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MACHINE LEARNING IN ADAPTIVE DOMAIN DECOMPOSITION
METHODS - PREDICTING THE GEOMETRIC LOCATION OF
CONSTRAINTS*

ALEXANDER HEINLEINt# AXEL KLAWONN'# MARTIN LANSER'#, AND JANINE
WEBER'

Abstract. Domain decomposition methods are robust and parallel scalable, preconditioned it-
erative algorithms for the solution of the large linear systems arising in the discretization of elliptic
partial differential equations by finite elements. The convergence rate of these methods is generally
determined by the eigenvalues of the preconditioned system. For second-order elliptic partial differ-
ential equations, coefficient discontinuities with a large contrast can lead to a deterioration of the
convergence rate. A remedy can be obtained by enhancing the coarse space with elements, which
are often called constraints, that are computed by solving small eigenvalue problems on portions of
the interface of the domain decomposition, i.e., edges in two dimensions or faces and edges in three
dimensions. In the present work, without restriction of generality, the focus is on two dimensions.
In general, it is difficult to predict where these constraints have to be added and therefore the cor-
responding local eigenvalue problems have to be computed, i.e., on which edges. Here, a machine
learning based strategy using neural networks is suggested to predict the geometric location of these
edges in a preprocessing step. This reduces the number of eigenvalue problems that have to be
solved before the iteration. Numerical experiments for model problems and realistic microsections
using regular decompositions as well as decompositions from graph partitioners are provided, showing
very promising results.
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1. Introduction. Domain decomposition methods are highly scalable, iterative,
and robust implicit solvers for partial differential equations, which have been dis-
cretized using, e.g., finite elements. In general, a geometric decomposition of the
computational domain into overlapping or nonoverlapping subdomains is used to con-
struct a preconditioned system, which is solved by, e.g., CG (Conjugate Gradient) or
GMRES (Generalized Minimal RESidual) method. Widely used representatives are,
e.g., GDSW (Generalized Dryja-Smith-Widlund) [9, 8], BDDC (Balancing Domain
Decomposition by Constraints) [7, 48, 50, 49], and FETI-DP (Finite Element Tearing
and Interconnecting - Dual Primal) [15, 14, 46, 47] methods. Parallel scalability up to
tens or even hundreds of thousands of compute cores was confirmed for several model
problems [26, 64, 3, 2, 38, 43, 39, 37, 36, 27]. All these methods obtain their numerical
robustness from a well-designed coarse space or, in other words, a second level. For
classical coarse spaces, usually built by using information on the geometry and the
coefficient distribution, condition number bounds have been proven for a variety of
model problems [46, 47, 42, 45, 53, 8, 10]. Thus, fast convergence of the iterative
method can be guaranteed.

Considering more general problem settings, as, e.g., diffusion or elasticity prob-
lems with heterogeneous coefficient functions having large jumps along or across the
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interface between subdomains or phenomena as incompressibility and plastification
in problems from solid mechanics, the classical condition number bounds do not hold
anymore and the convergence of the classical domain decomposition approaches deteri-
orates. In recent years, several adaptive coarse spaces techniques have been developed
to cope with these issues [5, 35, 34, 33, 57, 56, 4, 6, 51, 52, 41, 40, 31, 16, 17, 13,
11, 60, 61, 24, 23, 22, 18]. In these approaches, local eigenvalue problems on parts of
the interface, e.g., edges or faces, are solved in advance and eigenvectors belonging to
certain eigenvalues are used to automatically design a coarse space. For these coarse
spaces, the domain decomposition approach is again robust with respect to arbitrary
coefficient functions in diffusion or elasticity problems. Condition number bounds
usually only depend on a given tolerance, which is reflected in the selection of the
eigenvectors, and some geometric constants, as, e.g., the maximum number of edges
or faces in a subdomain, but is independent of the contrast of the coefficient function.

The eigenvalue problems occurring in the adaptive approaches are typically small
and related only to a small number of neighboring subdomains; the exact number de-
pends strongly on the specific approach. Hence, it is feasible to parallelize the solution
of the different eigenvalue problems and thus the computation of the adaptive con-
straints. Nevertheless, on single compute cores, a significant number of subsequent
eigenvalue problems can occur. Thus, in a parallel implementation, building the
coarse space using adaptive techniques can make up the larger part of the total time
to solution. However, for many realistic coefficient distributions, only a few adaptive
constraints on a few edges or faces are necessary for a robust coarse space. Therefore,
many of the eigenvalue problems are indeed unnecessary to be solved. Unfortunately,
it is not known in advance which of the eigenvalue problems have to be considered.
To decide which eigenvalue problems can be omitted, a heuristic approach based on
the coefficient jumps as well as the residual after one step of the FETI-DP or BDDC
method are already considered in [34, 35]; see also [40] for a first preliminary result
in this direction. A heuristic approach for the detection of necessary eigenvalue prob-
lems and the construction of adaptive constraints without the solution of eigenvalue
problems for overlapping Schwarz methods is proposed in [21, 24].

In the present paper, we discuss a different and more general approach. We pro-
pose to train a neural network to make the decision whether we have to solve a certain
eigenvalue problem or not. Therefore, we introduce a sampling procedure for the coef-
ficient function, which generates the input data for the neural network. The proposed
sampling procedure is independent of the specific geometry and discretization and
can therefore also be applied to unstructured meshes and domain decompositions.
This approach can reduce the computational effort of adaptive domain decomposition
methods while preserving the guaranteed robustness. In order to optimize the hyper
parameters of the neural network, we apply a grid search procedure.

For a first discussion of our approach, we use a certain adaptive FETI-DP algo-
rithm in two dimensions; see [51, 52]. Therefore, we consider eigenvalue problems on
edges and train the machine learning algorithm accordingly. Our approach can also
be applied to other adaptive coarse spaces and even to different domain decomposi-
tion approaches, e.g., the GDSW algorithm. Also three dimensional problems will be
considered in the near future.

This paper is organized as follows. In section 2, we first introduce classical and
adaptive FETT-DP methods, followed, in section 3, by a description of our approach on
how to predict, using a neural network, if an eigenvalue problem has to be solved. We
finally provide numerical results comparing all approaches, i.e., FETI-DP, adaptive
FETI-DP, and adaptive FETI-DP using our new strategy, denoted by ML-FETI-
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DP; see section 4. We consider several diffusion problems with various coefficient
distributions and show the robustness of our approach for regular and irregular do-
main decompositions in two dimensions. Our computations are performed using the
machine learning and data analysis implementations in TensorFlow [1] and Scikit-
learn [58] and our Matlab implementation of the adaptive FETI-DP method applied
in the present work.

2. Algorithms and model problems. In this section, we provide a brief de-
scription of our model problem and the classical FETI-DP (Finite Element Tear-
ing and Interconnecting - Dual Primal) [15, 14, 46, 47] method. Finally, in sub-
section 2.3.2, we summarize the construction of an adaptive FETI-DP coarse space
following [51, 52].

2.1. A simple model problem. As a model problem, we consider a diffusion
problem in variational form with various and a highly heterogeneous diffusion co-
efficient functions p : @ — R. We always choose = [0,1] x [0,1] C R? and a
homogeneous Dirichlet boundary condition on the complete boundary 02 throughout
this paper. Therefore, the model problem writes: Find v € H}(Q) such that

(2.1) /qu-Vvdmz/fvdx Vv € Hy(Q).
Q Q

Examples of different coefficient functions are discussed in detail in the section on
numerical results; see section 4. Discretizing (2.1) with finite elements we obtain the
linear system of equations

(2.2) Kqug = fg.

We denote the finite element space by V" and we have Ug, fg € Vh.

2.2. Standard FETI-DP. Let us briefly describe the standard FETI-DP do-
main decomposition method and introduce some relevant notation.

2.2.1. Domain Decomposition. We assume a decomposition of 2 into N € N
nonoverlapping subdomains ©;, i = 1,..., N, ie., Q) = Uf\/:l Q;. Each of the subdo-
mains is the union of finite elements such that we have matching finite element nodes
on the interface I' := (Uf\;l 8(2,;) \ Q. We denote by W the local finite element

space associated with ;. The finite element nodes on the interface are either vertex
nodes, belonging to the boundary of more than two subdomains, or edge nodes, be-
longing to the boundary of exactly two subdomains. All finite elemente nodes inside
a subdomain €); are denoted as interior nodes.

2.2.2. The FETI-DP algorithm. In this section, we will briefly describe the
standard FETI-DP algorithm; for more details, see, e.g., [62, 46, 43]. Here, we follow
the compact presentation in [41].

For each subdomain €2;, we subassemble the corresponding finite element stiff-
ness matrix K. We partition the finite element variables v(¥ € W into interior
variables ugl), and on the interface into dual variables u(AZ) and primal variables uﬁ).
In the present article, we always choose the primal variables as those belonging to
vertices. Hence, the dual variables always belong to edges. Note that other choices

are possible. For each local stiffness matrix K (9, ordering the interior variables first,
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followed by the dual and primal variables, yields

i )T i)T i i
L I T I
KO = |gO g0 gOT| u® = [0 and fO = | )

KoK K o i

It is often also convenient to introduce the union of interior and dual degrees of
freedom as an extra set of degrees of freedom denoted by the index B. This leads
to a more compact notation and we can define the following matrices and vectors
KO _ K}? K(Ai)IT K9 _ (2) (2) d fO — [ OT  L(OT T N

BB — KX)I K() y B — |: KHI KHA i|,an fB = |: I A :| . ext,
we introduce the block diagonal matrices Kgp = diagf\il K](QB, K = diagf\il K}?,
Kan = diagf\[:1 KX)A, and Ky = dlagl 1 K(z) Analogously, we obtain the block vec-

T
tor up = [ug)T uSBN)T] and the block right-hand side fp = [ g)T, ce I(BN)T

To enforce continuity in the primal variables in each iteration of the FETI-DP
algorithm, we assemble in those primal variables; this introduces a global coupling in
a small number of degrees of freedom. To describe this assembly process, we introduce

yoeeey

assembly operators R(r?T consisting only of zeros and ones. This yields the matrices
Kun = X RPTEGERY, Rus = [RPTEG, . REVTKS)], and the right-

T
hand side f = [ (ZZ | Ry (&)T (Z)) } . Since no assembly is carried out in the

dual degrees of freedom, we need a continuity condition on this part of the interface.
Hence, we introduce a jump matrix Bp = [Bg) . BJ(BN)] with Bg) having zero entries
for the interior degrees of freedom and entries out of {—1,1} for the dual degrees of
freedom. The entries for the dual degrees of freedom are chosen such that Bgup =0
if up is continuous across the interface. This continuity condition is enforced by

Lagrange multipliers A. Then, we consider

Kpp I:(EB BE up I
(2'3) Kup Koo O U = fH 3
Bp 0] @) A 0

Solving (2.3) and assembling up then gives the solution of (2.2). To solve (2.3) the
variables up and 4y are eliminated, resulting in a linear system for the Lagrange
multipliers A. This is carried out in two steps, first eliminating ug, then . The
local elimination of up yields the following Schur complement for the primal variables
St = K — KHBKBBKgB The FETI-DP system is then defined as

(2.4) F\=d,
with
F = BpK5LBE + BpKp LK p S Kup K55 BE
N
and d = BpK g5 fp + BeK g K 5Son ((Z ROT r(;)) — KngK g}gf3> )

To define the FETI-DP algorithm, we also need a preconditioner for the FETI-DP
system matrix F'. In the present work, we use the Dirichlet preconditioner given by

Mp'=Bppl0 Ial" (Kaa — KarK'K%;) [0 Ia]B% , = BpSBY.
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Here, Ia is the identity matrix on the dual degrees of freedom. The matrices Bg p
and Bp are scaled variants of Bp and B, respectively; in the simplest case they are
scaled by the inverse multiplicity of the nodes, e.g., 1/2 in two dimensions. This is
also denoted as multiplicity scaling. In order to obtain more robustness with respect
to coefficient jumps, we also consider the p-scaling approach; see, e.g., [42]. Therefore,
we first introduce the following notation. For each finite element node z € 0Q; N T,
j=1,...,N, we denote by w(z) the support of the finite element basis functions
associated with x. Next, we introduce scaling weights

d;() = py(@)) 3 pile)
iEN,
where pj(z) := max p(y) and N, denotes for each interface node x the set of
yew(xz)NQ;
indices of subdomains which have z on their boundary. Each row of B®) with a
nonzero entry connects a finite element node on I' with the corresponding finite
element node of a neighboring subdomain z € ' NT'U). Multiplying each such row
with d;(x) for each B®W_ i =1,...,N, results in the scaled operator Bp. We will
refer to this scaling as p-scaling. For coefficients that are constant on each subdomain
but possibly discontinuous across the interface, this approach reduces to the classical
p-scaling; see, e.g., [62]. In general, we can write Bp = [DMTBM) DINT BNN)]
with scaling matrices D) defined accordingly. Note that there also exist non-diagonal
scaling matrices, e.g., resulting from deluxe scaling; see [41] and references therein.

2.2.3. Condition number bound. For scalar elliptic as well as various other
model problems, e.g., linear elasticity problems, the polylogarithmic condition number
bound

(2.5) k(Mp'F) < C (1 + log (IZ»Q

holds under certain assumptions; see, e.g., [45, 47, 46]. In (2.5), H/h is the maximum
of H;/h;,i=1,..., N, where H; is the diameter of ;, h; the maximum finite element
diameter in €2;, and thus H/h is a measure for the number of finite elements per
subdomain and thus for the number of unkowns in each subdomain. The constant
C is independent of H; and h;. Different coefficient functions p in two and three
dimensions can be sucsessfully treated by appropriate coarse spaces and scalings in
the preconditioner M !, For further details, see, e.g., [62]. For our model problem,
using only primal vertex constraints and p-scaling, the constant C' is independent of
p, e.g., if p is constant on the complete domain, if p is constant on subdomains but
discontinuous across the interface, or if inclusions of higher coefficients are completely
enclosed in single subdomains without touching the interface.

Nevertheless, for arbitrary and complex coefficient distributions, (2.5) does not
hold anymore. In recent years, adaptive coarse spaces have been developed to over-
come this limitation [5, 35, 34, 33, 57, 56, 4, 6, 51, 52, 41, 40, 31, 16, 17, 13, 11, 60,
61, 24, 23, 22, 18]. In these algorithms, additional coarse modes or primal constraints
are computed by solving localized eigenvalue problems on edges, local interfaces, or
subdomains. The FETI-DP coarse space is then enriched with these additional primal
constraints before the iteration starts.

2.3. FETI-DP with an adaptive coarse space. We will now describe, how
additional primal constraints can be implemented in FETI-DP and, subsequently,
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the specific adaptive approach we discuss in this paper. In general, there are several
approaches to enforce coarse constraints in FETI-DP. Common are a transformation
of basis [46, 43] or a deflation approach [44, 41]. We use the latter one. Let us remark
that subsections 2.3.1 to 2.3.3 are based on [41].

2.3.1. Enhancing the coarse space using a balancing preconditioner. A
set of additional primal constraints, as, e.g., averages or first order moments over
certain edges, can be aggregated as columns of a matrix U; see, e.g., [44, 28]. To
enforce UTBu = 0, e.g., averages of the jump with weights defined by the columns
of U, we introduce the F-orthogonal projection P = U(UT FU) 'UT F. The deflated
and singular but consistent system (I — P)T FX = (I — P)Td now replaces the original
system FA =d (see (2.4)). Let A* be the exact solution of FA = d and A the solution
of My (I — P)TFX = Mp"(I — P)Td which has been obtained by applying the PCG
(Preconditioned Conjugate Gradient) method. We then define

A=UWUTFU)"'UTd = PF~'d = P\*

and compute \* = A\+(I—P)\ € ker (I—P)@range (I—P). The matrices PTF (= FP)
and (I — P)TF (= F(I — P)) are symmetric and the spectrum is thus not changed by
projecting the correction onto range(I — P) in each iteration; cf. [44]. Therefore, we
obtain the symmetric projector preconditioner

Mg} = (I - P)Mp'(I - P)".

Adding the correction, we compute \* = X + A\, where \ is the PCG solution of
MppFA = Mppd. An alternative approach is the inclusion of the computation of A
into the preconditioner. This results in the balancing preconditioner

(2.6) Mgp = (I — P)My (I — P)T + PF~L.

Since PF~! = U(UTFU)~'UT, this preconditioner is symmetric and can be efficiently
computed. Here, depending on the number of additional primal constraints, U7 FU
is usually of much smaller dimension than F. Throughout this paper, we use the
balancing preconditioner in all our numerical experiments and all constraints added
to the a priori vertex constraints are included using U.

2.3.2. The adaptive constraints. Here, we consider an approach which has
been successfully used in FETI-DP and BDDC for some time [51, 52, 41]. In the
following, we give a brief description of the algorithm introduced in [51] for the con-
venience of the reader. First, we introduce the relevant notation and the eigenvalue
problem on an edge. Second, in subsection 2.3.3, we give an estimate of the condition
number for two-dimensional problems where all the vertex variables are primal in the
initial coarse space; this, in particular, holds for our model problem (2.1).

For each edge, a single eigenvalue problem has to be solved. Let E;; be the edge
between subdomains €2; and €2;. We first restrict the jump matrix B to this edge. Let

Bg,, = (ngj, Bféfj) be the submatrix of (B, BU)) with the rows that consist of
exactly one 1 and one —1 and are zero otherwise. Let Bp g,;, = (Bg?Eu" Bg)E”) be

obtained by taking the same rows of (Bg), Bg)); see end of section subsection 2.2.2

@ ) ,
for the definition of Bp. Let Sij = < o S(J) >, where S(Z) and S(j) are the Schur
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complements of K" and KU), respectively, with respect to the interface variables.
We further define the operator Pp,; = Bg, B Bg,;.

Then, we solve the local generalized eigenvalue problem: find w;; € (Ker Sij)J‘
(2.7) (P, vijs SijPoiywis) = pig(vig, Sijwsg) Wy € (Ker i)™

For an explicit expression of the positive definite right hand side operator on the sub-
space (Ker Sl-j)J‘, two orthogonal projections are used; see, e.g., [41]. We assume that
R eigenvectors wy;, r = 1,..., R, belong to eigenvalues which are larger than a given
tolerance TOL. Then, we enhance the FETI-DP coarse space with the constraints
Bp,;SijPp,;w;i;, r =1,..., R, using the balancing preconditioner described above.
2.3.3. Condition number bound. Computing adaptive constraints as pre-
sented in subsection 2.3.2 and enhancing the FETI-DP coarse space with these con-
straints using a balancing preconditioner M g}p, we obtain the condition number bound

K(MppF) < NATOL,

which was first proved in [41, Theorem 5.1]. Here, Ng is the maximum number of
edges of a subdomain.

2.3.4. Alternative edge constraints. Later, in subsection 3.3, we will intro-
duce an approach which distinguishes between three different classes of edges: edges,
where no additional constraint is necessary, edges, where only one single additional
constraint is necessary, and edges, where more than a single constraint has to be added.
For the second class, we replace the eigenvalue problem and the resulting eigenvector
by a single edge constraint designed using p. Let us briefly describe these constraints.

For each finite element node x on F;;, we compute p(z) = max p(y) and
yew(z)N;
pI)(z) = H(la)XQ p(y). Now, we define v(bf_)j and vg)] on 082; and 02, respectively,
yew ()N E R
by
, (@) g , ) g
@ (] pV(), x € By, @) (o PP(@), T € Ey,
Bis (=)= { 0 elsewhere, and YEs; (@) = 0 elsewhere.
Defining Ugu = (vg)J 771;%)77), we obtain the edge constraint Bp,;S;; Pp,,vE,; and

add it to the coarse space using again the balancing approach. This coarse space itself
can be interpreted as a generalization of the weighted edge averages suggested in [42].
It can be combined with an arbitrary FETI-DP scaling and is robust for a broader
range of heterogeneities; see [25] for a detailed discussion.

2.3.5. Computational effort. In a parallel FETI-DP implementation, the so-
lution of the eigenvalue problems on the edges can be distributed to the compute
cores, due to the local nature of the eigenvalue problems. Nonetheless, more than a
single eigenvalue problem has to be solved on several compute cores. The subsequent
solution of several eigenvalue problems can take up the larger part of the total time to
solution and also the sending of Schur complements, which is in general necessary, can
put a high pressure on the network of the parallel computer. Therefore, it is benefi-
cial to reduce the number of necessary eigenvalue problems to a necessary minimum,
e.g., by filtering out eigenvalue problems which do not add any new constraints for
a given tolerance TOL. A heuristic approach based on the coefficient jumps on the
considered faces and edges as well as the residual after one step of the FETI-DP or
BDDC method is already considered in [34, 35]. Our approach is to train a neural
network to make this decision automatically.
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Input Hidden Output
layer layers layer

F1a. 1. Structure of feed forward neural networks with N hidden layers and K neurons per layer.

3. Machine Learning. From a high-level point of view, supervised machine
learning models approximate nonlinear functions, which associate input and output
data:

F:I1—-0

Here, the input space I can be a product of R, N, and Boolean vector spaces. On
the other hand, the output space is typically either an R vector space for regression
problems or an N vector space for classification problems.

In order to compute a machine learning model, a large set of a priori known data
is necessary. This data is typically partitioned into training and validation data. In
the training and optimization phase, the model is trained to fit the training data while
the validation data is used to control the generalization properties of the model, i.e.,
to ensure that the model is not fitted too closely to the training data but also able
to accurately predict the output for new input data; cf., e.g., [63, Sec. 6.4] and [54,
pp. 25-29]. In that way, over- or underfitting should be minimized. Finally, the model
can be evaluated for new input data to predict the unknown output.

While the training of machine learning models can be computationally very ex-
pensive, the evaluation of the model is typically cheap. In particular, the training of
a machine learning model corresponds to a nonlinear high-dimensional optimization
problem. However, the training can be performed a priori in an offline phase and the
resulting model is then saved for online use.

In this work, we will focus on the use of dense feedforward neural networks or,
more precisely, multilayer perceptrons; see, e.g., [20, Chapt. 4], [54, pp. 104-119], and
[63, Sec. 5.1.4]. A graphical representation of neural networks is depicted in Figure 1.
A feed forward neural network can be interpreted as an acyclic directed graph G =
(V,€) with a set of nodes V, a set of edges £, and a weight function w : &€ —
R; see, e.g., [59, Chapt. 20.1]. The neural network is assumed to be organized in
layers, i.e., the set of nodes V can be represented as the union of nonempty, disjoint
subsets V; C V,i = 0,...,N + 1. These sets are defined such that for each edge
e € & there exists an i € {0,..., N} with e being an edge between a node in V;
and one in V;y1; see [59, Chapt. 20.1]. The nodes in a neural network are called
neurons and, in dense feedforward neural networks, each neuron (in a chosen layer) is
influenced by all neurons from the previous layer. In particular, the relation between
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Input Hidden Output
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Fic. 2. Sampling of the coefficient function p; white color corresponds to a low coefficient and
red color to a high coefficient. In this representation, the samples are used as input data for a neural
network with two hidden layers.

two consecutive layers is the conjunction of a linear mapping and a nonlinear activation
function. Among the many different choices for the activation function «, we choose
the Rectified Linear Unit (ReLU) [29, 55, 19] given by

a(x) = max {0,z}.

This function is almost linear and its evaluation is very cheap. However, its nonlin-
earity is sufficient for the approximation of many nonlinear relations. Consequently,
the output of the k-th layer of the neural network can be written as

y = of(z, W" *) = max {0, (WHTx + bk} ,

where Wk= (wfj)” and b* are the weight matrix and the bias vector, respectively.
Note that an entry wfj of W* corresponds to the value of the weight function w asso-
ciated with the corresponding edge between layer Vi1 and Vi. Then, the application
of a complete neural network with N hidden layers to an input vector i € I is given
by

ht =at(i, Wb,
RFTE = QML (RE WL B 1<k < N,
0= (WN+1)ThN 4 pHL

where h¥ is the output of the k-th hidden layer and o € O is the (final) output
vector. The computation of the output vector o is performed without an additional
application of the activation function. Since we use dense neural networks, all entries
of the matrices w and W*, k = 1,..., N, are nonzero, but using a dropout rate, a
certain number of randomly chosen entries are set to zero.

In our software framework, we employ machine learning and data analysis imple-
mentations in TensorFlow [1] and Scikit-learn [58].

3.1. Detecting critical edges using a neural network. Although the con-
struction and solution of the local eigenvalue problems in adaptive domain decompo-
sition solvers can be parallelized quite well, this part typically consumes a significant
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sampling order
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FiG. 3. Sampling of the coefficient function p for an edge e;; between the subdomains Q; and
Qj. The samples are first ordered in direction of the edge and second in orthogonal direction of the
edge; we alternate sampling on the left hand and right hand side of the edge.

Q
RRRQLN

3900 ¢

o

O
0000
00000
O000000C

Q
ojejejelele;

=

DO0000C

3
kI
A
A
A

Fic. 4. Sampling points for an irregular edge without smoothing the edge (left) and using the
smoothing strategy shown in Figure 5 (right).

portion of the total runtime. However, for many realistic coefficient distributions, far
fewer adaptive coarse constraints are needed than local generalized eigenvalue prob-
lems have to be solved. Therefore, we introduce a preprocessing step to identify the
critical edges of the adaptive FETI-DP algorithm using a classification neural net-
work. Consequently, we only compute the local eigenvalue problems on edges which
are classified as critical by the neural network. On all uncritical edges, we do not
enforce any constraints.

As input for the neural network, we use samples of the coefficient function within
the two subdomains adjacent to an edge; cf. Figure 2. As output, we obtain the
information whether an adaptive coarse constraint has to be computed on the corre-
sponding edge or not.

Our sampling is independent of the underlying finite element discretization since
we use a fixed number of sampling points for all mesh resolutions. In particular,
we choose the sampling to be finer than all meshes used in our computations. As
a rule of thumb, we assume that the sampling grid resolves all geometric details of
the coefficient function. The location and order of the sampling points are depicted
in Figure 3; note that other orderings are possible as well. In this way, the input
vector for the neural network is of fixed length, i.e., number of sampling points in
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Fic. 5. Left: smoothing a jagged edge by identifying the kinks and using a moving average
close to the kinks of the edge. Right: Smoothing of an example for an irregular edge.

Hyper parameter Range tested by grid search | Optimal choice
# hidden layers {1, 2, 3, 4} 3
# neurons per layer {10, 20, 30, 50} 30
dropout rate {0, 0.2, 0.25, 0.5} 0.2
learning rate {0, 0.001, 0.005, 0.01, 0.1, 1} 0.01
optimization algorithm || {Adam, AdaGrad} Adam

TABLE 1

Hyper parameters for the neural network and its training and the optimal choice obtained from
a grid search.

direction of the edge times number of sampling points orthogonal to the edge, and
all input values are real numbers. In addition to that, we scale all input values using
a min-max-scaling before the training of the neural network. Thus, we obtain input
values which range only between zero and one. This is beneficial for the use in a
neural network.

Since our sampling grid is oriented to the tangential and orthogonal direction of
the edge, our sampling strategy is not restricted to the case of square subdomains, as
indicated in Figure 2, but can also be applied to more general geometries. In this case,
we make sure to only use sampling points within the two subdomains adjacent to the
edge in order to reflect the structure of the edge eigenvalue problems; cf. Figure 4.
For all sampling points which exceed the boundaries of the two subdomains, we use
zero as input data.

However, non-smooth edges may lead to gaps within the sampling grid; cf. Fig-
ure 4 (left). Therefore, we use a moving average to smooth out discontinuities in
the tangential and normal vectors of the edge. In particular, we use a fixed window
length of five sampling points, and slide this window stepwise along the edge while
computing the average of the subset of sampling points in each local window. As
shown in Figure 5, we smooth out kinks twice using a moving average recursively. In
fact, instead of applying the moving average to the full edge, it is sufficient to consider
a neighborhood of a kink. To identify all kinks, we compute an approximation of the
discrete second derivative for the entire edge.

3.2. Training and validation phase. For the training and validation of the
neural network, we use a data set containing a total of 4500 configurations varying
the coefficient function and the edge geometry for two subdomains sharing this edge.
To generate the output data that is necessary for the training of the neural network,
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64h 21h , 22h  21h

Fi1c. 6. Geometric configurations used in the training data: straight and jagged edges; subdo-
main size H/h = 64.

F1G. 7. Nine different types of coefficient functions used for training and validation of the neural
network. The inclusions, channels, boxes, and combs with high coefficient are displaced, modified in
sized, and mirrored with respect to the edge in order to generate the complete training data set.

we solve the eigenvalue problem described in subsection 2.3.2 for each of the 4500
training and validation configurations.

As it turns out, it is sufficient to train on two geometric configurations, i.e., two
regular subdomains sharing a straight edge and two regular subdomains sharing a
jagged edge (see Figure 6), in order to generalize to arbitrary shapes of subdomains;
cf. subsection 4.2.2 and subsection 4.3.2. For the sampling, we select 127 points in
direction of the edge and 2 x 127 points in orthogonal direction. Thus, we roughly have
two sampling points in each finite element because here the subdomain size is defined
by H/h = 64. We combine the two geometric configurations depicted in Figure 6 with
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Fic. 8. ROC curve and precision-recall plot for the optimal model obtained by a grid search;
cf. Table 1. We define precision as true positives divided by (true positives+false positives), and
recall as true positives divided by (true positives+false negatives). The thresholds used in section 4
are indicated as circles.

coefficient functions of the types depicted in Figure 7. These coefficient functions are
inspired by the coefficient functions used in [41, 24]. In order to obtain the full set
of training data, the inclusions, channels, boxes, and combs with high coefficient are
varied in size, location, and orientation actually leading to more configurations than
the nine basic ones given in Figure 7.

In the training of the neural network, we minimize the softmax cross-entropy loss
function

c c
g(bl,...,bNH,Wl,...,WNH):Z Z log Zeoj(p) —oc(p)
j=1

c=1 pEw,

with respect to the weights and bias vectors of the neural network; cf. [63, Sect. 6.3].
Here, C is the total number of classes in the classification problem, o;(p) is the output
corresponding to class j in the output vector of data p, and w,. is the subset of the
training data corresponding to class c¢. Thus, the softmax cross-entropy loss function
minimizes the cross-entropy between the deterministic class labels of the training
and validation data and the model’s prediction for the same data. Minimizing the
cross-entropy is equivalent to minimizing the Kullback-Leibler divergence, which is a
measure for the difference of two probability distributions from information theory;
cf., e.g., [20, Sec. 3.13]. Note that the prediction

eoc(p)
Plpew)=——

C
Z e (p)
j=1

is the probability that the input with index p belongs to class c.

In this nonlinear optimization problem, we apply a Stochastic Gradient Descent
(SGD) method with an adaptive scaling of the learning rate and a batch size of 100.
For the adaptive scaling of the learning rates, we consider the AdaGrad (Adaptive
Gradient) [12] and the Adam (Adaptive moments) [32] algorithm.

In order to optimize the hyper parameters of the neural network, we apply a
grid search algorithm on a discrete search space of parameters. Here, we use as
hyper parameters the number of hidden layers, the number of neurons per layer, the
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dropout rate, the learning rate, and the optimization algorithm. The corresponding
hyper parameters, the search space, and the optimal choices for the parameters are
given in Table 1. We compare and optimize the generalization properties of the
neural network by cross-validation using a random splitting of our data set into 80 %
training and 20 % validation data for each iteration of the grid search algorithm.
The Receiver Operating Characteristic (ROC) curve and a precision-recall plot of
the neural network with optimal hyper parameters are shown in Figure 8. In both
plots, the threshold 7 for the decision boundary between critical and uncritical edges
is varied between zero and one. When increasing 7, the false positive rate, which
corresponds to the number of critical edges that are not detected by the algorithm,
decreases. Consequently, the robustness of our ML-FETI-DP approach is improved.
In Figure 8, we also indicate the thresholds used in the numerical tests in section 4.

3.3. Introducing three-class classification and robust edge constraints.
As described in subsection 2.3.4, for edges which require only one adaptively com-
puted edge constraint, the constraint can be replaced by a manually constructed edge
constraint. Consequently, if known a priori, it is not necessary to solve any eigen-
value problems on these edges. Therefore, we also propose an extended approach,
which uses a three-class classification. In particular, the neural network distinguishes
between edges or classes, respectively, where the eigenvalue problem is unnecessary
(class 0), where the eigenvalue problem results in exactly one additional adaptive con-
straint (class 1), and where the eigenvalue problem selects more than one constraint
(class 2). If an edge is assigned to class 0, we will not enforce any edge constraint.
If an edge is assigned to class 1, we will enforce a single edge constraint as described
in subsection 2.3.4. Otherwise, we solve the eigenvalue problem on the edge and
enforce the computed adaptive constraints.

For the three-class classification, we use two different choices for the threshold
7 =0.4,0.5. Therefore, we first apply the standard multi-class classification rule

arg max, {P(p € w.)};

cf. [63, p. 100]. Then, if p is assigned to any of {class 1, class 2}, we rescale the
probabilities for the final classification in class 1 or 2 using the rule:

P(p € w1) P(p € wy) }
1-7)(P(p€wi)+P(pe€w)) 7(P(p€w)+Plpews)) |

arg max { (

Consequently, a threshold of 0.5 results in an equal scaling, whereas a threshold of
0.4 results in more edges assigned to class 2. This can improve the robustness of our
approach.

Despite of that, we do not change our strategy, and using a grid search on the
corresponding data set, we obtained the same hyper parameters as for the two-class
classification model.

3.4. Results on the training data. On the complete set of training data,
we obtain the results listed in Table 2. We observe a significantly better accuracy
for the three-class classification compared to the two-class classification. Also, we
observe that a classification threshold of 0.5 yields the best accuracy for both types of
classification. However, for the cases of irregular subdomains in section 4, we will use
a lower threshold 7 to improve the robustness of the ML-FETI-DP approach. This
will be discussed further in section 4.
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classification type threshold ‘ fp fn acc
two-class classification 0.45 8.8% 1.9%  89.2%
0.5 54% 5.1% 89.5%
. . 0.4 51% 1.0% 93.9%
three-class classification 0.5 3.9% 2.3% 94.5%
TABLE 2

Results on the complete training data set; the numbers are averages over all 4 500 training
configurations. We define the accuracy (acc) as the number of true positives and true negatives
divided by the total number of training configurations.

4. Numerical results for ML-FETI-DP. In this section, we compare FETI-
DP, adaptive FETI-DP, and ML-FETI-DP. Therefore, we consider different coefficient
functions p in model problem (2.1), domain decompositions with regular subdomains
as well as irregular decompositions obtained with METIS [30], our two- and three-class
model, and different ML (Machine Learning)-thresholds 7.

4.1. Coefficient functions. In the following subsections, we consider two types
of discontinuous coefficient functions p with large jumps, i.e., a “circle problem” as
depicted in Figure 9 (left) and a “microsection problem” as depicted in Figure 9
(middle). In all computations, we consider a coefficient p = 1e6 in the dark blue
circles, or, respectively, in the black part of the microsection. In the remaining parts
of Q, we have p = 1 elsewhere. The microsection depicted in Figure 9 (middle) is a
subsection of the larger microsection from Figure 9 (right), suitable for our Matlab
computations. However, we consider a total of ten different subsections of Figure 9
(right) that cover the whole structure to prove that our algorithm is robust. For a
more detailed discussions of the results of ML-FETI-DP, we choose the subsection
depicted in Figure 9 (middle) as an example.

In our experiments, we always choose the mesh resolution such that the coefficient
function is constant on each finite element. Then, the predictions and the accuracy of
our classification algorithm is independent of the mesh resolution of the finite element
mesh.

4.2. Two-class model. Let us first discuss our two-class model. Here, the
neural network distinguishes between critical edges, where the eigenvalue problem
results in additional adaptive constraints, and edges where the eigenvalue problem
is unnecessary. In the following, we will refer to the latter case as “negative” or
“negative edge” and to the first one as “positive” or “positive edge”. We always use
a tolerance of TOL = 100 in the adaptive algorithm and, if not stated otherwise, an
ML-threshold of 0.5.

4.2.1. Regular domain decompositions. We consider a regular domain de-
composition of the “circle problem” and the “microsection problem” into 64 sub-
domains. For both the “circle problem” and the “microsection problem”, we use a
discretization with 8 192 finite elements per subdomain. We depict both in Figure 10
(left) and Figure 11 and mark all edges using the following color code: edges which
ML-FETI-DP correctly identifies as positive are marked in green (true positive), edges
which ML-FETI-DP incorrectly identifies as positive are marked in yellow (false pos-
itive), and edges which ML-FETI-DP incorrectly identifies as negative are marked in
red (false negative). All edges which are correctly identified as negative (true neg-
ative) are not marked. Let us remark that the yellow edges are not critical for the
robustness and convergence of the algorithms and only a single unnecessary eigenvalue
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Fic. 9. Left: Coefficient function p with randomly distributed circles of different sizes. We
have p = 1eb6 in the dark blue circles and p = 1 elsewhere. We refer to model problem (2.1)
equipped with this coefficient distribution by circle problem. Middle: Subsection of a microsection
of a dual-phase steel obtained from the image on the right. We consider p = 1e6 in the black part
and p =1 elsewhere. We refer to model problem (2.1) equipped with this coefficient distribution by
“microsection problem”. Right: Complete microsection of a dual-phase steel. Let us remark that we
consider different - randomly chosen - subsections of this microsection in the numerical results, but
discuss our approach in more details for a single example. Right image: Courtesy of Jorg Schrider,
University of Duisburg-Essen, Germany, orginating from a cooperation with ThyssenKruppSteel.

problem is solved for each yellow edge. In contrast, red edges might deteriorate the
convergence. Therefore, we also consider the approach of overshooting and lowering
the ML-threshold in some cases. In Figure 10 (left), we see that only two yellow
edges (false positives) but no critical red edges (false negatives) occur for the “circle
problem”. Here, we potentially save 92% of the eigenvalue problems. For the “mi-
crosection problem” we save 65% of the eigenvalue problems using an ML-threshold
of 0.5 and 60% using an ML-threshold of 0.45; cf. Table 3. In the latter case, we
have no false negatives and two false negatives in the first case. See Figure 11 for
graphical representations of both results. Additionally, we provide condition numbers
and iteration counts in Table 3 for all discussed examples. The two false negative
edges deteriorate the condition number, but the convergence of ML-FETI-DP is still
fast. To obtain also a low condition number, overshooting with the ML-threshold of
0.45 works as expected. To prove the robustness of ML-FETI-DP independent of the
specific subsection of the microstructure depicted in Figure 9 (right), we summarize
numerical results for ten different subsections. We therefore present averages and
maximum values of the condition number and iteration counts in Table 4.

4.2.2. METIS domain decompositions. Now, we consider a METIS domain
decomposition of the “circle problem” and the “microsection problem” into 64 sub-
domains. We depict both in Figure 10 (right) and Figure 12 and mark the edges
according to their classification using the same color code as before. Again, only red
edges are critical for the robustness and we can effort to improve the robustness us-
ing overshooting and therefore introducing some yellow marked false positive edges.
Let us remark that, as described in subsection 3.1, we only use the training set with
straight edges and edges with a single jag; see Figure 6. In Figure 10 (right), we ob-
serve that, as in the regular case, only two yellow edges (false positives) but no critical
red edges (false negatives) occur for the “circle problem”. Here, we potentially save
96% of the eigenvalue problems. For the “microsection problem” we save the com-
putation of 61% of the eigenvalue problems considering an ML-threshold of 0.5 as
well as 0.45. In the first case, ML-FETI-DP misses three critical edges (red edges),
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T

F1a. 10. Circle problem with marked edges: true positives are marked in green, false positives
are marked in yellow, and false negatives are marked in red. Left: Regular domain decomposition;
cf. also Table 3. Right: METIS domain decomposition; cf. also Table 5.

Fi1G. 11. Microsection problem with marked edges: true positives are marked in green, false
positives are marked in yellow, and false negatives are marked in red, cf. also Table 3. Left:
ML-threshold of 0.5; Right: ML-threshold of 0.45.

whereas in the second case, we are able to eliminate all red edges. See Figure 12
for both results. We also provide condition numbers and iteration counts in Table 5
for all discussed examples. Although ML-FETI-DP misses three critical edges for an
ML-threshold of 0.5, the number of iterations remains moderate. Nonetheless, using
a lower threshold of 0.45, we obtain the same robustness as adaptive FETI-DP. For
METIS decompositions, we again summarize numerical results for ten different sub-
sections of the microsection depicted in Figure 9 (right). We present averages and
maximum values of the condition number and iteration counts in Table 6.

4.3. Three-class model. Let us now discuss numerical results for our three-
class model; cf. subsection 3.3. As before, we always use a tolerance of TOL = 100
in the adaptive algorithm and, if not stated otherwise, an ML-threshold of 0.5. Let
us remark that we only consider the “microsection problem” in this section, since for
the “circle problem” only edges from class 0 and class 1 occur.

4.3.1. Regular domain decompositions. We consider the same discretiza-
tion and domain decomposition as in subsection 4.2.1. Besides FETI-DP with primal
vertices, adaptive FETI-DP, and ML-FETI-DP, we additionally compare FETI-DP
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Model Problem | Algorithm 7 | cond it evp fp fn acc
standard - | 1.04e6 56 0 - - -
Circle Problem adaptive - 8.82 35 112 - - -
ML | 0.5 8.83 35 9 2 0 098
standard - - >300 0 - - -
Microsection adaptive - | 15.86 36 112 - - -
Problem ML | 0.5 | 9.64e4 45 39 2 2 096
ML | 0.45 | 15.86 36 4 5 0 0.95

TABLE 3

Comparison of standard FETI-DP, adaptive FETI-DP, and ML-FETI-DP for regular do-
main decompositions for the two-class model, cf. also Figure 10 (left) and Figure 11. We
show the ML-threshold (T), the condition number (cond), the number of CG iterations (it), the
number of solved eigenvalue problems (evp), the number of false positives (fp), the number of false
negatives (fn), and the accuracy in the classification (acc).

Ten Different Microsection Problems

Algorithm T cond it evp fp fn acc
adaptive - 11.04 346 1120 - - -
(15.87) (38) (112) - - -

ML 0.5 8.61e4 395 450 16 1.9 0.97
9.73¢4)  (52) (57) (2) (3) (0.96)

ML | 045 | 11.04 346 469 44 0  0.96
(15.87)  (38) (59) (6) (0) (0.94)

TABLE 4
Results for 10 different subsections of a microsection of a dual-phase steel for the two-class
model. Comparison of adaptive FETI-DP and ML-FETI-DP for regular domain decomposi-
tions. We show the average values as well as the mazimum values (in brackets). See Table 3 for
the column labelling.

with primal vertex constraints and weighted edge averages as described in subsec-
tion 2.3.4 on all edges. The latter approach, which we denote as FETI-DP(e), also
does not require the solution of any eigenvalue problems.

As depicted in Figure 13, we obtain a single red edge, where ML-FETI-DP assigns
this edge falsely to class 1 instead of class 2. Nonetheless, ML-FETI-DP is still
robust, since this single edge is not critical for convergence; see Table 7. ML-FETI-
DP using the three-class model saves 93% of the eigenvalue problems compared to
adaptive FETI-DP. This is a significant improvement to ML-FETI-DP using the two-
class model investigated in subsection 4.2, where we saved 65% for exactly the same
model problem. Again, considering a lower ML-threshold of 7 = 0.4 as described
in section 3.3, we can get rid of all false negative edges for the prize of additional
false positives; see Figure 13. As already mentioned, the latter ones are uncritical for
the robustness of ML-FETI-DP. Also for the three-class model, we test for the ten
subsections of the complete microsection considered in subsection 4.2.2. We present
averages and maximum values of the condition number and iteration counts in Table 8.

4.3.2. METIS domain decompositions. Considering the same problem as
in subsection 4.3.1, but using irregular domain decompositions obtained by METIS,
does not change the picture. We obtain again only one single critical edge using an
ML-threshold of 7 = 0.5. As for the regular domain decomposition, both can be
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Fic. 12. Microsection problem with marked edges: true positives are marked in green, false
positives are marked in yellow, and false negatives are marked in red, cf. also Table 5. Left:
ML-threshold of 0.5; Right: ML-threshold of 0.45.

Model Problem | Algorithm 7 | cond it evp fp fn acc
standard -1 9.18e5 75 0 - - -
Circle Problem adaptive - | 13.56 37 160 - - -
ML | 0.5 | 13.56 37 7T 2 0 099
standard - - >350 - - - -
Microsection adaptive - | 16.52 35 160 - - -
Problem ML | 0.5 | 1.78¢e4 51 62 3 3 0.96
ML | 0.45 | 16.52 35 68 6 0 0.96

TABLE 5

Comparison of standard FETI-DP, adaptive FETI-DP, and ML-FETI-DP for a METIS do-
main decompositions for the two-class model, ¢f. also Figure 10 (right) and Figure 12. See Ta-
ble 3 for the column labelling.

removed by choosing 7 = 0.4; see Figure 14. In both cases, ML-FETI-DP is robust,
converges fast, and up to 94% of the eigenvalue problems can be saved; see Table 9.
The behavior does not change for the ten different microsections and we again provide
average and maximum values in Table 10.

5. Conclusion and future work. We introduced two different machine learn-
ing based classification strategies to predict the critical edges where adaptive con-
straints have to be enforced in adaptive FETI-DP. Both approaches helped to reduce
the number of necessary eigenvalue problems significantly. We showed numerically the
stability and robustness of the new method ML-FETI-DP and saved up to 94% of the
eigenvalue problems for realistic coefficient functions obtained from a microsection of
dual phase steel. Although we concentrated on adaptive FETI-DP, this work can be
generalized to different domain decomposition methods, as, e.g., BDDC and GDSW.
We also plan to investigate the case of three spatial dimensions. Another approach,
which we plan to develop, is the prediction of the adaptive constraints themselves
using machine learning techniques.
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Computing” (SPPEXA) under grants KL 2094/4-1 and KL 2094/4-2.
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Ten Different Microsection Problems

Algorithm T cond it evp fp fn acc
adaptive - 14.81 35.6 160.0 - - -
(22.58) (38) (160) - - -

ML | 0.5 | 1.38¢e4 51.0 632 20 20 097

(2.07e4) (52) (73) (3) (3) (0.96)

ML | 0.45 14.81 356 654 62 0 0.96

(22.58)  (38) (75) (7) (0) (0.95)

TABLE 6

Results for 10 different subsections of a microsection of a dual-phase steel for the two-class
model. Comparison of adaptive FETI-DP and ML-FETI-DP for METIS domain decomposi-
tions. We show the average values as well as the maximum values (in brackets). See Table 3 for
the column labelling.
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Fic. 13. Microsection problem with marked edges. Correctly assigned edges from class 1 and
class 2 are marked in green. Edges from class 1 which are falsely assigned to class 0, and edges
from class 2 which are falsely assigned to class 0, are marked in red. Edges from class 0, which
are falsely assigned to class 1, and edges from class 1, which are falsely assigned to class 2, are
marked in yellow, cf. also Table 7. Therefore, again, only red edges are critical for the robustness
of ML-FETI-DP. Left: ML-threshold of 0.5; Right: ML-threshold of 0.4.
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of ML-FETI-DP. Left: ML-threshold of 0.5; Right: ML-threshold of 0.4.
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