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Introduction 1
Comparison of nonparametric analysis of variance 
methods - a Vote for van der Waerden

Abstract

For two-way layouts in a between subjects anova design the parametric F-test is compared with 
seven nonparametric methods: rank transform (RT), inverse normal transform (INT), aligned 
rank transform (ART), a combination of ART and INT, Puri & Sen‘s L statistic, van der 
Waerden and Akritas & Brunners ATS. The type I error rates and the power are computed for 
16 normal and nonnormal distributions, with and without homogeneity of variances, for 
balanced and unbalanced designs as well as for several models including the null and the full 
model. The aim of this study is to identify a method that is applicable without too much testing 
all the attributes of the plot. The van der Waerden-test shows the overall best performance 
though there are some situations in which it is disappointing. The Puri & Sen- and the ATS-tests 
show generally a very low power. These two as well as the other methods cannot keep the type 
I error rate under control in too many situations. Especially in the case of lognormal distribu-
tions the use of any of the rank based procedures can be dangerous for cell sizes above 10. As 
already shown by many other authors, nonnormal distributions do not violate the parametric F-
test, but unequal variances do. And heterogeneity of variances leads to an inflated error rate 
more or less also for the nonparametric methods. Finally it should be noted that some procedu-
res show rising error rates with increasing cell sizes, the ART, especially for discrete variables, 
as well as the RT, Puri & Sen and the ATS in the cases of heteroscedasticity.

Keywords: nonparametric anova, rank transform, Puri & Sen, ATS, Waerden, simulation 

1. Introduction
The analysis of variance (anova) is one of the most important and frequently used methods of 
applied statistics. In general it is used in its parametric version often without checking the as-
sumptions. These are normality of the residuals, homogeneity of the variances - there are several 
different assumptions depending on the design - and the independence of the observations. Most 
people trust in the robustness of the parametric tests. „A test is called robust when its si-
gnificance level (Type I error probability) and power (one minus Type-II probability) are insen-
sitive to departures from the assumptions on which it is derives.“ (See Ito, 1980). Good reviews 
of the assumptions and the robustness can be found at Field (2009) and Ito (1980), more detailed 
descriptions at Fan (2006), Wilcox (2005), Osborne (2008), Lindman (1974) as well as Glass et 
al. (1972). They state that first the F-test is remarkable insensitive to general nonnormality, and 
second the F-test can be used with confidence generally when variances are equal, as well as in 
cases of variance heterogeneity at least in cases with equal sample sizes. However Box (1954), 
Glass et al. (1972) and Dijkstra (1987) have shown that even in balanced designs unequal vari-
ances may lead to an increased type I error rate. It remains to mention one severe problem of 
the F-test for the case of unequal ni : it tends to be conservative if cells with larger ni have also 
larger variances (positive pairing) and that it reacts liberal if cells with larger ni have the smaller 
variances (negative pairing), as  Feir & Toothaker (1974) and Weihua Fan (2006), to name a 
few, reported. Nevertheless other methods may exist which are superior in these cases even 
when the F-test may be applicable. Furthermore dependent variables with an ordinal scale nor-
mally require adequate methods.

The knowledge of nonparametric methods for the anova is not wide spread though in recent 
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years quite a number of publications on this topic appeared. Salazar-Alvarez et al. (2014) gave 
a review of the most recognized methods. Another easy to read review is one by Erceg-Hurn 
and Mirosevich (2008). As Sawilowsky (1990) pointed out, it is often objected that 
nonparametric methods do not exhaust all the information in the data. This is not true. 
Sawilowsky (1990) also showed that most well-known nonparametric procedures, especially 
those considered here, have a power comparable to their parametric counterparts, and often a 
higher power when assumptions for the parametric tests are not met.

On the other side are nonparametric methods not always acceptable substitutes for parametric 
methods such as the F-test in research studies when parametric assumptions are not satisfied. „It 
came to be widely believed that nonparametric methods always protect the desired significance 
level of statistical tests, even under extreme violation of those assumptions“ (see Zimmerman, 
1998). Especially in the context of anova with the assumptions of normality and variance homo-
geneity. And there exist a number of studies showing that nonparametric procedures cannot 
handle skewed distributions in the case of heteroscedasticity (see e.g. G. Vallejo et al., 2010, 
Keselman et al., 1995 and Tomarken & Serlin, 1986).

A barrier for the use of nonparametric anova is apparently the lack of procedures in the stati-
stical packages, e.g. SAS and SPSS though a number of SAS macros meanwhile exist. For R 
and S-Plus packages with corresponding algorithms have been supplied during the last years. 
But as is shown by Luepsen (2015) a number of the nonparametric anova methods can be 
applied by using the parametric standard anova procedures together with a little bit of pro-
gramming, for instance to do some variable transformations. Such algorithms stay in the fo-
reground.

The aim of this study is to identify situations, e.g. designs or underlying distributions, in which 
one method is superior compared to others. For, many appliers of the anova know only little of 
their data, the shape of the distribution, the homogeneity of the variances or expected size of the 
effects. So, overall good performing methods are looked for. But attention is also laid upon 
comparisons with the F-test. As usual this is achieved by examining the type I error rates at the 
5 and 1 percent level as well as the power of the tests at different levels of effect or sample size. 
Here the focus is laid not only upon the tests for the interaction effects but also on the main 
effects as the properties of the tests have not been studied exhaustively in factorial designs. 
Additionally the behavior of the type I error rates is examined for increasing cell sizes up to 50, 
because first, as a consequence of the central limit theorem, some error rates should decrease 
for larger ni, and second most nonparametric tests are asymptotic. The present study is con-
cerned only with between subjects designs. 

2. Methods to be compared
It follows a brief description of the methods compared in this paper, none of them considering 
heterogeneous variances. More information, especially how to use them in R or SPSS can be 
found in Luepsen (2015).

The parametric F-test

The 2-factorial anova model for a dependent variable y with N observations shall be denoted by

with fixed effects αi (factor A, i=1,..,I), βj (factor B, j=1,..,J), αβij (interaction AB), error eijk 
(k=1,..,nij), cell counts nij and . The parameters αi , βj and αβij with the restrictions 

yijk αi βj αβij eijk+ + +=

N nij=
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, , can be estimated by means of a linear model y‘ = X p‘ + e‘ using 
the least squares method, where y are the values of the dependent variable, p is the vector of the 
parameters, X a suitable design matrix and e the random variable of the errors. If the contrasts 
for the tests of the hypotheses HA (αi=0), HB (βi=0) and HAB (αβij=0) are orthogonal the resul-
ting sum of squares SSA, SSB, SSAB of the parameters are also orthogonal and commonly called 
type III SSq. They are tested by means of the F-distribution. In case of equal sample sizes the 
sum of squares as well as the mean squares can be easily computed as 

and the F-ratios as 

where ,  are the level means of factor A and B,  are the cell means and  is the grand 

mean (see e.g. Winer, 1991).

RT (rank transform)

The rank transform method (RT) is just transforming the dependent variable y into ranks R(y) 
before applying the parametric F-test, as described above, to them. This method had been pro-
posed by Conover & Iman (1981). Blair et al. (1987), Toothaker & Newman (1994) as well as 
Beasley & Zumbo (2009), to name only a few, found out that the type I error rate of the inter-
action can reach beyond the nominal level if there are significant main effects because the 
effects are confounded. On the other hand the RT lets sometimes vanish an interaction effect, 
as Salter & Fawcett (1993) had shown in a simple example. The reason: „additivity in the raw 
data does not imply additivity of the ranks, nor does additivity of the ranks imply additivity in 
the raw data“, as Hora & Conover (1984) pointed out. At least Hora & Conover (1984) proved 
that the tests of the main effects are correct. A good review of articles concerning the problems 
of the RT can be found in the study by Toothaker & Newman (1994).

INT (inverse normal transform)

The inverse normal transform method (INT) consists of first transforming y into ranks R(y) (as 
in the RT method), then computing their normal scores and finally applying the parametric F-
test to them. The normal scores are defined as

      

where R(y) are the ranks of y and N is the number of observations. It should be noted that there 
exist several versions of the normal scores (see Beasley, Erickson & Allison, 2009, for details). 
This results in an improvement of the RT procedure as could be shown by Huang (2007) as well 
as Mansouri and Chang (1995), though Beasley, Erickson & Allison (2009) found out that also 
the INT procedure results in slightly too high type I error rates if there are other significant main 
effects. This method should not be confused with the expected normal scores test by Hájek et 
al. (1999).

ART (aligned rank transform)

In order to avoid an increase of type I error rates for the interaction in case of significant main 
effects an alignment is proposed: all effects that are not of primary interest are subtracted before 

αi 0= βj 0= αβij 0=

SSA
N
I
---- yi · ·

y–( )2
= SSB

N
J
---- y j· ·

y–( )2
= SSAB

N
IJ
----- yij ·

yi · ·
y j· ·

–– y+( )2
=

MSA SSA I 1–( )⁄= MSB SSB J 1–( )⁄= MSAB SSAB I 1–( ) J 1–( )( )⁄=
MSerror yijk yij ·

–( )2 N IJ–( )⁄=

FA MSA MSerror⁄= FB MSB MSerror⁄= FAB MSAB MSerror⁄=
yi · ·

y j· ·
yij ·

y

Φ 1– R y( ) N 1+( )⁄( )
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performing an anova. The procedure consists of first computing the residuals, either as diffe-
rences from the cell means or by means of a regression model, then adding the effect of interest, 
transforming this sum into ranks and finally performing the parametric F-test to them. For the 
alignment in the simple 2-factorial model first the error eijk is computed as the residuals from 
the parametric anova including all effects as described above. In the next step the means corre-
sponding to the effect being tested (A, B and AB) are added:

    

where ai, bj, abij are the means of y corresponding to the effect. Then the aligned variables 
y(A),y(B), y(AB)  are each transformed into ranks R(y(A)), R(y(B)), R(y(AB)). To test one effect the 
parametric F-test is applied to the corresponding aligned variable where only that effect is ex-
amined ignoring the other two.

As the normal theory F-tests are used for testing these rank statistics the question arises if their 
asymptotic distribution is the same. Salter & Fawcett (1993) showed that at least for the ART 
these tests are valid.

Yates (2008) and Peterson (2002) among others went a step further and used the median as well 
as several other robust mean estimates for adjustment in the ART-procedure. Besides this there 
exist a number of other variants of alignment procedures. for example the M-test by McSwee-
ney (1967), the H-Test by Hettmansperger (1984) and the RO-test by Toothaker & De Newman 
(1994). But in a comparison by Toothaker & De Newman (1994) the latter three showed a lib-
eral behavior. Because of this and the fact that they are not widespread these procedures had not 
been taken into consideration for this study.

This procedure can also be applied to the test of main effects - which is done in this study - 
though this is not necessary as mentioned above.

ART combined with INT (ART+INT)

Mansouri & Chang (1995) suggested to apply the normal scores transformation INT (see above) 
to the ranks obtained from the ART procedure. They showed that the transformation into normal 
scores improves the type I error rate, for the RT as well as for the ART procedure, at least in the 
case of underlying normal distributions. Computationally the steps are nearly the same as for 
the ART method above, with the difference that the ranked aligned variables R(y(A)), R(y(B)), 
R(y(AB)) are transformed into normal scores, as described for the INT method, before applying 
the parametric F-test on them.

Puri & Sen tests (L statistic)

These are generalizations of the well known Kruskal-Wallis H test (for independent samples) 
and the Friedman test (for dependent samples) by Puri & Sen (1985), often referred as L stati-
stic. A good introduction offer Thomas et al. (1999). The idea dates back to the 60s, when  
Bennett (1968) and Scheirer, Ray & Hare (1976) as well as later Shirley (1981) generalized the 
H test for multifactorial designs. It is well-known that the Kruskal-Wallis H test as well as the 
Friedman test can be performed by a suitable ranking of y (see e.g. Winer,1991), conducting a 
parametric anova and finally computing χ2-ratios using the sum of squares. In fact the same 
applies to the generalized tests. In the simple case of only grouping factors the χ2-ratios for the 
tests of A, B and AB are computed as

      

yijk
A( ) e= ijk ai+ yijk

B( ) e= ijk bj+ yijk
AB( ) e= ijk abij+

χA
2 SSA

MStotal
-----------------= χB

2 SSB
MStotal
-----------------= χAB

2 SSAB
MStotal
-----------------=
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Here SSA, SSB, SSAB are the sum of squares as outlined before, but computed for R(y), the ranks 
of y, and  MStotal is the total mean square, i.e. the variance of R(y). The degrees of freedom are 
those of the numerator of the corresponding F-test.

The major disadvantage of this method compared with the four ones above is the lack of power 
for any effect in the case of other nonnull effects in the model. The reason: In the standard anova 
the denominator of the F-values is the residual mean square which is reduced by the effects of 
other factors in the model. In contrast the denominator of the χ2 tests of Puri & Sen‘s L statistic 
is the total mean square which increases with effects of the other factors, thus making the ratio 
of the considered effect and therefore also the χ2-ratio smaller. A good review of articles con-
cerning this test can be found in the study by Toothaker & De Newman (1994).

van der Waerden

At first the van der Waerden test (van der Waerden,1953) is an alternative to the 1-factorial ano-
va by Kruskal-Wallis. The procedure is based on the INT transformation (see above). But in-
stead of using the F-tests from the parametric anova χ2-ratios are computed using the sum of 
squares in the same way as for the Puri & Sen L statistics. Mansouri and Chang (1995) gene-
ralized the original van der Waerden test to designs with several grouping factors. Computatio-
nally the steps are nearly identical with those above for the L statistic, with the difference that 
the ranks R(y) are transformed into normal scores as described for the INT-method above before 
computing the sum of squares and χ2-ratios.

Perhaps it is to mention that Sheskin (2004) reported that this procedure in its 1-factorial version 
outperforms the classical anova in the case of violations of the assumptions with regard to the 
power. And Hajek (1969) showed that this test has asymptotically the same efficiency as the F-
test. On the other hand the van der Waerden tests suffer from the same lack of power in the case 
of multifactorial designs as the Puri & Sen L statistic.

Akritas, Arnold and Brunner (ATS)

This is the only procedure considered here that cannot be mapped to the parametric anova. 
Based on the relative effect (see Brunner & Munzel (2002)) the authors developed two tests to 
compare samples by means of comparing the relative effects: the approximately F distributed 
ATS (anova type statistic) and the asymptotically χ2 distributed WTS (Wald type statistic). The 
ATS has preferable attributes e.g. more power (see Brunner & Munzel (2002) as well as Shah 
& Madden (2004)). The relative effect of a random variable X1 to a second one X2 is defined as 
p+ =  , i.e. the probability that  X1 has smaller values than X2 . As the definition of 
relative effects is based only on an ordinal scale of y this method is suitable also for variables 
of ordinal or dichotomous scale. The rather complicated procedure involves a lot of matrix 
algebra and is described in the appendix.

Methods dropped from this study

In the preceding sections a couple of methods had been mentioned that had not been considered 
in this study, mainly because of a violation of the type I error rates. For the same the following 
tests were dropped from this study. For detailed error rates see tables in appendix A 1.6 and 
A 1.7, for the power of the test by Gao & Alvo see A 3.15.
• The Wilcoxon analysis (WA) that had been proposed by Hettmansperger and McKean (2011) 

and for which there exists also the R package Rfit (see Terpstra & McKean, 2005). WA is 
primarily a nonparametric regression method. It is based on ranking the residuals and 

P X1 X2≤( )
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minimizing the impact that extreme values of y have on the regression line. Trivially this 
method can be also used as a nonparametric anova.

• Gao & Alvo (2005) proposed a nonparametric test for the interaction in 2-way layouts for 
which also a function exists in the R package StatMethRank (see Li Qinglong (2015)). 
This method is fairly liberal with superior power rates especially for small sample sizes at 
the cost of high type I error rates near 9 percent (at a nominal level of 5 percent) in the case 
of the null model.

Methodological remarks

Concerning the ATS it should be noted that the name is not unique. It rather denotes an appro-
ximately F distributed statistic (anova type), normally derived from a χ2-statistic, often called 
WTS. In contrary to the WTS the ATS accounts for the sample sizes that makes it attractive for 
small cell counts. For instance there exist two variations of this method by Brunner, Dette and 
Munk (1997), also called BDM-tests, which allow heterogeneous variances: a parametric and a 
nonparametric one. Both are also available as ATS and WTS tests and for which meanwhile also 
exist R packages: GFD (see Friedrich et al., 2017) and asbio. Richter & Payton (2003a) 
combined the above mentioned ATS with the ART procedure in the way that the BDM-test is 
applied to the aligned data. In a simulation they showed that this method is better in controlling 
the type I error rate. These tests are not part of this study though preliminary studies showed that 
the parametric version of the BDM-test (R function GFD) has not the deficiency of exceeding 
error rates for rising cell counts nij , but at the cost of an even lower power than that of the ATS 
used in this study.

An interesting fact is that Brunner & Puri (2002) developed an approach to test nonparametric 
hypotheses in a factorial design based on score functions for data that may come from conti-
nuous as well as from discrete ordinal distributions. Many well known rank statistics are special 
cases of this procedure, among others the above mentioned RT, INT, Puri & Sen, v.d.Waerden 
and ATS, e.g. by choosing Wilcoxon or normal scores as score function. In general the statistics 
follow asymptotically a χ2-distribution. However, the speed of approximation to the χ2-
distribution is rather slow, especially if the number of factor levels is large. Therefore Brunner 
& Puri modified the statistic for small samples so that it could be approximated by an F distribu-
tion. Additionally they proposed F tests based on a modified Box approximation (Box, 1954) to 
allow for heteroscedastic samples. These result in anova type statistics (ATS). These are the ver-
sions of the statistics described in the previous section. By the way, Danbaba (2012) compared 
the two versions of the tests for several score functions, e.g. normal scores. He found too large 
type I error rates of the χ2-tests for main effects for small samples 10 and for the interaction 
effect even for larger samples  40 while the F tests kept the error rate generally under control.

Finally some remarks on the ART outlined above. This procedure dates back to Hodges & 
Lehmann (1962) who developed an alignment similar as outlined above resulting in the Aligned 
Rank Test (AR), a statistic that follows asymptotically a χ2-distribution. It is described in detail 
by Hájek, Šidák and Sen (1999). Mehra & Sarangi (1967) showed that the AR has an asymptotic 
relative efficiency compared to the normal anova F test of almost 1, and larger than 1 compared 
to the RT which lets the statistic look attractive. Here also the AR can be transformed for small 
samples into a statistic that can be approximated by the F distribution resulting in the aligned 
rank transform (ART) method. This one had been made popular by Higgins & Tashtoush (1994) 
who extended it to factorial designs.

≤
≤
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3. Literature Review
One should be aware that hypotheses of the nonparametric anova tests are not always the same 
as those of the parametric anova, e.g. the nonparametric hypothesis of no interaction does not 
imply no interaction in the linear model. Therefore the results achieved for those and mentioned 
below need not be always applicable one-to-one to the parametric hypothesis.

The ART procedure seems to be the most popular nonparametric anova method judging from 
the number of publications. But in most papers its behavior is examined only for the comparison 
of normal and nonnormal distributions in relation to the parametric F-test and the RT method. 
Some of their results shall be reported first.

Generally the ART-method is to be preferred to the aligned rank (AR) because of its better 
control of the type I error rate and the larger power (Mansouri 1999a and 1999b). The ART-
technique has been estimated rather good in general by Lei et al. (2004), Wobbrock et al. (2011)  
and Mansouri et al. (2004) to name only a few. Higgins & Tashtoush (1994), Mansouri (1999a) 
as well as Salter & Fawcett (1993) showed that the ART procedure is valid concerning the type 
I error rate and preferable to the F-test in cases of outliers or heavily tailed distributions, as in 
these situations the ART has a larger power than the F-test. Mansouri et al. (2004) studied the 
influence of noncontinuous distributions and showed the ART to be robust. Richter & Payton 
(1999) compared the ART with the F-test and with a rank test using the exact permutation 
distribution, but only to check the influence of violation of normal assumption. For nonnormal 
distributions the ART is superior especially using the exact probabilities.

There are only few authors who investigated also its behavior in heteroscedastic conditions. 
Among those are  Leys & Schumann (2010) and Carletti & Claustriaux (2005). The first analy-
zed 2*2 designs for various distributions with and without homogeneity of variances. They 
found that in the case of heteroscedasticity the ART has even more inflated type I errors than 
the F-test and that concerning the power only for the main effects the ART can compete with 
the classical tests. Carletti & Claustriaux (2005) who used a 2*4 design with a relation of 4 and 
8 for the ratio of the largest to the smallest variance came to the same results. In addition the 
type I error increases with larger cell counts. But they proposed an amelioration of the ART 
technique: to transform the ranks obtained from the ART into normal scores (see 2.4). This 
method leads to a reduction of the type I error rate, especially in the case of unequal variances.

The use of normal scores instead of ranks had been suggested many years ago by Mansouri & 
Chang (1995). They showed not only that the ART performs better than the F-test concerning 
the power in various situations with skewed and tailed distributions but also that the transfor-
mation into normal scores improves the type I error rate, for the RT as well as for the ART pro-
cedure (resulting in INT and ART+INT), at least in the case of underlying normal distributions. 
They stated also that none of these is generally superior to the others in any situation. 
Lachenbruch & Clements (1991) prefer the normal scores to the F-test because of their power 
in the cases of nonnormality and heteroscedasticity. Concerning the INT-method a long critical 
disquisition on it by Beasley et al. (2009) exists with a large list of studies dealing with this pro-
cedure. They conclude that there are some situations where the INT performs perfectly, e.g. in 
the case of extreme nonnormal distributions, but there is no general advice for it because of 
other deficiencies.

Patrick (2007) compared the parametric F-test, the Kruskal-Wallis H-test and the F-test based 
on normal scores for the 1-factorial design. He found that the normal scores perform the best 
concerning the type I error rate in the case of heteroscedasticity, but have the lowest power in 
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that case. By the way he offers also an extensive list of references. A similar study regarding 
these tests for the case of unequal variances, together with the anovas for heterogeneous vari-
ances by Welch and by Brown & Forsythe, comes from Tomarken & Serlin (1986). They repor-
ted that the type I error rate as well as the power are nearly the same for the H-test and the INT-
procedure. Beside these there exist quite a number of papers dealing with the situation of un-
equal variances, but unfortunately only for the case of a 1-factorial design, mainly because of 
lack of tests for factorial designs, as already mentioned above. One of these by Richter & Payton 
(2003a) who compare the F-test with the ATS and find that the ATS is conservative but always 
keeps the α-level, by Lix et al. (1996) who compare the same procedures as Tomarken & Serlin 
did, and by Konar et al. (2015) who compare the one-way anova F-test with Welch’s anova, 
Kruskal Wallis test, Alexander-Govern test, James-Second order test, Brown-Forsythe test, 
Welch’s heteroscedastic F-test with trimmed means and Winsorized variances and Mood’s 
Median test.

Among the first who compared a nonparametric anova with the F-test were Feir & Toothaker 
(1974) who studied the type I error as well as the power of the Kruskal-Wallis H-test under a 
large number of different conditions. As the K-W test is a special case of the Puri & Sen method 
their results are here also of interest: In general the K-W test keeps the α level as good as the F-
test, in some situations, e.g. negatively correlating ni and si , even better, but at the cost of its 
power. The power of the K-W test often depends on the specific mean differences, e.g. if all 
means differ from each other or if only one mean differs from the rest. Nonnormality has in 
general little impact on the differences between the two tests, though for an underlying (skewed 
and tailed) exponential distribution the power of the K-W test is higher. Another interesting pa-
per is the already above mentioned one by Toothaker and De Newman (1994). They compared  
the F-test with the Puri & Sen test, the RT and the ART method. The Puri & Sen test controls 
always the type I error but is rather conservative, if there are also other nonnull effects. On the 
other hand, as the effects are confounded when using the RT method, Toothaker and De 
Newman propagate the ART procedure for which they report several variations. But all these 
are too liberal in quite a number of situations. Therefore the authors conclude that there is no 
general guideline for the choice of the method.

Only a few publications deal with the properties of the ATS method. Hahn et al. (2014) inves-
tigated this one together with several permutation tests under different situations and confirmed 
that the ATS always keeps the α level and that it reacts generally rather conservative, especially 
for smaller sample sizes (see also Richter & Payton, 2003b). Another study by Kaptein et al. 
(2010) showed, unfortunately only for a 2*2-design, the power of the ATS being superior to the 
F-test in the case of Likert scales.

Comparisons of the Puri & Sen L method, the van der Waerden tests or Akritis and Brunner‘s 
ATS with other nonparametric methods are very rare. At this point two studies have to be men-
tioned: First Danbaba (2009) compared for a simple 3*3 two-way design 25 rank tests with the 
parametric F-test. He considered 4 distributions but unfortunately not the case of heterogeneous 
variances. His conclusion: among others the RT, INT, Puri & Sen and ATS fulfill the robustness 
criterion and show a power superior to the F-test (except for the exponential distribution) whe-
reas the ART fails. Secondly Dijkstra (1987) analyzed a large number of solutions for the 1-
factorial anova in non-standard situations and remarked the general good performance of the 
van der Waerden test in settings with unequal variances and nonnormal distributions. So this 
present study tries to fill some of the gaps.
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4. Methodology of the study
General design

This is a pure Monte Carlo study. That means a couple of designs and theoretical distributions 
had been chosen from which a large number of samples had been drawn by means of a random 
number generator. These samples had been analyzed using the various anova methods. Con-
cerning the number of different situations, e.g. distributions, equal/unequal variances, equal/
unequal cell counts, effect sizes, relations of means, variances and cell counts, one had to restrict 
to a minimum, as the number of resulting combinations produce an unmanageable amount of 
information. Therefore not all influencing factors could be varied. E.g. Feir & Toothaker (1974) 
had chosen for their study on the Kruskal-Wallis test: two distributions, six different cell counts, 
two effect sizes, four different relations for the variances and five significance levels. Con-
cerning the results nearly every different situation, i.e. every combination of the settings, 
brought a slightly different outcome. This is not really helpful from a practical point of view. 
But on the other side one has to be aware that the present conclusions are to be generalized only 
with caution. For, as Feir & Toothaker among others had shown, the results are dependent e.g. 
on the relations between the cell means (order and size), between the cell variances and on the 
relation between the cell means and cell variances. Own preliminary tests confirmed the influ-
ence of the design (number of cells and cell sizes), the pattern of effects as well as size and pat-
tern of the variances on the type I error rates as well as on the power rates.

The current study with two grouping (between subjects) factors A and B examines: 
• two layouts: 

- a 2*4 balanced design with 10 observations per cell (total N=80) and 
- a 4*5 unbalanced design with an unequal number of observations nij per cell (total N=100)
   and a ratio max(nij)/min(nij) of 4, 
which differ not only regarding the cell counts but also the number of cells, though the deg-
rees of freedom of the error term in both designs are nearly equal,

• various underlying distributions (see details below),
• several models for the main and interaction effects.

(In the following sections the terms unbalanced design and unequal cell counts will be used 
both for the second design, being aware that they have different definitions. But the special case 
of a balanced design with unequal cell counts will not be treated in this study.)

The following distributions had been chosen, where the numbers refer also to the corresponding 
sections in appendix A and where S denotes the skewness: 

1. Normal distribution ( N(0,1) ) with equal variances.

2. N(0,1) with unequal variances with a ratio max(sj
2)/min(sj

2) of 4 on factor B
(correlation nj with sj

2 r=0.12).

3. N(0,1) with unequal variances with a ratio max(sij
2)/min(sij

2) of 4 on both factors
(correlation nij with sij

2 r=0.04). 

4. Right skewed (S~0.8) with equal variances (transformation 1/(0.5+x) with (0,1) uniform x).

5. Exponential distribution (parameter λ=0.4) with μ=2.5 which is extremely skewed (S=2).

6. Exponential distribution (parameter λ=0.4)  with μ=2.5 rounded to integer values 1,2,..

7. Lognormal distribution (parameters μ=0 and σ=0.25) which is slightly skewed (S=0.778).
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8. Uniform distribution in the interval (0,5).

9. Uniform distribution with integer values 1,2,...,5.
(First uniformly distributed values in the interval (0,5) are generated, then effects are added 
and finally rounded up to integers.)

10. Left and right skewed (transformation log2(1+x) with (0,1) uniform x).
(For two levels of B the values had been mirrored at the mean.)

11. Left skewed (transformation log2(1+x) with (0,1) uniform x) with unequal variances on B 
with a ratio max(sj

2)/min(sj
2) of 4 (correlation nj with sj

2 r=0.12). 

12. Same as 11, but with unequal variances on both factors (correlation nij with sij
2 r=0.04). 

13. N(0,1) with unequal variances on both factors with a ratio max(sij
2)/min(sij

2) of 3 for 
unequal cell counts where small nij correspond to small variances (positive pairing, r=0.98). 

14. Same as 13, but with negative pairing (r=0.97).

15. Left skewed (transformation log2(1+x) with (0,1) uniform x) with unequal variances on 
both factors with a ratio max(sij

2)/min(sij
2) of 3  for unequal cell counts where small nij cor-

respond to small variances (positive pairing, r=0.98). 

16. Same as 15, but with negative pairing (r=0.97). 

In the cases of heteroscedasticity the cells with larger variances do not depend on the design. 
Subsequently i,j refer to the levels of factors A respectively B.
• For both designs and unequal variances on B the cells with j=1 have a variance ratio of 4 and 

those with j=2 a ratio of 2.25.
• For both designs and unequal variances on A and B the cells with i=1 and j 2 have a vari-

ance ratio of 4 and those with i=2 and j 2 a ratio of 2.25.

The main simulation study consists of three parts:
• The type I error rates are studied for a fixed nij (depending on the design) and fixed effect 

sizes. For this purpose every situation had been repeated 5000 times. This seems to be the 
current standard. 

• Further the error rates are computed also for nij varying from 5 to 50 in steps of 5 and for 
fixed effect sizes (see below), in order to see on one side, if acceptable rates stay acceptable, 
and on the other side, if too large rates get smaller with larger samples. For the same situa-
tions the power rates are computed.

• Additionally the error rates are computed for increasing effect sizes, but fixed nij (depending 
on the design), to see the impact of other nonnull effects within a model. The effect sizes are 
varying from 0.1*s to 1.5*s in steps of 0.2*s (s being the standard deviation of the dv). For 
the same situations the power rates are computed, but with effect sizes varying from 0.2*s to 
0.9*s in steps of 0.1*s .

In contrast to the first part a repetition of 2000 times had been chosen for the computation of the 
error rates and power for large nij as well as increasing effect sizes, not only because of the lar-
ger amount of required computing time, but also because the main focus had been laid more in 
the relation between the methods than in exact values. A preliminary comparison of the results 
for the computation of the power showed that the differences between 2000 and 5000 repetitions 
are negligible. By means of a unique starting value for the random number generator the results 
for all situations rely on the same sequence of random numbers and therefore on identical sam-

≤
≤



Methodology of the study 11
ples. This should make the results better comparable.

Concerning the graphical representation of the power two graphs have been chosen:
• the absolute power as the proportion of rejections in percent and
• the relative power, which is computed as the absolute power divided by the 25% trimmed 

mean of the power of the 8 methods for each nij =5,...,50 or d=0.2*s,...,0.9*s and should make 
differences visible in the area of small nij or d  where the graphs of the absolute power of the 
8 methods lie very close together.

Effect sizes

The main focus had been laid upon the control of the type I error rates for α=0.05 and α=0.01 
for the various methods and situations as well as on a comparison of the power for the methods. 
For the computation of the random variates level/cell means had to be added corresponding to 
the desired effect sizes. These are denoted by ai and bj for the level means of A and B corres-
ponding to effects αi and βj , and abij for the cell means concerning the interaction corres-
ponding to effects αi + βj + αβij .

For the subsequent specification of the effect sizes the following abbreviations are used (s being 
the standard deviation):
• A(d): a1=d*s, a2=0  for a 2*4 plan, 

respectively a1= a2= d*s, a3= a4= 0 for a 4*5 plan
• B(d): b1= b2= d*s, b3= b4= 0 for a 2*4 plan, 

respectively b1= b2= d*s, b3= b4= b5= 0 for a 4*5 plan
• AB(d): ab11= ab12= ab23= ab24= d*s/2  and ab21= ab22= ab13= ab14= -d*s/2  for a 2*4 plan, 

respectively abij=0 except ab11= ab12= ab21= ab22= ab34= ab35= ab44= ab45= d*s/2 , 
ab14= ab15= ab24= ab25= ab31= ab32= ab41= ab42= -d*s/2  for a 4*5 plan

The error rates had been checked for the following effect models:
• main effects and interaction effect for the case of no effects (null model, equal means) and 

for the case of one significant main effect A(0.6),
• main effect for the case of a significant interaction AB(0.6) as well as for the case of a si-

gnificant main effect A(0.6) and interaction AB(0.6),
• interaction effect for the case of both highly significant main effects A(0.8) and B(0.8).

These are 7 models which are analyzed for both a balanced and an unbalanced design. So there 
are all in all 14 models.

For the power analysis the effect sizes had to be reduced in order to distinguish better the power 
for cell counts between 20 and 50. The following situations and effect sizes had been chosen:
• power of main effect A(0.3) in case of no other effects, in case of a significant effect B(0.3), 

in case of a significant interaction AB(0.4) and in case of a full model (B(0.3) and AB(0.4)),
• power of interaction effect AB(0.4) for the case no main effects, for the case of a significant 

main effect A(0.3) and in case of a full model (A(0.3) and B(0.3)).

Handling right skewed distributions

Rather unproblematic behaves the exponential distribution because it has only one parameter 
for both mean and variance. So there is no differentiating between the cases of equal and 
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unequal variances. To analyze the influence of effects d it is not reasonable to add a constant 
d*s to the values x of one group. In order to keep the exponential distribution type for the alter-
native hypothesis (H1) a parameter λ‘ had to be chosen so that the desired mean difference 
1/λ − 1/λ‘ is  d*s where in this case s=(1/λ + 1/λ‘). As a consequence the H1-distribution has 
not only a larger mean but also a larger variance.

In contrast the lognormal distribution reveals a more unfriendly behavior: all nonparametric 
methods under consideration here show increasing type I error rates for increasing sample sizes 
in the case of heterogeneous variances. The extent differs from the skewness and from the deg-
ree of variance heterogeneity. For larger skewed lognormal distributions, e.g. with parameters 
μ=0 and σ2=1, things look a bit different: the ART- and to a less degree also the ART+INT-
technique cannot keep the type I error under control even for homogeneous variances and equal 
cell counts, with rates usually between 8 and 11 percent. A more precise investigation of the 
error rates of the lognormal distribution has been done recently by Luepsen (2016), who confir-
med earlier results by Carletti & Claustriaux (2005) and Zimmerman (1998) as well as studies 
by G. Vallejo et al. (2010), Keselman et al. (1995) and Tomarken & Serlin (1986). Tables of the 
type I error rates for the tests of the null model for all methods and various situations are to be 
found in appendix A 6. As the behavior does not differ essentially for different parameters, a 
lognormal distribution with parameters μ=0 and σ2=0.25 has been chosen for the comparisons 
here. Its shape resembles slightly the normal distribution with a long tail on the right. Only equal 
variances will be considered here. As distribution for the alternative hypothesis (H1) a shift of 
the distribution of the null hypothesis (as described in the previous section) is one choice, thus 
keeping equal variances. But with real life right skewed data the distribution of the alternative 
hypothesis often includes a change both of means and variances. In this case a different lognor-
mal distribution had to be selected for H1 so that the means have the desired difference, e.g.  
and +d*s, but slightly different variances. Preliminary tests for the calculation of the power 
showed that both models produce nearly the same results. Therefore the first method has been 
preferred because of the easier computational handling.

Additionally another right skewed distribution (above number 4) is included that has a form 
comparable to the lognormal distribution with parameters μ=0 and σ=0.8, but restricted to the 
interval [0.67 , 2], or also comparable to a right shifted exponential distribution. The results for 
this one comprise no peculiarities and shall not be discussed here.

5. Results I: Type I error rates
Tables and Graphical Illustrations

It is evident that a study considering so many different situations (8 methods, 16 distributions, 
2 layouts, and 7 models) produces a large amount of information. Therefore the following 
remarks represent only a small extract and will concentrate on essential and surprising results. 
All tables and corresponding graphical illustrations are available online (see address below). 
These are structured as follows, where each table and graphic includes the results for all 8 
methods and report the proportions of rejections of the corresponding null hypothesis:
• appendix A 1: type I error rates for fixed nij = 5 and nij =10 and for α=0.05, α=0.01, equal 

and unequal cell counts and for different models,
• appendix A 2: type I error rates for large nij (5 to 50 in steps of 5) for α=0.05 and fixed effect 

sizes, for equal and unequal cell counts and for different models,
• appendix A 3: power in relation to  nij  (5 to 50 in steps of 5) referring to α=0.05 and fixed 

effect sizes, for equal and unequal cell counts and for different models,

x
x
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• appendix A 4: type I error rates for large effect sizes (0.1*s to 1.5*s in steps of 0.2*s ) for 
α=0.05 and fixed nij, for equal and unequal cell counts and for different models,

• appendix A 5: power in relation to increasing effect sizes from 0.2*s to 0.9*s in steps of 0.1*s 
for α=0.05 and fixed nij, for equal and unequal cell counts and for different models,

• appendix A 6: type I error rates for large nij (5 to 50 in steps of 5) for α=0.05 and fixed effect 
sizes for various lognormal distributions,

• appendix A 7: type I error rates for small and large nij (5, 10 and 50) for α=0.05 and fixed 
effect sizes of the exponential and the uniform distributions, each for the version of a conti-
nuous and three versions of a discrete distribution.

All references to these tables and graphics will be referred as A n.n.n. The most important tables 
of A 1 and some graphics of A 2 to A 5 are included in this text. All tables and graphics can be 
viewed online:
http://www.uni-koeln.de/~luepsen/statistik/texte/comparison-tables/

Criteria

A deviation of 10 percent (α + 0.1α) - that is 5.50 percent for α=0.05 - can be regarded as a 
stringent definition of robustness whereas 25 percent (α + 0.25α) - that is 6.25 percent for 
α=0.05 - to be treated as a moderate robustness (see Peterson, 2002). It should be mentioned 
that there are other studies in which a deviation of 50 percent, i.e. (α 0.5α), Bradleys liberal 
criterion (see Bradley, 1978), is regarded as robustness. As a large amount of the results con-
cerns the error rates for 10 sample sizes nij = 5,...,50 it seems reasonable to allow a couple of 
exceedances within this range. 

Performance for large n: general behavior of the different methods

Whereas there are no spectacular results for small sample sizes nij (see chapter 8 for details) 
things look quite different for increasing cell counts. Only the parametric F-test shows no diffe-
rences in the behavior between small and large sample sizes nij . Perhaps to mention: Exceeding 
error rates decrease often with increasing ni (see e.g. A 2.2.12, A 2.4.3 and A 2.6.12) which had 
to be expected from the central limit theorem. Insofar the results confirm the attributes of the F-
test mentioned in chapter 1. Elsewise the nonparametric procedures. For larger nij some show 
rising error rates, especially the ART, ART+INT, RT, ATS and sometimes the INT and the Puri 
& Sen procedures. The following peculiarities do neither concern those unbalanced designs 
where nij are correlated with sij nor discrete distributions that will be looked at later.

Generally the ART method tends to be liberal with rates above the acceptable limit of moderate 
robustness (beyond 6) in the cases of heterogeneous variances (see e.g. figure 3). Additionally 
for the test of a main effect in an unbalanced design, if there are other nonnull effects, the error 
rates rise to 10 and above when nij (nij > 15) increases up to 50 for all distributions (see figure 
1 as well as A 2.4, 2.6 and  2.8). The ART+INT shows a similar performance as the ART which 
is plausible from the procedure, especially with the same deficiencies for the tests of main 
effects in unbalanced designs. But mostly its rates lie below those of the ART as remarked by 
Carletti & Claustriaux (2005).  Additionally there are several settings of heterogeneous vari-
ances where the ART+INT, on the contrary to the ART, keeps the error rate completely under 
control: e.g. all tests of main effects (see A 2.1 and A 2.2), except the case noted above. And if 
there are deficiencies with larger nij they start normally with nij > 15. 

A striking phenomenon is the behavior of the ATS and the RT in most situations of unequal va-
riances for the tests for main and interaction effects when there is another nonnull effect: the 

+−
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error rates increase up to 10 and sometimes above when nij increases up to 50 (see figure 2 and 
see sections 2 and 3 as well as 11 an 12 in A 2.3 to A 2.8 and A 2.11 to A 2.14). But it has to be 
remarked that they stay in the acceptable region for  nij < 15. This is the phenomenon described 
in chapter 2 for RT, but happening here only in the case of unequal variances. The same applies 
to the Puri & Sen-method, but its rates lie clearly below those of the RT and ATS, but with valu-
es between 6 and 10 still beyond the acceptable limit. The conservative behavior was explained 
in chapter 2. So the Puri & Sen-method keeps the type I error rate often in the moderate robust-
ness interval, frequently even the stringent robustness interval at least for small and moderate 
nij < 25, in situations where the RT exceeds the limits (see e.g. A 2.6.3, 2.7.3, 2.7.11, 2.11.12 or 
2.13.2). If the Puri & Sen-method offends the criterion then only for larger nij 30. 

The INT-procedure has also some problems with unequal variances but predominantly in 
unbalanced designs showing slightly increased error rates between 7 and 10 (see e.g. A 2.4.11, 
2.10.12 and 2.13.12). Additionally the rates rise above the limit in a couple of cases with equal 
variances but underlying skewed distributions (see A 2.4.10, 2.7.4, 2.8.4 and A 2.14.4). And 
finally the behavior seems to be generally slightly liberal for the test of the interaction if both 
other effects are nonnull (see A 2.13 and A 2.14).   

      Figure 1: type I error rate (main effect) in four situations where the ART and ART+INT fail: 
underlying discrete uniform distribution, continuous exponential distribution, nonnormal 

distribution with heterogeneous variances (all in balanced designs) and when there is another 
significant main effect (in a unbalanced design). (The cell counts are on the base line.)
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Figure 2: Four situations with unequal variances where the type I error rates for the RT, 
Puri & Sen and the ATS exceed the acceptable range with increasing cell counts: test of main 
and interaction effect in the case of a nonnormal distribution and unequal nij as well as in the 

case of a normal distribution and equal nij . (The cell counts are on the base line.)
(Note that here the van der Waerden as well as the parametric F test behave benevolently.)

The van der Waerden-test is the less conspicuous from all methods. The shape of the graph of 
its rates looks much alike them of the INT-method, which is not surprising considering the 
computation, but the values lie clearly lower. So only three singular instances exist where the 
test reacts slightly liberal with error rates between 6 and 7 (see A 2.2.12, 2.8.5 and 2.10.12). 

Unequal variances sij
2 together with unequal sample sizes nij

When sij
2 and nij

 are uncorrelated the van der Waerden test is the only one that has the type I 
error under complete control, e.g. for the interaction where the rates of the parametric F-test lie 
between 7 and 12 percent (see figure 3 and sections 3 and 12 in A 2.10, 2.12 and 2.14). Perhaps 
to mention that in case of the normal distribution for nij~10 90 percent of the sample correlations 
were located in the interval [-0.29 , 0.28] and for nij~50 in [-0.19 , 0.08]. In the case of positive 
pairing nearly all methods show acceptable type I error rates, except the ART and ART+INT in 
the cases of other nonnull effects as noted before. In the challenging case of negative pairing the 
ATS-method is the only one that keeps the error level under control for all models.
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Figure 3: Two situations with unequal variances in unbalanced designs where the type I error 
rates for many methods including the parametric F-test exceed the acceptable limit: 

test of main and interaction effect in a model with another significant main effect in the case of 
a nonnormal (left skewed) distribution as well as in the case of a normal distribution.

(Note that here the van der Waerden test behaves benevolently.)

Performance for large n: right skewed distributions

For the exponential distribution it has to be remarked that in most situations the type I error rates 
of the ART-procedure rise beyond the acceptable limit for ni larger than 10 or 20 (see figure 4 
and e.g. A 2.3.5, 2.4.5, 2.6.5 and 2.8.5 with values between 9 and 20), except for the tests of the 
null model. And the ART performs even worse in the version with integer values. This 
phenomenon had been analyzed in detail and explained by Luepsen (2017). As a consequence 
the same applies also to the ART+INT-procedure, but to a less degree. Additionally there are a 
couple of situations where the RT, Puri & Sen and ATS react liberal: for the test of a main or 
interaction effect if both other effects are nonnull (see figure 4 and A 2.7.5, 2.8.5, 2.13.5 and 
2.14.5).

For the lognormal distribution equal variances have been assumed in this study, as mentioned 
in chapter 4. Therefore it is not surprising that the error rates do not show any peculiarities. 
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Figure 4: Two situations with an underlying exponential distribution where the type I error ra-
tes for the RT, Puri & Sen, ATS and ART exceed the acceptable range with increasing cell 

counts: test of a main effect when the other main effect is significant and test of interaction effect 
when both main effects are significant, both for the case of equal nij. Note that the ART+INT 

keeps the error under control in these situations in contrary to the ART.

Discrete Variables

Though all the nonparametric procedures under consideration here, except the ATS, require a 
continuous dependent variable, in practice they are applied to discrete variables as well and 
often even to ordinal variables with only a few distinct values. A comparison of all 8 methods 
with regard to the behavior in the case of underlying discrete distributions, exponential and 
uniform, shows that the type I error rates rise mainly for the ART- and the ART+INT-procedu-
res for increasing cell counts nij up to 20 percent (more details in chapter 8). An extensive study 
about the impact of discrete dependent variables comes from Luepsen (2017) in which also an 
explanation of this phenomenon is given. Additionally it is shown that the error rates rise bey-
ond the interval of moderate robustness if the number of distinct values decreases, and this more 
severe for the exponential than for the uniform distribution.

Impact of effect size on the Type I error rates

At first sight the overall decreasing error rates of the Puri & Sen and the van der Waerden 
methods for rising effect sizes are remarkable (see e.g. A 4.1.1 and 4.6.1). But this was ex-
plained in chapter 2. The ART and the ART+INT show unacceptable error rates for growing 
effect sizes similar to those described for large n in the previous section: underlying exponential 
distribution (see e.g. A 4.1.5, 4.2.5, 4.3.5, 4.4.6 etc.), test of main effects in unbalanced designs 
if there are also other nonnull effects in the model (see A 4.2 and A 4.4), and additionally the 
ART for underlying discrete distributions. Finally a look on the performance of the RT since it 
is said to show increasing error rates for the interaction if there are also significant main effects 
(see section 2.1). There is only a slight increase to observe with maximum rates between 7 and 
10 percent for effect sizes of 1.5*s in the cases of heterogeneous variances (see sections 2 and 
3 as well as 11 and 12 in A 4.5 and A 4.7) and in the case of the exponential distribution (see A 
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4.7.5), both in balanced designs. And as stated by Huang (2007), the INT keeps the error rate 
under control in most of these situations. It remains to remark that the ATS-method performs 
rather similar to the RT-method. All other methods behave inconspicuously.

Summary
       

Table 1: Violations of the type I error rates in the range of nij = 5,...,50
The numbers refer to the distributions (see chapter 4.), A to right/left-skewed distributions, B 
and C to left skewed distributions with unequal variances. The layout has the following me-
aning: 
  n: moderate - values outside the interval of moderate robustness, but mostly below 7
  n: strong - nearly all values above 7
  n: rising - values inside the interval of moderate robustness for nij < 15, but rising for larger nij
„eq“ and „ne“ in the column „des“ refer to equal and unequal cell counts.

The ART- and the ART+INT-procedures have deficiencies with heterogeneous variances, with 
discrete variables, with (even slightly) right skewed distributions and with the test of main 
effects in unbalanced designs. This makes these methods not recommendable though the 
ART+INT shows acceptable rates at least for nij < 15. And the positive results mentioned in 
chapter 3 are not valid in general. The RT-, ATS- and Puri & Sen-method have generally pro-
blems with unequal variances, even for balanced designs. And these problems enlarge for tests 
in those cases when there are other nonnull effects. On the other side the ATS is the only method 
that can handle in all situations the challenging case of unbalanced designs with unequal vari-
ances where small ni correspond to large si. But also for the ATS it must be admitted that the 
control of the type I error rate cited in chapter 3 is no more valid for larger samples. The INT-
method is in many cases acceptable though there are a number of unsatisfying situations for 
which there is no guideline visible. From this it is obvious that the van der Waerden-test has the 

effect 
(model) des param RT INT ART ART+

INT
Puri &

Sen
van der

Waerden ATS

A eq 4 6 8 9 B C 6 9 

 (null model) ne 3 C C 6 6 9 C

B eq  5 6 B C A

  (A sig) ne 3 C B A C 1...6   8...C 1...6 8...C B B

A eq 2 3 B C 2 3 5 6 9 B C 6 9 2 3 B C 2 3 B C

  (AB sig) ne 3 5 6 C 2 3 B 1....C 1....C 2 B 2 B

B eq 3 5 6 4 5 5 6 B C A 5 6 5 6

  (A+AB sig) ne 3 C 3 5 6 C 2 4 5 6 C 1....C 1....C 3 5 6 C 5 6 3 5 6 C

AB eq 2 B B C 2 3 6 B C 2 C

  (null model) ne 3 B C C 3 B C 2 3 6 9 B C 3 6 9 B C C C

AB eq B 2 3 B C 2 2 3 5 6 B C 2 C 2 3 B 2 3 B C

  (A sig) ne 3 C 2 4 B 3 4 C 3 6 9 B C 3 9 C 2 B

AB eq B 2 3 5 6 B C 2 3 4 5 6 C  5 6 B C 3 5 6 C 2 3 5 6 B C

  (A+B sig) ne 3 B C 2 3 4 5 6 B C 3 4 5 6 B C 2 3 6 9 B C 3 9 C  C 2 3 5 6 B C
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fewest violations, especially for heterogeneous variances. Table 1 gives an impression of the 
distribution of error rates offending the limits for the different situations. 

6. Results II: Power
In this study only the relation between the powers of the different nonparametric anova methods 
is examined whereas the absolute power values achieved are of minor interest. The results for 
equal and unequal cell counts are only conditionally comparable because of the different 
number of cells as well as the different cell counts. From the previous section it is obvious that, 
besides the van der Waerden-test, the nonparametric methods are scarcely able to achieve 
amelioration for the cases of unequal cell frequencies paired with unequal variances, compared 
with the parametric F-test. Therefore the focus is laid here on those settings with non-normal 
distributions where nonparametric methods are supposed to reach a higher power than the 
parametric F-test. Of course there are situations in which tests react liberal, leading on one side 
to high power rates, but also on the other side to offending the type I error rate. Such situations 
will be neglected here.

Performance of the different methods

Table 2 gives an impression of the distribution of above-average power performances. For every 
sample size a performance value - in the graphics of appendix A 3 denoted by relative power - 
is computed as the percentage of power above the mean over the 8 methods, which is computed 
as a 25% trimmed mean. These values are averaged over all sample sizes nij = 5,...,50 as well 
as for small sizes nij = 5,...,20 and for large sizes nij = 25,...,50. This table demonstrates among 
others the poor performance of the Puri & Sen- and the ATS-methods which never show values 
that lie 5 percent above the average. Further it shows that the power of the v.d.Waerden-test 
shrinks when there are side effects, and of course the good performance of the INT- and 
especially of the ART+INT-procedure. 

As a general result, considering all forms of distribution and effect situations, it can be conclu-
ded that the methods based on the inverse normal transformation (INT, ART+INT and v.d. 
Waerden) show constantly a high power, and in many cases even the best power (see figures 5a 
and 5b), especially for non-normal distributions, with one exception: the case of exponential 
distributions. The ART+INT performs best when there are also other effects present, in contrary 
to the v.d.Waerden-method, which complies better if there are no other significant effects. And 
this applies in a boosted degree to the interaction effect. The superiority of both methods starts 
in most cases only with nij > 10. But unfortunately the ART+INT shows unacceptable type I 
error rates in many of these situations. More details in chapter 8. The INT and v.d. Waerden 
methods are the best for the power of main effects as well as for underlying uniform or right 
skewed distributions (see figure 5a and table 2 as well as A 3.7, A 3.8, A 3.13 and A 3.14). There 
are no essential differences, neither between the balanced and the unbalanced design. 

The ART-procedure shows high power rates only in situations where it shows a liberal reaction 
for the type I error. In all other cases, e.g. for underlying uniform distributions, its power is rat-
her poor. Also for the RT holds: the good performance occurs in those situations where the error 
rates exceed the limits, worsens when there are also other effects and is rather poor for the full 
model. And the ATS and Puri & Sen methods which keep the type I error rate the best in many 
cases? In general these are among those with the lowest power. Table 2 demonstrates that these 
have never an above-average power, frequently the lowest power, e.g. for the main and interac-
tion effect in the full model (see e.g. A 3.7 and 3.8, 3.11, 3.13). For the Puri & Sen method this 
effect is plausible because the reduction of error sum of squares induced by significant main 
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effects cannot be exploited by the Puri & Sen method. This applies also to the van der Waerden 
method but in that case this negative effect is compensated by the normal transformation. The 
ATS is often the worst performer with power rates about 40 percent below average (see e.g. A 
3.10 and 3.12). Nevertheless there are a few situations in which the ATS excels positively: in 
unbalanced designs with heterogeneous variances if large nij correspond to large sij (see A 
3.2.13, 3.2.15, 3.10.13, 3.10.15, 3.14.13 and 3.14.15). And what about the power of the 
parametric F-test? In general its power lies in the middle of the results. However the excellent 
performance for underlying exponential distributions should be mentioned here. Details in 
chapter 8.
   

Table 2: Above-average power performance in the range of ni = 5,...,50
The numbers refer to the distributions (see chapter 4), A (10) to right/left-skewed distributions, 
B (11) and C (12) to left skewed distributions with unequal variances. The layout has the follo-
wing meaning: 
  n: moderate - power at least 5 percent above the average
  n: moderate - power at least 5 percent above the average, only for large samples (above nij >20) 
  n: moderate - power at least 5 percent above the average, only for small samples (below nij <20)
  n: strong - power at least 10 percent above the average
„eq“ and „ne“ in the column „des“ refer to equal and unequal cell counts.

Variances si
2 correlated with sample sizes ni

If small nij correspond to small sij the ATS is the best performer (see e.g. A 3.2.13 and 3.2.15). 
If not available the ART as well as the RT method can be applied. If small nij correspond to large 
sij the high values of the parametric F-test and the INT-method are not helpful because of their 
poor type I error control. Therefore the v.d.Waerden-procedure is the only suitable one showing 
good results (see e.g. A 3.2.14 and A 3.2.16), especially for skewed distributions.

effect 
(side effects) des param RT INT ART ART+

INT
Puri
Sen

van der
Waerden ATS

 A eq 5 6 4 7 8 9 A B 2 3 C 4 8 9 A B 4 8 9 A B

  (none) ne 5 6 2 4 9 1 4 7 8 9 A B C 2 8 A 4 8 9 A C

 A eq 5 6 4 7 8 9 A B 2 3 C 5 6 3 4 8 9 A B C 4 8 9 A

  (B sig) ne 5 6 2 4 1 3 4 7 8 9 A B C 9 4 8 9 A C

 A eq 2 3 5 6 A B C 4 8 9 A B C 2 3 5 6 B C 2 3 4 8...C 4 8 9...C

  (AB sig) ne 1 2 3 5 6 A B C 4 5 6 7 8 9 A B C 2 3 5 6 B C 1 2 3 4 8...C 4 8 9 A B

 A eq 2 3 5 6 B A C 4 8 9 A B 2 3 5 6 B C 2...4 5 6 7 8...C 8 9 B

  (B+AB sig) ne 1 2 3 5 6 A B C 4 7 1 4 7 8..A B C 1 2 3 4 5 6 B C 1 2 3 4...C 8 9 B

 AB eq 5 6 4 6 8 9 A B 2 3 5 6 C 4 8 9 A B 4 8 9 A

  (none) ne  3 5 6 2 4 6 7 8 9 A B C 2 3 5 6 B 1 4 8 9 A B C 4 8 9 A

 AB eq  1 2 3 5 6 B C 4 5 6 7 8 9 A B C 2 3 5 6 B C 2 3 4 8 9 A B C 4 6 8 9..C

  (A sig) ne 1 2 3 5 6 9...C 1 2 3 4...A B C 2 3 5 6 B C 1 2 3 4 5 7 8..C 4 5.. B

 AB eq 1 2 3 5 6 A B C 1...5 6...B C 2 3 4 5 6 B C 1 2...4 5 6 7...C 6  8.. B

  (A+B sig) ne 1 2 3 5 6 A B C 1 4 7 1 2 3 4...B C 2 3 4 5 6 7 B C 1 2...4 7 8...C 6  8.. C
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Impact of effect size on the Power

In general the results for varying effect sizes are similar to those for varying cell counts. First it 
must be remarked that the power for all tests (main and interaction effects) in unbalanced mo-
dels is lower than in balanced designs, though the smaller nij is counterbalanced by the larger 
number of cells. And this applies particularly to the tests in the full model.

Whereas the van der Waerden-method showed generally a good performance concerning the 
power in relation to the sample size this applies not in the same extent to the impact of the effect 
sizes. The power rises more with increasing ni than with increasing effect sizes. When there are 
other nonnull effects the power rates of the van der Waerden-method lie often below the mean 
(see e.g. A 5.5, 5.6, 5.9 and 5.10). This can be explained by the computational process. So it is 
not surprising that this applies also to the Puri & Sen-method. However thanks to the INT-trans-
  

Figure 5a: Power of a main effect in a balanced model with and without other nonnull effects 
with two different underlying nonnormal distributions: exponential continuous and uniform 

discrete. The first row shows the excellent performance of the parametric F-test, the second the 
decreasing power of the v.d.Waerden test if there are other effects present.
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Figure 5b: Power of a main effect in a balanced model with and without other nonnull effects 
with two different underlying nonnormal continuous distributions:

left/right skewed and left skewed with heterogeneous variances.

formation the v.d.Waerden rates are slightly better than those of the Puri & Sen-test. In the worst 
case (interaction effect of the full model in an unbalanced design, see A 5.10) the rates reach 
just 50 percent of the best performing method. Nevertheless the van der Waerden-method per-
forms generally well for nonnormal distributions, especially for the uniform, right skewed and 
the mixture of skewed distributions. 

Summary

Summarizing the results so far: The van der Waerden-method is generally among the good per-
formers, though it weakens for small nij or if there are also other nonnull effects. Just in these 
situations the ART+INT-procedure is recommendable, especially for heteroscedastic normal 
distributions and for lognormal distributions. The INT-method is a good choice for all right 
skewed and uniform distributions as long as there are no heterogeneous variances. The ART re-
veals a good performance just in those cases where its type I error behavior is unsatisfactory. 
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And finally the parametric F-test reaches a high power for the exponential distribution, and of 
course for normal distributions, but in the case of unequal variances only for balanced designs.

7. Conclusion
From the previous sections it is obvious that there is no one best method. While the van der 
Waerden-test seems to be the best one with regard to the type I error rate there is not a single 
best method concerning the power. Nevertheless, if not much testing is desired the van der 
Waerden-method seems to be the first choice because it has been attested a good type I error 
behavior and shows generally a good power performance. But with the following constraint: the 
van der Waerden method has a reduced power for small nij  or if there are other nonnull effects, 
e.g. in the case of a full model. For these situations the ART+INT can be chosen as an alterna-
tive, especially for the test of interaction effects: on one side its type I error violations are mo-
derate and most deficiencies occur mainly for larger cell sizes nij 20, and on the other side 
this method has a large power as stated above.

The pure ART-technique is generally not recommendable. Instead the ART+INT is preferable 
due to the dampening effect of the INT-transformation on the error rates and due to the better 
power performance. As the ART-techniques violate the type I error rate for the test of main 
effects in unbalanced designs the INT-method should be preferred for nij 20 in these cases. 
The rather simply computable RT-method appeared not as bad as it is often described. Only in 
the cases of unequal variances it cannot keep the error rates under control. Here also this 
deficiency occurs mainly for larger cell sizes nij > 15 and for larger effect sizes. But never-
theless, the also easy computable INT-method is preferable since it keeps the error rate better 
under control than the RT and possesses the far better power than the RT. The ATS- as well as 
the Puri & Sen-method are not advisable because of their low power. Concerning the type I error 
control the ATS has the same problems with heterogeneous variances as the RT, whereas the 
Puri & Sen-test is less problematic.

And the parametric F-test? As long as the variances are equal it is no bad choice. Even in the 
case of heteroscedasticity the test is still valid when the sample sizes are equal. The error rates 
are always under control and the power rates lie in the middle. But they are inferior to those of 
the INT-based procedures in the cases of nonnormal distributions. And finally, the parametric 
F-test is the first choice in the case of right skewed distributions: it is the only one with more or 
less acceptable error rates in the case of right skewed distributions with slightly unequal vari-
ances (see A 6) and it has the best power for underlying exponential distributions.

Some final remarks on the case when unequal cell counts are paired with unequal variances. The 
case of positive pairing is rather unproblematic because for all methods except the ART the type 
I error rate lies even in the interval of stringent robustness. In the case of negative pairing the 
ATS is the only method that keeps the error level under control in every situation. The corres-
ponding low power, between 1/3 and 1/2 of that of the other methods, has to be accepted. When 
sij

2 and nij
 are uncorrelated the van der Waerden-test is the only one that has the type I error 

under complete control and shows satisfying power rates. 

8. Additional Results
Here some results are reported which mainly confirm previous findings from other articles.

≥

≥
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Type I error rates for small n

A look onto the results for fixed nij = 5 and nij =10 (appendix A 1). For the parametric F-test all 
the well-known results denoted in the introduction could be confirmed. Concerning the other 
methods there are also no spectacular results. In the null model (tables 1-1-1 and 1-2-1 in A 1) 
the ART and ART+INT show only decent exceedances of the moderate robustness in the case 
of unequal variances. Here applying the INT to the ART shows a dampening effect as already 
remarked by Carletti & Claustriaux (2005). And in the challenging case of an unbalanced design 
where small nij are paired with large sij only the ATS keeps the error level under control, whe-
reas in the case where small nij are paired with small sij of course all tests show acceptable rates 
(table 1-2-2 in A 1).

When there is a nonnull main effect (tables 1-3-1 and 1-4-1 in A 1 for balanced designs and table 
1-4-3 in A 1 for unbalanced designs) again for the ART and ART+INT the rates of main and 
interaction effect exceed the interval of moderate robustness in the case of unequal variances 
and for exponential distributions. Here also the ART+INT has the lower values. The same 
applies to the case of both nonnull main effects. But in these situations of nonnull effects also 
the RT and ATS show sometimes too large error rates for unequal variances.

Similar results were obtained at the 1 percent level though results at that level tend to be more 
liberal in general. 

Impact of discrete variables on type I error rates

Comparing all 8 methods with regard to the behavior in the case of underlying discrete distribu-
tions, exponential and uniform, the tables and graphics in appendix A 2 show that the type I er-
ror rates rise mainly for the ART- and the ART+INT-procedures for increasing cell counts nij , 
in most cases beyond 10 percent, but sometimes even up to 20 percent. See e.g. A 2.5.6, 2.5.9, 
2.10.6, 2.10.9, situations where the rates remain in the interval of moderate robustness for the 
corresponding continuous distribution. In the case of the uniform distribution the situation is 
more transparent because for the continuous distribution the error rates of the ART- and the 
ART+INT-procedures are almost always under control while for the discrete distribution the ra-
tes rise up to values between 6 and 8 if nij increases up to 50. But it has to be noted that at least 
for equal cell counts the rates keep acceptable for most models. For details see summary tables 
A 7.8.3 (exponential distribution) and A 7.8.4 (uniform distribution) which represents a summa-
ry of the results for the ART-method tabulated in A 2. On the contrary all other methods behave 
mostly in the normal range.

Power performance for non-normal distributions

For underlying exponential distributions, both in the continuous and in the discrete version, the 
parametric F-test is without restrictions the best performer, and especially for unbalanced desi-
gns the INT- and the v.d.Waerden-procedures are often also a good choice. For the lognormal 
distribution the differences between the power rates of the different methods are generally rather 
small. But in most situations the INT- and the v.d.Waerden-procedures are the leader, followed 
by the ART+INT-technique. For the uniform distributions, both in the continuous and in the 
discrete version, the methods based on the inverse normal transformation (INT, ART+INT and 
v.d. Waerden) show constantly the best power. And the differences between these are minimal. 
The parametric F-test lies generally below the INT-based methods in the medium range, while 
all other procedures show comparatively low power rates and reach often only 60 to 70 percent 
of the top values (see e.g. A 3.10.8 and 3.14.8). Also for the case of mixed left/right-skewed 
distributions the INT-based methods have the highest power rates, followed by the parametric 



Additional Results 25
F-test (see figure 5b). Again for left skewed distributions with heterogeneous variances the INT-
based methods are among the best performers. Unfortunately the INT- as well as the ART+INT-
method show also increased error rates for this kind of distributions, at least for unbalanced de-
signs. So the only recommendable procedure left is the van der Waerden-test. It remains to 
remark that the differences between the power rates are generally small.

Power performance of the parametric F test

In general the power of the parametric F test lies in the middle of the results, except for a few 
situations: In the ideal case of an underlying normal distribution with homogeneous variances 
the F-test is of course the best performer though the lead to the nonparametric methods is 
negligible. In models with more than one significant effect, e.g. the full model, the F-test is able 
to score (see table 2). In the case of the right skewed distributions the parametric F-test is the 
absolute winner for the much skewed exponential distributions. On the other side the power of 
the F-test is among the lowest for the lognormal distribution, especially for larger nij , though 
the differences between the rates are fairly small. Table 2 also demonstrates that for this type 
and for uniform distributions the F-test is always inferior to the INT-based methods.

Power in special situations

Now a glance shall be put on some of the situations concerning the distributions and effect 
combinations. In the various cases of underlying normal distributions the differences between 
the methods are rather small as long as there are no influences by other effects. In the case of a 
full model, i.e. all effects assumed significant, the differences rise up to about 30 percent (see 
e.g. A 3.8.2, 3.8.3 as well as 3.13.3 and 3.14.3). Generally the ART+INT-method yields high 
power rates in the case of a full model, both for the main and the interaction effects. But this is 
only helpful for small sample sizes because for the main effect in unbalanced designs its error 
rates are not under control if nij 20.

Of special interest is the case of unequal variances where, as stated in the chapter above, nearly 
all methods suffer from unacceptable type I error rates, but might differ with regard to the pow-
er. First the case of an underlying normal distribution. The only methods not strongly affected 
by the heteroscedasticity are the Puri & Sen- and the v.d.Waerden-tests generally, the 
ART+INT-technique except for the test of interaction effects in unbalanced designs, and the 
parametric F-test for balanced designs. From these the v.d.Waerden-method has a slightly better 
overall power performance than the Puri & Sen-method (see. e.g. A 3.5.3 and 3.8.2). However 
the ART+INT in general as well as the parametric F-test for the cases of equal sample sizes 
reach often higher power rates than the other two methods, especially in models with nonnull 
side effects, e.g. the full model (see table 2 as well as e.g. A 3.7.2 and A 3.7.3). Second the case 
of non-normal distributions. Here was indicated above that the v.d.Waerden-test is to prefer.

Impact of effect size on the Power

Concerning the impact of the effect size the ART-technique shows exactly the same behavior 
as previously described for increasing nij. In contrast the ART+INT performs considerably bet-
ter. A look at the results for main and interaction effects in full models shows that the ART+INT 
is a good choice for balanced designs whereas the INT is preferable for unbalanced designs. 
Disappointing is also the general bad output of the ATS. The ATS shows strength only in the 
cases of unequal cell sizes where small nij correspond to large sij (see sections 10 and 12 in A 
5.2, A 5.4, A 5.6, A 5.8 and A 5.10).

≥
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9. Software
This study has been programmed in R (version 3.0.2 and later version 3.2.2), using mainly the 
standard anova function aov in combination with drop1 to receive type III sum of squares 
estimates in the case of unequal cell counts. For the ART, ATS, factorial Puri & Sen and van 
der Waerden methods own functions had been written (see Luepsen, 2014). It should be noted 
that meanwhile there exists the R package ARTool (Kay & Wobbrock, 2015) for the ART 
method and the package rankFD for the ATS statistic used here. All the computations had been 
performed on a Windows notebook.
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11. Appendix: Computational procedure for the ATS statistic
A more detailed description can be found in Brunner & Munzel (2002, chapter 3) as well as 
Akritas, Arnold and Brunner (1997).

First some notations for matrices shall be defined. For an integer n: 

In is the identitiy matrix of order n,
Hn is a quadratic matrix of order n consisting of only 1 and
Pn = In - (1/n)Hn 

Based on the ranks Rijk  of the observed values yijk the following means  

and cell variances

are computed. Let VN be the diagonal matrix

and 

then the statistic for testing the main effect A 

is approximately F distributed with degrees of freedom (fA, f0) with  

where  with the Kronecker product  and H as defined above. Similarly the test 
of main effect B is performed. Finally the statistic for testing the interaction effect AB:

with is also approximately F distributed with degrees of freedom (fAB, f0), where  

with  and f0 as above. 
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