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Abstract

Abstract
The mitigation of climate change demands a fundamental conversion of our energy system,
from a mainly fossil fuel-driven system to one with a higher share of renewable sources. For
Europe, wind has emerged as an important renewable energy source with high potential.
However, wind energy production is strongly influenced by weather and climate conditions,
and hence subject to day-to-day, seasonal and long-term climate change. The analysis and
estimation of the impact of these changes on the future wind energy production is of high
importance for the development of an energy system with higher renewable energy content.
The overall objective of this thesis is to investigate regional scale wind speeds and wind
energy potentials over Europe at different timescales, focussing on the near-term and long-
term future. With this aim, three studies are performed. The first study estimates future
changes of wind energy output (Eout) of an exemplary wind turbine over Europe in a
large multi-model ensemble. For this purpose, model output from 22 global climate mo-
dels (GCMs) from CMIP5 is regionalised using a statistical-dynamical downscaling (SDD)
approach. This method is based on a combination of circulation weather type (CWT) anal-
ysis and regional climate modelling with COSMO-CLM. Mean annual Eout is projected
to increase over Northern and Central Europe and decrease over Southern Europe in the
ensemble mean. However, the individual ensemble members can differ both in terms of
magnitude and sign of change. Simulated future changes are more robust in seasonal terms,
in which Eout generally increases for winter and decreases in summer. These changes lead
to an enhancement of the intra-annual variability of Eout for most parts of Europe, which
in turn results in a higher volatility of wind energy production under future climate condi-
tions. Regarding changes in the inter-annual variability, results for the individual models
vary strongly and the spatial patterns are not coherent between future periods and sce-
narios. The study clearly reveals an impact of climate change on wind energy potentials
over Europe, but in some aspects results depend strongly on the choice of GCM. This
highlights the large uncertainties between different GCMs and the importance to analyse
multi-model ensembles.
The second study evaluates future changes of regional wind speed and wind energy output
over Europe, this time in a dynamically downscaled ensemble. The high resolution EURO-
CORDEX ensemble is based on nine GCM-RCM chains at 12 km spatial and three-hourly
temporal resolution. The ensemble mean projects a weak decrease of mean annual Eout
for most parts of Europe and a small but robust increase for the Baltic and the Aegean
Sea. Differences to the previous study are primarily based on the model choice. Regarding
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variability, small robust changes are simulated for inter-daily variability, while changes are
larger but more uncertain for inter- and intra-annual variability of Eout. Both inter-daily
and intra-annual variability are projected to increase for Northern, Central and Eastern
Europe. In terms of wind speed characteristics relevant for wind energy production, an
increased occurrence of low wind speeds is detected. The study reveals that regions like
the Baltic and the Aegean Sea could profit from climate change due to a combination of
increasing mean annual Eout and decreasing intra-annual variability. On the other hand,
negative impacts are projected for regions like Germany, France and Iberia with decreasing
mean Eout and a higher intra-annual variability.
The third study examines the decadal predictability of wind speed and wind energy poten-
tials over Central Europe in three generations of the decadal prediction system developed
within the German MiKlip (‘Mittelfristige Klimaprognosen’) project. The prediction sys-
tem is based on the global Max-Planck-Institute Earth System Model (MPI-ESM). Unini-
tialised historical and yearly-initialised hindcast experiments are downscaled applying the
same SDD approach as used in the first study to assess the decadal forecast skill. The three
ensemble generations show some decadal forecast skill for both mean annual wind speed
and Eout. This skill is mainly limited to the first years (1-4) after initialisation. In seasonal
terms, skill scores are generally lower than for annual means with lowest values in summer
and highest values in autumn. In general, differences between the individual ensemble
generations are small. The regionalisation is able to preserve and sometimes increase the
forecast skill from the global model, and it often improves the ensemble spread. The study
identifies a dominant westerly weather type with strong pressure gradients over Central
Europe as potential source for the forecast skill, showing similar MSE-based skill scores as
Eout. Overall, results are encouraging for the installation of a decadal prediction system
for Central Europe and for the utilization of such a system for wind energy applications.
This thesis extends the current knowledge on wind speed and wind energy potentials over
Europe. The outcomes show that climate change affects future wind energy generation at
different timescales. Future responses depend on the analysed ensembles, which consider
different models and downscaling approaches. Differences arise mainly from the model
choice, while the different downscaling methods provide similar climate change signals.
The results proved to be important for an advanced impact study, which analysed climate
change impacts on a European renewable energy system. The results on decadal pre-
dictability are encouraging for the establishment of a decadal prediction system for wind
energy applications. Overall, outcomes of this thesis may be relevant for the successful
integration of wind energy into our electric power system.
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Zusammenfassung

Zusammenfassung

Der Klimaschutz erfordert einen grundlegenden Umbau unseres Stromnetzes, von einem
vorwiegend mit fossilen Brennstoffen angetriebenen System zu einem System mit höheren
Anteilen an erneuerbaren Energien. In Europa hat sich Wind als wichtige und vielverspre-
chende erneuerbare Energiequelle erwiesen. Allerdings wird die Windenergieproduktion
stark von vorherrschenden Wetter- und Klimabedingungen beeinflusst und unterliegt da-
durch dem Klimawandel auf täglichen, saisonalen und langfristigen Zeitskalen. Die Analyse
und Abschätzung der Auswirkungen des Klimawandels auf die zukünftige Windenergie-
produktion ist somit von großer Bedeutung für die Entwicklung eines Energiesystems mit
einem höheren Anteil an erneuerbaren Energien.
Das Ziel dieser Arbeit ist die Untersuchung von Windgeschwindigkeiten und Windenergie-
potentialen auf der regionalen Skala für Europa auf verschiedenen Zeitskalen. Der Fo-
kus liegt dabei auf der näheren und der langfristigen Zukunft. Mit diesem Ziel wer-
den drei Studien durchgeführt. Die erste Studie untersucht zukünftige Änderungen der
Windenergieleistung (Eout) für eine Beispiel-Windkraftanlage in Europa in einem großen
Multimodell-Ensemble. Zu diesem Zweck wurde der Modelloutput von 22 globalen Klima-
modellen (GCMs) aus CMIP5 mit einem statistisch-dynamischen Downscaling-Verfahren
(SDD) regionalisiert. Dieses Verfahren basiert auf einer Kombination der Analyse von „Cir-
culation Weather Types“ (CWTs) und regionaler Klimamodellierung mit COSMO-CLM.
Für den mittleren jährlichen Eout wird im Ensemblemittel eine Zunahme über Nord- und
Mitteleuropa und eine Abnahme über Südeuropa simuliert. Allerdings können sich die
einzelnen Ensemblemitglieder sowohl in der Größenordnung als auch dem Vorzeichen der
Veränderung unterscheiden. Für die einzelnen Jahreszeiten sind die simulierten Änderun-
gen robuster, mit einem generellen Anstieg von Eout im Winter und einer Verminderung
im Sommer. Diese saisonalen Änderungen führen zu einer Verstärkung der intra-annuellen
Variabilität für große Teile von Europa. Daraus resultiert wiederum eine erhöhte Unbe-
ständigkeit der Windenergieproduktion unter künftigen Klimabedingungen. In Bezug auf
Änderungen der inter-annuellen Variabilität variieren die Ergebnisse der einzelnen Modelle
stark und die räumlichen Muster der verschiedenen Zeiträume und Szenarien sind nicht
kohärent. Die Studie zeigt einen deutlichen Einfluss des Klimawandels auf Windenergiepo-
tentiale über Europa. Allerdings hängen die Ergebnisse in mancher Hinsicht stark von der
Wahl der GCMs ab. Dies unterstreicht die Unsicherheiten zwischen verschiedenen GCMs
und die Notwendigkeit Multimodell-Ensembles zu untersuchen.
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Zusammenfassung

Die zweite Studie analysiert zukünftige Änderungen der regionalen Windgeschwindigkeit
undWindenergieleistung über Europa, diesmal in einem dynamisch regionalisierten Ensem-
ble. Das hochaufgelöste EURO-CORDEX Ensemble basiert auf neun GCM-RCM Modell-
ketten mit einer Auflösung von 12 km und drei Stunden. Das Ensemblemittel simuliert eine
schwache Abnahme des mittleren jährlichen Eout für große Teile Europas und eine schwa-
che aber robuste Zunahme für die Ostsee und die Ägäis. Unterschiede zur vorhergehenden
Studie beruhen in erster Linie auf der Auswahl der Modelle. In Bezug auf die Variabilität
von Eout werden kleine robuste Änderungen für die Variabilität zwischen einzelnen Tagen
simuliert, während die Änderungen für die inter- und intra-annuelle Variabilität stärker
aber unsicherer sind. Sowohl für die zwischentägliche als auch die intra-annuelle Varia-
bilität wird ein Anstieg über Nord-, Mittel- und Osteuropa erwartet. Außerdem ist ein
vermehrtes Auftreten von Schwachwindphasen erkennbar. Die Studie zeigt, dass Regionen
wie die Ostsee und die Ägäis vom Klimawandel profitieren könnten da der mittlere jährli-
che Eout zunimmt und gleichzeitig die intra-annuelle Variabilität schwächer wird. Auf der
anderen Seite zeigen sich negative Auswirkungen für Regionen wie Deutschland, Frankreich
und die iberische Halbinsel, wo weniger Eout und zeitgleich eine steigende Variabilität si-
muliert wird.
Die dritte Studie untersucht die dekadische Vorhersagbarkeit von Windgeschwindigkeit und
Windenergiepotentialen für Mitteleuropa in drei Generationen des dekadischen Vorhersage-
systems, das im Rahmen des deutschen MiKlip-Projekts („Mittelfristige Klimaprognosen“)
entwickelt wurde. Das Vorhersagesystem basiert auf dem globalen Max-Planck-Institute
Earth System Model (MPI-ESM). Das gleiche SDD-Verfahren wie in der ersten Studie wird
genutzt, um nicht-initialisierte historische Läufe und jährlich-initialisierte Hindcast-Läufe
zu regionalisieren und den dekadischen Vorhersage-Skill zu bewerten. Die drei Ensemble-
Generationen zeigen eine dekadische Vorhersagbarkeit für mittlere Windgeschwindigkeiten
und Eout. Diese Vorhersagbarkeit ist im Allgemeinen auf die ersten Jahre nach der Initia-
lisierung (1-4) beschränkt. Für die Jahreszeiten ist der Vorhersage-Skill generell schwächer
ausgeprägt als für jährliche Mittelwerte. Die schwächsten Werte zeigen sich im Sommer
und die höchsten Werte im Herbst. Die Unterschiede zwischen den einzelnen Ensemble-
Generationen sind allgemein klein. Die Regionalisierung ist in der Lage den Vorhersage-
Skill des globalen Modells zu bewahren und in einigen Fällen zu verbessern. Außerdem
wird oftmals der Ensemble-Spread verbessert. In der Studie wird eine dominante westliche
Wetterklasse mit starken Druckgradienten über Mitteleuropa als mögliche Quelle für die
Vorhersagbarkeit identifiziert. Diese Wetterklasse zeigt ähnliche MSE-basierte Skill Scores
wie Eout. Insgesamt sind die Ergebnisse vielversprechend für den Aufbau eines dekadischen
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Zusammenfassung

Vorhersagesystems für Mitteleuropa und dessen Nutzung für Windenergie-Anwendungen.
Diese Arbeit erweitert den momentane Wissensstand zu Windgeschwindigkeit und Wind-
energiepotentialen in Europa. Die Ergebnisse zeigen, dass der Klimawandel die zukünftige
Windenergieproduktion auf verschiedenen Zeitskalen beeinflusst. Die Zukunftsprojektionen
hängen dabei von den betrachteten Ensembles ab, die unterschiedliche Modelle und Regio-
nalisierungsansätze berücksichtigen. Unterschiede ergeben sich überwiegend aus der Wahl
des Modells, während die verschiedenen Regionalisierungsverfahren ähnliche Klimaände-
rungssignale liefern. Die Ergebnisse sind für eine weiterführende Studie von Bedeutung,
die den Einfluss des Klimawandels auf ein europäisches Stromnetz, das zu 100% mit er-
neuerbaren Energien angetrieben wird, untersucht. Die Resultate zur dekadischen Vorher-
sagbarkeit sind vielversprechend für die Etablierung eines dekadischen Vorhersagesystems
für Windenergie-Anwendungen. Insgesamt können die Ergebnisse dieser Arbeit für eine
erfolgreiche Einbindung von Windenergie in unser bestehendes Stromnetz relevant sein.
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1 Introduction

The IPCC (2013) demands a considerable reduction of greenhouse gas emissions to limit
climate change. At present, the energy supply sector accounts for a large amount of global
greenhouse gas emissions affecting the earth’s climate (Bruckner et al., 2014). The control
and reduction of these emissions through an increased share of renewable and ecologi-
cally sustainable energy sources in the global energy mix plays a key role for a successful
mitigation of climate change (e.g. Solomon et al., 2007). Still, the transition from a fossil
fuel-driven energy system to one with a higher share of renewables remains one of the main
challenges for decision makers in politics and economy (Manwell et al., 2009). Although the
potential of renewable energies exceeds the energy demand worldwide (Fischedick et al.,
2011), individual renewable energy sources are restricted to certain regions due to specific
weather and climate conditions. In Europe, wind energy production has a large potential
as an alternative to fossil fuel sources, while other sources, like e.g. hydropower are limited
in terms of application (Wiser et al., 2011). To tap the full potential of wind energy gener-
ation, the successful integration of the highly volatile wind energy into the electric system
(von Bremen and Lange, 2011) and the installation of an effective network of wind power
plants (Manwell et al., 2009; Wilkes et al., 2012) are of high importance. Additionally,
storage and backup facilities are required to maintain electricity supply in times with low
wind energy production (e.g. Rodriguez et al., 2014).
Wind energy generation depends on several factors: geographical parameters (e.g. land
use; Vautard et al., 2014), economical and technical parameters (Manwell et al., 2009), as
well as weather and climate conditions (e.g. atmospheric circulation, near-surface wind
conditions; Pryor and Barthelmie, 2010, 2013). Hence, the energy generation is strongly
fluctuating on different timescales, which has a large impact on the operation of the energy
system (e.g. Huber et al., 2014; Bloomfield et al., 2016). Highly resolved forecasts and
predictions of regional and local scale wind speeds and wind energy potentials are required
for the actual state, the near-term future, and the long-term future. Short-term forecasts
enable an estimation of the electricity supply generated from wind power plants hours and
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days in advance, thus allowing to compensate fluctuations and avoiding high losses or ex-
cesses (von Bremen and Lange, 2011). These forecasts are also relevant for energy trading.
Near-term forecasts on seasonal to decadal timescales fall within the planning horizon of
politics and economy (e.g. Meehl et al., 2009) and are therefore of particular interest for
the future development of wind energy production. Finally, climate change projections are
important for long-term planning and the analysis of the potential impact of a changing
climate on wind energy potentials (e.g. Pryor and Barthelmie, 2010). Several studies over
the last decades have shown that both wind speeds and wind energy are sensitive to cli-
mate change (e.g. Pryor et al., 2005a,b; Barstad et al., 2012; Hueging et al., 2013; Tobin
et al., 2015). These studies use different global and regional climate models (GCMs and
RCMs) with different emission scenarios and downscaling techniques focussing on differ-
ent parts of Europe. A shortcoming of most of these studies is that they use large-scale
parameters and boundary conditions from a limited number of GCMs, often only one, for
the regionalisation of the global model output. To account for uncertainties arising from
the choice of GCM/RCM, it is advisable to analyse simulations from multi-model ensem-
bles. In addition, the projected long-term trends and future changes for wind speed and
wind energy are relatively small compared to temperature trends (IPCC, 2012), while the
natural variability of wind on inter-annual to decadal timescales is quite large and could
thus conceal potential long-term trends.
The idea for this thesis originated within the German MiKlip project (Marotzke et al., 2016)
and from a previous cooperation with the German Climate Service Center (HZG/GERICS,
formerly CSC). Together with GERICS, a prototype database was developed to provide
the wind energy sector and the public with information on wind energy resources for Ger-
many. Special focus was given to potential climate change impacts. To prove beneficial
for user applications, the database should contain data for different future periods and
emission scenarios considering output from different models to take model uncertainties
into account. However, the database currently stores data from a single RCM for the
present and the future climate focussing only on long-term trends. Thus, one aim of this
thesis is to extend the current analyses of regional scale wind speed and wind energy
potentials over Europe for the near-term and the long-term future. Focus is given to dif-
ferent timescales (from sub-daily to multi-year means), different downscaling techniques
(dynamical vs. statistical-dynamical) and different model ensembles. With this aim, a
unique ensemble is created, considering both GCMs and RCMs. The objective of MiKlip
is among others the prediction of potentially user-relevant variables (e.g. wind energy po-
tentials, temperature extremes) at the regional scale over Europe up to ten years ahead

2



Introduction

(near-term future). However, the field of research dealing with decadal climate predictions
is still relatively new. So up to now most studies analyse the potential predictive skill
of existing decadal prediction systems focussing on global meteorological parameters like
temperature and precipitation. For the first time, this thesis analyses the MiKlip decadal
prediction system with regard to regional wind energy potentials.
Overall, results from this thesis should help to achieve a better understanding of the poten-
tial impact of climate change for the near-term and the long-term future. This is important
to adjust planning strategies concerning climate change adaptation, e.g. to meet the Eu-
ropean Commission’s aim to produce 14.9% of the European electricity demand from wind
energy resources by 2020 (Moccia et al., 2014). In addition, results may be relevant for
stakeholders in politics and economy and the planning of a future renewable energy system
(e.g. Wohland et al., 2017). Three scientific publications form the basis for the investigation
of two main research objectives:

1. Estimation of future changes of wind speed and wind energy potentials over Europe
at the regional scale for the middle and the end of the 21st century, considering

a) Future climate projections for two emission scenarios of a large CMIP5 multi-
model ensemble (22 GCMs) downscaled with a statistical-dynamical downscal-
ing approach (Paper I; Reyers et al., 2016).

b) An ensemble of nine climate simulations with GCM-RCM model chains from
EURO-CORDEX (dynamical downscaling of CMIP5) following two emission
scenarios (Paper II; Moemken et al., 2018).

2. Analysis of the decadal predictability of wind speed and wind energy potentials over
Central Europe in three generations of the MiKlip (‘Mittelfristige Klimaprognosen’)
decadal prediction system downscaled with the same statistical-dynamical downscal-
ing approach as in Paper I (Paper III; Moemken et al., 2016).

The three publications are linked with each other (see also Figure 9.2, chapter 9), either
through the analysed datasets or through the used downscaling approach (for details see
chapters 2.3 and 3). Paper I provides an overview of the ensemble mean responses to
climate change and quantifies the uncertainties between the individual models in terms of
regional wind energy potentials. Focus is given to changes of mean annual wind energy
output (Eout), changes of mean seasonal Eout (including intra-annual variability), and
changes in the inter-annual variability. Paper II investigates future changes of wind energy
potentials at a very high temporal resolution, thus allowing insights on several timescales
and addressing stakeholder needs. Focus is given to mean changes (annual and seasonal),
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changes in variability (inter-annual to inter-daily), and changes in the occurrence of wind
speeds relevant for wind energy production. The comparison of Papers I and II could
provide a better understanding on the impact of different model ensembles and different
downscaling techniques on the estimation of future changes of wind energy potentials. Pa-
per III examines the decadal predictability of wind energy potentials over Central Europe.
Focus is given to the analysis of decadal forecast skill for different lead times and seasons,
and to the estimation of the added value of regionalisation.
Furthermore, the main results from three additional publications are presented, including
the development and evaluation of the statistical-dynamical downscaling method for wind
energy applications (Reyers et al., 2015) as applied in Papers I and III, the impact of cli-
mate change on a wind-dominated European power system (Weber et al., 2018), and the
development and prospects of a regional MiKlip decadal prediction system (Reyers et al.,
2017).
This thesis is organised as follows. Chapter 2 gives an overview of the meteorological
background, including climate conditions for wind speed and wind energy potentials over
Europe (2.1), decadal climate predictions (2.2), and the downscaling of global climate
model data (2.3). Chapter 3 provides a detailed description of the used downscaling meth-
ods for wind energy applications: dynamical downscaling as applied in Paper II (3.1), and
statistical-dynamical downscaling (Reyers et al., 2015) as applied in Papers I and III (3.2).
Chapters 4, 5 and 7 supply the relevant publications (Paper I – III), which form the core of
this thesis. Chapter 6 gives an overview of the main results from Weber et al. (2018), while
results from Reyers et al. (2017) are presented in chapter 8. A summary and discussion of
the main findings as well as an outlook of possible future work is given in chapter 9.
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2 Background

Compensatory processes are the main drivers for atmospheric circulation. Thus, a bal-
anced system would have no circulation in the atmosphere. At the earth, particularly
two processes lead to global atmospheric circulation: the uneven heating of the earth-
atmosphere-system by solar radiation, and the rotation of the earth (e.g. Kraus, 2004).
The input of solar energy is highest at the equator (positive net radiation), while the earth
loses energy at the poles through thermal radiation (negative net radiation). This uneven
heating leads to temperature differences across the earth’s surface on all spatial scales
(Emeis, 2013). Simplified, warm air rises at the equator and is transported to the poles.
The air is cooled along the way, sinks at the poles and is transported back to the equa-
tor. This causes semi-permanent pressure systems at the surface, marked by low-pressure
systems at the equator and high-pressure systems at the poles. In upper levels, the distri-
bution is vice versa with high-pressure systems at the equator and low-pressure systems at
the poles. These distributions lead to a north-south pressure gradient between the warm
subtropics and the cold polar regions. In order to compensate these pressure differences,
air is transported from areas with high pressure to regions with low pressure. The rotation
of the earth modifies this circulation by the Coriolis force leading to a deflection of mov-
ing air. Thus, three circulation cells are formed: the Hadley cell, the Ferrel cell and the
polar cell. These cells produce mainly meridional winds (e.g. from North to South), while
the Coriolis force adds a westerly component to winds towards the poles and an easterly
component to winds towards the equator (Emeis, 2013). Besides this global wind system,
smaller scale systems develop due to e.g. temperature differences between land and sea or
between mountains and valleys.
In addition to the Coriolis force and the pressure gradient force, horizontal winds in the
atmosphere depend on the centrifugal force and the frictional force (due to surface friction
and turbulent viscosity of air). The frictional force can be neglected under idealised con-
ditions outside the planetary boundary layer. A scale analysis shows that the centrifugal
force is also negligible compared to the pressure gradient force and the Coriolis force. The
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2.1. Wind speed and wind energy

equilibrium of pressure gradient and Coriolis force is described by the so-called geostrophic
winds, which flow parallel to the isobars. The wind speed of these geostrophic winds is
proportional to the pressure gradient (e.g. Peixoto and Oort, 1992). In reality, the equilib-
rium is never achieved, since the sun radiates continuously and the earth stays a rotating
system. Therefore there are always winds, which can potentially be used as energy source.

2.1 Wind speed and wind energy

Wind is used as operating power since thousands of years, when humans first started to
built sailboats and sailing ships for transportation. Later on, wind powered mills were built
to pump water and ground grain. In 1887, the first windmill for the production of electric
power was developed (Price, 2005). Finally, the oil crisis during the 1970’s intensified the
investigation of non-fossil fuel energy sources (Manwell et al., 2009) and lead among others
to the development of wind turbines and a new industry segment. Modern wind power
plants generate electric power by using the buoyant force caused by air flowing along the
rotors. This generated electricity depends on the size, the efficiency and the location of
the wind turbine. Modern wind turbines can convert up to 45% of the wind’s kinetic
energy into mechanical energy and thus generate electric power. In Europe, the currently
installed wind power capacity (on- and offshore) covers up to 11.4% of the EU’s electricity
demand (EWEA, 2016). In the German power system, the share of wind energy is 12.3%
(www.strom-report.de, 2017). By 2020, the European Commission aims at producing 14.9%
of the European electricity demand from wind energy resources (Moccia et al., 2014).
Like any other energy source, the use of wind energy has advantages and disadvantages.
Wind is practically available worldwide without any limits since it is formed from solar
radiation and is replenished by it continuously (Emeis, 2013). The transition from solar
radiation to wind energy does not include the carbon cycle except for production, trans-
portation, installation and maintenance of wind power plants (Emeis, 2013), which makes
the generation of energy from wind comparatively low-emission. Modern wind power plants
have a positive ecological balance after approximately two years since their start of oper-
ation. Additionally, wind energy still has a large potential through the expansion of wind
farms both onshore and offshore. The main challenge for the usage of wind as energy
source is its high volatility on different timescales. This can lead to strong fluctuations and
the need for compensation with other energy sources (e.g. Huber et al., 2014; Bloomfield
et al., 2016). In addition, there is currently no direct way to store energy produced by
wind power plants.
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2.1. Wind speed and wind energy

2.1.1 Historical and current climate conditions

Wind is a highly variable quantity on both spatial and temporal scales. On the spatial
scale, the large-scale pressure gradient between the Icelandic Low and the Azores High
generates westerly winds over Europe. It is connected to the phase of the North Atlantic
Oscillation (NAO). The pressure gradient between land and sea surfaces leads to relatively
higher wind speeds along the European coastlines. Additionally, orographic barriers like
the Alps or the Scandinavian mountain chain influence the wind at the local scale, leading
to e.g. föhn effects (Troen and Petersen, 1989). In temporal terms, wind speeds over
Europe vary at different timescales. The diurnal cycle of wind speed is related to the
diurnal cycle of the planetary boundary layer (e.g. Stull, 1988) with higher winds around
noon and a minimum during night. On seasonal scales, wind speed variability in Western
Europe is influenced by the NAO (e.g. Hurrell and van Loon, 1997; Yan et al., 2002; Trigo
et al., 2002). This influence is more pronounced during the winter months. The decadal
variability of wind speeds over Europe is large (Bett et al., 2013) with up to 30% estimated
for historical periods (Petersen et al., 1998).
Several studies investigated wind speeds over Europe in reanalysis data for both 10m-winds
and upper-air winds relevant for wind energy production with somewhat inconsistent re-
sults. Bett et al. (2013) analysed 140 years of reanalysis data (Compo et al., 2011) finding
no clear long-term trend of wind speed over Europe. Bakker et al. (2007) found a small
decrease of mean annual geostrophic wind speeds over the Baltic Sea and a small increase
for the Mediterranean Sea in the 40-year ERA-40 reanalysis dataset (Uppala et al., 2005).
However, this trend is very small compared to the inter-annual variability. Pryor and
Barthelmie (2003) investigated upper-air wind speeds (in 850 hPa) in the NCEP reanal-
ysis (Kalnay et al., 1996). They discovered a significantly increasing trend for 1953-1999
over the Baltic region, which seems to be associated with increases in the upper quartile of
the wind distribution. Vautard et al. (2010) observed a stilling trend in 10m-wind speeds
that is not visible at higher levels. The stilling could be explained by an increase in surface
roughness. Regions with pronounced stilling overlap with regions where vegetation has
increased over the last 30 years, supporting the assumption that vegetation can have a
slowing down effect on 10m-winds.
The potential of wind energy can be described through the wind energy density (WED) and
the wind energy output (Eout) of an exemplary wind turbine. WED depends on the air
density and the wind speed (often in 10m), while Eout takes specific wind turbine charac-
teristics (e.g. cut-in and cut-out velocities, rotor diameter) into account. Both parameters
are proportional to the cube of wind speed (e.g. Manwell et al., 2009). Therefore, higher
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WED and Eout should be available in regions with generally higher wind speeds, e.g. the
North Sea, while the wind energy potential should be lower in areas with lower wind speeds
(e.g. Southern Europe). This is confirmed by several studies: Troen and Petersen (1989)
gave the first detailed overview of potential wind energy sources in Europe in their Euro-
pean Wind Atlas, which is based on observational data. The Atlas provides an overview
of mean wind speeds and energy densities for several European countries. Large energy
sources are depicted for the British Isles, the western coast of Central Europe, the eastern
North Atlantic, the North Sea, and the Aegean. Lu et al. (2009) analysed the global wind
energy potential for individual countries based on reanalysis data. Inconsistent with Troen
and Petersen (1989) and Hueging et al. (2013) they found higher wind energy potentials
over land (onshore) than over sea (offshore) for most European countries. Mean annual
Eout of 3000 TWh is depicted for Germany, Poland and Norway, while higher Eout (up to
5000 TWh) is depicted for Spain and Great Britain. Hueging et al. (2013) investigated the
ability of different regional climate models (RCMs) to simulate the present wind energy
indices. With this aim, they used two RCMs (CCLM and REMO), which are driven by a
control simulation for the present climate. The simulated annual Eout of a 2.5 MW wind
turbine shows a spatial pattern with distinct regional structures and a strong land-sea
gradient (Figure 2.1). Highest values of 14000 MWh can be found in the North Atlantic
to the northwest of the British Isles, while Eout of 12000 MWh is depicted for the North
and Baltic Sea and along the western coast of Europe. Over the European continent, there
is a strong north-south gradient with Eout values between 2000 and 8000 MWh. Lowest
Eout is found over mountainous regions, where uncertainties due to the representation of
orography in the models are highest (Hueging et al., 2013).

Fig. 2.1: Annual Eout of a 2.5 MW wind turbine in 103 MWh obtained from CCLM-20C (1961-
2000). Source: Hueging et al. (2013), Figure 1e. ©American Meteorological Society. Used with
permission.
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2.1.2 Future climate conditions

Several studies indicated an influence of climate change on the atmospheric circulation
and the surface pressure systems (e.g. Pryor and Barthelmie, 2010; Hueging et al., 2013).
These changes can also influence the wind distribution and the wind energy potential in
future decades (Pryor and Barthelmie, 2010).
Hueging et al. (2013) investigated changes in the mean sea level pressure (MSLP) and the
MSLP gradients for the end of the 21st century in a global climate model (GCM) focussing
on the different seasons. They discovered a decrease of MSLP in the northern North At-
lantic during winter, which is associated with an intensification and displacement of the
Icelandic Low. At the same time, MSLP is increasing in the south-eastern North Atlantic
and over Southern Europe, resulting in an intensification and eastward shift of the Azores
High. This combination causes a larger pressure gradient over the North Atlantic and
Europe. Projected changes for summer are weaker, with a decrease (increase) of MSLP
over the subtropics and high latitudes (North-western Europe).
Changes in regional scale wind speeds and wind energy potentials over Europe were ad-
dressed in several studies over the last years. Most of these studies agree on a small
increase of wind energy potentials over Northern Europe and a small decrease over South-
ern Europe under future climate conditions. However, there can be differences regarding
the magnitude and sometimes the sign of the projected changes. Räisänen et al. (2004)
depicted a significant increase of mean wind speeds over Northern Europe, which is in
agreement with the MSLP changes discovered by Hueging et al. (2013) and is confirmed
by Kjellström et al. (2011). However, the changes can differ strongly between different
GCMs and emission scenarios. Bloom et al. (2008) found a strong seasonal dependence of
the projected changes. Pryor et al. (2005a) discovered an increase of wind energy density
during winter over Northern Europe for 2071-2100. At the same time, future changes can
affect the wind distribution in different ways: while mean wind speeds are projected to
decrease, the 90th percentile is projected to increase (Pryor et al., 2005b). Pryor et al.
(2012) found an increase in the magnitude of wind gusts in Scandinavia and an increasing
intra-annual variability. Again, projected changes are sensitive to the model choice (Pryor
et al., 2005a) due to different initial conditions and model parameterisations (Pryor et al.,
2012). Hueging et al. (2013) analysed changes in the regional-scale wind energy potential
over Europe using high-resolution data of two RCMs (CCLM and REMO, driven by the
same GCM ECHAM). They focussed on changes in wind energy density and wind energy
output of a 2.5 MW wind turbine. The projected changes are related to simulated changes
in the large-scale pressure pattern, surface winds and synoptic activity over Europe and
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the North-Atlantic. Hueging et al. (2013) found an increase of mean annual Eout over
Northern and North-eastern Europe (Figure 2.2), which is in line with changes in mean
wind speeds depicted in Räisänen et al. (2004). At the same time, a decrease is detected

Fig. 2.2: Changes in annual Eout of a 2.5 MW wind turbine in % between the RCM-A1B and
RCM-20C for CCLM for all year (g), winter (DJF; i), and summer (JJA; k). Reference periods
are 1961-2000 and 2061-2100. Source: Hueging et al. (2013), Figure 3. ©American Meteorological
Society. Used with permission.

for Southern Europe except the Aegean region, with highest values for Spain and the
Mediterranean Sea. Changes are more pronounced for the different seasons (Figure 2.2):
a significant increase of Eout is simulated for Northern and Central Europe during winter,
together with a strong decrease over Southern Europe. Changes for summer are different,
with decreasing Eout for large parts of Southern and Central Europe and increases for the
Baltic and Aegean regions. The seasonal changes depicted in Hueging et al. (2013) lead to
a higher intra-annual variability. Tobin et al. (2016) investigated climate change impacts
on the wind power generation in an RCM ensemble conducted within EURO-CORDEX
focussing on a European mid-century wind farm scenario. They found that the annual
energy yield remains stable throughout the next decades. Nevertheless, changes at the
local scale can reach up to 15%.
Additionally, climate change could alter the environmental context for operation, mainte-
nance and design of wind power plants (Pryor and Barthelmie, 2010). For example, wind
extremes can lead to critical loads on wind turbines resulting in more frequent power-downs
or even damages. Several studies found evidence for increasing magnitudes of wind speed
extremes for Northern Europe (e.g. Pryor et al., 2005a; Haugen and Iversen, 2008) and
Central Europe (Leckebusch et al., 2008) in future decades.
All studies reveal a connection between a changing climate and the wind energy potential
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under future climate conditions. This link is of high importance for future wind energy
production. However, the demand for forecasts/predictions on timescales from one year up
to one decade has strongly increased over the last years, especially in politics and economy
(Goddard et al., 2013). These decadal predictions are introduced in the next chapter.

2.2 Decadal climate predictions

Decadal climate predictions focus on short-term climate change and natural climate vari-
ability on timescales from one year to one decade (Meehl et al., 2009). These timescales
are of high importance for decision makers in ecology, economy, politics and society (Meehl
et al., 2009; Chikamoto et al., 2013; Goddard et al., 2013) and thus are of particular interest
for the short-term development and planning of wind energy production. One of the main
challenges for decadal predictions is the initialisation of the climate system (Meehl et al.,
2009). While long-term climate projections depend mostly on the boundary conditions,
decadal predictions depend on both realistic initial and boundary conditions (Figure 2.3;
van Oldenborgh et al., 2012) for example from observational data.

Fig. 2.3: Schematic illustration of different forecast/prediction timescales. Adapted from: Meehl
et al. (2009).

Additionally, the predictability is prone to model uncertainties and systematic model biases
(e.g. used physics or climatology; Chikamoto et al., 2013). The forecast skill of decadal pre-
dictions depends on the ability of the employed GCMs to realistically simulate the decadal
variability, both in terms of pattern and magnitude (Meehl et al., 2009). Therefore they
need to account for internal generated variability as well as variability forced by external
processes (e.g. volcanic eruptions).
Within the German consortium MiKlip (‘Mittelfristige Klimaprognosen’, decadal climate
predictions; Marotzke et al., 2016) a model system based on the Max-Planck-Institute
Earth System Model (MPI-ESM) is developed to produce skilful decadal predictions on
global and regional scales. The first generation of this model system contributes to the
Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et al., 2012). Through
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CMIP5, a set of global coordinated climate model experiments has been made available,
comprising simulations for the recent past, decadal simulations and climate change pro-
jections. The decadal simulations are divided into two kinds of experiments: hindcasts
(initialised forecasts of past cases) and predictions (near future projections starting from
current climate conditions). The initial conditions for these runs are taken from assimi-
lation runs that use reanalysis data from the past and the present, either ocean-only or
ocean-atmosphere. Only observed CO2 values are used as boundary conditions. Some
models also consider effects due to volcanic eruptions or changes in the solar activity. En-
sembles are generated through an initialisation at different time steps of the assimilation
run (usually 1-day-lagged initialisation; e.g. Müller et al., 2012). The hindcast experiments
enable the analysis of decadal predictability for different parameters through a compari-
son with observations or reanalysis data (e.g. Smith et al., 2007). This is usually realised
by calculating skill scores. Simplified, these scores estimate whether the initialisation of
the hindcasts improves the decadal predictability compared to a reference simulation (e.g.
Müller et al., 2012; Goddard et al., 2013). Typically, either uninitialised historical runs (for
past cases) or the climatology serve as reference. Skill scores are calculated for different
lead times (e.g. yr1-4: first to fourth year after initialisation) to quantify how far ahead
the initialisation provides predictive skill.
Over the last years, several studies assessed the decadal forecast skill of existing forecast
systems. These systems are based on individual model ensembles (e.g. Müller et al., 2012,
2014; Goddard et al., 2013; Marotzke et al., 2016) or multi-model ensembles (e.g. van Old-
enborgh et al., 2012; Doblas-Reyes et al., 2013; Eade et al., 2014). All of these studies
found some predictive skill, but the results differ strongly for different parameters, regions
and lead times. Importantly, Eade et al. (2014) pointed out that the potential forecast skill
is often underestimated due to a lower predictable component in the models compared to
observations. While focus is given mostly on the global scale and primary meteorological
parameters like temperature (e.g. Smith et al., 2007; Müller et al., 2012) and precipitation
(e.g. van Oldenborgh et al., 2012), only few studies deal with the decadal predictability
at the regional scale and of user-relevant variables. For example, Kruschke et al. (2014)
analysed the forecast skill of decadal predictions conducted within MiKlip for cyclone ac-
tivity over the Northern Hemisphere. For intense cyclones, they found some regions in
the North Atlantic with positive predictive skill. Mieruch et al. (2014) considered dy-
namically downscaled MiKlip hindcasts to evaluate the decadal predictability of seasonal
temperature anomalies and precipitation sums over Europe. While the positive forecast
skill for summer temperatures could be preserved by the regionalisation, the predictive
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skill of precipitation sums could be improved by the downscaling. Haas et al. (2016) used
a statistical-dynamical downscaling approach to estimate the decadal forecast skill of peak
winds in MPI-ESM at the regional scale. Results from their study showed highest skill
scores for short lead times (1-4) and upper wind percentiles (75th-90th).
Results on both the global and the regional scale are promising for the decadal prediction
of different variables. However, the results for the regional prediction systems depend not
only on parameters, regions or lead times but also on the downscaling technique applied
for regionalisation. The differences between the different downscaling methods and their
advantages and disadvantages are described in the next section.

2.3 Downscaling of global climate model data

GCMs are a useful tool for climate change projections and decadal predictions. But for
applications to the regional or even the local scale, the resolution of the GCM simulations
(typically 100-300 km) is insufficient. Therefore, a downscaling of the global model data
is necessary to provide information at a higher resolution. Several methods have been
developed and applied in recent years. All downscaling methods belong to one of the
following three categories: statistical/empirical downscaling, dynamical downscaling, and
statistical-dynamical downscaling (e.g. Hewitson and Crane, 1996; Wilby andWigley, 1997;
Fuentes and Heimann, 2000; Maraun et al., 2010).
The statistical downscaling (SD) consists of two steps. First, a statistical relationship
between the local climate variable of interest (e.g. temperature or wind speed) and the
large-scale parameter (e.g. MSLP field) is developed based on observational or reanalysis
data. This relationship is applied to the GCM output in the second step to simulate local
climate characteristics. The SD is computationally inexpensive (cost efficient), easy to use,
and can be applied very fast to large GCM ensembles (Wilby et al., 2004). However, the
approach assumes a stationary statistical relationship and does not include sub-grid-scale
processes like e.g. land and sea breeze. Pryor et al. (2005c) used a SD approach to analyse
the impact of climate change on wind speed and wind energy densities over Europe for the
end of the 21st century. The approach includes relative vorticity and MSLP gradients as
large-scale predictors and parameters of the wind speed probability distribution function
(PDF) as predictants. Devis et al. (2013) developed a SD method to downscale GCM
output to the wind speed distribution at the hub height of wind turbines using local-scale
hub height wind speed PDF parameters as predictants and PDF parameters of large-scale
atmospheric parameters as predictors.
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The dynamical downscaling (DD) is based on the modelling of atmospheric processes at
the regional scale. A high-resolution RCM is nested into the coarser resolution GCM using
the GCM output as boundary conditions (e.g. Räisänen et al., 2001). The RCM has a
physically-based dynamical core, which allows the resolution of synoptic patterns. Different
physical parameterisations account for sub-grid-scale-processes like convection, turbulence
or radiation (Teixeira et al., 2008). Additionally, the RCM provides information at very
high spatial and temporal resolution. However, the DD is computationally very expensive,
thus typically only small ensembles can be generated. Accordingly, most studies using DD
for climate change studies are restricted to single GCMs and single emission scenarios. For
example, Hueging et al. (2013) investigate regional scale changes in wind energy potentials
using two RCMs driven with the same GCM for a single emission scenario.
The statistical-dynamical downscaling (SDD) combines the advantages of SD and DD.
SDD approaches are often based on the classification of weather types from large-scale
parameters (e.g. MSLP). In a next step, representatives for each weather type are simulated
with a RCM. The results are analysed statistically, in which the frequency of the individual
weather classes determines the corresponding weights. Pinto et al. (2010) developed a SDD
approach to estimate the impact of winter storms over Western Europe under future climate
conditions. Haas and Pinto (2012) developed a SDD approach to reproduce dynamically
downscaled wind gust speeds in a cost efficient way. A further approach for wind energy
application by Reyers et al. (2015) is described in detail in the next chapter.
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3 Downscaling for wind energy
applications

In this thesis, two downscaling approaches are considered to analyse wind energy poten-
tials on the regional scale over Europe: dynamical downscaling and statistical-dynamical
downscaling.

3.1 Dynamical downscaling

Chapters 5 and 6 are based on regional climate projections from the European branch
within the CORDEX framework (EURO-CORDEX, http://www.euro-cordex.net). The
CORDEX initiative (WCRP Coordinated Regional Downscaling Experiment; Giorgi et al.,
2009) aims at dynamically downscaling the CMIP5 global climate projections to generate
multi-model ensembles of regional projections for different regions all over the globe. There-
fore several RCMs are nested into different GCMs.
The GCMs provide simulated large-scale atmospheric fields (surface pressure, temperature,
humidity) as boundary conditions, and soil moisture, sea surface temperature and sea ice
as initial conditions to the RCMs. The RCMs incorporate more complex topography and
coastlines, heterogeneous landscapes, and detailed descriptions/parameterisations of phys-
ical processes to generate realistic climate information at spatial resolutions of usually 20
to 50 km. However, the quality of the dynamically downscaled data depends on the accu-
racy and biases of the GCMs (Seaby et al., 2013).
Within EURO-CORDEX, historical and climate change simulations are provided for ap-
proximately 27°N - 72°N and 22°W - 45°E with a resolution of 12 km (0.11°) and 50 km
(0.44°). More details on e.g. the used GCM-RCM chains can be found in Paper II (chapter
5).

15



3.2. Statistical-dynamical downscaling

3.2 Statistical-dynamical downscaling

In chapters 4 and 7, a statistical-dynamical downscaling approach is used to regionalise a
large GCM ensemble from CMIP5 (chapter 4) and the MiKlip decadal prediction system
(chapter 7). The SDD methodology was developed in Mömken (2014) and Reyers et al.
(2015) and is described in the following, according to the two references.

Fig. 3.1: Schematic illustration of the SDD with its four steps. Source: Reyers et al. (2015),
Figure 1. ©Royal Meteorological Society. Used with permission.

The SDD approach consists of four steps (Figure 3.1). In the first step, the large-scale
circulation is analysed and characterised for each day using a weather type classification.
For this purpose, an extended version of the circulation weather type (CWT) method by
Jones et al. (1993) is employed. The CWT method follows the objective Lamb weather
types (Lamb, 1972; Jenkinson and Collinson, 1977) and has been used in a wide range
of studies (e.g. Jones et al., 2012). Daily global MSLP fields interpolated on a regular
2.5° grid are used as input data for the classification. By considering instantaneous MSLP
values at 16 grid points around the central point at 50°N 10°E (Frankfurt, Germany)
the direction and strength of the geostrophic flow and the vorticity are calculated based
on pressure gradients. The near-surface atmospheric flow is then assigned to one of ten
basic CWTs: northeast (NE), east (E), southeast (SE), south (S), southwest (SW), west
(W), northwest (NW), north (N), cyclonic (C), anti-cyclonic (A). Additionally, the mixed
type anti-cyclonic/west (AW) is considered since it is the most frequent mixed type. For
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wind energy production, the strength of the geostrophic flow is a crucial factor. This
strength is described by the f-parameter, which represents the current MSLP gradient at
the central point. Depending on the CWT, the f-parameter ranges from values slightly
above 0 hPa/1000km (weak gradient) to ca. 45 hPa/1000km (strong gradient). Each of
the 11 CWTs is subdivided into classes of f-parameters with 5 hPa/1000km intervals (0-5
to 45-50 hPa/1000km) to capture the complete range of wind speeds within a CWT. This
results in a maximum of 110 classes, but only 77 of them are assigned. In addition, the
frequency of occurrence for each of these classes is estimated. Figure 3.2 shows exemplarily
the climatological MSLP fields for classes W and C, both with a low and a high f-parameter.

Fig. 3.2: Climatological mean of MSLP fields for two exemplary CWTs obtained from ERA-
Interim. Source: Reyers et al. (2015), Figure 2. ©Royal Meteorological Society. Used with
permission.

In the second step, representative days for each of the 77 classes are simulated with the
RCM COSMO of the German Weather Service (Deutscher Wetterdienst, DWD) in its Cli-
mate Mode (version 4.8, hereafter CCLM; e.g. Rockel et al., 2008). CCLM simulations with
a horizontal resolution of 0.22° are performed using the domain of the EURO-CORDEX
project (roughly 20°N - 70°N and 30°W - 50°E). ERA-Interim data serves as initial and
boundary conditions. For each class, up to ten representative days are selected. The choice
of representatives within a class is random, but data from all four seasons is included if pos-
sible. The ERA-Interim-driven representatives are used for the downscaling of all global
datasets, assuming that the wind characteristics of the individual CWTs are similar in
model and reanalysis.
In the third step, the simulated hourly 10m-wind speeds for the representative days are

17



3.2. Statistical-dynamical downscaling

recombined to wind velocity PDFs at each CCLM grid point. Therefore the occurrence of
a given wind speed (in 0.1 m/s intervals) is calculated as the sum of the contributions from
all classes weighted by the respective class frequency and the number of representative
days.
In the last step, the wind speed PDFs are used to calculate gridded Eout for an exemplary
wind turbine. First, the hourly 10m-wind velocities are extrapolated to the average hub
height of a wind turbine using a vertical wind profile. This is a standard procedure in wind
energy applications (e.g. Manwell et al., 2009; Hueging et al., 2013). Here, the power law
is used:

U(z)

U(zr)
=

(
z

zr

)α
(3.1)

where U(z) and U(zr) are the wind speeds at hub height z and a reference height zr (usually
10 m). α is the power law exponent, which is set to 0.2 for onshore areas (IEC, 2005a)
and 0.14 for offshore sites (IEC, 2005b). The extrapolated wind velocities are used for the
computation of Eout, following the characteristics of the exemplary wind turbine:

1. No Eout is produced below the cut-in velocity (around 3 m/s) and above the cut-out
velocity (ca. 25 m/s).

2. Between the cut-in velocity and the rated velocity (around 13 m/s), Eout can be
determined as:

Eout = cp
1

2
ρπR2U3 (3.2)

with the power coefficient cp (0.35), the air density ρ (constant value of 1.225 kg/m3),
the rotor radius R (50m), and the wind speed at hub height U(z).

3. Between the rated velocity and the cut-out velocity, a constant maximum Eout of
2.5 MW is assumed.

Finally, gridded Eout is calculated by assuming that a wind turbine is placed at every grid
point. Spatial distributions of mean annual Eout are obtained by integrating Eout over
all wind speed ranges with the respective climatological velocity frequencies as weighting
factors. Figure 3.3a shows the spatial distribution of mean annual Eout downscaled from
ERA-Interim reanalysis data (climatology for 1979-2010).
The SDD method is easily applicable to different datasets like reanalysis data or climate
change projections and different time periods. Only the weather type analysis (step 1) has
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Fig. 3.3: (a) Climatological mean of annual Eout in 103 MWh for ERA-Interim (1979-2010) as
obtained by SDD. (b) as (a), but obtained by DD. (c) Difference between annual Eout from SDD
and DD in 103 MWh obtained from ERA-Interim. Adapted from: Reyers et al. (2015), Figure 7.
©Royal Meteorological Society. Used with permission.

to be recalculated. Reyers et al. (2015) used the SDD approach for the regionalisation of
three different datasets. For evaluation, they applied the SDD to ERA-Interim reanalysis
(Dee et al., 2011) and compared the results to a purely DD method and wind data from the
German Weather Service (DWD). The SDD is able to simulate realistic near-surface wind
distributions for most stations in Germany with largest discrepancies for coastal stations.
Additionally, the results for simulated Eout show a good agreement between SDD and DD
(Figure 3.3b) for Central Europe and a reduced agreement over areas like the North Sea and
the Mediterranean region (Figure 3.3c). Reyers et al. (2015) also tested the applicability
of SDD to decadal hindcasts from the MiKlip consortium (see section 2.2) and climate
change projections. Regarding the application to decadal hindcasts, a good accordance
between SDD and DD is found for Germany and nearby areas, especially the Benelux
region, Czech Republic and Poland, while correlations to DD are lower for other European
countries (Figure 3.4). In terms of climate change projections, the SDD approach performs
well for the entire European sector. Reyers et al. (2015) concluded that the SDD method
is a suitable and inexpensive alternative to a purely DD approach and that it can easily
be applied to large ensembles of global data.
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Fig. 3.4: Correlation per grid point between annual Eout time series simulated by SDD and DD
for four exemplary hindcasts. Grid points with a significant correlation are dotted. Source: Reyers
et al. (2015), Figure 11. ©Royal Meteorological Society. Used with permission.
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ABSTRACT: A statistical-dynamical downscaling method is used to estimate future changes of wind energy output (Eout) of
a benchmark wind turbine across Europe at the regional scale. With this aim, 22 global climate models (GCMs) of the Coupled
Model Intercomparison Project Phase 5 (CMIP5) ensemble are considered. The downscaling method uses circulation weather
types and regional climate modelling with the COSMO-CLM model. Future projections are computed for two time periods
(2021–2060 and 2061–2100) following two scenarios (RCP4.5 and RCP8.5). The CMIP5 ensemble mean response reveals
a more likely than not increase of mean annual Eout over Northern and Central Europe and a likely decrease over Southern
Europe. There is some uncertainty with respect to the magnitude and the sign of the changes. Higher robustness in future
changes is observed for specific seasons. Except from the Mediterranean area, an ensemble mean increase of Eout is simulated
for winter and a decreasing for the summer season, resulting in a strong increase of the intra-annual variability for most of
Europe. The latter is, in particular, probable during the second half of the 21st century under the RCP8.5 scenario. In general,
signals are stronger for 2061–2100 compared to 2021–2060 and for RCP8.5 compared to RCP4.5. Regarding changes of
the inter-annual variability of Eout for Central Europe, the future projections strongly vary between individual models and
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understanding of the future changes.
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1. Introduction

The observed anthropogenic climate change and the
projected global warming due to increasing greenhouse
gas emissions have raised the necessity of an increase in
renewable energy production in the upcoming decades.
Because of its geographical position, wind energy is a
promising renewable energy source for Europe, while
other alternative energy sources such as hydropower
are limited (Wiser et al., 2011). By 2020, the European
Commission aims to produce 15.7% of the EU’s electric-
ity from wind (Moccia et al., 2011). A further increase
of wind power capacity is expected for the upcoming
decades (Capros et al., 2013). Wind energy production
in future decades may in turn also be influenced by the
changing climate, because near-surface wind conditions
are linked to the synoptic scale variability on different
time-scales (Pryor and Barthelmie, 2010). The impact of
climate change on regional wind speeds and wind energy
potentials in Europe has been investigated in several recent

* Correspondence to: M. Reyers, University of Cologne, Institute for
Geophysics and Meteorology, Pohligstrasse 3, 50969 Cologne, Germany.
E-mail: mreyers@meteo.uni-koeln.de

studies (e.g. Barstad et al., 2012; Cradden et al., 2012;
Nolan et al., 2012, 2014; Pryor et al., 2012; Hueging et al.,
2013; Tobin et al., 2015). Most of these studies, which use
different models and downscaling methods and focus on
different parts of Europe, agree on a general increase in
wind energy potentials over Northern Europe, especially
during winter, and a general decrease over Southern
Europe. However, there are some differences both in the
magnitude and the sign of the projected changes. For
example, several studies found that the changes in wind
speed and wind energy are sensitive to the choice of the
global climate model (GCM) and may be influenced by
their internal variability and initial conditions (e.g. Pryor
et al., 2005, 2012; Tobin et al., 2015). Additionally, evi-
dence is given that future projections of synoptic activity
may strongly differ between individual GCMs, which
is mainly due to different model parameterisations or
uncertainties in the simulated ocean circulation changes
(Woollings et al., 2012; Zappa et al., 2013).

A shortcoming of most studies dealing with future
projections of wind energy potentials is that they often
use large-scale parameters, such as wind speed or wind
direction, and boundary conditions of a limited number
of GCMs, sometimes only one, for the downscaling
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procedure. In order to take into account the uncertainties
arising from the choice of the GCM, it is recommended
to downscale future scenarios from large multi-model
ensembles. A large ensemble of GCMs and Earth Sys-
tem Models (ESMs) has been recently made available
through the Coupled Model Intercomparison Project
Phase 5 (CMIP5; Taylor et al., 2012). Studies that aim
to assess future changes of the synoptic activity (to some
extent linked to wind energy potentials) over Europe in
the CMIP5 models mostly consider large-scale features
like storm tracks or cyclones (e.g. Chang et al., 2012;
Zappa et al., 2013). For example, Zappa et al. (2013)
analysed the responses of cyclones over the European
sector to climate change in 19 CMIP5 models. The
ensemble mean response shows an increase in the number
of winter cyclones over Central Europe and a decrease
in the number of North Atlantic cyclones in summer for
2070–2099. However, the future changes in the individual
models may differ or even show opposite trends. Based
on such GCM results, it is not possible to directly draw
conclusions from their findings for regional changes of
wind energy potentials, because wind energy production
is strongly influenced by local topographic characteristics
(e.g. Ouammi et al., 2012) and not only depends on mean
wind conditions but on changes in the full spectrum of
wind speeds. As a consequence, there is still a lack of
knowledge about future projections of regional wind
energy potentials in a CMIP5 multi-model ensemble.

In this study, we use a statistical-dynamical downscaling
(SDD) method following Reyers et al. (2015) to assess
regional changes of wind energy potentials over Europe
in an ensemble of 22 CMIP5 models. The objective is to
provide an overview of the ensemble mean responses to
climate change and to quantify the uncertainties between
the individual models. An overview of the 22 models as
well as a description of the downscaling method is given
in Section 2. The main results of this study are shown in
Section 3, including an evaluation of the CMIP5 ensemble
(Section 3.1), future projections of mean annual wind
energy output (Section 3.2), and changes of the inter-
and intra-annual variability of wind energy production
(Section 3.3). Conclusions and a discussion of the results
are given in Section 4.

2. Methods and data

In this study, an SDD approach (e.g. Fuentes and Heimann,
2000; Pinto et al., 2010) is used to downscale wind energy
potentials over Europe for present day and future climate
conditions. SDD approaches combine weather type anal-
ysis and regional climate model simulations for selected
representative episodes of relevant weather types. The
adaption of SDD for wind energy applications is given in
detail in Reyers et al. (2015), and thus only a short sum-
mary is presented here. SDD consists of four crucial steps:

In the first step, a circulation weather type (CWT) anal-
ysis following Jones et al. (1993) is applied to daily mean
sea level pressure (MSLP) fields to assign the large-scale

atmospheric flow into directional (e.g. west) or rotational
(e.g. cyclonic) CWTs (see Reyers et al., 2015 for more
details). With this aim, daily MSLP fields of global data
sets (e.g. reanalysis for evaluation purposes; historical and
future scenarios of GCMs for present day and future cli-
mate conditions, respectively) are first interpolated on a
regular 2.5∘ grid. Further, the CWTs are subdivided into
classes with different pressure gradients, ranging from ca.
45 hPa per 1000 km to values below 5 hPa per 1000 km
(5 hPa per 1000 km intervals, see Reyers et al., 2015) at
the central point, which for this study is situated at 10∘E,
50∘N (near Frankfurt, Germany). The CWT classification
is based on the orientation and the gradient of the isobars
at the central point, using MSLP at 16 neighbouring grid
points (Reyers et al., 2015; their Figure 1). Altogether, 77
large-scale weather classes are considered.

Second, representative days for each of these 77 classes
are simulated with the regional COSMO model of the
German Weather Forecast Service Deutscher Wetterdienst
(DWD, http://www.cosmo-model.org) in its CLimate
Mode (version 4.8, hereafter CCLM; see e.g. Rockel
et al., 2008). Reanalysis data from the European Centre
for Medium-Range Weather Forecasts (ERA-Interim;
Dee et al., 2011) are used as initial and boundary con-
ditions. The model domain comprises the region of the
EURO-CORDEX project (Giorgi et al., 2006) with a
horizontal resolution of 0.22∘. Up to ten representative
days for each of the 77 classes have been simulated
(altogether 669 simulated representatives) to ensure that
the full spectrum of potential representatives is covered.

Third, at each CCLM grid point simulated, hourly 10 m
wind speeds of the representative days are recombined
to probability density functions (PDFs) by weighting the
contributions of all 77 weather classes by the respective
class frequency (e.g. frequency of a class in a future time
period) and the number of simulated representative days.
Finally, the gridded PDFs of the 10 m wind speed are
used to determine highly resolved gridded wind energy
output (Eout) of an example wind turbine. Note that
these PDFs are based on hourly wind speeds. Therefore,
sub-daily wind variations and extremes are considered
in the downscaling approach. Following Reyers et al.
(2015), characteristics of a 2.5 MW wind turbine from
General Electric (2010) with an assumed average turbine
hub height of 80 m are employed. Here, we use the power
law to extrapolate hourly 10 m wind speeds to the hub
height (wind speed in 80 m, v80). In general, Eout of the
example turbine is proportional to v80 cubed:

Eout = cp
1
2
𝜌𝜋R2v3

80 (1)

where cp is the power coefficient (constant value of 0.35
for the idealized turbine), 𝜌 is the air density (constant
value of 1.225 kg m−3), and R the rotor radius of the ide-
alized turbine (50 m). For v80 < 3.5 m s−1 (cut-in velocity)
and v80 > 25 m s−1 (cut-out velocity), no energy output
is produced. Between wind speeds of 12.5 m s−1 (rated
velocity) and 25 m s−1 (cut-out velocity), the maximum
value of Eout of 2.5 MW is reached. The computed Eout is
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integrated over all wind velocity ranges and weighted with
the corresponding climatological velocity frequencies to
obtain distributions of mean annual energy output for each
grid point. To apply the SDD approach to different data
sets or time periods, only the weather type analysis (step 1)
has to be repeated and eventually calibrated, while the sub-
sequent steps remain unchanged (see Reyers et al., 2015).

Reyers et al. (2015) evaluated the results of the SDD
approach for wind energy potentials against purely
dynamical downscaling methods applied to reanalysis and

CMIP3 models (e.g. Hueging et al., 2013) and concluded
that they agree particularly well for Central Europe. This
is the case for simulated Eout on the annual time-scale
and for long-term future projections. Over other areas, the
agreement is reduced, but the general pattern coincides.
In this study, the SDD approach is used to determine
the climate change response of Eout in an ensemble of
22 CMIP5 models. The names and institutions of the 22
models as well as their original horizontal and vertical
resolutions are listed in Table 1. The ensemble comprises

Table 1. List of the 22 CMIP5 models used in this study, including information on model name, respective institution, and the
horizontal and vertical resolution.

Model name Institution Horizontal
resolution

Vertical
levels

ACCESS1.3 (Australian Community Climate
and Earth System Simulator, coupled model,
version 1.3)

Centre for Australian Weather and Climate
Research (CAWCR), Australia

192× 145 38

CanESM2 (Second Generation Canadian Earth
System Model)

Canadian Centre for Climate Modelling and
Analysis (CCCma), Canada

T63 (128× 64) 35

CCSM4 (Community Climate System Model,
version 4)*

National Center for Atmospheric Research
(NCAR), United States

288× 192 26

CNRM-CM5 (CNRM Coupled Global Climate
Model, version 5)

Centre National de Recherches Mètèorologiques
(CNRM), France

TL127 (256× 128) 31

CSIRO-Mk3.6.0 (CSIRO Mark, version 3.6.0) Commonwealth Scientific and Industrial
Research Organisation (CSIRO), Australia

T63 (192× 96) 18

EC-EARTH (EC-Earth Consortium) European Consortium (EC) TL159 (320× 160) 62
FGOALS-g2 (Flexible Global
Ocean-atmosphere-Land System Model
gridpoint, second spectral version)*

State Key Laboratory of Numerical Modelling
for Atmospheric Sciences and Geophysical
Fluid Dynamics (LASG), China

128× 60 26

GFDL-CM3 (GFDL global Coupled Model,
version 3)

Geophysical Fluid Dynamics Laboratory
(GFDL), United States

144× 90 48

GFDL-ESM2G (GFDL Earth System Model
with GOLD ocean component)

GFDL, United States 144× 90 24

GFDL-ESM2M (GFDL Earth System Model
with MOM4 ocean component)

GFDL, United States 144× 90 24

HadGEM2-CC (Hadley Centre Global
Environment Model, version 2, Carbon Cycle)

Met Office Hadley Centre, United Kingdom 192 x 145 38

HadGEM2-ES (Hadley Centre Global
Environment Model, version 2, Earth System)

Met Office Hadley Centre, United Kingdom 192× 145 38

INM-CM4 (INM Coupled Model, version 4.0)* Institute of Numerical Mathematics (INM),
Russia

180× 120 21

IPSL-CM5A-LR (IPSL Coupled Model, version
5, coupled with NEMO, low resolution)

L’Institut Pierre-Simon Laplace (IPSL), France 96× 96 39

IPSL-CM5A-MR (IPSL Coupled Model,
version 5, coupled with NEMO, medium
resolution)

IPSL, France 144× 143 39

MIROC5 (MIROC, version 5) Model for Interdisciplinary Research on Climate
(MIROC), Japan

T85 (256× 128) 56

MIROC-ESM (MIROC, Earth System Model) MIROC, Japan T42 (128× 64) 80
MIROC-ESM-CHEM (MIROC, Earth System
Model, Chemistry Coupled)

MIROC, Japan T42 (128× 64) 80

MPI-ESM-LR (MPI Earth System Model, low
resolution)

Max Planck Institute (MPI) for Meteorology,
Germany

T63 (192× 96) 47

MPI-ESM-MR (MPI Earth System Model,
medium resolution)

MPI, Germany T63 (192× 96) 95

MRI-CGCM3 (MRI Coupled
Atmosphere-ocean General Circulation Model,
version 3)*

Meteorological Research Institute (MRI), Japan TL159 (320× 160) 48

NorESM1-M (Norwegian Earth System Model,
version 1, intermediate resolution)

Norwegian Climate Centre (NCC), Norway 144× 96 26

*Models without wind data are marked.
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both coupled GCMs as well as ESMs. While some of the
individual model ensembles comprise up to 12 realisations
per scenario, others have only one realisation. To ensure
an equal contribution to the ensemble mean, we decided
to use the first available realisation of each model simula-
tion. Two future periods (2021–2060 and 2061–2100) are
compared to the historical period 1961–2000. For the his-
torical period, the CMIP5 models are forced with observed
greenhouse gas concentrations. For the future periods,
two scenarios are considered in this study: RCP4.5 and
RCP8.5 (Meinshausen et al., 2011). In the RCP4.5, fossil
CO2 emissions are assumed to increase until 2040 and
permanently decrease thereafter. Nevertheless, a moderate
permanent increase of CO2 concentration is simulated in
this scenario reaching 543 ppm in 2100. This results in an
additional anthropogenic radiative forcing of 4.5 W m−2

at the end of the 21st century. In contrast, the fossil CO2
emissions in the RCP8.5 strongly rise until 2100. This
leads to a CO2 concentration of ca. 2000 ppm and a strong
anthropogenic radiative forcing of 8.5 W m−2 by 2100.
For comparison and validation purposes, SDD is also
applied to ERA-Interim (see Reyers et al., 2015).

In this study, future climate change responses of Eout
in the CMIP5 ensemble are analysed with respect to the
following three focal points:

(i) changes of mean annual Eout
(ii) changes of mean seasonal Eout (winter:

December–February; summer: June–August)
(iii) changes of inter-annual variability (in terms of the

standard deviation of annual Eout).

Future changes are determined as difference of Eout
in the future period (2021–2060 or 2061–2100) minus
Eout under present day conditions (1961–2000). For (i)
and (ii), significances of the changes are calculated using
the Student’s t-test method. For ensemble mean changes,
signal-to-noise ratios are quantified by dividing mean
changes by the standard deviation between the changes
of the individual ensemble members. For the evaluation
of the inter-annual variability, focus is given on selected
regions over Central Europe, for which the approach
produces comparable results to dynamical downscaling
(Reyers et al., 2015).

Regional changes of Eout are related to changes in
large-scale atmospheric circulation, namely the mean 10 m
wind speeds and MSLP fields in the CMIP5 models.
Because wind data are not available for all models, this
analysis is restricted to 18 models, comprising the same
model ensemble as shown in Table 1 minus CCSM4,
FGOALS-g2, INM-CM4, and MRI-CGCM3.

3. Results

3.1. Evaluation of historical CMIP5 runs

The SDD approach is used to estimate Eout based on the
CMIP5 ensemble for Europe. The study focuses on Central
Europe, because the considered weather typing approach

Table 2. Frequency of CWT west (W, second column), CWT
west with a pressure gradient of more than 15 hPa per 1000 km
(W+, third column), and the sum of frequencies of CWT south-
west, west, and northwest (SW, W, NW, fourth column) in
ERA-Interim and the respective deviations for the historical runs

of the 22 CMIP5 models.

Model W W+ (f > 15) SW, W, NW

ERA-Interim 9.58 4.54 27.61
ACCESS1.3 +1.00 +1.97 −0.35
CanESM2 +3.02 +3.45 +6.06
CCSM4 +7.47 +7.36 +13.10
CNRM-CM5 −0.05 +0.59 +0.44
CSIRO-MK3.6.0 −2.02 −1.21 −4.46
EC-EARTH +0.51 +1.06 +0.21
FGOALS-g2 −1.67 −1.52 −2.58
GFDL-CM3 +1.88 +1.85 +4.39
GDFL-ESM2G +3.56 +2.86 +8.16
GFDL-ESM2M +2.31 +2.01 +4.80
HadGEM2-CC −0.68 0 −2.67
HadGEM2-ES −0.62 −0.06 −2.56
INM-CM4 +2.67 +2.94 +4.30
IPSL-CM5A-LR +4.58 +4.08 +9.34
IPSL-CM5A-MR +4.24 +4.03 +10.24
MIROC5 −3.83 −2.37 −7.84
MIROC-ESM +3.62 +3.11 +9.13
MIROC-ESM-CHEM +2.84 +2.82 +7.38
MPI-ESM-LR +1.65 +1.56 +5.22
MPI-ESM-MR +3.22 +2.50 +8.07
MRI-CGCM3 +3.56 +4.01 +6.56
NorESM1-M +6.54 +5.38 +12.43

All numbers are given in absolute %.

is representative for the large-scale flow conditions over
Germany and surrounding countries (cf. Section 2 and
Reyers et al., 2015). First, we analyse how well the CWT
frequencies for the historical runs of the CMIP5 models
agree to those in ERA-Interim. Aside from the rotational
CWTs (cyclonic and anti-cyclonic), the westerly weather
types dominate the near-surface atmospheric flow over
Central Europe (see also Reyers et al., 2015). Global
circulation models tend to overestimate the zonal flow in
the North Atlantic/European Sector (e.g. Sillmann and
Croci-Maspoli, 2009). Accordingly, Zappa et al. (2013)
have shown that CMIP5 models overestimate the number
of winter cyclones in a zonal band between the subtropical
North Atlantic and Central Europe. In terms of the CWTs,
this typical bias is reflected by an overestimation of the
frequencies of the westerly weather types over Europe in
the GCMs. Table 2 shows the frequencies of all CWTs
west (W; flow direction 67.5∘–112.5∘W), of CWTs west
with a strong pressure gradient of more than 15 hPa per
1000 km (W+), and of the combined westerly types south-
west, west, and northwest (SW, W, NW; 22.5∘–157.5∘W)
in ERA-Interim and the respective deviations for the his-
torical runs of the 22 models. In ERA-Interim, on ca. 10%
of the period 1979–2010, the atmospheric flow can be
assigned to CWT W. Nearly half of these CWTs (4.54%)
have a gradient of more than 15 hPa per 1000 km (W+).
Altogether, the westerly types (SW, W, NW) account for
27.61% of all days. As expected, most of the CMIP5 mod-
els clearly overestimate the frequencies of the westerly

© 2015 Royal Meteorological Society Int. J. Climatol. 36: 783–796 (2016)



FUTURE CHANGES OF WIND ENERGY OVER EUROPE IN A CMIP5 ENSEMBLE 787

types, in particular for W+. For example, the frequency
of W+ in IPSL-CM5A-LR and IPSL-CM5A-MR is
nearly twice as much as in ERA-Interim (+4.08% and
+4.03%, respectively). Altogether, 15 (14) of the 22
CMIP5 models show a distinct higher frequency for W
(SW, W, NW). Nevertheless, some other models clearly
underestimate the westerly types. MIROC5 for instance
simulates approximately only half as much CWTs W+ as
observed in ERA-Interim (−2.37%). Four models are iden-
tified, which show a good agreement with ERA-Interim
in terms of the frequencies of the westerly weather
types: CNRM-CM5, EC-EARTH, HadGEM2-CC, and
HadGEM2-ES. CNRM-CM5 reveals an only slight over-
estimation of W+ and SW, W, NW, while the deviation
for W compared to ERA-Interim is nearly zero. A positive
but weak bias is observed for EC-EARTH. HadGEM2-CC
and HadGEM2-ES simulate too few CWTs SW, W, NW,
while the frequencies of W and W+ match the frequencies
in ERA-Interim. A realistic representation of the zonal

flow in the historical runs does not necessarily mean
that the future projections are more reliable than in the
other models. However, for sensitivity studies, this small
ensemble of four GCMs is also analysed separately.

As expected, the overestimation of W and W+ in most
of the models results in a general overestimation of Eout
in the historical runs when compared to Eout as simulated
for ERA-Interim. Figure 1(a) shows the climatological
mean of annual Eout for the reanalysis. Highest Eout
is simulated for the offshore regions of the North and
the Baltic Sea. Over land, a north–south gradient can
be observed, with strong Eout along the coastal areas of
the North and Baltic Sea and low values over Iberia, the
Alps, and Southeast Europe. High magnitudes are also
simulated for the British Isles, while Eout is weaker over
Scandinavia. In particular over Northern Germany and
Poland, the ensemble mean of the historical CMIP5 runs
clearly overestimates Eout, where the annual mean is more
than 103 MWh higher than in ERA-Interim (Figure 1(b)).
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Figure 1. (a) Climatological mean of annual Eout in 103 MWh for ERA-Interim (1979–2010). (b) Difference of ensemble mean annual Eout for the
historical runs of the 22 CMIP5 models (1961–2000) minus annual Eout of ERA-Interim in 103 MWh. The dotted regions indicate grid points, where
at least 18 models overestimate Eout of ERA-Interim. (c) Difference of Eout for winter (December–February) minus Eout for summer (June–August)
for ERA-Interim in 103 MWh. (d) as (c) but for the ensemble mean of the historical runs of the 22 CMIP5 models. The white boxes in (a) indicate

the subdomains Northern Germany (NG), Western Germany (WG), and Northern Poland (NP) for detailed analyses.
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Only in Southeast Europe and over Northern Scandinavia,
the CMIP5 ensemble underestimates Eout. Over most
parts of Western and Central Europe and the Mediter-
ranean, at least 18 models simulate too high values of Eout
(Figure 1(b)). The Eout biases of the historical runs of
the 22 individual models are presented in Figure S1 (Sup-
porting Information). However, despite these biases, the
spatial distributions of mean annual Eout of all individual
models agree well to the spatial pattern of ERA-Interim
(not shown). If the CWT frequencies are bias corrected
towards the frequencies of ERA-Interim, the magnitudes
of annual Eout are also similar to the reanalysis (not
shown; see also Section 3.2).

Because of more windy conditions in winter over
Europe, Eout reveals a distinct seasonality in the reanal-
ysis. Figure 1(c) shows the intra-annual variability
in ERA-Interim, derived as the difference of winter
(December–February) minus summer (June–August)
Eout. Except from some regions in Southern Europe,
Eout in winter exceeds the values for summer. Along

the coastal areas of the North and the Baltic Sea, Eout
for December–February is up to 2× 103 MWh higher
than for June–August. This intra-annual variability is
captured well by the CMIP5 ensemble (Figure 1(d)). As
for ERA-Interim, the ensemble mean Eout for winter is
higher than for the summer season in most parts of Europe.
Aside from the spatial pattern, also the magnitudes of the
intra-annual variability in the ensemble mean agree well
to ERA-Interim (cf. Figure 1(d) and (c)).

3.2. Future changes of mean annual Eout

After evaluating the historical runs of CMIP5, the future
responses of mean annual Eout in the near future decades
(2021–2060) and in the second half of the 21st century
(2061–2100) are analysed. These changes are pre-
sented in Figure 2 for the ensemble mean of the RCP8.5
scenario. A slight increase of Eout in 2021–2060 is
revealed for Germany, Scandinavia, and the Baltic States,
while less Eout is simulated for France, Iberia, and the
Mediterranean region (Figure 2(a)). Nevertheless, future
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Figure 2. (a) Changes of annual Eout in % for the ensemble mean of RCP8.5 (2021–2060) minus the ensemble mean of historical (1961–2000).
Dotted regions indicate grid points, where more than 15 models have the same sign as the ensemble mean. (b) Signal-to-noise ratio (mean change
divided by standard deviation) for RCP8.5 (2021–2060) minus historical (1961–2000). Dotted regions indicate grid points where the changes are

significant at the 95% confidence interval. (c) as (a) but for 2061–2100. (d) as (b) but for 2061–2100.
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responses strongly differ between the individual CMIP5
ensemble members (see Figure S2 for the near future
projections under the RCP8.5 scenario in all individual
models). Accordingly, the signal-to-noise ratio is below
1 for nearly the entire European sector (Figure 2(b)),
i.e. the standard deviation between the responses in the
individual models is higher than the ensemble mean
change. In Southwest Europe, the signal-to-noise ratio
is above 1. In this region, more than 15 [thus meaning
that the changes are probable according to the Intergov-
ernmental Panel on Climate Change (IPCC) definition,
in the following abbreviated as 15+] models show a
decrease of Eout. Higher robustness of the future changes
is found for 2061–2100 (Figure 2(c) and (d)). For large
parts of Germany, Scandinavia, and Eastern Europe, 15+
models simulate higher Eout (see Figure S3 for individual
models), resulting in an ensemble average increase of up
to 4% (Figure 2(c)). However, the low signal-to-noise
ratios again reveal that there is high uncertainty about the
magnitude of the future changes between the individual
ensemble members over this region (Figure 2(d)). As
a result, the positive ensemble mean responses are not
significant. Only the strong decrease over Southwestern
Europe is significant at the 95% confidence level. Similar
results but with slightly weaker trends are found for the
RCP4.5 scenario, indicating that the spatial patterns of
the future changes are only marginally sensitive to the
radiative forcing in the different scenarios (see Figure S4).

In this study, we have used a 2.5 MW wind turbine from
General Electric (2010, hereafter GE2.5) as a benchmark.
As specifications may strongly differ between different
turbines, the question arises if the identified future changes
are sensitive to the choice of turbine. We have additionally
considered the specific power curves of four operating
turbines to estimate future changes of mean annual Eout
for exemplary CMIP5 models with opposite trends. The
characteristics of the turbines differ not only with regard
to their cut-in and cut-out velocity but also in terms of
the maximum energy output and the slopes of their power
curves (not shown). Results indicate that the projected
changes are very similar for all five turbines with respect
to both, the magnitude and the spatial pattern. While some
sensitivity is found for the choice of the cut-out velocity,
the impact of the maximum energy output and the slope
of the power curve on future changes is very small (not
shown). In summary, the choice of the turbine has an only
marginal impact on the estimated future changes. For the
following investigations, we have therefore focused only
on results of GE2.5.

In a sensitivity study, the future responses have been
determined with SDD-simulated Eout using bias-corrected
CWT frequencies. With this aim, the historical CWT fre-
quencies of the 22 individual models have been corrected
towards the respective frequencies of ERA-Interim, and
the resulting empirical factors have then been applied to
the CWT frequencies of the future scenarios. Neverthe-
less, because the CWT biases are systematic in both the
historical runs and the future scenarios, the bias correction
has an only weak impact on the future projections in terms

of the climate change signal itself (see also Figure S5).
The ensemble mean changes only slightly differ, and for
most individual models, the sign of the future trend as
derived from bias-corrected data is the same as for the
uncorrected models. Therefore, we focus primarily on the
original model datasets for the analyses.

In another sensitivity study, the four models with a
realistic representation of the frequencies of the westerly
weather types are considered (see Section 3.1). These four
GCMs show an only weak or in some cases an opposite
response to increased greenhouse gas forcing compared
to other GCMs (Figures S2 and S3). However, no general
sensitivity of the future changes to biases in the histori-
cal runs of the individual models is detectable for Eout
(not shown).

To quantify the spread between the different individual
22 ensemble members particularly over Central Europe,
Figure 3 shows box-whisker plots of the absolute Eout
changes under both scenarios for three exemplary subdo-
mains (cf. Figure 1(a)). The subdomains are located at the
coastal area of the Baltic Sea in Northern Poland (NP), at
the coastal area of the North Sea in Northern Germany
(NG), and in Western Germany (WG), which is charac-
terized by low mountain ranges. For WG, the majority of
the models reveal a positive trend of mean annual Eout
(Figure 3(a)). The median change is positive for both future
periods and scenarios. More than 75% of the models simu-
late more Eout in 2061–2100 under the RCP8.5 scenario.
Nevertheless, a distinct spread between the ensemble
members is observed. For example, the future changes for
the period 2021–2060 under RCP4.5 range from ca. +400
MWh to −200 MWh. A higher uncertainty between the
ensemble members is found for NG (Figure 3(b)). Depend-
ing on the period and the scenario, the median change is
either positive or negative. Again, the individual responses
range from high positive to high negative values for both
future periods and scenarios. For NP, a higher agreement
between the individual models with respect to the sign of
the future changes can be observed (Figure 3(c)). Most of
the models show increasing Eout values for both future
periods. A maximum increase of more than 400 MWh is
simulated for 2061–2100 under RCP8.5. At the same time,
a decrease of −100 MWh is detected within the CMIP5
ensemble for this period and scenario. Also for the near
future decades (2021–2060), a distinct spread between
the ensemble members is observed. In general, changes of
mean annual Eout for the three subdomains are small when
compared to the model-intern variability. For most indi-
vidual GCMs, the future changes for both scenarios and
time periods are below the historical inter-annual variabil-
ity (see black box-whisker plots in Figure 3).

To summarize, an increase of mean annual Eout is found
for the majority of the CMIP5 ensemble under future
climate conditions for Central and Northern Europe (likely
for the Baltic States in 2061–2100 under the RCP8.5
scenario), while decreasing values are found for Southern
Europe (likely for the second half of the 21st century).
As a consequence, positive ensemble mean changes in the
former region and negative, significant changes in the latter
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Figure 3. Box-whisker plots for the changes of mean annual Eout in
103 MWh in the 22 ensemble members for (a) Western Germany, (b)
Northern Germany, and (c) Northern Poland. The whisker indicate the
minimum and maximum changes, the boxes represent the 25th–75th
percentile, and the middle line shows the median. From left to right:
RCP4.5 2021–2060; RCP4.5 2061–2100; RCP8.5 2021–2060; RCP8.5
2061–2100. The black box-whisker plots at top right show ranges of
the model-intern inter-annual variability in the historical runs. For the

location of the subdomains please refer to Figure 1(a).

are simulated. However, large uncertainties between the
ensemble members are detected, including opposite signs
of the future trends in some regions.

The regional ensemble mean changes of annual Eout
can be related to alterations of the large-scale atmospheric
circulation under future climate conditions. Figure 4(a)
and (b) shows the ensemble mean changes of large-scale
MSLP and mean wind speed in the RCP8.5 scenario for
the 18 available GCMs (see Table 1). An average decrease
of MSLP for a band north of 60∘N is found in future
decades (isolines in Figure 4), and the change is stronger
for 2061–2100 than for 2021–2060. These alterations
result in general stronger MSLP gradients over Northern

Europe and along the coastal areas of the North and Baltic
Sea (not shown). As a consequence, higher large-scale
mean wind speeds are detected over the North and Baltic
Sea, Germany, and most parts of Scandinavia and the
Baltic States (shading in Figure 4) particularly for the
late 21st century. Further, an eastward shift of the Azores
high pressure system is detected for both periods, leading
to a weakening of mean wind speeds over Spain and the
Mediterranean. The future changes of both MSLP and
mean wind speed are similar for the RCP4.5 scenario but
with lower magnitudes (not shown). The ensemble mean
responses in large-scale mean wind speed correspond
well to regional changes of Eout (cf. Figure 2). However,
opposite trends are found for parts of the North Sea and
Southeast Europe. Also for the individual models in most
cases shifts in mean wind speed are in line with regional
changes in Eout. On the other hand, discrepancies in the
sign of the trends are found for some limited regions
depending on the model (not shown).

3.3. Intra- and inter-annual changes

Aside from changes of mean wind energy potentials, pos-
sible changes in the intra- and inter-annual variability of
Eout due to climate change are of crucial interest for future
planning. While a decrease of the variability would bene-
fit the wind energy sector due to more regularity of energy
production, a higher variability can potentially lead to a
lower reliability of wind energy as an alternative energy
source.

As shown in Section 3.1, in both the reanalysis and
the historical runs of the CMIP5 models, Eout of the
sample turbine is higher during winter than for summer.
Hence, increased Eout in winter with a simultaneously
decline of summer Eout in the upcoming decades would
result in a higher intra-annual variability. Figure 5(a) and
(b) shows the ensemble mean changes of Eout in win-
ter (December–February) for the RCP8.5 scenario. For
both future periods (2021–2060 and 2061–2100), more
Eout is simulated over Central and Northern Europe, while
a decline can be observed for Southern Europe. These
trends are likely and much stronger for the second half
of the 21st century, where for the majority of Europe 15+
models show the same response as the ensemble means
(Figure 5(b)). Accordingly, over the North Sea and for
some Mediterranean regions, the signal-to-noise ratio is
above 1 (not shown). A very different spatial pattern of
change is detected for the summer season (Figure 5(c) and
(d)). Except from some local regions, particularly over the
Mediterranean, an overall decrease of Eout is simulated for
2021–2060 (more likely than not at most grid points) and,
more robust, for 2061–2100 (likely at most grid points).
As for the changes of mean annual Eout (see Section 3.2),
future trends of seasonal Eout show a large spread between
the individual models, as is illustrated in Figures S6 and S7
for 2021–2060 under the RCP8.5 scenario. For both sce-
narios, the seasonal changes (as shown in Figure 5(a)–(d)
for RCP8.5) result in a strong ensemble mean amplifica-
tion of the intra-annual variability of Eout over large parts
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Figure 4. Changes of MSLP (isolines in hPa) and mean wind speed (shaded areas in m s−1) for the ensemble mean of the RCP8.5 scenario minus
the ensemble mean of the historical (1961–2000) for 2021–2060 (left) and 2061–2100 (right). (a, b) For the whole year, (c, d) for winter, (e, f) for

summer. Only 18 ensemble members are considered (see text).

of Central and Northern Europe (see Figure 5(e) and (f)
for the RCP8.5 scenario). For 2061–2100, the increase
accounts for up to 30% for RCP8.5 (Figure 5(f)). For
both scenarios and periods, this positive trend is proba-
ble, because 15+models simulate an increase for most grid

points in this domain. On the other hand, a decline of the
variability is found for Southern Europe (Figure 5(e) and
(f)). Note that the high percentages in this region are due to
the comparable low intra-annual variability in the ensem-
ble mean for the historical runs (cf. Figure 1(d)).
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Figure 5. Changes of winter (December–February) Eout in % for the ensemble mean of RCP8.5 minus the ensemble mean of historical (1961–2000)
for (a) 2021–2060 and (b) 2061–2100. Dotted regions indicate grid points where more than 15 models have the same sign as the ensemble mean. (c)
as (a), but for summer. (d) as (b), but for summer. Changes of intra-annual variability (December–February minus June–August) of Eout in % for
the ensemble mean of RCP8.5 minus the ensemble mean of historical (1961–2000) for (e) 2021–2060 and (f) 2061–2100. Dotted regions indicate

grid points where more than 15 models show an increasing intra-annual variability.

As for the mean annual changes, future trends of Eout
during winter are in line with shifts of the large-scale
pressure fields and mean wind speeds in the CMIP5 models
(cp. Figure 5(a) and (b) with Figure 4(c) and (d)). The
changes in the large-scale ensemble mean (MSLP and

mean wind speed) are similar to the annual changes (cf.
Figure 4(a) and (b)), but with much stronger trends. Some
discrepancies between changes of Eout and mean wind
speed are revealed for the summer season (cf. Figure 5(c)
and (d) with 4(e) and (f)). For instance, the mean wind
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Figure 6. Box-whisker plots for the changes of inter-annual variability
of Eout in % in the 22 ensemble members for (a) Western Germany,
(b) Northern Germany, and (c) Northern Poland. The whisker indicate
the minimum and maximum changes, the boxes represent the 25th–75th
percentile, and the middle line shows the median. From left to right:
RCP4.5 2021–2060; RCP4.5 2061–2100; RCP8.5 2021–2060; RCP8.5
2061–2100. For the location of the subdomains please refer to Figure

1(a).

speed slightly increases over the North and Baltic Sea,
while Eout at the same time decreases.

Changes of the inter-annual variability of Eout are deter-
mined in terms of the standard deviation of annual Eout for
each individual model, separately. On annual time-scales,
the SDD used in this study is most reliable for Germany
and the surrounding area due to the choice of the central
point being located at 50∘N, 10∘W (see Section 2 and Rey-
ers et al., 2015). Therefore, we focus on the three selected
domains over this area (cf. Figure 1(a)). Figure 6 shows
box-whisker plots as derived from the relative changes
of the inter-annual variability in the 22 individual CMIP5
models over the three subdomains. For both periods and
scenarios, the median changes oscillate around zero and

the trends reveal a large spread from strong positive to
strong negative values. In particular for the second half of
the 21st century, the changes under the RCP8.5 scenario
vary between approximately −40 and +40% in all three
subdomains. These results reflect that there is a high uncer-
tainty about the changes of the inter-annual variability of
Eout in a future climate in the CMIP5 ensemble.

The inter-annual variability in the historical runs of
the 22 individual models as well as the respective future
changes for the three subdomains are depicted in Tables
S1–S3. There is apparently no relationship between
the ability of the models to simulate realistic standard
deviations and the future changes of the variability (see
third–sixth column in Tables S1–S3). Future changes
not only vary between the individual models but also
between the scenarios and periods within single models.
While in some models the sign of the trends are equal for
both periods and scenarios (e.g. MIROC-ESM-CHEM in
WG, Table S1), the trend shows opposite signs in other
models, depending on the scenario and the period (e.g.
HadGEM-CC in NP, Table S3).

We have compared the future changes of the inter-annual
variability of regional Eout in the three subdomains with
changes of the variability of large-scale mean wind speeds
at the corresponding grid points of the 18 available indi-
vidual CMIP5 models (not shown). As for Eout, the future
changes of the variability for wind strongly differ between
the individual models and/or scenarios/periods. For some
of the models, projected changes have the same sign in
2021–2061 and in 2061–2100 under both scenarios (e.g.
MIROC5 and MPI-ESM-MR in WG). On the other hand,
there are also a few models which show opposite trends
for both periods and both scenarios (e.g. GFDL-ESM2G in
WG). Hence, the conclusions for the mean wind speed are
the same as for local Eout: there is a high uncertainty with
respect to future changes of the inter-annual variability for
Central Europe in the CMIP5 ensemble.

4. Summary and discussion

In this study, an SDD method is used to estimate future
changes of regional Eout of a benchmark turbine over
Europe for an ensemble of 22 CMIP5 models. The changes
are determined for near future conditions (2021–2060)
and for the second half of the 21st century (2061–2100)
following the two scenarios RCP4.5 and RCP8.5. The
main findings of the study can be summarized as follows:

(i) The CMIP5 ensemble mean reveal an increase of
mean annual Eout over Northern and Central Europe
and a decrease over the Mediterranean area. Accord-
ing to the IPCC definition, the increase over Northern
and Central Europe is more likely than not, while it
is likely for the Baltic States and 2061–2100. The
decrease over Southern Europe is likely over most of
the area for both periods under the RCP8.5 scenario.
However, there is some uncertainty about these pro-
jections with respect to both the magnitude and the
sign of the changes.
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(ii) More robust results are found in seasonal terms, in
particular for the second half of the 21st century:
increasing Eout is likely for winter and a decline is
likely in summer for most parts of Europe. This leads
to a stronger intra-annual variability of Eout over
most of Europe and thus to a higher irregularity of
wind energy production in future decades.

(iii) Analyses of the future changes of the inter-annual
variability reveal a very high uncertainty between the
models for Central Europe. Hence, it is not possible
to conclude whether the wind energy sector will have
to deal with changes in reliability of wind energy
production in future decades over Central Europe.

The ensemble mean results found in this study are gen-
erally consistent with the findings of most recent analyses
dealing with future changes of wind energy potentials.
An increase of wind energy potentials (particularly in the
winter season) over parts of Northern and Central Europe
was also found by Cradden et al. (2012); Hueging et al.
(2013); Nolan et al. (2012, 2014); and Tobin et al. (2015).
However, this study identified quite wide-range future
changes based on the 22 GCMs, which may in some cases
strongly differ from the ensemble mean response (see also
Tobin et al., 2015). Some models predict a decrease of
wind energy potentials over Northern Europe, which is in
line with the findings of Pryor et al. (2005). On the other
hand, a distinct significant increase of the inter-annual
variability over Central Europe, as found by Hueging
et al. (2013) based on ECHAM5 GCM simulations from
the CMIP3 experiment, is not confirmed by the results
of our multi-model ensemble analysis. This result shows
how important it is to consider multi-model ensembles for
impact studies as in this case for wind energy.

In contrast to other studies using single GCMs, most of
future changes in terms of the ensemble mean analysed
here are not significant. Even in the strong response
during winter, only a few grid points in Southern Europe
are significant at the 95% confidence interval. This is not
only due to the ensemble spread in simulated Eout for the
future decades but also due to the strong differences in
the historical runs of the models, which both contribute
to the ensemble mean changes. This is in line with Tobin
et al. (2015), who concluded from an ensemble of CMIP3
RCM simulations that the changes in wind power potential
will probably remain within a 20% range even in the late
21st century.

In most cases, results from the RCP8.5 scenario have
been discussed, which is the most realistic scenario when
regarding the actually recent emissions. Although the
responses under the RCP4.5 are in some cases clearly
weaker than in RCP8.5, this has no impact on the main
findings of this study with respect to the sign of ensemble
mean changes and only a small influence on the uncer-
tainties. In fact, changes for RCP4.5 and RCP8.5 are very
similar for 2021–2060.

The regional changes of Eout have been related to future
shifts of large-scale mean wind speeds in the models.
Despite a general agreement between responses of both

Eout and wind, in some regions non-consistent trends
are detected. This is not only the case for the ensemble
mean but also for individual models (not shown). Further,
changes of Eout for some models do not necessarily
correspond to changes of the number of cyclones over
the European sector found in Zappa et al. (2013; see their
appendix). There are several possible reasons for these
differences. First, Eout is strongly influenced by local
topographic characteristics. In this study, we have used an
RCM with a horizontal resolution of 0.22∘ for the down-
scaling of Eout, which enables a realistic representation of
coast lines and mountain ranges. Because the resolutions
of the CMIP5 models are much coarser (1.125∘ or coarser,
see Table 1), these regional orographic effects are not
captured in the large-scale fields of mean wind speed.
Further, Eout of the sample turbine not only depends on
mean or maximum wind conditions but also on the full
spectrum of wind speeds in a certain time period. If (as an
idealized example) in a future period only the low and high
percentiles of the wind speed equally change, the trend of
the mean wind speed is small or even nearly zero, while
Eout may strongly increase because of the characteristics
of the turbine (Eout proportional to v cubed).

The SDD approach uses simulated episodes from
ERA-Interim. In case weather conditions occur in the
GCM which feature pressure gradients higher than the
strongest gradient in ERA-Interim, no simulated repre-
sentatives are available. This could potentially be an issue
for the westerly CWTs (SW, W, NW). We have quantified
the number of days per decade with a gradient higher
than 45 hPa per 1000 km (strongest gradient found in
ERA-Interim) for these three CWTs. For 21 of the 22
GCMs, the number of days with these characteristics is
always below 0.5 days per decade (MRI-CGCM3 features
roughly 2.5 days per decade), both for the historical and
the RCP8.5 scenario period. As these days are not removed
from the analysis, but are assigned to the CWTs with the
strongest pressure gradient in ERA-Interim (40–45 hPa
per 1000 km), this issue leads only to negligible differ-
ences. Hence, we conclude that this simplification has
nearly no influence on the analysed future projections and
that the method is therefore appropriate for a multi-model
assessment of future wind energy potentials.

Another simplification in our method is the use of a
constant power law coefficient to obtain wind speeds in
80 m height (see Reyers et al., 2015). Such simplifications
(e.g. Hueging et al., 2013) are necessary due to the large
amount of data which needs to be handled in such a
multi-model approach. Tobin et al. (2015) have addressed
this issue and showed that the use of a dynamic power
law coefficient instead of a constant coefficient has only
a slight impact on the climate change projections of wind
energy potentials based on CMIP3 models. Further, the
resulting biases are mostly systematic in both present
and future periods, and thus cancel each other out when
computing future changes.

A challenge for future works is to identify the reasons
for the uncertainties in the responses of Eout to climate
change in the CMIP5 models. In some recent studies, the

© 2015 Royal Meteorological Society Int. J. Climatol. 36: 783–796 (2016)



FUTURE CHANGES OF WIND ENERGY OVER EUROPE IN A CMIP5 ENSEMBLE 795

uncertainties of projected changes of synoptic variability
or of large-scale flow conditions in CMIP3 and CMIP5
models could be related to uncertainties in the response
of the North Atlantic Ocean (e.g. Woollings et al., 2012;
Haarsma et al., 2013). In terms of local changes of wind
energy potentials in different European regions, a more
detailed analysis is required, e.g. on how regional wind
systems are affected by large-scale changes.

Regarding the findings of this study, we conclude that
future projections of wind energy potentials over Europe
strongly depend on the choice of the GCM. Therefore, it is
advisable to perform multi-model assessments using large
ensembles of GCMs in future works. Future work will
also focus on the CORDEX Europe database to enable a
more detailed analysis of future projections of wind energy
potentials for Europe at the regional scale.
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of the online article:
Table S1. Inter-annual variability (10−3 𝜎 mean−1) of spa-
tial mean of Eout for Western Germany (see Figure 1(a) of
the main text) for ERA-Interim and the 22 models (sec-
ond column), and the future changes in % (third–sixth
column).
Table S2. Inter-annual variability (10−3 𝜎 mean−1) of spa-
tial mean of Eout for Northern Germany (see Figure 1(a)
of the main text) for ERA-Interim and the 22 models (sec-
ond column), and the future changes in % (third–sixth
column).
Table S3. Inter-annual variability (10−3 𝜎 mean−1) of spa-
tial mean of Eout for Northern Poland (see Figure 1(a) of
the main text) for ERA-Interim and the 22 models (sec-
ond column), and the future changes in % (third–sixth
column).

Figure S1. Differences of mean annual Eout for the his-
torical runs of the 22 CMIP5 models (1961–2000) minus
annual Eout of ERA-Interim in 103 MWh.
Figure S2. Changes of annual Eout in % for RCP8.5
(2021–2060) minus the historical runs (1961–2000) for
the 22 CMIP5 models.
Figure S3. Changes of annual Eout in % for RCP8.5
(2061–2100) minus the historical runs (1961–2000) for
the 22 CMIP5 models.
Figure S4. (a) Changes of annual Eout in % for the
ensemble mean of RCP4.5 (2021–2060) minus the ensem-
ble mean of historical (1961–2000). Dotted regions indi-
cate grid points, where more than 15 models have the
same sign as the ensemble mean. (b) Signal-to-noise
ratio (mean change divided by standard deviation) for
RCP4.5 (2021–2060) minus historical (1961–2000). Dot-
ted regions indicate grid points where the changes are sig-
nificant at the 95% confidence interval. (c) as (a) but for
2061–2100. (d) as (b) but for 2061–2100.
Figure S5. (a) Changes of annual Eout in % for the
uncorrected ensemble mean of RCP8.5 (2061–2100)
minus the ensemble mean of historical (1961–2000).
Dotted regions indicate grid points, where more than
15 models have the same sign as the ensemble mean.
(b) Signal-to-noise ratio (mean change divided by stan-
dard deviation) for uncorrected RCP8.5 (2061–2100)
minus historical (1961–2000). Dotted regions indicate
grid points where the changes are significant at the 95%
confidence interval. (c) as (a) but for the bias-corrected
ensemble. (d) as (b) but for the bias-corrected ensemble.
For details, see main text.
Figure S6. Changes of winter (December–February) Eout
in % for RCP8.5 (2021–2060) minus the historical runs
(1961–2000) for the 22 CMIP5 models.
Figure S7. Changes of summer (June–August) Eout in
% for RCP8.5 (2021–2060) minus the historical runs
(1961–2000) for the 22 CMIP5 models.
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Supplementary Material

Tab.S 1: Inter-annual variability (10-3 σ/mean) of spatial mean of Eout for Western Germany
(see Figure 1a of the main text) for ERA-Interim and the 22 models (second column),
and the future changes in % (third-sixth column).

Model Historical RCP4.5
(2021-2060)

RCP4.5
(2061-2100)

RCP8.5
(2021-2060)

RCP8.5
(2061-2100)

ERA-Interim 64.06
ACCESS1.3 74.07 -2.22 -0.90 -0.22 -14.11
CanESM2 74.49 -11.42 2.75 11.15 -17.22
CCSM4 69.04 -12.71 -7.05 13.77 -6.76
CNRM-CM5 60.82 7.61 13.51 9.65 6.34
CSIRO-Mk3.6.0 61.56 -3.86 -11.90 -15.36 -6.63
EC-EARTH 66.05 6.71 15.62 13.83 5.29
FGOALS-g2 50.01 4.37 20.17 6.20 40.17
GFDL-CM3 61.63 27.97 18.73 7.56 -6.49
GFDL-ESM2G 60.68 14.43 11.09 10.65 14.14
GFDL-ESM2M 79.85 -16.75 -12.80 -18.37 -28.26
HadGEM2-CC 67.38 10.11 6.40 -12.49 2.19
HadGEM2-ES 82.03 -4.41 -10.96 1.63 7.12
INM-CM4 65.79 6.56 13.60 -9.61 2.16
IPSL-CM5A-
LR

75.07 -5.39 -8.31 -12.82 11.85

IPSL-CM5A-
MR

78.23 -5.75 1.03 -6.73 31.10

MIROC5 51.17 -1.37 8.16 7.89 -3.86
MIROC-ESM 64.71 2.73 -7.85 10.94 -13.97
MIROC-ESM-
CHEM

79.22 -23.50 -21.86 -24.24 -9.49

MPI-ESM-LR 57.87 27.72 26.56 29.96 30.16
MPI-ESM-MR 67.92 -21.97 -15.56 14.04 -18.03
MRI-CGCM3 65.70 9.59 -6.46 -1.79 2.67
NorESM1-M 76.80 -11.17 1.00 -15.72 -6.41
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Tab.S 2: Inter-annual variability (10-3 σ/mean) of spatial mean of Eout for Northern Germany
(see Figure 1a of the main text) for ERA-Interim and the 22 models (second column),
and the future changes in % (third-sixth column).

Model Historical RCP4.5
(2021-2060)

RCP4.5
(2061-2100)

RCP8.5
(2021-2060)

RCP8.5
(2061-2100)

ERA-Interim 41.13
ACCESS1.3 54.08 -7.46 -6.73 -9.88 -20.29
CanESM2 50.79 -10.66 3.53 6.04 -18.48
CCSM4 49.47 -20.11 -11.46 13.40 -11.40
CNRM-CM5 42.57 1.25 11.20 12.36 0.92
CSIRO-Mk3.6.0 45.15 -5.45 -20.55 -10.46 -10.10
EC-EARTH 45.61 2.75 12.88 10.31 2.81
FGOALS-g2 35.20 2.18 19.10 -4.48 41.06
GFDL-CM3 43.56 16.85 12.56 0.32 -14.02
GFDL-ESM2G 39.25 19.31 20.04 19.93 32.86
GFDL-ESM2M 57.98 -23.40 -13.65 -17.61 -30.68
HadGEM2-CC 49.71 11.19 1.58 -11.00 2.29
HadGEM2-ES 52.66 5.59 1.30 5.87 8.80
INM-CM4 46.92 0.39 12.25 -14.91 5.87
IPSL-CM5A-
LR

52.43 2.47 1.71 -7.94 11.56

IPSL-CM5A-
MR

60.47 -16.70 -10.65 -17.04 15.74

MIROC5 29.31 9.67 26.76 28.86 27.80
MIROC-ESM 47.29 1.17 -13.98 2.28 -18.22
MIROC-ESM-
CHEM

55.15 -22.61 -24.06 -15.94 -5.04

MPI-ESM-LR 36.90 31.17 33.48 33.07 34.10
MPI-ESM-MR 45.03 -13.39 -10.13 18.71 -11.53
MRI-CGCM3* 43.06 11.70 4.60 9.26 6.20
NorESM1-M 53.28 -1.02 -2.75 -5.41 -6.35
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Tab.S 3: Inter-annual variability (10-3 σ/mean) of spatial mean of Eout for Northern Poland (see
Figure 1a of the main text) for ERA-Interim and the 22 models (second column), and
the future changes in % (third-sixth column).

Model Historical RCP4.5
(2021-2060)

RCP4.5
(2061-2100)

RCP8.5
(2021-2060)

RCP8.5
(2061-2100)

ERA-Interim 59.66
ACCESS1.3 73.88 -6.46 -10.14 -4.46 -20.86
CanESM2 67.12 -10.67 7.99 8.02 -10.64
CCSM4 65.76 -8.25 7.34 13.28 -5.07
CNRM-CM5 60.47 -5.89 17.04 2.55 4.27
CSIRO-Mk3.6.0 52.79 2.82 -8.92 -3.48 -5.61
EC-EARTH 65.07 6.75 8.00 -2.11 -10.32
FGOALS-g2 41.41 4.83 28.78 -2.91 52.08
GFDL-CM3 61.85 14.07 13.01 -5.41 -11.53
GFDL-ESM2G 60.04 6.53 7.79 9.14 7.39
GFDL-ESM2M 78.20 -18.21 -14.59 -20.46 -29.20
HadGEM2-CC 68.08 5.31 -5.12 -12.46 2.76
HadGEM2-ES 77.44 2.78 -3.93 -1.40 3.45
INM-CM4 69.48 -2.10 -0.33 -23.15 -9.42
IPSL-CM5A-
LR

71.61 -5.27 -1.42 -15.37 3.79

IPSL-CM5A-
MR

83.84 -19.56 -4.95 -17.48 17.19

MIROC5 52.51 -13.04 7.16 -4.82 2.09
MIROC-ESM 62.11 3.22 -11.13 -3.79 -18.64
MIROC-ESM-
CHEM

75.31 -25.88 -22.97 -21.52 -17.29

MPI-ESM-LR 53.15 35.00 25.64 37.34 19.27
MPI-ESM-MR 59.75 -16.31 -6.94 17.47 -3.27
MRI-CGCM3* 62.52 8.86 4.76 5.53 2.42
NorESM1-M 73.17 0.90 4.72 -4.44 -8.92
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Fig.S 1: Differences of mean annual Eout for the historical runs of the 22 CMIP5 models (1961-
2000) minus annual Eout of ERA-Interim in 103 MWh.
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Fig.S 2: Changes of annual Eout in % for RCP8.5 (2021-2060) minus the historical runs (1961-
2000) for the 22 CMIP5 models.
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Fig.S 3: Changes of annual Eout in % for RCP8.5 (2061-2100) minus the historical runs (1961-
2000) for the 22 CMIP5 models.
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Fig.S 4: (a) Changes of annual Eout in % for the ensemble mean of RCP4.5 (2021-2060) minus
the ensemble mean of historical (1961-2000). Dotted regions indicate grid points, where
more than 15 models have the same sign as the ensemble mean. (b) Signal-to-noise ratio
(mean change divided by standard deviation) for RCP4.5 (2021-2060) minus historical
(1961-2000). Dotted regions indicate grid points where the changes are significant at the
95% confidence interval. (c) as (a) but for 2061-2100. (d) as (b) but for 2061-2100.
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Fig.S 5: (a) Changes of annual Eout in % for the uncorrected ensemble mean of RCP8.5 (2061-
2100) minus the ensemble mean of historical (1961-2000). Dotted regions indicate grid
points, where more than 15 models have the same sign as the ensemble mean. (b) Signal-
to-noise ratio (mean change divided by standard deviation) for uncorrected RCP8.5
(2061-2100) minus historical (1961-2000). Dotted regions indicate grid points where
the changes are significant at the 95% confidence interval. (c) as (a) but for the bias-
corrected ensemble. (d) as (b) but for the bias-corrected ensemble. For details, see main
text.
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Fig.S 6: Changes of winter (December-February) Eout in % for RCP8.5 (2021-2060) minus the
historical runs (1961-2000) for the 22 CMIP5 models.
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Fig.S 7: Changes of summer (June-August) Eout in % for RCP8.5 (2021-2060) minus the historical
runs (1961-2000) for the 22 CMIP5 models.
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Future Changes of Wind Speed and Wind Energy Potentials
in EURO-CORDEX Ensemble Simulations
Julia Moemken1,2 , Mark Reyers2 , Hendrik Feldmann1 , and Joaquim G. Pinto1
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Geophysics and Meteorology, University of Cologne, Cologne, Germany

Abstract Renewable energy production is strongly influenced by weather and climate. Regional
climate projections can be useful to quantify climate change impacts on renewable energies. With this
aim, we analyze future changes of wind speed and wind energy potentials using a multimodel ensemble
of EURO-CORDEX simulations at 12 km and three-hourly resolution, considering nine different global
and regional climate model chains. A comparison between modeled historical 10 m wind speeds and
ERA-Interim-driven evaluation runs for the same regional climate models uncovers some substantial
model biases. The bias-corrected 10 m wind speeds are extrapolated to the hub height of a wind turbine
to derive gridded wind energy output (Eout). The ensemble mean responses project only small changes of
mean annual and winter Eout for large parts of Europe in future decades, but a considerable decrease for
summer Eout. In terms of variability, increasing intraannual and interdaily variabilities are projected for large
parts of northern, central, and eastern Europe. While the ensemble spread is quite large for interdaily
variability, results are more robust for intraannual variability. With respect to wind speed characteristics
relevant for wind energy production, a robust increase in the occurrence of low wind speeds (<3 m/s) is
detected. Due to a combination of higher annual mean Eout and lower intraannual variability, climate change
could be beneficial for regions like Baltic and Aegean Sea. For large parts of Germany, France, and
Iberia, a lower mean Eout and increased intraannual variability may imply larger temporal/spatial
fluctuations in future wind energy production and therefore a more challenging wind energy management.

1. Introduction
The energy supply sector is one of the largest contributors to global greenhouse gas emissions (Bruckner
et al., 2014), which affect the Earth’s climate. In order to control and reduce these emissions, the need for a
larger percentage of renewable energy in the energy mix has increased over the last decades. The global
potential of renewable energies is larger than the global energy demand (Fischedick et al., 2011), but indivi-
dual renewable energy sources are restricted to certain regions and specific weather conditions. In Europe,
wind energy production has emerged as a promising alternative to fossil fuel sources. The total wind power
capacity currently installed in Europe (onshore and offshore) has the potential to cover 11.4% of the
European electricity consumption in a normal wind year (European Wind Energy Association, 2016). To meet
the aim of the European Commission to produce 14.9% of the European Union’s electricity demand in 2020
fromwind energy resources (Moccia et al., 2014), the installation of an effective network of wind power plants
is planned (Manwell et al., 2009; Wilkes et al., 2012). However, the successful integration into the electric
energy system remains the main challenge for decision makers.

Wind energy production itself depends on the weather conditions and thus can be potentially affected by
climate change. Changes, for example, in the large-to-local scale circulation, in the land cover, or changes
in the intensity of storms can affect the near-surface wind conditions (Hueging et al., 2013; Pryor &
Barthelmie, 2010, 2013; Tobin et al., 2016), leading to changing frequencies of calm and/or strong wind
periods. Consequently, this would imply stronger fluctuations of generated electric power. Some previous
studies have been investigating the impact of climate change on the European electricity sector (e.g.,
Dowling, 2013; Golombek et al., 2012; Wenz et al., 2017). At the same time, an increasing number of studies
are addressing the impact of climate change on regional wind speeds and wind energy potentials over
Europe (e.g., Barstad et al., 2012; Hueging et al., 2013; Reyers et al., 2016; Tobin et al., 2015, 2016). Most of
these studies agree on a small increase in wind energy potentials on annual average over northern Europe
and a small decrease over southern Europe under future climate conditions. However, there are differences
in both sign and magnitude of the projected changes. These differences seem to result mostly from the
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choice of the respectivemodels (both global and regional climatemodels, GCM and RCM), including different
initial conditions and model parameterizations, and from different downscaling approaches (e.g., Pryor et al.,
2005, 2012; Reyers et al., 2016; Tobin et al., 2015).

In order to account for the uncertainties arising from the model choice, it is recommended to investigate
a multimodel ensemble. On the global scale, such an ensemble has been made available through the
Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et al., 2012). Reyers et al. (2016) downscaled
22 CMIP5 models to investigate future changes of wind energy potentials over Europe, using a statistical-
dynamical downscaling approach. They found an increase of annual wind energy output (Eout) over northern
and central Europe and a decrease over the Mediterranean region in the ensemble mean. In seasonal terms,
increases of Eout are likely for winter and a decrease is likely in summer for most parts of Europe. In general,
climate change signals are more robust in seasonal terms. However, the single models in the ensemble may
differ strongly from each other (Reyers et al., 2016; cf. their Figures S2 and S3). On the regional scale, the
World Climate Research Program (WCRP) Coordinated Regional Downscaling Experiment (CORDEX, http://
wrcp-cordex.jussieu.fr/; Giorgi et al., 2009) aims at dynamically downscaling the CMIP5 global climate projec-
tions to generate multimodel ensembles of regional climate projections for different regions worldwide. The
European branch within the CORDEX framework (EURO-CORDEX, http://www.euro-cordex.net) provides
regional climate projections for Europe at 50 km (EUR-44) and 12 km (EUR-11) resolution. These simulations
complement coarser resolution data from other projects like PRUDENCE and ENSEMBLES (Hewitt & Griggs,
2004; Van der Linden & Mitchell, 2009). The first studies investigating EURO-CORDEX mainly focused on
the evaluation of present-day climate runs (e.g., Kotlarski et al., 2014; Vautard et al., 2013), while recent studies
also focus on future projections. Jacob et al. (2014) investigated future changes in mean temperature and
precipitation in the EURO-CORDEX ensemble and compared the results to those achieved within the
ENSEMBLES project. They found a good agreement for the overall spatial patterns, while the higher resolution
of EURO-CORDEX influences the change pattern for heavy precipitation compared to ENSEMBLES. Tobin et al.
(2016) investigated the impacts of climate change on the wind power generation potential in an ensemble of
EURO-CORDEX with seven RCMs driven by five GCMs, focusing on a European midcentury wind farm
scenario. They discovered that the annual energy yield of future European wind farms will remain stable
(within ±5%) throughout the 21st century. However, changes at the local scale can reach 15% in magnitude.

The aim of this work is to investigate future changes of wind energy potentials over Europe in a regional mul-
timodel ensemble at a very high temporal resolution, thus allowing insights on several timescales and
addressing the stakeholder needs. We consider an ensemble of nine simulations with GCM-RCM model
chains from EURO-CORDEX following the Representative Concentration Pathway (RCP) 4.5 and RCP8.5 sce-
narios to estimate future changes of wind characteristics relevant for wind energy production. Focus is given
to mean changes in annual and seasonal wind energy production, changes in variability, and for the first time
to changes in the occurrence of wind speeds relevant for wind energy production. We aim at providing an
overview of the ensemble mean responses to climate change as well as quantifying the uncertainties
between the individual models at the regional scale.

The paper is organized as follows. The EURO-CORDEX data sets are described in section 2 (section 2.1),
followed by the description of the bias correction method (section 2.2), the extrapolation method, and the
computation of wind energy potentials (section 2.3). The evaluation of the historical data sets is presented in
section 3. Section 4 focuses on future changes of mean annual wind energy output and changes in variability,
while section 5 focuses on future changes in specific wind speed characteristics. A short summary and discus-
sion of the results concludes this paper in section 6.

2. Data and Methods
2.1. Data

In this study, we use a subset of nine GCM-RCM model chains conducted within the framework of EURO-
CORDEX. The ensemble (Table 1) comprises the two RCMs COSMO-CLM (hereafter CCLM; Rockel et al.,
2008) and RCA4 (Kupiainen et al., 2011; Samuelsson et al., 2011). They are driven by five different GCMs:
CNRM-CM5, EC-EARTH, HadGEM2-ES, MPI-ESM-LR, and IPSL-CM5A-MR (not available for CCLM). We chose this
particular ensemble to investigate both the differences between individual GCMs and the differences
between different RCMs driven with the same GCM. Further, this ensemble enables us to analyze

10.1029/2018JD028473Journal of Geophysical Research: Atmospheres

MOEMKEN ET AL. 6374



subdaily variations, as model output is available in three-hourly temporal resolution. The RCM simulations
have a grid resolution of about 12 km (0.11°), and we use three-hourly 10 m wind speeds from the first
available realization for each model simulation. The future climate projections were carried out for two
emission scenarios, RCP4.5 and RCP8.5 (Meinshausen et al., 2011). The moderate RCP4.5 scenario results in
an additional radiative forcing of 4.5 W/m2 in 2100, while the stronger RCP8.5 scenario corresponds to
8.5 W/m2 anthropogenic radiative forcing in 2100. Data for both scenarios are available for all model
chains, except from EC-EARTH driven CCLM where the RCP8.5 data are missing. Two future periods
(2021–2050 and 2071–2100) are compared to the historical period (1971–2000) to compute future
changes. We use the model congruence/consistency as measure for the robustness and uncertainty of
climate change signals, following the Intergovernmental Panel on Climate Change definition and Jacob
et al. (2014). Thus, changes are defined as (non) likely/robust if (less) more than 66% of the ensemble
members (corresponding to six out of nine members) agree on the sign of change.

To validate historical model simulations, observations or reanalysis data are usually used. Unlike for daily
temperature and precipitation (E-OBS; Haylock et al., 2008), there is no consistent gridded data set of obser-
vations for wind speed or wind energy potentials available over Europe (e.g., Kjellström et al., 2011; Nikulin
et al., 2011). The accessible wind speed data are station-based for every individual country, with diverse qual-
ity and spatial and temporal coverage. This results in a large inhomogeneity of the observed wind field
(Nikulin et al., 2011). Several studies have investigated the performance of both RCMs (CCLM and RCA4, or
its preceding version RCA3) to represent near surface wind speeds, typically focusing on individual countries
with available wind observations. For example, Haas and Pinto (2012), Born et al. (2012), Haas et al. (2014), and
Reyers et al. (2015) evaluated wind speeds and wind gusts from ERA-Interim-driven CCLM simulations against
station-based observational data over Germany. These studies generally agree on a good representation of
wind speed distributions in CCLM compared to observations. Larger discrepancies are primarily found for
coastal regions and areas with complex topography. Since Germany is characterized by a wide range of dif-
ferent landscapes (from lowland coastal to high alpine regions), these results may be regarded as represen-
tative for other European countries (Haas & Pinto, 2012). Kjellström et al. (2005) and Nolan et al. (2012)
evaluated wind gusts and wind speeds derived from RCA3 against observations for Sweden and Ireland,
respectively. They agree on a good model performance in reproducing the wind speed climatology.
However, the RCM tends to underestimate the wind speed and not to capture the high end of the wind
speed distribution. Finally, Tobin et al. (2016) evaluated several EURO-CORDEX simulations (including
RCA4 and CCLM) against ISDLite stations (Smith et al., 2011) and QuikSCAT satellite surface wind speed

Table 1
Overview of the Global and Regional Climate Models Used in This Study, Including Information on the Name, the Ensemble
Member, and the Available Scenarios and Times

GCM GCM member RCM Scenarios Time

CNRM-CM5-LR r1i1p1 RCA4 Historical 1970–2005
RCP4.5, RCP8.5 2006–2100

EC-EARTH r12i1p1 RCA4 Historical 1970–2005
RCP4.5, RCP8.5 2006–2100

ERA-Interim r1i1p1 RCA4 Evaluation 1980–2010
HadGEM2-ES r1i1p1 RCA4 Historical 1970–2005

RCP4.5, RCP8.5 2006–2100
IPSL-CM5A-MR r1i1p1 RCA4 Historical 1970–2005

RCP4.5, RCP8.5 2006–2100
MPI-ESM-LR r1i1p1 RCA4 Historical 1970–2005

RCP4.5, RCP8.5 2006–2100
CNRM-CM5-LR r1i1p1 CCLM4-8-17 Historical 1970–2005

RCP4.5, RCP8.5 2006–2100
EC-EARTH r12i1p1 CCLM4-8-17 Historical 1970–2005

RCP4.5 2006–2100
ERA-Interim r1i1p1 CCLM4-8-17 Evaluation 1989–2008
HadGEM2-ES r1i1p1 CCLM4-8-17 Historical 1970–2005

RCP4.5, RCP8.5 2006–2100
MPI-ESM-LR r1i1p1 CCLM4-8-17 Historical 1970–2005

RCP4.5, RCP8.5 2006–2100
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observations (Ruti et al., 2008). Their results reveal generally good model skills. The lower correlations
between observed and simulated values (especially over land) can mainly be attributed to the spatial scale
differences between point measurements and grid-cell-averaged wind speeds (see also Born et al., 2012). In
spite of these caveats, we conclude that both RCMs are suitable for the analysis of possible wind energy
changes at the regional scale.

Here we compare the historical simulations to the respective ERA-Interim-driven (Dee et al., 2011) evalua-
tion runs from EURO-CORDEX (for CCLM and RCA4). Since this evaluation uses model-specific reference
data, it is only qualitative. That means the reanalysis-driven simulations provide a good representation of
the temporal and spatial variabilities, but not necessarily for the absolute wind speeds. This seems to be
sufficient for the presented study as it considers primarily relative changes rather than absolute changes.
For CCLM, the ERA-Interim evaluation run is only available for 1989–2008, while the RCA4 evaluation run
comprises the years 1981 to 2010. Therefore, we choose different validation periods for RCA4 (historical
1971–2000 versus evaluation 1981–2010) and CCLM (historical 1979–1998 versus evaluation 1989–2008).
For the evaluation, we analyze both the 10 m wind speed climatology and the intraannual variability
(estimated as difference of mean winter wind speeds [December–February] minus mean summer wind
speeds [June–August]).

2.2. Bias Correction

The evaluation of the historical ensemble uncovered some substantial biases for surface wind speeds com-
pared to ERA-Interim (see section 3). Since these biases may influence the climate change signal, in particular
when analyzing wind speed thresholds relevant for wind energy production, a bias correction was applied to
the three-hourly 10 m wind speeds from both the historical and the scenario runs. In a first step, theoretical
Weibull distributions are fitted to the wind speed time series of the historical runs and the ERA-Interim
evaluation runs (following, e.g., Haas et al., 2014). The cumulative distribution function:

F xð Þ ¼ 1� exp � x=αð Þβ
h i

is used to estimate the scale (α) and shape (β) parameters. This results in two pairs of parameters: one pair for
the ERA-Interim evaluation (αeval, βeval) and one pair for the historical simulations (αhist, βhist). In the next step,
a probability mapping is carried out to adjust the simulated wind speeds to the evaluation runs (following
Michelangeli et al., 2009). We obtain a transfer function by equalizing the theoretical Weibull distributions
for evaluation and simulation:

Feval xevalð Þ ¼ Fsim xsim:ð Þ

Finally, the corrected simulations can be calculated:

xcorr ¼ F�1
eval Fsim xsimð Þð Þ ¼ αeval � ln 1� 1� exp xsim=αhist

� �βhist
� �� �� �1

βeval=

Please notice that the historical shape and scale parameters are used for the correction of both historical runs
and future projections, thus maintaining coherence.

2.3. Wind Speed Extrapolation and Calculation of Wind Energy Potentials

The corrected 10 m wind speeds are used for the calculation of gridded Eout of an operational wind turbine.
The calculation consists of two steps.

First, 10 mwind speeds are extrapolated to the average turbine hub height (here 100m) using the power law
(e.g., Hueging et al., 2013; Pryor et al., 2005; Tobin et al., 2015):

U zð Þ
U zrð Þ ¼

z
zr

� �α

where U (z) is the wind speed at height z (e.g., hub height), U (zr) is the reference wind speed at height zr
(usually 10 m), and α is the power law exponent. The α is a highly variable quantity, which is influenced by,
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for example, elevation, temperature, time of day, and various mixing parameters (Manwell et al., 2009).
Several approximations exist for the power law exponent. Early work showed that under certain conditions
(neutral conditions and flat terrain), α is equal to 1/7 (≈0.14; e.g., Schlichting, 1968; in the following referred
to as type A). A more complex approximation was proposed by Justus (1978), where α depends on the refer-
ence height zr and the velocity at reference height U (zr):

α ¼ 0:37� 0:088 ln U zrð Þð Þ
1� 0:088 ln zr=10

� �

(type B). The International Electrotechnical Commission suggests power law exponents of 0.2 for onshore
areas (International Electrotechnical Commission, 2005a) and of 0.14 for offshore sites (International
Electrotechnical Commission, 2005b; type C). The different extrapolation methods influence the wind
speed characteristics at hub height. For example, the approximation by Justus (1978) shifts the wind
probability density functions to higher wind speeds compared to the other mentioned methods
(Figure S1). For this study, we follow the suggestion by the International Electrotechnical Commission,
which was also applied in several other studies (e.g., Hueging et al., 2013; Moemken et al., 2016). Thus,
we use the land-sea mask of the respective RCMs and apply a power law exponent of either 0.14 (water)
or 0.2 (all land types).

In the second step, Eout is calculated from the wind speeds at hub height. The result is gridded three-hourly
Eout in MWh. Eout depends not only on the velocity but also on the characteristics of the wind turbine (e.g.,
cut-in/cut-out velocity, maximum power, and rotor radius). This dependence is taken into account by using
the characteristic power curve of a turbine. In this study, we used the operational wind turbine Nordex
N117 (http://www.nordex-online.com/en/produkte-service/wind-turbines/n117-24-mw.html). The corre-
sponding power curve (see Figure S2) is derived from manufacturer data. Nordex N117 has a cut-in velocity
of 3 m/s and a cut-out velocity of 20 m/s. Its maximum power of 2.4 MW is reached at 11 m/s (rated velocity).
Below the cut-in velocity and above the cut-out velocity, no Eout is produced. Between the rated and the
cut-out velocity, the maximum value of Eout is assumed (2.4 MW). Finally, between the cut-in and the rated
velocity, a fourth degree polynomial function is fitted to the power curve to calculate Eout. Gridded Eout is
calculated by assuming that a wind turbine is placed at every single grid point. With this approach, we can
assess the local potential for wind energy production under current and future climate conditions for every
region in Europe, which may be of great importance for the future deployment of wind farms. However,
this assumption cannot account for the actual wind farm capacity, its changes nor developments in wind
turbine technology. For a sensitivity study, some calculations for the CCLM ensemble were repeated using
a different operational wind turbine. Vestas V112 (https://en.wind-turbine-models.com/turbines/7-vestas-v-
112-onshore) has a cut-in velocity of 3 m/s and is switched off at 25 m/s. The turbine reaches its maximum
power of 3.075 MW at 13 m/s.

3. Comparison of Historical and Reanalysis-Driven EURO-CORDEX Simulations

The historical 10 m wind speeds are compared to ERA-Interim-driven evaluation runs of the respective
RCMs (see also section 2.1). First, we analyze how well the wind climatology for the historical runs agrees
to the ERA-Interim climatology. Figure 1a shows the surface wind climatology as derived from the ERA-
Interim driven RCA4 simulation (hereafter RCA4-ERA) and Figure 1g the respective simulation with CCLM
(hereafter CCLM-ERA). In both experiments, highest wind speeds are simulated for the offshore regions
of North and Baltic Sea and the eastern North Atlantic. Over land, highest wind speeds are found over
the British Isles, and for RCA4-ERA over the Norwegian coast and the Alps. Both simulations agree well
over the oceans. However, wind speeds over land are typically lower (1 to 5 m/s) for CCLM-ERA compared
to RCA4-ERA, which exhibits wind speeds between 3 and 6 m/s in the climatological mean. The largest
differences between the simulations are found in regions with complex topography (e.g., western
Scandinavia, the Alps, and the Pyrenees). Here RCA4-ERA simulates higher wind speeds compared to
the surrounding areas, whereas CCLM-ERA simulates low mean wind speeds. This topography dependency
seems to be specific to the choice of the RCM and not the forcing data, since the historical simulations for
the different GCMs (Figures 1b and 1f for RCA4 and Figures 1h and 1k for CCLM) indicate no bias pattern
related to topography.
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Figure 1. (a) Climatological mean of 10 m wind speed in m/s for ERA-Interim evaluation run of RCA4 (1981–2010). Difference between historical run (1971–2000) of
(b) CNRM-CM5, (c) EC-EARTH, (d) HadGEM2-ES, (e) MPI-ESM-LR, and (f) IPSL-CM5A-MR and ERA-Interim evaluation run in m/s. (g–k) Same as (a)–(e) but for CCLM.
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The GCM-driven historical simulations show substantial biases compared to the ERA-driven evaluation runs:

1. The CNRM-CM5-driven simulations (Figures 1b and 1h) show a general north-south anomaly pattern with
too low wind speeds (up to 1.2 m/s) in the north and a positive bias in the Mediterranean area. For central
Europe there is a small negative bias for both RCMs, which is slightly more pronounced for RCA4.

2. The biases in the simulations forced by EC-EARTH (Figures 1c and 1i) are generally weak, especially over
land (±0.2 m/s).

3. The RCM simulations driven by HadGEM2-ES (Figures 1d and 1j) depict again low biases. These are
negative for large parts of Europe in the RCA4 run and slightly positive for CCLM.

4. The bias pattern for the RCM simulations forced by MPI-ESM-LR (Figures 1e and 1k) shows a slight
underestimation of wind speeds for northern and central Europe for RCA4, while the CCLM depicts an
overestimation in these regions. Both simulations show positive biases for southern Europe.

5. The IPSL-CM5A-MR-driven run (Figure 1f; only available for RCA4) clearly underestimates 10 m wind
speeds over northern Europe (especially over sea) and the Mediterranean Sea, while deviations are
positive over central and southern Europe.

Despite these biases, the spatial distributions of climatological surface winds of the individual models for
both RCMs agree well to the spatial pattern of the evaluation runs (not shown).

Due to windier conditions in winter over Europe, the surface wind speeds reveal a clear seasonality in the
reanalysis data. We use the intraannual variability to analyze this seasonality. Generally, the patterns for
RCA4-ERA and CCLM-ERA (Figures S3a and S3f) look similar, with slightly higher values over the ocean for
CCLM-ERA and over land for RCA4-ERA. For both evaluation runs the surface wind speeds in winter clearly
exceed the values for summer over most parts of Europe, except from some continental regions in southern
Europe. Over sea and along the Norwegian coast, winter minus summer differences reach 5 m/s. Again, the
GCM-driven historical runs show substantial biases. For RCA4, the ensemble mean clearly overestimates the
intraannual variability over large parts of Europe (not shown). Negative anomalies are only visible over some
parts of northern and southern Europe. The model biases of the intraannual variability strongly differ
between the individual RCA4 simulations (Figures S3b–S3f), resulting in nonrobust differences for the entire
European continent (not shown). The ensemble mean of the historical runs for CCLM shows an underestima-
tion of intraannual variability over northern Europe (except from North and Baltic Sea) and an overestimation
for central and southern Europe. As for RCA4, differences between the individual GCM-RCM chains are also
large (Figures S3h–S3k).

To summarize, the historical runs show substantial biases compared to the ERA-Interim evaluation run. These
biases result from both the driving GCM and the RCM, but differences between the GCMs are typically larger
than those between the RCMs except for coastal areas and regions with complex topography. Theymay influ-
ence the climate change signal, in particular when investigating wind speed thresholds, which are relevant
for the wind energy production. We therefore applied a bias correction to the three-hourly 10 m wind speeds
from both the historical and the scenario runs (see section 2.2), before analyzing wind speed and Eout in a
future climate.

4. Future Changes of Wind Energy Output

After evaluating the historical EURO-CORDEX ensemble, the future responses of Eout are analyzed on differ-
ent timescales. First, we investigate future changes of mean annual and mean seasonal Eout, which could be
relevant for the planning of future wind parks. Further, we analyze changes in the variability of Eout, ranging
from interannual to interdaily timescales. These timescales are of high importance for the operation of the
energy system and the integration of wind energy into the energy system. While interdaily timescales are
relevant for the power system management (e.g., occurrence of ramping events and grid balancing) and
energy trading, intraannual to interannual timescales are important for resource assessments and the
planning of backup and storage facilities.

4.1. Changes in Mean Annual and Seasonal Eout

The changes of mean annual Eout are presented in Figure 2 for the ensemble mean projections of RCA4
(upper row) and CCLM (middle row). Changes are shown for both future scenarios (RCP4.5 and RCP8.5)
and both future periods (2021–2050 and 2071–2100). In addition, Figure 2 depicts the number of models

10.1029/2018JD028473Journal of Geophysical Research: Atmospheres

MOEMKEN ET AL. 6379



from the grand ensemble (all model chains) that agree on the sign of change (lower row). The RCA4
ensemble reveals a slight decrease of Eout (<5%) over Scandinavia and the Iberian Peninsula, and a slight
increase for the Baltic Sea and the Aegean region for 2021–2050 in RCP4.5. For most of the investigation
area, changes range between �2% and +2% (Figure 2a). Similar patterns can be found for the CCLM
ensemble (Figure 2e). For RCP8.5 (Figures 2b and 2f), future responses exhibit higher magnitudes than for
RCP4.5, while the climate change pattern is similar. The climate change signal is stronger and more robust
for the end of the century (2071–2100) in both ensembles for RCP4.5 (Figures 2c and 2g), where reduced
Eout (up to 8%) is simulated for large parts of Europe. Only for the Aegean region, the Black Sea, and the
Baltic Sea, Eout is projected to increase. For southern Europe, the British Isles, and parts of Scandinavia, six
or more ensemble members (meaning 66% for RCP4.5, respectively, 75% for RCP8.5) agree on the sign of
change (Figures 2k and 2l). Nevertheless, differences between the individual models can be large for certain
regions (cf. Figure S4). While the CNRM-CM5-driven simulations predict a small increase of Eout for central
Europe, northern France, the British Isles, and Scandinavia, EC-EARTH, HadGEM2-ES, and IPSL-CM5A-MR pro-
ject a decrease of Eout over large parts of Europe. On the other hand, all downscaled GCMs agree on increas-
ing Eout over the Baltic Sea and Aegean region, with only different magnitudes of change. For RCP8.5, the
decrease of Eout over the Iberian Peninsula and the Mediterranean region reaches up to 14% (Figures 2d
and 2h). The individual GCMs contributing to the ensemble mean differ more distinct from each other than
for RCP4.5 (cf. Figure S5). For example, the MPI-ESM-LR-driven simulations show a strong increase of Eout (up
to 10%) for central and eastern Europe, while EC-EARTH and HadGEM2-ES show decreasing Eout for the same
regions. This results in nonrobust signals in these regions (see also Figure 6a). It is obvious that the differences

Figure 2. Changes of mean annual Eout in % for the ensemble mean of (a) RCP4.5 (2021–2050), (b) RCP8.5 (2021–2050), (c) RCP4.5 (2071–2100), and (d) RCP8.5
(2071–2100) minus the ensemble mean of historical (1971–2000) for RCA4. (e–h) Same as (a)–(d) but for CCLM. Number of model chains (from the grand ensem-
ble) that agree on the sign of change for mean annual Eout for (i) RCP4.5 (2021–2050), (j) RCP8.5 (2021–2050), (k) RCP4.5 (2071–2100), and (l) RCP8.5 (2071–2100).
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Figure 3. Changes of seasonal Eout in % for the ensemble mean of RCP4.5 (2071–2100) minus the ensemble mean of historical (1971–2000) for RCA4 for (a) winter
(December–February) and (b) summer (June–August). (c and d) Same as (a) and (b) but for CCLM. (e and f) Same as (a) and (b) but for RCP8.5 (2071–2100).
(g and h) Same as (e) and (f) but for CCLM.
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between the ensemble means of the two RCMs are highest for 2071–2100 of the RCP8.5 scenario (compare
Figures 2d and 2h). This is due to the different ensemble sizes (three GCMs for CCLM; five GCMs for RCA4).

Next we analyze future changes for winter and summer Eout since opposite trends in the two seasons
would lead to a higher intraannual variability of Eout and therefore to a higher irregularity of wind energy
production within the year. On the other hand, similar future trends in winter and summer would benefit
the wind energy sector due to a higher regularity of wind energy production throughout the year. Figure 3
shows the changes in mean winter (December–February) and summer (June–August) Eout for the ensem-
ble mean of RCA4 and CCLM, for the end of the century (2071–2100) and in both scenarios. Both ensembles
reveal different spatial change patterns for winter and summer. For the RCA4 ensemble, increasing Eout is
simulated for the North Atlantic, central Europe (including France, parts of Germany, and Poland), and parts
of Scandinavia and the Baltic region during winter (Figure 3a). A decrease of Eout in winter can be found for
southern Europe and most parts of eastern Europe. Changes range from �15% to +8%. The change pattern
for summer reveals a strong decrease of Eout for central Europe, the Mediterranean Sea, the British Isles,
and large parts of Scandinavia (Figure 3b). The Aegean region, the Baltic Sea, and parts of southern
Europe are projected to experience an increase of Eout in summer in future decades. In general, changes
for RCP8.5 are stronger than for RCP4.5. The future responses of the individual GCMs differ again strongly
from each other (see Figure S6 for RCP8.5). For winter, three of the five model chains (CNRM-CM5, MPI-
ESM-LR, and IPSL-CM5A-MR) agree on increasing Eout over central and western Europe, while the
HadGEM2-ES-driven simulation projects decreasing Eout of up to 20% for the whole continent. For sum-
mer the agreement is better, at least for central Europe, the British Isles, and the Mediterranean region.
The future changes simulated with the CCLM ensemble show similar change patterns but with higher
magnitudes, especially in regions with complex topography. Differences to RCA4 can be found for winter
over eastern Europe, where Eout is projected to increase in CCLM. In general, changes range from �20% to
+20% with higher values for RCP8.5. Again, the differences between the two ensembles seem to result
primarily from the different ensemble sizes (cf. Figure S6).

4.2. Changes in Variability

For both ensembles and future scenarios, the seasonal changes of Eout (as shown in Figure 3) lead to an
ensemble mean amplification of the intraannual variability of Eout (calculated as mean winter minus mean
summer Eout) in future decades over large parts of the North Atlantic region and Europe, namely, central
Europe and parts of Scandinavia (see Figures 4 and S7, top row). This amplification is strongest for RCP8.5
and the end of the century. On the other hand, a decrease in variability can be found for the Iberian
Peninsula, the Baltic and Black Seas, and parts of eastern Europe. Again, changes are strongest for
2071–2100 and RCP8.5. The agreement between the two ensembles is very good, with similar spatial patterns
and magnitude (compare Figures 4 and S7).

The interannual variability is simply calculated as the standard deviation of annual Eout values in a given
period. Changes in the interannual variability are depicted in Figure 4 (middle row) for RCA4 and
Figure S7 for CCLM, for both scenarios and both future periods. The change pattern is less distinct than
that of the intraannual variability. While some regions (e.g., Germany, northern France, and eastern North
Atlantic) experience an increase in interannual variability of up to 30%, other regions like the Iberian
Peninsula or the Black Sea show a decreasing variability. The spatial pattern is somewhat messy and less
coherent between periods and scenarios. Nevertheless, climate change signals are quite robust for certain
regions (e.g., Germany, Iberian Peninsula, or Scandinavia), especially for the end of the 21st century (see
also Figure 6e).

A clearer pattern of future changes is revealed for the interdaily variability of Eout (standard deviation of daily
integrated three-hourly Eout values). Figure 4 shows the future projections for the RCA4 and Figure S7 for the
CCLM ensemble mean, for both scenarios and periods. An increase of variability is simulated for central
Europe, the North Atlantic, Scandinavia, and large parts of eastern Europe. While these changes are rather
small for midcentury, this increase can reach 5% in 2071–2100. A declining variability is projected for the
Iberian Peninsula and the countries surrounding the Mediterranean Sea. Here changes of more than 8%
are projected for the end of the century. Interestingly, the changes of interdaily variability agree well for both
the RCA4 and CCLM ensemble, and thus seem to be quite robust (see also Figure 6f).
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5. Future Changes in Specific Wind Speed Characteristics

The impact of the future changes on wind speed characteristics relevant for wind energy production is now
investigated in details. We analyze the occurrence of wind speeds at 100 m (turbine hub height) that are
below the cut-in velocity, above the cut-out velocity, and between rated and cut-out velocity (range with
maximum Eout) of the chosen wind turbine. Figure 5 shows the projected changes in the number of
three-hourly dates per year, which fulfill these criteria. Depicted are the ensemble mean changes of RCA4
and CCLM for RCP8.5 and the end of the century. Both ensembles simulate an increase of three-hourly dates
per year with wind speeds below 3 m/s (cut-in velocity for N117; see section 2.3) for large parts of Europe.
Over some regions, for example, in the Mediterranean or in Scandinavia, this increase accounts for up to
140 dates per year (about 5%), particularly in the CCLM ensemble. Only for the Baltic Sea, the Black Sea (only
CCLM), and the Aegean region a decrease is detected (Figures 5a and 5d). On the other hand, the number of
three-hourly dates with wind speeds above 20 m/s (cut-out for N117) is projected to decline over the
Mediterranean Sea and the North Atlantic, while the number will remain stable (±1%) for most of continental
Europe. A strong decrease is projected for 100 m winds between 11 and 20 m/s over the North Atlantic and
surrounding coastal areas, the Mediterranean region, and the Iberian Peninsula. An increase is only simulated
for the Baltic Sea and the Aegean, while the number of three-hourly dates per year is nearly unchanged for
central and eastern Europe. Again, the signals shown in Figure 5 are quite robust between the two RCM
ensembles (see also Figures 6g and 6i). The seasonal trends (cf. Figure S8 for the RCA4 ensemble) show similar
spatial patterns to the annual trends (Figure 5). However, the magnitudes are typically higher, and small
differences can be found between the individual seasons. For example, the increase of three-hourly dates

Figure 4. Changes of intraannual variability of Eout in GWh for the ensemble mean of (a) RCP4.5 (2021–2050), (b) RCP8.5 (2021–2050), (c) RCP4.5 (2071–2100), and
(d) RCP8.5 (2071–2100) minus the ensemble mean of historical (1971–2000) for RCA4. (e–h) Same as (a)–(d) but for changes in interannual variability of
Eout in %. (i–l) Same as (a)–(d) but for changes in interdaily variability of Eout in %.

10.1029/2018JD028473Journal of Geophysical Research: Atmospheres

MOEMKEN ET AL. 6383



with wind speeds below 3 m/s over central Europe and the decrease of the rated velocity over the North
Atlantic are strongest for summer. As these presented results imply more periods with calm conditions
and less periods with optimal wind speeds for wind energy production, the projected changes would impede
the operation of the wind energy system in a future climate.

6. Summary and Discussion

In this study, we used an ensemble of nine GCM-RCM model chains from EURO-CORDEX at 12 km resolu-
tion to estimate future changes of wind speed and wind energy output at the regional scale. The poten-
tial changes were estimated for the near future decades (2021–2050) and the end of the 21st century
(2071–2100) using two climate change scenarios, RCP4.5 and RCP8.5. The main results of this study are
summarized in the following and in Figure 6, which displays the coherence of climate change signals
for the whole ensemble:

1. The historical EURO-CORDEX runs show substantial biases in 10 m wind speed. These biases depend pri-
marily on the choice of the driving GCM. The choice of the RCM also plays a role for the annual mean and
diurnal cycle biases, while differences between the RCMs are small regarding the intraannual variability. A
bias correction was performed before computing future climate change signals.

2. The ensemble mean projections reveal a decrease of average annual Eout for most of Europe in future
decades, while increases are found for the Baltic and Aegean Seas. Changes are generally more pro-
nounced for the end of the century and the RCP8.5 scenario. The climate change signals are robust (in
the sense that six or more model chains agree on the sign of change; see also section 2.1) for most parts
of southern Europe, and parts of the Aegean and the Baltic region (see Figure 6a). On the other hand, the
ensemble spread can be quite large for central and eastern Europe and parts of Scandinavia, where
signals are not robust.

3. In seasonal terms, a general decrease of Eout is identified for the summer months, particularly for central
Europe, while an increase is detected for western and central continental Europe for the winter season.

Figure 5. Changes in the number of three-hourly dates per year with (a) 100 m wind speed <3 m/s, (b) 11 m/s <100 m wind speed <20 m/s, and (c) 100 m wind
speed >20 m/s for the ensemble mean of RCP8.5 (2071–2100) minus the ensemble mean of historical (1971–2000) for RCA4. (d–f) Same as (a)–(c) but for CCLM.
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This increase in winter is not robust, whereas most model chains agree on a simultaneous decrease for
southern Europe (Figure 6b). In general, the agreement between models is better for summer (cp.
Figures 6b and 6c), where climate change signals are robust for nearly all of Europe.

4. In terms of variability, both intraannual and interdaily variability of Eout are projected to increase over
northern, central, and parts of eastern Europe in future decades, leading to a higher irregularity of wind
energy production. The climate change signal for interdaily variability is robust for the British Isles,
Scandinavia, and most of continental southern Europe (Figure 6f), while climate change signals for
intraannual variability are robust everywhere except eastern Europe, the Mediterranean Sea, and parts
of the North Sea (Figure 6d).

Figure 6. Changes for the grand ensemble mean (all model chains) of RCP8.5 for 2071–2100 for (a) mean annual Eout in %, (b) mean winter Eout in %, (c) mean
summer Eout in %, (d) intraannual variability of Eout in GWh, (e) interannual variability of Eout in %, and (f) interdaily variability of Eout in %; number of three-
hourly dates per year with (g) 100 mwind speed<3m/s, (h) 11m/s<100mwind speed<20m/s, and (i) 100 mwind speed>20m/s. Depicted are only changes with
six or more ensemble members agreeing on the sign of change.
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5. Finally, the RCM ensembles simulate a higher occurrence of 100 m wind speeds below the cut-in velo-
city (here 3 m/s) for all of Europe, except the Baltic Sea. This increase is robust for large parts of Europe
(Figure 6g). At the same time, a robust decrease of 100 m wind speeds between 11 and 20 m/s is
simulated for the North Atlantic, the North Sea, the Mediterranean Sea, and surrounding coastal areas
(Figure 6h).

The climate change signals identified in the analyzed GCM-RCM chains are generally weaker compared to
some previous studies (e.g., Hueging et al., 2013; Reyers et al., 2016). Moreover, for mean annual Eout the
ensemble mean changes have different signs of change for northern and central Europe. On the other hand,
changes in mean annual Eout show similar magnitudes and signs as changes in mean wind power generation
potential as identified by Tobin et al. (2016) in a different subset of EURO-CORDEX simulations. The differences
to the study of Reyers et al. (2016) seem to be primarily attributed to the choice of GCMs. Reyers et al. (2016)
examined 22 CMIP5 models, and the GCMs used in this study are among the models with the weakest signals
(cf. their Figures S2 and S3). Further differences may arise from the different downscaling methods and/or
assumptions regarding the wind profile in the boundary layer. For example, Reyers et al. (2016) used a
statistical-dynamical approach for a large multimodel ensemble, while in the present study we have analyzed
results from a purely dynamical downscaling approach and a smaller data set (for EURO-CORDEX only simula-
tions with boundary conditions from five GCMs are available). However, the presented approach enables the
estimation of climate change signals on a very high temporal resolution like interdaily timescales, thus giving
novel insights in timescales, which could not be addressed with the statistical-dynamical downscaling
approach. Tobin et al. (2016) also performed similar investigations (e.g., changes in mean values and variabil-
ity) for a 2050 wind farm scenario, which assumed an increase in installed capacity over many European
regions by 100–300%, depending on the energy policy projections (see also Vautard et al., 2014). Their results
show smaller magnitudes of climate change signals for mean annual and mean seasonal energy yield and
similar magnitudes for variability compared to Eout values from our simplified approach, where a wind
turbine is placed at every model grid point. However, the signs of climate change signals can differ for some
regions like France (for mean annual energy yield) or Germany and Benelux (for intraannual variability).

Tobin et al. (2016) concluded that the climate change impacts on wind energy generation should be small
compared to the expected growth in installed capacity and improvements in technology (e.g., increasing
hub heights and rotor diameters).

Generally, we could demonstrate that mean changes of annual wind speed and Eout are small compared to
future changes of the interannual and intraannual variabilities, which agree with the results of, for example,
Reyers et al. (2016) and Tobin et al. (2016). In particular, an enhancement of the intraannual variability would
affect a wind-driven energy system in a future climate due to a higher irregularity of wind energy production
within a year. The combined changes of mean annual Eout and intraannual variability (Figures 2 and 4) show
areas where future changes are generally positive for the wind energy sector (e.g., Baltic Sea, Aegean Sea;
with higher mean Eout and lower seasonal variability). For other areas, changes are mostly negative (e.g.,
most land areas in France, Germany, and the British Isles; with lower mean Eout and an increasing seasonal
variability). Further, our results indicate a strong increase of situations with low wind speeds, which are below
the cut-in velocity of typical wind turbines. This could result in enhanced backup and storage needs and
therefore impede the operation of a wind-driven energy system (Wohland et al., 2017).

In line with previous studies like Reyers et al. (2016) and Tobin et al. (2016), there is some uncertainty in
future projections on the impact of climate change on wind energy production arising from the choice of
the model. In contrast to Tobin et al. (2016), this model uncertainty is more pronounced between the indi-
vidual GCMs than between the different RCMs. It is identified here for interannual and intraannual variabil-
ities and mean annual Eout, while we found rather robust results for interdaily variability as well as mean
seasonal Eout (see also Tobin et al., 2016). Moreover, the projected changes in the occurrence of certain
wind speeds relevant for wind energy production are quite robust, where often six or more of the nine
GCM-RCM chains agree on the sign of change. However, these results depend strongly on the region.
While the Baltic and Aegean area show robust results for nearly all analyses, uncertainties are much more
pronounced for central and eastern Europe.

In a sensitivity study, some calculations for the CCLM ensemble were repeated using a different operational
wind turbine (see section 2.3) to investigate in how far the climate change signal is sensitive to the choice of
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turbine. For example, we estimated the future responses for mean annual Eout and intraannual variability
(see Figure S9) for the RCP8.5 scenario. For both parameters, results are very similar for both turbines with
respect to magnitude and spatial pattern. So we conclude that the choice of the turbine has a negligible
impact on the projected future changes.

Our results for the regional scale can be related to changes in the large-scale atmospheric conditions in future
decades. Several studies agree on the general changes in the mean sea level pressure and circulation pat-
terns over Europe and the North Atlantic (e.g., Woollings et al., 2012; Zappa et al., 2015). Winter storminess
is projected to increase over western Europe (e.g., Feser et al., 2015; Ulbrich et al., 2008) due to an extension
of the eddy-driven jet stream toward the British Isles and an intensification of cyclones during winter. This
leads to enhanced wind speeds over central and western Europe (cf. Donat et al., 2010; Pinto et al., 2012).
For summer, decreasing wind speeds are projected, especially over southern Europe (e.g., Hueging et al.,
2013; Reyers et al., 2015). This leads to an amplification of intraannual variability for wind speed and wind
energy production as was also detected in our study.

For future work, wind power generation statistics should be analyzed by taking the wind farm distribution
and installed power into account (e.g., Cannon et al., 2015; Drew et al., 2015; Tobin et al., 2016), also with a
stronger focus on subdaily variability. Additionally, focus should be given to the impact of the projected
changes of Eout on the energy system at the European scale (cf. Wohland et al., 2017), also taking projected
changes in other renewable energy sources like solar (Jerez et al., 2015) into account toward an optimal
energy mix. This is of high importance for a successful integration of wind energy into the existing energy
system and an adaptation of the energy system to climate change.
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Figure S1: Distribution of 100m-wind speed for ERA-Interim driven RCA4 (1981-2010) for the grid point 

 nearest to (a) Frankfurt, (b) London, and (c) Rome. Wind speeds are extrapolated from 10m-wind  

speeds using extrapolation approximations (see section 2.3): type A (blue), type B (red) and type C  

(green). For details, please refer to section 2.3 of the main document. 

 

 

 

 

 

Figure S2: Characteristic power curves for the wind turbines Nordex N117 (green) and Vestas V112 (blue) as 

derived from manufacturer data. For more details please refer to the main document. 
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Figure S3: (a) Intra-annual variability of 10m-wind speed for ERA-Interim driven RCA4 (1981-2010) in m/s. 

(b) – (f) Difference of intra-annual variability of 10m-wind speed for the historical run of (b) CNRM-

CM5, (c) EC-EARTH, (d) HadGEM2-ES, (e) MPI-ESM-LR, and (f) IPSL-CM5A-MR driven RCA4 

(1971-2000) minus intra-annual variability of 10m-wind speed for ERA-Interim in m/s. (g) – (k) as (a) 

– (e), but for CCLM. 

 



 4 

 

Figure S4: Changes of mean annual Eout in % for RCP4.5 (2071-2100) minus historical (1971-2000) for (a) 

CNRM-CM5, (b) HadGEM2-ES, (c) MPI-ESM-LR, (d) EC-EARTH, and (e) IPSL-CM5A-MR driven 

RCA4. (f) – (i) as (a) – (d), but for CCLM. 
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Figure S5: Changes of mean annual Eout in % for RCP8.5 (2071-2100) minus historical (1971-2000) for (a) 

CNRM-CM5, (b) HadGEM2-ES, (c) MPI-ESM-LR, (d) EC-EARTH, and (e) IPSL-CM5A-MR driven 

RCA4. (f) – (i) as (a) – (d), but for CCLM. 
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Figure S6: Changes of winter Eout in % for RCP8.5 (2071-2100) minus historical (1971-2000) for (a) CNRM-

CM5, (b) HadGEM2-ES, (c) MPI-ESM-LR, (d) EC-EARTH, and (e) IPSL-CM5A-MR driven RCA4. 

(f) – (j) as (a) – (e), but for changes in summer Eout. (k) – (p) as (a) – (j), but for CCLM. 
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Figure S7: Changes of intra-annual variability of Eout in GWh for the ensemble mean of  (a) RCP4.5 (2021-

2050), (b) RCP8.5 (2021-2050), (c) RCP4.5 (2071-2100), (d) RCP8.5 (2071-2100) minus the ensemble 

mean of historical (1971-2000) for CCLM. (e) – (h) as (a) – (d), but for changes in inter-annual 

variability of Eout in %. (i) – (l) as (a) – (d), but for changes in inter-daily variability of Eout in %. 
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Figure S8: Changes in the number of three-hourly dates per winter (DJF) with (a) 100m-wind speed < 3 m/s, (b) 

11 m/s < 100m-wind speed < 20 m/s, (c) 100m-wind speed > 20 m/s for the ensemble mean of RCP8.5 

(2071-2100) minus the ensemble mean of historical (1971-2000) for RCA4. (d) – (f) as (a) – (c), but for 

spring (MAM). (g) – (i) as (a) – (c), but for summer (JJA). (j) – (l) as (a) – (c), but for autumn (SON). 
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Figure S9: Changes of mean annual Eout in % for the ensemble mean of (a) RCP8.5 (2021-2050), and (b) 

RCP8.5 (2071-2100) minus the ensemble mean of historical (1971-2000) for CCLM for wind turbine 

N117. Changes of intra-annual variability of Eout in GWh for the ensemble mean of (a) RCP8.5 (2021-

2050), and (b) RCP8.5 (2071-2100) minus the ensemble mean of historical (1971-2000) for CCLM for 

wind turbine N117. (e) – (h) as (a) – (d), but for the wind turbine V112. For details on the different 

turbines, please refer to Section 2.3 in the main text. 



6 Impact of climate change on
backup energy and storage needs
in wind-dominated power systems
in Europe

Based on the results of Moemken et al. (2018) and Reyers et al. (2016) and in cooperation
with colleagues from Forschungszentrum Jülich, an advanced impact study was performed.
This study deals with the influence of climate change on the temporal characteristics of
wind power generation and the need for backup and storage infrastructures in a wind-
dominated European power system. The results are published as Weber et al. (2018) in
PLOS ONE. In this chapter, the analysed data and the main results are presented (see
Appendix for full publication).

The operation of future renewable power systems with large contributions of wind is deter-
mined by weather and climate. Hence, the generated electric power is strongly fluctuating
on different timescales, which is crucial for system operation. Backup and storage in-
frastructures are needed to guarantee supply also during periods of low wind generation.
Weber et al. (2018) analysed how potential future changes of wind energy potentials in
Europe as e.g. identified by Moemken et al. (2018) and Reyers et al. (2016) could im-
pact a future renewable energy system, focussing on backup and storage needs. With this
aim, a high-resolution ensemble of five GCM-RCM model chains from EURO-CORDEX
is investigated. This ensemble consists of five different GCMs, which are dynamically
downscaled with the RCM RCA4. It is thus a subsample of the nine GCM-RCM model
chains considered in Moemken et al. (2018). Potential future changes are estimated for
two future periods, 2030-2060 (mid-century) and 2070-2100 (end of century), considering
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a strong (RCP8.5) and a medium emission scenario (RCP4.5). The analysis is based on
near-surface wind speed at 0.11° horizontal and three-hourly temporal resolution. A char-
acterisation based on circulation weather types of the large-scale atmospheric circulation
over Central Europe in a large CMIP5 ensemble complements the results.

Backup needs are projected to increase for most parts of Central Europe (including Ger-
many, Poland, Czech Republic, Switzerland, Austria, Belgium and the Netherlands),
France, the British Isles and Scandinavia in the RCP8.5 scenario by the ensemble mean.
This increase can reach up to 15% for the end of the century (Figure 6.1). At the same
time, decreasing backup needs are simulated for the Iberian Peninsula, Greece and Croatia.
Similar results are observed for the mid-century period and in the RCP4.5, but climate
change signals are less pronounced and often not robust.

Fig. 6.1: Relative change of the average backup energy needs for 2070-2100 compared to 1970-2000
for 29 European countries, for two values of the storage capacity Smax and RCP8.5. The colours
depict the ensemble mean response and the hatching indicates the robustness of the results. No
hatching: 5/5 models agree on the sign of change, striped: 4/5 models agree, crossbred: 3/5 models
agree. Source: Weber et al. (2018), Figure 2.
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Furthermore, the same tendencies with slightly different magnitudes are detected for dif-
ferent storage sizes (cf. Figure 6.1c and d), different shares of renewables in the power
system and a different siting of wind turbines (not shown).
Two processes are identified as main reasons for the increase in backup needs: an increased
likelihood for long periods with low wind energy generation and a higher seasonal vari-
ability of wind speed. The duration distribution of periods with low wind power output is
projected to shift to longer durations for large parts of Central Europe, France, the British
Isles and Scandinavia, and to shorter durations for the Iberian Peninsula for the end of
the century (Figure 6.2). For Eastern Europe, Italy, Greece and Norway, climate change
signals are weaker and not robust. This part of the study is complemented with results
from Reyers et al. (2016, chapter 4). The large CMIP5 ensemble confirms the shift to
longer periods with low wind power generation. 19 out of 22 models simulate an increase
in the mean duration of periods with low pressure gradients, which correspond to lower
wind power yields in Central Europe.

Fig. 6.2: Relative change of the duration assigned to the 95% quantile for 2070-2100 compared to
1970-2000 for 29 European countries and RCP8.5. The colours depict the ensemble mean response
and the hatching indicates the robustness of the results. No hatching: 5/5 models agree on the sign
of change, striped: 4/5 models agree, crossbred: 3/5 models agree. Source: Weber et al. (2018),
Figure 5b.

At the same time, the winter-summer ratio of the wind power yield is simulated to increase
for Central and North-western Europe and to decrease for the Iberian Peninsula, Greece
and Croatia (Figure 6.3). In Northern Europe, climate change signals are small and not
robust, thus here the increase of backup needs is primarily associated with a longer duration
of low wind power generation.
Weber et al. (2018) showed that climate change is likely to impede the system integration
of wind energy. The need for large backup and storage facilities increases in future decades
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Fig. 6.3: Relative change of the winter-summer ratio of the average wind power yield for 2070-2100
compared to 1970-2000 for 29 European countries and RCP8.5. The colours depict the ensemble
mean response and the hatching indicates the robustness of the results. No hatching: 5/5 models
agree on the sign of change, striped: 4/5 models agree, crossbred: 3/5 models agree. Source:
Weber et al. (2018), Figure 7.

to secure the electricity supply in periods with low wind energy generation. The main
reasons for the increase in backup energies, namely the higher probability of long periods
with low wind energy production and the increased seasonal variability, are also found in
Moemken et al. (2018, see chapters 5 and 9.4). The results highlight the importance to
combine energy and climate change research studies, and the necessity of integrated energy
systems that account for other renewable sources like solar power.

78



7 Decadal predictability of regional
scale wind speed and wind energy
potentials over Central Europe

Reference:

Moemken, J., Reyers, M., Buldmann, B., and Pinto, J. G. (2016). Decadal predictability
of regional scale wind speed and wind energy potentials over Central Europe. TellusA,
68:29199. doi:10.3402/tellusa.v68.29199

Permission to reprint:
©2016 J. Moemken et al.
This is an Open Access article distributed under the terms of the Creative Commons Attri-
bution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), allowing
third parties to copy and redistribute the material in any medium or format and to remix,
transform, and build upon the material for any purpose, even commercially, provided the
original work is properly cited and states its license.

Page numbers are as published in Tellus A.

79





Decadal predictability of regional scale wind speed and

wind energy potentials over Central Europe

By JULIA MOEMKEN1*, MARK REYERS1, BENJAMIN BULDMANN1 and

JOAQUIM G. PINTO1,2 , 1Institute for Geophysics and Meteorology, University of Cologne,

Cologne, Germany; 2Department of Meteorology, University of Reading, Reading, United Kingdom

(Manuscript received 20 July 2015; in final form 24 February 2016)

ABSTRACT

Decadal predictions on timescales from one year to one decade are gaining importance since this time frame

falls within the planning horizon of politics, economy and society. The present study examines the decadal

predictability of regional wind speed andwind energypotentials in three generations of theMiKlip (‘Mittelfristige

Klimaprognosen’) decadal prediction system. The system is based on the global Max-Planck-Institute Earth

System Model (MPI-ESM), and the three generations differ primarily in the ocean initialisation. Ensembles of

uninitialised historical and yearly initialised hindcast experiments are used to assess the forecast skill for 10 m

wind speeds and wind energy output (Eout) over Central Europe with lead times from one year to one decade.

With this aim, a statistical-dynamical downscaling (SDD) approach is used for the regionalisation. Its added

value is evaluated by comparison of skill scores for MPI-ESM large-scale wind speeds and SDD-simulated

regional wind speeds. All three MPI-ESM ensemble generations show some forecast skill for annual mean wind

speed and Eout over Central Europe on yearly and multi-yearly time scales. This forecast skill is mostly limited

to the first years after initialisation. Differences between the three ensemble generations are generally small.

The regionalisation preserves and sometimes increases the forecast skills of the global runs but results depend on

lead time and ensemble generation. Moreover, regionalisation often improves the ensemble spread. Seasonal

Eout skills are generally lower than for annualmeans. Skill scores are lowest during summer and persist longest in

autumn. A large-scale westerly weather type with strong pressure gradients over Central Europe is identified

as potential source of the skill for wind energy potentials, showing a similar forecast skill and a high correlation

with Eout anomalies. These results are promising towards the establishment of a decadal prediction system for

wind energy applications over Central Europe.

Keywords: decadal prediction, regionalisation, wind speed, wind energy, Central Europe, statistical-dynamical

downscaling, MiKlip decadal prediction system, MPI-ESM, COSMO-CLM

To access the supplementary material to this article, please see Supplementary files under

‘Article Tools’.

1. Introduction

The demand for renewable, ecologically sustainable energy

sources as alternative to fossil sources has strongly increased

in recent years (Solomon et al., 2007). In Europe, wind

energy production has emerged as a promising renewable

energy source to face the projected climate change due to

increasing greenhouse gas emissions. The currently installed

wind energy capacity in Europe has the potential to produce

enough electricity to cover up to 8 % of the EU’s electricity

demand (Pineda et al., 2014). By 2020, the European

Commission aims to produce 14.9 % of the EU’s electricity

from wind energy resources (Moccia et al., 2014). Wind

energy production itself is influenced by weather and climate

due to its dependence on near-surface wind conditions (e.g.

Pryor and Barthelmie, 2010). In recent years, several studies

investigated the impact of climate change on wind speeds

and wind energy production over Europe on the regional

scale for the middle and end of the 21st century (e.g. Barstad

et al., 2012; Pryor et al., 2012; Hueging et al., 2013; Tobin

et al., 2014; Reyers et al., 2016). These studies used different
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global and regional climatemodels (GCMs andRCMs) with

different emission scenarios and downscaling techniques,

and focused on different parts of Europe. Most of these

studies agree on a general increase in wind energy potentials

over Northern Europe and a general decrease over Southern

Europe in future decades. Differences can be found regard-

ing the magnitude and sometimes the sign of the projected

changes. These differences seem to result not only from

different initial conditions and model parameterisations but

also from downscaling technique (e.g. Pryor et al., 2005,

2012; Tobin et al., 2014; Reyers et al., 2016). However, both

potential long-term trends and future changes for wind

speed and wind energy potentials are quite small compared

to temperature trends (IPCC, 2012). At the same time, the

natural variability of wind, especially on interannual to

decadal timescales, is quite large andmight conceal potential

long-term trends.

Short-term climate predictions, which can assess this

decadal variability, are of particular interest for the devel-

opment of wind energy production, as their time frame of

one year up to one decade falls within the planning hori-

zon of politics and economy (e.g. Meehl et al., 2009). The

German consortiumMiKlip (‘Mittelfristige Klimaprognosen’,

decadal climate predictions; Marotzke et al., submitted)

developed a model system based on the Max-Planck-

Institute Earth SystemModel (MPI-ESM) to provide skilful

decadal predictions on global and regional scales. Therefore,

the decadal predictions should represent natural variability

as well as changes due to increasing greenhouse gas

emissions (e.g. Solomon et al., 2011). The present study

evaluates several generations of the MPI-ESM decadal

prediction system recently conducted within MiKlip with

respect to the decadal predictability of regional wind speed

and wind energy production. The first generation of MPI-

ESM decadal predictions (baseline0) contributes to the

Coupled Model Intercomparison Project Phase 5 (CMIP5;

Taylor et al., 2012). An overview over recent studies,

especially from CMIP5, and the current state-of-the-art

for decadal predictions can be found in Meehl et al. (2014).

Through CMIP5, a set of global decadal hindcast experi-

ments (initialised forecasts of past cases) and predictions (of

future cases) has been made available. The initial conditions

for these decadal runs are taken from assimilation runs,

which use reanalysis data (ocean-only or ocean-atmosphere)

from the past and the present (see Section 2.1). Ensembles

are generated by initialising the simulations at different time

steps of the assimilation run (usually 1-day-lagged initialisa-

tion; e.g. Müller et al., 2012). The hindcast experiments

are used to analyse the decadal predictability for differ-

ent parameters through a comparison to observations and

reanalysis data (e.g. Smith et al., 2007).

Several publications assessed the decadal forecast skill

of existing forecast systems, either for individual model

ensembles (e.g. Müller et al., 2012, 2014; Goddard et al.,

2013; Marotzke et al., submitted) or for multi-model ensem-

bles (e.g. van Oldenborgh et al., 2012; Doblas-Reyes et al.,

2013; Eade et al., 2014). Most of these studies focus on the

global scale and on primary meteorological parameters like

temperature (e.g. Smith et al., 2007; Müller et al., 2012) and

precipitation (e.g. van Oldenborgh et al., 2012). Although

all of these studies found some decadal forecast skill, their

results differ for different parameters, regions and lead

times. In particular, Eade et al. (2014) indicated that

potential skill in decadal prediction systems may often be

underestimated. Nevertheless, most of them agree that the

North Atlantic is a key region for decadal climate pre-

dictions (e.g. Müller et al., 2012). So far, only few studies

investigated decadal predictions on the regional scale, and to

our knowledge, none is dealing with wind energy. Kruschke

et al. (2014), for example, analysed the decadal forecast skill

for cyclone activity over the Northern Hemisphere in the

MPI-ESM and found some regions over the North Atlantic

with positive predictive skill for intense cyclones. Mieruch

et al. (2014) investigated the decadal forecast skill for

seasonal temperature anomalies and precipitation sums in

dynamically downscaled MPI-ESM hindcasts, focusing on

Europe. They found a good predictive skill for summer

temperature, which could be preserved by regionalisation.

Predictive skill for precipitation sums could even be im-

proved by the downscaling in their study. Haas et al. (2015)

evaluated the decadal predictability of peak winds on the

regional scale in theMPI-ESM, using a statistical-dynamical

downscaling (SDD) approach for the regionalisation. Their

results showed highest skill scores for short lead times and

upper gust percentiles.

For the application to regional scales, the resolution

of the global decadal predictions is insufficient. Therefore,

a downscaling of the global datasets to the regional scale

is necessary (e.g. Mieruch et al., 2014; Haas et al., 2015).

In principle, it is possible to use a dynamical downscaling

(DD) approach for the regionalisation of large ensembles,

depending on available computing power, storage capacities

and time. However, since most decadal prediction systems

comprise multiple ensemble members of yearly initialised

hindcasts, resulting in a total of several hundreds of simu-

lations per ensemble generation (see Section 2.1), it is hardly

possible to regionalise the entire hindcast ensemble using a

purely DDmethod. The present study uses a SDD approach

(following Fuentes andHeimann, 2000; Pinto et al., 2010) to

investigate the decadal predictability of wind energy poten-

tials over Central Europe, with special focus on Germany.

SDD approaches combine a purely DD application with

statistical approaches, for example weather type analysis

(e.g. Reyers et al., 2015) or transfer functions (e.g. Najac

et al., 2011; Haas and Pinto, 2012). This combination offers

a good and cost-efficient alternative to DD. In this study, we
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applied the SDD approach developed by Reyers et al. (2015)

to the decadal hindcasts and predictions of the MPI-ESM

and analysed the decadal forecast skill for different lead

times and different seasons. The focus of this study is given

to wind and wind energy potentials over Germany.

The paper is organised as follows. The decadal predic-

tion and hindcast datasets are described in Section 2 (part

2.1). Additionally, Section 2 contains the methodology of

SDD (2.2), bias and drift correction (2.3), and an explana-

tion of the skill metrics (2.4). The results for wind speed are

presented in Section 3: the added value of downscaling is

addressed in Section 3.1, while Section 3.2 contains the

forecast skill for different wind percentiles. The results for

wind energy potentials are described in Section 4, focusing

on the forecast skill over Central Europe (4.1), the seasonal

dependence of forecast skill (4.2) and a potential source of

forecast skill (4.3). A short summary and discussion of the

results concludes this paper in Section 5.

2. Data and methods

2.1. Data

Three decadal prediction generations of the coupled model

MPI-ESM performed in low-resolution mode (MPI-ESM-

LR; Giorgetta et al., 2013) are analysed. The coupled model

consists of the atmospheric model ECHAM6 (Stevens et al.,

2013), the ocean model MPIOM (Jungclaus et al., 2013),

the land-biosphere model JSBACH (Raddatz et al., 2007)

and the ocean-biogeochemistry model HAMOCC (Ilyina

et al., 2013), coupled by OASIS3 (Valcke et al., 2003).

The atmospheric component is run with a T63 horizontal

resolution (1.8758) and 47 vertical levels, and the MPIOM

with a horizontal resolution of 1.58 and 40 vertical levels.

The three MPI-ESM ensemble generations differ in

their initialisation (see Table 1; cf. also Marotzke et al.,

submitted). The first analysed generation of decadal hindcasts

is called baseline1 (second MiKlip ensemble generation). The

initial conditions are taken from an assimilation experiment,

where the model state is nudged towards ocean temperature

and salinity anomalies of an MPIOM experiment forced

with ORA-S4 ocean reanalysis (Balmaseda et al., 2013), and

full atmospheric fields from ERA40 (Uppala et al., 2005)

and ERA-Interim (Dee et al., 2011). The baseline1 ensemble

consists of 10 members of yearly initialised decadal hind-

casts and predictions from the initialisation year 1960

(hereafter dec1960: comprising the 10-yr period 01 January

1961 to 31December 1970) to 2011 (dec2011: comprising the

10-yr period 01 January 2012 to 31 December 2021), and

is described in detail in Pohlmann et al. (2013). The latest

MPI-ESM generation � named prototype � differs from

baseline1 in terms of full-field ocean initialisation and

consists of two separate ensembles (see Table 1). The first

prototype ensemble (hereafter prototype1) uses full-fields

from ORA-S4 reanalysis, while the second prototype en-

semble (hereafter prototype2) uses full-fields of GECCO2

ocean reanalysis (Köhl, 2015). Both prototype1 and

prototype2 ensembles consist of 15 members of yearly

initialised decadal hindcasts and predictions, from which

10 members are utilised here for the initialisation period

1960�2013 (dec1960 to dec2013). For all three generations,

the ensemblemembers are generated through a 1-day-lagged

initialisation (e.g. Müller et al., 2012). Further, uninitialised

historical runs are used here as reference datasets to estimate

the added value of initialisation (see also Section 2.4). They

consist of 10 ensemble members and are started from a pre-

industrial control simulation and consider aerosol and

greenhouse gas concentrations for the period 1850�2005
(e.g. Müller et al., 2012). The first MiKlip ensemble

generation baseline0 is not discussed here due to the limited

number of runs (10 members every 5 yr for the period

1960�1999, 10 members for the period 2000�2010 and only

three members in every other year).

To evaluate the model performance in terms of the decadal

forecast skill, observations or reanalysis datasets are usually

used. In this study, we consider the ERA-Interim reanalysis

dataset (Dee et al., 2011) for evaluation and for the com-

putation of different forecast skill scores (see also Section

2.4). ERA-Interim is the third global reanalysis dataset of

the European Centre forMedium-RangeWeather Forecasts

(ECMWF). It is available from 1979 onwards. In this study,

we use ERA-Interim data for the period 1979�2010.

Table 1. Overview of the three MPI-ESM ensemble generations used in this study, including information on the name within the MiKlip

consortium, the ocean initialisation, the atmosphere initialisation and the number of ensemble members.

Ensemble Ocean initialisation Atmosphere initialisation # Ensemble member

baseline1 Anomalies from ORA-S4 reanalysis Full-fields from ERA-Interim/ERA40 10

prototype1 Full-fields from ORA-S4 reanalysis As above 10 (from 15)

prototype2 Full-fields from GECCO2 reanalysis As above 10 (from 15)

historical � � 10 (from 15)

In order to enable a direct comparison between the different ensembles, 10 simulations are used for all datasets. All simulations correspond

to the ‘low-resolution’ set up.
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2.2. Statistical-dynamical downscaling methodology

We follow the SDD methodology by Reyers et al. (2015) to

downscale the global MPI-ESM hindcasts and historical

runs to derive regional wind speeds and wind energy

production. Since the SDD approach for the application

to wind energy potentials is described in detail in Reyers

et al. (2015), only a short summary is given here. SDD

consists of four steps:

In the first step, a circulation weather type (CWT)

approach after Jones et al. (1993) is applied to daily

mean sea level pressure (MSLP) fields, using the following

global datasets as input data: ERA-Interim reanalysis for

evaluation, 10 historical runs and three ensembles of MPI-

ESM hindcasts for the analysis of decadal predictability.

All datasets are interpolated on the same regular 2.58 grid
for the computation of the CWTs. The large-scale atmo-

spheric flow as represented by the instantaneous MSLP

fields is characterised for each day for Central Europe

using the central point at 108E, 508N (near Frankfurt,

Germany; Fig. 1a). The patterns are assigned to 10 basic

CWTs (eight directional and two rotational classes; e.g.

west W or cyclonic C) and one mixed CWT (anti-cyclonic/

west AW). The days corresponding to the AW type are not

accounted for in the basic A or W types. In addition, the

11 CWTs are subdivided into classes with different pressure

Fig. 1. (a) Topography of Europe in metre, and grid points for CWT analysis (step 1 of SDD). The red point represents the central point

at 108E, 508N (near Frankfurt, Germany), and the red crosses represent the surrounding 16 grid points used for the computation of the

CWTs. The white box represents the region for figures (b) to (d). (b) Climatological mean of mean 10 m wind speed in metre per second for

ERA-Interim (1979�2010) as obtained by SDD. (c) Climatological mean of annual Eout in 103MWh for ERA-Interim (1979�2010) as
obtained by SDD. (d) Explained variance between annualEout time series for ERA-Interim (1979�2010) as obtained by SDDand as obtained

by DD (DDera) per CCLM grid point. Grid points with significant correlation are dotted (t-test, 95% confidence level). Box 1 represents the

subregion for the computation of theMSE skill scores as shown inFig. 5 andSupplementaryFigs. 2�5 (see also Section 4), and box 2 represents
the subregion for the averages over Germany (78E�148E, 488N�538N) as shown in Figs. 2, 3, 4, 6, 7 and Supplementary Fig. 1.
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gradients in 5 hPa per 1000 km intervals, ranging from

below 5hPa per 1000 km to ca. 45 hPa per 1000 km.

Altogether, 77 weather classes are considered.

In the second step, representative days for each of the

77 classes are simulated with the regional climate model

COSMO of the German Weather Service (Deutscher

Wetterdienst, DWD) in its Climate Mode (version 4.8,

hereafter CCLM; e.g. Rockel et al., 2008). CCLM simula-

tions with a horizontal resolution of 0.228 are performed

for the model domain of the EURO-CORDEX project

(Giorgi et al., 2006), using ERA-Interim data as initial and

boundary conditions. For each of the 77 weather classes,

up to 10 representatives have been extracted. Note that

the ERA-Interim-driven representatives are used for the

regionalisation of all global datasets, assuming that the

wind characteristics of the different CWTs are similar in

both the model and the reanalysis (see Reyers et al., 2015).

In the third step, simulated hourly 10 m wind speeds

of the representative days are recombined to probability

density functions (PDFs) at each CCLM grid point.

Therefore, we weighted the contributions of all 77 classes

by the respective class frequency (e.g. frequency of a weather

class in a certain decade) and the number of representative

days.

The last step is subdivided into two separate substeps,

one for wind speed and one for wind energy potentials. For

wind speed, the PDFs of the hourly 10 m wind speeds are

directly used to calculate different wind percentiles and the

mean wind for each grid point. Figure 1b shows the spatial

distribution of the mean wind for ERA-Interim (climatol-

ogy for 1979�2010) as obtained by SDD. For wind energy

applications, the PDFs of the hourly 10 m wind speeds are

used to calculate gridded wind energy output (Eout) of

a 2.5-MW wind turbine from General Electrics (2010).

First, the hourly 10 m wind speeds are extrapolated to the

average turbine hub height using a vertical wind profile,

which is the standard procedure in wind energy applica-

tions from the ‘large-scale’ perspective (e.g. Hueging et al.,

2013; Tobin et al., 2014). Here, the power law is used to

extrapolate the 10m wind speeds to a height of 80m (v80;

Reyers et al., 2015). The extrapolated wind speeds form the

basis to compute Eout, following these characteristics:

Below v80�3.5m/s (cut-in velocity) and above v80�
25m/s (cut-out velocity), no energy output is produced.

Between the cut-in velocity (3.5m/s) and the rated velocity

(12.5m/s), Eout is calculated as:

Eout ¼ cp

1

2
qpR2n3

80; (1)

with power coefficient cp (constant value of 0.35 for the

idealised turbine), air density r (constant value of 1.225 kg

m�3) and rotor radius R of the idealised wind turbine

(50m). Between wind velocities of 12.5m/s (rated velocity)

and 25m/s (cut-out velocity), a constant maximum Eout

of 2.5MW is assumed. To obtain spatial distributions of

mean annual wind energy output for each CCLM grid

point, Eout is integrated over all wind speed ranges and

weighted with the respective climatological velocity fre-

quencies. Figure 1c shows the spatial distribution of mean

annual Eout for the ERA-Interim data (climatology for

1979�2010) as obtained by SDD. For the application of

SDD to the different MPI-ESM datasets and to different

time periods, only the weather type computation (step 1)

has to be recalculated.

Reyers et al. (2015) evaluated the results for the SDD

approach for wind energy potentials against a purely DD

method applied to ERA-Interim. The results show a good

agreement for Central Europe (see also Fig. 1d; explained

variance between annual Eout as obtained by SDD and

annual Eout as obtained by DD), while agreement is

reduced over other areas, like the North Sea or the

Mediterranean region. They also tested the applicability

of SDD to decadal hindcasts of the baseline1 ensemble and

concluded that SDD performs well for Germany, the

Benelux region, the Czech Republic, and Poland (cf. Reyers

et al., 2015; their figures 10 and 11). The lower performance

of the SDD approach in other European countries is due to

the considered CWT classification, which is centred over

Germany and thus has a better performance over Germany

and nearby countries (see Fig. 1a; Reyers et al., 2015).

2.3. Bias and potential drift correction

Several studies revealed a systematic bias in the MPI-

ESM historical runs and hindcasts due to model drifts

(e.g. Kruschke et al., 2014, 2015). This systematic bias is

both dependent on the model generation and forecast time.

The International CLIVAR Project Office (ICPO; 2011)

suggests a bias correction for anomaly-initialised predictions

and uninitialised simulations by subtracting a climatological

bias, while a subtraction of lead time-dependent bias

should be used for full-field initialised predictions. In a

sensitivity study, we applied a bias correction to the CWT

frequencies of the baseline1 ensemble (first step of the

SDD; see Section 2.2). In terms of our SDD approach,

the systematic bias is reflected by an overestimation of the

frequencies of some weather types, especially the westerly

types over Europe (see Reyers et al., 2016; their table 2 and

figure 1b). This is due to the typical overestimation of the

zonal flow in the North Atlantic/European Sector in GCMs

(e.g. Sillmann and Croci-Maspoli, 2009). Therefore, the

climatological CWT frequencies for both decadal hindcasts

and uninitialised historical runs were corrected towards the

respective climatological frequencies of ERA-Interim. The

resulting empirical factors have been applied to the decadal

CWT frequencies for the different lead times, which were
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then used for the computation of Eout. However, since the

bias is systematic in CWT frequencies of both hindcasts and

the historical runs as reference dataset, the bias correction

has only negligible effects on our results (not shown).

Kharin et al. (2012) stated that it is problematic to

assume a constant model drift, especially when differences

between observed and modelled long-term climate trends

are large. This is in particular the case for decadal predic-

tions initialised by full-fields (e.g. prototype). We also

analysed the potential model drift in the prototype1

ensemble, focusing on CWT frequencies and 10m wind

speeds. In both cases, the consequences of the model drift

are small for our approach (not shown). Therefore, we have

chosen to use the original datasets for all analyses.

2.4. Forecast skill assessment

Three different metrics are used to identify a potential

added value of downscaling and estimate whether the

initialisation of the hindcasts improves the decadal predict-

ability compared to the uninitialised historical runs: the

mean square error skill score (MSESS) and the ranked

probability skill score (RPSS) to quantify the accuracy

of the hindcasts, and the reliability (REL) to assess the

relation between ensemble spread and bias. The different

skill metrics are calculated for seven different lead times

for the whole year and the single seasons. Lead times

corresponding to the first half of the decade (e.g. yr1-3:

first to third year after initialisation; hereafter short lead

times) represent skill that is supposed to originate from the

initialisation. We also considered lead times corresponding

to the second half of the decade (e.g. yr6-9: sixth to ninth

year after initialisation; hereafter longer lead times) to see

how far ahead the initialisation provides predictive skill.

Moreover, one lead time covering nearly the whole decade

(yr2-9) is analysed. As suggested by Goddard et al. (2013),

lead times are temporally averaged. All three skill metrics

compare the MPI-ESM ensembles to observations. Since

no gridded observations for wind are available for Central

Europe, we used a purely DD simulation of a reanalysis

dataset instead as verification dataset. DD is simulated

with CCLM, using ERA-Interim data for 1979�2010 as

boundary conditions (hereafter DDera; see Reyers et al.,

2015). As DDera is available for the period 1979�2010, we
decided to use the decadal hindcasts dec1978 (1979�1988)
to dec2000 (2001�2010) for the computation of the metrics

in this study. Thereby, we ensure that the same number of

yearly initialised hindcasts is considered for all lead times.

The study focuses on Central Europe (box 1 in Fig. 1d) and

Germany (box 2 in Fig. 1d; 78�148E and 488�538N), since

the results of the CWT approach are primarily represen-

tative for the large-scale atmospheric conditions over

Germany and surrounding countries (cf. Fig. 1d and

Reyers et al., 2015). Temporal anomalies are used for the

computations of the skill metrics rather than absolute

values to remove systematic climatological biases. For

Germany, anomalies are spatially averaged before comput-

ing the skill scores.

The MSESS (Goddard et al., 2013) is a deterministic skill

score and defined as

MSESS ¼ 1�MSEdec

MSEhist

; (2)

where MSEdec is the mean squared error (MSE) between

the ensemble mean of the initialised hindcast experiments

and the verification dataset (DDera). MSEhist is the MSE

of a reference dataset, which is in this case the ensemble

mean of the uninitialised historical runs. Therefore, a

positive MSESS suggests that the initialised hindcasts are

more accurate in representing the observed decadal climate

variability than the uninitialised historical runs (Goddard

et al., 2013), and a negative value indicates the opposite.

The probabilistic RPSS (Wilks, 2011; Kruschke et al.,

2014) is defined as

RPSS ¼ 1� RPSdec

RPShist

; (3)

where RPSdec is the ranked probability score (RPS) of the

initialised hindcast experiments, and RPShist is the RPS of

the uninitialised historical runs. The RPS is an extension

of the Brier score (scalar accuracy measure for binary

events) to multi-category forecasts (Wilks, 2011). Follow-

ing Kruschke et al. (2014), three categories are used here

for the calculation of RPS: below normal, normal and

above normal. The categories are defined using the 33.3

and 66.6 percentiles of Eout and wind speed anomaly time

series. The RPS is based on the cumulative probabilities for

the three categories (Wilks, 2011):

RPSs ¼
1

I

XI

i¼1

XK

k¼1

Fs;i;k �Otði;sÞ;k

� �2

: (4)

Ft,i,k is the cumulative probability of the 10 ensemble

members within category k (here K�3), derived from the

forecast ensemble of initialisation i (with a total number

of I�23, for dec1978�dec2000) for a certain lead time t.

Ot(i,t),k is the cumulative probability within category k

derived from observations (here DDera) for time t, which

corresponds to the time of initialisation i and the lead time

t. Ot(i,t),k is the Heaviside step function with Ot(i,t),k�1 if

the event occurs in category k or lower or else Ot(i,t),k�0 if

a category higher than k is observed. A positive RPSS

therefore indicates that the initialised hindcasts have a

higher probability to predict an observed anomaly category

than the uninitialised historical runs, and vice versa for

a negative RPSS. Following Kruschke et al. (2014), we

corrected the RPS for biases due to finite ensemble sizes
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(see also Ferro, 2007). RPSSs are calculated for different

wind percentiles as well as for Eout.

The reliability (REL; Weigel et al., 2009) is defined as

REL ¼
RMSEdec �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

ensemble

� �
t

q

RMSEdec

; (5)

where RMSEdec is the root mean square error between the

ensemble mean of the initialised hindcasts and the verifica-

tion dataset DDera, and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

ensemble

� �
t

q
is the time-mean

ensemble spread. The reliability quantifies if the ensemble

spread is able to cover the model uncertainties (Mieruch

et al., 2014). The ensemble is well calibrated for REL values

around zero. The ensemble is called underconfident if

RELB0, and overconfident if REL�0.

3. Decadal predictability of wind speed

3.1. The added value of downscaling

We first analyse the added value of downscaling by

comparing large-scale MPI-ESM wind speed to SDD-

simulated regional wind speed. With this aim, we calcu-

late skill metrics for both variables. Figure 2 shows the

RPSS and the reliability for annual wind speeds averaged

over Germany (see box 2 in Fig. 1d) for the three ensemble

generations (baseline1, prototype1 and prototype2). All

generations exhibit forecast skill, both for large-scale and

regional scale wind speeds. The RPSSs are positive for

most lead times, with highest skill scores for short lead

times (e.g. yr1-3). The regionalisation is able to preserve the

decadal forecast skill of the global runs for almost all lead

times and in all three ensembles. For some lead times, the

downscaling increases the predictive skill. This added value

of downscaling is particularly apparent for baseline1 (e.g.

yr1-3, yr4-6). Improvements are smaller for the prototype

ensembles. The reliability indicates that the global hind-

casts are highly underconfident, in particular prototype2.

An analysis of the individual components of the reliability

[ensemble spread and RMSE, see eq. (5)] reveals that for

nearly all lead times the ensemble spread of the global

hindcasts clearly exceeds the RMSE (cf. Supplementary

Fig. 1). The regionalisation improves both the ensemble

spread and the RMSE for most lead times and in all three

generations. Since the relative reduction of the spread is

larger than that of the RMSE, the two values are now

much closer to each other (Supplementary Fig. 1). As a

consequence, the SDD ensembles are nearly well calibrated

for short lead times in baseline1 and prototype1 and all lead

times in prototype2. In summary, an added value of down-

scaling for wind speed can be identified in the ensemble

generations. This added value depends on the lead time and

the initialisation.

3.2. Forecast skill for different wind percentiles

After identifying the added value of our downscaling

approach, we focus on the decadal predictability of

regional wind speeds. RPSSs are derived for three different

percentiles averaged over Germany: mean wind, 75th

percentile and 90th percentile (Fig. 3). Positive skill scores

are found for all lead times in all three ensemble genera-

tions, except for yr1 (first year after initialisation) for mean

wind speed (Fig. 3a). Skill scores are highest for short lead

times (yr1-3 and yr1-4), with the best skill of 0.34 for

prototype1 for yr1-3 for the 90th percentile (Fig. 3c). In this

case, the initialisation improves the performance of the

decadal prediction system against the uninitialised histor-

ical runs by 34 %. Skill scores decrease with increasing time

after the initialisation (longer lead times) and are often en-

hanced for higher percentiles. Differences between the three

ensembles are rather small, revealing that no initialisation

is clearly superior to the other. Overall, the positive skill

scores indicate that the hindcasts are closer to the verifica-

tion dataset DDera than the uninitialised historical runs.

This is valid not only for the mean wind speed but also for

higher percentiles, which are in particular relevant for the

wind energy potentials.

4. Decadal predictability of wind energy

potentials

In this section, we assess the decadal predictability of wind

energy potentials on the regional scale. Therefore, we first

derive forecast skill scores for wind energy output and

compare them to skill scores for regional wind speed (Section

4.1). Further, the seasonal dependency of the forecast

accuracy is investigated (Section 4.2). Finally, we evaluate

potential large-scale sources of forecast skill for wind energy

potentials (Section 4.3).

4.1. Forecast skill for Germany and Central Europe

First, RPSSs and MSESSs are calculated for annual Eout

anomalies averaged over Germany for seven different lead

times. The RPSSs for Eout (Fig. 4a) are analogue to the

RPSSs for mean wind speed (cf. Fig. 3a): skill scores are

positive for almost all lead times in all three ensembles,

highest skill scores are found for short lead times (with the

highest value of 0.28 for prototype1 and yr1-3), and skill

scores decrease slightly with increasing time since initialisa-

tion. However, the forecast skill for Eout and mean wind

speed may differ, which is particularly true for longer lead

times. This indicates that the decadal predictability of the

wind energy output depends on a wider wind speed range,

and particularly on the higher percentiles (see Section 3.2).
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Highest positive MSESS values are found for short lead

times, with the best skill of 0.47 for prototype1 for yr1-3

(Fig. 4b). MSESSs decrease with increasing time since

initialisation and are negative for yr2-9. The positive skill

found for yr1 for baseline1 and prototype1 is maintained for

the second year after initialisation (yr2; not shown) and

increases considerably for prototype2 (from �0.03 to 0.3;

not shown). For most lead times, both the RPSSs and the

MSESSs vary little between the three ensemble generations.

However, prototype1 seems to outperform the other two

generations for yr1-3, a period that is supposed to be

strongly influenced by the initialisation.

Despite a general agreement between RPSSs and

MSESSs, some differences between these two skill scores

are detected not only in terms of the magnitude but also in

terms of the sign (e.g. yr2-5 and yr2-9; see Fig. 4a and b).

Hence, a higher probability of the hindcasts to forecast

an observed anomaly category (RPSS) compared to the

uninitialised historical runs does not necessarily imply a

higher forecast accuracy (MSESS) against the observed

anomaly values.

For the following investigations, we focus on MSESS to

quantify the differences between ensemble mean predictions

and observations, which are directly measured by the mean

Fig. 2. (a) Ranked probability skill scores (RPSSs) for large-scale MPI-ESM mean wind (blue) and SDD-simulated regional mean wind

(red) for seven different lead times for the whole year, averaged over Germany (box 2 in Fig. 1d), for the baseline1 ensemble. (b) Reliability

for large-scale MPI-ESM mean wind (blue) and SDD-simulated regional mean wind (red) for seven different lead times for the whole year,

averaged over Germany (box 2 in Fig. 1d), for the baseline1 ensemble. (c)�(d) as (a)�(b), but for the prototype1 ensemble. (e)�(f) as (a)�(b),
but for the prototype2 ensemble.
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square error (see Section 2.4). The spatial distributions of

MSESS over Central Europe for the annual mean wind

energy output are shown in Fig. 5. The three MPI-ESM

ensembles are compared for the four exemplary lead times

yr1, yr1-3, yr2-5 and yr6-9. Generally, MSESS reveals high-

est positive values over Northern and Western Germany

and the Benelux countries. Differences between the three

ensembles are rather small. For yr1 (first year after

initialisation), all three ensemble generations show positive

skill scores of up to 0.25 for the Benelux countries and large

parts of Germany. In these regions, the initialisation of the

hindcasts improves their performance against the uninitia-

lised historical runs by 25 %. Negative skill scores of up to

�0.5 cover most parts of Poland, the Czech Republic and

Eastern Germany, especially for prototype2. For yr1-3 and

yr2-5, all three generations show similar distributions of

MSESS. For yr1-3, the ensembles show positive skill scores

of up to 0.6 over most parts of Central Europe. Skill scores

are highest for prototype1 over Germany. For yr2-5, skill

scores decline in all three ensembles. They now range from

�0.2 (over parts of Poland and the Czech Republic) to 0.4

(over Germany), with highest positive values for prototype2.

For yr6-9, skill scores are smallest compared to the other

lead times (�0.5 to 0.3).

In summary, the three MPI-ESM ensemble generations

show an added value of the initialisation compared to the

uninitialised simulations and therefore a decadal forecast

skill for wind energy output. However, this skill is mostly

limited to the first years after initialisation and seems

to depend slightly on the initialisation of the different

ensemble generations.

4.2. Seasonal dependency of forecast skill

Previous studies (e.g. Müller et al., 2012; Mieruch et al.,

2014) found a seasonal dependence of forecast skill in the

MPI-ESM in terms of temperature and/or precipitation.

Given the strong seasonal variations in wind speed, we

calculated MSESSs and RPSSs for Eout for different multi-

year seasonal means (Fig. 6 and Supplementary Figs. 2�5
in the appendix).

For winter (DJF) means, MSESSs are much weaker

than for annual means for all three generations and all

lead years. Negative values are found over Germany, the

Benelux region, and most parts of Poland and the Czech

Republic for almost all lead times (Fig. 6a and Supple-

mentary Fig. 2). MSESS values around zero are only found

for short lead times (yr1-3 and yr1-4). As for annual Eout,

the MSESS for spring (MAM) means reaches its maximum

for lead time yr1-3, in particular over Western Germany

and Benelux (Fig. 6c and Supplementary Fig. 3). For all

other lead times, skill scores are small or below zero. The

strongest negative MSESS values are found for summer

(JJA) means of Eout over Germany (Fig. 6e). At the same

time, the MSESS reveals the most pronounced spatial

heterogeneity for this season, with strong negative values

over Northern Germany, while positive skill is identified

over Poland and parts of the Czech Republic for nearly all

lead times (Supplementary Fig. 4). For autumn (SON)

means, positive MSE skill scores persist longest in all three

Fig. 3. RPSSs for SDD-simulated wind speed for seven different

lead times for the whole year, averaged over Germany (box 2 in

Fig. 1d), for the ensemble generations baseline1 (blue), prototype1

(red) and prototype2 (yellow), for different percentiles: (a) mean

wind, (b) 75th percentile and (c) 90th percentile.
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MPI-ESM ensemble generations (Fig. 6g and Supple-

mentary Fig. 5), and even increase for longer lead times.

Highest skill scores can be observed over North-Eastern

Germany and Western Poland for yr6-9 in all three

generations. However, as for the other seasons a negative

MSESS is found for yr2-9 over Germany (Fig. 6g).

The probabilistic RPSSs for Eout over Germany for the

spring, summer and autumn seasons (Fig. 6d, f and h) are

mostly comparable to the MSESSs in terms of the sign of

the values, with lowest skill in the summer months and

highest and most persistent skill scores for autumn. Large

discrepancies between both skill scores are found for winter.

Winter RPSSs clearly exceed the winter MSESSs (cp. Fig.

6a and b). Positive values are even found for the longer lead

times (e.g. yr6-9) as well as for the multi-year mean yr2-9,

especially for baseline1 and prototype2. The differences

between RPSSs and MSESSs may on the one hand be

attributed to the higher variability and absolute values of

wind speed and wind energy output in winter, which has

a stronger impact in MSESSs than RPSSs. The decadal

hindcasts are apparently not able to forecast this high

variability, resulting in large discrepancies between predic-

tion and observation. These differences are directly cap-

tured by the MSE, leading to negative MSESS values (see

Section 2.4). On the other hand, the decadal hindcasts are to

some extent able to capture the observed category (below

normal, normal, above normal) of the anomalies, resulting

in positive RPSS values.

Overall, the decadal forecast skill for wind energy output

over Germany and Central Europe shows a strong seasonal

dependency, with best skill for autumn and worst skill

for summer. Differences between the three MPI-ESM

ensemble generations are generally small for all seasons,

especially in terms of the sign of the skill scores. Further,

the results reveal that the three ensemble generations have

generally a higher potential in predicting annual than

seasonal wind energy potentials (cf. Figs. 4 and 6).

4.3. Potential source of forecast skill

The previous results provided evidence that the decadal

forecast skill for wind energy potentials is given primarily

for short lead times in all three MPI-ESM ensemble

generations. Given the SDD approach for the regionalisa-

tion, we assume that the predictive skill for regional Eout

might originate from the predictive skill for the frequencies

of large-scale weather types over Europe (step 1 of SDD; see

Section 2.2). Sensitivity studies revealed that Eout depends

strongly on the occurrence of CWT West, especially those

with large pressure gradients, which corresponds to a strong

zonal flow over Central Europe (not shown). Figure 7a

exemplary shows anomaly time series of annual frequencies

of the large-scale CWT West with pressure gradients above

10 hPa per 1000 km (hereafter CWT W� ) and of annual

Eout (averaged over Germany) for ERA-Interim. Both time

series show similar year-to-year in-phase variations of the

anomalies. They agree particularly well for years 1987�2010.
The correlation of 0.62 emphasises the high dependence

of Eout on the occurrence of CWT W�, although the

climatological fraction of this weather type to all CWTs is

less than 8 % (see also Reyers et al., 2015; their figure 3).

Similar and in some cases even higher correlations are found

for the historical runs of MPI-ESM (0.63 to 0.84 for the

individual ensemble members), indicating that such a strong

relationship between regional Eout and the large-scale CWT

W� also exists in the MPI-ESM.

We therefore hypothesise that decadal forecast skill for

regional Eout is high, if the MPI-ESM on the global scale

is able to forecast the frequency of CWTW� well. Figure 7b

shows the MSESSs for annual CWT W� frequencies for

Fig. 4. Forecast skill scores for SDD-simulated Eout for seven different lead times for the whole year, averaged over Germany (box 2 in

Fig. 1d), for the ensemble generations baseline1 (blue), prototype1 (red) and prototype2 (yellow). (a) RPSSs and (b) mean square error skill

scores (MSESSs).

10 J. MOEMKEN ET AL.



seven different lead times. Skill scores are positive for all

lead times except yr2-9 in all three MPI-ESM ensemble

generations. The skill scores for CWT W� frequencies are

similar to MSESSs for Eout (see Fig. 4b) and RPSSs for

wind speed, with highest skill scores for short lead times

and a decrease with increasing time since initialisation. As

for wind energy, the highest positive skill score is found for

yr1-3 for prototype1 (added value of initialisation of 60 %),

while the highest value for yr2-5 is detected for prototype2.

As a consequence, the decadal forecast skill for wind

energy potentials can to some extend be attributed to an

adequate forecast of the frequencies of strong westerly

flow over Central Europe. Therefore, a potential source of

forecast skill for regional wind energy potentials over

Central Europe could be identified.

5. Summary and discussion

The decadal forecast skill for regional wind speed and wind

energy potentials over Central Europe was investigated for

Fig. 5. MSESSs for SDD-simulated Eout for four exemplary lead times for the whole year for the ensemble generations baseline1 (left

column), prototype1 (middle column) and prototype2 (right column). Reference forecast is the ensemble mean of the uninitialised historical

runs.
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Fig. 6. MSESSs (left column) and RPSSs (right column) for SDD-simulated Eout for seven different lead times for the four seasons,

averaged over Germany (box 2 in Fig. 1d), for the ensemble generations baseline1 (blue), prototype1 (red) and prototype2 (yellow). (a) and

(b) Winter (DJF), (c) and (d) spring (MAM), (e) and (f) summer (JJA), (g) and (h) autumn (SON). MSESS values under �1.0 are displayed

in the corresponding bar. Note that yr1 for winter corresponds to months 12�14 after initialisation.
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three ensemble generations of the MiKlip decadal pre-

diction system. The MPI-ESM ensembles have the same

atmosphere initialisation but differ in their ocean initiali-

sation. The performance of the global MPI-ESM and the

regionalised hindcast ensembles was tested in terms of

decadal predictability using different skill metrics (MSESS,

RPSS and reliability). The main results of this study can be

summarised as follows:

� All three ensemble generations show forecast skill

for annual wind speeds and Eout over Central

Europe. This skill is mostly limited to short lead

times, with highest values for yr1-3, and is best for

North-Western Germany and Benelux.

� In seasonal terms, forecast skill is best for autumn

and worst for summer. The predictive skill for

seasonalEout is typically lower than for annualEout.

� The differences between the three MiKlip en-

semble generations are generally small. However,

prototype1 slightly outperforms the other two gen-

erations for yr1-3.

� A dominant westerly weather type with a strong

zonal flow (CWT W� ) is identified as a potential

source for the forecast skill of Eout over Central

Europe. MSESSs for CWT W� are similar to

MSESSs for Eout for almost all lead times.

� The added value of downscaling for mean winds

is identified in terms of both RPSSs and reliability

but depends on the lead time and the hindcast

generation.

The added value of downscaling was quantified in terms of

mean wind speeds rather than wind energy output. This

choice is motivated by the fact that only 6-hourly wind

speeds are available for MPI-ESM, which does not enable

an adequate computation of Eout (which requires hourly

data).

The results of the presented forecast skill assessment

depend strongly on the choice of the verification dataset.

We have chosen a DD simulation of reanalysis data, since

no gridded observations for wind and wind energy are

available for Central Europe. Thereby, we assume that the

high-resolution wind speeds simulated with DD are a good

proxy for observed gridded wind speeds. Nevertheless, skill

scores may change if gridded observations are used as a

verification dataset.

The present results indicate that the decadal forecast skill

for wind energy originates mainly from the initialisation,

since high positive skill scores are mostly limited to the first

years after initialisation. For longer lead times, this skill

disappears. These findings are in line with Haas et al. (2015),

who evaluated the decadal predictability of regional peak

winds in the MiKlip ensemble baseline1 and also found

highest skill scores for short lead times. The enhanced skill

scores for higher percentiles are also consistent with results

by Haas et al. (2015), who showed, for example, that the

enhanced storminess over Central Europe in the early

nineties (leading to enhanced peak winds at the surface)

could be identified in the baseline1 hindcasts. Such skill

is not found for lower percentiles (Haas et al., 2015; their

figure 7).

We could not find a systematic improvement from the

baseline1 ensemble to the prototype versions, thus giving

evidence that there is generally no superior initialisation

strategy in terms of anomaly- or full-field-initialisation for

wind energy applications. This assessment agrees with

Kruschke et al. (2015), who found no significant differences

between the MiKlip generations for winter storm frequen-

cies over the North Atlantic and Europe.

In this study, we have used the characteristics of one

exemplary wind turbine. The consideration of power curves

from other wind turbines would result in different Eout

Fig. 7. (a) Time series of annual frequency-anomalies for CWT

W� in % (black line) and of annual Eout anomalies in 103MWh

(red line) for the ERA-Interim period 1979�2010. The correlation

between both time series is given in the upper left corner. (b)

MSESSs for CWT W� for seven different lead times for the whole

year for the MPI-ESM ensemble generations baseline1 (blue),

prototype1 (red) and prototype2 (yellow). For details, see main text

(Section 4.3).
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values. However, since these differences would be systema-

tic for both the initialised hindcasts and the uninitialised

historical runs, we assume that the results presented here

are similar for other wind turbines and that the choice of

turbine has only a small impact on our conclusions with

respect to the decadal predictability (see also Reyers et al.,

2016).

The detected decadal forecast skill for regional wind

energy output exhibited a strong dependence on the

representation of westerly CWTs (the dominant weather

types for strong wind situations) in the MPI-ESM. If the

occurrence of westerly CWTs, especially those with high

pressure gradients, is forecasted well by the global hind-

casts, predictive skill is found for both regional wind speeds

and regional Eout.

For future work, the coupling of this large-scale weather

type with low-frequency components like teleconnection

patterns could be investigated. This may help to understand

the mechanisms behind the decadal predictability for wind

energy potentials. Another issue, which could be addressed,

is the large uncertainties in the decadal predictability in the

MPI-ESM, particularly in terms of the non-systematic skill

dependency on lead times and seasons. Further investi-

gations on the influence of the ensemble size and of the

different initialisation strategies on the decadal predictabil-

ity are also necessary. In this study, we considered only 10

of the 15 available members of the two prototype ensembles

in order to compare the skill scores with the baseline1

ensemble (which only has 10 ensemble members). Future

work could consider all 15 realisations by using the ‘fair’

variant of the RPSS (e.g. Ferro, 2014), which takes into

account ensembles with a different number of members.

Further, wind power generation statistics taking the wind

farm distribution and installed power into account (e.g.

Cannon et al., 2015; Drew et al., 2015) should be analysed.

The present results are encouraging regarding the estab-

lishment of a decadal prediction system for Central Europe.

They clearly show that there is a potential for forecasts

of wind energy potentials up to several years ahead. In

addition, the used SDD approach proved to be adequate

for an application to large datasets and could easily be

applied to operational decadal prediction systems. The

regionalisation preserves and sometimes increases the

forecast skill of the global runs and improves the ensemble

spread in some cases. This opens a wide range of options

for end-user application.
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Mieruch, S., Feldmann, H., Schädler, G., Lenz, C.-J., Kothe, S.

and co-authors. 2014. The regional MiKlip decadal forecast

ensemble for Europe: the added value of downscaling. Geosci.

Model. Dev. 7, 2983�2999. DOI: http://dx.doi.org/10.5194/gmd-

7-2983-2014

Moccia, J., Wilkes, J., Pineda, I. and Corbetta, G. 2014. Wind energy

scenarios for 2020. European Wind Energy Association Report,

EWEA, 3p. Online at: http://www.ewea.org/fileadmin/files/library/

publications/reports/EWEA-Wind-energy-scenarios-2020.pdf

Müller, W. A., Baehr, J., Haak, H., Jungclaus, J. H., Kröger, J.
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Supplementary Material

Fig.S 1: (a) RMSE and ensemble spread (components of reliability, see Eq. (5)) for large-scale
MPI-ESM mean wind (blue and cyan coloured bars) and SDD simulated regional mean
wind (red and magenta coloured bars) for seven different lead times for the whole year,
averaged over Germany (box 2 in Fig. 1d), for the baseline1 ensemble. (b) as (a), but
for the prototype1 ensemble. (c) as (a), but for the prototype2 ensemble.
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Fig.S 2: MSESS for SDD simulated Eout for four exemplary lead times for the winter months
DJF (dec1978-dec2000) for the ensemble generations baseline1 (left column), prototype1
(middle column) and prototype2 (right column). Note that yr1 corresponds to months
12 to 14 after initialisation. Reference forecast is the ensemble mean of the uninitialised
historical runs.
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Fig.S 3: MSESS for SDD simulated Eout for four exemplary lead times for the spring months
MAM (dec1978-dec2000) for the ensemble generations baseline1 (left column), prototype1
(middle column) and prototype2 (right column). Reference forecast is the ensemble mean
of the uninitialised historical runs.

3



Fig.S 4: MSESS for SDD simulated Eout for four exemplary lead times for the summer months
JJA (dec1978-dec2000) for the ensemble generations baseline1 (left column), prototype1
(middle column) and prototype2 (right column). Reference forecast is the ensemble mean
of the uninitialised historical runs.
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Fig.S 5: MSESS for SDD simulated Eout for four exemplary lead times for the autumn months
SON (dec1978-dec2000) for the ensemble generations baseline1 (left column), prototype1
(middle column) and prototype2 (right column). Reference forecast is the ensemble mean
of the uninitialised historical runs.
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8 Development and prospects of the
regional MiKlip decadal
prediction system over Europe:
Predictive skill, added value of
regionalization and ensemble size
dependency

The previous study (chapter 7) dealing with the decadal predictability of regional scale
wind energy potentials represents a specialised application of decadal climate predictions.
In the framework of the German MiKlip project, focus is also given to the decadal pre-
dictability of primary meteorological parameters like temperature, precipitation and wind
speed both on the global and on the regional scale. Within this context, a regional decadal
prediction system for Europe is developed, based on dynamical downscaling. Reyers et al.
(2017) analysed the current state and the prospects of this regional prediction system. The
used data and the main results from this study are presented here (see Appendix for full
publication).

Reyers et al. (2017) examined two ensemble generations (baseline0, baseline1) of the re-
gional component of the MiKlip decadal prediction system over Europe. The two gener-
ations consist of 10-member hindcast ensembles computed with the global coupled model
MPI-ESM-LR. The hindcasts are dynamically downscaled with CCLM to a horizontal grid
resolution of 0.22°. The decadal forecast skill is investigated for regional scale tempera-
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Regional MiKlip decadal prediction system over Europe

ture, precipitation and wind speed for lead years 1-5 after initialisation focussing on the
eight European PRUDENCE regions. Skill scores are computed by using an ERA-Interim
driven CCLM simulation and E-OBS as verification datasets, and uninitialised historical
runs as reference dataset. Additionally, the added value of regionalisation is examined by
comparing the regional results to the forecast skill of the global ensemble.

Fig. 8.1: Spatial distribution of the MSE-based skill score (MSESS) for the multi-annual mean of
lead years 1-5 for (a) temperature in the downscaled baseline0 ensemble, (b) temperature in the
downscaled baseline1 ensemble, (c) precipitation in baseline0, (d) precipitation in baseline1, (e)
wind speed in baseline0, and (f) wind speed in baseline1. Source: Reyers et al. (2017), Figure 2
(revised version).
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Regional MiKlip decadal prediction system over Europe

Both ensemble generations show some potential for skilful decadal predictions of regional
scale temperature, precipitation and wind speed over Europe. However, the forecast skill
depends on the variable, region and hindcast generation (Figure 8.1). For example, the two
generations agree well for temperature skill scores over Scandinavia and the Mediterranean
(positive skill), as well as the British Isles and Central Europe (negative skill), while
deviations are largest for Iberia, Italy and parts of France (Figure 8.1a, b). For precipitation
and wind speed, differences between the ensemble generations are generally larger. The
improvement of the initialisation from the baseline0 generation to baseline1 increases the
predictive skill for some regions, e.g. Mediterranean and Scandinavia for temperature,
and Mid-Europe and France for precipitation. For wind speed, there is no systematic
improvement detectable.
Compared to the forecast skill of the global model, the regionalisation may provide an
added value for decadal predictions. This added value is especially evident for regions
with complex topography, but it depends on the variable and the used skill metrics. For
instance, the regional downscaling improves the accuracy and reliability for temperature
over the British Isles, Scandinavia and the Mediterranean, and for precipitation over the
British Isles, Scandinavia, France and Mid-Europe in the baseline1 ensemble (not shown).

Fig. 8.2: Skill scores for the multi-annual mean of lead years 1-5 of the regional basline0 (red), the
global baseline0 (yellow), the regional baseline1 (blue), and the global baseline1 (green) ensembles
depending on the ensemble size (ranging from 2 to 10 members, x-axis) for PRUDENCE region IP
(Iberian Peninsula). MSESS for (a) temperature, (b) precipitation, and (c) wind speed. Source:
Reyers et al. (2017), Figure 6 (revised version).

For all variables and regions, skill scores increase with a stepwise increased ensemble size
(as exemplarily shown for the Iberian Peninsula in Figure 8.2). In some cases, skill scores
even shift from negative to positive values. A number of 10 ensemble members is identified
to be suitable for both global and regional decadal predictions. These results indicate
that larger ensemble sizes are beneficial for decadal prediction systems, either through an
increase of forecast skill and reliability or through a reduction of bias and uncertainty.
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Reyers et al. (2017) concluded that a decadal prediction system would profit from a regional
component. The presented results are promising for the development of a regional decadal
prediction system for Europe. Additionally, they are relevant for further investigations of
wind energy potentials over Europe, which could e.g. focus on inter-daily variability. The
identified skill scores for wind speed are comparable to skill scores for Eout as identified
by Moemken et al. (2016, chapter 7), while predictive skill is lower for temperature and
precipitation compared to Eout.
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9 Summary and discussion

“Limiting climate change will require substantial and sustained reductions of greenhouse
gas emissions” (IPCC, 2013).

Currently, the energy supply sector is one of the largest contributors to global greenhouse
gas emissions affecting the earth’s climate (Bruckner et al., 2014). Therefore the mitigation
of climate change requires the transition from a fossil fuel-driven energy system to one with
a higher share of renewable energy sources. For Europe, wind energy production shows
a large potential, since it is already highly developed and comparatively cheap to run.
However, wind energy generation depends on weather and climate conditions (e.g. Pryor
and Barthelmie, 2010, 2013) and thus is affected by climate change itself.
In this thesis, different aspects of European wind speeds and wind energy potentials at
the regional scale and the potential impact of climate change are analysed. With this aim
a uniquely large ensemble of GCMs and GCM-RCM chains is used, considering different
downscaling approaches and different timescales. The results are summarised in three
scientific publications, focussing on

1. Future changes of wind energy potentials in a statistical-dynamically downscaled
CMIP5 multi-model ensemble.

2. Future changes of wind speeds and wind energy potentials in a dynamically down-
scaled ensemble conducted as part of EURO-CORDEX.

3. The decadal predictability of wind speed and wind energy potentials over Central
Europe in a statistical-dynamically downscaled decadal prediction system.

The results aim to improve our understanding of the impact of different model ensembles
and different downscaling approaches on the estimation of future wind energy potentials.
Additionally, they may help to adjust the planning strategies to optimize the energy system
towards climate change adaptation. In the following, the main results of the publications
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9.1. Paper I

are summarised in more detail. Afterwards, the results are discussed and an outlook is
presented.

9.1 Paper I

Reyers et al. (2016, chapter 4) analysed future changes of regional wind energy output
of an exemplary wind turbine. An ensemble of 22 GCMs from CMIP5 is regionalised
for Europe using a statistical-dynamical downscaling approach (see chapter 3). Climate
change signals are computed for the near future decades (2021-2060) and the end of the
21st century (2061-2100) following the two emission scenarios RCP4.5 and RCP8.5. The
paper gives an overview on the ensemble mean changes and quantifies the uncertainties
between the individual ensemble members.
The evaluation of the historical runs compared to ERA-Interim reveals an overestimation
of westerly weather types over Europe in most CMIP5 models, which is in particular evi-
dent for weather classes with strong pressure gradients. In general, the overestimation of
westerly weather types results in an overestimation of Eout for most parts of Europe in
the ensemble mean. The intra-annual variability of Eout (difference of winter Eout minus
summer Eout) in the historical CMIP5 ensemble agrees well to ERA-Interim.
The ensemble mean projects an increase of mean annual Eout over Northern and Cen-
tral Europe and a decrease for the Mediterranean region in future decades. In general,
signals are more pronounced for the RCP8.5 scenario and the end of the century. For
2061-2100, more than 15 models agree on the sign of change for large parts of Europe.
However, responses can strongly differ between the individual ensemble members, not only
in terms of magnitude but also in the sign of change. This results in low signal-to-noise
ratios for nearly the entire European sector. In seasonal terms, future changes are more
robust, especially for the end of the 21st century. For most parts of Europe, increasing
Eout is simulated for winter, while a decrease is likely for the summer months. These
changes result in an increase of the intra-annual variability of Eout, which in turn leads
to a higher irregularity of wind energy production and could impede a future wind-driven
energy system. The climate change signals for the inter-annual variability of Eout reveal
a high uncertainty between the individual ensemble members. This makes it impossible to
conclude whether a changing climate also affects the reliability of wind energy production
in future decades.
To summarize, the results from Reyers et al. (2016) clearly reveal a connection between
a changing climate and the European wind energy potential under future climate condi-
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tions. However, the results show quite wide-ranged future changes between the individual
models, with partly large differences from the ensemble mean. This highlights the strong
dependency of climate change signals on the choice of GCM and thus the need to consider
large ensembles. While the ensemble mean increase of wind energy output over Northern
and Central Europe is generally consistent with other recent studies dealing with future
changes of wind energy potentials (e.g. Cradden et al., 2012; Nolan et al., 2012, 2014;
Hueging et al., 2013; Tobin et al., 2015), some ensemble members simulate a decrease over
Northern Europe, which is in line with Pryor et al. (2005b). These findings emphasise the
importance to consider multi-model-ensembles as well as different downscaling approaches
for impact studies on wind energy.

9.2 Paper II

Moemken et al. (2018, chapter 5) investigated future changes of wind speed and wind
energy output in an ensemble conducted within the framework of EURO-CORDEX. Five
(respective four) GCMs from CMIP5 are dynamically downscaled with two RCMs, resulting
in an ensemble of nine GCM-RCM model chains. Potential future changes are estimated
for the near future (2021-2050) and the end of the 21st century (2071-2100) using the
two climate change scenarios RCP4.5 and RCP8.5. All analyses are based on three-hourly
10m-wind speeds at 12 km spatial resolution. This high temporal resolution allows insights
on several timescales (from annual to sub-daily) and can be used to address stakeholder
needs. Results focus on the ensemble mean responses of the two RCMs, but also consider
the differences between the individual ensemble members.
The historical EURO-CORDEX runs show substantial biases in 10m-wind velocities when
compared to ERA-Interim driven evaluation runs of the same RCMs, both in terms of
climatology and intra-annual variability. These biases result from the driving GCMs and
the RCMs, but differences between the individual GCMs are larger than those between
the RCMs. Since these biases may influence the climate change signals especially when
considering wind speed thresholds relevant for wind energy generation, a bias correction
based on probability mapping is performed before computing future projections.
The RCM ensemble means project a small decrease of mean annual Eout for most of Europe
in future decades. Increasing Eout is only simulated for the Baltic and the Aegean Sea. In
these regions, the climate change signals are relatively robust, while the ensemble spread
can be quite large for Central Europe and Scandinavia. Climate change signals are generally
more pronounced for the end of the 21st century and in the RCP8.5 scenario. For winter,
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an increase of Eout is depicted for Western and Central Europe, while Eout is projected to
decrease for the Mediterranean region. For summer, a decline is simulated for most parts
of Europe, especially for Central Europe. As for annual Eout, differences between the
individual ensemble members are large for Central and parts of Eastern Europe, while the
agreement is good for the Baltic and the Aegean Sea. In general, the models agree better
for the summer months. The seasonal changes cause an increase of intra-annual variability
of Eout for Northern, Central and Eastern Europe in the ensemble mean. In addition, a
higher inter-daily variability is projected for these regions resulting in an overall higher
volatility of wind energy production in future decades. The signals are quite robust for
inter-daily variability, while the ensemble spread is rather large for intra-annual variability.
No clear future trends are found for the inter-annual variability, revealing a high uncertainty
between the individual ensemble members. In terms of specific wind speed characteristics
relevant for wind energy production, the RCM ensembles agree on a higher occurrence of
low wind speeds at hub height (100m) under future climate conditions for large parts of
Europe except the Baltic Sea.

Fig. 9.1: Combined changes of mean annual Eout and intra-annual variability of Eout for the
ensemble mean of RCA4 (top) and CCLM (bottom) for RCP8.5 2021-2050 (left) and 2071-2100
(right). Blue: decreasing Eout and increasing intra-annual variability. Dark grey: increasing Eout
and increasing variability. Light grey: decreasing Eout and decreasing variability. Red: increasing
Eout and decreasing variability.
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Thus, Moemken et al. (2018) identified a clear impact of climate change on future wind
energy potentials over Europe. In some regions like the Baltic and the Aegean Sea (red
areas in Figure 9.1), the wind energy sector could profit from climate change due to an
increase of mean Eout and a simultaneous decrease in variability. In other areas like France,
Germany or the British Isles (blue areas in Figure 9.1), impacts are mostly negative due
to decreasing mean Eout and higher seasonal variability. The identified climate change
signals are comparable to other studies investigating EURO-CORDEX simulations (e.g.
Tobin et al., 2016), but generally weaker compared to some studies analysing different
model ensembles (Hueging et al., 2013; Reyers et al., 2016). These differences can be
attributed to the choice of GCM as well as the downscaling approach (see also section 9.4).

9.3 Paper III

Moemken et al. (2016, chapter 7) applied the statistical-dynamical downscaling approach
introduced in chapter 3 to three ensemble generations of the MiKlip decadal prediction
system (baseline1, prototype1, protoype2). This system is based on the global Max-Planck-
Institute Earth System Model (MPI-ESM). The three generations differ in their ocean
initialisation, while they share the same atmosphere initialisation. The decadal forecast
skill of regional wind speed and wind energy output over Central Europe is investigated
for several lead times using different skill metrics. Skill scores are computed by using
uninitialised historical and yearly-initialised hindcast experiments. In addition, the added
value of regionalisation is evaluated by comparing skill scores for large-scale wind speeds
simulated by MPI-ESM and SDD-simulated regional wind speeds.
The three ensemble generations show some decadal forecast skill for annual wind speeds and
Eout over Central Europe. This skill is mostly limited to the first years after initialisation
(short lead times). Highest values are depicted for yr1-3 and over North-western Germany
and the Benelux countries. For seasonal Eout, skill scores are generally lower than for
annual means. Forecast skill persists longest in autumn and is lowest in the summer
months. In general, differences between the three ensemble generations are small, showing
no systematic improvement from baseline1 to the prototype generations. Only for yr1-3,
prototype1 slightly outperforms the other two generations. The decadal forecast skill for
regional Eout shows a strong dependence on the representation of westerly weather types
in the MPI-ESM. In particular, a dominant westerly weather type with strong pressure
gradients over Central Europe is identified as potential source for this skill, showing similar
MSE-based skill scores as Eout for almost all lead times. This implies, that predictive skill
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can be found for regional wind speeds and Eout, if the occurrence of westerly weather types
is captured well by the global hindcasts. The downscaling of the global hindcasts is able to
preserve and sometimes even increase the forecast skill. Also the ensemble spread is often
improved by the regionalisation. However, the added value depends on lead times and the
ensemble generation.
The results from Moemken et al. (2016) are promising regarding the establishment of a
decadal prediction system for wind energy applications for Central Europe. They show a
clear potential for forecasts of regional wind speed and regional Eout up to several years
ahead. In line with e.g. Haas et al. (2016), the decadal forecast skill seems to arise mainly
from the initialisation of the prediction system.

9.4 Discussion and outlook

The three publications, which form the core of this thesis, are connected with each other
either through the analysed datasets or the applied downscaling approach (see Figure 9.2).
The first paper analyses a statistical-dynamically downscaled multi-model ensemble from
CMIP5. Paper II is also based on a CMIP5 ensemble, but this one is regionalised with
a dynamical downscaling approach in the framework of EURO-CORDEX. Paper III uses
the same SDD approach as Paper I to investigate the decadal predictability of wind energy
potentials. These connections enable a comparison of the different downscaling techniques
and their applicability to different datasets regarding wind energy potentials over Europe.
In addition, the impact of different model ensembles and different downscaling approaches
on future wind energy potentials can be analysed.

Fig. 9.2: Schematic illustration of the connection between the individual parts of this thesis.

Paper I and Paper II both reveal a clear impact of climate change on wind energy potentials
over Europe under future climate conditions. However, the projected future changes in the
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two studies can show some discrepancies. In general, climate change signals identified in
Moemken et al. (2018, Paper II) for the EURO-CORDEX ensemble are weaker compared
to the signals in Reyers et al. (2016, Paper I) for the CMIP5 ensemble. Moreover, for mean
annual Eout the ensemble mean changes have different signs of change for Northern and
Central Europe, with decreasing Eout in Moemken et al. (2018) and increasing Eout in
Reyers et al. (2016). These differences seem to emerge mainly from the choice of GCM
and the different ensemble sizes. The five GCMs used in Moemken et al. (2018) belong to
the models with the weakest signals from the 22-member ensemble in Reyers et al. (2016).
When comparing the climate change signals from the common five models directly (Figure
9.3), differences are rather small. The individual ensemble members agree well in terms
of the spatial pattern and the magnitude of change for most parts of Europe. The small
differences arise primarily from the different downscaling methods and from the different
analysed time periods. Reyers et al. (2016) computed climate change signals for 2061-2100
compared to 1961-2000, while Moemken et al. (2018) used 2071-2100 compared to 1971-
2000. In terms of variability, both studies agree on an increase of intra-annual variability
of Eout over Northern, Central and Eastern Europe, and a decline of variability for large
parts of Southern Europe in future decades. For changes in the inter-annual variability of
Eout, both publications reveal large uncertainties between the individual ensemble mem-
bers allowing no clear conclusions on the reliability of wind energy production in future
decades. In both studies, results for the regional scale can be related to future trends in
the large-scale atmospheric conditions, in particular mean sea level pressure, circulation
patterns, and global mean wind speeds.
These results emphasise that the choice of GCM has a larger impact on the climate
change signals for wind energy potentials than the downscaling technique. The statistical-
dynamical downscaling approach used in Reyers et al. (2016) is thus an adequate method
to investigate regional changes of wind energy potentials in large multi-model ensembles.
It is a suitable and computationally inexpensive alternative to a pure DD approach for
wind energy applications. However, the application of SDD has some limitations due to
its composition. The simulations based on SDD are not able to resolve daily or sub-daily
processes since only a limited number of representative days is simulated with the RCM
(cp. chapter 3). Therefore the SDD application is restricted to seasonal-to-multi-decadal
timescales. The dynamical downscaling enables simulations at a very high temporal reso-
lution, e.g. inter- and sub-daily timescales. This allows insights in timescales that cannot
be addressed with the SDD approach but could be of interest for decision makers in politics
and economy. For example, Moemken et al. (2018) analysed future trends in inter-daily
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Fig. 9.3: Changes of mean annual Eout in % for RCP8.5 for the end of the century (2061-2100
for CMIP5, respectively 2071-2100 for EURO-CORDEX). Left column: results from Reyers et al.
(2016). Middle column: results for the RCA4-ensemble from Moemken et al. (2018). Right column:
results for the CCLM-ensemble from Moemken et al. (2018). The driving GCMs are depicted in
the first column.

variability of Eout, which could affect the volatility of a wind-driven energy system. On
the other hand, the SDD can be easily applied to large ensembles considering different
emission scenarios and periods. Reyers et al. (2016) downscaled 22 GCMs from CMIP5 for
two scenarios and two periods. In the meantime, studies based on DD are often limited
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to single GCMs and/or emission scenarios. The larger dynamically downscaled ensemble
used in Moemken et al. (2018) is only available since several institutions shared their sim-
ulations in the framework of EURO-CORDEX.
Therefore both downscaling techniques are needed for future studies analysing the im-
pact of climate change on regional wind speed and wind energy potentials. The decision
for one of the two methods depends on the aim and focus of the study. Analyses fo-
cussing on seasonal or longer timescales might rather consider a statistical-dynamically
downscaled ensemble. This enables the assessment of the uncertainty of climate change
projections, which arise not only from different scenarios but also from different GCMs (see
Reyers et al., 2016). For studies interested in future changes on sub-seasonal to sub-daily
timescales, a dynamically downscaled ensemble is more suitable. In addition, the results
from both Reyers et al. (2016) and Moemken et al. (2018) are important for advanced
impact studies, which could e.g. analyse the influence of the projected changes of Eout
on the European energy system. Such an impact study developed from a successful col-
laboration with colleagues from Forschungszentrum Jülich: Weber et al. (2018, chapter
6) used a five-member ensemble from EURO-CORDEX to analyse the impact of climate
change on storage and backup needs in a European renewable energy system focussing on
wind energy. They uncovered an increase of storage and backup needs for most of Central,
Northern and North-western Europe, and a decrease for the Iberian Peninsula, Greece
and Croatia. In their study, two reasons were identified for this increase: an increase of
seasonal wind variability and a longer duration of low-wind periods in future decades as
found in Moemken et al. (2018) and Reyers et al. (2016). Weber et al. (2018) suggest that
the increase in backup needs may to some extend be compensated by using an appropriate
mix of wind energy generation and solar energy. Therefore future work should also include
potential changes of other renewable energy sources like solar power (e.g. Jerez et al., 2015)
to account for an optimal energy mix. This is crucial for the adaptation of the existing
energy system to climate change. Wohland et al. (2017) simulated the operation of a fully
renewable European electricity model based on EURO-CORDEX data. In line with Weber
et al. (2018) they find an increase of backup needs. This increase is connected to more
homogeneous wind conditions over Europe under future climate conditions.
Both Reyers et al. (2016) and Moemken et al. (2018) assume that a wind turbine is placed
at every model grid point. To account for the wind farm distribution and installed power
capacity, future work should also analyse wind power generation statistics (e.g. Cannon
et al., 2015; Drew et al., 2015; Tobin et al., 2016). In fact, a widespread distribution of
wind farms could be beneficial for the wind energy sector (Grams et al., 2017).
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In addition to climate change projections, the demand for predictions focussing on the
near future on timescales from one year up to one decade has strongly increased over the
last years, particularly in politics and economy (Goddard et al., 2013). Moemken et al.
(2016, Paper III) is the first study that analyses the decadal predictability of regional
scale wind speed and wind energy potentials. The results reveal a potential decadal pre-
dictability of wind speed and wind energy potentials over Central Europe in the MiKlip
decadal prediction system that is based on MPI-ESM (Marotzke et al., 2016). Although
the decadal forecast skill is limited to the first years after initialisation, it could allow the
investigation of future trends of wind energy potentials for the next one to five years. This
may be of high importance for the future development of wind power generation in Eu-
rope. As in Reyers et al. (2016), the SDD method (section 3.2) is used to downscale three
ensemble generations of the global decadal prediction system. Each generation comprises
ten ensemble members, which cover 52 respectively 54 decadal hindcasts resulting in 1600
hindcasts with a length of ten years. The downscaling of such a large ensemble is difficult
to realise with purely DD methods, assuming a simulation time of approximately five days
per hindcast with a RCM. Therefore the SDD is an adequate tool for the regionalisation
of the global model data and could also easily be applied to operational decadal prediction
systems. The regionalisation with SDD preserves and sometimes increases the decadal
forecast skill of the global runs. Additionally, it improves the ensemble spread in some
cases. This provides a wide range of opportunities for end-user applications.
The identified skill scores for Eout are comparable to skill scores for wind speed as detected
by Reyers et al. (2017, chapter 8) for a small dynamically downscaled MiKlip ensemble,
while predictive skill for Eout is higher compared to temperature and precipitation. In
general, differences between the individual hindcast generations are smaller in Moemken
et al. (2016) compared to Reyers et al. (2017). This could indicate that signals are more
robust for wind energy applications.
Moemken et al. (2016) detected a strong dependency of the decadal forecast skill of Eout on
the representation of westerly weather types in the MPI-ESM. This may enhance the un-
derstanding of the mechanisms behind decadal predictability, for example through further
investigations of the coupling between these large-scale weather types and teleconnection
patterns. Another topic that needs to be addressed in future work is the large uncertain-
ties in the decadal predictability of wind energy potentials in the MPI-ESM. In particular,
focus should be given to the non-systematic dependence of the forecast skill on seasons
and hindcast generation. Additionally, the influence of the initialisation strategy and the
ensemble size requires further investigations.
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The applied SDD approach has limitations regarding the temporal resolution (see also Rey-
ers et al., 2016). A DD method is necessary to analyse the decadal predictability of e.g.
the inter-daily variability of Eout or the duration of low-wind periods. Therefore, future
work should investigate the decadal predictability in a dynamically downscaled decadal
prediction system (“future work” part in Figure 9.2). As part of the second phase of the
national MiKlip project (www.fona-miklip.de), a regional component of the MiKlip decadal
prediction system is established. With this aim, the newest generation of the decadal pre-
diction system (preop) is currently downscaled for Europe using COSMO-CLM. This opens
a wide range of options for future work. First, a basic evaluation of the new regional pre-
diction system is required, focussing on primary meteorological variables like temperature,
pressure, precipitation, and wind speed (cp. Reyers et al., 2017). In a next step, the
decadal predictability of wind speed and wind energy potentials in the regional system will
be analysed. Additionally, the global preop ensemble is going to be downscaled with the
SDD to assess the decadal predictability of wind energy. The comparison of the results
from both downscaling methods enables the analysis of the influence of the chosen down-
scaling technique on the decadal forecast skill for wind energy. The comparison should
also include the older ensemble generations (Moemken et al., 2016). This may allow a
better estimation of uncertainties. Furthermore, composite analyses could help to under-
stand the mechanisms of decadal predictability. Finally, the decadal predictions produced
within MiKlip need to be analysed, with special focus on user applications. So far, most
studies focus on the hindcast ensembles to investigate the potential predictive skill of dif-
ferent variables. A first decadal forecast for 2017-2026 focussing on global temperature
was analysed and released on the MiKlip webpage (http://www.fona-miklip.de/decadal-
forecast-2017-2026/decadal-forecast-for-2017-2026/ ). This analysis will be complemented
with other variables, also considering the regional ensemble and potential end-user needs.

To conclude, the results of this thesis extend the current knowledge on wind speed and wind
energy potentials over Europe. They provide a substantial basis for the understanding of
climate change impacts on different timescales and give a new insight on the influence of
different downscaling approaches for wind energy applications. Additionally, the results on
decadal predictability are promising regarding the establishment of an operational decadal
prediction system for wind energy applications. The outcomes of this thesis are relevant
for the successful integration of wind energy into the energy system to enable the transition
from a fossil fuel driven energy system to one with a higher share of renewables.
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ABSTRACT: A statistical–dynamical downscaling (SDD) approach for the regionalization of wind energy output (Eout) over
Europe with special focus on Germany is proposed. SDD uses an extended circulation weather type (CWT) analysis on global
daily mean sea level pressure fields with the central point being located over Germany. Seventy-seven weather classes based on
the associated CWT and the intensity of the geostrophic flow are identified. Representatives of these classes are dynamically
downscaled with the regional climate model COSMO-CLM. By using weather class frequencies of different data sets, the
simulated representatives are recombined to probability density functions (PDFs) of near-surface wind speed and finally to
Eout of a sample wind turbine for present and future climate. This is performed for reanalysis, decadal hindcasts and long-term
future projections. For evaluation purposes, results of SDD are compared to wind observations and to simulated Eout of purely
dynamical downscaling (DD) methods.

For the present climate, SDD is able to simulate realistic PDFs of 10-m wind speed for most stations in Germany. The
resulting spatial Eout patterns are similar to DD-simulated Eout. In terms of decadal hindcasts, results of SDD are similar to
DD-simulated Eout over Germany, Poland, Czech Republic, and Benelux, for which high correlations between annual Eout
time series of SDD and DD are detected for selected hindcasts. Lower correlation is found for other European countries. It is
demonstrated that SDD can be used to downscale the full ensemble of the Earth System Model of the Max Planck Institute
(MPI-ESM) decadal prediction system.

Long-term climate change projections in Special Report on Emission Scenarios of ECHAM5/MPI-OM as obtained by SDD
agree well to the results of other studies using DD methods, with increasing Eout over northern Europe and a negative trend over
southern Europe. Despite some biases, it is concluded that SDD is an adequate tool to assess regional wind energy changes in
large model ensembles.
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1. Introduction

In recent years, the demand for renewable energy sources
as alternative to fossil sources has increased due to the
imperative need to reduce greenhouse gas emissions
(Solomon et al., 2007). In Europe, wind energy pro-
duction has emerged as a promising energy source to
mitigate the climate change resulting from anthropogenic
greenhouse gas emission. A main challenge for political
and economical decision makers is the installation of
an effective network of wind power plants (Manwell
et al., 2009; Wilkes et al., 2012) to meet the goal of the
European Commission to produce 15.7% of the EU’s
electricity usage from wind energy resources by 2020
(Moccia et al., 2011).

Near-surface winds, and thus wind energy produc-
tion, strongly depend on the synoptic scale variability

* Correspondence to: M. Reyers, Institute for Geophysics and Meteo-
rology, University of Cologne, Pohligstr. 3, 50923 Cologne, Germany.
E-mail: mreyers@meteo.uni-koeln.de

(2–6 days, e.g. passage of low- and high-pressure cen-
tres), seasonality, and on climate variability on different
timescales (e.g. Pryor and Barthelmie, 2010). Further-
more, conditions for wind energy production are strongly
influenced by local characteristics (e.g. Ouammi et al.,
2012). Hence, suitable predictions of regional changes of
wind energy potentials on inter-annual to decadal and on
centennial timescales are essential for future planning.

A set of global decadal prediction hindcasts have been
recently made available through the Coupled Model Inter-
comparison Project Phase 5 (CMIP5; Taylor et al., 2012).
In these experiments, initial conditions for decadal hind-
casts and predictions are taken from assimilation runs
using analysis data from the past and present for the relax-
ation towards gridded observational values. Since small
initialization perturbations, which reflect the observational
uncertainties, might rapidly grow, differences between
ensemble members may be large because of these uncer-
tainties (Merryfield et al., 2013). Therefore, large ensem-
bles of decadal hindcasts are required for the assessment
of the predictive skill. In CMIP5, most decadal prediction
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systems comprise up to ten realizations of yearly initial-
ized hindcasts and thus several of hundreds of simulations,
which can hardly be downscaled by a purely dynamical
downscaling (hereafter DD) with regional climate models
(RCMs). Therefore, an alternative downscaling approach
for the regionalization of large ensembles of decadal hind-
casts is required.

The same line of thought also applies to the region-
alization of long-term climate change projections, where
global climate model’s (GCMs) output needs to be down-
scaled to the regional and local scales. With this aim,
several downscaling techniques have been developed and
applied in recent years. They can be roughly classified as
statistical, dynamical or statistical–dynamical approaches
(Hewitson and Crane, 1996; Wilby and Wigley, 1997;
Fuentes and Heimann, 2000; Maraun et al., 2010). In
terms of the regional impact of climate change on wind
energy potentials, Nolan et al. (2012) analyse possible
changes in wind energy resources of Ireland with a DD
approach (ECHAM5/MPI-OM1 GCM ensemble simula-
tions and one RCM). Hueging et al. (2013) investigated
regional changes in wind energy potential for Europe by
considering ensemble projections from two RCMs driven
by ECHAM5/MPI-OM1 simulations (A1B scenario). An
empirical downscaling method has been employed by, for
example, Pryor et al. (2005) to estimate the future change
in wind energy, using wind observations as predictands
and large-scale atmospheric fields of ECHAM4/OPYC3
as predictors. In these and other studies, the analysis
focuses typically on single emission scenarios or a single
GCM/RCM. In case of the DD methods, this is surely due
to the very time-consuming high-resolution simulations of
the RCMs. At the same time, several studies reveal that
uncertainties in the future projections of synoptic variabil-
ity in GCMs arise not only from different greenhouse gas
forcings but also from discrepancies between individual
GCMs using the same scenario that may be quite large,
e.g. because of different parameterizations or uncertain-
ties in ocean circulation changes (e.g. Ulbrich et al., 2008;
Harvey et al., 2012; Woollings et al., 2012). Because of
these uncertainties, a downscaling methodology for wind
energy, which can easily be applied to large (multi-model)
ensembles of long-term future projections, would be bene-
ficial. A useful method for downscaling multiple GCMs is
the expansion of DD applications by statistical approaches
(e.g. Fuentes and Heimann, 2000). For wind applications,
for example, Najac et al. (2011) have recently combined
mesoscale modelling with statistical transfer functions
between large-scale and local winds to infer the impact of
climate change on surface winds over France.

In this study, a statistical–dynamical downscaling
(SDD) approach for wind energy applications on the
regional scale in Europe with special focus on Germany
is proposed and evaluated. The aim of the study is to
investigate in how far:

• SDD is able to simulate realistic near-surface wind
distributions for recent climate conditions;

• SDD produces comparable results to the time-
consuming DD with respect to the simulation of
wind energy output on different timescales;

• SDD is efficient for the application to large ensembles
of both decadal hindcasts and long-term climate change
projections to assess the changes of wind energy in near
future and to the end of the 21st century in multi-model
ensembles.

This study is organized as follows. The methodology of
SDD and the used data sets are introduced in Section 2.
Results of SDD as applied to different exemplary global
data sets are discussed in the following sections: Section 3
describes the evaluation of SDD based on ERA-Interim
Reanalysis data, Section 4 describes the application on
the Earth System Model of the Max Planck Institute
(MPI-ESM) decadal hindcasts, and Section 5 describes
investigations based on climate change projections with
the ECHAM5 model. A short discussion concludes this
paper.

2. Methods and data

The proposed SDD approach (following Fuentes and
Heimann, 2000; Pinto et al., 2010) for the simulation of
highly-resolved wind energy output consists of four cru-
cial steps (see Figure 1). These steps will be introduced and
described in detail in the following. For convenience, the
stepwise application of SDD to a reanalysis data set is pre-
sented. The application to other data sets, such as decadal
hindcasts, is quite similar and will be described later in this
section (see below).

Step 1: In the first step of SDD approach, a weather
typing approach is used to characterize the large-scale
circulation of each day (see Figure 1). With this aim, the
circulation weather type (CWT) approach from Jones
et al. (1993) is considered. This approach follows the
manual Lamb weather types (Lamb, 1972; Jenkinson
and Collinson, 1977) and has been widely used in many
applications (e.g. Jones et al., 2012). Daily mean sea level
pressure (MSLP) fields of the ERA-Interim reanalysis
project (Dee et al., 2011) are used as input data. This
data set comprises the period 1979–2010 and is interpo-
lated on a 2.5∘ grid for the computation of the CWTs.
By regarding instantaneous MSLP values at 16 points
around the central point at 10∘E, 50∘N (near Frankfurt,
Germany; cf. Figure 2), the near-surface atmospheric flow
for each day is determined and assigned to one of the ten
basic CWTs: northeast, NE; east, E; southeast; SE; south,
S; southwest, SW; west, W; northwest, NW; north, N;
cyclonic, C; anti-cyclonic, A. In addition, the mixed type
anti-cyclonic/west A/W is considered as its frequency is
comparable to the values of some of the basic CWTs and
should, therefore, not be neglected. For wind energy, a fur-
ther crucial factor is the strength of the geostrophic flow.
Therefore, aside from the direction of flow, a f -parameter
representing the gradient of the instantaneous MSLP
field at the central point is calculated. Depending on
the CWT, the f -parameter ranges from ca. 45 hPa per
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Figure 1. Schematic illustration of the SDD with its four crucial steps: 1 – large-scale weather type analysis; 2 – DD of representative days for
each weather class; 3 – recombination of simulated wind signatures for the representatives to PDFs of 10-m wind speed for each CCLM grid point;
4 – determination of spatial distributions of regional Eout by applying wind turbine characteristics to the PDFs. The single steps are described in

detail in Section 2.

1000 km (strong MSLP gradient) to values below 5 hPa
per 1000 km (slack MSLP gradient). To capture the full
spectrum of potential wind velocities within a CWT, each
of the 11 CWTs is subdivided into classes of f -parameters
with 5 hPa per 1000 km intervals (0–5 to 40–45 hPa per
1000 km). Altogether, a total of 77 classes have been
identified (see Table 1). As an example, Figure 2 shows
climatological MSLP fields for class W, with f -parameter
0–5 versus 35–40 hPa per 1000 km, and for class C,
with f -parameter 0–5 versus 20–25 hPa per 1000 km.
As expected, classes with high f -parameters (Figure 2(b)
and (d)) show a much stronger MSLP gradient around
the central point and thus higher geostrophic wind speeds
than classes with low f -parameters (Figure 2(a) and (c)).

Step 2: To obtain highly resolved wind signatures of
the different classes, in the second step of SDD, rep-
resentative days for each of the 77 classes are simu-
lated with the regional COSMO model of the German
Weather Forecast Service Deutscher Wetterdienst (DWD)
(http://www.cosmo-model.org) in its CLimate Mode (ver-
sion 4.8, hereafter CCLM). CCLM is a three-dimensional,
non-hydrostatic atmospheric circulation model with gen-
eralized terrain-following height level on a rotated coordi-
nate system (Rockel et al., 2008). CCLM simulations are
performed with a horizontal resolution of 0.22∘ × 0.22∘,
using ERA-Interim data as initial and boundary conditions.

The model domain is consistent with the domain used in
the EURO-CORDEX project (Giorgi et al., 2006), com-
prising the European-East Atlantic sector with 226 grid
points in south–north and 232 grid points in west–east
direction. It roughly ranges from 20∘N to 70∘N and from
30∘W to 50∘E.

For each of the 77 classes, ten representative days were
selected (see Appendix S1), if available, and simulated
with CCLM. If a class occurs on <10 days within the
ERA-Interim period 1979–2010, the full set of days is
used as representatives. A total of 669 representative days
have been simulated. The choice of the representative days
within a class is random, but we have selected representa-
tives from all four seasons if possible. As this is a quite
large number of selected days, it can be assumed that the
full spectrum of potential representatives is largely covered
by this method and thus the variability of the target param-
eter (wind) both for each weather class and climatology.

Step 3: In the third step, CCLM-simulated hourly
10-m winds of the representative days are recombined to
wind velocity distributions [probability density functions
(PDFs)] for the full ERA-Interim period 1979–2010.
The PDFs are determined for each CCLM grid point,
separately: for a given wind velocity (0.1 m s−1 veloc-
ity ranges), the respective occurrence is calculated as
sum of the contributions of all classes weighted by

© 2014 Royal Meteorological Society Int. J. Climatol. 35: 229–244 (2015)



232 M. REYERS et al.

(a) (b)

(c) (d)

Figure 2. Climatological means of exemplary CWT classes as obtained from MSLP fields of ERA-Interim. (a) CWT W with f -parameter between
0 and 5 hPa per 1000 km. (b) CWT W with f -parameter between 35 and 40 hPa per 1000 km. (c) CWT C with f -parameter between 0 and 5 hPa per
1000 km. (d) CWT C with f -parameter between 20 and 25 hPa per 1000 km. The black point represents the central point for the CWT analysis, the

black crosses the surrounding ERA-Interim grid points used for the computation of the CWTs. For more details, see text.

Table 1. Relative frequency, range of f -parameter (in hPa per
1000 km), and number of classes of each CWT. The last row

shows the total of identified CWT classes.

CWT Frequencies (%) f -Range No. of classes

NE 4.01 0–30 6
E 4.34 0–30 6
SE 4.93 0–35 7
S 5.36 0–35 7
SW 9.86 0–45 9
W 9.58 0–45 9
NW 8.17 0–45 9
N 5.29 0–35 7
C 12.02 0–25 5
A 32.16 0–25 5
A/W 4.30 0–35 7
Total no. of classes 77

the climatological class frequency and the number of
simulated representatives.

Step 4: The climatological 10-m wind speed PDFs form
the basis for the determination of mean wind energy output
(Eout) following Hueging et al. (2013). First, 10-m wind
velocities are extrapolated to a height of 80 m, which is
assumed to be the average hub height of onshore wind

turbines (EEA, 2009). For the extrapolation, the power law
is used:

v (z)
v
(
zr

) =
(

z
zr

)𝛼

, (1)

with v(z) and v(zr) being the wind velocities in 80 m (z) and
10 m (zr), respectively. The parameter 𝛼 is the power law
exponent, which is set to 0.2 for onshore areas and to 0.14
for offshore sites (IEC, 2005a, 2005b). Wind velocities of
80 m are then used to compute Eout, using wind turbine
characteristics of an idealized 2.5 MW wind turbine from
General Electric (2010):

• No energy output is produced below 80-m wind veloc-
ities of 3.5 m s−1 (cut-in velocity) and for velocities
higher than 25 m s−1 (cut-out velocity).

• Between wind velocities of 3.5 m s−1 (cut-in velocity)
and 12.5 m s−1 (rated velocity), Eout can be determined
as follows:

Eout = cp
1
2
𝜌𝜋R2v3

80, (2)

where cp is the power coefficient (0.35), 𝜌 is the air density
(constant value of 1.225 kg m−3), R is the rotor radius of
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the idealized wind turbine (50 m), and v80 is the 80-m wind
velocity.

• Between wind velocities of 12.5 m s−1 (rated velocity)
and 25 m s−1 (cut-out velocity), a constant energy output
of 2.5 MW is assumed.

To obtain spatial distributions of mean annual wind
energy output for the period 1979–2010, for each CCLM
grid point, computed Eout is integrated over all wind
velocity ranges of the gridded PDFs, using the respec-
tive climatological velocity frequencies as weighting
factors.

For the application of SDD method to shorter time
periods or to other data sets, only the weather typing
analysis (step 1) has to be adapted to these new data
sets. If, for example, Eout is to be simulated on annual
timescales, the CWT analysis is carried out for single
years. In steps 2–4, the resulting weather class frequencies
(e.g. for single years) are then used in the same manner as
for ERA-Interim climatology to obtain 10-m wind speed
PDFs and finally spatial distributions of regional Eout,
using the same simulated representative days as for the full
ERA-Interim period. This assumes that the selected days
are also representative for the weather classes in other data
sets, only the frequencies of the classes will change (e.g.
in future projections).

In this study, the SDD approach is applied to three differ-
ent data sets. For evaluation purposes, the SDD approach
is applied to ERA-Interim as described above. To calcu-
late adequate Eout values, realistic simulations of 10-m
wind speed PDFs are required (see step 3). In this respect,
SDD-simulated PDFs are compared to PDFs as derived
from observations. Hourly 10-m wind velocities from sta-
tions of the German Weather Forecast Service (DWD) are
used. We have only regarded stations with a height below
800 m asl, where measurements cover more than 98% of
the period 1979–2010. Furthermore, SDD-simulated Eout
is compared to Eout simulations of a purely DD method.
The DD run is simulated with CCLM, using continuous
ERA-Interim data from 1979 to 2010 as boundary condi-
tions (hereafter DDera). For DDera, Eout is computed from
hourly 10-m wind velocity output and then summed up for
certain periods, using the same turbine characteristics as
for SDD (see Equations 1 and 2). Aside from climatolog-
ical means, results of SDD for selected time periods are
compared to DDera results.

In terms of applications, the SDD approach is applied to
the decadal prediction system of the coupled MPI-ESM
(Mueller et al., 2012). The latest experiment version is
used (MPI-ESM Baseline1), where initial conditions for
decadal hindcasts and predictions are taken from assimila-
tion runs forced by sea surface temperature and salinity
anomalies of the operational ECMWF ocean reanalysis
system (ORAs4; Balmaseda et al., 2013). This experiment
comprises ten realizations of yearly initialized decadal
hindcasts and predictions from 1960 to 2011 (hereafter
dec1960 to dec2011; altogether 52× 10= 520 realiza-
tions), each of them covering a period of 10 years. SDD

results are compared to outcomes as obtained by the DD
method. Four DD runs are simulated with CCLM, using
atmospheric fields of four selected decadal hindcasts as
boundary conditions: first realization of dec1980 (initial-
ized at 01.01.1981; hereafter DD1980_1), first realization
of dec2000 (initialized at 01.01.2001; hereafter DD2000_1),
and the first and tenth realization of dec1990 (initial-
ized at 01.01.1991, respectively; hereafter DD1990_1 and
DD1990_10).

To demonstrate that SDD is appropriate for the appli-
cation to ensembles of long-term climate change projec-
tions, we employ the method also to simulations with
the GCM ECHAM5/MPI-OM of the Max-Planck-Institute
Hamburg (hereafter ECHAM5; Jungclaus et al., 2006;
Roeckner et al., 2006). SDD is applied to an ensemble
for recent climate conditions (20C scenario, 1961–2000)
and to the three scenarios B1, A1B, and A2 (2061–2100,
respectively) of the Special Report on Emission Scenar-
ios (SRES; Nakicenovic and Swart, 2000) to estimate
regional changes of wind energy by the end of the 21st
century. As the projected changes for pressure gradients
and winds under future climate conditions for Europe on
the regional scale are comparatively small (e.g. Hueging
et al., 2013), it can be assumed that primarily only the
frequencies of the weather classes will change in future cli-
mate, while the wind characteristics within each class will
remain largely unchanged. Therefore, the selected repre-
sentatives are considered as suitable also for the climate
conditions during the second half of the 21st century. The
CO2 concentration increases from 367 ppm in the year
2000 to 540, 703, and 836 ppm by the year 2100 for B1,
A1B, and A2, respectively. For the A1B scenario, results
of SDD are compared to Hueging et al. (2013), who have
employed two different RCMs (inter alia the CCLM) to
simulate regional changes in wind energy potential over
Europe using the first two realizations of ECHAM5 20C
and A1B as boundary conditions.

3. Evaluation and application to ERA-Interim

In this section, results of the single steps of the SDD
application to ERA-Interim are presented and evaluated
against observations and DDera. Figure 3 shows the cli-
matological frequencies of the 77 classes for the period
1979–2010 as obtained from the weather typing approach
(step 1). The most dominating CWTs are A, C, and the
westerly types (SW, W, NW). While for CWT A, the
observed f -parameter range is mainly restricted to low
values (0–5 and 5–10 hPa per 1000 km), frequencies of
the CWTs SW, W, and NW are highest for f -parameter
ranges of 5–10 to 20–25 hPa per 1000 km. These results
reflect that anti-cyclonic conditions are generally related
to weak MSLP gradients, and that westerly flows are pre-
dominantly connected with stronger near-surface winds.
Lowest frequencies are found for the easterly CWTs
(SE, E, NE).

As described in Section 2, the frequencies of the
77 weather classes are used for the recombination of
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Figure 3. Climatological frequencies of all weather classes for
ERA-Interim (1979–2010). For each CWT, weather classes are shown
for ascending f -parameter (5 hPa per 1000 km intervals) from left to
right (0–5, 5–10, 10–15 hPa per 1000 km, etc.). For better indication,

the CWTs are separated by black and grey colouring.

simulated representative days (step 2) to downscaled
PDFs of 10-m wind velocities per COSMO-CLM grid
point (step 3). According to the wind turbine character-
istics used in this study (see Equations 2), the majority
of Eout is produced by upper wind percentiles. Figure 4
exemplary shows the 75th and 90th percentiles for the

period 1979–2010 as derived from SDD and DDera.
Differences between SDD- and DDera-simulated per-
centiles are quite small for the entire European sector (see
Figure 4(a)–(d)). Both SDD and DDera reveal highest
percentiles over sea surfaces and at the northern coasts,
and smallest percentiles over the Alps and in southeast
Europe.

Compared to observations, the 75th and 90th per-
centiles are overestimated by SDD for some stations
in Mid-Germany, whereas for most stations in western
and southern Germany as well as in the coastal area,
SDD-simulated percentiles agree well to observations (see
Figure 5). In general, the north–south gradient observed
for Germany, with strongest percentiles at the coasts and
lowest percentiles near the Alps, is matched well by the
SDD approach.

For eight exemplary stations (for location of the sta-
tions, see Figure 5(a)), full PDFs are compared to PDFs
for the respective nearest CCLM grid point as derived
by SDD (1979–2010, see Figure 6). Please note that fre-
quencies for the six stations in former West Germany
are shown in 0.5 m s−1 intervals, whereas frequencies for
Schwerin (SW) and Leipzig (LE) are given in 1 m s−1

(a) (b)

(c) (d)

Figure 4. 75th (left column) and 90th (right column) percentiles in m s−1 of the 10-m wind velocity for the period 1979–2010. Upper row, DD; lower
row, SDD.
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(a)

(b)

Figure 5. (a) 75th and (b) 90th percentiles in m s−1 of the 10-m wind
velocity for the period 1979–2010 as obtained by SDD (shaded) and
observations (small circles). Note that (a) shows a zoom of Figure 4(c),
and (b) shows a zoom of Figure 4(d). The black circles in (a) mark the
locations of the stations shown in Figure 6: CH, Cuxhaven; BR, Bremen;
SW, Schwerin; ES, Essen; KA, Kassel; LE, Leipzig; ST, Stuttgart; MU,

Munich.

intervals (due to different measurement accuracy in for-
mer east Germany before 1990). Discrepancies between
SDD-simulated and observed PDFs are largest for the
coastal and near-coastal stations Cuxhaven (CH), Bremen
(BR), and Schwerin (SW), while PDFs are simulated quite
realistic for the non-coastal stations. However, the gen-
eral observed wind distributions are captured well by the
SDD approach, with highest wind speeds occurring in the
North and frequent low wind velocities in southern Ger-
many. The same PDFs have been derived from DDera sim-
ulations. These PDFs are for most stations similar to the
PDFs as obtained by the SDD approach. Only for few sta-
tions, results from DDera show a slightly higher agreement
to observations than SDD-simulated PDFs (e.g. Essen and
Munich).

The gridded PDFs of the 10-m wind velocity for the
period 1979–2010 are used to compute climatological
annual means of Eout per CCLM model grid point (step
4). The spatial pattern of Eout as obtained by the SDD
approach is realistic and quite similar to DDera-simulated

Eout, with highest values over ocean surfaces and rather
small output over mountainous areas and southeast Europe
(see Figure 7(a) and (b)). Only the magnitudes between
both downscaling methods slightly differ. For most
regions, SDD simulates higher Eout values than DDera, but
deviations are quite small compared with absolute mag-
nitudes (see Figure 7(c)). The main positive bias of SDD
compared to DDera results from a slight overestimation of
the frequencies of high wind speeds by SDD, as can be
seen for most of the eight stations in Germany presented
in Figure 6. Although the differences between the PDFs of
SDD and DDera are actually very small, they still lead to a
slight but visible overestimation of wind energy output by
SDD, as Eout is proportional to v3.

For the application to decadal predictions, SDD should
be able to simulate suitable Eout anomalies on timescales
from several years down to single years. This is first
tested for ERA-Interim by comparing annual time series
of Eout anomalies as simulated by SDD to time series
derived from DDera. Figure 8 shows such a comparison
for six exemplary sub-regions in central Europe (for
location of the sub-regions, see Figure 7(a)). For Belgium,
central Germany, northern Germany, and Poland, the
time series of both methods are quite similar. Despite a
slight underestimation of the general variability by SDD
compared to DDera, the year-to-year variation is captured
well. Larger discrepancies between the two methods of
up to 800 MWh year−1 can be seen for a sub-region in
northern France, where the annual variability is clearly
underestimated by SDD. Nevertheless, for most years, the
anomalies of both methods have the same sign. Differ-
ences between SDD and DDera are largest for a sub-region
in the North Sea. Comparisons of time series of 5-year
running means and for other sub-regions also reveal a good
accordance between SDD and DDera for land surfaces in
central Europe and a lower agreement over ocean surfaces
(not shown). Even over the Baltic States, SDD-simulated
time series of Eout are similar to DDera. An overview of the
regions with a high agreement between SDD and DDera is
given by Figure 9(a), which shows the correlation between
annual Eout time series of both downscaling methods for
all CCLM grid points. Very high correlations of more
than 0.8 can be seen for Germany, Benelux, and Poland.
Significant positive correlations of up to 0.8 are found
for Great Britain, Czech Republic, and parts of the Baltic
States, while correlation is low for southern Europe and
the North Sea. This is due to the used weather typing
approach, which is only representative for the large scale
flow at the surrounding of the central point (in this case
Germany and nearby areas) but not for areas far away from
it (e.g. Italy). A physical explanation for the comparable
low correlation over the North Sea is the high roughness
length variability over sea surfaces due to varying heights
of the water waves, which cannot be fully captured by
SDD on timescales down to single years (unlike DD), as
the same simulated representatives are used every time
(see Section 2).

Figure 9(b) shows the RMSE of the SDD time series rel-
ative to the time series as obtained by DDera. To take into
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Figure 6. PDFs of the 10-m wind velocity for the period 1979–2010 at eight exemplary stations and at the corresponding CCLM grid points. Black
line, SDD; dark grey line, observations; bright grey line, DD. Locations of the stations are shown in Figure 5(a). Please note that frequencies for the

upper six stations are shown in 0.5 m s−1 intervals, and for the lower two stations in 1 m s−1 intervals.

account that the RMSE is inherently small over regions
with low Eout and thus low variability (like e.g. the Alps)
and vice versa, the RMSE is normed by the standard devi-
ation of DDera. Over central Europe, regions with small
RMSE correspond well to regions with a high correlation

between both time series (cf. Figure 9(a)). This implies
that for these areas, SDD is not only able to capture the
year-to-year variation in wind energy output (Figure 9(a)),
but also simulates magnitudes of Eout, which are similar to
that of DDera (Figure 9(b)).
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(a)

(b)

(c)

Figure 7. (a) Annual mean of Eout in 103 MWh year−1 for ERA-Interim
(1979–2010) as obtained by DDera. (b) Annual mean of Eout in 103

MWh year−1 for ERA-Interim (1979–2010) as obtained by SDD. (c)
Difference between Eout from SDD and from DDera in 103 MWh year−1.
The boxes in (a) represent sub-regions for the computation of Eout time

series as shown in Figures 8 and 10.

4. Application to decadal hindcasts and predictions

The objective of this subsection is to investigate whether
SDD is appropriate for the application to the full ensem-
ble of the decadal prediction system of the MPI-ESM
(520 decadal hindcasts and predictions with a length
of 10 years). It should be kept in mind that a detailed

evaluation of a potential predictive skill of the MPI-ESM
on the regional scale is still ongoing and is not the
purpose of this study. This will be analysed in a
separate study.

Like for ERA-Interim, results of SDD application to
MPI-ESM are compared to the outcomes of DD. Here,
four selected decadal hindcasts are regarded. Again, sim-
ulated annual time series of Eout anomalies of both meth-
ods are compared. Figure 10 exemplary shows the annual
Eout anomalies of both methods for the first realization of
dec1980 (1 January 1981 to 31 December 1990). Despite
a slightly lower variability of SDD, time series of both
methods are quite similar. The accordance between SDD
and DD1980_1 is highest for Belgium (BE), sub-regions in
Germany, and Poland, while discrepancies are stronger
for the sub-region in northern France and over the North
Sea. Similar results are found for the first and tenth real-
ization of dec1990 and the first realization of dec2000
(not shown). These outcomes are confirmed when regard-
ing the correlation per grid point between the simulated
time series of SDD and DD methods (Figure 11). For
all four analysed hindcasts, correlations between SDD
and DD are highest for grid points over Germany, for
which the 77 weather classes were defined (see Section 2).
High and, in most cases, significant correlations are also
found for Poland and the Benelux. Also for the coastal
areas of these countries, where high energy output is pro-
duced, SDD simulations agree well to the DD method.
Compared to ERA-Interim (cf. Figure 9(a)) correlation
between SDD and DD is lower at grid points over the
Baltic States. Like for ERA-Interim, we have also com-
puted the RMSE of the SDD time series relative to the
time series as obtained by DD (not shown). Again, regions
with small RMSE correspond well to regions with high
correlations (cf. Figure 11), which means that the magni-
tudes of Eout as simulated by SDD are similar to those of
DD for these areas (particularly Germany). To summarize,
these results reveal that for onshore areas in central Europe,
SDD is an appropriate alternative to time-consuming DD
and can therefore be used as an applicable tool to anal-
yse the full ensemble of the decadal prediction system of
the MPI-ESM. An example for a potential application of
SDD to determine a predictive skill of the MPI-ESM is
given in Figure 12. For each realization of all yearly ini-
tialized decadal hindcasts and predictions, PDFs of the
10-m wind velocity for years 1–4 after initialisation are
determined to generate 4-year running mean time series
of Eout. Time series of the ensemble mean Eout as well as
the standard deviation (SD) between the ten realisations
for the sub-region in central Germany (CG) are shown in
Figure 12(a). For comparison, the corresponding 4-year
running mean time series as simulated by DDera is pre-
sented. Not surprisingly, the ensemble mean time series
of the MPI-ESM show a lower variability than time series
from DDera. At the same time, the spread between the dif-
ferent realisations is quite large, revealing that the uncer-
tainty arising from different initialisations is very high in
the MPI-ESM decadal prediction system. The correlations
between the 4-year running mean time series of DDera and
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Figure 8. Time series of annual Eout anomalies in 103 MWh for the ERA-Interim period 1979–2010 as obtained by SDD (black solid line) and by
DDera (grey dashed line) for sub-regions in Belgium (BE), central Germany (CG), northern Germany (NG), Poland (PO), northern France (NF), and
the North Sea (NS). For location of the sub-regions, see Figure 7(a). The correlations between SDD and DD time series are given in the upper left

corner of each panel.

of the MPI-ESM ensemble mean for years 1–4 after ini-
tialisation are rather low or in some cases even negative
for most grid points over central Europe (see Figure 12(b)).
For countries in central Europe, only over The Netherlands
and for a small region in Czech Republic, a significant pos-
itive correlation is found. These preliminary results sug-
gest that with respect to wind energy on the regional scale,
the predictive skill of the MPI-ESM decadal prediction
system for short lead times is rather small, but a much
deeper analysis is required to quantify the forecast skill.

5. Application to climate change projections

Finally, SDD is applied to different scenarios from the
ECHAM5 model. The weather typing approach is applied
to large-scale daily MSLP fields of the different ECHAM5
scenarios to obtain climatological PDFs of the 10-m wind
velocity for the recent climate (20C, 1961–2000) and for

the second half of the 21st century (A1B, B1, and A2 sce-
narios; 2061–2100, respectively). Then, the differences
between the resulting Eout climatologies of the greenhouse
gas scenarios and the 20C scenario are computed to deter-
mine climate change signals for wind energy (2061–2100
minus 1961–2000). For the A1B scenario, results are com-
pared to Hueging et al. (2013), who used DD methods for
their analysis. For consistency, ensemble means of the first
and second realization of the scenarios are regarded.

The climatological regional Eout patterns for the
ECHAM5 20C scenario (1961–2000) as obtained by
SDD are comparable to the results of Hueging et al.
(2013, cf. their figure 1(e)), with highest values over
ocean surfaces and near the coasts and low energy output
for southeast Europe (not shown).

The regional changes of Eout for 2061–2100 in the
three SRES are shown in Figure 13. For the A1B sce-
nario, annual changes as simulated by SDD (Figure 13(a))
are similar to the changes detected by Hueging et al.
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(a)

(b)

Figure 9. (a) Correlation between annual Eout time series of SDD and
DDera per CCLM grid point for the ERA-Interim period 1979–2010.
Grid points with a significant correlation are dotted (t-test, 95% con-
fidence level). (b) RMSE of annual Eout time series of SDD relative
to DDera time series per CCLM grid point for the ERA-Interim period

1979–2010, normed by the standard deviation of DDera.

(2013, see their figure 3(g)). Although the magnitudes
of the signals are somewhat weaker for SDD, regional
trends of annual Eout are the same as in Hueging et al.
(2013). Both, results of SDD and of Hueging et al. (2013),
reveal increasing annual energy output over northern and
northeast Europe and a decrease in Eout over southern
Europe. Similar results are observed for changes in Eout
during the winter months (December, January, February;
see Figure 13(b)). Again, climate change signals as sim-
ulated by SDD are weaker than in Hueging et al. (2013,
see their figure 3(i)), but regional patterns agree well in
terms of the sign of the trend. Higher Eout for 2061–2100
is observed over northern and central Europe, whereas less
energy output is simulated for the Mediterranean coun-
tries. Clear regional differences between SDD and Hueg-
ing et al. (2013) occur only for the climate change signals
of the summer months (June, July, and August). While
Hueging et al. (2013) detected a positive trend of Eout
over the Baltic Sea (see their figure 3(k)), reduced Eout
for 2061–2100 is simulated by SDD (Figure 13(c)). How-
ever, both methods reveal a decrease in Eout for Germany,

Poland, Great Britain, and most parts of the Mediterranean
countries.

The advantage of SDD is that it can also be applied
to other greenhouse gas scenarios. Climate change
signals of B1 are weaker than for the A1B scenario
(Figure 13(d)–(f)), as one would expect. Apart from that,
both scenarios show similar regional trends by the end of
the 21st century, i.e. increasing Eout over northern Europe
and decreasing Eout over southern Europe for the whole
year and for the winter months, and a negative trend over
central and western Europe for summer.

Regional changes of annual Eout in the A2 scenario have
the same magnitude as in the A1B scenario (Figure 13(g)).
Interestingly, differences between both scenarios are
stronger in terms of the intra-annual changes. While the
trend of Eout for the winter months is stronger in the
A2 scenario over most parts of the central and northern
Europe, in particular over Germany (Figure 13(h)), the
decrease in Eout for June, July, and August is slightly
weaker than in the A1B scenario (Figure 13(i)).

Despite slight discrepancies in the climate change pro-
jections for the A1B scenario compared to Hueging et al.
(2013), these results reveal that the proposed SDD is
an adequate downscaling tool for the analysis of wind
energy changes in large ensembles of climate change sce-
narios, providing results consistent to DD methods in a
cost-efficient way.

6. Summary and discussion

In this study, a SDD approach for the analysis of regional
changes of wind energy output in large ensembles of
decadal prediction systems and long-term climate projec-
tions is proposed and evaluated for different data sets.
Here, SDD has been generated for applications to cen-
tral Europe with special focus on Germany, for which the
weather typing approach has been performed.

Regarding the verification of the SDD methodology and
the comparison to observational data, SDD is able to derive
realistic near-surface wind distributions for most stations
in Germany. Some deficits can be observed for coastal sta-
tions, where simulated and observed PDFs of 10-m wind
velocities differ. These discrepancies may in part be asso-
ciated with the resolution of the model chain. At a hor-
izontal resolution of 0.22∘ (∼25 km), grid cells that cor-
respond to stations at the coasts consist of not only land
surfaces but also ocean surfaces, thus comprising unre-
alistic surface characteristics. Results for coastal areas
would be improved by increasing the horizontal resolution
of the simulated representative episodes by, for example,
using a double nesting procedure. Despite these deficits,
we conclude that SDD simulates realistic near-surface
wind speeds and regional Eout patterns for recent cli-
mate conditions, and provides comparable results to the
time-consuming pure DD approach. This assessment is
valid for the entire European sector.

Regarding the application of SDD to decadal hindcasts,
a good accordance between the SDD approach and DD
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Figure 10. Time series of annual Eout anomalies in 103 MWh for the first realization of dec1980 (1981–1990) as obtained by SDD (black solid line)
and by DD1980_1 (grey dashed line) for sub-regions in Belgium (BE), central Germany (CG), northern Germany (NG), Poland (PO), northern France
(NF), and the North Sea (NS). For location of the sub-regions, see Figure 7(a). The correlations between SDD and DD time series are given in the

upper left corner of each panel.

methods on timescales down to single years is found for
Germany and nearby areas, particularly Poland, Czech
Republic, and the Benelux countries. For four exemplary
decadal hindcasts, high correlations between SDD- and
DD-simulated annual Eout time series are found for these
onshore areas. Lower correlations are detected for other
European countries (e.g. France and Scandinavia) and for
offshore areas, which implies that the applicability of SDD
for decadal prediction systems as used in this study is lim-
ited to Germany and the surrounding countries. This is due
to the considered weather typing approach that is repre-
sentative for the large-scale flow over an area of roughly
20∘ by 30∘ centred over Germany (see Figure 2). The
approach could also be applied for decadal predictions of
wind energy in other regions of Europe simply by choos-
ing different central points for the CWT classification, e.g.
in Scandinavia or in southern Europe. For Germany and
nearby areas, annual Eout time series as obtained by SDD
show a slightly lower variability than DD-simulated time

series. The consequences of this deficit for the detection
of a predictive skill of decadal hindcasts (e.g. in terms of
anomaly correlations) can be considered negligible, as for
almost every year SDD simulates similar anomalies as DD
in terms of the sign of Eout, as this effect can be easily
scaled up. SDD has been employed to downscale the full
ensemble of MPI-ESM that comprises 520 decadal hind-
casts and predictions of a length of 10 years. Assuming a
simulation time of ∼5 days per hindcast when using tran-
sient simulations with RCMs even on fast supercomputers,
the regionalization of such a large ensemble can hardly
be accomplished by purely DD methods. SDD, therefore,
forms a suitable tool to analyse the predictive skill of
decadal prediction systems with respect to wind energy on
regional scales.

In this study, simulated representative days of the 77
classes have been forced with ERA-Interim. In a sensi-
tivity study, we have repeated the procedure as applied to
decadal hindcasts with a new set of representatives using

© 2014 Royal Meteorological Society Int. J. Climatol. 35: 229–244 (2015)
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Figure 11. Correlation per CCLM grid point between annual Eout time series simulated by SDD and by DD for exemplary hindcasts dec1980_r1
(1981–1990), dec1990_r1 (1991–2000), dec1990_r10 (1991–2000), and dec2000_r1 (2001–2010). Grid points with a significant correlation are

dotted (t-test, 95% confidence level).

large-scale fields of the MPI-ESM as boundary condi-
tions. For Germany and nearby areas, results of the sen-
sitivity study are quite similar to the results presented
in this paper (e.g. annual Eout time series). Hence, the
SDD method seems to be quite robust and the downscaled
ERA-Interim-forced representatives used in this study can
also be employed for the application of SDD to decadal
prediction systems of other institutions contributing to
CMIP5.

Regarding climate change applications, the SDD method
performs well for the entire European sector, including
Scandinavia and southern Europe. For example, long-term
climate change projections of wind energy potentials
as obtained by SDD agree well to the results of other
studies using DD methods, with mean annual wind

energy increasing over countries in northern Europe and
decreasing over southern Europe in a future climate (cf.
Hueging et al., 2013). Furthermore, several studies reveal
positive trends over the regions in northern Europe for
future winter months and a decline in wind energy during
the summer months (Nolan et al., 2012; Hueging et al.,
2013), which is consistent with the findings of this study.
These results suggest that ten representatives per class
(see also Appendix S1) are sufficient to cover the main
spectrum of potential European-wide spacious wind pat-
terns that may occur within a class in climatological time
periods. Compared to Hueging et al. (2013), the climate
change signals of SDD are slightly weaker for most parts
of Europe, hence the magnitude of the wind energy trends
as simulated by SDD should be regarded with care. Here,
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(a) (b)

Figure 12. (a) Four-year running mean time series of Eout for years 1–4 after initialization for the MPI-ESM decadal hindcasts and predictions from
dec1960 to dec2011 as obtained by the SDD method for a sub-region in central Germany (cf. Figure 7(a)). Shown is the ensemble mean over the ten
realizations (black solid line), and the ensemble mean± 1 SD of the ten ensemble members (grey dashed line). The thin grey line shows the 4-year
running mean time series of DDera. (b) Correlation between the 4-year running mean time series of DDera (thin grey line in (a)) and of the MPI-ESM
ensemble mean for years 1–4 after initialization (black solid line in (a)). Grid points with a significant correlation are dotted (t-test, 95% confidence

level).

Figure 13. Regional changes (%) in Eout between ECHAM5 SRES (2061–2100) and the ECHAM5 20C scenario (1961–2000) as obtained by SDD
for all year (annual, left column), winter (DJF, middle column), and summer (JJA, right column). Differences are shown for ensemble means of the

first two realizations of the scenarios A1B (upper row), B1 (middle row), and A2 (lower row).
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SDD has been employed to SRES of the GCM ECHAM5.
As its application to other data sets requires only a new
employment of the CWT analysis on global MSLP fields,
while the other steps of the downscaling procedure are
in principle the same as for ECHAM5, SDD can easily
be applied to other GCMs. This enables an assessment of
the uncertainty of long-term climate change projections
that may arise not only from different scenarios but also
from different GCMs. SDD is therefore an adequate tool
to analyse regional wind energy changes in multi-model
ensembles such as those released in the new CMIP5
(Taylor et al., 2012), which includes current GCM data of
29 institutions.

We conclude that SDD is a suitable and inexpensive
alternative to DD and that it can be easily applied for
large ensemble of global runs. Although the current appli-
cation focused on wind energy potentials for Germany,
decadal hindcasts and climate change projections, the
methodology has the potential for use in many other
applications. Another potential valuable application could
be, for example, the investigation of changes of surface
wind percentiles in near- and long-term future. As PDFs
of 10 m winds are computed in the third step of SDD (see
Section 2), the same procedure and simulated represen-
tatives as used in this study could be employed for this
purpose.

The here presented SDD methodology has been devel-
oped primarily for applications within the ongoing
MiKlip consortium (‘Mittelfristige Klimaprojektion’,
http://www.fona-miklip.de) and a detailed analysis of
the forecast skill of the MPI-ESM decadal prediction
system with respect to wind energy on the regional scale
is still ongoing. With this aim, different deterministic and
probabilistic metrics (see, for example, Goddard et al.,
2013) for estimating the predictive skill and the forecast
uncertainty will be employed.
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Abstract

The high temporal variability of wind power generation represents a major challenge for

the realization of a sustainable energy supply. Large backup and storage facilities are

necessary to secure the supply in periods of low renewable generation, especially in

countries with a high share of renewables. We show that strong climate change is likely

to impede the system integration of intermittent wind energy. To this end, we analyze

the temporal characteristics of wind power generation based on high-resolution climate

projections for Europe and uncover a robust increase of backup energy and storage

needs in most of Central, Northern and North-Western Europe. This effect can be
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traced back to an increase of the likelihood for long periods of low wind generation and

an increase in the seasonal wind variability.

Introduction 1

The mitigation of climate change requires a fundamental transformation of our energy 2

system. Currently, the generation of electric power with fossil fuel-fired power plants is 3

the largest source of carbon dioxide emissions with a share of approximately 35 % of the 4

global emissions [1]. These power plants must be replaced by renewable sources such as 5

wind turbines and solar photovoltaics (PV) within at most two decades to meet the 2◦C 6

or even the 1.5◦C goal of the Paris agreement [2–4]. While wind and solar power have 7

shown an enormous progress in efficiency and costs [5, 6], the large-scale integration into 8

the electric power system remains a great challenge. 9

The operation of wind turbines is determined by weather and climate and thus 10

strongly depends on the regional atmospheric conditions. Hence, the generated electric 11

power is strongly fluctuating on different time scales. These fluctuations are crucial for 12

system operation [6–11]. In particular, large storage and backup facilities are needed to 13

guarantee supply also during periods of low wind generation [12–14]. How does climate 14

change affect these fluctuations and the challenges of system integration? Previous 15

studies have addressed the impact of climate change on the availability of cooling 16

water [15,16], the energy demand [17,18], the combination of run-of-river and PV [19] or 17

the change of global energy yields of wind and solar power [20–27]. However, the 18

potentially crucial impact of climate change on temporal wind fluctuations has not yet 19

been considered in the literature. In this article, we provide an in-depth analysis of the 20

temporal statistics of wind generation in a changing climate and we assess their 21

potential impact on energy system operation. 22

A consensus exists about general changes in the mean sea level pressure and 23

circulation patterns in the European/North Atlantic region [28–31]. A projected 24

increase of the winter storminess over Western Europe [32,33] leads to enhanced wind 25

speeds over Western and Central Europe, while in summer a general decrease is 26

identified [23–25,34]. This can lead to a strong increase of the seasonal variability of 27

wind power generation and thus impede system integration, even though the annual 28
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mean changes are comparatively small. 29

In this article, we study how climate change affects the temporal characteristics of 30

wind power generation and the necessity for backup and storage infrastructures in 31

wind-dominated power systems in individual European countries and for a perfectly 32

interconnected European power system. Our analysis is based on five state-of-the-art 33

global circulation models (GCMs) downscaled by the EURO-CORDEX initiative [35,36]. 34

We complement our results with an assessment of the large ensemble of the Coupled 35

Model Intercomparison Project Phase 5 (CMIP5, [37]) based on circulation weather 36

types [38]. The paper is organized as follows. We first introduce our model to derive the 37

backup need of a country as a function of the storage capacity. Additionally, we present 38

the methods to analyze the CMIP5 ensemble. Afterwards we report our results. The 39

article closes with a discussion. 40

Methods 41

The operation of future renewable power systems with large contributions of wind 42

crucially depends on weather and climate. GCMs are used to simulate the dynamics of 43

the earth system on coarse spatial scales for different scenarios of future greenhouse gas 44

concentrations (representative concentration pathways, RCPs [39]). To analyze the 45

operation of the electric power system, a high spatial and temporal resolution is 46

required. Our analysis is thus based on a subset of the EURO-CORDEX ensemble 47

which provides dynamically downscaled climate change data at high resolution (0.11◦ 48

and 3 hours). Time series for the aggregated wind power generation in a country are 49

obtained from the near-surface wind speed (see Fig 1a, b). 50

Backup and storage infrastructures are needed when renewable generation drops 51

below load. In order to quantify the necessary amount of backup and storage to ensure 52

a stable supply, we adopt a coarse-grained model of the electric power system (see 53

Fig 1c, d). Backup and storage needs crucially depend on the temporal characteristics 54

of wind power generation, in particular the length of periods with low wind generation 55

and the seasonal variability. In the present paper, we thus focus on temporal 56

characteristics and their potential alteration due to climate change. 57
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Fig 1. Conversion of near-surface wind speeds to country-wise aggregated
wind power generation combined with backup and storage infrastructures.
a, Near-surface wind velocities of the downscaled ERA-Interim data over Europe for one
exemplary point in time. b, Corresponding estimated wind power yield for each country
in units of the installed capacity at this exemplary time step. c, Renewable generation
(black) and load (grey) in Germany for one exemplary week in spring assuming a power
system with 100 % wind power on average. The vertical line denotes the time selected in
panels a and b. The color indicates the operation of the storage system. Green: Excess
power is stored. Yellow: Residual load is covered by the storage. Red: Residual load is
covered by backup power plants as the storage is empty. Blue: Excess power must be
curtailed as the storage is fully charged. d, Evolution of the storage filling level S(t).

Wind power generation time series 58

Our analysis is based on a subset of the EURO-CORDEX regional climate simulations 59

which provides dynamically downscaled climate change data at high resolution for 60

Europe based on five GCMs: CNRM-CM5, EC-EARTH, HadGEM2-ES, 61

IPSL-CM5A-MR, MPI-ESM-LR [35] (see also Table A in S1 Appendix). All data is 62

freely available for example at the ESGF (Earth System Grid Federation) node at 63

DKRZ (German Climate Computing Centre) [40]. The five models are downscaled using 64

the hydrostatic Rossby Centre regional climate model RCA4 [41,42]. The downscaling 65

provides continuous surface (10 m) wind data from 1970 to 2100 with a spatial 66

resolution of 0.11◦ and a temporal resolution of T = 3 hours. Unfortunately, downscaled 67

data at this high spatial and temporal resolution is not yet available for more GCMs or 68

for different regional climate models at ESGF [40]. Considering the use of only one 69

regional climate model, Moemken et al. [25] show that differences between different 70
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GCMs are usually larger than differences between different regional climate models. 71

We analyze a strong climate change scenario (RCP8.5) using a rising radiative 72

forcing pathway leading to additional 8.5 W/m2 (∼1370 ppm CO2 equivalent) by 2100 73

and a medium climate change scenario (RCP4.5, ∼650 ppm CO2 equivalent, see S3 74

Appendix) [39]. We compare two future time frames, 2030-2060 (mid century, ‘mc’) and 75

2070-2100 (end of century, ‘eoc’), to a historical reference time frame (1970-2000, ‘h’). 76

The calculation of wind power generation requires wind speeds at the hub height of 77

wind turbines. As the high resolution wind velocities are only available at a height of 78

z0 = 10 m, they must be extrapolated to a higher altitude. We choose a hub height of 79

z = 90 m as in [22] and extrapolate the surface wind velocities vz0 using a power law 80

formula: vz = vz0 (z/z0)
1/7

[43]. Although widely used, this simple formula is only valid 81

for smooth open terrain and only applies for a neutrally stable atmosphere [44,45]. 82

Unfortunately, the available data set does not allow to assess the stability of the 83

atmosphere. Thus, it is unclear how to improve the scaling law with the present data 84

available. Tobin et al. [22] show in a sensitivity study that their results hardly depend 85

on the extrapolation technique or on the chosen hub height. They further state that the 86

“uncertainty related to climate model formulation prevails largely over uncertainties lying 87

in the methodology used to convert surface wind speed into power output”. 88

The wind generation is derived using a standardized power curve with a cut-in wind 89

speed of vi = 3.5 m/s, a rated wind speed of vr = 12 m/s and a cut-out wind speed of 90

vo = 25 m/s as in [22]. The capacity factor CF (t) (i.e. the generation normalized to the 91

rated capacity) then reads 92

CF (t) =





0 if vz(t) < vi or vz(t) ≥ vo.

v3
z(t)−v3

i

v3
r−v3

i
if vi ≤ vz(t) ≤ vr

1 else.

(1)

In order to account for wind farms and regional (or sub-cell) velocitiy variations, the 93

power curve is smoothed using a gaussian kernel (see Fig A in S1 Appendix) 94

Ker(v) =
1√

2πσ2
exp

[
−
(
v0 − v)2

)

2σ2

]
, (2)

where we chose v0 = vmax/2 + 0.3 m/s and σ = 1 m/s with vmax being the maximum of 95
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the occurring wind velocities v at hub height. The parameters were chosen such that 96

the rated wind power output is reached for wind speeds which are a little bit higher 97

than the chosen rated wind speed [43,46]. 98

To obtain the gross generation per country, we equally distribute wind farms on grid 99

points for which the local average wind yield is higher than the country average (see 100

Fig B in S1 Appendix) [47]. The distribution is fixed using historical reanalysis data 101

from ERA-Interim [48] downscaled by the EURO-CORDEX initiative [35,41] to 102

guarantee consistency (cf. Fig 1b). We do not use the wind farm distribution as of 103

today because installed capacities in a fully-renewable power system will be much higher 104

and also more widespread than they are today such that wind parks will be built in yet 105

unused locations. Furthermore, it was shown in [47,49] that different wind farm 106

distributions do not significantly affect the results (see also Figs D-F in S4 Appendix 107

where we tested a homogeneous wind farm distribution within each country). 108

Wind power generation is aggregated using two approaches: (a) aggregation per 109

country neglecting transmission constraints, assuming an unlimited grid within each 110

country; (b) aggregation over the whole European continent, assuming a perfectly 111

interconnected European power system (copperplate). If we find the same results for 112

both cases, we can assume that these results also hold for the intermediate case. The 113

intermediate case is discussed elsewhere [50,51] for current climatic conditions and in 114

Wohland et al. [52] for a changing climate but without considering storage. 115

As the temporal characteristics of offshore and onshore wind power highly differ 116

from each other, it is important to assess the impact of climate change on offshore and 117

onshore wind separately – at least in a first step. Therefore, in this study, offshore sites 118

are not considered. 119

For the load time series L(t) we use data of the year 2015 provided by the European 120

Network of Transmission System Operators for Electricity (ENTSO-E, [53]) and repeat 121

this year 31 times. The load time series have been adapted to the calendars of the 122

individual models, if necessary, by e.g. removing the 31st of a month for HadGEM2-ES, 123

which uses a 30-day calendar, or by constructing an additional day for leap years by 124

repeating the 28th of February. In order to avoid trends in the load timeseries, we 125

consider a single year only. Furthermore, we show in a sensitivity study assuming 126

constant loads that our results dominantly depend on the generation timeseries and are 127
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hardly affected by the load time series (see Fig C in S4 Appendix). Throughout all time 128

frames we assume that wind power provides a fixed share γ of the load L(t) per 129

country [12]. Hence, the fluctuating wind power generation R(t) is scaled such that 130

R(t) = γ
CF (t)

〈CF (t)〉 〈L(t)〉, (3)

where the brackets denote the average over the respective time frame for a given model. 131

This procedure normalizes out a possible change of the gross wind power yield, and thus 132

allows to isolate the effects of a change in the temporal distribution of the renewable 133

generation. As a consequence, in all considered time frames (historical, mid century and 134

end of century), the total amount of energy generated by wind power plants is the same. 135

Only changes in the temporal aspects such as the duration of low-wind periods or the 136

seasonal wind variability can lead to changes in backup energy and storage needs (see 137

the following sections). For the copperplate assumption, the wind power generation is 138

scaled such that each country provides a fixed share γ of the country-specific load. 139

Afterwards, the country-specific wind power generation is summed-up to one aggregated 140

time series. In the main manuscript, we focus on a fully renewable power system per 141

country, i.e., γ = 1. Results for different values of γ are shown in Figs A and B in S4 142

Appendix. 143

Calculation of backup energy needs 144

Country-wise aggregated wind generation and load data are used to derive the backup 145

energy need of a country given different storage capacities. At each point of time t 146

power generation and consumption of a country must be balanced [12,50,54] 147

R(t) +B(t) = ∆(t) + L(t) + C(t), (4)

where R(t) and B(t) denote the generation by fluctuating renewables and dispatchable 148

backup generators, respectively, L(t) is the load and C(t) denotes curtailment 149

(cf. Fig 1c). ∆(t) is the generation (∆(t) < 0) or load (∆(t) > 0) of the storage facilities, 150
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such that the storage filling level evolves according to (cf. Fig 1d) 151

S(t+ T ) = S(t) + ∆(t) · T. (5)

where T is the duration of one time step (here: 3 hours). The storage filling level must 152

satisfy 0 ≤ S(t) ≤ Smax with Smax being the storage capacity. We decide to minimize 153

the total backup energy 154

minBtot =
∑

t

B(t) · T (6)

which also minimizes fossil-fuel usage and hence greenhouse gas emissions. One option 155

to minimize Btot is to consider a storage-first strategy [54], which we apply sequentially: 156

In the case of overproduction (i.e. R(t) > L(t)) excess energy is stored until the storage 157

device is fully charged, 158

∆(t) = min[R(t)− L(t); (Smax − S(t))/T ]. (7)

To ensure power balance, we may need curtailment 159

C(t) = R(t)− L(t)−∆(t). (8)

In the case of scarcity (i.e. R(t) < L(t)) energy is provided by the storage 160

infrastructures until they are empty, 161

∆(t) = −min[L(t)−R(t);S(t)/T ]. (9)

The missing energy has to be provided by backup power plants, 162

B(t) = L(t)−R(t) + ∆(t). (10)

The backup power B is not restricted in our model and can be interpreted as the 163

aggregated amount of backup power per country, not differentiating between different 164

technologies. In order to keep the storage neutral, a periodic boundary condition is 165

applied [55]: We run the above algorithm twice. First, we choose S(t = 0) = Smax/2. In 166

the second run, we set S(t = 0) to S(t = tmax) of the first run. This way, the storage 167
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filling level at t = tmax equals the initial storage filling level at t = 0. We emphasize 168

that by the term ‘storage’ we mean storage regardless of the technical realization. 169

Hence, Smax describes the total accumulated storage capacity, including virtual storage. 170

For simplicity, we neglect losses in the storage process. 171

In the figures we show the average backup energy per year E = 〈B〉/〈L〉 · Lyear. 172

Lyear is the average yearly gross electricity demand of the respective country. Thus, 173

E/Lyear gives the share of energy that has to be provided by dispatchable backup 174

generators [54]. 175

Persistence of low wind situations 176

We measure the probability for long low-wind periods during which a high amount of 177

energy is required from storage devices and backup power plants. Therefore, we identify 178

all periods for which the wind power generation is continuously smaller than average 179

(i.e. R(t) < 〈R〉) and record their duration τ . We decided to choose 〈R〉 as threshold 180

value because we are interested in long periods of underproduction, which cause the 181

storage to become depleted such that backup energy is required. From the single 182

durations τ , we can estimate a probability distribution. Extreme events are quantified 183

by the 95 % quantile of the distribution. 184

Seasonal wind variability 185

The wind yield in Europe is usually higher in winter than in summer. An increasing 186

seasonal wind variability would refer to higher wind yields in the winter months and/or 187

lower wind yields in the summer months and would lead to higher backup energy needs 188

during summer. 189

We define the winter-summer ratio of the country-wise aggregated wind power 190

generation as the ratio of the average winter wind generation 〈R〉DJF and the average 191

summer wind generation 〈R〉JJA: 192

Rwinter−summer =
〈R〉DJF

〈R〉JJA
, (11)

with ‘DJF’: December, January, February, and ‘JJA’: June, July, August. 〈R〉DJF and 193

〈R〉JJA are the mean generations within a certain time frame (historical, mid century, 194
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end of century). 195

Analysis of low wind periods using a statistical analysis of a 196

large CMIP5 ensemble 197

Our analysis is complemented with lower resolution data of 22 GCMs contributing to 198

the Coupled Model Intercomparison Project Phase 5 (CMIP5, [37]). The GCM output 199

is analyzed with a statistical method developed by Reyers et al. [23, 24]. We 200

characterize the large-scale circulation over Central Europe by determining the 201

prevalent circulation weather type (CWT, [38]) using instantaneous daily mean sea level 202

pressure (MSLP) fields around a central point at 10◦E and 50◦N (near Frankfurt, 203

Germany) at 00 UTC (see also Fig 2 in Reyers et al. [23]). The different CWT classes 204

are either directional (‘North’, ‘North-East’, ‘East’, ‘South-East’, ‘South’, ‘South-West’, 205

‘West’, ‘North-West’) or rotating (‘Cyclonic’, ‘Anti-cyclonic’). Additionally, a proxy for 206

the large-scale geostrophic wind (denoted as f -parameter) is derived using the gradient 207

of the instantaneous MSLP field. Higher geostrophic wind values (i.e. higher 208

f -parameters) correspond to larger wind power yields in Central Europe [56]. 209

In order to compare the CMIP5 and the EURO-CORDEX data, we test whether the 210

f -parameter derived using the coarse ERA-Interim reanalysis data [23] is capable to 211

reproduce the characteristics of German low-wind generation periods as determined from 212

the downscaled ERA-Interim dataset [48]. We classify days with below-average wind 213

power generation (scarcity) for each CWT by a low value of the f -parameter, f(t) ≤ fth. 214

Thus, for each day, we can analyze whether the classifier (f(t) ≤ fth) correctly predicts 215

that the wind power generation is below average (R(t) < 〈R〉) or erroneously predicts 216

that the wind power generation is above average (R(t) ≥ 〈R〉). The quality of this 217

classification is quantified by the fraction of true predictions, called sensitivity 218

SEN =
n[R < 〈R〉& f ≤ fth]

n[R < 〈R〉& f ≤ fth] + n[R < 〈R〉& f > fth]
(12)

and the fraction of false predictions 219

FFP =
n[R ≥ 〈R〉& f ≤ fth]

n[R ≥ 〈R〉& f ≤ fth] + n[R ≥ 〈R〉& f > fth]
, (13)
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where n denotes the number of days where the conditions are satisfied [57]. A 220

compromise must be found between a maximum sensitivity for high values of fth and a 221

minimum fraction of false predictions for low values of fth. A common choice is to 222

choose the value fth which minimizes (1− SEN)2 + FFP2 [57] (see also Fig C in S1 223

Appendix (ROC-curve)). Under the assumption that the meaning of the f -parameter 224

does not depend on GCM and time frame, we use the derived fth to estimate the 225

duration of low wind periods as described in above. 226

Results 227

Increase of backup and storage needs 228

We assess the impact of climate change on the average backup energy per year E as a 229

function of the storage capacity Smax. The storage capacity is given in units of the 230

yearly load Lyear of a country and is shown on a range between Smax = 10−5 to 231

Smax = 10−1. The case of Smax = 10−5 can be regarded as the no-storage case. Results 232

hardly differ for even smaller storage capacities. It should be noted that storage 233

capacities above about 10−3 correspond to a scenario with massive extension of 234

(effective) storage capacities. This could include the large-scale deployment of novel 235

technologies, in particular chemical storage and/or virtual storage. As in highly 236

renewable power systems huge amounts of storage will be necessary (see e.g. [54,55]), we 237

decided to consider also these highly optimistic cases. 238

All models in the EURO-CORDEX ensemble predict an increase of the necessary 239

backup energy in most of Central Europe (i.e. Germany, Poland, Czech Republic, 240

Switzerland, Austria, the Netherlands and Belgium), France, the British Isles and 241

Scandinavia for a strong climate change scenario (RCP8.5) by the end of the century 242

relative to the historical time frame (see Fig 2c and d). This implies that even though 243

the same amount of energy is produced by renewables in both time frames, less 244

renewable energy can actually be used. Relative changes are highest in Switzerland and 245

the United Kingdom with a range between 12.2 to 24.2 % (ensemble mean: 15.6 %) and 246

7.1 to 16.5 % (ensemble mean: 12.1 %), respectively for a storage capacity of 247

Smax = 0.01 ·Lyear. However, results for mountainous regions like Switzerland should be 248
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Fig 2. Impact of strong climate change on backup energy needs in Europe.
a, Amount of energy that has to be provided by dispatchable backup generators in
Germany as a function of the storage capacity Smax for the five models in the
EURO-CORDEX ensemble and a strong climate change scenario (RCP8.5). Energy is
given in units of the average yearly gross electricity consumption Lyear. Blue: 1970-2000
(h), Red: 2030-2060 (mc), Yellow: 2070-2100 (eoc). b, Absolute change of the average
backup energy as a function of Smax in Germany. Colors are the same as in panel a. c,
d, Relative change of the average backup energy needs by the end of the century with
respect to the historical time frame for 29 European countries and two values of the
storage capacity Smax. The color code corresponds to the average of the five models and
the hatching indicates the robustness of the results. No hatching: 5/5, striped: 4/5,
crossbred: 3/5 models agree on the sign of change.

regarded with caution as wind farms might be placed at sites which are unsuitable. In 249

addition, climate model results over complex terrain are known to have large 250

uncertainties. An opposite effect is observed for the Iberian Peninsula, Greece and 251

Croatia where the need for backup energy decreases (e.g., Spain: -4.7 to -15.5 %; 252

ensemble mean: -9.1 % for Smax = 0.01 · Lyear). These results hold for a variety of 253

scenarios for the development of storage infrastructures leading to different values of the 254

storage size Smax, being more pronounced for larger storage sizes. The latter partly 255

results from a change in the seasonal variability of the wind power generation 256

(cf. below). In the Baltic region and South-Eastern Europe, relative changes are weaker 257

and the models most often do not agree on the sign of change and can therefore be 258
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Fig 3. Impact of climate change on backup energy needs in Europe for
different time frames and scenarios. a, mid century and strong climate
change (RCP8.5). b, end of century and medium climate change (RCP4.5).
Further parameters and presentation as in Fig. 2c.

regarded as not robust [58,59]. 259

Similar changes are observed already at mid century (2030-2060, see Fig 3a and 260

Fig A in S2 Appendix) and for RCP4.5 (see Fig 3b and Fig A in S3 Appendix). 261

However, the results are less pronounced and often not robust. 262

For Germany (Fig 2a and b), the absolute increase of the average backup energy per 263

year E amounts to 0.6-3.8 % of the average yearly consumption Lyear by the end of the 264

century. Assuming a yearly consumption of the order of Lyear = 600 TWh [60], this 265

corresponds to an additional need of 4-23 TWh of backup energy per year. 266

In a perfectly interconnected Europe, the average relative backup energy per year is 267

much smaller than for individual countries (e.g., for Germany, cf Fig 2a and Fig 4a). 268

This is because the balancing takes place over a large spatial scale with many different 269

wind patterns at the same time step. For all five models and all storage capacities, we 270

find an increase of the average backup energy per year E by the end of the century (see 271

Fig 4). Values range from 0.3 to 2.2 % of the average yearly consumption Lyear. For 272

high storage capacities, the change depends strongly on the seasonal wind variability 273

(cf. below). Hence, we find increasing backup energy needs for many single European 274

countries as well as for a perfectly interconnected Europe. This implies that, even 275

though balancing takes place over large spatial scales, certain wind situations occur 276

simultaneously in many countries. In fact, Wohland et al. [52] find that wind conditions 277

become more homogeneous within Europe in a future climate, which decreases 278
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Fig 4. Impact of strong climate change on backup energy needs for a
perfectly interconnected European power system. a, Amount of energy that
has to be provided by dispatchable backup generators in Europe as a function of the
storage capacity Smax for the five models in the EURO-CORDEX ensemble and a
strong climate change scenario (RCP8.5). Energy is given in units of the average yearly
gross electricity consumption Lyear. Blue: 1970-2000 (h), Red: 2030-2060 (mc), Yellow:
2070-2100 (eoc). b, Absolute change of the average backup energy as a function of Smax.
Colors are the same as in panel a.

inter-state balancing of electricity. For mid century, the same effect albeit at a weaker 279

magnitude can be observed. 280

Two main drivers for the increase in the backup energy can be identified: a higher 281

probability for long periods with low wind power generation and a higher seasonal wind 282

variability. 283

Challenges by long low-wind periods 284

During long periods of low renewable generation, the storage facilities get depleted with 285

a high probability such that the residual load has to be covered by backup power plants 286

leading to a high backup energy need. In Fig 5 we show the duration distribution of 287

periods for which wind power generation is continuously lower than average (i.e. 288

R(t) < 〈R〉) for Germany (panel a) and the relative change of the 95 % quantile (panel 289
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Fig 5. Change of the duration of periods with low wind generation. a,
Distribution of the duration of periods during which the wind generation is continuously
lower than average (R(t) < 〈R〉) in Germany for the five models in the
EURO-CORDEX ensemble. Boxes represent the 25 % to 75 % quantiles, whiskers
indicate the 5 % and 95 % quantiles, the red line is the median, the blue dot shows the
mean and black dots represent outliers. Results are shown for the historical time frame
(h, 1970-2000) and the end of the century (eoc, 2070-2100) for a strong climate change
scenario (RCP8.5). b, Relative change of the duration assigned to the 95 % quantile by
the end of the century with respect to the historical time frame for 29 European
countries. The color code corresponds to the average of the five models and the
hatching indicates the robustness of the results. No hatching: 5/5, striped: 4/5,
crossbred: 3/5 models agree on the sign of change.

b). The 95 % quantile shifts to longer durations in most of Central Europe, France, the 290

British Isles, Sweden and Finland and decreases on the Iberian Peninsula by the end of 291

the century. These findings are robust in the sense that all five models in the 292

EURO-CORDEX ensemble agree on the sign of change as illustrated for Germany in 293

Fig 5a. 294

Long low-wind periods are crucially difficult for the operation of future renewable 295

power systems [13]. An increasing magnitude for such extreme events thus represents a 296

serious challenge for renewable integration. In Eastern Europe, Italy, Greece and 297

Norway relative changes are weaker and not robust. The effect develops mostly in the 298

second half of the century (cf. Fig B in S2 Appendix) and for strong climate change 299

(RCP8.5, cf. Fig B in S3 Appendix). 300

The complete distribution of durations is shown in Fig 6. We find that for Germany 301

(panels a) not only the duration associated with the 95 %-quantile tends to increase but 302

also the probability for particularly long durations (except for CNRM-CM5). 303

Considering the perfectly interconnected European power system (panels b), we also 304
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Fig 6. Change of the duration of periods with low wind generation. a, One
minus the cumulative distribution function (CDF) of periods having a duration τ during
which the wind generation is continuously lower than average (R(t) < 〈R〉) for Germany
and b, for the European copperplate. Results are shown for the historical time frame (h,
1970-2000) and the end of the century (eoc, 2070-2100) for a strong climate change
scenario (RCP8.5) for the five models in the EURO-CORDEX ensemble. The dashed
vertical line represents the 95 %-quantile of the CDF.

find that the 95 % quantile shifts to higher values by the end of the century. 305

Furthermore, the probability for low-wind periods having a duration of up to about 500 306

hours increases (again except for CNRM-CM5). For longer durations, the curves often 307

cross. However, it is difficult to evaluate such extreme events appropriately in the 308

context of climate change given the finite duration of the time series. All in all, this 309

analyis indicates that long lasting low-wind conditions, which extend over the whole 310

European continent, are projected to become more likely (see also [52]). 311
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Fig 7. Impact of strong climate change on the seasonal variability of wind
power generation. Relative change of the winter-summer ratio of the average wind
power yield 〈R〉DJF/〈R〉JJA (DJF: December-February vs. JJA: June-August) by the
end of the century (eoc, 2070-2100) with respect to the historical time frame (h,
1970-2000). The brackets denote the temporal average over the respective winter and
summer months. Results are shown for a strong climate change scenario (RCP8.5) for
29 European countries. The color code corresponds to the average of the five models
and the hatching indicates the robustness of the results. No hatching: 5/5, striped: 4/5,
crossbred: 3/5 models agree on the sign of change.

Higher seasonal wind variability 312

The second reason for an increase of backup and storage needs is an increasing intensity 313

of the seasonal wind variability. Typically, the wind power yield is highest in the winter 314

months such that backup power plants are needed mostly in summer. 315

The winter-summer ratio increases for most of Central and North-Western Europe, 316

and decreases for the Iberian Peninsula, Greece and Croatia (see Fig 7) for four or all 317

five models in the EURO-CORDEX ensemble. In these countries the seasonal 318

variability therefore contributes to the observed changes of backup needs. Changes are 319

small and not robust in Italy, most of Eastern Europe and Scandinavia (except 320

Denmark). Hence, the increase of backup needs in Northern Europe is attributed solely 321

to the higher probability for long periods with low wind power generation. For mid 322

century (see Fig C in S2 Appendix), and for medium climate change (RCP4.5, see Fig C 323

in S3 Appendix), results are comparable but less robust for some countries. 324

For the perfectly interconnected European power system, four of the five models 325

predict an increasing seasonal wind variability in the range of 4.1 to 10.4 %. Thus, the 326

lower seasonal wind variability on the Iberian Peninsula, Greece and Croatia cannot 327
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totally compensate the higher seasonal wind variability in the other European countries. 328

In contrast, HadGEM2-ES predicts a decrease of -2.8 %. 329

The higher seasonal wind variability also explains the relative increase of the backup 330

energy for higher storage capacities (cf. Fig 2). A high storage capacity allows to store 331

some part of the energy for several months. However, as the storage capacity is still 332

limited, a higher seasonal wind variability implies that the storage is fully charged 333

earlier in winter and that it is depleted earlier in summer. Thus, less excess energy can 334

be transferred from the winter to the summer months if the seasonal variability of wind 335

power generation increases. 336

The duration of low-wind periods is strongly associated with the seasonal wind 337

variability, e.g. low-wind periods are more frequent over Western Europe in summer 338

than in winter. To assess the implications of this connection in a changing climate, we 339

evaluated the distribution of durations of low-wind periods also per season, and 340

computed the changes between the distributions for the end of the century vs. recent 341

climate conditions. We found that in countries where the seasonal wind variability 342

increases, the duration of low-wind periods also increases (in most cases) in all seasons, 343

but primarily in summer . This result is robust for all five models. The same effect, 344

albeit in the reverse direction, is observed for e.g. Spain, where a decreasing duration of 345

low-wind periods is coupled to the decreasing seasonal wind variability and hence to 346

shorter durations of low-wind periods in summer. We note that there are also countries 347

where the probability for long low-wind periods increases, but no change in the seasonal 348

wind variability is observed (e.g. Finland). Hence, we conclude that the change of 349

seasonality and duration are indeed highly coupled, but one effect is not simply the 350

consequence of the other. 351

Low-wind periods in a large CMIP5 ensemble 352

To substantiate our findings, we analyze a large CMIP5 ensemble [37] consisting of 22 353

GCMs with a much coarser resolution than the EURO-CORDEX ensemble as explained 354

in the methods section. 355

The typical duration of periods with f(t) ≤ fth in Central Europe increases by the 356

end of the century for most GCMs in the CMIP5 ensemble. 19 of the 22 models predict 357
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Fig 8. Assessment of long low-wind periods in a large CMIP5 ensemble. a,
Days with below average wind power generation in Central Europe are identified by a
low value of the f -parameter (f(t) ≤ fth) in the GCM output. To determine the
optimal value of the threshold fth, for each circulation weather type (CWT, here, the
western type is shown) we compare the f -parameter to the German wind power output
R(t), calculated from the dynamically downscaled ERA-Interim reanalysis dataset [48].
b, Absolute change of the duration of periods with f(t) ≤ fth by the end of the century
(eoc, 2070-2100) compared to the historical time frame (h, 1970-2000) for a strong
climate change scenario (RCP8.5) for 22 GCMs in the CMIP5 ensemble. The change of
the mean duration, the 90 % quantile and the 95 % quantile of the duration distribution
are shown. Filled circles represent the five GCMs which are also downscaled by the
EURO-CORDEX initiative.

an increase of the mean duration (Fig 8b). The 90 % quantile of the duration increases 358

for 16 models and remains unchanged for the remaining six models, while the 95 % 359

quantile increases for 18 of the 22 models. Fig 8b shows that the five models of the 360

EURO-CORDEX ensemble (shown as filled circles) form a representative subset of the 361

CMIP5 ensemble since their results are well distributed within the range of the majority 362

of all models and thus do not contain outliers. Hence, the large CMIP5 ensemble 363

corroborates our previous findings, predicting an increase of the likelihood for long 364

periods with low wind power output for a strong climate change scenario. 365

To assess the sensitivity of the choice of fth, we repeated our analysis by determining 366

one value for fth which is independent of the underlying CWT. This does not change 367

the results as shown in Fig I in S4 Appendix. 368
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Climatologic developments driving enhanced seasonality 369

The identified increase in the seasonal variability of wind power generation has been 370

discussed in terms of the projected changes of large-scale atmospheric circulation and 371

regional wind conditions. A consensus exists about general changes in the large-scale 372

circulation patterns in the Eastern North Atlantic region and Europe, which is however 373

dependent on the time of the year [28]. During winter, the eddy-driven jet stream and 374

cyclone intensity are extended towards the British Isles [29]. Accordingly, winter 375

storminess is projected to increase over Western Europe [32,33], leading to enhanced 376

winds over Western and Central Europe. The signal in summer corresponds rather to a 377

northward shift of the eddy driven jet stream, cyclone activity and lower tropospheric 378

winds, together with an increase in anticyclonic circulation over Southern Europe [30]. 379

The latter is associated with an expansion of the Hadley circulation due to enhanced 380

radiative forcing [31]. These developments are projected to decrease wind speeds during 381

summer [23–25,34]. 382

These seasonal changes have strong implications not only on temperature and 383

precipitation patterns, but also in the seasonal wind regimes and intra-annual variability. 384

The seasonal variability of wind power generation increases under future climate 385

conditions [23,25,34] even though the annual mean changes are comparatively 386

small [21, 22, 24, 25, 34]. The impact may be large for the operational systems, and thus 387

needs to be quantified adequately based on state-of-the-art climate model projections. 388

Discussion 389

Wind power, PV and other renewable sources can satisfy the majority of the global 390

energy demand [5,6, 61]. However, system integration remains a huge challenge: The 391

operation of wind turbines and PV relies on weather and climate and thus shows strong 392

temporal fluctuations [7–10,12–14,51,62]. The impact of climate change on the global 393

energy yields of wind and solar power has been addressed previously [21–26], but the 394

impact on fluctuations and system integration has been addressed only 395

recently [52,63,64]. 396

In this paper, we analyzed the change of the temporal characteristics of wind power 397

generation in a strong (RCP8.5) and a medium climate change scenario (RCP4.5, see 398
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Fig 3a and S3 Appendix). Backup and storage needs increase in most of Central, 399

Northern and North-Western Europe and decrease over the Iberian Peninsula, Greece 400

and Croatia. As these effects are observed for both aggregation approaches used in this 401

study (approach (a): aggregation per country, approach (b): European copperplate), we 402

hypothesize that the effect will also be observed in intermediate scenarios with 403

restricted interconnection between countries. By mid century and for medium climate 404

change, results are less pronounced and often not robust. Two main climatologic 405

reasons for the observed increase were identified: a higher probability for long periods of 406

low wind power generation and a stronger seasonal wind variability. 407

Wohland et al. [52] examined climate change impacts for different levels of European 408

grid integration. Since the same climatic input data was used, their results can 409

complement the interpretation of the findings in the current study. Neglecting energy 410

storage, they report an increase of backup energy irrespective of the grid design by the 411

end of the century and RCP8.5. 412

The projected increase in backup energy needs may partly be compensated in some 413

countries by using an appropriate mix of wind and PV (see also Fig H in S4 Appendix). 414

Furthermore, wind generation from offshore wind farms is often more persistent and 415

installed capacities are strongly increasing. In a further study, climate projections for 416

onshore and offshore wind and PV should thus be analyzed together in order to account 417

for possible changes in the temporal variations of the combined system of renewables. 418

To isolate the change of the temporal characteristics of wind power generation, we 419

made several simplifications. First of all, we assumed that wind provides a fixed share γ 420

of the load for all time frames. This procedure normalizes out a possible change of 421

global wind yields (previously discussed [21–25]). In S4 Appendix Figs A-C, we 422

evaluated the impact of a higher or lower renewable penetration γ and of the exact load 423

time series on our results and found the same tendencies, albeit at different magnitude. 424

Technological progress of the wind turbines and changes of typical hub heights were not 425

considered in a detailed way. However, a different siting of wind farms or a higher hub 426

height of 120 m hardly impacts our results (see Figs D-G in S4 Appendix). For an 427

integrated assessment, technological progress should be taken into account, but our 428

approach reveals the impact of climate change on the temporal characteristics clearly. 429

A reliable interpretation of climate projections should be based on multi-model 430
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ensembles [22,37]. Our analysis of the small EURO-CORDEX ensemble consisting of 431

five models shows robust results regarding the sign of change for several regions in 432

Europe. A statistical analysis of the output of 22 GCMs from the CMIP5 ensemble 433

supports our findings, as the duration of periods with low values of the f -parameter 434

over Central Europe is likely to increase. Large-scale climatologic developments leading 435

to an increase of the seasonal wind variability were previously discussed [23,25,28–34]. 436

For future research, it would be highly desirable if larger ensembles of dynamically 437

downscaled models would be provided. Furthermore, data at turbine hub height should 438

be made available. Ongoing downscaling experiments within the new CMIP6 CORDEX 439

initiative [65] will allow to assess the impact of climate change on system integration of 440

intermittent renewables for various regions in the same manner. This should include a 441

detailed and explicit analysis on the projected changes of both wind and PV. In 442

conclusion, our work contributes to highlight the importance of integrated energy and 443

climate research to enable a sustainable energy transition. 444

Supporting information 445

S1 Appendix. Supporting figures and tables for the methods section. 446

S2 Appendix. Mid century (2030-2060). 447

S3 Appendix. RCP4.5. 448

S4 Appendix. Sensitivity studies. 449
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Abstract. The current state of development and prospects of the regional MiKlip decadal prediction system for Europe are 15 

analysed. The Miklip regional system consists of two 10-member hindcast ensembles computed with the global coupled 

model MPI-ESM-LR downscaled for the European region with COSMO-CLM to a horizontal resolution of 0.22° (~25km). 

Prediction skills are computed for temperature, precipitation, and wind speed using E-OBS and an ERA-Interim driven 

COSMO-CLM simulation as verification datasets. Focus is given to the eight European PRUDENCE regions and to lead 

years 1-5 after initialization. Evidence of the general potential for regional decadal predictability for all three variables is 20 

provided. For example, the initialized hindcasts outperform the uninitialized historical runs for some key regions in Europe 

and for some variables both in terms of accuracy and reliability. However, forecast skill is not detected in all cases, but it 

depends on the variable, the region, and the hindcast generation. A comparison of the downscaled hindcasts with the global 

MPI-ESM-LR runs reveals that the MiKlip prediction system may distinctly benefit from regionalization, in particular for 

parts of Southern Europe and for Scandinavia. The forecast accuracy and the reliability of the MiKlip ensemble is 25 

systematically enhanced when the ensemble size is stepwise increased, and a number of 10 members is found to be suitable 

for decadal predictions. This result is valid for all variables and European regions in both the global and regional MiKlip 

ensemble. The predictive skill improves distinctly, particularly for temperature, when retaining the long-term trend in the 

time series. The present results are encouraging towards the development of a regional decadal prediction system. 
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1. Introduction 

In recent years, the interest in climate predictions on time-scales from one year up to a decade has increased in the climate 

science community, since this time span falls within the planning horizon for a wide variety of decision makers (Meehl et al., 

2009; 2014). A large ensemble of initialised decadal hindcasts has been consolidated in a component of the Coupled Model 

Intercomparison Project Phase 5 (CMIP5; Taylor et al., 2012), and the number of studies aiming at decadal predictions has 5 

strongly increased in recent years (for a review see Meehl et al., 2014). Typically, the North Atlantic is a key region for 

decadal predictions and forecast skill is found for various quantities such as heat content and SST (e.g. Kröger et al, 2012; 

Yaeger et al., 2012), CO2 uptake (Li et al., 2016) and integrated quantities such as the AMOC (Pohlmann et al., 2013a) and 

sub-polar gyre (Matei et al., 2012; Yaeger et al., 2012; Robson et al., 2013). Other studies focus on primary meteorological 

parameters on the global scale, in particular surface temperature (e.g Chikamoto et al., 2012; Doblas-Reyes et al., 2013; Ho 10 

et al., 2013; Corti et al., 2015), while few studies analyse storm tracks (Kruschke et al., 2014, 2016), Atlantic tropical 

cyclones (Dunestone et al., 2011), intense or extreme events (e.g. Benestad and Mezghani, 2015) or zoom into a certain 

region of the world (e.g. Guemas et al., 2015). For example, Sutton and Hodson (2005) found a downstream impact of the 

Atlantic Multidecadal Oscillation (AMO; SST anomalies over the North Atlantic) on decadal time scales, with higher 

temperatures and increased precipitation over Europe in an AMO warm phase compared to a cold phase. 15 

In the German research consortium MiKlip (http://www.fona-miklip.de), a global decadal prediction system was developed 

based on the Max-Planck-Institute Earth System Model (MPI-ESM) (for an overview see Marotzke et al., 2016). Within the 

first phase of the project, three hindcast generations were produced. The skill of the MiKlip System for decadal predictions 

was analysed in a wide variety of recent studies. For example, Müller et al. (2012) investigated global surface air 

temperature in the first generation of the global MiKlip system (baseline0) and found that the initialized hindcasts have 20 

predictive skill over the North-Atlantic region, while negative skill scores are identified for the tropics. A modified 

initialization in the second global MiKlip system generation (baseline1) considerably improves the performance in the 

tropics, but brings only limited skill improvement over the North-Atlantic and Europe (Pohlmann et al., 2013b). Significant 

positive skill scores for cyclone frequencies over the Central North-Atlantic were identified by Kruschke et al. (2014) in the 

global baseline0 and baseline1 generations, but no significant skill was detected over the Eastern North-Atlantic and Europe. 25 

Furthermore, Kadow et al. (2016) evaluated the global MiKlip system with respect to temperature and precipitation, giving 

evidence that an enlargement of the hindcast ensemble generally leads to an improvement of the prediction system.  

The MiKlip consortium is to our best knowledge the first institution worldwide which has established a decadal prediction 

system for the regional scale. With this aim considerable efforts were made to downscale the global MPI-ESM hindcasts by 

developing and/or employing different regionalisation techniques. Previous experiences reveal that a skill for regional 30 

decadal predictions exists but that the interpretation of the results is quite complex due to their non-linear relationship to the 

global prediction skill. For example, Mieruch et al. (2014) found rather heterogeneous predictive skill for precipitation and 

temperature over Europe in the baseline0 generation. The skill differs over space, season, variable, and lead time after 
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initialisation. However, a general feature is an improved model spread for precipitation in the downscaled hindcasts when 

compared to their global counterparts. A potential for predicting regional peak winds and wind energy potentials over 

Central Europe several years ahead was identified in Haas et al. (2016) and Moemken et al. (2016). Particularly, they found 

highest skill scores for the first years after initialisation. However, these studies consider different variables, lead times, skill 

metrics, and downscaling and data pre-processing methods, which makes it difficult to identify general conclusions for the 5 

decadal predictability over Europe in the MiKlip decadal prediction system. 

In this study, the decadal predictive skill for temperature, precipitation, and wind speed over Europe is analysed for the 

baseline0 and baseline1 generation of the MiKlip system. With this aim, we used the same methodologies for all three 

variables to ensure comparability. Global MPI-ESM and downscaled hindcast ensembles are considered to address the 

following three key questions:   10 

• Is there a potential for skilful regional decadal predictions in Europe, and does this skill depend from the long-term 

trend? 

• Does regional downscaling provide an added value for decadal predictions? 

• How does the regional decadal predictive skill depend on the ensemble size? 

The main topics of this paper are to demonstrate the potential of skilful regional decadal climate prediction for Europe for 15 

specific key climate variables to assess the added value compared to the respective global predictions and the impact of the 

ensemble size on the skill estimates. Thus, our focus lies on the methodological development and not on the physical 

mechanisms leading to the predictive skill.  

The datasets used in this study are described in section 2, followed by the methodologies for data pre-processing and skill 

analysis in section 3. The results for the three key questions are shown in section 4. Section 5 summarizes the results of a 20 

sensitivity analysis with respect to different pre-processing methodologies. A summary and discussion, as well as an outlook 

for future work are given in section 6.   

2. Data 

The analysed global hindcasts were simulated with the coupled model MPI-ESM in low-resolution (MPI-ESM-LR; 

Giorgetta et al., 2013). Its atmospheric component is based on the ECHAM6 model (Stevens et al., 2013) with a horizontal 25 

resolution of T63 and 47 vertical levels, which is coupled to the MPIOM ocean model (Jungclaus et al., 2013) with a 

horizontal resolution of 1.5° and 40 vertical levels. Two hindcast generations are considered here, both computed with the 

MPI-ESM-LR but with different initialisation strategies. The first generation (baseline0; Müller et al., 2012) is initialised 

with oceanic conditions from an assimilation experiment, where the model state is nudged towards temperature and salinity 

anomalies from NCEP/NOAA reanalysis (Kalnay et al., 1996). For the second generation (baseline1; Pohlmann et al., 30 

2013b), temperature and salinity anomalies from the ocean reanalysis system 4 (ORAS4; Balmaseda et al., 2013) are used 

instead, together with a full-field 3-D atmospheric initialisation using fields from ERA40 (Uppala et al., 2005) and ERA-
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Interim (Dee et al., 2011). For both generations, yearly initialised hindcasts are available, each of them comprising a 10-year 

period. For the downscaling experiment, global forcing for hindcasts of five starting dates are used (1 January 1961, 1971, 

1981, 1991, and 2001; hereafter referred to as dec1960, dec1970, dec1980, dec1990, and dec2000) to cover the whole period 

from 1961-2010. For each starting date, an ensemble of 10 members was generated using 1-day lagged initialisation from the 

assimilation experiments (cf. Marotzke et al., 2016 for more details). This resulted in an ensemble of 50 global hindcasts per 5 

generation (baseline0 and baseline1; hereafter MPI_b0 and MPI_b1).  

In this study, we analyzed global hindcasts dynamically downscaled to the EURO-CORDEX domain (Giorgi et al., 2006; cf 

Figure 1) at a horizontal grid resolution of 0.22° using the mesoscale non-hydrostatic regional climate model COSMO-CLM 

(CCLM; Rockel et al., 2008) on a rotated grid. The model version COSMO4.8-clm17 is employed. By using the MPI-ESM-

LR ensemble as driving data, the global “initial condition” perturbation strategy is simply passed to the regional model. 10 

Analog to the global data, the experiment includes MPI_b0 and MPI_b1 downscaled hindcasts for dec1960, dec1970, 

dec1980, dec1990, and dec2000, with 10 members per decade (hereafter CCLM_b0 and CCLM_b1). 

To evaluate the performance of both the global MPI-ESM and the regional CCLM hindcasts, a CCLM simulation run with 

reanalysis boundary conditions and observational datasets are used for verification. For temperature and precipitation we 

consider the observational dataset E-OBS (Haylock et al., 2008) based on the ECA&D (European Climate Assessment & 15 

Dataset; http://eca.knml.nl/) at a regular 0.25°x0.25° grid. As no gridded dataset is available for wind, a CCLM simulation 

forced with boundary conditions from ERA40 and ERA-Interim is employed as verification dataset for wind speed. For this 

reanalysis driven simulation CCLM is applied in the same model setup as for the regionalisation of the global hindcast 

ensemble (see above). 

In this study, we want to quantify if the initialisation with observed climate states improves the performance of decadal 20 

predictions. To address this issue, uninitialised model simulations started from historical CMIP5 runs are usually considered 

as reference dataset (see also section 3.2). With this aim, a 10-member ensemble of uninitialised MPI-ESM-LR historical 

runs started from a pre-industrial control simulation are used, which are only forced by the aerosol and greenhouse gas 

concentrations for the period 1850-2005 (e.g. Müller et al., 2012).          

3. Methods 25 

3.1 Data processing 

All datasets considered in this study are pre-processed in an analogous manner to enable a direct comparison. First, all data is 

interpolated to the same regular 0.25°x0.25° grid, which corresponds to the resolution of the E-OBS data. At each grid point, 

monthly anomaly time series are computed by subtracting the long-term means for the period 1961-2010 from the 

interpolated raw datasets.  30 

In this study, we are primarily interested in anomalies on inter-annual to decadal timescales, which can be associated with 

the natural variability. Thus, to exclude responses to external radiative forcing, all monthly anomaly time series are de-
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trended. We use a simple linear regression approach for all variables at each grid point to remove the long-term trend for the 

period 1961-2010, as the trend for the different variables over Europe cannot be uniformly defined but depends on the 

considered region (Christensen et al., 2007b). Finally, annual values are derived and multi-annual means for lead years 1-5 

are built for further evaluation. In order to assess the impact of the de-trending on the predictive skill, the data processing 

steps as described above are repeated without de-trending for a sensitivity study. 5 

Following the suggestion of Goddard et al. (2013), the skill analysis is mainly performed for spatial means.  Spatial 

averaging of the de-trended anomaly time series is performed for eight PRUDENCE regions over Europe (see Fig. 1; 

Christensen and Christensen, 2007a). Note that we only used grid points over land surfaces for the spatial means, as E-OBS 

data are not available over the oceans. Additionally, we calculated the predictive skill on the basis of all individual grid 

points for specific exercises. 10 

3.2 Skill metrics  

The following three metrics are used to evaluate the performance of the global and regional hindcast ensembles and to 

address the three key questions: the continuous ranked probability skill score (CRPSS), the mean squared error skill score 

(MSESS), and the anomaly correlation coefficient (ACC). The skill metrics are applied to the pre-processed time series 

described in section 3.1 and are computed for multi-annual means for lead time years 1-5 after initialisation. Recent studies 15 

analysing the MiKlip decadal prediction system demonstrated that the MiKlip ensemble performs best for the first years after 

initialisation for a wide range of variables, while the skill diminishes for longer forecast periods. For example, Müller et al. 

(2012) found highest skill scores for years 1-4 and 2-5 for annual mean surface temperature both for the North Atlantic 

region and global means. The same is true for annual wind speed and wind energy potentials over Central Europe, for which 

skilful predictions are mainly restricted to the first years after initialisation (1-4 years), while negative skill scores are found 20 

for longer lead time periods (Moemken et al., 2016). Kruschke et al. (2014) provided evidence that the prediction skill for 

winter cyclones over the North Atlantic region is best for years 2-5 and reduced for longer time periods. Following the 

recommendation by Goddard et al. (2013), we focus in the following on the lead-time 1-5 years after initialisation, for which 

possible skill should originate mainly from the initialisation. 

The CRPSS (e.g. Goddard et al., 2013) is often used to assess the reliability of probabilistic forecast models and defined as  25 

𝐶𝐶𝐶𝐶𝐶 = 1 −  
𝐶𝐶𝐶𝐶ℎ𝑖𝑖𝑖
𝐶𝐶𝐶𝐶𝑟𝑟𝑟

 

with 

𝐶𝐶𝐶𝐶 =  � [𝐹(𝑦) −  𝐹𝑜(𝑦)]2 𝑑𝑦
∞

−∞
 

 

CRPShind is the continuous ranked probability score (CRPS; Wilks, 2011), comparing cumulative distribution functions 

(CDFs) of the initialised hindcast experiments with CDFs of the verification dataset (observations). CRPSref is the CRPS of a 
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reference dataset, which are in this study the uninitialized MPI-ESM-LR historical simulations. In case of a positive CRPSS 

the reliability in terms of the probabilistic quality of the forecast spread is higher in the initialised hindcasts than in the 

reference dataset, which is in this case the uninitialised historical ensemble. It can thus be used to test if the model ensemble 

spread adequately represents the forecast uncertainty. 

The deterministic MSESS (Goddard, 2013) is defined as 5 

𝑀𝐶𝑀𝐶𝐶 = 1 −  
𝑀𝐶𝑀ℎ𝑖𝑖𝑖
𝑀𝐶𝑀𝑟𝑟𝑟

 

with 

𝑀𝐶𝑀 =
1
𝑁

 �(𝑋𝚤� −  𝑂𝑖)2
𝑁

𝑖

 

where MSEhind is the mean squared error (MSE) between the ensemble mean of the initialised hindcasts (𝑋𝑖 ) and the 

verification data, and MSEref is the mean squared error of the uninitialised reference dataset versus the verification data (𝑂𝑖). 

A positive MSESS means that the hindcasts are closer to the verification dataset than the uninitialised runs, indicating that 

the initialisation leads to higher accuracy in predicting observed values. Note that independently from the ensemble size of 10 

the hindcast ensembles, the same historical 10-member ensemble is always used as reference dataset for the computation of 

CRPSS and MSESS. 

The ACC (e.g. Wilks, 2011) is computed as the Pearson correlation between the ensemble mean of the hindcasts at a certain 

location i and the corresponding observations (Obs):  

𝐴𝐶𝐶𝑖 =  
1
𝑁

 
∑ ℎ𝑖𝑖𝑑𝑡 𝑂𝑂𝑂𝑡𝑡

𝜎ℎ𝑖𝑖𝑖 𝜎𝑂𝑂𝑂
 

where 𝑡 = 1, … ,𝑁 is the time index. The ACC quantifies the accuracy of the predictions only in terms of the temporal 15 

course, while it is independent from the mean bias. 

4. Results 

4.1 Is there a potential for skilful regional decadal predictions in Europe? 

In this section we address the key question of the general potential for skilful regional decadal predictions over Europe. With 

this aim, we analyse both the potential added value of initialization compared to the (uninitialized) historical runs and the 20 

implications of removing the long-term trend for the predictive skill. Skilful in this context means an improvement of the 

skill metrics, e.g., when comparing de-trended decadal hindcasts to the uninitialised climate simulations. We therefore 

analyse the ability of the forecast system to better predict the climate variations up to five years ahead due to the 

initialization with observations using different skill metrics (see section 3.2).  To determine the predictive skill over Europe, 
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the three skill scores were calculated for all individual land grid points of the Euro-CORDEX domain on the 0.25° grid (see 

section 3.1).  

Fig. 2 shows MSESS plots for the de-trended time-series of temperature, precipitation and surface wind speed in CCLM_b0 

and CCLM_b1.  For temperature (Fig. 2a and 2b), positive skill scores are found in both ensembles over Scandinavia and for 

the Mediterranean, while a stripe of negative values occurs over the British Isles and Central Europe. The largest deviations 5 

between CCLM_b0 and CCLM_b1 are found for Iberia, parts of southern France and Italy, where the MSESS is positive for 

CCLM_b1 but neutral to negative for CCLM_b0. To determine the effect of the trend on the predictive skill, we compare the 

data with (tr) and without trend (dtr) for the example of CCLM_b1 (first and second column of Table 1 and Table 2), 

keeping all other post-processing steps the same (see section 3.1). With trend included, the correlation improves (Table 1). It 

shows high positive values between 0.68 - 0.96 in all regions, thus indicating that a predictive skill for temperature arises at 10 

least partially from a realistic prediction of the climate trend. The MSESS (Table 2) increases for all but the north-western 

regions (BI, FR, ME), but is less improved than the correlation. 

Larger deviations between both ensembles are revealed for precipitation (Fig. 2c and 2d), where the MSESS fields are 

distinctly patchier when compared to temperature (Fig. 2a and 2b), reflecting the local character of rainfall. Both ensembles 

show positive MSESS values for regions in Scandinavia, Eastern Europe, Iberia, and the British Isles (Fig. 2c and 2d). In 15 

CCLM_b1, predictive skill is also identified over Western Central Europe. Thus for CCLM_b1 positive skill is found for 

larger areas indicating an added value of the improved initialization procedure in baseline1 compared to baseline0. Like for 

temperature the skill scores for precipitation benefit from including the trends (column 3 and 4 of Table 1 and Table 2), 

although not as uniformly and strongly as for temperature. MSESS is improved only in the southern and eastern regions by 

including the trend. 20 

Regarding wind speed, the predictive skill in CCLM_b0 (Fig. 2e) shows high MSESS values over Scandinavia, Iberia, 

Southern Italy and along the coasts of the North and the Baltic Sea, while strongly negative values are found e.g. over most 

of France, southern Germany and the Alpine region. In CCLM_b1, the MSESS depicts low but positive values over most of 

Western and Central Europe, while strong negative values are now identified over parts of Eastern Europe (Fig. 2f). Overall 

the predictive skill of CCLM_b0 is slightly higher and affects a larger area, indicating that the changes in the initialization 25 

method do not improve the results for wind speed. Including the trend leads to higher skill scores in most regions for 

CCLM_b1 (fifth and sixth column of Table 1 and Table 2). Here, the MSESS improves more distinctly than for the other 

variables. 

We conclude that in terms of the MSESS accuracy there generally is a potential for skilful decadal predictions over Europe 

in the regional MiKlip ensembles. However, the skill pattern is not uniformly found as it depends on the region and the 30 

variable, i.e. for individual regions the initialisation of the hindcasts and decadal predictions lead to an added value for 

accurate (retrospective) forecasts several years ahead, while for some regions the uninitialized historical runs deliver more 

reliable predictions. Further, the discrepancies between the two hindcast generations (CCLM_b0 and CCLM_b1), seem to 

indicate a slight shift in the pattern due to the different initialization methods for the global predictions. 
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The skill of a prediction was also quantified using CRPSS and ACC. The spatial distribution of the CRPSS is very similar to 

that of the MSESS, while large deviations may arise for the ACC. This is exemplary shown in Fig. 3 for wind speed. For 

example, positive MSESS values are obtained for CCLM_b1 for Scandinavia and the coast of the North Sea (Fig. 2f), while 

the ACC is mainly negative for this domain (Fig. 3b). On the other hand, the spatial CRPSS patterns (Fig. 3c and 3d) agree 

well to MSESS for both ensembles (Fig. 2e and 2f). Again, there are strong differences in the prediction skill for wind speed 5 

between CCLM_b0 and CCLM_b1, in particular for ACC (Fig. 3a and 3b). These differences might to some extent be 

associated with the different representation of the cyclone track density in the two ensembles. Kruschke et al. (2014) showed 

that the skill for winter cyclones is rather low in b1, while positive skill scores are detected in b0 over some parts of Europe 

and southeast of Iceland.   

For the better understanding of the skill scores and their relation the different skill metrics are compared in scatter plots. Fig. 10 

4a exemplary shows scatter diagrams of CRPSS vs the MSESS for temperature on individual grid point basis for CCLM_b1 

for the mean over the lead-time 1–5 years. Generally, the accuracy and the reliability can vary highly with geographical 

position. However, and for the majority of the individual land grid points over Europe, positive MSESS are concurrent with 

positive CRPSS values (upper right quadrant). Both skill scores are linked to each other, as a quasi linear dependency 

between CRPSS and MSESS is found. This is not only the case for CCLM_b1 (Fig. 4a) but also for MPI_b1 (Fig. 4b). In 15 

particular, we found that positive values for CRPSS often accompany with a high accuracy of the decadal predictions. This is 

generally true for all variables and both ensembles considered here (not shown).  

On the other hand, no such linear relationship between ACC vs MSESS is found (see Fig. 4c for temperature). The ACC vs 

MSESS combination is clearly stronger scattered than for CRPSS vs MSESS, both in terms of the general spread and the 

peak values of the number of grid points with a given skill score combination. Hence, a low mean bias of decadal predictions 20 

(resulting in positive MSESS values) does not necessarily imply a realistic temporal evolution. Still, positive MSESS values 

correspond to positive ACC values for most of the individual grid points, indicating a high potential for skilful regional 

decadal predictions over Europe. There are similar findings for precipitation (Fig. 4 e) with a broad distribution of the 

correlation values and a narrower range of the core area for the MSESS. 

For ACC, keeping the original time series leads to enhanced predictability, while the impact of de-trending on the MSESS is 25 

less clear. In fact, the removal of a linear trend may in some cases be problematic. For example, if this trend is associated 

with a changing AMO phase, this may lead to an underestimation of the skill. During the investigation period, the AMO 

phase has indeed changed from cold to a warm (Sutton and Hodson, 2005). A proper attribution of the detected trends to 

greenhouse-gas induced climate change versus natural variability pattern is thus difficult.  

 30 

4.2 Does regional downscaling provide an added value for decadal predictions? 

Recent studies document that the application of regional climate models may improve climate simulations, in particular over 

complex terrain (Berg et al., 2013; Feldmann et al., 2013; Hackenbruch et al., 2016). This is mainly due to a more realistic 
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representation of the topography (e.g. mountain ranges or coast lines) in the RCMs compared to global-scale GCMs. In this 

section we analyse whether the downscaling with a regional climate model also leads to an added value for decadal 

predictions over Europe.  

Figure 4 already indicates a shift of the overall distribution of skill scores from regionalised hindcasts towards higher values 

compared to the global ones for the baseline1 ensemble. For temperature the core area of the skill values from the regional 5 

hindcasts (Fig 4a) is more confined to the upper right quadrant compared to the global ensemble (Fig 4b). This indicates an 

added value of downscaling for the accuracy as well as for the reliability. For the temperature correlation, the patterns are 

quite similar (Fig4 c, d), whereas for precipitation there is a clear shift towards an improved correlation and for a higher 

MSESS from the downscaling (Fig. 4 e,f). No or only a marginally low added value of regionalization on grid point scale is 

observed for CCLM_b1 wind speed and for the majority of the variables and skill metrics in the baseline0 ensemble (not 10 

shown). 

Ideally, an added value of downscaling should be accompanied by a positive absolute skill. Figure 5 depicts these two 

aspects for the three variables (2m temperature, precipitation, near-surface wind), the three verification metrics (MSESS, 

ACC, CRPSS), and the two ensemble generations (b0 and b1), as derived for the spatial means over the eight PRUDENCE 

regions (cf. Fig. 1). Green dots indicate an added value of the CCLM results compared to MPI-ESM-LR and red dots no 15 

added value. Red background color indicates a negative skill score and green color a positive skill for the respective metric. 

This figure can be interpreted along several dimensions: (i) the skill for the different climate variables (background color), 

(ii) the improvement by downscaling (dot color), (iii) the improvement from b0 to b1, (iv) the skill for different regions, (v) 

and the different skill metrics. 

For temperature, CCLM_b1 mostly shows an added value compared to MPI_b1 as well as compared to CCLM_b0. For most 20 

regions, this is particularly expressed in the MSESS and the anomaly correlation. For instance, with respect to the accuracy 

(MSESS and ACC) CCLM_b1 has higher skill in 6 of 8 PRUDENCE regions compared to MPI_b1. No added value of 

downscaling in both ensemble generations is found only for France (FR – region 3 from Fig. 1). Additionally, no benefit 

from downscaling could be detected with CCLM_b0 for the British Isles (BI – 1), Mid-Europe (ME - 4) and the 

Mediterranean Area (MD - 7), where CCLM_b1 performs better. In general, in CCLM_b1 there are more regions with 25 

positive skill scores in southern Europe (IP - 2, AL - 6) and in Scandinavia (SC- 5). In the Mediterranean region both 

ensemble generations depict only positive skill scores. 

For precipitation, an improvement from downscaling is detected particularly for CCLM_b1 over the majority of metrics and 

regions. In addition, CCLM_b1 is clearly superior to CCLM_b0 with respect to skill and added value. This indicates a 

positive effect of the improved initialization procedures in b1 compared to b0 (Pohlmann, 2013b). However, this 30 

improvement does not affect all regions. CCLM_b0 performs better than its successor for the Iberian Peninsula, whereas 

skill and/or added value are higher in CCLM_b1 for the regions in the North-West (BI, FR, ME) and North (SC). With 

respect to the reliability CCLM_b1 outperforms CCLM_b0 for precipitation (CCLM_b0: 4 regions with positive CRPSS, 
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CCLM_b1: 7 regions with positive CRPSS), while for temperature both ensembles are equivalent (2 regions with positive 

CRPSS in CCLM_b0 and in CCLM_b1).  

For the near surface wind Fig. 5 shows heterogeneous results. CCLM_b0 has an added value of downscaling in more regions 

than CCLM_b1. On the other hand CCLM_b1 provides an added value for the CRPSS in 4 regions, while for CCLM_b0 no 

added value of downscaling is found with respect to the reliability. CCLM_b0 has a positive skill in the Northern parts of the 5 

domain (BI, SC), whereas positive skill scores are found for CCLM_b1 over most other PRUDENCE regions at least for one 

skill metric. For Eastern Europe (EA - 8) none of the metrics are positive for both generations. 

The detected shift in the skill patterns between CCLM_b0 and CCLM_b1 can be expected due to the different initialization 

procedures of the two generations. However, there also seem to be regions with more stable skill properties: The 

Mediterranean area shows positive skill for all variables and metrics (except wind in CCLM_b0). 10 

An added value of regionalization over the majority of variables and metrics can be found for Southern Europe (MD, IP) and 

Scandinavia. As these areas have complex coastlines and orography, this result may be indicative of a better representation 

of small-scale processes in the CCLM. On the other hand, for the Alps (AL) only the ACC shows skill and added value from 

downscaling for temperature in both generations. The PRUDENCE region AL is the smallest of the regions, with the 

steepest orography. It might be that for the Alps an even higher resolution for the downscaling would be advantageous to 15 

improve the accuracy and reliability of the hindcasts. 

We conclude that regional downscaling indeed may provide an added value for decadal predictions over Europe. However, 

while for some complex regions like MD, IP or SC this added value is to some extent systematic, for other areas in Europe 

the analysis reveals a mixed picture for the different variables and the skill metrics. 

 20 

4.3 How does the regional decadal predictive skill depend on the ensemble size? 

Past studies suggest that the ensemble size of a prediction system has an impact on the forecast skill of a model (Richardson, 

2001; Ferro et al., 2008). Generally, there is consensus that the prediction skill for both seasonal and decadal predictions is 

enhanced when the number of ensemble members is increased. Kadow et al. (2014) analysed the global MiKlip baseline1 

generation and concluded that the forecast accuracy for surface temperature for lead year 1 and 2-9 is improved for nearly 25 

the whole globe when the ensemble size is increased from 3 to 10 members. This is in line with the findings of Sienz et al. 

(2016), who examined the prediction skill for North Atlantic sea surface temperature in the same hindcast ensemble. Also for 

seasonal predictions of the North Atlantic Oscillation a forecast system profits from increasing size (e.g. Scaife et al., 2014). 

However, it is still open how a regional decadal forecast system does depend on the quantity of ensemble members. With 

this aim we analysed the impact of the ensemble size in the predictive skill for the eight PRUDENCE regions in Europe in 30 

both the regional and the global MiKlip ensembles. In the following, results are only exemplary shown for the Iberian 

Peninsula (IP), as the findings are similar for the other PRUDENCE regions. Figure 6 exhibits the dependency of CRPSS, 

MSESS, and ACC for lead years 1-5 (y-axis) on the ensemble size (x-axis) for all three variables spatially averaged over IP. 
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For each ensemble size n (n varying between 2 and 10), the solid coloured lines depict the averaged skill scores for all 

permutations of n-member ensemble combinations for each of the four individual hindcast ensembles (MPI_b0, MPI_b1, 

CCLM_b0, and CCLM_b1). Ranked probability skillscores may be negatively biased for small ensembles sizes (e.g. Ahrens 

and Walser, 2008), while such a bias is not reported for MSESS and ACC. To ensure a direct comparability of the results for 

the three skill metrics we therefore decided not to use a de-biased version of the CRPSS in this study. 5 

Enhanced predictive skill can be observed when the number of members is stepwise increased for both the global and the 

regional hindcast ensembles. MSESS and CRPSS show a rather logarithmic relationship with increasing n, depicting the 

highest skill scores for the 10 member ensembles for all three variables (Figure 6a-c and 6g-i). On the other hand, the lowest 

skill scores (often with negative values for CRPSS and MSESS) are always found for the 2-member ensembles. This 

ensemble size dependency of MSESS and CRPSS is systematic and is found in both hindcast generations for all variables 10 

over all eight PRUDENCE regions (not shown), regardless whether the skill scores are negative or positive. In some cases, 

the ensemble size increase even leads to a shift from negative MSESS and CRPSS values to positive values (e.g. Fig. 6c, 6h, 

and 6i). In contrast, no systematic conclusion can be stated for the ACC, as the ensemble size dependency of the predictive 

skill depends on the variable and the considered MiKlip ensemble (Fig. 6d-f). But even here a larger ensemble size is 

advantageous, as negative skill scores become more robust (cf. Fig. 6e, f). Nevertheless, there are also examples for the ACC 15 

where the ensemble size dependency is similar to that of MSESS and CRPSS, like e.g. for temperature (Fig. 6d). These 

results suggest that a decadal prediction system generally benefits from larger ensemble sizes, either in terms of more skilful 

and reliable decadal forecasts or at least of a reduction of the bias or the uncertainty, depending on the variable and the 

hindcast generation. Note that for most variables and skill scores the hindcast generation is more important for the skill than 

the resolution. In additions, most diagrams indicate an added value of downscaling. For the reliability of wind speed both 20 

generations of CCLM surpass their MPI counterparts, indicating a systematic added value of downscaling. 

For ensembles with less than 10 members, the skill scores of all possible n-member ensemble combinations are averaged. 

This is exemplary illustrated for the MSESS for precipitation in the CCLM_b0 ensemble (see box-whisker plots in Fig. 6b). 

While the spread between the individual n-member ensembles declines with an increasing number of members n, it is quite 

large for small ensemble sizes: for instance, the MSESS varies between -1.5 and +0.8 for the 2-member ensembles (Fig. 6b). 25 

In fact, even for the 7-member ensemble quite different results can be found depending on the selection of the ensemble 

members, ranging from high positive MSESS values to zero. These results clearly demonstrate the necessity of using large 

ensembles to reduce these uncertainties. 

We conclude that the predictive skill with respect to both accuracy and model spread is generally improved when the size of 

the hindcast ensembles increases. This is valid for all variables, regions, and hindcast ensembles considered in this study. 30 

The skill scores converge towards a certain value in most cases for MSESS and CRPSS in all hindcasts (see Fig. 6a-c and 

6g-i). The increments in added value by increasing the number of ensemble members decrease for more than 5 members. 

Nevertheless, it is recommended to use ten members or more for the skill assessment of decadal predictions on the regional 

scale.  
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5. Summary and discussion 

In this study the decadal predictability in the regional MiKlip decadal prediction system is analysed for temperature, 

precipitation, and wind speed over Europe and compared to the forecast skill of the global ensemble. The goal is to assess 

the prospect of such a system for the application in forecasts on decadal timescales. Focus is given to years 1-5 after 

initialization. Three skill scores are used to quantify the accuracy and the reliability of the two different MiKlip hindcast 5 

generations. The main findings of our study can be summarized as follows: 

• There is a potential for regional decadal predictability over Europe for temperature, precipitation, and wind speed in 

the MiKlip system, but the predictive skill depends on the variable, the region, and the hindcast generation.  

• The MiKlip prediction system may distinctly benefit from regional downscaling. An added value in terms of 

accuracy and reliability is particularly revealed for temperature over the British Isles (BI), Scandinavia (SC), the 10 

Mediterranean (MD), and for precipitation over the British Isles (BI), Scandinavia (SC), Mid-Europe (ME), and 

France (FR) for the b1 generation. Most of these regions are characterized by complex coastlines and orography, 

which indicates that the better representation of topographic structures in the regionalised hindcasts may improve 

the predictive skill. 

• The improvement of the initialization procedure from baseline0 to baseline1 as described in Pohlmann et al. 15 

(2013b) increases the overall predictive skill in the downscaled MiKlip hindcasts over Europe, at least for 

precipitation and temperature. But improvement of the skill varies between variable and region. The skill for 

temperature increases around the Mediterranean Sea and parts of Scandinavia from b0 to b1. For precipitation the 

skill of b1 compared to b0 is higher in all regions but the Iberian Peninsula. Only for wind speed there is mostly no 

benefit from the improved initialization in most regions.  20 

• A systematic enhancement of MSESS and CRPSS skill scores is found with increasing ensemble size, and a number 

of 10 members is found to be suitable for decadal predictions. This is valid for all variables and European regions in 

the global and regional MiKlip ensembles. 

• The predictive skill may increase when keeping the original time series including the long-term trend. A linear de-

trending may remove parts of the signal since the climate trend and the AMO teleconnection pattern are in phase 25 

both contributing to ascending trends over the hindcast period 1960 – 2010.   

Müller et al. (2012) and Pohlmann et al. (2013b) had found systematic prediction skills for surface temperature over large 

parts of the North-Atlantic and Europe in both global generations (baseline0, baseline1). From the results of our study, it is 

apparent that key European regions for decadal predictability (beyond the climate trend) with the regional prediction system 

seem to be the Mediterranean Area and the Iberian Peninsula. This is in line with findings from Guemas et al. (2015). This 30 

finding may be related with skilful predictions of the AMO (Garcia-Serrano et al., 2012; Guemas et al., 2015). Due to the 

rather non-linear relationship of these large-scale North Atlantic features to regional atmospheric conditions over Europe, the 

mechanisms steering the decadal variability and predictability of climate variables in European regions are thus more 
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complex. The decadal variability of regional precipitation, temperature, and wind speed over most parts of Europe is largely 

affected by the North Atlantic oscillation, but its skilful decadal predictability over the continent is still under debate. With 

this respect, a better understanding of the mechanisms relevant for the regional climate over Europe on the decadal time 

scale is required, as was for example obtained for the tropical Atlantic (Dunstone et al., 2011). This is an objective of the 

ongoing 2nd phase of the MiKlip project. 5 

The skill scores may strongly vary between neighbouring grid points. Comparable results were found by e.g. Guemas et al. 

(2015), who detected a rather diffuse pattern for the accuracy of decadal predictions over Europe for seasonal temperature 

and precipitation. This might at least partly be due to spatial and temporal inhomogeneity of the gridded observational 

references. A more realistic assessment of the prediction skill can be made by considering spatial means (Goddard et al., 

2013) which was mostly considered in this study. In line with e.g. Kadow et al. (2016), we could show that an enlargement 10 

of the ensemble size up to 10 members results in an improvement of the prediction skill over Europe. However, prediction 

skill could further benefit from even larger ensemble sizes, especially in areas with low signal-to-noise ratio (cf. Sienz et al., 

2016).  

Bias and drift adjustment (e.g., Boer et al., 2016) provide prospect in skill improvement not only for GCMs but also for 

RCMs. This is particularly the case for ensemble simulations run with full-field initialization (prototype, not analysed here; 15 

cf. Marotzke et al., 2016). While bias and drift adjustment methods have improved the forecast skill of near-term climate 

prediction (e.g., Kruschke et al., 2016), such corrections are less important for the baseline0 and baseline1 ensembles 

analysed here as they were generated with anomaly initialisation (Marotzke et al., 2016). Nevertheless, bias correction and 

calibration are an important topic in the second phase of MiKlip. 

Due to the high computational costs of dynamical downscaling, only five starting dates (one per decade) are available for the 20 

regional MiKlip ensemble generation b0 (see section 2). This is a shortcoming regarding the statistical significance of the 

results and some of the statements presented in this study. The statistical significance will be easier to quantify when the 

regional simulations for the newest Miklip ensemble generation are available with annual starting dates over more than 50 

years. On the other hand, regional decadal forecasts may have advantages beyond the examples discussed in this paper. For 

example, RCMs enables the integration of improved components of the hydrological cycle or climate-system components 25 

with memory on multi-year time-scales like soil moisture (Khodaya et al., 2014; Sein et al., 2015). Kothe et al. (2016) has 

shown that extracting the initial state of the deep soil in the RCMs from regional data assimilation schemes may improve 

decadal predictions. Further, Akhtar et al. (2017) demonstrated that the regional feedback between large water bodies and the 

atmosphere play a major in the regional climate system. This feedback can only be captured in regionalized climate 

predictions by a dynamic RCM-ocean coupling. Most of the approaches mentioned above are ongoing within the 2nd phase 30 

of MiKlip and are expected to enhance the decadal predictability over Europe. We thus conclude that a decadal prediction 

system would clearly benefit from a regional forecast ensemble. 

The regional decadal prediction system generated by the MiKlip consortium comprises altogether 1000 years (two hindcast 

generations, each of them comprising ten hindcast members for five starting years) of simulations with 0.22° for the entire 
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EURO-CORDEX region, which is a to our best knowledge unprecedented. Hence, this ensemble enabled us to gain 

important insights into different aspects and the prospects of regional downscaling for decadal predictions, and serve as a 

good basis for future studies. In the ongoing 2nd phase of MiKlip it is planned to downscale a complete ensemble hindcast 

generation with ten members for more than 50 starting years, giving altogether more than 5000 years. 
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Figures 

 

 

Figure 1: CCLM modelling domain (= EURO-CORDEX domain): Modell orography and PRUDENCE regions. 1: British Isles BI; 
2: Iberian Peninsula IP; 3: France FR; 4: Mid-Europe ME; 5: Scandinavia SC; 6: Alps AL; 7: Mediterranean MD; 8: Eastern 5 
Europe EA. 

 

 

 

Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2017-70
Manuscript under review for journal Earth Syst. Dynam.
Discussion started: 4 September 2017
c© Author(s) 2017. CC BY 4.0 License.



21 
 

 

Figure 2: Spatial distribution of the MSESS for the multi-annual mean of lead years 1-5 for (a) temperature in CCLM_b0, (b) 
temperature in CCLM_b1, (c) precipitation in CCLM_b0, (d) precipitation in CCLM_b1, (e) wind speed in CCLM_b0, and (f) 
wind speed in CCLM_b1. All datasets have been de-trended, and as reference dataset we have used the uninitialized historical 
ensemble.  5 
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Figure 3: Spatial distribution of the skill scores for the multi-annual mean of lead years 1-5 for wind speed. (a) ACC for 
CCLM_b0, (b) ACC for CCLM_b1, (c) CRPSS for CCLM_b0, and (d) CRPSS for CCLM_b1. All datasets have been de-trended, 
and for CRPSS we have used the uninitialized historical ensemble as reference dataset. 

 5 
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Figure 4: Scatter diagrams for CRPSS (x-axis) vs MSESS (y-axis) for temperature at all individual EURO-CORDEX grid points 
for the multi-annual mean of lead years 1-5 in (a) CCLM_b1 and (b) MPI_b1. (c), (d) as (a), (b) but for ACC vs MSESS for 
temperature. (e), (f) as (a), (b) but for ACC vs MSESS for precipitation. Colours denote the number of grid points over Europe 
with a given skill score combination. All datasets have been de-trended, and for MSESS and CRPSS we have used the uninitialized 5 
historical ensemble as reference dataset. Note the different scaling of the colour bars. 
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 5 

Figure 5: Predictive skill (MSESS, ACC and CRPSS) and added value of the regional MiKlip ensembles (CCLM_b0 and 
CCLM_b1) over the eight PRUDENCE regions (cf. Fig. 1) for temperature (left columns), precipitation (middle), and 10m-wind 
(right) for the multi-annual mean of lead years 1-5. Red filled boxes indicate negative skill scores, green filled boxes positive skill 
scores. Green dots denote an added value compared to the global forcing by MPI-ESM-LR, red dots indicate no added value by 
regionalization. All datasets have been de-trended, and for MSESS and CRPSS we have used the uninitialized historical ensemble 10 
as reference dataset.     
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Figure 6: Skill scores for the multi-annual mean of lead years 1-5 of the CCLM_b0 (red), MPI_b0 (yellow), CCLM_b1 (blue), and 
MPI_b1 (green) ensembles depending on the ensemble size (x-axis, ranging from 2 to 10 members) over IP (cf. Fig. 1). MSESS for 
(a) temperature, (b) precipitation, and (c) wind speed; ACC for (d) temperature, (e) precipitation, and (f) wind speed; CRPSS for 
(g) temperature, (h) precipitation, and (i) wind speed. In (b) box-whisker plots for the skill scores of all n-member combinations 5 
are shown. All datasets have been de-trended, and for MSESS and CRPSS we have used the uninitialized historical ensemble as 
reference dataset. Note the different scaling of the y-axis. For details please refer to main text. 
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Tables                  

 Temperature Precipitation Wind 

 dtr tr dtr tr dtr tr 

1 BI -0.18 0.68 0.27 0.49 -0.54 -0.57 

2 IP 0.71 0.87 -0.59 0.19 0.49 0.63 

3 FR 0.69 0.92 0.77 0.50 0.15 0.32 

4 ME -0.12 0.80 0.64 0.79 -0.37 0.04 

5 SC 0.44 0.69 -0.07 0.63 -0.63 -0.54 

6 AL 0.83 0.97 0.37 0.18 0.10 0.44 

7 MD 0.95 0.96 0.55 0.91 0.48 0.42 

8 EA -0.09 0.73 -0.10 -0.04 -0.94 -0.39 

 

Table 1: ACC for temperature, precipitation, and wind speed in the CCLM_b1 ensemble over all eight PRUDENCE regions (cf. 
Fig. 1) for lead-years 1-5. De-trended 5-year averages (dtr), and 5-year averages with retained trend (tr). Lower skill scores in tr 
compared to dtr are marked in blue. Higher skill scores in tr compared to dtr are marked in red, and if skill scores of tr are 5 
additionally positive they are marked in bold red and underline. The uninitialized historical ensemble has been used as reference 
dataset. For details see main text.  
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Temperature Precipitation Wind 

 dtr tr dtr tr dtr tr 

1 BI -4.58 -6.94 0.15 0.15 -0.54 -0.42 

2 IP 0.09 0.11 -0.07 -0.49 0.58 0.84 

3 FR -0.58 -2.07 0.44 0.34 0.21 0.56 

4 ME -1.46 -2.40 0.44 0.63 0.18 0.14 

5 SC 0.15 0.32 0.26 0.21 0.10 0.09 

6 AL 0.44 0.47 -0.36 -0.18 -0.23 0.19 

7 MD 0.68 0.76 0.68 0.73 0.20 0.43 

8 EA -1.78 -0.42 0.31 0.36 -0.72 0.22 

 

Table 2: As Table 1, but for MSESS. 
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