
Technical Report Series

Center for Data and Simulation Science

Alexander Heinlein, Axel Klawonn, Martin Lanser, Janine Weber

Machine Learning in adaptive domain decomposition methods –
predicting the geometric location of constraints

Technical Report ID: CDS-2018-2

Available at http://kups.ub.uni-koeln.de/id/eprint/8645

Submitted on October 1, 2018

http://kups.ub.uni-koeln.de/id/eprint/8645

MACHINE LEARNING IN ADAPTIVE DOMAIN DECOMPOSITION
METHODS – PREDICTING THE GEOMETRIC LOCATION OF

CONSTRAINTS⇤

ALEXANDER HEINLEIN†‡ , AXEL KLAWONN†‡ , MARTIN LANSER†‡ , AND JANINE

WEBER†

Abstract. Domain decomposition methods are robust and parallel scalable, preconditioned it-
erative algorithms for the solution of the large linear systems arising in the discretization of elliptic
partial di↵erential equations by finite elements. The convergence rate of these methods is generally
determined by the eigenvalues of the preconditioned system. For second-order elliptic partial di↵er-
ential equations, coe�cient discontinuities with a large contrast can lead to a deterioration of the
convergence rate. A remedy can be obtained by enhancing the coarse space with elements, which
are often called constraints, that are computed by solving small eigenvalue problems on portions of
the interface of the domain decomposition, i.e., edges in two dimensions or faces and edges in three
dimensions. In the present work, without restriction of generality, the focus is on two dimensions.
In general, it is di�cult to predict where these constraints have to be added and therefore the cor-
responding local eigenvalue problems have to be computed, i.e., on which edges. Here, a machine
learning based strategy using neural networks is suggested to predict the geometric location of these
edges in a preprocessing step. This reduces the number of eigenvalue problems that have to be
solved before the iteration. Numerical experiments for model problems and realistic microsections
using regular decompositions as well as decompositions from graph partitioners are provided, showing
very promising results.

Key words. Machine Learning, Domain Decomposition, FETI-DP, Adaptive Coarse Spaces

AMS subject classifications. 65F10, 65N30, 65N55, 68T05,

1. Introduction. Domain decomposition methods are highly scalable, iterative,
and robust implicit solvers for partial di↵erential equations, which have been dis-
cretized using, e.g., finite elements. In general, a geometric decomposition of the
computational domain into overlapping or nonoverlapping subdomains is used to con-
struct a preconditioned system, which is solved by, e.g., CG (Conjugate Gradient) or
GMRES (Generalized Minimal RESidual) method. Widely used representatives are,
e.g., GDSW (Generalized Dryja-Smith-Widlund) [9, 8], BDDC (Balancing Domain
Decomposition by Constraints) [7, 48, 50, 49], and FETI-DP (Finite Element Tearing
and Interconnecting - Dual Primal) [15, 14, 46, 47] methods. Parallel scalability up to
tens or even hundreds of thousands of compute cores was confirmed for several model
problems [26, 64, 3, 2, 38, 43, 39, 37, 36, 27]. All these methods obtain their numerical
robustness from a well-designed coarse space or, in other words, a second level. For
classical coarse spaces, usually built by using information on the geometry and the
coe�cient distribution, condition number bounds have been proven for a variety of
model problems [46, 47, 42, 45, 53, 8, 10]. Thus, fast convergence of the iterative
method can be guaranteed.

Considering more general problem settings, as, e.g., di↵usion or elasticity prob-
lems with heterogeneous coe�cient functions having large jumps along or across the

⇤This work was supported in part by Deutsche Forschungsgemeinschaft (DFG) through the Pri-
ority Programme 1648 ”Software for Exascale Computing” (SPPEXA) under grants KL 2094/4-1
and KL 2094/4-2.

†Department of Mathematics and Computer Science, University of Cologne, Weyer-
tal 86-90, 50931 Köln, Germany, alexander.heinlein@uni-koeln.de, axel.klawonn@uni-koeln.de,
martin.lanser@uni-koeln.de, janine.weber@uni-koeln.de, url: http://www.numerik.uni-koeln.de

‡Center for Data and Simulation Science, University of Cologne, Germany, url: http://www.cds.
uni-koeln.de

1

http://www.numerik.uni-koeln.de
http://www.cds.uni-koeln.de
http://www.cds.uni-koeln.de

2 A. HEINLEIN, A. KLAWONN, M. LANSER, AND J. WEBER

interface between subdomains or phenomena as incompressibility and plastification
in problems from solid mechanics, the classical condition number bounds do not hold
anymore and the convergence of the classical domain decomposition approaches deteri-
orates. In recent years, several adaptive coarse spaces techniques have been developed
to cope with these issues [5, 35, 34, 33, 57, 56, 4, 6, 51, 52, 41, 40, 31, 16, 17, 13,
11, 60, 61, 24, 23, 22, 18]. In these approaches, local eigenvalue problems on parts of
the interface, e.g., edges or faces, are solved in advance and eigenvectors belonging to
certain eigenvalues are used to automatically design a coarse space. For these coarse
spaces, the domain decomposition approach is again robust with respect to arbitrary
coe�cient functions in di↵usion or elasticity problems. Condition number bounds
usually only depend on a given tolerance, which is reflected in the selection of the
eigenvectors, and some geometric constants, as, e.g., the maximum number of edges
or faces in a subdomain, but is independent of the contrast of the coe�cient function.

The eigenvalue problems occurring in the adaptive approaches are typically small
and related only to a small number of neighboring subdomains; the exact number de-
pends strongly on the specific approach. Hence, it is feasible to parallelize the solution
of the di↵erent eigenvalue problems and thus the computation of the adaptive con-
straints. Nevertheless, on single compute cores, a significant number of subsequent
eigenvalue problems can occur. Thus, in a parallel implementation, building the
coarse space using adaptive techniques can make up the larger part of the total time
to solution. However, for many realistic coe�cient distributions, only a few adaptive
constraints on a few edges or faces are necessary for a robust coarse space. Therefore,
many of the eigenvalue problems are indeed unnecessary to be solved. Unfortunately,
it is not known in advance which of the eigenvalue problems have to be considered.
To decide which eigenvalue problems can be omitted, a heuristic approach based on
the coe�cient jumps as well as the residual after one step of the FETI-DP or BDDC
method are already considered in [34, 35]; see also [40] for a first preliminary result
in this direction. A heuristic approach for the detection of necessary eigenvalue prob-
lems and the construction of adaptive constraints without the solution of eigenvalue
problems for overlapping Schwarz methods is proposed in [21, 24].

In the present paper, we discuss a di↵erent and more general approach. We pro-
pose to train a neural network to make the decision whether we have to solve a certain
eigenvalue problem or not. Therefore, we introduce a sampling procedure for the coef-
ficient function, which generates the input data for the neural network. The proposed
sampling procedure is independent of the specific geometry and discretization and
can therefore also be applied to unstructured meshes and domain decompositions.
This approach can reduce the computational e↵ort of adaptive domain decomposition
methods while preserving the guaranteed robustness. In order to optimize the hyper
parameters of the neural network, we apply a grid search procedure.

For a first discussion of our approach, we use a certain adaptive FETI-DP algo-
rithm in two dimensions; see [51, 52]. Therefore, we consider eigenvalue problems on
edges and train the machine learning algorithm accordingly. Our approach can also
be applied to other adaptive coarse spaces and even to di↵erent domain decomposi-
tion approaches, e.g., the GDSW algorithm. Also three dimensional problems will be
considered in the near future.

This paper is organized as follows. In section 2, we first introduce classical and
adaptive FETI-DP methods, followed, in section 3, by a description of our approach on
how to predict, using a neural network, if an eigenvalue problem has to be solved. We
finally provide numerical results comparing all approaches, i.e., FETI-DP, adaptive
FETI-DP, and adaptive FETI-DP using our new strategy, denoted by ML-FETI-

MACHINE LEARNING IN ADAPTIVE DOMAIN DECOMPOSITION METHODS 3

DP; see section 4. We consider several di↵usion problems with various coe�cient
distributions and show the robustness of our approach for regular and irregular do-
main decompositions in two dimensions. Our computations are performed using the
machine learning and data analysis implementations in TensorFlow [1] and Scikit-
learn [58] and our Matlab implementation of the adaptive FETI-DP method applied
in the present work.

2. Algorithms and model problems. In this section, we provide a brief de-
scription of our model problem and the classical FETI-DP (Finite Element Tear-
ing and Interconnecting - Dual Primal) [15, 14, 46, 47] method. Finally, in sub-
section 2.3.2, we summarize the construction of an adaptive FETI-DP coarse space
following [51, 52].

2.1. A simple model problem. As a model problem, we consider a di↵usion
problem in variational form with various and a highly heterogeneous di↵usion co-
e�cient functions ⇢ : ⌦ ! R. We always choose ⌦ = [0, 1] ⇥ [0, 1] ⇢ R2 and a
homogeneous Dirichlet boundary condition on the complete boundary @⌦ throughout
this paper. Therefore, the model problem writes: Find u 2 H1

0 (⌦) such that

(2.1)

Z

⌦
⇢ru ·rvdx =

Z

⌦
f vdx 8v 2 H1

0 (⌦).

Examples of di↵erent coe�cient functions are discussed in detail in the section on
numerical results; see section 4. Discretizing (2.1) with finite elements we obtain the
linear system of equations

(2.2) Kgug = fg.

We denote the finite element space by V h and we have ug, fg 2 V h.

2.2. Standard FETI-DP. Let us briefly describe the standard FETI-DP do-
main decomposition method and introduce some relevant notation.

2.2.1. Domain Decomposition. We assume a decomposition of ⌦ into N 2 N
nonoverlapping subdomains ⌦i, i = 1, ..., N , i.e., ⌦ =

SN
i=1 ⌦i. Each of the subdo-

mains is the union of finite elements such that we have matching finite element nodes

on the interface � :=
⇣SN

i=1 @⌦i

⌘
\ @⌦. We denote by W (i) the local finite element

space associated with ⌦i. The finite element nodes on the interface are either vertex
nodes, belonging to the boundary of more than two subdomains, or edge nodes, be-
longing to the boundary of exactly two subdomains. All finite elemente nodes inside
a subdomain ⌦i are denoted as interior nodes.

2.2.2. The FETI-DP algorithm. In this section, we will briefly describe the
standard FETI-DP algorithm; for more details, see, e.g., [62, 46, 43]. Here, we follow
the compact presentation in [41].

For each subdomain ⌦i, we subassemble the corresponding finite element sti↵-
ness matrix K(i). We partition the finite element variables u(i) 2 W (i) into interior

variables u(i)
I , and on the interface into dual variables u(i)

� and primal variables u(i)
⇧ .

In the present article, we always choose the primal variables as those belonging to
vertices. Hence, the dual variables always belong to edges. Note that other choices
are possible. For each local sti↵ness matrix K(i), ordering the interior variables first,

4 A. HEINLEIN, A. KLAWONN, M. LANSER, AND J. WEBER

followed by the dual and primal variables, yields

K(i) =

2

64
K(i)

II K(i)T
�I K(i)T

⇧I

K(i)
�I K(i)

�� K(i)T
⇧�

K(i)
⇧I K(i)

⇧� K(i)
⇧⇧

3

75 , u(i) =

2

64
u(i)
I

u(i)
�

u(i)
⇧

3

75 , and f (i) =

2

64
f (i)
I

f (i)
�

f (i)
⇧

3

75 .

It is often also convenient to introduce the union of interior and dual degrees of
freedom as an extra set of degrees of freedom denoted by the index B. This leads
to a more compact notation and we can define the following matrices and vectors

K(i)
BB =

"
K(i)

II K(i)T
�I

K(i)
�I K(i)

��

#
, K(i)

⇧B =
h
K(i)

⇧I K(i)
⇧�

i
, and f (i)

B =
h
f (i)T
I f (i)T

�

iT
. Next,

we introduce the block diagonal matrices KBB = diagNi=1 K
(i)
BB , KII = diagNi=1 K

(i)
II ,

K�� = diagNi=1 K
(i)
��, andK⇧⇧ = diagNi=1 K

(i)
⇧⇧. Analogously, we obtain the block vec-

tor uB = [u(1)T
B , . . . , u(N)T

B]T and the block right-hand side fB =
h
f (1)T
B , . . . , f (N)T

B

iT
.

To enforce continuity in the primal variables in each iteration of the FETI-DP
algorithm, we assemble in those primal variables; this introduces a global coupling in
a small number of degrees of freedom. To describe this assembly process, we introduce

assembly operators R(i)T
⇧ consisting only of zeros and ones. This yields the matrices

eK⇧⇧ =
PN

i=1 R
(i)T
⇧ K(i)

⇧⇧R
(i)
⇧ , eK⇧B =

h
R(1)T

⇧ K(1)
⇧B , . . . , R

(N)T
⇧ K(N)

⇧B

i
, and the right-

hand side ef =

fT
B ,

⇣PN
i=1 R

(i)T
⇧ f (i)

⇧

⌘T
�T

. Since no assembly is carried out in the

dual degrees of freedom, we need a continuity condition on this part of the interface.

Hence, we introduce a jump matrix BB = [B(1)
B . . . B(N)

B] with B(i)
B having zero entries

for the interior degrees of freedom and entries out of {�1, 1} for the dual degrees of
freedom. The entries for the dual degrees of freedom are chosen such that BBuB = 0
if uB is continuous across the interface. This continuity condition is enforced by
Lagrange multipliers �. Then, we consider

(2.3)

0

@
KBB

eKT
⇧B BT

B
eK⇧B

eK⇧⇧ O
BB O O

1

A

0

@
uB

ũ⇧

�

1

A =

0

@
fB
f̃⇧
0

1

A ,

Solving (2.3) and assembling uB then gives the solution of (2.2). To solve (2.3) the
variables uB and ũ⇧ are eliminated, resulting in a linear system for the Lagrange
multipliers �. This is carried out in two steps, first eliminating uB , then ũ⇧. The
local elimination of uB yields the following Schur complement for the primal variables
eS⇧⇧ = eK⇧⇧ � eK⇧BK

�1
BB

eKT
⇧B . The FETI-DP system is then defined as

(2.4) F� = d,

with

F = BBK
�1
BBB

T
B +BBK

�1
BB

eKT
⇧B

eS�1
⇧⇧

eK⇧BK
�1
BBB

T
B

and d = BBK
�1
BBfB +BBK

�1
BB

eKT
⇧B

eS�1
⇧⇧

NX

i=1

R(i)T
⇧ f (i)

⇧

!
� eK⇧BK

�1
BBfB

!
.

To define the FETI-DP algorithm, we also need a preconditioner for the FETI-DP
system matrix F . In the present work, we use the Dirichlet preconditioner given by

M�1
D = BB,D [0 I�]

T �K�� �K�IK
�1
II KT

�I

�
[0 I�]B

T
B,D = BD

eSBT
D.

MACHINE LEARNING IN ADAPTIVE DOMAIN DECOMPOSITION METHODS 5

Here, I� is the identity matrix on the dual degrees of freedom. The matrices BB,D

and BD are scaled variants of BB and B, respectively; in the simplest case they are
scaled by the inverse multiplicity of the nodes, e.g., 1/2 in two dimensions. This is
also denoted as multiplicity scaling. In order to obtain more robustness with respect
to coe�cient jumps, we also consider the ⇢-scaling approach; see, e.g., [42]. Therefore,
we first introduce the following notation. For each finite element node x 2 @⌦j \ �,
j = 1, . . . , N , we denote by !(x) the support of the finite element basis functions
associated with x. Next, we introduce scaling weights

dj(x) := ⇢j(x)/
X

i2Nx

⇢i(x)

where ⇢j(x) := max
y2!(x)\⌦j

⇢(y) and Nx denotes for each interface node x the set of

indices of subdomains which have x on their boundary. Each row of B(i) with a
nonzero entry connects a finite element node on �(i) with the corresponding finite
element node of a neighboring subdomain x 2 �(i) \ �(j). Multiplying each such row
with dj(x) for each B(i), i = 1, . . . , N , results in the scaled operator BD. We will
refer to this scaling as ⇢-scaling. For coe�cients that are constant on each subdomain
but possibly discontinuous across the interface, this approach reduces to the classical
⇢-scaling; see, e.g., [62]. In general, we can write BD = [D(1)TB(1) . . . D(N)TB(N)]
with scaling matrices D(i) defined accordingly. Note that there also exist non-diagonal
scaling matrices, e.g., resulting from deluxe scaling; see [41] and references therein.

2.2.3. Condition number bound. For scalar elliptic as well as various other
model problems, e.g., linear elasticity problems, the polylogarithmic condition number
bound

(2.5) (M�1
D F) C

✓
1 + log

✓
H

h

◆◆2

holds under certain assumptions; see, e.g., [45, 47, 46]. In (2.5), H/h is the maximum
of Hi/hi, i = 1, . . . , N , where Hi is the diameter of ⌦i, hi the maximum finite element
diameter in ⌦i, and thus H/h is a measure for the number of finite elements per
subdomain and thus for the number of unkowns in each subdomain. The constant
C is independent of Hi and hi. Di↵erent coe�cient functions ⇢ in two and three
dimensions can be sucsessfully treated by appropriate coarse spaces and scalings in
the preconditioner M�1

D . For further details, see, e.g., [62]. For our model problem,
using only primal vertex constraints and ⇢-scaling, the constant C is independent of
⇢, e.g., if ⇢ is constant on the complete domain, if ⇢ is constant on subdomains but
discontinuous across the interface, or if inclusions of higher coe�cients are completely
enclosed in single subdomains without touching the interface.

Nevertheless, for arbitrary and complex coe�cient distributions, (2.5) does not
hold anymore. In recent years, adaptive coarse spaces have been developed to over-
come this limitation [5, 35, 34, 33, 57, 56, 4, 6, 51, 52, 41, 40, 31, 16, 17, 13, 11, 60,
61, 24, 23, 22, 18]. In these algorithms, additional coarse modes or primal constraints
are computed by solving localized eigenvalue problems on edges, local interfaces, or
subdomains. The FETI-DP coarse space is then enriched with these additional primal
constraints before the iteration starts.

2.3. FETI-DP with an adaptive coarse space. We will now describe, how
additional primal constraints can be implemented in FETI-DP and, subsequently,

6 A. HEINLEIN, A. KLAWONN, M. LANSER, AND J. WEBER

the specific adaptive approach we discuss in this paper. In general, there are several
approaches to enforce coarse constraints in FETI-DP. Common are a transformation
of basis [46, 43] or a deflation approach [44, 41]. We use the latter one. Let us remark
that subsections 2.3.1 to 2.3.3 are based on [41].

2.3.1. Enhancing the coarse space using a balancing preconditioner. A
set of additional primal constraints, as, e.g., averages or first order moments over
certain edges, can be aggregated as columns of a matrix U ; see, e.g., [44, 28]. To
enforce UTBu = 0, e.g., averages of the jump with weights defined by the columns
of U , we introduce the F -orthogonal projection P = U(UTFU)�1UTF . The deflated
and singular but consistent system (I�P)TF� = (I�P)T d now replaces the original
system F� = d (see (2.4)). Let �⇤ be the exact solution of F� = d and � the solution
of M�1

D (I �P)TF� = M�1
D (I �P)T d which has been obtained by applying the PCG

(Preconditioned Conjugate Gradient) method. We then define

� = U(UTFU)�1UT d = PF�1d = P�⇤

and compute �⇤ = �+(I�P)� 2 ker (I�P)�range (I�P). The matrices PTF (= FP)
and (I �P)TF (= F (I �P)) are symmetric and the spectrum is thus not changed by
projecting the correction onto range(I � P) in each iteration; cf. [44]. Therefore, we
obtain the symmetric projector preconditioner

M�1
PP = (I � P)M�1

D (I � P)T .

Adding the correction, we compute �⇤ = � + �, where � is the PCG solution of
M�1

PPF� = M�1
PP d. An alternative approach is the inclusion of the computation of �

into the preconditioner. This results in the balancing preconditioner

M�1
BP = (I � P)M�1

D (I � P)T + PF�1.(2.6)

Since PF�1 = U(UTFU)�1UT , this preconditioner is symmetric and can be e�ciently
computed. Here, depending on the number of additional primal constraints, UTFU
is usually of much smaller dimension than F . Throughout this paper, we use the
balancing preconditioner in all our numerical experiments and all constraints added
to the a priori vertex constraints are included using U .

2.3.2. The adaptive constraints. Here, we consider an approach which has
been successfully used in FETI-DP and BDDC for some time [51, 52, 41]. In the
following, we give a brief description of the algorithm introduced in [51] for the con-
venience of the reader. First, we introduce the relevant notation and the eigenvalue
problem on an edge. Second, in subsection 2.3.3, we give an estimate of the condition
number for two-dimensional problems where all the vertex variables are primal in the
initial coarse space; this, in particular, holds for our model problem (2.1).

For each edge, a single eigenvalue problem has to be solved. Let Eij be the edge
between subdomains ⌦i and ⌦j . We first restrict the jump matrix B to this edge. Let

BEij =
⇣
B(i)

Eij
, B(j)

Eij

⌘
be the submatrix of

�
B(i), B(j)

�
with the rows that consist of

exactly one 1 and one �1 and are zero otherwise. Let BD,Eij =
⇣
B(i)

D,Eij
, B(j)

D,Eij

⌘
be

obtained by taking the same rows of
⇣
B(i)

D , B(j)
D

⌘
; see end of section subsection 2.2.2

for the definition of BD. Let Sij =

✓
S(i)

S(j)

◆
, where S(i) and S(j) are the Schur

MACHINE LEARNING IN ADAPTIVE DOMAIN DECOMPOSITION METHODS 7

complements of K(i) and K(j), respectively, with respect to the interface variables.
We further define the operator PDij = BT

D,Eij
BEij .

Then, we solve the local generalized eigenvalue problem: find wij 2 (KerSij)
?

hPDijvij , SijPDijwiji = µijhvij , Sijwiji 8vij 2 (KerSij)
? .(2.7)

For an explicit expression of the positive definite right hand side operator on the sub-
space (KerSij)

?, two orthogonal projections are used; see, e.g., [41]. We assume that
R eigenvectors wr

ij , r = 1, ..., R, belong to eigenvalues which are larger than a given
tolerance TOL. Then, we enhance the FETI-DP coarse space with the constraints
BDijSijPDijw

r
ij , r = 1, ..., R, using the balancing preconditioner described above.

2.3.3. Condition number bound. Computing adaptive constraints as pre-
sented in subsection 2.3.2 and enhancing the FETI-DP coarse space with these con-
straints using a balancing preconditionerM�1

BP , we obtain the condition number bound

(M�1
BPF) N2

ETOL,

which was first proved in [41, Theorem 5.1]. Here, NE is the maximum number of
edges of a subdomain.

2.3.4. Alternative edge constraints. Later, in subsection 3.3, we will intro-
duce an approach which distinguishes between three di↵erent classes of edges: edges,
where no additional constraint is necessary, edges, where only one single additional
constraint is necessary, and edges, where more than a single constraint has to be added.
For the second class, we replace the eigenvalue problem and the resulting eigenvector
by a single edge constraint designed using ⇢. Let us briefly describe these constraints.
For each finite element node x on Eij , we compute ⇢(i)(x) = max

y2!(x)\⌦i

⇢(y) and

⇢(j)(x) = max
y2!(x)\⌦j

⇢(y). Now, we define v(i)Eij
and v(j)Eij

on @⌦i and @⌦j , respectively,

by

v(i)Eij
(x) =

⇢
⇢(i)(x), x 2 Eij ,
0 elsewhere,

and v(j)Eij
(x) =

⇢
⇢(j)(x), x 2 Eij ,
0 elsewhere.

Defining vTEij
:= (v(i)TEij

,�v(j)TEij
), we obtain the edge constraint BDijSijPDijvEij and

add it to the coarse space using again the balancing approach. This coarse space itself
can be interpreted as a generalization of the weighted edge averages suggested in [42].
It can be combined with an arbitrary FETI-DP scaling and is robust for a broader
range of heterogeneities; see [25] for a detailed discussion.

2.3.5. Computational e↵ort. In a parallel FETI-DP implementation, the so-
lution of the eigenvalue problems on the edges can be distributed to the compute
cores, due to the local nature of the eigenvalue problems. Nonetheless, more than a
single eigenvalue problem has to be solved on several compute cores. The subsequent
solution of several eigenvalue problems can take up the larger part of the total time to
solution and also the sending of Schur complements, which is in general necessary, can
put a high pressure on the network of the parallel computer. Therefore, it is benefi-
cial to reduce the number of necessary eigenvalue problems to a necessary minimum,
e.g., by filtering out eigenvalue problems which do not add any new constraints for
a given tolerance TOL. A heuristic approach based on the coe�cient jumps on the
considered faces and edges as well as the residual after one step of the FETI-DP or
BDDC method is already considered in [34, 35]. Our approach is to train a neural
network to make this decision automatically.

8 A. HEINLEIN, A. KLAWONN, M. LANSER, AND J. WEBER

i1

i2
...
ij

...
in

h1
1

h1
2

...

h1
K

. . .

. . .

. . .

. . .

hN
1

hN
2

...

hN
K

o1
...
om

Input
layer

Hidden
layers

Output
layer

Fig. 1. Structure of feed forward neural networks with N hidden layers and K neurons per layer.

3. Machine Learning. From a high-level point of view, supervised machine
learning models approximate nonlinear functions, which associate input and output
data:

F : I ! O

Here, the input space I can be a product of R, N, and Boolean vector spaces. On
the other hand, the output space is typically either an R vector space for regression
problems or an N vector space for classification problems.

In order to compute a machine learning model, a large set of a priori known data
is necessary. This data is typically partitioned into training and validation data. In
the training and optimization phase, the model is trained to fit the training data while
the validation data is used to control the generalization properties of the model, i.e.,
to ensure that the model is not fitted too closely to the training data but also able
to accurately predict the output for new input data; cf., e.g., [63, Sec. 6.4] and [54,
pp. 25–29]. In that way, over- or underfitting should be minimized. Finally, the model
can be evaluated for new input data to predict the unknown output.

While the training of machine learning models can be computationally very ex-
pensive, the evaluation of the model is typically cheap. In particular, the training of
a machine learning model corresponds to a nonlinear high-dimensional optimization
problem. However, the training can be performed a priori in an o✏ine phase and the
resulting model is then saved for online use.

In this work, we will focus on the use of dense feedforward neural networks or,
more precisely, multilayer perceptrons; see, e.g., [20, Chapt. 4], [54, pp. 104–119], and
[63, Sec. 5.1.4]. A graphical representation of neural networks is depicted in Figure 1.
A feed forward neural network can be interpreted as an acyclic directed graph G =
(V, E) with a set of nodes V, a set of edges E , and a weight function w : E !
R; see, e.g., [59, Chapt. 20.1]. The neural network is assumed to be organized in
layers, i.e., the set of nodes V can be represented as the union of nonempty, disjoint
subsets Vi ⇢ V, i = 0, . . . , N + 1. These sets are defined such that for each edge
e 2 E there exists an i 2 {0, . . . , N} with e being an edge between a node in Vi

and one in Vi+1; see [59, Chapt. 20.1]. The nodes in a neural network are called
neurons and, in dense feedforward neural networks, each neuron (in a chosen layer) is
influenced by all neurons from the previous layer. In particular, the relation between

MACHINE LEARNING IN ADAPTIVE DOMAIN DECOMPOSITION METHODS 9

⌦i ⌦j

Eij

...

...

...
...

Input
layer

Hidden
layers

Output
layer

⇢(x1)

⇢(x2)

⇢(xk)

⇢(xM)

use evp?

Fig. 2. Sampling of the coe�cient function ⇢; white color corresponds to a low coe�cient and
red color to a high coe�cient. In this representation, the samples are used as input data for a neural
network with two hidden layers.

two consecutive layers is the conjunction of a linear mapping and a nonlinear activation
function. Among the many di↵erent choices for the activation function ↵, we choose
the Rectified Linear Unit (ReLU) [29, 55, 19] given by

↵(x) = max {0, x} .

This function is almost linear and its evaluation is very cheap. However, its nonlin-
earity is su�cient for the approximation of many nonlinear relations. Consequently,
the output of the k-th layer of the neural network can be written as

y = ↵k(x,W k, ck) = max
�
0, (W k)Tx+ bk

,

where W k= (wk
ij)i,j and bk are the weight matrix and the bias vector, respectively.

Note that an entry wk
ij of W k corresponds to the value of the weight function w asso-

ciated with the corresponding edge between layer Vk�1 and Vk. Then, the application
of a complete neural network with N hidden layers to an input vector i 2 I is given
by

h1 = ↵1(i,W 1, b1),

hk+1 = ↵k+1(hk,W k+1, bk+1), 1k < N,

o = (WN+1)ThN + bN+1

where hk is the output of the k-th hidden layer and o 2 O is the (final) output
vector. The computation of the output vector o is performed without an additional
application of the activation function. Since we use dense neural networks, all entries
of the matrices w and W k, k = 1, ..., N , are nonzero, but using a dropout rate, a
certain number of randomly chosen entries are set to zero.

In our software framework, we employ machine learning and data analysis imple-
mentations in TensorFlow [1] and Scikit-learn [58].

3.1. Detecting critical edges using a neural network. Although the con-
struction and solution of the local eigenvalue problems in adaptive domain decompo-
sition solvers can be parallelized quite well, this part typically consumes a significant

10 A. HEINLEIN, A. KLAWONN, M. LANSER, AND J. WEBER

sampling order

i1 i2 . . . iN

i2N+1 i2N+2 . . . i3N

iN+1 iN+2 . . . i2N

i3N+1 i3N+2 . . . i4N

Eij

Fig. 3. Sampling of the coe�cient function ⇢ for an edge eij between the subdomains ⌦i and
⌦j . The samples are first ordered in direction of the edge and second in orthogonal direction of the
edge; we alternate sampling on the left hand and right hand side of the edge.

Fig. 4. Sampling points for an irregular edge without smoothing the edge (left) and using the
smoothing strategy shown in Figure 5 (right).

portion of the total runtime. However, for many realistic coe�cient distributions, far
fewer adaptive coarse constraints are needed than local generalized eigenvalue prob-
lems have to be solved. Therefore, we introduce a preprocessing step to identify the
critical edges of the adaptive FETI-DP algorithm using a classification neural net-
work. Consequently, we only compute the local eigenvalue problems on edges which
are classified as critical by the neural network. On all uncritical edges, we do not
enforce any constraints.

As input for the neural network, we use samples of the coe�cient function within
the two subdomains adjacent to an edge; cf. Figure 2. As output, we obtain the
information whether an adaptive coarse constraint has to be computed on the corre-
sponding edge or not.

Our sampling is independent of the underlying finite element discretization since
we use a fixed number of sampling points for all mesh resolutions. In particular,
we choose the sampling to be finer than all meshes used in our computations. As
a rule of thumb, we assume that the sampling grid resolves all geometric details of
the coe�cient function. The location and order of the sampling points are depicted
in Figure 3; note that other orderings are possible as well. In this way, the input
vector for the neural network is of fixed length, i.e., number of sampling points in

MACHINE LEARNING IN ADAPTIVE DOMAIN DECOMPOSITION METHODS 11

Fig. 5. Left: smoothing a jagged edge by identifying the kinks and using a moving average
close to the kinks of the edge. Right: Smoothing of an example for an irregular edge.

Hyper parameter Range tested by grid search Optimal choice
hidden layers {1, 2, 3, 4} 3
neurons per layer {10, 20, 30, 50} 30
dropout rate {0, 0.2, 0.25, 0.5} 0.2
learning rate {0, 0.001, 0.005, 0.01, 0.1, 1} 0.01
optimization algorithm {Adam, AdaGrad} Adam

Table 1
Hyper parameters for the neural network and its training and the optimal choice obtained from

a grid search.

direction of the edge times number of sampling points orthogonal to the edge, and
all input values are real numbers. In addition to that, we scale all input values using
a min-max-scaling before the training of the neural network. Thus, we obtain input
values which range only between zero and one. This is beneficial for the use in a
neural network.

Since our sampling grid is oriented to the tangential and orthogonal direction of
the edge, our sampling strategy is not restricted to the case of square subdomains, as
indicated in Figure 2, but can also be applied to more general geometries. In this case,
we make sure to only use sampling points within the two subdomains adjacent to the
edge in order to reflect the structure of the edge eigenvalue problems; cf. Figure 4.
For all sampling points which exceed the boundaries of the two subdomains, we use
zero as input data.

However, non-smooth edges may lead to gaps within the sampling grid; cf. Fig-
ure 4 (left). Therefore, we use a moving average to smooth out discontinuities in
the tangential and normal vectors of the edge. In particular, we use a fixed window
length of five sampling points, and slide this window stepwise along the edge while
computing the average of the subset of sampling points in each local window. As
shown in Figure 5, we smooth out kinks twice using a moving average recursively. In
fact, instead of applying the moving average to the full edge, it is su�cient to consider
a neighborhood of a kink. To identify all kinks, we compute an approximation of the
discrete second derivative for the entire edge.

3.2. Training and validation phase. For the training and validation of the
neural network, we use a data set containing a total of 4 500 configurations varying
the coe�cient function and the edge geometry for two subdomains sharing this edge.
To generate the output data that is necessary for the training of the neural network,

12 A. HEINLEIN, A. KLAWONN, M. LANSER, AND J. WEBER

64h 21h 22h 21h

Fig. 6. Geometric configurations used in the training data: straight and jagged edges; subdo-
main size H/h = 64.

Fig. 7. Nine di↵erent types of coe�cient functions used for training and validation of the neural
network. The inclusions, channels, boxes, and combs with high coe�cient are displaced, modified in
sized, and mirrored with respect to the edge in order to generate the complete training data set.

we solve the eigenvalue problem described in subsection 2.3.2 for each of the 4 500
training and validation configurations.

As it turns out, it is su�cient to train on two geometric configurations, i.e., two
regular subdomains sharing a straight edge and two regular subdomains sharing a
jagged edge (see Figure 6), in order to generalize to arbitrary shapes of subdomains;
cf. subsection 4.2.2 and subsection 4.3.2. For the sampling, we select 127 points in
direction of the edge and 2⇥127 points in orthogonal direction. Thus, we roughly have
two sampling points in each finite element because here the subdomain size is defined
by H/h = 64. We combine the two geometric configurations depicted in Figure 6 with

MACHINE LEARNING IN ADAPTIVE DOMAIN DECOMPOSITION METHODS 13

Fig. 8. ROC curve and precision-recall plot for the optimal model obtained by a grid search;
cf. Table 1. We define precision as true positives divided by (true positives+false positives), and
recall as true positives divided by (true positives+false negatives). The thresholds used in section 4
are indicated as circles.

coe�cient functions of the types depicted in Figure 7. These coe�cient functions are
inspired by the coe�cient functions used in [41, 24]. In order to obtain the full set
of training data, the inclusions, channels, boxes, and combs with high coe�cient are
varied in size, location, and orientation actually leading to more configurations than
the nine basic ones given in Figure 7.

In the training of the neural network, we minimize the softmax cross-entropy loss
function

g(b1, ..., bN+1,W 1, ...,WN+1) =
CX

c=1

X

p2!c

0

@log

0

@
CX

j=1

eoj(p)

1

A� oc(p)

1

A

with respect to the weights and bias vectors of the neural network; cf. [63, Sect. 6.3].
Here, C is the total number of classes in the classification problem, oj(p) is the output
corresponding to class j in the output vector of data p, and !c is the subset of the
training data corresponding to class c. Thus, the softmax cross-entropy loss function
minimizes the cross-entropy between the deterministic class labels of the training
and validation data and the model’s prediction for the same data. Minimizing the
cross-entropy is equivalent to minimizing the Kullback-Leibler divergence, which is a
measure for the di↵erence of two probability distributions from information theory;
cf., e.g., [20, Sec. 3.13]. Note that the prediction

P (p 2 !c) =
eoc(p)

CP
j=1

eoj(p)

is the probability that the input with index p belongs to class c.
In this nonlinear optimization problem, we apply a Stochastic Gradient Descent

(SGD) method with an adaptive scaling of the learning rate and a batch size of 100.
For the adaptive scaling of the learning rates, we consider the AdaGrad (Adaptive
Gradient) [12] and the Adam (Adaptive moments) [32] algorithm.

In order to optimize the hyper parameters of the neural network, we apply a
grid search algorithm on a discrete search space of parameters. Here, we use as
hyper parameters the number of hidden layers, the number of neurons per layer, the

14 A. HEINLEIN, A. KLAWONN, M. LANSER, AND J. WEBER

dropout rate, the learning rate, and the optimization algorithm. The corresponding
hyper parameters, the search space, and the optimal choices for the parameters are
given in Table 1. We compare and optimize the generalization properties of the
neural network by cross-validation using a random splitting of our data set into 80%
training and 20% validation data for each iteration of the grid search algorithm.
The Receiver Operating Characteristic (ROC) curve and a precision-recall plot of
the neural network with optimal hyper parameters are shown in Figure 8. In both
plots, the threshold ⌧ for the decision boundary between critical and uncritical edges
is varied between zero and one. When increasing ⌧ , the false positive rate, which
corresponds to the number of critical edges that are not detected by the algorithm,
decreases. Consequently, the robustness of our ML-FETI-DP approach is improved.
In Figure 8, we also indicate the thresholds used in the numerical tests in section 4.

3.3. Introducing three-class classification and robust edge constraints.
As described in subsection 2.3.4, for edges which require only one adaptively com-
puted edge constraint, the constraint can be replaced by a manually constructed edge
constraint. Consequently, if known a priori, it is not necessary to solve any eigen-
value problems on these edges. Therefore, we also propose an extended approach,
which uses a three-class classification. In particular, the neural network distinguishes
between edges or classes, respectively, where the eigenvalue problem is unnecessary
(class 0), where the eigenvalue problem results in exactly one additional adaptive con-
straint (class 1), and where the eigenvalue problem selects more than one constraint
(class 2). If an edge is assigned to class 0, we will not enforce any edge constraint.
If an edge is assigned to class 1, we will enforce a single edge constraint as described
in subsection 2.3.4. Otherwise, we solve the eigenvalue problem on the edge and
enforce the computed adaptive constraints.

For the three-class classification, we use two di↵erent choices for the threshold
⌧ = 0.4, 0.5. Therefore, we first apply the standard multi-class classification rule

arg max
c=0,1,2

{P (p 2 !c)} ;

cf. [63, p. 100]. Then, if p is assigned to any of {class 1, class 2}, we rescale the
probabilities for the final classification in class 1 or 2 using the rule:

argmax

⇢
P (p 2 !1)

(1� ⌧)(P (p 2 !1) + P (p 2 !2))
,

P (p 2 !2)

⌧(P (p 2 !1) + P (p 2 !2))

�
.

Consequently, a threshold of 0.5 results in an equal scaling, whereas a threshold of
0.4 results in more edges assigned to class 2. This can improve the robustness of our
approach.

Despite of that, we do not change our strategy, and using a grid search on the
corresponding data set, we obtained the same hyper parameters as for the two-class
classification model.

3.4. Results on the training data. On the complete set of training data,
we obtain the results listed in Table 2. We observe a significantly better accuracy
for the three-class classification compared to the two-class classification. Also, we
observe that a classification threshold of 0.5 yields the best accuracy for both types of
classification. However, for the cases of irregular subdomains in section 4, we will use
a lower threshold ⌧ to improve the robustness of the ML-FETI-DP approach. This
will be discussed further in section 4.

MACHINE LEARNING IN ADAPTIVE DOMAIN DECOMPOSITION METHODS 15

classification type threshold fp fn acc

two-class classification
0.45 8.8% 1.9% 89.2%
0.5 5.4% 5.1% 89.5%

three-class classification
0.4 5.1% 1.0% 93.9%
0.5 3.2% 2.3% 94.5%

Table 2
Results on the complete training data set; the numbers are averages over all 4 500 training

configurations. We define the accuracy (acc) as the number of true positives and true negatives
divided by the total number of training configurations.

4. Numerical results for ML-FETI-DP. In this section, we compare FETI-
DP, adaptive FETI-DP, and ML-FETI-DP. Therefore, we consider di↵erent coe�cient
functions ⇢ in model problem (2.1), domain decompositions with regular subdomains
as well as irregular decompositions obtained with METIS [30], our two- and three-class
model, and di↵erent ML (Machine Learning)-thresholds ⌧ .

4.1. Coe�cient functions. In the following subsections, we consider two types
of discontinuous coe�cient functions ⇢ with large jumps, i.e., a “circle problem” as
depicted in Figure 9 (left) and a “microsection problem” as depicted in Figure 9
(middle). In all computations, we consider a coe�cient ⇢ = 1e6 in the dark blue
circles, or, respectively, in the black part of the microsection. In the remaining parts
of ⌦, we have ⇢ = 1 elsewhere. The microsection depicted in Figure 9 (middle) is a
subsection of the larger microsection from Figure 9 (right), suitable for our Matlab
computations. However, we consider a total of ten di↵erent subsections of Figure 9
(right) that cover the whole structure to prove that our algorithm is robust. For a
more detailed discussions of the results of ML-FETI-DP, we choose the subsection
depicted in Figure 9 (middle) as an example.

In our experiments, we always choose the mesh resolution such that the coe�cient
function is constant on each finite element. Then, the predictions and the accuracy of
our classification algorithm is independent of the mesh resolution of the finite element
mesh.

4.2. Two-class model. Let us first discuss our two-class model. Here, the
neural network distinguishes between critical edges, where the eigenvalue problem
results in additional adaptive constraints, and edges where the eigenvalue problem
is unnecessary. In the following, we will refer to the latter case as “negative” or
“negative edge” and to the first one as “positive” or “positive edge”. We always use
a tolerance of TOL = 100 in the adaptive algorithm and, if not stated otherwise, an
ML-threshold of 0.5.

4.2.1. Regular domain decompositions. We consider a regular domain de-
composition of the “circle problem” and the “microsection problem” into 64 sub-
domains. For both the “circle problem” and the “microsection problem”, we use a
discretization with 8 192 finite elements per subdomain. We depict both in Figure 10
(left) and Figure 11 and mark all edges using the following color code: edges which
ML-FETI-DP correctly identifies as positive are marked in green (true positive), edges
which ML-FETI-DP incorrectly identifies as positive are marked in yellow (false pos-
itive), and edges which ML-FETI-DP incorrectly identifies as negative are marked in
red (false negative). All edges which are correctly identified as negative (true neg-
ative) are not marked. Let us remark that the yellow edges are not critical for the
robustness and convergence of the algorithms and only a single unnecessary eigenvalue

16 A. HEINLEIN, A. KLAWONN, M. LANSER, AND J. WEBER

Fig. 9. Left: Coe�cient function ⇢ with randomly distributed circles of di↵erent sizes. We
have ⇢ = 1e6 in the dark blue circles and ⇢ = 1 elsewhere. We refer to model problem (2.1)
equipped with this coe�cient distribution by circle problem. Middle: Subsection of a microsection
of a dual-phase steel obtained from the image on the right. We consider ⇢ = 1e6 in the black part
and ⇢ = 1 elsewhere. We refer to model problem (2.1) equipped with this coe�cient distribution by
“microsection problem”. Right: Complete microsection of a dual-phase steel. Let us remark that we
consider di↵erent - randomly chosen - subsections of this microsection in the numerical results, but
discuss our approach in more details for a single example. Right image: Courtesy of Jörg Schröder,
University of Duisburg-Essen, Germany, orginating from a cooperation with ThyssenKruppSteel.

problem is solved for each yellow edge. In contrast, red edges might deteriorate the
convergence. Therefore, we also consider the approach of overshooting and lowering
the ML-threshold in some cases. In Figure 10 (left), we see that only two yellow
edges (false positives) but no critical red edges (false negatives) occur for the “circle
problem”. Here, we potentially save 92% of the eigenvalue problems. For the “mi-
crosection problem” we save 65% of the eigenvalue problems using an ML-threshold
of 0.5 and 60% using an ML-threshold of 0.45; cf. Table 3. In the latter case, we
have no false negatives and two false negatives in the first case. See Figure 11 for
graphical representations of both results. Additionally, we provide condition numbers
and iteration counts in Table 3 for all discussed examples. The two false negative
edges deteriorate the condition number, but the convergence of ML-FETI-DP is still
fast. To obtain also a low condition number, overshooting with the ML-threshold of
0.45 works as expected. To prove the robustness of ML-FETI-DP independent of the
specific subsection of the microstructure depicted in Figure 9 (right), we summarize
numerical results for ten di↵erent subsections. We therefore present averages and
maximum values of the condition number and iteration counts in Table 4.

4.2.2. METIS domain decompositions. Now, we consider a METIS domain
decomposition of the “circle problem” and the “microsection problem” into 64 sub-
domains. We depict both in Figure 10 (right) and Figure 12 and mark the edges
according to their classification using the same color code as before. Again, only red
edges are critical for the robustness and we can e↵ort to improve the robustness us-
ing overshooting and therefore introducing some yellow marked false positive edges.
Let us remark that, as described in subsection 3.1, we only use the training set with
straight edges and edges with a single jag; see Figure 6. In Figure 10 (right), we ob-
serve that, as in the regular case, only two yellow edges (false positives) but no critical
red edges (false negatives) occur for the “circle problem”. Here, we potentially save
96% of the eigenvalue problems. For the “microsection problem” we save the com-
putation of 61% of the eigenvalue problems considering an ML-threshold of 0.5 as
well as 0.45. In the first case, ML-FETI-DP misses three critical edges (red edges),

MACHINE LEARNING IN ADAPTIVE DOMAIN DECOMPOSITION METHODS 17

Fig. 10. Circle problem with marked edges: true positives are marked in green, false positives
are marked in yellow, and false negatives are marked in red. Left: Regular domain decomposition;
cf. also Table 3. Right: METIS domain decomposition; cf. also Table 5.

Fig. 11. Microsection problem with marked edges: true positives are marked in green, false
positives are marked in yellow, and false negatives are marked in red, cf. also Table 3. Left:
ML-threshold of 0.5; Right: ML-threshold of 0.45.

whereas in the second case, we are able to eliminate all red edges. See Figure 12
for both results. We also provide condition numbers and iteration counts in Table 5
for all discussed examples. Although ML-FETI-DP misses three critical edges for an
ML-threshold of 0.5, the number of iterations remains moderate. Nonetheless, using
a lower threshold of 0.45, we obtain the same robustness as adaptive FETI-DP. For
METIS decompositions, we again summarize numerical results for ten di↵erent sub-
sections of the microsection depicted in Figure 9 (right). We present averages and
maximum values of the condition number and iteration counts in Table 6.

4.3. Three-class model. Let us now discuss numerical results for our three-
class model; cf. subsection 3.3. As before, we always use a tolerance of TOL = 100
in the adaptive algorithm and, if not stated otherwise, an ML-threshold of 0.5. Let
us remark that we only consider the “microsection problem” in this section, since for
the “circle problem” only edges from class 0 and class 1 occur.

4.3.1. Regular domain decompositions. We consider the same discretiza-
tion and domain decomposition as in subsection 4.2.1. Besides FETI-DP with primal
vertices, adaptive FETI-DP, and ML-FETI-DP, we additionally compare FETI-DP

18 A. HEINLEIN, A. KLAWONN, M. LANSER, AND J. WEBER

Model Problem Algorithm ⌧ cond it evp fp fn acc
standard - 1.04e6 56 0 - - -

Circle Problem adaptive - 8.82 35 112 - - -
ML 0.5 8.83 35 9 2 0 0.98

standard - - >300 0 - - -
Microsection adaptive - 15.86 36 112 - - -

Problem ML 0.5 9.64e4 45 39 2 2 0.96
ML 0.45 15.86 36 44 5 0 0.95

Table 3
Comparison of standard FETI-DP, adaptive FETI-DP, and ML-FETI-DP for regular do-

main decompositions for the two-class model, cf. also Figure 10 (left) and Figure 11. We
show the ML-threshold (⌧), the condition number (cond), the number of CG iterations (it), the
number of solved eigenvalue problems (evp), the number of false positives (fp), the number of false
negatives (fn), and the accuracy in the classification (acc).

Ten Di↵erent Microsection Problems

Algorithm ⌧ cond it evp fp fn acc
adaptive - 11.04 34.6 112.0 - - -

(15.87) (38) (112) - - -

ML 0.5 8.61e4 39.5 45.0 1.6 1.9 0.97
(9.73e4) (52) (57) (2) (3) (0.96)

ML 0.45 11.04 34.6 46.9 4.4 0 0.96
(15.87) (38) (59) (6) (0) (0.94)

Table 4
Results for 10 di↵erent subsections of a microsection of a dual-phase steel for the two-class

model. Comparison of adaptive FETI-DP and ML-FETI-DP for regular domain decomposi-
tions. We show the average values as well as the maximum values (in brackets). See Table 3 for
the column labelling.

with primal vertex constraints and weighted edge averages as described in subsec-
tion 2.3.4 on all edges. The latter approach, which we denote as FETI-DP(e), also
does not require the solution of any eigenvalue problems.

As depicted in Figure 13, we obtain a single red edge, where ML-FETI-DP assigns
this edge falsely to class 1 instead of class 2. Nonetheless, ML-FETI-DP is still
robust, since this single edge is not critical for convergence; see Table 7. ML-FETI-
DP using the three-class model saves 93% of the eigenvalue problems compared to
adaptive FETI-DP. This is a significant improvement to ML-FETI-DP using the two-
class model investigated in subsection 4.2, where we saved 65% for exactly the same
model problem. Again, considering a lower ML-threshold of ⌧ = 0.4 as described
in section 3.3, we can get rid of all false negative edges for the prize of additional
false positives; see Figure 13. As already mentioned, the latter ones are uncritical for
the robustness of ML-FETI-DP. Also for the three-class model, we test for the ten
subsections of the complete microsection considered in subsection 4.2.2. We present
averages and maximum values of the condition number and iteration counts in Table 8.

4.3.2. METIS domain decompositions. Considering the same problem as
in subsection 4.3.1, but using irregular domain decompositions obtained by METIS,
does not change the picture. We obtain again only one single critical edge using an
ML-threshold of ⌧ = 0.5. As for the regular domain decomposition, both can be

MACHINE LEARNING IN ADAPTIVE DOMAIN DECOMPOSITION METHODS 19

Fig. 12. Microsection problem with marked edges: true positives are marked in green, false
positives are marked in yellow, and false negatives are marked in red, cf. also Table 5. Left:
ML-threshold of 0.5; Right: ML-threshold of 0.45.

Model Problem Algorithm ⌧ cond it evp fp fn acc
standard - 9.18e5 75 0 - - -

Circle Problem adaptive - 13.56 37 160 - - -
ML 0.5 13.56 37 7 2 0 0.99

standard - - >350 - - - -
Microsection adaptive - 16.52 35 160 - - -

Problem ML 0.5 1.78e4 51 62 3 3 0.96
ML 0.45 16.52 35 68 6 0 0.96

Table 5
Comparison of standard FETI-DP, adaptive FETI-DP, and ML-FETI-DP for a METIS do-

main decompositions for the two-class model, cf. also Figure 10 (right) and Figure 12. See Ta-
ble 3 for the column labelling.

removed by choosing ⌧ = 0.4; see Figure 14. In both cases, ML-FETI-DP is robust,
converges fast, and up to 94% of the eigenvalue problems can be saved; see Table 9.
The behavior does not change for the ten di↵erent microsections and we again provide
average and maximum values in Table 10.

5. Conclusion and future work. We introduced two di↵erent machine learn-
ing based classification strategies to predict the critical edges where adaptive con-
straints have to be enforced in adaptive FETI-DP. Both approaches helped to reduce
the number of necessary eigenvalue problems significantly. We showed numerically the
stability and robustness of the new method ML-FETI-DP and saved up to 94% of the
eigenvalue problems for realistic coe�cient functions obtained from a microsection of
dual phase steel. Although we concentrated on adaptive FETI-DP, this work can be
generalized to di↵erent domain decomposition methods, as, e.g., BDDC and GDSW.
We also plan to investigate the case of three spatial dimensions. Another approach,
which we plan to develop, is the prediction of the adaptive constraints themselves
using machine learning techniques.

Acknowledgments. This work was supported in part by the German Research
Foundation (DFG) through the Priority Programme 1648 “Software for Exascale
Computing” (SPPEXA) under grants KL 2094/4-1 and KL 2094/4-2.

20 A. HEINLEIN, A. KLAWONN, M. LANSER, AND J. WEBER

Ten Di↵erent Microsection Problems

Algorithm ⌧ cond it evp fp fn acc
adaptive - 14.81 35.6 160.0 - - -

(22.58) (38) (160) - - -

ML 0.5 1.38e4 51.0 63.2 2.0 2.0 0.97
(2.07e4) (52) (73) (3) (3) (0.96)

ML 0.45 14.81 35.6 65.4 6.2 0 0.96
(22.58) (38) (75) (7) (0) (0.95)

Table 6
Results for 10 di↵erent subsections of a microsection of a dual-phase steel for the two-class

model. Comparison of adaptive FETI-DP and ML-FETI-DP for METIS domain decomposi-
tions. We show the average values as well as the maximum values (in brackets). See Table 3 for
the column labelling.

Fig. 13. Microsection problem with marked edges. Correctly assigned edges from class 1 and
class 2 are marked in green. Edges from class 1 which are falsely assigned to class 0, and edges
from class 2 which are falsely assigned to class 0, are marked in red. Edges from class 0, which
are falsely assigned to class 1, and edges from class 1, which are falsely assigned to class 2, are
marked in yellow, cf. also Table 7. Therefore, again, only red edges are critical for the robustness
of ML-FETI-DP. Left: ML-threshold of 0.5; Right: ML-threshold of 0.4.

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, Ten-
sorFlow: Large-scale machine learning on heterogeneous systems, 2015, https://www.
tensorflow.org/. Software available from tensorflow.org.

[2] S. Badia, A. F. Mart́ın, and J. Principe, On the scalability of inexact balancing domain
decomposition by constraints with overlapped coarse/fine corrections, Parallel Comput., 50
(2015), pp. 1–24.

[3] S. Badia, A. F. Mart́ın, and J. Principe, Multilevel balancing domain decomposition at
extreme scales, SIAM J. Sci. Comput., 38 (2016), pp. C22–C52.

[4] L. Beirão da Veiga, L. F. Pavarino, S. Scacchi, O. B. Widlund, and S. Zampini, Adaptive
selection of primal constraints for isogeometric BDDC deluxe preconditioners, SIAM J.
Sci. Comput., 39 (2017), pp. A281–A302.

[5] P. E. Bjørstad, J. Koster, and P. Krzyżanowski, Domain decomposition solvers for large

https://www.tensorflow.org/
https://www.tensorflow.org/

MACHINE LEARNING IN ADAPTIVE DOMAIN DECOMPOSITION METHODS 21

Model Problem Algorithm ⌧ cond it evp e-avg fp fn acc
standard - - >300 0 - - - -

Microsection standard(e) - 8.21e4 127 0 112 - - -
Problem adaptive - 15.86 36 112 - - - -

ML 0.5 231.37 56 8 30 1 1 0.98
ML 0.4 16.21 37 24 18 16 0 0.85

Table 7
Comparison of standard FETI-DP, standard FETI-DP(e), adaptive FETI-DP, and ML-FETI-

DP for regular domain decompositions for the three-class model, cf. also Figure 13. See Ta-
ble 3 for the column labelling.

Ten Di↵erent Microsection Problems

Algorithm ⌧ cond it evp e-avg fp fn acc
adaptive - 11.04 34.6 112.0 - - - -

(15.87) (38) (112) - - - -

ML 0.5 147.41 48.8 4.1 43.6 1.7 1.3 0.97
(271.38) (58) (10) (46) (3) (3) (0.95)

ML 0.4 12.37 34.8 16.0 24.2 10.5 0.0 0.90
(16.41) (39) (24) (28) (16) (0) (0.85)

Table 8
Results for 10 di↵erent subsections of a microsection of a dual-phase steel for the three-class

model. Comparison of adaptive FETI-DP and ML-FETI-DP for regular domain decomposi-
tions. We show the average values as well as the maximum values (in brackets). See Table 3 for
the column labelling.

scale industrial finite element problems, in PARA2000 Workshop on Applied Parallel Com-
puting, Lecture Notes in Computer Science 1947, Springer-Verlag, 2000.

[6] J. G. Calvo and O. B. Widlund, An adaptive choice of primal constraints for BDDC domain
decomposition algorithms, Electron. Trans. Numer. Anal., 45 (2016), pp. 524–544.

[7] C. R. Dohrmann, A preconditioner for substructuring based on constrained energy minimiza-
tion, SIAM J. Sci. Comput., 25 (2003), pp. 246–258.

[8] C. R. Dohrmann, A. Klawonn, and O. B. Widlund, Domain decomposition for less regular
subdomains: overlapping Schwarz in two dimensions, SIAM J. Numer. Anal., 46 (2008),
pp. 2153–2168.

[9] C. R. Dohrmann, A. Klawonn, and O. B. Widlund, A family of energy minimizing coarse
spaces for overlapping Schwarz preconditioners, in Domain decomposition methods in sci-
ence and engineering XVII, vol. 60 of Lect. Notes Comput. Sci. Eng., Springer, Berlin,
2008, pp. 247–254.

[10] C. R. Dohrmann and O. B. Widlund, An overlapping Schwarz algorithm for almost incom-
pressible elasticity, SIAM J. Numer. Anal., 47 (2009), pp. 2897–2923.

[11] V. Dolean, F. Nataf, R. Scheichl, and N. Spillane, Analysis of a two-level Schwarz method
with coarse spaces based on local Dirichlet-to-Neumann maps, Comput. Methods Appl.
Math., 12 (2012), pp. 391–414.

[12] J. Duchi, E. Hazan, and Y. Singer, Adaptive subgradient methods for online learning and
stochastic optimization, Journal of Machine Learning Research, 12 (2011), pp. 2121–2159.

[13] Y. Efendiev, J. Galvis, R. Lazarov, and J. Willems, Robust domain decomposition pre-
conditioners for abstract symmetric positive definite bilinear forms, ESAIM Math. Model.
Numer. Anal., 46 (2012), pp. 1175–1199.

[14] C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, and D. Rixen, FETI-DP: a dual-primal
unified FETI method. I. A faster alternative to the two-level FETI method, Internat. J.
Numer. Methods Engrg., 50 (2001), pp. 1523–1544.

[15] C. Farhat, M. Lesoinne, and K. Pierson, A scalable dual-primal domain decomposition
method, Numer. Linear Algebra Appl., 7 (2000), pp. 687–714. Preconditioning techniques
for large sparse matrix problems in industrial applications (Minneapolis, MN, 1999).

22 A. HEINLEIN, A. KLAWONN, M. LANSER, AND J. WEBER

Fig. 14. Microsection problem with marked edges. Correctly assigned edges from class 1 and
class 2 are marked in green. Edges from class 1 which are falsely assigned to class 0, and edges
from class 2 which are falsely assigned to class 0, are marked in red. Edges from class 0 which
are falsely assigned to class 1, and edges from class 1 which are falsely assigned to class 2, are
marked in yellow, cf. also Table 9. Therefore, again, only red edges are critical for the robustness
of ML-FETI-DP. Left: ML-threshold of 0.5; Right: ML-threshold of 0.4.

Model Problem Algorithm ⌧ cond it evp e-avg fp fn acc
standard - - >350 0 - - - -

Microsection standard(e) - - >350 0 160 - - -
Problem adaptive - 16.52 35 160 - - - -

ML 0.5 245.71 56 9 42 2 1 0.98
ML 0.4 17.82 36 26 31 16 0 0.90

Table 9
Comparison of standard FETI-DP, standard FETI-DP(e), adaptive FETI-DP, and ML-FETI-

DP for METIS domain decompositions for the three-class model, cf. also Figure 14. See Ta-
ble 3 for the column labelling.

[16] J. Galvis and Y. Efendiev, Domain decomposition preconditioners for multiscale flows in
high-contrast media, Multiscale Modeling & Simulation, 8 (2010), pp. 1461–1483.

[17] J. Galvis and Y. Efendiev, Domain decomposition preconditioners for multiscale flows in
high contrast media: reduced dimension coarse spaces, Multiscale Modeling & Simulation,
8 (2010), pp. 1621–1644.

[18] M. J. Gander, A. Loneland, and T. Rahman, Analysis of a new harmonically enriched
multiscale coarse space for domain decomposition methods, tech. report, https://arxiv.
org/abs/1512.05285.

[19] X. Glorot, A. Bordes, and Y. Bengio, Deep sparse rectifier neural networks, in Proceedings
of the fourteenth international conference on artificial intelligence and statistics, 2011,
pp. 315–323.

[20] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning, vol. 1, MIT press
Cambridge, 2016.

[21] A. Heinlein, Parallel Overlapping Schwarz Preconditioners and Multiscale Discretizations with
Applications to Fluid-Structure Interaction and Highly Heterogeneous Problems, PhD the-
sis, Universität zu Köln, 2016.

[22] A. Heinlein, A. Klawonn, J. Knepper, and O. Rheinbach, Adaptive GDSW coarse spaces
for overlapping Schwarz methods. In preparation.

[23] A. Heinlein, A. Klawonn, J. Knepper, and O. Rheinbach, An adaptive GDSW coarse space
for two-level overlapping Schwarz methods in two dimensions, 2017. Accepted for publi-
cation to the Proceedings of the 24rd International Conference on Domain Decomposition
Methods, Springer Lect. Notes Comput. Sci. Eng.

[24] A. Heinlein, A. Klawonn, J. Knepper, and O. Rheinbach, Multiscale coarse spaces for
overlapping schwarz methods based on the acms space in 2d, Electronic Transactions on

https://arxiv.org/abs/1512.05285
https://arxiv.org/abs/1512.05285

MACHINE LEARNING IN ADAPTIVE DOMAIN DECOMPOSITION METHODS 23

Ten Di↵erent Microsection Problems

Algorithm ⌧ cond it evp e-avg fp fn acc
adaptive - 14.81 35.6 160.0 - - - -

(22.58) (38) (160) - - - -

ML 0.5 233.55 53.2 7.5 46.2 1.6 2.0 0.97
(256.51) (57) (10) 49 (2) (3) (0.96)

ML 0.4 15.73 36.8 23.8 28.8 15.8 0.0 0.89
(24.04) (40) (26) (31) (21) (0) (0.86)

Table 10
Results for 10 di↵erent subsections of a microsection of a dual-phase steel for the three-class

model. Comparison of adaptive FETI-DP and ML-FETI-DP for METIS domain decomposi-
tions. We show the average values as well as the maximum values (in brackets). See Table 3 for
the column labelling.

Numerical Analysis (ETNA), 48 (2018), pp. 156–182.
[25] A. Heinlein, A. Klawonn, M. Lanser, and J. Weber, A generalized robust FETI-DP coarse

space for heterogeneous problems and arbitrary scalings, (2018). In preparation.
[26] A. Heinlein, A. Klawonn, and O. Rheinbach, A parallel implementation of a two-level

overlapping schwarz method with energy-minimizing coarse space based on trilinos, SIAM
Journal on Scientific Computing, 38 (2016), pp. C713–C747.

[27] A. Heinlein, A. Klawonn, O. Rheinbach, and O. Widlund, Improving the parallel perfor-
mance of overlapping Schwarz methods by using a smaller energy minimizing coarse space,
2017. Accepted for publication to the Proceedings of the 24rd International Conference on
Domain Decomposition Methods, Springer Lect. Notes Comput. Sci. Eng.

[28] M. Jarošová, A. Klawonn, and O. Rheinbach, Projector preconditioning and transformation
of basis in FETI-DP algorithms for contact problems, Math. Comput. Simulation, 82
(2012), pp. 1894–1907.

[29] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, What is the best multi-stage
architecture for object recognition?, 2009, pp. 2146–2153.

[30] G. Karypis and V. Kumar, MeTis: Unstructured Graph Partitioning and Sparse Matrix
Ordering System, Version 4.0.

[31] H. H. Kim and E. T. Chung, A BDDC algorithm with enriched coarse spaces for two-
dimensional elliptic problems with oscillatory and high contrast coe�cients, Multiscale
Model. Simul., 13 (2015), pp. 571–593.

[32] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint
arXiv:1412.6980, (2014).

[33] A. Klawonn, M. Kühn, and O. Rheinbach, Adaptive coarse spaces for FETI-DP in three
dimensions, SIAM J. Sci. Comput., 38 (2016), pp. A2880–A2911.

[34] A. Klawonn, M. Kühn, and O. Rheinbach, Adaptive coarse spaces for FETI-DP in three
dimensions with applications to heterogeneous di↵usion problems, in Domain decomposi-
tion methods in science and engineering XXIII, vol. 116 of Lect. Notes Comput. Sci. Eng.,
Springer, Cham, 2017, pp. 187–196.

[35] A. Klawonn, M. Kühn, and O. Rheinbach, Adaptive FETI-DP and BDDC methods with a
generalized transformation of basis for heterogeneous problems, Electron. Trans. Numer.
Anal., 49 (2018), pp. 1–27.

[36] A. Klawonn, M. Lanser, and O. Rheinbach, Toward extremely scalable nonlinear domain
decomposition methods for elliptic partial di↵erential equations, SIAM J. Sci. Comput., 37
(2015), pp. C667–C696.

[37] A. Klawonn, M. Lanser, and O. Rheinbach, A highly scalable implementation of inexact
nonlinear FETI-DP without sparse direct solvers, in Numerical mathematics and advanced
applications—ENUMATH 2015, vol. 112 of Lect. Notes Comput. Sci. Eng., Springer,
[Cham], 2016, pp. 255–264.

[38] A. Klawonn, M. Lanser, and O. Rheinbach, Nonlinear BDDC methods with inexact solvers,
(2017). Submitted.

[39] A. Klawonn, M. Lanser, O. Rheinbach, and M. Uran, Nonlinear FETI-DP and BDDC
methods: a unified framework and parallel results, SIAM J. Sci. Comput., 39 (2017),
pp. C417–C451.

24 A. HEINLEIN, A. KLAWONN, M. LANSER, AND J. WEBER

[40] A. Klawonn, P. Radtke, and O. Rheinbach, FETI-DP methods with an adaptive coarse
space, SIAM J. Numer. Anal., 53 (2015), pp. 297–320.

[41] A. Klawonn, P. Radtke, and O. Rheinbach, A comparison of adaptive coarse spaces for iter-
ative substructuring in two dimensions, Electron. Trans. Numer. Anal., 45 (2016), pp. 75–
106.

[42] A. Klawonn and O. Rheinbach, Robust FETI-DP methods for heterogeneous three dimen-
sional elasticity problems, Comput. Methods Appl. Mech. Engrg., 196 (2007), pp. 1400–
1414.

[43] A. Klawonn and O. Rheinbach, Highly scalable parallel domain decomposition methods with
an application to biomechanics, ZAMM Z. Angew. Math. Mech., 90 (2010), pp. 5–32.

[44] A. Klawonn and O. Rheinbach, Deflation, projector preconditioning, and balancing in it-
erative substructuring methods: connections and new results, SIAM J. Sci. Comput., 34
(2012), pp. A459–A484.

[45] A. Klawonn, O. Rheinbach, and O. B. Widlund, An analysis of a FETI-DP algorithm on
irregular subdomains in the plane, SIAM J. Numer. Anal., 46 (2008), pp. 2484–2504.

[46] A. Klawonn and O. B. Widlund, Dual-primal FETI methods for linear elasticity, Comm.
Pure Appl. Math., 59 (2006), pp. 1523–1572.

[47] A. Klawonn, O. B. Widlund, and M. Dryja, Dual-primal FETI methods for three-
dimensional elliptic problems with heterogeneous coe�cients, SIAM J. Numer. Anal., 40
(2002), pp. 159–179.

[48] J. Li and O. B. Widlund, FETI-DP, BDDC, and block Cholesky methods, Internat. J. Numer.
Methods Engrg., 66 (2006), pp. 250–271.

[49] J. Mandel and C. R. Dohrmann, Convergence of a balancing domain decomposition by con-
straints and energy minimization, Numer. Linear Algebra Appl., 10 (2003), pp. 639–659.
Dedicated to the 70th birthday of Ivo Marek.

[50] J. Mandel, C. R. Dohrmann, and R. Tezaur, An algebraic theory for primal and dual
substructuring methods by constraints, Appl. Numer. Math., 54 (2005), pp. 167–193.

[51] J. Mandel and B. Soused́ık, Adaptive selection of face coarse degrees of freedom in the BDDC
and the FETI-DP iterative substructuring methods, Comput. Methods Appl. Mech. Engrg.,
196 (2007), pp. 1389–1399.

[52] J. Mandel, B. Soused́ık, and J. Śıstek, Adaptive BDDC in three dimensions, Math. Comput.
Simulation, 82 (2012), pp. 1812–1831.

[53] J. Mandel and R. Tezaur, On the convergence of a dual-primal substructuring method, Nu-
mer. Math., 88 (2001), pp. 543–558.

[54] A. Müller and S. Guido, Introduction to Machine Learning with Python: A Guide for Data
Scientists, O’Reilly Media, 2016.

[55] V. Nair and G. E. Hinton, Rectified linear units improve restricted boltzmann machines, in
Proceedings of the 27th international conference on machine learning (ICML-10), 2010,
pp. 807–814.

[56] D.-S. Oh, O. B. Widlund, S. Zampini, and C. R. Dohrmann, BDDC algorithms with deluxe
scaling and adaptive selection of primal constraints for Raviart-Thomas vector fields,
Math. Comp., 87 (2018), pp. 659–692.

[57] C. Pechstein and C. R. Dohrmann, A unified framework for adaptive BDDC, Electron.
Trans. Numer. Anal., 46 (2017), pp. 273–336.

[58] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay, Scikit-learn: Machine learning
in Python, Journal of Machine Learning Research, 12 (2011), pp. 2825–2830.

[59] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning, Cambridge Uni-
versity Press, 2014.

[60] N. Spillane, V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl, Abstract
robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps,
Numer. Math., 126 (2014), pp. 741–770.

[61] N. Spillane and D. J. Rixen, Automatic spectral coarse spaces for robust finite element tearing
and interconnecting and balanced domain decomposition algorithms, Internat. J. Numer.
Methods Engrg., 95 (2013), pp. 953–990.

[62] A. Toselli and O. Widlund, Domain decomposition methods—algorithms and theory, vol. 34
of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 2005.

[63] J. Watt, R. Borhani, and A. K. Katsaggelos, Machine Learning Refined: Foundations,
Algorithms, and Applications, Cambridge University Press, 2016.

[64] S. Zampini, PCBDDC: a class of robust dual-primal methods in PETSc, SIAM J. Sci. Comput.,
38 (2016), pp. S282–S306.

	Introduction
	Algorithms and model problems
	A simple model problem
	Standard FETI-DP
	Domain Decomposition
	The FETI-DP algorithm
	Condition number bound

	FETI-DP with an adaptive coarse space
	Enhancing the coarse space using a balancing preconditioner
	The adaptive constraints
	Condition number bound
	Alternative edge constraints
	Computational effort

	Machine Learning
	Detecting critical edges using a neural network
	Training and validation phase
	Introducing three-class classification and robust edge constraints
	Results on the training data

	Numerical results for ML-FETI-DP
	Coefficient functions
	Two-class model
	Regular domain decompositions
	METIS domain decompositions

	Three-class model
	Regular domain decompositions
	METIS domain decompositions

	Conclusion and future work
	References

