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Kurzzusammenfassung: In dieser Arbeit untersuchen wir torische Degenerierungen projek-
tiver Varietäten. Wir interessieren uns für Konstruktionen solcher aus der Darstellungstheorie,
der tropischen Geometrie und der Theorie von Cluster Algebren. Ziel ist es, durch analysieren
bestimmter Spezialfälle die Zusammenhänge der verschiedenen Theorien besser zu verstehen.

Im Fokus sind deshalb Varietäten, auf die eine Vielzahl von Methoden angewandt werden
können: Grassmannsche, Fahnenvarietäten und Schubertvarietäten.

Wir vergleichen als ersten Schritt die torischen Varietäten, die als Degenrierungen erhalten
werden. Vor allem interessiert uns ob isomorphe torische Varietäten von verschiedenen Kon-
truktionen erhalten werden. Dies ist häufig der Fall, z.B. für die Grassmannsche von Geraden
im Cn können alle torischen Varietäten, die man mit Methoden der tropischen Geometrie
erhält (bis auf Isomorphie) auch mit Hilfe der Darstellungstheorie konstruiert werden.

Ein erstes allgemeines Resultat (für projektive Varietäten) lässt auf weitere tiefere Zusam-
menhänge hoffen: torische Degenerierungen, die mit Hilfe einer Bewertung und der Theorie
von Newton-Okounkov Körpern erzeugt werden lassen sich (unter gewissen Bedingungen) mit
Hilfe der tropischen Geometrie realisieren.



Abstract: In this thesis we study toric degenerations of projective varieties. We compare
different constructions to understand how and why they are related. In focus are toric de-
generations obtained from representation theory, tropical geometry or cluster algebras. Often
those rely on valuations and the theory of Newton-Okounkov bodies. Toric degenerations can
be seen as a combinatorial shadow of the original objects. The goal is therefore to understand
why the different theories are so closely related, by understanding the toric degenerations they
yield first. We choose Grassmannians, flag varieties and Schubert varieties as starting point
as here many different constructions are applicable. One of our main results shows how toric
degenerations obtained using full-rank valuations, independent of how these are constructed,
can (under certain conditions) be realized using tropical geometry.



Contents

1 Introduction 7

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.1 Birational sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.2 Tropical Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.3 Cluster algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Valuations and their weighting matrices . . . . . . . . . . . . . . . . . . 12

1.2.2 Toric degenerations of Grassmannians . . . . . . . . . . . . . . . . . . . 12

1.2.3 Toric degenerations of flag and Schubert varieties . . . . . . . . . . . . . 13

2 General Theory 17

2.1 Representation Theory of SLn(C) . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Tropical Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Valuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Quasi-valuations with weighting matrices . . . . . . . . . . . . . . . . . . . . . 26

2.5 Cluster algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Grassmannians 36

3.1 Preliminary notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 The tropical Grassmannian . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.2 Cluster structure on C[Gr(2,Cn)] . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Birational sequences for Grassmannians and trop(Gr(2,Cn)) . . . . . . . . . . . 41

3.2.1 Birational sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Iterated sequences for Gr(2,Cn) . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Toric degenerations via plabic graphs . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1 Plabic graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.2 The valuation vG and the weighting matrix MG . . . . . . . . . . . . . . 54

3.3.3 Main Theorem for Gr(2,Cn) . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.4 Mutation and initial ideals . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Flag and Schubert varieties 71

4.1 Preliminary notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 String cones and the Superpotential . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.1 Pseudoline arrangements and Gleizer-Postnikov paths . . . . . . . . . . 74

4.2.2 String cones, polytopes and toric degenerations . . . . . . . . . . . . . . 84

4.2.3 Double Bruhat cells and the superpotential . . . . . . . . . . . . . . . . 89

5



6 CONTENTS

4.2.4 Applications of Theorem 17 . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3 Computing toric degenerations of flag varieties . . . . . . . . . . . . . . . . . . 105

4.3.1 Tropicalizing F`n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.3.2 String&FFLV polytopes and the tropical flag variety . . . . . . . . . . . 110
4.3.3 Toric degenerations from non-prime cones . . . . . . . . . . . . . . . . . 116

Appendices

Appendix A Grassmannians 122
A.1 Plabic weight vectors for Gr(3,C6) . . . . . . . . . . . . . . . . . . . . . . . . . 122

Appendix B Flag varieties 124
B.1 Algebraic and combinatorial invariants of trop(F`5) . . . . . . . . . . . . . . . . 124
B.2 Algebraic invariants of the F`5 string polytopes . . . . . . . . . . . . . . . . . . 130

5 Bibliography 133



Chapter 1

Introduction

Toric varieties are popular objects in algebraic geometry due to a dictionary between their ge-
ometric properties (e.g. dimension, degree) and properties of associated combinatorial objects
(e.g. fans, polytopes), which exists in “nice” cases. This dictionary can be extended from toric
varieties to varieties admitting a toric degeneration. A toric degeneration is a (flat) family of
varieties that share many properties with each other. We mostly consider 1-parameter toric
degenerations of certain projective varieties X. These are flat families ϕ : F → A1, where the
fiber over zero (also called special fiber) is a toric variety and all other fibers are isomorphic
to X. Once we have such a degeneration, some of the algebraic invariants of X are the same
for all fibers (e.g. dimension, degree, Hilbert-polynomial), hence the computation can be done
on the toric fiber. In the case of a toric variety such invariants are easier to compute than in
the case of a general variety due to a nice combinatorial description.

Example 1. Consider the Grassmannian Gr(2,C4) of 2-dimensional subspaces of C4. It is
given by the vanishing of the ideal I = 〈p12p34 − p13p24 + p14p23〉 in the polynomial ring on
Plücker variables. A toric degeneration of Gr(2,C4) is given by the family It = 〈p12p34 −
p13p24 + tp14p23〉 for t ∈ C. Setting t = 1 we obtain Gr(2,C4), and setting t = 0 we get the
toric variety defined by the vanishing of I0 = 〈p12p34 − p13p24〉.

The study of toric degenerations has various applications in pure and applied mathematics,
for example in mirror symmetry and statistics. Tailored to the variety of interest, it is a great
challenge to decide which toric degeneration has the desired properties. The task is therefore
to study and compare all possible constructions. In this context, varieties from representation
theory can be thought of as a fertile ground to develop different techniques and test for
their fitness. Three main fields intersect here: representation theory, tropical geometry and
the theory of cluster algebras. All three can be applied to these varieties and yield toric
degenerations with the associated combinatorial data encoding geometric properties.

One can think about the combinatorics appearing in this setting (e.g. cones, polytopes,
semi-groups) as a shadow of a deeper connection between the theories. The aim is to un-
derstand this connection and develop a global framework into which all three settings can be
embedded. In the process of doing so, this thesis is concerned with understanding first special
cases to obtain an intuition for the global picture.
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8 CHAPTER 1. INTRODUCTION

1.1 Background and Motivation

We explain in more detail the constructions of toric degenerations that are in focus. The
first is the framework of birational sequences by Fang, Fourier and Littelmann introduced
in [20], see §1.1.1. This work has its origin in representation theory or Lie theory. Second, we
consider toric degenerations arising in tropical geometry by tropicalizing projective varieties,
summarized in §1.1.2. For background on this topic we refer to the textbook by Maclagan and
Sturmfels [53]. The third context in which toric degenerations arise that is of great interest to
us is the theory of cluster algebras introduced by Fomin and Zelevinsky [26] with constructions
of toric degenerations due to Gross, Hacking, Keel and Kontsevich in [37]. We summarize it
briefly in §1.1.3.

In all three settings the notion of Newton-Okounkov body appears. Let X be a projective
variety and C[X] =: A its homogeneous coordinate ring. For a valuation v : A\{0} → ZN (see
Definition 7), by S(A, v) we denote the value semi-group (the image of the valuation). The
Newton-Okounkov cone is the closure of the convex hull of S(A, v) ∪ {0}. After intersecting
this cone with a particular hyperplane one obtains a convex body, called Newton-Okounkov
body. These objects have been introduced in a series of papers by different authors ( [58], [50],
[44], [2]) as a far generalization of Newton polytopes to study the asymptotics of line bundles
on X. If S(A, v) is finitely generated, the Newton-Okounkov body is a polytope and there
exists a flat degeneration of X into a toric variety Y . The Newton-Okounkov body in this
setting is the polytope associated to the normalization of Y .

1.1.1 Birational sequences

In [20] Fang, Fourier and Littelmann introduce the notion of a birational sequence. They work
with partial flag varieties and spherical varieties associated to a connected complex reductive
algebraic group G. For simplicity we explain the case of flag varieties here. Fixing Borel
subgroup B ⊂ G and a maximal torus T ⊂ B, let R+ be the set of positive roots for G and
N the cardinality of R+. The main idea is to use the representation theory of G to obtain
coordinates on G/B such that C(G/B) ∼= C(x1, . . . , xN ). On the right hand side by choosing
a monomial order (resp. a total order on ZN ) one can define lowest-term valuations in a
straight forward way (more details in §3.2.1). This idea is used frequently, we encounter it
again when considering valuations constructed using cluster algebra structures.

To every positive root β ∈ R+ there exists a one-parameter root subgroup U−β ⊂ U−,
where U− is the unipotent radical of the opposite Borel subgroup B− ⊂ G.

Definition 1. A birational sequence is a sequence of positive roots S = (β1, . . . , βN ) such
that the multiplication map U−β1 × · · · × U−βN → U− is a birational morphism.

In particular, as U−β1×· · ·×U−βN ∼= AN , a birational sequence yields C(G/B) ∼= C(U−) ∼=
C(x1, . . . , xN ). Fixing a total order ≺ on ZN , they construct a valuation vS on the ring of U -
invariant functions on G that restricts to the homogeneous coordinate ring of the flag variety
G/B. Further, they study the associated Newton-Okounkov body. Their methods generalize
constructions in representation theory (Lie theory) and use ideas from PBW-filtrations. For
example, consider Sn the Weyl group of SLn and a reduced expression w0 of the longest
word w0 ∈ Sn. Choosing the birational sequence consisting of the simple roots associated to
w0 and the reverse lexicographic order on ZN , they recover the toric degeneration of SLn/B
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by Gonciulea and Lakshmibai [34] and the Gelfand-Tsetlin polytope [29]. This degeneration
was further studied by Kogan and Miller in [49]. Generalizing to arbitrary flag varieties
and arbitrary reduced expressions of w0, the degenerations by Caldero [13] and Alexeev-
Brion [1] are recovered. They give degenerations of flag varieties to toric varieties associated
to string polytopes introduced by Littelmann [52] and Berenstein-Zelevinsky [5]. The string
polytopes parametrize elements of Lusztig’s dual canonical basis. In [43] Kaveh showed how
string polytopes are realized as Newton-Okounkov bodies. Another well-studied basis for G-
representations (and so for the homogeneous coordinate rings of flag varieties) was introduced
in a series of papers by Feigin, Fourier and Littelmann ( [23] and [24]), generalizing Feigin’s
work [22]. This basis is parametrized by the Feigin-Fourier-Littelmann-Vinberg polytope. The
polytope exists in types A and C, and its lattice points parametrize the above mentioned
basis of G-representations. Analogously to the case of string polytopes, FFLV-polytopes are
realizable as Newton-Okounkov bodies as shown by Kiritschenko [47]. The FFLV-degeneration
can also be recovered in the framework of [20], by choosing the birational sequence to consist
of all postive roots in a particular good ordering (see [20]).

One starting point for this thesis was to answer the following question:

Question 1. Does the framework of birational sequences extend beyond known toric degen-
erations in representation theory?

To make this question more precise let us briefly introduce how toric degenrations arise
from tropical geometry and cluster algebras.

1.1.2 Tropical Geometry

Tropical geometry is a relatively new field at the intersection of algebraic geometry and polyhe-
dral geometry. We are mostly interested in the tropicalization of complex projective varieties,
which essentially means studying the algebraic variety over the tropical semiring instead of
over C. The tropical semiring is R∪{−∞} with multiplication in R being replaced by addition
and addition in R being replaced by taking the minimum.

In this sense, the tropicalization of a projective variety X = V (I) ⊂ Pn−1, denoted
trop(X) ⊂ Rn, is the support of a rational polyhedral complex of dimension dimX (see [53,
Theorem 3.3.5]). It can be interpreted as a combinatorial shadow of its algebraic counter-
part X. This computational approach to tropical geometry is closely related to commuative
algebra and Gröbner theory. In fact, trop(X) is contained in the Gröbner fan associated to
X = V (I), i.e. every cone C ⊂ trop(X) has an associated (monomial-free) initial ideal inC(I),
a deformation of the ideal I defining X. Using Gröbner theory, every cone C ⊂ trop(X) yields
a flat degeneration of X into V (inC(I)). In particular, if inC(I) is a binomial prime ideal this
yields a toric degeneration of X. In this case C is called a maximal prime cone of trop(X).

The tropicalization of Gr(2,Cn) has been studied in [64] by Speyer and Sturmfels. They
show that trop(Gr(2,Cn)) is parametrized by trivalent trees with n leaves, i.e. to every maxi-
mal cone they associate a trivalent tree that encodes the initial ideal corresponding to the cone.
Further, they prove that every inital ideal coming from a maximal cone in trop(Gr(2,Cn)) is
prime, hence yields a toric degeneration of Gr(2,Cn). This enables us to formulate a more
precise version of Question 1 in this case:

Question 2. Can we find a birational sequence for Gr(2,Cn) corresponding to every maximal
cone of trop(Gr(2,Cn))?
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Besides Gr(2,Cn) very little is known about the tropicalization of (partial) flag varieties
and more generally spherical varieties. The cases of Gr(3,C6) and Gr(3,C7) were computed
in [39] (see also [64]) and more conceptually Mohammadi and Shaw study trop(Gr(3,Cn))
in [57].

The tropicalization of a variety X is closely related to valuations on its homogeneous
coordinate ring C[X] as studied in [45] by Kaveh and Manon. They associate a full-rank
valuation to every maximal prime cone C in trop(X). They further introduce the notion
of Khovanskii basis, a set of algebra generators for C[X], whose images under the valuation
generate the value semi-group. Kaveh and Manon show, that the existance of a maximal prime
cone in the tropicalization is equivalent to the existance of a finite Khovanksii basis for the
associated valuation. This further implies that the corresponding Newton-Okounkov body is
a polytope and they show how it can be computed from C.

From a representation theoretic point of view the full flag variety F`n is generally an
object of great interest. Inspired by [45] and keen on applying their methods this lead us to
the question:

Question 3. What is the tropicalization of F`n? Can it be computed in small cases, can
we find finite Khovanskii bases from it, and if so are the associated Newton-Okounkov bodies
related to those from birational sequences?

1.1.3 Cluster algebras

Cluster algebras were introduced in [26] by Fomin and Zelevisnky and quickly grew to become
a research area on their own. They are commutative rings endowed with seeds (maximal sets of
algebraically independent generators) related by mutation (local transformations exchanging
one seed by another). At their origin they are closely related to the representation theory of
finite dimensional algebras, but also many objects related to algebraic groups have a cluster
structure. For example, the homogeneous coordinate ring of Grassmannians (see [26], [63]),
double Bruhat cells (see [4]), (partial) flag varieties (see [28]) or Richardson varieties (see [51]).

A geometric appraoch to cluster algebras was introduced by Fock and Goncharov in [25].
In this setting they work with cluster varieties, schemes glued from algebraic tori (one for
every seed) with gluing given by the birational transformations induced by mutation. They
come in two flavours, A- and X -cluster varieties, one being the mirror dual to the other as
developed by Gross, Hacking, Keel and Kontsevich in [37]. Among other things, they define
ϑ-bases for cluster algebras and toric degenerations of (partial compactifications of) cluster
varieties. The X -cluster variety comes endowed with a Laurent polynomial, the superpotential,
whose tropicalization gives a polyhedral cone and a polytope as a slice of this cone. The
superpotential polytope is the polytope associated to the special fibre of the toric degeneration.

A similar approach for Grassmannians can be found in recent work of Rietsch and Williams
[62]. They consider the A- and X -cluster varieties contained in the Grassmannian and combine
ideas from Newton-Okounkov bodies with cluster duality and mirror symmetry. Using X -
cluster coordinates as coordinates for the Grassmannian they construct lowest term valuations
on the homogeneous coordinate ring for every seed. On the A-cluster variety they consider a
potential function that was defined by Marsh and Rietsch in [55]. Its tropicalization yields a
polytope. They show that the Newton-Okounkov body associated with the valuation is the
polytope given by the potential. In particular, they obtain explicit inequalities describing the
Newton-Okounkov polytope.
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Figure 1.1: The landscape of toric degenerations subject in this thesis.

Question 4. Can the toric degenerations of F`n (resp. Gr(k,Cn)) arising from tropicalizing
a superpotential be recovered as toric degenerations from the tropicalization of F`n (resp.
Gr(k,Cn)) or birational sequences?

A first hint towards a positive answer to this question for F`n was given by Magee in
[54]. He recovers the Gelfand-Tsetlin polytope as a superpotential polytope in a particular
seed. Further results in this direction are obtained by Genz-Koshevoy-Schumann in [30] and
[31], who generalize Magee’s result to flag varieties of simple, simply connected, simply laced
algebraic groups. They recover the classical string and Lusztig parametrizations from the
superpotential.

1.2 Results

We summarize below the results in this thesis and explain which of the above questions could
be answered in which generality. In Chapter 2 we recall the necessary general background
on the representation theory of SLn(C), tropical geometry, valuations and cluster algebras.
We explain quasi-valuations with weighting matrices and prove a general result relating ar-
bitrary full-rank valuations with such in §2.4. Chapter 3 studies different constructions of
toric degenerations of the Grassmannians. More specifically, in §3.2 the class of iterated bi-
rational sequences is defined. As an application one obtains for Gr(2,Cn) a precise relation
between birational sequences and the tropical Grassmannian. In §3.3 the connection between
the tropical Grassmannian and the cluster combinatorics given by plabic graphs is studied
for Gr(2,Cn) and Gr(3,C6). The last part of the thesis is Chapter 4, which focusses on flag
and Schubert varieties in type A. In §4.2 we show how string polytopes arise from the [37]-
superpotential for flag and Schubert varieties in type A. Then in §4.3 we compute the tropical
flag varieties trop(F`4) and trop(F`5) together with the Newton-Okounkov bodies obtained
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from the Kaveh-Manon construction. The resulting toric degenerations are compared with
those from string polytopes and the FFLV polytope.

1.2.1 Valuations and their weighting matrices

In §2.4 we study (quasi-)valuations with weighting matrices (see Definition 13) as introduced
in [45]. Our leading example is A = C[X] the homogeneous coordinate ring of a projective
variety. An embedding of X ↪→ Pn−1 yields a presentation A = C[x1, . . . , xn]/I. Given a
full-rank valuation v : A \ {0} → Zd we define the weighting matrix Mv ∈ Zn×d of v (see
Definiton 14). Given some additional technical assumptions (that are fulfilled when dealing
with the homogeneous coordinate ring of a projective variety) we obtain the following key-
theorem:

Theorem 1. Under the assumptions described above, if inMv(I) (see Definiton 12) is prime,
then the value semigroup S(A, v) is generated by the images v(x̄i) for x̄i ∈ A. Moreover, the
Newton-Okounkov body is the convex hull of these images and the x̄i form a Khovanskii basis.

A precise formulation is Theorem 10 in §2.4. It is in fact a very powerful tool: many of
the following results are applications or direct consequences of Theorem 1. The key idea is
to use higher-dimensional Gröbner theory and methods of Kaveh-Manon in [45] for arbitrary
full-rank valuations. In particular, this links any toric degeneration induced by a valuation
(independent from how the valuation is obtained, e.g. using birational sequences or cluster
algebras) to those from tropical geometry.

1.2.2 Toric degenerations of Grassmannians

Consider the Grassmannian Gr(k,Cn) embedded in the projective space P(
∧k Cn) via the

Plücker embedding. We define in Definition 28 a new class of birational sequences for Grass-
mannians called iterated sequences. More specifically, for Gr(2,Cn), in Algorithm 3 we re-
veal their close connection to labelled trivalent trees parametrizing maximal prime cones of
trop(Gr(2,Cn)). Let S be an iterated sequence for Gr(2,Cn) and TS the trivalent tree that is
the output of the algorithm. We consider a valuation vS (see Definition 29) associated with
S and the weighting matrix it defines. In a key-proposition (Proposition 2) we show that
the initial ideal of the Plücker ideal I2,n with respect to the weighting matrix coincides with
the initial ideal with respect to the cone defined by TS . As the latter is prime (see [64]) this
enables us to apply Theorem 1 to obtain:

Theorem 2. (i) For every iterated sequence S for Gr(2,Cn) the value semigroup of the
associated valuation is generated by the images of Plücker coordinates. That is, the
Plücker coordinates form a Khovanskii basis.

(ii) For every iterated sequence S for Gr(2,Cn) there exists a maximal prime cone CS in
trop(Gr(2,Cn)) such that the associated toric degenerations of Gr(2,Cn) are isomorphic.

(iii) For every maximal prime cone C in trop(Gr(2,Cn)) there exists an iterated sequence
SC , such that the induced toric degenerations of Gr(2,Cn) are isomorphic.

A more precise formulation that implies all of the above results can be found in Theorem 11.
Note that this gives an answer to Question 2 for Gr(2,Cn).
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Having in mind Question 4 we would like to combine techniques from the tropical Grass-
mannian with the cluster algebra structure on C[Gr(k,Cn)]. Similar ideas are discussed in [65],
where they show how the two settings are related combinatorially.

In §3.3 we apply Theorem 1 to the valuations defined by Rietsch-Williams [62] for every
seed of the cluster algebra C[Gr(k,Cn)] mentioned above. More precisely, we focus on seeds
that are encoded by plabic graphs (introduced by Postnikov [60]). Here the A-cluster variables
consist of only Plücker coordinates. Let vG be the valuation associated with a plabic graph
G and MG the weighting matrix of vG . By Ik,n we denote the Plücker ideal describing the
Grassmannians with respect to the Plücker embedding (see §3.1). Summarizing Proposition 4,
Theorem 12 and Corollary 6 we obtain:

Theorem 3. If the initial ideal inMG (Ik,n) is prime, then the toric degeneration obtained from
the valuation vG can be realized as a degeneration from the tropicalization of Gr(k,Cn). In
this case, the associated Newton-Okounkov body is the convex hull of the valuation images of
Plücker coordinates and the Plücker coordinates form a Khovanskii basis.

Moreover, if the Newton-Okounkov body of vG is not integral (see [62, §8]), then the initial
ideal inMG (Ik,n) is not prime.

We analyze Gr(3,C6) computationally and study in more detail Gr(2,Cn) in §3.3.31. In

the latter case, we define a weight vector wG ∈ R(n2) for every plabic graph G and show that it
lies in the relative interior of a maximal prime cone of trop(Gr(2,Cn)). We use the bijection
of labelled triangulations of a disk with n marked points with plabic graphs for Gr(2,Cn)
(see [48, Algorithm 12.1]). Let T be the labelled trivalent tree that is the dual graph to the
triangulation, which is mapped to G under the bijection. Consider a weight vector wT in
the relative interior of the maximal cone C ⊂ trop(Gr(2,Cn)) with associated tree T . The
following theorem shows how the combinatorial bijections in this case have in fact a deeper
meaning and lead us to an answer of Question 4 for Gr(2,Cn).

Theorem 4. Let G be a plabic graph for Gr(2,Cn) and T the corresponding labelled trivalent
tree. Then the associated initial ideals inwG (I2,n) and inwT (I2,n) are equal.

In combination with Theorem 3 this proves the expectation of Kaveh-Manon (see [45, page
6]) that the construction of Rietsch-Williams (based on the cluster structure) agrees essentially
with theirs (based on the tropicalization). Further, in combination with Theorem 11 we
now have a complete picture for toric degenerations of Gr(2,Cn): (up to isomorphism) the
constructions using birational sequences, the tropical Grassmannian, and the cluster structure
yield the same toric varieties as flat degenerations of Gr(2,Cn).

1.2.3 Toric degenerations of flag and Schubert varieties

In §4.3 and §4.2 we consider the variety F`n of full flags {0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = Cn
of vector subspaces of Cn with dimC(Vi) = i. In view of Question 4 we want to understand if
Newton-Okounkov bodies from birational sequences in [20] are related to the cluster structure
on flag varieties in §4.22. As a starting point we decided to study the special case of string
polytopes. In [32] Gleizer and Postnikov use pseudoline arrangements (see §4.2 Defintion 42)
associated to reduced expressions of w0 ∈ Sn and rigorous paths in these to paramatrize the

1Based on joint work with Xin Fang, Ghislain Fourier, Milena Hering and Martina Lanini in [8].
2Based on joint work with Ghislain Fourier.
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inequalities for string cones Cw0
⊂ RN . We extend their result by adding weight inequalities

encoded combinatorially in the pseaudoline arrangement and obtain the weighted string cones
Cw0
⊂ RN+n−1 as defined in [52]. Intersecting Cw0

with the preimage of a weight λ ∈ Rn−1

of an appropriate projection π : RN+n−1 → Rn−1 yields the string polytope π−1(λ) ∩ Cw0
.

Generalizing to arbitrary w ∈ Sn and following Caldero [14] we obtain similarly the string
cone, weighted string cone and string polytope for the Schubert variety X(w) ⊂ F`n.

We introduce a second polyhedral cone Sw0
⊂ RN associated to a pseudoline arrangement

in a dual way: the variables are associated to the faces of the diagram as opposed to the
vertices in case of the string cone. From additional weight inequalities and a second projection
τ : RN+n−1 → Rn−1 we get a weighted cone Sw0

and polytopes τ−1(λ) ∩ Sw0
for λ ∈ Rn−1.

As in the case of string cones, we obtain these also for arbitrary w ∈ Sn. For simplicity we
denote for now the corresponding projection also by π and τ . The first combinatorial result
of our study is the following (see Theorem 17).

Theorem 5. For every w ∈ Sn, the two cones Cw and Sw are unimodularly equivalent and
the lattice-preserving linear map is given by the duality of faces and vertices in the pseudoline
arrangement. Moreover, this linear map restricts to linear bijections between the polytopes
π−1(λ) ∩ Cw ∼= τ−1(λ) ∩ Sw and the cones Sw ∼= Cw.

The cone Sw0
appears in the framework of mirror symmetry for cluster varieties [37].

Recall that F`n = SLn/B for the Borel subgroup of upper triangular matrices B. Denote by
B− ⊂ SLn the Borel subgroup of lower triangular matrices and by U ⊂ B (resp. U− ⊂ B−)
the unipotent radical with all diagonal entries being 1. The double Bruhat cell Ge,w0 =
B− ∩ Bw0B is an A-cluster variety (see [4]) and can be identified with an open subset of
Bw0B/U . By [52] the weighted string cone parametrizes a basis of C[Bw0B/U ]. Let X be
the mirror dual of the A-cluster variety Ge,w0 and let s0 = sŵ0

be the seed of the cluster
algebra C[Ge,w0 ] corresponding to the reduced expression ŵ0 = s1 s2s1 · · · sn−1 · · · s2s1. Let
W be the superpotential defined by the sum of the ϑ-functions for every frozen variable in s0

as introduced in [37]. Then W trop denotes the tropicalization of the superpotential. Magee
has shown in [54] (see also Goncharov-Shen in [33]) that

Sŵ0
= {x ∈ RN+n−1 |W trop|Xs0 (x) ≥ 0} =: Ξs0 .

We show that the mutation of the pseudoline arrangement and hence of the cone Sw0
, is

compatible with the mutation of the superpotential [36] by introducing mutation of the rig-
orous paths defining the cone. We obtain the following (see also [30], where Genz-Koshevoy-
Schumann obtain a similar result in the context of crystal graphs):

Theorem 6. Let w0 be an arbitrary reduced expression of w0 ∈ Sn and sw0
be the seed

corresponding to the pseudoline arrangement, Xsw0
the toric chart of the seed sw0

. Then

Sw0
= {x ∈ RN+n−1 |W trop|Xsw0

(x) ≥ 0} =: Ξsw0
,

the polyhedral cone defined by the tropicalization of W expressed in the seed sw0
.

Consider w ∈ Sn arbitrary and w a reduced expression of w. Let W be as above and
consider its restriction resw(W |Xsw0

) to the mirror dual of the A-cluster variety Ge,w. Let sw
be the corresponding seed in the cluster algebra (see Definition 43). Then the tropicalization
of the restriction yields again a cone Ξsw . The last result of this section establishes an answer
to Question 4 for Schubert varieties.
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Theorem 7. Let w ∈ Sn, and fix w0 = wsi`(w)+1
. . . siN a reduced expression of w0 ∈ Sn. Let

sw resp. sw0
be the corresponding seeds. Then Sw is the cone Ξsw defined by the tropicalization

of the restricted superpotential resw(W |Xsw0
).

In view of Question 3 we study in §4.33 the tropicalization of the flag variety. Consider
therefore the natural embeddeding of F`n in a product of Grassmannians using the Plücker
coordinates. We denote by In the defining ideal of F`n with respect to this embedding. We
produce toric degenerations of F`n as Gröbner degenerations coming from the initial ideals
associated to the maximal cones of trop(F`n). For the case of maximal cones with non-prime
associated initial ideal we suggest a procedure (see §4.3 Procedure 7) of how to recover prime
cones from reembedding the variety. We successfully apply it to F`4.

The following is our main results on the tropicalization of the flag varieties F`4 and F`5.
More detailed formulations can be found in §4.3 Theorem 22, Theorem 23, and Proposition 20.

Theorem 8. The tropical variety trop(F`4) ⊂ R14/R3 is a 6-dimensional fan with 78 maximal
cones. From prime cones we obtain four non-isomorphic toric degenerations. After applying
Procedure 7 we obtain at least two additional non-isomorphic toric degenerations.

The tropical variety trop(F`5) ⊂ R30/R4 is a 10-dimensional fan with 69780 maximal
cones. From prime cones we obtain 180 non-isomorphic toric degenerations.

In view of Question 3 and following [45], we further compute the Newton-Okounkov poly-
topes associated to maximal prime cones. These are the polytopes associated to the normal-
izations of the toric varieties we obtain. We compare these with certain Newton-Okounkov
polytopes arising in the setting of [20], more precisely to string polytopes and the FFLV
polytope.

Theorem 9. For F`4 there is at least one new toric degeneration arising from prime cones of
trop(F`4) in comparison to those obtained from string polytopes and the FFLV polytope.

For F`5 there are at least 168 new toric degenerations arising from prime cones of trop(F`5)
in comparison to those obtained from string polytopes and the FFLV polytope.

Applying Theorem 1 to valuations for string polytopes (this is a particular case of valua-
tions using birational sequences) we further obtain a surprising connection to the Minkowski
property of string polytopes (see Defintion 64) in Theorem 24 and Corollary 15.

3Based on joint work with Sara Lamboglia, Kalina Mincheva and Fatemeh Mohammdi in [9].



16 CHAPTER 1. INTRODUCTION

Acknowledgements. Firstly, I would like to thank my family, Olaf, Britta and Berit,
and my friends. They stood with me through stressful periods and endured my mood swings
and social incompetence that were the side effects of preparing a PhD-thesis.

I would like to thank my collaborators on the projects that are part of this thesis. Without
them, obviously, most of the results would not be in this thesis today. They are
• Xin Fang, Ghislain Fourier, Milena Hering and Martina Lanini for §3.3.3,
• Ghislain Fourier for §4.2, and
• Sara Lamboglia, Kalina Mincheva and Fatemeh Mohammadi for §4.3.

I am deeply grateful to Bernd Sturmfels and Ghislain Fourier for their support and advice
throughout my PhD. Further, I would like to thank Bernd for introducing me to Sara, Kalina
and Fatemeh and suggesting the problems solved in §4.3.

I was incredibly lucky to be welcomed in the (extended) working group of Peter Littelmann
in Cologne, my math-family consisting of (among others): Xin, Bea Schumann, Jacinta Torres,
Ghislain, Michael Ehrig, Valentin Rappel, Christian Steinert, Oksana Yakimova and, of course,
Peter.

As this thesis covers a range of topics (including some quite far from my mathematical
background) I am grateful to my math-friends who introduced me to these topics and broadend
my mathematical horizon. These include Fatemeh and Sara, who explained to me tropical
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gan, Arkady Berenstein, Alex Küronya, Silvia Sabatini, Markus Reineke, Lauren Williams,
Gleb Koshevoy.

Lastly and most importantly, I want to thank deeply my advisor Peter: without you none
of this would have been possible. I am extremely grateful for all the opportunities and support
that you offered me; for being there when I needed advice and also giving me the freedom to
travel to conferences and choose my own projects.

4supported by QM2 through the Institutional Strategy of the University of Cologne (ZUK 81/1)



Chapter 2

General Theory

2.1 Representation Theory of SLn(C)

In this section we recall basic notions of the representation theory of SLn(C) (or SLn for
short) that we need throughout this thesis.

We fix as Borel subgroup the upper triangular matrices B ⊂ SLn and diagonal matrices
as maximal torus T ⊂ B. We denote the Borel subgroup of lower triangulat matrices B− (it
is also called the opposite Borel subgroup of B). Inside of B (resp. B−) we have the subgroup
of unipotent matrices U (resp. U−) with all diagonal entries being 1. They are the unipotent
radical of B (resp. B−).

Consider the Lie algebra Lie(SLn) = sln = {n × n-matrices with trace zero}. The Lie
bracket [·, ·] : sln × sln → sln is given by the commutator

[A,B] := AB −BA.

We fix the Cartan decomposition sln = n− ⊕ h ⊕ n+ with h diagonal matrices as Cartan
(maximal abelian Lie-subalgebra) and n+ (resp. n−) upper (resp. lower) triangular matrices in
sln. Note that with these choices we have Lie(B) = h⊕n+ = b, Lie(T ) = h and n− = Lie(U−).
Let us denote the root system of SLn by R ⊂ Rn. It is the root system of type An−1.
Denoting the standard basis of Rn by {εi}i=1,...,n we fix the the simple roots of R to be
αi = εi − εi+1 for i = 1, . . . , n − 1. They generate the root lattice. The positive roots are
denoted R+ = {β ∈ R | β > 0}. They are of form αi,j := αi + · · · + αj for i ≤ j < n. With
our choice of simple roots we have αi,j = εi − εj+1. The number of positive roots is denoted

by N = n(n−1)
2 .

For a positive root β = αi,j let fβ ∈ n− be the root vector of weight −β. In other words,
fβ is the lower triangular n × n-matrix with all entries being zero besides the (i + 1, j)’th
entry, which is 1. Similarly we have eβ ∈ n+ a root vector for β of weight β. With our choice
of b it is the transpose of fβ. We define a third element in sln associated to β ∈ R+, namely
hβ = [eβ, fβ] ∈ h.

For the weight lattice we choose the notation Λ with generators the fundamental weights
being ω1, . . . , ωn−1.

Let Λ+ denote the dominant integral weights in Λ, i.e. those λ =
∑n−1

i=1 aiωi with ai ∈ Z≥0.
Dominant integral weights are the lattice points in the dominant Weyl chamber, the positive
span of the fundamental weights. By Λ++ we denote the set of regular dominant weights, i.e.
those λ =

∑n−1
i=1 aiωi with ai ∈ Z>0.

17
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The roots and weights live in the same space Rn, to which we have associated the basis
{εi}i. We can express ωi as follows in this basis

nωi =
i∑

k=1

(n− i+ 1)εk − 2iεi+1 −
n∑

k=i+2

iεk.

Then 1
2(α1 + · · · + αn−1) = (ω1 + · · · + ωn−1) =: ρ ∈ λ++ is the smallest regular dominant

weight.

For every λ ∈ Λ+ there is a (finite-dimensional) irreducible representation of sln of highest
weight λ, denote it by V (λ). It is cyclically generated by a highest weight vector vλ ∈ V (λ)
(unique up to scaling) over U(n−), the universal enveloping algebra of n− defined as follows.

For g any Lie algebra, U(g) is a quotient of the tensor algebra T (g) =
⊕

k≥0 g
⊗k. The ideal

by which we quotient by is generated by relations induced by the Lie bracket, i.e. relations
of form w⊗ v − v ⊗w− [w, v] for v, w ∈ g. The PBW-basis-Theorem states the following: let
{v1, . . . , vd} be a ordered basis of g, then as a vector space U(g) is generated by monomials of
the form

va1
1 va2

2 · · · v
ad−1

d−1 v
ad
d , ai ∈ Z≥0.

As the irreducible highest weight representation V (λ) for λ ∈ P+ are cyclically generated
by vλ over U(n−), we are particularly interested in a PBW-basis for U(n−). This is given, for
example, by fixing an order on all positive roots, e.g. β1, . . . , βN . Then for a chosen highest
weight vector vλ ∈ V (λ) we have

V (λ) = U(n−) · vλ = 〈fm1
β1
· · · fmNβN

· vλ | mi ∈ Z≥0〉C. (2.1.1)

Example 2. We have V (ω1) = Cn and V (ωk) =
∧k Cn. The root operators fαi,j = fi,j ∈ n−

act on Cn with standard basis {ei}i=1,...,n by fi,j · el = δi,lej+1. The highest weight vector vω1

can be chosen as e1. For V (ω2) fix the basis {ek ∧ el | 1 ≤ k < l ≤ n}. Then the action of n−

is given by

fi,j · (ek ∧ el) = fi,j · ek ∧ el + ek ∧ fi,j · el =


ej+1 ∧ el, if k = i,

ek ∧ ej+1, if l = i,

0, otherwise.

We can chose e1 ∧ e2 as the highest weight vector vω2 .

The Weyl group of SLn is the symmetric group Sn generated by the simple transpositions
si = (i, i + 1) for 1 ≤ i < n. By w0 we denote the longest element in Sn. For every w ∈ Sn,
we denote by `(w) the minimal length of w as a word in the generators si. Further, w denotes
a reduced expression

w = si1 · · · si`(w)
.

Such an expression is not unique. For any two reduced expressions of w there is a sequence
of local transformations leading from one to the other. These local transformations are either
swapping orthogonal reflections sisj = sjsi if |i− j| > 1 or exchanging consecutive sisi+1si =
si+1sisi+1.
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The symmetric group acts on the weight lattice as follows. Consider λ ∈ Λ and si ∈ Sn.
Then si(λ) ∈ Λ is obtained from λ by reflection on the hyperplane Hαi perpendicular to the
simple root αi = εi − εi+1.

Fix w ∈ Sn and λ ∈ Λ+. Then the weight space of weight w(λ) in V (λ), denoted V (λ)w(λ),
is called extremal and it is one-dimensional.

Definition 2. For w ∈ Sn and λ ∈ Λ+ we fix a generator vwλ ∈ V (λ)wλ we consider U(b) ·
vwλ =: Vw(λ). This is a b-module called the Demazure module.

Note that though Vw(λ) is a b-submodule of V (λ), it is not an sln-module. Let w =
si1 · · · si`(w)

be a reduced expression of w. Then for any λ ∈ Λ+ similarly to the PBW-basis
theorem we have that

{fmi1αi1
· · · f

mi`(w)
αi`(w)

· vλ ∈ V (λ) | mij ≥ 0} (2.1.2)

forms a spanning set of Vw(λ) as a vector space. In particular, if w = w0 then Vw0(λ) = V (λ).
For a Demazure module Vw(λ) we denote by Vw(λ)⊥ its orthogonal complement in V (λ)∗.

2.2 Tropical Geometry

In this section we recall basic notions of tropical geometry that we assume throughout the
rest of the thesis. Tropical geometry comes in many flavours, our approach follows closely the
book [53] by Maclagan-Sturmfels and we invite the reader to have a look there for a more
detailed introduction. This approach to tropical geometry is closely related to Gröbner theory.

Definition 3. Let f =
∑
aux

u with u ∈ Zn, au ∈ C be a polynomial in C[x±1
1 , . . . , x±1

n ],
where xu denotes the monomial xu1

1 . . . xunn . The initial form of f with respect to a fixed
weight vector w ∈ Rn is given by

inw(f) :=
∑

wT ·u is minimal,
au 6=0

aux
u. (2.2.1)

This definition can be extended to ideals. For an ideal I ⊂ C[x±1
1 , . . . , x±1

n ] we have initial
ideal with respect to w ∈ Rn

inw(I) := 〈inw(f) | f ∈ I〉. (2.2.2)

Example 3. Consider the ideal I = 〈x2
1 + x2, x1 − x2〉 ⊂ C[x1, x2] and w = (1, 0). Then

inw(x2
1 + x2) = x2 and inw(x1 − x2) = −x2. In particular, 〈inw(x2

1 + x2), inw(x1 − x2)〉 =
〈x2〉 ⊂ C[x1, x2]. But we also have x2

1 + x1 = (x2
1 + x2) + (x1 − x2) ∈ I, so by definition

inw(x2
1 + x1) = x1 ∈ inw(I). We deduce

I = 〈f1, . . . , fs〉 6⇒ inw(I) = 〈inw(f1), . . . , inw(fs)〉. (2.2.3)

By [18, Theorem 15.17], there exists a flat family over A1 whose fiber over t 6= 0 is
isomorphic to V (I) and whose fiber over t = 0 is isomorphic to V (inw(I)). For t the coordinate
in A1 it is given by the following family of ideals

Ĩt :=
〈
t−minu{w·u}f(tw1x1, . . . , t

wnxn)
∣∣∣f =

∑
aux

u ∈ I
〉
⊂ C[t, x±1

1 , . . . , x±1
n ]. (2.2.4)
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More precisely, for a projective variety X = V (I) ⊂ Pn−1, where I ⊂ C[x1, . . . , xn] is a
homogeneous ideal, there is a flat degeneration over A1 with generic fibre (i.e. fibre over t 6= 0)
isomorphic to V (I) and special fibre (i.e. fibre over t = 0) V (inw(I)). Let Is denote the ideal
Ĩt|t=s. For s 6= 0 the isomorphism V (Is) ∼= V (I1) = V (I) is given by a ring automorphism of
C[x1, . . . , xn] sending Is to I. If inw(I) is toric, i.e. a binomial prime ideal, then V (inw(I)) is
a toric variety (see e.g. [53, Lemma 2.4.14]).

In order to look for these toric degenerations we study the tropicalization of V (I).

Definition 4. Let f =
∑
aux

u ∈ C[x±1
1 , . . . , x±1

n ]. The tropicalization of f is the function
f trop : Rn → R given by

f trop(w) := min{w · u | u ∈ Zn and au 6= 0}.

If w − v = m · 1, for some v,w ∈ Rn, 1 = (1, . . . , 1) ∈ Rn and m ∈ R, we have that the
minimum in f trop(w) and f trop(v) is achieved for the same u ∈ Zn with au 6= 0.

Definition 5. ( [53, Definition 3.1.1 and Definition 3.2.1]) Let f =
∑
aux

u ∈ C[x±1
1 , . . . , x±1

n ]
and V (f) the associated hypersurface in the algebraic torus Tn = (C∗)n. Then the tropical
hypersurface of f is

trop(V (f)) :=

w ∈ Rn
∣∣∣∣∣∣the minimum in f trop(w)

is achieved at least twice

 .

Let I be an ideal in C[x±1
1 , . . . , x±1

n ]. The tropicalization of the variety V (I) ⊂ Tn is defined
as

trop(V (I)) :=
⋂
f∈I

trop(V (f)) ⊂ Rn.

For a projective variety V (I) ⊂ Pn−1 with I a homogeneous ideal in C[x1, . . . , xn] we con-
sider the ideal Î := IC[x±1

1 , . . . , x±1
n ]. Then V (Î) = V (I)∩Tn. We consider the tropicalization

of projective varieties defined as trop(V (I)) := trop(V (Î)).
By the Fundamental Theorem of Tropical Geometry [53, Theorem 3.2.3] we have

trop(V (I)) = {w ∈ Rn | inw(I) is monomial-free} .

Further, the Structure Theorem [53, Theorem 3.3.5] tells us that if X ⊂ Tn is an irreducible
d-dimensional variety, then trop(X) is the support of a pure rational d-dimensional polyhedral
complex, connected in codimension 1. We do not recall notions from polyhedral geometry but
refer the interested reader to [53, §2.3]. To us, most importantly, the structure theorem implies
that we can associate a fan-structure with trop(V (I)). We choose the fan structure in such
a way that trop(V (I)) is a subfan of the Gröbner fan of I. If w,v lie in the relative interior
of a cone C (also denoted C◦) in the Gröbner fan, then inw(I) = inv(I). Adopting this fan
structure for trop(V (I)) we therefore use the notation inC(I) := inw(I) for some w ∈ C◦.

For an ideal I ⊂ C[x±1
1 , . . . , x±1

n ] there may exist some w ∈ Rn with inw(I) = I. For
example, if I is homogeneous this is always the case for 1 := (1, . . . , 1) ∈ Rn. The linear
subspace LI := {w ∈ Rn | inw(I) = I} ⊂ trop(V (I)) is called the lineality space of I.

In §4.3 we tropicalize the flag variety (see §4.1). Although the flag variety is a projec-
tive variety and hence, by the above we have a recipe to tropicalize it, for computational
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convenience we choose an embedding into a product of projective spaces (instead of just one
projective space). The procedure of tropicalization can also be done in this setting, replac-
ing C[x±1

1 , . . . , x±1
n ] by S, the total coordinate ring (see [16, page 207] for a definition) of

Pk1 × · · ·×Pks . Then S has a Zs-grading given by deg : Zn → Zs, where k1 + · · ·+ ks = n− 1.
An ideal I ⊂ S defining an irreducible subvariety V (I) of Pk1 × · · ·×Pks is homogeneous with
respect to this grading. The tropicalization of V (I) is contained in Rk1+...+ks+s/H, where H
is an s-dimensional linear space spanned by the rows of a matrix D defining deg. Similarly to
the projective case, if V (I) is a d-dimensional irreducible subvariety of Pk1 × · · · × Pks , then
trop(V (I)) is the support of a fan, which is the quotient by H of a rational (d+s)-dimensional
subfan F of the Gröbner fan of I. Here the Krull dimension of S/I is d+ s.

In the following we always consider trop(V (I)) with the fan structure defined above.

Remark 1. A detailed definition of the tropicalization of a general toric variety XΣ and of its
subvarieties can be found in [53, Chapter 6]. Note that we only consider the tropicalization
of the intersection of V (I) with the torus of XΣ while in [53, Chapter 6] they introduce a
generalized version of trop(V (I)) which includes the tropicalization of the intersection of V (I)
with each orbit of XΣ.

Another property of trop(V (I)) is that any fan structure on it can be balanced assigning
a positive integer weight to every maximal cell. We do not explain the notion of balancing in
detail and we consider an adapted version of the multiplicity defined in [53, Definition 3.4.3].

Definition 6. Let I ⊂ S be a homogeneous ideal and Σ a fan with support |Σ| = | trop(V (I))|,
such that for every cone C ⊂ Σ the ideal inw(I) is constant for w ∈ C◦. For a maximal
dimensional cone C ⊂ Σ we define the multiplicity as

mult(C) :=
∑
P

mult(P, inC(I)).

Here the sum is taken over the minimal associated primes P of inC(I) that do not contain
monomials (see [18, §3] or [15, §4.7]).

As we have seen, each cone of trop(V (I)) corresponds to an initial ideal which contains no
monomials. We now explain why good candidates for toric degenerations are the initial ideals
corresponding to the relative interior of maximal cones in trop(V (I)). We say a maximal cone
is prime if the corresponding initial ideal inC(I) is a prime ideal.

Lemma 1. Let I ⊂ S be a homogeneous ideal and C a maximal cone of trop(V (I)). If inC(I)
is toric then C has multiplicity one. Moreover, if C has multiplicity one then inC(I) has a
unique toric ideal in its primary decomposition.

Proof. We first prove the lemma for s = 1, i.e. S the homogeneous coordinate ring of Pn−1.
Let I ′ = inC(I)C[x±1

1 , . . . , x±1
n ] and consider V (I ′) ⊂ Tn. Then by [53, Remark 3.4.4] the

multiplicity of a maximal cone C is counting the number of d-dimensional torus orbits whose
union is V (I ′). If inC(I) is toric, then V (I ′) is an irreducible toric variety, hence it has a
unique d-dimensional torus orbit. So C has multiplicity one.

Suppose now C has multiplicity one. Then inC(I) contains one associated prime J , not
containing any monomials. The ideal J is further binomial since it is the ideal of the unique
d-dimensional torus orbit contained in V (I ′).
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When s > 1 and so S is the total coordinate ring of Pk1 × · · · × Pks , the torus is given by
T k1 × · · · × T ks ∼= T k1+···+ks . We may assume that for each i,

T ki = {[1 : a2 : . . . : aki ] ∈ Pki | aj 6= 0 for all j}.

The variables for Pki are denoted by xi,0, . . . , xi,ki for each i. We fix the Laurent polynomial
ring

S′ = C[x±1
1,0, . . . , x

±1
1,k1

, x±1
2,0, . . . , x

±1
2,k2

, . . . , x±1
s,0, . . . , x

±1
s,ks

].

Then consider the ideal I ′ = inC(I)S′ ⊂ S′ and the variety V (I ′) ⊂ T k1+...+ks and the proof
proceeds as before.

Remark 2. From Lemma 1 we conclude the multiplicity being one is a necessary but not
sufficient condition for toric initial ideals. A cone can have multiplicity one but its associated
initial ideal might be neither prime nor binomial. There may be associated primes that contain
monomials in the decomposition of inw(I) and these do not contribute to the multiplicity. We
list examples of such cones in trop(F`5) (for more details see Theorem 23).

Let I be a homogeneous ideal in S such that the Krull dimension of S/I is d. Consider
trop(V (I)) ⊂ Rn/H and the d-dimensional subfan F ⊂ Rn of the Gröbner fan of I with
F/H ∼= trop(V (I)). When V (I) ⊂ Pk1−1 × · · · × Pks−1 the linear space H is spanned by
the rows of the matrix D. In particular, when V (I) ⊂ Pn−1 we have that H is equal to the
span of (1, . . . , 1). We now describe some properties of the toric initial ideals corresponding
to maximal cones of trop(V (I)). Let C be a cone in trop(V (I)) and {w1, . . . ,wd} be d
linearly independent vectors in F generating the maximal cone C ′, such that C ′/H ∼= C. We
can assume that the wi’s have integer entries since F is a rational fan. We define a matrix
associated to C by

WC := [w1, . . . ,wd]
t. (2.2.5)

Consider a sublattice L of Zn and the standard basis e1, . . . , en of Zn. Given ` =
(`1, . . . , `n+1) ∈ L we set `+ =

∑
`i>0 `iei and `− = −

∑
`j<0 `jej . Note that ` = `+ − `−

and `+, `− ∈ Nn+1. We use the same notation as in [16, page 15].

Lemma 2. Let I be a homogeneous ideal in S and C a maximal cone in trop(V (I)). If inC(I)
is toric, then there exists a sublattice L of Zn and constants c` ∈ C∗ with ` ∈ L such that

inC(I) = I(WC) := 〈x`+ − c`x`
− | ` ∈ L〉. (2.2.6)

In particular, L is the kernel of the map f : Zn → Zd defined by the matrix WC . If C has mul-
tiplicity one and inC(I) is not toric, then the unique toric ideal in the primary decomposition
of inC(I) is of the form I(WC).

Proof. Let inC(I) ⊂ S be a toric initial ideal and let C ′ be the corresponding cone in F . The
fan structure is defined on trop(V (I)) so that for every w′,w in the relative interior of C ′ we
have inw′(I) = inC(I) = inw(I). This implies inC(I) is WC-homogeneous with respect to the
Zd-grading on S given by the matrix WC . By [67, Lemma 10.12] there exists an automorphism
φ of S sending xi to λixi for some λi ∈ C, such that the ideal inC(I) is isomorphic to an ideal

IL := 〈x`+ − x`− | ` ∈ L〉.
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Here L is the sublattice of Zn+1 given by the kernel of the map f : Zn+1 → Zd. Applying φ−1

to inC(I) we can write each toric initial ideal as

〈x`+ − c`x`
− | ` ∈ L〉 = I(WC),

for some c` ∈ C∗, L and WC as defined above.
Let C be a cone of multiplicity one and suppose inC(I) is not prime. Then by Lemma 1

there exists a unique toric ideal J in the primary decomposition of inC(I). This toric ideal
J contains inC(I) and we show that it can be expressed as I(WC). The variety V (I) is
considered as a subvariety of Pn−1. As in Lemma 1, the case V (I) ⊂ Pk1 × · · · × Pks can be
treated similarly.

The tropical variety depends only on the intersection of V (I) with the torus, and J is equal
to inC(I)C[x±1

1 , . . . , x±1
n ]. Hence, J is a prime ideal that is homogeneous with respect to WC

so we can proceed as above to show J can be written as 〈x`+ − c`x`
− | ` ∈ L〉 = I(WC).

Remark 3. Note that the lattice L and the ideal I(WC) only depend on the linear space
spanned by the rays of the cone C ′. Hence they are the same for every set of d independent
vectors in C ′ chosen to define WC .

2.3 Valuations

Another construction of toric degenerations can be obtained from valuations as we explain in
this section. We recall basic notions of the theory of Newton-Okounkov bodies as presented
in [44].

We fix a linear order ≺ on the additive abelian group Qr, where r ≤ d.

Definition 7. A map v : A \ {0} → (Qr,≺) is a valuation, if it satisfies for all f, g ∈ A \ {0}
and c ∈ C∗

(i) v(f + g) � min{v(f), v(g)},

(ii) v(fg) = v(f) + v(g) and

(iii) v(cf) = v(f).

If we replace (ii) by v(fg) � v(f) + v(g) then v is called a quasi-valuation (also called loose
valuation in [68]).

It is not hard to show, that in (i) if v(f) 6= v(g) then v(f + g) = min≺{v(f), v(g)}.

Example 4. Consider C{{t}} the field of Piusseux series. Elements are formal power series
c(t) = c1t

a1 +c2t
a2 + . . . , with ci ∈ C, ai ∈ Q sharing a common denominator and increasingly

ordered a1 < a2 < . . . . It is the algebraic closure of the field of Laurent series C((t)) (see
e.g. [53, Theorem 2.1.5]). Moreover, we have

C{{t}} =
⋃

n∈Z>0

C((t
1
n )).

It comes with a natural valuation val : C{{t}}\{0} → Q sending an element 0 6= c(t) ∈ C{{t}}
to the lowest exponent a1 in the series expansion. As the field of rational functions C(t) ⊂
C{{t}} is a subfield, we can consider the restriction val : C(t) \ {0} → Q. For 0 6= q(t) ∈ C(t),
the valuation val(q(t)) is the order of the zero (resp. pole) q(t) has at t = 0.
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Let v : A \ {0} → (Zr,≺) be a (quasi-)valuation, where we replace Qr by Zr for simplicity.
One naturally defines a Zr-filtration on A by Fv�a := {f ∈ A \ {0}|v(f) � a} ∪ {0} (and
similarly Fv�a). The associated graded algebra is defined as

grv(A) :=
⊕
a∈Zr

Fv�a/Fv�a. (2.3.1)

For f ∈ A \ {0} denote by f its image in the quotient Fv�v(f)/Fv�v(f), hence f ∈ grv(A).
If the filtered components Fv�a/Fv�a are at most one-dimensional for all a ∈ Zr, we say v has
one-dimensional leaves.

The filtration induced by a valuation allows to define the following property of vector space
bases for A. As stated it can be found in [45], but bases with this property are also studied,
for example in [20] where they are called essential bases. More details on essential bases can
be found in §3.2.

Definition 8. A vector space basis B ⊂ A is called adapted to a valuation v : A \ {0} → Zr,
if for every a ∈ Zr Fv�a ∩ B is a vector space basis for Fv�a.

If a valuation v has one-dimensional leaves, an adapted basis B is particularly useful as
by [45, Remark 2.19] there is a bijection between B and the set of values v(B) given by b 7→ v(b).
We use this fact in the proof of Theorem 10.

The image {v(f) | f ∈ A \ {0}} ⊂ Zr forms by the definition an additive semi-group, that
is a subsemi-group of Zr. We denote it by S(A, v) and refer to it as the value semi-group. The
rank of the valuation is the rank of the sublattice generated by S(A, v) in Zr. If rank(v) = d,
we say v is of full rank. By [45, Theorem 2.3] the one-dimensional leaves property holds for
valuations of full rank. The value semi-group is of great interest because of the following
Lemma that can be found, for example, in [11, Remark 4.13].

Lemma. ( [11, Remark 4.13]) If v has one-dimensional leaves, then grv(A) is isomorphic to
the semi-group algebra C[S(A, v)].

The following defintion introduced by Kaveh and Manon in [45] is closely related. It
generalizes the notion of SAGBI basis (a Gröbner basis analogue for subalgebras of polynomial
algebras).

Definition 9. A set of algebra generators B ⊂ A is called a Khovanskii basis for (A, v) if the
image of B in grv(A) forms a set of algebra generators.

If B is a Khovanskii basis for (A, v) then (independent of the one-dimensional leaves prop-
erty) by [45, Lemma 2.10] the image v(B) generates S(A, v).

Assume for now that grv(A) is finitely generated and that v has one-dimensional leaves.
Hence, grv(A) ∼= C[S(A, v)] by the above lemma. Further, the value semigroup S(A, v) is
generated by {v(b1), . . . , v(bn)}, for some {b1, . . . , bn} forming a Khovanskii basis for (A, v).
In this case Proj(grv(A)) = Proj(C[S(A, v)]) is a toric variety. In fact, Proj(grv(A)) is a flat
degeneratipon of Proj(A). To describe the corresponding family, we use the following Lemma
due to Caldero.

Lemma. ( [13, Lemma 3.2]) Let S be a finite subset of Zr. Then there exists a linear form
e : Zr → Z≥0 such that for all m,n ∈ S

m ≺ n⇒ e(n) < e(m).
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In [13] the lemma is stated with Nr in place of Zr. By adding a large multiple of (1, . . . , 1)
to every element in S we obtain the lemma as stated above. Examples of such a linear forms
can be found throughout the thesis, in particular in §4.3.2.

Consider a linear form e : Zr → Z as in [13, Lemma 3.2] for S := {v(b1), . . . , v(bn))}. We
construct a Z>0-filtration on A by F≤m := Fv,e

≤m = {f ∈ A \ {0} | e(v(f)) ≤ m} ∪ {0} for
m ∈ Z>0. The filtration {F≤m}m has the property that

⊕
m≥0F≤m/F<m ∼= grv(A) and we

obtain a family of C-algebras (see e.g. [2, Proposition 5.1]) that can be defined as follows.

Definition 10. The Rees algebra associated with the valuation v and the filtration {F≤m}m
is the flat C[t]-subalgebra of A[t] defined as

Rv,e :=
⊕
m≥0

(F≤m)tm. (2.3.2)

It has the properties that Rv,e/tRv,e
∼= grv(A) and Rv,e/(1 − t)Rv,e

∼= A. In particular, it
defines a flat family over A1 (the coordinate on A1 given by t) with generic fibre isomorphic
to Proj(A) = X and special fibre the toric variety Proj(grv(A)).

More details on Rees algebras can be found in [2, §5], [68, §2], and [45, §7].

Introduced by Lazarsfeld-Mustaţǎ [50] and Kaveh-Khovanskii [44] we recall the definition
of Newton-Okounkov body. The way we present it follows closely [44].

Definition 11. Let v : A \ {0} → (Zr,≺) be a valuation. The Newton-Okounkov cone is

C(A, v) := conv(S(A, v) ∪ {0}) ⊂ Rr. (2.3.3)

One defines the corresponding Newton-Okounkov body as

∆(A, v) :=
⋃
i>0

{v(f)/i | 0 6= f ∈ Ai} (2.3.4)

We are mostly interested in projective varieties of subvarieties of a product of projective
spaces as seen in the last section. Let X be such a variety of dimension d and A its ho-
mogeneous coordinate ring. Recall that the total coordinate ring S of Pk1 × · · · × Pks is of
form S = C[x1,0, . . . , x1,k1 , x2,0, . . . , x2,k2 , . . . , xs,ks ]. On coordinates the degree is given by
deg xi,j := εi ∈ Zs (see e.g. [16, Example 5.2.2]) for all i ∈ [s], j ∈ [ki], where {εi}i∈[s] denotes
the standard basis on Zs. For f =

∑
aux

u ∈ S we choose the lexicographic order on Zs and
set deg f := maxlex{deg xu | au 6= 0}. The Zs≥0-grading on the induces a Zs≥0-grading on the
homogeneous coordinate ring A of X, which we denote A =

⊕
m∈Zs≥0

Am.

It is sometimes desirable to have a valuation that encodes the grading of A, i.e.

v̂ : A \ {0} → (Zs≥0 × Zr−s,≺) of form v̂(f) = (deg f, ·), ∀f ∈ A \ {0}. (2.3.5)

Examples of valuations that have this form can be found in §4.3 where we consider valuations
constructed from maximal prime cones in trop(F`n) (as in [45]). In this case the Newton-
Okounkov cone C(A, v̂) is contained in Rs≥0 × Rr−s. The Newton-Okounkov body ∆(A, v̂)
can be defined as the intersection of C(A, v̂) with the hyperplane {(1, . . . , 1)} × Rr−s. More
generally let Pv(λ) := C(A, v̂) ∩ {λ} × Rr−s for λ ∈ Rs≥0.
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Dealing with polytopes throughout the thesis we need the notion of Minkowski sum. For
two polytopes A,B ⊂ Rr it is defined as

A+B := {a+ b | a ∈ A, b ∈ B}. (2.3.6)

For example, if A is Zs≥0-graded for s > 1 and v is of form v̂ as in (2.3.5) it is an interesting
question if

Pv(ε1) + · · ·+ Pv(εs) = ∆(A, v),

where εi are standard basis vectors in Rs. We investigate this question in the case where A is
the homogeneous cooridnate ring of the flag variety in §4.3.2.

The main result and reason for the popularity of Newton-Okounkov bodies is the following
Theorem. This version is closest to the one in [44], but the same result in varying generalities
was obtained, for example, in [2] and [50].

Theorem. ( [44]) Let A be the homogeneous coordinate ring of a projective variety X of
dimension d and v a valuation with one-dimensional leaves on A. Then ∆(A, v) is a convex
body. Moreover, if S(A, v) is finitely generated, then ∆(A, v) is a rational polytope whose
volume Vol(∆(A, v)) (up to rescaling by d!) equals the degree of X. In this case, the normal-
ization of the (not necessarily normal) toric variety Y = Proj(C[S(A, v)]) is the toric variety
associated to ∆(A, v).

2.4 Quasi-valuations with weighting matrices

We briefly recall some background on higher-dimensional Gröbner theory and quasi-valuations
with weighting matrices as in [45, §3.1&4.1]. Then we define for a given valuation an associated
quasi-valuation with weighting matrix. This enables us to use the Kaveh-Manon’s machinery
for more general valuations. For example, we can test whether a given valuation has a finitely
genarated value semi-group and if so, compute the associated Newton-Okounkov body. A
central result of this thesis is Theorem 10. It is proved in full generality here, but appears
in more specialized formulations in the following chapters. Most of our results are in fact
implications of this theorem.

The notions of initial form and initial ideal with respect to a weight vector (as seen in
§2.2) can be generalized to weighting matrices as follows.

Definition 12. Let f =
∑
aux

u ∈ C[x1, . . . , xn] with u ∈ Zn, where xu = xu1
1 · · ·xunn . For

M ∈ Qr×n and a linear order on ≺ on Zr we define

inM (f) :=
∑

Mm=min≺{Mu|au 6=0}

amx
m. (2.4.1)

Similar to the case of weight vectors we extend this definition to ideals I ⊂ C[x1, . . . , xn] by

inM (I) := 〈inM (f) | f ∈ I〉. (2.4.2)

A weighting matrix M ∈ Qr×n lies in the Gröbner region GRr(I) of an ideal I ⊂
C[x1, . . . , xn], if there exists a monomial order < on C[x1, . . . , xn] such that

in<(inM (I)) = in<(I).
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By a positive grading we mean a Zs≥0-grading for s ≥ 1 as in the case of the total coordinate
ring S of a product of projective spaces (see below Remark 2) or the usual polynomial ring. If
an ideal I is (multi-)homogeneous with respect to a positive grading then the lineality space
LI of I contains (1, . . . , 1) ∈ Rn. Kaveh-Manon show (see [45, Lemma 3.7]) that in this case
Qr×n is entirely contained in GRr(I).

To a given matrix M ∈ Qr×n in [45] they associate a quasi-valuation as follows. As above,
fix a group ordering ≺ on Qr.

Definition 13. Let f̃ =
∑
aux

u ∈ C[x1, . . . , xn] and define ṽM : C[x1, . . . , xn]\{0} → (Qr,≺)
by

ṽM (f̃) := min≺{Mu | au 6= 0}.

Let A = C[x1, . . . , xn]/I with I the kernel of π : C[x1, . . . , xn]→ A. Then by [45, Lemma 4.2]
there exists a quasi-valuation vM : A \ {0} → (Qr,≺) given for f ∈ A by

vM (f) := max≺{ṽM (f̃) | f̃ ∈ C[x1, . . . , xn], π(f̃) = f}.

It is called the quasi-valuation with weighting matrix M .

From the definition, it is usually hard to explicitly compute the values of a quasi-valuation
vM . The following proposition makes it more computable, given that M lies in the Gröbner
region of I.

Proposition. ( [45, Proposition 4.3]) Let M ∈ GRr(I) and B ⊂ A be a standard monomial
basis for the corresponding monomial order < on C[x1, . . . , xn]. Then B is adapted to vM .
Moreover, for every element f ∈ A written as f =

∑
bαaα with π(xα) = bα ∈ B and aα ∈ C

we have
vM (f) = min≺{Mα | aα 6= 0}.

Recall from above how to associate a filtration to a (quasi-)valuation. We denote the
associated graded algebra of a quasi-valuation vM by grM (A).

From our point of view, quasi-valuations with weighting matrices are not the primary
object of interest. In most cases we are given a valuation v : A \ {0} → (Qr,≺) whose
properties we would like to know. In particular, we are interested in the generators of the value
semi-group and if there are only finitely many. The next definition establishes a connection
between a given valuations and weighting matrices. It allows us later to apply techniques from
Kaveh-Manon for quasi-valuations with weighting matrices to other valuations of our interest.

From now on let A be a finitely generated algebra and domain with presentation a fixed
π : C[x1, . . . , xn] → A, such that A = C[x1, . . . , xn]/ ker(π). Let I := ker(π) and π(xi) =: bi
for i ∈ [n]. The polynomial ring may be replaced by S the total coordinate ring of the product
of projective spaces, but for simplicity we just write C[x1, . . . , xn].

Definition 14. Given a valuation v : A \ {0} → (Qr,≺). We define the weighting matrix of
v by

Mv := (v(b1), . . . , v(bn)) ∈ Qr×n.

That is, the columns of Mv are given by the images v(bi) for i ∈ [n].

Assume that the ideal I is homogeneous with respect to a positive grading. We need the
following key-lemma from [45].
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Lemma. ( [45, Lemma 4.4]) The associated graded algebra of the quasi-valuation with weight-
ing matrix M satisfies

grM (A) ∼= C[x1, . . . , xn]/ inM (I). (2.4.3)

By a similar argument as in the proof of [45, Proposition 5.2] we obtain the following
corollary with assumptions being as above.

Corollary 1. Let M ∈ Qd×n with d the Krull-dimension of A (i.e. vM has full rank). If
inM (I) is prime, then vM is a valuation whose value semi-group S(A, vM ) is generated by
{vM (bi)}i∈[n]. In particular, the associated Newton-Okounkov body is given by

∆(A, vM ) = conv(vM (bi) | i ∈ [n]).

Proof. As inM (I) is prime, we have by [45, Lemma 4.4] grM (A) ∼= C[x1, . . . , xn]/ inM (I) is
a domain. Assume vM is not a valuation, i.e. there exist f, g ∈ A \ {0} with vM (fg) �
vM (f)+vM (g). If vM (f) = a and vM (g) = b, then f ∈ F�a/F�a and g ∈ F�b/F�b, where F�a
denotes a filtered piece of the filtration FvM on A. Then fg = 0 ∈ grM (A) as by the grading
we have fg ∈ F�a+b/F�a+b but vM (fg) � a+ b, a contradiction to being a domain.

In particular, grM (A) is generated by bi = π(xi) for i ∈ [n]. As by [45, Theorem 2.3] vM
has one-dimensional leaves, then by [45, Proposition 2.4] we have grM (A) ∼= C[S(A, vM )]. The
rest of the claim follows.

As mentioned before, we want to use the results on (quasi-)valuations with weighting
matrices to analyze arbitrary given valuations. The next lemma makes a first connection
between the (quasi-)valuation with weighting matrix Mv as in Definition 14 and the valuation
v defining it.

Denote by {εi}i∈[s] the standard basis of Rs. We consider the (partial) order > on Zs:

(m1, . . . ,ms) > (n1, . . . , ns) :⇔
s∑
i=1

mi >
s∑
i=1

ni.

Lemma 3. Let I be a homogeneous ideal with respect to a Zs≥0-grading for s ≥ 1 generated
by elements f ∈ I with deg f > εi for all i ∈ [s]. Then vMv(bi) = v(bi).

Proof. Denote by {ei}i∈[n] the standard basis of Rn. Recall that bi = π(xi) for all i ∈ [n].
Using the assumption that I is homogeneous, we have by definition of vMv

vMv(bi) = max≺{ṽMv(xi + f) | f ∈ I}
deg f>εi∀i

= max≺{min≺{Mvei, ṽM (f)} | f ∈ I}.

As min≺{Mvei, ṽM (f)} �Mvei = v(bi) we deduce vMv(bi) = v(bi).

The following theorem relating a given valuation v with the (quasi-)valuation with weight-
ing matrix Mv is our main result on Newton-Okounkov bodies. In the rest of the thesis we
use it to prove our main results. We apply it to valuations from birational sequences ( [20])
for Gr(2,Cn) in §3.2 and to Rietsch-Williams [62] valuation in §3.3. In §4.3 we use it to make
a connection between string valuations on the homogeneous coordinate ring of the flag variety
and the topical flag variety.

For simplicity we assume the image of our valuation lies in Zd instead of Qd. This is the
case for all valuations we are interested in.
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Theorem 10. Assume I is homogeneous with respect to the Zs≥0-grading and generated by

elements f ∈ I with deg f > εi for all i ∈ [s]. Let v : A\{0} → (Zd,≺) be a full-rank valuation
with Mv ∈ Zd×n the weighting matrix of v and assume inMv(I) is prime.

Then S(A, v) is generated by {v(bi)}i∈[n], where bi = π(xi). In particular,

∆(A, v) = conv(v(bi) | i ∈ [n]),

and {b1, . . . , bn} is a Khovanskii basis for (A, v).

Proof. As v and vMv (by Corollary 1) are full-rank valuations, they have one-dimensional
leaves by [45, Theorem 2.3]. We apply [45, Proposition 2.4] and obtain grv(A) ∼= C[S(A, v)]
and grMv

(A) ∼= C[S(A, vMv)].

Claim: For all g ∈ A we have v(g) = vMv(g).

That is, S(A, v) = S(A, vMv). The latter is generated by {v(bi)}i∈[n] by Corollary 1 and
Lemma 3. All other statements of the theorem are direct consequences.

Proof of claim: By Corollary 1 vMv is a valuation. In particular, then by Lemma 3 we
have v(bu) = vMv(bu) for monomials bu = bu1

1 · · · bunn ∈ A.

As I is homogeneous with respect to a positive grading, Mv lies in the Gröbner region
of I. Let B ⊂ A be the standard monomial basis adapted to vMv as in [45, Proposition 4.3]
restated above. Then we can write every g ∈ A as g =

∑k
i=1 bαiai for bαi = π(xαi) ∈ B and

ai ∈ C. We compute

vMv(g) = vMv

(
k∑
i=1

bαiai

)
� min≺{vMv(bαi) | ai 6= 0}

Lemma 3
= min≺{v(bαi) | ai 6= 0}

Def. Mv= min≺{Mvαi | ai 6= 0}
[45, Proposition 4.3]

= vMv(g).

As vMv has one-dimensional leaves b 7→ vMv(b) for b ∈ B (adapted to vMv) defines a bijection
between B and the set of values of vMv(B) by [45, Remark 2.29]. In particular, we have
v(bαi) = vMv(bαi) 6= vMv(bαi) = v(bαj ) for all i 6= j. This implies

v(g) = min≺{v(bαi) | ai 6= 0} = vMv(g).

From weighting matrix to weight vector

The assumption inMv(I) being prime is quite strong, as this is in general hard to verify.
However, taking the initial ideal with respect to a weighting matrix is closely related to taking
the initial ideal with respect to a weight vector, which makes the computation easier. For
example, [45, Proposition 3.10] says that for every M ∈ Qr×n there exists w ∈ Qn such that
inM (I) = inw(I). We want to make this more explicit using [13, Lemma 3.2] restated in §2.3.
The lemma allows us to associate a weight vector to a weighting matrix as follows.



30 CHAPTER 2. GENERAL THEORY

Definition 15. Let M ∈ Zr×n and choose e : Zr → Z as in [13, Lemma 3.2] for S =
{M1, . . . ,Mn} the set of columns of M . We define the weight vector associated to M as

e(M) := (e(M1), . . . , e(Mn)) ∈ Zn.

The following lemma shows that for the initial ideal, e(M) is independent of the choice of
e. It is applied throughout the thesis whenever we apply Theorem 10.

Lemma 4. Let f ∈ C[x1, . . . , xn]. Then inM (f) = ine(M)(f). In particular, for every ideal
I ⊂ C[x1, . . . , xn] we have inM (I) = ine(M)(I).

Proof. Let M = (mi,j)i∈[r],j∈[n] ∈ Zr×n and e : Zr → Z given by e(x1, . . . , xr) =
∑

i=1r xici for
ci ∈ Z>0. Let · denote the usual dot-product in Rn. We compute for u = (u1, . . . , un) ∈ Zn≥0

e(Mu) =
r∑
i=1

n∑
j=1

mijujci = e(M) · u.

Now for f =
∑
aux

u ∈ C[x1, . . . , xn] by defintion we have

inM (f) =
∑

m: Mm=min≺{Mu|au 6=0}

amx
m

[13, Lemma 3.2]
=

∑
m: e(Mm)=min{e(Mu)|au 6=0}

amx
m

e(M)·u=e(Mu)
=

∑
m: e(M)·m=min{e(M)·u|au 6=0}

amx
m

= ine(M)(f).

With assumptions as in the Lemma let SM := {e(M) | e as in [13, Lemma 3.2] } ∪ {0} ⊂
Qn. We define a polyhedral cone given the set SM and the lineality space LI ⊂ Rn of the
ideal I ⊂ C[x1, . . . , xn] by

CM := cone(SM ) + LI ⊂ Rn.

Then the following corollary is a reformulation of Lemma 4.

Corollary 2. There exists a cone C in the Gröbner fan of I with CM ⊆ C. Moreover, if
inM (I) is monomial-free, CM ⊂ trop(V (I)).

2.5 Cluster algebras

We recall here the basic notions and definitions from cluster theory. This section follows [69, §2]
for quivers and quiver mutation and [36, §2] for the review of A- and X -cluster varieties.

A quiver Q is a tupel (Q0, Q1) with Q0 a finite set of vertices and Q1 a finite set of arrows
between the vertices in Q0. A loop is an arrow whose source and target vertex coincide, a
2-cycle is an oriented cycle consisting of two arrows. We consider quivers with neither loops
nor 2-cycles.
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Definition 16. Let Q be a finite quiver without loops and 2-cycles and k ∈ Q0. Then we
define µk(Q) to be the quiver obtained from Q by the following recipe called mutation at
vertex k:

Step 1: for every configuration of arrows i→ k → j add a new arrow i→ j;
Step 2: reverse all arrows incident to k;
Step 3: delete a maximal set of 2-cycles that may have appeared as a result of Steps 1&2.

It is a fact that mutation defines an involution and we have µk(µk(Q)) = Q. For an
example see Figure 2.1.

1 2 µ2−→
1 2

Figure 2.1: An example of quiver mutation at the vertex 2.

We divide the vertex set Q0 = {1, . . . ,m}, into two parts {1, . . . n} and {n + 1, . . . ,m}
for n ≤ m. We call {1, . . . , n} mutable vertices and {n + 1, . . . ,m} frozen vertices. From
now on we only allow mutation at mutable vertices. Further, we ignore arrows between
frozen vertices as they are irrelevant for the mutation. To Q we associate its incidence matrix
(εik)i,k∈Q0,k mutable ∈Mm×n given by

εik := #{arrows i→ k ∈ Q1} −#{arrows k → i ∈ Q1}. (2.5.1)

We fix F as our ambient field of rational functions in n variables defined over the field
Q(An+1, . . . , Am).

Definition 17. A labelled seed in F is a pair s := (As, Qs), where As := (A1,s, . . . , Am,s) is a
free generating set for F and Qs a quiver with mutable vertices {1, . . . , n} and frozen vertices
{n + 1, . . . ,m}. We call As an extended cluster with cluster variables {A1,s, . . . , An,s} and
frozen variables {An+1,s, . . . , Am,s}.

Definition 18. Let s = (As, Qs) be a labelled seed in F and k ∈ {1, . . . , n}. We define
the seed mutation (also called A-mutation) in direction k to be the operation that takes s to
s′ = (As′ , Qs′), where Qs′ = µk(Qs) and As′ = (A1,s′ , . . . , Am,s′) is given by

Ak,s′Ak,s :=
∏

i→k∈Q
Ai,s +

∏
k→j∈Q

Aj,s. (2.5.2)

Note that when s′ is obtained from s by mutation at k, then also s is obtained from s′

by mutation at k. That is mutation is an involution on seeds. Observe that frozen variables
are not affected by mutation. For any two seeds s and s′ we have Ak,s = Ak,s′ for all k ∈
[n + 1,m]. We therefore drop the index of the seed from frozen variables and have As =
(A1,s, . . . , An,s, An+1, . . . , Am). If it is clear from the context which seed we are considering we
also drop the s completely in our notation.

Consider the n-regular infinite tree Tn whose edges at every vertex are labelled by 1, . . . , n.
An assignment of a seed st to every vertex t ∈ Tn is called a seed pattern, if two seeds st, st′

associated to adjacent vertices t
k
−− t′ in Tn are obtained from each other by mutation at
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k. Let V :=
⋃
t∈Tn{A1,st , . . . , An,st} be the union of all cluster variables for all seeds in the

seed pattern. Note that allthough the tree has infinitely many vertices V might be a finite set
as through repetition some seeds might coincide. For example, in Figure 2.2 there is a seed
pattern for T2 and we observe that the cluster variables for sti−2 coincide with those for sti+3 .

1 2 1 2 1. . . ti−2

1 2

A1 A2

ti−1

1 2

1+A2
A1

A2

ti

1 2

1+A2
A1

1+A1+A2
A1A2

ti+1

1 2

1+A1
A2

1+A1+A2
A1A2

ti+2

1 2

1+A1
A2

A1

ti+3

1 2

A2 A1

. . .

Figure 2.2: A seed pattern for T2.

Definition 19. The (A-)cluster algebra associated with a given seed pattern is the algebra

Y(A, Q) := Z[An+1, . . . , Am][V], (2.5.3)

where (A, Q) is any seed in the given seed pattern. We say it has rank n, as every cluster
contains n cluster variables. It is called a skew-symmetric cluster algebra of geometric type.
We also define the upper cluster algebra following [4, Definition 1.6] as the F-subalgebra of all
Laurent polynomials in the variables of any seed in the given seed pattern. We denote it by
Y(A, Q).

Example 5. Consider C[Gr(2, 4)] the homogeneous coordinate ring of the Grassmannian
Gr(2, 4). Recall (or see §3.1) that

C[Gr(2, 4)] = C[p12, p13, p23, p14, p24, p34]/〈p12p34 − p13p24 + p14p23〉.

Then {p12, p13, p23, p14, p34} is a set of algebraically independent generators as

p24p
−1
13 = p12p34 + p14p23.

Observe that this relation is strikingly reminiscent with the mutation formula in (2.5.2). In
fact, considering the quiver Q = (Q0, Q1) with Q0 = {1, . . . , 5}, Q1 = ∅ and 1 being the only
mutable vertex we obtain a cluster algebra Y with Y⊗ZC ∼= C[Gr(2, 4)]. The quiverQ is of type
A1. A more general statement holds due to Scott [63] and Fomin-Zelevinsky [26]: C[Gr(2, n)]
has the structure of a cluster algebra of type An−3: i.e. among all mutation equivalent quivers
defining the cluster algebra, there exists one whose full subquiver on all mutable vertices is
an orientation of an An−3-Dynkin diagram. For example, in Figure 2.1 there are two quivers
of type A2 for C[Gr(2, 5)].

Very important results in the theory of cluster algebras are the Laurent phenomenon [26,
Theorem 3.1] and the Positivity of the Laurent phenomenon [37, Corollary 0.4]. We state the
latter below.

Theorem. ( [37, Corollary 0.4]) Each cluster variable of an A-cluster algebra is a Laurent
polynomial with nonnegative integer coefficients in the cluster variables of any given seed.
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In order to define cluster varieties we slightly change our perspective from this algebraic
point of view to a more geometric one. To a seed s we associate a lattice N = Zm with basis
{e1,s, . . . , en,s, en+1, . . . , em}. We sometimes write Ns to refer to N with the associated basis.
It comes equipped with a (global) bilinear form on N . For a fixed seed s we have

{·, ·}s : N ×N → Z, (2.5.4)

is (locally) induced by the exchange matrix of Qs (for details see [36, §2]). Let M = Hom(N,Z)
be the dual lattice with dual basis {f1,s, . . . , fn,s, fn+1, . . . , fm}. To each lattice we associate
a torus TN ∼= (C∗)m ∼= TM by

Xs := TM = Spec(C[N ]) and As := TN = Spec(C[M ]). (2.5.5)

We denote the coordinates on Xs by X1,s, . . . , Xm,s. Corresponding to the basis of the
lattice we have Xi,s := zei,s . When the seed we are working in is clear we drop it from the
notation. We define mutation at k on the basis {ei,s} of the lattice N for seed s by

ei,s′ :=

ei,s + max{εik, 0}ek,s, for i 6= k,

−ek,s, for i = k.
(2.5.6)

Then {e1,s′ , . . . , en,s′ , en+1, . . . , em} forms again a basis for N associated with the seed s′ =
µk(s). The dual basis for M transforms as

fi,s′ :=

 −fi,s, for i 6= k,

fk,s +
∑

j max{−εkj , 0}fj,s, for i = k.

Then {f1,s′ , . . . , fn,s′ , fn+1, . . . , fm} is the dual basis for M associated with s′ = µk(s). Muta-
tion induces birational maps between the tori

µk : Xs → Xµk(s) and µk : As → Aµk(s).

defined by the pullback of functions. We have for X -tori

µ∗k(z
n) := zn(1 + zek,s)−{n,ek,s}s , for n ∈ N. (2.5.7)

For the A-tori the birational map is induced from the seed mutation defined in (2.5.2), we
recover

µ∗k(Ak,s′) =

 Ai,s, for i 6= k,∏
i→k∈Qs Ai,s+

∏
k→j∈Qs Aj,s

Ak,s
, for i = k.

To be consistent with the X -notation, we set Ai,s = zfi,s for 1 ≤ i ≤ n and Al = zfl

for n + 1 ≤ l ≤ m coordinates for As. Consider again a given seed pattern, then by [36,
Proposition 2.4] we can give the following definition.

Definition 20. Given a seed pattern the X - (resp. A-) cluster variety is defined as the scheme

X :=
⋃
t∈Tn

Xst (resp. A :=
⋃
t∈Tn

Ast) (2.5.8)

obtained by glueing the tori Xst (resp. Ast) along the birational maps induced by mutation.
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Sometimes X is called the Fock-Goncharov dual to the cluster variety A. The relation to
cluster algebras is the following. The global sections of the structure sheaf on A are related
to the upper cluster algebra associated to the given seed pattern by

H0(A,O(A)) = Y(st)⊗Z C.

A natural (partial) compactification Ā of A (an A-cluster variety) is given by allowing the
frozen variables An+1, . . . , Am to vanish. We denote the resulting boudary disivor in Ā by

D :=
m∑

f=n+1

Df , where Df := {Af = 0} ⊂ Ā. (2.5.9)

Example 6. Recall Example 5. The A-cluster variety for this type A1-cluster algebra with
four frozen vertices is given by glueing two tori

Tp13,p12,p14,p23,p34 ∪µ Tp24,p12,p14,p23,p34

along the birational map µ induced by mutation. The irreducible components of the boundary
divisor are

{p12 = 0}, {p14 = 0}, {p23 = 0}, {p34 = 0}.

One can show that up to codimension two Ā is Gr(2, 4). As the Picard group of Gr(2, 4) has
rank one, all four divisors are linearly equivalent and the boundary divisor D is in fact the
anticanonical divisor for Gr(2, 4). We recall later (in §4.1) how to associate very ample line
bundles Lλ on SLn/B to weights λ ∈ Λ++. The same construction works for Gr(2, 4) and one
obatians O(L4ω2) = D (up to linear equivalence).

Every component Df of the boundary divisor induces a (rank 1) valuation ordDf : C[A]→
Z by sending a function g ∈ C[A] to its order of vanishing along Df . If g has a pole along
Df , then ordDf (g) < 0 is the order of the pole. These valuations are called divisorial discrete
valuations in [37].

A main result of [37] is the definition and parametrization of the ϑ-basis for C[A]. One
central question is: When is a basis element of C[A] also a basis element for C[Ā]?

The full Fock-Goncharov conjecture (see [37, Definition 0.6]) suggests that basis elements
for C[A] are parametrized by tropical points in X trop(Z) (see [37, §2]). We don’t go into detail
about this tropical space due to the following fact: fixing a seed s we have an isomorphism

X trop(Z)|s ∼= Ns
∼= Zm.

For the purpose of this thesis we always work in a fixed seed and therefore have an identification
of lattice points in Ns with basis elements for C[A]. From now on we assume that the cluster
variety A satisfies the full FG-conjecture, as this is the case for the cluster varieties we are
interested in. For example, Magee showed in [54] that this is the case for the cluster variety
inside SLn/U which are of interest in §4.2. A number of criteria for the full Fock-Goncharov
conjecture to hold are discussed in [37, §8.4] and we refer the interested reader there for more
details.

Associated to each component of the boundary divisor there exists a function ϑf on the
dual cluster variety X . Assuming the full FG-conjecture we can compute and expression for
ϑf in Xs0 (s0 being a fixed initial seed) as described by the Algorithm 1, which we consider
as definition.
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Definition 21. Let A be a cluster variety associated to an A-cluster algebra Y(A, Q) satis-
fying the full Fock-Goncharov conjecture. Then we define the superpotential W : X → C on
the dual cluster variety X as

W :=
∑

f frozen vertex in Q

ϑf .

Algorithm 1: Computing an expression for the superpotential in a given inital seed.

Input: A cluster variety A with initial seed s0 satisfying the full FG-conjecture.

for every frozen vertex f ∈ Qs0 do
find a sequence of mutations µ from s0 to a seed sf where f is a sink.
if sf = s0 then

Output: ϑf |Xs0 = z−ef,s0 .

else

apply the pullback of the reverse mutation sequence to z
−ef,sf .

Output: ϑf |Xs0 = (µ)∗(z
−ef,sf ).

Output: The superpotential W |Xs0 =
∑

f frozen in Qs0
ϑf |Xs0 .

A seed sf for which a frozen vertex f is a sink (as in the first step of Algorithm 1) is called
optimized for f .

Remark 4. Finding an optimized seed for a frozen vertex is in general a hard problem as
there might be infinitely many seeds. Further, doing these computations by hand is already
after a few mutation quite frustrating due to the recursive formulas. An excellent tool for
such computations is provided by Keller’s quiver mutation applet [46].

Coming back to C[A], note that a basis element ϑ ∈ C[A] gives an element in C[Ā] if
ordDf (ϑ) ≥ 0 for every component Df of the boundary divisor. In particular,

ϑ ∈ C[Ā] if and only if min
f frozen

{ordDf (ϑ)} ≥ 0.

Let gϑ ∈ Ns be the lattice point associated to ϑ for a fixed seed s. Then using the fact that
ϑtrop
f (gϑ) = ordDf (ϑ), this translates to

ϑ ∈ C[Ā] if and only if gϑ ∈ {x ∈ Rm |W |trop
Xs (x) ≥ 0} ∩Ns. (2.5.10)

In particular, the lattice points in {x ∈ Rm |W |trop
Xs (x) ≥ 0} parametrize a basis for C[Ā].



Chapter 3

Grassmannians

3.1 Preliminary notions

The Grassmannian Gr(k,Cn) for integers k ≤ n is the space of k-dimensional subspaces of
Cn. It has the structure of a projective variety given by the Plücker embedding Gr(k,Cn) ↪→
P(
∧k Cn) sending the generators v1, . . . , vk ∈ Cn of a k-dimensional vector subspace V ⊂ Cn

to [v1 ∧ · · · ∧ vk] ∈ P(
∧k Cn). In many cases it is useful to describe Gr(k,Cn) as a vanishing

set V (Ik,n). We denote the standard basis of Cn by {e1, . . . , en} and choose a subset I =
{i1, . . . , ik} of {1, . . . , n} =: [n].

Definition 22. The Plücker coordinate p̄I is the basis element in (
∧k Cn)∗ dual to ei1∧· · ·∧eik .

Plücker coordinates generate the homogeneous coordinate ring of Gr(k,Cn) satisfying cer-
tain relations. We want to express C[Gr(k,Cn)] =: Ak,n as a quotient of the polynomial ring

C[pJ | J ∈
([n]
k

)
] by a prime ideal encoding these relations. We define for K ∈

( [n]
k−1

)
and

L ∈
( [n]
k+1

)
the sign sgn(j;K,L) := (−1)#{l∈L|j<l}+#{k∈K|k>j}. The following definition can be

found for example in [53, p. 170].

Definition 23. The Plücker relation RK,L ∈ C[pJ | J ∈
([n]
k

)
] for K ∈

( [n]
k−1

)
and L ∈

( [n]
k+1

)
is

RK,L :=
∑
j∈L

sgn(j;K,L)pK∪{j}pL\{j}. (3.1.1)

The Plücker ideal Ik,n ⊂ C[pJ | J ∈
([n]
k

)
] is generated by RK,L for all K ∈

( [n]
k−1

)
and L ∈

( [n]
k+1

)
and C[Gr(k,Cn)] = C[pJ | J ∈

([n]
k

)
]/Ik,n.

In the special case of k = 2, Plücker relations are of a particularly nice form. We simplify
the notation in this case to R{i},{j,k,l} =: Ri,j,k,l ∈ C[pI | I ∈

(
[n]
2

)
], where for 1 ≤ i < j < k <

l ≤ n we have

Ri,j,k,l = pijpkl − pikpjl + pilpjk ∈ I2,n.

By setting pij = −pji we see that it is enough to consider Ri,j,k,l with 1 ≤ i < j < k <
l ≤ n as generators for the ideal I2,n as up to sign these are all relations. We denote the

polynomial ring C[pI | I ∈
(

[n]
2

)
] by C[pij ]ij for short, if it clear which n we are considering.

To distinguish between the polynomial generators pij (also called Plücker variables) and the

36
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Plücker coordinates in C[Gr(2,Cn)] = C[pij ]ij/I2,n we denote the Plücker coordinate by p̄ij ∈
C[Gr(2,Cn)] = A2,n. When there is no risk of confusion we drop this distinction.

The Grassmannian Gr(k,Cn) can be realized as a quotient of the algebraic group SLn over
C. Recall the basic notations from §2.1.

Consider Pk ⊂ SLn the parabolic subgroup of block upper traingular matrices with blocks
of size k×k and (n−k)×(n−k) along the diagonal. Naturally, it contains B. Set Ik := [n−1]\k
and consider the subgroup WIk := 〈si | i ∈ Ik〉 of Sn. We choose a representative wk in the
coset of w0 in the quotient Sn/WIk . Then by the identification Sn = NSLn(T )/T (here
NSLn(T ) is the normalizer of T in SLn) we have Pk = BwkB. The Grassmannian is then the
quotient

SLn/Pk = Gr(k,Cn).

Similarly to R+, let R+
k = {β ∈ R+ | wk(β) < 0} be the set of positive roots for SLn/Pk.

In fact, we have R+
k = {αi,j ∈ R+ | i ≤ k ≤ j}. We also have n−k = 〈fβ | β ∈ R+

k 〉 ⊂ n−

a Lie subalgebra and denote by U−k ⊂ B− the corresponding subgroup with LieU−k = n−k .
It consists of lower triangular matrices with 1s on the diagonal and non-zero entries only in
positions (i, j) with k ≤ i ≤ n and 1 ≤ j ≤ k.

Example 7. For Gr(2,C4) we have I2 = {1, 3} ⊂ [3] and consider Sn/〈s1, s3〉. As representa-
tive of w0 in the quotient we can chose w2 with reduced expression s2s1s3s2. Then we compute
R+

2 = {α2, α1,2, α2,3, α1,3} = {εi − εj |1 ≤ i ≤ 2 < j ≤ n}. The corresponding subgroups of
SL4 are

P2 =

{( x1,1 x1,2 x1,3 x1,4
x2,1 x2,2 x2,3 x2,4

0 0 x3,3 x3,4

0 0 x4,3 x4,4

)}
and U−2 =

{(
1 0 0 0
0 1 0 0
x3,1 x3,1 1 0
x4,1 x4,2 0 1

)}
.

Note that U−k is open and dense in Gr(k,Cn) and we have an isomorphism of fields of
rational functions C(Gr(k,Cn)) ∼= C(U−k ). We see in §4.1 that C[SLn/B] =

⊕
r≥1 V (rλ)∗ for

every λ ∈ Λ++. Having Gr(k,Cn) = SLn/Pk similary we have for the homogeneous coordinate
ring of the Grassmannian

C[Gr(k,Cn)] =
⊕
r≥1

V (rωk)
∗, (3.1.2)

where ωk ∈ Λ+ is the kth fundamental weight (see §2.1).

3.1.1 The tropical Grassmannian

In this section we recall results on the tropical Grassmannian due to Speyer and Sturmfels
in [64] and [53, §4.3]. For computations in small cases we rely on Macaulay2 [35] and gfan [41].

Definition 24. The tropical Grassmannian, denoted trop(Gr(k,Cn)) ⊂ R
(
n
k

)
is the tropical

variety of the Plücker ideal Ik,n. By [64, Corollary 3.1] it is a k(n − k) + 1-dimensional
polyhedral fan whose maximal cones are all of this dimension.

By what we have seen in §2.2 trop(Gr(k,Cn)) is the subfan of the Gröbner fan of Ik,n
consisting of those w, such that inw(Ik,n) is monomial-free. Recall that for a fixed cone C of
trop(Gr(k,Cn)) each two points v,w in its relative interior yield the same initial ideal, i.e.
inw(Ik,n) = inv(Ik,n) and we use the notation inC(Ik,n). Recall that a maximal cone C of
trop(Gr(k,Cn)) by definition is prime, if inC(Ik,n) is a prime ideal.

We mainly focus on the tropicalization of Gr(2,Cn) which has a very nice properties.
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Corollary. ( [64, Corollary 4.4]) Every initial ideal inC(I2,n) associated to a maximal cone C
in trop(Gr(2,Cn)) is prime.

Recall that trop(V (I)) ⊂ Rn for I a homogeneous ideal in C[x1, . . . , xn] contains a linear
subspace LI called lineality space. The elements l ∈ LI have the property that inl(I) = I. In
particular, R(1, . . . , 1) ⊂ Rn is contained in LI .

Theorem. ( [64, Theorem 3.4]) The quotient trop(Gr(2,Cn))/LI2,n ⊂ R(n2)/Rn−3 intersected
with the unit sphere is, up to sign, the space of phylogenetic trees [6].

We explain the implications of the theorem in more detail. In particular, it implies that
every maximal prime cone C can be associated with a labelled trivalent tree with n leaves. The
set of all labels trivalent trees with n leaves is denoted by Tn. A trivalent tree is a graph with
internal vertices of valency three and no loops or cycles of any kind. Non-internal vertices are
called leaves and the word labelled refers to labelling the leaves by 1, . . . , n. We call an edge
internal, if it connects two internal vertices.

We label the standard basis of R
(
n
2

)
by pairs (i, j) with 1 ≤ i < j ≤ n corresponding to

Plücker coordinates. The following definition shows how we can get a point in the relative
interior of a maximal cone in trop(Gr(2,Cn)) from a labelled trivalent tree. It follows from [64,
Theorem 3.4].

Definition 25. Let T be a labelled trivalent tree with n leaves. Then the (i, j)’th entry of
the weight vector wT ∈ trop(Gr(2,Cn)) is

−#{internal edges on path from leaf i to leaf j in T}.

For notational convenience we set inT (I2,n) := inwT (I2,n). The corresponding maximal cone
in trop(Gr(2,Cn)) is denoted CT .

Later in §3.3 we refer to the entries of −wT (note the sign change) as tree degrees, we
denote degT pi,j = (−wT )(i,j). Combining the above, we conclude that every trivalent labelled
tree induces a toric degeneration of Gr(2,Cn) with flat family given as in (2.2.4).

The symmetric group Sn acts on Tn by permuting the labels of the leaves of trees. We
also have a Sn-action on Plücker coordinates given by

σ(pij) = sgn(σ)pσ−1(i),σ−1(j) for σ ∈ Sn.

This action induces a ring automorphism of C[pi,j ]ij for every σ ∈ Sn that sends inT (I2,n) to
inσ(T )(I2,n) for every trivalent labelled tree T . Denote by T the equivalence class of T ∈ Tn.
It is uniquely determined by the underlying (unlabelled) trivalent tree with n leaves, see for
example Figure 3.1. We denote the set of trivalent tree by Tn/Sn

Figure 3.1: A trivalent tree with 4 leaves.

Consider a trivalent tree T ∈ Tn/Sn. If there are two non-internal edges connected to the
same internal vertex c, then we say T has a cherry at vertex c.
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Figure 3.2: Visualizing Algorithm 2 for a triangulation of D5.

Lemma 5. Every trivalent tree with n ≥ 4 leaves has a cherry.

Proof. We use induction on n. For n = 4 Figure 3.1 displays the only trivalent tree in T4/S4

and we see, it has two cherries. Now consider a trivalent tree T′ ∈ Tn+1/Sn+1. We remove
one edge connected to a leaf and obtain a tree T ∈ Tn/Sn. By induction, T has a cherry at
some vertex c. Adding the removed edge back there are two possibilities: either we add it to
an internal edge, then the cherry also exists in T′. Or we add it at an edge with a leaf, hence
create a new cherry.

3.1.2 Cluster structure on C[Gr(2,Cn)]

We have seen in Example 5 the cluster structure on C[Gr(2,C4)]. In this subsection we want
to recall the cluster structure on C[Gr(2,Cn)] following [26] and [63].

Let Dn be a disk with n marked points on its boundary ∂Dn labelled by [n] in counterclock-
wise order. We define an arc in Dn as a line connecting two marked points. A triangulation ∆
of Dn is a maximal collection of non-crossing arcs. We call arcs that intersect D◦n := Dn \∂Dn

internal arc and those along ∂Dn boundary arc. Note that every triangulation consists of n
boundary arcs and n− 3 internal arcs. A collection of three arcs {d1, d2, d3} in ∆ is a triangle
if pairwise they have one adjacent marked point in common.

Algorithm 2: Associating a quiver with a triangulation of Dn.

Input: A triangulation ∆ of Dn.

for every internal arc d in ∆ do
create a mutable vertex vd ∈ Q0;

for every boundary arc b in ∆ do
create a frozen vertex vb ∈ Q0;

for every triangle {d1, d2, d3} in ∆ do
draw three arrows in Q1 between the vertices vd1 , vd2 , vd3 ∈ Q0 creating a
counterclockwise oriented 3-cycle in Q;

Output: The quiver Q∆ := (Q0, Q1).

Definition 26. To a triangulation ∆ of Dn we associate the quiver Q∆ that is the output
of Algorithm 2 and set A∆ := (A1,∆, . . . , An−3,∆, An−2, . . . , A2n−3). Then ∆ determines the
cluster algebra Y∆ := Y(A∆, Q∆).
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Figure 3.3: Flipping an internal arc.

Given a triangulation ∆ of Dn we create a new triangulation ∆′ by flipping a diagonal.
More precisely, consider two adjacent triangles in ∆ forming a quadrilateral with vertices the
marked point i, j, k, l in circular order along ∂Dn and diagonal d = [i, k]. Then flipping d refers
to replacing it with d′ = [j, l] (see Figure 3.3). The outcome is a new triangulation ∆′ which
only differs from ∆ by d. Given this definition the next proposition has a straightforward
proof.

Proposition 1. Let ∆ and ∆′ be two triangulations of Dn related to each other by flipping
the (internal) arc d ∈ ∆. Then the quivers Q∆ and Q∆′ are related to each other by quiver
mutation (see Definition 16). Moreover, the cluster algebras Y∆ and Y ′∆ are isomoprhic.

The main result is then the following.

Proposition. ( [26], [63, Proposition 2]) For n ≥ 5 the homogeneous coordinate ring C[Gr(2,Cn)]
is isomorphic to Y∆ ⊗Z C for any triangulation ∆ of Dn.

Let ∆ be a triangulation of Dn with extended cluster A∆. Then the cluster variables
A1,∆, . . . An−3,∆ correspond to internal arcs of ∆, each connecting two marked points. If Ak,∆
corresponds to the arc connecting i and j, the isomorphism in [63, Proposition 2] identifies
Ak,∆ with the Plücker coordinate p̄ij ∈ C[Gr(2,Cn)]. The frozen variables An−2, . . . , A2n−3

correspond to arcs connecting successive marked points i and i+1 mod n. They are identified
with the corresponding Plücker coordinates p̄i,i+1.
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3.2 Birational sequences for Grassmannians and trop(Gr(2,Cn))

We study birational sequences due to Fang, Fourier, and Littelmann [20] for Grassmannians
and introduce the class of iterated birational sequences. We show that toric degenerations
of Gr(2,Cn) constructed using the tropical Grassmannian trop(Gr(2,Cn)) due to Speyer and
Sturmfels [64] can also be obtained using (iterated) biratinal sequences.

3.2.1 Birational sequences

We start the section by recalling some results due to Fang, Fourier, and Littelmann in [20]
regarding birational sequences and associated valuations. After proving Lemma 6,which is cen-
tral in this section we define a new class of birational sequences caled iterated in Definition 28.

Consider a positive root β ∈ R+, then the root subgroup corresponding to β is given by

U−β := {exp(zfβ) | z ∈ C} ⊂ U−.

Definition 27. ( [20]) Let S = (β1, . . . , βk(n−k)) be a sequence of positive roots. Then S
is called a birational sequence for Gr(k,Cn) if the product map induced by multiplication is
birational:

U−β1 × · · · × U−βk(n−k)
→ U−k .

Example 8. The following are two first (and motivating) examples of birational sequences
that we encounter again later in §4.3.

1. The product map π :
∏
β∈R+

k
U−β → U−k is birational, which makes any sequence con-

taining all roots in R+
k (in arbitrary order) a birational sequence called PBW-sequence

(see [20, Example 1 and page 131]). We distinguish between PBW-sequences S and S′

when the roots in both appear in different order.

2. Another example is given by a reduced decomposition wk = si1 . . . sik(n−k)
of wk, a

coset representative of w0 in Sn/WIk (see §3.1). Let S = (αi1 , . . . , αik(n−k)
) be the

corresponding sequence of simple roots. Then S is a birational sequence called the
reduced decomposition case (see [20, Example 2]).

The second example shows that repetitions of positive roots may occur in birational sequences.
Our aim is to shed some light on sequences that are neither PBW nor associated to reduced
decompositions for Grassmannians. The following lemma allows us to construct such sequences
for Gr(k,Cn+1) from sequences for Gr(k,Cn).

Lemma 6. Let S = (β1, . . . , βk(n−k)) be a birational sequence for Gr(k,Cn). Then extending
it to the left by αi1,n, . . . , αik,n for distinct i1, . . . , ik ≤ n yields the following birational sequence
for Gr(k,Cn+1)

S′ = (αi1,n, . . . , αik,n, β1, . . . , βk(n−k)). (3.2.1)
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Proof. The sequence S′ yields the product of root subgroups G′ = U−αi1,n × · · · × U−αik,n ×
U−β1 × · · · ×U−βk(n−k)

⊂ SLn+1, where for y1, . . . , yk, z1, . . . , zk(n−1) ∈ C elements are of form

exp(y1fαi1,n) · · · exp(ykfαik,n) exp(z1fβ1) · · · exp(zk(n−k)fβk(n−k)
)

=



1 0 0 . . . 0 0

a1
2 1 0 . . . 0 0

a1
3 a2

3 1 . . . 0 0
...

...
...

. . . 0 0

a1
k+1 a2

k+1 . . . akk+1 1 . . . 0 0
...

...
...

. . .
...

...

a1
n a2

n . . . akn ∗ . . . 1 0

a1
n+1 a2

n+1 . . . akn+1 ∗ . . . ∗ 1


∈ G′.

Here ajn+1 = y1a
j
i1

+ · · · + yka
j
ik

for 1 ≤ j ≤ k. Denote the i-th row of a fixed element

A ∈ G′ by ai = (a1
i , a

2
i , . . . , a

k
i , ∗, . . . , ∗) ∈ Cn+1. Set ajj = 1 for 1 ≤ j ≤ n and aji = 0 for

i < j. The coefficient of ej1 ∧ · · · ∧ ejk in A(e1 ∧ · · · ∧ ek) is the minor p̄J(A) = det

(
aj1...ajk

)
with

J = {j1, . . . , jk} ⊂ [n+1]. Now assume J ′ = {j1, . . . , jk−1, n+1}. As an+1 = y1ai1 +· · ·+ykaik
then

pJ ′ = det


aj1...

ajk−1

an+1

 = y1 det


aj1...

ajk−1

ai1

+ · · ·+ yk det


aj1...

ajk−1

aik

 .

We define the map ϕ′ : C(Ak(n−k+1)) → C(Gr(k,Cn+1)) ∼= C(U−k ) as extension of the
birational map induced by S on the function fields, which we denote by ϕ : C(Ak(n−k)) →
C(Gr(k,Cn)). For I = {i1, . . . , ik} ⊂ [n] and for 1 ≤ j ≤ k we define

ϕ′(yj) :=
p̄I\{ij}∪{n+1}

p̄I
.

In order to prove that S′ is birational it suffices to find a map ψ′ : C(Gr(k,Cn+1)) →
C(Ak(n−k+1)) that is inverse to ϕ′. Let ψ : C(Gr(k,Cn)) → C(Ak(n−k)) be the inverse of
ϕ. We define ψ′ to as the extension of ψ given by

ψ′(pJ ′) = y1ψ(p̄J ′\{n+1}∪{i1}) + · · ·+ ykψ(p̄J ′\{n+1}∪{ik}).

A straightforward computation then reveals that ψ′ and ϕ′ are indeed inverse to each other.
Therefore S′ is a birational sequence for Gr(k,Cn+1).

Definition 28. For k < n consider a birational sequence for Gr(k,Ck+1). Now extend it as
in (3.2.1) to a birational sequence for Gr(k,Ck+2). Repeat this process until the outcome is a
birational sequence for Gr(k,Cn). Birational sequences of this form are called iterated.

We explain how to obtain a valuation from a fixed birational sequence S = (β1, . . . , βd) for
Gr(k,Cn) as constructed in [20]. Let d := k(n− k) and define the height function ht : R+ →
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Z≥0 by sending a positive root to the number of its simple summands, i.e. ht(αi,j) = j− i+ 1.
Then the height weighted function Ψ : Zd → Z is given by

Ψ(m1, . . . ,md) :=
d∑
i=1

mi ht(βi).

Let <lex be the lexicographic order on Zd. Then we define the Ψ-weighted reverse lexicographic
order ≺Ψ on Zd by setting for m,m′ ∈ Zd

m ≺Ψ m′ :⇔ Ψ(m) < Ψ(m′) or Ψ(m) = Ψ(m′) and m >lex m′. (3.2.2)

Definition 29 ( [20]). Let f =
∑
aux

u with u ∈ Zd≥0 be a non-zero polynomial in C[x1, . . . , xd].

The valuation vS : C[x1, . . . , xd] \ {0} → (Zd≥0,≺Ψ) associated to S is defined as

vS(f) := min≺Ψ{u ∈ Zk(n−k)
≥0 | au 6= 0}. (3.2.3)

We extend vS to a valuation on C(x1, . . . , xd) \ {0} by setting for h = f
g a rational function

vS(h) := vS(f)− vS(g).

Valuations of form (3.2.3) are usually called lowest term valuations. As S is a birational
sequence, for every element in C(Gr(k,Cn)) there exists a unique element f ∈ C(x1, . . . , xd)
associated to it by the isomorphism ψ : C(Ad) → C(Gr(k,Cn)). Hence, we have a valuation
on C(Gr(k,Cn)) \ {0}. Further, as C[Gr(k,Cn)] \ {0} ⊂ C(Gr(k,Cn)) \ {0} we can restrict to
obtain

vS : C[Gr(k,Cn)] \ {0} → (Zd≥0,≺Ψ).

We denote as in §2.3 by S(C[Gr(k,Cn)], vS) the associated value semi-group and the associated
graded algebra by grS(C[Gr(k,Cn)]). For the images of Plücker coordinates p̄J ∈ C[Gr(k,Cn)]

we chose as before the notation pJ ∈ grS(C[Gr(k,Cn)]) for J ∈
([n]
k

)
.

We are interested in toric degenerations of Gr(k,Cn) from the above defined valuations
using the Rees algebra construction (2.3.2). We would like to apply Theorem [44] stated in §2.3
and therefore need to show that the value semi-group S(C[Gr(k,Cn)], vS) is finitely generated.
The following representation theoretic point of view on the valuation vS from [20, §8 and §9]
is useful to do so for Gr(2,Cn) in §3.2.2 below.

A birational sequence S = (β1, . . . , βd) for Gr(k,Cn) together with the total order ≺Ψ on
Zd induces a filtration on the universal enveloping algebra U(n−k ) for 0 6= m ∈ Zd≥0 by

U(n−k )�Ψm := 〈fk = fk1
β1
· · · fkdβd | k ∈ Z≥0,k �Ψ m〉. (3.2.4)

We define similarly U(n−k )≺Ψm. Recall that the highest weight module V (λ) for λ = rωk with
r ≥ 1 is cyclically generated by a highest weight vector vλ ∈ V (λ) over U(n−k ). We therefore
have an induced filtration for 0 6= m ∈ Zd≥0 defined by

V (λ)�Ψ := U(n−k )�Ψm · vλ, (3.2.5)

Similarly we define V (λ)≺Ψ . Then V gr(λ) :=
⊕

06=m∈Zd≥0
V (λ)�Ψ/V (λ)≺Ψ is the associated

graded vector space. This leads to the following definition of essential sets (see [20, Defini-
tion 7])

esS(λ) := {m ∈ Zd≥0 | V (λ)�Ψ/V (λ)≺Ψ 6= 0}. (3.2.6)
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These sets are of particular importance as {fm · vλ | m ∈ esS(λ)} forms a basis for V (λ) and
hence

⋃
r≥1{fm · vrωk |m ∈ esS(rωk)} a basis for C[Gr(k,Cn)].

The connection between the valuation vS introduced above and the essential sets is the
following.

Proposition. ( [20, Proposition 2]) For every birational sequence S for Gr(k,Cn) we have⋃
r≥1 esS(rωk) = S(Ak,n, vS).

The proposition (resp. its proof) implies that esS(ωk) = {vS(p̄J) | J ∈
([n]
k

)
} by the

counting argument

| esS(ωk)| = dimC V (ωk) =

(
n

k

)
=

∣∣∣∣{vS(p̄J)

∣∣∣∣J ∈ ([n]

k

)}∣∣∣∣ .
Consider for r ≥ 1 the set r esS(λ) := {

∑r
j=1 mj | mj ∈ esS(λ)∀j}. Then by construction we

have
r esS(ωk) ⊆ esS(rωk).

If equality holds for all r ≥ 1 by [20, Proposition 2] the value semi-group S(C[Gr(k,Cn)], vS)

is generated by {vS(p̄J) | J ∈
([n]
k

)
}. Hence, the Plücker coordinates form a Khovanskii basis

for vS and we can apply Theorem [44] to get a toric degenration of Gr(k,Cn). Our aim is to
show that this is the case when S is an iterated sequences for Gr(2,Cn).

3.2.2 Iterated sequences for Gr(2,Cn)

In this subsection we prove Theorem 11 stated in the introduction. After proving Proposition 2
it follows from Theorem 10 stated in §2.4. We focus on iterated sequences for Gr(2,Cn) and
start by making the above definitions precise.

Let S = (β1, . . . , βd) be a birational sequence for Gr(2,Cn). With notation as in the
previous subsection we have Ik = I2 = [n−1]\2 and `(w2) = 2(n−2) = d. For n−2 = Lie(U−2 ),
by [20, Lemma 2] U(n−2 ) is generated by monomials of form fm1

β1
. . . fmdβd

. We consider the

irreducible highest weight representation V (ω2) =
∧2 Cn of highest weight ω2 ∈ Λ+. It is

cyclically generated over U(n−2 ) by a highest weight vector vω2 , which we chose to be e1∧e2 as
in Example 2. The Plücker coordinate p̄ij is the dual basis vector to ei ∧ ej for 1 ≤ i < j ≤ n
in (
∧2 Cn)∗. There exists at least one monomial of form fm = fm1

β1
. . . fmdβd

with the property
fm(e1 ∧ e2) = ei ∧ ej for all i, j ∈ [n]. Then by [20, Proposition 2] we have

vs(p̄ij) = min≺Ψ{m ∈ Zd≥0 | fm(e1 ∧ e2) = ei ∧ ej}. (3.2.7)

Example 9. Consider Gr(2,C4) with iterated sequences S = (α1,3, α2,3, α1,2, α2) and S′ =
(α3, α2,3, α1,2, α2). They are birational by Lemma 6, as (α1,2, α2) is of PBW type for Gr(2,C3).
We compute the valuation vS on Plücker coordinates. There are two monomials sending e1∧e2

to e3 ∧ e4, namely
f (1,0,0,1) · e1 ∧ e2 = f (0,1,1,0) · e1 ∧ e2 = e1 ∧ e4.

We have Ψ(1, 0, 0, 1) = Ψ(0, 1, 1, 0) = 4, but (1, 0, 0, 1) >lex (0, 1, 1, 0). Hence, vS(p̄34) =
(1, 0, 0, 1).

For vS′ we compute f (1,0,0,1) · · · e1 ∧ e2 = f (0,1,0,0) · · · e1 ∧ e2 = e1 ∧ e4 Again, we have
Ψ(1, 0, 0, 1) = Ψ(0, 1, 0, 0) = 2, but as (1, 0, 0, 1) >lex (0, 1, 0, 0) it follows vS′(p̄14) = (1, 0, 0, 1).
In Table 3.1 you can find the images of all Plücker coordinates under vS and vS′ .
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Plücker vS vS′

p̄12 (0, 0, 0, 0) (0, 0, 0, 0)

p̄13 (0, 0, 0, 1) (0, 0, 0, 1)

p̄23 (0, 0, 1, 0) (0, 0, 1, 0)

p̄14 (0, 1, 0, 0) (1, 0, 0, 1)

p̄24 (1, 0, 0, 0) (1, 0, 1, 0)

p̄34 (1, 0, 0, 1) (0, 1, 1, 0)

Table 3.1: Images of Plücker coordinates under the valuations vS , vS′ associated to S =
(α1,3, α2,3, α1,2, α2) and S′ = (α3, α2,3, α1,2, α2) for Gr(2,C4).

T3 =

3

21

Figure 3.4: Labelled trivalent tree with three leaves.

From now on we consider an iterated birational sequence S = ((in, n), (jn, n), . . . , (i3, 3), (j3, 3))
for Gr(2,Cn), where (ik, k) represents the positive root αik,k−1 = εik − εk. We chose this nota-
tion as it easily encodes the action of fαik,k−1

∈ n− on Cn (see Example 2), which we need to
compute vS on Plücker coordinates. The following algorithm associates to S a trivalent tree
TS with n leaves labelled by [n].

Algorithm 3: Associating a trivalent tree TS with an iterated sequence S.

Input: An iterated birational sequence S = ((in, n), (jn, n), . . . , (i3, 3), (j3, 3)), the
trivalent tree T3 as in Figure 3.4.

Initialization: Set k = 4, TS3 := T3.
for k do

Construct a tree TSk from TSk−1 by replacing the edge with leaf ik in TSk−1 by three
edges forming a cherry with leaves labelled by ik and k.

if k=n then
Output: The tree TSn .

else
Replace k by k + 1, TSk−1 by TSk and start over.

Output: The tree TS := TSn and the sequence TS := (TSn , . . . , T
S
3 ) of trees.

Definition 30. To an iterated sequence S we associate the trivalent tree TS and the sequence
of trees TS = (TSn , . . . , T

S
3 ) that are the output of Algorithm 3. Denote by CS the maximal

cone in trop(Gr(2,Cn)) corresponding to the tree TS by [64, Theorem 3.4] restated in §3.1.1.
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Example 10. Consider S = ((4, 6), (5, 6), (2, 5), (3, 5), (2, 4), (3, 4), (1, 3), (2, 3)), an iterated
sequence for Gr(2,C6) . We construct the trees TS = (TS3 , T

S
4 , T

S
5 , T

S
6 ) by Algorithm 3.

Figure 3.5 shows the obtained sequence of trees.

1

2 3

1

2 3

4 1

2 3

45 1

2 3

4

5

6

Figure 3.5: The sequence TS for S as in Example 10.

Definition 31. We define the weighting matrix MS ∈ Zd×(n2) associated to S as the matrix
whose columns are vS(p̄ij) for {i, j} ∈

(
[n]
2

)
.

Following [45, §3.1] we want to compute inMS
(I2,n) to apply Theorem 10. Recall the

Definition 12 from §2.4.

Proposition 2. For every interated sequence S we have inMS
(I2,n) = inCS (I2,n).

Proof. Recall that inCS (I2,n) = 〈inCS (Ri,j,k,l) | i, j, k, l ∈ [n]〉 by [64, Proof of Theorem 3.4].
This implies that it is enough to prove the following claim.

Claim: For every Plücker relation Ri,j,k,l with i, j, k, l ∈ [n] we have inCS (Ri,j,k,l) =
inMS

(Ri,j,k,l).

Let {eij}{i,j}∈([n]
2 ) be the stansard basis for R(n2). Adopting the notation for monomials in

the polynomial ring C[pij ]ij we have

Ri,j,k,l = pijpkl − pikpjl + pilpjk = peij+ekl − peik+ejl + peil+ejk .

In particular, MS(eij + ekl) = vS(p̄ij) + vS(p̄kl) = vS(p̄ij p̄kl) and inMS
(Ri,j,k,l) is the sum of

those monomials in Ri,j,k,l for which the valuation vS of the corresponding monomials in A2,n

is minimal with respect to ≺Ψ.
Proof of claim: We proceed by induction. For n = 4 let S = ((i, 4), (j, 4), (i3, 3), (j3, 3)),

i.e. the tree TS has a cherry labelled by i and 4. Consider the Plücker relation Ri,j,k,4 =
pijpk4 − pikpj4 + pi4pjk with {i, j, k} = [3]. Then

inCS (Ri,j,k,4) = pijpk4 − pikpj4.

Let S′ = ((i3, 3), (j3, 3)) be the sequence for Gr(2,C3) and denote by p̂rs with r, s ∈ [3]
the Plücker coordinates in A3. For m ∈ Zd−2 and md,md−1 ∈ Z write (md,md−1,m) :=
(md,md−1,md−2, . . . ,m1) We compute

vS(p̄i4) = (0, 1, vS′(p̂ij)), vS(p̄j4) = (1, 0, vS′(p̂ij)), and vS(p̄k4) = (1, 0, vS′(p̂ik)).

This implies vS(p̄i4p̄jk) �Ψ vS(p̄ij p̄k4) = vS(pikpj4), and hence inMS
(Ri,j,k,4) = inCS (Ri,j,k,4).

Assume the claim is true for n − 1 and let S = ((in, n), (jn, n), . . . , (i3, 3), (j3, 3)) be an
iterated sequence for Gr(2,Cn). Then S′ = ((in−1, n − 1), (jn−1, n − 1), . . . , (i3, 3), (j3, 3)) is
an iterated sequence for Gr(2,Cn−1). Denote by p̂ij with i, j ∈ [n−1] the Plücker coordinates
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in An−1. As vS(p̄ij) = (0, 0, vS′(p̂ij)) for i, j < n we deduce inCS (Ri,j,k,l) = inMS
(Ri,j,k,l) with

i, j, k, l < n by induction. Consider the Plücker relation Ri,j,k,n. Then

vS(p̄rn) =

 (1, 0, vS′(p̂rin)), if r 6= in

(0, 1, vS′(p̂injn)), if r = in.

As (in, n) is a cherry in TS we observe that the associated weight vector wTS ∈ C◦S ⊂
trop(Gr(2,Cn)) satisfies (wTS )rn = (wTS )rin = (wTS′ )rin − 1. In particular, for i, j, k 6= in we
deduce by induction inMS

(Ri,j,k,n) = inCS (Ri,j,k,n). The only relations left to consider are of
form Rin,j,k,n for j, k ∈ [n− 1] \ {in}. For MS we compute by the above

vS(p̄inj p̄kn) = vS(p̄inkp̄jn) �Ψ vS(p̄innp̄jk).

Hence, inMS
(Rin,j,k,n) = pinjpkn−pinkpjn. As (in, n) is a cherry in TS we obtain inCS (Rin,j,k,n) =

inMS
(Rin,j,k,n).

As inCS (I2,n) is prime, Proposition 2 allows us to apply Theorem 10 from §2.4. Let us
have a look at the other necessary assumptions before we formulate the statements from §2.4
in the context of valuations from iterated sequences for Gr(2,Cn) below. For completeness we
also include the proofs in this case, although this would be not necessary given that we can
apply the general theorem. They just serve as an example to obtain a better understanding
of the general theory.

We consider the algebra A2,n, the homogeneous coordinate ring of Gr(2,Cn). We have
fixed the Plücker embedding, that yields a presentation π : C[pij ]ij → A2,n with A2,n =
C[pij ]ij/ ker(π). More precisely, ker(π) = I2,n is the Plücker ideal. The candidate for a
Khovanksii basis is therefore {π(pij) = p̄ij}ij ⊂ A2,n. As C[pij ]ij is postivily graded by Z≥0 (we
have deg pij = 1) and I2,n is homogeneous with respect to this grading generated by Plücker
relations of degree 2, by Lemma 3 we have vS(p̄ij) = vMS

(p̄ij). Here vS : A2,n\{0} → Zd is the
valuation induced by the iterated sequence S and vMS

: A2,n \ {0} → Zd the (quasi-)valuation
defined by the weighting matrix MS of vS as above (see Definition 13).

Inspired by the proof of [45, Proposition 5.2] we obtain the next proposition. The proof is
analogous to the one of Corollary 1 in §2.4.

Proposition 3. For every iterated sequence S the associated quasi-valuation vMS
with weight-

ing matrix MS satisfies grMS
(A2,n) ∼= C[pij ]ij/ inCS (I2,n). Moreover, vMS

is a valuation with
value semi-group S(A2,n, vMS

) generated by vMS
(p̄ij) for 1 ≤ i < j ≤ n.

Proof. As I2,n is homogeneous with respect to a positive grading, we have MS ∈ GRd(I2,n)
and hence, can apply [45, Lemma 4.4] to get grMS

(A2,n) ∼= C[pij ]ij/ inMS
(I2,n). Then the first

part of the claim follows from Proposition 2.

As inCS (I2,n) is prime, grMS
(A2,n) ∼= C[pij ]ij/ inCS (I2,n) is a domain. The rest of the proof

is exactly the same as the proof of Corollary 1 in §2.4.

Corollary 3. For every iterated sequence S the Newton-Okounkov body associated with the
weight valuation vMS

is given by

∆(A2,n, vMS
) = conv(vS(p̄ij) | 1 ≤ i < j ≤ n).
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Proof. By Proposition 3 we have ∆(A2,n, vMS
) = conv(vMS

(p̄ij) | 1 ≤ i < j ≤ n). Therefore
it remains to show vMS

(p̄ij)) = vS(p̄ij) for all i, j ∈ [n]. This follows exactly by the argument
in the proof of Lemma 3.

Theorem 11. For every iterated sequence S we have grS(A2,n) ∼= C[pij ]ij/ inCS (I2,n). More-
over, for every maximal prime cone C of trop(Gr(2,Cn)) there exists a birational sequence S,
such that C[pij ]ij/ inC(I2,n) ∼= grS(A2,n).

Proof. The first part of the claim follows from Theorem 10. We give an alternative proof here,
using the essential sets to illustrate another point of view on the general theorem.

We show that S(A2,n, vS) is generated by vS(pij) for 1 ≤ i < j ≤ n. This implies
S(A2,n, vS) = S(A2,n, vMS

). As vS and vMS
are full rank and hence have one-dimensional

leaves by [11, Remark 4.13] (see also §2.3) we have grS(A2,n) ∼= C[S(A2,n, vS)] and grMs
(A2,n) ∼=

C[S(A2,n, vMS
)]. Therefore, grMs

(A2,n) ∼= grMS
(A2,n). Then the first claim follows by Propo-

sition 3. In order to do so, we use [20, Proposition 2] restated above and show esS(kω2) =
k esS(ω2) for all k ≥ 1.

As ∆(A2,n, vMS
) is integral by Corollary 3, all lattice points in the kth dilation k∆(A2,n, vMS

)
are sums of k lattice points in ∆(A2,n, vMS

). We have esS(ω2) = {vS(p̄ij) | 1 ≤ i < j ≤ n}
by [20, Proposition 2], which are the lattice points in ∆(A2,n, vMS

). Then by Corollary 3 for

f ∈ A2,n with deg f = k ≥ 1 there exist m1, . . . ,mk ∈ esS(ω2) such that vMS
(f) =

∑k
j=1 mj .

In particular, vMS
(f) ∈ k esS(ω2). Hence, we count

|k esS(ω2)| = dimC V (kω2) = | esS(kω2)|

and the claim follows.

For the second part, note that by Algorithm 3 for every shape of tree we can find an iterated
sequence, such that the output has the desired shape (ignoring the labelling for now). There-
fore, for a given maximal prime cone C ⊂ trop(Gr(2,Cn)) consider the corresponding tree TC
and its shape TC . Then find S with TS of shape TC (see also Corollary 4 below). The action of
the symmetric group induces an isomorphism C[pij ]ij/ inTS (I2,n) ∼= C[pij ]ij/ inTC (I2,n). The
rest follows then by the first part.

Remark 5. Note that the essential basis for A2,n (see [20, Remark 5]) induced by
⋃
k≥1 es(kω2)

is an adapted basis for the valuation vS and therefore also for vMS
. Having the notion of

essential sets in this context allowed us to use this (more concrete) basis instead of the (more
abstract) standard monomial basis for vMS

(that exists as MS lies in the Gröbner region) used
in the proof of Theorem 10.

For an iterated sequence S for Gr(2,Cn) denote by TSi the (non-labelled) trivalent tree
underlying the labelled trivalent tree TSi with i leaves in the tree sequence TS . The Algorithm 3
provides a tool for comparing whether two iterated sequences induce isomorphic flat toric
degenerations. Construct TS1 ,TS2 for two such sequences S1, S2 and consider TS1

n and TS2
n . If

TS1
n and TS2

n coincide then

in
T
S1
n

(I2,n) ∼= in
T
S2
n

(I2,n).

The following definition allows us to interpret iterated sequences for Gr(2,Cn) in a combina-
torial way in Corollary 4 below.
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...
...

...
...

Figure 3.6: The tree graph T from level (#of leaves) 3 to 8.

Definition 32. The tree graph T is an infinite graph whose vertices at level i ≥ 3 correspond
to trivalent trees with i leaves. There is an arrow T→ T′, if T has i leaves, T′ has i+ 1 leaves
and T′ can be obtained from T by attaching a new boundary edge in the middle of some edge
of T. There is a unique source T3 at level 3. See Figure 3.6.

Corollary 4. Every iterated sequence S for Gr(2,Cn) corresponds to a path from T3 to TSn
in the tree graph T .

Proof. The underlying unlabelled trees in the sequence TS = (T3, T
S
4 , . . . , T

S
n ) associated to S

define the path T3 → TS4 → · · · → TSn in T .
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3.3 Toric degenerations via plabic graphs

In this section we apply Theorem 10 from §2.4 to the valuation defined by Rietsch-Williams
in [62] on C[Gr(k,Cn)] using the cluster structer. Theorem 12 specifies when their toric de-
generation can be realized as a Gröbner toric degeneration having a Khovanskii basis in terms
of Plücker coordinates. Further, Corollary 6 establishes a connection between the integrality
of their associated Newton-Okounkov body and the weighting matrix of the valuation (as in
Definition 14).

Moreover, we show that the weight vector defined for plabic graphs in joint work with
Fang, Fourier, Hering, and Lanini in [8] is closely realted to the weighting matrix. The
subsection §3.3.3 is based on this joint work, where we establish an explicit bijection between
the toric degenerations of the Grassmannian Gr(2,Cn) arising from maximal cones in tropical
Grassmannians and the ones coming from plabic graphs corresponding to Gr(2,Cn).

4
3

2

1

5

Figure 3.7: A plabic graph.

3.3.1 Plabic graphs

We review the definition of plabic graphs due to Postnikov [60]. This section is closely oriented
towards Rietsch and Williams [62].

Definition 33. A plabic graph G is a planar bicolored graph embedded in a disk. It has n
boundary vertices numbered 1, . . . , n in a counterclockwise order. Boundary vertices lie on
the boundary of the disk and are not colored. Additionally there are internal vertices colored
black or white. Each boundary vertex is adjacent to a single internal vertex.

For our purposes we assume that plabic graphs are connected and that every leaf of a
plabic graph is a boundary vertex. We first recall the four local moves on plabic graphs.

Figure 3.8: Square move (M1)
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(M1) If a plabic graph contains a square of four internal vertices with alternating colors, each
of which is trivalent, then the colors can be swapped. So every black vertex in the square
becomes white and every white vertex becomes black (see Figure 3.3.1).

Figure 3.9: Merge vertices of same color (M2)

(M2) If two internal vertices of the same color are connected by an edge, the edge can be
contracted and the two vertices can be merged. Conversely, any internal black or white
vertex can be split into two adjacent vertices of the same color (see Figure 3.3.1).

Figure 3.10: Insert/remove degree two vertex (M3)

(M3) If a plabic graph contains an internal vertex of degree 2, it can be removed. Equiva-
lently, an internal black or white vertex can be inserted in the middle of any edge (see
Figure 3.3.1).

Figure 3.11: Reducing parallel edges (R)

(R) If two internal vertices of opposite color are connected by two parallel edges, they can
be reduced to only one edge. This can not be done conversely (see Figure 3.3.1).

The equivalence class of a plabic graph G is defined as the set of all plabic graphs that can
be obtained from G by applying (M1)-(M3). If in the equivalence class there is no graph to
which (R) can be applied, we say G is reduced. From now on we only consider reduced plabic
graphs.

Definition 34. Let G be a reduced plabic graph with boundary vertices v1, . . . , vn labelled
in a counterclockwise order. We define the trip permutation πG as follows. We start at a
boundary vertex vi and form a path along the edges of G by turning maximally right at an
internal black vertex and maximally left at an internal white vertex. We end up at a boundary
vertex vπ(i) and define πG = [π(1), . . . , π(n)] ∈ Sn.
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It is a fact that plabic graphs in one equivalence class have the same trip permutation.
Further, it was proven by Postnikov in [60, Theorem 13.4] that plabic graphs with the same
trip permutation are connected by moves (M1)-(M3) and are therefore equivalent. Let πk,n =
(n − k + 1, n − k + 2, . . . , n, 1, 2, . . . , n − k). From now on we focus on plabic graphs G with
trip permutation πG = πk,n. Each path vi to vπk,n(i) defined above, divides the disk into two
regions. We label every face in the region to the left of the path by i. After repeating this for
every 1 ≤ i ≤ n, all faces have a labelling by an (n− k)-element subset of [n]. We denote by
PG the set of all such subsets for a fixed plabic graph G.

A face of a plabic graph is called internal, if it does not intersect with the boundary of
the disk. Other faces are called boundary faces. Following [62] we define an orientation on a
plabic graph. This is the first step in establishing the flow model introduced by Postnikov,
which we use to define plabic degrees on the Plücker coordinates.

Definition 35. An orientation O of a plabic graph G is called perfect, if every internal white
vertex has exactly one incoming arrow and every internal black vertex has exactly one outgoing
arrow. The set of boundary vertices that are sources is called the source set and is denoted
by IO.

Postnikov showed in [60] that every reduced plabic graph with trip permutation πk,n has
a perfect orientation with source set of order k. See Figure 3.12 for a plabic graph with trip
permutation π2,5.

4
3

2

1

5

45

14 34

23

13

12

15

Figure 3.12: A plabic graph with a perfect orientation and source set {1, 2}.

Index the standard basis of Zd+1 by the faces of the plabic graph G, where d = k(n− k).
Given a perfect orientation O on G, every directed path p from a boundary vertex in the
source set to a boundary vertex that is a sink, divides the disk in two parts. The weight
wt(p) ∈ Zd+1

≥0 has entry 1 in the position corresponding to a face F of G, if F is to the left of
p with respect to the orientation. The degree degG(p) is defined the number of internal faces
to the left of the path.

For a set of boundary vertices J with |J | = |IO|, we define a J-flow as a collection of
self-avoiding, vertex disjoint directed paths with sources IO− (J ∩ IO) and sinks J − (J ∩ IO).
Let IO− (J ∩ IO) = {j1, . . . , jr} and f = {pj1 , . . . ,pjr} be a flow where each path pji has sink
ji. Then the weight of the flow is wt(f) := wt(pj1) + · · · + wt(pjr). Similarly, we define the
degree of the flow as degG(f) = degG(pj1) + · · · + degG(pjr). By FJ we denote the set of all
J-flows in G with respect to O.
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Valuation and plabic degree

In [62] Rietsch-Williams use the cluster structure on Gr(k,Cn) (due to Scott, see [63]) to define
a valuation on C(Gr(k,Cn)) \ {0} for every seed. In fact, a plabic graph G defines a seed in
the corresponding cluster algebra. A combinatorial algorithm associated a quiver with G (see
e.g. [62, Definition 3.8]). The corresponding A-cluster is given in terms of Plücker coordinates
pJ , where J is a face label in G as described above.

As we are only interested in the values on Plücker coordinates of this valuation, we do
not recall it in detail hear but refer the reader to [62, §7]. The main idea to construct the
valuation is to use X -cluster variables as coordinates for C[Gr(k,Cn)] and send a Laurent
polynomial in those to its lexicographically minimal term. This is another instance of a lowest
term valuation that we have encountered already in §3.2 in the context of birational sequences.

Let Ak,n := C[Gr(k, n)], then the Rietsch-Williams valuation in [62, Definition 7.1] can
be restricted to a valuation vG : Ak,n \ {0} → (Zd+1,≺). The total order ≺ on Zd+1 is the
lexicographic order with respect to a fixed order on the coordinates (see [62, Definition 7.1]).

For J ∈
([n]
k

)
let fJ ∈ FJ be such that degG(fJ) = min{degG(f) | f ∈ FJ}. Then on a Plücker

coordinate p̄J ∈ Ak,n the valuation vG is given by

vG(p̄J) = wt(fJ).

Remark 6. This is for us, given the notion of degree, the most convenient way to write it
and in fact equivalent to how it is described in [62].

We define closely related to the valuation the following notion of degree for Plücker vari-

ables in C[pJ ]J and associate a weight vector in R(nk).

Definition 36. For J ∈
([n]
k

)
and a plabic graph G, the plabic degree of the Plücker variable

pJ is defined as

degG(pJ) = min{degG(f) | f ∈ FJ}.

It gives rise to a weight vector wG ∈ R(nk) by setting (wG)J = degG(J).

By [61, Lemma 3.2] and its proof, the plabic degree is independent of the choice of the
perfect orientation. We therefore fix the perfect orientation by choosing the source set IO = [k].
The following proposition guarantees that the degree (and the valuation) are well-defined. It
is a reformulation of the original statement adapted to our notion degree.

Proposition. ( [62, Corollary 11.4]) There is a unique J-flow in G with respect to O with
degree equal to degG(pJ).

Example 11. Consider the plabic graph G with perfect orientation from Figure 3.12 and
source set is IO = [2]. We compute degG(pJ) and vG(p̄J) for all J ∈

(
[5]
2

)
.

Order the faces of G by

F23, F34, F45, F15, F12, F13, F14.

For example, consider J = {1, 4}. There are two flows, f1 and f2 from IO to J = {1, 4}. Both
consist of only one path from 2 to 4. One of them, say f1, has faces labelled by {2, 3}, {1, 5}
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pJ F23 F34 F45 F15 F12 F13 F14 degG(pJ) e(MG)

p12 0 0 0 0 0 0 0 0 0

p13 1 0 1 1 1 0 0 0 13

p14 1 0 0 1 1 0 0 0 10

p15 1 0 0 0 1 0 0 0 6

p23 0 0 1 1 1 0 0 0 12

p24 0 0 0 1 1 0 0 0 9

p25 0 0 0 0 1 0 0 0 5

p34 1 0 1 2 2 1 1 2 22

p35 1 0 1 1 2 1 1 2 18

p45 1 0 0 1 2 1 1 2 15

Table 3.2: The valuation vG for G as in Figure 3.12 on Plücker coordinates, the plabic degrees
and an example for a weight vector e(MG) as in Proposition 4 (the multiplicities in the proof
of Proposiiton 4 are chosen as ri = i and q = 1, the columns are ordered as below).

and {1, 2} to the left, and f2 has faces {2, 3}, {1, 5}, {1, 2} and {1, 3} to the left. Then with
respect to the order of coordinates on Z7 we have

wt(f1) = (1, 0, 0, 1, 1, 0, 0) and wt(f2) = (1, 0, 0, 1, 1, 1, 0).

As degG(f1) = 0 and degG(f2) = 1, we have vG(p̄14) = (1, 0, 0, 1, 1, 0, 0) and degG(p14) = 0. All
other vG(p̄J) and degG(pJ) can be found in Table 3.2.

3.3.2 The valuation vG and the weighting matrix MG

In this section we apply Theorem 10 from §2.4 to the valuation vG by Rietsch-Williams as seen
in the last section. We show that the weight vector defined by the plabic degree on Plücker
coordinates is closely related to the valuation: in fact, taking the initial ideal of the Plücker
ideal with respect to the weighting matrix of vG coincides with the initial ideal with respect
to the plabic weight vector (see Proposition 4). In particular, we obtain that the associated
graded algebra for vG is the quotient of the polynomial ring in Plücker coordinates by the
initial ideal, given it is prime. Moreover, in Corollary 6 we relate the property of the initial
ideal being prime to integrality of the Newton-Okounkov body ∆(Ak,n, vG) studied in [62, §8].
We exhibit the case of Gr(3,C6) in detail below and dedicate §3.3.3 to analyzing the case of
Gr(2,Cn).

Let G be a plabic graph for Gr(k,Cn) with perfect orientation chosen such that [k] is the
source set as above. Consider the weighting matrix MG := MvG of vG as in Definition 14.

That is, the columns of MG are vG(pJ) for J ∈
([n]
k

)
and the rows M1, . . . ,Md+1 are indexed

by the faces of the plabic graph G, where d = k(n − k). Denote the boundary faces of G by
F1, . . . , Fn, where Fi is adjacent to the boundary vertices i and i + 1. Hence, Fk = F∅ and
Mk = (0, . . . , 0). Order the rows of MG such that Mi is the row corresponding to the face Fi
in G.
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Lemma 7. Let r ∈ [n] and J = {j1, . . . , jk} ∈
([n]
k

)
with j1 < . . . js ≤ k < js+1 < · · · < jk.

Set [k] \ {j1, . . . , js} = {i1, . . . , ik−s} with i1 < · · · < ik−s. Then

(Mr)J = #{l | r ∈ [jl, ik−l+1]},

where [jl, ik−l+1] is the cyclic interval (jl > ik−l+1).

Proof. Let f = {pj1 , . . . ,pjk} be a flow from [k] to J , where pji denotes the path with sink
ji. The paths pjr for r ≤ s are “lazy paths”, starting and ending at jr without moving. Let
[k]\{j1, . . . , js} = {i1, . . . , ik−s} with i1 < · · · < ik−s. Hence, for l > s the path pjl has source
ik−l+1 and sink jl. To its left are all boundary faces Fr with r in the cyclic interval [jl, ik−l+1].
Note that ik−l+1 < k < jl, hence k 6∈ [jl, ik−l+1]. In particular, the claim follows

Corollary 5. Recall that LIk,n ⊂ trop(Gr(k,Cn)) is the lineality space of the Plücker ideal
Ik,n. For all r ∈ [n] we have

Mr ∈ LIk,n .

Proof. Consider a Plücker relation RK,L with K ∈
( [n]
k−1

)
and L ∈

( [n]
k+1

)
of form (3.1.1).

Every term in RK,L equals ±pJpJ ′ for some J, J ′ ∈
([n]
k

)
. Let J = {j1, . . . , jk} ∈

([n]
k

)
with

j1 < . . . js ≤ k < js+1 < · · · < jk and J ′ = {j′1, . . . , j′k} ∈
([n]
k

)
with j′1 < . . . j′s′ ≤ k < j′s′+1 <

· · · < j′k. Set [k] \ {j1, . . . , js} = {i1, . . . , ik−s} with i1 < · · · < ik−s and [k] \ {j′1, . . . , j′s′} =
{i′1, . . . , i′k−s′} with i′1 < · · · < i′k−s′ . We further denote J ∪ J ′ \ ([k]∩ (J ∪ J ′)) = {l1, . . . , lm}.
That is {l1, . . . , lm} = {js+1, . . . , jk, j

′
s′+1, . . . , j

′
k} and m = 2k− s− s′. Note that there might

be repetitions among the li. Define for q ∈ [m]

iq :=

 ik−l+1, if ir = jl,

i′k−l′+1, if ir = j′l′ .

With this notation we have

{jl ∈ {js+1, . . . , jk} | r ∈ [jl, ik−l+1]} ∪ {j′l′ ∈ {j′s′+1, . . . , j
′
k} | r ∈ [j′l′ , i

′
k−l′+1]}

= {lq ∈ {l1, . . . , lm} | r ∈ [lq, iq]}.

Consider Mr ∈ R(nk) as a weight vector for C[pJ ]J . Then the Mr-weight on ±pJpJ ′ is

(Mr)J + (Mr)J ′ = #{lq ∈ {l1, . . . , lm} | r ∈ [lq, iq]}.

As #{lq ∈ {l1, . . . , lm} | r ∈ [lq, iq]} depends only on J ∪ J ′, which is equal for all monomials
in RK,L we deduce

inMr(RK,L) = RK,L,

and the claim follows.

Recall the plabic weight vector wG from Definition 36. The following proposition estab-
lishes the connection to what we have seen in §2.4. In terms of the weighting matrix MG , we
observe

wG =

d+1∑
j=k+1

Mj ,

where the sum contains exactly those Mj corresponding to interior faces of G. Let e : Qd+1 →
Q be a linear form. Using the notation as in §2.4 we have e(MG) = (e(vG(pJ))

J∈([n]
k ) ∈ Q(nk).
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Proposition 4. For every plabic graph G there exists a linear form e : Qd+1 → Q satisfying
vG(p̄I) ≺ vG(p̄J) implies e(vG(p̄I)) < e(vG(p̄J)) for I, J ∈

([n]
k

)
, such that for the plabic weight

vector wG we have
ine(MG)(Ik,n) = inwG(Ik,n).

Proof. We use the following two observations following by definition from the fan structure
we chose on trop(Gr(k,Cn)). Firstly, for every q ∈ Z>0 we have inqwG (Ik,n) = inwG (Ik,n).

Secondly, by Corollary 5, and the fan structure on trop(Gr(k,Cn)) we have for r1, . . . , rk ∈
Z≥0 that inwG+r1M1+···+rkMk

(Ik,n) = inwG (Ik,n).
In particular, these observations imply that it is enough to find q, r1, . . . , rk ∈ Z≥0 such

that e(x1, . . . , xd+1) :=
∑k

i=1 rixi +
∑d+1

i=k+1 qxi satisfies

vG(p̄I) ≺ vG(p̄J)⇒ e(vG(p̄I)) < e(vG(p̄J)) for I, J ∈
(

[n]

k

)
.

As vG(pJ) ∈ Zd+1
≥0 , it suffices to find q, r1, . . . , rk ∈ Z≥0 such that all e(vG(pJ)) are distinct. If

we choose r1, . . . , rk ∈ Z>0 big enough with |ri − rj | big enough and q ∈ Z>0 relatively small,
this is the case and the claim follows.

Example 12. Consider the plabi graph G with perfect orientation as in Figure 3.12. We have
seen the images of vG in Table 3.2 above. Note that the columns corresponding to the faces
of G are ordered as we fixed above. We have F23 = F1, F34 = F2, . . . , F12 = F5. In particular,
in the row for pJ the entries in columns F23, . . . , F14 give vG(p̄J). For example, for p14 these
entires are 1, 0, 0, 1, 1, 0, 0 and vG(p̄14) = (1, 0, 0, 1, 1, 0). The matrix MG is the transpose of
the matrix with columns Fi as in the table. The last column e(MG) corresponds to the linear
form e : Z7 → Z given by

e(x1, . . . , x7) = x1 + 2x2 + 3x3 + 4x4 + 5x5 + x6 + x7.

It is an example of a linear form as in the proof of Proposition 4 with ri = i and q = 1.

Theorem 12. If inwG (Ik,n) is prime we have

grvG (Ak,n) ∼= C[pJ ]J/ inwG (Ik,n).

Moreover, ∆(Ak,n, vG(pJ)) = conv(vG(p̄J) | J ∈
([n]
k

)
) and the Plücker coordinates form a

Khovanskii basis for (Ak,n, vG).

Proof. Consider e : Qd+1 → Q as in Proposition 4. Then by Lemma 4 we have

inwG (Ik,n) = ine(MG)(Ik,n) = inMG (Ik,n).

In particular, inMG (Ik,n) is prime. Moreover, as Ik,n is homogeneous with respect to the usual
grading on the polynomial ring C[pJ ]J and generated by elements of degree 2, we can apply

Theorem 10 and obtain ∆(Ak,n, vG) = conv(vG(pJ) | J ∈
([n]
k

)
). Recall the (quasi-)valuation

vMG with weighting matrix MG . From the proof of Theorem 10 we further deduce that

S(Ak,n, vG) = S(Ak,n, vMG ).

Hence, by [45, Lemma 4.4] grvG (Ak,n) = grMG (Ak,n) ∼= C[pJ ]J/ inMG (Ik,n) and the claim
follows.
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Corollary 6. If ∆(Ak,n, vG) is not integral, then inwG (Ik,n) is not prime.

Proof. If ∆(Ak,n, vG) is not integral it is in particular not the convex hull of vG(pJ) ∈ Zd+1

for J ∈
([n]
k

)
. Then the semigroup S(Ak,n, vG) is also not generated by vG(pJ) for J ∈

([n]
k

)
.

By Theorem 12 in hence follows, that inwG (Ik,n) cannot be prime.

The case of Gr(2,Cn)

We show in §3.3.3 that inwG (I2,n) is prime for every plabic graph G for Gr(2,Cn) (see The-
orem 15). Further, we show that for every isomorphism class of maximal prime cones in
trop(Gr(2,Cn)) there exists a plabic graph G such that inwG coincides with an initial ideal
from a prime cone in the equivalence class. Then Theorem 12 yields the following corollary.

Corollary 7. For every plabic graph G for Gr(2,Cn) there exists a maximal prime cone
C ⊂ trop(Gr(2,Cn)) such that

grvG(A2,n) = C[pij ]ij/ inC(I2,n).

In particular, the special fibre of the toric degeneration of Gr(2,Cn) given in Rietsch-Williams
by vG occurs also as a special fibre in a Gröbner toric degeneration as in (2.2.4). Moreover,
for every maximal cone C ⊂ trop(Gr(2,Cn)) there exists a plabic graph G such that the toric
variety Proj(grvG (A2,n)) is isomorphic to V (inC(I2,n)).

Note that the Corollary implies in particular, that wG ∈ trop(Gr(2,Cn)), which is not
clear by definition. However, we observe in the next subsection that this is also the case for
Gr(3,C6).

The case of Gr(3,C6)1

For Gr(3,C6) there are (up to moves (M2) and (M3)) 34 plabic graphs. We compute for each
of them the plabic weight vector wG and the initial ideal inwG (I2,n). Before stating the results
of our computation we review what is known about trop(Gr(3,C6)) from [64]. There are 7
isomorphism classes of maximal cones in trop(Gr(3,C6)), labelled by

FFGG, EEEE, EEFF1, EEFF2, EEFG, EEEG, EEFG.

The last six are prime cones, while the initial ideals for cones in the isomorphism classes FFGG
are not prime. The following Theorem summarizes our results. The weight vectors wG for all
34 plabic graphs can be found in Table A.1 in Appendix A.1.

Theorem 13. For every plabic graph G for Gr(3,C6) the plabic weight vector wG lies in
trop(Gr(3,C6)). Up to isomorphism, there are six distinct initial ideals inwG (I3,6), five of
which correspond to ideals from cones in the isomorphism classes

EEFF1, EEFF2, EEFG, EEEG, EEFG.

Two plabic graphs yield a weight vector lying on a ray of type GG of a maximal (non-prime)
cone of type FFGG. These are in fact those plabic graphs, for which ∆(A3,6, vG) is not integral
(see [62, §8]).

1The computations were done in joint work [8]. The code is provided by Hering in [38].
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In [10] they study a combinatorial model for cluster algebras of type D4. The 50 seeds are
given by centrally symmetric pseudo-triangulations of a once punctured disk with 8 marked
points. In the paper they analyze symmetries among the cluster seeds and associate each
seed to an isomorphism class of maximal cones in trop(Gr(3,C6)). Although they consider all
50 cluster seeds, the outcome is similar to ours: they recover only six of the seven types of
maximal cones, missing the cone of type EEEE. In Table A.1 we indicate to which seeds (using
their labelling) the 34 plabic graphs correspond. We observe that our findings match theirs in
the sense that our weight vectors lie in the relative interior of those cones in trop(Gr(3,C6))
they identified with the corresponding seed through symmetries.

3.3.3 Main Theorem for Gr(2,Cn)

From now on we focus on Gr(2,Cn). The main result of this section is Theorem 15 in which
we show that the initial ideal with respect to the plabic weight vector coincides with the
initial ideal corresponding to a certain trivalent tree. In fact, the plabic graph and the tree
are related combinatorially: they can both be obtained from the same triangulation.

Recall the cluster structure of Gr(2,Cn) from §3.1.2. For n ≥ 4, let Dn be a disk with n
marked points on the boundary labelled by 1, . . . , n in the counterclockwise order (or n-gon
for short). For 1 ≤ i, j ≤ n, let (i, j) be the arc connecting the points i and j.

Fix ∆ = ∆e ∪∆d a triangulation of the Dn as in §3.1.2. We define

∆d = {(a1, b1), (a2, b2), . . . , (an−3, bn−3)}

as the set of internal arcs and

∆e = {(1, 2), (2, 3), . . . , (n− 1, n), (n, 1)}

the set of boundary arcs connecting marked points.
A rooted (labelled) tree is a trivalent tree on n leaves with root 1 and the other leaves

labelled counterclockwise with 2, . . . , n. Each triangulation ∆ of Dn gives such a labelled tree
T∆ by considering the dual graph to ∆. More precisely T∆ can be constructed using the
following Algorithm 4. See Figure 3.13 for an example.

Algorithm 4: Constructing a rooted tree T∆ from a triangulation ∆ of Dn.

Input: A triangulation ∆ of Dn.

for every triangle t in ∆ do
draw a vertex vt.

for every two adjacent triangles t, t′ in ∆ do
connect the vertices vt and vt′ by an edge.

for every boundary arc (i, i+ 1) mod n of Dn do
draw a vertex labelled i+ 1 and connect it to the unique vertex vt for which
(i, i+ 1) mod n is an edge of the triangle t.

Output: a rooted tree T∆.
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Figure 3.13: A triangulation of D8 and the corresponding rooted tree (the output of Algo-
rithm 4) after rescaling.

For a Plücker variable pij , recall that the tree degree degT∆
(pij) is the number of internal

edges between leaves i and j (see Definition 25). The tree degree admits an alternative
description in terms of the corresponding triangulation as follows.

We adopt the following notations on cyclic intervals: [i, i] = {i} and for 1 ≤ i < j ≤ n,
let [i, j] = {i, i+ 1, . . . , j} and [j, i] = {j, j + 1, . . . , n} ∪ {1, 2, . . . , i}. The A-degree on Plücker
coordinates is defined for i < j as

aij = degA(pij) := #{(ar, br) ∈ ∆d | {ar, br} ∩ [i, j − 1] has cardinality 1}. (3.3.1)

By definition the following proposition holds.

Proposition 5. For any 1 ≤ i < j ≤ n, degT∆
(pij) = degA(pij).

Definition 37. An internal arc (a, b) in the triangulation ∆ is called connecting [p, q] and
[s, t], if a ∈ [p, q] and b ∈ [s, t] or vice versa. The number of such internal arcs are denoted by
Cs,tp,q and called connection number.

Using this notation, the A-degree on the Plücker coordinates can be written as:

aij = Cj,i−1
i,j−1. (3.3.2)

This alternative description allows us to state the following proposition.

Proposition 6. For 1 ≤ i < j < k < l ≤ n,

(i) aij + akl = aik + ajl if and only if C l,i−1
j,k−1 = 0; when this is the case, aij + akl > ail + ajk.

(ii) ail + ajk = aik + ajl if and only if Ck,l−1
i,j−1 = 0; when this is the case, aij + akl < ail + ajk.

To prove the proposition we need the following properties of the connection numbers that
follow directly from their definition.

Lemma 8. Suppose that 1 ≤ p, q, s, t ≤ n, the following statements hold.

(i) Cs,tp,q = Cp,qs,t .

(ii) Suppose that [s, t] ∩ [p, q] = ∅. For any r ∈ [s, t] such that r 6= s, Cs,tp,q = Cs,r−1
p,q +Cr,tp,q; if

r 6= t, Cs,tp,q = Cs,rp,q + Cr+1,t
p,q .
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(iii) For t ∈ [s, q] such that t 6= q, Cs,ts,q = Cs,ts,t + Cs,tt+1,q.

(iv) Cs,qs,q = Cs+1,q
s,s + Cs+1,q

s+1,q .

Proof of Proposition 6. By (3.3.2) and Lemma 8(ii), we have

aij + akl = Cj,k−1
i,j−1 + Ck,l−1

i,j−1 + C l,i−1
i,j−1 + C l,i−1

k,l−1 + Ci,j−1
k,l−1 + Cj,k−1

k,l−1

aik + ajl = Ck,l−1
i,j−1 + Ck,l−1

j,k−1 + C l,i−1
i,j−1 + C l,i−1

j,k−1 + C l,i−1
j,k−1 + C l,i−1

k,l−1 + Ci,j−1
j,k−1 + Ci,j−1

k,l−1

ail + ajk = C l,i−1
i,j−1 + C l,i−1

j,k−1 + C l,i−1
k,l−1 + Ck,l−1

j,k−1 + C l,i−1
j,k−1 + Ci,j−1

j,k−1.

Notice that in a triangulation, C l,i−1
j,k−1 and Ck,l−1

i,j−1 can not both be zero. The proposition follows
from comparing the terms.

We continue by defining X-degrees in terms of connection numbers that coincide with the
plabic degrees. Having both, plabic and tree degrees, in terms of connection numbers allows
us to directly compare them on the triangulation and prove our main theorem. Before we can
do so we need a combinatorial tool relating triangulations and plabic graphs. Kodama and
Williams associate to a triangulation ∆ a plabic graph G∆ in [48, Algorithm 12.1]. We recall
the algorithm below.

Algorithm 5: Constructing a plabic graph G∆ from a triangulation ∆ of Dn.

Input: A triangulation ∆ of Dn.

for every triangle t in ∆ do
draw a black vertex bt and connect it to the vertices of the t.

for every every marked point m ∈ ∂Dn do
if exist an arc (m, k) ∈ ∆ then

draw a white vertex wm for m

else
draw a black vertex bm for m

Erase the arcs ∆d and ∆e, contract adjacent vertices of the same color.
Output: a graph D∆

n with n boundary vertices
for every boundary vertex m of D∆

n do
add an edge em such that no two em1 , em2 intersect for m1,m2 boundary vertices of
D∆
n

Embed the resulting graph in a disk such that the new vertices of edges em lie on the
boundary.

Output: a plabic graph G∆.

We call D∆
n (the first output of Algorithm 5) the plabic n-gon associated to the triangu-

lation ∆. Boundary vertices of D∆
n are colored by black or white.

Fix a perfect orientation on G∆ such that the source set is {1, 2}. Recall the definition of
plabic degree. The plabic degree has an alternative description in terms of the corresponding
triangulation as follows. For a fixed triangulation ∆ of Dn the X-degrees of the Plücker
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coordinates are defined by

xij = degX(pij) =



0, if i = 1, j = 2

Cj,1j,1 + C2,j−1
1,1 , if i = 1, 2 < j ≤ n

Cj,1j,1 , if i = 2, 2 < j ≤ n

Ci,1i,1 + Cj,1j,i−1, otherwise.

(3.3.3)

Theorem 14. For any 1 ≤ i < j ≤ n, degG∆
(pij) = degX(pij).

Example 13. We examine Theorem 14 in the case where the triangulation ∆ is given by
∆d = {(2, 4), (2, 5), . . . , (2, n)}.

Claim: For every 2 < j ≤ n, degG∆
(P1j) = degG∆

(P2j) = 0 and for every 2 < i < j ≤ n,
degG∆

(Pij) = n− j + 1.

Proof of Claim. The first statement follows from the fact that for i ∈ {1, 2} and for 2 < j ≤ n
there is a path from i to j having only boundary faces of G∆ to its left (see Figure 3.14). For
the second part of the claim we observe that there there is a (unique) path from 1 to j having
only boundary faces of G∆ to its left. Further, there is a unique minimal path (with respect
to the number of faces on its left) from 2 to i which does not intersect the one from 1 to j.
We count that the second path has n− j + 1 faces on its left, namely those coming from the
internal arcs (2, n), . . . , (2, j).

By straightforward computations, Theorem 14 holds in this case.
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Figure 3.14: A plabic 8-gon for Gr(2,C8) and the corresponding plabic graph with perfect
orientation.

In order to prove Theorem 14 by induction on n, we need the following properties of
X-degrees.

Proposition 7. For 1 ≤ i < j < k < l ≤ n,

(i) We have xij + xkl = xik + xjl if and only if C l,i−1
j,k−1 = 0. In this is the case xij + xkl <

xil + xjk.

(ii) We have xil + xjk = xik + xjl if and only if Ck,l−1
i,j−1 = 0. In this is the case xij + xkl >

xil + xjk.
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Proof. First notice that by Lemma 8(iii), for 2 < i < j ≤ n, xi,j = Ci,1i,1 + Cj,1j,1 + Cj,12,i−1. The
proof is separated into four cases:

(i) When 2 < i < j < k < l ≤ n, we have:

xij + xkl = Ci,1i,1 + Cj,1j,1 + Ck,1k,1 + C l,1l,1 + Cj,12,i−1 + C l,12,k−1, (3.3.4)

xik + xjl = Ci,1i,1 + Cj,1j,1 + Ck,1k,1 + C l,1l,1 + Ck,12,i−1 + C l,12,j−1, (3.3.5)

xil + xjk = Ci,1i,1 + Cj,1j,1 + Ck,1k,1 + C l,1l,1 + C l,12,i−1 + Ck,12,j−1. (3.3.6)

By Lemma 8 (i) and (ii), subtracting (3.3.4) from (3.3.5) gives

Ck,12,i−1 + C l,12,j−1 − C
j,1
2,i−1 − C

l,1
2,k−1 = −Cj,k−1

2,i−1 − C
l,1
j,k−1 = −C l,i−1

j,k−1.

Subtracting (3.3.6) from (3.3.5) we obtain

Ck,12,i−1 + C l,12,j−1 − C
l,1
2,i−1 − C

k,1
2,j−1 = −Ck,1i,j−1 + C l,1i,j−1 = −Ck,l−1

i,j−1 .

These computations prove the proposition in this case.

(ii) When i = 1 < 2 < j < k < l ≤ n, we have:

x1j + xkl = Cj,1j,1 + C2,j−1
1,1 + Ck,1k,1 + C l,1l,1 + C l,12,k−1, (3.3.7)

x1k + xjl = Ck,1k,1 + C2,k−1
1,1 + Cj,1j,1 + C l,1l,1 + C l,12,j−1, (3.3.8)

x1l + xjk = C l,1l,1 + C2,l−1
1,1 + Cj,1j,1 + Ck,1k,1 + Ck,12,j−1. (3.3.9)

Again by Lemma 8, subtracting (3.3.7) from (3.3.8) gives

C2,k−1
1,1 − C2,j−1

1,1 + C l,12,j−1 − C
l,1
2,k−1 = −C l,n2,k−1 + C l,n2,j−1 = −C l,nj,k−1.

Subtracting (3.3.9) from (3.3.8) gives

C2,k−1
1,1 − C2,l−1

1,1 + C l,12,j−1 − C
k,1
2,j−1 = −Ck,l−1

1,1 − Ck,l−1
2,j−1 = −Ck,l−1

1,j−1.

(iii) When i = 2 < j < k < l ≤ n, the proof is similar.

(iv) When i = 1 < j = 2 < k < l ≤ n, we have

x12 + xkl = Ck,1k,1 + C l,1l,1 + C l,12,k−1,

x1k + x2l = Ck,1k,1 + C2,k−1
1,1 + C l,1l,1 ,

x1l + x2k = C l,1l,1 + C2,l−1
1,1 + Ck,1k,1 .

It is then easy to deduce the corresponding statement in the proposition.
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Proof of Theorem 14 Fix a triangulation ∆ = ∆d ∪ ∆e and let G∆ be the associated
plabic graph obtained by applying Algorithm 5 to ∆. The proof of the theorem is executed by
induction on n. The case n = 4 contains only two different triangulations and can be verified
directly. Suppose n ≥ 5. First notice that there exists at least two black boundary vertices in
the plabic n-gon D∆

n and vertices 1 and 2 can not be both black vertices. In fact, all neighbors
of a black vertex are white vertices. Let s be the black vertex different from 1 and 2 such
that there is no black vertex in [s + 1, n]. Then s − 1, s + 1, . . . , n are all white vertices and
(s− 1, s+ 1) ∈ ∆d.

Lemma 9 (Sector lemma). If (s−1, p) ∈ ∆d for some s+1 < p ≤ n, then (s−1, s+2), . . . , (s−
1, p− 1) ∈ ∆d.

Proof. Let q ∈ [s + 2, p − 1] be the smallest integer such that (s − 1, q) /∈ ∆d. In this case,
there exists an internal arc (q, r) for some r ∈ [q+1, p−1]. This is not possible since otherwise
there must be at least one black vertex in [q + 1, r − 1].

Corollary 8. If s = 3, then ∆d = {(2, 4), (2, 5), . . . , (2, n)}.

Proof. When s = 3, there are only two black vertices 1 and 3 in the plabic n-gon, which
implies that (2, 4), (2, n) ∈ ∆d. By the Sector Lemma, for any r ∈ [5, n− 1], (2, r) ∈ ∆d.

According to the corollary, if s = 3, by Example 13, Theorem 14 holds. From now
on suppose that s 6= 3. The following lemma explains the local orientation on the square
containing s− 1, s, s+ 1 in the plabic graph G∆, see Figure 9. In the plabic graph G∆, we use
1, 2, . . . , n to denote the internal vertices connected to boundary vertices 1, 2, . . . , n. First note
that, as s is a boundary black vertex, it has already one edge going out in the plabic graph
G∆. Hence, the edges in G∆ connecting s−1 and s+1 to s have orientations pointing towards
s (see e.g. Figure 3.15). Suppose that the theorem holds for any triangulation of Dn−1. Let
Dn be the disk with n− 1 markes points obtained from Dn by removing the makred point s.
The triangulation ∆ of Dn induces a triangulation ∆ = ∆d ∪∆e of Dn where

∆d = ∆d\{(s− 1, s+ 1)} and ∆e = (∆e\{(s− 1, s), (s, s+ 1)}) ∪ {(s− 1, s+ 1)}.

We associate to Dn and ∆ a plabic (n− 1)-gon D
∆
n and a plabic graph G∆. For 1 ≤ i < j ≤ n

and i, j 6= s, we denote degG∆
(pij) and degX(pij) the corresponding degrees with respect to

G∆ and ∆. If one of i and j equals s, we set these degrees to be zero. The connection numbers
for ∆ are denoted by C

r,s
p,q. For 1 ≤ i < j ≤ n, we denote

vij = degX(pij)− degX(pij) and wij = degG∆
(pij)− degG∆

(pij).

By the induction hypothesis, to prove the theorem, it suffices to show that for any 1 ≤ i <
j ≤ n, vij = wij . We start with the following lemma.

Lemma 10. Suppose 2 < i < s and s < j ≤ n. The face of G∆ corresponding to the internal
arc (s− 1, s+ 1) ∈ ∆d is to the left of any directed path from 1 or 2 to i, and to the right of
any directed path from 1 or 2 to j.

Proof. If there exists a directed path from 1 or 2 to j such that this face is to the left of
the path, then it passes through the vertex s. This is impossible, since all arrows at s not
connecting to the boundary go towards s. The proof of the statement on i is similar.
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The rest of this section is dedicated to proving that degG∆
(pij) = degX(pij) for all 1 ≤ i <

j ≤ n. We distinguish the following 13 cases:

(i) i = 1 < j < s. By Lemma 10, we have w1j = 1 and

v1j = Cj,1j,1 + C2,j−1
1,1 − Cj,1j,1 − C

2,j−1
1,1 = Cj,1j,1 − C

j,1
j,1 = 1.

(ii) i = 1 < s < j ≤ n. By Lemma 10, we have w1j = 0 and a similar argument as above
shows that v1j = 0.

(iii) 1 = i < j = s < n. We need to show that degG∆
(p1s) = degX(p1s). Notice that a di-

rected path from 2 to s must pass through either s−1 or s+1. Since there always exists
a directed path from 2 to s + 1, by minimality, we have degG∆

(p1s) = degG∆
(p1,s+1).

On the other hand, since there is no internal arc meeting s, we have Cs,1s,1 = Cs+1,1
s+1,1 and

C2,s−1
1,1 = C2,s

1,1 . We compüute

degX(p1s) = Cs,1s,1 + C2,s−1
1,1 = Cs+1,1

s+1,1 + C2,s
1,1 = degX(p1,s+1).

Now the claim follows from the case s < j = s+ 1 ≤ n.

(iv) 1 = i < j = s = n. In this case, a directed path from 2 to s must pass through s− 1 =
n − 1, since it cannot pass through 1. Therefore degG∆

(p1n) = degG∆
(p1,n−1). As

(1, n−1) ∈ ∆d, we have Cn,1n,1 = 0 and Cn−1,n−1
1,1 = Cn−1,1

n−1,1 . We can hence apply Lemma 8
(2) and obtain

degX(p1n) = Cn,1n,1 + C2,n−1
1,1 = C2,n−2

1,1 + Cn−1,1
n−1,1 = degX(p1,n−1).

The statement follows from Case (i).

(v) i = 2 < j ≤ s. This(ese) case(s) can be examined in a similar manner as the correspond-
ing cases for i = 1.

(vi) i = 2 < s + 1 ≤ j . The proof of this case is similar to the proof of Case (i). Nevertheless,
we repeat the argument since this case is applied to prove Case (xii). By Lemma 10, we

have w2j = 0. On the other hand v2j = Cj,1j,1 − C
j,1
j,1 = 0, since there are no internal arcs

of ∆d (or ∆d) entirely contained in [j, 1].

(vii) 2 < i < s < j . By Lemma 10, wij = 1. By definition, vij = (Ci,1i,1 − C
i,1
i,1) + (Cj,1j,i−1 −

C
j,1
j,i−1). Since i 6= s, the second bracket gives zero. The first bracket gives 1, as the

internal arc (s− 1, s+ 1) is no longer in ∆.

(viii) 2 < s < i < j . By Lemma 10, wij = 0. A similar argument as above shows vij = 0.

(ix) 2 < i < j < s. By Lemma 10, wij = 2. A similar argument as above shows vij = 2.

(x) 2 < i = s < j = s + 1 . We consider directed paths from 1 to s+1 and from 2 to s. Since
the vertex s + 1 is occupied, to reach the vertex s, the path from 2 to s is forced to go
through s− 1, which shows degG∆

(ps,s+1) = degG∆
(ps−1,s+1).
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By Case (i) we have proved, degG∆
(ps−1,s+1) = degX(ps−1,s+1). It suffices to show that

degX(ps,s+1)− degX(ps−1,s+1) = 0. Since s− 1 > 2, the left hand side equals

Cs,1s,1 + Cs+1,1
s+1,s−1 − C

s−1,1
s−1,1 − C

s+1,1
s+1,s−2.

By applying Lemma 8 several times, we obtain

degX(ps,s+1)− degX(ps−1,s+1) = Cs,1s,1 + Cs+1,1
s+1,s−1 − C

s−1,1
s−1,1 − C

s+1,1
s+1,s−2

= Cs−1,1
s−1,1 − C

s,1
s−1,s−1 + Cs+1,1

s+1,s−1 − C
s−1,1
s−1,1 − C

s+1,1
s+1,s−2

= −Cs,ss−1,s−1 − C
s+1,1
s−1,s−1 + Cs+1,1

s+1,s−1 − C
s+1,1
s+1,s−2

= −Cs,ss−1,s−1 − C
s+1,1
s+1,s−1 + Cs+1,1

s+1,s−1

= −Cs,ss−1,s−1.

The first two equalities follow from point (4) and (2) of Lemma 8 and the third one
by combining (1) and (2) of Lemma 8. Since there is no internal arc touching s, the
connection number Cs,ss−1,s−1 is zero and the statement follows.

(xi) i = s < s + 1 < j . We claim that degG∆
(psj) = degG∆

(ps+1,j). To compute these de-
grees, we have to consider directed paths from 1 to j and from 2 to s. Note that the
path of minimal degree from 1 to j is the same for both calculations.

Consider paths from 2 to s or s+ 1. As all edges in G∆ meeting s+ 1 connect to black
vertices, there is a unique black vertex v such that the edge connecting v and s+ 1 goes
towards s+ 1 (see e.g. Figure 3.15). Let (p, q, s+ 1) be the triangle in ∆ corresponding
to v and assume that p < q, then p ≤ s − 1. Since v has an outgoing edge to s + 1,
the edge between p and v is directed from p to v. Hence, the plabic graph has a path
p → v → s + 1. As p and s + 1 are boundary vertices, and s + 1 can only have one
incoming vertex, every path from 2 to s or s + 1 has to pass through p. Note that the
path of lowest degree must end with p→ v → s+ 1→ s, so the claim follows.

By Case (viii), degG∆
(ps+1,j) = degX(ps+1,j), hence it suffices to show that degX(psj) =

degX(ps+1,j). Their difference is given by

(Cs,1s,1 − C
s+1,1
s+1,1 ) + (Cj,1j,s−1 − C

j,1
j,s ).

As there is no internal arc incident to the vertex s, we have Cs,1s,1 = 0 and Cj,1j,s−1 = Cj,1j,s .

It follows from our assumptions on s that Cs+1,1
s+1,1 = 0.

(xii) 2 < i < j = s < n. From Case (vi), we deduce that degG∆
(p2,s+1) = Cs+1,1

s+1,1 = 0. This
implies that we can find a path from 1 to s+ 1 of plabic degree 0. Moreover, since there
is an edge between s+1 and s oriented towards the latter, we have just shown that there
exists a path from 1 to s which does not contribute to the plabic degree of pis. It follows
that degG∆

(pis) = degG∆
(pi,s+1). By Case (vii), degG∆

(pi,s+1) = degX(pi,s+1), hence it
suffices to show that degX(Pis) = degX(Pi,s+1): this follows from Lemma 8 (3) and the
fact that no internal arcs end at s.

(xiii) 2 < i < j = s = n. If s = n, then (1, n − 1) ∈ ∆d and the edge between 1 and n has
to be oriented towards n, since 1 is a white vertex and has already an edge going in.
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Figure 3.15: A picture for Case (xi)

This implies that only the path from 2 to i contributes to the plabic degree of pin and
hence degG∆

(pin) = degG∆
(p1i). On the other hand, degX(p1i) = Ci,1i,1 + C2,i−1

1,1 and

degX(pin) = Ci,1i,1 + Cn,1n,i−1. Since there is no internal arc meeting the vertex n, the

connection numbers C2,i−1
1,1 and Cn,1n,i−1 = Cn,i−1

n,1 coincide. To conclude we hence have to
show that degX(p1i) = degG∆

(p1i), but this has been dealt with in Case (i).

Main theorem

Let ∆ = ∆d ∪∆e be a triangulation of Dn and let T∆ be the labelled tree corresponding to

∆. Recall that the tree degrees give the weight vector wT∆
= (−degT∆

(pij))ij ∈ R(n2). Let

inT∆
(I2,n) = inwT∆

(I2,n). Similarly, consider wP = (degG∆
(pij))ij ∈ R(n2) the weight vector

associated to a plabic graph G∆ from Definition 36 and let inG∆
(I2,n) = inwG∆

(I2,n).

We are now prepared to prove the main theorem as stated in the introduction. We restate
it here with the notation introduced in the previous paragraphs.

Theorem 15. For a given triangulation ∆ of Dn, we have inT∆
(I2,n) = inG∆

(I2,n).

Proof. Recall that from Definition 25 that wT∆
∈ trop(Gr(2,Cn)). More precisely, wT∆

lies
in the relative interior of a maximal cone C∆ of trop(Gr(2,Cn)). To prove the theorem, it
suffices to show that wG∆

lies in the relative interior of the same cone.

First note that every arc (a, b) of ∆ connecting [l, i − 1] and [j, k − 1] divides the disk
Dn into two parts. One of these two parts contains the marked points in [i, j − 1] and has
empty intersection with the set of marked points [k, l− 1]. We deduce that every internal arc

connecting [i, j − 1] and [k, l− 1] intersects (a, b) and therefore C l,i−1
j,k−1 6= 0 implies Ck,l−1

i,j−1 = 0.
The same argument, applied to (l, i, j, k) instead of (i, j, k, l), shows the opposite implication.

We conclude that C l,i−1
j,k−1 6= 0 if and only if Ck,l−1

i,j−1 = 0.

From Proposition 7 it follows that for every 1 ≤ i < j < k < l ≤ n, the minimum of the
numbers xij + xkl, xik + xjl, xil + xjk is attained exactly twice. In particular, by Theorem 14,
this implies that inG∆

(pijpkl − pikpji + pilpjk) is a binomial. Further, by Propositions 5 and 7
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Figure 3.16: Mutation at the arc (1, 6).

we deduce
inG∆

(pijpkl − pikpji + pilpjk) = inT∆
(pijpkl − pikpji + pilpjk).

As inT∆
(I2,n) is generated by the initial terms of the Plücker relations with respect to wT∆

we
conclude inG∆

(I2,n) = inT∆
(I2,n).

Corollary 9. For every plabic graph G there exists a maximal prime cone C ⊂ trop(Gr(2,Cn))
with wG ∈ C◦. In particular, G induces a toric degeneration of Gr(2,Cn).

Proof. Recall that for Gr(2,Cn) there is a bijection between seeds of the cluster algebra
C[Gr(2,Cn)] and triangulations ∆ of Dn by [26] and [63]. Plabic graphs for general Gr(k,Cn)
encode (A-)seeds of C[Gr(k,Cn)] given purely in terms of Plücker coordinates (see e.g. [62,
(4.1)]). In particular, for k = 2 there exists a triangulation ∆ of Dn for every such plabic
seed with G∆ = G. In fact, for Gr(2,Cn) there is a bijection between seeds and plabic graphs,
as all seeds consist of only Plücker coordinates. Applying Algorithm 4 we obtain T∆ and a
corresponding cone CT∆

. By Theorem 15 wG ∈ C◦T∆
. The toric degeneration is then given by

the family described in (2.2.4).

3.3.4 Mutation and initial ideals

Recall from §3.1.2 cluster mutation in the case of C[Gr(2,Cn)] following [63]. The aim of
this section is to understand the effect cluster mutation has on the inital ideal in∆(I2,n) =
inT∆

(I2,n). We translate mutation in terms of flipping arcs to rooted trees and analyze how
this changes the associated weight vectors wT∆

.

Let ∆ be a triangulation of Dn and T∆ the associated rooted tree. Recall that T∆ is a
rooted tree with root corresponding to the leaf labelled by 1 and counterclockwise labelling of
the leaves 1, 2, . . . , n. Then T∆ can be seen as a directed graph, where an edge a− b gets an
orientation a −→ b, if the distance of a to 1 is less than the distance of b to 1.

Let a be an internal vertex of T∆ and a −→ b,a −→ c be the adjacent edges. We say
c is the left child of a and b is the right child of a if the labels of the leaves reachable by a
directed path (with respect to orientation) from b are smaller than those reachable from c,
having in mind that leaves are labelled counterclockwise by 1, · · · , n (see Figure 3.17). The
following definition formulates on the level of trees how mutation of triangulations deforms
the corresponding trees. It coincides with the notation of mutation of phylogenetic trees by
Buczynska and Wisniewski in [12].
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Figure 3.17: Mutation on trees

Definition 38. Let a −→ b be an internal edge of T∆ and b be the right child of a. We
further denote by c the left child of a, d the right child of b and e the left child of b (see
Figure 3.17). The rooted tree µa→b(T∆) is the tree obtained from T∆ by defining d to be the
right child of a, b to be the left child of a, c to be the left child of b and e to be the right
child of b. All other edges of the tree remain unchanged.

Remark 7. Let (ar, br) ∈ ∆d be the arc corresponding to a −→ b and (a′r, b
′
r) be the arc

obtained by mutating at (ar, br). Set ∆′ be the triangulation of the n-gon obtained through
the internal arcs

∆′d = ∆d ∪ {(a′r, b′r)} \ {(ar, br)}.

Then, by construction,

T∆′ = µa→b(T∆).

Lemma 11. Given two arbitrary trees T∆ and T∆′ , then there is a sequence of mutations on
inner edges transforming T∆ into T∆′ .

Proof. This is true for the triangulations ∆ and ∆′ on the n-gon Gn and hence by Remark 7
for the labelled trees T∆ and T∆′ .

From the direction of edges in T∆ we obtain a partial order on the vertices. We set for
two vertices x, y ∈ T∆ (internal or leaves)

x ≤ y, if ∃ a directed path x→ y in T∆.

We further define for a vertex x the subset of leaves [n]≤x = {k ∈ [n] | k ≤ x}. Similarly we
define [n]6≤x.

Let a → b be an internal edge of T∆, and we keep the same notation as in Figure 3.17
with c,d, e. Observe that the set of leaves [n] can be decomposed with respect to a → b as
follows

[n] = [n]6≤b ∪ [n]≤b = ([n]6≤a ∪ [n]≤c) ∪ ([n]≤d ∪ [n]≤e).

After mutation the edge a′ → b′ in T∆′ = µa→b(T∆) separates [n]6≤b′ = [n]≤d′ ∪ [n]6≤a′ from
[n]≤b′ = [n]≤e′ ∪ [n]≤c′ . Note that [n]≤x′ = [n]≤x for a vertex x 6= b in T∆ resp. T∆′ . An
example is shown in Figure 3.18.

Consider i, j, k, l ∈ [n] pairwise distinct and the paths between each of them in T∆. Then
there is a unique non-intersecting pair of paths, say i → j and k → l. Let x be the first (in
direction of the paths as indictaed) vertex in which the paths i → k and j → k intersect.
Similary, let y the last vertex that lies on bath paths i→ k and i→ l.
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Figure 3.18: Mutation of the trees corresponding to Figure 3.16. Here we have n = 8 and
[8]≤d = {2, 3}, [8]≤e = {4, 5, 6}, [8]≤c = {7} and [8] 6≤a = {1, 8}.

Definition 39. We define the contracted tree T∆|i,j,k,l to be the trivalent tree with four leaves
i, j, k, l obtained from T∆ by contracting all edges on the paths i→ x, j → x, x→ y, y→ k,
and y → l to one edge only and deleting all other edges from T∆. With an edge of T∆|i,j,k,l
we associate the number of internal edges of T∆ it contracted (see Figure 3.19).

For example, the edge i−x in T∆|i,j,k,l obtains the weight dix = #{internal edges on path i→
x in T∆}. Note that the sums of edge weights along a path between two leaves in T∆|i,j,k,l
equals the corresponding T∆-degree. In particular, the tree T∆|i,j,k,l encodes all necessary
information for computing the initial form in∆(pijpkl − pikpjl + pilpjk).

j

i
x y

k

l
djx

dix

dxy

dyk

dyl

Figure 3.19: The contracted tree T∆|i,j,k,l with edge weights.

We analyze further the tree degrees and their relation to internal edges of T∆. For an

internal edge a→ b in T∆ consider ra→b ∈ R(n2) given by

(ra→b)i,j =

1, if i ∈ [n]≤b, j ∈ [n] 6≤b or vice versa

0, otherwise.
(3.3.10)

Remark 8. The vector −ra→b is in fact a ray generator for the maximal cone CT ⊂
trop(Gr(2,Cn)) by [64, Equation (8)] and [53, Theorem 4.3.5].

Lemma 12. For a labelled trivalent tree T we have wT = −
∑

a→b internal edge of T ra→b.

Proof. Consier i < j in [n]. Then (ra→b)ij is 1 if a→ b lies on the path from i to j in T and
zero otherwise. In particular, this implies∑

a→b internal edge of T

(ra→b)ij = degT (pij).

The claim follows as (wT )ij = −degT (pij).
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The following lemma follows from Lemma 12 and the fact that by definition mutation on
trees only changes one internal edge and keeps all other edges unchanged.

Lemma 13. Let ∆ be a triangulation of Dn and T∆ the corrresponding tree. Consider an
internal edge a→ b of T∆ and let µa→b(T∆) = T∆′ . Denote the internal edge of T∆′ obtained
from a→ b by a′ → b′. Then

wT∆′ = wT∆
+ ra→b − ra′→b′ .

Theorem 16. Let ∆ be a triangulation of the Dn and a→ b be an internal edge of T∆ and
T∆′ = µa→b(T∆). Consider the Plücker relation Ri,j,k,l = pijpkl − pikpjl + pilpjk ∈ I2,n for
i, j, k, l cyclically ordered. Assume in∆(Ri,j,k,l) = pilpjk − pikpjl, then

in∆′(Ri,j,k,l) =

pijpkl − pilpjk, if i ∈ [n]6≤a, j ∈ [n]≤c, k ∈ [n]≤d, l ∈ [n]≤e

in∆(Ri,j,k,l), otherwise.

Proof. Assume i, j, k, l are such that T∆|i,j,k,l is of shape as in Figure 3.19, if necessary reorder
them. We distinguish two cases, a → b contributes to the edge x − y in T∆|i,j,k,l or it does
not.

If a→ b does not contribute to x−y first observe that we are in the ”otherwise” case of the
claim. In this case either a→ b was deleted from T∆ by construction T∆|i,j,k,l (in which case
the claim follows) or it contributes to one of the edges adjacent to a leaf in T∆|i,j,k,l. Assume
without loss of generality that a → b contributes to the edge i − x. Then by Lemma 13 the
T∆-degrees of pij , pik and pil are all changed by ±1 while all others remain the same after
mutation. In particular, this implies the claim.

If a→ b contributes to x−y we further distinguish depending on q = #({x,y}∩ {a,b}):

q = 0 In this case a′ → b′ does not contribute to the edge x′−y′ of T∆′ |i,j,k,l. By the proof of
Lemma 12 the T∆-degrees of pik, pil, pjk, pjl differ by −1 from the T∆′-degrees while the
others stay unchanged. Hence, in∆(Ri,j,k,l) = in∆′(Ri,j,k,l).

q = 1 We assume without loss of generality x = a (otherwise relabel accordingly). After
mutation, the edge a′ → b′ contributes to either i − x′ or jx′. We treat the first case,
the argument for the second is the same. In this case the T∆-degrees of pij , pik, pil equal
the T∆′ degrees while all others differ by −1. In particular, the degree of each monomial
in Ri,j,k,l decreases by 1 and so in∆(Ri,j,k,l) = in∆′(Ri,j,k,l).

q = 0 Observe that this is (up to relabelling if necessary) the case i ∈ [n] 6≤a, j ∈ [n]≤d, k ∈
[n]≤e, l ∈ [n]≤c. The tree T∆′ |i,j,k,l has cherries i, k and j, l. In particular, deg∆′(pikpjl) <
deg∆′(pijpik) = deg∆′(pilpjk) and the claim follows.



Chapter 4

Flag and Schubert varieties

4.1 Preliminary notions

Definition 40. A complete flag in the vector space Cn is a chain

V : {0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = Cn

of vector subspaces of Cn with dimC(Vi) = i.

The set of all complete flags in Cn is denoted by F`n and it has the structure of an
algebraic variety. More precisely, it is a subvariety of the product of Grassmannians Gr(1,Cn)×
Gr(2,Cn)× · · · ×Gr(n− 1,Cn).

Composing with the Plücker embeddings of the Grassmannians, F`n becomes a subvariety

of P(n1)−1 × P(n2)−1 × · · · × P( n
n−1)−1 and so we can ask for its defining ideal In. Each point

in the flag variety can be represented by an n × n-matrix M = (xi,j) whose first d rows
generate Vd. Each Vd corresponds to a point in a Grassmannian. Moreover, they satisfy the
condition Vd ⊂ Vd+1 for d = 1, . . . , n − 1. In order to compute the ideal In defining F`n in

P(n1)−1×P(n2)−1×· · ·×P( n
n−1)−1 we have to translate the inclusions Vd ⊂ Vd+1 into polynomial

equations. We define the map

ϕn : C[pJ | ∅ 6= J ( [n]]→ C[xi,j | i, j ∈ [n]] (4.1.1)

sending each Plücker variable pJ to the determinant of the submatrix of M with row indices
[|J |] and column indices J . The ideal In of F`n is the kernel of ϕn.

Example 14. Consider F`4 ↪→ P3 × P5 × P3. The Plücker variables are

p1, p2, p3, p4, p12, p13, p23, p14, p24, p34, p123, p124, p134, p234.

Then ker(ϕ4) contains the Plücker relation defining Gr(2,C4):

p12p34 − p13p24 + p14p23.

And further relations between Plücker variables associated to different Grassmannians:

p4p23 − p3p24 + p2p34, p4p13 − p3p14 + p1p34,

p4p12 − p2p14 + p1p24, p3p12 − p2p13 + p1p23,

p34p124 − p24p134 + p14p234, p34p123 − p23p134 + p13p234,

p24p123 − p23p124 + p12p234, p14p123 − p13p124 + p12p134,

p4p123 − p3p124 + p2p134 − p1p234.

71
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The above relations form a complete list of generators for the ideal I4.

There is an action of SnoZ2 on F`n. The symmetric group acts by permuting the columns
of M . The action of Z2 maps a complete flag V to its complement, which is defined to be

V⊥ : {0} = V ⊥n ⊂ V ⊥n−1 ⊂ · · · ⊂ V ⊥1 ⊂ V ⊥0 = Cn.

We hence do computations in §4.3 up to Sn o Z2-symmetry.

Recall our notation for SLn from §2.1. Representing flags by matrices corresponds to
realizing the flag variety as the quotient SLn/B. We construct line bundles on SLn/B as
follows. Consider a weight λ ∈ Λ+, it is a character of B (i.e. a morphism of algebraic groups
λ : B → C∗). We have a free action of B on SLn × C, which for b ∈ B, g ∈ SLn and t ∈ T is
given by

b(g, t) := (gb−1, λ(b)t).

Let Lλ be the fibre product SLn ×B C = (SLn × C)/B. Then there is a map

Lλ → SLn/B, given by (g, t)B 7→ gB.

It follows that Lλ is the total space of a line bundle over SLn/B called the homogeneous line
bundle associated to the weight λ. These line bundles satisfy Lmλ = L⊗mλ for m ≥ 1 and are
ample, if λ ∈ Λ++. By the Borel-Weil-Theorem we have the following correspondence between
line bundles Lλ for λ ∈ Λ++ and irreducible highest weight representations

H0(SLn/B,Lλ)∗ ∼= V (λ).

Recall that the highest weight representation is cyclically generated by a highest weight vector
vλ ∈ V (λ). Then the above correspondence induces an embedding

SLn/B ↪→ P(V (λ)), gB 7→ g[vλ].

In particular, we can realize the homogeneous coordinate ring of the flag variety as C[SLn/B] =⊕
k≥0 V (kλ)∗. Similarly, we obtain C[SLn/U ] =

⊕
λ∈Λ+ V (λ) which is a consequence of the

Peter-Weyl-Theorem. The quasi-affine variety SLn/U is sometimes also called base affine
space.

In the next section we consider Schubert varieties. These are subvarieties of SLn/B indexed
by Weyl group elements w ∈ Sn = NSLn(T )/T . We identify w ∈ Sn with a coset representative
in the quotient NSLn(T )/T and consider the Bruhat cell BwB ⊂ SLn. The quotient BwB/B
is called Schubert cell.

Definition 41. For w ∈ Sn the Schubert variety Xw ⊂ SLn/B is defined as the Zariski closure
Xw := BwB/B.

Schubert varieties are normal, not necessarily smooth (but if singular having only rational
singularities) subvarieties of the flag variety. Their dimension equals the length of the asso-
ciated Weyl group element, i.e. dimXw = `(w). The line bundles Lλ can be restricted to
Schubert varieties and the Borel-Weil Theorem generalizes as follows. Fix w ∈ Sn and λ ∈ Λ+,
then

H0(Xw, Lλ)∗ ∼= Vw(λ),
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where Vw(λ) is the Demazure module (see Definition 2 in §2.1) Observe, that the Borel-Weil-
Theorem is in fact a special case as we have Xw0 = SLn/B and Vw0(λ) = V (λ). Using
observation one can generalize many constructions for SLn/B that rely on Borel-Weil to
Schubert varieties. An example of this incidence can be found in the following section when
studying string polytopes for flag and Schubert varieties.
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4.2 String cones and the Superpotential

In this section we study the combinatorics of pseudoline arrangements. We associate to each
in dual ways two collections of polyhedral objects (consisting of two polyhedral cones and a
Rn−1-family of polytopes). We show they are unimodularly equivalent and relate the cones
to the geometry of flag and Schubert varieties. We prove that one of them is the weighted
string cone by Littelmann [52] (see also Berenstein-Zelevinsky [5]). It was used by Caldero [13]
to degenerate flag and Schubert varieties to toric varieties. For the other we show that it is
closely related to the framework of cluster varieties and mirror symmetry by Gross-Hacking-
Keel-Kontsevich [37]. For the flag variety the cone is the tropicalization of their superpotential
while for Schbert varieties a restriction of the superpotential is necessary. In their framework
they also give a construction of toric degenerations using the superpotential. As a corollary
of our combinatorial result we realize Caldero’s degenerations as GHKK-degenerations using
cluster theory.

The section is structured as follows: we recall pseudoline arrangements and define the two
collections of polyhedral objects and unimodular equivalences among them in §4.2.1. In §4.2.2
we show that of the cones is the weighted string cone and in §4.2.3 we show how the other
arises from the superpotential. Then in §4.2.4 we apply our combinatorial result and relate to
toric degenrations.1

4.2.1 Pseudoline arrangements and Gleizer-Postnikov paths

Recall our notation for the symmetriy group Sn from §2.1. In the following section we associate
for w ∈ Sn a diagram called a pseudoline arrangement to every reduced expression w. These
diagrams turn out to be closely related to cluster algebras. In fact, to every pseudoline
arrangement one can associate a quiver and then using the construction summarized in §2.5
define a cluster algebra. We start by introducing the combinatorial tools: to a pseudoline
arrangement we associate two weighted cones and give a unimodular equivalence between
them.

Definition 42. A pseudoline arrangement pa(w) associated to a reduced expression w =
si1 · · · si`(w)

is a diagram consisting of n horizontal pseudolines l1, . . . , ln (or short lines) labelled
at the left end from bottom to top, with crossings indicated by the reduced expression. A
reflection si indicates a crossing at level i (see e.g. Figure 4.4).

For a given reduced expression w = si1 · · · sil(w)
, we associate to each sij the positive root

βij := si1 · · · sij−1(αij ). Then βij = αk,m−1 for k,m < n and sij induces the crossing of the
lines lk and lm in pa(w). The crossing point is a vertex in the diagram and it is labelled
(k,m). As two lines lk, lm cross at most once, there is at most one position with label (k,m).
For a given w the pairs appearing as labels for crossing points are exactly those for which
w(αk,m−1) < 0. Further, the right end of a pseudoline li is a vertex labelled Li. Let pa(w)0

be the set of all vertices in pa(w).

Definition 43. [4, Definition 2.2] Let w ∈ Sn with reduced expression w. Then the quiver
Qw associated to pa(w) has vertices wF associated to faces F of pa(w) and arrows:

(1) if two faces are at the same level separated by a crossing then there is an arrow from

1based on joint work with Ghislain Fourier.
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left to right (see Figure 4.1a);
(2) if two faces are on consecutive levels separated by two crossings then there is an arrow
from right to left (either upwards or downwards, see Figure 4.1b, 4.1c).

Vertices corresponding to unbounded faces are frozen and we disregard arrows between them.
All the other vertices are called mutable.

a b c

Figure 4.1: Arrows of the quiver arising from the pseudoline arrangement.

Recall the notion of of quiver mutation from Definition 16 in §2.5.

Definition 44. Let w ∈ Sn with reduced expression w. A mutation of pa(w) (resp. of w)
is a change of consecutive srsr+1sr in w to sr+1srsr+1 (or vice versa) (see Figure 4.2). We
call a face F of pa(w) mutable if it corresponds to srsr+1sr (or sr+1srsr+1) and denote the
corresponding mutation by µF . The resulting pseudoline arrangement is associated to the
reduced expression µF (w) of w and denoted by pa(µF (w)).

Fin2

Fout2F

Fout1

Fin1

sr+1sr sr

µF
F ′
in2

F ′
out2

F ′F ′
out1

F ′
in1

srsr+1 sr+1

Figure 4.2: Mutation of pseudoline arrangements.

Note, that the quivers Qw and QµF (w)
are related by quiver mutation at the vertex wF .

However, Qw has more mutable vertices than pa(w) has mutable faces. When mutating Qw at
a vertex wF ′ with F ′ not mutable in pa(w), then for µF ′(Qw) there is no reduced expression
of w that would give rise to this quiver via a pseudoline arrangement.

Consider w0 ∈ Sn with reduced expression ŵ0 := s1s2s1s3s2s1 . . . sn−1sn−2 . . . s3s2s1 and
the quiver Qŵ0

. We label the vertices for faces F(i,j) bounded to the left by the crossing of
lines li and lj by w(i,j). In particular, the frozen vertices at the right boundary are labelled
w(n−1,n), . . . , w(1,n) from bottom to top. Referring to their level, the frozen vertices on the
left boundary are labelled by w1, . . . , wn−1 from bottom to top. In the following example we
describe the quiver corresponding to this initial reduced expression ŵ0 for n = 5.

Example 15. Consider ŵ0 = s1s2s1s3s2s1s4s3s2s1 ∈ S5. The pseudoline arrangement and
the corresponding quiver are depicted in Figure 4.3.
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l1

l2

l3

l4

l5

w1

w2

w3

w4 w(1,5)

w(2,5)

w(3,5)

w(4,5)

w(1,4)

w(1,3) w(2,4)

w(1,2) w(2,3) w(3,4)

Figure 4.3: pa(ŵ0) and Qŵ0
with ŵ0 = s1s2s1s3s2s1s4s3s2s1 ∈ S5.

Orientation and paths.

For every pair (li, li+1) with 1 ≤ i ≤ n−1 we give an orientation to a pseudoline arrangement by
orienting lines l1, . . . , li from right to left and lines li+1, . . . , ln from left to right, see Figure 4.4.
Consider an oriented path with three consecutive crossings vk−1 → vk → vk+1 belonging to
the same pseudoline li. Then vk is the intersection of li with some line lj , i.e. vk = v(i,j). If
either i < j and both lines are oriented to the left, or i > j and both lines are oriented to the
right, the path is called non-rigorous. Figure 4.5 shows these two situations. A path is called
rigorous if it is not non-rigorous.

l3

l2

l1 L3

L2

L1

s1 s2 s1

v(1,3)

v(2,3)v(1,2)

Figure 4.4: pa(w0) for w0 = s1s2s1 ∈ S3 with orientation for (l1, l2).

Definition 45. Let w be a fixed reduced expression of w ∈ Sn.

A Gleizer-Postnikov path (or short GP-path) is a rigorous path p in pa(w) endowed with
some orientation (li, li+1) for i ∈ [n− 1]. It has source Lp and sink Lq for p ≤ i and q ≥ i+ 1.
Further, w(i+ 1) ≤ w(p) ≤ w(i) and w(i+ 1) ≤ w(q) ≤ w(i). The set of all GP-paths for all
orientations in the pseudoline arrangement associated to w is denoted by Pw.

Figure 4.5: The two red arrows are forbidden in rigorous paths.

Note that if w(i) < w(i+1) there are no GP-paths of shape (li, li+1) and in case w(p) ≤ w(q)
there are no GP-paths with source Lp and sink Lq.
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Proposition 8. Let w ∈ Sn with reduced expression w. Consider p ∈ Pw of shape (li, li+1).
Then p is either the empty path or does not cross the lines li+1 and li. In particular, p does
not leave the area in pa(w) bounded by li and li+1 to the left.

Proof. Without loss of generality we assume w(i) < w(i+1), otherwise p is empty and we are
done. Further, let Lp be the source of p and Lq the sink. We assume w(p) ≤ w(q), otherwise,
again, p is empty. We focus on the part of pa(w) to the right of the crossing of li and li+1

(which exists as w(i) < w(i+ 1)). Observe the following:
• all lines crossing li do so oriented from top to bottom.
• all lines crossing li+1 do so oriented from bottom to top.

As Lp and Lq lie in between the lines li and li+1 this observation implies that p can not cross
li and if it was to cross li+1 it could not return to Lq, a contradiction. The only possibility
that is left, is if p was to follow li through the crossing with li+1, but then again, it could not
return to Lq.

Cones and polytopes arising from pseudoline arrangements

We define two weighted cones, two cones, and two families of polytopes that arise from Pw for
w reduced expression of w ∈ Sn. We relate the two cones in the forthcoming sections, one to
the weighted string cone (introduced by Littelmann [52] and Berenstein-Zelevinsky [5]), the
other to the tropicalization of the (restriction of the) superpotential for a double Bruhat cell
(see Magee [54]).

The (weighted) GP-cone For w = si1 . . . si`(w)
we label the standard basis of R`(w) by

crossing points in pa(w), i.e. {c(k,m) | w(αk,m−1) < 0}. Sometimes it is also convenient to
use the notation cij := c(k,m), when sij induces the crossing of lk and lm in pa(w). Consider
p ∈ Pw. It is uniquely determined by those vertices in pa(w)0 where p changes from one line
to another. For some 1 ≤ p ≤ i < q ≤ n we can therefore write p as

p = Lp → v(p,j1) → v(j1,j2) → · · · → v(jk,q) → Lq.

Set j0 := p and jk+1 := q, then we associate to p the vector

cp :=
k∑
s=0

c(js,js+1) ∈ R`(w), (4.2.1)

where we set c(i,j) := −c(j,i) if i > j and c(i,i) := 0.

Definition 46. The following polyhedral cone is called GP-cone (due to Gleizer-Postnikov [32]
who call it principal cone):

Cw = {x ∈ R`(w) | (cp)t(x) ≥ 0, ∀p ∈ Pw}. (4.2.2)

Example 16. Consider the reduced expression w0 = s1s2s1 ∈ S3. We endow pa(s1s2s1) with
the orientation for (l1, l2), i.e. l1 is oriented to the left and l2, l3 are oriented to the right (see
Figure 4.4). There are two paths in Ps1s2s1 from L1 to L2,

p1 = L1 → v(1,3) → v(1,2) → v(2,3) → L2 and p2 = L1 → v(1,3) → v(2,3) → L2.
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They yield cp1 = c(1,2) and cp2 = c(1,3) − c(2,3). Similarly for the orientation (l2, l3) we find a
path p3 = L2 → v(2,3) → L3 with cp3 = c(2,3). Then

Cs1s2s1 = {(x(1,2), x(1,3), x(2,3)) ∈ R3 | x(1,2) ≥ 0, x(1,3) ≥ x(2,3) ≥ 0}.

We are interested in a weighted version of this cone to relate it to string polytopes in the
next section. The weighted cone lives in R`(w)+n−1, where the additional basis elements are
indexed c1, . . . , cn−1. By some abuse of notation we denote by cp also the vector (cp, 0 . . . , 0) ∈
R`(w) × {0}n−1 ⊂ R`(w)+n−1.

For every i ∈ [n− 1] we define the following subset of [`(w)]

J(i) := {k ∈ [`(w)] | sik = si} with ni := #J(i). (4.2.3)

Let J(i) = {j1, . . . , jni}, then we set c[i:0] := ci and for 1 ≤ k ≤ ni we define

c[i:k] := ci − cijk − 2
∑

j∈J(i),j>jk

cij +
∑

l∈J(i−1)∪J(i+1),l>jk

cil . (4.2.4)

These vectors are normal vectors to the faces of the following weighted cone.

Definition 47. The weighted Gleizer-Postnikov cone Cw ⊂ R`(w)+n−1 is defined as

Cw :=

x ∈ R`(w)+n−1

∣∣∣∣∣∣ (cp)t(x) ≥ 0 , ∀ p ∈ Pw,

(c[i:k])
t(x) ≥ 0, ∀ i ∈ [n− 1], 0 ≤ k ≤ ni

 . (4.2.5)

Example 17. Consider w0 ∈ Sn and consider the reduced expression ŵ0 defined above Ex-
ample 15. For i ∈ [n− 1] all GP-paths in pa(w0) with orientation (li, li+1) are of form

pi,j := Li → v(i,n) → v(i,n−1) → · · · → v(i,j) → v(i+1,j) → · · · → v(i+1,n) → Li+1.

In particular, the GP-cone Cw0
is described by inequalities defined by the normal vectors

c(i,j+1)− c(i+1,j+1) and c(i,i+1) for i ∈ [n−1] and j ∈ [i+ 1, n−1]. The vectors defining weight
inequalities are (for all i < j):

cj−i − c(i,j) − 2

n−j∑
k=1

c(i+k,j+k) +

n−j−1∑
k=0

c(i+k,j+1+k) +

n−j∑
k=0

c(i+1+k,j+k).

The (weighted) area cone We associate to the set of all GP-paths Pw a second cone. In
this setup, the standard basis of R`(w)+n−1 is indexed by the faces of the pseudoline arrange-
ment {eF | F face of pa(w)}. Namely, there are basis vectors associated to faces F(i,j) bounded
to the left by a crossing (i, j), and to faces Fl unbounded to the left for every l ∈ [n− 1]. Let
p ∈ Pw. We denote by Ap the area to the left of p (with respect to the orientation), i.e. the
area enclosed by p. Note that for non-trivial p, Ap is a non-empty union of faces F in the
pseudoline arrangement. We associate to p the vector

ep := −
∑
F⊂Ap

eF ∈ R`(w)+n−1. (4.2.6)

With a little abuse of notation we denote by ep also the vector in R`(w) obtained by projecting
onto the first `(w) coordinates (forgetting the coordinates belonging to the faces that are
unbounded to the left, which equal 0 in ep).
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Definition 48. For a reduced expression w ∈ Sn, we define the area cone

Sw := {x ∈ R`(w) | (ep)t(x) ≥ 0,∀ p ∈ Pw}. (4.2.7)

Again, we are interested in a weighted extension of this cone. For this, we associate to
every level i ∈ [n − 1] a union of faces. Consider Fi, the face of pa(w) that is unbounded to
the left at level i. As before for crossings we set Fij := F(k,m) if sij in w induces the crossing
of lk and lm in pa(w). We define Ai := Fi ∪

⋃ni
k=1 Fik , then Ai ∩ Ai′ = ∅ if i 6= i′. It is called

the weight area associated to the level i. For each k with 0 ≤ k ≤ ni, we define a vector

e[i:k] := −eFi −
∑

j∈J(i),j≤jk

eFij ∈ R`(w)+n. (4.2.8)

Note that e[i:0] = −eFi and e[i:ni] = −
∑

F⊂Ai eF .

Definition 49. The weighted area cone Sw ⊂ R`(w)+n−1 associated to the reduced expression
w of w ∈ Sn is defined as

Sw :=

x ∈ R`(w)+n−1

∣∣∣∣∣∣ (ep)t(x) ≥ 0 , ∀ p ∈ Pw,

(e[i:k])
t(x) ≥ 0 , ∀ i ∈ [n− 1], 0 ≤ k ≤ ni

 . (4.2.9)

The additional inequalities induced by the e[i:k] are called weight inequalities.

Remark 9. In all four cases, Cw, Cw, Sw and Sw, some of the inequalities might be redundant
and these cones are far from being simplical in general. The vectors ep, cp, e[i:k] and c[i:k] are
normal vectors to the defining hyperplanes of the cones Sw, Cw,Sw and Cw respectively. Not
all of them are normal vectors to facets of these cones in general.

Example 18. Consider the reduced expression ŵ0 ∈ S5. We have seen all GP-paths in pa(w)
in Example 17. Take the path p = L1 → v(1,5) → v(1,4) → v(1,3) → v(1,2) → v(2,3) → v(2,4) →
v(2,5) → L2. The area Ap associated to this path is shaded blue in Figure 4.6. The weight
area A2 corresponding to level 2 is also shown in Figure 4.6 dotted in red.

Ap

F1

F2

F3

F4 F(1,5)

F(2,5)

F(3,5)

F(4,5)

F(1,4)

F(1,3) F(2,4)

F(1,2) F(2,3) F(3,4)

A2

Figure 4.6: The area Ap for p as in Example 18 shaded in blue and the weight area A2 dotted
in red.

Example 19. Consider as in Example 17 ŵ0 ∈ Sn and recall pi,j ∈ Pw0
with i ∈ [n− 1] and

j ∈ [i + 1, n− 1]. The assigned area is Api,j = F(i,j) ∪ F(i,j+1) ∪ · · · ∪ F(i,n) for F(i,k) the area
bounded by v(i,k) to the left. Hence, the cone Sw0

is given by inequalities defined by

epi,j = −eF(i,j)
− eF(i,j+1)

− · · · − eF(i,n)
− eF(i,n+1)

. (4.2.10)
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The additional weight inequalities defining the cone Sw0
are given by the normal vectors

e[i:k] = −eFi − eF(1,i+1)
− eF(2,i+2)

− · · · − eF(k,i+k)
, (4.2.11)

for i ∈ [n− 1] and 0 ≤ k ≤ n− i.

The polytopes Let π : R`(w)+n−1 → Rn−1 be the projection onto the last n−1 coordinates,
also called weight coordinates. We are interested in the preimage π−1(λ) for λ ∈ Rn−1. It is
the intersection of the following hyperplanes for each i ∈ [n− 1] defined by

(c[i:0])
t(x) = λi, ∀ x ∈ R`(w)+n−1. (4.2.12)

Fix w ∈ Sn with reduced expression w. We define a second map τw : R`(w)+n−1 → Rn−1

by τw(x) = ((e[i:ni])
t(x))i=1,...,n−1. The preimage of λ ∈ Rn−1 with respect to τw is also an

intersection of hyperplanes in R`(w)+n−1. For each i ∈ [n− 1] they are defined by

(e[i:ni])
t(x) = λi, ∀ x ∈ R`(w)+n−1. (4.2.13)

Definition 50. For w ∈ Sn with reduced expression w and for λ ∈ Rn−1 we define the
following polytopes in R`(w)+n−1

Sw(λ) := Sw ∩ τ−1
w (λ) and Cw(λ) := Cw ∩ π−1(λ). (4.2.14)

Note that by (4.2.13) (resp. (4.2.12)) we obtain a description of Sw(λ) (resp. Cw(λ)) in
terms of defining equalities and inequalities by replacing the weight inequalities et[i:ni](x) ≥ 0

in (4.2.9) (resp. (ci)
t(x) ≥ 0 in (4.2.5)) by (e[i:ni])

t(x) = λi (resp. (ci)
t(x) = λi). In particular,

the defining normal vectors for Sw (resp. Cw) coincide with those for Sw(λ) (resp. Cw(λ)).
This observation is important in the proof of Theorem 17.

A unimodular equivalence

The above pairs of cones (resp. polytopes) (Sw, Cw) and (Sw, Cw) ( resp. (Sw(λ), Cw(λ)))
have in fact more in common than the combinatorics defining them. To make this statement
precise we need to introduce the notion of unimodular equivalence (see e.g. [40, §2]).

Definition 51. Two polytopes P,Q ⊂ Rd (resp. polyhedral cones C,D ⊂ Rd) are called
unimodularly equivalent if there exists matrix M ∈ GLd(Z) and w ∈ Zd

Q = fM (P ) + w (resp. D = fM (C) + w),

where fM (x) = xM for x ∈ Rd. We denote this by Q ∼= P (resp. C ∼= D).

This notion of equivalence is of particular interest to us because of its implication on the
associated toric varieties. Recall the construction of a projective toric variety XP ⊂ Pd−1

associated with a polytope P ⊂ Rd in [16, §2.1 and §2.3]. Then

Q ∼= P implies XQ
∼= XP . (4.2.15)

We want to construct a unimodular equivalence between Cw and Sw for all reduced ex-
pression w of w ∈ Sn. The following definition is the affine lattice transformation (fM in
Definition 51) that defines the unimodular equivalence. We give it in terms of the bases
{eF | F face of pa(w)} and {c(k,m), ci | v(k,m) ∈ pa(w)0, i ∈ [n − 1]}. Morally, we send a face
F bounded to the left by a crossing to a linear combination of its adjacent crossings (see
(4.2.17)). A face unbounded to the left is sent to the sum of all crossings at its level.
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Definition 52. For w ∈ Sn and w a reduced expression we define the linear map Ψw :
R`(w)+n−1 → R`(w)+n−1 on the basis {−eF } associated to faces F of pa(w). Let F = Fijk be
the face bounded to the left by the crossing induced from sijk = si and J(i) = {j1, . . . , jni}
(see (4.2.3)). Then

Ψw(−eFijk ) := cijk + cijk+1
−

∑
j∈J(i−1)∪J(i+1),

jk<j<jk+1

cij . (4.2.16)

For every level i ∈ [n− 1], we define

Ψw(−eFi) := c[i:1]. (4.2.17)

Example 20. Consider pa(w) for w = s1s2s1 ∈ S3 as in Figure 4.4. The two bases for R5 are

Be = {−eF1 ,−eF2 ,−eF(1,2)
,−eF(1,3)

,−eF(2,3)
} and Bc = {c1, c2, c(1,2), c(1,3), c(2,3)}.

We compute the images of elements in Be and express them in Bc. The coefficients form the
columns of the following matrix with the order of the bases as given above.( 1 0 0 0 0

0 1 0 0 0
−1 0 1 0 0
1 −1 −1 1 0
−2 1 1 −1 1

)
∈ GL5(Z).

The observation in the example above is true in general. We obtain the following Lemma
as a straightforward consequence of the definition of Ψw.

Lemma 14. Let w ∈ Sn with reduced expression w. Order the bases induced by the faces of
pa(w) resp. by the crossing points in pa(w) as

Be = {−eF1 , . . . ,−eFn−1 ,−eFi1 , · · · − eFi`(w)
}, resp. Bc = {c1, . . . , cn−1, ci1 , . . . , ci`(w)

}.

Then Ψw can be represented by a lower triangular matrix M e,c
w with all diagonal entries being

1. In particular, M e,c
w ∈ GL`(w)+n−1(Z).

Corollary 10. With assumptions as in Lemma 14 consider Ψw|R`(w) : R`(w) → R`(w). We
order as before the bases for R`(w) induced by the faces resp. crossing points in pa(w) by

Be = {−eFi1 , · · · − eFi`(w)
}, resp. Bc = {ci1 , . . . , ci`(w)

}.

Then Ψw|R`(w) can be represented by a lower triangular matrix M
e,c
w with all diagonal entries

1. In particular, M
e,c
w ∈ GL`(w)(Z).

Remark 10. The map Ψw restricted to R`(w) is related to the Chamber Ansatz due to
Berenstein-Fomin-Zelevinsky in [3] (see also [30]).

Proposition 9. Let w ∈ Sn with reduced expression w. For every p ∈ Pw we have

Ψw(ep) = cp.

In particular, Ψw sends the normal vector of a defining hyperplane of Sw to the normal vector
of a defining hyperplane of Cw.
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Figure 4.7: A path p changing the line at a crossing (i, j) and the corresponding area Ap.

Proof. We show that for every crossing point (i, j) the coefficient of c(i,j) coincides in Ψw(ep)
and cp. Recall that Ap is the union of all faces to the left of p with respect to the given
orientation. We distinguish three cases:

• If (i, j) lies in the interior of Ap, then four faces F r ⊂ Ap with r ∈ [4] are adjacent to
(i, j). For two of them in Ψw(−eF r) the coefficient of c(i,j) is +1, for the other two it is
−1. Hence, they cancel each other and in Ψw(−ep) it is zero as it is in cp.

• If p contains (i, j) but does not change the line at (i, j), then c(i,j) has coefficient zero
in cp. For Ap, this means that two faces, F 1 and F 2, are adjacent to (i, j). One of the
two, say F 1, is bounded by (i, j) to the left where for F 2, (i, j) is part of the upper or
lower boundary. In particular, Ψw(ep) contains c(i,j) once with positive and once with
negative sign, hence with the coefficient is zero.

• Assume p changes the line at the crossing (i, j). Figure 4.7 shows the three possible
orientations of li and lj . Each yields two possibilities for the path. If in situation 1a,
there is one face F in Ap bounded by (i, j) to the left. So c(i,j) has coefficient 1 in
Ψw(ep). As p changes from li to lj and i < j, also cp contains c(i,j) with coefficient 1.

In cases 2a and 3a, Ap contains only one face bounded by (i, j) below resp. above. Hence
c(i,j) appears with coefficient −1 in Ψw(ep). The same is true for cp: in both cases p
changes from line lj to li but i < j.

Three cases remain to be checked, 1b, 2b and 3b in Figure 4.7. In all of them Ap

contains three faces F 1, F 2 and F 3 adjacent to (i, j). In case 1b, (i, j) bounds one face
to the left and the other two from above, resp. below. This implies that c(i,j) appears
with coefficient −1 in Ψw(ep). As p changes from lj to li the same is true for cp. For
2b and 3b we are in the opposite case: two faces in Ap are bounded to the left, resp.
right, by (i, j) and only one from above, resp. below. Hence, Ψw(ep) contains c(i,j) with
coefficient 1 and the same is true for cp, as p changes from line li to line lj .

For our application later, it remains to show that the normal vectors defining the weight
inequalities are mapped onto each other by Ψw. Recall the weight area Ai = Fi ∪

⋃ni
r=1 F(ir,jr)

of level i ∈ [n− 1], with ni the number of faces bounded to the left of level i.
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Proposition 10. Let w ∈ Sn with reduced expression w. Consider i ∈ [n − 1] with J(i) =
{j1, . . . , jni}. Then for k ∈ [0, ni] we have

Ψw(e[i:k]) = c[i:k+1] and Ψw(e[i:ni]) = c[i:0].

In particular, Ψw sends normal vectors of defining (weight) hyperplanes of Sw to normal
vectors of defining (weight) hyperplanes of Cw.

Proof. We prove the claim by induction on k. By definition we have Ψw(e[i:0]) = Ψw(−eFi) =
c[i:1]. Let 1 ≤ k < ni − 1, then using induction for the third equation, we obtain

Ψw(e[i:k+1])
(4.2.8)

= Ψw(e[i:k] − eFijk+1
)

(4.2.16)
= c[i:k+1] + cijk+1

+ cijk+2
−

∑
j∈J(i−1)∪J(i+1),
jk+1<j<jk+2

cij

(4.2.4)
= ci − cijk+2

− 2
∑

j∈J(i),j>jk+2

cij +
∑

j∈J(i−1)∪J(i+1),
j>jk+2

cij = c[i:k+2].

Now consider e[i:ni] = e[i:ni−1] − eFijni
. We apply Ψw and obtain the following by induction.

Ψ(e[i:ni])
(4.2.8)

= Ψw(e[i:ni−1] − eFjni )
(4.2.16)

= c[i:ni] + cijni
−

∑
j∈J(i−1)∪J(i+1),

jni<j

cij
(4.2.4)

= ci.

We can now prove the first Theorem of this section. It is a more precise formulation of
Theorem 5 as stated in the Introduction.

Theorem 17. Let w ∈ Sn and w a reduced expression. The following polyhedral objects are
unimodularly equivalent

(i) Sw ∼= Cw via Ψw,

(ii) Sw ∼= Cw via Ψw|R`(w) ,

(iii) Sw(λ) ∼= Cw(λ) for all λ ∈ Rn−1 via Ψw.

Proof. We begin by proving (i). From Proposition 9 we know that normal vectors ep of Sw
for p ∈ Pw are mapped to the normal vectors cp of Cw, i.e. Ψw(ep) = cp. Further, from
Proposition 10 we know the same is true for the normal vectors e[i:k] of Sw for i ∈ [n − 1]:
we have Ψw(e[i:k]) = c[i:k+1] for k < ni and Ψw(e[i:ni]) = c[i:0]. As the right hand side of all
defining inequalities is zero, we deduce that Ψw(Sw) = Cw. By Lemma 14, Ψw is given by a
matrix in GL`(w)+n−1(Z) and hence, Sw ∼= Cw.

To show (ii), note that by the same argument as for (i) we have Ψw|R`(w)(Sw) = Cw. By
Corollary 10 we deduce Sw ∼= Cw.
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For (iii) recall that for λ ∈ Rn−1 the polytopes Sw(λ) resp. Cw(λ) are defined by the same
normal vectors as Sw resp. Cw. As above, it is also true that the right hand sides of the
defining (in-)equalities coincides for all normal vectors being mapped onto each other. We
therefore deduce Sw(λ) = Cw(λ).

4.2.2 String cones, polytopes and toric degenerations

Recall from §2.1 our notation for the representation theoretic background regarding SLn. In
this section we recall string polytopes and string cones introduced by Littelmann in [52] and
Berenstein-Zelevinsky in [5] as well as the weighted string cones defined in [52]. We prove
using a result from Gleizer-Postnikov in [32] that these are exactly Cw(λ) resp. Cw and Cw.

Littelmann [52] introduced in the context of quantum groups and crystal bases the so
called (weighted) string cones and string polytopes Qw(λ). The motivation is to find mono-
mial bases for the Demazure modules Vw(λ) for w ∈ Sn and λ ∈ Λ+. Recall that by (2.1.2)

{fmi1αi1
· · · f

mi`(w)
αi`(w)

· vλ ∈ V (λ) | mij ≥ 0} is a spanning set for Vw(λ) depending on a re-

duced expression w = si1 · · · si`(w)
. Littelmann identifies a linearly independent subset of this

spanning set by introducing the notion of adapted string (see [52, p. 4]) referring to a tuple

(a1, . . . , a`(w)) ∈ Z`(w)
≥0 . His basis for Vw(λ) consists of those elements fa1

i1
· · · fa`(w)

i`(w)
· vλ for

which (a1, . . . , a`(w)) is adapted.
For a fixed reduced expression w of w ∈ Sn and λ ∈ Λ+ he gives a recursive definition of

the the string polytope Qw(λ) ⊂ R`(w) ( [52, p. 5], see also [5]). The lattice points Qw(λ)∩Z`(w)

are the adapted strings for w and λ. The string cone Qw ⊂ R`(w) is the convex hull of all
Qw(λ) for λ ∈ Λ+. The weighted string cone Qw ⊂ R`(w)+n−1 is defined as

Qw := conv

( ⋃
λ∈Λ+

Qw(λ)× {λ}
)
⊂ R`(w)+n−1.

By definition, one obtains the string polytope from the weighted string cone by intersecting it
with the hyperplanes given by π−1(λ) as in (4.2.12). The lattice points in the weighted string
cone for w = w0 parametrize a basis of C[SLn/U ] ∼=

⊕
λ∈Λ+ V (λ).

String polytopes are of great interest to us because of Caldero’s work [13] in 2002. He
defines for a Schubert variety Xw a flat family over A1 with generic fibre Xw and special fibre
a toric variety. The family is of form (2.3.2) given by a construction using Rees algebras (see
§2.3). Although not defined using valuations initially, it was realized this way in [43] and [20].
His main tools are Lusztig’s dual canonical basis and the string parametrization due to [5]
and [52]. We summarize his results (restricted to the case of SLn) below.

Let w = si1 · · · si`(w)
be a reduced expression of w ∈ Sn. We extend w to the right to a

reduced expression w0 = wsi`(w)+1
· · · siN of w0. This extension is not unique but the results are

independent of the extension. Caldero realizes the string cone Qw for the Demazure module
Vw(λ) as a face of the string cone Qw0

. He deduces the following Lemma as a consequence
of [52, §1].

Lemma. (see [52], [13, Lemma 3.3]) Let w ∈ Sn with reduced expression w = si1 · · · si`(w)

and choose a reduced expression w0 = wsi`(w)+1
· · · siN . Then the weighted string cone Qw

is obtained from the weighted string cone Qw0
by setting the variables corresponding to

si`(w)+1
, . . . , siN equal to zero.
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Caldero defines a filtration (F≤m)m≥1 on C[SLn/U ] with associated graded algebra the
semi-group algebra C[Qw0

∩ ZN+n−1]. Using the Lemma, he defines a quotient filtration
(F≤m)m≥1 on C[SLn/U ]/Iw, where Iw =

⊕
λ∈Λ+ Vw(λ)⊥ (recall §2.1), i.e. (from what we

have seen in §4.1)

C[SLn/U ]/Iw =
⊕
λ∈Λ+

V (λ)∗/
⊕
λ∈Λ+

Vw(λ)⊥.

The semi-group algebra C[Qw ∩ Z`(w)+n−1] is the associated graded algebra of the quotient
filtration. In particular, he degenerates Xw into a toric variety Y , whose normalization is the
toric variety XQw(λ) associated to the string polytope Qw(λ) for λ ∈ Λ++.

Relation to the GP cones Gleizer and Postnikov develop in [32] a combinatorial model to
describe string cones Qw0

non-recursively for every reduced expression w0 of w0 ∈ Sn. They
use pseudoline arrangements and GP-paths to obtain the following.

Corollary. [32, Corollary 5.8] Let w0 be a reduced expression for w0 ∈ Sn. Then Cw0
= Qw0

.

On our way to showing that a toric variety isomorphic to XQw(λ) arises in the context of
cluster varieties and mirror symmetry, we first generalize Gleizer-Postnikov’s result as follows.

Theorem 18. For every w ∈ Sn with reduced expression w and every extension w0 =
wsi`(w)+1 · · · siN the following polyhedral objects coincide

(i) Cw = Qw,

(ii) Cw = Qw,

(iii) Cw(λ) = Qw(λ) for λ ∈ Rn−1.

In order to prove Theorem 18 we show how to obtain Cw from restricting Cw0
for appropriate

w0. The next subsection is dedicated to introducing restricted paths and concludes with the
proof of Theorem 18.

Restriction of paths

We show that for w0 = wsi`(w)+1
· · · siN we obtain Cw from Cw0

by setting to zero the coordi-
nates corresponding to crossing points ci`(w)+1

, . . . , ciN in pa(w0).

Definition 53. Let w be a reduced expression of w ∈ Sn and fix w0 = wsi`(w)+1
· · · siN .

Consider pw0
∈ Pw0

and draw it in pa(w0). Then cut pa(w0) in two pieces along a vertical
line, such that all crossing points vip corresponding to sip with 1 ≤ p ≤ `(w) are on the left of
the cut and all viq corresponding to siq , `(w) < q ≤ N are on the right (see Figure 4.8). We
define the restriction resw(pw0

) of pw0
to pa(w) as the part of pw0

that is to the left of the
cut.

We label the intersection points of the lines li with the cutting line by L̂i. An alternative
way of describing resw(pw0

) is by removing all vertices v(i,j) from it for which w(αi,j−1) > 0.
Denote by resw(Pw0

) the set of all paths in pa(w) that appear in a restriction of a path in Pw0

(counting each path only once).
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s2 s1 s3 s2 s3 s1

l1

l2

l3

l4

Figure 4.8: A path pw0
∈ Pw0

for w0 = s2s1s3s2s3s1 that restricts to two paths pw,p
′
w ∈ Pw

(in blue to the left of the dashed cut) for w = s2s1s3.

Example 21. Consider w = s2s1s3 and extend it to w0 = s2s1s3s2s3s1 ∈ S4. We draw pa(w)
and endow it with the orientation for (l2, l3). Figure 4.8 shows a GP-path pw0

. Its restriction
resw(pw0

) consists of two GP-paths for w shown in blue to the left of the cut.

Proposition 11. Let w be a reduced expression of w ∈ Sn and fix w0 = wsi`(w)+1
· · · siN .

Consider pw0
∈ Pw0

, then resw(pw0
) is either empty or a union of paths in Pw. In particular,

resw(Pw0
) ⊂ Pw.

Proof. Let pw0
be a path for orientation (li, li+1), i.e. of form pw0

= Li → v(i,j1) → v(j1,j2) →
· · · → v(jk,i+1) → Li+1. To simplify notation we set i = j0 and i + 1 = jk+1. First note that
if w(αjr,jr+1−1) > 0 for all 0 ≤ r ≤ k then resw(pw0

) = ∅. Otherwise resw(pw0
) is a union of

paths
pr = L̂jr → v(jr,jr+1) → · · · → v(jr+s,jr+s+1) → L̂jr+s+1

such that w(αjr+p,jr+p+1−1) < 0 for all 0 ≤ p ≤ s, 0 ≤ r ≤ k and 0 ≤ s ≤ k − r. By definition,
each pr is rigorous and hence, in Pw.

We want to show the other implication, Pw ⊂ resw(Pw0
). In Algorithm 6 we give a

construction to obtain a path in pa(w0) from a given path in Pw. The following proposition
shows that the algorithm always terminates and that the output is in fact a path in Pw0

.

Proposition 12. Algorithm 6 terminates for all pw ∈ Pw and indw0
(pw) ∈ Pw0

.

Proof. By Proposition 8 pw lies in the region of pa(w) in between the lines li and li+1. In
particular, at some point there is a p′ with li+m−p−p′ = li+1 terminating the first loop and a
q′ with li−l+q+q′ = li terminating the second loop.

To see that indw0
(pw) ∈ Pw0

observe that changing the lines as indicated by the algo-
rithm avoids exactly the two situations from Figure 4.5 forbidden in rigorous paths. Hence,
indw0

(pw) is rigorous.

By Proposition 12 we can define the following.

Definition 54. Let w be a reduced expression of w ∈ Sn and fix w0 = wsi`(w)+1
· · · siN . For

pw ∈ Pw we define the induced path indw0
(pw) ∈ Pw0

as the output of Algorithm 6.

Example 22. Consider w = s2s1s3 and extend it to w0 = s2s1s3s2s3s1 ∈ S4. We draw pa(w)
and endow it with the orientation for (l2, l3). Figure 4.9 shows a GP-path pw in blue to the
left of the cut. The extension of pw in red to the right of the cut completes pw to the induced
path indw0

(pw) that is the output of Algorithm 6.
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Algorithm 6: Constructing the induced path indw0
(pw) from pw ∈ Pw.

Input: A path in Pw 3 pw = L̂i−l → vr1 → · · · → vrm → L̂i+m for orientation (li, li+1).

Initialization: extend w to w0 = wsi`(w)+1
· · · siN ;

complete pa(w) to pa(w0) with orientation for (li, li+1);
set p = q = 0 and p̂w = pw.
for p < m− 1 do

follow li+m−p with respect to the orientation to the next crossing with a line
li+m−p−p′ with p′ ∈ [m− p− 1],

if p′ = m− p− 1 then
Output: p̂w → v(i+m−p,i+1) → Li+1.

else
replace p by p+ p′ and p̂w by p̂w → v(i+m−p,i+m−p−p′) and start over.

for q < l do
follow li−l+q against the orientation to the next crossing with a line li−l+q+q′ with
q′ ∈ [l − q],

if q′ = l − q then
Output: Li → v(i,i−l+q+q′) → p̂w.

else
replace q by q + q′ and p̂w by v(i−l+q+q′,i−l+q) → p̂w and start over.

Output: A path
indw0

(pw) := Li → v(i,i−l+q) → · · · → pw → · · · → v(i+m−p,i+1) → Li+1.

s2 s1 s3 s2 s3 s1

l1

l2

l3

l4

Figure 4.9: A path pw ∈ Pw for w0 = s2s1s3 and the induced path indw0
(pw) ∈ Pw0

with
w0 = ws2s3s1.
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Proposition 13. Let w be a reduced expression of w ∈ Sn and fix w0 = wsi`(w)+1 · · · siN .
For every pw ∈ Pw there exists pw0

∈ Pw0
such that, resw(pw0

) = pw. In particular, we have
Pw ⊂ resw(Pw0

).

Proof. By construction indw0
(pw) ∈ Pw0

satisfies resw(indw0
(pw)) = pw.

Recall for i ∈ [n − 1] the definition J(i) and ni from (4.2.3). To distinguish between the
sets for w and w0, we use the notation J(i)w (resp. J(i)w0) and nwi (resp. n

w0
i ). We define

the following polyhedral objects from restricted paths and show they equal the (weighted)
GP-cone, respectively polytope, in the subsequent key proposition for proving Theorem 18.

Definition 55. Let w be a reduced expression of w ∈ Sn and fix w0 = wsi`(w)+1 · · · siN . We
define the restricted weighted GP-cone as

resw(Cw0
) :=

x ∈ R`(w)+n−1

∣∣∣∣∣∣(cresw(pw0 ))
t(x) ≥ 0, ∀ pw0

∈ Pw0
,

(c[i:k])
t(x) ≥ 0, ∀i ∈ [n− 1], 0 ≤ k ≤ nwi

 . (4.2.18)

Similarly, we define resw(Cw0
) := {x ∈ R`(w) | (cresw(pw0 ))

t(x) ≥ 0, ∀ pw0
∈ Pw0

} the restricted

GP-cone and the polytope resw(Cw0
(λ)) := resw(Cw0

) ∩ π−1(λ) (see (4.2.12)) for λ ∈ Rn−1.

Proposition 14. For every w ∈ Sn with reduced expression w and every extension w0 =
wsi`(w)+1 · · · siN the following polyhedral objects coincide

(i) Cw = resw(Cw0
),

(ii) Cw = resw(Cw0
),

(iii) Cw(λ) = resw(Cw0
(λ)) for λ ∈ Rn−1.

Proof. We start by showing (i), then (ii) and (iii) are direct implications. Note that only the
inequalities induced by GP-paths differ in the definition of Cw (4.2.5), resp. resw(Cw0

) (4.2.18).
By Proposition 11 we have Cw ⊆ resw(Cw0

). By Proposition 13 we deduce resw(Cw0
) ⊆ Cw and

hence, equality follows.

We have now collected all ingredients necessary to provide the proof Theorem 18.

Proof of Theorem 18. We show Qw = resw(Cw0
) for every extension w0 = wsi`(w)+1

· · · siN and
then apply Proposition 14. By [13, Lemma 3.3] (restated above) we know that

Qw = Qw0
∩

⋂
(i,k): w(αi,k−1)>0

{x(i,k) = 0},

as the x(i,k) appearing in the intersection of hyperplanes on the right correspond to the co-
ordinates xsp with `(w) < p ≤ N in the extension of w to w0. Further, we observe that if
cpw0

=
∑

k c(ik,jk) then cresw(pw0 ) =
∑

k:w(αik,jk−1)>0 c(ik,jk). Regarding the normal vectors

for weight inequalities c[i:k] (see (4.2.4)), observe that for k > nwi we obtain ci from c[i:k]

when setting those c(ik,jk) to zero with w(αik,jk−1) > 0. Hence, Qw = resw(Cw0
) = Cw by

Propositon 14. Then Qw = Cw is a direct consequence and identifying Λ+ with Rn−1 using
the fundamental weights, (iii) follows.
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4.2.3 Double Bruhat cells and the superpotential

Recall the introduction to cluster varieties given in §2.5 as well as sections §2.1 and §4.1.
In this section we explain the A-cluster variety that can be associated to the quiver from a
pseudoline arrangement. Based on results of Berenstein-Fomin-Zelevinsky this variety is a
double Bruhat cell (see Definition 56). We apply the construction of [37] (see §2.5) and recall
results of Magee in [54] regarding the superpotential.

Recall that SLn has two cell decompositions (the Bruhat decompositions) in terms of
Bruhat cells indexed by elements of the symmetric group

SLn =
⋃
u∈Sn

BuB =
⋃
v∈Sn

B−vB−.

Definition 56. The double Bruhat cell associated to e and w in Sn is

Ge,w := B ∩B−wB− ⊂ SLn.

The cluster structure of Ge,w can be established as follows. Choose a reduced expression
w and consider pa(w). Recall from Definition 43 that every face of pa(w) corresponds to a
vertex of Qw. We therefore associate cluster variables to faces of pa(w). Let F be such a face
and assume the lines lj1 , . . . , ljk pass below F . In particular, F is of level k. Then associate
the Plücker coordinate p̄j1,...,jk ∈ C[SLn] to F , i.e. the minor of the columns [k] and rows
{j1, . . . , jk}. To remember it was associated with F , we set AF := p̄j1,...,jk .

Definition 57. Let w ∈ Sn with reduced expression w. Then the quiver Qw together with
the set of cluster variables Aw := {AF | F a face of pa(w)} forms the seed sw := (Aw, Qw).

Example 23. Recall from Example 15 and Figure 4.3 the pseudoline arrangement pa(ŵ0)
and the quiver Qŵ0

for ŵ0 ∈ S5. To a face F(i,j) with i ∈ [n− 1] and j ∈ [i+ 1, n] we associate
following the above recipe the cluster variable A(i,j) := pi+1,...,j . To the faces unbounded
Fi, i ∈ [4] to the left, we associate the variables Ai := p5−i+1,...,5. Note that the variables
associated to the frozen vertices on the left (from bottom to top) are p̄5, p̄45, p̄345, p̄2345 and
those associated to the frozen vertices on the right are p̄1, p̄12, p̄123, p̄1234. These Plücker
coordinates are called consecutive minors. The collection of all cluster variables associated to
this initial seed is

Aŵ0
= {p̄1, p̄2, p̄3, p̄4, p̄5, p̄12, p̄23, p̄34, p̄45, p̄123, p̄234, p̄345, p̄1234, p̄2345}.

Example 24. Consider ŵ0 ∈ Sn as in Examples 17 and 19. Then the collection Aŵ0
of

associated cluster variables is

Aŵ0
= {p̄i,...,j | i ∈ [n− 1], j ∈ [i, n]},

where p̄i,...,j is a frozen variable if either i = 1 or j = n. Note that p̄1,...,n = det, which is
constant on SLn, hence we disregard it. From now on we denote by s0 the seed s0 := sŵ0

=
(Aŵ0

, Qŵ0
).

Berenstein-Fomin-Zelevinsky show

Theorem. ( [4, Theorem 2.10]) Let w ∈ Sn with reduced expression w. Then for the upper
cluster algebra Y(sw) we haven an isomorphism of algebras

Y(sw)⊗Z C ∼= C[Ge,w]. (4.2.19)
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In particular, the Theorem implies the following: if w1 and w2 are two reduced expressions
of w ∈ Sn related by mutation in the sense of Definition 44, then the associated seeds sw1

and
sw2

are related by cluster (A-)mutation in the sense of Definition 18. This explains our abuse
of notation using the same letter µ for both types of mutation.

We now focus on the A-cluster variety Ge,w0 and the natural partial compactification using
the frozen variables to study the superpotential as in §2.5. We partially compactify Ge,w0 to
Ḡe,w0 by allowing the frozen variables p̄[i] and p̄[n−i,n] for i ∈ [n − 1] to vanish. Denote the
resulting boundary divisor D ⊂ Ḡe,w0 and its irreducible components by

Di := {p̄[i] = 0}, resp. Di,n := {p̄[n−i,n] = 0}.

There is an open embedding Ge,w0 ↪→ SLn/U given by g 7→ gtU and up to codimension 2 the
variety Ḡe,w0 agrees with SLn/U (this follows, for example, from [54, Proposition 23]). Hence,
we have an isomorphism of rings C[Ḡe,w0 ] ∼= C[SLn/U ]. One of Magee’s main results in [54]
is the following.

Theorem. ( [54, Corollary 3]) The full Fock-Goncharov conjecture holds for SLn/U .

Moreover, Magee shows that there exists an optimized seed for every frozen vertex and
therefore we can apply Algorithm 1 stated in §2.5 to compute the superpotential. This is indeed
what Magee did for the intial seed s0 (see Example 24). Let X denote the Fock-Goncharov
dual to the A-cluster variety Ge,w0 (see Definition 20). Recall that in the initial seed s0 we
have Ns0

∼= ZN+n−1 with basis {eF | F face of pa(w0)}. As before we set eF(i,j)
=: e(i,j)

and eFk =: ek. Further, recall that the superpotential W : X → C is given by the sum of
ϑ-functions associated to frozen variables. We denote by ϑi (resp. ϑ(i,n)) the ϑ-functions
associated to the frozen vertex wi (resp. w(i,n)) in the inital quiver Qs0 (see Figure 4.3) for
i ∈ [n− 1].

Proposition. ( [54, Corollary 24]) Let W : X → C denote the superpotential. Then we have
W |Xs0 =

∑n−1
i=1 ϑi|Xs0 + ϑ(n−i,n)|Xs0 , where

ϑi|Xs0 =
n−1−i∑
k=0

z−ei−
∑k
j=1 e(j,i+j) , and ϑ(i,n)|Xs0 =

n−1−i∑
k=0

z−
∑k
j=0 e(i,n−j) , for i ∈ [n− 1].

Example 25. Consider S3 and the initial seed with quiver Qs1s2s1 . Then

W |Xs0 = ϑ(1,3) + ϑ(2,3) + ϑ1 + ϑ2

= z−e(1,3) + z−e(1,3)−e(1,2) + z−e(2,3) + z−e1 + z−e1−e(1,2) + z−e2 .

Definition 58. For w0 a reduced expression of w0 ∈ Sn we define the following polyhedral
objects by tropicalizing a sum of ϑ-functions resp. the superpotential:

Ξw0
:= {x ∈ RN+n−1 |W |trop

Xw0
(x) ≥ 0},

Ξw0
:= {x ∈ RN | (

n−1∑
i=1

ϑ(i,n)|Xw0
)trop(x) ≥ 0},

Ξw0
(λ) := Ξw0

∩ τ−1
w0

(λ) for λ ∈ Rn−1.
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The Aprin-construction in [37] applied to our setting defines a flat family over AN−2n+2 for
every choice of seed, in particular for every w0. The central fibre is by [37, Theorem 8.39] the
toric variety associated to Ξw0

(λ) for λ ∈ Zn−1
>0 . One generic fibre is SLn/B, hence we have a

toric degeneration of the flag variety. We do not go into the details on this construction but
refer the reader to [37, §8].

Relating to the area cones Let w0 be an arbitrary reduced expression of w0 ∈ Sn. In what
follows we show how to obtain an expression of the superpotential in any seed sw0

associated
to w0 by “detropicalizing” the weighted cone Sw0

. We define it more generally for w a reduced
expression of w ∈ Sn. Denote by Xw the cluter torus associated to the seed sw.

Definition 59. Let w be an arbitrary reduced expression of w ∈ Sn. Then the detropicaliza-
tion of the cone Sw is defined as the function WSw : Xw → C with

WSw :=
∑
p∈Pw

zep +
∑

i∈[n−1],0≤k≤ni

ze[i:k] . (4.2.20)

The name is self-explanatory, observe that by definition we have

{x ∈ R`(w)+n−1 |W trop
Sw (x) ≥ 0} = Sw.

Proposition 15. Let w0 = s1s2s1 · · · sn−1sn−2 · · · s2s1 be the reduced expression associated
to the initial seed s0 as above. Then WSw0

= W |Xs0 .

Proof. Recall from Example 19 the expressions epi,j (4.2.10) and e[i:k] (4.2.11) for i ∈ [n− 1]
and j, k ∈ [i+ 1, n]. In comparison with [54, Corollary 24] (restated above) we obtain

ϑ(i,n)|Xs0 =
n∑

j=i+1

zepi,j , and ϑi|Xs0 =
n−1−i∑
k=0

ze[i:k] .

As from Example 17 we know Pw0
= {pi,j | i ∈ [n− 1], j ∈ [i+ 1, n]}, the claim follows.

Mutation of Sw

Our aim is to generalize Proposition 15 for arbitrary reduced expressions w0. We achieve this
by showing that the detropicalization of Sw0

behaves as the superpotential does when applying
X -mutation. Further, we show that if µ(w) and w are reduced expressions of w ∈ Sn, then
µ∗(WSµ(w)

) = WSw , where µ∗ : C[Xµ(w)]→ C[Xw] is the pull-back of the cluster mutation as in
(2.5.7). This follows from Lemma 16 and Lemma 17. Recall from Definition 44 the mutation
of pseudoline arrangements. The core of this subsection is the case-by-case analysis of how
mutation effects GP-paths.

In Figure 4.10 we display locally around the mutable face F = F(i,j) (resp. F ′) the
orientations of pa(w) (resp. pa(µF (w))). The red arrows indicate which passages are forbidden
in GP-paths. In Tables 4.1 to 4.4 we list in the second column all possibilities how a GP-path
p locally looks around the face F . In the third column of each table is a complete list of how
GP-paths look locally around the face F ′ obtained from F by mutation µF .

Recall the arrows for the quiver corresponding to pa(w) and pa(µF (w)) from Figure 4.2.
We call a face E incoming (resp. outgoing) with respect to F in pa(w), if there is an arrow
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Figure 4.10: The pseudoline arrangement pa(w) (resp. pa(µF (w))) locally around the face
F = F(i,j) (resp. F ′ = F ′(j,k)) bounded by lines li, lj , lk with i < j < k and orientations

(lr, lr+1) for all possible r. The red arrows are those forbidden in GP-paths.
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F -local type of p p in pa(w) p′ = mutF (p) in pa(µF (w)) F ′-local type of p′

(2, 1, 2) bi → v(i,k) → ak b′i → v′(i,j) → v′(j,k) → a′k (2, 1, 2)

(1, 1, 2) bj → v(j,k) → v(i,k) → ak
b′j → v′(i,j) → v′(j,k) → a′k

b′j → v′(i,j) → v′(i,k) → v′(j,k) → a′k

(2, 1, 1)

(2, 0, 1)

(1, 1, 1) bj → v(j,k) → v(i,k) → v(i,j) → aj b′j → v′(i,j) → v′(i,k) → v′(j,k) → a′j (1, 0, 1)

(1, 1, 1) bk → v(j,k) → v(i,k) → ak b′k → v′(i,k) → v′(j,k) → a′k (1, 0, 1)

(1, 1, 0)

(1, 0, 0)

bk → v(j,k) → v(i,k) → v(i,j) → aj

bk → v(j,k) → v(i,j) → aj

b′k → v′(i,k) → v′(j,k) → a′j (0, 0, 1)

(0, 0, 0) bk → v(j,k) → v(i,j) → ai b′k → v′(i,k) → a′i (0, 0, 0)

Table 4.1: Shapes of paths locally around F (resp. F ′) in Pw (resp. PµF (w)) for orientation
(lr, lr+1) with i < j < k ≤ r (see Figure 4.10) and how they are mapped onto each other by
mutF .

in the quiver Qw from (resp. to) the vertex corresponding to E to (resp. from) the vertex
corresponding to F . We denote by InF the union of all incoming faces and by OutF the union
of all outgoing faces. See for example, Figure 4.2.

Definition 60. Let p ∈ Pw for w ∈ Sn and consider a mutable face F of pa(w). Set δF⊂Ap := 1
if F ∈ Ap and zero otherwise. Then we define the F -local type of p as the triple

F (p) := (iF,p, xF,p, oF,p) := (#{InF ∩ Ap}, δF∈Ap ,#{OutF ∩ Ap}).

For example, if Ap in Figure 4.2 contains the faces F, Fin1 and Fout2 but not Fin1 and Fout1 ,
then the F -local type of p is (1, 1, 1). The following lemma is a crucial observation on the
F -local type of GP-paths.

Lemma 15. Let p ∈ Pw for w ∈ Sn and consider a mutable face F of pa(w). Then the
following are all possible F -local types p can have:

iF,p = oF,p: then F (p) ∈ {(0, 0, 0), (1, 0, 1), (1, 1, 1), (2, 1, 2)};

iF,p < oF,p: then F (p) ∈ {(1, 1, 2), (0, 0, 1)};

iF,p > oF,p: then F (p) ∈ {(1, 0, 0), (1, 1, 0), (2, 0, 1), (2, 1, 1)}.

Moreover, the F -local types of p with iF,p > oF,p come in pairs as ((1, 0, 0), (1, 1, 0)) or
((2, 0, 1), (2, 1, 1)). Meaning that if a path of one type exists for a fixed orientation then so
does a path of the corresponding other type for the same orientation.

Proof. The lemma follows from case-by-case consideration of all possible shapes of p ∈ Pw
around a mutable face F of pa(w). First observe, that F can have two different shapes,
depending on whether it is defined by simple reflections smsm+1sm (as on the left in Figure 4.2)
or by sm+1smsm+1 (as on the right in Figure 4.2). We endow pa(w) for either case of F with all
possible orientations (lr, lr+1). Then locally at F , there are four cases of orientation depending
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F -local type of p p in pa(w) p′ = mutF (p) in pa(µF (w)) F ′-local type of p′

(1, 0, 1) bi → v(i,k) → v(j,k) → v(i,j) → ai b′i → v′(i,j) → v′(j,k) → v′(i,k) → a′i (1, 1, 1)

(2, 1, 1)

(2, 0, 1)

bi → v(i,k) → v(i,j) → aj

bi → v(i,k) → v(j,k) → v(i,j) → aj

b′i → v′(i,j) → v′(j,k) → a′j (1, 1, 2)

(1, 0, 1) bi → v(i,k) → v(j,k) → bk b′i → v′(i,j) → v′(j,k) → v′(i,k) → b′k (1, 1, 1)

(0, 0, 1) bj → v(j,k) → v(i,j) → ai
b′j → v′(i,j) → v′(j,k) → v′(i,k) → a′i

b′i → v′(i,j) → v′(i,k) → a′i

(1, 1, 0)

(1, 0, 0)

(1, 0, 1) bj → v(j,k) → v(i,j) → aj b′j → v′(i,j) → v′(j,k) → a′j (1, 1, 1)

(0, 0, 1) bj → v(j,k) → bk
b′j → v′(i,j) → v′(j,k) → v′(i,k) → b′k

b′j → v′(i,j) → v′(i,k) → b′k

(1, 1, 0)

(1, 0, 0)

(1, 0, 1) ak → v(i,k) → v(j,k) → v(i,j) → ai a′k → v′(j,k) → v′(i,k) → a′i (1, 1, 1)

(2, 1, 1)

(2, 0, 1)

ak → v(i,k) → v(i,j) → aj

ak → v(i,k) → v(j,k) → v(i,j) → aj

a′k → v′(j,k) → a′j (1, 1, 2)

(1, 0, 1) ak → v(i,k) → v(j,k) → bk a′k → v′(j,k) → v′(i,k) → b′k (1, 1, 1)

Table 4.2: Shapes of paths locally around F (resp. F ′) in Pw (resp. PµF (w)) for orientation
(lr, lr+1) with i < j ≤ r and r + 1 ≤ k (see Figure 4.10) and how they are mapped onto each
other by mutF .

on r and r+ 1 in relation to i, j, k (see Figure 4.10). We consider all possibilities for the path
p to pass F for each case of orientation and shape of F . These are listed in Tables 4.1 to 4.4,
in the second column for F as on the left of Figure 4.10 and in the third for F as on the right
of Figure 4.10. In the first and last columns of these tables we indicate the corresponding
F -local type. Observe, that the list in the claim of the lemma covers all occurring F -local
types.

Regarding the second part of the claim, this also follows as an observation from Tables 4.1
to 4.4.

With notation as in the lemma, if p1,p2 are paths with iF,pj > oF,pj , j = 1, 2 such that
((iF,p1 , xF,p1 , oF,p1), (iF,p2 , xF,p2 , oF,p2)) is one of the pairs, then we denote by p1 ⊕ p2 their
formal sum. If p1 and p2 are equal away from F , we denote this by p1/F = p2/F . Observe,
that this is the case here. With this notation we define the following set of paths, respectively
formal sums of paths.

P̂w,F :=

 p,

p1 ⊕ p2

∣∣∣∣∣∣ p ∈ Pw with iF,p = oF,p or iF,p < oF,p,

p1,p2 ∈ Pw with iF,pj > oF,pj for j = 1, 2

 . (4.2.21)

Note that for every mutable face F of pa(w) every path in Pw appears in P̂w,F either on
its own or as a formal summand. This additional structure on Pw allows us to define mutation
on it.

Definition 61. Let w ∈ Sn with reduced expressions w and µF (w), where F is a mutable
face in pa(w). Denote by F ′ the corresponding face in pa(µF (w)). We define mutF : P̂w,F →
P̂µF (w),F ′ depending on the F -local type by
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F -local type of p p in pa(w) p′ = mutF (p) in pa(µF (w)) F ′-local type of p′

(1, 1, 1) bi → v(i,k) → v(i,j) → ai b′i → v′(i,j) → v′(i,k) → a′i (1, 0, 1)

(1, 0, 0)

(1, 1, 0)

bi → v(i,k) → v(j,k) → bj

bi → v(i,k) → v(i,j) → v(j,k) → bj

b′i → v′(i,j) → bk (0, 0, 1)

(1, 1, 1) bi → v(i,k) → v(i,j) → v(j,k) → bk b′i → v′(i,j) → v′(i,k) → b′k (1, 0, 1)

(1, 1, 2) aj → v(i,j) → ai
a′j → v′(j,k) → v′(i,k) → a′i

a′j → v′(j,k) → v′(i,j) → v′(i,k) → a′i

(2, 1, 1)

(2, 0, 1)

(1, 1, 1) aj → v(i,j) → v(j,k) → bj a′j → v′(j,k) → v′(i,j) → b′j (1, 0, 1)

(1, 1, 2) aj → v(i,j) → v(j,k) → bk
a′j → v′(j,k) → v′(i,k) → b′k

a′j → v′(j,k) → v′(i,j) → v′(i,k) → b′k

(2, 1, 1)

(2, 0, 1)

(1, 1, 1) ak → v(i,k) → v(i,j) → ai a′k → v′(j,k) → v′(i,j) → v′(i,k) → a′i (1, 0, 1)

(1, 0, 0)

(1, 1, 0)

ak → v(i,k) → v(j,k) → bj

ak → v(i,k) → v(i,j) → v(j,k) → bj

a′k → v′(j,k) → v′(i,j) → b′j (0, 0, 1)

(1, 1, 1) ak → v(i,k) → v(i,j) → v(j,k) → bk a′k → v′(j,k) → v′(i,j) → v′(i,k) → b′k (1, 0, 1)

Table 4.3: Shapes of paths locally around F (resp. F ′) in Pw (resp. PµF (w)) for orientation
(lr, lr+1) with i ≤ r and r + 1 ≤ j < k (see Figure 4.10) and how they are mapped onto each
other by mutF .

iF,p = oF,p: mutF (p) = p′ with p/F = p′/F ′, where for F (p) ∈ {(0, 0, 0), (2, 1, 2)} we have F (p) =
F ′(p′), and for F (p) ∈ {(1, 0, 1), (1, 1, 1)} we have F ′(p′) = (iF,p, |xF,p − 1|, oF,p);

iF,p < oF,p: mutF (p) = p′1 ⊕ p′2 with p/F = p′1/F
′ = p′2/F

′, for F (p) ∈ {(0, 0, 1), (1, 1, 2)} with
F ′(p′1) = (oF,p, xF,p, iF,p) and F ′(p′2) = (oF,p, |xF,p − 1|, iF,p);

iF,p > oF,p: mutF (p1⊕p2) = p′ with p1/F = p2/F = p′/F ′, for (F (p1), F (p2)) either ((1, 0, 0), (1, 1, 0))
or ((2, 1, 1), (2, 0, 1))} with F ′(p′) = (oF,p1 , xF,p1 , iF,p1).

Consider the torus Xw corresponding to the seed (associated with) pa(w). For the lattice
Nw we have the basis {eE}E face of pa(w). Then ep ∈ N for p ∈ Pw,F is an expression in this
basis and zep a function on Xw. To extend our definition of ep in (4.2.6) for p ∈ Pw to

p ∈ P̂w,F , we set zep1⊕p2 := zep1 + zep2 . Then for every mutable face F of pa(w) we have

x ∈ R`(w)

∣∣∣∣∣∣∣(
∑

p∈P̂w,F

zep)trop(x) ≥ 0

 = Sw.

The following is the key lemma of this section.
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F -local type of p p in pa(w) p′ = mutF (p) in pa(µF (w)) F ′-local type of p′

(1, 0, 1) ai → v(i,j) → v(i,k) → bi a′i → v′(i,k) → v′(i,j) → b′i (1, 1, 1)

(2, 0, 1)

(2, 1, 1)

ai → v(i,j) → v(i,k) → v(j,k) → bj

ai → v(i,j) → v(j,k) → bj

a′i → v′(i,k) → v′(i,j) → b′j (1, 1, 2)

(2, 1, 2) ai → v(i,j) → v(j,k) → bk a′i → v′(i,k) → b′k (2, 1, 2)

(1, 0, 1) aj → v(i,j) → v(i,k) → v(j,k) → bj a′j → v′(j,k) → v′(i,k) → v′(i,j) → b′j (1, 1, 1)

(0, 0, 0) ak → v(i,k) → bi a′k → v′(j,k) → v′(i,j) → b′i (0, 0, 0)

(0, 0, 1) aj → v(i,j) → v(i,k) → bi
a′j → v′(j,k) → v′(i,j) → b′i

a′j → v′(j,k) → v′(i,k) → v′(i,j) → b′i

(1, 0, 0)

(1, 1, 0)

Table 4.4: Shapes of paths locally around F (resp. F ′) in Pw (resp. PµF (w)) for orientation
(lr, lr+1) with r + 1 ≤ i < j < k (see Figure 4.10) and how they are mapped onto each other
by mutF .

Lemma 16. Let w ∈ Sn with reduced expressions w and µF (w), where F is a mutable face of
pa(w) and F ′ the corresponding face of pa(µF (w)) (i.e. µF ′(µF (w)) = w). Let {eE}E denote
the basis for Nw and {e′E}E the basis for NµF (w). Then for p ∈ P̂w,F we have

µ∗F ′(z
ep) = z

e′mutF (p) .

Proof. We prove the claim case-by-case depending on the F -local type of p as in Lemma 15.
As notation we use n ∈ Nw (resp. n′ ∈ NµF (w)) referring to an expression of n is the basis
{eE}E face of pa(w) (resp. {e′E}E face of pa(µF (w))). Consider p ∈ Pw, then

ep = −
∑
E⊂Ap

eE = −
∑

E⊂(InF∪OutF )∩Ap

eE −
∑

E 6⊂(InF∪OutF )∩Ap

eE =: np +mp

As by definition mutF effects a path only locally around F , we have mp = mmutF (p) (resp.

mp = mp′1
= mp′2

if mutF (p) = p′1 ⊕ p′2 ∈ P̂µF (w),F ′). Both have the same expressions in
bases {eE}E and {e′E}E as the corresponding basis elements are not effected by mutation:
only basis elements corresponding to vertices (i.e. faces of pa(w)) adjacent to F (i.e. in
InF ∪ OutF ) are changed by mutation in (2.5.6). We use this fact throughout the proof.
Denote basis elements associated with faces Fin, Fin1 , Fin2 ∈ InF by ein, ein1 , ein2 and similarly
for eout. After mutation, e′in is associated with the face F ′in ∈ OutF ′ in pa(µF (w)).

We distinguish the cases as in Lemma 15.

iF,p < oF,p From Lemma 15 we know that in this case np = −ein − eF − eout1 − eout2 (resp. np =
−eout) and mutF (p) = p′1⊕p′2 with p′1,p

′
2 as in Definition 61. Then n′p′1

= −e′in−e′F −
e′out1

−e′out2
(resp. n′p′1

= −e′out−eF ) and n′p′2
= −e′in−e′out1

−e′out2
(resp. n′p′1

= −e′out).
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We compute using formulas (2.5.6), (2.5.7) and the observation that m′p′1
= m′p′2

:

µ∗F ′(z
np+mp) = z−ein−eF−eout1−eout2+mp(1 + zeF )

= z
−e′in−e′out1

−e′out2
+m′

p′ (1 + z−e
′
F )

= z
n′
p′1

+m′
p′1 + z

n′
p′2

+m′
p′2 = z

e′
p′1 + z

e′
p′2

(by def.)
= z

e′
p′1⊕p′2 = z

e′mutF (p)

(resp. µ∗F ′(z
np+mp) = z−eout+mp(1 + zeF ) = z

−e′out+m
′
p′ (1 + z−e

′
F )

= z
n′
p′1

+m′
p′1 + z

n′
p′2

+m′
p′2 = z

e′mutF (p)).

iF,p = oF,p In this case mutF (p) = p′ ∈ P̂µF (w),F ′ as in Definition 61. We divide into three cases:
iF,p ∈ {0, 1, 2}. If iF,p = 0, consider Ap = F1∪· · ·∪Fr then Ap′ = F ′1∪· · ·∪F ′r. Further,

µ∗F ′(z
ep) = µ∗F ′(z

mp) = zmp = zmp′ = z
e′
p′ = z

e′mutF (p) .

If iF,p = 1 we have np = −eF − ein − eout (resp. np = −ein − eout). We have n′p′ =
−e′in − e′out (resp. n′p′ = −e′F − e′in − e′out) and compute

µ∗F ′(z
np) = z−eF−ein−eout = ze

′
F−(e′in+e′F )−e′out = z−e

′
in−e′out = z

n′
p′

(resp. µ∗F ′(z
np) = z−ein−eout = z−(e′in+e′F )−e′out = z−e

′
F−e′in−e′out = z

n′
p′ ).

If iF,p = 2 we have np = −ein1 − ein2 − eF − eout1 − eout2 . Now n′p′ = −e′in1
− e′in2

− e′F −
e′out1

− e′out2
and we compute

µ∗F ′(z
np) = z−ein1

−ein2
−eF−eout1−eout2 = z

−(e′in1
+e′F )−(e′in2

+e′F )−(−e′F )−e′out1
−e′out2

= z
−e′in1

−e′in2
−e′F−e′out1

−e′out2 = z
n′
p′ .

In all three cases the claim follows from the computation.

iF,p > oF,p In this case by Lemma 15 there are paths p1,p2 ∈ Pw with p1 ⊕ p2 ∈ P̂w,F and

mutF (p1 ⊕ p2) = p′ ∈ P̂µF (w),F ′ as in Definition 61. We have np1 = −ein and np2 =
−ein − eF (resp. np1 = −ein1 − ein2 − eout and np2 = −ein1 − ein2 − eF − eout). For p′

we have n′p′ = −e′in (resp. n′p′ = −e′in1
− e′in2

− e′F − e′out). We compute

µ∗F ′(z
np1 + znp2 ) = z−ein(1 + zeF )−1 + z−ein−eF (1 + zeF )−1

= (z−e
′
in−e′F + z−e

′
in)(1 + z−e

′
F )−1 = z−e

′
in = z

n′
p′

(resp. µ∗F ′(z
np1 + znp2 ) = z−ein1

−ein2
−eout(1 + zeF )−1 + z−ein1

−ein2
−eF−eout(1 + zeF )−1

= (z
−e′in1

−e′in2
−2e′F−e′out + z

−e′in1
−e′in2

−e′F−e′out)(1 + z−e
′
F )−1

= z
−e′in1

−e′in2
−e′F−e′out = z

n′
p′ ).

In both cases the claim follows.
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Before proving a generalization of Proposition 15 we have to show that also the normal
vectors associated to the weight inequalities e[i:k] (4.2.8) mutate as expected. We use the
notation as in Lemma 16 and its proof. Recall the normal vectors of the weight inequalities
for Sw from (4.2.8). For i ∈ [n− 1] let e[i:0], . . . , e[i:ni] be those for w as expressions in {eE}E
and e′[i:0], . . . , e

′
[i,n′i]

those for µF (w) as expressions in {e′E}E .

Lemma 17. With notation as above we have for every i ∈ [n− 1]

µ∗F ′

(
ni∑
k=0

ze[i:k]

)
=

n′i∑
k′=0

z
e′
[i:k′] .

Proof. We treat the case where F is of level l and F ′ of level l+ 1, with l ∈ [n− 2] (the proof
of the other case is similar). Recall that e[i:k] = −eFi − eFj1 − · · · − eFjk , where k ∈ [0, ni],
sj1 , . . . , sjni = si in w, and Fjk is bounded to the left by the crossing in pa(w) induced by sjk .
Let F ′i , F

′
j1
, . . . , F ′jn′i

be the corresponding faces in pa(µF (w)). In particular, if i 6∈ {l, l + 1}
we have

µ∗F ′(z
−eFi−eFj1−···−eFjk ) = z

−e′
F ′i
−e′

F ′j1
−···−e′

F ′jk .

We therefore focus on the cases i ∈ {l, l + 1}.

i = l As F is of level l we have F = Fjk for one k ∈ [nl], sjk = sl. By (2.5.6) we have
µF (eFl) = e′F ′l

and µF (eFjr ) = e′F ′jr
for r ∈ [k − 1], hence

µ∗F ′(z
−eFl−eFj1−···−eFjr ) = z

−e′
F ′
l
−e′

F ′j1
−···−e′

F ′jr .

Still by (2.5.6) we have µF (eFk−1
) = e′F ′jk−1

+e′F ′jk
, µF (eFjk ) = −e′F ′jk

and µF (eFjs ) = e′F ′js
for s ∈ [k + 1, nl]. Plugging in to (2.5.7) we obtain

µ∗F ′(z
e[l:k−1] + ze[l:k] + ze[l:k+1]) = z

−eFl−···−eFjk−1 (1 + z
eFjk )−1

+ z
−eFl−···−eFjk (1 + z

eFjk )−1 + z
−eFl−···−eFjk+1

= z
−e′

F ′
l
−···−e′

F ′jk−1 + z
−e′

F ′
l
−···−e′

F ′jk+1

= z
e′[l:k−1] + ze[l:k] .

Note that the index shift in the last equality comes from the fact that pa(µF (w)) has
one less face of level l than pa(w) as F ′ is of level l + 1. So the claim follows for level l.

i = l + 1 Let Fjr be the face of level l + 1 in OutF and Fjr+1 the one in InF . Then we compute
with notation as above

µ∗F ′(z
e[l:r] + ze[l:r+1]) = z

−eFl+1
−···−eFjr (1 + zeF ) + z

−eFl+1
−···−eFjr+1

= z
−e′Fl+1

−···−e′
F ′jr + z

−e′
F ′
l+1
−···−e′

F ′jr
−e′

F ′
+ z
−e′

F ′
l+1
−···−e′

F ′jr
−e′

F ′−e
′
F ′jr+1

= z
e′[l+1:r] + z

e′[l+1:r+1] + ze[l+1:r+2] .

As before the index shift occurs because pa(µF (w)) has additionally the face F ′ of level
l + 1 in comparison to pa(w).
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We can now prove the following theorem.

Theorem 19. Let w0 be an arbitrary reduced expression of w0 ∈ Sn. Then the superpotential
expressed in the seed given by pa(w0) satisfies W |Xw0

= WSw0
. In particular,

W |Xw0
=
∑

p∈Pw0

zep +
∑

i∈[n−1],0≤k≤ni

ze[i:k] .

Proof. By Proposition 15 the claim is true for the seed s0 with w0 = s1s2s1 · · · sn−1 · · · s2s1.
Now Lemmata 16 and 17 imply that the claim holds for all seeds that are related to s0 by a
finite sequence of mutations. As there are only finitely many reduced expressions for w0 and
they are all related by mutation as defined in Definition 44 the claim is true for all w0.

Corollary 11. For every reduced expression w0 ∈ Sn the following polyhedral objects coincide

(i) Sw0
= Ξw0

,

(ii) Sw0
= Ξw0

,

(iii) Sw0
(λ) = Ξw0

(λ) for λ ∈ Rn−1.

Proof. The claim in (i) follows immediately from Theorem 19 by tropicalizing. Then (iii)
follows by definition as we intersect both cones with the same collection of hyperplanes. To
see (ii), recall from the proof of Proposition 15 that for the initial seed s0 the ϑ-functions ϑ(i,n)

correspond to GP-paths. Then the claim follows by Lemma 16 and the proof of Theorem 19.

4.2.4 Applications of Theorem 17

We have seen in the last two subsections how the cones and polytopes defined in §4.2.1
arise from a representation theoretic point of view and in the context of cluster varieties.
The following theorem is the main combinatorial result of this section. We obtain it as an
application of the unimodular equivalences in Theorem 17.

Theorem 20. Let w0 be an arbitrary reduced expression of w0 ∈ Sn. Then the following
polyhedral objects are unimodularly equivalent

(i) Qw0
∼= Ξw0

via Ψw0
,

(ii) Qw0
∼= Ξw0

via Ψw0
|RN ,

(iii) Qw0
(λ) ∼= Ξw0

(λ) for λ ∈ Rn−1 via Ψw0
.

Proof. Combine Theorem 17 with Theorem 18 and Corollary 11.
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Remark 11. For the special case of the initial seed s0 the theorem can also be proved by
combining results of Magee and Littelmann. In [52] Littelmann shows that the string polytope
Qw0

(λ) for w0 = s1s2s1 · · · sn−1sn−2 · · · s2s1 is unimodularly equivalent to the Gelfand-Tsetlin
polytope defined in [29]. Magee shows in [54] that Ξs0 (resp. Ξs0(λ)) is unimodularly equivalent
to the Gelfand-Tsetlin cone (resp. polytope). Combining both, one obtains Theorem 20 for
s0. In fact, to understand Magee’s result was driving motivation behind this project.

By the construction of toric varieties associated to polytopes as in [16, §2.1 and §2.3]
and the toric degenerations of Caldero [13] and Gross-Hacking-Keel-Kontsevich [37] we obtain
the following corollary from Theorem 20 relating these toric varieties. It is the main result
regarding toric degenerations of flag varieties in this section and an answer to Question 4 in
the introduction.

Corollary 12. Let w0 be an arbitrary reduced expression of w0 ∈ Sn and λ ∈ Zn−1
>0 . We

have an induced isomorphism of the following toric varieties that are degenerations (resp.
normalizations of such) of SLn/B

XQw0
(λ) ∼= XΞw0

(λ).

In order to achieve a similar result for Schubert varieties, we study the restriction of the
superpotential in the following subsection.

Restricted Superpotential and Schubert varieties

Caldero’s degeneration works more generally for Schubert varieties. As we have seen above, he
uses the degeneration for the flag variety and by a quotient construction on the level of rings
he obtains a family for the Schubert variety. For the cones, taking this quotient corresponds
to setting certain variables to zero, or equivalently, restricting the defining GP-paths as in
Definition 53. In a similar fashion we want to proceed with the superpotential. We show how
the polytopes defining toric degenerations of Schubert varieties arise in the setting of [37].

Consider w ∈ Sn with reduced expression w and extension w0 = wsi`(w)+1
· · · siN . Recall

that for a seed corresponding to w0 we have a basis {eF | F face of pa(w0)} for Nw0
and further

C[Xw0
] = C[z±eF | F face of pa(w0)]. Then {eF | F face of pa(w)} generates a sublattice in

Nw0
, which we denote by Nw with dual lattice Mw a quotient of Mw0

. We have the torus
Xw = TMw = Spec(C[Nw]) associated with Mw as in (2.5.5). In particular, C[Xw] = C[z±eF |
F face of pa(w)] and we have a restriction morphism between the Laurent polynomial rings

resw : C[Xw0
]→ C[Xw], f 7→ f |Xw .

We are interested in the restrictions to Xw of the superpotential W |Xw0
and the detropi-

calization WSw0
of Sw0

(they are equal by Theorem 19). We want to show that they coincide
with the detropicalization of Sw. In analogy with Definiton 58 for w0 we consider for arbitrary
w the following polyhedral objects.

Definition 62. For w ∈ Sn with reduced expression w and an extension w0 = wsi`(w)+1
· · · siN

polyhedral objects by tropicalizing the restriction of a sum of ϑ-functions resp. the superpo-
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l1

l2

l3

l4

F1

F2

F3

F(1,2)

F(1,3) F(3,4)

F(2,4)

F(1,4)

F(2,3)

s1 s2 s3 s2 s1 s2

Figure 4.11: Restriction/Extension of a pseudoline arrangement.

tential:

resw(Ξw0
) := {x ∈ R`(w)+n−1 | resw(W |Xw0

)trop(x) ≥ 0},

resw(Ξw0
) := {x ∈ R`(w) | resw(

n−1∑
i=1

ϑ(i,n)|Xw0
)trop(x) ≥ 0},

resw(Ξw0
(λ)) := resw(Ξw0

) ∩ τ−1
w (λ) for λ ∈ Rn−1.

Example 26. Consider w = s1s2s3s2s1 ∈ S4 with extension w0 = ws2. We compute the
superpotential in W |Xw0

∈ C[Xw0
].

W |Xw0
= (z−e3 + z−e3−e(1,4)) + (z−e2 + z−e2−e(1,3) + z−e2−e(1,3)−e(3,4))

+ (z−e1 + z−e1−e(1,2) + z−e1−e(1,2)−e(2,4)) + (z−e(2,4) + z−e(2,4)−e(3,4)) + (z−e2,3)

+ (z−e(1,4) + z−e(1,4)−e(1,3) + z−e(1,4)−e(1,3)−e(3,4) + z−e(1,4)−e(1,3)−e(3,4)−e(1,2)).

From Figure 4.11 we see that F(2,3) is a face of pa(w0), but not of pa(w). Hence,

resw(W |Xw0
) = (z−e3 + z−e3−e(1,4)) + (z−e2 + z−e2−e(1,3) + z−e2−e(1,3)−e(3,4))

+ (z−e1 + z−e1−e(1,2) + z−e1−e(1,2)−e(2,4)) + (z−e(2,4) + z−e(2,4)−e(3,4))

+ (z−e(1,4) + z−e(1,4)−e(1,3) + z−e(1,4)−e(1,3)−e(3,4) + z−e(1,4)−e(1,3)−e(3,4)−e(1,2)).

Proposition 16. Let w ∈ Sn and consider a reduced expression w with an extension to
w0 = wsi`(w)+1

· · · siN . Then
resw(W |Xw0

) = WSw .

Proof. Recall the restriction of GP-paths defined in Definition 53. By Propositions 11 and
13 we have seen resw(Pw0

) = Pw. To avoid confusion we denote as before for i ∈ [n − 1] by
nwi := #{j | sij = si in w} and n

w0
i := #{j | sij = si in w0}. Using Theorem 19 we compute

resw(W |Xw0
) =

∑
p∈Pw0

zep |Xw +
∑

i∈[n−1],0≤k≤nw0
i

ze[i:k] |Xw

=
∑

p∈resw(Pw0 )

zep +
∑

i∈[n−1],0≤k≤nwi

ze[i:k]

= WSw .
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The last proposition enables us to formulate a theorem similar to Theorem 20 for arbitrary
w ∈ Sn.

Theorem 21. Let w ∈ Sn and consider a reduced expression w with an extension to w0 =
wsi`(w)+1

· · · siN . Then the following polyhedral objects are unimodularly equivalent

(i) Qw ∼= resw(Ξw0
) via Ψw,

(ii) Qw ∼= resw(Ξw0
) via Ψw|R`(w) ,

(iii) Qw(λ) ∼= resw(Ξw0
(λ)) for λ ∈ Rn−1 via Ψw.

Proof. For (i) combine Proposition 16 with Theorem 17 and Theorem 18, which directly
implies (iii). To see (ii), recall that by Lemma 16 and the proof of Proposition 15 we have∑

p∈Pw0

zep =
∑

i∈[n−1]

ϑ(i,n)|Xw0
.

By the proof of Proposition 16 the same equality when replacing w0 by w. Then the claim
follows by Theorem 17 and Theorem 18.

For the following corollary relating the toric degenerations of Schubert varieties by Caldero
[13] to the toric degenerations of flag varieties by Gross-Hacking-Keel-Kontsevich [37] we
briefly remind you about the Orbit-Cone-Correspondence for toric varieties (see [16, §3.2]).

For a (full-dimensional) polytope P ⊂ Rn denote by ΣP ⊂ Rn its normal fan (see [16,
Remark 2.3.3]). Every cone σ ∈ ΣP corresponds to a torus orbits in XΣP of dimension
n − dimσ ( [16, Theorem 3.2.6]). The closure of each torus orbit is a toric variety. For a
face Q of P let σQ ∈ ΣP be the cone in ΣP spanned by the normal vectors of all facets of
P containing Q. Then by [16, Proposition 3.2.9] the toric variety XQ is isomorphic to the
closure of the torus orbit corresponding to the cone σQ ∈ ΣP .

Consider an arbitrary w ∈ Sn with a reduced expression w and an extension w0 =
wsi`(w)+1

· · · siN . For every λ ∈ Λ++ recall that the toric variety XQw(λ) is (the normalization
of) a toric degeneration of Xw by [13]. Similarly, XΞw0 (λ) is a flat degeneration of SLn/B
by [37]. We can now formulate the geometric version of our main result on toric degenrations
of Schubert varieties.

Corollary 13. The toric variety XQw(λ) is isomorphic to a subvariety of XΞw0 (λ). More
precisely, we have

XQw(λ)
∼= Xresw(Ξw0 (λ)),

where Xresw(Ξw0 (λ)) is the closure of the torus orbit corresponding to the cone σresw(Ξw0 (λ)) ∈
ΣΞw0 (λ).

Proof. By definiton resw(Ξw0
(λ)) is a union of faces of Ξw0

(λ). Theorem 21(iii) implies
in particular, that resw(Ξw0

(λ)) is a polytope itself, hence a face of Ξw0
(λ). Further, the

unimodular equivalence Qw(λ) ∼= resw(Ξw0
(λ)) induces an isomorphism of toric varieties

XQw(λ)
∼= Xresw(Ξw0 (λ)). Then the Corollary follows by [16, Proposition 3.2.9].
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Restriction vs. superpotential for Ge,w We conclude with an example that shows how
resw(W |Xw0

) is essentially different from a function one would obtain from applying Algo-
rithm 1 to the quiver Qw

Example 27. Let s = sw be the seed of the reduced expression w = s1s2s3s2s1 ∈ S4 as in
Figure 4.11. The corresponding quiver is pictured in Figure 4.12. We apply Algorithm 1 and
compute optimized seeds for all frozen vertices in Qw. As w3 and w(2,4) are sinks in Qw we
set ϑ3|Xs = z−e3 and ϑ(2,4)|Xs = z−e(2,4) , where {e1, e2, e3, e(1,2), e(1,3), e(1,4), e(2,4), e(3,4)} is the
lattice basis associated to s.

w1 w(2,4)

w(1,2)

w2 w(3,4)

w(1,3)

w3 w(1,4)

Qw

w1 w(2,4)

w(1,2)

w2 w(3,4)

w(1,3)

w3 w(1,4)

µ(1,3)(Qw)

w1 w(2,4)

w(1,2)

w2 w(3,4)

w(1,3)

w3 w(1,4)

µ(1,2)(Qw)

Figure 4.12: The quivers Qw, µ(1,3)(Qw) and µ(1,2)(Qw) for w = s1s2s3s2s1. The boxes denote
frozen variables.

For the other variables we have to find a mutation sequence to an optimized seed. Mutation
at w(1,3) (resp. w(1,2)) yields the quiver µ(1,3)(Qw) (resp. µ(1,2)(Qw)) in Figure 4.12. The seed

µ(1,3)(s) is optimized for w(1,4) and w2, so ϑ(1,4)|Xµ(1,3)(w)
= z

−e′(1,4) and ϑ2|Xµ(1,3)(w)
= z−e

′
2 .

In Xw we obtain ϑ(1,4)|Xs = z−e(1,4) + z−e(1,4)−e(1,3) and ϑ2|Xs = z−e2 + z−e2−e(1,3) . Proceeding
analogously with µ(1,2)(s), optimized for w(3,4) and w1, we obtain a function on Xw

F := (z−e3) + (z−e2 + z−e2−e(1,3)) + (z−e1 + z−e1−e(1,2)) + (z−e(2,4))

+ (z−e(3,4) + z−e(3,4)−e(1,2)) + (z−e(1,4) + z−e(1,4)−e(1,3)).

Comparing to Example 26 where w0 = ws2 we observe that F 6= resw(W |Xw0
). Tropical-

izing resw(W |Xw0
) we get the following set of inequalities defining the cone Sw ⊂ R8

−x3 ≥ 0,−x3 − x(1,4) ≥ 0,

−x2 ≥ 0,−x2 − x(1,3) ≥ 0,−x2 − x(1,3) − x(3,4) ≥ 0

−x1 ≥ 0,−x1 − x(1,2) ≥ 0,−x1 − x(1,2) − x(2,4) ≥ 0,

−x(2,4) ≥ 0,−x(2,4) − x(3,4) ≥ 0,

−x(1,4) ≥ 0,−x(1,4) − x(1,3) ≥ 0,−x(1,4) − x(1,3) − x(3,4) ≥ 0,−x(1,4) − x(1,3) − x(3,4) − x(1,2) ≥ 0.

From F trop we get inequalities defining a cone DF ⊂ R8:

−x3 ≥ 0,

−x2 ≥ 0,−x2 − x(1,3) ≥ 0,

−x1 ≥ 0,−x1 − x(1,2) ≥ 0,

−x(2,4) ≥ 0,

−x(3,4) ≥ 0,−x(3,4) − x(1,2) ≥ 0,

−x(1,4) ≥ 0,−x(1,4) − x(1,3) ≥ 0.
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Observe that DF ⊂ Sw. We compute the polytopes Sw(λ) and DF ∩τ−1
w (λ) for λ = (1, 1, 1)

and their lattice points using polymake [27]. The outcome is

|Sw(λ) ∩ Z8| = 49 = dimCH
0(Xw, Lλ) > |DF ∩ τ−1

w (λ) ∩ Z8| = 30.

In particular, the toric variety XDF∩τ−1
w (λ) can not be a flat degeneration of the Schubert

variety Xw. However, this observation is not too surprising from a geometric point of view,
as the restricted superpotential and the function F correspond to different partial compacti-
fications of the A-cluster variety Ge,w associated with Y(sw).

When considering the restricted superpotential, the cluster variety we are dealing with is
Ge,w0 and its compactification Ḡe,w0 with boundary divisors

{p̄1 = 0}, {p̄12 = 0}, {p̄123 = 0}, {p̄4 = 0}, {p̄34 = 0}, {p̄234 = 0}.

Recall that Ge,w0 is SL4/U up to codimension 2. The Schubert variety of our interest is Xw

with s1s2s3s2s1 = w. It is given by {p̄34 = 0} as a subvariety SL4/B. Note that in fact,
whenever we have a reduced expression w and an extension w0 = wsi`(w)+1

· · · siN , then the
Plücker coordinates that appear as A-cluster variables for faces of pa(w0) that are not faces of
pa(w) vanish identically on Xw. When restricting the superpotential, we consider the divisor
of Ḡe,w0 (resp. SL4/U) given by {p̄34 = 0}, which is closely related to Xw.

The function F on the other hand corresponds to the A−cluster variety Ge,w and its partial
compactification Ḡe,w with boundary divisors

{p̄1 = 0}, {p̄12 = 0}, {p̄123 = 0}, {p̄4 = 0}, {p̄24 = 0}, {p̄234 = 0}.

In this case, the defining equation for Xw in SL4/B is not part of the boundary, so there is
no reason to expect information for the Schubert variety from the potential F encoding this
boundary.
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4.3 Computing toric degenerations of flag varieties

In this section we compute toric degenerations arising from the tropicalization of the full flag
varieties F`4 and F`5 embedded in a product of Grassmannians. For F`4 and F`5 we compare
toric degenerations arising from string polytopes and the FFLV polytope with those obtained
from the tropicalization of the flag varieties. We also present a general procedure to find toric
degenerations in the cases where the initial ideal arising from a cone of the tropicalization of
a variety is not prime.2

This project was initialized during the Apprenticeship Program at the Fields Institute,
held 21 August–3 September 2016. The solutions to the following questions posed during the
program can be found in Theorem 22 (see [66, Problem 5&6 on Grassmannians]).

5. The complete flag variety for SL4 is a six-dimensional subvariety of P3×P4×P3. Com-
pute its ideal and determine its tropicalization.

6. Classify all toric ideals that arises as initial ideals for the flag variety above. For each
such toric degeneration, compute the Newton-Okounkov polytope.

This section is structured as follows. We study the tropicalization of the flag varieties F`n for
n = 4, 5 and the induced toric degenerations in §4.3.1.

In §4.3.2 we recall the definition of the FFLV polytope for regular dominant integral
weights. We compute for F`4 and F`5 all string polytopes and the FFLV polytope for the
weight ρ ∈ Λ++, the sum of all fundamental weights. Moreover, in §4.3.2 for every string cone
we construct a weight vector ww0

contained in the tropicalization of the flag variety in order
to further explore the connection between these two different approaches. The construction
is inspired by Caldero [13]. Our work is closely related to [45]. We were particularly curious
about [45, Problem 1]:

Given a projective variety Y , find an embedding of this variety into a projective toric
variety so that the resulting tropicalization contains a prime cone of maximal dimension.

In §4.3.3 we give an algorithmic approach (see Procedure 7) to solving this problem for a
subvariety X of a toric variety Y when each cone in trop(X) has multiplicity one. Procedure 7
aims at computing a new embedding X ′ of X in case trop(X) has some non-prime cones. Once
we have such an embedding, we explain how to get new toric degenerations of X. We apply the
procedure to F`4. Furthermore, we explain how to interpret the procedure in terms of finding
valuations with finite Khovanskii basis on the algebra given by the homogeneous coordinate
ring of X.

4.3.1 Tropicalizing F`n
In this section we study the tropicalization of F`4 and F`5. We analyze the Gröbner toric
degenerations arising from trop(F`4) and trop(F`5), and we compute the polytopes associated
to their normalizations. In Proposition 17 we describe the tropical configurations arising from
the maximal cones of trop(F`4). These are configurations of a point on a tropical line in a
tropical plane corresponding to the points in the relative interior of a maximal cone.

2Based on joint work with Sara Lamboglia, Kalina Mincheva, and Fatemeh Mohammadi in [9].
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We are interested in finding distinct polytopes up to unimodular equivalence (recall Def-
inition 51) as they give rise to non-isomorphic toric varieties. Often it is only possible to
determine combinatorial equivalence (see [15, §2.2]).

Definition 63. Consider two polytopes P and Q in Rn. Then P and Q are combinatorially
equivalent, if there exists a bijection

{faces of P} ↔ {faces of Q}.

Note that in particular, when P and Q are unimodularly equivalent (see Definition 51) then
P and Q are combinatorially equivalent. Hence, if they are not combinatorially equivalent P
and Q yield non-isomorphic toric varieties. We use this fact throughout the section.

Theorem 22. The tropical variety trop(F`4) is a 6-dimensional rational fan in R14/R3 with
a 3-dimensional lineality space. It consists of 78 maximal cones, 72 of which are prime. They
are organized in five S4 oZ2-orbits, four of which contain prime cones. The prime cones give
rise to four non-isomorphic toric degenerations.

Proof. The theorem is proved by explicit computations. We developed a Macaulay2 package
called ToricDegenerations containing all the functions we use. The package and the data
needed for this proof are available at

https : //github.com/ToricDegenerations.

The flag variety F`4 is a subvariety of Gr(1, 4)×Gr(2, 4)×Gr(3, 4), which makes it using the
Plücker embedding of Grassmannians a 6-dimensional subvarity of P3×P5×P3. The ideal I4

is the kernel of the map ϕ4 defined in (4.1.1). It is contained in the total coordinate ring R of
P3 × P5 × P3, a C-polynomial ring in the Plücker variables

p1, p2, p3, p4, p12, p13, p14, p23, p24, p34, p123, p124, p134, p234.

The (multi-)grading on R is given by the matrix

D :=

(
1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1

)
. (4.3.1)

The explicit form of I4 can be found in [56, page 276]. As we have seen in §3.1.1 the
tropicalization of F`4 is contained in R14/H, where H is the subspace of R14 spanned by the
rows of D.

We use the Macaulay2 [35] interface to Gfan [41] to compute trop(F`4). The given input is
the ideal I4 and the S4 oZ2-action (see [42, §3.1.1]). The output is a subfan F of the Gröbner
fan of dimension 9. We quotient it by H to get trop(F`4) as a 6-dimensional fan contained in
R14/H ∼= R14/R3.

Firstly, the function computeWeightVectors computes a list of vectors. There is one for
every maximal cone of trop(F`4) and it is contained in the relative interior of the corresponding
cone. Then groebnerToricDegenerations computes all the initial ideals and checks if
they are binomial and prime over Q. These are organized in a hash table, which is the output
of the function.
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All 78 initial ideals are binomial and all maximal cones have multiplicity one. In order
to check primeness over C, we consider for every cone C with inC(I4) prime over Q the ideal
I(WC) as defined in (2.2.6). We verify inC(I4) = I(WC) computationally using Macaulay2 [35].

We consider the orbits of the S4 nZ2-action on the set of initial ideals. These correspond
to the orbits of maximal cones of F and hence of trop(F`4). There is one orbit of non-prime
initial ideals and four orbits of prime initial ideals. The varieties corresponding to initial
ideals contained in the same orbit are isomorphic. Therefore, for each orbit we choose a
representative of the form inC(I4) = I(WC) for some cone C in the orbit.

We now compute for each of the four prime orbits, the polytope of the normalization of
the associated toric varieties. We use the Macaulay2 -package Polyhedra [7] for the following
computations.

The lattice M associated to S/I(WC) is generated over Z by the columns of WC . To use
Polyhedra we want to have a lattice with index 1 in Z9. If the index of M in Z9 is different
from 1, we consider M as the lattice generated by the columns of the matrix (ker((ker(WC))t)t.
Here, for a matrix A we consider ker(A) to be the matrix whose columns minimally generate
the kernel of the map Z14 → Z9 defined by A. We denote the set of generators of M by
BC = {b1, . . . ,b14} so that M = ZBC .

The toric variety P3 × P5 × P3 can be seen as Proj(⊕`R`(1,1,1)) and I(WC) as an ideal
in ⊕`R`(1,1,1) (see [56, Chapter 10]). The associated toric variety is Proj(⊕`C[Z≥0BC ]`(1,1,1)).
The polytope P of the normalization is given as the convex hull of those lattice points in
Z≥0BC corresponding to degree (1, 1, 1)-monomials in C[Z≥0BC ].

These can be found in the following way. We order the rows of the matrix (b1, . . . ,b14)
associated to BC so that the first three rows give the matrix D from (4.3.1). Now the matrix
(b1, . . . ,b14) represents a map Z14 → Z3⊕Z6, where Z3⊕Z6 is the lattice M and the Z3 part
gives the degree of the monomials associated to each lattice point on M . The lattice points,
whose convex hull give the polytope P , are those with the first three coordinates being 1. In
other words, we have obtained P by applying the reverse procedure of constructing a toric
variety from a polytope (see [16, §2.1-§2.2]). Note that the difference from the procedure given
in [16, §2.1-§2.2] is the Z3-grading and because of that we do not consider the convex hull of
BC , but the intersection of Z≥0BC with these hyperplanes.

In Table 4.5 there are the numerical invariants of the initial ideals and their corresponding
polytopes. Using polymake [27] we first obtain that there is no combinatorial equivalence
between each pair of polytopes. This means that there is no unimodular equivalence between
the corresponding normal fans, hence the normalization of the toric varieties associated to
these toric degenerations are not isomorphic. This implies that we obtain four non-isomorphic
toric degenerations.

Proposition 17. There are six tropical configurations up to symmetry (depicted in Fig-
ure 4.14) arising from the maximal cones of trop(F`4). They are further organized in five
S4 o Z2-orbits.

Proof. The tropical variety trop(F`4) is contained in

trop(Gr(1,C4))× trop(Gr(2,C4))× trop(Gr(3,C4)).

Each tropical Grassmannian parametrizes tropicalized linear spaces (see [53, Theorem 4.3.17]).
This implies that every point p in trop(F`4) corresponds to a chain of tropical linear subspaces
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Orbit Size Cohen-Macaulay Prime #Generators F-vector of associated polytope

1 24 Yes Yes 10 (42, 141, 202, 153, 63, 13)

2 12 Yes Yes 10 (40, 132, 186, 139, 57, 12)

3 12 Yes Yes 10 (42, 141, 202, 153, 63, 13)

4 24 Yes Yes 10 (43, 146, 212, 163, 68, 14)

5 6 Yes No 10 Not applicable

Table 4.5: The tropical variety trop(F`4) has 78 maximal cones organized in five S4oZ2-orbits.
The algebraic invariants of the initial ideals associated to these cones and the F-vectors of their
associated polytopes are listed here.

2

1

4

3

3

1

4

2

4

1

3

2

4

1

3

2

Figure 4.13: Combinatorial types of tropical lines in R4/R1.

given by a point on a tropical line contained in a tropical plane. All tropical chains are
realizable, meaning that they are the tropicalization of the classical chains of linear spaces of
k4 corresponding to a point q in F`4(k) such that v(q) = p, where k = C{{t}} is the field of
Piusseux series and v is the natural valuation on it (see [53, Part (3) of Theorem 3.2.3]).

In this case, there is only one combinatorial type for the tropical plane and four possible
types for the lines up to symmetry (see [53, Example 4.4.9]). The plane consists of six 2-
dimensional cones positively spanned by all possible pairs of vectors (1, 0, 0)t, (0, 1, 0)t, (0, 0, 1)t,
and (−1,−1,−1)t. The combinatorial types of the tropical lines are shown in Figure 4.13. The
leaves of these graphs represent the rays of the tropical line labeled 1 up to 4 corresponding
to the positive hull of each of the vectors (1, 0, 0)t, (0, 1, 0)t, (0, 0, 1)t, and (−1,−1,−1)t.

Consider the S4 o Z2-orbits of maximal cones of trop(F`4). If we compute the chain of
tropical linear spaces corresponding to an element in each orbit, we get the configurations in
Figure 4.14. Note that we do not include the labeling since up to symmetry we can get all
possibilities. The point on the line is the black dot. In case the intersection of the line with
the rays of the plane is the vertex of the plane then we denote this with a hollow dot. A
vertex of the line is colored in gray if it lies on a ray of the plane. For example in orbit 2,
label the rays 1 to 4 anti-clockwise starting from the top left edge. We have rays 1 and 2 in
the 2-dimensional positive hull of (1, 0, 0)t and (0, 1, 0)t. The vector associated to the internal
edge is (1, 1, 0)t. The gray point is the origin and the black point has coordinates (a, 1, 0)t for
a > 1.

Orbits 1 and 4 in Figure 4.14 have size 24, orbits 2 and 3 have size 12 and orbit 5 has size 6.
Note that orbit 5 corresponds to non-prime initial ideals. Orbit 1 contains two combinatorial
types of tropical configurations and one is sent to the other by the Z2-action on the tropical
variety. The orbits 2 and 3 differ from the fact that for each combinatorial type of line the
gray dot can lie on one of the four rays of the tropical plane. These possibilities are grouped
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Orbit 1

Orbit 2 Orbit 3

Orbit 4 Orbit 5
(non-prime)

the point
a point on a ray of the plane
the vertex of the plane

Figure 4.14: The list of all tropical configurations up to symmetry that arise in F`4. The
hollow and the full gray dot denote whether that vertex of the line is the vertex of the plane
or it is contained in a ray of the plane. The black dot is the position of the point on the line.

in two pairs, one is in orbit 2 and the other in orbit 3.

Theorem 23. The tropical variety trop(F`5) is a 10-dimensional fan in R30/R4 with a 4-
dimensional lineality space. It consists of 69780 maximal cones which are grouped in 536
S5 o Z2-orbits. These give rise to 531 orbits of binomial initial ideals and among these 180
are prime. They correspond to 180 non-isomorphic toric degenerations.

Proof. The flag variety F`5 is a 10-dimensional variety defined by 66 quadratic polynomials in
the total coordinate ring of P4×P9×P9×P4. These are of the form

∑
j∈J\I(−1)ljpI∪{j}pJ\{j},

where J, I ⊂ {1, . . . , 5} and lj = #{k ∈ J | j < k}+ #{i ∈ I | i < j}.
The proof is similar to the proof of Theorem 22. The only difference is that the action of

S5 o Z2 on F`5 is crucial for the computations. In fact, without exploiting the symmetries
the calculations to get the tropicalization would not terminate. Moreover, we only verify
primeness of the initial ideals over Q using the primdec library [59] in Singular [17]. We
compute the polytopes associated to the normalization of the 180 toric varieties in the same
way as Theorem 22, only changing the matrix of the grading, which is now given by

D :=

(
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

)
. (4.3.2)

Since there are no combinatorial equivalences among the normal fans to these polytopes, we
deduce that the obtained toric degenerations are pairwise non-isomorphic. More information
on the non-prime initial ideals is available in Table B.1 in the appendix.
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w0 Normal MP Weight vector −ww0
Prime Tropical cone

String 1:

121321

212321

232123

323123

yes

yes

yes

yes

yes

yes

yes

yes

(0, 32, 24, 7, 0, 16, 6, 48, 38, 30, 0, 4, 20, 52)

(0, 16, 48, 7, 0, 32, 6, 24, 22, 54, 0, 4, 36, 28)

(0, 4, 36, 28, 0, 32, 24, 6, 22, 54, 0, 16, 48, 7)

(0, 4, 20, 52, 0, 16, 48, 6, 38, 30, 0, 32, 24, 7)

yes

yes

yes

yes

rays {10, 18, 19}, cone 71

rays {6, 10, 19}, cone 44

rays {0, 3, 6}, cone 3

rays {0, 1, 3}, cone 1

String 2:

123212

321232

yes

yes

yes

yes

(0, 32, 18, 14, 0, 16, 12, 48, 44, 27, 0, 8, 24, 56)

(0, 8, 24, 56, 0, 16, 48, 12, 44, 27, 0, 32, 18, 14)

yes

yes

rays {2, 10, 18}, cone 36

rays {0, 1, 2}, cone 0

String 3:

213231 yes yes (0, 16, 48, 13, 0, 32, 12, 20, 28, 60, 0, 8, 40, 22) yes rays {3, 6, 19}, cone 24

String 4:

132312 yes no (0, 16, 12, 44, 0, 8, 40, 24, 56, 15, 0, 32, 10, 26) no rays {1, 2, 17}, cone 17

FFLV yes yes
wmin = (0, 2, 2, 1, 0, 1, 1, 2, 1, 2, 0, 1, 1, 1)

wreg = (0, 3, 4, 3, 0, 2, 2, 4, 3, 5, 0, 1, 2, 3)
yes

rays {9, 11, 12}, cone 56

rays {9, 11, 12}, cone 56

Table 4.6: Isomorphism classes of string polytopes for n = 4 and ρ depending on w0, normal-
ity, the weak Minkowsky property, the weight vectors ww0

constructed in §4.3.2, primeness
of the binomial initial ideals inww0

(I4), and the corresponding tropical cones with their span-
ning rays as they appear at http://www.mi.uni-koeln.de/˜lbossing/tropflag/
tropflag4.html .

4.3.2 String&FFLV polytopes and the tropical flag variety

This section provides an introduction to FFLV polytope and explicit computations of the
FFLV polytope and the string polytopes for F`4 and F`5. FFLV stands for Feigin, Fourier,
and Littelmann, who defined this polytope in [23], and Vinberg who conjectured its existence
in a special case. We have already seen how string polytopes can be used to construct toric
degenerations of the flag variety following Caldero [13]. The same is true for the FFLV
polytope. Recall the definition of string polytopes from §4.2.2 and the parametrization given
in §4.2.1.

Consider the weight ρ ∈ Λ++. The string polytope Qw0
(ρ) is in general not the Minkowski

sum of string polytopes Qw0
(ω1), . . . ,Qw0

(ωn−1), which motivates the following definition.

Definition 64. A string cone has the weak Minkowski property (MP), if for every lattice point
p ∈ Qw0

(ρ) there exist lattice points pωi ∈ Qw0
(ωi) such that

p = pω1 + pω2 + · · ·+ pωn−1 .

Remark 12. Note that the (non-weak) Minkowski property would require the above condition
on lattice points to be true for arbitrary weights λ ∈ Λ++. Further, note that if Qw0

(ρ) is the
Minkowski sum of the fundamental string polytopes Qw0

(ωi), then MP is satisfied.

http://www.mi.uni-koeln.de/~lbossing/tropflag/tropflag4.html 
http://www.mi.uni-koeln.de/~lbossing/tropflag/tropflag4.html 
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Proposition 18. For F`4 there are four string polytopes in R10 up to unimodular equivalence
and three of them satisfy MP. For F`5 there are 28 string polytopes in R14 up to unimodular
equivalence and 14 of them satisfy MP.

Proof. We first consider F`4. There are 16 reduced expressions for w0. Simple transpositions
si and sj with 1 ≤ i < i + 1 < j < n commute and are also called orthogonal. We consider
reduced expressions up to changing those, so there are eight symmetry classes. We fix the
weight ρ = ω1 + ω2 + ω3 in Λ++. The string polytopes are organized in four classes up
to unimodular equivalence. See Table 4.6, in which 121321 denotes the reduced expression
w0 = s1s2s1s3s2s1. Hence, they give four different toric degenerations for the embedding
F`4 ↪→ P(V (ρ)).

In order to verify whether the weak Minkowski property holds or not, we proceed as follows.
We fix w0 to compute the string polytopeQw0

(ρ) using polymake. The number of lattice points
in Qw0

(ρ) is dim(V (ρ)) = 64. Then we compute the polytopes Qw0
(ω1),Qw0

(ω2),Qw0
(ω3)

and set Pw0
:= Qw0

(ω1) + Qw0
(ω2) + Qw0

(ω3) ⊂ R9. If |Pw0
∩ Z9| < 64, then there exists

a lattice point in Qw0
(ρ), that can not be expressed as p1 + p2 + p3 for pi ∈ Qw0

(ωi). For
w0 = s1s3s2s3s1s2, we compute

|Pw0
∩ Z9| = 62 < 64.

Hence, polytopes in the class String 4 do not satisfy MP. For polytopes in the classes String
1, 2, and 3 equality holds and MP is satisfied.

Now consider F`5. There are 62 reduced expressions w0 up to changing orthogonal trans-
positions. The map L : S5 → S5 given on simple reflections by L(si) = s4−i+1 induces a
symmetry on the pseudoline arrangements. Further, for a fixed λ ∈ P++ is induces a uni-
modular equivalence between Qw0

(λ) and QL(w0)(λ). Exploiting this symmetry, we compute
31 string polytopes for ρ. They are organized in 28 unimodular equivalence classes, that arise
from further symmetries of the underlying pseudoline arrangements. Table B.3 shows which
reduced expressions belong to string polytopes within one unimodular equivalence class, and
which string cones satisfy MP. Proceeding as for F`4, we observe that 14 out of 28 classes
satisfy MP.

We now turn to the FFLV polytope. It is defined in [23] by Feigin, Fourier, and Littelmann
to describe bases of irreducible highest weight representations V (λ). In [24] they give a
construction of a flat degeneration of the flag variety into the toric variety associated to the
FFLV polytope. It is also an example of the more general setup of birational sequences
presented in [20]. We recall the definition and compute the FFLV polytopes for F`4 and F`5
for ρ. Recall, that αi = εi − εi+1 ∈ Rn for 1 ≤ i < n are the simple roots of sln, and αp,q is
the positive root αp + αp+1 + · · ·+ αq for 1 ≤ p ≤ q < n.

Definition 65. A Dyck path for sln is a sequence of positive roots d = (β0, . . . , βk) with k ≥ 0
satisfying the following conditions

1. if k = 0 then d = (αi) for 1 ≤ i ≤ n− 1,

2. if k ≥ 1 then

(a) the first and the last roots are simple, i.e. β0 = αi, βk = αj for 1 ≤ i < j ≤ n− 1,

(b) if βs = αp,q then βs+1 is either αp,q+1 or αp+1,q.
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Denote by D the set of all Dyck paths. We choose the positive roots α > 0 as an indexing set
for a basis of RN .

Definition 66. The FFLV polytope P (λ) ⊂ RN≥0 for a weight λ =
∑n−1

i=1 miωi ∈ Λ++ is
defined as

P (λ) =

(rα)α>0 ∈ RN≥0

∣∣∣∣∣∣∀d ∈ D : if β0 = αi and βk = αj

rβ0 + · · ·+ rβk ≤ mi + · · ·+mj

 . (4.3.3)

Example 28. Consider F`4. Then the Dyck paths are

(α1), (α2), (α3),

(α1, α1,2, α2), (α2, α2,3, α3),

(α1, α1,2, α2, α2,3, α3) and (α1, α1,2, α1,3, α2,3, α3)

For our favorite choice of weight λ = ρ = ω1 + ω2 + ω3 we obtain the FFLV polytope

P (ρ) =


(rα)α>0

∣∣∣∣∣∣∣∣∣∣∣∣∣

rα1 ≤ 1, rα2 ≤ 1, rα3 ≤ 1,

rα1 + rα1,2 + rα2 ≤ 2, rα2 + rα2,3 + rα3 ≤ 2,

rα1 + rα1,2 + rα2 + rα2,3 + rα3 ≤ 3,

rα1 + rα1,2 + rα1,3 + rα2,3 + rα3 ≤ 3


⊂ R6

≥0.

The following is a corollary of [23, Proposition 11.6], which says that a strong version of
the Minkowski property is satisfied by the FFLV polytope for F`n. It can alternatively be
shown for n = 4, 5 using the methods in the proof of Proposition 18.

Corollary 14. The FFLV polytope P (ρ) satisfies the weak Minkowski property.

Remark 13. The FFLV polytope is in general not a string polytope. A computation in
polymake shows that P (ρ) for F`5 is not combinatorially equivalent to any string polytope for
ρ.

String cones and points in trop(F`n)

We have seen in §2.2 how to obtain toric degenerations from maximal prime cones of the
tropicalization of a variety. We compare the degenerations arising from trop(F`n) with those
from string polytopes and the FFLV polytope. Moreover, applying [13, Lemma 3.2] (see §2.3)
we construct a weight vector from a string cone, which allows us to apply Theorem 10 from
§2.4. Computational evidence for F`4 and F`5 shows that each constructed weight vector lies
in the relative interior of a maximal cone in trop(F`n). A similar idea for a more general case
is carried out in [45, §7]. For the FFLV polytope we compute weight vectors for F`n with
n = 4, 5 (see Example 31) following a construction given in [21].

We now prove the result in Theorem 9 by analyzing the polytopes associated to the different
toric degenerations of F`n for n = 4, 5.
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Orbit Combinatorially equivalent polytopes

1 String 2

2 String 1 (Gelfand-Tsetlin)

3 String 3 and FFLV

4 -

Table 4.7: Combinatorial equivalences among the polytopes obtained from prime cones in
trop(F`4) and string polytopes resp. the FFLV polytope.

Proof of Theorem 9. In order to distinguish the different toric degenerations, we consider the
normalizations of the toric varieties associated to their special fibers. Two projective normal
toric varieties are isomorphic, if their corresponding polytopes are unimodularly equivalent.
For this reason we first look for combinatorial equivalences between the polytopes. If they
are not combinatorially equivalent then they can not be unimodularly equivalent, hence they
define non-isomorphic toric varieties. We use polymake [27] for computations with polytopes.

From Table 4.7 one can see that for F`4 there is one toric degeneration, whose associated
polytope is not combinatorially equivalent to any string polytope or the FFLV polytope for ρ.
Hence, its corresponding normal toric variety is not isomorphic to any toric variety associated
to these polytopes. For the toric varieties associated to the other polytopes we can not exclude
isomorphisms since there might be a unimodular equivalences.

For F`5, Table B.2 in the appendix shows that there are 168 polytopes obtained from
prime cones of trop(F`5) that are not combinatorially equivalent to any string polytope or the
FFLV polytope for ρ.

Remark 14. There are also string polytopes, which are not combinatorially equivalent to any
polytope from prime cones in trop(F`n) for n = 4, 5. These are exactly those not satisfying
MP, i.e. one string polytope for F`4 and 14 for F`5. See also Table B.3.

From now on, we fix a reduced expression w0 = si1 . . . siN and we consider the birational
sequence of simple roots S := (αi1 , . . . , αiN ). As we have seen in Example 8.2 for Grassman-
nains, the same is true here: S is a birational sequence. In [20] (see also [43]) they realize
string polytopes as Newton-Okounkov polytopes associated to the valuation from this bira-
tional sequence. Another necessary ingredient to obtain such a valuation on C[F`n] was the
choice of total order on ZN . Recall therefore the definition of the Ψ-weighted reverse lexico-
graphic order ≺Ψ from (3.2.2) and the definition of vS from (3.2.3). For our choice of S from
a reduced expression w0 we denote vw0

:= vS .
Then vw0

can be computed explicitly on Plücker coordinates. We have seen this for Gr(2, n)
in (3.2.7), but more generally we have by [20, Proposition 2] for {j1, . . . , jk} ⊂ [n]

vS(p̄j1,...,jk) = min≺Ψ{m ∈ ZN≥0 | fm(e1 ∧ · · · ∧ ek) = ej1 ∧ · · · ∧ ejk},

where fm = fm1
αi1
· · · fmNαiN

∈ U(n−).

Example 29. For F`4 three root vectors in n− are

fα1 =

(
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

)
, fα2 =

(
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

)
, and fα3 =

(
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

)
.
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Consider V =
∧2 C4. As we have seen above the action of n− on C4 is given by fαi(ei) = ei+1

and fαi(ej) = 0 for j 6= i. On V the n−-action is given by

fαi(ej ∧ ek) = fαi(ej) ∧ ek + ej ∧ fαi(ek).

The Plücker coordinate p̄13 ∈ C[F`4] is of degree (0, 1, 0), i.e. contained in C[F`4](0,1,0)
∼=

(
∧2 C4)∗. As we have seen before p̄13 = (e1 ∧ e3)∗, and so we consider e1 ∧ e3 ∈ V . Then
fα2(e1 ∧ e2) = e1 ∧ e3. We fix ŵ0 = s1s2s1s3s2s1 ∈ S4, then as seen in (2.1.2) we have
U(n−) · (e1 ∧ e2) = 〈fm1

α1
fm2
α2
fm3
α1
fm4
α3
fm5
α2
fm6
α1
· · · (e1 ∧ e2) | mi ∈ Z≥0〉. Hence,

f (0,1,0,0,0,0)(e1 ∧ e2) = f (0,0,0,0,1,0)(e1 ∧ e2) = e1 ∧ e3.

The minimal m ∈ (Z6,≺Ψ) satisfying fm(e1 ∧ e2) = e1 ∧ e3 is (0, 1, 0, 0, 0, 0), so we have
vŵ0

(p̄13) = (0, 1, 0, 0, 0, 0).

We want to apply the results from §2.4 to the given valuations of form vw0
: C[F`n]\{0} →

(ZN ,≺Ψ). Let therefore Mw0
:= (vw0

(p̄J))0 6=J([n] ∈ ZN×(n1)+···+( n
n−1) be the matrix whose

columns are given by the images of Plücker coordinates under vw0
. We define a linear form

e : ZN → Z by
−e(m) := 2N−1m1 + 2N−2m2 + . . .+ 2mN−1 +mN .

By [13, Proof of Lemma 3.2] and our choice of total order ≺Ψ, it satisfies vw0
(p̄I) ≺Ψ vw0

(p̄J)
implies e(vw0

(p̄I)) < e(vw0
(p̄J)) for 0 6= I, J ( [n].

Definition 67. For a fixed reduced expression w0 the weight of the Plücker variable pJ is

e(vw0
(p̄J)). We define the weight vector ww0

in R(n1)+(n2)+···+( n
n−1) by

ww0
:= e(Mw0

) = (e(vw0
(p̄J)))0 6=J([n],

where we order the subsets 0 6= J ( [n] lexicographically from [1] to [2, n].

Example 30. We continue as in Example 29 with the reduced expression ŵ0 ∈ S4. As
vŵ0

(p̄13) = (0, 1, 0, 0, 0, 0) the weight of p̄13 is e(0, 1, 0, 0, 0, 0) = −(1 · 24) = −16. Similarly, we
obtain weights for all Plücker coordinates and

−ww0
= (0, 32, 24, 7, 0, 16, 6, 48, 38, 30, 0, 4, 20, 52).

Table 4.6 contains all weight vectors (up to sign) for F`4 constructed in the way just described.

Proposition 19. Consider F`n with n = 4, 5. The above construction produces a weight
vector ww0

for every string cone. This weight vector lies in the relative interior of a maximal
cone of trop(F`n). If further the string cone satisfies MP, then ww0

lies in the relative interior
of a prime cone whose associated polytope is combinatorially equivalent to Qw0

(ρ).

Proof. The constructed weight vectors ww0
can be found in Table 4.6 for F`4 and Table B.3

in the appendix for F`5. A computation in Macaulay2 shows that all initial ideals inww0
(In)

for n = 4, 5 are binomial, hence in the relative interiors of maximal cones of trop(F`n).
Moreover, if MP is satisfied we check using polymake that the polytope constructed from

the maximal prime cone Cw0 ⊂ trop(F`n) with ww0
in its relative interior is combinatorially

equivalent to the string polytope Qw0
(ρ). See Table 4.6 and Table B.3.
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This computational outcome can actually be explained by Theorem 10. In this context in
can be stated as follows.

Theorem 24. Let w0 be a reduced expression of w0 ∈ Sn and consider ww0
∈ R(n1)+···+( n

n−1).
If inww0

(In) is prime, then S(An, vw0
) is generated by {vw0

(p̄J) | 0 6= J ( [n]}. In particular,

Qw0
(ρ) = conv(vw0

(p̄J) | 0 6= J ( [n]),

and the Plücker coordinates form a Khovanskii basis for vw0
.

Proof. First note, that by [56, Theorem 14.6] the ideal In is generated by elements f satisfying
deg f > εi for all i ∈ [n − 1]. Further, by Lemma 4 inww0

(In) = inMw0
(In) and so inMw0

(In)
is prime by assumption. As vw0

is of full rank, we can apply Theorem 10. If follows that
S(An, vw0

) is generated by {vw0
(p̄J) | 0 6= J ( [n]} and that

∆(An, vw0
) = conv(vw0

(p̄J) | 0 6= J ( [n]).

As by [20, §11] Qw0
(ρ) is the Newton-Okounkov body of the valuation vw0

the claim follows.

Corollary 15. With assumptions as in Theorem 24, we have:

inww0
(In) is prime ⇒ Qw0

has the (strong) Minkowski property.

Proof. By Theorem 24 the value semigroup S(An, vw0
) is generated by {vw0

(p̄J) | 0 6= J ( [n]}.
Recall that C[SLn/U ] ∼=

⊕
λ∈Λ+ V (λ) from §4.1. The algebra therefore has a natural

multigrading given by Λ+. Consider the valuation v̂w0
: C[SLn/U ] \ {0} → Λ+ × ZN≥0 given

by v̂w0
(f) = (deg f, vw0

(f)) as in [20]. Then for every λ ∈ Λ++ we have

Qw0
(λ) = C(An, v̂w0

) ∩ {λ} × RN .

If λ =
∑n−1

i=1 aiωi we know (by an argument similar to [20, Proposition 2]) that the Minkowski
sum of the fundamental string polytopes satisfies

a1Qw0
(ω1) + · · ·+ an−1Qw0

(ωn−1) ⊆ Qw0
(λ).

As the generators of S(An, vw0) are the union of lattice point of all fundamental string poly-
topes, we count

|(a1Qw0
(ω1) + · · ·+ an−1Qw0

(ωn−1)) ∩ ZN | = dimC V (λ) = |Qw0
(λ)|.

Hence, the two polytopes are equal.

Regarding the opposite implication to Corollary 15, we know that if Qw0
satisfies the

strong Minkowski property, then S(An, vw0
) is generated by {vw0

(pJ) | 0 6= J ( [n]}. Hence,
grvw0

(An) is generated by pJ for 0 6= J ( [n] and we have a surjective morphism π : C[pJ ]J →
grvw0

(An). Then ker(π) ⊂ C[pJ ]J is a prime ideal with grvw0
(An) ∼= C[pJ ]J/ ker(π). So far,

we didn’t manage to prove that ker(π) = inww0
(In).

Computational evidence for F`4 and F`5 leads us to the following conjecture.
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Conjecture 1. Let n ≥ 3 be an arbitrary integer. For every reduced expression w0, the
weight vector ww0

lies in the relative interior of a maximal cone in trop(F`n).

Moreover, if the string cone satisfies MP this vector lies in the relative interior of the
prime cone C ⊂ trop(F`n), whose associated polytope is combinatorially equivalent to the
string polytope Qw0

(ρ).

The following example discusses a similar construction of weight vectors for the FFLV
polytope.

Example 31. Consider for F`4 the birational PBW-sequence with good ordering S := (α1 +
α2 + α3, α1 + α2, α2 + α3, α1, α2, α3) (similar to Example 8.1 for Grassmannians). We choose
as total order on ZN the homogeneous right lexicographic order (see [20, Example 9]), i.e.

m �rlex n :⇔
N∑
i=1

mi >
N∑
i=1

ni, or
∑
i

mi =
∑
i

ni and m >rlex n,

where <rlex denotes the right lexicographic order on ZN . With these choices the associated
Newton-Okounkov polytope to the valuation vS is the FFLV polytope (see [20, §13] and
also [47]). Similar to the above we define (according to the degrees defined in [21]) linear
forms emin, ereg : ZN → Z by

emin(m) := m1 + 2m2 +m3 + 2m4 +m5 +m6,

ereg(m) := 3m1 + 4m2 + 2m3 + 3m4 + 2m5 +m6.

We obtain in analogy to Definition 67 the corresponding weight vectors in R(n1)+···+( n
n−1)

wmin = (0, 2, 2, 1, 0, 1, 1, 2, 1, 2, 0, 1, 1, 1),

wreg = (0, 3, 4, 3, 0, 2, 2, 4, 3, 5, 0, 1, 2, 3).

A computation in Macaulay2 shows that inwmin(I4) = inwreg(I4) is a binomial prime ideal.
Hence, wmin and wreg lie in the relative interior of the same prime cone C ⊂ trop(F`4). Using
polymake [27] we verify that the polytope associated to C is combinatorially equivalent to the
FFLV polytope P (ρ). We did the analogue of this computation for F`5 and the outcome is the
same, inwmin(I5) = inwreg(I5) = inC(I5) with the polytope associated to C being combinatori-
ally equivalent to P (ρ). The weight vectors wmin and wreg for F`5 can be found in Table B.3
in the appendix. In fact, in [19] Fang-Feigin-Fourier-Makhlin show that for arbitrary n the
vectors wmin and wreg lie in the relative interior of a maximal prime cone of trop(F`n) and
they give explicit inequalities to describe the cone.

4.3.3 Toric degenerations from non-prime cones

As we have seen in §4.3.1, not all maximal cones in the tropicalization of a variety give rise to
prime initial ideals and hence to toric degenerations. In fact, there may also be tropicalizations
without prime cones (see Example 32). Let X = V (I) be a subvariety of a toric variety Y .
In this section, we give a recursive procedure (Procedure 7) to compute a new embedding
V (I ′) ⊂ Y ′ of X in case trop(X) has non-prime cones. Let C be a non-prime cone. If the
procedure terminates, the new tropical variety trop(X ′) has more prime cones than trop(X)
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Procedure 7: Computing new embeddings of the variety X in case trop(X) contains
non-prime cones

Input: A = C[x1, . . . , xn]/I, where C[x1, . . . , xn] is the total coordinate ring of the
toric variety Y and I defines the subvariety V (I) ⊂ Y , C a non-prime cone of
trop(V (I)).

Initialization:
Compute the primary decomposition of inC(I);
I(WC) = unique prime toric component in the decomposition;
G = minimal generating set of I(WC).
Compute a list of binomials LC = {f1, . . . , fs} in G, which are not in inC(I);
A′ = C[x1, . . . , xn, y1, . . . , ys]/I

′ with I ′ = I + 〈y1 − f1, . . . , ys − fs〉;
V (I ′) subvariety of Y ′ whose total coordinate ring is C[Y ] := C[x1, . . . , xn, y1, . . . , ys].
Compute trop(V (I ′));
for all prime cones C ′ ∈ trop(V (I ′)) do

if π(C ′) is contained in the relative interior of C then
Output: The algebra A′ and the ideal inC′(I

′) of a toric degeneration of V (I ′).

else
Apply the procedure again to A′ and C ′.

and at least one of them is projecting onto C. We apply this procedure to F`4 and compare
the new toric degenerations with those obtained so far (see Proposition 20). The procedure
terminates for F`4, but we are still investigating the conditions for which this is true in general.

We explain Procedure 7: consider a toric variety Y whose total coordinate ring with as-
sociated Zk-degree deg : Zn → Zk is C[x1, . . . , xn]. Let X be the subvariety of Y associated
to an ideal I ⊂ C[x1, . . . , xn], where the Krull dimension of A = C[x1, . . . , xn]/I is d. Denote
by trop(V (I)) the tropicalization of X intersected with the torus of Y . Suppose there is a
non-prime cone C ⊂ trop(V (I)) with multiplicity one. By Lemma 2, we have that I(WC)
is the unique toric ideal in the primary decomposition of inC(I), hence inC(I) ⊂ I(WC).
We compute I(WC) using the function primaryDecomposition in Macaulay2. Fix a min-
imal binomial generating set G of I(WC), and let LC = {f1, . . . , fs} be the set consisting
of binomials in G that are not in inC(I). By Hilbert’s Basis Theorem s is a finite number.
The absence of these binomials in inC(I) is the reason why the initial ideal is not equal to
I(WC), hence not prime. We introduce new variables {y1, . . . , ys} and consider the algebra
A′ = C[x1, . . . , xn, y1, . . . , ys]/I

′, where

I ′ = I + 〈y1 − f1, . . . , ys − fs〉.

The ideal I ′ is a homogeneous ideal in C[x1, . . . , xn, y1, . . . , ys] with respect to the grading

(deg(x1), . . . ,deg(xn),deg(f1), . . . ,deg(fs)).

The new variety V (I ′) is a subvariety of the toric variety Y ′ with total coordinate C[Y ′] :=
C[x0, . . . , xn, y1, . . . , ys]. For example, if V (I) is a subvariety of a projective space then V (I ′)
is contained in a weighted projective space.
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Since the algebras A and A′ are isomorphic as graded algebras, the varieties V (I) and
V (I ′) are isomorphic. We have a monomial map

π : C[x1, . . . , xn]/I → C[x0, . . . , xn, y1, . . . , ys]/I
′

inducing a surjective map trop(π) : trop(V (I ′))→ trop(V (I)) (see [53, Corollary 3.2.13]). The
map trop(π) is the projection onto the first n coordinates. Suppose there exists a prime cone
C ′ ⊂ trop(V (I ′)), whose projection has a non-empty intersection with the relative interior
of C. Then by construction we have inC(I) ⊂ inC′(I

′) ∩ C[x0, . . . , xn] and the procedure
terminates. In this way we obtain a new initial ideal inC′(I

′) which is toric and hence gives
a new toric degeneration of the variety V (I ′) ∼= V (I). If only non-prime cones are projecting
to C then run this procedure again with A′ and C ′, where the latter is a maximal cone of
trop(V (I ′)), which projects to C. We can then repeat the procedure starting from a different
non-prime cone.

The function to apply Procedure 7 is findNewToricDegenerations and it is part of
the package ToricDegenerations. This computes only one re-embedding for each non-prime
cone. It is possible to use mapMaximalCones to obtain the image of trop(V (I ′)) under the
map π.

Remark 15. If fi is a polynomial in C[x1, . . . , xn] with the standard grading and deg(fi) > 1,
then we need to homogenize the ideal I ′ before computing the tropicalization with Gfan. This
is done by adding a new variable h. The homogenization of I ′ with respect to h is denoted by
I ′proj ⊆ C[x1, . . . , xn, y1, . . . , ys, h]. Then by [53, Proposition 2.6.1] for every w in Rn+s+2 the
ideal inw(I ′) is obtained from in(w,0)(I

′
proj) by setting h = 1.

If the cone C is prime, we can construct a valuation vC on k[x1, . . . , xn]/I in the following
way. Consider the matrix WC in Equation (2.2.5). For monomials mi = cxαi ∈ C[x1, . . . xn]
define

v(mi) = WCαi and v(
∑
i

mi) = min
i
{v(mi)}, (4.3.4)

where the minimum on the right side is taken with respect to the lexicographic order on
(Zd,+). This is a valuation on C[x1, . . . , xn] of rank equal to the Krull dimension of A for
every cone C. Composing v with the quotient morphism p : C[x1, . . . , xn] → C[x1, . . . , xn]/I
we obtain a map vC , which is a valuation if and only if the cone C is prime. Moreover, in [45]
Kaveh and Manon prove that a cone C in trop(V (I)) is prime if and only if A = k[x1, . . . , xn]/I
has a finite Khovanskii basis for the valuation vC constructed from the cone C.

Procedure 7 can be interpreted as finding an extension vC′ of vC so that A′ has fi-
nite Khovanskii basis with respect to vC′ . The Khovanskii basis is given by the images of
x1, . . . , xn, y1, . . . , ys in A′. We illustrate the procedure in the following example.

Example 32. Consider the algebra A = C[x, y, z]/〈xy + xz + yz〉. The tropicalization of
V (〈xy + xz + yz〉) ⊂ P2 has three maximal cones. The corresponding initial ideals are 〈xz +
yz〉, 〈xy + yz〉 and 〈xy + xz〉, none of which is prime. Hence they do not give rise to toric
degenerations. The matrices associated to each cone are

WC1 =

0 0 −1

1 1 1

 , WC2 =

0 −1 0

1 1 1

 and WC3 =

−1 0 0

1 1 1

 .
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We now apply Procedure 7 to the cone C1. The initial ideal associated to C1 is generated by
xz + yz. In this case inC1(I) = 〈z〉 · 〈x+ y〉 hence for the missing binomial x+ y we adjoin a
new variable u to C[x, y, z] and the new relation u− x− y to I. We have

I ′ = 〈xy + xz + yz, u− x− y〉 and A′ = C[x, y, z, u]/I ′

with V (I ′) a subvariety of P3. After computing the tropicalization of V (I ′) we see that there
exists a prime cone C ′ such that π(C ′) = C. The matrix WC′ associated to the cone C ′ is

W ′ =

0 0 −1 1

1 1 1 1

 .

The initial ideal inC′(I
′) gives a toric degeneration of V (I ′). The image of the set {x, y, z, u}

in A′ is a Khovanskii basis for S(A′, vC′). Repeating this process for the cones C2 and C3

of trop(V (xy + xz + yz)), we get prime cones C ′2 and C ′3 whose projections are C2 and C3

respectively. Hence, there is a valuation with finite Khovanskii basis and a corresponding toric
degeneration for every maximal cone.

trop(V (I ′)) ⊃ C1, C2, C3

trop(π)

trop(F`4) ⊃ C

Figure 4.15: The three triangles above represent the three cones in trop(V (I ′)) which project
down to the non-prime cone C in trop(F`4).

We now apply Procedure 7 to trop(F`4).

Proposition 20. Each of the non-prime cones of trop(F`4) gives rise to three toric degenera-
tions, which are not isomorphic to any degeneration coming from the prime cones of trop(F`4).
Moreover, two of the three new polytopes are combinatorially equivalent to the previously
missing string polytopes for ρ in the class String 4.

Proof. By Theorem 22 we know that trop(F`4) has six non-prime cones forming one S4 oZ2-
orbit. Hence, we apply Procedure 7 to only one non-prime cone. The result for the other
non-prime cones is the same up to symmetry. In particular, the obtained toric degenerations
from one cone is isomorphic to those coming from another cone. We describe the results for
the maximal cone C associated to the initial ideal inC(I4) defined by the following binomials:

p4p123 − p3p124, p24p134 − p14p234, p23p134 − p13p234, p2p14 − p1p24,

p2p13 − p1p23, p24p123 − p23p124, p14p123 − p13p124, p4p23 − p3p24

p4p13 − p3p14, and p14p23 − p13p24.
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We define the ideal I ′ = I4 + 〈w − p2p134 + p1p234〉. The grading on the variables p1, . . . , p234

and w is given by the matrix

D′ :=

(
1 1 1 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

)
.

It extends the grading on the variables p1, . . . , p234 given by the matrix D in (4.3.1). The
tropical variety trop(V (I ′)) has 105 maximal cones, 99 of which are prime. Among them we
can find three maximal prime cones, which are mapped to C by trop(π) (see Figure 4.15). We
compute the polytopes associated to the normalization of these three toric degenerations by
applying the same methods as in Theorem 22. Using polymake we check that two of them are
combinatorially equivalent to the string polytopes for ρ in the class String 4. Moreover, none
of them is combinatorially equivalent to any polytope coming from prime cones of trop(F`4),
hence they define different toric degenerations.

Proposition 20 suggests that for w0 = s1s3s2s3s1s2 ∈ String 4 the weighted string cone
Qw0

does not satisfy MP because the element

vw0
(p̄2p̄134 + p̄1p̄234) �Ψ min≺Ψ{vw0

(p̄2p̄134), vw0
(p̄1p̄234)}

is missing as a generator for S(A4, vw0
). As vw0

(p̄2p̄134) = vw0
(p̄1p̄234) = (1, 0, 1, 1, 0, 0), we

deduce vw0
(p̄2p̄134+p̄1p̄234) �Ψ (1, 0, 1, 1, 0). Hence, this element can not be obtained from the

images of Plücker coordinates under vw0
and therefore vw0

(p̄2p̄134 + p̄1p̄234) has to be added
as a generator for S(A4, vw0

).

Remark 16. Procedure 7 could be applied also to F`5 but we have not been able to do so.
In fact, the tropicalization for trop(V (I ′5)) did not terminate since the computation can not
be simplified by symmetries.
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Appendix A

Grassmannians

A.1 Plabic weight vectors for Gr(3,C6)

Here are the computational findings on plabic weight vectors wG defined in §3.3 in more detail
for Gr(3,C6) (based on the joint work [8]). The code can be found in [38].

There are 34 reduced plabic graphs for Gr(3,C6), and they give rise to the weight vectors
in Table A.1. The first column indicates the unfrozen variables corresponding to a cluster and
determining a plabic graph; the second column gives the corresponding weight vector in the
basis indexed by

{123, 124, 134, 234, 125, 135, 235, 145, 245, 345, 126, 136, 236, 146, 246, 346, 156, 236, 356, 456}.

The third column gives the corresponding isomorphism class of a cone in the tropical Grass-
mannian as described in [64, after Lemma 5.3] and, for GG [64, after Lemma 5.1]; the fourth
column gives the permutation (σ = [a1a2a3a4a5a6] where σ(i) = ai) that moves the initial
ideal of the weight vector in column 2 to the initial ideal of the corresponding cone in the trop-
ical Grassmannian using the sample vectors given in [64]. The permutations were obtained
using Macaulay 2 [35], see [38] for the code. The last column refers to the enumeration of
cluster seeds from [10], where a combinatorial model for cluster algebras of type D4 is studied.
The 50 seeds are given by centrally symmetric pseudo-triangulations of a once punctured dirk
with 8 marked points. In the paper they analyze symmetries among the cluster seeds and
associate each seed to a isomorphism class of maximal cones in trop(Gr(3,C6)). Although
they consider all 50 cluster seeds, the outcome is similar to ours: they recover only six of the
seven types of maximal cones, missing the cone of type EEEE.
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mutable A-cluster variables in seed sG plabic weight vector wG ∈ R(6
3) type in [64] σ # of sG in [10]

p135, p235, p145, p136 (0,0,1,1,1,1,1,1,1,4,1,1,1,1,1,4,4,4,5,5) GG 123456 49

p124, p246, p346, p256 (0,0,0,3,0,0,3,3,4,4,3,3,4,4,4,4,4,4,4,7) GG 134562 23

p125, p235, p245, p256 (0,0,1,1,0,1,1,2,2,5,3,3,3,3,3,5,3,3,5,6) EEFF1 124563 17

p235, p136, p236, p356 (0,0,0,0,0,0,0,1,1,2,0,0,0,1,1,2,2,2,3,5) EEFF1 123456 11

p124, p125, p145, p245 (0,0,2,3,1,2,3,2,3,6,4,4,4,4,4,6,5,5,6,6) EEFF1 135642 15

p124, p125, p245, p256 (0,0,1,2,0,1,2,2,3,5,4,4,4,4,4,5,4,4,5,6) EEFF1 134562 27

p235, p236, p256, p356 (0,0,0,0,0,0,0,2,2,3,1,1,1,2,2,3,2,2,3,6) EEFF1 123564 29

p136, p236, p346, p356 (0,0,0,1,0,0,1,2,2,2,0,0,1,2,2,2,3,3,3,6) EEFF1 312456 12

p236, p346, p256, p356 (0,0,0,1,0,0,1,3,3,3,1,1,2,3,3,3,3,3,3,7) EEFF1 312564 28

p134, p136, p146, p346 (0,0,0,3,1,1,3,2,3,3,1,1,3,2,3,3,5,5,5,6) EEFF1 356421 9

p134, p145, p136, p146 (0,0,1,3,2,2,3,2,3,4,2,2,3,2,3,4,6,6,6,6) EEFF1 345612 8

p124, p134, p145, p146 (0,0,1,4,2,2,4,2,4,5,3,3,4,3,4,5,6,6,6,6) EEFF1 145632 32

p125, p235, p145, p245 (0,0,2,2,1,2,2,2,2,6,3,3,3,3,3,6,4,4,6,6) EEFF1 125643 14

p124, p134, p146, p346 (0,0,0,4,1,1,4,2,4,4,2,2,4,3,4,4,5,5,5,6) EEFF1 156432 31

p125, p235, p256, p356 (0,0,0,0,0,0,0,2,2,4,2,2,2,3,3,4,3,3,4,6) EEFF2 125346 30

p124, p134, p125, p145 (0,0,1,3,1,1,3,1,3,5,3,3,4,3,4,5,5,5,5,5) EEFF2 163452 33

p134, p136, p346, p356 (0,0,0,2,0,0,2,2,3,3,0,0,2,2,3,3,4,4,4,6) EEFF2 512634 10

p136, p236, p146, p346 (0,0,0,2,1,1,2,2,2,2,1,1,2,2,2,2,4,4,4,6) EEFF2 612534 13

p124, p145, p245, p146 (0,0,2,4,2,3,4,3,4,6,4,4,4,4,4,6,6,6,7,7) EEFF2 153462 16

p235, p245, p236, p256 (0,0,1,1,0,1,1,2,2,4,2,2,2,2,2,4,2,2,4,6) EEFF2 126345 18

p125, p135, p235, p145 (0,0,1,1,1,1,1,1,1,5,2,2,2,2,2,5,4,4,5,5) EFFG 123456 43

p135, p235, p136, p356 (0,0,0,0,0,0,0,1,1,3,0,0,0,1,1,3,3,3,4,5) EFFG 345612 45

p236, p246, p346, p256 (0,0,0,2,0,0,2,3,3,3,2,2,3,3,3,3,3,3,3,7) EFFG 612345 26

p124, p146, p246, p346 (0,0,0,4,1,1,4,3,4,4,3,3,4,4,4,4,5,5,5,7) EFFG 134562 21

p134, p135, p145, p136 (0,0,1,2,1,1,2,1,2,4,1,1,2,1,2,4,5,5,5,5) EFFG 561234 47

p124, p245, p246, p256 (0,0,1,3,0,1,3,3,4,5,4,4,4,4,4,5,4,4,5,7) EFFG 356124 24

p245, p236, p146, p246 (0,0,1,3,1,2,3,3,3,4,3,3,3,3,3,4,4,4,5,7) EEEG 265341 20

p134, p125, p135, p356 (0,0,0,1,0,0,1,1,2,4,1,1,2,2,3,4,4,4,4,5) EEEG 126534 48

p125, p135, p235, p356 (0,0,0,0,0,0,0,1,1,4,1,1,1,2,2,4,3,3,4,5) EEFG 342156 42

p134, p125, p135, p145 (0,0,1,2,1,1,2,1,2,5,2,2,3,2,3,5,5,5,5,5) EEFG 563421 44

p134, p135, p136, p356 (0,0,0,1,0,0,1,1,2,3,0,0,1,1,2,3,4,4,4,5) EEFG 215634 46

p245, p236, p246, p256 (0,0,1,2,0,1,2,3,3,4,3,3,3,3,3,4,3,3,4,7) EEFG 156342 25

p236, p146, p246, p346 (0,0,0,3,1,1,3,3,3,3,2,2,3,3,3,3,4,4,4,7) EEFG 634215 19

p124, p245, p146, p246 (0,0,1,4,1,2,4,3,4,5,4,4,4,4,4,5,5,5,6,7) EEFG 321564 22

Table A.1: Dictionary for the 34 plabic graphs.



Appendix B

Flag varieties

In this Appendix we provide numerical evidence of our computations in §4.3. Table B.1
contains data on the non-prime maximal cones of trop(F`5). In Table B.2 there is information
on the polytopes obtained from maximal prime cones of trop(F`5). This includes the F-vectors,
combinatiral equivalences among the polytopes, and between those and the string polytopes,
resp. FFLV polytope, for ρ. Lastly Table B.3 contains information on the string polytopes
and FFLV polytope for F`5, such as the weight vectors constructed in §4.3.2, primeness of the
initial ideals with respect to these vectors, and the MP property.

B.1 Algebraic and combinatorial invariants of trop(F`5)

Below we collect in a table all the information about the non-prime initial ideals of F`5 up to
symmetry.

Number of Orbits #Generators

30 69

267 66

37 68

11 70

10 71

2 73

Table B.1: Data for non-prime initial ideals of F`5.

The following table shows the F-vectors of the polytopes associated to maximal prime cones
of trop(F`5) for one representative in each orbit. The last column contains information on
the existence of a combinatorial equivalence between these polytopes and the string polytopes
resp. FFLV polytope for ρ. The initial ideals are all Cohen-Macaulay.
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Orbit F-vector Combinatorial equivalences

0 475 2956 8417 14241 15690 11643 5820 1899 374 37

1 456 2799 7843 13023 14038 10159 4938 1565 301 30

2 425 2573 7108 11626 12333 8779 4201 1316 253 26

3 393 2313 6200 9833 10125 7021 3297 1027 201 22

4 433 2621 7230 11796 12473 8847 4219 1318 253 26

5 435 2630 7246 11810 12479 8848 4219 1318 253 26

6 425 2553 6988 11317 11888 8388 3987 1245 240 25

7 450 2751 7677 12699 13648 9863 4800 1529 297 30

8 435 2630 7246 11810 12479 8848 4219 1318 253 26

9 419 2522 6922 11243 11842 8373 3985 1245 240 25

10 453 2785 7817 12999 14027 10157 4938 1565 301 30

11 463 2885 8237 13987 15474 11532 5788 1895 374 37

12 463 2852 8020 13365 14459 10501 5121 1627 313 31

13 457 2840 8078 13638 14954 10996 5413 1726 330 32

14 454 2819 8016 13540 14870 10968 5427 1744 337 33

15 445 2748 7770 13050 14254 10464 5161 1658 322 32

16 441 2681 7438 12228 13056 9369 4525 1430 276 28

17 440 2704 7602 12684 13752 10014 4897 1560 301 30

18 471 2923 8298 13995 15369 11369 5667 1845 363 36

19 464 2883 8200 13861 15258 11313 5651 1843 363 36

20 467 2911 8309 14097 15574 11586 5804 1897 374 37

21 461 2876 8225 13993 15509 11575 5814 1903 375 37

22 397 2363 6416 10313 10755 7536 3561 1109 215 23

23 437 2669 7447 12319 13236 9556 4642 1475 286 29

24 425 2553 6988 11317 11888 8388 3987 1245 240 25

25 415 2498 6861 11158 11772 8339 3976 1244 240 25

26 470 2942 8436 14377 15944 11889 5955 1939 379 37

27 460 2856 8109 13656 14929 10944 5374 1712 328 32

28 449 2741 7634 12594 13487 9702 4695 1486 287 29

29 427 2592 7181 11778 12523 8926 4270 1334 255 26

30 425 2573 7108 11626 12333 8779 4201 1316 253 26 FFLV

31 443 2708 7557 12495 13411 9667 4686 1485 287 29

32 397 2363 6416 10313 10755 7536 3561 1109 215 23 S22
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Orbit F-vector Combinatorial equivalences

33 425 2553 6988 11317 11888 8388 3987 1245 240 25

34 419 2522 6922 11243 11842 8373 3985 1245 240 25

35 405 2407 6518 10442 10851 7578 3571 1110 215 23

36 401 2387 6477 10398 10825 7570 3570 1110 215 23

37 368 2154 5755 9111 9373 6497 3052 953 188 21 S21

38 379 2214 5892 9280 9494 6547 3063 954 188 21 S27, S28

39 393 2313 6200 9833 10125 7021 3297 1027 201 22

40 358 2069 5453 8516 8653 5941 2778 870 174 20 S1, S18, S26, S29 (Gelfand-Tsetlin)

41 459 2851 8111 13720 15118 11223 5614 1834 362 36

42 467 2913 8322 14133 15629 11636 5831 1905 375 37

43 423 2562 7083 11596 12313 8772 4200 1316 253 26

44 425 2573 7108 11626 12333 8779 4201 1316 253 26 S24

45 397 2363 6416 10313 10755 7536 3561 1109 215 23 S23

46 461 2876 8225 13993 15509 11575 5814 1903 375 37

47 400 2366 6377 10175 10546 7363 3480 1089 213 23

48 393 2313 6200 9833 10125 7021 3297 1027 201 22

49 393 2313 6200 9833 10125 7021 3297 1027 201 22

50 379 2214 5892 9280 9494 6547 3063 954 188 21 S2, S19

51 426 2599 7257 12034 12981 9420 4602 1470 286 29

52 428 2594 7176 11761 12514 8947 4307 1359 263 27

53 419 2522 6922 11243 11842 8373 3985 1245 240 25

54 466 2917 8371 14288 15879 11870 5960 1944 380 37

55 443 2729 7692 12867 13982 10197 4987 1585 304 30

56 453 2787 7826 13011 14021 10122 4895 1539 293 29

57 469 2926 8358 14188 15679 11663 5839 1906 375 37

58 458 2825 7958 13286 14398 10472 5113 1626 313 31

59 472 2949 8435 14335 15854 11796 5902 1923 377 37

60 440 2704 7602 12684 13752 10014 4897 1560 301 30

61 472 2967 8561 14720 16525 12526 6410 2144 432 43

62 457 2842 8099 13726 15153 11266 5640 1842 363 36

63 465 2902 8296 14096 15588 11594 5795 1884 368 36

64 459 2851 8111 13720 15118 11223 5614 1834 362 36

65 428 2608 7269 12028 12946 9377 4576 1462 285 29



B.1. Algebraic and combinatorial invariants of trop(F`5) 127

Orbit F-vector Combinatorial equivalences

66 441 2681 7438 12228 13056 9369 4525 1430 276 28

67 418 2510 6876 11157 11753 8321 3969 1243 240 25

68 406 2442 6713 10943 11587 8245 3950 1241 240 25

69 373 2199 5926 9474 9849 6897 3267 1024 201 22

70 427 2586 7144 11681 12383 8806 4209 1317 253 26

71 451 2781 7840 13111 14243 10390 5089 1623 313 31

72 440 2704 7602 12684 13752 10014 4897 1560 301 30

73 406 2442 6713 10943 11587 8245 3950 1241 240 25

74 448 2764 7800 13061 14208 10377 5087 1623 313 31

75 462 2873 8181 13846 15258 11321 5656 1844 363 36

76 457 2842 8099 13726 15153 11266 5640 1842 363 36

77 469 2927 8364 14203 15699 11678 5845 1907 375 37

78 454 2802 7903 13216 14348 10453 5110 1626 313 31

79 451 2787 7879 13221 14419 10565 5200 1667 323 32

80 441 2705 7584 12611 13622 9885 4823 1537 298 30

81 454 2803 7914 13263 14455 10598 5231 1687 330 33

82 441 2697 7532 12465 13391 9660 4685 1485 287 29

83 445 2721 7593 12550 13461 9694 4694 1486 287 29

84 441 2697 7532 12465 13391 9660 4685 1485 287 29

85 445 2725 7617 12611 13546 9764 4728 1495 288 29

86 397 2363 6416 10313 10755 7536 3561 1109 215 23

87 368 2154 5755 9111 9373 6497 3052 953 188 21 S5, S31

88 452 2801 7946 13385 14654 10771 5309 1699 327 32

89 430 2624 7318 12097 12974 9329 4497 1411 269 27

90 456 2834 8071 13670 15083 11210 5612 1834 362 36

91 432 2633 7332 12104 12975 9341 4521 1430 276 28

92 467 2919 8359 14230 15769 11756 5892 1922 377 37

93 456 2834 8071 13670 15083 11210 5612 1834 362 36

94 426 2597 7244 11998 12926 9370 4575 1462 285 29

95 440 2708 7630 12769 13898 10169 5001 1603 311 31

96 432 2633 7332 12104 12975 9341 4521 1430 276 28

97 412 2479 6810 11083 11707 8306 3967 1243 240 25

98 415 2511 6945 11391 12133 8679 4174 1313 253 26
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Orbit F-vector Combinatorial equivalences

99 458 2845 8092 13676 15042 11132 5543 1800 353 35

100 437 2669 7447 12319 13236 9556 4642 1475 286 29

101 441 2703 7569 12562 13531 9780 4746 1502 289 29

102 427 2586 7144 11681 12383 8806 4209 1317 253 26

103 419 2522 6922 11243 11842 8373 3985 1245 240 25

104 437 2669 7447 12319 13236 9556 4642 1475 286 29

105 411 2470 6776 11012 11617 8235 3933 1234 239 25

106 413 2483 6808 11043 11606 8177 3871 1201 230 24

107 425 2553 6988 11317 11888 8388 3987 1245 240 25

108 405 2407 6518 10442 10851 7578 3571 1110 215 23

109 405 2427 6638 10751 11296 7969 3785 1181 228 24 S30

110 465 2904 8312 14152 15700 11734 5907 1940 384 38

111 464 2902 8323 14204 15795 11828 5960 1956 386 38

112 438 2690 7559 12608 13667 9952 4868 1552 300 30

113 445 2725 7617 12611 13546 9764 4728 1495 288 29

114 437 2669 7447 12319 13236 9556 4642 1475 286 29

115 411 2470 6776 11012 11617 8235 3933 1234 239 25

116 424 2574 7139 11737 12529 8983 4332 1367 264 27

117 419 2522 6922 11243 11842 8373 3985 1245 240 25

118 401 2387 6477 10398 10825 7570 3570 1110 215 23

119 405 2427 6638 10751 11296 7969 3785 1181 228 24 S6

120 464 2893 8261 14019 15483 11503 5746 1869 366 36

121 454 2806 7928 13283 14448 10543 5159 1641 315 31

122 451 2794 7928 13370 14676 10840 5387 1746 342 34

123 444 2736 7715 12915 14053 10273 5044 1613 312 31

124 466 2909 8318 14138 15644 11650 5837 1906 375 37

125 456 2815 7939 13271 14398 10480 5118 1627 313 31

126 423 2561 7078 11586 12303 8767 4199 1316 253 26

127 429 2580 7064 11429 11972 8402 3959 1221 232 24

128 431 2626 7309 12058 12915 9290 4494 1422 275 28

129 428 2602 7224 11883 12684 9087 4375 1377 265 27

130 443 2727 7679 12831 13927 10147 4960 1577 303 30

131 432 2637 7354 12152 13024 9356 4505 1412 269 27
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Orbit F-vector Combinatorial equivalences

132 451 2793 7920 13342 14620 10770 5331 1718 334 33

133 434 2632 7273 11879 12557 8883 4210 1301 246 25

134 452 2781 7813 13004 14042 10171 4944 1566 301 30

135 453 2808 7969 13433 14725 10847 5366 1727 335 33

136 451 2794 7928 13370 14676 10840 5387 1746 342 34

137 433 2646 7390 12236 13150 9482 4589 1448 278 28

138 442 2715 7629 12727 13808 10076 4948 1587 309 31

139 432 2633 7332 12104 12975 9341 4521 1430 276 28

140 423 2564 7096 11632 12368 8822 4227 1324 254 26

141 413 2483 6808 11043 11606 8177 3871 1201 230 24

142 427 2594 7196 11827 12614 9031 4347 1369 264 27

143 431 2622 7281 11973 12769 9135 4390 1379 265 27

144 431 2626 7309 12058 12915 9290 4494 1422 275 28

145 410 2459 6725 10881 11411 8029 3802 1183 228 24

146 428 2594 7176 11761 12514 8947 4307 1359 263 27

147 419 2522 6922 11243 11842 8373 3985 1245 240 25

148 451 2781 7840 13111 14243 10390 5089 1623 313 31

149 464 2900 8310 14168 15740 11778 5933 1948 385 38

150 446 2750 7757 12985 14123 10315 5058 1615 312 31

151 420 2541 7021 11496 12218 8719 4184 1314 253 26

152 441 2705 7584 12611 13622 9885 4823 1537 298 30

153 425 2575 7119 11651 12363 8799 4208 1317 253 26

154 448 2764 7801 13067 14223 10397 5102 1629 314 31

155 444 2737 7724 12949 14124 10363 5115 1647 321 32

156 452 2772 7753 12830 13755 9876 4750 1486 282 28

157 442 2706 7565 12529 13460 9696 4684 1473 281 28

158 441 2708 7602 12655 13676 9915 4821 1525 292 29

159 427 2596 7207 11850 12633 9026 4324 1350 257 26

160 452 2781 7813 13004 14042 10171 4944 1566 301 30

161 427 2586 7144 11681 12383 8806 4209 1317 253 26

162 400 2382 6467 10388 10820 7569 3570 1110 215 23

163 448 2764 7800 13061 14208 10377 5087 1623 313 31

164 470 2943 8444 14405 16000 11959 6011 1967 387 38
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Orbit F-vector Combinatorial equivalences

165 460 2857 8117 13684 14985 11014 5430 1740 336 33

166 418 2530 6996 11466 12198 8712 4183 1314 253 26

167 434 2640 7325 12025 12788 9108 4348 1353 257 26

168 425 2577 7132 11687 12418 8849 4235 1325 254 26

169 425 2581 7160 11772 12564 9004 4339 1368 264 27

170 430 2614 7255 11928 12724 9109 4382 1378 265 27

171 422 2557 7075 11597 12333 8801 4220 1323 254 26

172 411 2470 6772 10988 11556 8150 3863 1200 230 24 S7

173 427 2586 7144 11681 12383 8806 4209 1317 253 26

174 400 2382 6467 10388 10820 7569 3570 1110 215 23

175 464 2898 8295 14119 15649 11673 5856 1913 376 37

176 442 2718 7644 12754 13822 10056 4911 1562 301 30

177 440 2698 7563 12576 13587 9864 4816 1536 298 30

178 423 2562 7083 11596 12313 8772 4200 1316 253 26

179 452 2781 7813 13004 14042 10171 4944 1566 301 30

Table B.2: Orbits of maximal prime cones for F`5, the F-vectors of
the corresponding polytopes, and combinatorially equivalent string poly-
topes resp. FFLV polytope.

B.2 Algebraic invariants of the F`5 string polytopes

The table below contains information on the F`5 string polytopes and the FFLV polytope for
ρ. It shows the reduced expressions underlying the string polytopes, whether the polytopes
satisfy the weak Minkowski property, the weight vectors constructed in §4.3.2, and whether
the corresponding initial ideal is prime. The last column contains information on unimodular
equivalences among these polytopes. If there is no information in this column this means that
there is no unimodular equivalence between this polytope and any other polytope in the table.

Class w0 Normal MP Weight vector −ww0
Prime Uni. Eq.

S1 1213214321 yes yes

(0, 512, 384, 112, 0, 256, 96, 768, 608, 480,
0, 64, 320, 832, 15, 14, 526, 398, 126, 12,

268, 108, 780, 620, 492, 0, 8, 72, 328, 840) yes
S18, S26,

S29

S2 1213243212 yes yes

(0, 512, 384, 98, 0, 256, 96, 768, 608, 480,
0, 64, 320, 832, 30, 28, 540, 412, 123, 24,

280, 120, 792, 632, 504, 0, 16, 80, 336, 848) yes -

S3 1213432312 yes no

(0, 512, 384, 74, 0, 256, 72, 768, 584, 456,
0, 64, 320, 832, 58, 56, 568, 440, 111, 48,

304, 108, 816, 620, 492, 0, 32, 96, 352, 864) no -
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Class w0 Normal MP Weight vector −ww0
Prime Uni. Eq.

S4 1214321432 yes no

(0, 512, 384, 56, 0, 256, 48, 768, 560, 432,
0, 32, 288, 800, 120, 112, 624, 496, 63, 96,

352, 54, 864, 566, 438, 0, 64, 36, 292, 804) no -

S5 1232124321 yes yes

(0, 512, 288, 224, 0, 256, 192, 768, 704, 432,
0, 128, 384, 896, 15, 14, 526, 302, 238, 12,

268, 204, 780, 716, 444, 0, 8, 136, 392, 904) yes -

S6 1232143213 yes yes

(0, 512, 288, 224, 0, 256, 192, 768, 704, 420,
0, 128, 384, 896, 30, 28, 540, 316, 252, 24,

280, 216, 792, 728, 437, 0, 16, 144, 400, 912) yes -

S7 1232432123 yes yes

(0, 512, 260, 196, 0, 256, 192, 768, 704, 390,
0, 128, 384, 896, 60, 56, 568, 310, 246, 48,

304, 240, 816, 752, 423, 0, 32, 160, 416, 928) yes -

S8 1234321232 yes no

(0, 512, 264, 152, 0, 256, 144, 768, 656, 396,
0, 128, 384, 896, 120, 112, 624, 364, 219, 96,

352, 210, 864, 722, 462, 0, 64, 192, 448, 960) no -

S9 1234321323 yes no

(0, 512, 264, 152, 0, 256, 144, 768, 656, 394,
0, 128, 384, 896, 120, 112, 624, 362, 222, 96,

352, 212, 864, 724, 459, 0, 64, 192, 448, 960) no -

S10 1243212432 yes no

(0, 512, 272, 112, 0, 256, 96, 768, 608, 344,
0, 64, 320, 832, 240, 224, 736, 472, 119, 192,

448, 102, 960, 614, 350, 0, 128, 68, 324, 836) no -

S11 1243214323 yes no

(0, 512, 272, 112, 0, 256, 96, 768, 608, 338,
0, 64, 320, 832, 240, 224, 736, 466, 126, 192,

448, 108, 960, 620, 347, 0, 128, 72, 328, 840) no -

S12 1321324321 yes no

(0, 512, 192, 448, 0, 128, 384, 640, 896, 240,
0, 256, 160, 672, 15, 14, 526, 206, 462, 12,

140, 396, 652, 908, 252, 0, 8, 264, 168, 680) no -

S13 1321343231 yes no

(0, 512, 192, 448, 0, 128, 384, 640, 896, 228,
0, 256, 160, 672, 29, 28, 540, 220, 476, 24,

152, 408, 664, 920, 246, 0, 16, 272, 176, 688) no -

S14 1321432143 yes no

(0, 512, 192, 448, 0, 128, 384, 640, 896, 216,
0, 256, 144, 656, 60, 56, 568, 248, 504, 48,

176, 432, 688, 944, 219, 0, 32, 288, 146, 658) no -

S15 1323432123 yes no

(0, 512, 132, 388, 0, 128, 384, 640, 896, 198,
0, 256, 192, 704, 60, 56, 568, 182, 438, 48,

176, 432, 688, 944, 231, 0, 32, 288, 224, 736) no -

S16 1324321243 yes no

(0, 512, 136, 392, 0, 128, 384, 640, 896, 172,
0, 256, 160, 672, 120, 112, 624, 236, 492, 96,

224, 480, 736, 992, 175, 0, 64, 320, 162, 674) no -

S17 1343231243 yes no

(0, 512, 48, 304, 0, 32, 288, 544, 800, 60,
0, 256, 40, 552, 240, 224, 736, 188, 444, 192,

168, 424, 680, 936, 63, 0, 128, 384, 42, 554) no -

S18 2123214321 yes yes

(0, 256, 768, 112, 0, 512, 96, 384, 352, 864,
0, 64, 576, 448, 15, 14, 270, 782, 126, 12, 524,

108, 396, 364, 876, 0, 8, 72, 584, 456) yes
S1, S26,
S29

S19 2123243212 yes yes

(0, 256, 768, 98, 0, 512, 96, 384, 352, 864,
0, 64, 576, 448, 30, 28, 284, 796, 123, 24, 536,

120, 408, 376, 888, 0, 16, 80, 592, 464) yes -

S20 2123432132 yes no

(0, 256, 768, 76, 0, 512, 72, 384, 328, 840,
0, 64, 576, 448, 60, 56, 312, 824, 111, 48, 560,

106, 432, 362, 874, 0, 32, 96, 608, 480) no -
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Class w0 Normal MP Weight vector −ww0
Prime Uni. Eq.

S21 2132134321 yes yes

(0, 256, 768, 224, 0, 512, 192, 320, 448, 960,
0, 128, 640, 336, 15, 14, 270, 782, 238, 12,

524, 204, 332, 460, 972, 0, 8, 136, 648, 344) yes -

S22 2132143214 yes yes

(0, 256, 768, 224, 0, 512, 192, 320, 448, 960,
0, 128, 640, 328, 30, 28, 284, 796, 252, 24,

536, 216, 344, 472, 984, 0, 16, 144, 656, 329) yes -

S23 2132343212 yes yes

(0, 256, 768, 194, 0, 512, 192, 320, 448, 960,
0, 128, 640, 352, 30, 28, 284, 796, 219, 24,

536, 216, 344, 472, 984, 0, 16, 144, 656, 368) yes -

S24 2132432124 yes yes

(0, 256, 768, 196, 0, 512, 192, 320, 448, 960,
0, 128, 640, 336, 60, 56, 312, 824, 246, 48,

560, 240, 368, 496, 1008, 0, 32, 160, 672, 337) yes -

S25 2134321324 yes no

(0, 256, 768, 152, 0, 512, 144, 272, 400, 912,
0, 128, 640, 276, 120, 112, 368, 880, 222, 96,

608, 212, 340, 468, 980, 0, 64, 192, 704, 277) no -

S26 2321234321 yes yes

(0, 64, 576, 448, 0, 512, 384, 96, 352, 864,
0, 256, 768, 112, 15, 14, 78, 590, 462, 12, 524,

396, 108, 364, 876, 0, 8, 264, 776, 120) yes
S1, S18,
S29

S27 2321243214 yes yes

(0, 64, 576, 448, 0, 512, 384, 96, 352, 864,
0, 256, 768, 104, 30, 28, 92, 604, 476, 24, 536,

408, 120, 376, 888, 0, 16, 272, 784, 105) yes -

S28 2321432134 yes yes

(0, 64, 576, 448, 0, 512, 384, 72, 328, 840,
0, 256, 768, 74, 60, 56, 120, 632, 504, 48, 560,

432, 106, 362, 874, 0, 32, 288, 800, 75) yes -

S29 2324321234 yes yes

(0, 8, 520, 392, 0, 512, 384, 12, 268, 780,
0, 256, 768, 14, 120, 112, 108, 620, 492, 96, 608,

480, 78, 334, 846, 0, 64, 320, 832, 15) yes
S1, S18,
S26

S30 2343212324 yes yes

(0, 16, 528, 304, 0, 512, 288, 24, 280, 792,
0, 256, 768, 28, 240, 224, 216, 728, 438, 192,

704, 420, 156, 412, 924, 0, 128, 384, 896, 29) yes -

S31 2343213234 yes yes

(0, 16, 528, 304, 0, 512, 288, 20, 276, 788,
0, 256, 768, 22, 240, 224, 212, 724, 444, 192,

704, 424, 150, 406, 918, 0, 128, 384, 896, 23) yes -

FFLV - yes yes

wreg = (0, 4, 6, 6, 0, 3, 4, 6, 6, 9, 0, 2, 4, 6, 4,

3, 4, 7, 8, 2, 3, 5, 4, 6, 8, 0, 1, 2, 3, 4)

wmin = (0, 3, 4, 3, 0, 2, 2, 4, 3, 5, 0, 1, 2, 3, 1,

1, 1, 3, 3, 1, 1, 2, 1, 2, 3, 0, 1, 1, 1, 1)

yes

yes -

Table B.3: String polytopes depending on w0 and the FFLV polytope
for F`5 and ρ, their normality, the weak Minkowski property, the weight
vectors constructed in §4.3.2, primeness of the binomial initial ideals,
and unimodular equivalences among the polytopes.
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