
Universality in the Evolution of

Molecular Phenotypes

I n a u g u r a l -D i s s e r t a t i o n

zur

Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln
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Abstract

With massive growth of biological sequence data and evolutionary experiments the quan-

titative modeling of evolutionary processes is made possible. These models aim to quantify

the degree of conservation and the speed of adaptation in the evolution of biological sys-

tems. Evolutionary processes are driven by mutations, selection, and genetic drift. Muta-

tions generate new variants, natural selection favors some of these, and genetic drift is

the randomness in their reproduction success. In the early days of population genetics, it

was identified that these processes can be described by employing mathematical models

from statistical mechanics such as diffusion equations. Recent theoretical studies modeled

and solved the dynamics for complex, interacting systems. The complexity arises through

evolutionary interaction. On the one hand, mutations interact in their effect on selection.

On the other hand, there is competing co-evolution of variants, if recombination cannot

break up genomic links. Both problems arise naturally when considering the evolution

of molecular phenotypes such as gene expression levels, protein stabilities, or biophys-

ical binding properties. The inheritable information of these phenotypes is constituted

by many sites of the DNA sequence. These sites give a large target to new mutational

variants and, hence, a number of competing mutations. Since the sites are often con-

fined to small regions of the DNA, beneficial variants in different individuals cannot be

recombined through forms of horizontal gene transfer. Selection is further shaped by

generically non-linear fitness landscapes, which is the mapping from the phenotypes to

biological growth rates. Recent theoretical breakthroughs allowed for the description of

the phenotypic dynamics decoupled from plenty of genomic details. These dynamics were

solved in evolutionary equilibrium.

In this thesis, we take up these models to describe various modes of their evolution,

which are scenarios of time-dependent selection and in the co-evolution with other genes.

We study for the first time the phenotypic evolution in time-dependent fitness landscapes,

so called fitness seascapes, with underlying genomic sites that are genetically linked.

We find universal properties that break down the relevant parameters to the stabilizing

strength and the driving rate of the fitness seascape. These determine the divergence

pattern on the phenotypic scale and the fitness flux, which is a measure for deviations from

detailed balance and adaptation, on macro-evolutionary timescales. Therefore, we can

read off the stabilizing strength and the fitness flux from the time-dependent phenotypic

divergence/diversity ratio. Moreover, we study the impact of short-term constraining

phenotypic selection on correlations in their constituting sequences. These correlations

arise because sites compensate for the destructive effect from adaptation and genetic drift

of other sites. We find that phenotypic evolution generates broad epistasis and correlation

matrices across all trait sites, which are of low dimension. This kind of universality

allows to read off from sequence correlations alone the number of traits under selection,



the genotype–phenotype map, and single site adaptation. The latter can be identified

from the asymmetry of time-ordered correlation measures, i.e. deviations from detailed

balance. Furthermore, we join the dynamics with recent theories of asexual evolution.

These showed universality in the scaling laws of fitness statistics under large mutational

influx. With this, we make the step towards systems biology by studying for the first time

the asexual co-evolution of biophysical phenotypes on a genome-wide level. We again find

universality in the scaling of fitness statistics with the genome size, which decouples from

the details of selection. This evolutionary mode induces a so far unknown and dramatic

long-term cost of complexity, which can be overcome with small rates of horizontal gene

transfer. Comparing this cost to actual biological genome sizes and recombination rates,

this offers a new, feasible pathway for the evolution of sex.

In all these modes we find so-far unknown laws of universality. These reduce the com-

plexity of the processes on the higher level, e.g. the phenotypic or the overall fitness level

and allow the inference of relevant parameters shaping the dynamics or to quantify scal-

ings. Moreover, universalities are strongly related to the predictability of the evolutionary

process.



Kurzzusammenfassung

Die stark wachsende Anzahl biologischer Sequenzdaten und evolutionärer Experimen-

te ermöglicht die quantitative Modellierung evolutionärer Prozesse. Diese Modelle zielen

darauf ab, den Grad der Erhaltung und die Geschwindigkeit der Anpassung in der Evo-

lution biologischer Systeme zu bestimmen. Der evolutionäre Prozess wird durch Mutatio-

nen, Selektion und genetischen Drift bestimmt. Mutationen erzeugen neue Variationen,

natürliche Selektion bevorzugt einige hiervon, und genetischer Drift ist der Zufall im

Reproduktionserfolg. Man hat früh erkannt, dass dieser Prozess durch den Einsatz von

mathematischen Modellen aus der statistischen Physik, wie etwa Diffusionsgleichungen,

beschrieben werden kann. Neuere theoretische Erkenntnisse erlauben die Modellierung

der Dynamik komplexer, interagierender Systeme. Die Komplexität entsteht durch evo-

lutionäre Interaktion. Einerseits interagieren Mutationen in ihren Fitnesseffekten. Ande-

rerseits existiert eine konkurrierende Koevolution verschiedener Varianten, wenn Rekom-

bination die genomischen Verbindungen nicht aufbrechen kann. Beide Probleme treten

auf, wenn man die Entwicklung molekularer Phänotypen wie Genexpressionslevels, Pro-

teinstabilitäten oder biophysikalische Bindungseigenschaften betrachtet. Die vererbbare

Information dieser Phänotypen besteht aus vielen Positionen der DNA-Sequenz. Diese

geben ein großes Angriffsziel für neue Mutationsvarianten und damit eine Reihe von kon-

kurrierenden Mutationen. Da sie oftmals auf kleine Bereiche der DNA beschränkt sind,

können vorteilhafte Varianten bei verschiedenen Individuen nicht durch horizontalen Gen-

transfer rekombiniert werden. Die Selektion wird weiterhin generisch durch nichtlineare

Fitnesslandschaften geprägt. Diese sind die Abbildung von den Phänotypen auf Wachs-

tumsraten. Neuere theoretische Erkenntnisse erlauben es, diese phänotypische Dynamik

losgelöst von vielen genomischen Details zu beschreiben.

Hier greifen wir dies auf, um verschiedene Formen phänotypischer Evolution zu be-

trachten. Wir untersuchen zum ersten Mal die phänotypische Evolution in zeitabhängigen

Fitnesslandschaften, so genannten Fitness-‘seascapes’, mit zugrunde liegenden genomi-

schen Sequenzen, die genetisch zusammenhängend sind. Wir finden universelle Eigen-

schaften, welche die relevanten Parameter auf die Stärke stabilisierender Selektion und

die zeitliche Änderungsrate der Fitness-‘seascape’ reduzieren. Diese bestimmen das Diver-

genzverhalten auf der phänotypischen Skala und den generierten Fitness Fluss, welcher

die Abweichung vom detaillierten Gleichgewicht und die Stärke der Adaptation misst.

Daher können die stabilisierende Selektion und die Adaptation vom zeitlich aufgelösten

Divergenz-Diversitätsverhältnis bestimmt werden. Weiterhin untersuchen wir den Einfluss

von stabilisierender phänotypischer Selektion auf die Korrelationen in diesen Sequenzen.

Diese Korrelationen entstehen durch die Kompensation schadhafter Mutationen anderer

DNA Positionen des Phänotypen, welche durch genetischen Drift oder Adaptation auf-

treten können. Wir lernen, dass phänotypische Evolution Epistasis und Korrelationen



generiert, die all diese Positionen umfassen. Nichtsdestotrotz sind diese von niedriger Di-

mension. Diese Universalität ermöglicht es von Sequenzkorrelation die Anzahl selektionsre-

levanter Phänotypen, ihre Genotyp-Phänotyp-Abbildungen sowie Adaptation bestimmter

Positionen zu erlernen. Letztere kann aus der Asymmetrie der zeitabhängigen Korrelatio-

nen identifiziert werden, welche Abweichungen des detaillierten Gleichgewichts messen.

Schließlich begeben wir uns in die Systembiologie, indem wir erstmals die asexuelle Ko-

evolution biophysikalischer Phänotypen auf genomweiter Ebene untersuchen. Wir finden

universelle Skalierungsgesetze für die genomweite Fitnessstatistik, welche von Details der

Selektion entkoppeln. Wir zeigen, dass diese zu dramatischen Kosten in der Genomgröße

führen. Beim Vergleich unserer Ergebnisse mit realen biologischen Daten identifizieren wir

einen neuen, selektiv praktikablen Weg für die Evolution zur Ausbildung der Geschlechter.

In all diesen Modi finden wir Universalitäten. Diese reduzieren die Komplexität der

Prozesse auf der höheren Ebene, z. B. der phänotypische Ebene oder der Gesamtfitness.

Die Universalitäten erlauben die Inferenz relevanter Parameter, welche die Dynamik von

Phänotypen beeinflussen, sowie die Identifizierung von Skalierungsgesetzen. Weiterhin

stehen sie im engen Zusammenhang zur Vorhersagbarkeit des evolutionarären Prozesses.
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Chapter 1

Introduction

The evolutionary process is driven by the appearance of new mutational variants. These variants

often show growth rate difference, called fitness, that allows the spread of the fitter individu-

als in the population. An effect that is well-known as natural selection. Genetic drift adds

stochasticity to this reproduction success. Population genetics aims at describing this evolution-

ary process and its mechanisms. Early in the field, [5] identified the use of diffusion equations

for the stochastic process, if generated by incremental changes on the timescale of a generation.

Nowadays, the exponentially growing availability of genomic sequence data and high-throughput

evolutionary experiments technology, also in natural environments, permits the testing of these

models. Methods from statistical mechanics allow for the quantitative modeling of complex sys-

tems and can quantify the degree and speed of adaptation in the evolution of biological systems.

Moreover, these models can be supported by extensive numerical simulations.

A quantitative understanding of population genetics will supposedly give diverse and very

powerful applications among others for human health. These are for instance the co-evolution

of immune systems with pathogens to optimize treatments or vaccines [6–12], from which some

already proved powerful [7, 8, 11]. Promising laboratory and theoretical attempts were made

to use growth rate trade-offs to control antibiotic resistances [13], and control theory has been

suggested to direct the somatic evolution of cancers [14]. Some of these applications depend

on the identification and evolution of the underlying molecular and biophysical phenotypes.

These are organismic functions, such as outcomes of regulatory pathways, i.e. gene expression

levels, protein stabilities, biophysical binding affinities, or allosteric mechanisms. A typical

physical example for such a quantitative trait is the binding energy between proteins depending

on multiple binding sites such as regulatory binding motifs modeled in [15–17]. The inheritable

component of quantitative phenotypes is genetically encoded in multiple positions of the genomic

sequence, the DNA sequence also called genotype. Mutations on these sequences compete in a

complex way with long-range correlations and interactions through non-linear fitness functions.

Moreover, biological processes are out of equilibrium from cellular to evolutionary scales [18–21].

All these make the dynamics appear noisy on the sequence level. However reproducible evolution

has widely been observed on a functional level [20, 22, 23] such as the re-occurrence of drug

resistance by mutations targeting the same gene [23]. These problems and observations of

1
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predictability on higher-levels are well-known and tackled in statistical mechanics. The evolution

and the co-evolution of complex phenotypes and their impact on the sequence evolution in various

evolutionary modes can be described with mathematical instruments borrowed from statistical

physics [19,24–29]. The identification of universal properties can improve the predictions of the

evolutionary process [7, 10, 11,30] and hence improve the applications discussed.

The evolutionary fate of independent mutations is well described by classical population

genetics [31–34]. Available theory still lacks sophisticated description of evolving complex phen-

otypes. On the one hand, phenotypes evolve in non-linear fitness landscapes, which is the map

from the trait value to the fitness. They lead to fitness interactions between mutations, so called

fitness epistasis. On the other hand, the large genomic basis of quantitative traits, the so called

quantitative trait loci (QTL), depends on tens to hundreds of sites. They offer a large target for

mutations altering the sequence and producing new trait variants. Therefore, various beneficial

mutations evolve, competing for a fixation in the population if they are in distinct individuals,

or they trail deleterious mutations on their way to fixation. This effect is called clonal inter-

ference and has been widely observed in experiments [20, 21, 35–42]. Horizontal gene transfer

can recombine beneficial parts of two genome and break up these links. Classical theoretical

work by [31, 43–51] used the assumption of linkage equilibrium, which is a misleading term for

omitting interference correlations with the argument of high recombination rates, or assumed

a low mutation rate to ignore interference. However, QTL are located in a confined genomic

region with at least partial genetic linkage even under sexual evolution [52]. Recent theoretical

breakthroughs by [53] and the generalization to a phenotype under external interference [54]

could bring the dynamics of non-recombining sequences to the phenotypic level. Fokker-Planck

equations, which are well-known in statistical mechanics, describe the evolution of the mean

and the variance of the trait distribution in a population. The authors also solved the trait

statistics in evolutionary equilibrium of the trait dynamics and discussed stabilizing selection

by a quadratic fitness landscapes penalizing deviations from the trait optimum.

However, a difficulty arises because of the ubiquitous non-equilibrium of biological processes.

These arise on short, cell cycle timescales [18] due to changing demand of protein functions and

the regulation of genes. Biophysical ideas are based so far on the assumption of thermody-

namic equilibrium [55,56] and have hence similarly been used to build fitness landscapes [57,58].

However, the function of a biophysical traits does not only depend on its equilibrium ther-

modynamics, but non-equilibrium processes need to be considered carefully. These shape the

fitness landscapes, which serves as input to the evolutionary trait dynamics. On long, evolu-

tionary timescales the ecological environment as well as epistatic interaction with other genes

change fitness landscapes. So called fitness seascapes trigger adaptation through time-dependent

selection [59]. Strong adaptation can generate a very substantial non-equilibrium processes as

biological data show [19–21]. This is especially the case for quickly evolving viruses, which adapt

to change the recognition by the host’s immune system. A model for the evolution of Mendelian

traits in fitness seascapes has been introduced in [19]. For phenotypic fitness seascapes, the

dynamics of [53] are usable, but have not yet been solved. As a measure for adaptation, the

fitness flux got introduced by [60]. It measures the average adaptive steps that the population
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dynamics make uphill in a fitness land- or seascape. In a stationary non-equilibrium state, it

measures hence the compensation for the environmental changes of the fitness seascape. The

fitness flux has its physical equivalent in the heat of non-equilibrium systems. Therefore, it is a

measure for the deviations from detailed balance defining equilibrium.

Another difficulty prevails because clonal interference also arises on the systems biology

scale under asexual evolution, which does not allow the assumption of linkage equilibrium. For

Mendelian traits, the destructive effect of asexual evolution on long genome sizes has been de-

scribed with Eigen’s quasi-species model or the dynamics of Muller’s ratchet [61–64]. Recent

publications described the fitness statistics of competing mutations [64–71] and quantified the

adaptation in these. A model from statistical physics, namely universality in the front propaga-

tion of a wave of hopping particles [72], was used to derive a traveling wave theory for the

adaptation in asexual evolution [64, 66, 67, 69–71, 73]. They show arising universality in the fit-

ness statistics in a population, if the effect of a mutation is small and the rate of new mutations

is high. Particularly, the variance of fitness is determined by the rate and the average fitness

effect of mutations, but not by the particular distribution of the fitness effects. However, these

models ignore the genomic details for the mutational input that generates the mutation rate and

and the mean fitness effect inhered in the system. Without fitness epistasis, i.e. for Mendelian

traits, the genomic relation to mutation rates has destructive consequences to the genome in a

stationary fitness wave, which we discuss in another paper [74]. However, the question how the

non-linear selection of quantitative traits changes the mean selective effect of a mutation and

hence the scaling laws of the fitness statistics has not yet been addressed. The findings by [54]

allow this by describing the impact of interference selection on the dynamics of quantitative

traits.

For some molecular traits, data sequencing and high-throughput trait measurements allowed

establishing a variety of genotype–phenotype maps, which associate a phenotype to the under-

lying DNA sequences. However, for the vast majority of complex traits, these are out of reach.

Often, neither the number nor the position of trait loci is known. Therefore, the effect of muta-

tions on trait values is rarely known. However, as mentioned above, the evolution of functions

turned out to be repeatable in experiments, whereas sequence evolution diverged [20,22,23]: the

many degrees of freedom on the microscopic level allow us to adapt on various pathways on the

functional level. Hence, there is, as statistical mechanics taught us, hope for universal pattern

on mesoscopic trait or macroscopic systems-biology levels. The tenet behind universalities is the

very stochastic fate of the microscopic items [75], but their integral effect is shaped by selection

on different scales and follows more predictable rules. As the recent theoretical work by [53]

identified, these plenty degrees of freedom indeed generate universality on the mesoscopic, the

trait level. They identify that the trait divergence, the variance between populations divided

by the diversity only depends on the mutation rate and the effective stabilizing strength. It

is decoupled from plenty genomic details such as the number of QTL, details of the genotype–

phenotype map or recombination. This allows us to determine the strength of constraining

selection from phenotypic measurements. However, this method is not yet extended to the

analysis of adaptive pressures.
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On the sequence level, recent studies, so called direct coupling analyses [29, 76–79], showed

that the detection of biophysical conservation is possible from the evolutionary process. These

use sophisticated models for pair-wise interactions, which are localized in the correlations of a

few positions. However, broad correlations have been observed and suggested to be related to

conserved functions such as protein stability, catalytic power or allosteric mechanisms, which are

associated with the broad genomic basis of a conserved trait [80–82]. Furthermore, models and

measures of sequence correlation used equilibrium assumptions of the evolutionary processes.

This generates biases [29] if applied to strongly adaptive systems like viruses as it has been done

by [6, 83]. Accurate models of broad correlations as well as correlations under strong adaptive

pressures through time dependent-selection are still missing.

To bring the points together, the description of the evolution of molecular phenotypes lacks

the knowledge of the genomic basis. The dynamics is highly correlated due to clonal interference

and complex fitness interactions. Recent theoretical findings brought the evolutionary dynamics

to the phenotypic level decoupled from many microscopic degrees of freedom. However, they

have not addressed the evolution in fitness seascapes or the impact of phenotypic selection on

sequence correlations. Neither, the co-evolution of quantitative traits in asexual populations has

yet been described.

The aim of this thesis is to build minimal fitness models for studying the evolution of quanti-

tative traits. We want to study their evolution and the co-evolution under adaptive pressures

and ask

1. Can we reveal universal properties of these processes that allow to describe the evolution

by a reduced number of key parameters?

2. How can we determine these parameters from evolutionary data, can we detect the evolu-

tionary conservation and adaptation?

3. What implications are there for the predictability of the evolutionary process?

4. How does the evolution of a quantitative trait shape its underlying QTL, can we identify

the effectively lower dimensionality of trait evolution? When do mutations compensate

fluctuations of others, does the response pattern show the signatures of adaptation?

5. What are the consequences of phenotypic interference, i.e. the co-evolution of a large set

of traits in asexual evolution? What do the scalings tell us about possible system sizes?

We use methods and results from statistical physics such as the Fokker-Planck equations for the

trait dynamics, non-equilibrium measures, or scaling laws derived for the complex systems. We

support our results by numerical simulations of the evolutionary process, which we describe in

Appendix A.
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Thesis organisation

In Chapter 2, we recapitulate the phenotypic diffusion equations for the dynamics with linked

QTL. We identify statistics for selection that do not depend on details of the fitness landscape,

given a certain local smoothness of the landscape. We study various types of fitness landscapes

to model evolution and learn qualitatively, how thermodynamic non-equilibrium on the cellular

level shapes the landscape for protein evolution to stabilize the evolution of proteins.

In Chapter 3, we study for the first time the asexual evolution of molecular phenotypes

in adaptive fitness seascapes on the phenotypic level. We build a minimal model for fitness

seascape with a randomly moving fitness peak. Answering question 1, we identify universality

in the time-dependent divergence/diversity ratio that decouples from many genomic details and

the mode of driving. We develop a new method that allows to distinguish the constraining

from the directional selection by phenotypic measurements alone. Classical tests neither used

time-resolved measurement nor had a neutral gauge to infer adaptation on phenotypic levels

alone. Our methods directly measures the macro-evolutionary fitness flux (question 2) decoupled

from micro-evolutionary driving, e.g. imposed by seasonal changes. Furthermore, we see that

predictability of the evolutionary process can be conserved on phenotypic level over macro-

evolutionary timescales (question 3). In a follow-up publication, we applied the derived method

to the divergence of gene expression levels across the Drosophila genus. This allowed for the first

time to detect system-wide adaptation from the phenotypic measurements. Wide adaptation

was observed in sequence data of Drosophila, but could not yet been related to phenotypic

adaptation.

Having seen the short-term constraints in the divergence pattern, we study in Chapter 4

their impact on the trait’s constituting sequence. We add a minimal model of external driving

of some of their sites. Adaptation or genetic drift of a site generates fluctuations of the trait

value, which other QTL compensate. This generates a simple, but broad correlation pattern.

Each trait confers a single rank to the correlation matrix, such that the correlations of a site

with all other sites are just determined by the product of the pairwise trait effects, their driving

rate, and the curvature of the fitness landscape. It is decoupled from their overall evolutionary

rates and the details of the dynamics of all other sites (again question 1). From sequence data

alone, we can hence read off the number of co-evolving traits and the genotype–phenotype

map (questions 4). The asymmetry of the response matrix identifies sites under adaptation

(question 2). To address question 3 again, short-term predictability of the process arises not

in the response of an individual site but in their collective compensatory response, which is in

fact the short-term phenotypic level of Chapter 3. The method derived in this section has a

broad applications for biological systems. The large amount of available sequence data allows to

reconstruct phylogenies and hence to measure the time-resolved correlations. It can be obtained

on various evolutionary modes, as we show in two follow-up papers applying it to PDZ binding

domains and to a antigenicity-stability model for hemagglutinin of the human influenza virus.

In Chapter 5, we discuss for the first time the asexual evolution of biophysical phenotypes

on the genomic scale, where mutational variants of all traits compete under clonal interference.

Here, we combine the diffusion equation for the traits of each gene with the traveling fitness
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wave theory for the genomic scale. Each gene has traits evolving in a non-linear biophysical fit-

ness landscape, which we discuss in Chapter 2. We build a minimalistic model of housekeeping

evolution to quantify the cost of complexity. In this evolutionary mode, frequent trait mutations

of weak selective effect generate a stationary fitness distribution, a fitness wave showing a uni-

versal fitness variance (question 1). This fitness wave of the integral effect of all genes is stable

in time and hence fitness statistics are constant on the genomic scale (question 3), whereas on

the phenotypic level noise generates strong fluctuations in each gene. The non-linear phenotypic

selection entails a dramatic feedback on the mutational influx to the fitness wave. Therefore,

phenotypic interference generates a dramatic and so far unknown super-linear genetic cost of

the system size (question 5). We find that recombination resolves this burden even with low

rates through a first order phase transition. It hence offers a new and feasible pathway for

the evolution of sex. We compare the recombination rates of various species with the critical

recombination rate. All considered species show recombination rates slightly above this critical

threshold.



Chapter 2

Evolutionary dynamics and

equilibrium of quantitative traits

In this chapter, we first review the diffusion dynamics for the population mean and

diversity of a quantitative trait under genetic drift and mutations in a given fitness

landscape. We then derive the impact of trait selection onto genomic selection

and recall the fixation probabilities of mutations. Finally, we identify appropriate

fitness landscapes to model the evolution of biophysical phenotypes, which underly

non-equilibrium cellular thermodynamics. In all parts we discuss consequences of

the trait equilibrium, which include typical selection coefficients or the trait fitness

variance in a population.

2.1 Diffusion equations for trait mean and diversity

In this section, we build our model for phenotypic evolution. We then retrieve the

dynamics of the trait mean and diversity on the phenotypic level under mutations,

selection and genetic drift or genetic draft with the rest of the genome. We discuss

implications of the evolutionary equilibrium in these landscapes.

Our model for quantitative traits, Figure 2.1A, is based on a simple additive map from

genotypes to phenotypes. The trait value E of an individual depends on its genotype, the

sequence of alleles (a1, . . . , aℓ) at ℓ constitutive genomic sites. We study a linear mapping from

genotype to phenotype,

E(a1, . . . , aℓ) = Emin+
ℓ∑

i=1

Eiσi, with σi =







1, if ai = a∗i ,

0, otherwise.
(2.1)

Here, the trait has a minimum value Emin and Ei > 0 is the contribution of a given site i to the

trait value, i.e. its mutational effect. We assume a two-allele genomic alphabet and a∗i denotes

the allele conferring the larger phenotype at site i. The extension to a four-allele alphabet is

straightforward. The genotype-phenotype map (2.1) defines the allelic trait average Γ0 and the

7
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Figure 2.1. Molecular model and epistatic pattern of quantitative traits. A Linear model
of the QTL–phenotype mapping: Each site i ∈ ℓ confers two alleles ai = 0, 1 (◦ or •) with trait effect

Ei (grey bars) to the linear quantitative trait E = Emin +
∑ℓ

i=1 aiEi. The trait fitness f(E) is non-

linear in the trait value E and hence determines the trait selection on loci, sfj ≈ Ejf
′(E) (blue arrows)

dependent on the genetic background, particularly the position E (orange dot) on the fitness landscape.
B Phenotypic selection entails broad epistasis between sites: A primary, here for the trait deleterious
mutation at a site i (green arrow) changes the trait value E → E − Ei shifting to steeper part of the
fitness landscape (orange dot). This triggers compensatory mutations by fortifying the selection on all

trait sites by sfj|i (red arrows). C The epistasis score between two particular sites is determined by the

matrix ωij = 2Nc0EiEj (color code). It is approximately proportional to the trait effect of the primary
mutation Ei (blue bars in rows & columns), to the compensatory trait effect Ej (blue bars in columns),
and to the (local) curvature of the fitness landscape c0 = −f ′′(E). Hence, it has a simple rank 1 form
generated by ℓ+ 1 parameters instead of ℓ2 in direct-coupling models. D Another quantitative trait (red
bars) generates an additive epistatic effect conferring another rank to the matrix; here without epistatic
overlap.
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trait span E2
0 ,

Γ0 = Emin +
1

2

ℓ∑

i=1

Ei, E2
0 =

1

4

ℓ∑

i=1

E2
i , (2.2)

which are the mean and the variance of the trait for random sequences. The linear genotype-

phenotype map (2.1) has been chosen here for concreteness. Such linear maps are approximately

realized for some molecular traits, such as transcription factor binding energies [84]. However,

many other systems have nonlinearities, which are commonly referred to as trait epistasis. It

can be argued that simple forms of trait epistasis will leave many of our results intact, which is

indicated at few places, but a systematic inclusion of trait epistasis is beyond the scope of this

thesis. At the same time, the fitness land- and seascapes introduced below depend on the trait

in a nonlinear way; hence, they always contain fitness epistasis.

Quantitative traits have a sufficient number of constitutive loci to be generically polymorphic

in a population, although most individual genomic sites are monomorphic. The distribution

W(E) of trait values in a given population is often approximately Gaussian [45, 53, 85]. Hence,

it is well characterized by its mean and variance,

Γ ≡ E =

∫

dE EW(E),

∆ ≡ (E − Γ)2 =

∫

dE (E − Γ)2W(E),

(2.3)

where overbars denote averages over the trait distribution W(E) within a population. The

variance ∆ is called the trait diversity; in the language of quantitative genetics, this quantity

equals the total heritable variance including epistatic effects.

We consider the evolution of the trait E under genetic drift or genetic draft, genomic muta-

tions, and natural selection, which is given by a trait-dependent fitness landscape f(E) or fitness

seascape f(E, t). Variants of these functions are in detail discussed in Section 2.3. At a given

evolutionary time, the trait distribution in a population has mean Γ(t) and diversity ∆(t). As

shown previously1 [53], the evolutionary dynamics of a quantitative trait in a fitness seascape

can be described in good approximation by diffusion equations for the distributions Q(Γ, t |F1)

and Q(∆, t |F2) of its mean and its diversity,

∂

∂t
Q(Γ, t |F1) =

[
gΓΓ

2N

∂2

∂Γ2
− ∂

∂Γ

(

mΓ + gΓΓ
∂F1(Γ, t)

∂Γ

)]

Q(Γ, t |F1), (2.4)

∂

∂t
Q(∆, t |F2) =

[
g∆∆

2N

∂2

∂∆2
− ∂

∂∆

(

m∆ + g∆∆∂F2(∆, t)

∂∆

)]

Q(∆, t |F2), (2.5)

with evolutionary forces discussed in detail in the following. These equations are projections of

the Kimura diffusion equation [5,86] from the genotypes on the phenotype space. In Appendix B

we show how this dynamics can easily be extended to multiple traits without further difficult

notions if the mutational effects between traits are not strongly correlated.

1The citation also refers to the next paragraph.



10 CHAPTER 2. DYNAMICS AND EQUILIBRIUM OF QUANTITATIVE TRAITS

The distributions Q(Γ, t |F1) and Q(∆, t |F2) are time-dependent probability densities of

the trait mean and the variance, which describe an ensemble of populations evolving in the

same fitness seascape f(E, t). These dynamics involve selection forces from fitness seascape

components

F1(Γ, t) = f(Γ, t) + f ′′(Γ, t) ×
∫

d∆ ∆Q(∆, t |F2), (2.6)

F2(∆, t) = ∆ ×
∫

dΓ f ′′(Γ, t)Q(Γ, t |F1), (2.7)

which are projections of the mean population fitness

f(t) ≡
∫

dE f(E, t)W(E, t) = f(Γ, t) +
1

2
∆f ′′(Γ, t) + . . . (2.8)

onto the marginal variables Γ and ∆. Derivatives f ′(.) are supposed to act on the first function

argument. Selection drives the mean trait uphill a fitness landscape and constraints the trait

diversity under stabilizing selection f ′′(Γ, t) < 0. Stochasticity by genetic drift enters through

the diffusion coefficients

gΓΓ = 〈∆〉 ≡
∫

d∆ ∆Q(∆, t |F2), g∆∆ = 2∆2. (2.9)

The population size N acts as ‘inverse temperature’. If a population is larger, its evolution

is more deterministic because the effect of randomness in the reproduction is comparatively

smaller. Mutation coefficients

mΓ = −2µ(Γ − Γ0), m∆ = 4µ(E2
0 − ∆) − ∆/N (2.10)

drive the trait mean towards a randomized sequence and generate trait diversity. These coeffi-

cients depend on the effective population size N and the point mutation rate µ. Under strong

interference with the rest of the genome, N has been identified as being still determined by

the coalescence rate. We just need to replace it by the (externally given) coalescence time

2N → σ̃−1 in the trait dynamics [54]. It is the same variable that has been identified to de-

termine the threshold of neutrality σ̃ for the selection of arising mutations [68] and will be the

relevant parameter when studying the phenotypic interference in Chapter 5. Interference within

the trait is captured by the trait dynamics (2.4) and (2.5).

The diffusion equations (2.4) and (2.5) are coupled through the fitness components (2.6) and

(2.7) and through the diffusion coefficient gΓΓ. If we neglect direct selection on the trait mean

by setting F1(Γ, t) = 0, Equation (2.4) describes a quasi-neutral diffusion of the trait mean,

which depends the full drift term gΓΓ = 〈∆〉 under selection (see Section 3.3). The quasi-neutral

dynamics defines a characteristic timescale

τ̃ ≡ 2NE2
0

〈∆〉 . (2.11)
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In the special case of a time-independent fitness landscape f(E), the diffusive dynamics of

the trait mean and the diversity leads to evolutionary equilibria of a Boltzmann form [53],

Qeq(Γ |F1) =
1

ZΓ
Q̃0(Γ) exp[2NF1(Γ)], (2.12)

Qeq(∆ |F2) =
1

Z∆
Q0(∆) exp[2NF2(∆)], (2.13)

where ZΓ and Z∆ are normalization constants. The equilibrium distributions under selection

build on the quasi-neutral distribution Q̃0(Γ) ∼ exp[−2µN(Γ − Γ0)
2/〈∆〉] of the trait mean,

where selection may shapes 〈∆〉, and on the neutral diversity distribution Q0(∆). We note that

the evolutionary equilibrium in a static fitness landscape is limited to the marginal distributions

Qeq(Γ |F1) and Qeq(∆ |F2), while the joint distribution Q(Γ,∆|f) reaches a non-equilibrium

stationary state [53]. In the limit of low mutation rates, the Boltzmann distribution (2.12)

describes an asymptotic selection-drift equilibrium Qeq(E|F1) ∼ Q0(E) exp[2Nf(E)]; the trait

values E are predominantly monomorphic in a population and they change by substitutions at

individual trait loci [16, 53, 87].

Some relations of a trait equilibrium obtained from (2.4), which needs to be integrated over

Γ, and (2.5) will provide useful when considering typical selection coefficients and the fitness

diversity,

〈f ′(Γ)〉 = −〈mΓ〉
gΓΓ

=
1

2N

〈Γ〉 − Γ0

E2
0

[1 + O(µNc)], (2.14)

〈f ′(Γ)2〉 =
〈mΓ2〉
gΓΓ2

+
µ

NgΓΓ
− 〈f ′′(Γ)〉

2N
= 〈f ′(Γ)〉2 − 〈f ′′(Γ)〉

2N

[
1 + O(c−1, µN)

]
, (2.15)

where we used the approximations of a mutation–drift balance of the trait diversity for gΓΓ =

〈∆〉 = 4µNE2
0 [1 − O(µNc)] [53], which generalizes to the mutation–draft balance [54]. We

abbreviated the local curvature c := −2NE2
0〈f ′′(Γ)〉 of the fitness landscape in units of the

genetic drift and the neutral sequence variation. Furthermore, we assumed that higher orders

of the landscape f ′′′(Γ) do not shape the variance of Γ in 〈mΓ2〉 such that it is given by the

results of a quadratic fitness landscape, namely 〈Γ2〉 − 〈Γ〉2 = E2
0/(2c)

[
1 + O(c−1/2, µN)

]
[53].

This term is negligible in (2.15). Moreover the corrections are supposedly small, because c & 1

determines a regime of effective trait selection [53] and µN < 1 is small since it is the neutral

single site polymorphism. We discuss types of fitness landscapes in detail in the Section 2.3. In

anticipation of that section it is worth mentioning that in a quadratic fitness landscape (2.24) this

curvature is by definition constant, f ′′(E) = −c0, while in a biophysical fitness landscape (2.25),

e.g. modeling protein folding or binding, the scaling is mainly given by the mutation-selection

balance of Equation (2.4): 〈f ′′(Γ)〉 ≈ 〈kBTf ′(Γ)〉 = −mΓ/(gΓΓkBT ).

The form of the phenotypic evolution equations is approximately decoupled from details

of the trait’s molecular determinants. The dynamics of (2.4) and (2.5) do not depend on the

distribution of effects in the genotype-phenotype map (2.1). Recombination between the trait

loci induces a crossover between the selection on entire genotypes and the selection on individual
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alleles [53,88,89]. Genetic linkage affects the form of the diffusive dynamics of ∆. The form of the

dynamics for Γ remains invariant even under strong linkage with the rest of the genome, so that

the statistics of Γ depends on recombination only through the diffusion coefficient gΓΓ = 〈∆〉.
On the one hand, these effects are small for within-trait recombination over a wide range of

evolutionary parameters, as shown by simulations reported in Chapter 3 and reference [53]. it

was shown how strong linkage with the rest of the genome constrains 〈∆〉 [54] and we study the

consequences to collective trait dynamics and adaptation in asexual evolution in Chapter 5.

2.2 Selection and dynamics of QTL

Here, we discuss the effect of the phenotypic selection on the QTL. We use these

not only to study QTL correlations in Chapter 4, but they provide some generic

properties of trait selection in various types of fitness landscapes. Understanding the

selection strength of new trait variants is crucial for the phenotypic fitness wave in

Chapter 5. We assume a regime, where the fitness landscape is sufficiently smooth.

By this we mean that new variants are not pushed over a fitness optimum. The

quantitative traits we consider have a biased mutational target for deleterious muta-

tions, which warrants this condition by pushing populations at least mildly to the

flank of fitness landscapes. With this, we derive selection coefficients, and 2nd order

selection between sites. We find an universal typical scale of selection coefficients

imposed by the scale, which is given by the inverse coalescence time. We shortly

recapitulate how these determine substitution and fixation for independent mutations

and under interference selection both needed in Chapter 4.

The impact of the trait selection on the single site selection coefficient of a quantitative trait

locus j, Figure 2.1A, is approximately given by the gradient of the fitness landscape and the

trait effect Ej ,

sfj (E, t) = f(E + Ej , t) − f(E, t) = Ejf
′(E, t) + O(E2

j f
′′(E, t)), (2.16)

For small effect mutations we can omit the second term if we are not directly at a fitness peak,

i.e. Ej . f ′(E)/f ′′(E). This is reasonable for quantitative trait mutations encoded in mul-

tiple sites. We neglect this term from now on. The average mutation effect in a population

with Gaussian distributed W(E) reads sfj (t) ≈ Ej

[
f ′(Γ(t), t) + 1

2∆(t)f ′′′(Γ(t), t)
]
. Unsurpris-

ingly, quantitative traits generate a directional selection towards higher trait fitness. With

marginalized trait statistics, the average selection coefficient across individuals and popula-

tion is 〈sfj (t)〉 ≈ Ej

[
〈f ′(Γ, t)〉 + 1

2〈∆〉〈f ′′′(Γ, t)〉
]
. For sufficiently un-rugged landscapes, i.e.

〈∆〉 . 〈f ′(Γ, t)〉/〈f ′′′(Γ, t)〉, the second term can be neglected which we do in the following.

Under trait equilibrium and mutation–drift dominated 〈∆〉 we use (2.14) omitting the O(c−1, θ)
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and find that typical selection coefficients are of order of the coalescence rate,

|〈sfj 〉| =
|Ej〈mΓ〉|

gΓΓ
≈ |Ej |

ǫ

1

2N
, (2.17)

where ǫ := E2
0/|〈Γ〉 − Γ0| defines a typical trait effect scale. Comparing with Equations (2.2)

and (2.10), it relates the average squared effect of QTL mutations
∑ℓ

i=1E
2
i /ℓ = 4E2

0/ℓ with

the average directional effect (〈Γ〉 − Γ0)/(2ℓ). The efficacy of trait site selection is in a tran-

sient regime. Trait dynamics balance such that the majority, but not all trait sites confer the

beneficial allele. This has important implications for phenotypic evolution: a) Quantitative

trait selection alone does not constrain the dynamics of a particular site significantly; these

underly fluctuations even in constant environments and some sites offer beneficial mutational

targets. b) Under interference selection in a traveling fitness wave, quantitative traits generate

a constant mutational influx with selection coefficients generically smaller than the width of the

fitness wave, as we will learn in detail in Chapter 5.

Nonlinear fitness landscapes generate fitness epistasis with epistatic selection coefficients

between sites i and j given by their trait effects in second order of f ′(E), cp. Figure 2.1B,

sfj|i(E, t) ≡ sfj (E + Ei) − sfj (E) ≈ Ejf
′(E + Ei, t) − Ejf

′(E, t) ≈ EiEjf
′′(E, t)

=
1

2N
ωij(E, t) ≈ sfi|j(E, t),

(2.18)

where ωij(E, t) := 2NEiEjf
′′(E, t) is a matrix measuring epistasis in dimensionless units and

depicted in Figure 2.1C. We assumed again that trait effects are sufficiently small in smooth

fitness landscapes, now also in higher derivatives Ei, Ej . f ′(E)/f ′′(E), f ′′(E)/f ′′′(E). This

type of epistasis in product form has been identified by [90] in the context of Fisher’s geometric

model [31], however discussed there in the effects around fitness peaks. Our approximation is

not valid close to peaks of the fitness landscape.

Traits under stabilizing selection have non-linear, downwards curved fitness landscapes, i.e.

f ′′(E, t) < 0, such that the non-linearity generates negative epistasis for mutations with the same

sign of trait effects. Quantitatively, it is proportional to both trait effects: the more destabilizing

a mutation is, the stronger is the selective pressure for compensation. By taking the stationary

ensemble of the trait distribution, we find the average epistatic effect for two mutations arising

at equal time, i.e. on the same genetic background E,

〈sfj|i〉 =
1

2N
ωij , with

ωij := 〈ωij(Γ)〉 = 2NEiEj〈f ′′(Γ)〉 ≡ −EiEj

E2
0

c,
(2.19)

which scales for all sites with the average and hence local curvature of the fitness landscape

c = −2NE2
0〈f ′′(Γ)〉. The epistatic matrix ωij (as well as ωij(E, t)) is symmetric and generates

broad epistasis across all trait sites. Nonetheless, it has a simple rank 1 given by the outer

product of the vector of trait effects ~E = (E1, . . . , Eℓ) with itself. In Appendix B we see
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that multiple quantitative traits generate additive epistasis. Hence each trait adds a rank to

ωij as depicted in Figure 2.1D for two traits. The epistatic selection gets more predominant,

the stronger the curvature of the fitness landscape is compared to its slope, i.e. 〈sfj|i〉/〈s
f
j 〉 ≈

Ei〈f ′′(Γ, t)〉/〈f ′(Γ, t)〉.
In addition to the selection through a focal trait, sfj , there is possibly additional external

selection sj(t) through pleiotropic interaction with Mendelian or other quantitative phenotypes,

stotj (t) = sfj (t) + sj(t). (2.20)

Time dependence of sj(t) reflects external adaptive pressures, which are supposed to change

over much longer timescales than trait fluctuations in sfj (t) equilibrating quickly through the

collective dynamics of all trait sites. Generically, a mutation can therefore be beneficial or

deleterious in its trait effect and beneficial or deleterious with respect to the external pressures.

This single site selection changes the dynamics of sites and demands to adapt the null-model of

neutral trait (f(E) = 0) evolution from [53] by reducing E2
0 ≈ 1

4

∑

iE
2
i ρ

eq
i /µ with non-adaptive

substitution rates ρeqi ≤ µ, which we discuss in detail in Chapter 4. Hence, it reduces the

timescale of trait evolution, Equation (2.11). We use this external selection (2.20) in Chapter 4

to model adaptive pressures on trait sites, which trigger compensatory mutations.

Fixation probabilities of mutations. Since individual quantitative trait sites are mostly

monomorphic, µN < 1, we do not consider the particular dynamics of finite site frequencies but

restrict ourself to substitution dynamics here. The selection coefficient determines the chance

of a mutation to fix in the evolutionary process. For independently arising mutations, i.e. in the

low mutation rate regime µNℓ < 1, with fitness effect s the fixation probability is in the diffusion

limit s ≪ 1 independent of the particular replication mechanism and follows the Kimura-Otha

substitution rate [31–34]

G(s) =
2s

1 − exp(−2Ns)
+ O(s). (2.21)

However quantitative traits can generically be polymorphic, µNℓ > 1, meaning that various

mutational variants coexist and compete for fixation. Since a lot of traits are in a localized part

of the genome, recombination cannot break linkage quickly enough [52]. Furthermore, other

parts of the genome can be genetically linked to the trait and generate interference effects.

A mutation that has fitness effects smaller than the width of the fitness distribution within a

population, which is mainly scaling with ∼ σ̃, shows strongly reduced fixation probabilities. For

Gaussian fitness distributions, so called traveling waves that arise under large mutational input

as reviewed in [91], the fixation probability reads [69, 92]

G(s) =
1

N
exp(s/σ̃), |s| . σ̃, (2.22)

where N is the population size and σ̃ > 1/(2N) is the neutrality threshold [68] also identified

as coalescence rate [71]. Mutations under strong selection that exceed the width of the fitness
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wave, |s| ≫ σ̃, again follow Equation (2.21). Intermediate selection follows a more complex

form [69].

The marginal equilibrium of a site in a time-constant fitness landscape is well known, e.g. in

2-state systems in physics, from substitution probabilities. The state probability of an allele

with selection s being fixed reads [92, 93],

λeq(s) = 1 − λeq(−s) =
G(s)

G(s) + G(−s)
=

1

1 + exp(−s/σ̃)
, (2.23)

with coalescence rate σ̃ = 1/(2N) for independent evolution (2.21) and σ̃ ≫ 1/(2N) in a fitness

wave (2.22).

2.3 Modeling biophysical fitness landscapes

The evolutionary process depends highly on the underlying fitness landscape f(E, t).

Here we discuss the fitness landscapes used in this thesis and their differences and

similarities in their balancing point. We use a quadratic fitness seascape to describe

phenotypic adaptation in Chapter 3. The sequence correlations in Chapter 4 do not

depend on the details of the fitness landscape as long as the landscape stabilizes the

evolution. We use biophysical fitness landscapes to model protein traits of genes in

the co-evolution model in Chapter 5. These are thermodynamically modeled to be

proportional to functional states of a protein, e.g. being folded with a ligand bound.

We argue how non-equilibrium thermodynamics shape the fitness landscape and sta-

bilize the evolutionary process in a stability–affinity model. All fitness landscapes

generate typical selection coefficients of the same order of magnitude and universal

scaling of the fitness variations in a population.

The detailed functionality of the fitness land- or seascape f(E, t) is a key input to the trait

dynamics (2.4) and (2.5) and determines hence its equilibrium distributions (2.12) and (2.13).

Previous work has shown that biophysical interactions shape the evolutionary process [76,77,80,

81], where the authors studied the pairwise couplings of sites. On the trait level, non-equilibrium

processes not only drive changes of f(E, t) on macroevolutionary timescales. Furthermore, cell

biology is far from equilibrium [18], and thermodynamic non-equilibrium processes on cell-cycle

timescales shape the functionality of proteins. This becomes important in the co-evolution of

functionally linked traits. Therefore it is worth to study the underlying biophysics that influence

the fitness of biophysical traits. In this section, we discuss the advantage and disadvantage of

various fitness landscapes to model the protein evolution and discuss how thermodynamic non-

equilibrium determines the functional form of a fitness landscape from cell-physical principles.

These short-term non-equilibria originate from physical processes in a cell and must not be

confused with the non-equilibrium of a fitness seascape that originates from environmental or

co-evolutionary fluctuations that change fitness in the long term, i.e. on evolutionary scales.
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Quadratic fitness landscape. Classically, constraining selection has been extensely analyzed

in quadratic fitness landscapes [31, 45,51,53,94–98]

f(E, t) = f∗ − c0
(
E − E∗

)2
, (2.24)

as depicted in Figure 2.2A. These landscapes can be seen as second order expansions of an

arbitrary fitness landscape and are hence minimalistic non-linear models. They are a good

basis to model gene expression levels to describe stabilizing selection around a single fitness

peak and they provide many universal results such as decoupling from genomic details, e.g. the

distribution of trait effects or rates of recombination [53]. In Chapter 3, we use this type of

landscape and generalize it to a fitness seascape with a time-dependent fitness peak E∗(t) as

a minimal model for stabilizing selection together with adaptation to reveal universality. The

process decouples again from microscopic details and from details of the driving of the landscape.

The adaption just depends on the stabilizing strength and mean square peak-displacements. On

the same principle, these landscapes are a good proxy for studying the co-evolution of trait sites

in Chapter 4, because they are generated by the same (local) constraint from its curvature.

Stability model. While these quadratic models provide a good minimalistic scheme for stabil-

izing selection, they cannot describe the detailed scaling behavior with solutions on differently

curved parts of biophysical fitness models like a mesa-landscape. A minimal example for a

single biophysical trait is a free energy between 2-states, for instance a bound/unbound ligand

in binding domains or folded/misfolded proteins, which we discuss here as an example. In

thermodynamic equilibrium at temperature T , a protein is folded with probability p+(G) =

1/[1 + exp(−G/kBT )], where G is the Gibbs free energy difference2 between the unfolded and

the folded state and kB is Boltzmann’s constant. A minimal biophysical fitness model takes the

mesa-shaped form

f(G) = f0 p+(G) =
f0

1 + exp(−G/kBT )
, (2.25)

see Figure 2.2B, with a single selection coefficient capturing functional benefits of folded proteins

and metabolic costs of misfolding [99–101]. Similar fitness models based on binding affinity have

been derived for transcriptional regulation [15–17]; the rationale of biophysical fitness models

has been reviewed in references [87,102]. A key characteristic of these biophysical traits is that

the sequence space is sparser in the high-fitness regime, because a folding protein sequence or a

binding sequence requires a specialized sequence offering more mutational targets for deleterious

than for beneficial mutations. Therefore, mutations push the trait down the fitness edge until

it gets balanced by stronger selection on steeper slopes of the landscape, cp. (2.14). We use

this balance in Chapter 5 as minimal model of protein evolution to quantify the genetic cost

of biophysical traits. In contrast to a quadratic landscape with constant curvature, this type

of landscape may comprises gene loss, if deleterious mutations cannot be balanced, due to a

maximal slope of selection. This is characterized by a protein selection f0 . σ̃ and will be

discussed in Chapter 5. Biophysical trait selection hence provides two landmarks of selection:

2where the notation is not to be confused with fixation probabilities G(.), which we denote as functions.
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Figure 2.2. Models of phenotypic fitness landscapes. A Quadratic fitness landscape f(E), Equa-
tion (2.24), as a minimal model for stabilizing selection on a quantitative trait E penalizing deviations
from an optimal trait value E∗. Mutations, genetic drift, or genetic draft push populations down the
landscape until selection gets strong enough to balance with left orange dot indicating a population with
stronger deleterious effects. The curvature generates the selective constraints. B Minimal biophysical
fitness model. The fitness of an individual trait, f(G), is a sigmoid function of its fold stability G.
This function has a high-fitness region of stable, functional proteins, an inflection point at intermediate
fitness marking marginally functional proteins, and a low-fitness region of dysfunctional proteins. The
mutation-selection dynamics on this landscape generates high-fitness equilibria (σ̃ ≪ f0, red dot) and
unstable states at lower fitness (σ̃ & f0, red dot with arrow), depending on the fitness difference f0
between functional and dysfunctional proteins and the coalescence rate σ̃. C, D Thermodynamic fitness
landscapes f(G,E) of the stability-affinity model, Equations (2.26) – (2.27), are shown as functions of
the stability G and affinity E. Stable populations, characterized by stationary trait means and variances,
are marked by red ellipsoids. C Thermodynamic equilibrium. D Non-equilibrium, e.g driven by active
degradation of folded proteins, decorrelates the traits thermodynamically and generates more independ-
ent selection on stability G. In the high-fitness part, this landscape becomes approximately additive in
G and E.
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characteristic single site selection, which is almost neutral s ∼ σ̃ as discussed in the previous

section, and the larger, mesoscopic trait selection scale given by the height of the plateau f0 & σ̃

which can still be efficient though the collective dynamics of all trait sites.

Stability-affinity model. This model extends the minimal protein model by explicitly

including protein function, which we assume to be mediated through binding to a molecular

target. By that, proteins can be in three thermodynamic states: functional, i.e. folded and

target-bound (++), folded and unbound (+−), and unfolded (−−). We assume ordinary pro-

teins such that unfolded proteins cannot bind their target, which implies that the fourth state of

unfolded proteins localized to their target (−+) is suppressed by the entropy loss of localization.

In thermodynamic equilibrium, the statistics of this ensemble is governed by two quantitative

traits, which are defined as free energy differences: the fold stability G ≡ G−− − G+− and the

reduced binding affinity E ≡ G+− − G++, which includes the entropy loss of localization and

depends on the ligand concentration. The equilibrium state probabilities p++, p+−, and p−−

are given by Boltzmann statistics depending on the traits G and E; in particular,

p++(G,E) =
1

1 + e−E/kBT + e−(E+G)/kBT
. (2.26)

Equilibrium models of this kind are well known in protein biophysics [55, 56]. From this equi-

librium, the thermodynamic fitness landscape is modeled

f(G,E) = f0 p++(G,E) (2.27)

analogous to Equation (2.25) [57, 58, 103]. This landscapes is plotted in Figure 2.2C. Assuming

uncorrelated mutational effects in both traits, the 2d-dynamics are an uncomplicated extension

of the evolution of a single trait, see Appendix B. They show an evolutionary instability: selection

is acting effectively 1-dimensional and may be mapped onto Equation (2.25). It works on the

binding trait E but not independently on stability G, e.g. f(G,E) ≈ f0(1−e−E/kBT (1+e−G/kBT ))

in a stable regime E,G & kBT . In fact, proteins can compensate destabilizing mutations

by stronger functional binding, keeping E + G constant. While this is a clear result of the

thermodynamic equilibrium not taking into account dynamical details determining the state

probability, p++(G,E), this is not a biologically meaningful process. It keeps the protein folded

only by an extreme free energy benefit through the ligand binding. Folded but unbound proteins

would hardly exist. Though, there exist proteins that fold only with a ligand bound, they are

strongly outnumbered.

In principle, this instability could be resolved by a limited density of available encoding

sequences for such trait values through the non-linear mutational influx mΓ in (2.4), which

relates in fact to a maximal reachable E in (2.1). However, this change is rather insensitive

at dynamics near a fitness cliff, as discussed in Chapter 5. Substantial lifetimes of unfolded

or functional states, depending exponentially on the trait ∼ eE/kBT , are still in reach by this

linear entropy-like ‘force’. Furthermore such strong constraints would be a fatal target for

deleterious mutations and the evolutionary process could have developed work-arounds, e.g. by
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longer binding domains. Therefore it cannot directly explain, how the vast majority of ordinary

proteins is able to fold and bind a ligand according to demand. This problem unveils the

core of the problem with this biophysical model: it assumes thermodynamic equilibrium, while

it is well-known that biological processes are on cell level far from equilibrium [18]. Ligand

fluctuations, regulatory networks, or changing cellular environments need proteins being ready

to change their state on timescales of the cell cycle. While this problem is partially resolved

by catalysts, there are also ubiquitous mechanism for active protein degradation. Any source

of thermodynamic non-equilibrium would reduce the dependence of the folding trait G from its

binding E and hence stabilizes the evolutionary process, cp. Figure 2.2D, with stronger curved

iso-fitness lines as in Figure 2.2C.

Active protein degradation. We discuss now a minimalistic thermodynamic non-equilibrium

model produced by active protein degradation. This affects a wide range of proteins, for example

through the ubiquitin-proteasome pathway [104]. It ensures that regulatory proteins are rapidly

cleared once their function ends (at a particular point of the cell cycle). Consider a simple model,

which has a constant rate K− of active degradation and a rate K+
G = K0

GeG/kBT for the folding

process. Here we do not model details of the pathways of protein synthesis from and degradation

into amino acid constituents, which would only affect the total protein concentration but not

their state probabilities. In a marginal steady state considering folding only, proteins are folded

with probability

p̃+(G) =
1

1 + νGe−G/kBT
, (2.28)

where νG = K−/K0
G. Hence, this model retains the sigmoid form of the fitness landscape given

in Equation (2.25) and shown in Figure 2.2B; evolutionary conclusions remain invariant. Apart

from details of the gene-loss dynamics for very unstable proteins, it follows the same scaling

laws as the single trait evolution (2.25).

For the 3-state thermodynamics, we assume a single degradation rate K− for the processes

(++) → (−−) and (+−) → (−−), a rate K+
G = K0

GeG/kBT for the folding process (−−) → (+−),

and a rate K+
E = K0

EeE/kBT for the binding process (+−) → (++). In this model, the folding

and binding processes decouple, and we obtain the non-equilibrium steady-state probability

p++(G,E) =
1

(
1 + νGe−G/kBT

)(
1 + (1 + νE)e−E/kBT

) , (2.29)

with νG = K−/K0
G and νE = K−/K0

E . From this, we again build thermodynamic fitness

landscapes, Figure 2.2D,

f(G,E) = f0 p++(G,E) (2.30)

analogous to Equation (2.25) and (2.27). The non-equilibrium landscape generates a stabilizing

selection on the protein stability G. In the plateau of large fitness, G & 1 and E & 1, selection

decouples and evolution is (selectively) independent between these traits, f(G,E) ≈ f0(1 −
νGe−G/kBT − (1 + νE)e−E/kBT ). As derived in Appendix B, a stationary state again follows the

same scaling laws as the single trait evolution (2.25). However, with 2 ‘independent’ co-evolving
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traits. We use this landscape in Chapter 5, but break it down to two traits in the stable regime

to study the scaling. Both evolve independently in a sigmoid fitness landscape. Nonetheless, the

particular non-equilibrium model (2.29) is of importance to understand evolutionary stability.

For instance it would, in contrast to equilibrium models, explain the position of the wild-type

of a GB1 protein outside the dense state-space regime as reported in [103].

It is worth mentioning that the minimalistic biophysical model (2.25) cannot generate sign

epistasis since it has no local optimum, such as peaked fitness models [90]. However, in the 2-

dimensional models (2.27) and (2.30) pleiotropic mutations can cross a local maximum, if they

have opposite effects in both traits. This effect gets stronger the stronger the non-equilibrium

fortifies selection on the stability trait.

For modeling local stabilizing selection of quantitative traits and the broad epistatic interac-

tion of its sites, the particular choice of the landscape is not important as long as it is non-linear.

If biophysical traits with their scaling and stability conditions are to be modeled, e.g. for protein

function and stability, thermodynamical considerations have to be taken into account carefully.

Equilibrium leads to effectively 1-dimensional evolution with evolutionary instabilities; these are

taken care for in non-equilibrium models generating independent selection on all traits in the

stable part of the landscape. Thermodynamic equilibrium and non-equilibrium are mappable

to a simplified 1-dimensional-biophysical model such that the difficulty is just in counting the

independent degrees of freedom. These should be inferable from our correlation measure in

Chapter 4.

All phenotypic fitness landscapes have in commonon on balancing points distant from the

peak and, if trait-selection alone is not constraining the diversity 〈∆〉, that typical selection

coefficients s ∼ σ̃ (2.17) are of the size of the coalescence rate σ̃. (with σ̃ = 1/2N without

external interference). Hence, single mutations are close to neutrality. On the other hand,

the mesoscopic trait evolution defines a second selection scale which determines that overall

trait selection is stabilized, if it is larger than σ̃. This scale is c0E
2
0 in (2.24) or f0 in the

biophysical landscapes (2.25), (2.27), and (2.30). Moreover, we find universal behavior for

the fitness statistics in biophysical landscapes at stable balancing points G/kBT & 0, where

f ′′(G) ≈ f ′(G)/kBT . With using (2.15) and (2.14), each independent trait generates a fitness

diversity 〈∆f 〉 ≈ 〈∆〉〈f ′2(Γ)〉 = 〈∆〉
(2N)2

(1/ǫ2 +1/(ǫkBT )) ∼ µℓ/N , which gets largely independent

of the selection parameter f0 (but log-corrections in ǫ). A quadratic fitness landscape (2.24)

generates the same scaling, if far on the flank of the landscape (2.15) 〈f ′2(Γ)〉 & c0/(2N) such

that the balance point is far off the fitness peak. These results generalize to interference selection

1/(2N) → σ̃ and are a key scaling ingredient for the width of a fitness distribution in Chapter 5.

Though these landscapes generally show the same scaling behaviors, the map from the free

energy changes of mutations to fitness effects of focal protein needs to be studied from its cell-

biological properties.



Chapter 3

Adaptive evolution of molecular

phenotypes

In this Chapter, we study the adaptive evolution of a quantitative trait under time-

dependent selection, which arises from environmental changes or through fitness

interactions with other co-evolving phenotypes. We analyze a model of trait evolu-

tion under mutations and genetic drift in a single-peak fitness seascape. The fitness

peak performs a constrained random walk in the trait amplitude, which determines

the time-dependent trait optimum in a given population. We derive analytical

expressions for the distribution of the time-dependent trait divergence between

populations and of the trait diversity within populations. Based on this solution,

we develop a method to infer adaptive evolution of quantitative traits. Specifically,

we show that the ratio of the average trait divergence and the diversity is a univer-

sal function of evolutionary time, which predicts the stabilizing strength and the

driving rate of the fitness seascape. From an information-theoretic point of view,

this function measures the macro-evolutionary entropy in a population ensemble,

which determines the predictability of the evolutionary process. Our solution also

quantifies two key characteristics of adapting populations: the cumulative fitness

flux, which measures the total amount of adaptation, and the adaptive load, which

is the fitness cost due to a population’s lag behind the fitness peak.

3.1 Introduction

In this chapter, we focus on the adaptive evolution of molecular traits, which involves mutations,

genetic drift, and (partial) recombination of the trait loci. The adaptive dynamics take place

on macro-evolutionary timescales and can generate large trait changes — in contrast to micro-

evolutionary processes based on standing trait variation in a population. Adaptive trait changes

are driven by time-dependent selection on the trait values. Specifically, we consider the trait

evolution in a single-peak fitness seascape [59, 85, 105], which has a moving peak described by

a stochastic process in the trait coordinate. The time-dependence of the optimal trait value

21
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can have extrinsic or intrinsic causes; for example, the optimal expression level of a gene is

affected by changes in the environment of an organism and by expression changes of other genes

in the same gene network. These fitness seascape models have two fundamental parameters:

the stabilizing strength and the driving rate, which measure the width and the mean square

displacement of the fitness peak per unit of evolutionary time. In an ensemble of populations

with independent fitness peak displacements, these dynamics describe lineage-specific adaptive

pressure. We discuss specific seascape models with continuous or punctuated adaptive pressure;

that is, the fitness peak performs a constrained (Ornstein-Uhlenbeck) random walk or a Poisson

jump process in the trait coordinate. These stochastic processes define minimal non-equilibrium

models for the adaptive evolution of a quantitative trait.

Here we focus on macro-evolutionary fitness seascapes, which have low driving rates com-

pared to the diffusion of the trait by genetic drift and describe persistent selection on a quantita-

tive trait [59,106]. We show that this kind of selection generates two complementary evolutionary

forces. On short timescales, a single fitness peak acts as stabilizing selection, which constrains

the trait diversity within a population as well as its divergence between populations. On longer

timescales, the population trait mean follows the moving fitness peak, which generates an ad-

aptive component of the trait divergence. In the limit case of a static fitness landscape, we

recover the evolutionary equilibrium of quantitative traits under stabilizing selection, which has

been the subject of a previous publication [53]. The evolution in a quadratic fitness landscape

is described by an Ornstein-Uhlenbeck dynamics of the trait mean [94–97], which should not be

confused with the Ornstein-Uhlenbeck process of the fitness peak in a stochastic seascape.

We also discuss the regime of micro-evolutionary fitness seascapes, which describe rapidly

changing selection on a quantitative trait. Such fitness changes are ubiquitously generated by

ecological fluctuations. They lead to micro-evolutionary adaptation of the trait from its standing

variation in a population but do not generate directional selection on evolutionary timescales.

We show that micro-evolutionary fitness seascapes can be mapped to effective fitness landscapes

that describe relaxed stabilizing selection.

Our model of adaptive trait evolution contains different sources of stochasticity: mutations

establish trait differences between individuals within one population, reproductive fluctuations

(genetic drift) and fitness seascape fluctuations generate trait differences between populations

with time. In macro-evolutionary fitness seascapes, these stochastic forces act on different

timescales and define different statistical ensembles, similar to thermal and quenched fluctuations

in the statistical thermodynamics of disordered systems. In Section 2.1, we derived stochastic

evolution equations for the trait mean and the trait diversity in a fitness seascape. This we

combine in Section 3.2 with the dynamics of the position of the fitness peak, which establish a

joint dynamical model for the trait and the underlying fitness seascape over macro-evolutionary

timescales. In Section 3.3, we discuss the analytical solution of these models for a stationary

ensemble of adapting populations. This ensemble has a time-independent trait diversity within

populations, as well as a trait divergence between populations that depends on their divergence

time. In Section 3.4, we evaluate two important summary statistics of adaptive processes. The

genetic load, which is defined as the difference between the maximum fitness and the mean
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population fitness, is shown to include a specific adaptive component, which results from the

lag of the population behind the moving fitness peak. The cumulative fitness flux measures the

amount of adaptation in a population over a macro-evolutionary period: it is zero at evolutionary

equilibrium and increases monotonically with the driving rate of selection [60]. Furthermore, we

determine the predictability of trait values in one population given its distribution in another

population, which is obtained by a suitably defined entropy of the population ensemble under

divergent evolution.

The statistical theory provides a new method to infer selection on a quantitative trait from

diversity and time-resolved divergence data. Given these data in a family of evolving populations,

we use the divergence-diversity ratio Ω(τ) for different divergence times τ to determine the

stabilizing strength and the driving rate of the underlying fitness seascape. These selection

parameters, in turn, quantify the amount of conservation and adaptation in the evolution of the

trait. The divergence-diversity ratio is universal: it depends on the stabilizing strength and the

driving rate of the fitness seascape as well as on the evolutionary distance between populations,

but it is largely independent of the trait’s constitutive sites, of the amount of recombination

between these sites, and of the details of the fitness dynamics. In contrast to most sequence

evolution tests, the Ω test does not require the gauge of a neutrally evolving “null trait”. We

discuss this test along with probabilistic extensions in Section 3.5.

This chapter contains some necessarily technical derivations of our main results. For readers

who are not interested in technical issues, it offers a fast track: the section summaries 3.2.2,

3.3.4, 3.4.4, the description of the Ω test in Section 3.5, its application to gene expression of

Drosophila in 3.6, and the concluding Section 3.7 can be read as a self-contained unit.

3.2 Stochastic seascape models

In this section, we introduce simple stochastic models for the dynamics of selection,

which promote fitness landscapes to fitness seascapes. We then combine the dynamics

of trait and selection to a joint, non-equilibrium evolutionary model.

In particular, we discuss the evolution in a trait fitness seascapes f(E, t) that changes on

macro-evolutionary timescales. This process is illustrated in Figure 3.1: At a given evolutionary

time, the population has a trait mean Γ(t), diversity ∆(t), and is positioned at a distance

Λ(t) ≡ Γ(t) − E∗(t) from the optimal trait value. The trait distribution follows the moving

fitness peak, building up a trait divergence

D(1)(t, τ) = (Γ(t) − Γ(t− τ))2 (3.1)

between an ancestral population at time t− τ and its descendent population at time t in a given

lineage. In the same way, we can define the trait divergence between two descendent populations

at time t that have evolved independently from a common ancestor population at time t− τ/2,

D(2)(t, τ) = (Γ1(t) − Γ2(t))
2. (3.2)
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In a suitably defined ensemble of parallel-evolving populations, the expectation values of these

divergences, 〈D(κ)(τ)〉 (κ = 1, 2), depend only on the divergence time τ . The asymptotic

divergence for long times is just twice the trait variance across populations,

lim
τ→∞

〈D(κ)(τ)〉 = 2〈(Γ − 〈Γ〉)2〉 (κ = 1, 2). (3.3)

In particular, the quantity E2
0 defined in (2.2) is the trait variance in an ensemble of random

genotypes, which results from neutral evolution (with averages 〈. . . 〉0 marked by a subscript)

at low mutation rates, E2
0 = limµ→0〈(Γ − 〈Γ〉0)2〉0. For finite times, however, the statistics of

the single-lineage divergence D(1) and the cross-lineage divergence D(2) differ from each other

in an adaptive process. As we will discuss in detail below, this is a manifestation of the non-

equilibrium evolutionary dynamics in a fitness seascape. In contrast, evolutionary equilibrium

in a fitness landscape dictates 〈D(1)(τ)〉eq = 〈D(2)(τ)〉eq by detailed balance.

For a generic fitness seascape f(E, t), the diffusion equations (2.4) and (2.5) do not have a

closed analytical solution. At the same time, we are often not interested in the detailed history

of fitness peak displacements and the resulting trait changes. To describe generic features of

adaptive processes, we now introduce solvable stochastic models of the seascape dynamics and

link broad features of these models to statistical observables of adapting populations.

In this chapter, we restrict our analysis to single-peak fitness seascapes of the form (2.24),

Figure 2.2A. Despite its simple form, it covers a broad spectrum of interesting selection scen-

arios [2]. For constant trait optimum E∗, it is a time-honored model of stabilizing selec-

tion. [2,16,25,31,46,51,85,107–109]. Nearly all known examples of empirical fitness landscapes

for molecular quantitative traits are of single-peak [110] or mesa-shaped [15, 17, 107, 111, 112]

forms. Mesa landscapes describe directional selection with diminishing return: they contain a

fitness flank on one side of a characteristic “rim” value E∗ and flatten to a plateau of maximal

fitness on the other side, cp. Section 2.1 and Figure 2.2B. Furthermore, trait values on the fit-

ness plateau tend to be encoded by far fewer genotypes than low-fitness values. This differential

coverage of the genotype-phenotype map turns out to generate an effective second flank of the

fitness landscape, which makes our subsequent theory applicable to mesa landscapes as well [2].

We refer to the scaled parameter

c = 2NE2
0c0 (3.4)

as the stabilizing strength of a fitness landscape. This dimensionless quantity has a simple

interpretation: it equals the ratio of the neutral trait variance E2
0 and the weakly deleterious

trait variance around the fitness peak, which, by definition, produces a fitness drop ≤ 1/(2N)

below the maximum f∗. As shown in reference [53], the mutation-selection-drift dynamics of

a quantitative trait in a single-peak fitness landscape leads to evolutionary equilibrium with a

characteristic equilibration time

τeq(c) =
1

µ + cτ̃−1(c)
≃
{

µ−1 for c . 1,

(cτ̃(c))−1 for c & 1,
(3.5)
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Figure 3.1. Adaptive evolution of a quantitative trait. A Evolution of the distribution of trait
values W(E, t) (gray curves) in a given population subject to a single-peak fitness seascape f(E, t) (red
curves). At a given time t, the population has a trait distribution W(E, t) with mean Γ(t) and diversity
∆(t), and is positioned at a distance Λ(t) = Γ(t) − E∗(t) from the fitness peak. The population follows
the moving fitness peak and builds up a trait divergence D(1)(t, τ) = (Γ(t) − Γ(t − τ))2 between the
ancestral state at time t − τ and the descendent state at time t. The divergence D(2)(t, τ) between two
descendent populations with a common ancestor at time t− τ/2 can be defined in an analogous way; see
Equations (3.1) and (3.2). B–D Evolutionary population ensembles, each represented by three sample
populations. In a given population, a realization of a single-peak fitness seascape specifies a lineage-
specific optimal trait value that depends on evolutionary time, E∗(t) (red line). The population mean
trait, Γ(t) (black line), adapts to the moving fitness peak with additional lineage-specific fluctuations
due to mutations and genetic drift. The adaptive process is shown for three cases of fitness seascapes:
B Diffusive fitness seascape: incremental changes in the optimal trait value reflect adaptive pressure
caused by continuous ecological changes. The function E∗(t) follows an Ornstein-Uhlenbeck random walk
in the trait coordinate. C Punctuated fitness seascape: sudden changes in the optimal trait value reflect
adaptive pressure caused by major, discrete ecological events. The function E∗(t) is described by a Poisson
jump process in the trait coordinate. We show that both types of fitness seascapes lead to a solvable, non-
equilibrium joint statistics of Γ and E∗. D Fitness landscape: each population has a time-independent
optimal trait value E∗ and reaches an evolutionary (selection-mutation-drift) equilibrium [53].
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where τ̃(c) is the quasi-neutral drift time defined in Equation (2.11).

For time-dependent E∗(t), Equation (2.24) becomes a fitness seascape model [59, 85, 105].

At any given evolutionary time, this model describes stabilizing selection of strength c towards

an optimal trait value E∗(t). In addition, the changes of E∗(t) over macro-evolutionary periods

introduce directional selection on the trait and generate adaptive evolution. The form (2.24) of

a fitness seascape assumes the stabilizing strength c to remain constant over time. As discussed

in Section 3.2.1, this assumption leads to an important computational simplification: only the

trait mean Γ adapts to the moving fitness peak, while the diversity ∆ remains at evolutionary

equilibrium. However, generalizing our model to a time-dependent stabilizing strength c(t) is

straightforward and is briefly discussed below. We consider two minimal models of seascape

dynamics:

1) Diffusive fitness seascapes. In this model, the fitness optimum E∗(t) performs an Orn-

stein-Uhlenbeck random walk with diffusion constant υ0, average value G and stationary mean

square deviation r20. The scaled parameters

υ =
υ0
E2

0

, r2 =
r20
E2

0

, (3.6)

will be called the driving rate and the driving span of a fitness seascape. Different realizations

of this random walk with the same set of parameters are shown in Figure 3.1B. The distribution

of optimum trait values, R(E∗, t), follows a diffusion equation,

∂

∂t
R(E∗, t) = υE2

0

∂

∂E∗

[
∂

∂E∗
+

1

r2E2
0

(E∗ −G)

]

R(E∗, t). (3.7)

This dynamics leads to a seascape ensemble, which is characterized by an expected peak diver-

gence
〈
(E∗(t) − E∗(t + τ))2

〉
= 2r2E2

0

(

1 − e−τ/τsat(υ,r2)
)

(3.8)

with the saturation time

τsat(υ, r
2) =

r2

υ
, (3.9)

and by an equilibrium distribution

Req(E∗) =
1

√

2πr2E2
0

exp

[

−1

2

(E∗ −G)2

r2E2
0

]

(3.10)

of optimal trait values. Diffusive seascapes models of this form describe continuous adaptive

pressure due to incremental ecological changes that affect the optimal trait value E∗(t). We

assume that typical optimal trait values fall into the neutral trait repertoire given by Equa-

tion (2.2), which implies that the scaled driving span r2 is at most of order 1.

2) Punctuated fitness seascapes. This model has discrete, large fitness peak shifts. Indi-

vidual shifts of the optimal trait value may result from discrete ecological events such as major
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migrations and speciations. Lineage-specific shifts in large phylogenies have been studied in

references [94,95,97]; however, these shifts are assumed to be caused by known external events.

Here we introduce a stochastic model to describe a priori unknown shifts. The simplest such

model is a Poisson jump process with jump rate τ−1
sat (υ, r2) = υ/r2, by which successive values

of E∗ are drawn independently from the distribution Req(E∗), given by (3.10). Different reali-

zations of this process are shown in Figure 3.1C. The Poisson jump process is described by the

evolution equation
∂

∂t
R(E∗, t) =

υ

r2
[
Req(E∗) −R(E∗, t)]. (3.11)

It has the same time-dependent expected peak divergence (3.8) and the same equilibrium distri-

bution (3.10) as the diffusion process (3.7) with same driving parameters (3.6). The difference

between the jump process and the diffusion process lies in the anomalous scaling of higher

moments,

〈
(E∗(t) − E∗(t + τ))k

〉
∼ Ek

0 r
k−2υτ

for k = 2, 4, . . . and τ ≪ τsat(υ, r
2). (3.12)

This scaling is shared by simple models of turbulence; see, e.g., reference [113].

In both types of fitness seascape, we distinguish two dynamical selection regimes:

• Macro-evolutionary fitness seascapes are defined by the condition τsat(v, r
2) & τeq(c). As

discussed in detail below, such seascapes keep the trait mean always close to equilibrium

and induce an adaptive response linear in the driving rate υ. The limit υ → 0 describes an

ensemble of quenched population-specific fitness landscapes with a distribution of optimal

trait values given by Equation (3.10); see Figure 3.1D.

• Micro-evolutionary fitness seascapes have τsat(v, r
2) . τeq(c) and delineate a regime of

reduced adaptive response, where the evolution of the trait mean gradually decouples

from that of the fitness seascape. In the asymptotic fast-driving regime (υ ≫ r2/τeq(c)),

the adaptation of the trait is completely suppressed. In this regime, we can average over

the fitness fluctuations and describe the macro-evolution of the trait in terms of an effective

fitness landscape with an optimal trait value E .

3.2.1 Joint dynamics of trait and selection

We now combine the diffusive dynamics of quantitative traits in a given fitness seascape, which

is given by Equations (2.4) and (2.5), and the seascape dynamics (3.7) or (3.11) into a stochastic

model of adaptive evolution. The statistical ensemble generated by this model is illustrated in

Figure 3.1B–D: Each population evolves in a specific realization of the fitness seascape, which

is given by a history of peak values E∗(t). Its trait mean Γ(t) follows the moving fitness peak

with fluctuations due to mutations and genetic drift. The ensemble of populations contains, in

addition, the stochastic differences between realizations of the fitness seascape. The statistics of
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this ensemble involves combined averages over both kinds of fluctuations, which are denoted by

angular brackets 〈...〉.

The population ensemble can be described by a joint distribution of mean and optimum

trait values, Q(Γ, E∗, t) = Q(Γ, t |E∗)R(E∗, t). Using Equations (2.4) and (3.7) together with

the projection of the fitness seascape,

F1(Γ |E∗) = f∗ − c

NE2
0

〈∆〉 − c

E2
0

(
Γ − E∗

)2
, (3.13)

given by Equations (2.6) and (2.24), we obtain the evolution equation for the joint distribution

in a diffusive seascape,

∂

∂t
Q(Γ, E∗, t) =

[
gΓΓ

2N

∂2

∂Γ2
− ∂

∂Γ

(

mΓ − gΓΓ
2c

E2
0

(Γ − E∗)

)

+
υ

E2
0

∂2

∂E∗2
+

υ

r2
∂

∂E∗
(E∗ −G)

]

Q(Γ, E∗, t), (3.14)

with gΓΓ = 〈∆〉 and mΓ = −2µ(Γ − Γ0). Note that the differential operator in Equation (3.14)

is asymmetric: the trait optimum E∗ follows an independent stochastic dynamics, but the trait

mean Γ is coupled to E∗. This asymmetry reflects the causal relation between selection and ad-

aptive response: the trait mean Γ(t) follows the moving fitness peak, as shown in Figure 3.1B,C.

As a consequence, the joint evolution equation (3.14) leads to a non-equilibrium stationary dis-

tribution Qstat(Γ, E
∗), although the marginal seascape dynamics (3.7) reaches an equilibrium

state. In the fitness landscape limit (υ → 0), the evolution of the trait mean reaches evo-

lutionary equilibrium; in the opposite limit (υ → ∞), this dynamics can be described by an

effective equilibrium. In Section 3.3.1, we will obtain explicit solutions for the non-equilibrium

distribution Qstat(Γ, E
∗) and its equilibrium limits. Time-dependent conditional probabilities

(propagators) in the stationary ensemble will be discussed in Section 3.3.2 and in Appendix C.

The case of a punctuated fitness seascape is also treated in Appendix C, where we solve the

Langevin equations for Γ and E∗ to obtain the first and second moments of Q(Γ, E∗, t).

The trait diversity evolves under the projected fitness function

F2(∆ | c) = − c

NE2
0

∆, (3.15)

given by Equations (2.24) and (2.7). In a fitness seascapes with a constant stabilizing strength

c, this function is time-independent. The dynamics of the trait diversity (2.5) decouples from

the adaptive evolution of the trait mean and leads an evolutionary equilibrium Qeq(∆ | c) of the

form (2.13). As detailed in Section 3.3.3, the equilibrium assumption for the trait diversity holds

for most adaptive processes in a fitness seascape of the form (2.24). However, we can generalize

our seascape models to include a time-dependent stabilizing strength c(t). This leads to generic

adaptive evolution of both, Γ and ∆, which is described by a coupled non-equilibrium stationary

distribution Qstat(Γ,∆, E∗, c).
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3.2.2 Discussion

Figure 3.1 illustrates our model of natural selection: fitness seascapes that have a peak moving

in trait space on macro-evolutionary timescales. The peak displacement follows a stochastic pro-

cess that models broad classes of evolutionary change. Diffusive seascapes describe continuous

changes in the optimal trait value, which are ubiquitously generated by ecological fluctuations.

Punctuated seascapes capture large-scale changes caused by discrete events, such as speciations

or neo-functionalization of genes [114]. Of course, such models are highly idealized represen-

tations of biological reality. Their strength lies in their simplicity: minimal seascapes have just

two important evolutionary parameters, the stabilizing strength c and the driving rate υ, which

are defined in Equations (3.4) and (3.6). These parameters can be inferred from data, as we

show below in Section 3.5. If this inference results in useful, testable information about real

systems, the underlying models can be justified a posteriori.

In a diffusive fitness seascape, the diffusion equation (3.14) describes the joint dynamics of

mean and optimal trait. However, the role of its two variables are asymmetric: the mean trait

follows the fitness peak, but the fitness peak moves in an autonomous way. This asymmetry

leads to a non-equilibrium evolutionary dynamics, as discussed in the next section.

3.3 Adaptive evolution in a single-peak fitness seascape

In this section, we develop the key analytical results of this chapter. We provide

an explicit solution for the non-equilibrium joint distribution of mean and optimal

trait in a diffusive seascape, Qstat(Γ, E
∗); the case of punctuated seascapes is treated

in Appendix C. These solutions describe a stationary ensembles of adapting popula-

tions. We derive an expression for the expected time-dependent trait divergence in

these ensembles, which holds for both seascape models. Finally, we juxtapose the ad-

aptive behavior of the trait mean with the equilibrium statistics of the trait diversity,

which emerges in good approximation for most fitness seascape of constant stabiliz-

ing strength. Our analytical results are supported by simulations for diffusive and

punctuated fitness seascapes.

3.3.1 Stationary distribution of mean and optimal trait

In a diffusive fitness seascape, the evolution equation (3.14) has a stationary solution of bivariate

Gaussian form,

Qstat(Γ, E
∗) =

1

Z
exp



−1

2

(

Γ̂

Ê∗

)T

Σ−1

(

Γ̂

Ê∗

)

 , (3.16)
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where Γ̂ ≡ Γ − 〈Γ〉 and Ê∗ ≡ E∗ − E . This distribution is specified by its expectation values

(

〈Γ〉
〈E∗〉

)

≡
∫

dΓdE∗

(

Γ

E∗

)

Qstat(Γ, E
∗)

=

(

w(c) E + (1 − w(c)) Γ0

E

)

, (3.17)

and the covariance matrix

Σ =

(

〈Γ̂2〉 〈Γ̂Ê∗〉
〈Γ̂Ê∗〉 〈Ê∗2〉

)

≡
∫

dΓdE∗

(

Γ̂2 Γ̂Ê∗

Γ̂Ê∗ Ê∗2

)

Qstat(Γ, E
∗)

= E2
0

(

(1/2c)w(c) + r2w(c)w(c, υ, r2) r2w(c, υ, r2)

r2w(c, υ, r2) r2

)

. (3.18)

The distribution Qstat(Γ, E
∗) depends on the parameters that characterize the fitness seascape:

the stabilizing strength c, the driving rate υ, and the relative driving span r2, which are defined

in Equations (3.4) and (3.6). Together with the effective population size N and the point

mutation rate µ, these parameters determine the characteristic timescales of evolution in a

fitness seascape, the equilibration time τeq(c) and the saturation time of fitness fluctuations,

τsat(υ, r
2); see Equations (3.5) and (3.9). The function

w(c, υ, r2) ≡ c〈δ〉
c〈δ〉 + 2θ + Nυ/r2

=
τ−1
eq (c) − µ

τ−1
eq (c) − µ + τ−1

sat (υ, r2)
, (3.19)

and its equilibrium limit w(c) ≡ w(c, υ = 0, r2) govern the coupling between the mean and op-

timal trait. The mutation rate µ is the inverse of the neutral timescale τeq(0) = µ−1. These

functions depend on the scaled diversity 〈δ〉 ≡ 〈∆〉/E2
0 , which is given in reference [53], Equa-

tions (68) – (73), and is restated below in Equation (3.39). For traits under substantial selection

(c & 1), we can distinguish two dynamical regimes: In macro-evolutionary fitness seascapes,

where τsat(υ, r
2) & τeq(c) ≈ 2N/(〈δ〉c), this coupling remains close to the equilibrium value

w(c) ≈ 1; micro-evolutionary fitness fluctuations, which have τsat(υ, r
2) . τeq(c), induce a par-

tial decoupling of mean and optimal trait.

We can also express this crossover in terms of the average square distance between trait

mean in the population and optimal trait of the underlying fitness seascape,

〈Λ2〉 ≡
∫

dΓdE∗ (Γ − E∗)2Qstat(Γ, E
∗). (3.20)

The analytical solution for the scaled quantity 〈λ2〉 ≡ 〈Λ2〉/E2
0 follows from Equations (E.13)
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and (3.18),

〈λ2〉(c, υ, r2) ≃







〈λ2〉eq(c, r2) + υτeq(c)
w(c)

2

[

1 + O
(
τeq
τsat

)]

(macroevolutionary seascapes),

〈λ〉eq(c, 0) + r2
[

1 −O
(τsat
τeq

)]

,

(microevolutionary seascapes),

(3.21)

where

〈λ2〉eq(c, r2) =
w(c)

2c
+ (〈λ2〉0 + r2)(1 − w(c))2

≃ 1

2c
for c ≫ 1 (3.22)

is the equilibrium average in a fitness landscape. The non-equilibrium contribution reflects

the lag between the population and the moving fitness peak. In macro-evolutionary seascapes,

this term remains small, which indicates that the trait distribution W(E) closely follows the

displacements of the fitness peak. In micro-evolutionary seascapes, the mean square distance

〈λ2〉 becomes comparable to the driving span r2; that is, the population no longer adapts to the

moving fitness peak in an efficient way.

The distribution Qstat(Γ, E
∗) describes a stationary state that is manifestly out of equilib-

rium, i.e., it does not have detailed balance. Its probability current

Jstat(Γ, E
∗) = −






gΓΓ

2N

∂

∂Γ
−mΓ + gΓΓ

2c

NE2
0

(Γ − E∗)

υE2
0

∂

∂E∗
+

υ

r2
(E∗ −G)




Qstat(Γ, E

∗)

≃







[

−2υc

(

Γ̂ − Ê∗(1 + 1/(2cr2))

(Γ̂ − Ê∗)

)(

1 + O
(
τeq
τsat

))]

Qstat(Γ, E
∗)

(macroevolutionary seascapes),

[

c〈δ〉
N

(

Ê∗

−2cr2Γ̂

)
(

1 −O
(τsat
τeq

))
]

Qstat(Γ, E
∗)

(microevolutionary seascapes),

(3.23)

expresses the adaptive motion of the trait mean following the displacements of the fitness peak.

The probability current shows a crossover similar to the adaptive part of 〈Λ2〉 in (3.21): it

increases linearly for low driving rates and saturates to a constant in the regime of micro-

evolutionary fitness fluctuations.

Remarkably, the joint statistics of mean and optimal trait can be associated with evolutionary

equilibrium in the limits of low and high driving rates. In the first case, we obtain the equilibrium
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distribution

Qeq(Γ, E∗) = lim
υ→0

Qstat(Γ, E
∗)

= Q̃0(Γ) exp[2NF1(Γ|E∗)] R(E∗)

=
1

ZΓ

√

2πr2E2
0

exp

[

− 2θ

〈∆〉(Γ − Γ0)
2 − c

E2
0

(Γ − E∗)2 − 1

2r2E2
0

(E∗ − E)2
]

,

(3.24)

which is the product of a Boltzmann distribution (2.12) and a quenched weight of the trait

optimum E∗ given by (3.10). This distribution satisfies detailed balance; that is, the probability

current Jstat(Γ, E
∗) vanishes in the limit υ → 0. In the opposite limit, we obtain the distribution

Q∞(Γ, E∗) = lim
υ→∞

Qstat(Γ, E
∗)

= Q̃0(Γ) exp[2NF1(Γ|E)] R(E∗)

=
1

ZΓ

√

2πr2E2
0

exp

[

− 2θ

〈∆〉(Γ − Γ0)
2 − c

E2
0

(Γ − E)2 − 1

2r2E2
0

(E∗ − E)2
]

.

(3.25)

In this limit, the fast fluctuations of the fitness peak — and the associated current Jstat(Γ, E
∗)

given by (3.23) — decouple from the macro-evolutionary dynamics of the mean trait. The latter

is governed by the effective fitness landscape

F1(Γ|E) =

∫

F1(Γ|E∗)R(E∗) dE∗, (3.26)

which is obtained by averaging over the ensemble (3.10) of fitness peak positions and it describes

stabilizing selection towards the average peak position E . Accordingly, the scaled average square

distance 〈λ2〉, as given by Equation (3.21), is the sum of the equilibrium variance 〈λ2〉eq(c, 0)

and the driving span r2. We can extend the notion of an effective fitness landscape to micro-

evolutionary seascapes with a large but finite driving rate (c ≫ 1, υ ≫ r2/τeq(c)). Such seascape

models still generate stabilizing selection on the trait mean towards the mean peak position E ,

but with a reduced effective stabilizing strength

ceff ≈ c

[

1 − 2c2r2τsat(υ, r
2)

τeq(c)

]

. (3.27)

Similar effective landscapes resulting from micro-evolutionary seascapes have been observed in

phenomenological models [115].

As shown in Appendix C, the dynamics of the trait in a punctuated seascape leads to a

stationary population ensemble that has the same first and second moments as in the case of

a diffusive seascape. In particular, the average square displacement between mean and op-

timal trait, Equation (3.21), as well as the averages of divergence, genetic load, and fitness flux

described in the following sections coincide for both kinds of seascapes.

The properties of the stationary ensemble of mean and optimal trait in a fitness seascape
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Figure 3.2. Stationary distribution of mean and optimal trait in a fitness seascape. The
distribution Qstat(Γ, E

∗) is shown A in the equilibrium limit (c = 1, υ = 0, r2 = 1), B for an inter-
mediate driving rate (υ = 1.5r2/τeq), and C in the deep micro-evolutionary regime (υ = 50r2/τeq); see
Equations (3.16), (3.24), and (3.25). The probability current J(Γ, E∗), which is given by Equation (3.23),
is marked by arrows. With increasing driving rate, the correlation between Γ and E∗ is seen to decrease.

are summarized in Figures. 3.2 and 3.3. The stationary distribution Qstat(Γ, E
∗) is shown

in Figure 3.2 for given parameters c, r2, and for different values of the driving rate: in the

equilibrium limit (υ → 0), for an intermediate value of υ, and in the fast-driving regime (υ ≫
r2/τeq(c)). The non-equilibrium probability current Jstat(Γ, E

∗) is marked by arrows. The

crossover between micro- and macro-evolutionary fitness seascapes is plotted in Figure 3.3 for

the scaled average square distance 〈λ2〉 as a function of the driving rate υ. Our analytical results

are tested by numerical simulations of the underlying Fisher-Wright process [116] in a fitness

seascape (2.24) with diffusive and punctuated peak displacements. The details of the numerical

methods for the population simulations are discussed in Appendix A.

3.3.2 Time-dependent trait divergence

In the previous work [53], it was shown that the variance of the trait mean across populations,

〈Γ̂2〉, and the average trait diversity 〈∆〉 uniquely characterize the stabilizing strength c in a

fitness landscape. The ensemble variance 〈Γ̂2〉 is just the half of the asymptotic trait divergence

limτ→∞ 〈D(τ)〉 ≡ limτ→∞ 〈(Γ(t+τ)−Γ(t))2〉. As it is clear from the previous subsection, the sta-

tionary distribution Qstat(Γ) and its statistics is compatible with different values of the seascape

parameters and, hence, cannot uniquely characterize them. Instead, we use the time-dependent

statistics of the stationary ensemble to infer the parameters of the fitness seascape. A fun-

damental time-dependent observable is the joint propagator Gτ (Γ, E∗ |Γa, E
∗
a), which denotes

the conditional probability for mean and optimal trait values Γ, E∗ at time t, given the values

Γa, E
∗
a at time ta; this function is analytically calculated in Appendix C. The resulting marginal

propagator Gτ (Γ|Γa) serves as building block for the probabilistic analysis of individual evolu-

tionary trajectories of cross-species trait data, which is discussed in a follow-up paper [3] and

briefly reported in Section 3.6. Here we use the joint propagator to compute the time-dependent

trait divergence between populations in one and two lineages, 〈D(κ)〉(τ) (κ = 1, 2), as defined
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Figure 3.3. Adaptive lag between mean and optimal trait. The scaled average square distance
〈λ2〉 is plotted against the scaled driving rate υ/µ for A non-recombining and B fully recombining
populations for different stabilizing strengths c. The other parameters are r2 = 1, θ = 0.0125. This
function increases from an equilibrium value for υ = 0 to a micro-evolutionary limit value for υ → ∞
with a crossover for τsat(υ, r

2) ∼ τeq(c), as given by Equation (3.21). The analytical results (lines) are
compared to simulation results (with parameters N = 100, ℓ = 100) for a diffusive seascape (green and
blue dots) and for a punctuated seascape (orange and red dots).

in Equations (3.1) and (3.2). The average divergence between an ancestral and a descendent

population in a single lineage can be written as an expectation value in the stationary ensemble,

〈D(1)〉(τ) ≡ 〈(Γ(t) − Γ(ta))2〉

≡
∫

dΓ dΓa (Γ − Γa)2 ×









Γa

Γ

τ









=

∫

dE∗
a dE∗ dΓa dΓ (Γ − Γa)2Gτ (Γ, E∗ |Γa, E

∗
a)Qstat(Γa, E

∗
a), (3.28)

where Γa ≡ Γ(ta), Γ ≡ Γ(t), E∗
a ≡ E∗(ta), E∗ ≡ E∗(t), and τ = t − ta. In a similar way,

the average divergence between two descendent populations evolved from a common ancestor
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population is given by

〈D(2)〉(τ) ≡ 〈(Γ1(t) − Γ2(t))
2〉Γ1(ta)=Γ2(ta)

E∗

1 (ta)=E∗

2 (ta)

≡
∫

dΓa dΓ1 dΓ2 (Γ1 − Γ2)
2 ×









Γ2

Γ1

Γa

τ/2
τ/2









=

∫

dE∗
a dE∗

1 dE∗
2 dΓa dΓ1 dΓ2 (Γ1 − Γ2)

2Gτ/2(Γ1, E
∗
1 |Γa, E

∗
a)

×Gτ/2(Γ2, E
∗
2 |Γa, E

∗
a)Qstat(Γa, E

∗
a), (3.29)

where Γa ≡ Γ1(ta) = Γ2(ta), E∗
a ≡ E∗

1(ta) = E∗
2(ta), Γi ≡ Γi(t), E∗

i ≡ E∗
i (t) (i = 1, 2), and

τ ≡ 2(t − ta). The resulting scaled divergences 〈d(κ)〉(τ) ≡ 〈D(κ)〉(τ)/E2
0 (κ = 1, 2) can be

calculated using the results of Appendix C. We obtain

〈d(κ)〉(τ ; c, υ, r2) =
τeq(c)

τ̃(c)

[

1 − e−τ/τeq(c)
]

(3.30)

+ υ w(c, υ, r2)w(c,−υ, r2)
[

τsat(v, r
2)
(
1 − e−τ/τsat(v,r2)

)
− τeq(c)

(

1 − e−τ/τeq(c)
)]

− 2(κ− 1)
υ

τ−1
eq (c) + τ−1

sat (v, r2)
w(c,−υ, r2)2

[

e−τ/(2τsat(v,r2)) − e−τ/(2τeq(c))
]2

,

where the equilibration time τeq(c), the saturation time τsat(v, r
2), and the coupling factor

w(c, υ, r2) are given by equations (3.5), (3.9), and (3.19). The difference between the two

divergence measures is a consequence of the non-equilibrium adaptive dynamics, which violate

detailed balance. Equation (3.30) is valid for diffusive and for punctuated fitness seascapes. It

contains the three characteristic timescales defined in the previous section: the drift time τ̃(c)

is the scale over which the diffusion of the trait mean, in the absence of any fitness seascape,

generates a trait divergence of the order of the neutral trait span E2
0 ; the equilibration time τeq(c)

governs the relaxation of the population ensemble to a mutation-selection-drift equilibrium in a

fitness landscape of stabilizing strength c; the saturation time τsat(v, r
2) is defined by the mean

square displacement of the fitness peak reaching the driving span r2. Here, we focus on fitness

seascapes with substantial stabilizing strength and with a driving span of order of the neutral

trait span (c & 1, r2 ∼ 1). This selection scenario is biologically relevant: it describes adaptive

processes that build up large trait differences by continuous diffusion or recurrent jumps of the

fitness peak.

In macro-evolutionary seascapes, the equilibration time and the non-equilibrium saturation

time are well-separated, τeq(c) ≪ τsat(υ, r
2). This results in three temporal regimes of the trait

divergence:
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1. Quasi-neutral regime, τ . τeq(c). The scaled divergence takes the form

〈d(κ)〉(τ) = 2〈γ̂2〉eq
(

1 − e−τ/τeq
)

(3.31)

≃ 〈δ〉
N

τ
(
1 + O(τ/τeq)

)
(κ = 1, 2) (3.32)

with τeq(c) given by Equation (3.5). Its linear initial increase is caused by phenotypic

diffusion with the quasi-neutral diffusion constant ∆/(2N), as given by Equations (2.4)

and (2.9). This diffusion, in turn, is generated by genetic drift and mutations at the trait

loci, which evolve under linkage disequilibrium imposed by stabilizing selection on the trait

diversity ∆, as discussed in reference [53] and section 3.3.3. The quasi-neutral increase of

the divergence is bounded by stabilizing selection acting directly on the trait mean; this

force becomes important for divergence times of order τeq(c). In the absence of directional

selection, it generates a constrained equilibrium divergence

2〈γ̂2〉eq(c) =
w(c)

c
. (3.33)

The quasi-neutral regime (3.32) should be compared with genuinely neutral trait evolution,

〈d(κ)〉0(τ) =
〈δ〉0
µN

(
1 − e−µτ

)
, (3.34)

which follows from Equation (3.31) in the limit c = 0. The neutral asymptotic behavior for

short divergence times reduces to a well-known result of classical quantitative genetics [51,

117, 118], 〈D(κ)〉0 = 2Vm(τ/2) with Vm = 〈∆〉0/N ≈ 4µE2
0 . The saturation for divergence

times of order 1/µ follows the saturation of the genetic divergence at the ℓ constitutive

loci.

2. Adaptive regime, τeq(c) . τ ≪ τsat(v, r
2). The scaled trait divergence follows

〈d(κ)〉(τ) =
[
2〈γ̂2〉eq

(
1 − υ τ̃ κw(c)2

)
+ υ w(c)2 τ

] [

1 + O
(

e−τ/τeq , τ/τsat

)]

≃
[
2〈γ̂2〉eq + υ (τ − κτeq(c))

]

×
[

1 + O
(

(θc)2, e−τ/τeq , τ/τsat

)]

(κ = 1, 2) (3.35)

In this regime, the trait divergence is the sum of an (asymptotically constant) equilib-

rium component and an adaptive component, which increases with slope υ. In a macro-

evolutionary fitness seascape, this slope is, by definition, smaller than the slope in the

initial quasi-neutral (3.32), which allows for a clear delineation of the two regimes in em-

pirical data. This feature will be exploited in our selection test for quantitative traits,

which will be discussed in Section 3.5.
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3. Saturation regime, τ & τsat(v, r
2). On the largest timescales, the divergence

〈d(κ)〉(τ) ≈ 2〈γ̂2〉eq + 2r2w(c)w(c, υ, r2)
(
1 − e−τ/τsat

)
(κ = 1, 2) (3.36)

approaches its non-equilibrium saturation value

〈γ̂2〉stat(c, υ, r2) = 2〈γ̂2〉eq + 2r2w(c)w(c, υ, r2), (3.37)

which equals the Γ-variance of the stationary distribution Qstat(Γ, E
∗), and is primarily

determined by the driving span r2. In empirical data, this regime is often well beyond the

depth of the phylogeny and, hence, not observable.

In micro-evolutionary seascapes, the saturation of fitness fluctuations occurs faster than the

equilibration of the trait under stabilizing selection, i.e., τsat(υ, r
2) . τeq(c). Hence, there is a

direct crossover from the quasi-neutral to the saturation regime. For fast micro-evolutionary fit-

ness fluctuations, τsat(υ, r
2) ≪ τeq(c), the constraint on the trait equals that in an effective fitness

landscape with stabilizing strength ceff given by Equation (3.27). In this regime, time-dependent

trait divergence data alone can no longer resolve adaptive evolution in a fitness seascape from

equilibrium in the corresponding effective fitness landscape; this requires additional information

on the trait diversity.

Figure 3.4 and Figure C.1A show the scaled divergence 〈d(1)〉(τ) for selection parameters

c and υ covering macro-evolutionary and micro-evolutionary fitness seascapes. The analytical

expression of Equation (3.30) is seen to be in good agreement with numerical simulations for

diffusive and punctuated fitness fluctuations.

3.3.3 Stationary trait diversity

As discussed in Section 3.2, our diffusion theory predicts that the movements of the optimum

trait in a single-peak fitness seascape of the form (2.24) only affects the evolution of the

trait mean in the population and not the trait diversity. The statistics of the trait diversity

remains similar to the case of evolution under stabilizing selection, which is characterized

by a time-invariant fitness function, F2(∆) = −c0 ∆. The resulting equilibrium distribution

Qeq(∆) is the product of the neutral mutation-drift equilibrium Q0(∆), which is given in

Equations (53) and (55) of [53] and a Boltzmann factor from the scaled fitness landscape,

Qeq(∆) = Q0(∆) exp[−c0 ∆]. These distributions determine the average diversity

〈∆〉 ≡
∫

d∆ ∆Qeq(∆) (3.38)

and its neutral counterpart 〈∆〉0, as well as the scaled expectation values 〈δ〉 ≡ 〈∆〉/E2
0 and

〈δ〉0 ≡ 〈∆〉0/E2
0 . The selective constraint on the trait diversity enters the diffusion coefficient

of the trait mean in Equation (2.4), which sets the drift timescale τ̃(c) = (1/2µ)(〈δ〉0/〈δ〉(c)),
as given by Equation (2.11). The distributions Q0(∆) and Qeq(∆) can be written in closed

analytical form; unlike in the case of the trait mean, these distributions depend directly on the
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Figure 3.4. Time-dependence of the trait divergence. The scaled average divergence 〈d(1)〉(τ) is
shown as a function of the scaled divergence time τ/N for three cases: neutral evolution (c = 0; grey lines),
conservation in a static fitness landscape (c = 1, υ = 0; red line), and adaptation in a macro-evolutionary
fitness seascape (c = 1, υ > 0; blue lines). Other parameters: θ = 0.0125, N = 100, ℓ = 100, E = 0.7ℓ.
The analytical results of Equation (3.30) (lines) are compared to simulation results for asexual evolution
in diffusive and punctuated fitness seascapes (green and orange dots, respectively). The corresponding
results for fully recombining genomes are shown in Appendix Figure C.1. A Logarithmic plot and B linear
plot for macro-evolutionary seascapes, τsat(υ, r

2) > τeq(c). These plots show three evolutionary regimes:
For τ . τeq, the trait evolution is dominated by genetic drift and mutations. For τ & τeq, the seascape data
show an adaptive divergence component proportional to υτ ; the landscape data saturate to an equilibrium
divergence set by stabilizing selection. For τ ∼ τsat, the seascape data saturate to a non-equilibrium
asymptotic value of twice the driving span r2. C Micro-evolutionary seascapes τsat(υ, r

2) < τeq(c).
There is a single cross-over from the quasi-neutral regime for smaller values of τ to the saturation regime
for larger values of τ . The divergence 〈d(1)〉(τ) equals that in an effective fitness landscape of stabilizing
strength ceff < c. The limit υ → ∞ has ceff = c; i.e., the function 〈d(1)〉(τ) becomes identical to the case
υ = 0 (blue–red dashed line).

rate of recombination in the population [53]. We obtain the scaled neutral expectation value

〈δ〉0 = 4θ(1 − 4θ + O(θ2)), which is independent of the recombination rate, and the selective

constraint
〈δ〉(c)
〈δ〉0

=

{

1 − 4θc + O((θc)2) for θc ≪ 1,

(4θc)−1/2 + O((θc)−1) for θc ≫ 1
(3.39)

in non-recombining populations. We note that this constraint depends only on the product θc;

therefore, it remains weak over a wide range of parameters (c . 1/θ), which includes strong

selection effects on the trait mean [53]. The full crossover function and the corresponding

expressions for fully recombining populations are given in Equations (68) – (73) of reference [53].

The numerical simulations reported in Figure 3.5 show that the average diversity in diffusive

and punctuated fitness seascapes is well represented by the equilibrium value throughout the

crossover from macro- to micro-evolutionary driving rates, and over a wide range of stabilizing

strengths. Theoretically, the results of the diffusion theory are valid for adaptive processes

unless recurrent selective sweeps reduce the trait diversity within the population. Such sweeps

are more prominent in punctuated fitness seascapes due to sudden changes of the trait optimum.

We expect a significant reduction in trait diversity due to the large and frequent jumps of the

trait optimum in punctuated fitness seascapes with very strong stabilizing selection. This regime

is beyond the scope of this chapter.
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Figure 3.5. Equilibrium trait diversity. The figure shows the average trait diversity 〈δ〉 (in units
of the neutral average 〈δ〉0) in a fitness seascape as a function of the scaled driving rate υ/µ for different
values of the stabilizing strength (c = 5, 50, top to bottom); other parameters are as in Figure 3.4.
The equilibrium predictions of diffusion theory (lines), which do not depend on υ, are compared to
simulation results of the adaptive process of A non-recombining and B fully recombining populations in
diffusive (green/orange dots) and punctuated seascapes (blue/red dots). The simulation results confirm
evolutionary equilibrium of the trait diversity.

3.3.4 Discussion

In this section, we have derived an explicit expression for the joint distribution of mean and

optimal trait, Qstat(Γ, E
∗), in a diffusive fitness seascape; the first and second moments of this

distribution remain the same for punctuated fitness fluctuations. Importantly, the distribution

Qstat(Γ, E
∗) results from a genuine non-equilibrium dynamics. Mathematically, it is distin-

guished from evolutionary equilibrium by a non-vanishing probability current, which is shown

in Figure 3.2. Biologically, the deviation from equilibrium reflects the lag of a population that

follows a moving fitness peak. This lag can be measured by an increased distance between mean

and optimal trait, as shown in Figure 3.3.

The non-equilibrium calculus also produces an analytic expression for the average time-

dependent trait divergence between populations, 〈D〉(τ), which will play a key role in the in-

ference of selection discussed below. In a macro-evolutionary fitness landscape, this function

displays two important regimes, which are shown in Figure 3.4B. In the quasineutral regime,

which occurs for short divergence times, 〈D〉 grows linearly with τ at a rate proportional to

the average trait diversity 〈∆〉, as given by Equation (3.32). This resembles the well-known

short-time behavior for neutral evolution [51,117,118]; however, the diversity is reduced by sta-

bilizing selection. In the adaptive regime, which occurs for larger divergence times, the function

〈D〉(τ) depends on both stabilizing and directional selection acting directly on the trait mean,

as shown in Equation (3.35). This separation of regimes is characteristic of quantitative traits.

For genome evolution, negative and positive selection set nucleotide substitution rates, which

affect the divergence to first order in time.

Finally, the trait diversity in a minimal seascape remains at an approximate equilibrium

over a wide range of evolutionary parameters, as shown in Figure 3.5. This feature reflects the
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properties of the moving fitness peak, which changes its position but retains its width. It is

another difference to genome evolution, where selective sweeps can drastically deplete sequence

diversity.

3.4 Fitness and entropy of adaptive processes

The distributions of the trait mean and diversity determine the fitness statistics

of an ensemble of populations in the stationary state. These statistics can quantify

the cost and the amount of adaption for the evolution of molecular traits. We also

evaluate the predictability of the trait evolution in an ensemble of populations after

diverging from a common ancestral population.

3.4.1 Genetic load

The genetic load of an individual population is defined as the difference between the maximum

fitness and the mean fitness [119–122],

L(t) ≡ f∗ − f(t). (3.40)

For a quantitative trait in a quadratic fitness seascape of the form (2.24), we can decompose the

load into contributions of the trait mean and diversity,

L(t) = f∗ − c0
(
Γ(t) − E∗(t)

)2 − 2c0∆(t). (3.41)

In the stationary population ensemble (3.16), the average scaled genetic load can be written as

the sum of an equilibrium and an adaptive component,

〈2NL〉(c, υ, r2) = c
[
〈λ2〉(c, υ, r2) + 〈δ〉(c)

]

= c
[
〈λ2〉eq(c, r2) + 〈δ〉(c)

]
+ c
[
〈λ2〉(c, υ, r2) − 〈λ2〉eq(c, r2)

]

≡ 2NLeq(c, r2) + 2NLad(c, υ, r2); (3.42)

these components can be computed analytically from Equations (3.21) and (3.22). A simple

form is obtained for fitness seascapes of substantial stabilizing strength (c & 1),

2NLeq ≃ 1

2
+ O(1/c, θc), (3.43)

2NLad(c, υ, r2) ≃







υ τ̃(c)

[

1 + O
(
τeq
τsat

)]

, (macroevolutionary seascapes)

cr2
[

1 −O
(τsat
τeq

)]

, (microevolutionary seascapes),

(3.44)

where the drift scale τ̃(c) is given by Equations (2.11) and (3.39). From these expressions, we

read off three relevant properties of the genetic load.
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First, the equilibrium load depends on c only via its diversity component; this dependence

remains weak even for substantial stabilizing selection (1 . c . 1/θ). The equilibrium load

component related to the trait mean, c〈λ2〉eq(c), becomes universal in this regime: the fluctu-

ations of Γ are constrained to a fitness range of order 2NLeq ≃ 1/2 around E∗, irrespectively

of the stabilizing strength and the molecular details of the trait [2]. This universality extends

to simple nonlinearities in the genotype-phenotype map (2.1). For a d-component trait as in

Fisher’s geometrical model [31], the load formula generalizes to 2NLeq ≃ d/2 (similar results

have previously been reported in references [123–125]). This is a direct evolutionary analogue of

the equipartition theorem in statistical thermodynamics, which states that every degree of free-

dom that enters the energy function quadratically contributes an average of kBT/2 to the total

energy of a system at temperature T (the proportionality factor kB is Boltzmann’s constant) [2].

Second, the adaptive load component depends only weakly on c, via the drift scale τ̃(c).

At a fixed value of Γ, the stochastic displacement of the fitness peak induces a fitness cost

proportional to c; however, this effect is largely offset by an adaptive response that becomes

faster with increasing c.

Third, the different regimes of adaptive trait evolution can be characterized in terms of the

genetic load. The adaptive load is asymptotically linear in the driving rate and is subleading

to the equilibrium load in the slow-driving regime (υ . υ̃(c) ≡ 1/τ̃(c)). It becomes dominant

for faster driving (υ & υ̃(c)) and saturates in the micro-evolutionary regime (υ & r2/τeq(c)).

Figure 3.6A shows this dependence of the adaptive load on the driving rate.

3.4.2 Fitness flux

The fitness flux, φ(t), characterizes the adaptive response of a population evolving in a fitness

land- or seascape,

φ(t) =

∫

dE f(E, t)
∂

∂t
W(E, t). (3.45)

The cumulative fitness flux, Φ(τ) =
∫ t+τ
t φ(t′)dt′, measures the total amount of adaptation over

an evolutionary period τ [19]. The evolutionary statistics of this quantity is specified by the

fitness flux theorem [60]. According to the theorem, the average cumulative fitness flux in a

population ensemble measures the deviation of the evolutionary process from equilibrium: this

deviation equals the relative entropy of the actual process from a hypothetical time-reversed

process [60,126]. It is substantial — i.e., the process is predominantly adaptive — if 〈2NΦ〉 & 1.

Specifically, the cumulative fitness flux of a stationary adaptive process increases linearly with

time, 〈2NΦ(τ)〉 = 〈φ〉τ with 〈2Nφ〉 > 0.

For a quantitative trait in a quadratic fitness seascape of the form (2.24), we can decompose

the fitness flux into contributions of the trait mean and the trait diversity,

φ(t) = −2c0
(
Γ(t) − E∗(t)

)dΓ(t)

dt
− 2c0

d∆(t)

dt
. (3.46)

In the stationary population ensemble (3.16), the average scaled fitness flux can be expressed in
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Figure 3.6. Genetic load and fitness flux. A Scaled genetic load 2NL (full lines) and its con-
stituents, the adaptive genetic load, 2NLad (dashed lines), and equilibrium genetic load, 2NLeq (dotted
lines), for stationary evolution of non-recombining populations in a fitness seascape. The load compo-
nents are plotted against the scaled driving rate υ/µ for stabilizing strengths c = 5, 50; other parameters
like in Figure 3.4. The analytical results of Equation (3.42) are compared to simulations for diffusive
and punctuated fitness seascapes (green and orange dots). The corresponding data for fully recombining
populations are shown in Figure C.1. The genetic load is dominated for υ . 1/τ̃(c) by the equilibrium
component and for υ & 1/τ̃(c) by the adaptive component; it saturates in the micro-evolutionary seascape
regime (υ & r2/τeq(c)). B The scaled fitness flux 〈2Nφ〉 (solid line) and its components 〈2Nφmacro〉 and
〈2Nφmicro〉, as defined in Equations (3.53) and (3.54), are shown for the same parameters (all flux values
are measured in units of 1/µ). In macro-evolutionary fitness seascapes, 〈2Nφ〉 is an approximately linear
function of the driving rate υ and the component 〈2Nφmacro〉 is the dominant part. In micro-evolutionary
seascapes, 〈2Nφ〉 saturates and the component 〈2Nφmicro〉 is the dominant part.

terms of the stationary probability current Jstat(Γ, E
∗),

〈2Nφ〉 = − 2c

E2
0

∫

dΓdE∗ (Γ − E∗)JΓ
stat(Γ, E

∗), (3.47)

where JΓ
stat(Γ, E

∗) is the Γ–component of Jstat(Γ, E
∗). The fitness flux can be computed analyt-

ically from Equation (3.23),

〈2Nφ〉(c, υ, r2) = 2cυ w(c, υ, r2). (3.48)

In the regime of substantial stabilizing strength (c & 1), we get

〈2Nφ〉(c, υ, r2) ≃







2cυ
[

1 −O
( τeq
τsat

)]

(macroevolutionary seascapes),

4c2r2

τ̃(c)

[

1 −O
(τsat
τeq

)]

(microevolutionary seascapes),

(3.49)

where the drift time τ̃(c) is given by Equations (2.11) and (3.39). The fitness flux depends

linearly on the driving rate in a macro-evolutionary fitness seascape, and it saturates in the
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regime of micro-evolutionary fitness fluctuations. Figure 3.6B shows this dependence of the

fitness flux on the driving rate.

We can express the fitness flux in terms of correlation functions of the trait mean Γ(t) and

the lag Λ(t), which results in a simple relation between fitness flux and adaptive load. Inserting

the probability current of Equation (3.23) into the integral of Equation (3.47), we find

〈2Nφ〉 =
2c2〈δ〉
E2

0

(

〈Λ2〉 − 〈Λ2〉eq
)

+
4cθ

E2
0

lim
τց0

(

〈Λ(t + τ)(Γ(t) − Γ0)〉 − 〈Λ(t + τ)(Γ(t) − Γ0)〉eq
)

= c〈δ〉〈2NL〉ad(c, v, r2)[1 + O(θ)]. (3.50)

From this representation, we obtain the spectral decomposition of the fitness flux,

〈2Nφ〉(c, υ, r2) =

∫ ∞

0
〈2Nφ(ω)〉 dω (3.51)

with

〈2Nφ(ω)〉 = 2cυ
c〈δ〉
π/2

ω2

(τ−2
eq (c) + ω2)(τ−2

sat (v, r2) + ω2)
[1 + O(θ/(c〈δ〉)]. (3.52)

Using a cutoff frequency ωc = k/τeq(c) with a constant k of order 1, we can now define a

macro-evolutionary flux component,

〈2Nφmacro〉 =

∫ ωc

0
〈2Nφ(ω)〉 dω

= 2cυ w(c, υ, r2)
(τ−1

eq (c) + 2µ) arctan[k] − (τ−1
sat (υ, r2) + 2µ) arctan

[
k τsat(v, r

2)/τeq(c)
]

(π/2)(τ−1
eq (c) − τ−1

sat (υ, r2))
,

(3.53)

and the complementary micro-evolutionary component

〈2Nφmicro〉 =

∫ ∞

ωc

〈2Nφ(ω)〉 dω = 〈2Nφ〉 − 〈2Nφmacro〉. (3.54)

In the regime of substantial stabilizing selection (c & 1), the macro-evolutionary fitness flux in

(3.53) reads

〈2Nφmacro〉(c, υ, r2) ≃







2cυ
2

π
arctan[k]

(macroevolutionary seascapes),

2cυ
τ2sat(υ, r

2)

τ2eq(c)

2

π

(
k − arctan[k]

)
∼ 1

v
,

(microevolutionary seascapes).

(3.55)
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This fitness flux component quantifies the macro-evolutionary part of adaptation. In macro-

evolutionary fitness seascapes (τsat(υ, r
2) & τeq(c)), it increases proportionally to the driving

rate υ and, for k > 1, it represents the main fraction of the total fitness flux 〈2Nφ〉. In micro-

evolutionary fitness seascapes (τsat(υ, r
2) . τeq(c)), this component is suppressed: the macro-

evolutionary fitness flux does not carry information on rapid fitness fluctuations. This cross-over

of 〈2Nφmacro〉 and of the complementary component 〈2Nφmicro〉 is shown in Figure 3.6B.

The spectral decomposition of the fitness flux has important consequences for the ana-

lysis of macro-evolutionary adaptation. The detection of a substantial cumulative fitness flux

〈2NΦmacro(τ)〉 > 1 over a macro-evolutionary period τ is not confounded by the simulta-

neous presence of micro-evolutionary (for example seasonal) fitness fluctuations. Since the

cumulative fitness flux is a measure of entropy production during adaptation, the spectral de-

composition (3.51) also has an important information-theoretic interpretation: The difference

〈2Nφmicro〉 = 〈2Nφ〉 − 〈2Nφmacro〉 is the average loss of information per unit time through

temporal coarse-graining. This loss is a non-equilibrium analogue of the entropy production by

spatial coarse-graining.

3.4.3 Predictability and entropy production

In reference [53], we quantified the evolutionary predictability of the molecular traits across an

ensemble of populations by

P ≡ exp
[
〈S(W)〉 − S(〈W 〉)

]
, (3.56)

with S(W) ≡ −
∫
W(E) logW(E)dE. This definition compares the ensemble-averaged “micro-

evolutionary” Shannon entropy of the phenotype distribution within a population, 〈S(W)〉 ≡
∫

W S(W)Q(W), and the “macro-evolutionary” Shannon entropy of the mixed distribution,

S(〈W〉) ≡ S
( ∫

W W Q(W)
)
, which is obtained by compounding the trait values of all popu-

lations into a single distribution. We have shown that the predictability is generically low in a

neutral ensemble, but stabilizing selection in a single fitness landscape can generate an evolu-

tionary equilibrium with predictability values P of order 1 [53].

Here we compute the predictability in a time-dependent ensemble of populations that descend

from a common ancestor population. Similarly to reference [53], we evaluate Equation (3.56)

for a distribution Qt(W) with the initial condition Qta(W) = δ(W −Wa) at time ta = t− τ/2.

We obtain the time-dependent predictability

P(τ ; c, υ, r2) ≃
( 〈δ〉(c)
〈d(2)〉(τ ; c, υ, r2)/2 + 〈δ〉(c)

)1/2

=

(
1

1 + Ω(2)(τ ; c, υ, r2)/4θ

)1/2

. (3.57)

Here, Ω(2)(τ ; c, v, r2) ≡ 2θ 〈d(2)〉(τ ; c, υ, r2)/〈δ〉 denotes the ratio between trait divergence and

diversity for the descendent populations. The trait statistics in a macro-evolutionary fitness

seascape, given by Equations (3.30) and (3.39), entail the evolutionary predictability

P(τ ; c, υ, r2) = Peq(c)

[

1 − 1

2
υ τ̃

τ − 2τeq(c)

2N

[

1 + O (τ τeq(c)cv/N, τ/τsat, θ/(c〈δ〉))
]]

(3.58)
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for τ & τeq(c), with Peq(c) = (1 + w(c)/(2c))−1/2 = (1 + 1/(2c))−1/2[1 + O(θ/(c〈δ〉))]. There

are two stochastic components that generate macro-evolutionary entropy and, hence, reduce the

evolutionary predictability: fluctuations induced by genetic drift on short timescales τ . τeq(c)

and fluctuations of the fitness peak over timescales τ & τeq(c). Nevertheless, as shown by (3.58),

the predictability of an adaptive process with substantial stabilizing selection can remain of

order 1 over macro-evolutionary periods.

3.4.4 Discussion

In this section, we have introduced three simple summary observables of evolutionary processes:

genetic load, fitness flux, and predictability. For quantitative traits, the statistics of these

observables is universal; that is, it decouples from details of molecular evolution.

Genetic load is defined as the difference between the maximum of a fitness land- or seascape

and the mean fitness in a population. Here we have evaluated the load associated with a

quantitative trait. In evolutionary equilibrium under substantial stabilizing selection, the load

takes the simple universal form L = 1/(4N), which generalizes to L = d/(4N) for a d-dimensional

quantitative trait in a quadratic fitness landscape (see references [123–125] for similar results).

This universal strong-selection behavior of the equilibrium load distinguishes quantitative traits

from individual genetic loci, for which L ∼ 1/N signals weak selection1 (i.e., selection coefficients

of order 1/N). In fitness seascapes, there is an additional nonequilibrium load component, which

is proportional to the driving rate υ and measures the fitness cost of adaptation. We still know

little on how this type of load affects real populations. However, studies at the genetic level

suggest it may play an important role in rapid asexual adaptation processes, which occur in

microbial or viral populations [21, 68].

Fitness flux measures the fitness gain through adaptive changes per unit of evolutionary time;

the cumulative fitness flux is the total adaptive fitness gain over an evolutionary period [60].

These universal measures serve to compare adaptive processes in different populations. In em-

pirical studies, the fitness flux has been evaluated in systems as diverse as flies and influenza

viruses [7, 19, 21]. Here we have shown that the fitness flux of a quantitative trait in a fitness

seascape is proportional to stabilizing strength and driving rate, φ ≈ 2cυ.

Predictability has been an important issue in laboratory evolution experiments, which can be

repeated multiple times under similar conditions. For a quantitative trait, predictability can be

defined in a straightforward way [53]: how much of the trait repertoire in an ensemble of parallel-

evolving populations is already contained in the trait diversity of a single population? We have

shown that fitness seascapes have antagonistic effects: stabilizing selection enhances, lineage-

specific directional selection decreases predictability. Adaptive process in macro-evolutionary

fitness seascapes can maintain substantial predictability values over macro-evolutionary periods.

Parallel and convergent evolution at the functional level, paired with strongly divergent genome

evolution has been observed in a number of recent experiments [20, 22,23]. These experimental

observations can be explained in a natural way, if we assume that many of these functions involve

1For a quantitative trait, L ∼ 1/N holds over a broad range of stabilizing strengths [53]. Hence, this estimate
cannot be used to infer weak selection, as claimed in reference [96].
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a complex quantitative trait.

3.5 Inference of adaptive trait evolution

The statistical theory developed in this chapter suggests a new method to infer se-

lection on quantitative traits. Our method is based on trait evolution in a single-peak

fitness seascape, as defined in Equation (2.24), which is parametrized by its stabiliz-

ing strength c and its driving rate υ.

Two main results are relevant for the inference of selection. First, evolution in a

macro-evolutionary fitness seascape affects the population mean trait in complemen-

tary ways: it generates conservation on shorter scales and adaptation on longer

scales of evolutionary time. These characteristics are measured by the expected trait

divergence between populations, 〈D(κ)〉(τ), which depends on the divergence time τ

and on the selection parameters c and υ in a characteristic way. The divergence

can be measured either between an ancestral population and a descendent population

(κ = 1) or between two descendent populations evolving from a common ancestor

population (κ = 2). As discussed in Section 3.3.2 , these measures are generically

distinct for adaptive processes2. Second, the expected trait diversity within popula-

tions, 〈∆〉, shows a weaker signal of conservation. Moreover, it decouples from the

adaptive process in a single-peak fitness seascape over a wide range of evolutionary

parameters, as discussed in Section 3.3.3.

3.5.1 Statistics of the divergence-diversity ratio Ω

Our test statistics is the time-dependent divergence-diversity ratio

Ω(κ)(τ) = 2θ
〈D(κ)〉(τ)

〈∆〉 (κ = 1, 2), (3.59)

where θ = µN denotes the nucleotide diversity. This function depends on the divergence time

τ and on the selection parameters c and υ. The typical behavior of Ω(κ)(τ) for different evolu-

tionary modes is shown in Figure 3.7 and can be summarized as follows:

• Neutral evolution (c = 0). The divergence-diversity ratio has an initially linear increase

due to mutations and genetic drift, and it approaches a maximum value 1 with a relaxation

time τ0 = 1/µ,

Ω(κ)(τ) = Ω0(τ) ≃
{

µτ for τ ≪ τ0

1 for τ ≫ τ0
(κ = 1, 2). (3.60)

The function Ω0(τ), which does not depend on κ because of detailed balance, is shown as

a grey line in Figure 3.7. Its linear short-term behavior reflects the classical quantitative

2The relative difference between 〈D(1)〉(τ) and 〈D(2)〉(τ) is small (Figure 3.7). This difference is conceptually
important, however, because it manifests the violation of detailed balance in adaptive processes. Similar effects
are ubiquitous in divergence data of trait adaptation across multi-branch phylogenies.



3.5. INFERENCE OF ADAPTIVE TRAIT EVOLUTION 47

genetics result 〈D(κ)〉(τ) ≃ Vmτ , where Vm = 〈∆〉0/(2N) is often called the mutational

variance of the trait [51, 117,118].

• Conservation in a fitness landscape (c & 1, υ = 0). The divergence-diversity ratio ap-

proaches a smaller maximum value, Ωstab(c) < 1, with a proportionally shorter relaxation

time τeq(c) = Ωstab(c)/µ,

Ω(κ)(τ) = Ωeq(τ ; c) ≃
{

µτ for τ ≪ τeq(c)

Ωstab(c) for τ ≫ τeq(c)
(κ = 1, 2). (3.61)

The function Ωeq(τ ; c), which does not depend on κ by detailed balance, is shown as a

red line in Figure 3.7. Over a wide range of evolutionary parameters, the maximum value

depends on the stabilizing strength in a simple way, Ωstab(c) ∼ 1/(2c), with corrections

for weaker selection and for larger nucleotide diversity.

• Adaptation in a macro-evolutionary fitness seascape (c & 1, 0 < υ . 1/τ̃). The divergence-

diversity ratio acquires an adaptive component,

Ω(κ)(τ) = Ωeq(τ ; c) + Ω
(κ)
ad (τ ; υ)

= Ωeq(τ ; c) +
υ

2
[τ − κτeq(c)] (κ = 1, 2), (3.62)

with corrections for weaker selection and for τ approaching the non-equilibrium saturation

time τsat = r2/υ. The functions Ω(κ)(τ) are shown as blue lines in Figure 3.7.

3.5.2 The Ω test for stabilizing and directional selection

Using the divergence-diversity ratio (3.59), we can infer selection on quantitative traits from

diversity and time-resolved divergence data. In principle, comparative trait data from a single

pair of species with divergence time τ & τeq(c) determine stabilizing selection in a fitness land-

scape; data from three or more species determine stabilizing and directional selection in a fitness

seascape. Following Equations (3.61) and (3.62), we then construct an approximate linear fit to

the Ω ratio of these data,

Ω(τ) ≈ Ωstab + Ωad(τ) = Ωstab +
υ

2
τ. (3.63)

We obtain simple estimates of stabilizing strength and driving rate,

c ≈ 1

Ωstab
, υ ≈ 2Ωad(τ)

τ
, (3.64)

and we infer that a fraction

ωad(τ) ≡ Ωad(τ)

Ω(τ)
=

Ω(τ) − Ωstab

Ω(τ)
(3.65)

of the observed trait divergence is adaptive, i.e., driven by directional selection.
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The Ω test reflects generic characteristics of quantitative trait evolution, which are described

by equations (3.60–3.62): The expected trait divergence 〈D〉(τ) always grows in a quasi-neutral

linear way for divergence times τ . τeq(c); beyond this regime, it depends on both stabilizing

and directional selection. This behavior has important consequences for applications. First,

the Ω test is insensitive to selection if the species compared are too close. Second, cross-

species comparisons that provide evidence for enhanced Ω values in a single lineage cannot

distinguish directional from relaxed stabilizing selection. These limitations may partially explain

the difficulties to infer system-wide evidence for directional selection on gene expression [127–

129].

An important prerequisite for the wide applicability of the Ω test is its universality: the

divergence-diversity ratio depends on the selection parameters c and υ, but it decouples from the

trait’s genetic basis. In particular, it depends only weakly on the number and trait amplitudes of

the constitutive sequence sites, additional single site adaptation through quick compensation by

the integral trait sites as discussed in Chapter 4, and on the amount of recombination between

these sites. All of these genetic factors are, in general, unknown. They act as confounding

factors for an inference of selection based on non-universal observables [96]. The Ω statistics

also decouples from details of the selection dynamics; it can be applied to continual as well

as to punctuated adaptive processes. We have tested this universality by extensive numerical

simulations, which are reported in Appendix A.

The Ω test is based on ensemble averages of trait divergence and diversity. Our statistical

theory also specifies the deviations of individual evolutionary trajectories from the ensemble

averages; these fluctuations are described by the propagator functions in Appendix C. We can

use the propagator statistics to build a hidden Markov model for the inference of selection from

noisy trajectories of individual traits. This method is essential in the analysis of trait divergence

over phylogenies of species, which is described in detail in a follow-up paper [3].

3.5.3 Comparison with sequence-based inference of selection

The Ω test for selection on quantitative traits is related to a test for adaptive sequence evolu-

tion of the McDonald-Kreitman type [130]. This test evaluates the divergence-diversity ratio Ω

for a sequence class under putative selection (e.g., nonsynonymous mutations in protein-coding

sequence) and compares it to the analogous ratio Ω0 for bona fide neutral changes (e.g., syn-

onymous mutations). Positive selection in the query sequence is inferred if Ω > Ω0. In this case,

the amplitude ratio

α =
Ω − Ω0

Ω
(3.66)

estimates the fraction of nonsynonymous substitutions that are adaptive, i.e., driven by positive

selection [131].

Comparing the two inference schemes reveals a number of important differences. Unlike the

McDonald-Kreitman test, the Ω test for quantitative traits does not require a “null trait” that

evolves near neutrality and takes the role of synonymous sequences. Indeed, no such neutral

trait gauge is available in most cases. Instead, the Ω test compares data from three or more
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Figure 3.7. The universal divergence-diversity ratio Ω(κ) (κ = 1, 2), as defined in Equation (3.59),
for a quantitative trait evolving in a single-peak fitness land- or seascape. This ratio is plotted as a function
of the scaled divergence time, τ . Neutral evolution: The function Ω0(τ) (grey line) is independent of κ
and it reaches the saturation value 1 on times scales τ ≫ τ0 = 1/µ (grey curve; the short-time behavior
Ω0(τ) ≃ µτ given by classical quantitative genetics [51,117,118] is shown as dashed line). Conservation in
a fitness landscape: The function Ωeq(τ) is independent of κ and has a smaller saturation value Ωstab(c)
reached faster than for neutral evolution, on timescales τ ≫ τeq(c) (red curve). Adaptation in a fitness

seascape: There is a linear surplus Ω
(κ)
ad (τ) ≃ υ[τ − κτeq(c)], which measures the amount of adaptation

(blue curves).

species, while the McDonald-Kreitman test requires only a single pair of species. Moreover,

the Ω test includes the inference of the stabilizing strength, while the McDonald-Kreitman test

leaves the strength of selection undetermined (large selection coefficients of beneficial alleles are

an input assumption for the estimate (3.66)).

3.6 Pervasive adaptation in Drosophila

In a follow-up research project, we applied the inference method to the Drosophila

genus. We could identify for the first time system-wide adaptation on the level of gene

expression levels. The time-resolved divergence on macro-evolutionary timescales

cannot be well explained by an equilibrium model or neutral evolution.

The Drosophila genus stayed a puzzle so far [129]: while extensive adaptation was inferred

on genomic level [19,132,133], it was impossible to identify system-wide adaptation on the level

of gene expression levels because the neutral gauge used in classical test, e.g. from synonymous

sites, is not available on phenotypic level. Our Ω-test derived in this chapter opens new avenues

to analyse this dataset. Hence, we applied the Ω-test in a follow-up research project [3]. The

divergence of gene expression levels of thousands of genes could be temporarily resolved with

the phylogenetic tree reconstructed from genomic information.

A ‘simple’ inference scheme is shown in Figure 3.8A. The observed gene expression divergence

shows strong directive selection by adaptive pressures, cp. Figure 3.7 and Section 3.5.2. A

more intricate maximum likelihood approach for the inference with the probabilistic propagators

from Appendix C was also used in [3]. This allowed to infer that 54 % of genes showed a

significant fitness flux time-integrated over the entire phylogeny (
∫

2Nφ(t)dt > 1) and 63 %
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Figure 3.8. Pervasive adaptation inferred in Drosophila, taken from [3] The figure shows
the average divergence curve of the Ω–test of gene expression levels across the Drososphila genus as a
function of neutral divergence time in units of µ−1 [3]. The best fitted model (green) fits the data with
substantial adaptation, which could not be fitted equivalently well by an equilibrium model. Blue shows
the equilibrium divergence of the fitted model and grey the neutral expectation pattern.

adaptive divergence of total observed divergence, cp. Equation (3.65). Furthermore, alternative

selection scenarios have been discussed and could be excluded as origination of the observed

pattern; adaptation turned out to be by incremental, but continuous adaptation. Furthermore,

the Ω-test allows also to analyze genes by functional classes and hence to identify functions

under strong adaptation, as reported in [3].

3.7 Conclusion

In this chapter, we have developed a statistical theory for the evolution of a quantitative trait

in a stochastic fitness seascape. The fitness model used for our analysis, a single-peak seascape

with diffusive or punctuated peak displacements, covers a broad spectrum of biologically rele-

vant evolutionary scenarios [2]. The two seascape parameters c and υ quantify stabilizing and

directional selection on the trait, which, in turn, govern the trait’s fundamental evolutionary

modes of conservation and adaptation. Our analysis shows that these modes are not mutually

exclusive, but are joint features of dynamic selection models.

In a macro-evolutionary fitness seascape, conservation and adaptation are associated with

different timescales: conservation is observed on shorter scales, while adaptive changes build up

on longer scales of evolutionary time. Micro-evolutionary fitness fluctuations, on the other hand,

lead to reduced genetic adaptation, which decouples from the macro-evolutionary dynamics of

the trait. Rapid adaptive response to seasonal or other fluctuations of the environment often

involves epigenetic modifications or phenotypic switching [115]. The evolutionary roles of these

mechanisms are beyond the scope of this thesis. The spectral decomposition of the fitness flux,

which has been introduced above, quantifies how the adaptive process is distributed on different

scales of evolutionary time.
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Our theory suggests new inference methods for selection on quantitative traits, which have

important potential applications. At the sequence level, an increasingly complex picture of se-

lection has emerged in recent years. Notably, we have acquired a growing repertoire of empirical

genotype-fitness landscapes [134], which has generated important experimental and theoret-

ical insights into the evolutionary dynamics on these landscapes. However, we still know little

about the statistical properties of empirical phenotype-fitness maps, and next to nothing about

phenotype-dependent seascapes. Systematic inference of selection on molecular quantitative

traits, such as levels of gene expression and enzymatic activity, can contribute to close this gap.

From applying this methods to the Drosophila genus, we could identify in a follow up publication

a large degree of adaptation shaping the divergence of gene expression levels [3]. This allowed

for the first time to detect adaptation on the phenotypic level and, hence, to unify the picture

with observed broad adaptation on the sequence level. Eventually, fitness land- and seascapes

for individual traits will need to be integrated into larger phenotype-fitness maps, which include

fitness interactions between traits.

How the constraining selection shaping the divergence pattern impacts the co-evolution of

QTL, even for multiple traits, will be the topic of Chapter 4.



Chapter 4

Epistatic pattern of molecular

phenotypes

Correlations between genomic items have been observed in evolutionary systems

and a dynamical origin of these is identified as fitness epistasis between these items.

While theoretical models can well describe such interactions between pairs of sites,

also broad correlation sectors have been observed in data. Here, we close the gap

between so far local theory and experimental results by employing quantitative

trait theory under stabilizing trait-selection. This non-linear phenotypic selection

generates broad, but simple epistasis on the quantitative trait loci (QTL). These

sectors can be identified with the mode of stabilizing selection on quantitative traits.

We furthermore present a new method to make use of temporal distance information

of mutations to appropriately measure correlations even with few mutations and far

from evolutionary equilibrium. This allows us not only to identify the number of

underlying traits by the rank of the correlation matrix, but also to re-identify the

trait effects of QTL and strongly adaptive sites—the latter from break of detailed

balance in the correlation measure. Hence, our model provides a new method to

infer a-priori unknown genotype–phenotype–maps from sequence data as well as

loci under strong adaptive pressure.

4.1 Introduction

The evolution of molecular phenotypes, such as protein stability, ligand binding properties or

allosteric mechanisms is shaped by the collective dynamics of its multiple genomic sites [53].

These dynamics are caused by fitness interactions of these sites, i.e. fitness epistasis generated by

non-linear phenotypic fitness landscapes. Recent studies, so called direct coupling analyses [29,

76–79], showed that the detection of biophysical constraints is possible from the evolutionary

process: they could identify contact points of residues within and across proteins from the

evolutionary sequences. These were explained by evolutionary models containing pairwise and

hence local epistasis [76, 78, 79]. On the other hand, broad correlations have been detected

52
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in sequence alignments across many protein families [80–82]. These sectors were identified

with protein function, such as protein stability, catalytic power and allosteric mechanisms that

supposedly underly quantitative traits. However, a sophisticated evolutionary model for these

functions is still missing.

This motivated us to study a theory for the co-evolution of QTL. We find that the evolution

of quantitative traits in non-linear fitness landscapes, particularly under stabilizing trait selec-

tion, generates these broad correlations. The underlying principle is depicted in Figure 4.1: a

deleterious mutation at one trait locus is only occasionally compensated by a particular other

site, but can be compensated by any other of the QTL. We see that broad correlations do not

directly imply complicated epistatic interactions for traits with a significant input of deleter-

ious mutations driving selection away from fitness optima. This leads to a smooth sequence

landscapes of low rank in contrast to the very rugged fitness landscapes like in Kauffman NK

models [135, 136] or house of cards models [137], or even phenotypic evolution around fitness

peaks [90]. Though noise can be strong in the correlation of a given pair of sites, these correla-

tions recover the smooth phenotypic fitness landscape on trait scales when taking all the QTL

responses into account. We see that ubiquitous epistasis, which was associated to very lim-

ited predictability in rugged landscapes, actually can have a predictive power, e.g. in foreseeing

compensatory mutations [10].

Furthermore, the methods and models developed so far use as a prerequisite the assump-

tion of evolutionary equilibrium or maximum entropy principles, ignoring the phylogenetic rela-

tions [76,77,80,81]. It allows the inference of variational constraints in the evolutionary process,

if this process is not too strongly driven by adaptation and data are evenly sampled across

the phylogeny. However, it cannot identify the evolutionary mode, for instance to distinguish

stabilizing selection from adaptation. Moreover, the equilibrium assumption faces a large bias if

the analyzed sequences are not obtained from a well balanced phylogenetic tree underlying the

data [29]. This is the case for strongly adaptive species. Nonetheless, such methods have been

applied to infer mutational patterns in the somatic evolution of immune repertoires, epistatic

interactions between deleterious mutations in the human immunodeficiency virus [6,83]. To ad-

dress these issues, we extend the trait model to adaptive systems with fitness seascapes driving

individual QTL [19, 59]. While fluctuations of undriven trait sites deleterious to the trait are

generated by genetic drift or genetic draft, adaptation can significantly increase these rates, if

strong adaptive pressure on a site overruns trait selection. Either cause triggers selection on

compensatory mutations on other trait sites, but the compensatory response of driven sites is

suppressed.

We introduce time-resolved observables such as pair-wise substitution rates that allow to

quantify not only the trait effects, but also the adaptation of a site from the asymmetry of the

response matrix. This short-term correlation measurements are also applicable to phylogenetic

trees under very strong adaptive pressures [138] and can help to improve the predictability of

evolution [7,10,11]. Such short-term time-ordered correlation measurements have been identified

to detect the strength of non-equilibrium in Ising models with asymmetric couplings [139].

However here, the non-equilibrium equivalent would be the time-dependence of the external
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magnetic field and constrained coupling constants with strengths dependent on the genetic

background.

Finally, we generalize our approach to the correlation pattern of multiple co-evolving traits

that generate multiple sectors but still lead to low-rank correlations; with this, it is possible to

distinguish the effect of sites onto various functions. The compensation pressure of one trait can

be seen as external driving onto the other trait. Therefore it will help to identify additional inter-

protein relations from constrained inter-protein biophysics generated by broad binding domains,

similar to how it is done with direct coupling analysis so far [79].

After we already discussed the average impact of trait selection onto single site selection

and the epistasis generated by non-linear phenotypic fitness landscapes in Section 2.2, we now

derive single site properties of trait plus external selection such as fixation probabilities and

substitution rates in Section 4.2. This builds the fundament to derive deviations from these

through the epistatic trait response in Section 4.3. In Section 4.4, we discuss how adaptation

explains the asymmetry pattern of the response by relating it to the fitness flux. The analysis

extends to the co-evolution of various quantitative traits in Section 4.5. With relating the

epistatic pattern to Chapter 3, we can relate the response to predictability of compensation in

Section 4.6. We guide the reader by keeping track of the key variables and results in Table 4.1.

We support our analytical considerations by simulations performed with an Wright–Fisher–

process containing (time-dependent) selection, stochastic mutations, and stochastic sampling of

the successor generation (genetic drift) as detailed in Appendix A.

4.2 Effectively independent QTL dynamics

In this section, we derive the marginal single-site fixation probabilities of alleles in

stationary states and the substitution rates under trait selection plus external selec-

tion, where the latter can be constant or causing adaptive pressures. On the one hand,

these results serve as null-mode to analyze expected pairwise counts without explicitly

triggered epistatic response. On the other hand, they are needed twofold for the cor-

relation measurements: a) they determine the rate of a site as a primary mutation

and b) the state probabilities of a site set its compensation probability. Hence, they

need to be averaged over.

To study the co-evolution of quantitative trait sites, we model the evolution in a non-linear

and time-independent phenotypic fitness landscape f(E) with additional pleiotropic selection

on some sites. The latter are fitness interactions with other Mendelian or polygenic traits.

As discussed in Equation (2.20), the effective average selection on a site j is composed of its

single site selection coefficient sj(t) and the average trait selection sfj (t) set by the background

mean field statistics of the other trait sites. Generically, this generates two polarizations for a

mutation: first, it either raises or lowers the trait value, i.e. ǫj = +1 or −1; second, it is either

beneficial or deleterious with respect to the trait-external selection: ǫjηj = +1 or −1. Here,

1equilibrium
2macro-evolutionary driving
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Table 4.1. Overview of important definitions and results. Here, we show the key definitions
and results of the main text. The variables in in the text may have, context-dependent, explicit time-
dependence t, or the rates have direction indices ǫj = ±1 restricting on a subset of substitutions with
respect to the trait value. The related count observables are introduced in Methods 4.8. The indexed
variables relate to a single site j or pairs of sites i and j.

Variable Related observable Description

M
o
d
e
l

p
a
ra

m
e
te
rs

µ,N Mutation rate, population size
E, f(E), ℓ, Trait value, trait fitness, # of trait loci,
E2

0 = 1
4

∑

i E
2
i neutral trait scale

c = 2NE2
0〈f ′′(Γ)〉 Average stabilizing strength of trait

Ej From N̂ij or Npol
ij Trait effect of site j

sj
Pleiotropic, trait-external selection
(defined > 0 in adaptive model)

γj Driving rate of sj

S
in
g
le

si
te

v
a
ri
a
b
le
s

sfj = Ej〈f ′(Γ)〉 Average selection generated by trait

stotj = sfj + sj Effective average single site selection

ρj ∼
{

ρeqj , eq.1

γj , driver2
, ρeqj pj , —

Resulting independent substitution rate,
equilibrium substitution rate (γj = 0)

αj ≈ ρj/ρ
eq
j ≥ 1, αpol

j ≥ 1 From N̂ij or Npol
ij Response asymmetry (equality if γj = 0)

φj ≈ ρeqj sj(αj − 1) — Fitness flux of site

P
a
ir
w
is
e
v
a
ri
a
b
le
s

ρ0ij = ρiρj
Nij ,

〈N0
ij〉 ∼ pipj

Null mode of independent evolution

ωij = −c
EiEj

E2
0

From N̂ij or Npol
ij Epistasis matrix

ρij(τ) ≈ ρ0ij + ρiρ
eq
j e−2τ/τeq

Nij ,

〈Nij〉 = N0
ij +

ωij

3αj

Pairwise rates/counts

ρ̂ij(τ) = ρij(τ) − ρ0ij

≈ ρ0ij
ω2
ij

αj
e−2τ/τeq

N̂ij = Nij −N0
ij ,

〈N̂ij〉 ≈
ωij

3αj

Epistatic response enhancement

ρpolij (τ) = ρ0ij
ωij

αpol

j

e−τ/τeq

Npol
ij ,

〈Npol
ij 〉 ≈ ωij

2αpol
j

Polarized response rates/counts
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Figure 4.1. Compensatory trait dynamics and QTL correlations. The figure shows the
compensatory dynamics on phenotypic level as well as the resulting response correlations. A primary
substitution may arises through genetic drift/draft or through external adaptive pressures of the site i.
A It brings the trait value out of equilibrium by its trait effect Ei at time t0 and changes selection
on all other QTL to compensate its effect. The compensatory process is stochastic and shows multiple
microscopic pathways, however the mean effect follows simple dynamics. We derive the resulting time-
dependent rates of pairwise substitutions of all pairs of sites, i.e. the dynamics in 2nd order in time.
B (recapitulation of Fig. 2.1C) These dynamics generate broad epistasis and correlations between all trait
loci (color code), which are in equilibrium just determined by the outer product of the trait effect vector
(E1, . . . , Eℓ) (blue on top and right) and a global factor from the mean curvature of the fitness landscape.
C In the response matrices, driver sites under external adaptive pressures (marked by stars) can be
identified by their relatively small compensatory response. Asymmetry in the time-ordered correlation
matrix is directly related to adaptation.

ηj = ±1 is the direction of external selection being parallel or anti-parallel to the effect of the

focal trait.

For a quantitative analysis we specify a minimalistic model for each site that captures these

properties: two environmental states ηj(t) = ±1 set external selection sj(t) = ηj(t)sj with

amplitude sj ≥ 0. In non-equilibrium, the external selection flips ηj(t) → −ηj(t) with rate γj .

Nonetheless, the results show largely independence of this particular model specification. We

know derive independent state probabilities and substitution rates under this model with trait

mean field in local equilibrium, γj = 0, and under adaptation, γj > 0.

Single site equilibrium. In evolutionary equilibrium3 selection is time-independent: single-

site selection sj and trait selection f(E) are constant and thus is the average effective selection

3By equilibrium we mean the equilibrium of an undriven focal site together with an mesoscopic equilibrium
on trait scale. These are marginal statistics of a high-dimensional steady state or even with driving on other trait
sites.
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coefficient stotj = sj + sfj (2.20). We denote the two equilibrium state probabilities by

Λ
ǫj
eq,j := Λeq(ǫjs

tot
j ) with ǫj =







+1, σj = 1

−1, σj = 0
(4.1)

for the fixed alleles σj = 0, 1, cp. Equation (2.1), and with Λeq(.) from Equation (2.23).

The total rate of substitutions of a site j is in equilibrium

ρ̌eqj ≡ Λ
−ǫj
eq,jµNG(ǫjs

tot
j ) =







µ2Nsj/ sinh(2Nsj), (independent mutations)

µ/(2 cosh(sj/σ̃)), (strong interference, sj . σ̃),
(4.2)

where G(.) is either obtained from (2.21) or (2.22). The stronger the site selection, the stronger

fluctuations due to genetic drift or draft are constrained.

Single site adaptation. The marginal adaptive dynamics of a trait site is a generalization

of [19], who treated a model with symmetric single site selection flips sj(t) = ±|sj | alone.

However here, the time-constant average trait selection sfj can still constrain the dynamics. For

instance for effective adaptive pressures, adaptive selection has to be larger than trait selection,

sj & |sfj |. Therefore, we are in need of 4-state model (ǫj , ηj) with two allelic and selection states

ǫj , ηj = ±1, each. The transitions between the state probabilities Λ
ǫj ,ηj
j are

• substitutions ǫj → −ǫj with rates µNG
ǫj ,ηj
j := µNG(ǫj(s

f
j + sjηj)). These depend on the

actual environment ηj and fixation probabilities G(.) from either evolutionary mode (2.21)

or (2.22).

• environmental changes flipping ηj → −ηj with rate γj .

We neglect double events (ǫj , ηj) ↔ (−ǫj ,−ηj).

We obtain the stationary state probabilities Λ
ǫj ,ηj
stat,j from the eigenanalysis of the transition

matrix, see Appendix D.1. The total substitution rates are obtained from summing over fixation

states weighted by their probabilities,

ρ
ǫj
stat,j ≡

∑

ηj=±1

Λ
−ǫj ,ηj
stat,j µNG

ǫj ,ηj
j

=
1

2
ρstatj ≡

∑

ǫj=±1

ρ
ǫj
stat,j .

(4.3)
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We find then the limits, well-known for sfj ≪ sj or sfj ≫ sj [19],

ρstatj =







ρeqj ,
sj . max(|sfj |, 1/N) or

γj/µ . Nsje
−2Nsj

(effectively unadaptive),

γj ,
sj & max(|sfj |, 1/N) and

Nsje
−2Nsj . γj/µ . Nsj

(macro-evolutionary adaptation),

µNsj ,
sj & max(|sfj |, 1/N) and

γj/µ & Nsj
(micro-evolutionary adaptation),

(4.4)

where it is worth noting that average trait selection balances such that the condition on sj is

typical of order 1/N or σ̃ if draft dominates, see Equation (2.17). In Equation (4.4), ρeqj =

µN(|sfj |−sj)

sinh
(

2N(|sfj |−sj)
) +

µN(|sfj |+sj)

sinh
(

2N(|sfj |+sj)
) is the equilibrium limit γj → 0. It deviated from ρ̌eqj (4.2) by

quenched disorder statistics across both selection states ±sj with ρeqj = ρ̌eqj if sj = 0. The exact

results are reported in Appendix D.1. Adaptation generically triggers more substitutions.

4.3 Pairwise fixation rates

In this section, we take the independent rate derived in the previous section as the

rate of a particular site acting as primary mutation. These cause a selective change

that gets compensated by the ensemble of all trait sites on the trait equilibration

timescales τeq. From this window of conditional selection, we derive the rate of

observing a compensator substitution at a focal site. In particular, we introduce

two time-dependent measures: the total pairwise fixation rate of mutations i and j

and the polarized pairwise fixation rate. The latter is taking into account the sign

of the trait-directions of mutations. If this information is known, it generates a

stronger signal. Both response rates show a simple, but broad rank 1 form, which is

mainly determined by the trait effects of the primary and the secondary mutation,

cp. Figure 4.1B. Adaptation generates asymmetry, which we discuss in detail in

Section 4.4.

In contrast to localized point epistasis, i.e. Mendelian epistasis, the epistatic effect sj|i ∼ ωij

of a quantitative trait is only of short-term after the primary mutation, see Figure 4.2: when

the mean trait is brought out of equilibrium by the primary mutation, 〈Γ〉 → 〈Γ〉 ± Ei, plenty

of other QTL can already compensate this before a focal site j takes the opportunity. These

compensatory pathways together are by a factor of order ℓ faster than the response time of

locus j. Their average can be described on the mesoscopic trait scale by the trait equilibration

〈Γ〉bi(τ)−〈Γ〉 = Eie
−τ/τeq , cp. the results of Chapter 3. This is valid because Ei’s of quantitative

traits are small compared to the trait scale and hence trigger a linear response. Here, 〈.〉bi denotes

the average compensatory dynamics of the genetic background conditioned on the primary
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Figure 4.2. Trait epistasis under compensatory background dynamics. A Adaptive pressures
pleiotropic to the trait visualized by time-dependent allelic fitness, genetic drift, or genetic draft generates
a primary allele substitution on site i. B It changes the trait value by Ei (green arrow), which is on
average deleterious for the trait and triggers compensation on timescale τeq by other trait loci, here m and
n. These restore the trait value by their effect sizes (red arrows). C The conditional response selection

coefficient 〈sfj|i(τ)〉bi = ωij/(2N)e−τ/τeq (4.5) of a focal site j is negative, if a mutation has the same trait

direction as the primary mutation. Dynamically, it decays through the average background compensation
from all other trait sites on the trait equilibration time τeq ≈ 1/(cµ) (3.5) derived in Chapter 3.

substitution at site i. This could be an ensemble of parallel evolution experiments starting

conditioned with populations that just fixed the primary substitution or response statistics with

various primary substitutions i spread on a phylogenetic tree, which is a temporal ensemble.

The average decay of selection on site j reads then

〈sfj|i〉bi(τ) ≈ ±ωij

2N
e−τ/τeq , (4.5)

where τ is the time since substitution i and ωij is the characteristic epistatic matrix (2.19).

This background meanfield hence changes temporarily the average effective selection at a site.

With polarization ǫi of substitution i, a mutation with polarization ǫj at site j has the effective

selection ǫj(s
tot
j (t) + ǫi

ωij

2N e−τ/τeq). The interaction of two particular sites has minor effects on

the total trait scale and hence selection scale. Therefore the epistatic interaction ωij is generally

small and we can expand the fixation probability G
ǫj ,ǫi
j|i (t, τ) := G

(

ǫj
(
stotj (t)− ǫi|〈sfj|i〉bi(τ)|

))

in

ωij ,

G
ǫj ,ǫi
j|i (t, τ) = G

ǫj
j +

(
G

ǫj
j

)′
ǫiǫjωije

−τ/τeq +
1

2

(
G

ǫj
j

)′′
ω2
ije

−2τ/τeq + O(ω3
ij), ∀i, j, (4.6)
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where (G
ǫj
j )

(n)
= G(n)(ǫjs

tot
j (t)) is the n’th derivative of the unconditional fixation probability

from either evolutionary mode (2.21) or (2.22). We obtain the total rate of observing these

substitutions at time-distance τ assuming the stationary rate of the primary mutation to be

independently given by (4.4),

ρ
ǫj ,ǫi
ij (τ) =







ρǫieq,iΛ
−ǫj
eq,jµNG

ǫj ,ǫi
j|i (τ), (equilibrium),

ρǫistat,i
∑

ηj=±1 Λ
−ǫj ,ηj
stat,j µNG

ǫj ,ǫi,ηj
j|i (τ), (adaptive),

∀i 6= j, (4.7)

where we had to average over environmental backgrounds ηj (implicitly in the rate of ρǫii ). We

used, context-dependent, equilibrium fixation probabilities G
ǫj ,ǫi
j|i (τ) = G

(

ǫj
(
stotj −ǫiǫj |〈sfj|i〉bi(τ)|

))

or environmental dependent fixation probabilities G
ǫj ,ǫi,ηj
j|i (τ) = G

(

ǫj
(
ηjsj+sfj−ǫiǫj |〈sfj|i〉bi(τ)|

))

;

we expand either of these according to Equation (4.6). Equation (4.7) is valid for different sites,

i 6= j. The self-response i = j deviates strongly: its state is conditioned after the primary

substitution. Therefore, the polarization of the next mutation is predetermined and, moreover,

single-site selection changes sign. We discuss it in Appendix D.1.

The total rate of observing any pairwise substitutions at sites i and j with temporal distance

τ is obtained by summing over mutational polarizations,

ρij(τ) ≡
∑

ǫj ,ǫi=±1

ρ
ǫj ,ǫi
ij (τ) = ρiρj + ρiρ̃

eq
j ω2

ije
−2τ/τeq

[
1 + O(ω2

ij , τµ)
]

=: ρ0ij

[

1 + (ω2
ij/αj)e

−2τ/τeq + O(ω4
ij , τµ)

]

,

∀i 6= j, (4.8)

where ρ̃eqj ≈ ρeqj , but a factor ∼ 1 discussed for its consequences to the asymmetry of (4.8) in

Appendix D.1, and ρi = ρstatj . The pairwise rate is enhanced for trait sites Ei, Ej 6= 0 compared

to the null model of independent evolution, i.e.

ρij(τ) > ρ0ij := ρiρj , ∀i 6= j. (4.9)

The compensatory response has an relative strength ω2
ij ∼ (cEiEj)

2 as we confirmed by simula-

tions in Figure 4.3 with time-integrated observables, cp. Methods 4.8. Overall, is proportional

to the equilibrium substitution rate ρeqj , which is the variability of site j constrained by its se-

lection in a constant environmental state. On the other hand, independent rates are set by the

total rate ρj including adaptive response: the asymmetry factor αj = ρj/ρ
eq
j ≥ 1 suppresses the

relative response of j in substantial non-equilibrium, which we discuss extensively in the next

section.

We introduce a polarized measure ρpolij (τ) by taking the relative direction of trait effects of

primary to compensatory mutation into account, i.e. ǫiǫj . It measures the rate difference of

parallel and anti-parallel substitutions with respect to the trait direction:

ρpolij (τ) ≡
∑

ǫj ,ǫi=±1

ǫiǫjρ
ǫj ,ǫi
ij (τ)

= ρ0ij(ωij/α
pol
j )e−τ/τeq

[
1 + O(ω2

ij , τµ)
]
,

∀i 6= j, (4.10)
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Figure 4.3. A quantitative trait generates broad correlations of low dimension. We simulate the
evolution of a quantitative trait that generates the broad response pattern. A Simulation parameters: the trait
effects Ei are shown on top (blue: trait sites, black: independent sites) and the epistasis ωij ∼ −EiEj obtained
from their outer product is shown as color matrix, cp. Figure 2.1C. Epistasis is not influenced by the single site
selection coefficients si (right). The other parameters are N = 1000, c = 100, and γi = 0.8µ for all sites. B1–
C1 Enhancement of the response rates weighted by temporal proximity (τ0 ∼ 2 substitutions), cp. Methods 4.8.
The shown observables are: B1) the polarized response measured by npol

ij := Npol
ij /N0

ij ∼ ρpolij (0) (4.10) and

C1) the total response with all substitutions measured by n̂ij := N̂ij/N
0
ij ∼ ρ̂polij (0) (4.8). The simulations

retrieve the trait pattern, which is noisy on pairwise level. Sites with Ei < 0 are visible with average negative sign
in the polarized response. B2, B3, C2, C3 A singular value decomposition on standard normalized data [138],
see Methods 4.8, retrieves the trait effects of sites. B2,C2 Spectrum of this significance matrix (blue) related to
correlation matrices B1 and C1, respectively. Red: spectrum of first singular value of randomized process (null
model) with correlations just by noise. Both measurements show a single significant singular value generated by
the trait. B3,C3 The singular vectors associated to the significant singular value show strong correlation with
trait effects, i.e. npol

ij ∼ EiEj ∼ tpoli dpolj and nij ∼ E2
i E

2
j ∼ tidj . Here and in all other simulations, sites with less

than 5 substitutions were excluded from the analysis. Data run to collect in total 40,000 substitutions.
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with a factor αpol
j ≥ 1 suppressing the response of j in non-equilibrium. This we discuss together

with αj in detail in the next section. We verify this pattern by simulations in Figure 4.3. For

trait sites Ei, Ej 6= 0, this rate is anti-correlated ρpolij (τ) ∼ −EiEj . It is 0 if one site is not

contributing to the trait. Since this response measures the first order in ωij , it gives a stronger

signal than the correlations of all substitutions. However, the polarization is often a-priori

unknown for biological data and, thus, this measure cannot be used.

Heterogeneous mutation rates µj would change total rates, i.e. ρj ∼ µj and ρeqj ∼ µj , but

not the relative effect imposed by trait epistasis. The key characteristics of the trait response

measures (4.8) and (4.10) are

• Time window for compensatory response. An enhanced response is only observed

on a short trait-equilibration timescale τeq. This is a dynamical consequence of the com-

pensation by other trait sites, cp. Figure 4.2.

• Generically broad, low rank correlations. The rates are determined by broad matrices

across all QTL. However, these show a simple, low rank pattern, cp. Figure 4.3: for the

unpolarized rates (4.8), the independent model ρ0ij = ρiρj without trait correlations is of

rank 1 determined by single-site fixation rates only. The trait response itself adds another

rank to the matrix, ρiρ̃
eq
j ω2

ij , since ωij ∼ −EiEj is just determined by the outer product

of trait effects. The simplicity of ωij also makes the polarized response ∼ ρ0ijωij/αj to

be of rank 1. Furthermore, co-evolving traits would add more independent ranks, as can

be seen in Equation (4.16) discussed in detail in Section 4.5. Therefore, a quantitative

traits generates broad and flat correlation patterns. This is an universal property that ℓ2

epistatic correlations can be explained by ℓ parameters: each site’s epistatic interaction

with all other trait sites is characterized by its own trait effect. That allows the inference

of trait effects, which we indeed retrieve in the presented simulations in Figures 4.3, 4.5,

and D.2.

A caveat concerns the diagonal elements of the response matrix as discussed in Ap-

pendix D.1. However, the impact of the diagonal to the full response matrix is localized

and hence by a factor ∼ 1/ℓ ≪ 1 smaller, which we can ignore in the further analysis.

• Adaptation generates asymmetry, which can even be inferred from these time-resolved

correlations. This we discuss in detail in the following section.

4.4 Adaptation generates asymmetry

Here we discuss the asymmetry observed in both response rates, ρij(τ) and ρpolij (τ),

cp. Figure 4.1C, which arises if the focal site for the secondary mutation is under

strong adaptive pressure. Significant asymmetry in the correlation matrices means

that the underlying process is in non-equilibrium. It is stronger, the farer the system

is from equilibrium. We hence relate the strength of asymmetry to the fitness flux

and discuss how it can be used to infer the genotype–phenotype map together with

site-adaptation.
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The symmetry properties of ρij and ρpolij allow to distinguish strong non-equilibrium from

equilibrium of particular sites: it measures how strong detailed balance ρij(τ) = ρji(τ) and

ρpolij (τ) = ρpolji (τ) is broken. Using time-dependent observables for inferring non-equilibrium has

been identified useful in Ising models with asymmetric couplings [139]. The asymmetry factors

of the rates, αj and αpol
j , arise from constrained responses for adaptive sites and are functions

of its selection parameters. Under Kimura-substitution4 probabilities (2.21), they read

αj ≈
ρj
ρeqj

≥ 1 (4.11)

αpol
j =

1 + b1(sj , s
f
j )γj/µ

1 + b2(sj , s
f
j )γj/µ

≥ 1, (4.12)

with equality to 1 in equilibrium and for low efficacy of selection sj . 1/(2N). This also includes

the limit under interference selection described by (2.22). The full solutions are reported in

Appendix D.1.

αj compares the rate of site substitutions in equilibrium with the increased rate through

adaptation in non-equilibrium, ρj > ρeqj ; hence it is a measure of a site being busy with adapta-

tion while response is determined by (short-term) equilibrium rates. We have inherited scaling

behavior from Equation (4.4), which is shown in Appendix Figure D.1A,

αj ≈







1,
sj . max(|sfj |, 1/N)

or γj . ρeqj
(ineffective driving),

γj
ρeqj

,
sj & max(|sfj |, 1/N)

and ρeqj . γj . γmj
(macro-evolutionary adaptation),

µNsj
ρeqj

≡
γmj
ρeqj

,
sj & max(|sfj |, 1/N)

and γj & γmj
(micro-evolutionary adaptation),

(4.13)

with the transition rate to micro-evolutionary seascapes γmj ≡ µNsj , where adaptive fluctuations

are too quick for the adaptation [106]. Asymmetry is visible for substantial single site selection

sj & sfj , 1/N , if the rate of adaptation exceeds the equilibrium fluctuations of that site, γj & ρeqj .

The asymmetry factor increases with stronger driving, which is increasing either γj or sj . We call

such sites under measurable adaptive pressure driver sites and the rest trailer sites, which tend to

compensate more if single site selection is not substantial. Under moderate, macro-evolutionary

driving, the asymmetry factor scales αj∼ γj
2µe2N(sj−|sfj |)/(Nsj); under strong, micro-evolutionary

driving γj & γmj it becomes independent of γj , αj ∼ e2N(sj−|sfj |). Hence it can take large

values even under moderate driving for strongly selected sites, because it would almost never

compensate a deleterious mutation. We show this effect qualitatively for strong adaptive sites

in simulations in Figure 4.4B,D and for mildly adaptive sites with comparable parameters to

4Under strong interference dynamics in the limit sj . σ̃, Equation (2.22), the response is symmetric αj/2 =
αpol
j = 1: individual sites are under weak selection by definition, compared to the fitness distribution within a

population.
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Figure 4.3 in Appendix Figure D.1C.

The polarized asymmetry αpol
j is depicted in Appendix Figure D.1B. It also increases with

driving strength, i.e. both, rate γj and selection sj . Sites under strong adaptive pressures have

again a suppressed compensatory response. The scaling regimes are

αpol
j ≈







1,
sj . max(|sfj |, 1/N)

or γj . ρeqj
(ineffective driving),

γj
ρeqj

,
sj & max(|sfj |, 1/N)

and ρeqj . γj . γmj ρeqj /µ
(weak, macro-evolutionary adaptation),

Nsj ≡
γmj
µ

,
sj & max(|sfj |, 1/N)

and γj & γmj ρeqj /µ
(fast driving).

(4.14)

For substantial single site selection, the asymmetry factor gets significant again when exceeding

the equilibrium substitution rate γj ∼ ρeqj . It also compares the rate of adaptation with equi-

librium fluctuations and allows for the same definition of driver/trailer sites like αj . However,

here the transition to the second regime without further scaling in γj is much lower than the

micro-evolutionary regime at γj ∼ Nsjρ
eq
j = γmj e−2N(sj−|sfj |) ≪ γmj ; it saturates to much lower

values limited by its selection coefficient. Preliminary studies show that this asymmetry is qual-

itatively supported by these equations. This we show by simulations in Figure 4.4A,C for strong

drivers and in Appendix Figure D.1C for mildly adaptive sites with comparable parameters to

Figure 4.3.

The asymmetries αj and αpol
j have important implications for time-ordered correlation meas-

ures: while all sites give a correlation signal independent of their particular selection as primary

mutation, their compensatory response is basically 0 under strong adaptation. If selection of

driving is large enough to overcome constraining trait selection and drift, their dependence on

the driving rates is given by characteristic rates. These are particularly the mutation rate µ, the

equilibrium fixation rate ρeqj , and the characteristic scale for the transition to micro-evolutionary

seascapes γmj . This result is supposedly independent from the details of the underlying minimal

model of driving. We call sites with substantial driving rates γj > ρeqj driver sites and the rest

trailer sites, which can be identified from their highly asymmetric response, see Figure 4.4A–D.

Fitness flux. The fitness flux measures the average fitness gain in response to external ad-

aptive pressures. It also measures, similarly to the heat flux in statistical physics, the deviation

from detailed balance [60]. In our non-equilibrium model for single-site driving, the stationary

trait dynamics generates no fitness flux since it is under constant selection f(E). Hence we

can define a fitness flux φj for each site from its adaptive response to the single site driving γj ;

deleterious effects of this response onto the trait are on average compensated by trailer sites.

In the macro-evolutionary limit, when selection has enough time to adapt, the fitness flux

is obtained from the enhancement of single-site rates and can therefore be linked to the total
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Figure 4.4. Adaptation generates asymmetric response correlations. We simulate with 40
trait sites (Ei = 1, blue) and 80 trait-independent sites (Ei = 0, black). Each set has 10 sites under
substantial selection with Nsi = 30. A,B Simulations without driving in evolutionary equilibrium. Sites
si are excluded because they show no variability. C,D Contains driver sites (the set with sj 6= 0),

which have driving rates exponentially distributed with mean γi = 0.004µ. A,C show npol
ij similar to

Figure 4.3B1. B,D shows n̂ij similar to Figure 4.3C1. The other simulation parameters are the same.
While the equilibrium matrices are symmetric apart from local noise, the non-equilibrium asymmetry of
driver sites (si 6= 0 and Ei 6= 0) is clearly visible in the suppressed response as a compensatory mutation
of panels C and D. E This asymmetry is clearly related to non-equilibrium and hence adaptation of some
QTL. The panel shows the global asymmetry of the response matrices n̂ij (blue) and npol

ij (red) against
the observed cumulative fitness flux φ =

∑

i∈drivers φi ≈
∑

i∈drivers ρisi for various simulation parameters
(φ-scale non-linear). The first two measurements correspond to the matrices in panels A,B and C,D.
We measure the asymmetry of a matrix as squared L2-norm of the asymmetric part divided by the full
squared L2-norm, i.e. between 0 and 1. The asymmetry is monotonically increasing with the fitness flux:
it is a measure for adaptation. However it saturates per driver site since their compensatory response is
basically 0. In Figure D.1C,D we show the site-specific asymmetry for weaker driving.
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count asymmetry

φj ≈ sj(ρj − ρeqj ) ≈ sjρ
eq
j (αj − 1) ≥ 0, (4.15)

where driving is captured by the asymmetry factor αj ≥ 1. The fitness flux φj is 0 in equi-

librium [60], where the response is symmetric, i.e. αj = 1. The same relation holds for the

polarized asymmetry in the regime of weak macro-evolutionary adapation (4.14), γj & γmj ρeqj /µ,

where αpol
j = αj . In Figure 4.4D and Appendix Figure D.1D, we show that the asymmetry is

indeed an increasing function of the fitness flux, though its quantitative scaling is out of numer-

ical reach as discussed in the figure caption. In Appendix D.1, we generalize our pairwise rates

from substitution rates to rates of finite allele frequencies for observing primary and secondary

mutations [21]. This permits the application on phylogenetic trees, which we do in a follow

up paper [138]. Distinct observation frequencies for driver- and trailer-mutations influence the

symmetry of the null mode ρ0ij only, but not the response asymmetry αj , cp. Appendix D.1.

Hence, they are not false positively related to adaptation: asymmetry in the correlation matrix

is a pure pattern of adaptive sites.

Inference of the genotype–phenotype map and adaptation. The time-dependent rates5

ρij(τ) or ρpolij (τ) can be measured if the temporal order and distance of mutations is known.

This applies for instance to phylogenetic trees, even under strong adaptation biasing the tree.

The causality information allows to infer both, epistasis and adaptation: for a particular site,

the response rate by all other sites quantifies the trait effect Ej . The suppressed response

ρj/ρ
eq
j reveals sites that are targets of adaptation. It measures the adaptive trait fluctuations

in units of its (in principle unknown) variability without external pressure. Impressively, also

the 2nd order measurement in ρpolij (τ) can reveal more information of the adaptive process

than classical sequence based tests such as the McDonald-Kreitman test [130], which compares

substitution rates ρj with the null model of neutral evolution, ρ0j = µ. A symmetrized measure,

e.g. ρij(τ) + ρji(τ) or Pearson correlations, would not be able to distinguish adaptation from a

smaller trait effect Ej .

4.5 Co-evolutionary quantitative traits

In this section, we extend the discussion to multiple co-evolving traits that shape the

correlation pattern. We start by discussing 2 traits and extend the discussion to g

co-evolving traits. We see that the polarized response ρpolij (τ) produces as many ranks

as traits co-evolve. From the singular modes associated to these ranks, all genotype-

phenotype maps can be retrieved. In principle this is the same for r̂ij(τ) too, however

with the caveat that a pair of highly pleiotropic traits can contribute an additional

rank to the response pattern.

5And hence derived, time-integrated statistics such as Nij ∼
∫
dτρij(τ)e

−τ/τ0 or Npol
ij ∼

∫
dτρpolij (τ)e−τ/τ0

introduced in [138] and recapitulated in Methods 4.8.
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Fitness is clearly not made up by a singular quantitative trait alone, but by a set of these.

This is even the case when studying the evolution of single proteins maintaining stability and

possibly different functions, cp. Section 2.3. Multiple correlation sectors associated with different

functions have been observed in data [81] bringing the co-evolutionary pattern of various traits

to high interest.

We start the discussion with the evolution of 2 co-evolving quantitative traits, E and G, which

can be in general pleiotropic. We ignore functional epistasis between traits: we consider only

fitness epistasis of sites through the non-linear selection of each individual trait. Nonetheless, the

analysis is easily extended towards epistatic relation between traits, as we discuss in Appendix B.

This can be relevant to study proteins as discussed in Section 2.3. As we derive in Appendix B,

the epistatic selection coefficient between site i and j is a generalization of (2.19) by summing

over the epistasis of all genes

ωij = ωE
ij + ωG

ij = −2NcE0 E
E
i E

E
j − 2NcG0 E

G
i E

G
j . (4.16)

We depicted the epistasis in Figure 4.5A for non-pleiotropic and Appendix Figure D.2 for highly

pleiotropic traits. The superscript E or G stand for the corresponding parameters of the par-

ticular trait. The epistasis matrix is no longer of rank 1, but confers another rank for the 2nd

trait. The pairwise substitution rates (4.8), (4.10), and (D.6) depend then on the generalized

ωij (4.16).

We now define polarized rates ρpolij with respect to allelic state, they can be defined with

respect to one of the traits or generalized to a measure taking the polarization of all traits into

account. They show, ρpolij ∼ ωij , 1 rank per trait, which allows to retrieve the number of traits

and the trait effects as we support by simulations in Figures 4.5B1–B3 and D.2B1–B3. We use

a singular value decomposition described in Methods 4.8 and Appendix D.2 for the analysis,

which we developed in [138].

The signal in the total rates ρij−ρ0ij ∼ ω2
ij is quadratic. The quadratic expansion of ω2

ij gives

one rank for each within-trait dynamics, i.e. ∼(cE0 E
E
i E

E
j )2 and ∼(cG0 E

G
i E

G
j )2, and an additional

across-trait rank for pleiotropic sites ∼ cE0 c
G
0 E

E
i E

G
i E

E
j E

G
j , which we find in the simulations for

highly pleiotropic traits D.2C1–C3. The latter captures pleiotropic information relevant for the

dynamics: let a primary mutation be deleterious in both traits and a site j could compensate

E, but would be deleterious in G, too. Then this site would show a weak response though it is

beneficial for E. Therefore, these additional terms in principle allow to measure polarizations

of site mutations between traits. However, if the degree of pleiotropy between traits is small,

the additional rank is localized in the response matrix and it reduces to one significant rank per

trait. This we show in Simulations 4.5C1–C3 for non-pleiotropic traits allowing us to retrieve

the 2 traits and the trait effects from the singular value decomposition.

The results generalize to g co-evolving traits with epistatic matrix ωij =
∑g

g′=1 ω
g′

ij =

−∑g
g′=1 2Ncg

′

0 E
g′

i Eg′

j , cp. Appendix B. Here, the superscript stands for the parameters of the

g′th trait. In principle, the polarized rates show g ranks and the total rates show g within-trait

ranks and possibly up to g(g − 1)/2 further ranks through broad pairwise pleiotropy. However,
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Figure 4.5. Epistasis and correlations generated by 2 quantitative traits Figure similar to
Figure 4.3, however with two non-pleiotropic quantitative traits with trait effects Ei (blue trait in marginal
plots) and Gi (red trait in marginal plots). A,B1,C1 The right, marginal panels show now the 2nd trait
component Gi (instead of si in Figure 4.3). Two non-pleiotropic traits generate two distinct epistatic
sectors in ωij , Equation (4.16), and hence a similar, two-sector pattern in the response rates. B2,C2 These
sectors are each related to a significant singular value in the polarized and the unpolarized response: this
number in principle allows to infer the number of traits in an evolutionary process. B3,C3 The two
singular vectors of the significant modes of the correlations well retrieve the trait effects. Here shown
after a varimax rotation. It retrieves the orthogonal trait contributions and hence allows to infer both
trait effects Ei and Gi independently. In Appendix Figure D.2, we show the corresponding results for
two highly pleiotropic traits.
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the degree of pleiotropy is limited in actual biological data [140] such that the number of ranks

should scale with the number of traits determining selection. A difficulty in data analysis arises

to distinguish for instance 3 traits from 2 pleiotropic traits under strong pleiotropy. However,

it is in principle possible to retrieve the number of traits and site effects to each trait, since the

cross-trait effects are clearly related to the within-trait effects.

To conclude, polarized rates ρpolij directly allow to infer the number of traits from the rank

of the response matrix and the trait effects from the significant singular vectors. The same is

valid for unpolarized rates ρ̂ij , if the traits are only locally pleiotropic. However, if there are

more than 3 significant ranks observed and broad pleiotropy cannot be excluded a-priori, the

degree of pleiotropy has to be studied carefully. As a bonus, in that case the polarization of the

mutations in relation to the traits is measurable.

4.6 Trait constraints

In this section, we relate the sector generated by a trait to the constrained divergence

discussed in Chapter 3. Unsurprisingly, the pairwise rates explain the stabilizing

selection up to second order in time. This allows to relate the response matrices to

predictability of the evolutionary process.

The compensatory effects have their origin in the selective constraints on trait level. These

constraints on trait level were already discussed in context of the divergence curve, Ω(1)(τ) =

2θ 〈D(1)〉(τ)
〈∆〉 , Equation (3.59) and Figure 3.4 in Chapter 3. In the present model, the trait itself is

not under adaptation and follows an equilibrium divergence (ν = 0), Ω(1)(τ) ≈ 1
c (1 − exp(−τ/τeq)).

Here, we relate this divergence pattern to the pairwise correlation functions of trait sites.

We denote fixed site alleles by σi = 1, 0 (2.1). In the substitution dynamics of site alleles,

the rates ρi and conditional rates ρpolij weighted with trait effects generate the divergence,

〈D(t, τ)〉 =
〈

(Γ(t + τ) − Γ(t))2
〉

=

〈(
ℓ∑

i=1

Ei (σi(t + τ) − σi(t))

)2〉

=

ℓ∑

i=1

E2
i

〈
∆σ2

i

〉
(t, τ) +

ℓ∑

j 6=i=1

EiEj 〈∆σi∆σj〉 (t, τ), (4.17)

with allele changes ∆σi(t, τ) := (σi(t + τ) − σi(t)) = −1, 0, 1. These have stationary cross-

correlation functions

〈
∆σ2

i

〉

stat
(τ) =

∫ τ

0
dt′ρstati + O(µτ)2 = ρstati τ + O(µτ)2,

〈∆σi∆σj〉stat(τ) =

∫ τ

0
dt′
∫ τ

t′
dτ ′(ρpolij (τ ′, τ ′−t′) + ρpolji (τ ′, τ ′−t′)) + O(µτ)3

= −(ρiρjτ
2)

1

2
ωij(1/α

pol
i + 1/αpol

j ) + O
(
τ3µ2/τeq

)
, ∀i 6= j,

where the single-site change is linear and the cross-correlation quadratic in time. The quadratic
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contribution of the former is negligible since a factor 1/ℓ weaker than the integral cross-site

compensation.

We restrict on Nsj . Nsfj for the majority of sites such that the asymmetry can be neglected,

αpol
j ≈ 1, in the sum over sites. We then retrieve the stationary divergence in the integral over

all sites

〈D(τ)〉eq = τ

ℓ∑

i=1

E2
i ρi − τ2

c

2E2
0

ℓ∑

j 6=i=1

ρiE
2
i ρjE

2
j + O(τ3(µℓ)2/τeq, τ

2µ2ℓ)

= 4µτE2
0 (1 − τ/τeq) + O(τ3(µℓ)2/τeq, τ

2µ2ℓ),

up to second order in time by the pairwise compensation. Higher orders in time would need

higher order correlations, ρijk(τ, τ ′) and so forth, which we do not consider here. The mesoscopic

trait dynamics is not strongly influenced by single-site driving, because of the quick compensation

time through the integral effect of all sites. This is of course not valid, if most sites contributing to

the trait are driver sites. However in this evolutionary mode, trait selection would be ineffective

and irrelevant compared to the external selection.

The relation to the constrained trait-divergence allows to relate the response rates to the

phenotypic predictability of the evolutionary process as discussed in [53], which is the short-term

time-dependence of the predictability discussed in Section 3.4.3 (v = 0). The individual response

of single sites is highly stochastic. However, the predictability is conserved on trait level. After

a driver mutation, it is very likely that any of the multiple QTL will compensate its effect. This

can improve predictions of the evolutionary process [7, 10, 11].

The macro-evolutionary adaptive Ω-test of Section 3 measures the directional v vs. con-

straining selection c of the trait itself. This test is insensitive to occasional single-site adaptive

pressures, which get quickly compensated by the numerous trait sites. Substantial single-site

constraints influence the trait diversity and the divergence in the same way. Therefore, they

are not influencing the shape of the divergence curve. They are absorbed in an effective weaker

trait scale E2
0 = 1

4

∑

iE
2
i ρi/µ. This just demands for a reinterpretation of the parameter c in

this model. Selection is not selection measured on the trait-scale of random sequences, but the

expected trait variation without trait selection E2
0 = limc,µ→0〈Γ̂2〉, which is smaller through

single-site constraints. The scale E2
0 leaves the fitness flux of trait adaptation anyway invariant.

The pairwise correlation measure can also be generalized to the adaptive phenotype diver-

gence discussed in Section 3. If the mean trait value follows a fitness peak moving with diffusion

constant v0, trait sites follow coherently. A self-consistent closure shows positive correlations

〈∆σi∆σj〉stat(τ) ∼ c0v0µτEiEj > 0 on macro-evolutionary timescales τ > 1/(cµ) arising from

this coherent adaptation. The detection of this evolutionary mode from single sites would de-

mand for long-term correlation measurements, which is not discussed in detail in this thesis.
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4.7 Conclusions and outlook

In this chapter, we showed that the constrained evolution of quantitative traits generate a broad,

but simple low rank epistatic correlation pattern. This pattern originates from the compensatory

pressures induced by a primary mutation effecting all trait sites with their trait effects. The

strength of these correlations is directly related to the strength of stabilizing selection on the

trait, cp. Chapter 3. Correlation measurements allow hence to infer both, the number of traits

constraining sequence evolution, which is in principle obtained from the number of significant

ranks, and their underlying genotype–phenotype map. This follows a very simple procedure:

1. Observe pairwise mutations with their temporal distance and ordering, then

2. define an appropriate time-ordered and short-term count measure between pairs such Nij

or Npol
ij , which we introduced in [138] and recapitulated in Methods 4.8, then

3. correct for the marginal measure N0
ij =

∑

i′j′ Nij′Ni;j [138] and Methods 4.8 and

4. perform a singular value decomposition on the significance matrix [138] to identify the

number of significant traits. The right and the left singular vectors give the trait effects

and the response asymmetry.

This procedure can be applied to multiple sequence alignments. From these, phylogenetic trees

and hence the temporal distance of mutations can be reconstructed. Preliminary results show

that we can apply the method and retrieve back known mutational effects in PDZ domains

[private communication with Simone Pompei]. Here, the conserved trait is the binding energy

with ligands [141]. The method can also help to detect inter-residue or inter-protein interac-

tions [79], if generated by a broad trait, e.g. through binding domains.

Furthermore, time-resolved correlation measurements, such as the pairwise mutation counts

weighted by proximity in time, allow the detection of external adaptation pressures. On trait

sites, these entail a suppressed compensatory response. The asymmetry of the response matrix

is proportional to the fitness flux. This is a big advantage over equal-time correlation measure-

ments, which cannot distinguish adaptation from weaker constraining selection. We showed that

weighting the counts with the relative polarization of the mutation pair improves, as expected,

the signal strength. However, this is possible only, if the direction of trait effects is known a

priori.

Though we concentrated in the main text on substitution dynamics, we showed that our

method is also applicable to phylogenetic trees and hence to actual biological datasets. Strong

adaptive pressures shape the phylogeny and bias classical methods. However, with time-depen-

dent observables, this can be absorbed in the null mode of independent evolutionary rates of

sites and does not influence the response pattern. This allows the inference of correlations

and adaptation even on strongly adaptive systems, e.g. viral populations escaping the immune

system, where classical tests assuming evolutionary are weak. Adaptation is a signature of a

non-equilibrium system and implies asymmetry in the time-ordered correlation matrix. The

asymmetry can be read off from such matrices and enables to detect target sites of strong
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adaptation. In a follow-up paper, we infer a antigenicity-stability model for hemagglutinin of the

human influenza virus [138]. The response asymmetry allows us to detect driver sites, which are

closely related to known epitope sites exposed to the immune system [142]. The adaptive pressure

from the immune system enforces deleterious mutations on these sites destabilizing a stability

trait. Trailer mutations show higher fixation probabilities if they follow driver mutations. They

compensate the deleterious driver effects. As discussed in Chapter 3, the compensatory trait

response to adaptive pressures is trait-typical not predicable in a particular site, but for the

collective trait sites and the trait effect of these. Gaining these information can help to improve

evolutionary prediction [7, 10, 11].

Further research could study the impact of a trait fitness seascape f(E, t) onto its sites.

Supposedly, it will generate coherent adaptation on macro-evolutionary timescales of the fitness

seascape changes, cp. Chapter 3. Nonetheless, the underlying pattern should have a similar

complexity, given by the trait selection and trait effects. This trait-adaptation is distinguishable

from single site adaptation if analyzed on different timescales.

4.8 Methods

4.8.1 Pairwise count matrices

We are interested in measuring trait epistasis together with the strength of adaptation in the

data, which cannot be distinguished in classical equal time correlations from less constraining

selection since the information about detailed balance is lost. On the other hand, the introduced

time-dependent pairwise rates (4.8), (4.10), and (D.6) suffer strong under-sampling not only for

pairs, but also in the time-resolution.

Therefore, we use in actual data analysis pairwise observational counts, which measure the

short-term response similar to other bioinformatic measures introduced in the literature [143,

144]. We introduced these counts for the application on phylogenetic trees in [138]. Here, we

rewrite these count measures for the application to substitution dynamics, which are of the same

class but simplified. Under the substitution dynamics they are defined as

Nij =

∫ T

0
dt

∫ T

t
dτρij(t, τ)e−τ/τ0 ,

Npol
ij =

∫ T

0
dt

∫ T

t
dτρpolij (t, τ)e−τ/τ0 ,

(4.18)

which are extensive in observation time T and τ0. τ0 is to be chosen of the order of the trait

equilibration time τeq and penalizes the counts for temporal distance to suppress long-term

noise. The optimization with respect to τ0 is discussed in Appendix D.2 and Figure D.4, e.g.

obtained from optimizing the significance of the singular value decomposition presented in the

next section. In simulations, substitutions fixing at the same time (τ = 0) are averaged over

the time-window since previous substitution event and all combinations of driver-/trailer-time-

ordering.
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If τ0 ∼ τeq is well chosen, the expected counts are

Nij := 〈Nij〉 = N 0
ij

(

1 +
ω2
ij

3αj

)

,

N pol
ij := 〈Npol

ij 〉 = N 0
ij

ωij

2αpol
j

,

(4.19)

with expectation value N 0
ij = 〈N0

ij〉 of the uncorrelated counts. As we showed in [138], these are

estimated from the product N0
ij = Ωpipj of the marginal counts pi = 1

Ω

∑

j′ Nij′ = 1
Ω

∑

i′ Ni′j ,

and total count number Ω =
∑

ij Nij . The row- and column-sums are identical if only sub-

stitutions are considered. For a finite allele frequency analysis, these are different making N 0
ij

asymmetric. We show the asymmetry of this null-mode in the underlying in Appendix D.1. The

asymmetry of the null model does not generate false pattern of adaptation in αj and αpol
j . For

long enough measurements, i.e. with suppressed noise, the trait signal ωij is supposed to by

visible in observables n̂ij = (Nij −N0
ij)/N

0
ij and npol

ij = Npol
ij /N0

ij . A probabilistic approach for

noisy data, as needed for the simulations, is discussed in the next paragraph. By the law of large

numbers, the variances 〈(Nij − Nij)
2〉 ∼ N 0

ij and 〈(Npol
ij − N pol

ij )2〉 ∼ N 0
ij are both determined

by the uncorrelated count number; corrections for small count numbers are discussed in detail

in [138].

4.8.2 Rank reduction with singular value decomposition

To infer back the trait values from the correlation matrices we standard normalize the data with

respect to the null expectation (uncorrelated evolution) [138], zij =
Nij−N0

ij
√

N0
ij

and zpolij =
Npol

ij
√

N0
ij

,

and use a singular value decomposition on these, z̃ij =
∑g

g′=1 λ̃
(g′)t̃

(g′)
j d̃

(g′)
i and z̃pol equivalently.

Here, g is the number of significant eigenvalues corresponding to the number of coevolving

quantitative traits, cp. Section 4.5. Significance is tested against a null model generated by a

randomly scrambling of site indices of mutations along the observed evolutionary trajectory,

which can be mapped on a random matrix with expectations and variance from marginal counts

pi, for details see [138] and Appendix D.2. As shown in that appendix, the significance of a

trait’s singular value scales as λ̃ ∼
√∑

ij Nijc
2/ℓ2 or λ̃pol ∼

√∑

ij Nijc/ℓ, whereas the most

significant eigenvalue expected from noise scales ∼
√
ℓ [138], which hence tells how many data

to collect to identify a trait of stabilizing selection c.

These matrices relate to Equations (4.19) through (n̂ij)red ≡ z̃ij
√

N0
ij

=
ω2
ij

3αj
+noise and through

(

npol
ij

)

red
≡ z̃polij

√

N0
ij

=
ωij

2αpol
j

+noise, which are still of rank g. The noise level is reduced since the

rank reduction considers the integral interaction of a site compared to all other sites. Hence,

with Equation (4.16), (n̂ij)red ∼ ∑g
g′=1 c

g′2Eg′

j

2
Eg′

i

2
/αj retrieves back in each singular mode

the squared trait effects in the right, driver singular vector, the constrained trait effect in the

left, trailer singular vector, and the squared stabilizing strength in the singular value. Each

singular mode stands for stabilizing selection of one trait. On the other hand,
(

npol
ij

)

red
∼
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∑g
g′=1Eg′,jEg′,i/α

pol
j retrieves similarly the first order of trait effects and stabilizing strength,

for details see Appendix D.2. The asymmetry of the response matrices is obtained from the

discrepancy of left- and right singular vectors.



Chapter 5

Phenotypic interference limits

complexity

The evolution of microbial and viral organisms often generates clonal interference,

a mode of competition between genetic clades within a population. In this chapter,

we show that interference strongly constrains the genetic and phenotypic complex-

ity of evolving systems. Our analysis uses biophysically grounded evolutionary

models for an organism’s quantitative molecular phenotypes, such as fold stability

and enzymatic activity of genes. We find a generic mode of asexual evolution called

phenotypic interference with strong implications for systems biology: it couples

the stability and function of individual genes to the population’s global speed of

evolution. This mode occurs over a wide range of evolutionary parameters appro-

priate for microbial populations. It generates selection against genome complexity,

because the fitness cost of mutations increases faster than linearly with the num-

ber of genes. Recombination can generate a distinct mode of sexual evolution that

eliminates the superlinear cost. We show that positive selection can drive a tran-

sition from asexual to facultative sexual evolution, providing a specific, biophysically

grounded scenario for the evolution of sex. In a broader context, our analysis sug-

gests that the systems biology of microbial organisms is strongly intertwined with

their mode of evolution.

5.1 Introduction

Asexually reproducing populations evolve under complete genetic linkage. Hence, selection on

an allele at one genomic locus can interfere with the evolution of simultaneously present al-

leles throughout the genome. Linkage-induced interference interactions between loci include

background selection (the spread of a beneficial allele is impeded by linked deleterious alleles),

hitchhiking or genetic draft (a neutral or deleterious allele is driven to fixation by a linked be-

neficial allele), and clonal interference between beneficial alleles originating in disjoint genetic

clades (only one of which can reach fixation). These interactions and their consequences for

75
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genome evolution have been studied extensively in laboratory experiments [20,39], natural pop-

ulations [21,38], and theory [64–71]. The most prominent global effect of interference is to reduce

the speed of evolution, which has been observed in laboratory evolution experiments [35,36,40].

The fitness cost of interference, which has also been measured [37, 41], is the center piece of

classic arguments for the evolutionary advantage of sex [31,62,145–147]. Much less clear is how

interference affects the system-wide evolution of molecular phenotypes, such as protein stabil-

ities and affinities governing gene regulation and cellular metabolism, which have generically

non-linear fitness functions. This is the topic of the present chapter, which looks at the systems-

biological consequences of interference evolution. We establish that interference generates a

long-term degradation of an organism’s molecular functions by the accumulation of deleterious

mutations. This effect is strongly dependent on genome size: it becomes an evolutionary force

constraining organismic complexity and driving the evolution of recombination.

Our analysis is based on simple biophysical models of molecular evolution [15,16,57,99–102],

which we discussed in Seciton 2.3. In a minimal model, an individual’s organism consists of g

genes and each gene carries a single quantitative trait G, the stability of its protein. The trait

is encoded in multiple sites of the gene sequence and is affected by mutations at these sites,

most of which will make the protein less stable. Selection on a gene is described by a standard

thermodynamic fitness landscape f(G), which is a sigmoid function with a high-fitness plateau

corresponding to stable proteins and a low-fitness plateau corresponding to unfolded proteins

(Figure 2.2B). We also discuss an stability-affinity protein model with a two-dimensional fitness

landscape f(G,E); this model includes enzymatic or regulatory functions of genes, specifical-

ly the protein binding affinity E to a molecular target. The genome-wide mutation-selection

balance in these fitness landscapes describes populations maintaining the functionality of their

molecular traits; we refer to this state as housekeeping evolution. We analyze its long-term evolu-

tionary forces on genome architecture that arise independently of short-term adaptive processes,

such as the evolution of resistance.

Over a wide range of model parameters, we find that housekeeping evolution takes place in

an evolutionary mode of phenotypic interference. In this mode, genetic and phenotypic variants

in multiple genes generate standing fitness variation under complete genetic linkage, a so-called

traveling fitness wave [64,66,67,69–71,73], cp. Figure 5.1. This traveling wave theory particularly

applies to ‘standing’ fitness waves in housekeeping evolution [70, 73]. We show that phenotypic

interference is a system-wide collective dynamics with a universal feedback between the global

fitness wave and selection on individual phenotypic variants. This feedback generates a fitness

cost, defined as the difference between the mean population fitness and the fitness maximum

of fully functional genes, that increases quadratically with g (Figure 5.2). The fitness cost

of interference quantifies its systems-biological effects: the maintenance of each gene degrades

stability and function of all other genes by increasing the accumulation of deleterious mutations.

The non-linear cost sets in already at a small number of genes, g0, and generates strong selection

against genome complexity in viable, asexually reproducing organisms. This distinguishes our

biophysical models from classical models of mutational load, which predict a linear fitness cost up

to a much larger error threshold gm associated with mutational meltdown [61–64] (Figure 5.2).
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Figure 5.1. Phenotypic interference generates fitness wave. This figure shows example trajec-
tories of population statistics in the housekeeping evolution of g = 1000 genes. The genome-wide fitness
is depicted in the top panel (measured by deviations from its temporal average) and three example traits
values are depicted in the three bottom panels. The line shows the population means, the ribbons show the
square-root fitness diversity σ (top panel) or square-root trait diversities

√
∆G (3 bottom panels). While

each individual trait is noisy in units of its polymorphism and fluctuates in its class, the population fitness
shows a rather stable evolution in units of its polymorphism. The polymorphism itself stays constant over
time through the large supply of mutational variants from the 1000 genes. This makes the fitness wave
theory [64, 66, 67, 69–71, 73] applicable on the level of genome-wide fitness statistics, whereas individual
traits follows its noisy trajectory described by the dynamics from [53,54]. Other simulation parameters:
f0 = 0.2, N = 1000, u = 1.25 × 10−3, ǫG/kBT = 1; see Appendix A for simulation details.
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Figure 5.2. Fitness cost of phenotypic interference. The total genetic load L in a genome is
shown as a function of the number of genes, g, for different models of genome evolution. Red line: Asexual
evolution in the minimal biophysical model has an evolutionary regime of phenotypic interference where
L increases quadratically with g; see Equation (5.2) and simulation data shown in Figure 5.4A. This
regime arises from the competition of phenotypic variants within a population. The nonlinear scaling of
L sets in at a small gene number g0 and ends at a much larger value gm, which marks the crossover to
genomes with a large fraction of dysfunctional genes (grey line). Blue line: under asexual evolution in a
model with discrete gene fitness effects, the onset of load nonlinearity and interference occurs at g ∼ gm
and is associated with the onset of Muller’s ratchet [61,63,64]. Brown line: sexual evolution reduces L to
a linear function of g, if the recombination rate is above the transition point R∗ given by Equation (5.8).

Remarkably, the genome-wide steady state of evolution affords an analytic solution in our

minimal model. We develop this solution in the following sections; then we turn to model exten-

sions and biological consequences on genome complexity under asexual evolution. Housekeeping

evolution in these models also provides a biophysically grounded rationale for the evolution of

sex. We show that long-term selective pressure on the recombination rate induces a first-order

phase transition to a mode of sexual evolution without genome-wide interference, and we obtain

a simple estimate of the transition recombination rate R∗ that can be directly compared to data.

The solution of the minimal model has two parts that will be discussed in order. First,

the mean fitness variance of a single quantitative trait at evolutionary equilibrium depends in a

simple way on a global evolutionary parameter, the coalescence rate σ̃. Second, for the steady

state of housekeeping evolution, the fitness variances of all traits combine to the total standing

fitness variation, which in turn sets the coalescence rate and leads to a closure of the derivation.

We then discuss biological implications of phenotypic interference.
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5.2 Evolution of a quantitative trait under interference selec-

tion.

Here we quickly recall and discuss the phenotypic statistics for a gene under interfer-

ence selection, which we derived in Sections 2.2 and 2.3. We see that the coalescence

rate σ̃ determines both, the mean selection coefficient and the fitness variance per

gene. These decouple from the details of the underlying fitness landscape. We treat

here the deterministic dynamics of the mean trait G under the average average trait

diversity 〈∆G〉. Mean trait fluctuations by genetic drift or draft leave the results

invariant and are presented in Appendix E.2.

The stability G of a protein is the free energy difference between the unfolded and the folded

state (Methods1). This trait gains heritable variation ∆G by new mutations at a speed uǫ2G,

where u ≡ µℓ is the trait’s total mutation rate and ǫ2G = 1
ℓ

∑

iE
G
i
2 ≡ 4EG

0
2
/ℓ is the mean square

stability effect of its sequence sites, cp. diversity dynamics Equation (2.5) and Methods. The trait

loses variation by coalescence at a rate σ̃. These processes determine an equilibrium stability

variation 〈∆G〉 = u ǫ2G/(2σ̃). This type of relation is, rewritten to trait scales, the well known

form for neutral sequence variation in models of genetic draft [148] and for neutral sequence

variation in traveling fitness waves [92, 149]. It can be derived more generally from a diffusion

theory for quantitative traits under selection [54]. However, in Appendix E we show a-posteriori

for our solutions that genetic draft is constraining ∆G strongly, such that selection does not

shape it and it is effectively neutral. Next, we consider the mutation-selection equilibrium of

a gene on the flank of the fitness landscape f(G). We equate the rate of stability increase by

selection, 〈∆G〉 f ′(G), with the rate of trait degradation by mutations, uǫG, using that most

mutations in a functional trait are deleterious (Methods) and that the second term of F1(G) is

negligible in (2.6) through strongly constrained 〈∆〉 under genetic draft. This relates the mean

square selection coefficient at trait sites, s2 = ǫ2Gf
′2(G), cp. Equation (2.16), and the fitness

variance 〈∆f 〉 ≈ 〈∆G〉f ′2(G) to the coalescence rate, cp. Equation (5.11) in Methods,

s2 = 4σ̃2, 〈∆f 〉 = 2uσ̃. (5.1)

These relations are universal if deleterious mutations push evolution to the flank of non-linear

fitness landscapes; that is, they do not depend on details of the fitness landscape and the trait

effect distribution of sequence sites. Remarkably, trait fluctuations by genetic drift and genetic

draft also leave their form invariant (Appendix E.2 and Figure E.1).

Equations (5.1) express a salient feature of selection on quantitative traits: the strength of

selection on genetic variants is not fixed a priori, but is an emergent property of the global

evolutionary process. A faster pace of evolution, i.e., an increase in coalescence rate σ̃, reduces

the efficacy of selection [68,69,92]. In a downward curved part, i.e. stabilizing part of the fitness

landscape, this drives the population to an equilibrium point of lower fitness and higher fitness

gradients. The resulting equilibrium tunes typical selection coefficients to marginal relevance,

1Section 5.6
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where mean fixation times 1/s are of the order of the coalescence time 1/σ̃. This point marks

the crossover between effective neutrality (s ≪ σ̃) and strong selection (s ≫ σ̃); consistently,

most but not all trait sites carry their beneficial allele [68].

5.3 Housekeeping evolution of multiple traits.

The equilibrium scenario of housekeeping evolution builds on the assumption that over

long timescales, selection acts primarily to repair the deleterious effects of mutations,

because these processes are continuous and affect the entire genome. In contrast,

short-term adaptive processes are often environment-dependent, transient, and affect

only specific genes. Here we discuss a closed solution of the phenotypic interference

dynamics for housekeeping evolution. In Appendix E.3, we extend this approach to

scenarios of adaptive evolution and show that these do not affect our conclusions.

In a housekeeping equilibrium, the total fitness variation σ2 is simply the sum of the fitness

variances of individual genes, σ2 = g〈∆f 〉 (Figure E.2). Moreover, traveling wave theory shows

that σ2 and the coalescence rate σ̃ are simply related, σ2/σ̃2 = C0 log(Nσ), where N is the

population size and C0 ∼ 102 [70, 71]. The traveling wave theory is applicable to our ‘stand-

ing’ housekeeping wave. It is not its net speed that matters [70, 73], but the large supply by

mutational variants σ & s. This condition is generically fulfilled for housekeeping phenotypes,

cp. Appendix E. Together with Equation (5.1), we obtain the global fitness wave

σ2 = 4
u2g2

C , σ̃ = 2
ug

C , (5.2)

as well as corresponding characteristics of individual traits,

〈∆G〉
ǫ2G

=
C
4g

, s2 = 4σ̃2 = 16
u2g2

C2
, (5.3)

in terms of the slowly varying parameter

C =
σ2

σ̃2
≈ C0 log(Nug). (5.4)

As shown in Methods, this parameter has a simple interpretation: it estimates the complexity of

the fitness wave, that is, the average number of genes with simultaneously segregating beneficial

genetic variants destined for fixation. Fisher-Wright simulations of the minimal model confirm

Equations (5.2–5.4); they reproduce the joint pattern of σ2, σ̃2, 〈∆G〉, and s2 and infer the wave

complexity c (Figure 5.3).

These relations are the centerpiece of phenotypic interference theory. This evolutionary

mode arises from the combination of (local) epistasis on trait sites through non-linear phenotypic

selection, which is the key property distinguishing quantitative trait selection from Mendelian

selection, together with linkage between phenotypes on the genomic scale. They show that

the collective evolution of molecular quantitative traits under genetic linkage depends strongly
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Figure 5.3. Global and local scaling under phenotypic interference. A Average total fitness
variance, σ2 (circles) and coalescence rate σ̃2 (triangles) versus number of genes, g, for asexual evolution.
Simulation data for different average gene selection coefficients f0 (indicated by color) are compared to
model results, σ2 ∼ g2/C (short-dashed line) and σ̃2 ∼ g2/C2 (long-dashed line) for g > g0 ∼ 102;
Equations (5.2) and (5.4). B Average scaled trait diversity, 〈δG〉 = 〈∆G〉/ǫ2G, versus g. Simulation
data (circles); model results, 〈δG〉 ∼ C/g (dashed line; Equation (5.3)). Values 〈δG〉 < 1 indicate that
individual proteins are in the low-mutation regime. C The mean square selection coefficient at sequence
sites, s2, versus g. Simulation results (circles); model results, s2 = 4σ̃2 ∼ g2/C2 (short-dashed line as in
A; Equation (5.4)). The scaling s2 ∼ σ̃2 is independent of f0, signalling that site selection coefficients
emerge from a feedback between global and local selection (see text). Other simulation parameters:
N = 1000, u = 1.25 × 10−3, ǫG/kBT = 1; see Appendix A for simulation details.

on the number of genes that encode these traits. The dependence is generated by a feedback

between the global fitness variation, σ2, and mean square local selection coefficients at genomic

sites, s2. In Appendix E.1, we show that this feedback also tunes the evolutionary process to

the crossover point between independently evolving genomic sites and strongly correlated fitness

waves composed of multiple small-effect mutations.

5.4 Biological implications of phenotypic interference

The results so far where generic for solutions on the flank of a fitness landscape.

We now discuss the implications for biophysical fitness landscapes (2.25) and (2.30).

We show that the genetic load increases quadratically with the number of genes: an

additional gene generates a deleterious burden on each other gene. We find dramatic

cost of genome size for typical organisms. Moreover, genes will be lost, if the genetic

load is larger than the plateau height of the fitness landscape. Finally, we show that

recombination at low rates, of the order of the mutation rate, can resolve this cost

by a first order phase transition. This opens an evolutionary feasible pathway for the

evolution of sex with a comparatively low cost of horizontal gene transfer compared to

the cost of phenotypic interference. A comparison with data shows that the considered

species show recombination rates slightly above this threshhold.

Interference selection against complexity. The feedback of phenotypic interference has

an immediate consequence for the genetic load, which is determined by the average position

of genes on the fitness landscape. We first consider stable and functional genes located in the

concave part of the minimal model landscape f(G) (Figure 2.2B). This part can be approximated

by its exponential tail, where the load is proportional to the slope f ′(G). Equation (5.3) then
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predicts a load skBT/ǫG ≈ 2σ̃ per gene, where we have used that typical reduced effect sizes

ǫG/kBT are of order 1 (Methods). This implies a superlinear scaling of the total equilibrium

genetic load,

Lint(g) ≈ 2gσ̃ = 4
ug2

C , (5.5)

which sets on at a small gene number g0 given by the condition g0 ≈ C/4 (Figure 5.2, numerical

simulations are shown in Figure 5.4A). The superlinearity of the genetic load is the most im-

portant biological effect of phenotypic interference. As detailed in Appendix E.3 and Figure 2.2,

this scaling holds more generally for a sufficient number of quantitative traits evolving under

genetic linkage; it does not depend on details of the fitness landscape and of the underlying

biophysical processes. For example, active protein degradation, a ubiquitous process that drives

the thermodynamics of folding out of equilibrium [104], does not affect our conclusions. Another

example is the stability-affinity model, which has two quantitative traits per gene that evolve

in a two-dimensional sigmoid fitness landscape f(G,E) [57,58]. We show that under reasonable

biophysical assumptions, evolution in a stability-infinity model produces a 2-fold higher inter-

ference load than the minimal model, Lint(g) ≈ 8ug2/C. Alternative models with a quadratic

single-peak fitness landscape generate an even stronger nonlinearity of the load, Lint(g) ∼ g3. In

contrast, a discrete model with a fitness effect f0 of each gene shows a linear load up to a char-

acteristic gene number gm = (f0/u) log(Nf0) associated with the onset of mutational meltdown

by Muller’s ratchet [61, 63,64].

Figure 5.4. Genetic load, gene loss, and transition to sexual evolution. A Total genetic load
L versus the number of genes g for asexual evolution. Simulation results (circles) for different values
of f0 (indicated by color, as in Figure 5.3); model results: interference load Lint ∼ ug2/C (red line;
Equation (5.5)) for g > g0 (dotted line) and null model L = ug (brown line) as in Figure 5.2. The
superlinear behavior of L indicates strong selection against genome complexity. B Rate of gene loss
(indicated by color, in units of u) as a function of the gene selection coefficient, f0, and the number of
co-evolving genes g. Genes with f0 ∼ σ̃ (long-dashed line, cf. Figure 5.3A) have appreciable loss rates;
genes with f0 & 10σ̃ (dashed-dotted line) have negligible loss rates, i.e., are conserved under phenotypic
interference. C Scaled genetic load, L/(ug), versus scaled recombination rate, R/R∗, for different genome
sizes. The observed load rapidly drops from the superlinear scaling of phenotypic interference, L = 4ug2/C
(asymptotic data: red lines), to the linear scaling of unlinked genes, L ∼ ug (brown line). This signals
a (fluctuation-rounded) transition to sexual evolution at the threshold recombination rate R∗ = 2ug/C
(dotted line, see Equation (5.8)). Other simulation parameters as in Figure 5.3; see Appendix A for
simulation details.



5.4. BIOLOGICAL IMPLICATIONS OF PHENOTYPIC INTERFERENCE 83

The interference load builds up with a time lag given by the relaxation time to equilibrium,

τ =
1

u
= 2

g

C
1

σ̃
. (5.6)

Deleterious mutations in an organism’s genes build up on a timescale τ , which exceeds the

coalescence time σ̃−1. Therefore, the load Lint affects the long-term fitness of a population

against competing lineages. Specifically, it generates strong long-term selection against genome

complexity: the fitness cost for each additional gene, L′
int(g), can take sizeable values even at

moderate genome size. For example, in a “standard” microbe of the complexity of E. coli, a 10 %

increase in gene number may incur an additional load ∆L ≈ 3×10−2 under the stability-affinity

model (with parameters g = 5000, u = 10−6, N = 108). In comparison, the discrete model leads

to a much smaller value ∆L = 5 × 10−4 for the same parameters.

It is instructive to compare the interference load of an extra gene with its physiological

fitness cost L′
phys(g), which is generated primarily by the synthesis of additional proteins (and

is part of the overall fitness effect f0). For a gene with an average expression level, L′
phys(g) =

λ/g with a constant λ ∼ 1 reflecting the (re-)allocation of metabolic resources in the cell; see

references [150, 151]. This cost acts as a selective force on changes of genome size, which take

place within a coalescence interval σ̃−1. Importantly, L′
phys is much smaller than L′

int for a

standard microbe, suggesting a two-scale evolution of genome sizes. On short timescales, the

dynamics of gene numbers is permissive and allows the rapid acquisition of adaptive genes; these

changes are neutral with respect to L′
int. On longer timescales (of order τ), marginally relevant

genes are pruned in a more stringent way, for example, by invasion of strains with more compact

genomes.

Interference drives gene loss. The near-neutral dynamics of genome size extends to gene

losses, which become likely when a gene gets close to the inflection point of the sigmoid fitness

landscape (Figure 2.2B). The relevant threshold gene fitness, f c
0 , is set by the coalescence rate,

which leads to

f c
0 ∼ 2σ̃ =

4ug

C (5.7)

in the minimal model. Strongly selected genes (f0 ≫ 2σ̃) have equilibrium trait values firmly

on the concave part of the landscape, resulting in small loss rates of order u exp(−f0/2σ̃);

these genes can be maintained over extended evolutionary periods. Marginally selected genes

(f0 . 2σ̃) have near-neutral loss rates of order u [68], generating a continuous turnover of genes.

According to Equation (5.7), the threshold f c
0 for gene loss increases with genome size, which

expresses again the evolutionary constraint on genome complexity. The dependence of the gene

loss rate on f0 and σ̃ is confirmed by simulations (Figure 5.4B). The housekeeping coalescence

rate σ̃ = 2ug/C sets a lower bound for the fitness threshold f c
0 , adaptive evolution can lead to

much larger values of σ̃ and f c
0 .

The transition to sexual evolution. Recombination breaks up genetic linkage at a rate R

per genome and per generation (R is also called the genetic map length). Evolutionary models
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show that recombination generates linkage blocks that are units of selection; a block contains

an average number ξ of genes, such that there is one recombination event per block and per

coalescence time, Rξ/(gσ̃(ξ)) = 1 [71, 91, 152]. Depending on the recombination rate, these

models predict a regime of asexual evolution, where selection acts on entire genotypes (ξ ∼ g),

and a distinct regime of sexual evolution with selection acting on individual alleles (ξ ≪ g). Here

we focus on the evolution of the recombination rate itself and establish a selective avenue for

the transition between asexual and sexual evolution. With the phenotypic interference scaling

σ̃(ξ) = 2uξ/C for ξ & C, as given by Equation (5.2), our minimal model produces an instability

at a threshold recombination rate

R∗ =
2ug

C . (5.8)

This signals a first-order phase transition to sexual evolution with the genetic load as order

parameter (Figure 5.4C). For R < R∗, the population is in the asexual mode of evolution

(ξ ∼ g), where interference produces a superlinear load Lint = 2ug2/C. For R > R∗, efficient

sexual evolution generates much smaller block sizes (ξ ∼ C). In this regime, the mutational

load drops to the linear form L = ug ≪ Lint, providing a net long-term fitness gain ∆L ≃ Lint.

However, the process of recombination itself entails a direct short-term cost Lrec [147]. If we

assume that cost to be of order 1 per event, we obtain Lrec ∼ R∗ = σ̃ close to the transition.

This cost is much smaller than the gain ∆L and remains marginal (i.e., Lrec/σ̃ ∼ 1).

Together, our theory of phenotypic interference suggests a specific two-step scenario for

the evolution of sex. Recombination at a rate of order R∗ is near-neutral at short timescales,

so a recombining variant of rate R∗ arising in an asexual background population can fix by

genetic drift and draft. Recombining strains acquire a long-term benefit ∆L ∼ gR∗ = gσ̃,

so they can outcompete asexual strains in the same ecological niche. The threshold rate R∗

is of the order of the genome-wide mutation rate ug, so even rare facultative recombination

can induce the transition. This scenario builds on the basic biophysics of molecular traits but

does not require ad hoc assumptions on adaptive pressure, on rate and effects of beneficial and

deleterious mutations, or on genome-wide epistasis [147]. It is at least consistent with observed

recombination rates in different parts of the tree of life: genome average values are always well

above R∗; a high-resolution recombination map of the Drosophila genome shows low-recombining

regions with values above but of order R∗ [153,154] (Table E.1).

5.5 Discussion

We have developed the evolutionary genetics of multiple quantitative traits in non-recombining

populations. We find a specific evolutionary mode of phenotypic interference, which is charac-

terized by a feedback between global fitness variation and local epistatic selection coefficients at

genomic sites. This feedback generates highly universal features, which include the complexity of

the evolutionary process and the scaling of coalescence rate and genetic load with gene number,

as given by Equations (5.2)–(5.4).

Phenotypic interference produces strong selection against genome complexity in asexual pop-

ulations, which implies selection in favor of recombination above a threshold rate R∗ given by
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Equation (5.8). The underlying genetic load originates from the micro-evolutionary interference

of phenotypic variants within a population and unfolds with a time delay beyond the coales-

cence time, as given by Equation (5.6). Therefore, the interference load is a macro-evolutionary

selective force that impacts the long-term fitness and survival of a population in its ecological

niche.

Molecular complexity, the broad target of phenotypic interference, can be regarded as a

key systems-biological observable. In our simple biophysical models, we measure complexity by

number of stability and binding affinity traits in a proteome. More generally, we can define

complexity as the number of (approximately) independent molecular quantitative traits, which

includes contributions from an organism’s regulatory, signaling, and metabolic networks that

scale in a nonlinear way with genome size. Interference selection affects the complexity and

architecture of all of these networks, establishing new links between evolutionary and systems

biology to be explored in future work.

5.6 Methods

5.6.1 Biophysical fitness models

As discussed in the Introduction 2.3, in thermodynamic equilibrium at temperature T , a protein

is folded with probability p+(G) = 1/[1 + exp(−G/kBT )], where G is the Gibbs free energy dif-

ference between the unfolded and the folded state and kB is Boltzmann’s constant. A minimal

biophysical fitness model for proteins takes the form (2.25) f(G) = f0 p+(G) = f0
1+exp(−G/kBT )

with a single selection coefficient capturing functional benefits of folded proteins and metabolic

costs of misfolding [99–101]. Similar fitness models based on binding affinity have been derived

for transcriptional regulation [15–17]; the rationale of biophysical fitness models has been re-

viewed in references [87, 102]. In Appendix E.3, we introduce alternative fitness landscapes for

proteins and show that our results depend only on broad characteristics of these landscapes. The

minimal global fitness landscape for a system of g genes with traits G1, . . . , Gg and selection

coefficients f0,1, . . . , f0,g is taken to be additive, i.e., without epistasis between genes,

f(G1, . . . , Gg) =

g
∑

i=1

f0,i
[1 + exp(−Gi/kBT )]

. (5.9)

5.6.2 Evolutionary model

We characterize the population genetics of an individual trait G by its population mean Γ and

its expected variance 〈∆G〉. The trait mean follows the stochastic evolution equation (2.4)

Γ̇ = −uκǫG + 〈∆G〉f ′(Γ) + χ(t) (5.10)

where we rewrite parameters from Chapter 2 to simplify the notation in this section: the mean

trait dynamics is determined by its total mutation rate u = µℓ, the mean mutational effect is

(−κ)ǫG = −(Γ − Γ0)/ℓ ≈ Γ0/ℓ = 1
ℓ (Emin +

∑ℓ
i=1Ei/2) < 0, which we assume to be constant.
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This means that the selection dynamics around Γ & 0 take place far from the neutral sequence

expectation Γ0. The mean square trait effect of a mutation is ǫ2G = 1
ℓ

∑
E2

i , which determine

the diversity 〈∆G〉 = uǫ2G/(2σ̃) [53,54]. We use effects ǫG ≈ 1–3 kBT , which have been measured

for fold stability [155,156] and for molecular binding traits [15, 157,158], and a mutational bias

κ = 1, which is consistent with the observation that most mutations affecting a functional trait

are deleterious.

5.6.3 Housekeeping equilibrium

The deterministic equilibrium solution (Γ̇ = 0,χ = 0) of Equation (5.10) determines the de-

pendence of 〈∆G〉 and the associated fitness variance 〈∆f 〉 = 〈∆G〉f ′2(G) on σ̃, as given by

Equation (5.1); the same scaling follows from the full stochastic equation (Appendix E.2). The

derivation of the global housekeeping equilibrium, Equations (5.2)–(5.4), uses two additional

inputs: the additivity of the fitness variance, σ2 = g〈∆f 〉, which is confirmed by our simulations

(Figure E.2), and the universal relation σ2/σ̃2 = C0 log(Nσ) [70,71] in a travelling fitness wave,

where the coalescence rate σ̃ is generated predominantly by genetic draft. Equations (5.2)–(5.4)

determine further important characteristics of phenotypic interference:

(a) The complexity of the fitness wave, defined as the average number of beneficial substitu-

tions per coalescence time, is (v+g)/σ̃ ∼ ug/2σ̃ = C/4, using that trait-changing mutations

are marginally selected, Equation (5.1), and have nearly neutral fixation rates v+ ∼ u/2

per gene, cp. (2.17).

(b) The evolutionary equilibria of stable genes (f0 ≫ σ̃) are located in the high-fitness part

of the minimal fitness landscape, f ≃ f0[1− exp(−G/kBT )]. These genes have an average

fitness slope

f ′ =

( 〈∆f 〉
〈∆G〉

)1/2

= 2σ̃/ǫG, (5.11)

an average trait Γ = −kBT log(2σ̃kBT/f0ǫG), and an average load Lint(g) given by Equa-

tion (5.5).

(c) The scaling regime of Equations (5.2)–(5.4) sets in at a gene number g0 given by the

condition g0 = C/4; this point also marks the crossover from the linear load L0(g) = ug to

the nonlinear form Lint(g). Notably, genes balance only a few kBT above the fitness edge

as universally observed and predicted for biophysical traits, see review [101]; the position

has only a log-dependence of evolutionary rates.
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Discussion

We used mathematical methods from physical diffusion equations for the evolution of quan-

titative traits, which have been derived under mutation-selection-drift- and mutation-selection-

draft-dynamics [53,54], and theories for interference selection [64–71] to analyze their universal

pattern for various modes of phenotypic evolution. In particular we derived the phenotypic

divergence in stochastic fitness seascape, QTL correlations under stochastic single-site seascapes,

and the co-evolution of phenotypes on the systems biology level under strong genomic linkage.

In all these modes, we identified universal behavior on the trait and systems biology level,

where the higher level dynamics decouple from many stochastic degrees of freedom on the lower,

constituting level.

In Chapter 2, we quantified that the phenotypic evolution balances in such a way that the

phenotypic selection generate generically weak selection on its QTL. Typical selection coeffi-

cients are, independent of particular details of the fitness landscape, of the order of the inverse

coalescence time, s ∼ σ̃ (2.17), and evolve near neutrality. A single allele is evolutionary vari-

able. However, the integral effect of all sites stabilizes the evolution through non-linear pheno-

typic fitness landscapes, which generate another scale of selection. This is indeed indirectly

observed in biological data showing that biophysical traits have a beneficial mutational target

site that is considerably smaller but still of the same order of magnitude as the deleterious

target size [111,159]. Therefore, a significant number of sites cannot be fixed in the most bene-

ficial allele. This near-neutral selection has relevant implications for trait evolution: on the one

hand, sites under constant trait selection are variable and hence fluctuate due to genetic drift

or genetic draft triggering compensatory mutations. On the other hand, a substantial number

of trait sites is available for compensation of trait fluctuations. This characteristic allowed us

to identify universal and predictable dynamics on the trait level in Chapter 3 and to identify

the compensation pattern in Chapter 4 also for sites without external adaptation. Furthermore,

quantitative traits generically contribute to a smooth Gaussian fitness wave. In asexual evolu-

tion this is based on their large mutational input with typical selection coefficients smaller than

the width of the fitness wave, i.e. the fitness variation in a population, s2 ∼ σ̃2 < σ2, which we

used in Chapter 5.

In the Chapter 3, we introduced a minimalistic model for stochastic phenotypic seascapes

87
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characterized by a randomly moving fitness peak. We again identified universal behavior in

the adaptive response on the level of a quantitative trait: key observables such as the genetic

load (3.44), the generated fitness flux (3.49), or the temporal divergence/diversity ratio (3.62) are

mainly determined by the stabilizing parameter and driving rate, cp. Figure 3.7. They decouple

from many genomic details such as the underlying genotype-phenotype map, the recombination

map, or, as discussed in Chapter 4, localized single-site adaptation. Furthermore they do not

depend on the particular driving mode of the seascape, but only on the average mean-square

peak displacement on the macro-evolutionary timescale. Therefore, they are decoupled from

micro-evolutionary, e.g. seasonal changes of the fitness seascape. These universal relations hence

allow the inference of macro-evolutionary adaptation from the time-resolved divergence/diversity

pattern discussed in Section 3.5. It is obtained from trait measurements alone and without the

need of knowledge of a neutral gauge such as McDonald-Kreitman type tests require [130].

Moreover, the time information in the divergence permits to distinguish directional from less

constraining stabilizing selection. We identified in [3] such pattern in the divergence of gene

expression levels in the Drosophila genus (Figure 3.8). The model, which we developed in this

thesis, allowed to quantify the macro-evolutionary fitness flux along the phylogeny without the

need of sequence data.

On short, micro-evolutionary timescales, the trait dynamics imposes a constraining selection.

In Chapter 4, we discussed the short-term response pattern of trait mutations on the sequence

level. This arises from the first equilibration steps under stabilizing selection. We showed that

this non-linear selection generates broad compensatory epistasis and hence response correlations

between all QTL, Equations (4.8), (4.10), and Figure 4.3. In accordance with the fluctuation-

dissipation theorem, we see that fluctuations arising from genetic drift/draft generate the same

response pattern as driving particular sites out of equilibrium. The universality arises in a simple,

one rank form of the ℓ×ℓ epistatic and response matrices. This generalizes to additional low ranks

in the co-evolution with other traits. In other words, the driver impact of a trait site to all QTL

is only determined by its trait effect and the response as a trailer mutation is also determined

by its trait effect, but potentially suppressed if under single-site adaptation. This asymmetry

in the correlation is just quantified by its adaptation rate (4.13) and (4.14). An asymmetric

time-ordered correlation matrix is a key feature of ongoing adaptation in the underlying the

QTL, see Figure 4.4. The response pattern decouples from details such as the site’s independent

substitution rate, e.g. through heterogeneous mutation rates or constraints by constant single-

site selection. These findings permit to infer both, the genotype–phenotype map and the single-

site adaptation, if the correlation is measured with respect to the time-order of mutations.

Again, temporal information permits the distinction between stabilizing strength through the

trait and adaptation without the need for a neutral gauge of the model. The ‘null-mode’ is

obtained from independent substitution rates. Appropriate correlation measures furthermore

allow for the application to strongly adaptive phylogenetic trees. Hence, the derived method is

applicable to plenty of sequence data, from which the phylogenetic tree can be reconstructed. On

the phylogenetic tree, mutational distances in time are well defined for the temporal correlation

measures. Preliminary results support the theory [private communication with Simone Pompei]:



89

we identified the genotype–phenotype map in PDZ domains inferred from the time-resolved

sequence correlations across species. This map is correlated to known trait effects of mutations

in these domains. The trait effects are measured from mutagenesis experiments. The trait

itself is the ligand binding energy of the domain [141]. We also apply the method to human

influenza [138] discussed below in the outlook.

Finally, we discussed in Chapter 5 for the first time the system-wide co-evolution of bio-

physical phenotypes under asexual evolution. We found a so-far unknown evolutionary mode,

which we called phenotypic interference. This is not unique to biophysical traits but generic

for trait evolution under stabilizing selection: on the one hand, frequent coalescence through

interference constrains the trait diversity and hence its efficacy of selection. On the other hand,

quantitative traits generate mesoscopic epistasis in each gene caused by the non-linear selec-

tion of quantitative traits. It is the same type of epistasis that shaped the dynamics in the

previous chapters. The epistasis generates a destructive feedback onto the coalescence rate σ̃

and the efficacy of selection of all other genes. It limits the complexity in asexual evolution:

if the genome is increased by adding a gene, this imposes a long-term evolutionary cost onto

all other genes through restricted selective repair opportunities of deleterious mutations. This

entails a super-linear genetic cost (Figures 5.2 and 5.4A) with the number of co-evolving genes

that gets pre-dominant at much smaller genomic sizes than classical studies of asexual evolu-

tion predicted [61–64] and which is supposedly substantial for standard organismic complexity.

Smaller organisms should win the long-term evolutionary battle. However this cost can be over-

come with a bit of horizontal gene transfer: recombination rates in the order of the mutation

rate revert this feedback generating a strong benefit of recombination, i.e. a first order phase

transition to the much lower cost of sexual evolution, Figure 5.4C. This implies a feasible path-

way for the evolution of sex. Our detailed biophysical model allowed, to our knowledge for

the first time, to quantify this critical recombination rate and a comparison with data showed

that the analyzed species are slightly above this critical rate. Under phenotypic interference,

universality arose on the systems biology level. A single gene behaves noisy under strong genetic

draft. However, quantitative traits generate a large mutational input with on average small se-

lection coefficients such that all the genes together generate a stationary stable traveling fitness

wave [64,66,67,69–71,73]. The variance of this wave scales with the square of the genome-wide

mutation rate and the coalescence rate is determined mainly by this genome-wide mutation rate.

These results are independent of particular details of the phenotypic fitness landscapes or the

trait effects of mutations.

To conclude, universalities arise in various modes of phenotypic evolution. These universal-

ities generate simple pattern of the evolutionary process that can be used to infer the relevant

parameters. Time-dependent observables allow us to relate observed trait divergence or sequence

correlations to these parameters in time-dependent fitness seascapes. This way, we can quantify

the strength of conservation as well as adaptation of the evolutionary process. Moreover, these

universalities are closely related to the predictability of phenotypic evolution. Predictability

is preserved by selection on mesoscopic scales, whereas individual trait sites tend to fluctuate

generating a huge variety of micro-states. These findings can help to forecast and manipulate
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the future outcome of evolutionary processes to fight quickly evolving diseases within patients

and on global scales. Furthermore, fitness wave theories can learn from some genomic details

that shape the rate and mean effect of arising mutations. Also with these details, universalities

give rise to simple scaling laws that allow us to quantify the cost of phenotypic interference in

asexual evolution. The theory offers an evolutionary feasible pathway for the evolution of sex.

In follow-up papers, we identify the macro-evolutionary seascape pattern in gene expression

levels across the Drosophila genus and can quantify a substantial fitness flux along the phylogeny

from the divergence pattern [3]. We discuss implications to universality and predictably in [2].

From sequence evolution, we infer in another follow-up paper an antigenicity-stability model for

hemagglutinin of human influenza [138]. The asymmetry of the time-ordered correlation matrix

shows epitope sites exposed to strong adaptive pressures and hence perturbing protein stability.

Other sites can compensate for such effects and indeed show larger fixation probabilities if on

the background of driver mutations. Such information could improve the predictability of the

influenza evolution. In another follow-up paper, we study the genomic impact of a fitness wave

for Mendelian traits, which corresponds to a linear genotype–fitness map [74]. In that case, a

fitness wave balances such that significant sites are under no effective selection, which cannot be

balanced on a higher-level trait selection scale. This entails a dramatic genomic melt-down on

macro-evolutionary timescales. Hence, epistatic effects by quantitative trait selection and the

genomic details need to be incorporated carefully into the discussion of traveling fitness wave

theories to draw conclusions of long-term evolutionary processes outside the lab.
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as well as Tom Röschinger, who joined more recently. I also thank the rest of our group and

Johannes Berg’s group for nice discussions and partially cooperations in other projects. Many

thanks to Christa Stitz who always took care that administrative issues got resolved easily for

us. I thank Stephan Schiffels for providing me with a c++ class that served as a basic for the

Wright-Fisher simulations. Finally, I thank my family for their support, especially with the

proofreading.

The work has been supported by the Bonn-Cologne graduate school for Physics and Astro-

nomy.



Bibliography

[1] Torsten Held, Armita Nourmohammad, and Michael Lässig. Adaptive evolution of mo-
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Paul Feugeas, Martin Weigt, Richard E. Lenski, Dominique Schneider, and Olivier Tenail-

lon. Mutator genomes decay, despite sustained fitness gains, in a long-term experiment

with bacteria. Proc Natl Acad Sci U S A, 114(43):E9026–E9035, 2017.
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[59] Ville Mustonen and Michael Lässig. From fitness landscapes to seascapes: non-equilibrium

dynamics of selection and adaptation. Trends Genet, 25(3):111–119, March 2009.
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Sander, Riccardo Zecchina, José N. Onuchic, Terence Hwa, and Martin Weigt. Direct-

coupling analysis of residue coevolution captures native contacts across many protein

families. Proc Natl Acad Sci U S A, 108(49):E1293–E1301, 2011.

[78] Debora S. Marks, Lucy J. Colwell, Robert Sheridan, Thomas A. Hopf, Andrea Pagnani,

Riccardo Zecchina, and Chris Sander. Protein 3d structure computed from evolutionary

sequence variation. PLoS One, 6(12):1–20, 12 2011.

[79] Hendrik Szurmant and Martin Weigt. Inter-residue, inter-protein and inter-family coe-

volution: bridging the scales. Curr Opin Struct Biol, 50:26 – 32, 2018. Carbohydrates

Sequences and topology.

[80] Steve W. Lockless and Rama Ranganathan. Evolutionarily conserved pathways of energetic

connectivity in protein families. Science, 286(5438):295–299, 1999.

[81] Najeeb Halabi, Olivier Rivoire, Stanislas Leibler, and Rama Ranganathan. Protein sectors:

Evolutionary units of three-dimensional structure. Cell, 138(4):774 – 786, 2009.

[82] Robert G Smock, Olivier Rivoire, William P Russ, Joanna F Swain, Stanislas Leibler,

Rama Ranganathan, and Lila M Gierasch. An interdomain sector mediating allostery in

hsp70 molecular chaperones. Mol Syst Biol, 6:414–414, 2010.



98 BIBLIOGRAPHY

[83] John P Barton, Mehran Kardar, and Arup K Chakraborty. Scaling laws describe memories

of host–pathogen riposte in the hiv population. Proc Natl Acad Sci U S A, 112(7):1965–

1970, 02 2015.

[84] Yue Zhao and Gary D Stormo. Quantitative analysis demonstrates most transcription

factors require only simple models of specificity. Nat Biotechnol, 29(6):480, 2011.

[85] H P de Vladar and N H Barton. The statistical mechanics of a polygenic character under

stabilizing selection, mutation and drift. J R Soc Interface, 8(58):720–739, March 2011.

[86] W.J. Ewens. Mathematical Population Genetics: I. Theoretical Introduction. Interdiscip-

linary Applied Mathematics. Springer, 2004.
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Appendix A

Numerical simulations with

Wright-Fisher processes

We test our analytical results by simulations of a Wright-Fisher process [31, 32] for the evo-

lution under neutral mutation-drift dynamics, in various fitness landscapes with stabilizing se-

lection. We extend these landscapes to diffusive or punctuated fitness seascapes for sexual and

asexual populations. For a single trait, we evolve a population of N individuals with genomes

a(1), . . . ,a(N), which are bi-allelic sequences of length ℓ. A genotype a defines a phenotype

E(a) =
∑ℓ

i=1Eiai. The phenotypic effects Ei are drawn from various distributions. We gener-

alize this approach to the co-evolution of multiple phenotypes below.

Generation sampling In each generation, the sequences undergo point mutations with a

probability τgenµ per generation, where τgen is the generation time. The sequences of next gen-

eration are then obtained by multinomial sampling; the general form of the sampling probability

is proportional to [1 + τgenf(E(a), t)], with the fitness seascape f(E, t).

Recombination The evolutionary statistics of the trait mean depends indirectly on the re-

combination rate; this dependence arises because the mean diversity 〈∆〉 enters the quasi-neutral

dynamics of Γ [53]. To simulate evolution with a finite recombination rate R, we recombine the

genomes of pairs of individuals with probability τgenR at a single random crossover position of

the genome. For the simulation of free recombination, we randomly shuffle the alleles a1i , ..., a
N
i

between the individuals at each genomic site i and in each generation. Simulations with recom-

bination are presented in Figures C.1, C.2 (both for the adaptive ensemble), and 5.4C (for the

phenotypic interference).

Adaptive ensemble

For a diffusive seascape, a new optimal trait value E∗(t) is drawn before each reproduction step

from a Gaussian distribution with mean (1−τgenυ/r
2)E∗(t)+τgen(υ/r2)E and variance τgenυE

2
0 .

For a punctuated seascape, a new, uncorrelated fitness peak is drawn from the distribution
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Req(E∗) with probability τgenυ/r
2.

Universality is the (approximate) independence of a summary trait observable from details

of the trait’s genomic encoding and of its molecular evolution [2]. In Figure C.2, we report three

universality tests for the divergence-diversity ratio Ω(1)(τ). First, simulations show that the

Ω statistics depends only weakly on the recombination rate throughout the crossover between

asexual evolution (R = 0) and free recombination (R → ∞). Second, the Ω ratio is invariant

under variations in the number of constitutive genomic sites, ℓ, at constant selection parameters

c and υ. Third, this ratio is also invariant under variations of the phenotypic effect sizes Ei at

these sites; this is tested by comparing simulations for two distributions of effect sizes.

QTL Epistasis

Here, we add adaptive pressure on single sites with selection coefficient ηisi and flip probability

τgenγi: ηi ↔ −ηi, ηi = ±1. For heterogeneous driver/trailer association of the sites we either

implement heterogeneous si or heterogeneous γi. The particular values are shown in Figures 4.3,

4.4 and D.1C. The same underlying distributions in other figures are referred to these, but not

shown if not influencing the response significantly. For 2 co-evolving traits, we add a second trait

G(a) =
∑ℓ

i=1Giai. All traits evolve in a quadratic fitness landscape (2.24) such that the total

fitness reads f(a) = f(E(a); cE0 )+f(G(a); cG0 )+
∑

i aiηi(t)si with cE0 or cG0 setting the curvature

parameter of the particular fitness landscape. We discuss various kinds of distributions for Ei

and Gi, which also define the degree of pleiotropy. The distributions are shown in the plots.

We measure for each substitution the time of fixation. However, we use the number of

substitutions between two focal substitutions as time τ in the correlation analysis: this time-

measure is comparable to the times available for reconstructed phylogenetic tree. If various

new mutations fixed at the same time, we average over all possible time-orderings of their

arising, which are not known. Furthermore, we give them a temporal distance by equal time-

gaps between their arise since the preceding substitution event. Simulations are performed with

parameters N = 1000, Nµ = 0.0125. We measure 40, 000 substitutions and count sites only,

if they show more than 5 substitutions in the data (this concerns sites with strong single-site

selection and very small γi only).

Phenotypic interference

Co-evolution of stability traits. Here each QTL segment is a subsequence ai = (ai,1, . . . , ai,ℓ)

with binary alleles aj,k = 0, 1 (i = 1, . . . , g; k = 1, . . . , ℓ). A segment a defines a stability trait

G(a) =
∑ℓ

k=1Gkak + Gmin, where Gmin is the smallest possible trait value. The resulting effect

distribution of point mutations has as a second moment ǫ2G =
∑ℓ

ı=1G
2
k/ℓ and a first moment

κ0ǫG =
∑ℓ

ı=1Gk(1 − 2〈ak〉)/ℓ, where 〈ak〉 is the state-dependent probability of a mutation at

site k being beneficial and brackets 〈.〉 denote averaging across parallel simulations or time.

The genomic fitness is f(a) =
∑g

i=1 f(G(ai); f0,i) with f(G; f0,i) given by Equation (2.25) and

gene-specific amplitudes f0,i.
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Simulations are performed with parameters N = 1000, Nµ = 0.0125, each trait with genomic

base of size ℓ = 100, and each site with equal effect Gk = 1. The quantitative trait dynamics

is insensitive to the form of the effect distribution [53]. To increase the performance of the

simulations, we do not keep track of the full genome. We only store the number of deleterious

alleles ni =
∑ℓ

k=1 ai,k for each trait, we draw mutations with rate u = µℓ, and we assign to each

mutation a beneficial change G with probability ni/ℓ and a deleterious change −G otherwise.

This procedure produces the correct genome statistics for bi-allelic sites with uniform trait effects

Gi = G. Simulation data are shown with theory curves for κ = 1, which provide a good fit to

all amplitudes; the input κ0 is different by a factor of order 1 which includes fluctuation effects

(Section E.2).

Housekeeping evolution. For the simulations in Figures 5.3 and 5.4A, where we are not

explicitly interested in the loss of genes, we use an exponential approximation of the stable

regime of the stability fitness landscape. The reason is a limited accessible parameter range in

simulations constraining the values of f0 and σ̃ due to finite N . We checked that the exponential

approximation gives the same results as the full model in the regime f0/σ̃ ≫ 1, where the gene

loss rate in the biophysical landscape is negligible.

Loss rate measurements. In the biophysical landscape used in Fig 5.4B, a long-term sta-

tionary population is maintained by evolving 70% of the traits in a biophysical fitness landscape

with selection f0; the remaining 30% of the traits are modeled to be essential with selection

10f0. Gene loss is defined by the condition G < −3.5kBT . To maintain a constant number of

genes, lost genes are replaced immediately with an input trait value G > 0.



Appendix B

Coevolution of quantitative traits

In Section 2, we presented the dynamics of the population mean Γ and the diversity ∆ of a single

quantitative trait. We further showed the generated epistatic pattern ωij . In this appendix, we

extend the dynamics and epistatic pattern to multiple co-evolving quantitative traits.

B.1 Dynamics of epistatic traits

In this section, we discuss the extension of the mean trait dynamics (2.4) to co-evolutionary

dynamics of two traits. This can be biophysical related traits, evolving in a 2-dimensional

fitness landscape f(E,G) of Equations (2.27) or (2.30). However, we discuss the co-evolution in

a generic fitness landscape.

The population genetics of the two-trait system is described by the population mean values

ΓG and ΓE , the diversities ∆GG and ∆EE , and the covariance ∆GE . Under mutations, genetic

drift or draft, and selection given by the fitness landscape f(G,E), the mean traits follow a

stochastic evolution equation analogous to Equation (2.4). We present it here in the Langevin

picture of the corresponding Fokker-Planck equation

(

Γ̇G

Γ̇E

)

=

(

mΓG

mΓE

)

+ g

(

∂GF1(E,G)

∂EF1(E,G)

)

+

(

χG

χE

)

, (B.1)

with mΓg′ defined as (2.10) for each trait g′ and g =

(

〈∆GG〉 〈∆GE〉
〈∆GE〉 〈∆EE〉

)

similar to Equation (2.9).

In the effective mean trait fitness,

F1(E,G) = f(E,G) + O
(

∆GG
∂2f

∂G∂G(E,G) + ∆GE
∂2f

∂G∂E (E,G) + ∆EE
∂2f

∂E∂E (E,G)
)

, the higher

orders are negligible if the diversities is strong enough constrained, which we assumne. Further-

more, the fluctuations of the dynamics have mean and variance

(

〈χG〉
〈χE〉

)

=

(

0

0

)

,

(

〈χG(t)χG(t′)〉 〈χG(t)χE(t′)〉
〈χG(t)χE(t′)〉 〈χE(t)χE(t′)〉

)

= σ̃δ(t− t′)

(

∆GG ∆GE

∆GE ∆EE

)

. (B.2)

In the scope of this work, we are not particularly interested in the co-evolution of trait diversities,

i.e. the generalization of (2.5).
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A stationary state under time-independent selection has the property

(

〈∂Gf(E,G)〉
〈∂Ef(E,G)〉

)

= −g−1

(

〈mΓG〉
〈mΓE 〉

)

. (B.3)

Therefore, the gradient in both directions is just given by the mutational effects coupled through

the (co-)diversities. If this polymorphism is not constrained by selection but genetic drift or

draft, it is similar to (2.15) with the same implications for the mutational effects however coupled

through 〈∆GE〉. If this mutational covariance is small, the same statement holds for the expected

squared slopes, cp. (2.15). However, as a stability condition, both directional derivates need

to be large enough, which is the problem for the thermodynamics equilibrium of biophysical

traits (2.27) discussed in the main text.

B.2 Selection on pleiotropic trait sites

For g co-evolving, possibly pleiotropic quantitative traits, the selection of a mutation in a fitness

land- or seascape f(E1, . . . , Eg, t) is approximately additive in the traits,

sfj (E1, . . . , Eg, t) ≈
g
∑

g′=1

Eg′

j ∂Eg′f(E1, . . . , Eg, t),

cp. (2.16) for g = 1. The epistatic selection

sfj|i(E
1, . . . , Eg, t) ≈

g
∑

g′=1

Eg′

j ∂Eg′f(E1 + E1
i , . . . , E

g + Eg
i , t) − Eg′

j ∂Eg′f(E1, . . . , Eg, t)

≈
g
∑

g′,g′′=1

Eg′′

i Eg′

j

∂2f

∂Eg′′∂Eg′
(E1, . . . Eg, t)

︸ ︷︷ ︸

=:ωg′,g′′

ij (E1,...Eg ,t)/(2N)

(B.4)

has in principle g2 terms, if all traits have highly inter-functional epistasis between each trait

pair. Each term is in its site-dependence just the outer product of the trait effects. In Chapter 4

we discuss the case without functional epistasis, i.e. additive selection across traits, where the

Hessian matrix of f(E1, . . . Eg) = f1(E1) + · · ·+ fg(Eg) is diagonal. The epistatic selection then

reduces to

sfj|i(E
1, . . . , Eg, t) ≈

∑

g′

Eg′

i Eg′

j

∂2

∂Eg′2
fg′(Eg′ , t)

︸ ︷︷ ︸

=:ωg′

ij (E
g′ ,t)/(2N)

,
(B.5)

which defines the average epistatic score for a particular gene ωg′

ij := 2N〈f ′′
g′(Γ

g′)〉 averaged in a

steady state for each trait.



Appendix C

Analytical theory of the adaptive

ensemble

In Section 3.3.1, we obtained the Gaussian stationary distribution Qstat(Γ, E
∗) in a diffusive

seascape from the underlying Fokker-Planck equation (2.4). Here we use a Langevin repre-

sentation to compute the time-resolved trait divergence 〈d(κ)〉(τ) (κ = 1, 2). This derivation,

which reproduces mean and variance of the distribution Qstat(Γ, E
∗), applies to diffusive and

punctuated fitness seascapes. We also compute the full propagator function Gτ (Γ, E∗|Γa, E
∗
a)

for macro-evolutionary diffusive seascapes. The propagator in a punctuated fitness seascape has

the same mean and variance, but differs in higher trait moments.

Moments of the optimal trait. In a diffusive seascape, the fitness peak E∗(t) follows an

Ornstein-Uhlenbeck process with Langevin representation

∂tE
∗(t) = − υ

r2
(E∗(t) −G) + η(t), (C.1)

where η(t) is a Gaussian random variable with the statistics

〈η(t)〉 = 0, 〈η(t)η(t′)〉 = 2υE2
0 δ(t− t′). (C.2)

Formally solving Equation (C.1),

E∗(t + τ) = E∗(t)e−τ/τsat + E(1 − e−τ/τsat) +

∫ t2

t1

dt′ e−(τ−t′)/τsatη(t′), (C.3)

and evaluating the noise correlations (C.2), we obtain the average peak value with an initial

condition E∗(t) = Ea and the autocorrelation function of the fitness peak in the stationary

ensemble,

〈E∗(t + τ)〉(Ea) = Eae
−τ/τsat + E

(
1 − e−τ/τsat

)
, (C.4)

〈E∗(t)E∗(t + τ)〉 = E2 + E2
0r

2e−τ/τsat . (C.5)
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It is straightforward to check that Equations (C.4) and (C.5) are valid also for punctuated

seascapes.

Moments of the trait mean. The Langevin equation for Γ(t) reads

∂tΓ(t) = −2µ(Γ(t) − Γ0) − 〈∆〉 2c

E2
0

(Γ(t) − E∗(t)) + ξ(t), (C.6)

where ξ(t) is a Gaussian noise with the statistics

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 =
〈∆〉
N

δ(t− t′), 〈ξ(t)E∗(t′)〉 = 0. (C.7)

For diffusive seascapes, the last term in (C.7) is equivalent to 〈ξ(t)η(t′)〉 = 0, which implies

that genetic drift and fitness seascape fluctuations are independent. The formal solution of

Equation (C.6) reads

Γ(t + τ) = e−τ/τeqΓ(t) + (1−w(c))(1 − e−τ/τeq)Γ0

+

∫ t+τ

t
dt′ (E∗(t′)c〈δ〉 + ξ(t′)) e−(t+τ−t′)/τeq , (C.8)

where w(c) = [1 + 2θ/(c〈δ〉)]−1. In the case of a diffusive fitness seascape, we can insert the

trajectory of the fitness peak E∗(t) given by Equation (C.3),

Γ(t + τ) = Γ(t)e−τ/τeq + E∗(t)w(c,−υ, r2)
(
e−τ/τsat − e−τ/τeq

)
(C.9)

+Γ0(1−w(c))(1 − e−τ/τeq)

+Ew(c,−υ, r2)

[
(
1 − e−τ/τsat

)
+

τeq
τsat

(
1 − e−τ/τeq

)
]

+

∫ t+τ

t
dt′
[

ξ(t′)e−(t+τ−t′)/τeq

+η(t′)w(c,−υ, r2)
(
e−(t+τ−t′)/τsat − e−(t+τ−t′)/τeq

)]

;

see e.g. Section 4 of [160]. Evaluating the noise correlations (C.7), we obtain

〈Γ〉 = w(c)E + (1 − w(c))Γ0, (C.10)

〈Γ(t)Γ(t + τ)〉 = 〈Γ〉2 + 〈Γ̂2〉e−τ/τeq

+r2E2
0w(c, υ, r2)w(c,−υ, r2)(e−τ/τsat − e−τ/τeq), (C.11)

〈Γ(t + τ)E∗(t)〉 = 〈Γ〉E + E2
0r

2w(c,−υ, r2)e−τ/τsat

−H(τ)E2
0 υτeq(c)w(c, υ, r2)w(c,−υ, r2)

(
e−τ/τeq − e−τ/τsat

)
, (C.12)
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where w(c, υ, r2) = [1 + (2θ + 2Nτ−1
sat (v, r2))/(c〈δ〉)]−1 and H(τ) is the Heaviside step func-

tion, i.e. H(τ) = 1 for τ > 0 and H(τ) = 0 otherwise. The relations (C.10) – (C.12) are also

valid for punctuated seascapes, as can be shown by evaluating Equation (C.8) with the noise

terms (C.4), (C.5), and (C.7). The time-reflection asymmetry of the cross-correlation (C.12) re-

flects the causal relation between Γ and E∗. The equal-time correlations reproduce the moments

(3.18) obtained from the solution of the Fokker-Planck equation.

From the autocorrelation function (C.11), we immediately obtain the scaled divergence 〈d(1)〉
reported in Equation (3.30). For the divergence between descendent populations, 〈d(2)〉, we

additionally use the fact that the fitness fluctuations in the different lineages are independent of

each other. In a diffusive fitness seascape, we have

〈ηi(t)ηj(t′)〉 = δi,j δ(t− t′) 2υE2
0 , i, j = 1, 2, (C.13)

which implies

〈
(E∗

1(t + τ1) − 〈E∗
1(t + τ1)〉)(E∗

2(t + τ2) − 〈E∗
2(t + τ2)〉)

〉
= 0; (C.14)

the latter relation is valid also for punctuated seascapes.

Propagators. We recall the decomposition of the bivariate propagator,

Gτ (Γ, E∗|Γa, E
∗
a) = Gτ (Γ|Γa, E

∗
a, E

∗)Gτ (E∗|E∗
a), (C.15)

which reflects the independence of the fitness peak dynamics from the trait mean.

The fitness peak propagator takes the standard form for an Ornstein-Uhlenbeck process and

a Poisson jump process, respectively,

Gτ (E∗|E∗
a) =







1
√

2π〈Ê∗2〉(τ, E∗
a)

exp

[

−(E∗ − 〈E∗〉(τ, E∗
a))2

2〈Ê∗2〉(τ)

]

, (diffusive seascape),

e−τ/τsatδ(E∗−E∗
a) + (1−e−τ/τsat)Req(E∗), (punctuated seascape),

(C.16)

see, e.g. reference [160]. In both cases, the propagator has the same mean and variance,

〈E∗〉(τ, E∗
a) = Eae

−τ/τsat + E
(
1 − e−τ/τsat

)
, 〈Ê∗2〉(τ) = r2E2

0

(
1 − e−τ/τsat

)
, (C.17)

in accordance with Equations (C.4) and (C.5).

For diffusive seascapes, we can also compute the Gaussian propagator of the trait mean for

given fitness peak positions,

Gτ (Γ|Γa, E
∗
a, E

∗) =
1

√

2π〈Γ̂2〉(τ)
exp

[

−1

2

(
Γ − 〈Γ〉(Γa, E

∗
a, E

∗, τ)
)2

〈Γ̂2〉(τ)

]

. (C.18)
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If τeq . τsat(υ, r
2) and τ . τsat(υ, r

2), we can approximate the stochastic trajectory of the

trait optimum E∗(t′) in the time interval ta = t − τ ≤ t′ ≤ t by the most likely trajectory for

given initial and the final values: E∗(t′) = E∗
a + ((t′ − ta)/τ)(E∗ − E∗

a). In this saddle-point

approximation, we obtain the conditional trait moments

〈Γ〉(Γa, E
∗
a, E

∗, τ) = Γae−τ/τeq +
(
E∗

aw(c) + Γ0(1 − w(c))
)(

1 − e−τ/τeq
)

+
E∗ − E∗

a

τ
w(c)

[
τ − τeq

(
1 − e−τ/τeq

)]
, (C.19)

〈Γ̂2〉(τ) = E2
0

w(c)

2c

(
1 − e−τ/τeq

)
. (C.20)

Equations (C.15) – (C.20) determine the joint propagator Gτ (Γ, E∗|Γa, E
∗
a) for divergence times

τeq . τsat(υ, r
2). In the large-time limit, τ ≫ τsat(υ, r

2), the propagator becomes independ-

ent of the initial condition and approaches the stationary distribution, Gτ (Γ, E∗|Γa, E
∗
a) ≃

Qstat(Γ, E
∗), given by Equations (3.16–3.18). In most biological experiments, the trait op-

timum values are hidden variables of the evolutionary process. In that case, the only observable

propagator is the marginal propagator for the trait mean,

Gτ (Γ|Γa) ≡
∫

dE∗
adE

∗Gτ (Γ, E∗|Γa, E
∗
a)

Qstat(Γ, E
∗
a)

Qstat(Γ)

=
1

√

2π〈D(1)〉(τ)
exp

[

−1

2

(Γ − 〈Γ〉(Γa, E , τ))2

〈D(1)(τ)〉

]

. (C.21)
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Figure C.1. Trait evolution under free recombination. A The scaled average divergence 〈d(1)〉(τ)
is shown as a function of the scaled divergence time τ/N for three cases: neutral evolution (c = 0; grey
line), conservation in a static fitness landscape (c = 1, υ = 0; red line), and adaptation in a macro-
evolutionary fitness seascape (c = 1, υ > 0; blue lines). The analytical results of Equation (3.30) (lines)
are compared to simulation results for evolution with free recombination in diffusive and punctuated
fitness seascapes (blue and red dots, respectively). The analytical value of 〈δ〉 is taken from Equation (69)
of reference [53]; the other parameters are as in Figure 3.4. B Scaled genetic load 2NL (full lines), adaptive
load 2NLad (dashed lines), and equilibrium load 2NLeq (dotted lines), plotted against the scaled driving
rate υ/µ. The other parameters are as in Figure 3.6A. C Scaled fitness flux 〈2Nφ〉 and its components
〈2Nφmicro〉 and 〈2Nφmacro〉 (with decomposition constant k = 2), plotted against the scaled driving rate
υ/µ. The other parameters are as in Figure 3.6B.
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Figure C.2. Universality of the divergence/diversity ratio Ω(τ). Numerical results for the
evolution in fitness seascapes (c = 1, υ = 4 · 10−5, upper lines and dots) and fitness landscapes (c =
1, υ = 0, lower lines and dots) under different molecular conditions are compared to the analytical
solutions for nonrecombining (ρ = 0) and free-recombining (ρ → ∞) genomes. A Evolution with different
recombination rates (color-coded dots for diffusive seascapes and triangles for punctuated seascapes).
B Evolution with different numbers ℓ of constitutive sites in nonrecombining populations. C Evolution
wih different effect distributions. The trait amplitudes Ei (i = 1, . . . , ℓ) are drawn from an exponential
distribution with expectation value 1/

√
2 and from a delta distribution (all sites have amplitude Ei = 1).



Appendix D

Detailed results of QTL epistasis and

correlations

In this appendix, we collect the exact results and extensions for the QTL correlations and

discuss the dimensional reduction of data. We start with the exact solution of single site state

probabilities. We present the diagonal elements of the response matrix and the equilibrium

asymmetry. We show the exact results for the polarized asymmetry and the response correlation

under strong interference. We extend the correlation rates to finite frequencies of mutations,

which do not change our conclusions in Chapter 4. Finally, we discuss how a dimension reduction

of observed correlations retrieves the number of traits and trait effects.

D.1 Exact results for single site and pairwise substitution rates

Site state probabilities and substitution rates. Here, we present the exact results for

the adaptive model in Section 4.2. These are particularly the marginal site statistics, i.e. the

state probabilities Λ
ǫj ,ηj
stat,j and the substitution rate ρj , which underly an interplay of the time-

constant trait selection effect N |sfj | ∼ 1, driving rate γj , and selection strength on driving Nsj .

The dynamics

d

dt
Λ
ǫj ,ηj
j (t) = NµG

(
ǫj(s

f
j + ηjsj)

)
Λ
−ǫj ,ηj
j (t) + γjΛ

ǫj ,−ηj
j (t)

−
(

NµG
(
− ǫj(s

f
j + ηjsj)

)
+ γj

)

Λ
ǫj ,ηj
j (t)

(D.1)

is solved from the eigenanalysis of the transition matrix between all states (ǫj , ηj). We find for

the stationary state probabilities

Λ
ǫj ,ηj
stat,j =

1

2
Λ
ǫj ,ηj
eq,j

1 +
γj
Nµ

(
Λ
ǫj ,−ηj
eq,j

G
ǫj ,ηj
j

+ 1

G
−ηj
j

)

1 +
γj
Nµ

(

1
G−1

j

+ 1
G+1

j

) , (D.2)
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with Λ
ǫj ,ηj
eq,j := Λeq(ǫj(s

f
j + ηjsj)), G

ǫj ,ηj
j := G(ǫj(s

f
j + ηjsj)), and G

ǫj
j := G

ǫj ,+1
j + G

ǫj ,−1
j ; G(.)

are obtained from Equation (2.21) or (2.22) and Λeq(.) from Equation (2.23). The equilibrium

limit γj → 0 has a factor 1/2 due to quenched disorder of the equilibrium solution (4.1) over

both environmental states ηj = ±1.

The substitution rates (4.3) under Kimura substitution probabilities (2.21), which is the

prerequisite for effective selection and hence strong driver sites, read

ρj = ρeqj
1 +

γj
µ aj,1

1 +
γj
µ aj,2

(D.3)

=







ρeqj , Nsj ≪ 1 or

(effectively unadaptive),

γj , Nsj ≫ N |sfj | ∼ 1; N |sfj |e−Nsj . γj/µ . Nsj

(macro-evolutionary adaptation,)

µNsj , Nsj ≫ N |sfj | ∼ 1; γj/µ & Nsj

(micro-evolutionary adaptation),

(D.4)

with

ρeqj = µ

(
∆σj

sinh (2∆σj)
+

Σσj
sinh (2Σσj)

)

(D.5)

being the quenched disorder equilibrium across both effective selection states ∆σj := N
∣
∣sfj − sj

∣
∣

and Σσj := N
∣
∣sfj + sj

∣
∣. The full solution of ρj has prefactors for the γj-terms in enumerator

and denominator of (D.3),

aj,1 =
tanh (∆σj) tanh (Σσj)

4∆σjΣσj (∆σjcsch (2∆σj) + Σσjcsch (2Σσj))

×
(
2∆σjΣσj (coth (∆σj) coth (Σσj) − 1) + ∆σj

2csch2 (∆σj) + Σσj
2csch2 (Σσj)

)

and

aj,2 =
2∆σj coth (∆σj) + 2Σσj coth (Σσj)

4∆σjΣσj coth (∆σj) coth (Σσj)
.

The asymptotical behaviors are discussed in the main text.

Diagonal of response matrices. The self-response of a site deviates significantly from the

broad pattern: a mutation on a site i brings compensation not only through the trait, but also

conditions the response on its single-site selection. Hence, the self-response deviates from (4.7)

and is in equilibrium

ρ
ǫi1ǫi2
ii (τ) = ρ

ǫi1
eq,iδǫi1,−ǫi2µNG

ǫi1
i|i (τ),
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with G
ǫi1
i|i (τ) = G

(

− ǫi1
(
stoti − |〈sfi|i〉bi(τ)|

))

. The Kronecker-delta δǫi1,−ǫi2 takes care for the

conditional state after the first substitution. 〈sfi|i〉bi(τ) is still given by (4.5). This equation

yields in equilibrium1

ρii(τ) = −ρpolii (τ)

= ρ0 ii

(

cosh2(σ̃i) +
tanh(2σ̃i)

2σ̃i
(−ωii)
︸ ︷︷ ︸

>0

e−τ/τeq + (ω2
ii/αj)e

−2τ/τeq + O(ω3
ii, τ

3
eqµ

3)
)

,
(D.6)

with both, even and odd orders of ωij . This result is obviously different to (4.8) and (4.10). For

the single-site response, there is only one type of polarization available for compensation. This

is not model specific, but also generalizes to a more general alphabet by a restricted state space

of the site. A primary mutation changes possible beneficial/deleterious mutational targets. For

non-adaptive strong selection |Nsi| > 1, the response is significantly enhanced compared to the

independent rate ρ0ii ∼ ρ2i , because we expect after a (rare) deleterious substitution a quick

self-compensation back to the beneficial state.

As a consequence, the diagonal breaks the simple low-rank form of the response matrices (4.8)

and (4.10) by adding another rank, which cannot be absorbed in independent events ρ0ii ∼ ρ2i .

However, it impacts only ℓ of the ℓ2 matrix element and has only a weak impact on retrieving

the trait signal from the full matrix ρij . It gives no significant singular mode in the SVD of ρ̂ij

or ρpolij .

Equilibrium asymmetry. In the main text we omitted a factor αeq
j = ρeqj /ρ̃eqj ∼ 1 in the

response of the total mutation rates (4.8) causing a mild asymmetry even in equilibrium (ρeqij (τ) 6=
ρeqji (τ)). The asymmetry factor

αeq
j =



coth2
(
Nstotj

)
−

coth
(

Nstotj

)

Nstotj





−1

(D.7)

increases from 1 to 3 if selection comes close to neutrality Nstotj . 1, i.e. if the directional

trait selection effect is cancelled by the single site selection. This particular neutral case also

enters the quenched disorder statistics in the limit of weak adaptation of the adaptive model.

Numerical studies show that it is well approximated by

lim
γ→0

αstat
j ≈ αeq

j

∣
∣
stotj

∣

∣

∣
|sfj |−sj

∣

∣

∣

, (D.8)

1We do not present the non-equilibrium solution here, because already the equilibrium deviates strongly and
we are not particularly interested in these single site rates.
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see Figure D.3A. Only the distance from the neutral state sfj = −sj in the sfj -sj plane is relevant.

The full solution of the asymmetry is

lim
γ→0

αstat
j =

∆σj sinh (2Σσj) + Σσj sinh (2∆σj)

2 coth (∆σj) coth (Σσj)
× (D.9)

(
sinh2 (∆σj) (Σσj coth (Σσj) − 1) + sinh2 (Σσj) (∆σj coth (∆σj) − 1)

)−1
,

with ∆σj := N
∣
∣sfj − sj

∣
∣ and Σσj := N

∣
∣sfj + sj

∣
∣. It is slightly less asymmetric compared to (D.8)

around N |sfj | = Nsj ≈ 1 as shown in Figure D.3B.

The mild breaking of detailed balance is no big concern, because strictly speaking the ‘equilib-

rium dynamics’ are in no equilibrium but a marginalized stationary state of the high-dimensional

mutational space. The ensemble of all QTL compensates a substitution i before j may com-

pensates. Therefore, the dynamics are not time-reversible. Nonetheless, the mild asymmetry is

much weaker than the asymmetry from strong driver sites such that the asymmetry is still a

good measure for external driving.

Polarized asymmetry. The full solution of the polarized asymmetry αj , Equation (4.12),

obtained from (4.10) reads

αpol
j =

1 + bj,1γj/µ

1 + bj,2γj/µ
(D.10)

= 1 +
γj
µ

(bj,1 − bj,2) + O(γj/µ), (D.11)

with

bj,1 =
−2σj sinh(2σj)σ

f
j sinh

(

2σf
j

)

−σf
j

2
(

−2 cosh(2σj) cosh
(

2σf
j

)

+sinh2(2σj)+2
)

+σ2
j sinh2(2σj)

2
(

σ2
j−σf

j

2
)(

σj sinh(2σj) cosh
(

2σf
j

)

−cosh(2σj)σ
f
j sinh

(

2σf
j

)) , (D.12)

bj,2 =
2σf

j

2
(

cosh(2σj) cosh
(

2σf
j

)

−1
)

+σj sinh(2σj)
(

−2σf
j sinh

(

2σf
j

)

−cosh
(

2σf
j

)

+cosh(2σj)
)

2
(

σ2
j−σf

j

2
)(

σj sinh(2σj) cosh
(

2σf
j

)

−cosh(2σj)σ
f
j sinh

(

2σf
j

)) ,

and σj = 2Nsj and σf
j = 2Nsfj . It is αpol

j = 1 in equilibrium and for weak single site selection

(trailer regime), cp. (4.14). As Figure D.1B shows, the asymmetry increases the stronger the

driving rate γj or the single site selection sj . It gets less asymmetric, the stronger the average

(time-independent) trait selection is. As discussed in Equation (4.14), it has two driver regimes.

D1) with moderate adaptation γj & µ/bj,1, where αpol
j ≈ γj/(bj,2µ), and Dpol

2 ) with strong

driving γj ≫ µ/bj,k, k = 1, 2, where αpol
j ≈ bj,1

bj,2
.

Therefore, the asymmetry is a good measure for the strength of driving of a site and also

related to the fitness flux generated by the site, cp. Section 4.4.

Response correlation under strong interference. Here, we consider the trait sites linked

to the rest of the genome with strong interference in a fitness wave with fixation probabili-
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ties (2.22) [69, 92]. These dynamics show pairwise rates

ρij(τ) = ρ0ij(σ̃)

(

1 +
1

2
ω2
ije

−τ/τeq

)

,

ρpolij (τ) = ρ0ij(σ̃)ωije
−τ/τeq ,

stotj . σ̃, (D.13)

where now ωij ∼ 〈f ′′(Γ)〉/σ̃. If the sites are under low efficacy of selection, they do not change

the pattern of Equations (4.8) and (4.10). However, these rates show no asymmetry: mutations

are by definition, s . σ̃, in the trailer regime. Strongly selected sites s ≫ σ̃ still follow the

fixation probability (2.21) and show the asymmetry of Equations (4.8) and (4.10). In conclusion,

interference would not change the trait pattern in correlations but would weaken the asymmetry.

Finite allele frequency detection. So far, we focussed derived substitution dynamics for

the response rates. However, the results can further be generalized to finite observed frequencies,

xD and xT , of primary and secondary mutation to generalize it to the application to phyloge-

netic trees. We count a mutation if it reached frequency xT clad by the first mutation with

minimum frequency xD. For these dynamics we generalize Equation (2.21) to finite frequency

propagators [21]:

G(s|x) =
1

N

s

1 − e−Nxs
. (D.14)

These propagators change the rate of observations, but not the generic response process.

Nonetheless, already in the null mode, i.e. without trait-correlations, these finite frequencies

generate an asymmetry,

ρ0ij(τ |xD, xT ) = ρ0ij(xD, xT ) = ρi(xD)ρj(xT ) 6= ρ0ji(τ |xD, xT ). (D.15)

For the response rate of a increasing mutation clade of site j in the background of i, Equa-

tion (4.8) generalizes to

ρij(τ |xD, xT ) = ρi(xD)ρj(xT ) + ρi(xD)
(
ρeqj (xT )/αeq

j (xT )
)
ω2
ije

−2τ/τeq + O(ω4
ij , (τµ)3)

=: ρ0ij(xD, xT )
[

1 + αj(xT )ω2
ije

−2τ/τeq + O(ω4
ij , (τµ)3)

]

,
(D.16)

The response with finite detection frequency can be mapped to the response under substitution

dynamics with effective population size NT = xTN ,

ρeqj (xT ) = xTρ
eq
j

∣
∣
N→NT

, (D.17)

αeq
j (xT ) = αeq

j

∣
∣
N→NT

. (D.18)

where the r.h.s. variables are from equilibrium substitution dynamics, Equations (4.4) and (D.7).

If the null mode asymmetry is absorbed in the prefactor, the equilibrium response asymmetry

αeq
j (xT ) is given by the weak asymmetry of (D.7) with effective population size NxT . Strong

asymmetry is still a non-equilibrium property of the process. The asymmetry of the non-
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equilibrium trait correlation of (D.16) is, similar to the substitution dynamics (4.11),

αj(xT ) = αeq
j (xT )

ρj(xT )

ρeqj (xT )
∼ ρj(xT )

ρeqj (xT )
. (D.19)

Reducing the threshold of trailer detection xT on the one hand increases the number of mutations

observed and hence improves the signal. On the other hand, a too low threshold counts too many

neutral events and the trait signal gets weaker.

Finding such simple relations for polarized rates ρpolij (τ) is still an open task. In principle they

are algebraically calculable as function of the model parameters but yield unintuitive results;

Nonetheless, they are still of factorizable rank 1 form due to factorizable ρ0ij(xD, xT ),

ρpolij (τ) = ρ0ij(xD, xT )
[
(ωij/α

pol
j (xT )

︸ ︷︷ ︸

<0

)e−τ/τeq + O(ω3
ij , (τµ)3)

]
, (D.20)

but show a stronger asymmetry due to the asymmetric rates in the null-mode prefactor ρ0ij(xD, xT ).

D.2 Singular value decomposition of trait sectors

Now we derive the singular value of a of a trait in the significance matrices zij and zpolij . This

approach applies for every selectively independent trait, each conferring a significant singular

value. This singular mode can than be used to infer back the trait effects and the asymmetry

of sites.

Significance of trait sectors. To optimize the signal strength of Equation 4.18, the para-

meter τ0 has to be well chosen to discriminate in-causal long-term counts, i.e. noise. Performing

the time integral leads to the optimization problem of λ̃ ∼
√

τeq/τ0
k+τeq/τ0

with k = 1, 2 for polarized

counts Npol
ij and total counts Nij , respectively, see Figure D.4. An optimal signal is achieved if

τ0 ∼ τeq/k. An overestimate of τ0 yields to a more stable signal than the underestimation. In

the following, we discuss particular results for τ0 = τeq. In the data analysis we use τ0 ≈ 3τeq.

Given the expected count matrices, Equation (4.19), we can estimate the significance level

of one trait through its singular value2,

〈zij〉 ≈
Nij −N 0

ij
√

N 0
ij

=
√

N 0
ij

ω2
ij

3αj
= λ̃d̃it̃j , (D.21)

〈zpolij 〉 ≈
N pol

ij
√

N 0
ij

=
√

N 0
ij

ωij

2αpol
j

= λ̃pold̃poli t̃polj , (D.22)

2For simplified notation without a trait index; it generalizes to g singular values for g traits, where these
equation are applicable to each.
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assuming weak correlation between fluctuations and signal. With normalized singular vectors

d̃i =

√
ρiE

2
i

√
∑

k ρkE
4
k

, t̃i =

√
ρiE

2
i /αi

√
∑

k ρk(E2
k/αk)2

∼
√
ρiE

2
i

√
∑

k ρkE
4
k

, (D.23)

d̃poli =

√
ρiEi

√
∑

k ρkE
2
k

, t̃poli =
ρiEi/α

pol
i

√
∑

k ρk(Ek/α
pol
k )2

∼ ρiEi
√
∑

k ρkE
2
k

, (D.24)

we find the singular values

λ̃ =
√

τ0T
c2

3(E2
0)2

√
∑

k

ρkE
4
k

∑

k′

ρk′(E
2
k′/αk′)2 ∼

√

Ω/ℓ2
c2

3

∑

k E
4
k

(E2
0)2

=
√

Ω/ℓ2
16c2

3ℓ
κ4,

(D.25)

λ̃pol =
√

τ0T
c

2E2
0

√
∑

k

ρkE
2
k

∑

k′

ρk′(Ek′/α
pol
k′ )2 ∼

√

Ω/ℓ2 2c. (D.26)

In Equations (D.21) – (D.26), the trailer, t̃i and t̃poli , asymptotics become exact if sites are not

driven strongly, such that the asymmetry factors in Equation (4.13) or (4.14) are αj ≈ αpol
j ≈ 1.

The variable κ4 measures the kurtosis of the Ei-distribution across sites; it is κ4 = 1 for a

normal distribution. Ω =
∑

ij Nij ≈
∑

ij N 0
ij =

∑

ij ρiρjτ0T is the total number of observations

determined by the measuring time T .

On the other hand, the expected noise level of pairwise observations is determined by the

number of their pairwise counts, var (Nij) = Nij/2 and var
(

Npol
ij

)

= Nij/2, where the given

prefactors are for Gaussian distributed counts, which is approached for large Nij by the law of

large numbers. Therefore, the z-values zij and zpolij are standard scores having variance 1/2.

Random matrix theory predicts for independent distributed Nij for each site-pair a maximum

eigenvalue sharply distributed around λ̃max
noise =

√
ℓ [138], which we see in the randomly scrambled

trees. e.g. Figure 4.3B2,C2. Therefore we can detect traits with λ̃ &
√
ℓ from mutational counts

alone and λ̃pol &
√
ℓ if further the direction of mutations is known. It translates into a minimal

size of the dataset of Ω & ℓ(µℓτeq)4 for the former and Ω & ℓ(µℓτeq)2 for the latter. This approach

gives hence the number of significant traits, for which we next infer the site contributions.

Inference of trait effects. To relate the singular mode to the trait effects and asymmetries,

we transform

(

N̂ij

N0
ij

)

red

:=
λ̃d̃it̃j
√

N0
ij

=
ω2
ij

3αj
≡ λditj , (D.27)

(

Npol
ij

N0
ij

)

red

:=
λ̃pold̃poli t̃polj
√

N0
ij

=
ω2
ij

2αpol
j

≡ λpoldpoli tpolj . (D.28)
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These are independent of the site’s independent substitution rates ρi,

di =
E2

i
√
∑

k E
4
k

, ti =
E2

i /αi
√
∑

k(E2
k/αk)2

∼ E2
i

√
∑

k E
4
k

, (D.29)

dpoli =
Ei

E0
, tpoli =

Ei/α
pol
i

√
∑

k(Ek/α
pol
k )2

∼ Ei

E0
. (D.30)

The driver components give directly the trait effects, the trailer components further allow to

infer the asymmetry and hence the strength of non-equilibrium of a site. The asymptotics are

again exact close to equilibrium. The eigenvalues are reflecting the stabilizing strength λ ∼ κ4c
2

and λpol ∼ c.
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Figure D.1. Adaptation: breakdown of detailed balance generates asymmetric correlation
response. A Asymmetry of site response, αj , given by (4.11) with asymptotic behavior (4.13), and

B its polarized counterpart, αpol
j , given by (D.10) with asymptotic behavior (4.14). Both are shown as

functions of their driving γj and selection strength sj . They show the breakdown of detailed balance

in non-equilibrium (γj > 0). αpol
j ≈ αj ≈ 1 is symmetric for weak single site selection or weak driving

rates, which we call trailer regime (T ). It is separated from two distinguished regimes of asymmetry
scaling, D1 as a moderate driver regime and D2 as an extreme driver regime, by red (γj ∼ ρeqj ) and

white lines (sj ∼ sfj ), respectively. The scaling in the two driver regimes changes, when A) going towards
micro-evolutionary single-site seascape γj ∼ γm

j ≡ µNsj (purple line), or in B) γj ∼ ρeqj Nsj (blue line).

C Simulations show indeed an increase in site’s asymmetries αj (blue) and αpol
j (red) with sj . For trait

sites having larger sj , trait selection and drift are overcome such that a site is adaptable to fluctuating
selection. However we have not yet reached the scaling regimes discussed in panels A,B. All ℓ = 40
trait sites have same γj = 0.8µ and Ej = 1 but heterogeneous sj . The simulations run with additional
80 non-trait sites with similar distributed single site selection, which show no visible asymmetry effect
(not shown). All other parameters are like in Figure 4.3. D The global asymmetry of the response
matrices is measured as the fraction of the L2 norm of the asymmetric part to the matrix compared to
the L2 norm of the full matrix. It is plotted against the inferred fitness flux from the trait’s driver site,
φfl =

∑

j∈driver φj = ρisi, which are defined by Nsj > 2.5, Ej > 0.5. The simulations are similar to panel
C, but varying γj = 0, 0.8µ, 8µ (left, middle and right data points). The asymmetry generically increases
with the fitness flux, it saturates since drivers are not expected to show compensatory response due to
strong single site selection on simulation timescales. Sites with less than 5 mutations are excluded from
the analysis, which excludes the driver sites in equilibrium showing no variation.
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Figure D.2. Epistasis and correlations of 2 highly pleiotropic traits The Figure is similar to
Figure 4.5 for non-pleiotropic traits. A Here, two pleiotropic quantitative traits have trait effects Ei (top
marginal plot; defining ordering of sites) and Gi (right marginal plot). The trait effects are independently
drawn. Blue sites contribute to the traits, black sites are neutral with respect to the trait. The epistatic
matrix ωij (color) follows Equation (4.16). A,B1,C1 The strong pleiotropy generates broad correlations
without clear sectors, however still of small dimensionality. B2–B3 In the linear response, the traits
are each related to a significant singular mode. This number allows to infer the number of traits in
B2 and the trait effects in B3. C2 In the second order, another significant rank arises through strong
pleiotropic interactions. C3 The first two singular modes correlate with the trait effects. However, to
carefully reconstruct trait effects, an appropriate rotation in the 3d significant subspace or a non-linear
dimensional reduction is needed. All singular vectors in B3 and C3 are rotated with a varimax rotation
amplifying the signal.
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A B

Figure D.3. Equilibrium asymmetry αeq
j of response enhancement ρ̂ij(τ). A shows the full

solution limγ→0 αstat,j , the red line shows the ‘neutral hill’ |sfj | = sj . The symmetry breaking is, apart

from very small deviations around |Nsfj | = Nsj ≈ 1, given by a shift of the solution (D.7) for sj = 0:

|sj |f → |sfj | − sj and |sj | → 0. B shows the deviation from the shift-approximation and the full solution,

i.e. δαj = limγ→0 α
st
j − αeq

j

∣
∣
stot
j

=||sfj |−sj| from Equations (D.7) and (D.9).

ΛΛpol

2 4 6 8 10

τ0τeq
0.2

0.4

0.6

0.8

1.0

Λ/Λmax

Figure D.4. Optimizing trait signal with τ0 for unpolarized and polarized counts. The optimal
discrimination time is τ0 ∼ τeq; however an overestimation is more stable than an underestimation.



Appendix E

Analytical theory and extensions of

phenotypic interference

E.1 Trait diversity and cross-over scaling of the fitness wave

Equilibrium of trait diversity. We consider a quantitative trait G evolving by mutations,

coalescence caused by genetic drift and genetic draft, and stabilizing selection in a fitness land-

scape f(G). Mutations and coalescence alone generate an equilibrium of the trait diversity ∆G,

〈∆G〉 =
uǫ2G
2σ̃

, (E.1)

as derived in the main text and References [53,54]. This expression is valid if stabilizing selection

on the trait diversity can be neglected, i.e., if [53]

L∆

σ̃
≡ 〈∆G〉|f ′′(Γ)|

σ̃
. 1. (E.2)

Here we show that this condition is self-consistently fulfilled throughout the phenotypic interfer-

ence regime. Evaluating the expected fitness curvature in the high-fitness part of the minimal

fitness landscape, Equation (2.25), where f ′′(Γ) = −f ′(Γ)/kBT , and in the mutation-coalescence

equilibrium given by Equation (E.1), we obtain f ′′ = −2σ̃/(ǫgkBT ). By Equation (5.3), the con-

dition (E.2) then reduces to
〈∆G〉
ǫ2G

=
C
4g

. 1, (E.3)

which is identical to the condition for phenotypic interference given in the main text. This rela-

tion expresses an important scaling property of the phenotypic interference regime: individual

traits evolve in the low-mutation regime and are monomorphic at most times. In contrast, the

the global trait diversity defines a polymorphic fitness wave,

4g〈∆G〉
ǫ2G

=
σ2

σ̃2
= C & g0. (E.4)

126
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Cross-over scaling of the fitness wave. A travelling fitness wave maintained by mutations

at genomic sites with a fixed selection coefficient s has two distinct scaling regimes [71, 91],

σ2 =







sug, (g . gc),

Cσ̃2 = (C4 )1/3(s2ug)2/3, (g & gc),
(E.5)

which correspond to independently evolving sites and to an asymptotic fitness wave with strong

interference selection, respectively. At the crossover point gc = Cs/(4u), the relation

σ̃(gc) =
2ugc
C =

1

2
s (E.6)

is valid. Comparing this relation with the generic scaling under phenotypic interference, σ̃ =

2ug/C = s/2 as given by Equations (5.2) and (5.3), we conclude that the phenotypic fitness

wave is locked in the crossover region of marginal interference. As discussed in the main text,

this feature reflects the feedback between global and local selection in a phenotypic fitness

landscape, which tunes selection coefficents to the g-dependent value s = 4ug/C. Consistently,

the phenotypic fitness wave has a fitness variance σ2 ∼ g2, compared to the scaling σ2 ∼ g4/3 of

the asymptotic regime at fixed selection coefficients (up to log corrections).

E.2 Stochastic theory of phenotypic interference

In the main text, we derive the scaling relations of phenotypic interference, Equations (5.1) –

(5.5), using the evolution equation for quantitative traits, Equation (5.10), in its deterministic

limit (χ = 0). Here we show that the full evolution equation generates the same scaling. We

convert Equation (5.10) into an equivalent diffusion equation [53,54] for the probability density

Q(Γ, t),
∂

∂t
Q(Γ, t) =

[

σ̃〈∆G〉
∂2

∂Γ2
+

∂

∂Γ

(
κǫGu− 〈∆G〉f ′(Γ)

)
]

Q(Γ, t), (E.7)

with the average trait diversity 〈∆G〉 given by Equation (E.1). The equilibrium probability

distribution Qeq(Γ) describes the stationary fluctuations of the population mean trait Γ(t) of

a stable gene around its long-term average 〈Γ〉 =
∫

ΓQeq(Γ) dΓ; these fluctuations are gener-

ated by genetic drift and (predominantly) genetic draft. In the biophysical fitness landscape,

Equation (2.25), the equilibrium distribution can be evaluated analytically,

Qeq(Γ) =

(
f0
σ̃

)2κ
kBT

ǫG exp
(

−2κΓ
ǫG

− f0
σ̃ e−Γ/kBT

)

kBT Gamma
(

2κkBT
ǫG

) , (E.8)

where Gamma and PolyGamma are standard transcendental functions. This function is plotted

in Figure E.1A. The resulting average,

〈Γ〉
kBT

= − log

(
σ̃

f0

)

− PolyGamma

(

2κ
kBT

ǫG

)

, (E.9)
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shows that genes are slightly more stable than estimated from the deterministic average derived

in the main text, Γ/kBT = − log(2κσ̃kBT/f0ǫG). Through the nonlinearity of the fitness land-

scape, the fluctuations of the mean trait Γ induce fluctuations of the conditional average fitness

variance, 〈∆f 〉(Γ) = 〈∆G〉f ′2(Γ). We obtain the equilibrium distribution

Qeq(∆f ) = Gammagen

(

∆f ; 2κ
kBT

ǫG
,

1

2
uσ̃

ǫ2G
(kBT )2

,
1

2
, 0

)

, (E.10)

with Gammagen denoting the generalized gamma distribution (Figure E.1B). The average fitness

variance

〈∆f 〉 = 2σ̃uκ2
(

1 +
ǫG

2κkBT

)

(E.11)

differs from its deterministic counterpart, Equation (5.1) by a prefactor of order 1. Similarly,

the Γ fluctuations induce fluctuations of the interference load of individual genes,

Qeq(Lgene) = Gammadist

(

Lgene; 2κ
kBT

ǫG
, σ̃

)

(E.12)

(Figure E.1C). The resulting dependence

〈Lgene〉 = 2κ
kBT

ǫG
σ̃ (E.13)

is identical to the deterministic case; the fluctuation effect on 〈Γ〉, Equation (E.9), is offset by

the fluctuation load in a downward-curved fitness landscape. Also expected derivatives of the

fitness functions 〈f (n)(Γ)〉 = − 1
(kBT )n 〈Lgene〉 are not influenced by fluctuations.

E.3 Model extensions

In this section, we discuss alternative evolutionary models of quantitative traits under genetic

linkage. The mode of phenotypic interference, which is characterized by a superlinear scaling of

the genetic load with genome complexity, occurs in all cases, suggesting it is a generic property

of this class of models. Specifically, we discuss housekeeping dynamics in extended models of

protein evolution and we extend our analysis to adaptive processes

Stability-affinity model. Here we discuss the simplest stationary states of housekeeping

evolution in the co-evolutionary model for biophysical traits discussed in the Introduction 2.3

for biophysical equilibrium and non-equilibrium. We use the dynamical model presented in Ap-

pendix B, with the parameter notation simplifying discussion of Chapter 5 , in the deterministic

limit of the co-evolution equation of Appendix B (χG = χE = 0). The trait diversities ∆GG

and ∆EE are given as in Equation (E.1), and we assume that pleiotropic sites have uncorrelated

effects on both traits, i.e. ∆GE = 0; this has recently been observed in [103]. As in the main

text, we set κG = κE = 1, which says that most random mutations reduce stability and affinity.

In thermodynamic equilibrium, Equation (2.27) with (2.26) or Figure 2.2C, the high-fitness

part of the fitness landscape takes the asymptotic form f(G,E) ≃ f0[1−e−E/kBT (1+e−G/kBT +



E.3. MODEL EXTENSIONS 129

e−E/kBT )] + O((e−E/kBT , e−G/kBT )3). The mutation-selection equilibrium leads to mean trait

values
(

ΓG

ΓE

)

≈




kBT log

(
ǫG
ǫE

− 1
)

−kBT log
(

2 σ̃
f0

(
kBT
ǫE

− kBT
ǫG

))



 , (E.14)

where only the E-component depends on the coalescence rate σ̃. Comparison with the minimal

model, Equation (1), shows that in the stable part of the fitness landscape, the equilibrium

stability-affinity model becomes an essentially one-dimensional problem for the affinity trait

E [57]. The total fitness variance per gene, 〈∆f 〉 = 2(uG + uE)σ̃, is of the universal form [1]

with an effective mutation rate

u = uG + uE . (E.15)

We conclude that housekeeping evolution in this model follows the same scaling as in the minimal

model, Equations (5.1) – (5.8), with the parameter u given by Equation (E.15). However, the

equilibrium model lacks evolutionary stability, because lack of folding stability (G > 0) can be

compensated by a stronger binding affinity.

With active degradation, Equation (2.30) with (2.29) or Figure 2.2D, the high-fitness part of

the fitness landscape takes the asymptotic form f(G,E) ≃ f0[1−(1+νE)e−E/kBT−νGe−G/kBT ]+

O((e−E/kBT , e−G/kBT )2). Hence, for stable genes (f0 ≫ σ̃), the evolutionary dynamics of the

traits G and E becomes approximately independent. The traits of each gene are at a mutation-

selection equilibrium of the universal form (5.1), generating a combined fitness variance 〈∆f 〉 =

2(uG + uE)σ̃. Therefore, housekeeping evolution in this model also follows the same scaling as

in the minimal model, Equations (5.1) – (5.8), with a total mutation rate per gene given by

Equation (E.15) and an effective value of g that is twice the number of genes,

geff = 2g. (E.16)

In particular, the system-wide interference load is about twice the value of the minimal model,

Lint ≈ 8ug2/C, as used in the main text. This estimate disregards the additional contribution

from the enhanced total mutation rate, Equation (E.15), which takes into account that uE ≪ uG

for many binding domains.

The form invariance of housekeeping evolution in these models shows the robustness of the

phenotypic interference mode. It also suggests that in more general contexts, we can define gen-

omic complexity as the number of quantitative traits that evolve (approximately) independently;

see the Discussion of Chapter 5.

Single-peak fitness model. A minimal model of stabilizing selection is a quadratic land-

scape (2.24), f(E) = −c0(E − E∗)2, Figure 2.2A. This model penalizes deviations from an

optimal trait value E∗. In contrast to the biophysical landscape, there is no gene loss in a quad-

ratic landscape, because there are no constraints on its slope. As long as mutations generate

trait equilibria predominantly on one flank of the landscape, the basic scaling of phenotypic

interference, Equations (5.1) – (5.4), is universal and, hence, the same as in the minimal model.

The genetic load for a single gene, Lgene = −f(Γ) = u2ǫ2E/(4∆2
Ec0), has been derived in [53].
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With ∆E given by Equation (E.1), we find a system-wide interference load

Lint = gLgene =
4u2g3

C2ǫ2Ec0
. (E.17)

Hence, the single-peak model has an even stronger load nonlinearity than the biophysical fitness

landscapes.

Phenotypic interference in adaptive evolution. Here we show that the phenotypic in-

terference scaling extends to simple models of adaptive evolution. In the minimal biophysical

model, we assume that protein stabilities are still at an evolutionary equilibrium of the universal

form (5.1), generating a combined fitness variance g〈∆f 〉 = 2guσ̃. However, the global fitness

variance acquires an additional contribution from adaptive evolution of other system functions,

σ2 = Cσ̃2 = 2σ̃ug + φ, (E.18)

where φ is the fitness flux or rate of adaptive fitness gain [60]. Mathematically, this term quan-

tifies the deviations of the adaptive evolutionary process from equilibrium (defined by detailed

balance). Closure of the modified dynamics leads to an increased coalescence rate σ̃,

σ̃ =
2ug

C +
φ

2ug
+ O

(
φ2

(ug)3

)

. (E.19)

However, the adaptive term remains subleading to the housekeeping term for large g; this is

true even if we assume that φ is proportional to g. Hence, the total interference load, Lint =

gσ̃ = 2ug2/C +φ/u+ . . . , retains the leading nonlinearity generated by housekeeping evolution,

as given by Equation (5.5). Only for very high fitness flux (φ ≫ u2g2/C), coalescence becomes

dominated by adaptation, leading to a substantial decrease in the efficacy of selection.
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Figure E.1. Equilibrium distributions under stochastic evolution. The figure shows the prob-
ability density functions A of the mean population trait, Qeq(Γ), B of the conditional expected fitness
variance, Qeq(∆f ), and C of the genetic load per gene, Qeq(Lgene); see Equations (E.8) – (E.12). These
distributions measure deviations from long-term averages (dashed lines), which are generated by genetic
drift and draft. The corresponding deterministic solutions are marked by dotted lines; both lines coincide
in (C). All pdfs are shown for σ̃ = f0/100 = 10−4; other parameters as in Figure 2. See Appendix E.2.
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Figure E.2. Additivity of the genomic fitness variance. For housekeeping evolution in the
minimal biophysical model, we plot the total fitness variance, σ2, against the additive part ∆f,1+· · ·+∆f,g.
The additivity is used in the closure of the evolutionary dynamics, Equations (2) – (4).

Saccharomyces cerevisiae Drosophila melanogaster Arabidopsis thaliana

µ 3·10−8 [161] 3·10−9 [162] 7·10−9 [163]

ℓ 1401 [164] 1500 [164] 2232 [165]

g 6563 [165] 14332 [164] 26990 [166]

R 3·10−2 [167] 2·10−3 − 1·10−0 [153,168] 2·10−0 [169]

R∗ 6·10−5 1·10−3 9·10−3

Table E.1. Genome data and estimates of threshold recombination rates. Point mutation
rate µ, average gene length ℓ (in basepairs), gene number g and recombination rate R per genome (map
length) are shown for three recombining species. The parameter range for D. melanogaster describes
local recombination rates in different parts of the chromosomes (in the same units) [153]. An upper
bond of the threshold recombination rate R∗ marking the transition to sexual evolution is obtained from
Equation (5.8) (with ug = µℓg and C ≈ C0 ≈ 100).
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