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ZUSAMMENFASSUNG 
 
Mitochondrien sind lebenswichtige zelluläre Organellen, die bei einer Vielzahl zellulärer 

Prozesse, wie zum Beispiel bei der Energieumwandlung, der Synthese von Eisen-Schwefel-

Clustern und der -Oxidation von Fettsäuren eine wichtige Rolle spielen. Obwohl die 

überwiegende Mehrzahl mitochondrialer Proteine durch die nukleäre DNA codiert und post-

translational in Mitochondrien transportiert wird, enthalten Mitochondrien ihre eigene DNA, die 

sogenannte mitochondriale DNA (mtDNA), welche für die Funktion der Mitochondrien 

unerlässlich ist. Die mtDNA von Säugetieren codiert für 2 rRNAs und 22 tRNAs, die für die 

Translation von 11 Protein-codierenden mRNAs benötigt werden, die ebenfalls durch die 

mtDNA codiert werden. Die so codierten Proteine sind zentraler Bestandteil des Prozesses der 

oxidativen Phosphorylierung (OXPHOS), von daher können pathogene mtDNA-Mutationen zu 

drastischen Energiestoffwechsel-Defizit-Erkrankungen, den sogenannten 

Mitochondriopathien, führen. Diese sind durch pleiotrope Symptome, wie zum Beispiel 

progressive Neurodegeneration, Muskelschwäche, Epilepsie, Schlaganfall und diverse Arten 

von Myopathien gekennzeichnet.  

 Trotz intensiver Forschung ist die Genotyp-Phänotyp-Korrelation und die 

Gewebesspezifität mitochondrialer Erkrankungen bisher noch ungeklärt. Ein umfassendes 

molekulares Verständnis dieser Erkrankungen wurde durch die limitierte Anzahl adäquater 

Tiermodelle erschwert. Da eine effiziente Modifizierung der mtDNA mittels gängiger 

molekularbiologischer Techniken nicht möglich ist, wurden diese Tiermodelle durch die 

Einführung von in Zelllinien entdeckten Mutationen in murine embryonale Stammzellen 

generiert. In der vorliegenden Dissertation werden zwei genetische Methoden zur Einführung 

endogener Mutationen in die mtDNA vorgestellt. Für beide Strategien wurden natürliche 

Quellen möglicher mtDNA Mutationen verwendet, zum einen Replikationsfehler und zum 

anderen die oxidative Schädigung der mtDNA. Im ersten Ansatz wird eine mutierte Version der 

DNA-Polymerase  mit reduzierter Korrekturlesefunktion eingesetzt um die mtDNA zu 

mutieren. Im zweiten Ansatz wird die mitochondriale DNA-Reparatur vermindert um so einen 

Anstieg der mtDNA-Mutationen zu erreichen, die durch oxidativen Stress verursacht werden. 

Hierbei wird die mitochondriale DNA-Reparaturmaschinerie durch die fehlende mitochondriale 

Lokalisation der zwei Basen-Exzisions-Reparaturenzyme OGG1 und MUTYH beeinträchtigt.  

 Im ersten Ansatz wurden maternale Linien mit einer limitierten Anzahl von mtDNA-

Mutationen generiert, indem heterozygote weibliche Mäuse mit reduzierter 

Korrekturlesefunktion der DNA-Polymerase  (mtDNA-Mutator-Mäuse) für eine Generation 

gezüchtet wurden. Die Identifizierung der induzierten pathogenen mtDNA-Mutationen erfolgte 

mittels einer neuen Strategie, einem Screening auf Funktionsstörungen der Atmungskette in 

Colonkrypten der Founder-Mäuse. mtDNA-Mutationen können in den Colonkrypten schnell 

klonal expandieren und erreichen so Heteroplasmie-Level, die ausreichend hoch sind, um eine 
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OXPHOS-Funktionsstörung hervorzurufen. Dies ermöglicht einen einfachen und frühzeitigen 

Nachweis von Mauslinien, die pathogene mtDNA-Mutationen tragen. Mit diesem 

experimentellen Ansatz wurde eine Maus identifiziert, die eine C5024T Mutation im 

mitochondrialen tRNAALA-Gen aufwies. Diese tRNAALA-Mäuse zeigen die für die klassischen 

mitochondrialen Erkrankungen üblichen charakteristischen molekularen Phänotypen, wie zum 

Beispiel eine verringerte Stabilität des mutierten tRNAALA-Transkripts, eine Beeinträchtigung 

der mitochondrialen Translation sowie das Vorhandensein von Zellen mit 

Atmungskettendefekten. Zusammengefasst ist festzustellen, dass die Verwendung 

heterozygoter mtDNA-Mutator-Mäuse in Kombination mit dem Screening für pathogene 

Mutationen in Colonkrypten ein erfolgreicher Ansatz ist um Mausmodelle zur Erforschung der 

Mitochondrien zu erzeugen.  

Erstaunlicherweise führte der zweite erbgutverändernde Ansatz, die Beeinträchtigung 

der Basen-Exzisions-Reparatur (BER) in Mitochondrien, zu keinem Anstieg der mtDNA-

Mutationen, auch nicht bei älteren Mäusen. Da vermutet wird, dass die DNA-Reparatur in 

Keimzellen von besonderer Bedeutung ist, wurden die BER-defizienten Mäuse für fünf 

konsekutive Generationen als homozygote maternale Linie gezüchtet. Jedoch wurde auch in 

diesen Mäusen kein Anstieg der mtDNA-Mutationen festgestellt. Zur Erhöhung des oxidativen 

Stresses in diesen Tieren wurden sie mit gewebsspezifischen Superoxid Dismutase 2 (SOD2) 

Knockout-Mäusen verpaart. Die Herz-spezifischen Sod2-Knockout-Mäuse zeigen einen 

eindeutigen Anstieg der Superoxid-Konzentration, der sich in Form eines Aktivitätsverlusts der 

Aconitase und einer Vielzahl von Veränderungen der mitochondrialen Funktion zeigt. In den 

BER-defizienten, Herz-spezifischen Sod2 Knockout-Mäusen wurde jedoch kein Anstieg der 

mtDNA- oder mtRNA-Mutationen festgestellt. Diese Ergebnisse zeigen, dass zum einen die 

BER-Defizienz kein praktikabler Ansatz ist um Mutationen in der mtDNA zu induzieren. Zum 

anderen sollte die Bedeutung des oxidativen Stresses für die Entstehung von mtDNA-

Mutationen neu bewertet werden. Als Hauptursache für mtDNA-Mutationen sollte der Fokus 

auf Replikationsfehler gerichtet werden, sowohl in der Alternsforschung als auch in Modellen 

mitochondrialer Erkrankungen.  
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ABSTRACT 
 
Mitochondria are vitally important cellular organelles that are instrumental to many cellular 

functions such as energy conversion, iron-sulfur cluster synthesis and -oxidation of fatty acids. 

Although, the vast majority of mitochondrial proteins are encoded by the nuclear DNA and 

transported into mitochondria post-translationally, mitochondria also contain their own DNA, 

mitochondrial DNA (mtDNA), which is essential for mitochondrial function. Mammalian mtDNA 

encodes 2 rRNAs and 22 tRNAs that are required to translate the 11 protein-coding mRNAs 

encoded by mtDNA. The encoded proteins are essential components of the oxidative 

phosphorylation system (OXPHOS) and therefore pathogenic mtDNA mutations can lead to 

drastic energy deficiency disorders with typically pleiotropic symptoms including progressive 

neurodegeneration, muscle weakness, epilepsy, stroke and different type of myopathies.  

 Despite extensive research, the genotype-phenotype correlations and tissue specificity 

of mitochondrial disorders remain still an enigma. Comprehensive molecular understanding of 

these diseases has been hindered by the limited number of animal models available for 

research. Because mtDNA cannot be efficiently modified with molecular-biology techniques, 

the main strategy to generate these animal models has been a to introduce mutations found in 

cell lines into mouse ES cells. In this thesis, two genetic approaches are presented to introduce 

endogenous mutations to mtDNA. These strategies utilized both natural sources of mtDNA 

mutations, namely replication errors and oxidative damage to mtDNA. In the first approach, 

proofreading-deficient DNA polymerase  is utilized to mutate mtDNA and in the second 

approach, mitochondrial DNA repair is impaired to increase the prevalence of oxidative stress 

driven mutations. The repair is impaired by abolishing the mitochondrial localization of two 

base-excision repair glycosylases, OGG1 and MUTYH. 

  In the first approach, maternal lineages carrying limited number of mtDNA mutations 

were generated by breeding the heterozygous proofreading deficient female mice (mtDNA 

mutator mice) for one generation. Next, the induced pathogenic mtDNA mutations were 

identified via a new strategy, by screening the colonic crypts of the founder mice for 

respiratory chain dysfunction. The mtDNA mutations can rapidly clonally expand in colonic 

crypts to reach heteroplasmy levels high enough to induce OXPHOS dysfunction, which 

allows a straight-forward and early detection of mouse lineages that carry pathogenic mtDNA 

mutations. With this approach, a founder mouse was identified that carried a C5024T 

mutation in mitochondrial tRNAALA gene. These tRNAALA mice display typical molecular 

phenotypes seen in classical mitochondrial diseases, i.e. decreased stability of the mutated 

tRNAALA transcript, impaired mitochondrial translation and presence of respiratory chain 

deficient cells. In summary, the results show that heterozygous mtDNA mutator mice in 

combination with colonic-crypt screening for pathogenic mutations, is a successful approach 

to generate mouse models for mitochondrial research. 
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Surprisingly, the second mutagenic approach, using dysfunctional base-excision repair 

(BER) in mitochondria, did not result into an increase in mtDNA mutation load even when the 

mice were aged. As DNA repair is suggested to be especially important in the germ line and 

the BER deficient mice were therefore bred for five consecutive generation as a homozygote 

maternal line. However, no increase mtDNA mutation load was detected also in these mice. To 

increase prevalence of oxidative stress in these animals they were bred with tissue specific 

superoxide dismutase 2 (SOD2) knockout mice. The heart Sod2 knockout mice show a clear 

increase in superoxide levels demonstrated by loss of aconitase activity and a plethora of 

changes in mitochondrial function. However, no increase in mtDNA or mtRNA mutation load 

was detected in the repair deficient heart Sod2 knockout mice. These results demonstrate that 

firstly BER deficiency is not a feasible approach to introduce mutations to mtDNA and secondly 

that the importance of oxidative stress as a contributor to mtDNA mutation load should be re-

evaluated. Instead, in both ageing research and mitochondrial disease models, we should focus 

on replication errors as the source of mtDNA mutations.  
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INTRODUCTION 
 

1.1 MITOCHONDRIA AND MITOCHONDRIAL DNA: EVOLUTION AND 
ORIGIN 
 
The mitochondrion is a cellular organelle that was formed when an -proteobacterium fused 

with another cell, likely of archaeal origin (Gray, 2012). According to the commonly accepted 

hydrogen hypothesis (Martin and Müller, 1998) the symbiotic nature was maintained because 

the facultative proteobacterium provided hydrogen as the byproduct of anaerobic respiration to 

the hydrogen dependent host. The ancestral -proteobacterium was likely Rickettsiales, 

current representative of which have a small circular genome, suggesting that the fusing 

bacterium could also have had one (Lavrov and Pett, 2016).  

With time mtDNA has evolved to various sizes in different organisms. In most 

bilaterians mtDNA is a so called “typical animal DNA”, i.e. a single small circular molecule with 

almost fixed gene content and order. In mammals, mtDNA is an ~16kb double-stranded circle 

that encodes two rRNAs, 22 tRNAs and 11 mRNAs containing 13 protein-coding open reading 

frames (Figure 1.1). Mammalian mtDNA is typically intronless and contain only a small amount 

of noncoding material (Lavrov and Pett, 2016). However, in different life forms the size of 

mtDNA can vary from few kb up to several Mb, e.g. in cucumber the mtDNA is an impressive 

molecule of ~1.6 Mb (Smith and Keeling, 2015). Additionally, mtDNA can be linear or circular, 

and it can consist of one or multiple separate molecules. Some genomes have large introns 

that encompass even other mitochondrial genes such as ND5 in hexacorals (Emblem et al., 

2014). Furthermore, one gene can even be separated into two chromosomal molecules such 

as the gene encoding for the large subunit ribosomal RNA (rRNA) in some sponges (Lavrov 

and Pett, 2016). 

Through evolution the gene content of mtDNA has decreased extensively from the 

genome of ancestral -proteobacterium. Naturally, a genetic endosymbiont does not require all 

the genes that are present in a free-living bacterium e.g. genes that encode for the bacterial 

cell wall (Adams and Palmer, 2003). In most species encodes mitochondrial rRNAs, at least 

some tRNAs and a few mRNAs encoding core components of the respiratory chain. (Lavrov 

and Pett, 2016). Most proteobacterial genes have either been lost or transferred to the nucleus 

and, thus more than 99% of the mitochondrial proteins are encoded by nuclear DNA and 

imported into mitochondria after cytosolic translation (Foster et al., 2006; Pagliarini et al., 2008). 

Only around 35 % of the imported proteins in mice and humans are encoded from genes with 

proteobacterial origin (Pagliarini et al., 2008). Others are of nuclear origin or have emerged 

through horizontal gene transfer like many mtDNA maintenance proteins (Shutt and Gray, 

2006). In some species, almost all mitochondrial tRNA genes are encoded from the nuclear 
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DNA and therefore need to be imported into mitochondria for functional translation to occur 

(Wang and Lavrov, 2008).  

 

Figure 1.1 Mammalian mitochondrial DNA. Mammalian mtDNA is small, circular genome. It encodes for 
11 mRNAs, 22 tRNAs and two ribosomal RNAs. Annual review of biochemistry by ANNUAL REVIEWS. 
Reproduced with permission of ANNUAL REVIEWS in the format Thesis/Dissertation via Copyright 
Clearance Center. License Number: 4365500499308.  
 

One could ask why it is beneficial to maintain the genes of mitochondrial proteins in 

nuclear DNA instead of mtDNA? Many reasons have been put forward (Adams and Palmer, 

2003) and they commonly include the avoidance of irreversible buildup of deleterious mutations 

to a uniparentally inherited genome (Müllers ratchet) (Blanchard and Lynch, 2000; Muller, 

1964), protection from mitochondrial mutagens such as the byproducts of the respiration chain 

function and more efficient fixation of beneficial mutations (Adams and Palmer, 2003). The 

other obvious question is then, why respiring mitochondria have retained their own genome? It 

seems rather wasteful to import the whole machinery to maintain, transcribe and translate only 

13 protein-coding genes. Just the mitochondrial ribosome alone contains around 80 proteins 

(Greber and Ban, 2016). Several, non-mutually exclusive, hypotheses have been put forward 

to explain the retention of mtDNA (Adams and Palmer, 2003; Allen, 2015). One of them 

suggests that mtDNA gene loss is a random ongoing process and the present mitochondrial 

gene content is only coincidental (Johnston and Williams, 2016). An argument against this 

hypothesis is the notion that most mitochondrially encoded proteins are highly hydrophobic, 

which is also one of the hypothesis explaining why they are still encoded from the mtDNA. It 

has been suggested that due to their hydrophobicity their import and sorting across the 
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membrane could be difficult (Popot and de Vitry, 1990). Experiments with complex IV (COX) 

protein COX2 from soybean are supporting this hypothesis (Daley et al., 2002). Soybean 

contains two active cox2 genes one in nuclear and one in mtDNA. When the mtDNA-coded 

COX2 variant was produced in vitro its mitochondrial import was successful only when the 

hydrophobicity of the first transmembrane helix was decreased through mutagenesis. 

Interestingly, import of the nuclear DNA-coded COX2 variant was additionally blocked if the 

amino acids in the first transmembrane helix were changed to those found in the mitochondrial 

variant. This suggests that decreasing hydrophobicity could enable successful gene transfer to 

nucleus. Another hypothesis for mtDNA retention suggests that the difference in genetic code 

retains some genes in mtDNA (Adams and Palmer, 2003). Accordingly, some nonfunctional 

nuclear copies of mitochondrial genes can be found in nuclear DNA. They are called NuMTs 

(nuclear mitochondrial DNA segment) and their co-amplification during PCR amplification for 

mitochondrial genes is an issue. 

The most recent hypothesis for gene retention in mitochondria is the co-localization for 

redox regulation (CoRR)-hypothesis (Allen, 2015). The CoRR hypothesis builds on the notion 

that the retained protein-coding genes encode the core components of the respiratory chain. 

Therefore, when these genes are retained in mtDNA, it enables localized redox driven gene 

expression of the crucial components of OXPHOS (oxidative phosphorylation system). 

Furthermore, this hypothesis suggests that mtDNA retention allows specific and dynamic 

optimization of the mitochondrial network in changing situations.  

After discussing the retention of mtDNA, it should be mentioned that there are 

mitochondria that lack mtDNA altogether. These organelles are called mitochondrion-related 

organelles (MROs). Even without mtDNA, some MROs are still able to generate ATP albeit not 

through respiration (Gray, 2012). A common feature among MROs is the maintenance of Fe-S 

cluster formation that is thus considered the most critical function of mitochondria (Tovar et al., 

2003). 

1.2 MITOCHONDRIA: ARCHITECTURE AND FUNCTION 
 

Mitochondria are surrounded by two phospholipid bilayers called inner and outer 

membrane. The inner membrane folds and forms invaginations, called cristae, which protrude 

to the mitochondrial matrix and extend the available membrane space (Figure 1.2). As mtDNA 

has only 13 protein-coding genes, the vast majority of the ~1500 mitochondrial proteins are 

encoded from the nuclear DNA, translated in cytosol and imported into mitochondria in a 

precursor form (Figure 1.2) (Foster et al., 2006; Pagliarini et al., 2008). Currently, five protein-

import pathways have been described which transport proteins into different mitochondrial 

compartments, i.e. outer membrane, inner membrane, intermembrane space and matrix 

(reviewed in (Wiedemann and Pfanner, 2017)). These pathways have been initially 

characterized in yeast but they are conserved in higher eukaryotes as well (Dudek et al., 2013). 

The classical protein import pathway (TOM20-TIM23-PAM) translocates proteins with a 

cleavable N-terminal presequence to matrix and inner membrane (Wiedemann and Pfanner, 
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2017). Vast majority of matrix and some intermembrane proteins contain this N-terminal 

presequence (mitochondrial targeting sequence, MTS) (Calvo et al., 2017; Vögtle et al., 2009). 

Other mitochondrial proteins harbor an internal targeting signal and they are imported into 

mitochondria with the other import pathways. The imported proteins are highly important not 

only to ATP production through OXPHOS but also to other vital mitochondrial functions such 

as iron-sulfur cluster biosynthesis, initiation of apoptosis, amino acid metabolism, -oxidation, 

TCA cycle and membrane lipid biosynthesis. In addition to protein import, mitochondrial protein 

content in a given mitochondrion can also be mixed through fusion with other mitochondria. 

Mitochondria are not separate cellular organelles (reviewed in (Chan, 2012)), but rather they 

form a dynamic mitochondrial network that is in constant state of fission and fusion. This 

dynamic nature of mitochondria allows mixing of metabolic, proteomic and genomic content. 

 

Figure 1.2 Mitochondrial proteome. Majority of mitochondrial proteins are encoded by nuclear genes and 
imported into mitochondria post translationally (~1500 proteins). Only core components of the oxidative 
phosphorylation system are encoded in mtDNA and translated on mitochondrial ribosome. Annual review 
of biochemistry by ANNUAL REVIEWS. Reproduced with permission of ANNUAL REVIEWS in the format 
Thesis/Dissertation via Copyright Clearance Center. License Number: 4365501099330.  

 

1.2.1 Oxidative phosphorylation system 
 
ATP production through the oxidative phosphorylation system is one of the key functions of 

mitochondria. The process in well-established and reviewed for example in these papers 

(Hatefi, 1985; Schultz and Chan, 2001). It can be divided into two parts; respiratory chain 

function and ATP production. In the respiratory chain, the respiratory chain complexes, (I to IV) 

form a chain, as indicated by their name, where electrons are transferred from the initial 

substrate (NADH or succinate) to molecular oxygen with the help of electron carrier molecules 

(coenzyme Q, and cytochrome C) (Figure 1.3). In each respiratory chain complex, apart from 
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complex II, the substrate oxidation is coupled with proton extrusion from mitochondrial matrix 

to the intermembrane space. This extrusion builds up electrochemical gradient (pH and proton 

gradient), which is then used by the ATP synthetase (complex V) to convert ADP to ATP. 

Complexes I, III, IV and V are under dual genetic control as their subunits are encoded in both 

mitochondrial and nuclear DNA.  

 

Figure 1.3 Oxidative phosphorylation system. The electron transfer is coupled with proton extrusion to the 
intermembrane space to build up electrochemical gradient, which is then used by the ATP synthase to 
convert ADP to ATP. OXPHOS complexes I, III, IV and V are under dual genetic control. Most of their 
subunits are encoded in the nuclear DNA but the core subunits (marked in orange) are encoded in mtDNA. 
Annual review of biochemistry by ANNUAL REVIEWS. Reproduced with permission of ANNUAL 
REVIEWS in the format Thesis/Dissertation via Copyright Clearance Center. License Number: 
4365500499308.  
 

The first complex in the respiratory chain is complex I (NADH dehydrogenase), which 

oxidizes mitochondrial NADH and transfers electrons through series of iron-sulfur clusters to 

coenzyme Q. Alternatively, electrons can enter respiratory chain at the level of coenzyme Q 

from oxidation of succinate by complex II (succinate dehydrogenase), from cytosolic NADH 

through glycerol-3-phosphate dehydrogenase and from -oxidation through ETF 

dehydrogenase (Alcázar-Fabra et al., 2016). Reduced coenzyme Q then carries the electrons 

to complex III (cytochrome c reductase), which further delivers them to the cytochrome c 

electron carrier. Cytochrome c transfers then the electrons to complex IV (cytochrome c 

oxidase), which finally reduces molecular oxygen to water.  

Studies with Blue-Native PAGE has revealed that the respiratory complexes are not 

only single entities in mitochondrial inner membrane but a fraction of them are organized into 

supercomplexes (Schägger and Pfeiffer, 2000), composed of various combinations of 

respiratory complexes such as CI/CIII2/ CIV1-4 and CIII2/CIV1-2. It is still debated why complexes 

are organized this way. The most common argument is that the close proximity of the 

complexes would enhance catalysis through substrate channeling. However, recently 

published cryo-EM structures do not strongly support this theory (Milenkovic et al., 2017).  
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1.3 REACTIVE OXYGEN SPECIES 
 

1.3.1 Formation in mitochondria 
 
A small fraction of the transferred electrons leak during OXPHOS and react with free oxygen 

leading to formation of superoxide (O2
•−). Superoxide can be converted either spontaneously, 

enzymatically or though reaction with other radicals to other reactive oxygen species (ROS) 

such as hydrogen peroxide (H2O2) or peroxynitrate (NOO−) (Table 1.1). It was previously 

proposed that ~1-2% of all oxygen used during OXPHOS was converted into H2O2 (Boveris et 

al., 1972), but this is likely an overestimation and the levels of H2O2 production during 

respiration are probably at least an order of magnitude lower (Hansford et al., 1997). The main 

superoxide production sites are complex I and complex III (Murphy, 2009) (Figure 1.3). Even 

though the respiratory chain is considered to produce largest fraction of cellular ROS, it should 

be mentioned that OXPHOS is not the only electron transfer reaction that can produce ROS in 

the cell, e.g. monoamine oxidases and -ketoglutarate dehydrogenase complex are also 

potential electron donors (Andreyev et al., 2005). Additionally, NADPH oxidases produce 

superoxide even enzymatically in a response to cellular stimuli (Meitzler et al., 2014).  

 
Table 1.1 Various reactive oxygen species (ROS) and their properties. Table modified from (Das and 
Roychoudhury, 2014). Additional reference (Halliwell, 2006).  

 

Adapted from Das et al., 2014 

 

Many lines of defense are in place in cell to neutralize ROS before they can react 

uncontrollably with cellular macromolecules. In mitochondria, superoxide dismutase enzymes 

(SOD) quickly dismutate the produced superoxide to H2O2 and thus provide an important ROS 

defense mechanism (Murphy, 2009). SOD2 dismutates the superoxide that has been produced 

to the matrix side and SOD1 the one in the intermembrane space (Weisiger and Fridovich, 

1973). If superoxide persists, it can react with [4Fe-4S] clusters resulting in the release of iron 

(Flint et al., 1993). The released iron can then, in turn, react with H2O2 through Fenton chemistry 

resulting in the production of hydroxyl radical, OH• (Halliwell and Gutteridge, 1992) (Table 1.1). 

OH• is extremely reactive radical, it is able to react with any cellular macromolecule and its 
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reactivity is only restricted by diffusion. Reactions between DNA and hydroxyl radical, can result 

in oxidized guanosine, single-stranded breaks, DNA-DNA intrastrand adducts, abasic sites and 

DNA-protein crosslinks (Cadet et al., 1999). Superoxide and hydrogen peroxide, in turn, are 

rather unreactive towards DNA (Halliwell and Aruoma, 1991). However, they can be converted 

to more reactive radicals such as OH•. Accordingly, when cells were incubated with H2O2, 

damage in nuclear and mtDNA was reported (Yakes and VanHouten, 1997). Furthermore, 

incubation with rotenone, which increases superoxide production from complex I, induced 

single-stranded breaks to mtDNA (Shokolenko et al., 2009). To decrease H2O2 involved 

damage, it can be further converted to water by mitochondrial scavenging enzymes, glutathione 

peroxidase 1 (GPX1) (Esworthy et al., 1997) and thioredoxin-dependent peroxiredoxin 3 

(PRDX3) (Chae et al., 1999).  

Additionally, H2O2 is known to function as a redox signaling molecule. This signaling 

can, for example, modify the thiol groups in the target protein, which can lead to various 

changes in the protein function such as enzyme activity, binding affinity or location (Murphy, 

2012). 

 

1.4 MAINTENANCE AND EXPRESSION OF MTDNA 
 

1.4.1 Transcription  
 
Mammalian mitochondrial gene expression occurs polycistronically from two promoters, 

namely light-strand promoter (LSP) and heavy-strand promoter (HSP). These promoters are 

both situated in the noncoding region of mtDNA. To initiate transcription from these sites, 

transcription factor A (TFAM) binds the promoter region and bends the DNA to a stable U-turn, 

which allows mtDNA directed RNA polymerase (POLRMT) binding to the DNA. POLRMT then 

undergoes a conformational change that facilitates mitochondrial transcription factor 2 (TFB2M) 

binding and transcription initiation. (Gustafsson et al., 2016; Morozov et al., 2014; 2015; Posse 

et al., 2014; Yakubovskaya et al., 2014). For high processivity, POLRMT requires mitochondrial 

transcription elongation factor (TEFM) (Minczuk et al., 2011) that interacts with POLRMT 

already at the initiation complex (Agaronyan et al., 2015; Posse et al., 2015). In addition to 

processivity, TEFM allows transcription through strong secondary structures such as G-

quadraplexes and oxidative lesions such as 8-oxo-dG (Posse et al., 2015). Transcription from 

LSP is terminated prior to the ribosomal RNA genes at tRNALEU(UUR) by mitochondrial 

transcription termination factor 1 (MTERF1) (Terzioglu et al., 2013). HSP transcription 

termination occurs close to the noncoding region but the process is not currently fully 

understood. The produced polycistronic transcripts are then processed to release the individual 

mRNAs, tRNAs and rRNAs. Almost every mRNA is surrounded by tRNAs and thus as the 

punctuation model (Ojala et al., 1981) suggests, the folded tRNAs serve as a recognition sites 

for the processing machinery. The 5’ end of each tRNA is cleaved by RNaseP and the 3’ end 

by RNaseZ (Ferreira et al., 2017). Upon processing tRNAs are methylated by RNase P 

component MRPP1 at nucleotide A9 or G9, which is important for the proper formation of the 
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cloverleaf fold (Vilardo et al., 2012). CCA-sequence is also added to their 3’ end by TRNT1, 

(Nagaike et al., 2001). The CCA is required for the recognition by aminoacyl synthetases for 

amino acid charging. Some tRNAs have additional modifications especially in the anti-codon 

stem loop such as 5-taurinomethyl-(2-thio)uridine at the wobble position in tRNA LeuUUR 

(Suzuki et al., 2011).  

 

1.4.2 REPLICATION  
 

1.4.2.1 Replisome 
 

MtDNA is present in hundreds to thousands of copies per cell. It is replicated throughout life 

without cell cycle control, in a relaxed fashion (Bogenhagen and Clayton, 1977). The 

mitochondrial replisome consists of four components: the replicative DNA polymerase gamma 

holoenzyme (Pol ), DNA helicase (TWINKLE), single-stranded DNA binding protein (mtSSB) 

and POLRMT. Pol , is the sole replicative DNA polymerase found in mitochondria. It belongs 

to family A DNA polymerases and it is structurally most similar with bacteriophage T7 DNA 

polymerase (Kaguni, 2004). Pol  holoenzyme is a heterodimer consisting of one catalytic 

subunit Pol - and a dimer of accessory subunits (Pol -). The catalytic subunit (140kDa) 

contains C-terminal 5’ to 3’ DNA synthesis activity and N-terminal 3’ to 5’ exonuclease 

proofreading activity. Additionally, it has been reported to have 5’deoxyribose phosphate 

(5’dRP) lyase activity, but the catalytic amino acids involved have not been identified (Longley 

et al., 1998). The lyase activity would be important for base-excision repair (BER), enabling the 

direct removal of 5’dRP prior to gap-filling. However, the efficiency of this reaction has been 

questioned as in vitro experiments have demonstrated that the dRP release from Pol  is slower 

than in Pol  (Pinz and Bogenhagen, 2000). In DNA synthesis, the catalytic subunit is relatively 

processive on its own, replicating in vitro ~50-100 nucleotides per DNA binding event (Fan et 

al., 2006; Graves et al., 1998), but the processivity is markedly increased upon accessory 

subunit binding. This interaction increases DNA binding and rate of polymerization while 

decreasing the exonuclease activity (Farge et al., 2007; Johnson et al., 2000; Lim et al., 1999). 

The accessory subunit (55 kDa) resembles class II aminoacyl-tRNA synthetase but the 

catalytically active sites are not conserved (Fan et al., 2006).  

 Wild-type Pol  has no strand-displacement activity (Macao et al., 2015) and for 

successful replication it requires DNA helicase TWINKLE, which unwinds the DNA 5’ to 3’. The 

unwound single-stranded DNA is coated and stabilized by mtSSB, which is a small (16kDa) 

protein that binds DNA as a tetramer in a cooperative fashion (Li and Williams, 1997; Yang et 

al., 1997). In addition to ssDNA stabilization, mtSSB also stimulates the helicase activity of 

TWINKLE (Korhonen et al., 2003; Oliveira and Kaguni, 2011) and enhances processivity and 

primer recognition of Pol  (Kaguni, 2004). Even though TWINKLE is homologous to 

bacteriophage T7 helicase it lacks primase activity and DNA replication in mitochondria is 

instead primed by RNA polymerase POLRMT (Fusté et al., 2010; Wanrooij et al., 2008). In 
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addition to the core components of replication machinery, a successful replication requires 

topoisomerase activity to relax the supercoiling initiated by the replication. Mitochondrial 

topoisomerase 1 (TOP1mt) catalyzes transient single-stranded breaks and it can relax the 

induced supercoiling in DNA (Sobek et al., 2013; Zhang et al., 2007).  

 

1.4.2.2 Replication: Strand-displacement mode of replication  
 

The strand-displacement mode of mtDNA replication is well established (Figure 1.4) and 

recently reviewed in (Gustafsson et al., 2016). First, POLRMT primes DNA replication by 

creating a RNA primer that extends from the light-strand promoter (LSP) until the origin of 

heavy-strand replication (OriH) (Chang and Clayton, 1985; Fusté et al., 2010). At OriH Pol γ 

takes over and replicates new a heavy strand. The resulting displaced long single-stranded 

stretch of DNA is coated and stabilized by mtSSB. The initiated replication is, however, 

frequently stopped at termination association sequence (TAS) (Figure 1.4) creating only ~650 

bp long aberrant replication product called 7S DNA. Together with the complimentary 

noncoding region, 7S DNA creates a triple-stranded region called displacement loop (D loop). 

If replication proceeds successfully beyond the TAS region, it continues unidirectionally around 

two thirds of mtDNA until it passes origin of light-strand replication (OriL). When OriL is single-

stranded it is able to form a stem-loop structure, allowing POLRMT binding and priming of light 

strand replication. After replication is finished and full-length molecules are formed, the ends of 

the newly synthesized strands are ligated together by DNA ligase 3 (Gao et al., 2011; 

Shokolenko et al., 2013). Recently, topoisomerase 3 was also found in mitochondria and it 

was reported to enable the decatenation of the formed daughter molecules after replication 

(Nicholls et al., 2018). 

A debate has stirred over the mode of mtDNA replication. The above described 

replication model is called the strand-displacement model or Clayton’s model (Berk and 

Clayton, 1974; Bogenhagen and Clayton, 2003; Clayton, 1991). Neutral 2D agarose gel 

electrophoresis (2D-AGE) analysis of replication intermediates, however, suggests that instead 

of the asymmetrical initiation of replication, replication would occur bidirectionally from a broad 

origin of replication (Bowmaker et al., 2003). These observations gave rise to strand coupled 

replication model. However, it has been reported that these replication intermediates on 2D-

AGE analysis could have also been formed though strand-displacement replication (Brown et 

al., 2005). In favor of the strand-displacement mode of replication, OriL has been conserved in 

all vertebrates underlining the important role of this sequence. Furthermore, saturation 

mutagenesis in mouse shows that the correct sequence of the stem-loop structure is required 

for mtDNA replication (Wanrooij et al., 2012). Moreover, strand displacement replication model 

is supported by atomic force electron microscopy (Brown et al., 2005) and has been 

reconstituted in vitro (Wanrooij et al., 2008).  
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Figure 1.4 Strand displacement mode of replication. Heterotrimeric DNA polymerase  (violet) initiates 
replication from noncoding region from an RNA primer (violet) to replicate the heavy strand of mtDNA. 

Twinkle helicase (blue) unwinds the DNA ahead of DNA polymerase  and the displaced single-stranded 

DNA is covered with tetrameric mitochondrial single-stranded DNA bring protein (green). When the 
replication machinery has passed the origin of light strand replication (OL, OriL), it folds into a stem-loop 
structure, which allows RNA polymerase, POLRMT, (orange) binding. POLRMT then makes RNA primer 

which is extended by DNA polymerase  to replicate the light strand of mtDNA. The replicated molecules 

are resolved by Topo 3 and the ends of the new strands are ligated together by DNA ligase 3. Annual 
review of biochemistry by ANNUAL REVIEWS. Reproduced with permission of ANNUAL REVIEWS in the 
format Thesis/Dissertation via Copyright Clearance Center. License Number: 4365501099330.  

 

Another alternative replication model is a modification of the strand-displacement 

model, where the unwound ssDNA would be coated by RNA instead of mtSSB because fraction 

of the replication intermediates were sensitive to RNAH1 treatment in 2D-AGE (Yasukawa et 

al., 2006). This model is called the ribonucleotide incorporated through the lagging strand 

(RITOLS) model or its further modification called the bootlace mechanism (Holt and Jacobs, 

2014). However, it has been demonstrated that these RNA coated replication intermediates 

can be formed in vitro by mixing purified mtDNA and processed mitochondrial transcripts 

(Miralles Fusté et al., 2014), questioning the validity of bootlace and RITOLS models. 

Additionally, it is difficult to envision how the strongly structured tRNAs and rRNAs could be 

melted to bind the single stranded stretches of DNA (Gustafsson et al., 2016). As a summary, 

data fairly convincingly supports that at least currently, strand-displacement mode of 

replication. 

 

1.5 DNA DAMAGE IN MITOCHONDRIA  
 

1.5.1 Nucleoid  
 
Upon discovery, mtDNA was initially thought to be naked (Nass and Nass, 1963; Nass et al., 

1965) – devoid of protective packaging proteins such as the histones in nucleus. It is now firmly 

established that mtDNA is protein coated and it exists in a DNA-protein complex, called the 

nucleoid. The detailed characterization of nucleoid composition is still ongoing but it is clear 

that the main building block is the mitochondrial transcription faction A protein, (TFAM) 

(Kaufman et al., 2007; Kukat et al., 2015), which binds and condenses mtDNA. Additionally, 

packaging mtDNA into a nucleoid will likely make it less accessible to external assaults.  
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1.5.2 Oxidative damage to mtDNA 
 
MtDNA can be damaged in various ways, leading to the formation of large variety of lesions, 

such as UV initiated thymidine dimers, S-adenosyl methionine induced alkylation damage, 

abasic sites or cytosine deamination (Alexeyev et al., 2013). The most studied and possibly the 

prevalent type of damage to mtDNA is induced by ROS. Reaction with ROS can cause various 

base modifications, abasic sites or single-stranded breaks (Pogozelski and Tullius, 1998; 

Shokolenko et al., 2009). As mtDNA is situated in relatively close proximity to the superoxide 

producing respiratory chain, mtDNA was initially thought to harbor more lesions than nuclear 

DNA (Richter et al., 1988). Later, it was reported that the levels of damaged bases were 

comparable between the two compartments and some lesion were even more frequent in 

nuclear DNA such as 8-oxo-dG, FAPy guanosine, 5-hydroxyl cytosine (Anson et al., 2000; Lim 

et al., 2005). The most common oxidative base modification on a pyrimidine is likely thymine 

glycol (Cadet et al., 1999; Wang et al., 1998) and on purine 8-oxo-dG (Alexeyev et al., 2013; 

De Bont and van Larebeke, 2004). Thymine glycol is thought not to be a mutagenic lesion, but 

rather a replication-blocking lesion, since its presence hinders stacking of the upcoming 

nucleotide (Aller et al., 2007; Hayes et al., 1988; McNulty et al., 1998). 8-oxo-dG has induced 

a lot of interest in the field of oxidative stress, since it can form a Hoogsteen base pair with 

adenosine during DNA replication leading to G to T transversion mutations (Brieba et al., 2004; 

Kouchakdjian et al., 1991). It is present at a frequency of ~10-5 -10-6 per dG in extracted DNA 

(de Souza-Pinto et al., 2001; Gedik et al., 2005). However, it can be easily induced artificially 

during DNA extraction and further DNA preparation steps (Anson et al., 2000; Chen et al., 2017; 

Costello et al., 2013; Schmitt et al., 2012) which complicates the analysis of its prevalence and 

relevance. Even with the same sample and standardized DNA isolation and processing 

methods, the measurements for 8-oxo-dG steady-state levels varied ~13-fold between different 

laboratories (Gedik et al., 2005). Despite the mutagenic potential of 8-oxo-dG in nucleus, the 

extent of G:C>T:A transversions in mtDNA could still be infrequent in mitochondria as in vitro 

assays have shown that Pol γ has a decreased efficiency in incorporating nucleotides opposite 

to 8-oxo-dG during mtDNA replication (Graziewicz et al., 2007; Hanes et al., 2006; Stojkovič et 

al., 2016). Moreover, when Pol γ was able to replicate 8-oxo-dG, the addition of cytosine 

opposite to 8-oxo-dG was much more likely than the incorrect adenosine (Graziewicz et al., 

2007; Hanes et al., 2006). Interestingly, similar decrease in mutagenicity in mtDNA in 

comparison with nuclear DNA has been seen when mice were treated with daily doses of 

benzo[a]pyrene (B[a]P) and N-ethyl-N-nitrosourea (ENU). These mutagenic compounds 

increased the nuclear DNA mutation load whereas the mtDNA mutation load remained 

unchanged despite the fact that B[a]P adducts were formed on mtDNA (Valente et al., 2016). 

These studies suggest that Pol γ has distinct replication properties and therefore direct 

correlations between nuclear DNA damage and mtDNA mutagenicity cannot be directly drawn.  
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1.5.3 Other type of damage to DNA 
 
Already in 1973 it was shown that alkylation treatment caused single-stranded nicks in mtDNA, 

which is a sign of ribonucleotide presence (Grossman et al., 1973). Based on the nick kinetics 

it was estimated that there are maximum of 10 ribonucleotides incorporated to each mtDNA 

molecule (Grossman et al., 1973). Recently, the ribonucleotide presence was additionally 

verified with RNase H2 digestions from purified mtDNA (Reijns et al., 2012). Even though Pol 

γ shows strong preference for dNTPs over NTPs (Kasiviswanathan and Copeland, 2011), 

ribonucleotide incorporation can be favorable when the nucleotide pools are highly biased 

towards NTPs, e.g. ATP concentration evaluated to be ~1000 higher than dATP (Wheeler and 

Mathews, 2011). The high ration of ATP to dATP inside mitochondria actually suggests that for 

every 6-7th dATP incorporated, an ATP could be added instead (Kasiviswanathan and 

Copeland, 2011). Ribonucleotide incorporation makes DNA susceptible to hydrolysis in alkali 

pH and could cause single-stranded breaks. However, no pathway for ribonucleotide removal 

is known for mitochondria. RNase H2 has the activity to remove single ribonucleotides 

incorporated to DNA possible serving a function in ribonucleotide removal in nucleus (Cerritelli 

and Crouch, 2009), but RNase H2 has not been found in mitochondria. It is currently unknown 

whether ribonucleotide incorporation induces mtDNA instability also in vivo. However, it is likely 

that single ribonucleotides are not blocking lesions for Pol γ, since in vitro assays have 

demonstrated that Pol γ can extend incorporated ribonucleotides and utilize RNA sequence as 

a template (Kasiviswanathan and Copeland, 2011; Murakami et al., 2003). 

Another type of damage to DNA is the spontaneous hydrolytic deamination of bases, 

cytosine to uracil, adenosine to hypoxanthine and guanosine to xanthine. All of these base 

changes are mutagenic as hypoxanthine and xanthine pair with cytosine and thymine, 

respectively, in DNA replication leading to C:G>T:A and T:A>C:G transitions. Accordingly, 

mtDNA sequencing from aged flies and humans demonstrates that C:G>T:A and T:A>C:G 

transitions are the most common type of mutations (Itsara et al., 2014; Kennedy et al., 2013). 

It should be mentioned, however, that the same mutation pattern is compatible with replication 

errors and therefore the source of these mutations is not clear (Zheng et al., 2006). 

Interestingly, the signs of spontaneous deamination can be seen in the base composition of the 

fourfold degenerative sites of protein coding genes in mtDNA (Reyes et al., 1998). Single-

stranded DNA is ~ 200 times more susceptible to spontaneous deamination than double-

stranded DNA (Lindahl, 1993) and during DNA replication, the heavy strand is kept single 

stranded until light strand replication is initiated from OriL. Consistently, a gradient of thymine 

(cytosine deamination) and guanine (adenosine deamination) can be detected from the single-

stranded strand. The gradient is consistent with the duration of single-stranded state during 

replication (Reyes et al., 1998). Interestingly, in some fishes with inverted the noncoding region 

the gradient is also inverted (Fonseca et al., 2014). Even though cytosine is most sensitive to 

deamination (Lindahl, 1993) the gradient is suggested to be formed by adenosine to 

hypoxanthine deamination as cytosine deamination saturates the system quickly (Faith and 

Pollock, 2003; Raina et al., 2005). 
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1.6 MITOCHONDRIAL DNA REPAIR 
 
It was initially thought that mitochondria are devoid of DNA repair as mitochondrial extracts 

were unable to remove or repair substrates of nucleotide excision repair (NER) pathway, such 

as thymidine dimers (Clayton et al., 1975), cisplatin-intrastrand crosslinks and complex 

alkylation damage (Ledoux et al., 1992; Pascucci et al., 1997). Later, it was found that 

mitochondria actually lack NER but they are able to repair various other lesions. The most 

studied and possibly the main repair pathway found in mitochondria is the base excision repair 

(BER) pathway, in which the damaged base is recognized and removed by a specific DNA 

glycosylase followed by gap tailoring, filling and ligation steps. Many of the nuclear BER 

pathway proteins have been found to localize into mitochondria in the same or alternatively 

processed forms (OGG1 (Nishioka et al., 1999; Takao et al., 1998) UNG1 (Nilsen et al., 1997), 

MUTYH (Takao et al., 1999), DNA Ligase 3 (Lakshmipathy and Campbell, 1999a)) in humans. 

In the absence of experimental objections, BER pathway is assumed to work similarly in 

mitochondria as in nucleus (Figure 1.5). BER can be divided into two subcategories namely 

long- and short-patch BER. In short-patch BER only one nucleotide is removed upon damage 

repair whereas in long-patch BER commonly >2 nucleotides are digested to remove 5’ blocking 

groups through 5’ flap processing (Copeland and Longley, 2014).  

 

1.6.1 Base excision repair (BER) 
 

The first step in BER is the removal of the damaged base by a specific DNA glycosylase. These 

glycosylases can be divided into two groups based on their catalytic properties, namely, 

monofunctional and bifunctional glycosylases (Figure 1.5). Monofunctional glycosylases are 

only able to remove the damaged base leaving behind an abasic site (David and Wiliams, 

1998). These glycosylases include E. coli MutY homolog, MUTYH, that removes the adenosine 

that has been erroneously paired with 8-oxo-dG (Slupska et al., 1999; Takao et al., 1999) and 

Uracil DNA glycosylase I (UNG1) that removes the end product of spontaneous deamination 

of cytosine, uracil (Nilsen et al., 1997; Slupphaug et al., 1995). The abasic site, formed by the 

activity of these enzymes, is further processed by APE1 (Chattopadhyay et al., 2006). APE1 

leaves behind a 5’dRP site that needs to be further processed before ligation. Mitochondrial 

DNA polymerase γ has been shown (Longley et al., 1998; Pinz and Bogenhagen, 2000) to 

harbor 5’ dRP lyase activity and is thus suggested to remove the remaining 5’dRP. However, 

the lyase activity has a slow turnover rate in Pol γ (Pinz and Bogenhagen, 2000) and it is 

therefore possible that the 5’dRP group is instead removed through the long-patch BER 

pathway. 

In addition to the glycosylase activity, bifunctional glycosylases contain AP lyase 

activity. After base removal, they cleave the N-glycosidic bond leaving behind a single-stranded 

break. There are four described bifunctional glycosylases in mitochondria, 8-oxoguanine DNA 

glycosylase 1 (OGG1), three homologues of E. coli glycosylases, endonuclease III (NTH1), 
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endonuclease IIIV (NEIL1) and (NEIL2). All of these glycosylases repair oxidized damage 

induced DNA lesions. As the name entails, OGG1 removes 8-oxo-dG and possibly the ring 

opened form of guanosine, FAPy G, from double stranded DNA (Hu et al., 2005; Rosenquist et 

al., 1997). NTH1 has mostly been associated with thymine glycol removal (Ikeda et al., 1998; 

2002; Karahalil et al., 2003), whereas NEIL1 removes thymine glycol, FAPy G and 5-

hydroxyuracil and has a small activity towards 8-oxo-dG removal (Bandaru et al., 2002; Hazra 

et al., 2002a). NEIL2 is involved in removing 5-hydroxyuracil and other oxidized derivatives of 

cytosine (Hazra et al., 2002b; Mandal et al., 2012). OGG1 and NTH1 are beta-functional 

glycosylases (Ikeda et al., 1998; Rosenquist et al., 1997) and leave behind 3’ phosphor-αβ-

unsaturated aldehyde that is further processed by APE1. Both NEIL 1 and 2 are βδ functional 

glycosylases (Bandaru et al., 2002), and leave behind 5’phosphate and 3’phosphate 

nonligatable ends that need to further be processed by bifunctional polynucleotide phosphatase 

/kinase (PNKP) (Mandal et al., 2012; Tahbaz et al., 2012). After gap tailoring by either APE1 

or PNKP, Pol γ fills the nucleotide gap and DNA Ligase 3 (Gao et al., 2011; Shokolenko et al., 

2013) ligates the DNA strand back together. Interestingly, NEIL1 and 2 are observed to be most 

active on DNA-bubble structures (Dou et al., 2003) thus possibly indicating redundancy in the 

BER glycosylases and explaining the lack of strong phenotype in OGG1 knockout (Klungland 

et al., 1999) or OGG1 NTH1 double knockout mice (Karahalil et al., 2003). Additionally, NEIL1 

knockout mice were reported to have increased mtDNA damage and deletions indicating their 

importance to mtDNA maintenance (Vartanian et al., 2006).  

 

1.6.1.1 Long-patch BER 
 

Long-patch repair activity has been found from purified mitochondria from human lymphoblast, 

mouse liver and kidney (Akbari et al., 2008; Liu et al., 2008; Szczesny et al., 2008). As 

mentioned, in long-patch repair the 5’ replication blocking groups are removed through strand 

displacement and flap processing (Copeland and Longley, 2014). The pathway is suggested to 

be highly important for mitochondrial functionality, as it removes 5’deoxyribolactone, which is 

one of the common oxidative lesions to sugar-phosphate backbone (Roginskaya et al., 2005; 

2014). FEN1 protein is responsible for the flap processing in nucleus (Sung et al., 2005) but 

mitochondrial long-patch BER was only marginally afflicted in FEN1 knockdown mitochondrial 

extracts, suggesting that other proteins might be involved in the process in mitochondria 

(Szczesny et al., 2008). The involvement of DNA2, EXOG and MGME1 (Duxin et al., 2009; 

Kornblum et al., 2013; Tann et al., 2011) have been proposed but none has been conclusively 

confirmed.  
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Kazak et al., 2012 

Figure 1.5. Base-excision (BER) repair in mammalian mitochondria. Specific DNA glycosylase recognizes 
and removes the damaged base, followed by gap-tailoring of the site to allow gap filling by DNA 

polymerase  and ligation by DNA ligase 3. Depending on the lesion, gap tailoring occurs either through 
long-patch repair (LP-BER) or short-patch repair (SP-BER). In LP-BER the gap tailoring requires flap 
processing that occurs through a currently unknown enzyme but the involvement of FEN1, EXOG or 
MGME1 has been suggested. In yeast, longer flaps are coated with RPA, but it is currently unclear if this 
occurs in the mammalian system as well. Reprinted by permission from Springer Nature: Nature Reviews 
Molecular Cell Biology. Minimizing the damage: repair pathways keep mitochondrial DNA intact, Kazak 
et al., (2012) License Number: 4362980778596. 
 

1.6.2 Other repair pathways 
 

In addition to the main repair pathway, base excision repair, also indications of other repair 

pathways are found in mitochondria such as mismatch repair, single and double-stranded break 

repair. However, it is clear that nucleotide excision repair (NER) pathway is not present in 

mammalian mitochondria, since the mitochondrial extracts are unable to remove most common 

substrates of nucleotide-excision repair such as thymidine dimers (Clayton et al., 1975), 

cispatin intrastrand crosslinks, complex alkylation damage and others (Ledoux et al., 1992; 
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Pascucci et al., 1997). However, rather recently a protein involved with NER in nucleus, 

Cockayne syndrome B, has been reported to be involved in oxidative DNA damage repair, such 

as 8-oxo-dG removal, through stimulation of repair (Stevnsner et al., 2002). The relevance of 

this is still unclear as CSB and OGG1 double knockout mice showed no strong phenotype and 

did not accumulate 8-oxo-dG in intact mtDNA (Trapp et al., 2007).  

 

1.6.2.1 Mismatch repair  
 

DNA Mismatch repair (MMR) focuses on recognizing and repairing base-base mismatches and 

small loops. In nucleus this pathway involves the coordinated functions of mismatch 

recognizing proteins MutSα and MutSβ (Kunkel and Erie, 2005). So far, these proteins have 

not been found in mammalian mitochondria. However, mitochondrial specific MMR activity has 

been found from rat mitochondrial lysates and mitoplasts of human cell lines (de Souza-Pinto 

et al., 2009; Mason et al., 2003) suggesting that mitochondrial MMR could be using a different 

set of proteins. A caveat is that this activity is not strand biased and lower than in the nucleus 

(Mason et al., 2003). A potent MMR protein in mitochondria, YB-1, that has been found to bind 

mismatched DNA and its knock-down decreases MMR activity in mitochondria (de Souza-Pinto 

et al., 2009). However, so far it is not known how this protein could act in mitochondrial MMR. 

Additionally, after the initial report there has been no follow-up studies on the YB-1 protein. 

 

1.6.2.2 DNA-strand break repair 
 
Single-stranded breaks are suggested to be more common than base damage upon oxidative 

insult in mitochondria and even 1000-fold more common than double-stranded breaks 

(Shokolenko et al., 2009). Single-stranded break can be formed either indirectly by e.g. 

oxidative insult or directly by e.g. aborted topoisomerase activity. (Alexeyev et al., 2013). The 

repair involves some of the same enzymes as BER, such as APE1 and DNA Ligase 3 in 

addition to some specific tailoring enzymes such as aprataxin and tyrosyl-DNA-

phosphodiesterase (TDP1) (Kazak et al., 2012).  

Double stranded breaks can be repaired with either non-homologous end joining 

(NHEJ) or homologous recombination in nucleus. The occurrence of homologous 

recombination repair in mammalian mitochondria is highly controversial subject. Currently, it 

seems that if occurring, mtDNA recombination is a highly rare event (Hagström et al., 2014). 

However, there are indications of NHEJ existence. Mitochondrial protein extracts have been 

reported to ligate linearized plasmid DNA with 5’, 3’ overhangs and blunt ends, where the 

ligation frequency was lowest for the latter. Most of the ligation events occurred correctly 

(Lakshmipathy and Campbell, 1999b). On the contrary, experiments with mitochondrially-

targeted restriction enzymes demonstrated that the mtDNA molecules with double-stranded 

breaks are digested rapidly, leading to a decrease in mtDNA copy number (Moretton et al., 

2017; Srivastava and Moraes, 2001). This suggests that if NHEJ is present in mitochondria, it 

is either extremely active or it is extremely faithful so that the ligated molecules are digested 
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again after ligation. For a polyploidic genome, repairing linear-DNA fragments might even be 

unnecessary and even dangerous if executed unfaithfully. 

 

1.7 MTDNA MUTATIONS AND AGEING 
 
Mitochondrial dysfunction with age has been considered one of the hallmarks of ageing (López-

Otín et al., 2013). Indeed, the prevalence of mtDNA mutations increases with age in multiple 

tissues such as skeletal muscle, heart, brain and colon (Bua et al., 2006; Cortopassi and 

Arnheim, 1990; Greaves et al., 2014a; Kennedy et al., 2013). However, it is not known whether 

these mutations are causal or they merely correlate with aging. Evidence from mice with 

proofreading-deficient Pol γ, suggest that mutations could at least contribute to ageing 

phenotypes. These mice, called mutator mice, accumulate high number of mutations in mtDNA 

and show several symptoms of premature ageing such as reduced fertility, anemia, 

osteoporosis, hair loss and reduced lifespan (Kujoth et al., 2005; Trifunovic et al., 2004). Even 

wild-type mice that that have inherited mutations from their heterozygous mutator mothers, 

recapitulate signs of premature ageing such as premature death, hair loss, reduced body size 

and curvature of the spine (Ross et al., 2014; 2013). Accordingly, mtDNA point mutations have 

been observed to accumulate in clonal populations in human liver (Fellous et al., 2009), 

stomach (McDonald et al., 2008) and colonic crypts. In colonic crypts and hepatocytes, these 

mutations have been associated with complex IV (COX) deficiency in differentiated cell types 

and the presence of the COX-deficient colonic crypts increases with age (Taylor et al., 2003), 

suggesting that the clonal expansion of mtDNA point mutations in stem cells could contribute 

to aging. With age these OXPHOS deficient focal sites are detected in various tissues, such as 

brain, heart, skeletal muscle and colonic crypts (Brierley et al., 1998; Bua et al., 2006; 

Cortopassi and Arnheim, 1990; Greaves et al., 2014b; Müller-Höcker, 1989; Taylor et al., 2003) 

but, in these tissues, except in colonic crypts, the dysfunction is more commonly associated 

with mtDNA deletions rather than point mutations. 

 

1.8 POINT MUTATIONS IN MTDNA 
 

1.8.1 Origin 
 

The mutation rate in mtDNA has been reported to be two orders of magnitude higher 

than in nuclear DNA (Khrapko et al., 1997). Currently, there are two, not mutually exclusive, 

hypotheses explaining the source of these point mutations, namely, replication errors and 

oxidative stress induced base lesions that are converted to mutations.  

 Oxidative stress induced base damage was considered to be the main source of 

mtDNA point mutations, since 1970s, when Harman first proposed that ageing is driven by 

oxidative damage to mitochondrial macromolecules (Harman, 1956; 1972). As DNA is the most 

stable macromolecule in mitochondria, it is said to serve as the biological clock, and damage 

accumulation to mtDNA causes ageing. This line of thinking is known as the mitochondrial (free 
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radical) theory of ageing (Miquel et al., 1980) (reviewed in (Alexeyev, 2009)). This theory 

suggests that mitochondria produce the largest fraction of cellular ROS and this oxidative stress 

induces damage on mtDNA, which leads to mtDNA mutations. The mutated, mtDNA encoded 

proteins then in turn make the OXPHOS leakier, which leads to increase in ROS in a ‘vicious 

cycle manner’. Initially, the idea of oxidative damage-driven ageing seemed logical when 

considering that mtDNA was thought to be ‘naked’ unprotected, almost devoid of DNA repair, 

in close proximity of respiratory chain that produces extensive amounts of ROS and oxidative 

base damages were reported to be much more common in mtDNA than in nuclear DNA. As 

discussed in previous sections, each of these ideas have later been proven to be inaccurate. 

The mtDNA resides protein-coated in a nucleoid (Kaufman et al., 2007; Kukat et al., 2015). 

Mitochondria do lack nucleotide excision repair but they harbor base excision repair (Kazak et 

al., 2012). The estimates of ROS production from the respiratory chain has been overestimated 

(Hansford et al., 1997). Lastly, many oxidative base lesions are equal or even more common 

in a nuclear than mitochondrial DNA (Lim et al., 2005). Additionally, there is no clear correlation 

between oxidative damage levels and lifespan (Barja and Herrero, 2000; Lei et al., 2016). In 

mice, neither mild increase in oxidative damage (Sod2+/-) nor deficit or decreased levels of 

antioxidant enzymes (Trx2+/-, Gpx1-/-) limited lifespan (Pérez et al., 2009a; Van Remmen et al., 

2003). Additionally, overexpression of antioxidative enzymes (SOD1 or SOD2) did not extend 

lifespan (Pérez et al., 2009b). 

Experiments with the mutator mice have demonstrated that increase in mtDNA 

mutation load does not induce an increase in superoxide levels or protein carbonylation in 

mitochondria (Trifunovic et al., 2005). At the end stage of mutator lifespan, an increase in H2O2 

levels was reported in heart and kidney while no increase was found in liver and skeletal muscle 

or in any analyzed tissue at a young age (Logan et al., 2014). These experiments support the 

notion that mtDNA point mutations do not lead to a ‘leakier’ respiratory chain that would produce 

more ROS, which would in turn initiate more mtDNA mutations in a vicious cycle manner, as 

suggested in the mitochondrial (free radical) theory of ageing (Alexeyev, 2009).  

 Oxidative stress driven mutations are mainly considered to be caused by the erroneous 

replication against oxidized guanosine, 8-oxo-dG, leading to C:G>A:T transversion mutations. 

Interestingly, mutations in aged flies (Itsara et al., 2014) and humans (Kennedy et al., 2013), 

are transitions rather than transversions. Similar results were also obtained from human tumor 

cell lines (Ericson et al., 2012; Polyak et al., 1998) and tumors (Ju et al., 2014; Stewart et al., 

2015). Therefore, the mutation pattern of naturally occurring mutations is more consistent with 

spontaneous deamination and replication errors than mutagenic oxidative base lesions. 

Consistently, the mutational pattern of mtDNA seen in ageing human tissues can be recreated 

in aged heterozygous mtDNA mutator mice (Baines et al., 2014). These mice have decreased 

proofreading activity in Pol  inducing modest increase in mtDNA mutation load, resulted in 

clonally expanded point mutations that lead to COX deficiency in colonic crypts similar to what 

is seen in ageing humans (Baines et al., 2014). These results suggest that mtDNA mutations, 

which are detected with age, are largely induced by replication errors. In vitro analyses have 
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demonstrated that mammalian Pol γ has an unexpectedly high fidelity, on average 7.4 × 10−6 

mutations/bp, (Johnson and Johnson, 2001; Kunkel, 1985; Kunkel and Loeb, 1981; Longley et 

al., 2001; Lynch, 2011; Ponamarev et al., 2002; Pursell et al., 2008; Song et al., 2005). 

Therefore, Pol γ is more accurate than the nuclear replicative polymerases Pol δ and Pol ε 

(Lynch, 2011). Even with high fidelity, mutations will occur as mtDNA goes through an extensive 

number of replication cycles through life. In primordial germ cells mtDNA copy number drops 

to around 200 copies per cell (Cree et al., 2008) that are then propagated to establish all the 

mtDNA copies of an adult individual. 

 

1.8.2 Mitochondrial DNA point mutations in disease 
 
Pathogenic mutations in mtDNA or in genes that encode mitochondrial proteins can lead to 

mitochondrial disease. These disorders are a diverse group of diseases with typically 

pleiotropic symptoms, which can involve symptoms such as severe progressive 

neurodegeneration (e.g. Leigh syndrome), stroke, hearing loss, infantile multisystem disorders 

(e.g. Pearson´s syndrome), myopathy, optic atrophy, cardiomyopathy, blindness and myoclonic 

epilepsy (Larsson and Clayton, 1995; Lightowlers et al., 2015). The underlying molecular defect 

is often a dysfunctional respiratory chain and thus these disorders mainly affect the high energy 

demanding tissues such as brain, skeletal muscle and heart. Even though the involved genetic 

components are known, genotype-phenotype correlations of mitochondrial diseases are poorly 

understood. This is emphasized by the observation that mutations in different tRNAs are 

associated with specific symptoms, e.g. mutations in tRNASER are typically associated with 

deafness, tRNALYS with myoclonic epilepsy and tRNALEU mutations with diabetes, hearing loss, 

early strokes and cardiomyopathy (Tyynismaa and Suomalainen, 2009). In theory, mutations 

in tRNA genes should have a common effect of impairing translation leading to similar clinical 

outcomes. Even the same A3243G mutation in the tRNALEU(UUR) gene can lead to different 

clinical presentations, namely maternally inherited diabetes and deafness (MIDD) (Nesbitt et 

al., 2013); mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes 

(MELAS) syndrome (Goto et al., 1990); or to chronic progressive external ophthalmoplegia 

(CPEO) (Moraes et al., 1992). Currently, over 200 pathogenic mtDNA mutations have been 

reported over half of which reside in mitochondrial tRNA genes (Suzuki et al., 2011). As only 

palliative treatment is currently available to these disorders, there is a demanding need for 

animal models to unravel the genotype-phenotype correlations of these diseases. 

 

1.8.3 Heteroplasmy, biochemical threshold, bottleneck phenomenon and 
purifying selection 
 

MtDNA is present in hundreds to thousands of copies per cell and therefore a mutation can be 

present in all of the copies of mtDNA, in a condition referred to as homoplasmy, or just in a 

fraction of all copies, a condition called heteroplasmy. To cause a dysfunction, a pathogenic 

mtDNA mutation needs to be present in a large enough fraction of mtDNA molecules to induce 
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biochemical phenotype. This so called biochemical threshold depends on the mutation type 

and the bioenergetics demand of the tissue, and the threshold is often ~ 60-80% (Boulet et al., 

1992; Larsson et al., 1992; Rossignol et al., 2003; Stewart and Chinnery, 2015). Computational 

modeling and sequence analysis have demonstrated that given sufficient time somatically 

occurring mtDNA mutations can reach these thresholds in a subset of cells through random 

segregation and clonal expansion (Elson et al., 2001; Greaves et al., 2014b). After passing 

their biochemical threshold, they cause focal respiration chain dysfunction as seen more 

commonly with age. Examples of this have been found in certain tissues such as brain, colonic 

crypts and heart (Brierley et al., 1998; Bua et al., 2006; Cortopassi and Arnheim, 1990; Greaves 

et al., 2014b; Müller-Höcker, 1989; Taylor et al., 2003).  

When a mutation is present in germline, the relative heteroplasmy level of a mutation 

can also vary extensively between generations due to the well-known bottleneck phenomenon, 

whereby the mtDNA copy number drops (~200 copies per cell in mice) during primordial germ 

cell development. The few mtDNA copies in primordial germ cells are replicated to populate the 

female germ cells (~1500 in mice) that have a very high copy number of mtDNA (1-2x 106 

copies of mtDNA per oocyte) (Stewart and Larsson, 2014). This subsampling can lead to large 

sifts in the relative heteroplasmy level of a mutation. In most extreme cases, one variant could 

even become dominant in a generation, like in Holstein cows (Olivo et al., 1983). The size of 

the bottleneck determines how big of a shift in heteroplasmy levels that can occur in one 

generation. For example, when the bottleneck is large, as in Drosophila melanogaster, the 

shifts between generations are small (Bratic et al., 2015). It has been shown that the ten most 

common pathogenic mtDNA mutations are present 1 in 200 healthy individuals (Elliott et al., 

2008), suggesting that mtDNA diseases could arise in a subpopulation quite unexpectedly. In 

addition to the bottleneck phenomenon, a selection against unwanted mutations occurs in 

female germline, a phenomenon called purifying selection. When mtDNA was mutated with 

proofreading deficient Pol γ and the clonally expanded mutations were sequenced from the 

offspring, a strong decrease in number of mutations at first and second codon position was 

found in comparison with third codon position in protein-coding genes (Stewart et al., 2008b). 

However, the fact that diseases caused by pathogenic mtDNA mutations still exist, suggests 

that the purifying selection is not effective in removing all mutations that are present at a high 

relative heteroplasmy level in the germline. It should be mentioned that pathogenic mtDNA 

mutations can be also homoplasmic albeit they are less frequent than the heteroplamic 

disease-causing mutations. For example, three common point mutations, G117784A, G34604A 

and T14484TC, which cause Leber's Hereditary Optic Neuropathy (LHON) are often 

homoplasmic (Russell and Turnbull, 2014). 

 

1.8.4 Methods to detect mtDNA point mutation 
 
There are various techniques available to detect mtDNA point mutations through sequencing. 

For diagnostic purposes Sanger sequencing is sufficient as it detects a mutation that constitutes 

~15-30% of the signal on studied position (Hancock et al., 2005; Rohlin et al., 2009). Mutations 
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that are present at a lower relative level are most likely not relevant for disease diagnostics as 

they do not exceed the biochemical threshold. Sanger sequencing alone is not sensitive 

enough to detect the low-level mutations in a sample, as most of the somatic de novo mutations 

have not clonally expanded sufficiently to reach the 15-30% detection limit. To study the 

somatic mutation load, different detection methods can be applied such as post-PCR cloning, 

next-generation sequencing and random mutation capture assay (RMC).  

 In post-PCR cloning technique total DNA is extracted followed by PCR amplification of 

a selected mtDNA region (~1kb) with a high-fidelity DNA polymerase (Wanrooij et al., 2012). 

Next, the amplified fragment is cloned into a bacterial vector, amplified and the plasmid carrying 

the mtDNA fragment is purified and sequenced. Each bacterial clone represents, in theory, a 

single mtDNA molecule, which allows mutation load detection per base pair when large number 

of clones are sequenced. However, the PCR amplification step in the method has encountered 

some criticism as it is impossible to distinguish a true mutation from a PCR-induced error, 

leading to a possible overestimation of the mutation load. However, clone of a clone 

experiments have demonstrated that the background error rate of the method is only ~3.48 

×10-6 mutations/base pair (Wanrooij et al., 2012). Alternative method for post-PCR cloning is 

RMC in which the enriched mtDNA is digested with a restriction enzyme prior to PCR 

amplification, thus only molecules that carry a mutation in the restriction site are amplified 

(Greaves et al., 2009; Vermulst et al., 2007). RMC is not sensitive to PCR induced errors but 

the drawback of this technique is that the DNA concentration needs to be quantified with qPCR 

to calculate the mutation load per base. Additionally, the method only detects mutations that 

disrupt the restriction site, which might not represent the mutation load in the whole mtDNA.  

 Additional commonly used mtDNA sequencing methods are the various next-

generation sequencing techniques such as sequencing-by-synthesis analysis e.g. Illumina 

sequencing. The Illumina sequencing method allows analysis of the whole mtDNA with high 

coverage. One analysis requires ~50 ng of pure mtDNA and creates Gb of sequence data that 

needs to be analyzed in a cluster bioinformatically. The method has a higher error rate (~ 0.1%) 

than other sequencing methods (Fox et al., 2014) but the deep coverage of the data alleviates 

this issue. Prior to sequencing the DNA is first fragmented to few hundred-base pair long DNA 

fragments, and thus the sample should be clean from nuclear contaminants or otherwise reads 

from NuMTs can be erroneously aligned to mtDNA and lead to an inaccurate mutation load 

assessment. 

 

1.9 DISEASE MODELS CARRYING MTDNA MUTATIONS 
 
As previously discussed, mitochondrial diseases that originate from pathogenic mtDNA 

mutations do not show clear genotype-phenotype correlations. To better understand these 

diseases, efforts have been made to produce mouse models that carry pathogenic mtDNA 

mutations. Currently, methods to robustly transfect mitochondria are lacking and therefore 

these studies are limited to pre-existing mtDNA mutations, which are already present in cell 

lines or somatic tissues.  
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The first strategy to produce these transmitochondrial mice involved a fusion between 

female karyotype embryonic stem cell (ESC) and preexisting mitochondria with a mtDNA 

mutation. The first pathogenic mutation introduced into mice via this technique was a mutation 

in large ribosomal RNA (16S), which conferred resistance to chloramphenicol toxicity (Levy et 

al., 1999; Marchington et al., 1999; Watanabe et al., 1978). The efficiency of the mutation 

transmission was subsequently improved by removing the endogenous mitochondria from the 

ESC cells prior to the fusion with rhodamine 6G treatment (Sligh et al., 2000). The resulting 

high relative levels of the pathogenic mutation were, however, lethal and the mice died as 

embryos or as newborn pups shortly after birth. 

 Later, the ESC method has been used to introduce mutations in tRNA (Shimizu et al., 

2015; 2014) and mRNA genes (Fan et al., 2008). Additionally, transmitochondrial mice with 

duplicated/deleted mtDNA has been produced though fusion of enucleated cytoplasm and 

fertilized oocytes (Inoue et al., 2000; Nakada et al., 2004). Some of these transmitochondrial 

mice developed symptoms associated with mitochondrial disease including anemia, 

cardiomyopathy and muscle atrophy (Fan et al., 2008; Inoue et al., 2000; Nakada et al., 2004; 

Shimizu et al., 2015; Sligh et al., 2000). The drawback in cytoplasmic fusion techniques is that 

it is limited to mtDNA mutations present in existing cell and tissue models and it is highly 

laborious. Additionally, some of the introduced mutations are not stable in the mouse lines 

because they are selected against in the female germline (Fan et al., 2008; Stewart and 

Larsson, 2014). 
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1.10 AIMS OF THE THESIS 
 
Mutations of mtDNA cause drastic mitochondrial disorders with diverse, commonly pleiotropic 

symptoms. Despite that these diseases have been studied for over 30 years, their enigmatic 

phenotype-genotype correlations are still not completely understood and only symptomatic 

treatment is available to patients with mitochondrial disease. Comprehensive molecular 

understanding of these diseases has been hindered by the limited number of animal models 

available for research. Therefore, the aim of this thesis is to generate mitochondrial disease 

models with mtDNA mutations and analyze their molecular phenotype. Because mtDNA cannot 

be efficiently modified with molecular biology techniques, two genetic approaches were 

designed to introduce endogenously mutations to mtDNA.   

 

Generating mouse models for mitochondrial disease with two different approaches: 
 

1. Proofreading deficient replicative mitochondrial DNA polymerase  
 

2. Impairment of mitochondrial DNA repair by abolishing the mitochondrial 
localization of base-excision repair DNA glycosylases  
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2.1 INTRODUCTION 
 

Mitochondrial diseases that originate from a pathogenic mtDNA mutation do not always show 

clear genotype-phenotype correlation (Tyynismaa and Suomalainen, 2009). It is currently 

unknown, for example, why certain tissues are affected with one pathogenic tRNA mutation but 

remain unaffected with another. In order to understand and treat these diseases effectively, 

more comprehensive understanding of the underlying genotype-phenotype correlation is 

required. Currently, few transmitochondrial mouse models have been created through 

cytoplasmic fusion techniques (Fan et al., 2008; Inoue et al., 2000; Nakada et al., 2004; Shimizu 

et al., 2015; Sligh et al., 2000). Unfortunately, these techniques are highly laborious and limited 

by the availability of mtDNA mutations in cell models and somatic tissues.  

One way to induce new mutations to mtDNA is through proofreading deficient 

mitochondrial replicative DNA polymerase, Pol γ. When a catalytically important amino acid is 

mutated from aspartate to alanine (D257A) in the exonuclease active site, the proofreading 

activity of Pol γ is reduced extensively (Trifunovic et al., 2004). In vitro assays in yeast, with 

corresponding mutants, have demonstrated that the fidelity of Pol γ is decreased around 100-

200 fold (Foury and Vanderstraeten, 1992). These proofreading-deficient ‘mutator mice’ have 

been used successfully to introduce stable and transmissible mtDNA mutations to both the  

germline and somatic tissues (Ross et al., 2013; Stewart et al., 2008b). When homozygous 

PolAMUT/MUT mice were used to establish wild-type lineages, it was noticed that the wild-type 

progeny carried ~14 mutations per mtDNA molecule (Ross et al., 2013). While these mice are 

an important tool for saturation mutagenesis (Wanrooij et al., 2012) and purifying selection 

studies (Freyer et al., 2012; Stewart et al., 2008b), with such a high number of linked mutations, 

they are of limited use in establishing genotype-phenotype correlations. Therefore, to establish 

mouse models for mitochondrial disease a new breeding approach was needed.  

 

2.2 RESULTS 
 

2.2.1 Breeding to establish mouse lines with pathogenic mtDNA mutations 
 
Proofreading-deficient Pol  introduces equal mutation load to both somatic tissues and 

germline (Ross et al., 2013; Stewart et al., 2008b). It can be thus estimated that heterozygous 

mutator mice (PolA+/MUT) with somatic mutation load of ~2x10-4 mutations/bp (Ross et al., 

2013), would introduce on average 3 mutations per transmitted mtDNA molecule. This low-

level mutagenesis can be utilized to establish wild-type mouse lineages that carry only few 

linked mtDNA mutations. To this end, we established female lineages (n=12: Figure 2.1) in the 

following way, first we crossed PolA+/MUT males with wild-type C57BL/6N females to obtain 

PolA+/MUT females with reintroduced wild-type mtDNA. Then we bred these PolA+/MUT females 

with wild-type males (N1) to generate the founder females, which carry maternally inherited 

mtDNA mutations in a wild-type nuclear background. To clonally expand and segregate the 
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maternally transmitted mutations, maternal lineages were established from these founders, with 

subsequent breeding with wild-type males.  

 

Adapted from Kauppila et al., 2016 

Figure 2.1 Breeding strategy to generate and identify lineages that carry pathogenic mtDNA 

mutations. Heterozygous mutator mice (PolgAMUT) with clean mitochondrial background were utilized to 
generate and transmit mtDNA mutations to their offspring. These wild-type offspring were further bred 
with wild-type males to generate female lineages that harbor mtDNA mutations. Rapid clonal expansion 
in colonic crypts allows fast segregation of the mutation to high heteroplasmy levels that impair respiration. 
The lineages that carry a pathogenic mtDNA mutation were identified by screening the colonic crypts for 
complex IV (COX) dysfunction from the founder mice from third generation (N3) on. The lineages with 
normal mitochondrial function were discontinued and the lineages with mitochondrial dysfunction 
(additional blue, COX negative crypts) were bred further and the COX negative crypts were 
microdissected and their mtDNA was sequenced. N1-NX, indicates the generation number.  

 

2.2.2 Identification of pathogenic mutations from colonic crypts 
 
The epithelial layer of an individual colonic crypt originates from single stem cell at the base of 

the crypt (Humphries and Wright, 2008). The clonal nature of the crypts allows mtDNA 

mutations to undergo clonal expansion. If a pathogenic mutation is present in high enough 

relative level, it can cause focal respiratory chain deficiency in a crypt, which has been detected 

in both humans (Greaves et al., 2010; Taylor et al., 2003) and mice (Baines et al., 2014). In 

postmitotic tissues, clonal expansion of a given mutation to a level which induces respiratory 

chain deficiency, can take years, which makes in vivo identification of low-level pathogenic 

mtDNA mutations difficult and time consuming. Therefore, this rapid clonal expansion in colonic 

crypts could be a powerful tool to identify low-level pathogenic mtDNA mutations and establish 

their pathogenicity. To test this approach, we performed COX/SDH enzyme histochemistry to 

the colonic epithelium of the founder individual from each of the 12 mouse lineages (N3 
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onwards). This well-established staining technique is used to detect respiratory chain 

dysfunction that stems from mtDNA mutations. This technique stains all the crypts to detect 

functional COX (complex IV) brown and counter-stains the COX-deficient crypts blue with 

succinate dehydrogenase (SDH, complex II) activity. SDH is entirely nuclearly encoded, thus it 

is not affected by mitochondrial translational dysfunctions or direct mutations in mitochondrial 

cox genes, unlike COX activity. Many mtDNA mutations affect tRNA genes and thus impair 

translation when present in high enough relative levels. With COX/SDH staining we detected 

respiratory-chain-deficient colonic crypts in three out of the twelve founders. To further analyze 

these COX-deficient crypts, we laser-dissected them individually and sequenced the complete 

mtDNA after PCR amplification. In one out of the three COX-deficient lines (Figure 2.2 A), we 

detected high levels of a heteroplasmic C5024T mutation which resides in tRNAALA gene 

(Figure 2.2 B). To quantify the level of this mutation in tissues, we developed quantifying 

pyrosequecing protocol and measured the levels of mutated mtDNA in individual colonic crypts 

and observed significant correlation between occurrence of respiratory chain deficiency and 

levels of the tRNAALA mutation (Figure 2.2 C). 

In mouse, the C5024T mutation disrupts a base pair in the acceptor stem of tRNAALA. 

This same base pair is disrupted in human patients with pathogenic G5650A mutation (Figure 

2.2 D), which causes mitochondrial disease (Finnila et al., 2001; McFarland et al., 2008). The 

C5024T mouse mutation introduces a C-A mismatch next to a U-U mismatch in the acceptor 

stem, in turn, the human G5650A mutation generates a second G-U wobble base pair. Despite 

these similarly located structural changes, the effects of these mutations to the stability of 

tRNAALA could be different. 

 The tRNAALA mutation is additionally linked with C1375T mutation, which causes 

glycine 119 to aspartate mutation in ND6 protein. The 1375 site is poorly conserved in rodents 

(Figure 2.3 A), and additionally the C1375T mutation has low predicted-pathogenicity score 

(MUTPRED, general pathogenicity score of 0.473 (http://mutpred.mutdb.org/)). To study 

whether the C1375T mutation contributes to the detected respiratory chain dysfunction, we 

analyzed the steady-state level of complex I with NDUFB8 antibody from colonic crypts of mice 

with high relative levels of C5024T and C1375T mtDNA molecule. The analysis revealed 

slightly more crypts with decreased complex I than COX deficiency, which is more consistent 

with general translation dysfunction than compound effect from C1375T mutation with 

translational dysfunction (Figure 2.3 B) (Rocha et al., 2015). mtDNA encodes seven complex I 

mRNAs and only three COX mRNAs explaining the slightly more afflicted complex I steady-

state levels with dysfunctional translation. 

 Pathogenic mutations in mitochondrially encoded complex I proteins lead commonly to 

subassembled complex I and strong decrease in complex I steady-state level (Bai and Attardi, 

1998; Leman et al., 2015; Leshinsky-Silver et al., 2010; Lim et al., 2016; Lin et al., 2012; Ugalde 

et al., 2007). When we performed Blue Native PAGE analysis from mouse mitochondria with 

high relative levels of C5024T and C1375T mtDNA molecule, we saw no decrease in the 

steady-state levels of CI or partially assembled CI (Figure 2.3 C). Additionally, in gel activity 
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assay did not reveal biochemical complex I dysfunction (Figure 2.3 C). In summary, we did not 

see any evidence for pathogenicity of the C1375T mutation and therefore we conclude that the 

mouse line harbors single pathogenic mutation in tRNAALA gene, which causes the observed 

respiratory chain deficiency. 

 

                             

 

                                    Adapted from Kauppila et al., 2016 

Figure 2.2 Identification of the pathogenic C5024T mutation in tRNAALA gene in mtDNA. A. 
Representative image of histological section of COX/SDH enzyme histochemistry from colon of wild-type 
(WT) mouse and a mouse with 45 % heteroplasmy level of C5024T mutation. Brown crypts have normal 
COX activity whereas blue crypts have COX dysfunction. Black bar represents 100 mm. B. 
Electropherograms from tRNAALA gene region from isolated colonic crypts. Position 5024 is indicated with 
an asterisk. Crypts with normal mitochondrial function (COX positive) shows lower relative level of C5024T 
mutation than crypts with mitochondrial dysfunction (COX negative). C. Relative level of C5024T mutation 
from individually dissected colonic crypts, shows that COX negative crypts have high relative level of 
C5024T mutation. Error bars indicate SD. ***p < 0.001; ****p < 0.0001 (Mann-Whitney U test). D. Clover-
leaf presentation of tRNAALA from humans and mice with indicated positions of known pathogenic 
mutations and C5024T mutation. 



 

29 

 

 

Adapted from Kauppila et al., 2016 

Figure 2.3 Co-segregating C1375T NAD6 mutation. A. A snapshot of an alignment with 240 rodent 
mitochondrial ND6 protein sequences (GenBank). Out of the 240 genomes, 22 variants in the ND6 amino 
acid sequence were found at site 119 (marked with red box), thus the site is poorly conserved, arguing 
for low pathogenicity for the G119D (C1375T) mutation. B. Quantification of immunohistochemical CI 
staining with anti-NDUF8 antibody and COX/SDH enzyme histochemistry staining from the same 
individual. n=3. Error bars indicate SD. C. A representative Blue-Native PAGE analysis from mice with 
high relative level of C5024T/C13715T mtDNA. Coomassie staining, NDUFV2 steady-state levels and 
complex I in gel activity do not reveal a subassembled or less active complex I in the presence of C1375T 
mutation.  
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2.2.3 The transmission of C5024T tRNAALA mutant allele is not neutral  
 
When breeding mice with tRNAALA mutation, we did not observe an individual with more than 

80 % relative level of the tRNAALA mutation, quantified from tail biopsy collected at 3 weeks of 

age (Figure 2.4 A). Females, which harbored low relative levels of the tRNAALA mutation 

(<51%), showed a transmission patter that was fully consistent with neutral drift (Figure 2.4 B, 

+supplementary), when Kimura model was used as a null hypothesis for neutral transmission. 

In turn, the relative level of tRNAALA mutation in progeny from females that harbored high 

relative levels of the tRNAALA mutation (>55%), did not follow the Kimura model, because the 

number of pups with high relative level of tRNAALA mutation was lower than the expected value. 

We did not observe a change in the litter size from females with high relative levels of tRNAALA 

mutation (Figure 2.4 C), which suggests that the source of this selection is a cellular or 

organellar phenomenon and not death at embryo stage. 

 

2.2.4 tRNAALA mutant mice show cardiomyopathy and reduced body mass 
 

MtDNA mutations can cause tissue specific symptoms. To this end, we carried out COX/SDH 

enzyme histochemistry analysis from various tissues of the tRNAALA mice. At 20 weeks of age, 

COX deficiency was detected only in the epithelial cells of colonic crypts, in turn, at 40 weeks 

of age and older, COX deficiency was detected frequently in the smooth muscle that aligns the 

colon and occasionally in cardiomyocytes from mice with >60% relative level of C5024T 

mutation (Figure 2.5 A, C). Moreover, tRNAALA mutation levels and COX deficiency showed a 

significant correlation in the colonic smooth muscle cells (Figure 2.5 B). This correlation 

confirms the pathogenicity of the C5024T tRNAALA mutation. Additionally, we observed a 

decrease in total body mass, lean mass and fat content in male mice that carry tRNAALA 

mutation in comparison with control males, while the female mice remained unaffected (Figure 

2.5 D). Additionally, an increase in heart mass was observed in both female and male mice 

with high relative level of the tRNAALA mutation (Figure 2.5 E).  
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Adapted from Kauppila et al., 2016 

Figure 2.4 C5024T mutation is not neutrally transmitted. A. Relative level of C5024T mutation in 1,105 
offspring in comparison with their heteroplasmic mothers. The maximum level of C5024T mutation 
detected is indicted with red line. B. Four representative tests for neutral segregation using Kimura 
distribution (Wonnapinij et al., 2008). Expected level of mutation is depicted with orange line and the 
observed with grey bars. The segregation of C5024T mutation was neutral until the mother carries 59% 
relative level of C5024T mutation. C. Litter size from mothers carrying more or less than 56 % 
heteroplasmy level of C5024T mutation did not differ from age matched wild-type control. >56% n=102 
litters, <56% n=80, WT n=84. Not significant, 1 way ANOVA, with Dunn’s correction multiple comparisons 
between all groups. Bars indicate data range, + indicates mean, line indicates median, box indicates 25-
75th percentile of the data. All tests for neutral segregation are included in Supplement section.  
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Adapted from Kauppila et al., 2016 

Figure 2.5 Physiological changes in mice with high levels of C5024T mutation. A. COX deficientl 
cells are observed in mice with a high relative level of the C5024T mutation after 40 weeks of of age. 
Black bar represents 50 mm. B. C5024T mutation level and COX deficiency from colonic smooth 
muscle cells. The COX negative cells have significantly higher C5024T heteroplasmy level. n = 15–22 
per group. ****p < 0.0001 (Mann-Whitney U test). C. Occasional COX dysfunctional cardiomyocytes can 

be detected from mice with high C5024T heteroplasmy level. Black bar represents 100 m. D. Male 
mice with C5024T mutation are smaller in body mass, lean mass and fat mass than the age matched 
controls. n=10-14 per group. Two independent cohorts were analyzed. *p < 0.05; **p < 0.01 (Dunn’s 
multiple comparison test). E. Mice with high relative level of C5024T mutation show increase in heart 

mass, which is an indication of cardiomyopathy. *p < 0.05 (Mann-Whitney U test).  For box-and-whisker 

plots, bars represent data range, + represents mean, line represents median, and box shows 25th–75th 

percentile of the data.      
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2.2.5 High mutation levels of tRNAALA are selected against in proliferating 
tissues 
 
At young ages (~20 weeks), the levels of tRNAALA mutation remain similar in all analyzed 

tissues and are consistent with the levels quantified from the tail biopsy at weaning. (~3 weeks) 

(Figure 2.6 A). Interestingly, at older ages (>40 weeks) the relative levels of the tRNAALA 

mutation decrease in the highly proliferative colonic epithelium in comparison with the 

surrounding smooth muscle (Figure 2.6 B). Consistently, a decrease in the mutation levels with 

age was also detected in peripheral blood (Figure 2.6 C). These observations suggest that 

highly proliferative tissues can select against high levels of the tRNAALA mutation, while in 

postmitotic tissues, the levels remain constant over time. Similar patterns of selection have 

been detected in human mtDNA mutation diseases e.g. the A3243G MELAS mutation 

(Ciafaloni et al., 1991) and CPEO (Larsson and Clayton, 1995). However, this is not a common 

phenomenon in all mtDNA diseases, for example, G8344A mutation which causes MERRF 

syndrome, shows consistent levels in skeletal muscle and peripheral blood (Larsson et al., 

1992).  

       

                    
                 

Adapted from Kauppila et al., 2016 

Figure 2.6 High levels of C5024T mutation is selected against in highly proliferative tissues A. At 
20 weeks of age, C5024T heteroplasmy level is similar between various tissues. n=9 B. At 40 weeks of 
age and older, the relative heteroplasmy level of laser-capture microdissected colonic epithelium 
decreases in comparison with its surrounding smooth muscle in the same individual n = 8. **p < 0.01 
(Wilcoxon matched-pairs signed rank test). C. Relative levels of C5024T decreases with older age in 

peripheral blood in mice that carry high levels of C5024T mutation. **p < 0.01 (Mann-Whitney U test). 
For box-and-whisker plots, bars represent data range, + represents mean, line represents median, and 

box shows 25th–75th percentile of the data.  
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2.2.6 The tRNAALA mutation leads to dysfunctional mitochondrial translation 
 
We carried out northern blot analysis on the steady-state levels of mitochondrially encoded 

RNA species from heart of mice with tRNAALA mutation (Figure 2.7 A, B) and found strong 

decrease in tRNAALA levels in the tRNAALA mutant mice. The steady-state levels of the other 

analyzed tRNAs were either slightly decreased (tRNAGLN) or unaffected (tRNACYS, tRNAASN and 

tRNATRP). In turn, the steady-state levels of ribosomal RNAs (12S rRNA, 16S rRNA) were 

slightly elevated and the analyzed mRNAs were either normal (cox1) or slightly elevated (nad2, 

nad6). Interestingly, the steady-state level of tRNAALA correlated inversely with the relative level 

of C5024T tRNAALA mutation, which is consistent with the idea that C5024T mutation impairs 

the stability of tRNAALA (Figure 2.7 C).  

 Next, we analyzed whether the decreased steady-state levels of tRNAALA affects 

mitochondrial translation. We observed reduction in in organello translation from mitochondria 

that harbored high relative levels of C5024T mutation, demonstrating that tRNAALA mutation 

indeed impairs translation (Figure 2.8). The decrease in translation is detected with high relative 

heteroplasmy levels of tRNAALA mutation, which is consistent with the observation that 

mitochondrial translation is only impaired, when the mutation reaches certain threshold level 

(Hayashi et al., 1991; Larsson et al., 1992). Alanine amino acid constitutes ~5% of all amino 

acids in every mitochondrially encoded protein, explaining the general decrease in 

mitochondrial translation in mice with high relative levels of the tRNAALA mutation. Additionally, 

we observed occasional aberrant low-molecular weight translation products, which could be 

consistent with translational stalling or premature termination of translation (Figure 2.8).  

 

2.3 DISCUSSION 
 

We present here a phenotype-driven method to generate mouse models of mitochondrial 

disease. The approach utilizes the proofreading-deficient mutator mice (PolA+/MUT) to establish 

maternal mouse lineages that carry limited number of mtDNA mutations in wild-type nuclear 

background. Next, the lineages, which carry pathogenic mtDNA mutations, are detected with 

respiratory chain analysis from the colonic crypts of the founder mice and the pathogenic 

mutation in question is identified with laser-capture dissection and mtDNA sequencing. The 

pathogenicity of the identified mutation is additionally verified by comparing its heteroplasmy 

levels in crypts with normal or dysfunctional respiration. Mutations commonly clonally expand 

in highly proliferative tissues such as colonic crypts (Baines et al., 2014; Greaves et al., 2010; 

Taylor et al., 2003), which allows their detection before the onset of any obvious disease 

phenotypes and when they are still present in a low relative heteroplasmy levels in other tissues 

and would not be detected with normal Sanger sequencing of tissue samples. The alternative 

strategy of pathogenic mutation detection through extended phenotyping of different tissues, is 

highly labor-intensive as the pathogenic mtDNA mutations are commonly heteroplamic and 

their effects can both be pleiotropic and vary with age (Larsson and Clayton, 1995). In contrast, 

a purely sequence-driven approach to detect pathogenic mtDNA mutations can be mtDNA 
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mutations can be problematic as generating accurate pathogenicity predictions for mouse 

merely on human clinical data can be challenging. The additional advantage in our method in 

comparison with labor-intensive manipulation of ES cells or mouse embryos is the fact that all 

of the established mutations have already passed through the germline, which increases the 

changes that they are tolerated and can be stably transmitted in the maternal line. In contrast, 

this is not the case in all of the cell line or somatic tissue driven mtDNA mutations that have 

been introduced into mice (Fan et al., 2008; Levy et al., 1999). 

As a proof of principle, we presented here the generation of a mouse line that carries a 

pathogenic C5024T mutation in tRNAALA gene of mtDNA. In high heteroplasmy levels the 

tRNAALA mice recapitulate important aspects of human mitochondrial disease e.g. decrease in 

steady-state level of the mutated tRNA and impaired translation, which leads to respiratory 

chain dysfunction in different tissues such as colonic crypts and smooth muscle cells 
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  Adapted from Kauppila et al., 2016 

Figure 2.7 tRNAALA steady-state levels decrease with increasing C5024T heteroplasmy level. A. 
Northern blot analysis of various mitochondrial transcripts from heart tissue. B. Quantification of the 
transcripts levels from three separate northern blot experiments reveals strong depletion of tRNAALA 
transcript and mild increase in some other transcripts. The values are normalized to 18S. WT n=12, 
C5024T n=19. Average age of the mice 65 weeks; C5024T heteroplasmy level 44%–77%. Error bars 
represent SD. *p < 0.05; **p < 0.01; ****p < 0.0001 (Mann-Whitney U test). C. The steady-state level of 
tRNAALA transcript is inversely correlated with C5024T relative heteroplasmy level of the mutation in heart 
tissue. n = 31. *p < 0.0001 (linear regression). 
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Adapted from Kauppila et al., 2016 

Figure 2.8 TRNAALA mutation impairs translation. In organello translation assay from heart tissue of 
mice carrying C5024T mutation shows decreased translation capacity with rare low- molecular-weight 
aberrant translation products (*), which are consistent with stalled or prematurely terminated translation. 
Prior to radiography exposure the gel is stained with Coomassie to control for loading. 
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3.1 INTRODUCTION 
 

Pathogenic mutations in mitochondrial tRNA, rRNA and protein-coding genes can cause 

mitochondrial disease when present at high enough relative level. Mutations in protein-coding 

genes can be either synonymous or nonsynonymous depending on the mutation type and site. 

One third of the codons in mammalian mitochondria are four-fold degenerate and the rest are 

two-fold degenerate (Jia and Higgs, 2008). In four-fold degenerate codons, all mutations in the 

third codon position are synonymous, whereas, in two-fold degenerative codons only transitions 

are synonymous. Therefore, transversion mutations can be considered to be more harmful as 

they lead to nonsynonymous changes more frequently. These nonsynonymous mutations are, 

however, desirable when generating pathogenic mtDNA mutations to establish mouse models 

with mitochondrial disease. Transition mutations are induced mainly by spontaneous 

deamination of bases and replication errors, whereas, transversion mutations are usually 

caused by DNA oxidation, namely Hoogsteen pairing of oxidized guanosine (8-oxo-dG) with 

adenosine during DNA replication, which leads to G:C>T:A mutations.  

 To induce these G:C>T:A transversion mutations into mtDNA, we generated mouse 

models that lack the mitochondrial repair of 8-oxo-dG lesion. In late 2010, when this project 

was initiated, the literature was still predominantly consistent with the idea that oxidative DNA 

damage was a considerable mutation source in mitochondria and that DNA repair deficiency 

would lead to accumulation of transversion mutations. Mice that lack 8-oxoguanine DNA 

glycosylase 1 (OGG1) were reported to accumulate more 8-oxo-dG in mtDNA (de Souza-Pinto 

et al., 2001) and nuclear DNA (Klungland et al., 1999; Minowa et al., 2000). Additionally, these 

OGG1 knockout mice showed an increase in nuclear mutation load and large fraction of these 

mutations were transversions (Klungland et al., 1999; Minowa et al., 2000; Xie et al., 2004). In 

contrast, there was already a study, which reported that Fpg-sensitive modifications do not 

accumulate into intact mtDNA in repair deficient mice (Trapp et al., 2007). 

 

3.2 RESULTS 
 

3.2.1 Base-excision repair glycosylases OGG1 and MUTYH are predicted to 
localize to mitochondria in mice 
 
Both OGG1 and MUTYH base-excision repair (BER) glycosylases are dually targeted to 

mitochondria and nucleus in humans (Ichinoe et al., 2004; Rosenquist et al., 1997; Takao et 

al., 1998; 1999) and their absence is reported to cause cancer in mice (Xie et al., 2004). To 

introduce transversion mutations selectively to mtDNA without nuclear effects, a genetic 

disruption of mitochondrial OGG1 and MUTYH is required. One way to accomplish this is to 

block the import of these enzymes to mitochondria. Vast majority of mitochondrial matrix 

proteins require a N-terminal mitochondrial targeting sequence (MTS) for import to 

mitochondria and thus selective removal of gene sequence which encodes the MTS, would 

allow selective ablation of mitochondrial MUTYH and OGG1 proteins.  
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To identify the predicted mitochondrial targeting sequence in mouse OGG1 and 

MUTYH proteins, we analyzed their peptide sequence using prediction tools. Subcellular 

localization prediction tools Mitoprot II (Claros and Vincens, 1996) and Target P1.1 

(Emanuelsson et al., 2000; Nielsen et al., 1997) identified N-terminal MTS (M1-W23) from 

mouse OGG1 peptide sequence (AAB94512.1) and gave high probabilities for mitochondrial 

localization 0.9005 and 0.909, respectively. Similarly, the analysis of mouse MUTYH peptide 

sequence, (NP_001153053.1) gave high probabilities for mitochondrial localization 0.9184 and 

0.871 and identified a predicted N-terminal MTS raging from M1 to P33.  

 We carried out western blot analyses from total and subcellular fractions of liver and 

heart tissues to verify the predicted mitochondrial localization of endogenous OGG1 and 

MUTYH proteins. Unfortunately, neither antibodies that were generated in our laboratory nor 

commercially available ones recognized the endogenous mouse OGG1 or MUTYH proteins on 

a western blot (data not shown). A subset of these antibodies, however, recognized the 

recombinant OGG1 and MUTYH proteins but with endogenous lysates they generated several 

bands on western blots. This pattern of bands was very similar to that of liver tissue extract 

from Mutyh x Ogg1 null mice (generous gift from Prof Lars Eide). We thus conclude that the 

observed band pattern of endogenous tissue extracts was due to unspecific cross reactivity 

and that the low endogenous steady-state level of OGG1 and MUTYH proteins could hinder 

their detection.  

 

3.2.2 Removal of the predicted MTS excludes OGG1 protein from 
mitochondria in HeLa cells 
 
To verify the subcellular localization of OGG1, we generated reporter constructs that express 

mouse OGG1 protein with a C-terminal FLAG-tag with and without the predicted N-terminal 

MTS sequence. Next, we transiently transfected HeLa cells with these constructs and studied 

the localization of the OGG1-FLAG proteins with immunofluorescence microscopy. The wild-

type OGG1-FLAG signal clearly co-localized with the signal of mitochondrial TOM20 protein as 

well as with the nuclear DAPI staining, thus demonstrating the dual localization of mouse OGG1 

(Figure 3.1 A). In contrast, the OGG1-dMTS-FLAG protein displayed a dispersed signal that 

did not co-localize with TOM-20. In ~70% of the analyzed cells the signal was found in both 

cytosol and nucleus and in the rest ~30% the signal was mostly nuclear (Figure 3.1 A). In light 

of these results, we conclude that OGG1 in mice contains a N-terminal import signal and the 

removal of this sequence excludes OGG1 from mitochondria without affecting its nuclear 

localization. Thus, we engineered a mouse mutant, which expresses OGG1 without the N-

terminal mitochondrial import signal to exclude it from mitochondria. 

To verify the dual localization of mouse MUTYH protein, we transiently transfected 

HeLa cells with constructs that express a C-terminally FLAG tagged mouse MUTYH with and 

without the predicted mitochondrial import signal (MTS). Surprisingly, the wild-type and delta 

MTS constructs both displayed a dispersed signal that did not co-localize with nuclear DAPI 

staining or mitochondrial TOM20 signal (Figure 3.1 B). In humans, the mitochondrial variant 
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has an additional N-terminal extension (transcript variant alpha, (Ohtsubo et al., 2000; Takao 

et al., 1999) (Figure 3.1 B), whereas, the human nuclear MUTYH variant (transcript variant 

gamma) lacks this extension and is more similar with the mouse MUTYH (Ohtsubo et al., 2000; 

Takao et al., 1999). To study the role of this N-terminal extension we engineered a chimeric 

construct combining the N-terminal extension with the mouse MUTYH but the expressed 

protein displayed again a dispersed signal that did not co-localize with DAPI staining or 

mitochondrial TOM20 protein. Similarly, to the mouse MUTYH, the human nuclear variant with 

and without the MTS did not show a clear co-localization with either nucleus or mitochondria 

(Figure 3.1 B).  

In summary, we were not able to verify the dual localization of mouse MUTYH, as the 

results from transient transfections with the reporter constructs were inconclusive, and 

detection of the endogenous MUTYH protein with western blotting was unsuccessful. However, 

as mouse MUTYH was bioinformatically strongly predicted to be mitochondrial and human 

MUTYH has a mitochondrial isoform, we decided to generate a mutant mouse expressing 

MUTYH without the predicted MTS.  

 

3.2.3 Excluding MUTYH and OGG1 proteins from mitochondria does not lead 
to obvious phenotype in mice 
 
To introduce transversion mutations to mtDNA and study the importance of BER in 

mitochondria, we generated Ogg1 dMTS and Mutyh dMTS knockout mice that express the 

endogenous OGG1 and MUTYH glycosylases without the predicted MTS (Figure 3.2 A, B). The 

removal of nucleotide sequence encoding the MTS was verified by PCR amplification from 

cDNA of Mutyh dMTS and Ogg1 dMTS mice. As anticipated, the transcripts were shorter in the 

dMTS mice in comparison with wild-type control (Figure 3.2 C, D). Furthermore, alternative 

splicing of the Mutyh transcripts was not affected by the removal of the sequence encoding for 

MTS, as all the published splice variants were still visible in the PCR analysis (Ichinoe et al., 

2004).  

 OGG1 is a bifunctional DNA glycosylase and thus its 8-oxoguanine glycosylase activity 

can be measured with a simple oligonucleotide digestion assay. To verify the absence of 8-

oxoguanine glycosylase/AP lyase activity from Ogg1 dMTS mice, we incubated total and 

Percoll-purified mitochondrial lysates with an 8-oxo-dG containing oligonucleotide and resolved 

the reaction product on a denaturing acrylamide gel. As anticipated, the control lysates 

harbored 8-oxoguanine glycosylase/lyase activity and produced a nicked oligonucleotide, while 

with Ogg1 dMTS mitochondrial lysates the oligonucleotide remained intact, demonstrating that 

indeed Ogg1 dMTS mitochondria lack 8-oxoguanine glycosylase/lyase activity (Figure 3.2 E). 

Surprisingly, we did not detect 8-oxoguanine glycosylase/lyase activity either from total lysates 

from Ogg1 dMTS mice, suggesting that the removal of MTS disrupted the activity of OGG1. As 

we are only evaluating the mitochondrial effects of OGG1 absence, this does not affect our 

analysis. 

 



 

42 

         

Adapted from Kauppila et al., submitted 

Figure 3.1 Mitochondrial targeting of OGG1 and MUTYH DNA glycosylases. HeLa cells were 
transiently transfected with the indicated constructs and target proteins were visualized with 
immunocytochemistry. Nuclear staining (DAPI, blue), mitochondrial signal (TOM20, red), OGG1/MUTYH 
(green, FLAG). A. Subcellular localization of FLAGged OGG1 with and without the predicted sequence 
encoding for the mitochondrial targeting sequence (dMTS). (NM_010957.4, OGG1-FLAG, OGG1 dMTS-

FLAG, L2-W23). Quantification of subcellular localization from 100 cells. B. Subcellular localization trials 

of human and mouse MUTYH with and without the predicted sequence encoding for the mitochondrial 
targeting sequence (dMTS). Mouse MUTYH variant b/2 (NM_133250.2). Human MUTYH alpha3 variant 
(NM_001048171.1) and gamma3 variant (NM_001048173.1). Scale bar represents 25 µm. 
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Adapted from Kauppila et al., submitted 

Figure 3.2 Generation of OGG1 dMTS and MUTYH dMTS mice. Targeting strategies to generate mice 
lacking predicted mitochondrial targeting sequence (dMTS) of endogenous Ogg1 and Mutyh genes and 

thus exclude these proteins from mitochondria. A. MUTYH (K2-P33) B. OGG1 (L2-W23). C. cDNA 
amplification of Mutyh transcript variants to very that MTS removal did not affect the mRNA splicing of 
Mutyh transcript. Transcript variants a, b and c are also called variants 1, 2 and 3, respectively. D. Correct 
length of Ogg1 dMTS transcript was verified with PCR amplification from cDNA of Ogg1 dMTS mouse. E. 
8-oxoguanine glycosylase/AP lyase activity was assayed to verify the lack of the activity in mitochondria 
from Ogg1 dMTS mice. Total and mitochondrial extracts from liver were incubated with 8-oxo-dG 
containing double-stranded oligonucleotide and the resulting reaction products were resolved on 
denaturing acrylamide gel. WT n=4, Ogg1 dMTS n=5. No protein lysate was added to negative control (-
) and recombinant OGG1 was used as positive control (+).    
 

Next, we evaluated the overall phenotype of the Ogg1 dMTS and Mutyh dMTS 

knockout mice. We observed no changes in body weight, spleen-to-body weight or heart-to-

body weight ratios in single (Ogg1 dMTS, Mutyh dMTS) or double knockout (Mutyh dMTS x 

Ogg1 dMTS) mice (Figure 3.3 A, B). In accordance with the previous reports from Ogg1 or 

Mutyh x Ogg1 null mice (Halsne et al., 2012; Stuart et al., 2005), we observed no alterations in 

the steady-state level of OXPHOS proteins in liver mitochondria in the double knockout Mutyh 

dMTS x Ogg1 dMTS mice (Figure 3.3 C). As a conclusion, excluding OGG1 or MUTYH from 

mitochondria does not induce any immediate negative impact on mitochondrial function or 

mouse physiology. This is in contrast to other known mtDNA maintenance proteins as their 

removal is embryonic lethal (Kühl et al., 2014; Larsson et al., 1998; Milenkovic et al., 2013). 



 

44 

Pol γ is demonstrated to have decreased in vitro efficiency in incorporating nucleotides 

opposite to 8-oxo-dG (Graziewicz et al., 2007; Hanes et al., 2006; Stojkovič et al., 2016). 

Unexpectedly, the absence of 8-oxoguanine glycosylase activity did not, however, lead to 

decreased mtDNA levels in Mutyh dMTS x Ogg1 dMTS or Ogg1 dMTS mice (Figure 3.4 A, C). 

Actually, a slight increase in mtDNA copy number was detected in fraction of the Ogg1 dMTS 

and Mutyh dMTS x Ogg1 dMTS mice, which was not associated with mtDNA deletions (Figure 

3.4 B,D).  

 

 

Adapted from Kauppila et al., submitted 

Figure 3.3 Physiological changes in repair deficient mice A. No change in body, heart or spleen 
weight was detected from Ogg1 dMTS or Mutyh dMTS x Ogg1 dMTS mice (39-41-week-old). Controls, 
female n=14, male n=8, homozygous Ogg1 dMTS mice female n=10, male n=6-7 and homozygous Mutyh 
dMTS x Ogg1 dMTS mice female n=19-21, male n=27. B. Body, heart or spleen weight was not altered 
in Mutyh dMTS mice. (19-21 week old). Controls, female n=10-11, male n=13, homozygous Mutyh dMTS 
mice female n=7, male n=5. Whiskers indicate min and max values, horizontal lines medians. C. Steady-
state level analysis of OXPHOS proteins from homozygous Mutyh dMTS x Ogg1 dMTS mice using purified 
liver mitochondria (40-42 week old). 
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Adapted from Kauppila et al., submitted 

Figure 3.4 mtDNA copy number is not decreased in the repair deficient mice. Relative copy number 
was assessed from liver with qPCR (A, C) and Southern blotting to verify the absence of mtDNA deletions 
(C, D). The mtDNA copy number was evaluated with Taqman/radioactive probes against mtDNA and 18S.   
A. ++, n=7, 95-109 week old, homozygous Ogg1 dMTS mice n=6, 88-107 week old. C. ++, n=7, 40-51 
week old and from homozygous Mutyh dMTS x Ogg1 dMTS mice n=6, 39-50 week old. Horizontal lines 
represent means, error bars represent SD, *P < 0.05, Student’s t-test, (C) Welch-corrected. 
 

3.2.4 The impaired mitochondrial base-excision repair does not lead to 
increase in maternally transmitted or somatic mtDNA mutations 
 
We set out to analyze mtDNA mutation load of the BER deficient mouse models by Sanger 

sequencing the WANCY-COX1 genomic region from cloned PCR products (post-PCR cloning). 

As some polymerases have been reported to have decreased efficiency in replicating 8-oxo-

dG containing DNA, we first analyzed that our approach can detect 8-oxo-dG modifications 

and/or G>T mutations. To this end, we isolated total DNA from flies using oxidized phenol to 

induce oxidative damage to the DNA. This damaging in vitro procedure induced five-fold 

increase in G>T mutation load (2.42 x10-4 versus control 4.72 x10-5 mutations per G:C pair). 
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Surprisingly, when we analyzed the mutation load of BER deficient mice, we did not detect an 

increase in mtDNA mutation load from liver of Ogg1 dMTS mice (1.82 x10-5 mutations/bp) in 

comparison with control mice (1.62 x10-5 mutations/bp) at 100 weeks of age (Table 3.1). Liver 

tissue was used in the analysis because the Ogg1 null mice have been reported to show an 

increase in nuclear DNA mutation load in liver (Klungland et al., 1999). Although the lack of 

increase in mtDNA mutation load was unexpected, it is consistent with mtDNA mutation load 

analysis from Mutyh x Ogg1 null mice with random mutation capture assay (RMC) (Halsne et 

al., 2012). 

 

Table 3.1. Somatic or maternally transmitted mtDNA mutations do not increase in the absence of 
mitochondrial BER. Post-PCR cloning and Sanger sequencing mutation load analysis from Ogg1 
dMTS mice and Mutyh dMTS x Ogg1 dMTS mice after five generations of consecutive breeding. On 
average 92 kb were sequenced per sample. The mutation load was analyzed from liver tissue of the 
WANCY-COX1 tRNA-cluster region.  

 

Adapted from Kauppila et al., submitted 

 

It is possible that mtDNA mutations are present in such a low level that their detection 

with post-PCR cloning is difficult. Therefore, we decided to increase the prevalence of mtDNA 

mutations by breeding double homozygous Mutyh dMTS x Ogg1 dMTS mice as maternal 

lineages for five consecutive generations. This approach could increase mtDNA mutation load 

in two ways. Firstly, the well-known bottleneck phenomenon may cause mutations to clonally 

expand in the maternal germ line (Stewart et al., 2008a) which in turn would ease their 

detection. Secondly, DNA repair has been hypothesized to be more stringent in germ line and 

thus absence of repair could have larger effects in germ cells (Kirkwood, 1977). The mtDNA 

mutation load of the 5th generation homozygous Mutyh dMTS x Ogg1 dMTS mice was analyzed 

with post-PCR cloning. However, we still did not observe an increase in mtDNA mutation load 

(1.09 x10-5 mutations/bp) (Figure 3.5 A, Table 3.1). Surprised by this result we decided to 
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measure the mtDNA mutation load from purified mtDNA with Illumina sequencing. This 

approach allows us to increase the depth of the mutational analysis and extend it to the entire 

mtDNA. From previous analysis we know that mtDNA mutations will clonally expand between 

generations to reach relative heteroplasmy levels above 1% in the offspring (Ross et al., 2013), 

and thus we applied a minimum variant allele frequency threshold of 0.5% to the variant called 

and quality filtered Illumina sequencing data. Consistently with post-PCR cloning, Illumina 

sequencing did not reveal increase in unique or total mtDNA mutation load even after five 

generations of consecutive breeding with homozygous Mutyh dMTS x Ogg1 dMTS repair 

deficient mice (Figure 3.5 B). To verify that 0.5 % threshold for mutational frequency was not 

too stringent, we re-analyzed the mutation load from only quality filtered Illumina sequencing 

data, but again, no change in the mtDNA mutation load was detected (Figure 3.6 A). 

Furthermore, there was no difference in mutational spectrum between the control and repair 

deficient mice even without applying the 0.5% cut-off limit for mutation detection (Figure 3.5 C, 

Figure 3.6 B). However, the G:C>T:A mutations were highly prevalent in both repair-deficient 

and control samples in only quality filtered data, suggesting that these mutations were induced 

during library preparation step, as previously described (Chen et al., 2017; Schmitt et al., 2012) 

(Figure 3.6 B). 

Taking all of our results together, we can conclude that impairing mitochondrial BER 

does not lead to increase in somatic or maternally transmitted mutations or problems with 

mtDNA integrity. Thus, exclusion of MUTYH and OGG1 from mitochondria cannot be used to 

induce transversion mutations to mtDNA in the hopes to generate mitochondrial disease 

models in mice.  
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Adapted from Kauppila et al., submitted 

Figure 3.5 No increase in somatic or maternally transmitted mtDNA mutations were detected after 
five generations of consecutive breeding of repair deficient mice. Illumina sequencing, minimum 
variant allele frequency is set to 0.5%. A. Breeding scheme to generate repair deficient maternal 
lineage. To minimize nuclear effects, heterozygote male mice were occasionally used in the breeding. B. 
mtDNA mutation load after five generations of consecutive breeding from purified liver mtDNA. The 
sequencing data was quality filtered and minimum variant allele frequency is set to 0.5%. Unique mutation 
load: mutation is only counted once. Total mutation load: each mutation is counted as many times as it is 
observed. C. Mutation profile of the observed mtDNA mutations (same as in B.). Control samples, ++ n=6, 
pp n=2, 10-13 week old and homozygous Mutyh dMTS x Ogg1 dMTS mice n=8, 10-15 week old. 
Horizontal line represent mean.  
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Adapted from Kauppila et al., submitted 

Figure 3.6 No increase in somatic or maternally transmitted mtDNA mutations were detected after 
five generations of consecutive breeding of repair deficient mice. Illumina sequencing, only 
quality filtered data. A. mtDNA mutation load after five generations of consecutive breeding from purified 
liver mtDNA. The sequencing data was only quality filtered. Unique mutation load: mutation is only 
counted once. Total mutation load: each mutation is counted as many times as it is observed. B. Mutation 
profile of the observed mtDNA mutations (same as in A.). Control samples, ++ n=6, pp n=2, 10-13 week 
old and homozygous Mutyh dMTS x Ogg1 dMTS mice n=8, 10-15 week old. Horizontal line represent 
mean.  
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3.2.5 The absence of SOD2 induces strong increase in oxidative stress and 
impairs the function of [4Fe-4S] cluster containing proteins  
 
Puzzled by the lack of increase in mtDNA mutation load in the repair-deficient mice, we decided 

to increase the oxidative stress in mitochondria to enhance the generation of oxidative stress 

driven mutations. To this end, we used mice that were deficient in mitochondrial matrix 

superoxide dismutase SOD2. SOD2 is the first line of defense against ROS, because it converts 

superoxide into hydrogen peroxide (Murphy, 2009; Murphy et al., 2011). It is the sole 

superoxide dismutase that resides in the mitochondrial matrix and thus it is extensively used in 

studies that evaluate the consequences of increased oxidative stress on cellular and 

mitochondrial function (Li et al., 1995; Lustgarten et al., 2009; Nojiri et al., 2006; Strassburger 

et al., 2005; Van Remmen et al., 2003; Williams et al., 1998). In our study, we utilized a 

previously published conditional knockout allele (Strassburger et al., 2005) that disrupts the 

Sod2 in heart and in certain fiber types in skeletal muscle (Ckmm cre, Figure 3.7 A). We refer 

to these mice from now on as heart Sod2 knockout mice. Consistently with previous analysis 

(Nojiri et al., 2006), these mice develop a severe dilated cardiomyopathy (Figure 3.7 B-D) and 

their medium lifespan is reported to be only 15 ± 4 weeks (Nojiri et al., 2006). However, in our 

hands, they were severely afflicted already at the age of 11-12 weeks and thus we mainly 

analyzed them at 10-11 weeks of age. At this age, male mice show weight reduction, whereas, 

the heterozygote knockout mice are comparable to control mice in both body weight and heart 

size (Figure 3.7 C, D). 

                    

Adapted from Kauppila et al., submitted 

Figure 3.7 The absence of SOD2 in heart leads to severe cardiomyopathy. A. SOD2 protein is absent 
in heart mitochondria in the cre positive heart Sod2 knockout mice (Sod2 loxP x Ckmm cre mice, pp, cre). 
9-11 week old. ATP5A was used as a loading control. B. H&E staining from vertical section of paraffin 
embedded heart tissue show enlarged heart in the heart Sod2 knockout mice (pp, cre) in comparison with 
control. Age of the pp cre mice: 10 weeks, controls: 11 weeks. Scale bar represents 1 mm. C. Heart weight 
of Sod2 loxP x Ckmm cre mice is increased, which is an indicative of cardiomyopathy. pp female n=22, 
male n=35, 9-11 week old, heterozygous male +p, cre, n=2, 9-week old, Sod2 loxP x Ckmm cre mice pp, 
cre, female n=28, male n=15, 9-10 week old. D. At late stage, the body weight of heart Sod2 knockout 
male mice (pp, cre) decreases. Control pp female n=26, male n=36, 9-11 week old, heterozygous male 
+p, cre, n=3, 9-week old, Sod2 loxP x Ckmm cre mice pp, cre, female n=30, male n=19, 9-10 week old. 
Whiskers represent min and max values, horizontal lines medians; ****P< 0.0001, females Student’s t-
test, Welch corrected. ***P< 0.001, males 1way ANOVA, Dunnett’s multiple comparison test.  
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[4Fe-4S] clusters are highly susceptible to superoxide-induced damage and the loss of 

SOD2 enzyme activity induced a biochemical dysfunction in [4Fe-4S] cluster-containing 

proteins (Li et al., 1995; Nojiri et al., 2006), including a strong decrease in aconitase enzyme 

activity (Figure 3.8 A, B). In aconitase the [4Fe-4S] cluster is solvent accessible and required 

for its enzyme activity and thus it has been used as a surrogate marker for superoxide levels 

(Gardner et al., 1995; Tarpey et al., 2004). In addition to decrease in enzyme activity, the 

steady-state level of aconitase was also decreased in heart Sod2 mice on a western blot (Figure 

3.8 B) and in mass spec analysis (Figure 3.9), together indicating a strong increase in 

superoxide levels in these mice. In addition to aconitase, OXPHOS complexes I and II, contain 

[4Fe-4S] clusters, whereas they are absent in other respiratory chain complexes (Gao et al., 

2003; Sun et al., 2005; Tsukihara et al., 1996; Wirth et al., 2016). This disposition can be utilized 

to verify the increase in superoxide levels and study its effects to OXPHOS. To this end, we 

evaluated respiration of the heart Sod2 knockout mice on freshly purified intact heart 

mitochondria with polarographic methods. The measurement was carried out with substrates 

that result in entry of electrons to complex I (pyruvate, glutamate, malate, PGM) or complex II 

(succinate, SUCC). The oxygen consumption was measured in phosphorylating (state 3: ADP 

and Pi, PGM3, SUCC3), non-phosphorylating (state 4: oligomycin to inhibit ATP synthase 

PMG4, SUCC4) and uncoupled state (with CCCP PMGc, SUCCc). Both complex I and complex 

II driven respirations were profoundly decreased in heart Sod2 knockout mitochondria analyzed 

under phosphorylating and uncoupled conditions (Figure 3.8 C). This dysfunction was 

accompanied with consistent decrease in isolated enzyme activities of CI, CII and CII-CIII 

(Figure 3.8 D). In turn, the activity of complex IV, which does not contain [4Fe-4S] clusters, 

remained unaffected (Figure 3.8 D), as previously demonstrated with COX-SDH enzyme 

histochemistry from these mice (Li et al., 1995; Nojiri et al., 2006). Correspondingly, we 

observed no effect in the steady-state levels of protein subunits of complex III, IV and V subunits 

on a western blot (Figure 3.8 E, (Nojiri et al., 2006)). On the contrary, the steady-state level of 

subunits of complex I and complex II were strongly decreased on a western blot (Figure 3.8 E) 

(Nojiri et al., 2006). In summary, heart Sod2 knockout mice show a specific defect in proteins 

carrying [4Fe-4S] clusters, indicating an expected increase in superoxide level in these mice.  

 

3.2.6 Label-free quantitative proteomic analysis from enriched mitochondria 
reveals signs of general mitochondrial stress in heart Sod2 knockout mice 
 
Next, we analyzed the mitochondrial proteome from Percoll purified mitochondria of heart Sod2 

knockout mice (Figure 3.9). The analysis revealed that, in addition to respiratory dysfunction, 

multiple subunits of complex I and II were strongly decreased in heart Sod2 knockout mice. 

The decrease was accompanied with an increase of several assembly factors for complex I, II 

and IV, suggesting a compensatory response in assembly of OXPHOS complexes (Figure 3.9). 

Additionally, we observed indications of general mitochondrial stress as the steady-state levels 

of defense proteins (SOD1, PRDX5, MSRA), mitochondrial proteases (CLPX, LONP1, 
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YME1L1), proteins involved in mitochondrial translation and mitochondrial import machinery 

components (TIMM, TOM) were increased (Figure 3.9). 

 

 
Adapted from Kauppila et al., submitted 

Figure 3.8 The severe impairment of mitochondrial [4Fe-4S] cluster proteins indicates an increase 
in superoxide levels in heart Sod2 knockout mice. A. Aconitase activity is severely decreased in heart 
mitochondria of heart Sod2 knockout mice. Activity is normalized to control. Control samples (n=6), 9-10 
week old, Sod2 loxP x Ckmm cre samples (n=6), 9-12 week old. B. Aconitase steady-state levels 
assessed from purified heart mitochondria on a western blot. Mice were 9-10 week old. ATP5A and 
coomassie stained membrane are used as a loading control. C. Absence of SOD2 impairs respiration. 
Oxygen consumption rate was measured from isolated heart mitochondria in the presence of pyruvate 
glutamate malate (PMG) and succinate (SUCC) complex I and II substrates, respectively. In the presence 
of the substrate ADP and oligomycin were added successively to measure phosphorylating (PMG3, 
SUCC3), and non-phosphorylating respiration (PMG4, SUCC4). Lastly CCCP was added to measure 
uncoupled respiration (PMGc, SUCCc). Control samples (n= 9), 9-11 week old, Sod2 loxP x Ckmm cre 
samples (pp, cre, n=9), 9-12 week old. D. Isolated enzyme activity of respiratory complexes from heart 
mitochondria. Citrate synthase activity (CS) was used as a control. Control (pp, n= 3), 11-week old and 
Sod2 loxP x Ckmm cre mice (pp, cre, n=3), 11-12 week old. E. Steady-state levels of OXPHOS complexes 
in heart mitochondria. ATP5A and coomassie stained membrane were used as a loading control.  Error 
bars represent SD. *P< 0.05, **P< 0.005, ****P< 0.0001, Student’s t-test, Welch corrected.  
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Adapted from Kauppila et al., submitted 

Figure 3.9 A global decrease in complex I proteins is detected in the heart Sod2 knockout mice. A 
label-free quantitative proteomics analysis from Percoll purified heart mitochondria. A selected set of 
proteins with significantly altered steady-state level are depicted in a heat map. Controls pp, 8-9 week old 
and Sod2 loxP x Ckmm cre mice pp, cre, 9-10 week old. Blue color indicates decreased and red increased 
steady-state level over the mean across all samples. Change in steady-state level was considered 
significant when Benjamini–Hochberg adjusted p-value was less than 0.05 

 

3.2.7 No increase in mtDNA mutation load is detected in heart Sod2 knockout 
mice in the absence of mitochondrial BER  
 
To generate a mouse model with increased oxidative stress and deficiency in BER, we 

combined the Ogg1 dMTS mice with heart Sod2 knockout mice. Surprisingly, the clear increase 

in oxidative stress in combination with OGG1 deficiency did not lead to increase in mtDNA 

mutation load in 10-week-old mice in comparison with controls (1.30 x10-5 vs. 1.10 x10-5 

mutations/bp) in post-PCR cloning and Sanger sequencing analysis (Table 3.2). However, it 
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should be mentioned that these observed mutation loads are close to the minimum mutation 

load (~ 1.1 x10-5) which can be still detected with the depth of our post-PCR cloning approach. 

Therefore, they represent the upper limit of the mutation load that is present in these mice. In 

line with our observations, no increase in mtDNA mutation load was either detected in flies with 

decreased SOD2 activity combined with a loss-of-function mutation in Ogg1 when the mutation 

load was measured by RMC (Itsara et al., 2014). To expand the mutation analysis to the whole 

mtDNA and increase the depth of the analysis, we carried out Illumina sequencing on purified 

mtDNA from heart Sod2 knockout x Ogg1 dMTS mice. However, we observed no increase in 

mtDNA mutation load from these double mutant mice using the 0.5% minimum variant allele 

frequency threshold (Figure 3.10) or only quality-filtered data (Figure 3.11). We detected neither 

an increase in G:C>T:A transversion mutations.  

 
Table 3.2 No increase in mtDNA mutation load was observed in the absence of SOD2 and OGG1 
proteins in heart. Post-PCR cloning and Sanger sequencing mutation load analysis from Sod2 loxP x 
Ckmm cre x Ogg1 dMTS mice. On average 92 kb were sequenced per sample. The mutation load was 
analyzed from heart tissue of the WANCY-COX1 tRNA-cluster region.  
 

 

Adapted from Kauppila et al., submitted 
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Adapted from Kauppila et al., submitted 

Figure 3.10 MtDNA mutation load does not increase in mitochondrial BER deficient mice in the 
presence of increased oxidative stress. Illumina sequencing, minimum variant allele frequency is 
set to 0.5%. A. mtDNA mutation load in Sod2 loxP x Ckmm cre x Ogg1 dMTS mice heart measured with 
Illumina sequencing from purified mtDNA. The sequencing data was quality filtered and minimum variant 
allele frequency is set to 0.5%. Unique mutation load: mutation is only counted once. Total mutation load: 
each mutation is counted as many times as it is observed. B. Mutation profile of the observed mtDNA 
mutations (same as in B.). Controls (pp n=4 or ++ n=3), 8-12 week old, Sod2 loxP x Ogg1 dMTS mice (pp 
dd n=4 or +p dd n=2 or +p cre+ dd n=1) 8-11 week old and Sod2 loxP x Ckmm cre x Ogg1 dMTS mice 
(pp, cre dd, n=7), 9-10 week old. Horizontal line represent mean. 1way ANOVA, Tukey’s multiple 
comparison test.  
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Adapted from Kauppila et al., submitted 

Figure 3.11 MtDNA mutation load does not increase in mitochondrial BER deficient mice in the 
presence of increased oxidative stress. Illumina sequencing, only quality filtered data. A. mtDNA 
mutation load in Sod2 loxP x Ckmm cre x Ogg1 dMTS mice heart measured with Illumina sequencing 
from purified mtDNA. The sequencing data was only quality filtered. Unique mutation load: mutation is 
only counted once. Total mutation load: each mutation is counted as many times as it is observed. B. 
Mutation profile of the observed mtDNA mutations (same as in B.). Controls (pp n=4 or ++ n=3), 8-12 
week old, Sod2 loxP x Ogg1 dMTS mice (pp dd n=4 or +p dd n=2 or +p cre+ dd n=1) 8-11 week old and 
Sod2 loxP x Ckmm cre x Ogg1 dMTS mice (pp, cre dd, n=7), 9-10 week old. Horizontal line represent 
mean.  
 

3.2.8 Mitochondrial RNA mutation load is not increased in SOD2 and BER 
deficient mice  
 
Based on the mtDNA mutation analysis from our animal models, it seems that oxidative stress 

has only limited effects to mtDNA mutagenesis. It has been reported, however, that the 

mitochondrial RNA polymerase, POLRMT, in vitro preferentially incorporates adenosine 

opposite to 8-oxo-dG during transcription (Nakanishi et al., 2013), and thus oxidative 

modifications in mtDNA could induce G:C>T:A mutations to mitochondrial RNA. To address 

this question, we carried out total RNA seq from heart Sod2 knockout mice alone and in 

combination with mitochondrial OGG1 deficiency. To sequence RNA, it needs to be converted 

to DNA in reverse transcription reaction, which is known to be highly error-prone process. 

However, the reverse transcriptase that was used in our library preparation (Moloney murine 
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leukemia virus reverse transcriptase) rarely makes G>T transversion mutations (Ellefson et al., 

2016), which justifies our approach to RNA mutation analysis. We observed no increase in RNA 

mutation load or frequency of G:C>T:A mutations in the heart Sod2 knockout mice alone and 

combined with mitochondrial OGG1 deficiency in comparison with control mice with only 

quality-filtered data (Figure 3.12). Similar results were additionally, obtained with the quality-

filtered and 0.5% cut-off data (Figure 3.13). POLRMT has been shown in vitro to stall on 8-oxo-

dG during transcription (Nakanishi et al., 2013), which might explain the lack of increase in 

G:C>T:A mutations. However, transcription elongation factor (TEFM) has been shown in vitro 

to stimulate transcription past 8-oxo-dG, suggesting that 8-oxo-dG is not a stalling lesion for 

POLRMT in vivo (Posse et al., 2015).  

 

3.2.9 No topological alterations were detected in mtDNA from heart Sod2 
knockout mice  
 
In addition to mtDNA mutations, oxidative stress can induce various DNA lesions such as 

single-stranded breaks and abasic sites (Pogozelski and Tullius, 1998; Shokolenko et al., 

2009). Because mouse mtDNA is a circular molecule, double and single-stranded breaks will 

alter the topology of mtDNA. To analyze the changes in mtDNA integrity we extracted total DNA 

from fresh heart tissue and resolved the different topological stages of mtDNA with low percent 

agarose gel and visualized them with radioactive mtDNA specific probes. The DNA was 

resolved in the presence and absence of ethidium bromide (EtBr), which intercalates with DNA 

and thus, concentrates different stages of supercoiling of the closed-circle mtDNA into a 

quantifiable band (Figure 3.14 A). We analyzed the proportional distribution of mtDNA 

molecules in the different topological states (catenanes, nicked circles, linear and closed 

circles) but we observed no substantial changes in the proportions between knockout Sod2 

mice and controls (Figure 3.14 A, B). If the presence of single-strand breaks would be 

increased, the number of nicked circles would increase at the expense of closed circles. As this 

was not the case, it suggests that the heart Sod2 knockout mice seem not to accumulate 

extensive number of single-stranded breaks during continuous oxidative stress.  

Abasic sites do not induce distortion to mtDNA topology and thus they cannot be visualized on 

a topology gel without an enzymatic treatment, which converts them to single-stranded nicks. 

To reveal abasic sites in heart Sod2 knockout mice, we treated the extracted DNA with EndoIV 

prior to electrophoresis. However, we did not observe an increase in conversion of closed to 

nicked circles upon EndoIV treatment, in heart Sod2 knockout mice (Figure 3.14 C). Together 

these topological analyses suggest that either mtDNA is quickly repaired after an oxidative 

insult or that mtDNA is sufficiently shielded from damage in nucleoids. Additional possibility is 

that the damaged mtDNA is degraded and thus not detected. Previous studies have reported 

that the proportion of oxidized bases is higher in fragmented than intact mtDNA (Suter and 

Richter, 1999) and that oxidized mtDNA is degraded (Shokolenko et al., 2009). Furthermore, 

mitochondrially-targeted restriction enzyme experiments in mice have demonstrated that linear 

mtDNA fragments are digested rapidly, which causes a decrease in mtDNA copy number. To 
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address this possibility, we measured the mtDNA copy number with qPCR approach from heart 

Sod2 knockout mice but found in turn a slight increase in mtDNA copy number (Figure 3.15 A). 

Additionally, we verified the absence of mtDNA deletions with Southern blot (Figure 3.15 B).  

 

 

 

Adapted from Kauppila et al., submitted 

Figure 3.12 MtRNA mutation load does not increase in heart Sod2 knockout mice in the absence 
and presence of mitochondrial BER. Illumina sequencing, only quality filtered data. A. mtRNA 
mutation load was evaluated from Sod2 loxP x Ckmm cre mice with Illumina sequencing. Variant call was 
carried out to reads that mapped to mtDNA. The sequencing data was quality filtered. Unique mutation 
load: mutation is only counted once. Total mutation load: each mutation is counted as many times as it is 
observed. Profile of the of the mtRNA mutations. Controls (+p n=1 pp n=2), 10-11 week old, Sod2 loxP x 
Ckmm cre mice (pp, cre n=3) 10-11 week old. B. mtRNA mutation load was evaluated from Sod2 loxP x 
Ckmm cre x Ogg1 dMTS mice with Illumina sequencing. Variant call was carried out to reads that mapped 
to mtDNA. The sequencing data was quality filtered. Unique mutation load: mutation is only counted once. 
Total mutation load: each mutation is counted as many times as it is observed. Profile of the of the mtRNA 
mutations. Controls (pp dd n=4), 9-10 week old, Sod2 loxP x Ckmm cre x Ogg1 dMTS mice (pp, cre dd, 
n=4), 9-10 week old. *P< 0.05, **P< 0.005, Student’s t-test. 
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Adapted from Kauppila et al., submitted 

Figure 3.13 MtRNA mutation load does not increase in heart Sod2 knockout mice in the absence 
and presence of mitochondrial BER. Illumina sequencing, minimum variant allele frequency is set 
to 0.5%. A. mtRNA mutation load was evaluated from Sod2 loxP x Ckmm cre mice with Illumina 
sequencing. Variant call was carried out to reads that mapped to mtDNA. The sequencing data was quality 
filtered and minimum for variant allele frequency was set to 0.5%. Unique mutation load: mutation is only 
counted once. Total mutation load: each mutation is counted as many times as it is observed. Profile of 
the of the mtRNA mutations. Controls (+p n=1 pp n=2), 10-11 week old, Sod2 loxP x Ckmm cre mice (pp, 
cre n=3) 10-11 week old. B. mtRNA mutation load was evaluated from Sod2 loxP x Ckmm cre x Ogg1 
dMTS mice with Illumina sequencing. Variant call was carried out to reads that mapped to mtDNA. The 
sequencing data was quality filtered and minimum for variant allele frequency was set to 0.5%. Unique 
mutation load: mutation is only counted once. Total mutation load: each mutation is counted as many 
times as it is observed. Profile of the of the mtRNA mutations. Controls (pp dd n=4), 9-10 week old, Sod2 
loxP x Ckmm cre x Ogg1 dMTS mice (pp, cre dd, n=4), 9-10 week old. *P< 0.05, Student’s t-test. 
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Adapted from Kauppila et al., submitted 

Figure 3.14 No change in mtDNA integrity is observed with increased oxidative stress. A. 
Topological analysis of mtDNA integrity. A representative exposure of a topology gel of Sod2 loxP x Ckmm 
cre. Control samples are treated with various enzymes to reveal different mtDNA topologies. SacI makes 
double-stranded nick in mtDNA, Nt.BbvCI makes a single-stranded nick. Topo I relaxes and Gyrase 
induces coiling to closed circle mtDNA. Experimental samples are untreated. Ethidium bromide (EtBr) 
intercalates with DNA and condenses closed circle DNA to quantifiable band. PhosphorImager images 
are filtered with averaging to reduce noise. Quantifications were made from the original images B. 
Quantification of proportion of closed circle mtDNA from phosphorImager exposure. Control (pp, n=11), 
9-10 week old and Sod2 loxP x Ckmm cre mice (pp,cre, n=12), 10-week old. C. Abasic site analysis of 
mtDNA from Sod2 loxP x Ckmm cre mice. Abasic sites are converted to single-stranded nicks with EndoIV 
prior to gel analysis. No proportional increase in the presence of nicked circle was detected after EndoIV 
treatment in Sod2 loxP x Ckmm cre mouse samples.  
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that the damaged mtDNA is degraded and thus not detected. Previous studies have reported 

that the proportion of oxidized bases is higher in fragmented than intact mtDNA (Suter and 

Richter, 1999) and that oxidized mtDNA degraded (Shokolenko et al., 2009). Furthermore, 

mitochondrially-targeted restriction enzyme experiments in mice have demonstrated that linear 

mtDNA fragments are digested rapidly, which causes a decrease in mtDNA copy number. To 

address this possibility, we measured the mtDNA copy number with qPCR approach from heart 

Sod2 knockout mice but found in turn a slight increase in mtDNA copy number in some heart 

Sod2 knockout individuals (Figure 3.15 A). Additionally, we evaluated the mtDNA copy number 

with Southern blot to verify the absence of mtDNA deletions (Figure 3.15 B).  

                           

Adapted from Kauppila et al., submitted 

Figure 3.15 mtDNA copy number in heart Sod2 knockout mice. A. QPCR analysis revels slight 
increase in mtDNA copy number in some heart Sod2 knockout mice individuals. mtDNA levels were 
evaluated with Cytb probe and nuclear DNA levels with 18S probe. Controls (pp, n=12), 10-12 week old 
and Sod2 loxP x Ckmm cre mice (pp, cre, n=11), 10-12 week old. Horizontal lines represent means, error 
bars represent SD, *P< 0.05, Student’s t-test. B. Southern blot analysis from heart Sod2 knockout mice.  

 

3.2 .10 De novo replication capacity is decreased in heart Sod2 knockout 
mice while de novo transcription remains unaffected 
 
Topology gels only reveal oxidative damage that induces double or single-stranded nicks to 

mtDNA. To be able to evaluate the presence of lesions that would stall replication or 

transcription such as bulky adducts and other modifications (Kasiviswanathan et al., 2013; 

Nakanishi et al., 2013; Stojkovič et al., 2016), we carried out in organello replication and 

transcription experiments on the heart Sod2 knockout mice. In these experiments, the 
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incorporation of radioactive dNTP or NTP in intact mitochondria is used as a marker for the 

functionality of replication or transcription machinery, respectively. The de novo replication and 

transcription is quantified by resolving the nucleic acids on an agarose gel. In the case of 

replication assay, large fraction of OriH initiated replication is prematurely terminated, producing 

abortive replication product called 7S DNA. This DNA fragment anneals in the control region 

and forms a triple-stranded displacement loop (Gustafsson et al., 2016). In in organello 

replication assay, we observed a severe reduction in both total and 7S DNA de novo replication 

with heart Sod2 knockout mice (Figure 3.16 A). The impairment was not afflicted further by the 

absence of BER repair (Figure 3.16 B). Interestingly, the de novo transcription (pulse) or RNA 

turn over (chase) was normal heart Sod2 knockout mice (Figure 3.17 A,B). The specific 

decrease in in organello replication suggests that either the decrease seen in replication was 

not driven by mtDNA damage or that the replication and transcription machineries do not have 

the same sensitivity to mtDNA damage. To decipher this, the steady-state levels of replication 

and transcription proteins were evaluated from purified mitochondria on a western blot. The 

experiment revealed an increase in the POLRMT steady-state levels, while in turn, the steady 

state-level of Pol  was decrease in heart Sod2 knockout mice (Figure 3.18), which at least 

partially explains the discrepancies between de novo transcription and replication. Consistently, 

previous experiments have shown that Pol  is vulnerable to oxidative stress (Graziewicz et al., 

2002). All the other evaluated replication and transcription proteins were not strongly afflicted 

(mtSSB, TFAM and TFB2M) in heart Sod2 knockout mice.  
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Adapted from Kauppila et al., submitted 

Figure 3.16 De novo replication is decreased in heart Sod2 knockout mice in the presence and 
absence of mitochondrial BER. A. In organello replication assay from heart Sod2 knockout mice. 
Purified mitochondria are incubated with radioactive dATP nucleotide and its incorporation to mtDNA is 
used as a proxy for de novo replication. To evaluate levels of newly synthetized 7S DNA, samples were 
heated to release the 7S DNA. Loading is normalized to the steady-state level of the mtDNA, which is 
measured by probing the same membrane with mtDNA recognizing probes when the de novo signal was 
diminished. Additionally, an aliquot representing the input was analyzed with Coomassie staining after the 
labeling to normalize the loading for mitochondrial protein per sample. To quantify de novo replication, it 
was normalized by steady-state level of mtDNA. Controls (pp, n=9,), 10-11 week old and Sod2 loxP x 
Ckmm cre mice (pp, cre, n=9), 9-10 week old. Combined from three separate experiments. Horizontal 
lines represent means, error bars represent SD, ****P< 0.0001, Student’s t-test. B. In organello replication 
assay from heart Sod2 loxP x Ckmm cre x Ogg1 dMTS mice.  
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Adapted from Kauppila et al., submitted 

Figure 3.17 De novo transcription is not afflicted in the heart Sod2 knockout mice. A. In organello 
transcription analysis from heart Sod2 knockout mice. Radioactive UMP incorporation is used as a proxy 
for de novo transcription. RNA turnover is evaluated by 2hr-chase. Loading is normalized to the steady-
state level of CytB transcript, which is measured by probing the same membrane with a CytB probe after 
de novo signal is diminished. Additionally, an aliquot representing the input was analyzed with Coomassie 
staining after the labeling to normalize the loading for mitochondrial protein per sample. To quantify de 
novo transcription, it was normalized by steady-state level of CytB. Controls (pp, n=9,), 10-11 week old 
and Sod2 loxP x Ckmm cre mice (pp, cre, n=9), 9-10 week old. Combined from three separate 
experiments. Controls (pp, n=12), 10-11 week old and Sod2 loxP x Ckmm cre mice (pp, cre, n=12), 9-10 
week old. Horizontal lines represent means, error bars represent SD. B. A representative northern blot 
analysis of steady-state levels of CytB transcript. Quantification is made from combined experiments. 
Controls (pp, n=7), 10-11 week old and Sod2 loxP x Ckmm cre mice (pp, cre, n=9),10-11 week old. 
Horizontal lines represent means, error bars represent SD, ns= not significant, Student’s t-test.  
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Adapted from Kauppila et al., submitted 

Figure 3.18 The steady-state level of Pol  is decreased in heart Sod2 knockout mice. Western blot 
analysis of steady-state levels of mitochondrial maintenance and expression proteins from purified heart 
mitochondria of controls (pp) and Sod2 loxP x Ckmm cre (pp, cre) mice (9-10 week old). Coomassie-
stained membrane and ATP5A protein steady-state levels were used as loading controls.     
 

3.3 DISCUSSION 
 

For decades, mitochondria have been postulated to contribute to the aging process. With age 

the prevalence of focal OXPHOS dysfunction increases in certain tissues such as brain, 

skeletal muscle and colonic crypts. Accordingly, at these focal sites, individual cells contain 

mtDNA point mutations and/or deletions (Brierley et al., 1998; Bua et al., 2006; Cortopassi and 

Arnheim, 1990; Greaves et al., 2014b; Müller-Höcker, 1989; Taylor et al., 2003). The origin of 

mtDNA mutations is still under debate, while two, not mutually exclusive, sources have been 

proposed, namely replication errors and oxidative damage to mtDNA.  

Similarly, the origin of mutations in nuclear DNA is widely discussed, especially in the 

cancer field. Recent studies have reported that cancers, which lack strong environmental 

component to their development, show a clear correlation between lifetime number of stem cell 

divisions and life time risk of cancer (Tomasetti et al., 2017). This risk is additionally not 

dependent on geographical regions. Thus, it suggests that in certain cancers, the source of 

mutations is replication errors rather than exogenous DNA damage (Tomasetti et al., 2017). 

Despite the high fidelity of DNA replication, somatic mutations have been suggested to slowly 

accumulate to DNA especially in highly proliferative cells. Newborns have been estimated to 

harbor 50-100 new mutations while at 60 years of age the mutation load in e.g. epidermis could 

be 4 000-40 000 per cell (Lynch, 2010). Similarly, mtDNA replication is highly accurate process 

(Lynch, 2010; Zheng et al., 2006) but somatic point mutations have been observed to be more 

prevalent with age (Greaves et al., 2014b; Itsara et al., 2014; Kennedy et al., 2013). Throughout 

life mtDNA is replicated extensively. During primordial germ cell development, the mtDNA copy 

number decreases down to few hundreds of copies per cell (Cree et al., 2008). These copies 
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are not only replicated to account for all of the mtDNA copies in an individual, but they are also 

turned over and replicated through life without cell cycle control. The high number of mtDNA 

replication cycles explains why replication errors still may occur despite high replication fidelity. 

 In addition to somatic mtDNA mutations, oxidative damage to macromolecules is also 

more prevalent with age (Bokov et al., 2004; Stadtman, 2006). Accordingly, the concentration 

of H2O2 is observed to increase with age in flies (Cochemé et al., 2011), while, no increase was 

detected between young and old mice (Logan et al., 2014). Interestingly, cells that were 

exposed to rotenone or H2O2 showed indications of mtDNA damage, but no increase in mtDNA 

mutation load was detected (Shokolenko et al., 2009). In line with this, in the heart Sod2 

knockout mice we observed clear increase in oxidative stress, however we detected no 

increase in mtDNA mutation load. Furthermore, mtDNA is observed to be less sensitive to 

exogenous mutagens than nuclear DNA, while concentrations that cause increase in nuclear 

mutation load are not mutagenic in mitochondria in cells (Marcelino et al., 1998), even if the 

mutational adducts can be detected in mtDNA and the mutagen has been given systemically 

to mice (Valente et al., 2016). These observations suggest that direct causality cannot be draw 

between increase in oxidative stress or exogenous mutagenic substances and increase in 

mtDNA mutation load. Nucleus has 14 different DNA polymerases, which include also 

translesion polymerases that allow replication machinery to by-pass various lesions, albeit it 

occurs commonly with lower fidelity (Pata, 2010). Mitochondria, in turn, have only one DNA 

polymerase to replicate and repair mtDNA. However, the multicopy nature of mtDNA might 

decrease the pressure of lesion by-pass in comparison to nucleus. It could be thus imagined 

that increased replication termination and/or mtDNA turnover are important reasons why DNA 

lesions do not commonly lead to mutations in mtDNA.  

In summary, we did not observe any increase in the somatic or maternally transmitted 

mtDNA mutation load in BER-deficient mice, indicating that disruption of BER is not a 

successful approach to introduce mtDNA mutations to generate mouse models for mtDNA 

diseases. Furthermore, we did not to detect an increase in mtDNA damage or mitochondrial 

DNA or RNA mutation load even when we combined deficiency in BER with profound increase 

in oxidative stress. This stress was induced by absence of SOD2 and exemplified by the loss 

of aconitase activity. Even though, the increased ROS levels caused a plethora of changes in 

mitochondrial function, we cannot exclude that different types of oxidative stress is present 

during ageing, which might induce mtDNA damage and lead to an increase in mtDNA mutation 

load. This is, however, unlikely when we consider that in old individuals, the mitochondrial 

mutational profile includes mostly transitions and demonstrates a clear strand-specific bias 

(Greaves et al., 2010; 2012; Itsara et al., 2014; Kennedy et al., 2013; Taylor et al., 2003; 

Williams et al., 2013). This is a mutational signature, which is more consistent with replication 

errors (Zheng et al., 2006) or spontaneous deaminations (Lindahl, 1993), rather than by random 

oxidative damage. Furthermore, the de novo mutations that occurs with old age induced by 

increased oxidative stress would not have enough time to clonally expand to high levels that 

would impair OXPHOS and are thus most likely not relevant for ageing. Consistently, the 
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clonally expanded mutations that induce the focal OXPHOS deficiency associated with ageing 

(Larsson, 2010), are inconsistent with being induced by oxidative damage (Greaves et al., 

2010; 2014b; Taylor et al., 2003). With our experimental observations and the correlative data 

from sequencing studies, we can conclude that the oxidative stress driven hypothesis of mtDNA 

point mutations requires a re-evaluation. Additionally, BER repair deficiency is not a feasible 

approach to introduce mutations to mtDNA. Instead in both ageing research and mitochondrial 

disease models we should focus on mtDNA replication errors as a source of somatic mtDNA 

mutations.  
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DISCUSSION AND FUTURE PERSPECTIVES 
 

The first disease-linked mtDNA mutations were identified nearly 30 year ago (Holt et al., 1988; 

Wallace et al., 1988). Since the first discoveries, mitochondrial research has advanced in leaps. 

Our knowledge has not only increased in the field of mitochondrial disease biology but also in 

the functional aspects of mitochondrial biology such as DNA expression, replication and 

translation. However, many questions still remain unanswered, e.g. the enigmatic phenotype-

genotype correlation and the tissue specificity of these disorders. The comprehensive 

understanding of mitochondrial diseases has been partially hindered by the absence of suitable 

animal models. One of the greatest obstacles in establishing mtDNA mutant animal models is 

the inability to modify mtDNA with the molecular biology techniques commonly used to 

manipulate nuclear DNA. In this thesis the role of replication errors as the main source for 

mtDNA point mutations was strengthen and a new phenotype-driven approach to generate 

mouse models that carry pathogenic mtDNA point mutations was described. The presented 

approach allows not only technically simple generation of new disease models but also 

described a new way to screen for the presence of low-level pathogenic mtDNA mutations from 

rapidly clonally expanding colonic crypts. This improvement is highly important, while the 

identification of low-level pathogenic mutation from postmitotic tissues of a potential disease 

model, can be like looking for a needle in the hay stack. Firstly, only cells with high enough 

heteroplasmy level show respiratory chain dysfunction and secondly, this dysfunction can also 

be present in low levels in postmitotic tissues especially with mildly-pathogenic mutations. For 

example, the mice harboring C5024T mutation in mitochondrial tRNAALA gene, show distinct 

decrease in translation and clear correlation between C5024T heteroplasmy levels and 

OXPHOS dysfunction in colonic crypts and smooth muscle cells. However, only occasional 

complex IV dysfunctional cardiomyocytes can be detected in these mice.  

 An interesting contrast with the relatively mild phenotype of the tRNAALA mice, is that 

at high relative heteroplasmy levels the transmission of the C5024T allele deviated from neutral 

drift model and no progeny was observed with higher than 80 % relative levels of the C5024T 

allele, suggesting that higher heteroplasmy levels than 80 % were not compatible with life. 

However, studies addressing mtDNA deletions have demonstrated that heteroplasmy analyses 

conducted from tissue homogenates often represent lower heteroplasmy levels that what can 

be detected from single-cell studies of the same tissue (Brierley et al., 1998). Accordingly, when 

the heteroplasmy levels of the C5024T allele were measured from single cells in the colonic 

smooth muscle, the relative levels of C5024T allele reached more than 90% in COX 

dysfunctional cells, although the homogenate levels of the analyzed mice were close to 70%.  

Pathogenic mtDNA mutations can lead to mitochondrial disorders with onset in 

neonatal period or in adulthood. Even though pathogenic de novo mutations require time to 

clonally expand to reach high enough levels to disrupt the oxidative phosphorylation system. 

Commonly, this is, however, not the cause for the late onset of mitochondrial diseases because 
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high to medium heteroplasmy levels of the mutation are generally present already in the germ 

cells generating the affected individual. Accordingly, the most common mutations associated 

with Leber's hereditary optic neuropathy (LHON) are frequently homoplasmic and still induce 

only late onset loss of vision (Howell et al., 1991). With certain mutations, the level of 

heteroplasmy can, however, be associated with the clinical presentation of the disease. For 

example, a correlation with heteroplasmy level and symptoms of the disease was found with 

A3243G MELAS mutation. Individuals with low heteroplasmy level presented more frequently 

with CPEO and myopathy than individuals with high heteroplasmy level, who, in turn, presented 

more frequently with recurrent strokes and epilepsy (Chinnery et al., 1997).  

Still most human pathogenic mtDNA mutations are heteroplasmic and cause a disease 

only when the relative heteroplasmy level of a mutation exceeds the biochemical threshold 

level. Therefore, decreasing the relative levels of the pathogenic mutation could be a successful 

strategy to restore the respiratory chain function and relieve the symptoms of the mitochondrial 

disease. The mitochondrially-targeted restriction enzyme has demonstrated that one can 

selectively target the mtDNAs with heteroplamic mutations and decrease their relative 

heteroplasmy levels (Bayona-Bafaluy et al., 2005). However, most pathogenic mutations do 

not alter common restriction sites; thus, the restriction enzymes need to be engineered to 

specifically target the mutant mtDNA to decrease its relative heteroplasmy levels. Recently, 

experiments with mitochondrially-targeted TALENs and Zn-finger nucleases have successfully 

sifted the rations of mutant to wild-type mtDNA in oocytes and human cell lines (Bacman et al., 

2013; Gammage et al., 2016; 2014; Minczuk et al., 2006; Reddy et al., 2015). tRNAALA mice 

could be a perfect tool set up and test these mitochondrially-targeted nucleases in vivo. In these 

tests, the readout for rescue could be the improved molecular phenotype of the tRNAALA mice, 

namely a decrease in heteroplasmy level of the mutation and/or increased steady-state levels 

of tRNAALA transcript.  

Another treatment approach that could be tested in vivo with the tRNAALA mice is an 

approach that utilizes overexpression of cognate aminoacyl synthetases to suppress the 

molecular defects of a pathogenic tRNA mutation. It has been shown that overexpression of 

cognate tRNA aminoacyl synthetase could suppress a pathogenic mutation induced phenotype 

in yeast and mammalian cells (Montanari et al., 2010; Rorbach et al., 2008). Additionally, full 

length and a truncated version of yeast leucyl-tRNA synthetase and its human orthologue has 

been observed to partially rescue molecular phenotype of a non-cognate pathogenic 

mitochondrial tRNA mutation (Hornig-Do et al., 2014; Montanari et al., 2010; Perli et al., 2014). 

However, it is possible that the molecular phenotype of tRNAALA mice can be only rescued with 

overexpression of alanyl-tRNA synthetase as it is a Class II aminoacyl synthetase and leucyl-

tRNA synthetase is a Class I amino acyl synthetase. 

One of the challenges in mitochondrial disease modeling and rescue studies in mice is 

that they live only ~ 2 years. It is, for example, difficult to anticipate what would have been the 

phenotype of tRNAALA mice if they had lived until 20-30 years of age. How to then induce the 

adult onset like symptoms or histological changes in a lifetime of a mouse model? Based on 
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the examples from LHON and MELAS patients and the already reached transmission threshold 

of C5024T mutation, it is clear that only increasing the heteroplasmy level of the pathogenic 

mutation is not a feasible solution. Another way could be to induce mild translational impairment 

in the tRNAALA mice and thus increase the sensitivity of the mice to the decrease in tRNAALA 

transcript levels. This could be potentially established with a genetic approach, by crossing the 

tRNAALA mice with mice that are heterozygote for mutated ribosomal subunit MRPS34 allele 

(Richman et al., 2015). Alternatively, tRNAALA mice could be treated with low concentrations of 

translation inhibitors such as chloramphenicol or actinonin (Richter et al., 2013). However, 

neither of these approaches are free from pitfalls and in-built biases, and thus the observations 

that they provide should be evaluated critically to verify that they are not caused by the off-

target effects of chemical treatment or the tissue-specific sensitivity of MRPS34 mutation. If 

these approaches are successful, they could be a highly valuable tool to establish stronger 

histological changes in mouse tissues in tRNAALA mice that are relevant for human 

mitochondrial disease. These changes, would enable demonstration of phenotypical rescue 

with different mitochondrial treatments such as the mitochondrially-targeted nucleases. 

In general, with or without further translation impairment, additional analysis of the 

tissue specificity of tRNAALA mice could provide insights in the puzzling tissue specificity of 

mitochondrial disorders. For example, it is not currently understood how the LHON mutation, 

that causes isolated visual impairment, can in some patients also induce devastatingly severe 

dystonia, which no obvious eye involvement (Lightowlers et al., 2015; McFarland et al., 2007). 

Indeed, with the current knowledge in mitochondrial biology, animal models and new 

molecular tools, the future of mitochondrial disease biology seems brighter than before. Now, 

it seems likely that in the future treatment options for mitochondrial diseases could be advanced 

beyond palliative care.   
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METHODS 
 

4.1 MOUSE WORK 

 

4.1.1 Mouse husbandry  

The mouse strain C57Bl/6NCrl (Charles River, Germany strain code 027) was used in all 

experiments. The mice were housed at 21°C in a 12-hr light/dark cycle and fed ad libitum on a 

standard diet (ssniff M-H Low-Phytoestrogen). An enhanced diet was used with newly weaned 

mice or during breeding (ssniff M-Z Low-Phytoestrogen) by Ssniff Spezialdiaeten GmbH. All 

experiments were approved and permitted by the Landesamt für Natur, Umwelt und 

Verbraucherschutz Nordrhein-Westfalen (LANUV) in accordance with German and European 

Union regulations. All animal work was performed in accordance to recommendations and 

guidelines of the Federation of European Laboratory Animal Science Associations (FELASA).  

 

4.1.2 Mouse models 

All mice were backcrossed and maintained on the inbred C57BL/6NCrl background (Charles 

River, Germany strain code 027). 

 

Mouse line Details From 

Sod2 loxP Floxed superoxide dismutase 2 

Dr. Karin Scharffetter-

Kochanek University of Ulm 

(Strassburger et al 2005) 

MutYh delta-MTS 
MutY homolog (E.coli) delta-

mitochondrial targeting sequence 
Taconic Artemis 

Ogg1 delta-MTS 
8-oxoguanine DNA-glycosylase 1 

delta-MTS 
Taconic Artemis 

PolgA (D257A) loxP 
Proofreading-deficient DNA 

polymerase gamma 

Generated in-house 

(Trifunovic 2004) 

 

4.1.2.1 MtDNA mutator mouse 

The mutator mouse line with the D257A mutation in the catalytic subunit of DNA polymerase 

  (PolAD257A, PolAMUT/MUT) was generated previously, (Trifunovic et al., 2004). To avoid 

accumulation of mtDNA mutations, the line was maintained by backcrossing the heterozygous 

male mice to wild-type C57Bl/6N females.  
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4.1.2.2 Generation of mice with mtDNA mutations 

Heterozygous PolA+/MUT females are bred with wild-type C57Bl/6N males. The wild-type 

female pups from this cross are then used to generate the lineages carrying mtDNA mutations 

by continuously backcrossing them with wild-type C57Bl/6N males. 

 

4.1.2.3 Generation of Ogg1 dMTS mice 

To exclude OGG1 protein from mitochondria, the endogenous Ogg1 gene was modified to lack 

the genomic region encoding the predicted mitochondrial targeting sequence (MTS). First, the 

location of the OGG1 MTS was predicted from AAB94512.1 protein sequence with Mitoprot II 

(Claros and Vincens, 1996) and Target P1.1 (Emanuelsson et al., 2000; Nielsen et al., 1997) 

to extend from L2 to W23. Then, a targeting vector (BAC C57BL/6J RPCIB-731) was 

transfected into the TaconicArtemis C57BL/6N Tac ES cell line. This vector lacked the 

predicted MTS encoding region and carried a positive selection marker (Neomycin resistance) 

flanked by FRT sites. After a successful homologous recombination, the neomycin cassette 

was removed by Flp recombination to obtain the constitutive knockout allele of Ogg1 lacking 

the genomic region encoding the MTS (Ogg1 dMTS). The mice were generated at 

TaconicArtemis and they were maintained on the C57Bl/6NCrl background (Charles River 

Laboratories, Germany strain code 027). To minimize accumulation of mutations to mtDNA, 

heterozygous mice were continuously generated by crossing homozygous males for Ogg1 

allele with wild-type C57Bl/6N females.  

 

4.1.2.4 Generation of Mutyh dMTS mice 

The endogenous Mutyh gene was modified to lack the genomic region encoding the predicted 

MTS to exclude MUTYH protein from mitochondria. First, the location of the MTS in MUTYH 

protein was predicted with Mitoprot II (Claros and Vincens, 1996) and Target P1.1 

(Emanuelsson et al., 2000; Nielsen et al., 1997) prediction tools using NP_001153053.1 protein 

sequence. The prediction tools suggested that the MTS extends from K2 to P33. Then, a 

targeting vector (BAC C57BL/6J RPCIB-731) was transfected into the TaconicArtemis 

C57BL/6N Tac ES cell line. This vector lacked the predicted MTS encoding region and it 

contained a positive selection marker (Neomycin resistance) flanked by FRT sites After a 

successful homologous recombination, the neomycin cassette was removed by Flp 

recombination to obtain the constitutive knockout allele of Mutyh lacking the genomic region 

encoding the MTS (Mutyh dMTS). The mice were generated at TaconicArtemis and they were 

maintained on the C57Bl/6NCrl background (Charles River Laboratories, Germany strain code 

027). To minimize accumulation of mutations to mtDNA, heterozygous mice were continuously 

generated by crossing homozygous males for Mutyh allele with wild-type C57Bl/6N females.  
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4.1.2.5 Heart Sod2 knockout mice 

Superoxide dismutase 2 loxP mice (Strassburger et al., 2005) were received from Prof. Dr. 

Karin Scharffetter-Kochanek from Universitätklinikum Ulm. To generate tissue specific 

knockout of the SOD2 protein in heart and skeletal muscle, the Sod2 loxP mice were crossed 

with a Ckmm cre transgenic line (Wang et al., 1999). The Sod2 loxP x Ckmm cre mice were 

maintained on C57Bl/6NCrl background (Charles River Laboratories, Germany strain code 

027). 

 

4.1.3 Body composition measurements  

Lean mass content and body fat were measured by nuclear magnetic resonance with minispec 

LF50H (Bruker) at the Phenotyping Core Facility of MPI for Biology of Ageing. 

 

4.2 HISTOLOGICAL ANALYSES 

 

4.2.1 Tissue preparation for histological analysis 

To collect tissues, mice were sacrificed with CO2 and cervical dislocation. Then the target 

tissues such as heart or colon were removed and washed with PBS. Tissues, that were 

intended for histological staining, were frozen in liquid nitrogen cooled (-160 °C) isopentane (15 

s) and thin sections (7 μm heart, 10 μm colon) were cut from the frozen tissues with an OFT 

5000 cryostat (Bright). Sections that were meant for laser-capture dissection (15 μm) were cut 

on to polyethylenenaphthalate (PEN) slides (Leica Microsystems) and the sections for 

histological staining were cut on to glass colorcoat adhesion slides (CellPath). Prior to further 

analysis both sections were stored in -80°C.  

 

4.2.2 Laser-capture Microdissection 

The sections for laser-capture microdissection were cut to 15 μm thickness, mounted on 

polyethylenenaphthalate (PEN) slides (Leica Microsystems) and air-dried at room temperature 

for 1hr. Thereafter, slides were stored in sealed slide mailers at -80°C until use. Microdissection 

was carried out on a Leica LMD7000 Lasermicrodissection Microscope. Single colonic crypt 

section or 5 smooth muscle fibers were sorted into single tubes for analysis and settled to the 

bottom of the tube by centrifugation at 7000 rcf for 10 min.  

 

4.2.3 Dual cytochrome c oxidase (COX)/ succinate dehydrogenase (SDH) 

enzyme histochemistry 

First, sections were incubated at 37 °C in 50 μl of COX staining medium (100 μM cytochrome 

c, 4 mM diaminobenzidine tetrahydrochloride, 20 μg/ml catalase, 0.2 M phosphate buffer pH 

7.0) 60 min for heart and 25 min for colon sections. Then, the sections were washed 3 x 5 min 

with PBS. Next, the sections were incubated at room temperature with 50 μl of SDH solution 
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(130 mM sodium succinate, 200 μM phenazinemethosulphate, 1 mM sodium azide, 1.5 mM 

nitroblue tetrazolium, 0.2 M phosphate buffer pH 7.0), for 30 min for heart and for 35 min for 

colon. Then, the sections were washed 3 x 5 min with PBS, dehydrated through graded ethanol 

series (70%, 95% and 2x 100%), cleared in Histoclear™ (National Diagnostics, Atlanta, 

Georgia, USA), and mounted in DPX. The sections that were meant for laser-capture 

microdissection, were only air-dried for 90 min after dehydration.  

 

4.2.4 Complex I immunohistochemistry 

To asses steady-state levels of complex I subunits, the colons were fixed in 4% PFA overnight 

at room temperature. Next, the tissue was washed in 70% ethanol and paraffin embedded. The 

paraffin embedded tissue was cut to 4µm sections and the sections were incubated on slides 

overnight at 37 °C to verify adherence to the slides. Next, the sections were de-paraffinised 

with two rounds of Histoclear and rehydrated in a graded ethanol series. Then, antigens were 

retrieved by pressure cooking the sections in 1mM EDTA pH 8.0 for 20 minutes. To block the 

endogenous peroxidase activity, 0.3% H2O2 was added to the 95% ethanol in the rehydration 

step. Then, the sections were blocked with 10% Normal Goat Serium for 1 hour at room 

temperature and endogenous biotin was blocked using an avidin/biotin blocking kit (Vector 

Laboratories). Next, the sections were incubated overnight with anti-NDUFB8 antibody 

(Abcam) diluted 1:100 in 10% normal goat serum in TBS. Then they were washed with TBS-

Tween 20, and incubated in goat anti-IgG1-biotin (Jackson Immuno Research) for 2 hours at 

4oC, followed by incubation with the VECTASTAIN® Elite ABC (Vector Laboratories) following 

manufacturer’s recommendations. NDUFB8 steady-state level was measured from 4 sections 

that were taken at 100µm intervals.  

 

4.2.5 Hematoxylin and eosine staining from paraffin embedded heart sections 

Hearts were fixed with PFA and embedded in paraffin (ThermoFisher). The paraffin embedded 

tissue was cut to 5µm sections with a microtome (HM340E, Thermo) and the sections were 

deparaffinized in xylene (AppliChem), rehydrated with an alcohol series (100-70% ethanol, 

AppliChem) and stained with Haematoxylin (AppliChem) and Eosin Y (Carl Roth) following 

standard protocols. Then, the sections were dehydrated through an alcohol series (70-100% 

ethanol, AppliChem), mounted (Cytoseal, ThermoFisher) and imaged with a brightfield 

microscope (Nikon Eclipse Ci). 

 

4.3 CELL CULTURE ANALYSES 

 

4.3.1 Constructs encoding OGG1 and MUTYH for immunocytochemistry 

To generate a construct expressing the wild-type form of OGG1, a cDNA encoding mouse 

OGG1 (NM_010957.4) was inserted into the multiple cloning site of pCMV-tag4 (Agilent). Next, 
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the region encoding for the predicted MTS (4T-69G) was removed by adding a new start codon 

and restriction site after the predicted MTS sequence by PCR. The resulting oligonucleotide 

was then inserted to pCMV-tag4a vector. To study the subcellular localization of MUTYH 

protein a construct that encodes mouse Myc-DDK-tagged MUTYH (pCMV6-Entry) was 

purchased (Origene, MR208268, NM_133250.1) and the predicted MTS encoding sequence 

(A4-T99) was removed and N-terminal extension of human alpha variant (A1-C42) was added. 

Additionally, a construct encoding human Myc-DDK-tagged MUTYH alpha variant (pCMV6-

Entry, Origene) (NM_001048171.1) was modified to lack the N-terminal extension of alpha3 

variant (A1-C42) and the MTS encoding sequence (A4-G162).  

 

4.3.2 Immunocytochemistry 

To evaluate the subcellular localization of the target proteins, HeLa cells were grown on 

coverslips at 37°C, 5% CO2 and transfected with plasmids encoding OGG1 or MUTYH proteins 

using Lipofectamine2000 (ThermoFisher). First, the cells were fixed with 4% paraformaldehyde 

(EMS) and incubated with antibodies that recognize the FLAG peptide (Sigma-Aldrich, F1804) 

and TOM20 protein (Santa Cruz, sc-11415). Next, the primary antibodies were recognized with 

secondary antibodies (goat anti-mouse Alexa Fluor 488, A11001 and goat anti-rabbit Alexa 

Fluor 594 A11012 (ThermoFisher) and stained with 1 μg/ml DAPI (AppliChem) and mounted 

with Prolong Gold (ThermoFisher). Finally, the images were acquired with a Leica TCS SP8-X 

inverted confocal microscope (Leica Microsystems) using a 100x/1.4 oil objective. 

 

4.4 PROTEIN ANALYSIS 

 

4.4.1 Mitochondria purification 

Mitochondria were purified from fresh tissue with differential centrifugation. First, the target 

tissue was collected (heart ~100 mg, liver ~200 mg), minced into small pieces and rinsed with 

PBS. The tissue was then combined with 10 ml of mitobuffer (320 mM sucrose, 20 ml Tris-HCl, 

1 mM EGTA, 0.2% BSA, pH 7.2) in a glass homogenizer. For softer disruption, heart tissue 

was first homogenized with loose Teflon pestle in hand with 10 strokes. Then, both liver and 

heart were homogenized with a tight Teflon pestle with 5 (liver) or 10 strokes (heart) at 200 

rpm. To pellet cell debris, the homogenates were then spun for 10 min at 1000 g, followed by 

a 10 min spin at 10 000 g to pellet the mitochondria. The mitochondria-enriched pellets were 

thereafter resuspended into mitobuffer without BSA. The centrifugations were performed at 

+4°C and the samples were kept on ice throughout the procedure. For label-free quantitative 

proteomics, mitochondria were prepared in the presence of protease inhibitor cocktail 

(cOmplete, EDTA-free, Roche), and purified further with Percoll gradient to exclude the 

mitochondria-associated membranes in the following way. 8 ml of Percoll gradient solution 

(20% Percoll solution in mitobuffer with BSA) was poured into Ultraclear ultracentrifugation 

tubes (14 x 89 mm) and the resuspended mitochondria were layered on top of the gradient. 
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The gradient was then spun in SW41 swing-out rotor (Beckman) at 40 000 g at +4°C for 30 

min. The brown mitochondrial layer was collected and diluted 10 x with mitobuffer lacking BSA 

to remove the residual Percoll. Finally, the diluted mitochondria were re-collected with 

centrifugation at 6 300 g for 10 min at +4°C. The Percoll protocol was a modified from previously 

published protocol (Wieckowski et al., 2009). 

 

4.4.2 Western blot analysis 

Western blot analysis was carried out to evaluate the steady-state levels of proteins of interest. 

First the differential-centrifugation purified mitochondria were lyzed and reduced with NuPAGE 

LDS sample buffer (Invitrogen) and 50 µM DTT. Then they were resolved on a NuPAGE SDS-

PAGE gel system (Invitrogen) and transferred with wet-transfer onto a PVDF membrane 

(Immobion FL, Millipore or Amesham Hybond, GE Healthcare). Next, the membrane was 

blocked with 5% milk TBS, 0.05% TWEEN-20 and proteins of interest were detected with 

primary antibody (see table below) and visualized with horseradish peroxidase-linked 

secondary antibody (Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, HRP, 

Invitrogen; Amersham ECL Mouse IgG, HRP-linked, GE Healthcare) with enhanced 

chemiluminescence (Amersham ECL Western Blotting Detection Reagent, GE Healtcare) on 

to a film (Amersham hyperfilm MP, GE Healthcare). After detection, the membrane was stained 

with staining solution (Coomassie Blue-R, 10% acetic acid, 20% EtOH), destained and scanned 

either with the Odyssey infrared imaging system (LI-COR Biosciences) or a normal scanner to 

control for loading.  

 

Target Company Catalog number 

ACO2 Abcam ab110321 

ATP5A Abcam ab14748 

MitoProfile Total OXPHOS 

Rodent WB Antibody Cocktail  

Mitoscience MS604 

mtSSB Sigma HPA002866 

NDUFV2 Sigma HPA003404 

POLRMT self-made  

POLγ Abcam ab128899 

SDHA Invitrogen 459200 

SDHC Proteintech 14575-1-AP 

SOD2 Millipore 06-984 

TFAM Abcam ab131607 

TFB2M self-made  
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4.4.3 Blue Native PAGE Electrophoresis  

Isolation of mitochondria from mouse hearts was performed by differential centrifugation and 

75-100 μg of purified mitochondria were lyzed in 50 μl of ice-cold digitonin buffer (1% digitonin, 

20 mM Tris pH 7.4, 0.1 mM EDTA, 50 mM NaCl, 10% glycerol, 1 mM PMSF). The lysis was 

continued for 15 min on ice and then the unsolubilized material was removed by centrifugation 

at 4°C. Next, the collected supernatant was then combined with 5 μl of 10x loading dye (5% 

(w/v) Coomassie Brilliant Blue G-250, 100 mM Tris pH 7, 500 mM 6-aminocaproic acid) and 

loaded on a 4-10% gradient blue native PAGE gel (Wittig et al., 2007). Once the proteins were 

resolved onto the gel, they were transferred to a PVDF membrane with semi-dry transfer. The 

mitochondrial proteins were then detected on the membrane following the western blot 

practices described above.  

 

4.4.3.1 In gel activity assay 

To assess the activity of Complex I, Blue Native PAGE gels were incubated in 2mM Tris-HCl 

pH 7.4, 0.1 mg/ml NADH (Roche) and 2.5 mg/ml iodonitrozolium (Sigma) for ~30 min at the 

room temperature. The reaction was stopped by changing the incubation solution to 2mM Tris-

HCl pH 7.4. 

 

4.4.4 Mitochondrial respiration analysis 

Mitochondrial oxygen consumption was measured with Oxygraph-2k (OROBOROS 

INSTRUMENTS, Innsbruck, Austria). The measurement was done at 37°C using 65-125 μg of 

fresh differential-centrifugation purified mitochondria, which were diluted in 2.1 ml of 

mitochondrial respiration buffer (120 mM sucrose, 50 mM KCl, 20 mM Tris-HCl, 4 mM KH2PO4, 

2 mM MgCl2, 1 mM EGTA, pH 7.2). The oxygen consumption rate was analyzed with 10 mM 

pyruvate, 10 mM glutamate and 5 mM malate (PGM, complex I) or 10 mM succinate and 10 

nM rotenone (complex II). First, the phosphorylating state respiration (state 3) was measured 

in the presence of 1 mM ADP. Subsequently, the non-phosphorylating state was measured 

with of 2.5 µg/ml oligomycin (pseudo state 4). The mitochondrial quality was verified by 

measuring respiration control rate (RCR) with 1 mM ADP (state 3) or 1 mM ADP and 2.5 µg/ml 

oligomycin (pseudo state 4). The RCR values were 10 with PGM and 6 with succinate and 

rotenone. Finally, the uncoupled respiration was measured by adding carbon cyanide m-

chloriphenyl hydrazone (CCCP) up to 3 μM to reach the maximal respiration. The oxygen 

consumption was normalized to mitochondrial protein content, which was measured with 

protein DC kit (Bio-Rad Laboratories).  

 

4.4.5 Measurement of isolated respiratory chain enzyme activities  

The isolated respiratory chain enzyme activities were measured from differential-centrifugation 

purified mitochondria stored at -80°C. The measurements were performed with a Hitachi UV-
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3600 spectrophotometer at 37°C. Mitochondria, 15-50 μg, were diluted in phosphate buffer (50 

mM KH2PO4, pH 7.4). Citric synthase activity (CS) was measured at 412 nm (E=13,600 M-1 cm-

1) in the presence of 0.1 mM acetyl-CoA, 0.5 mM oxaloacetate and 0.1 mM 5,5’-dithiobis-2-

nitrobenzoic acid (DTNB). NADH dehydrogenase (Complex I) activity was measured at 340 nm 

(E=6,220 M-1 cm-1) in the presence of 0.25 mM NADH, 0.25 mM decylubiquinone and 1 mM 

KCN, controlling for rotenone sensitivity. Succinate dehydrogenase (Complex II) activity was 

measured at 600 nm (E=21,000 M-1 cm-1) in the presence of 40 mM succinate, 35 μM 

dichlorophenolindophenol (DCPIP) and 1 mM KCN. The cytochrome c oxidase (Complex IV, 

CIV) activity was measured using the classical TMPD/ascorbate assay, explained in detail 

elsewhere (Mourier et al., 2015). The complex II to complex III (II-III) activity was measured 

after reduction of cytochrome c at 540 nm (E=18,000 M-1 cm-1) in the presence of 1 μg/ml 

decylubiquinol, 1 mM sodium azide, 80 μg/ml cytochrome c, 1 μM antimycin A and 40 mM 

succinate. The difference in flux before and after addition of antimycin A reflects the complex II 

to III activity. All chemicals used in the measurements were from Sigma-Aldrich. 

 

4.4.6 Mitochondrial aconitase activity 

The aconitase activity was measured from purified mitochondria with an aconitase activity kit 

following manufacturer’s recommendations (ab109712, Abcam). Briefly, conversion of 

isocitrate to cis-aconitate with aconitase activity is measured at 240 nm in the presence of 

isocitrate and manganese. The increase in absorbance indicates the activity of mitochondrial 

aconitase.  

 

4.4.7 8-oxo-dG glycosylase/AP lyase activity 

The 8-oxo-guanine incision activity was evaluated following previously published protocol with 

small alterations (de Souza-Pinto et al., 2001). Mitochondria were purified from fresh liver tissue 

(~200 mg) with differential centrifugation and Percoll gradients as described above. When the 

tissue was homogenized an aliquot for ‘total’ fraction was collected. 300 g of total and 

mitochondrial fractions were first lyzed in lysis buffer (10l, 20 mM HEPES-KOH (pH 7.6), 1 

mM EDTA, 2 mM DTT, 300 mM KCl, 5% Glycerol, 0.05 % Triton X-100) and then resuspended 

in dilution buffer (20 l, 20 mM HEPES-KOH (pH 7.6), 1 mM EDTA, 2 mM DTT, 5% Glycerol) 

to bring the final protein concentration to 10 g/l and the KCl concentration back to 100 mM. 

Next, the 8-oxoguanine incision activity was measured by incubating 100 g of protein with 100 

fmol of [α-32P]-5’ labelled 8-oxo-dG dsDNA in reaction buffer (60 mM HEPES-KOH pH 7.6, 10 

mM EDTA, 2 mM DTT, 50 mM KCl, 15 % Glycerol, final volume 20l) for 16 hrs at 32°C. 
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The incision reaction (20l)  

100 g of protein    10 l 

Reaction buffer           10 l 

100 fmol of 8-oxoG dsDNA     

ddH2O to 21 l  

 

Thereafter, the reaction was stopped with stop solution (final concentration 0.4 % SDS, 0.2 

mg/ml Protease K), and incubation at 55°C for 15 min. Finally, DNA was ethanol precipitated 

and resolved on a 15% Novex TBE-Urea Polyacrylamide gel (7M Urea, ThermoFisher 

Scientific). 

 

Incision substrate (Page and Stuart, 2009) 

8-oxo-dG oligo 5'-GAACGACTGT[8-oxo-dG]ACTTGACTGCTACTGA -3' 

Complementary oligo 5'-ATCAGTAGCAGTCAAGTCACAGTCGTTC -3' 

 

4.4.8 In organello assays 

 

4.4.8.1 In organello replication 

Mitochondria were purified from ~100 mg of fresh heart tissue with differential centrifugation as 

described above. Freshly purified mitochondria, 800 μg, were resuspended to cold incubation 

buffer (25 mM sucrose, 75 mM sorbitol, 10 mM Tris HCl, 10 mM K2HPO4, 100 mM KCl, 0.05 

mM EDTA, 1 mM ADP, 5 mM MgCl2, 10 mM glutamate, 2.5 mM malate, 1 mg/ml BSA, pH 7.4) 

and pelleted at 9000 rpm, 2 min at 4C. The mitochondria were then washed twice with cold 

incubation buffer and finally resuspended in 500 μl of warm (37C) incubation buffer with 50 

μM of dCPT, dGTP, dTTP and 20 μCi of [α-32P]dATP, followed by 1 hr rotation at 37C to 

incorporate the radioactivity into mtDNA. Thereafter, mitochondria were pelleted at 9000 rpm 

for 2 min at 4C and washed twice with cold wash buffer (10% glycerol, 0.15 mM MgCl2, 10 mM 

Tris HCl pH 6.8). To evaluate loading, an aliquot of the washed mitochondrial was collect prior 

to DNA extraction. The DNA was extracted with Gentra Puregene Tissue Kit (QIAGEN) 

following the manufacturer’s recommendations with following adjustments. Mitochondrial were 

lyzed with 30 min incubation at 55C and isopropanol precipitation of DNA was performed 

overnight in the presence of 30 µg of glycogen (Ambion). Next, the DNA was collected with 

centrifugation and resuspended in 20 µl of TE. An aliquot of the labeled DNA (5 µl) was resolved 

on a 0.9% agarose gel with EtBr (0.5 mg/ml) at 30V for 14 hrs. To release 7S DNA an aliquot 

(5µl) of the purified DNA was heated for 5 min at 95C prior to loading. After the run, the gel 

was transferred to a membrane (Hybond-N+, GE Healthcare) by Southern blotting and used to 

expose to a phosphorImager screen or an autoradiography film (Amersham hyperfilm MP, GE 

Healthcare). The assay quantifications were made from exposures to phosphorImager screen. 
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Later, the membrane was reprobed with mtDNA-specific probe (pAM1) to normalize the de 

novo incorporation signal to steady-state mtDNA levels. The method was modified form a 

previously described protocol (Gensler et al., 2001). 

 

4.4.8.2 In organello transcription 

The mitochondria were prepared and purified similarly to the in organello replication protocol. 

In the in organello transcription assay, the washed mitochondria were resuspended to 800 μl 

of warm incubation buffer with 50 μCi of [α-32P]UTP and incubated for 1 hr with rotation at 37C 

to incorporate the radioactive UTP to mtRNA. Next, the mitochondria were collected with 

centrifugation at 9000 rpm for 2 min at 4C and resuspended into incubation buffer with 80 nM 

of UTP. Thereafter, the samples were divided in two and one part of the sample was incubated 

for an additional period of 2 hrs at 37C to study RNA turnover (chase) and the other half was 

washed twice by pelletting and resuspending it in cold wash buffer (10% glycerol, 0.15 mM 

MgCl2, 10 mM Tris HCl pH 6.8) (pulse). An aliquot of the mitochondria was collected for loading 

control. Next, the RNA from pulse sample was extracted with 1 ml of TRIzol (Ambion) following 

manufacturer’s recommendations including an overnight isopropanol precipitation at -20°C. 

The purified RNA was loaded onto a formaldehyde-agarose gel and treated as in northern 

blotting as described later in the methods section. Then, the northern blot membrane (Hybond-

N+, GE Healthcare) was exposed to a phosphorImager screen or an autoradiography film 

(Amersham hyperfilm MP, GE Healthcare). The quantifications were made from exposures to 

phosphorImager screen. To normalize the loading, the membrane was later reprobed with an 

[α-32P]dCTP-labeled CytB probe to assess the steady-state of CytB transcripts. The method 

was modified form a previously described protocol (Enríquez et al., 1996). 

 

4.4.8.3 In organello translation  

Mitochondria were extracted from freshly isolated hearts by differential centrifugation and 

500μg mitochondria were washed twice in translation buffer (100 mM mannitol, 10 mM sodium 

succinate, 80 mM KCl, 5 mM MgCl2, 1 mM KH2PO4, 25 mM HEPES, 5 mM ATP, 20 μM GTP, 

6 mM Creatine phosphate, 60 μg/ml Creatine kinase, 200ug/ml emetine, 100ug/ml cycloxemide 

with 60 μg/ml of every amino acid except methionine) as previously described for other in 

organello assays. Next the purified mitochondria were resuspended to 750 μl of warm 

translation buffer with 115 μCi/ml of 35S- labeled methionine and incubated at 37°C and for 60 

minutes to incorporate the radioactivity to translated proteins. Next, the mitochondria were 

collected by centrifugation and washed in translation buffer twice followed by resuspension into 

2X Lämmli buffer (125 mM Tris pH 6.8, 4% SDS, 20% glycerol, 1.4 M 2-mercapto-ethanol, 

0.025% bromophenol blue). To visualize the incorporated 35S- labeled methionine the 

mitochondrial proteins were resolved on a 17 % SDS-PAGE gel (5% stacking gel, ran overnight 

at 80V). The the gel was stained with Coomassie and scanned to control for loading followed 

by signal amplification in amplifier solution (GE Healthcare) for 30 min at room temperature and 



 

81 

gel drying. Finally, the gel was used to expose to a film (Amersham hyperfilm MP, GE) or 

phosphorImager screen. The protocol is originally described in (Côté et al., 1989). 

 

4.4.9 Label-free quantitative proteomics  

Percoll purified heart mitochondria were prepared for LC MS/MS with guanidinium chloride 

preparation in the following way. First, the mitochondrial pellets were resuspended in lysis 

buffer (6 M guanidium chloride, 10 mM TCEP, 40 mM CAA, 100 mM Tris-HCl, 100 μl per 100 

mg of heart tissue) and a 20 μl aliquot of the resuspended mitochondria were lyzed with two 

cycles of heating (95°C, 10 min) and sonication (Bioruptor, 30 s sonication, 30 s break, 10 

cycles). Next, the formed cellular debris was removed by pelleting at 20 000 g for 20 min. A 

small aliquot of the lyzed sample (supernatant) was diluted 10 x with 20 mM Tris-HCl pH 8.3 to 

dilute the guanidium chloride and 50 μg of the sample was digested with trypsin (1:30 ratio 

enzyme:protein, Promega Mass spec grade) overnight at 37°C. After digestion, the peptides 

were cleaned with home-made StageTip (Empore Octadecyl C18; 3M) (Rappsilber et al., 2003) 

and eluted to 60% ACN/0.1% formic acid. The eluate was dried with speed-vac and 

resuspended to 0.1% formic acid. 

 The peptides were analyzed using an Orbitrap Q Exactive HF mass spectrometer 

(ThermoFisher Scientific) with a Nano-electrospray ion source, coupled with an EASY-nLC 

1000 (ThermoFisher Scientific) UHPLC. A 25 cm long reversed-phase C18 column with 75 μm 

inner diameter (PicoFrit, LC Packings) was used for separating peptides. The LC runs lasted 

130 min with a concentration of 2% solvent B (0.1% formic acid in acetonitrile) increasing to 

25% over 120 min and further to 40% over 10 min. The column was subsequently washed and 

re-equilibrated. The flow rate was 200 nl/min. MS spectra were acquired in a data-dependent 

manner with a top 10 method. For MS, the mass range was set to 300−1500 m/z and resolution 

to 60 K at 200 m/z. The AGC target of MS was set to 3e6, and the maximum injection time was 

100 ms. Peptides were fragmented with HCD with collision energy of 25. For MS/MS, the 

resolution was set to 30 K. The AGC target was 2e5 and the maximum injection time was 80 

ms.  

 MaxQuant version 1.5.3.8 (Cox and Mann, 2008) with integrated Andromeda search 

engine (Cox et al., 2011) was used for analyzing the LC/MS/MS raw data. The raw data were 

searched against the mouse proteome from UniProt (knowledgebase 2016_04). The following 

parameters were used for data analysis: for ‘’fixed modification’’: cysteine 

carbamidomethylation, methionine oxidation; for ‘’variable modification’’: methionine oxidation 

and protein N-terminal acetylation; for ‘’digestion’’ specific with Trypsin/P, Max. missed 

cleavages 2; for label-free quantification, match between runs was selected. Other parameters 

were set as default. Protein quantification significant analysis was performed with the Perseus 

statistical framework (Cox et al., 2014) (http://www.perseus-framework.org/) version 1.5.2.4. 

After removing the contaminants and reverse identifications, the intensities were transformed 

to log2. The replicates of each genotype were grouped and filtered with at least 3 validate 

values in at least one group. The missing values were replaced from normal distribution with 
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width of 0.3 and down shift of 1.8. Two-sample test was performed to identify the significantly 

different proteins between knockout and wild-type groups. Proteins with an adjusted p-value 

(“BH” correction) of less than 0.05 were designated as differentially expressed.  

 

4.5 NUCLEIC ACID ANALYSIS 

 

4.5.1 Nucleic acid extraction 

 

4.5.1.1 Total DNA extraction from tissue 

Total DNA was extracted from snap-frozen heart or liver tissue with Gentra Puregene Tissue 

Kit (QIAGEN) following the manufacturer’s recommendations.  

 

4.5.1.2 Total DNA extraction from laser-capture microdissected tissue pieces 

The total DNA was extracted from microdissected single colonic crypt section or 5 smooth 

muscle fibers by adding 10 µl of lysis buffer (50 mM Tris-HCl pH 8.5, 1% Tween-20, 20 mg/ml 

proteinase K) onto the collected pieces and incubating them for at least two hours at 55 °C 

followed by a heat-inactivation step at 95 °C for 10 min (Taylor et al., 2003). The DNA extract 

was then directly used in PCR reactions for mutation level quantification or diluted in 30 µl water 

for PCR and sequencing.  

 

4.5.1.3 Total DNA extraction from coagulated blood 

After cervical dislocation, total blood was quickly removed from the thoracic cavity of the mouse 

and allowed to coagulate at room temperature for 2 hrs. Thereafter, the serum was separated 

from the blood by centrifugation at 2000 g for 20 min at room temperature. The coagulated 

blood was then stored at -80 °C and the DNA was extracted from the clot with Nucleospin 96 

well blood quick pure kit (MN) following manufacturer’s recommendations.  

 

4.5.1.4 Total DNA extraction from tail piece or ear clip for genotyping 

Around 30 µl of lysis buffer (25mM NaOH, 0.2mM EDTA) was added to a tail piece or an ear 

clip and incubated at 96°C for 45 min. The lysate was then neutralized by adding 30 µl of 40mM 

Tris pH 7.5 -8. The lysated was stored at 4°C until further use.  

 

4.5.1.5 mtDNA purification for Illumina sequencing 

First, fresh tissue (~100 mg heart, 400-500 mg liver) was minced into small pieces, washed in 

PBS and mitochondria were purified with differential centrifugation, as described in the 

mitochondria purification section with following modifications. To pellet cellular debris, the 

homogenate was spun at 800 g for 10 min at 4°C and to collect the mitochondria, the 
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supernatant of which was spun at 8500g for 10 min at 4°C. The resulting mitochondrial pellet 

was then resuspended in 600 µl of Mito-DNase buffer (300 mM sucrose, 10 mM MgCl2, 20 mM 

Tris HCl, pH 7.5, 0.15% BSA, 0.03 mg/ml DNase I type IV, 170 ng/µl RNase A). Heart 

mitochondria were kept as one 600 µl aliquot but the liver mitochondria were further divided 

into multiple 600 µl aliquots each containing ~100 mg of starting material. Next the samples 

were incubated at 37°C for 1 hr to digest the nuclear DNA and RNA. Mitochondria were 

repelleted at 13 000 g, for 15 min at 4°C and washed twice with 500 µl of mitobuffer (320 mM 

sucrose, 20 ml Tris-HCl, 1 mM EGTA, 0.2% BSA, pH 7.2) and the samples were frozen in N2(l) 

and stored in -80°C until further use. Later the same day, the frozen mitochondrial pellets were 

resuspended into 400 µl lysis buffer (20 mM Tris HCl, 150 mM NaCl, 20 mM EDTA, 1% SDS, 

pH 8.75, 0.2 mg/ml Proteinase K, 0.2 mg/ml RNase A) and incubated at 56°C overnight. The 

samples were cooled down to room temperature and DNA was extracted with chloroform (100 

µl of 6M K-acetate, 500 µl chloroform:isoamylalcohol (24:1, Amresco)). RNase A 100-200 µg 

of was added to each of the aqueous phase fractions (heart and liver, respectively) and samples 

were incubated for 45 min at 37°C to digest the remaining RNA. Thereafter, the samples were 

ethanol precipitated with 15 µg of glycogen (Ambion) and the purified DNA pellet was 

resuspended into 20-30 µl of 5 mM Tris buffer pH 8.5 (Macherey-Nagel). The protocol was 

modified from a previously described protocol (Kennedy et al., 2013). For details see 

(dx.doi.org/10.17504/protocols.io.mycc7sw) 

 

4.5.1.6 Total RNA extraction  

Total RNA was isolated from snap frozen heart or liver tissue with Trizol (Ambion) following the 

manufacturer’s standard protocol with an overnight isopropanol precipitation at -20°C. 

 

4.5.2 PRC based methods 

 

4.5.2.1 Genotyping PCRs 

Genotyping PCRs were carried out from the DNA lysate of an ear clip or a tail piece following 

common laboratory practices with the following primers. 
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Mouse line Genotyping primers (5’-3’) 

PolgA (D257A) loxP 
CTTCGGAAGAGCAGTCGGGTG 

GGGCTGCAAAGACTCCGAAGG 

Ogg1 delta-MTS 
AATTACACCGGACCCATAAGCTAGG 

GCACTGAGAAGTCAACATCCTAGG 

MutYh delta-MTS 
GTCTCTGAGGGTCGCACATGG 

GCTCCTTACCATCCAGGCTGG 

 
 Sod2 loxP 

 

CGAGGGGCATCTAGTGGAGAAG 

AGCTTGGCTGGACGTAA 

CCCCAGATCTGCAATTTCCA 

Ckmm cre 
CAC GAC CAA GTG ACA GCA AT 

AGA GAC GGA AAT CCA TCG CT 

 

 

4.5.2.2 cDNA synthesis and PCR amplification to verify the expression of 

Ogg1 dMTS and Mutyh dMTS transcripts 

Total RNA (2 µg) of was converted to cDNA with High Capacity cDNA reverse transcription kit 

(Applied Biosystems) following the manufacturer’s recommendations. To verify the correct 

length of the produced Ogg1 transcript from the Ogg1 dMTS mice, cDNA was amplified with 

primers binding to exon 1 and exon 3 (5’CGTAATGGGCTGGGGCTG3’, 

5’CAGCACGCCACTCCAGTGAG3’). Similarly, cDNA from Mutyh dMTS mice was amplified 

with primers binding to exon 1 and exon 7 (5’TCGGAGACTGCGCAGGAG3’, 

5’GGGAAGCGCTGGCCAGGT3’) (Ichinoe et al., 2004). The resulting PCR products were 

resolved on an agarose gel. 

 

4.5.2.3 qPRC 

To analyze mtDNA copy number total DNA was extracted as described above with Gentra 

Puregene Tissue Kit (QIAGEN) with included RNase treatment. First the quality of DNA was 

verified with NanoDrop (2000C) and then it was quantified with a fluorometric method (Qubit, 

ThermoFisher). The qPCR analysis of the mtDNA to the nuclear DNA ratio was performed in 

7900HT qPCR machine (Applied Biosystems) with the Taqman method using the Taqman 

Universal PCR Master Mix (Applied Biosystems). All reactions were made in triplicates with 5 

ng of total DNA per reaction (final volume 10 µl). Taqman probes were used to detect the target 

genes (see table below). Each mtDNA copy number analysis was carried out with two 

mitochondrial probes and the results were always consistent between the used probes. The 

amplification data was analyzed with standard-curve method using an artificial standard curve, 

which was produced by mixing a small aliquot of all analyzed samples into one standard sample 

(SDS 2.4). MtDNA copy number (mtDNA/nDNA) was normalized to control samples.  
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Taqman probes (Applied Biosystems) 

Gene Probe 

ATP6 Mm03649417-g1 

Cytb AIS062S 

ND1 Mm04225274_s1 

18S Hs99999901_s1, detects also mouse 18S 

 

4.5.3 Sequencing methods 

 

4.5.3.1 mtDNA sequence analysis with Sanger sequencing 

mtDNA was amplified with PCR using 30 overlapping M13-tagged primer pairs. The amplified 

fragments were sequenced using the M13 primers tags with Dye 3.1-based sequencing 

chemistry followed by purification using the BigDye Xterminator cleanup kit. Next, the 

sequences were resolved on an ABI 3730 DNA Analyzer with 50 cm capillary arrays and long 

sequencing run protocols. The generated mtDNA sequences were then assembled with 

SeqScape Version 2.7. Mixed-base calls used a >20% threshold to detect heteroplasmic 

mtDNA mutations, each of which was confirmed manually. The alignment issues induced by 

the circularity of mtDNA were overcome by duplicating the first 212bp of the mtDNA to the 3’ 

end of the reference genome.  

 

4.5.3.2 Quantification of C5024T heteroplasmy level 
The heteroplasmy level of C5024T mutation was quantified with two methods during the course 

of this study. The first method was a modified RFLP analysis, similar to (Freyer et al., 2012) 

and later one was a Allelic Quantification analysis using a PyroMark Q24 pyrosequencer. 

 

RFLP analysis: 

A restriction fragment length polymorphism (RFLP) -PCR analysis method, similar to (Freyer 

et al., 2012) was developed to quantify the levels of C5024T mutation. This mutation disrupts 

a HpyCH4III restriction site, which can be used to distinguish the wild-type (270bp) digested 

fragment from the longer non-digested mutant fragment (360bp). The region surrounding the 

C5024T mutation was PCR amplified for 35 cycles with following primers: shorter 5’ 

CACTCATAGCAATAATAGCTC 3’ primer and a longer 5’ CAGGAAACAGCTATG 

ACCACAGTTTCGTAGGTTTAATTCCTGCC 3’ primer which contains a control restriction site, 

which allows testing for incomplete digestion by the presence of a 380bp band in the assay. 

First, the amplification was controlled by running a small aliquot of the PCR on an agarose gel. 

Then, the PCR was run for an additional cycle in the presence of 6HEX labeled version of the 

shorter primer. The resulting PCR product was then purified with Agencourt AMPure XP and 

eluted from the beads with restriction enzyme buffer (15 μl) and the DNA was digested with 
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HpyCH4III restriction enzyme (New England Biolabs). An 2 μl aliquot of the digestion product 

was mixed with 0.1 μl of ROX 500 sizing ladder (ABI) and 7.9 μl of HiDi formamide, heated to 

96 °C for 5 min and cooled on ice followed by separation on an ABI 3730 DNA analyzer using 

Fragment Analysis protocols (for 50 cm capillary array with POP7 polymer). The RFLP analysis 

was used to quantify the early generations of the mother-offspring data. 

Pyrosequencing: 

An allele quantification assay was designed with PyroMark assay design software v2.0 

(Qiagen). A 178 bp region surrounding the C5024T mutation was PCR amplified with 5’-Biotin- 

TTCCACCCTAGCTATCATAAGC, and non-biotinylated reverse primer: 

GTAGGTTTAATTCCTGCCAATCT. Next, the biotinylated strand was denaturated and purified 

on a Pyromark Q24 vacuum workstation, following manufacturer’s recommendations. The 

strand was then sequenced with PyroMark Gold Q24 Reagents on a PyroMark Q24 

pyrosequencer according to manufacturer’s directions, using the sequencing primer 

(TGTAGGATGAAGTCTTACA). The pyrosequencing approach was used to quantify all 

dissected tissue sample data, microdissection quantification and later-generations of mom-pup 

data. 

 

4.5.3.3 Post-PCR cloning and Sanger sequencing  
MtDNA mutation load was measured on WANCY-COX1 tRNA-cluster region with post-PCR 

cloning and Sanger sequencing, similarly as in (Wanrooij et al., 2012). This ~1kb region is 

expected to allow higher mutation accumulation than protein encoding regions because of the 

known sequence flexibility of tRNA sequences (Stewart et al., 2008a). The region has been 

used extensively in mutation load analysis (Ross et al., 2013; Wanrooij et al., 2012). Total DNA 

was extracted and quantified as described in the previous sections. Then, the WANCY-COX1 

region of mtDNA was amplified from the purified DNA with Phusion DNA polymerase (New 

England Biolabs) with following primers (F 5’CCTACCCCTAGCCCCCC3’ R 

5’AGTATAGTAATGCCTGCG3’). Next, the PCR amplification was verified on an agarose gel 

and aliquot of the PCR products were cloned into a plasmid with Zero Blunt TOPO PCR Cloning 

Kit (Invitrogen) and transformed to TOP10 chemically competent E. coli. The bacteria were 

then grown overnight on selective plates and the resulting colonies were then picked and sent 

out for sequencing (Plateseq service, Eurofins). The obtained sequences were analyzed with 

SeqScape software, version 2.7 (Applied Biosystems). From previous analysis it is known that 

0 to 3 mutations are usually found in wild-type mice when ~ 93 000 bp were sequenced, which 

means that the mutation load in wild-type sample is <1.07 x10-5 to 3.21 x10-5 mutations/base 

pair (Ross et al., 2013). Previously, the background error rate of the method was evaluated to 

be  3.48x10-6 mutations/bp by clone of a clone experiment (Wanrooij et al., 2012). 
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4.5.3.4 Illumina sequencing  
MtDNA was purified from liver (Mutyh dMTS x Ogg1 dMTS) and heart (Sod2 loxP x Ckmm cre 

x Ogg1 dMTS) tissue as described above. Prior to DNA library preparation the DNA quality was 

analyzed with Genomic DNA analysis ScreenTape (Agilent). First, the purified DNA was 

fragmented with Covaris to 400 bp (50 ng, 50 µl, 5% duty cycle, intensity 5, 200 cycles per 

burst, treatment time 55 s). Sod2 loxP x Ckmm cre x Ogg1 dMTS set was fragmented with 

Covaris to 350 bp with 53 s treatment time. Then the fragmented DNA was used to prepare 

DNA library with NEBNext Ultra II DNA library prep kit for Illumina (New England Biolabs). Then 

the libraries were single-end sequenced with HiSeq3000, with HiSeq3000/4000 SR Cluster Kit 

and the corresponding SBS Kit (Illumina) until 1 Gbase of sequence was achieved. The first 

Mutyh dMTS x Ogg1 dMTS preparation was pre-purified with AMPureBeads (Beckman Coulter) 

before the library preparation to remove contaminating small DNA/RNA fragments. The 

mutation load was measured from two separate sets of samples in both Mutyh dMTS x Ogg1 

dMTS and Sod2 loxP x Ckmm cre x Ogg1 dMTS mtDNA mutation analysis. 

 To carry out RNA seq, total RNA was extracted from snap-frozen heart tissue with 

TRIzol (Ambion) as described above. Prior to library preparation the quality of the RNA was 

first verified with northern blotting as described below. After the quality was verified, the rRNAs 

were depleted from ~1 µg total RNA with RiboZero rRNA Removal Kit (Human/Mouse/Rat) 

(Epicentre) following manufacturer’s recommendations. Thereafter, the RNA library was 

prepared with NEBNext Ultra Directional RNA Kit (New England Biolabs) following 

manufacturer’s recommendations. Finally, the prepared library was sequenced with HiSeq3000 

by using the HiSeq3000/4000 SR Cluster Kit and the corresponding SBS Kit (Illumina) until 5 

Gbases of sequence was achieved.   

 MtDNA and RNA Illumina sequencing experiments, library preparation and sequencing 

were performed by the Max Planck Genome Center Cologne, Germany 

(http://mpgc.mpipz.mpg.de/home/). 

 

Data analysis and variant calling of Illumina sequencing of mitochondrial RNA and DNA: 

Demultiplexed sequencing reads were first trimmed with Flexbar version 2.5 (Dodt et al., 2012) 

for quality and TruSeq adapters (default parameters except -q 28 -m 50 -ae ANY -ao 10). Then, 

RNA reads were aligned to mouse mitochondrial reference genome (GRCm38, release 81) 

with STAR aligner version 2.4.1d (Dobin et al., 2013) (default parameters except for genome 

indexing --genomeSAindexNbases 6). In turn a ”dual alignment” approach was used for DNA 

read alignment with BWA version 0.7.12-r1039 (Li and Durbin, 2009) invoking mem (default 

parameters except -T 19 -B 3 -L 5,4). DNA reads were first aligned to the mouse mitochondrial 

reference genome and then separately to a split reference genome in which the first 8150 bases 

were transferred to the end of the genome. Such dual alignment approach was applied in order 

to enable complete alignment and variant detection at the junction region of the circular 

mitochondrial genome. With this approach ~50% and ~90% of the reads aligned to mtDNA 

from heart and liver samples, respectively. 

http://mpgc.mpipz.mpg.de/home/
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 With samtools (Li et al., 2009), the aligned reads were converted to bam format and 

only uniquely aligned reads (parameter -q 1) were kept for downstream analysis. Then the 

reads were further sorted and indexed. Per base coverage was determined with bedtools 

version 2.22.1 (Quinlan and Hall, 2010) genomecov (parameters -split -d). Variants were 

detected with Lofreq* version 2.1.2 (Wilm et al., 2012) using the following command and 

parameters: lofreq call-parallel --pp-threads 20 -N -B -q 30 -Q 30 --no-default-filter (referred as 

"only quality-filtered data"). Both RNA and DNA variants were further filtered for quality and 

strand bias using LoFreq*: lofreq filter --no-defaults --snvqual-thresh 70 -B 60, for minimum 

number of variant supporting reads using snpSift filter (Cingolani et al., 2012a) with the 

expression DP*AF >= 15. DNA variants were additionally filtered for minimum of three variant 

supporting reads on each strand (expression DP4[2] >= 3 & DP4[3] >= 3). Finally, variant lists 

were filtered for minimum variant allele frequency (AF value) of 0.5% (quality-filtered and 0.5% 

minimum variant allele frequency filtered data). Furthermore, known variants in our mouse 

strain (positions 4891, 9027 and 9461) were removed from all results. In addition, two 

maternally occurring variants (positions 9993 and 15403) were removed from four Sod2 loxP 

control siblings (pp). Heavily strand-biased variants (SB Phred score > 100 or 1000 for RNA 

and DNA variants, respectively) passing the earlier filters were also removed from the minimum 

allele frequency filtered data. DNA coverage and variant result files originating from the dual 

alignment approach were combined: results obtained by the alignment to the normal reference 

genome were kept for genome positions 200 to 16099. Results for the rest of the genome 

positions, i.e. genome junction region, were obtained by the alignment to the split reference 

genome and the genome positions were corrected to represent the original position numbers. 

 Final vcf-files were converted to tab-delimited format with SnpEff version 4.2  

(Cingolani et al., 2012b) and mutation loads were calculated as follows: Over the whole 

mitochondrial genome, a ”unique” mutation load was calculated by dividing number of detected 

variants by coverage (total base pairs aligned to mitochondrial genome), whereas total mutation 

load was calculated by dividing the sum of variant supporting bases (obtained from DP4 values) 

by coverage. To obtain the corresponding mutation loads per mutation type (e.g. G>T), the 

variant or total variant read counts were divided by the total coverage on the reference base in 

question. The variant calls for each mouse are available in the supplement section. 

 

4.5.4 Southern blotting 
To analyze mtDNA copy number and presence of mtDNA deletions total DNA was extracted 

Gentra Puregene Tissue Kit (QIAGEN), as described above, and digested overnight with Sac-

HF restriction enzyme (New England Biolabs). The digested DNA was the purified with ethanol 

precipitation. Then, ~700-800 ng of the digested DNA was resolved on an agarose gel. The gel 

was treated with HCl, denaturated, neutralized and set up for a capillary transfer on to a 

Hybond-N+ (GE Healthcare) membrane following common molecular biology techniques. 

Following transfer, the membrane was cross-linked and blocked with hybridization buffer 

(Perfect Hyb Plus, Sigma-Aldrich). Then mtDNA and nuclear DNA were detected by incubating 

the membrane with [α-32P]dCTP labeled mtDNA (pAM1) and nuclear DNA (18S) probes. The 
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probed membrane was exposed to a phosphorImager screen or to a film (Amersham Hyperfilm 

MP, GE Healthcare). 

 

4.5.5 Northern blotting 
Total RNA was extracted from snap-frozen tissue as described above and quantified with a 

fluorometric method (Qubit, ThermoFisher). First, 2 µg of total RNA was treated with 

NorthernMax-Gly sample loading dye (Ambion) and then resolved on a 1.2 % formaldehyde-

agarose gel. Afterwards the gel was incubated in 0.05 M NaOH, DEPC-water and 20X SSC. 

The treated gel was then set up for a capillary transfer with 20 x SSC. Following transfer, the 

membrane (Hybond-NX, GE Healthcare) was cross-linked and incubated with hybridization 

solution (5 x SSC, 20 mM Na2HPO4, 7% SDS, 0.5 x RNA secure (Ambion), 100 µg/ml heparin). 

Next, the transcripts were visualized with an overnight incubation with biotin labeled 

oligonucleotide probe (100 pmol) at 50°C in hybridization solution followed by washing and 

signal detection with IRDye 800CW dye-labeled streptavidin (LI-COR Biosciences) (in TBS, 

0.05% TWEEN-20, dilution 1:5000) in the Odyssey infrared imaging system (LI-COR 

Biosciences). This method has previously been described (Davies et al., 2012). 

 

4.5.6 Topology gel 

50 mg of mouse heart tissue was collected for gentle total DNA extraction. The tissue was first 

rinsed in PBS, minced and then lyzed in 600 μl of lysis buffer (100 mM Tris-HCl pH 7.5, 100 

mM EDTA, 100 mM NaCl, 0.5% SDS, 0.8 mg/ml Proteinase K) with 3hrs long incubation at 

55C. Next the sample was incubated on ice for 2 hrs in the presense of premixed LiCl and K-

acetate (final concentration 250 mM K-acetate, 760 mM LiCl) to precipitate contaminants. To 

collect the precipitate, samples were spun for 15 min at 15 000 rpm at 18C. The supernatant 

was then combined with isopropanol and incubated on ice for 30 min and the precipated DNA 

was collection by centrifugation for 30 min at 16 000 g at 18C. Next the DNA was washed and 

resuspended to 10 mM Tris-HCl, 1 mM EDTA pH 8.0 by flicking the tube. To accurately quantify 

the DNA with a fluorometric method (Qubit, ThermoFisher), a small aliquot of the sample was 

digested with SacI-HF (New England Biolabs) at 37C for 30 min prior to quantification. Then, 

400 ng of total DNA was then resolved on 0.4% agarose gel (15 x 15 cm) (Seakem Gold 

agarose, Lonza) with 40 V for 16-20 hrs with and without EtBr (0.5 mg/ml). EtBr was used to 

condense the different supercoiling states of the closed circle molecule. Following 

electrophoresis, the gel was pretreated and transferred similar to a Southern blot gel (described 

above). Next, the mtDNA was visualized from the membrane with a [α-32P]dCTP-labeled probe 

(pAM1) and used to expose a phosphorImager screen or autoradiography film (Amersham 

hyperfilm MP, GE Healthcare). The quantifications were made from the phosphorImager 

screen.  The control samples (400 ng each) were treated (37C 30 min) with various DNA 

modifying enzymes prior to electrophoresis to reveal the different topological isomers of 

mtDNA, namely only buffer (no treatment), SacI (linear) (New England Biolabs; 20 U), Nt.BbvCI 
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(nicked circles) (New England Biolabs; 10 U), Topo I (relaxes the closed circles) (New England 

Biolabs; 5 U), DNA gyrase (compacts the closed circles) (New England Biolabs; 5 U). The 

method was modified form a previously described protocol (Kolesar et al., 2013). 

 

4.5.7 Abasic-site analysis 
To reveal the abasic site in mtDNA, the extracted DNA was treated with EndoIV (New England 

Biolabs, 10U) to convert the abasic sites to single-stranded nicks prior to analysis on a topology 

gel. Briefly, total DNA was extracted as described in the topology gel method. Before loading 

to the topology gel, each sample was split in half and one half was treated only with buffer and 

the other with EndoIV (New England Biolobs; 10 U). The presence of abasic sites was 

quantified by measuring the decrease in closed circle form of mtDNA between the treated and 

untreated sample from a phosphorImager screen.   

 

4.6 STATISTICAL ANALYSIS 
 
All values are expressed as means ± standard deviation, unless differently indicated. Statistical 

analyses were performed and graphs were drawn with the Prism software version 5.0f. Mass 

spectrometry data were analyzed with the Perseus statistical framework version 1.5.2.4 with 

two-sample test with Benjamini–Hochberg adjusted p-values. Statistical significance was 

considered at P< 0.05. (*P< 0.05, **P< 0.005, ***P>0.001 ****P< 0.0001). Details of statistical 

analysis applied to each experiment can be found in the figure legends.  

 

4.6.1 Test of neutral segregation in the female germline 
The segregation of the C5024T allele in the mom-offspring pairs was tested against a neutral 

model with Kimura distribution (Wonnapinij et al., 2008). First, the Kimura003.c code was 

downloaded and then the variables (initial population mutation proportion in the mothers, 

sample size, variance) were modified in the code before compiling, for each run.  Multiple 

females with ±4% of the C5024T mutation and their offspring were grouped together for each 

analysis to gain large enough sample numbers for a robust analysis. The p was defined from 

the weighted mean of the C5024T mutation levels in the 3-week-old tail or earclip biopsies from 

the mothers. The population of pup 3-week-old tail or earclip biopsy measurements was used 

to calculate the Var. The result of the statistical test for conforming to the neutral distribution 

was retrieved from the monte_carlo1000.txt file output from each analysis. All tests for neutral 

segregation are included in Supplement section.  
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SUPPLEMENT 
 

 

 

 
Adapted from Kauppila et al., 2016 

Segregation of the C5024T mutation  
Test to study the deviation of C5024T mutation segregation from the neutral model with Kimura 
distribution in pups born to mice with varying levels of C5024T mutation. Orange line represents the 
expected levels of mutation with neutral distribution and the grey bars represents the observed levels. 

 depicts the mother’s weighted means. B Summary of statistics and variables in the Kimura 
distribution tests. 
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Mutation loads in Illumina DNA sequencing data. MT.nofilter refers to only quality filtered data and 
MT.minAF refers to quality filtered data with minimum variant allele frequency threshold of 0.5%. 

Sample 
Sequenced bp 

genome 
Filtering 

Unique 
variants 

Total 
variant 
reads 

Unique load Total load 

DDDD_2255_L_DNA 990743299 MT.nofilter 287 193602 2.90E-07 0.00019541 

DDDD_2255_L_DNA 990743299 MT.minAF 1 751 1.01E-09 7.58E-07 

DDDD_2259_L_DNA 1024995331 MT.nofilter 310 231404 3.02E-07 0.00022576 

DDDD_2259_L_DNA 1024995331 MT.minAF 2 1074 1.95E-09 1.05E-06 

DDDD_2261_L_DNA 996309681 MT.nofilter 153 145441 1.54E-07 0.00014598 

DDDD_2261_L_DNA 996309681 MT.minAF 2 3713 2.01E-09 3.73E-06 

DDDD_2264_L_DNA 1052633109 MT.nofilter 263 212891 2.50E-07 0.00020225 

DDDD_2264_L_DNA 1052633109 MT.minAF 4 14206 3.80E-09 1.35E-05 

DDDD_2440_L_DNA 656076857 MT.nofilter 150 89351 2.29E-07 0.00013619 

DDDD_2440_L_DNA 656076857 MT.minAF 3 7522 4.57E-09 1.15E-05 

DDDD_2443_L_DNA 995720254 MT.nofilter 113 102307 1.13E-07 0.00010275 

DDDD_2443_L_DNA 995720254 MT.minAF 2 3251 2.01E-09 3.26E-06 

DDDD_2492_L_DNA 938837376 MT.nofilter 102 113580 1.09E-07 0.00012098 

DDDD_2492_L_DNA 938837376 MT.minAF 2 1538 2.13E-09 1.64E-06 

DDDD_2496_L_DNA 905756315 MT.nofilter 47 90811 5.19E-08 0.00010026 

DDDD_2496_L_DNA 905756315 MT.minAF 2 2233 2.21E-09 2.47E-06 

PP_2206_H_DNA 471667665 MT.nofilter 72 23653 1.53E-07 5.01E-05 

PP_2206_H_DNA 471667665 MT.minAF 3 1156 6.36E-09 2.45E-06 

PP_2207_H_DNA 519984130 MT.nofilter 17 6802 3.27E-08 1.31E-05 

PP_2207_H_DNA 519984130 MT.minAF 1 420 1.92E-09 8.08E-07 

PP_2218_H_DNA 515659450 MT.nofilter 53 17299 1.03E-07 3.35E-05 

PP_2218_H_DNA 515659450 MT.minAF 1 407 1.94E-09 7.89E-07 

PP_2219_H_DNA 385499623 MT.nofilter 102 22029 2.65E-07 5.71E-05 

PP_2219_H_DNA 385499623 MT.minAF 1 269 2.59E-09 6.98E-07 

++_2562_H_DNA 667494215 MT.nofilter 102 51532 1.53E-07 7.72E-05 

++_2562_H_DNA 667494215 MT.minAF 2 3183 3.00E-09 4.77E-06 

++_2583_H_DNA 475485357 MT.nofilter 73 61498 1.54E-07 0.00012934 

++_2583_H_DNA 475485357 MT.minAF 2 961 4.21E-09 2.02E-06 

PPcreDD_2199_H_DNA 751653946 MT.nofilter 94 36126 1.25E-07 4.81E-05 

PPcreDD_2199_H_DNA 751653946 MT.minAF 2 805 2.66E-09 1.07E-06 

PPcreDD_2200_H_DNA 775460824 MT.nofilter 101 39181 1.30E-07 5.05E-05 

PPcreDD_2200_H_DNA 775460824 MT.minAF 1 540 1.29E-09 6.96E-07 

PPcreDD_2201_H_DNA 503892768 MT.nofilter 77 23957 1.53E-07 4.75E-05 

PPcreDD_2201_H_DNA 503892768 MT.minAF 1 284 1.98E-09 5.64E-07 

PPcreDD_2205_H_DNA 581940318 MT.nofilter 89 24699 1.53E-07 4.24E-05 

PPcreDD_2205_H_DNA 581940318 MT.minAF 1 423 1.72E-09 7.27E-07 

PPcreDD_2568_H_DNA 752665548 MT.nofilter 453 74776 6.02E-07 9.93E-05 

PPcreDD_2568_H_DNA 752665548 MT.minAF 2 1019 2.66E-09 1.35E-06 

PPcreDD_2572_H_DNA 792214769 MT.nofilter 54 55529 6.82E-08 7.01E-05 

PPcreDD_2572_H_DNA 792214769 MT.minAF 1 560 1.26E-09 7.07E-07 

PPcreDD_2573_H_DNA 682734582 MT.nofilter 381 93507 5.58E-07 0.00013696 

PPcreDD_2573_H_DNA 682734582 MT.minAF 1 558 1.46E-09 8.17E-07 

PPDD_2202_H_DNA 554979413 MT.nofilter 95 30833 1.71E-07 5.56E-05 

PPDD_2202_H_DNA 554979413 MT.minAF 2 1474 3.60E-09 2.66E-06 

PPDD_2203_H_DNA 269815528 MT.nofilter 35 7868 1.30E-07 2.92E-05 

PPDD_2203_H_DNA 269815528 MT.minAF 1 180 3.71E-09 6.67E-07 

PPDD_2211_H_DNA 526520976 MT.nofilter 67 19470 1.27E-07 3.70E-05 

PPDD_2211_H_DNA 526520976 MT.minAF 1 297 1.90E-09 5.64E-07 

PPDD_2212_H_DNA 441553080 MT.nofilter 59 16888 1.34E-07 3.82E-05 

PPDD_2212_H_DNA 441553080 MT.minAF 1 231 2.26E-09 5.23E-07 

+PDD_2528_H_DNA 601080024 MT.nofilter 376 69024 6.26E-07 0.00011483 

+PDD_2528_H_DNA 601080024 MT.minAF 1 516 1.66E-09 8.58E-07 

+PDD_2567_H_DNA 483870548 MT.nofilter 90 45230 1.86E-07 9.35E-05 

+PDD_2567_H_DNA 483870548 MT.minAF 3 1269 6.20E-09 2.62E-06 

+PcreDD_2569_H_DNA 447731038 MT.nofilter 75 44367 1.68E-07 9.91E-05 

+PcreDD_2569_H_DNA 447731038 MT.minAF 1 346 2.23E-09 7.73E-07 

++_2228_L_DNA 1028043407 MT.nofilter 302 234783 2.94E-07 0.00022838 

++_2228_L_DNA 1028043407 MT.minAF 3 2291 2.92E-09 2.23E-06 

++_2229_L_DNA 1031260141 MT.nofilter 290 212808 2.81E-07 0.00020636 

++_2229_L_DNA 1031260141 MT.minAF 1 771 9.70E-10 7.48E-07 
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Sample 
Sequenced bp 

genome 
Filtering 

Unique 
variants 

Total 
variant 
reads 

Unique load Total load 

++_2235_L_DNA 993407526 MT.nofilter 266 175661 2.68E-07 0.00017683 

++_2235_L_DNA 993407526 MT.minAF 1 682 1.01E-09 6.87E-07 

++_2267_L_DNA 1017895781 MT.nofilter 271 202164 2.66E-07 0.00019861 

++_2267_L_DNA 1017895781 MT.minAF 2 5462 1.96E-09 5.37E-06 

PP_2553_L_DNA 964429089 MT.nofilter 100 138828 1.04E-07 0.00014395 

PP_2553_L_DNA 964429089 MT.minAF 3 21649 3.11E-09 2.24E-05 

PP_2554_L_DNA 946173208 MT.nofilter 98 109803 1.04E-07 0.00011605 

PP_2554_L_DNA 946173208 MT.minAF 3 20256 3.17E-09 2.14E-05 

++_2558_L_DNA 969596160 MT.nofilter 88 111931 9.08E-08 0.00011544 

++_2558_L_DNA 969596160 MT.minAF 1 845 1.03E-09 8.71E-07 

++_2559_L_DNA 857623065 MT.nofilter 95 97517 1.11E-07 0.00011371 

++_2559_L_DNA 857623065 MT.minAF 1 756 1.17E-09 8.82E-07 

++_2561_H_DNA 475554547 MT.nofilter 415 56919 8.73E-07 0.00011969 

++_2561_H_DNA 475554547 MT.minAF 1 431 2.10E-09 9.06E-07 

 

 

Mutation loads in Illumina RNA sequencing data. MT.nofilter refers to only quality filtered data and 
MT.minAF refers to quality filtered data with minimum variant allele frequency threshold of 0.5%. 

Sample 
Sequenced bp 

genome 
Filtering 

Unique 
variants 

Total variant 
reads 

Unique 
load 

Total load 

PP_809_H_RNA 2240608049 MT.nofilter 1362 444934 6.08E-07 0.00019858 

PP_809_H_RNA 2240608049 MT.minAF 40 29571 1.79E-08 1.32E-05 

PP_904_H_RNA 2490940364 MT.nofilter 1315 440631 5.28E-07 0.00017689 

PP_904_H_RNA 2490940364 MT.minAF 37 29677 1.49E-08 1.19E-05 

+P_991_H_RNA 2060176685 MT.nofilter 1450 508725 7.04E-07 0.00024693 

+P_991_H_RNA 2060176685 MT.minAF 40 37002 1.94E-08 1.80E-05 

PPcre_876_H_RNA 2594964539 MT.nofilter 1467 501776 5.65E-07 0.00019337 

PPcre_876_H_RNA 2594964539 MT.minAF 46 49972 1.77E-08 1.93E-05 

PPcre_879_H_RNA 2736516925 MT.nofilter 1509 491776 5.51E-07 0.00017971 

PPcre_879_H_RNA 2736516925 MT.minAF 43 39829 1.57E-08 1.46E-05 

PPcre_881_H_RNA 2392594731 MT.nofilter 1357 506637 5.67E-07 0.00021175 

PPcre_881_H_RNA 2392594731 MT.minAF 41 35340 1.71E-08 1.48E-05 

PPcreDD_1932_H_RNA 1937041377 MT.nofilter 1053 364487 5.44E-07 0.00018817 

PPcreDD_1932_H_RNA 1937041377 MT.minAF 35 38934 1.81E-08 2.01E-05 

PPcreDD_2021_H_RNA 2388338567 MT.nofilter 1055 336818 4.42E-07 0.00014103 

PPcreDD_2021_H_RNA 2388338567 MT.minAF 33 42949 1.38E-08 1.80E-05 

PPcreDD_2024_H_RNA 2026299580 MT.nofilter 1048 352328 5.17E-07 0.00017388 

PPcreDD_2024_H_RNA 2026299580 MT.minAF 32 41361 1.58E-08 2.04E-05 

PPcreDD_2307_H_RNA 2350475233 MT.nofilter 1162 435370 4.94E-07 0.00018523 

PPcreDD_2307_H_RNA 2350475233 MT.minAF 35 44365 1.49E-08 1.89E-05 

PPDD_1934_H_RNA 1919742567 MT.nofilter 1049 385624 5.46E-07 0.00020087 

PPDD_1934_H_RNA 1919742567 MT.minAF 35 40767 1.82E-08 2.12E-05 

PPDD_2022_H_RNA 1441985383 MT.nofilter 930 282484 6.45E-07 0.0001959 

PPDD_2022_H_RNA 1441985383 MT.minAF 36 38181 2.50E-08 2.65E-05 

PPDD_2290_H_RNA 1755139522 MT.nofilter 1055 348177 6.01E-07 0.00019838 

PPDD_2290_H_RNA 1755139522 MT.minAF 42 43844 2.39E-08 2.50E-05 

PPDD_2306_H_RNA 1952218570 MT.nofilter 1099 371281 5.63E-07 0.00019018 

PPDD_2306_H_RNA 1952218570 MT.minAF 38 46342 1.95E-08 2.37E-05 
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