replicates). Kd values are estimated by Anna Deneer, Wageningen 

University based data of this work (Table S9). 

(B) Binding affinity comparison of GL3-GL3 (blue) and GL1-GL3 (violet). Each value represents mean 

± standard errors (n = 3 technical replicates). Kd values are estimated by Anna Deneer, Wageningen 

University based data of this work (Table S11). 

 

4.2.2 Effect of GL1 on the TTG1 binding to GL3 in dependence of the 

relative protein concentration 

To further investigate the details of TTG1 and GL1 competing for the binding to GL3, I 

quantified the effect of GL1 (or TTG1) on the interaction between GL3 and TTG1 (or 

GL1) by dosage-dependent LUMIER assay. When adding increasing amounts of GL1, 

the relative binding intensity of TTG1-GL3 dropped to ~ 63.72%. The maximal inhibition 

was found at a molecular ratio of TTG1 to GL1 of about 1:1. Interestingly, a rebound 

from lowest value was found before it plateaued at around 81.63%  (after GL1 out-

amounted TTG1 by approximate twice) suggesting effect of GL1 might shift to 

synergetic-dominant on TTG1-GL3 interaction by a certain out-amounted GL1 (Figure 

4.3 and Table S13). Whereas decreasing-only effect of YFP tagged TTG1 on the 

interaction between ProtA tagged GL3 and Renilla_LUC tagged TTG1 was found in 

the control (Table S13), indicating the formation of multiple orders of complexes shifted 

dynamically in dependence of the relative protein concentration. 

 



 ____________________________________ Chapter IV 

 

55 
  

 

Figure 4.2 Quantitative analysis of TTG1 and GL1 competing for the binding to GL3. 

The effect of incremental amount of GL1on binding intensity of TTG1 and GL3 indicated by grey spares. 

Each value represents mean ± standard errors (n = 2 biological replicates). ANOVA test showed that 

there is significant difference between the different levels of GL1 (p < 0.001, referring to Table S15) 

Model (red line) fits to 𝑓(𝑥)= 
∑ 𝑎𝑖𝑥

𝑛𝑖𝑖=0

∑ 𝑏𝑖𝑥
𝑚𝑖𝑖=0

 . n = {0,10} m = {0, 2, 10}.   

Modeling by Anna Deneer, Wageningen University based data of this work (Table S13). 

 

4.2.3 Quantitative analysis of GL1 and TTG1 effect on GL3 homo- 

dimerisation  

As GL3 can dimerize [29, 65, 66], it is possible that higher order complexes are formed. 

To test, whether GL3 dimerization is influenced by binding of GL3 to TTG1 or GL1, we 

used ProtA tagged GL3 to precipitate Renilla_Luciferase tagged GL3 in the presence 

of different amounts of TTG1 and GL1 (Figure 4.2 and Table S12). In these experiment 

we found no differences of the GL3 dimerization upon addition of TTG1 and GL1 

indicating that GL3 dimerization is not modulated by GL1 or TTG1 binding, which in 

turn suggested homodimerization of GL3 is independent of other protein binding 

reactions. 
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 (A)  

 

(B)  

 

Figure 4.3 Quantitative analysis of TTG1 and GL1 effect on GL3 homodimerisation. 

(A) Binding intensity of ProtA tagged GL3 and Renilla_LUC tagged GL3 was determined in the presence 

of incremental amount of YFP tagged TTG1. Binding intensity was normalized to the reference that was 

determined without additional TTG1 (defined as 100%).  

(B) Binding intensity of ProtA tagged GL3 and Renilla_LUC tagged GL3 was determined in the presence 

of incremental amount of YFP tagged GL1. Binding intensity was normalized to the reference that was 

determined without additional GL1 (defined as 100%). 

Each value represents mean ± standard errors (n = 3 technical replicates). By Student’s t test, no 

significant difference from the reference was achieved (P ≥ 0.05). 

 

4.2.4 Quantitative analysis of the interaction of GL3 with inhibitors 

TRY and CPC  

A second important type of protein-protein interactions of GL3 is that with the trichome 

inhibitors TRY and CPC. TRY and CPC binding to GL3 occurs in the same region of 
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GL3 as GL1 binding. Therefore TRY/CPC compete for binding with GL1 to GL3. The 

binding of TRY/CPC to GL3 leads to a transcriptionally inactive complex whereas GL1 

bound to GL3 results in a transcriptionally active complex [179]. To quantitatively 

assess this competition I aimed to determine the dissociations constants of TRY/CPC 

with GL3. Using ProtA tagged GL3 and Renilla_LUC tagged TRY/CPC, I performed 

titration experiments and Anna Deneer determined the best fitting curves (Figure 4.4). 

As compared to GL1 we observed slopes with a reduced steepness and the Kd values 

were clearly much higher for TRY (Kd = 1,6) and CPC (Kd = 7,28). This suggests that 

TRY and CPC levels need to be higher than GL1 for competition. To test this 

assumption, we did a titration series by studying the GL3-GL1 interaction in the 

presence of different amounts of TRY. We found a concentration dependent reduction 

of GL1 binding to GL3 (Figure 4.5B and Table S14). Surprisingly, GL3-GL1 binding 

intensity dropped to the lowest level and was stable at ~20% in the presense of 

equimolar amount of GL1 and TRY (Table S14). 

 

 

Figure 4.4 Analysis of GL3 binding affinity with inhibitors TRY and CPC. 

Binding affinity comparison of GL1-GL3 (yellow), TRY-GL3 (blue) and CPC-GL3 (red). Each value 

represents mean ± standard errors (n = 3 technical replicates). Kd values are estimated by Anna Deneer, 

Wageningen University based data of this work (Table S10). 
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4.2.5 The inhibitory effect comparison between distinct binding site 

competition and same binding site competition by mathematic 

modeling 

Based on above data, we estimated coefficient of inhibition of GL1 on GL3-TTG1 

interaction (decreasing phase at the first 5 points) via mathematic modeling (Figure 

4.5A which was carried out by Anna Deener, Wageningen University). Likewise, same 

approaches were applied in the estimation of TRY inhibitory effect on GL3-GL1 

interaction as a same bind site competition control (Figure 4.5B). As expected, 

modeling showed the inhibitory coefficient caused by distinct binding site competition 

(b = 0.53, i.g. GL1 on GL3-TTG1) was much lower than that caused by same binding 

site competition (b = 2.38, i.g. TRY on GL3-GL1), suggesting GL1 might also work as 

a weak synergist on GL3-TTG1 interaction in the beginning. It was worth be mentioned, 

decreasing points in Figure 4.5A better fitted to the model with m = 2, rather than m = 

1, indicating that initially a dimer of GL1 inhibiting the GL3-TTG1 binding, which was 

consistent with the fact that GL1 was able to form homodimer [180].  
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(A) 

 

 

 (B) 

 

 

Figure 4.5 The inhibitory effect comparison between GL1 on GL3-TTG1 (distinct binding site 

competition) and TRY on GL1-GL3 (same binding site competition). 

 (A) Model fits to initial decrease 𝑓(𝑥)= 
1

(1+𝑏𝑥𝑚)
 . It represents an inhibitory effect of GL1, where m 

indicates the complex order. Grey line best fits with estimates for b (coefficient of inhibition) and m (GL1 

unit) given in legend. SSE: sum of squared error for nearest integers of m. Blue line is a first order 

complex (m = 1, with GL1 monomer) while red line fits to a second order complex (m = 2, with GL1 

dimer). [Modeling by Anna Deneer, Wageningen University based data of this work (Table S13).] 
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(B) The effect of incremental amount of TRY on binding intensity of GL1-GL3 indicated by grey spares. 

Each value represents mean ± standard errors (n = 2 biological replicates). Model fits to R3MYB inhibitor 

(TRY) decreasing GL1-GL3 binding. Model (red line) best fits with estimates for b (coefficient of inhibition) 

and m (TRY unit). [Modeling by Anna Deneer, Wageningen University based data of this work (Table 

S14).] 

 

4.3 Discussion 

Mechanisms beneath the regulation of trichome formation in Arabidopsis are 

sophisticated networks involving multiple stereochemistry of MBW protein complexes. 

Here, we used GL1-GL3-TTG1 as a representative MBW complex modulating 

trichome formation to quantitatively decipher how alternative dimers (GL1-GL3 and 

GL3-TTG1) refresh the current trichome patterning model.  

Since the observation of antagonistic inter-relation among GL1, GL3 and TTG1 was 

first presented by Martina Pesch [149], we had been seeking for its functional 

relevance on trichome morphogenesis for long time. However, quantitative analyses 

of morphogenesis in vivo was messy operations. To this end, mathematic simulation 

was recruited based on our dobale experimental data. First of all, aiming to provide 

critical parameters for following mathematic modelings we estimated GL3 binding 

affinity with TTG1, GL1 and itself, respectively. Moreover, from binding affinity 

estimation, it is assumed that GL3 tends to form homo-dimer firmly regardless of  the 

presence of  TTG1 and GL1 (Figure 4.1). On the basis of quantitative analyses of TTG1 

and GL1 competing for the binding to GL3, The effect of incremental amount of GL1 

on binding intensity between TTG1 and GL3 was in three different phases (Figure 4.2): 

1) dissociation between TTG1 and GL3 as the inhibitory effect of GL1 in the beginning; 

2) rebinding of TTG1 and GL3 as reduced inhibitory and/or increased synergetic effect 

of GL1 when the amount of GL1 exceeded that of TTG1; 3) balancing after GL1 out-

amounted TTG1 by approximate twice. Mathematic modeling showed the inhibitory 

coefficient of GL1 effect on GL3-TTG1 was much lower than that caused by the same 

binding site competition (Figure 4.5), suggesting even in the very beginning of 

decreasing phase, GL1 probably also synergized the GL3-TTG1 interaction although 

in subordinate effect.  

Due to the complicated inter-relation of these three components in the dosage-

dependent assay, it is conceivable that the formation of multiple orders of complexes 

shifts dynamically in dependence of the relative protein concentration in vivo as well 

(Figure 4.6). 



 ____________________________________ Chapter IV 

 

61 
  

  

 

 

 

Figure 4. 6 Dynamic balance of multiple orders of complexes formed by TTG1, GL3 and GL1. 

We propose homodimerized GL3 interact with TTG1 and/or GL1. Provided GL3-TTG1 complex is a 

starting point, antagonistic inter-relation firstly occurs in the incremental presence of GL1 (blue region, 

the inhibitory-dominant GL1 competes TTG1 for binding to GL3); As GL1 out-amounts TTG1 (orange 

region), synergist role of GL1 significantly effects on complexes formation although inhibitory effect is 

still dominant resulting in the decreasing output; Finally, multiple orders of complexes balances 

dynamically after GL1 exceeds doublemolar level of TTG1. [Note: an initial homodimer of GL1 (not 

indicated in the figure) is assumed to inhibit the interaction of GL3-TTG1.]    
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PERSPECTIVE 

In depth quantitative analyses of inter-relation of MBW components from different plant 

species revealed that the existence of diverse inter-relation among MBW components 

in the perspective of the event of plant evolution. These results emphasized that the 

critical role of three MBW components. Nevertheless, factors that casue distinct protein 

behavior are still remained as a unexplored field (for instance, positions in bHLH 

proteins and PAP-like MYBs). In addition, why plants recruit different stereochemistry 

of MBW proteins (i.g. the functional relevance of differernt MBW protein behavior in 

vivo) could be a central question driving future research.  

As dominant regulators in Arabidopsis leaf trichome initiation and patterning, TTG1, 

GL3 and GL1 work in a dynamic balance with various phases in term of dimers, trimers 

and multimers. The competition between TTG1 and GL1 for binding to GL3 differs from 

the same binding site competition (e.g. GL1 and R3MYB inhibitors competing for the 

same site on GL3). In this regard, a lot of work remains to be carried out to decipher 

the competition mechanism behind interactions among TTG1, GL3 and GL1 (e.g. an 

allosteric-like regulation induced competition for binding to GL3). Furthermore, building 

a connection between differential proportion of multiple orders of protein complexes 

and trichome morphogenesis is our final aim. 

 

 

 

 



 _________________________________________ Chapter V 

 

63 
  

 

 

 

 

  

CHAPTER V 

MATERIALS AND METHODS 

  



 _________________________________________ Chapter V 

 

64 
  

5. Materials and Methods 

5.1 General Materials 

All chemicals and antibiotics used comply analytical quality and were obtained from 

Sigma-Aldrich (Munic, Steinheim), Roth (Karlsruhe), Merck (Darmstadt), and Duchefa 

(Haarlem, Netherlands). 

DNA modifying enzymes (restriction enzymes, Taq polymerase, Pfu polymerase, 

Phusion polymerase, T4 ligase) as well as the pJET Cloning Kit were used from MBI-

fermentas (Thermo Fisher Scientific, USA). DNA preparation kits (Mini, Midi, Maxi, gel 

extraction, purification) were supplied from QIAGEN (Hilden), Fermentas (Thermo 

Fisher Scientific, USA), peqlab (Erlangen), Roche (Mannheim), and Invitrogen 

(Karlsruhe). 

5.1.1 Buffers and Solutions 

If not stated otherwise, all buffers and solutions were prepared with distilled 0.2μm 

filtered H2O. All buffers used for gel filtration columns were additionally 0.2μm filtered 

after preparation and vacuumed for 45 min before usage. 

Bacterium Culture 

LB 
pH 7.0 

Concentration Content 

10 g/l Peptone 

5 g/l Yeast extract 

5 g/l Sodium Chloride 

15 g/l Agar 

YEB 
pH 7.0 

5 g/l Beef extract 

1 g/l Yeast extract 

5 g/l Peptone 

5 g/l Sucrose 

0.5 g/l MgCl2 

15 g/l Agar 

 
Yeast Culture 

 

YPAD 

Concentration Content 

20 g/l Bacto-peptone 

10 g/l Bacto-yeast extract 

40 mg/l Adenine sulfate 

20 g/l Agar 

 2% Glucose 
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Plant Culture 

MS 
pH 5.7 

Concentration Content 

4.33 g/l Murashige and Skoog with vitamins 

1% (3%) Sucrose 

10 g/l Plant agar 

 

 
 

Plant DNA Extraction Buffer 
pH 7.5 

Concentration Content 

200 mM Tris-HCl 

150 mM NaCl 

25 mM EDTA 

0.5% SDS 

 

Western Blot 

SDS-PAGE 

Component Stacking gel Separating gel 

 5% 7.5% 10% 12.5% 15% 

Gel buffer (ml) 0.345 2.815 2.815 2.815 2.815 

H2O (ml) 1.835 2.670 2.045 1.420 0.800 

10% SDS (µl) 27.5 75 75 75 75 

30% acrylamide (ml) 0.460 1.875 2.500 3.125 3.750 

TEMED (µl) 3 6 6 6 6 

10% APS (µl) 15 60 60 60 60 

Stacking gel buffer: 1 M TRIS/HCl pH 6.8    Separating gel buffer: 1 M TRIS/HCl pH 8.8 

10 x SDS running buffer 

Concentration Content 

144 g/l Glycine 

30 g/l Tris 

10 g/l SDS 

  

 
 
 
 

 
SD medium 

pH 5.8 

Concentration Content 

1.7 g/l Yeast nitrogen base 

5 g/l Ammonium sulfate 

0,6 g/l Drop-out supplement 

100 mg/l Leucine 

20 mg/l Histidine 

50 mg/l Tryptophan 

100 mg/l Adenine 

18 g/l Agar 

2% Glucose 

0 - 15 mM 3-AT 
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10 x 
Carbonate 

blotting 
buffer 

Concentration Content 

Towbin 
buffer 

Concentration Content 

8.4 g/l NaHCO3 7,36 g/l Glycine 

3.1 g/l Na2CO3 1,21 g/l TRIS 

8.3 ml 10% SDS 100 ml MeOH (add fresh) 

 

10 x PBS 

Concentration Content 

25.6 g/l Na2HPO4·7H2O 

80 g/l NaCl 

2 g/l KCl 

2 g/l KH2PO4 

PBS-T: 1 x PBS containing 0.1% TWEEN 20 

Antibodies 

Primary antibody 
(usually in 2% milk in TBS) 

Secondary antibody 
(usually in 5% milk in TBS) 

α-HA (Roche, unconjugated) 1:4000 α-rat IgG-HRP 1:5000 

α-CSN4 (Biomol) 1:1000 α -rabbit IgG-HRP 1:80000 

α-RBX1 (Biomol) 1:2000 α -rabbit IgG-HRP 1:80000 

α-CUL4 (Genschik) 1:2000 α -rabbit IgG-HRP 1:80000 

α-GFP (Roche monoclonal) 1:5000 α -mouse IgG-HRP 1:50000 

α-HSC70 (Stressgen) 1:20000 α -mouse IgG-HRP 1:50000 

α-HSP90 (SantaCruz) 1:10000 α -rabbit IgG-HRP 1:80000 

α-PEPC (Rockland/Biomol) 1:5000 α -rabbit IgG-HRP 1:80000 

α-Tubulin (Sigma) 1:10000 α -mouse IgG-HRP 1:50000 

α-Histone H3 (Abcam) 1:5000 α -rabbit IgG-HRP 1:80000 

α-HA-HRP (Roche) 1:1000   

 

 

TAE 
pH 7.5 

Concentration Content 

200 mM Tris-HCl 

150 mM NaCl 

25 mM EDTA 

0.5% SDS 

 
 

Antibiotics Stock solution Final concentration 

Kanamycin 100 mg/ml 50 mg/l 

Ampicillin 100 mg/ml 50 mg/l 

Gentamicin 50 mg/ml 50 mg/l 

Chloramphenicol 30 mg/ml 30 mg/l 

Rifampicin 25 mg/ml 25 mg/l 

Cefotaxime 200 mg/ml 200 mg/l 
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LUMIER 

HEK cell lysis buffer 

Concentration Content 

22 mM Tris/HCl pH 7.5 

275 mM NaCl 

11 mM Na2EDTA pH 8.0 

1.1% Triton X-100 

10 mM DTT 

1 tablet/10 ml Complete (Roche) protease inhibitor cocktail 

 
 

Renilla detection 
buffer 

Concentration Content 

1.1 M NaCl 

2.2 mM Na2EDTA pH 8.0 

220 mM KXPO4 pH 5.1 

10 mM DTT 

0.44 mg/ml BSA 

0.1%(v/v) Renilla luciferase substrate (coelenterazine) 
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5.1.2 Organisms 

Bacterial Strains 

Name Organism Application 

DH5α E. coli general cloning 

DB3.1 E. coli Gateway cloning with ccdB 

BL21(DE3) E. coli protein expression in bacteria 

LBA4404 
pBBR1MCS.virGN54D 

Rhizobium 
radiobacter 

cell culture transformation (Arabidopsis) 

GV3101 pMP90RK 
Rhizobium 
radiobacter 

plant transformation (Arabidopsis and Nicotiana) 

Yeast Strains 

Name Genotype Application 

Y187 
MATα, ura3-52, his3-200, ade2-101,112 gcn2::LEU2, trp1-901, 
leu2-3, gal4-∆, gal80-∆, met-, URA3::GAL1UAS-GAL1TATA-
LacZ,MEL1 

Screening 
 

AH109 
MATα, trp1-901, leu2-3, 112 gcn2::LEU2, ura3-52, 
his3-200, gal4-Δ, gal80-Δ, LYS2:: GAL1UAS- GAL1TATA-HIS3-
GAL1TATA-LacZ 

Yeast two-hybrid 
 

YM4271 
MATα, ura3-52, his3-200, ade2-101, lys2-801, leu2-3,112 
gcn2::LEU2, trp1-901, tyr1-501, gal4-∆512, gal80-∆538, 
ade5::hisG 

Yeast one-hybrid 

 

 

 

 

 

 

 

 

 

 

 

5.1.3 Oligonucleotides 

All primers were obtained from either Invitrogen (Karlsruhe) or Sigma (Munic, 

Steinheim). For detailed information about all primers that I used, see table 5.1 below. 
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Table 5.1 Oligonucleotides 

Primer ID Primer Name Primer Sequence  

pBP0001 attB-AN11-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGAAAATTCAAGTCAAGA 

pBP0002 attB-AN11-R GGGGACCACTTTGTACAAGAAAGCTGGGTTTACTTTAAGCAATTGCAACT 

pBP0003 attB-JAF13-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCTATGGGATGCAAAGA 

pBP0004 attB-JAF13-R GGGGACCACTTTGTACAAGAAAGCTGGGTTAGATTTCCAGACTACTCGCT 

pBP0005 attB-AN1-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGCAGCTGCAAACCATGTT 

pBP0006 attB-AN1-R GGGGACCACTTTGTACAAGAAAGCTGGGTTTTAAACTCTAGGGATTAACT 

pBP0007 attB-AN2-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGAGTACTTCTAATGCATC 

pBP0008 attB-AN2-R GGGGACCACTTTGTACAAGAAAGCTGGGTTCTAACTAACTAAATCCCATA 

pBP0009 attB-AN4-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGAAAACTTCTGTTTTTAC 

pBP0010 attB-AN4-R GGGGACCACTTTGTACAAGAAAGCTGGGTTCTATAGTAATTCCCAGAGGT 

pBP0011 attB-PH4-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGAGAACCCCATCATCATC 

pBP0012 attB-PH4-R GGGGACCACTTTGTACAAGAAAGCTGGGTTCTAACTGGGATTATATTGAT 

pBP0013 attB-PAC1-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGACCCACCCAAGCCGCC 

pBP0014 attB-PAC1-R GGGGACCACTTTGTACAAGAAAGCTGGGTTGACCCTAAGAAGCTGGACCT 

pBP0015 attB-MP1-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGGCGGAGTCGGCGAAGG 

pBP0016 attB-MP1-R GGGGACCACTTTGTACAAGAAAGCTGGGTTTCAGACCCTGAGAATCTGAA 

pBP0017 attB-R-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCGCTTTCAGCTTCCCG 

pBP0018 attB-R-R GGGGACCACTTTGTACAAGAAAGCTGGGTTTCACCGCTTCCCTATAGCTT 

pBP0019 attB-B-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCCCTGTCTGCTTGTCC 

pBP0020 attB-B-R GGGGACCACTTTGTACAAGAAAGCTGGGTTCCTCTTGCCGATAGCCTTCC 

pBP0021 attB-PL-F GGGGACAAGTTTGUACAAAAAAGCAGGCTTAATGGGCCGCAGGGCTTGCTG 

pBP0022 attB-PL-R GGGGACCACTTTGTACAAGAAAGCTGGGTTAACCAGCUTGCTCAGCAGTAT 

pBP0023 attB-C1-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGGGAGGAGGGCGTGTTG 

pBP0024 attB-C1-R GGGGACCACTTTGTACAAGAAAGCTGGGTTTCACGCAAGCTGCCCGGCCG 

pBP0025 attB-P1-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGGGAGGGCGCCGTGCTG 

pBP0026 attB-P1-R GGGGACCACTTTGTACAAGAAAGCTGGGTTGAACGAGTCGGACAGGAGCC 

pBP0027 GhACT1-F CTGTGATAATGGAACTGGAATGGT 

pBP0028 GhACT1-R TATCATCCCAGTTGCTCACAATACCAT 

pBP0029 attB-GhTTG1-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGAGAATTCAACTCAGGA 

pBP0030 attB-GhTTG1-R GGGGACCACTTTGTACAAGAAAGCTGGGTTTCAAACTTTGAGAAGCTGCA 

pBP0031 attB-GhTTG2-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCCGCTAGCAGCGATCC 

pBP0032 attB-GhTTG2-R GGGGACCACTTTGTACAAGAAAGCTGGGTTTCATACCCTGAGAATCTGAA 

pBP0033 attB-GhTTG3-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGAGAATTCAACTCAAGA 

pBP0034 attB-GhTTG3-R GGGGACCACTTTGTACAAGAAAGCTGGGTTTCAAACTTTGAGAAGCTGCA 
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Table 5.1 Cont. 

Primer ID Primer Name Primer Sequence  

pBP0035 attB-GhTTG4-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGACGGCCACCAGCGATCC 

pBP0036 attB-GhTTG4-R GGGGACCACTTTGTACAAGAAAGCTGGGTTTCATACCCTTAGAATCTGAA 

pBP0037 attB-GhDEL61-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCTACTACTGGGGTTCA 

pBP0038 attB-GhDEL61-R GGGGACCACTTTGTACAAGAAAGCTGGGTTTTACACAAAGGTTAAAGATT 

pBP0039 attB-GhDEL65-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGTCTACTGGAGTTCAACA 

pBP0040 attB-GhDEL65-R GGGGACCACTTTGTACAAGAAAGCTGGGTTTCAACACTTGCTAGCAATTC 

pBP0041 attB-GhMYB2-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCTCCAAAGAAGGCTGG 

pBP0042 attB-GhMYB2-R GGGGACCACTTTGTACAAGAAAGCTGGGTTTTATACCATTGCTAATGGAT 

pBP0043 attB-GhMYB3-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGAGCAAAATTTGTCCCT 

pBP0044 attB-GhMYB3-R GGGGACCACTTTGTACAAGAAAGCTGGGTTTTAAAACTTAAAACCGTCGT 

pBP0045 attB-GhMYB25-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGCAGCAGTCTCCATGTAG 

pBP0046 attB-GhMYB25-R GGGGACCACTTTGTACAAGAAAGCTGGGTTTCAAAAGACAGAAGAACCAG 

pBP0047 attB-GhMYB109-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGCTCCCGGCCGCCATGGC 

pBP0048 attB-GhMYB109-R GGGGACCACTTTGTACAAGAAAGCTGGGTTCTAGCTAAGATGAAAAGAAG 

pBP0049 attB-GhRLC1-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGAGGGCTCATCTTTAAG 

pBP0050 attB-GhRLC1-R GGGGACCACTTTGTACAAGAAAGCTGGGTTCTATGGGTTGAACACATTCC 

pBP0051 LBb1.3 ATTTTGCCGATTTCGGAAC 

pBP0052 SALK_048673 LP CGAGGAAGACAACTCAACCAG 

pBP0053 SALK_048673 RP AGTTCCACAACACCATCAAGC 

pBP0054 SALK_030966 LP GGCCCATAAAACGACAAGAAG 

pBP0055 SALK_030966 RP TACCACGTTTTCGTATCTCCG 

pBP0056 AtGL3-3HA_attB-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCTACCGGACAAAACAG 

pBP0057 AtGL3-3HA-R GAACATCGTATGGGTAACAGATCCATGCAAC  

pBP0058 AtTTG1-3HA_attB-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGATAATTCAGCTCCAGA 

pBP0059 AtTTG1-3HA-R GAACATCGTATGGGTAAACTCTAAGGAGCTGC 

pBP0060 3HA(GL3)-F GTTGCATGGATCTGTTACCCATACGATGTTCCTGACTATGCGGGCTATCCGTATGACGTC  

pBP0061 3HA(TTG1)-F GCAGCTCCTTAGAGTTTACCCATACGATGTTCCTGACTATGCGGGCTATCCGTATGACGTC 

pBP0062 3HA-R AGCGTAATCTGGAACGTCATATGGATAGGATCCTGCATAGTCCGGGACGTCATACGGATAGC 

pBP0063 3HA-attB-R GGGGACCACTTTGTACAAGAAAGCTGGGTTTCAAGCGTAATCTGGAACGT 

pBP0064 ProTT8-SgsI-F GGCGCGCCTTACCCATTATTTTTCTACAATTATGTGGT 

pBP0065 ProTT8-XhoI-R TCTCGAGGCTCTCTCTCTAAAAATCTTATAACTTTG 

pBP0066 TRY-attb-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGATAACACTGACCGTCG 

pBP0067 TRY(3HA)-R CATCGTATGGGTAGGAAGGATAGATAGAAAAGCGAG 

pBP0068 (TRY)3HA-F CTATCCTTCCTACCCATACGATGTTCCTGACTATGCGGGCTATCCGTATGACGTC 
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Table 5.1 Cont. 

Primer ID Primer Name Primer Sequence  

pBP0069 CPC-attb-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGTTTCGTTCAGACAAGGC 

pBP0070 CPC(3HA)-R GAACATCGTATGGGTATTTCCTAAAAAAGTCTCTTCGTCT 

pBP0071 (CPC)3HA-F TTAGGAAATACCCATACGATGTTCCTGACTATGCGGGCTATCCGTATGACGTC 

pBP0072 GL3-F CGTCTTCAACATTGGTGAAGGAATG 

pBP0073 GL3-RS TGGTACCAATCTCAACGACTCCTCCAA 

pBP0074 GL3-RL GCGCTTCTTCTCTAAAACCGCATGGT 

pBP0075 ACT2-F AGTGGTCGTACAACCGGTATTGT 

pBP0076 ACT2-RS GATGGCATGAGGAAGAGAGAAAC 

pBP0077 ACT2-RL GAAGCAAGAATGGAACCACCGAT 

pBP0078 5'sgsI-pGL3 GGCGCGCCCGATCACTCAAATAGTAAT 

pBP0079 3'XhoI-GL3-ex3 CTCGAGGTGGTACCAATCTCAACGACT 
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5.1.4 Constructs 

All CDS entry clones were generated by amplifying the CDSs from start to stop codon 

from Arabidopsis thaliana (At), Arabis alpine (Aa), Gossypium hirsutum(Gh), Petunia 

hybrid (Ph) and Zea mays (Zm)  and then cloning into pENTR1A/ pENTR4 or BP 

recombination in pDONR201/207. All constructs used and created in this work are 

listed in Table 5.2. 

Table 5.2 Constructs used in this study 

Application Plasmid name Created by 

Yeast vector 
pC-ACT2-attR_w/o Martina Pesch 

pC-ACT2-attR_GhTTG1 me 

pC-ACT2-attR_GhTTG2 me 
pC-ACT2-attR_GhTTG3 me 
pC-ACT2-attR_GhTTG4 me 
pC-ACT2-attR_AN11 me 
pC-ACT2-attR_PAC1 me 
pC-ACT2-attR_MP1 me 
pC-ACT2-attR_GhDEL61 me 
pC-ACT2-attR_GhDEL65 me 
pC-ACT2-attR_PhAN1 me 
pC-ACT2-attR_PhJAF13 me 
pC-ACT2-attR_ZmR(Lc) me 
pC-ACT2-attR_ZmR(S) me 
pC-ACT2-attR_ZmB me 
pC-ACT2-attR_GhMYB2 me 
pC-ACT2-attR_GhMYB3 me 
pC-ACT2-attR_GhMYB25 me 
pC-ACT2-attR_GhRLC1(geno) me 
pC-ACT2-attR_GhRLC1(CDS) me 
pC-ACT2-attR_PhAN2 me 
pC-ACT2-attR_PhAN4 me 
pC-ACT2-attR_PhPH4 me 
pC-ACT2-attR_ZmC1 me 
pC-ACT2-attR_ZmPL me 
pC-ACT2-attR_ZmP1 me 
pAS-attR_w/o Martina Pesch 

pAS-attR_GhTTG1 me 
pAS-attR_GhTTG2 me 
pAS-attR_GhTTG3 me 
pAS-attR_GhTTG4 me 
pAS-attR_AN11 me 
pAS-attR_PAC1 me 
pAS-attR_GhDEL61 me 
pAS-attR_GhDEL65 me 
pAS-attR_PhAN1 me 
pAS-attR_PhJAF13 me 
pAS-attR_ZmR(Lc) me 
pAS-attR_ZmR(S) me 
pAS-attR_ZmB me 
pAS-attR_GhMYB2 me 
pAS-attR_GhMYB3 me 
pAS-attR_GhMYB25 me 
pAS-attR_ GhRLC1(geno) me 
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pAS-attR_GhRLC1(CDS) me 
pAS-attR_PhAN2 me 
pAS-attR_PhAN4 me 
pAS-attR_PhPH4 me 
pAS-attR_ZmC1 me 
pAS-attR_ZmPL me 
pAS-attR_ZmP1 me 

   

LUMIER vectors 
pcDNA3-Rluc-GW_AtTTG1 me 
pcDNA3-Rluc-GW_AtTTG1-3HA me 

pcDNA3-Rluc-GW_AtGL3 me 
pcDNA3-Rluc-GW_AtGL3-3HA me 
pcDNA3-Rluc-GW_AtEGL3 me 
pcDNA3-Rluc-GW_AtTT8 me 
pcDNA3-Rluc-GW_AtMYC1 me 
pcDNA3-Rluc-GW_AtGL1 me 
pcDNA3-Rluc-GW_AtWER me 
pcDNA3-Rluc-GW_AtPAP1 me 
pcDNA3-Rluc-GW_AtPAP2 me 
pcDNA3-Rluc-GW_AtTT2 me 
pcDNA3-Rluc-GW_AtMYB61 me 
pcDNA3-Rluc-GW_AaTTG1 me 
pcDNA3-Rluc-GW_AaGL3 me 
pcDNA3-Rluc-GW_AaEGL3 me 
pcDNA3-Rluc-GW_AaTT8 me 
pcDNA3-Rluc-GW_AaMYC1 me 
pcDNA3-Rluc-GW_AaGL1 me 
pcDNA3-Rluc-GW_AaWER me 
pcDNA3-Rluc-GW_AaPAPL me 
pcDNA3-Rluc-GW_AaMYB23 me 
pcDNA3-Rluc-GW_GhTTG1 me 
pcDNA3-Rluc-GW_AtMYB61 me 
pcDNA3-Rluc-GW_GhTTG1 me 
pcDNA3-Rluc-GW_GhTTG2 me 
pcDNA3-Rluc-GW_GhTTG3 me 
pcDNA3-Rluc-GW_GhTTG4 me 
pcDNA3-Rluc-GW_AN11 me 
pcDNA3-Rluc-GW_PAC1 me 
pcDNA3-Rluc-GW_MP1 me 
pcDNA3-Rluc-GW_GhDEL61 me 
pcDNA3-Rluc-GW_GhDEL65 me 
pcDNA3-Rluc-GW_PhAN1 me 
pcDNA3-Rluc-GW_PhJAF13 me 
pcDNA3-Rluc-GW_ZmR(Lc) me 
pcDNA3-Rluc-GW_ZmR(S) me 
pcDNA3-Rluc-GW_ZmB me 
pcDNA3-Rluc-GW_GhMYB2 me 
pcDNA3-Rluc-GW_GhMYB3 me 
pcDNA3-Rluc-GW_GhMYB25 me 
pcDNA3-Rluc-GW_GhRLC1(geno) me 
pcDNA3-Rluc-GW_GhRLC1(CDS) me 
pcDNA3-Rluc-GW_PhAN2 me 
pcDNA3-Rluc-GW_PhAN4 me 
pcDNA3-Rluc-GW_PhPH4 me 
pcDNA3-Rluc-GW_ZmC1 me 
pcDNA3-Rluc-GW_ZmPL me 
pcDNA3-Rluc-GW_ZmP1 me 
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pcDNA3-Rluc-GW_w/o Martina Pesch 

pTREX-dest30-ntProtA_AtTTG1 me 
pTREX-dest30-ntProtA_AtTTG1-3HA me 
pTREX-dest30-ntProtA_AtGL3 me 
pTREX-dest30-ntProtA_AtGL3-3HA me 
pTREX-dest30-ntProtA_AtEGL3 me 
pTREX-dest30-ntProtA_AtTT8 me 
pTREX-dest30-ntProtA_AtMYC1 me 
pTREX-dest30-ntProtA_AtGL1 me 
pTREX-dest30-ntProtA_AtWER me 
pTREX-dest30-ntProtA_AtPAP1 me 
pTREX-dest30-ntProtA_AtPAP2 me 
pTREX-dest30-ntProtA_AtTT2 me 
pTREX-dest30-ntProtA_AtMYB61 me 
pTREX-dest30-ntProtA_AaTTG1 me 
pTREX-dest30-ntProtA_AaGL3 me 
pTREX-dest30-ntProtA_AaEGL3 me 
pTREX-dest30-ntProtA_AaTT8 me 
pTREX-dest30-ntProtA_AaMYC1 me 
pTREX-dest30-ntProtA_AaGL1 me 
pTREX-dest30-ntProtA_AaWER me 
pTREX-dest30-ntProtA_AaPAPL me 
pTREX-dest30-ntProtA_AaMYB23 me 
pTREX-dest30-ntProtA_GhTTG1 me 
pTREX-dest30-ntProtA_AtMYB61 me 
pTREX-dest30-ntProtA_GhTTG1 me 
pTREX-dest30-ntProtA_GhTTG2 me 
pTREX-dest30-ntProtA_GhTTG3 me 
pTREX-dest30-ntProtA_GhTTG4 me 
pTREX-dest30-ntProtA_AN11 me 
pTREX-dest30-ntProtA_PAC1 me 
pTREX-dest30-ntProtA_MP1 me 
pTREX-dest30-ntProtA_GhDEL61 me 
pTREX-dest30-ntProtA_GhDEL65 me 
pTREX-dest30-ntProtA_PhAN1 me 
pTREX-dest30-ntProtA_PhJAF13 me 
pTREX-dest30-ntProtA_ZmR(Lc) me 
pTREX-dest30-ntProtA_ZmR(S) me 
pTREX-dest30-ntProtA_ZmB me 
pTREX-dest30-ntProtA_GhMYB2 me 
pTREX-dest30-ntProtA_GhMYB3 me 
pTREX-dest30-ntProtA_GhMYB25 me 
pTREX-dest30-ntProtA_GhRLC1(geno) me 
pTREX-dest30-ntProtA_GhRLC1(CDS) me 
pTREX-dest30-ntProtA_PhAN2 me 
pTREX-dest30-ntProtA_PhAN4 me 
pTREX-dest30-ntProtA_PhPH4 me 
pTREX-dest30-ntProtA_ZmC1 me 
pTREX-dest30-ntProtA_ZmPL me 
pTREX-dest30-ntProtA_ZmP1 me 
pTREX-dest30-ntProtA _w/o Martina Pesch 

pTREX-dest30-ntYFP_AtTTG1 me 
pTREX-dest30-ntYFP_AtGL3 me 
pTREX-dest30-ntYFP_AtEGL3 me 
pTREX-dest30-ntYFP_AtTT8 me 
pTREX-dest30-ntYFP_AtMYC1 me 
pTREX-dest30-ntYFP_AtGL1 me 
pTREX-dest30-ntYFP_AtWER me 
pTREX-dest30-ntYFP_AtPAP1 me 
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pTREX-dest30-ntYFP_AtPAP2 me 
pTREX-dest30-ntYFP_AtTT2 me 
pTREX-dest30-ntYFP_AtMYB61 me 
pTREX-dest30-ntYFP_AaTTG1 me 
pTREX-dest30-ntYFP_AaGL3 me 
pTREX-dest30-ntYFP_AaEGL3 me 
pTREX-dest30-ntYFP_AaTT8 me 
pTREX-dest30-ntYFP_AaMYC1 me 
pTREX-dest30-ntYFP_AaGL1 me 
pTREX-dest30-ntYFP_AaWER me 
pTREX-dest30-ntYFP_AaPAPL me 
pTREX-dest30-ntYFP_AaMYB23 me 
pTREX-dest30-ntYFP_GhTTG1 me 
pTREX-dest30-ntYFP_AtMYB61 me 
pTREX-dest30-ntYFP_GhTTG1 me 
pTREX-dest30-ntYFP_GhTTG2 me 
pTREX-dest30-ntYFP_GhTTG3 me 
pTREX-dest30-ntYFP_GhTTG4 me 
pTREX-dest30-ntYFP_AN11 me 
pTREX-dest30-ntYFP_PAC1 me 
pTREX-dest30-ntYFP_MP1 me 
pTREX-dest30-ntYFP _GhDEL61 me 
pTREX-dest30-ntYFP_GhDEL65 me 
pTREX-dest30-ntYFP_PhAN1 me 
pTREX-dest30-ntYFP_PhJAF13 me 
pTREX-dest30-ntYFP_ZmR(Lc) me 
pTREX-dest30-ntYFP_ZmR(S) me 
pTREX-dest30-ntYFP_ZmB me 
pTREX-dest30-ntYFP_GhMYB2 me 
pTREX-dest30-ntYFP_GhMYB3 me 
pTREX-dest30-ntYFP_GhMYB25 me 
pTREX-dest30-ntYFP_GhRLC1(geno) me 
pTREX-dest30-ntYFP_GhRLC1(CDS) me 
pTREX-dest30-ntYFP_PhAN2 me 
pTREX-dest30-ntYFP_PhAN4 me 
pTREX-dest30-ntYFP_PhPH4 me 
pTREX-dest30-ntYFP_ZmC1 me 
pTREX-dest30-ntYFP_ZmPL me 
pTREX-dest30-ntYFP_ZmP1 me 
pTREX-dest30-ntYFP_w/o Alexandra Steffens 

   

Plant vectors 

 

 

 

 

 

 

pAMPAT-35S-GW_AtTTG1 me 
pAMPAT-35S-GW_AtGL3 me 
pAMPAT-35S-GW_AtEGL3 me 
pAMPAT-35S-GW_AtTT8 me 
pAMPAT-35S-GW_AtMYC1 me 
pAMPAT-35S-GW_AtGL1 me 
pAMPAT-35S-GW_AtWER me 
pAMPAT-35S-GW_AtPAP1 me 
pAMPAT-35S-GW_AtPAP2 me 
pAMPAT-35S-GW_AtTT2 me 
pAMPAT-35S-GW_AtMYB61 me 
pAMPAT-35S-GW_AaTTG1 me 
pAMPAT-35S-GW_AaGL3 me 
pAMPAT-35S-GW_AaEGL3 me 
pAMPAT-35S-GW_AaTT8 me 
pAMPAT-35S-GW_AaMYC1 me 
pAMPAT-35S-GW_AaGL1 me 
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pAMPAT-35S-GW_AaWER me 
pAMPAT-35S-GW_AaPAPL me 
pAMPAT-35S-GW_AaMYB23 me 
pAMPAT-35S-GW_GhTTG1 me 
pAMPAT-35S-GW_GhTTG2 me 
pAMPAT-35S-GW_GhTTG3 me 
pAMPAT-35S-GW_GhTTG4 me 
pAMPAT-35S-GW_AN11 me 
pAMPAT-35S-GW_PAC1 me 
pAMPAT-35S-GW_MP1 me 
pAMPAT-35S-GW_GhDEL61 me 
pAMPAT-35S-GW_GhDEL65 me 
pAMPAT-35S-GW_PhAN1 me 
pAMPAT-35S-GW_PhJAF13 me 
pAMPAT-35S-GW_ZmR(Lc) me 
pAMPAT-35S-GW_ZmR(S) me 
pAMPAT-35S-GW_ZmB me 
pAMPAT-35S-GW_GhMYB2 me 
pAMPAT-35S-GW_GhMYB3 me 
pAMPAT-35S-GW_GhMYB25 me 
pAMPAT-35S-GW_GhRLC1(geno) me 
pAMPAT-35S-GW_GhRLC1(CDS) me 
pAMPAT-35S-GW_PhAN2 me 
pAMPAT-35S-GW_PhAN4 me 
pAMPAT-35S-GW_PhPH4 me 
pAMPAT-35S-GW_ZmC1 me 
pAMPAT-35S-GW_ZmPL me 
pAMPAT-35S-GW_ZmP1 me 
pAMPAT-proTT8-GW_AtGL3 me 
pAMPAT-proTT8-GW_AtEGL3 me 
pAMPAT-proTT8-GW_AtTT8 me 
pAMPAT-proTT8-GW_AtMYC1 me 
pAMPAT-proTT8-GW_AaGL3 me 
pAMPAT-proTT8-GW_AaEGL3 me 
pAMPAT-proTT8-GW_AaTT8 me 
pAMPAT-proTT8-GW_AaMYC1 me 
pAMPAT-proTT8-GW_GhDEL61 me 
pAMPAT-proTT8-GW_GhDEL65 me 
pAMPAT-proTT8-GW_PhAN1 me 
pAMPAT-proTT8-GW_PhJAF13 me 
pAMPAT-proTT8-GW_ZmR(Lc) me 
pAMPAT-proTT8-GW_ZmR(S) me 
pAMPAT-proTT8-GW_ZmB me 
pAMPAT-35S:GUS me 

pAMPAT-proGL3:GUS me 

pAMPAT-proGL3:GL3(intron2)-GUS me 

   

 

5.1.4.1 Yeast vectors 

Fusions of the CDSs to the GAL4 binding domain were produced in pAS-attR through 

LR reaction. As a negative control, the vector pAS-attR was recombined with 

pENTR1A-w/o-ccdB. 
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Meanwhile, the CDSs of each gene were fused to the coding sequence for the GAL4 

activation domain via LR in pC-ACT2-attR. As a negative control, the vector pC-ACT2-

attR was recombined with pENTR1A-w/o-ccdB. 

5.1.4.2 LUMIER vectors 

Three different destination vectors were used for subsequent LR reactions. pcDNA3-

Rluc-GW and pTREX-dest30 (Invitrogen) enable the N-terminal fusion of Renilla 

reniformis and Staphylococcus aureus protein, respectively, were described before 

[178]. 

Defined genes were N-terminal fused to the Staphylococcus aureus protein A 

sequence in pTREX-dest30-ntProtA by LR reaction. As negative control, the vector 

pTREX-dest30-ntProtA was recombined with pENTR1A-w/occdB. 

Renilla reniformis Luciferase-gene generated by LR reaction, fusing the full-length 

Renilla luciferase sequence N-terminal to the coding sequences in pcDNA3-Rluc-GW. 

Also pENTR1A-w/o-ccdB was recombined to this vector as a negative control. 

YFP-tagged proteins and the control without any CDS were created by LR recom-

bination of pTREX-dest30-YFP with the respective entry clones. 

5.1.4.3 Plant vectors 

All CDS or genomic fragments of MBW homologs were cloned into Donor vectors by 

BP reactions (Invitrogen). Then recombination of the corresponding entry clones with 

the 35S promoter driven vector pAMPAT-35S-GW (GenBank accession no. AY436765 

[149]).  

 

5.2 Methods 

5.2.1 LUMIER (LUminescence-based Mammalian IntERactome) 

5.2.1.1 6-well plate for pairwise assay 

For LUMIER assays, each protein was transiently expressed in HEK293TM cells 

(BioCat/SBI: LV900A-1) as hybrid proteins either with the Staphylococcus aureus 

protein A or with the Renilla reniformis luciferase fused to their amino N termini. 

Transfection and cell harvesting was done as described before [149, 178]. After 48 

hours, the medium was removed; cells were washed three times with PBS.  

Lysis of cells with 150 μl-250 μl lysis buffer for each well. Combination of two hybrid 

prteins was approached after 1hr lysis. Each combination was prepared in duplicate. 

Proteinimmunoprecipitation with sheep-anti-rabbit IgG-coated magnetic beads in a 
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magnetic holder and luminescence measurement after pulldown in a microtitre plate 

reader was done as described previously [178]. The pulldown was also performed with 

untransfected cells or with cells solely expressing Luciferase-protein to exclude any 

nonspecific signal from the cell lysate and non-specific binding of Luciferase-protein to 

the beads, respectively. 

The percentage of Rluc on the beads compared with the lysate was calculated by 

dividing the Rluc activity on the beads by the Rluc activity in the same amount of lysate 

used in the pull-down assay (Input). 

5.2.1.2 9-cm petri dish for triple-components assay 

The third protein was N termini fused with YFP in the backbone of pTREXdest30. Lysis 

of cells with 750μl-1000μl lysis buffer for each plate. Combination of three prteins was 

approached after 1hr lysis and normalization of YFP signal (TECAN). Each 

combination was prepared in duplicate and the total volume for incubation were 

equilibrated by untransfected cell lysate. The combination without additional YFP-

fused protein was used as the reference. Cells solely expressing YFP-protein was also 

performed to exclude any nonspecific interference signal.  

 5.2.2 Yeast two hybrid 

The yeast two-hybrid assays, using the yeast strain AH109, were done as described 

previously [181]. The transformed yeast cells were selected by plating them onto 

synthetic dropout selection medium lacking Leu and Trp (SD-LW). Interactions were 

analyzed by plating co-transformed yeast cells on synthetic dropout interaction 

medium lacking Leu, Trp, and His supplemented with 5, 10, and 15mM 3-amino-1, 2, 

3-triazole (SD-LWH). 

5.2.2.1 Yeast transformation 

Yeast strain AH109 was transformed by the LiAc-method. Cells were grown overnight 

in 10 ml YPAD medium. On the next day, 0.5-1 ml of the overnight culture was used 

to inoculate 50 ml YPAD and subsequently incubated at 30° C for 3-4 h at 250 rpm. At 

OD600= 0.7-1.0 (sufficient for 10-15 transformations), cells were centrifuged at 3000 g 

for 5 min. The pellet was washed with 10 ml 0.1 M LiAc-solution (pH 7.5) and again 

centrifuged at 3000 g for 5 min. n x 240 µl PEG 3350, n x 36 µl 1 M LiAc, n x 50 µl 

ssDNA (2 mg/ ml, cooked for 10 min at 100°C) and n x 25 µl H2O were added to the 

pellet whereby n stand for the number of transformations. The yeast cell suspension 

was mixed for 30 s and 350 µl was added to 2 µl of each DNA construct. DNA and 
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cells were mixed for 30 s and incubated for 40 min at 42°C. The cells were pelleted by 

centrifugation (3300 g, 30 s), re-suspended in 100 µl H2O and plated on SD-LW plates. 

5.2.3 Manipulation of plants and seeds 

5.2.3.1 Arabidopsis strains and plant growth 

The mutant alleles used in this study: ttg1-1 is in the Ler background [28, 105];gl3-3 is 

in the Col background [182]; egl3-77439 is in the Col background (TAIR accession 

1008704039); tt8-048673 is in the Col background (TAIR accession 1005848854); 

gl3/egl3 in the Col background [183]; gl3/egl3/tt8 (homozygous progeny by crossing 

gl3/egl3 with tt8-048673); gl1 in the Col background [157]. pap1 insertion mutant 

seedlings (pst16228) is in the No-0 background [184]; pap2 in the Col background 

(salk_093731, TAIR accession 1005457343); pap1/pap2 is generated by crossing 

pap1 and pap2. Plants were grown on soil at 24°C with 16 h of light per day. All 

transgenic plant lines used and created in this work are listed in Table 5.3. 

Table 5.3 Transgenic plant lines 

Insertion (plasmid name) Background Created by 

pAMPAT-35S-GW-AtTTG1 ttg1-1 me 

pAMPAT-35S-GW-AaTTG1 ttg1-1 me 

pAMPAT-35S-GW-GhTTG1 ttg1-1 me 

pAMPAT-35S-GW-GhTTG2 ttg1-1 me 

pAMPAT-35S-GW-GhTTG3 ttg1-1 me 

pAMPAT-35S-GW-GhTTG4 ttg1-1 me 

pAMPAT-35S-GW-PhAN11 ttg1-1 me 

pAMPAT-35S-GW-ZmPAC1 ttg1-1 me 

pAMPAT-35S-GW-ZmMP1 ttg1-1 me 

pAMPAT-35S-GW-AtGL3 gl3/egl3/tt8 me 

pAMPAT-35S-GW-AtEGL3 gl3/egl3/tt8 me 

pAMPAT-35S-GW-AtTT8 gl3/egl3/tt8 me 

pAMPAT-35S-GW-AtMYC1 gl3/egl3/tt8 me 

pAMPAT-35S-GW-AaGL3 gl3/egl3/tt8 me 

pAMPAT-35S-GW-AaEGL3 gl3/egl3/tt8 me 

pAMPAT-35S-GW-AaTT8 gl3/egl3/tt8 me 

pAMPAT-35S-GW-AaMYC1 gl3/egl3/tt8 me 

pAMPAT-35S-GW-GhDEL61 gl3/egl3/tt8 me 

pAMPAT-35S-GW-GhDEL65 gl3/egl3/tt8 me 

pAMPAT-35S-GW-PhAN1 gl3/egl3/tt8 me 

pAMPAT-35S-GW-PhJAF13 gl3/egl3/tt8 me 

pAMPAT-35S-GW-ZmR(Lc) gl3/egl3/tt8 me 

pAMPAT-35S-GW-ZmR(S) gl3/egl3/tt8 me 

pAMPAT-35S-GW-ZmB gl3/egl3/tt8 me 

pAMPAT-ProTT8-GW-AtGL3 gl3/egl3/tt8 me 

pAMPAT-ProTT8-GW-AtEGL3 gl3/egl3/tt8 me 

pAMPAT-ProTT8-GW-AtTT8 gl3/egl3/tt8 me 

pAMPAT-ProTT8-GW-AtMYC1 gl3/egl3/tt8 me 

pAMPAT-ProTT8-GW-AaGL3 gl3/egl3/tt8 me 

pAMPAT-ProTT8-GW-AaEGL3 gl3/egl3/tt8 me 

pAMPAT-ProTT8-GW-AaTT8 gl3/egl3/tt8 me 

pAMPAT-ProTT8-GW-AaMYC1 gl3/egl3/tt8 me 
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Table 5.3. Cont.   

Insertion (plasmid name) Background Created by 

pAMPAT-ProTT8-GW-GhDEL61 gl3/egl3/tt8 me 

pAMPAT-ProTT8-GW-GhDEL65 gl3/egl3/tt8 me 

pAMPAT-ProTT8-GW-PhAN1 gl3/egl3/tt8 me 

pAMPAT-ProTT8-GW-PhJAF13 gl3/egl3/tt8 me 

pAMPAT-ProTT8-GW-ZmR(Lc) gl3/egl3/tt8 me 

pAMPAT-ProTT8-GW-ZmR(S) gl3/egl3/tt8 me 

pAMPAT-ProTT8-GW-ZmB gl3/egl3/tt8 me 

pAMPAT-ProTT8-GW-AtGL3 tt8 me 

pAMPAT-ProTT8-GW-AtEGL3 tt8 me 

pAMPAT-ProTT8-GW-AtTT8 tt8 me 

pAMPAT-ProTT8-GW-AtMYC1 tt8 me 

pAMPAT-ProTT8-GW-AaGL3 tt8 me 

pAMPAT-ProTT8-GW-AaEGL3 tt8 me 

pAMPAT-ProTT8-GW-AaTT8 tt8 me 

pAMPAT-ProTT8-GW-AaMYC1 tt8 me 

pAMPAT-ProTT8-GW-GhDEL61 tt8 me 

pAMPAT-ProTT8-GW-GhDEL65 tt8 me 

pAMPAT-ProTT8-GW-PhAN1 tt8 me 

pAMPAT-ProTT8-GW-PhJAF13 tt8 me 

pAMPAT-ProTT8-GW-ZmR(Lc) tt8 me 

pAMPAT-ProTT8-GW-ZmR(S) tt8 me 

pAMPAT-ProTT8-GW-ZmB tt8 me 

pAMPAT-35S-GW-AtGL1 gl1 me 

pAMPAT-35S-GW-AtWER gl1 me 

pAMPAT-35S-GW-AtPAP1 gl1 me 

pAMPAT-35S-GW-AtPAP2 gl1 me 

pAMPAT-35S-GW-AtTT2 gl1 me 

pAMPAT-35S-GW-AtMYB61 gl1 me 

pAMPAT-35S-GW-AaGL1 gl1 me 

pAMPAT-35S-GW-AaWER gl1 me 

pAMPAT-35S-GW-AaPAPL gl1 me 

pAMPAT-35S-GW-AaMYB23 gl1 me 

pAMPAT-35S-GW-GhMYB2 gl1 me 

pAMPAT-35S-GW-GhMYB3 gl1 me 

pAMPAT-35S-GW-GhMYB25 gl1 me 

pAMPAT-35S-GW-GhRLC1 gl1 me 

pAMPAT-35S-GW-PhAN2 gl1 me 

pAMPAT-35S-GW-PhAN4 gl1 me 

pAMPAT-35S-GW-PhPH4 gl1 me 

pAMPAT-35S-GW-ZmC1 gl1 me 

pAMPAT-35S-GW-ZmPL gl1 me 

pAMPAT-35S-GW-ZmP1 gl1 me 

pAMPAT-35S-GW-AtGL1 pap1/pap2 me 

pAMPAT-35S-GW-AtWER pap1/pap2 me 

pAMPAT-35S-GW-AtPAP1 pap1/pap2 me 

pAMPAT-35S-GW-AtPAP2 pap1/pap2 me 

pAMPAT-35S-GW-AtTT2 pap1/pap2 me 

pAMPAT-35S-GW-AtMYB61 pap1/pap2 me 

pAMPAT-35S-GW-AaGL1 pap1/pap2 me 

pAMPAT-35S-GW-AaWER pap1/pap2 me 

pAMPAT-35S-GW-AaPAPL pap1/pap2 me 

pAMPAT-35S-GW-AaMYB23 pap1/pap2 me 

pAMPAT-35S-GW-GhMYB2 pap1/pap2 me 

pAMPAT-35S-GW-GhMYB3 pap1/pap2 me 

pAMPAT-35S-GW-GhMYB25 pap1/pap2 me 

pAMPAT-35S-GW-GhRLC1 pap1/pap2 me 
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Table 5.3. Cont.   

Insertion (plasmid name) Background Created by 

pAMPAT-35S-GW-PhAN2 pap1/pap2 me 

pAMPAT-35S-GW-PhAN4 pap1/pap2 me 

pAMPAT-35S-GW-PhPH4 pap1/pap2 me 

pAMPAT-35S-GW-ZmC1 pap1/pap2 me 

pAMPAT-35S-GW-ZmPL pap1/pap2 me 

pAMPAT-35S-GW-ZmP1 pap1/pap2 me 

 

5.2.3.2 Seed sterilization 

The sterilization solution is prepared by dissolution of 10 ml hypochloride sodium in 40 

ml of distilled water supplement with 0.1% tween-20. 1 ml of sterilization solution is 

used to incubate 20 mg of seeds for 15 min, after seeds are washed with 75% ethanol 

for seconds. Thoroughly rinse the seeds by distill water several time in clean bench. 

5.2.3.3 Arabidopsis crossing 

For the most efficient crossings, we use a mother plant that have developed 5-6 

inflorescences, and a father plants have formed siliques that indicate the pollen is fine. 

The emasculation of buds is performed with tweezer and manually pollinated with the 

mature anthers taken from the male plant. The seeds issues from the cross have to be 

harvest at maturity before silique dehiscence. 

5.2.3.4 Genetic transformation of Arabidopsis 

5 ml of YEB liquid medium with the appropriate antibiotics are inoculated with an 

isolated agrobacterium colony and cultured for 36 h at 28°C in a shaker (200 rpm). 1 

ml of this pre-culture is used to inoculate 250 ml of YEB liquid medium. Incubation in a 

shaker (200 rpm) is performed to obtain stationary phase (OD=1.5-2.0, around 16-24h). 

Collect Agrobacterium cells by centrifugation at 4,000g for 10 min at room temperature, 

and gently resuspend cells in 1 volume of freshly made 5% (wt/vol) sucrose solution 

with a stirring bar. Add Silwet L-77 to a concentration of 0.02% (vol/vol) (100 ml per 

500 ml of solution) and mix well immediately before dipping. Invert plants and dip aerial 

parts of plants in the Agrobacterium cell suspension for 10 s with gentle agitation. Drain 

the treated plants for 3–5 s. Cover dipped plants with a plastic cover or wrap them with 

plastic film. Lay down the treated plants on their sides for 16–24 h to maintain high 

humidity. The seeds harvested are sown in a selective solid medium or soil to obtain 

the primary transformed plants (T1progeny) [185].  
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5.2.3.5 Trichome analysis 

The first true leaf of soil-grown T1 progeny was labelled as leaf 1 and the following 

ones accordingly. Leaves 1–6 of two-week-old seedlings were observed for trichome 

analysis. 

5.2.3.6 Root hair file analysis 

H-files of 7-day-old 1/2MS plate-grown T2 progeny seedlings were microscopically 

identified by the position over cortical cell boundaries. Following 10 to 15 H-file cells 

per root and zone, the number of cells and root hairs in the flanking N-files was 

determined. Further, the length of continuous stretches of N-file cells carrying a root 

hair was determined.  

5.2.3.7 Anthocyanin analysis 

T2 progeny seedlings were grown on ½ MS germination medium containing 3% 

sucrose, and observed under Canon EOS 5D Mark (Canon, Krefeld, Germany) by 

Siegfried Werth or a Leica stereomicroscope (MZ FLIII) with the Multi-Focus and 

Montage option of the Leica Application Suite V3 (Leica Microsystems, Wetzlar, 

Germany). 

5.2.3.8 Seed coat color analysis 

T1 progeny seeds were captured using a Canon EOS 5D Mark (Canon, Krefeld, 

Germany) by Siegfried Werth or a Leica stereomicroscope (MZ FLIII) with the Multi-

Focus and Montage option of the Leica Application Suite V3 (Leica Microsystems, 

Wetzlar, Germany). 

5.2.3.8 Ruthenium red staining of seed mucilage 

Whole seeds (T2 progeny) were allowed to imbibe in 0.2% w/v aqueous ruthenium red 

(Sigma) solution with 0.5% agar before solidification. Observe seeds after 3-4 h under 

light microscopy and pictures taken using the DISKUS software (Carl H. Hilgers-

Technisches Büro, Germany) (Modified from [64]) . 

5.2.4 DNA extraction, amplification and cloning 

5.2.4.1 Plasmid extraction 

Mini-preparations of plasmidic DNA are made from 5 ml of bacterial cultures brought 

at saturation, using the GeneJET Plasmid Miniprep Kit recommendations of the 

manufacturer. In order to obtain bigger DNA quantities, the culture volume is adapted 

to the type of plasmid (from 25 to 500 ml depending of the number of plasmid copies 

by cell). 
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5.2.4.2 DNA extraction from vegetal tissues 

This method consists in a fast DNA extraction to be carried out genotyping (DNA is 

preferentially used during a month after extraction because of possible DNA 

degradation due to some impurities presence). Harvest a younger leaf and transfer it 

into an eppendorf tube. Process with a pestle and add 400 µl of extraction buffer and 

vortex for 5 s. Then centrifuge for 1 min at 13000 rpm to precipitate the proteins. 

Transfer 300 µl of supernatant to a new tube and add 300 µl of isopropanol and mix 

well. Incubate for 2 min. Centrifuge 5 min at 13000 rpm to precipitate the DNA. Then 

discard the supernatant and let pellet dry. Re-suspend in 50 µl of distilled water. 

5.2.4.3 RNA extraction and cDNA synthesis 

The extraction is made through RNeasy Mini Kit (Qiagen, Cat No./ID: 74106) which is 

added of a DNA degradation step by  “RNase-free” DNase (Thermo). First-strand 

cDNA was then synthesized from the total RNA (1 μg) using the RevertAid H Minus 

1st strand cDNA synthesis (Thermo) as described by manufacturer’s instruction.   

5.2.4.4 DNA amplification by Polymerase Chain Reaction (PCR) 

Use 0.5 U of Phusion polymerase for 20 µl of reaction medium: 5 µl of 10X HF buffer, 

1.5 µl of dNTP mix (final concentration at 0.2 mM), 1.5 µl of 10 uM each oligonucleotide 

(final concentration at 0.5 µM), 10 pg - 1 µg DNA template. Usually, the PCR reaction 

consist in a denaturation phase, 3 min to 98°C; followed by 28~36 cycles comprising: 

denaturation, 30s at 94°C; oligonucleotide hybridization, 30s at 55-60°C; elongation, 

1min/1000bp at 72°C; then a final 10 min elongation step at 72°C. These conditions 

are adapted according to the GC/AT ratio. 

5.2.4.5 DNA analysis 

DNA electrophoresis in an agarose gel allows qualitative and semi-quantitative 

analyzis. The electrophoresis is performed in 1X TAE buffer with a power of 120-150V. 

The gel is made by hot agarose dissolution in 1X TAE, usually 1% (w/v), varying 

between 0.5 to 3% depending on the size of the DNA fragments to be separated (small 

fragments should use high concentration). Ethidium bromide is added at a 10 ng/μl 

final concentration just before polymerization. The samples containing the charge 

loading buffer in a 1/10 proportion are runed into the gel. After migration, the DNA is 

visualized under “UV radiation” (Gel Doc™ XR+ Gel Documentation System, BioRad, 

USA). 
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5.2.4.6 Gateway® cloning by recombination 

This type of recombination uses the specific sites, discovered in the λphage by Landy 

(1989) [186]. The two steps of recombination are: i) introduction of the insert in the 

entry vector by a recombination type BP and ii) transfer of the insert to a destination 

vector by a recombination type LR (Figure 5.1, adapted from [187]). 

 
 
 
 
 
(A)                                                                              (B) 

 
 

Figure 5.1 Gateway BP and LR reactions. 

(Adapted from [187]) 

(A) BP recombination of a PCR product "X" flanked by attB sites with a Gateway donor vector 

pDNOR207 (GentaR) or pDNOR201 (KanaR).  

(B) LR recombination of an entry clone bearing a DNA fragment "X" with a Gateway destination vector. 

 

5.2.4.7 DNA Sequencing 

The Roche PCR purification kit (Roche Diagnostics Deutschland GmbH, Mannheim, 

Germany) was used to purify the PCR product before sequencing. LightRUN™ 

sequencing service based on Sanger sequencing from GATC Biotech AG (European 

Genome and Diagnostics Centre, Constance, Germany) was used to sequence PCR 

products and plasmids. 
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5.2.4.8 Transformation 

Escherichia coli transformation 

E. coli strain DH5-α (F-, ϕ80lacZ ΔM15, Δ (lacZYA-argF), U169, deoR, recA1, endA1, 

hsdR17, (rk-, mk+), phoA, supE44, thi-1, gyrA96, relA1, λ-) (Hanahan 1983) was used 

for classical cloning with the pUC18, CloneJET™ PCR Cloning Kit as well as 

Gateway® Cloning vectors. E. coli strain DB3.1 (F- gyrA462endA1 glnV44 Δ (sr1-recA) 

mcrBmrrhsdS20 (rB-, mB-) ara14 galK2 lacY1 proA2 rpsL20 (Smr) xyl5Δleumtl1) [188, 

189] was used for amplification of empty vectors containing the Gateway®-Cassette 

which encodes for the ccdB gene (toxic for DH5α). Competent E. coli cells were 

transformed by heat shock method. For retransformations (plasmid amplification), 

Gateway®-cloning, classical cloning as well as for CloneJET™ PCR Cloning, the total 

volume of a LR, BP, ligation reaction or 1 µl DNA (re-transformation) was added to 50 

µl of CaCl2-competent E. coli cells. The cell-plasmid mixture was incubated for 20 min 

on ice. To induce plasmid uptake by bacteria, a heat shock at 42°C of 1 min was 

applied, followed by incubation on ice for five minutes. 800 µl of LB medium (w/o 

antibiotics) was added and the cell suspension was grown for 1 h at 37°C at 850 rpm. 

The cells were pelleted at 6000 rpm for 4 min and re-suspended in a total volume of 

50 µl LB medium. The cells were streaked on LB agar plates containing appropriate 

antibiotics for selection of positive colonies. For re-transformation, the centrifugation 

step was omitted and 100 µl of the 800 µl culture was used. The plates were incubated 

overnight at 37°C and positive colonies were inoculated in liquid culture on the next 

day. 

Agrobacterium tumefaciens transformation 

The A. tumefaciens strain GV3101PMP90RK [190], harbouring resistance genes 

against rifampicin and gentamycin was used for transformation of A. thaliana with the 

plant expression vector pAMPAT-GW. CaCl2-competent A. tumefaciens cells were 

transformed by heat shock. Plasmid DNA (2 µl) was added to 50 µl of the CaCl2-

competent A. tumefaciens cells and incubated on ice for 20 min. The cells were then 

subjected to a 2 min heat shock at 42°C. 950 µl of YEB medium without antibiotics was 

added and the cell suspension was grown for 2 h at 28°C at 850 rpm. 100 µl of the 

culture was plated on YEB-agar plates containing the appropriate antibiotic 

combination.The plates were incubated at 28°C for 2 days and positive colonies were 

inoculated in liquid culture. The liquid cultures were incubated at 28°C for 2 days. 
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Confirmed Agrobacteria cultures were used for plant transformation or stored at -80°C 

in glycerol stocks (800 µl culture + 800 µl 50% glycerol, quick freezing in liquid nitrogen). 

5.2.5 Biochemical Methods 

5.2.5.1 Protein Extraction from HEK Cells 

Three milliliters of HEK-cell culture was transfected with 1.5 μg plasmid DNA using the 

transfection reagent Lipofectamin (Invitrogen) and cultivated at 37 °C and 5% CO2. 

Transfected cells were harvested after 48 hours by centrifugation at 600 g for 10 min 

and washed twice with 10 ml of standard PBS buffer. Then, 200 μl of lysis buffer were 

added to the sample pellet at 4 °C. After centrifugation at 4 °C and 15 000 g for 20 min, 

samples can be used for either Protein A/RLuc co-precipitation or western blot. 

5.2.5.2 Western Blot 

Western blot experiments were performed as described in Molecular Cloning [191]. 

Materials were used as follows: PVDF membrane (Roth), Super Signal West Femto 

Maximum Sensitivity Substrate (Termo Scientific), Mini Trans-Blot Cells (BioRad) for 

wet western blotting, Mini Protean Cells (BioRad) for SDS gel electrophoresis, and 

Prestained Protein Ladder (Fermentas).  

5.2.5.3 Histochemical detection of GUS activity 

GUS stainings were essentially done as previously [192]. After staining for 16 h at 37°C, 

tissues were cleared and leaves were inspected by light microscopy and pictures taken 

using the DISKUS software (Carl H. Hilgers -Technisches Büro, Germany). Trichome 

numbers were determined on the third and fourth fully expanded leaf of soil-grown 

seedlings.  
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APPENDIX A Pairwise interaction analyses 

 

(A) 

 

 

(B) 

 

 

Figure S1 Protein–protein interactions among members of the MBW regulatory complex in 

cotton (A), petunia (B) and maize (C) determined by Yeast two hybrids assays. 

 

 

 

 

 



 ____________________________________ Appendice 

 

88 
  

 

 

(C) 

 

 

Figure S1 Cont. Protein–protein interactions among members of the MBW regulatory complex 

in cotton (A), petunia (B) and maize (C) determined by Yeast two hybrids assays.  

Left: Growth on synthetic dropout selective medium lacking Leu, Trp (SD-L/W) for 5 days at 30℃ as 

control; Right: Growth on synthetic dropout interaction medium lacking Leu, Trp, and His,supplemented 

with 15 mM 3-AT for 5 days at 30℃. 

AD, GAL4 activation domain; BD, GAL4 DNA binding domain. 
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Table S1 Pairwise interaction of MBW components in Arabidopsis (A. thaliana). 

ProtA fusion Luciferase fusion 
Luciferase activity: 

pulldown/input ratio (%) 
References 

AtTTG1 AtTTG1 0.35±0.00 - [31] 

AtTTG1 AtGL3 27.43±0.02 + [29, 66, 153] 

AtTTG1 AtEGL3 10.58±0.12 + [66] 

AtTTG1 AtTT8 4.79±0.03 + [31, 103] 

AtTTG1 AtMYC1 59.70±1.09 + [70, 178] 

AtTTG1 AtGL1 0.67±0.00 - [70] 

AtTTG1 AtWER 0.60±0.00 - This work 

AtTTG1 AtPAP1 0.31±0.00 - This work 

AtTTG1 AtPAP2 0.63±0.00 - This work 

AtTTG1 AtTT2 1.95±0.05 w [31, 103] 

AtTTG1 AtMYB61 0.61±0.00 - This work 

AtTTG1 w/o 0.55±0.01 - This work 

     

AtGL3 AtTTG1 8.45±0.05 + [29, 66, 153] 

AtGL3 AtGL3 5.44±0.04 + [29, 65, 66] 

AtGL3 AtEGL3 2.70±0.01 + [66] 

AtGL3 AtTT8 2.71±0.00 + This work 

AtGL3 AtMYC1 2.59±0.03 + [35] conflict 

AtGL3 AtGL1 47.21±2.18 + 
[29, 66, 69, 153, 178, 

193] 

AtGL3 AtWER 78.89±3.23 + [32, 65, 194] 

AtGL3 AtPAP1 29.99±1.17 + [66, 103] 

AtGL3 AtPAP2 22.59±2.14 + [66] 

AtGL3 AtTT2 33.40±3.09 + [103] 

AtGL3 AtMYB61 2.17±0.35 w This work 

AtGL3 w/o 0.48±0.04 - This work 

     

AtEGL3 AtTTG1 8.40±0.15 + [66] 

AtEGL3 AtGL3 3.21±0.06 + [66] 

AtEGL3 AtEGL3 2.89±0.02 + [65, 66] 

AtEGL3 AtTT8 4.09±0.01 + This work 

AtEGL3 AtMYC1 2.25±0.02 w This work 

AtEGL3 AtGL1 10.44±0.10 + [32, 66, 193] 

AtEGL3 AtWER 7.19±0.13 + [32, 194] 
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Table S1 Cont.    

ProtA fusion Luciferase fusion 
Luciferase activity: 

pulldown/input ratio (%) 
References 

AtEGL3 AtPAP1 7.85±0.06 + [32, 103] 

AtEGL3 AtPAP2 6.25±0.04 + [32, 66] 

AtEGL3 AtTT2 7.38±0.02 + [32, 103] 

AtEGL3 AtMYB61 2.33±0.05 w This work 

AtEGL3 w/o 0.45±0.00 - This work 

     

AtTT8 AtTTG1 4.32±0.13 + [31] 

AtTT8 AtGL3 3.13±0.16 + This work 

AtTT8 AtEGL3 2.66±0.08 + This work 

AtTT8 AtTT8 2.94±0.04 + [31] conflict 

AtTT8 AtMYC1 2.23±0.01 w This work 

AtTT8 AtGL1 3.72±0.05 + [32] 

AtTT8 AtWER 2.28±0.01 w [32] 

AtTT8 AtPAP1 15.91±0.12 + [32] 

AtTT8 AtPAP2 15.69±0.11 + [32] 

AtTT8 AtTT2 18.99±0.12 + [31, 32, 103] 

AtTT8 AtMYB61 2.13±0.03 w This work 

AtTT8 w/o 0.55±0.00 - This work 

     

AtMYC1 AtTTG1 31.75±1.89 + [70, 178] 

AtMYC1 AtGL3 2.39±0.30 + [35] conflict 

AtMYC1 AtEGL3 2.30±0.04 w This work 

AtMYC1 AtTT8 2.39±0.03 w This work 

AtMYC1 AtMYC1 3.06±0.04 + [35]  conflict 

AtMYC1 AtGL1 21.17±0.12 + [32, 35, 178] 

AtMYC1 AtWER 11.54±0.19 + [32, 35] 

AtMYC1 AtPAP1 17.20±0.60 + [32] 

AtMYC1 AtPAP2 15.34±0.31 + [32] 

AtMYC1 AtTT2 18.26±1.37 + [32] 

AtMYC1 AtMYB61 2.36±0.23 w This work 

AtMYC1 w/o 0.57±0.00 - This work 

     

AtGL1 AtTTG1 0.58±0.00 - [70] 
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Table S1 Cont.    

ProtA fusion Luciferase fusion 
Luciferase activity: 

pulldown/input ratio (%) 
References 

AtGL1 AtGL3 19.61±0.59 + 
[29, 66, 69, 153, 178, 

193] 

AtGL1 AtEGL3 17.76±0.75 + [32, 66] 

AtGL1 AtTT8 26.51±1.66 + [32] 

AtGL1 AtMYC1 22.61±0.30 + [32, 35, 178] 

AtGL1 AtGL1 1.81±0.05 w [180]  

AtGL1 AtWER 0.61±0.01 - This work 

AtGL1 AtPAP1 0.63±0.00 - This work 

AtGL1 AtPAP2 0.59±0.03 - This work 

AtGL1 AtTT2 0.58±0.01 - This work 

AtGL1 AtMYB61 0.54±0.02 - This work 

AtGL1 w/o 0.57±0.02 - This work 

     

AtWER AtTTG1 0.60±0.00 - This work 

AtWER AtGL3 16.56±0.32 + [32, 65, 194] 

AtWER AtEGL3 19.88±0.74 + [32, 194] 

AtWER AtTT8 2.44±0.98 w [32] 

AtWER AtMYC1 14.42±0.29 + [32, 35] 

AtWER AtGL1 0.62±0.03 - This work 

AtWER AtWER 0.61±0.04 - This work 

AtWER AtPAP1 0.63±0.03 - This work 

AtWER AtPAP2 0.60±0.02 - This work 

AtWER AtTT2 0.58±0.00 - This work 

AtWER AtMYB61 0.57±0.01 - This work 

AtWER w/o 0.58±0.00 - This work 

     

AtPAP1 AtTTG1 0.61±0.01 - This work 

AtPAP1 AtGL3 19.93±0.23 + [66, 103] 

AtPAP1 AtEGL3 22.60±0.79 + [32, 103] 

AtPAP1 AtTT8 25.83±0.85 + [32] 

AtPAP1 AtMYC1 17.15±0.59 + [32] 

AtPAP1 AtGL1 0.65±0.01 - This work 

AtPAP1 AtWER 0.61±0.01 - This work 

AtPAP1 AtPAP1 0.63±0.02 - This work 
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Table S1 Cont.    

ProtA fusion Luciferase fusion 
Luciferase activity: 

pulldown/input ratio (%) 
References 

AtPAP1 AtPAP2 0.60±0.04 - This work 

AtPAP1 AtTT2 0.58±0.02 - [103] 

AtPAP1 AtMYB61 0.62±0.03 - This work 

AtPAP1 w/o 0.57±0.02 - This work 

     

AtPAP2 AtTTG1 0.94±0.08 - This work 

AtPAP2 AtGL3 19.56±0.41 + [66] 

AtPAP2 AtEGL3 12.44±0.17 + [32, 66] 

AtPAP2 AtTT8 35.22±0.39 + [32] 

AtPAP2 AtMYC1 17.15±0.99 + [32] 

AtPAP2 AtGL1 0.65±0.01 - This work 

AtPAP2 AtWER 0.60±0.01 - This work 

AtPAP2 AtPAP1 0.65±0.02 - This work 

AtPAP2 AtPAP2 0.60±0.04 - This work 

AtPAP2 AtTT2 0.66±0.02 - This work 

AtPAP2 AtMYB61 0.62±0.03 - This work 

AtPAP2 w/o 0.55±0.02 - This work 

     

AtTT2 AtTTG1 0.82±0.02 - [31] 

AtTT2 AtGL3 20.33±0.59 + [103] 

AtTT2 AtEGL3 22.59±0.35 + [32, 103] 

AtTT2 AtTT8 28.63±0.74 + [31, 32, 103] 

AtTT2 AtMYC1 19.59±0.99 + [32] 

AtTT2 AtGL1 0.65±0.00 - This work 

AtTT2 AtWER 0.61±0.03 - This work 

AtTT2 AtPAP1 0.63±0.00 - [103] 

AtTT2 AtPAP2 0.60±0.00 - This work 

AtTT2 AtTT2 1.87±0.02 w [31] 

AtTT2 AtMYB61 0.62±0.01 - This work 

AtTT2 w/o 0.57±0.00 - This work 

     

AtMYB61 AtTTG1 0.60±0.01 - This work 

AtMYB61 AtGL3 0.85±0.04 - This work 
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The proteins were single-expressed in human cells (HEK293TN) and immunoprecipitated with IgG 

Dynabeads. Data are mean ± s.d. (n = 3). 

w/o: Empty vector without CDS fusion.  

+ : Positive interaction (Luciferase activity ≥ 2.5%) 

W : Weak interaction (Luciferase activity = 1.5% ~ 2.5%) 

- : No interaction (Luciferase activity < 1.5%) 

  

Table S1 Cont.    

ProtA fusion Luciferase fusion 
Luciferase activity: 

pulldown/input ratio (%) 
References 

AtMYB61 AtEGL3 0.89±0.02 - This work 

AtMYB61 AtTT8 1.19±0.06 - This work 

AtMYB61 AtMYC1 0.88±0.01 - This work 

AtMYB61 AtGL1 0.64±0.04 - This work 

AtMYB61 AtWER 0.60±0.02 - This work 

AtMYB61 AtPAP1 0.63±0.02 - This work 

AtMYB61 AtPAP2 0.60±0.00 - This work 

AtMYB61 AtTT2 0.58±0.02 - This work 

AtMYB61 AtMYB61 0.62±0.02 - This work 

AtMYB61 w/o 0.57±0.00 - This work 

     

w/o AtTTG1 0.54±0.01 - This work 

w/o AtGL3 0.69±0.07 - This work 

w/o AtEGL3 0.71±0.05 - This work 

w/o AtTT8 0.70±0.09 - This work 

w/o AtMYC1 0.68±0.01 - This work 

w/o AtGL1 0.69±0.01 - This work 

w/o AtWER 0.58±0.08 - This work 

w/o AtPAP1 0.60±0.02 - This work 

w/o AtPAP2 0.62±0.04 - This work 

w/o AtTT2 0.57±0.03 - This work 

w/o AtMYB61 0.65±0.01 - This work 

w/o w/o 0.54±0.00 - This work 
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Table S2 Pairwise interaction of MBW components in Arabis (A. alpine). 

ProtA fusion Luciferase fusion 
Luciferase activity: 

pulldown/input ratio (%) 
References 

AaTTG1 AaTTG1 0.63±0.01 - This work 

AaTTG1 AaGL3 4.06±0.39 + This work 

AaTTG1 AaEGL3 4.54±0.27 + This work 

AaTTG1 AaTT8 5.53±0.11 + This work 

AaTTG1 AaMYC1 4.33±0.19 + This work 

AaTTG1 AaGL1 0.61±0.02 - This work 

AaTTG1 AaWER 0.62±0.02 - [150] 

AaTTG1 AaPAPL 0.65±0.01 - This work 

AaTTG1 w/o 0.55±0.01 - This work 

     

AaGL3 AaTTG1 7.74±0.29 + This work 

AaGL3 AaGL3 3.87±0.04 + This work 

AaGL3 AaEGL3 2.69±0.03 + This work 

AaGL3 AaTT8 4.77±0.07 + This work 

AaGL3 AaMYC1 3.76±0.09 + This work 

AaGL3 AaGL1 15.74±1.63 + This work 

AaGL3 AaWER 14.84±1.00 + This work 

AaGL3 AaPAPL 10.38±0.35 + This work 

AaGL3 w/o 0.58±0.01 - This work 

     

AaEGL3 AaTTG1 8.12±0.54 + This work 

AaEGL3 AaGL3 3.83±0.20 + This work 

AaEGL3 AaEGL3 3.09±0.05 + This work 

AaEGL3 AaTT8 5.01±0.17 + This work 

AaEGL3 AaMYC1 2.23±0.04 w This work 

AaEGL3 AaGL1 5.74±1.19 + This work 

AaEGL3 AaWER 6.84±1.06 + This work 

AaEGL3 AaPAPL 5.38±0.61 + This work 

AaEGL3 w/o 0.57±0.01 - This work 

     

AaTT8 AaTTG1 8.51±1.31 + This work 

AaTT8 AaGL3 2.96±0.12 + This work 

AaTT8 AaEGL3 1.91±0.02 w This work 
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Table S2 Cont.    

ProtA fusion Luciferase fusion 
Luciferase activity: 

pulldown/input ratio (%) 
References 

AaTT8 AaTT8 3.62±0.17 + This work 

AaTT8 AaMYC1 2.83±0.04 + This work 

AaTT8 AaGL1 4.74±0.36 + This work 

AaTT8 AaWER 3.97±0.19 + This work 

AaTT8 AaPAPL 4.25±0.08 + This work 

AaTT8 w/o 0.58±0.01 - This work 

     

AaMYC1 AaTTG1 6.93±0.16 + This work 

AaMYC1 AaGL3 3.31±0.07 + This work 

AaMYC1 AaEGL3 1.97±0.04 w This work 

AaMYC1 AaTT8 3.62±0.17 + This work 

AaMYC1 AaMYC1 2.83±0.04 + This work 

AaMYC1 AaGL1 4.74±0.36 + This work 

AaMYC1 AaWER 3.97±0.19 + This work 

AaMYC1 AaPAPL 4.25±0.08 + This work 

AaMYC1 w/o 0.58±0.01 - This work 

AaGL1 AaTTG1 0.60±0.02 - This work 

AaGL1 AaGL3 9.56±0.14 + This work 

AaGL1 AaEGL3 8.22±0.47 + This work 

AaGL1 AaTT8 8.80±0.17 + This work 

AaGL1 AaMYC1 11.28±0.38 + This work 

AaGL1 AaGL1 0.64±0.01 - This work 

AaGL1 AaWER 0.62±0.02 - This work 

AaGL1 AaPAPL 0.62±0.00 - This work 

AaGL1 w/o 0.57±0.00 - This work 

     

AaWER AaTTG1 0.62±0.02 - This work 

AaWER AaGL3 14.37±0.69 + This work 

AaWER AaEGL3 14.44±0.64 + This work 

AaWER AaTT8 15.52±1.38 + This work 

AaWER AaMYC1 13.59±1.00 + This work 

AaWER AaGL1 0.66±0.02 - This work 

AaWER AaWER 0.60±0.01 - This work 
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Table S2 Cont.    

ProtA fusion Luciferase fusion 
Luciferase activity: 

pulldown/input ratio (%) 
References 

AaWER AaPAPL 0.61±0.00 - This work 

AaWER w/o 0.57±0.00 - This work 

AaPAPL AaTTG1 0.61±0.02 - This work 

AaPAPL AaGL3 13.90±0.52 + This work 

AaPAPL AaEGL3 8.59±0.29 + This work 

AaPAPL AaTT8 35.31±3.17 + This work 

AaPAPL AaMYC1 20.96±2.38 + This work 

AaPAPL AaGL1 0.61±0.01 - This work 

AaPAPL AaWER 0.63±0.02 - This work 

AaPAPL AaPAPL 0.63±0.01 - This work 

AaPAPL w/o 0.59±0.01 - This work 
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Table S3 Pairwise interaction of MBW components in Cotton (G.hirsutum). 

BD or ProtA 
fusion 

AD or Luciferase 
fusion 

Yeast two 
hybrid 

LUMIER References 

GhTTG1 GhTTG1 - 0.45±0.06 - This work 

GhTTG1 GhTTG2 - 0.47±0.05 - This work 

GhTTG1 GhTTG3 - 0.59±0.05 - This work 

GhTTG1 GhTTG4 - 0.57±0.05 - This work 

GhTTG1 GhDEL61 + 6.18±0.89 + This work 

GhTTG1 GhDEL65 + 13.86±2.80 +  

GhTTG1 GhMYB2 - 0.55±0.07 - This work 

GhTTG1 GhMYB25 - 0.61±0.04 - This work 

GhTTG1 GhRLC1 - 0.61±0.06 - This work 

GhTTG1 w/o - 0.50±0.03 - This work 

      

GhTTG2 GhTTG1 - 0.52±0.08 - This work 

GhTTG2 GhTTG2 - 0.57±0.02 - This work 

GhTTG2 GhTTG3 - 0.59±0.04 - This work 

GhTTG2 GhTTG4 - 0.56±0.05 - This work 

GhTTG2 GhDEL61 - 0.58±0.05 - This work 

GhTTG2 GhDEL65 - 0.61±0.04 - This work 

GhTTG2 GhMYB2 - 0.59±0.04 - This work 

GhTTG2 GhMYB25 - 0.61±0.04 - This work 

GhTTG2 GhRLC1 - 0.59±0.07 - This work 

GhTTG2 w/o - 0.49±0.03 - This work 

      

GhTTG3 GhTTG1 - 0.48±0.08 - This work 

GhTTG3 GhTTG2 - 0.57±0.04 - This work 

GhTTG3 GhTTG3 - 0.59±0.05 - This work 

GhTTG3 GhTTG4 - 0.56±0.05 - This work 

GhTTG3 GhDEL61 + 6.90±0.11 + [76] 

GhTTG3 GhDEL65 + 14.83±3.27 + [76] 

GhTTG3 GhMYB2 - 0.57±0.03 - This work 

GhTTG3 GhMYB25 - 0.63±0.06 - This work 

GhTTG3 GhRLC1 - 0.61±0.07 - This work 

GhTTG3 w/o - 0.49±0.04 - This work 
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Table S3 Cont.      

BD or ProtA 
fusion 

AD or Luciferase 
fusion 

Yeast two 
hybrid 

LUMIER References 

GhTTG4 GhTTG1 - 0.53±0.09 - This work 

GhTTG4 GhTTG2 - 0.51±0.05 - This work 

GhTTG4 GhTTG3 - 0.58±0.05 - This work 

GhTTG4 GhTTG4 - 0.56±0.05 - This work 

GhTTG4 GhDEL61 - 0.58±0.03 - This work 

GhTTG4 GhDEL65 - 0.65±0.05 - This work 

GhTTG4 GhMYB2 - 0.57±0.06 - This work 

GhTTG4 GhMYB25 - 0.64±0.05 - This work 

GhTTG4 GhRLC1 - 0.60±0.07 - This work 

GhTTG4 w/o - 0.49±0.03 - This work 

      

GhDEL61 GhTTG1 A 8.86±0.40 + This work 

GhDEL61 GhTTG2 A 0.56±0.05 - This work 

GhDEL61 GhTTG3 A 7.59±0.27 + [76] 

GhDEL61 GhTTG4 A 0.57±0.06 - This work 

GhDEL61 GhDEL61 A 3.60±0.11 + [76] 

GhDEL61 GhDEL65 A 4.86±3.27 + [76] 

GhDEL61 GhMYB2 A 39.53±8.13 + [76, 161] 

GhDEL61 GhMYB25 A 5.84±0.12 + [161] 

GhDEL61 GhRLC1 A 42.22±5.83 + This work 

GhDEL61 w/o A 0.49±0.04 - This work 

      

GhDEL65 GhTTG1 + 20.93±5.04 + [151] 

GhDEL65 GhTTG2 - 0.56±0.03 - This work 

GhDEL65 GhTTG3 + 15.54±2.20 + [76] 

GhDEL65 GhTTG4 - 0.56±0.03 - This work 

GhDEL65 GhDEL61 w 3.74±0.11 + [76] 

GhDEL65 GhDEL65 w 3.86±3.27 + [76] 

GhDEL65 GhMYB2 + 43.67±6.25 + [76, 161] 

GhDEL65 GhMYB25 + 4.83±0.38 + [161] 

GhDEL65 GhRLC1 + 40.60±3.77 + This work 

GhDEL65 w/o - 0.50±0.03 - This work 
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Table S3 Cont.      

BD or ProtA 
fusion 

AD or Luciferase 
fusion 

Yeast two 
hybrid 

LUMIER References 

GhMYB2 GhTTG1 A 0.63±0.04 - This work 

GhMYB2 GhTTG2 A 0.58±0.04 - This work 

GhMYB2 GhTTG3 A 0.61±0.03 - This work 

GhMYB2 GhTTG4 A 0.57±0.05 - This work 

GhMYB2 GhDEL61 A 13.72±0.41 + [76, 161] 

GhMYB2 GhDEL65 A 17.80±1.71 + [76, 161] 

GhMYB2 GhMYB2 A 0.66±0.06 - This work 

GhMYB2 GhMYB25 A 0.59±0.06 - This work 

GhMYB2 GhRLC1 A 0.63±0.07 - This work 

GhMYB2 w/o A 0.51±0.02 - This work 

      

      

GhMYB25 GhTTG1 A 0.64±0.07 - This work 

GhMYB25 GhTTG2 A 0.53±0.04 - This work 

GhMYB25 GhTTG3 A 0.57±0.06 - This work 

GhMYB25 GhTTG4 A 0.51±0.04 - This work 

GhMYB25 GhDEL61 A 7.99±0.30 + [161] 

GhMYB25 GhDEL65 A 9.48±0.85 + [161] 

GhMYB25 GhMYB2 A 0.60±0.07 - This work 

GhMYB25 GhMYB25 A 0.62±0.04 - This work 

GhMYB25 GhRLC1 A 0.67±0.07 - This work 

GhMYB25 w/o A 0.52±0.04 - This work 

      

GhRLC1 GhTTG1 A 0.65±0.06 - This work 

GhRLC1 GhTTG2 A 0.55±0.04 - This work 

GhRLC1 GhTTG3 A 0.60±0.06 - This work 

GhRLC1 GhTTG4 A 0.53±0.04 - This work 

GhRLC1 GhDEL61 A 9.64±0.26 + This work 

GhRLC1 GhDEL65 A 9.38±1.17 + This work 

GhRLC1 GhMYB2 A 0.60±0.05 - This work 

GhRLC1 GhMYB25 A 0.66±0.03 - This work 

GhRLC1 GhRLC1 A 0.68±0.06 - This work 

GhRLC1 w/o A 0.49±0.03 - This work 
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Table S3 Cont.      

BD or ProtA 
fusion 

AD or Luciferase 
fusion 

Yeast two 
hybrid 

LUMIER References 

w/o GhTTG1 - 0.67±0.06 - This work 

w/o GhTTG2 - 0.55±0.03 - This work 

w/o GhTTG3 - 0.62±0.05 - This work 

w/o GhTTG4 - 0.56±0.03 - This work 

w/o GhDEL61 - 0.53±0.02 - This work 

w/o GhDEL65 - 0.61±0.03 - This work 

w/o GhMYB2 - 0.64±0.05 - This work 

w/o GhMYB25 - 0.64±0.03 - This work 

w/o GhRLC1 - 0.67±0.07 - This work 

w/o w/o - 0.49±0.04 - This work 

A : Autoactivation 
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Table S4 Pairwise interaction of MBW components in Petunia (P. hybrida). 

BD or ProtA 
fusion 

AD or Luciferase 
fusion 

Yeast two 
hybrid 

LUMIER References 

AN11 AN11 - 0.58±0.08 - [146]  

AN11 AN1 + 18.45±0.65 + [146] 

AN11 JAF13 + 26.77±4.24 + [146] 

AN11 AN2 + 0.59±0.02 - [146] 

AN11 AN4 + 0.55±0.02 - This work 

AN11 PH4 - 0.56±0.07 - This work 

AN11 w/o - 0.48±0.03 - [146] 

      

AN1 AN11 + 29.75±3.68 + [146] 

AN1 AN1 + 9.19±2.91 + [47, 146] conflict 

AN1 JAF13 - 17.06±3.46 + [47, 48, 146] 

AN1 AN2 + 47.21±5.22 + [146] 

AN1 AN4 + 50.39±7.63 + This work 

AN1 PH4 w 51.89±8.89 + [48] 

AN1 w/o - 0.49±0.05 - [48] 

      

JAF13 AN11 A 31.80±4.51 + [146] 

JAF13 AN1 A 5.77±0.54 + [47, 146] 

JAF13 JAF13 A 8.99±1.26 + [47, 48, 146] 

JAF13 AN2 A 48.26±8.02 + [146] 

JAF13 AN4 A 51.39±8.81 + This work 

JAF13 PH4 A 50.73±6.53 + [48] 

JAF13 w/o A 0.50±0.04 - [48] 

      

AN2 AN11 A 0.59±0.00 - This work 

AN2 AN1 A 18.17±0.66 + This work 

AN2 JAF13 A 26.08±6.27 + This work 

AN2 AN2 A 0.55±0.03 - This work 

AN2 AN4 A 0.56±0.04 - This work 

AN2 PH4 A 0.59±0.03 - This work 

AN2 w/o A 0.47±0.06 - This work 

      

AN4 AN11 A 0.55±0.02 - This work 
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Table S4 Cont.     

BD or ProtA 
fusion 

AD or Luciferase 
fusion 

Yeast two 
hybrid 

LUMIER References 

AN4 AN1 A 19.65±2.43 + This work 

AN4 JAF13 A 32.21±4.02 + This work 

AN4 AN2 A 0.58±0.02 - This work 

AN4 AN4 A 0.57±0.02 - This work 

AN4 PH4 A 0.58±0.01 - This work 

AN4 w/o A 0.48±0.05 - This work 

      

PH4 AN11 A 0.57±0.04 - This work 

PH4 AN1 A 31.94±6.10 + This work 

PH4 JAF13 A 42.77±4.48 + This work 

PH4 AN2 A 0.58±0.03 - This work 

PH4 AN4 A 0.56±0.01 - This work 

PH4 PH4 A 0.59±0.03 - This work 

PH4 w/o A 0.50±0.01 - This work 

     This work 

w/o AN11 - 0.55±0.03 - This work 

w/o AN1 - 0.60±0.02 - This work 

w/o JAF13 - 0.62±0.05 - This work 

w/o AN2 - 0.59±0.03 - This work 

w/o AN4 - 0.52±0.02 - This work 

w/o PH4 - 0.58±0.01 - This work 

w/o w/o - 0.47±0.03 - This work 
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Table S5 Pairwise interaction of MBW components in Maize (Z.mays). 

BD or ProtA 
fusion 

AD or Luciferase 
fusion 

Yeast two 
hybrid 

LUMIER References 

PAC1 PAC1 - 0.67±0.00 - This work 

PAC1 MP1 - 0.65±0.02 - This work 

PAC1 R(Lc) + 10.97±1.33 + This work 

PAC1 R(S) + 10.34±0.71 + This work 

PAC1 B + 10.84±0.49 + This work 

PAC1 C1 - 0.61±0.07 - This work 

PAC1 PL - 0.52±0.05 - This work 

PAC1 P1 + 0.51±0.04 - This work 

PAC1 w/o - 0.49±0.07 - This work 

      

MP1 PAC1 - 0.62±0.08 - This work 

MP1 MP1 - 0.65±0.02 - This work 

MP1 R(Lc) - 0.70±0.12 - This work 

MP1 R(S) - 0.63±0.03 - This work 

MP1 B - 0.64±0.09 - This work 

MP1 C1 - 0.66±0.07 - This work 

MP1 PL - 0.56±0.15 - This work 

MP1 P1 - 0.51±0.08 - This work 

MP1 w/o - 0.47±0.05 - This work 

      

R(Lc) PAC1 A 18.38±0.75 + This work 

R(Lc) MP1 A 0.67±0.04 - This work 

R(Lc) R(Lc) A 9.63±0.84 + This work 

R(Lc) R(S) A 9.36±1.09 + This work 

R(Lc) B A 2.22±0.19 w This work 

R(Lc) C1 A 48.68±2.07 + This work 

R(Lc) PL A 59.56±3.95 + This work 

R(Lc) P1 A 0.52±0.09 - This work 

R(Lc) w/o A 0.49±0.06 - This work 

      

R(S) PAC1 A 19.86±1.81 + This work 

R(S) MP1 A 0.64±0.07 - This work 

R(S) R(Lc) A 8.44±0.84 + This work 
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Table S5 Cont.     

BD or ProtA 
fusion 

AD or Luciferase 
fusion 

Yeast two 
hybrid 

LUMIER References 

R(S) R(S) A 10.29±1.40 + [33, 145] 

R(S) B A 2.16±0.15 w This work 

R(S) C1 A 56.41±8.36 + [43, 89, 145] 

R(S) PL A 39.57±4.51 + [43, 89] 

R(S) P1 A 0.53±0.10 - [43, 89] 

R(S) w/o A 0.50±0.05 - This work 

      

B PAC1 + 12.51±1.20 + This work 

B MP1 - 0.63±0.12 - This work 

B R(Lc) w 3.56±0.06 + This work 

B R(S) w 3.39±0.06 + This work 

B B - 3.90±0.09 + This work 

B C1 - 0.66±0.16 - [39, 43]conflict 

B PL - 0.58±0.14 - [39] conflict 

B P1 - 0.49±0.06 - This work 

B w/o - 0.51±0.05 - This work 

      

C1 PAC1 - 0.61±0.05 - This work 

C1 MP1 - 0.63±0.02 - This work 

C1 R(Lc) + 35.56±3.66 + This work 

C1 R(S) + 44.54±5.60 + [43, 89, 145] 

C1 B w 1.73.±0.19 - [39, 43] conflict 

C1 C1 + 0.52±0.16 - This work 

C1 PL + 0.52±0.14 - This work 

C1 P1 - 0.53±0.06 - This work 

C1 w/o - 0.53±0.01 - This work 

      

PL PAC1 A 0.65±0.02 - This work 

PL MP1 A 0.60±0.05 - This work 

PL R(Lc) A 47.19±3.91 + This work 

PL R(S) A 46.37±4.45 + [43, 89, 145] 

PL B A 0.63.±0.18 - [39, 43] conflict 

PL C1 A 0.57±0.14 - This work 
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Table S5 Cont.     

BD or ProtA 
fusion 

AD or Luciferase 
fusion 

Yeast two 
hybrid 

LUMIER References 

PL PL A 0.53±0.10 - This work 

PL P1 A 0.53±0.12 - This work 

PL w/o A 0.52±0.05 - This work 

P1 PAC1 - 0.63±0.05 - This work 

P1 MP1 - 0.57±0.09 - This work 

P1 R(Lc) - 0.59±0.11 - This work 

P1 R(S) + 0.65±0.09 - [43, 89] 

P1 B - 0.63.±0.08 - This work 

P1 C1 - 0.66±0.16 - This work 

P1 PL - 0.55±0.12 - This work 

P1 P1 - 0.49±0.06 - This work 

P1 w/o - 0.50±0.05 - This work 

      

w/o PAC1 - 0.61±0.09 - This work 

w/o MP1 - 0.56±0.05 - This work 

w/o R(Lc) - 0.62±0.10 - This work 

w/o R(S) - 0.60±0.08 - This work 

w/o B - 0.62.±0.02 - This work 

w/o C1 - 0.65±0.08 - This work 

w/o PL - 0.55±0.06 - This work 

w/o P1 - 0.53±0.04 - This work 

w/o w/o - 0.51±0.02 - This work 
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Table S6 Interaction between WD40 homologs and bHLHs/R2R3MYBs in Arabidopsis (A. 

thaliana). 

ProtA fusion 
Luciferase 

fusion 
Luciferase activity: 

pulldown/input ratio (%) 
References 

AaTTG1 AtGL3 36.35±2.64 + This work 

GhTTG1 AtGL3 27.38±2.23 + This work 

GhTTG2 AtGL3 0.57±0.16 - This work 

GhTTG3 AtGL3 2.44±0.34 w This work 

GhTTG4 AtGL3 0.74±0.03 - This work 

AN11 AtGL3 17.18±1.64 + This work 

PAC1 AtGL3 26.44±8.70 + This work 

MP1 AtGL3 0.77±0.00 - This work 

w/o AtGL3 0.58±0.06 - This work 

     

AaTTG1 AtEGL3 20.86±9.54 + This work 

GhTTG1 AtEGL3 25.92±1.71 + This work 

GhTTG2 AtEGL3 0.58±0.14 - This work 

GhTTG3 AtEGL3 6.16±4.64 + This work 

GhTTG4 AtEGL3 0.54±0.14 - This work 

AN11 AtEGL3 23.90±2.75 + This work 

PAC1 AtEGL3 28.14±3.96 + This work 

MP1 AtEGL3 0.50±0.09 - This work 

w/o AtEGL3 0.55±0.07 - This work 

     

AaTTG1 AtTT8 23.15±3.19 + This work 

GhTTG1 AtTT8 17.83±4.90 + This work 

GhTTG2 AtTT8 0.59±0.07 - This work 

GhTTG3 AtTT8 1.21±0.15 - This work 

GhTTG4 AtTT8 0.60±0.10 - This work 

AN11 AtTT8 20.55±4.53 + This work 

PAC1 AtTT8 11.51±1.23 + This work 

MP1 AtTT8 1.05±0.17 - This work 

w/o AtTT8 0.59±0.06 - This work 

     

AaTTG1 AtMYC1 41.010.08 + This work 

GhTTG1 AtMYC1 33.26±0.09 + This work 
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Table S6 Cont.    

ProtA fusion 
Luciferase 

fusion 
Luciferase activity: 

pulldown/input ratio (%) 
References 

GhTTG2 AtMYC1 0.69±0.12 - This work 

GhTTG3 AtMYC1 20.83±0.11 + This work 

GhTTG4 AtMYC1 0.71±0.07 - This work 

AN11 AtMYC1 13.79±2.04 + This work 

PAC1 AtMYC1 45.63±3.67 + This work 

MP1 AtMYC1 1.69±0.21 w This work 

w/o AtMYC1 0.56±0.06 - This work 

     

AaTTG1 AtGL1 0.63±0.056 - This work 

GhTTG1 AtGL1 0.66±0.03 - This work 

GhTTG2 AtGL1 0.67±0.01 - This work 

GhTTG3 AtGL1 0.65±0.01 - This work 

GhTTG4 AtGL1 0.60±0.09 - This work 

AN11 AtGL1 0.61±0.01 - This work 

PAC1 AtGL1 0.65±0.10 - This work 

MP1 AtGL1 0.60±0.05 - This work 

w/o AtGL1 0.57±0.07 - This work 

     

AaTTG1 AtWER 0.59±0.06 - This work 

GhTTG1 AtWER 0.63±0.07 - This work 

GhTTG2 AtWER 0.60±0.06 - This work 

GhTTG3 AtWER 0.61±0.04 - This work 

GhTTG4 AtWER 0.67±0.06 - This work 

AN11 AtWER 0.59±0.08 - This work 

PAC1 AtWER 0.69±0.09 - This work 

MP1 AtWER 0.64±0.01 - This work 

w/o AtWER 0.58±0.06 - This work 

     

AaTTG1 AtMYB61 0.62±0.02 - This work 

GhTTG1 AtMYB61 0.60±0.01 - This work 

GhTTG2 AtMYB61 0.62±0.01 - This work 

GhTTG3 AtMYB61 0.68±0.10 - This work 

GhTTG4 AtMYB61 0.65±0.07 - This work 
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Table S6 Cont.    

ProtA fusion 
Luciferase 

fusion 
Luciferase activity: 

pulldown/input ratio (%) 
References 

AN11 AtMYB61 0.60±0.03 - This work 

PAC1 AtMYB61 0.63±0.01 - This work 

MP1 AtMYB61 0.62±0.02 - This work 

w/o AtMYB61 0.57±0.01 - This work 

     

AaTTG1 AtTT2 0.71±0.07 - This work 

GhTTG1 AtTT2 1.13±0.11 - This work 

GhTTG2 AtTT2 0.68±0.15 - This work 

GhTTG3 AtTT2 2.02±0.21 w This work 

GhTTG4 AtTT2 0.69±0.05 - This work 

AN11 AtTT2 0.88±0.17 - This work 

PAC1 AtTT2 0.93±0.20 - This work 

MP1 AtTT2 0.69±0.02 - This work 

w/o AtTT2 0.60±0.07 - This work 

     

AaTTG1 AtPAP1 0.71±0.07 - This work 

GhTTG1 AtPAP1 1.13±0.11 - This work 

GhTTG2 AtPAP1 0.68±0.15 - This work 

GhTTG3 AtPAP1 1.02±0.21 - This work 

GhTTG4 AtPAP1 0.69±0.05 - This work 

AN11 AtPAP1 0.88±0.17 - This work 

PAC1 AtPAP1 0.93±0.20 - This work 

MP1 AtPAP1 0.69±0.02 - This work 

w/o AtPAP1 0.60±0.07 - This work 

     

AaTTG1 AtPAP2 0.66±0.04 - This work 

GhTTG1 AtPAP2 0.80±0.08 - This work 

GhTTG2 AtPAP2 0.69±0.05 - This work 

GhTTG3 AtPAP2 0.72±0.11 - This work 

GhTTG4 AtPAP2 0.62±0.07 - This work 

AN11 AtPAP2 0.88±0.17 - This work 

PAC1 AtPAP2 0.93±0.20 - This work 

MP1 AtPAP2 0.69±0.02 - This work 
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Table S6 Cont.    

ProtA fusion 
Luciferase 

fusion 
Luciferase activity: 

pulldown/input ratio (%) 
References 

w/o AtPAP2 0.60±0.07 - This work 

     

AaTTG1 w/o 0.56±0.08 - This work 

GhTTG1 w/o 0.64±0.09 - This work 

GhTTG2 w/o 0.66±0.03 - This work 

GhTTG3 w/o 0.59±0.02 - This work 

GhTTG4 w/o 0.69±0.10 - This work 

AN11 w/o 0.67±0.05 - This work 

PAC1 w/o 0.69±0.06 - This work 

MP1 w/o 0.55±0.11 - This work 

w/o w/o 0.54±0.01 - This work 

       

 AtGL3  AaTTG1 23.29±8.03 + This work 

AtGL3 GhTTG1 20.11±7.74 + This work 

AtGL3 GhTTG2 0.64±0.05 - This work 

AtGL3 GhTTG3 26.89±6.41 + This work 

AtGL3 GhTTG4 0.72±0.13 - This work 

AtGL3 AN11 15.71±6.73 + This work 

AtGL3 PAC1 26.61±4.19 + This work 

AtGL3 MP1 0.70±0.03 - This work 

AtGL3 w/o 0.59±0.04 - This work 

AtEGL3 AaTTG1 27.06±3.13 + This work 

AtEGL3 GhTTG1 26.52±9.50 + This work 

AtEGL3 GhTTG2 0.71±0.06 - This work 

AtEGL3 GhTTG3 11.38±2.80 + This work 

AtEGL3 GhTTG4 0.66±0.13 - This work 

AtEGL3 AN11 18.03±9.12 + This work 

AtEGL3 PAC1 12.55±7.87 + This work 

AtEGL3 MP1 0.66±0.05 - This work 

AtEGL3 w/o 0.59±0.03 - This work 

       

AtTT8 AaTTG1 23.34±4.25 + This work 

AtTT8 GhTTG1 26.57±6.30 + This work 



 ____________________________________ Appendice 

 

110 
  

Table S6 Cont.    

ProtA fusion 
Luciferase 

fusion 
Luciferase activity: 

pulldown/input ratio (%) 
References 

AtTT8 GhTTG2 0.81±0.13 - This work 

AtTT8 GhTTG3 0.92±0.23 - This work 

AtTT8 GhTTG4 0.67±0.11 - This work 

AtTT8 AN11 8.31±1.41 + This work 

AtTT8 PAC1 20.50±4.54 + This work 

AtTT8 MP1 0.70±0.11 - This work 

AtTT8 w/o 0.59±0.08 - This work 

       

AtMYC1 AaTTG1 17.22±8.33 + This work 

AtMYC1 GhTTG1 26.87±7.34 - This work 

AtMYC1 GhTTG2 0.69±0.02 + This work 

AtMYC1 GhTTG3 23.63±5.74 - This work 

AtMYC1 GhTTG4 0.67±0.21 + This work 

AtMYC1 AN11 30.54±0.38 + This work 

AtMYC1 PAC1 9.17±1.17 + This work 

AtMYC1 MP1 0.70±0.40 - This work 

AtMYC1 w/o 0.55±0.01 + This work 

AtGL1 AaTTG1 0.67±0.08 - This work 

AtGL1 GhTTG1 0.66±0.02 - This work 

AtGL1 GhTTG2 0.69±0.06 - This work 

AtGL1 GhTTG3 0.68±0.14 - This work 

AtGL1 GhTTG4 0.71±0.09 - This work 

AtGL1 AN11 0.65±0.06 - This work 

AtGL1 PAC1 0.68±0.10 - This work 

AtGL1 MP1 0.68±0.08 - This work 

AtGL1 w/o 0.59±0.03 - This work 

       

AtWER AaTTG1 0.67±0.08 - This work 

AtWER GhTTG1 0.66±0.02 - This work 

AtWER GhTTG2 0.69±0.06 - This work 

AtWER GhTTG3 0.68±0.14 - This work 

AtWER GhTTG4 0.71±0.09 - This work 

AtWER AN11 0.65±0.06 - This work 
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Table S6 Cont.    

ProtA fusion 
Luciferase 

fusion 
Luciferase activity: 

pulldown/input ratio (%) 
References 

AtWER PAC1 0.68±0.10 - This work 

AtWER MP1 0.68±0.08 - This work 

AtWER w/o 0.59±0.03 - This work 

       

AtMYB61 AaTTG1 0.67±0.08 - This work 

AtMYB61 GhTTG1 0.66±0.02 - This work 

AtMYB61 GhTTG2 0.69±0.06 - This work 

AtMYB61 GhTTG3 0.68±0.14 - This work 

AtMYB61 GhTTG4 0.71±0.09 - This work 

AtMYB61 AN11 0.65±0.06 - This work 

AtMYB61 PAC1 0.68±0.10 - This work 

AtMYB61 MP1 0.68±0.08 - This work 

AtMYB61 w/o 0.59±0.03 - This work 

       

AtTT2 AaTTG1 0.82±0.10 - This work 

AtTT2 GhTTG1 0.86±0.07 - This work 

AtTT2 GhTTG2 0.79±0.06 - This work 

AtTT2 GhTTG3 1.88±0.19 w This work 

AtTT2 GhTTG4 0.66±0.09 - This work 

AtTT2 AN11 0.62±0.03 - This work 

AtTT2 PAC1 0.64±0.05 - This work 

AtTT3 MP1 0.69±0.02 - This work 

AtTT4 w/o 0.58±0.00 - This work 

       

AtPAP1 AaTTG1 0.70±0.05 - This work 

AtPAP1 GhTTG1 0.68±0.01 - This work 

AtPAP1 GhTTG2 0.66±0.02 - This work 

AtPAP1 GhTTG3 0.66±0.04 - This work 

AtPAP1 GhTTG4 0.69±0.03 - This work 

AtPAP1 AN11 0.63±0.09 - This work 

AtPAP1 PAC1 0.68±0.02 - This work 

AtPAP1 MP1 0.64±0.03 - This work 

AtPAP1 w/o 0.59±0.01 - This work 
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Table S6 Cont.    

ProtA fusion 
Luciferase 

fusion 
Luciferase activity: 

pulldown/input ratio (%) 
References 

AtPAP2 AaTTG1 0.63±0.03 - This work 

AtPAP2 GhTTG1 0.65±0.04 - This work 

AtPAP2 GhTTG2 0.61±0.01 - This work 

AtPAP2 GhTTG3 0.60±0.06 - This work 

AtPAP2 GhTTG4 0.62±0.03 - This work 

AtPAP2 AN11 0.63±0.00 - This work 

AtPAP2 PAC1 0.67±0.08 - This work 

AtPAP2 MP1 0.63±0.06 - This work 

AtPAP2 w/o 0.58±0.07 - This work 

     

w/o AaTTG1 0.67±0.06 - This work 

w/o GhTTG1 0.63±0.00 - This work 

w/o GhTTG2 0.68±0.08 - This work 

w/o GhTTG3 0.63±0.01 - This work 

w/o GhTTG4 0.62±0.00 - This work 

w/o AN11 0.69±0.11 - This work 

w/o PAC1 0.70±0.08 - This work 

w/o MP1 0.62±0.00 - This work 

w/o w/o 0.53±0.02 - This work 
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Table S7 Interaction between bHLH homologs and AtTTG1/R2R3MYBs in Arabidopsis (A. 

thaliana). 

ProtA fusion Luciferase fusion 
Luciferase activity: 

pulldown/input ratio (%) 
References 

AtTTG1 AaGL3 27.06±2.07 + This work 

AtTTG1 AaEGL3 14.60±1.96 + This work 

AtTTG1 AaMYC1 18.25±1.45 + This work 

AtTTG1 AaTT8 17.93±1.43 + This work 

AtTTG1 GhDEL61 8.84±1.78 + This work 

AtTTG1 GhDEL65 18.86±2.26 + This work 

AtTTG1 JAF13 29.06±4.13 + This work 

AtTTG1 AN1 19.27±1.78 + This work 

AtTTG1 R(Lc) 32.02±3.92 + This work 

AtTTG1 R(S) 28.75±3.24 + This work 

AtTTG1 B 26.26±3.56 + This work 

AtTTG1 w/o 0.60±0.01 - This work 

     

AtGL1 AaGL3 14.17±2.36 + This work 

AtGL1 AaEGL3 6.63±1.02 + This work 

AtGL1 AaMYC1 4.25±0.03 + This work 

AtGL1 AaTT8 7.85±0.41 + This work 

AtGL1 GhDEL61 12.75±0.79 + This work 

AtGL1 GhDEL65 8.66±0.10 + This work 

AtGL1 JAF13 12.76±2.61 + This work 

AtGL1 AN1 6.55±0.66 + This work 

AtGL1 R(Lc) 32.06±3.16 + This work 

AtGL1 R(S) 31.36±2.35 + This work 

AtGL1 B 0.95±0.01 - This work 

AtGL1 w/o 0.59±0.00 - This work 

     

AtWER AaGL3 37.17±2.56 + This work 

AtWER AaEGL3 16.09±1.58 + This work 

AtWER AaMYC1 8.84±0.79 + This work 

AtWER AaTT8 7.67±0.87 + This work 

AtWER GhDEL61 20.60±0.21 + This work 

AtWER GhDEL65 8.61±0.24 + This work 
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Table S7 Cont.    

ProtA fusion Luciferase fusion 
Luciferase activity: 

pulldown/input ratio (%) 
References 

AtWER JAF13 30.55±2.63 + This work 

AtWER AN1 22.92±3.75 + This work 

AtWER R(Lc) 32.48±5.25 + This work 

AtWER R(S) 38.22±3.55 + This work 

AtWER B 0.90±0.02 - This work 

AtWER w/o 0.60±0.00 - This work 

     

AtMYB61 AaGL3 0.98±0.02 - This work 

AtMYB61 AaEGL3 0.89±0.01 - This work 

AtMYB61 AaMYC1 0.86±0.00 - This work 

AtMYB61 AaTT8 1.22±0.03 - This work 

AtMYB61 GhDEL61 1.17±0.03 - This work 

AtMYB61 GhDEL65 1.11±0.02 - This work 

AtMYB61 JAF13 0.96±0.02 - This work 

AtMYB61 AN1 1.36±0.03 - This work 

AtMYB61 R(Lc) 1.08±0.04 - This work 

AtMYB61 R(S) 0.93±0.02 - This work 

AtMYB61 B 0.76±0.04 - This work 

AtMYB61 w/o 0.60±0.03 - This work 

     

AtTT2 AaGL3 16.19±2.87 + This work 

AtTT2 AaEGL3 8.58±0.41 + This work 

AtTT2 AaMYC1 9.18±1.37 + This work 

AtTT2 AaTT8 41.91±3.91 + This work 

AtTT2 GhDEL61 15.37±2.25 + This work 

AtTT2 GhDEL65 7.96±0.03 + This work 

AtTT2 JAF13 24.48±1.17 + This work 

AtTT2 AN1 40.54±7.54 + This work 

AtTT2 R(Lc) 22.88±2.56 + This work 

AtTT2 R(S) 25.48±3.02 + This work 

AtTT2 B 0.88±0.04 - This work 

AtTT2 w/o 0.60±0.01 - This work 
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Table S7 Cont.    

ProtA fusion Luciferase fusion 
Luciferase activity: 

pulldown/input ratio (%) 
References 

AtPAP1 AaGL3 5.63±0.52 + This work 

AtPAP1 AaEGL3 2.18±0.41 w This work 

AtPAP1 AaMYC1 5.90±0.62 + This work 

AtPAP1 AaTT8 6.91±1.10 + This work 

AtPAP1 GhDEL61 6.71±0.26 + This work 

AtPAP1 GhDEL65 5.96±1.10 + This work 

AtPAP1 JAF13 8.45±1.12 + This work 

AtPAP1 AN1 6.27±0.78 + This work 

AtPAP1 R(Lc) 8.21±0.67 + This work 

AtPAP1 R(S) 6.88±0.13 + This work 

AtPAP1 B 0.89±0.01 - This work 

AtPAP1 w/o 0.60±0.00 - This work 

     

AtPAP2 AaGL3 2.28±0.12 w This work 

AtPAP2 AaEGL3 1.09±0.14 - This work 

AtPAP2 AaMYC1 1.99±0.10 w This work 

AtPAP2 AaTT8 3.11±0.16 + This work 

AtPAP2 GhDEL61 8.01±0.09 + This work 

AtPAP2 GhDEL65 5.59±0.17 + This work 

AtPAP2 JAF13 2.15±0.46 w This work 

AtPAP2 AN1 4.12±0.23 + This work 

AtPAP2 R(Lc) 14.42±0.77 + This work 

AtPAP2 R(S) 16.68±2.11 + This work 

AtPAP2 B 0.86±0.02 - This work 

AtPAP2 w/o 0.60±0.03 - This work 

     

w/o AaGL3 0.72±0.01 - This work 

w/o AaEGL3 0.73±0.01 - This work 

w/o AaMYC1 0.77±0.00 - This work 

w/o AaTT8 0.72±0.01 - This work 

w/o GhDEL61 0.70±0.00 - This work 

w/o GhDEL65 0.73±0.02 - This work 

w/o JAF13 0.73±0.01 - This work 
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Table S7 Cont.    

ProtA fusion Luciferase fusion 
Luciferase activity: 

pulldown/input ratio (%) 
References 

w/o AN1 0.71±0.00 - This work 

w/o R(Lc) 0.72±0.01 - This work 

w/o R(S) 0.69±0.00 - This work 

w/o B 0.69±0.02 - This work 

w/o w/o 0.60±0.01 - This work 

     

AaGL3 AtTTG1 30.58±6.14 + This work 

AaEGL3 AtTTG1 27.55±3.65 + This work 

AaMYC1 AtTTG1 14.13±1.22 + This work 

AaTT8 AtTTG1 16.11±1.36 + This work 

GhDEL61 AtTTG1 5.86±0.84 + This work 

GhDEL65 AtTTG1 21.17±3.16 + This work 

JAF13 AtTTG1 10.44±2.16 + This work 

AN1 AtTTG1 16.28±2.14 + This work 

R(Lc) AtTTG1 16.01±3.91 + This work 

R(S) AtTTG1 7.87±2.15 + This work 

B AtTTG1 18.31±3.10 + This work 

w/o AtTTG1 0.57±0.03 - This work 

     

AaGL3 AtGL1 21.46±4.37 + This work 

AaEGL3 AtGL1 21.65±3.14 + This work 

AaMYC1 AtGL1 23.28±2.35 + This work 

AaTT8 AtGL1 6.16±0.39 + This work 

GhDEL61 AtGL1 10.85±1.84 + This work 

GhDEL65 AtGL1 10.79±2.09 + This work 

JAF13 AtGL1 10.25±1.07 + This work 

AN1 AtGL1 10.74±2.19 + This work 

R(Lc) AtGL1 23.35±3.09 + This work 

R(S) AtGL1 16.70±1.70 + This work 

B AtGL1 0.77±0.04 - This work 

w/o AtGL1 0.62±0.02 - This work 

     

AaGL3 AtWER 23.62±3.88 + This work 
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Table S7 Cont.    

ProtA fusion Luciferase fusion 
Luciferase activity: 

pulldown/input ratio (%) 
References 

AaEGL3 AtWER 20.87±1.27 + This work 

AaMYC1 AtWER 15.28±1.82 + This work 

AaTT8 AtWER 6.78±0.45 + This work 

GhDEL61 AtWER 11.82±1.51 + This work 

GhDEL65 AtWER 11.62±0.85 + This work 

JAF13 AtWER 6.96±0.73 + This work 

AN1 AtWER 14.55±2.19 + This work 

R(Lc) AtWER 20.82±2.88 + This work 

R(S) AtWER 20.08±1.08 + This work 

B AtWER 0.86±0.05 - This work 

w/o AtWER 0.61±0.00 - This work 

     

AaGL3 AtMYB61 0.91±0.11 - This work 

AaEGL3 AtMYB61 0.89±0.00 - This work 

AaMYC1 AtMYB61 0.87±0.03 - This work 

AaTT8 AtMYB61 1.74±0.21 w This work 

GhDEL61 AtMYB61 0.90±0.01 - This work 

GhDEL65 AtMYB61 0.93±0.03 - This work 

JAF13 AtMYB61 0.94±0.01 - This work 

AN1 AtMYB61 0.86±0.02 - This work 

R(Lc) AtMYB61 0.93±0.03 - This work 

R(S) AtMYB61 0.91±0.01 - This work 

B AtMYB61 0.78±0.04 - This work 

w/o AtMYB61 0.67±0.03 - This work 

     

AaGL3 AtTT2 5.72±0.28 + This work 

AaEGL3 AtTT2 6.60±0.89 + This work 

AaMYC1 AtTT2 9.46±0.50 + This work 

AaTT8 AtTT2 12.54±1.21 + This work 

GhDEL61 AtTT2 13.56±1.89 + This work 

GhDEL65 AtTT2 13.99±0.50 + This work 

JAF13 AtTT2 8.68±0.97 + This work 

AN1 AtTT2 14.25±0.94 + This work 
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Table S7 Cont.    

ProtA fusion Luciferase fusion 
Luciferase activity: 

pulldown/input ratio (%) 
References 

R(Lc) AtTT2 17.23±1.06 + This work 

R(S) AtTT2 16.74±1.73 + This work 

B AtTT2 0.83±0.02 - This work 

w/o AtTT2 0.55±0.01 - This work 

     

AaGL3 AtPAP1 5.32±0.90 + This work 

AaEGL3 AtPAP1 1.95±0.28 w This work 

AaMYC1 AtPAP1 3.24±0.48 + This work 

AaTT8 AtPAP1 8.13±0.85 + This work 

GhDEL61 AtPAP1 4.16±0.12 + This work 

GhDEL65 AtPAP1 4.02±0.26 + This work 

JAF13 AtPAP1 3.82±0.21 + This work 

AN1 AtPAP1 2.96±0.14 + This work 

R(Lc) AtPAP1 8.50±0.69 + This work 

R(S) AtPAP1 9.38±0.93 + This work 

B AtPAP1 0.72±0.06 - This work 

w/o AtPAP1 0.56±0.01 - This work 

     

AaGL3 AtPAP2 3.68±0.18 + This work 

AaEGL3 AtPAP2 1.09±0.21 - This work 

AaMYC1 AtPAP2 5.41±0.17 + This work 

AaTT8 AtPAP2 13.90±0.49 + This work 

GhDEL61 AtPAP2 2.12±0.50 w This work 

GhDEL65 AtPAP2 5.67±1.36 + This work 

JAF13 AtPAP2 2.10±0.32 w This work 

AN1 AtPAP2 6.45±0.35 + This work 

R(Lc) AtPAP2 10.31±2.02 + This work 

R(S) AtPAP2 15.15±1.15 + This work 

B AtPAP2 1.06±0.30 - This work 

w/o AtPAP2 0.55±0.00 - This work 

     

AaGL3 w/o 0.60±0.03 - This work 

AaEGL3 w/o 0.58±0.00 - This work 
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Table S7 Cont.    

ProtA fusion Luciferase fusion 
Luciferase activity: 

pulldown/input ratio (%) 
References 

AaMYC1 w/o 0.64±0.01 - This work 

AaTT8 w/o 0.60±0.03 - This work 

GhDEL61 w/o 0.60±0.04 - This work 

GhDEL65 w/o 0.58±0.03 - This work 

JAF13 w/o 0.61±0.03 - This work 

AN1 w/o 0.58±0.01 - This work 

R(Lc) w/o 0.62±0.01 - This work 

R(S) w/o 0.64±0.02 - This work 

B w/o 0.65±0.03 - This work 

w/o w/o 0.55±0.01 - This work 
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Table S8 Interaction between R2R3MYB homologs and AtTTG1/bHLHs in Arabidopsis (A. 
thaliana). 

ProtA fusion Luciferase fusion 
Luciferase activity: 

pulldown/input ratio (%) 
References 

AaGL1 AtGL3 17.75±0.60 + This work 

AaWER AtGL3 31.37±2.86 + This work 

AaMYB23 AtGL3 35.42±2.57 + This work 

AaPAPL AtGL3 7.53±0.62 + This work 

GhMYB2 AtGL3 19.01±1.83 + This work 

GhMYB3 AtGL3 18.16±1.47 + This work 

GhMYB25 AtGL3 0.48±0.02 - This work 

GhRLC1 AtGL3 7.56±1.57 + This work 

PhAN2 AtGL3 16.79±0.68 + This work 

PhAN4 AtGL3 9.41±0.12 + This work 

PhPH4 AtGL3 13.09±0.79 + This work 

ZmC1 AtGL3 21.36±0.56 + This work 

ZmPL AtGL3 16.79±1.29 + This work 

ZmP1 AtGL3 0.43±0.01 - This work 

w/o AtGL3 0.39±0.00 - This work 

       

AaGL1 AtEGL3 9.96±0.38 + This work 

AaWER AtEGL3 19.69±1.72 + This work 

AaMYB23 AtEGL3 17.99±2.71 + This work 

AaPAPL AtEGL3 5.52±0.36 + This work 

GhMYB2 AtEGL3 7.32±0.89 + This work 

GhMYB3 AtEGL3 10.86±1.11 + This work 

GhMYB25 AtEGL3 0.68±0.08 - This work 

GhRLC1 AtEGL3 5.56±1.42 + This work 

PhAN2 AtEGL3 10.12±1.28 + This work 

PhAN4 AtEGL3 4.15±0.05 + This work 

PhPH4 AtEGL3 4.53±0.32 + This work 

ZmC1 AtEGL3 5.90±0.05 + This work 

ZmPL AtEGL3 9.13±0.72 + This work 

ZmP1 AtEGL3 0.44±0.02 - This work 

w/o AtEGL3 0.50±0.01 - This work 
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Table S8 Cont.    

ProtA fusion Luciferase fusion 
Luciferase activity: 

pulldown/input ratio (%) 
References 

AaGL1 AtTT8 4.62±0.89 + This work 

AaWER AtTT8 4.87±0.71 + This work 

AaMYB23 AtTT8 5.68±0.19 + This work 

AaPAPL AtTT8 22.39±2.12 + This work 

GhMYB2 AtTT8 20.10±3.07 + This work 

GhMYB3 AtTT8 27.34±1.69 + This work 

GhMYB25 AtTT8 0.74±0.09 - This work 

GhRLC1 AtTT8 22.67±1.22 + This work 

PhAN2 AtTT8 41.41±4.82 + This work 

PhAN4 AtTT8 20.78±3.33 + This work 

PhPH4 AtTT8 30.98±0.49 + This work 

ZmC1 AtTT8 48.16±4.96 + This work 

ZmPL AtTT8 46.53±3.54 + This work 

ZmP1 AtTT8 0.59±0.02 - This work 

w/o AtTT8 0.61±0.04 - This work 

       

AaGL1 AtMYC1 12.28±0.80 + This work 

AaWER AtMYC1 19.29±1.07 + This work 

AaMYB23 AtMYC1 17.42±0.82 + This work 

AaPAPL AtMYC1 3.98±0.48 + This work 

GhMYB2 AtMYC1 11.94±1.42 + This work 

GhMYB3 AtMYC1 12.65±1.66 + This work 

GhMYB25 AtMYC1 0.59±0.00 - This work 

GhRLC1 AtMYC1 4.67±0.53 + This work 

PhAN2 AtMYC1 12.97±2.55 + This work 

PhAN4 AtMYC1 5.69±0.50 + This work 

PhPH4 AtMYC1 9.11±0.11 + This work 

ZmC1 AtMYC1 8.60±0.55 + This work 

ZmPL AtMYC1 13.96±1.59 + This work 

ZmP1 AtMYC1 0.47±0.01 - This work 

w/o AtMYC1 0.48±0.01 - This work 

     

AaGL1 AtTTG1 0.35±0.01 - This work 
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Table S8 Cont.    

ProtA fusion Luciferase fusion 
Luciferase activity: 

pulldown/input ratio (%) 
References 

AaWER AtTTG1 0.36±0.00 - This work 

AaMYB23 AtTTG1 0.37±0.01 - This work 

AaPAPL AtTTG1 0.35±0.00 - This work 

GhMYB2 AtTTG1 0.39±0.01 - This work 

GhMYB3 AtTTG1 0.36±0.02 - This work 

GhMYB25 AtTTG1 0.36±0.02 - This work 

GhRLC1 AtTTG1 0.39±0.02 - This work 

PhAN2 AtTTG1 0.38±0.02 - This work 

PhAN4 AtTTG1 0.35±0.01 - This work 

PhPH4 AtTTG1 0.34±0.01 - This work 

ZmC1 AtTTG1 0.39±0.01 - This work 

ZmPL AtTTG1 1.63±0.06 w This work 

ZmP1 AtTTG1 0.37±0.00 - This work 

w/o AtTTG1 0.35±0.00 - This work 

     

AtGL3 AaGL1 28.14±1.63 + This work 

AtGL3 AaWER 22.23±1.43 + This work 

AtGL3 AaMYB23 20.27±2.15 + This work 

AtGL3 AaPAPL 23.16±1.95 + This work 

AtGL3 GhMYB2 11.36±1.00 + This work 

AtGL3 GhMYB3 13.05±2.14 + This work 

AtGL3 GhMYB25 0.57±0.02 - This work 

AtGL3 GhRLC1 17.12±2.16 + This work 

AtGL3 PhAN2 13.38±2.66 + This work 

AtGL3 PhAN4 16.01±1.38 + This work 

AtGL3 PhPH4 17.52±2.70 + This work 

AtGL3 ZmC1 20.16±1.60 + This work 

AtGL3 ZmPL 25.80±3.49 + This work 

AtGL3 ZmP1 0.54±0.01 - This work 

AtGL3 w/o 0.45±0.00 - This work 

       

AtEGL3 AaGL1 24.85±2.63 + This work 

AtEGL3 AaWER 18.20±1.42 + This work 
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Table S8 Cont.    

ProtA fusion Luciferase fusion 
Luciferase activity: 

pulldown/input ratio (%) 
References 

AtEGL3 AaMYB23 19.64±1.87 + This work 

AtEGL3 AaPAPL 19.33±1.19 + This work 

AtEGL3 GhMYB2 14.26±1.34 + This work 

AtEGL3 GhMYB3 18.59±2.72 + This work 

AtEGL3 GhMYB25 0.59±0.02 - This work 

AtEGL3 GhRLC1 24.58±2.76 + This work 

AtEGL3 PhAN2 19.71±2.35 + This work 

AtEGL3 PhAN4 26.80±1.53 + This work 

AtEGL3 PhPH4 23.99±2.07 + This work 

AtEGL3 ZmC1 32.45±1.73 + This work 

AtEGL3 ZmPL 17.32±2.47 + This work 

AtEGL3 ZmP1 0.55±0.01 - This work 

AtEGL3 w/o 0.44±0.00 - This work 

       

AtTT8 AaGL1 11.41±1.58 + This work 

AtTT8 AaWER 11.19±3.43 + This work 

AtTT8 AaMYB23 14.45±1.79 + This work 

AtTT8 AaPAPL 24.25±3.34 + This work 

AtTT8 GhMYB2 10.69±1.11 + This work 

AtTT8 GhMYB3 9.64±1.64 + This work 

AtTT8 GhMYB25 0.60±0.01 - This work 

AtTT8 GhRLC1 25.59±2.67 + This work 

AtTT8 PhAN2 25.43±1.79 + This work 

AtTT8 PhAN4 23.29±3.84 + This work 

AtTT8 PhPH4 31.82±5.89 + This work 

AtTT8 ZmC1 30.53±3.81 + This work 

AtTT8 ZmPL 22.32±1.47 + This work 

AtTT8 ZmP1 0.58±0.03 - This work 

AtTT8 w/o 0.46±0.01 - This work 

       

AtMYC1 AaGL1 20.15±2.48 + This work 

AtMYC1 AaWER 16.77±0.59 + This work 

AtMYC1 AaMYB23 15.89±1.25 + This work 
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Table S8 Cont.    

ProtA fusion Luciferase fusion 
Luciferase activity: 

pulldown/input ratio (%) 
References 

AtMYC1 AaPAPL 16.86±1.24 + This work 

AtMYC1 GhMYB2 16.07±1.40 + This work 

AtMYC1 GhMYB3 15.49±2.16 + This work 

AtMYC1 GhMYB25 0.60±0.01 - This work 

AtMYC1 GhRLC1 21.56±2.68 + This work 

AtMYC1 PhAN2 20.65±2.27 + This work 

AtMYC1 PhAN4 22.90±1.23 + This work 

AtMYC1 PhPH4 20.19±1.48 + This work 

AtMYC1 ZmC1 30.00±1.44 + This work 

AtMYC1 ZmPL 21.69±3.95 + This work 

AtMYC1 ZmP1 0.57±0.00 - This work 

AtMYC1 w/o 0.48±0.02 - This work 

       

AtTTG1 AaGL1 0.75±0.05 - This work 

AtTTG1 AaWER 0.71±0.02 - This work 

AtTTG1 AaMYB23 0.64±0.05 - This work 

AtTTG1 AaPAPL 0.70±0.01 - This work 

AtTTG1 GhMYB2 0.71±0.02 - This work 

AtTTG1 GhMYB3 0.63±0.01 - This work 

AtTTG1 GhMYB25 0.54±0.01 - This work 

AtTTG1 GhRLC1 0.56±0.02 - This work 

AtTTG1 PhAN2 0.60±0.01 - This work 

AtTTG1 PhAN4 0.55±0.01 - This work 

AtTTG1 PhPH4 0.62±0.00 - This work 

AtTTG1 ZmC1 0.54±0.01 - This work 

AtTTG1 ZmPL 1.91±0.02 w This work 

AtTTG1 ZmP1 0.55±0.01 - This work 

AtTTG1 w/o 0.49±0.01 - This work 

       

w/o AaGL1 0.70±0.02 - This work 

w/o AaWER 0.66±0.03 - This work 

w/o AaMYB23 0.61±0.01 - This work 

w/o AaPAPL 0.62±0.01 - This work 
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Table S8 Cont.    

ProtA fusion Luciferase fusion 
Luciferase activity: 

pulldown/input ratio (%) 
References 

w/o GhMYB2 0.65±0.02 - This work 

w/o GhMYB3 0.57±0.03 - This work 

w/o GhMYB25 0.48±0.01 - This work 

w/o GhRLC1 0.50±0.01 - This work 

w/o PhAN2 0.51±0.01 - This work 

w/o PhAN4 0.54±0.02 - This work 

w/o PhPH4 0.61±0.02 - This work 

w/o ZmC1 0.55±0.02 - This work 

w/o ZmPL 0.72±0.01 - This work 

w/o ZmP1 0.56±0.02 - This work 

w/o w/o 0.43±0.02 - This work 
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APPENDIX B Protein motif analysis 

 

 
 

Figure S2 Sequence information of each motif in bHLH proteins. 
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APPENDIX C Western blot analysis of  protein expressed in 

HEK cell 

 

                                               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3 Western blot analysis of proteins fused with 3HA. 

 

 

 

  

(a)                                         (b)                                                 (c) 

          

 

(a)Sample  %Peak Relative density 

ProtA_GL3-3HA 18,612 1 

Renilla_GL1-3HA 15,394 0,827100795 

Renilla_TTG1-3HA 15,541 0,834998925 

(b)Sample  %Peak Relative density 

ProtA_GL3-3HA 10,752 1 

Renilla_TRY-3HA 16,342 1,519903274 

Renilla_CPC-3HA 16,456 1,530505952 

Renilla_GL1-3HA 17,003 1,581380208 

(c)Sample  %Peak Relative density 

ProtA_GL3-3HA 7,121 1 

Renilla_GL3-3HA 8,462 1,188316248 

Renilla_GL1-3HA 8,771 1,23170903 
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(d)                                                      (e)                                                 (f)                                                                                                             

 

  

(d) Sample %Peak Relative density 

ProtA_GL3-3HA 10,106 1 

Renilla_TTG1-3HA 18,132 1,794181674 

Renilla_GL1-3HA 13,993 1,384622996 

(e) Sample %Peak Relative density 

ProtA_GL3-3HA 8,996 1 

Renilla_GL1-3HA 13,167 1,463650511 

YFP_CPC-3HA 14,722 1,636505113 

YFP_TRY-3HA 14,672 1,630947088 

(f) Sample %Peak Relative density 

ProtA_GL3-3HA 4,111 1 

Renilla_GL3-3HA 4,098 0,996837752 

Renilla_TTG1-3HA 14,593 3,549744588 

Renilla_GL1-3HA 14,281 3,473850645 

 

 

Figure S3 Cont.  Western blot analysis of proteins fused with 3HA  

 Protein lysate was extracted from HEK cell  and detected with Anti-HA-Peroxidase (5 mU/ml 1:2500 

roth). Each Lane is 40× dilution of original lysate by lysis buffer. Relative density of each band is 

analysed in tables below by ImageJ (1.48v, National Institutes of Heelth, USA) 
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Figure S4 Likelihood profile ([195]). 

(A) chi^2_PL for the estimates of the Kd for GL1 (black) and TTG1 (red).  

(B) chi^2_PL for the estimates of the Kd for GL3 (black) and GL1 (blue). 

(C) chi^2_PL for the estimates of the Kd for GL1 (black) and TRY (blue) and CPC (red). 

Thresholds for confidence intervals are given by the dashed (95%) and dash-dotted lines (68%). 

(A)                                                                              (B) 

   

(C) 
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APPENDIX D Quantitative analyses of  TTG1, GL3 and GL1 Protein Complex Formation 

Table S 9-1 Binding affinity analysis of  TTG1 (or GL1) and GL3 by titration ( 1st Biological replicate ). 

ProtA Renilla R1 R2 R3 Mean Relative 

20 µl AtGL3 - 213 224 223 220 - 

20 µl AtGL3 5 µl AtTTG1 3385 3155 3108 3216 17,47% 

20 µl AtGL3 10 µl AtTTG1 4698 4652 4711 4687 25,46% 

20 µl AtGL3 15 µl AtTTG1 5521 5652 5600 5591 30,38% 

20 µl AtGL3 20 µl AtTTG1 7490 7652 7691 7611 41,35% 

20 µl AtGL3 25 µl AtTTG1 8813 9285 9123 9073,667 49,30% 

20 µl AtGL3 30 µl AtTTG1 9971 9886 10034 9963,667 54,13% 

20 µl AtGL3 35 µl AtTTG1 11815 12032 11882 11909,67 64,70% 

20 µl AtGL3 40 µl AtTTG1 12477 12298 12465 12413,33 67,44% 

20 µl AtGL3 50 µl AtTTG1 13064 12798 12976 12946 70,33% 

20 µl AtGL3 60 µl AtTTG1 15167 15342 15198 15235,67 82,77% 

20 µl AtGL3 70 µl AtTTG1 16298 16361 16233 16297,33 88,54% 

20 µl AtGL3 80 µl AtTTG1 17639 17213 17367 17406,33 94,57% 

20 µl AtGL3 90 µl AtTTG1 18397 18277 18545 18406,33 100,00% 

20 µl AtGL3 100 µl AtTTG1 17842 18118 18397 18119 98,44% 

20 µl AtGL3 150 µl AtTTG1 18385 18966 19038 18796,33 102,12% 

20 µl AtGL3 w/o 215 222 217 218 - 

20 µl AtGL3 5 µl AtGL1 6115 6032 5887 6011,333 26,62% 

20 µl AtGL3 10 µl AtGL1 7369 7590 7330 7429,667 32,90% 

20 µl AtGL3 15 µl AtGL1 9017 9326 9118 9153,667 40,54% 

20 µl AtGL3 20 µl AtGL1 12777 12675 12338 12596,67 55,79% 

20 µl AtGL3 25 µl AtGL1 13556 13378 13638 13524 59,89% 
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Table S9-1 Cont.       

ProtA Renilla R1 R2 R3 Mean Relative 

20 µl AtGL3 30 µl AtGL1 13827 14009 14122 13986 61,94% 

20 µl AtGL3 35 µl AtGL1 14735 14797 14890 14807,33 65,58% 

20 µl AtGL3 40 µl AtGL1 15405 15218 15222 15281,67 67,68% 

20 µl AtGL3 50 µl AtGL1 16939 17213 17098 17083,33 75,66% 

20 µl AtGL3 60 µl AtGL1 18832 19027 18978 18945,67 83,91% 

20 µl AtGL3 70 µl AtGL1 19966 20167 20259 20130,67 89,15% 

20 µl AtGL3 80 µl AtGL1 21073 20897 21008 20992,67 92,97% 

20 µl AtGL3 90 µl AtGL1 21771 22037 21853 21887 96,93% 

20 µl AtGL3 100 µl AtGL1 22492 22545 22702 22579,67 100,00% 

20 µl AtGL3 150 µl AtGL1 22498 22084 22632 22404,67 99,22% 
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Table S9-2 Binding affinity analysis of  TTG1 (or GL1)  and GL3 by titration LUMIER ( 2st Biological replicate ). 

ProtA Renilla R1 R2 R3 Mean Relative 

15 µl AtGL3 - 213 214 214 213,6667 - 

15 µl AtGL3 5 µl AtTTG1 2785 2520 2578 2627,667 15,25% 

15 µl AtGL3 15 µl AtTTG1 4398 4433 4365 4398,667 25,53% 

15 µl AtGL3 30 µl AtTTG1 7599 7665 7773 7679 44,57% 

15 µl AtGL3 45 µl AtTTG1 10413 10686 10226 10441,67 60,61% 

15 µl AtGL3 60 µl AtTTG1 12094 11823 11906 11941 69,31% 

15 µl AtGL3 75 µl AtTTG1 13470 13379 13400 13416,33 77,88% 

15 µl AtGL3 90 µl AtTTG1 15094 14823 14906 14941 86,73% 

15 µl AtGL3 120 µl AtTTG1 17279 17291 17112 17227,33 100,00% 

15 µl AtGL3 150 µl AtTTG1 17015 17110 17187 17104 99,28% 

15 µl AtGL3 180 µl AtTTG1 17544 18149 18101 17931,33 104,09% 

15 µl AtGL3 240 µl AtTTG1 18447 17772 17447 17888,67 103,84% 

15 µl AtGL3 w/o 215 222 224 220,3333 - 

15 µl AtGL3 5 µl AtGL1 4105 4532 4387 4341,333 19,62% 

15 µl AtGL3 15 µl AtGL1 7663 7698 7221 7527,333 34,03% 

15 µl AtGL3 30 µl AtGL1 11915 12167 11832 11971,33 54,11% 

15 µl AtGL3 45 µl AtGL1 14342 14177 14118 14212,33 64,24% 

15 µl AtGL3 60 µl AtGL1 16933 16797 17019 16916,33 76,47% 

15 µl AtGL3 75 µl AtGL1 18308 18002 18239 18183 82,19% 

15 µl AtGL3 90 µl AtGL1 19833 20066 19666 19855 89,75% 

15 µl AtGL3 120 µl AtGL1 21544 21476 21576 21532 97,33% 

15 µl AtGL3 150 µl AtGL1 22045 22336 21986 22122,33 100,00% 

15 µl AtGL3 180 µl AtGL1 22397 21966 22045 22136 100,06% 

15 µl AtGL3 240 µl AtGL1 22157 22035 22233 22141,67 100,09% 
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Table S10 Binding affinity analysis of  TRY (or CPC) and GL3 by titration LUMIER.  

ProtA Renilla R1 R2 R3 Mean Relative 

10 µl AtGL3 - 224 226 224 224,6667 -  

10 µl AtGL3 10 µl AtTRY 2177 2022 2167 2122 45,34% 

10 µl AtGL3 20 µl AtTRY 3437 3330 3408 3391,667 72,47% 

10 µl AtGL3 30 µl AtTRY 3654 3773 3610 3679 78,61% 

10 µl AtGL3 40 µl AtTRY 3641 3801 3376 3606 77,05% 

10 µl AtGL3 50 µl AtTRY 3950 4391 4226 4189 89,50% 

10 µl AtGL3 80 µl AtTRY 4169 4232 4030 4143,667 88,53% 

10 µl AtGL3 120 µl AtTRY 4590 4420 5028 4679,333 99,98% 

10 µl AtGL3 160 µl AtTRY 5355 5302 4924 5193,667 110,97% 

10 µl AtGL3 200 µl AtTRY 4600 4347 5094 4680,333 100,00% 

10 µl AtGL3 w/o     - 

10 µl AtGL3 10 µl AtCPC 2559 2418 2282 2419,667 43,86% 

10 µl AtGL3 20 µl AtCPC 3200 3543 2632 3125 56,64% 

10 µl AtGL3 30 µl AtCPC 2723 3072 3092 2962,333 53,69% 

10 µl AtGL3 40 µl AtCPC 3103 3398 3525 3342 60,58% 

10 µl AtGL3 50 µl AtCPC 3062 3095 2958 3038,333 55,07% 

10 µl AtGL3 80 µl AtCPC 3472 3521 3755 3582,667 64,94% 

10 µl AtGL3 120 µl AtCPC 5607 5148 5718 5491 99,53% 

10 µl AtGL3 160 µl AtCPC 5324 5343 5494 5387 97,64% 

10 µl AtGL3 200 µl AtCPC 5507 5597 5447 5517 100,00% 

10 µl AtGL3 10 µl AtGL1 3681 3248 3612 3513,667 50,07% 

10 µl AtGL3 20 µl AtGL1 4381 4327 4450 4386 62,50% 

10 µl AtGL3 30 µl AtGL1 5002 5147 5289 5146 73,33% 

10 µl AtGL3 40 µl AtGL1 6229 5996 5950 6058,333 86,33% 
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Table S10 Cont.       

ProtA Renilla R1 R2 R3 Mean Relative 

10 µl AtGL3 50 µl AtGL1 6427 6678 6611 6572 93,65% 

10 µl AtGL3 60 µl AtGL1 7058 6911 6757 6908,667 98,45% 

10 µl AtGL3 70 µl AtGL1 6965 6847 6870 6894 98,24% 

10 µl AtGL3 80 µl AtGL1 7248 6987 7266 7167 102,13% 

10 µl AtGL3 120 µl AtTRY 7131 6918 7004 7017,667 100,00% 

10 µl AtGL3 160 µl AtTRY 6427 6678 6611 6572 93,65% 

10 µl AtGL3 200 µl AtTRY 7058 6911 6757 6908,667 98,45% 
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Table S11 Binding affinity analysis of  TRY (or CPC) and GL3 by titration LUMIER.  

ProtA Renilla R1 R2 R3 Mean Relative 

30 µl AtGL3 - 220 223 233 225,33 - 

30 µl AtGL3 10 µl AtGL3 1003 929 1011 981,00 33,61% 

30 µl AtGL3 20 µl AtGL3 1437 1522 1505 1488,00 50,98% 

30 µl AtGL3 30 µl AtGL3 1751 2001 1800 1850,67 63,40% 

30 µl AtGL3 40 µl AtGL3 2012 2188 2100 2100,00 71,94% 

30 µl AtGL3 50 µl AtGL3 2340 2465 2488 2431,00 83,28% 

30 µl AtGL3 60 µl AtGL3 2709 2691 2611 2670,33 91,48% 

30 µl AtGL3 70 µl AtGL3 2986 2871 2900 2919,00 100,00% 

30 µl AtGL3 80 µl AtGL3 2951 2790 2777 2839,33 97,27% 

30 µl AtGL3 120 µl AtGL3 2890 3029 2928 2949,00 101,03% 

30 µl AtGL3 160 µl AtGL3 3067 2988 2775 2943,33 100,83% 

30 µl AtGL3 200 µl AtGL3 2807 2912 2994 2904,33 99,50% 

30 µl AtGL3 w/o 234 222 230 228,67 - 

30 µl AtGL3 10 µl AtGL1 3400 3112 3581 3364,33 38,95% 

30 µl AtGL3 20 µl AtGL1 4612 4432 4450 4498,00 52,07% 

30 µl AtGL3 30 µl AtGL1 5216 5248 5098 5187,33 60,05% 

30 µl AtGL3 40 µl AtGL1 6009 5712 5657 5792,67 67,06% 

30 µl AtGL3 50 µl AtGL1 6627 6278 6551 6485,33 75,08% 

31 µl AtGL3 60 µl AtGL1 6910 7080 7110 7033,33 81,43% 

32 µl AtGL3 70 µl AtGL1 7500 7521 7518 7513,00 86,98% 

30 µl AtGL3 80 µl AtGL1 7958 7911 7757 7875,33 91,17% 

30 µl AtGL3 120 µl AtGL1 8696 8747 8470 8637,67 100,00% 

30 µl AtGL3 160 µl AtGL1 8724 8687 8500 8637,00 99,99% 

30 µl AtGL3 200 µl AtGL1 8831 8503 8540 8624,67 99,85% 
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Table S12-1 Quantitative analysis of GL1 or TTG1 effect on GL3-GL3 dimerization by dosage-dependent LUMIER ( 1st Biological replicate). 

ProtA Renilla YFP R1 R2 R3 Mean Relative 
GL3_ProtA: GL3_Renilla: 

YFP_GL1 

50 µl AtGL3 50 µl AtGL3 - 1900 2020 1927 1949,00 100,00% - 

50 µl AtGL3 50 µl AtGL3 w/o 1883 1985 1948 1938,67 99,47% - 

50 µl AtGL3 50 µl AtGL3 10 µl GL1 2188 2157 1923 2089,33 107,20% 1.2: 1: 1 

50 µl AtGL3 50 µl AtGL3 20 µl GL1 2094 2078 2150 2107,33 108,12% 1.2: 1: 2 

50 µl AtGL3 50 µl AtGL3 30 µl GL1 2136 2124 2003 2087,67 107,11% 1.2: 1: 3 

50 µl AtGL3 50 µl AtGL3 40 µl GL1 2059 1903 2093 2018,33 103,56% 1.2: 1: 4 

50 µl AtGL3 50 µl AtGL3 50 µl GL1 2054 2200 2204 2152,67 110,45% 1.2: 1: 5 

50 µl AtGL3 50 µl AtGL3 60 µl GL1 2158 2171 2244 2191,00 112,42% 1.2: 1: 6 

50 µl AtGL3 50 µl AtGL3 70 µl GL1 1936 2257 2179 2124,00 108,98% 1.2: 1: 7 

50 µl AtGL3 50 µl AtGL3 80 µl GL1 2044 2053 1931 2009,33 103,10% 1.2: 1: 8 

50 µl AtGL3 50 µl AtGL3 90 µl GL1 2098 1935 2005 2012,67 103,27% 1.2: 1: 9 

50 µl AtGL3 50 µl AtGL3 100 µl GL1 2151 2036 1935 2040,67 104,70% 1.2: 1: 10 

        GL3_ProtA: GL3_Renilla: 
YFP_TTG1 

50 µl AtGL3 50 µl AtGL3 10 µl TTG1 1933 1916 1935 1928,00 98,92% 1.2: 1: 1 

50 µl AtGL3 50 µl AtGL3 20 µl TTG1 1974 1947 2058 1993,00 102,26% 1.2: 1: 2 

50 µl AtGL3 50 µl AtGL3 30 µl TTG1 1936 1915 1989 1946,67 99,88% 1.2: 1: 3 

50 µl AtGL3 50 µl AtGL3 40 µl TTG1 2133 1910 2107 2050,00 105,18% 1.2: 1: 4 

50 µl AtGL3 50 µl AtGL3 50 µl TTG1 1900 2073 1993 1988,67 102,04% 1.2: 1: 5 

50 µl AtGL3 50 µl AtGL3 60 µl TTG1 2025 1948 1960 1977,67 101,47% 1.2: 1: 6 

50 µl AtGL3 50 µl AtGL3 70 µl TTG1 2093 1919 1988 2000,00 102,62% 1.2: 1: 7 

50 µl AtGL3 50 µl AtGL3 80 µl TTG1 1957 1990 2093 2013,33 103,30% 1.2: 1: 8 

50 µl AtGL3 50 µl AtGL3 90 µl TTG1 1944 2093 1845 1960,67 100,60% 1.2: 1: 9 

50 µl AtGL3 50 µl AtGL3 100 µl TTG1 2077 2013 1980 2023,33 103,81% 1.2: 1: 10 
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Table S12-2 Quantitative analysis of GL1 or TTG1 effect on GL3-GL3 dimerization by dosage-dependent LUMIER ( 2st Biological replicate ). 

ProtA Renilla YFP R1 R2 R3 Mean Relative 
GL3_ProtA: GL3_Renilla: 

YFP_GL1 

50 µl AtGL3 50 µl AtGL3 - 5433 5018 5648 5366,33 100,00% - 

50 µl AtGL3 50 µl AtGL3 w/o 5150 5342 5371 5287,67 98,53% - 

50 µl AtGL3 50 µl AtGL3 10 µl GL1 5905 5201 5584 5563,33 103,67% 1: 1: 0.7 

50 µl AtGL3 50 µl AtGL3 20 µl GL1 5960 5714 5629 5767,67 107,48% 1: 1: 1.4 

50 µl AtGL3 50 µl AtGL3 30 µl GL1 5762 5516 5664 5647,33 105,24% 1: 1: 2.1 

50 µl AtGL3 50 µl AtGL3 40 µl GL1 5758 5723 5894 5791,67 107,93% 1: 1: 2.8 

50 µl AtGL3 50 µl AtGL3 50 µl GL1 5404 5514 5892 5603,33 104,42% 1: 1: 3.5 

50 µl AtGL3 50 µl AtGL3 60 µl GL1 5634 5698 5288 5540,00 103,24% 1: 1: 4.2 

50 µl AtGL3 50 µl AtGL3 70 µl GL1 5505 5359 5823 5562,33 103,65% 1: 1: 4.9 

50 µl AtGL3 50 µl AtGL3 80 µl GL1 6003 5712 5645 5786,67 107,83% 1: 1: 5.6 

50 µl AtGL3 50 µl AtGL3 90 µl GL1 5622 5620 5669 5637,00 105,04% 1: 1: 6.3 

50 µl AtGL3 50 µl AtGL3 100 µl GL1 5932 5790 5881 5867,67 109,34% 1: 1: 7.0 

        GL3_ProtA: GL3_Renilla: 
YFP_TTG1 

50 µl AtGL3 50 µl AtGL3 10 µl TTG1 5589 5334 5322 5415,00 100,91% 1: 1: 0.7 

50 µl AtGL3 50 µl AtGL3 20 µl TTG1 5449 5720 5871 5680,00 105,85% 1: 1: 1.4 

50 µl AtGL3 50 µl AtGL3 30 µl TTG1 5550 5883 5600 5677,67 105,80% 1: 1: 2.1 

50 µl AtGL3 50 µl AtGL3 40 µl TTG1 5712 5354 5449 5505,00 102,58% 1: 1: 2.8 

50 µl AtGL3 50 µl AtGL3 50 µl TTG1 5432 5489 5485 5468,67 101,91% 1: 1: 3.5 

50 µl AtGL3 50 µl AtGL3 60 µl TTG1 5775 5606 5687 5689,33 106,02% 1: 1: 4.2 

50 µl AtGL3 50 µl AtGL3 70 µl TTG1 5471 5480 5509 5486,67 102,24% 1: 1: 4.9 

50 µl AtGL3 50 µl AtGL3 80 µl TTG1 5557 5690 5593 5613,33 104,60% 1: 1: 5.6 

50 µl AtGL3 50 µl AtGL3 90 µl TTG1 5344 5700 5521 5521,67 102,89% 1: 1: 6.3 

50 µl AtGL3 50 µl AtGL3 100 µl TTG1 5771 5588 5880 5746,33 107,08% 1: 1: 7.0 
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Table S13-1 Quantitative analysis of GL1 effect on TTG1-GL3 interaction by dosage-dependent LUMIER ( 1st Biological replicate ). 

ProtA Renilla YFP* R1 R2 R3 Mean Relative GL3: TTG1: GL1 

30 µl AtGL3 30 µl AtTTG1 - 7636 7255 7300 7397,00 100,00% - 

30 µl AtGL3 30 µl AtTTG1 10 µl AtGL1 6858 7024 7071 6984,33 94,42% 1: 1.7: 0.47 

30 µl AtGL3 30 µl AtTTG1 20 µl AtGL1 6112 6006 6179 6099,00 82,45% 1: 1.7: 0.93 

30 µl AtGL3 30 µl AtTTG1 30 µl AtGL1 5184 5385 5434 5334,33 72,11% 1: 1.7: 1.4 

30 µl AtGL3 30 µl AtTTG1 40 µl AtGL1 4501 4570 4405 4492,00 60,73% 1: 1.7: 1.87 

30 µl AtGL3 30 µl AtTTG1 50 µl AtGL1 4852 5001 4632 4828,33 65,27% 1: 1.7: 2.33 

30 µl AtGL3 30 µl AtTTG1 60 µl AtGL1 5465 5716 5588 5589,67 75,57% 1: 1.7: 2.8 

30 µl AtGL3 30 µl AtTTG1 70 µl AtGL1 5806 5901 5810 5839,00 78,94% 1: 1.7: 3.27 

30 µl AtGL3 30 µl AtTTG1 80 µl AtGL1 5887 6133 6010 6010,00 81,25% 1: 1.7: 3.73 

30 µl AtGL3 30 µl AtTTG1 90 µl AtGL1 5951 6122 6150 6074,33 82,12% 1: 1.7: 4.2 

30 µl AtGL3 30 µl AtTTG1 100 µl AtGL1 6180 5952 6061 6064,33 81,98% 1: 1.7: 4.67 

   GL3: TTG1: TTG1-YFP 

30 µl AtGL3 30 µl AtTTG1 100 µl w/o 7230 7865 7370 7488,33 101,23% - 

30 µl AtGL3 30 µl AtTTG1 10 µl AtTTG1 4630 4552 4856 4679,33 63,26% 1: 1.7: 0.47 

30 µl AtGL3 30 µl AtTTG1 20 µl AtTTG1 3509 3711 3876 3698,67 50,00% 1: 1.7: 0.93 

30 µl AtGL3 30 µl AtTTG1 30 µl AtTTG1 3252 3151 3580 3327,67 44,99% 1: 1.7: 1.4 

30 µl AtGL3 30 µl AtTTG1 40 µl AtTTG1 2420 2673 2241 2444,67 33,05% 1: 1.7: 1.87 

30 µl AtGL3 30 µl AtTTG1 50 µl AtTTG1 2064 2169 1976 2069,67 27,98% 1: 1.7: 2.33 

30 µl AtGL3 30 µl AtTTG1 60 µl AtTTG1 1703 1754 1715 1724,00 23,31% 1: 1.7: 2.8 

30 µl AtGL3 30 µl AtTTG1 70 µl AtTTG1 1770 1720 1711 1733,67 23,44% 1: 1.7: 3.27 

30 µl AtGL3 30 µl AtTTG1 80 µl AtTTG1 1861 1886 1899 1882,00 25,44% 1: 1.7: 3.73 

30 µl AtGL3 30 µl AtTTG1 90 µl AtTTG1 1800 1721 1733 1751,33 23,68% 1: 1.7: 4.2 

30 µl AtGL3 30 µl AtTTG1 100 µl AtTTG1 1727 1710 1681 1706,00 23,06% 1: 1.7: 4.67 

* YFP_GL1, YFP_w/o and YFP_TTG1 are normalized by YFP fluorescence intensity 
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Table S13-2 Quantitative analysis of GL1 effect on TTG1-GL3 interaction by dosage-dependent LUMIER ( 2st Biological replicate ). 

ProtA Renilla YFP* R1 R2 R3 Mean Relative GL3: TTG1: GL1 

30 µl AtGL3 30 µl AtTTG1 - 8879 9005 8721 8868,33 100,00% - 

30 µl AtGL3 30 µl AtTTG1 10 µl AtGL1 8406 8501 8389 8432,00 95,08% 1: 2.0: 0.5 

30 µl AtGL3 30 µl AtTTG1 20 µl AtGL1 7537 7620 7310 7489,00 84,45% 1: 2.0: 1.0 

30 µl AtGL3 30 µl AtTTG1 30 µl AtGL1 6792 6518 6895 6735,00 75,94% 1: 2.0: 1.5 

30 µl AtGL3 30 µl AtTTG1 40 µl AtGL1 5812 5931 6003 5915,33 66,70% 1: 2.0: 2.0 

30 µl AtGL3 30 µl AtTTG1 50 µl AtGL1 6112 6018 5905 6011,67 67,79% 1: 2.0: 2.5 

30 µl AtGL3 30 µl AtTTG1 60 µl AtGL1 6612 6731 6903 6748,67 76,10% 1: 2.0: 3.0 

30 µl AtGL3 30 µl AtTTG1 70 µl AtGL1 7182 7119 7036 7112,33 80,20% 1: 2.0: 3.5 

30 µl AtGL3 30 µl AtTTG1 80 µl AtGL1 7410 7221 7302 7311,00 82,44% 1: 2.0: 4.0 

30 µl AtGL3 30 µl AtTTG1 90 µl AtGL1 7286 7250 7111 7215,67 81,36% 1: 2.0: 4.5 

30 µl AtGL3 30 µl AtTTG1 100 µl AtGL1 7305 7222 7304 7277,00 82,06% 1: 2.0: 5.0 

   GL3: TTG1: TTG1_YFP 

30 µl AtGL3 30 µl AtTTG1 100 µl w/o 9010 8812 8858 8893,33 100,28% - 

30 µl AtGL3 30 µl AtTTG1 10 µl AtTTG1 5834 5807 6012 5884,33 66,35% 1: 2.0: 0.5 

30 µl AtGL3 30 µl AtTTG1 20 µl AtTTG1 5100 5002 5120 5074,00 57,21% 1: 2.0: 1.0 

30 µl AtGL3 30 µl AtTTG1 30 µl AtTTG1 4101 4200 4069 4123,33 46,50% 1: 2.0: 1.5 

30 µl AtGL3 30 µl AtTTG1 40 µl AtTTG1 3215 3101 3134 3150,00 35,52% 1: 2.0: 2.0 

30 µl AtGL3 30 µl AtTTG1 50 µl AtTTG1 2811 2529 2388 2576,00 29,05% 1: 2.0: 2.5 

30 µl AtGL3 30 µl AtTTG1 60 µl AtTTG1 2302 2251 2212 2255,00 25,43% 1: 2.0: 3.0 

30 µl AtGL3 30 µl AtTTG1 70 µl AtTTG1 2007 2155 2173 2111,67 23,81% 1: 2.0: 3.5 

30 µl AtGL3 30 µl AtTTG1 80 µl AtTTG1 2195 1988 2024 2069,00 23,33% 1: 2.0: 4.0 

30 µl AtGL3 30 µl AtTTG1 90 µl AtTTG1 1940 2055 2155 2050,00 23,12% 1: 2.0: 4.5 

30 µl AtGL3 30 µl AtTTG1 100 µl AtTTG1 1912 2172 2091 2058,33 23,21% 1: 2.0: 5.0 

* YFP_GL1, YFP_w/o and YFP_TTG1 are normalized by YFP fluorescence intensity 
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Table S 14-1 Quantitative analysis of TRY or CPC effect on GL3-GL1 interaction by dosage-dependent LUMIER ( 1st Biological replicate ). 

ProtA Renilla YFP R1 R2 R3 Mean Relative 
GL3_ProtA: GL1_Renilla: 

YFP_TRY 

30 µl AtGL3 30 µl AtGL1 - 7831 7762 7738 7777,00 100,00% - 

30 µl AtGL3 30 µl AtGL1 w/o 8018 7820 7918 7918,67 101,82% - 

30 µl AtGL3 30 µl AtGL1 10 µl TRY 2042 1900 1986 1976,00 25,41% 1: 1.5: 0.53 

30 µl AtGL3 30 µl AtGL1 20 µl TRY 1989 1758 1679 1808,67 23,26% 1: 1.5: 1.07 

30 µl AtGL3 30 µl AtGL1 30 µl TRY 1334 1398 1354 1362,00 17,51% 1: 1.5: 1.6 

30 µl AtGL3 30 µl AtGL1 40 µl TRY 1205 1502 1337 1348,00 17,33% 1: 1.5: 2.13 

30 µl AtGL3 30 µl AtGL1 50 µl TRY 1425 1313 1105 1281,00 16,47% 1: 1.5: 2.67 

30 µl AtGL3 30 µl AtGL1 60 µl TRY 1164 1459 1380 1334,33 17,16% 1: 1.5: 3.2 

30 µl AtGL3 30 µl AtGL1 70 µl TRY 1371 1171 1484 1342,00 17,26% 1: 1.5: 3.73 

30 µl AtGL3 30 µl AtGL1 80 µl TRY 1275 1393 1325 1331,00 17,11% 1: 1.5: 4.28 

30 µl AtGL3 30 µl AtGL1 90 µl TRY 1287 1226 1393 1302,00 16,74% 1: 1.5: 4.8 

30 µl AtGL3 30 µl AtGL1 100 µl TRY 1300 1365 1290 1318,33 16,95% 1: 1.5: 5.33 

        GL3_ProtA: GL3_Renilla: 
YFP_CPC 

30 µl AtGL3 30 µl AtGL1 10 µl CPC 3069 2950 2906 2975,00 38,25% 1: 1.5: 0.27 

30 µl AtGL3 30 µl AtGL1 20 µl CPC 2575 2456 2656 2562,33 32,95% 1: 1.5: 0.53 

30 µl AtGL3 30 µl AtGL1 30 µl CPC 2043 2098 2181 2107,33 27,10% 1: 1.5: 0.8 

30 µl AtGL3 30 µl AtGL1 40 µl CPC 1931 1987 1927 1948,33 25,05% 1: 1.5: 1.07 

30 µl AtGL3 30 µl AtGL1 50 µl CPC 1735 1883 1758 1792,00 23,04% 1: 1.5: 1.33 

30 µl AtGL3 30 µl AtGL1 60 µl CPC 1629 1554 1634 1605,67 20,65% 1: 1.5: 1.6 

30 µl AtGL3 30 µl AtGL1 70 µl CPC 1404 1338 1302 1348,00 17,33% 1: 1.5: 1.87 

30 µl AtGL3 30 µl AtGL1 80 µl CPC 1561 1323 1450 1444,67 18,58% 1: 1.5: 2.13 

30 µl AtGL3 30 µl AtGL1 90 µl CPC 1441 1381 1303 1375,00 17,68% 1: 1.5: 2.4 

30 µl AtGL3 30 µl AtGL1 100 µl CPC 1339 1400 1422 1387,00 17,83% 1: 1.5: 2.67 
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Table S14-2 Quantitative analysis of TRY or CPC effect on GL3-GL1 interaction by dosage-dependent LUMIER ( 2st Biological replicate ). 

ProtA Renilla YFP R1 R2 R3 Mean Relative 
GL3_ProtA: GL1_Renilla: 

YFP_TRY 

30 µl AtGL3 30 µl AtGL1 - 9019 9159 9562 9246,67 100,00%  

30 µl AtGL3 30 µl AtGL1 w/o 9322 9331 9277 9310,00 100,68%  
30 µl AtGL3 30 µl AtGL1 10 µl TRY 4023 4112 4029 4054,67 43,85% 1: 1.8: 0.33 

30 µl AtGL3 30 µl AtGL1 20 µl TRY 3629 3518 3504 3550,33 38,40% 1: 1.8: 0.67 

30 µl AtGL3 30 µl AtGL1 30 µl TRY 2901 3125 3054 3026,67 32,73% 1: 1.8: 1 

30 µl AtGL3 30 µl AtGL1 40 µl TRY 2456 2350 2414 2406,67 26,03% 1: 1.8: 1.33 

30 µl AtGL3 30 µl AtGL1 50 µl TRY 1910 2076 2038 2008,00 21,72% 1: 1.8: 1.67 

30 µl AtGL3 30 µl AtGL1 60 µl TRY 1711 1604 1717 1677,33 18,14% 1: 1.8: 2 

30 µl AtGL3 30 µl AtGL1 70 µl TRY 1689 1604 1744 1679,00 18,16% 1: 1.8: 2.33 

30 µl AtGL3 30 µl AtGL1 80 µl TRY 1514 1604 1659 1592,33 17,22% 1: 1.8: 2.67 

30 µl AtGL3 30 µl AtGL1 90 µl TRY 1709 1632 1637 1659,33 17,95% 1: 1.8: 3 

30 µl AtGL3 30 µl AtGL1 100 µl TRY 1559 1662 1608 1609,67 17,41% 1: 1.8: 3.33 

        GL3_ProtA: GL3_Renilla: 
YFP_CPC 

30 µl AtGL3 30 µl AtGL1 10 µl CPC 4110 4218 4109 4145,67 44,83% 1: 1.8: 0.33 

30 µl AtGL3 30 µl AtGL1 20 µl CPC 3809 3723 3702 3744,67 40,50% 1: 1.8: 0.67 

30 µl AtGL3 30 µl AtGL1 30 µl CPC 3129 3275 3201 3201,67 34,63% 1: 1.8: 1 

30 µl AtGL3 30 µl AtGL1 40 µl CPC 2702 2630 2615 2649,00 28,65% 1: 1.8: 1.33 

30 µl AtGL3 30 µl AtGL1 50 µl CPC 2111 2002 2129 2080,67 22,50% 1: 1.8: 1.67 

30 µl AtGL3 30 µl AtGL1 60 µl CPC 1623 1575 1630 1609,33 17,40% 1: 1.8: 2 

30 µl AtGL3 30 µl AtGL1 70 µl CPC 1605 1627 1723 1651,67 17,86% 1: 1.8: 2.33 

30 µl AtGL3 30 µl AtGL1 80 µl CPC 1660 1729 1652 1680,33 18,17% 1: 1.8: 2.67 

30 µl AtGL3 30 µl AtGL1 90 µl CPC 1700 1621 1605 1642,00 17,76% 1: 1.8: 3 

30 µl AtGL3 30 µl AtGL1 100 µl CPC 1656 1607 1700 1654,33 17,89% 1: 1.8: 3.33 
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Table S15 ANOVA test of effect of GL1 on the TTG1 binding to GL3. 

ProtA Renilla YFP* Anova group 

30 µl AtGL3 30 µl AtTTG1 - 1 
30 µl AtGL3 30 µl AtTTG1 10 µl AtGL1 2 
30 µl AtGL3 30 µl AtTTG1 20 µl AtGL1 3 
30 µl AtGL3 30 µl AtTTG1 30 µl AtGL1 4 
30 µl AtGL3 30 µl AtTTG1 40 µl AtGL1 5 
30 µl AtGL3 30 µl AtTTG1 50 µl AtGL1 6 
30 µl AtGL3 30 µl AtTTG1 60 µl AtGL1 7 
30 µl AtGL3 30 µl AtTTG1 70 µl AtGL1 8 
30 µl AtGL3 30 µl AtTTG1 80 µl AtGL1 9 
30 µl AtGL3 30 µl AtTTG1 90 µl AtGL1 10 
30 µl AtGL3 30 µl AtTTG1 100 µl AtGL1 11 

Group1 Group2 lower CI mean diff upper CI P-value 

1 2 65,912 436,333 806,755 9,47E-03 

1 3 1008,912 1379,333 1749,755 7,37E-11 

1 4 1762,912 2133,333 2503,755 9,30E-15 

1 5 2582,578 2953,000 3323,422 9,07E-18 

1 6 2486,245 2856,667 3227,088 1,85E-17 

1 7 1749,245 2119,667 2490,088 1,07E-14 

1 8 1385,578 1756,000 2126,422 5,43E-13 

1 9 1186,912 1557,333 1927,755 6,39E-12 

1 10 1282,245 1652,667 2023,088 1,90E-12 

1 11 1220,912 1591,333 1961,755 4,11E-12 

2 3 572,578 943,000 1313,422 1,04E-07 

2 4 1326,578 1697,000 2067,422 1,10E-12 

2 5 2146,245 2516,667 2887,088 2,79E-16 

2 6 2049,912 2420,333 2790,755 6,41E-16 

2 7 1312,912 1683,333 2053,755 1,30E-12 

2 8 949,245 1319,667 1690,088 1,77E-10 

2 9 750,578 1121,000 1491,422 4,22E-09 

2 10 845,912 1216,333 1586,755 8,77E-10 

2 11 784,578 1155,000 1525,422 2,38E-09 

3 4 383,578 754,000 1124,422 4,94E-06 

3 5 1203,245 1573,667 1944,088 5,16E-12 

3 6 1106,912 1477,333 1847,755 1,86E-11 

3 7 369,912 740,333 1110,755 6,66E-06 

3 8 6,245 376,667 747,088 4,27E-02 

3 9 -192,422 178,000 548,422 1,00E+00 

3 10 -97,088 273,333 643,755 5,40E-01 

3 11 -158,422 212,000 582,422 1,00E+00 

4 5 449,245 819,667 1190,088 1,22E-06 

4 6 352,912 723,333 1093,755 9,69E-06 

4 7 -384,088 -13,667 356,755 1,00E+00 

4 8 -747,755 -377,333 -6,912 4,20E-02 

4 9 -946,422 -576,000 -205,578 2,96E-04 

4 10 -851,088 -480,667 -110,245 3,10E-03 

4 11 -912,422 -542,000 -171,578 6,77E-04 

5 6 -466,755 -96,333 274,088 1,00E+00 

5 7 -1203,755 -833,333 -462,912 9,21E-07 

5 8 -1567,422 -1197,000 -826,578 1,20E-09 

5 9 -1766,088 -1395,667 -1025,245 5,83E-11 

5 10 -1670,755 -1300,333 -929,912 2,37E-10 

5 11 -1732,088 -1361,667 -991,245 9,53E-11 
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Table S15 Cont.     

Group1 Group2 lower CI mean diff upper CI P-value 

6 7 -1107,422 -737,000 -366,578 7,17E-06 

6 8 -1471,088 -1100,667 -730,245 5,97E-09 

6 9 -1669,755 -1299,333 -928,912 2,41E-10 

6 10 -1574,422 -1204,000 -833,578 1,07E-09 

6 11 -1635,755 -1265,333 -894,912 4,06E-10 

7 8 -734,088 -363,667 6,755 5,92E-02 

7 9 -932,755 -562,333 -191,912 4,12E-04 

7 10 -837,422 -467,000 -96,578 4,37E-03 

7 11 -898,755 -528,333 -157,912 9,48E-04 

8 9 -569,088 -198,667 171,755 1,00E+00 

8 10 -473,755 -103,333 267,088 1,00E+00 

8 11 -535,088 -164,667 205,755 1,00E+00 

9 10 -275,088 95,333 465,755 1,00E+00 

9 11 -336,422 34,000 404,422 1,00E+00 

10 11 -431,755 -61,333 309,088 1,00E+00 

ANOVA results 

Source SS df MS F Prob>F 

Columns 2,37E+07 10 2,37E+06 168,8782 2,07E-18 

Error 3,08E+05 22 1,40E+04   

Total 2,40E+07 32    
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