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Summary

Present-day experiments have started to couple traditional simulations of ultracold atom
experiments with quantum light-fields in cavities. This has provided a wealth of op-
portunities to enlarge the number of interaction potentials: cavity mediated long-range
interactions compete with kinetic energies, longitudinal fields, short-ranged collisional or
magnetic spin-spin interactions. The intracavity many-body lattice models often have to
be maintained far from equilibrium through the presence of external driving lasers that
help to boost and engineer the various interaction potentials. The steady influx of energy
is compensated by a steady stream of energy out of the atom-cavity system for example
by photon losses or atomic spontaneous emission. Several experiments have demonstrated
that such environments can give rise to new competing quantum phases.

But this long-standing ambition to push for models with tailorable interaction potentials
can bring with it also considerable challenges in their theoretical description, since sponta-
neous symmetry breaking transitions in many body lattice systems coupled to dynamical
light-fields with single-photon character occur in the presence of drive and dissipation for
the photonic force carriers. This clearly calls for model systems where the above men-
tioned interplay of interactions, drive, dissipation and cooperative many-body behaviour
can be theoretically studied to provide simple, experimentally verifiable predictions.

The Dicke model is, through its simplicity (an exactly solved ferromagnet with infinite
range atom-atom interactions mediated by a single cavity mode), an exceptionally well-
suited candidate. As the generic model for atom-light interactions, it has been experimen-
tally realized in a variety of modern quantum optical systems, highlighting its relevance
for present-day research. The Dicke model is also highly versatile itself. It has been
extended into the dissipative realm, was promoted to account for multiple optical light
modes and was used to describe multiple, coupled single-mode cavity structures. It was
adapted to treat spin-selective coupling to a cavity to describe superradiance phase tran-
sitions in multi-level atomic systems. Moreover, it was realised in electronic circuits where
the dipole coupling of real atoms to single mode fields is replaced by a capacitive cou-
pling of artificial atoms to a resonator mode. This illustrates that the Dicke model and
its extended variants are 'future-proof’ and continue to be of relevance for fundamental
light-matter interactions and for driven-dissipative phase transitions.

In this thesis, we investigate magnetic phase transitions in driven-dissipative atomic en-
sembles interacting with quantum light. We present three research projects on variants
of cooperative radiation of an ensemble of laser driven two-level atoms in a single mode
optical cavity, as described by the Dicke model.

Throughout the chapters 2,3 and 4 that contain the main body of research of this thesis,
we investigate phase transitions between non-equilibrium stationary states in engineered
quantum-optical systems each of which extends the conventional Dicke model physics. As
a starting point, we map the quantum equations of motion onto a set of semiclassical
nonlinear stochastic equations and analyse their stationary states and instabilities with
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master equations for atomic spin and photon mean-field amplitudes. These are used to
obtain experimentally relevant parameters such as critical atom-light couplings for phase
transitions, phase diagrams and properties of stationary non-equilibrium states in addition
to cavity output spectra that identify the imprint of magnetic correlations in the light-field.

In chapter 2, we help resolve a discrepancy between earlier experimental investigations
of the critical atom-light coupling strength for the superradiance transition in the Dicke
model: higher external pumping strengths than theoretically predicted were needed to
observe a coherent, superradiant state of the light field in an optical cavity. By including
incoherent spontaneous emission of atomic excitations, we extend the dissipative Dicke
model to a two loss channel variant containing both photon leakage and atomic decay
that reproduces the experimentally observed critical atom-light coupling.

Recent experiments have started to interface quantum many body lattice models with
coherent cavity fields, thereby allowing to realize new quantum phases through competing
atom-cavity and atom-atom interactions. In chapter 3, we consider a simplified model for
such a set-up where a single quantized mode of the light-field interacts with an ensemble
of Rydberg-dressed atoms inside a high finesse optical cavity. This model provides a base
case for further studies of quantum magnets in optical cavities. At the heart of this model
is a competition of short- (dipolar atom-atom) and long-range (atom-light) interactions
at the Hamiltonian level in the presence of both spontaneous emission and photon leak-
age through the cavity mirrors. We show that different magnetic phases can coexist with
coherent atomic radiation and provide clear experimental signatures to identify the mag-
netic structure and intra-cavity dynamics. We suggest an experimental level-scheme for a
quantum optical implementation of our model.

In chapter 4 we consider a generic, collective decay for many-body excitations in the
paradigmatic Dicke model. This extension drastically enriches the dynamics as it induces a
bicritical point and a bistable regime dominated by true non-equilibrium fluctuations that
induce a dissipative first-order phase transition that can only be resolved by including finite
fluctuation corrections with the help of stochastic Langevin equations. We investigate the
hysteretic response to time-dependent ramps of the atom-light coupling. Discontinuous
first-order phase transitions where metastable states coexist in a hysteresis domain have
been investigated in recent dissipative quantum-optical experiments. We review noise-
activation far from thermal equilibrium in chapter 5.



Deutsche Zusammenfassung

Moderne Experimente haben begonnen, ultrakalte atomare Gase mit Quanten-Lichtfeldern
in optischen Hohlraumresonatoren wechselwirken zu lassen. Dies bietet eine Fiille von
Moglichkeiten, die Anzahl der Wechselwirkungspotentiale zu erweitern: Langreichweit-
ige atomare Wechselwirkungen konkurrieren mit kinetischen Prozessen wie z.B. kurzre-
ichweitigen Streuprozessen, Magnetfeldern und magnetischen Spin-Spin Wechselwirkun-
gen. In solch quantenoptischen Experimenten werden oft externe Treiblaser eingesetzt um
die verschiedenen Wechselwirkungspotentiale zum einen {iberhaupt zu ermoglichen und
zum anderen diese auch aufeinander abzustimmen. Solche Systeme erreichen stationére
Zusténde nur wenn ein Flieigleichgewicht zwischen Energiegewinn (durch die Treiblaser)
und Energieverlusten (spontaner Zerfall von atomaren Anreungen oder Verluste von Pho-
tonen) herrscht. Mehrere Experimente in diesen Regimes haben gezeigt, dass es so zu
konkurrierenden Quantenphasen kommen kann.

Zugleich erwachsen aber auch erhebliche Herausforderungen in der theoretischen Beschrei-
bung solcher Systeme: Spontane Symmetriebrechung in Vielteilchensystemen die an dy-
namische Lichtfelder mit quantencharakter koppeln treten zusammen mit Verlustprozessen
auf. Dies erfordert Modellsysteme, in denen das oben erwahnte Zusammenspiel von Wech-
selwirkungen, Treibtermen, Verlustprozessen und kooperativem Verhalten theoretisch un-
tersucht werden kann, mit dem Ziel einfache und experimentell iiberpriifbare Vorhersagen
zu machen.

Das Dicke-Modell ist durch seine Einfachheit (ein exakt losbarer Ferromagnet mit un-
endlich langreichweitigen Wechselwirkungen zwischen Atomen, vermittelt durch ein optis-
ches Lichtfeld) ein hervorragend geeigneter Kandidat. Als generisches Modell fiir Atom-
Licht-Wechselwirkungen wurde es experimentell in einer Vielzahl moderner quantenoptis-
cher Systeme realisiert, was seine Relevanz fiir die heutige Forschung unterstreicht. Das
Dicke-Modell ist auch selbst sehr anpassbar und vielseitig. Es kann zum Beispiel leicht
in den dissipativen Bereich erweitert werden, oder in seiner Beschreibung mehrere optis-
che Moden in einem Resonator, oder auch gekoppelte Resonatoren umfassen. Es wurde
verwendet um Superradianzphaseniibergénge in atomaren System mit vielschichtiger Lev-
elstruktur, zum Beispiel realisiert durch spin-selektive Kopplung an das Lichtfeld, zu unter-
suchen. Es wurde zudem als effektives Modell in elektrischen Schaltkreisen realisiert wo die
elektrische dipolare Kopplung von Atomen ans Lichtfeld durch eine kapazitive Kopplung
von kiinstlichen Atomen an einen Resonator ersetzt worden ist. Dies verdeutlicht, dass
das Dicke-Modell, nicht zuletzt durch seine zahlreichen Erweiterungen, auch zukiinftig vo-
rallem fiir die Beschreibung von fundamentalen Wechselwirkungen von Atomen mit Licht
und fiir getrieben-dissipative Phaseniibergénge von Relevanz fiir zukiinftige Forschung sein
wird.

In dieser Arbeit untersuchen wir magnetische Phaseniiberginge in getrieben-dissipativen
atomaren Ensembles, die mit einer einzelnen quanten-optischen Lichtmode wechselwirken.
Diese Arbeit enthélt drei publizierte Forschungsprojekte. In den Kapiteln 2, 3 und 4, die
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den Hauptteil der Forschung dieser Arbeit enthalten, untersuchen wir Phaseniiberginge
zwischen Nichtgleichgewichtszustdnden in quantenoptischen Systemen, von denen jedes
das konventionelle Dicke Modell entscheidend erweitert. Wir beschreiben Experimentelle
Signaturen die zum Nachweis dieser Phasen dienen kénnen. Den Ausgangspunkt un-
serer Untersuchungen bilden die quantenmechanischen Heisenberg-Langevin Gleichungen
die wir auf einen Satz semiklassischer, nichtlinearer stochastischer Bewegungsgleichungen
abbilden. Wir analysieren dessen stationdre Zustdnde und Instabilitdten mit Mastergle-
ichungen fiir die Freiheitsgrade der atomaren Teilchen und des Lichtfeldes auch auf einem
‘mean-field’ level. Diese werden verwendet, um experimentell relevante Parameter wie kri-
tische Atom-Lichstirken fiir Phaseniibergéinge, Phasendiagramme und Eigenschaften von
stationdren Nichtgleichgewichtszustdnden, Lichtspektren zur Bestimmung von magnetis-
chen Korrelationen im Lichtfeld oder Noise’ Aktivierungsraten zu erhalten.

In Kapitel 2 helfen wir eine Diskrepanz zwischen fritheren experimentellen Untersuchun-
gen fiir die kritische Atom-Licht Kopplungsstéirke fiir den Superradianziibergang des Dicke
Modells aufzulésen: hohere externe Pumpstérken als theoretisch vorhergesagt waren notig,
um einen kohérenten, superradianten Zustand des Lichtfeldes in einem optischen Hohlraum-
resonator zu beobachten. Durch die Einbeziehung inkohérenter spontaner Emission von
atomaren Anregungen erweitern wir das dissipative Dicke-Modell auf eine Variante mit
zwei Verlustkanilen, die sowohl Verluste der Photonen durch die hocheffizienz Spiegel
als auch Zerfille atomarer Anregung enthélt und die experimentell beobachtete kritische
Atom-Lichtkopplung reproduziert.

Neuere Experimente haben begonnen, Gittermodelle von ultrakalten Quantenvielteilchen-
systemem mit kohdrenten Hohlraumfeldern zu verbinden, wodurch neue Quantenphasen
durch konkurrierende Atom-Licht- und Atom-Atom-Wechselwirkungen realisiert werden
kénnen. Im dritten Kapitel betrachten wir ein simplifiziertes Modell eines solchen Auf-
baus, bei dem eine einzelne quantisierte Mode des Lichtfeldes mit einem Ensemble von
Rydberg-Atomen wechselwirkt. Dies bietet einen kontrollierten Einstiegspunkt fiir weit-
ere Forschung im Bereich von Quantenmagneten die in Wechselwirkung mit Lichtfeldern
stehen. Das Hauptaugenmerk dieses Modells liegt auf einem Wettbewerb zwischen kurz-
(dipolare Atom-Atom) und langreichweitigen (Atom-Licht) Wechselwirkungen auf Hamil-
tonischer Ebene in Gegenwart von spontaner Emission atomarer Anregungen und Verluste
von Photonen durch die Spiegel des Hohlraumresonators. Wir zeigen, dass verschiedene
magnetische Phasen von Atomen mit kohérenter, superradianter Strahlung koexistieren
kénnen und liefern klare experimentelle Signaturen um die magnetische Struktur und die
Dynamik innerhalb des Hohlraumresonators zu identifizieren. Wir schlagen ein experi-
mentelles Level-Schema fiir eine quantenoptische Umsetzung unseres Modells vor.

Im vierten Kapitel betrachten wir einen generischen, kollektiven Zerfall fiir Vielteilchenan-
regungen im paradigmatischen Dicke-Modell. Diese Erweiterung bereichert die Dynamik
drastisch, da sie einen bikritischen Punkt und ein bistabiles Regime induziert, das von
echten Nichtgleichgewichtsfluktuationen dominiert wird, die einen dissipativen Phaseniiber-
gang erster Ordnung induzieren, der nur durch endliche Fluktuationskorrekturen mittels
stochastischer Langevin Gleichungen aufgelost werden kann. Wir untersuchen die hys-
teretische Reaktion auf zeitabhéngige Verdnderung der Atom-Licht-Kopplung. Diskon-
tinuierliche Phaseniiberginge erster Ordnung, bei denen metastabile Zustinde in einem
Hysteresebereich nebeneinander existieren, wurden kirzlich in dissipativen quantenoptis-
chen Experimenten untersucht.



Introduction

To kick off with a dramatic start: let us mention that life on Earth and Earth itself
are fundamentally out-of-equilibrium [1]. The dynamics of weather, oceanic currents and
movement of the Earth’s crust are all driven by an influx of energy, e.g. in the form of heat
from the earth’s core or from the sun driving dynamics in the atmosphere. Biological sys-
tems that sustain metabolisms are dependent on an uptake of energy to power irreversible
molecular reactions in fluctuating chemical environments. Non-equilibrium phenomena
therefore permeate every aspect of life and are thus ubiquitous in nature. In fact, a re-
port in 2007 compiled for the Office of Science of the Department of Energy (USA) [2]
raised the task to identify and present to the scientific community five of the most urgent
scientific questions and technological challenges we face today and in the future. One of
the five grand challenges that was communicated among and identified by the scientific
community [3, 4] was "How do we characterize and control matter away - especially very
far away - from equilibrium?’.

However, 'non-equilibrium’ encompasses a great variety of phenomena and typically one
can categorize according to two criteria: Firstly, it can refer to a general time-evolution of
a many-body system and their relaxation to both equilibrium and non-equilibrium states.
For example, the relaxation dynamics after a quantum quench in experiments with ultra-
cold atoms allows one to track and identify universal time-evolution stages that precede
the long time limit state. These stages are typically represented by prethermal states
associated to quasiparticle formation and by a local equilibrium through quasiparticle
scattering before the system finally relaxes to a global equilibrium state, see Refs. [5, 6, 7].
The second aspect of 'non-equilibrium’ does not refer to relaxation dynamics but to prop-
erties of stationary states. A non-equilibrium stationary state is maintained by a compen-
sation of fluxes (heat, energy, particles,...) triggered by external driving and dissipation
which is why they are also referred to as flux equilibria. They are distinct from an equi-
librium stationary state because the external driving often breaks detailed balance for
the microscopic equations of motion. This can allow for a greater variety of stationary
states, since they are in principle not restricted to Gibbs or Boltzmann distributions. If
a non-equilibrium system is isolated from its environment, for example by switching off
the explicit drive, it will undergo time-dependent relaxation dynamics as there is no flux
compensation any more and the steady-state cannot be maintained. This is in contrast
to a system in thermal equilibrium. If isolated from its environment, the state variables
that describe it (temperature, pressure, particle number, ...) remain unchanged. In this
thesis we will be concerned with stationary non-equilibrium states only.

Far from equilibrium scenarios exclude linearised approximations to an equilibrium ref-
erence state because strong non-equilibrium conditions are not small perturbative cor-
rections to coherent Hamiltonian dynamics. The separation of reversible and irreversible
processes is deeply engrained in a thermodynamical framework of equilibrium systems
[8]. For instance, in the thermodynamic limit, the second law of thermodynamics states
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that irreversible processes increase the entropy of the system until it is maximised. The
state of maximum entropy is the equilibrium state and is characterized by a set of time-
independent state variables (temperature, chemical potential, ...) that, per definition of
the equilibrium state, only undergo reversible dynamics. This is a consequence of detailed
balance and the time reversibility of the microscopic equations of motion. An external
driving laser typically breaks this time reversibility. For a system in a flux equilibrium
state, reversible Hamiltonian dynamics and irreversible driving and damping far from equi-
librium generally have to be considered on an equal footing [9, 10, 11]. We review a more
detailed explanation of this last statement in chapter 5.

Driving a system far from equilibrium, however still allows for pattern formation and
structure instead of chaos and turbulence [12]. The description of systems in thermody-
namic equilibrium benefits tremendously from extremum principles such as maximization
of the system’s entropy or, equivalently, the minimization of the free energy as the system’s
thermodynamic potential. What makes nonequilibrium systems challenging to understand
is that thermodynamic extremization principles are not applicable. Meaning that there
is a lack of an overarching guiding principle that determines the stationary probability
distribution far from equilibrium, whereas in thermal equilibrium it is easily found as the
Boltzmann or Gibbs distribution but not easily computed.

Non-equilibrium systems and transitions between different non-equilibrium states have not
yet been unified and classified in an all encompassing theoretical framework and it is not
clear to what degree universality emerges far from equilibrium.

A powerful method to describe non-equilibrium phenomena is the Keldysh functional in-
tegral formalism [13] where the quantum many-body master equation formulated in an
operator representation is directly translated into an associated Keldysh action in a func-
tional integral representation [14]. On the level of the action, the presence or absence
of an equilibrium symmetry (related to energy conservation) works as an indication for
non equilibrium conditions [15, 16]. In a system in thermodynamic equilibrium, reversible
and irreversible dynamics are not independent from one another. In contrast, in driven
quantum optics system where coherent dynamics are set by a Hamiltonian and dissipa-
tion is encoded with Lindblad operators, the sources of coherent and driven-dissipative
dynamics become distinct and are not tied together by a symmetry [14, 17]. This allows
for equilibrium and driven-open systems to be in different universality classes [18, 19].

In the '70s and ’80s, in particular classical nonequilibrium systems have been treated
in the context of Langevin equations with non-gradient drift fields to understand for
instance non-thermal noise activation and rare fluctuations. Considerable effort has been
invested in finding a generalized thermodynamic framework for flux equilibria far from
equilibrium in particular for systems whose dynamical equations are classical nonlinear
stochastic equations [20, 21]. The starting point is generally a dynamical description of
fluctuations in a path-integral or an equivalent Fokker-Planck equation, see [21, 11] and
references therein. Let us mention that in chapter 4 of this work, we derive a set of classical
nonlinear stochastic equations that describe a genuine non-equilibrium system that fits in
this framework which we detail and analyse in chapter 5. However non-equilibrium systems
are not inherently classical. It is true that dissipation and damping can be detrimental
to the build-up of quantum properties such as coherence or entanglement but engineered
dissipation can drive the system in the long-time limit into states protected from noise
(dark states). This was shown in [22] where reservoir engineering lead to a Bose-Einstein
condensate as the stationary dark state of the system.

More recently, non-equilibrium states of matter and their phase transitions have garnered
a lot of momentum since they are ubiquitous in damped-driven open quantum systems
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Figure I.1.: (a) Rabi Oscillations according to the transfer rate from the excited state e
to the ground state g as given by P.4(t). Points are experimental measurements, solid
line is a theoretical fit with, in comparison to Eq. (I1.2), damped sinusoidals. (A) for an
empty cavity with average thermal photon population ngperm(7 = 0.8K) ~ 0.06. ’(a)’
Fourier decomposition of time signal from a fit with n = (0 — 5) photons at frequencies
vo = 4TkHz,v = \/2up,v = \/3up,.... (a) measured, vacuum photon distribution P,.
Figure taken from [31] (minor adaptions). (b) Experimentally observed normal mode
splitting of the first excited state of a single atom interacting with a cavity mode. Shown
is the transmission spectrum normalised to the average photon number 7 in the cavity
in response to a weak laser drive with frequency () that probes the eigenmodes of the
atom-cavity system. The spectrum shows the predicted frequency doublet splitting of
AE =FE, — E_ = 2g, see Eq. (I.1). Figure taken from [32] (minor adaptions).

characterised by the presence of both coherent dynamics and controlled dissipation. The
new impetus came from advances in experiments that have begun to merge quantum many-
body lattice models as realised in ultracold atomic systems [23] with driven cavity setups
[24, 25] that had been investigating fundamental light-matter interaction at the quantum
level. This combines a high degree of experimental control with the driven-dissipative
character of quantum optical experiments, promising an insight into non-equilibrium be-
haviour that is often prohibited in other systems by the shear complexity and vast number
of interaction channels that occur e.g.in financial markets or biological systems.

In these new and inherently non-equilibrium scenarios, phase transitions occur when
the continuous tuning of an external parameter leads to a transition between two non-
equilibrium stationary states. What is more, it is possible to measure non-destructively
phase transitions in real-time in quantum many-body systems using a dissipation chan-
nel that outcouples information to the external environment. For example, in a driven-
nonlinear cavity, spectral properties of photons that leak from the cavity mirror can be re-
lated back to the dynamics of the intra cavity photon field, to detect for instance diverging
correlations of fluctuations or the structure of hybridised atom-cavity modes [26, 27, 28].
This makes them ideal model systems to monitor dynamics close to dissipative first-order
phase transitions where far from thermal noise-activation and fluctuations are crucial
drivers for the system dynamics in phase space [29, 30].

Cavity quantum electrodynamics (CQED) [34] describes the field of research that inves-
tigates light matter interaction at the quantum level. As the name suggests, it dispenses
with a classical description of electromagnetic radiation and instead operates in the few,
or single photon regime. Cavities are indispensable tools to realise enhanced light-matter
interactions which ultimately allows us to observe the coherent interaction of single atoms
with single photons, providing an ideal testbed for the quantum theory of light-matter
interaction. We review why this the case. In free-space, the probability for a laser photon
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Figure 1.2.: Non-destructive experimental measurement of intracavity photon number n
due to vacuum fluctuations [33] as measured by the final state of a stream of atomic two-
level systems {|g) , |e)} passing through the cavity. Every line corresponds to a readout of
a single atomic state. Experimental imperfections lead to false readouts as clearly visible
in the measurement sequence. At t = 1s, a vacuum fluctuation leads to the appearance of
a cavity photon which is seen by a great number of consecutive atoms. It finally decays
at t = 1.5s. See text for details. Figure taken from [33]with minor adaptions only.

to interact with an atom is proportional to the cooperativity Cgee = 0 /A which is the
ratio of the laser beam width A and the scattering cross section ¢. If light is trapped in a
box, as realised by two high quality mirrors, photons bounce back and forth between them
before they are eventually lost. In this case, the cooperativity is enhanced by the number
of roundtrips F' of the photon, Ceapy = FChree. An additional enhancement is obtained
when the cavity contains an ensemble of N atoms which boosts the cooperativity a sec-
ond time to Ceay = N FCiee. Through the strongly enhanced and repeated interaction of
cavity photons with an atomic ensemble, the standing wave optical light field in a cavity
becomes dynamical, meaning that the atomic motion exerts a backreaction on the cavity
field and vice versa. Cavities are thus the perfect environment to study strong light-matter
interactions.

Therefore, many modern experimental set-ups in quantum optics investigate atom-light
interactions in cavity systems. All three major research projects of this thesis also belong
to the research field of CQED. We therefore briefly review recent trends that are directly
relevant to this thesis and give a brief and highly selective historical overview of experi-
ments that have been important milestones for the research of atom-light interactions.

With growing experimental control and technical advances, it has been a trend to build
scalable atom-cavity systems. For example by scaling up the number of photon modes
M supported by the cavity and the number of atoms N participating in the atom-light
interactions. We identify three regimes:

(a) Single-mode cavities (M = 1) interacting with few or single atoms (N = 1)

(b) Many-body radiation (N > 1) in single-mode (M = 1) dissipative cavities with
atom-atom interactions

(€) Variable range atom-atom interactions in a many-body regime (N > 1) mediated
by multiple cavity modes (M > 1)

We will briefly describe pioneering experiments in regimes (a), (b), and (¢) and indicate
relations to the current work in this thesis.
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(a) Single-mode cavities (M = 1) interacting with few or single atoms (N = 1)

We start by briefly recapitulating the pioneering work of many research scientists that
paved the way for modern day experiments in cavity quantum electrodynamics. In the
early days, experiments concentrated on exploring the quantum interaction between light
and matter at the most fundamental level, i.e. they were trying to make one atom interact
with a single or few photons at a time.

To experimentally resolve coherent exchange of excitations between atoms and photons, it
is necessary to reach a strong coupling regime (g > k, ), where the timescale associated to
coherent atom-light interactions (g) is much shorter than the timescale associated to decay
of atomic excitations (vy) or to the decay of cavity modes (k). This was first achieved in the
early 1990s by Kimble, Thompson, Rempe, Haroche and collaborators [32, 35, 31, 36]. The
main aim of their experiments was to observe smoking gun features for the discreteness of
energy of the radiation field stored in a cavity and thus proving the quantum nature of the
atom-cavity system. In a first experiment, this prove was obtained by observing a normal-
mode splitting in a transmission intensity of a cavity that contained a single atom, see
Fig.I1.1b. We now explain the nature of this splitting. When atoms and photons interact,
they form joined eigenstates, so called polaritons. The eigenenergies of the hybridised
atom-photon modes is comprised of discrete levels whose spacing depends nonlinearly
Eatom—tight(n) ~ v/n+ 1 on the discrete number of photons n. This level splitting was
predicted initially by Jaynes and Cummings [37] and Tavis and Cummings [38] in the ’60s.
For an empty cavity that contains no photons, the transmission intensity has a single peak
resonance, corresponding to the vacuum mode (n = 0) of the cavity. If however there is
a single atom inside the cavity, the first excited state of the atom-cavity system is split
by a characteristic width AE = E, — E_ = 2g associated to the hybridised atom-cavity
eigenmodes

1
Ey = hw, £ hg, |£)=—(le,0)£]|g,1)). 1.1
4 zg|>\/§(|>lg>) (1.1)
The level splitting is a consequence of an absorption and emission cycle of the cavity
photon by the atom that oscillates with the so-called vacuum Rabi frequency ¢ and w, is
the resonance frequency of the cavity as well as of the atom.

A second smoking gun feature for quantised atom-light interactions were direct experi-
mental observations of Rabi-oscillations [31], the coherent exchange of excitations of a
single atom and a single photon trapped between two high finesse optical mirrors. The
time-evolution of the quantum state of the atom and the photon undergoes oscillations
that transfers population of the excited state e to the ground state g and back again. The
probability to find an atom that was initially in the excited state e after a time ¢ in the
ground state g is given by [31]

Poy(t) = Y Pusin® (gv/n+1t) (L.2)

where P, is the probability distribution for the photon number of the light field. For
example it can be poissonian distributed for a coherent light source, and exponentially
distributed for an incoherent light source such as thermal radiation. For a weak intracavity
field, as realised by thermal population of the cavity mode at room temperature nihermal <<
1, Eq. (I.2) predicts Rabi oscillations with a frequency set by g which is related to the dipole
coupling strength of the light field to the atomic two-level system. The experimentally
detected Rabi oscillations are depicted in Fig.I.1a.

These early endeavours [39, 40] were honoured with the Nobel Prize in Physics 2012
that was awarded jointly to Serge Haroche and David J. Wineland ’for ground-breaking
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Figure 1.3.: Sketch of an experimental realization [24] of competing short and long-range
atom-atom interactions in a cavity. The cavity mode mediates infinite range atom-atom
interaction of strength U that competes with on-site collisional interactions Ug and kinetic
energies t of a lattice Bose-Hubbard model. The competition of these three energy scales
leads to the emergence of new quantum phases, such as a state characterised by a regular
density pattern of atoms, as favoured by the cavity whilst retaining the phase coherence
of the Bose-Einstein condensate (supersolid phase). Figure taken from [24] with minimal
adaptions only.

experimental methods that enable measuring and manipulation of individual quantum
systems’ [41]. In particular, in 2007 Haroche and his group [33] trapped photons in a box
that would keep them alive long enough to perform non-destructive measurements on the
number of photons in the cavity [42]. Their main idea was to read out phase shifts on
initial and final atomic states that depend on the presence or absence of cavity photons

1 1
V2 V2
A stream of Rydberg atoms in a coherent superposition of some ground and excited state
manifold {|e),|g)} is sent through a cavity that is kept at a low temperature such that
its average photon number due to thermal population is Npermar <€ 1. Depending on the
presence or absence of a thermal cavity photon, the atoms exit the cavity with a phase
shift ¢(n,d) which in turn depends on the frequency detuning of the atom and cavity
resonance 6. Through the application of a laser pulse, the terminal state of the atom is

forced into |g) if n = 0 and |e) if n = 1. This experiment allowed the non-destructive
observation of the birth, lifetime and decay of a cavity photon, see Fig.1.2.

[initial) = —= (lg) + |e)) = [final) = — (" |g) +|e)) . (1.3)

(b) Many-body radiation (N > 1) in single-mode (M = 1) dissipative cavities with
atom-atom interactions

For the next generation of experiments it was possible to significantly scale up the number
of atoms in a cavity that could interact with a single mode of the optical light field. This
was made possible also by the advancements of laser cooling an ensemble of atoms into
ultracold quantum gases which could then be interfaced with intracavity optical lattices to
trap the atoms spatially [43]. In particular, the paradigmatic Dicke model has been turned
into experimental reality [44]. It describes the interaction of a laser-driven ensemble of two-
level atoms with a quantised light-field in a cavity. Due to its special importance for this
thesis, there is a detailed section (1.1) on its experimental realisation. Modern experiments
are not restricted to simulate condensed matter systems but have made a significant steps
towards engineering and controlling quantum optical systems in the presence of drive and
dissipation that allows for the emergence of new quantum phases. This is evidenced for
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Figure 1.4.: Experimental setup of a cavity that supports a set of nearly degenerate modes.
On the right, one can see superradiant emission from a single mode cavity (top) and
superradiant emission from a multimode cavity (bottom), as realised in the experiments
at Stanford [45]. Figure taken from [45] (adapted, [48]).

instance by the most recent experimental progress (2015) at the ETH in Zurich [24] and in
Hamburg [25] that interfaced a lattice bosonic Hubbard model with a cavity field leading
to a Dicke-Hubbard model that features a competition of both short- and long-range
interactions in a quantum optical system, see Fig. 1.3. The Dicke-Hubbard model combines
the well-studied superfluid to Mott insulator transition with a spatial self-organisation
phase of the atoms in the cavity. This allows for a quantum phase that inherits phase
coherence from the superfluid state and an atomic density wave with the periodicity of
the cavity wavevector which was dubbed a supersolid phase. In chapter 3, we consider
a quantum optical model that realises short and long-range atom-atom interactions in a
cavity where the motional degrees of freedom have been frozen out by a deep optical lattice
which can be considered as a simple base case to investigate magnetic phase transitions
in coexistence with coherent cavity fields.

(¢) Variable range atom-atom interactions in a many-body regime (N >> 1) mediated
by multiple cavity modes (M > 1)

The next experimental achievement was to increase the number of cavity modes from a
single to multiple modes which is then interfaced with an atomic Bose-Einstein condensate
placed in a cavity, see also Fig.1.4. This research was pioneered in Stanford in 2017 [45].
The atom-light coupling to multiple modes realises a rich structure of interactions of atoms
at position £ and m with interaction strength Jy,,, and can help not only to engineer a great
variety of phases in stationary non-equilibrium states [46] but also to investigate possibly
exotic collective phenomena and non-equilibrium fluctuations [47] in real time [27]. The
multimode structure is realised by an adjustable-length cavity that can then support
nearly frequency degenerate modes with different spatial mode profiles. When the system
is driven from the side by a far off-resonant laser, the atoms can not only scatter the
pump photons into a single cavity mode but into a superposition of many modes. Since
the modes have spatially varying profiles, their relative weight changes with the position of
the atom. Above a critical pumping strength, the atoms self-organise in a distinct density
pattern and maximise scattering into the cavity, thereby realising a superradiance in the
cavity. For a single-mode cavity this is one of two possible checkerboard configurations
where the atoms are pinned at the even or odd antinodes of the dynamical cavity lattice.
Superradiance of single and multiple modes in a cavity is shown in Fig.I.4.
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Outline of the thesis

At the heart of this thesis are the chapters 2, 3 and 4, which are based on research projects
that are published in peer-reviewed journals. Each of these projects is built around the
Dicke model, the generic model for the interaction of a single quantized bosonic light mode
with a laser-driven ensemble of atoms. In this thesis, we contribute to the previously
mentioned regime (b) of many-body radiation in dissipative single-mode cavities with
atom-atom interactions.

In chapter 1, the introductory chapter, we review essential theoretical aspects of open
quantum systems that are relevant for the three major research projects contained in
this thesis. We review the derivation of Heisenberg-Langevin equations that take into
account the coupling of a system to an external bath which leads to the presence of
damping and noise terms in addition to the coherent, Hamiltonian dynamics. We review
the derivation of generalised Einstein rules that connect fluctuations and dissipations which
is essential, for instance, to preserve quantum commutation relations over time. We also
review the derivation of non-unitary time-evolution with Lindblad superoperators and
point out crucial differences to temporal dynamics in closed Hamiltonian systems. We then
recapitulate briefly the history of the Dicke model, its importance in modelling generic
atom-light interactions and a few selected experimental realisations.

In chapter 2, we extend previous work on the dissipative Dicke model by considering the
influence of incoherent, spontaneous emission of atomic excitations into free space, away
from the cavity axis, thereby introducing a second decay channel in addition to photonic
losses from the cavity mirror. This investigation is motivated by recent (2014, [49]) ex-
perimental work on a quantum optical realization of the Dicke model where a discrepancy
between theoretical predictions and experimental data for the onset of the superradiance
transition was found. Subsequent experimental measurements and new rounds of data tak-
ing from a group in Singapore (2018, [44]) show that the experimentally observed critical
coupling for the superradiance transition is adequately described by taking into account an
effective spontaneous atomic emission which is consistent with our theoretical prediction.
The research presented in this chapter is published as

e Many-body quantum optics with decaying atomic spin states: (v, k) Dicke model
J. Gelhausen and M. Buchhold and P. Strack
Phys. Rev. A 95, 063824, (2017)

In chapter 3, we consider a set-up where a single quantized mode of the light-field interacts
with an ensemble of Rydberg-dressed atoms inside a high finesse optical cavity. At the
heart of this model is a competition of short- (dipole-dipole) and long-range (atom-light)
interactions at the Hamiltonian level in the presence of both incoherent spontaneous emis-
sion of atomic excitations and photon leakage through the cavity mirrors. Recent experi-
mental progress on the realisation and control of optical intra-cavity lattices and Rydberg-
dressed atoms featuring dipole-dipole interactions has put our model within experimental
reach [50]. We calculate the non-equilibrium steady-state phase diagrams using mean-field
theory and observe phase transitions between different magnetic phases of atoms that co-
exist with coherent atomic radiation. We suggest an experimental scheme for a quantum
optical implementation of our model that is based on cavity-assisted Raman transitions
in a hyperfine-split groundstate manifold of Rydberg atoms. Additionally, we calculate
and identify clear experimental signatures in the form of cavity spectra for the variety of
magnetic phases in the stationary states of the system. We have published our research.
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o Quantum-optical magnets with competing short- and long-range interactions: Rydberg-
dressed spin lattice in an optical cavity
J. Gelhausen and M. Buchhold and A. Rosch and P. Strack
SciPost Phys. 1, 004 (2016)

In chapter 5, we consider the Dicke model with a generic, collective decay mechanism
for many-body excitations. This extension drastically enriches the dynamics as strong
collective decay can change the continuous superradiance transition at a bicritical point
into a discontinuous transition. The dynamics of the system can generally not be resolved
on a mean-field level as they predict bistability in the thermodynamic limit of large number
of atoms V. It is therefore necessary to include finite fluctuations to resolve the dissipative
first-order transition. The fluctuations are derived from a generalised Einstein theorem
and are manifestly non-thermal as they depend on the state of the system. We analyse non-
thermal noise activation and transitions between metastable mean-field states numerically.
Additionally, we investigate hysteresis in the bistable regime that results from a response
to a time-dependent ramp of the atom-light coupling. Moreover, we show that in a narrow
region around the bicritical point there emerges an effective thermal description for the
phase transitions. Part of this research is published.

e Dissipative Dicke model with collective atomic decay: Bistability, noise-driven acti-
vation, and the nonthermal first-order superradiance transition
J. Gelhausen and M. Buchhold
Phys. Rev. A 97, 023807 (2018)

Chapter 5 contains a review of a path integral description of classical multicomponent
Langevin equations. We derive the classical action associated to the stochastic optical
Bloch equations that describe the non-equilibrium dynamics of the Dicke model inves-
tigated in chapter 4. This allows for a general understanding of noise activation rates
in a weak-noise limit in and also far from equilibrium in the context of a well-studied
‘rare-events’ theory.

In an outlook section, we present possible future research directions to realise macroscopic
steady states with a circulating probability current in an externally driven three-level sys-
tem. Such a scenario is unique to non-equilibrium systems and prohibited by detailed bal-
ance in an equilibrium framework. Furthermore, we present some preliminary calculations
on an antiferromagnetic phase transition in the presence of cavity-mediated fluctuations.






Chapter 1

Theoretical Background and Methods

In this chapter we introduce the Dicke model and its modern experimental realisations
in Sec.1.1. In the next section, we review the time-evolution equation of the density
matrix (Liouville equation) in an open-system environment and point out differences
to unitary time-evolution in Sec. 1.2. We close with a review of fluctuation dissipation
relations for quantum Heisenberg-Langevin equations in Sec. 1.3.

1.1. The Dicke model and its experimental realizations in cavity
quantum electrodynamics

The Dicke model is the generic model for atom-light interactions. It allows the in-
vestigation of collective radiation of an ensemble of atoms (superradiance) in a very
simple and yet experimentally relevant scenario. Originally introduced in 1954 by
Robert Dicke [51] it bears now thousands of citations and has sparked intensive theo-
retical investigations and diverse research efforts into collective radiative phenomena
for decades. For a review from 2011 on recent developments of the Dicke model in
quantum optics, see [52] and for a review on superradiance in the Dicke model up to
the 1980s, see [53]. A historical overview and a detailed description of the progress
and evolution of describing atom-light interactions in terms of the Dicke model can be
found in the PhD thesis [54]. Here we restrict our review to a minimum of essential
features associated with the Dicke Hamiltonian. We follow in particular the modern
reviews [52, 54, 55, 56, 53] .

The phase transition in the Dicke model is referred to as a superradiane transition. The
term super in superradiance!' refers to two phenomena. The first refers to a transient
phenomena of cooperative spontaneous decay of an atomic ensemble that is initially co-
herently excited with a laser pulse. The second instance of superradiance occurs when
the atomic ensemble interacts with a single mode of the light-field in a laser-driven cavity
and is a phenomenon of a stationary state in a driven-dissipative system. We will briefly
touch upon the first interpretation that was originally considered by Dicke [51] in the next
subsection. We briefly review recent experiments, that refer to the second interpretation
of superradiance in the last section.

Superradiance as a transient phenomena

First, we briefly touch upon the transient phenomena of superradiance that occurs when
N initially excited atoms radiate in phase. For an ensemble of N atoms that radiates

!The article, The Super of Superradiance [55], goes into more detail.

19
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Figure 1.1.: (a) Illustration of incoherent emission of radiation with exponentially decaying
intensity (top) from an atomic cloud given by Eq.(1.1) and of coherent emission with a
short burst of radiation (bottom) from an atomic cloud, given by Eq. (1.2). Figure taken
from [53] with very minor adaptions only. (b) Superradiant decay channels for an atomic
ensemble in symmetric Dicke states |S, M). There are N + 1 symmetric states with a
decay rate I = (S + M)(S — M +1). Application of the collective spin lowering operator
induces the depicted ladder transition in the sector with fixed S = N/2.

incoherently such as a thermally excited cloud of atoms, the radiation intensity is
ZLincoherent ~ thz’)/ ~ N'% (11)

where 7 is the decay rate for a single atom and w, is the transition energy of some atomic
level involved in the decay. If the atoms however radiate together, there can be an enhanced
decay rate such that Yeoherent = INy. The intensity then behaves as

Icoherent ~ Nmz'}/coherent ~ N2’Y' (12)

That is, a coherent atomic sample can radiate at an intensity that is IV times stronger
than that of an incoherent atomic sample. This also means that they radiate their energy
N times faster 7 ~ 1/7conerent ~ 1/(INy) in a flash of energy, see Fig. 1.1a. Classically this
is explained in the picture of having N antennae radiate in phase where the electric fields
of all atoms add up such that their intensity is proportional to the electric field squared
[53, 55].

From a quantum mechanical point of view, the enhancement of radiation can be explained
when considering an atomic ensemble that collectively shares excitations. Consider a
cloud of atoms whose extension (R) is much smaller than the wavelength (A,) of radiation
R < .. If initially the ensemble is in its ground-state |/, |, . ..) and one photon is absorbed
by the atomic cloud, it is not possible to tell which atom is actually excited. Consequently,
the state of the atomic sample is expressed as a coherent superposition of all states with
a single excitation. For single-photon absorption this state is

UWZNM—D=S+LLL~>ZNﬂ%LL~>+MﬂL~>+MLﬁ~&+~J,)
(1.3

and the associated radiation rate is I(N/2, N/2 — 1) ~ yN. That is, the decay rate
of a single atomic excitation is enhanced by a factor N in comparison to the case of
storing a single excitation in a single atom. This phenomenon is known as single-photon
superradiance [55, 57].
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Figure 1.2.: Possible experimental setup for a realisation of the Dicke model. An ensemble
of two level atoms (illustrated as spins) interact with a single quantised mode of the radi-
ation field (red line) in a cavity with an atom-light coupling strength g. The excited state
e and ground-state g are separated by an energy splitting of w,. Red arrows indicate the
infinite-range atom-atom interaction mediated by the photons. The cavity mode function
is commensurate with the intracavity lattice.

More generally, Dicke states are symmetrised collective angular momentum states |S, M)
that are highly entangled [58]. For example, for two atoms, the symmetrised Dicke states
correspond to the three spin S = 1 triplet states {|11),[1}) +[41), [{4)}. Focusing on the
maximum spin angular momentum state with cooperation number S = N/2, with N even,
and taking the z-direction as the spin quantisation axis, M is constrained to the values
M e{-N/2,-N/2+1...,0,...,N/2}. M then measures the difference of atoms in the
excited and the ground-state. Symmetric Dicke states can be constructed by successive
application of the collective spin lowering operator S~ as

S1S, M) = M|S, M), (1.4)
S%|S, M) = S(S+1)|S, M),
SIS, M) = \/S(S +1) — M(M —1)|S,M —1). (1.6)

It can then be understood that the radiation is channelled to the (N + 1) collective states
instead of the 2V states for an incoherent ensemble of two-level atoms. In general, the
rate of emission for the symmetric Dicke state is (see e.g. [56])

I(S, M) =[(S,M —1|S™|S,M) >y =~(S + M)(S — M +1). (1.7)

An illustration of the superradiant decay channels is given in Fig. 1.1b. From Eq. (1.7) it
can be seen that for |[N/2,0) the radiation rate is close to its maximum and given as

I(N/2,0) = v (N?/4 4 N/2) ~ yN?. (1.8)

Superradiance as a thermodynamic phase transition

Here, we discuss the second instance of superradiance that is concerned with understanding
cooperative atomic radiation as a property of a stationary non-equilibrium state. The
Dicke model considers the coupling of an ensemble of N atoms with a single quantised
mode of the light-field. It therefore extended the prototypical interaction of a single mode
of the light-field with a single atom to the many atom case to take into account cooperative
radiation of a many-body system. The Dicke Hamiltonian is

H = woa'a + w.5* + i(a +al)(ST+57), (1.9)

VN
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where wy is the frequency of the single-mode cavity with cavity photon creation operator
al. Here, w, is the level splitting of the two-level atoms and g is the single photon atom-

light coupling strength
2th | N
g = Wzdeg o ‘/V (1.10)

related to the dipole element d4 of the two atomic levels. The collective spin operators
are

N N 1

St=Yof =Yl lol. 5 =(s7)", si-= ~ (e (el — lg) (g1)

(1.11)
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O |
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and e, g is the excited and the ground-state of a two-level atom, respectively. The spin-
photon coupling strength is typically phase dependent as g(r¢) = ¥ (r()g, where 1 (ry) is
the cavity mode function. When the intracavity lattice is commensurate with the cavity
mode function, all atoms experience the same coupling strength such that g(r,) = const..
An illustration is seen in Fig. 1.2. V is the quantization volume for the modes of the electric
field, which is the cavity volume. The Dicke Hamiltonian commutes with the collective
spin operator S? and therefore, its eigenvalues S, see Eq. (1.5). All dynamics takes place

in a subspace associated to a fixed value S which is typically taken to be at its maximum
S = N/2.

We consider the Dicke model in its thermodynamic limit N — oo,V — oo with a fixed
atomic density of the atoms N/V = const. In this sense, the atom-light coupling is fixed
in an experimental setup by the density of atoms, see Eq. (1.10).

In the form of Eq. (1.9) the Dicke Hamiltonian supports an inversion symmetry
(a,a’, 87, 57) = (—a,—a’, -5+, —57) (1.12)

that is spontaneously broken at the superradiance transition. The Dicke model supports
two different phases for ¢ < (wp,w,) and for g > (wp,w,). We will now review their
well-known properties of these phases. A similar discussion can e.g.be found in [54].
The phase transition can be described in a semiclassical description, where the collective
angular momentum spin operators are replaced with their expectation values.

a— (a)VN, §%— g (§%), ST = N(S%). (1.13)

In this sense, it is now understood that the atom-light coupling in Eq. (1.9) needs to be
rescaled with a factor of 1/ VN , such that all terms correctly scale with N in the ther-
modynamic limit. The order parameter of the transition is the macroscopic expectation
value of the cavity mode (a) and, equivalently the macroscopic polarization of the spins

(S7) = (S7) + (57).

For g = 0, eigenstates of the Dicke Hamiltonian are the simultaneous eigenstates of S~?
and S? which are denoted as |S, M). The state with minimum energy for w, > 0 is given
by the state where all spins are in the ground state and the state of the photon field is
the vacuum, such that (a) = (a') = (a'a) = 0. The atom-cavity state is then the product
state of the spin and the zero-photon Fock-state

jempty) = |1 ) [0), (@) =0, ($%) =1, ($%)=0. (1.14)
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Please note that we have rescaled the macroscopic expectation values as in Eq. (1.13) to
make the scaling with N explicit. In this case, the atom-cavity system is devoid of excita-
tions and is referred to as the empty atom-cavity state. For non-zero atom-light coupling
strengths ¢ < (w,,wq), the coupling of the spins to the vacuum mode of the cavity with
~ ﬁ(a + a")(S* + S7) will trigger transitions in the spin-sector associated to S? as

S*|S, M) ~ |S,M + 1) and the states of the atom and of the cavity hybridise to form
joined eigenstates, so called polariton modes.

For g > (w.,wo), eigenstates in the spin-sector of the Hamiltonian are eigenstates to the
spin-operator (St + S7) = S*. The total spin quantum number S is still conserved. The
cavity is in a displaced harmonic oscillator state [59] with

(@) £0, (8%)=0, (§%) ==l (1.15)

where the spin ensemble is thus in a state with macroscopic polarization in the spin z-
direction that breaks the inversion symmetry in Eq.(1.12). This state is known as the
superradiant state.

In this sense, the Dicke phase transition resembles a quantum phase transition separating
a paramagnetic state for g < g. from a ferromagnetic state for g > g. with polarization
in the z-direction. The description of the predicted phase transition in a semiclassical,
meanfield framework is exact in the thermodynamic limit of a large number of atom-cavity
emitters, since the model is understood as an infinite-range ferromagnet. The infinite-range
atom-atom interaction is mediated by the cavity photons.

The equilibrium statistical mechanics of a thermal ensemble of atoms that interacts with
a quantized radiation field with both co- (S*a + h.c.) and counterrotating (S*a' + h.c.)
terms present was described by Hepp and Lieb [60], Hioe [61] and Carmichael, Walls and
Gardiner [62]. They predicted a classical phase transition in a thermal ensemble at

(h=1). (1.16)

It can be seen that the critical spin-photon coupling g. is on the order of the optical
frequencies (w,,wp) in the system. However, it cannot become infinitely large since the
dipole element of the excited and groundstate is related to the frequency splitting of the
two-level atom via a sum-rule. It was shown later [63] that this sum-rule prohibits the
spin-photon coupling from becoming large enough to realize the superradiance condition
given in Eq. (1.16). This became known as the no-go theorem.

It was later realised that the no-go theorem can be circumvented in a driven system [26]. A
driving scheme that makes the coupling strength g tunable by an external laser with Rabi-
frequency Q as ¢°(Q) is not subject to a sum-rule that applies for the bare Hamiltonian
parameters. The superradiance transition is therefore restored in a driven system. In
a cavity that is driven from the outside and where photon modes can escape the cavity
mirrors with a rate &, the critical coupling for the superradiance transition changes to [26]

1w, (k? + W)
=/ — 1.17
9e =5 . (1.17)
which shows that in comparison to the zero-temperature limit of the thermal transition
ge(T" — 0) = 1/2,/wow, the critical coupling is shifted to higher values to compensate
for the losses. In chapter 2 and chapter 4, we will show how this coupling changes in a
driven-dissipative setting when atomic excitations can spontaneously decay as well.
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The no-go-theorem for the superradiance transition in cavity quantum electrodynamics

The no-go theorem states that the classical and the quantum Dicke superradiance tran-
sition for an ensemble of real atoms coupled to a single bosonic lightmode, see Eq. (1.9),
is prohibited from occuring for real atoms that couple to the light field with their electric
dipole moment. This was realised for the first time in 1975 in [63] where the authors prove
that the phase transition is an artefact of neglecting a diamagnetic term ~ A? in the light-
matter Hamiltonian from which the Dicke Hamiltonian is derived, where A is the vector
potential of the electromagnetic field. We briefly summarize their arguments. Keeping
the diamagnetic contribution, adds an extra term ~ € [63] to the Dicke Hamiltonian

La af n ela+a"(a+ah). .
et (ST +87) +elatal)(a+al) (1.18)

This now shifts the critical coupling strength for the superradiance transition, which upon
rewriting the atom-light coupling g with Eq. (1.10), is written as [63]

H = wpala + w. 5% +

A w, > —. 1.1
we > o (1.19)

However, the relative strength of the electric dipole element d., and the frequency of the
level splitting of the atoms w, are not independent from another. It can be shown from
elementary quantum mechanical calculations that the dipole coupling strength is restricted
by a sum-rule known also as the Thomas-Reiche-Kuhn sum rule. This restriction can be
written in the form (see e.g. [56])

2
9 e“h
deng < %

(1.20)

which exactly contradicts the condition for a superradiant state given in Eq. (1.19).

The diamagnetic term can typically safely be neglected when predicting general interaction
features of matter-light couplings below the critical coupling strength. Its contribution
can be estimated by comparing its strength with the photon frequency, [56]. This is also
evidenced by the twenty-years worth of experiments and comparisons with predictions
from the Dicke model for the non superradiant regime.

As mentioned above, the no-go theorem is overcome by ’synthetic cavity quantum electro-
dynamics’ that is by realising an experimentally tunable coupling strength g — ¢°f(Q),
that depends on an external driving strength Q [26]. More recently, it was shown that it is
also possible to construct electronic circuit systems whose dynamics can be mapped onto
the Dicke model. In the field of circuit quantum electrodynamics (circuit-qed) a collection
of N Cooper pair boxes with an atom-like energy structure function as artificial atoms. In
comparison to real atoms that couple with their electric dipole moment to the light field,
the artifical atoms are coupled capacitively to a resonator. For a circuit-qed system, it was
proven [64] that a quantum critical point for the spontaneous decay of the vacuum into
the superradiant state exists as the coupling parameters are not restricted by an oscillator
strength sum rule, meaning that there is no 'no-go-theorem’ in circuit qed. Furthermore,
in contrast to synthetic cavity qed where time-dependent pump-lasers dress the system
and the Dicke Hamiltonian is realised only in a rotating-frame, circuit-based Hamiltonians
are inherently time-independent.

In the next section we briefly present successful experimental engineering and observations
of the superradiance transition in cavity qed systems.
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Figure 1.3.: Proposed level scheme [26] for a ’synthetic cavity QED’ to circumvent the no-
go theorem. The two-level states are modelled by the ground-states of a hyperfine structure
{F, F'} of 8"Rb that are coupled off-resonantly (A., Ay) to higher-lying states |d) and |e)
with two lasers of Rabi-frequency 24 and .. A single mode cavity couples these states
with an atom-light strength of gs and g.. The cavity assisted Raman tran51t10ns lead to
an effective atom-light coupling of the ground-states {|1),[])} with g = gde Le that
can be experimentally tuned by the laser Rabi-frequency and is thus not hmlted by the
Thomas-Reiche-Kuhn sum rule. Red arrows generate terms ¢°f(Q.)/v/N(aS™ + atSt),
blue arrows generate contributions of ¢°(Q4)/v/N(a'S~ + aS~). These terms describe
light-scattering between the laser and the cavity mode. Figure redrawn from [26] with
adaptions.
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Figure 1.4.: Experimental investigation [65] of symmetry breaking at the Dicke superra-
diance phase transition. (a) (top, figure taken from [65] (adapted)) Typical experimental
setup of a Bose-Einstein-Condensate in a laser-driven cavity. (bottom, Figure taken from
[28] (adapted with annotations)). The cavity-output can be monitored experimentally.
Superradiance transition corresponds to a spatial self-organisation of the atoms (see text).
(b) At the critical threshold coupling for the superradiance transition, g°f = g¢f, the cav-
ity mode is macroscopically occupied and light starts leaking through the cavity mirrors.
The cavity phase and the phase of the laser are locked together in the superradiant regime.
Figure taken from [28] (minor adaptions).
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Modern Experimental Realisations of the Dicke superradiance transition

An ingenious scheme to engineer tunable and strong atom-light coupling strengths was
proposed in 2007 by Dimer et al.[26] to circumvent the no-go theorem. They proposed
a two-photon driving scheme containing four atomic levels that are coupled by a single
cavity mode and two external driving fields of a laser. Adiabatically eliminating two of
these four states, leaves a ground-state manifold of two states {|1),||)} that are strongly
coupled by two independent Raman processes involving the cavity mode and an external
driving laser to realise both co- and counter-rotating terms of the atom-light coupling as

ff eff
Y - 97" (Q4 - _
Huamovan = 2 05~ 4 atsh) + C 2 (als™ vasT), )
where ggg(Qe,d) is an effective and tunable atom-light strength and 2.4 is the Rabi-
frequency of the pump-laser. A detailed description of the level scheme is given in Fig. 1.3.
In Sec. 3.4.4 of this thesis we will modify Dimer’s original pumping scheme to allow for an
an additional effective atom-atom interaction of the states [1); at site i and the state [1);
at site j.

The first experimental realization of the superradiance transition was achieved in 2010
by coupling a motional degree of freedom of a Bose-Einstein condensate to a cavity [65].
More specifically they mapped the the four atomic levels depicted in Fig.1.3 to finite
momentum modes |pg,p.) = {|0,0),|+hk, £hk)} of a Bose-Einstein condensate that is
placed in a transversely driven cavity. In this effective model, the superradiance transition
manifests itself as spatial self-organisation of the atoms in a density pattern characterised
by the cavity wavevector k., see Fig.1.4a. This breaks the homogeneous gas density and
corresponds to the inversion symmetry breaking of the Dicke model.

We briefly describe now the experimental setup [65] depicted in Fig.1.4. For ¢°%(Q) <
gS%(Q) the cavity typically is in its vacuum state, only negligibly occupied by thermal
photons nipermar < 1. The atoms are subject to an intracavity lattice Vpump(z) in the
z—direction that is created by the pump laser far off the atomic resonance. With increasing
driving strength, the atoms scatter more pump photons into the cavity. This builds up a
cavity field which itself induces an optical lattice V ~ cos? (k.x) in z-direction that exerts
a dipole force on the atoms that influences the atomic motion. This rearrangement of the
atomic distribution amplifies scattering into the cavity, and at a critical driving strength
g° = ¢¢ff the scattering into the cavity is maximised which leads to a two-dimensional
intracavity optical lattice that consists of the interference of the potential from the laser
light Voump and a coherent cavity field Vg as V(x,2) = Va(z,2) + Voump(2). V(z, 2)
pins the atoms spatially in one of two checkerboard patterns, as depicted in Fig. 1.4a (see
experiments in [66, 67] with thermal atoms and experiment [65] with a BEC and theory
prediction [68]). Experimentally, this can be observed since light starts to leak out from the
cavity mirrors as seen in Fig. 1.4b. In the superradiant phase, we denote (a) = a = |a|e'?,
with ¢ as the phase of the cavity photons and « as the coherent classical state of the
cavity light field. The intracavity lattice is then given as [28]

Vi, 2) = Uplaf? cos? (kex) + g°T (o + a*) cos (A¢) cos (kex) cos (kez) (1.22)
Voump(2) = Vo cos (ke2)?, (1.23)

where Vo = h2,/A is the potential depth of the retro-reflected standing-wave pump laser
with Rabi frequency of the pump €2, and Uy = g8/ A is the potential depth created by a

far off-resonant laser beam, where gy is the bare atom-light coupling strength and A is
the frequency difference of the pump laser and the atomic two-level splitting. The relative
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phase A¢ between the pump-laser and the cavity field is locked to either A¢ = 0 or to
A¢ = m, see [65] and Fig.1.4b, and is associated to one of the two atomic checkerboard
patterns, reflecting the inversion symmetry breaking of the superradiance transition. A
dynamical switching between the two density patterns was investigated in [28].

In 2018 the Dicke superradiance transition was finally realised [44] in an optical cavity with
an ensemble of Rydberg atoms and an atomic level structure as seen in Fig. 1.3. Here, the
atoms are initially trapped in an intracavity lattice to strongly suppress atomic motion and
to maximise the atom-light coupling as the optical lattice is chosen commensurate with
the supported cavity modefunction. There is however an important difference between
the superradiance transition with momentum states of a BEC and the superradiance
transition with a real atomic level structure. While momentum states of a Bose-Einstein
condensate are stable, atomic levels are subject to atomic dissipation such as spontaneous
emission. This is why the superradiance transition in Eq. (1.17) correctly describes the
critical coupling strength for the stable momentum states, whereas corrections need to
be taken into account in the case of the atomic level structure. In Chapter 2 we take
into account these effects and find (among other things) that the critical superradiance
threshold is shifted to higher pump strengths to compensate for losses.

1.2. Time evolution in open quantum optical systems

In section 1.2.1 we review the derivation of a Lindblad master equation for an ensem-
ble of atoms in a cavity that are coupled to the external modes of radiation under the
rotating wave, Born and Markov approximations. Crucially, we derive the strength of
a collective emission channel that becomes important when the system is in the super-
radiant state. Our approach is equivalent to an earlier investigation in a wavefunction
picture [69]. We will investigate its consequences in detail in chapter 4. In Sec.1.2.2
we briefly compare equilibrium with driven-dissipative phase transitions. We discuss
signatures of phase transitions in quantum optical systems.

1.2.1. Lindblad master equation with coherent and incoherent emission of excitations

2 Here, we will review the derivation of a Lindblad master equation for an open quantum
optics system. A Lindblad equation is the most general, time-local time evolution equa-
tion for the density matrix of an open, dissipative system. Specifically, we consider the
interaction of an ensemble of atoms in a cavity with the external vacuum modes of the
electromagnetic field that function as a bath for the system, as displayed in Fig. 1.5. The
system-bath interaction will result in relaxation of atomic excitations into the environ-
ment. The atoms can decay individually and incoherently, or they can decay collectively.
In general, this leads to a time evolution equation for the density matrix with non-local
couplings of the atoms, see Eq.(1.34). Collective decay contributions that add to the
single atom decay rates have been derived in the context of single photon sub- and super-
radiant states [69] in a wave-function formalism. Here, we carry these considerations over
to a density matrix formalism and show that a description in terms of Lindblad operators
reproduces the results obtained from the wave function picture. The collective loss con-
tribution emerges by allowing all spins to interact with one shared bath. The derivation
of a Lindblad master equation with local decay processes can be found in most books in

2This section (1.2.1) appeared as part of the publication J. Gelhausen and M. Buchhold, Phys. Rev.
A 97, 023807 (2018). Here, we provide significantly more details for the derivation of the Lindblad
equation with a non-local decay channel.
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quantum optics (see e.g.[70]). Here, we detail how a collective decay contribution can
emerge in an optical cavity. This sets the basis for our investigations in chapter 4.

Let us mention that for undriven systems it is generally not expected that the dynamics can
be described with a Lindblad equation. The set of approximations and justifications for
Lindblad dynamics given below in (a — ¢) are not generic for condensed matter systems
but are adequate for driven two-level systems in quantum optical setups. The time-
dependence of the laser drive is sometimes ’hidden’ by changing into a frame rotating
at the laser frequencies. For example in the case of the driven Dicke model, the atom-
light interaction g is dressed by an external pumping laser such that it becomes tunable
as g — g(£2), where  is the laser Rabi-frequency. The time-dependence of the drive is
eliminated in a rotating frame.

The starting point for the Lindblad master equation is the von-Neumann equation in the
interaction picture for the density matrix p; that takes into account the degrees of freedom
for the system and the degrees of freedom for the bath

Owpr = —i[HP® pi),  (h=1). (1.24)

The Hamiltonian HP® specifies the system bath interaction. We assume a linear coupling
of bath to system operators and perform a rotating wave approximation where we drop
terms ~ Jjbg,w o, by. We comment on the approximation in (a), see below. In the
interaction picture, the system-bath interaction is cast into the form

N
HPF =323 (5k,zafbk6i(w2_”’“)t + EZ,ebZUZe_i(wz_uk)t) ' (1.25)
k(=1

We have performed the unitary transformation
HPS = U/ HpsUs, Uy = exp (=i (H" + HP) 1), (1.26)

where the bath Hamiltonian H? = Yok kazbk consists of harmonic oscillators with mode
frequency v, and mode index k. The non-interacting system Hamiltonian H® = 5 Zévzl of
contains only the frequency splitting of the two-level system as w,. Here, the coupling
strength to the bath is given as g5, = ere ke with g, taking into account the frequency
dependence of the kth radiation mode that is given by v, = ck. Typically it is a good
approximation (see later) to assume € ~ \/v/2m, where ~y is the spontaneous decay rate
of an atom.

In the following we invoke three key approximations, mentioned in (a), (b), and (c¢) for
the time-evolution of the density matrix that are typically carried out in quantum op-
tical systems. These are described in great detail in [71] by Daley. Here, we follow his
justifications:

(a) Rotating wave approximation (RWA) on system-bath interactions corresponds to
neglecting co-rotating terms ~ aZ'b,i‘,N o, by in Eq.(1.25). By performing this
approximation, one defines explicitly a slow (1/(w, — wp)) and a fast (1/(w, +
wp)) timescale, where wp is a typical bath timescale. One is interested in coarse
graining the dynamics to the slow timescale and blurring out what happens on fast
timescales because their effects will, through the fast oscillations, average to zero.
The perturbation theory is then carried out on timesteps associated to the coarse-
grained slow dynamics.

(b) The Born approximation. This approximation assumes that there are no strong cor-
relations between the bath and the system, which allows to decouple the system and
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Figure 1.5.: Illustration of system, bath and system-bath coupling. The system we consider
consists of an ensemble of atoms in a cavity, described by Hg. A typical frequency scale
of the system is given by wgys = w. which is the frequency splitting of the two-level
atom which are typically in the T'H z regimes for optical systems. A lifetime of an optical
excitation is associated to a much smaller frequency scale v ~ MHz and represents the
timescales generated by the system and environment interaction. The system frequency
wsys can dominate all other frequency scales and sets the frequency at which the system
modes couple to the bath modes spread by a narrow window given by ~.

reservoir density matrix as p; = pf ® pP. This is justified as v < w,,wp. Meaning
that the frequency scales relevant for the system and bath dynamics (wp,w,) are
much larger than the dynamics induced by the system-environment interaction (7).
This is important because the system will couple strongly to the bath only in a
narrow frequency window of width v centered around system frequency, see Fig. 1.5.

(¢) The Markov approximation consists of two parts. In the first step, one assumes
that the bath density matrix stays time-independent p? = pfzo, which follows from
v < wp meaning that relaxation timescales of the system 1/ are much larger
than any timescale associated to correlation functions in the bath. Meaning that
the bath will have relaxed back to its equilibrium state on a much faster timescale
than given by (1/7) induced by system-reservoir interactions. The second part is an
assumption on the system density matrix. Namely that the dynamics of the system
stays unaffected by its interaction with the reservoir at earlier times. Practically,
an emitted photon from a decaying atom will never return to interact with the
system again and the system irreversibly dissipates energy into the environment. As
mentioned earlier, the bath correlation functions decay rapidly in time. The system
and bath coupling is then assumed frequency independent on these short time scales,
as € — +/7/2m, meaning that the system couples strongly to the bath only on the
frequency scales associated with the system.

We review how Eq. (1.24) is generally solved by taking into account second-order pertur-
bations of the system-reservoir coupling HtBS . Formally, one can write its solution

t
p=p—i [ dt(HES, pu, (1.27)
which can be re-inserted back into the von-Neumann equation (1.24) to obtain
t
Oupn = —ilHPS o —i [ deHES pul) (1.28)
0

At this stage, one typically invokes the Born-approximation (b) that assumes small sys-
tem reservoir correlations, forbidding large system-reservoir entanglement. We assume
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therefore a factorization, see (b), as
pr=p; @ P, (1.29)

where we assume the bath to be stationary as ,07]? ~~ p%, see (c), meaning that the reservoir
is large and relaxes back to its initial state much faster than any dynamics induced by the
system-reservoir interaction. Tracing out the bath degrees of freedom, one obtains

Trplpd] = Trplof @ pl] = ps, (1.30)

where Trp[pp] = 1. We assume further that, at the initial time ¢ = 0 the system density
matrix commutes with Tr{[HP®, po]} = 0 [71]. We assume in the next step the Markov
approximation, stating that the density matrix of the system is memoryless, pf; = p?, see
(€). The time-evolution equation (1.28) is now written as

t
opf = ~Tep((HPS. [ dt(HFS p))
t
= /0 dt’ Trp [(HtBSpth’?S + H;?SpthBS) — HPSHPSp, — ptHsztBS} (1.31)

To evaluate the trace over the bath degrees of freedom, we note that the Hamiltonian
HPS always appears quadratically in Eq. (1.31). Consistent with the RWA (a), we drop
terms ~ a;b; and ~ o0, b, on the system-reservoir interaction. Additionally, the average
single particle population of the reservoir modes k is given as ny = n(vg) = 1/ (eﬂh”k - 1).
Cavity quantum optics typically operates also in the optical frequency regime which is in
the few hundreds of 10?> THz regime whereas the radiation modes at room temperature are
typically only few T'H z. There is thus a separation of two orders of magnitude which means
that hw,/kyT > 1 and consequently we will treat the reservoir as a zero-temperature
reservoir since n(w,) = 0 and

Trp[bby p5] = S (1 + 7) ~ G, (1.32)
Trp[blby pp] = Ok pritg, ~ 0. (1.33)

With these approximations, the time evolution for the system from Eq. (1.31) is found to
be

t .
Ohpy = /0 dt’ Z || 2e =1k —ko)(re—re) oupioy (G +C) — pofo, G —ofoy pilels
k0,0
(1.34)

where we have made explicit that in the Dicke model all momenta are expressed with
respect to the cavity wave vector kg and we have collected temporal phase factors as

Ce(t' —t) = exp (—i(w, — vg) (' — 1)) . (1.35)

For a large number of atoms, the sum over all atoms and momenta is only non-vanishing
for two different contributions. Either for £ = ¢/, which describes the uncorrelated, single
atom decay. Or for |k — k| ~ 0, which describes correlated decay into modes near the
cavity wave vector. We note that contributions with ¢ # ¢’ are generally suppressed by the
volume factor oc 1/V, which is implicit in the atom-light coupling constant e;. We single
out the uncorrelated single atom loss, which has been treated in many previous works (e.g.
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see [72]) and find

i ( VZ <04 pioy — *{% 7 ,pt}>

(=1

+/ dt’ Z e~ i(k—ko)(ry =) ‘5k‘ (Ug/PtUg (Ck +C) — PtUg/Ug 0 Ck — Ug/Ug PtCk)
k0 £0
(1.36)

For the second contribution to Eq. (1.36), we focus only on the collective part that arises
from wave vectors |k — ko| ~ 0. We proceed by calculating the weight of the associated
delta function

t .
/ dt/ Z |€k|2€—’b(k—k0)(rel 1’[ ~ / dt Z | kj ij)C (137)
0 k

We assume that the bath modes lie dense and work in the continuum limit to use the
replacements

1R ke 1
— 2 (" sin(6,)d6 %d(b (1.39)
;—) (271')3/() dkk /0 sm( k) k ) k- .

which leads to the integral

/ dt’ Z|a |Pe ik ko)rer=ra) gy (1.40)
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(1.41)

Here R is the radius of the atomic cloud in the cavity which is much larger than the cavity
wavelength. In the last line we have used that |;|?> does not vary significantly around
k ~ kg and pull it out of the integral

/ de|ex |2 exp [ic(k: Ck)(t—t —rfe)] = 27”5@ = 1)) (1.42)
0

As a result, one obtains

t 3 : 2
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here, the volume of the atomic sample is taken to be V = 4/37 R? and the density of states
D(k,) = Vk2/m%c and v = 27|ey, |?D(k.). If the difference between the two wavenumbers
ko and k. is small, one can expand the sin function to first order to reproduce the result
for the strength of the collective decay in [69] obtained from a wavefunction picture, i.e.

I 3 (X (1.45)
m o = — . .
k. —ko 8t \ AT R2

Here, Eq. (1.44) determines the strength of collective losses in a large sample limit R > A.
Therefore, the strength of the collective contribution is bounded by 0 < a < 1. Using
Eq. (1.44) in Eq. (1.36) leads to the non-local density matrix equation

N
_ 1 _ _ 1 _
ot =L, =2 Y. (o7 ot — ylotor ) +9a S (aumat - Slotor.m}).
=1 0
(1.46)

This derivation for the non-local contribution to the spontaneous decay is equivalent to an
earlier calculation performed in a wavefunction picture [69] for a large-sample limit. The
established decay rates for a single excitation are reproduced by £, [69], i.e. one finds
the single atom decay rate -y, the decay rate of a superradiant state of N atoms to be
v(14+a(N —1)) and the decay rate of a subradiant state (see e.g. [69]) to be v(1 —«). We
will provide a more detailed interpretation of the terms after the next subsection. First,
we estimate the typical strength of the collective decay for modern experiments trapping
atoms in intracavity lattices.

Estimation of collective decay contribution for lattice based cavity experiments

3 Tt is possible to roughly estimate the order of magnitude of the geometric factor o that
determines the collective loss rates. For the intracavity lattices investigated in chapter 2
and chapter 3 we find that collective loss contributions are negligible and we can restrict
the analysis to effects of incoherent spontaneous emission in these chapters.

For the estimation of the geometric coupling strength, we take the cavity parameters from
the Singapore setup as detailed in [73] and in [49] with Eq. (1.45)

o <39 (1/10))2 6x1077 (1.47)
3272 \ 50000 ’ ‘

In order to define a sensible thermodynamic limit N — oo, both the average energy and
loss rate per particle have to remain finite. The collective loss rate in Eq. (1.46), however,
scales as aN and thus we define @« = /N where limy_,o, 8 = const. has to remain
constant in the thermodynamic limit. This leads to the Lindblad superoperator £, as
given in chapter 4 in Eq.(4.4). In an experimental setup, 3 is then determined by the
cavity geometry factor a and the experimentally relevant number of atoms N = Nexp.

The collective emission rates appearing in the mean-field equations throughout chapter 4
are enhanced by the number of atoms loaded into the lattice which we take as N ~ 10
[73, 49] which would leave us with a conservative estimate of

B=aN~1077. (1.48)

3This subsection was part of the publications: J. Gelhausen and M. Buchhold and P. Strack Phys. Rev.
A 95, 063824, (2017) and J. Gelhausen and M. Buchhold Phys. Rev. A 97, 023807 (2018) and we have
used some paragraphs verbatim.
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We can set this into perspective by comparing it to the relevant system frequencies. Below
we quote the experimental values for the parameter set

(wo, ws, K, 7y) = (100(5), 77(2), 100,0.075 — 0.3)kHz (1.49)

as obtained for a quantum optical realisation of the Dicke model, see [74] for details.
Here k is the half-width-half-maximum linewidth of the cavity, v is the effective rate of
spontaneous emission per atom, wy is an effective frequency for cavity photons and w, is
an effective frequency for the level splitting of the atoms. In this experiment, the typical
number of atoms N loaded into the trap was around N ~ 10°, which leads to

vB = yaN ~ (0.0045 — 0.018)kH z. (1.50)

For the collective loss rate to be relevant for the system dynamics, v has to be comparable
to typical system frequencies. However, we find that v8 < wp which means that the
collective decay contribution can be neglected for the lattice based cavity experiments
treated in chapter 2 and chapter 3.

In chapter 4 we consider strong collective decays such there is a competition between
the effective atom-atom coupling strength J mediated by the cavity and the dissipatively
induced nonlinearities ~ 3, meaning that v5 ~ J ~ wy. Future experiments into the
dissipative Dicke model might be able to access the regime where v3 ~ J that is necessary
to experimentally measure the bistability regime and the fluctuation induced dynamics we
find in chapter 4.

We mention briefly that it might also be possible to engineer a strong collective loss channel
by coupling the atoms to a second single-mode cavity that operates in the bad cavity limit
of strong losses.

Sub- and superradiant transition rates

4 One can check that the dissipators in Eq. (1.46) can be mapped exactly to the wave-
function approach that was derived previously in [69] and correctly reproduces sub- and
superradiant decay rates. As an example, we calculate the decay rates of the single photon
sub- and superradiant states

|-y=|S=N/2—1,M =—-N/2+1), (1.51)
[+)=|S=N/2,M = —-N/2+ 1), (1.52)

respectively. Both states are defined as

+) = \/1N >y (1.53)
/=1
N/2 N/2

ERF I EENERE] (154

j=1

where [j) = |},...,], 15,4 ..., ]) labels the position of the one-atom excitation, S is the
total spin component and M = (N4 — Ny)/2. We make use of Eq. (1.46) for the time-
evolution of the sub- and superradiant states as

01 (1) () = 71— )| Y- (o7 1) (7 ) = [

(=1

FyalStE) (£ S — %Q(S(S F1) = M(M —1)) |£) (£] ] (1.55)

4This section was published as a supplementary material in
J. Gelhausen and M. Buchhold and P. Strack Phys. Rev. A 95, 063824, (2017)
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The rate of emission for the super (/;) and subradiant rates (I_) is extracted from
Eq. (1.55) as

&MZVP—Q+MQS+U—AHM—n) (1.56)
L=y (1+ (N - D) (1.57)
I=v(1-a) (1.58)

It can be seen that the decay rate of the superradiant state is collectively enhanced, while
the subradiant state has a lower decay rate than a single atomic excitation Igge = . The
strength of the collective contribution is bounded by 0 < o < 1. Super and sub-radiant
states have been observed experimentally for two trapped ions [75] and in the context of
a superradiance experiment for two artificial atoms in a cavity with high decay rate [76].

Unitary and non-unitary time-evolution

We briefly point out well-known structural differences in unitary and non-unitary time-
evolution. In particular we will review the derivation of the adjoined master equation
for a system operator in a Lindblad picture, see Eq. (1.72) that we use throughout this
thesis.

The unitary time-evolution of the density matrix is obtained from the von-Neumann equa-
tion

Oipe = —ilH, p), pr = UpoUf, Uy = e, (1.59)

The equation of motion for the system operators in the Heisenberg picture then follow
from

9y (Oy) = Tr[Oypo] = Tr[Oops] = —iTr[Oo[H, ps]] = —iTr[[Og, H], pt] = Tr[—i[Oy, H](po}. |
1.60

It can be read off as
8,0, = i[H,0], O, =U Oz, (1.61)

The unitary time evolution also guarantees that products of operators evolve identically
to the time evolution of the product of the time-evolved operators.

(OP), = U[OPU, = UJOUU{ PU; = O, P, (1.62)

In driven-dissipative systems, the von-Neumann equation is replaced with the Liouville
equation

Orpe = Llpi], (1.63)
. 1
Ll = ~ilH.p) + X (Lol = 5 {LiLupi}) (1.64)
l
where the Lindblad jump operators are given by L, with a local index /, e.g. L, = o,

describing atomic spontaneous emission. The formal solution of the Lindblad equation is
now given in terms of

pr = e~ po. (1.65)
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The exponential of the superoperator is defined via a Taylor series expansion. The adjoined
Liouvillian £ is defined via the operation

Tr[OL[P]] = Tx[£T[O]P). (1.66)

As a consequence, the time-dependent expectation value of an operator can be expressed
as

(Or) = Tr{Oop1] = Tx[Oge ! po]] = Trle“ [Op]po] = Tr[Orpo], (1.67)

and consequently
0:(0), = Tr[Ovpo] = Tx[Oopy] = Tr[OoLIp]] = Tr[OoL[e po] (1.68)
= Tr[£1[e*"O)po] = Tr(LT[Or) o, (1.69)

which leads to the identification of the adjoined master equation for the time evolution of
operators as

8,0, = L0y, 0, =€~y (1.70)
1
£10] = iH,00 + ¥ (LIOiL: - 3{L{Li.0}). (1.71)
4

We will frequently make use of Eq. (1.70) throughout this thesis. The form of £ is verified
under the cyclic property of the trace as

1 1
9, (04) = Tr[Oupr] = Tr[(OoLptLT ~50iI'L, pt}>] _ Tr[(LTooLpt - SiL 00}) o

= Tr[L[0g]pr] = Tr[ L[5 O] po]
= Tx[£[04] po). (1.72)

The adjoined master equation (1.72) has the order of operators reversed in the first term
L] = (LT.L +.. ) in comparison to the regular Liouville L[.] = (L.LT +.. ) The

time evolution operator for a driven-dissipative system is not hermitian itself £ # LT
but it preserves hermiticity for every density matrix. In non-unitary time-evolution, the
evolution of products of operators is not distributed to the individual operators as is the
case for unitary time-evolution

(OP); = e“(OP) # (e'10) (e*"'P) = O/ P. (1.73)

An important example for a damped cavity is discussed in Eq. (1.125), where (a;) <aI ) #
((aa®);). In the next section, we briefly discuss driven-dissipative phase transitions and
their signatures.

1.2.2. Equilibrium and non-equilibrium phase transitions

Driven-dissipative phase transitions occur far from equilibrium. Since the definition
of 'non-equilibrium’ hinges on the absence of thermodynamic equilibrium we mention
briefly common concepts and definitions of equilibrium thermodynamics. We give a
non-exhaustive and brief overview of thermal phase transitions (TPT) and quantum
phase transitions (QPT) to contrast and compare them with driven-dissipative phase
transitions (DPT) far from equilibrium. Where possible we make connections to the
work presented in this thesis.
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Equilibrium phase transitions

Phase transitions generally refer to a macroscopic change in the properties of a system in
response to a change of an external control parameter, e.g. a structural change in a liquid-
solid transition. We present a brief and incomplete review. Equilibrium phase transitions
are treated in every book on statistical mechanics, see e.g. [77]. For a system in equilibrium
with an external reservoir at fixed temperature 7', a phase transition separates an ordered,
low symmetry phase at low temperature 7' < T, from a disordered, high symmetry phase
at high temperatures T" > T,.. The different symmetry properties distinguish one phase
from another. In general, an increase in the temperature from a low temperature phase
(T'" < T.) will also increase thermal fluctuations (~ kpT") which start to compete with
interactions in the system. At 1" = T, long-wavelength thermal fluctuations destroy the
long-range correlations such that the ordered state is replaced by a disordered state. The
divergence of fluctuations at the critical point guarantees that the two phases with different
symmetry can be matched and are sharply divided from another at the critical point.

The macroscopic change in the properties of the system are typically tracked by a phe-
nomenological order parameter ¢ that is zero in the high-temperature ¢(T" > T.) = 0
and finite in the low-temperature phase ¢(T' < T.) # 0. One of the achievements of
equilibrium statistical mechanics is to describe thermal phase transitions with the help
of thermodynamic potentials that depend on few macroscopic thermodynamic variables
(temperature, particle density, ...). Close to a continuous phase transition, near T' = T,
where the order parameter is small, the free energy can typically be expanded in a power
series of the order parameter as F(¢,T) = Y, an,@", see e.g. [78]. The set of expansion
coefficients {a,,} depend on external parameters and temperature and the power series
expansion respects the symmetries of the model. For a spatially uniform systems with an
inversion symmetry ¢ — —¢, the Free-energy can typically be expanded in even powers
of the order parameter

F(T,¢) — Fy = a(T)¢* + b(T)¢* + O(¢°) + const, (1.74)

where b > 0 due to stability requirements of the thermodynamic potential and the sign
change of the coefficient a(T") ~ T — T,, marks an instability in the system, leading to a
phase transition. Minimizing the Free-energy with respect to the order parameter for a
fixed temperature T' as

dsF (¢, T) =0 (1.75)

yields the thermodynamic state of the system as parametrised by ¢. For example, a con-
tinuous phase transition from a paramagnet to a ferromagnet in the two-dimensional Ising
model corresponds to a spontaneously broken inversion symmetry and can be described
with a power series expansion of an order parameter as in Eq. (1.74). In equilibrium sta-
tistical mechanics, the tendency of a system to maximise entropy (minimize free energy)
in the stationary state is an overarching concept formulated as the second law of thermo-
dynamics. One of the most important theoretical achievements in the field of equilibrium
phase transitions is their categorization in terms of universality classes [79], meaning that
critical power law behaviour of e.g. order parameters close to the critical point become
independent of the microscopic details of the Hamiltonian. The universality class depends
then on the dimensionality of the system and on the symmetries that are present in the
model. Universality is ensured by the diverging correlation length ¢ of fluctuations

€~ |T — T, (1.76)

where v is the correlation length exponent.
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A system that is coupled with a thermal reservoir at a constant temperature T, treated in
the language of the canonical ensemble, will, in the long-time limit, be fully characterised
by its equilibrium probability distribution Peq(s), for a configuration s build from a set
of microstates s = {si1,s2,3,...,sn}, where N is the number of system constituents
and s; labels an internal state. The internal energy of a configuration is measured by a
Hamiltonian H(s) = Es. Explicitly, the probability to occupy a configuration s is given
by the Boltzmann distribution as

Py(s) = 2 B/T, Z(8) = ¥ e P, (1.77)

d {Es}

where Z(3) is the thermodynamic partition sum over the set of all configurations {s}. The
Boltzmann weights P, are a central result of statistical physics of equilibrium systems.
For a two-dimensional Ising model, a configuration s = {o1,09,03,...,0n5} would be a
particular pattern of spin up and down (o; = £1) of the entire lattice that has associ-
ated with it the energy Ej calculated from the Ising-Hamiltonian H(s) = —J >, 040;.
Thermodynamic expectation values then emerge as averages over all sets of microstates,
weighed appropriately by the equilibrium distribution (.) =3 { 3}(.)P€q({s}). An equilib-
rium state is thus, in a sense fully characterized by the Boltzmann probability distribution
P.,. The stationary probability distribution emerges as the long-time limit of a dynamical
evolution, lim;_, P(s,t) = P.4(s), where P(s,t) is the probability to find the configu-
ration s at time ¢. The dynamical equation is assumed to obey a classical rate equation
(P(s;) = P;, s; € {s}) for the occupation probabilities

dP;
o = 2 (Pivii = Prvig) = 3 Jjis (1.78)
Y j

where ;; is the transition rate from configuration s; to configuration s;. If the transition
rates are ergodic, i.e that every configuration s; can be reached from any other set of
configurations s;, the stationary state of the system uniquely follows from the master
equation. The master equation (1.78) states the conservation of probability, as >, P, =1
and >, 0P = 32,5 Jji = 0. In general, the stationary distribution that results from
this equation depends on the set of transition rates such that Pr? = P74 ({v;;}). However,
if the system satisfies time-reversal symmetry for the microscopic transition rates, there
is no net current between any two pairs of configurations in the stationary state

Jii = Py — Py = 0, (1.79)

where limy_,o0 Ji5(t) = Jiejq = 0. This detailed balance condition is used in numerical
simulations of systems in thermal equilibrium to generate artificial dynamics that samples
configurations s; according to their Boltzmann weight

Pt i B(E;—E;)
J = l = 67 JT . (180)
Pt

In this sense, Eq. (1.80) guarantees, independent on initial conditions, that the stationary
probability distribution is the Boltzmann distribution, see Eq. (1.77). However, the de-
tailed balance condition leaves some freedom, since two different sets of transition rates
{7ij} and {v;;} generate the same stationary distribution when ~;;/v;i = 7;;/7j;- For ex-
ample, Glauber and Metropolis transition rates generate the same equilibrium probability
distribution for the Ising model in Monte Carlo simulations, see e.g. [80]. We will contrast
that to the stationary state of a non-equilibrium system in the next section.
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Figure 1.6.: Stationary state configurations with and without detailed balance as obtained
from a master equation (1.78). In both cases we have P, = P, = P3 = 1/3 in (a) we chose
vi; = 7 resulting in the absence of currents J;; = 0 and in an equilibrium scenario. In
(b) we have 32 = 91 = 713 = 0 and y12 = Y23 = 731 = 7 which results in non-vanishing
currents |J;;| = /3 which thus defines a non-equilibrium stationary state.

Non-equilibrium steady states

A non-equilibrium system typically has, per definition, all or almost all of the above
outlined concepts missing. We will review, on the basis of a classical master equation,
that the dynamics in a non-equilibrium stationary state can face much less restrictions
than a stationary state in equilibrium because of the possible absence of detailed balance.

An equilibrium stationary state is entirely pre-determined by a thermal density matrix
resulting in a Boltzmann probability distribution for the occupation of microstates and
the absence of currents J;; = 0, due to detailed balance, i.e. it is defined by the set
{P*°,J;; = 0}. On the level of master equations, a non-equilibrium stationary state
(NESS) is a priori not restricted by detailed balance and enjoys more freedom, leading to
a rich variety of stationary states P; that are sustained by persistent currents between the
set of system configurations s; and s;. Therefore, a truly non-equilibrium stationary state
is distinct from a stationary state in equilibrium through the presence of non-vanishing
probability currents in the system. On the level of the master equation (1.78), not only
the probability distribution becomes time-independent in the long-time (lim;_,o, P(8;,t) =
P;) limit but also the currents become stationary in the NESS (lim¢—oc J(8i, 85,t) = Jj5)
and satisfy a Kirchhoff-like rule where the sum of incoming and outgoing currents for a
configuration ¢ vanish

ST Z *vji — P =0, (1.81)
j

allowing however for non-vanishing currents J;; # 0 (heat, energy, mass, ...) that ex-
plicitly violate the detailed balance condition in Eq. (1.79). For this reason, a NESS is
sustained by a compensation of fluxes. Consequently, a stationary probability distribution
is entirely determined by the set of transition rates P*({v;;}) and slight changes in the
rates lead to different distributions that likely do not obey the Boltzmann distribution
because of the absence of a coupling to a thermal reservoir. Therefore, suggestions have
been put forward to characterize a NESS by both its stationary probability distribution
and the set of non-vanishing currents as the set {P*({7i;}), J;;} between pairs i and j
of microstates that define the flux equilibrium [81, 82]. A brief illustration of detailed
balance and non-vanishing currents is given in Fig. 1.6.
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Dissipative phase transitions : closing of the Liouvillian gap

Moving now from a classical description to a framework that encompasses also a possible
quantum nature of a non-equilibrium problem, we consider the Liouvillian £ as the dy-
namical operator for a driven-dissipative many-body system. Unlike for closed systems,
where the generator of time-evolution is the hermitian Hamiltonian H = HT, the Liou-
villian is not hermitian £ # £ but hermiticity preserving. The Liouvillian defines the
time-evolution of the system density matrix

p= L] (1.82)

Its solution can be written in terms of the right eigenvectors p,, of the Liouvillian

pr=e"pg = anpne™ = pos + > anpne™?, (1.83)
n n>1

where the stationary density matrix is defined through
Lpss =0 (1.84)

and corresponds to the zero eigenvalue of the Liouvillian (see e.g. [83] for a detailed analysis
on eigenvalues, eigenvectors, symmetries and conserved quantities in Lindblad master
equations). This is similar to the classical master equation in Eq.(1.78) that can be
rewritten with a matrix M as %P = M P, where P; = P;. The stationary distribution
P~ is then the zero-mode of M. This does not fix all matrix elements of M and reflects
the fact that the dynamics to reach the same stationary state can be different as long as
both sets of transition rates obey detailed balance (see discussion below Eq. (1.80)). Since
the density matrix obeys Tr[p;] = 1 at all times, it follows that Tr[p,~¢] = 0. However,
linear combinations of density matrices p,~g can be correctly normalised density matrices.
In general, the eigenvalue structure {\,,} € C of the right eigenvectors p,, to the Liovillian
L is associated to the (complex) excitation spectrum of the system as

Lpn = Anpn- (1.85)

It can be seen from Eq. (1.83) that real parts of the eigenvalues define relaxation rates and
it can be proven that, Re[\,] < 0 Vn (see e.g.[84]). The longest relaxation time to the
stationary state is given by the timescale associated to the inverse of the Liouvillian gap,

A = max[Re[\,]], (1.86)

that is the eigenvalue with the closest real part to zero. This eigenvalue defines a complex
Liouvillian gap. Suppose now that there is an external control parameter g that induces
a phase transition at a critical value ¢ = g.. For a sudden change of the stationary
density matrix pss(g) and therefore of system observables in the stationary state, it is a
necessary condition that this gap must vanish asymptotically as lim,_,g, A = 0, see [85].
In the vicinity of the critical point, the Liouvillian gap becomes strongly suppressed and
the relaxation time to the stationary state increases, leading to a critical slowing down
of the dynamics. Likewise, the behaviour of the Liouvillian gap close to a critical point
in dissipative first order phase transitions has sparked intense research recently in driven-
dissipative systems in quantum optics [29, 86, 85].

Similarly, we investigate the low-frequency dynamics of a collective polariton mode (ex-
citation gap and damping rate) in a dissipative phase transition in Sec.3.4.2 which can
be seen in Fig. 3.4b, that parallels the behaviour of the Liouvillian gap. An illustration
of the pole structure of a polariton mode and the eigenvalue structure of the Liouvillian
close to the phase transition point is given in Fig.1.7. A brief comparison of equilibrium,
non-equilibrium and driven-dissipative phase transitions is given in Tab.1.2.2.
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Figure 1.7.: (a) Illustration of Liouvillian spectrum of complex (excitation and damping)
cigenvalues. The stationary state sits at A\g = 0. The spectral gap \ separates fast decaying
modes from the stationary state. A system instability and a possible nonanalytic change of
system observables in the stationary state occurs when the gap vanishes limg_, 4, A=0. (b)
Ilustration of a low-energy pole structure of a Green’s function G for hybridised atom-
cavity modes of the dissipative Dicke phase transition, see e.g. [87]. Real and imaginary
parts encode excitation energies and damping rates, respectively. Close to the critical
transition g < g., the poles become purely imaginary with a magnitude set by the rate of
dissipation. At the phase transition limg_,4 v — 0, i.e. one pole vanishes, indicating a
system instability. For detailed explanations, see [87, 85] and Sec. 3.4.2.

Dissipative phase transitions described by nonlinear differential equations

Detecting phase transitions in the eigenvalue structure of a Liouvillian can be impractical
since it typically grows exponentially in size with the number of system constituents,
making it hard to achieve a numerical diagonalization of £ in many cases. In this thesis,
we will detect driven-dissipative phase transitions as stability changes in fixed points of
non-linear differential equations. In some classical limit of a non-equilibrium system, it is
typically described in its macroscopic behaviour by a set of nonlinear differential equations
that can be derived from the adjoined Lindblad master equation (1.72)

0o = D(o)+&(o). (1.87)

In these classical Langevin equations there can appear a noise function £(o) that can
depend on the degrees of freedom of the system as parametrised by o. It can thus
have a non-thermal, i.e.non-constant noise intensity. Here the set of o = (0%,0Y,0%)
parametrises macroscopic quantities of the system which could contain a phenomenolog-
ical order parameter. Symmetries of the system are incorporated in the generator of
dynamics, e.g. D(o%,0Y%,0%) = D(—0",—0Y,07) for a model with an Ising-like inver-
sion symmetry (0%, 0Y) — (—0o%, —o¥). Stationary states of the system, lim;_, . o¢ = o
represent (typically) a unique and stable fixed point of the dynamics. They exist as a
consequence of a balance of external drive and dissipation. At a critical threshold value
of the external drive g = g, this fixed point becomes unstable and the long time-limit be-
haviour of the system changes dramatically as typically a new stable fixed point emerges.
Stability changes for dynamical systems are classified in bifurcation theory, see e.g. [12]
(see next section). The bifurcation analysis does not take into account fluctuations and is
therefore the mean-field equivalent of analysing phase transitions in thermal equilibrium.
The change in the fixpoint landscape could bring with it a spontaneously broken symmetry
from a state, where 0%(g < g.) = 0 to 0%(g > g.) # 0. In that sense one can still have
spontaneous symmetry breaking and phase transitions also in the absence of a free-energy
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or a free-energy functional equivalent.

We briefly review linear stability analysis in Sec.1.2.2. If the drive parameter is tuned
close to the transition point ¢ = g. the systems behaviour is entirely determined by the
type of instability or bifurcation. In this sense, it is possible that a variety of different
non-equilibrium systems can show universal behaviour close to an instability.

However, close to a critical point, it might be possible to map the dynamics, as given
by Eq.(1.87), onto an effective mode ¢ that allows then for a power expansion of the
generator of dynamics as

@¢=—§§+sw> (1.88)

Here, the generator of both dissipative and deterministic dynamics is the Hamiltonian
that, for a one-component system with no spatial dependence can always be written in a
potential form with a power expansion

H = agp? + bgo* + c,¢° + O(4%), (1.89)
(E@1E(@)) = (Ter +gd® + by +200° + 0(6%)) 3(t — 1), (1.90)

where the set (a,dy, by, by, g, ¢4) depend on the external drive g and
Teg = lim (66 (9)) 6(t — 1) (1.91)

is an effective temperature that typically depends on the strength of dissipation as a
constant noise intensity. In this sense, close to the critical point of a dissipative phase
transition (¢ ~ 0), the system can undergo a thermal phase transition with, in this case,
the thermal universality class of the Ising model and a stationary probability distribution

P(¢) ~ exp (—H/Tet) , (1.92)

that results as the stationary solution of the Fokker-Planck equation, associated to the
Langevin equation. The emergence of a thermodynamic universality class close to a criti-
cal point has been observed for a variety of models, see [88, 89, 90] and references therein.
It was shown that also for the superradiance transition of the photon field in the presence
of photon losses with rate x there emerges a constant noise intensity, Teg ~ &, at the tran-
sition point, see [91]. In this thesis we identify a potential description given by Eq. (1.89)
for an open variant of the Dicke model at a bicritical point in Sec. 4.3.2 and show that
the fluctuations at the critical point have a constant noise intensity, see Sec. 5.4.

The ground-state of the closed Dicke model for the coupling to a T' = 0 bath environment
undergoes a quantum phase transition from a vacuum to a superradiant state. In an
open Dicke model, where the atoms are coupled to lossy photons, the phase transition is
analysed as a change in the stationary state properties of the system. Nagy et al. [47]
asked the question how criticality in the stationary non-equilibrium state is related to
the critical behaviour at the quantum phase transition of the ground state in the closed
system. They found that the occupation of the photon mode close to the superradiance
transition in the presence of photon loss diverges with a different critical exponent than in
the corresponding closed Dicke system, [47, 27]. The presence of loss modified the static
critical exponents in comparison to the quantum phase transition in a closed system.

Classification of linearised instabilities

In this thesis, we will frequently analyse stability of fixed points and their bifurcations.
To predict instabilities one typically linearises the (noise-free (§) = 0) set of differential
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TPT QPT DPT
System Hamiltonian Hamiltonian Liouvillian
operator H = Ht H=H' LH £ L
Relevant  Free Energy Energy eigenvalues "Complex energy’ eigenvalues
quantity  F(p) = (H),—T(S), Ey : H|V) = Ey |) Aot Lp=App
Gibbs state Ground State Steady state
pr = argmin [F(p)] Vo) = min [(¥| H|¥)] po = argmin(||Lp||¢]
State $20,Tx(p)=1 o) = i, (Y H 1) llperlI=1 '
pr x exp[—H /kpT) [H — Ey,] [¥)q =0 Lpo =0
Phase C . :
transition Nonanalyticity in F(pr) A = FEy, — Egy, vanishes ADR=max[Re()\,)] vanishes

Table 1.1.: Brief comparison of thermal phase transition (TPT) quantum phase transition
(QPT) and dissipative phase transition (DPT). Here || - ||t; denotes the trace norm and S
the entropy and ADR is the asymptotic decay rate. This table is taken from [85].

equations Eq. (1.87) around the fixed point as o, — ¢ + do; and investigate whether
the perturbations do; grow (unstable) or decay (stable) in time. Here we assume a three
component field as o = (6%, 0Y,07%). We expand the set of equations (1.87) around the
stationary state to linear order and linearise

Ot (o0 +d0) = D (00) + J[f(a)]\(,:((f)() 8o 4+ O(60?) (1.93)
O(do) = J[f(O')]\U:U0 50 + O(5c?) (1.94)

Here J[f(0)]l,—,, is the Jacobian matrix evaluated at the fixed points that satisfy
D(og) = 0. It’s eigenvalues \; determine the stability of the fixed points. The general
solution is then cast into the form

do; = Zaiekitvi. (1.95)
i

The eigenvalues are in general complex
Ni =v+ip, (1.96)

with (v, u) € R and define the behaviour of the system when it is weakly perturbed from
the stationary state. From the decomposition it can easily be seen that the real part v
defines the damping rate and the imaginary part p defines oscillations. A fixed point is
stable if v < 0 Vi. Fixed points and their stability changes (bifurcations) are categorized
according to the behaviour of the set (v, ) as the transition is approached, see e.g. [12].

For a stability change of a fixed point it is clear that some v; — 0 as g — g.. For example,
analysing the Dicke phase transition in the presence of photon loss with a semiclassical
set of nonlinear differential equations, shows that the transition from the empty atom-
cavity system (paramagnet) to the superradiant state (ferromagnet) is associated with
a supercritical pitchfork bifurcation where a single fixed point is replaced by three fixed
points and the qualitative structure of phase space changes substantially. In this case for
g < ¢g. there is only one fixed point, which is the empty state that becomes unstable at
g = gc- For g > g, there are three fixed points. Two superradiant fixed points associated
to the inversion symmetry of the model and the remaining fixed point is the empty state
which is unstable. This bifurcation can also be seen in Fig. 1.4a. Generally one can ask the
question if the bifurcation analysis of a (semi)classical system can reveal features of the
associated phase transition of the groundstates in the quantum model. In the case of the
Dicke model it was conjectured [92] and shown [93] that the stability loss of the classical
fixed point in a pitch fork bifurcation is associated to entanglement in the stationary state
of the corresponding quantum system that peaks at the phase transition.
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1.3. Dissipation and fluctuations in open quantum optical systems

In this section we review and point out the importance of fluctuation-dissipation re-
lations in classical and quantum setups. We start in a classical setup by reviewing
Brownian motion to show that the average kinetic energy of a macroscopic particle
immersed in a fluid (thermal bath) is correctly predicted only when the bath degree
of freedom, modelled in terms of noise functions, are taken into account. Next, we
consider a quantum mechanical setting, a single mode cavity coupled to the vacuum
radiation modes. We review that the vacuum noise is important for the preserva-
tion of commutation relations for the cavity operators. In the next section, we show
that quantum Langevin equations always fulfil generalized Einstein relations that re-
late fluctuations with dissipations. We make use of these relations in chapter 2 and
chapter 4.

1.3.1. Classical Langevin equation

The dynamics of a macroscopic particle (that we will refer to as bead in this section) with
mass m immersed in a fluid can be described by a stochastic generalization of Newton’s
equation which is called classical Langevin equation [94]. This is a standard procedure and
in this section, we follow [95]. The particles in the fluid will collide with the macroscopic
bead and provide a source of random forces acting on the bead. As it is an impossible task
to track individual collisions, these will be modelled with a stochastic force function &; that
is fed back phenomenologically into the equation of motion for the bead. Additionally,
there appears also a phenomenologically added friction coefficient ~y, specific to each fluid.
In the absence of external forces (Fext = 0), the one-dimensional Langevin equation reads

d

m—uv = —myve + & (1.97)
dt

The stochastic force &; is modelled as a short ranged, correlated Gaussian random variable

characterised by their first and second moment,

(&) =0, (&)= At —1t"), (1.98)

where A > 0 is a constant, describing the variance of the force and (.) is a statistical average
over the reservoir degrees of freedom. The Langevin equation is based on a separation
of timescales in ’fast’, associated with the bath and ’slow’ associated with the dynamics
of the macroscopic bead. If we average over the forces of the bath first, one effectively
neglects the random noise, as (§) = 0. Then Eq. (1.97) is solved with

(vg) = e (wp) (1.99)

such that in the long time limit, the average velocity of the particle vanishes. However, a
particle in equilibrium with a thermal reservoir is expected to have characteristic fluctua-
tions in accordance with its thermal energy provided by the bath. For a one-dimensional
system, the equipartition theorem states that the average kinetic energy of the macro-
scopic bead is the same as the thermal energy of the bath. However, we see that if we
neglect the random force of the bath, this theorem is violated

kyT
. 2 . —29t 4, 2 b
thm (vi) = thm e (vg) = 0 # —.

(1.100)

Thus, Newton’s equation correctly predicts a vanishing average velocity for long times,
but it cannot correctly predict the time evolution of the fluctuations.
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In the next step, we thus keep the noise term & and solve the Langevin equation formally

t ~ ~
v = e g +/ ds e*V(t*S)és, & =& /m. (1.101)
0

The average kinetic energy of the macroscopic bead in the stationary equilibrium state is
constant, which means that

& ) =2 (i) =2 (1 (o) + {Euwn)) = 0. (1.102)
with
- - t -~ t o
(€or) = (voe & +/0 ds e 7ITIEE) :/0 ds e 1 (E8) = 2%;12 (1.103)

The set of equations (1.102) and (1.103) define the strength of the noise completely. The
relation between the strength of fluctuations A and dissipations «y is thus

1

<Ut2> = ;<£~tvt> = 4 = kbl

2ym2  m

(1.104)

one can readily identify fluctuation-dissipation relation or classical Einstein relation as
A =2mkyT~. (1.105)

Here kp is the Boltzmann constant. The variance of the fluctuating forces is connected to
the strength of dissipation, as it should be since both forces have the same origin. This
example shows the importance of taking into account the fluctuating forces of the bath
when it comes to calculating the time evolution of fluctuations for the macroscopic vari-
ables of the system.

This is equally true in the theory of quantum damping described in terms of Heisenberg-
Langevin equations for open quantum systems which we consider in the next section.

1.3.2. Quantum Heisenberg Langevin equations

In the following we review the derivation of the equation of motion for a single mode
cavity coupled to the external reservoir of radiation modes (1.117). This allows to
understand how damping and fluctuations carry over from a classical to a quantum
setting. This is a standard example, that is found in most books on quantum optics.
In this section we follow [96] and [70].

We consider the example of a single quantised light-mode supported by a cavity that is
coupled to an external reservoir of radiation modes. This system is fundamentally open
as the cavity mirrors are imperfect such that photons can leave the cavity system and
there is a steady rate of energy transfer through the mirrors. This damping mechanism is
accounted for by the coupling to the quantised radiation modes outside the cavity. Also
the external radiation modes will feed back into the equation of motion for the cavity
mode, leading to fluctuations. The damping and noise terms account for dissipation and
fluctuations. We start the derivation of the quantum Langevin equations by starting from
the conventional Heisenberg equations with the set of Hamiltonians

H=Hy+Hgsp, Ho =hwoala+ > hogbiby, Hsp=h> g(bha+aby), (1.106)
k k
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where Hy models the harmonic oscillators with annihilation operators for the cavity mode
a and for the bath modes b and wy is the energy dispersion of the bath oscillators in
free space. Furthermore, Hgg is the system reservoir interaction in a rotating-wave ap-
proximation that retains only energy-conserving contributions ~ bza and ~ afb,. The
coupling strength of the cavity modes to bath mode k is given by gi. The radiation modes
have to be quantised in free space and the single-mode approximation of the cavity is not
applicable in free space, leading to a continuum of modes where the subscript £ indicates
the mode index. The external modes are densely spaced and in a continuum limit for the
mode description one replaces

% dw o0 2k(w)
2 — 2 d : 1.107
A O - (1.107)

where the factor of 2 in front of the frequency dependent rate x(w) appears for convenience.
Momentarily however, we stick to a discrete mode picture for ease of notation and for
evaluations of mode summations we bear in mind the above quoted replacement rule for
the frequency integrals. The equation of motion for both bath and cavity operators is
obtained from the Heisenberg equation of motion (h = 1)

ay = i[H, ay] = —iwoar — 1 Y grbry, (1.108)
!

bie = i[H, byt] = —iwyibrs — igas. (1.109)

Since we would like to track the evolution of the system operators, we formally integrate
the equation for the bath modes from a past time g = 0 to the current time ¢

) t ) ,
bk,t = b].C’oeiwkt — igk/ dt/atleiwk(tit ) (1.110)
0

The formal solution is plugged into Eq. (1.108) for the system operator
t . , .
ar = —iwoar — Y_ g1 /0 dt'ape™ R — N grby ge ML, (1.111)
k k

In order to continue, we make use of the fact that the frequency dependence of the bath
modes varies slowly in the frequency window centred around the cavity frequency broad-
ened by the cavity decay rate. This approximation is known as the Markov-approximation,
see Sec. 1.2, and amounts to the replacement

k(w) = Kk(wy) = const., (1.112)

with the replacement conventions in Eq. (1.107), the first sum is evaluated as
t , , t
Zg,%/ dt' age k) = 2&/ dt'apd(t —t') = kay (1.113)
. 0 0

where the delta function contributes only with factor 1/2 since the upper integration
boundary coincides with the argument of the delta function such that it is split in ’half’.
The second summation is evaluated as

—i > grbroe K = —V2——=" b ge” Wk = V2k¢] (1.114)
k VI2m

where we have defined the input noise function

1

£ = — > bg ek (1.115)
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that feeds back in the equation of motion for the cavity mode. In this sense, the cavity
mode evolves in response to the action of the bath fields from an earlier time ¢t > tg = 0.
Here the noise operator depends on the initial state of the bath via by . The term noise’
for the input fields can make sense if the initial state is an incoherent state such as a
thermal state and if initially the bath and system states factorize. However, by o could
also be a coherent input field such as a laser and the term noise would not be appropriate.
Here we shall however be concerned with the former case only.

Plugging the two contributions from Eq. (1.115) and Eq.(1.113) into Eq. (1.111) results
in a damping term ~ k describing the decay of photons through the cavity mirrors into
the external vacuum modes and fluctuations in the form of an input noise-operator &7
explicitly containing the reference to the bath operators at some previous time. The only
non-vanishing noise-correlation function for a T' = 0 external bath is given as

(erepy = o(t—t). (1.116)
Together these equations result in the quantum Heisenberg-Langevin equation (QHLE)
ay = —iwpay — kay + V2KE! (1.117)

This equation represents the quantum analogue to the classical Langevin equation dis-
cussed in Sec. 1.3.1.

Importance of noise for multioperator expectation values

Taking the example of the damped cavity, we now show that when we average over the
reservoir degrees of freedom before solving the Heisenberg-Langevin equation, we can
correctly predict single-operator expectation values in the long-time limit but acquire
wrong results for multioperator expectation values. This is in complete analogy to the
classical Brownian motion where we have seen that we correctly obtain a vanishing
velocity limy oo (v:) = 0 if we first average over the noise but in violation of the
fluctuation dissipation theorem have obtained lim_, ., (vZ) — 0.

We start by simplifying the notation for the QHLE (1.117) by changing into a frame
rotating at the cavity frequency wg. Formally we define a slowly varying envelope by
replacing a; = @;e™°!. In the following, we will however label @; as a; with the agreement
that we make the distinction explicit only if we need to switch back between pictures. We
can then rewrite Eq. (1.117) as

élt = —Rat+§f, (1118)

which is formally solved with

ay = ag—pe "t 4+ / dt'&g e =) :—ngkbk —ilwo—wk)t (1.119)

Averaging the cavity equation of motion over the reservoir degrees of freedom with
(Vg = Te[.prl, pr=1/Ze "R/T, (1.120)

where pp is the thermal density matrix of the bath, correctly predicts an exponential
damping of the cavity mode

(ar)g = (ar=0)g €. (1.121)
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However, the dissipative dynamics alone does not preserve the commutation relations.

[ag , (af)g) = €72 # 1. (1.122)

Solving the Langevin equation before we average over the reservoir, restores the commu-
tation relations

t t ! 17
lat, a] = [ai—o, al_gle ™" + / / dt'dt’ €2, 0 e 2t =2 (1) — ) (1.123)
0 JO

This is the first important result. We have seen through Eq. (1.123) that it is the task of

the noise to preserve the commutation relations for the system operators. We have used

~ [ao,églt] = 0 as a consequence of causality. The cavity modes at tg = 0 cannot be

influenced by the noise functions at some later time ¢ > t;. More importantly, we have
made use of the noise commutation relations

68,6811 =3 grgpeWomemtemiwomwint [, pl T = 37 gRemilwomw)(t=t) — 95 — 1),
kK’ k
(1.124)

where we used the bosonic commutation relation [by, b};,] = 1.

Apart from conservation of commutation relations, the noise ensures also the correct evo-
lution of multioperator expectation values such as the thermal population of the cavity
mode in the stationary state lim;_ (ala;) = 7i(wp). It obeys the differential equation

d . )
i <a1at>R = <a1at>R + (a;rat>R

_ _ T at Tea
=2 <atat>R + <£t at>R + <at£t >R
= % <a1at>R + 2k (wo), (1.125)
In the stationary state we now correctly obtain the average thermal cavity population
tlgglo <a1at>R = n(wp). (1.126)

Here, we have imposed the generalised Einstein relation that connects fluctuations and
dissipations

( g*at>R + <aigg>R =( g*§g>R = 2k7(wp) (1.127)

to obtain a solution consistent with our expectations. This is the second important result
of this section. We point out the formal similarity with classical Brownian motion in
Eq. (1.104).

General properties of the noise operators

The Einstein relation in Eq. (1.127) can also formally be derived. We show this here,
together with some general properties of noise functions. We consider the external vacuum
to be a thermal reservoir at a Temperature 1. Averaging over the reservoir degrees of
freedom leads to the following set of non-vanishing expectation values

<bk,0bL,0>R = O (Mg + 1), (1.128)

] S
<bk/,0bk,0>R = Ok, k' Tk (1.129)
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We can obtain further relations

at
(&) = (& >R=0 (1.130)
<f?€;fl’ > =3 grgwe o rlemilomwnt <bka’>R
kK’
=" gi(ag + 1)e o)== 9 (7y, 4+ 1)8(t — t) (1.131)
k
( ?T£$>R = 2kngd(t — 1)) (1.132)

and ng = 1/ (eﬁh‘”k — 1) is the average thermal occupation in mode k. The correlations
of the noise-operators with the system variables are given as

('a) = e (aogs" +/ a0 (gl er) = i (1.133)
(alér) = ri, (1.134)

where we have used Eq. (1.130) and the fact that the bath and the system operators are
statistically independent, such that <a0§fT>R = ag <§7§‘T>R = (0. Here we remark that the

Einstein relation (1.127) now directly follows from Eq. (1.133) and Eq. (1.134). Again we
mention the structural similarity to the classical Einstein relations in Eq. (1.103).

1.3.3. Generalised Einstein relations to connect fluctuations with dissipation

The Heisenberg-Langevin equations (HLE) explicitly contain the influence of the envi-
ronment for the system through the presence of noise-operators 51.0 . For the case of a
damped cavity, we have calculated explicitly the relations of noise and damping. Here,
we review generalised Einstein relations as presented in [97] that connect fluctuations
with dissipation. They are derived from the general form of a HLE as presented in
Eq. (1.135).

Quantum Langevin or Heisenberg-Langevin equations are always in the form

d
dt
where D, specifies the deterministic or drift forces of the dynamics and depends only

on the system and not the reservoir variables. It captures both unitary and damping
dynamics as

Oa = Da[O] + &a, (1.135)

D;[0] = —i[0;, H] + LT[0;]. (1.136)

Here LT is the conjugate Lindblad operator as shown in Eq. (1.70). &, is the noise operator
for the system operator O, and will in general depend on the bath and on the system op-
erators. The noise itself is assumed to be Gaussian with a vanishing reservoir expectation
value (£,) = 0. The two-time correlation function of the noise operators is assumed to be
of the form

(€l sy = 2Dagd(t — 1), (1.137)
where D, 3 measures the strength of the noise-intensity.
The generalised Einstein equations now relate the deterministic forces to the diffusion
coefficients of the system by the equation

d

pn (0,,081) = (D0g¢ + OL, D) = 2D = (€], &51) (1.138)
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This relation is useful if it is possible to calculate the equation of motion for <OZ‘¥O/3>
independently from the single operator equations of motion. This becomes possible for
instance if the system operators Of and Op satisfy some commutation algebra where the
operators reproduce themselves. Such as is the case for spins o’o? = ieijkak. We will briefly
outline why the Einstein relation holds. We begin by spelling out the time-derivative

d . )

pn (0L0g) = (0,05 + 0L05) = (D[,0s + O, Dg + 105 + Ol ¢s) (1.139)
We thus need to show that the correlations of the force operator with the system operator
are given by the autocorrelations of the forces. This will be a consequence of causality

considerations which state that a system operator cannot be related to future effects of
the force operator.

To make use of this statement we employ the relation

t .
O,B,t — Oﬁ,t—At = / dt/O@t/, (1.140)
t—At

to evaluate the fluctuation of the noise operators with the system variables

t
(€h1000) = €000 a0) + ([ €hiDaw -+l gpwit) (1.141)
—_——— t—At ——
=0,causality =0, Vt<t’ ,causality
Lo BN
([ Easardt =5 drelogar) = Dag (1142)
t—At 2 ')

In the last line we have used that the noise correlations are stationary and that the time
interval At is considered much longer than the autocorrelation time of the forces so that we
can extend the integration boundaries. The calculations are similar for <O;t£ 3,t). Putting
the pieces together, we obtain

(OF &5.0) + (€] ,0p.4) = 2Dop = (€] £5.0) , (1.143)

which concludes the derivation of the Einstein relations given in Eq.(1.138). We have
already seen an example of Eq. (1.143) for the case of a damped cavity, see Eq. (1.138).
We consider further examples for the usefulness of the generalized Einstein relations for
spin systems. We will use the following relations in chapter 2 and partly in chapter 4.

Application example I

We consider the derivation of the noise-intensity for a single spin that is linearly coupled to
a bath of harmonic oscillators that model the external vacuum modes. Here we show the
necessity for fine-tuned fluctuation-dissipation relations. For instance, the Pauli operators
that appear in a quantum mechanical description of the spins have to satisfy, (¢%)% = 1,
where o = (z,y, z). The task of the noise is now to to ensure that this relation is preserved
over time as

d

£ {(07)?) = (Dlo™) + (o7 D) + (£7€7) = 0. (1.144)

This equation can be seen as a definition for the noise strength experienced by a single,
damped spin. The strength of the noise is in that sense fine-tuned and for the spin system
depends on the state of the system itself. This is in contrast to an entirely thermal system
where the noise-intensity is set by some external parameter such as the temperature.
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Application example Il: Noise correlations for single spins

We will illustrate the above procedure of deriving diffusion coefficients by considering the
Heisenberg-Langevin equations of a two-level spin H = o0%w,/2 coupled to the external
vacuum radiation modes, such that ~ is the atomic spontaneous emission rate. The HLE
are

B0t = —w,o¥ — %af e (1.145)
opo] = w,of — %Uf +¢& (1.146)
ooi =—(1+oi)y+& (1.147)

This set of equations now determines the correlations for the noise operators. We illustrate
the procedure for the x, z components. According to the Einstein Relations of Eq. (1.138)
and using the spin algebra oo’ = z'ez-jkak we obtain

<§f§f> = 2D;, = O <‘7fo> - <Dac‘7iz + Usz>
=7 {o} —ia}). (1.148)

Repeating this procedure for all possible components leads to the correlation matrix of
the noise as

(€prely = ot — t)x*?, (1.149)
1 —1 (0% —iaY)
X = i 1 i(0® — ioY) (1.150)

(6 +i0Y) —i(o® +icY) 2(1+07) of
This is an operator valued covariance matrix for the noise functions of the Heisenberg
Langevin Equation. The matrix y*? specifies noise correlations of the spins that depend
on the state of the system and are therefore different from a constant, thermal noise
intensity. We use the noise matrix y to define the strength of the noise for numerical
simulations of stochastic nonlinear equations in chapter 4.



Chapter 2

Decaying Atomic Spin States: (7, k) Dicke Model

The Dicke model can explain cooperative radiation of an ensemble of laser driven
atoms that interact with a single quantised mode of the light field in an optical cavity.
A quantum optical system that realises the Dicke superradiance phase transition is
necessarily a driven-open system and has to take into account loss processes of excita-
tions into the external environment. We extend previous Dicke model investigations
concerned with photon losses with rate x through cavity mirrors [26] by considering
a second decay channel that focuses on internal atomic spin states that are subject to
spontaneous emission with rate v that is composed of individual, incoherent atomic
emission and of a collective emission channel. We compute a modified critical atom-
light coupling for the cooperative radiative phase transition in the cavity that takes
into account the strength of both loss channels (x,vy). We determine the mean-field
non-equilibrium steady states for spin and photon observables as well as the cavity
spectra in the long-time limit, ¢ — co. A recent (2018) experimental realization of
the superradiance phase transitions using internal atomic states with atoms in optical
lattices [44] has shown clear signatures of atomic spontaneous emission and shows
good agreement with our theoretical predictions.

e This research is published as:
Many-body quantum optics with decaying atomic spin states:(y, k) Dicke model,
J. Gelhausen and M. Buchhold and P. Strack, Phys. Rev. A 95, 063824 (2016)

e In comparison to the publication we have made several modifications. We have
amended the summary of results presented in the beginning of this chapter. Moreover
we changed the Introduction 2.1 and have updated Sec. 2.3.2 where we compare our
theoretical analysis (2016) with the latest experimental rounds of data taking (2018,
Singapore [44]). The derivation of a collective decay channel for the atoms and an
estimation of its strength have been moved to chapter 1 where it was embedded
in an introductory discussion on general time-evolution in open quantum systems.
Minor rephrasings and changes have been made throughout the chapter for instance
to mention and cite the most recent experiments relevant to this work and to cross
reference and comment on other chapters in this thesis. Some paragraphs have been
rearranged and one paragraph has been left out entirely and is only found in the
online publication. We have also added an additional figure 2.3c.

e All other sections can be found identically (with minor adaptions) in the above
mentioned publication.
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2.1. Introduction

Cavity quantum electrodynamics provides a fundamental testbed for atom-light interac-
tions at the quantum level. Modern day experiments have invested significant research ef-
forts towards scaling up the minimal building block of one atomic qubit coupled to a single
photon towards an ensemble of IV ultracold atomic qubits trapped within tunable optical
lattices between two cavity mirrors hosting photons with optical wavelengths [98, 24, 99].
These set-ups allow controllable loading of large numbers of ultracold atoms into op-
tical resonators by overlaying cavity mode functions with lattice potentials to achieve a
’single-site resolution’ for atom-cavity systems such that every atom couples with the same
strength to the cavity photon.

Making the lattice potentials sufficiently deep, one can now access a regime in which the
atomic motion is suppressed completely and the dynamics of internal spin excitations play
the lead role. The ensuing collective behaviour from the coupling of light and matter is
captured by the Dicke Hamiltonian an infinite-ranged, exactly solvable [100, 101] model
predicted to describe a quantum phase transition where the vacuum ground state of the
cavity changes into a twice degenerate state consisting of a macroscopic atomic polarization
(ferromagnet) and a coherent electromagnetic field in the cavity, the so-called superradiant
state. Reaching the quantum critical point requires the fundamental atom-light coupling
(g) to be on the order of the atomic transition (w,) and cavity (wp) frequencies. However,
it was shown that the atomic electric dipole elements are bounded by an oscillator sum-
rule, prohibiting the superradiance transition from occurring for real atoms. A detailed
discussion is given in Sec. 1.1. Driven-dissipative systems circumvent this no-go-theorem
by boosting the atom-light coupling with an external pumping scheme [26] to reach a
strong-coupling regime for the effective spin-photon coupling, g > (wp,w,), needed to
achieve the Dicke transition.

Experimental realizations of the Dicke model have been achieved with thermal or con-
densed Bose-Einstein condensates [102, 65], for internal spin states in external pump-
ing schemes with ultracold, trapped atoms [49] and for artificial atoms (superconducting
qubits) coupled to microwave photons [76] .

A basic physical difference to the earlier realizations of the Dicke model using momentum
states of a Bose gas is the increased fragility of internal spin states to dissipative processes
such as atomic spontaneous emission. The decay rate of collective momentum modes
~Ymom Of an atomic gas is small (Veom < k& < ¢) and limited mostly by thermal effects and
collisions [103, 104, 105, 106, 107]. By contrast, single-site atomic spontaneous emission
with rate 7 tends to deplete the system of excitations and drives each spin into the | |)
state. There is no analogue of this dissipative process for momentum states and therefore
its basic physical effects have not been explored much in this context. Moreover, the
experiments by Baden et al. [49] (2014, Singapore) were not entirely able to compare their
data to a theory for the open Dicke model with spontaneous emission, clearly identifying
a gap in the current literature.

The objective of the research presented in this chapter is to reveal the interplay of sponta-
neous emission with the collective interactions induced by the resonator. We extend previ-
ous works of the open Dicke model [26], which were restricted to photon losses, to the full
two loss channels (7, x) variant. The atomic spontaneous emission consists of single-site
atomic decay and a collective atomic contribution [69] whose strength is controlled by the
cavity geometry in a large sample limit. We have explicitly derived a non-local contribu-
tion to the emission channel in Sec.1.2.1. For the lattice based experiments considered in
this work, the collective atomic decay is much smaller than all other typical scales, which
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we have demonstrated in Sec. 1.2.1.We therefore restrict the present analysis to the limit
of weak collective decay and consider strong collective losses in chapter 4.

Meanwhile, new rounds of data taking by Zhiqgiang et al. [44] (2018, Singapore) have
confirmed that a decay channel for the atoms cannot be neglected and needs to be treated
on the same footing as cavity photon loss. Their measurements show clear signatures of
atomic spontaneous emission confirming our theoretical calculations.

Summary of results and outline of the chapter

We derive a formula for the critical coupling g.(k,~) for the onset of superradiance in
Sec. 2.3.1 in the presence of both single-site and collective atomic spontaneous emission.
This addresses an observed discrepancy between early experimental measurements of g.(k)
(2014, Singapore[49]) that observed higher pump strengths than predicted when only the
dissipative channel of the photons was taken into account. We compare our predictions for
ge(k,7y) with most recent (2018, Singapore [44]) experimental measurements of the Dicke
superradiance transition in Sec.2.3.2 and find good agreement.

In the presence of spontaneous emission, we calculate an effective temperature at the su-
perradiance transition for the photon modes, see Sec. 2.3.6 and identify clear signatures of
atomic spontaneous emission in the cavity output spectrum Sec. 2.3.5 that can experimen-
tally be verified. Based on the mean-field master equations derived in Sec. 4.3, we compute
the values of non-equilibrium steady states and pin down effects of atomic spontaneous
emission.

Based on experimental parameters and the specific setup considered in [44], we have shown
in Sec. 1.2 that a collective loss channel for atomic excitations for the current lattice based
experiments is negligible. Its strengths is determined from the cavity geometry and cavity
parameters such as the ratio of the cavity wavelength to the size of the trapped atomic
cloud, see Sec.1.2.1. We will therefore mainly focus on incoherent atomic emission and
consider strong collective losses in Chapter 4.

2.2. (v, k) Dicke model

In this section, we begin by explaining the model Dicke Hamiltonian and the Liou-
villians for the two decay processes: photon loss and atomic spontaneous emission.
Then, we connect this model to a recent quantum optics experiment, wherein the spin
states in the Dicke Hamiltonian were realized via two atomic hyperfine-split levels. We
finally present the Heisenberg-Langevin and the mean-field master equations within
the Markov approximation.

2.2.1. Hamiltonian and Liouvillians

The core of the set-up is an array of N atomic spins at fixed positions in space that interact
with a single cavity mode, as described by the Dicke-Hamiltonian

N N
H_WOGTG"‘(QNZW) a+ 2;0‘;4—\/»(1—1—& ;Ué +o0;) (2.1)

Here the photon energy is wg, and w, denotes the atomic transition frequency. For the
atomic degrees of freedom we use the notation ;" = |e), (g|, 07 = |e), (e| — |g); (g and
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S+ = Zévzl O’ei. Here (e, g) refers to the excited and ground state of a two-level atom,
respectively and a labels the annihilation operator for a cavity photon. There appears
also an additional dynamical frequency shift of the photons due to a coupling U to the
collective spin z-component which arises for the quantum-optical implementation of the
model we discuss below.

The second class of processes introduce decoherence and are irreversible decay processes
of both, photonic (rate ) and atomic excitations (rate ) into the reservoir modes of the
electromagnetic vacuum surrounding the cavity. The photons decay through the imperfect
mirrors and the atoms directly decay into the reservoir modes via the solid angle not
covered by the mirrors, as shown in Fig. 3.1. Their effect can be captured by introducing
the Lindblad operators, which act on the system density matrix p in the following way:

N

1
L =y(1 — « o, poS — ={ofo,, 2.2
=101 - @3 (o7 i - i) 2:2)

1
+a (Sp5+ - 2{S+S,p}) ,

Lelp) = ﬁ[QapaT —{a'a, p}| . (2.3)

Here, the atomic spontaneous emission consists of two contributions. The first is the
single atom decay rate « for a single atom at site ¢ (2.2). The second contribution is a
collective decay contribution expressed with the collective atomic operators S* = SV | Jét
(2.3). The prefactor controls the strength of the collective decay and depends on the
cavity geometry. While a detailed derivation of the atomic Lindblad operator can be
found in Sec. 1.2.1, we want to stress here that the lattice setups under consideration
generally correspond to o < 1, as estimated in Sec.1.2.1. It can be seen that in such
a description the single atom loss term scales linearly in the atom number whereas the
collective loss term scales quadratically with the atom number. Since every experimental
system is necessarily finite with a well-defined atom-number Ny, so is the collective loss
rate. In order to define a sensible thermodynamic limit, for which both the average energy
and loss rate per particle remain constant, the geometric coupling term is rewritten as
vy — yaN/N = B/N. The thermodynamic limit is now understood as taking N — oo
and V' — oo with N/V = const. and = aNy = const., where Ny is the experimentally
relevant number of atoms and therefore fixes the collective loss rate. This is analogous to
the thermodynamic limit of the Dicke Hamiltonian, for which the coupling of the light field
to an individual atom is finite and fixed in any experimental set-up. However, the correct
description of the system in the thermodynamic limit necessitates that the coupling is
written as ~ ﬁ SN o¥(a+ af) such that in the thermodynamic limit g is constant and
fixed.

The interplay and competition between unitary and irreversible dynamics can be studied
with a Master equation for the density matrix

p = —i[H, p| + L[p] + L[] - (2.4)

As the Hamiltonian in Eq. (2.1) does not conserve the total number of excitations N =
aTcH—% SN aj—i—% the Hamiltonian will counteract the depletion processes of the Lindblad
terms. This is in contrast to a Hamiltonian where the counter-rotating terms are dropped
in a rotating-wave-approximation and for which there would be no other steady-state than
the empty dark state.
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Symmetries

Eq. (2.4) is invariant under a combined, discrete Zy symmetry transformation

Z2 : [CL +CLT70?70'3] — [—(CL+ aT)a (_a€x7 _Ug)L (25)

which corresponds to a unitary transformation

Ur =exp <i7r {a*a + ZV; JZ:l) . (2.6)

This symmetry is spontaneously broken at the Dicke superradiance transition.

Additionally, the spin sector of the Hamiltonian in Eq. (2.1) is invariant under a combi-
nation of time reversal and rotation in spin-space around the y-axis with angle § = 7. In
the absence of a loss channel in the spin sector, this means that the steady-state must be
invariant under this transformation as well, which enforces (¢¥) = 0. This symmetry is
broken in the presence of Liouvillian £, in the spin sector and therefore steady states with
non-zero (o¥) # 0 are accessible in the dynamics. In the photon sector, the corresponding
symmetry is broken as well due to the presence of L, which leads to complex expectation
values (a) € C.

We mention here that the Hamiltonian dynamics together with the Lindblad contribu-
tion L, conserves the pseudo-angular momentum (St>2 but this conservation is explicitly
broken by £,. Using semi-classical steady states defined below, one finds

O (S)2 = 2(81) - B4 (S)) = — (<st>2 +2(02) (1 + <"5>)> , (2.7)

such that the steady-state value requires lim (S;)? = —2 (5%) (1 + <022>) to hold.
t—o00

Experimental context in cavity QED

The Hamiltonian in Eq. (2.1) describes a laser-driven atomic ensemble in an optical cavity
where atoms are trapped in an intracavity lattice such that they couple with the same
strength to the optical light field of a cavity resonator, see Fig.1.3 as recently realized
experimentally (2018, Singapore [44]). The Hamiltonian is time-independent only in a
frame rotating at the frequencies of the driving laser, see [26, 44]. Moreover, some form of
Raman-transition assisted pumping scheme as originally suggested in [26] and displayed
in Fig.1.3 is required to boost the spin-photon coupling g to the strong-coupling regime
(9 > (wz,wp) > (k,7)) needed to achieve the Dicke transition. In the driven scheme, the
coupling is externally tunable as it depends on the Rabi-frequencies of the driving laser
Q as g(2). There atomic levels realize an effective spin system {|1),|])} that can be the
hyperfine-structure manifold of the ground states of 3’Rb. Typically this is the 525, /2
manifold. The cavity-assisted Raman transitions are achieved by coupling to the states
of the first excited state manifold 5°P; /2 Or 52P, /2. As the laser frequencies are coupled
off-resonantly, there appears an additional dispersive shift of the cavity frequency with
strength U, see Eq. (2.1). For a more detailed description of the laser-dressing scheme, see
Sec. 1.1.
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Figure 2.1.: Sketch of the system setup. The optical lattice inside the cavity is commensu-
rate with the single light mode of the cavity that couples all atoms with strength g to the
light-field. The atoms can directly spontaneously decay with rate « into the reservoir of
electromagnetic modes via the solid angle not covered by the cavity mirrors. These losses
are uncorrelated single-site losses and collective emissions into a shared external reservoir
once the system is in the superradiant state. The collective contribution to the decay is
estimated in Sec. 1.2.1 and found to be negligibly small for the current setup. Photons
can leave the system through the cavity mirrors with rate x. The system is driven from
the side with a laser of Rabi frequency €2 to stabilize the excitation number.

2.2.2. Heisenberg-Langevin and mean-field master equations

The Heisenberg equation of motion for an arbitrary system operator O is calculated ac-
cording to the adjoined master equations, see Sec. 1.2

0,0 = —i[H,0] + LI [0] + L] [0] + &, (2.8)

where the Hamiltonian is given by Eq.(2.1) and (k,~) refer to the cavity damping and
the rate of spontaneous emission, respectively and £1[0] = Y, LZOLg — 1/2{L£Lg,0}
and Ly = {a,0,, Zévzl o, } being the set of jump operators for cavity decay for incoherent
atomic spontaneous emission and collective atomic emission, respectively. The Heisenberg-
Langevin equations (2.8) for these variables are:

U XN g &
Opay = — [/@ +1 <wo + o J§t> ]at — = Z o, +0f,) + V2kaing (2.9)
2N = \/N15=1( ’ ’ )
9

: u , gl Yo
3t02:5 =3 (wz + Nazat> O',Zt—t — zﬁait (at + ai) — 505; + 5 Z UZtUit + f:t (2.10)
o+

Orof, = 2% (at + a;r) (O’;t - J;:t i— (14077 — ’yaz (U:tazt + cc.) +&, (2.11)
(+i

It can be seen that the incoherent atomic loss (~ <) induces linear dissipative terms,

whereas the collective loss (~ ~a) introduces non-local and non-linear couplings of the

spins. Here, (Clin,m &1 5::5) are the fluctuating quantum mechanical noise operators with

zero mean. They result from integrating out the bath of electromagnetic modes outside

the cavity in the Born-Markov approximations, we have embedded an explicit derivation
in Sec.4.4.

We will proceed to analyze the Heisenberg-Langevin equations in a mean-field framework
where we apply a site-decoupling for the many-atom states. The mean-field state cannot
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keep track of the behaviour of atoms on different sites. Therefore, taking the expectation
values (.) = Tr[. ®)_; p,],where the density matrix is site decoupled as p = @, p;, leads
to the mean-field equation for N two-level atoms

) = ni (wo+ 5 (o)) | (@)~ igtlor) + (07 .12
01 (07) = |i (w=+ U tal) ) = 3= BP0 — g o) (o) + (al)), (213)
01 (07) = = [(1+ (7)) + 26 (07) (07)] + 2iglles) + (o) — (o)) . (219

Here we have set 5 = a(N —1) which fixes the strength of the collective decay as discussed
in Sec. 2.2.1. Expectation values of the noise operators vanish (¢7) = (§") = (ain¢) = 0. In
the remainder of the chapter, we provide an analysis of these equations on a mean-field level
and calculate the corresponding non-equilibrium steady-states and connect our theoretical
results to the recent quantum optical realization of the Dicke phase transition with cavity-
assisted Raman transitions [49, 44] to address the observed discrepancy between critical
pump strengths and calculations restricted to photon loss only [26]. As pointed out above,
we restrict our analysis to the case of weak collective decay contributions, with 0 < g <
1 which is an appropriate approximation for the present large sample limit, where the
extensions of the cavity and the atomic sample are much bigger than the optical wavelength
of the cavity modes. A conservative approximation of the geometric contribution « is given
in Sec. 1.2.1. We reserve an analysis of strong collective decay contributions for chapter
4 (see also Refs. [69]).

2.3. Results

In this section, we first compute an analytic formula for the critical coupling for the on-
set of Dicke superradiance in the presence of both correlated and uncorrelated atomic
spontaneous emission. We then use this formula to determine an effective atomic loss
rate for the experiment in Ref. [49]. We also compare this effective decay rate to other
atomic loss channels such as the collective polariton lifetime. We close by searching
for signatures of the additional loss channel 7 in the cavity output spectrum and by
computing the effective temperature of the system at the superradiance transition.

2.3.1. Critical coupling for onset of superradiance g.(k, )

We first transform Egs. (2.9-2.11) into frequency space by the following relation:

o0 o0

) 1 ;
[ 0w, of = o [ e olar, (2.15)
s

1
o

Oy

where the operator O, is either of (at,aﬁ,aft,ain,t@;},{f t) and (’)2 refers to either of

(ai, Oits aiTmt). We then specifically make a distinction between the semi-classical steady

states and the amplitude fluctuations around these values by linearising Eqgs. (2.9-2.11).
We define the fluctuation operators in frequency space by the relation

ot (v) =2r(cT)o(v) + doT (v), (2.16)
o*(v) =2m (0°) 6(v) + d00*(v), (2.17)
a(v) = 2rV'N (a) 6(v) + da(v) . (2.18)
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Where the set of steady-states (oF) and (¢*) and (a) are solutions to Egs. (2.12-2.14) in
the long-time limit. Here, do™ (v), d0*(v) and da(v) describe fluctuations about the semi-
classical steady-state and 0(v) denotes a delta function in frequency space. The equations
for the amplitude fluctuations are generated by inserting Eqs. (2.16-2.18) into the Fourier
transformed set of Eqs. (2.9-2.11). At long times, we may neglect second-order terms
in the fluctuations by assuming that the steady-state values are large compared to the
associated fluctuations in the thermodynamic limit N — oco. The linearized equations can
be cast in matrix form

£v) = 5(0)f(0) + G (v) - 6o (v), (2.19)

where the fluctuation (noise) operators are collected in the vectors dor(v) (€(v)):

0™ (v)= (da(v),da’ (~v), 0™ (v), 30~ (1), 60" (v)), (2.20)
&7 (v)= (V2rain(v), V2ral, (), € (), & (—v), € (). (2.21)

The inverse response function (retarded Green’s function) then reads as

-1 o
Ggr (v) =
LiU (0%) + ks —iv + iwg 0 ig ig i§ {a)
0 —3iU (0%) + K — iv — iwy —ig —ig —i& (al)
ig (o) — iU (@) (o) ig(oY)— iU (@) (o) —iU (a) (ah) + F(1 - B(0%)) . — iv . 0 ig((a) + {a))
V) (07) —ig(o%)  —igo") +3U (a) (o) 0 U (@) {at) + 31— §{0%) +iws —iv —ig({a) + (a)))
2ig((0*) = (7)) 2ig({0™) = (7)) 2ig((a) + (a)1) + 287 (07) ~2ig((a) + (a)') + 28+ (o) y—w
(2.22)

The notation in Eq. (2.19) indicates that the responses of the system do () to the "driving
force" €(v) is indeed described by the function Gr(v). The steady state contribution is
encoded in f(o) which is left unspecified as it just gives a peak at zero-frequency in the
cavity spectrum. We approach the phase transition from the normal phase, for which
(a) = (oF) = 0 and assume the atoms to be fully polarized (0?) = —1. Evaluating the
condition for super radiance,

. -1 o
lim det[G! (v)] = 0, (2.23)

Wz

2
which is appropriate as long as 8 < /1 + (7 /2) , we find the critical coupling

V(O +8)? +w§\//~c2 + (wo — %)2

2 or (o0 5)

This formula recovers the known expression [26] in the limit (U,~v) — 0 and the critical
coupling known from [108] in the limit v — 0. It can be seen that the spontaneous emission
~ shifts the atomic energy scale w, and the photon loss rate s shifts the cavity frequency
wp. As expected, the addition of spontaneous atomic emission leads to an increased value
for the critical coupling g. to compensate for the losses. In the limit § — 0, g.(k, ) has
meanwhile been reproduced by a calculation in a fermionic path-integral [109] (after our
article was avilable online).

gc(’Ya R, U7 6) =

(2.24)
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Figure 2.2.: Experiment and theory comparison for the critical coupling strength
9e(k,v, U, B = 0) from Eq.(2.24) for the onset of superradiance. The experimental data
is fitted with an effective decay rate v° as modelled by the Lindblad L, in Eq.2.2.(a)
Comparison with the experimental data obtained in (2014, Singapore [49]). We give an
estimate for a lower (dotted) and upper (dashed) effective decay rate 4% of the effective
atomic dipole and compare it to the theory curve for 4% = 0 (solid). We have used
the experimentally determined values U = —12.4 KHz and x = 100 KHz. In the regime
lwo| > |U| the effects of the frequency shift U for the critical coupling are negligible.
For small longitudinal fields w,, the theory curves show a clear upswing in the critical
coupling, see text for details. (b) New rounds of data taking (2018, Singapore, [44])(dots)
have accessed the upswing at small effective frequencies of w, more carefully and have
fitted an effective decay rate veg to the superradiance threshold (gray curve). This was
compared with a curve taking into account other sources of noise (see text) (red curve).

It can be seen that the gray curve adequately predicts the superradiance threshold (see

text for details). Figure (b) taken from (2018, Singapore [44]) with adapted labelling.
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2.3.2. Comparison with experimental results

Here, we compare the superradiance threshold value g.(k,~,U),f = 0 with experimental
data from the two Dicke model simulations (2014, Singapore [49]) and (2018, Singapore
[44]). In both experiments, the Dicke model was realized using cavity-assisted Raman
transitions [49]. A sudden increase in the number of detected cavity photons upon ramping
up the drive strength of an external laser has been associated with the threshold for Dicke
superradiance. They compared the experimentally observed threshold couplings to the
conventional theory value without spontaneous emission (g.(x)) [26, 108] and found a
discrepancy: higher pump strengths than predicted were necessary to observe an increase
in photon numbers.

We find it useful to use a single effective atomic decay e, captured by the Lindblad oper-
ator of Eq. (2.2), to enable an experiment-theory comparison by fitting the superradiance
threshold with ~.g. The latest experimental data also took into account other sources
of noise such as the effect of thermal motion which introduces decoherence by collisions
and Doppler broadening in addition to a spontaneous emission contribution from the scat-
tering of pump photons. However, these contributions were estimated as much smaller
than the fitted decay rates and only Doppler shifts become non-vanishingly small at small
longitudinal field detuning [44]. However, other sources of noise (noise in the trapping
potential, loss of atoms from the trap, dissipative dephasing, noise in the driving laser)
could also be modelled and included to account. Therefore v should be regarded as an
effective spin decay rate after eliminating the far- detuned excited state, possibly other
decay channels, and other experimental imperfections.

Using the computed value for the critical coupling in Eq. (2.24), in the limit 8 — 0, the
effective decay rate v = ~°% is fitted to experimental data from (2014, Singapore [49])
to reduce the discrepancy between experiment [49] and theory. As mentioned before, the
collective atomic decay channel is irrelevant for the present setup, justifying the restriction
of the following analysis to the case § = 0. The results of the fitting procedure are shown
in Fig. 2.2a.

An additional interesting regime to pin down the effects of v°ff is the critical region for
small longitudinal spin detuning w,. From the critical coupling Eq. (2.24), we observe
that g.(v*", k,U) becomes large for small w, provided % is finite. By contrast in the
strict 4°F — 0 limit g.(y*® = 0, x, U) decreases for small w,. New rounds of data-taking
(2018, Singapore [44]) have accessed this regime and reproduce this clear upswing for
small longitudinal fields, consistent with non-negligible atomic spontaneous emission, see
Fig. 2.2b.

To this end, one may wonder whether the experimentally observed 7% can be explained
by the decay rate that the |t) = |F = 2, mp = 2) state in the 5281/2 manifold inherits
from the excited state in the 5%2Pj /2 manifold to which the cavity couples. This inherited
decay rate can be estimated as

“Yinherited = X (QT'/AT)2 VYexc = XQQ/(NC’{) s (2'25)

where the proportionality constant x is fixed by the transition strengths between the in-
volved atomic levels. C' = g2, /(K7exc) is the single atom cooperativity and (geay, £, Yexc) =
27 x (1.1,0.1,3) MHz. & is the cavity decay rate and 2gcy is the single photon Rabi fre-
quency for the transition of |F' = 2,mp = 2) to |F’ = 3, mz = 3), Yexc is the fundamental
atomic decay rate of the excited state level coupling to the cavity. €2, and A, are the Rabi
frequency and the detuning of the driving laser, respectively, that couples the [1) state to
the aforementioned excited state of the 52P; /2 manifold. We have set the Raman coupling

strength ¢ = VN gcav%: in Eq. (2.25) with N a fixed number of atoms in the ground-state
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manifold.

Yexc ‘ ’Yeﬁr(g = gc) ‘ 'YPolariton(g — gc) ‘ ’Vinhoritcd(g = gc)
3000 KHz | (50 — 100)KHz | (72 —103) KHz |  0.02 KHz

Table 2.1.: Overview of various decay rates and their KHz values for the experimental
setup in [49]. The range for 7% (g = g.) is estimated in Fig.2.2. Ypolariton i calculated
from Eq. (2.27) with the set of parameters (wg, &, w.,v*")=(300, 100, 150, (50; 100))KHz.
Vinherited 18 determined by the model parameters and expressed as Yinherited(§ = gc) =
24g%2/(NCk), where N is the number of atoms in the trap, C = g¢2,/(K,Vewe) is the
single atom cooperativity, x is the cavity decay rate and 2g.,y is the single photon Rabi
frequency for the transition of |F' = 2, mp = 2) to |F' = 3, m}, = 3). The value for Yipherited
was calculated for (N, C, g., k) = (5-10%, 4, 120KHz, 100KHz) where the number of atoms
represents a typical order of magnitude for the experiment in [49].

As we show and discuss in Table 2.1, Yeff > “inherited, Such that Vinherited alone is not
sufficient to explain the experimental data.

2.3.3. Polariton decay rates

For non-zero atom-light coupling, the atomic and photonic excitations of the system start
to hybridize and are commonly referred to as polaritons. The decay of the polaritons
describes a correlated decay mechanism with rate ypolariton, Which involves many atoms
and photons. The corresponding decay rate is a function of the bare decay rates of the
individual atoms +, the bare decay rate of the individual photons , the energies of the
bare atoms w, and of the photons wy as well as the atom photon coupling g. The rates
can be read off from the imaginary part of the resonance frequencies v for the linearized
system dynamics, that can be determined from

. -1 _ . _
lm det[GR! ()] = 0. Jpoiaon = [1m(v) (2.26)

In Fig. 2.3 we plot the effective decay rates ypolariton @s a function of the atom-light coupling
g as they are also shown in [26] for the x only case.

As such Ypolariton sets the width of the resonance peaks in the cavity-spectrum. We explore
certain limits for the collective decay rates. For g — 0, the resonances calculated from
Eq. (2.26) are located at Vatom = Fw. — i3, at Vphoton = Fwo — ik and the o.-resonance is
at v = —iv, see Fig. 2.3a. Corresponding to resonances located at the characteristic atom
and photon frequencies with a line-shape of a Lorentz-curve with a width determined
from the microscopic decay rates. At g = g. the decay rate of the critical pole with finite
imaginary part (see Fig. 2.3b, solid, blue line) is given as

_ 2(7%K 4 27 (K® + wp) + 4wlk)

(g = _ 2.27

YPolarito (g gc) ,}/2 + 8’yl<a +4 (wg =+ K2 + w%) ( )
. 2w§

%g% YPolariton (9 = ge) = Hm’ 2

The behaviour of ypelariton as a function of the atom-light coupling is shown in Fig. 2.3.

2.3.4. Non-equilibrium steady states for spins and photons

In this section, we discuss the steady-state operator expectation values {(a), (c™), (c?),
where (a) is the complex field amplitude that accounts for a coherent photon conden-
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Figure 2.3.: Decay rates (Ypolariton) Of (in general) hybridized atom-photon modes for
varying atom-light coupling strength g/wy obtained from solving Eq. (2.26) for the set
wy/wo = 1.3, k/wy = 0.2,7/wy = 0.14. (a) For g — 0, the lifetimes are given by the micro-
scopic cavity decay rate x/wo = 0.2 (solid) and the single atom decay rate v/(2wg) = 0.07
for the atomic polarisations (dot-dashed) and the decay rate associated to the density of
excitations y/wy = 0.14 (dashed). (b) Close-up around the critical atom-light coupling
strength g = g. =~ 0.582wy. In the regime g < g. there is a splitting of a polariton branch
into a mode with finite and vanishing lifetime at the phase transition point g = g.. This
is depicted in (c). The splitting occurs when the real-part of the excitation frequencies
v vanishes (not shown). (c) Two low-energy poles of G5'(v) for g — g. become entirely
imaginary and of one of the two poles vanishes at g = g. and destabilizes the empty state.
The other pole retains a finite imaginary part (spectator pole). The behaviour of the
low-energy poles for the full two loss channel analysis (k, ) is identical to the case where
only photon losses are considered, see [87].
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T) is the complex atomic polarization amplitude and (0*) measures the atomic

sate, (o
population imbalance. The dynamics of the expectation values is given by the mean-field
equations Egs. (2.12-2.14). In the semi-classical picture for a spin-1/2 system we construct
the expectation value of the spin-vector (S;) = ((¢%(t)), (a¥(t)), (¢7))T. It defines the ori-
entation of the averaged atomic Bloch vector. The non-equilibrium Bloch dynamics of the

collective angular momentum without spontaneous emission was studied in Ref. [108].

An analytical solution for the semi classical steady-states (9; (of')) = 0 and 9 (a;) = 0
is accessible by setting U = 0 and § = 0. However, we show the effect of the collective
decay contribution for the steady-state of the (o*) order parameter in Fig. 2.4b. Analysis of
effective Dicke Hamiltonians with non-zero U in the v — 0 regime have been investigated in
detail [110, 108, 111] such that we focus on consequences of non-vanishing radiative decay.
We mention that in an experimental realization with cavity-assisted Raman transitions
U = 0 is achieved by having equal amplitudes for co- and counter-rotating terms of the
effective Dicke-Hamiltonian [26]. Slight experimental mismatches of the amplitudes lead
to vanishingly small |U| < (Jwol, |w:|, K, y) such that the resulting nonlinearities in the
equation of motion can safely be neglected. We solve the system of non-linear equations
for the fixed points to obtain the steady-states. For g < g. the only steady-state is
(a) = (o%) =0 and (0*) = —1. This is the empty atom-cavity system as the spontaneous
atomic decay and photon loss depletes the system of all excitations. The mean-field
expectation values for the fields in the superradiant phase g > g. are:

(a) =+ \/T /= <1 ) JT) : (2.29)

+wd
wo
V2(—wp + ik

(0") = (o) + (7)) = i%(j_J) (2.30)
Yo (] — J.)
(o) = =i (") = (o7) = %7 5 (2.31)

(0%) = =(Je/ ). (2.32)

Here the different signs for the steady-state solutions reflect the Zs symmetry which is
spontaneously broken by the choice of a specific state, see Eq. (2.5), and we have abbrevi-
ated the notation by defining

_ 4gzw0 g — (%)24-0)2
—_ .= ==

= 2.33
K2+ wd’ W, (2.33)
A plot of Eqs. (2.29-2.32) is given in Fig. 2.4a. The critical coupling strength g. for the
superradiant phase transition (see Eq. (2.24) in the (8,U) — 0 limit) can also be obtained

by equating the two expressions in Eq. (2.33).

Note that the solutions for the mean-field expectation values do not recover the solutions
that are obtained by taking the v — 0 limit from the outset in Eqs. (2.12-2.14). This is
because the present steady-state is usually approached with a rate oc 1/ which diverges
in the v — 0 limit. However, we mention that the steady state expectation value of (¢¥) in
Eq. (2.2) is induced by the atomic dissipation (~ «). Since the presence of the Liouvillian
L, in Eq.(2.31) breaks time-reversal symmetry in the atomic sector that protected the
expectation value from acquiring non-vanishing values.

2.3.5. Cavity output spectrum

The internal dynamics of the atom-cavity system can be probed by analyzing the light
that leaks from the cavity mirrors. We employ standard input-output theory for the
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Figure 2.4.: Stable steady-state field amplitudes in the superradiant phase for the set of pa-
rameters ¥y = k = 0.2|w,|,wo = 1.4|w,|. The critical coupling g. is given by Eq. (2.24) which

7/2> ~ 10. (a) Amplitudes |(a)| and ((¢”),(c¥), (c?))
without a collective decay contribution, i.e. 3 = 0. The critical coupling evaluates to

ge(f =0)/w, =~ 0.6. (b) Influence of collective decay processes of strength 8 = (N — 1)
for steady-state field amplitude | (o®) |.

is valid as long as 8 < {/1+ (

quantum Langevin equations [112, 113, 26], to calculate the cavity spectrum in the limit
(U, B) — 0, to focus on the effect of single-site atomic spontaneous emission. The input-
fields are related to the output fields by the boundary relation [112, 113]

aout (V) = V2ka(v) — ain(v), (2.34)

ol (—v) = V2ral (—v) — al, (). (2.35)

The annihilation operators (agut(¥), ain(v), a(r)) correspond to the output field, the input
field, and the intra cavity field, respectively. If we take the bath to be in the vacuum

state at zero-temperature, the noise-correlations for the atomic degrees of freedom can be
expressed in the basis (i,7) € (+,—, 2) by

(€ €l ) =0t — 1) |Gee + (1 = Sg.0)r| M, (2.36)
B 0 0 0
My, =2| 305,07y 0 —0f 400, (2.37)

_U;,t’o—t%,t 0 202’,#’4} ij
where the indices (7, 7) € (+, —, z) refers to the atomic variables. The expectation value
averages over the bath degrees of freedom. Consequently, entries of the correlation matrix
are still operator-valued. For contributions ¢ = ¢’ the local operator algebra can be used to
simplify correlations. We remark that this matrix does not need to be hermitian, since the
external bath is described by the vacuum and only terms o< by (O)b}L€ (0) contribute. Here
b is an annihilation operator for a bath mode. Correlations of the form (£ (¢)...) =0
and (...£ (t)) = 0 vanish. An explicit derivation of noise correlations is found in Sec. 4.4.

The relevant noise correlations (« = 0) are
(ain(V)ab,(—)) = 6(v + V') , (2.38)
(€ (=T (w)) = 10w +7)), (2.39)
(EWEE)) =291+ (07))o(v +), (2.40)
(EW)ETW) =2y (") o(v +1). (2.41)
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Figure 2.5.: Cavity spectra in the vacuum phase with spontaneous emission and a broken
frequency symmetry S(v) # S(—v). We have normalized the spectra such that [ S(v)dv =
1. When there is no atomic spontaneous emission (S(v)] 7:0), the frequency symmetry
of the cavity spectrum is restored. All parameters are in units of |w,|: K = 0.2|w,|,g =
0.4|w;| < g The figure (a) shows the on-resonance spectrum: wp = 1.0|w.|, the figure (b)
shows the off-resonance spectrum at wy = 1.4|w,|.

Similarly the noise-operators coupling to the photons are delta correlated in time
(aingal, o) =0t — 1) . (2.42)

We solve Eq. (2.19) for the fluctuations around the photon condensate and omit the coher-
ent contribution coming from the zero-frequency components specified by f(o). Making
use of Eqs. (2.34-2.35), the cavity fluorescence spectrum S(v) (for a vacuum input field)
accounting for the fluctuations around the steady state is

S) = (al (V) aou () = 2k (8’ (v)da(v)) = 2k /OO eV (5aT(0)da(r)) dr.  (2.43)

—00

The cavity spectrum in the g < g. case for the steady-states (o) = (¢7) = 0 and (¢*) = —1
becomes

s(v)
S(v) :892nm(y)’2, (2.44)
s(v) = (’y (72 + 4w, — 1/)2) (HZ + (v + w0)2 + 32w392/£) (2.45)
Qv) =(k —iv)? (4w§ + (v — 22‘y)2)
+wf (402 + (v = 2iw)?) — 16w.g%w. (2.46)

The poles in Q(v) in Eq. (2.44) correspond to the hybridized atom-cavity eigenmodes of the
system. They are given by the solutions to the equation det[GI_%l(u)] = 0 where G;zl(l/)
is defined in Eq. (2.22).

The output spectrum in the presence of spontaneous atomic decay is no longer symmetric
under inversion on the frequency axis S(v) # S(—v), see Fig.2.5. This is due to the fact
that in the presence of atomic decay, cavity photons can exit the cavity in two different
ways. Either directly via the cavity decay channel ~ k or indirectly via exciting an
atom and subsequently decaying via spontaneous emission ~ ~. The latter process of
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Figure 2.6.: Cavity spectra in the superradiant regime with spontaneous emission and a
broken frequency symmetry S(v) # S(—v). We have normalized the spectra such that
[ S(v)dv = 1. All parameters are in units of |w,|: £ = 0.2|w.|,g = 0.8|w,| > g.. Here,
S(v)|,—o is understood as solving the Egs. (4.8)-(4.11) on a mean-field level by setting
v = 0 from the outset and calculating S(v) with Eq. (3.34), see [26]. In figure (a) the
system is on resonance: wy = |w,/|, in figure (b) it is off resonance: wy = 1.4|w,|.

combined excitation and decay prefers photon states with positive frequency. This leads
to a reduction of S(v) for positive frequencies and introduces the mentioned asymmetry
in the photon output spectrum. In the limit of vanishing spontaneous emission, the cavity
spectrum collapses to the familiar result [26] and the frequency symmetry is restored:

. 16wgg4/€2
Q) = (W - 1/2)(/1 iv)? + wi (w? — %) — 4w, gwo. (2.48)

A typical cavity output spectrum for the superradiant case g > g. is defined in Eq. (2.55)
and can be seen in Fig.2.6. Here v > 0 leads to a broadening of the spectrum and
a pronounced weight of S(v) at positive frequencies v > 0 due to the dominant effect of
stimulated emission and absorption over spontaneous decay effects. In Fig. 2.6 and Fig. 2.5
the expression S(v)|,—o refers to the cavity spectrum that is obtained by setting v = 0 in
Egs. (2.9)-(2.11) and by then following the same procedure as outlined above, see [26].

Cavity spectra in the superradiant regime

We detail the calculations performed in Sec.2.3.5 to obtain the cavity spectrum S(v) that
is defined in Eq. (2.43). The fluctuations da(v),daf(v) around the photon condensate are
given as

5a(7/) = al,(—V) f(v) + an(v)g(v)
E (=v)m(v) + £ (V)h(v) + & (v)((v) (2.49)
(MT(_V) at(— V)1n9T< V) + ain(v) f T( v)
+& ()i (=) + € W)mi (—v) + & (V)0 (—v) (2.50)

By employing Eqs. (2.38-2.41) we can identify the cavity-spectrum as

S) =1 @) + 4 k@) + 291 + (0*))()E (v)
+ 29 (oY W (V)e(v) + 2y (o) LT (1) h(v) (2.51)
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Where the functions ¢(v), h(v), f(v) are
Qv) = —i(y —iv) (4w§ + (v - 2i1/)2> (wg + (k — iy)2>
+32w.g%wo((ah) + (@) ((07) = (o))
+8¢? (—(<aT> + (@) (2v + i) (k — iv)? — wi((al) + (a)?(2v + i) — 2w.wo (07) (v + m))
with
Q) f(v) = — 161wk (29((a’) + (@) ({o7) = (6)) + (07) (—v = i7)) (2
Q)h(v) = — 2V2rg(k — i(v + wo)) (897 ({aT) + (a))* + (v = w) (3 + 2i(w- — 1))
(2
(2

Qv)e(v) = — 8v2kw:g"((ah) + (a))(k — (v +wp))

The cavity spectrum for the superradiant case for g > g. is given by

Sv) = (2.55)
with
Qv) = —i(y — ) (42 + (v = 200)%) (w§ + (5 — ¥)?) + 82w.g%wo({al) + (@) ((07) = (o7))
— 8ig (((a) + (a))*(v = 2iv)(x — iw)? + wF((a") + (a))2(7 = 2iv) + 2wzt (07) (y — i)

(2.56)
with
s(w) = 8% {7 (+* +1?) [ 24 4fws = v)?] [ + (v + wo)?] + 64" ((aT) + (@))* { (@) + (aT))?
[ 2+ (v 4+ wo) } — 2wk ( >)2}+1692{((QT>+( ))2y [’yZ—i—Q(wQ—i—sz—yQ”

(52 + (v + wo)?| + 202k (0 (y +12) +27(0%) ({ah) + (@) %2 [ + (v + w0)?] }
+647w.6%((a") + (@) [((aT) + (@))2((o7) + (0) [ + (v + wo)?] + 2iw-r (%) ((07) = ()]
+ 8ywg((ah) + (@) [k + (v +w0)?| [¥2((07) + (07) = i(2w: = 30)((o7) — (o))

+2v(w. = v)((07) + (o))} (2.57)

At the phase transition, there are two poles that become purely imaginary and describe
the over-damped dynamics. The corresponding expressions are obtained by expanding
det[GR' (v)] = 0 up to second-order in the frequency with (3,U) — 0. We refer to the
solutions of the resulting quadratic equation by (v1,v2). The first pole vanishes linearly
in (g — g.) and is given as:

,  Siwswo (0 +402) (9 = 90)(9 + ge) (2.58)

K (72 + 4w2)? + 32w, g2wo

The residual pole at g = g. is given by Eq. (2.27), with the limit

lim v = —ivy—

b E o2 (2.59)
e 4 + (wz + WO)

The pole structure is visualized in Fig. 2.3c.
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2.3.6. Effective temperature

In Ref. [91], the authors outlined an approach to extract the effective temperature of
open quantum-optical systems. The idea is to map the photon equation of motion to
classical Langevin equations and read off the effective temperatures as a function of the
noise correlation functions. Here, we generalize this analysis to include single-site atomic
spontaneous emission v and extract the corresponding effective temperature. To that
end, we define the real part of the photon component dx(r) and the corresponding noise
operator &, (v):

Sa(v) :\/2170 (3a(v) + dat (). (2.60)

1
\/2(4)0

Here, &, = V/2kai, and the fluctuation operators da(v), dalf(—v) are defined in terms of
noise operators in Egs. (2.49), (2.50).

Ex(v) =

[samr(u) €t (—0)r (=) + €5 (W)p(v) + £ (—)p* (—v)]

In the dz-channel, the response of the fluctuations to the "driving force" &, (v) is described
by the equation

Wy 2 .
&(v) = (wé ~ 1 +16(7 f 2770 + (K — w)2> ox(v). (2.61)

At low frequencies, equation Eq. (2.61) resembles a Langevin equation for a classical par-
ticle subject to a harmonic potential with oscillation frequency

16w, g?
2 _[,2 z 2
o = (CL)O — m(«do + K > (262)
and an effective damping constant
32yw, g2
R=2 (k4 2T 20 (2.63)
(7% + 4w?)

This illustrates the fact that the photon can decay via two channels: directly via x and
by first converting it to an atomic excitation, which can then decay via ~.

T
The stochastic force operator satisfies the relation [gw(—u)} = &, (v) and obeys the com-

mutation relation:

L EE W) + )6 W) =
50+ /) (e [ ) 0 ()| |l ) 401 ()] ) (260)
Where p(v) and r(v) are given by Eq.(2.65) and by Eq. (2.66). The complex functions
r(v) and p(v) are defined as
r(v) = (k —i(v + wp)), (2.65)
4g(y — 2i(ws + y))w
3w? + (v — 2iv)

p(v) = (2.66)

At low frequencies the right-hand side of Eq. (2.61) evaluates to

16w, g> 32 2
Wi — %wo + 12| = 2iv K+ M (2.67)
vE A+ dws (72 + 4w2)
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where we have dropped contributions O(r?) and the commutation relation at v/ = —v,
see Eq. (2.64), evaluates to:

S GEW) + &0NE W) ~ o (7 +ud)

0
Y 3292 2 2
_ O 2.68
+ 4wy v2 + 4w§w0 +007) ( )

We evaluate them at the critical point, which is approached from the normal phase ((a) =
() =0, (07) = —1).

We may now identify the effective temperature of the system at the critical point as

~ rcri . 1
2/£Teﬁt = lim = (& (V)&:(—v) + &:(—v)E(V)) , (2.69)
v=02 9=9c
crit (72 + 4W§) (KQ + w%) (ywo + 2w k)
Teﬁ = P ) D) 2 . (270)
8w, wo (’Y K+ 2y (H + wo) + 4wzl~$)

In the presence of only a single photonic decay channel, we recover the known cases [91]

/ﬁ;2+w(2)

: crit __
I Ter™ = 40 (2.71)
ol 2
i o tw
: crit _ 4 Z
BL% TS = o, (2.72)

2.4. Conclusions and future directions

In this chapter we investigated the effect of atomic spontaneous emission on the non-
equilibrium steady-states of the open Dicke model. By determining the critical coupling
gc(k,v,U) for the onset of superradiance as an explicit function of the spontaneous emis-
sion rate -y, we were able to compare this result to experimental values for the onset of
superradiance as measured by Baden et al. [49] (2014, Singapore) and for the new rounds
of data taking [44] (2018, Singapore). We could show that the predicted superradiance
threshold is accurately captured by g.(x,7,U). We have calculated effective temperatures
for the superradiance transition and analysed signatures of spontaneous decay in the cavity
output spectra.

In the next chapter, we will include additional short-range interactions between the atoms,
for example by weakly dressing the spin-up level with a Rydberg state [50]. This interaction
will now compete with cavity-mediated, long-range interactions and the various drive and
decay processes.






Chapter 3

Rydberg-Dressed Spin Lattice in an Optical Cavity

Recent experiments start to blur the boundaries between cavity quantum electrody-
namics and closed system simulations with ultracold quantum gases. Prominent exam-
ples include lattice quantum many-body systems that are interfaced with a dynamical,
quantum light field in a cavity. The cavity field can act as a global range potential
for atom-atom interactions that can compete with the short-ranged collisional inter-
actions, longitudinal fields and kinetic energies of the underlying lattice dynamics,
realizing new quantum phases [24, 25] in Dicke-Hubbard models. In a similar spirit,
also quantum spin systems have been trapped in intracavity lattices where they in-
teract with single-mode optical lightfields (2018, [114]). In these cases, it is desirable
to freeze out the atomic motion with deep optical lattices such that only the internal
spin-spin dynamics competes with spin-light interactions. A theoretical modelling of
these systems faces complexity at the interface of: spontaneous symmetry-breaking
and emergent phases of interacting many-body systems with a large number of atoms
N — o0, a coupling to fluctuating quantum light fields, and non-equilibrium physics
of driven, open quantum systems. In this chapter we propose what is possibly the
simplest, quantum-optical magnet with competing short- and long-range interactions,
in which all three elements can be analysed comprehensively: a Rydberg-dressed spin
lattice [50] coherently coupled to a single photon mode. Solving a set of coupled even-
odd sublattice master equations for atomic spin and photon mean-field amplitudes,
we find three key results. (R1): Superradiance and a coherent photon field appears in
combination with spontaneously broken magnetic translation symmetry. The latter is
induced by the short-range nearest-neighbour interaction from weakly admixed Ryd-
berg levels. (R2): This broken even-odd sublattice symmetry leaves its imprint in the
light via a novel peak in the cavity spectrum. (R3): The combined effect of atomic
spontaneous emission, drive, and interactions can lead to phases with dynamically
oscillating cavity fields.

Most recent experiments at the ETH in Zurich (2018, [114]) have started to engineer
spin-dependent couplings of a multi-level Bose Einstein condensate to a cavity photon
field giving rise to the formation of a spin texture in the driven atom-cavity system.
Meanwhile, also oscillating cavity fields have been experimentally observed in an open
version of the spin-1 Dicke model (2017, [115]).

e The research presented in this chapter is published: J. Gelhausen, M. Buchhold,
A. Rosch and P. Strack, Quantum-optical magnets with competing short- and long-
range interactions: Rydberg-dressed spin lattice in an optical cavity, SciPost Phys.
1, 004 (2016).

e In comparison to the published research article we have made several changes to
embed the research paper into the general framework of the thesis. We have rewritten
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large parts of the introduction, the conclusion, have updated and rephrased the
model section and the research summary at the beginning of this chapter, also to
take into account the latest (as of 2018) experimental investigations relevant to this
research. We have edited and rephrased Sec.3.5.2 on beyond mean-field effects.
Minor changes have been made throughout the rest of this chapter. This includes
merging selected sections (results sections with their more detailed description),
cutting out some smaller paragraphs entirely and rephrasings across the board. We
have included cross-references to other chapters and sections of this thesis and have
added citations to take into account new experimental achievements that have been
published after our research article was published.

e Large parts of this chapter can be found almost identically and verbatim in the above
mentioned publication.

3.1. Introduction

Experiments have started to combine atomic gases [23, 116] with optical cavities, bring-
ing together tunable atomic interactions in optical lattices with driven open setups that
interface the atoms with dynamical quantum light fields [25, 24]. Expressing the goal for
quantum systems in lattice structures to realize possibly exotic magnetic phases with spin
systems.

However, it provides an experimental challenge to gain control over and build large arrays
of quantum spin systems with scalable interaction potentials. Especially the simulation
of Hamiltonians that describe magnetic interactions are challenging to realise with short-
range collisional or tunneling processes as they create only very small effective magnetic
exchange couplings which in turn require a very-low temperature environment that push
conventional cooling techniques close to their limit of few nanokelvins [117].

But it is also possible to directly engineer strong spin-spin interactions that overcome
severe low-temperature limitations for example with dipolar molecules [118] and ions in
Penning traps [119]. In particular, magnetic interactions between spin-systems have been
engineered with laser-dressed Rydberg atoms [50] giving rise to strong angular dependent
interaction potentials of atomic levels in ground-state manifolds [120], extending exper-
imental control over interactions to both their geometric shape and their strength. The
shape of interactions can also be controlled by manipulating the geometry of the under-
lying trapping lattice, clearing the way for exploration of frustrated spin systems [121].
Experimental setups have begun to use arrays of magnetic microtraps to build almost
arbitrary lattice geometries with tunable intersite spacings of up to several ym [122] such
that also effectively step-like potentials, mimicking nearest-neighbour interactions, are a
possibility.

This paves the way to study non-equilibrium magnetic systems with clean interactions
that can compete with energy scales induced by driving and decay processes of nonequi-
librium systems [123, 124]. The magnetic systems can be made approximately disorder
free since targeted atomic loading processes can achieve almost unity filling. Interfacing
the self-interacting quantum spin models with dynamical light fields induces a competi-
tion of short-ranged atomic and cavity-induced long-range interactions in an open system
environment which opens up the exploration of quantum magnets with possibly new quan-
tum phases [24, 25]. The question of how quantum light interacts with a self-interacting
set of qubits is of a broad relevance and includes for example cavity Rydberg polaritons
[125, 126] and Rydberg-EIT setups [127, 128, 129].
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With the research presented in this chapter and our paper, we want to initiate the study of
quantum-optical magnets with competing short- and long-range interactions, under non-
equilibrium conditions with dissipative processes for the photonic force carriers. The goal
is to provide a “base case” or the simplest prototype of such a quantum-optical magnet.
A natural experimental set-up consists of a photon box to trap the light field and a deep
optical intracavity lattice with unit filling that allows step-like interaction potentials for
the spin-dependent interaction potentials which at the same time freezes out any motional
degrees of freedom for the atoms.

This raises the question how an atomic two-level system can couple to two competing
potentials with different range and independently tunable magnitude. We propose to use
an atomic "two dipoles in-one" unit (illustrated below in Fig. 3.11) that simultaneously
couples two different force-mediating photon fields (described in Sec. 3.2) by using optical
pumping schemes to realise boosted spin-photon couplings [26, 44] and laser-dressed atomic
ground-states with weakly admixed dipolar Rydberg states [50].

We investigate the magnetic phase transitions in these driven-dissipative atomic arrays
using coupled even-odd sublattice mean-field master equations for the spin and photon
degrees of freedom in the thermodynamic limit and show clear signatures of the magnetic
correlations in the light field leaving the cavity mirrors. These cavity spectra can be used
to unambigously identify the different magentic phases and intracavity dynamics in an
experimental setup.

Driven-dissipative lattice models based on effective spin-1/2 models similar to the one
presented here have been in focus quite recently [123, 124, 130, 131]. We stress that a
group at ETH in Ziirich has recently observed (2018, [114]) the formation of a spin-texture
in a quantum gas that was coupled to an optical cavity, setting the stage for future studies
of competing spin-spin interactions with cavity-mediated long-range interactions.

3.2. Model: Rydberg-dressed spin lattice coupled to single-mode light
field

Here, we suggest to couple a Rydberg-dressed spin lattice [50] as depicted in Fig. 3.1
to a single mode of an optical resonator. This amounts to supplementing the existing
experimental set-ups of quantum many-body lattice models in optical cavities [24, 25] by
weakly admixing a Rydberg-level to a ground-state manifold of a two-level system (we
detail a suggestion for a quantum optical implementation in Sec. 3.4.4).

The Hamiltonian H consists of two contributions, the pure spin-part and the interaction
of the spins with the optical light field as H = Hgpin + Hpin—light- 1t is written as

AL .V 1+ 07 1+ 07
Hspi“:_zzU”dZ( 2 >g( 2 >m (3.1)

/=1 (em;)

where the sum Z@m) goes over all nearest-neighbor pairs of the square lattice and d = z/2
is the dimension of the lattice with z the coordination number. In comparison to chapter
2 and chapter 4, we have denoted the two-level splitting of the spins with A instead
of w, to make clear that it reflects an effective parameter that can externally be tuned
both negative and positive by adjusting the detuning of a pump-laser. For a negative
(—=A < 0) longitudinal field it is favorable for the spins to point up along the z-axis | 1).
Competing against this is the repulsive or antiferromagnetic “Rydberg-mediated” term,
which minimizes energy by favouring spatially alternating configurations, such as Néel
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Figure 3.1.: Rydberg-dressed spin lattice coupled to single-mode optical light field. We
take the atoms to be in a deep optical lattice (for example a Mott insulator at unit filling)
such that no motion occurs and only internal spin excitations drive the dynamics. From
weakly admixing a Rydberg level, an effective nearest-neighbor interaction (repulsive) V'
competes with an effectively infinite range interaction from the single light mode of the
cavity that couples all atoms with strength g. The atoms can spontaneously decay with
rate v and photons can leave the system through the cavity mirrors with rate x. The
system is driven from the side with a laser of Rabi frequency §2.

antiferromagnetic states, e.g. | T}1} ...). In contrast to a conventional Ising ~ ojo7,
interaction term, the Rydberg interaction is conditioned on population in the upper state.

The spin-light coupling to a single mode of an optical cavity is expressed as

Hpin—1tigh
pin—light = \/7

where wy is the effective cavity frequency in a rotating frame and N is the number of
atoms; the rescaling of the effective spin-light coupling with 1/4/N ensures a non-trivial
thermodynamic limit as explained in detail in chapter 2. All coupling constants appearing
here {wp, A, g,V'} are explicitly tunable experimentally in a quantum optical realisation
of the model, see Sec. 3.4.4.

(a+al Z (of +0;)+woala, (3.2)
(=1

Within our mean-field treatment, the light-field in the cavity can either be the vacuum
mode (a) = 0 or it can be in a coherent state (a) # 0. By cavity vacuum, we mean
the Fock state with zero photon excitations. If there is a macroscopic occupation of the
cavity mode, then (a + a') # 0 and the system is in a superradiant state where the spins
experience a transverse field in z-direction ~ g ((a> + (aT>) SN 0f. Choosing the lattice
and cavity modefunction commensurate as in Fig. 3.1 results in a homogeneous coupling
g, that is, all the spins couple in the same way to the cavity.

The two dissipative processes are modelled by the Lindblad operators for photon losses
through the mirrors with rate x and spontaneous emission of the atoms with rate « into
the reservoir modes of the electromagnetic vacuum surrounding the cavity:

N

Lo =33 |2orp0t - (ot o7 p}]. (3.3

(=1

Lilp] = H{%PCLT - {aTa,p}] ) (3-4)
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where p is the system density matrix. Here, we have not included a possible collective
decay mechanism for the atomic ensemble as they are typically very weak for the lattice-
based setup we consider here, as estimated in Sec.1.1. This justifies to restrict ourselves
to the analysis of incoherent spontaneous emission only. Spatially modulated phases in
the presence of coherent driving of lattice atoms have been discussed in an open, non-
equilibrium setting in particular by Lee and collaborators [123, 124]; see also Ref. [132].
We extend such models by coupling the spin degrees of freedom to a quantum light field.

We proceed to analyse the system as described by Eqgs. (3.1-3.4) using even-odd sublattice
mean-field master equations and cavity spectra to detect experimental signatures of mag-
netic correlations in the quantum light in Sec.3.4. In Sec.3.4.4 we include a suggestion
for a quantum optical implementation of our model. We discuss in detail the validity of
our approach and especially discuss implications of beyond mean-field effects in Sec. 3.5.
We close with a conclusion in Sec. 3.6.

3.3. Coupled sublattice mean-field master equations for atoms and
photons

We now derive and solve the coupled mean-field master equations for both, the spin
degrees of freedom and the photons in the thermodynamic limit of N — co. We account
for different spin expectation values on the even versus odd sublattice of the bipartite
square lattice of Fig. 3.1. The goal is to allow for steady-states with spontaneously broken
translational (even-odd interchange) symmetry. We have checked that the homogeneous
solutions only ever become unstable against plain-wave perturbations with wavevector
(kz, ky) = (m,m), see Sec. 3.5.3, (lattice constant set to 1) justifying our sublattice Ansatz.

To this end, we now approximate the solution of the full master equation

Op = —i[H, p| + Lx[p] + L+ [p] , (3.5)

by factorizing the spin part of density operator for all even sites as p, = ®évz/12 Pee and

analogously for the odd sites p, = ®(JZV:/12 Poi-

We comment further on the prospects of capturing finite spatial correlations and fluctu-
ations beyond mean-field in Sec.3.5.2. We further define the spin expectation values on
the even and odd sublattices, respectively: <0‘?/O> = Tr[pe/oag/o] where « refers to (z,y, z).
The first four equations read

) = (o2(1) [A =2V ({05 (1) + V)] - 2 (o2 (1)) (3.6
) =(02(1)) 2V ({o5(1)) + 1) — A = 2g[(a(t)) + (a'(t)] (0% (t) —%< ¢@®) (

) =2g[{a(t)) + (a' (£)] (o2(1)) — (1 + (07 (1))

) )

)
= — (k +iwo) (a(t)) — zig((os (t)) + (o5 (1))

Y
6
1,
2"
The equations for the odd sublattice spin projections follow from Egs. (3.6-3.8) by exchang-
ing the sublattice index e <> 0. The complex conjugate of Eq. (3.9) completes the set of
eight coupled equations. Here, we rescaled the photonic variable with a(t) — V' N (a(t))
a steady-state is macroscopically occupied in the thermodynamic limit and one may also

N
a\ — 1 «a
define (o¢,) = w2 0
{eeven,odd
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Phase ‘ Broken Symmetry ‘ Order Parameter
SRun1 Superradiance Zs (a) #0
AFM Lattice translations i, (0Z) — (0§) #0
AFM+SR Zo and Tiat (0Z) —(a§) #0, (a) #0
FP None None

Table 3.1.: Order parameters for the phases in Fig. 3.2. Whenever the photon parity is
broken, the z-projections of the spins also attain a finite expectation value (%) # 0.

Mean field master equations are often a necessary first step to study driven-dissipative
systems, see for example, Refs.[133, 123, 124, 134, 135, 136, 137] and Ref.[138] for a
variety of contexts.

3.4. Key results and their derivation

3.4.1. Combination of superradiance and magnetic translation symmetry-breaking
(k#0,7=0)

Our first key result is Fig. 3.2: the non-equilibrium steady-stase phase diagram of Egs. (3.1-
3.4) setting the atomic spontaneous emission v = 0 for now.

This way of solving the problem implicitly takes first the thermodynamic limit N — oo
and subsequently the long-time limit ¢ — oco. We keep k finite to account for photon
losses. In Sec. 3.5.1, we show how the somewhat unphysical limit x — 0 reproduces in
fact the phase boundaries of a corresponding ground state T'= 0 model.

Using cavity-assisted Raman transitions [26] to tune the atom-light coupling,the v = 0
limit describes the limit of relatively far detuned excited states, where population in the
decaying levels is suppressed such that the ground-state manifold froming the two-level
system is relatively stable. These phase diagrams are computed from solving for steady
states of mean-field master equations for the real-valued atomic variables ((c®) , (c¥) , (c%))
and the complex-valued photon expectation values ({(a), (a')), see Eqs. (3.6-3.9).

The phases shown in Fig. 3.2 can be classified according to their “order parameters” in
Table 3.1. Let us describe the phases in more detail. Upon increasing the coupling to the
photons along the g-axis in Fig. 3.2, for V/|A| < 1/4, a fully polarized phase (FP4, | 11 ...))
becomes superradiant crossing the Dicke transition, which has been studied in detail for
both, the closed thermal and ground states as well as the open version including the full
two loss channel variant in a (v, k) Dicke model including single-site atomic spontaneous
emission, see chapter 2 and for an experimental realisation see [44] (2018, Singapore).
Meanwhile, also an open version of the spin-1 Dicke model with both loss channels present
has been experimentally realised [115]. The superradiance transition breaks a discrete
symmetry

Zy:[a+al,0f, 0] = [~(a+al),—0f, —a}). (3.10)

The experimental signature is a jump of the photon number inside the resonator [24, 49,
44, 115, 28] and the cavity ’lights up’ Recall that here we have the atomic spins pinned
in a deep optical lattice such that all motional degrees of freedom are frozen out and we
consider the dynamics of internal spin states only. This is in contrast to the realizations
of the Dicke model with momentum states of the atomic gas [142, 102, 65]; therein the
onset of superradiance is accompanied by a spatial self-organisation of the atoms in a
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Figure 3.2.: Non-equilibrium mean-field phase diagram of a Rydberg-dressed spin lattice
(with nearest neighbor interaction V') coupled to a single-mode optical light field with
rate g. In units of the spin longitudinal field A for photon losses only (k # 0,7 =
0). The key feature is the yellow strip, AFM+SR phase, in which spatially modulated
magnetic moments occur together with a superradiant photon condensate, see Tab. 3.1.
This phase may be regarded as the magnetic analogue of the (superradiant) supersolid of
moving lattice bosons in an optical cavity [24, 139, 140, 141]. The yellow strip merges into
the V-axis at a multi-critical point from which four different phases can be reached by
infinitesimal variation of parameters. At the multi-critical point (g/A = 0,V/A =1/4) the
spins feel zero effective longitudinal field and any small coupling to a field can align them.
SRuynt is a uniform superradiant phase. AFM stands for antiferromagnetic with differing
magnetic moments on the even and the odd sublattice. FP; is a fully polarized phase
in which all spins point up. The magnetisations and the value of the photon condensate
across the transitions are continuous. Cavity spectra at positions labeled with (x) are
depicted in Fig.3.5. Numerical parameters used: wp/A = 2.0, k/A = 0.2.
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checkerboard pattern. Here, with the setup displayed in Fig. 3.1, the superradiance leads
to uniform spin polarization in z-direction and the Rydberg-mediated repulsion competes
with this and tends to break the even-odd lattice translation symmetry.

Up the V-axis, at ¢ = 0 the magnetisations of the system can change discontinuously
(at V' = A/4 in two dimensions) from a fully polarised state (FP4) to an antiferromag-
netic excitation pattern (AFM). This AFM phase breaks a discrete even-odd translation
symmetry

Tat [Ua

e,0

] = logel s (3.11)

o,e

which can lead to different sublattice magnetisations as depicted in Fig.3.2. Here, Ti.t
exchanges the even (e) and odd (o) sublattice index of the atomic variables ¢® with
a = {x,y,z} in the Hamiltonians in Egs. (3.1-3.2). As described further in the caption of
Fig. 3.2, the AFM+SR phase has a curious feature, namely that it is split in two regions,
that are delimited by a touching point of two second-order phase transition lines of the
SRunt and the plain AFM phase at V/|A| = 1/2. For this special value, the effective
magnetic field on one sublattice vanishes. At this point, however, the transition becomes
discontinuous.

Phase boundaries and order parameters with photon losses (xk # 0,7 = 0)

Here, we provide a more detailed analysis of the above mentioned results for the case where
the atoms do not decay spontaneously and the only loss-process is given by the Lindblad
L, see Eq.(3.4). The Egs. (3.6-3.9) with v = 0 conserve in this case a pseudo-angular
momentum

(02 )V + (02 ) =1 (3.12)

e,0 e,0

provided we start from an initial state such as |/, ],...) that is devoid of all excitations
which fulfills this condition. This would have to be realised with a preparation protocol to
realise a low-entropy initial state, e.g. by first having the external lasers switched off and
starting in a classical antiferromagnetic state where the atom-light coupling is gradually
ramped up. Here (e, 0) refers to the even and odd sub lattice respectively. Due to the
presence of time-reversal symmetry in the atomic channel, the steady-state of the system
constrains (0¥ ,) = 0 (see the discussion above in Sec. 3.4.3).

The phase diagram in Fig. 3.2 is calculated, with photon losses, by numerically solving for
the stationary states of Egs. (3.6-3.9). We determine stability by inspecting the real parts
of the eigenvalues from the corresponding stability matrix that is obtained by linearising
Egs. (3.6-3.9) to first oder in fluctuations around the steady-states, see Sec. 3.5.3.

Together with the constraint Eq. (3.12), the set of Egs. (3.6-3.9) can be solved analytically.
The homogeneous ((c%%) = (02*) = (02?)) steady-state solutions, which describe the
Dicke superradiance transition are
g{o*)
= 3.13

 VT=TNT+A

(o) = NN TR (3.14)
b det+A
(07) = -+ A (3.15)

We have defined J = 4299 and J, = A—4V. A plot of the Egs. (3.13)-(3.15) is illustrated

w2 +wl
in Fig. 3.3. Starting in the antiferromagnetic phase and increasing the atom-light coupling
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Figure 3.3.: Steady-states for Egs. (3.6-3.9) with v = 0 for the parameters wy = 2.0|A|, k =
0.2|A| for the phases depicted in Fig.3.2. (a) Behavior of the magnetisations and the
coherent photon condensate in the plain antiferromagnet (AFM), in the regime where
translational symmetry breaking and a superradiant photon condensate occur together
(AFM+SR) and in the Dicke-phase (SRyng) as the atom-light coupling g is increased at
a fixed value of V' = |A|. All transitions are continuous in the order-parameters. The plot
in (b) shows the onset of superradiance as the atom-light coupling is increased, for a fixed
value of V' = 0.1|A|.

g, a regime where superradiance ({a) # 0) and a phase with different sub-lattice mag-
netisations occur together is predicted ((o?) — (0Z) # 0) which, due to Eq. (3.12) implies
(6%y —(02) # 0. Due to the finite longitudinal field A, one sublattice is easier flipped than
the other and the system realizes a "canted" antiferromagnet. If the atom-light coupling is
increased even further, translational symmetry is restored and the system realises a Dicke
superradiant phase. This can be seen by tracking the evolution of the magnetisation as g
is increased in Fig. 3.3a.

We now derive analytical expressions for the phase-transition lines displayed as solid lines
in Fig. 3.2.

First, we transform the mean-field equations (3.6-3.9) in frequency space via Fourier trans-
formation

O(t) e MOW)dy, O (t) e MO (—v)dv. (3.16)

\/ Vor / \/ /
In general, one should add Markovian quantum noise-operators with zero-mean to the
photonic and atomic set of master equations that result from the interaction of the atom-
cavity system with the vacuum modes outside of the cavity. These we denote fgo(u) as
the atomic and £%(v) as the photonic noise-operators in frequency space.

Next, we add back fluctuations around the stationary states of Egs. (3.6-3.9)

(08,(1)) = (02,) S(W)V2m + 60 g ,(v) (3.17)
VN (a(v)) = VN (a) 6(v)V2r + da(v) , (3.18)

where the steady-states are denoted as (0¢,) with a = (x,y,2) and (a) is the expecta-

tion value for a coherent photon condensate. Here, do¢’,(v) and da(v) describe quantum
fluctuations about the semi-classical steady-state and 0(v) denotes a delta function in fre-
quency space. At long times, we may neglect second-order terms in the fluctuations by
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assuming that the steady-state values are large compared to the associated fluctuations in
the thermodynamic limit N — oo.

The now linearized equations can be cast in matrix form.
£0) =60 (0) + G\ () - do(v) (3.19)

where the fluctuations around the steady state are collected in do(v) and the noise-
operators are collected into £(v):

sol(v) = (60§(V), 6a¥(v), 807 (v), da(v),dal (—v), 60%(v), ¥ (v), 5U§(V)> (3.20)
E7(0) = (€ (1), €20), £ (), (0), € (-0), & (1), 1), E5(v) (321)

The function f(o) is associated with the coherent part of the steady-states and thus only
leads to a zero-frequency peak in the cavity-spectrum. The responses of the fluctuations
0o to the noise or 'driving-forces’ £ is encoded by the retarded Green-function Gr(v), its
inverse G5! (v) is given as:

1y —2iv) 2V((oZ) +1) — A 0 0 0 0 0 2V (a¥)
A=2V({o5) +1) 3y —2iv) 29({a) + (a)) 2g (o) 2g (o) 0 0 —2V (o)
0 —2g({a) + (a')) v—iv —2g(a?) —2g(a?) 0 0 0
%ff,’ 0 0 K —i(v —wo) 0 3ig 0 0
—1ig 0 0 0 K —i(v 4 wp) —3ig 0 0
0 0 2V (a¥) 0 0 Ly - 2iv) 2V ((oZ) +1) — A 0
0 0 -2V (03) 2g(0%) 29 (03) A=2V((o7) +1) 3(y — 2iv) 29((a) + (a'))
0 0 0 —2g (oY) —2g (oY) 0 —2g((a) + (at)) y—iv
(3.22)

The frequency-resolved spectrum of excitations governed by the fluctuations can be ob-
tained from the characteristic equation

Det[GR'(v)] = 0. (3.23)

All poles of the retarded Green function are located in the lower complex frequency plane.
The damping rate of the excitations can be read off from the imaginary part of these
poles, see for instance Reference [13]. In the case of second order transitions, the order-
parameters ({(a), (0¢,),(0¢,)) change continuously at the phase transitions. We obtain
analytical expressions for the phase boundaries by solving

. 10N — 2
glg%) Det[GR (v)] =a”=0. (3.24)

The zeroth-order frequency component refers to a possible gap a? of the system that will
close continuously (limg_4, @® — 0) when the phase transition is approached by increasing
the atom-light coupling g. We arrive at the set of transition lines given by Eq. (3.26)-(3.29)
that are depicted as black lines in Fig. 3.2 where they match the numerically calculated
transitions based on a linear stability analysis. The open character of the system becomes
manifest in the expressions for the phase boundaries as all transitions explicitly depend on
the rate of photonic dissipation . Starting from the FP+ phase, the Dicke superradiance
transition in presence of the Rydberg interaction sets in at the critical coupling strength:

\/ K2+ wd/wo(A —4V) (3.25)

Ge,1 = 2WO 5
A g>wo
Vii=—— —. 3.26
ol 7y TRy w ( )

The finite Rydberg-dressed interaction V' modifies the effective longitudinal field experi-
enced by the spins which shifts the position of the superradiant condensate in comparison
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to the V' = 0 case. Eq.(3.25) collapses to the familiar Dicke superradiance transition in
the case V' — 0 [26]. The crossover from the (AFM+SR) regime to the Dicke superradiant
phase (SR) is given by:

Veo =

[49%}0 (4g2w0 + \/A2 (k2 + w2)? — 8Ag2uwy (k2 4 wd) + 8Og4w(2)>

+A (/{2 + w%) \/A2 (k2 + w%)Q — 8Ag%wy (k2 + w?) + 80g*w?
2
+ A? (FJ2 + wg) ]/8 (Iiz + wg) (A (52 + w%) + 2g2w0) : (3.27)
The transition line from the AFM phase to the AFM+SR regime is given by (—A < 0)

VALK2 + w/AV — A
0

es = , 3.28

9c,3 2\/5\/?\/070 ( )
AZ 2 2

Vos = (” + wp) (3.29)

74 (A (K2 4+ wd) — 2¢%wo)
We note that the line where AFM and SR order occur together diverges V.3 — oo as

limg_,,4, with g, = (\/Zq//iQ + w%) / (\/5\/070) Moreover, on a mean-field level, there is a
touching point g; of two second-order phase transition lines that can be found by equating
Eq. (3.27) and Eq.(3.29) which yields ¢g; = (ﬁm) (24/wo) and Ves(gr) = A/2
marks the point where the effective longitudinal field on one of the sublattices vanishes.
On a mean-field level, we find a multi-critical point, where all second-order phase transition
lines meet on the g = 0-axis at V = A/4.

3.4.2. Even-odd sublattice peak in cavity spectrum

Here we show that the translation-symmetry breaking induced by the nearest-neighbour
Rydberg-dressed interaction V' leads to a novel collective mode and peak in the spectrum.
Figure 3.4 shows the cavity spectrum upon increasing g from the (AFM+SR) phase with
broken Tj,; symmetry into the SRyn1 phase where translation symmetry is restored. Here,
the ’even-odd’ polariton mode vanishes in a specific way: Denoting the frequency of the
polariton pole as v, we observe that both, its real part (gap) and the imaginary part
(damping rate) vanish with coupling constant (from the AFM+SR phase toward line 2 in
Fig. 3.2) with

Re[v] x /9. — g, Im[v] x —(g.—g), (3.30)

where g. refers to the right boundary delimiting the AFM+SR phase. This is because the
translational symmetry Ti,; affects the atomic sector only which does not couple directly
to the photonic rate of dissipation . This is in contrast to Dicke-type models whose
dynamics becomes purely overdamped /imaginary at the transition [91], see Fig. 2.3c that
is, the real part of the mode vanishes first.

Derivation of the cavity output spectrum (x # 0,y = 0)

Here we calculate the frequency-resolved cavity output spectrum for the light that leaks
from the imperfect cavity mirrors within a standard input-output theory [112, 113, 26]
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Figure 3.4.: Even-odd sublattice peak in the cavity spectrum (peak close to zero frequency
of the orange, solid line), which appears when the translational lattice symmetry Tiu;
is spontaneously broken by the Rydberg-dressed nearest-neighbor interaction V. The
two cavity spectra are computed for the positions labeled by (x) in Fig.3.2. The blue,
dashed line has the two polariton peaks in the uniform SRyni phase with the photonic
branch around the cavity frequency wp/A = 2.0. The orange, solid line is the spectrum
in the AFM+SR regime with broken Ti,¢; it shows the prominent even-odd peak, which
becomes soft toward the phase boundary (the right edge of the yellow strip in Fig. 3.2.
(b) Low-energy pole structure of the even-odd sublattice peak, where both the real and
the imaginary part of the poles vanish simultaneously as ¢ — g. according to Eq. (3.30).

and show how the ’even-odd’ polariton pole is identified. We find that every phase in
Fig. 3.2 shows a characteristic cavity output spectrum making it possible to experimentally
distinguish one phase from the other. The input fields are related to the output fields by
the relation

aout (V) = V2ka(v) — ain(v), (3.31)
abu(—v) = V2ral (=) — af (=v). (3.32)

The annihilation operators (aout(V), ain(v), a(v)) correspond to the output field, the vac-
uum input field, and the intra cavity field, respectively and we have used &,(v) = v/2kai, (v).
The Markovian quantum noise operators with zero mean are determined by their second-
order correlation functions. For the photonic channel they read

(am(V)aly(—v)) = 6(v + 1) (3.33)

We solve Eq. (3.19) for aout(v) and al (—v) together with Eq. (3.33) to obtain the output

out
spectrum for a vacuum input field

Sw) = (al (V) aouw (V) = 2k (6l ()sa(v)) = 2k / i (6aT(0)0a(r))dr.  (3.34)

—00

The unnormalized fluorescence spectrum S(v) is proportional to finding a photon at fre-
quency v and thus displays the position and the spectral weight of the resonance energies
of hybridized atom-cavity modes. We only depict cavity-spectra in the v = 0 limit. We
have investigated the effect of spontaneous emission on the cavity spectra in the V" — 0
limit in chapter 2 and found that it can induce a frequency asymmetry in the cavity spec-
trum since atomic excitations can leave the cavity directly by emission into free space.
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The cavity spectra for k # 0,7 = 0 can be obtained for every phase in Fig.3.2. In the
fully polarized phase ((a) = (¢*) = 0,(0*) = 1) for g < g1 and —A < 0, the cavity
spectrum is obtained as

16K2g% (A — 4V)?

Si(v) = 2 , (3.35)

102 = \((n — )2 (=A + v+ AV)(A + v — 4V) + 4g2wo(A — 4V))

9 2
W (A4 v +4V) (A + v — 4V))] (3.36)

and is depicted in Fig.3.5¢. In the limit V' — 0 it reduces to the familiar expression
obtained in Ref.[26]. In the AFM phase ((¢Z) = —1,(c2) = 1,(a) = (¢*) = 0), the
spectrum is given by

64k2g1V? (A2 — 4AV + w2)2
i) = [

Q3 = ](w — A)(A +w)(k —iw)(—A + 4V + w)(A — 4V + w)

(3.37)

2
+w(w = A)(A +w)(—A +4V + w)(A — 4V +w) + 8g*Vwy (A2 — 4AV + w2)}
(3.38)

and a typical spectrum can be seen in Fig. 3.5a. In the homogeneous phase we make use

of Egs. (3.13-3.15) and obtain the spectrum as

_ 1652g8w2 (K2 + w?)° (A — 2V)*
€24

Sa(v) (3.39)

depicted in Fig.3.5d. We leave 24 unspecified as it is too large to print. It contains the
polariton resonances that can also be calculated from Eq. (3.23). We denote the cavity
spectrum in the AFM+SR regime as Si(v). We solve Egs. (3.6-3.9) numerically in the
long-time limit and use Eq. (3.34) to determine the spectrum numerically, see Fig. 3.5b.
Now we discuss the characteristic features and the behavior of the poles.

Discussion of cavity spectra and low-frequency pole structure for (k # 0,y = 0)

We describe and depict the characteristic features of the cavity spectra for each phase of
the mean-field phase diagram in Fig. 3.2 below. We begin our discussion with an analysis
of the cavity spectra S(v) in each phase. The cavity spectra are shown in Fig.3.5. In
general there are either four or six poles in the cavity spectrum. In the former case
these originate from two photon-branches and two atomic branches that are symmetrically
arranged around the zero-frequency axis. We identify the branches by their ¢ — 0 limit
in the fully polarised phase where the resonances settle at the bare frequencies given by
Vatom = A and vppoton = two—ik. There are six poles when the translational symmetry
in the atomic sector is broken. The additional poles reflect the even/odd imbalance of the
system and are thus attributed to the Rydberg interaction, see Fig. 3.5a. This provides a
clear feature to experimentally detect a phase with antiferromagnetic order.

The cavity spectra in Fig. 3.5¢ (fully polarized FP4) and in Fig. 3.5d (superradiant phase)
are well-known and derived in [26] in the V' — 0 limit. In the superradiant regime, an
increasing Rydberg interaction V' shifts the atomic poles to higher energies whereas the
peaks associated to the photonic branch settle around the cavity resonance at Re(v) =
twy = £2.0|A|. In the AFM and the (AFM+SR) phase, the cavity spectra depicted in
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Figure 3.5.: Typical cavity spectra for each of the four phases depicted in Fig.3.2. In
general, the resonances show the hybridised atom-cavity eigenenergies that can be obtained
from solving Eq. (3.23). There are four poles in the cavity spectrum when translational
symmetry is intact as in (c,d) and there are six poles when translational symmetry is
broken as (a,b). (a) Cavity spectrum in the plain antiferromagnetic phase. The broken
translational symmetry is reflected in the appearance of an additional (Rydberg) resonance
in the atomic-sector. (b) Cavity spectra in the regime of a broken Zs and translational
symmetry T. As g — g2, two of the six poles move towards v = 0 (dot-dashed line). At
g = gc,2 translational symmetry is restored and the additional Rydberg-induced even-odd
peaks disappear. (Inset) Close to the frequency at v = wg/A = £2.0 there are resonances
with small but finite weight corresponding to the cavity resonance. (c¢) Cavity spectrum
for the fully polarized phase FP4 with no photonic excitations (a) = 0. (d) Spectrum in
the superradiant regime (a) # 0 with translational symmetry 7T still intact.

Fig. 3.5a and Fig. 3.5b exhibit the aforementioned even/odd sublattice peak that reflects
the broken translational symmetry in the atomic sector, so that there are six poles in total.

The frequency-resolved eigenenergies of the hybridized atom-cavity modes display a char-
acteristic behaviour close to the phase transition as g — gc,1,2,3 in Fig.3.2. On the real
frequency axis, all phase transitions appear when at least one of the either four or six
poles hits the zero v = 0. The low-frequency behaviour of the critical poles leading to the
Dicke superradiance transition has already been established [143]. From the four poles,
two (which we refer to as (v4,15) in the following) approach the origin in the complex
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frequency plane. First, both poles become completely imaginary as g — g.1. A single
one of these poles vanishes at the phase-transition |v,| = 0 while the other retains a fi-
nite imaginary part at g = g.1 set by the dissipation (v4(9 = gc,1) ~ —ik) emphasizing
that the Dicke superradiance transition directly couples to the dissipation. The cavity
spectrum in Fig. 3.5¢ exhibits a pole at zero frequency but with a finite, purely imaginary
contribution as ¢ — g.1. The intensity under this finite-width peak diverges, which in-
dicates a macroscopic occupation of the cavity-mode (a) # 0. As the transition from the
AFM into the (AFM+SR)-phase involves a superradiance transition, the same behaviour
of the low-frequency poles can be observed as g — gc3. When translational symmetry is
broken, this transition mainly affects the atomic channel. As the photonic sector alone
couples to a dissipative channel, we numerically observe that when translational symmetry
is restored as one goes from the (AFM+SR) into the SR phase as g — gc 2, two of the
six poles approach the origin on the complex frequency plane. In contrast to the Dicke
superradiance transition both the real and imaginary part of the two low-frequency poles
vanish together, see Fig.3.4b for an illustration of the pole structure and Fig.3.5b for
the cavity spectra in the (AFM+SR) phase. At g > gc o translational symmetry Ti, is
restored and the spectrum is given by Fig. 3.5d.

3.4.3. Photon number oscillations (x # 0, # 0)

We now account for a non-zero rate of atomic spontaneous emission v # 0. Specific
details of a given quantum-optical implementation (see Sec. 3.4.4) will determine which
set of Lindblad operators and additional atomic levels need to be accounted for. In order
to gain a first qualitative picture, we model an effective decay rate with £,[p] in Eq. (3.3)
between the effective spin-up and spin-down states (|1) and |0) in Fig. 3.11. We expect ~
to become larger once the detuning to the shorter lived excited states is decreased; it is
generally true that the effective ground state levels inherit a finite lifetime from admixing
a short-lived state. For a specific experimental set-up, one may also include other types
of atomic losses or dephasing.

This at first sight innocuous change has interesting consequences. Even qualitative features
of Fig. 3.2 are drastically changed. Allowing for a small ~, see Fig. 4.5, in particular wipes
out the stable AFM phase and introduces a fully downward polarized state FP| as well as
a novel oscillatory phase (AFM+SR)-OSC. Here also the photon field amplitude oscillates
which can be detected by time-resolved measurements of the intensity of the light leaving
the cavity.

At the root of these effect is £, [p] in Eq. (3.3): it explicitly breaks the discrete symmetry
G given by the product of time-reversal: Ty = —io] Ky, t — —t (for a spin s = 1/2) and

spin rotation around the y-axis by : D;/ﬁ £ — —io]. Here Ky is the complex conjugation
operator such that G, = D;{f’gﬁ = —Ky. If we write G = Hlegg we have GHG™! = H.
In particular, this implies for steady states (0¥ ,) = (Go¥ ,G™') = —(o¥,) L0 if v =0.

For v # 0, the spins can start developing expectation values also in the y-direction. In
a mean-field picture of a system in thermal equilibrium, the spin tries to align with the
magnetic field generated by its neighbours. In the presence of decay with rate v there is
now a competition of the coherent mean-field dynamics and the dissipative Lindblad terms
that try to push the spin into the spin-down ||, ],...) state. This offers new possibilities
for the spin dynamics such as anomalous spin precession [124] not available in equilibrium.

We show the phases for a further range of parameters (A /v, g/v) space for a fixed strength
V of the Rydberg interaction in two spatial dimensions in Fig. 3.7. In mean-field theory
we distinguish five phases in the long time limit. Three are steady-states denoted as
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Figure 3.6.: (a) Supplementing the phase diagram Fig. 3.2 in the (V/A,g/A)-plane by a
small amount of atomic dissipation v/A = 0.01 with (wo/A = 2.0,k/A = 0.2) changes
the steady-state landscape drastically. In comparison to the v/A = 0.0 case (compare
Fig. 3.2), there are no stable steady-states with a broken lattice symmetry 7Ti,; any more.
Instead, the system can show persistent oscillations in time. (b) Depiction of the non-
uniform (top, (AFM+SR)-OSC) oscillations and the uniform (bottom, SRyni-OSC) os-
cillations that characterize the long time limit behavior of Eqgs. (3.6-3.9) with finite ~.
Parameters for the upper plot are (V/A = g/A = 0.5), the lower plot is obtained at
(V/A =0.3,9/A = 1.2).
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Figure 3.7.: Non-equilibrium steady-state phase diagram of Eqs. (3.1-3.4) with finite,
atomic spontaneous emission (k/v = 0.2,V/y = 1.8,wp/y = 2.0). Apart from time-
independent states, the dynamics also realises limit cycles where atomic and photon com-
ponents show persistent oscillations in time. Oscillations can be uniform or different on
the even/odd sublattice, see Fig.3.8. Depending on the initial configuration, the system
can reach different long-time fixpoints. Bistabilities occur whenever two phases overlap

(see legend). Crystalline antiferromagentic order only occurs together with superradiance
(AFM+SR).
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Figure 3.8.: (a): Persistent spin and photon-field oscillations appear in the (AFM+SR)-

OSC phase for A > 0 close to the (AFM+SR) stable region for the parameters used in
Fig.3.4.3 for g/v = 1.1,A/~v = 0.15. Note that between ty ~ 10 — 25 the amplitudes
display (quasi-) plateaus followed by a rapid in/decrease toward their final mean values;
and only then the oscillations begin and persist. Let us mention that for moving atomic
gases in a cavity, Ref. [144] found “pre-thermalized” plateaus in the time evoluation for
the order parameter by solving Fokker-Planck type kinetic equations. It is however not
clear, if the mean-field master equation can at all capture or hint at such effects. (b):
Illustration of the atomic components for the limit cycles on the lower part of the Bloch
sphere. The two upper lineshapes (red) depict the lines traced by the oscillations on the
even and the odd sublattice in the (AFM+SR)-OSC phase, as depicted in (a). The lower
lineshape illustrates a limit cycle of uniform oscillations of the atomic components in the
SRuynt phase. We mention that oscillating cavity fields have been experimentally observed
recently (2018) in the superradiant state of a spin-1 Dicke model [115].

(FP}, SRuni, AFM+SR, see also Tab. 3.1) and two are stable limit cycles. The Lindblad
operators try to drive the system into an empty state without any excitations; consequently
AFM order can only occur in the presence of a coherent drive, i.e. together with a photon
condensate (a). In the latter phases, the system exhibits oscillations in both atomic
and photonic components, since the atomic dynamics couples back to the photon sector
through Eq. (3.13). The oscillations can be uniform in all components (SRyni) — OSC or
different on the sublattices (AFM + SR) — OSC.

We observe bistabilities, meaning that the eventual fate of the system in the long-time
limit depends on the initial conditions. However, we also find a small strip in the phase
diagram where the system is bistable between AFM + SR and a SRuynr phase. We will
discuss bistabilities below and in Sec.3.5.2 in more detail. An explicit investigation of
a bistable region that is subject to non-equilibrium fluctuation dynamcis is analysed in
chapter 4.

Phase boundaries and order parameters with spontaneous emission (k # 0,7 # 0)

As discussed in Sec. 3.4.3, allowing for spontaneous emission (v # 0) in addition to photon
leakage (k # 0) has a dramatic influence on the phase diagram obtained from the behaviour
of the mean-field master equations in the long-time limit. In comparison to the v = 0
case, the phase diagram is enriched by the presence of oscillatory and bistable phases,
see Fig.4.5 and Fig.3.7. We first turn our attention to the case where there is a small
amount of dissipation in the atomic channel (y = 0.01|A|) to analyse its impact on the
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long-time limit behaviour of the steady-state phases depicted in Fig. 3.2. We observe (see
Fig. 3.6) that allowing for a small amount of dissipation, there are no stable steady-states
that involve a broken lattice symmetry 7T1,;. The only steady-states in the investigated
(V/A,g/A)-plane is the empty atom-cavity system (FP|) and a uniform superradiant
phase (SRuni). The remaining long-time limit behavior is characterized by persistent
oscillations that can be uniform (SRyny — OSC) or non-uniform ((AFM + SRyng) — OSC).
As the Rydberg interaction is conditioned on population in the upper state, the phase
boundary of the empty atom-cavity system is independent of V. Formally, we obtain its
phase boundary by inspecting the eigenvalues of the stability matrix corresponding to
the fixed point ({a) = (¢®) = (oY) =0, (0*) = —1). The real part of at least one of the
associated stability eigenvalues becomes positive when

2
i (7 + 26)2 +442)" = 328N (7 + 26)? (3.40)
+ 8ykwi (7 — 2A + 28) (7 + 2(A + K)) + 16yKw] = 0. (3.41)

Solving for g yields,

\/Tfe\/((v + 2k)2 4 4A2)% 4+ 8w (v — 2A 4 25) (v + 2(A + K)) 4 16w

Y(crit, FP)) = 4\6 /—AWO(’}/—FQH)Z

(3.42)

Here, we observe that at g = gt rp)) the associated linearized stability matrix of
Egs. (3.6-3.9) obtains a pair of purely imaginary complex conjugated eigenvalues which
signalizes that the system changes into a limit cycle via a Hopf bifurcation. Limit cycles
in driven-dissipative models have been observed before e.g. in spin-1/2 systems [145, 146]
and with Bose-Einstein condensates in optical cavities, see e.g. References [110, 147] and
in driven QED-cavity arrays [148].

The transition into the stable SRyni-phase is discontinuous and we can solve Egs. (3.6-3.9)
in the long-time limit to obtain the photon condensate as

_ EVTBFIPA 2V + (A + )2V - A)

4Jwo(J + 2V)? +0(y%) . (3.43)

[ {a) 2

where the coupling constant J(k,wp) is given by Eq. (3.74). Here the =+ sign indicates that
there are two branches of which only one is stable. Stable solutions (SRynip) are depicted
in Fig. 3.6a. In the limit of weak atomic noise, it can be seen from Eq. (3.43) that a stable
solution to zeroth-order in « must satisfy V' > A /2. The phase boundary between the two
oscillating phases depicted in Fig. 3.6 is obtained by comparing the oscillation amplitudes
(in Fig.3.6b) on the even vs. the odd sublattices in the long-time limit that result from
direct integration of Egs. (3.6-3.9).

Next, we turn our attention to the features of the phase diagram depicted in Fig.3.7
where losses in the atomic channel can be strong. We analyze the oscillations of both
atomic and photonic components in the long-time limit by explicit integration of Egs. (3.6-
3.9). Numerically we find persistent oscillations close to the (AFM+SR) region that are
different on the even/odd sublattice, see Fig.3.8. We determine the phase boundary
for the(AFM+SR)-OSC phase depicted in Fig.3.7 by sampling initial conditions for the
atomic components on the Bloch sphere and then integrating the set of Egs. (3.6-3.9)
directly. The phase boundary is set by the parameters (A/~, g/7) for which the long-time
limit is determined by the empty atom-cavity system (FP ) for all initial conditions.

In Fig. 3.9 we track the behaviour of the amplitude of the oscillations as a function
of g/v and observe that the amplitudes decay continuously as the (AMR+SR) phase
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Figure 3.9.: Amplitudes of the oscillations in the (AFM+SR)-OSC phase. Dashed (solid)
blue lines show max(min)[(c?,(¢))] and black lines show max(min)[(|a(t)|?)]. Data is
obtained by extracting the minimum and maximum of the amplitudes of (o ,(t)) and
{la(t)|?) in a time interval chosen such that it contains several oscillations (if any are
present) at long times. If the minimum and maximum coincide, the system settled into a
steady state (a,c) corresponding to the (AFM+SR) phase, otherwise the system is in the
(AFM+SR)-OSC limit cycle phase (b). Close to the (AFM+SR)-phase, the amplitudes

decay continuously. Parameters: (wo/vy =2.0,A/y =0.15,x/7 =0.2,V/y =1.8)
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Figure 3.10.: Non-monotonous behaviour of the order-parameters as the atom-light cou-
pling g/v is varied. The system changes discontinuously from the empty atom-cavity
system (FP,c) into a homogeneous phase (SRyni,d) that becomes unstable towards an
(AFM+SR,e) phase that disappears again in favor for an (SRyny,f) phase. On the
right axis, the purity is shown that consistently decays, indicating the transition into
a mixed state. (b) Stability analysis for homogeneous solutions as plotted in (a). (Un-
stable) stable, homogeneous solutions are plotted as (dotted) thick lines. The transi-
tion from the FP, state into the SRynr state is discontinuous if V/y > 0. Parameters:
(wo/v=20,A/y=—-0.1,k/7y=0.2,V/y=1.8)
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is approached. Numerically, we find no evidence that the (AFM+SR)-phase becomes
unstable towards Hopf bifurcations meaning that stable limit cycles occur only outside
the AFM+SR phase.

We continue our analysis by describing the behaviour of the magnetisations in the different
domains of the phase diagram depicted in Fig. 3.7. In Fig. 3.10a we plot the magnetisation
values in the steady-state for increasing the atom-light coupling g/v. Starting in the
empty atom-cavity, the system changes discontinuously into a SRynt phase that soon after
becomes unstable towards even/odd sublattice magnetisations (AFM+SR) that disappear
again in favour for a re-entrance of the SRynt phase. We depict the homogeneous solutions
SRunt and their stability in Fig.3.10b. We find that for V/4 > 0 the transition into the
Dicke superradiance state is discontinuous.

We note that with v # 0 the length of the semi-classical Bloch vector

(Seo) = ((020) ATl o) s <o§70>) , is not conserved any more and can shrink for increasing
g/ values. In equilibrium systems, an increase in the coupling parameter should stabilize
the order in the steady-state, here we instead observe a non-monotonous behaviour where
the ’order parameters’ decay again after having reached a maximum value. We illustrate
this decay by plotting the purity P = Tr[(pe ® po)?] = Tr[pZ]Tr[p2] of the density matrix
alongside the magnetisations. Both quantities decay as g/+ is increased. In the case of
the purity P this indicates the decay towards a purely mixed state.

The phase transitions in and out of the (AFM+SR) phases are continuous, whereas tran-
sitions from the empty atom-cavity system into the SRynr phase are discontinuous for
V/y > 0, see Fig.3.10. On a mean-field level we observe bistabilities in the phase diagram
depicted in Fig. 3.7. These could be induced by the nonlinearities in the mean-field master
equations or can hint at non-trivial behaviour induced by fluctuations where the system in
the long-time limit switches between the two steady-states predicted on a mean-field level,
see [149] and also chapter 4. Mostly, bistabilities occur with the empty atom-cavity system
(FP}). The corresponding stability line can be calculated analytically from the stability
matrix and we find that it is independent of V since the Rydberg-dressed interaction is
conditioned on population in the excited state, see Eq. (3.41). The size of the (AFM+SR)
region instead does depend on V.

3.4.4. Ideas for quantum-optical implementation of the model

We seek a quantum optical implementation which realizes the Hamiltonian in Egs. (3.1,3.2).
At the core of our model is the "two dipoles in-one" unit depicted in Fig. 3.11. As de-
scribed in the caption, Dipole 1 could be created by weakly admixing a relatively low
quantum number Rydberg level (n ~ 30) to a set of long-lived hyperfine split states

|1) and |0). Dipole 2 couples to the cavity via two far-detuned, excited states |d), |e).

In this section, we present in how the (effective) set of parameters {wo, A, V, g} can be
expressed through the set of external laser parameters {Ag, Ac, ga, ge, Ud, Qe, Qrya

as presented in Fig. 3.11 and as such becomes entirely tunable, as shown in the main
result of this section, see Eq. (3.63).

The atomic levels we consider to realize an effective spin system could be the hyperfine-
structure manifold of the ground states of 8 Rb. Typically this is the 52.5; /2 state split into
the F' = 1 and the F' = 2 manifold such that [0) = ||) = |[FF = 1,mp = —1) and |1) = |1) =
|F' = 2,mp = —2). Here, cavity-assisted Raman transitions couple the (|0),|1)) ground-
states via adiabatic elimination of the detuned excited states (|d) , |e)) to the cavity [26, 49].
Then, the cavity is (indirectly) pumped with photons from the transversal pumping-laser
that scatter off the atoms and populate the cavity mode. In that way, the pump is
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Figure 3.11.: Blueprint for a quantum optical implementation of two dipoles in one atomic
qubit that allow engineering of the spin-spin interation V' and the spin-light coupling ¢
appearing in the Hamiltonians of Egs. (3.1,3.2). The effective spin degree of freedom is
encoded in the levels |1) and |0). The resonator mirrors (grey shades) stands symbollically
for the mirrors of the cavity and the depicted level scheme corresponds to the ground state
manifold 557/, and the first excited state manifold 5P /5 of 8TRb including their typical
frequency splittings. Dipole 1: A dressing laser can weakly admix a Rydberg level to

a ground-state [1) — |1) + Q%Rgdd |[Ryd) = |1). We want the resulting effective potential
Yy

VeI between |1), and |1),, states to be predominantly nearest-neighbor in a square lattice
spaced by an optical wavelength. Complex potentials including angle-dependencies can be
realized [50, 120, 121]. Dipole 2: Cavity-assisted transitions with a double Raman scheme
[26] have been explained in detail in Sec. 1.1, in essence they provide a tunable spin-light
coupling g(, Qy), where Q., Q; are external Rabi frequencies of the driving laser. This
provides the infinite-range coupling between all the spins.

“hidden” in the atom-photon coupling g as g(€2) depends on the Rabi frequency of the
external driving laser.

Dipole 1 in Fig. 3.11, consists of admixing a small part of a Rydberg state to the state |1)
that is also coupled to the cavity.

To first-order in perturbation theory of the driving, the ground-state becomezs dressed with
2%:; Ryd) + O (;Ef;d) , where Qgyq
is the Rabi-frequency and Agyq is the detuning from the Rydberg level. Ground-states
{1),,11) ;} interact then with a dressed Rydberg interaction that can be controlled by
changing ($ryd, Arya) of the dressing laser [150, 151, 152, 153]. Dressing schemes for
Rydberg atoms on optical lattices have recently been experimentally realised [50] and the
effective Rydberg potential depends strongly on the chosen Rydberg states [120].

a small fraction of the excited state |1) ~ |1) +

In a suitably chosen rotating frame of reference the parameters appearing in the Hamilto-
nian Egs. (3.1,3.2), can be expressed as follows. For the spin longitudinal field A and the
effective cavity frequency wgy, we have

A=—A;+ Vya wo = Né + Wa (3.44)
4ARyq ' A, ’

with w, and A; defined in Eq. (3.59). The coherent coupling to the cavity can be tuned
by the two external lasers g, [26]:

9aeQae Qe g3 g
— N ) ) — _—= 4
9=VN 9WNg. ' AAg AN Ay A, (3.45)
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Finally, the Rydberg-mediated potential takes the general form [152]

4
Q
Vel = ( Ryd ) Co (3.46)

2ARyd T?m + Rg ’

and the V appearing in Eq. (3.1) evaluates Eq. (3.46) at a fixed 74, equal to the distance
between neighboring lattice sites such that the tails of the interaction potential can be
neglected and the interaction is effectively step-like. R, is the critical radius defined

by 2ARryqa = V(R.) which yields R, = (ﬁ;yd‘)lm. At smaller distances 1y, < R,
dressing to doubly excited states becomes ineffective because of the large detuning |Agyq|+
Vem- The soft-core potentials contain a number of additional resonances at r;; < R,
which are undesirable to realise clean interactions. To ensure the interacting atoms in an
optical lattice interact via the clean van-der-Waals tail, it is more advantageous to address
relatively low-lying Rydberg states with principal quantum numbers n ~ 30, as R. can then
also shrink down to optical wavelengths. Additionally, we comment that complementary
to optical lattices, two-dimensional arrays of microtraps have already been used [154] to

trap single 8" Rb atoms with lattice spacings ~ pm.

In Sec. 3.5.4, we present an overview of the relevant energy and time scales including a
discussion on problematic Rydberg decays.

Transformation of fully time-dependent model into rotating frame

Here, we detail calculations where we derive how the parameters of the Hamiltonians
Hpin—tight given by Eq. (3.2) and Hgpin given by Eq. (3.1) are related to tunable laser pa-
rameters that result from the optical implementation shown in Fig. 3.11. The Hamiltonian
we consider is of the form

H = Hcav + Hatoms + H(t)pump + Hatom—light + Hatom—atom (347)
Heoy = wOaT (3.48)
Hatoms = de |d), (d] + we |€), (€] + wrya |Ryd), (Ryd| + w1 1), (1] (3.49)
(=1
al Q —iwAet Qd —iwaqt QRyd —iwWA Rt
Hump(t) = 32 e~ e} (1] e d) (0] + =5rteor! IRy (1] + e
(3.50)
N
Hasom-—tight = ) (9ald)¢ (1] + ge€)¢ (0]) @ + h.c. (3.51)
(=1
Hatom—atom = Z Vim (|Ryd>£ (Ryd|) (|R'yd>m <Ryd\) (3.52)
(tm)

The frequencies (wq, We, Wryd, w1) refer to the atomic levels labelled by the sequence (d, e, Ryd, 1)
and are measured relative to the atomic level |0). Correspondingly, the frequencies
(WAd, WAe, way) refer to the laser frequencies of the pump-terms. Here, wy denotes the
bare cavity resonance. We have assumed homogeneous pumping of the atoms from the side
Qd,e);e = Q(a,¢) and a homogeneous coupling of the light field to the atoms g(ge).r = g(d,e)
which is ensured by engineering the intracavity lattice commensurate with the cavity mode
function as shown in Fig. 3.1. We eliminate the explicit time-dependence by switching into

a rotating frame such that the new Hamiltonian reads

H=U'HU — U'idotU, U(t) = exp (—iHot) (3.53)
(3.54)
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where the Hamiltonian Hy is given as
Hy = (WAd —wi)a'a
" 2 (i + 1) e Gl + wana ) (] + 1) (1] + (o + 1) [Ryd), (Rl
(3.55)

Cross coupling lasers need to be tuned such that they are strongly detuned from the
levels (|d) , |e)) which can then be eliminated adiabatically. Under the condition [Ag .| >
(k,7,Q4e), the dynamics of the system are now described by an effective Hamiltonian
FI = FIRyd + ﬁlg + f{LZ

N
= Z )e (11 + [1), (Ryd|) (3.56)
Hgryd = — ARryd Z [Ryd), (Ryd| + > Vi (|[Ryd), (Ryd]) (|[Ryd),, (Ryd|) (3.57)
(=1 (fm)
N 9
Hio ZwaaTa+;[< 4QA ) e U+ 1A Qd |0> (0]

1 geQe
T2 < A,

2 2
) (ot + 2234 1), 0 ra*+h.c.)+ (ZZ'% <ow+gdd|1>g<1|> alal

(3.58)
where we have used the following frequencies
Wa = wo — (Wad — W),
Apyd = ~[wRyd — (War +w1)]
Al =wi — w'l,
2w’1 = WAd — WAe - (3.59)

In a next step, high-lying Rydberg states are admixed to the ground-states |1), to realise
a Rydberg-dressed interaction between the states |1) = [1) + 2%ngdd Ryd) + O (;Zngdd).
Typically, two-body Born-Oppenheimer potentials as a function of the distance r;; between
two Rydberg levels are obtained by diagonalising Hamiltonians of the form Hy, + Hgyq in a
two-atom basis [153]. A detailed calculation that includes coupling to the complicated level
structure is thus highly non-trivial. Focusing on the weak-dressing regime Qryq/Agryd < 1
and red-detuning of the dressing laser we follow the many-body perturbation expansion
performed in Ref. [152] to obtain the effective Hamiltonian for the Rydberg part to leading
order in the corrections

N 02, X ! P
Firna =~ 05 1, (1] + (f;yd) ;ﬁiﬁRgm an (1, )

=1
Ql%{yd ff
= —— 1 Ve 1 3.60
T SLTUES 2#]3 () (1), () (3.60)

It can be seen that the dressed states |I) acquire additional light-shifts ~ Q% itya/ (4ARya)

and the Rydberg potential is tunable by changing (Qryd, Arya). Here, Veff and R, are
defined in Eq. (3.46). We now replace |1) with the dressed Rydberg state ]1) everywhere
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in Eq. (3.58). With

N 1 Y 1Y N

S0, (1] = 237 (1), (= 10y, (0] + V) = 23 er 4 N (3.61)
=1 2€:1 26:1 2

N N N

100, (0 = 2 S0, (1 - 03,00~ M) = 23 er 4 Y (3.62)
=1 2E:l 25:1 2

=1 (m#L)

+ 2_ (24 _ de ) gl 4+ { ofa'+o0,a)+ = (ocfa+0,a }
Sty (8 42 ) alat 30 [ 2% (ol ) + 2% (ofacs o)
1 0L 05

+3 Vuff?é , (3.63)

i#£]

with effective spin-photon couplings (set equal and denoted by g in Eq. (3.45))

9d,eSde
Ae=VNZ=Z=—"—. .64
d,e 2Ad7e (36)

To generate AFM ordering it is advantageous for the effective longitudinal field corre-
sponding to the second term in the first line in Eq. (3.63) to be negative.

We analyse typical orders of magnitudes. The hyperfine structure splitting in the ground
state manifold is wq = 27 x 6.835GHz. Typically the cavity-assisted Raman transitions are
achieved by coupling to the first excited state manifold that is split into a fine-structure
52P1/2 with F/ = 2 and F’ = 1 that for this choice is on the order of 812MHz. The
external driving lasers are separated by approximately twice the ground-state hyperfine
splitting wyr = % (WAd — WAe) ~ w1 such that A = wy; — wyr ~MHz. For weakly admixing
the Rydberg state to the groundstate manifold [1) the detuning from the Rydberg state
ARyq must satisfy Qryq < Arya. Typical Rabi frequencies for the drive to the Rydberg
level are {dgyq ~MHz. The detuning from the Rydberg level now has a frequency compo-
nent wys from the Raman-scheme: Agryq = —[w, — (wa, + wiv)]. This can take the usual
detuning Aryq far above the MHz regime which makes Aryq >> Qryq. The longitudinal

Q2
field (A1 - 4;:;) for Q4 = Q. and Ay = A, is in the MHz range and can in principle

be tuned positive and negative.

3.5. Discussion of results

3.5.1. Comparison with a T" = 0 equilibrium spin mean-field solution

Here we analyze a T" = 0 equilibrium spin model with the same phases as Fig. 3.2 upon
identifying one spin interaction constant with cavity parameters. Specifically, we ana-
lyze Hamiltonians Hgpin—tight Eq. (3.2) and Hgpin Eq. (3.1) within a (standard) equilibrium
mean-field theory for spins. We explain why the equilibrium and non-equilibrium phase
diagram can be mapped onto each other in this specific case. Adiabatically eliminating
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the cavity photons typically results in a coherent and a dissipative term for the atomic
sector. However, here only the coherent part (infinite range atom-atom interaction) sur-
vives and the dissipative contribution is exactly cancelled due to the presence of both co-
and counter-rotating terms ~ (a 4 a')(¢™ + ¢7) in the atom-light interaction. Dynamics
and statistics remain different in the non-equilibrium case, however.

First, we integrate out the quadratic photon terms which yields an effective Hamiltonian
that features a ferromagnetic all-to-all atom-atom coupling J. The connection to the non-
equilibrium system is then made explicit by letting J depend on x as pointed out below.
The Hamiltonian we consider is written as

ﬁ:—fz ’ ff—fZa + VZaee o (3.65)

(bm)

Where the 1/2 in front of the Rydberg interaction avoids overcounting. We cast the
last terms into a spin-language with the replacement §¢ = 1/2(1+ ¢7). We decouple the
interaction terms in mean-field theory by expanding the operators around their mean-value
to linear order in fluctuations. We neglect all second-order fluctuation terms and write the
effective spin-Hamiltonian in a form that resembles the interaction of the spin-variables
with an effective, local magnetic field that needs to be determined self-consistently and
represents the mean field from the neighbouring spins. Ignoring constant energy shifts,
the full mean-field Hamiltonian assuming d = 2-spatial dimensions is given as

~ N
M = =V (08 en) (05aa) + NT (o) + 37 B™oi+ 3 By (3.66)
i€even j€odd

Here, we have already accounted for an even/odd sub-lattice asymmetry in the z—components.
We use the vector of Pauli matrices as o = (0%, 0", O'Z)T and define the local magnetic
fields as

Beven/odd _ ([<ggdd o) V A+ (V = A/2) ] 2427 (0%) .q,»> (3.67)
We evaluate the partition sum
7 =Tr {eﬁff MF} (3.68)
N/2 N
— 2% cosh (1B cosh (|B*) | exp | V8 (o) (haa) — N8I (07)?] (3:69)

to obtain the self-consistency equations for the order-parameters

<0_m >+ <U:E > 1 Bodd 1 N Beven

¢ = R 9 odd/ — 5 tanh <ﬁ|BOdd|) ’BOdd’ 2 5 tanh (ﬁ|Beve |) ’Bﬁven‘ (370)
<O.zv > - <O’Z > 1 Beven 1 Bodd

p= Ty = g tanh (BB ey — g tenh (A1B°) iy (87
o <Ugven> + <J§dd> _ 1 even Beven 1 odd BOdd

PO = 9 5 tanh (B‘B D |Beven| 2 5 tanh (/8|B ‘) ‘Bodd‘ (3'72)

Where p is the staggered magnetisation and pg is the average magnetisation in the z
direction. The magnetic order parameter ¢ measures the magnetisation in z-direction
and 8 = 1/T is the inverse temperature. We denote the free energy per spin in the zero
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temperature limit 7' — 0 as

f_fNTﬁO_ %Nlog(Z)T%O—2V(p po)+J¢
1 AN? AN?
—2(\/<V(p0—p)+V—2) +4J2¢2+\/<V(p+po)+V—2> +4J2¢2)

(3.73)

We can determine the zero-temperature phase-diagram by solving the coupled set of
Egs. (3.70 — 3.72) numerically and retain only the solutions with the lowest free-energy
according to Eq. (3.73). We obtain the splitting in the ((0%.,),(02%;q)) components by
using Eq. (3.12). We find that we can map the equilibrium phase-diagram to the phase dia-
gram obtained by calculating the non-equilibrium steady-states (see Fig. 3.2) if we identify
the ferromagnetic exchange coupling as

4g%wo

J(g,r) = W (3.74)

This coupling is inferred from solving for the steady-state values of the photons (see
Eq. (3.9)) which is given as g ((a) + (aT>) = —29(0%en +0%4) ( 4 4 ) x J(g, k).

w—IiK w+iKk
Allowing the interpretation that the photonic losses with rate x weaken the atom-atom
couplings.

3.5.2. Beyond mean-field effects

Our analysis is based on mean-field theory and in this section we briefly discuss effects not
captured by our approach and alternative theoretical approaches used in the literature.

Several studies investigated effects beyond mean field in driven-dissipative lattice models
that allow to acquire some intuition for the effect of correlations and fluctuations and for
the validity of single-site mean-field studies in driven-lattice models out of equilibrium.
Specifically, various numerical techniques such as variational approaches [155, 156], cluster
models [148, 157], matrix product states [130], or quantum trajectories [149, 158] can help
to shed light on the effects of correlations and fluctuations in the steady-state. However,
most of these studies have focussed on a single short-range interaction, whereas here we
investigated a combination of both short range spin-spin interactions that compete with
infinite range ferromagnetic interactions.

The most dramatic modifications of the mean-field behaviour can be expected in one-
dimensional systems. First, the loss processes will lead to a noise-induced effective tem-
perature for the atomic spins [91, 159]. We thus expect fluctuations to destroy the AFM
long-range ordered phases in Fig. 3.2 for a 1D spin array. Despite the absence of true
long-range order in a one-dimensional system, even-odd correlations will be visible in the
correlation functions and structure factors. The order parameter of the SR phases will
remain stable, due to the effectively infinite range of the interaction, and dimensionality
does not play a role. The comparison of mean-field calculations with numerical methods is
strongly limited to low-dimensional and often to one-dimensional systems, especially when
long-range correlations are to be taken into account which is why quantum simulators are
proposed to model driven-lattice models [130].

Our analysis was, however, focusing on a two-dimensional setup where not only SR but
also the AFM order can be stable in the presence of thermal and non-equilibrium fluc-
tuations as domain walls cost an infinite amount of energy. For the two-dimensional
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spin array discussed in the present paper, we believe the qualitative features are robust,
i.e. fluctuations might shift the phase transitions, induce a finite effective temperature,
and further broaden the spectra but will not fully destroy the order. In particular the
AFM+SR strip ending in the multi-critical point shown in Fig. 3.2 might get washed out
and/or replaced by a first order transition. As an outlook, we investigate an antiferromag-
netic phase transition in the presence of cavity-mediated fluctuations in App. B. However,
driven-dissipative first order transitions are still not fully explored and are currently being
investigated theoretically by looking at the low-frequency behaviour of the spectral gap
in Liouville operators [86]. Most recently, the fluctuation dynamics in a bistable regime
was observed experimentally for a driven system with nonlinear photon-photon interac-
tions [29], we investigate genuine non-equilibrium fluctuation dynamcis theoretically in
Sec. 4.5.

The appearance of two stable fixed points in the long-time limit dynamics of mean-field
master equations are often a consequence of the nonlinear equations of motion [138]. Here,
the actual steady-state depends on the initial conditions. As master-equations for density
matrices typically have a unique steady-state [133], mean-field equations cannot predict
the true stationary state of the system. Fluctuations are needed to explore the vicinity of
the fixed points such that rare fluctuation events, comprised of a sequence of noise-kicks,
allow the system to explore the entirety of phase space to identify the correct long-time-
limit state. We resolve such a fluctuation dominated bistability regime in Chapter 4 with
numerical simulations of classical Langevin equations. Moreover, bistable regions can also
be washed out, when some form of spatial correlation for short-ranged models is taken
into account [160, 155, 156].

Mean-field also does not capture all critical properties. It is interesting to know whether
the oscillating phases shown in the phase diagram of Fig. 3.7 will survive fluctuations
beyond mean field. Let us mention that in a recent experimental investigation of a super-
radiance transition in a spin-1 Dicke model, oscillating phases have been observed (2017,
[115]), where oscillations in the photon number are clearly identified as oscillations in the
cavity output.

We are not aware of a developed technique, which can capture quantum fluctuations for
large, far-from-equilibrium quantum spin systems coupled to the (potentially large) Hilbert
space of one or multiple photon modes. Promising efforts in this direction invoke a fermion
representation of the quantum spins on the closed-time Keldysh contour ([161, 162, 163]
and references therein).

3.5.3. Validity analysis of the even-odd sublattice Ansatz

Here, we determine the linear stability of the homogeneous fixed points of Egs. (3.75-3.79)
against excitations with momentum k, see e.g. References [164, 146]. In driven-dissipative
lattice models with short-range interaction, orderings with incommensurate wavevectors
have been observed [146, 165, 164, 166, 167]. This can happen because of an interplay of
dissipation and a competition of different, momentum-dependent interactions such as in a
driven spin-1/2 XYZ-model [124]. In driven-dissipative Bose-Hubbard-type lattice models
(see e.g. Reference [167]) multimode photon fields are considered which have a finite mo-
mentum dependence. This is in contrast to our single-mode photon field that only couples
to the zero-momentum component. The infinite-range atom-light and the antiferromag-
netic spin-spin interaction suggest that the steady-states can either be uniform or that it
can break the translational invariance of the system, respectively (see also Table 3.1). We
thus expect and find that homogeneous mean field solutions are maximally unstable either
at (kz,ky) = (0,0) or against excitations with (k;, k,) = (7, 7). We outline the analysis



Chapter 3. Rydberg-Dressed Spin Lattice in an Optical Cavity 98

below.
On a mean-field level, we write down the master-equation for every lattice site n

O (on(t)) = (0¥(t)) [A - g Y ({om®) +1)] - % (o5 (1)) (3.75)
(nm)
A (o (t)) = (op(1)) [% > (o7(t) + 1) = A] = 2g[{a(t)) + (o' (t))] (o7, (t)) — % (a0 (1))
(nm)
(3.76)
Or (o7,(1)) =2g[(a(t)) + (a (1)) (oh (£)) — (1 + (o7 (1)) (3.77)
B; (a(t)) = — (k + iwo) (a(t)) —ig > _ (on(t)) (3.78)

O, (al () = — (v — o) (a(t)) +ig Y (o7 (1)), (3.79)

where n is a two-dimensional position vector on the square lattice. We check the validity
of our even-odd sublattice approach by adding plane-wave perturbations to the uniform
steady-states with the Ansatz

(on(t)) = () +0on(t), (a(t)) = (a)+da(t) (3.80)

where o = ((0%), (d¥),(c%))T are the homogeneous solutions to Eqs. (3.75-3.79) and k
contains the wave numbers of the perturbation. We Fourier transform according to

1 — 2
Sorn(t) = 1 > e*moar(t), k= (kok,)". k= Wﬂj, j=0,...,N—1 (3.81)
k

We linearize equations Eqgs. (3.75-3.79) in the fluctuations (do(t), da(t)) and obtain a set
of equations for each wave-vector k

083, (t) = Didy(t) (3.82)
8k (t) = (30f (1), 0o} (1), 6 (1), ba(t), M(t))T (3.83)

with the stability matrix

-3 A —2V((0%) + 1) —V (oY)t 0 0
2V({e*) +1) — A -3 V{o")tr, = 29({a) + (a))  —2¢(0")  —29(0%)
Dy, = 0 29({a) + (at)) —y 2g (o¥) 2g (o¥)
—igd(k) 0 0 — (K + iwp) 0
+igd (k) 0 0 0 —(k — 1wp)
(3.84)

here the momentum dependence is given by tj = cos(k,) + cos(k,). The stability matrix
has eigenvalues A that depend on the wave number k. The sign (£) of the real part of
the eigenvalues determine if perturbations with momentum k decay (-) or grow (4) in
time. If an eigenvalue acquires a positive real part, the uniform solution is unstable. The
dynamics of the instability will be dominated by the wave vector k for which Re[)] is at its
maximum. Inspecting the matrix in Eq. (3.84), one can see that for an infinite system size,
it depends continuously on the momentum k only through the Rydberg interaction which,
on a mean-field level, favors ordering around (k, k) = (m, 7). The appearance of the delta
function d(k) shows that fluctuations in the coherent photon field only couple to uniform
perturbations. In particular, there is no competition with other k-dependent terms that
could induce instabilities at finite momentum k # (0,0). In Fig. 3.12 we show where
the homogeneous solution to Egs. (3.75-3.79) (excluding the empty cavity, where (0%) =



99 3.5. Discussion of results

] Rel[Aumax]
0.4
0.3
0.2

0.1

_0'4.‘.%.‘.i...j..“.‘
0.6 0.8 1.0 1.2 1.4

Figure 3.12.: Instability of the homogeneous solution against excitations with wavevector
(kg, ky) = (m,m), calculated from Eq.(3.84). The color scale shows the real part of the
eigenvalue that is maximally unstable. Using the even-odd sublattice Ansatz we find the
phase-boundary of stable anti ferromagnetic solutions (enclosed by the bold line) which
are consistent with the stability analysis of the homogenous solutions. In the upper half-
plane, where A > 0, there is a region where the homogeneous solution is unstable against
excitations with (kg,ky) = (7, ) but the mean-field antiferromagnetic solutions are not
stable above the bold line. The region around (g/v,A/7v) ~ (1.4,0.18) is bistable and
can show steady-states of (AFM + SR) or SRyny ordering. This plot is done for the same
parameters as in the entire phase diagram that is given in Fig. 3.7

(o) = 0 and (0*) = —1 and (a)=0) in linear response is maximally unstable towards
excitations at (ks, ky) = (7, 7). Within the even-odd sublattice Ansatz of Eqgs. (3.6-3.9)
we include the phase boundary of the stable (AFM + SR) solutions (solid line). Our
results are fully consistent with each other. As it can be seen in Fig.3.12, there is a
region where the homogeneous solution is unstable towards excitation at k = (7, 7)7 but
where the corresponding antiferromagnetic solution is not a stable steady-state. The entire
phase-diagram is given in Fig. 3.7.

3.5.4. Hierarchy of energy scales and problematic Rydberg decays

We now compare typical timescales associated to the Hamiltonian and Liouvillian dy-
namics given by Egs. (3.1)-(3.4), using two recently performed experiments. One on a
2d Ising Hamiltonian with an interaction between Rydberg-dressed ground states, (see
Eq. (3.1)) carried out by Zeiher et al. [50] and an experiment by Baden et al. [49] with
cavity-assisted Raman processes to realise the Dicke superradiance transition with ultra-
cold atoms coupled to a high-finesse optical cavity, as described with the Hamiltonian
given by Eq. (3.2). The list of time and frequency scales is given in Table 3.3 and in Ta-
ble 3.2, respectively. It can be seen that the Rydberg-dressed interaction V is relatively
small compared to the other appearing energy scales. For an experimental realisation of
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‘ yeBB% /21 ‘ 782 /2m ‘ V/2m ‘AZ/27T ‘ K/2m ‘ AB/QTF‘ ge/2m ‘ wo/2m
kHz | 0.003-0.020 | 0.06-0.45 | 0.1-1.8 | 27-64 | 100 | 50-100 | 50-150 | 100-300

Table 3.2.: Hierarchy of frequencies for all involved energy scales. The energy scales in-
volving the spin-spin dynamics (ysB, Vr, V, AZ ) are calculated from experiments by Zeiher
et al. [50]. The energy scales (x, AP, g.,wp) involving the spin-light and cavity dynamics
are calculated from the experiments performed by Baden et al. [49]. Here, AZ and A%
refer to the level splitting of the two-level atom and wy is the effective cavity detuning. g.
refers to the critical atom-light coupling for the superradiance transition in the Singapore
experiment. vgp and 7, refer to black-body radiation induced decay of the Rydberg-state
[168] and the decay time of the bare Rydberg state, respectively.

| ome/B | w2 v | R | R T | Tw
ps | 50880-361808 | 2200-15630 | 552-10472 | 15-36 | 10 | 6-20 | 10-20 | 3-10

Table 3.3.: Hierarchy of timescales for all involved processes calculated from table 3.2.

a phase with an even/odd asymmetry it would thus be required to increase the strength
of interaction. This can be achieved by reducing the laser detuning to the bare Rydberg
level. However, this will lead to higher inherited loss rates for the admixed state. Addi-
tionally, it could be possible to prepare an initial many-body state such that it is close
to a state with an even/odd symmetry breaking. A scheme to prepare such states in
extended Rydberg ensembles is in Ref. [169]. As indicated in Table 3.3, radiative losses
set the longest timescale of the system. However, blackbody radiation induced losses can
limit the coherence time in Rydberg-dressing schemes [50, 168, 170] as a single decay event
can lead to avalanche-like losses of atoms from the trapping lattice. Rydberg atoms are
also very sensitive to stray electric fields imposing additional restrictions on experimental
setups to implement proper shielding from any other source of radiation. However, it was
also pointed out [50], that such impurity Rydberg atoms could be eliminated in future
experiments by using a laser quench before atom-loss occurs.

3.6. Conclusions and future directions

In this chapter we have presented research on a large array of self-interacting qubits
trapped in an intra-cavity lattice interfaced with a single photon mode of an optical res-
onator. The point was to create a simple and yet experimentally relevant base case for a
model of quantum magents with competing short- and long-range interactions in driven-
dissipative systems that can be (approximately) solved.

Why do we believe this is needed? Because of a growing number of experimental platforms
ranging from many-body quantum lattice models in optical cavities, superconducting cir-
cuits, photonic cavity arrays, Rydberg gases and cavities supporting multiple, degenerate
modes that aim to scale up the number of atomic qubits and interface them with single-
or even multimode cavity systems in an effort to realise new quantum phases resulting
from competing, variable-range interaction potentials.

These systems often come with considerable complexity in their theoretical description in
the face of large number of quantum spins, dynamical light fields, competing interactions
with different range, motional degrees of freedom and additional external fields drive and
dissipation and possibly, non-equilibrium fluctuations.
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Our simple model has yielded some experimentally directly testable predictions: A regime
where magnetic translation symmetry breaking and superradiance occur together, a new
even-odd collective mode in the cavity spectrum, and oscillating solutions for both, the
spin components and a coherent photon field.

Unfortunately, we were not able to solve even our simple model exactly; the Rydberg-
mediated nearest-neighbour interaction does induce non-trivial quantum fluctuations be-
tween the spins and our non-equilibrium mean-field ansatz for the density matrix kept
track of only the expectation values of the spin components on the even and odd sub-
lattices, and the photon field, respectively. However, we have discussed possible beyond
mean-field effects extensively in Sec. 3.5.2.

Modern experiments with Rydberg-dressed spin lattices in optical cavities are on track to
check and refine the results we have obtained and there have been promising experimental
realisations very recently (after the publication of this research) on spin-texture formation
in a quantum gas coupled to an optical cavity [114] and oscillating cavity fields in a
superradiant spin-1 Dicke model [115].
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The Dicke model is the generic model for atom-light interactions of a laser-driven en-
semble of two-level atoms with a single, quantized mode of radiation. In experimental
realizations, the coherent exchange of excitations from the light-field and the many-
body spin ensemble features dissipation due to e.g. atomic spontaneous emission and
cavity photon loss. For the atoms, there are two channels of dissipation. The first is
an uncorrelated decay of individual atomic excitations, spontaneous emission, and the
second is a collective decay of an excitation that is shared by IV atoms. In this chap-
ter we analyse the interplay of strong collective and single-site spontaneous emission
processes in the Dicke model.

In Sec. 4.3, we derive a many-body master equation for the dissipative Dicke model
from the quantum Heisenberg-Langevin equations wherein it can be seen that the col-
lective loss channel for atomic excitations induces a new non-linearity in the equations
of motion that competes with the infinite range atom-atom interaction mediated by
the cavity-photons. For strong collective losses, the conventional second-order phase
transition from an empty to a macroscopic occupation of the cavity mode is replaced
with a bistability regime, where an empty and a superradiant cavity are both stable
steady-states under the same driving conditions. Close to the bicritical point, the
dynamics of the system is captured by a Ginzburg-Landau potential that is derived
from a power expansion of an effective slow mode.

In Sec.4.4 we derive a non-thermal, markovian noise strength for the atom-photon
system that can be derived in a Heisenberg-Langevin framework.

In Sec.4.5 we show that, with noise, the system dynamics is described in terms of
semiclassical, stochastic and nonlinear optical Bloch equations which for the infinite-
range Dicke Model become exact in the large-N-limit. In the bistability regime, the
noise renders the states metastable by inducing transitions between them. The ab-
sence of an effective free energy functional, however, necessitates to include fluctuation
corrections with O(1/N) for finite N < oo to locate the non-thermal first-order phase
transition between the superradiant and the empty cavity. The noise induces a gen-
uine non-equilibrium dynamics and breaks detailed balance on a microscopic scale.
However, due to the presence of an inversion symmetry, the noise trajectories are
symmetry constrained and restore detailed balance on a macroscopic scale.

In Sec. 4.6 we numerically track the response of the system to a time-dependent drive
of the atom-light coupling by evaluating the power law decay of hysteresis loops for
finite number of atoms N. The present setup enables the possibility to study both
in experiment and in theory far from equilibrium noise activation, bistability and
hysteresis close to a first-order phase transition.
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e This research is published as: Dissipative Dicke model with collective atomic de-
cay: Bistability, noise-driven activation, and the nonthermal first-order superradi-
ance transition
J. Gelhausen and M. Buchhold, Phys. Rev. A 97, 023807 (2018)

e This chapter contains the research presented in the above mentioned paper. We

go beyond the published research content by including several additional sections,
which are Sec.4.3.1, Sec.4.3.2,
Sec.4.3.3, Sec.4.3.4, Sec.4.5.2, and Sec.4.6. We have also made several changes
in the remaining sections. We have rewritten the summary of results presented at
the beginning of this chapter and have rewritten parts of the introduction mainly
to provide additional information and to update citations of related work that have
meanwhile been published. In general, we added several new smaller paragraphs and
figures mainly to provide more details and a more in-depth analysis of our results.

e Sections and paragraphs not listed above can be found almost identically in the
above mentioned publication.

4.1. Introduction

Investigations of nonequilibrium phase transitions both theoretically and experimentally
are set to strongly influence future research avenues especially in quantum optical systems,
see also the general introduction to this thesis. We study such a driven-dissipative first-
order phase transition in the paradigmatic Dicke model that provides the possibility for
well-controlled approximations in the presence of a large number of cavity-emitters for
both mean-field and fluctuational dynamics.

Bistability in driven quantum optical setups allows to investigate how fluctuations take
a crucial role for quantum many-body dynamics that cannot be captured in a mean-field
analysis. Quantum or classical fluctuations render the predicted mean-field steady-states
metastable by inducing rare transitions between them [171, 172].

Bistabilities are common consequences from competing nonlinearties in the (semiclassical)
dynamical equations of motion. Whether or not fluctuations wash out or collapse the
bistability regime depends on the relation of the intrinsic timescales associated to noise
activation and experimental observation times. For example, semiclassical bistability con-
sistent with a mean-field prediction was observed experimentally in a superconducting
resonator inductively coupled to a large number of negatively charged nitrogen vacancy
center spins in diamond [173]. Here, fluctuations were strongly suppressed by the large
number of atoms , N ~ 10'2, pushing fluctuation times far beyond experimental accessi-
bility. If fluctuations can be resolved, they typically lead to a partial or full collapse of
the bistability regime hinting at an underlying fluctuation induced dissipative first-order
phase transition.

A prime example for an optical bistability is a single, driven cavity with an optical Kerr-
nonlinearity [174]. On the level of single-operator expectation values the system shows a
coexistence regime of two stable states with different photon numbers for the same driving
strength. However, a full quantum treatment [175, 176] reveals that quantum fluctuations
induce a driven-dissipative first-order phase transition in the thermodynamic limit of large
intracavity photon numbers [86]. An experimental realization in a semiconductor micro-
cavity analysed the time-resolved fluctuation dynamics [29].

The growing experimental access and realization of driven-dissipative non-linear systems
that display such a bistability has led to a surge of interest in theoretical descriptions
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for out of equilibrium systems [177, 14, 89, 178, 87, 160] and signatures of first-order
dissipative phase transitions and the crucial role played by fluctuations [30, 29, 179, 85,
180, 181]. For example in a driven circuit quantum electrodynamics system up to three
artificial atoms made of superconducting Josephson junctions were strongly coupled to
a coplanar waveguide resonator which realizes a driven version of the Jaynes-Cummings
model, i.e. two-level systems stronlgy coupled to a harmonic oscillator[182, 183, 184, 173].

We consider the simple, yet paradigmatic Dicke model [185] describing N-atoms coupled
to a single mode cavity. In addition to single photon and single atom loss channels, we
consider a collective atomic loss channel, which enhances the decay rate if excitations are
shared by many atoms. It has been introduced recently in a single-excitation framework for
super- and subradiant cavity states [69] and in a non-superradiant resonance fluoresence
model [186]. We extend this idea to the many-body regime, i.e. we introduce and analyze
the many-body quantum master equation for the dissipative Dicke model with collective
and single atom decay.

We find that if the collective loss strength exceeds a critical value, the conventional second-
order phase transition from the empty to the superradiant state is replaced by a bistable
regime for the dark and the bright cavity, which is absent for weak losses [187]. When the
atomic emitters radiate collectively, the decay rate is actually enhanced by the number
of emitters v — vN. Collective emission of radiation is relevant for many-body states
such as atomic, collective angular momentum or Dicke states where the atomic ensem-
ble can behave like one giant atom. However, superradiance can occur even for a single
photonic excitation that is shared among N atoms and is known as single-photon super-
radiance [55]. Sometimes even two atoms coupled to a single mode resonator are enough
to experimentally observe enhanced radiation rates [76]. This illustrates quite generally
Dicke’s original idea [185] that the emission dynamics of a single atom can be changed by
the presence of a second atom. Geometrically, this behaviour is typically expected when
the atoms are closer together than the wavelength of radiation. However, even for larger
atomic samples the radiation rate can be enhanced [57, 69]. In the present case the relevant
geometric factor (a < 1) depends on the size of the atomic cloud and the cavity param-
eters, see Sec. 1.2.1. The collective excitation rate is then modified as YN — yaN = 4.
However, both the average energy and loss rate per particle have to remain finite in the
thermodynamic limit, which implies that for N — oo, § = const. and is set by the fixed
number of atoms in an experiment. Both the collective and the individual loss channel are
derived from the same Hamiltonian that couples the system degrees of freedom with the
electromagnetic vacuum, see Sec.1.2.1. The collective atomic loss channel does therefore
not introduce any new characteristic time scales that would call the time-local Lindblad
structure and thus the Born-Markov approximations into question that are valid when
system-bath couplings are small v < (wg,ws, g)-

Mapping the quantum dynamics to stochastic optical Bloch equations, we show that the
bistable regime features noise activated transitions between the metastable states. The
noise activation rates are, however, suppressed exponentially with the number of atoms,
such that in the thermodynamic limit one of the metastable states becomes stable and
thus the true steady state. This leads to a collapse of the bistable regime towards a sharp
first-order transition.

The dynamics in the considered model can generally not be derived from the gradient of
a potential, as is the case in dissipative equilibrium systems. However, in the vicinity of
the bicritical point, the dynamics is expressed in terms of a single slow mode. The (04 1)-
dimensional Langevin equation with one component can then always be derived from a
potential. Moreover, fluctuations are not uniformly distributed in phase space and depend
on the current state of the system. This promotes the Dicke model to a prime example to
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Figure 4.1.: Illustration of a model setup. An ensemble of N two-level atoms with a
level splitting characterised by the frequency w, is driven from the side with an external
laser with a Rabi-frequency €2. The cavity photons mediate an infinite-range atom-atom
coupling of strength J (k) (red arrows). There are three incoherent loss-processes. Photons
escape cavity mirrors with rate s, individual atoms can decay incoherently with a rate
~. The atomic ensemble can collectively emit an excitation into the surrounding vacuum
modes with strength v(.

study the fate of hysteresis and bistability also far from equilibrium circumstances.

4.2. Model

IThe state of the cavity ensemble of N atoms and a single photon mode is expressed via
the density matrix p, whose time evolution is given by the Markovian quantum master
equation

Ohp = —ilH, p) + L[] + Llp]. (4.1)

The coherent evolution, including the cavity photon-atom coupling, is given by the Dicke
Hamiltonian [185, 52]

N N
w g
H=wpala+ 2 0i+—=(a+ad ol . 4.2
0 5 ;:1 i /—N( );:1 7 (4.2)

Here, wp,w, is the photon energy and the atomic level splitting and ¢ is the atom-light
coupling strength. Equation (4.2) implicitly contains an external drive laser, whose time-
dependence has been eliminated in a rotating frame [26].

The loss channels are described by the Lindblad terms

N

Ly[p) =7(1 = B/N) S (20 pof = {00, p}) (4.3)
=1

+AB/N(257pST — {5757, p}), (4.4)

Lylp] = r(2apa’ —{ala, p}) . (4.5)

'"Model section taken verbatim from J. Gelhausen and M. Buchhold, Phys. Rev. A 97, 023807 (2018)
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Figure 4.2.: (a) Static hysteresis on mean-field shown for the ¢ component. We fol-
low the (non)trivial steady-state solution to the mean-field equations adiabatically by
(de)increasing the atom-light coupling. The jump for the "<"("—")-direction occurs at
geq ~ 1.78, (ge2 =~ 2.52). The dashed line marks the repulsive fixed points inside the
bistable regime. (b) Bistability regime in (g, 5) space. Inside the spinodal lines marked
by gc,1, ge2 the system possesses two stable minima. One of these minima is always the
empty state, see (a). Parameter set wp/w, = 1.4,7/w, = 0.1x/w, = 0.2, with § = 40 in

(a).

The two-level atoms are modeled by a local spin algebra o = |e); (g],07 = |e); (e] —

9); (g and SF = "), oF. Here (e, g) refers to the excited and ground state of an atom,
respectively and a', a creates, annihilates a cavity photon. Photon loss through the cavity
mirrors with rate x is described by the Lindblad L,. Atomic spontaneous emission into
the electromagnetic vacuum outside the cavity is captured by L.

The atoms can either decay individually and uncorrelated (4.3) or can decay through a
collective channel, resulting from the electromagnetic bath being commonly shared by
all the atoms. In the context of the Dicke model, the most important collective decay
channel is the spontaneous decay of a superradiant state (4.4). A sketch of a systematic
experimental setup is illustrated in Fig.4.1. Intuitively, the photonic rate of dissipation &
and the single atom loss rate - shift the critical atom-light coupling for the superradiant
phase transition towards higher pump strength to compensate for the losses [187, 26, 109,
188]. The collective noise, however, introduces an additional non-linearity, leading to a
drastic modification of the phase transition in the thermodynamic limit N — oo.

4.3. Noiseless mean-field master equations and bicritical point

In this section we analyse noiseless mean-field master equations for spin and photon
amplitudes (deterministic optical Bloch equations) of the dissipative Dicke model. We
analyse their stationary non-equilibrium states and find classical bistability between
an empty atom-cavity system and a superradiant regime for the same set of cou-
pling parameters. Close to a bicritical point, we show that the bistable behaviour is
described in terms of a Ginzbug-Landau potential of an Ising-¢% model.

In order to derive the semiclassical optical Bloch equations for the dissipative Dicke model
(Egs. (4.2)-(4.5)), which can be addressed numerically, we start with the computation of
the Heisenberg-Langevin equations (HLE) for the individual spin and photon operators.
Although the Dicke Hamiltonian in Eq. (4.2) preserves the total spin quantum number of
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the system, the single atom loss components mix sectors of different total spin 52 and the
HLE have to be expressed in the local spin basis.

The HLE for any system operator O; are obtained from a conjugate master equation, see
Sec. 1.2.

8,0; = D;|0] + €2, (4.6)

where the deterministic relaxation D; contains both unitary elements from the system
Hamiltonian H and dissipative elements from the Lindblad £ as

DJ[0] = —il0y, H] + £3]0,] + L1[04], (4.7)

where in £* compared to £ the order of operators in the quantum jump term has been
inverted, e.g. £:[] = x(2a'. a — {a'a,.}).

Applying Eq. (4.6) to the photon field and the individual spin components at site i yields

. N
Bra = — (K + iwo) a — %Zafua, (4.8)
(=1
ool = —wyo! —yol + Wﬁ ofol + &7, (4.9)
£
2g(a’ +a) 1B
2g(a’ + a)
_B (67 +i0)) (o} —ic}) + hel].
2N =i

While incoherent atomic spontaneous emission is linear in the spins, the collective decay
contribution is manifestly nonlinear and non-local, see Eq.(4.10). Note that here we
have rescaled v — 2+ in comparison to chapter 2 and 3 for notational convenience. We
eliminate the gapped photon field by setting d;a = 0 in (4.8) and solve for a. Through the
presence of both co- and counter rotating terms, the photon operators always appear in the
combination (a + af). As a consequence, there is no dissipative contribution ~ g%« to the
equations of motion. The coherent contribution ~ g?wy adds a nonlinear, ferromagnetic
coupling ~ —J/N Y, 07, with

J = 492w/ (K% + Wd). (4.12)

The noise fields of the atoms however inherit a contribution from the photons as (f @+ faT).
The adiabatic elimination is detailed in Sec.4.4.1. The collective decay leads to another,
competing nonlinearity ~ 8 to the HLE, which introduces a bistable regime for parame-
ters 78 =~ J = J., where J, is the critical coupling for the superradiance transition.

We analyze the remaining set of equations for the atoms in a large N-framework, where the
operators in the HLE are replaced by the quantum mechanical average over all atoms, i.e.
we analyze the equations of motion for ¢ = >>,(0f")/N, o = z,y, 2. Approximating the
average of the double sums Zij(U?af )/N? by the product c®c? is correct up to O(1/N)
corrections and becomes exact in the thermodynamic limit. This is due to the infinite
range nature of both the Dicke nonlinearity ~ g and the collective decay ~ (.
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Disregarding the noise yields the deterministic optical Bloch equations
oo = D* (4.13)
with the deterministic force

—vo*(1 — fo?*) — oVw,
D = wyo¥ + Jo¥o* —yo¥(1 — fo?) , (4.14)
—27(0% +1) —vB ((6%)* + (0¥)?) — Jo%a¥

including the additional nonlinearities ~ J, 5+ in comparison to the conventional Bloch
equations [72].

We remark that V, x D # 0 and V, - D # 0, which results from the presence of unitary
and dissipative dynamics and prohibits the interpretation of D as a conservative force,
D # V,V for some potential V. Here, unitary and dissipative dynamics cannot be
generated by the same Hamiltonian functional. This moves the system in general away
from dissipative equilibrium, where the steady states coincide with the minimums of a
generalized energy landscape. This statement will be more clear in chapter 5. That said
however, we will show in Sec. 4.3.2 that close to a bicritical point, the dynamics of the
system is determined entirely from a single slow mode whose dynamical equation can be
cast into a potential form based on a power series expansion of the slow mode. In Sec. 5.4
we show that at the critical point the noise spectrum has a constant noise intensity.
Consequently, there emerges an effective equilibrium description close to the bicritical
point. This behaviour has been observed for a variety of driven-dissipative systems in
quantum optics, see [160] and references therein.

Solving D = 0 yields the mean-field stationary states and determines the steady state
values for the o®. The superradiance transition can be seen in all channels, i.e. the atomic
(0,0Y,07) as well as the photonic channel (a,a'). For the population imbalance 0%, one
finds (considering only real, stable solutions)

1 Jw, w_M’WW_l s (4.15)

z

o —max{—l,g 2572 T,
For collective loss strengths 5 < . (Eq. (4.16)), 0% is a continuous function of the Dicke
coupling g. For coupling strengths above a critical value g > g1 (Eq. (4.17)), 0% ~
|9 — gea1]|"® — 1 always deviates from its empty cavity value of 0 = —1. This goes in
hand with a macroscopic occupation of the cavity mode (afa) ~ N|g — g.1|"=, i.e. the
continuous phase transition from the empty cavity to the superradiant state. Here v, = 1
is the finite temperature photon flux critical exponent [87]. We detail the critical behaviour
of the population imbalance close to the critical point in Sec.4.3.1. The dependence of
the population imbalance on the strength of the atom-light coupling for 8 < . and for
B > pB. is illustrated in Fig.4.3.

Above the critical loss strength, 5 > ., the continuous transition into the superradiant
state is replaced by a discontinuous jump of o® and g still indicates the instability
of the empty atom-cavity system. The magnitude of the jump into the superradiant
regime is a function of the distance from the bicritical point. It is calculated from the
diverging derivative 1/0,0* = 0. The magnitude of the jump for 8 > S, is then given as
14 0%(ge2) = %

A closer look at the optical Bloch equations reveals that there appears a second critical

coupling g2 such that for g.2 < g < g.1 (4.18) both the empty as well as the superra-
diant state appear as attractive stationary mean-field solutions. This indicates classical
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Figure 4.3.: There exists a bicritical point 3. that separates a continuous from a discon-
tinuous superradiance transition. For § < 5. the transition into the superradiant state is
a continuous second-order transition, whereas for 8 > 5. the superradiance transition is a
discontinuous first-order transition.

bistability, where steady states are sensitive towards the initial configuration leading to
the appearance of static hysteresis where the two mean-field solutions can coexist in a
limited domain, see Fig.4.2a. The critical couplings are

Be=1/14+ (w:/7)?, (4.16)

VE?+ w1+ By +w? (417
24/WLwo ’ '

J By (VAZH W2 +7) (5 + )
Ge,2 =

2w,wo

Ge,1 =

The bistable regime is delimited by the spinodal lines (g¢1(3), gc,2(f)) that continuously
connect at the bicritical point 8. as shown in Fig. 4.2b. Inside this regime, the empty and
the superradiant cavity state, appear as attractive fixed points of D.

If the bistable region in (f3, g)-space is entered not through the bicritcal point (8., g. =
9en(Be) = ge2(Bc)) but from outside of the spinodal lines (gc.1, gc,2), an additional solu-
tion appears that is not continuously connected to the existing steady-state. The atomic
inversion ¢* can jump at this point from the empty state to the superradiant state or vice
versa with a magnitude |0§, —o§| =1 — % At the bicritical point however, the transition

from one steady-state to two steady-states is continuous, see Fig. 4.5b.

The Bloch sphere, whose surface is defined as 3, (0%)? = 1 is comprised of three three-
dimensional domains 2y and 2g, corresponding to the basins of attraction of the empty
and the superradiant state, respectively that are separated by a two-dimensional sepa-
ratrix S defined as the surface of these domains S = 9Qy = 9Qg,. The two domains
Qg, are symmetry related and separated from each other through the domain €y. An
unstable fixed point lies on the separatrix ¢* € S. An analysis of the linearised dynamics
around o* shows that it behaves like a saddle-point in the sense that it is characterised
by two repulsive and one attractive direction. At a spinodal line, the separatrix encloses
one of the attractive fixed points and forces it to vanish (saddle-node bifurcation). In a
thermal system described by a free energy functional, a saddle node bifurcation occurs
when a local minimum merges with a local maximum, eliminating both extrema. The
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Figure 4.4.: Shown is one quadrant of the Bloch sphere in the manifold spanned by
(0®,0Y,0%) with the empty and the superradiant fixed points. The first is located at
(0,0,-1). A third, unstable fixed point o* is found on the separatrix that separates the
domains of attraction of the empty (gray dots) from the domain of attraction of the su-
perradiant fixed point (red dots). Black arrows indicate the unstable directions of the
repulsive fixed point. The final state of the system is sensitive to its initial configuration
as illustrated by the two deterministic, relaxational trajectories (blue) that are initialised
at the repulsive fixed point with a small displacement in opposite directions along the
unstable directions.

linearised dynamics around the superradiant fixed points reveal that it is characterised
by an entirely real and two complex conjugated pairs of eigenvalues all with negative real
part. The imaginary part leads to an oscillatory behaviour and the negative real part
ensures the stability of the fixed points. Consequently, the deterministic relaxation to the
superradiant fixed points is a spiraling motion in the (g, manifold. The empty fixed point
is characterised by three real, negative eigenvalues signalizing the absence of oscillatory
motions in the relaxational dynamics. Fig. 4.4 illustrates the domains g g, as well as the
deterministic relaxational dynamics in the domains of attraction.

4.3.1. Classification of bicritical point

The steady-state phase diagram in the mean-field case predicts the occurence of a bista-
bility region. We are interested in the scaling behaviour of the order parameters close to
the phase-transition. In particular, we investigate the bicritical point of the system

K2 1 w2 272 1 o2
{/80790}:{\/14-:/)2, \/TOQ\/(BJFD T ). (4.19)

Voo

There are three different scenarios that can influence the fate of the critical exponent of
the order parameter. These three scenarios are the coherent Dicke model that is purely
Hamiltonian (3, k,7v) = (0,0,0) and represents the case of a closed thermal system. The
second scenario is the entirely quantum and dissipative Dicke model with (6 = 0,k >
0,7 > 0). For the case (8 =0,k =0,7=0) and (8 =0,x # 0,7 = 0) it could be shown
that the photon flux exponents which signalise a macroscopic occupation of the cavity
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Figure 4.5.: (a) Local coordinate system spanned by the r— and h-axis. Along h = 0
and r — 0 one approaches the critical point from inside the bistability regime. (b) Three
solutions for the atomic inversion ¢? in the bistability regime. Corresponding to the empty
atom-cavity system, to the superradiant state and an unstable solution.

mode have different exponents [47]. The purely Hamiltonian model shows a flux exponent
of v, = 1/2, whereas the dissipative model with photonic dissipation has v, = 1. In the
case of (8 >0,k > 0,7 > 0) we observe the following mean-field exponents

}33%)[1 + Uz(g - gc)} ~ (g - gc)l/x’ Vg = 17 (4'20)
[1+07°(9 — 9e)llp=p. ~ (9= 90) va=1/2 (4.21)
[1+0%(8 = Be)llg=g, ~ (B—=B)™, va=1 (4.22)

Here the notation 0*(g — g.) refers to the population imbalance 0% as a function of the
distance to the critical point measured as (g — g.). To reach the bicritical point, requires
to fine-tune two parameters, 5 and g. The different scaling regions in Eq. (4.21) and in
Eq. (4.22) cross over into each other at some well-defined line in (3, g) space. We provide
details for the different scaling regions in Sec. 4.3.4.

4.3.2. Emergence of dissipative equilibrium close to bicritical point

In this section we show explicitly that the dynamics of the system close to the bicritical
point is obtained from a Ginzburg-Landau potential of a ¢®-model with Ising inversion
symmetry, see Eq. (4.31) and Eq. (4.32). ¢ is an effective slow mode that captures the
low frequency relaxation dynamics to the steady state close to the bicritical point. Its
dynamical equation is derived after adiabatically eliminating two massive fast modes.

At the bicritical point, all steady-state solutions converge onto each other as shown in
Fig.4.5b. Therefore, the steady-state of the system is the empty atom-cavity system
characterised as o¢ = (¢%,0Y,0%) = (0,0, —1). Expanding the fluctuationless mean-field
states around their empty state o = o9 + do yields the (linearised) differential equation
that governs the time-evolution of fluctuations.

060 = D(a9)l,, 5, - 60+ O(857). (4.23)

The relaxation rates for deviations from the mean-field solution at the critical point are
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governed by the set of eigenvales {\;} of the relaxation matrix

(=B — 1) —Ws 0
D(UO)’J(gc,ﬁc) = Wz — J(gc> (_/BC - 1)'7 0 ) {)"L} = {_277 _2(ﬁc + 1)770}
0 0 —2

(4.24)

The eigenvalues are entirely real and negative, A\; < 0. Since the time-evolution of the
fluctuations is given by a decomposition into the eigenmodes do = S5, v; exp (\it),
fluctuations decay for \;o but stay constant for A3. At the bicritical point, one mode
becomes critical, indicated by the diverging relaxation timescale 1/7h = A3 — 0 as (g, 5) —
(ge, Be)- The relaxation timescale of the other two modes v1 and v2 remains finite at the
bicritical point indicating an exponentially fast decay. This identifies one slow and two
fast modes.

We describe the relaxation dynamics of the slow and fast modes in an orthogonal coordi-
nate system (r, h) with its origin at the critical point (3., g.) such that we express D(g, )
as D(r,h) where for h = 0 and r > 0 we approach the critical point from inside the
bistability regime. Here, (r, h) are defined by the unitary basis transformation

B(r,h) \ 1 1 —m , 3,
<9(7"ah)>_m2—|—1<m 1 ><h>+<gc>’ (4.25)
m= aﬁgc(ﬁ”gc . (4.26)

A visualisation of the local, orthogonal coordinate system that is spanned by (r, h) is given
in Fig. 4.5a. Next, we parametrise fluctuations in terms of the eigenmodes of the linearized
stability matrix that results from D(r, h) which are the fast (vi(r,h),v2(r, h)) and slow
mode v3(r, h) which for (r,h) = (0,0) are the eigenvectors of the relaxation matrix given
in Eq. (4.24). We expand the fluctuations in these modes as

do = pv1 + Yv2 + vz, (4.27)

where the time dependence is entirely in the set {¢(t),1(t), ¢(t)}. This defines the equa-
tions

cp(t)vl + 1[)02)1)2 + gf‘)’Ug = D(’I“, h,o0 4+ pv1 + Y9 + gf)’Ug). (428)

With an appropriate transformation, one obtains the time-dependence of the slow and fast
modes as

RN
(¢,9.6,) =D(r,h¢,0,0). (4.29)
A numerical solution of Eq. (4.29) is depicted in Fig. 4.6.

We have identified two fast and one slow mode for the dynamics of fluctuations close
to the bicritical point. The fast modes are identified by a finite mass gap due to the
non-vanishing eigenvalue of the stability matrix at the bicritical point, see Eq.(4.24).
Adiabatically eliminating the massive modes (¢, 1) leads to an effective equation for the
slow mode ¢. We take Eq. (4.29) and expand D(r, h, p,1), ¢) to lowest order in the fast
fields (¢,1). However we do not know a priori how small the fields are in comparison to
(r,h). The region of validity of the perturbation dynamics is limited to h < r < 1 around
the critical point at (r = h = 0). The equations are linearised

PN (L9 by
<¢>_<f §><¢>+<b2>+0(¢2’9"¢)a (4.30)
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Figure 4.6.: Numerical solution to Eq. (4.29) showing the slow ¢ (grey) and the two fast
modes ¢ (red) and 1) (black) of the relaxation dynamics close to the bicritical point (r = 0.8
and h = 0.0) for the set (7 = 0.1w,, k = 0.2w,,wp = 1.4w,). In order to map the dynamics
entirely onto the slow mode ¢, the fast modes cannot simply be ignored because they
couple to the slow mode. However, they can be adiabatically eliminated in a linearised
equation (4.30).

where (f, g, f,4,b1, by) are functions of (r, h,¢). Solving these for their steady-state, we
receive an effective equation for the slow mode that is cast into the form of a relaxational
equation,

oH

=55 (4.31)

Here H defines an effective potential,
1 1 1
H= §a2¢2 + 1044254 + éa(;d)ﬁ +0(6%). (4.32)

The potential H obeys necessarily an Ising symmetry ¢ — —¢ and can describe a frist and
a second order transition depending on the set of coefficients (az(r, h), as(r, h), ag(r, h)).
The coefficients themselves depend on the distance to the bicritical point parametrised by
r and h.

The coefficient of the ¢ contribution to the potential must for all parameters (r, h) always
be positive to guarantee stability of the differential equation. This coincides with our
expansion results ag > 0. This is true for higher order coefficients as well such that we
cut off the expansion after the ag term. This scenario defines a stable potential, since

¢liril H — oo. (4.33)
— =00

4.3.3. Ginzburg-Landau potential expansion at bicritical point

The effective potential in Eq. (4.32) in the vicinity of the bicritical point possesses the
Ising inversion symmetry such that only even powers of the slow field ¢ can occur.
The resulting discussion of the phases and phase transitions it describes for the set
of parameters (ag, a4, ag) are well-known from the Ginzburg-Landau theory of phase
transitions and can be found in standard textbooks on statistical physics. In what
follows, we recapitulate these results for the present model.

Depending on the set of coefficients (ag, a4, ag), there is either only one, three or five
extrema see Fig.4.7b. The extrema of the potential satisfy the condition
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?;Z = ¢(az + as¢® + asd*) = 0. (4.34)

There is always a solution with an extremum at ¢ = 0. The other extrema are found at

) —ay — \/ai — 4dasag ) —ay + \/ai — 4asag (4.35)

max 2as ’ min — 2as ’

where @uin and ¢max denote the position of minima and maxima, respectively. If the
square roots in Eq. (4.35) are imaginary, there is just a single minimum at ¢ = 0.

At a second order phase transition, where as changes from as > 0 to as < 0 the global
minimum at ¢ = 0 changes into a local maximum and two new, symmetry related minima
that are described by ¢2,, emerge and continuously evolve from the ¢ = 0 state. This
happens when as changes its sign as a4 > 0. The second order phase transition line is
calculated from

az =0, ag>0. (4.36)

A coexistence of five extrema is possible when ¢2,. > 0 and ¢2,, > 0 and a4 < 0 and
az > 0. This happens when the inversion symmetry in the system is broken. Due to
the stability of the potential these are ordered as min — max — min — mazxr — min. The
coexistence regime is delimited by two spinodal lines. The first is calculated from a sign
change of as from as < 0 to ap > 0 as a4 < 0. In this case there are three extrema
(¢ =0,¢2 ), where the local maximum at ¢ = 0 becomes a local minimum again as two
local maxima emerge continuously from ¢ = 0 whoose evolution is described by ¢2.. .
At the second spinodal line, there emerge two new minima and maxima at some ¢ > 0
in addition to the global minimum at ¢ = 0. This happens when ¢2, = ¢2... The
two spinodal lines connect at the bicritical point. A spinodal line is thus defined at the
line where a local extremum merges with a saddle point and is thus the equivalent of a
saddle-node bifurcation. Spinodal lines thus delimit coexistence regimes of more than one

local minima. In summary, the condition for the spinodal lines is
(a2=0 A ag<0) V (a2>0 A ag<0, Aaz—4a2a6:0). (4.37)

The spinodal lines calculated with Eq.(4.37) are consistent with the calculations of g. 1 and
ge2 in Eq. (4.17) and Eq. (4.18). Inside the coexistence regime there will be a line where
all minima have the same potential value. This line defines a first-order phase transition
that sets in as

. _ 3aj
Ay = .
16a6
Since one minima is always located at ¢ = 0, the potential value at this transition point

is set to H = 0. The zeros of the potential energy (except for ¢ = 0) are derived from the
conditions

—3a4 £ \/9a2 — 48asag 2
> ! H() =0, H 0 ai=-"1 0 (439)

(4.38)

* T dag ’ YT 06l T ™ T T6a
At the first-order phase transition, the minima are thus at
3(14
20 %
=——. 4.40

A summary of the above relations is given in form of a phase diagram depicted in Fig.4.7.



Chapter 4. First-Order Phase Transition in the Dicke model with collective loss 116

02F 0.15
o1l N _0.10f
.................. 2 0.05)
;J; 0.0 —lower spinodal 5 /
— _(.1 [~ uwpper spinodal <2 0.00
‘"I @ First Order p < >
—0.2F Second Order 1 = -0.05¢
0.3 . . L -0.10¢ ‘ ‘ ‘ ‘
-0.04 -0.02 0.00 0.02 0.04 ~0.10 =0.05 0.00 0.05 0.10
r ¢
(a) (b)
2_
— as”=|4az as|
2¢ =0
: e =0
" E ] . 02 ()12
S . :. ¢mm,1 a —7‘)
Ab o2 1/4
E b ¢ ¢m1n2 < 06) h
' [ ] ®min,3 %NT’I/Q
-0.3"

-0.04 -0.02 0.00 0.02 0.04
T

()

Figure 4.7.: (a) Phase diagram in (r, h) space around the bicritical point, located at (r =
0,h = 0). For an orientation in (g, 3) coordinates, see Fig.4.5a. The second order phase
transition (yellow, dotted) is calculated from Eq.(4.36), the first-order transition line
(dotted, red) is obtained from Eq. (4.38). Spinodal lines from Eq. (4.17) and Eq. (4.18) are
consistent with the expansion in Eq. (4.37). (b) Potential #H, see Eq. (4.94) for the points
marked in (a).(c) Different scaling regimes of the order parameter as illustrated by the set
of Eqs. (4.42)-(4.44).



117 4.4. Derivation of Heisenberg-Langevin Noise in Born-Markov approximation

4.3.4. Scaling of slow mode close to bicritical point

We can approach the bicritical point from two independent directions, parametrised by r
and h. As r — 0 and h — 0 all minima and maxima vanish continuously at the bicritical
point. By expanding the minima ¢2, from Eq. (4.35) close to the bicritical point, one can
get two different critical exponents for the order parameter scaling. One direction is on
the line in (7, h)-space where a4 = 0 and the other line is defined by the condition ay = 0.
Close to the bicritical point, the minima are determined by

—aq4 + \/a2 — 4dasag
! . (4.41)

2&6

2
d)min =

The scaling of the order parameter close to the bicritical point can be understood from a
series expansion of the above equation in the different regions

Dmin,1 ~ “—7(12 ~ (—7")1/2, lag| < |ag], with ag <0 A ag >0, (4.42)
4

1/4
Prmin2 ~ <—Z2) ~ b4 dagas| > a3, with ag <0, (4.43)
6
(ﬁmin,g ~ T ~ 7’1/2, |CL2‘ <K ]a4|, with a9 >0 A a4 < 0. (4.44)
ag

The scaling region for ¢min 2 is separated from the two scaling regions of ¢uin,1 and ¢min,3
by a crossoverline determined from the condition

a? = |dasag), (4.45)

which coincide with the condition of one of the two spinodal lines as described in Eq. (4.37).

The different scaling regions are illustrated in Fig.4.7c. This closes the discussion of the
noiseless mean-field master equations.

4.4. Derivation of Heisenberg-Langevin Noise in Born-Markov
approximation

We have closed the discussion of noiseless mean-field master equations in the last
section. In this section we show how to add back fluctuations to the deterministic
optical Bloch equations. This is important to numerically explore the fluctuation
dynamics in the bistability regime. We start by translating the quantum noise terms
in the Heisenberg-Langevin equations for the atom-cavity system to a classical noise
contribution, which adds to the mean-field master equations and yields stochastic
optical Bloch equations. We show how to eliminate the cavity-photons in the presence
of noise. As a consequence, the dynamics is entirely mapped onto the atomic sector
which inherits noise contributions from the photons. Lastly, we show how the operator-
valued noise kernel is translated to a classical noise kernel.

We derive the noise operators for both the atoms and the cavity photons explicitly in
a Heisenberg-Langevin framework, see Egs. (4.57-4.60). This allows a fast evaluation of
a noise kernel (o) = (€9i¢0t Jbat, i1 the Born-Markov approximation, where O; and
Oy are system operators. We apply the standard Heisenberg-Langevin theory where the
interaction of the system with the external bath is specified in terms of a Hamiltonian
Hgys patn that couples the bath modes linearly to the system operators, see e.g. [72]. The
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two statistically independent baths for the photons and for the atoms are the continuum
of radiation modes outside the cavity. We consider the system-bath Hamiltonians in the
interaction picture

HES () = > (%,eazrbkei(“’z_”’“)t - cc') ,HDOR ()= <5~kaTCk€i(w0_wk)t + Cc.) ,
ff=1 !
(4.46)

where we have coupled all emitters O'Et in Hﬁ;‘gﬁl_ssys (t) to one set of bath modes bzbk which
also allows for collective emission of excitations outside of the cavity that become relevant
in the superradiant regime. Here wg and w, refer to effective frequencies for the photons
and the atoms in a frame rotating at a frequency set by the external laser drive, see e.g.
[26]. The Heisenberg equation of motions for the system and the bath operators can be
written as

Orar = —ilag, Hy] = —i Zékck,tei(wo_wk)ta (4.47)
k
N .
Oubioe = —ilbpe, Hy) = —i' et yog e @70, (4.48)
(=1
N .
Orcry = —ilbpg, Hi] = —i Y & gage " @=mwr)t, (4.49)
(=1
0oy, = —iloy , Hi] =iy of by e’ leyy, (4.50)
k
6Uf/7t = —i[O’Zt, Ht] = Z (—22'02/_tbkjtei(wz_yk)tskll - CC.) . (4.51)
k
Here we have used H; = HPoMS . (t) + Hggf}fizi,s(t) We eliminate the bath degree of

freedom by formal integration of their equations of motion

t N t N

. i\ ) ~ o ,

bk;,t = bk:,O — Z/O dt’ § Ez,éaé,t’e i(wz—vp)t , Cht = Chko — Z/O dt’ § :Qt,zat’e (wz—wg )t
t=1 =1

(4.52)

and insert Eqs. (4.52) and the conjugates into the equations of motion for the system
operators given by Eqgs. (4.47-4.51).

Opay = & — /0 t dt’ Zk: AR (4.53)

ata;,t _ Ezt N /Ot v Z ]5k]2€i(k_k0)(”_rll)]:k,wz,t,t’UZt/Ut%',w (4.54)
Lk

oy, =&, + /0 t dt’ sz: |ek|Qe—i(k—ko)(re—w#,;‘Mt,t,ag,’taejt,, (4.55)

Oy =&y — 2 </0t dt/azt %: |gk|2ei(k’k0)(7“l*’"l')fk7wz7t7t/azt, + cc.) . (4.56)

Equations (4.53)-(4.56) now contain only the dissipative and fluctuating components that
arise from the interaction of the system with the external reservoir. The explicit form of
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the noise-operators can be read off as

& = —zZéka —iwo—wi)t, (4.57)
&, = —i Z b (0)7 () (W= w)teg eilh—ko)rer (4.58)
§op =1 Z o +bk (0 Hwsmvh)te emilk—ko)ry (4.59)
Sy = Z <2ibk (O)JE_,’teke_i(“’z_”k)tei(k_ko)r‘f’ + cc.) , (4.60)

k

within the Born-Markov approximation, the frequency independent damping constants
are parametrised by the relations

Vot —t') = |en* Frpw = 27lew, [*D(w:)s(t — t'), (4.61)
k
2%(5@ — t,) = Z ‘ék‘QFkﬂg’t/ = 27r|6w0|2D(w0)5(t — t/),
k
Frewtr = expl—i(w — vp)(t — t]. (4.62)
Here, we have taken e, = epe "k=ko)Te a5 the cavity-shifted, spatially dependent atom-

photon coupling to the bath modes by outside of the cavity, where kg is the cavity wave
vector. D(wp) and D(w,) are the density of states of the bath modes and ¢, ¢, are the
microscopic system-bath coupling constants evaluated at the effective photon frequency
wp and the effective atom frequency w,.

4.4.1. Adiabatic elimination of the photons in the presence of noise

We detail the elimination of the cavity photons in the presence of photonic noise functions

(5“,5‘”) below. As a result, the local atomic components (7,07, 07) at site ¢ inherit
additional noise from the photons with strength o %, where J = 4w92$22. Since the
0

photons mediate an all-to-all coupling of the atoms for the deterministic dynamics, the
noise inherited from the photons adds to the collective loss term of the atoms ~ ~/ in the
0¥ and o*-channel. However, since both co- and counter-rotating terms ~ (a + a') Y, oy
are present in the Dicke-Hamiltonian, the o®-channel does not inherit a photonic noise
component. Also, there are no additional dissipative contributions that appear in the
deterministic equations of motion for the atoms ~ kg due to the destructive interference
of the coupling to the photons in the form of (a + al).

On the level of single operator expectation values for the system variables (.) = (), one
can define a collective variable for the atoms o as well as a collective variable for the
atomic noise £ and a photon noise 7 that appears for the macroscopic expectation value
« for the photons

N
=Y (oPy N, €F = \ﬁZQ (4.63)

/=1

n=("/VN, a={a)/VN. (4.64)

These averages must be taken with care. It indicates only the quantum mechanical average
of system operators and not the noise average, which corresponds to the expectation value
of bath operators. The first and second moments of the noise are (£*)poise = 0 and
({-)noise indicating noise average, (.)systbath average of system and bath operators). We
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start by considering the Heisenberg-Langevin equations given in Eq. (4.8) - (4.11) for single
operator expectation values

O = — (K + iwg) a — igo”® + 1, (4.65)

0o? = w,o” — 29(a + a*) — yBcY] 07 — vyl + &Y, (4.66)

0r0* =2g(a+ a*)o? —2v(1 + 0%) —yB[o 0" + 0¥0?] + £*. (4.67)

We eliminate the gapped (wg # 0,wp > K, 7, wp > w,) photon degrees of freedom (O, = 0)
to obtain their steady-state value as

oot = ZNH9oT T —igo” (4.68)

—K — iWo —K +iwy
Plugging Eq. (4.68) in Eq. (4.66) and in Eq. (4.67) leads to a redefined noise function in
the o¥(*)-channel

cy(z z 29 z * ; *
guie) = vl )HFKQJFW(%U Wk + 1) = iwo(n — ") (4.69)
0¥ = w,0" + Jo0* + yBoYa® — yo¥ + &Y (4.70)
Do = —Jo%0¥ — 2v(1 + 0%) — yB[o"0” + a¥o¥] + &7 (4.71)
The covariances of the atoms now contain a noise contribution from the photon field
<gy(2)gy(Z)>noise = <£y(Z)§y(Z)>noise + UZ(y)UZ(y)wi <77*77 + nn*>noise ’ (472)
0
~ ~Z 2 z J k *
<§y£ >noise = <£y£ >noise —-g Uywio <77 n + nn >noise . (4'73)

Taking the bath for the photons to be in a zero temperature vacuum state, the noise
correlation function is, according to Eq. (4.57)

(n*n+mm*) =2k/No(t —t'). (4.74)
We remark that the so-obtained variances for the atoms and photons are equivalent to the
variances that would be obtained in the associated MSRDJ-path integral [189, 190, 191]
for the complex fields (at, a) and for the real fields (of, 07, 0f) where the photon degrees

of freedom are then integrated out exactly for the zero-frequency sector. We show this
explicitly in Sec.5.1.

4.4.2. Derivation of classical noise kernel x for stochastic optical Bloch equations

We evaluate the operator-valued noise-kernel of the atoms y;¢(o) = (£€9:€9¢), ., and
show how it can be mapped to a classical noise matrix.

The evaluation of noise correlation functions is now performed as an average over the bath
degrees of freedom denoted as (.), ., Where the expectation value is a thermal average over
a zero-temperature bath. Since the external bath is described by the vacuum and only
terms o< bk(O)bL(O) contribute, correlations of the form (¢*(¢)...) =0and (... £ (t)) =0
vanish.

The noise-correlations for the atomic degrees of freedom can be expressed by using Eqs. (4.58-
4.60) as

(€ w€l )y o =270t =) |80 + (1= Se0)a | Ky, (4.75)
3 0 0 0
ﬂee = J;’,tgl%,t 0 _205',7&(7(_715 (4.76)

+ .z + -
—206’,1506,15 0 405,7150“ i
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where the indices (7, j) € (+, —, 2) refer to the atomic variables. The entries of the matrix
X7p are still dependent on the system operators aé at site £. With the relations £ = 5[ +&,
and & = —i(¢S — &,7) we rotate from (+, —, z) into the (z,y, 2) basis

Z oo} —icj 0} —oj(0f —io})
xjg = 1050 oHof —ioj(of —io}) , (4.77)
—(of +iop)of i(of +ioh)of Xif

tj
with X7 = (0f0} + opof +i(oyof —of0})). For the components with ¢ = ¢’ the local
spin algebra can be used to write the correlation matrix for the local noise components as

1 —i (o} —ic})
% = i | i(of —iod) | . (4.78)
(of +ic})) —i(of +io)) 2(1+0F)

Equations (4.77)-(4.78) together with Eq. (4.69) are the starting point to obtain the cor-
responding classical noise kernel (o). This is consistent with the noise matrix obtained
from the generalised Einstein Relations in Eq. (1.150).

Mapping the photonic and atomic noise correlations to a classical noise kernel

The general correlation matrix yg in Eq. (4.77) was obtained by averaging over the bath
degrees of freedom and still depends on the system operators of with a@ = (z,y, 2) and ¢
as the local site index. For a mapping to a classical noise correlation matrix it is necessary
to erase the information on commutation relations. This is achieved by symmetrising the
matrix entries X}, which amounts to taking their real part Re[xw] This procedure leads
to a symmetric, real and positive definite noise kernel and is thus well-defined.
We are interested in the noise strength for the equations of motion of the collective variable
@ =320 (07)sys /N with the averaged noise £ =3, (& )Sys /V'N, where (. )sys 1S @ quan-

tum mechanical average over the system variables. Here £ is the modified noise function
of the atoms that contains both an atomic and photonic contribution for o = (y, z) stem-
ming from the elimination of the cavity degrees of freedom and is defined in Eq. (4.69).
The o®-channel is free of a photonic contribution as discussed previously. The noise aver-
age (.)poise t0 Obtain the classical correlation matrix x is then defined by averaging over
both bath and system degrees of freedom

<£~a£ﬁ>noise = N_1<Z éggyﬁn>sys+bath (4-79)
m
-1 ~af -1 2Jk af
= 30— O3 (3 + (1= G| Rl + NS D
=0(t— )X“B(UL (4.80)
where the contributions from the photons is specified as
(M) = () (0F), (M), = (o!) (o), (ME), = (MY =~ (0F) (o}).

The noise correlation matrix y*?(o) is specified in Eq. (4.85) and contains now a noise
component from the local, uncorrelated loss processes ~ v as well as from the collective
loss processes ~ 3 = ya(N — 1), where = const. in the thermodynamic limit and a
contribution from the photons ~ 2Jk/wg. From Eq. (4.80) one can see that the variance
of the sum of the random noise functions 3, (€2)_ _ scales with the number of atoms N

Sys
as expected for instance from the central limit theorem.
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4.5. Stochastic optical Bloch equations

We analyse the fluctuation dynamics in the bistability regime by an explicit numerical
simulation of the stochastic optical Bloch equations. We find that the bistability
regime collapses to a dissipative first-order phase transition that is driven by non-
thermal fluctuations.

2Upon elimination of the cavity photons, we obtain the dynamical equation of motion of
the system in a semiclassical, large N framework as stochastic optical Bloch equations

1
do0® = D* + ——¢°, 4.82
; ~¢ (4.82)

Vi

with the definitions

N

o =3 (o)) /N, €8 =3 (e))/VN. (4.83)

(=1 l

The noise correlations for the atoms include the photonic contributions and are given as

<§Q§B>noise = N_1<Z 5?551>Sy5+bath - 5(t - t,)XaB(U>- (4-84)

lm

In the large-N limit, the covariance matrix is

v (B(o*)? + 1)
X =2 0 (R +78) (%) +~ . , (4.85)
oc’(1=po%)y o¥(y—(F+7B)0%) x33(0)

where x33(0) = &(0¥)? + Y[B((6%)? + (6¥)?) + 2(0* + 1)], & = kJ/wp and x = x T is sym-
metric, real and positive semi-definite for ", (c®)? < 1, i.e. as long as o represents a
state within the Bloch sphere. For a continuous time evolution, neither the deterministic
force D nor the noise drives the system out of the Bloch sphere. The latter is ensured by
X1 ~ ||0c||, where x| is the (local) perpendicular noise strength and do the distance to
the Bloch sphere.

Local noise terms break the translational invariance of the system. However, due to
the infinite-range interactions of the Dicke system there is no spatial resolution and the
description in terms of the collective variable 0 is correct up to O(1/N). Locally induced,
noise-driven spin flips cause energetic corrections of order O(J/N) such that for any finite
N < oo the two fixed points can only be connected via a concatenation of O(N) subsequent
noise kicks. Such collective events of noise kicks drive the system from the basin of
attraction of one fixed point to the basin of attraction of the other. They occur on
timescales set by 7N where 7! is the state-dependent rate of a single spin flip set by the
noise profile x(o).

Within the bistable regime, the deterministic optical Bloch equations split the Bloch sphere
into three basins of attraction, separated by a repulsive manifold, which cannot be crossed
by any deterministic path, as illustrated in Fig. 4.4.

The initial Liouvillian quantum master equation given in Eqs. (4.3-4.5) however is pre-
dicted to have a unique stationary state for finite IV [86]. This state would be obtained by

2The first subsection of this section is taken almost verbatim from the publication J. Gelhausen and M.
Buchhold, Phys. Rev. A 97, 023807 (2018).
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Figure 4.8.: (a) Noise-induced transitions from the empty (shaded) to the superradiant
state. Each line is a moving average over a time window (¢ £ 4)w,. (b) Log-plot of mean
times spent in the superradiant- (tg,) and in the empty cavity state (¢y) corresponding
to vertical line in Fig.4.10a). Circular shapes are mean transition frequencies (v) =
#jumps/ty, obtained from counting the total number of jumps normalised to the total
simulation time ¢y, (c¢) Exponential sensitivity of mean occupation times to the number of
atoms N.

diagonalizing the Liouvillian and by finding its right-eigenvector that corresponds to the
zero-eigenvalue state. Let us remark that this procedure does not ignore the noise corre-
lations since they can be generated from the Liouvillian through the generalised Einstein
relations. In the absence of the noise function, the mean-field equations however fail to
predict the unique stationary state. This lack of ergodicity, is overcome by considering
the original HLE that explicitly contain the influence of the environment onto the system
through the presence of noise-operators.

4.5.1. Real-time dynamics and fluctuation induced first-order phase transition

3In contrast to a bistable system in equilibrium, where the occupation of the states in
the long-time and large system-size limit is entirely determined by a mean-field analysis
of the minimum of a free energy potential, the occupation times of the metastable states
out-of equilibrium can only be determined beyond mean-field by including fluctuations
of O(1/N) in a numerical simulation for finite N < oo [20]. Simulation of Eq. (4.82)
requires a careful implementation of the thermodynamic limit. Taking N — oo first, leads
the noise ~ 1/ V/N to vanish and one ends up with the deterministic equations, i.e. two
disconnected steady states. On the other hand, taking t — oo first and then N — oo, for
any finite N the long-time behavior is characterized by an admixture of the empty and
the superradiant state. We investigate the stationary state distributions and the statistics
for the occupations times in Sec. 4.5.2.

3This subsection is taken almost verbatim from the publication J. Gelhausen and M. Buchhold, Phys.
Rev. A 97, 023807 (2018).
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o B

Figure 4.9.: Steady state landscape of the Bloch equations (4.82) in the bistable regime.
Red lines (with arrows) departing from repulsive fixed points show deterministic mo-
tion, blue lines (no arrows) show noise-induced dynamics. There are 3 attractive (black
sphere) and 2 repulsive (gray sphere) fixed points, interrelated by the Ising symmetry
(c®,0Y,0%) — (—0®,—0Y,0%). Dotted points map out the surface of the unit Bloch
sphere and serve as a guide to the eye.
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Figure 4.10.: a) Mean-field bistability region delimited by the spinodal (broken) lines and
fluctuation induced first order transition (bold) line at g(f). Vertical line cuts through
the phase diagram as shown in b) and c¢). b) (Mean-field) Hysteresis inside the bistable
regime obtained by adiabatically following the increasing (red), decreasing (black) atom-
light coupling. ¢) Average amount of time spent in the superradiant state obtained from
stochastic Bloch equations for different atom numbers N, see Eq. (4.82). For N — oo it
approaches a step function, revealing a first-order transition at § (intersection), as shown
in a). Parameter set wp = 1.4w,, v = k = 0.2w,, with g = 40.
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The dynamics of the spin vector o is obtained by interpreting Eq. (4.82) in an Ito-sense
and numerically simulating the time-evolution with a two-stage stochastic Runge-Kutta
algorithm [192, 193]. For a detailed description of the implementation of the algorithm,
see App. A. The corresponding dynamics of o including rare fluctuations between the dark
and the bright cavity are visualized in Fig. 4.9 and, with temporal resolution, in Fig. 4.8a.

Tuning the atom-light coupling g through the bistable regime at fixed collective loss rate
v, Fig. 4.10a, we obtain a histogram for the distribution of time intervals spent in the
empty (tp) and in the superradiant state (g, ), see Fig.4.11. The mean occupation times
(ta) in Fig. 4.8b) are obtained by summing over all intervals (t,) = >, tio/ > ; with
a = {a, Sr} as seen in Fig.4.8a). We observe an exponential dependence of log (ts,) ~ ¢
in the superradiant state and a strongly stretched exponential log (to) ~ ¢ !0 in the empty
state, Fig. 4.8b.

For any N < oo, the steady state is a statistical mixture of the empty and the superradiant
state and the degree of mixing is expressed via the superradiance occupation ratio pg, =
(tsr) /((tsr)+(to)). It interpolates continuously between pg,(ge,2) = 0 and pgr(ge,1) = 1 as
a function of the atom-light coupling g and varies on a scale Ag ~ 1/N, see Fig. 4.10c. In
the thermodynamic limit N — oo, ps, — O(g — §) approaches a step-function, indicating
a discontinuous jump and a first order phase transition from the empty to the superradiant
state at a critical coupling g(53), Fig 4.10a.

The exponential increase of the occupation times log(ts, o) ~ N is depicted in Fig. 4.8c.
This suggests a typical Arrhenius law (tg,0) = Asr0exp(Ntsr0), which is confirmed by
the classical MSRJD action [189, 190, 191] associated to the stochastical optical Bloch
equations (4.82). Here, 1, is the non-equilibrium potential, which depends both on the
path and on the relative noise strength between the two stable solutions and lacks the
interpretation of a free energy functional [20]. This statement will become more clear in
chapter 5. The Ising symmetry reduces the long time dynamics to that of an effective
two-level system, which always fulfills detailed balance, and makes the non-equilibrium
nature of the bistability hardly observable on the level of the transition rates. Lifting
the degeneracy between the two superradiant states leads to three genuinely different
metastable states. This three-level configuration explicitly lacks detailed balance and
allows for a circulating current in the stationary state which is a clear non-equilibrium
signature that is experimentally accessible, see Appendix C.

4.5.2. Statistics for the fluctuation dynamics in the bistability regime

We collect histogram data from a numerical simulation of Eq. (4.82) to construct a
probability distribution P for the atomic components (6*,0¥,0%) and a probability
distribution P (to) for the residence times {to} in the empty atom-cavity state in
the stationary state for finite values of N with 1 <« N <« oco. We show numer-
ically and theoretically that the residence times are exponentially distributed. By
projecting the statistics P(0®,0¥,0%) onto a single variable ¢, we compare the sta-
tionary state distribution to a power series expansion of a scalar function I'(c®) as
P(0%) ~ exp (—T'(0%).

We are interested in the statistical properties of the fluctuation dynamics such as the
mean-residence times (At) g, in the empty (0) and the superradiant state (Sr) and their
corresponding decay rates Ao 5. A decay event triggers the transition from the empty into
the superradiant state or vice versa. We obtain statistical information on the residence
times by a numerical simulation of equation Eq. (4.83).

Keeping N finite and then simulating Eq. (4.82) for a long time (¢ — c0) generates a time
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sequence where the state of the system constantly changes between the empty and the
superradiant cavity. The time that the system spends in either of these states (referred
to as residence or occupation times) before it makes a transition into the other state is
distributed randomly. We want to ascertain the probability distribution for these random
time intervals in the steady state. A steady-state is now understood as the statement that
for finite IV and long simulation times ¢ the ratio of the mean of the residence times stays
constant (t),/ (t)g, = const.. For finite NV there is still a parameter regime in which the
residence times of both states can be of the same order of magnitude (t), ~ (t)g,..

The randomly distributed residence times for both states can be described with the same
probability density distribution and are distinguished by their decay rate A(g g,y only.
Since the system is memoryless we assume these two probability density distributions
to be independent of one another. We obtain the probability density function for the
distribution of residence times in either state from a collection of histogram data. The
residence times are found to obey an exponential distribution as

P(O,Sr)(At) = )‘(O,Sr) exXp (—)\(0757")At) . (4.86)

This is illustrated in Fig.4.11. Since the residence times are continuously distributed,
P(0,sr) is a probability density and Py g,y(At)dt is the probability for observing a residence
time between [At, At + dt]. Ao sy is an event rate and gives an indication of fluctuation
induced transitions per unit time interval. From Eq.(4.86) it is clear that the mean
residence time is linked to Ao g, as

| APy (ADAL = /250 = (At s, (4.87)

In the following we briefly review why Eq. (4.86) generally describes the distribution of
time intervals between two uncorrelated decay events. It naturally emerges for instance to
describe the time differences between two decay events of an ensemble of NV independently
decaying radioactive atoms. The derivation that follows is therefore a standard derivation
that can be found in elementary textbooks on radioactive decay or statistics, see e.g. [194].

Derivation for probability density of residence times

The probability w(g g, that a rare noise-event in the time ¢ drives the system from the
basin of attraction of one fixed point into the other is modelled as

w(oys,,)(ét) = )\(O’ST)(SZL/. (4.88)

which is valid for times much smaller than the mean residence time 0t < (At) g, in the
corresponding state. Consequently, the (survival) probability to still find the system in its
initial state after time 0t is then approximated as

Po,sr)(0t) = 1 — wo,sr(t). (4.89)

In order to find the survival probability P g,) for an arbitrary length of time At, we
consider k slices of this time interval oty = At/k and then take the limit & — oco. The
survival probability in this limit is then the product to survive in every time slice k£ and
given as

: . . At\F
Plo,sr)(At) = lim I1;[Po,s(3ty)] = lim 1L {1 - w(O,Sr)(At/k):| = lim (1 - )‘(O,Sr)k)

k—o0

= exp (—A(& ST)At) . (4.90)
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Pyo,sr)(At) is the probability to find the system in the empty(superradiant) state after a
length of time At where at At = 0 the system is initially in that same state.

However, numerically we cannot directly measure the probability P g, (At) but we can
measure the residence times in either state before the system decays, i.e.the lifetimes of
the states. Their distribution follows Eq. (4.86) as we review in the following paragraph.
The probability Wy g, to surive for a time interval of At and to decay thereafter in a
window of time dt is a combination of the two probabilities for these two events and is
given as

Wio,sr)(Al) = Po,sr)(Al) - w(o,sr) (dL) = exp (_)‘(O,Sr)At> Ao,5r)dt- (4.91)
The probability density for the distribution of residence times At is then obtained as
dW o sy (AL
Po,sr(At) = (O’Zt)( ), (4.92)

which is given by Eq. (4.86). We can use this distribution to fit the numerically obtained
histograms as shown in Fig.4.11.

From the probability density, one can calculate the probability that the system has made
a transition into the only other state after a time At as

At
/ d(AL)Posr(A) =1 — exp (~Ao,snAt) = 1= Py s, (A1), (4.93)
0

This result is consistent with what was expected on the basis of Eq. (4.90).

The statistics for the distribution of residence times is the same as the statistics for the
distribution of time differences At that separate two successive decays in an ensemble of N
radioactive atoms. Where A then describes the decay rate of the ensemble of radioactive
atoms. The residence time intervals of either the empty or the superradiant state are
independent from one another (since the system is memoryless) and are characterised by
their own decay rate Ag and Ag,, respectively. Therefore, each recorded time interval in
the empty or the superradiant state can be considered to model the lifetime of a single
atom. If we consider N of these time intervals, this corresponds to the behaviour of an
ensemble of N independently decaying atoms.

Stationary state distribution of occupation times and magnetisations for finite N

To obtain P, the distribution of time intervals in the 'dark cavity’ in the stationary state,
we fit the distribution of residence times of the empty state according to the expected
distribution in Eq. (4.86) with the mean residence times as the only fitting parameter, and
observe good agreement, see Fig.4.11a and the inset.

The probability distribution for the magnetisation can be visualized in the (%, 0¥) plane,
by projecting out the ¢* component as P(c”%,0Y) = [do*P(c”,0¥,07%). This illustrates
that for finite IV, the stationary state of the system is a statistical mixture of the superra-
diant and the empty atom-cavity system, see Fig.4.12. The mirror symmetry constrains
P(o®,0Y) = P(—o", —0Y). By projecting the steady-state distribution onto a single com-
ponent, i.e. P(c”) = [do¥ do* P(c”,0Y,0%) = 1/Nexp (—I'(z)), where we have made
an Ansatz for to parametrize the steady-state distribution with a dimensionless potential
I'(z) of the dynamics in one spatial dimension with
12 4

L(og) =) Ean(ax)", (4.94)

2n
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Figure 4.11.: The probability distribution of time intervals in the empty state. (a) The
distribution of time intervals is fitted with an exponential form Py(tw.) = Aexp(A(tw,)),
see Eq. (4.86). The extracted mean residence time is the inverse decay rate and obtained
as 1/\ = (1), = 114.88(tw.). Inset shows a log plot of the probability distribution. (b)
Probability distribution of the of the order parameter o, in the long-time limit for a fixed
atom-light coupling ¢ = 1.97w, (top) and g = 2.06w, (bottom). It can clearly be seen that
the steady-state can be interpreted as a mixture of both the empty and the super radiant
mean-field steady-state. The Ising symmetry of the Dicke-Hamiltonian guarantees equal
occupation of the two superradiant states related by o, — —oy.

where {a,} is a set of fitting parameters and N is the normalization. Due to the mirror
symmetry, I'(c”) is characterized only by even powers of ¢*. in We show the poten-
tial I'(c™) for parameters slightly below the fluctuation induced first-order transition (see
Fig.4.10a) in Fig.4.12b and for parameters slightly above the first-order transition in
Fig.4.12c. The form of the potential is consistent with what would have been expected
from the form of a Free-Energy functional describing a thermal a first-order transition on
the basis of Ginzburg-Landau theory. However, here the tuning parameter is not tempera-
ture but an external driving strength that influences the atom-light coupling. Let us note
however that the dynamics of a one-component time-dependent variable with no sense of
space can always be generated by some potential.

4.6. Numerical investigation of hysteresis

We investigate the response of the system to a time-dependent sweep of the atom-
light coupling. We do not compare different noise strength, but fix the number of
atom-cavity emitters to N = 200 throughout this section.

We have shown that the bistable Dicke system far from equilibrium undergoes a first-order
phase transition whose exact point ¢*(/3) is determined by fluctuations in the thermody-
namic limit ¢ — oo and N — oo. This transition line appears within the two mean-field
critical points g.1(8) < ¢*(8) < ge,2(B) that delimit the bistability region.

However, in an experimental realisation the first-order phase transition line is generally
approached by varying the control parameter, i.e. the atom-light coupling with some
time-dependence g — ¢(t). As this temporal variation is not infinitely slow, we expect
deviations from the sharp jump behaviour at ¢ = ¢*(/3). The system can overshoot the
critical point and stay in the initial metastable state past the critical point (hysteresis)
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Oz Oz

(b) ()

Figure 4.12.: (a) Probability Distribution P(o,,0,) (colored) of the o, and o, values in the
steady state for a fixed value of g = 2.0w, (unlabelled axis in arbitrary units). Projections
on the walls show P(o,) = [ P(0g,0y,0;)doydo, and P(oy) = [ P(0y,0y,0)dodo..
Projections are scaled such that they are shadow images of P(o,,0,). (b) and (c) show
the results of fitting the distribution P(c”) (black) with a dimensionless potential I'(c*)
in the stationary state, see Eq. (4.94) (red) (b) Potential minima at the empty atom-cavity
system, parameters (g/w, = 1.97, 8 = 40) (c) Superradiant states minimize the potential,
parameters (g/w, = 2.06, 8 = 40).
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before a rare fluctuation kicks the system to the competing metastable state at some value
g # g*. In the following, we quantify the response of the system to a linear variation of
the control parameter as

g(t) = YGe,2 + gte(ts - t) - (t - QtS)gg(t - ts) (4'95)
g = (gc,l - gc,2)/t5' (496)

The variation is chosen such that the control parameter varies linearly between the two
spinodal line values from ¢(0) = gc2 to g(ts) = gc,1 and back again to g(2t5) = g.1. Here
(ge1—9e2)/ts = g = const. defines a sweep-velocity and ¢, is a characteristic scanning time.

The response of the system to a time-dependent sweep of the control parameter is best
understood as a rate competition of three timescales within the model, see [195].

e g the rate of change of the control parameter
e T ! the local equilibration or relaxation time
e T, ! the non-local equilibration rate or "hop-over" time

The relaxation time scale T determines how fast the system relaxes back to the fixed point
in response to small perturbations caused by the random fluctuations. The non-local equi-
libration time-scale is the finite lifetime (decay time) T, of the empty and superradiant
states due to large deviation caused by a rare fluctuation that can kick the system from
one basin of attraction of the fixed point to the other basin of attraction of the fixed point.
The times for a fluctuation induced hop is exponentially distributed and the timescale T5
characterises the distribution as it is the average time it takes for a fluctuation induced
switch, see Fig.4.11.

4.6.1. Adiabaticity window for atom-light ramp with local and non-local relaxation
time scales

With a variation of the control parameter, the steady-state landscape and especially the
position of the superradiant fixed point changes in time. Experimentally one will observe
one of three scenarios: (1) The adiabatic scenario is specified by a time window , see [195]

1Ty > g(t) > 1/Th. (4.97)

The first inequality states that slow enough variation of the control parameter guarantees
that the probability distribution for the occupations is dragged along to follow the moving
fixed point. The second inequality states that the variation must however be fast enough
such that, on average, no fluctuation-induced "hop-over" can occur. This is fulfilled, on av-
erage, if the control parameter changes faster than the mean lifetime of the corresponding
state. The control parameter however cannot vary arbitrarily fast which would eventually
violate the first inequality and fluctuations explore domains away from both fixed points.

If the sweeping rate ¢ is chosen to satisfy Eq. (4.97), the system overshoots past the critical
point g* and persists in its initial state until the control parameter hits the critical points
9 = ge,1(2) and destabilizes the state. The hysteresis loop that is traced by the system as
the control parameter varies between the spinodal lines is as predicted by the fluctuations-
less mean-field equations. However, the variation of the control parameter affects also the
mean lifetime of the state as Ty — T2(g(t)) which eventually leads to a violation of the
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adiabaticity criterion in Eq. (4.97) before g(t) hits the bistability boundaries. For instance,
starting in the empty state, its decay-rate 1/7T» increases with an increasing control param-
eter. As a result the mean-field behaviour breaks down as fluctuations induce a premature
switching approximately when 1/T5(g(¢" < ts)) ~ ¢. This happens when the increasing
decay rate finally surpasses the sweep rate ¢ and a jump is observed before g(ts) = gc1.
However, non-local relaxation times in an experiment can be astronomical such that they
are not accessible in an experimental setup. Hysteresis behaviour is then consistent with
a mean-field prediction. This was recently observed in a cavity quantum electrodynamics
system where a superconducting resonator was coupled to a large (N ~ 10'2) electronic
spin [173]. Due to the large number of spins, a fluctuation induced switching between two
bistable branches could not be observed on experimentally accessible time scales.

Local relaxation timescale T}

The adiabaticity criterion in Eq. (4.97) allows a first estimate when the system overshoots
its predicted first-order transition point and when this hysteretic behaviour is interrupted
with a discontinuous jump. Refinements of this adiabatic window have been obtained
from the condition that the hysteresis state should follow the moving steady-state, i.e.
when D(o, g) = 0 then, as time progresses, also D(o + do, g+ dg) = 0, see [196] for a one
component system and [197] for its generalization to a multicomponent system. Here, we
briefly review their definitions of the relaxation time 7;. For a multicomponent system
there are multiple relaxation time scales that can be obtained from the linearized dynamics
about the steady-states o,

dO'Z'

. aj
J=T,Y,z O=0m

oD;

(05 = omj); (4.98)

where we have used D(o,,) = 0. In the eigenvector basis {5;}, the relaxation times are
the eigenvalues of the relaxation matrix

Jij = (0Di/065) |55, = 1/T1,i0ij, (4.99)

However, the leading timescale is the dominant time scale for the relaxation dynamics

1 1
— =min . 4.100
T [Tl,i] ( )

Non-local relaxation time scale T

Corrections to the adiabaticity window for the non-local equilibration time were obtained
in studies for multicomponent systems in dissipative equilibrium with a conservative force
derived from a potential, see [197]. Here we briefly review their arguments that allows
them to calculate corrections to the adiabaticity window. We take the temporal variation
of the control parameter to be of the form given by Eq. (4.95) and initialise the system in
the empty state og at ¢ = 0 at g = g.2. For fixed g the system will build a probability
distribution Py(o) ~ exp(—®(o)) close to the empty state. A variation of the control
parameter g(t) now causes the probability distribution to be dragged along the moving
minimum at a rate T};ét [197]

0 |P| |d .0
Tk~ [ ] ~ |5 108 (o) | ~ a5 2(. 500 (1.101)
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This rate must be faster than the net depletion rate out of the empty state which is the
difference of the depletion from oy — &g, and the reverse process og, — og. This leads
to a correction for the system to show hysteresis. The sweep must be faster than the time
scale given by the decay [197]

-1

) oo
g> ‘ag (Tp,0 — To,57). (4.102)

In general, escape times from a basin of attraction €2 associated with a fixed point o* € )
to its boundary 02 are stochastic variables. The mean time it takes from any point o € €2
to escape to the boundary is referred to as the mean first passage time (MFPT) 7(o). It
is defined via the adjoint of the Fokker Planck equation governing the stochastic process.
An escape is a rare-event consisting of a concatenation of noise kicks building up to a large
fluctuation. If initially, the system is spread out in €2 around one of the metastable states
(osr, 00) with a probability distribution Py g,(o) = P(o,t = 0) then, the timescale T5 is
estimated from

15 5r,(0) = /QP(o,sr)(U) -7(0)do, (4.103)

where Ty is the average time the system spends in the basin of attraction of the fixed
point oo and 75 g, is the average time the system spends in the domain of attraction of
the superradiant fixed point. Analytic expressions for escape rates x have been derived
for stochastic dynamics in potentials in one and in higher dimensions for thermal systems,
[198, 199]. These celebrated results are called Kramer’s rates [200]

1//-4: = TQ,Sr ~ T(O'ST) (4.104)

AV
k= A(T,T, V) exp (-T) AV ST. (4.105)

The pre-factor A weakly depends on the Temperature T' and on a friction coefficient I’
and on the details of the potential V' such as the local curvature at the fixed points. AV is
the height of the energy barrier that has to be overcome to escape from the domain of at-
traction of a fixed point. In experimental measurements of thermally activated transitions
in a bistable three-dimensional optical trap, excellent agreement has been found with the
predicted Kramer’s rates [201].

Far from thermal equilibrium, there are typically no closed form expressions for 15 readily
available. Here, we can numerically measure the mean-lifetimes of a state and identify

(to) = T and (ts,) = To ;-

4.6.2. Power law exponent for decaying hysteresis area

Hysteresis occurs for example in ferromagnetic materials that undergo a magnetization
cycle in the presence of an externally applied field H that is swept back and forth between
two field values = H*. This is explained by the growth of magnetic domains, i.e. areas with
the same local magnetization aligning with the direction of the external field. In this case
the domain wall dynamics is not reversible on the branch H(t =0) =0 — H(t*) = H* —
H(2t*) = 0 which leads to a finite remaining magnetization of the sample M (2t*) = M,.,
whereas initially M (¢t = 0) = 0. At t* there is still a large number of domains oriented in
the direction of the external field and as the magnetisation is a result of an average over
all magnetized domains M (2t*) = M, # 0.
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Figure 4.13.: Colored lines show single hysteresis trajectories when the power of the atom-
light coupling ¢(¢) is ramped down (red) or up (black), see Eq. (4.95). Thick lines show an
average over 8000 realizations of dynamic hysteresis, see Eq. (4.108). The hysteresis cycle
is obtained for a fixed rampspeed vs/w? = 11.43 - 10~° in the regime given by Eq. (4.106).

As we have no equivalent of different magnetic domains in optical bistability, we cannot
look at the response to a single back-to-back sweep but have to resort to an average of
thousands of these sweeps that mirror the average over magnetic domains in a single back-
to back sweep in a condensed matter system, see Fig. 4.13. We choose the sweep rate such
that it is possible for the system to jump back and forth several times between the two
metastable states in the sweeping time frame,

1/T1 > 1/T2 > g(t) (4.106)

For a sufficiently large number of runs, every point on the hysteresis curve is an average
of the two mean-field steady-state values 0§ = —1 and 0§, (g) which depends on g, each
of them weighed by an occupation ratio

fi = ni/(no + nsr), (4.107)

where n; counts the number of times the system was in state i = {0, Sr} and ng+ng, is the
total number of counts or runs. For a large number of runs (typically a few thousands), the
occupation ratio f; converges to a fixed value that depends on the sweeping rate g, on the
value of the control parameter g and on the initial state configuration, i.e. on the sweeping
direction, i.e. it defines if the atom-light coupling is increased (1) or decreased (] ) over
time. The average over several sweeps of the atom-light coupling across the bistability
regime is then defined as

z . 1 i z = z z z
(0%(9,9))1, = (o +191) <§% 06,4(9) + ZOUST,i(g)> = fot,106 + fsrp108,,  (4.108)

where the second equality assumes n; > 1, such that the occupation ratios have converged.
In the ensemble average over all sweeping runs, the atomic inversion (¢%(g, §)), | now varies
smoothly with the control parameter and traces out a closed loop formed by the average
response to an increasing and a decreasing control parameter, see Fig.4.13.

To quantify the amount of dynamic hysteresis, one measures the hysteresis area for several
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sweeping rates ¢

ge,2t+Ag
A= [ 1)~ (o), ldg. (1.109)
9ec,2

ge,2 and gc 2+ Ag defines the window where the atom-light coupling is varied. In the limit
of long scanning times ¢; — co such that § — 0, the hysteresis area disappears

lim A(ts) = 0, (4.110)

ts—00
since

) to) of + (tsr) 0%
(7°(0.5 = )y, = ><1s§> +<<t§>> ¥ =0k pse 05 po = psr(L+0f,) — 1 (4111)

Here we have identified the occupation ratios (fo(g,9), fsr(g,9)) in Eq. (4.108) with the
stationary state solution of a rate equation for a two-level system with the switching times

Tr0(9,9) and T 5-(9, g),

) = ——— —— 4.112
fo T fo+ T or fsr ( )
. 1

for =— fsr + =—fo, fo+ fsr=1. (4.113)
1> sr o

In the limit of long scanning times ts — oo such that ¢ — 0, the stationary values of the
rate equation are given as

fo=po = (to) /({to) + (tsr)): (4.114)
fsr = psr = (tsr) /({to) + (ts+)), (4.115)

with the identification (tg) = To0 and (tg,) = T2 gr. The superradiance occupation ratio
psy varies smoothly from pg;(gc2) = 0 to psr(ge,1) = 1 as displayed in Fig.4.10c.

In the opposite limit, i.e. the adiabatic scenario as specified by Eq. (4.106), the hysteresis
will be static and is close to the hysteresis area dictated by the fluctuationless mean-field
equations A = A,,; that is depicted in Fig.4.10b.

We are interested now, in the dependence of the hysteresis area on the sweeping time.
We calculate hysteresis areas A for a set {¢} and for a finite N and depict the results in
Fig. 4.14a. Numerical calculations reveal a power-law dependence of the hysteresis area
on the sweep rate as

Ax g oty (4.116)

where v is the power law exponent. Numerically we find the decay exponent to be
v=-0.99+£0.04 (4.117)

The result of the fitting procedure is seen in Fig.4.14b. Our result is in agreement with
a similar system featuring an optical bistability in a single mode resonator that is influ-
enced by quantum fluctuations [29]. The authors compared theoretical and experimental
calculations and found a power law exponent of v = —1.
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Figure 4.14.: (a) Dependence of hysteresis area A on different sweeping speeds vs for (b)
Power-law decay of the hysteresis area for different sweeping speeds v,. The data corre-
sponds to the parameter set N =200 (k/w, = 0.2,7/w, = 0.1,wp/w, = 1.4, = 40).

4.7. Conclusion and Outlook

The Dicke model with its long-range interaction and large number N of cavity-emitters,
allowed us to study a fluctuation-driven first-order phase transition. The description of the
system in terms of a macroscopic variable whose fluctuations are suppressed with O(1/N)
elevates the dissipative Dicke model to a well-controlled and thus prime model candidate
for studying driven-dissipative and discontinuous phase transitions in macroscopic steady-
states.

The dissipative Dicke model above a critical collective loss strength features a bistability
regime that separates the Bloch sphere into three basins of attraction, corresponding to
the empty and the superradiant state which are connected only via rare noise activated
trajectories. A bicritical point connects a continuous second-order superradiance transi-
tion with a first-order superradiance transition in the bistability regime.

The first-order phase transition can only be resolved by including fluctuation dynamics
which depends on the state of the system and is therefore manifestly non-thermal. It
induces a genuine non-equilibrium dynamic that breaks detailed balance on a microscopic
scale. However, an inversion symmetry reduced the noise-dynamics in the Bloch-sphere to
an effective two-level description that always fulfil detailed balance. The non-equilibrium
character of the noise-induced transitions would be difficult to verify experimentally, since
the transition rates in a two-level system can be fitted to thermal noise activation rates
with an effective temperature.

In the next chapter we will review the difference between thermal and non-thermal noise
activation by investigating a classical action that is associated to the stochastic optical
Bloch equations.






Chapter 5

Classical Path-Integral for Stochastic Optical Bloch
Equations

The time-evolution of a classical system coupled to an external environment can be
described with a Langevin equation. In this chapter we review the generating func-
tional of the Langevin equation which is the Martin-Siggia-Rose-Janssen-deDominicis
(MSRJD) [189, 190, 191] path-integral. We will first review the derivation of the
classical action associated with the stochastic nonlinear optical Bloch equations pre-
sented in chapter 4. The classical action allows us to investigate noise-activation rates
for a state-dependent noise kernel from saddle point equations in a weak-noise limit,
see Sec.b5.2. We review how to obtain from the Fokker-Planck equation the differen-
tial equation that determines the steady-state distribution in a weak-noise limit, see
Sec. 5.3. Lastly, we show in Sec. 5.4 the emergence of an effective thermal equilibrium
description close to the bicritical point of the bistability regime of the stochastic op-
tical Bloch equations.

Selected parts from this chapter appeared in the publication

Dissipative Dicke model with collective atomic decay: Bistability, noise-driven activation,
and the non thermal first-order superradiance transition

J. Gelhausen and M. Buchhold, Phys. Rev. A 97, 023807 (2018)

We indicate the relevant parts in the main text.

Introduction

It is one of the main goals of this chapter to make clear and review the main difference
between thermal and non-thermal noise-activation. This is achieved best in a path-integral
description of classical stochastic equations where equilibrium and non-equilibrium con-
ditions can be compared. In this chapter we review the path-integral framework for the
description of the stochastic nonlinear optical Bloch equations derived in chapter 4. How-
ever, the description in terms of a MSRJD path-integral and the conclusions that can be
drawn from it are generic for multidimensional nonlinear stochastic equations associated
with classical nonequilibrium systems. This framework has evolved, with years of research,
into a generalization of a thermodynamic theory for systems characterized by a flux equi-
librium [8, 21, 202]. In this framework it is possible to identify the conditions under which
the stationary state of a nonequilibrium system is described by a potential function that
shares the properties of a thermodynamic potential for an equilibrium system [202, 203].
These potentials are, for instance, responsible for the stability of the fixed points of the
classical, dynamical equations of motion for the nonequilibrium system. Perhaps the most
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straightforward way to understand the appearance of potentials in non-equilibrium sys-
tems is to identify them with the logarithm of the stationary distribution of a stochastic
system weakly perturbed by some noise. As such, the potential is a construction valid
only at and close to the stationary state in a weak-noise limit. The general time-evolution
of classical trajectories cannot be derived from such a potential construction. In our case,
we consider stochastic evolution of macroscopic quantities such as the atomic polariza-
tion with a weak noise that is proportional to 1/v/N where N is the number of atoms in
the cavity. The above mentioned ’potential conditions’, as referred to in the literature,
then place restrictions on the coefficients of the Fokker-Planck equation that allow for a
straight-forward solution of the stationary state distribution, see e.g. [202].

Random perturbations in dynamical systems have been treated in the mathematical liter-
ature, in particular by Freidlin and Wentzell [20] who, among many other cases, analysed
rare-fluctuations in the stationary state that are exponentially unlikely. In particular, the
probability to observe the system at some point o is then proportional to

P(o) ~exp(—NW(0o)). (5.1)

The function W () is then called a potential that can be interpreted as the analogue of
a free energy for a system in thermal equilibrium. It allows one to calculate statistical
quantities such as the mean residence time near a fixed point, that we have investigated
numerically. However, in the weak-noise limit, it is determined from a Hamilton-Jacobi
equation derived from the Fokker-Planck equation or MSRJD path-integral. In the absence
of detailed balance this equation is very hard to solve and the potential form W (o) can,
except for rare perturbative cases [204], not be given explicitly. It therefore often remains
of theoretical value only. In the mathematical literature, the discussion on the existence
and solvability conditions for non-equilibrium potentials appears frequently in the context
of non-gradient drift fields in Langevin equations (see e.g.[205]), and in calculations of
escape probabilities and noise activation rates (see e.g.[206, 207]) far from equilibrium.

In the physics community, many authors contributed to this field, however, a bulk of the
research is associated to Robert Graham, who received the Max-Planck medal in 2009
[208], for his contributions to the statistical mechanics of open, stationary systems far
from thermal equilibrium (and many other things). Graham was one of the first to con-
nect solvability conditions for stationary state probability distributions of Fokker-Planck
equations for general non-equilibrium processes [208, 209] with the existence or absence of
detailed balance conditions. Especially in thermal equilibrium, the concept of detailed bal-
ance is fundamentally connected to the existence of thermodynamic potentials. In what
follows, we can only highlight those points that are directly relevant for understanding
noise-induced dynamics of the stochastic optical Bloch equations. We provide appropriate
references for detailed articles throughout the chapter.

5.1. Classical action for stochastic optical Bloch equations

In this section we derive a classical Martin-Siggia-Rose-Janssen-deDominicis (MSRJD)
path-integral that is equivalent to the set of stochastical optical Bloch equations, as
discussed in Chapter 4. As a result, we obtain the associated classical action in the
limit of a large number of atoms in the cavity after averaging over atom and cavity
noise. The derivation of the classical action associated to the set of Langevin equations
is a standard procedure and here we follow in particular [13] and [210].
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Classical Langevin equations for atom-cavity system

The dynamical equation of motion of a system coupled to an external reservoir, has to
take into account the reservoir degrees of freedom in terms of noise functions. We have
seen that only a statistical average over noise realisations both in the case of a classical
system (Brownian motion) and for the case of a quantum system (damped cavity) lead
to a consistent implementation of fluctuation dissipation relations. As a starting point
for the path integral construction, we take the Heisenberg-Langevin equations (4.8-4.11)
derived in chapter 4

da=D"+¢% dat =D +¢' f0=D+E, (5.2)

where £ = <§ft, flll’t, STRSTIEE ) are the associated atomic noise-functions that explicitly
depend on the state of the system as £(o). Moreover, we have abbreviated the notation
to identify o = (th, Jit, 0145054y ), such that O'Zt = Jgt, where the spin components
are labelled as o € (z,y,2) and the index ¢ refers to a spatial index. D = D(a,a', o)
encodes deterministic dynamics and contains both dissipative and coherent, Hamiltonian
contributions. The notation is understood as D7 = D¢ being the deterministic force for
the component « for the spin at site £. A more detailed notation is used when clarity
demands it.

Instead of operators as in the Heisenberg Langevin formalism, we work with complex
fields (a,al, €2, E“T) and entirely real fields (O‘Zt, &7'1)- The noise operators are represented
as stochastic fields with Gaussian distributed noise. The noise correlations for the atoms
are defined by

(€5 060 = [ DIE) €€l PlE =700t =) |00+ (1= 600X (@), (5:3)

where 0 < & < 1 denotes the strength of the collective noise as defined in Eq. (1.45) and
~ is the spontaneous decay rate of atomic excitations. The noise matrix X?/?(O’) depends
on the state of the system o and is defined in Eq.(4.77). The noise has a vanishing
first moment, as <§Zt) = 0 and the noise average is taken with respect to the probability
distribution

Pig = oo (- [dexe). [ DlgPie =1, (54)

where the integration measure D[£] is chosen such that the probability distribution is
properly normalised and x has to be chosen such that Eq. (5.3) holds. That said, for noise
averages it is sufficient to know X?@é without ever having to specify x. As mentioned in
Chapter 4, for a mapping to a classical noise correlation matrix it is necessary to erase
the information on commutation relations. This is achieved by symmetrising the matrix
entries X?é? which amounts to taking their real part Re[x%j |. This procedure leads to a

symmetric, real and positive definite noise kernel and is thus well-defined.

Accordingly, the photonic noise function is specified by choosing
acal agcat 5
e’ = [ Dle) erey’ Ple) =2t - ), (55)
~ 1 i1
= —— [ dt&* —¢&* 5.6
Pl —exp (5 [ane 56 (56)

where k is the strength of the cavity decay for the photons.
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Derivation of non-equilibrium partition function Z associated to Langevin equations

! In general, a statistical averaging (.) ¢ for a system observable is written as

(©Oloa.all) = [ DIEIPIEIPIEIOoe, ac. ]
= /D[E]P[S]ﬁ[ﬂ /D[a,a,aT]é(a — a¢)d(a — ag)d(a’ — aé)@[ag,ag,az]
~ [ Dlé.oa.alIPIEIPIEI 013 (£10)) )3 (Olag) T ald(Olal) Olore, ac ol
(5.7)

Here, (o¢, a, az) are solutions to the above mentioned classical Langevin equations for a

specific realisation of the corresponding noise functions and 6 (o —o¢) = Hf;{ =1 0(07 — o).
In the second line we have inserted a resolution of unity

1= /D[o-, a,a'ld(o — a¢)d(a — ag)d(a’ — az), (5.8)
where the functional delta functions satisfy
[ PlYlaléo — a¢) = Vi, (5.9)

for every test functional Y[z]. In the third line, we have defined

5(flo]) = J olé(0o — D — &) = 6(0 — o), (5.10)
5(0Ola]) = Ja]d(dra — D* — £%) = 6(a — a¢), (5.11)
5(0[a")) = (JH[(a']) ' 5(@at — D — ¢!y = 5(af — af). (5.12)

Here, the functionals O, f are nullified by the solution to the stochastic equation of motion

for a specific realisation of the noise, Ola¢] = O[ag] =0 and flo¢ =0.

The change of variables is accompanied by the Jacobian J that takes into account the
change of the measure as induced by the variable transformation. In the following, we
show that J = 1. To derive this result, we discretise time into NN slices as AtN =t. We
proceed by explicitly discretising the Langevin equation (5.10) as

£ = flot) = flo) = £ =0~ 0,1~ M| Do ) -5 )| (513)

where we have discretised the temporal derivative with a retarded or Ito regularization.
The Jacobian becomes an N X N matrix in the time domain, as

det (‘%‘) ’ (5.14)

J =
80‘j

det (JZ])

The matrix elements in the time-domain are evaluated as
Jjj = 1, Jj,j_l =—-1- At[ 3_1 - 59_1:|, ng =0 (otherwise). (5.15)

The Jacobian J becomes a lower triangular matrix with entries

Jij = (1= ;) (—1 — 0, [Dj_l - gj_l)] At) + 65 (5.16)

In this section we follow the conventional approach given in [13].
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such that J = det (J;;) = I[; Jj; = 1.

We can now interpret the stochastical average in Eq. (5.7)

(Ol a,all) = [ DIEIPEIPLE [ DloDla.all3(£(o)6(0loc5(Olal) Olore, ac,al).
(5.17)

The integrations are performed over all field configurations (a,a,aT). The presence of
the functional delta functions ensures that only those trajectories contribute that solve
the Langevin equations. Furthermore, each configuration is appropriately weighed by the
probability distributions P[¢], P[€]. Taking Ole, a,al] = 1 one can see that the construc-
tion is indeed correctly normalised by virtue of the delta functions and the integrals over
the probability measures. With the above interpretation in mind, we adopt the notation
'partition function’ for Z = 1.

The partition function can now be written as

Z ~ [ DEPIEIPIE [ Dloa.al] 6 @~ D* ~¢) 5 (' — D — &)

N
I II¢@w0of D —¢f). (5.18)

a:x7y7z ezl

We rewrite the functional version of the delta function as an exponential in the following
way

S(X (1)) = / D59 exp (—i / dt&;ftXt) _ / DJiz?] exp (- / dt&ZtXt>, (5.19)
s(f06(s) = [ Dl exp (atv)f] -l (0)1:) (5.20)

Here, we require X (¢) to be an arbitrary real field and f(¢) to be an arbitrary complex
field. We introduce the complex fields (d,a') and the real fields 6§ with a = (z,y,2). It
will later be seen that they can be interpreted as conjugate canonical variables to the fields
(0, a, aT). Here, the fields ¢ take on real values but are integrated over the imaginary
axis, as indicated by D[igf']. The partition function then reads

N

7 = /D[ﬁ,a',a,aT,&,d, a'l H P¢] PlE]

a=z,y,z;{=1

X exp (- / dt59 (9r0% — D) + / dt5ees

X exp (/ dta (Opa — D*) — /dt&f“T)
X exp (—/cltaT (Bua’ = D) + /dtaT£a> ‘ (5.21)

Since the noise distribution function is Gaussian, we can explicitly carry out the associated
integrals to average over the noise. Since the entire action is quadratic in the (gapped)
photon fields, we can eliminate the photonic variables and average over the photonic noise
such that we will be left with an effective atomic action only.

Elimination of Cavity Photons

In this section we first average over the noise fields associated to the cavity photons. In
the next step, we integrate out the gapped photon fields such that the dynamics is entirely
given in terms of variables for the atomic degrees of freedom.
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We recast the expression for the partition function given in Eq. (5.21) into the quadratic
action corresponding to the photonic sector Sphotons and the atomic contribution Satoms

Z — /D[ . ]eiSPhotonsefsAtoms' (522)
We average over the Gaussian photonic noise components with the probability distribution
P[] given by Eq. (5.6) by completing the square by asymmetrically shifting the noise fields
according to £ — £% — 2ka and faT — E“T + 2kal as
/ﬁ[f]eiSphotons — ei<SPhotons>g (523)
where the action of the photonic sector is given as

1
<SPhotons>§ = 5/ ALG;lAw + ALWW + szAw. (5.24)

Notice that we have pulled out an imaginary (i) in Eq. (5.22) such that the final action
will be identical to a Keldysh description of the photonic sector. For the action we have
made use of the notation

AL = (a0 a0 ) (5.25)
and the abbreviation
w?_ - [%Ji(&y(ﬁ(w)—(} 29 i (Y07 (w) — 570 (W), Liaw(w) —iio’"(w)]
—w \/N£:1 A sz1 °¢ L9 szl ¢ ’ \/szl ¢ .

(5.26)

Here, we have defined the expression 670} (w) = [, 5] (w')of(—w — w’) and the photonic
Green function

T
G;1=< 0 (G ) (Gha) ™ = |Gt ] | (527

(G2xz( )~ ! Dé;z(w)

w—wo + 1k 0

(Gho(w) ™t = < 0 o — oy — i ) , Dj5(w) = diag(2ik, 2ik).  (5.28)

consists of the inverse retarded (R) and advanced (A) Green function respectively and of
the Keldysh contribution (K). We have used the Fourier transformation convention

. d
ap = / e—zwtaw7 aI _ / e~ Wty T—w? _/ —iwt a / _ 27&} (529)
w w w T

The noise-averaged action (Sphotons) ¢ is quadratic in the (gapped) photon fields which can
be integrated out completely. Shifting

A, — A, — G, W, Al - Al —wWT G, (5.30)
we can integrate out the photons such that

[ Placalex (i Semonomse) = exp (5 [ WELGLW.L) = exp (~ (55, — (S85ha),)-
(5.31)
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Where the individual contributions are written as

det «“o x ~y o~z Y
phot /[mzl < N wo (Hi— iw)20'€,w (O'mo'm,—w O'mO'm,w)) ’ (532)
ﬂuc K ((52 + w2) + w%)
Shiot)g Z 2+ (5 —iw)?) (wE + (k +iw)?)
“em=1 0
[ (&é’afﬁw - 65037%0) (ay O = Tmm w) ]) . (5.33)

We remark that <5’gﬁ§t> ¢ is quadratic in the field & and vanishes as k — 0 and thus rep-

resents the contribution associated to the noise fields. After integrating out the photonic
components in the path-integral formalism, we can compare the contribution (S dﬁgt) ¢ with

the deterministic part from the Langevin equation for the cavity photons
Orar = —kay — iwpar — 19SSy + &7, Otai = —Hai + iwoai +1igSy + £“T (5.34)

In the frequency domain, the solutions of the Langevin equation for the cavity photons
are given as

= (T 8) (Gars) - (R ) (o)
(5.35)

where 5% = Zévzl oy is the collective spin operator. These expressions can be reinserted
into the equations of motion for (0y0¥, + 0,07,) in the frequency domain to obtain

0=—wo?, —iwe?, ——85% |——-——=) |07  —o0Y +(...). 5.36
w,m w,m N w WS + (n—i—zw)z m,w m,w ( ) ( )

Comparing Eq. (5.36) with Eq. (5.32), we see that both equations match (upon the allowed
transformation w — —w).

Noise Average over atomic components

Having integrated out the cavity photons, we are left with an entirely atomic action. The
partition sum at this point is expressed as

_ /qfluc det
Z = / DI...Je Frhere ~Sphou) ~Savoms. (5.37)

Here, we proceed by averaging the action over the atomic noise fields &.

The action for the atoms reads

Satoms = ( / dt53 (809 — DY) / dteT 55—1—% / dtgx—lg) (5.38)

Za =T,Y,%

where &} = (£7,¢7,¢7) and Z (67,57,5F) such that the noise-average over the atomic
components is given as

[ Dl exp (—Sasoms) = exp ((~SE) — (i) (5.39)
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and where the following definitions have been used

<Saﬂtli)cm 7772/"])(50-( - 77a Z /O-[XEmo'm (540)
£,m#AL

(SEae= X [ 57 @op - Dp). (5.41)

lia=x,y,z

Here, the strength of incoherent spontaneous decay of individual atoms is encoded in the
local noise matrix xy. Cooperative radiation processes such as the collective emission
of excitation of an atomic ensemble as derived in Sec.1.2.1 are encoded in the non-local
noise matrix xg,,. The noise correlation matrices are y, which is given by the real part of
Eq. (4.78) and Xy, which is given by the real part of Eq. (4.77). The fluctuating contribu-
tion in the atomic sector vanishes if the noise strength vanishes v — 0.

Noise-averaged classical action in site-decoupling mean-field Ansatz

2We are now in a position to put together the noise averaged action that consists of the
contributions

S = (Satem)e T (Saiom)e + (Spher)e T (Sphor), - (5.42)

atom atom P

We invoke now a mean-field decoupling where we assume spatial independence of the
individual sites (6§ — o®). This allows us to treat the system in a large N limit, leading
to the transformation S — NS, where N is the number of qubits. The action for the spins
takes on the form (o = z,y, z)

S = N/ [5“@0“ — 69D — ;&axaﬁ&ﬁ} = N/[&aﬁtao‘ —H], (5.43)
t t

Z = / D[{o®,5°Y] 5. (5.44)

The MSRJD path integral construction has led to an action that is in Hamiltonian form.
Here, D® encodes the deterministic force and captures the noiseless mean-field dynamics
(repeated for convenience)

—yo®(1 — fo?) — oVYw,
D= wyo" + Jo¥a? — yo¥(1 — Bo?) , (5.45)
—2y(0* +1) =B ((6%)* + (o¥)?) — Jo%a¥

and X, is the noise kernel for the atomic degrees of freedom in the large N-limit (repeated
for convenience)

v (B(c*)? + 1)
X =2 0 (B +98) (67 +~ . , (5.46)
o(1=pBo*)y o¥(y—(E+B)o*) x33(0)

where x33(0) = &(0¥)? + v[B((6%)? + (6¥)?) + 2(0* + 1)], & = kJ/wp. It is entirely real,
symmetric and positive definite, i.e.all its eigenvalues satisfy {\,} > 0. The action still
possesses the original Ising-like inversion symmetry of the Dicke-model that is expressed

2This subsection appeared in parts in the publication J. Gelhausen and M. Buchhold, Phys. Rev. A 97,
023807 (2018) and we have used some paragraphs verbatim.
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through the transformation S[¢*,8Y,6%, 0%, 0¥, 0% = S|—67,—6Y,6%,—0", —0¥,07]. The
Hamiltonian

1
H=5°D + §5axaﬁ(}5, (5.47)

is the functional combining both deterministic and noise contributions. It is also known as
the Freidlin-Wentzel Hamiltonian [20] where it appears in the theory of large deviations
theory for systems weakly perturbed by noise. Introducing the conjugate variables &¢
doubles the degrees of freedom. This reflects the non-equilibrium nature of the problem.
This will become clearer in the next section. We will see that o® governs the evolution of
the order parameters whereas ¢ measures deviations from deterministic relaxation and
are thus an indication for noise activation. This interpretation will become evident after
inspecting the saddle-point equations in a weak-noise limit. Moreover, we see that the
Hamiltonian treats both deterministic and noise contributions on an equal footing. The
form of the Hamiltonian is generic for multidimensional stochastic equations [13].

As the action in the large-IN limit scales with the number of atoms as NS both the
deterministic contribution D as well as the correlation function for the noise x, scale
with the number of system constituents N. The structure of the action thus reflects its
equivalence to the stochastic optical Bloch equations derived in a Langevin framework.

5.2. Noise activation in large N limit - Saddle point equations

In this section we want to confirm, without being exhaustive, three statements that we
made in chapter 4 on the non-equilibrium nature of the bistability. We repeat them
for convenience.

First, the mean occupation times (to) and (tg,) of the empty and the superradiant
state obey an Arrhenius law of the type (ts,0) ~ Asr.0exp(N¢sr0), with ¥g,.0(0) as
a non-equilibrium potential that measures the cost of fluctuations.

Second, the deterministic force D, Eq.(5.45), and the noise kernel x, Eq. (5.46), do
not satisfy the necessary condition for microscopic reversibility and violate detailed
balance.

Third, we comment that the combination of (V x D # 0) and (V- D # 0) is a
necessary but not a sufficient criterion for out-of-equilibrium dynamics, which do not
relax towards an effective thermal equilibrium.

The analysis is based on Freidlin-Wentzell theory [20] for weak noise systems, therefore
applicable in the limit N — oo. Additionally we comment on the structure of the
noise-induced trajectories as observed in Fig. 4.9.

Saddle-Point equations in weak-noise limit

3 In the limit of N — oo only the saddle points of S contribute to the dynamics and
one can determine the corresponding equations of motion by variation with respect to the
fields. Due to the Hamiltonian structure, the associated equations of motion demonstrate
that (6%,0%) are canonically conjugate variables

168 . oA 16s . oM
_ato' — a&a and 0— N(So-ia = _8t0 —_ &7

0_

= S 5an (5.48)

3This subsection appeared in parts in the publication J. Gelhausen and M. Buchhold, Phys. Rev. A 97,
023807 (2018) and we have used some paragraphs verbatim.
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The Hamiltonian itself is an integral of motion on the saddle point trajectories. Taking
the time derivative of the functional H one obtains via the chain rule
1) 1) i
0t = L 0y00 + 0,5, PP 3y 341, 5 =0, (5.49)
004 004 ’
where {, } is the classical Poisson bracket. The saddle point paths are thus described by
a constant functional H. The explicit form of Eqs. (5.48) is

Do = D* + x*P5, (5.50)
. _0Dg  1_ [0x+s) -
3,500‘ = —0p 5o - 50’7 ( S > ags. (551)

The saddle point equations have two solutions, one that corresponds to deterministic re-
laxation and another one that describes noise activation. The first solution is found by
setting ¢ = 0 which also sets H = 0. This Ansatz recovers the noiseless, determinis-
tic Bloch equations, 0;0“ = D% such that all saddle-point trajectories starting from a
deterministic field configuration, 6% = 0, fulfill H = 0.

Noise activated trajectories, in turn, correspond to solutions with 6% # 0, that are however
still constrained to the manifold H = 0, since noise-activated trajectories start from a
deterministic fixed point that nullifies % and the dynamics conserves the Hamiltonian as
shown above. For the second solution we make the Ansatz that the conjugated fields are a
function of the order paramter field as (o). Inserting this Ansatz into Eq. (5.51) imposes
the restriction 046, = 0y64. Which is true only if & = V,W (o) can be written in the
form of a potential gradient.

The scalar potential W can then be defined by the Hamilton-Jacobi equation which is a
first-order non-linear, partial differential equation [211]

1 |
H(o, VW) = 0,W (D" + 5x*P05W) = (YW, D + SxVW) = 0. (5.52)

Solving the saddle point equations non-perturbatively is equivalent to solving the Hamilton-
Jacobi equation which, in general, is an impossible task [204]. We can solve it implicitly
by decomposing the deterministic force D into the two orthogonal fields VW and r as

1
D% = _§Xaﬁaﬂw + 7, (5.53)

Where we have used our freedom to allow for an additional field r that only has to obey the
orthogonality condition r*0,W = 0 which demands that r encodes dynamics on equipo-
tential surfaces of W. Plugging the Ansatz in Eq. (5.53) into the Eq. (5.52) one can verify
that it solves the Hamilton-Jacobi equation formally. The first term (—1/2x*?9sW) is
responsible for the stability of the fixed points of the deterministic force D. The transver-
sal decomposition implies in general that VIW # —2x~!'D, such that in general it is an
impossible task to obtain non-perturbative analytical expressions for the non-equilibrium
potential W in systems lacking detailed balance [204, 209]. The saddle-point trajectories
(5.51) describing noise-activation are

1
G =0, W, 00% =D+ xPoW = ixaﬁaﬁw + 7% = —D% 4 2r°. (5.54)

A comparison with the deterministic dynamics 0;0% = D% = —%XWQBW + r* shows
that in general the noise activated trajectories are not the time-reversed partners of the
deterministic dynamics and visit different regions in the Bloch sphere as seen in Fig.4.9.
This also means that noise-activated and relaxational dynamics do generally not have the
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same basin of attraction (although they share the same set of fixed points), since the
field transverse to the potential (r%) can move the system to different attractors. In the
stationary state, the dynamics is then a succession of deterministic relaxation and noise-
activation, driving the system away from stationary points. We provide more details on
the decomposition of the field D at the end of this subsection.

We turn our attention to the second point and check violation of detailed balance. Under
microscopic reversibility [209, 202] the deterministic force D and diffusive contribution x
in general obey ’the potential conditions’ [9]

rot[x (2D — Vx)] = 0, (5.55)

which for our case is not satisfied. We conclude the absence of microscopic detailed balance
for the dynamics generated by the stochastic optical Bloch equations.

Coming to the third point, for out-of-equilibrium systems in general D itself is not a
gradient field and has both a non-conservative (V x D # 0) and a conservative con-
tribution (V - D # 0). Whenever the generators for conservative and non-conservative
dynamics do not commute, i.e. when the corresponding trajectories are not orthogonal
(—3x*POsW)r® # 0, both fields (—3x*?93W) and 7 contribute to both conservative and
non-conservative parts of D. Thus, having non-conservative and conservative dynamics is
necessary to reach a non-equilibrium steady state but not sufficient. The counter example
being a spin subject to a magnetic field B = uBe, and spontaneous emission.

For a system with a constant noise intensity xog = 2703, the trajectories of conservative
and non-conservative dynamics are orthogonal, per definition for 7 we have gradWW -r = 0,
see below Eq. (5.53). Since the deterministic dynamics is D = —T'grad W+ and div D =
div (grad W) and curl D = curl = it can be seen that conservative and non-conservative
dynamics are indeed orthogonal.

The presence of non-orthogonal non-conservative and conservative forces together with the
absence of detailed balance allows the conclusion that the steady-state for the stochastic
optical Bloch equations in this work is firmly out-of equilibrium.

Phase space structure of saddle point equations

We will now discuss the phase space structure of the saddle point equations. The Hamil-
tonian equations define the dynamics in the six dimensional phase space (G4,04). As the
Hamiltonian is constant, the Liouville theorem guarantees the conservation of the flow in
phase space. This means that the fixed points must be hyperbolic. Both deterministic
and noise-activated trajectories share the same set of fixed points {oo} with D({o¢}) = 0.
Since all fixed points are hyperbolic, there exists one stable (M) and one unstable (M,)
3-dimensional manifold for the zero-energy Hamilton H = 0 that intersect at the set of
fixed points {o¢}. The stable manifold M is characterized by & = 0 and d;0 = D and
the unstable manifold M, is characterized by (o) = VW (o) and 0,0 = —D + 27 (see
below). A more general discussion on the phase space structure of saddle point equations
can be found in [211].

In the stable manifold My there are two maximally attractive fixed points, the empty
atom-cavity state and the superradiant state. In the space spanned by (¢*, 0¥, 0% 6 = 0)
their domains of attraction are separated from each other by a two-dimensional manifold
(separatrix), which hosts the unstable fixed point, see Fig.4.9. The unstable maximum
has two attractive (= d — 1) and one repulsive direction in the &, = 0 manifold. The two
domains of attraction are not connected by any deterministic path. Only a noise-activated
escape trajectory can connect the two stable fixed points.
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4 In the vicinity of the fixed point, the manifolds M, and M, are spanned by the eigen-
vectors of the stability matrix associated to the linearised dynamics of the saddle point
Eq. (5.50) and Eq. (5.51) in the & = 0 manifold

d0oa \ [ Dap  Xas dog
O ( 55 ) = ( 0 -pI, ) ( 565 ) (5.56)

where we have defined D, g = 85Da|00 and o can be either of the two attractive fixed
points (empty atom-cavity or superradiant atom-cavity) or the repulsive fixed point inside
the bistable regime and do = o — oy measures deviations away from the stationary
state. We restrict the analysis to the case of attractive fixed points. This 6 x 6 matrix
possesses six eigenvalues. Three are given by the matrix D,g which are Re[A; 23] < 0.
The corresponding eigenvectors vq 23 thus have three of their six components fixed to
the manifold with & = 0. The other three eigenvalues have a positive real part and are
given by Re[A\s56] = —Re[A123] > 0. The corresponding eigenvectors vy 56 describe
activation trajectories and will thus have non zero components &, # 0. All trajectories
that depart from the fixed point can locally be written as a linear combination of the
unstable eigenvectors, i.e.

5(00)lcog =00+ Y v (5.57)
i=4,5,6

These vectors locally span the manifold of activation trajectories. Since the ’energy’ is
conserved in the Hamiltonian dynamics, the activation trajectories will remain in the ’zero-
energy’ manifold H = 0, since all fixed points lie in the & = 0 manifold which nullifies

H.

Noise-activation trajectories and interpretation of nonequilibrium cost function

5The saddle point action for the unstable zero-energy manifold H = 0 reduces to
i 70
s (a)=N /t Gadioe = N /U Godon (5.58)

From its form Sgu.(0p) can be interpreted as a function that measures the cost for a
fluctuation to bring the system to the point o given that it started in one of the stable
fixed points og. The cost function is nullified if the system moves deterministically, i.e.
fluctuationless on the & = 0 manifold. Here it is possible to attribute an interpretation
to &; it measures the strength with which the system moves against or deviates from the
deterministic dynamics. When the cost function is evaluated on the equations of motion, it
gives the minimal cost for a fluctuation induced trajectory that corresponds to an optimal
realisation of the multiplicative, stochastic noise. The optimal path is the most probable
path. In the weak noise limit (N — o0) one can define a non-equilibrium potential or
cost function as the minimal action acquired for a path connecting a fixed point o to any
given point o on the manifold M, as

V(o0 0) =min{ ST, (5):0(ty) = 00,0(t) = 0,t0 < t}. (5.59)

[to,t],00

The result of the integration is independent of the path (o (t),&(t)) in M, when M, is
locally defined by & = VW (o). To exponential accuracy the probability p for a noise-
induced trajectory is then given by p ~ exp (=N (o, 0)). This explains the first point

“A discussion on the stability matrix for the linearised fluctuations can for example be found in [13].
5This subsection appeared in parts in the publication J. Gelhausen and M. Buchhold, Phys. Rev. A 97,
023807 (2018) and we have used some paragraphs verbatim.
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that the mean occupation times

<tSr,O> ~ AST,O eXp(N¢ST,O)‘ (560)

In particular, if the dynamics is fluctuationless, i.e. on the & = 0 manifold the cost
function has to vanish as the deterministic dynamics happens with probability one. For
weak, but finite noise, the activation trajectory is given by d,o0 = —D + 2r + \/—lﬁf and
spreads around the deterministic activation path as, observed in Fig. 4.9.

Comparison to a system in thermal equilibrium

As a consistency check, we take a system with a constant noise intensity 1" where the
forces are generated entirely from a gradient, i.e. xog = T0og and D, = —%V. The
Hamilton-Jacobi equation (5.52) reduces to

(8a5ﬂuc) (_Da/T + (8aSﬂuc)) =0, (5.61)

which is solved by the well-known equilibrium result

V(o) = V(o)

- (5.62)

1
S(e) =~ /8anaa _
It tells us that the relative statistical weight for finding the system at a point o is p ~
exp (—W), The spatial probability density function for the system is therefore

P(o) = %exp (—V;U)) (5.63)

, where Z = [T], dog exp (@) is the associated partition function. Thermally activated
transitions have been measured experimentally in bistable three-dimensional optical traps
with high precision and where found to be in agreement with theoretical predictions of
Kramer’s transition rates and its extension to multidimensional potentials, see [201] and
references therein. In a system in thermal equilibrium where the forces on the system are
derived from the gradient of a potential, transitions rates are of the form

—-A
R = Rpexp <TV> ) (5.64)

where the pre-factor Ry depends on details of the potential such as its local curvatures.
Here AV (o) = V(os) — V(op) measures energy differences between the saddle point
o, that separates the two basins of attractions of the fixed points from another and
the stable fixed point o¢. In an equilibrium system noise activation is solely determined
from a competition of the potential barrier height and the strength of thermal fluctuation
(~ kpT'). For a constant and state-independent noise-intensity, noise kicks are uniform
in every direction of phase space. When the noise-intensity depends on the state of the
system, it means that there are preferred directions for noise kicks that change with the
position in phase space. In a thermal system, the situation is different. Noise-kicks are
uniform in phase space and there is no directional preference. The most probable path for
a rare-fluctuation event, that consists of a concatenation of noise kicks building towards an
escape from a basin of attraction, can thus be different in a system in thermal equilibrium
and in a system far from thermal equilibrium.
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5.3. Weak-Noise activation in a Fokker-Planck interpretation

An equivalent description for dynamical systems with random perturbations is given by the
Fokker-Planck equation for the time evolution of the probability density function function
(pdf) P(o,t) as

P = HP. (5.65)

It can formally be obtained from the normal ordered Hamiltonian of the MSRJD path-
integral

H =D + 25%@553. (5.66)

Here, we have redefined %Xaﬁ — $Xap to make the noise strength e explicit. Here, €
encodes the large N-limit such that € — 0 as N — oo. It is formally associated with the
strength of the noise, that is suppressed as 1/ V/N. Normal ordering refers to all & being
to the left of all (functions of) o as is consistent with the Ito regularisation of the path
integral. With the substitution §¢ = —0J,, the resulting equation reads as

OP(o,t) = —d | DOP — %aﬁ(xaﬁp) (5.67)

with the initial condition P(o,t = 0) = §(0 — Finitial)- A detailed derivation of the Fokker-
Planck equation from the MSRJD path integral consistent with the above substitution rule
is given in [212]. In general, it is not possible to solve for the dynamics of the probability
density function. In the long-time limit however, the pdf can become quasi stationary on
timescales . < t < 7 where t,¢ is given by the relaxation dynamics of the deterministic
motion and 7 is the mean escape time referring to the mean time it takes for a fluctuation
to move the particle to the boundary of the domain of attraction of a fixed point. As an
Ansatz, we take

P(o) = K(o)e W)/ (5.68)

Its form suggests that W (o) should be interpreted as a non-equilibrium potential func-
tion. Additionally the potential W (o) should be bounded from below, single-valued twice
differentiable as it has to satisfy the Fokker-Planck equation. Weak noise expansions with
the Ansatz in Eq. (5.68) have been intensively treated in the literature , see e.g. [213, 211].
Plugging this Ansatz into Eq. (5.67), one can collect terms with the same order of the
noise strength if the noise is assumed weak. Formally, terms with a prefactor of O(1/¢)
result in a K-independent equation for the quasipotential W (o). The resulting equation
is equivalent to a Hamilton-Jacobi equation [211]

DOV + %(aaW)Xaﬁ(aBW) — H(0, G = OaTV) = 0. (5.69)

The generating function W (o) has the total time-derivative

aw oW . - 7.

= %@Ja =500 — W(o)= /toaataa = /UO c%do®, (5.70)
where we have set the quasipotential W (o) = 0 for the fixed points oo of the determin-
istic equation. We can see that the generating function is equivalent to the saddle point
action that was derived in the MSR path integral in Eq. (5.58). This means that we can
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identify the non-equilibrium potential as being equivalent to the saddle-point action for
the fluctuation dynamics

W (o) = Squc(0o). (5.71)

Plainly speaking, the non-equilibrium function W (o) measures the cost of a fluctuation
induced trajectory that brings the system from the fixed point oy to the point o on a zero-
energy manifold H = 0 in phase space along the activation trajectory given by Eq. (5.54).
However, the cost function must be bounded from below and positive such that W > 0
for all phase space trajectories. In particular, if the dynamics is fluctuationless, i.e. on
the & = 0 manifold the cost function has to vanish as the deterministic dynamics happens
with probability one. Writing W (o) where o, fulfils the activation equation, one can
recast

%’ = (W00 = SOV (@) > 0. (5.72)
The noise matrix x®? is positive (semi)definite and thus W can only increase in time
on the activation trajectory. Intuitively, the further you move from the fixed point on
the manifolds characterised by & = 0 and the longer the system stays away from the
fixed point, the more expensive it should be. The probability for such trajectories is
exponentially suppressed with the cost function.

So far the pdf in Eq. (5.68) is determined to exponential accuracy in the weak-noise limit
only. A differential equation for the missing pre-factor K (o) is obtained by collecting
terms of order O(e’) from the Fokker-Planck equation with the Ansatz in Eq. (5.68). It
can be compactly written as [206]

1( W 0*H OH OK [ o1

where all derivatives are evaluated at 6% = 0, W.

We remark that successive construction of the pdf in terms of powers in the noise-strength
€ is similar to the construction of tunneling wavefunctions through a potential barrier in
quantum mechanics in the Wentzel-Kramer-Brillouin framework. In this case the wave-
function is determined from the Schroedinger equation and constructed by a power ex-
pansion of the small parameter h.

5.4. Adiabatic elimination of fast modes close to bicritical point

In this section, we expand the MSRJD action around the bicritical point of the bista-
bility regime. An analysis based on the mean-field master equations has revealed that
in the vicinity of this point, there emerges an effective low-frequency deterministic dy-
namic that is mapped onto a single variable, see Chapter 4. The dynamics is derived
from a power expansion of the single mode and can thus be derived from the gradient
of the potential. Here, we take into account the noise contributions as they appear
naturally in a path-integral formalism. We show that at the bicritical point, the noise
has a constant intensity. This signalises the emergence of dissipative equilibrium and
classifies the phase transition at the bicritical point as a thermal Ising transition.

We start with the MSRJD action, associated to the stochastic optical Bloch equations
(a=w,y,2)

1
S = N/ [&“ata“ — 69D — iéax‘lﬁ&ﬁ . (5.74)
t
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The goal is to expand the MSRJD action around the empty steady-state close to the
bicritical point (¢, gc). The response fields have to be expanded around ¢ = 0 and the
order parameter field instead is expanded around the empty atom-cavity system

6 =204+066% o%=o05+d0°, (5.75)

with o9 = (0,0,—1). The fluctuations do®, §&* are expanded in the set of eigenvectors
{v;}, where i = (1,2, 3) of the stability matrix V.D(o() where V = (9yx, dpv, 0,=) and the
matrix entries [VD(oy)| s = (%De(ao). Deviations from g = g., 8 = (. are parametrised
in a coordinate frame centred at the bicritical point, see Fig.4.5a. The two eigenvectors
(v1,v2) are associated to the relaxation directions of the fast modes at the bicritical point.
The remaining mode w3 is associated to the direction of the slow mode, see Fig.4.6. The
fluctuations are parametrised in these eigenmodes with a unitary operation as

oo® = UQB\I/@, 06% = uag\ifg (576)

where Ug = (d¢, 01, ¢) and \ilﬁ = (63,61, ¢) are the vectors with the expansion coefficients
that carry the time dependence of the modes. We use ¢ and 1 as variables for the fast
modes and ¢ as the variable for the slow mode. The matrix w contains the normalized
eigenvectors as the column entries u;; = (v;);. For this we have orthogonalised the modes

first with the Grahm Schmidt-procedure as vh = vg — %vg. Although the mode v}
now contains a contribution from the slow mode, at the bicritical point this contribution
vanishes as the slow mode is associated to a vanishing eigenvalue of the stability matrix
that governs the time evolution close to the bicritical point. The temporal contributions

transform as
0%00% = 66%0;00% = UT U i’ v, = \i’ v, = lé\IfT 0 —10, 0w + gz@@tgb
Battay >3 Y gl YT 9 10, 0
(5.77)

We expand the action up to quadratic fluctuations in the fast modes J¥ as
Slog + 60,60 + 060) = S[OV, $, 9] = / dt (M/Tataxp + @0y + So + oWV S + %&IITVQS&IJ) , (5.78)

where 6U = (d¢p, 6, 0, (51/7) The zeroth-order Sy, the linear Terms V.S and the quadratic
terms V2S are given as

A
(V25)65 = 65265 = ( BT g )E(;’ (5.79)
(VS0). = 0510 &l 540 50 (5.80)
S() = S[UO + (50', &0 + 56—”5@:075,@:0 = S[O_O + ’U3¢, ’U3(£] = é( o )¢ + (5( o )(5?
(5.81)

and (e,0) € [0p,d9,0p,01]. In Eq. (5.81) we have not explicitly specified Sp but have
illustrated that it consists of a deterministic part ¢(...)¢ and a noise-kernel ¢(...)¢. Due
to construction, the quadratic contribution is symmetric and in block form of 2 x 2 matrices

where the matrix A(¢ = 0) = 0. We perform the Gaussian integral over the real fields 0¥
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to obtain an effective action for the slow fields (¢, @)
z = [ Dlw, 6, d]exp (— [ arsisw.o, &])

= [ Disw,9,d]exp (/ dt[ ~ G0k — UG — TS - SOD

—/D[¢ .| B </dt1VST(G WS- S —¢38¢>
= ’ Det[Glzl] P 2 Plw=0 0 t
= /D[(b? (;Nﬁ] exXp (Sﬂuc [¢7 QNS] - Seff [¢7 QNS]) ) (582)
where we have defined the inverse Green function for the fast modes as
-1 _ 2 T 0 iwl
G¢ = V<S[o, 9| + ( vl 0 ) . (5.83)

There are two contributions to the action, Squc[¢, qg] associated to the quadratic fluctua-
tions of the fast modes and Seg[¢p, ¢] which we will analyse first.

As we are looking for the steady-state in the long-time-limit, we are interested in an
effective action for times much longer than the time set by the inverse mass gap of the
fast modes. As the fast modes are always gapped in the vicinity of and also exactly at the
bicritical point, the Green function G, stays well-defined. So for long times, the temporal
derivative contributions, i.e. temporal fluctuations of the slow modes are inessential and
we replace Gy — Gyl _,-

In the vicinity of the bicritical point however, the order parameter ¢ associated with the
slow mode is small. This presents the opportunity to perturbatively expand the action
in the powers of the fields ¢. We remark that the action satisfies the Ising symmetry
Set[@, ®] = Sef[—p, —] that restricts the possible terms appearing in the power expansion.
We expand terms from

el 31 = 606+ S0 — 5 (VST Gul,g VS) =606~ o, 8, (5:8)

where one can define a Hamiltonian as

(b, ¢) = ¢ (—?(;) +6 (ao +> a2n¢2”) o, (5.85)
n>1

with the potential V(¢)

V(g) = 1612?52 + 1a4q§4 + 1616<Z56 +0(6%), ax= <8~So> ’ : (5.86)
2 4 6 0 3=0

The expansion coefficients of the potential V(¢) match with the result obtained from
the mean-field master equations, see Eq. (4.32) and Sec.4.32. The only discrepancy is a
renormalised dependence from the distance to the bicritical point that is traced back to
the normalisation of fluctuations in Eq. (5.76). At this stage, it can already be seen that
the noise contribution appearing in the sector in ¢ has a non-vanishing and constant
noise intensity ag when ¢ — 0 at the bicritical point. The description of the dynamics in
terms of a potential with a constant noise-intensity at and close to the bicritical point is
evidence for the appearance of an effective equilibrium description. The emergence of a
thermodynamic universality class in driven-dissipative phase transitions has been observed
several times, see [160] and references therein, as well as [89]. This is the main result of this
section and concludes the investigation of the bicritical point in the MSRJD path-integral.
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Comments on Sguc[®, qz~5]

So far we have not analysed the contributions from the action Sgyc[¢, (5] that appears in
Eq. (5.82) and is associated to the quadratic fluctuations of the fast modes. We make a
brief comment. By defining

-1 _ a1 -1 _ =1 _ 1
09 — G’l/} ‘¢=(]~5=0’ Gl,’l[) - G1/J 0,2° (587)
one can perturbatively expand the action Sqyuc[®, J)] in ¢ as

Tr[log (Glzl)] =Tr log[Ggﬂlb (1 + G0,¢G1_,11p)}

- dw n 1 _1\n+1
= Trlog(Go ] +Tr [ 5= 3 (-1)" —~ (GowGry)™ (5.88)
n>0

from this expansion one can see that the form of the new contributions are restricted to
be

Sttacl &) = H' = & (—%Z) ) o (ot S o™ | 6 (5.89)
m>1

where the operation Tr includes a frequency integral and a matrix trace. The Hamiltonian
H' in Eq. (5.89) is of the same form as the Hamiltonian in Eq. (5.85) and therefore does
not change the fact that there is a constant noise intensity at the bicritical point as ¢ — 0,
which was the main result of the last section. However, we remark that care has to be
taken when the Tr operation and the corresponding frequency integrals are performed
since & is real but hast to be integrated over the imaginary axis as defined in Eq. (5.19).

5.5. Conclusion

In this chapter we have reviewed the non-equilibrium noise dynamics of a set of stochastic
nonlinear differential equations with multiplicative noise (stochastic optical Bloch equa-
tions) in a weak-noise limit by analysing the action that governs the fluctuational dynamics
within a Martin-Siggia-Rose-Janssen-de-Dominicis path integral formalism.

We have derived an effective action in the low-frequency sector close to a bicritical point
that revealed that in the dynamics in this limit can be derived from an effective potential.
The transition at the bicritical point happens at a constant noise intensity, signaling the
emergence of the thermal Ising universality class. In general however, the equations of
motion cannot be derived from a conservative force field due to the presence of both
coherent and dissipative dynamics and instead of minimizing an effective free energy [214,
215, 216], the escape trajectories follow the most probable path from one stable fixed point
to the other. For weak noise-systems (here, weak is meant in the sense that many noise
kicks are required to leave one basin of attraction), deterministic and noise dynamics are
set by a Freidlin-Wentzell Hamiltonian [20] and the role of the equilibrium free energy is
taken by a nonequilibrium quasipotential [203, 217].

The current work also lays the foundation for extending the Dicke model to a true exter-
nally pumped three level system without detailed balance featuring non-vanishing prob-
ability currents in the steady-state formulated in a modern physics language. Therefore
encouraging future research efforts that help to understand non-equilibrium phenomena,
see more details in Appendix C.



Conclusion

In this thesis we have investigated magnetic phase transitions in driven-dissipative atomic
ensembles that interact with quantum light. We believe this is needed because experiments
have started to merge cavity technology and lattice-based many-body systems. The gen-
eral motivation to combine these fields is to move from ’clean’ condensed matter system
simulations to driven non-equilibrium system that hold the promise to realise unconven-
tional magnetic phases in systems where laser-dressing allows to engineer atom-light and
atom-atom interactions both in their geometric shape and magnitude. This brings with
it a considerable degree of complexity in describing competing quantum phases in non-
equilibrium conditions. Throughout this thesis we have therefore been guided by the call
for tractable model systems with experimentally verifiable results.

We have presented three projects that have as their basic building block an engineered,
laser-driven ensemble of two-level atoms in a cavity, which is described by the Dicke model.

In a first project we have added an experimentally relevant decay channel for atomic exci-
tations. As a result, we were able to extend the formula for the critical coupling strength
for the onset of the superradiance transition in open Dicke models to the full two loss
channels that take into account photonic and atomic relaxation processes. It was sub-
sequently shown experimentally that the predicted superradiance threshold is accurately
reproduced, highlighting the necessity to consider relaxation processes for cavity atoms.

In a second project we have added magnetic spin-spin interactions for intra-cavity atoms
to build a blueprint for the simplest self-interacting quantum optical magnet. Although
we could not solve our simple model exactly, it has yielded some experimentally testable
predictions: A coexistence regime of a superradiant cavity and a canted antiferromagnetic
state, a new even-odd sublattice peak in the cavity spectrum, and oscillating solutions
for both, the spin components and a coherent photon field. Modern experiments with
Rydberg-dressed spin lattices in optical cavities are on track to check and refine the results.

In a third project we have investigated non-thermal noise-activation in a driven-dissipative
first-order phase transition in an open version of the Dicke model with a collective decay
channel for cavity-atoms. Although the genuine non-equilibrium dynamic breaks detailed
balance on a microscopic scale, it was restored on a macroscopic scale by a discrete Ising
symmetry, making it impossible to observe the non-equilibrium nature of noise-activation
if the rates would be measured experimentally.

In a last chapter we have reviewed the difference between thermal and non-thermal noise
activation by investigating a classical action that is associated to the stochastic optical
Bloch equations, describing the non-equilibrium dynamics of the Dicke model with collec-
tive losses.

In an outlook chapter we have put forward ideas for future projects to observe clear
non-equilibrium signatures such as circulating currents in a macroscopic non-equilibrium
stationary state of an open Dicke model.
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Chapter A

Numerical Implementation of Stochastic Optical
Bloch Equations

The purpose of this section is to put the reader in a position to recreate the code for
the numerical simulations of the dynamics of the nonequilibrium Dicke model as pre-
sented in Chapter 4 himself. As a solver for the multidimensional stochastic differential
equation (SDE) with a multiplicative noise kernel, we use the three-stage stochastic
Runge-Kutta algorithm [192, 193] with strong order one convergence. We start by
briefly reviewing stochastic differential equations and their interpretation in Ité cal-
culus. We review the construction of the stochastic Runge algorithm and the simple
Euler-Maruyama schemes that approximate solutions to SDE. We review convergence
properties of discretised approximations to stochastic differential equations.

For a clear mathematical justification of the outlined steps and an in-depth study of
the simulation of stochastic It integrals, the reader is advised to consult the original
sources. We briefly review the introductory basic concepts for stochastic differential
equations that can be found in standard textbooks on stochastic calculus, see e.g.
[218]. However, here we follow in parts the introductory review articles on the theo-
retical background of SDE [219, 220] and the article for numerical simulation of SDEs
[221].

The classical set of Langevin equations that is associated to the dynamics of the nonequi-
librium Dicke model is of the form

0oy = D*(of) + &, (A.1)

The presence of the noise function £* adds a stochastic contribution to the otherwise non-
linear set of differential equations 907" = D%(a¢). The noise however can be multidimen-
sional and multiplicative, i.e. its strength depends on the state of the system. Conventional
solvers for numerical simulations of differential equations e.g.the Euler- or Runge-Kutta
algorithms have to be adapted to account for the stochastic nature of the evolution. Below,
we aim to make the reader briefly aware of the additional complexity of SDE. A solution
to Eq. (A.1) can be written in a differential form as

do(™ = D(o) + €2 M 5(0)dW ) (A.2)
or in an integral form as
t t
o0 = g0 4 /0 D(0)ds + /2 /0 Mos(oS)dWs.,, (A.3)

where M,z € R3*3 is the Cholesky decomposition of the field-dependent noise matrix

(e°¢%) = ex*? (A.4)
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such that x.5 = MO%M%B and D € R® is the force field for the system such that the
relaxational dynamics are determined by 0,0y = D(o). The e superscript in of indicates
the dependence of the time evolution on the particular realisation of the noise-function with
strength € > 0. The strength of the noise is set by the atomic and photonic relaxation with
(7, k) respectively and by the number of atoms N. Here Wf denotes a Wiener process,
see Sec. A. Comparing Eq. (A.1) and Eq. (A.2) the white noise 55 can symbolically be
identified as ”dd—tﬁ = &” However, a Wiener process W (t) is nowhere differentiable. This
can formally be motivated by the Markov property of the white noise function. As such
it cannot depend on its history which precludes the existence of a tangent at any point
in time since the Wiener process cannot store information on how a particular point was
approached ,[220].

Note that o;"¢ is a random variable and depends on the specific realisation of the noise.
Exact solutions can only be found in special cases however. For a numerical approximation
to the solution in Eq. (A.3) it is necessary to discretise the stochastic differential equation in
time. The last term is the stochastic integral, here, M,3(0$") is integrated over Brownian
motion. That is a random, discontinuous path with Brownian increments dWg;. For a
definition of the stochastic integral we follow It6 calculus that defines the stochastic integral
as the limit of the Riemann sum in analogy to ’ordinary’ integration as

T N-1
| M (@apdWas = Y 3" Mas(at,)(Wag,, — Wae,) (A.5)
0 N—oo =0
where the time interval is discretised in N pieces with ¢,, = nAt = n% andn € {0,1,...,N;}

such that At — 0 as N — oo.

Numerical approximation schemes to the true solution are, as in the case of ordinary differ-
ential equations, defined by the Taylor series expansions to the (stochastic) integrals. The
accuracy of the approximation depends crucially on a proper treatment of the stochastic
integral contributions. Below we show the simplest, i.e. lowest order approximation to
the solution given in Eq. (A.3) that is known as the natural extension of the Euler proce-
dure familiar from noise-free differential equations to the stochastic realm. The stochastic
generalization is referred to as the Euler-Maruyama (EM) algorithm.

Euler-Maruyama (EM) Algorithm

The Euler-Maruyama algorithm is the extension of the conventional Euler algorithm into
the stochastic realm. Its derivation is based on a first-order approximation to the stochastic
integrals in Eq. (A.5). In the discretisation process it is necessary to approximate the
integrals by a Taylor series expansion. The approximation to the deterministic part is
given as

t+At
/ D(a%)ds ~ D*(a$)At, (A.6)
t

whereas the stochastic contributions coming from the Wiener increments is approximated
as

t+ At
/ ds Moy () AW, & Mag(o) AW, (A7)
t

The Euler-Maruyama approximation to Eq. (A.3) given as

a,e

ot = 0% 4 DY o)At + Mys(od) AWs + O(At?/?), (A.8)
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where the subscript n labels the the time step t,,. The Eq. (A.8) thus defines an iteration
scheme. The quality of a numerical approximation is quantified via deviations to the exact
solution . In a stochastic setting however, the meaning of convergence can be defined via
the calculation of expectation values of the differences of the approximation to the exact
solution.

Strong order convergence for numerical solvers of SDE

Details on convergence properties for discretised SDEs can be found in [218]. A sequence
{6%(t;h),0 < t,, < T} approximates the true solution {c®! 0 <t < T} at the discrete
times t, = h - n, where h > 0 specifies the numerical discretisation step-width, and
n =20,1,...N. Convergence of the approximation to the true solution is quantified over
noise averages, i.e. the behaviour of the mean square error (MSE) as the width of the time
slices becomes infinitely small, i.e. h — 0. A method is classified to have strong order
convergence equal to v if there is a constant C' such that the MSE is bounded by

(0%(t) — 3%(t;h)) < ChY, as h — 0, (A.9)

for any t = h - n. The expectation value (.) is an average over multiple noise realizations.
In general, the EM-algorithm has strong order convergence with v = 1/2, see e.g. [222].
In order to increase accuracy by a factor of 10, the discretisation needs to be increased by
a factor 100. This result deviates from the deterministic case where there is no stochastic
component. In this scenario, the expectation value from Eq. (A.9) can be removed and
the inequality is fulfilled with v = 1.

In order to raise the strong order of convergence back to v = 1 for an approximation in a
stochastic setting, one needs to evaluate double stochastic integrals that appear as second-
order corrections in the Taylor series expansion of the stochastic integrals, see e.g. [222].
This is achieved by a multiple stage stochastic Runge-Kutta algorithm.

Three-stage stochastic Runge-Kutta algorithm

Here, we spell out in detail the algorithm that we have used for numerical simulations of
the stochastic optical Bloch equations, see Eq. (4.82). It was derived by Roessler in 2009
[192].

For the multidimensional It6 SDE with a 3-dimensional driving Wiener process we employ
a derivative-free order v = 1.0 strong stochastic Runge-Kutta scheme (SRK) algorithm
with three stages

3
0%y =08 + D (tn, 0 hn + > My (tn, 08 sy
k=1

3
5 >0 (M (1, By = M (0, HSD)) Vo, (A.10)
k=1

N |

as derived in [192]. The first two terms generate the deterministic time-evolution. Together
with the third term, which contains a single stochastic integral Iy, see Eq. (A.14) and the
noise-strength M (t,,c) this algorithm is extended to treat a stochastic component
and is the Euler-Maruyama algorithm that defines the first of the three evaluation stages
of the algorithm. The last two terms contain the stochastic double integrals denoted as
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I (3 k),n- which appear in the stages two and three as

I
M (t,, o) 2L (A.11)
1 Vhn

N

HQ(k) oy +

14

3
(k) @ af Taw)
3 ;::1 1 (tn, o) e (A12)
The single stochastic integral is defined and approximated as
tn 1
Iyn = /t AW, ~ AW (t,) (A.13)

with AW (t,,) = W(tpy1) — W(t,) distributed as AW (t,) ~ N(0,v/h). The multiple
stochastic Integrals I; ; for 1 <+4,j < m with ¢ # j are defined as

tnt1 S ; ;
Ly = /t AW, (A.14)

and can only be approximated as an exact simulation is not possible. An efficient simula-
tion was suggested by Wiktorsson [193].

Iterated /t6 integrals with the Wiktorsson algorithm

For an m-dimensional Wiener process there are m? two-times iterated Ito integrals. These
can be simulated simultaneously by pairing the independent Wiener processes by an algo-
rithm that was put forward by Wiktorsson [193]. The suggested algorithm converges to
the exact result of the stochastic double integrals with a mean square error of order 1/n?
and n is the number of terms in a truncated infinite series representation of the iterated It
integrals that was derived by Kloeden, Platen and Wright [222]. The remaining tailsum
is approximated with a multivariate normal distribution. Here, we spell out the explicit
steps of the Wiktorsson algorithm that were used in this thesis. In this whole section we
follow of course [193].

The iterated It6 integrals can be used to define so-called Lévy stochastic area integrals

Ayy(h) = Lij(h) ; fji(h),

where A;; is the area spanned by the two-dimensional Brownian motion {(W;(t), W;(t))}
from 0 to h and the line connecting {(W;(0), W;(0))} and {(W;(h), W;(h))}. From Eq. (A.15),
follow the relations

(A.15)

Aji(h) = —Aij(h), (A.16)
Aji(h) =0. (A.17)
The stochastic area integrals obey the following relations [222]

AW, (h)AW;(h) — hé;;
2

The Lévy areas
h
T o

Bij(k,h) =

i; o

\fAW ) ]k<zk+\[AW ) (A.20)
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where AW;(h) ~ N(0,h),X;x ~ N(0,1), fori =1,2,3and k =1,2,... are all independent
from one another. Due to the symmetry relations of the Lévy areas we are interested in
the subset corresponding to ¢ < j. We define

A(h) = [A12(h), A13(R), Aoz (R)]" (A.21)
B(h, k) = [Bi2(h), Bi3(h), Bas(h)]" (A.22)

We split the infinite sum in Eq. (A.19) A(h) = A"(h) + €, in two parts by defining the
first contribution as

~ h noq
A™(h) = — —B(h,k) A.23
() = ent 5 > B (4.23)
and the second contribution, the tailsum ¢, as
h &1 -
n=— —B(h,k A.24
=5 k:zn:ﬂ B k) (A.24)

It can be shown that as (27/h)ay, Y %€ converges weakly to a Gaussian vector with zero
mean and a covariance matrix Y,

2(W124+W3) 9 2Wa Wy 2W, W
h + ) h ) - h
Eoo — QW}QLWS 2(W1:W3) +2 2W}1LW2 (A25)
_2W 1 W3 2W1Wo 2(W22+W??) 4 2
h h h

such that for n > 1,¢, is approximated as

= an /TG (A.26)
T

where G,, ~ N(03x3, I3) is a Gaussian vector with zero mean. The matrix square root is
approximated as

Seo + 2v/1 + [AW (R)[2/hIs

V2(1+ /T + [AW2/h)

The cut-off n for the simulation of the iterated Ito-integrals has to be chosen such that
the MSE of the iterated It0 integrals is e smaller than the temporal discretisation error.
Kloeden Platen and Wright showed that this is achieved if the MSE of the stochastic
double integrals is bounded by C'h3 for a positive constant C' [218]. With the choice of

VEm =

(A.27)

n> V/bBm?2(m — 1)(2472)

- (A.28)

m=3

it is possible to achieve a strong order one convergence. With the calculation of the Lévy
areas it is possible via Eq. (A.19) to calculate the iterated It6—integrals. The algorithm
put forward by Wiktorsson [193] is the following four-step procedure.

1) Simulate W (h) from N(03x3, Vhl3x3)

2) Approximate the Lévy areas as

A ;g;( Zk<],€+\fAW > Jk<zk+\fAW ))

(A.29)
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where X, ~ N(0,1) and Y ~ N(0,1) are independently distributed Gaussian random
numbers with zero mean and i < j with (4, j) € (1,2, 3).

3) Add the tailsum approximation to the stochastic area integrals

A(h) = A™ () + ;wﬁam/Ean (A.30)
T
ans simulate G,, ~ N (03x3, I3x3).

4) Lastly, proceed to calculate the stochastic integrals

I;ij(h) = AWi(h)Amgj(h) — hoij + Aij(h) (A.31)

The stochastic double integrals that appear in the three-stage stochastic Runge-Kutta
algorithm in Eq. (A.10) can be simulated with the four-step process 1) — 4).

Properties of Wiener-Processes

In this section we review the properties of Wiener processes Wy, and we follow [221, 193]
with the loose identification W; = % (see discussion above) and brownian increments dW;
in stochastic integrals. A real-valued and continuous, stochastic Wiener process satisfies
the properties of a random walk

1) W(0) =0
2) W(t) — W(s) ~ N(0,t —s), Y(t>s>0)

3) {W(t1),W(ta —t1),...,W(tn) — W(tn—1)}, are independet incrementsVt; < ty <
<ty

this means in particular that the average (.) over multiple realizations of the brownian
random walker satisfies the properties

(W(t)) =0, and (W?3@t))=t, Vt>O0. (A.32)

If the Wiener process is discretised with respect to time slices At, these conditions lead
to the properties for increments of Wiener process Wg; — Wg;_a; that satisfy the above
defined relations

Wgo=0, Wgi=Wgiat+ VAtXg, (A.33)

Here, Wy = (Wy1,..., Wi q)! defines a d—dimensional Wiener process with 8 € [0, ..., d]
whose transitions are distributed as a multivariate Gaussian (W, —W;_a¢) ~ N(0,Atl;)
and I, is the d—dimensional Identity matrix and Xg; ~ N(0,1). In fact, Eq. (A.8) does
not involve independent but correlated Wiener processes since the noise functions in the
stochastic differential equation obey the covariance relation

(67€7) = Xapd(t = 1). (A.34)
This can be implemented by modifying the discrete Wiener process as

W, =W+ VAtX, (A.35)

where the random d-dimensional vector Xy is distributed as N (0,%). Where N(0,X)
is the multivariate Gaussian probability distribution with (X4) = 0 and (X 5)2 4)=2,
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where the covariance matrix is defined as ¥;; = ((X; — pi)(X; — p)). Correlated random
variables X in d-dimensions can be constructed from d draws from a one dimensional
standard Gaussian probability distribution with the help of the affine transformation

yi = My Xy, (A.36)

where now Xy ~ N(0,1). The covariance of the new variable y; has the desired covariance

o 1 _1,T,
(viy;) :/_Oo Hr]yzldxn(Mim$m)(MjN?€)W€ 2 (A.37)

exp (— %i’mM;ngpi'p)

(v2m)N

1~ v-1x
) . exp —§xm2mpxp o

where det(M) = \/det(X) > 0 due to the property of 3 being positive (semi)-definite.

= / 11_, di, det(M) B (A.38)

The random variables y = M X are then distributed according to the probability distri-
bution

FrY) = fx (M)~ = mwlwm exp (-3u"Sy)  (A40)

Thus, correlated Wiener processes can be constructed from uncorrelated Wiener processes
with the affine transformation

Wt,a = Ws,a + v AtMaﬁXﬁ,ta (A41)

where now X g; ~ N (0, I;) such that (W, — W ,) ~ N(0,AtMM?' = At%). Conse-
quently, the transition probability density for the process (Wi o—W o) ~ N (0, AtM M T—
AtY) then satisfies the relation

1
(v2r(t- s))N Vdet(%) o <_2(t — )

th,a_Ws,a = wTE_1$> (A42)







Chapter B

Antiferromagnetic Phase Transition in Presence of
Cavity-Mediated Fluctuations

We present preliminary work on a classical Ising Antiferromagnet on a two-dimensional
square lattice with nearest-neighbour interactions driven weakly by vacuum fluctua-
tions of a single bosonic light mode of a cavity which induces transitions between
classical spin configurations.

A spin-flip occurs whenever the energetic difference of two-dimensional spin-configurations
falls in a frequency window centred around the cavity resonance and bounded by the
cavity decay rate. We investigate the even-odd translational symmetry breaking in
the ground-state of the Hamiltonian in the presence of cavity fluctuations that induce
a genuine non-equilibrium dynamics. Therefore, the occupation probabilities p. and
po of the even and odd lattice sites are a priori not pre-determined by the Boltz-
mann distribution as in thermal equilibrium. They are however fixed by a coupled,
non-linear set of equations involving the transition rates that can be derived from
a modern Liouvillian perturbation theory [223, 224] for weakly driven-open systems
where perturbations break conservation laws associated to the unperturbed system.
We compare perturbative, analytical calculations for the antiferromagnetic order pa-
rameter with a classical Monte-Carlo simulation for the stationary state of the system.
We conclude our preliminary investigations by a discussion of open questions as well
as a brief validity analysis. We define steps for future work.

Introduction and Model

A two-dimensional Ising Hamiltonian with tunable-range interactions has recently been
realized experimentally with ultracold atoms in an optical lattice. This was achieved by
realizing an effective dipole-dipole interaction between two ground-states [1), and |1) ; of
a ground-state manifold {|),||)} of atoms at site i and j. The ground-state inherits
an electrical dipole by off-resonant coupling to a highly excited Rydberg state |r) such
that it becomes optically dressed as [1) = |1) 4+ a/|r), where a < 1 is the perturbatively
calculated coupling constant. The Rydberg dressing induces a dipole-dipole interaction
with a van-der-Waals tail ~ 1/R%, where R is the separation distance of the atoms.

Here, we propose to couple the synthetic spin-lattice weakly with the vacuum mode of
a cavity that drives the atom-cavity system out of equilibrium as the spin-ensemble is
subject to cavity-assisted spin flips through vacuum fluctuations of the cavity. Intuitively,
the photons themselves can leave the system through imperfect cavity mirrors and provide
an effective cooling mechanism as they carry with them an energy wg associated to the
cavity frequency.

We address this problem as it raises several interesting questions.

167
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1. Is the antiferromagnetic phase transition in the presence of cavity-assisted spin-flips
within the thermal Ising universality class?
We consider the phase transition from a paramagnet [1,1,...) to a Néel antiferro-
magnet |1, ],...) as a ground-state phase transition driven by an increasing dipole-
dipole interaction in the Hamiltonian. The presence of cavity-assisted spin-flips could
likely lead to a finite noise-intensity leading to a classical thermal phase transition.
However, the non-thermal noise could potentially change the critical exponents and
change the universality class of the transition.

2. Can the stationary probability distribution P({s}) for a spin configuration {s} in

the long-time limit be mapped to a thermal or generalized Gibbs distribution taking
into account the conserved charges of the system in addition to an effective temper-
ature Tyog?
The stationary state distribution of a Markov-chain Monte Carlo simulation for the
long-time limit dynamics is determined by the cavity-assisted transition rates be-
tween classical spin configurations. Therefore, the occupation probabilities, of the
even p. and odd p, lattice sites are not pre-determined from a Boltzmann distribu-
tion. An idea is to numerically evaluate the stationary state distribution P({s}) and
check if it can be fitted to a thermal Boltzmann or Gibbs distribution.

3. Is the phase transition in a non-equilibrium setting a first or second order phase
transition?
In a T = 0 spin-mean-field calculation the Néel phase transition is a sudden, first-
order transition. At finite temperatures, it is replaced by a second-order phase
transition with a critical temperature determined by Onsagers exact solution of the
two-dimensional Ising model.

In the remainder of this section, we touch upon the first question only.

Hamiltonian and Lindblad Perturbation

We consider a two-dimensional Ising Hamiltonian Hy where in contrast to a conventional
Ising term ~ o*c?, the interaction is conditioned on population in the excited state

N
N 1407\ (1+0%,
HOZ_% a£+VZ( 2”)( 2(’ > (B.1)
=1 (£,m)

We model the two-level system with Pauli operators and define o} = |e), (e|—|g), (g|, where
le) refers to the excited state and |g) refers to the ground state. A detailed description of
the setup and references to an experimental realization of the Hamiltonian is also given
in section 3.2. As Hy consists purely of o*-terms, the eigenstates of the system can be
conveniently as |n;) € {|TJdd) , [TI4T) 5. .. } that are atomic configurations of a spin-up
and spin-down pattern with ¢? as the quantisation axis.

The Hamiltonian conserves observables built from combinations of ¢? operators as for in-
stance the energy Co = Hj and the total spin-z component or magnetisation C = Zévzl o7
or the sublattice magnetisations C. = } jcqven 07 for the even and the odd sublattice
Co = Y tcoad O as can be seen by

[Ho, Ci] = 0. (B.2)

As such, the Hamiltonian displays purely classical, Ising-like dynamics.
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However, in the presence of a weak (¢/vV N < w,, V) coupling to a single light mode of
the cavity, described by the Hamiltonian

N
=9 Eaxa al .
=5 Hlata) 3

the conservation of Cy,C,, C, and all other quantities constructed from o¢* matrices is
broken, as the cavity can mediate spin flips in the entire lattice. The cavity field is kept at
(a) = 0 and thus a, a' describe fluctuations around the vacuum. The coupling to the cavity
can be interpreted as an external drive with strength g/ V/N and the cavity-induced spin
flips occur on a timescale associated to the inverse energy scale of the coupling t > v N /9.
This implies that we are interested in the limit ¢ — co before taking the limit N — oo as
these two limits do not commute.

The open system dynamics is given by the markovian master equation in Liouville form
) g
p=~Lp= (Eo + L+ \/N£1> 0, (B.4)

where we have split up the total Liouville operator £ in the unperturbed Hamiltonian part
Ly and L, and the Hamiltonian perturbation £;

Lop = —i[Ho,p], Lip= —i {Hl,p} (B.5)

We model the imperfect cavity mirrors in the standard Born-Markov approximation to
account for photon losses with the Lindblad operator £

N
1
Lip=k (a al — =(pata + a'a ) B.6
p ;:1 pa’ =5 (p p) (B.6)

The coupling of cavity photons to the electromagnetic vacuum modes outside the cavity
breaks energy conservation C of the Hamiltonian as photons escaping from the cavity
carry with them an energy associated to the cavity frequency.

Classical steady-state density matrix with perturbatively defined
non-equilibrium occupations

The Liouville equation (B.4) defines a situation of a weakly driven and weakly open quan-
tum system where the unperturbed system characterized by Hy has local conservation
laws associated to operators containing only o*-terms, such as the energy as described
by Cp and the total spin-z component or the sublattice magnetisation as described by
C1,Ce and C,. The coupling to the cavity and to the external vacuum modes break these
conservation laws and are expected to drive the system to a stationary state that can be
approximately described by a (generalized) Gibbs ensemble [224],

pPo ~ €Xp (— Z /\101> (B.?)

where the Lagrange parameters )\; cannot be determined from the initial state as the
quantities C; are not conserved in the presence of the Hamiltonian perturbations H; and
the dissipative Lindblad contribution L. Finite expectation values of the C; will be a
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consequence of a balance of drive and dissipation in the steady-state.

We follow now step by step the Liouvillian perturbation procedure outlined in [224] to
derive coupled rate equations that fix the expectation values (C;) in the stationary state.
The steady-state density matrix pg is then determined from two conditions

EOPO = 07 (Bg)

(Ci) =Tr {Ciﬁp] ~ Tr [Ciﬁlﬁglﬁmﬂ =0. (B.9)

The first condition is fulfilled due to the conservation laws [Hy, C;] = 0 by a density matrix
po described by a generalised Gibbs ensemble (GGE). The second condition is the first
non-vanishing perturbative correction which is a second-order correction O(g?/N) in the

perturbation that fixes the density matrix pg to zeroth order (g / VN )0 in the perturbation
L1. We have left out the steps that lead to the perturbative correction in Eq.(B.9) as
they can be found in detail in [224]. As also mentioned in this paper, the second order
correction is intuitive as transition rates typically come with a quadratic correction in the
strength of the perturbation, as familiar for instance from Fermi’s golden rule.

In two-dimensions, we will give an approximate solution for the density matrix in the
steady-state when the cavity is in the vacuum mode (a) = 0. We parametrise the density
matrix as

#configs
PO = Pe ® Po & ’0> <O’ = ® ( Z DPs,i Z Pni |nv 0)2 <n’ 0‘) ) (B.lO)

i:(evo) 5:T7\L n=1

where we have assumed that the density matrix separates in a part for the even and
the odd sites. Notice that the Ansatz for the density matrix is classical. Here |n;) €
{1 S 1) 5 ...} is an atomic configuration of a spin-up and spin-down pattern
with 0% as the quantisation axis. The classical state space of atomic configurations grows
exponentially in the number of spins N. For our mean-field Ansatz we consider only even
and odd sites with all configurational possibilities of the four neighbours which are 2%.
The index (e, 0) refers to the even and the odd sides respectively. The probability for the
spin on the even site to point up is given by py . = p.. The remaining configurations for
the spins on the odd site is then given by the probabilities p, .. For example the state
[14444) has a probability of ptepne = p.e(1 — po)*. The probabilities are normalised with

#configs
Y pui= 1= p) +4pe(l—p;)® +6p2(1 —pi)? +4p}(1 —pi) +pf =1 (B.11)
n=1

and similarly for the odd sites. The prefactors come from the Binomialcoefficient with (i)

and k € (0,4). Such that Trp = ITi—e, ij{nﬁgs Pne = 1. For example, the density matrix
on the even sites is described as

Pe = Pe ((1—po>4m¢u><wu¢|+po<1—po)3 > \T¢¢u><m¢¢|+---)

permutations

(B.12)

+(1—pe) ((1 —po) W) (W +p0(T—p0)® > W) UL+ )

permutations

(B.13)
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The density matrix on the odd sites is obtained by the exchange e <+ 0. The two con-
served quantities we consider are the magnetisation on the even and the odd lattice sites
respectively

8t <U§> =Tr [Ugﬁlﬁalﬁlpo} = O, (B.14)

at <O‘Z> = Tl“[a'gﬁlﬁolﬁlpo] = 0, (B.15)

o

where we have adopted the notation ) ,c.,e, 07 = 0Z and >y 4907 = 05. We proceed
by an explicit derivation of the coupled rate equations that result from the rate equation
(B.14) and Eq. (B.15)

Part 1: L1p

In the following, we consider first a fixed single atomic configuration |n) in the o* basis
and construct the corresponding density matrix

po = |n,0) (n,0], (B.16)
to compute the perturbatively induced spin flips with Hy|n,0) = f > |7, 1), where
|ng) = ..., — Te,...) has the spin at posmlon ¢ flipped. Correspondingly, we evaluate

L1po = —i[Hu, po] = \F > (I, 1) (n, 0] — |n, 0) (7ig, 1) - (B.17)

Part 2: Eal (,61,50)

We proceed with an evaluation of Ly ! (L1po), where we take Lo = Ly + L. To calculate
the action of an inverted Lindblad super operator on a density matrix, we first consider
the effect of Ly on a mixed density matrix state with zero and one photonic excitation
inside the cavity in the combined atom-photon basis |n) ® |n,) = |n,n,), where the first
letter n refers to a pattern of spin-up and spin-down configurations and n, = (0, 1) labels
the number of photons in the cavity. The action of the inverted Lindblad can then be
inferred from the matrix inversion of

Lo (a1 n,0) (m, 0] + a2 n,0) (m, 1| + ag |n, 1) (m,0| + a4 |n, 1) (m,1]|) = Ma, (B.18)

where the matrix

En—ZEm 0 0 (Em—En)(g'm—En—‘riH)
- 0 mE o wrre 0 0
wr=| ; 0 . (B.19)
En—En+ik/2—wo )
0 0 0 _Emfén+m

is represented in the atom-photon basis {|n,n,)} in the order given by the set By, =
{00,01,10,11}. The energies E,, are eigenenergies of an atomic state calculated as Hy |n) =
E, |n). Using Eq. (B.17) we find

E (ﬁlpo) <—Z Z ]ng, n 0‘ — \n, ()) <ﬁ£’ 1’))
. g —1 B —3 B
ey (En "t inf2 e O e 0 (P |)
(B.20)

as our result.
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Part 3: Tr [agﬁlﬁalﬁﬁol

We now calculate the last contribution to evaluate the rate equation (B.14) and Eq. (B.15)
which is given by £1(Ly'L1po). For this, consider the two contributions

Ly (|ng, 1) (n,0]) = 9 Z |T.m, 0) (1, 0] + |7g m, 2) (n, 0] — |72g, 1) (0, 1]),  (B.21)
L1 (|n,0) (ng, 1|) = 9 Z (Im, 1) (e, 1| — [n, 0) (g m, O] — |1, 0) (g,m, 2|), (B.22)
where 74, has the spin flipped at sites ¢ and m, as |ngm) = |...,— To,. s — T, .- 1) -

This transforms Eq. (B.20), to
L1(Ly Lipo) =

2 .
g —? _ _ _ _
(%) e (e {01+ e 2) {001~ 1. 2) 1)
4m e e
—1
Esn, — Ey, +iK/2 + wo

(’ﬁrm 1> <7_7f£7 1‘ - ’n70> <ﬁ£,m7 0| - ‘nv 0) <ﬁ€,m7 2|):| (B‘23)

The trace operation eliminates all off-diagonal elements such that the only surviving terms
are of the form

2
Te[07 L5 apo| =205 Y B(ABL k)07 (,0) (ne, 0] = [e 1) (e 1) |- (B20)
14

In this equation appears a transition rate

1 i i 1 /2
5(AE£7/$’M) B % (AEZ — Wy +il€/2 B AFE — wo — ilﬁ/2> N ;(AE[ —WQ)2 + (Ii/2)2

(B.25)

parametrised by a Lorentzian line shape. The transition rate explicitly depends on the spin
configurations of the four neighbours of the spin at site ¢ through the energy differences
AE, = E,, — Fy5,. The Lorentzian is centred around the cavity frequency wg = AFE, with
full width at half maximum given by x. It describes the absorption or emission of a cavity
photon that leads to a flip of the spin in the lattice whenever the photon frequency matches
an atomic transition frequency. The absorption or emission line is naturally broadened by
the cavity loss rate .

Solution to the rate equation in the stationary state of the system
We now use our Ansatz from Eq. (B.10) for the density matrix p. and p,. This will lead

to a non-linear set coupled equation for the occupation probabilities (pe,p,). The rate
equation for the magnetisation on the even sites is written as

O (07) = Tr [agﬁlﬁolclpe]

#configs
= 27rTr[ Z Ds,e Z pn625 AEy, k,w)o? (|ng, 0) (ng, 0| — |ng, 1) (ng, 1])
s=T,J n=1

(B.26)



173

To illustrate the evaluation of the contributions to the sum, we pick as an example the
state |1, Jd4d) (1, 4444]. The contribution from this configuration evaluates as

2

2m 9T |pe(1 = po) (3(—ws) +40(—ws + V) [T, W) (1 WL
— pe(1 = po)* ((=1)3(=w2) L) (L
F8(—ws + V) L) (M + 8(—ws + V) IR (U + )

2

- 47Tnge(1 — o) Ao (—ws) (B.27)

Combining with the other terms from Eq. (B.26) leads to
9t (o) = pe [(1 — Po)*6(—w2) + 4(1 = po)’pob(—w: + V) + 6p2(1 — po)*6(—w. + 2V))
FA(1 = po)p23(—ws + 3V + pl(—cw, + 4v>]
~(1 = ) [pEBess = 4V) + 4531 = o)} 2 = 3V) + 692 (1 — po)?0(w — 2V)
(1= 0)18(w2) + 4po(1 — )82 — V)| =0 (B.28)

The coupled equation is generated by exchanging e <+ o. The Eq. (B.28) illustrates how
the dimensionality comes into play in determining the transition rates that depend on the
configurations of the spins.

Comparison of Monte Carlo simulations with mean-field predictions

In general, the non-linear equations (B.28) and its counterpart with the exchanged sub-
scripts e <> o have homogeneous solutions where p. = p, and solutions that break the
sublattice symmetry p. # po. In contrast to an equilibrium situation, the spin-up and
spin-down probabilities are not set by a thermal Boltzmann distribution but in fact are
determined entirely from the rate equations resulting from the the weak cavity perturba-
tions, once again stressing the non-equilibrium character of the model.

Without the coupling to a cavity, the mean-field transition point is determined from a
simple energy counting as AE = —w, + 4V = 0, fixing the 7" = 0 transition at V = w, /4.
From a mean-field point of view, as soon as it becomes energetically favourable for a spin
to flip, the transition happens in the entire lattice. The change in the magnetisation is
discontinuous.

In thermal equilibrium, where the system is coupled to an external bath that is charac-
terised by a temperature 7', there exists a critical line in the space {w,, T} that separates
a Néel antiferromagnetic state from a paramagnetic state. Even though there is no exact
analytical solution for the critical line T'(w,), approximate closed form expressions have
been conjectured [225] which have been shown to be in good agreement with numerical
Monte-Carlo simulations [226].

We investigate the phase transition from the paramagnet to the antiferromagnet as the
ratio of the interaction V in comparison to the magnetic field w, is changed. For small
V/w, < 1 the system is paramagnetic with the spins aligned in the z direction of the
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homogeneous field. As V/w, increases, the system eventually undergoes a phase tran-
sition as the even-odd lattice symmetry is spontaneously broken. The behaviour of the
magnetisation o7 ,(V/w,) is illustrated in Fig. B.1. For V = 0 the magnetisation is set by

_ 8w wo
T dw? 4+ K2+ 4w

oc(Vywz,wo) = 05(Vyws, wo) = pe + (1 = pe)(=1) (B.29)

Corrections linear in the interaction V' can be calculated analytically from an expansion
of Eq. (B.28) to reproduce the slope of the magnetisation seen in Fig..B.1.

We can compare the mean-field calculations with a numerical Monte Carlo simulation
which is sensitive for example to the buildup of a diverging correlation length that is
missed by the mean-field calculations. The cavity-induced transition rates §(AE;;, k,wo)
have to be used to set the transition rates from configuration ¢ to configuration j as

Wi
Wi

= (5(AEZ‘]‘, K, wo)/max [(5(AEU, R, UJQ):| 5 (B30)

where the maximum is taken with respect to all configurations and provides a normalisa-
tion for the transition probabilities. The choice of normalisation is not unique, but should
not change the results for the Monte Carlo simulations. The two configurations ¢ and j are
different by a single spin flip. An update algorithm within a Markov-Chain Monte Carlo
is guaranteed to produce a stationary probability distribution in the asymptotic dynamics
of long times.

A comparison is seen in Fig. B.1 showing good agreement for w,/V < 1 of the analyti-
cal mean-field and the numerical simulations with non-equilibrium transition probabilities
given by Eq.(B.30). For moderate to strong interaction strengths, the numerical calcu-
lations show a shift of the phase transition point towards higher Rydberg-Rydberg inter-
actions. Furthermore, the magnetisation curves on the sublattices are not monotonically
growing with increasing Rydberg-Rydberg interactions but show clearly visible dips that
are traced back to the non-linear transition rates §(AE;;, k,wp). We close with a discussion
of the validity of the current approach and outline further steps for future work.

Validity restrictions and future work

The results remain preliminary and provide only a first insight into the non-equilibrium
dynamics of the suggested model. We discuss restrictions of the current approach together
with possible next steps.

1. We assume throughout that the the spin-flips induced by the vacuum mode of the
cavity connect patterns of classical product states of spin up and spin-down con-
figurations |n) and |n') with a rate dp,)_, ) as in Eq. (B.25). This entails that the
dynamics of the system is described by a classical master equation for the diago-
nal elements of a density matrix. Off-diagonal elements that capture coherences or
entanglement of non-classical states are explicitly excluded. Exact diagonalisation
schemes for small system sizes have shown that the off-diagonal elements of the
density matrix for arbitrary initial states cannot be neglected without a dephasing
assumption. This restricts the validity of the current approach to systems subject
to sufficiently strong decoherence leading to a dephasing of the spins. Such that
the entire dynamics becomes classical. Dephasing with a rate y is described by the
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Figure B.1.: Comparison of analytical mean-field calculations with Eq. (B.28) and numer-
ical Monte Carlo simulations with non-equilibrium transition rates given by Eq. (B.30)
for the antiferromagnetic phase transition of a Rydberg Hamiltonian (Eq.(B.1)) on a
two-dimensional square lattice weakly interacting with vacuum fluctuations of a cavity
(Eq.(B.3)). (a) Antiferromagnetic order parameter for increasing Rydberg-Rydberg inter-
action strength V. (b) Sublattice magnetisations (o?) and (oZ) for increasing Rydberg-
Rydberg interaction strength.

Lindblad

N

1
Lp =73 oipof = 5(poioi + ojoip). (B.31)
(=1

2. We want to compare the stationary probability distribution for spin configurations

generated by the non-equilibrium dynamics with a thermal probability distribu-
tion. A Markov chain Monte Carlo algorithm in thermal equilibrium generates
spin configurations with energy E with an (unnormalised) distribution P(E,T) =
g(E)exp (—E/T), where g(F) counts the number of states with a given energy F
(density of states - DOS). If the DOS can be obtained numerically, the stationary
state distribution can be compared to a thermal distribution with an effective tem-
perature Tog.
Accumulation of histogram entries to determine the DOS is cost intensive for large
systems due to the exponentially growing number of classical states. However, an
efficient method (Wang-Landau algorithm) to directly sample the density of states
g(E) has been proposed [227].

3. At a critical point of a first and a second-order phase transition the numerical Monte
Carlo simulation is plagued by critical slowing down of relaxation of excitations
which increases the autocorrelation time of successive spin configurations. To cor-
rectly sample observables such as a magnetisation it is essential that successive sam-
ples be independent. To decrease autocorrelation times, it is therefore necessary to
implement algorithms for flipping cluster of spins such as the Wolff- [228] or the
Stevenson-Lang [229] algorithm.






Chapter C

Circulating Probability Currents in Stationary
Non-Equilibrium States

A clear non-equilibrium signature is a circulating probability current in the stationary
state which is possible only if detailed balance is broken. In chapter 4 we found that
the stationary state dynamics of the driven-dissipative Dicke model in the presence of
finite noise could be understood from a classical rate equation of a three level system.
Importantly, the presence of a mirror symmetry constrained transition rates on a
macroscopic scale to obey detailed balance. Consequently, here we explore ideas to
lift this detailed balance in the presence of magnetic fields.

Presence and absence of detailed balance in classical stationary states

A truly non-equilibrium stationary state is distinct from a stationary state in equilibrium,
e.g. through the presence of non-vanishing probability currents in an externally pumped
system with at least three levels. A two-level system in the stationary state cannot sus-
tain a finite current between the levels. This is understood on the level of classical rate
equations for the occupation probabilities of the stationary states

dp,
=2 (Prvji = Poyig) = > J3i =0, (C.1)
J J

where ~;; is the transition rate from state ¢ to state j and FP; denotes the probability to
be in state 7. Thus, FP;y;; is the probability current from ¢ to j and

Jji = Pjvji — Pivig, (C.2)

is the net probability current between these states. In thermal equilibrium J;; = 0, whereas
a stationary non-equilibrium state can have J;; # 0. If the long time limit behaviour of the
system is adequately described by the classical master equation (C.1), then the associated
steady-state density matrix is

p=ZB!i> (il - (C.3)

In chapter 4 we found a bistability regime for the driven-dissipative Dicke model with
collective loss within which there were three stationary states. These consisted of the
empty atom-cavity system (a) = 0 and the two superradiant states + (a) # 0. Fluctua-
tions rendered these states metastable and lead to transitions between them. Although
detailed balance is microscopically broken as it should be since the drive, dissipation and
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Figure C.1.: Three distinct scenarios for a stationary state of an externally pumped system
with three levels as described by a classical rate equation, see Eq.(C.1). Thick arrows
denote dominant transition rates, dashed arrows denote weak transition rates. (a) Detailed
balance is enforced by the symmetries of the system. There is no net current between any
two states. (b) The mirror symmetry is lost due to fine tuning of one external parameter
such as a magnetic field that leads to a preference of one branch over the other. However,
there is no net current in the system. (c) Fine-tuning of a second parameter might lead to a
scenario where detailed balance is explicitly broken, allowing for non-stationary probability
currents in the system. This scenario has no counterpart in an equilibrium system.

non-thermal fluctuations break time inversion symmetry for the microscopic equations of
motion, it is however enforced by the Ising inversion symmetry of the model to emerge on
a macroscopic scale. The three level system is thus effectively a two-level system as the
transition rates from the empty to the two superradiant states are forced to be equal by
symmetry.

One may wonder whether or not the non-equilibrium character of the model can be de-
tected by experimental measurements of the transition rates for example by fitting the
ratio of the rates with an effective temperature, Sog = 1/Teg according to

—BegAV = log (WS> . (C.4)
YSr,0

Here 70,5, is the transition rate from the empty (0) the the superradiant state (Sr) and
AV would correspond to some (energetic) barrier separating the two states from another.
Non-equilibrium features might be detectable by violations of the thermal fluctuation-
dissipation theorem. Comparing the classical (Einstein) fluctuation dissipation theorem
with predictions form linear responses (Kubo-formula) in the steady-state, one can measure
deviations from thermal equilibrium and or calculate an effective noise-strength, see [230,
231].

Asymmetric transition rates in presence of a magnetic field

Ultimately, we have to break the degeneracy of the two superradiant states to realise
circulating probability currents in a system with three distinct states. In this section we
take the first step by adding an additional magnetic field with strength €2 to the atom-
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cavity system. The Hamiltonian (cavity photons integrated out) is written as

Wy & el J
H:—ZZUE—I——ZUf——ZUfon. (C.5)
2O 2.3 N

The magnetic field breaks the Ising inversion symmetry of the Hamiltonian Zs : (04, 0y) —
(—0g,—0y). As a consequence, all stationary states exhibit a finite magnetisation (o%) # 0.
Including the atomic and photonic dissipative contributions, with Liouville contributions
of single, as well as collective atomic decay as modelled by L£*, see Egs. (4.3)-(4.5) the
equation of motions are cast into the form (h = 1)

0o = —i[o*, H| + L*|o] = D7, (C.6)
where the deterministic relaxation is given as

o"(1 = Bo*)(=) = 0w,
D = Jo*o* — Qo* —~yo¥(1 — Bo?) + o%w, . (C.7)
00 + QY —AB((0%) + (0¥)?) — 20" + 1)

Depending on the parameters, there are now either one, two or three fixed points for
D. Starting out from (J < Q) and increasing the exchange interaction to (J > ),
the number of stable fixed points changes as 1 — 2 — 3 — 2, see Fig.C.2b. When the
ferromagnetic exchange coupling is much weaker than the external field (J < ), the
stationary state of the system is unique. With the finite magnetic field of strength
the empty atom-cavity state ||, ],...) is not a fixed point of the system any more and
the Bloch vector S = (0%, 0Y,07) is tilted slightly away from z-axis leading to small, but
finite magnetisations. The long-time limit behaviour of the system is now defined by a
competition of the coherent mean-field that tries to align the spins parallel to the total
magnetic field and the dissipation that tries to remove all excitations from the system,
see also [124]. When the ferromagnetic exchange coupling is much stronger than the field
J > ), there appears a second solution with strong finite magnetisation in the ¢* channel,
energetically split from the first by an amount proportional to the field ~ €. The splitting
vanishes asymptotically in the limit of strong interactions ©/J — 0. A comparison of
the aforementioned cases is seen in Fig. C.2a. The fixed-point landscape of D is depicted
in Fig. C.3b and compared to the case where there is no magnetic field (as analysed in
chapter 4), see Fig. C.3a.

|deas to break detailed balance with forced transitions in presence of
periodic drive

As seen in the previous section, the presence of a magnetic field spits the stationary states
into three distinct states. However, a numerical simulation of Eq. (C.6) in the presence of
finite noise (9;o® = D+ 1/v/N&®) has shown that the transitions rates are exponentially
stronger (~ exp (f(£2))) for one branch of transitions, where f(2) is some function of the
magnetic field. This is depicted schematically in Fig. C.1.

We can however externally pump the spin system by coupling the collective spin to a
time-dependent magnetic field. This pumps energy into the system and induces coherent
switching between two of the three states on a Hamiltonian level. Cooling can be provided
by the presence of dissipative channels. Through the replacement Q@ — Qcos (wpt) in
Eq. (C.6) we add a periodic drive and render the Hamiltonian explicitly time-dependent.
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Figure C.2.: Steady-state solutions for the relaxation dynamics described by Eq. (C.7) for
the atomic population imbalance o*. (a) Shown are both stable and unstable branches.
Solutions in red (2/w, = 0.5, = 0) correspond to the absence of a collective loss term
and show no bistability regime as the finite magnetic field €2 selects one of the two possible
states. Solutions in gray (Q/w, = 0,5 = 50) correspond to solutions seen in the phase
diagram in Fig. C.3a, explained in Sec.4.3. Solutions in black (2/w, = 0.5, = 50)
illustrate the splitting of branches in gray in the presence of a magnetic field for the
bistability regime. (b) Close up of fixed point behaviour for parameters (2/w, = 0.5, =
50). Thick lines are stable, dotted lines show unstable solutions. The number of stable
solutions is indicated above the figure.

(a) (b)

Figure C.3.: Fixed point landscape corresponding to D = 0, see Eq. (C.6) without (a) and
with (b) additional magnetic field for the parameter set (wp/w, = 1.4, k/w, = 0.2,7/w, =
0.1). Different colours indicate a different number of stable fixed points. (a) Phase diagram
as investigated in chapter 4 (shown for comparison). Shown in red are unique solutions
(empty atom-cavity system), green shows a bistability regime between the empty atom-
cavity and the two symmetry related superradiant states. Black areas show stability of
the superradiant solutions only. (b) Steady state phase diagram with magnetic field and
parameters (2/w, = 0.5). Red shows a unique steady state. Light green is a bistability
regime with two stable solutions corresponding to the almost empty and a single super-
radiant state. Dark green shows areas with three stable stationary states which are the
almost empty and two symmetry broken superradiant states. Black areas show regions
with two stable states. A cut along the axis § = 50 is shown in Fig. C.2b.
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Figure C.4.: Time-dependent solution of Eq. (C.6) with the replacement Q@ — € cos(wpt).
Independent of the initial state, the system settles onto a trajectory that connects two
special points in the Bloch sphere, formerly associated with the degenerate superradiant
states.(a) and (b) both show the same time-resolved dynamics in the long-time limit. (a)
shows each spin-component ¢¢ individually and (b) shows a parametric plot of the Bloch
vector S = (o%,0Y,0%).

The Ising symmetry is however still present under the transformation t — t + 7'/2 where
T = 1/wy is the time for a full oscillation. The presence of dissipation, as given by the
Lindblads in Egs. (4.3)-(4.5) ensure that independent of initial states, the dynamics of the
system collapses onto a single trajectory that, as a function of time, drives the system
back and forth between two strongly superradiant states without passing a fully inverted
state close to the empty atom-cavity system, see Fig. C.4. The long-time limit behaviour
however is not stationary and depends on the parameter values {w,,wo,wp, 2, k,v}. Nu-
merical simulations suggest that if the system is initialised close to the inverted state, it
will also be trapped in that region. Adding back a noise contribution 1/v/NE&® realizes
a scenario where the inverted state is connected to the superradiant regime by noise-
induced transitions and the two superradiant states are connected by coherent pumping
on a Hamiltonian level.

Discussion and conclusion

The periodic drive induces a time-dependent switching but comes at the expense of loos-
ing clear stationary mean-field states. However, one can identify three distinct regimes
in the Bloch sphere where the system spends a majority of its time, see Fig. C.4a. These
regimes are associated with the former degenerate superradiant and the almost empty
atom-cavity states. With a time-periodic drive, the Hamiltonian and the Liouvillian be-
come time-periodic. Trajectories in the long time limit can then be understood in terms
of Floquet eigenstates. However, the nonlinearities in the deterministic dynamic pre-
vent a non-perturbative analysis. The explicitly driven system is then closer to the idea of
directed and forced transport of a system through phase space instead of an entirely noise-
driven phenomena in a stationary state. Attempts to induce non-vanishing currents by
engineering additional dissipative Lindblad contributions have not been fruitful. Further
work is necessary to ascertain whether non-vanishing currents can be engineered.
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