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The Lognormal Distribution and Nonparametric Anovas -
a Dangerous Alliance

Abstract

Results from several simulation studies in the last two decades showed that ranking procedures 
for the comparison of means may lead to an inflation of the type I error rate when the underlying 
distribution is lognormal and the variances are heterogeneous, even in the case of equal sample 
sizes. In this study the error rates of the parametric F-test as well as those of seven 
nonparametric tests are compared in a two-way between subjects anova design. The methods 
under consideration are: rank transform (RT), inverse normal transform (INT), aligned rank 
transform (ART), a combination of ART and INT, Puri & Sen‘s L statistic, van der Waerden 
and Akritas & Brunners ATS. The type I error rates for the tests of the null model are computed 
for several lognormal distributions with varying degrees if skewness, varying sample sizes from 
5 to 50, several degrees of variance heterogeneity as well as for balanced and unbalanced desi-
gns. It is shown that the error rates of main and interaction effects for all nonparametric methods 
increase above any acceptable limit for moderate cell counts of 20 and more, while the 
parametric F-test keeps the error completely under control at least in the case of equal sample 
sizes. These results show that nonparametric methods are not always acceptable substitutes for 
parametric methods such as the F test in research studies when parametric assumptions are not 
satisfied.

1. Introduction

The lognormal distribution is very common in practice. Typically the blood pressure (diastolic 
and systolic), the income and the consumption, e.g. of alcohol, are lognormally distributed. 
Characteristics: there is an absolute zero-point - by means of a suitable shift of the variable this 
must not be zero in practice - and a long tail on the right. When such data have to be analyzed 
introductory textbooks usually recommend applying nonparametric procedures because such 
methods are believed to be superior to normal theory techniques if data are nonnormal distribut-
ed (see e.g. Zimmerman & Zumbo, 1993). „It came to be widely believed that nonparametric 
methods always protect the desired significance level of statistical tests, even under extreme vi-
olation of those assumptions“ (see Zimmerman, 1998). Especially in the context of analysis of 
variance (aov) with the assumptions of normality and variance homogeneity.

Some of the advocates should be mentioned at this point. Sawilowsky (1990) showed that most 
well known nonparametric procedures, especially those considered here, have a power compa-
rable to their parametric counterparts, and often a higher power when assumptions for the 
parametric tests are not met. Higgins & Tashtoush (1994) as well as Salter & Fawcett (1993) 
showed that the ART procedure is valid concerning the type I error rate and that it is preferable 
to the F-test in cases of outliers or heavily tailed distributions, as in these situations the ART has 
a larger power than the F-test. Mansouri & Chang (1995) showed that the ART performs better 
than the F-test concerning the power in various situations with skewed and tailed distributions. 
Sheskin (2004) reported that the van der Waerden-test in the 1-factorial version beats the clas-
sical aov in the case of violations of the assumptions. Danbaba (2009) compared for a simple 
3*3 two-way design 25 rank tests with the parametric F-test.  His conclusion: among others the 
RT, INT, Puri & Sen and ATS fulfill the robustness criterion and show a power superior to the 
F-test (except for the exponential distribution) whereas the ART fails. 
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Looking concretely onto the lognormal distribution a simulation study by Danbaba (2009) has 
to be mentioned: He showed that for several rank tests (including the RT, ART, INT and ATS) 
the error rates stay predominantly in the acceptable range and tend to decrease for increasing 
cell counts. Unfortunately he considered not the case of heterogeneous variances. 

But on the other side inflated type I error rates have been revealed if ranking procedures are 
applied on skewed data with unequal variances, even in the case of equal cell counts. Zimmer-
man (1998) concurrently violated in a simulation study the assumptions of parametric tests (nor-
mality and homogeneity of variance) for various combinations of nonnormal distribution shapes 
and degrees of variance heterogeneity. He found that the type I error probability of the 
nonparametric Wilcoxon-Mann-Whitney rank-test (U-test) to be biased to a far greater extent 
than that of its parametric counterpart, the Student t-test. In a later study Zimmerman (2004) 
compared again the same tests for 25 distributions. He had been confronted with error rates ri-
sing to 40 percent for the U-test with n=20 and up to 75 percent with n=50 while the ratio of the 
two standard deviations increases to 3 in the case of an underlying lognormal distribution. And 
this even in the case of equal cell counts. Similar results were found for other skewed distribu-
tions although not to the same extent. There exist even earlier studies (e.g., Harwell, 1990; Ro-
gan and Keselman, 1977) in which changes in the Type I error rates of the Student t-test for 
equal sample sizes are reported.

A more recent study comes from Carletti & Claustriaux (2005) who compared the ART-techni-
que with the parametric F-test for the lognormal distribution and used a 2*4 design with a rela-
tion of 4 and 8 for the ratio of the largest to the smallest variance. They found that in the case 
of heteroscedasticity the ART has far more inflated type I errors than the F-test and that con-
cerning the power only for the main effects the ART can compete with the classical tests. In 
addition the type I error increases up to 30 percent with larger cell counts. But they proposed an 
amelioration of the ART technique: to transform the ranks obtained from the ART according to 
the INT method, i.e. transforming them into normal scores (see chapter 2). This method leads 
to a reduction of the type I error rate, especially in the case of unequal variances.

At least, after numerous simulation studies and many theoretical investigations, it is now 
generally accepted that the t- and F- tests are robust under violation of homogeneity of variance, 
as long as sample sizes are equal. Nevertheless some exceptions have been found (Tomarken & 
Serlin, 1986). Unfortunately these results cannot be transferred to the nonparametric methods. 
For the case of heterogeneous variances there exist a couple of adequate tests, e.g. by Welch, 
Welch & James, Brown & Forsythe and by Brunner, Dette & Munk (see e.g. Tomarken & Ser-
lin, 1986 and G. Vallejo et al., 2010) which work also with unbalanced designs. But they all 
have problems with skewed data (see e.g. G. Vallejo et al., 2010, Keselman et al., 1995 and 
Tomarken & Serlin, 1986). Nevertheess there exist some modifications for the tests mentioned 
above, mainly based on robust estimators for means and variances (see e.g. Cribbie et al., 2010 
and G. Vallejo et al., 2010).

In this study the type I error rates of 7 nonparametric aov methods, all based on ranking, as well 
as of the parametric F-test are compared for several lognormal distributions  with varying shape 
parameters, for balanced and unbalanced designs and sample sizes ni ranging from 5 to 50.
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2. Methods to be compared

It follows a brief description of the methods compared in this paper. 

The anova model shall be denoted by

with fixed effects αi (factor A), βj (factor B), αβij (interaction AB) and error eijk .

RT ( rank transform)

The rank transform method (RT) is just transforming the dependent variable (dv) into ranks and 
then applying the parametric aov to them. This method had been proposed by Conover & Iman 
(1981). Blair et al (1987), Toothaker & Newman (1994) as well as Beasley & Zumbo (2009), 
to name only a few, found out that the type I error rate of the interaction can reach beyond the 
nominal level if there are significant main effects because the effects are confounded. At least 
Hora & Conover (1984) proved that the tests of the main effects are correct. A good review of 
articles concerning the problems of the RT can be found in the study by Toothaker & Newman.

INT (inverse normal transform)

The inverse normal transform method (INT) consists of first transforming the dv into ranks (as 
in the RT method), then computing their normal scores and finally applying the parametric aov 
to them. The normal scores are defined as

      

where Ri are the ranks of the dv and n is the number of observations. It should be noted that there 
exist several versions of the normal scores (see Beasley, Erickson & Allison (2009)  for details). 
This results in an improvement of the RT procedure as could be shown by Huang (2007) as well 
as Mansouri and Chang (1995), though Beasley et al. (2009) found out that also the INT pro-
cedure results in slightly too high type I error rates if there are significant main effects.

ART (aligned rank transform)

In order to avoid an increase of type I error rates for the interaction in case of significant main 
effects an alignment is proposed: all effects that are not of primary interest are subtracted before 
performing an aov. The procedure consists of first computing the residuals, either as differences 
from the cell means or by means of a regression model, then adding the effect of interest, trans-
forming this sum into ranks and finally performing the parametric aov to them. This procedure 
dates back to Hodges & Lehmann (1962) and had been made popular by Higgins & Tashtoush 
(1994) who extended it to factorial designs. In the simple 2-factorial case the alignment is com-
puted as

    

where eijk  are the residuals and  are the effects and the grand mean. As the normal 
theory F-tests are used for testing these rank statistics the question arises if their asymptotic 
distribution is the same. Salter & Fawcett (1993) showed that at least for the ART these tests are 
valid.

xijk αi βj αβij eijk+ + +=

Φ 1–
Ri n 1+( )⁄( )

x'ijk e= ijk αβij αi– βj– 2μ+( )+

αi βj αβij μ, , ,
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ART combined with INT (ART+INT)

Mansouri & Chang (1995) suggested to apply the normal scores transformation INT (see above) 
to the ranks obtained from the ART procedure. They showed that the transformation into normal 
scores improves the type I error rate, for the RT as well as for the ART procedure, at least in the 
case of underlying normal distributions. 

Puri & Sen tests (L statistic)

These are generalizations of the well known Kruskal-Wallis H test (for independent samples) 
and the Friedman test (for dependent samples) by Puri & Sen (1985), often referred as L stati-
stic. A good introduction offer Thomas et al (1999). The idea dates back to the 60s, when  
Bennett (1968) and Scheirer, Ray & Hare (1976) as well as later Shirley (1981) generalized the 
H test for multifactorial designs. It is well known that the Kruskal-Wallis H test as well as the 
Friedman test can be performed by a suitable ranking of the dv, conducting a parametric aov 
and finally computing χ2 ratios using the sum of squares. In fact the same applies to the gene-
ralized tests. In the simple case of only grouping factors the χ2 ratios are 

      

where SSeffect  is the sum of squares of the considered effect and MStotal is the total mean square. 
The major disadvantage of this method compared with the four ones above is the lack of power 
for any effect in the case of other nonnull effects in the model. The reason: In the standard anova 
the denominator of the F values is the residual mean square which is reduced by the effects of 
other factors in the model. In contrast the denominator of the χ2 tests of Puri & Sen‘s L statistic 
is the total mean square which is not diminished by other factors. A good review of articles con-
cerning this test can be found in the study by Toothaker & De Newman (1994).

van der Waerden

At first the van der Waerden test (see Wikipedia and van der Waerden (1953)) is an alternative 
to the 1-factorial aov by Kruskal-Wallis. The procedure is based on the INT transformation (see 
above). But instead of using the F-tests from the parametric aov, χ2 ratios are computed using 
the sum of squares in the same way as for the Puri & Sen L statistics. Mansouri and Chang 
(1995) generalized the original van der Waerden test to designs with several grouping factors. 
Marascuilo and McSweeney (1977) transferred it to the case of repeated measurements. Sheskin 
(2004) reported that this procedure in the 1-factorial version beats the classical aov in the case 
of violations of the assumptions. On the other hand the van der Waerden tests suffer from the 
same lack of power in the case of multifactorial designs as the Puri & Sen L statistic.

Akritas, Arnold and Brunner (ATS)

This is the only procedure considered here that cannot be mapped to the parametric aov. Based 
on the relative effect (see Brunner & Munzel (2002)) the authors developed two tests to compare 
samples by means of comparing these relative effects: ATS (anova type statistic) and WTS 
(Wald type statistic). The ATS has preferable attributes e.g. more power (see Brunner & Munzel 
(2002) as well as Shah & Madden (2004)). The relative effect of a random variable X1 to a 
second one X2 is defined as p+ =  , i.e. the probability that  X1 has smaller values than 
X2 . As the definition of relative effects is based only on an ordinal scale of the dv this method 
is suitable also for variables of ordinal or dichotomous scale. The rather complicated procedure 
is described by Akritas, Arnold and Brunner (1997) as well as by Brunner & Munzel (2002).

χ2 SSeffect

MStotal
-----------------=

P X1 X2≤( )
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3. The Study

This is a Monte Carlo study. That means a couple of designs and theoretical distributions had 
been chosen from which a large number of samples had been drawn by means of a random 
number generator. These samples had been analyzed for the various aov methods. 

In the current study only grouping (between subjects) factors A and B are considered. It examins 
two layouts: 

• a 2*4 balanced design with 10 observations per cell (total n=80) and 

• a 4*5 unbalanced design with an unequal number of observations ni per cell (total n=100) 
and a ratio max(ni)/min(ni) of 4, 

which differ not only regarding the cell counts but also the number of cells, though the degrees 
of freedom of the error term in both designs are nearly equal. (In the following sections the ter-
ms unbalanced design and unequal cell counts will be used both for the second design, being 
aware that they have different definitions. But the special case of a balanced design with 
unequal cell counts will not be treated in this study.)

As from the results of the studies by Zimmerman as well as those by Carletti & Claustriaux men-
tioned above to be expected, preliminary tests for the lognormal distribution revealed: all 
nonparametric methods under consideration here show rising type I error rates for increasing 
sample sizes in the case of heterogeneous variances. For a more precise investigation the error 
rates of  the lognormal distribution had been computed for several parameters in the range 
n=5,10,...,50: varying 

• the variance ratio (equal variances, slightly unequal variances (factor 2) and strongly unequal 
variances (factor 4)),

• variance heterogeneity on one factor (B) as well as on both factors (A and B),

• the skewness by means of the parameter σ (slightly skewed (σ=0.25), medium skewed 
(σ=0.50) and strongly skewed (σ=1.0)), and

• the variance by means of the parameter μ (small variance (μ=0), medium variance (μ=1) and 
large variance (μ=2), only for the parameter σ=0.50.

Additionally two lognormal distributions had been studied which both could be used for mo-
delling the diastolic blood pressure dbp ( ~ 75 and s~10 assumed), with

• parameters μ=3.5 and σ=0.3 resulting in ~ 35 (model I) and

• parameters μ=4.3 and σ=0.13 resulting in ~ 75 (model II).

Both have a standard deviation s~10. If an absolute minimum of 40 is assumed for dbp, model 
I gives a good fit for the difference dbp-40, while model II fits dbp untransformed. Both 
distributions have nearly the same shape (see figure 1 where for comparison purposes the den-
sity of the corresponding normal distribution is also plotted).

In the cases of variance heterogeneity the parameters μ and σ had been modified for some 
groups respectively cells to achieve the desired variance ratio. The parameters had been chosen 
so that the groups respectively cells compared had always equal cell means, see table 1. The 
cells modified depend on the design. Subsequently i,j refer to the indices of factors A respec-
tively B.

x

x

x
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• For the 2*4 balanced as well as the 4*5 unbalanced design and unequal variances on B the 
cells with j 2 have a variance ratio of 4 and those with j=3 a ratio of 2.

• In the case of the 2*4 balanced design and unequal variances on A and B the cells with i=1 
and j 2 have a variance ratio of 4 and those with i=2 and j 3 a ratio of 2.

• In the case of the 4*5 unbalanced design and unequal variances on A and B the cells with 
i 2 and j 2 have a variance ratio of 4 and those with i 3 and j 3 a ratio of 2.

If there are only slightly unequal variances, all cells listed above have a variance ratio of only 2. 

Special attention is paid to heterogeneous variances in conjunction with unequal cell counts. As 
it is well known meanwhile, the F-test behaves conservative if large variances coincide with lar-
ger cell counts (positive pairing) and that it behaves liberal if large variances coincide with 
smaller cell counts (negative pairing) (see e.g. Feir & Toothaker, 1974 and Weihua Fan, 2006). 
Therefore the pattern of the si

2 had been chosen so that ni and si
2 are independent.

The main focus had been laid upon the control of the type I error rates for α=0.05 for the various 
methods and situations. Therefore the error rates had been checked for both main effects as well 
as the interaction effect for the case of the null model (equal means).

4. Results

All tables are available online under the denotation Appendix 6:
http://www.uni-koeln.de/~luepsen/statistik/texte/comparison-tables/
Each table includes the results for all 8 methods and reports type I error rates as the proportions 
of rejections of the corresponding null hypothesis at α=0.05: for all 3 effects (factor A, factor B 
and the interaction), for ni = 5,..,50 with equal and unequal cell frequencies, and for the lognor-
mal distributions with various parameters. The tables are referred here as A n.n.n.

A deviation of 10 percent (α + 0.1α) - that is 5.50 percent for α=0.05 - can be regarded as a 
stringent definition of robustness whereas a deviation of 25 percent (α + 0.25α) - that is 6.25 
percent for α=0.05 - is treated as a moderate robustness (see Peterson (2002). It should be men-
tioned that there are other studies in which a deviation of 50 percent, i.e. (α 0.5α), Bradleys 
liberal criterion (see Bradley, 1978), is regarded as robustness.
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Figure 1: densities of lognormal distributions 
with μ=4.3 and σ=0.13 (solid black), 

μ=3.5 and σ=0.15 (dashed red) and normal 
distribution with μ=75 and σ=10 (blue points)

Figure 2: densities of several lognormal 
distributions: with parameters 

μ=0 and σ=0.25 (black), μ=0 and σ=0.5 
(red), μ=0 and σ=1 (green)
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Table 1: Scheme of parameters for seven different types of lognormal distributions 
used in this study

variances μ σ s2 skewness

slightly skewed

equal 0 0.25 1.0317 0.0686 0.778

unequal - ratio 2 -0.0295 0.3483 1.0317 0.1373 1.124

unequal - ratio 4 -0.0836 0.4791 1.0317 0.2746 1.655

medium skewed - small variances

equal 0 0.5 1.1331 0.3650 1.750

unequal - ratio 2 -0.1001 0.6709 1.1331 0.7300 2.691

unequal - ratio 4 -0.2546 0.8712 1.1331 1.4588 4.409

strongly skewed

equal 0 1 1.6487 4.6701 6.185

unequal - ratio 2 -0.2342 1.2167 1.6487 9.3400 11.781

unequal - ratio 4 -0.5317 1.4365 1.6487 18.683 25.887

medium skewed - medium variances

equal 1 0.5 3.0802 2.6948 1.750

unequal - ratio 2 0.900 0.671 3.0802 5.3697 2.711

unequal - ratio 4 0.745 0.872 3.0802 10.8116 3.409

medium skewed - large variances

equal 2 0.5 8.3729 19.9117 1.750

unequal - ratio 2 1.900 0.671 8.3729 39.6772 2.711

unequal - ratio 4 1.746 0.872 8.3729 79.7268 3.409

model I for diastolic blood pressure

equal 3.5 0.3 34.640 10.63  1.963

unequal - ratio 2 3.459 0.415 34.640 21.26 2.108

unequal - ratio 4 3.385 0.565 34.640 42.52 2.402

model II for diastolic blood pressure

equal 4.3 0.13 55.216 9.703 1.846

unequal - ratio 2 4.292 0.183 55.216 19.40 1.871

unequal - ratio 4 4.275 0.257 55.216 38.80 1.924

x
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equal variances

For nearly all different types of the lognormal distribution the type I error rates for all methods 
stay in the interval of moderate robustness, mostly even in the interval of stringent robustness. 
Only for the strongly skewed distribution with a skewness of 6.2 (parameters 0/1) the ART-
method shows rates beyond the acceptable range, usually between 8 and 11 percent, especially 
for the main effects (see tables A 6.3.1 to 6.3.4). As a consequence also the values of the 
ART+INT-method are increased, but below 6 percent for cell counts ni 30. But also the 
parametric F-test reveals in this situation inflated rates (between 6 and 8): for the test of the in-
teraction, although they decrease to 6 percent with rising ni (see tables A 6.3.5 and 6.3.6).

unequal variances on B

Here again the strongly skewed distribution leads to a different behaviour of the ART- and the 
ART+INT-procedures. Whereas usually the rates for the tests of the main effect A and the in-
teraction remain unaffected by the heterogeneity of factor B, they are highly raised for these two 
methods in the case of a strongly skewed distribution. But the values, usually clearly above 10 
percent, tend to fall for increasing ni . Here also the application of INT to the ART-technique 
shows a dampening effect (see table A 6.3.1 and A 6.3.2). The behaviour of the parametric F-
test is the same as above in the case of homogeneity.

As to be expected the results are completely different for the test of factor B. The error rates of 
all nonparametric methods rise with increasing cell counts ni , even if the variance ratio is only 
two. The extent differs a bit from the distribution parameters, especially from the skewness, and 
from the degree of variance heterogeneity. For the case of slightly heterogeneous variances the 
values rise to 10 for moderately skewed distributions (see e.g. A 6.1.3), up to 20 for medium 
skewed ones and up to 27 for strongly skewed distributions (see e.g. A 6.3.3 and figure 7). And 
for unbalanced designs the values lie even higher. For the case of strongly heterogeneous vari-
ances the rates rise generally up to 60 percent and more. And only for distribution model II, the 
one with the smallest skewness, all methods show acceptable error rates at least for small cell 
sizes ni  20  (see A 6.7.3). And this applies even in a larger extent to the ART- and the 
ART+INT-methods.

unequal variances on A and B

Also for heterogeneous variances on both factors the results depend on the degree of skewness 
as well as on the degree of variance heterogeneity. Only in the case of a small skewness the test 
of the interaction is not affected when the design is balanced (see A 6.1.5). Otherwise the error 
rates of the nonparametric tests rise for all tests to percentages between 7 and 70: for slightly 
heterogeneous variances up to 7 - 15 (small skewness) and 12 - 16 (large skewness), and for 
strongly heterogeneous variances up to 12 - 18 (small skewness), and 28 - 40 (large skewness). 
And for unbalanced designs the values lie even higher (see figure 8).

The behaviour of the parametric F-test is also affected, but independent of the cell counts ni and 
independent of the degree skewness. For any variance heterogeneity this occurs in unbalanced 
designs where error rates between 6 and 8 are produced (see e.g. table A 6.1.2 and A 6.1.6 as 
well as figure 6). This confirms the „classical“ behaviour of the F-test.

As it appears in the specification of this study, there are, in the case of strong heterogeneity, cells 
with a variance ratio of 4 as well as a ratio of 2. There had been also simulations in which only 
a variance ratio of 4 had been used. Their results are partly different: for the test of factor A the 
rates were clearly larger in balanced designs and a bit smaller in unbalanced designs and for the 

≤

≤
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tests of factor B vice versa, whereas for the interaction effect the rates were generally larger. But 
these differences seem to depend on the specific pattern of those cells with larger variances. 
(The corresponding tables are not reproduced in appendix 6.) 

differences between methods

As already mentioned the results for the ART are comparatively poor in the case of a strongly 
skewed lognormal distribution. The dampening effect of the normal transformation INT to the 
ART-results is only helpful for smaller ni . Additionally the ART produces inflated rates in the 
case of unequal variances on B where all other methods seem to be unaffected (see e.g. A 6.1.1, 
6.4.1, 6.7.1). On the other side the ART as well as the ART+INT perform better than the other 
nonparametric methods for the tests of the main effects in unbalanced designs when the vari-
ances are inhomogeneous on both factors (see e.g. A 6.1.2, 6.2.2, 6.5.2, 6.5.2, 6.7.2), though 
here also for larger ni the rates rise beyond the acceptable limit.

For the other nonparametric methods there is only one remarkable result, though only of minor 
practical use: The Puri & Sen- and the ATS-method show acceptable error rates at least for 
smaller cell counts (Puri & Sen: ni  15 and ATS: ni  25) for the test of the interaction in 
unbalanced designs in the case of slightly unequal variances on both factors.

One final remark: for the parametric F-tests it was to be expected that the rates usually decrease 
with rising ni according to the central limit theorem. But the same can be observed for the ART-
technique in those cases where the results are not primarily affected by unequal variances, 
especially for the test of factor A in the case of heterogeneous variances on factor B (see e.g. 
A 6.1.2, 6.5.1, 6.5.2, 6.6.2) where the rates decrease from 6-7 to 4-5.

the parametric F-test

The parametric F-test is definitely the best performer concerning the type I error rate. In the ca-
ses of unequal variances it reacts slightly liberal in unbalanced designs. If the heterogeneity is 
restricted to only one factor (in this study factor B) the rates are almost acceptable for that factor 
(see figure 5). But if both have unequal variances especially the interaction is strongly affected 
with rates between 9 and 10 percent (see figure 6). Remarkable is the fact that the rates tend to 
fall with an increasing degree of skewness.

the models for the diastolic blood pressure

In chapter 3 two parameter sets for the lognormal distribution were presented to model the dias-
tolic blood pressure. Looking at figure 1 there seems to be no difference between them. But the 
results for the error rates are slightly different, less concerning the quality than the quantity. 
Both models show inflated error rates for the same effects in the same situations. But for model 
I (parameters μ=3.5 and σ=0.3) the percentages are generally twice as high as for model II 
(parameters μ=4.3 and σ=0.13). For instance for the cases of small variance ratios, either on B 
or on both factors, the error rates are under control for small cell counts (ni 15) in model II (see 
figure 9), and for the case of large variance ratios on B the rates for the test of factor B rise up 
to 39 percent for model I but only up to 12 percent for model II (equal sample sizes). The reason 
might be the slight difference of skewness. Nevertheless the result is surprising: first that there 
are differences at all, having the two almost identical distribution shapes in mind, and secondly, 
as there are differences, that it is model II that fits better. Though it makes sense to subtract the 
minimum of 40 from the dbp before analyzing the variable in order to fit better the characteris-
tics of the lognormal distribution.

≤ ≤

≤
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5. An Explanation

Since the phenomenon of rising type I error rates occurs for all ranking based nonparametric 
methods the reason for that has to be searched in the ranking. First a simple example for a one-
way anova with two groups on a lognormal distributed variable x shall illustrate the problem. 
The model for x is a lognormal distribution with parameters μ=0 / σ=1 in group 1 and 
μ=-0.531 / σ=1.44 in group 2 (see table 1 and figure 3).  The values of x and its ranks are re-
presented in table 2 together with the basic statistics and a histogram for both groups.

Table 2: raw values of x, their ranks rank(x), histograms and basic statistics for both groups

The results for the anova: the p-value is 0.748 for x and 0.123 for rank(x) which is clearly 
smaller. At first sight it is not obvious that both distributions reproduce the same mean (see figu-
re 3) because the distribution for group 2 seems to have a smaller mean. But - what cannot be 
seen in the figure - the large number of small values is equalized by a few numbers of very large 
values, due to the skewness. (In case of a symmetric distribution there should be a similar 
number of values at both ends.) But this is no more valid for the ranks. While the original values 
at the left end lie very close together, their ranks are equally spaced, i.e.drift apart. And at the 
right tail the few values move closer together due to the ranking. Therefore group 2 will always 
have a considerably smaller mean rank than group 1. This is illustrated by the example: Most of 
the small ranks belong to group 2 while the major part of large ranks belong to group 1.

group 1 group 2

case no x rank(x) case no x rank(x)

1 0.156 5 21 0.032 1

2 0.256 9 22 0.072 2

3 0.335 11 23 0.129 3

4 0.644 15 24 0.131 4

5 0.694 16 25 0.170 6

6 0.756 17 26 0.206 7

7 0.824 18 27 0.246 8

8 0.892 20 28 0.276 10

9 1.106 22 29 0.339 12

10 1.206 23 30 0.364 13

11 1.267 24 31 0.397 14

12 1.515 26 32 0.857 19

13 1.587 27 33 0.982 21

14 1.741 28 34 1.432 25

15 2.018 30 35 1.986 29

16 3.020 32 36 2.581 31

17 3.135 33 37 3.415 34

18 3.420 35 38 3.728 36

19 4.041 37 39 5.174 38

20 5.901 39 40 8.215 40

 

group 2

 

0 2 4 6 8 10

0
2

4
6

8
10

1
2

 

group 1

 

0 2 4 6 8 10

0
2

4
6

8
1

0
1

2

group 1 group 2

mean(x) 1.73 1.54
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skewness(x) 1.24 1.71

mean(rank(x)) 23.35 17.65
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6. Conclusion

The first conclusion is evident: As even for variance ratios of two - which has to be considered 
as common - the error rates of main and interaction effects for all nonparametric methods inc-
rease above any acceptable limit for moderate cell counts of 20 and more, these procedures have 
to be avoided for variables with right skewed distributions similar to a lognormal distribution. 
Furthermore the comparison of the two models for the diastolic blood pressure reveals the de-
pendency of the tests on small variations of the distributional parameters. As a consequence: if 
a comparison of several groups yields a significant result, one cannot be sure that it is caused by 
unequal means. It could be unequal variances as well. 

On the other side the parametric F-test keeps the error rate completely under control, at least for 
equal cell counts.

These results show that nonparametric methods are not always acceptable substitutes for 
parametric methods such as the F test in research studies when parametric assumptions are not 
satisfied.

But at the end a quite different question has to be put: Is it reasonable at all to treat means and 
variances separate, i.e. to compare means assuming equal variances? Perhaps it is more realistic 
for strongly right skewed data to assume a distribution for the alternative hypothesis which 
differs not only in regard to the mean but also to the variance. Figure 4 shows a lognormal 
distribution (parameters μ=1 / σ=0.5) with 4 alternatives. The shape of those two with equal me-
ans and unequal variances suggest rather the opposite: unequal means and equal variances. 
Therefore such a model does not seem to be realistic.

7. Software

This study has been programmed in R (version 3.2.2), using mainly the standard anova function 
aov in combination with drop1 to receive type III sum of squares estimates in the case of 
unequal cell counts. For the ART, ATS, factorial Puri & Sen and van der Waerden methods own 
functions had been written (see Luepsen, 2014). All the computations had been performed on a 
Windows notebook.
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Figure 3: lognormal distributions with 
parameters μ=0 / σ=1 (solid black) for 

group 1 and  μ=-0.531 / σ=1.44 (dashed red) 
for group 2, both reproducing the same mean 

= 1.65.x

Figure 4: lognormal distribution (μ=1 / σ=0.5) 
(solid black) with several alternatives: different 

mean (green), different mean and variance 
(red), equal means and variance ratio 2 (blue) 

as well as variance ratio 4 (magenta).
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8. Figures

  The parametric F-test

Figure 5: Type I error rates of the parametric F-test for the test of factor B with unequal vari-
ances: ratio 4 (solid black) and ratio 2 (dashed red), for equal/unequal cell counts and for 3 
degrees of skewness.

Figure 6: Type I error rates of the parametric F-test for the test of the interaction with unequal 
variances: ratio 4 (solid black) and ratio 2 (dashed red), for equal/unequal cell counts and for 
3 degrees of skewness.
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   Nonparametric tests

Figure 7: Type I error rate of several nonparametric methods for the test of factor B with 2 deg-
rees of unequal variances (on factor B) and for 3 degrees of skewness (equal cell counts) .
   

Figure 8: Type I error rate of several nonparametric methods for the test of the interaction with 
2 degrees of unequal variances (on factors A and B) and for 3 degrees of skewness (equal cell 
counts) .
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Figure 9: Type I error rate of nonparametric methods for the test of factor B with a small he-
terogeneity for the two dbp models as well as equal and unequal cell counts.
  

Figure 10: Type I error rate of nonparametric methods for the test of the interaction with a large 
heterogeneity on both factors for the two dbp models as well as equal and unequal cell counts.
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