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Abstract

Unexpected emission events like volcanic eruptions pose a threat to humans, cli-

mate, economy, and aviation. For decision makers, the estimation of volcanic ash in

the atmosphere and its uncertainty is essential. These information enables them to

take safety precautions as accurate as possible. Currently, there exists no method

for estimating the emissions of volcanic ash and its uncertainty for longer lasting

eruptions, in which the eruption strength varies temporally in dependence on the

emission height. Therefore, an analysis system, which is able to estimate the emis-

sion strength of a volcanic eruption in a highly temporal and vertical resolution, is

established in this study. This analysis system is integrated into the atmospheric

chemical part of the Ensemble for Stochastic Integration of Atmospheric Simulations

(ESIAS-chem) that comprises a particle smoother in combination with a discrete-

grid ensemble extension of the Nelder-Mead minimization method. The extended

Nelder-Mead method makes the temporal and vertical resolution of the emission

strength possible. The particle smoother reduces the variance in the analysis en-

semble in order to provide an accurate and reliable estimate of the emission profile.

The system validation addresses the special challenge of ash cloud height analyses

in case of observations restricted to bulk column mass loading information. This

reflects the typical case of geostationary satellite data like thus obtained by the

Spinning Enhanced Visible and InfraRed Imager (SEVIRI), while height resolving

measurements like lidar data are only sparsely available. The EURopean Air pollu-

tion Dispersion - Inverse Model (EURAD-IM), which was generalized to an ensemble

system, is integrated into ESIAS-chem. The performance of ESIAS-chem is tested

by identical twin experiments. These tests show that for both, strong and weak

wind conditions, the model is able to retrieve the observed column mass loadings of

volcanic ash. The potential of the method becomes especially evident under strong

wind conditions at the volcano, for which the temporal and vertical varying volcanic

emissions are analyzed up to an error of only 10 % by assimilating column mass

loadings. For weak wind conditions, the analysis accuracy of the emission profile is

limited, because the volcanic ash emitted at different times and heights is not suffi-

ciently separated. Increasing the assimilation window length proves to be the only

possibility to improve the analysis for these weak wind conditions. The dependence

of the analysis on the wind conditions is also confirmed by a statistical analysis in

the context of identical twin experiments. The analysis is biased because of weak

winds at the volcano as well as an insufficiently short assimilation window. The

investigation of this statistical analysis shows that an error correction of volcanic

ash concentrations using the observed column mass loadings can achieve highly im-

proved estimates of the volcanic ash concentrations. Thereafter, the mean error of

the column mass loadings vanishes. The mean error in estimating the height of

the maximum volcanic ash concentration is lower than the vertical resolution of the

model. This indicates a successful estimation of the temporal and vertical distri-

bution of volcanic ash by assimilating column mass loadings. The efficiency in the
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calculation and the accuracy of the analysis of ESIAS-chem is demonstrated by a

comparison with other methods for analyzing volcanic ash concentrations and its un-

certainty. Especially for highly variable emissions, ESIAS-chem has more potential

to estimate the emission profile and its uncertainty than currently existing methods.

Besides volcanic eruptions, ESIAS-chem is applicable to various other emission sce-

narios. The special importance of risk assessment for unexpected emission scenarios

makes ESIAS-chem most useful for these cases. The combination with a meteorolo-

gical ensemble (e.g. ESIAS-met) allows for the consideration of the uncertainty of

the meteorological variables.



Kurzzusammenfassung

Unerwartete Emissionen wie zum Beispiel durch Vulkaneruptionen, Waldbrände

und Reaktorunfälle stellen eine Gefahr für den Menschen, das Klima, die

Wirtschaft und den Flugverkehr dar. Eine Abschätzung der zu erwartenden

Vulkanaschekonzentration sowie deren Unsicherheit ist für Entscheidungsträger

von großer Bedeutung um mögliche Schutzvorkehrungen unter Berücksichtigung

aller zur Verfügung stehenden Informationen zu ergreifen. Jedoch gibt es

bisher keine Methode, die die Emissionen eines Vulkanausbruchs und deren

Unsicherheit für einen längeren Ausbruch mit zeitlich variablen Emissionsstärken

in Abhängigkeit der Emissionshöhe abschätzen kann. Daher wird in dieser Arbeit

ein flexibles Analysesystem entwickelt, welches sowohl die Emissionsstärke in

zeitlicher und vertikaler Auflösung als auch deren Unsicherheit ermittelt. Der

hierfür neu entwickelte atmosphären-chemische Modellteil des Ensemble for

Stochastic Integration of Atmospheric Simulations (ESIAS-chem) besteht aus

einer Kombination aus einem “particle smoother” und einer ensemble-basierten

Erweiterung des Nelder-Mead-Simplex-Minimierungsalgorithmus auf einem diskre-

ten Gitter im Lösungsraum. Mit Hilfe des erweiterten Nelder-Mead-Algorithmus

können die Quellstärken zeitlich und vertikal aufgelöst werden. Der particle

smoother dient der zuverlässigen Abschätzung der Analyseunsicherheit. Das

System ermöglicht eine Abschätzung der Höhe der Vulkanasche unter Benutzung

der Beobachtungen von vertikal-integrierten Säulenmassen. Dies spiegelt die

Assimilation von geostationären Satellitendaten, wie sie zum Beispiel durch den

Spinning Enhanced Visible and InfraRed Imager (SEVIRI) bereitgestellt werden,

wieder. Diese Daten sind in einer hohen zeitlichen Auflösung verfügbar, wohingegen

höhenauflösende Messungen wie die von Lidar-Geräten nur weit verstreut verfügbar

sind. In ESIAS-chem ist das EURopean Air pollution Dispersion - Inverse

Model (EURAD-IM) integriert, welches in ein Ensemblesystem erweitert wurde.

ESIAS-chem ist erfolgreich im Rahmen eines “identical twin experiments” getestet

worden. Sowohl für starke als auch für schwache Winde konnte ESIAS-chem die

vertikal-integrierte Säulenmasse der Beobachtungen reproduzieren. Bei starken

Winden wird das Potential des Modells voll ausgeschöpft und die Abschätzung der

Emissionen ist bis auf eine leichte vertikale und zeitliche Glättung der Quellstärke

bis auf 10 % genau. Die Grenzen der Analysefähigkeit von ESIAS-chem ist

bei zu schwachen Winden gegeben. In diesen Fällen ist die Separation der

Vulkanasche, die zu unterschiedlichen Zeiten und in unterschiedlichen Höhen

emittiert wurde, zu gering, sodass von den vertikal-integrierten Säulenmassen der

Vulkanasche nicht exakt auf die zeitliche und vertikale Verteilung der Emissionen

zurückgeschlossen werden kann. Eine Erweiterung des Assimilationsfensters

zeigt hier eine Verbesserung der Analyse. Die Anbhängigkeit der Analyse von

den Windbedingungen wurde durch eine Fehlerabschätzung mittels statistischer

Kenngrößen bestätigt. Die Analyse zeigt einen systematischen Fehler, verursacht

durch schwache Winde am Vulkan und ein zu kurzes Assimilationsfenster. Durch
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eine Fehlerkorrektur der Vulkanaschekonzentration unter Berücksichtigung der

assimilierten vertikal-integrierten Beobachtungen kann die Genauigkeit der

Vorhersage der Vulkanaschekonzentration deutlich erhöht werden. Gemittelt über

den Analysezeitraum zeigt nach der Fehlerkorrektur sowohl die abgeschätzte

vertikal-integrierte Säulenmasse als auch die Vulkanaschekonzentration keinen

Fehler bezüglich der Beobachtungen. Im Mittel liegt der Fehler bei der

Abschätzung der Höhe der maximalen Vulkanaschekonzentration unterhalb der

vertikalen Auflösung des Modells. Dies bestätigt die hohe Genauigkeit bei der

Abschätzung der vertikalen und zeitlichen Verteilung der Vulkanaschekonzentration

in der Atmosphäre. Ein Vergleich von ESIAS-chem mit weiteren Methoden

zur Analyse von Vulkanaschekonzentrationen und deren Unsicherheit zeigt die

Effizienz der Berechnung und Genauigkeit der Analyse durch ESIAS-chem. Gerade

bei stark variablen Emissionen hat ESIAS-chem deutlich mehr Potenzial, das

Emissionsprofile sowie dessen Unsicherheit abzuschätzen als zur Zeit existierende

Methoden. Neben Vulkanausbrüchen ist das neu entwickelte ESIAS-chem System

auf viele weitere Emissionsszenarien anwendbar. Besonders für unerwartete

Emissionsereignisse aufgrund ihrer besonderen Bedeutung für die kurzfristige

Risikobewertung ist die Benutzung von ESIAS-chem sinnvoll. Des Weiteren

können Unsicherheiten in den meteorologischen Variablen durch Integration eines

meteorologischen Ensemble (zum Beispiel von ESIAS-met) berücksichtigt werden.
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Chapter 1

Introduction

Unexpected emission events can pose an enormous security threat to humans

and environment. This type of incidents can be divided into natural emissions like

volcanic eruptions and wild fires, and anthropogenic emissions owing to accidental

releases of toxic gases, as in case of reactor failure or a gas pipeline explosion. From

a simulation viewpoint, volcanic eruptions are challenging in many respects. Ty-

pically, they come as a sequence of emissions with highly varying ejection mass

and height. This study, therefore, adopts volcanic eruptions as reference case for

the analysis of accidental releases. It was shown, that in historic times 20-25 vol-

canic eruptions occurred on average in Iceland each century (Thordarson and Larsen

[2007]). Taking into account that frequent wind systems are directed to transport

volcanic ash from Iceland to continental Europe, eruptions of Icelandic volcanoes

have a direct impact on life in that greater domain.

Volcanic eruptions may cause issues to humans health (Baxter [1999]), climate

(Robock and Oppenheimer [2003]), environment (Lecointre et al. [2004]), and eco-

nomy (Guffanti et al. [2009]). Additionally, volcanic ash particles may cause turbines

of aircrafts to break down (Casadevall [1994]). This is the reason why it is necessary

to consider closures of the air space after volcanic eruptions. Unfortunately, as this

action has an exceptional high impact on affected economies, it needs to be traded

off against risks. For this, volcanic ash concentrations and its uncertainty has to be

known as accurate as possible.

As a recent example, the closure of the European air space as a consequence of

the 2010 eruption of the Icelandic volcano Eyjafjallajökull forced more than 100,000

airplanes to stay on the ground worldwide with more than 4 billion passengers stran-

ded. A direct economic damage of more than 1.3 billion Euros (Oxford-Economics

[2010]) resulted. During the eruption, the European commission released thresholds

of volcanic ash concentrations for which airplanes are allowed to fly only under cer-

tain restrictions (cf. Kristiansen et al. [2012] and references therein). However, at

that time the estimation of volcanic ash concentrations could hardly be obtained by

numerical predictions, which instigated efforts to develop methods for quantitative

volcanic ash concentration forecasts along with their uncertainty. Hence, the pre-

diction of skill or estimated uncertainty of a volcanic ash forecast is of fundamental
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importance for cost - loss models, which may be used within the decision process.

The uncertainty by estimating volcanic ash in the atmosphere is due to ma-

nifold reasons. Firstly, quantitative observations of volcanic ash column mass loa-

dings [g/m2] by, for example, the Spinning Enhanced Visible and InfraRed Ima-

ger (SEVIRI) on board the Meteosat Second Generation satellite, which are widely

used for a quantitative estimation of volcanic ash, have large uncertainties of ap-

proximately 40 % (see Wen and Rose [1994]). Secondly, the location of the volcanic

ash cloud depends on the atmospheric stratification at the volcano and the underly-

ing wind field. Thirdly, the modeled volcanic ash concentration depends mainly on

the emission parameters (e.g. exit velocity of the magma, gas content, and water

availability) used to calculate the volcanic ash plume which are unknown and come

with large uncertainties.

Models calculating the volcanic ash emissions can be subdivided into heuris-

tic models and physical models. Heuristic models estimate the Mass Emission

Rate (MER) of a volcanic eruption from measurements of the plume height through

a statistical model based on historical eruptions (e.g. Sparks et al. [1997]; Mastin

et al. [2009]). Due to the uncertainties of volcanic eruptions, which are mainly influ-

enced by the crater geometry, gas content, temperature of the magma, exit velocity,

and water availability, historical data have large variation. Hence, heuristic models

have large uncertainties (Mastin et al. [2009]). Furthermore, the fraction of fine ash

of MER, which is available for long range transport, is unknown and is an additional

source of uncertainty.

Physical models compute the amount of emitted ash taking plume physics into

account. Different models exist that calculate the volcanic ash plume rise with

respect to meteorological conditions as wind speed, temperature, and humidity pro-

files of the atmosphere (see for example Woodhouse et al. [2013]; Folch et al. [2016]).

Alternatively, Suzuki [1983] developed a theoretical model for plume rise and ash

dispersion. Although more physical, these models need input parameters such as

gas content, exit velocity and temperature of the emitted magma, which contribute

to the emission strength and the type of a volcanic eruption. However, these are

unknown and hardly measurable. Therefore, these parameters are insufficiently well

known. In addition, these models assume that the emissions of ash occur mainly at

the plume’s top, not allowing for a secondary maximum below. As recent analyses

show, emissions from a volcanic plume may occur with multiple maxima (cf. e.g.

Kristiansen et al. [2015]), which renders physical models erroneous in these cases.

These parameterizations are used in forecast models to improve the a priori know-

ledge of volcanic ash emissions.

As both, the observations and the forecast models, come with different sources

of errors, the best estimate of the true atmospheric state is achieved by data assi-

milation methods, which combine all available information in order to improve the

forecast of atmospheric dispersion. Data assimilation methods are basically divided

into variational (e.g. Three-Dimensional VARiational data assimilation (3D-var),

Four-Dimensional VARiational data assimilation (4D-var)) and sequential (e.g. Kal-
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man filter) methods. In variational methods, the model state is varied by optimizing

a cost function. In sequential methods, the model equations are adapted in order to

account for all, the model state, the observations, and the errors, which come along

with both. Both methodologies rely on the Best Linear Unbiased Estimate (BLUE)

assumption. This means that the model state and the observations are unbiased

and that the error statistics of both are Gaussian. Additionally, the models need to

be linear or at least well represented with the tangent linear model.

As the computational power during the last decades has increased, the com-

plexity of data assimilation algorithms increased likewise. Thus, in the last 20 years

ensemble prediction systems entered the field of atmospheric sciences (e.g. Mol-

teni et al. [1996]; Toth and Kalnay [1997]; Marécal et al. [2015]). Ensemble data

assimilation systems are used to provide both, a reliable forecast/analysis and its

uncertainty. Examples of ensemble analysis systems are the ensemble Kalman filter

(Evensen [1994]) and its variants (e.g. ensemble transform Kalman filter proposed by

Bishop et al. [2001] and the ensemble adjustment Kalman filter of Anderson [2001]),

the ensemble of data assimilation operated at the European Centre for Medium-

range Weather Forecasts (ECMWF) (Bonavita et al. [2012]), and the Ensemble

Data Assimilation System of the Weather Research and Forecasting (WRF-EDAS)

model (Zupanski et al. [2011]). Additionally, the development of an ensemble 4D-var

system is a current research topic (e.g. Zhang and Zhang [2012]; Clayton et al. [2013];

Yang et al. [2015]) with the potential to overcome the need for an adjoint model

(see Liu et al. [2008]).

In the aftermath of the 2010 Eyjafjallajökull eruption, several data assimilation

methods were adapted in order to quantify the emission strength and the ensuing

volcanic ash concentrations in the atmosphere. Some of these methods also applied

an ensemble data assimilation system to provide estimations of the uncertainty of

volcanic ash in the atmosphere. However, these methods make assumptions of the

volcanic ash plume that need not to be applicable for individual volcanic eruptions.

Most of these methods for analyzing volcanic ash emissions presented in the litera-

ture use satellite observations of volcanic ash column mass loading data to constrain

volcanic ash emissions (e.g. Lu et al. [2016]; Madankan et al. [2014]; Schmehl et al.

[2012]; Kristiansen et al. [2015]; Wilkins et al. [2016a] amongst others). However,

the assimilation of column mass loadings lead to a highly ill-posed problem. This

is due to the ambiguity of volcanic ash that is emitted in different heights and at

different times resulting in similar volcanic ash patterns in the atmosphere at the

analysis time (Devenish et al. [2012]; Lu et al. [2016]). The vertical wind shear may

separate volcanic ash emitted at different heights/times, especially if the residence

time of volcanic ash in the atmosphere is long enough. This would also reduce the

correlation of the resulting column mass loadings. In contrast, an increased residence

time of volcanic ash in the atmosphere leads to a vertical mixing and sedimentation

of volcanic ash into lower heights, which in the end makes the distinction between

volcanic ash emitted at different heights/times increasingly difficult and finally im-

possible. In an ideally observable atmosphere in which the volcanic ash emitted at
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different heights/times is completely separated through the vertical wind shear, ob-

servations of column mass loadings could be used directly to constrain the volcanic

ash emissions.

To quantify the amount of volcanic ash emitted by an eruption, Stohl et al.

[2011] and later Kristiansen et al. [2012] and Kristiansen et al. [2015] used an en-

semble of emission scenarios in the inversion technique of Eckhardt et al. [2008]. In

this approach, each emission scenario consists of emissions in one model layer at

one time instance (e.g. three hours). They assumed that the vertical wind shear is

strong enough such that column mass loadings of volcanic ash emitted by different

emission scenarios is distinguishable. For the inversion, a system of linear equations

was solved taking the error of observations and the a priori emission profiles into

account. In order to make the inversion robust, they applied a regularization that

also vertically smooths the volcanic ash emission profile. However, multiple maxima

of volcanic ash within the eruption column may be possible as become evident by

images of volcanic ash plumes. Additionally, Kristiansen et al. [2012] suggested an

ensemble of emission estimation in order to quantify the uncertainty of volcanic ash

emissions as was indicated by sensitivity studies they performed.

Another approach to quantify volcanic ash emissions was proposed by Schmehl

et al. [2012] in which the emission rate and the underlying wind field was estimated

via a method they called “genetic algorithm variational approach”. They started

the analysis with a randomly chosen emission strength and wind field and used an

ensemble of simulations to find the best estimate iteratively. Rather strong assump-

tions of the emission profile were made as they placed the emissions on a single

model layer, which was expected to be the most sensitive one, and adjusted the

winds only on this layer. Also, no variability of the emission strength with time was

allowed and no information about the observation and a priori error was used in the

minimization.

Wilkins et al. [2014] viewed the problem of quantifying volcanic ash concentra-

tions from a different perspective. Instead of estimating the emission profile they

developed the “data insertion” method to optimize the modeled ash concentrations

with respect to observations of volcanic ash column mass loadings. They assumed a

thickness of the ash cloud of 1 and 2 km with a normally distributed vertical ash pro-

file. The height of the volcanic ash cloud as well as the concentrations were estimated

by retrievals from column mass loadings according to the algorithm of Francis et al.

[2012]. The algorithm was successfully applied to the eruptions of Eyjafjallajökull,

Iceland, 2010 (Wilkins et al. [2016a]) and Gŕımsvötn, Iceland, 2011 (Wilkins et al.

[2016b]). Nonetheless, no multi-layered volcanic ash cloud was considered and the

insertion of volcanic ash into the model domain can imply inconsistencies with the

modeled meteorology. For example, volcanic ash could be placed into grid boxes

into which the modeled wind would not be in compliance with its volcanic origin.

Also, the data insertion algorithm does not consider errors of observations and the

a priori emissions.

An adjoint free ensemble version of the 4D-var method was developed by Lu
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et al. [2016]. They decomposed the emission profiles into a mean emission profile

and perturbations. Each emission profile is represented by an ensemble member.

As a result, each ensemble member and, therefore, each perturbation of the emis-

sion profile is assigned a weight such that the resulting analysis emission profile is

a weighted ensemble mean. The weights are computed by minimizing a cost func-

tion that compares the weighted ensemble mean with the observations of volcanic

ash column mass loadings. However, this method provides the best estimate of the

emission profile ignoring the uncertainty of the estimate, which is especially large if

the observational data has large uncertainties. Although the method show a good

performance in the context of identical twin experiments, it suffers from the lack of

knowledge on the analysis’ uncertainty.

The uncertainty estimation of volcanic ash in the atmosphere is addressed by

the following methods. A general framework for calculating uncertainties of vol-

canic ash concentrations given any model and any observational data was proposed

by Denlinger et al. [2012]. They started the analysis by setting an ensemble of

emission parameters randomly. In order to find the best posterior estimate of the

emission parameters, the L1 norm of the mismatch between the observations and the

corresponding ensemble values is maximized (e.g. using the quasi-Newton method)

with respect to an ensemble of emission parameters. As they assumed a narrow

ash cloud and a highly peaked probability distribution (i.e. high probability is con-

centrated in a small region in probability space), the uncertainty of the estimated

emission parameters can be obtained through a saddle point approximation. The

theory of the saddle point approximation implies that the Probability Density Func-

tion (PDF) is Gaussian. Now a sample from the posterior PDF is drawn to provide

an estimate of the forecast uncertainty.

A method to provide uncertainty estimations of possible volcanic ash in the

atmosphere before observations are available for assimilation was introduced by

Bursik et al. [2012]. They developed a polynomial Chaos Quadrature Weighted

Estimate (PCQWE) that weights the parameters of a plume model such that the

moment errors of the PDF of volcanic ash in the atmosphere are minimized. There-

fore, they used an ensemble of a coupled plume model with a transport and diffu-

sion model and perturbed four parameters of the plume model, namely vent radius,

vent velocity, and mean and variance of the grain size distribution. The system

is constructed to provide all uncertainties contained in a volcanic eruption before

observations of volcanic ash in the atmosphere are available. Nonetheless, all avai-

lable observations of the volcanic ash plume can be used to constrain the emission

parameters.

Stefanescu et al. [2014] extended this approach to take also uncertainties in

the wind fields into account. This is done by first selecting the emission parame-

ters using the Conjugate Unscent Transform (Conjugate Unscent Transform (CUT);

Adurthi et al. [2012]), which allows to reduce the ensemble size significantly. Each

set of emission parameters chosen is now propagated in time using the meteoro-

logical ensemble. Each meteorological ensemble member and emission parameter
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is now assigned a weight according to the PCQWE methodology. Because of the

computational complexity of the methods only a limited number of source parame-

ters and meteorological ensemble members can be perturbed in order to generate a

variance in the volcanic ash ensemble.

A polynomial Chaos Quadrature (pCQ) scheme was also used by Madankan

et al. [2014] to generate hazard maps of volcanic ash in the atmosphere. They ob-

tained the a priori representation of the emission parameters using the pCQ method

in which the integrals are solved with the CUT approach. The a posteriori pro-

bability is then calculated by assimilating satellite observations in the context of

a Kalman filter update (cf. Kalnay [2003]) in which the a priori estimate of the

source parameters can be used to calculate the covariance matrix of the emission

parameters. The use of the polynomial chaos theory in these three methods requires

a large ensemble in order to represent all uncertainties in the perturbed parameters.

Therefore, no temporal variations in the emission parameters can be involved in this

method, which make the method less applicable for longer lasting eruptions with

varying volcanic ash emissions.

More recently, another inversion technique for probabilistic volcanic ash esti-

mates was proposed by Zidikheri et al. [2016] (cf. also Zidikheri et al. [2017a;b]).

Here, the focus was placed on the horizontal distribution of volcanic ash column

mass loadings rather than on the emission strength. This approach aims to provide

fast first safety restrictions to aviation as it analyzes the horizontal position of vol-

canic ash. They assumed vertically uniform distributed volcanic ash emissions for

which the plume top height, bottom height, and estimated eruption time is op-

timized. The analysis is done by systematic sampling of model parameters within

a range of reasonably chosen bounds to generate an ensemble of possible volcanic

ash cloud locations. For each ensemble member a (normalized) Pattern Correlation

Coefficient is calculated in comparison with the observations. All ensemble mem-

bers with a Pattern Correlation Coefficient larger than a certain threshold, e.g. 95 %

as was used by Zidikheri et al. [2016], are taken in order to generate estimates on

the forecast uncertainty. This uncertainty estimate is, therefore, dependent on the

chosen threshold. It is noted that this method is not able to quantify volcanic ash

concentrations but only the area, which is affected by volcanic ash.

No method so far considered both, vertical and temporal varying emission pro-

files and their uncertainty, which is likely to occur in longer lasting eruptions. Ad-

ditionally, no model allows for multiple maxima in the vertical distribution of the

volcanic ash emissions. As the volcanic emissions need to be discretized temporally,

multiple maxima in the vertical distribution of the volcanic ash emissions are more

likely because the eruption strength and type may have changed within the temporal

resolution of the emission profile. Therefore, the objective of this work is to estab-

lish an inverse analysis system for volcanic ash emissions and its uncertainty that

does not rely on assumptions about the emissions. This is achieved by allowing the

system to dynamically adjust to the true volcanic ash emissions. Section 2 summa-

rizes the particle filter methodology that is used to estimate the uncertainty in the
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volcanic ash estimation. The particle filter methodology is extended to a particle

smoother and combined with a minimization procedure to improve the estimation of

the emission profile. This minimization procedure is developed in section 3, where

also its applicability for estimating volcanic ash emissions is shown. Before the full

analysis system is introduced in section 5, the used atmospheric models as well as

the computer system are described in section 4. The performance of the resulting

analysis system is investigated in section 6 in the context of identical twin experi-

ments. Section 7 compares the analysis system with some of the existing methods

described above. Conclusions and an outlook will be given in section 8.





Chapter 2

Data assimilation via particle

filtering

One main part of the target data assimilation system for volcanic ash emission es-

timation is a particle smoother, which is a extension of the particle filtering metho-

dology. The objective of data assimilation is to estimate the state of the atmosphere

using all available information. These include the initial model state mostly ob-

tained from a short-term forecast or the first guess of the emissions (a priori), the

observations, and finally the prognostic model itself. All information sources are ty-

pically endowed with error estimates. One major disadvantage of the classical data

assimilation methods as 4D-var and Kalman filtering is the underlying assumption

that the error statistics are Gaussian and the model evolution is linear. As the

complexity of numerical models in atmospheric sciences increase, more nonlinear

processes are included and the grid resolution is increased as well. This leads to

a multimodal a posteriori Probability Density Function (PDF, cf. Ades and van

Leeuwen [2015]), such that the above mentioned assumptions become more and

more obsolete. Therefore, new data assimilation methods are needed, which do not

rely on the linearization and Gaussian assumptions. Therefore, a data assimilation

technique is selected in the presented study, which do not rely on any assumptions

of the model and error statistics. This technique is known as particle filtering and

is introduced in the following. The nomenclature follows Ide et al. [1997] as far as

possible.

2.1 Bootstrap particle filter

Originating in the early 1990s by the work of Gordon et al. [1993], particle filtering

is a rather new technique compared to other data assimilation methods. First ap-

plications in atmospheric sciences followed around the turn of the millennium (Krol

et al. [1998]; van Leeuwen [2003]). The particle filter base on a weighted mean of

ensemble members (particles in this context), an idea which dates back to the mid

of the 20th century (Metropolis et al. [1953]; Hastings [1970]) with the formulations
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of the Metropolis-Hastings method for Markov Chain Monte Carlo models. The

particle filter method develops from the Bayes’ Theorem

p(x|y) =
p(y|x)p(x)∫
p(y|x)p(x)dx

, (2.1)

which states that the probability of the model state given the observations is pro-

portional to the likelihood of the observations given the model state, times the a

priori probability of the model state itself. The proportionality factor is the inverse

of the probability of the observations p(y). Instead of defining a first guess or back-

ground model state and its error covariances as it is done for other data assimilation

techniques, particle filter represent the a priori PDF by an ensemble of Nens model

runs

p(x) =
1

Nens

Nens−1∑
i=0

δ(x− xi), (2.2)

where δ(·) denotes the Kronecker delta function and xi is the model state of particle

i.

The particle filter consists of two step, namely the prediction step and the

filtering step. In the prediction step, the model state of each ensemble member is

propagated forward to the next observation time t

p(x
(t)
i |y(t−1)) =

∫
p(x

(t)
i |x

(t−1)
i )p(x

(t−1)
i |y(t−1))dx

(t−1)
i . (2.3)

It becomes apparent that the model is a Markov process, i.e. the model state at

time step t only depends on the model state of the previous time step. Once each

particle has calculated the model state at the observation time, the analysis is done

(filtering step)

p(x(t)|y(t)) =
p(y(t)|x(t))p(x(t))∫
p(y(t)|x(t))p(x(t))dx

=
Nens−1∑
i=0

p(y(t)|x(t))1/Nensδ(x− x
(t)
i )∫

p(y(t)|x(t))
∑Nens−1

j=0 1/Nensδ(x− x
(t)
j )dx

=
Nens−1∑
i=0

p(y(t)|x(t)
i )∑Nens−1

j=0 p(y(t)|x(t)
j )

δ(x− x
(t)
i ),

(2.4)

where the ensemble representation of the a priori PDF as in (2.2) is used. It is noted

that in the above derivation of the particle filter method no assumptions of the error

statistics and the model were made. Hence, the particle filter is applicable to states

with non-Gaussian error statistics and to non-linear models. The a posteriori PDF

in (2.4) can be interpreted as a weighted mean of the ensemble members with weights

defined by

wi =
p(y|xi)∑Nens−1

j=0 p(y|xj)
, (2.5)
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where from now on the superscript (t) indicating the time step is omitted unless

necessary. As Gordon et al. [1993] proved, the ensemble representation of the a

posteriori PDF p(x|y) tends asymptotically to the true distribution if Nens increases

to infinity. Therefore, an approximation of the statistics of the a posteriori PDF is

also directly extractable from the ensemble, e.g. the mean x of the distribution is

defined as

x =

∫
xp(x|y)dx ≈

Nens−1∑
i=0

wixi. (2.6)

The advantages of the particle filter methodology are the simple theory, an

easy implementation into existing data assimilation codes, its applicability to non-

Gaussian error statistics, and its usability in non-linear models. Additionally, it is

noted that no explicit formulation of the background error covariances is needed as

it is represented by the spread of the ensemble members via the use of the a priori

PDF p(x). Therefore, the weights of the ensemble members depend solely on the

likelihood p(y|x). However, particle filters are computationally demanding.

The particle filter method is exemplarily illustrated in Fig. 2.1 in its basic form.

Initially, the ensemble members are setup, ideally but not necessarily, according to

the background error covariances. All ensemble members are assigned an initial

weight equal to 1/Nens. Then, the ensemble of model runs is propagated to the first

Figure 2.1: Schematic of the bootstrap particle filter in phase space. The model state

x varies along the vertical axis. Red crosses and dashed ellipses denote the observations

and the high probability region around it, respectively. Black circles indicate the model

equivalent of the individual ensemble members. The size of the circles represents the weight

of the ensemble members. The prediction step is illustrated by the solid lines propagating

the ensemble from one time step to the next.
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observation time (t = 10 in Fig. 2.1) calculating (2.3). At this time step the filtering

step is executed by calculating the likelihood p(y|xi) and the weights wi according

to (2.5). Now, each ensemble member is assigned an individual weight representing

the match of the ensemble members with the observations (illustrated by the circle

size in Fig. 2.1). Note that the weights of the ensemble members can change sig-

nificantly from one analysis time step to the other. Additionally, from Fig. 2.1 it

can be deduced that if the ensemble is biased with respect to the observations, one

ensemble member will get a weight close to 1 while all other ensemble members get

vanishing small weights. Therefore, the choice of the ensemble members are ideally

unbiased and the ensemble spread should be appropriate with respect to the back-

ground error covariances. Nonetheless, this requirement can be relaxed as methods

exist, which implicitly reduce the bias of the ensemble and the observations (e.g.

bias correction). After the filtering step, the statistics of the model state can be

calculated. Then, the prediction step of the model again propagates the ensemble

members to the next observation time.

From Fig. 2.1 it can be seen that after a certain time of integration, only a

limited number of ensemble members may dominate, while the majority of the en-

semble member weights vanish. This is a very likely behavior of particle filters,

especially in high dimensions and is called filter degeneracy. This drawback and

possible solutions to it are dealt with in the next section.

2.2 Methods to overcome filter degeneracy

The principle of particle filtering is promising in its applicability to non-linear

models with non-Gaussian error statistics as it occurs in atmospheric dynamics and

chemistry. Unfortunately, the poor divergence of the ensemble member weights

(filter degeneracy) is the main drawback of particle filtering and is becoming

more serious with increasing dimension. As the model state diverges, almost all

weights tend to vanish with only one weight close to one gets all the probability

mass. Therefore, the statistical value of the ensemble is lost once filter degeneracy

occurs. Bengtsson et al. [2008] stated this fact as the “curse of dimensionality”.

In their analysis, they show for Gaussian and general independent and identically

distributed kernels using weak assumptions that the increase of ensemble size must

be super-exponential in the dimension to avoid collapse of the maximum weight

to 1. Bickel et al. [2008] found same results but for slightly weaker assumptions

on eigenvalues of the covariance matrix of the a priori PDF. In an additional

analysis, Snyder et al. [2008] identified an effective dimension size, which depends

on the state dimension, the prior distribution and the number and character of

the observations. They argued that the ensemble size needs to be exponentially

large in the effective dimension size to overcome filter degeneracy. Hence, a direct

application of the bootstrap particle filter is not feasible because the state vector

in atmospheric sciences is of the order of O(107 − 108).

Several techniques exist in atmospheric sciences, mostly in meteorology, which
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aim to overcome this issue. The simplest technique is called resampling. The idea

is to duplicate ensemble members with high weights and replace ensemble members

with vanishing weights. In order to retrieve an ensemble size of Nens again, the

duplicates need to be perturbed. This reduces the ensemble variance in comparison

to the bootstrap particle filter. Two effects emerge, which are competitive in

their nature. Firstly, the reduction of the ensemble variance aims to avoid filter

degeneracy. Secondly, the reduction of the variance reduces the diversity of the

ensemble members such that the statistical meaning of the ensemble may get lost.

This second effect is called filter impoverishment (Li et al. [2014]) and is a direct

consequence of the resampling step.

Different resampling strategies exist in the literature (see Douc et al. [2005]

and Hol et al. [2006] for a review). Douc et al. [2005] compared resampling

algorithms and argued that stratified and residual resampling perform best. In

stratified resampling the new ensemble is drawn from a multinomial distribution

Mult(Nens;u0, . . . , uNens−1) with parameters uk = (k−1)+ũk
Nens

, where ũk is uniformly

distributed according to U [0, 1) and k = 0, 1, . . . , Nens − 1. This choice reduces the

ensemble variance compared to multinomial resampling, in which the parameters

uk of the multinomial distribution are given by the ensemble member weights

(uk = wk; cf. Hol et al. [2006]). Because of its importance for the presented

work, residual resampling is described in more detail. Residual resampling was

introduced by Liu and Chen [1998]. Assuming that initially to the resampling

step each particle has weight wi. The duplication counts Ni, i.e. the number of

duplicates for ensemble member i, is then calculated using

Ni = bNenswic+N i, (2.7)

with b·c denoting the floor function. The residual N i is chosen according to the

multinomial distribution Mult(Nens − R;w0, . . . , wNens−1), with R =
∑

jbNenswjc
and

wi =
Nenswi − bNenswic

Nens −R
. (2.8)

In practice, the residual N i is calculated as follows:

First draw Nens − R random uniformly distributed variables uk ∈ [0, 1), with

k = 0, 1, . . . , Nens−R− 1. The residual N i is the number of variables uk, which are

in the interval {
∑

j≤iwj,
∑

j<i+1wj}, with i = 0, 1, · · · , Nens − 1 and w0 = 0. As

for stratified resampling, residual resampling is efficient in decreasing the ensemble

variance (Douc et al. [2005]).

It was early recognized that resampling is not enough to overcome filter degen-

eracy in atmospheric sciences. The reason is that the dimension of the problems, in

general, is still too large such that resampling has too little an effect. Different other

particle filter extensions have been proposed in order to avoid filter degeneracy in

high dimensions. Among those are, for example, the implicit particle filter (Chorin

and Tu [2009]; Chorin et al. [2010]; Morzfeld et al. [2012]; Atkins et al. [2013]) and

localized particle filters (e.g. Penny and Miyoshi [2016]; Poterjoy [2016]).
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The implicit particle filter is a combination of the particle filter with the 4D-var

method. First, the atmospheric state is approximated using 4D-var. Once the

optimal model state is calculated, the ensemble is setup by solving an algebraic

equation using the minimum of the cost function. This minimum is obtained by the

4D-var analysis. There exist different methods for the construction of the algebraic

equation (cf. Atkins et al. [2013]). One example is the random map proposed by

Morzfeld et al. [2012], where the algebraic equation is calculated by Gaussian ran-

dom variables ξ as J(x)− ΦJ = 1
2
ξT ξ, with J(·) and ΦJ denoting the cost function

and its minimum, respectively. The choice of ξ ∈ [0, 1] ensures that the costs J(x)

of the ensemble members are close to the minimum ΦJ . It is noted that in the

implicit particle filter first an approximation of the minimum of the cost function is

determined and then an ensemble is setup around this optimal state. Therefore, the

optimal state has to be close to the truth, otherwise the ensemble may be biased and

not representative for the mean of the a posteriori PDF p(x|y). As stated above,

this may be critical for volcanic ash emission estimation.

The localization in the localized particle filter proposed by Poterjoy [2016] aims

mainly to reduce the dimension of the data assimilation problem. This is done by

a radius of influence around the observations. Outside this radius of influence a

global weight according to (2.5) is assigned to each ensemble member for all grid

cells. At the observation location the weight is only controlled by the costs of this

observation. Within the radius of influence a smooth transition between the weights

is calculated such that atmospheric dynamics and correlations are not violated. The

localized particle filter was tested for volcanic ash estimation. For convenience, it is

described in more detail in the appendix.

Another set of approaches to avoid filter degeneracy uses the so called proposal

density q(x). It is noted that some of the above mentioned methods can also be

interpreted in terms of proposal densities. The idea is to sample from the proposal

density rather than from the original PDF p(x). Therefore, the prediction density

in (2.3) needs to be altered to

p(x(t)|y(t−1)) =

∫
p(x(t)|x(t−1))

q(x(t)|x(t−1),y(t))
q(x(t)|x(t−1),y(t))p(x(t−1)|y(t−1))dx(t−1), (2.9)

with q(x(t)|x(t−1),y(t)) simulating information about the “future” observations. To

sample from the proposal density provides two advantages. Firstly, the proposal

density can be chosen arbitrarily, as far as the support is the same as for p(x). For

example, the proposal density can be chosen such that it is easier to sample from

it than from the a priori PDF. Secondly, by including information of the “future”

observations into the proposal density, it is expected that the analysis ensemble is

closer to the observations. Hence, more ensemble members would get meaningful

weights.

Particle filter methods using the proposal density are, for example, the auxiliary

particle filter (Pitt and Shephard [1999]) and the equivalent weights particle filter

(van Leeuwen [2010]; Ades and van Leeuwen [2013; 2015]). The auxiliary particle
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filter consists of two stages. In the first stage a reduced ensemble (either reduced in

ensemble size or complexity of the model) is propagated from the current time step

t to the next filtering time step t+ 1. The full ensemble is resampled at time t using

the weights gained at the filtering time step t + 1 with the reduced ensemble. The

resulting ensemble is propagated in full complexity to the filtering time step t + 1.

Formally, this is the sampling from the proposal density as the information from the

“future” observations is taken. It is expected that the ensemble with full complexity

is closer to the observations than it would be without the auxiliary ensemble. Hence,

less computational power is lost by integrating model states, which get a low weight

and, therefore, have low statistical value. At the filtering time step, the ensemble

may be weighted again but a resampling step is not necessary since the resampling

was done with the reduced ensemble in the first stage. The weights in the auxiliary

particle filter are expected to be more similar and the ensemble is expected to be

close to the observations because the first stage ensemble aims to provide a good

approximation of the final ensemble distribution.

Besides using the information of “future” observations via the proposal density,

the equivalent weights particle filter enforces the ensemble members to have equal

weights. This is obtained by solving the quadratic equation

− logwresti +
1

2
(x

(t)
i − f(x

(t−1)
i ))TB−1(x

(t)
i − f(x

(t−1)
i ))

+
1

2
(y(t) − h(x

(t)
i ))TR−1(y(t) − h(x

(t)
i )) = C,

(2.10)

where wresti is the weight of former analysis time steps, f(·) is the (non-linear) model

operator, h(·) is the (non-linear) observation operator, and C is chosen such that

a certain amount of ensemble members (e.g. 80 %) can solve this equation. The

ensemble members with too small weights are dumped and resampled after the

analysis. This leads to the updated model equation

x
(t)
i = f(x

(t−1)
i ) + αiK(y(t) −Hf(x

(t−1)
i )), (2.11)

with

αi =1±
√

1− bi/ai,
ai =0.5dTi R−1HKdi,

bi =0.5dTi R−1di − C − logwresti ,

K =BHT (HBHT + R)−1,

di =y(t) −Hf(x
(t−1)
i ).

(2.12)

In (2.12), H is the linearized observation operator, K is the Kalman gain matrix and

di is the so called innovation vector, i.e. the difference between the observations and

the model state. In van Leeuwen and Ades [2013] the equivalent weights particle

filter is successfully applied to a model solving the barotropic vorticity equation on

a 65,500 dimensional grid using only 32 ensemble members. Therefore, van Leeuwen
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[2015a] stated that the equivalent weights particle filter is able to solve the curse of

dimensionality. A detailed description of the multiple steps of the equivalent weights

particle filter is given in Ades and van Leeuwen [2015].

For further reading, there exist various reviews on particle filter methods in

the literature and the reader is referred to this for a more comprehensive view on

this topic (e.g. Doucet et al. [2001]; van Leeuwen [2009]; Andrieu et al. [2010]; van

Leeuwen [2015b]).
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Minimization algorithm

The objective of this work is to find the best estimate of volcanic ash concentra-

tions in the atmosphere, including its uncertainty, by optimizing emission sources.

Particle filtering provides a methodology to estimate the uncertainty of the model

state if unbiased and reliable a priori information is given. However, only limited

information is available for the estimation of the volcanic ash emission profiles such

that the a priori PDF used in particle filtering is likely to be underrepresented by a

small ensemble. In this section, a method is developed that is able to calculate an

ensemble of analysis volcanic ash emissions that can be used as a priori information

for particle filtering (see section 5.2 for the description of the full, combined analysis

system). Therefore, an ensemble extension of the standard direct search method

by Nelder and Mead [1965] using discrete solutions was developed. The extension

aims to find the best representation of the cost function near its minimum in order

to describe the uncertainty of the analysis by optimally combining pairwise distinct

emission packages.

3.1 Ensemble of emission scenarios

The main concept of the assimilation system is to emit a set of Nemis pairwise

distinct emission packages (emission scenarios as they were called by Stohl et al.

[2011]) with a default unit ash amount such that the volcanic ash concentration

resulting from each emission scenario is given through a forward model run. Each

emission scenario is defined by an emission package for a single model layer and a

single time frame (e.g. one hour). Since the observation operator for volcanic ash

column mass loadings is linear, finding the optimal combination of the volcanic ash

concentration patterns, which emerged from the pairwise distinct emission packages,

is a reasonable approach. A similar approach for estimating the volcanic ash column

mass loadings was used by Stohl et al. [2011] and Kristiansen et al. [2015] but only

for the estimation of the optimal emission profile and not for its uncertainty.

The use of a linear combination of pairwise distinct emission packages as a priori

information alters the cost function to be minimized. First, the observational part



30 CHAPTER 3. MINIMIZATION ALGORITHM

of the cost function used in 4D-var is considered. Let xt be the model state at time

t and yt the corresponding observations, then the observational part of the 4D-var

cost function is

J(x) =
L∑
t=0

(H Mt(x0)− yt)
TR−1(H Mt(x0)− yt) (3.1)

where L is the length of the assimilation window, H is the (possibly non-linear)

observation operator mapping the model state into observation space, M is the

model operator integrating the model state from time 0 to t, and R is the observation

error covariance matrix. The superscript T denotes the transpose of a matrix or

vector. The use of emission packages with default emission strength changes the

independent variable from the model state x to the emission factor a. This emission

factor scales the emission strength and the corresponding volcanic ash concentrations

for each emission package and is, therefore, the variable to be optimized. Hence, the

cost function changes to

J(a) =
L∑
t=0

(H M̃t[at(z)e0]− y)TR−1(H M̃t[at(z)e0]− y), (3.2)

with the source-receptor model M̃t mapping the unit emissions e0 onto the model

state and transports it. Here, at(z) denotes the emission factor profile for a specific

Figure 3.1: Conversion of the emission profile to a row vector of emission factors as

it is used by the DENM (see section 3.5) method. (a) Hovmoeller plot of the emission

profile for each hour of the 12 hour analysis period. Colors indicate emission strengths of

a hypothetical eruption (nature run emission profile). (b) Same as (a) but with emission

factors for each emission package. In this case the emission factors are organized in a

matrix. To be usable for the DENM method, the matrix in (b) is transformed into a vector

(c).
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time for all heights z. This is exemplarily illustrated by the red and light blue

rectangle in Fig. 3.1. A Hovmoeller plot (time vs. height) of the emission profiles

of a hypothetical sub-plinian eruption with two explosive phases between 2-4 UTC

and 6-8 UTC, respectively, is shown in Fig. 3.1a. The Hovmoeller plot shows in each

column the emission profile of the volcanic eruption for a given time. The emission

strength of the eruption range from 700 kg/s to 1100 kg/s, while the emissions for

the bulk of the time-height combinations remain zero (blue color in Fig. 3.1a). The

emission factors that correspond to a perfect analysis are summarized in Fig. 3.1b for

this example. It is assumed that each ensemble member emits a default emission rate

of volcanic ash of 100 kg/s for one hour in one model layer. For example, ensemble

member 0 emits 100 kg/s from 0-1 UTC in model layer 1, ensemble member 1 emits

100 kg/s from 0-1 UTC in layer 2, and so on.

To be used in a minimization algorithm, the time-height matrix of Fig. 3.1b has to be

transformed into the vector a of emission factors, wherein each entry corresponds

to the emission factor for one emission package and, therefore, for one ensemble

member. This transformation is illustrated in Fig. 3.1c. As can be seen from this

graphic, the emission factors ai that minimize the cost function are not smooth and

the minimization has to deal with multiple discontinuities.

3.2 Original Nelder-Mead method

The choice made above for finding the optimal emission profile of volcanic ash by

a combination of emission packages with (scaled) emission strengths leads to the

need of a combinatorial minimization algorithm. The reason is that not all valid

combinations of emission profiles can be calculated. Assuming N emission packages

with M different possible emission strengths (i.e. emission factors) for each pac-

kage, the number of combinations is c = MN = 10120 for, for example, 120 emission

packages and 10 emission factors. This is not feasible to be calculated. There-

fore, an algorithm is needed that finds the optimal combination with respect to the

given cost function (3.2) within a limited number of steps. The direct search method

proposed by Nelder and Mead [1965] is chosen, which is not restricted to only M dif-

ferent emission factors. This combinatorial minimization is not manageable for e.g.

quasi-Newton methods as the limited memory Broyden-Flechter-Goldfarb-Shanno

(L-BFGS) algorithm (Liu and Nocedal [1989]). Additionally, the Nelder-Mead al-

gorithm needs relatively few function evaluations (mostly 1-2 per iteration, Lagarias

et al. [1998]). As a direct search method, the Nelder-Mead minimization algorithm

is expected to be robust, especially in cases where the function has discontinuities

or the function values are noisy (see McKinnon [1998]).

The method proposed by Nelder and Mead [1965] is a popular direct search

method (e.g. Tseng [1999]). The idea of the algorithm is to move a simplex on the

surface of a N -dimensional function. A simplex is a hull in model space, which is

defined by its N + 1 vertices (or points). The simplex and the different moves of the

Nelder-Mead algorithm are shown in Fig. 3.2, in which (a) the standard test function
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Figure 3.2: (a) Example of a simplex on the standard test function Rosenbrock defined

by f(x) = (1 − x1)2 + 100 ∗ (x2 − x21)2. The black triangle indicates the simplex spanned

by its vertices (black dots). The centroid is displayed as an asterisk, the reflection vertex

as a cross. The simplex obtained through (b) reflection, (c) expansion, (d) contraction

(two possibilities), and (e) shrinkage are overlaid in red over the initial simplex. Here the

crosses denote the newly calculated vertices.

Rosenbrock and a realization of a simplex (black triangle) is depicted. The black

dots indicate the vertices that span the simplex. The centroid of the N best vertices

and the reflection vertex are depicted as an asterisk and a cross, respectively. Addi-

tionally, the four possible moves of the simplex in the Nelder-Mead method, which

are (b) reflection, (c) expansion, (d) inner and outer contraction, and (e) shrinkage,

are shown on the right of Fig. 3.2. The simplex can take any shape on the cost

functions surface and its inner angles can become arbitrarily small.

The initial simplex is constructed by choosing the first vertex reasonably well

(background). Here, prior knowledge on the solution can be used. The other N

vertices are generated by perturbing the initial vertex in each dimension. Hence,

the simplex is able to move along every dimension. To exclude movement in one

dimension, the value in this dimension can be kept fixed for all vertices. The initial

simplex S is spanned by the initial vertices: S = {x0,x1, . . . ,xN−1,xN}. It is noted

that the vertices correspond to one vector of emission factors in the application to

volcanic ash emission estimation. The movement of the simplex is performed by

changing the position of the vertex with the highest costs according to the following

steps (one iteration of the Nelder-Mead algorithm):
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1. Reflection (cf. Fig. 3.2b): The first step is to calculate the reflected vertex.

Without loss of generality the vertices are assumed to be ordered by costs, such

that f(x0) ≤ f(x1) ≤ · · · ≤ f(xN−1) ≤ f(xN). In case of multiple vertices

having the same function value, a proper tie-breaking rule as the one proposed

by Lagarias et al. [1998] has to be applied in order to make the algorithm well-

defined. To move the simplex towards the minimum, the worst vertex xN is

reflected at the centroid c of the N best vertices:

c =
1

N

N−1∑
i=0

xi,

x(r) = c− α(xN − c),

where x(r) is the reflection of xN and α > 0 is the reflection coefficient. The

reflected simplex is: S(r) = {x0,x1, . . . ,xN−1,x
(r)}. Once the reflection x(r)

is calculated, the choice of the remaining steps depends on its function value

f(x(r)).

2. Expansion (cf. Fig. 3.2c): If x(r) becomes the best vertex of the new simplex

S(r), i.e. f(x(r)) < f(x0), the reflected vertex is further expanded by

x(e) = c + β(x(r) − c),

where x(e) is the expanded vertex and β > 1 is the expansion coefficient.

The expanded simplex is: S(e) = {x0,x1, . . . ,xN−1,x
(e)}. If the expanded

vertex is a better estimate of the minimum than the reflected vertex (i.e.

f(x(e)) < f(x(r))), S is replaced by S(e), otherwise by S(r). The next iteration

is started.

3. Contraction (cf. Fig. 3.2d): If the reflected vertex is not an improvement

over the best vertex (i.e. f(x(r)) > f(x0)) but it is an improvement over

the worst vertex (f(x(r)) < f(xN)), the reflected vertex is moved towards the

centroid (outer contraction)

x(oc) = c + γ(x(r) − c),

where 0 < γ < 1 is the contraction coefficient. If the reflection is no im-

provement over the worst vertex (f(x(r)) > f(xN)), the worst vertex is moved

towards the centroid (inner contraction)

x(ic) = c− γ(x(r) − c).

If the contracted vertex x(c) (either x(oc) or x(ic)) is an improvement over the

worst vertex (i.e. f(x(c)) < f(xN)) the contracted vertex is accepted and the

new simplex is S(c) = {x0,x1, . . . ,xN−1,x
(c)}. The next iteration is started.
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4. Shrinkage (cf. Fig. 3.2e): If the contraction vertex is no improvement over

the worst vertex x(N), non of the above steps lead to a vertex that is closer to

the minimum than the worst vertex xN . In this case all vertices are shrank

towards the best vertex

xi = x0 + δ(xi − x0) , ∀i = 1, N.

Herein, 0 < δ < 1 is the shrinkage coefficient. The original simplex is replaced

by the shrank one. The effect of the shrinkage for the simplex has an important

consequence on the methods behavior. By shrinking the simplex towards the

best vertex, the volume of the simplex is reduced. As a consequence, the

step length for the other three steps of the algorithm (reflection, expansion,

and contraction) is reduced as well, which is an advantage in the vicinity of

the global minimum. If the step length is too large, even the reflection step

overshoots such that it cannot find a new best vertex. In the vicinity of a local

minimum, the shrinkage of the simplex may hinder the algorithm to overcome

this local minimum. In this case the global minimum may not be found.

The above described iteration is terminated if a defined termination criterion is met.

Different choices of termination criteria exist, for example√√√√ 1

N

N∑
i=0

(
f(xi)− f(x)

)2
< ε1, (3.3)

or

f(x0) < ε2, (3.4)

where ε1 � 1 and ε2 � 1. The first criterion terminates the minimization if the

simplex size has collapsed below a threshold. The second criterion terminates the

minimization if the best vertex is close enough to the minimum. If one dimension

is expected to be known more precisely, this dimension can be kept fixed for all

initial vertices (Nelder and Mead [1965]) such that in this dimension no movement

is possible anymore.

By first investigating the behavior of the minimization algorithm, Nelder and Mead

[1965] found that the convergence rate depends on the size and orientation of the

initial simplex. This can easily be understood by examining Fig. 3.2a. By increa-

sing the volume of the simplex, the distance between the worst vertex, which is to

be updated (or moved), and the centroid increases. Hence, the distance between

the centroid and the reflection vertex increases as well. Also, if the simplex is

turned clockwise around the centroid, the reflection vertex will turn clockwise, too.

Likewise, the expansion, contraction, and shrinkage steps will also lead to different

updates if the volume or orientation of the initial simplex is changed. This alters

the performance of the minimization as was found by Nelder and Mead [1965].

Although the minimization algorithm is widely used (e.g. Gao and Han [2012])

and it shows satisfactory minimization behavior for most cost functions, not much
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Algorithm 1 Pseudo-code of the original simplex method by Nelder and Mead

[1965]. A detailed description of the algorithm can be found in the text.

1: Set initial vertex x0

2: generate simplex by perturbing initial vertex: xi = x0 + ξei, (i =

1, . . . , N ; ξ arbitrarily, may depend on the problem)

3: while 1
N+1

∑
i

(
f(xi)− f(x)

)2
> ε2 and ITX < NITER do

4: sort xi, {i = 0, . . . , N} such that f(x0) = y0 ≤ y1 ≤ · · · ≤ yN = f(xN)

5: compute centroid of N best vertices c = 1
N

∑N−1
i=0 xi

6: compute reflection: x(r) = c− α(xN − c)

7: if f(x(r)) < y0 then

8: compute extension: x(e) = c + β(x(r) − c)

9: if f(x(e)) < f(x(r)) then

10: xN = x(e)

11: else

12: xN = x(r)

13: end if

14: else

15: if f(x(r)) < yN−1 then

16: xN = x(r)

17: else

18: contract towards centroid

19: if f(x(r)) < yN then

20: outer contraction x(oc) = c + γ(x(r) − c)

21: x(c) = x(oc)

22: else

23: inner contraction x(ic) = c− γ(x(r) − c)

24: x(c) = x(ic)

25: end if

26: if f(x(c)) < yN then

27: xN = x(c)

28: else

29: shrink to best vertex

30: for i=1,N do

31: xi = x0 + δ(xi − x0)

32: end for

33: end if

34: end if

35: end if

36: ITX += 1

37: end while
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theoretical investigations about the minimization properties has been done. Lagarias

et al. [1998] proofed the convergence of the algorithm in one dimensional problems

for strictly convex functions. For two dimensional problems, they showed that the

cost function values of the vertices converge to the same value and that the dia-

meter of the simplex converges to zero. Nevertheless, they pointed out that this

does not imply that the vertices converge to a single point. For higher dimensional

cost functions no analysis of the behavior is available. For a set of strictly convex

functions, McKinnon [1998] derived a family of initial simplices that converge to a

non-stationary point. He showed that this is due to a non-stop sequence of inner

contractions.

A method that overcomes this issue was proposed by Tseng [1999], whose

algorithm differs mainly in the descent criterion from the standard Nelder-Mead

method. While Nelder and Mead [1965] require strict descend of the updated vertex

with respect to the worst vertex of the simplex, Tseng [1999] demand a fortified-

descent. This means that a new vertex is only accepted if the improvement over the

worst vertex exceeds some threshold. Otherwise the iteration is repeated with the

(non-improving) shrank simplex. Additionally, the fortified-descent minimization

algorithm does not allow for a zero volume of the simplex and for zero angles at the

vertices, a condition, which is not necessarily met in the original Nelder-Mead mi-

nimization algorithm. A first conclusion of Tseng [1999] indicates that the method

settings closest to the Nelder-Mead algorithm produces the best results.

3.3 Nelder-Mead method with adaptive parame-

ters

Although multiple examples exist in which the algorithm does not minimize cor-

rectly (cf. Torczon [1989]; Wright [1996]; McKinnon [1998]; Han [2000]), especially

in higher dimensions, the Nelder-Mead method is used widely, also for larger dimen-

sions. Han and Neumann [2006] analyzed the so called “effect of dimensionality”

for the quadratic cost function f(x) = xTx. They showed that the performance of

the method by Nelder and Mead [1965] decreases as the dimension increases. In the

following, the issue introduced by higher dimensional problems is further addressed.

After the analysis of Nelder and Mead [1965], in which the performance of dif-

ferent values of the parameters α, β, γ, and δ (see algorithm 1) were compared, a

set of standard choice of these parameters has established (cf. Gao and Han [2012])

α = 1 , β = 2 , γ = 1/2 , δ = 1/2. (3.5)

The values in the literature may deviate because of different formulations of the four

steps of the algorithm. Gao and Han [2012] proofed for uniformly convex functions

that the expansion and contraction steps with these parameter values lose efficiency

as the dimension increases. Further, they concluded that reducing the chances of

reflection to occur and forcing the diameter of the simplex away from zero can
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Table 3.1: Codes for the initial simplices for the performance tests of the Nelder-Mead

methods minimizing cost functions f(x) and g(x). The initial vertex x0 ranges from 1 to

100 (a-f; rows in the table). The perturbations σ (i-vii; columns in the table) of the N

additional vertices ranges from 0.001 to 0.5.

perturbations σ

x0 0.001 0.005 0.01 0.05 0.1 0.2 0.5

1 a.i a.ii a.iii a.iv a.v a.vi a.vii

5 b.i b.ii b.iii b.iv b.v b.vi b.vii

10 c.i c.ii c.iii c.iv c.v c.vi c.vii

20 d.i d.ii d.iii d.iv d.v d.vi d.vii

50 e.i e.ii e.iii e.iv e.v e.vi e.vii

100 f.i f.ii f.iii f.iv f.v f.vi f.vii

increase the performance of the algorithm. As a consequence, they adapted the

parameters α, β, γ, and δ to the dimension of the problem such that

α = 1 , β = 1 +
2

N
, γ = 0.75− 1

2N
, δ = 1− 1

N
. (3.6)

For increasing dimension N , the expansion, contraction, and shrinkage steps become

smaller, hindering the volume of the simplex to decrease too rapidly. In an analysis,

they demonstrated that the Nelder-Mead method using adaptive parameters (ANM)

outperforms the standard version of the algorithm for various functions and dimen-

sions, although in some instances more function evaluations were required. In the

following, the behavior of the original Nelder-Mead method (ONM) and ANM is

investigated.

The ANM method is compared with the original version of Nelder and Mead

[1965] with special interest in the performance dependency on the choice of initial

simplex and, thus, on its applicability to volcanic ash emission estimation. There-

fore, for the N -dimensional spherical cost function

f(x) =
N−1∑
i=0

x2i , (3.7)

with the dimension of the problem N = 120, the minimization is performed for

100,000 iterations for various initial simplices. The initial simplices were constructed

according to

xi = x0 + δijσ(eTj x0)ej, (3.8)

with δij the Kronecker-Delta function and ej the unit vector in dimension j. This

means that first an initial vertex x0 is defined. All other vertices of the simplex

are equal to that initial vertex except for one perturbed dimension i for vertex i.

The values of the initial simplex and the perturbations are summarized in Tab. 3.1.
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Figure 3.3: Comparison of the performance of the ONM (solid lines) and the ANM

(dashed lines) methods for the test cases with initial vertex x0 = 1 (experiment set a)

minimizing cost function f(x) (cf. also Tab. 3.1 for details on the experiment sets). (a)

Cost evolution for the minimization; (b) angle α between the actual search direction and

the optimal search direction (gradient for this cost function); (c) relative frequency of the

five steps reflection (green), expansion (blue), inner contraction (black), outer contraction

(red), and shrinkage (yellow). The abscissa in (c) indicates the perturbation σ to generate

the initial simplex (cf. Tab. 3.1).

For example, initial simplex c.iv consists of an initial vertex with x0 = 10 and N

additional vertices with σ = 0.05.

The results for the different initial vertices are qualitatively similar, hence, only

the test results with initial vertex x0 = 1 are shown in Fig. 3.3. The cost evolution for

all seven perturbation tests are shown in Fig. 3.3a. For all perturbations, the ANM

method (dashed lines) outperforms the ONM method (solid lines). The improvement

stems from a reduced use of the reflection step, which was shown by Gao and

Han [2012] to be less efficient than the extraction and contraction step for their

analysis. This result is also depicted in Fig. 3.3c, where on the left side the relative

counts of the five moves of the ONM method are shown, while the relative counts

of the five steps of the ANM method are plotted on the right. The 7 columns

in Fig. 3.3c correspond to the seven experiments using different perturbations of

the initial vertex. For all perturbations except the largest two (σ = 0.2 and σ =
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0.5), a clear reduction of the reflection counts is visible. For instance, while in the

ONM method the minimization of the initial simplex spanned by 5 % perturbations

(a.iv, red lines) is mainly obtained by reflection steps ( 98 %), the reflection step

for experiment a.iv using the ANM method is used only 47 % of the time. For the

smallest simplex a.i, the enhanced reduction rate of the costs is due to an increased

usage of the expansion step (33 %, Fig. 3.3c). For the moderate simplex size in

experiment a.iv, the improvement is mainly due to an increased usage of the inner

contraction step (38 %, Fig. 3.3c).

Nonetheless, there are large differences visible for different choices of the initial

perturbation. For the test function f(x) in (3.7), best results were obtained by

perturbing the initial vertex by 10 % or 5 % (yellow and red dashed lines in Fig. 3.3a,

respectively). The reason for the large improvements in the minimization using the

ANM method for the experiments a.ii - a.v (0.5 % - 10 % perturbation of the

initial vertex) is the improved search direction opposed to the ONM method. In

Fig. 3.3b, this is illustrated by the angle α between the actual search direction and

the optimal search direction, which, for the given test function, is the gradient. It

can be seen that the steeper the descend of the costs is, the smaller the angle α

is. While the respective angle for the ANM method for the experiments a.ii - a.v

falls below 45◦ in the iterations with the steepest descend, the respective angle for

the ONM remains large (about 70◦ - 80◦). This means that for the ONM method

the search direction highly fluctuates in a zigzag course around the gradient. In

contrast, in the ANM method in most cases the minimum is searched along steeper

search directions, hence performing a much lower fluctuating zigzag course around

the gradient. As can be seen by Fig. 3.3b, the iteration, at which the angle between

the actual search direction and the gradient begins to reduce, is highly dependent on

the initial simplex size. If the initial simplex is too small (e.g. 0.1 % perturbation,

gray line in Fig. 3.3b), the respective angle does not reduce continuously. This

indicates that the simplex is too small to generate a sequence of optimized search

directions as it is in the cases for moderate sized initial simplices (e.g. 5 % and 10 %

perturbations, red and yellow dashed lines in Fig. 3.3b, respectively). If the initial

simplex is too large (20 % and 50 % perturbation, purple and cyan dashed lines), the

angle between the actual search direction and the gradient remains large. Here, the

step size is such that the reflection step provides the best updated vertex. As stated

above, Gao and Han [2012] showed that the reflection step becomes ineffective in

high dimensions. The reduction rate for these two experiments remained low leading

to a failed minimization even for the ANM method.

To identify a benefit from the ANM method for the optimization of emission

profiles of volcanic ash, the same tests with the initial simplices summarized in
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Tab. 3.1 are performed using the spherical cost function

g(x) =
N−1∑
i=0

(xi − yi)2, with yi =



4, i < 33,

0, 33 ≤ i < 50,

1, 50 ≤ i < 72,

2, 72 ≤ i < 73,

0, 73 ≤ i < 110,

3, 110 ≤ i < 119.

(3.9)

This cost function is comparable to the modified cost function in (3.2). For the

similarity to the volcanic ash emission cost function see also the derivation of the

vector of emission factors in Fig. 3.1. Although the cost function in (3.9) is irregular

and non-smooth, it does not suffer from ill-posedness, such that the minimization

of this cost function is expected to perform better than for volcanic ash emission

estimation using the full atmospheric model.

By performing the minimization of the initial simplices defined in Tab. 3.1 for

the cost function (3.9) it was seen that both, the performance of the minimization

and the improvement of the ANM method over the ONM method, depend on the

distance of the initial simplex to the minimum as well as the size of the initial sim-

plex. For all initial simplices in Tab. 3.1, the percentage of cost reduction after

100,000 iterations for both, the ANM method and the ONM method, is depicted

Figure 3.4: Percentage cost reduction of the ONM (red circles) and ANM (black crosses)

methods for the minimization of cost function g(x) after 100,000 iterations using the initial

simplices summarized in Tab. 3.1. For each set of initial vertices (e.g. set a corresponds

to the experiments a.i - a.vii in Tab. 3.1) the seven different perturbations are shown

(perturbation ’i’ on the left to perturbation ’vii’ on the right for each experiment set). The

depicted data is summarized in Tab. 3.2 for convenience.
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in Fig. 3.4. The experiment sets a-f correspond to the different initial vertices in

Tab. 3.1. Within each experiment set, the small-simplex-experiment (labeled ’i’ in

Tab. 3.1) is on the left and the large-simplex-experiment (labeled ’vii’ in Tab. 3.1)

is on the right of each column. The results shown in Fig. 3.4 are summarized in

Tab. 3.2 for convenience. The tables layout corresponds to Tab. 3.1 for a better

comparison.

For all experiments, it is found that the performance of both methods mi-

nimizing cost function g(x) is poorer than minimizing cost function f(x) (not

shown). For the ONM method, the minimization of the smallest initial simplices

with 0.1 % perturbations perform worst with a cost reduction between only 12 %

(experiments d.i and e.i) and 64 % (experiment a.i). In contrast, the largest initial

simplices with 50 % perturbations (experiments with label ’vii’ in Tab. 3.1) always

reach the minimum for this cost function. For the remaining experiments, the cost

reduction range from 40 % for experiment b.ii to 100 %. In total, a cost reduction

of more than 97 %, which can be seen as a successful minimization, is reached for 22

out of 42 experiments using the ONM method. In this respect, the ANM method

outperforms the ONM method for this set of experiments as it exceeds 80 % cost

reduction for all but three choices of initial simplex (experiments d.vi, e.vi, and f.vi)

and reaches more than 97 % cost reduction for 32 out of 42 experiments.

Nonetheless, large differences in the performance of the ANM method between

Table 3.2: Percentage cost reduction of the ANM method (black) and ONM method (red)

after 100,000 iterations for the experiments summarized in Tab. 3.1 for cost function g(x).

The initial vertex x0 is perturbed by σ according to (3.8). The data in the table is plotted

in Fig. 3.4 with ’set a’ denoting data in the first row, set b denoting data in the second

row and all the rest of it.

perturbations σ

x0 0.001 0.005 0.01 0.05 0.1 0.2 0.5

1
92% 93% 95% 99% 100% 100% 100%

(64%) (80%) (89%) (98%) (100%) (100%) (100%)

5
82% 100% 100% 100% 90% 97% 100%

(20%) (40%) (82%) (100%) (100%) (100%) (100%)

10
92% 100% 100% 100% 100% 88% 100%

(16%) (47%) (93%) (100%) (100%) (100%) (100%)

20
100% 100% 100% 100% 100% 75% 100%

(12%) (75%) (99%) (100%) (100%) (85%) (100%)

50
100% 100% 100% 100% 100% 67% 100%

(12%) (83%) (98%) (100%) (82%) (67%) (100%)

100
100% 100% 100% 100% 100% 67% 100%

(13%) (87%) (99%) (100%) (84%) (67%) (100%)
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Figure 3.5: Comparison of the performance for the ONM (solid lines) and the ANM

(dashed lines) methods for experiment set a ((a) and (c)) and experiment set f ((b) and (d))

minimizing cost function g(x). The cost evolution is depicted in panels (a) and (b). The

angle between the actual search direction and the gradient is displayed in (c) and (d).

the various initial simplices are visible. To investigate the reasons for this, Fig. 3.5

compares the evolution of the minimal costs over the iterations (Fig. 3.5a and 3.5b)

and the angle α between the actual search direction and the gradient (Fig. 3.5c

and 3.5d) for all simplex sizes with initial vertex x0 = 1 (Fig. 3.5a and 3.5c) and

x0 = 100 (Fig. 3.5b and 3.5d). In the following, the experiments with initial vertex

x0 = 1 are referred to as close initial simplices as the distance between the initial

vertex and the minimum is small. Similarly, the experiments with initial vertex

x0 = 100 are referred to as far initial simplices.

For the far initial simplex experiments (Fig. 3.5b and 3.5d), the evolution of the

minimum costs and the angle α are qualitatively similar to the respective evolutions

for cost function f(x) (cf. Fig. 3.3). In contrast, the behavior of the close initial

simplices differs during the minimization. Firstly, the differences between the ONM

method and the ANM method are smaller for all initial simplex sizes (i.e. for all

perturbations of the initial vertex). This is visible as the cost evolution of the two

methods starts to deviate only after a certain number of iterations. For instance,

the minimum costs for experiment a.vii are comparable for the first 40,000 itera-
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tions for both methods and improves only afterwards for the ANM method over the

ONM method. Secondly, for both methods, it can be seen that the larger the initial

simplex is (i.e. the larger the perturbations are) the better is the performance of

the minimization (see Fig. 3.5a), which is not true for the far initial simplices expe-

riments (cf. Fig. 3.5b). Thirdly, although the minimum costs for the ANM method

are reduced by 90 % to 95 % (cf. also Tab. 3.2), the minimization must be regarded

as unsuccessful for the experiments a.i, a.ii, and a.iii. The same holds true for the

ONM method, where the minimum costs of the simplices are reduced between 64 %

and 89 % for the same experiments.

The reason for the different behavior of the minimization for the experiments

shown in Fig. 3.5 can be understood by considering the displacement of the minimum

of the cost function g(x) with respect to cost function f(x). While for some dimen-

sions the initial vertex x0 = 1 meets the minimum, the distance varies between 1

and 3 for the other dimensions. Therefore, the distances of the initial vertex to the

minimum for all dimensions is not uniform. By considering the movement of the

simplex, which is shown in Fig. 3.2, it is obvious that moving the close initial sim-

plex leads to an improvement in directions that do not match the minimum, while a

degradation in dimensions, in which the initial simplex and the minimum coincide,

occurs. Therefore, a longer adjustment period of the simplex towards optimal search

directions with smaller angles α is needed (see Fig. 3.5a and 3.5c). Because of the

large distance of the initial vertex x0 = 100 to the minimum, this non-uniformity of

its distance to the minimum is less than for the close initial simplices. Therefore, the

performance is comparable to the performance of the same set of initial simplices for

cost function f(x). Nonetheless, taking larger initial simplices with larger pertur-

bations of the initial vertex, the ANM method is also for a displaced cost function

an improvement of the minimization method by Nelder and Mead [1965] as can be

seen by the higher cost reduction rate in Fig. 3.5a and 3.5b.

3.4 Parallel Nelder-Mead method

The results presented in the previous section show the ability of the ANM method

to improve the performance of the minimization for a variety of initial simplices.

Nonetheless, as is seen for the optimization of the displaced cost functions g(x), the

rate of convergence is low and depends on the chosen initial simplex. Therefore, a

further improvement of the algorithm is needed. Another approach, proposed by

Lee and Wiswall [2007], is implemented, which improves the rate of convergence

by solving the minimization in parallel. The idea is to update the K worst vertices

instead of only the worst vertex per iteration. By updating more than one vertex per

iteration, the vertices used to calculate the centroid are expected to yield a better

search direction because only the N + 1 − K best vertices are taken into account

for the calculation. Therefore, the algorithm minimizes much faster than the ONM

method (cf. Lee and Wiswall [2007]). The parallel Nelder-Mead method (PNM) of

Lee and Wiswall [2007] works as follows:
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1. The initial simplex is created and the vertices xi are sorted according to the

individual costs.

2. The centroid of the N + 1−K best vertices is calculated

c =
1

N + 1−K

N−K∑
i=0

xi. (3.10)

3. For each of the K worst vertices the individual update is calculated, which is

either the reflection (x(r)), expansion (x(e)), or contraction (x(c)) point. These

steps are similar to the ONM method (cf. algorithm 1 and section 3.2 for more

details).

4. If, for any of the K worst vertices, an update is available, no shrinkage is

necessary because the simplex is improved with respect to the costs. If none

of the K worst vertices has performed an update, the simplex is shrank towards

the current best vertex x0. Again, this step does not deviate from the ONM

method.

5. The next iteration starts with step 2 until the termination criterion is fulfilled.

It is obvious that the ONM method is included in this parallel extension of the

method. Therefore, it is expected to perform at least as good as the ONM method.

Opposed to the description by Lee and Wiswall [2007], the calculation of the

centroid (3.10) differs in the above summary of the method. This is a corrigendum

of the PNM algorithm as described below. The main findings by Lee and Wiswall

[2007] were the reduced number of iterations, since multiple vertices are corrected in

one iteration, and the improved search direction as only the best N + 1−K vertices

are contributing to the calculation of the centroid, as was previously explained. The

proposed formula for the centroid by Lee and Wiswall [2007] is

c′ =
1

N

(N+1)−K∑
i=1

xi. (3.11)

This formula differs only by a factor from (3.10) but this has a large impact on

the minimization performance. Fig. 3.6 demonstrates the behavior of both centroid

calculations using (3.10) and (3.11). The initial simplex is defined by the vertices

x0, x1, and x2. The different reflection vertices x
(r)
i are depicted, which define the

search direction for the worst vertex x2 for the chosen number of updates K per ite-

ration. SK=2;right and SK=2;false denote the search directions calculated with (3.10)

and (3.11), respectively.

As can be seen in Fig. 3.6, the choice of K = 1 yields the same search direc-

tion (dashed line with vertices x2 and x
(r)
K=1) as the ONM method. In contrast,

by choosing K = 2, the search direction for the worst vertex x2 strongly deviates

by using either of both formulas for the calculation of the centroid. By applying
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Figure 3.6: Comparison of different search directions for a shifted spherical cost function

(circular isolines) to the minimum coordinate (3,2). The simplex is defined by the vertices

x0, x1, and x2. The reflection x
(r)
K=1 is calculated according to the ONM method. The

reflection vertex x
(r)
K=2;right is the corrected reflection vertex referred to Lee and Wiswall

[2007] using (3.10). The reflection vertex x
(r)
K=2;false corresponds to the calculation from

Lee and Wiswall [2007] using (3.11). The dashed lines represent the different search

directions S with respect to the calculation of the centroid.

(3.11) as proposed by Lee and Wiswall [2007], the search direction S2;false is highly

nudged towards the origin of the coordinate system. For the cost functions used

in the evaluation by Lee and Wiswall [2007], this is not an issue because the cost

functions are all centered at the origin. Therefore, the methods performance is even

increased by this formula. By applying the corrected formula for the calculation of

the centroid (3.10), the search direction S2;right is nudged towards the minimum of

the cost function, which illustrates well the potential of the PNM method to increase

the rate of convergence.

A further extension of this PNM method subdivides the simplex into P subsim-

plices, which is beneficial especially if the dimension and the number of observations

is large (Klein and Neira [2014]) and, hence, many and costly function evaluations

are necessary. Each subsimplex comprises Nloc = (N + 1)/P local vertices with

Kloc = K/P local updates. In the following, local variables refers to values, which

are specific for each subsimplex. In contrast, global variables are equal for all sub-

simplices. The implementation follows mainly the procedure described above with
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the following additions (cf. Klein and Neira [2014]):

1. The subsimplices are allocated on different processors;

2. A local centroid of each subsimplex j is calculated by

c̃j =
1

N + 1−K

Nloc−Kloc∑
i=0

xi; (3.12)

3. The global centroid is calculated as the sum of the local centroids

(c =
∑P−1

j=0 c̃j);

4. The global minimum is determined and its corresponding vertex is distributed

among the processors;

5. A flag is introduced that notifies if any vertex has been updated among the

processors. If not, the subsimplices are shrank towards the best vertex with

the global minimum costs.

With this implementation of the PNM method, the K vertices with highest costs

are not equally distributed among the subsimplices. Hence, vertices with smaller

costs than those K vertices will be updated. In contrast, some of the K vertices

with the highest costs are used for the calculation of the centroid. This may lead

to search directions that are less optimal compared to the PNM method by Lee and

Wiswall [2007]. This will likely increase the number of iterations before the mini-

mum is found. Nonetheless, Klein and Neira [2014] found that the above described

distribution of the vertices among the subsimplices has only little effect on the al-

gorithms performance, at least for their test functions.

The PNM method is tested for the cost function g(x) defined by (3.9) and

the set of initial simplices as described in the previous section (cf. Tab. 3.1).

For each initial simplex, the minimization of cost function g(x) is calculated for

K = 1,2,5,10,20,40, and 80. However, in this analysis it is chosen that P = 1. The

tests were conducted for both, using the PNM method with the standard set of

model parameters defined by (3.5) and the set of adaptive parameters defined by

(3.6). In the following, the former settings are referred to as S-PNM method and

the latter settings are referred to as A-PNM method. Thus, in the A-PNM method

the Nelder-Mead extensions proposed by Gao and Han [2012] and Lee and Wiswall

[2007] are combined for the first time to the authors knowledge. This combination

is expected to be most efficient. To analyze the results of these various tests, the

mean and standard deviation of the final reduction of the minimum costs for all

experiments for the different K-values are displayed in Fig. 3.7. Herein, the mean

and standard deviation for both, the A-PNM and the S-PNM method, is calculated

over 42 experiments. For the seven different K-values, this results in a total of

294 experiments. Out of this 294 experiments, using the S-PNM method only 64

reached minimum costs f(x0) < 10−6, which is defined as a criterion for a successful



3.4. PARALLEL NELDER-MEAD METHOD 47

Figure 3.7: Comparison of the mean (a) and standard deviation (b) of the final cost

reduction for the S-PNM method (red circles) and A-PNM method (black crosses). The

mean is calculated over the 42 experiments given by Tab 3.1 for seven different numbers

of updates per iteration (K = 1, 2, 5, 10, 20, 40 and 80).

minimization. In contrast, for the A-PNM method only 80 experiments did not

reach this threshold. This is even more remarkable by taking into account that all

experiments using K = 80 updates per iteration (42 experiments) fail in finding the

minimum for both methods.

For the A-PNM method, this fact is clearly pointed out by Fig. 3.7. For K = 80

updates per iteration, the mean reduction of the minimum costs at the end of the

minimization process amounts only ∼ 67 % with a standard deviation of ∼ 24 %.

For all other K-values, the A-PNM method reaches a mean final reduction of the

minimum costs of more than 95 %. The best performance of the A-PNM method

is obtained by moderate K-values of 5 and 10 (approx. 10 % of the dimension size

N), where all but 2 experiments are successful in minimizing the cost function. In

contrast, the experiments using the S-PNM method show a slightly different be-

havior with respect to the K-values. Best results are obtained by using K = 80,

considering the mean and standard deviation of the final cost reduction. Although

no experiment finds the minimum for these experiments, all show a similar cost

reduction of 98 %, hence, the standard deviation is small (∼ 1 %). All other mean

values range between 77 % and 90 % final cost reduction with a relatively high

standard deviation of approx. 30 %. This indicates that for some experiments the

S-PNM method is successful but for the majority of the experiments it fails to find

the minimum. Therefore, the A-PNM method outperforms the S-PNM method in

these experiments as it reaches in most cases the threshold of 10−6 for the minimum

costs. In order to investigate the dependency of the performance on the number of

updates K per iteration, Fig. 3.8 shows the relative frequency of the five steps of the
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Figure 3.8: Relative frequency of calls to the minimization steps of the Nelder-Mead

minimization algorithm for cost function g(x) for the S-PNM method (left) and the A-PNM

method (right) for different number of updates K per iteration.

Nelder-Mead algorithm for both, the S-PNM (left) and A-PNM (right) method. As

stated above, Gao and Han [2012] found that decreasing the frequency of the reflec-

tion step improves the performance of the minimization. This finding is supported

by the results of Fig. 3.8. For the K-values, which show a bad performance with

respect to the mean final cost reduction, the frequency of performing a reflection

step is above 90 %. This is the case for all K-values using the S-PNM method and

for K = 80 using the A-PNM method. In contrast to the ANM method, where the

reflection step is mainly replaced by expansion and contraction steps (cf. Fig. 3.3c),

for the A-PNM method the reflection step is mainly replaced by the shrinkage step,

especially for the K-values with the best performance. Hence, the benefits from

the Nelder-Mead method with adaptive parameters and the parallel Nelder-Mead

method are combined in the new A-PNM method.

To show the stability of the A-PNM method, the same tests are performed for

cost function

h(x) =
N−1∑
i=0

(xi − yi))2, (3.13)

where yi is a randomly chosen integer between 0 and 100. This test shows the

performance of the A-PNM method to find the minimum even if the distance between

the initial simplex and the minimum is not uniform. For cost function g(x), these

are the experiments in which the ANM method is unsuccessful to find the minimum

(see section 3.3). The mean and standard deviation of the final cost reduction are

summarized in Fig. 3.9a and 3.9b, respectively.

The results are comparable with the analysis of cost function g(x). For all but

K = 80, the A-PNM method outperforms the S-PNM method in terms of mean final
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Figure 3.9: Same as Fig. 3.7 but for cost function h(x) in (3.13).

cost reduction. Again 294 experiments are performed, out of which only four are

successful in minimizing the cost function using the S-PNM method. In contrast,

using the A-PNM method 211 experiments are successful in minimizing the cost

function h(x). For the S-PNM method, the mean final cost reduction ranges from

∼ 64 % for K = 10 to ∼ 80 % for K = 40 and reaches ∼ 96 % for K = 80, while

the standard deviation is about ∼ 35 % for K < 40 and drops to ∼ 6 % for K = 80.

For the A-PNM method, all mean final cost reduction lays beyond ∼ 97 % except

for K = 80 with a mean value of ∼ 87 %. Again, the standard deviation is of the

order of 10 and drops for moderate sized K-values of 5−10 to approx. 10−1. Hence,

no degradation of the performance of the A-PNM method occurs by changing the

cost function arbitrarily.

To conclude, the A-PNM method is successful in minimizing the cost function

h(x) for most initial simplices for moderate K-values. Nonetheless, the performance

of the A-PNM method depends on the K-value chosen and for approx. 1/3 of the

experiments the minimum is not found. Therefore, an extension of the A-PNM

method is developed, which is introduced in the next section.

3.5 Discrete Ensemble Nelder-Mead method

One drawback of the Nelder-Mead method indicated by the performance analysis

in the previous sections is that by choosing an initial simplex, it is not certain that

the minimum is found. Anyway, the probability to find the minimum of the ana-

lyzed cost functions using the A-PNM method is higher for some initial simplices

and K-values as summarized at the end of the previous section. For the applica-

tion to uncertainty estimation of time and height dependent volcanic ash emission

strengths, which is the focus of this study, the following extension is applied. In-
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stead of performing the minimization with one initial simplex, an ensemble of initial

simplices is chosen to minimize the cost function. For the uncertainty assessment,

the outcome of this ensemble can be used as input for the particle smoother as will

be described in section 5.2.

The main focus of an ensemble prediction system is to estimate not the mini-

mum itself but the vicinity of the minimum and, therefore, its uncertainty. Using

this fact, for volcanic ash emission estimation only discrete solutions are considered

as vertices for the minimization steps, thus the method is called Discrete Ensemble

Nelder-Mead (DENM) algorithm. The use of only discrete solutions in the DENM

method increases the ability of the algorithm to come fast into the vicinity of the

minimum but not limiting the performance of the minimization. As the A-PNM

method, the DENM algorithm performs first a reflection or expansion step followed

by a sequence of contraction and shrinkage steps. This is in line with a finding by

Gao and Han [2012], who proofed for uniformly convex functions that the contrac-

tion step is also a ”sufficient decent property” for the Nelder-Mead algorithm if the

diameter of the simplex, which is proportional to its determinant, is not too small.

The initial fast convergence rate to the minimum of the simplex is also supported

by the fact that the DENM method generally may perform larger steps towards

the minimum than the ONM method. This is because the minimum step size in

one dimension is controlled by the resolution of the discrete emission strengths of,

say 25 kg/s. Therefore, the minimization will not be trapped in increasingly small

update steps as the size of the simplex reduces. In contrast, since there are only

discrete vertices available as new estimates of the minimum, the method is likely to

collapse on a single vertex. Therefore, the algorithm is extended by a restart step

once the vertices are collapsed. This was also suggested by Gao and Han [2012], who

argued that, since in larger simplices the expansion and contraction step have an

increased reduction rate, a restart can improve the performance of the Nelder-Mead

algorithm in large dimensions.

The DENM method deviates in only a few steps from the A-PNM method.

This is depicted in Fig. 3.10, which displays a flowchart of the main steps of the

algorithm. The respective parts from the different versions of the Nelder-Mead

method are given in different colors, where black indicates the ONM method pro-

posed by Nelder and Mead [1965], blue views the ANM method extensions proposed

by Gao and Han [2012], and green highlights the PNM method extensions by Lee

and Wiswall [2007]. The red parts in Fig. 3.10 indicate the newly introduced parts

for the DENM method. The first newly included feature is the ensemble of Nens

initial simplices. As it was discussed in the previous section, the A-PNM method

is able to find the minimum in many cases but there is no guarantee that the mi-

nimization succeeds. Therefore, the ensemble of initial simplices aims to overcome

this issue. Additionally, as the assimilation of volcanic ash column observations is

an ill-posed problem, the ensemble of initial simplices aims to find the Nens best

estimates of the solution. This will be needed by the particle smoother described in

section 5.2.
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By applying the adaptive parameters α, β, γ, and δ from (3.6), the minimization

is started for each ensemble member independently. Therefore, the following descrip-

tion concerns only one ensemble member. At first the centroid of the N + 1 − K
vertices with the lowest costs is calculated. Afterwards, the reflection vertex is cal-

culated and, according to the costs of the reflection vertex f(x(r)), the expansion,

inner, or outer contraction is computed as is described before. The new vertices

x(r), x(e), x(ic), and x(oc) are rounded to the discrete value through function rd[·]

x̃i = rd[xi] =

{
bxic, if r ∼ U[0, 1] ≤ 0.5,

dxie, if r ∼ U[0, 1] > 0.5,
(3.14)

where b·c and d·e denotes the floor and ceiling function, respectively, and U[0, 1]

is a uniform distribution on the interval [0,1]. The variable r is drawn randomly

from an uniform distribution. This rounding procedures give probability to escape

from a vertex even if the new vertices are closer to the starting vertex (e.g. if

〈xN−k,x(r)〉 < 〈rd[x(r)],x(r)〉, 〈·〉 denoting the dot product). Unfortunately, it is

possible that the rounding function leads to higher costs than the actual vertex as

it may round unprofitably.

If either of the above mentioned steps improves the N − k-th vertex, it is up-

dated. This cycle starting with the reflection step is repeated K times. Afterwards,

the algorithm checks if any of the K vertices with highest costs was updated during

the iteration. If at least one vertex is improved with respect to the previous itera-

tion, the next iteration is performed with the updated vertices (either x(r), x(e), x(c),

or xN−k if there was no better approximation to the minimum found for this vertex).

If no vertex was updated during the last iteration, all vertices except the best are

shrank towards the best vertex x0. As only discrete solutions are a valid choice

for the vertices, it is possible that the simplex shrinks towards a single vertex. If

this occurs, the algorithm restarts the minimization by resizing the simplex through

perturbations of the best vertex. Each vertex is perturbed by p in pt dimensions. It

is found that the best results are obtained if the perturbations p and the number of

dimensions pt to be perturbed increase if no better approximation to the minimum

is found. If the simplex shrinks towards the same point, p is increased, otherwise

it is set to 1. If p reaches a certain value < N (e.g. N/2), i.e. if the perturbations

are too large and no new best estimate is found, p is set to 1 and the minimization

restarts by increasing pt by 1. It is assumed that if the minimization is trapped in

a local minimum there exist a simplex size (i.e. a perturbation p for a number of

dimensions pt) that ensures the algorithm to escape from being trapped. In contrast,

if the minimization reaches the global minimum (or at least the closest point on the

discrete grid) it will shrink towards this global minimum, no matter how large the

simplex size is. For volcanic ash emission estimation, this expectation is relaxed.

Considering that there are correlations between volcanic ash concentrations released

by different emission packages as they where defined in section 3.1, the algorithm

may be adapting the emission factor for the wrong emissions, which is correlated

with the right ones. Therefore, the required step size for restarting the simplex may
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Figure 3.11: Illustration of the DENM method using the two-dimensional Rosenbrock

standard test function. The dashed grid shows the allowed points for vertices. The en-

semble minimization is performed using an ensemble of size Nens = 3 (indicated by dif-

ferent colors) and 13 iterations. The bullets depict vertices while each triangle is one

simplex. Shown are (a) the initial simplices, (b) the simplices after iteration 1, (c) after

iteration 2, and d) after final iteration 13.

be large and leads to a better solution only in one direction. For the performance

analysis of DENM method below, this correlation within the solution is not con-

cerned but will be recalled in section 6.2. A drawback of restarting the simplex is

the increased number of function evaluations, as for each restart N function evalua-

tions have to be performed. Generally, in the application to volcanic ash emission

estimation, the function evaluations are computationally cheap, which makes the

restart within the DENM method feasible.

The idea of the DENM is illustrated by the Rosenbrock test function

f(x) = (1− x1)2 + 100 ∗ (x2 − x21)2 (3.15)

in Fig. 3.11. The Rosenbrock test function is displayed in colors, blue indicating low

values. In dashed lines the grid for the discrete solutions of the DENM method is

overlaid. In the beginning, an ensemble of initial simplices is chosen (see Fig. 3.11a).

Each simplex now performs the minimization as is illustrated by Fig. 3.11b and 3.11c.

While in the first iterations (Fig. 3.11b) the white and light gray simplices perform
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an extension step, the dark gray simplex is reduced by the rounding function rd[·] to

the reflection vertex, although it actually performs an extension step, too. Because

the restart step is omitted in this illustrative example, after 13 iterations all three

simplices are reduced to their final vertex. A restart would lead all three simplices

to the point (1,1) if and only if the restart by chance selects the global minimum

vertex as for all other points the vertex to be updated has higher costs. Nonethe-

less, all three simplices come close to the global minimum and thus representing its

uncertainty. It is noted that for ill-posed problems, as the assimilation of volcanic

ash column observations, there are at least multiple physical solutions. Therefore,

it is highly unlikely for all ensemble members to find the true solution (i.e. the true

emission profile). The minimization is only expected to find the true solution if the

vertical wind shear and the horizontal wind speed are large enough such that the

volcanic ash emitted by different emission packages is well separated.

In the following, the rounding function rd [·] rounds to integers. The DENM

method is tested with the cost function g(x) defined by (3.9). The initial simplex

is uniform in the way that the initial vertex x0 is constant in all dimensions (i.e.

xi0 = c; i = 1, 2, . . . , N ; c constant). Similarly, the perturbations are of the same

magnitude for all remaining vertices but different for different ensemble members.

Hence, this test is in line with the tests made in the previous sections, although the

perturbations are larger in this case, as only integers are accepted as vertex values

for each dimension (i.e. xij ∈ N). The results of the ensemble of initial simplices for

different numbers of updates K per iteration are summarized in Fig. 3.12.

The boxplots in all graphics show the median as an orange line, the box indi-

cates the boundaries of the 25 % - 75 % interval, while the error bars span appro-

ximately the 99 % interval of data points. It is noted that all ensemble members

found the minimum of cost function g(x). Compared to the A-PNM algorithm des-

cribed above, this is a remarkably stable performance because the performance for

the A-PNM method depends on the initial simplex. For the DENM method, no

ensemble member needs more than 40,000 iterations for any number of updates per

iteration. The median iterations performed before the minimum is found decreases

from 10,364 iterations for K = 1 to 412 iterations for K = 80, which is a reduction

of 96 %. Additionally, the spread of the ensemble members (excluding outliers) for

the number of iterations decreases as the number of updates per iteration increases

from the range 548 - 32,995 iterations for K = 1 to only 197 - 1,004 iterations for

K = 80. Nonetheless, this reduction in the number of iterations needed to find the

minimum of the ensemble median is not visible for the computing time (Fig. 3.12b).

The reason is twofold. Firstly, by updating K = 80 vertices per iteration, it takes

roughly 80 times more computing time per iteration than for K = 1 as in both cases

the steps of the minimizer are the same except for the calculation of the centroid.

This is calculated 80 times for 80 updates with K = 1 but only once for K = 80.

Secondly, from Fig. 3.12d it can be seen, that the number of restarts (i.e. resizing the

simplex if it has collapsed to a single point) and the number of function evaluations

(Fig. 3.12c) do not reduce as much as the number of iterations in Fig. 3.12a. As the
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Figure 3.12: Performance analysis of the DENM method for an ensemble of uniform

initial simplices for different numbers of updates per iteration K for cost function g(x).

The box plots are defined by the orange line indicating the median, the box boundaries

depicting the 25 % and 75 % percentile of the data, and the upper and lower error bar

denoting approx. the 99 % percentile interval. Circles indicate outliers. (a) Number of

iterations needed to find the minimum. (b) Computing time needed for the minimization.

(c) Number of function evaluations. (d) Number of restarts as the simplex converges to a

non-minimizing point.

restart is computationally expensive, it equals the computing time for evaluations

using different K-values.

The number of function evaluations does not change much by changing the

number of updates per iteration (Fig. 3.12c). The median for the ensemble is of

O(105) function evaluations. Especially for K = 80 outliers are visible with more

than 106 function evaluations. These outliers correspond with the outliers in the

number of restarts in Fig. 3.12d. Although the number of restarts are slightly higher

for K = 1 than for K = 80, this is not visible in the number of function evaluations.

The reason is again that in each iteration a different number of function evaluations

is performed for different values of K, which leads to higher numbers of function

evaluations for large K-values. It is considered that for K = 80 in each iteration a

minimum number of 80 function evaluations have to be performed. For a restart,

in these experiments 120 function evaluations need to be performed. Therefore, the
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higher number of restarts for K = 1 does not increase the number of function eva-

luations in comparison to one iteration for K = 80. Hence, the number of function

evaluations for this test case is almost equal.

The results presented above are also obtained by two different experiments, one

with a randomly chosen initial simplex regarding its position and the perturbations

and one with an additionally random displaced cost function (i.e. randomly chosen

parameter yi in (3.9) for all dimensions i). This leads to the conclusion that the

higher the number of updates K per iteration is, the faster (and, therefore, computa-

tionally cheaper) is the minimization. For the performed tests, a critical number of

updates per iteration of 20 - 40 is found after which the decrease in computing time

stopped. If the dimension of the problem increases, it is expected that the critical

number of updates per iteration will also increase. Nonetheless, the presented results

indicate that even if the parameter K is not properly chosen, the minimization will

lead to the correct solution although it may take more time and more iterations.

For an application to the minimization of the ill-posed problem induced by ob-

servations of column mass loadings of volcanic ash in the atmosphere, it is expected

that the minimization will not lead to the absolute minimum but to local attractors

close to the global minimum. This is due to the multiple solutions if the volcanic

ash concentrations emitted by different emission packages are correlated such that

they will lead to approximately similar column mass loadings. As the time diffe-

rence between the release of volcanic ash and its observation increases, the vertical

wind shear will likely separate the volcanic ash such that a better resolution for the

analysis emission profile is expected. This will be analyzed in section 6.2. Additio-

nally, the choice of discrete solutions of the minimization also prevents the algorithm

to find the exact minimum. As mentioned above, this is not an issue because the

ensemble system aims to find the uncertainty of the minimum rather than the exact

value.
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Model description

For the uncertainty estimation of volcanic ash concentrations, the EURopean Air

pollution Dispersion - Inverse Model (EURAD-IM) is used. The EURAD-IM

comprises the adjoint of the chemistry and aerosol modules as well as of the

transport modules (advection and diffusion). The adjoint modules are needed for

initial value optimization as well as emission factor optimization in the framework

of 4D-var. It was the first 4D-var system for atmospheric chemistry established in

the mid 1990s (e.g. Elbern et al. [1997; 2000; 2007]). However, the work presented

here uses only the so called forward run (forward time integration) because the

adjoint code is not required by the analysis model used here (cf. section 5.2 for

more details about this model).

The need for uncertainty assessment necessitates the extension of the

EURAD-IM to an ensemble system. Therefore, a computer system is required

that satisfies the demanding computational requirements for this ensemble system.

Hence, the simulations were operated on the BlueGene/Q system (JUQUEEN)

at the Jülich Supercomputing Centre. The meteorological fields needed by the

EURAD-IM are calculated offline using the Weather Research and Forecasting

model (WRF; Skamarock et al. [2008]). In the upcoming sections, the various

modules of the model, which are essential for this analysis, are introduced and

required changes to the system are shown.

4.1 EURAD-IM

The EURAD-IM is an Eulerian non-hydrostatic Chemistry-Transport-Model (CTM)

solving the advection-diffusion-reaction equation

∂ci
∂t

= −∇(vci) +∇(ρK∇ci
ρ

) + Ai + Ei −
∂

∂z
(vdi ci), (4.1)

for the concentrations of up to 109 gaseous species and 39 aerosols on a fixed grid.

In (4.1) the variable ci denotes the concentration of species i, v and vdi the wind and

deposition velocity of species i, respectively, ρ the air density, K the eddy diffusivity

tensor, Ai the chemical transformation, and Ei the emission of species i. The terms
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Table 4.1: Initial median diameter Dinit
g,i and standard deviations σg,i of the three modes

of the aerosol distribution in MADE.

Dinit
g,i [µm] σg,i [µm]

Aitken-mode 0.01 1.7

accumulation mode 0.07 2.0

coarse mode 1.0 2.2

on the right hand side of (4.1) represent advection, diffusion, chemical reactions,

emissions, and deposition. As the operators for advection (hyperbolic) and diffusion

(parabolic) are of different behavior, the transport is calculated using the operator

splitting technique (e.g. Yanenko [1971]; McRae et al. [1982]). Hence, the discrete

time integration of concentration ci reads

ci(t+ ∆t) = ThTvDvMCDvTvThci(t), (4.2)

with T and D denoting transport by advection and diffusion, respectively, in the

horizontal (h) and vertical (v) direction, M representing the chemical transformation

of aerosols by the Modal Aerosol Dynamics module for Europe (MADE) (Ackermann

[1997]; Ackermann et al. [1998]) and C denoting the chemical transformation of

gaseous species.

The meteorological conditions are supplied by WRF. For the advection, the

monotone scheme by Walcek [2000] is used. The need for a monotone advection

scheme stems from the purpose of volcanic ash clouds as they have sharp boundaries.

Non-monotone advection schemes would lead to wiggles at the clouds boundaries,

also known as Gibbs’ phenomenon, entering unrealistic volcanic ash patterns or

negative values into the simulation. The purpose of the advection scheme by Walcek

[2000] to adjust the flux around local extrema reduces the numerical diffusion and

preserves the positive definiteness.

The vertical coordinate is the terrain following sigma coordinate system

σk =
pk − ptop
pbot − ptop

, (4.3)

where pk is the pressure in model layer k, ptop is the pressure at the models top

boundary, defined at 100 hPa, and pbot is the pressure at the models surface. Hence,

the vertical coordinate ranges from σtop = 0 at the model top boundary at 100 hPa

to σbot = 1 at the surface.

Aerosol properties such as size distributions and the physical and chemical

transformations are calculated in MADE. The aerosols are represented by three

log-normal distributions for the Aitken-, accumulation, and coarse modes, which

have a fixed standard deviation σg,i and an initial diameter Dinit
g,i . The respective

values for these variables are summarized in Tab. 4.1.

The initial median particle diameter serves also as minimum diameter for the
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specific distribution. The evolution of the median particle diameter is calculated by

Dg,i = 3

√
M3,i

M0,i

exp

(
−9

2
ln2 σg,i

)
, (4.4)

with i and g indexing the mode and aerosol species, respectively, and M0,i and M3,i

representing the zeroth and third moment of the particle distributions, defined by

the particle diameters Dp

M0,i =

∫ ∞
0

D0
pni(Dp)dDp = Ni,

M3,i =

∫ ∞
0

D3
pni(Dp)dDp =

6

π
Vi =

6

π

∑
g

cg,i
ρg
.

(4.5)

In (4.5), Ni defines the number concentration in [1/m3], Vi the volume concentration

in [m3/m3], and cg,i and ρg the mass concentration and the density of species g,

respectively. For mode i, the log-normal distribution is defined by

ni(lnDp) =
Ni√

2π lnσg,i
exp

[
−(lnDp − lnDg,i)

2

2 ln2 σg,i

]
. (4.6)

The aerosol dynamics include nucleation, condensation, coagulation, deposition (dry

and wet) and sedimentation. The chemical transformation of the aerosols is coupled

with the gas phase chemistry module of EURAD-IM. The volcanic ash particles

are only represented in the coarse mode. It is chemically inactive such that only

transport and aerosol dynamics are relevant for the transformation of the median

diameter of the distribution.

4.2 Ensemble EURAD-IM

For the analysis, EURAD-IM is extended to an ensemble system. In this context,

the main changes concerned the model’s parallelization using Message Passing

Interface (MPI)1. The new parallelization of the ensemble system is illustrated in

Fig. 4.1. On the left of Fig. 4.1, the parallelization of the original version of the

EURAD-IM is shown. There is only one communicator MPI COMM WORLD

with a subdivision of the MPI-processes into master and worker. For the ensemble

EURAD-IM (ensEURAD-IM), the subdivision in master and worker is omitted and

all processes act as workers. This has two main advantages. Firstly, all processes

are involved in the simulation, which directly improves the performance of the

model. Secondly, no process has to store the variables on the whole domain for

Input and Output (I/O). Therefore, the model is more scalable and flexible in the

application to larger domains. As the model domain increases, the total number of

MPI-processes can be increased as well such that each process remains with the

1cf. http://mpi-forum.org/docs/docs.html for an overview
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Figure 4.1: Schematic of the parallelization of the ensEURAD-IM. The classical pa-

rallelization of the EURAD-IM with a subdivision of the MPI-processes in master (red)

and worker (light blue) is illustrated on the left. The parallelization and different MPI-

communicators of the ensEURAD-IM are illustrated on the right. Each gray layer indicate

a single ensemble member.

same amount of storage requirements as for smaller domains.

On the right of Fig. 4.1, the parallelization of the ensEURAD-IM is

shown. Beside the change in the process hierarchy mentioned above, several

new MPI-communicators are implemented. The ensemble is divided through

the MPI-communicators MEMBER 1 COMM - MEMBER N COMM, which

represent one ensemble member each. These ensemble member communicators

are similar to the communicator of the classical EURAD-IM except for the

transformation from the Master/worker to an all-worker parallel strategy. Another

MPI-communicator is implemented for the communication of MPI-processes of the

same rank of the ensemble member communicator. This ensures a most efficient

communication between different ensemble members. To make the minimization

more efficient, each ensemble member comprises a set of sub-ensemble members

illustrated by the columns in each ensemble member communicator. The simplex

for the minimization is subdivided such that each sub-ensemble member has to

perform only a reduced number of updates per iteration. The cost calculation

during the minimization is as well made in parallel within sub-ensemble members

(number of rows in each ensemble member communicator), which leads to a most

efficient minimization. Again, a MPI-communicator for the communication of

MPI-processes at the same rank of the sub-ensemble members provide optimal

exchange between the sub-ensemble members. Additional adaptations were

necessary for the application of the ensEURAD-IM to a high performance

computer. These are introduced in the next section.
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4.3 JUQUEEN

The use of an ensemble system to calculate the analysis of volcanic ash dispersion

demands high computational power. Therefore, the study was operated on the

IBM BlueGene/Q system (JUQUEEN; Jülich Supercomputing Centre [2015];

Stephan and Docter [2015]) located at Jülich Supercomputing Centre. The system

comprises 28 racks, each containing 32 nodes with 16 GB node memory. The nodes

consist of 1.6 GHz PowerPC A2 processors with 16 cores/node and a maximum

number of 64 threats/node using hyper-threading (Brömmel et al. [2015]).

The adaptation of the ensEURAD-IM to JUQUEEN required a large

reorganization of the implemented MPI parallelization strategy. Originally, the

EURAD-IM system was parallelized by a master/worker MPI parallelization

(Elbern et al. [1997]). The bottleneck of this implementation is, firstly, the

allocation of computing cores requires X-worker + 1 master, which on high

performance computers results in the burden to allocate more cores than needed by

the model. This is because on JUQUEEN only a fixed number of cores (or nodes

to be more precise) of 2y, 5 ≤ y ≤ 14 can be allocated. Secondly, if the master only

performs I/O operations, the master process is not in use for 99 % of the time

and the required memory for storing the whole domain for all variables exceeds

the capability of the core memory available on JUQUEEN. Therefore, the MPI

parallelization strategy was transferred to an all-worker system, where one process

(the former master process) only contains a little overload of I/O if parallel I/O is

not required (e.g. for reading the namelist). To accomplish the transformation of

the parallelization strategy, the main body of the code was reorganized, the I/O

- processes were transformed to parallel netCDF, the interaction of the workers

was reordered (as now (X+1)-workers are involved in the computation), and

the domain subdivision had to be reorganized. Tab. 4.2 and Fig. 4.2 show the

scaling behavior of the new ensEURAD-IM parallelization strategy normalized to

1024 cores. The data show the strong scaling of the ensEURAD-IM and, therefore,

its applicability to high performance computers.

The saving of I/O time and computing time due to the new strategy and

parallel netCDF is summarized in Tab. 4.3. For integration times of 6 h, 12 h,

24 h, and 48 h one forward run using the old (master/worker) and new (all worker)

parallelization strategy is performed, respectively. The model runs are performed

using 1024 cores. As can be seen directly from Tab. 4.3, both, I/O time and total

Table 4.2: Speedup of the ensEURAD-IM normalized to 1024 cores.

# cores absolute timing in [s] speedup

1024 1811 1.00

2048 986 1.84

4096 525 3.45

8192 308 5.87
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Table 4.3: Comparison of I/O and computing time for the EURAD-IM using the original

and reorganized parallelization strategy and parallel netCDF. Shown are only forward runs

for varying integration times running on 1024 cores. ’Master/worker’ refers to the old

parallelization strategy where the master process performs only I/O, and ’all worker’ refers

to the new parallelization strategy where the former master process performs only little more

I/O.

I/O time total comput. time forward run

integration time master/worker All worker master/worker All worker

6 h 161.08 s 24.92 s 04:41 min 02:26 min

12 h 302.25 s 42.90 s 09:30 min 05:02 min

24 h 572.15 s 78.22 s 17:47 min 09:30 min

48 h — 150.16 s > 30 min 19:08 min

computing time are reduced substantially for the new parallelization strategy.

Remarkably, the I/O time of 48 h integration time using the new strategy is still

less than for 6 h using the old strategy, which is an improvement of a factor of 8.

The 48 h forward run using the old strategy required more than 30 minutes, which

is the maximum wall-clock time on JUQUEEN for small jobs. Therefore, no I/O

and total computing time for this configuration could be given. The two right

columns of Tab. 4.3 show that for a given computing time the forecast length could

almost be doubled using the model improvements. In addition to this computing

time savings, the new parallelization strategy reduced the storage requirements. As

is state above, the master process in the old parallelization strategy had to store

the variables for the whole domain, which lead to a waste of computing power and

Figure 4.2: Scaling performance of the ensEURAD-IM normalized to 1024 cores (solid

line). The ideal scaling is defined by the dashed line.
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performance on the BlueGene/Q system for the old parallelization strategy. The

new parallelization strategy allows for an application of the EURAD-IM to all

horizontal resolutions and domain sizes.





Chapter 5

Ensemble for Stochastic

Integration of Atmospheric

Simulations (ESIAS)

The methods introduced in the previous sections are combined to an ensemble analy-

sis system aiming to provide uncertainty forecasts of the atmospheric state. This

Ensemble for Stochastic Integration of Atmospheric Simulations (ESIAS) comprises

two model parts, which are an ensemble extension of the WRF model (ESIAS-met)

and the previously introduced ensEURAD-IM (ESIAS-chem). In the following,

the ESIAS system is described with a main focus on the chemical part of ESIAS

(ESIAS-chem) model part as it was developed and used for the analysis presented

here.

A schematic of ESIAS with the meteorological and the atmospheric chemical

parts of the system is shown in Fig. 5.1. The system is coupled via the meteorolo-

gical fields, which are generated by the meteorological part of ESIAS (ESIAS-met).

For the analysis of volcanic ash, this meteorological ensemble provides the ability to

represent the uncertainty of the driving meteorological fields. For this study, it is

decided to use the same meteorology for both, the model run, which generates the

artificial observations, and the analysis model runs. Thus, it is possible to analyze

the performance of ESIAS-chem to estimate the true emission profile under idealized

conditions.

5.1 ESIAS-met

ESIAS-met is an ensemble extension of the WRF model that is designed to operate

efficiently ultra large ensembles with O(1000) ensemble members. ESIAS-met is ini-

tialized by two global ensemble systems, the Ensemble Prediction System (EPS) and

Global Ensemble Forecast System (GEFS) operated by the ECMWF and National

Centers for Environmental Prediction (NCEP), respectively. The global models also

provide the boundary conditions. Model uncertainties are represented by stochastic
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Figure 5.1: Schematic of the ESIAS system including the meteorological (left) and at-

mospheric chemical (right) part. Staggered panels indicate ensemble versions. Green and

light blue colors indicate model input and output, respectively. See the text for further

information.

perturbations of the parameterizations via the Stochastic Perturbed Parameteriza-

tion Tendencies (SPPT; Buizza et al. [1999]) method as well as by stochastic pertur-

bations of the energy budget via the Stochastic Kinetic Energy Backscatter Scheme

(SKEBS, Shutts [2005]; Berner et al. [2009]). Additional uncertainty is introduced

by perturbing the surface parameters and through different choices of model para-

meters (multi-parameter ensemble). The system is able to assimilate observations

from land and sea surface, radiosondes, aircrafts and measurement towers. These

data are assimilated via a particle smoother that uses all observations within a vari-

able time window (e.g. from 00 - 06 UTC). At the end of the time window, the

model parameters of the ensemble members are assigned a weight that is used for

the generation of the next assimilation. The next assimilation extends the former

time window (e.g. from 00 - 12 UTC) such that a smooth analysis trajectory is

generated. The second analysis with the contribution of observations from 00 UTC

to 12 UTC is expected to be closer to the observations as the model parameters were

guided by the weights obtained in the first assimilation window. Further details on

the ESIAS-met system as well as its application to wind energy analysis is given in

Berndt [2018].
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5.2 ESIAS-chem

The meteorological fields generated by ESIAS-met can be used as input for

ESIAS-chem. Thus, the uncertainty of meteorological variables can be represented.

This is especially important for wind, which is, besides the emission height, the

major source of uncertainty for the location of the volcanic ash cloud in the

atmosphere. However, because the focus of this study is placed on the estimate of

emission profiles and the ensuing volcanic ash concentrations, the meteorological

fields are assumed to be free of errors. For volcanic eruptions, the system

aims to estimate the emissions using the separation of volcanic ash emitted at

different times and heights through the vertical wind shear. This separation

is usually larger for larger residence times in the atmosphere. Therefore, the

main part of ESIAS-chem is a particle smoother with an increasing assimilation

window. ESIAS-chem comprises the methods introduced in the previous sections.

ESIAS-chem is flexible in integrating other modules and the used method is

applicable to other atmospheric models as well.

Basically, the particle smoother in ESIAS-chem combines the ideas of two

particle filter methods: the auxiliary particle filter and the implicit particle filter.

In the former, first an approximation of the filter density with an auxiliary ensemble

is calculated, before the full ensemble is used to analyze the atmospheric state.

In the latter, first a representation of the minimum is estimated via the 4D-var

method, before the ensemble is initialized around that minimum. ESIAS-chem

is initialized with a large ensemble of pairwise distinct emission packages as is

introduced in section 3.1. This ensemble of emission packages can be interpreted

as an auxiliary ensemble in which not the ensemble size of the model is reduced

but the emission profiles are reduced to single emission packages. Comparable to

the auxiliary particle filter, in which the auxiliary ensemble is reduced in ensemble

dimension and/or model complexity, the auxiliary ensemble in the presented

particle smoother is reduced in its emission complexity. However, the dimension of

the auxiliary ensemble may be larger than the analysis ensemble as it depends on

the resolution of the emissions and the length of the assimilation window. This

auxiliary ensemble is used to perform the minimization of the cost function using

the DENM method.

Assume the first observations being available at t = t1. The analysis is started

by integrating the auxiliary ensemble from t0 to the observation time t1. Here, the

DENM minimization algorithm is used to find the best ensemble representation of

the atmospheric state. The DENM method searches for the minimum by combining

the ash concentrations resulting from the different emission packages. As is

introducted in section 3.2, this is done via geometric moves of the simplex on the

hyperplane spanned by the cost function. The minimization step is comparable to

the implicit particle filter in which the minimum of the cost function is calculated

using 4D-var. In contrast to the implicit particle filter, in the new developed

particle smoother not only a single estimate of the minimum of the cost function is
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calculated but Nens representations of the minimum of the cost function. However,

there is no guarantee that the resulting ensemble is a good representation of the

model state and its uncertainty because the variance of the ensemble might be too

large. Beneath the well fitting ensemble members with low costs, there might exist

ensemble members with high costs. Here, the filtering step of the particle smoother

is applied by calculating weights wi for each ensemble member

wi =
w̃i∑
j w̃j

, w̃i =

(
Nens

J(y|a)

)0.7

, (5.1)

where the exponent was determined in a series of test runs with varying exponents

and factors. The choice of this exponent makes the weights more equal, which is

beneficial for omitting filter degeneracy. The cost function used here is

J(y|a) = −2 ln(p(y|a)) =
L∑
t=0

(H M̃t[ãt(z)e0]−y)TR−1(H M̃t[ãt(z)e0]−y)+aTB−1a,

(5.2)

where B is the emission factor error covariance matrix. The emission factor error

covariance matrix aims to represent the uncertainty of the emission factors and is

represented by a diagonal matrix

B = diag(10). (5.3)

This choice of emission factor error covariance matrix is a result of several test runs.

More effort to find a reasonable emission factor error representation is required.

The reason for using (5.1) instead of (2.5) is that the cost function (5.2) is to

be minimized. Therefore, low costs are equivalent to high weights. The application

of (2.5) would give high weight to bad fitted ensemble members and vice versa.

Within the DENM method, the distance between the model state and the obser-

vations is likely large, especially for the beginning of the minimization. The cost

function needs to be capable of this fact. Hence, the likelihood p(y|a) is not appli-

cable for the far distant model states with respect to the observations as its value

vanishes in this case. Cost function (5.2) aims to overcome this issue.

In addition to the observation error covariance matrix, the observation error is

represented by perturbed observations (cf. Houtekamer and Mitchell [1998]), which

are assimilated by ESIAS-chem. Herein, the observations for each ensemble mem-

ber are perturbed according to the observation error covariance matrix. For this

purpose, the observation error is assumed to be Gaussian. Applying the perturbed

observations for the assimilation increases the variance of the ensemble members.

The weights, which result from the filtering step, are applied to the emission

profiles. Hence, the observations taken for the analysis are applied to update the

emissions within the whole assimilation window. Once the weights are calculated,

the ensemble of emission profiles is resampled using residual resampling such that

the ensemble size Nens is preserved.
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With increasing time after the emission of volcanic ash, the amount of informa-

tion obtained by the observations of column mass loadings is likely to increase. This

is because more volcanic ash might be observed and the vertical wind shear is more

likely to separate the volcanic ash emitted at different times and heights. Therefore,

the assimilation is restarted from time t0 with an increased assimilation window

length t2 − t0, where t2 is the time at which the next observations are available. In

this way, the emission profiles are updated with as much information as possible.





Chapter 6

Identical twin experiments

Identical twin experiments test the assimilation system under idealized conditions.

Artificial observations are generated by a model simulation, the so called nature

run. Herein, a “true” emission profile is defined. The aim is to retrieve this true

emission profile using ESIAS-chem. This setting assumes the model to be perfect.

Additionally, the meteorological fields are assumed to be free of errors as well. Thus,

deficiencies of the algorithm are analyzed as errors of the analysis only emerge from

an erroneous algorithm. Identical twin experiments err on the optimistic side (Daley

[1991]). However, they are indispensable to prove the concept and code correctness.

It is noted that all tests are performed without sedimentation. Thus, the vol-

canic ash is not removed from the atmosphere, which increases its residence time.

Hence, the volcanic ash is amenable for height differentiation, which make the analy-

sis more exact, especially in the statistical analysis. Tests showed, that not consi-

dering sedimentation has no effect on the performance of the assimilation algorithm

(not shown). In the following, first the test cases, which are used for the perfor-

mance analysis, are introduced. Thereafter, the dependency of the performance of

ESIAS-chem on the length of the assimilation window as well as the potential and

the limits of ESIAS-chem are shown. In the end, a statistical analysis of ESIAS-chem

is performed.

6.1 Selection of test cases

To test the performance of ESIAS-chem for different assimilation window lengths, a

hypothetical eruption of the Icelandic volcano Eyjafjallajökull is considered under

real meteorological conditions. The Hovmoeller plot of the nature runs emission pro-

file is shown in Fig. 6.1. It shows the emission rate (colored) at a given time (x-axis)

and height above the volcano (y-axis). The sub-plinian eruption is characterized

by two short explosive phases between 02-04 UTC and 06-08 UTC. The eruption is

chosen to start at 02 UTC rather than at 00 UTC to test whether the analysis suffers

from a temporal shift in the analyzed emission profile. Further, it is chosen to be

rather strong with high emission rates especially at the top of the eruption column
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Figure 6.1: Hovmoeller plot of the nature run emission profile for the performance analy-

sis of ESIAS-chem in dependence on the length of the assimilation window on April 15

and April 29, 2010. Shown is the emission rate (colored) for a given time (x-axis) and

height above the volcano (y-axis).

at 8 km, where most of the volcanic ash is emitted from the eruption column.

The first test day to which ESIAS-chem is applied is April 15, 2010, which was

characterized by strong winds over Iceland. This is illustrated by the wind pro-

file at the volcano (Fig. 6.2a), the wind field over Europe in approx. 5 km height

(Fig. 6.2b), and the geopotential height at 500 hPa and surface pressure (Fig. 6.2c),

the latter all for 12 UTC on April 15. During this day, the polar front and, therefore,

the polar jet stream is located over Iceland, forcing the volcanic ash to travel fast

to the southeast. Thus, the volcanic ash is transported by strong winds of up to

60 m/s in heights of 5-8 km. Fig. 6.2 indicates, that the baroclinicity on April 15,

2010 over Iceland was low. Therefore, only a moderate vertical wind shear is ex-

pected. Hence, the volcanic ash column mass loadings resulting from the different

emission packages that represent the a priori knowledge of the analysis system will

likely separate only after some residence time in the atmosphere.

In addition to the April 15 scenario, a second analysis of the models perfor-

mance is made for a hypothetical eruption of the Eyjafjallajökull on April 29, 2010.

The same emission profile is taken (Fig. 6.1). This day is characterized by weak

winds of approximately 10 m/s in the vicinity of the volcano, which is illustrated by

Fig. 6.3. Thus, the emitted volcanic ash is only slowly transported.

To generate a larger database for a statistical analysis of the ESIAS-chem per-

formance, an additional identical twin experiment is performed for the two eruptive

phases of the 2010 Eyjafjallajökull eruption, which were on April 14-18 and May 04-

18, 2010. In both eruptive phases the plume height was measured by radar observa-

tions to reach heights of 5-10 km (Arason et al. [2011]). From these measurements,
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Figure 6.2: Meteorological conditions on April 15, 2010. (a) Wind speed above the

volcano. (b) Wind speed in approx. 5 km height at 12 UTC. (c) Geopotential height of

500 hPa and surface pressure (white contours) at 12 UTC.

Figure 6.3: Same as Fig. 6.2 but on April 29, 2010.
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Figure 6.4: Nature run emission profile for the identical twin experiments on April 14-18

and May 04-18, 2010. The heights of the eruption column are taken from Arason et al.

[2011]. The data are averaged over one hour with data gaps filled by measurements from

previous hours. On May 10-11, the measured heights of the eruption column are increased

by 4 km.

emission rates are calculated by applying the statistical eruption model of Mastin

et al. [2009]. The magma flow rate M is defined by

M = ρ

(
HT

2

) 1
0.241

ffa, (6.1)

with ρ = 2, 500 kg/m3 the magma density, HT the plume top height measured by

the radar in [km], and ffa = 0.1 the fine ash fraction of the emitted magma. The

data by Arason et al. [2011] are averaged over one hour, where missing data are

replaced by the last valid measurement. In order to increase the variance of the

nature run emissions, the measured plume-top heights on May 10-11, 2010, are

increased by 4 km. The resulting nature run emission profiles are summarized in

Fig. 6.4.

For the analysis of the identical twin experiment, the volcanic ash

concentrations at the locations of 33 Earlinet stations (active and inactive1) are

stored every model time step (10 minutes). Hence, a comparison with hypothetical

lidar measurements can be performed. The locations of the lidar stations are

shown in Fig. 6.5, where the different sizes of the red circles indicate the number of

time steps at which volcanic ash is detected.

For all experiments, observations yi of volcanic ash column mass loadings

in [g/m2] are taken from the nature run every six hours. Observed is the full

domain, i.e. the grid cells containing volcanic ash and those without volcanic ash.

This information is necessary in order to remove emissions at false times and

heights. The observation error σyi at location i is calculated by

σyi = max

[
(yi ∗ 0.4)2

max[yi ∗ 0.4]
, 0.1

]
. (6.2)

1cf. https://www.earlinet.org/index.php?id=105; visited: September 26, 2017.
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Figure 6.5: Frequency of hypothetical lidar measurements taken at 33 Earlinet lidar

stations. The size of the circles indicates the number of time steps for which volcanic ash

is detected.

The observation of the full domain includes locations with very small volcanic ash

column mass loadings. This makes the limitation to σyi = 0.1 necessary in order to

reduce the relative influence of small observations on the cost function. Otherwise,

changes of small column mass loadings would dominate the cost function value,

which significantly reduces the performance of the analysis system.

To find an appropriate horizontal resolution for tests of the ensemble system,

a scale analysis is done. The time t (in time step units) an information takes to be

transported over one grid cell can be approximated by the CFL-ratio

t =
∆x

u∆t
, (6.3)

where ∆x is the horizontal resolution (in m), u is the wind speed (in m/s), and

∆t is the temporal resolution (in s) of the model domain. Tab. 6.1 summarizes

the temporal resolution and the domain size to cover total Europe for different

horizontal resolutions. It was decided that the optimal balance between temporal

resolution of the emission data and the computing time can be achieved using a

45 km horizontal resolution for the identical twin experiments. The coarse domain

was chosen in order to save available compute resources. In an application to real

volcanic eruptions, a higher horizontal resolution of 15 km or less is appropriate.

For the identical twin experiments, the horizontal resolution is of minor importance
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Table 6.1: Scale analysis for volcanic ash emission estimation using different hori-

zontal (∆x) and temporal (∆t) model resolutions. For a wind speed of 10 m/s the tem-

poral resolution is calculated by (6.3). The approximated domain size covering the whole

European continent for the given horizontal resolution is also given.

∆x [m] ∆t [s]
temporal resolution of emission

data [h] (and time steps [ts])

approx. domain size in

grid boxes to cover Europe

75,000 1200 2.10 (6.25 ts) 80 x 60

45,000 600 1.25 (7.50 ts) 130 x 100

15,000 300 0.41 (5.00 ts) 400 x 300

5,000 100 0.14 (5.00 ts) 1,200 x 900

1,000 40 0.03 (2.50 ts) 6,000 x 4,500

Figure 6.6: Domain of the ensEURAD-IM for the identical twin experiments. The

horizontal grid resolution is 45 km. In the vertical, the model is discretized in 23 layers,

which are illustrated by the mean model layer height over the full domain (small subplot).

as the observations are also generated with this coarse resolution. Ideally, the 45 km

horizontal resolution results in a temporal resolution of the emission data of approx.

one hour, which was decided to be the temporal resolution of the a priori emission

packages (cf. Tab. 6.1). Nonetheless, horizontal and vertical diffusion and lower

wind speeds will further reduce the actual temporal resolution of the analysis of

emission profiles.

Fig 6.6 shows the coarse domain with 45 km horizontal resolution covering the
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European continent from the east of Greenland in the northwest to the east of the

Mediterranean Sea in the southeast. Vertically, the model is discretized in 23 layers

up to 100 hPa (cf. scale on the right of Fig. 6.6). The vertical resolution in the

height levels between 5 km and 10 km is approximately 1 km.

6.2 Dependence on the assimilation window

length

The length of the assimilation window influences the performance of data assimi-

lation algorithms. In this section, the performance of ESIAS-chem is tested for

different assimilation windows. All assimilation windows start at 00 UTC for the

specific day and last for 06-36 hours, where the assimilation window length increases

by six hours. By increasing the assimilation window length, the observations include

more information as the residence time of volcanic ash in the atmosphere is increased.

In order to analyze the horizontal displacement of the volcanic ash cloud, the

Pattern Correlation Coefficient (pcc) for the column mass loadings of the nature run

(subscript y) and the ensemble mean (subscript x; according to (2.6)) are shown in

Fig. 6.7. The Pattern Correlation Coefficient is defined by (cf. Zidikheri et al.

[2016])

pcc =
< va′x,va′y >

|va′x||va′y|
, (6.4)

Figure 6.7: Pattern correlation coefficient defined by (6.4) for the eruption on (a)

April 15, 2010 and on (b) April 29, 2010. The different lines indicate different assi-

milation window lengths from 06 hours (gray) to 36 hours (magenta).
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with va′ = va− va. Herein, the entries of the volcanic ash detection vector va are

equal to 1 if the grid cell contains volcanic ash and 0 otherwise. The mean volcanic

ash detection va is calculated by

va =< 1,va > / < 1,1 >, (6.5)

where 1 denotes the unit vector with 1 on all entries and < ·, · > indicates the scalar

product. The lines in Fig. 6.7 indicate different assimilation window lengths. The

pcc ranges from 0 to 1, depending on the number of ash containing grid cells, in

which nature run and ensemble mean do coincide. It is noted that for this model

setup with perfect meteorology, pcc < 1 indicates that the analysis contains volcanic

ash either in model layers or at times, where no volcanic ash is emitted in the nature

run. In these cases, the volcanic ash of the ensemble members would be affected by

different winds than the volcanic ash of the nature run. This is the only possibility

to create different patterns of volcanic ash column mass loadings in this analysis

setup. Furthermore, the pcc gives no information about the mass of volcanic ash

that is falsely emitted.

Fig. 6.7 shows a large pcc > 0.85 after 08 UTC for both analysis days, April 15

and 29, 2010. The pcc is shown from 08 UTC on because this is the end of the

eruption. The high pcc values indicate that the assimilation of column mass loadings

to estimate volcanic ash emissions succeeds to retrieve the horizontal extent of the

volcanic ash cloud. Hence, only in some cases the volcanic ash of the ensemble

members is emitted on different layers or at different times than in the nature run.

The pcc on April 15 shows a smoother temporal evolution than on April 29.

This can be understood by considering the different wind regimes on the two days.

On April 15, the winds are strong such that volcanic ash is rapidly transported.

If at one time instance the pcc is low, the strong winds transport the volcanic ash

to different locations than in the nature run. On April 29, the winds are weak at

all heights such that the volcanic ash emitted in false heights or at false times does

frequently coincide with the nature run volcanic ash column mass loading cloud as it

stays basically close to the volcano. Again, the pcc does not account for deviations in

the strength of volcanic ash column mass loadings at locations in which the ensemble

mean and the nature run differs in containing volcanic ash.

Increasing the assimilation window length (i.e. taking later observation into

account) increases the pcc on both days. An exception is the pcc of the test case

with 24 hours assimilation window on April 15, 2010, which decreases temporarily

below 0.95. Thus, it has the second worst pcc among the different assimilation

window lengths. Nonetheless, a pcc value of 0.95 is still a good result. Overall, the

pcc is slightly larger on April 15 than on April 29. The lower pcc values do not

necessarily imply that the performance of the analysis system is worse because it

does not account for the actual mass of volcanic ash on the grid cells.

To investigate the mass on grid cells that contain volcanic ash erroneously,
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Figure 6.8: Same as Fig. 6.7 but for the mass mismatch of the column mass loadings as

defined by (6.6). The contingency table defines the phrases false positive, false negative,

and true positive used in the text.

Fig. 6.8 shows the relative amount of mass mismatch of volcanic ash

m = 100
mfp +m′fn

(mtp +m′tp)/2
, (6.6)

with subscripts fp, fn, and tp indicate false positive, false negative, and true positive

volcanic ash estimations (see the contingency table in Fig. 6.8), and m and m′ denote

the column mass loading of the ensemble mean and the nature run, respectively. The

mass mismatch measures the mass of the ensemble mean that is at wrong locations

(false positive) and the mass of the nature run at locations where it is not analyzed

by the ensemble mean (false negative). This is normalized by the mean mass of the

ensemble mean and the nature run, which is estimated at the same location (true

positive).

Fig. 6.8 shows the mass mismatch for the identical twin experiments on April 15

and April 29, 2010, performed with different assimilation window length. Therein,

less than 1 % of the intersecting mass of the nature run and the ensemble mean

do not match. Especially for the last eight hours of the analysis, the reduction in

the mass mismatch by increasing the assimilation window length is evident. During

these hours, only the mass mismatch of the test case with 18 hours assimilation

window on April 29 shows a contradiction to this finding as it is lower than the

mass mismatch of the test case with 24 hours assimilation window. Nonetheless,

for the test cases with assimilation window lengths longer than 18 hours, the mass

mismatch ranges from ∼ 10−3 to ∼ 10−1%. This shows the good agreement of the

column mass loadings from the nature run and the ensemble mean indicating that

the analysis system is successful, especially for assimilation window lengths longer

than 18 hours.
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Figure 6.9: Same as Fig. 6.7 but for the normalized distance of centers of mass of the

column mass loadings defined by (6.9).

Both, the pcc and the mass mismatch show the ability of the analysis system

to reconstruct the lateral spread of the volcanic ash cloud in terms of column mass

loadings. In addition, the normalized distance d between the centers of mass of

the column mass loadings of the nature run and the ensemble mean is displayed in

Fig. 6.9. The normalized distance of the centers of mass is defined by

d =
1

dx
|Ry −Rx|, (6.7)

where dx is the horizontal resolution of the model, R = 1∑
j mj

∑
imiri is the center

of mass m of the nature run (subscript y) and ensemble mean (x), and ri is the

location of grid cell i. The normalized distance of the centers of mass is able to

analyze the location and inner-cloud horizontal distribution of the volcanic ash. A

value of d < 1 indicates that the distance of the centers of mass is smaller than the

grid resolution of the model. Therefore, this can be seen as a criterion for a good

analysis.

For both days analyzed, the normalized distance of the centers of mass are

below 0.5 for assimilation windows longer than 18 hours. The increase of the values

from approximately 28 hours after the simulation started results from differences in

the emission profiles of nature run and ensemble mean. Especially on April 15, the

vertical wind shear makes this difference evident: increasing the assimilation window

length results in an increase in the distance of the centers of mass at the end of the

analysis period. On April 29, the wind speed is low such that the volcanic ash is

not transported far away from the volcano. Therefore, the distance of the centers

of mass for assimilation window lengths is generally smaller than on April 15. For

longer assimilation window lengths the distance of the centers of mass are small for

both analysis days indicating the good performance of ESIAS-chem.
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Figure 6.10: Same as Fig. 6.7 but for the relative mean absolute error of column mass

loadings defined by (6.8).

Another criterion that analyzes the horizontal distribution of the volcanic ash

within the cloud is the Relative Mean Absolute Error (RMAE) of the column mass

loadings

RMAE = 100
1

Ny

Ny∑
j=1

∣∣∣∣∣ xj − yj∑Ny

i=1 yi

∣∣∣∣∣ , (6.8)

where Ny is the number of grid cells in which volcanic ash column mass loadings of

the nature run yj or the ensemble mean xj are ≥ 10−3. Fig. 6.10 shows that the

RMAE on both days is quite constant for the duration of the simulations. At the end

of the simulation time at 36 hours, the RMAE for the test cases with assimilation

windows greater than 18 hours is of the order of 10 % for both days. These low

values show the good performance of the analysis for these assimilation window

lengths with respect to the nature run.

In principle, Fig. 6.10 shows the same findings that are analyzed above, i.e.

that by increasing the assimilation window length, the error of the ensemble mean

decreases. One contradiction to this is the increase of the RMAE on April 15 for

assimilation windows from 24 to 36 hours. This is a result of a convergence of

volcanic ash in the upper troposphere south of Norway around 24 hours after the

simulation has started. This convergence is illustrated in Fig. 6.11, which shows four

profiles of the extinction coefficient that would be observed by lidar stations located

south of Norway and Sweden at April 15-16, 2010, as obtained by the nature run.

The black arrows in Fig. 6.11 depict the arrival time of the upper tropospheric

volcanic ash emitted by the two explosive eruptions (cf. Fig. 6.1). The extinction

coefficient is calculated using the mass-extinction conversion factor proposed by
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Figure 6.11: Hypothetical lidar profiles of the extinction coefficient of volcanic ash cal-

culated using (6.9) on April 15-16, 2010. The black arros indicate the maximum volcanic

ash concentration in the upper troposphere. The locations of the hypothetical lidar instru-

ments are shown as red marks on the map from the southwest of Norway (a) to the south

of Sweden (d).

Figure 6.12: Same as Fig. 6.7 but for the RMAE of the volcanic ash concentrations

defined by (6.8).
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Gasteiger et al. [2011]

η =
M

α
≈ 1.45g/m2, (6.9)

with M and α denoting the volcanic ash concentration and extinction coefficient,

respectively. Fig. 6.11 shows that as the volcanic ash is transported further south-

east, the distinct signals of the extinction coefficient at 7-8 km converges until no

distinction of the two signals is possible. This is when the volcanic ash cloud reaches

the southern most lidar station (Fig. 6.11d). This convergence is finished at approxi-

mately April 16, 00 UTC, i.e. 24 hours after the simulation has started. Thereafter,

observations of the volcanic ash column mass loadings do not allow to distinguish

the two explosive eruptions.

All of the above analyses show that ESIAS-chem is able to reconstruct the

column mass loadings of the nature run by assimilating vertically integrated values,

that is, without information of the height distribution of volcanic ash. Fig. 6.12

shows the relative mean absolute error of the volcanic ash concentrations in order

to investigate whether ESIAS-chem is able to retrieve the vertical distribution of

the volcanic ash concentrations. The RMAE of the concentrations decreases by in-

creasing the assimilation window length with the exception of the analysis using an

assimilation window of 30 and 36 hours on April 15. Again, the reason is the con-

vergence of the distinct ash clouds in the upper troposphere as shown in Fig. 6.11.

Nonetheless, the RMAE of the volcanic ash concentrations for assimilation windows

larger than 18 hours is of the order of 10 %, which shows the good performance of

ESIAS-chem, not only to estimate the column mass loadings but also the vertical

distribution of the volcanic ash in the atmosphere. This is further investigated and

confirmed in the next section.

6.3 Analysis of the potential and limitations of

ESIAS-chem

The former section shows the improvement in the analysis obtained by increasing the

assimilation window length. In this section, the analysis results using an assimilation

window of 24 hours are considered examplarily in more detail. The assimilation

window length of 24 hours is chosen because it is a reasonable choice in applications

to real volcanic eruptions and the results of the previous section indicate that the

performance of the assimilation using an assimilation window of 24 hours is as good

as longer assimilation window lengths for the selected analysis days. It is noted

that the minimization starts with an arbitrarily chosen emission profile. Thus, the

a priori volcanic ash concentrations are highly variable in time and space.

As an example, Fig. 6.13 shows the column mass loadings of (a) the nature run

and (b) the ensemble mean at April 16, 2010, 06 UTC, which is 30 hours after the

simulation has started and corresponds to a six hour forecast after the end of the

assimilation window of 24 hours. Furthermore, Fig. 6.13c and Fig. 6.13d display the
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relative error of the ensemble mean

RE =
x− y
max(x)

, (6.10)

and the relative ensemble standard deviation

σrel =
σx

max(x)
, (6.11)

respectively. Herein, x and y are the ensemble mean and nature run column mass

loading, respectively, and σx is the ensemble standard deviation. The column mass

loadings at April 16, 06 UTC, show the good agreement of the ensemble mean and

the nature run. Both show the correct location of the global maximum of the

column mass loading pattern over the east Baltic Sea of up to 2.3 g/m2 and the

local maximum over Denmark of up 1.4 g/m2. The relative error of the ensemble

mean is less than 10 % and highest over the Baltic Sea, where large column mass

loadings are present. In total, a small positive bias of the ensemble mean can

Figure 6.13: Column mass loadings forecast of (a) nature run, (b) ensemble mean, (c)

relative error of the ensemble mean according to (6.10), and (d) relative standard deviation

of the ensemble according to (6.11) on April 15, 2010, 00 UTC + 30 hours using an

assimilation window of 24 hours. The black triangle indicates the location of the erupting

volcano.
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be seen by the relative error in Fig. 6.13c. The relative ensemble spread of the

volcanic ash column mass loadings coincides with the relative error of the ensemble

mean, which indicates again the applicability of ESIAS-chem to uncertainty

quantification.

Fig. 6.14 depicts the vertical cross section of volcanic ash concentrations at

April 15, 2010, 00 UTC + 30 hours along a hypothetical satellite path (black line

on the map in Fig. 6.14a). Shown are the vertical cross section of (a) the nature

run, (b) the ensemble mean, (c) the relative error of the ensemble mean, and

(d) the relative ensemble standard deviation. Fig. 6.14 clearly shows the good

agreement of the ensemble mean and the nature run volcanic ash concentrations

along the satellite path. Regarding the vertical distribution of the volcanic ash,

the analysis is able to reconstruct the second maximum along the satellite path

in 8 km height at around grid box 60 beside the global maximum of volcanic ash

concentrations in the vertical distribution in 3-4 km height. This is not possible

for the most other existing analysis methods for volcanic ash (see the discussion in

section 7 for more details).

The relative error of the ensemble mean (Fig. 6.14c) is of the order of 10 % in

Figure 6.14: Vertical cross section of (a) nature run, (b) ensemble mean, (c) relative

error of the ensemble mean, and (d) relative standard deviation of the ensemble along a

hypothetical satellite path (black line on the map) on April 15, 2010, 00 UTC + 30 hours.
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agreement with the RMAE of the volcanic ash concentrations in Fig. 6.12. The

vertical distribution of the relative error of the ensemble mean is characteristic for

the assimilation of vertically integrated column values like volcanic ash column

mass loadings. As within the assimilation process only the vertically integrated

column values are optimized, the vertical distribution of the volcanic ash is likely

to deviate from the true vertical distribution. Only in an atmosphere with strong

vertical wind shear, the vertically integrated column values can yield to the right

vertical distribution of the volcanic ash. Therefore, the error of the ensemble

mean in Fig. 6.14c shows an overestimation of volcanic ash of approximately 10 %

in the upper troposphere and an underestimation of volcanic ash in the lower

troposphere of the same order. Nonetheless, an error of only 10 % in estimating

the vertical distributed volcanic ash concentrations is a remarkably good result of

the assimilation process.

In a reliable analysis system, the ensemble standard deviation must be of the

order of the error of the ensemble mean. In practice, the investigation of the

reliability of the ensemble needs a large amount of data. Therefore, the relative

ensemble standard deviation is only shown exemplarily without any statistical

meaning. However, Fig. 6.14d shows that the relative ensemble standard deviation

is of the order of the relative error of the ensemble mean for this vertical cross

section. This indicates the potential of the analysis system to reliably predict the

volcanic ash distribution in the atmosphere and its uncertainty.

The potential as well as the limits of ESIAS-chem can both be seen by the

analyzed emission profiles. Fig. 6.15 and Fig. 6.16 display the profile of (a) the

nature run emissions, (b) the ensemble mean emissions, (c) the relative error of

the ensemble mean, and (d) the relative standard deviation of the ensemble mean

for the identical twin experiments on April 15 and April 29, 2010, respectively.

The total nature run emissions on both days (4.25 · 108 tons and 4.30 · 108 tons

on April 15 and April 29, respectively) are well captured by the analyzed total

emissions (4.58 · 108 tons and 4.10 · 108 tons, respectively). The error of the total

emitted volcanic ash is 7.7 % and 4.7 %, respectively. On April 15, the analyzed

emission profile of the ensemble mean shows the two explosive eruptions of the

nature run emission profile with the correct height of the maximum emissions at

the right time. Nonetheless, the ensemble mean shows a vertically and temporally

diffused emission profile such that emissions are located at times and heights, at

which no emissions are present in the nature run emission profile. However, these

incorrect emissions are low with respect to the maximum emissions. The relative

error of the ensemble mean emissions are of the order of 10 %-20 % for most

emission times and heights (cf. Fig. 6.15c) and, therefore, the results are similar to

the analysis made before. The relative ensemble standard deviation is of the same

order as the relative error of the ensemble mean emissions. This test case can be

seen as a demonstration of a successful analysis of the volcanic ash emissions at

April 15, 2010.

In contrast, the emission profile of the ensemble mean on April 29, 2010,
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Figure 6.15: Comparison of the emission profile of the nature run and ensemble mean on

April 15, 2010. The figure shows (a) the nature run emission profile and (b) the ensemble

mean emission profile. For comparison, (c) the relative error of the ensemble mean and

(d) the relative ensemble standard deviation are illustrated.

Figure 6.16: Same as Fig. 6.15 but on April 29, 2010.
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(Fig. 6.16b) shows strong deviations from the nature run emission profile

(Fig. 6.16a). Although the upper most emissions of the nature run emission

profile in 8 km height are well captured by the ensemble mean, at lower levels no

distinction between the two explosive eruptions is obtained. In comparison to the

analyzed emissions on April 15, on April 29 the emissions of the ensemble mean

are more uniform in time and height. Thus, large errors in both directions can be

identified: negative errors during the explosive eruptions at around 03 UTC and

07 UTC indicating an underestimation of the emissions and positive errors outside

the two explosive eruptions indicating an overestimation of the emissions.

The analyzed emission profile on April 29 shows the limits of ESIAS-chem.

While the volcanic ash column mass loadings have only low errors as discussed

in the previous section, the emission profile shows large deviations up to 60 %

and more (Fig. 6.16c). The ensemble standard deviation of the emission profile

(Fig. 6.16d) is lower than the relative error of the ensemble mean and ranges

around 20 %. Although the analysis in the previous section shows a good

agreement of the volcanic ash concentrations of the ensemble mean and the nature

run, the large deviations of the analyzed emission profile may lead to larger errors

if the forecast time is increased.

6.4 Statistical analysis of volcanic ash estimation

ESIAS-chem is a probabilistic forecast system. To evaluate probabilistic forecast

systems, a larger data base is needed than based on a few days. In this section,

the performance of ESIAS-chem is analyzed in the context of an identical twin

experiment using a period of 20 analysis days for the volcanic eruption described in

section 6.1. In total, there are 2,589 time steps, at which volcanic ash is detected at

any of the 33 lidar stations (51,080 data pairs), considered for the analysis (see also

Fig. 6.5).

Several analysis tools and scores exist to address the different characteristics of

the forecast system. Among those, the following are considered in order to analyze

the performance of ESIAS-chem:

• Relative mean error of the ensemble mean,

• Root mean square error of the ensemble mean,

• Mean error of the ensemble mean,

• correlation coefficient of the ensemble mean,

• Brier Score,

• Brier Skill Score,

• Area under the relative operating characteristics curve,
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• Probability-Probability plot.

The quantities of the volcanic ash forecast that are used for the analysis at the

33 lidar stations are the column mass loadings, the maximum concentration, and

the height of the maximum concentration in meter and σ-coordinates. These quan-

tities are averaged over all occurrences and all lidar stations.

To investigate the reliability of ESIAS-chem, the relation of the ensemble spread

(measured by the ensemble standard deviation) and the absolute error of the en-

semble mean for the column mass loadings is shown in Fig. 6.17. The error of the

ensemble mean exceeds the ensemble spread systematically. Thus, the ensemble

spread does not reflect the error made by the forecast system. Especially, large

errors of the ensemble mean column mass loadings forecast are underrepresented by

the ensemble spread.

For a further investigation, the Relative Mean Error (RME) of the column mass

loadings forecast is shown in Fig. 6.18. The RME is defined by

RME =

∑N
i=1(xi − yi)∑N

i=1 yi
, (6.12)

with N the number of observations yi, and xi the corresponding ensemble mean

of the column mass loadings for each observation time averaged over all stations.

The RME shows a strong dependence on the forecast day. In the beginning of both

analysis periods, i.e. on April 14, and May 04, 2010, the RME is of the order of

10 %, which corresponds to the error analyzed in the previous sections. On the

subsequent days, the RME increases. At the end of the second analysis period, the

Figure 6.17: Comparison of the absolute error of the ensemble mean and the ensemble

spread of column mass loadings aggregated over the 33 lidar stations for April 14-18 and

May 04-18, 2010. The black diagonal indicates a perfect forecast system.
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RME reaches values of 60 %-75 %.

To test the influence of the wind speed on the RME, Fig. 6.19 shows exemplarily

the wind profile at the volcano for May 14-17. These days with large RMEs are

accompanied by weak winds at the volcano. Although in section 6.2 it is shown that

the error of the column mass loadings analysis is of the order of 10 % regardless of the

wind conditions, in the subsequent forecast the error induced by the insufficiently

represented volcanic ash emissions increases. This is due to the bad representation

of the vertical distribution of the emissions for weak winds as is discussed in the

previous sections. As argued before, these weak wind conditions are the limit of

ESIAS-chem, which can only be overcome by increasing the assimilation window

length. The optimal assimilation window length depends on the specific wind field

and emission profile. Hence, it is not possible to give a fixed rule on the optimal

assimilation window length.

In contrast to this weak wind period, Fig. 6.20 shows exemplarily the wind

profile above the volcano on May 10-11, 2010. The wind speed on these days ranges

from 20 m/s at the beginning of May 10 to approx. 50 m/s on May 11 in the upper

troposphere. The corresponding RME reduces from more than 40 % on May 09 to

approx. 20 % on May 10-11. This displays the ability of ESIAS-chem to provide a

good forecast of volcanic ash if the winds are sufficiently strong.

The high RME for the later days of the analysis periods does not mean that

the analysis system fails. The problems induced by weak wind conditions can partly

be overcome by performing an error correction on the volcanic ash concentrations.

Therefore, for the following investigation of the performance of ESIAS-chem, an error

correction is applied to the volcanic ash concentrations after the forecast is made.

It is noted that this error correction can, in principle, be applied to the emissions

within the analysis process such that no postprocessing is needed. Because of the

lack of computing time, this online error correction could not been tested. As the

RME shown in Fig. 6.18 is given in terms of column mass loadings, which are the

observed quantity, a multiplicative error correction is used in order to correct the

Figure 6.18: Daily relative mean error for the identical twin experiment analysis on

April 14-18 and May 04-18, 2010, for each observation time (crosses). The averaged

RME is also displayed (solid line).
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Figure 6.19: Wind profile above the Eyjafjallajökull volcano on (a) May 14, (b) May 15,

(c) May 16, and (d) May 17, 2010.

Figure 6.20: Wind profile above the Eyjafjallajökull volcano on (a) May 10 and (b)

May 11, 2010.
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volcanic ash concentration x

xec = cx =
1

1 +RME
x, (6.13)

where xec is the volcanic ash concentration after multiplication with the error cor-

rection factor c. The derivation of the error correction factor c starts with the

assumption that the corrected ensemble mean volcanic ash concentration xec is on

average unbiased

E (H(x)− y) = E

(
Nz∑
i=1

xiec∆z
i − y

)
= E

(
c
Nz∑
i=1

xi∆zi − y

)
!

= 0, (6.14)

with E(·) the expectation, and Nz the number of vertical model layers of thick-

ness ∆zi. Using (6.12) the formula can be transformed to

cE ([y +RMEy])− E (y) =0

c =
E (y)

E (y) +RMEE (y)
=

1

1 +RME
.

(6.15)

The error correction factor applied here is

c =
1

1 + 0.388
.

In an application to a real volcanic eruption, the error correction factor can be

computed for each assimilation by the observed values of the column mass loadings.

Tab. 6.2 compares several statistics for the column mass loadings, maximum ash

concentration, and height of the maximum ash concentration at the 33 lidar stations

averaged over all time steps before and after the error correction is applied. The

height of the maximum ash concentration is given in both, meter above ground and

σ-coordinates. Compared are the RME, Root Mean Square Error (RMSE), Mean

Error (ME), Correlation Coefficient (CC), Brier Score (BS), Brier Skill Score (BSS)

and the Area under the Relative Operating Characteristics curve (ROC-A). The

BS and BSS are calculated for the event of column mass loadings CML > 1 g/m2

and maximum volcanic ash concentration MAX > 0.5 g/m3. The amount of data is

51,080 for RME, RMSE, ME, and CC, 9,443 for BS and BSS, and 7,541 for ROC-A.

Tab. 6.2 shows the improvement of the analysis by applying the error correction

clearly. The RME reduces from 36.5 % to 1.7 % for the column mass loadings (CML)

and from 30.0 % to -0.1 % for the maximum volcanic ash concentration (MAX). The

RMSE and the ME for both quantities reduces similarly. Remarkably, the ME of the

column mass loadings after the error correction (CMLec) vanishes. This is a clear

indication that the multiplicative error correction is successful and a reasonable

choice for the analysis method. Because the error correction only alters the strength

of the volcanic ash concentrations, it has almost no effect on the height in meter

above the ground (HGTm) of the maximum volcanic ash concentrations. The RME
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Table 6.2: Statistics of the performance analysis of ESIAS-chem aggregated over all

33 lidar stations and analysis time steps before and after the error correction (subscript

“ec” for the latter). Shown are the relative mean error (RME), root mean square error

(RMSE), correlation coefficient (CC), Brier Score (BS), Brier Skill Score (BSS), and

the area under the relative operating characteristics curve (ROC-A). The statistics are

calculated for the column mass loadings (CML), the maximum volcanic ash concentration

(MAX) and the height of the maximum volcanic ash concentration above the lidar both,

in meter (HGTm) and σ-coordinates (HGTσ). The RME, RMSE, and CC are aggregated

over all volcanic ash values (51,080 data pairs). The BS, BSS, and ROC-A are aggregated

for the column mass loadings for which the nature run values are larger than 1 gm−2

(9,443 data pairs) and for the maximum volcanic ash concentrations larger than 0.5 gm−3

(7,541 data pairs).

RME RMSE ME CC BS BSS ROC-A

CML 36.5 % 0.33 gm−2 0.2 gm−2 0.98 0.19 -0.01 0.69

CMLec 1.7 % 0.14 gm−2 0.0 gm−2 0.98 0.10 0.48 0.93

MAX 30.0 % 142.7 µgm−3 64.6 µgm−3 0.97 0.18 -1.34 0.70

MAXec -0.1 % 80.8 µgm−3 -14.9 µgm−3 0.96 0.14 0.23 0.89

HGTm 8.0 % 1373 m 336 m 0.82 - - -

HGTm
ec 7.3 % 1325 m 305 m 0.83 - - -

HGTσ 3.7 % 2.2 0.5 0.84 - - -

HGTσ
ec 3.5 % 2.1 0.5 0.84 - - -

and RMSE reduces only from 8.0 % to 7.3 % and from 1373 m to 1325 m, respectively.

The same is true for the height of the maximum volcanic ash concentrations in

σ-coordinates (HGTσ). The ME of HGTσ shows that on average the maximum

volcanic ash layer is displaced by 0.5 vertical layers. Thus, the averaged variation

of the layer containing the maximum volcanic ash concentration is smaller than the

vertical resolution of the model. This is a remarkable result, as column mass loadings

of volcanic ash are assimilated. Thus, ESIAS-chem is able to retrieve the vertical

distribution of volcanic ash by assimilating these vertically integrated values.

In order to investigate possible phase errors of the volcanic ash concentrations,

the CC is given in Tab. 6.2 for the quantities mentioned above. The CC range

between 0.96 and 0.98 for the maximum volcanic ash concentrations and column

mass loadings and from 0.82 to 0.84 for the height of the maximum volcanic ash

concentrations in meter and σ-coordinates. The estimation of the height of the

maximum volcanic ash concentrations is more uncertain, leading to larger variations

in the estimate and, therefore, to a slightly lower CC. However, all CC are high,

depicting the ability of ESIAS-chem to estimate on average the correct temporal

evolution of the volcanic ash concentrations at the lidar stations. Therefore, the

volcanic ash analysis is free of any phase error.

The statistics BS, BSS, and ROC-A value the forecast system with respect to an

event. For the column mass loadings forecast, this event is CML > 1 g/m2. For the
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forecast of the maximum volcanic ash concentrations, the event is MAX > 0.5 g/m3.

Although the value of 0.5 g/m3 for the maximum volcanic ash concentrations is no

official threshold for air safety considerations, it is chosen in order to have a larger

data base than for higher thresholds.

The accuracy of the probabilistic forecast system and its skill is measured by

the Brier Score and the Brier Skill Score. The Brier Score is defined as the mean

square error of a probabilistic forecast

BS =
1

N

N∑
i=1

(pi − oi)2, (6.16)

where N is the number of all occurrences, pi denotes the predicted likelihood of an

event to be occur, and oi = 0 if the event is not observed and oi = 1 if the event is

observed. A good forecasting system predicts a high probability pi of the occurrence

of an event if the event occurs (oi = 1) and vice versa. Thus, a Brier Score close to

zero is characteristic for a good forecast system. The Brier Skill Score measures the

skill of the probabilistic forecast according to a reference forecast and is defined by

BSS = 1− BS

BSref
, (6.17)

where BSref is the Brier Score of the reference forecast. In this study, the sample

climatology is taken as reference forecast. The BSS ranges from −∞ to 1, with

BSS=0 indicating no skill above the reference and BSS=1 indicating a perfect skill.

Tab. 6.2 summarizes the BS for the column mass loadings to be larger than 1 g/m2

and maximum volcanic ash concentrations to be larger than 0.5 g/m3 at the 33 lidar

stations. Both quantities are reduced by the error correction from 0.19 to 0.10 for

the column mass loadings and from 0.18 to 0.14 for the maximum volcanic ash con-

centration forecast. The BSS is increased from -0.01 to 0.48 for the column mass

loadings and from -1.34 to 0.23 for the maximum of the volcanic ash concentrations.

This displays the benefit gained by the error correction. In principle, the BS and

BSS indicate an accurate forecast system at least for the column mass loadings.

The accuracy of the maximum volcanic ash concentrations at the 33 lidar stations is

reduced in comparison to the accuracy of the column mass loadings forecast, which

basically depicts the issue of weak winds within the analysis period and, therefore,

the insufficiently estimated volcanic ash emissions.

So far, the considered measures of ESIAS-chem analyze the overall quality either

of the deterministic ensemble mean forecast (RME, RMSE, ME) or the probabilistic

ensemble forecast (BS, BSS). The ROC-A is a score that measures the ability of the

forecasting system to discriminate between the occurrence and non-occurrence of

an event. A ROC-A value of 0.5 is equal to no skill of the forecasting system. The

relative operating characteristics curve compares the hit rate and the false alarm

rate for a given event. The hit rate is the probability to which an event is truly

forecasted. In contrast, the false alarm rate is the probability to which an event,

that does not occur, is forecasted. To construct the relative operating characteristics
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curve, the forecasts are binned into probability categories for which the hit rate and

the false alarm rate are computed. Hence, a ROC-A value larger than 0.5 reflects

that, given a probability threshold, the forecast system is more likely to predict the

occurrence of the event than the non-occurrence (Casati et al. [2008]). The score is

equal to 1 if the forecast system is able to discriminate the events occurrence from

non-occurrence.

The ROC-A in Tab. 6.2 shows the improvement of the analysis due to the error

correction. For the column mass loadings forecast, the ROC-A increases from 0.69 to

0.93. For the maximum volcanic ash concentrations, the ROC-A increases from

0.70 to 0.89. These ROC-A values reflect the ability of ESIAS-chem to correctly

discriminate between the occurrence and non-occurrence of whether the column

mass loadings exceed 1 g/m2 and the maximum volcanic ash concentrations exceed

0.5 g/m3.

In addition to the statistics summarized in Tab. 6.2, Fig. 6.21 shows the

Probability-Probability plot (P-P plot) of the column mass loadings aggregated

over the 33 lidar stations. A P-P plot compares the Cumulative Distribution Func-

tion (CDF) of two data sets, here, the observations and the probabilistic forecast.

For a given probability value, the P-P plot measures the percentage of the forecasts

and observations that fall at or below this value. Thus, the closer the P-P plot is to

the diagonal the more do both CDFs agree. Fig. 6.21 indicates a strong agreement

of the forecast CDF with the CDF of the observations for the column mass loadings

aggregated over all data at the 33 lidar stations. It shows an underprediction for

Figure 6.21: Probability-Probability plot (P-P plot) aggregated over the 33 lidar stations

for April 14-18 and May 04-18, 2010. The black diagonal indicates a perfect forecast

system.



96 CHAPTER 6. IDENTICAL TWIN EXPERIMENTS

low forecast probabilities (red curve is above the diagonal) and an overprediction

for high forecast probabilities (red curve is below the diagonal). Additionally, the

P-P plot supports the finding that the forecast is on average free of systematic errors

after error correction.



Chapter 7

Comparison with literature

The identical twin experiments described in the previous sections confirm that

ESIAS-chem is able to estimate the vertical distribution of volcanic ash concen-

trations on average adequately by assimilating vertically integrated volcanic ash

column mass loadings. This strength of ESIAS-chem is more pronounced under

strong wind conditions. Under weak wind conditions, the assimilation window needs

to be elongated in order to give the volcanic ash emitted at different heights the

chance to separate. Then, the assimilation of volcanic ash column mass loadings

can yield sufficiently good estimates of the vertical distribution of volcanic ash as

well. Nonetheless, the actual length of the assimilation window depends strongly on

the wind field and the eruption style.

In order to analyze the benefit gained from ESIAS-chem, Tab. 7.1 summarizes

the main features of the various methods proposed in the literature for estimating

volcanic ash concentrations and its uncertainty. Beneficial features for analyzing

volcanic ash concentrations are marked in bold. It is not the purpose of this study

to value the results of the different methods, which are explained shortly in the

introduction. All methods are shown to perform reasonably well in their field of

application (cf. references given in Tab. 7.1). Here, only the complexity of the

emission profiles, the applicability to real volcanic ash forecasts, and their compu-

tational costs are compared. It is noted that all methods assimilating column mass

loadings of volcanic ash suffer from the same dependence on the wind conditions as

ESIAS-chem does.

The most important positive property of an assimilation system for volcanic ash

concentrations in the atmosphere is the ability to include temporal varying emissions

by making as few as possible assumptions of the eruption style. Most assimilation

systems summarized in Tab. 7.1 make assumptions of the emission profile. They as-

sume volcanic ash emitted on a predefined height and time (Schmehl et al. [2012]), a

Gaussian volcanic ash layer in the atmosphere (Wilkins et al. [2014]) or a Gaussian

emission profile (Denlinger et al. [2012]), or they model volcanic ash emissions using

perturbed parameters (Bursik et al. [2012]; Madankan et al. [2014]). Only a few as-

similation systems make almost no assumptions of the emission profile (Stohl et al.

[2011]; Lu et al. [2016], ESIAS-chem). In the method by Stohl et al. [2011] and in
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ESIAS-chem, the flexible temporal and vertical resolution of the volcanic ash emis-

sions stems from the pairwise distinct emission packages used for the optimization

of the emission profile. The temporal and vertical resolution in these methods can

be adapted such that it is most applicable with respect to compute resources and

the expected variability of the true emissions. However, ESIAS-chem allows only for

discrete emission strength, which is not critical as the discretization may be refined

if the required compute resources are available. In contrast, the method proposed

by Lu et al. [2016] gives an a priori estimate of the emissions and optimizes the

emissions according to the adjoint-free ensemble 4D-var method. The analysis does

depend on the a priori estimate of the emission profiles but this is not referred to

as an assumption of the emission profile in this discussion.

In addition to the representation of the emissions, the methods differ in the

number of simulations needed to generate the analysis. This is examined together

with the estimated parallel section of the model simulations. It is noted that the

actual information about the parallel section of the method is missing in the litera-

ture. Hence, it is only estimated and may, therefore, vary in the specific application.

Only two methods require few model simulations, i.e. one simulation in the method

by Wilkins et al. [2014] and O(100) simulations in the method by Lu et al. [2016]. In

contrast, three methods need O(10, 000) simulations (Schmehl et al. [2012]; Bursik

et al. [2012]; Zidikheri et al. [2016]). The other methods, as well as ESIAS-chem

need moderate sized ensembles of O(200)-O(500). In Zidikheri et al. [2016], all si-

mulations can be run in parallel. Therefore, this method is almost as fast as running

one single model run. Nonetheless, the method by Zidikheri et al. [2016] makes the

strongest assumptions of the emission profile (i.e. constant emissions for all times

and heights) and analyzes only the horizontal dispersion of the volcanic ash and its

uncertainty without any information on the volcanic ash concentrations. For the

most other methods, the percentage of simulations that can be run in parallel is of

the order of 98 %. For these methods, most simulations are run in parallel (e.g. the

simulations that generate the a priori estimate). The optimization can only be per-

formed if the a priori simulations are generated, which reduces the parallel part of

the methods. Possibly, after the optimization, additional simulations are necessary

in order to calculate the analysis, which further reduces the parallel section. The

parallel section of the method by Denlinger et al. [2012] is estimated to be 50 %

because it estimates the probability distribution iteratively. It is assumed that at

least some of this method can be run in parallel. The method by Lu et al. [2016]

is only parallel to approx. 20 % because of its application of an ensemble 4D-var.

Herein, the iterations needed to calculate the optimal emission profile are to be cal-

culated sequentially, while the ensemble in each iteration can be run in parallel. The

method by Schmehl et al. [2012] uses the genetic algorithm for optimizing volcanic

ash emissions. The genetic algorithm can be run in parallel such that each genera-

tion (i.e. a set of model runs) can be rapidly calculated. However, the expensive

mutation and cross over steps still need to be run sequentially. ESIAS-chem requires

O(500) model simulations to calculate the analysis out of which 98 % can be run in
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parallel. Therefore, ESIAS-chem is fast in calculating the analysis of volcanic ash

emission.

Another difference among the various methods is the representation of observa-

tion and background errors. Most methods account for both, observation and back-

ground errors (Stohl et al. [2011]; Lu et al. [2016]; Denlinger et al. [2012]; Madankan

et al. [2014], and ESIAS-chem). Four methods do not account for neither observa-

tion nor background errors (Schmehl et al. [2012]; Wilkins et al. [2014]; Bursik et al.

[2012]; Zidikheri et al. [2016]) within the optimization procedure, which overrates

the accuracy of the observations.

In the comparison above, the benefits of ESIAS-chem become evident. Although

all other methods perform equally well in analyzing volcanic ash concentrations in

the atmosphere, they suffer more or less from specific limitations. The most severe

limitation is that 4 out of 9 methods (Schmehl et al. [2012]; Denlinger et al. [2012];

Bursik et al. [2012]; Madankan et al. [2014]) do not allow for temporal varying vol-

canic ash emissions. This means that in the analysis averaged volcanic ash emissions

are estimated, which is especially for longer lasting volcanic eruptions a large source

of uncertainty. Although ESIAS-chem allows only for discrete emission rates, it

makes no assumptions of the style of the volcanic eruption. Thus, the variability of

volcanic ash emissions can be represented by the method. Only two other methods

do not make any assumptions of the eruption style either (Stohl et al. [2011]; Lu et al.

[2016]) but both methods do not forecast uncertainties of volcanic ash predictions,

which is a highly desired feature of the analysis system to quantify possible risks im-

posed by volcanic ash in the atmosphere as was also concluded in the literature (cf.

Kristiansen et al. [2012]). Making no restricting assumptions of the eruption style

implies that the methods are able to represent multi-layered volcanic ash emissions

and, hence, concentrations in the atmosphere, which might be possible because of

the wind profile and the thermal stratification at the volcano.

Although the method by Wilkins et al. [2014] is the most efficient method as it

needs only one model simulation to estimate the volcanic ash concentrations, it is

not able to quantify the uncertainty of that estimate. Besides, it does not account

for model and observation errors. In fact, in Wilkins et al. [2014] the observations are

taken as truth, which overrates the observations and neglects both, measurement and

representativity errors. Observation errors are represented in some of the methods

that quantify the uncertainty of the volcanic ash forecast (Denlinger et al. [2012];

Madankan et al. [2014], ESIAS-chem). Both is needed for the estimation of volcanic

ash concentrations. However, the different methods represent different sources of

uncertainty. In Denlinger et al. [2012], Bursik et al. [2012], and Madankan et al.

[2014], the uncertainty with respect to four emission parameters (vent radius, vent

velocity, mean and variance of the grain size distribution) is analyzed. In Zidikheri

et al. [2016], the uncertainty in the horizontal dispersion of the volcanic ash cloud

is considered. Alternatively, ESIAS-chem analyzes the uncertainty induced by the

vertical and temporal distribution of the volcanic ash emissions as well as the emis-

sion strength. Thus, ESIAS-chem provides an estimate of the uncertainty of both,
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the emission source and the horizontal distribution of the volcanic ash, except for

the grain size distribution of the volcanic ash. Further, all these methods that are

able to analyze the uncertainty of the volcanic ash forecast need comparable com-

puting time except for the method by Denlinger et al. [2012] because of the limited

amount of parallelism. However, the methods by Bursik et al. [2012] and Zidikheri

et al. [2016] need approx. a factor of 10 more simulations to calculate the analy-

sis. Remarkably, among these methods only ESIAS-chem makes no assumptions of

the emissions, thus providing a highly flexible approach, which is also applicable

to longer lasting volcanic eruptions and to eruptions with multi-layered emission

profiles and highly variable emission strength.

In addition to ESIAS-chem, two other promising analysis methods are tested for

the estimation of volcanic ash concentrations and its uncertainty. The first analy-

sis method, which is newly developed, is a combination of a particle smoother and

4D-var (PF/DA in Tab. 7.1; see appendix A for further details on the method). In

this combination, the gradient of the cost function of the 4D-var iterations is used in

order to calculate time and height dependent weights for the emissions. The second

method is a localized particle filter proposed by Poterjoy [2016] (LPF in Tab. 7.1;

see appendix B for a short description of this method). The LPF method does not

estimate the emission profile but it adjusts the volcanic ash concentrations of the

ensemble members according to local weights in the vicinity of observations. Gene-

rally, this locality of the analysis makes it possible to investigate temporal variable

emissions.

Both methods can be used for uncertainty quantification. The LPF methods

requires less simulations in order to calculate the analysis and is fully parallel in run-

ning the simulations. Thus, it requires only limited compute resources and provides

early analyses in the application to a real volcanic eruption. As the PF/DA method

solves the optimization iteratively, the parallel section of the simulations is only of

the order of 20 %. Hence, the PF/DA method needs more time to calculate the

analysis, which limits the applicability to real volcanic eruptions. The two methods

PF/DA and LPF represent the observation error explicitly, but the background er-

ror is only represented by the a priori ensemble spread. Both methods are able to

analyze temporal variable emissions but only the PF/DA method is able to retrieve

the vertical distribution of the emissions. In contrast, in the LPF method, for each

ensemble member an emission profile is defined prior to the analysis. This emission

profile is not altered as observations are assimilated. Thus, the a priori representa-

tion of the emissions is crucial for this method.

For the PF/DA method, the diffusion of the gradient of the cost function limits

the performance of the analysis. This diffusion reduces the variance in the signals

each ensemble member receives in the gradient, which leads to a false weighting of

the ensemble members. Hence, the method suffers from a biased estimate of the

volcanic ash concentrations.

Although the PF/DA and LPF methods show the general applicability to vol-

canic eruptions, ESIAS-chem proved to outperform both methods in estimating the
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volcanic ash concentrations and its uncertainty. As is suggested in the literature

(e.g. Durand and Alliot [1999]; Chelouah and Siarry [2003]), it was tested to initia-

lize the Nelder-Mead minimization by a genetic algorithm. It was recognized, that

the extension of the Nelder-Mead method to the discrete ensemble method makes

the use of the genetic algorithm obsolete for this application. The use of discrete

solutions enables the rapid convergence of the variable, which is to be optimized, to

the minimum.



Chapter 8

Conclusion and outlook

In this study, a new method for estimating volcanic ash emissions and its uncer-

tainty from column mass loadings observations is developed. On the one hand, the

method comprises an ensemble-based particle smoother, which extends the assimi-

lation window if new observations are available. Thus, the latest observations are

taken for the estimation of the emission profile. On the other hand, the Discrete

Ensemble Nelder-Mead (DENM) method is developed in order to achieve an efficient

a priori ensemble representation of the optimum of the cost function. The DENM

combines the parallel version of the Nelder-Mead method with adaptive parameters

and, additionally, extends the pure combination of these Nelder-mead methods to

an ensemble formulation with discrete solutions. This extension is shown to increase

the performance of the optimization tremendously because the solution space is re-

duced by the discretization. The ensemble representation increases the diversity of

the solution set, which serves as input for the particle smoother.

The use of the DENM minimization method enables the optimization of the

emission profiles by a linear combination of pairwise distinct emission packages.

Thus, measurements of volcanic ash column mass loadings can be used to optimize

the emission profile in a high temporal and vertical resolution. Therefore, the emis-

sion profile is separated into single emission packages, each for a single height and

unit duration. The emitted volcanic ash packages are transported to the observa-

tion time, where the impact of each package on the observations is measured. The

DENM minimization combines the volcanic ash packages in order to minimize the

distance to the observations. The weight for each volcanic ash package is applied

to the corresponding emission package for the generation of the analysis. When the

latest observations become available, the assimilation window is extended. Thus,

the latest observations, which have the largest information content with respect to

the separation of volcanic ash that results from emissions on different heights and

at different times, are added to the minimization. It is shown that, in general,

the longer the assimilation window, the better is the analysis of volcanic ash. The

method is integrated into the new ensemble version of the EURAD-IM, forming the

chemical part of ESIAS (ESIAS-chem). ESIAS-chem is flexible in integrating other

modules and is applicable to other atmospheric models as well.
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The performance of ESIAS-chem is tested by identical twin experiments. These

are performed with a coarse grid of 45 km horizontal resolution and 23 vertical σ-

layers in order to reduce the computational complexity due to restricted computer

facilities. For applications to real volcanic eruptions, a higher horizontal and ver-

tical resolution is recommended to be able to resolve fine volcanic ash structures

in the atmosphere. For the identical twin experiments, the horizontal and vertical

resolution is of minor importance.

The dependence of the analysis on the wind field for varying assimilation win-

dow lengths is investigated in the context of identical twin experiments. On two

days with strong and weak winds over the volcano, a nature run emission profile

containing two short explosive eruptions are analyzed by ESIAS-chem with assi-

milation window lengths of 06-36 hours. Thus, the influence of assimilating later

observations depending on the wind conditions is analyzed. It is shown that the

analysis of the column mass loadings improves if later observations are assimilated,

i.e. if the time between observations and emissions increases. For the strong wind

case, it is found that once the volcanic ash is mixed in the atmosphere, the analysis

cannot be further improved by later observations. In the strong wind case, it is also

possible to retrieve the vertical distribution of the volcanic ash from the assimilated

column mass loadings. This includes the detection of a second maximum in the ver-

tical distribution of the volcanic ash concentrations, which is not possible for most

other existing analysis methods for volcanic ash concentrations and its uncertainty.

The relative mean absolute error of the analyzed volcanic ash concentrations for this

test case is shown to be of the order of 15 % – 20 %. For the weak wind case, the

analyzed column mass loadings are in good agreement with the observations as well.

The relative mean absolute error of the volcanic ash concentrations of the ensemble

mean to the nature run volcanic ash concentrations is larger than for the strong

wind case but still of the order of 20 %.

The analyzed emission profile differs between the two test cases. Besides some

temporal and vertical diffusion, the emission profile for the strong wind case is com-

parable to the nature run emission profile. In contrast, for the weak wind case the

two explosive eruptions in the nature run emission profile cannot be resolved by

ESIAS-chem. However, the total mass emitted by the volcanic eruption for both

test cases is similar to the nature run emissions with less than 10 % error. Thus, the

strong wind case shows the potential of ESIAS-chem to analyze the emission profile

from observations of column mass loadings. For weak wind conditions, the analysis

of the emissions from column mass loadings is limited but can partly be improved

by increasing the assimilation window length.

The performance of ESIAS-chem is investigated by an identical twin experiment

comprising 20 days of successive volcanic eruptions on April 14-18 and May 04-18,

2010. The assimilation takes observations over a 24 hour period into account and

starts every 12 hours, which is a reasonable choice for real volcanic eruptions. The

observations are column mass loadings over the full domain, including zero values,

every six hours. The observations taken for the performance analysis are profiles of
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volcanic ash concentrations at 33 hypothetical lidar stations located at the Earlinet

sites.

The error of the ensemble mean is shown to be larger than the ensemble spread,

hence, the ensemble is underdispersive. This indicates that the analysis system is

not able to represent the forecast uncertainty to full extend. An analysis of the

temporal distribution of the relative mean error proves that for strong winds the

system is able to analyze the volcanic ash concentrations. If the relative mean error

is increased, the winds at the volcano are weaker. This shows that the assimilation

window length of 24 hours is too short for a reliable forecast for this case. Longer as-

similation windows are favorable. The optimal assimilation window length depends

on the actual wind field (e.g. wind speed and areas of convergence) and the emis-

sion profile (e.g. temporal and vertical distribution of the emissions). Therefore,

no general rule for the optimal length of the assimilation window can be provided.

However, an error correction using observations of column mass loadings is applied

to the volcanic ash concentrations, which is proved by several statistics to achieve

on average reliable and accurate forecasts of volcanic ash concentrations from obser-

vations of vertically integrated volcanic ash column mass loadings. Generally, the

error correction can be applied during the calculation of the analysis with minimum

efforts because it corrects for the relative mean error in the column mass loadings

estimate. The uncertainty of estimating the vertical distribution of the volcanic ash,

which is measured by the height of the maximum volcanic ash concentration at the

33 analyzed lidar stations, is smaller than the vertical resolution of ESIAS-chem.

Hence, the vertical distribution of the volcanic ash can be retrieved by column mass

loadings observations using ESIAS-chem.

ESIAS-chem is compared to other methods for estimating volcanic ash and its

uncertainty given in the literature. It is shown that ESIAS-chem combines the po-

sitive features of several other methods. It is able to estimate temporal and vertical

variable emissions, it provides estimates of the emissions uncertainty, and it rep-

resents the observation and background error covariances within the minimization

procedure. Besides this, it is highly parallelized such that the main of the moderate

number of simulations needed within the assimilation can be run in parallel. In

contrast to ESIAS-chem, two other methods are shown to suffer from limitations

in the estimation of volcanic ash concentrations. The first method is a localized

particle filter proposed by Poterjoy [2016], which can estimate the vertical distri-

bution of volcanic ash in the atmosphere only if the initial choice of the emission

profiles of the ensemble is appropriate. The second method is a new developed com-

bination of a particle smoother and 4D-var data assimilation, which uses the profile

of the gradient of the cost function at the volcano to calculate the ensemble member

weights. This method suffers from a temporal and vertical diffusion of the signal

in the gradient of the cost function yielding to incorrect weights of the ensemble

members.

In a next step, the model will be tested for a real eruption of the Eyjafjallajökull

volcano in 2010. Therefore, an additional consideration of the uncertainty in the
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wind field will be applied. This uncertainty is provided by the meteorological part

of the ESIAS system and can easily be applied to ESIAS-chem. By considering

uncertain wind fields, the model is able to give estimates on the uncertainty of

the horizontal displacement of the volcanic ash. Additionally, the representation of

the emission factor error covariances will be investigated and optimized. This will

further improve the reliability of the probabilistic forecast of volcanic ash concen-

trations as the ensemble spread will increase, especially for weak wind conditions.

Besides volcanic ash eruptions, ESIAS-chem is applicable to a variety of emis-

sion scenarios, especially unexpected emission events. Therefore, it provides a fast

and efficient model for source term estimation including uncertainty representation.

In principle, the method can be adapted to multi-source emission scenarios. The

enhanced need for compute resources can partly be absorbed by a reduced resolution

of the emission profile and will be in the focus of future work.



Appendix A

A combined 4D-var / particle

smoother for volcanic ash emission

estimation

In Four-Dimensional VARiational data assimilation (4D-var), the gradient of the cost

function (cf. 3.1 for the observational part) is used to calculate the best estimate of

the model state iteratively

∇J = B−1 [x− xb] +
N∑
i=1

MTHTR−1 [H(Mi(x0))− yi] , (A.1)

with HT and MT denoting the transposed, or adjoint, observation and model opera-

tor, respectively. The adjoint observation operator HT maps the innovation vector

[H(Mi(x0))− yi], normalized by the observation error covariance matrix, into model

space. This includes a redistribution of the information obtained by the column mass

loading measurements on vertical model layers. In this application, this is done by

setting a Gaussian with standard deviation σ = 0.5 onto the model layers, which

contain volcanic ash in the a priori model state, and weighting the innovation vector

with this set of Gaussians.

In this combination of 4D-var with the particle filter method, the profile of the

gradient (A.1) of the cost function at the volcano location is used for the generation

of the weights in (2.5). The idea is that, similarly to the forward model integration,

the adjoint model will transport the gradient backward in time and space to the

volcano. The profile of the gradient of the cost function at the volcano can be taken

for emission optimization. This gradient, which is transformed into a time/height

field at the volcano location, contains information of times and height at which the

volcanic ash emissions are too high/low. If the model state is close to the obser-

vations, the gradient of the cost function at the corresponding emission time and

height in the profile at the volcano is small. Therefore, small cost function values

contribute to large weights and vice versa.

In practice, one iteration of 4D-var is performed for an ensemble of Nens model
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EMISSION ESTIMATION

runs. Instead of running the minimization procedure, each ensemble member is

assigned a profile of weights that correspond to the profile of the gradient of the

cost function at the volcano. These weights are used in the resampling step. It

was recognized that running this process for several iterations, the results were best.

Therefore, in the resampling step the emissions are not replaced by the resampled

ensemble members but are a weighted mean of the emissions of the replaced and

better fitted ensemble members. Initially, each ensemble member contains constant

emissions in time and height, where the emission strength differs among the ensemble

members.
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Localized particle filter

The localized particle filter proposed by Poterjoy [2016] aims to reduce the dimen-

sion of the data assimilation problem as the weights of the ensemble members are

calculated locally. The following description follows Poterjoy [2016]. The update of

the model state x
(yt)
i of ensemble member i is equal to the update of the bootstrap

particle filter x
(yt−1)
ki

(cf. section 2.1) distant to the observations. Herein, the index

ki indicates that the model state is possibly resampled after the filtering step, but

not perturbed. Therefore, multiple copies of x
(yt−1)
ki

may exist. Close to the observa-

tions, the update of the model state is equal to the model state x
(yt−1)
i prior to the

assimilation of the current observation to which the local weights are applied. This

results in the update equation

x
(yt)
i = x(yt) + r1 ◦ (x

(yt−1)
ki

− x(yt)) + r2 ◦ (x
(yt−1)
i − x(yt)), (B.1)

with ◦ indicating the Schur product and

r1,j =
σ
(yt)
j√

1
Nens−1

∑Nens−1
i=0

[
x
(yt−1)
ki,j

− xj(yt) + cj

(
x
(yt−1)
i,j − xj(yt)

)]2 ,
r2,j =cjr1,j,

cj =
Nens (1− l[xj, yt, r])

l[xj, yt, r]W̃
.

(B.2)

Herein, the localization function is defined by (cf. (4.10) in Gaspari and Cohn [1999])

l[xj, yt, r] =

{
−0.25d5j + 0.5d4j + 5

8
d3j − 5

3
d2j + 1, 0 ≤ dj < 1,

1
12
d5j − 0.5d4j + 5

8
d3j + 5

3
d2j − 5dj + 4− 2

3dj
, 1 ≤ dj < 2,

(B.3)
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with dj being the Euclidean distance of the location of model state xi to observation

yt. In (B.2) the a posteriori mean and standard deviation are given by

x
(yt)
j =

Nens−1∑
i=0

ω
(yt)
i,j

Ω
(yt)
j

x
(y0)
i,j ,

σj =
Nens−1∑
i=0

ω
(yt)
i,j

Ω
(yt)
j

[
x
(y0)
i,j − x

(yt)
j

]
,

(B.4)

with local weights calculated according to

ω
(yt)
i,j = ω

(yt−1)
i,j

([
p(yt|x(y0)i )− 1

]
l[xj, yt, r]α + 1

)
, (B.5)

and

Ω
(yt)
j =

Nens−1∑
n=0

ω
(yt)
i,j . (B.6)

The inflation factor α < 1 controls the ability of the algorithm to account for bias in

the ensemble by giving more weights to the tails of the probability density function

(cf. Poterjoy and Anderson [2016]).
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technische Unterstützung bei der Umsetzung der neuen MPI-Strategie.

Mein ganzer Dank geht an meinen Betreuer Hendrik Elbern für seine Ideen

und Hinweise, wenn ich mich einmal gedanklich in einer Sackgasse befunden habe.
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vor allem geholfen, mein Leben so zu gestalten, dass ich mich in jeder Hinsicht zu

den Privilegierten zählen darf.

Zum Schluss kommt das wichtigste im Leben, meine kleine Familie.



Liebe Susanne, danke für deine Hilfe, Zuversicht, Unterstützung an schweren
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