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Abstract

Most of the genetic variation observed within a biological species is generally thought to be evolutionary
“neutral” in the sense that it is irrelevant for an individuum whether its genome contains one particular
variant or another. Evolutionary biologists, and in the case of the human species anthropologists and
medical scientists as well, are by contrast interested in variants which do influence on an individual’s
survival and/or its ability to reproduce. Population geneticists try to find such variants by purely statistical
methods in the form of tests on neutrality or shortly neutrality tests.

In this thesis four publications are reprinted and discussed which are concerned with modifications of
existing neutrality tests. Three of them deal with a class of tests relying on the so-called site frequency
spectrum. It was shown previously that some of these tests, originally designed on models of constant
population size, can be adapted to allow for changes in population size. This is generalized in the first
publication to all tests of similar structure. Another aspect of these tests is that they are ignorant with
respect to which variant in a sample might evolve non-neutrally. If instead a particular variant is suspected
a priori, the tests have to allow for this information by conditioning on the existence of a variant with
the observed frequency. The second and third article introduce the concept of a conditional frequency
spectrum and derive its first resp. second moments which are necessary for an appropriate extension of
the above-mentioned class of tests. The fourth article presents an algorithmic improvement of a neutrality
test of a different kind. Here, primarily computational speed was of concern, in order to bear comparison
with competing software.

Solely applications on human data are presented, which is available in unrivalled abundance, owing to
several large-scale genotyping and sequencing projects. The applicability of neutrality tests, however, is
not confined to any particular species.
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Zusammenfassung

Der größte Teil genetischer Variation, die man innerhalb einer biologischen Art findet, wird allgemein als
“neutral” angesehen, in dem Sinn, dass es für ein Individuum unerheblich ist, ob sein Genom eine bes-
timmte Variante enthält oder eine andere. Evolutionsbiologen, und im Falle der menschlichen Spezies
auch Anthropologen und Mediziner, sind dagegen gerade an den Varianten interessiert, die einen Einfluß
auf das Überleben und/oder Fortpflanzungsfähigkeit eines Individuums haben. Populationsgenetiker
versuchen solche Varianten mit rein statistischen Methoden zu finden und zwar in der Form von Tests
auf Neutralität, oder kurz Neutralitätstests.

In dieser Arbeit werden vier Artikel wiedergegeben und diskutiert, die sich alle mit Anpassungen bere-
its bestehender Neutralitätstests befassen. Drei davon handeln von einer Klasse von Tests, die auf dem
sogenannten Frequenzspektrum von Varianten beruhen. Bereits zuvor war gezeigt worden, dass einige
von diesen Tests, ursprünglich entwickelt anhand von Modellen mit konstanter Populationsgröße, so
angepasst werden können, dass sie Änderungen in der Populationsgröße berücksichtigen. Dies wird im
ersten Artikel verallgemeinert auf alle Tests mit ähnlicher Struktur. Ein anderer Aspekt dieser Tests ist, dass
sie keine Vorannahmen machen, welche Variante in einer Stichprobe nicht neutral sein könnte. Wird dies
jedoch von einer bestimmten Variante vermutet, müssen die Tests diese Information berücksichtigen, in-
dem sie die Existenz einer Variante mit der beobachteten Frequenz als Bedingung enthalten. Der zweite
und dritte Artikel führen das Konzept eines bedingten Frequenzspektrums ein und leiten seine ersten und
zweiten Momente ab, die für eine geeignete Erweiterung der oben genannten Klasse von Tests benötigt
werden. Der vierte Artikel präsentiert eine algorithmische Verbesserung eines anders gearteten Neutral-
itätstests. Sie diente hauptsächlich einer Erhöhung der Rechengeschwindigkeit um mit konkurrierenden
Programmen Schritt zu halten.

Es werden ausschließlich Anwendungen auf humangenetische Daten vorgestellt, wo die Datenlage, auf
Grund mehrerer großer Genotypisierungs- und Sequenzierungsprojekte, am besten ist. Die Anwend-
barkeit von Neutralitätstests ist jedoch nicht auf irgendeine bestimmte biologische Art beschränkt.
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1 Introduction

1.1 Motivation

Telling apart the essential from the accidental is involved in many a human task. In molecular biology,
the ease with which genomes can be sequenced mismatches the difficulty in understanding the meaning
contained in them. The sheer amount of genetic information precludes any peacemeal and exhaustive
investigation by experiment. Theoretical evolutionary biologists try to interpret comparisons of multiple
sequences with the aim to prioritize genomic regions which may warrant a closer examination in the lab-
oratory. One approach is to search for evolutionary conserved sequences from diverse branches of the tree
of life. These are likely to be of fundamental biological importance for each organism. On the other end of
the evolutionary scale, genetic variation among individuals of a single species is the subject of inquiry - the
realm of Population Genetics. Variation within a species is often classified into short variants such as sin-
gle nucleotide polymorphisms (SNPs), short tandem repeats (“micro-satellites”), insertions and deletions
of a few nucleotides and structural variation such as deletions, single or multiple duplications, transloca-
tions and inversions of larger chromosomal segments. Nowadays SNPs are by far the most preferred type
of variation to perform population genetic inferences on. They can be ascertained in large numbers and
represent the biggest share of independently occurred mutations, an important issue for the application
of statistical tests. Conspicuous values of such tests form the basis for delineating candidate regions of
some particular biological interest.

1.2 Population genetic models

1.2.1 Genetic forces

Population geneticists try to understand the evolution of a single species by investigation of its genetic
composition which is thought to result mainly from the evolutionary forces mutation, genetic drift, selec-
tion, recombination, population splits and migration.

The simplest model of variation consists of a single hypothetical locus in a genome where two different
variants are observed in a population. This is sufficient to classify selection into different modes:

• a variant is referred to be under positive or Darwinian selection, if its carrier individuals have a
consistent advantage in viability and/or fecundity and leave on average more offspring than other
individuals.

• a variant is referred to be under negative or purifying selection, if its carrier individuals have a con-
sistent disadvantage and leave on average less offspring than other individuals.

Both kinds of selection are directional since the population frequency of the selected variant tends to
steadily increase resp. decrease until the variant is fixed in the population or lost, respectively. By contrast,

• balancing selection refers to any mechanism promoting the co-existence of two (or more) variants.

Two variants that are not under selection are referred to as evolutionary neutral. The time course of
their population frequencies follows purely random fluctuations or genetic drift which, again, in any finite
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1 Introduction

population will eventually lead to fixation of one variant and loss of the other.

While drift and selection eliminate or at best maintain variation, the origin of variants lies always in
mutation. This force can be modelled as a random process with a constant rate µ over time and along the
genome. The observed mutation rate is mostly low, in case of single nucleotide mutations in humans 10−8

per nucleotide per generation [The 1000 Genomes Project Consortium, 2012] and can be well described
by the infinite sites model formulated by Kimura and Ohta [1969]. The model posits that every mutation
happens at a hitherto un-mutated position in the genome, and as a consequence, at each position at most
two variants co-exist in a population, one ancestral and the other derived [Tajima, 1996].

Sexually reproducing diploid organisms turn over to their offspring only half of their genetic material.
For each parent it is random which of two homologous chromosomes is transmitted to the child, entail-
ing the Mendelian law of independent assortment. Variants on the same chromosome would be inherited
always together were it not for the phenomenon of recombination which exchanges pieces between ho-
mologous chromosomes. In humans there is about one recombination per chromosome per generation
[Dumont and Payseur, 2008] which, per base pair, is similar to the mutation rate. Despite recombination
events occurring very inhomogeneously along a chromosome [McVean et al., 2004; The 1000 Genomes
Project Consortium, 2012], for lack of better knowledge and the sake of simplicity, in population genetic
models its rate is usually assumed to be constant in time and space, or, for short regions, neglected alto-
gether.

A population split can arise by geographical isolation. Variant frequencies in separated subpopulations
diverge by genetic drift, supplemented possibly by selection caused by different environments, ushering
in population structure. Subsequent migration may lead in the short run to genetically inhomogeneous
or admixed subpopulations.

1.2.2 Transmission models

In order to describe changes of variant frequencies in a population, a transmission model for variants is
necessary. The WRIGHT-FISHER model is one of them and supposes in its simplest form a population of N
individuals which reproduce simultaneously in non-overlapping generations. Variant frequency changes
arise out of different reproductive success of individuals, allowing for both random events as well as selec-
tion due to their genetic variants. N most often cannot be equated with the census number of individuals
in a population at a certain time point. Instead, it represents a synthetic number, the effective population
size, influenced by various factors such as mating behaviours and past population size changes. Conse-
quently it cannot be measured directly, but has to be inferred. The effective population size of the human
species has been estimated to be of order 104 [Tenesa et al., 2007].

The product N ·µ appears in many population genetic equations dealing with neutral evolution and for
a diploid species it is abbreviated by θ = 4Nµ. Formally only a parameter, θ should be interpreted as a
measure for population variation as motivated by its various estimators presented in section 1.4.2.

For a large population and time scales of many generations, the WRIGHT-FISHER model can be ap-
proximated by continuous partial differential equations, called diffusion approximation in analogy to the
eponymous process in physics [Kimura, 1964]. The WRIGHT-FISHER model and its approximation has
been used to derive quantitative properties of variation. Important results include the time variants cir-
culate in the population until they become fixed or lost. This time can differ enormously between neutral
variants and those under selection: if a variant gets fixed by chance alone, it needs on average on the or-
der of N generations[Kimura and Ohta, 1969], while a variant under (strong) positive selection needs on
average only a time proportional to the logarithm of the population size and inversely proportional to its
selective advantage [Ewens, 2004, section 5.4].
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1.2 Population genetic models

The WRIGHT-FISHER model looks “forward-in time” and projects a given state into the future. King-
man [1982] invented another model, the coalescent tree. This model looks “backwards-in-time”, from the
present into the past. Although it is particularly well apt only for modeling neutral evolution, it rapidly
gained popularity over the WRIGHT-FISHER model. Its success is intimately related to the development of
DNA sequencing technologies. On the one hand, the obtained sequences convinced most researchers of
the neutral theory which states that a large amount of the observed molecular variation evolves neutrally.
On the other hand, the availability of sequence data made it possible to infer population characteristics,
hence the necessity to develop appropriate statistical models. Coalescent trees are well suited for this
task. They are bifurcating trees with a sample of present day sequences at the leaves and their most recent
common ancestor at the root. As such, they resemble phylogenetic trees, however they are not intended
to describe particular relationships among specific individuals, but as a mean to calculate statistical aver-
ages serving as background for inferences about the entire population [Wakeley, 2008].

1.2.3 Molecular signatures of selection

The strategy to detect the supposedly few variants experiencing selection among the much more numer-
ous neutral variants is to search for distinctive patterns of variation caused by selection, its molecular
signature.

As stated above, the population frequency of a variant under positive selection can change much faster
than that of neutral variants. However, neutral mutations in the vicinity of a selected one will share its fate
unless a recombination event separates them onto different chromosomes - they “hitch-hike”. Sometimes
the metaphor is extended to refer to variants as driver and passenger, respectively [Bozic et al., 2010]. If
a notable amount of neutral mutations reaches fixation together with the selected variant, the reservoir
of variants is depleted by a selective sweep (Figure 1.1). The founders of the mathematical formulation of
this scenario, Maynard Smith and Haigh [1974], expounded, that the ratio of selective strength to recom-
bination rate determines the strength of the depletion. Others stressed the importance of their absolute
values [Przeworski, 2002]. In any case, a low number of variants, all of low population frequency, possibly
surrounded by high frequency variants that “escaped” from fixation by recombination, are the hallmarks
of a completed selective sweep’s aftermath.

Neutral variants may also hitch-hike with negatively selected variants and hence are driven to extinc-
tion. A characteristic pattern of this background selection is that the number of variants as well as their
population frequency are reduced in comparison with purely neutral evolution [Charlesworth et al., 1993].
Background selection thus partially confounds the signature of a selective sweep, causing a long-standing
controversy about their respective share in human and other genomes [Stephan, 2010; Hernandez et al.,
2011].

Balancing selection is supposed to lead to a distinctive molecular signature only if it operates on evolu-
tionary long times, while variants that not yet or only recently reached their equilibrium frequency yield
patterns similar to a partial selective sweep [Charlesworth, 2006]. Neutral variants in the vicinity of a
variant under balancing selection are hindered in their way to fixation and hence are “trapped” and accu-
mulate. There is no mathematical model of similar fame as the above-mentioned for selective sweeps, but
the model of Hudson and Kaplan [1988] may worth mentioning, since it is the only one so far explicitly
referred to in a genomic scan for balancing selection [DeGiorgio et al., 2014]. It presupposes a balanc-
ing selection between two variants strong enough to yield a permanently fixed equilibrium frequency.
Recombination prevents an infinite accumulation of neutral variants by “migrating” them from chromo-
somes belonging to one selected variant to chromosomes of the other. Irrespective of this specific model,
long-term balancing selection is expected to yield in the vicinity of the selected variants a surplus of neu-
tral variants with similar population frequency. The detectable region, though, may be quite narrow, since
evolutionary long times provide much opportunity for recombination to erode the pattern [Charlesworth,
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1 Introduction

a favourable mutation appears

ongoing selective sweep

completed selective sweep

Figure 1.1: Schema of a selective sweep. The lines
symbolize sequences, the circles mutations, synony-
mous with derived variants. The upper panel shows
a region with neutral mutations (grey) in equilib-
rium, together with a newly arising favourable mu-
tation (black). Thanks to this mutation the second
sequence quickly replaces other sequences and neu-
tral mutations on it “hitch-hike” to higher frequen-
cies. At a certain time (middle panel) the first two se-
quences recombine between the leftmost mutation
and the remainder, swapping that mutation from the
second to the first sequence. In the third panel, the
sweep in completed, i.e. the favourable mutation
and two neutral ones have become fixed in the pop-
ulation, while most other variants have been “swept”
away. Only two variable sites remain: the high-
frequency leftmost mutation and a low-frequency
mutation, that appeared during or shortly after the
sweep.

2006].

Molecular signatures of selection have the caveat that non-selective forces like demography and sub-
structure can produce similar patterns of variation. For example, a growing population will mimic a selec-
tive sweep, since the latter can be imagined as a growing subpopulation containing the favoured variant.
Similarly, a subpopulation with a few migrants will have a surplus on variants with low frequency, too. A
strongly admixed population, on the contrary, may exhibit patterns of molecular variation similar to bal-
ancing selection. In principle, selection acts on particular variants and hence leaves its footprints only on
certain genomic regions, while demography and population substructure are expected to affect the whole
genome. However, they may not do so uniformly, increasing the amount of neutral “noise”, thus bedev-
iling the detection of selection signals. A particularly worrisome demographic scenario is a population
bottleneck, a sudden reduction of population size, followed by a rapid expansion, which may cause many
spurious signatures of selective sweeps [Jensen et al., 2005]. It is generally agreed that all non-African hu-
man populations experienced a bottleneck during their migration out of Africa [Marth et al., 2004; Stajich
and Hahn, 2005; Liu et al., 2006; Gutenkunst et al., 2009].

1.3 The site frequency spectrum

The complete pattern of variation which appears in aligned sequences is hard to interpret. Hence, it is
helpful to extract the relevant information into appropriate summary statistics. An easy-to-calculate and
nevertheless very versatile summary statistic is the site frequency spectrum. It can be used to estimate
mutation [Liu et al., 2009] or recombination rates [Lachance and Tishkoff, 2014] and past population
size changes [Adams and Hudson, 2004; Liu and Fu, 2015; Lapierre et al., 2017], but it is its property as
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1.3 The site frequency spectrum
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Figure 1.2: Evolutionary scenarios for a sample of eight sequences in a non-recombining genomic region.
Top panels: neutral evolution, in an equilibrium between mutation and genetic drift. Middle panels:
positive selection, the situation after a completed selective sweep. Bottom panels: balancing selection, the
long-time co-existence of two variants. Left: the genealogy of the region. Centre: the pattern of variation
in the aligned sequences of the region. Right: the frequency spectrum of derived variants. The colours
represent the frequency of the mutation in the sample. Modified after [Bamshad and Wooding, 2003].

an indicator for natural selection that is of most importance within this thesis. Figure 1.2 illustrates the
underlying concept. In the middle panels, hypothetical variation in aligned sequences from a short non-
recombining genomic region is depicted. These patterns are the result of the genealogical trees on the
left side, representing different evolutionary scenarios. In practice, sequence variation is known and ge-
nealogies are not. Although attempts have been made to infer the true genealogies from sequence data
[Rasmussen et al., 2014], the methods are computationally demanding and the precision of the results
hard to ascertain. Instead, most wanted is a “simple” assignment of the observed variation to one of the
evolutionary scenarios. This can be achieved to some extent with the help of the frequency spectrum
depicted on the right. The absolute frequency of a variant in a sample is called its size, identified in the
picture by its colour. Counting all same-size variants yields the frequency spectrum. Since its expected
form under neutrality is surprisingly simple (Figure 1.3), deviations from it can be quantified and associ-
ated with different evolutionary scenarios. Positive selection is associated with an over-representation of
low frequency variants and balancing selection is thought to yield a preponderance of middle frequency
variants. If ancestral and derived variant cannot or need not be distinguished, the folded frequency spec-
trum can be formed by considering at each site the variant with minor frequency.
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1 Introduction

1 2 3 4 5 6 7
0

θ

derived variant frequency i

E [ξi ] Figure 1.3: The expected frequency spectrum under
neutrality and constant population size is given by
E [ξi ] = θ

i . The dashed line shows its continuous ex-

tension θ
x .

1.4 Tests on neutrality

Throughout the last two decades a steady stream of newly proposed neutrality tests has come to the fore,
almost all aimed at detecting positive selection in form of selective sweeps, reviewed by Nielsen [2001,
2005]; Thornton et al. [2007]; Oleksyk et al. [2010]; Vitti et al. [2013]; Booker et al. [2017]; Pavlidis and Ala-
chiotis [2017]. Not all, however, reached a high profile beyond population genetic specialists. For instance,
a guideline for biologists [Cadzow et al., 2014] recommends the usage of FST , TAJIMA’s D , FAY&WU’s H ,
i HS and r sb. An overview over the field is given below.

1.4.1 Tests based on variant frequency differences between subpopulations

Subpopulations that became separated geographically or otherwise will diverge by genetic drift and selec-
tion. Variants with extremely high or low difference in population frequency can be suspected to be un-
der regional directional selection or global balancing selection, respectively. Among various, often similar
measures for population subdivision, FST is most widely used. It compares variation within subpopula-
tions with that of a hypothetical non-divided total population. It can be calculated for every site with two
variants (with extensions to include multiple variants) and yields 0 if the variant frequencies are the same
in subpopulations and 1 if different variants are fixed in different subpopulations (reviewed by Holsinger
and Weir [2009]). FST can be used as a test statistic if simulations of neutrally evolving sequences provide
critical values for significance.

The related quantities pexcess [The international HapMap Consortium, 2005, Supplementary informa-
tion] and PBS [Yi et al., 2010] measure the difference of FST in one population to one or several other
populations serving as putatively neutral references. The 1000 Genomes Project Consortium [2012] used
the difference in the frequency of derived variants ∆D AF as measure for population differentiation.

1.4.2 Tests based on the site frequency spectrum

Since the frequency spectrum is a central topic of this thesis, the development of associated tests will be
described in detail.

The MAN-WHITNEY U test seems to be the only test from standard statistic theory that has been applied
to frequency spectra [Akashi, 1999; Andrés et al., 2009; DeGiorgio et al., 2014]. It is a non-parametric test
to handle ordinal scaled data, in this case the size of mutations. For instance, the frequency spectrum
for positive selection in Figure 1.2 is represented by the set of numbers {1,1,1,1,1,1,1,1,2,2,3} which can
be compared by the test with any other observed spectrum to indicate general trends such as that one
sample contains more lower frequency variants than another. If applied to the folded spectrum, it can
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1.4 Tests on neutrality

detect an over- or under-representation of middle-sized frequency variants.

Quite a few tests rely on the comparison of estimators for the parameter θ as defined in section 1.2.2.
Watterson [1975] found an easy-to-calculate estimator for θ by counting the number of segregating sites
S within a sample and correcting for the sample size n by a harmonic number Hn =∑n

i=1
1
i ,

θ̂S = S

Hn−1
. (1.1)

This estimator has come to be known as WATTERSON’ s estimator and is often symbolized by θ̂W , too. He
also derived the variance of this estimator. Tajima [1983] computed the variance of another estimator of
θ, namely the average pairwise difference between two sequences, referred to as Π. More formally, it is
defined as the number of all differences ki j between pairs of sequences i and j of a sample, divided by
the possible number of pairings:

θ̂Π =Π= 2

n(n −1)

n∑
i 6= j

ki j . (1.2)

Building on this, Tajima [1989] showed, that, although both estimators are identical for samples of size
n = 3, their correlation decreases with increasing n. This led him to propose a test which became known
as TAJIMA’s D :

D = θ̂Π− θ̂S√
Var[θ̂Π− θ̂S]

. (1.3)

Since under neutral evolution both estimators have the same expected value, the test statistic for a sample
drawn from a neutrally evolving population should yield a value near zero. If instead, for a given number
of segregating sites, low-frequency variants are over-represented, the value ofΠ is diminished and the test
statistic negative which can be taken as a signal for positive selection. Conversely, an over-representation
of middle-frequency variants causes a positive value of the test statistic, possibly signalling balancing
selection. For example, the values of TAJIMA’s D for the scenarios in Figure 1.2 are -0.06, -1.00 and 0.73
for neutral evolution, positive selection and balancing selection, respectively. In short, specific deviations
of the observed frequency spectrum from that expected under neutrality can be summarized by a single
number and, as discussed below, assigned a significance level.

Fu and Li [1993] portioned coalescent trees into external branches which lead to leaves and internal
branches which do not. Mutations on external branches are seen be definition only on a single sequence
and are called singletons. It turned out that the number of singletons is an estimator for θ, too:

θ̂e = ξ1 . (1.4)

The authors proposed two new tests

D = θ̂S − θ̂e√
Var[θ̂S − θ̂e ]

(1.5)

and

F = θ̂Π− θ̂e√
Var[θ̂Π− θ̂e ]

. (1.6)

While WATTERSON’s and TAJIMA’s estimators are “symmetric” with respect to ancestral and derived vari-
ants, the last two tests are not and hence for them the variants have to be polarized (see eponymous box).
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1 Introduction

Fu and Li [1993] proposed modifications D∗ and F∗ of these tests using the folded frequency spectrum
and hence suitable for un-polarized variants. Since the modifications are in fact small, the tests are likely
to have similar power, although formal comparisons are seemingly not published. Instead, a compar-
ison between TAJIMA’s D and FU&LI’s D∗ and F∗ has been undertaken by Braverman et al. [1995] and
Simonsen et al. [1995]. Both studies investigated the power of the tests to reject neutrality using extensive
simulations of different non-neutral scenarios. The former study tested against an alternative scenario of
a population bottleneck, a single hitch-hiking event and a population split. The latter study tested against
neutral mutations affected by recurrent selective sweeps in their vicinity. Both found, that TAJIMA’s D per-
forms always better than the other two tests. A follow-up simulation study by Fu [1997] suggested that
FU&LI’s D∗ and F∗ are more powerful to detect background selection.

Fay and Wu [2000] proposed yet another estimator and an associated test, aiming to improve on previ-
ous tests particularly in the detection of selective sweeps:

θ̂H = 2

n(n −1)

n−1∑
i=1

i 2ξi (1.7)

is used to construct the test

H = θ̂Π− θ̂H√
Var[θ̂Π− θ̂H ]

. (1.8)

While Tajima’s estimator can be expressed as a weighted average of heterozygosity, θ̂Π = ∑n−1
i=1 2ξi

i (n−i )
n(n−1) ,

the estimator θ̂H measures the average homozygosity for the derived variant. It puts hence much weight
on high frequency derived variants, which should be rare in a neutrally evolving genomic region. The au-
thors argue that only selective sweeps lead to an over-representation of such variants and consequently
confounding scenarios such as bottlenecks or background selection can be ruled out. However, this speci-
ficity comes with the price of relying heavily on the correct polarization of the variants. They acknowledge
this by suggesting that the estimated proportion of ancestral variant misidentification (see associated box)
should be allowed for in the calculation of significance levels.

A simulation study [Przeworski, 2002] scrutinized the properties of FAY&WU’s H and found, that this
test is only powerful to detect selective sweeps in a narrow time frame around the fixation of the advan-
tageous variant. Furthermore, it is vulnerable to population structure in the sense that a few migrants
from another population may cause fixed derived variants of the main population to appear segregating
at high frequency, confounding the signature of a nearly-completed selective sweep. [Zeng et al., 2006,
co-authors Fu and Wu] tried to address these concerns by constructing another two tests that both are
mixtures of the preceding ones. The first one uses a new estimator

θ̂L = 1

2
(θ̂H + θ̂Π), (1.9)

to yield the test statistic

E = θ̂L − θ̂W√
Var[θ̂l − θ̂W ]

, (1.10)

while the second one, called D H , consists in a joint application of the D and H-tests. Both new tests are
suggested to be less sensitive to population size changes and population structure. The authors add a
ranking of the tests D , H , E and DG with respect to their sensitivity to various evolutionary scenarios.

Finally [Achaz, 2008] investigated the influence of sequence errors on the above-mentioned tests. He
argued that such errors mostly lead to spurious singletons and suggested to use, in a case of doubt, an
amended version of TAJIMA’s D , named Y , which excludes singletons from the calculation.
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1.4 Tests on neutrality

Polarization of variants
Suppose that in a sample of human sequences at a certain genomic position two variants u and v are
observed. To polarize them means to establish the direction of the mutation, or equivalently, to infer
which of the two was carried by the most recent common ancestor of modern humans. If a “sister
species” like Chimpanzees carries one of the variants, it is common practise to take that one as the
ancestral variant of humans (scenario A).

A
u

u

most recent
common ancestor

u uuu
u→v

v

Chimpanzee Humans

B
v

v

v→u

u

v→u

vuuu

C
u

u→v

v

u

v→u

vuuu

The infinite sites model which allows only one mutation at a given site is appropriate for time scales
within a species. However for the long time separating humans and chimpanzees, a second mutation
has a non-negligible probability to occur on the same position. In this case the ancestral variant of
humans is misspecified by the chimpanzee variant (scenarios B and C). How often does this happen?
A first approximation is d

3 , where d stands for the average fraction of different bases between the
species and 1

3 is the probability that the second mutation is a reversal of the first if we assume that
all mutations are equally likely. If instead, as is well known, transitions (mutations of type A ↔ G or
C ↔ T ) happen twice as often as transversions (A ↔ C , A ↔ T , C ↔ T or G ↔ T ), then the probabil-
ity of a mutation u↔v within humans being a transition is the same as being a transversion, namely
1
2 and the probability of a transition or transversion occurring on the long branches is d

2 each. A
second transition would restore necessarily the original variant while a second transversion would

do so only in half of cases. Hence in total there is a higher probability of 1
2

(
d
2 + d

2
1
2

)
= 3d

8 for a mis-

specification [Fay and Wu, 2000]. Hernandez et al. [2007] extended this argument to all 12 possible
mutations and allowing for context-dependence on the preceding and succeeding site. The diver-
gence d between humans and chimpanzees is commonly stated as 1% [The Chimpanzee Sequencing
and Analysis Consortium, 2005], although this number describes only base substitutions and neglects
insertions, deletions and structural mutations [Cohen, 2007]. The divergence and thus the problem
of mis-identification is greater in other well studied sister species like Drosophila melanogaster /sim-
ulans (d ≈ 4.1%) Garrigan et al. [2012] or Arabidopsis thaliana /lyrata (d ≈ 15%) [Hu et al., 2011].
On the other hand, more closely related species are more likely to share ancestral or trans-species
polymorphisms, again impeding their correct polarization [Baudry and Depaulis, 2003]. Wiuf et al.
[2004] calculated an approximation for this probability under neutral evolution, which in case of hu-
mans/chimps yields, rather as upper limit, 9e−8 ≈ 0.003, still lower than the probability of a double
mutation. For all known cases of human trans-species polymorphisms, such as the binding region
of MHC molecules [Klein et al., 1998], the ABO blood group gene [Thompson et al., 2013] and a few
other genes of the immune system [Těšický and Vinkler, 2015], balancing selection is invoked.
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1 Introduction

The formal similarity of the tests led to an early attempt of generalization by Fu [1996]. Fu [1995] had
shown that for every i = 1, . . . ,n−1 the product iξi can be taken as an estimator θ̂i for θ. He observed that
θ̂S , θ̂Π, θ̂e and in fact the later defined θ̂H can be described essentially as members of a one-parameter
family of estimators given by

θ̂(r ) = 1∑n−1
i=1

(1
i

)r

n−1∑
i=1

(
1

i

)r

iξi (1.11)

and hence the corresponding tests can be identified by two parameters r and r ′. Achaz [2009] found
another, more flexible, characterization of the tests. He parametrized not the estimators, but their differ-
ences. LetΩi , i , . . . ,n−1 be numbers with the condition that

∑n−1
i=1 Ωi = 0 and writeΩ= (Ω1, . . . ,Ωn−1) resp.

Θ̂= (θ̂1, . . . , θ̂n−1) as vectors. Then every of the above-mentioned tests is identified by its weighting scheme
Ω and can be written in the form

TΩ = Θ̂ ·Ω√
Var[Θ̂ ·Ω]

. (1.12)

Using this notation the variances in the nominator, once painstakingly calculated for each test indepen-
dently, can be subsumed into a single formula [Achaz, 2009, Eq. (9)].

The existence of a family of tests defined by weights provoked the question: which of its members can
best discriminate neutral evolution against a given alternative scenario? The answer was given partially
by Ferretti et al. [2010b]. They formulated a consistency requirement that a weighting scheme for any
test should scale with the sample size in the sense that the same relative parts of the frequency spectrum
are contrasted by the test. They showed that although TAJIMA’s D does not fulfil strictly this criterion, its
dependency on sample size is not strong, while the tests of FU&LI do not scale well, since they oppose
for all sample sizes the class of singletons to the remaining n −2 classes. More importantly, Ferretti et al.
[2010b] showed that, taking the maximization of the expectation value as a criterion for optimality, it is
easy to generate an “optimal” test distinguishing two given scenarios: the weights Ω must be chosen as
the expected differences of the two corresponding frequency spectra.

All tests have a practical problem in common, namely the establishment of critical values for signifi-
cance, because the distributions of the test statistics are not known analytically. Although “the normaliza-
tion [by the nominator] is intended to standardize the variance of the test statistic and hopefully bring the
statistic close to the standard normal distribution” [Fu and Li, 1993], this is not accurate enough, because
the variance itself depends on an estimation of θ. [Tajima, 1989] approximated the distribution of his
test statistic by a beta-distribution, well known by statisticians, yet this was founded on merely accidental
visual similarity. The correct assignment of critical values is cumbersome since it involves allowing for
variance of the theta estimator in the denominator. Detailed lists of critical values have been computed
by Simonsen et al. [1995] and Fu [1996], however, in practise these values are obtained by approximate co-
alescent simulations, based on the estimated value of θ alone, conceding some imprecision arising from
the neglect of its variance.

Tests relying on the frequency spectrum, but not subscribing to the above mentioned framework, have
been proposed, too. In particular [Fu, 1996] discusses a test statistic of the form

T =
n−1∑
i=1

n−1∑
j=1

(
ξi −

1

i

)(
Cov[ξi ,ξ j ]−1)

i j

(
ξ j −

1

j

)
, (1.13)

suggested to follow a χ2-distribution and being sensitive to selective sweeps. However, he admitted that
the effect of recombination on this test remains unclear, while it merely reduces the power of the above-
mentioned tests [Wall, 1999]. A mathematical treatment on similar tests has been provided by Ferretti et al.
[2010a]. Furthermore, machine learning [Ronen et al., 2013] and Bayesian [Eldon et al., 2015] methods to
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1.4 Tests on neutrality

discriminate between frequency spectra have been proposed. So far, none of these approaches found
much application.

By contrast, the comparison of frequency spectra by likelihoods turned out to be fruitful. Assume a null-
and an alternative hypothesis that a variant has a probability of p0

i resp. p A
i for being of size i . A test using

variants in a specific genomic region and having the form

T =

n−1∏
i=1

(
p A

i

)ξi

n−1∏
i=1

(
p0

i

)ξi

(1.14)

is called a composite likelihood ratio test, because the probabilities p0
i and p A

i of neighbouring variants
are not independent and thus not constituting a standard likelihood. Kim and Stephan [2002] modified
this basic approach by allowing the p A

i to vary within the considered genomic region: the probabilities
are specified using a model for a selective sweep with two parameters, one for recombination rate scaled
by strength of selection and another for the position of the selected site, both estimated by maximizing
the likelihood. This idea was implemented in the program SWEEPFINDER by Nielsen [2005], with the mod-
ification of using genome-wide observed frequencies as p0

i instead of relying on a specific null model as
proposed by Kim and Stephan [2002]. Pavlidis et al. [2013] created a competing program SWEED, suppos-
edly an order of magnitude faster and with an option to compute p0

i for various demographies. Finally,
the SWEEPFINDER was updated to version number 2 by DeGiorgio et al. [2016] to include mutation rate
variation within a genome and allowing for background selection.

1.4.3 Tests based on haplotypes

Although the site frequency spectrum has proven to be a useful summary statistic, it has the major caveat
that it does not capture linkage, the correlation of variants at different genomic positions. Figure 1.4
shows two different patterns of variation reflecting different evolutionary scenarios, but sharing the site
frequency spectrum. They can be discriminated, though, by their haplotypes, the succession of variants
on the same sequence. While in the left alignment the four lower sequences which contain the central de-
rived variant, show no great difference in variation to the upper sequences with the ancestral variant at the
central position, in the second alignment the four lower sequences are more similar to each other than the
upper sequences. Sequences 5 and 6 are even identical and said to be homozygous, slightly extending the
standard definition, referring to a genotype of a single individual, to the population level. A seminal paper
by Sabeti et al. [2002] introduced the Extended Haplotype Homozygosity (EHH) as a measure for the simi-
larity of sequences around a given position. This value is calculated separately for sequences containing
the derived variant and sequences containing the ancestral variant of a scrutinized SNP. Comparison of
the two values at an arbitrarily preset distance from this SNP yields the Long Range Haplotype (LRH) test.
Since recombination events tend to distribute variation among sequences, the EHH value is an indirect
measure for the amount of recombination events that has happened since the emergence of the derived
variant, and this in turn is a proxy for its age. A “young” derived variant with a high population frequency
is taken as signal for an ongoing selective sweep. Many modifications have been proposed since, with
names such as LDD [Wang et al., 2006], iHS [Voight et al., 2006], XP-EHH [Sabeti et al., 2007], rsb [Tang
et al., 2007], nSL [Ferrer-Admetlla et al., 2014]. An overview of these tests is given in the boxed area of the
fourth reprinted article and therefore omitted here.

It should be added, that these tests have also disadvantages. One is technical and a consequence of cur-
rent sequencing technologies which produce too short reads to collate them unambiguously to the two
chromosomes of a diploid organism. Thus, haplotypes extending beyond the length of reads have to be
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Figure 1.4: Limitations of the frequency spectrum. Notwithstanding the suggestive ordering of the central
variant, the pattern on the left represents an almost perfectly neutrally evolving region, while the pattern
in the middle is typical for an on-going selective sweep, since the sequences carrying the derived vari-
ant show less variation than the sequences carrying the ancestral variant (compare with Figure 1.1). The
frequency spectrum is the same for both, though. The value for TAJIMA’s D is -0.20, arguing rather for
neutral evolution, and 1.02 for FAY&WU’s H , indicating the absence of derived variants with a high fre-
quency. On the contrary, haplotype based summary statistics are able to distinguish the two patterns.
For instance, the integrated EHH (iHH) for derived and ancestral variant of the central SNP yields ratios
i H Hd
i H Ha

= 3258
2948 ≈ 1.1 for the left alignment and 8917

1882 ≈ 4.7 for the right alignment.

reconstructed or phased computationally [Browning and Browning, 2011], although experimental reme-
dies are being explored [Huang et al., 2017]. A deeper caveat with tests exploiting haplotype structure is
that the signal they detect gets diluted faster than that contained in frequency spectra. Based on simula-
tion studies, Sabeti [2006] estimated the time that a selective sweep can be detected in humans as 250.000
years by TAJIMA’s D , 80.000 years by FAY&WU’s H and less than 30.000 years by tests on haplotypes.

1.4.4 A combined test

Grossman et al. [2010, last author P. Sabeti] combined several summary statistics that showed little corre-
lation under neutrality into the Composite of Multiple Signals (CMS) test. The following five statistics were
chosen: three previously known (FST , i HS and X P −E H H) and two newly defined (∆D AF and ∆i H H).
Their distributions under neutrality and under a selective sweep were computed by simulations, allow-
ing for demography parameters for the investigated populations. If si , i = 1, . . . ,5, are the values of the
five statistics for an experimentally observed SNP, then the following product of posterior probabilities is
taken as its score

C MS =
5∏

i=1

P (si |sel ected)P (sel ected)

P (si |sel ected)P (sel ected)+P (si |unselected)P (unselected)
. (1.15)

This test was aimed to narrow the signal within an already otherwise established candidate region. The
authors assumed that exactly one of the SNPs in such a region is under selection while the remainder are
neutral. A uniform prior probability was chosen, meaning that each SNP has the same chance of being
the selected one, P (sel ected) = 1

#SN P . Later, Grossman et al. [2013] adapted this test for genome-wide
detection of selection signals for which the specification of prior probabilities is not possible

C MSGW =
5∏

i=1

P (si |sel ected)

P (si |unselected)
. (1.16)
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1.5 Selection scans in humans

1.5 Selection scans in humans

Haasl and Payseur [2016] compiled a non-exhaustive list of 73 human-specific whole genome scans for
selection. Here, instead, an account of only a few milestones shall be given as an overview.

A prerequisite for whole genome scans in human variation data is obviously the genome sequence itself,
which, as is generally known, was presented as a draft version in the year 2000.

1.5.1 An early scan using FST

Akey [2002] performed a scan for both positive and balancing selection. He calculated FST values of 26530
genome-wide SNPs genotyped by the SNP consortium [Thorisson and Stein, 2003] in samples of Euro-
pean Americans, African Americans and East Asians, each consisting of 42 individuals. 8862 SNPs resided
in the vicinity of a known gene. Genes with at least one SNP showing a FST value among the 2.5% highest
genome-wide were proposed as likely to be under positive selection, yielding a total of 156, among them
genes underlying diseases such as CFTR, associated with cystic fibrosis and PPARG, associated with di-
abetes type II. In order to qualify as candidate gene for balancing selection, essentially identical variant
frequencies in the three populations were required. Among the 18 genes thus identified were guanine
nucleotide exchange factor for Rap1 (GFR) and tropomodulin 3 (TMOD3).

1.5.2 Scans for positive selection

The scan for positive selection of Carlson et al. [2005] used data generated by the company Perlegen
Sciences®, consisting of about 1,6 million SNPs genotyped in 71 Americans, having either European (24),
African (23) and Chinese (24) ancestry [Hinds et al., 2005]. For each population group TAJIMA’s D was
calculated in overlapping windows of size 105 bases, sliding over the whole genome. In total 55 candidate
regions for selection were identified, defined by multiple contiguous windows having values that belong
to the lowest 1% empirical quantile. Furthermore, the paper addresses the influence of ascertainment
bias, since the SNPs genotyped by array chips as in this case, are biased towards common variants, lead-
ing to a skewed frequency spectrum. Comparison with a set of previously fully sequenced genes as well
as a re-sequencing done on some genes within the candidate regions, showed that the TAJIMA’s D values
for both kinds of data are significantly correlated, albeit with a merely intermediate correlation coefficient
R2.

The first phase of the HapMap project yielded 1 million SNPs genotyped in 90 individuals with European
ancestry from Utah (CEU), 90 individuals from the Yoruba in Ibadan (YRI), 45 Han Chinese from Beijing
(CHB) and 44 Japanese from Tokyo (JPT). The CEU and YRI samples consisted of 30 trios (father, mother,
child) while the other two samples represented unrelated individuals. In the publication associated with
the data release [The international HapMap Consortium, 2005], regions with extreme values in four sum-
mary statistics were reported. The calculation of FST values yielded 926 SNPs more differentiated than the
a specific variant at the Duffy locus which confers resistance against malaria and hence is likely to have
been under selection; among them 32 were non-synonymous coding, including 6 within the gene ALMS1.
The outliers of the long-range haplotype (LRH) test were headed by the LCT gene in the CEU sample. The
supplement contains lists of regions with low heterozygosity and long haplotypes, respectively.

Voight et al. [2006] introduced the iHS statistic and applied it to the HapMap SNPs. They observed an
excess of extreme values and furthermore a conspicuous clustering of these with respect to simulations
of neutral evolution including a variety of demographies. The longest observed haplotypes with a derived
allele frequency of over 50 % were found near the Gaucher disease gene GBA in the CHB/JPT sample, near a
gene involved in insulin regulation (NKX2-2) in CEU and in a region without known genes on chromosome

13



1 Introduction

5 in YRI. Another ranking restricted to coding regions yielded an enrichment of several categories with the
most significant being “other carbohydrate metabolism” and “chromatin packaging” in CHB/JPT, “electron
transport” and “MHC1-mediated immunity” in CEU, and “steroid metabolism” in YRI [Voight et al., 2006,
table 2].

The publication of “HapMap 2” [The international HapMap Consortium, 2007], describing an addi-
tional 2.1 million SNPs genotyped in the same samples as in the first phase, was accompanied by a study
devoted to detect selection [Sabeti et al., 2007] using LRH, iHS and a newly defined cross-population hap-
lotype test XP-EHH. 22 regions were found with test statistics so extreme, that they did not occur in simu-
lations of 10 Gigabases. These regions contained 9166 SNPs on which three filters were applied: a selection
candidate had to be derived, highly differentiated among populations and belonging to known functional
genetic elements. Of the remaining 41 SNPs, 8 were found to cause amino acid changes in the genes
SLC24A5, EDAR, PCDH15, ADAT1, KARS, HERC1, SLC30A9 and BLFZ1. Additionally, the filtering process
was reversed by starting with non-synonymous coding SNPs and ranking them by the other two crite-
ria. In the end, for each population two different candidate genes were found that were tightly connected
functionally: LARGE and DMD, related to susceptibility to the Lassa virus, in the YRI sample, SLC24A5 and
SLC45A2, involved in skin pigmentation in the CEU sample and EDAR and EDA2R, both trans-membrane
receptors, involved in the development of hair follicles, in the CHB/JPT sample.

Williamson et al. [2007, last author R. Nielsen] scanned the Perlegen® data with the SWEEPFINDER. They
used a sliding window of 201 SNPs and computed p-Values by simulations of neutral evolution incorpo-
rating the ascertainment bias of the data set and an approximate recombination rate for each window.
164 windows showed a p-Value of less than 10−5, 101 of them had an annotated gene within 105 bases
distance. The strongest signal showed the gene DTNA in the Chinese sample and only slightly less in the
sample of European Americans. This gene is a component of the dystrophin protein complex (DPC), im-
portant for the architecture of muscles; several other genes of this complex showed signals of selection
in this sample. Further gene categories presented as being under selection comprised skin pigmentation,
olfactory receptors, hair morphology and heat shock proteins. Several centromeres were reported to show
evidence for selection. In total, 10% of the genome of Europeans and Chinese were declared to have been
affected by selective sweeps, identified in the study by windows with a p-value of 0.05 or less.

Pickrell et al. [2009, last author K. Pritchard] screened a set of 657143 SNPs, genotyped by Li et al. [2008]
in 938 individuals of 53 populations from the “Human Genome Diversity Project” [Cavalli-Sforza, 2005].
They scanned geographically grouped populations with i HS, X P −E H H and the SWEEPFINDER and used
FST for closely related single populations. Instead of an enrichment analysis for biological processes, they
examined, if particular a-priori gene sets, associated with pigmentation or one of several diseases, showed
stronger signals of selection than random loci in the genome. For the former category this was clearly
the case, while among diseases this held only for diabetes II, with SNPs associated with the disease not
matching those showing signals of selection. Apart from that, multiple genes of the pathway NRG-ERBB4,
involved in the development of a number of tissues, displayed extreme values in several populations.

In the HapMap 3 project [The international HapMap Consortium, 2010], the samples of the previously
investigated populations were enlarged and supplemented by 7 further populations: African ancestry in
the Southwestern USA (ASW), Chinese in metropolitan Denver, USA (CHD), Gujarati Indians in Houston,
USA (GIH), Luhya in Webuye, Kenya (LWK), Maasai in Kinyawa, Kenya (MKK), Mexican ancestry in Los An-
geles, USA (MXL) and Tuscans in Italy (TSI). In total, 1.6 million SNPs were genotyped in 1184 individuals.
The same tests as in HapMap2 were applied, followed by a fine-mapping of candidate regions by CMS.
Candidate genes in the new populations were KITLG and MLPH, both involved in pigmentation, LAMA3,
involved in wound healing and an olfactory cluster in population TSI, immune related genes CD226, IT-
GAE and DPP7 in both Kenyan populations and the gene ANKH, having a role in bone growth, in MKK.

The 1000 genomes project began with a pilot phase, consisting of very low coverage sequencing of
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179 individuals from the same populations as in HapMap 1 + 2 and yielding 15 million SNPs [The 1000
Genomes Project Consortium, 2010]. A scan using FST was performed which turned out very few fixed
differences (FST = 1) between populations: 2 SNPs between CEU and CHB+JPT (one of them in the gene
SLC24A5), 4 between CEU and YRI (including a mutation next to the Duffy blood group gene DARC), and
72 between CHB+JPT and YRI (24 of them clustered around the gene EXOC6B, necessary for exocytosis).
However, 139 non-synonymous variants showed very high values (FST ≥ 0.8), including two genes in-
volved in meiotic recombination (FANCA and TEX15).

On this data set Grossman et al. [2013] performed a whole genome scan using C MSW G to delineate can-
didate regions, complemented by those of The international HapMap Consortium [2007]. Fine-mapping
these regions with the C MS yielded 412 regions of median length 27 kb which contained a median of
47 SNPs. These regions contained only 35 amino acid-changing variants, but 59 variants associated with
expression levels measured in the cell lines used for sequencing, among them 48 long inter-genic non-
coding RNAs (lincRNAs). One of the non-synonymous coding variants, L616F in the innate immune sys-
tem gene TLR5, was experimentally shown to result in different responses to bacterial flagellin.

In phase 1 of the 1000 genomes project, samples from 14 populations were sequenced to yield 38 million
SNPs [The 1000 Genomes Project Consortium, 2012]. The populations CHS, CLM, FIN, GBR, IBS and PUR
were newly included with respect to HapMap samples; for abbreviations see Table 1.1. Signals of selection
were searched by means of the population differentiation measure ∆D AF [The 1000 Genomes Project
Consortium, 2012, Table S12]. The SNP showing the biggest derived frequency difference between the
two non-admixed African samples LWK and YRI had a value of 0.475 and lies in a putative binding site of
the Neuron Restrictive Silencing Factor (NRSF). Pybus et al. [2014] calculated various test statistics for the
populations CEU, CHB and YRI, available via a “selection browser” (http://hsb.upf.edu/).

The 1000 Genomes Project Consortium [2015], concluding phase 2 and final phase 3, presented the
sequences of 2504 individuals of 26 populations (Table 1.1). Among other kinds of variation, 78 million
SNPs were “called”. SNPs in genes were scanned for outliers with the differentiation measure PBS, ap-
plied on populations of the same continental group with the remaining continents as out-group. The
gene SLC24A5 showed high values within all five continental groups, while SNPs in the genes TRBV9 and
PRICKLE4 belonged to the most highly differentiated within both South Asians and Africans [The 1000
Genomes Project Consortium, 2015, Extended data Figure 8].

An altogether different scan on positive selection was performed by Mathieson et al. [2015], who used
ancient genomes from 213 people living in Europe between 6500 and 300 BC, to compare them with
present-day Europeans. In this case, frequency changes need not be inferred from present day variation,
but can be measured directly. The problem is here to relate the correct populations in time, since migra-
tion confounds a purely geographic association. In order to assess the significance of frequency changes,
the authors tested the hypothesis that variant frequencies in four populations of the 1000 genomes project
(CEU, GBR, IBS and TSI) can be described by a linear mixture of those in the supposedly three ancestral
populations “Early Farmers”, “Hunter-gatherers” and “Steppe ancestry”. Twelve signals of selection were
reportet, among them SNPs associated with lactose persistence (LCT), fatty acid metabolism (FADS1),
Vitamin D regulation (DHRC7), pigmentation (SLC45A2 and GRM5), innate immunity (TLR1-6-10 clus-
ter) and adaptive immunity (MHC). Two variants determining light skin (SLC24A5) and light eye colour
(HERC2/OCA2), respectively, had already high frequency in one of the ancestral populations.

1.5.3 Scans for balancing selection

Bubb et al. [2006] searched for particularly diverse regions in the genome. In order to avoid false positives
due to sequence errors they did not use the SNPs called by The international HapMap Consortium [2005],
but instead used the primary data of the project to focus on high-quality reads showing more than aver-
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East Asians

CHB Han Chinese in Beijing, China 103
CHS Han Chinese South, China 105
CDX Chinese Dai in Xishuangbanna, China 93
JPT Japanese in Tokyo, Japan 104
KHV Kinh in Ho Chi Minh City, Vietnam 99

South Asians

BEB Bengali in Bangladesh 86
GIH Gujarati Indian in Houston, Texas 103
ITU Indian Telugu in the UK 102
PJL Punjabi in Lahore, Pakistan 96
STU Sri Lankan Tamil in the UK 102

Africans

ESN Esan in Nigeria 99
GWD Gambian in Western Division, The Gambia 113
LWK Luhya in Webuye, Kenya 99
MSL Mende in Sierra Leone 85
YRI Yoruba in Ibadan, Nigeria 108

Europeans

CEU Utah Residents with Northern and Western European Ancestry 99
FIN Finnish in Finland 99
GBR British in England and Scotland 91
IBS Iberian populations in Spain 107
TSI Toscani in Italy 107

Admixed

Americans

ACB African Caribbean in Barbados 96
ASW African Ancestry in Southwest USA 61
CLM Colombian in Medellín, Colombia 94
MXL Mexican Ancestry in Los Angeles, California 64
PEL Peruvian in Lima, Peru 85
PUR Puerto Rican in Puerto Rico 104

26 2504

Table 1.1: Populations and sample sizes of The 1000 Genomes Project Consortium [2015].

age deviation from the human reference sequence. The SNPs within these reads were controlled by PCR
in 10 Americans of African ancestry and further filtered by searching for variation in the flanking regions,
leaving in the end 16 regions of high diversity. The two most differing haplotypes within each region were
manually identified and additional individuals sequenced to obtain at least three sequences of each hap-
lotype with a length of 20kb. The 5kb part that showed the highest divergence within these re-sequenced
regions was finally reported. They compared these regions with two other regions, believed to be under
balancing selection: the major histocompatibility complex (MHC) region, of central importance in adap-
tive immunity, and the ABO gene, responsible for the major blood group system. The divergence of all
newly found candidate regions was comparable to that of the ABO gene, while the MHC region stuck out
by an order of magnitude. The 16 regions however, did not show any enrichment of genes or conserved
non-coding sites. Furthermore, simulations showed that their levels of divergence could be well explained
by neutral evolution alone. The authors concluded that they do not represent instances of balancing se-
lection.

Andrés et al. [2009, last author R. Nielsen] used a data set of Bustamante et al. [2005], comprising fully
sequenced exons of 13400 genes in 19 African Americans and 20 European Americans. After a quality
filtering, 4877 genes remained, each containing at least one SNP. Two tests were applied: a one-sided
HKA-test, which scales human diversity by divergence to chimpanzee and a one-sided MAN-WHITNEY-
U -test on the folded frequency spectrum, used to discern genes with an excess of SNPs of intermediate
frequency. 60 “extreme genes” were found that fell into the 5% significance level of both tests, with critical
values established by simulations of neutral evolution. The set contained about a dozen genes involved
in immunity such as three of the MHC and a gene FUT2, affecting a minor blood group, but not the ABO
gene. A few molecular function categories were enriched, such as “extracellular matrix”, “intermediate
filament” and “serine protease inhibitor”, however no biological process category was enriched in both
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1.6 Coalescent mathematics

T2

T3

T4

Figure 1.5: A coalescent tree for a sample of size 4.
Each tip represents a present-day sequence of the
sample. The sequences find their common ances-
tors at the bifurcation points (“coalescent events”)
until the most recent common ancestor of the whole
sample is found. The times between coalescent
events are exponentially distributed and depend on
the number of lineages in each time segment.

populations.

DeGiorgio et al. [2014, last author R. Nielsen] used high-quality whole-genome SNP data of 9 unrelated
individuals from each of the populations CEU and YRI, genotyped by the company Complete Genomics®

[Drmanac et al., 2010]. They devised two composite likelihood tests, applied in sliding windows over the
genome. The first one compares the portion of substitutions respective to an ancestral sequence with that
of polymorphisms. Under balancing selection this ratio should tilt to the latter. This ratio was derived
analytically using a system of recursion equations on basis of the model by Hudson and Kaplan [1988].
The second test used the frequency spectrum extended by substitutions, i.e. derived variants of size n.
These spectra were computed by simulations. The second test, being an extension of the first, performed
better. Several genes of the MHC were detected by the tests. However, once these excluded, no specific
category of genes appeared to be enriched among the candidate genes. One of the highest ranking genes
was FANK1, suspected to distort equal segregation of chromosomes during meiosis.

1.6 Coalescent mathematics

The 1
x “law” for the expected values of the frequency spectrum has been known already a long time

[Kimura, 1964]. Fu [1995] re-derived it using coalescent theory and, more importantly, calculated for the
first time exact expressions for the covariances of its components. Three of the articles reprinted in this
thesis deal with an extension of his work. This section introduces the mathematics involved.

The coalescent model as invented by Kingman [1982] is aimed at describing neutral genetic variation
as a succession of two random processes, namely the creation of a genealogical or coalescent tree and the
subsequent “addition” of mutations. If need be, these mutations can be placed randomly into a genomic
region to mimic experimental sequence data. A particular coalescent tree is characterized by a series
of ordered random bifurcations, coalescent events, defining its topology, and its branch lengths which
symbolize elapsed time (Figure 1.5).

Starting from the present day leaves, any two lineages have the same probability to join, i.e. to coalesce.
The time between such coalescence events is modelled as an exponential distribution with parameter
λ= i (i−1)

4N ,

Ti ∼ E xp

(
i (i −1)

4N

)
(1.17)

and from elementary statistical theory its expectation value is known to be 1
λ or

E [Ti ] = 4N

i (i −1)
. (1.18)

Mutations are supposed to be rare events that happen with a probability proportional to time. They are
modelled by a Poisson-distribution with parameter µT (Figure 1.6).
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T2

T3

T4

Figure 1.6: A coalescent tree with mutations. Mu-
tations occur randomly “on” branches and follow a
Poisson distribution with mean equal to the length
of the branch, i.e. time. For histance, the expected
number of mutations occurring on the blue branch
is E [µT2] =µ 4N

2(2−1) = 2Nµ= θ
2 .

Figure 1.7: States and lines of a coalescent. The
states k are defined by the number of lineages
present. The branches are split along the states into
lines kl on which ξkl mutations occurr. The line
numbering within each state, denoted by l , is arbi-
trary and serves only to distinguish lines.

ξ21 ξ22

ξ31 ξ32 ξ33

ξ41 ξ42 ξ43 ξ44

state 2

state 3

state 4

So far, this is standard coalescent theory as covered in text-books like Wakeley [2008]. The approach of
Fu [1995] introduces two further concepts: states and lines. A state simply marks the number of lineages
at a given time. The branches of the coalescent are subdivided along the states into lines. At each state k
there are k different lines (Figure 1.7).

For any line resp. combination of lines, the expected number of mutations and higher moments can be
calculated with elementary statistics. For hinstance, the expected value of mutations occurring on a line
kl yields

E [ξkl ] = E [Tkµ] = 4N

k(k −1)
µ= θ

k(k −1)
. (1.19)

The expected frequency spectrum for sample size n = 3

For sample size n = 3 exists only a single tree topology. Mutations occurring on line 21 ap-
pear on two sequences and hence are of size 2. Mutations happening on all other lines are of
size 1. The sum over the expected mutations on each line yields the expected neutral spectrum.

ξ21 ξ22

ξ31 ξ32 ξ33

E [ξ1] = E [ξ22]+E [ξ31]+E [ξ32]+E [ξ33]

= θ 1

2(2−1)
+θ 1

3(3−1)
+θ 1

3(3−1)
+θ 1

3(3−1)

= θ1

2
+3θ

1

6
= θ

E [ξ2] = E [ξ21]

= θ 1

2(2−1)

= θ

2

For sample size n = 3 the site frequency spectrum can be calculated directly using Eq. (1.19), see Box. For
any larger sample one has to allow for different tree topologies. In order to do this, we need the proba-
bility that a mutation occurring on line kl is of size i , or with other words, that line kl from state k has i
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1.6 Coalescent mathematics

Figure 1.8: The two possible relationships of two
lines and there associated probabilities. The green
line symbolizes a line kl and the blue line a line k ′l ′,
which may or may not be a descendant of line kl .
The coincidence of both lines is a special case of the
first type of relation. No other configurations are
possible in a non-recombining tree.

pa(k, i ;k ′, j ) pb(k, i ;k ′, j )

descendants at state n. This probability can be taken from a specialized branch of statistics called Pólya
urn theory [Mahmoud, 2008] and yields

p(k, i ) =
(n−i−1

k−2

)(n−1
k−1

) . (1.20)

With the help of Eq. (1.20), it is possible to calculate the site frequency spectrum for any sample size. All
lines of all states are summed up with respect to their probabilities to yield i descendants:

E [ξi ] =
n∑

k=2

k∑
l=1

p(k, i )E [ξkl ]

=
n∑

k=2
kp(k, i )E [ξk1]

=
n∑

k=2
k

(n−i−1
k−2

)(n−1
k−1

) θ

k(k −1)

=
n∑

k=2
k

(n−k
i−1

)(n−1
i

) k −1

i

θ

k(k −1)

= θ

i

n∑
k=2

(n−k
i−1

)(n−1
i

)
= θ

i

n−2∑
k=0

( k
i−1

)(n−1
i

)
= θ

i

(1.21)

The fourth step involves an easy-to-prove rearrangement of binomial coefficients and corresponds to Eq.
14 of [Fu, 1995]. The last step exploits the hockey-stick identity

∑n
k=m

( k
m

)= (n+1
k+1

)
.

The covariances and any higher moments of the site frequency spectrum can be computed analogously,
however the probabilities involved are joined probabilities, which get increasingly complex and the cal-
culation of which has to be separated into cases. For the derivation of the covariances Fu [1995] needed
to consider essentially two cases (Figure 1.8):

• pa(k, i ;k ′, j ) the probability that a line kl at state k has i descendants at state n and another line k ′l ′

at state k ′ ≥ k is a descendant of line kl and has j descendants at state n.

• pb(k, i ;k ′, j ) the same as above, but the line k ′l ′ at state k ′ is not a descendant of line kl .

Given these probabilities, the covariances can be easily written down, however the simplification of the
resulting nested sums is tedious. The main result of Fu [1995] is hence the following:
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Linear term Quadratic terms

Figure 1.9: The expected values E [ξiξ j ] for sample size n = 10, coloured by the respective shares of the
linear and quadratic parts of Eq. (1.22).

The second moments have the structure

E [ξiξ j ] =δi= j
1

i
θ+τi jθ

2 (1.22)

with

τi j = ta(i , j )+ ta( j , i )+ tb(i , j )+ tb( j , i ) (1.23)

and

ta(i , j ) =
{ 1

2

(
βn( j )−βn( j +1)

)
if j < i

1
2βn( j ) if j = i

(1.24)

tb(i , j ) =
{

1
i j − 1

i (i+ j ) − 1
2

(
βn( j )−βn( j +1)

)
if i + j < n

αn( j )− 1
2βn( j ) if i + j = n

(1.25)

whereαn(i ) andβn(i ) are simple fractions involving harmonic numbers. Figure 1.9 shows the second mo-
ments of the site frequency spectrum for sample size n = 10. Obviously the covariances can be calculated
by Cov[ξi ,ξ j ] = E [ξiξ j ]−E [ξi ]E [ξ j ].

1.7 Adaptations of tests on neutrality

This section gives an overview over the four articles presented in the next chapter. A more profound
placing into the scientific literature is given in the publications themselves and not repeated here.

The TAJIMA’s D-like tests presented in subsection 1.4.2 have been built upon the standard coalescent
model which presupposes a population of constant size. If that assumption is violated, application of
the tests may lead to spurious results. Modifiying the coalescent model accordingly is relatively simple,
since changing population size is reflected merely by changes of the time distribution between coalescent
events. However, if the exponential distribution in Eq. (1.17) has to be modified or altogether replaced
by another distribution, the formulas for the first and second moments get much more involved. While
the first moment given by Eq. (1.21) have been generalized already by Griffiths and Tavaré [1994] to pop-
ulations of varying size, Živković and Wiehe [2008] did so for the second moments, hence they adapted
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1.7 Adaptations of tests on neutrality

Eqs. (1.24) and (1.25). Using these results they modified some of the tests given in subsection 1.4.2 and
applied them to data from two populations of fruit flies. In article 1 that adaptation to population size
changes is extended to the whole class of tests within the framework of Achaz [2009]. Furthermore, the
genome scan for positive selection performed by Carlson et al. [2005] was updated using standard as well
as demography-adapted tests and newer data.

As explained in section 1.4.3, the frequency spectrum has its limits in representing the information
contained in an alignment. It is formed by independent counts of single mutations, no matter in which
configuration they are with each other. The spectrum of two linked variants, yielding a two-dimensional
spectrum, is presented in the second article as a step towards a more comprehensive exploitation of the
data. Its calculation is relatively straightforward, given the variances of the standard one-dimensional
frequency spectrum. If in that spectrum the frequency of one variant is held fixed, one yields a conditonal
one-dimensional spectrum. Then, the classification of two variants with respect to their relative position
in a coalescent tree into five distinct classes opens the way for finer-grained analyses. These classifications
increase the information content transported by a 2-loci spectrum. Curiously, the corresponding joined
probabilities were already implicit in the proofs by Fu [1995], yet never brought to much attention.

The third article is intimately related to the second. The third moments of the frequency spectrum are
derived using largely the same technics as Fu [1995], yet the extra dimension brings with it rather bulky
expressions. An immediate corrolate of the third moments are the covariances of a conditional spectrum
as described above. In addition, the third moments enable for the first time an analytical approximation
to the distributions of the TAJIMA’s D-like test statistics described in section 1.4.2.

The Extended Haplotype Homozygosity (EHH) is a measure that is calculated from a focal SNP, whose
variants define two initial haplotypes, to subsequent farther SNPs on either side. The implementation for
this calculation in version 1 of the R-package REHH was very inefficient; for each further SNP the whole
calculation was repeated. However, the calculation conforms to the “Markov property” in the sense that
the calculation for SNP number x+1 depends on the result for SNP x, but not on any of the more previous
ones. Hence the calculation can be done stepwise, holding track of the different haplotypes until the
current SNP. It turned out that an indexation of haplotypes is feasible that requires merely one array of
integer numbers with a size equal to the amount of sequences, hence negligible memory space.
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a b s t r a c t

Tests of the neutral evolution hypothesis are usually built on the standard null model which assumes that
mutations are neutral and the population size remains constant over time. However, it is unclear how
such tests are affected if the last assumption is dropped. Here, we extend the unifying framework for tests
based on the site frequency spectrum, introduced byAchaz and Ferretti, to populations of varying size. Key
ingredients are the first two moments of the site frequency spectrum. We show how these moments can
be computed analytically if a population has experienced two instantaneous size changes in the past. We
apply our method to data from ten human populations gathered in the 1000 genomes project, estimate
their demographies and define demography-adjusted versions of Tajima’s D, Fay & Wu’s H , and Zeng’s
E. Our results show that demography-adjusted test statistics facilitate the direct comparison between
populations and that most of the differences among populations seen in the original unadjusted tests can
be explained by their underlying demographies. Upon carrying out whole-genome screens for deviations
from neutrality, we identify candidate regions of recent positive selection. We provide track files with
values of the adjusted and unadjusted tests for upload to the UCSC genome browser.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In natural populations, genetic diversity is shaped not only by
population genetic forces such as drift and natural selection, but
also by geographic structure and demographic history. In order to
identify genome regions affected by natural selection many sta-
tistical tests of neutrality have been designed in the past. Typi-
cally, they are based on properties of the site frequency spectrum
(SFS) (e.g. Tajima’s D Tajima, 1989a) or of the haplotype structure
(e.g., EHH Sabeti et al., 2002, and their various derivatives) and in
numerous studies they have been applied to the human genome
(Akey et al., 2004; Stajich and Hahn, 2005; Carlson et al., 2005;
Nielsen et al., 2005; Voight et al., 2006; Grossman et al., 2013). One
of the main challenges in interpreting the results of such scans is

∗ Corresponding author at: Department of Physics, University of Gothenburg, SE-
412 96 Gothenburg, Sweden.

E-mail address: Bernhard.Mehlig@physics.gu.se (B. Mehlig).
1 These authors have equally contributed to this work.

to distinguish between the effects of selection and of the underly-
ing unknown demography upon genetic variation. Indeed, tests of
neutrality are usually built on two null assumptions, neutrality of
mutations and constancy of population size. When empirical data
from only a few genomic regions are available, the quantiles of test
statistics serve as a basis for detecting deviations from ‘‘neutrality’’.
However, if the assumption of constant population size is false,
both mean and variance of the test distributions can markedly dif-
fer from the theoretical expectations, even ifmutations are neutral.
Thus, the quantiles of the null distributions do not contain enough
information to decide which of the two assumptions (or both)
are violated. However, it is well recognised (see Akey et al., 2004
and references therein) that the effects of demographic history are
visible on a genome-wide scale while those of natural selection
are expected to be local. Hence, assuming that most of genome-
wide genetic variation is neutral, the empirical test distributions
should be mainly shaped by demographic history, and distortions
due to selection can be ignored. Therefore, a number of authors
(Stajich and Hahn, 2005; Carlson et al., 2005; Nielsen et al., 2005;
Voight et al., 2006; Grossman et al., 2013) encouraged the use of

http://dx.doi.org/10.1016/j.tpb.2014.05.002
0040-5809/© 2014 Elsevier Inc. All rights reserved.
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empirical distributions from whole-genome data as a background
against which to search for local deviations from neutrality. But,
as pointed out by Marth et al. (2004) (see also references therein),
it is not clear what the percentage of genome regions targeted by
selection is, and thus it is impossible to quantify to which extent
they distort the empirical whole-genome distributions. Moreover,
the variance of the empirical distribution depends strongly on the
underlying demography, and it is thus very difficult to quantify and
compare the amount of deviation from neutrality of a given region
between populations with different demographies.

In this study we show that such a comparison is possible and
meaningful, provided the demography, estimated from genome-
wide single nucleotide polymorphisms, is integrated into SFS-
based tests, such as Tajima’s D, Fay and Wu’s H (Fay and Wu,
2000), and Zeng’s E (Zeng et al., 2006).We call thesemodified tests
demography-adjusted.

One method to estimate the demography of a given popula-
tion is based on a maximum likelihood (ML) analysis applied to
the spectrum of intergenic, physically distant SNPs (Nielsen, 2000;
Adams and Hudson, 2004; Marth et al., 2004). We use coales-
cent simulations to analyse the performance of ML demography
estimation in dependence on the number of SNPs used for the
inference. Our analysis is focused on a piecewise constant
population-size model involving at most two instantaneous
population-size changes. Such amodel was used (Adams and Hud-
son, 2004; Marth et al., 2004; Stajich and Hahn, 2005) to capture
the main events of the human out-of-Africa expansion (Cavalli-
Sforza and Feldman, 2003; Ramachandran et al., 2005; Liu et al.,
2006; Tanabe et al., 2010; Eriksson et al., 2012).

To be able to define demography-adjusted tests, we derive
analytical expressions for the first and second moments of the
site frequency spectrum under the demographic model. For an
idealised population of constant size (‘‘Wright–Fisher-model’’) our
adjusted tests are identical to the original (unadjusted) ones.

We apply both unadjusted and adjusted tests to 10 popu-
lations from the 1000 genomes project (McVean et al., 2012),
version 3, released April 30th, 2012. We find that the empiri-
cal distributions of unadjusted tests substantially differ between
different populations,whereas the distributions of the correspond-
ing demography-adjusted tests are very similar between differ-
ent populations. This suggests that differences in the empirical
distributions of the unadjusted tests are mainly caused by the
differences in the underlying demographies. Our results further
show that demography adjustment is reflected in an affine linear
transformation of the test statistics. Therefore, the identification of
regions under selection by means of empirical quantiles is not af-
fected by the adjustment. However, by correcting for demographic
effects, the demography-adjusted tests allow one to compare the
extent of deviation from neutrality between different populations.
For the unadjusted tests such a comparison is ill defined. We pro-
vide unadjusted and adjusted test values as BED-files formatted for
upload to the UCSC genome browser.

2. Materials and methods

2.1. Demography-adjusted tests of neutrality

Tajima (1989a) introduced a test of neutrality comparing two
unbiased estimators of the scaledmutation rate θ = 4µLN , with N
denoting the diploid population size, µ the mutation rate per site,
chromosome, generation, and L the number of sites in the genomic
sequence. One estimator in Tajima’s D test, denoted by θ̂S below,
is based on the total number of segregating sites, S, and the other,
denoted by θ̂Π below, is based on the average number of pairwise
differences, Π . If mutations are neutral, and the population size

constant, Tajima (1989a) showed that the estimators θ̂S , and θ̂Π ,
defined as

θ̂S =
S
an

, with an =

n−1
i=1

1
i
, and θ̂Π = Π, (1)

have the same expected values, that is, ⟨θ̂S⟩ = ⟨θ̂Π ⟩ = θ . Tajima’s
D test compares these two estimators, and it is defined as (Tajima,
1989a):

D =
Π −

1
an
S

Var

Π −

1
an
S
 . (2)

As shown by Achaz (2009), the numerator of Eq. (2) can be written
in terms of the site frequency spectrum, ξi (i = 1, . . . , n − 1), as

Π −
1
an

S =

n−1
i=1

(ωΠ
i − ωS

i ) i ξi, (3)

with weightings ωΠ
i , ωS

i (i = 1, . . . , n − 1) which satisfyn−1
i=1 ωΠ

i =
n−1

i=1 ωS
i = 1, and consequently

n−1
i=1 ωΠ

i −ωS
i = 0.

These weightings are listed (up to normalisation) in Table 1 of Ac-
haz (2009). Using Eq. (3) it is straightforward to show that in the
constant population-size case the expected value of the numera-
tor of Eq. (2) is equal to zero, because in this case it holds that
⟨ξi⟩ = θ/i (Fu, 1995). However, this does not hold for an arbi-
trary demography where in general ⟨ξi⟩ ≠ θ/i. As a result, devi-
ations from ‘‘neutrality’’ captured by Tajima’s D (given by Eq. (2))
are caused not only bymutations that are targeted by selection, but
also by a varying population-size history. Therefore, the underlying
demography needs to be integrated into the estimators (and hence
into the test). A method to do this is explained next.

Following the notation introduced by Achaz (2009) and Ferretti
et al. (2010), we write the neutral site frequency spectrum
obtained under the actual population demographic history (null
demography) in the form ⟨ξi⟩ = ξ 0

i θ , where ξ 0
i = ⟨ξi⟩|θ=1 is equal

to one half of the expected total branch length of lineages with i
leaves in a gene genealogical tree. The value of ξ 0

i depends on the
sample size n and the parameters of the demography, but not on
θ . It follows that in a sample of size n, the spectrum provides n− 1
unbiased estimators θ̂ (i)

= ξi/ξ
0
i . In fact, any linear combination

of θ̂ (i), with weightings ω̃1, . . . , ω̃n−1, can be used as an estimator
of θ :

θ̂ω̃ = cω̃
n−1
i=1

ω̃iθ̂
(i). (4)

Here ω̃ in the subscript denotes a set of weights ω̃i (i = 1, . . . , n−

1), and cω̃ = (
n−1

i=1 ω̃i)
−1 is the corresponding normalisation

coefficient. This allows us to re-define the unbiased estimators of
θ based on Π and S (see Eq. (1)) to take into account a given null
demography as follows

θ̂Π = cΠΠ = cΠ

n−1
i=1

ω̃Π
i θ̂ (i), and

θ̂S = cS
S
an

= cS
n−1
i=1

ω̃S
i θ̂

(i),

(5)

with the normalisation constants cΠ = (
n−1

i=1 ω̃Π
i )−1, and cS =

(
n−1

i=1 ω̃S
i )

−1, and weights ω̃Π
i = ωΠ

i i ξ 0
i , and ω̃S

i = ωS
i i ξ

0
i .

Here ωΠ
i , and ωS

i are the weights when the null demography
corresponds to the constant population size. Using θ̂Π , and θ̂S given
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in Eq. (5), we define the demography-adjusted Tajima’s D as (cf.
Zivkovic and Wiehe, 2008)

D =
cΠΠ − cS S

an
Var


cΠΠ − cS S

an

 . (6)

When mutations are neutral, the expected value of the numerator
of Eq. (6) is equal to zero under a given null demography. We
note that demography adjustment of any test based on the site
frequency spectrum (e.g. Fu and Li, 1993b, Fay andWu, 2000, Zeng
et al., 2006, Achaz, 2008) can be done in a similar fashion (by
first multiplying the weights of the unadjusted estimators with iξ 0

i
and then correctly normalising them). In fact, with Ωi denoting
the difference between the ith normalised weights of the two
estimators which define a given test (e.g. for Tajima’s D it holds
Ωi = cΠ ω̃Π

i − cSω̃S
i ) the demography-adjusted tests based on the

site frequency spectrum, denoted by TΩ below, can be written in
vector notation Ferretti et al. (2010, Eq. (12)) as

TΩ =

n−1
i=1

Ωiθ̂
(i)

Var
n−1
i=1

Ωiθ̂ (i)
 =

n−1
i=1

Ωi
ξi
ξ0i

Var
n−1
i=1

Ωi
ξi
ξ0i


=

� · 2̂
Var

� · 2̂

 . (7)

Here � · 2̂ ≡ �T2̂ denotes the scalar product of the vectors
� = (Ω1, . . . , Ωn−1)

T, and 2̂ = (θ̂ (1), . . . , θ̂ (n−1))T. The denomi-
nator in Eq. (7) for constant population size is given byAchaz (2009,
his Eq. (9)). For populations of varying size, we obtain (see Ap-
pendix A):

Var
n−1

i=1

Ωiθ̂
(i)


= θ

n−1
i=1

Ω2
i

ξ 0
i

+ θ2
n−1
i,j=1

Ωi

ξ 0
i

σ 0
ij

Ωj

ξ 0
j

, (8)

where σ 0
ij = Cov(ξi, ξj)|θ=1 for i ≠ j, and σ 0

ii = (Var(ξi)−⟨ξi⟩)|θ=1,
as defined by Fu (1995). Note that, according to its definition, σ 0

ij
does not depend on θ . In the constant population-size case, it is
a function of sample size n (see Fu, 1995), and for a non-constant
demography it is a function of n and of the parameters of the de-
mography.

As Eq. (8) shows, estimates of θ and θ2 are needed to calculate
the variance. For populations of constant size, Tajima (1989a) used
θ̂S =

1n−1
k=1

1
k
S. As explained above, for populations of varying size

θ̂S satisfies θ̂S = cS
n−1

i=1 ω̃S
i θ̂

(i)
=

1n−1
i=1 ξ0i

S. Based on θ̂S , an

unbiased estimator of the second moment of θ is (see Appendix A)

θ2
S =

θ̂2
S − ynθ̂S
1 + zn

, with yn =


n−1
i=1

ξ 0
i

−1

,

and zn =


n−1
i,j=1

σ 0
ij


n−1
i=1

ξ 0
i

−2

. (9)

For populations of constant size, θ2
S reduces to Eq. (34) in Tajima

(1989a) since, in this case, yn and zn are given by

yn =


n−1
i=1

1
i

−1

, and zn =

n−1
i=1

1
i2

n−1
i=1

1
i

−2
. (10)

It is known that when recombination is neglected, estimation
of θ by θ̂S in the constant population-size case is efficient (i.e.

Fig. 1. Demographic model. Present population size is N1 . In the past, two
population-size changes occurred: one at T1 generations ago from N1 to N2 and
another one T1 + T2 generations ago from N2 to N3 .

the estimator has minimal variance) for small values of θ (Fu
and Li, 1993a). Conversely, for high values of θ (long sequences),
the variance of the estimator θ̂S decreases as the value of
recombination rate along sequences increases (Fu, 1994). One can
show that this holds for our extended version of θ̂S as well. We
note that it is common practise to apply tests, such as Tajima’sD, to
recombining sequences (Akey et al., 2004; Stajich and Hahn, 2005;
Carlson et al., 2005) although in their derivation recombination is
neglected.

Our adjusted tests are identical to the unadjusted ones if
population size is constant. In this case, expressions for ξ 0

i and σ 0
ij

can be written in closed form and are given by Fu (1995). No such
analytical expressions are known in general for varying population
sizes. NawaandTajima (2008) used computer simulations to assess
the first moments of the site frequency spectra under a past
population-size expansion, decline, or bottleneck, and Marth et al.
(2004) derived a corresponding analytical expression for ⟨ξi⟩ for
piecewise constant demographies. In this study, we use results of
Fu (1995) and of Eriksson et al. (2010) (see also Zivkovic andWiehe,
2008) to compute the secondmoments under a piecewise constant
demography shown in Fig. 1. The details of the computation are
given in Appendix B.

2.2. Demographic model

As explained in the introduction, we assume a piecewise con-
stant demography with two population-size changes in the past,
because this model was used (Adams and Hudson, 2004; Marth
et al., 2004; Stajich and Hahn, 2005) to capture the main events of
the human out-of-Africa expansion (Cavalli-Sforza and Feldman,
2003; Ramachandran et al., 2005; Liu et al., 2006; Tanabe et al.,
2010; Eriksson et al., 2012). Themodel is illustrated in Fig. 1.When
N2 < N1 and N2 < N3 the demography represents a population
bottleneck.

In the following we assume a well-mixed random mating
diploid population with non-overlapping generations. We also as-
sume that the population size is large so that gene genealogies can
be modelled by the standard coalescent (Kingman, 1982). Under
this model, there are four unknown parameters to be determined.
Upon scaling the parameters of the model (N1,N2,N3, T1, T2) by
the present population size N1, the unknown parameters are the
scaled population sizes xi = Ni/N1 (i = 2, 3), and the scaled times
ti (i = 1, 2) such that Ti = ⌊2tiN1⌋.

2.3. Estimating demographic parameters using the site frequency
spectrum

We use the analytical expressions for the moments of the
site frequency spectrum under a given demography to compute
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a

c

b

d

Fig. 2. (a), (c) Scaled folded site frequency spectra computed analytically. The spectra are scaled so that, in the constant population-size case, one obtains a constant equal to
1/⌊n/2⌋ (shown by dashed lines). Analytical spectra corresponding to the actual underlying demographies (shown by black lines in panels b and d, respectively) are shown
by black lines. The best-fitted spectra estimated using 104 SNPs are shown by blue crosses, green crosses show the best-fitted spectra estimated using 105 SNPs, and red
crosses show the best-fitted spectra estimated using 106 SNPs. (b) Actual underlying demography (black line) for the spectrum shown in a by a black line (recent bottleneck).
(d) Actual demography (black line) for the spectrum shown in c by a black line (past population-size expansion, followed by a recent population-size decline). In b and d the
maximum likelihood histories estimated using 104 SNPs, 105 SNPs, and 106 SNPs are shown by blue, green, and red lines, respectively. The population size is scaled by N1 ,
and the time is scaled by 2N1 . Sample size used: n = 60. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

ML estimates of the parameters of our demographic model. We
follow a similar approach as described in Adams and Hudson
(2004). We calculate the expected spectrum for a large set of
plausible parameters and choose the parameters with highest
likelihood, given the data. If SNPs are assumed to be uncorrelated,
the spectrum counts ξ1, . . . , ξn−1 are multinomially distributed
(conditional on the total number of SNPs, S), with the parameters
given by the expected values of ξi (Nielsen, 2000; Adams and
Hudson, 2004).

Similarly, the probability to observe the folded site frequency
spectrum η1, . . . , η⌊n/2⌋ in a sample of S =

⌊n/2⌋
i=1 ηi polymorphic

sites is multinomial with

Prob(η1, η2, . . . , η⌊n/2⌋|S) =


S

η1, η2, . . . , η⌊n/2⌋

 ⌊n/2⌋
i=1

pηi
i . (11)

In this case, the parameters pi are given by:

pi =
⟨ηi⟩

⌊n/2⌋
j=1

⟨ηj⟩

. (12)

As mentioned in the previous subsection, the expression for ⟨ξi⟩
(and thus for ⟨ηi⟩) under the model shown in Fig. 1 is given in
Appendix B (see Eqs. (B.4)–(B.6)).

It is known that different demographies can lead to exactly
the same spectra (Myers et al., 2008). Hence, cases exist in
which it is difficult to distinguish the underlying demographies
by their spectra. In order to obtain an estimate for the minimum
number of SNPs necessary for reliable inference, we use coalescent
simulations to generate spectra under two different demographic
histories with two population-size changes in the past (see Fig. 2).
These idealised demographies roughly represent the populations
CEU and YRI. As an input for the maximum-likelihood parameter
estimation, we use folded site frequency spectra (which do not
require inference of the ancestral state) because assignment of

the ancestral state via an outgroup can be erroneous, and this can
substantially bias demography estimation. We simulate 81 · 106

independent gene genealogies with n = 60, and θ = 0.01.
For such a small value of θ , genealogies rarely contain more than
onemutation. For each demography, we determine three resulting
spectra, one containing 104 SNPs, one with 105 SNPs, and one
with 106 SNPs (see circles in Fig. S1 in Supplementary material).
To obtain the spectra in a way consistent with practical data
sampling, we randomly select exactly one SNP from randomly
chosen genealogies having mutations.

Using such spectra, we compute the likelihood for our model
parameters x2, x3, t1, and t2. The base-10 logarithms of candidate
population sizes x2, and x3 are taken from a gridwithin the interval
[−2, 2], and the base-10 logarithms of candidate times t1, and t2
are taken from a grid within the interval [−3, 0] (mesh size 0.025).
Thus, for each population we test in total 1212

· 1612
≈ 3.8 × 108

combinations of the four unknown demographic parameters. Note
that the ML-estimation does not depend on the parameter θ , as
Eq. (12) shows. We also investigate with simulations whether the
adjusted Tajima’s D can be distorted if inference is based on a (too)
small number of SNPs.

2.4. Whole-genome scanswith demography-adjusted tests of neutral-
ity

We apply the above ML-procedure to spectra of ten human
populations (see Table 1). Data are taken from the 1000 genomes
project (McVean et al., 2012), version 3, rel. April 30th, 2012.
Variants are filtered by variant type ‘‘SNP’’ (i.e. indels excluded).
From each population, four (possibly overlapping) subsamples of
30 individuals are drawn. For demography estimation we use only
SNPs from intergenic regions.

As explained above, in order to use the analytical formulae for
parameter estimation, SNPs must be uncorrelated, i.e. unlinked.
On the other hand, a large amount of SNPs is necessary to render
the demography estimation reliable. As a compromise we collect
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Table 1
Populations and the corresponding number of individuals sampled.
Source: Data from the 1000 genomes project (McVean et al., 2012).

Population Sample

CEU CEPH individuals 85
FIN Finnish in Finland 93
GBR British from England and Scotland 89
TSI Toscani in Italia 98
CHB Han Chinese in Beijing, China 97
CHS Han Chinese South, China 100
JPT Japanese in Tokyo, Japan 89
ASW African ancestry in Southwest USA 61
LWK Luhya in Webuye, Kenya 97
YRI Yoruba in Ibadan, Nigeria 88

SNPs in the following way: from each of the 4 subsamples of 30
individuals we draw randomly 104 SNPs with the condition that
the minimal physical distance between any pair of SNPs is 5 · 104

base pairs (50 kb). This is repeated 10 times for each subsample
to obtain in total 40 random spectra, representing 4 · 105 SNPs.
We perform the ML-estimation for each population by using the
average of these 40 spectra.

The estimated maximum likelihood demographies allow us
to obtain demography-adjusted versions of Tajima’s D, Fay and
Wu’s H and Zeng’s E. We perform whole-genome scans with
both demography-adjusted and unadjusted versions of these tests,
using the method of Carlson et al. (2005). We calculate the test
statistics in a sliding window of size 100 kb and step size 10 kb.
Windows containing less than 5 SNPs are ignored. This way, we
collect about 280,000 data points. For the tests of Fay andWu, and
of Zeng it is necessary to know the ancestral allele. This information
is obtained through a 6-way alignment of humans and five other
primates and is included into the 1000 genomes data. In order to
detect putative regions under selection, we determine so-called
‘‘contiguous regions of Tajima’s D reduction (CRTR)’’. As in Carlson
et al. (2005) we define them as a genomic region of at least 20
consecutivewindows, of which at least 75% have a Tajima’sD value
in the lower 1% quantile.

3. Results

3.1. Test of the maximum likelihood procedure on simulated data

The results of the demography estimation based on simulated
data under two reference demographies are shown in Fig. 2.
As explained in Section 2, one demography corresponds to a
recent bottleneck (black line in panel b) and the other to a
past population-size expansion followed by a recent decline
(black line in panel d). The corresponding scaled folded spectra
computed analytically are shown by black lines in panels a, and
c, respectively. The spectra are scaled so that in the constant
population-size case one obtains a constant value (independent of
i) equal to 1/⌊n/2⌋ (dashed lines in Fig. 2(a), (c)). The demography
estimation is based on the folded spectra obtained using coalescent
simulations with 104, or 105, or 106 SNPs (see blue, green, and red
circles in Fig. S1(b), (d) in Supplementary material). As expected,
by comparing the actual underlying histories to the estimated
ones (see Fig. 2(b), and (d)), we find that by increasing the
number of SNPs, the deviation of the parameters corresponding
to the maximum likelihood demography from those of the actual
demography decreases. In all cases, the parameter with largest
deviation from its actual value is t1, because both reference
demographies assume a very recent population-size change. In
particular, the demographies estimated using 104 SNPs deviate
strongly from the actual ones. Indeed, in this case the estimated
time t1 deviates from its actual value by 650% (Fig. 2(b)), or by
695% (Fig. 2(d)). However, by using 105 SNPs, the deviation of

this parameter is drastically reduced to 44% (Fig. 2(b)), or 41%
(Fig. 2(d)). Therefore, one can conclude that 104 SNPs are not
enough for a reliable demography estimation. In contrast, the
described procedure works well when the estimation is based on
spectra with at least 105 SNPs.

In order to further assess the consistency of our demography es-
timation, we compute themarginal probability distributions of the
four unknown parameters under the estimations based on 104, or
105, or 106 SNPs (see Figs. S2–S5). These figures show a comparison
of the results obtained under the estimation based on folded spec-
tra (panels c and d) with those based on unfolded spectra (panels
a and b). As can be seen from the figures, the estimation based on
104 SNPs usually results in long-tailed distributions, and as a con-
sequence, the mean value of a given parameter (weighted by the
likelihoods of the candidate values) is substantially shifted from
its actual value. In addition, the marginal probability distribution
in this case usually has a maximum which is substantially shifted
from the actual value (or the distribution is bimodal). However,
by increasing the number of SNPs the marginal distributions be-
come narrower and their maxima approach the corresponding ac-
tual values. Our results suggest that at least about 105 SNPs are
needed to obtain reliable estimation results. Indeed, as Figs. S2–S5
show, the marginal probability distributions in this case (and for
106 SNPs) are substantially narrower (short-tailed, except in Figs.
S3(c) and S5(c)) and their mean and maxima are centered suffi-
ciently close to the actual values of the corresponding parameters.

Figs. S2–S5 also show that the marginal probability distribu-
tions of the parameters are narrower when the estimation is based
on unfolded than on folded spectra, suggesting that the proce-
dure is more stable in the former than in the latter case. How-
ever, information about the ancestral state in real data is prone to
mis-specifications. An error in the estimation caused due to mis-
specifications may be larger than the improvement due to unfold-
ing of the spectra.

3.2. Neutrality tests adjusted to the estimated demographies of
simulated data

The demographic parameters estimated using the maximum
likelihoodprocedure serve as an input for computing demography-
adjusted tests of neutrality (as described in Section 2). In Fig. 3
we compare the distribution of Tajima’s D adjusted to the actual
demography, and that adjusted to the estimated demography. It
can be seen that the test adjusted to the estimated demography
using 104 SNPs (blue circles) deviates from the test adjusted to the
actual demography (grey region) especially in the tails. By contrast,
the quantiles of the test distribution adjusted to the demography
estimated with 105 SNPs are similar to the quantiles of the
distribution of the test adjusted to the actual demography (see
also Table 2 which lists the first four moments of the distributions
obtained). Note that these results further support our finding that
at least 105 SNPs are needed for reliable demography estimation
and consequently reliable adjustment of the tests. In addition,
Table 2 compares the moments of the distributions adjusted to
the actual demographies to those of the null distribution of the
original Tajima’s D (under the constant population size). As this
table shows, the first two moments of our adjusted tests are close
to those of the null distribution of the original test. However, slight
deviations appear in higher moments of the distributions, which
was already observed in Zivkovic and Wiehe (2008).

3.3. Estimated human demographies

We applied our maximum likelihood procedure to the human
genome data. The spectra used for the estimation contain 4 ·

105 SNPs (see Section 2). Our demography estimation shows
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a b

c d

Fig. 3. (a), (b) Numerically computed distributions of Tajima’s D for demographic histories shown in Fig. 2(b). Grey region shows the distribution of Tajima’s D adjusted
to the actual underlying demography, black circles show the unadjusted test, and coloured circles show the test adjusted to the maximum likelihood demographies (for
a given number of SNPs). Results of the estimation based on 104 SNPs are shown in panel a, and on 105 SNPs in panel b. (c)–(d) Same as in panels a, b, respectively, but
for demographic histories shown in Fig. 2(d). Remaining parameters used: sample size n = 60, scaled mutation rate θ = 100. Number of independent gene genealogies
simulated: 106 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Moments of the curves in Fig. 3, as well as the moments of the null distribution of the original Tajima’s D.

Panel Mean Variance Skewness Kurtosis

Unadjusted a, b 0.20 1.25 0.23 2.58

Adjusted to the ML demography a −0.18 0.91 0.23 2.57
b −0.13 0.76 0.23 2.57

Adjusted to the actual demography a, b −0.15 0.76 0.23 2.57

Unadjusted c, d −0.41 0.43 0.56 3.46

Adjusted to the ML demography c −0.02 0.71 0.56 3.47
d 0.00 0.88 0.56 3.47

Adjusted to the actual demography c, d −0.07 0.82 0.57 3.47

Original null −0.11 0.77 0.40 2.97

(see Fig. 4 and Table S1 in Supplementary material) that the
frequency spectra of the non-African populations are consistent
with a population bottleneck. By contrast, the spectrum of the
African population ASW is consistent with two population-size
expansions, and those of LWK and YRI are consistent with an
ancestral population-size expansion followed by a recent decline
(‘inverse bottleneck’).

3.4. Neutrality tests adjusted to the estimated human demographies

We show in Fig. 5 (upper panels) genome-wide values of
Tajima’s D, Fay and Wu’s H , and Zeng’s E for Europeans (CEU),
Asians (CHB) and Africans (YRI) from the 1000 genomes project
(McVean et al., 2012). As Fig. 5 (upper panels) shows, the empirical
distributions of the tests differ substantially between different
populations. The empirical distributions of demography-adjusted
tests are, however, similar between different populations (see
Fig. 5, lower panels), and hence only demography-adjusted tests
make a reasonable comparison between populations possible. This
further suggests that most of the differences in the distributions of
unadjusted tests are due to the distinct underlying demographies.

Indeed, the inclusion of demography into the tests essentially
results in an affine linear transformation of the empirical test
values (coefficient of determination R2 > 0.999). Note that the
Eq. (8) for a given test depends only (via θ ) on the number of
segregating sites S. For spectra with the same S unadjusted and

Table 3
Mean values of empirical test distributions shown in Fig. 5.

Population Tajima’s D Fay and Wu’s H Zeng’s E

Unadjusted tests
CEU 0.26 −0.65 0.87
CHB 0.38 −0.83 1.14
YRI −0.44 −0.10 −0.31

Adjusted tests
CEU −0.09 −0.31 0.25
CHB −0.09 −0.31 0.26
YRI −0.12 −0.45 0.29

adjusted test values differ only in the linear weightings of the
two θ-estimators (and the different constant in the denominator).
The transformation of spectra with vastly different numbers of
segregating sites can in principle show deviations from linearity,
in particular for small absolute values of S, however these are
negligible in comparison with our observed inner-population
variance (see below). In the human genome data, we found that
the value of θ (and consequently S) per window is relatively large
(θ > 50 for almost all windows). The observed scattering appears
to concern primarily windows containing very few SNPs which do
not yield extreme test values.

Table 3 shows that the mean values of adjusted Tajima’s D
correspond very well to those of the original test under standard
neutrality. The empirical distributions of the other two tests are not
centered at zero, due to their sensitivity to high-frequency derived
SNPs. These occur in excess, which is a known phenomenon. For
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Fig. 4. Estimated demographies for 10 human populations. Note that the demographies of LWK and YRI have identical shape (inverse bottleneck). However, in both cases
the population-size decline is so recent, that it cannot be seen on this scale. In each panel, the size is scaled by N1 , and time is scaled by 2N1 .

Fig. 5. Distribution of test values over all sliding windows. Top row: unadjusted tests. Bottom row: demography-adjusted tests.
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instance, Fig. 2(c) of McVean et al. (2012) shows that derived
alleles of very high frequency are found more than four times
as often as expected under neutrality. However, the most likely
cause is mis-assignment of the state of the ancestral allele. This
can have several reasons, e.g. polymorphisms in the outgroup
species or recurrent mutations. Hernandez et al. (2007) developed
a formula (and program) to correct for the latter effect. Upon
applying this procedure, we could explain part of the excess.
Another possible source of error is sequencing errors of fixed
derived alleles, appearing thus as very high frequency polymorphic
sites.

3.5. Identifying candidate regions of positive selection

We compared Tajima’s D between the different subsamples of
the same population and obtained a coefficient of determination
of R2

≈ 0.8 in all populations. For subsamples from different
populations, the highest correlation shows CHB with CHS (R2

≈

0.73), and CEUwithGBR (R2
≈ 0.71). The lowest correlation shows

LWK or YRI compared with the Asian populations (R2
≈ 0.1). Note

that the adjusted and unadjusted tests yield essentially the same
correlations, because they are linearly related (see above).

Concerning the contiguous regions of Tajima’s D reduction, we
find that they vary considerably among subsamples of the same
population. We therefore add a condition and require the test
statistic of a particular window to be in the 1%-quantile in each
of the four subsamples. From these windows we construct CRTRs
as described above. The additional constraint reduces the number
of CRTRs by more than 50%. For the populations CEU, CHB and YRI
the obtained regions are depicted in Fig. 6. We find 7 CRTRs for
population CEU, 10 for CHB and 8 for YRI, respectively. This differs
from the results by Carlson et al. (2005). Using the SNP array data
available at that time, they found 7 CRTRs for the African, 23 for
the European and 29 for the Chinese population samples, which
only partially overlap with ours. These differences are caused
most likely by the distinct population samples and by the more
exhaustive SNP setwhichweused. In the supplementwe list CRTRs
of all 10 populations analysed in the current study. The program
used to calculate the adjusted test statistics is available as C++
source code on http://ntx.sourceforge.net/ and tracks for the UCSC
browser containing test values (unadjusted as well as adjusted)
for all ten populations are available at http://jakob.genetik.uni-
koeln.de/data/.

4. Discussion and conclusions

It is common practise to use quantiles of empirical whole-
genome distributions of neutrality tests to detect regions under
selection. However, tests are usually defined using constant
population size as a null assumption, and it is presumed (but
not tested) that empirical whole-genome distributions are mainly
shaped by the underlying demography. Moreover, since the
variances of empirical distributions are strongly affected by the
underlying demography of an analysed population, it is very
difficult to quantify and compare deviations from neutrality at a
given genome region between different populations. In order to
solve these issues, we defined in this study demography-adjusted
tests of neutrality by directly integrating the effects of the actual
(or, in practise, estimated) demography into SFS-based tests. A
necessary step towards defining demography-adjusted tests is to
compute the first two moments of the SFS under the estimated
demography. In this study we derived exact analytical expressions
for these moments under a demographic model allowing for two
population-size changes, by combining the results of Fu (1995)

with those of Eriksson et al. (2010). Such a model is believed
to capture the essence (Adams and Hudson, 2004; Marth et al.,
2004; Stajich and Hahn, 2005) of the out-of-Africa expansion of
humans (Cavalli-Sforza and Feldman, 2003; Ramachandran et al.,
2005; Liu et al., 2006; Tanabe et al., 2010; Eriksson et al., 2012).
Note that our expressions for the first two moments of the SFS
are also helpful to find optimal tests of neutrality under piecewise
constant demographies (Ferretti et al., 2010). For populations of
constant size, our ‘adjusted’ tests are identical to the original
(unadjusted) ones. Our procedure generalises previous results
regarding demography-adjustment of Tajima’s D (Zivkovic and
Wiehe, 2008).

In order to estimate the demography of a given population, we
applied aMLprocedure to single nucleotide polymorphisms (SNPs)
sampled at physically distant sites, which are largely independent
from each other, as proposed by Nielsen (2000). Because of
the independence of SNPs used for demography estimation,
the bins of the SFS are populated according to a multinomial
distribution, which simplifies the mathematical treatment. To test
how sensitive ML-estimates are with respect to the number of
SNPs used for estimation, we performed a series of computer
experiments. We fitted folded site frequency spectra simulated
under two reference demographies, one a recent bottleneck, and
the other a past population-size expansion followed by a recent
decline. As expected, we found that ML-estimation of demography
is consistent: the estimated parameters converge to those of the
true demography with increasing number of SNPs. The spectrum
corresponding to the ML-demography is almost indistinguishable
from the spectrum corresponding to the actual underlying
demography if the estimation is based onmore than 100,000 SNPs.
We confirmed this finding for our two reference demographies
by comparing Tajima’s D adjusted to the actual underlying
demography with that adjusted to the ML-demography.

After confirming the validity of the ML-procedure, we applied
our demography-adjustment procedure to data from the 1000
genomes project (McVean et al., 2012). We sampled the folded
frequency spectra of ten human populations from physically dis-
tant, presumably neutral (Adams and Hudson, 2004), intergenic
regions in order to estimate the ML-parameters of the piecewise
constant demographic model allowing for population size param-
eters to change by at most two orders of magnitude (Marth et al.,
2004). The time parameters were allowed to vary by three orders
of magnitude (i.e. from −3 to 0 on logarithmic scale). The lower
bound for the times corresponds to 10 generations (about 200–250
years). This is about the minimum time to leave an imprint on the
frequency spectrum. The upper bound for the times was chosen
to correspond to the emergence of anatomically modern humans
about 200,000 years ago (Cavalli-Sforza and Feldman, 2003).

Our results are consistentwith the results of Adams andHudson
(2004) and of Marth et al. (2004): the ML-demographies of non-
African populations correspond to a bottleneck, and the ML-
demography of one of the sampled African populations (ASW)
corresponds to two subsequent population-size expansions. The
spectra of the remaining two African populations (LWK and
YRI) gave rise to demographies with a distant population-size
expansion followed by a population-size decline.

Myers et al. (2008) argued that inference of demography from
the frequency spectrum may not be possible at all, because very
different demographies can lead to the same frequency spectrum.
Still, we found the ML-parameter estimation to be consistent for
our simple demographic model, albeit sensitive to small changes
in the frequency spectrum. Notably, our calculations in Appendix B
show that the first two moments of the SFS under a bottleneck
depend both on the duration and the size of the bottleneck, and this
dependence cannot be expressed in terms of a single parameter
(duration divided by the size of the bottleneck).
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Fig. 6. Contiguous regions of Tajima’s D reduction (‘‘CRTR’’) from Carlson et al. (2005) compared with those derived from our demography-adjusted test. From above to
beneath: Carlson: African descent (grey); ASW (grey) and YRI (black); Carlson: European-descent (blue); CEU; Carlson: Chinese-descent (green); CHB. The regions found
by Carlson et al. have been translated from hg17 to hg19 coordinates. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

In order to detect regions under selection, we performed a
genome screen with three tests of neutrality. We found that the
empirical distributions of the adjusted tests are very similar to each
other, suggesting that the differences between the unadjusted em-
pirical distributions are mainly caused by the different demogra-
phies. The linearity of the transformation causes the empirical
quantiles of the adjusted tests to be shifts of the unadjusted ones.
Consequently, the candidate regions for selection do not change.

Neither unadjusted nor adjusted test statistics take recom-
bination into account. It is well-known that recombination de-
creases the variances of test distributions (Tajima, 1989a), but it
is unclear how heterogeneity of scaled recombination rates among
genomic regions and populations affects the linear relationship be-
tween demography-adjusted and unadjusted tests.

When we compared our Tajima’s D values with the ones
calculated from SNP array data by Carlson et al. (2005), we found
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only modest correlation (data not shown). As a consequence, the
candidate regions of selection show little overlap. One reason lies
in the different population samples. Another reason is the low
robustness of CRTRs, as defined by Carlson et al. (2005): ‘long
stretches of low Tajima’s D’ are easily disrupted if only a few
measurements within the stretch change. As a slight modification
of Carlson et al.’s definition, we required windows to belong to the
respective lower 1%-quantile in several subsamples of the same
population. This reduced considerably the number of candidate
regions, but made them more robust.

A somewhat complementary approach to allow for demog-
raphy in tests on the frequency spectrum was recently taken
by Ronen et al. (2013). They performed simulations of selective
sweeps including (a given) demography, and using machine learn-
ingmethods they generated weights (a coarser version of ourΩi’s)
to find a test with optimal power for the given evolutionary sce-
nario. In contrast, our strategy is to adjust existing tests by analyt-
ically integrating demographic effects.

In conclusion, the demography-adjusted tests introduced here
serve as a basis for disentangling the effects of selection from those
of demography, and they facilitate a direct comparison between
populations with different demographies. It is, however, not yet
clear if inhomogeneity of recombination rates along the genome
affects differently the distributions of adjusted and unadjusted
tests. This remains to be answered in future work.
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Appendix A. The denominator of Eq. (7)

The numerator of Eq. (7) depends on the first moment of the
spectrum under a given demography. The denominator of Eq. (7)
depends on the second moment. We find:
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Here one has σ 0
ij = Cov(ξi, ξj)|θ=1, for i ≠ j, and σ 0

ii = (Var(ξi) −

⟨ξi⟩)|θ=1. Eq. (A.1) corresponds to Eq. (8) given in the main text.
Note that for the constant population size one has ξ 0

i = 1/i, and
σ 0
ij is given by Fu (1995). Thus, Eq. (A.1) reduces to Eq. (9) in Achaz

(2009).

To evaluate Eq. (A.1) using the observed spectrum, one needs
an estimate of θ2. If θ̂ω =
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It follows that
⟨θ̂2

ω⟩ − yn⟨θ̂ω⟩ = θ2(1 + zn).

Solving the latter with respect to θ2 yields:

θ2
=

⟨θ̂2
ω⟩ − yn⟨θ̂ω⟩

1 + zn
.

Hence, as an estimator for θ2 we take

θ2
ω =

θ̂2
ω − ynθ̂ω

1 + zn
.

This expression corresponds to Eq. (9).

Appendix B. The first two moments of the site frequency
spectrum

Now, we compute the first two moments of the spectrum, ⟨ξi⟩
and ⟨ξiξj⟩. We consider a randomly mating diploid population
with varying population size and the infinite sites model with
mutation rate µ per generation per site. The scaled mutation rate
per sequence of length L is given by θ = 4µN1L, where N1 denotes
the present population size. We consider the spectrum for gene
genealogies of n individuals. Upon scaling time in units of 2N1
generations, we denote by τk the time interval during which gene
genealogies have exactly k ≤ n lineages.

The first two moments of the spectrum can then be expressed
as (Fu, 1995)
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where
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The probabilities pa(k, i;m, j), and pb(k, i;m, j) in Eq. (B.3) are
given by Fu (1995)
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for k = 2, and i + j = n.

In the limit θ → 0, Eq. (B.2) reduces to:

⟨ξ 2
i ⟩ =

θ

2
⟨ξi⟩, and ⟨ξiξj≠i⟩ = 0 for θ → 0.

In other words, in this limit the spectrum counts aremultinomially
distributed, as explained in Section 2.

For constant population size, it follows from Eq. (B.1) that
i⟨ξi⟩ = θ , independently of i. In contrast, for the demographic
history shown in Fig. 1, this is not true. Using the results of Eriksson
et al. (2010), in this case we find:
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Here, x2 = N2/N1, x3 = N3/N1, s2 = t2/x2, bm1 =
m1

2


, and cnkm1

is given by Eq. (11) in Eriksson et al. (2010). This result is consistent
with Eq. (1) in Marth et al. (2004), assuming M = 3 in the model
of Marth et al. (2004).

In what follows, we list our results for ⟨ξiξj⟩ under the demo-
graphic history shown in Fig. 1. We find:
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For the terms fm1,m2 in Eq. (B.7), we consider separately the cases
m1 ≠ m2, andm1 = m2. For the casem1 ≠ m2, we find
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For the casem1 = m2, we obtain:
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Eqs. (B.4)–(B.6) are used to find the demographic parameters that
correspond to empirical data in terms of the maximum likelihood
approach. Eqs. (B.7)–(B.12) are used to compute the tests of neu-
trality under the estimated demographies. The results are shown
in Results.

Appendix C. Supplementary material

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.tpb.2014.05.002.
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We introduce the conditional Site Frequency Spectrum (SFS) for a genomic region linked to a focal
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without recombination. Its relation with the expected SFS for two sites, 2-SFS, is discussed. These spectra
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SFS-based neutrality tests to a non-recombining region containing a neutral marker is presented.
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1. Introduction

One of the basic features that characterizes nucleotide poly-
morphisms is the Site Frequency Spectrum (SFS), that is the dis-
tribution of the mutation frequencies at each site. The SFS can be
computed either for the whole (large) population, assuming that
the frequency f is a continuous value in (0, 1) or for a sample of n
individuals, for which the frequency is a discrete variable f = k/n,
where k ∈ [1, n − 1]. Sites with alleles at frequency 0 or 1 are not
included in the SFS.

According to the standard neutral model of molecular evolu-
tion (Kimura, 1983), polymorphisms segregating in a population
eventually reach a mutation–drift equilibrium. In this model, the

* Corresponding author at: The Pirbright Institute, Woking, United Kingdom.
E-mail address: luca.ferretti@gmail.com (L. Ferretti).

1 These authors contributed equally.

expected neutral spectrum is proportional to the inverse of the
frequency (Wright, 1938; Ewens, 2012). Using coalescent the-
ory, Fu (1995) derived the mean and covariance matrix for each
component of the sample SFS by averaging coalescent tree real-
izations across the whole tree space. For a single realization of the
coalescent tree, results are different and depend on the realization;
for example, mutations of high frequencies can be present only for
highly unbalanced genealogies (Ferretti et al., 2017). The SFS was
also studied in scenarios including selection (Fay and Wu, 2000;
Kim and Stephan, 2002), demography (Griffiths and Tavaré, 1994;
Živković and Wiehe, 2008) or population structure (Alcala et al.,
2016).

Besides its general interest, the SFS has been used to de-
vise goodness-of-fit statistical tests to estimate the relevance of
the standard neutral model for an observed dataset. SFS-based
neutrality tests contrast estimations of the nucleotide variability
from different bins of the sample SFS (Tajima, 1989; Fu and Li,

https://doi.org/10.1016/j.tpb.2018.06.001
0040-5809/© 2018 Elsevier Inc. All rights reserved.
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1993; Achaz, 2009). It was shown that, once the SFS under an
alternative scenario (e.g. selection, demography or structure) is
known, the optimal test to reject the standard neutral model is
based on the difference between the standard neutral SFS and
the alternative scenario SFS (Ferretti et al., 2010). All these tests
assume complete linkage among variants in their null model.

Assuming independence between the sites, the observed SFS
can also be used to estimate model parameters. An interesting
recent approach is the estimation of piece-wise constant demog-
raphy from genomewide SFS (e.g. Liu and Fu, 2015). More sophisti-
catedmethods based on the expected SFS, such as Poisson Random
Field (Sawyer and Hartl, 1992; Bustamante et al., 2001, 2002) and
Composite Likelihood approaches (e.g., Kim and Stephan, 2002; Li
and Stephan, 2005; Kim and Nielsen, 2004; Nielsen et al., 2005),
have also played an important role in the detection of events of
selection across regions of the genome. However, the assumption
of linkage equilibrium is often violated in genetic data. In fact,
while the average spectrum is insensitive to recombination, the
knowledge on linked variants affects the distribution of summary
statistics, therefore the spread (and possibly the mean) of the
estimated parameters (Hudson et al., 1990; Thornton, 2005). For
this reason, simulations of the evolution of linked sequences are
required for an accurate estimation of the statistical support for
different models (Gutenkunst et al., 2009).

The joint SFS for multiple sites has been the subject of long-
standing investigations. The simplest spectrum for multiple sites
is the ‘‘two-locus frequency spectrum’’ (Hudson, 2001), which we
name the ‘‘two-Sites Frequency Spectrum’’ or 2-SFS. Assuming
independence between the sites (i.e. free recombination), it simply
reduces to the random association between two single-sites spec-
tra (1-SFS). For intermediate recombination, a recursion solvable
for small sample size has been provided (Golding, 1984; Ethier
and Griffiths, 1990) as well as a numerical solution relying on
simulations (Hudson, 2001). Even without recombination, finding
an analytical expression for the spectrumhas proven to be difficult.

There is a close relation between the m-SFS (the joint SFS of m
sites) and the multi-allelic spectrum of a single locus (defined as a
sequence with one or more sites). Under the infinite-sites model,
sites are assumed to have at most two alleles as new mutations
occur exclusively at non-polymorphic sites. At the locus scale, each
haplotype (the specific combination of the alleles carried at each
locus) can be interpreted as a single allele at a multi-allelic locus.
In the absence of recombination, each pointmutation either leaves
the number of different haplotypes unchanged or generates one
new haplotype. Therefore, at least conceptually, the SFS form non-
recombinant biallelic sites at low mutation rate is closely related
to the spectrum of m + 1 alleles in a multi-allelic locus. Indeed,
it is possible to retrieve the latter from the former by consider-
ing the m + 1 alleles that result from the m polymorphic sites.
However, the m-SFS contains extra-information on the different
couplings between sites that is not available in the multi-allelic
spectrum.

For an infinite population, the multi-alleles single-locus spec-
trum is the solution of a multiallelic diffusion equation (Ewens,
2012, section 5.10). Polynomial expansions were proposed to
solve the diffusion equations for the SFS of an infinite popula-
tion (Kimura, 1956; Littler and Fackerell, 1975; Griffiths, 1979),
as well as moment-based approaches (Hobolth and Siren, 2016).
Finally, a polynomial expansion of the 2-SFS has been found for
two sites without recombination and with general selection coef-
ficients (Xie, 2011). However, the reported solution is an infinite
series and is in sharp contrastwith the simplicity of the solution for
a single neutral site: E[ξ (f )] = θ/f . Furthermore, no closed form
was provided for the 2-SFS of a sample.

Using a coalescent framework, the probability and size of two
nested mutations were expressed by Hobolth and Wiuf (2009) as

sums of binomial coefficients. Their formulae can be rewritten as
an expected SFS in terms of a finite series. However their con-
ditioning on exactly two nested mutations skews the spectrum
and simulations show that their result is valid only for Lθ ≪

1. Interesting analytical results on the spectrum of tri-allelic loci
and recurrent mutations were obtained by Jenkins, Song and col-
laborators (Jenkins and Song, 2011; Jenkins et al., 2014) for the
Kingman coalescent and general allelic transition matrices. More
recently, Sargsyan (2015) generalized the result of Hobolth and
Wiuf (2009) by conditioning on any two mutations (nested or
not) and extending it to populations of variable size. Moreover, he
clarified the notion and classification of the 2-SFS.

In this work, we review and present in its simplest possible
form the exact solution for the expectation of the neutral sample
2-SFS without recombination, then we extend it to a closed-form
solution for the continuous population 2-SFS. The solution for
a finite sample was derived previously in many disguises in a
coalescent framework (Fu, 1995; Jenkins and Song, 2011; Ferretti
et al., 2012; Sargsyan, 2015) and its extrapolation to the limit of
infinite sample sizes yields the continuous spectrum, which is a
solution of the multi-allelic Kolmogorov equations. Furthermore,
we derive the expected 1-SFS of sites that are completely linked
to a focal mutation of known frequency. This spectrum has several
potential applications. In section S1 of the SupplementaryMaterial
we extend the formulae for the continuous 2-SFS to closed expres-
sions for the multi-allelic spectrum of a locus with three alleles.

Finally, as an application, we present a recipe to build a class of
SFS-based neutrality tests for sequences containing a known neu-
tral marker of given frequency. This is a typical scenario when the
marker (and the region around it) has beendetected independently
as an outlier in genome-wide association studies or population
differentiation studies with SNP arrays. As far as we know, this is
the first proper adaptation of Tajima’sD and similar statistical tests
to this kind of sequence data.

Model definition and notation

We consider a population of N haploid individuals without
recombination. All subsequent results can be applied to diploids,
provided that 2N is used instead of N , and to other cases by sub-
stituting the appropriate effective population size.We denote byµ

the mutation rate per site and by θ = 2Nµ the population-scaled
mutation rate per site. We work in the infinite-sites approxima-
tion, that is valid in the limit of small mutation rates θ ≪ 1. More
precisely, our results are derived in the limit θ → 0 with fixed
non-zero θL, where L is the length of the sequence. The expected
value E[.] denotes the expectation with respect to the realizations
of the evolutionary process for the sequences in the sample or in
the whole population. We use mutation as a synonym for derived
allele.

Connection between sample and population SFS

Wedenote by ξ (f ) the density ofmutations at frequency f in the
whole population and by ξk the number of mutations at frequency
k/n in a sample of size n. Importantly, in both cases f or k refer to
the frequency of the mutation, i.e. of the derived allele, and thus ξ

corresponds to the unfolded SFS.
The two spectra (sample and population) are related. Assuming

that a mutation has frequency f in the population, the probability
of having k mutant alleles in a random sample of size n is simply
given by the Binomial

( n
k

)
f k(1 − f )n−k. As the expected density of

mutations at fixed frequency f in the population is given by E[ξ (f )],
one can easily derive the sample frequency from the population
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frequency using the following sampling formula:

E[ξk] =

∫ 1− 1
N

1
N

(n
k

)
f k(1 − f )n−k E[ξ (f )] df (1)

assuming that n ≪ N .
Conversely, the population SFS can be derived from the sample

SFS using the limit of large sample size n → ∞. For a sample
of n individuals, the interval between the frequency bins is 1/n
and therefore the density ofmutations at the continuous frequency
f = k/n can be approximated2 by E

[
ξ

( k
n

)]
≈

E[ξk]
1/n = nE[ξk]. The

expected population spectrum can then be constructed from the
limit:

E[ξ (f )] = lim
n→∞

nE[ξ⌊nf ⌋] (2)

for frequencies not too close to 1
N or 1 −

1
N .

For a sample of size n, the expected neutral spectrum for con-
stant population size is E[ξk] = θL/k and consequently, we have
E[ξ (f )] = θL/f (Wright, 1938; Ewens, 2012). These results are
exact for the Kingman coalescent and the diffusion equations re-
spectively, and they are approximately valid for neutral models for
frequencies f ≫

1
N . For frequencies of order

1
N , model-dependent

corrections are needed and Eq. (2) is not valid anymore.
In the rest of this section we will deal with sample and pop-

ulation spectra together. We will slightly abuse the notation and
switch between number and density of mutations, or probability
and probability density.

Conditional 1-SFS and joint 2-SFS

In the following, we will use two related but different kinds of
spectra.

The first kind is the joint 2-SFS of two bi-allelic sites. It is
denoted ξ (f1, f2) for the population and ξk,l for the sample. It is
defined as the density of pairs of sites with mutation frequencies
at f1 and f2 for the population (resp. k/n and l/n for the sample).
This is a natural generalization of the classical SFS for a single
site. The expected spectrum E[ξ (f1, f2)] has multiple equivalent
interpretations in the small θ limit: (a) for a sequence, it is the
expected density of pairs of sites that harbor mutations with fre-
quencies f1 and f2; (b) for two randomly chosen linkedpolymorphic
sites, it is the probability density that they contain mutations with
frequencies f1 and f2. Here we always consider unordered pairs of
sites (the ordered case is discussed in section S2).

The second kind of spectrum is a conditional 1-SFS, a frequency
spectrumof sites that are linked to a focalmutation of frequency f0.
It is denoted ξ (f |f0) for the population and ξk|l for the sample. Again,
this spectrum represents both (a) the expected density of single-
site mutations of frequency f in a locus linked to a focal neutral
mutation of frequency f0 and (b) the probability density that a
randomly chosen site (linked to the focal site) hosts a mutation at
frequency f .

Note that despite the similarity in notation, the two spectra
ξ (f , f0) and ξ (f |f0) are different. The difference is the same as
the one between the joint probability p(f , f0) that two sites x and
x0 have mutations of frequency f and f0 respectively, and the
conditional probability p(f |f0) that amutation at site xhas frequency
f given that there is a mutation of frequency f0 at a focal linked
site x0. Furthermore, the joint spectrum ξ (f , f0) refers to pairs of
sites – i.e. it is a 2-SFS – while the spectrum of linked sites ξ (f |f0)
is a single-site SFS.

2 More formally, Eq. (2) can be obtained from Eq. (1) under the assumptions that
1
N ≪ f , 1 − f and that the population SFS is smooth over a range of frequencies
∆f ∼

1
N .

The relation between both types of spectra can be understood
from the relation between the probabilities. The expected spec-
trum E[ξ (f )] is given by the probability to find a mutation of
frequency f at a specific site, multiplied by the length of the
sequence: E[ξ (f )] = p(f )L. As noted above, when L = 1 (i.e. a locus
with a single site is considered), E[ξ (f )] corresponds to a proper
probability p(f ). Assuming the presence of amutation of frequency
f0 at a focal site, we have E[ξ (f |f0)] = p(f |f0)(L − 1). For pairs of
sites, the expected number of mutations at frequencies (f , f0) is
E[ξ (f , f0)] = p(f , f0)L(L − 1) when f ̸= f0 or p(f0, f0)L(L − 1)/2
when f = f0. The additional factor 1

2 accounts for the symmetrical
case of equal frequencies f = f0. The equality p(f , f0) = p(f |f0)p(f0)
applied to sample and population spectra, results in the following
relations:

E[ξk,l] =
E[ξk|l] · E[ξl]

1 + δk,l
=

{
E[ξk|l] · E[ξl] for k ̸= l
1
2

· E[ξk|l] · E[ξl] for k = l
(3)

E[ξ (f , f0)] =
E[ξ (f |f0)] · E[ξ (f0)]

1 + δf ,f0

=

{
E[ξ (f |f0)] · E[ξ (f0)] for f ̸= f0
1
2

· E[ξ (f |f )] · E[ξ (f )] for f = f0
(4)

where δx,y is 1 if x = y, and 0 otherwise. Note that x and y can be
either discrete or continuous variables.

By definition, the 2-SFS includes only pairs of sites that are both
polymorphic. The probability that a pair of sites contains a single
polymorphism of frequency k/n depends only on the 1-SFS and it
is approximately equal to 2E[ξk] for θ ≪ 1. Consequently, on a
sequence of size L hosting S polymorphic sites, the number of pairs
of sites for which only one of the two is polymorphic of frequency
k/n is E[(L − S)ξk] = L · E[ξk] − E[Sξk] ≈ L · E[ξk] for small θ .

2. Results

2.1. Decomposition of the 2-SFS

We follow (Sargsyan, 2015) and divide the 2-SFS ξ (f1, f2) with-
out recombination into twodifferent components: onenested com-
ponent ξ (n)(f1, f2) for cases where there are individuals carrying
the two mutations (one is ‘‘nested’’ in the other), and a disjoint
component ξ (d)(f1, f2) that includes disjointmutations that are only
present in different individuals. The overall spectrum is given by:

ξ (f1, f2) = ξ (n)(f1, f2) + ξ (d)(f1, f2) (5)

ξk,l = ξ
(n)
k,l + ξ

(d)
k,l (6)

It is noteworthy to mention that the overall spectrum is not
sufficient to provide a full description of the genetic state of the
two sites, while the two components ξ (n)(f1, f2), ξ (d)(f1, f2) are
enough to reconstruct the genetic content of the two sites up to
permutations of all the haplotypes, as it happens with the usual
SFS for one site. For example, the following two sets of haplotypes
(derived alleles marked in bold)

CT CA
CA and CA
GA GT

are identical from the point of view of the overall two-loci spec-
trum: in both samples there is just a pair of mutations with al-
lele count 1 and 2 respectively, therefore the only (symmetrical)
nonzero value of the spectrum is ξ1,2 = ξ2,1 = 1. However the
samples can be distinguished by the two components, since in the
first one the mutations are nested (ξ (n)

1,2 = ξ
(n)
2,1 = 1), while in the
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Fig. 1. A schema of two non-recombining genomic regions and their corresponding genealogical trees. The black lines on the right represent sequences and the colored circles
derived alleles. This figure illustrates the classification of all possible types of mutations with respect to the focal mutation (in red) and their occurrence on the sequence
tree. If the focal mutation is not on a root branch (upper panel), it is clear that mutations can be on the same branch as the focal mutation (co-occurring), on the subtree
below (strictly nested), between the focal mutation and the root (enclosing), or on other branches (strictly disjoint). If the mutation is on a root branch (lower panel), there
cannot be enclosing mutations, but there can be mutations on the other root branch (complementary). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

second one they are disjoint (ξ (d)
1,2 = ξ

(d)
2,1 = 1). For this reason, these

two components constitute the core of the two-loci SFS.
Without recombination, the conditional 1-SFS ξ (f |f0) can be

also decomposed further3 into different subspectra. They are il-
lustrated in Fig. 1:

• ξ (sn)(f |f0) : strictly nested mutations, where the mutation
is carried only by a subset of individuals with the focal
mutation;

• ξ (co)(f |f0) : co-occurring mutations, where both mutations
are carried by the same individuals;

• ξ (en)(f |f0) : enclosing mutations, where only a subset of indi-
viduals with the mutation also carry the focal one;

• ξ (cm)(f |f0) : complementary mutations, where each individ-
ual has exactly one of the two mutations;

• ξ (sd)(f |f0) : strictly disjoint mutations, where the mutation is
carried by a subset of the individuals without the focal one.

Importantly, without recombination, enclosing and comple-
mentary mutations cannot be present together in the same se-
quence, as both types of branches are exclusive in a single tree.

With the above definition and using the rules of conditional
probabilities p(f , f0) = p(f |f0)p(f0) and the interpretations dis-
cussed in the previous section, the relations between the two sets
of population subspectra are:

E[ξ (n)(f , f0)] =

(
E[ξ (sn)(f |f0)] + E[ξ (co)(f |f0)] + E[ξ (en)(f |f0)]

)
·

E[ξ (f0)]
1 + δf ,f0

(7)

E[ξ (d)(f , f0)] =

(
E[ξ (cm)(f |f0)] + E[ξ (sd)(f |f0)]

)
·
E[ξ (f0)]
1 + δf ,f0

(8)

Similarly, for sample spectra, we have

E[ξ (n)
k,l ] =

(
E[ξ (sn)

k|l ] + E[ξ (co)
k|l ] + E[ξ (en)

k|l ]

)
·

E[ξl]
1 + δk,l

(9)

E[ξ (d)
k,l ] =

(
E[ξ (cm)

k|l ] + E[ξ (sd)
k|l ]

)
·

E[ξl]
1 + δk,l

(10)

3 We subdivide the ‘‘strictly nested’’ mutations of Sargsyan (2015) into strictly
nested and enclosing mutations while we refer to ‘‘identical’’ mutations as co-
occurring.

2.2. The joint and conditional SFS

In this section, we present the conditional and joint spectra for
the sample and the population. The derivations and proofs of all
equations in this section are given in Methods and sections S3 and
S4 of the Supplementary Material. The folded version of the 2-SFS
is provided in Appendix A.

2.2.1. The sample joint 2-SFS
The 2-loci spectrum appeared in the literature under many

guises (Fu, 1995; Jenkins and Song, 2011; Ferretti et al., 2012;
Sargsyan, 2015). In the infinite-sites neutralmodelwithout recom-
bination, its expected value has a simpler form4:

E[ξ (n)
k,l ] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θ2L2

βn(k) − βn(k + 1)
2

for k < l

θ2L2
βn(k)
2

for k = l

θ2L2
βn(l) − βn(l + 1)

2
for k > l

E[ξ (d)
k,l ]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ2L2
(

1
kl

−
βn(k) − βn(k + 1) + βn(l) − βn(l + 1)

2

)
2 − δk,l

2
for k + l < n

θ2L2
(
an − ak
n − k

+
an − al
n − l

−
βn(k) + βn(l)

2

)
2 − δk,l

2
for k + l = n

0 for k + l > n
(11)

with

an =

n−1∑
i=1

1
i

, βn(i) =
2n

(n − i + 1)(n − i)
(an+1 − ai) −

2
n − i

As shown by Eq. (6), the full spectrum is simply the sum of the
two above equations.

4 Note that the related formula (14) in the paper by Ferretti et al. (2012) has a
sign error. It should be identical to the second equation in (11) up to amultiplicative
factor.
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2.2.2. The population joint 2-SFS
Similarly, the 2-SFS for the whole population is given by the

combination of the two following equations:

E[ξ (n)(f , f0)] = θ2L2

·

[
1

(1 − min(f , f0))2

(
1 +

1
min(f , f0)

+
2 ln(min(f , f0))
1 − min(f , f0)

)
+ δ(f − f0)

f0
1 − f0

(
−

ln(f0)
1 − f0

− 1
)]

E[ξ (d)(f , f0)] = θ2L2 ·

[
1
ff0

−
1

(1 − f )2

(
1 +

1
f

+
2 ln(f )
1 − f

)
−

1
(1 − f0)2

(
1 +

1
f0

+
2 ln(f0)
1 − f0

)
+ δ(f − 1 + f0)

(
1 − f0
f 20

ln(1 − f0)

+
f0

(1 − f0)2
ln(f0) +

1
f0(1 − f0)

)]
(12)

with E[ξ (n)(f , f0)] = 0 for f > f0 and E[ξ (d)(f , f0)] = 0 for f +f0 > 1.
Here, we denote by δ(f − f0) the density of the Dirac delta

distribution concentrated in f0 (i.e. δ(f − f0) = 0 for f ̸= f0,
normalized such that

∫
∞

−∞
δ(f − f0)df = 1).

2.2.3. The sample conditional 1-SFS
The conditional 1-SFS for sites that are linked to a focalmutation

of count l is simply the sum of all its components, given by the
following equations:

E[ξ (sn)
k|l ] = θL · l

βn(k) − βn(k + 1)
2

for k < l

E[ξ (co)
k|l ] = θL · lβn(k)δkl

E[ξ (en)
k|l ] = θL · l

βn(l) − βn(l + 1)
2

for k > l (13)

E[ξ (cm)
k|l ] = θL · l

(
an − ak
n − k

+
an − al
n − l

−
βn(k) + βn(l)

2

)
δk,n−l

E[ξ (sd)
k|l ] = θL ·

(
1
k

− l
βn(k) − βn(k + 1) + βn(l) − βn(l + 1)

2

)
for k + l < n

Please note that hereafter unmet conditions imply 0 otherwise.
The strictly nested component of the conditional 1-SFS and its

applications have been discussed by Griffiths and Tavare (2003).

2.2.4. The population conditional 1-SFS
For the whole population, the expected linked SFS becomes:

E[ξ (sn)(f |f0)] = θL ·
f0

(1 − f )2

(
1 +

1
f

+
2 ln(f )
1 − f

)
, f < f0

E[ξ (co)(f |f0)] = θL · δ(f − f0)
2f0

1 − f0

(
−

ln(f0)
1 − f0

− 1
)

E[ξ (en)(f |f0)] = θL ·
f0

(1 − f0)2

(
1 +

1
f0

+
2 ln(f0)
1 − f0

)
, f > f0 (14)

E[ξ (cm)(f |f0)] = θL · δ(f − 1 + f0)

×

[
1 − f0
f0

ln(1 − f0) +

(
f0

1 − f0

)2

ln(f0) +
1

1 − f0

]

E[ξ (sd)(f |f0)] = θL ·

[
1
f

−
f0

(1 − f )2

(
1 +

1
f

+
2 ln(f )
1 − f

)
−

f0
(1 − f0)2

(
1 +

1
f0

+
2 ln(f0)
1 − f0

)]
, f < 1 − f0

2.3. Shape of the SFS

We report the full joint 2-SFS as well as the nested and disjoint
components (Fig. 2). Nested mutations have preferentially a rare
mutation in either site – so that the mutation at lower frequency
is easily nested into the other – or are co-occurring mutations.
Disjoint mutations are dominated by cases where both mutations
are rare, or by complementarymutations. The large contribution of
co-occurring (nested component) and complementary mutations
(disjoint component) is a direct consequence of the two long
branches that coalesce at the root node of a Kingman tree.

The conditional 1-SFS of linked sites and the relative contribu-
tions of each component to each frequency are shown in Fig. 3.
Co-occurring and complementary mutations also account for a
considerable fraction of the spectrum, especially when the focal
mutation (f0) is at high frequency. The rest of the spectrum is biased
towards mutations with a lower frequency than the focal one.
Strictly nested mutations are important only when the frequency
of the focal mutation is intermediate or high. Enclosing mutations
are rare and their frequencies are uniformly distributed, as previ-
ously noted (Hobolth and Wiuf, 2009).

Finally, in Fig. 4 we show the impact of a focal mutation of
given frequency on two estimators of θ . TheWatterson’s estimator
θ̂S (Watterson, 1975) depends on the total number of polymorphic
sites, which increases with the frequency of the focal mutation,
as they inflate increasingly upper sections of the trees that con-
tribute more to the total tree length. On the other hand, Tajima’s
estimator, θ̂π (Tajima, 1983) is more sensitive to mutations of
intermediate frequency. The difference between the two illustrates
how the spectrum is skewed towards common or rare mutations.
As Tajima’s D (Tajima, 1989) is proportional to the difference
θ̂π − θ̂S , positive values for this test statistic suggest an excess
of common mutations while negative values point to an excess of
rare mutations. Fig. 4 shows that the spectrum has a slight excess
of rare mutations at low frequencies of the focal mutation and an
excess of common mutations for intermediate frequencies, while
it is dominated again by rare mutations if the focal mutation is at
high frequencies.

2.4. Neutrality tests for regions linked to a polymorphic neutral
marker

Biallelic putative neutral markers are often used to find regions
of interest in a genome. For example, genotype data from SNP
arrays can be used together with phenotype measurements to
find regions associated with a specific phenotype. Alternatively, if
data from multiple populations are available, markers with highly
differentiated frequency between populations – i.e. high Fst – can
be used to infer potential targets of local selection. It is then natural
to use sequence data to test for neutral evolution in a window
around the neutral focal marker of known frequency.

Up to now, such tests did not take into account the informa-
tion given by the frequency of the marker itself. However, since
typicalmarkers have biased frequencies towards intermediate val-
ues (Lachance and Tishkoff, 2013), the expected neutral frequency
spectrum will likely be dramatically altered. An example of the
dependence of the distribution of Tajima’s D on the frequency of
the marker is shown in Figure S2.

The results of the previous section show precisely how Tajima’s
D test values for a fully linked locus is biased as a function of the
frequency of themarker. These biases can be computed analytically
for all Tajima’s D-like SFS-based tests (Achaz, 2009) in a similar
way, using Eq. (14) and simple approximations (e.g. replacing S by
its conditional expected value in their denominator).

Furthermore, it is possible to develop versions of Tajima’s D
and other frequency-spectrum based neutrality tests that take into
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Fig. 2. Plots of nested and disjoint contributions to the two-locus frequency spectrum for θL = 1, n = 20. Note the different scales of the two plots.

Fig. 3. Barplot of the spectrum of linked sites for θL = 1, n = 20, each column colored according to the different contributions. The focal mutation has frequency 0.25 (left),
0.5 (middle) and 0.75 (right) respectively.

Fig. 4. Mean values of the Watterson estimator (θ̂S ) and Tajima estimator (θ̂π ) of θ
conditioned on the presence of a linked mutation, for θ = 1, n = 20. In the inset,
approximatemean value of Tajima’sD (computed substituting Swith itsmean value
in the denominator). The gray lines represent the expected values conditioned on
the presence of a linked polymorphism of any frequency.

account the presence of the neutral marker. The simplest approach
follows Rafajlović et al. (2014) and consists in replacing the neutral
spectrum θL/i by the conditional spectrum ξi|m, where m is the
count of the marker in the sample. The usual covariance of the
spectrum from Fu (1995), which appears in the normalization of
the tests, can be replaced by the one derived by Klassmann and
Ferretti (2018) for the conditional spectrum.Wedenote the neutral
marker by φ and the allele count of its derived allele bym. We use
the observed spectrum ξ̂i|φ for a window of size L containing the
marker to build a test of the general form (Achaz, 2009; Ferretti et
al., 2010):

TΩ =

∑n−1
i=1 Ωiξ̂i|φ/ξ 0

i√
Var

[∑n−1
i=1 Ωiξ̂i|φ/ξ 0

i

] (15)

where both the null spectrum ξ 0
i = E[ξi|φ]/θ and the variance in

the denominator are computed under the standard neutral model,
i.e. Kingman’s coalescent. The real vector of parameters Ω can
be chosen in any possible way, as long as it satisfies

∑n−1
i=1 Ωi =

0. For example, in the absence of a neutral marker, Tajima’s D
corresponds to Ωi =

2(n−i)
n(n−1) .

The definition of the test requires that the null spectrum and
the variance are conditioned on the presence of the marker φ. For
the neutral spectrum, it is simply the sum of the expected nested
and disjoint spectra presented in Eqs. (14):

ξ 0
i = E[ξi|m]/θ =

E[ξ (n)
i|m] + E[ξ (d)

i|m]

θ
(16)
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On the other hand, the variance can be decomposed as

Var

[
n−1∑
i=1

Ωiξ̂i|φ/ξ 0
i

]
=

n−1∑
i=1

Ω2
i θ/ξ 0

i

+

n−1∑
i,j=1

ΩiΩjCov[ξi|φ, ξj|φ]θ2/ξ
0
i ξ 0

j (17)

where the θ contribution corresponds to the Poisson noise of the
mutational process, while the θ2 contribution to the covariance
Cov[ξi|φ, ξj|φ]θ2 can be easily obtained from the third moments of
the spectrum derived by Klassmann and Ferretti (2018):

Cov[ξi|φ, ξj|φ]θ2 = E[ξi|φ, ξj|φ]θ2 − θ2ξ 0
i ξ 0

j =

= E[ξ (n)
i|φ , ξ

(n)
j|φ ]θ2 + E[ξ (n)

i|φ , ξ
(d)
j|φ ]θ2

+ E[ξ (d)
i|φ , ξ

(n)
j|φ ]θ2 + E[ξ (d)

i|φ , ξ
(d)
j|φ ]θ2 − θ2ξ 0

i ξ 0
j (18)

The test can then be built by putting together the results from
the last section and an estimation of θ and θ2. The Maximum
Composite Likelihood estimate can be used:

θ̂ = S/
n−1∑
i=1

ξ 0
i , θ̂2 = (θ̂ )2 (19)

or the Method-of-Moments estimates as in the classical Tajima’s
D:

θ̂ = S/
n−1∑
i=1

ξ 0
i , θ̂2 = S(S − 1)/

n−1∑
i,j=1

(ξ 0
i ξ 0

j + Cov[ξi|φ, ξj|φ]θ2/θ
2)

(20)

The choice of weights for new tests of this form is someway
arbitrary. For example, a modified version of Tajima’s D could use
the old weights, i.e. Ωi =

2(n−i)
n(n−1) , or the old linear coefficients,

i.e.Ωi =
2i(n−i)
n(n−1)ξ

0
i , depending if the test should focus on the relative

or absolute differences between the null and observed spectrum.
Principles and formulae for ameaningful choice of the newweights
are discussed in detail by Ferretti et al. (2010). On the other hand,
once the weights are chosen, the normalization does not suffer
from any degree of arbitrariness and its form depends only on the
third moments computed here.

This straightforward modification of neutrality tests is a
promising direction for future dedicated neutrality tests that aim
at correctingmultiple artefacts such as demography, knowledge of
the frequency of the marker, etc.

3. Methods

3.1. The sample joint 2-SFS

To obtain the sample spectrum for pairs ofmutations, we notice
that this spectrum can be defined in terms of the expected value of
crossproducts of the usual SFS. In detail, we have

E[ξk,l] = E[ξkξl], if k ̸= l (21)

and

E[ξk,k] = E[ξk(ξk − 1)]/2. (22)

These expected values have been derived by Fu (1995) by
coalescent methods. However his results do not distinguish the
different contributions from nested and disjoint mutations to the
spectrum. Tracking the origin of each term in the derivation, it is
easy to show that Eqs. (24) and (28) of Fu (1995) contribute to
nested pairs of mutations, while Eqs. (25), (29) and (30) contribute
to disjoint pairs of mutations. All these terms combine linearly and

do not interfere, therefore we can decompose the resulting E[ξkξl]
into contributions coming from Eqs. (24), (28) and (25), (29) and
(30) of Fu (1995). This can be obtained directly by Fu’s expression
for the covariancematrix σkl, since E[ξkξl] = δk,lE[ξk]+E[ξk]E[ξl]+
θ2L2σkl and E[ξk] = θL/k. A detailed review of the calculations
of Fu (1995), tracking the parts that lead to our mutation classes, is
provided in section S3 of the Supplementary Material.

The same results could also be obtained from Theorem 5.1
in Jenkins and Song (2011). In fact, for a special choice of allele
transition matrices (in the triallelic case, a strictly lower triangu-
lar matrix with all non-zero entries equal to 1), their results for
recurrent mutations for small θL (θ in their article) are mathe-
matically equivalent to the results for mutations in an infinite-
sites model. Their classification is based on the location of the
mutations on the tree: their ‘‘nested mutations’’ correspond to
strictly nested and enclosing mutations here, ‘‘mutations on the
same branch’’ correspond to co-occurring mutations, ‘‘mutations
on basal branches’’ correspond to complementary mutations, and
‘‘non-nested mutations’ correspond to strictly disjoint mutations.

3.2. The sample conditional 1-SFS

The spectrum for sites linked to a focal mutation of count l
(Eq. (13)) can be obtained from the previous spectrum (11). The
first step is simply to condition on the frequency l/n of the focal
mutation, i.e. dividing the 2-SFS E[ξk,l] by E[ξl]

1+δk,l
2 following

Eqs. (9) and (10). In fact, E[ξk|l] = (L − 1)P[c(x) = k|c(y) = l] =

L(L − 1)P[c(x) = k, c(y) = l]/LP[c(y) = l] =
2

1+δk,l
E[ξk,l]/E[ξl]

where c(x) is the derived allele count at site x. The second step
is to break further the two contributions of the resulting condi-
tional spectrum into the different components. Strictly nested, co-
occurring and enclosing mutations are derived from the nested
contribution and are distinguished by site frequencies only: strictly
nested ones correspond to k < l, co-occurring ones to k = l
and enclosing ones to k > l. Similarly, from the disjoint contri-
bution, mutations belonging to the strictly disjoint component can
be obtained by selecting the frequency range k + l < n while
complementary ones correspond to k + l = n.

3.3. Population spectra

In the limit of large samples, the frequency spectra converge
to the continuous SFS for infinite populations. However, the limit
n → ∞ should be takenwith care. The easiest derivation proceeds
as follows: since the conditional 1-SFS (Eq. (14)) is a single-locus
spectrum, its population components can be obtained from the
corresponding ones for finite samples (Eq. (13)) by direct appli-
cation of Eq. (2). Then the population 2-SFS (Eq. (12)) can be
reconstructed from Eqs. (7) and (8), by multiplying by the neutral
spectrum E[ξ (f0)] = θL/f0 and by 1

1+δf ,f0
and combining the result

into nested and disjoint contributions. The derivation makes use
of the following functional limit of the Kronecker delta as a Dirac
delta function: nδ⌊nf ⌋,⌊nf0⌋ → δ(f − f0) for n → ∞. More details are
given in section S4.

4. Discussion

In this article, we have provided exact closed formulae for the
joint 2-SFS as well as the first expressions for the conditional 1-
SFS, both for sample and population. The 2-SFSwas already derived
in different forms (Jenkins and Song, 2011; Ferretti et al., 2012;
Sargsyan, 2015), but the expression presented here for the infinite-
sites model is embedded in the framework of Fu (1995). Sample
spectra were then used to derive the population spectra by letting
n → ∞. Importantly, our results only hold when there is no
recombination, and are averaged across the tree space.
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The analytical expressions provided in this paper can be intu-
itively understood in terms of the evolution of linked mutations.
Consider a new mutation increasing in frequency by neutral drift
and reaching low/intermediate frequency. We expect to find a
large number of strictly disjoint and a lownumber of strictly nested
linkedmutations, since at the time of appearance of the focalmuta-
tionmost existingmutationswere ‘‘strictly disjoint’’. The spectrum
of strictly nested mutations is more skewed towards rare alleles
than predicted by the neutral spectrum 1/f , since strictly nested
mutations evolve inside an expanding subpopulation. On the other
hand, the spectrum of strictly disjoint mutations resembles the
neutral one butwith a slight bias against raremutations, since they
evolved in a slightly contracting subpopulation.

Note that for sequences linked to a mutation close to fixa-
tion, co-occurring and complementary mutations dominate. The
contrast between the haplotypes produces a strong ‘‘haplotype
structure’’.

Interestingly, conditioning on the presence of a mutation of
frequency f impacts the length and balance of the coalescent,
as apparent from Fig. 4. This can be understood as follows. Rare
mutations are common in any realization of the coalescent tree
but especially common in the lower branches, therefore they
just increase slightly the tree length and the length of the lower
branches compared to the unconditioned case. Instead, mutations
of intermediate frequency appear mostly in the upper branches of
the tree, therefore the presence of such mutations implies higher,
more balanced trees. The effect is even stronger for high frequency
mutations, which reside only in the uppermost branches, implying
highly unbalanced trees.

There are several potential applications of these results. Here
we discuss approaches to correct SFS-based neutrality tests taking
into account the presence of a neutral marker strongly linked to
the genomic region. These corrections are useful in cases when the
region has been selected on the basis of evidence from genome-
wide association studies or studies of differentiation based on
SNP arrays or other (putatively) neutral markers. This is just an
example of possible extensions of neutrality tests based on these
results. Other applications include the improvement of population
genetic inference techniques based on the SFS, such as composite
likelihood (e.g. Kim and Stephan, 2002; Li and Stephan, 2005; Kim
and Nielsen, 2004; Nielsen et al., 2005) and Poisson Random Field
methods (Sawyer and Hartl, 1992). These methods use analytical
expressions for the SFS for a single site together with approxi-
mations of independence between different sites. For sequences
with low recombination, methods could be made more rigorous
by assuming independence between different pairs of sites, while
taking pairwise dependence between sites into account through
the two-locus SFS developed here.

The spectrum could also be useful for new neutrality tests
based on linkage between mutations. Our results lead to a bet-
ter understanding of the linkage disequilibrium (LD) structure
among neutral loci, therefore they can be immediately applied to
LD-related statistics, for example to compute average LD across
non-recombining neutral loci. As an example, it can be checked
numerically that the expected value of D between fully linked
derived mutations is 0 according to our equations, as expected
from LD theory. Furthermore, they can be used to build neutrality
tests optimized to detect positive or balancing selection through
its effect on the frequency spectrum of linked sites. The spectra
presented here could also provide a neutralmodel for other scenar-
ios, including structural variants or introgressions from different
species or populations. Introgressed sequences from close species
can be detected as divergent haplotypes in the locus considered,
and if introgressions are rare, then the genetic variability within
these haplotypes is described by the nested spectrum linked to the
introgressed haplotypes.

The SFS presented here is the simplest two-locus spectrum for
neutral, non-recombining mutations in a population of constant
size. These results could be extended to variable population size
using the approach of Živković andWiehe (2008); Jenkins and Song
(2011) and to mutations in rapidly adapting populations using
the Λ-coalescent approximation and the results of Birkner et al.
(2013). However, the most interesting extensions would be to
consider (a) non-neutral mutations and (b) recombination.

Adding selection to the two-locus SFS would significantly en-
hance its potential for most of the applications discussed above.
The SFS for pairs of selected mutations has been obtained by Xie
(2011) as a polynomial expansion, but the numerical computation
of this expansion is still cumbersome. Given the simplicity of the
expression for the single-locus SFS ξ (f ) = θ (1− e−2Nes(1−f ))/f (1−

f )(1 − e−2Nes) (Wright, 1938; Sawyer and Hartl, 1992), we expect
that closed expressions could be found for pairs of mutations
with different selective coefficients. This would be a promising
development for future investigations.

The classical correspondence between the Kingman model in
the large n limit and the diffusion approximation suggests that
the 2-SFS spectrum presented here is a solution of the diffusion
equations for three alleles (Ewens, 2012, section 5.10). In fact, the
nested component of the 2-SFS for f ̸= f0 is a stationary solution
of the diffusion equation of three alleles of frequency f , f0 − f and
1 − f0:

∂ξ

∂t
=

1
2Ne

(
∂2

∂ f 2
[f (1 − f )ξ ] + 2

∂2

∂ f ∂ f0
[f (1 − f0)ξ ]

+
∂2

∂ f 20
[f0(1 − f0)ξ ]

)
(23)

while the disjoint component for f ̸= 1− f0 is a stationary solution
of the diffusion equation of three alleles of frequency f , f0 and
1 − f0 − f :

∂ξ

∂t
=

1
2Ne

(
∂2

∂ f 2
[f (1 − f )ξ ] − 2

∂2

∂ f ∂ f0
[ff0ξ ] +

∂2

∂ f 20
[f0(1 − f0)ξ ]

)
(24)

The correspondence implies that the solution (12) is actually the
stationary solution of the full set of diffusion equations for the
system, including boundary equations for f = f0 and 1 − f0 and
boundary conditions. A direct proof of this result using methods
from the theory of partial differential equations could lead to in-
teresting developments towards new solutions for selective equa-
tions as well. Our results could also be used to test the accuracy
of existing tools based on a numerical solution of the diffusion
equations (Ragsdale and Gutenkunst, 2017).

On the other hand, finding the exact two-locus SFS with re-
combination appears to be a difficult problem. Recombination is
intrinsically related to the two-locus SFS via the same definition
of linkage disequilibrium. Obtaining the full two-locus spectrum
with selection and recombination could open new avenues for
model inference and analysis of genomic data. For this reason,
many approximations and partial results have been developed
since Hudson (2001), like expansions in the limit of strong recom-
bination (Jenkins and Song, 2012). The SFS of linked loci presented
in this paper could be useful as a starting point for different ap-
proaches to the effect of recombination events, for example for
perturbation expansions at low recombination rates.

An immediate application of our results to recombination
events is the following: since in the Ancestral Recombination
Graph (Griffiths and Marjoram, 1997) the recombination events
follow a Poisson process similar to mutation events, although with
a different rate, the spectrum ξk|l could also be reinterpreted (up
to a constant) as the probability that a single recombination event
affects k extant lineages in a sequence linked to a specific mutation
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of frequency l, i.e. it is equivalent to the spectrum of mutation–
recombination events. This approach could be applied to higher
moments of the frequency spectrum and lead to new results in
recombination theory.

We offer tools for computing the analytical spectra as well as
performing simulations by manipulating output of the program
ms (Hudson, 2002). The corresponding C++ code is contained in
the package coatli developed by one of the authors and available
on http://sourceforge.net/projects/coatli/.
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Appendix A. The folded spectra

When no reliable outgroup sequence is available, one cannot
assess if the allele is derived or ancestral. In that case, alleles
can only be classified as minor (less frequent) and major (most
frequent). The distribution of minor allele frequencies, known as
the folded SFS, will be noted η(f ∗), where f ∗ denotes the minor
allele frequency that ranges from 0 to 0.5. Importantly, the folded
SFS can be retrieved from the full SFS by simply summing alleles at
complementary frequencies:

η(f ∗) = [ξ (f ∗) + ξ (1 − f ∗)]/(1 + δf ∗,(1−f ∗)) (A.1)

As a consequence, the single site SFS under the standard neutral
model then becomes E[η(f ∗)] = θ/[f ∗(1 − f ∗)(1 + δf ∗,(1−f ∗))] and
E[ηk∗ ] = θn/[k∗(n− k∗)(1+ δk∗,n−k∗ )], where k∗ denotes the count
of the minor allele.

Following the same idea, we define a conditional folded 1-SFS
and a joint folded 2-SFS using the minor allele frequencies. Minor
alleles can also be classified as ‘‘nested’’ or ‘‘disjoint’’ depending
on the presence or absence of individuals enclosing both minor
alleles. As for the unfolded case, this classification gives a complete
description of the linkage between pairs of mutations. However,
in contrast to the unfolded case, the classification has no strict
evolutionary meaning. For example, ‘‘disjoint’’ minor alleles do
not necessarily correspond to pairs of alleles born in different
backgrounds. Moreover, alleles of frequency f ∗

= 0.5 (or allele
count k∗

= n/2) suffer from an ambiguity in the choice of the
minor allele and therefore should be treated separately. Note also
thatwith the exception of alleleswith frequency 0.5, folded spectra
do not contain complementary alleles, since the frequency of one
of the two complementary alleles will exceed 0.5.

Pairs of mutations with f , f0 both larger or smaller than 0.5 will
be classified identically (as nested or disjoint) in the folded case.
However, pairs of mutations with f < 0.5 and f0 > 0.5 (or vice-
versa) will swap their classification. As a consequence, the two
components of the 2-SFS are:

E[η(n)(f ∗, f ∗

0 )] = E[ξ (n)(f ∗, f ∗

0 )] + E[ξ (n)(1 − f ∗, 1 − f ∗

0 )]

+ E[ξ (d)(f ∗, 1 − f ∗

0 )]

+ E[ξ (d)(1 − f ∗, f ∗

0 )]

E[η(d)(f ∗, f ∗

0 )] = E[ξ (d)(f ∗, f ∗

0 )] + E[ξ (n)(f ∗, 1 − f ∗

0 )]

+ E[ξ (n)(1 − f ∗, f ∗

0 )] (A.2)

To obtain the conditional 1-SFS, we proceed similarly to the
unfolded case. First we separate the 2-SFS above into components
based on frequency. The strictly nested component corresponds to
frequencies f ∗ < f ∗

0 of the nested part, while the co-occurring

and enclosing components correspond to f ∗
= f ∗

0 and f ∗ >
f ∗

0 respectively. The strictly disjoint component corresponds to
the disjoint part, since there cannot be any complementary com-
ponent. Then we divide each component by the expected 1-SFS
E[η(f ∗

0 )] to obtain

E[η(sn)(f ∗
|f ∗

0 )] =
f ∗

0 (1 − f ∗

0 )
θ

E[η(n)(f ∗, f ∗

0 )] for f ∗ < f ∗

0

E[η(co)(f ∗
|f ∗

0 )] = 2 ·
f ∗

0 (1 − f ∗

0 )
θ

E[η(n)(f ∗, f ∗

0 )] for f ∗
= f ∗

0

E[η(en)(f ∗
|f ∗

0 )] =
f ∗

0 (1 − f ∗

0 )
θ

E[η(n)(f ∗, f ∗

0 )] for f ∗ > f ∗

0 (A.3)

E[η(cm)(f ∗
|f ∗

0 )] = 0

E[η(sd)(f ∗
|f ∗

0 )] = (1 + δf ∗,f ∗0
) ·

f ∗

0 (1 − f ∗

0 )
θ

E[η(d)(f ∗, f ∗

0 )]

While the classification of the pairs with frequencies f ∗
= 0.5

and/or f ∗

0 = 0.5 is ambiguous, these pairs are usually irrelevant for
the population spectrum.

The sample spectra are similar. For n even, there are ambigu-
ous pairs with k or l = n/2 that can be easily retrieved from
Eqs. (11),(13) and treated separately. Considering only k, l < n/2,
the sample 2-SFS is:

E[η(n)
k∗,l∗ ] = E[ξ (n)

k∗,l∗ ] + E[ξ (n)
n−k∗,n−l∗ ] + E[ξ (d)

k∗,n−l∗ ] + E[ξ (d)
n−k∗,l∗ ]

E[η(d)
k∗,l∗ ] = E[ξ (d)

k∗,l∗ ] + E[ξ (n)
k∗,n−l∗ ] + E[ξ (n)

n−k∗,l∗ ] (A.4)

and the conditional 1-SFS is:

E[η(sn)
k∗|l∗ ] =

l∗(n − l∗)
θn

E[η(n)
k∗,l∗ ] for k∗ < l∗

E[η(co)
k∗|l∗ ] = 2 ·

l∗(n − l∗)
θn

E[η(n)
k∗,l∗ ] for k∗

= l∗

E[η(en)
k∗|l∗ ] =

l∗(n − l∗)
θn

E[η(n)
k∗,l∗ ] for k∗ > l∗ (A.5)

E[η(cm)
k∗|l∗ ] = 0

E[η(sd)
k∗|l∗ ] = (1 + δk∗,l∗ ) ·

l∗(n − l∗)
θn

E[η(d)
k∗,l∗ ]

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.tpb.2018.06.001.
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a b s t r a c t

The analysis of patterns of segregating (i.e. polymorphic) sites in aligned sequences is routine in popu-
lation genetics. Quantities of interest include the total number of segregating sites and the number of
sites with mutations of different frequencies, the so-called site frequency spectrum. For neutrally evolving
sequences, some classical results are available, including the expected value and variance of the spectrum
in the Kingman coalescent model without recombination as calculated by Fu (1995).

In this work, we use similar techniques to compute the third moments of the frequencies of three
linked sites. Based on these results, we derive analytical results for the bias of Tajima’s D and other
neutrality tests.

As a corollary, we obtain the second moments of the frequencies of two linked mutations conditional
on the presence of a third mutation with a certain frequency. These moments can be used for the
normalisation of new neutrality tests relying on these spectra.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Statistics based onpolymorphic loci are key to estimate relevant
quantities in population genetics, such as the rescaled mutation
rate θ . One common approach is to group together variants that ap-
pear with the same frequency in a sample and count the elements
of each such group. The resulting summary statistic is called the
site frequency spectrum.

The frequency spectrum is one of themost relevant statistics for
population genetics. It can be used to infer evolutionary param-
eters such as mutation and recombination rate, past population
history, demography and selection (Hudson, 1983; Nielsen et al.,
2005; Hein et al., 2004). Often, the variants are biallelic SNPs that
can be ‘‘polarized’’, i.e. it is possible to say which allele is ancestral
and which one is derived. This is the case for sequences with
low mutation rate per base and for which an outgroup sequence
is available. In what follows, we will consider exclusively this
situation and assume that the evolution of these sequences can be
modelled by a standard neutral Wright–Fisher model of constant
population size.

Watterson (1975) credits Fisher (1930) with the first derivation
(for a special case) of the first moments of the frequency spec-
trum. The derivation for the continuous analogue can be found
in Ewens (1979), where it follows from results of diffusion theory
(Kimura, 1964). Watterson (1975) himself derived the first and
second moments for the sum over all classes of the frequency

* Corresponding author.
E-mail address: alexander.klassmann@uni-koeln.de (A. Klassmann).

spectrum, i.e. the number of segregating sites, using the technique
of ‘‘moment estimators’’. The full distribution of this quantity was
shown by Tavaré (1984, Eq. (9.5)). The first and second moments
for combinations of some components of the spectrum were later
computed by Tajima (1989) using coalescent theory (Kingman,
1982) and combinatorics,while Fu (1995) completed this approach
for the full frequency spectrum. A major application of his for-
mulae is the normalisation of a class of neutrality tests such as
Tajima’s D (Tajima, 1989), as described by Achaz (2009). Recently,
Hudson (2015) has given another proof of the first moments. As
far as we know, higher moments of the spectrum have never been
computed.

Asymptotic results for the distribution of the spectrum have
been obtained by Dahmer and Kersting (2015). However, their
method applies only to mutations of size less than or equal to
a fixed number k in the limit of n → ∞, i.e. to mutations of
infinitesimal frequency f ≤ k/n → 0. Hence, their approach does
not provide information on the full frequency spectrum in finite
samples.

In this articlewederive exact expressions for the thirdmoments
of the frequency spectrum. We use notation and approach of Fu
(1995), with some technical modifications in order to keep the
number of different cases manageable. As a by-product we state
the thirdmoment of the number of segregating sites. An immediate
corollary of the thirdmoments is the expected frequency spectrum
for three linked segregating sites, which fully characterises the
expected haplotype structure for triplets of sites.

We discuss the consequences of these results for the distri-
bution of several neutrality tests that are constructed similarly
to Tajima’s D (Tajima, 1989). These tests have been designed to

https://doi.org/10.1016/j.tpb.2017.12.002
0040-5809/© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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yield under neutrality an expected value of approximately zero, but
since they do not exactly so, they are biased (Tajima, 1989; Simon-
sen et al., 1995). For the first time, we obtain general expressions
for bias and skewness of these tests as a function of mutation rate
and sample size.

Finally, we derive the variance of the frequency spectra of two
nested or disjoint mutations linked to a third mutation of a certain
size. These spectra can be used to describe neutrally evolving
structural variants such as chromosomal inversions (Ferretti et
al., 2017). With our results, it is possible to obtain the proper
normalisation for newTajima’sD-like tests relying on such spectra.

In the next section we state our main result and several im-
plications. The corresponding proofs are presented largely in the
subsequent section, while the combinatorial parts are deferred to
the supplement.

2. Results

As is common practise in coalescent theory, we define θ as the
population-scaled mutation rate per sequence, i.e. θ = 2pNeµL
where p is the ploidy, Ne is the effective population size, µ is the
mutation rate per generation per bp and L is the length of the
sequence in base pairs. We consider a sample of n sequences with
n ≪ Ne. We assume thatwe can distinguish between ancestral and
derived alleles. A mutation (alias derived allele) is said to have size
i, if i sequences of the sample carry it. The number of mutations of
size i within the sample is referred to as ξi. The tuple ξ1, . . . , ξn−1
forms the frequency spectrum.

The model that we consider is the Kingman coalescent, with an
infinite-sites model of mutations. We assume no recombination,
i.e. complete linkage among sites.

2.1. The third moments of the frequency spectrum

Our main result is an analytical expression for the third mo-
ments of the frequency spectrum.

Theorem 2.1. In the infinite sites approximation for biallelic se-
quences without recombination, the third moments of the frequency
spectrum can be expressed as

E[ξhξiξj] = δh=i=jτiθ +
(
δh=iτij + δi=jτhj + δj=hτhi

)
θ2

+ τhijθ
3 (1)

for 1 ≤ h, i, j < n. The functions τ are:

τi =
1
i
, (2)

τij = ta(i, j) + ta(j, i) + tb(i, j) + tb(j, i) (3)

with

ta(i, j) =

⎧⎪⎨⎪⎩
1
2

(βn(j) − βn(j + 1)) if j < i
1
2
βn(j) if j = i

tb(i, j) =

⎧⎪⎨⎪⎩
1
ij

−
1

i(i + j)
−

1
2

(βn(j) − βn(j + 1)) if i + j < n

αn(j) −
1
2
βn(j) if i + j = n,

(4)

and1

τhij =

∑
Permutations(h,i,j)

taa(h, i, j) + tab(h, i, j) + tba(h, i, j) + tbb(h, i, j)

(5)

1 ∑
Perm.(h,i,j)f (h, i, j) = f (h, i, j)+f (i, j, h)+f (j, h, i)+f (h, j, i)+f (i, h, j)+f (j, i, h).

with Eqs. (6) given in Box I using the following auxiliary functions:

αn(i) =
1( n−1
i

)
i

n∑
k=2

( n−k
i−1

)
k − 1

βn(i) =
2( n−1
i

)
i

n∑
k=2

( n−k
i−1

)
k

α(2)
n (i, j) =

n∑
k=2

k−1∑
t=1

( i−1
t−1

) ( n−i−j
k−t−1

)( n−1
k−1

) 1
k(k − 1)

αk(t)

β (2)
n (i, j) =

n∑
k=2

k−1∑
t=1

( i−1
t−1

) ( n−i−j
k−t−1

)( n−1
k−1

) 1
k(k − 1)

βk(t)
2

α(3)
n (h, i, j) = (h + 1)α(2)

n (i, j) − 2hα(2)
n (i, j + 1)

+ (h − 1)α(2)
n (i, j + 2)

β (3)
n (h, i, j) = (h + 1)β (2)

n (i, j) − 2hβ (2)
n (i, j + 1)

+ (h − 1)β (2)
n (i, j + 2)

α(4)
n (h, i, j) = (h + 1)α(2)

n (i + 1, j) − 2hα(2)
n (i, j + 1)

+ (h − 1)α(2)
n (i − 1, j + 2)

β (4)
n (h, i, j) = (h + 1)β (2)

n (i + 1, j) − 2hβ (2)
n (i, j + 1)

+ (h − 1)β (2)
n (i − 1, j + 2).

(7)

Remark 1. The coefficient for θ is the well known result for the
expectation of the frequency spectrum

E[ξi] = τiθ =
θ

i
. (8)

The terms τij are identical to the quadratic part of the second
moments,

E[ξiξj] = δi=jτiθ + τijθ
2 , (9)

computed by Fu (1995): τij = σij +
1
ij , with σij defined in Eqs. (2)

and (3) therein.

Remark 2. Fu (1995) showed in his Eq. (34) that αn(i) and βn(i) can
be written in a more compact form, namely

αn(i) =
Hn−1 − Hi−1

n − i

βn(i) =
2n

(n − i + 1)(n − i)
(Hn − Hi−1) −

2
n − i

,

with Hn =
∑n

i=1
1
i . We do not have a corresponding form for

α
(2)
n (i, j) and β

(2)
n (i, j). We only note that in the case of ‘‘singletons’’

they yield (with Hn,2 =
∑n

k=1
1
k2
)

α(2)
n (1, 1) =

Hn−1,2 −
1
nHn−1

n − 1

β (2)
n (1, 1) =

1 −
1
nHn−1

n − 1
.

Remark 3. The sum over permutations simplifies the fractions in
tb resp. tbb:∑
Permutations(i,j)

(
1
ij

−
1

i(i + j)

)
=

1
ij

(10)
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taa(h, i, j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
β

(4)
n (i − j, i − j, j) − β

(4)
n (i − j, i − j + 1, j) if j < i and i < h

β
(4)
n (i − j, i − j, j) if j < i and i = h

β
(2)
n (1, j) − β

(2)
n (2, j) if j = i and i < h

β
(2)
n (1, j) if j = i and i = h

tab(h, i, j) =

{
β

(3)
n (h − i − j, i, j) − β

(3)
n (h − i − j, i + 1, j) if i + j < h

β
(2)
n (i, j) − β

(2)
n (i + 1, j) if i + j = h

tba(h, i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2h (βn(j) − βn(j + 1) − βn(h + j) + βn(h + j + 1))

if j < i and h + i < n−β
(4)
n (i − j, i − j, j) + β

(4)
n (i − j, i − j + 1, j)

−β
(3)
n (i − j, h, j) + β

(3)
n (i − j, h + 1, j)

+β
(3)
n (n − h − i, j, h) − β

(3)
n (n − h − i, j + 1, h)

α
(4)
n (n − h − j, n − h − j, j) − β

(4)
n (n − h − j, n − h − j, j)

if j < i and h + i = n+α
(3)
n (n − h − j, h, j) − β

(3)
n (n − h − j, h, j)

+β
(2)
n (j, h) − β

(2)
n (j + 1, h)

1
2h (βn(j) − βn(h + j)) + β

(3)
n (n − h − j, j, h)

if j = i and h + i < n
−β

(2)
n (h, j) + β

(2)
n (h + 1, j) − β

(2)
n (1, j) + β

(2)
n (2, j)

1
2

(
α
(2)
n (n − j, j) + α

(2)
n (j, n − j)

)
if j = i and h + i = n

+α
(2)
n (1, j) − β

(2)
n (1, j)

tbb(h, i, j) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
(h+i+j)(h+i)h +

1
ij(h+i) −

1
ih(i+j)

if h + i + j < n−
1
2i (βn(j) − βn(j + 1) − βn(i + j) + βn(i + j + 1))

−β
(3)
n (n − h − i − j, i, j) + β

(3)
n (n − h − i − j, i + 1, j)

1
i (αn(j) − αn(i + j)) −

1
2i (βn(j) − βn(i + j))

if h + i + j = n
−β

(2)
n (i, j) + β

(2)
n (i + 1, j)

(6)

Box I.

∑
Permutations(h,i,j)

(
1

(h + i + j)(h + i)h
+

1
ij(h + i)

−
1

ih(h + j)

)
=

1
hij

. (11)

Remark 4. The central third moments can be obtained by

µ3[ξh, ξi, ξj] = E[(ξh − E[ξh])(ξi − E[ξi])(ξj − E[ξj])]

= E[ξhξiξj] − E[ξh]E[ξiξj] − E[ξi]E[ξhξj]

− E[ξj]E[ξhξi] + 2E[ξh]E[ξi]E[ξj].

(12)

Remark 5. If mutations cannot be classified as either ancestral or
derived, usually theminor frequency of the two alleles is taken into
account to form the folded frequency spectrum

ηi =
ξi + ξn−i

1 + δi=n−i
.

The corresponding third moments can be computed analogously
to the second moments (Eq. (9) in Fu (1995)):

E[ηhηiηj] =
(
E[ξhξiξj] + E[ξhξiξn−j] + E[ξhξn−iξj]

+ E[ξhξn−iξn−j]

+ E[ξn−hξiξj] + E[ξn−hξiξn−j] + E[ξn−hξn−iξj]

+ E[ξn−hξn−iξn−j]
)

·
1

(1 + δh=n−h)(1 + δi=n−i)(1 + δj=n−j)
.

(13)

2.2. The frequency spectrum of three linked sites

The components taa, tab, tba and tbb correspond to different link-
age patterns of three mutations (without recombination). We call
a derived mutation a to be nested within or nested inside a derived
mutation b, if a is present only in sequences that contain b. We call
pairs of mutations simply nested, if one is nested within the other.
If twomutations are present in non-overlapping sets of sequences,
we refer to them as disjoint. Linked mutations are either nested
or disjoint. Hence, three derived mutations can have four possible
relations (see also Section 3.1.2 ‘‘Averaging over topologies’’):

• fully nested: one mutation (of size j) is nested inside another
mutation (of size i) which itself is nested inside the third
mutation (of size h).
This relation corresponds to taa(h, i, j).

• disjoint within nested: two disjoint mutations (of sizes i and
j, resp.) are nested within the third mutation (of size h).
This relation corresponds to tab(h, i, j) + tab(h, j, i).

• nested within disjoint: two mutations (of sizes h and i, resp.)
are mutually disjoint and the third mutation (of size j) is
nested inside the second. (Consequently the first and third
are disjoint, too).
This relation corresponds to tba(h, i, j).

• fully disjoint: all threemutations (of sizes h, i and j, resp.) are
mutually disjoint.
This relation corresponds to

∑
Permutations(h,i,j)tbb(h, i, j).

Therefore, the spectrumof three sites can be easily decomposed
by separating the components taa, tab, tba and tbb.

The nested and disjoint components of the frequency spectrum
for pairs of sites give a complete description of the haplotype



A. Klassmann, L. Ferretti / Theoretical Population Biology 120 (2018) 16–28 19

structure of two sites (up to permutations of individuals and
sites) (Ferretti et al., 2017). Analogously the frequency spectrum
for triplets of segregating sites is given by

E[ξh,i,j] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E[ξhξiξj] for h ̸= i,
h ̸= j, i ̸= j

E[ξhξi(ξi − 1)]/2 = (E[ξhξ
2
i ]

− E[ξhξi])/2 for i = j ̸= h
E[ξhξi(ξh − 1)]/2 = (E[ξ 2

h ξi]
− E[ξhξi])/2 for h = j ̸= i

E[ξhξj(ξh − 1)]/2 = (E[ξ 2
h ξj]

− E[ξhξj])/2 for h = i ̸= j
E[ξh(ξh − 1)(ξh − 2)]/6

= (E[ξ 3
h ] − 3E[ξ 2

h ] + 2E[ξh])/6 for h = i = j.

(14)

This spectrum is equivalent to a complete characterisation of
the haplotype spectrum of three sites.

2.3. A recursion equation for nested mutations of identical size

Recursion equations are generally a useful tool to investigate
branching processes (of which the coalescent is a special case),
since they allow to derive properties by induction (Kimmel and
Axelrod, 2015).

For a function f (n, i), n ≥ 1 and 1 < i ≤ n we consider the
following recursion equation:

f (n + 1, i) = (1 −
i
n
)f (n, i) +

i − 1
n

f (n, i − 1). (15)

This equation has been used to prove that the number of leaves
descending fromoneof the two root branches of a coalescent tree is
uniformly distributed, an important property that helps to under-
stand some patterns of variation in molecular sequences (Tajima,
1983, Eq. (2)), (Wakeley, 2008, Eq. (3.36)). Likewise, Hudson (2015)
exploited the fact that τi fulfils (15) to show that the first moment
of the frequency spectrum can be obtained by an inductive proof
over the sample size n.

We show that the recursion equation holds, too, for the second
and third moments of nested mutations of the same size:

Proposition 2.1. αn(i), βn(i), α
(2)
n (1, i), β (2)

n (1, i) and, consequently,
ta(i, i) and taa(i, i, i), regarded as functions of n and i, fulfil Eq. (15).

2.4. The third moments of the number of segregating sites

The number of segregating sites is given by S =
∑n−1

i=1 ξi. Al-
though various expressions for its complete distribution are known
(Wakeley, 2008, Eqs. (3.32)-(3.34),(4.3)), it is not obvious how to
derive individualmoments from them.Wewill prove the following
theorem in the same way as Theorem 2.1.

Theorem 2.2.Writing Hn,m =
∑n

i=1
1
im for the nth harmonic number

of order m, the third moment (resp. central moment) of the number of
segregating sites S for a sample of size n yields:

E[S3] = Hn−1,1θ + 3(H2
n−1,1 + Hn−1,2)θ2

+ (H3
n−1,1 + 3Hn−1,1Hn−1,2 + 2Hn−1,3)θ3

µ3[S] = E[(S − E[S])3] = Hn−1,1θ + 3Hn−1,2θ
2
+ 2Hn−1,3θ

3.

(16)

Since
n−1∑
h=1

n−1∑
i=1

n−1∑
j=1

E[ξhξiξj] = E[S3]

and
n−1∑
h=1

n−1∑
i=1

n−1∑
j=1

µ3[ξh, ξi, ξj] = µ3[S],

Table 1
Weights and references of the analysed neutrality tests.

Test Weights Ωi Reference

D(Tajima) (n − i)/
( n
2

)
− 1/ian Tajima (1989)

D(Fu&Li) 1/ian − δi,1 Fu and Li (1993)
F(Fu&Li) (n − i) − δi,1 Fu and Li (1993)
H(Fay&Wu) (n − 2i)/

( n
2

)
Fay and Wu (2000)

E(Zeng) 1/(n − 1) − 1/ian Zeng et al. (2006)

the coefficients for θ , θ2 and θ3 derived from Theorems 2.1 and 2.2
have to be the same, yielding

Corollary 2.1. The following identities hold for the functions τi, τij and
τhij defined in Theorem 2.1:

n−1∑
i=1

τi = Hn−1 (17)

n−1∑
i=1

n−1∑
j=1

τij = H2
n−1,1 + Hn−1,2 (18)

n−1∑
h=1

n−1∑
i=1

n−1∑
j=1

τhij = H3
n−1,1 + 3Hn−1,1Hn−1,2 + 2Hn−1,3. (19)

While Eq. (17) holds trivially, we give in the supplement explicit
proofs of Eqs. (18) and (19) as a consistency check for Theorem 2.1.

2.5. Skewness and bias of Tajima’s D and similar neutrality tests

Oneof the applications of the frequency spectrum is to test if the
observed patterns in sequences are compatiblewith neutral evolu-
tionarymodels. Several neutrality tests like e.g. Tajima’s D (Tajima,
1989), fall into a general class that relies on normalised linear
combinations of the frequency spectrum (Achaz, 2009; Ferretti et
al., 2010). Their general form is

TΩ =

∑n−1
i=1 iΩiξi√

Var[
∑n−1

i=1 iΩiξi]

,

n−1∑
i=1

Ωi = 0 (20)

where the variance in the denominator

Var

[
n−1∑
i=1

iΩiξi

]
= θ

n−1∑
i=1

i2Ω2
i τi + θ2

n−1∑
i,j=1

ijΩiΩj

(
τij −

1
ij

)
is a linear combination of θ and θ2. These two quantities, if un-
known, are usually estimated from S and S2 by the method of
moments: θ̂ = S/Hn−1,1 and θ̂2 = S(S − 1)/(H2

n−1,1 + Hn−1,2).
The weights Ωi for some commonly used neutrality tests are given
in Table 1.

In this section, we explore the additional information that the
third moments of the spectrum reveal about the distribution of
neutrality tests with respect to their skewness and bias.

It is well known that the distributions of these tests tend to be
biased and skewed (Tajima, 1989; Hudson, 1991; Simonsen et al.,
1995; Rafajlović et al., 2014). First, let us assume that θ is known. In
this case these tests are normalised tomean 0 and variance 1 under
the neutral coalescent with constant population size: E[TΩ] =

0 and Var[TΩ] = 1. Consequently they are not biased and the
skewness γ = µ3/σ

3 equals the thirdmoment of the test statistic:

γ (TΩ) = E[T 3
Ω] =

∑n−1
i=1

∑n−1
j=1

∑n−1
k=1 ijkΩiΩjΩk · E[ξiξjξk]

Var[
∑n−1

i=1 iΩiξi]3/2
. (21)

In Fig. 1 we compare Eq. (21) with values obtained by standard
neutral coalescent simulations with ‘ms’ (Hudson, 2002) for two



20 A. Klassmann, L. Ferretti / Theoretical Population Biology 120 (2018) 16–28

Fig. 1. Skewness of neutrality tests given in Table 1 for sample size n = 50 (top) and n = 500 (bottom). The analytical skewness was obtained by Eq. (21). For simulations,

the skewness was estimated by γ̂ =
1
n
∑

i(xi−x̄)3(
1

n−1
∑

i(xi−x̄)2
) 3

2
over 106 genealogies (xi is the value of the test statistic for a single genealogy). The test statistics were calculated using

the true θ (green points) and Wattersons estimator θ̂ =
S

Hn−1
(blue points), respectively. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

Fig. 2. The expected value of the test statistics given in Table 1 with sample size n = 50 (top) and n = 500 (bottom). The deviation from zero is the bias of the tests. Shown
are our analytical approximation Eq. (22) and values, obtained by simulation with ‘ms’, averaged over 106 genealogies.

E[TΩ] ≈ −

∑n−1
k=1 kΩk

[
E[ξkS]
Hn−1,1

∑n−1
i=1 i2Ω2

i τi +
E[ξkS(S−1)]

H2
n−1,1+Hn−1,2

∑n−1
i,j=1 ijΩiΩj

(
τij −

1
ij

)]
2
[
θ

∑n−1
i=1 i2Ω2

i τi + θ2
∑n−1

i,j=1 ijΩiΩj

(
τij −

1
ij

)]3/2 , (22)

Box II.

sample sizes and a broad range of θ-values. For known θ they
agree perfectly. All test statistics show the biggest skew for very
small θ , while they approach a constant value for θ > 10. In
practise, however, the parameter θ usually has to be estimated
from the data and the denominator in Eq. (21) being a function
of the estimator, contributes to the skewness. The figure shows
that this has a relatively large effect, but surprisingly for most
considered values of θ it reduces the skewness.

For θ unknown and estimated from S, we can still make use of
the thirdmoments. In this case, we can compute an approximation
for the bias of the test statistic. We apply the following formula for
the Taylor expansion of moments of random variables2 X , Y with
E[X] = 0 and Y > 0 almost surely

2 From the general expansion (e.g. Van Erp and Van Gelder (2007))

E
[

X
√
Y

]
≈

E[X]
√
E[Y ]

−
E[XY ] − E[X]E[Y ]

2E[Y ]3/2
+

3E[X]Var[Y ]

8E[Y ]5/2
.

E
[

X
√
Y

]
≈ −

E[XY ]

2E[Y ]3/2

and the fact that E[
∑n−1

k=1kΩkξk] = 0 to obtain the bias given
by Eq. (22) in Box II with E[ξkS] =

∑n−1
i=1 E[ξkξi] resp. E[ξkS2] =∑n−1

i,j=1E[ξkξiξj].
In Fig. 2 we depict our approximative analytical result (22)

together with estimations of the bias from standard coalescent
simulations (Hudson, 2002), using the same two sample sizes and
range of θ-values as for Fig. 1. Eq. (22) gives a reasonably good
approximation of the bias of the test statistics, taking into account
that it represents only the first termof a bivariate Taylor expansion.

2.6. The variance of the frequency spectrum of linked sites

We will use the nomenclature introduced by Sargsyan (2015)
and expanded in Ferretti et al. (2017). We call a certain mutation
of interest focal and we refer to it as φ. As in Section 2.2, further
mutations that appear in at least one individual together with it,
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are called nested while all others are called disjoint. More specifi-
cally, we refer to the number of mutations of size i that are nested
with the focal mutation by ξ

(n)
i,φ and to those that are disjoint by

ξ
(d)
i,φ . Evidently, the number of overall occurrences of mutations of
size i, given φ, is ξi,φ = ξ

(n)
i,φ + ξ

(d)
i,φ . We now condition on the focal

mutationφ being amutation of size h andwrite ξ
(n)
i|h for the number

of mutations of size i nested with a mutation of size h (still exclud-
ing the focal mutation itself) and ξ

(d)
i|h correspondingly for disjoint

mutations. The expectation value of the number of mutations of
size i conditional on the presence of a different mutation of size h
is given by

E[ξi|h] = E[ξ
(n)
i|h ] + E[ξ

(d)
i|h ] = E[ξ

(n)
i,h ]/E[ξh] + E[ξ

(d)
i,h ]/E[ξh]. (23)

The summands on the right side of Eq. (23) can be calculated
directly from the results of Fu (1995) and are given in Ferretti et
al. (2017). From Theorem 2.1, allowing for the interpretation of the
terms txx given in Section 2.2, follows

Corollary 2.2. Conditional on a mutation of size h, the second mo-
ments of two further mutations of sizes i and j are given by

E[ξi|hξj|h] = E[ξ
(n)
i|h ξ

(n)
i|h ] + E[ξ

(n)
i|h ξ

(d)
j|h ] + E[ξ

(d)
i|h ξ

(n)
j|h ]

+ E[ξ
(d)
i|h ξ

(d)
j|h ], (24)

where the summands of Eq. (24) correspond to the conditional second
moments of mutations of sizes i and j both nested in a mutation of size
h, one nested and one disjoint and both disjoint, respectively, given by

E[ξ
(n)
i|h ξ

(n)
j|h ] = h

⎛⎝δi=jta(h, i)θ +

⎛⎝tab(h, i, j) + tab(h, j, i)

+

∑
Permutations(h,i,j)

taa(h, i, j)

⎞⎠ θ2

⎞⎠
E[ξ

(n)
i|h ξ

(d)
j|h ] = h (tab(i, j, h) + tab(i, h, j)

+ tba(j, h, i) + tba(j, i, h)) θ2

E[ξ
(d)
i|h ξ

(n)
j|h ] = h (tab(j, i, h) + tab(j, h, i) + tba(i, h, j)

+ tba(i, j, h)) θ2

E[ξ
(d)
i|h ξ

(d)
j|h ] = h

⎛⎝δi=jtb(h, i)θ +

⎛⎝tba(h, i, j) + tba(h, j, i)

+

∑
Permutations(h,i,j)

tbb(h, i, j)

⎞⎠ θ2

⎞⎠ .

(25)

2.7. Numerical results

In Fig. 3 we compare the analytical results of our Theorem 2.1
with numerical results obtained from coalescent simulations. We
use ‘‘ms’’ (Hudson, 2002) to generate sample sequences and from
their frequency spectra we calculate estimates of the third mo-
ments. For increasing sample size n the ‘‘off-diagonal’’ elements
of the three-dimensional array of third moments, i.e. the values
E[ξhξiξj] for h ̸= i ̸= j, get increasingly small; as a consequence
the relative difference between analytical and simulated values
is largest for these elements, causing the maximum relative dif-
ference over all elements to increase with n. The graphs clearly

Fig. 3. The relative error between the third moments of the frequency spectrum
obtained by Eq. (1) and values resulting from standard coalescent simulations with

‘ms’ (Hudson, 2002). We computed relative errors e = max
h,i,j

|E[ξhξiξj]−ξhξiξj |

E[ξhξiξj]
where

each ξhξiξj represents the average of ξhξiξj over 103 til 109 simulated genealogies.
The figure shows the average over 100 of these relative errors e. The colours indicate
different sample sizes n. θ = 1. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

show that with increasing number of simulated genealogies, their
average values converge to our analytical results.

Fig. 4 shows all third moments of the frequency spectrum as
given in Theorem 2.1 for a sample of size n = 5. As in the two-
dimensional case, the values of the diagonals (where two or more
indices are either equal or sum to n) dominate.

In Fig. 5 we compare the covariances Cov[ξiξj] of the uncondi-
tional frequency spectrum for a sample of size n = 10 with the
covariances between nested and disjoint mutations in a sample
of size n = 20, conditioned on the presence of a mutation of
size k = 10. The spectra of nested, resp. disjoint, sites are still
dominated by the variances, while the correlation of ‘‘mirror sites’’
(ξi and ξn−i in the unconditional spectrum), is lost. There is almost
no correlation between nested and disjoint sites.

2.8. Comparison with asymptotic analytical results

Dahmer and Kersting (2015) showed the convergence of the
distribution of the components of the spectrum to centred and
rescaled i.i.d. Gaussian variables in the large n limit. More pre-
cisely, they state that for fixed k, the total lengths li of branches
with i descendants are asymptotically independent and normally
distributed:√

n
ln(n)

(
l1 − 1, l2 −

1
2
, . . . , lk −

1
k

)
−→
n→∞

N(0, 1k×k). (26)

For given lengths li, each component of the spectrum ξi has an
independent Poisson distribution with parameter θ li. For large θ ,
i.e. ignoring the Poisson noise, we have that ξi = θ li+O(

√
θ ), hence

the above equation becomes for θ → +∞√
n

ln(n)
lim

θ→+∞

(
ξ1

θ
− 1,

ξ2

θ
−

1
2
, . . .

ξk

θ
−

1
k

)
−→
n→∞

N(0, 1k×k). (27)

In the limit of large n, the lj can be roughly treated as independent
Gaussian random variables with mean 1/j and variance ln(n)/n,
and similarly the ξj can be treated as independent random vari-
ables with mean θ/j and variance θ/j + θ2 ln(n)/n. If all moments
would be uniformly bounded, this would yield the approximation

E[ξhξiξj]|θ3 = τhijθ
3

= E[ξh]E[ξi]E[ξj] +
ln(n)
n

(δh=iE[ξj]

+ δh=jE[ξi] + δi=jE[ξh])θ2

+ o
(
ln(n)
n

)
.

(28)
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Fig. 4. The analytical expected values (obtained by Eq. (1)) of all third moments for n = 5, θ = 1 and the respective contributions of the linear, quadratic and cubic terms.

Fig. 5. Comparison between unconditional and conditional covariances. Panel A: unconditional covariances Cov[ξi, ξj] for sample size n = 10, calculated with the formulae
of Fu (1995). The remainder graphs show the covariances between mutations conditional on a mutation of size k = 10 in a sample of size n = 20, obtained by Eqs. (25).
Panel B shows the covariances between mutations nested within the focal mutation, panel C the covariances of mutations both disjoint and panel D the covariance between
nested and disjoint mutations.

Fig. 6. From Dahmer and Kersting (2015) follow that the random variables ξh , ξi , ξk are approximately independent in samples of size n, as long as h, i, j ≪ n. Shown is the
ratio of the asymptotic approximation (28) to the exact expression (6) for small fixed indices 1 ≤ h, i, j ≤ 4 and varying sample size n. Panel A: all indices are the same;
panel B: two indices differ; panel C: all indices differ.

However the distribution of each component of the spectrum ξk
shows excesses of outliers and heavy tails (Janson and Kersting,
2011), hence the convergence in distribution proved by Dahmer
and Kersting does not imply the convergence of the moments, and
therefore does not imply the scaling (28). This reduces the useful-
ness of the asymptotic results, in particular for the case of muta-
tions of identical size (h = i = j). Fig. 6 shows that the asymptotic
expansion is reasonably good for moments ξh, ξi, ξj with h, i, j ≪ n
and at least two indices differing. If any of the indices h, i, j is
greater than n

2 , the asymptotic results seem to be of little help.

3. Methods

3.1. Proof of Theorem 2.1

3.1.1. Separation of estimation
A coalescent tree is constructed by two independent stochastic

processes, namely its branching pattern (the topology) and the
lengths of its branches (coalescent times). The idea of Fu (1995)
is to decompose the tree into small parts, called lines, by cutting
each branch along stateswhich are delineated by coalescent events
(cf. Fig. 7). He first calculates the probabilities of all hierarchical
relationships between those lines by transforming theprobabilistic
problem into a combinatorial one. Second, he computes the first
and second moments of the number of mutations on each line,
deriving from a third random process, which depends only on the
lengths of the lines. Although mutations on each line arise inde-
pendently, their numbers on lines of the same state are indirectly
correlated because of shared line lengths. The moments of the

Fig. 7. This coalescent tree represents a genealogy of four sequences sampled from
a large population. It is decomposed into lines kl, on which ξkl mutations occur,
depending on the length of the line. Let us focus on the number of mutations of
size two, i.e. which are present on two sequences: For a tree with a topology T as
depicted, only the lines 21, 22 and 33 have two leaves and hence contribute to this
number. Hence for the ‘‘indicator variables’’ we have: ϵ21(2) = ϵ22(2) = ϵ33(2) = 1
and ϵkl(2) = 0 for all other lines. It follows that E[ξ2|Topology=T ] = E[ξ21] + E[ξ22] +

E[ξ33]. Averaging over all topologies yields E[ξ2].

individual lines, averaged over the topologies, yield the desired
moments of the frequency spectrum.

We re-use method and notation of Fu (1995) with appropriate
extensions. A thorough explanation of the main ingredients of his
proof, albeit with somewhat different notation, has been given in
Durrett (2008). An extended ‘‘reprint’’ of the more technical parts
can be found in the supplement of our companion paper (Ferretti
et al., 2017).

We define ξkl as the number of mutations occurring on line l of
state k. Furthermore the index variables ϵkl(i) indicate whether the
corresponding line has i descendants at state n, (i.e. they take the
values 1 resp. 0). It follows that (cf. Fig. 7)
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(a) p(k, i).

(b) pa(k, i; k′, j). (c) pb(k, i; k′, j).

(d) paa(k, h; k′, i; k′′, j). (e) pab(k, h; k′, i; k′′, j). (f) p(3)ba (k, h; k
′, i; k′′, j).

(g) p(2)ba (k, h; k
′, i; k′′, j). (h) p(1)ba (k, h; k

′, i; k′′, j). (i) pbb(k, h; k′, i; k′′, j).

Fig. 8. The hierarchical relationships between three lines of a coalescent tree and their corresponding probabilities.

ξi =

n∑
k=2

k∑
l=1

ϵkl(i)ξkl. (29)

In the following we use the fact that the index l serves only to
distinguish lines of the same state, but otherwise has no meaning,
since all lines of the same state are equivalent. The indicator
variables are idempotent (ϵkl(i)2 = ϵkl(i)) and independent of the
number of mutations ξkl. The expectation values of the indicator
variables correspond to probabilities, which we will define in the
following subsection.

3.1.2. Averaging over topologies
The statistical properties of the lines in a coalescent tree are rel-

ated to Pólya urn theory, originally aimed atmodelling the spread of
infectious diseases, while other applications in theoretical biology
have been found later (Mahmoud, 2008). A Pólya urn process starts
with an urn containing balls of various colours, fromwhich repeat-
edly a ball is drawn and put back togetherwith an additional ball of
the same colour. In the coalescent, the balls correspond to lines and
the addition of a ball is equivalent to a split of a line into two. The
corresponding probabilities are reviewed in Griffiths and Tavaré
(2003) and our Eqs. (30)–(32) follow from Eq. (2.1) therein. We
introduce the following notation: pk�n(t � i) is the probability that
t lines at state k have i descendants at state n. This probability is

pk�n(t � i) =

( i−1
t−1

) ( n−i−1
k−t−1

)( n−1
k−1

) . (30)

At this point it is helpful to define
(

−1
−1

)
= 1, while binomial coef-

ficients containing any other combination of one or two negative
numbers are set to zero (cf. Durrett (2008)). This makes it possible
to subsume in the Eqs. (30)–(32) the case that t = k lines of state k
yield i = n lines at state n (which is true with probability 1). Later
on, these special cases will be resolved separately and none of the
expressions in the section Results relies on this definition.

The probability that t and u (different) lines at state k have
respectively i and j descendants at state n is

pk�n(t � i, u � j) =

( i−1
t−1

) ( j−1
u−1

) ( n−i−j−1
k−t−u−1

)( n−1
k−1

) . (31)

And for three such (non-overlapping) sets of lines the probability
yields

pk�n(s � h, t � i, u � j) =

( h−1
s−1

) ( i−1
t−1

) ( j−1
u−1

) ( n−h−i−j−1
k−s−t−u−1

)( n−1
k−1

) . (32)

We split the computation of the expectation values of the in-
dicator variables (which define the topology) into several cases,
pictured in Fig. 8. Using the above notation we can now state the
probabilities for each case. We start with those derived by Fu: The
probability that one line at state k has i descendants at state n is
(Fu, 1995, Eq. (14))

p(k, i) = pk�n(1 � i)

=

( n−i−1
k−2

)( n−1
k−1

) .
(33)

The joint probability that one line at state k and one nested line at
state k′

≥ k have i respective j descendants at state n is (Fu, 1995,
Eq. (18))

pa(k, i; k′, j) =

k′−1∑
t=1

pk�k′ (1 � t)
t
k′
pk′�n(t − 1 � i − j, 1 � j)

=

k′−1∑
t=1

(
k′−t−1
k−2

)
(

k′−1
k−1

) t
k′

( i−j−1
t−2

) ( n−i−1
k′−t−1

)( n−1
k′−1

) .

(34)

The joint probability that one line at state k and one disjoint (not
nested) line at state k′

≥ k have i resp. j descendants at state n is
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(Fu, 1995, Eqs. (19) and (20))

pb(k, i; k′, j) =

k′−1∑
t=1

pk�k′ (1 � t)
k′

− t
k′

pk′�n(t � i, 1 � j)

=

k′−1∑
t=1

(
k′−t−1
k−2

)
(

k′−1
k−1

) k′
− t
k′

( i−1
t−1

) ( n−i−j−1
k′−t−2

)( n−1
k′−1

) .

(35)

In Eqs. (34) and (35) the summation index t runs over the possible
numbers of descendants that the line of state kmay have at state k′.
Since no single line can be ancestor of all k′ lines, this number has
an upper limit of k′

−1. There are more constraints on t as detailed
by Fu (1995) (e.g. a line from state k can have at most k′

− k + 1
descendants at state k′, hence only values t ≤ k′

−k+1 contribute
to the sum), however these are already implicit in the binomial
coefficients.

Note, that Fu defined Eqs. (34)–(35) only for the case k < k′.
Using the special definition for the binomial coefficient, they in-
clude the case k = k′ (Durrett, 2008): if the lines are from the
same state, then t = 1 and we have pa(k, i; k, j) = δi=j

1
kp(k, i)

and pb(k, i; k, j) =
k−1
k

(
n−i−j−1

k−3

)
(
n−1
k−1

) . These two equations correspond

to Eqs. (14) and (15) of Fu (1995).
Hence the probability that a line at k and a line at state k′ have

i resp. j descendants at state n yields for 2 ≤ k ≤ k′
≤ n:

p(k, i; k′, j) = pa(k, i; k′, j) + pb(k, i; k′, j). (36)

Now we derive the probabilities involving three lines. These
may be all of the same state, of two different states or of three
different states. We assume k ≤ k′

≤ k′′. We take a single line
at each state k, k′ and k′′ respectively and subdivide along their
possible relationships. We denote the lines l, l′ and l′′ respectively.
The six cases are (compare Fig. 8):

• aa: l′ is a descendant of l and l′′ is a descendant of l′
• ab: l′ and l′′ are both descendants of l, but l′′ is not a descen-

dant of l′
• ba(3): l′ is a descendant of l , but l′′ is not
• ba(2): l′′ is a descendant of l, but l′ is not
• ba(1): l′′ is a descendant of l′, but both are not descendants

of l
• bb: no line is a descendant of any of the other two lines.

The probability of the first case yields

paa(k, h; k′, i; k′′, j)

=

k′−1∑
t=1

k′′−2∑
t1=0

k′′−t1−1∑
t2=1

pk�k′ (1 � t)
t
k′
pk′�k′′ (t − 1 � t1, 1 � t2)

×
t2
k′′

pk′′�n(t1 � h − i, t2 − 1 � i − j, 1 � j)

=

k′−1∑
t=1

k′′−2∑
t1=0

k′′−t1−1∑
t2=1

(
k′−t−1
k−2

)
(

k′−1
k−1

) t
k′

( t1−1
t−2

) (
k′′−t1−t2−1

k′−t−1

)
(

k′′−1
k′−1

) t2
k′′

×

(
h−i−1
t1−1

)(
i−j−1
t2−2

)(
n−h−1

k′′−t1−t2−1

)
( n−1
k′′−1

) .

(37)

In words, the summation goes over the probability that a random
line of state k has t descendants at state k′, times the probability
that another randomly chosen line at that state is one of these,
times the probability that the second chosen line has t2 and the
other t − 1 lines have t1 descendants at state k′′, times the proba-
bility that a third randomly chosen line of that state belongs to the
t2 lines, and finally that the t1, t2−1 and 1 line of state k′′ have h− i,
i − j and j descendants at state n, respectively.

The remaining probabilities yield:

pab(k, h; k′, i; k′′, j)

=

k′−1∑
t=2

k′′−2∑
t1=1

k′′−t1∑
t2=1

pk�k′ (1 � t)
t
k′
pk′�k′′ (t − 1 � t1, 1 � t2)

t1
k′′

× pk′′→n(t1 − 1 � h − i − j, t2 � i, 1 � j)

=

k′−1∑
t=2

k′′−2∑
t1=1

k′′−t1∑
t2=1

(
k′−t−1
k−2

)
(

k′−1
k−1

) t
k′

( t1−1
t−2

) (
k′′−t1−t2−1

k′−t−1

)
(

k′′−1
k′−1

) t1
k′′

×

(
h−i−j−1
t1−2

)(
i−1
t2−1

)(
n−h−1

k′′−t1−t2−1

)
( n−1
k′′−1

) ,

(38)

p(3)ba (k, h; k
′, i; k′′, j)

=

k′−1∑
t=1

k′′−2∑
t1=0

k′′−t1−1∑
t2=1

pk→k′ (1 � t)
t
k′
pk′�k′′ (t − 1 � t1, 1 � t2)

×
k′′

− t1 − t2
k′′

pk′′→n(t1 � h − i, t2 � i, 1 � j)

=

k′−1∑
t=1

k′′−2∑
t1=0

k′′−t1−1∑
t2=1

(
k′−t−1
k−2

)
(

k′−1
k−1

) t
k′

( t1−1
t−2

) (
k′′−t1−t2−1

k′−t−1

)
(

k′′−1
k′−1

)
×

k′′
− t1 − t2
k′′

(
h−i−1
t1−1

)(
i−1
t2−1

)(
n−h−j−1

k′′−t1−t2−2

)
( n−1
k′′−1

) ,

(39)

p(2)ba (k, h; k
′, i; k′′, j)

=

k′−1∑
t=1

k′′−2∑
t1=1

k′′−t1∑
t2=1

pk→k′ (1 � t)
k′

− t
k′

pk′�k′′ (t � t1, 1 � t2)

×
t1
k′′

pk′′→n(t1 − 1 � h − j, t2 � i, 1 � j)

=

k′−1∑
t=1

k′′−2∑
t1=1

k′′−t1∑
t2=1

(
k′−t−1
k−2

)
(

k′−1
k−1

) k′
− t
k′

( t1−1
t−1

) (
k′′−t1−t2−1

k′−t−2

)
(

k′′−1
k′−1

) t1
k′′

×

(
h−j−1
t1−2

)(
i−1
t2−1

)(
n−h−i−1

k′′−t1−t2−1

)
( n−1
k′′−1

) ,

(40)

p(1)ba (k, h; k
′, i; k′′, j)

=

k′−1∑
t=1

k′′−2∑
t1=1

k′′−t1∑
t2=1

pk→k′ (1 � t)
k′

− t
k′

pk′�k′′ (t � t1, 1 � t2)
t2
k′′

× pk′′→n(t1 � h, t2 − 1 � i − j, 1 � j)

=

k′−1∑
t=1

k′′−2∑
t1=1

k′′−t ′1∑
t2=1

(
k′−t−1
k−2

)
(

k′−1
k−1

) k′
− t
k′

( t1−1
t−1

) (
k′′−t1−t2−1

k′−t−2

)
(

k′′−1
k′−1

) t2
k′′

×

(
h−1
t1−1

)(
i−j−1
t2−2

)(
n−h−i−1

k′′−t1−t2−1

)
( n−1
k′′−1

) ,

(41)

pbb(k, h; k′, i; k′′, j)

=

k′−1∑
t=1

k′′−2∑
t1=1

k′′−t1∑
t2=1

pk�k′ (1 � t)
k′

− t
k′

pk′�k′′ (t � t1, 1 � t2)

×
k′′

− t1 − t2
k′′

pk′′→n(t1 � h, t2 � i, 1 � j)

=

k′−1∑
t=1

k′′−2∑
t1=1

k′′−t1∑
t2=1

(
k′−t−1
k−2

)
(

k′−1
k−1

) k′
− t
k′

( t1−1
t−1

) (
k′′−t1−t2−1

k′−t−2

)
(

k′′−1
k′−1

)
×

k′′
− t1 − t2
k′′

(
h−1
t1−1

)(
i−1
t2−1

)(
n−h−i−j−1
k′′−t1−t2−2

)
( n−1
k′′−1

) .

(42)
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Since the six cases cover all possible combinations, the total prob-
ability that three lines at state k, k′ and k′′ resp. (with k ≤ k′

≤ k′′)
have h, i and j resp. descendants at state n is given by

p(k, h; k′, i; k′′, j) = paa(k, h; k′, i; k′′, j) + pab(k, h; k′, i; k′′, j)

+ p(3)ba (k, h; k
′, i; k′′, j)

+ p(2)ba (k, h; k
′, i; k′′, j)

+ p(1)ba (k, h; k
′, i; k′′, j)

+ pbb(k, h; k′, i; k′′, j).

(43)

We now relate the indicator variables of Eq. (29) to the probabili-
ties (33)–(42). For one and two lineswe restate the results obtained
by Fu (1995, text and equations without number, before Eq. (22))

E[ϵkl(i)] = p(k, i) (44)

E[ϵkl(i)ϵk′ l′ (j)] = δi=jp(k, i) if k = k′ and l = l′

E[ϵkl(i)ϵk′ l′ (j)] = p(k, i; k, j) if k = k′

E[ϵkl(i)ϵk′ l′ (j)] = p(k, i; k′, j) else.

(45)

We add the expressions for three lines (still assuming k ≤ k′
≤ k′′):

E[ϵkl(h)ϵk′ l′ (i)ϵk′′ l′′ (j)] = δh=i=jp(k, i) if k = k′
= k′′

and l = l′ = l′′

E[ϵkl(h)ϵk′ l′ (i)ϵk′′ l′′ (j)] = δh=ip(k, i; k′′, j) if k = k′ and l = l′

E[ϵkl(h)ϵk′ l′ (i)ϵk′′ l′′ (j)] = δi=jp(k, h; k′, i) if k′
= k′′ and l′ = l′′

E[ϵkl(h)ϵk′ l′ (i)ϵk′′ l′′ (j)] = p(k, h; k′, i; k′′, j) else.

(46)

3.1.3. The third moments of the number of mutations on individual
lines

The third moments of the number of mutations on three indi-
vidual lines can be calculated with help of the ‘‘law of total expec-
tation’’, which is used repeatedly in coalescent theory, e.g.Wakeley
(2008, Eq. (4.9)).We have tomake case distinctionswith respect to
two or three lines being identical (and hence sharing the amount
of mutations) or not identical, but of the same state (sharing line
length). Mutations on lines of different states are not correlated.
We state their thirdmoments in terms of their first moments since
this will turn out to be convenient later on.

Proposition 3.1. For any 1 ≤ k, k′, k′′ < n, 1 ≤ l ≤ k, 1 ≤ l′ ≤ k′,
1 ≤ l′′ ≤ k′′ the following equation holds:

E[ξklξk′ l′ξk′′ l′′ ] = δk=k′=k′′δl=l′=l′′E[ξk1]

+ δk=k′=k′′ (δl=l′ + δl=l′′ + δl′=l′′ )E[ξk1]
2

+ δk=k′δl=l′E[ξk1]E[ξk′′1]

+ δk=k′′δl=l′′E[ξk1]E[ξk′1]

+ δk′=k′′δl′=l′′E[ξk1]E[ξk′1]

+(2δk=k′=k′′ + δk=k′ + δk=k′′ + δk′=k′′ + 1)E[ξk1]E[ξk′1]E[ξk′′1].

(47)

Proof. Let X be a random variable. It can be easily shown that if
X is exponentially distributed (X ∼ Exp(λ)), then the first three
moments of X are E[X] =

1
λ
, E[X2

] =
2
λ2

and E[X3
] =

6
λ3
. If X

is Poisson-distributed (X ∼ Poisson(µ)), then E[X] = µ, E[X2
] =

µ+µ2 and E[X3
] = µ+3µ2

+µ3. In agreementwith the definition
of the coalescent the ξkl are distributed as ξkl ∼ Poisson( θ

2Tk) with
Tk ∼ Exp( 2

k(k−1) ). ξkl and ξk′ l′ are independent if k ̸= k′ while ξkl and

ξkl′ are independent conditional on Tk for l ̸= l′.

E[ξ 3
kl] = E[E[ξ 3

kl|Tk]]

= E[Tk
θ

2
+ 3(Tk

θ

2
)2 + (Tk

θ

2
)3]

=
2

k(k − 1)
θ

2
+ 3 · 2

4
k2(k − 1)2

θ2

4
+ 6

8
k3(k − 1)3

θ3

8

=
1

k(k − 1)
θ +

6
k2(k − 1)2

θ2
+

6
k3(k − 1)3

θ3

= E[ξk1] + 6E[ξk1]
2
+ 6E[ξk1]

3

(48)

E[ξ 2
klξkl′ ] = E[E[ξ 2

klξkl′ |Tk]]

= E[E[ξ 2
kl|Tk]E[ξkl′ |Tk]]

= E[(Tk
θ

2
+ (Tk

θ

2
)2)Tk

θ

2
]

=
2

k2(k − 1)2
θ2

+
6

k3(k − 1)3
θ3

= 2E[ξk1]
2
+ 6E[ξk1]

3

(49)
E[ξklξkl′ξkl′′ ] = E[E[ξklξkl′ξkl′′ |Tk]]

= E[E[ξkl|Tk]E[ξkl′ |Tk]E[ξkl′′ |Tk]]

= E[(Tk
θ

2
)3]

=
6

k3(1 − 3)3
θ3

= 6E[ξk1]
3

(50)

E[ξ 2
klξk′ l′ ] = E[ξ 2

kl]E[ξk′ l′ ]

=
1

k(k − 1)k′(k′ − 1)
θ2

+
2

k2(k − 1)2k′(k′ − 1)
θ3

= E[ξk1]E[ξk′1] + 2E[ξk1]
2E[ξk′1]

E[ξklξkl′ξk′ l′′ ] = E[ξklξkl′ ]E[ξk′ l′ ]

=
2

k2(k − 1)2k′(k′ − 1)
θ3

= 2E[ξk1]
2E[ξk′1]

(51)

E[ξklξk′ l′ξk′′ l′′ ] = E[ξk1]E[ξk′1]E[ξk′′1]
(52)

3.1.4. Combining results
We average now the third moments of individual lines over

topologies by inserting Eqs. (44)–(47) into Eq. (29):

E[ξhξiξj] = E
[
(

n∑
k=2

k∑
l=1

ϵkl(h)ξkl)

× (
n∑

k′=2

k′∑
l′=1

ϵk′ l′ (i)ξk′ l′ )(
n∑

k′′=2

k′′∑
l′′=1

ϵk′′ l′′ (j)ξk′′ l′′ )
]

=

n∑
k=2

n∑
k′=2

n∑
k′′=2

k∑
l=1

k′∑
l′=1

k′′∑
l′′=1

E[ϵkl(h)ϵk′ l′ (i)ϵk′′ l′′ (j)]

× E[ξklξk′ l′ξk′′ l′′ ] (53)

= δh=i=j

n∑
k=2

kE[ϵk1(h)]E[ξk1]
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+

n∑
k=2

k2(δh=iE[ϵk1(i)ϵk2(j)] + δi=jE[ϵk1(j)ϵk2(h)]

+ δj=hE[ϵk1(h)ϵk2(i)])E[ξk1]
2

+

n∑
k=2

n∑
k′=2

kk′(δh=iE[ϵk1(i)ϵk2(j)] + δi=jE[ϵk1(j)ϵk2(h)]

+ δj=hE[ϵk1(h)ϵk2(i)])E[ξk1]E[ξk2]

+ 2
n∑

k=2

kE[ϵk1(h)]E[ξk1]
3

+

n∑
k=2

n∑
k′=2

kk′
(
δh=iE[ϵk1(i)ϵk′1(j)] + δi=jE[ϵk1(j)ϵk′1(h)]

+ δj=hE[ϵk1(h)ϵk′1(i)]
)
E[ξk1]

2E[ξk′1]

+

n∑
k=2

n∑
k′=2

n∑
k′′=2

kk′k′′E[ϵk1(h)ϵk′1(i)ϵk′′1(j)]E[ξk1]E[ξk′1]

× E[ξk′′1]

= δh=i=j

n∑
k=2

kp(k, h)E[ξk1]

+ δh=i

n∑
k=2

n∑
k′=k

kk′(p(k, i; k′, j)

+ p(k, j; k′, i))E[ξk1]E[ξk2]

+ δi=j

n∑
k=2

n∑
k′=k

kk′(p(k, j; k′, h)

+ p(k, h; k′, j))E[ξk1]E[ξk2]

+ δj=h

n∑
k=2

n∑
k′=k

kk′(p(k, h; k′, j)

+ p(k, j; k′, h))E[ξk1]E[ξk2]

+

n∑
k=2

n∑
k′=k

n∑
k′′=k′

kk′k′′
(
p(k, h; k′, i; k′′, j)

+ p(k, i; k′, j; k′′, h) + p(k, j; k′, h; k′′, i)

+ p(k, h; k′, j; k′′, i) + p(k, i; k′, h; k′′, j)

+ p(k, j; k′, i; k′′, h)
)
E[ξk1]E[ξk′1]E[ξk′′1]. (54)

Applying Eq. (22) of Fu (1995) to the first term of (54) yields
Eq. (2):

n∑
k=2

kp(k, i)E[ξk1] =
θ

i
= τiθ, (55)

and applying his Eq. (23) to the next three terms of (54) yields
Eq. (4):

n∑
k=2

n∑
k′=k

kk′(p(k, i; k′, j) + p(k, j; k′, i))E[ξk1]E[ξk2] = τijθ
2. (56)

We define the remaining terms of (54) as functions

tx(h, i, j) = θ−3
n∑

k=2

n∑
k′=k

n∑
k′′=k′

kk′k′′px(k, h; k′, i; k′′, j)

× E[ξk1]E[ξk′1]E[ξk′′1]

(57)

where x stands for {aa, ab, ba(3), ba(2), ba(1), bb} and finally we set

tba(h, i, j) = t (3)ba (i, j, h) + t (2)ba (i, h, j) + t (1)ba (h, i, j). (58)

In the supplement we transform these functions to yield (6).
We offer an implementation in C++ for numerical calculation of

the third moments, given n and θ , using the expressions (1)–(6).
As a control, we implemented the unsimplified functions (57), too.
Within rounding errors (< 10−12) they yield the same values as (6)
for all thirdmoments E[ξhξiξj] and tested sample sizes 2 ≤ n ≤ 17.
With the algebraic computing software Mathematica (Wolfram
Research, Inc., 2014) we were able to prove for the same range
of n that expressions (6) and (57)–(58) are exactly equivalent. The
source code is contained in the package ‘‘coatli’’, downloadable at
http://sourceforge.net/projects/coatli.

3.2. Proof of Proposition 2.1

Proof. The functions αn(i), βn(i), α
(2)
n (1, i) and β

(2)
n (1, i) have the

form

1
i

n∑
k=2

(n−k
i−1

)(n−1
i

) ck, (59)

with coefficients ck which do not depend neither on n nor on i. We
set

f (n, i) =
1
i

(n−k
i−1

)(n−1
i

) (60)

and have for any 2 ≤ i ≤ n and 2 ≤ k ≤ n(
1 −

i
n

)
f (n, i) +

i − 1
n

f (n, i − 1) =

(
1 −

i
n

)
1
i

(n−k
i−1

)(n−1
i

)
+

i − 1
n

1
i − 1

(n−k
i−2

)(n−1
i−1

) =
1
i
n − i
n

(n−k
i−1

)(n−1
i

) +
1
n

(n−k
i−2

)(n−1
i−1

)
=

1
i

(n−k
i−1

)(n
i

) +
1
i

(n−k
i−2

)(n
i

) =
1
i

(n+1−k
i−1

)(n
i

) = f (n + 1, i).

Together with
( n+1−k

i−1

)
= 0 for k = n + 1 and i > 1 follows the

proposition.

3.3. Proof of Theorem 2.2

The proof is identical to that of Theorem 2.1, except that we can
ignore the relationships between lines.

Proof.

E[S3] = E[(
n∑

k=2

k∑
l=1

ξkl)(
n∑

k′=2

k′∑
l′=1

ξk′ l′ )(
n∑

k′′=2

k′′∑
l′′=1

ξk′′ l′′ )]

=

n∑
k=2

k∑
l=1

n∑
k′=2

k′∑
l=1

n∑
k′′=2

k′′∑
l′′=1

E[ξklξk′1ξk′′1]

(47)
=

n∑
k=2

kE[ξk] +

n∑
k=2

k2E[ξ 2
k1] + 3

n∑
k=2

n∑
k′=2

kk′E[ξk1]E[ξk′1]

+ 2
n∑

k=2

k3E[ξk1] + 3
n∑

k=2

n∑
k′=2

kk′E[ξk1]E[ξk′1]

+

n∑
k=2

n∑
k′=2

n∑
k′′=2

kk′k′′E[ξk1]E[ξk′1]E[ξk′′1]
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=

n−1∑
k=1

1
k
θ + 3

n−1∑
k=1

1
k2

θ2
+ 3(

n−1∑
k=1

1
k
θ )2 + 2

n−1∑
k=1

1
k3

θ3

+ 3
n−1∑
k=1

1
k2

θ2
n−1∑
k=1

1
k
θ + (

n−1∑
k=1

1
k
θ )3.

In the supplement we give an alternative derivation using the
approach of Watterson (1975), which does not rely on coalescent
theory.

4. Discussion

Kingman’s coalescent (Kingman, 1982) is an established model
to describe the patterns of mutations in neutral populations.
For this reason, coalescent methods were used to compute ana-
lytically the expectation and covariance of the frequency spec-
trum (Fu, 1995). Here, we derive for the first time its third
moments. We hope, they add a valuable building block to coales-
cent theory.

Furthermore we show how to compute analytically the bias of
several important neutrality tests. Moreover, we describe the joint
frequency spectrum for triplets of sites (fully characterising their
expected haplotype structure).

The conditional frequency spectrum can be useful to charac-
terise structural variation such as chromosomal inversions and
introgressions (Ferretti et al., 2017). Although structural variants
have been studied already a long time (Corbett-Detig and Hartl,
2012), recent improvements of high-throughput sequencing tech-
nology allow their investigation on a much larger scale (Sudmant
et al., 2015). When alleles are found at intermediate frequency,
it is not obvious, whether they are under balancing selection, on-
going positive selection or just neutrally evolving by genetic drift
(Hoffmann and Rieseberg, 2008). The standard (unconditional)
frequency spectrummight not be well-suited for inferring the fate
of such variants. Especially in regions with an inversion, recombi-
nation can be strongly inhibited (Kirkpatrick, 2010), which allows
to partition the spectrum into nested and disjoint components
with respect to the inverted sequences. Nested/disjoint spectra
can hence be used to extend the class of frequency spectrum
based tests on neutrality to cope with genomic features such as
inversions and introgressions. The proper normalisation of such
tests requires the knowledge of the corresponding variances and
covariances given in Eq. (25).

Note that there is a close relation between the joint spectrum
of multiple sites and the multi-allelic spectrum of a single locus
(Ferretti et al., 2017). In fact, at low mutation rates, we can con-
sider the multiple sites as a single locus with multiple alleles, and
retrieve the multi-allelic spectrum for the locus by considering the
frequencies of them+1 alleles that result from them polymorphic
sites. In this light, our results can be used to derive the full quadri-
allelic frequency spectrum. This could be applied to several multi-
allelic variants, the more relevant being nucleotide polymorphism
(which have at most four alleles A,C,G,T). Related results can be
found in Jenkins and Song (2011) and Bhaskar et al. (2012).
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Abstract

Identifying genomic regions with unusually high local haplotype homozygosity represents a powerful strategy to

characterize candidate genes responding to natural or artificial positive selection. To that end, statistics measuring

the extent of haplotype homozygosity within (e.g. EHH, iHS) and between (Rsb or XP-EHH) populations have been

proposed in the literature. The REHH package for R was previously developed to facilitate genome-wide scans of selec-

tion, based on the analysis of long-range haplotypes. However, its performance was not sufficient to cope with the

growing size of available data sets. Here, we propose a major upgrade of the REHH package, which includes an

improved processing of the input files, a faster algorithm to enumerate haplotypes, as well as multithreading. As

illustrated with the analysis of large human haplotype data sets, these improvements decrease the computation time

by more than one order of magnitude. This new version of REHH will thus allow performing iHS-, Rsb- or XP-EHH-

based scans on large data sets. The package REHH 2.0 is available from the CRAN repository (http://cran.r-project.org/

web/packages/rehh/index.html) together with help files and a detailed manual.
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Introduction

Next-generation sequencing (NGS) technologies have

deeply transformed the nature of polymorphism data.

While population geneticists were, until recently, limited

by the amount of available data in a handful of presum-

ably independent markers, they now have access to

dense single nucleotide polymorphism (SNP) data in

both model and nonmodel species (Davey et al. 2011). In

those species where genome assemblies are available, the

analysis of haplotype structure in a population has

proved useful to detect recent positive selection (Sabeti

et al. 2002). Consider neutral mutations arising in a pop-

ulation: if any of these has, by chance, increased in fre-

quency after a certain period of time, then recombination

should have had time to break down linkage disequilib-

rium (LD) around it, thereby decreasing the length of

haplotypes on which this mutation is located. Common

variants are therefore expected to be old and standing on

short haplotypes. If a mutation is selected for, however,

it should expand in the population before recombination

has time to break down the haplotype on which it

occurred. A powerful strategy to characterize candidate

genes responding to natural or artificial positive selection

thus consists in identifying genomic regions with unusu-

ally high local haplotype homozygosity, relatively to

neutral expectation (Sabeti et al. 2002).

For that purpose, Sabeti et al. (2002) introduced a new

metric, referred to as the extended haplotype homozy-

gosity (EHH), which measures the decay of haplotype

homozygosity as a function of genetic distance from a

focal SNP. Tests of departure of EHH from neutral

expectation were proposed, based on coalescent simula-

tions of demographic history. Voight et al. (2006) later

introduced a test statistic (iHS) based on the standard-

ized log ratio of the integrals of the observed decay of

EHH computed for the ancestral and the derived alleles

at the focal SNP. Finally, cross-population statistics were

proposed, to contrast EHH profiles between populations:

XP-EHH (Sabeti et al. 2007) and Rsb (Tang et al. 2007).

These haplotype-based methods of detecting selection

have been applied on human data (see, e.g., Pickrell et al.

2009; Vitti et al. 2013), a wide range of livestock (see, e.g.,

Flori et al. 2014; Barson et al. 2015; Bosse et al. 2015) and

plant species (see, e.g., Wang et al. 2014; Jin et al. in

press), and also nonmodel species (see, e.g., Roesti et al.

2015; Mueller et al. 2016).
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A few years ago, we developed REHH (Gautier & Vitalis

2012), a package for the statistical software R (R Develop-

ment Core Team, 2016), to detect recent positive selection

from the analysis of long-range haplotypes. Since then, two

alternative programs were released: SELSCAN (Szpiech &

Hernandez 2014), which introduces multithreading to

improve computational efficiency, and HAPBIN (Maclean

et al. 2015), which in addition to multithreading offers con-

siderable gain in computation time thanks to a new compu-

tational approach based on a bitwise algorithm.

Here, we propose a major upgrade of the REHH pack-

age (Gautier & Vitalis 2012), which includes an improved

algorithm to enumerate haplotypes, as well as multi-

threading. These improvements decrease the computa-

tion time by more than an order of magnitude, as

compared to the previous REHH version (1.13), which

eases the analysis of big data sets. Improving computa-

tion times is also useful to evaluate the power and sensi-

tivity of the methods by means of simulations, or for

inference: see, for example, the package COALA for R

(Staab & Metzler 2016), which simulates sequence data

following a given model of evolution and uses REHH to

compute EHH-based summary statistics.

Below we provide a brief overview of the statistics and

tests available in REHH 2.0 and give a detailed worked exam-

ple of the analysis of chromosome 2 in humans (HSA2),

from two HapMap samples: CEU (Utah residents with

Northern and Western European ancestry from the CEPH

collection) and JPT+CHB (Japanese in Tokyo, Japan, and

Chinese from Beijing, China). We use this example as a

guideline to use REHH 2.0. We further show how REHH was

improved since the previous version, and how it compares

to the alternative programs SELSCAN (Szpiech & Hernandez

2014) and HAPBIN (Maclean et al. 2015).

Overview of the EHH-based tests

In this section, we provide an overview of the EHH-

based tests. The rationale of the computations is also

illustrated in Box 1.

Within population tests

The allele-specific extended haplotype homozygosity: EHH. At

a focal SNP and for a given core allele (ancestral or

derived), the allele-specific extended haplotype homozy-

gosity (EHH) is defined as the probability that two ran-

domly chosen chromosomes (carrying the core allele

considered) are identical by descent (IBD) (Sabeti et al.

2002). IBD is assayed by computing homozygosity at all

SNPs within an interval surrounding the core region

(Sabeti et al. 2002). The EHH thus aims at measuring to

which extent an extended haplotype has been transmit-

ted without recombination. In practice, the EHH

(EHHas;t) of a tested core allele as (by convention, as ¼ 1

for the ancestral and as ¼ 2 for the derived allele) for a

focal SNP s over the chromosome interval comprised

between the core allele as and the SNP t is computed as:

EHHas;t ¼
1

nasðnas � 1Þ
XKas ;t

k¼1

nkðnk � 1Þ ðeqn 1Þ

where Kas;t represents the number of distinct haplotypes

(extending from SNP s to SNP t) carrying the core allele

as, nk is the observed count for the kth haplotype, and

nas ¼
PKas ;t

k¼1

nk gives the total number of haplotypes carrying

the core allele as.

The integrated (allele-specific) EHH: iHH. By definition,

irrespective of the allele considered, EHH equals 1 at the

focal SNP and decays monotonically to 0 as one moves

away from the focal SNP (Voight et al. 2006). For a given

core allele, the integrated EHH (iHH) (Voight et al. 2006)

is defined as the area under the EHH curve with respect

to map position. In REHH (Gautier & Vitalis 2012), this defi-

nite integral is computed using the trapezoidal rule. In

practice, the integral is only computed for the regions of

the curve above an arbitrarily defined threshold limehh

(e.g. EHH >0.05). To avoid edge effects at the chromosome

boundaries, iHH integrals are not computed if the left-

most or the rightmost value of the EHH curve stand above

the limehh threshold. Following Voight et al. (2006), we

also introduced the maxgap argument in the calc_ehh

() function, to specify the maximum tolerated gap size

(in bp) in the physical map between any two consecutive

SNPs. Large gaps (e.g. centromeric regions) may indeed

spuriously inflate the area under the EHH curve, which

may result in false positives. Note that Voight et al. (2006)

further applied a penalty (proportional to physical dis-

tances) to the genetic distance between successive SNPs

separated by more than 20 kb when computing the iHH.

We did not implement this option in REHH, although it

might easily be done by modifying the positions of the

markers in the SNP information file.

The standardized ratio of core alleles iHH: iHS. Let UniHS

represents the log ratio of the iHH for its ancestral

(iHHa) and derived (iHHd) alleles (Voight et al. 2006):

UniHS ¼ log
iHHa

iHHd

� �
ðeqn 2Þ

The iHS of a given focal SNP s (iHSðsÞ) is then defined

following Voight et al. (2006) as:

iHSðsÞ ¼ UniHSðsÞ � lpsUniHS

rpsUniHS

ðeqn 3Þ
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where lpsUniHS and rpsUniHS represent, respectively, the aver-

age and the standard deviation of the UniHS computed

over all the SNPs with a derived allele frequency ps simi-

lar to that of the core SNP s. In practice, the derived allele

frequencies are generally binned so that each bin is large

enough (e.g. >10 SNPs) to obtain reliable estimates of

lpsUniHS and rpsUniHS. The iHS is constructed to have an

approximately standard Gaussian distribution and to be

comparable across SNPs regardless of their underlying

allele frequencies. Hence, one may further transform iHS

into piHS (Gautier & Naves 2011):

piHS ¼ � log10 1� 2jU iHSð Þ � 0:5jð Þ ðeqn 4Þ

where U xð Þ represents the Gaussian cumulative distribu-

tion function. Assuming most of the genotyped SNPs

behave neutrally (i.e. that the genomewide empirical iHS

distribution is a fair approximation of the neutral distri-

bution), piHS may thus be interpreted as a two-sided p-

value (in a � log10 scale) associated with the null hypoth-

esis of selective neutrality.

Box 1 An illustrated overview of the EHH-based tests

Box Fig. 1 shows a hypothetical pattern of variation in 8 aligned chromosomes genotyped at 11 single nucleotide

polymorphisms (SNPs). We assume that we can delineate which variant at each position is ancestral and which is a

new (derived) mutation: that is, the variants are ‘polarized’. Furthermore, the physical distance is set to 1000 bp

(1 kb) between any two consecutive variants. The depicted pattern is meant to represent a toy example, where a sin-

gle derived favourable mutation (in red, at position 6 kb) has spread into the population, sweeping genetic variation

in its vicinity.

Chromosome #1

Chromosome #2

Chromosome #3

Chromosome #4

Chromosome #5

Chromosome #6

Chromosome #7

Chromosome #8

1 2 3 4 5 6 7 8 9 10 11

Position (kb)

Box Fig. 1 Schematic view of 11 SNPs in 8 aligned chromosomes. Each of the eight lines symbolizes a chromosome and a filled circle

represents a derived allele at the corresponding SNP position. [Colour figure can be viewed at wileyonlinelibrary.com].

All test statistics used in the REHH package start with the calculation of the (decay of) homozygosity around a focal

SNP. The EHH takes different alleles separately (although Sabeti et al. 2002 used several SNPs to define ‘core SNP

alleles’, it is now customary to compute the EHH for each single SNP, as in the REHH package). By contrast, the EHHS

is calculated at a given SNP for the whole sample of chromosomes.

Let us outline the computation of EHH step by step. We start at the central position (6 kb), extending haplotypes

to the right. We restrict our attention to the stretch extending from this variant to its right neighbour, at position 7 kb.

Since all chromosomes carrying the derived allele (as = ‘der’) at the focal SNP (chromosomes #5 to #8) are identical

within the interval from 6 to 7 kb, we observe only one haplotype (Kanc;7 ¼ 1) and therefore the extended haplotype

homozygosity is EHHder;7 ¼ 1. There are two distinct chromosomes carrying the ancestral allele (as = ‘anc’) at the focal

SNP within the interval from 6 to 7 kb (chromosomes #1 to #4), and hence Kanc;7 ¼ 2: chromosomes #1 and #4 are

identical (n1 ¼ 2), as are chromosomes #2 and #3 (n2 ¼ 2), in the interval from 6 to 7 kb. Therefore, using equation (1)

in the main text:

EHHanc;7 ¼ 1

nancðnanc � 1Þ
XKanc;7

k¼1

nkðnk � 1Þ ¼ 1

4� 3
2� ð2� 1Þ þ 2� ð2� 1Þ½ � ¼ 1

3
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Pairwise population tests

The site-specific extended haplotype homozygosity: EHHS. At

a focal SNP, the site-specific extended haplotype

homozygosity (EHHS) is defined as the probability that

two randomly chosen chromosomes are IBD at all SNPs

within an interval surrounding the core region (Sabeti

et al. 2007; Tang et al. 2007). EHHS might approximately

be viewed as linear combination of the EHH’s for the

two alternative alleles, with some weights depending on

the corresponding allele frequencies. Two different

EHHS estimators, further referred to as EHHSSabeti and

EHHSTang, have been proposed by Sabeti et al. (2007)

and Tang et al. (2007), respectively. For a focal SNP s

over a chromosome interval extending to SNP t, these

are computed as (using the same notation as above):

EHHSSabetis;t ¼ 1

nsðns � 1Þ
X2
as¼1

XKas ;t

k¼1

nkðnk � 1Þ
 !

ðeqn 5Þ
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Box Fig. 2 The EHH at varying distances from the core SNP (at position 6 kb). The EHH decays far more rapidly for the haplotypes

carrying the ancestral variant at the core SNP (blue curve on the left-hand side) than for those carrying the derived variant (red

curve, on the right-hand side). The squared dots represent the example values of EHH computed in the text. In each figure, the

shaded area represents the integrated EHH (iHH), that is the area under the EHH curve: here, iHHa ¼ 1881:67 (left-hand side) and

ihhd ¼ 8916:67 (right-hand side). [Colour figure can be viewed at wileyonlinelibrary.com].

Box Fig. 2 shows the EHH for the focal SNP at position 6 kb, EHHanc;t and EHHder;t, over the full chromosome

interval (from position 1 ≤ t ≤ 11). The bifurcation diagrams in Box Fig. 3 provide another visualization of the

structuring of haplotype diversity around the focal SNP at position 6 kb, representing the breakdown of linkage

disequilibrium at increasing distance from the focal SNP. The integrated EHH (iHH) represents the area under the

EHH curve (see the shaded region in Box Fig. 2). Standard formulas are used to integrate these areas (e.g. the

trapezoidal rule implemented in REHH). To compare the iHH at the ancestral (iHHa) and the derived (iHHd) core

alleles, a test statistic (iHS) is defined by taking the log ratio of iHHa over iHHd. If the decay of EHH is similar for

the ancestral and the derived alleles, the (unstandardized) iHS is small. Outstandingly long haplotypes carrying

the derived allele result in large negative values, while outstandingly long haplotypes carrying the ancestral allele

result in large positive values (Voight et al. 2006). In neutral models, however, high frequency alleles tend to be

older and to be associated with shorter haplotypes than lower frequency alleles, since recombination has had time

to break down the former; this results in older alleles being associated with lower iHH (and younger alleles with

higher iHH). One standardizes the iHS statistic to a Gaussian distribution with zero mean and unit variance,

regardless of the allele frequency at the core SNP. The standardization implemented in REHH was proposed by

Voight et al. (2006) and is detailed in the main text. At this point, the symmetry of the test is broken and polariza-

tion of SNPs is essential.

© 2016 John Wiley & Sons Ltd
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where ns ¼
P2
as¼1

nas and

EHHS
Tang
s;t ¼

1� h
ðs;tÞ
hap

1� h
ðsÞ
all

ðeqn 6Þ

where

• h
ðsÞ
all ¼ ns

ns�1 1� 1
n2s

P2
as¼1

n2as

 !
is an estimator of the focal

SNP heterozygosity

• h
ðs;tÞ
hap ¼ ns

ns�1 1� 1
n2s

P2
as¼1

PKas ;t

k¼1

n2k

 ! !
is an estimator of

haplotype heterozygosity over the chromosome inter-

val extending from SNP s to SNP t.

The integrated EHHS: iES

As for the EHH (see above), EHHS equals 1 at the focal

SNP and decays monotonically to 0 as one moves away

from the focal SNP. At the focal SNP, and in a similar

fashion as the iHH, iES is defined as the integrated

EHHS (Tang et al. 2007). Depending on the EHHS esti-

mator considered, EHHSSabeti or EHHSTang, two different

iES estimators, further referred to as iESSabeti and iESTang,

can be computed.

The standardized ratios of pairwise population iES: XP-EHH.

For a given SNPs, let LRiESSabetiðsÞ (respectively,

LRiESTangðsÞ) represents the (unstandardized) log ratio of

the iESSabetipop1 ðsÞ and iESSabetipop2 ðsÞ (respectively, iES
Tang
pop1ðsÞ

and iES
Tang
pop2ðsÞ) computed in two different populations

(Sabeti et al. 2007; Tang et al. 2007):

LRiESSabetiðsÞ ¼ log
iESSabetipop1 ðsÞ
iESSabetipop2 ðsÞ

 !
and

LRiESTangðsÞ ¼ log
iES

Tang
pop1ðsÞ

iES
Tang
pop2ðsÞ

0
@

1
A ðeqn 7Þ

6000 8000 10 000 12 000 14 000

Bifurcation diagram (ancestral allele)

Position
6000 8000 10 000 12 000 14 000

Bifurcation diagram (derived allele)

Position

Box Fig. 3 Haplotype bifurcation diagrams drawn for the ancestral (left-hand side) and derived (right-hand side) allele of the core

SNP at position 6 kb. This diagram is bidirectional, representing the breakdown of LD at increasing distance: moving away from the

core SNP, each variant is an opportunity for a node; the diagram divides if two alleles are present at this marker (hence defining

two new haplotypes). The thickness of the lines corresponds to the counts of long-distance haplotype in the sample. [Colour figure

can be viewed at wileyonlinelibrary.com].

Now, let us outline the computation of the site-specific EHH (EHHS), which may approximately be viewed as a lin-

ear (weighted) combination of EHH for the ancestral and the derived alleles. The EHHS yields a single value per pop-

ulation (and not per allele, as opposed to the EHH). There are two different definitions of EHHS in the literature (see

Sabeti et al. 2007; Tang et al. 2007), which, in our example, give quite different values; there is, however, to the best of

our knowledge, no demonstrated advantage of one over the other. Here, we will only compute Sabeti et al. (2007)

statistic. Restricting our attention to the stretch extending from the focal SNP at position 6 kb to its right neighbour at

position 7 kb, we get, using equation (5) in the main text:

EHHSabeti
6;7 ¼ 1

n6ðn6 � 1Þ
XKanc;7

k¼1

nkðnk � 1Þ þ
XKder;7

k¼1

nkðnk � 1Þ
" #

¼ 1

8� 7
2� ð2� 1Þ þ 2� ð2� 1Þ þ 4� ð4� 1Þ½ � ¼ 2

7
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The XP-EHH (Sabeti et al. 2007; Tang et al. 2007) for a

given focal SNP are then standardized as:

XP�EHHðsÞ¼LRiESSabetiðsÞ�medLRiESSabeti

rLRiESSabeti
and

RsbðsÞ¼LRiESTangðsÞ�medLRiESTang

rLRiESTang

ðeqn 8Þ

where medLRiESSabeti (respectively, medLRiESTang ) and

rLRiESSabeti (respectively, rLRiESTang ) represent the median

and standard deviation of the LRiESSabetiðsÞ (respectively,
LRiESTangðsÞ) computed over all the analysed SNPs. As

recommended by Tang et al. (2007), the median is used

instead of the mean because it is less sensitive to extreme

data points. As for the iHS (see above), XP-EHH and Rsb

are constructed to have an approximately standard

Gaussian distribution. They may further be transformed

into pXP�EHH or pRsb:

pXP�EHH ¼ � log10 1� 2jUðXP�EHHÞ � 0:5j� �
and

pRsb ¼ � log10 1� 2jUðRsbÞ � 0:5j��
ðeqn 9Þ

where U xð Þ represents the Gaussian cumulative distribu-

tion function. Assuming most of the genotyped SNPs

behave neutrally (i.e. the genomewide empirical distri-

butions of XP-EHH and Rsb are fair approximations of
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Box Fig. 4 The EHHS at varying distances from the core SNP (at position 6 kb), computed following Sabeti et al. (2007). The squared

dot represents the example value of EHHS computed in the text. The shaded area represents the integrated EHHS (iES), that is the

area under the EHHS curve: here, iES = 2553.57. [Colour figure can be viewed at wileyonlinelibrary.com].

Box Fig. 4 shows the EHHS for the focal SNP at position 6 kb, EHHS6;t, over the full chromosome interval (from

position 1 ≤ t ≤ 11). Just as the integrated EHH (iHH) represents the area under the EHH curve, the integrated

EHHS (iES) represents the area under the EHHS curve (see the shaded region in Box Fig. 4). Note that, contrary to

the EHH, the EHHS does not require the polarization of the SNPs. To compare the EHHS between populations, a

test statistic (iES) is defined by taking the log ratio of EHHS measured in population 1 over EHHS measured in

population 2. If the decay of EHHS is similar in both populations, the (unstandardized) iES is small. Strongly posi-

tive (respectively, negative) log ratios indicate outstandingly slow (respectively, fast) decay of EHHS in population

1, relatively to population 2, indicative of positive selection in population 1 (respectively, population 2). As for the

iHS, the iES is standardized, yielding XP-EHH for Sabeti et al.’s (2007) definition of iES and Rsb for Tang et al.’s

(2007).

In reality, variants are obviously not evenly spaced and their relative physical positions are important in the inte-

gration step. However, there are also tests (see, e.g., nSL by Ferrer-Admetlla et al. 2014) which neglect on purpose

this information in order to achieve robustness against varying recombination rate. Although such tests are not

implemented in our package, we assume that setting equal distances between consecutive SNPs should lead to

equivalent results.
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their corresponding neutral distributions), pXP�EHH and

pRsb may thus be interpreted as a two-sided p-values (in

a � log10 scale) associated with a null hypothesis of selec-

tive neutrality. Alternatively, one may also compute

p0XP�EHH or p0Rsb as:

p0XP�EHH ¼ � log10 UðXP�EHHÞ
� �

and

p0Rsb ¼ � log10 UðRsbÞ
�� ðeqn 10Þ

(see Gautier & Naves 2011); p0XP�EHH and p0Rsb may

then be interpreted as one-sided P-values (in a � log10
scale) allowing the identification of those sites dis-

playing outstandingly high EHHS in population pop2

(represented in the denominator of the corresponding

LRiES) relatively to the reference population (pop1).

Materials and methods

A new efficient algorithm to explore haplotype
variability

In the previous version of REHH (1.13), the distribution

of haplotype counts for the entire interval from the

core SNP to the distance x was computed for each x

independently, entailing repeatedly the same calcula-

tions. In the new version of REHH (2.0), the distribution

of haplotype counts for the interval from the core SNP

to the distance xþ 1 is updated consecutively from the

distribution of haplotype counts corresponding to the

interval between the core SNP and x. We have at any

position x an index set that records which sequences

belong to the same extended haplotype (i.e. which

sequences are identical in the corresponding interval).

If the SNP at position xþ 1 has different alleles within

a group of hitherto identical sequences, the index set is

simply enlarged and the group is splitted correspond-

ingly. Since this update does not depend upon the pre-

vious positions (x� 1; x� 2; . . .), the index set does not

need to be stored for each position, which makes the

algorithm memory and, therefore, time effective. The

new algorithm does not affect the output. In particular,

as in the previous version, haplotypes are not extended

over a position where the sequence carries a missing

value.

Human haplotype data

Two HSA2 haplotype data sets were downloaded from

the HapMap project (phase III) (The International Hap-

Map3 Consortium, 2010) website (ftp://ftp.ncbi.nlm.nih.

gov/hapmap/). They consisted of 236 haplotypes of

116 430 SNPs from the CEU and 342 haplotypes from the

JPT+CHB populations, respectively. Further details

about these data (including the phasing procedure) can

be found on the HapMap website. For each SNP, the

ancestral and derived alleles were determined according

to the chimpanzee genome reference (using the db-

snp_chimp_B36.gff annotation file available at ftp://ftp.

ncbi.nlm.nih.gov/hapmap/gbrowse/2010-08_phaseII+

III/gff/). Such ancestral information is indeed required

to carry out iHS-based tests (see above). As a result, 6230

SNPs (5.35%) for which ancestral/derived states could

not be unambiguously determined were discarded from

further analyses leading to a total of 110 200 SNPs per

analysed haplotype.

Computation

For comparison purposes, the different haplotype data

sets were analysed using the software packages REHH

(both the previous version 1.13 and the new version

2.0), SELSCAN (version 1.1.0b) (Szpiech & Hernandez

2014) and HAPBIN (version 1.0.0) (Maclean et al. 2015).

Default options were generally used except for the

minimal threshold on the minor allele frequency

(MAF) that was set to 0.01 for all programs. In addi-

tion, for the SELSCAN program, both the window size

around the core SNPs (--ehh-win option) and the

maximum allowed gap in bp between two consecu-

tive SNPs (--max-gap option) were set to 109 (this

was made to disallow these options that are not con-

sidered in the HAPBIN program). Similarly, the --max-

extent option was inactivated by setting --max-

extent=�1. For the HAPBIN programs (i.e. ihsbin

and xpehhbin), the EHH and EHHs cut-off values

(defined to stop the calculation of unstandardized iHS

and iES) were set to 0.05 (i.e. the default value in

SELSCAN and REHH). For all programs, the standardiza-

tion of iHS was performed with allele frequency bins

of 0.01, as controlled by the freqbin argument in

the ihh2ihs() function of the REHH package, and the

bins argument for the program norm of the SELSCAN

package and the program ihsbin of the HAPBIN pack-

age. The command lines used for the different pro-

grams, together with the corresponding input data

files are provided in the Appendix S1 (Supporting

information).

Finally, for each analysis and parameter set, the real

(actual elapsed) computation time (provided by the Unix

command time) was averaged over ten independent

runs. All analyses were run on a standard computer run-

ning under Linux Debian 8.5 and equipped with an

Intel� Xeon� 6-core processor W3690 (3.46 GHz, 12M

cache). Note that the Unix command taskset was used

to control the number of working threads for the analy-

ses with the HAPBIN programs (since neither the ihsbin

nor the xpehhbin programs allow to chose the number

of threads to be used).
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Results and discussion

Analysis of the human chromosome 2 data sets

For illustration purpose, we used REHH 2.0 to analyse two

human data sets consisting of 236 and 342 haplotypes of

110 200 SNPs mapping to HSA2 that were sampled in

the CEU and JPT+CHB populations, respectively. As for

the performance comparisons described below, default

options were used except that the maximum tolerated

gap (maxgap argument) to report the different statistics

was set to 200 kb. The chromosome-wide scans of iHS

for the CEU and the JPT+CHB populations, respectively,

are plotted in Fig. 1A. The most significant SNP maps at

position 134 705 895 bp for the CEU population

(iHS = �5.36) and at position 202 230 069 bp for the

JPT+CHB population (iHS = �4.99). The chromosome-

wide scans of XP-EHH and Rsb, which contrast EHHS

profiles between the CEU and the JPT+CHB populations,

are plotted in Fig. 1B. The most significant SNP maps at

position 136 533 558 bp for Rsb-based test (Rsb = 6.16)

and at position 136 523 244 bp for the XP-EHH-based

test (XP-EHH = 5.64). For this latter SNP (mapping to

region #5 as defined below), the haplotype bifurcation

diagrams for the ancestral and derived alleles within the

CEU population are plotted in Fig. 1C and Fig. 1D,

respectively, using the bifurcation.diagram()

function from the REHH package. These diagrams, intro-

duced by Sabeti et al. (2002), provide an helpful visual-

ization of the structuring of haplotype diversity around

each core alleles at increasing distance (see Box Fig. 3).

Note that in this example, the extent of haplotype

homozygosity associated with the derived allele

(Fig. 1D), relatively to that associated with the ancestral

allele (Fig. 1C), is consistent with the negative iHS mea-

sure at this SNP (iHS = �3.23).

To further identify regions displaying strong foot-

prints of selection, we split the HSA2 chromosome
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Fig. 1 Analysis of the human chromosome 2 haplotype data sets (hg18 human genome assembly) for the CEU and JPT+CHB popula-

tions with REHH 2.0. (A) Plot of iHS against physical distance, in the CEU (jiHSj in blue) and the JPT+CHB (� jiHSj in red) populations.

(B) Plot of XP-EHH (jXP-EHHj in blue) and Rsb (� jRsbj in red) between the CEU and JPT+CHB populations. In (A) and (B), the hori-

zontal dotted lines indicate the jiHSj significance threshold of 4 that was used to identify significant regions (see Table 1) and the arrows

at the top of the graph indicate the mid-position of the significant regions described in Table 1. We chose to represent jXP-EHHj and
� jRsbj in B) for convenience. The sign of these statistics, which informs on the origin of the signal (in the CEU or the JPT+CHB popula-

tion), is provided in Table 1. (C) and (D) Haplotype bifurcation diagrams drawn for the ancestral and derived allele, respectively, of the

SNP rs7371606 in the CEU population (XP-EHH peak position of region #5 described in Table 1 and containing the LCT gene). In (C)

and (D), the two grey vertical dotted lines delimit the LCT gene. [Colour figure can be viewed at wileyonlinelibrary.com].

© 2016 John Wiley & Sons Ltd

THE R PACKAGE REHH 2 .0 85



into 950 consecutive 500 kb windows (with a 250 kb

overlap). Windows with at least 2 SNPs displaying an

absolute value of the statistic >4 (which approximately

corresponds to a two-sided P-value <10�4, see above)

for at least one of the four test statistics were deemed

significant. Significant overlapping windows were then

merged, leading to a total of nine regions harbouring

strong signals of selection, the characteristics of which

are detailed in Table 1 (see also Fig. 1). As expected,

most of the regions identified here overlap with the

regions identified in previously published genome

scans for samples with the same origin (Voight et al.

2006; Sabeti et al. 2007; Tang et al. 2007) (see Table 1).

For instance, regions #4 and #5 that lie, respectively,

in the vicinity of the EDAR gene (under selection in

Asian populations) and the LCT gene (under selection

in European populations) have been extensively char-

acterized in the literature (e.g., Peter et al. 2012). We

detected more regions than previously reported in the

aforementioned studies, most probably because our

analyses are based on different assessment of signifi-

cance. A more detailed description of the newly iden-

tified regions is, however, beyond the scope of the

present article.

Table 1 Regions of HSA2 harbouring strong signals of selection

ID Position* (size) Candidate gene (position) Test Peak position†
Selected population

(overlab witn other studies‡)

1 9.250–10.00 (0.75) YWHAQ (9.641–9.688) XP-EHH 9.700 (�4.25; 3) JPT+CHB

Rsb 9.701 (�5.03; 4)

iHSCEU 9.700 (2.18; 0)

iHSJPTþCHB 9.732 (3.64; 0)

2 16.75–18.25 (1.50) MSGN1 (17.861–17.862) XP-EHH 17.871 (�4.72; 18) JPT+CHB

Rsb 17.890 (�4.52; 8)

iHSCEU 18.150 (3.69; 0)

iHSJPTþCHB 17.856 (4.51; 2)

3 43.50–44.25 (1.75) ABCG8 (43.919–43.959) XP-EHH 43.955 (�4.85; 2) JPT+CHB

Rsb 43.957 (�4.17; 2)

iHSCEU 44.177 (�3.14; 0)

iHSJPT+CHB 43.783 (3.85; 0)

4 108.00–109.25 (1.25) SULT1C2 (108.271–108.292) XP-EHH 108.273 (�4.41; 19) JPT+CHB (Vo., Ta., Sa.)

Rsb 108.253 (�4.58; 3)

EDAR (108.877–108.972) iHSCEU 109.016 (2.46; 0)

iHSJPTþCHB 108.982 (4.48; 4)

5 134.50–137.25 (2.75) LCT (136.262–136.311) XP-EHH 136.523 (5.64; 17) CEU (Vo., Ta., Sa.)

Rsb 136.533 (6.16; 73)

MCM6 (136.314–136.335) iHSCEU 134.706 (�5.36; 19)

iHSJPT+CHB 134.727 (�3.76; 0)

6 159.00–159.75 (0.75) PKP4 (159.021–159.246) XP-EHH 159.381 (�2.98; 0) JPT+CHB

Rsb 159.380 (�2.88; 0)

iHSCEU 159.745 (2.86; 0)

iHSJPTþCHB 159.293 (4.40; 2)

7 177.00–177.75 (0.75) n.a. XP-EHH 177.338 (�4.82; 16) JPT+CHB (Sa.)

Rsb 177.337 (�4.43; 7)

iHSCEU 177.336 (�2.57; 0)

iHSJPTþCHB 177.108 (3.46; 0)

8 189.75–190.50 (0.75) SLC40A1 (190.133–190.154) XP-EHH 190.195 (�1.11; 0) JPT+CHB

Rsb 190.190 (�1.78; 0)

iHSCEU 190.326 (2.94; 0)

iHSJPTþCHB 190.177 (4.51; 3)

9 196.75–197.50 (0.75) HECW2 (196.772–197.166) XP-EHH 196.794 (2.13; 0) CEU (Ta.)

Rsb 196.755 (2.09; 0)

iHSCEU 197.030 (4.05; 3)

iHSJPTþCHB 197.332 (2.34; 0)

*All the position are given in Mb with respect to the hg18 human genome assembly.

†In parentheses: the value of the test statistics at the peak position; the number of SNPs in the window that have a test statistic (in abso-

lute value) above the threshold of 4.

‡Significant tests of selection found in other studies for the same regions are indicated: Vo. stands for Voight et al. (2006); Ta. stands for

Tang et al. (2007) and Sa. stands for Sabeti et al. (2007).
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Note finally that XP-EHH- and Rsb-based scans gave

consistent results, with the exception of the region in the

vicinity of the LCT gene (#5 in Table 1 and Fig. 1) where

a double peak was observed with Rsb (consistent with

the iHS profile within CEU) and a single peak with XP-

EHH. Yet, the Pearson’s correlation coefficient between

these statistics was equal to 0.843, which illustrates the

close similarity of these two metrics.

Comparing the performances of REHH 2.0 relatively to
REHH 1.13, SELSCAN and HAPBIN packages

The two CEU and JPT+CHB human data sets were fur-

ther analysed with REHH 1.13 to evaluate the gain in real

computation time resulting from the modifications intro-

duced in version 2.0. Note that extensive tests were done

during the development of version 2.0, to ensure that the

same estimates (for the iHH and iES statistics) were

obtained with both versions. Only very marginal differ-

ences were, however, sometimes observed in the esti-

mates of iESTang. For instance, the Pearson’s correlation

coefficient between the resulting Rsb computed across

the CEU and JPT+CHB populations with version REHH

1.13 and REHH 2.0 was found equal to 0.999992 (instead of

1.0). This is actually due to the introduction of the com-

putation of iESSabeti in version 2.0 to estimate XP-EHH.

Indeed, we chose to define the same cut-off value for

both statistics during the computation of the component

variable EHHS (controlled with the option limehhs, set

to 0.05 by default).

An improved processing of the input file

The first major modification introduced in REHH version

2.0 deals with the processing of input files (haplotype

and SNP informationfiles) using the function

data2haplohh(). Our own experience with earlier ver-

sions of the package together with feedback from several

users prompted us to optimize data import and to

improve allele recoding, which was inefficient in previ-

ous versions. Considering standard input haplotype file

format (which is common to both versions), and with

alleles encoded in the appropriate format ({0,1,2} for

missing data, ancestral and derived alleles, respectively),

the new data2haplohh() function is about 2.5 times

faster than the previous one (see Table 2). In addition,

the allele recoding option results in slightly better pro-

cessing performances and corrects for some minor char-

acter conversion issues that sometimes occurred when it

was used with the previous versions. Finally, the new

haplotype format (with haplotypes in columns), corre-

sponding to the output file of the SHAPEIT phasing pro-

gram (O’Connell et al. 2014), was found to be the most

efficient to process (see Table 2).

With data sets of increasing complexity and size, such

improvement in the processing of input files is critical to

REHH users. Processing a data set as large as the JPT+CHB

one (consisting of 342 haplotype with 110 200 SNPs)

now takes <12 s. Note, however, that for this file a maxi-

mum of about 1 Gb RAM was used, for a net memory

size change of 240 Mb. For larger data sets, RAM

requirements may therefore be limiting for some com-

puters.

A faster and parallel algorithm to explore haplotype
variability

The second major modification introduced in REHH ver-

sion 2.0 concerns the core algorithm that computes the

distribution of haplotype counts, which underlies the cal-

culation of all the metrics of interest (iHS, Rsb and XP-

EHH). As shown in Table 3, this new algorithm allows

to decrease the computation times by more than one

order of magnitude, as compared to the algorithm imple-

mented in REHH version 1.13. Hence, for the computation

of iHS in the CEU population (respectively, the JPT+CHB

population) on a single thread, the real computation

times were 13.7 (respectively, 21.8) times smaller on

Table 2 Comparison of the real computation times (in seconds) required to process input data files with the data2haplohh() func-

tion for the versions 1.13 and 2.0 of the REHH package. Two data sets consisting, respectively, of 236 and 342 haplotypes of 110 200 SNPs

for the CEU and JPT+CHB populations were considered (see the main text). For each of these data sets, the table gives the average com-

putation times � standard deviation) across ten independent runs, either with or without (in parentheses) allele recoding (using the

option allele.recode)

Haplotype format CEU haplotypes CHB+JPT haplotypes

REHH 1.13 Standard >36 000* (29.97 � 0.29) >36 000* (34.62 � 0.60)

REHH 2.0 Standard 9.858 � 0.39 (10.73 � 0.16) 14.56 � 0.17 (15.61 � 0.26)

REHH 2.0 Transposed† 7.882 � 0.10 (8.832 � 0.50) 11.80 � 0.20 (12.91 � 0.14)

*As mentioned in the manual, REHH version 1.x is quite inefficient in allele recoding. Versions 1.x are also prone to error (e.g. if some alle-

les are coded as “T”).

†Using the new option haplotype.in.columns=T.
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average. Interestingly, the computation time for the

JPT+CHB data set (which is approximately 1.34 times

larger than the CEU one in terms of number of SNPs �
number of haplotype) was only 1.09 times slower than

for the latter. Conversely, the real computation time was

1.73 times slower for JPT+CHB relatively to CEU with

REHH version 1.13. As shown in Fig. 2, a more detailed

(yet empirical) profiling confirmed that the computa-

tional burden was approximately linearly related to the

number of haplotypes but suggested an exponential rela-

tionship with the number of SNPs. Nevertheless, the

increasing rate of the per SNP computation time

remained small (<2 ms for every 100 000 additional

SNPs).

To further improve computational speed, the charac-

terization of haplotype structure is now performed using

OpenMP parallelization across SNPs in genome-wide

scans. Using four threads then leads to an additional

decrease of about 3.5 times in computation times (see

Table 3). Parallelization might alternatively be performed

at a higher level, using the R package parallel, by ana-

lysing different chromosomes on different threads. Our

motivation for a low-level OpenMP implementation was

to reduce the computational burden, as well as the mem-

ory requirements: it is indeed more efficient to parallelize

the computation of EHH-related statistics for a given

chromosome (which requires to store haplotype data for

a single chromosome in the RAM), rather than to paral-

lelize the computation of EHH-related statistics across

chromosomes (which would require to store haplotype

data for several chromosomes simultaneously).

Overall, the whole analysis of the HSA2 haplotype

files used in this study took about 1.5 min (including

the processing of input files) with REHH 2.0 and more

than 1.3 h with REHH 1.3. This corresponds to the com-

putation of iHS within the CEU and within the

JPT+CHB populations, as well as the computation of

Rsb and XP-EHH.

Comparing REHH 2.0 to the SELSCAN and HAPBIN

programs

Finally, we compared REHH 2.0 with SELSCAN (Szpiech &

Hernandez 2014) and HAPBIN (Maclean et al. 2015),

which were recently published. Both programs are

Table 3 Comparison of the real computation time (in seconds) required to compute the different EHH-based statistics for the versions

1.13 and 2.0 of the REHH, the SELSCAN and the HAPBIN packages. For each analysis, the table gives the average computation time (� stan-

dard deviation) across ten independent runs. For each program, analyses were run either on a single thread or on four threads (except

for REHH 1.13 version, which is not parallelized)

Program #threads iHSceu iHSchbþjpt XP-EHH Rsb Total*

REHH 1.13 1 1759 � 29 3045 � 31 n.a. 4803 � 58 4805 � 58

REHH 2.0 1 128 � 1.0 140 � 2.1 268 � 1.8 268 � 1.8 269 � 1.8

4 37.8 � 0.3 40.2 � 0.3 77.1 � 0.5 77.1 � 0.5 78.5 � 0.5

SELSCAN 1 1237 � 17 1503 � 29 3833 � 100 n.a. 6573 � 86

4 324 � 6.5 391 � 6.5 969 � 5.6 n.a. 1684 � 9.3

HAPBIN 1 17.6 � 0.2 20.0 � 0.1 47.4 � 0.2 n.a. 85.0 � 0.3

4 5.68 � 0.7 7.42 � 0.1 13.2 � 0.0 n.a. 26.2 � 0.7

*In REHH, the function scan_hh computes iHH and iES simultaneously. It therefore needs to be run only once per haplotype data set.

As a result, computing XP-EHH (and/or Rsb) requires almost no extra time, once iHS for the two populations has been computed.
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Fig. 2 Empirical profiling of the scan_hh() function that com-

putes iHH and iES. Real computation times (in seconds) were

estimated for 10 random samples of 1000, 10 000, 25 000, 50 000

and 75 000 SNPs, respectively, taken from the n ¼ 236 CEU

(blue) and n ¼ 342 JPT+CHB (red) haplotypes by running the

scan_hh() function with default options (i.e. on a single

thread). For each set of SNPs, the resulting average computation

time per 1000 SNPs is plotted against the corresponding num-

bers of SNPs. Dotted lines represent the estimated regression

lines with the underlying estimated regression coefficients (b̂)
indicated in the legend. [Colour figure can be viewed at wile

yonlinelibrary.com].
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written in C++ language and include parallelization.

Computation times for the different analyses, either on

a single or four threads, are provided in Table 3. The

new version of REHH outperforms SELSCAN by about one

order of magnitude. Moreover, running REHH on a sin-

gle thread is still more than twice as fast as running

SELSCAN on four threads. It should also be noticed that

running a full analysis consisting of the estimation of

iHS within and XP-EHH between the CEU and

JPT+CHB populations results in a significant additional

burden with SELSCAN (Table 3). Conversely, HAPBIN was

found to be more than five times faster than REHH 2.0,

most likely as a result of its more efficient algorithm to

explore haplotype variability. Yet, given the small com-

putation times achieved by both programs, REHH 2.0

remains competitive relative to HAPBIN for most practi-

cal applications.

Correlations between the estimated iHS and XP-EHH

obtained with the different programs are given in

Table 4. Estimates of XP-EHH were in very good agree-

ment among the different software packages. Similarly,

estimates for iHS were almost the same between REHH 2.0

and SELSCAN but slightly depart from those obtained with

HAPBIN. Although we did not further investigate the ori-

gin of these discrepancies, this might probably be related

to a different definition of haplotype homozygosity in

HAPBIN, as compared to Sabeti et al. (2007) (see the defini-

tion of EHH in the Supplementary Material of Maclean

et al. 2015).

Conclusion

Although the R package REHH (Gautier & Vitalis 2012) has

been widely used since its first release, the increasing

dimension of haplotype data sets typically available in

most species led to serious limitations. This stimulated

the development of alternative R-free solutions (Szpiech

& Hernandez 2014; Maclean et al. 2015). In this study, we

introduced substantial changes in the REHH package to

improve its computational efficiency by one to several

orders of magnitude. This was achieved by modifying

the processing of the input files and, most importantly,

by improving and parallelizing the core algorithm that

computes the distribution of haplotype counts. As a

result, REHH 2.0 clearly outperforms the SELSCAN package

(Szpiech & Hernandez 2014) and competes with HAPBIN

(Maclean et al. 2015), the fastest program to date. A deci-

sive advantage of REHH 2.0 over these programs is that it

allows working within the multiplatform R environment.

As such, it benefits from several graphical tools that facil-

itate visual interpretation of the results.
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3 Discussion

The four articles reprinted in the last chapter will be commented on each separately, followed by general
conclusions.

3.1 Demography-adjusted tests of neutrality

The study on demography-adjusted tests can be regarded as an amalgamation of two previous achieve-
ments: the adaptation of TAJIMA’s D and a few similar tests to allow for non-trivial demographies, carried
out by Živković and Wiehe [2008], and the observation that these tests, in their standard version, can be
regarded as instances of a whole family by [Achaz, 2009]. We extended the frame-work of the latter to
include the demography-adapted versions of the former. This placement into a unifying scheme substan-
tially facilitates the computational implementation of the tests as well as the development of further tests
of the same family.

Additionally, we were able to estimate the parameters of a simple model of stepwise population size
changes for the non-admixed populations of phase 1 of the 1000 genomes project. The integration of
these parameters into tests like TAJIMA’s D and others yielded the desired result of approximately normal-
ized distributions of the test statistics. However, it became clear during the course of the study, that since
the adaptation of the tests is done once and then applied to the whole genome, it does not resolve the es-
sential problem that the effects of demography may vary across the genome [Jensen et al., 2005]. Instead,
our simulations led us to underline the conclusion of Živković and Wiehe [2008] that severe population
size changes, unlike those we observed for humans, but like the very strong bottleneck estimated for a
population of European fruit flies, essentially flatten out the distribution of the test statistics and cannot
be remediated by the incorporation of demography (cf. Figure 8 therein). Nevertheless, the endeavour
clarified somewhat the potential and the limits of adaptability of frequency spectrum based tests.

Another aspect was the comparison of a whole-genome scan for selection using TAJIMA’s D with a study
performed roughly ten years earlier [Carlson et al., 2005]. Although we tried to re-apply faithfully their
methods, the regions found, called “contiguous regions of TAJIMA’s D reduction (CRTR)” showed mea-
gre overlap between corresponding populations of both studies. Without doubt this partly owes to dif-
ferent sources of data: our sample sizes were roughly four time larger and only the European samples
represented the same population; and we used unbiased SNPs, deriving from whole-genome sequencing,
yielding an approximately 20 times higher number of SNPs. Furthermore, we found that the definition of
CRTR is vulnerable to slight variations within the data. In order to estimate the sample noise, we com-
puted for each population the CRTRs in four random sub-samples of similar size as those in Carlson et al.
[2005] and found that only half of the CRTRs of each sub-sample were shared with the remaining three
sub-samples.

The TAJIMA’s D values calculated by Carlson et al. [2005] are currently (march 2018) still available as
tracks within the UCSC Genome Browser [Kent et al., 2002] for the human genome assemblies hg17 and
hg16, while for newer assemblies no corresponding tracks are offered by UCSC and only for three pop-
ulations by others [Pybus et al., 2014]. To fill this gap, the test statistics calculated by us have been re-
formatted as tracks for assembly hg19. They are available via the homepage of the Bioinformatics group
at the Institute of Genetics, University of Cologne, and can be added either by upload or a simple URL
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copy&paste to the UCSC Genome Browser track panel. Figure 3.1 presents screen-shots of those tracks
for three populations around the gene EDAR, which in both scans formed part of a CRTR. The values of
Carlson et al. [2005] are skewed towards higher values, reflecting the ascertainment bias caused by the
over-representation of common variants in the SNP array used for genotyping. The influence of popula-
tion demography, which is supposed to affect the whole genome, can be seen in the difference between
the tracks in the middle showing the standard test values and those at the bottom which derive from the
demography-adjusted tests. Although the effect is weak, it is tempting to see in the slightly negative values
of the original TAJIMA’s D in the African population a weak signal for selection, although, in fact, demo-
graphy included, they oscillate around zero. The tracks of Carlson et al. [2005] and ours look very similar,
implying that their information content is comparable. Thus, a disproval of the approach of Carlson et al.
[2005] on the ground of SNP ascertainment bias as “largely meaningless” [Wang et al., 2006] seems not
warranted.

3.2 The neutral frequency spectrum of linked sites

The joined spectrum of two linked loci within a non-recombining genomic region together with a classifi-
cation of the possible relations between the loci allows to define one-dimensional spectra conditioned on
the existence of a certain focal mutation. These spectra differ markedly from the unconditional spectra.
With other words, an average frequency spectrum containing a mutation of a certain size does not con-
form to the 1

x rule of the unconditional spectrum. This causes a distortion of test statistics like TAJIMA’s D
with the effect being largest for an almost fixed focal mutation (Figure 4 of the article). We show a way to
modify such neutrality tests to accommodate for conditional spectra.

The development of tests for a conditional spectrum was aimed for cases where a naturally outstanding
mutation can be taken as the focal mutation such as a chromosomal introgression or inversion. Introgres-
sions can occur, if sister species are not yet entirely separated and matings lead to a certain hybridization
[Hedrick, 2013]. Modern humans, for instance, have experienced introgressions from Neanderthals and
Denisovans, identified and scanned for selection with a specialized set of summary statistics by Racimo
et al. [2017]. Additionally, there is evidence that polymorphic inversions abound in humans [Sudmant
et al., 2015b]. However, the amount of reliable data for inversions lags behind other structural variants
such as copy number variation, for which more effective experimental methods are available [Feuk et al.,
2006] and on which already whole-genome scans for selection have been undertaken [Sudmant et al.,
2015a]. In principle, inversions can be recognized by comparing two alternative assemblies of the human
genome [Tuzun et al., 2005; Feuk et al., 2005; Vicente-Salvador et al., 2017]. This is laborious, though,
and within the 1000 genomes project they were inferred computationally from the alignment of short
and long reads to the reference sequence, yielding 768 predicted polymorphic inversions of size 250b-
50kb [Sudmant et al., 2015b]. The false positive rate of this approach is high, though, and a validation by
other experimental methods needed [Vicente-Salvador et al., 2017]. A few individual inversions have been
characterized in detail [Antonacci et al., 2009]. A particularly well studied case is an inversion at the chro-
mosomal position 17q21.31, which was discovered through its extended strong linkage disequilibrium,
caused presumably by substantially reduced (but not entirely absent [Deng et al., 2011]) recombination
between the two arrangements [Stefansson et al., 2005]. One of the orientations turned out to be rare
in Africans and Asians, yet obtaining frequencies up to 33.7% in Southern Europeans [Alves et al., 2015].
This variant is clearly of medical relevance: it is positively correlated with fertility in women [Stefansson
et al., 2005] while at the same time, it is prone to a further structural mutation, a so-called microdeletion,
causing mental retardation [Rao et al., 2010; Boettger et al., 2012].

Figure 3.2 supplements the evolutionary scenarios of Figure 1.2 by an inversion. The standard frequency
spectrum would be dominated by fixed differences between introgressed and non-introgressed parts and
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Figure 3.1: TAJIMA’s D values in a genomic region around the gene EDAR on human chromosome 2, ren-
dered by the UCSC Genome Browser [Kent et al., 2002]. Top: tracks by Carlson et al. [2005] for Americans
of European (ED), African (AD) and Chinese (XD) ancestry, coordinates 108.300.000-109.200.000 in hg17.
Middle/bottom: tracks of original and adjusted values from Rafajlović et al. [2014] for populations YRI,
CEU and CHB, coordinates 108.840.000-109.740.000 in hg19. The values were calculated in sliding windows
of size 100kb with an offset of 10kb.
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Figure 3.2: Schema of an introgression. The dashed line at the root symbolizes a split from a common
ancestor to another species not entirely separated, which hybridizes at a later stage. Both species accu-
mulate fixed mutations during this supposedly relatively long time, marked in grey and red, respectively.
The introgressed region itself or fixed mutations on it can be taken as focal mutation(s). In reality fixed
mutations would make up the bulk of variation seen in the sample, and in fact, enable the inference of an
occurred introgression. However they do not confer information about the evolution of that region after
the event. This information is contained only in the conditional spectra of nested and disjoint mutations.
A further complication arises because mutations that are in reality “enclosing” cannot be recognized as
such from the aligned sequences. In order to model the observable spectra correctly they have to be as-
cribed as depicted to disjoint mutations.

tests based on it would be likely to infer mistakenly balancing selection. Since mainly the fate of the
introgression in its now host population is of interest, only mutations that still segregate within either the
introgressed or the non-introgressed part of the sample are informative. These we baptized strictly nested
and strictly disjoined respectively, the focal mutation consisting of the inversion itself (see Figure 1 of the
article). They constitute the two frequency spectra seen on the right of Figure 3.2. Inversions, by contrast,
could in principle simply be re-oriented to yield a standard full frequency spectrum. However, only 20% of
the putative inversions found by Sudmant et al. [2015b] conformed to a model of clear-cut re-orientation,
while the bulk was accompanied by further structural rearrangements.

In the following, an example is given on how a test based on the frequency spectrum, yet conditioned
on a specific focal mutation might look like.

The expected spectra of a conditional spectrum are given in the article. For a focal mutation of size
k and further mutations of size l the “strictly nested” and “strictly disjoint” mutations have expectation
values of respectively

E
[
ξ(n)

l |k
]
= 1

2

(
βn(l )−βn(l +1)

)
k θ for l = 1, . . . ,k −1 (3.1)

E
[
ξ(d)

l |k
]
=

(
1

l
− 1

2

(
βn(k)−βn(k +1)+βn(l )−βn(l +1)

)
k

)
θ for l = 1, . . . ,n −k −1 . (3.2)

with βn(i ) as in Eqs. (1.24), (1.25).

As mentioned above, introgressions cause the further complication that all “enclosing” mutations “sur-
vive” only on branches disjoint to the introgression. These mutations have to be added to the disjoint
spectrum (see right panels of Figure 3.2) to yield a new disjoint spectrum for mutations of size l = 1, . . . ,n−
k −1:

E
[
ξ(d/Intr o)

l |k
]
= E

[
ξ(d)

l |k
]
+E

[
ξ(n)

(l+k)|k
]

. (3.3)

We can combine now both spectra as ξ = (ξ(n),ξ(d)) = (ξ(n)
1 , . . . ,ξ(n)

k−1,ξ(d)
1 , . . . ,ξ(d)

n−k−1) and use the frame-
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work of Achaz [2008], presented in section 1.4 to construct tests using this spectrum in form of Eq. (1.12)

TΩ = Θ̂ ·Ω
Var(Θ̂ ·Ω)

, (3.4)

with estimators Θ̂= ( ξ1

ξ0
1

, . . . , ξn−2

ξ0
n−2

) relying on the combined expected frequency spectra ξ0
1, . . . ,ξ0

n−2 of nested

and disjoint mutations. For any weighting Ω the nominator can be calculated by Eq. (8) of the first
reprinted article

Var(Θ̂ ·Ω) = θ
n−1∑
i=1

Ω2
i

ξ0
i

+θ2
n−1∑

i , j=1

Ωi

ξ0
i

σ0
i j

Ω j

ξ0
j

, (3.5)

where σ0
i j are the quadratic terms of the covariance matrix Cov[ξi ,ξ j ] for θ = 1. Under neutrality, these

covariances are a corollary of the third moments presented in the third article.

3.3 The third moments of the site frequency spectrum

The main result of this article is an extension of Eq. (1.22) to the third moments:

E [ξhξiξ j ] =δh=i= j
1

i
θ+ (

δh=iτi j +δi= jτh j +δ j=hτhi
)
θ2 +τhi jθ

3 (3.6)

with terms τi j as defined by Eq. (1.23) and new terms τhi j given by

τhi j =
∑

Permutations(h,i , j )
taa(h, i , j )+ tab(h, i , j )+ tba(h, i , j )+ tbb(h, i , j ) . (3.7)

The functions taa , tab , tba and tbb contain less closed expressions than the corresponding functions ta

and tb of Eqs. (1.24) and (1.25) for the second moments, but are computationally tractable for sample size
n up to the order 103.

A simple corollary of the third moments are the second moments of conditional spectra, i.e. the covari-
ance of two mutations of size i and j , given a third mutation of size h, which can be subdivided into nested
and disjoint parts: E [ξ(n)

i |hξ
(n)
j |h], E [ξ(n)

i |hξ
(d)
j |h], E [ξ(d)

i |hξ
(n)
j |h] and E [ξ(d)

i |h ,ξ(d)
j |h], given by Eq. (25) of the article.

A weighting scheme for a test on neutrality using the combined nested and disjoint conditional spectra
as in Eq. (3.4) can thus be calculated by the following way: let ξ0

i := E [ξi |θ = 1] be any expected spectrum
(conditional or not) under a null-hypothesis, C the matrix ci j = ci j (θ) = Cov[ξi ,ξ j ] = δi jξ

0
i θ+σ0

i jθ
2 and

ξA
i the spectrum of an alternative scenario. A test of the form 1.12 can be “optimized” for the detection of

the alternative scenario by the weights given in Ferretti et al. [2010b, Eq. (S21)]

Ωi =
∑

j ξ
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i j ξ
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∑

j ξ
0
i c−1

i j ξ
A
j

−
∑

j ξ
0
i c−1

i j ξ
0
j∑

i
∑

j ξ
0
i c−1

i j ξ
0
j

, (3.8)

which reduces in the limit θ→ 0 to

Ω= 1∑
j ξ

A
j

ξA − 1∑
j ξ

0
j

ξ0. (3.9)

In the following, a small, analytically tractable example of such a test will be given. Assume a very sim-
plified scenario of two variants under long-term balancing selection so strong that the affected region
behaves like that of two separated populations without migration. Assume further that each “population”
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evolves neutrally, so that we can select any of the two variants as focal mutation. Then, strictly nested
as well as strictly disjoint variants both display a neutral spectrum. If we finally assume that the sample
frequency of the focal variant k

n approximates its population frequency, then the conditional spectrum
has expectation values

E [ξ(n)
l |k ] = 1

l

k

n
θ for l = 1, . . . ,k −1 , (3.10)

E [ξ(d)
l |k ] = 1

l

n −k

n
θ for l = 1, ..,n −k −1 . (3.11)

This scenario will be contrasted with one where the focal mutation rose purely by genetic drift to its cur-
rent frequency. In this case, nested and disjoint spectra are given by Eqs. (3.1, 3.2).

The above test will be compared with a simpler one which goes back to an idea of Stefansson et al.
[2005]. They compared the amount of variation contained within the two opposite parts of an inversion,
respectively. Critical values were obtained by simulations. It is possible to integrate this idea into our
general framework. Let k be the frequency of the focal mutation, S(n) the number of strictly nested vari-
ants and S(d) the number of strictly disjoint sites. Under long term balancing selection we expect to yield

S(n)

S(n)+S(d) ≈ k
n or n

k S(n) − n
n−k S(d) ≈ 0. We can create two estimators of θ analogous to Watterson’s θ̂S :

θ̂S(n) = S(n)
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with ω(n)
i = ξ0(n)

i |k∑k−1
j=1 ξ

0(n)
j |k

for i = 1, . . . ,k −1 and ω(d)
i = ξ0(d)

i |k∑n−k−1
j=1 ξ0(d)

j |k
for i = 1, . . . ,n −k −1. The difference of the two

estimators is described by the weighting Ω = (ω(n)
1 , . . . ,ω(n)

k−1,−ω(d)
1 , . . . ,−ω(d)

n−k−1), thereby subsuming the
“simple” test into the general framework of Achaz [2009].

The tests presented in introductory section 1.4 all assume neutral evolution as null hypothesis and some
selection scenario as alternative. However, in contrast to selective sweeps, the time scales of neutral evo-
lution and balancing selection largely overlap, since two variants can co-exist for a long time even without
any selection. Hence any test designed to distingiush between the two scenarios is expected to have lim-
ited power. Simulations show, that it is easier to reject balancing selection than neutrality and for this
reason, the power of the tests, using the former as null hypothesis, is presented in Figure 3.3. The first
proposed test can be applied on the unfolded spectrum of nested and disjoint variants or on the corre-
sponding folded spectra, where instead of the derived variant frequency the minor variant frequency is
taken (formulas not shown). For the second, “simple” test that makes no difference. It can be seen that
the folded conditional spectra does not give any added value to the mere number of nested and disjoint
segregating sites. For values of k < n

2 , the first test can exploit the extra information contained in the
unfolded conditional frequency spectrum to yield a higher power.

3.4 A reimplementation of the R package REHH

The main difference between versions 1.xx and 2.0 of the R package REHH consists in an increase of per-
formance. Although technical in nature, it is a prerequisite to perform analyses on data sets of currently
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Figure 3.3: The power of the two tests defined in
the text, calculated by coalescent simulations with
θ = 100. The null hypothesis of balancing selection
is tested against the alternative of neutral evolution.
The sample size is n, the frequency of the focal mu-
tation k. The significance level chosen was α = 0.05
on one side. Used are only strictly nested and strictly
disjoint mutations. “Unfolded” means that these can
be polarized, “folded” means that they cannot (first
test). The second, “simple” test uses only the num-
ber of variants and ignores polarization.

available size. While the first package needed up to a month to evaluate SNP data of a single chromosome
in a sample of 100 individuals, the updated package can cope with the whole genome and same sample
size within hours. The jump in computing velocity owes to the implementation of an efficient algorithm
as well as the introduction of multi-threading. It is unlikely that major further gains in speed can be
achieved. Current lines of software development hence focus on a broadening of the range of processible
data. At present, the input data, consisting usually of SNPs, needs to be polarized and phased before-
hand. Although nowadays a standard procedure for most human SNPs, both cannot be easily undertaken
for less well investigated species or fragmentary sequencing/genotyping. Hence the need to relax some
of the assumptions underlying the implemented statistics. For instance, if sequences are not phased, the
test statistics like EHH can still be calculated on individuals that are homozygous at the SNP under inves-
tigation [Wang et al., 2006], although such a restriction leads inevitably to an appreciable loss of statistical
power.

3.5 Conclusions

Since the inception of the “neutral theory” during the 1960 years, there is an on-going dispute over the
limits of its validity, namely the portion of variants evolving under the influence of selection [Kimura,
1983; Nei, 2013]. Instead of “directly addressing the problem” by application of neutrality tests [Williamson
et al., 2007], the argument is now over the amount of their “false positives” [Nei et al., 2010; Barrett and
Hoekstra, 2011]. The reason to doubt claims about selection based on summary statistics of genomic data
owes chiefly to the scarce mutual overlap between findings of individual studies [Akey, 2009; Hermisson,
2009]. Surely, the latter can be partly explained by the somewhat arbitrary attribution of the selection
scenario to extreme values of test statistics, be it with or without comparison to a simulated null model
[Kelley et al., 2006]. In any case, extreme values, even if called “outliers”, are often not isolated, but part of a
continuous distribution and statistical noise in the data might easily lead to a slight change in the order of
values which in turn can yield very different sets of “candidate regions” as discussed in the first reprinted
article. Yet behind this discussion, admittedly of little worry for the practical geneticist or medical doctor,
lie different conceptions on evolution in general. I’ll try to sort them in the following way:

α) Frequent and recurrent selective sweeps affect the whole genome [Braverman et al., 1995]. The fate
of a neutral mutation is either to be driven to fixation or to be swept away, depending on whether
it arises in linkage with a selected mutation or not. This concept is known under the name “ge-
netic draft” [Gillespie, 2004] and is appropriate for very fast evolving organisms like HIV, but not for
humans [Neher, 2013].

β) Classic selective sweeps are the dominant form of evolution, but affect only a minor part of the
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genome, say 10% in humans [Williamson et al., 2007; Enard et al., 2014].

γ) Classic selective sweeps are just one of several forms of evolution by selection. Others include a
softening of the sweep model in the sense that selection does not continue from the emergence of
a mutation until its fixation, but alternates with phases of neutral evolution. Moreover, quantitive
traits may be governed by polygenic selection [Pritchard et al., 2010; Hernandez et al., 2011; Stephan,
2016].

δ) Mutations can be advantageous only in the appropriate genomic background, which in turn evolves
neutrally. In this view, it is the context that decides whether a mutation is selected for. Neutral
mutations can be functionally as important as selected ones and hence the hoped-for prioritization
of variants by the application of neutrality tests is flawed [Nei, 2013].

In the following, I’ll comment on three specific points that are related to the above topic.

3.5.1 Whole genome scans help to assess test values at individual loci

Presumably for the relatively long time that the frequency spectrum keeps traces of past selection [Sabeti,
2006], Stoneking [2017] filed the tests based on it under species-wide detection of selection and reserved
regional selection for haplotype based tests. He gave two examples of genes claimed to have been under
selection in the entire human species, yet admitted that the claims had proven erroneous. Nevertheless,
both cases are instructive. The first concerns a variant in the gene PRNP, supposedly experiencing in the
past world-wide balancing selection. Since in a well-studied case in Papua New Guinea balancing selec-
tion on that gene was shown to be an indirect consequence of ritual cannibalism, this cultural practise
was implied for mankind in general. It turned out, though, that simple ascertainment bias of the used
world-wide SNP data set caused the gene to show an over-representation of middle frequency variants,
mistaken as signal for balancing selection [Soldevila et al., 2006]. The other case regards two mutations
in the gene FOXP2, associated with articulation and comprehension of spoken language. Allegedly, these
mutations were fixed only recently in humans under the influence of strong positive selection [Enard et al.,
2002]. This was spectacularly disproven by the authors themselves who found the modern variants in the
sequence of Neanderthals, excluding thereby a recent origin [Krause et al., 2007]. The reason why the au-
thor’s case for selection failed, seems not to have been investigated so far. However, a closer look on their
data suggests that neglection of population structure is to blame (Figure 3.4).

It is highly noteworthy that both errors could have been avoided, had whole-genome data been avail-
able for comparison at the time. Although anecdotical, these two cases are well in line with the observa-
tion of Sabeti [2006] that many early studies, analyzing a single gene, had come up with similar claims,
of which most could not be corroborated later by genome-wide data. Incidentally, the two genes G6PD
and CD40LG, used by Sabeti et al. [2002] to introduce the LRH test and demonstrate its power, are not
among the, admittedly restrictive, set of candidate loci found by its whole genome application by The
international HapMap Consortium [2005].

3.5.2 Recent completed selective sweeps are rare in humans

Some studies explicity claim to detect completed selective sweeps. For instance the SWEEPFINDER “con-
siders a model of a complete selective sweep in which the beneficial allele reaches a frequency of 100%”
[Williamson et al., 2007]. Yet a single completed selective sweep should lead to at least dozens of fixed
derived variants. Assuming that recent sweeps are predominantly caused by regional selective pressures,
as is sub-understood in studies that concentrate on regional populations, these sweeps should lead to
many SNPs with extreme differentiation among subpopulations. However, as tables 3.1 and 3.2 show,
only a handful of SNPs do so except for comparisons between African and East Asian populations. But
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Figure 3.4: Haplotype structure within the gene FOXP2. Enard et al. [2002] sequenced a region of 14kb
within an intron of the gene. Here, the variants found (ibid., spreadsheet in supplementary material) are
given in graphical form. On the y axis are the 20 sequenced individuals. On the x axis are the variant
identifiers of dbSNP [Sherry, 2001]. One variant is not (yet) contained in this database and its coordinates
with respect to human assembly hg38 are given instead. There are 7 derived variants of size n-1=39 and
another high frequency derived variant of size 35. These cause the value of FAY&WU’s H to be significant
at the 5% level. As main evidence for strong selection served the value of TAJIMA’s D which was with -2.2
significant at the 1% level. Although the possibility of confounding population structure was aknowleged,
it was deemed negligible. However, a closer view on geographical regions shows that it is not: TAJIMA’s
D in the regions East Asia/Pacific/South America, Europe+Iran and Africa has a value of -1.7, 0.6 and -1.8
respectively. The positive sign for the Europe+Iran subsample is inconsistent with species-wide selection.
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Africa Europe South Asia East Asia
ESN GWD LWK MSL YRI CEU FIN GBR IBS TSI BEB GIH ITU PJL STU CDX CHB CHS JPT KHV

A
fr

ic
a

ESN - 0 0 0 1 6 1 7 0 6 1 6 1 1 1 10 21 11 24 10
GWD 0 - 0 0 3 6 3 5 3 4 4 5 3 2 2 1 7 3 8 8
LWK 0 0 - 0 0 2 2 1 1 2 4 2 2 2 2 1 2 2 2 1
MSL 0 0 0 - 2 4 2 4 2 5 3 5 1 1 1 29 7 4 8 6
YRI 1 3 0 2 - 0 0 0 0 0 3 0 2 2 3 55 13 9 12 1

E
u

ro
p

e

CEU 6 6 2 4 0 - 0 0 0 0 8 1 6 7 9 2 2 1 1 2
FIN 1 3 2 2 0 0 - 0 0 0 0 0 0 0 0 1 1 1 1 1
GBR 7 5 1 4 0 0 0 - 1 0 6 0 5 6 7 2 1 1 1 1
IBS 0 3 1 2 0 0 0 1 - 0 1 0 0 0 1 1 1 0 0 1
TSI 6 4 2 5 0 0 0 0 0 - 5 0 6 5 6 1 1 1 1 1

So
u

th
A

si
a BEB 1 4 4 3 3 8 0 6 1 5 - 6 0 0 0 0 7 0 10 8

GIH 6 5 2 5 0 1 0 0 0 0 6 - 7 5 6 0 0 0 0 0
ITU 1 3 2 1 2 6 0 5 0 6 0 7 - 0 0 0 7 0 10 7
PJL 1 2 2 1 2 7 0 6 0 5 0 5 0 - 0 1 6 0 9 7
STU 1 2 2 1 3 9 0 7 1 6 0 6 0 0 - 0 6 0 10 7

E
as

tA
si

a

CDX 10 1 1 29 55 2 1 2 1 1 0 0 0 1 0 - 0 1 0 0
CHB 21 7 2 7 13 2 1 1 1 1 7 0 7 6 6 0 - 0 0 0
CHS 11 3 2 4 9 1 1 1 0 1 0 0 0 0 0 1 0 - 0 0
JPT 24 8 2 8 12 1 1 1 0 1 10 0 10 9 10 0 0 0 - 0
KHV 10 8 1 6 1 2 1 1 1 1 8 0 7 7 7 0 0 0 0 -

Table 3.1: Differentiation between non-admixed populations of the 1000 genomes project. Listed are
the number of SNPs which have a FST value of 1 (autosomes only). The amount for the population pair
CDX and YRI sticks out. However, 46 of these SNPs lie within the gene EXOC6B and 8 within the gene
DOK5. Similarly, 24 of the SNPs from the comparison MSL with CDX lie in the gene EXO6B. In most other
comparisons, by contrast, the SNPs appear not to be clustered.

Africa Europe South Asia East Asia
ESN GWD LWK MSL YRI CEU FIN GBR IBS TSI BEB GIH ITU PJL STU CDX CHB CHS JPT KHV

A
fr

ic
a

ESN - 0 14 0 17 36 41 42 11 38 23 37 21 8 17 403 369 256 361 279
GWD 0 - 12 0 17 30 22 33 4 28 8 31 8 5 5 265 241 150 284 190
LWK 14 12 - 12 0 4 7 4 2 5 20 4 18 17 24 174 160 123 161 140
MSL 0 0 12 - 15 30 23 27 4 31 11 35 11 5 15 297 324 288 359 244
YRI 17 17 0 15 - 17 32 14 11 11 38 15 35 22 38 409 365 257 333 318

E
u

ro
p

e

CEU 36 30 4 30 17 - 0 0 0 0 22 1 22 23 23 12 6 4 4 5
FIN 41 22 7 23 32 0 - 0 0 0 13 0 13 14 13 13 3 4 4 3
GBR 42 33 4 27 14 0 0 - 1 0 22 0 24 23 25 13 5 4 7 4
IBS 11 4 2 4 11 0 0 1 - 0 1 0 0 0 1 7 4 2 5 3
TSI 38 28 5 31 11 0 0 0 0 - 22 0 23 24 23 10 5 4 7 4

So
u

th
A

si
a BEB 23 8 20 11 38 22 13 22 1 22 - 23 0 0 0 21 28 0 30 31

GIH 37 31 4 35 15 1 0 0 0 0 23 - 23 21 24 0 0 0 0 0
ITU 21 8 18 11 35 22 13 24 0 23 0 23 - 0 0 23 30 0 29 30
PJL 8 5 17 5 22 23 14 23 0 24 0 21 0 - 0 25 28 0 28 29
STU 17 5 24 15 38 23 13 25 1 23 0 24 0 0 - 23 30 0 32 32

E
as

tA
si

a

CDX 403 265 174 297 409 12 13 13 7 10 21 0 23 25 23 - 0 1 0 0
CHB 369 241 160 324 365 6 3 5 4 5 28 0 30 28 30 0 - 0 0 0
CHS 256 150 123 288 257 4 4 4 2 4 0 0 0 0 0 1 0 - 0 0
JPT 361 284 161 359 333 4 4 7 5 7 30 0 29 28 32 0 0 0 - 0
KHV 279 190 140 244 318 5 3 4 3 4 31 0 30 29 32 0 0 0 0 -

Table 3.2: Differentiation between non-admixed populations of the 1000 genomes project. Listed are
the number of SNPs which have a FST value of at least 0.95 (autosomes only). Almost half of the SNPs
differentiating CDX and YRI stem from the genes EXOC6B and DOK5. The remaining are spread over about
20 different regions.
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even there, the number of affected genomic regions is at most about 25. It may be possible that migration
largely prevents the fixation of variants within a regional population. Then, still, a model that assumes
fixation, is not appropriate.

However, that does not exclude the existence of on-going selective sweeps. On the contrary, the paradig-
matic LCT locus conforms well to the sweep model. Although the variant causing lactose tolerance in
Europeans, rs4988235 [Enattah et al., 2002], is present in two African chromosomes (population GWD of
the 1000 genomes project), it is likely that it arose independently in North Europeans, where its frequency
is highest, and may well have been under positive selection since its emergence [Bersaglieri and Sabeti,
2004]. Among the 26 populations of the 1000 genomes project it has reached the highest frequency in CEU
(74%), GBR (72%) and FIN (59%) and is completely absent in East Asians. The region repeatedly appears
conspicous in scans using a test designed to detect partial or on-going selective sweeps [Sabeti et al., 2007].
However, having a dominant effect, and assuming it will remain under selection, the variant will need an-
other 50.000 years until it reaches the population frequency of 100% [Vitti et al., 2013]. The SWEEPFINDER

in fact, does detect that region, but only because “it has some power to detect recent adaptive events that
deviate from the assumptions of the complete sweep model” [Williamson et al., 2007].

3.5.3 How neutral is the human genome?

Figure 3.5 shows the observed scaled SNP frequency spectrum iξi , also referred to as variant density [The
1000 Genomes Project Consortium, 2012], of four populations from The 1000 Genomes Project Consor-
tium [2015]. The SNPs were polarized with help of the reconstructed ancestor sequence of humans and
chimpanzees, downloaded from the Ensembl webpage [Zerbino et al., 2018], release 91. This sequence, in
turn, was established by a multiple sequence alignment of the human reference and eleven other primate
species. Depending on the agreement between species, the confidence of the reconstructed ancestral
variant is marked as “high” or “low” (README file conveyed with the ancestral sequence). About 88% of
the 1000 genome SNPs can be polarized with high confidence and another 7% with low confidence. The
frequency spectra depicted include both.

Three features of the observed spectra are of note. First, all populations show an excess of low fre-
quency variants, in particular “singletons”. This is usually ascribed to world-wide growing populations
[Hernandez et al., 2007]. Although low frequency variants have the highest likelihood of being false posi-
tives [Achaz, 2008], their number is thought to be even considerably under-estimated due to the relatively
low coverage used [The 1000 Genomes Project Consortium, 2015]. Second, non-African populations are
known to have less variation than African populations [Stajich and Hahn, 2005; The 1000 Genomes Project
Consortium, 2015], which is attributed to demography, in particular a bottleneck in non-African popula-
tion during their migration out of Africa, as already mentioned in the introduction. However, this differ-
ence is limited to variants of frequency less than 0.4, while the amount of higher frequency variants is
remarkably similar in all populations. Third, and most conspicuously, all frequency spectra have a peak
at highest frequency variants which deserves a more-in-depth inspection in the following.

The phenomenon is known to be partly due to misidentificaton of ancestral variants and this part can
be “corrected” [Hernandez et al., 2007]. Let d designate the average divergence from the ancestor of all
modern humans to the common ancestor of humans and chimpanzees which is about half the divergence
between humans and chimps, the famous 1.23% [The Chimpanzee Sequencing and Analysis Consortium,
2005]. The observed spectrum is then modelled as a function of the true, unobserved spectrum and the
probability p of misidentificated ancestral variants [Hernandez et al., 2007, Eq. (4)]:

ξobs
i = (1−p)ξtr ue

i +pξtr ue
n−i . (3.14)

Since i can be replaced by n − i , we have in fact two equations which can be solved for the true spectrum
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Figure 3.5: The scaled frequency spectrum or variant density iξi . The left panel shows the observed scaled
frequency spectrum of four population samples from the 1000 genomes project. The low frequency vari-
ants clearly distinguish samples of African ancestry (LWK and YRI) from samples of European (CEU) or East
Asian (CHB) ancestry (after figure 2c of The 1000 Genomes Project Consortium [2012]). The right panel re-
peats the observed spectrum for the LWK sample together with different corrections for misidentification
of ancestral variants and after filtering out regions with an exceptionally high amount of high frequency
variants.

to yield [Hernandez et al., 2007, Eq. (5)]

ξtr ue
i =

(1−p)ξobs
i −pξobs

n−i

1−2p
. (3.15)

As explained in the box of section 1.4, considering a uniform mutation rate, p can be approximated by
d
3 , however, unequal mutation rates yield a higher proportion of false polarity. Hernandez et al. [2007]
offered an R-program, containing estimated mutation probabilities, to allow for all 12 possible mutations,
including context dependence on the previous and next site. Both the uniform context-free and the de-
tailled context-dependent corrections are depicted in the right panel of Figure 3.5. However, about twice
as much divergence would be necessary to fully “correct” the extra-amount of derived variants with very
high frequency (not shown). Hence, an explanation of the remaining “peak” is still missing. In principle,
false positive singletons could contribute to it, if they happen to turn an already fixed derived variant back
to an ancestral version. The probability for this to occurr, assuming a sequencing error rate of e = 0.01,
yields 1

3 de, which is too small to contribute appreciably to the “peak”. Another possibility is that we see
here a signal of incomplete selective sweeps.

Sweeps should cause a clustering of high frequency derived variants around the selected variant. For
a visual inspection, the number of variants with highest sample frequency in non-overlapping intervals,
ξn−1, is depicted in Figure 3.6 (no correction is applied there). The most conspicuous values are in two
consecutive windows of population LWK on chromosome 17q21.31. It turns out that these belong to the
minor orientation of the inversion described above: in fact, one individual, NA19042, is heterozygous for
18 of the 21 marker SNPs proposed by Donnelly et al. [2010] to distinguish both inversion arrangements.
If we see here the action of a selected sweep is unclear, though, since the inversion is estimated to have
happened 2.3 million years ago and the amount of diversity seems to be not vastly different between the
two variants within Africans [Steinberg et al., 2012]. Exclusion of this region from the calculation of the
frequency spectrum has only a very minor effect.
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3.5 Conclusions

Do the other “spikes” seen in Figure 3.5 represent signals of nearly completed selective sweeps? If a sim-
ple partitioning of the genome in a major part, evolving neutrally, and a minor part, governed by sweeps,
is appropriate, the elimination of relatively few regions with exceptionally high numbers of derived vari-
ants should yield a neutral spectrum. However, the distribution of the number of ξn−1 in non-overlapping
windows (not shown), has a long “right tail”, but no outliers, and argues against such a simple dichotomy.
Figure 3.5, right panel, shows a frequency spectrum where 10% of 100kb windows with high amounts of
high frequency variants have been filtered out. That it is possible to influence the spectrum in this way
suggests that high frequency variants are indeed concentrated at least to a certain degree in the genome.
In any case, the above-mentioned suggestion that 10% of the genome is influenced by selective sweeps
cannot be ruled out in this way.
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Figure 3.6: The number of highest derived frequency variants ξn−1 in non-overlapping windows of 500kb
for the 1000 genomes populations CHB, CEU, LWK and YRI. The range of the y axis is [0,200] for each track.
Conspicuous is the peak in population LWK in chromosome 17, where two neigbouring windows contain
each twice as much variants (beyond the limits of the y axis) as the maximum number of all remaining
windows of all four populations . The extended linkage disequilibrium implied arises from an inversion
with a complicated evolutionary history [Steinberg et al., 2012; Boettger et al., 2012].
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