
Technical Report Series
Center for Data and Simulation Science

Axel Klawonn, Martin Lanser, Oliver Rheinbach, Gerhard Wellein, Markus

Wittmann

Energy Efficiency of Nonlinear Domain Decomposition Methods

Technical Report ID: CDS-2018-3

Available at http://kups.ub.uni-koeln.de/id/eprint/8654

Submitted on October 2, 2018

http://kups.ub.uni-koeln.de/id/eprint/8654


ENERGY EFFICIENCY OF NONLINEAR DOMAIN
DECOMPOSITION METHODS⇤

A. KLAWONN†‡ , M. LANSER†‡ , O. RHEINBACH§ , G. WELLEIN¶, AND M. WITTMANNk

Abstract. A nonlinear domain decomposition (DD) solver is considered with respect to im-
proved energy e�ciency. In this method, nonlinear problems are solved using Newton’s method on
the subdomains in parallel and in asynchronous iterations. The method is compared to the more
standard Newton-Krylov approach, where a linear domain decomposition solver is applied to the
overall nonlinear problem after linearization using Newton’s method. It is found that in the non-
linear domain decomposition method, making use of the asynchronicity, some processor cores can
be set to sleep to save energy and to allow better use of the power and thermal budget. Energy
savings up to 77% are observed compared to the more traditional Newton-Krylov approach, which
is synchronous by design, using up to 5120 Intel Broadwell (Xeon E5-2630v4) cores. The total time
to solution is not a↵ected. On the contrary, remaining cores of the same processor may be able to go
to turbo mode, thus reducing the total time to solution slightly. Last, we consider the same strategy
for the ASPIN (Additive Schwarz Preconditioned Inexact Newton) nonlinear domain decomposition
method and observe a similar potential to save energy.

Key words. Nonlinear FETI-DP, Nonlinear Domain Decomposition, Nonlinear Elimination,
Newton’s method, Nonlinear Problems, Parallel Computing, Energy E�ciency, LIKWID
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1. Introduction. In recent years, many nonlinear domain decomposition ap-
proaches have been introduced and their superiority over the classical combination of
a nonlinear solver, e.g., Newton’s method, with a linear domain decomposition ap-
proach has been shown for many model problems [4–6,8,11,12,21,22,24–26,34–36,38].
Nonlinear domain decomposition methods are solution approaches for nonlinear prob-
lems and apply the concepts and ideas of linear domain decomposition methods
as, e.g., Overlapping Schwarz [4–6, 8, 11, 12, 34–36], FETI (Finite Element Tearing
and Interconnecting) [38], FETI-DP (Finite Element Tearing and Interconnecting
- Dual-Primal) [22, 24, 26], and BDDC (Balancing Domain Decomposition by Con-
straints) [21, 22, 26] directly to a nonlinear problem before a nonlinear solver is ap-
plied. Although all these methods behave quite di↵erently in their linear as well as
nonlinear variants, they have some common features and properties. We will show
that one of these properties makes nonlinear domain decomposition methods typically
more energy e�cient compared with their linear relatives embedded in some nonlin-
ear solver. This e↵ect is not only caused by a shorter runtime but also the power
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50931 Köln, Germany, axel.klawonn@uni-koeln.de, martin.lanser@uni-koeln.de, url: http://www.
numerik.uni-koeln.de

‡Center for Data and Simulation Science, University of Cologne, Germany, url: http://www.cds.
uni-koeln.de

§Institut für Numerische Mathematik und Optimierung, Fakultät für Mathematik und
Informatik, Technische Universität Bergakademie Freiberg, Akademiestr. 6, 09596 Freiberg,
oliver.rheinbach@math.tu-freiberg.de, url: http://www.mathe.tu-freiberg.de/nmo/mitarbeiter/
oliver-rheinbach

¶Department of Computer Science, Friedrich-Alexander University Erlangen-Nürnberg,
Martensstr. 1, 91058 Erlangen, Germany gerhard.wellein@fau.de, url: https://hpc.fau.de

kErlangen Regional Computing Center, Friedrich-Alexander University Erlangen-Nürnberg,
Martensstr. 1, 91058 Erlangen, Germany markus.wittmann@fau.de

1

http://www.numerik.uni-koeln.de
http://www.numerik.uni-koeln.de
http://www.cds.uni-koeln.de
http://www.cds.uni-koeln.de
mailto:oliver.rheinbach@math.tu-freiberg.de
http://www.mathe.tu-freiberg.de/nmo/mitarbeiter/oliver-rheinbach
http://www.mathe.tu-freiberg.de/nmo/mitarbeiter/oliver-rheinbach
mailto:gerhard.wellein@fau.de
https://hpc.fau.de
mailto:markus.wittmann@fau.de


2 A. KLAWONN, M. LANSER, O. RHEINBACH, G. WELLEIN, M. WITTMANN

consumption is typically lower during most of the computation. In this paper, we will
show and explain this e↵ect in detail for the example of nonlinear FETI-DP methods.
First we will provide a more general description of the concept and show that it is
also applicable to other methods as, e.g., ASPIN (Additive Schwarz Preconditioned
Inexact Newton) [4].

Given is a discrete nonlinear problem

(1) A(x) = 0,

which has been obtained by a discretization of a nonlinear partial di↵erential equation.
In contrast to classical approaches, e.g., Newton-Krylov-DD (Domain Decomposition)
methods, where (1) is linearized by Newton’s method and the tangential system is
solved iteratively using a domain decomposition approach, the discrete nonlinear func-
tion (1) is replaced by an alternative formulation

(2) A(x) = 0.

Here, A is obtained by applying domain decomposition strategies, i.e., by decompos-
ing (1) into local nonlinear problems on subdomains. These local nonlinear problems
are decoupled or, for numerical scalability, weakly coupled.

Of course, it has to be guaranteed that (1) and (2) have the same solution. Then,
instead of (1), equation (2) is solved by a nonlinear solver. If A is designed properly,
the nonlinear solver takes fewer steps to solve the problem and therefore the time
to solution is reduced. Another advantage often observed is increased robustness [4,
21, 35]. In general, current methods to form A can be interpreted as a nonlinear
right-preconditioning approach

(3) A(x) := A(M(x))

or as a a nonlinear left-preconditioning approach

(4) A(x) := G(A(x)).

Examples for the latter case are ASPIN [4] and RASPEN [8], while Nonlinear-FETI-
DP and Nonlinear-BDDC can be interpreted as nonlinearly right preconditioned meth-
ods; see [26]. To be e�cient, applications of the preconditioners M and G should be
cheap compared with an application of A. Both should put the initial value near to
the solution and to obtain the correct solution, one has to ensure that G(0) = 0. Let
us remark that in the case of nonlinear right preconditioning, we search the solution
M(x) instead of x. In most methods, the functions M or G are not given explicitly,
but only implicitly by defining local nonlinear problems on subdomains. These local
problems are decoupled or, sometimes, coupled through a small coarse space. When
solving (2) with Newton’s method, the function G or M has to be evaluated in each
Newton step, and therefore all the local nonlinear problems have to be solved, e.g.,
by local Newton iterations. However, these local iterations are easily parallelizable
and can often be performed desynchronized among the processors. A rough sketch of
a nonlinear domain decomposition method is given in Figure 1.

However, some of the local nonlinear problems in G or M can converge fast or
even in a single step (nearly linear behavior), while others may take many Newton
steps to converge. Under the assumption that each computational core solves exactly
one local nonlinear problem, problem dependent load imbalances can thus arise. This
can be tolerated as long as the time to solution is faster than using classical approaches
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Start with some initial value
Iterate until convergence

/* Evaluation of G or M */
Solve local nonlinear problems with Newton’s method (inner Newton
loop)
Solve linearized problem
Update solution

End of outer Newton loop

Fig. 1. Sketch of a nonlinear domain decomposition method using Newton’s method.

with proper load balance, but is nonetheless a topic of current research. Removing the
load imbalance completely without loosing convergence properties is di�cult since a
redistribution of the work, e.g., by resizing subdomains changes the nonlinear problem
A completely. However, computational approaches such as the superman strategy [16]
can help.

In this paper, we investigate a di↵erent approach and decide to set cores to sleep,
when they have finished solving their local nonlinear problem until all other cores catch
up. This can save energy compared to classical approaches and is feasible because the
desynchronization of the local Newton iterations in nonlinear DD methods results in
potential sleep times at the order of seconds; see subsection 4.2. To prove this e↵ect,
we compare the classical Newton-Krylov-FETI-DP approach with Nonlinear-FETI-
DP-3 with respect to scalability, runtime, load balancing, energy consumption, and
power e�ciency. Let us remark here that Nonlinear-FETI-DP-3 is a good testing pro-
totype, since completely decoupled local nonlinear problems are solved in each outer
Newton step. Nonetheless, all introduced concepts can be carried over to di↵erent
nonlinear DD methods and, even more generally, to many other applications with a
severe load imbalance.

The remainder of the paper is organized as follows. In section 2, in order to provide
a self-contained paper, we give a detailed description of Newton-Krylov-FETI-DP and
Nonlinear-FETI-DP-3 with a focus on the local solves and the load imbalance in the
latter one. We describe the investigated model problems in section 3 and our approach
to save energy as well as corresponding measurements in section 4. In section 5 we
provide a model to interprete the measurements results from section 4.

2. An Introduction to Nonlinear FETI-DP Methods. In this section, we
briefly introduce the nonlinear FETI-DP (Finite Element Tearing and Interconnecting
- Dual Primal) framework (see [23,26] for a detailed description) and derive Nonlinear-
FETI-DP-3, the variant we use in this paper to represent nonlinear domain decom-
position methods. As already mentioned above, instead of solving (1) directly by
applying Newton’s method, in nonlinear FETI-DP methods (1) is replaced by the
equivalent formulation

(5) A(x) := ANL (M(ũ,�)) = 0,

which is then solved by a Newton-Krylov approach. Here, ANL is a nonlinear saddle
point formulation and M a nonlinear preconditioner, both derived by transferring
the ideas of the linear FETI-DP domain decomposition approach [9, 10, 27–30] to
the nonlinear problem (1). If constructed properly and M provides certain properties
(see [26]), this approach can reduce the time to solution. Additionally, the application
of M , which has to be performed in each Newton step, contains a lot of local work
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and is easily parallelizable. On the other hand, an application of M can introduce a
strong load imbalance; see subsections 2.3 and 2.4 for details.

Let us first summarize linear FETI-DP and introduce the classical Newton-Krylov-
FETI-DP method in subsection 2.1 before we proceed to describe the nonlinear variant
in subsection 2.3.

2.1. Newton-Krylov-FETI-DP. In general, we assume that (1) is obtained
by a finite element discretization of a partial di↵erential equation defined on a com-
putational domain ⌦ ⇢ Rd, d = 2, 3. We denote our finite element space, which
discretizes ⌦, by V h and can obviously rewrite (1) as

(6) bK(û) = f̂ , A(û) := bK(û)� f̂ = 0,

where bK : V h ! V h is nonlinear in û 2 V hV h and f̂ 2 V h is independent of
û; see also section 3 for an example considering a model problem. We replaced x
from (1) by û to match with the notation of nonlinear FETI-DP in the literature. In
Newton-Krylov-FETI-DP, (6) is solved using Newton’s method, i.e., by the iteration
û(k+1) = û(k) � �û(k) with some initial value û(0) and the updates defined by

(7) D bK(û(k)) �û(k) = bK(û(k))� f̂ .

Here, D bK(û(k)) is the Jacobian matrix of bK evaluated in û(k). Finally, in Newton-
Krylov-FETI-DP, a linear FETI-DP domain decomposition approach is chosen to
solve the linearized system (7), which occurs in each Newton step, iteratively. This
automatically classifies Newton-Krylov-FETI-DP as an inexact Newton method.

Let us briefly describe linear FETI-DP and introduce some necessary notation.
We assume to have a decomposition of ⌦ into N 2 N nonoverlapping subdomains
⌦i, i = 1, ..., N , i.e., ⌦ =

SN
i=1 ⌦i. Each ⌦i is the union of finite elements; see

also Figure 2 (left). The finite element subspaces associated with ⌦i, i = 1, ..., N ,
are denoted by Wi, i = 1, ..., N . We obtain local nonlinear finite element problems
Ki(ui) � fi = 0 with Ki : Wi ! Wi and fi 2 Wi by restricting the considered
di↵erential equation to ⌦i and discretizing its variational formulation using the finite
element spaces Wi; see also section 3 for an example using a model problem. The
local Jacobian matrices belonging to Ki(·) are denoted by DKi(·). With restrictions
Ri : V h ! Wi, i = 1, ..., N , RT :=

�
RT

1 , ..., R
T
N

�
, uT :=

�
uT
1 , ..., u

T
N

�
, K(u)T :=�

K1(u1)T , ...,KN (uN )T
�
, and DK(u) = diag (DK1(u1), ..., DKN (uN )), we have the

identities

(8) bK(û) = RTK(Rû)

and

(9) D bK(û) = RTDK(Rû)R.

The application of RT in (8) and (9) has thus the e↵ect of a finite element assembly

of local finite element functions on the interface � :=
⇣SN

i=1 @⌦i

⌘
\ @⌦; see Figure 2.

Let us assume, we have sorted and decomposed a solution u from the decoupled
spaceW = W1⇥...⇥Wn into interface variables u� and all remaining interior variables
uI , i.e., uT =

�
uT
I , u

T
�

�
. In FETI-DP, we further subdivide the degrees of freedoms on

the interface u� into primal variables u⇧ and dual variables u�. Let us remark that
all these variables are still local to the subdomains, e.g., we have uT

⇧ = (uT
1⇧ , ..., u

T
N⇧

).
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Here, ui⇧ , i = 1, ..., N is the vector of primal solutions on subdomain ⌦i, i, ..., N . We
now introduce another assembly operator RT

⇧, similar to RT , which assembles only in
the primal variables. We denote the corresponding primally assembled finite element
space with fW ; see Figure 3 (right) for an illustration of fW , where subdomain vertices

are chosen to be primal. Therefore, we have R⇧ : fW ! W and any ũ 2 fW has the
structure ũT =

�
uT
I , u

T
�, ũ

T
⇧

�
, where ũ⇧ is now a vector of global variables and will

constitute our global coarse problem or second level problem. We define the primally
coupled operators by

(10) eK(ũ) = RT
⇧K(R⇧ũ)

and

(11) D eK(ũ) = RT
⇧DK(R⇧ũ)R⇧.

Enforcing continuity in the dual variables is done by enforcing Bũ = 0, using a linear
jump operator B (see [27] for a detailed definition of B) and Lagrange multipliers.
We obtain the equation system

(12)

✓
D eK(ũ(k)) BT

B 0

◆✓
�ũ(k)

�

◆
=

✓ eK(ũ(k))� f̃
0

◆

which is equivalent to (7) and where � is the vector of the Lagrange multipliers.
Of coarse, several dual variables always belong to a common physical node on the
interface and deliver more than a single entry in ũ. Nevertheless, after solving (12),
continuity is guaranteed on the interface since Bũ = 0 is enforced and all the dual
variables belonging to the same physical node hold the same value. Therefore, the
solution �û(k) of (7) can be easily obtained from �ũ(k) using the restriction RD : V h !
W , which is a weighted variant of R and the weights are defined as the inverses of the
multiplicities of the dual variables. We then have �û(k) = RT

DR⇧�ũ(k).
By a block elimination in (12) we derive the system

(13) F (ũ(k))� = d(ũ(k))

with F (ũ(k)) = �B
⇣
D eK(ũ(k))

⌘�1
BT and d(ũ(k)) = �B

⇣
D eK(ũ(k))

⌘�1 ⇣ eK(ũ(k))� f̃
⌘
.

Finally, equation (13) is solved iteratively with a CG or GMRES approach using an
additional Dirichlet preconditioner M�1

D (ũ(k)). The Newton-update �ũ(k) is then ob-
tained by solving

(14) D eK(ũ(k)) �ũ(k) = eK(ũ(k))� f̃ �BT�.

The complete Newton-Krylov-FETI-DP algorithm is also presented in Figure 5 (left).

2.2. The parallel application of F and the Dirichlet preconditioner.

Solving (13) iteratively, the matrix F (ũ(k)) = �B
⇣
D eK(ũ(k))

⌘�1
BT has to be applied

to a vector in each iteration. This is indeed a parallelizable and highly scalable routine.
We therefore have to consider the structure of the matrix D eK in more details. We
omit the evaluation point ũ(k) here and in the following lines for a better readability.
Reordering inner and dual variables and introducing the index set B := [I,�] we can
write

(15) D eK =

0

BBB@

DK1BB D eKT
1⇧B

. . .
...

DKNBB D eKT
N⇧B

D eK1⇧B · · · D eKN⇧B D eK⇧⇧

1

CCCA
=:

 
DKBB D eKT

⇧B

D eK⇧B D eK⇧⇧

!
.
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Since DKBB is block diagonal and the blocks DKiBB , i = 1, ..., N , can be stored as
sequential matrices, e.g., one on each compute core, sequential sparse direct solves
can be used to handle applications of DK�1

BB to a vector in parallel. Additionally, to
perform an application of F (ũ(k)) to a vector, a sparse direct solver has to be used
to solve systems involving the coarse matrix D eS⇧⇧ := D eK⇧⇧�D eK⇧BDK�1

BBD
eKT
⇧B ,

which is a Schur-complement in the primal variables of (15). This problem is global
and becomes - with a rising size of the coarse space - a parallelization bottleneck.
This can be overcome by an inexact coarse solve [26, 28]. For more details on the
parallel implementation of an application of F (ũ(k)) and the block factorization of
D eK, see [26]. In this paper, the considered coarse problems are not too large and we
thus always use a sparse direct solver to factorize D eS⇧⇧. A visualization of DKBB

and the coarse space D eS⇧⇧ can be found in Figure 4 (left, middle).
For the construction of the Dirichlet preconditioner M�1

D we only consider the
restriction of the local matrices DKi, i = 1, ..., N to the inner variables I, i.e., the
matrices DKiII , i = 1, ..., N . A visual representation can again be found in Figure 4
(right). Sparse direct solvers can again be used locally to apply the inverse DK�1

iII
to

a vector. The preconditioner M�1
D is then a weighted sum of the DK�1

iII
, i = 1, ..., N .

The weights are usually derived from the coe�cient functions of the considered partial
di↵erential equation.

⌦1,W1 ⌦2,W2

⌦3,W3 ⌦4,W4

�

RT

R

⌦, V h

Fig. 2. Left: Decomposition of discretized domain ⌦ into four subdomains ⌦i, i = 1, ..., 4 and
corresponding finite element spaces Wi, i = 1, ..., 4. Right: Discretized domain ⌦, corresponding
finite element space V h, and interface �. The operator RT acts as a finite element assembly operator
on the interface.

2.3. Nonlinear-FETI-DP. In the nonlinear FETI-DP approach, we first re-
place the nonlinear equation (6) by a nonlinear saddle point formulation using ideas
and operators from linear FETI-DP. With the nonlinear system from (10), coupled in
the primal variables, and enforcing the linear jump constraint Bũ = 0 with Lagrange
multipliers, we obtain the nonlinear Lagrange function

(16) ANL(ũ,�) :=

✓ eK(ũ) +BT�� f̃
Bũ

◆
=

✓
0
0

◆
.
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W1 W2

W3 W4

RT
⇧

R⇧

fW

Fig. 3. Left: Decomposition of a discretized domain ⌦ into four subdomains ⌦i, i = 1, ..., 4 and
corresponding finite element spaces Wi, i = 1, ..., 4. Right: Visualization of the primally coupled /

assembled space fW . The subdomains are strongly coupled in the primal constraints (here vertices;
red dots; global variables; index ⇧) and still uncoupled in the dual variables (blue squares; local
variables; index �). All remaining variables are considered as inner variables (local variables; index
I). The operator RT

⇧ acts as a finite element assembly operator in the primal variables.

⌦1 ⌦2 · · ·

· · · ⌦16

Vertex / Coarse Nodes

DKBB

Dirichlet BC

DKII

Neumann BC

Fig. 4. Left: Domain Decomposition of a computational domain ⌦ into 16 subdomains ⌦i, i =
1, . . . , 16. Middle: Typical local Neumann problem DK�1

BB occuring on each subdomain (Neumann
Boundary Condition everywhere besides in the coarse nodes). Right: Typical local Dirichlet problem
DK�1

II occuring in the Dirichlet preconditioner M�1
D .

After applying a nonlinear right-preconditioner M : fW ⇥ V ! fW ⇥ V , with V :=
range(B), the preconditioned system (5), i.e.,

ANL(M(ũ,�)) = 0,

is solved by a Newton-Krylov method. We therefore obtain the solution by the itera-
tion

(17)


ũ(k+1)

�(k+1)

�
:=


ũ(k)

�(k)

�
� ↵(k)


�ũ(k)

��(k)

�
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with the update defined by the linearized system

(18)
⇣
DANL(M(ũ(k),�(k))) ·DM(ũ(k),�(k))

⌘ �ũ(k)

��(k)

�
= ANL(M(ũ(k),�(k))).

Di↵erent possible definitions of M are discussed in [26], which all base on a partial
nonlinear elimination of variables. It is shown in [26] that (18) can be solved using
any linear FETI-DP approach and thus the linear solve in Newton-Krylov-FETI-
DP and Nonlinear-FETI-DP only di↵ers by the right hand side. Nonetheless, the
preconditioner M has to be applied to (ũ(k),�) in each iteration, which can make a
huge di↵erence. In this paper, we concentrate on Nonlinear-FETI-DP-3 for simplicity,
which is defined by a specific choice of M .

2.4. Nonlinear-FETI-DP-3. Using the index set B := [I,�], we rewrite the
nonlinear problem (16) as

(19)

0

@
KB(uB , ũ⇧) +BT

B�� fB
eK⇧(uB , ũ⇧)� f̃⇧
BBuB

1

A =

0

@
0
0
0

1

A .

We now decide that the nonlinear preconditioner M is linear in ũ⇧ and � and should
eliminate the variables uB from (19). Therefore, we haveM(ũ,�)T := (MuB (uB , ũ,�)T , ũT

⇧,�
T )

and MuB (uB , ũ,�) solves the equation

(20) KB(MuB (uB , ũ,�), ũ⇧) +BT
B�� fB = 0

To evaluate the preconditioner, (20) has to be solved by Newton’s method. Due to
the completely decoupled block structure of KB , the solution of (20) collapses to
local Newton iterations, one on each subdomain. The di↵erent Newton iterations on
di↵erent subdomains are independent of each other. This process thus exclusively
consists of local work. The nonlinear problems act on the red area marked in Figure 4
(middle) and the linearized systems with the tangential matrices DKiBB , i = 1, ..., N ,
are solved again by sequential sparse direct solvers. Let us note that the local Newton
methods on the individual subdomains might need di↵erent numbers of iterations to
converge. This introduces the load imbalance mentioned above. With the simpler
notation

(21) KB(gB , ũ⇧) +BT
B�� fB = 0

and g = (gB , ũ⇧) we have (g,�) = M(ũ,�) and the evaluation of the preconditioner
can be found in the algorithmic description in Figure 5 (right).

Finally, solving the linear system (18) is equivalent to solving

(22)

✓
D eK(g(k)) BT

B 0

◆✓
�ũ(k)

��(k)

◆
=

✓
rhsNL

Bg(k)

◆

with

rhsNL :=

✓
0

eK⇧(g(k))� f̃⇧

◆
.

A proof can be found in [26]. Since the left hand sides in (22) and (12) have the
same structure, any linear FETI-DP method can be used. As already described for
Newton-Krylov-FETI-DP, we reduce the system to the Lagrange multipliers
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Init: ũ(0) 2 fW
Iterate over k:

If || bK(RT
DR⇧ũ

(k))� f̂ || small enough
break; /* Convergence of
Newton-Krylov-FETI-DP; small
absolute residual; */

Solve the linearized system by a
Krylov iteration as in a standard lin-
ear FETI-DP approach using precon-
ditioner M�1

D :
F (ũ(k))� = d(ũ(k))
Obtain �ũ(k) from � by solving (14).
Update: ũ(k+1) := ũ(k) � �ũ(k)

End Iteration

Init: ũ(0) 2 fW , �(0) 2 V
Iterate over k:

Compute:⇣
g(k),�(k)

⌘
:= M(ũ(k),�(k))

/* Often requires solution of local-
ized nonlinear problems; inner New-
ton loop */

If ||ANL(g
(k),�(k))|| small enough

break; /* Convergence of non-
linear FETI-DP; small absolute
residual; */

Solve the linearized system by a
Krylov iteration as in a standard lin-
ear FETI-DP approach using precon-
ditioner M�1

D :
F (g(k))��(k) = dNL(g

(k))
Obtain �ũ(k) from ��(k) by solving
(24).
Update: ũ(k+1) := ũ(k) � �ũ(k)

Update: �(k+1) := �(k) � ��u(k)

End Iteration

Fig. 5. Left: Newton-Krylov-FETI-DP. Right: Nonlinear-FETI-DP - the part of the code in
gray, the evaluation of M , collapses in Nonlinear-FETI-DP-3 into local Newton iterations and the
load can be imbalanced; see subsection 2.4.

(23) F (g(k))��(k) = dNL(g
(k))

with dNL(g(k)) = Bg(k)�B
⇣
D eK(g(k))

⌘�1
· rhsNL. Equation (23) is solved iteratively

with a CG or GMRES approach using a linear Dirichlet preconditioner M�1
D (g(k)) as

before. The Newton update �ũ(k) is obtained by solving

(24) D eK(g(k)) �ũ(k) = rhsNL �BT ��(k).

An overview of the algorithm can be found in Figure 5 (right).

3. Nonlinear Model Problems. We choose nonlinear partial di↵erential equa-
tions based on the p-Laplace operator with p � 2 as model problems. These problems
are excellent model problems for our purpose, since we can simply create large load
imbalances, e.g., by enforcing a linear behavior on certain subdomains by choosing
p = 2. We basically concentrate on two di↵erent setups - the first one has a single non-
linearity in a single subdomain and the second one exhibits a more equal distribution
of nonlinear e↵ects. Of course, the first one is designed to emphasize the potential to
save energy and the second one is closer to a real application. To describe both model
problems in detail, let us first define the scaled p-Laplace operator for p � 2 by

↵�pu := div(↵|ru|p�2ru).

Our nonlinear model problem is now defined as

(25)
�↵�pu� ��2u = b in ⌦

u = 0 on @⌦,
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where ↵,� : ⌦ ! R are coe�cient functions. By variation, applying Green’s formula,
and a discretization using the finite element space V h we obtain

(26)

Z

⌦
↵|ru|p�2ruTrv + �ruTrv dx =

Z

⌦
bv dx, 8v 2 V h.

A restriction to a subdomain ⌦i, i = 1, ..., N , and the corresponding finite element
space Wi yields

(27)

Z

⌦i

↵|rui|p�2ruT
i rvi + �ruT

i rvi dx =

Z

⌦i

bvi dx, 8vi 2 Wi.

Therefore, given a finite element basis { 1, . . . , n} of V h, the operators of the
global nonlinear problem (as described in (6)) for the given model problem are defined
by

bK(û) :=

✓Z

⌦
↵|rû|p�2 rûTr 1 + � rûTr 1 dx, ...,

Z

⌦
↵|rû|p�2rûTr n + �rûTr n dx

◆T(28)

and

f̂ :=

✓Z

⌦
b 1 dx, ...,

Z

⌦
b n dx

◆T

.

Restriction to a local finite element spaceWi, given a finite element basis {'1, . . . ,'Ni} ⇢
{ 1, . . . , n}, yields

Ki(ui) :=

✓Z

⌦i

↵|rui|p�2 ruT
i r'1 + � ruT

i r'1 dx , ...,

Z

⌦i

↵|rui|p�2ruT
i r'Ni + �ruT

i r'Ni dx

◆T(29)

and

fi :=

✓Z

⌦i

b'1 dx, ...,

Z

⌦i

b'Ni dx

◆T

.

For the entries of the tangential matrices DKi(ui), we obtain

(DKi(ui))j,k :=

Z

⌦i

↵|rui|p�2r'T
j r'k dx+

Z

⌦i

�r'T
j r'k dx

+(p� 2)

Z

⌦i

↵|rui|p�4 (ruT
i r'j) (ruT

i r'k) dx
(30)

by a direct computation.
For the first configuration with a single nonlinearity, we consider a single inclusion

of p-Laplace in a single subdomain and linear 2-Laplace in the remaining domain, i.e.,
↵ = 1 and � = 0 in the inclusion and ↵ = 0 and � = 1 in the remaining domain. For
the second configuration, where the nonlinearities are distributed equally, we have
an equivalent inclusion in each subdomain. In the following, we refer to the first
model problem as the problem with a single inclusion and to the second one as the
problem with inclusions or many inclusions. For a detailed visualization of ↵ and
� in both cases, see Figure 6. Let us remark that we discretize each subdomain into
800 ⇥ 800 pixel and each pixel into two triangular finite elements with linear basis
functions. The inclusions always measure 400⇥ 400 pixels, i.e., they fill a quarter of
a subdomain. We always use p = 4 throughout this paper.
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↵ = 1 and � = 0 (nonlinear p-Laplace) in the blue part

↵ = 0 and � = 1 (linear 2-Laplace) in the remaining part

Fig. 6. Left: Model problem single inclusion with a single quadratic inclusion of p-Laplace in
linear 2-Laplace; Right: Model problem many inclusions with quadratic inclusions of p-Laplace
in each subdomain.

4. Reducing the Energy Consumption of Nonlinear-FETI-DP.

4.1. Related Work and Contribution. Reducing energy consumption of HPC
applications has gained substantial attraction in the last decade. In the context of MPI
several algorithms and runtime systems have been proposed [15, 19, 20, 31–33, 40, 42],
which typically follow the same idea: processes exhibiting a high slack time, i. e., time
they are blocked with waiting for other processes or communicating, can be clocked
down to save energy. This approach is used in [43] for an energy optimized barrier.
Furthermore they propose a second optimization where the core waiting in the barrier
is shutdown for a certain amount of time. However, they give no details in how this
is established and how they obtain the energy measurements. A more fine grained
approach is presented in [7], where certain algorithms for barrier synchronization are
coupled with dynamic voltage and frequency scaling (DVFS) to save energy during
the idle time.

Basically, we combine the idea of shutting down the core in the barrier with
speeding up busy cores by accessing the power budget of the ”barrier core” to scale
up their frequencies. We propose a simple way to shut down cores entering barriers
which are known to have su�ciently long wait times. The corresponding energy gains
are measured for di↵erent nonlinear decomposition methods and the most important
contributors to power consumption are investigated.

4.2. Energy Reduction Approach. In the following, we divide the cores into
two classes. Cores, where the inner local Newton iteration, i.e., the evaluation of the
nonlinear preconditioner M , converges fast, we call speeder, whereas the cores which
must perform more inner Newton iterations we call laggers. All cores are synchronized
with a barrier. Speeder cores arrive early and must wait for the laggers to arrive. The
residence time of the speeders in the barrier is in the order of seconds for our nonlinear
DD method and is visualized in Figure 7 for Newton-Krylov-FETI-DP (top row) and
Nonlinear-FETI-DP-3 (bottom row). As expected, the load imbalance for Newton-
Krylov-FETI-DP is insignificant for both model problems and there is no potential
for a reduction of the energy consumption. In contrast, for Nonlinear-FETI-DP-3, the
load imbalance is present for both model problems. Considering a single inclusion,
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Fig. 7. Time (given in seconds) of each core/subdomain spent in an MPI Barrier. Example
with 20 cores and subdomains on a single node. Top left: Many inclusions problem; solved by
Newton-Krylov-FETI-DP. Top right: Single inclusion problem; solved by Newton-Krylov-FETI-
DP. Bottom left: Many inclusions problem; solved by Nonlinear-FETI-DP-3. Bottom right:
Single inclusion problem; solved by Nonlinear-FETI-DP-3.

there is, as expected, exactly one lagger; see Figure 7 (bottom right).
As already mentioned, dynamic load balancing is currently not feasible. However,

we can exploit the load imbalance to reduce the energy consumption of Nonlinear-
FETI-DP-3. Here the typical approach for MPI applications is to clock cores down
when they are either not in the critical path, i. e., their execution time does not a↵ect
the total runtime, or while they remain inside a barrier. This involves a runtime sys-
tem determining the critical path or programmatically adjusting a core’s frequency.
Both options are not practical as in most compute cluster production environments
adjusting frequencies dynamically for selected cores is not allowed by users. Alterna-
tively, one may rely on the Linux operating system which can adjust a core’s frequency
automatically depending on the load. To do so a CPU frequency governor must be
enabled. This governor is load driven and gracefully adjusts the frequency accord-
ingly. However, we found that cores executing a barrier remained at their highest
frequency and were not throttled by the governor. The implementation of the barrier
still puts enough pressure on the core to prevent the governor to reduce clock speed.

Instead of reducing a speeder’s core frequency, a more e↵ective strategy is to
leverage a core’s (deep) sleep states. The operating system (OS), e. g., uses these states
to save energy when cores are idle. This behavior can implicitly be triggered with
current Linux kernels and a corresponding core by calling specific functions like sleep,
usleep, or nanosleep. Being in that functions allows the OS to put the core into a
deep sleep as long as no other processes are scheduled on this core. These functions
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Listing 1
Non-blocking barrier with test/sleep loop as replacement for MPI Barrier.

1 int flag;

2 MPI Request r;

3

4 MPI Ibarrier(comm, &r);

5

6 MPI Test(r, &flag, MPI STATUS IGNORE);

7

8 while (!flag) {
9 usleep(sleep duration);

10 MPI Test(r, &flag, MPI STATUS IGNORE);

11 }

(we choose usleep) can be combined with a non-blocking MPI barrier (MPI Ibarrier)
as shown in Listing 1 to retain the functionality of the standard barrier (MPI Barrier)
and forcing the core into a sleep state. This method also works in situations where the
clock frequency of the cores is fixed since DVFS and C-states are orthogonal concepts.

The correct choice of the duration for the sleep (sleep duration) is crucial for
several reasons. If the MPI implementation does not rely on progress threads, progress
only occurs when an MPI function is called. This is also the case for a barrier, when
communication must be performed. With a large sleep duration this can delay the
total execution time a core spends inside the barrier and increase the global cost of
the barrier. On the other hand if the sleep duration is too small, deep sleep states
are not entered. Entering a deep sleep state comes with a certain overhead which is
increased the deeper a sleep state is. If the assumed overhead is larger than the sleep
duration the desired sleep state is not used. For Nonlinear-FETI-DP-3, our chosen
subdomain size, and our model problems we found that 10ms as sleep duration are
short enough to not extend the waiting time in the barrier and long enough to still
enter the deepest sleep state. With shorter sleep times, e.g., 5ms, the deepest sleep
state was no longer used exclusively. Note that this behavior might depend on several
factors like the application, the application’s communication pattern, the job size, the
underlying MPI library, the OS, and the processor used.

An important side e↵ect of sleeping cores is that laggers on the same chip have
access to a higher fraction of the shared power budget of the chip. If DVFS is enabled
they can increase clock speed and reduce their runtime. The more speeders are in
deep sleep states, the higher laggers can be clocked and can potentially finish earlier.

4.3. Implementation Remarks and Testbed. All methods are implemented
in PETSc [1, 2] based on our nonlinear DD software [24] and using the same basic
building blocks. Therefore, the timings and scaling results are comparable. We used
PETSc version 3.6.4 and MKL-Pardiso from the MKL (Math Kernel Library) for
all sparse direct solves. We refer to [26] for a detailed description of our FETI-DP
implementation.

We perform our experiments on the Linux-based Meggie cluster of the RRZE in
Erlangen, Germany. All nodes are connected via Intel’s high speed 100 GBit Omni-
Path network. One compute node consists of two Intel Xeon E5-2630 v4 processors
with ten cores each operating at a base frequency of 2.2GHz. See Table 1 for further
details on the compute node. Each processor has a thermal design power (TDP) of
85W maximum [18]. However, the processor supports several features adjusting its
power consumption which are briefly described in the following paragraphs.
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Processor name Intel Xeon
E5-2630 v4

Microarchitecture Broadwell
TDP [W] 85
Frequency
Min [GHz] 1.2
Base [GHz] 2.2
Cores 10
ISA AVX2
Sockets 2
L1 cache [KiB] 32
L2 cache [KiB] 256
L3 cache [MiB] 25

Table 1
Specifications of a Meggie compute node.

Active cores 1 2 3 4 5 6 7 8 9 10
Maximum Turbo frequency 3.1 3.1 2.9 2.8 2.7 2.6 2.5 2.4 2.4 2.4

Table 2
Maximum turbo frequency in GHz depending on the number of active cores for the Intel Xeon

E5-2630 v4 processor according to [18]. Reported frequencies specify an upper limit and can be lower
depending on e. g., current power consumption or temperature.

The processor supports DVFS which allows for dynamically adjusting each cores
frequency individually. A core’s frequency can be as low as 1.2GHz.

Furthermore, Intel’s Turbo Boost is supported and enabled. This technique allows
for dynamically overclocking a core as long as the chip stays inside its power envelope
and does not exceed certain thermal constraints. The maximum clock speed depends
on several factors like the temperature of the processor, the current workload, and
the number of active cores.

Table 2 lists the maximum Turbo Boost frequencies depending on the number of
active cores [18]. Note that these frequencies specify only an upper limit and might
be lower because of the previously named reasons.

A core executing AVX workloads, precisely executing 256 bit AVX instructions,
gets its frequency dynamically reduced to the so called AVX frequency. If, for a certain
amount of time, no AVX 256 bit instruction was encountered the core’s frequency is
raised back again to the non-AVX frequency. For the processor model used, it seems
that Intel does not provide detailed information about the AVX frequencies. Only [37]
lists 1.8GHz as the base AVX frequency and 3.1GHz as the highest AVX Turbo Boost
frequency.

For advanced energy saving, each core supports (deep) sleep states, also known as
C-states. A state higher than the normal operating state C0 denotes a core as inactive
and thus requires less power. The power consumption decreases with increase in the
sleep state level. The processor used supports four states namely C1, C1E, C3, and
C6, where the last one denotes the deepest one.

The cluster runs CentOS with Linux kernel 3.10-862. The CPU frequency gover-
nor which adapts the clock frequencies is in ”conservative mode” on all Meggie nodes.
The Intel C/C++ compiler “17.0 update 1” and the Intel MPI library version “2017
update 1” was used. We used the likwid tool suite [41] to measure performance, power
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many inclusions single inclusion

NK NL, b NL, b-ts � � NK NL, b NL, b-ts � �
energy [kJ] 57 44 41 7% 28% 47 29 22 24% 53%
power [W] 136 126 120 5% 12% 136 114 94 18% 31%
runtime [s] 419 348 340 2% 19% 347 251 232 8% 33%

Table 3
Energy to solution, power consumption and runtime of Newton-Krylov-FETI-DP (NK) and

Nonlinear-FETI-DP-3 (NL) for the many inclusions and the single inclusion problem on one Meggie
compute node with standard MPI Barrier “b” and the non-blocking barrier with test/sleep loop “b-
ts”. The � column shows the improvement of the test/sleep loop over the original barrier and the �
column the improvement over classical Newton-Krylov-FETI-DP.

and clock speeds. To determine power and energy consumption likwid uses the Intel
running average power limit (RAPL) interface which delivers data of high quality [13].
All energy numbers and power consumption measurements include the contributions
of the processor chip(s) and the main memory. No other devices are monitored (e.g.
power supply or networks).

4.4. Single Node Measurements. Measurements of Newton-Krylov-FETI-
DP and Nonlinear-FETI-DP-3 with the standard MPI Barrier “b” and its replace-
ment by a non-blocking barrier with a test/sleep loop “b-ts” for the two model prob-
lems are shown in Table 3 for 20 processes on a single Meggie node. Reported energy
and power numbers account for the two processors and the memory. As expected,
Nonlinear-FETI-DP-3 has a shorter runtime and a lower energy consumption than
Newton-Krylov-FETI-DP for both problems. For the many inclusions scenario
with a moderate load imbalance the two barrier implementations have nearly no im-
pact on the runtime of Nonlinear-FETI-DP-3, but for “b-ts” the energy consumption
is reduced by 7%. Let us also remark that the Nonlinear-FETI-DP-3 implementation
with the standard barrier already reduces the consumed energy compared to Newton-
Krylov-FETI-DP. This is a combined result of shorter runtime and lower power con-
sumption (see Table 3). Though waiting in the standard barrier (MPI Barrier), a
speeder requires less power than a lagger doing computations (see also discussion
in section 5 for power consumption analysis of these operations). The more pro-
nounced load imbalance of the single inclusion case strongly enhances these e↵ects:
Energy savings of up to 53% and a runtime reduction of 33% compared with Newton-
Krylov-FETI-DP are measured. Replacing the barrier by the test/sleep barrier re-
duces the runtime of Nonlinear-FETI-DP-3 by 8%.

For a more detailed analysis of Nonlinear-FETI-DP-3, we performed time-resolved
measurements. While executing the code, we measure the average core frequency
using likwid [41] (averaging interval is 1 second) and we determine the fraction of
time spent in the deepest sleep state C6 in each interval (using the cpu idle driver).
Figure 8 shows the time-resolved plot for both model problems on a full node of
Meggie using 20 cores. Whenever no core is in C6 state (lower panels in Figure 8), all
cores achieve the maximum turbo frequency of 2.4 GHz for fully loaded sockets (see
upper panel in Figure 8). However, if speeders are entering sleep states they make
room for overclocking of the laggers. If some cores’ frequencies go down to 1.2GHz
and their fraction of time spent in C6 state is close to 100%, the remaining cores get
a boost in clock speed. A nice side e↵ect of the measurements presented in Figure 8
is that one can read out the structure of a typical application of a nonlinear domain
decomposition method: An inner iteration, where - one after another - the cores run



16 A. KLAWONN, M. LANSER, O. RHEINBACH, G. WELLEIN, M. WITTMANN

0 50 100 150 200 250 300

0.0

1.0

2.0

3.0

fr
eq

u
en

cy
 [

G
H

z]

0 50 100 150 200 250 300
run time [s]

0

50

100

in
 C

6
 s

ta
te

 [
%

]

3.1 GHz

2.2 GHz

(a) many inclusions

0 50 100 150 200

0.0

1.0

2.0

3.0

fr
eq

u
en

cy
 [

G
H

z]

0 50 100 150 200
run time [s]

0

50

100

in
 C

6
 s

ta
te

 [
%

]

2.2 GHz

3.1 GHz

(b) single inclusion

Fig. 8. Time-resolved execution of the Nonlinear-FETI-DP-3 algorithm with the test/sleep
barrier for the many inclusions (a) and the single inclusion problem (b) for each of the 20 cores of a
Meggie (di↵erent colors) compute node. Top row: average frequency during measurement intervals
of 1 second; Bottom row: fraction of the 1 second time interval spent in the deepest sleep state
C6.

into some synchronization point followed by a linear solve, where all cores participate
with similar e↵ort. For example, for the many inclusions case, four outer Newton
iterations and linear solves are executed. It is also typical that, with convergence of
the outer loop, the inner iterations need fewer steps, since the initial values get closer
to the solutions.

Depending on how many cores are already sleeping, i.e., how many cores have
finished the inner loop, the processor core frequency is raised to around 3.0GHz
according to the graphs. Even in the case of only a single inclusion in Figure 8b, where
only one lagger is present, it seems that the possible 3.1GHz Turbo Boost frequency
is not reached exactly. Several reasons may account for that slight deviation, e.g. the
finite length of the averaging interval and the frequent wake ups of the speeders to
check for barrier progress.

The measurements in Figure 8 indicate a frequency of 1.2GHz for cores spending
nearly their complete fraction of the 1 second averaging intervals in a deep sleep
state. During that time cores are e↵ectively halted and they reduce clock speed down
to (almost) zero. The reported value is an artifact of the finite averaging interval
being much longer than the sleep states (10 ms). In such scenario likwid reports the
clock speed of the core when it wakes up for barrier testing which is done at the lowest
possible frequency of 1.2GHz.

4.5. Multi Node Measurements. For multi node measurements, we employ
weak scaling by doubling the number of subdomains in each spatial dimension. Note
that the problem with the single inclusion keeps only a single inclusion in a single
subdomain. Figure 9 shows the total energy consumption and runtime of Newton-
Krylov-FETI-DP and Nonlinear-FETI-DP-3 whereas Figure 10 shows the average
power per core. As already observed for the single node measurements, Nonlinear-
FETI-DP-3 outperforms Newton-Krylov-FETI-DP in terms of time to solution and
total energy consumption. Additionally, the weak scaling behavior is superior, not
only considering the runtime but also with respect to the power per core; see Figure 10.
Of course, the weak scalability is not perfect and the time to solution is slightly
increasing. This is a numerical e↵ect and caused by slightly growing numbers of
inner iterations. Also the size of the global coarse problem grows proportional to the
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Fig. 9. Total energy consumption (top panels) and runtime (bottom panels) of Newton-Krylov-
FETI-DP and Nonlinear-FETI-DP-3 for both model problems - many inclusions (left) and single
inclusion (right) - on the Meggie cluster. “NK” is the traditional Newton-Krylov-FETI-DP method
where all cores are active at all times. “NL, b” is the Nonlinear-FETI-DP-3 method with standard
MPI barriers. “NL, b-ts” is the new implementation making use of test/sleep barriers to save energy
and increase the thermal budget of other cores of the same processor.

number of subdomains, which is a well known bottleneck of the method; see section 2.
Let us note that the power per core is even decreasing during the weak scal-

ing study as with increasing core counts barrier time increases. This characteristic
increase of barrier time in overall runtime emphasizes the need for power e�cient
barriers in large scale computations. Thus, in our study, the e↵ect of the test/sleep
barrier is more significant on 256 nodes than on a single node. Here, the energy per
core is reduced by 23% for the many inclusions case and even 37% for the single
inclusion example. The runtime for Nonlinear-FETI-DP-3 using the test/sleep bar-
rier is also reduced by 6% for the single inclusion problem, since the governor has
the opportunity to overclock the single lagger. Let us finally remark that Nonlinear-
FETI-DP-3 using a test/sleep barrier can save up to 77% of energy on 256 nodes
compared to Newton-Krylov-FETI-DP (see Figure 9).

4.6. Other Solvers. To illustrate that the concepts introduced here can be
carried over to other approaches besides Nonlinear-FETI-DP-3, we briefly present
some single node measurements for ASPIN (Additive Schwarz Preconditioned Inexact
Newton) [4]. We therefore use the ASPIN implementation available in PETSc [1, 2]
and the p-Laplace example provided by PETSc as ex15.c; see [3, Section 6.5] for
details. Let us remark that in ex15 finite di↵erences are used instead of finite elements.
Written in our notation from section 3, we have � = " and ↵ = 1 on the whole domain.
In contrast to [3], we use p = 4 and an overlap of ten finite elements.

For a detailed description of ASPIN, we refer to [4]. Let us just remark that AS-
PIN is a nonlinearly left-preconditioned method and that the nonlinear preconditioner
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Fig. 10. Average power consumption per core of Newton-Krylov-FETI-DP and Nonlinear-
FETI-DP-3 for two model problems - many inclusions (left) and single inclusion (right) - on
the Meggie cluster.

Fig. 11. Trace of ASPIN obtained with Intel Trace Analyzer on one Meggie node. Blue bars
denote time spend in application, whereas red bars denote time spend in MPI; here predominantly
MPI Waitany.

reduces to independent nonlinear Dirichlet problems on overlapping subdomains.
The ASPIN solver exhibits a load imbalance as shown in Figure 11 when evaluat-

ing the nonlinear preconditioner. In contrast to our FETI-DP implementation, where
the time was spent in barriers, here the imbalance is visible through long waiting
times in MPI Waitany (red bars in Figure 11). We applied the same scheme as for
FETI-DP, but instead of replacing the barrier by a test/sleep loop we did this for
MPI Waitany. Furthermore, we employ the PMPI interface to transparently replace
calls to MPI Waitany by the test/sleep loop.

The energy consumption and runtime for the wait and test/sleep cases are re-
ported in Table 4. As for Nonlinear-FETI-DP-3, test/sleep reduces the energy con-
sumption by 14% and has no negative impact on the performance.

5. Analysis of basic power contributions. In a final, step we make sense
of the power measurements presented in Figure 10 by low level benchmarking and
simplistic power modeling. We choose the single inclusion scenario in the limit of
large processor counts to identify the relevant power contributions. For the Nonlinear-
FETI-DP-3 method this is the extreme case where only one processor is computing
throughout while the remaining ones execute the standard barrier or its test/sleep
replacement most of the time. Thus, overall power consumption will be determined
by executing the standard barrier or the baseline power of the processors being in
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wa wa-ts �
energy [kJ] 16 14 -14%
runtime [s] 136 134 -1%

Table 4
Energy consumption and runtime of ASPIN for PETSc example ex15.c on one Meggie compute

node with MPI Waitany “wa” and the test/sleep loop “wa-ts”.

sleep state. For the Newton-Krylov-FETI-DP method time to solution and power
consumption will be mostly governed by computation and it can serve as a reference
for the power contributions of computations of all methods considered in this paper.
To separate these e↵ects we first run several benchmarks on full sockets (10 cores) and
report their power consumption and power variation across 500 sockets in Figure 12:

• barrier: An artificial micro-application where 10 cores on the first socket are
waiting inside an MPI Barrier for the 1st core on the second socket, which
is sleeping for several seconds. Power drawn by the first socket is measured
only.

• NK: A Newton-Krylov-FETI-DP solver used to solve the problem withmany
inclusions. This represents a typical instruction mix for an inexact Newton
method using a DD approach as linear solver.

In addition we provide measurements for dense matrix matrix multiplication (us-
ing DGEMM from Intel mkl) which is considered to be an upper limit for application
power consumption. Note, it is not su�cient to measure a single chip as there can be a
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Fig. 12. Distribution of power consumption of processors and their associated memory from
the Meggie cluster under di↵erent workloads: DGEMM, Newton-Krylov (NK), and barrier. Note
the di↵erent scaling on the x axis.

substantial power variation between di↵erent chips of the same processor type running
at the same clock speed [17, 39]. Accordingly, for all benchmarks we find substantial
power fluctuations across the processor chips in our compute cluster (see Figure 12).
The di↵erent power levels drawn by these three corner cases directly relate to their
hardware utilization as confirmed by likwid measurements for typical hardware uti-
lization metrics such as instruction throughput (IPC) and cache/memory bandwidths.
The barrier benchmark (IPC ⇡ 0.4 inst./cycle⇤; memory bandwidth < 100 MB/s)
and DGEMM (IPC ⇡ 3.3 inst./cycle; cache bandwidths > 50 GB/s) represent the

⇤This value is still twice as large as the IPC for STREAM benchmark explaining why the governor
does not clock down cores as discussed in subsection 4.2
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Fig. 13. Fitted values of base Pbase and core Pcore power from single socket measurements on
the Meggie cluster for the problem with many inclusions (left) and a single inclusion (right)
solved with the Newton-Krylov-FETI-DP solver. All values are showing the median.

extreme cases of hardware utilization and power consumption. The NK benchmark
is in between drawing a memory bandwidth of approximately 31 GB/s and executing
1.5 instructions per cycle. Extracting the average power per core from Figure 12 and
comparing with Figure 10 we find very good agreement between the NK benchmark
(approx. 7 Watt/core) and the Newton-Krylov-FETI-DP solver as well as between
the barrier benchmark (approx. 4.5-5 Watt/core) and the Nonlinear-FETI-DP-3
with a standard barrier from MPI. This is clear indication that power consumption of
Nonlinear-FETI-DP-3 with prominent load imbalances can be substantially impacted
by the MPI barrier.

In a final step we attempt to understand the power level of Nonlinear-FETI-DP-3
with our test/sleep barrier implementation (approx. 3.6 Watt/core; single inclusion
in Figure 10). We expect that this barrier implementation should have marginal power
contributions as the idle cores are in a deep sleep state. Here, the baseline power of
the chip Pbase should be the dominating factor. At constant clock speed, the total
power consumption Pt of a processor chip with c active cores can be approximated by

(31) Pt(c) = Pbase + cPcore,

where Pcore is the power required to activate an additional core (see e.g. [14]). The
unknown values of Pcore and Pbase can be determined by fitting Equation (31) to
power measurements on single sockets when running the Newton-Krylov-FETI-DP
solver with varying the numbers of cores from 1 to 10, i.e. c=1,...,10. Doing these
experiments on 500 chips of our Meggie cluster for single and many inclusions bench-
mark we find Pbase ⇡ 31 Watt for a full socket (see Figure 13). This is in good
agreement with the measured value of 3.6 Watt per core in Figure 10 for the single
inclusion benchmark at 5 120 cores. Note, the Pbase value estimated above is a lower
limit for any application running on the system, i.e. 3.1 Watt per core is a lower limit
in Figure 10. Executing a barrier (Newton-Krylov-FETI-DP) adds approximately
50% (120%) of dynamic power on top of that (cf. Figure 12).

Our results clearly substantiate the potential high impact of standard barrier
implementations on power consumption of applications inhibiting load imbalances. As
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future architectures are expected to be more dynamic in terms of power consumption
including lower baseline powers, the need for power e�cient implementations of solvers
and barriers will increase accordingly.

6. Conclusion. We have shown that nonlinear DD methods can not only reduce
the energy consumption compared to standard Newton-Krylov-DD approaches by a
reduction of time to solution, but also benefit from a better power e�ciency. This
e↵ect can be even increased by using a nonblocking barrier and actively setting cores in
sleep mode. For the example of Nonlinear-FETI-DP-3 and di↵erent model problems,
energy savings up to 77% can be reached without a↵ecting the runtime. The concepts
introduced in this paper can be easily carried over to many nonlinear DD approaches,
as, e.g., ASPIN or nonlinear BDDC, and can be combined with approaches to reduce
the load imbalance.
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