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“The only way to find out what will happen when a complex system is disturbed is to disturb 

the system, not merely to observe it passively" 
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ZUSAMMENFASSUNG 
 

Mitochondrien sind intrazelluläre Organellen, die verschiedene essenzielle Funktionen haben 

wie die Produktion des Hauptanteils zellulärer Energie in Form von Adenosintriphosphat (ATP) 

durch die oxidative Phosphorylierung (OXPHOS). Mitochondriale Fehlfunktionen treten bei 

schweren metabolischen Erberkrankungen mit breitem klinischen Spektrum auf, sowie in 

verschiedenen altersbedingten Erkrankungen, und wurden außerdem mit dem Altersprozess 

assoziiert. Die mitochondriale Biogenese hängt von der Exprimierung zweier zellulärer 

Genome ab. Während das mitochondriale Genom (mtDNA) für ein paar wenige essentielle 

Untereinheiten des OXPHOS Systems, sowie für Transfer- und Ribosomalen-RNAs die zur 

Translation dieser Untereinheiten in den Mitochondrien notwendig sind, kodiert, ist der Großteil 

der mitochondrialen Proteine nuklear kodiert (nDNA). Die Mechanismen, die die Expression 

der mtDNA regulieren, sind größtenteils unbekannt, und wie Störungen dieser Prozesse zu 

einem pathogenen Erscheinungsbild führen, ist nur unzureichend verstanden.  

 

Das erste Ziel dieser Doktorarbeit war es zu untersuchen welche in vivo Rolle die 

mitochondriale RNA Polymerase (POLRMT) in der Regulation der Exprimierung der mtDNA 

spielt. Um die Funktion von POLRMT und Spleißvarianten des Polrmt Gens in Säugern zu 

analysieren, haben wir transgene Mausmodelle mit verschiedenen Gendosierungen von 

Polrmt hergestellt und charakterisiert. Zu diesen Polrmt Modellen zählten ein homozygoter 

Ganzkörperknockout sowie ein gewebespezifischer Knockout in Herz- und Skelettmuskel, ein 

heterozygoter Knockout, und einen überexprimierenden Mausstamm. Unsere Studien 

ergeben, dass Polrmt nur für ein mitochondriales Protein, POLRMT, kodiert, und dass keine 

andere RNA Polymerase seine Funktion ersetzen kann. Wir zeigen dass POLRMT zwei 

essenzielle Rollen in Säuger-Mitochondrien hat, i) sie ist die einzige RNA Polymerase die die 

mtDNA transkribiert, und ii) sie synthetisiert die für die Replikation der mtDNA essentiellen 

RNA Primer. Desweiteren deuten unsere Daten darauf hin, dass POLRMT Teil eines 

Prozesses ist, der durch einen promoterspezifischen Transkriptionsstart den Wechsel 

zwischen mtDNA Replikation und Transkription koordiniert. Abschließend zeigen wir, dass 

POLRMT der limitierende Faktor für den Transkriptionsstart ist, und dass POLRMT regelmäßig 

zum Transkriptionsstart an die Promotoren bindet, wohingegen die Synthese von fast 

genomlanger mitochondrialer RNA (mt-RNA) auf der Ebene der Elongation reguliert ist. 

  

Das zweite Ziel dieser Dissertation war es die zellulären Konsequenzen defekter Gen-

Expression der mtDNA und fortschreitender OXPHOS Fehlfunktion zu erforschen. In einer 

systematischen Studie haben wir das mitochondriale Proteom (Mitoproteom) und das 

komplette zelluläre Transkriptom vom Herz von fünf Knockout Mausstämmen von denen jeder 
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defekt für einen essenziellen Faktor für die Regulation der mtDNA Gen-Expression ist, 

miteinander verglichen. Desweiteren haben wir Veränderungen des Mitoproteoms während 

der postnatalen Entwicklung des Mausherzens untersucht und Unterschiede im Mitoproteom 

in einem Mausstamm mit fortschreitender OXPHOS Fehlfunktion verfolgt. 

Überraschenderweise haben wir entdeckt, dass eine Minderung des intra-mitochondrialen 

Coenzym Q (Q) Biosynthesestoffwechsels mit fortschreitender OXPHOS Fehlfunktion einher 

geht.  Weiter haben wir gefunden, dass die zelluläre Stressreaktion sehr früh während der 

fortschreitender OXPHOS Fehlfunktion aktiviert wird, wahrscheinlich durch die 

Transkriptionsfaktoren myc Protoonkogen Protein (MYC) und zyklischer AMP-abhängiger 

Transkriptionsfaktor ATF4 (ATF4). Diese zelluläre Antwort umfasst eine Erhöhung der Enzyme 

des mitochondrialen Kohlenstoffkreislaufes (1C), der Prolinsynthese und der mitochondrialen 

Proteasen und Chaperone.  

 

Schlussfolgernd lässt sich sagen, dass die hier präsentierte Arbeit fundamentale 

Mechanismen der Regulation der mtDNA Gen-Exprimierung in vivo identifiziert hat, und 

primäre und sekundäre Konsequenzen defekter Expression der mtDNA genau festlegt. Diese 

Arbeit ist nicht nur von außerordentlich wichtiger Bedeutung für unser Verständnis der 

Funktion dieses essentiellen Organells, sondern hat außerdem neue Mechanismen, die in 

mitochondrialen Krankheitsbildern eine Rolle spielen, identifiziert, was für die Diagnose von 

Patienten und zukünftigen Behandlungsstrategien bedeutend ist. 
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ABSTRACT 
 

Mitochondria are intracellular organelles that fulfil multiple essential functions, including the 

generation of the vast majority of the cellular energy currency adenosine triphosphate (ATP) 

via the oxidative phosphorylation (OXPHOS) system. Mitochondrial dysfunction is found in 

severe inherited metabolic disorders with a broad clinical spectrum, in several common age-

related diseases, and has been associated with the ageing process itself. Mitochondrial 

biogenesis depends on the expression of two cellular genomes. While the mitochondrial 

genome (mtDNA) encodes a few essential subunits of the OXPHOS system and the transfer 

and ribosomal RNAs required to translate these subunits in mitochondria, most mitochondrial 

proteins are encoded in the nuclear genome (nDNA). The mechanisms regulating the 

expression of mtDNA are still largely unknown and how disrupting this process leads to 

pathogenic phenotypes is poorly understood.  

 

The first aim of this thesis was to elucidate the in vivo function of the mitochondrial RNA 

polymerase (POLRMT) in the regulation mtDNA gene expression. We generated and 

characterized transgenic mouse models with varying gene dosage of Polrmt to investigate the 

role of POLRMT and the splice variants of the Polrmt gene in mammals. These Polrmt models 

included a whole-body knockout, a heart and skeletal muscle knockout, a heterozygous 

knockout, and an overexpressing mouse strain. Our findings reveal that Polrmt only codes for 

a mitochondrial isoform, POLRMT, and that no other RNA polymerase can replace its function. 

We show that POLRMT has two essential roles in mammalian mitochondria, i) it is the only 

RNA polymerase transcribing mtDNA, and ii) it synthesizes the RNA primers required for 

mtDNA replication. Moreover, our data suggests that POLRMT is part of a mechanism 

involving promoter-specific transcription initiation that coordinates the switch between mtDNA 

replication and transcription. Finally, we show that POLRMT is the limiting factor for 

transcription initiation and that it is frequently loading at the promoters to initiate transcription, 

whereas productive near-genome length mitochondrial RNA (mt-RNA) synthesis is regulated 

at the elongation level.  

 

The second aim of this thesis was to investigate the cellular consequences of disrupting 

mtDNA gene expression and the progression of OXPHOS deficiency. We performed a 

systematic comparison of the mitoproteome and total cellular transcriptome from heart of five 

knockout mouse models, each deficient in an essential factor acting at a specific level of gene 

expression regulation. We also studied the mitoproteome changes during normal post-natal 

development in mouse heart and followed proteome changes in a model with progressive 

OXPHOS deficiency in the heart. Surprisingly, we found a decline in the intra-mitochondrial Q 
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biosynthesis pathway that correlates with the progressive OXPHOS deficiency. Furthermore, 

we found that cellular stress responses, likely mediated by the myc proto-oncogene protein 

(MYC) and the cyclic AMP-dependent transcription factor ATF4 (ATF4) transcription factors, 

are activated very early in the progression of OXPHOS deficiency. These cellular responses 

include the upregulation of enzymes of the mitochondrial one-carbon (1C) pathway, proline 

synthesis, and mitochondrial proteases and chaperones.  

 

In conclusion, the work presented in this thesis has identified fundamental mechanisms 

of regulation of mtDNA gene expression in vivo and pinpointed primary and secondary 

consequences of impaired expression of mtDNA. This work has not only important implications 

for our understanding of the function of this essential organelle but it has also identified novel 

mechanisms involved in mitochondrial pathology that can be relevant for patient diagnosis and 

future treatment strategies.  
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1. INTRODUCTION 
 
1.1. Mitochondrial origin  
 
According to the endosymbiotic theory, mitochondria are derived from a proteobacterium that 

was engulfed by an archaeon more than 1.45 billion years ago (Martin & Mentel 2010). This 

fusion event created the eukaryotic cell. The genome of the engulfed proteobacterium was 

drastically reduced and the proteobacterium became an integrated organelle – the 

mitochondrion – that provided the energetic capacity to evolve and express the complex 

genomes giving rise to the different eukaryotic groups (Lane & Martin 2010). Thus, all 

eukaryotic organisms studied to date contain an organelle of mitochondrial origin or have 

secondarily lost this organelle during evolution (Karnkowska et al. 2016). Although it is widely 

accepted that the precursor of mitochondria had the capacity to convert energy from different 

sources into ATP (Zimorski et al. 2014), the precise characteristics of mitochondria in the last 

eukaryotic common ancestor are still a matter of debate. However, several events for the 

establishment of an integrated organelle must have already occurred: (1) a substantial 

reduction of the bacterial genome either by gene transfer to the nucleus or loss of redundant 

and unnecessary genes, (2) the establishment of substrate transport and protein import 

systems that allowed the biogenesis of the organelle and integration of metabolic reactions 

with the host organism, and (3) the development of mechanisms for mitochondrial segregation 

during cell division (Roger et al. 2017). Mitochondria often have diversified functions in different 

eukaryotic cell types and organisms. Mitochondria and related organelles derived from the 

mitochondrial ancestor have been classified into five types based on their energy metabolism: 

aerobic mitochondria, anaerobic mitochondria, hydrogen producing mitochondria, mitosomes, 

and hydrogenosomes (Müller et al. 2012). Despite the drastic differences in terms of function 

and composition between these different mitochondrion-related organelles, they all conserve 

mitochondrial marker proteins like the ones required for iron sulphur (FeS) cluster biosynthesis 

(Tovar et al. 2003) and some components of the protein import machinery that can be traced 

back to their ancestral origin (Zimorski et al. 2014). As a remnant from their endosymbiotic 

origin, mitochondria are surrounded by a double membrane and, remarkably, all aerobic 

mitochondria have retained a small mtDNA (Stewart & Larsson 2014).  
 
1.2. Mitochondrial functions in mammals 
 
Mitochondria fulfil several functions that are essential for the eukaryotic cell. Mammals contain 

aerobic mitochondria that harvest electrons from carbon sources and uses the released energy 

to pump protons necessary for driving ATP synthesis via the OXPHOS system (Nelson & Cox 

2009). The mammalian OXPHOS system comprises five multiprotein complexes (I-V) localized 

in the inner mitochondrial membrane (IMM) (Figure 1.1). Complexes I (reduced nicotinamide 

adenine dinucleotide (NADH):ubiquinone oxidoreductase), III (ubiquinol-cytochrome c 
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oxidoreductase), and IV (cytochrome c oxidase) catalyse electron transfer from NADH to 

oxygen and translocate protons to the intermembrane space. The difference in proton 

concentration between the mitochondrial matrix (MM) and the intermembrane space (IMS) 

provides the proton-motive force that is harvested by complex V (F1F0-ATP synthase) to 

convert adenosine diphosphate (ADP) into ATP. Electrons from complex I are transferred to 

complex III by ubiquinone (coenzyme Q; Q) and from complex III to IV by cytochrome c 

(Milenkovic et al. 2017). NADH is regenerated during oxidoreduction (redox) reactions and one 

of the main sources is the tricarboxylic acid (TCA) cycle where reduction of NAD+ is coupled 

to the oxidation of carbon sources to carbon dioxide (Nelson & Cox 2009). The enzymes of the 

TCA cycle are localized in the MM except for the succinate dehydrogenase or OXPHOS 

complex II that is partly embedded in the IMM and transfers electrons from reduced flavin 

adenine dinucleotide (FADH2) to the electron carrier Q (Mourier & Larsson 2011). 

 
Figure 1.1 | Mitochondrial 
compartments and OXPHOS 
system 
A) Scheme of mitochondrial 
compartments, OXPHOS 
complexes, and mtDNA. (B) Scheme 
of the OXPHOS system. Dotted line 
represents the electron flow. Yellow 
represents nDNA-encoded OXPHOS 
subunits and blue represents 
mtDNA-encoded subunits. 
Abbreviations not described in the 
figure in alphabetic order: ADP, 
adenosine diphosphate; ATP, 
adenosine triphosphate; CI - V, 
OXPHOS complexes I-V; CytC, 
Cytochrome C; FADH2 and FAD, 
reduced and oxidized flavine adenine 
dinucleotide; H+, hydrogen protons; 
H2O, water; NADH and NAD+, 
reduced and oxidized nicotinamide 
adenine dinucleotide; O2, oxygen; 
OXPHOS, oxidative phosphorylation; 
Q, coenzyme Q. Modified from 
Mourier et al. 2011.  
 

 

 

 

 

 

 

 

Carbohydrates, lipids, and amino acids are the three carbon sources mammalian cells 

can use and their metabolism converges in the TCA cycle. Carbohydrates are metabolized via 

glycolysis to pyruvate that is imported into mitochondria and converted to acetyl-coenzyme A 
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(CoA). Fatty acids are activated in the cytosol to acyl-CoA esters, imported into mitochondria, 

and oxidized through several cycles of b-oxidation (FAO) which result in the generation of 

acetyl-CoA, NADH, and FADH2 (Houten et al. 2016). Several reactions required for amino acid 

degradation occur in mitochondria and their intermediate products can enter the TCA cycle as 

acetyl-CoA, a-ketoglutarate, or succinate (Guda et al. 2007). The use of the different carbon 

sources in mammals depend on the tissue and metabolic state. For example, brain and nerve 

tissue rely mainly on glucose or ketone body oxidation; heart, skeletal muscle, and kidney 

mainly use FAO; and enterocytes use energy derived from glutamine oxidation (Vusse & 

Reneman 1995). Importantly, many of the metabolites, redox cofactors, and ATP generated in 

these pathways are used to synthesise new macromolecules including non-essential amino 

acids, carbohydrates, lipids, secondary metabolites, and nucleic acids. Thus, the central 

carbon metabolism ensures the conversion of energy sources into ATP, redox power, and 

precursor metabolites required for biosynthesis (Nielsen 2017). 

 

Biosynthesis of Q, FeS clusters, and heme groups partially take place in mitochondria 

and these compounds are necessary to support OXPHOS. Q is synthesised in the IMM by 

attaching a tail formed of several isoprenoid units derived from the cytosolic mevalonate 

pathway to a 4-hydroxybenzoate head, which is subsequently modified by carboxylation, 

hydroxylation, and methylation reactions (Stefely & Pagliarini 2017). In addition to its role in 

electron transfer, Q is suggested to be a ubiquitous lipid antioxidant present in all cellular 

membranes (Wang & Hekimi 2016). FeS clusters are co-factors for several enzymes in the 

cell, including mitochondrial enzymes of the OXPHOS complexes I-III, TCA cycle and FAO,  

as well as nuclear enzymes required for DNA replication and repair (Stehling & Lill 2013). 

Heme groups are also iron-containing essential co-factors. Haemoglobin and myoglobin, for 

example, use heme-groups to transport oxygen, and cytochrome c is an electron shuttle in 

OXPHOS (Kranz et al. 2009; Levi & Rovida 2009). Importantly, cytochrome c release to the 

cytosol is a determining step for the activation of the intrinsic pathway of apoptosis (Galluzzi 

et al. 2016).  

 

 The aforementioned introduction to mitochondrial functions is far from being complete 

but illustrates the high degree of connectivity and coordination between metabolic reactions 

and the central role of mitochondria in these processes. Thus, proper mitochondrial biogenesis 

and function is fundamental to sustain mammalian life. 

 

1.3. Dual genetic control of mitochondrial biogenesis 
 
It is estimated that mammalian mitochondria contain 1000 to 1500 proteins (Pagliarini et al. 

2008) from which half of the proteins are core mitochondrial components present in all 
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mammalian cells whereas the other half are expressed in a tissue-specific manner (Calvo & 

Mootha 2010).The endeavour of defining the mitoproteome has advanced steadily in recent 

years but a significant proportion of proteins is still of unknown function in mitochondria 

(Pagliarini & Rutter 2013). 

 

Mammalian mtDNA encodes only thirteen essential proteins of the OXPHOS 

complexes I, III, IV, and V. All of the remaining mitochondrial proteins are encoded in the 

nucleus, translated in the cytosol, and imported into mitochondria (Figure 1.2) (Gustafsson et 

al. 2016). It is estimated that one quarter of the mitoproteome is dedicated to maintain and 

express mtDNA (Gonczarowska-Jorge et al. 2017). Furthermore, in mouse, whole-body 

knockout of different nDNA-encoded proteins involved in mtDNA gene expression lead to 

embryonic lethality, whereas conditional knockout in heart and skeletal muscle lead to 

cardiomyopathies and premature death caused by severe mitochondrial dysfunction (Cámara 
et al. 2011; Larsson et al. 1998; Metodiev et al. 2009; Milenkovic et al. 2013; Ruzzenente et 

al. 2012; Park et al. 2007). These findings highlight the importance of a concerted expression 

of both genomes for the mammalian organism.  
 

 
Figure 1.2 | Dual genetic origin of the OXPHOS system 
OXPHOS complexes are encoded in two cellular genomes, nDNA and mtDNA. mtDNA encodes 13 subunits of 
OXPHOS complexes I, III, IV and V that are translated in the mitoribosomes. All other mitochondrial proteins are 
encoded in the nucleus, translated in the cytosol and imported into mitochondria where they are assembled together 
with the mtDNA-encoded subunits. Abbreviations in alphabetic order: mtDNA, mitochondrial DNA, nDNA, nuclear 
DNA; OXPHOS, oxidative phosphorylation. Modified from Larsson 2010. 
 

In terms of energy balance, the maintenance of such an elaborate machinery to 

express only a few mtDNA-encoded proteins seems counterintuitive and, therefore, different 

hypotheses have been proposed to explain why mtDNA is still maintained. The first one argues 

that the process of genome reduction, that accompanied the integration of mitochondria as a 
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cellular organelle, is still ongoing and, eventually, mtDNA will disappear. The strongest 

evidence supporting this hypothesis is that the mitochondrial related organelles, 

hydrogenosomes and mitosomes, do not have mtDNA (Burki 2016; Palmer 1997). However, 

until now, there is a perfect correlation between maintaining mtDNA and the capacity to 

perform aerobic respiration. All aerobic mitochondria appear to have retained genes coding for 

OXPHOS components, at least mt-Co1, mt-Co3, and mt-Cytb, as well as genes required for 

mitochondrial translation (Stewart & Larsson 2014). The conservation of such a specific set of 

mitochondrial genes has been interpreted in two opposite but not mutually exclusive ways. On 

the one hand, it has been proposed that the complete transfer of these genes to the nucleus 

is limited by selection constraints. Examples of these constraints are incompatibility in gene 

expression due to differences in codon usage between nDNA and mtDNA or problems in 

targeting and importing these proteins into mitochondria due to their high hydrophobicity 

(Björkholm et al. 2015). The transfer to the nucleus of many of the genes that were once 

encoded in the genome of the proteobacterium argues that both problems can potentially be 

circumvented. On the other hand, the co-localization for redox regulation hypothesis postulates 

that maintaining genes of electron transport chains in the mitochondrial compartment allows 

rapid regulation of organelle-specific gene expression in response to redox states (Allen 2017). 

 
1.4. Nuclear regulation of mitochondrial biogenesis and stress responses 
 
1.4.1. Mitochondrial biogenesis 
 
Mitochondrial biogenesis is induced in response to developmental and physiological stimuli. 

To exemplify, cardiomyocytes are the cells with the highest volume density of mitochondria, 

which provide the energetic reserve capacity that the heart requires (Goffart et al. 2004). The 

development and maturation of the cardiac mitochondrial system occur largely during the 

perinatal stages, processes that include a major increase in mitochondrial biogenesis at birth 

(Piquereau et al. 2010). This increase corresponds to a shift in metabolism from glycolysis to 

FAO and OXPHOS as mammals adapt to changes in oxygen availability (Finck et al. 2002). 

Other external stimuli like changes in environmental temperature, exercise, caloric intake, and 

hormones have also been reported to induce mitochondrial biogenesis (Ryan & Hoogenraad 

2007). Furthermore, an increase in mitochondrial mass is a common finding in patients with 

mitochondrial diseases and transgenic mouse models with mitochondrial dysfunction 

(Kauppila et al. 2017). Thus, under pathologic or stress conditions, retrograde signalling from 

the mitochondria to the nucleus activates cellular responses to loss of mitochondrial function 

that lead to mitochondrial biogenesis. 

 

Several transcription factors acting on the nuclear genome have been implicated in the 

regulation of expression of mitochondrial proteins in mammals. The nuclear respiratory factors 
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NRF1 and GABPA (also known as NRF2) function as positive regulators of transcription of 

nDNA-encoded mitochondrial genes. Binding sites for both transcription factors have been 

identified in upstream sequences of several mitochondrial genes including genes encoding 

OXPHOS proteins (Kelly & Scarpulla 2004). In line with this, knockout of Nrf1 and Gabpa in 

mouse is embryonic lethal with a clear mitochondrial phenotype (Huo and Scarpulla 2001; 

Ristevski et al. 2004; Yang et al. 2014). Members of the nuclear receptor super family that 

include the peroxisome proliferated-activated receptors (PPARs) and the estrogen-related 

receptors (ERRs) regulate the expression of enzymes involved in mitochondrial metabolism 

(Scarpulla et al. 2012). Finally, several targets of MYC are genes encoding mitochondrial 

proteins and it has been suggested that this transcription factor coordinates mitochondrial 

biogenesis during cell cycle and pathologic stress (Ahuja et al. 2010; Morrish & Hockenbery 

2014). 

 

The peroxisome-proliferator-activated receptor coactivators (PGC1a, PGC1b, and 

PPRC1) have been found to interact with NRF1, GABPA, PPARs and ERRs and, therefore, 

have the potential to induce most aspects involved in mitochondrial biogenesis (Scarpulla et 

al. 2012). Furthermore, several signalling pathways like the mechanistic target of rapamycin 

(mTOR) and cyclic adenosine monophosphate (AMP)-activated protein kinase (AMPK) that 

are activated by changes in the cellular metabolic state (e.g. amino-acid concentrations, 

ADP/ATP or NAD+/NADH ratios) converge on PGC1a suggesting that it is a master regulator 

of mitochondrial biogenesis and function (Ryan & Hoogenraad 2007). However, Pgc1a 

knockout mice are viable and only show a mild effect suggesting that other factors, including 

PGC1b, can compensate for its absence (Kauppila et al. 2017). This finding questions the role 

of PGC1a as a universal master regulator of mitochondrial biogenesis in vivo and suggests 

that other factors are equally or more important under physiological conditions.  

 

Several of the aforementioned transcription factors have been reported to regulate 

genes required to express mtDNA and, therefore, have the potential to coordinate the 

expression of both cellular genomes to promote mitochondrial biogenesis and function. NRF1 

has predicted binding sites in the gene coding for the mitochondrial transcription factor A 

(Tfam) and several genes coding for mitochondrial ribosomal (mitoribosomal) proteins. 

Knockdown of NRF1 in human cells has been shown to decrease transcript levels of TFAM 

(Cam et al. 2004) and the embryonic lethality in a Nrf1 knockout mouse correlates with a 

depletion of mtDNA (Huo & Scarpulla 2001). GABPA was reported to bind the upstream 

sequences of the genes encoding POLRMT, the mitochondrial transcription termination factor 

1 (MTERF1), and several factors involved in mtDNA replication (Bruni et al. 2010). TFAM and 

POLRMT have also been reported to be target genes of MYC and knockdown of MYC in 
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human cancer results in decreased protein levels of both factors (Oran et al. 2016). However, 

recent studies suggest that coordination of the expression of the two cellular genomes does 

not have to occur at the transcription level. In baker’s yeast, it was shown that transcription of 

nDNA and mtDNA are not coordinated, whereas translation of the OXPHOS subunits encoded 

in both genomes is synchronized (Couvillion et al. 2016). This synchronization was shown to 

be regulated unidirectionally from the cytosolic ribosomal translation which is consistent with 

the existence of translational activators for most mitochondrial messenger RNAs (mt-mRNAs). 

In mammals such a mechanism seems less likely as mammalian mt-mRNAs have only very 

short 5’ UTRs and to date only one translational activator for mt-Co1 called TACO1 has been 

identified (Richman et al. 2016; Weraarpachai et al. 2009). A recent study on human cells 

reported that mitochondrial ribosomes (mitoribosomes) translating mt-Co1 interact with 

OXPHOS complex assembly factors which can stall mitochondrial translation when the nDNA-

encoded subunits are absent (Richter-Dennerlein et al. 2016). 

 
1.4.2. Mitochondrial stress responses 
 
Nuclear genetic programs are activated in response to mitochondrial stress. Impaired 

coordination of nuclear and mitochondrial gene expression result in the increase of 

mitochondrial proteases and chaperones. Martinus and collaborators proposed that the 

accumulation of unfolded proteins in mammalian mitochondria cause activation of a 

mitochondrial specific stress signalling pathway called the mitochondrial unfolded protein 

response (mtUPR) (Martinus et al. 1996). This signalling pathway has been extensively studied 

in Caenorhabditis elegans where the current model is that mitochondrial dysfunction reduces 

import efficiency inhibiting the normal localization of the stress activated transcription factor 

ATFS-1 to mitochondria. Instead, ATFS-1 translocates to the nucleus where it activates 

transcription of mitochondrial stress response genes (Nargund et al. 2015). The cleavage of 

unfolded proteins in mitochondria by the mitochondrial matrix protease ClpP and subsequent 

release of the resulting peptides has been suggested to be required for the activation of this 

signalling pathway (Haynes et al. 2007). In mammals, however, there is no consensus with 

regard to the importance of this stress response pathway. It has been proposed that genes 

upregulated by mtUPR in mammals contain a binding element for the DNA damage-inducible 

transcript 3 (DDIT3/CHOP) and CCAT/enhancer-binding protein b (C/EBPb) flanked by two 

conserved elements called Mitochondrial Unfolded Protein Response Elements (MURE) 1 and 

2 (Aldridge et al. 2007; Martinus et al. 1996; Zhao 2002). However, the proposed CHOP-MURE 

1/2 elements are found in several non-mitochondrial genes (Aldridge et al. 2007) arguing 

against a mitochondrial-specific response mediated only by these regulatory elements. 

Furthermore, several mouse models deficient in mtDNA gene expression show an increase in 

mitochondrial proteases and chaperones that do not contain the CHOP-MURE 1/2 elements, 
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including the AAA+ LON P protease (LONP1), AFG3-like protein 2 (AFG3L2), and the 

mitochondrial 75 kDa heat shock protein (TRAP1) (Dogan et al. 2014; Perks et al. 2018). ATF5 

was proposed to be the closest homolog of ATFS-1 and to mediate mtUPR via a similar 

differential translocation mechanism as in C. elegans (Fiorese et al. 2016). However, the 

mitochondrial localization of ATF5 in mammalian mitochondria lacks biochemical support and 

the proposed translocation to the nucleus upon mitochondrial stress has not been shown. 

Finally, the requirement of CLPP in mammals has been refuted as a double knockout mouse 

model deficient in CLPP and the mitochondrial aminoacyl-tRNA synthetase (DARS2) activates 

mtUPR responsive genes despite the absence of CLPP (Seiferling et al. 2016). 

 

In mammals, mitochondrial dysfunction results in several changes in cellular 

metabolism regulated at the transcription level. In heart of mice deficient in mtDNA gene 

expression, a switch in metabolism from FAO to glycolysis mediated by PPARa precedes the 

increase in mitochondrial biogenesis (Hansson et al. 2004). Several studies in cell culture and 

mouse have found a strong upregulation of genes that carry a conserved amino acid response 

element (AARE) in their upstream regulatory region in response to different mitochondrial 

stresses including impaired mtDNA gene expression as well as loss of membrane potential 

and OXPHOS function (Bao et al. 2016; Quirós et al. 2017; Tyynismaa et al. 2010). This AARE 

is recognized by the ATF family of transcription factors, mainly ATF4, and upregulates genes 

encoding proteins involved in the regulation of lipid and glucose metabolism, anabolic amino 

acid synthesis, and the 1C pathway (Suomalainen & Battersby 2018). The 1C pathway obtains 

the 1C units from glycine, sarcosine, and serine and transfers them through different 

tetrahydrofolate (THF) intermediates to supply 1C units for cellular processes such as 

methylation, de novo purine synthesis, and nicotinamide adenine dinucleotide phosphate 

(NADPH) synthesis (Ducker & Rabinowitz 2017). Activation of ATF4 correlates with the 

phosphorylation of the eukaryotic translation initiation factor 2a (eIF2a) in mitochondrial 

dysfunction (Khan et al. 2017; Quirós et al. 2017), suggesting that the responses to 

mitochondrial stress converge with the cellular integrated stress response (ISR). However, the 

kinase phosphorylating eIF2a in response to mitochondrial dysfunction has not been identified 

(Quirós et al. 2017). A recent study proposed that mTOR complex 1 (mTORC1) upregulates 

the 1C pathway and purine metabolism independently of eIF2a phosphorylation (Ben-Sahra 

et al. 2016) and activation of mTORC1 signalling was found in mouse models with 

mitochondrial dysfunction (Khan et al. 2017; Perks et al. 2018). Furthermore, rapamycin 

treatment in mice with mitochondrial myopathy reversed the effect of ATF4 indicating that 

mTORC1 acts upstream of ATF4 in mitochondrial dysfunction (Khan et al. 2017). Finally, one 

of the target genes of ATF4 is the fibroblast growth factor 21 (Fgf21), whose gene product is 

released into the blood stream and can activate paracrine and endocrine effects resulting in 
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metabolic remodelling in different tissues (Fisher & Maratos-Flier 2016). FGF21 has been 

shown to be released by the skeletal muscle and heart in mitochondrial dysfunction mouse 

models (Dogan et al. 2014; Tyynismaa et al. 2010) and has been proposed as a biomarker of 

mitochondrial dysfunction in human patients (Lehtonen et al. 2016). Interestingly, 

mitochondrial stress in cell culture causes a general decrease of mitoribosomal proteins 

suggesting that mitochondrial gene expression programs respond to mitochondrial stress 

(Quirós et al. 2017). However, the mechanism leading to this downregulation has not been 

studied yet.  
 
1.4.3. A nuclear isoform of POLRMT 
 
The Polrmt gene has been reported to code for two RNA polymerases acting in the mammalian 

cells, POLRMT and the fourth nuclear RNA polymerase (spRNAP-IV) (Kravchenko et al. 2005; 

Kravchenko & Chumakov 2005). In mice and humans, the Polrmt gene contains 21 exons. 

POLRMT is the product of the predominant splice variant and is a ~140 kDa protein that 

contains an N-terminal mitochondrial targeting sequence (MTS). SpRNAP-IV is an alternative 

splicing isoform that contains a longer exon 1 producing a premature stop codon. Therefore, 

translation of spRNAP-IV would initiate from another open reading frame starting at exon 3. 

Compared to POLRMT, spRNAP-IV lacks the first 262 amino acids resulting in a ~110 kDa 

protein that does not contain an MTS (Kravchenko et al. 2005; Kravchenko & Chumakov 

2005). In the nucleus, spRNAP-IV was reported to transcribe a specific subset of nuclear 

genes including several muscle actin genes (ACTC1, ACTA1, ACTG1), the zinc-finger BTB 

domain-containing protein 1 gene (ZBTB1), the prenylcysteine oxidase gene (PCYOX1) and 

the POLRMT gene itself (Kravchenko et al. 2005; Lee et al. 2011). This observation suggests 

that transcription of mitochondrial and a subset of nuclear genes could be coupled. However, 

there are no studies of the mechanism of transcription of spRNAP-IV in the nucleus.  

 

1.5. Mammalian mitochondrial DNA gene expression 
 
1.5.1. The mammalian mitochondrial genome  
 
Mitochondrial DNA is exclusively maternally inherited and the number of copies of mtDNA per 

cell varies by several orders of magnitude between different tissues (Hällberg & Larsson 2014). 

Mammalian mtDNA is a double-stranded circular molecule of ~16.5 kb that encodes 37 genes 

(Figure 1.3A) (Anderson et al. 1981). The two strands of mtDNA have different sedimentation 

coefficients in alkaline caesium chloride gradients because of differences in guanine content. 

Consistent with these differences, the two mtDNA strands are designated the heavy (H) and 

the light (L) strand. The H strand encodes 10 mt-mRNAs, 2 ribosomal RNAs (mt-rRNAs), and 

14 transfer RNAs (mt-tRNAs). The L strand encodes one mt-mRNA and 8 mt-tRNAs (Clayton 

1991). The 11 mt-mRNAs encoded in the mitochondrial genome are translated into 13 proteins 
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as two mt-mRNAs, mt-Atp8/Atp6 and mt-Nd4l/Nd4, are bicistronic transcripts (Hällberg & 

Larsson 2014). Mitochondria use a non-universal codon code that is decoded by the mt-tRNAs 

(Larsson 2010). 

 
Figure 1.3 | Organisation of the 
mammalian mitochondrial genome  
(A) Mitochondrial genome illustrating 
both strands. (B) Schematic 
representation of the NCR with its 
regulatory elements. Abbreviations in 
alphabetic order: CI - CV, OXPHOS 
complex I-V; CSB, conserved 
sequence blocks; D-loop, 
displacement loop; H strand, heavy 
strand; HSP heavy-strand promoter; L 
strand, light strand; LSP, light-strand 
promoter; NCR, non-coding control 
region; TAS, termination associate 
sequence. Modified from Larsson 2010 
and Gustafsson et al. 2016.  
 

 

 

 

 

 

 

 

 

 

  

 

The densely packed mammalian mtDNA only contains two non-coding regions. The 

longer non-coding region (NCR), referred as the control region, is ~1.1 kb and spans from mt-

Tf to mt-Tp (Figure 1.3B). The NCR contains the promoters of transcription for each strand, 

that is the H-strand promoter (HSP) and the L-strand promoter (LSP), as well as the origin of 

replication for the H strand (OH) region. The OH region comprises the DNA sequence spanning 

from LSP until the mapped OH start site. Between LSP and OH, there are three conserved 

sequence blocks (CSB1-3) that are important regulatory sequences (Gustafsson et al. 2016). 

Abortive replication starting at OH results in a triple-stranded DNA structure as the newly 

replicated H strand remains bound to mtDNA displacing the non-template H strand. This region 

is called the displacement loop (D-loop) (Bogenhagen & Clayton 1978). The abortive mtDNA 

replication product of ~650 nucleotides is called 7S DNA and it ends in the termination-

associated sequence (TAS) that contains conserved palindromic motifs in vertebrates (Jemt 

et al. 2015). Most of the mammalian mtDNA replication events starting from OH result in 7S 
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DNA strands that are rapidly turned over (Figure 1.3) (Bogenhagen & Clayton 1978). The 

precise function and mechanisms regulating the D-loop remain elusive but it has been 

proposed to be important for the regulation of mtDNA replication and maintenance of mtDNA 

topology among others (Nicholls & Minczuk 2014).  

 

Mammalian mtDNA is tightly packed in nucleoprotein complexes of ~100 nm called the 

mitochondrial nucleoids. The main protein component of the mammalian nucleoid is TFAM 

that binds mtDNA via its two high-mobility group domains resulting in bending and compaction 

of the mtDNA molecule (Kaufman et al. 2007; Kukat et al. 2011; Kukat et al. 2015). Thus, 

TFAM is a highly abundant protein and it is estimated that there are ~1000 TFAM molecules 

per mtDNA. In addition to TFAM, several proteins required for mtDNA replication and 

transcription transiently interact with the mitochondrial nucleoid (Bonekamp & Larsson 2018; 

Bogenhagen 2012).  
 

1.5.2. Mitochondrial DNA replication and maintenance 
 
Mitochondrial DNA replication is performed by the phage-derived DNA polymerase g (POLg) 

that is composed of one catalytic subunit (POLgA) and two accessory subunits (POLgB). 

However, POLg is unable to use dsDNA as a template on its own and requires the DNA 

replicative helicase TWINKLE (gene name TWNK) that forms a hexameric ring and unwinds 

mtDNA at the replication fork (Korhonen et al. 2004). Although there are different proposed 

models for mammalian mtDNA replication, the strand-displacement model has the most robust 

experimental support (Gustafsson et al. 2016). According to this model, mtDNA replication 

starts at OH and DNA synthesis proceeds in one direction generating a new H strand. During 

the synthesis of the new H strand, the parental H strand is covered by the mitochondrial single-

stranded binding proteins (SSBP1). The single-stranded L-strand origin of replication (OL) 

forms a stable stem-loop structure that is used as template to generate the primer for L-strand 

replication. The OL is activated when the H strand replication has proceeded past this region 

and thereafter DNA synthesis from both strands proceeds continuously in opposite directions 

(Clayton 1991). Ligation of the newly replicated mtDNA molecule is performed by DNA ligase 

III (LIG3) (Lakshmipathy & Campbell 1999) and decatenation is performed by the DNA 

topoisomerase 3a (Nicholls et al. 2018).  

 

Several transgenic mouse strains have been generated to study mtDNA maintenance 

and replication in vivo. Disruption of Tfam, Twnk, PolgA, or Lig3 in mouse is embryonic lethal 

and leads to mtDNA depletion (Hance et al. 2005; Larsson et al. 1998; Milenkovic et al. 2013; 

Puebla-Osorio et al. 2006). The levels of TFAM and mtDNA correlate very well in different 

mouse models and cells, and it has been suggested that they stabilize each other (Ekstrand 
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et al. 2004; Jiang et al. 2017; Kukat et al. 2015; Larsson et al. 1994). A mechanism proposed 

to explain the concordance of TFAM and mtDNA levels is that LONP1 degrades TFAM when 

it is not bound to mtDNA (Lu et al. 2013). Interestingly, Twnk overexpression increases mtDNA 

copy number and a conditional Tfam knockout hearts have increased levels of TWINKLE, thus 

suggesting that TWINKLE is a limiting factor for mtDNA replication (Milenkovic et al. 2013). 

Super-resolution microscopy of mouse embryonic fibroblasts (MEFs) show a broad distribution 

of nucleoid sizes, indicating that different levels of compaction are present in mammalian 

mitochondrial nucleoids (Kukat et al. 2015). Increasing TFAM levels in vitro increase the 

compaction of the mtDNA template, which, in turn, inhibits mtDNA replication and transcription 

(Farge et al. 2014). Thus, TFAM modulation of nucleoid compaction could be an important 

mechanism for control of mtDNA replication and transcription in vivo.  

 

POLg requires an RNA primer to initiate replication at OH and OL but the mechanism of 

replication primer formation is still not completely understood. Mapping of RNA and DNA 

species in the human and mouse D-loop regions has identified RNA species whose 3’ ends 

corresponded to the 5’ ends of DNA molecules at OH. The 5’ end of this RNA coincides 

perfectly with LSP indicating that, in mammals, mtDNA replication uses an RNA primer and 

that primers are formed by mtDNA transcription (Figure 1.4) (Chang & Clayton 1985; Chang 

et al. 1985). In support of this hypothesis, in vitro studies have shown that transcription from 

LSP using recombinant human POLRMT results in a stable triple-stranded DNA-RNA hybrid 

(R-loop) that depends on the G-rich sequence of CSB2 (Lee & Clayton 1996; Xu & Clayton 

1996). Furthermore, a reconstituted human mitochondrial transcription system has shown that 

transcription prematurely terminates at CSB2 because of the formation of a G-quadruplex 

between CSB2 RNA and the corresponding non-template DNA strand. Since CSB2 is also the 

major site of RNA-DNA transitions in the complementary D-loop strand, it has been proposed 

that premature transcription termination at this position generates the RNA primer for H-strand 

replication (Pham et al. 2006; Wanrooij et al. 2012). However, such an RNA primer cannot 

support transcription in reconstituted in vitro systems suggesting that additional regulatory 

elements are required (Wanrooij et al. 2012). The 5’ ends of non-ligated mtDNA mainly map 

to OH, which is located ~100 bp downstream CSB2 (Attardi et al. 1979), suggesting that the 

nascent H strand is considerably processed at the 5’ end to remove the RNA primer and a 

fragment of DNA (Gustafsson et al. 2016). The ribonuclease H1 (RNASEH1) is thought to 

degrade the RNA primers on both strands and the mitochondrial genome maintenance 

exonuclease - 1 (MGME1) is thought to degrade the DNA upstream of OH (Matic et al. 2018; 

Uhler & Falkenberg 2015). An additional confounding point is that transcription from LSP also 

generates a short non-coding RNA transcript of unknown function called the 7S RNA.  This 

transcript extends from LSP to CSB1 (Jemt et al. 2015) and it has been proposed to function 
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as a primer at OH. However, 7S RNA is poly-adenylated and does not remain bound to mtDNA 

(Ojala & Attardi 1974), thus it is not likely the replication RNA primer (Gustafsson et al. 2016).  

 

 
Figure 1.4 | Regulation of transcription in the NCR 
Transcription from LSP generates three transcripts: i) the RNA primer that ends at CSB2, ii) 7S RNA that ends at 
CSB1, and iii) the full-length polycistronic mt-RNA encompassing all of the genes encoded in the L strand. The 7S 
DNA 5’ end maps to OH. The HSP polycistronic mt-RNA stops at the termination associated sequence (TAS). 
Abbreviations in alphabetic order: CSB, conserved sequence blocks; H strand, heavy strand; HSP, heavy-strand 
promoter; L strand, light strand; LSP, light-strand promoter; D loop, displacement loop, OH, heavy-strand origin of 
replication; Poly(A), poly-adenine tail; TAS, termination-associated sequence. Modified from Gustafsson et al. 2016 
 

The importance of POLRMT in replication primer formation is debated. In the nucleus 

primers are generated by specific DNA-dependent RNA polymerases, called DNA primases, 

distinct from the classical RNA polymerases (Guilliam et al. 2015). Furthermore, early studies 

identified a mitochondrial primase activity that was thought to generate the primers at the poly-

dT stretch in the stem-loop structure of OL (Ledwith et al. 1986). Phylogenetic analysis 

suggested that TWINKLE has a primase activity in most eukaryotes but this function is lost in 

metazoans (Shutt & Gray 2006). The DNA-directed primase/polymerase protein (PRIMPOL) 

was reported to localize in the nucleus and mitochondria and present primase activity (García-

Gómez et al. 2013). However, Primpol knockout mice are viable suggesting that it does not 

have an essential role in mtDNA replication. POLRMT can generate the OL primer for mtDNA 

replication in vitro (Wanrooij et al. 2008; Fusté et al. 2010) suggesting that POLRMT may be 

the primase for mtDNA replication at both OH and OL, but substantial in vivo data are missing 

to date. 

 

1.5.3. Mitochondrial DNA transcription 
 

POLRMT transcribes mtDNA starting from LSP and HSP and generates two near-genome 

length polycistronic transcripts encompassing all genes on each strand. Transcription from 

HSP is terminated in the TAS region of the NCR and transcription from LSP is terminated at 

mt-Tl1 (Figure 1.5) (Gustafsson et al. 2016; Jemt et al. 2015). 
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Figure 1.5 | Mammalian 
mtDNA transcription units  
mtDNA is transcribed from 
the two promoters to 
generate near-genome 
length polycistronic 
transcripts. Transcription 
from LSP is terminated at the 
mt-Tl1 where MTERF1 binds. 
Transcription from LSP is 
terminated at the TAS region 
before entering the D-loop in 
the NCR. Same conventions 
as Figure 1.3. Modified from 
Gustafsson et al. 2016 
 

 

 

 

 

 

POLRMT requires additional factors for promoter recognition, transcription initiation, 

transition to elongation, and transcription termination (Morozov et al. 2014; Ringel et al. 2011; 

Schwinghammer et al. 2013; Shi et al. 2012; Sologub et al. 2009). These factors include TFAM, 

the mitochondrial transcription factor B2 (TFB2M), the mitochondrial transcription elongation 

factor (TEFM), and MTERF1. TFAM and TFB2M are required for transcription initiation, TEFM 

for elongation, and MTERF1 for termination from LSP (Gustafsson et al. 2016). The 

mechanism of transcription termination from the H strand in the TAS region of the NCR (Jemt 

et al. 2015) has not been elucidated yet. 

 

 Based on biochemical and structural studies of these transcription factors and 

POLRMT in in vitro systems, a sequential model of mitochondrial transcription initiation has 

been proposed (Agaronyan et al. 2015; Hillen, et al. 2017a; Morozov et al. 2015; Posse et al. 

2014; Posse et al. 2015). According to this model, TFAM binds to specific sequences in 

upstream regions of HSP and LSP inducing conformational changes in the promoter region. 

These conformational changes allow the binding of POLRMT to TFAM and the promoter DNA 

forming the pre-initiation complex (pre-IC). Then, TFB2M is required to melt the promoter 

completing the initiation complex (IC). After transcription initiation, TFAM and TFB2M 

disengage from the complex and TEFM aids in the processivity of POLRMT to generate the 

long polycistronic transcripts (Figure 1.6).  
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Figure 1.6 | Model of mitochondrial transcription 
The initiation complex formed by POLRMT, TFAM and TFB2M assembles in the promoter region. Then, TFAM and 
TFB2M disengage from the complex and TEFM binds POLRMT forming the elongation complex. Transcription from 
LSP is terminated by MTERF1 in mt-Tl1. Transcription from HSP is terminated in the TAS region (Figure 1.5) but 
the mechanism is still unknown. Abbreviations in alphabetic order: mtDNA, mitochondrial DNA; MTERF1, 
mitochondrial transcription termination factor 1; POLRMT, mitochondrial RNA polymerase; TEFM, mitochondrial 
transcription termination factor 1; TFAM, mitochondrial transcription factor A; TFB2M, mitochondrial transcription 
factor B2; mt-RNA, mitochondrial RNA.  
 

1.5.3.1. Mitochondrial RNA polymerase 
 
POLRMT is homologous to the T7-phage RNA polymerase (T7-RNAP) (Ringel et al. 2011). It 

consists of three domains; the C-terminal domain (CTD), the N-terminal domain (NTD), and 

the N-terminal extension (NTE) that contains the MTS. The CTD is a T7-like catalytic domain 

that has a conserved mechanism of nucleic acid polymerization dependent on magnesium 

ions. The structure of the NTD also resembles T7-RNAP and it contains important elements 

for promoter recognition and melting. The NTE is a unique feature of POLRMT as it is not 

present in T7-RNAP and contains pentatricopeptide repeat (PPR) motifs (Ringel et al. 2011) 

that are degenerate 35-amino acid tandem sequence motifs found in proteins involved in RNA 

metabolism (Lightowlers & Chrzanowska-Lightowlers 2013). During transcription elongation, 

the nascent transcript emerges towards the PPR motifs of POLRMT (Schwinghammer et al. 

2013). Furthermore, a mutant POLRMT enzyme devoid of most of the NTE (D320 amino acids) 

has higher  in vitro transcription activity than the wild-type polymerase (Posse et al. 2014) 

indicating that the NTE might have an important regulatory role in POLRMT but the precise 

function is still unknown. 

 
1.5.3.2. Mitochondrial transcription factor A 
 
In addition to the previously mentioned function of TFAM in mtDNA maintenance, TFAM binds 

with high affinity to specific regions upstream of HSP and LSP inducing a 180° bend in the 

promoter (Morozov et al. 2014; Morozov & Temiakov 2016; Ngo et al. 2014; Posse et al. 2014). 

The specific binding of TFAM to the promoter region is required for mitochondrial transcription 

initiation (Dairaghi, Shadel & Clayton 1995a; Gaspari et al. 2004; Shi et al. 2012). In this 
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process, the C-terminal tail of TFAM interacts with the NTE of POLRMT (Hillen et al. 2017a; 

Morozov et al. 2014; Posse et al. 2014). In agreement with the structural and biochemical data, 

the transcription factor activity of TFAM is severely impaired in absence of its C-terminal tail 

(Dairaghi, Shadel & Clayton 1995b). The interaction of TFAM, POLRMT, and promoter DNA 

is species-specific as human TFAM is a poor activator of mitochondrial transcription in mouse 

in in vivo and in vitro systems (Ekstrand et al. 2004; Gaspari et al. 2004). Importantly, the 

mtDNA maintenance function of TFAM can be dissociated from its function as a transcription 

factor because expression of human TFAM in a mouse Tfam knockout background rescues 

mtDNA copy number, but not mitochondrial transcription (Ekstrand et al. 2004; Freyer et al. 

2010). In addition to promoter specificity, TFAM is also required but not sufficient for promoter 

melting (Posse & Gustafsson 2017; Ramachandran et al. 2017).  

 
1.5.3.3. Mitochondrial transcription factor B2 

 
TFB2M has structural homology to bacterial rRNA methyltransferases but in mammalian 

mitochondria it is a bona fine transcription initiation factor (Litonin et al. 2010). Consistently, 

knockout of Tfb2m in mouse pancreatic b-cells leads to loss of mt-RNAs (Nicholas et al. 2017). 

TFB2M interacts with the NTD and CTD of POLRMT as well as with the promoter DNA and 

priming nucleotide (Morozov et al. 2015). TFB2M induces conformational changes in POLRMT 

which enables promoter opening and the correct localization of the non-template strand (Hillen 

et al. 2017a). The sequential model for transcription initiation was founded on crosslinking and 

footprinting analyses that showed that POLRMT can be recruited to the promoter without the 

requirement of TFB2M and form a stable pre-IC (Posse et al. 2014; Morozov et al. 2014). 

However, a recent study has proposed an alternative model where POLRMT and TFB2M can 

form a complex independently of promoter binding. This model is supported by equilibrium 

binding analyses that show that POLRMT and TFB2M have a similar dissociation constant as 

TFAM and LSP (Ramachandran et al. 2017).  

 

1.5.3.4. Mitochondrial transcription elongation factor 

 

TEFM is the most recently described mitochondrial transcription factor. It was identified by 

homology analyses as a putative human mitochondrial Holliday Junction resolvase. Although 

this specific activity was not found in recombinant TEFM, silencing of TEFM in human cells 

showed a specific pattern of mt-mRNA abundance whereby promoter-proximal transcripts 

were increased and promoter-distal transcripts were decreased suggesting a role in 

transcription elongation (Minczuk et al. 2011). Biochemical characterization of TEFM activity 

in in vitro transcription systems showed that TEFM increases the processivity of POLRMT in 

longer transcripts by enhancing the affinity of POLRMT to an elongating template and 
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facilitating the passage over structured or modified DNA sequences like G-quadruplexes or 8-

oxo-dG lesions (Agaronyan et al. 2015; Posse et al. 2015; Sultana et al. 2017). The crystal 

structures of TEFM and POLRMT with TEFM in an elongating complex provided important 

mechanistic insights that could explain how TEFM promotes transcription elongation (Hillen et 

al. 2017b). First, TEFM has two domains, an NTD, that contains two globular hairpin-helix-

harpin (HhH) domains of unknown function, and a C-terminal dimerization domain that forms 

the catalytic core. TEFM dimer interacts with POLRMT and the nucleic acids in the 

transcription bubble. These interactions contribute to the formation of a ‘sliding clamp’ with the 

downstream DNA that enhances the processivity of the transcription elongation complex. 

Second, TEFM binds the single-stranded non-template DNA preventing the collapse of the 

transcription bubble. Third, TEFM induces conformational changes in POLRMT that contribute 

to the formation of the RNA channel and prevent the formation of RNA G-quadruplexes during 

transcription elongation. Since TEFM prevents transcription termination at CSB2, it has been 

proposed that it is a switch between mtDNA replication and transcription (Agaronyan et al. 

2015). However, this function is debated (Posse et al. 2015) as it assumes that the primer for 

mtDNA replication at OH would be formed by premature transcription termination at CSB2 and, 

until now, this prematurely terminated transcript has not been shown to support mtDNA 

replication in vitro suggesting that additional processing is required. 

 
1.5.3.5. Mitochondrial transcription termination factor 1 
 
MTERF1 is the only known factor to date involved in transcription termination. It binds mtDNA 

in mt-Tl1 that is located downstream of mt-rRNAs in the H strand (Figure 1.5) (Shang & Clayton 

1994; Terzioglu et al. 2013) and was proposed to act as a road block for transcription of LSP 

and HSP. Termination of HSP-initiated transcription mediated by MTERF1 was suggested to 

promote the generation of a shorter polycistronic transcript encompassing the mt-rRNAs 

(Martin et al. 2005). However, in vitro and in vivo studies demonstrated that MTERF1 mainly 

terminates the transcription initiated at the LSP preventing the formation of antisense mt-

rRNAs and has no effect on the abundance of the H-strand encoded mt-rRNAs (Figure 1.5) 

(Asin-Cayuela et al. 2005; Terzioglu et al. 2013). 

 

Furthermore, it was recently shown that MTERF1 not only blocks transcription of 

antisense mt-rRNAs but also directs polar replication fork pausing. This means that MTERF1 

acts as a roadblock for the replication machinery in the H strand preventing collisions with the 

transcription machinery transcribing the mt-rRNAs (Shi et al. 2016). Collisions of replication 

and transcription machineries can result in replication stalling and genome instability (Merrikh 

et al. 2012). These collisions can cause either co-directional or heads-on replication-

transcription conflicts and different mechanisms to resolve or prevent these conflicts exist in 
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the nuclear chromosomes and in bacteria with circular genomes (García-Muse & Aguilera 

2016; Merrikh et al. 2012). The two different origins of replication are coupled so that initiation 

at OH, which depends on LSP transcription, must occur before OL can be activated. This 

arrangement may contribute to reduce the possibility of collisions between the replication and 

transcription machineries in mammalian mitochondria.  

 

Three additional members of the MTERF family of proteins have been found in 

mammalian mitochondria (MTERF2-MTERF4). MTERF3 was originally reported to be a 

negative regulator of mitochondrial transcription, but the exact binding site of MTERF3 to 

mtDNA has not been identified (Park et al. 2007). Then, MTERF3 was shown to bind mt-16S 

rRNA and facilitate assembly of the mitochondrial ribosome but the precise function is still 

unknown (Wredenberg et al. 2013).  

 
1.5.3.6. Other factors regulating mitochondrial transcription 
 
In addition, several proteins have been described to regulate mitochondrial transcription, 

including the mitochondrial ribosomal protein L12 (MRPL12) and the mitochondrial DNA 

topoisomerase 1 (TOP1MT). The role of MRPL12 in regulating mitochondrial transcription is 

debated. POLRMT was reported to bind a free pool of MRPL12, which was found to stimulate 

transcription. Here, MRPL12 may act as an allosteric activator of transcription helping in the 

transition from initiation to elongation (Nouws et al. 2016; Surovtseva et al. 2011; Wang et al. 

2007). However, MRPL12 did not stimulate mitochondrial transcription in a reconstituted in 

vitro system (Litonin et al. 2010). TOP1MT was identified as an exclusive mitochondrial protein 

acting as a negative regulator of transcription through interaction with POLRMT; however, the 

underlying mechanism is not understood (Sobek et al. 2013).  

 
1.5.4. Mitochondrial RNA processing  

  
Pioneering studies from the Attardi laboratory observed that, in mammals, most mt-mRNAs 

and mt-rRNAs are flanked by mt-tRNAs (Ojala et al. 1981). They postulated that the 

polycistronic mitochondrial transcripts were processed into the individual mt-RNAs by precise 

endonucleolytic cleavage that occurred, in most cases, in the mt-tRNAs. This model is known 

as the “tRNA punctuation model”. The cleavage of the polycistronic mitochondrial transcripts 

is performed by the mitochondrial RNase P and the mitochondrial tRNAse Z (Rackham et al. 

2012). This endonucleolytic process occurs in a hierarchical manner, that is, the 5’ ends of the 

mt-tRNAs are cleaved first followed by the 3’ ends (Brzezniak et al. 2011; Rackham et al. 

2016). RNase P is formed by three mitochondrial RNAse P proteins (MRPP1, MRPP2, and 

MRPP3) and processes the 5’ ends of the mt-tRNAs. Furthermore, RNase P also processes 

the 5’ end of mt-Co1 that does not contain a delimiting mt-tRNA but the upstream non-coding 
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sequence forms a tRNA-like structure (Sanchez et al. 2011). Zinc phosphodiesterase ELAC 

protein 2 (ELAC2) was recently identified as the enzyme processing the 3’ends of mt-tRNAs 

(Brzezniak et al. 2011).  

 

 All mitochondrial transcripts are post-transcriptionally modified to generate the mature, 

functional transcripts. The proper folding of mt-tRNAs, base pairing, and interaction with the 

aminoacyl-tRNA synthetases depend on a CCA addition to the 3’ end and the modification of 

specific bases. These modifications include methylations, formylations, and 

pseudouridylations, among others (Suzuki et al. 2011). Mt-tRNAs are amino-acylated by an 

almost exclusive set of mitochondrial tRNA synthetases that differs from the cytosolic enzymes 

(Diodato et al. 2014).  

 

Mammalian mt-mRNAs do not have introns, Shine Dalgarno sequences, conventional 

5’ and 3’ UTRs, 5’ 7- methylguanosine caps or base modifications. With the exception of mt-

Nd6, all mt-mRNAs are polyadenylated in their 3’ end and, for several of the transcripts, this 

process is essential as it completes the termination codon (Rackham et al. 2012). Contrary to 

the nucleus where polyadenylation promotes RNA degradation, in mitochondria the role of this 

process remains elusive as loss of the poly(A) tail in mt-mRNAs results in different effects on 

the abundance of mitochondrial transcripts (Bratic et al. 2016; Rorbach et al. 2011; Wilson et 

al. 2014). An important factor coordinating mt-mRNA stability and polyadenylation is the 

leucine-rich PPR motif containing protein (LRPPRC) (Ruzzenente et al. 2012). LRPPRC forms 

a complex with the mitochondrial SRA stem-loop-interacting RNA-binding protein (SLIRP) 

(Sasarman et al. 2010). This complex binds throughout the mitochondrial transcriptome and 

acts as a global RNA chaperone coordinating mt-RNA stability, polyadenylation, and 

translation (Siira et al. 2017).  In line with this, loss of LRPPRC in mouse causes a global 

decrease of all mt-mRNAs except mt-Nd6 whereas mt-tRNAs are mostly unchanged and mt-

rRNAs are increased in abundance (Ruzzenente et al. 2012). LRPPRC was previously 

reported to also stimulate mitochondrial transcription by direct interaction with POLRMT (Liu 

et al. 2011), but de novo transcription is not affected by knockout or overexpression of Lrpprc 

(Harmel et al. 2013; Ruzzenente et al. 2011).  

 

In addition to LRPPRC, the Fas-activated serine/threonine kinase (FASTK) family of 

proteins have recently emerged as key post-transcriptional regulators of mtDNA gene 

expression. It contains six members, FASTK and the FASTK-domain containing proteins 1 to 

5 (FASTKD1 to FASTKD5), all of which localize to mitochondria and interact with specific 

mitochondrial transcripts. They have been reported to coordinate several processes including 

mt-RNA processing of mt-Nd6, stability of several mt-mRNAs and mt-rRNAs, and translation 



 20 

of mt-Co1 (Jourdain et al. 2017). The G-rich sequence factor 1 (GRSF1) was reported to 

mediate stability of several mt-RNAs and interact with RNase P in the mitochondrial matrix. 

Importantly, GRSF1 strongly binds to the mt-Nd6 and silencing of GRSF1 in human cells leads 

to the accumulation of pre-processed transcripts containing mt-Nd6 suggesting an important 

role for this protein in the processing of this transcript (Antonicka et al. 2013; Jourdain et al. 

2013). Importantly, mt-Nd6 does not contain an mt-tRNA in the junction with the non-coding 

complementary mt-Nd5. A recent study suggested that GRSF1 binds G-rich non-coding RNAs 

resulting from LSP-initiated transcription promoting their degradation (Pietras et al. 2018). 

Microscopy analyses of GRSF1 showed that it forms a distinct punctate pattern in the 

mitochondrial matrix that co-localizes with mt-RNAs and processing enzymes which lead to 

the proposal that mt-RNA processing occurs in RNA granules (Antonicka et al. 2013; Jourdain 

et al. 2013). Subsequent co-immunoprecipitation and co-localization studies have identified 

several additional proteins involved in mt-RNA metabolism to be present in the mitochondrial 

RNA granules (Antonicka & Shoubridge 2015) including the mitochondrial polyribonucleotide 

nucleotidyltransferase 1 (PNPT1; PNPase) and the mitochondrial ATP-dependent RNA 

helicase (SUPV3L1) (Borowski et al. 2013). PNPT1 and SUPV3L1 form a complex that 

degrades mitochondrial transcripts (Borowski et al. 2013; Chujo et al. 2012; Khidr et al. 2008). 

The LRPPRC/SLIRP complex has been proposed to prevent the degradation of coding 

transcripts by maintaining the RNA unfolded (Chujo et al. 2012; Siira et al. 2017). Recently, 

the b-lactamase metalloprotein LACTB2 was shown to mediate the degradation of 

mitochondrial transcripts as well (Levy et al. 2016) and the oligoribonuclease REXO2 has been 

proposed to degrade small RNA oligomers resulting from PNPT1 degradation of mt-RNAs 

(Bruni et al. 2013; Bruni et al. 2017).  
 
1.5.5. The mammalian mitochondrial ribosome 
 
The mitoribosome contains more than 80 proteins and has a high protein to RNA ratio in 

comparison to the bacterial ribosomes (Sharma et al. 2003). Mitoribosomes are anchored to 

the IMM (Liu & Spremulli 2000) and it has been suggested that mtDNA-encoded proteins are 

inserted co-translationally in the IMM to assemble in the OXPHOS complexes (Gruschke & Ott 

2010). The complete mitoribosome (monosome) is formed by two subunits: the small 

mitoribosomal subunit (28S) containing mt-12S rRNA and the large mitoribosomal subunit 

(39S) containing mt-16S rRNA. In addition, cryo-electron microscopy studies of the large 

ribosomal subunit revealed the presence of an mt-tRNA in the structure which turned out to be 

either mt-Tv or mt-Tf in all the mammalian species studied to date (Greber et al. 2014a; Greber 

et al. 2014b; Rorbach et al. 2016). Assembly of the mitoribosome initiates close to the 

mitochondrial nucleoids as mt-rRNAs are formed by transcription (Bogenhagen 2014; 
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Rackham et al. 2016) and it has been suggested that RNA granules are important centres for 

mt-rRNA post-transcriptional modification (Antonicka & Shoubridge 2015).  

 

The mt-rRNAs are the most abundant mitochondrial transcripts (Mercer et al. 2011) 

and, to date, ten post-transcriptional modifications have been identified (Pearce et al. 2017). 

mt-12S rRNA has been shown to be methylated by the mitochondrial transcription factor B1 

(TFB1M) and the 5-methylcytosine rRNA methyl transferase NSUN4. TFB1M is homologous 

to TFB2M and it was originally proposed to also act as a transcription factor (Falkenberg et al. 

2002). However, knockout of Tfb1m in mouse does no repress mitochondrial transcription but 

results in loss of mt-12S rRNA methylation and severely impaired mitochondrial translation 

(Metodiev et al. 2009). NSUN4 forms a complex with MTERF4 that coordinates the assembly 

of the monosome (Cámara et al. 2011; Metodiev et al. 2014). Mt-16S rRNA is methylated by 

a group of closely related methyl-transferases that include the mitochondrial rRNA methyl 

transferases 1 to 3 (MRM1 to 3) (Pearce et al. 2017). Additionally, it has recently been shown 

that mt-16S rRNA is regulated by a protein complex containing a set of RNA binding proteins 

that include Neugrin (NGRN), RCC1-like G exchanging factor-like protein 

(RCC1L/WBSCR16), the putative mitochondrial mRNA pseudouridine synthases RPUSD3, 

RPUSD4 and TRUB2, and FASTKD2 (Arroyo et al. 2016). RPUSD4 was recently shown to 

pseudourydilate mt-16S rRNA (Antonicka et al. 2017; Zaganelli et al. 2017) and the PPR-motif 

containing protein 2 (PTCD2) was reported to be required for this modification to occur and to 

interact with FASTKD2 and RPUSD4 (Perks et al. 2018).   

 

1.6. Mitochondrial dysfunction in human health 
 
1.6.1. Mitochondrial genetic diseases  
 
Mitochondrial diseases are one of the most common types of inherited metabolic disorders. 

They can be caused by mutations in mtDNA or in nuclear genes encoding mitochondrial 

proteins leading to different patterns of inheritance (Gorman et al. 2016). Since mtDNA is 

present in multiple copies within each cell, mutations in mtDNA can be present in all the 

molecules (homoplasmy) or in a fraction of the molecules (heteroplasmy). The levels of 

heteroplasmic mutations can vary between cells in the same organ or tissue, between organs 

within the same person, and between individuals in the same family. Moreover, the expression 

and severity of mitochondrial disease depends on whether mutated mtDNA passes a certain 

threshold (Stewart & Chinnery 2015). Mitochondrial diseases are clinically heterogenous which 

means that they can manifest at any time and with a wide variety of clinical symptoms. The 

severity of mitochondrial diseases can range from asymptomatic or oligosymptomatic carriers 

to life-threatening multisystemic disorders (Liang et al. 2014). Furthermore, they can manifest 

in a tissue-specific manner where the same genetic defect can result in different clinical 
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phenotypes (Nunnari & Suomalainen 2012). In addition to the genetic component, 

environmental factors can influence the course of mitochondrial diseases (Vafai & Mootha 

2012).  

 

Hundreds of different point mutations and re-arrangements in mtDNA have been shown 

to cause mitochondrial diseases and pathogenic mutations have been reported in in all mt-

mRNAs, mt-tRNAs, and mt-rRNAs (Lott et al. 2013). Furthermore, several mutations in nuclear 

genes required for mtDNA gene expression have also been identified including mutations in 

POLg, TWNK, MGME1, ELAC2, LRPPRC, MTPAP, several mitochondrial aminoacyl-tRNA 

synthetases and mitoribosomal proteins (Viscomi & Zeviani 2017). Mutations that affect 

mitochondrial transcription seem to be rarer. To date, only one pathogenic mutation has been 

identified in the NCR, specifically in the HSP, causing tubulointerstitial kidney disease (Connor 

et al. 2017). From the basic transcription machinery, a missense mutation in one of the high-

mobility group boxes of TFAM was recently found in two siblings born of consanguineous 

parents of Colombian-Basque descent. This mutation caused neonatal liver failure and the 

patients died before 4 months of age (Stiles et al. 2016). The multiple genetic causes, different 

patterns of inheritance, heteroplasmy in the case of mtDNA pathogenic mutations, and 

heterogeneity of clinical symptoms make the diagnosis of mitochondrial diseases a complex 

process (Gorman et al. 2016). Furthermore, even when the genetic defect causing 

mitochondrial disease is identified, the chain of events that lead to the end pathology and the 

reasons behind the clinical heterogeneity and tissue-specificity of mitochondrial diseases are 

largely unknown.  

 
Unfortunately, there is still no cure for mitochondrial diseases and, in most cases, 

clinical management remains largely supportive (Pfeffer et al. 2013). Multiple types of 

therapies targeting different aspects of mitochondrial dysfunction have been developed. These 

include therapies aimed at increasing respiratory chain substrate availability, enhancing 

electron transport transfer within the respiratory chain, bypassing respiratory chain 

components, increasing antioxidant capacity, improving energy buffering, and inducing 

adaptations to cope with OXPHOS dysfunction (Pfeffer et al. 2013). Many of these therapies 

are implemented as dietary supplements that are increasingly used due to their potential 

benefits and low-risk of developing secondary effects (Camp et al. 2016). An example of a 

commonly used supplement in patients with mitochondrial disorders is Q10 supplementation as 

it enhances electron transfer in the respiratory chain and is a potent antioxidant. Q10 

supplementation is an efficient treatment for patients with primary Q deficiency (Emmanuele 

et al. 2012). However, its efficacy to treat other mitochondrial disorders has been questioned 

as clinical trials have shown mixed outcomes that can be explained by the experimental design 
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of the trials, the poor bioavailability of supplemented Q10, and the lack of experimental support 

to define in which specific mitochondrial diseases would benefit from Q supplementation 

(Gorman et al. 2016; Pfeffer et al. 2013; Spindler et al. 2009). New treatments are currently 

being developed that include enhancers of mitochondrial proliferation, rapamycin treatment, 

hypoxia, and gene therapy approaches to reduce pathogenic heteroplasmic mtDNA mutations 

and target mutations in nuclear genes (Gorman et al. 2016; Nightingale et al. 2016).  

 
1.6.2. Ageing and age-related diseases 
 
Human ageing strongly correlates with the accumulation of mutated mtDNA molecules in 

somatic tissues leading to respiratory chain deficiency (Larsson 2010). Although it is not clear 

whether these mutations drive the ageing process or only correlate with it, there are strong 

indications that mtDNA mutations can contribute to ageing phenotypes (Kauppila et al. 2017). 

For a long time, the source of these mutations has been thought to be oxidative damage 

caused by reactive oxygen species (ROS) that leak from OXPHOS which, in turn, result in a 

vicious cycle as mutated mtDNA would generate more dysfunctional OXPHOS complexes and 

ROS (Bandy & Davison 1990). However, this hypothesis has now been extensively challenged 

as mouse models with increased mtDNA mutations do not have increased ROS (Trifunovic et 

al. 2005) and as removing ROS scavenging enzymes and mtDNA repair mechanisms does 

not induce mtDNA mutations (Kauppila et al. 2018). It has therefore been proposed that 

accumulation of mutations in specific cell types during ageing is driven by shifts in 

heteroplasmy during cell division, relaxed mtDNA replication, and replication errors (Kauppila 

et al. 2017; Stewart & Chinnery 2015). 

 

 Mitochondrial dysfunction is also found in several age-related diseases including 

cardiovascular diseases (Brown et al. 2017), neurodegenerative diseases (Golpich et al. 

2017), metabolic syndrome (Lowell & Shulman 2005), and cancer (Zong et al. 2016). Hence, 

targeting mitochondrial dysfunction has developed as a leading therapeutic strategy for many 

of these common human pathologies. However, similar to the ageing process, distinguishing 

whether mitochondrial dysfunction causes or correlates with these diseases is an important 

and challenging endeavour that will greatly improve our understanding of the pathophysiology 

of these diseases and help to develop targeted therapeutic approaches. In this regard, 

understanding the fundamental processes that regulate mitochondrial biogenesis, function, 

homeostasis and how these processes affect cellular metabolism is of great importance from 

a biological and clinical perspective.  
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2. RESEARCH AIMS 
 
Elucidating the in vivo function of POLRMT and its nuclear isoform spRNAP-IV in mammals 
 
Mammalian mtDNA replication and transcription are intimately related processes as the 

priming site for H-strand replication coincides with initiation of transcription at LSP (Chang & 

Clayton 1985; Gillum & Clayton 1979). The primase function of POLRMT continued to be 

debated as an additional primase activity distinct from POLRMT was identified in mammalian 

mitochondria (Ledwith et al. 1986), DNA replication in the nucleus relies on specific primases 

that differ from the RNA polymerases needed for gene transcription (Guilliam et al. 2015), and 

the process of primer generation and processing is still largely unknown. In addition, the 

alternative isoform of the POLRMT gene, spRNAP-IV, was reported as the fourth eukaryotic 

nuclear RNA polymerase transcribing a specific set of genes in the nucleus (Kravchenko et al. 

2005; Kravchenko & Chumakov 2005; Lee et al. 2011). The relevance of spRNAP-IV for 

mitochondrial function is unknown, but it was suggested to be involved in the coordination of 

nuclear and mtDNA gene expression. Thus, the in vivo mechanisms coordinating mtDNA 

replication and transcription and the concerted expression of the two cellular genomes remain 

significant gaps in our current knowledge of mitochondrial function. Therefore, the first aim of 

this thesis is to elucidate the in vivo function of POLRMT and its nuclear isoform in mammals 

using the mouse as a model organism.  

 
Identifying the cellular consequences of progressive OXPHOS deficiency caused by loss of 

mtDNA gene expression  

 
Expression of the mtDNA is essential for the biogenesis of the OXPHOS system. Since 

metabolism is highly interconnected, OXPHOS dysfunction can result in devastating 

consequences for the whole cell, organ, or organism. Mitochondrial diseases are the clear 

example of this, as mutations in mtDNA or nuclear genes encoding mitochondrial proteins can 

result in a broad spectrum of clinical phenotypes that cannot be explained uniquely by the 

primary OXPHOS defect (Nunnari & Suomalainen 2012). The pathogenesis of mitochondrial 

diseases is still far from being understood as distinguishing the direct consequences of 

OXPHOS dysfunction from the secondary cellular responses is challenging. Therefore, the 

second aim of this thesis is to systematically study the molecular consequences of progressive 

OXPHOS deficiency caused by disrupted mtDNA gene expression for protein complexes of 

dual genetic origin as well as the secondary cellular responses caused by the primary 

OXPHOS defect at the mitoproteome and cellular transcriptome level.  
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3. RESULTS  
 
3.1. Elucidating the in vivo function of POLRMT and spRNAP-IV in mammals 

 
3.1.1.  Mouse strains to study the in vivo function of POLRMT and spRNAP-IV 
 
To study the in vivo function of POLRMT and spRNAP-IV we generated several transgenic 

mouse strains with different gene dosage of Polrmt. A conditional knockout allele of Polrmt 

was generated by targeting exon 3 which disrupts the expression of the mitochondrial and 

nuclear splice variants (Figure 3.1A and B). Heart and skeletal muscle specific knockout 

(PolrmtloxP/loxP; Ckmm-cre; L/L, cre) and germline heterozygous mice (Polrmt+/-; +/-) were 

obtained by breeding mice with a heterozygously floxed Polrmt allele (+/PolrmtloxP) to mice 

expressing the cre recombinase under the control of the creatinine kinase promoter (Ckmm-

cre) or the ubiquitously expressed b-actin promoter (b-actin-cre), respectively. Analysis of 

complementary DNA (cDNA) by reverse transcription polymerase chain reaction (RT-PCR) 

verified that sequences corresponding to exon 3 of the Polrmt mRNA were lacking in the heart 

of the conditional Polrmt knockout mice (Figure 3.1C). Moreover, western blot analyses 

showed a drastic reduction of POLRMT in mitochondrial extracts from heart of the conditional 

Polrmt knockout mice (Figure 3.1D) and a 50% decrease in POLRMT levels in heart, skeletal 

muscle, and liver of Polrmt+/- mice (Figure 3.1E). 

 

 
Figure 3.1 | Generation of conditional Polrmt knockout mice 
(A) Schematic depiction of the Polrmt gene, Polrmt cDNA, and the two alternative splice variants cDNA reported in 
mouse coding for spRNAP-IV (Kravchenko & Chumakov 2005). (B) Targeting strategy for the conditional disruption 
of Polrmt. (C) RT-PCR analysis of targeted Polrmt transcripts from control (L/L) and tissue-specific knockout mice 
(L/L, cre). Different primer sets were used as indicated; exon 3: 551 bp. (D) Western blot analysis of steady-state 
POLRMT levels on isolated mitochondria from heart of L/L and L/L, cre mice at different ages. (E) Western blot 
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analysis of steady-state POLRMT levels on heart, skeletal muscle and liver of wild-type (+/+) and heterozygous 
Polrmt knockout (+/-) mice at 26 weeks of age. Loading: VDAC; Skm, skeletal muscle. From Kühl et al. 2014; 2016. 
 

Mice ubiquitously overexpressing Polrmt (Polrmt+/T; +/T) were generated using a 

bacterial artificial chromosome (BAC) transgenic strategy (Park et al. 2007). This allowed a 

moderate overexpression of Polrmt under the control of its endogenous promoter and 

surrounding regulatory sequences mimicking physiological expression of endogenous Polrmt. 

A BAC clone containing a fragment of chromosome 10 containing the Polrmt gene was 

modified by introducing a silent point mutation (c420G>T) generating a HindIII site in exon 3 

of Polrmt (Figure 3.2A and B). The restriction site was used to differentiate the transgene from 

the endogenous Polrmt alleles in the mouse. Germline transmission and expression of the 

transgene was verified by PCR and subsequent HindIII restriction digest (Figure 3.2C). 

Quantification of the transgenic allele by pyrosequencing showed that a single copy of the 

transgene was integrated into the mouse genome (Figure 3.2D), which was consistent with a 

~50% increase in Polrmt transcript levels (Figure 3.2E) in heart and increased POLRMT 

protein levels in different mouse tissues (Figure 3.2F). 

 

 
Figure 3.2 | Generation of endogenous Polrmt overexpressing mice 
(A) Scheme of BAC modification strategy. Chr, chromosome; E, exons; asterisk point mutation. The targeted exon 
is depicted in purple and the modified exon in orange. Sequencing chromatogram is shown. (B) Southern blot of 
BAC construct after HindIII restriction digest. Scheme (left) illustrates location where the probe hybridizes and the 
size of the fragments. Orange triangle, introduced HindIII site; black triangles, HindIII sites in flanking sequences of 
Polrmt gene. (C) PCR and restriction digest analysis of the Polrmt BAC transgenic allele in genomic (gDNA) and 
reverse transcribed DNA (cDNA) from wild-type (+/+) and BAC transgenic Polrmt overexpressor (+/T) mice. (D) 
Pyrosequencing analysis of the ratio of wild-type (G) and transgenic (T) alleles in DNA isolated from tail biopsies in 
+/+ and +/T mice; n: 9 per genotype. (E) qRT-PCR analysis of steady-state Polrmt transcript levels in +/+ and +/T 
mouse hearts at different ages. Normalization: tata-binding protein (Tbp); ***p<0.001; ANOVA; n: 5 per genotype 
and age. (F) Western blot of POLRMT levels in +/+ and +/T in mitochondrial extracts from different tissues in 52-
week old mice. Loading: VDAC; Skm, skeletal muscle; BAT, brown adipose tissue. Percentage (%) is calculated 
relative to +/+ levels. Error bars ± sem.  
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3.1.2.  Polrmt only encodes a mitochondrial protein in mammals 
 
We evaluated the expression of the alternative transcripts of Polrmt containing intron 1 or intron 

2 sequences reported to encode spRNAP-IV (Kravchenko & Chumakov 2005; Kravchenko et 

al. 2005) in wild-type mice. We performed RT-PCR on cDNA prepared from different mouse 

tissues but, surprisingly, we did not detect the previously described alternatively spliced Polrmt 

transcripts (Figure 3.1A, 3.3A and B). Next, we performed western blot analyses using an 

antibody directed against mouse POLRMT. Although we detected a ~140 kDa protein which 

corresponds to the molecular weight of POLRMT, we did not find a ~110 kDa protein 

corresponding to the spRNAP-IV in heart, skeletal muscle, kidney, spleen, liver or brain (Figure 

3.3C). To further verify that the ~140 kDa protein corresponded to the mitochondrial isoform, 

we performed subcellular fractionation in wild-type mouse heart and found this protein enriched 

in the mitochondrial fraction (Figure 3.3D). Finally, we evaluated the steady-state transcript 

levels of the genes proposed to be transcribed by spRNAP-IV in mouse heart and skeletal 

muscle of the conditional Polrmt knockout. The expression of the sarcoplasmic/endoplasmic 

reticulum calcium ATPase2 (Serca2) was reduced in heart (Figure 3.3E) which is a common 

finding associated to cardiomyopathy (Arai, Matsui & Periasami 1994). Furthermore, the levels 

of mt-16S rRNA were strongly reduced in skeletal muscle consistent with the loss of mtDNA 

transcription (Figure 3.3F). However, none of the other nuclear genes reported to be 

transcribed by spRNAP-IV were reduced in expression.  
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Figure 3.3 | Polrmt does not encode a nuclear isoform in mouse  
(A-B) RT-PCR analysis of Polrmt RNA (cDNA) and genomic DNA (gDNA) from control (L/L) mice in heart (A) and 
additional mouse tissues (B). Different primer sets were used as indicated. (C) Western blot analysis of steady-
state POLRMT levels on total protein extracts from different tissues of L/L mice. Loading: VDAC, Tubulin, and 
Coomassie blue. (D) Western blot analysis of subcellular fractions from 4-week old L/L mouse hearts. Loading and 
purity of fractions: histone H3 and VDAC; arrow indicates ~110 kDa.  (E-F) qRT-PCR analysis of steady-state 
transcript levels of nuclear genes in L/L and conditional Polrmt knockout (L/L, cre) mouse heart (E) and skeletal 
muscle (F). Normalized to beta 2 microglobulin (B2m); n: 6 per genotype; *p<0.05, **p<0.01, ***p<0.001; two-tailed 
Student t test. From Kühl et al. 2014. 
 
 Since we did not detect spRNAP-IV in the mouse, we proceeded to evaluate whether 

POLRMT codes for spRNAP-IV in human cell lines. First, we verified that the antibody against 

human POLRMT was specific and recognised both isoforms by silencing POLRMT and 

transiently overexpressing human POLRMT-EGFP and spRNAP-IV-Flag in human cervix 

adenocarcinoma HeLa cells followed by western blot analysis (Figure 3.4A and B).  
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Figure 3.4 | Human POLRMT antibody detects POLRMT and spRNAP-IV in human cells 
(A) Western blot analysis of total protein extracts isolated from HeLa cells after one (TF1) or two (TF2) transfections 
with small interfering RNA (siRNA) against human POLRMT. The cells were also transfected with a plasmid 
encoding a POLRMT-EGFP fusion protein. Control, siRNA against GFP. (B) Western blot analysis of HeLa cells 
transfected with a plasmid encoding spRNAP-IV with a Flag tag. Membranes were incubated with antibodies against 
human POLRMT, GFP, or Flag M2. Loading: tubulin. From Kühl et al. 2014 
 

Next, we performed subcellular fractionation in HeLa cells followed by western blot 

analysis and only detected a ~140 kDa protein enriched in the mitochondrial fraction consistent 

with our mouse data (Figure 3.4A). To verify that it was not a cell line specific effect or that the 

function of POLRMT in mtDNA gene expression masked the expression of spRNAP-IV, we 

performed the subcellular fractionation in human osteosarcoma 143B cells and 143B cells 

without mtDNA (143r0) and detected exclusively the ~140 kDa mitochondrial protein (Figure 

3.4B). To further corroborate the exclusive mitochondrial localization of the ~140 kDa protein, 

we performed confocal microscopy using the endogenous POLRMT antibody (Figure 3.4C) 

and did not find the nuclear spRNAP-IV. As a control, we expressed spRNAP-IV fused to GFP 

and this construct strongly showed an extra-nuclear localization (Figure 3.4D). Finally, we 

performed RT-PCR experiments on genomic DNA (gDNA) and cDNA from different human 

cell lines to identify the alternative spliced POLRMT transcript, containing intron 1 sequences 

using the same primers as the original publication (Kravchenko & Chumakov 2005), but could 

not verify the existence of the alternative POLRMT transcript (Figure 4.3E). Collectively, our 

data in different human cell lines and mouse tissues conclusively show that Polrmt only 

encodes POLRMT which is exclusively a mitochondrial protein. 
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Figure 3.5 | Polrmt does not encode a nuclear isoform in human cells 
(A-B) Western blot analysis of subcellular fractions from HeLa (A), 143B and 143Br0 (B). Loading and purity of 
fractions: histone H3 and VDAC; arrow indicates ~110 kDa. (C) Immunostaining of endogenous POLRMT in HeLa 
cells. Scale bar: 25 mm. (D) Live-cell imaging of HeLa cells expressing spRNAP-IV fused to EGFP. Scale bar: 10 
µm. (E) RT-PCR analysis of Polrmt RNA (cDNA) and genomic DNA (gDNA) from different human cell lines. Primers 
are identical to those previously used by (Kravchenko & Chumakov 2005). From Kühl et al. 2014. 
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3.1.3.  Loss of POLRMT in heart causes dilated cardiomyopathy due to severe OXPHOS 

dysfunction 

 
We proceeded to study the function of POLRMT in mammalian mitochondria. Subsequent 

intercrosses of Polrmt+/− mice did not produce any viable homozygous Polrmt knockout mice 

(Polrmt-/-) (genotyped offspring, n: 56; Polrmt+/−: 66%, Polrmt+/+: 34%, Polrmt−/−: 0%). We 

therefore analysed staged embryos at embryonic day (E) 8.5 (n: 47) and found that 23% of the 

embryos had a mutant appearance and all had the genotype Polrmt−/−, whereas the normally 

appearing embryos were either Polrmt+/+ (28%) or Polrmt+/− (49%) (Figure 3.6). Thus, loss of 

POLRMT leads to embryonic lethality at E8.5.  

 

 
Figure 3.6 | Loss of POLRMT is embryonic lethal  
Morphology of +/+ and homozygous Polrmt knockout (-/-) embryos at E8.5. Scale bar: 0.5 mm.  
 

The heart and skeletal muscle conditional knockout mice died before 6 weeks of age 

(Figure 3.7A) and showed a progressive enlargement of the heart with dilation of the left 

ventricular chamber and no apparent increase in the left ventricular wall thickness (Figure 

3.7B). The development of dilated cardiomyopathy was further confirmed by a progressive 

increase in the heart to body weight ratio during the first weeks of postnatal life (Figure 3.7C).  

 

 
Figure 3.7 | Loss of POLRMT in the heart causes dilated cardiomyopathy 
(A) Survival curve of control (L/L; n: 60) and tissue-specific knockout (L/L, cre; n: 37) mice. (B) Histological analysis 
of cardiac phenotype: vertical (upper panels) and transverse (lower panels) sections through the midportion of 
hearts of L/L and L/L, cre mouse hearts at 4 weeks of age. Scale bars: 2 mm. (C) Heart to body weight ratio of L/L 
(n: 62) and L/L, cre (n: 57) at different time points. Error bars ± sem; ***p<0.001; two-tailed Student’s t-test. From 
Kühl et al. 2016. 
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Transmission electron microscopy of terminal-stage heart tissue revealed a profound 

disruption in the cardiac tissue ultrastructure where mitochondria had an abnormal appearance 

with disorganized cristae (Figure 3.8A) suggesting a severe mitochondrial defect. Analysis of 

OXPHOS capacity in Polrmt knockout hearts confirmed that the enzyme activities of 

complexes I, IV and V were decreased, whereas the activity of the exclusively nucleus-

encoded complex II was normal (Figure 3.8B). Moreover, blue native polyacrylamide gel 

electrophoresis analysis (BN-PAGE) showed reduced levels assembled complexes I, IV, and 

V (Figure 3.8C). The observed pattern of deficient OXPHOS sparing complex II is typically 

caused by impaired mtDNA gene expression (Cámara et al. 2011; Milenkovic et al. 2013; 

Ruzzenente et al. 2012). 
 

 
Figure 3.8 | Reduced OXPHOS capacity in Polrmt knockout mouse heart  
(A) Transmission electron micrographs of myocardium of 5-week old control (L/L) and tissue-specific knockout mice 
(L/L, cre). Scale bar upper panel: 2 µm, lower panel: 0.5 µm; n: 2 per genotype. (B) Relative enzyme activities of 
respiratory chain enzymes measured in heart mitochondrial extracts from L/L and L/L, cre mice at different ages. 
Citrate synthase was used as an internal control for normalization of the samples. The enzymes measured are: CS, 
citrate synthase; Complex II (CII), succinate dehydrogenase; Complex I (CI), NADH ubiquinone oxidoreductase; 
Complex IV (CIV), Cytochrome c oxidase; Complex V (CV), ATPase oligomycin sensitive. **p <0.01, ***p <0.001; 
two-tailed Student’s t-test; n: 4 per genotype; error bars ± sem; (C) BN-PAGE analyses of isolated mitochondria 
from 5-week old L/L and L/L, cre hearts. OXPHOS complexes were detected with subunit-specific antibodies or 
Coomassie Brilliant Blue staining. NDUFA9, CI; SDHA, CII, mt-CO2, CIV, ATP5A, CV. From Kühl et al. 2016. 
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3.1.4. Moderate alterations in POLRMT do not affect OXPHOS capacity 
 
Contrary to the complete loss of POLRMT, moderate changes on POLRMT levels did not 

cause any apparent phenotype. Heterozygous Polrmt knockout and Polrmt overexpressor 

mice were viable, fertile, and healthy after 1 year of age. Polrmt overexpressors had normal 

body weight until 20 weeks of age, and normal heart to body weight ratios at 13, 26, and 52 

weeks (Figure 3.9A-C). We next proceeded to evaluate whether moderately increased levels 

of POLRMT had an effect OXPHOS capacity. Western blot analyses of respiratory chain 

subunits showed normal levels of NDUFB8 (complex I), SDHB (complex II), UQCRC2 

(complex III), mt-CO1 (Complex IV) and ATP5A1 (complex V) in the Polrmt overexpressor 

mice (Figure 3.9D). Furthermore, there were no differences in the activity of the respiratory 

chain complexes (Figure 3.9E) and respiration capacity in heart (Figure 3.9F) or liver (data not 

shown). Taken together, our data show that moderate alterations in POLRMT levels do not 

affect mitochondrial OXPHOS capacity. 

 

 
Figure 3.9 | Polrmt overexpressor mice does not have any detectable effect on OXPHOS capacity 
(A) Histogram of genotype distribution of the wild-type (+/+) and Polrmt overexpressor (+/T) offspring; n.s: p>0.05; 
chi-square test. (B) Body weight curve of male (left) and female mice (right); n: 8-16 per sex and genotype (C) Heart 
to body weight ratio at different ages; n: 3-5 per age and genotype (D) Western blot of OXPHOS subunits levels in 
isolated mitochondria from heart at different ages; loading: SDHB (complex II; CII) and VDAC. (E) Relative enzyme 
activities of respiratory chain enzymes measured in mitochondria isolated from heart at 13 weeks of age. The 
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enzymes measured are: citrate synthase (CS); Complex I (CI): NADH ubiquinone oxidoreductase, Complex II (CII): 
succinate dehydrogenase, Complex II-III: Succinate dehydrogenase - cytochrome c reductase, Complex IV (CIV): 
Cytochrome c oxidase. CS was used as an internal control for normalization of the samples; n: 3 per genotype. (F) 
Oxygen consumption analysis on isolated mitochondria. Mitochondria were incubated with pyruvate, glutamate, 
and malate to deliver electrons to CI or with succinate and rotenone to deliver electrons to CII. Permeabilized cell 
respiration was analyzed in the phosphorylating (state3), non-phosphorylating (state4), and uncoupled states. n: 3 
per genotype. Error bars ± sem. 
 
3.1.5.  LSP-initiated transcription is favoured at low POLRMT levels 
 
Consistent with the function of POLRMT as the mitochondrial RNA polymerase, loss of 

POLRMT lead to a profound decrease in de novo transcription of mtDNA in the conditional 

Polrmt knockout heart (Figure 3.10A). Furthermore, northern blot and RNA sequencing 

analyses (RNA-Seq) showed a general reduction in the steady-state levels of all mt-mRNAs, 

mt-rRNAs and mt-tRNAs (Figure 3.10B-D). Thus, no other protein can compensate for the loss 

of POLRMT in mammalian mitochondria. Notably, we observed that the steady-state levels of 

most of the mitochondrial transcripts encoded on the L strand, i.e. mt-Nd6, mt-Tp, mt-Te, mt-

Ts2, mt-Tc, mt-Tn, and mt-Tq, were less reduced than transcripts encoded on the H strand, 

i.e. mt-12S rRNA, mt-16S rRNA, mt-Nd1, mt-Co1, mt-Co2, mt-Co3, mt-Nd5, mt-Cytb, mt-Tf, 

mt-Tl1, mt-Tm, mt-Tk, mt-Tl2 and mt-Tt (Figure 3.10B-D). To determine whether the difference 

in mitochondrial steady-state transcript levels was due to promoter-specific transcription 

initiation effects due to low POLRMT levels, we performed in vitro transcription assays (Figure 

3.10E and F). We detected a strong reduction of the transcription initiation from an HSP 

containing construct in comparison to the LSP at POLRMT concentrations below 32 nM (Figure 

3.10E and F), indicating that transcription initiation at the LSP is stronger at low POLRMT 

levels. 
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Figure 3.10 | LSP and HSP show different sensitivities at low POLRMT concentrations  
(A) De novo synthesized mitochondrial transcripts from hearts of 4-week old control (L/L) and conditional knockout 
(L/L, cre) mice. Steady-state levels of individual mitochondrial transcripts were verified with a radiolabelled probe 
(mt-Co1); input: western blot analysis of VDAC on radiolabelled mitochondria. (B-C) Northern blot analyses of mt-
mRNAs, mt-rRNAs and mt-tRNAs from hearts of 4-week old L/L and L/L, cre mice; loading: 18S rRNA. (D) RNA-
Seq of mt-mRNA and mt-rRNA levels in hearts of 4-week old L/L, cre and L/L mice normalized to the upper quartile 
of the gene count distribution. All mt-RNAs have p≤ 0.0001; n: 3 mice per genotype; error bars: ± sem. (E) In vitro 
transcription assay at different POLRMT levels. All reactions contained a cut plasmid template containing the human 
LSP and HSP promoters giving a run-off product of 101 nt and 180 nt, respectively. POLRMT was added at 128, 
32, 8, 2, 0.5 nM in lanes 1-5 respectively; lane 6: control without POLRMT; lane 7: molecular weight marker (New 
England Biolabs). (F) Quantification of the results from D. HSP transcription levels were normalized to LSP for each 
POLRMT concentration; n: 3 independent experiments; error bars: ± sd; from Kühl et al. 2014, 2016. 
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3.1.6.  POLRMT is essential for mammalian mtDNA replication  
 
Since in vitro studies have suggested that transcription initiation from the LSP also forms the 

primers required to initiate mtDNA replication (Gillum & Clayton 1979), we evaluated the effect 

of loss of POLRMT in mtDNA replication. 7S RNA is the most promoter-proximal transcript 

formed by transcription initiation at the LSP of mtDNA (Gillum & Clayton 1979) and we found 

this transcript strongly reduced in Polrmt knockout hearts (Figure 3.11A). To further investigate 

this in vivo, we evaluated the steady-state levels of 7S DNA and found them also severely 

reduced pointing to a defect in mtDNA replication (Figure 3.11B). In line with this, there was a 

strong depletion of mtDNA in the Polrmt knockout hearts (Figure 3.11C and D). Next, we 

performed in organello mtDNA replication experiments to determine whether the reduced 

levels of 7S DNA and mtDNA molecules were due to decreased formation or increased 

degradation. We found 7S DNA and mtDNA de novo synthesis severely reduced (Figure 

3.11E) suggesting a defect in initiation of mtDNA replication. Collectively, our data demonstrate 

that POLRMT is required for mtDNA replication in vivo.  

 

 
Figure 3.11: Decreased mtDNA replication in Polrmt knockout mice 
(A) Northern blot of 7S RNA levels of total RNA from control (L/L) and tissue-specific knockout (L/L, cre) hearts at 
different ages; loading: 18S rRNA. RNA from hearts of Mterf4 conditional knockout mice (Cámara et al. 2011) with 
increased 7S RNA levels were loaded as controls. (B) Southern blot analysis on mtDNA to assess 7S DNA levels 
of 4-week old L/L and L/L, cre mice. To allow relative comparison, the loaded amount of mtDNA from knockouts 
was higher than the amount loaded from control samples. (C) Southern blot analyses on total DNA to assess mtDNA 
levels of L/L and L/L, cre mice at different ages; loading: 18S rDNA. (D) Quantification of Southern blots. mtDNA 
levels were normalized to 18S rDNA and presented as the percentage of L/L. Error bars: ± sem; **p <0.01; two-
tailed Student’s t-test. (E) De novo synthesized mtDNA of isolated heart mitochondria of 4-week old L/L and L/L, 
cre mice; input: western blot analysis of VDAC after labelling. From Kühl et al. 2016. 
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3.1.7.  Heterozygous Polrmt knockout mice show increased TEFM levels and maintain 

mitochondrial transcription  

 
To assess the effect of moderate reduction of POLRMT in mtDNA replication and transcription 

we characterized the heterozygous Polrmt knockout mice. There was no significant effect on 

the steady-state levels of mt-mRNAs, mt-rRNAs and mt-tRNAs in the heterozygous Polrmt 

knockout mice (Figure 3.12A). Consistent with the normal mt-mRNA levels, the steady-state 

levels of LRPPRC, known to bind and stabilize mt-mRNAs (Ruzzenente et al. 2012), were not 

changed (Figure 3.12B). RNA-Seq analysis showed that the mt-Nd6 transcript encoded on the 

L strand was slightly reduced, whereas all other mt-rRNAs and mt-mRNAs encoded on the H 

strand showed a tendency to be increased in heterozygous Polrmt knockout hearts at 26 

weeks of age, however not significant (Figure 3.12C). Interestingly, we observed a strong 

increase in TEFM protein levels (Figure 3.12B), which may provide a compensatory response 

to the decreased levels of POLRMT by promoting productive full-length transcription 

heterozygous Polrmt knockout mice. This hypothesis was supported by the slight increase in 

de novo transcription in heart mitochondria (Figure 3.12D). The other components of the basal 

transcription machinery, TFAM and TFB2M, remained unchanged (Figure 3.12B). 

Furthermore, the levels of 7S RNA and mtDNA were normal (Figure 3.12E and F), thus 

showing that promoter proximal transcription at LSP is sufficient to maintain mtDNA replication 

and gene expression. Finally, de novo formation of 7S DNA was not decreased when POLRMT 

was reduced (Figure 3.12G). Consistent with normal mtDNA levels and replication, TFAM, 

TWINKLE, POLgA, and SSBP1 protein levels remained unchanged. Thus, a moderate 

reduction of POLRMT expression does not affect overall mtDNA replication or transcription. 
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Figure 3.12 | Characterization of heterozygous Polrmt knockout mice  
(A) Northern blot of analysis of mt-mRNAs, mt-rRNAs and mt-tRNAs in wild-type (+/+) and heterozygous knockout 
(+/-) mice; loading control: 18S rRNA. (B) RNA-Seq on mitochondrial mt-mRNAs and mt-rRNA in heart of 26-week 
old +/+ and +/- mice; normalized to upper quartile of the gene count distribution; n: 3 per genotype. (C) Western 
blot of levels of nDNA factors of mtDNA gene expression analysed on heart mitochondrial extracts of +/+ and +/- 
mice; loading: VDAC; asterisk: cross-reacting band. (D) De novo synthesized mitochondrial transcripts from heart 
of 52-week old mice in +/+ and +/- mice. Steady-state levels of individual mitochondrial transcripts were verified 
with a radiolabelled probe (mt-Co1); input: western blot analysis of POLRMT and VDAC after labelling. (D) Northern 
blot of 7S RNA levels in mouse hearts of +/+ and +/- mice; loading: 18S rRNA. (E) qPCR determination of mtDNA 
levels in +/+ /- mice with mt-Co1, mt-Nd1 and mt-Nd5 probes on mouse heart. Normalization: 18S rDNA; n: 3 per 
genotype. (F) De novo synthesized mtDNA of isolated mitochondria from hearts of 12-week old +/+ and +/- mice. 
Radioactively labelled mtDNA was boiled to release newly synthesized 7S DNA prior Southern blotting; input: 
western blotting of POLRMT and VDAC after labelling. Error bars ± sem. From Kühl et al. 2016.  
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3.1.8. POLRMT is a limiting factor for transcription initiation in vivo 
 
We then studied the effect of Polrmt overexpression on mtDNA replication and transcription in 

mouse heart. 7S RNA levels were significantly increased in different tissues of the Polrmt 

overexpressor mice (Figure 3.13A) and the levels were maintained at different ages (Figure 

3.13B and C). To evaluate whether this increased transcription initiation from LSP affected 

mtDNA replication, we performed Southern blot analysis and found a mild but significant 

increase in mtDNA levels (~17%) in Polrmt overexpressor mouse hearts (Figure 3.13D and 

E). In line with this, de novo mtDNA synthesis had the tendency to be increased (Figure 3.13F 

and G), suggesting that increased POLRMT levels might have a minor effect on mtDNA 

replication.  
 

 
Figure 3.13 | Increased 7S RNA levels in Polrmt overexpressor mice 
(A) Northern blot analysis of 7S RNA levels in different tissues of a wild-type (+/+) and overexpressor (+/T) 52-week 
old mice. (B) Northern blot analyses of 7S RNA levels in heart and at different ages. (C) Quantification of 7S RNA 
levels at different ages. Normalization 18S rRNA. ***p<0.001; ANOVA; n: 3-6 per age and genotype. (D-E) Southern 
blot analysis and quantification of mtDNA levels in heart of 14-week old mice. Normalization 18S rDNA. *p<0.05; 
two-tailed Student’s t-test; n: 4 per genotype. (F-G) In organello replication on isolated mitochondria from heart at 
different ages (F) and quantification (G). Input: Western blot of VDAC and steady-state mtDNA levels. 
Normalization: steady-state mtDNA levels; n: 5 per genotype. Error bars ± sem. 
 

Consistent with the increased 7S RNA steady-state levels, we found a strong increase 

in de novo transcript synthesis in isolated mitochondria from heart of Polrmt overexpressor 

mice (Figure 3.14A and B). There was no accumulation of specific transcription products 

indicating that the increase in de novo transcription is homogeneous and that there is normal 
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processing of the polycistronic mt-RNAs. Despite the strong increase in de novo transcript 

synthesis, steady-state levels of mt-RNAs were not changed except for the precursor mt-

Nd5/mt-Cytb, mt-Cytb, and mt-Tf that were mildly increased (Figure 3.24C-E). 

 

 
Figure 3.14 | Increased de novo transcription in Polrmt overexpressor mice 
(A) De novo synthesized mitochondrial transcripts from hearts of 14-week old wild-type (+/+) and overexpressor 
(+/T) mice. Steady-state levels of individual mitochondrial transcripts were verified with a radiolabelled probe (mt-
Nd6); input: western blot analysis VDAC on radiolabeled mitochondrial extracts. (B) Quantification of de novo 
synthesized mitochondrial transcripts of mice at different ages (14 and 26 weeks of age) normalized to VDAC and 
+/+. *p<0.05; one-sample Student’s t-test; µ: 100; n: 10 per genotype. (C) RNA-Seq of mt-rRNAs and mt-mRNAs 
on total RNA from heart of 14-week old mice. n: 3 per genotype (D) Northern blot analyses of mt-RNA levels in 
heart of 14-week old mice. (E) Quantification of mt-RNA levels; normalization 18S rRNA; *p<0.05; two-sample 
Student t-test; n: 6 per age and genotype. Error bars ± sem.  
 

Next, we evaluated the protein levels of factors required for mtDNA maintenance 

(TFAM), replication (TWINKLE, SSBP1, POLRMT), transcription (POLRMT, TFAM, TEFM, 

TFB2M), RNA processing and stability (GRSF1, ELAC2, LRPPRC, and SLIRP), and 

translation (MRPL12, MRPL37, and MRPS35) (Figure 3.15A) and found no differences except 

for POLRMT. To identify if other factors involved in mitochondrial RNA metabolism vary in the 

Polrmt overexpressor mice, we performed a label-free proteomic analysis on purified 

mitochondria isolated from heart, skeletal muscle, and liver. We did not detect any 

mitochondrial protein involved in mt-RNA metabolism to be upregulated in any of the tissues; 

in fact, the majority of significantly changed proteins were downregulated (Figure 3.15B). We 
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did not identify common proteins with differences in expression in the three tissues except for 

an isoform of glutaminase (GLS) that was downregulated in heart and liver. In heart, the ATP-

dependent RNA helicase SUPV3L1 and TFB1M were ~20 and ~50% decreased, respectively 

(Figure 3.29B). Interestingly, in the skeletal muscle, the 12S rRNA chaperone Era G-protein 

like 1 (ERAL1) was also 50% decreased in the Polrmt overexpressor mice (Figure 3.28B). 

Other proteins involved in mtDNA gene expression such as MRPL22, MRPL57, MRPL12, were 

changed in heart, and FASTKD2 in skeletal muscle, and MRPS12 in liver. These potential 

changes still have to be validated by western blot. Since additional factors required for 

mitochondrial transcription, i.e. TFAM, TEFM, and TFB2M, were not changed in Polrmt 

overexpressor mice (Figure 3.15A), our data argues that POLRMT is limiting mitochondrial 

transcription and, potentially, mtDNA replication. However, the system is very robust and 

maintains steady-state transcripts at wild-type levels. 
 

 
Figure 3.15 | Mitoproteome of Polrmt overexpressor mice in different tissues 
(A) Western blot of factors required for mtDNA gene expression in control (+/+) and Polrmt overexpressor (+/T) 
mice. Loading: VDAC. (B) Volcano plots of mitoproteomic analyses of heart, skeletal muscle, and liver in 52-week 
old mice; adj. p value: Benjamini-Hochberg adjusted p value; n: 5 per genotype; grey dots: p>0.05; black dots: 
p<0.05; dotted line, p=0.05. 
 

3.1.9. Polrmt overexpression increases transcription capacity 

 
We hypothesized that discrepancy between de novo transcription and steady-state transcript 

levels in the Polrmt overexpressor mice was explained by lack of stability due to limiting RNA 
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binding proteins stabilizing the newly synthesized transcripts. To test this hypothesis, we 

performed pulse-chase in organello transcription labelling experiments but did not find 

differences in RNA stability between wild-type and Polrmt overexpressor mice after 2 h chase 

(Figure 3.16A and B). Furthermore, we crossed the Polrmt overexpressor mice to mice 

overexpressing Lrpprc (Figure 3.16C) (Ruzzenente et al. 2012) to increase the stability of de 

novo synthesized transcripts in vivo. Importantly, overexpression of Lrpprc alone does not 

affect de novo transcript synthesis or mature steady-state mt-RNAs (Harmel et al. 2013). 

However, the steady-state transcript levels remained at wild-type levels even when POLRMT 

and LRPPRC are moderately increased (Figure 3.16D).  
 

 
Figure 3.16 | Stability of mt-RNAs is not affected in Polrmt overexpressor mice  
(A) De novo synthesized mitochondrial transcripts from hearts of 26-week old wild-type (+/+) and overexpressor 
(+/T) mice (pulse). The mRNA decay of de novo synthesized transcripts was followed after 2h (chase). Input: 
western blot analysis VDAC on radiolabelled mitochondrial extracts. (B) Quantification of de novo synthesized 
mitochondrial transcripts normalized to VDAC and pulse signal; n: 4 per genotype. (C) Western blot of steady-state 
POLRMT and LRPPRC level in mitochondrial extracts from heart. Loading: VDAC. (D) RNA-Seq of mt-rRNAs and 
mt-mRNAs on total RNA from heart of 14-week old Polrmt overexpressor or Polrmt and Lrpprc overexpressor mice. 
n: 3 per genotype (D) Northern blot analyses of mt-RNA levels in heart of 14-week old mice. (E) Quantification of 
mt-RNA levels; normalization 18S rRNA; n: 6 per age and genotype. *p<0.05; two-sample Student t-test; Error bars 
± sem.  
 

Interestingly, increased POLRMT levels have been reported as a compensatory 

response to loss of mtDNA replication in the heart  of Twinkle conditional knockout mice 

(Milenkovic et al. 2013). We verified the protein levels of POLRMT in different knockout mouse 

strains with impaired mtDNA gene expression and found it increased in all the models (Figure 

3.17A). However, Polrmt transcript levels were slightly decreased or not significantly changed 

(Figure 3.17B). These data indicate that the increase in POLRMT is not a compensatory 

response mediated at the transcriptional level and rather suggest that POLRMT is either more 
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translated or stabilized post-transcriptionally in mtDNA gene expression deficient mice. Thus, 

our data suggest that increasing POLRMT increases the transcription capacity but under 

normal physiological conditions this increase is not used further and results in the accumulation 

of prematurely terminated transcription products. However, under pathological conditions it 

might be a mechanism to rapidly increase mtDNA gene expression as a compensatory 

response.  

 

 
Figure 3.17 | POLRMT is increased in mouse models deficient in mtDNA gene expression 
(A) Western blot of POLRMT levels in mitochondrial extracts from heart from control (L/L) and knockout (L/L, cre) 
mice. Loading: VDAC. (B) RNA-Seq transcript levels of Polrmt from L/L, cre compared to L/L mice. *p<0.05, 
***p<0.001. Modified from Kühl, Miranda et al. 2017 

 

3.1.10.  Secondary changes in levels of proteins involved in mtDNA gene expression upon loss 

of POLRMT 

 
To study additional molecular changes associated with loss of mtDNA replication and 

transcription in the Polrmt knockout mouse, we assessed the expression of known nuclear-

encoded mitochondrial proteins involved in mtDNA gene expression. Despite the strong 

reduction in mtDNA replication, the protein levels of TFAM, SSBP1 and POLgA remained 

unchanged whereas the TWINKLE helicase was strongly upregulated (Figure 3.18A). 

Transcript levels of Tfam were increased by ~50% in Polrmt knockout mice suggesting an 

increase in TFAM synthesis (Figure 3.18B). To determine whether TFAM was stabilized by 

binding to the remaining mtDNA in the nucleoid, we performed linear density glycerol 

gradients. Nucleoid-containing fractions were determined by the presence of mtDNA, which 

was verified by Southern blot and the presence of mtDNA replication factors like TWINKLE 

and POLgA (Figure 3.18C). Surprisingly, in mitochondria isolated from Polrmt knockout hearts 

there was a clear increase of TFAM in the mtDNA-free fractions (Figure 3.18D and E) that is 

thus not degraded by LONP1 despite the increased steady-state levels of LONP1 (Figure 

3.18A). The other two transcription factors in mitochondria, TFB2M and TEFM, show opposite 

patters. Steady-state protein levels of TFB2M are drastically reduced the absence of POLRMT 

suggesting that POLRMT is required for its stability, whereas TEFM is stable or slightly 

increased in Polrmt knockout hearts.  
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Figure 3.18 | mtDNA-free pool of TFAM increases in Polrmt knockout hearts 
(A) Western blot analysis of steady-state protein levels of nDNA factors required for mtDNA gene expression on 
mitochondrial extracts from hearts of control (L/L) and tissue-specific knockout (L/L, cre) mice at different ages; 
loading: VDAC; asterisk: cross-reacting band. (B) qRT-PCR of transcript levels of nDNA mitochondrial proteins in 
L/L and L/L, cre mouse hearts. Normalization: beta 2 microglobulin (B2m). *p<0.05, **p<0.005, ***p<0.001; 
Student’s t-test; n: 5-21 per genotype; error bars: ± sem. (C-D) Linear glycerol density gradient fractionations of 
mitochondrial lysates from L/L and L/L, cre followed by western blot analysis and Southern blot. Gel numbers (1 to 
16) correspond to fractions with increasing density as indicated in the scheme in the left. mtDNA-containing fractions 
was determined by Southern blotting. (E) Relative TFAM and POLRMT protein distribution across the gradient from 
L/L and L/L, cre mice. From Kühl et al. 2016. 
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At the RNA processing level, both ELAC2 and GRSF1 were strongly increased in Polrmt 

knockout hearts (Figure 3.18A). On the contrary, LRPPRC is strongly decreased in line with 

the decreased mt-mRNA levels (Figure 3.18A) (Ruzzenente et al. 2012; Sasarman et al. 2010). 

Loss of POLRMT also lead to a decrease in proteins of small and large mitoribosomal subunits 

(MRPS35 and MRPL37), but not of MRPL12 that is suggested to have an additional role in 

mtDNA transcription (Surovtseva et al. 2011). In agreement with the loss of mtDNA gene 

expression and OXPHOS capacity (Figure 3.14), levels of mtDNA-encoded cytochrome c 

oxidase subunits 1 and 2 (mt-CO1 and mt-CO2) are decreased upon loss of POLRMT (Figure 

3.18A). Thus, loss of POLRMT affects protein levels of factors in several steps of mtDNA gene 

expression probably because they depend on the presence of POLRMT, mtDNA, or mt-RNAs 

for their stability or to compensate for the loss of these essential functions.
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3.2. The cellular transcriptome and mitochondrial proteome of OXPHOS deficient 
mouse heart 

 
3.2.1.  An integrated omics approach to study loss of mtDNA gene expression and progressive 

OXPHOS deficiency  

 
To obtain a comprehensive view of the cellular processes affected by OXPHOS dysfunction, 

we determined the cellular transcriptome and mitochondrial proteome (mitoproteome) from 

heart of five conditional knockout mouse strains deficient on genes essential for mtDNA gene 

expression that had been previously characterized in the laboratory. Mitochondrial DNA gene 

expression was disrupted at the level of replication (Twnk; Milenkovic et al. 2013), 

maintenance (Tfam; Larsson et al. 1998), transcription (Polrmt; section 3.1 of this thesis; Kühl 

et al. 2014; Kühl et al. 2016), RNA processing and stability (Lrpprc; Ruzzenente et al. 2012), 

and translation (Mterf4; Cámara et al. 2011). All of these knockouts have a drastically reduced 

lifespan ranging from <6 – 21 weeks of age due to severe cardiomyopathy caused by 

progressive OXPHOS dysfunction (Figure 3.19A; Table 3.1).  
 
Table 3.1: Summary of the main characteristics of the tissue-specific mouse strains 
Mouse strain Twnk Tfam Polrmt Lrpprc Mterf4 

Gene product Mitochondrial 
DNA replicative 
helicase 
TWINKLE 

Mitochondrial 
transcription 
factor A 

Mitochondrial 
RNA 
polymerase 

Leucine-rich 
pentatrico-
peptide repeat 
containing 
protein 

Mitochondrial 
transcription 
termination 
factor 4 

Lifespan 
(weeks) 

<19 <10 <6 <16 <21 

mtDNA levels ¯ ¯ ¯ ~ ­ 

mt-RNA levels ¯ ¯ ¯ ¯* ­ 

OXPHOS ¯ ¯ ¯ ¯ ¯ 

Reference Milenkovic et al. 
2013 

Larsson et al. 
1988 

This thesis; 
Kühl et al. 
2014; 2016 

Ruzzenente et 
al. 2011 

Cámara et al. 
2011 

* except mt-12S rRNA, mt-16S rRNA, mt-Nd6, and most mt-tRNAs. 
Arrows: increase or decrease; ~ not changed. 

From Kühl, Miranda et al. 2017 
 

The cellular transcriptome was determined using RNA-Seq on total RNA isolated from 

heart of all the knockouts at their end-stage and corresponding age-matched controls. In 

parallel, we determined the mitoproteome of all the knockout strains using label-free mass 

spectrometry quantification (LFQ) on percoll-purified mitochondria from heart (Figure 3.19B). 

The transcriptomic and mitoproteomic data was used to generate three datasets. First, we 

characterized the changes in mitochondrial biogenesis and gene expression in a time-course 

analysis of wild-type or control mice from infancy (3 weeks) until adulthood (26 weeks). 

Second, we performed differential expression analysis of each knockout compared to its age-

matched control which resulted in a catalogue of expression profiles of genes encoding 
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mitochondrial proteins affected by loss of mtDNA gene expression at different stages and 

severe OXPHOS deficiency. Third, we complemented our knockout comparison with a 

temporal mitoproteomic analysis of heart of Lrpprc conditional knockouts and age-matched 

controls at 2, 3, 5, 7 and 10 weeks of age to study the progression of OXPHOS deficiency 

(Figure 3.19B and C).  

 

 
Figure 3.19 | Omics approach to study progressive OXPHOS dysfunction  
(A) Schematic representation of the tissue-specific knockout (L/L, cre) mouse strains with disrupted mtDNA gene 
expression and corresponding controls (L/L). mtDNA-encoded proteins are depicted in blue and nDNA 
mitochondrial proteins in yellow. (B) Experimental workflow of data acquisition and analysis of the transcriptome 
and mitoproteomes from mouse heart generating three datasets (1-3). (C) Western blot (left) and LFQ quantification 
(right) of LRPPRC steady-state levels in time-course analysis of Lrpprc knockout strain. Loading: VDAC. From Kühl, 
Miranda et al. 2017. 
 

Filtering for mitochondrial proteins in all datasets was performed based on MitoCarta 

2.0 (Calvo, Clauser & Mootha 2016) and all differentially regulated mitochondrial transcripts or 

genes were manually classified into 18 functional categories based on annotated functions in 

Uniprot database (The UniProt Consortium 2017) and literature search (Table 3.2; Figure 

3.19B).  
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Table 3.2: List of manually classified functional categories 
Functional category 
 

Apoptosis 
Degradation and stress response 

Iron sulphur cluster and heme biogenesis 

Lipid and acetyl CoA metabolism 
Mitochondrial transcription and mt-RNA metabolism 

Mitochondrial 1C pathway 

Mitochondrial carriers or transport 
Mitochondrial import and chaperones 

Mitochondrial morphology 

Mitochondrial ribosome 
mtDNA maintenance and replication 

Nucleotide synthesis 

Other mitochondrial protein synthesis factors 

OXPHOS 
OXPHOS assembly and biogenesis 

Pyruvate and amino acid metabolism 

Ubiquinone biosynthesis 
Other 
 

 

The resulting databases from this study were published as a resource and are available 

to the scientific community (Kühl et al. 2017). 

  
3.2.2.  Technical considerations of transcriptomic and mitoproteomic data acquisition and 

analysis 

 
The heart is a complex tissue with a high dynamic range in terms of RNA and protein 

abundance. RNA-Seq techniques have a broad dynamic range which allows the accurate 

quantification of lowly and highly abundant transcripts simultaneously. This was reflected in 

the >27000 quantified transcripts in the different knockout strains, from which ~1118 encode 

mitochondrial proteins. In proteomics, however, the dynamic range is still problematic as highly 

abundant proteins limit the detection of lowly abundant ones. It was recently shown that 

mitochondrial contribution to the total heart protein mass in humans ranges from 2 to 21% 

depending on the heart region (Doll et al. 2017). Therefore, we analysed isolated heart 

mitochondria that had been purified on percoll gradients to reduce the complexity of the 

samples and gain more depth in our mitoproteome mass spectrometry analyses. We had a 

very high enrichment of mitochondrial proteins which accounted for ~99% of the total protein 

mass quantified. In total, we identified ~1000 proteins in the different knockout strains from 

which ~750 were quantified and ~650 were mitochondrial (Figure 3.20A). We did not find any 

significant bias in the detection of proteins based on their charge or hydrophobicity as 
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evidenced by cumulative distribution plots of the quantified and non-quantified proteins versus 

isoelectric point or GRAVY score, respectively (Figure 3.20B and C). However, we still had a 

significant bias against the detection of lowly abundant proteins (Figure 3.20D).  

 

 
Figure 3.20 | Enrichment of mitochondrial proteins and systematic bias in mitoproteome data acquisition. 
(A) Number of identified, quantified, and mitochondrial proteins in each knockout mouse strain. Error bars: ± sem. 
(B-D) Cumulative distribution of quantified mitochondrial proteins based on isoelectric point as a measure of charge 
(B), GRAVY score as a measure of hydrophobicity (C), and mean RNA count of control (L/L) samples across all 
mouse strains as a measure of protein abundance (D). Isoelectric point and GRAVY scores were calculated using 
the amino-acid sequence of each protein without the first methionine and predicted N-terminus mitochondrial 
targeting sequence. Black, quantified in at least one knockout strain; red, not quantified. From Kühl, Miranda et al. 
2017. 
 

To evaluate the reproducibility in the data acquisition we calculated the Pearson 

correlation of the normalized counts for transcriptomics and LFQ intensity for proteomics. We 

had a very high reproducibility with Pearson correlation coefficient > 85% across all samples 

and > 95% between biological replicates for both, transcriptomics and proteomics (Figure 

3.21). The high reproducibility and good number of biological replicates for a mouse omics 

study (n > 3 for all the analyses) allowed us to have good statistical robustness for subsequent 

analyses.  
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Figure 3.21 | High reproducibility of transcriptomic and mitoproteomic data 
(A-B) Heatmaps showing the Pearson correlation coefficient (r) for RNA-Seq normalized counts (A) and LFQ 
intensity (B) of all the controls (L/L) and knockouts (L/L, cre). As an example, a scatter plot for the LFQ intensity 
values and r for two Polrmt L/L, cre samples is shown. Each square represents the comparison of two biological 
samples. Heatmaps were generated using the same scale. From Kühl, Miranda et al. 2017. 
 

 Standard inclusion criteria for proteomic data analysis filters for proteins that are 

quantified in at least half of the samples analysed. However, we included all the proteins that 

were quantified in at least half of the samples of a single genotype in the comparison of the 

knockouts to identify proteins that are lowly abundant in one genotype (i.e. controls or 

knockouts) but are present at detectable levels in the other genotype. The missing values were 

imputed following standard procedures which assume that missing values are normally absent 

because they correspond to lowly abundant proteins and thus imputed values normally fall in 

the lower quantification range. To assess the effect of the filtering criteria and data imputation 

we plotted the average LFQ intensity versus the fold-change (knockouts / controls) and found 

that lowly abundant proteins in controls tend to have high fold-change values whereas lowly 

abundant proteins in the knockouts tend to have low fold-change values (Figure 3.22). The 

proteins that presented this pattern have several imputed values indicating that quantification 

of proteins that are present in one genotype but not the other is largely influenced by imputed 

values and, therefore, the fold-change estimations are not accurate. Despite this bias in the 

fold-change estimations of lowly abundant proteins, the filtering criteria used allowed us to gain 

valuable biologically relevant information such as the previously described loss of SLIRP when 

LRPPRC is absent (Ruzzenente et al. 2012) or the increase in proteins of the 1C or proline 

synthesis pathways (discussed in section 3.2.8). 
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Figure 3.22 | Lowly abundant proteins have broader fold-change distribution 
MA plots showing the fold-change distribution in the mitoproteome mice compared to the average LFQ intensity of 
control (L/L) (top) and knockout (L/L, cre) (bottom) mice per knockout mouse strain. Black, p < 0.05, grey, p > 0.05 
in differential expression analyses of L/L, cre versus L/L. From Kühl, Miranda et al. 2017. 
 
3.2.3.  Mitochondrial remodelling during normal post-natal development of mouse heart is 

mainly regulated at the post-transcriptional level  

 
To get a better understating of the normal post-natal development of mitochondria in mouse 

heart during the time encompassing the lifespan of the knockout strains used in this study, we 

compared the mtDNA levels, mitoproteome, and total cellular transcriptome of wild-type or 

control mice from infancy (2-3 weeks) until adulthood (26 weeks) (Figure 3.19B). Mitochondrial 

DNA content increases steadily in mouse heart until 6 weeks of age (Figure 3.23A) and protein 

levels of traditional markers of mitochondrial biogenesis such as TFAM and the voltage 

dependent anion channel 1 (VDAC) follow this trend (Figure 3.23B). We therefore evaluated 

the transcript levels of factors regulating mitochondrial biogenesis in heart and did not find 

differences in gene expression between the different time-points analysed (Figure 3.23C). 

Furthermore, only 14% of the transcripts of genes encoding mitochondrial proteins were 

differentially regulated (Figure 3.23D) suggesting that there is not a major shift in the 

transcriptional regulation of mitochondrial biogenesis after 3 weeks of age in mouse heart. In 

contrast, differential expression analyses of the mitoproteome showed that 391 out of the 756 

mitochondrial proteins quantified in control mice changed during post-natal development 

(Figure 3.23E). 
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Figure 3.23 | Rapid post-natal increase of mtDNA levels and factors required to express mtDNA in wild-type 
mouse heart 
(A) mtDNA levels determined by qPCR on total cellular DNA isolated from heart of wild-type (+/+) mice at different 
ages. Normalization: 18S rDNA. Error bars ± sem of technical replicates. (B) Western blot quantification of nDNA 
mitochondrial proteins on heart protein extracts of wild-type mice. Normalization: a-tubulin. Percentage (%) was 
calculated relative to the average normalized value of all the time-points. (C) Expression level of genes encoding 
transcription factors involved in mitochondrial biogenesis in heart of control (L/L) mice at different ages measured 
by RNA-Seq. (D-E) Venn diagrams illustrating the number genes encoding mitochondrial that are differentially 
expressed during post-natal development of L/L mouse heart at the transcript (D) and protein (E) level. m.a. = 
mature adulthood. Modified from Kühl, Miranda et al. 2017. 
 
 To evaluate the changes in protein levels through time we performed hierarchical 

clustering analysis on the differentially expressed proteins. 91.3% of the proteins were 

distributed in four main clusters with distinct patterns of protein abundance (Figure 3.24A and 

B). Clusters 1 and 4 contained most mitochondrial proteins and had opposite patterns of 
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protein expression; while proteins from cluster 1 increase in abundance until 8 weeks of age, 

proteins from cluster 4 decrease. Clusters 2 and 3 also showed opposite patterns where 

proteins from cluster 2 decrease between 4 to 8 weeks and then increase to the original level 

between 9 and 12 weeks and proteins from cluster 3 increase until 8 weeks of age and then 

decrease between 9 and 12 weeks (Figure 3.24B). Next, we performed category enrichment 

analyses on each of the clusters using our manual functional category annotations (Table 3.2).  

Cluster 1 had an enrichment of proteins involved in pyruvate, amino acid and lipid metabolism 

(Figure 3.24B). Noteworthy, several proteins required for branched-chain amino acid 

metabolism and b-oxidation of fatty acids are in this cluster. Cluster 2 contained 50% of the 

significantly changed OXPHOS proteins and cluster 3 contained proteins involved in 

mitochondrial transcription, RNA metabolism and protein synthesis. Interestingly, cluster 4 had 

an enrichment of mitoribosomal proteins containing 93% of the proteins in this category (Figure 

3.24B).  

 

 
Figure 3.24 | Mitoproteome changes during post-natal development of mouse heart 
(A) Dendrogram of hierarchical clustering analysis heatmap of mitoproteomes of control (L/L) mice. Fold-changes 
relative to 3-week-old mice were Z-scored normalized. Proteins in grey (rest) were not classified in the main clusters. 
(B) Cluster analysis. From left to right: pie chart illustrating the distribution in percentage of differentially expressed 
mitochondrial proteins in each cluster (1-4), in white: not classified; protein distribution patterns through time on 
each cluster; category enrichment analysis of proteins on each cluster. Top three categories are presented. Dotted 
line: Benjamini-Hochberg adjusted p < 0.05. Parenthesis indicate the number of significantly changed proteins in 
that category / total number of proteins in that category. m.a = mature adulthood. From Kühl, Miranda et al. 2017. 



 56 

2D annotation enrichment analysis (Cox & Mann 2012) of the mitochondrial transcripts 

and proteins at the different time-points showed that the global decrease on the mitoribosomal 

proteins is most-likely explained by decreased protein stability as the transcript level of most 

of these proteins is not changed (Figure 3.25A and B). Taken together, the post-natal shift in 

metabolism seems to extend up to 8 weeks of age where the increased levels of key 

mitochondrial metabolism proteins and mtDNA levels stabilize but proteins involved in mtDNA 

expression and maintenance drop.  
 

 
Figure 3.25 | Decrease of mitoribosomal subunits in caused by decreased protein stability 
(A) Mitochondrial transcriptomic and proteomic 2D-enrichment analysis of functional categories in control (L/L) mice 
at different ages. Enrichment scores were calculated on the fold-change relative to 3-4-week old mice. (B) 
Scatterplots of fold-changes relative to 3-4-week old mice of mitoribosomal transcript and proteins in L/L mice at 
different ages. Black line indicates the trend. From Kühl, Miranda et al. 2017. 
 
3.2.4.  Loss of mtDNA gene expression profoundly alters the transcript and protein levels of 

nuclear genes encoding mitochondrial proteins  

 
We compared the transcriptomes and mitoproteomes of the five knockout mouse strains to 

identify common hallmarks of mitochondrial dysfunction in mouse heart. We found extensive 

changes in the transcript and protein levels of genes encoding mitochondrial proteins (Figure 

3.26A and B). At the transcript level, 38% of the quantified mitochondrial genes were 

differentially expressed in all knockouts, and most of these transcripts were decreased (Figure 

3.26C). At the protein level, ~65% of the quantified proteins were significantly changed and 

most of these were increased (Figure 3.26D). Furthermore, not only were there many changes 

in gene expression, but also the range of fold-changes was very high (log2 fold-change 

between -9 to 9) in both the transcriptomes and mitoproteomes (Figure 3.26A and B). Unless 

indicated otherwise, further downstream analyses were performed including all the genes that 

changed significantly in at least one knockout strain. In total, we found 310 genes whose 

expression changed only at the transcript level, 186 genes at the protein level, and 470 genes 
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at both, transcript and protein levels (Figure 3.26E). Therefore, severe mitochondrial 

dysfunction results in a massive remodelling of the expression of genes encoding 

mitochondrial proteins.    

 

 
Figure 3.26 | Extensive remodelling of the mitochondrial transcriptome and proteome 
(A-B) Volcano plots of genes encoding mitochondrial proteins (A) and mitoproteomes (B) for each knockout strain; 
black: p<0.05, grey: p>0.05. p values were adjusted using the Benjamini-Hochberg method. (C-D) Number of 
significantly changed mitochondrial transcripts (C) and proteins (D) from knockouts (L/L, cre) compared to controls 
(L/L); red: increased, blue: decreased. (E) Venn diagram of number of mitochondrial transcripts and proteins 
quantified and significant in ³1 knockout strain. Modified from Kühl, Miranda et al. 2017. 
  

To assess to what extent the variation in transcript levels result in corresponding protein 

abundance changes in the OXPHOS deficient hearts, we determined the Pearson correlation 

using all the genes for which we had quantification at the transcript and protein level. There 

was a significant correlation in all knockout strains with adjusted p values below 1.631 x 10-18 

and correlation values between 32 – 56% (Figure 3.27A). From all the knockouts, Polrmt had 

the lowest correlation value which could be explained by the early age at which they die (Table 

3.1). These data suggest that the composition of the mitoproteome is strongly influenced by 

post-transcriptional processes. Therefore, we performed 2D annotation enrichment analysis to 

identify categories of proteins that were regulated at a transcriptional or post-transcriptional 
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level (Figure 3.27B). There were very few categories of proteins that presented an anti-

correlative behaviour such as other mitochondrial protein synthesis factors and lipid and acetyl 

CoA metabolism. On the contrary the majority of the categories showed a concordant 

upregulation of transcript and protein levels including apoptosis, degradation and stress 

response, mitochondrial import and chaperones, and the mitochondrial 1C pathway. 

Interestingly, the categories of OXPHOS, the mitochondrial ribosome, and ubiquinone (Q) 

biosynthesis showed a high absolute enrichment scores at the protein level but not at the 

transcript level suggesting that the protein abundance is mostly defined by post-transcriptional 

processes. Heatmaps for the individual genes on each category are presented in 

supplementary material (section 8.1.1). 
 

 
Figure 3.27 | Correlation between the transcriptome and mitoproteome 
(A) Heatmap showing the Pearson correlation (r) of the changes in transcript and protein level in knockouts (L/L, 
cre) compared to controls (L/L); as an example, a scatter plot of the transcriptome and proteome fold-changes in 
the Mterf4 knockout is shown. adj. p: Benjamini-Hochberg adjusted p value. (B) 2D enrichment analysis of the 
mitochondrial transcriptome and proteome in all knockouts showing the trend and degree of regulation of 15 
functional categories that had p<0.05. Modified from Kühl, Miranda et al. 2017. 
 
3.2.5.  mtDNA gene expression is required to stabilize the OXPHOS complexes and the 

mitoribosome 

 
Reduced mtDNA gene expression results in loss of OXPHOS subunits in the five knockout 

mouse strains (Cámara et al. 2011; Kühl et al. 2016; Milenkovic et al. 2013; Ruzzenente et al. 

2012; Wang et al. 1999). To validate our omic approach, we compared the transcript and 

protein levels of genes encoding OXPHOS subunits in the different knockouts. Transcript 

levels of mtDNA-encoded subunits were decreased in Twnk, Tfam Polrmt, and Lrpprc 
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knockouts whereas in Mterf4 knockout they were increased accurately reflecting the stage at 

which mtDNA gene expression is disrupted (Figure 3.19A, 3.28A, and Table 3.1). The 

transcript levels of nuclear genes encoding subunits of complexes I to V were, in general, 

slightly decreased and did not show a specific pattern of expression in the different knockouts 

(Figure 3.28A).  

  

Consistent with our analysis of systematic bias (Figure 3.20), we quantified in all the 

knockout strains the protein levels of 84 out of 95 OXPHOS subunits which, despite being 

highly hydrophobic, are very abundant. There was a severe decrease in the protein levels of 

complexes I, III, IV, and V encoded by both, mtDNA and nDNA (Figure 3.28A and B). The 

exclusively nucleus-encoded complex II and the nucleus-encoded subunits of complex V that 

can form stable sub-assembled F1 complex in OXPHOS deficient mitochondria (i.e. ATP 

synthase subunits alpha (ATP5A1), beta (ATP5B), gamma (ATP5C1), delta (ATP5D), and 

epsilon (ATP5E)) (Mourier et al. 2014), were slightly increased or unaffected in all knockouts. 

The stronger downregulation of subunits of complex I and IV is consistent with the degree of 

reduction on the enzyme activity of these complexes in the different knockouts (Cámara et al. 

2011; Kühl et al. 2016; Ruzzenente et al. 2012; Wang et al. 1999). Furthermore, we verified 

the protein levels of some OXPHOS subunits via western blot and obtained consistent results 

with our mitoproteomic data (Figure 3.28C). Interestingly, the protein levels of the nDNA 

subunits were homogeneous within each complex, indicating that the stability of the individual 

subunits depend on the stability of the assembled or sub-assembled complexes. Furthermore, 

in the case of complexes I, III, IV, and F0-subunit of complex V, the stability of the complexes 

depends on the presence of the mtDNA-encoded subunits. Finally, we evaluated the levels of 

the OXPHOS complexes at different ages in heart of the Lrpprc knockout (Figure 3.19B, C and 

Figure 3.28D) and detected a progressive decline of the different complexes validating our 

temporal mitoproteomic approach to study the progression of OXPHOS deficiency.  

 

Protein levels of OXPHOS assembly and biogenesis factors were in general increased 

in the different knockouts, with complex IV assembly factors COX15, COX19 and SCO2 

showing the particularly high levels (Figure 3.28E). However, the transcript level of OXPHOS 

assembly and biogenesis factors were either not changed or slightly decreased suggesting 

that the increase in proteins is likely a compensatory response to the loss of OXPHOS subunits 

that occurs at the post-transcriptional level.  
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Figure 3.28 | Stability of OXPHOS complexes depend on the presence of the mtDNA-encoded subunits 
(A) Heatmaps illustrating the fold-change in transcript (left) and protein (right) levels of OXPHOS subunits in heart 
of knockouts (L/L, cre) compared to controls (L/L). mtDNA-encoded subunits are presented first followed by the 
nDNA subunits in alphabetic order. (B) Scatterplot of fold-changes in transcript and protein levels of OXPHOS 
subunits; black line indicates the trend; blue: mtDNA-encoded subunits, yellow: nDNA subunits. (C) Western blot 
of OXPHOS subunits on isolated mitochondrial extracts from L/L and L/L, cre mouse hearts; Loading: SDHA. (D) 
Protein levels of OXPHOS complexes at different time points in Lrpprc knockout mouse hearts. The graph shows 
the average fold-change for all the proteins in each complex. *p<0.05, **p<0.01, ***p<0.001; error bars: ± sem. (E) 
Heatmap of OXPHOS assembly and biogenesis factors. Blank boxes: not detected or quantified. Modified from 
Kühl, Miranda et al. 2017. 
 

Since mtDNA also codes for the two mt-rRNAs, we evaluated the expression of the 

mitoribosomal protein complexes. The abundance of mitoribosomal proteins clearly depended 

on the level at which mtDNA gene expression was disrupted. Knockouts with reduced steady-
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state levels of mt-rRNAs, such as Twnk, Tfam and Polrmt, showed massively reduced levels 

of mitoribosomal proteins, whereas knockouts with increased mt-rRNA levels, such as Lrpprc 

and Mterf4, had increased levels of mitoribosomal proteins (Figure 3.29). In contrast, transcript 

levels of genes encoding mitoribosomal proteins were mildly affected. Our data thus show that 

the stability of individual mitoribosomal proteins depend on the assembly of the mitoribosomal 

subunits and strongly support the model that mt-rRNAs stabilize the nucleus-encoded 

mitoribosomal subunits which are produced and imported into mitochondria in excess.  
 

  
Figure 3.29 | Stability of mitoribosomal protein complexes depend on the abundance of mt-rRNAs 
Heatmaps illustrating the fold-change in transcript (left) and protein (right) levels of the small (left) and large (right) 
mitoribosomal subunits in heart of knockouts (L/L, cre) compared to controls (L/L). Blank boxes: not detected or 
quantified. From Kühl, Miranda et al. 2017. 
 

In conclusion, our comprehensive transcriptomic and mitoproteomic data not only 

reproduces the previous molecular characterization of the knockout mouse strains with severe 

OXPHOS deficiency but also argue that intra-mitochondrial protein level regulation has a 

predominant role in the biogenesis of the OXPHOS system and the mitoribosome. 

Furthermore, our findings show that expression of mtDNA-encoded genes determines the 

abundance of a large proportion of the mitoproteome.  

 
3.2.6. Loss of mtDNA gene expression causes secondary coenzyme Q deficiency  

 
Our 2D annotation enrichment analyses showed that the Q biosynthesis category in Lrpprc 

knockout clustered very closely with the OXPHOS category (Figure 3.28B). We evaluated the 

expression profiles of the enzymes required for intra-mitochondrial Q biosynthesis in all the 

knockouts and found them severely reduced at the protein level with the exception of COQ4, 

COQ8B and PDSS2 (Figure 3.30A and B). PDSS1 and COQ2 were not quantified. The levels 

of mevalonate pathway enzymes such as HMG-CoA synthase (HMGCS1) and farnesyl 
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pyrophosphate synthase (FDPS) were normal or slightly increased in all the knockouts (Figure 

3.30C). Moreover, the transcript levels of genes encoding cytoplasmic HMGCS1, 3-hydroxy-

3-methylglutaryl-CoA reductase (HMGCR) and FDPS were either unaffected or increased 

(Figure 3.30D). Together with the increased levels of PDSS1 which catalyse the polymerization 

of the isoprenoid chain, our data suggests that there is no impairment in the mevalonate 

pathway when mtDNA gene expression is disrupted.  

 

 The decrease in the protein levels of COQ3, COQ5, COQ6, COQ8A, COQ9, and 

COQ10A was apparent at an early stage in the Lrpprc knockout strain and decreased further 

with the progression of OXPHOS deficiency (Figure 3.30E). Although the transcripts encoding 

Q biosynthesis enzymes were slightly decreased or unchanged, the atypical kinases Coq8a 

and Coq8b showed a consistent regulation at the transcriptional level with opposite patterns 

in all the knockouts. Coq8a was downregulated whereas Coq8b was upregulated at both the 

transcript and protein level (Figure 3.30B and D). In this regard, it is worth to note that COQ8B 

protein levels increased sharply after 5 weeks of age in the Lrpprc knockout hearts whereas 

the other enzymes progressively declined (Figure 3.30E), suggesting that it could be a 

compensatory mechanism. Interestingly, COQ8A and COQ8B have been recently suggested 

to interact differentially with the Q biosynthesis complex in mammalian cell lines depending on 

whether metabolism is adapting to glycolytic or respiratory conditions (Floyd et al. 2016). 

Finally, we evaluated whether the decreased levels of the intra-mitochondrial Q biosynthesis 

enzymes affected the cellular steady-state levels of Q. Mice have two forms of Q, Q9 and Q10, 

from which Q9 is the most abundant (Tang et al. 2004). We therefore measured the levels of 

both compounds in mouse heart tissue extracts using targeted mass spectrometry and found 

that, in control mice, Q9 was around tenfold more abundant than Q10 (Figure 3.30F), 

consistent with previous reports (Tang et al. 2004). In the knockout mice, Q9 was profoundly 

decreased, consistent with the downregulation of the intra-mitochondrial Q biosynthesis 

pathway. Taken together, our data show that loss of mtDNA gene expression causes 

secondary Q deficiency by a progressive loss of intra-mitochondrial Q biosynthesis enzymes. 
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Figure 3.30 | OXPHOS dysfunction leads to secondary Q deficiency caused by a defect in intra-
mitochondrial Q biosynthesis 
(A) Scheme of the mevalonate pathway, intra-mitochondrial Q biosynthesis, and OXPHOS complexes. Coloured 
boxes: protein levels; red: increased, blue: decreased, grey: not quantified. (B) Heatmaps illustrating the fold-
change in transcript (left) and protein (right) levels of Q biosynthesis enzymes in heart of knockouts (L/L, cre) 
compared to controls (L/L). Blank boxes: not quantified. (C) Western blot of enzymes of the mevalonate pathway 
on total protein extracts from L/L and L/L, cre mouse hearts; Loading: tubulin. (D) Transcript levels of genes 
encoding enzymes of the mevalonate and Q biosynthesis pathway in L/L and L/L, cre hearts. Normalization: beta-
2-microglobulin (B2m). (E) Time-course analysis of protein levels of all enzymes of Q biosynthesis quantified in 
Lrpprc L/L, cre compared to L/L. Adjusted p across time <0.05. Yellow line: average value of OXPHOS complex IV 
(CIV) subunits. (F) Quinone quantification (Q9 and Q10) in L/L, cre and L/L mouse hearts. *p<0.05, **p<0.005, 
***p<0.001; error bars: ± sem. From Kühl, Miranda et al. 2017. 
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3.2.7. Transcriptome-wide analyses indicate that ATF4 and MYC mediate cellular stress 

responses to loss of OXPHOS function  

 
We found a general increase in the transcript and protein levels of several genes in the 

categories of apoptosis, degradation and stress response, and mitochondrial import and 

chaperones (Figure 3.27B and Figure 3.31) indicating the activation of nuclear stress 

responses. We found an increase the transcript and protein levels of some reported mtUPR 

chaperones such as HSPD1, HSPE1, and HSPA9 in all the knockouts (Figure 3.31B and C). 

However, despite the severe OXPHOS deficiency, several of the reported mammalian mtUPR-

regulated factors were not changed such as Clpp, mitochondrial DnaJ homolog subfamily A 

member 3 (Dnaja3), endonuclease G (Endog), and the ATP-dependent zinc metalloprotease 

(Yme1l1). In agreement with Seiferling and colleagues that report that CLPP is dispensable 

for the induction of mtUPR in mammals (Seiferling et al. 2016), we did not detect differences 

in the protein levels of this mammalian matrix protease. Thus, our results indicate that there is 

a nuclear transcriptional response to mitochondrial stress that differ from the proposed mtUPR 

mechanism in worms.  

 

 
Figure 3.31 | Apoptosis, degradation and stress response, and mitochondrial import and chaperones are 
upregulated in OXPHOS dysfunction 
Heatmaps illustrating the fold-change in transcript (left) and protein (right) levels of apoptosis (A), degradation and 
stress response (B), and mitochondrial import and chaperones (C) in heart of knockouts (L/L, cre) compared to 
controls (L/L). Blank boxes: not quantified. From Kühl, Miranda et al. 2017. 
 

To identify factors mediating the nuclear responses to OXPHOS deficiency caused by 

mtDNA gene expression in mouse heart, we performed transcription factor enrichment 

analyses using as input the differentially expressed genes in all five knockouts. We identified 

several transcription factors predicted as the top regulators of the differentially expressed 
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genes including the nuclear factor NFE2, ATF-4, and MYC (Table 3.3). From the top scored 

transcription factors, only Atf4 and Myc were upregulated in our transcriptomic data.  

 
Table 3.3: Transcription factor enrichment analysis 

Motif or track id AUC NES Transcription factors 
 
swissregulon-NFE2.p2 

 
0.0352041 

 
5.01091 

 
NFE2, NFE2L2, BACH1, MAFK, NFE2L1, 
MAFG, JUND, JUNB, FOSB, FOSL1, FOS, 
JUN, FOSL2, BATF, SPI1, BACH2, MAFF, 
MAFA, MAF, MAFB, NFE2L3 

homer-M00001 0.0351042 4.97971 
 

taipale-NNATGAYGCAATN-ATF4-
DBD 

0.0346771 4.84631 ATF4, ATF3, CEBPB 

wgEncodeSydhTfbsK562CmycStdPk.
narrowPeak.gz 

0.0431751 4.73114 MYC 

taipale-NGGATGATGCAATM-Atf4-
DBD 

0.0340163 4.6399 ATF4, CEBPB 

lcbTfbs_mcf7_p53 0.0426344 4.61952 TP53 

yetfasco-966 0.033346 4.43051 JUNB, JUND, JUN, FOSL1, FOS, BATF, 
FOSL2, BACH2, SPI1, BACH1, FOSB, 
NFE2, ARNT, TGIF2LY, TGIF2, TGIF2LX, 
TGIF1, SRF 

wgEncodeSydhTfbsK562CmycIfng6h
StdPk.narrowPeak.gz 

0.040073 4.0908 MYC 

wgEncodeSydhTfbsK562CmycIfna30
StdPk.narrowPeak.gz 

0.0394589 3.96404 MYC 

GSM1208654_batch1_chrom1_LoVo
_MYC_PassedQC_peaks_hg19  

0.0394281 3.95768 MYC 

AUC: Area under the cumulative recovery curve; NES: normalized enrichment score 

 

MYC and ATF4 have been implicated in mitochondrial biogenesis and endoplasmic 

reticulum-stress responses, respectively (Morrish & Hockenbery 2014; Pakos-Zebrucka et al. 

2016), and we verified their expression levels via quantitative real time PCR (qRT-PCR). The 

transcript levels of Atf4 and Myc were strongly induced in all the knockouts in contrast to other 

transcription factors regulating mitochondrial biogenesis such as Nrf1, peroxisome proliferator- 

Pgc1a, and Gabpa (Figure 3.32A). Furthermore, canonical pathway enrichment analyses 

identified several signalling pathways that were enriched from which ATF4 and MYC are 

important transcription factors including eIF2, calcium, and the mTOR signalling (Figure 

3.32B). From the non-mitochondrial transcripts, it is worth to mention that several cytosolic 

ribosomal proteins, translation initiation factors, and tRNA synthetases were upregulated.  

 

We next evaluated the mitochondrial target genes of MYC and ATF4 that changed at 

the transcript levels in all the knockouts and found a general increase in ATF4 target genes 

and differences in gene expression in several MYC target genes (Figure 3.32C and D; 

supplementary material section 8.1.2). Several chaperones and proteases associated with 

mitochondrial stress and apoptosis that are target genes of these transcription factors are 

upregulated such as LONP1, HSPE1, the apoptosis regulator BAX, and the BH3-interacting 

domain death agonist (BID). Interestingly, genes that presented the strongest upregulation in 
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transcript and protein levels (e.g. mitochondrial bi-functional methylenetetrahydrofolate 

dehydrogenase/cyclohydrolase (Mthfd2), mitochondrial pyrroline-5-carboxylate reductase 1 

(Pycr1), and delta-pyrroline-5-carboxylate synthase (Aldh18a1)), are also target genes of 

these transcription factors.  

 

 
Figure 3.32 | Enrichment of signalling and metabolic pathways in mouse heart with severe OXPHOS 
dysfunction 
(A) Transcript levels of genes encoding transcription factors involved in mitochondrial biogenesis in control (L/L) 
and knockout (L/L, cre) mouse hearts. Normalization: beta-2-microglobulin (B2m). *p<0.05, **p<0.005, ***p<0.001; 
two-tailed Student’s t-test; error bars: ± sem. (B) Canonical pathway enrichment analysis of significantly changed 
genes in all knockouts. Top 12 categories are shown organized by p value. Fisher’s exact test; rectangles in 
horizontal heatmaps: average expression level in the five knockouts of each gene detected per pathway; 
parenthesis: fractions of genes detected per pathway. (C-D) Average transcript expression levels of target genes 
of ATF4 (C) and MYC (D) encoding mitochondrial proteins. p < 0.05 for all genes; error bars ± sd. From Kühl, 
Miranda et al. 2017. 
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3.2.8. Identification of early markers of OXPHOS dysfunction in mouse heart 

 
To identify markers of mitochondrial dysfunction, we focused on proteins that were strongly 

upregulated in all the knockout mouse strains. We found a strong increase on the transcript 

and protein levels of the enzymes of the mitochondrial 1C cycle (Figure 3.33A and B). In 

contrast, the cytosolic C-1 tetrahydrofolate synthase (MTHFD1) enzyme was unaltered at the 

protein level (3.33C). To evaluate the levels of the 1C donors, we performed targeted mass 

spectrometry metabolomic analysis and found increased levels of glycine, sarcosine, and 

serine (Figure 3.33D). Consistent with previous studies (Bao et al. 2016), the transcript levels 

of enzymes required for de novo serine synthesis in the cytosol were strongly upregulated in 

all the knockouts (data not shown). Temporal mitoproteomic analysis of the mitochondrial 1C 

cycle enzymes in the Lrpprc knockout showed that all the central enzymes are increased 

before there is a decrease in proteins from OXPHOS complex IV (Figure 3.33E), which is the 

most downregulated complex in Lrpprc knockout (Figure 3.28A). Our results support a link 

between mitochondrial dysfunction and the mitochondrial 1C pathway (Bao et al. 2016; 

Nikkanen et al. 2016) and show that it is an early event in the progression of OXPHOS 

dysfunction. 
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Figure 3.33 | Mitochondrial 1C pathway enzymes are upregulated early in the progression of OXPHOS 
dysfunction 
(A) Scheme of 1C pathway. Coloured boxes represent protein levels; red: increased, grey: not quantified. (B) 
Heatmaps illustrating the fold-change in transcript (left) and protein (right) levels of knockouts (L/L, cre) and control 
(L/L) mouse hearts. (C) Western blot of enzymes of the 1C pathway on total protein extracts from L/L and L/L cre 
hearts. Loading: tubulin. (D) Quantification of 1C donor metabolite levels in L/L, cre and L/L. *p < 0.05, **p < 0.01, 
***p < 0.001; two-tailed Student’s t-test; error bars ± sem. (E) Time-course analysis of protein levels of enzymes of 
the 1C pathway quantified in Lrpprc L/L, cre compared to L/L. Adjusted p across time <0.05. Yellow line: average 
value of OXPHOS complex IV subunits. From Kühl, Miranda et al. 2017. 
 

ALDH18A1 was among the most upregulated proteins in most knockout mouse strains 

(Figure 3.34A and B). Since ALDH18A1 is the first enzyme in the synthesis of proline from 

glutamate in mitochondria (Pérez-Arellano et al. 2010), we investigated the other enzymes in 

this pathway. There was a strong increase in the protein levels of PYCR1 and PYCR2, whereas 

the levels of the delta-1-pyrroline-5-carboxylate dehydrogenase (ALDH4A1) and proline 

dehydrogenase 1 (PRODH), which catalyse the reverse reaction from proline to glutamate 

(Pérez-Arellano et al. 2010), were normal (Figure 3.34B). Transcript levels of the genes in this 
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pathway showed a similar direction as the protein levels with increased levels of Aldh18a1 and 

Pycr1, and decreased levels of Aldh4a1. To assess the effect of this protein imbalance in the 

metabolic flux, we determined the levels of glutamate and proline by targeted metabolomics 

and found a drastic increase in the proline to glutamate ratio in the knockout mouse hearts 

(Figure 3.34C). Similar to the 1C pathway, temporal proteomic analysis in the Lrpprc knockout 

showed a steep increase of ALDH18A1 levels early in the progression of OXPHOS dysfunction 

(Figure 3.34D)  
 

 
Figure 3.34 | Increased proline synthesis from glutamate upon OXPHOS dysfunction 
(A) Scheme of glutamate to proline conversion pathway. Coloured boxes represent protein levels; red: increased, 
blue: decreased. (B) Heatmaps illustrating the fold-change in transcript (left) and protein (right) levels of knockouts 
(L/L, cre) and control (L/L) mouse hearts. (C) Time-course analysis of protein levels of enzymes of the glutamate 
to proline conversion pathway quantified in Lrpprc L/L, cre compared to L/L. Adjusted p across time <0.05. Yellow 
line: average value of OXPHOS complex IV (CIV) subunits. (D) Quantification of proline to glutamate ratio in L/L, 
cre and L/L hearts. **p<0.01; error bars ± sem. From Kühl, Miranda et al. 2017. 
 

To identify additional early markers of OXPHOS deficiency, we performed clustering 

analysis with the significantly changed proteins in the Lrpprc time-course mitoproteome (Figure 

3.19B). Two clusters presenting opposite patterns showed marked changes in protein levels 

at 3 weeks of age (Figure 3.35). The first cluster contained LRPPRC and its interacting partner 

SLIRP that rapidly decline after birth due to knockout of Lrpprc in the heart (Figure 3.19C). The 

second cluster contained proteins that were strongly upregulated and includes MTHFD2, 

ALDH18A1, amine oxidase [flavin-containing] A (MAOA), phosho-enol pyruvate carboxykinase 

(PCK2), MTHFD1L, and PYCR1. The identification of 1C pathway and proline biosynthesis 
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enzymes in this cluster is a proof of concept that our integrated omics approach comparing 

different knockout mouse strains deficient of mtDNA gene expression combined with the time-

course analysis in the Lrpprc knockout can be used to identify early markers of the progression 

of OXPHOS deficiency.  

 
Figure 3.35 | Early markers of OXPHOS dysfunction 
Heatmaps illustrating proteins that decrease (left) and increase (right) early in time-course analysis of Lrpprc 
knockouts (L/L, cre) and controls (L/L) mouse hearts at different ages.  
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4. DISCUSSION  
 
Mammalian mtDNA codes for a handful of genes and the mitoproteome contains a few 

thousand proteins. The fact that all the components required to express mtDNA are encoded 

in the nucleus raises the question of how the two cellular genomes coordinate and regulate 

their expression to build and maintain a functional OXPHOS system. In this thesis we address 

two aspects of this fundamental question. First, we investigated the in vivo function of POLRMT 

in the regulation of mtDNA replication and transcription as well as its potential role coordinating 

nDNA and mtDNA gene expression programs via its nuclear isoform spRNAP-IV. Second, we 

studied the molecular consequences of impaired mtDNA gene expression as well as the 

secondary cellular responses, both locally at the mitoproteome level but also globally at the 

cellular gene expression level. 

 
The POLRMT gene was reported to code for two different single-subunit RNA 

polymerases, i) POLRMT that transcribes mtDNA and ii) spRNAP-IV that has been proposed 

to transcribe a specific subset of nuclear genes. The regulation of gene expression of both 

cellular genomes under the control of a single gene is an interesting possibility to coordinate 

the crosstalk between the two genetic systems. However, we did not find the mRNA of the 

reported nuclear splice variant in mouse tissues or human cell lines using RT-PCR analyses. 

Furthermore, using an antibody that recognizes both protein isoforms, we only detected a 

protein of the size of POLRMT (~140 kDa) that exclusively localizes in mitochondria. Finally, 

knocking out both putative Polrmt gene products in mouse had no effect in the transcript levels 

of the genes reported to be transcribed by spRNAP-IV. Therefore, we conclude that the 

POLRMT gene only encodes a mitochondrial protein with an exclusive function in this 

organelle in mammals.  

 

 Importantly, loss of POLRMT had a severe effect on mtDNA gene expression. 

Disruption of Polrmt in heart caused a global decrease of mt-RNAs and abolished de novo 

transcription, demonstrating that no other RNA polymerase can replace POLRMT in 

mammalian mitochondria. Although there was a strong decrease in all mt-RNAs in the Polrmt 

knockout hearts, we found that the transcripts encoded on the L strand were less reduced than 

the transcripts encoded on the H strand. Previous studies have reported the stabilization of L-

strand transcripts, in particular mt-Nd6 when silencing or knocking out the Lrpprc gene 

(Ruzzenente et al. 2012; Wolf & Mootha 2014). LRPPRC levels are strongly reduced in the 

Polrmt knockouts consistent with the previously observed correlation between LRPPRC and 

mt-mRNA levels (Lagouge et al. 2015). Since LRPPRC binds all mt-mRNAs, the reduced 

stability in the absence of Lrpprc could be explained by loss of polyadenylation which does not 

affect mt-Nd6 (Siira et al. 2017). Furthermore, Polrmt and Lrpprc knockout mice have 
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increased levels of GRSF1 which has been suggested to interact and regulate mt-Nd6 and its 

precursor strand (Antonicka et al. 2013; Jourdain et al. 2013). A compensatory stabilization of 

mature mt-mRNAs was previously reported upon knockdown of POLRMT in human cell lines 

(Wolf & Mootha 2014). However, it is unlikely that the strand-specific effect observed in the 

Polrmt knockout is explained by differences on the individual transcript stabilities because mt-

mRNAs, mt-rRNAs and mt-tRNAs are all stabilized by different mechanisms (Rorbach & 

Minczuk 2012).  

Differences in promoter strength between HSP and LSP have been reported but remain 

controversial as in vitro transcription experiments can be strongly influenced by reaction 

conditions and the promoter template used (Morozov & Temiakov 2016; Shi et al. 2012). A 

recent study showed that the pre-IC complex has a similar topology in both promoters based 

on crosslinking studies between TFAM and promoter sequences. According to this model, 

transcription machineries can assemble in both promoters and, in that way, be regulated 

simultaneously (Morozov & Temiakov 2016). On the contrary, previous studies have shown 

that LSP is a stronger promoter and its activity is strictly dependent on TFAM binding even 

under permissive conditions that allow promoter breathing like supercoiling or low salt 

concentrations (Lodeiro et al. 2010; Shi et al. 2012). This suggests that different structural 

requirements can apply to each promoter. Our in vitro transcription data using a single template 

containing both HSP and LSP show that transcription from LSP is better maintained than 

transcription from HSP when POLRMT:DNA ratios are low. Importantly, TFAM and TFB2M 

concentrations were maintained constant in this experiment. Together with the specific mt-

RNA abundance pattern, our data indicates that there is a differential regulation of the 

promoters in vivo when POLRMT levels are low.  

The defect in mtDNA replication provides conclusive evidence that transcription 

initiation from LSP forms the primer required for mtDNA replication at OH and no other primase 

can compensate for this function in the absence of POLRMT. Differential regulation of LSP 

compared to HSP could reflect a preference to use LSP-mediated transcription initiation to 

maintain mtDNA replication. Under normal conditions, most of the replication events are 

prematurely terminated generating 7S DNA (Bogenhagen & Clayton 1978). When Polrmt is 

depleted 7S DNA is not formed suggesting that most of the residual replication events continue 

to full length replication. Furthermore, there is a strong increase in the levels of TWINKLE and 

the levels of TFAM are not changed despite the strong mtDNA depletion. Overexpression of 

these two factors have been shown to increase mtDNA copy number (Ekstrand et al. 2004; 

Kukat et al. 2015; Milenkovic et al. 2013). Although the exact mechanism by which TWINKLE 

regulates mtDNA copy number is unknown, this factor can be loaded at the 3’ end of 7S DNA 

to promote full length replication (Jemt et al. 2015).   
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The interdependence of TFAM and mtDNA has been shown in different mouse models 

(Ekstrand et al. 2004; Larsson et al. 1994; Kukat et al. 2015) and it was suggested that mtDNA-

free TFAM turnover is mediated by LONP1 (Lu et al. 2013; Matsushima et al. 2010). 

Remarkably, the Polrmt knockout is the first model where TFAM levels are stable despite the 

strong mtDNA depletion and increased LONP1 levels. Importantly, Tfam transcript levels were 

upregulated suggesting a transcriptional compensatory response to maintain TFAM levels in 

mitochondria. TFAM stability in the Polrmt knockout could be explained by TFAM binding to 

other proteins or to different post-translational modifications (King et al. 2018). Comparing the 

post-translational modifications or interaction partners of TFAM in the Polrmt knockout to other 

mouse models where TFAM and mtDNA levels correlate like Twnk or Mterf4 knockouts would 

provide important insights into the regulation of TFAM and mtDNA copy number. 

Finally, we did not detect accumulation of the 7S RNA transcript in the Polrmt knockout 

further suggesting that when POLRMT levels are low, LSP-transcription initiation is dedicated 

to maintain productive mtDNA replication. Based on our in vivo findings, we propose that 

promoter-specific transcription initiation can fine-tune the balance between mtDNA replication 

and transcription and this mechanism is active when POLRMT levels are low as illustrated in 

Figure 4.1.  

 
Figure 4.1 | Model of POLRMT regulating replication 
primer formation and mtDNA gene expression  
At low POLRMT levels only LSP is active and generates 
the RNA primer for mtDNA replication. At high POLRMT 
levels, transcription initiation is activated from HSP and 
LSP resulting in mtDNA gene expression. Abbreviations 
in alphabetical order: HSP, H-strand promoter; LSP, L-
strand promoter; OH, heavy-strand origin of replication; 
POLRMT, mitochondrial RNA polymerase. Modified 
from Kühl et al. 2016. 
 
 
 
 
 

 

Our data on the heterozygous Polrmt knockout and Polrmt overexpressor mice verifies 

that mitochondrial transcription is a very robust process with multiple levels of regulation. 

Despite the decrease in POLRMT levels, the heterozygous Polrmt knockout mice maintain the 

steady-state mt-RNA levels and have no differences in mtDNA synthesis indicating that one 

copy of Polrmt is sufficient to maintain mtDNA replication and transcription. Interestingly, we 

found increased TEFM protein levels in these mice suggesting that the decreased POLRMT 

levels are compensated by promoting transcription elongation. The Polrmt overexpressor 

mouse showed increased de novo transcription proportional to the levels of POLRMT. Since 

the protein levels of the other transcription factors, TFAM, TFB2M and TEFM are not changed 

in this mouse model, the increase in de novo transcripts suggests that a 50% increase of 
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POLRMT is sufficient to upregulate mtDNA transcription; in other words, POLRMT is a limiting 

factor for transcription in mammalian mitochondria. The formation of the mitochondrial 

transcription initiation complex and the transition to elongation are rate-limiting steps in in vitro 

transcription of mtDNA (Lodeiro et al. 2010). In line with this, our in vivo findings suggest that 

engaging more mtDNA molecules in transcription by increasing POLRMT levels or promoting 

transcription elongation by increasing TEFM are potential mechanisms to regulate 

mitochondrial transcription in vivo. Furthermore, increased POLRMT levels have been found 

in different mouse models of mitochondrial dysfunction (Milenkovic et al. 2013; Perks et al. 

2018; Kauppila et al. 2018), indicating that regulating POLRMT levels is a compensatory 

mechanism operating when mtDNA gene expression in impaired in vivo.  

Contrary to the increased de novo transcription, steady-state transcript levels in the 

Polrmt overexpressor mice do not reflect a general increase in mitochondrial transcription as 

only 7S RNA, precursor mt-Nd5/mt-Cytb, and mt-Tf are mildly increased. Thus, one possibility 

is that POLRMT promotes transcription of polycistronic transcripts in vivo, but the transcripts 

are not stabilized. The observed increase in precursor transcripts would support this scenario 

but it is a very mild effect. Furthermore, we did not find differences in the steady-state transcript 

levels after parallel overexpression of the mt-mRNA stabilizing factor Lrpprc together with 

Polrmt. Although we cannot exclude that other factors in addition to LRPPRC are limiting the 

stabilization of newly synthesized transcripts in the Polrmt overexpressor mice, we did not find 

differences in the transcript stability in pulse-chase de novo transcription experiments. This 

suggests that isolated mitochondria with increased POLRMT levels in energizing buffer 

conditions results in increased transcription and normal transcript processing and stability 

without the requirement of additional factors.  

Another possibility is that the in organello transcription does not reflect the in vivo 

situation but rather the transcription capacity and that in the mouse heart the additional levels 

of POLRMT lead to increased mitochondrial transcription initiation but is not continued to 

generate full-length polycistronic transcripts. The robust accumulation of 7S RNA transcript is 

consistent with a strong increase in LSP-initiated transcription in the Polrmt overexpressor 

mice and occurs in most of the tissues evaluated and throughout different ages. Although the 

function of the 7S RNA is largely unknown, our findings support the hypothesis that 7S RNA 

is an abortive transcription product that accumulates when LSP-initiated transcription is not 

used to generate mtDNA replication primers or full-length polycistronic transcripts. In line with 

this and the model presented in Figure 4.1, the effect of Polrmt overexpression on mtDNA 

replication is minor. With the experiments performed so far, we cannot differentiate whether 

the higher levels of 7S RNA compared to the HSP-proximal transcript mt-Tf reflect differences 

in the stability of these two transcripts or increased LSP transcription initiation. Interestingly, 

silencing TEFM in human cells results in a gradual decline of the mt-RNAs proportional to the 
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distance of the promoter, but also in an accumulation of LSP-proximal mt-Tp (Minczuk et al. 

2011) supporting that POLRMT is constantly reloading at the promoters to initiate transcription. 

In agreement with our findings, Surovtseva and collaborators reported that overexpression of 

POLRMT in HeLa cells did not affect steady-state mt-mRNA levels; however, they report a 

mild decrease in respiration and in the steady-state protein levels of the mt-CO2 (Surovtseva 

& Shadel 2013), that we do not find in our mice. This discrepancy can be explained by the 

differences in the model organism and the level of overexpression of POLRMT. 

 

In the nucleus, protein-coding genes are typically present in two copies per cell and, 

therefore, activation of a large number of genes is controlled by different combinations of 

transcription factors binding to the promoter regions. In contrast to the nucleus, mtDNA is 

present in multiple copies in the cell and all the genes are controlled by only two promoters. 

This means that mtDNA transcription can be regulated by engaging more mtDNA templates in 

transcription, increasing transcription from HSP and LSP, or a combination of both. Our in vivo 

data suggests that under normal physiological conditions POLRMT is constantly initiating 

transcription at available templates but most of this transcription is abortive and results in 7S 

RNA products, similar to the 7S DNA product that is synthesized after mtDNA replication start 

(Bogenhagen & Clayton 1978). Increasing POLRMT levels either increase transcription 

initiation from each promoter and/or engage more mtDNA molecules in transcription which 

would explain the increased transcription capacity in the Polrmt overexpressor mice and the 

accumulation of promoter-proximal transcripts. An increase in TEFM observed in the 

heterozygous Polrmt knockout, would result in the stimulation of productive transcription 

elongation and evens the transcription rate despite reduced POLRMT levels. However, the 

balance between mtDNA replication and transcription is not likely mediated by template 

availability as both machineries require access to the NCR. We thus propose that differential 

promoter-specific transcription initiation via POLRMT is part of a mechanism mediating this 

balance as our data suggests that when POLRMT levels are low transcription initiation from 

LSP is favoured to maintain mtDNA replication (Figure 4.1). 

 

 Previous studies from our laboratory have shown that mt-mRNAs are in excess in 

mammalian mitochondria as mice can tolerate relatively well severe reductions in steady-state 

transcript levels (Lagouge et al. 2015). This raises the question of why it is important to regulate 

mitochondrial transcription in the mammalian system. Our multi-omic comparison of hearts 

from five different knockouts identified that the abundance of nDNA-encoded proteins of 

complexes of dual genetic origin, i.e. the OXPHOS complexes and the mitoribosome, are 

regulated at the post-transcriptional level. However, the abundance of the complex reflects the 

expression of mtDNA. On the one hand, the five knockout mouse strains have impaired mtDNA 
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gene expression and, therefore, the mtDNA-encoded proteins are strongly reduced in all the 

mouse strains. Consequently, most of the OXPHOS complexes containing mtDNA-encoded 

proteins decline. On the other hand, disrupting different steps of mtDNA gene expression 

results in differences in mt-rRNAs levels which are reflected in the abundance of the 

mitoribosomal proteins. In Escherichia coli subunits of multiprotein complexes are produced 

proportional to their required stoichiometry and synthesis is regulated at the translation level 

as they are encoded in polycistronic mRNAs (Li et al. 2014). In mammals, a small percentage 

of the proteins, mainly components of protein complexes, are degraded in a non-exponential 

manner, which means they are rapidly degraded in the first few hours after synthesis and then 

stabilized with time (McShane et al. 2016). Our data supports that the few genes encoded by 

the mtDNA are limiting factors that regulate the protein complex abundance in the complexes 

of dual genetic origin. In this way, nDNA encoded proteins are produced in excess, imported 

into mitochondria and assembled into the complexes or degraded. This model is supported by 

the fact that mtDNA-encoded proteins are required for early steps of assembly of OXPHOS 

complexes I, III, and IV (Fernandez-Vizarra & Zeviani 2018; Guerrero-Castillo et al. 2017; 

Stroud et al. 2015) and that the mitoribosome assembly initiates co-transcriptionally (Rackham 

et al. 2016). On the contrary, in complex V that can form sub-assembled complexes, the 

mtDNA-encoded subunits are part of the later assembly stages (He et al. 2018). Furthermore, 

a recent study using SILAC pulse-chase experiments showed that the mitoribosomal proteins 

are indeed produced in excess and degraded when they are not assembled (Bogenhagen et 

al. 2018). Although, we show that biogenesis of complexes of dual genetic origin does not 

result from proportional transcript synthesis in both genomes, the question remains whether 

there is a coordination at the translational level as it has been proposed in yeast and for mt-

Co2 in mammalian cells (Couvillion et al. 2016; Richter-Dennerlein et al. 2016). We propose 

that regulating the expression of mtDNA that only encodes a few genes under the control of 

two promoters is much more efficient than regulating the expression of the ~180 nDNA 

encoded genes that form the OXPHOS complexes and the mitoribosome. Thus, robust 

regulation of mtDNA is required to rapidly respond to changes in the cellular energetic 

demands. 

 

 The multi-omics systematic study presented in this thesis revealed a wholesome 

remodelling of the cellular transcriptome and mitochondrial proteome as a consequence of 

loss of mtDNA gene expression. This reflects the extent of the secondary cellular responses 

evoked by the primary OXPHOS defect. Although, some of these secondary responses can 

be adaptive to maintain mitochondrial function over certain physiological ranges, in a 

pathogenic situation they are not sufficient to compensate for the primary defect and can 

further contribute to the disease progression. The latter is supported by the recent successful 
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reports where the phenotype of mitochondrial disease mouse models is improved after 

treatment with rapamycin (Felici et al. 2017; Johnson et al. 2013; Khan et al. 2017; Siegmund 

et al. 2017) or hypoxia (Ferrari et al. 2017; Jain et al. 2016) without fixing the primary defect. 

However, the mechanisms by which mTORC1 inhibition or activation of hypoxia responses 

reduce the progression of mitochondrial disease are still unknown and can be explained by 

the contribution of secondary responses to the pathogenic process, a different modulation of 

cellular metabolism that partially bypasses the mitochondrial defect, or probably a combination 

of both. Nevertheless, ascertaining which are the secondary responses, how they contribute 

to disease progression, and in which settings are they triggered is an important endeavour to 

understand mitochondrial diseases and develop effective diagnostic and treatment strategies. 

 

  We found that impaired mtDNA gene expression in mouse heart results in secondary 

Q deficiency caused by defective intra-mitochondrial Q biosynthesis that correlates with the 

progressive OXPHOS deficiency. Q deficiency caused by downregulation of the cytosolic 

mevalonate pathway was shown to drive respiratory defect in a mitofusin 2 (Mfn2) knockout 

mouse (Mourier et al. 2015). This indicates that the defect of the intra-mitochondrial Q 

biosynthesis that we report here is specific to loss of mtDNA gene expression and not a 

common secondary consequence of mitochondrial dysfunction. Although the function of 

several of the Q biosynthesis enzymes is not known, it has been shown that they form a 

complex in the inner mitochondrial membrane (Stefely & Pagliarini 2017). Since the abundance 

of the OXPHOS complexes is not affected in the Mfn2 knockout and the decline in Q 

biosynthesis enzymes is not regulated at the transcriptional level, it is possible that the loss of 

membrane integrity caused by the decreased OXPHOS complexes leads to the instability of 

the Q biosynthesis complex. As it occurs in the Mfn2 knockout and in patients with autosomal 

recessive mutations in genes of the Q biosynthesis pathway (Garrido-Maraver et al. 2014; 

Wang & Hekimi 2016), Q deficiency can further aggravate the OXPHOS deficiency in these 

mouse models. Q supplementation is a common treatment for mitochondrial diseases but its 

efficacy has been questioned due to contradicting clinical trial results (Pfeffer et al. 2013). Our 

study provides experimental evidence to support that impaired mtDNA gene expression, which 

is found in a large number of mitochondrial patients, can develop secondary Q deficiency and 

would benefit from Q supplementation. Patients with inherited autosomal recessive forms of Q 

deficiency respond well to oral Q supplementation. Therefore, we propose that Q 

measurements should be performed in all patients with mitochondrial disease and clinical trials 

of Q supplementation focused in patients with impaired mtDNA gene expression should be 

performed. 

The integration of transcriptomic and proteomic data also allows the identification of 

mitochondrial processes affected by OXPHOS deficiency that are regulated at the 
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transcriptional level and, therefore are controlled by nDNA transcription programs. Enrichment 

analyses combining canonical pathways and transcription factors including the differentially 

expressed genes in all the knockouts predicted that the ATF family of transcription factors and 

MYC were enriched in our datasets as well as genes involved in cellular signalling pathways 

including eIF2, eIF4, calcium and mTOR. We evaluated the expression levels of the target 

genes of ATF4 and MYC using published chromatin immunoprecipitation sequencing (ChIP-

Seq) data sets (Han et al. 2013; Seitz et al. 2011) and found several of them to be mostly 

upregulated, in particular the ATF4 targets. During the course of this thesis several reports 

linking mitochondrial dysfunction to the activation of ATF4 transcriptional program via eIF2a 

and/or mTORC1 were published (Bao et al. 2016; Dogan et al. 2014; Khan et al. 2017; Quirós 

et al. 2017). Within the ATF4 targets there are several enzymes involved in the mitochondrial 

1C pathway and synthesis of proline from glutamate. These pathways included some of the 

most upregulated genes in transcript and protein levels in the five different knockouts and its 

miss-regulation shifted the abundances of metabolites involved. Remodelling of the serine 

synthesis and 1C pathway was also identified in cell lines expressing a dominant negative form 

of POLG (Bao et al. 2016), cell lines treated with different mitochondrial poisons (Quirós et al. 

2017), flies expressing Pink1 mutations leading to mitochondrial dysfunction (Tufi et al. 2014), 

and a mouse model with mtDNA deletions that results in mitochondrial myopathy (Tyynismaa 

et al. 2010; Nikkanen et al. 2016), indicating that it is a common effect that occurs in 

mitochondrial dysfunction.  

Today, most of the mitochondrial stress responses are attributed to the activation of 

ATF4 via the cellular ISR as eIF2a has been shown to be phosphorylated in different model 

systems of mitochondrial dysfunction (Khan et al. 2017; Quirós et al. 2017). While it remains 

to be confirmed whether Myc is upregulated in other models of mitochondrial dysfunction or 

only in mouse heart, within the MYC target genes there are several of the target genes reported 

to be activated by ATF4 and part of the proposed mitochondrial-stress activated ISR including 

Gdf15, Lonp1, Mthfd2, Phgdh and Psat1. Furthermore, in addition to Lonp1, MYC target genes 

also include the chaperones  Hspa9 (mtHSP70) and Hspe1 that are increased in different 

models of mitochondrial dysfunction and are currently used as makers of mtUPR (Khan et al. 

2017; Münch & Harper 2016; Seiferling et al. 2016). Our work underscores that the 

transcriptional programs activated upon mitochondrial dysfunction result from the synergistic 

action of different transcription factors in vivo. These transcription factors likely include different 

members of the ATF family of transcription factors, MYC, and potentially factors modulating 

mitochondrial biogenesis that might not be regulated at the transcript level and, therefore, we 

did not identify in our analyses. It is important to consider that most of the studies, including 

the one presented in this thesis, predicted the activation of ATF4 and its target genes based 

on enrichment of conserved regulatory sequences and/or ChIP-Seq data sets in the 
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differentially expressed genes. However, to our knowledge, the direct action of ATF4 has only 

been verified in a handful of genes (~10 different in total in all the studies) in the context of 

mitochondrial dysfunction (Bao et al. 2016; Quirós et al. 2017).  

 

Comparing the same tissue in five isogenic knockout mouse models with defects in 

mtDNA gene expression leading to a similar primary OXPHOS defect and housed under the 

same controlled environmental conditions, identified ~5000 differentially expressed transcripts, 

from which ~1500 are common for all the knockouts. Since our knockout models have severe 

mitochondrial dysfunction leading to dilated cardiomyopathy, the transcriptional changes 

identified in the end-stage reflect the responses to the primary OXPHOS defect, to secondary 

metabolic alterations, and to the severe cardiomyopathy. Furthermore, our temporal proteomic 

analysis in the Lrpprc knockout revealed that the increase of the 1C pathway and proline 

synthesis enzymes is detectable early in the progression of OXPHOS deficiency. This finding 

is consistent with the early expression of Atf4 and FGF21 in the heart of a Dars2 knockout 

mouse (Dogan et al. 2014) and supports that some nuclear transcriptional responses are 

triggered before measurable OXPHOS deficiency develops in mouse heart. Taking these 

findings into consideration, during the last years we have advanced substantially identifying 

miss-regulated processes in mitochondrial dysfunction and some of the upstream factors 

regulating these processes, but we still cannot differentiate proximal consequences of 

OXPHOS dysfunction from secondary ripple-effects.  
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5. CONCLUSION AND FUTURE PERSPECTIVES 
 
The comprehensive analysis presented in this thesis that includes transcriptomics, proteomics 

and metabolomics in different well-characterized mouse models with impaired mtDNA gene 

expression show the extent to which mtDNA is determinant in the biogenesis of complexes of 

dual genetic origin in comparison with nDNA. Therefore, regulation of mtDNA gene expression 

is fundamental for proper mitochondrial function and allows local and rapid adaptation to 

changes in the energetic or metabolic demands. The extensive resources generated are a 

valuable source to generate hypothesis to study unsolved fundamental mitochondrial biology 

questions, understand pathophysiology of human diseases, identify biomarkers to diagnose 

mitochondrial diseases, and provide experimental rational for patient treatment. 

 To exemplify, the specific pattern of mitoribosomal protein abundance can be used 

to identify core mitoribosomal proteins or proteins whose stability depends on the presence of 

the mitoribosome. As proof of principle, the mitochondrial 28S ribosomal protein 36 (MRPS36), 

which is still reported as a mitoribosomal subunit in the Uniprot database, did not show the 

same profile of gene expression as the other mitoribosomal subunits. MRPS36/KGD4 was 

reported to have a conserved role in the organization of mitochondrial a-ketoglutarate 

dehydrogenase complex instead of the mitoribosome in Saccharomyces cerevisiae (Heublein 

et al. 2014) and was not identified in the structure of the human mitoribosome (Amunts et al. 

2015). On the contrary, the mitochondrial ribosome associated GTPase 1 (MTG1) and the 

mitochondrial translation initiation factor 3 (MTIF3) showed the same pattern as the 

mitoribosomal proteins. Both, MTG1 and MTIF, were reported to interact with the large 

mitochondrial subunits (Kotani et al. 2013; Koc & Spremulli 2002).  

Another interesting example is the changes in the abundance of the mitoribosome in 

control mice after three weeks of age. This decrease could explain the longer lifespan of 

knockout models with impaired mitochondrial translation (Cámara et al. 2011; Metodiev et al. 

2009; Metodiev et al. 2014; Park et al. 2007). The mouse heart has been established as good 

model system for the human heart (Wessels & Sedmera 2003). Interestingly, in mitochondrial 

patients, severe defects in mtDNA translation usually manifest as fatal perinatal or early-

infantile rapidly progressive cardiomyopathies. However, the few patients that survive show a 

spontaneous stabilization of the heart condition at around 6 years of age (Gorman et al. 2016). 

It is possible that a reduced requirement of mitochondrial translation after a certain time 

threshold as we report in mice, explains the stabilization in these patients.  

The abundance of some enzymes that are strongly upregulated in affected tissues and 

the metabolic changes caused their altered steady-state levels should be evaluated as early 

biomarkers of mitochondrial dysfunction and the progression of OXPHOS deficiency. 

Furthermore, elucidating whether the secondary responses are adaptive or maladaptive can 
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result in targeted treatment strategies as suggested with the Q supplementation for patients 

with primary mtDNA gene expression defects.  

 

With regard to the regulation of mtDNA transcription by POLRMT, there are several 

questions that we are further investigating. First, we want to elucidate whether LSP activity is 

only increased when POLRMT levels are low or it is a constitutive characteristic of the 

promoters in vivo that is enhanced in the Polrmt knockout conditions. This question can be 

addressed by evaluating whether the accumulation of 7S RNA in the Polrmt overexpressor 

mice results from increased transcription initiation from LSP in comparison to HSP or increased 

transcript stability. Second, we are currently performing exercise challenges in the Polrmt 

overexpressor mice to investigate whether the increase in transcription initiation is 

advantageous when a boost in mitochondrial biogenesis and function is stimulated. Third, we 

are performing POLRMT pulldowns to identify potential interaction partners or post-

translational modifications mediating the function of this enzyme. This could provide valuable 

information on the regulation of POLRMT binding to the promoter regions, transcription, and 

the crosstalk between mtDNA replication and transcription. Finally, we are interested in 

understanding how POLRMT levels are regulated in different models of mitochondrial 

dysfunction. In the cancer field, it has been proposed that Polrmt is regulated by the MYC 

transcription factor (Oran et al. 2016). However, despite the strong increase in Myc transcript 

levels and several of its target genes, Polrmt transcripts are not increased in Tfam, Twnk, 

Lrpprc or Mterf4 knockouts suggesting that a different mechanism is mediating the increased 

POLRMT levels. 
 

To understand the pathogenesis of OXPHOS dysfunction, the differentiation of 

proximal consequences of OXPHOS dysfunction from secondary ripple-effects, is still an 

important yet challenging venture that requires multidisciplinary approaches to address. 

Obtaining a better time-resolution early in the progression of OXPHOS deficiency will be 

important to distinguish early transcriptional responses from later ones. Furthermore, 

complementation with metabolic measurements (both steady-state and changes in the fluxes) 

could help identify early changes in mitochondrial function that lead to nuclear transcriptional 

responses. As the transcription factors identified so far can have broad downstream targets, 

determining which targets they are binding to in a mitochondrial dysfunction setting would help 

to define the different transcription programs. Disrupting the activity of these factors in vivo 

would have a profound effect on many cellular aspects and their role in mitochondrial 

dysfunction would be difficult to differentiate. Therefore, identifying the genes that these 

transcription factors bind in vivo in current models of mitochondrial dysfunction using 

techniques like ChIP-Seq or DNA affinity purification sequencing (DAP-Seq) would provide 
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more conclusive experimental evidence of the transcriptional programs they regulate in this 

specific context.  

Studying the effects of each miss-regulated pathway in detail would help to understand 

the net effect of that pathway to the end pathology. For example, recent studies have knocked 

out enzymes of the mitochondrial 1C pathway and identified that it is important to maintain 

mitochondrial translation (Minton et al. 2018; Morscher et al. 2018). However, it has not been 

studied yet what happens when the enzymes are overexpressed as it occurs in mitochondrial 

dysfunction and whether the net-effects observed (increased levels of enzymes, THF-

intermediates, and decreased formate) result from the upregulation of the enzymes or changes 

in the redox balance as NAD+/NADH and NADP+/NADPH are cofactors required for these 

reactions. The definition and mechanistic study of these processes will be important to 

understand which nDNA responses contribute to compensate for a primary OXPHOS defect, 

aggravate the disease progression, or induce gene expression changes reflected in the 

transcript and protein levels that correlate with mitochondrial dysfunction but are neither 

beneficial or harmful. Furthermore, it would help explain the end pathology that results from a 

primary OXPHOS defect and provide valuable information to understand the broad clinical 

spectrum and pleiotropic tissue manifestations of these diseases.  

Finally, understanding how these processes result in mitochondrial diseases can be 

translated to understand the contribution of mitochondrial dysfunction to other common human 

pathologies with similar molecular signatures. To exemplify, the 1C pathway enzymes, Mthfd2 

and Shmt2, and the enzyme involved in proline synthesis from glutamate, Pycr1, have also 

been identified as highly upregulated in human tumors (Nilsson et al. 2014). Moreover, the 

same expression pattern that we report for the proline synthesis from glutamate was found in 

cancer cell models and suggested to be mediated by MYC (Liu et al. 2012). Importantly, the 

proteomic, transcriptomic, and metabolomic findings we report in mouse should be 

corroborated in patient samples.  
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6. MATERIALS AND METHODS 
 
6.1. Experimental models 
 
6.1.1. Mouse strains  
 
The targeting vector to disrupt Polrmt in embryonic stem cells (derived from C57Bl/6N mice) 

was generated using BAC clones from the RPC10-731 BAC library by TaconicArtemis GmbH. 

Exon 3 of Polrmt locus was flanked by loxP sites and a positive selection marker (PuroR) 

flanked by FRT sites was introduced into intron 2. The puromycin resistance cassette was 

removed by mating the Polrmt +/loxP-pur mice with transgenic mice ubiquitously expressing flp 

recombinase that recognizes the FRT sites. Next, the resulting Polrmt+/loxP mice were mated 

with transgenic mice ubiquitously expressing the cre recombinase under the control of the b-

actin promoter (b-actin cre) to generate heterozygous knockout Polrmt+/- mice. Heart- and 

skeletal muscle- specific knockouts for Twnk, Tfam, Polrmt, Lrpprc, and Mterf4 were obtained 

by mating mice containing an exon of the gene of interest flaked by loxP sites with mice 

expressing the cre recombinase from the muscle creatinine kinase promoter (Ckmm-cre). The 

targeting strategy for the generation of Twnk, Tfam, Lrpprc and Mterf4 were published 

previously (Table S1 in supplementary material section 8.2).  

 

BAC clones containing a fragment of chromosome 10, including Polrmt, were 

purchased from the C57Bl/6N BAC library of DNA Bank, RIKEN BioResource Center. The 

BAC library was generated in the pBAC3.6 vector. The BAC clone BgN01-092D16 was 

modified by Red/ET recombination using the counter-selection BAC modification kit 

(Genebridges). A silent point mutation was introduced into exon 3 leading to a unique HindIII 

restriction site. Briefly, to modify the BAC, streptomycin-resistant bacteria containing the BAC 

clone were transformed with a temperature sensitive pRed/ET plasmid that encodes the 

proteins required for homologous recombination. Then, the bacteria were transformed with a 

PCR-generated fragment containing Polrmt sequences flanking the mutated regions, the 

mutations, and a cassette that confers resistance to kanamycin and susceptibility to 

streptomycin. Finally, to replace the antibiotic resistance cassette, bacteria were transformed 

with a PCR-generated fragment containing the Polrmt sequences flanking the mutated regions 

and the mutations. Positive clones were selected for streptomycin resistance and verified by 

PCR followed by restriction digest, Sanger sequencing, and Southern blotting (section 6.3.6). 

All transformations were performed by electroporation at 1350 V and 5 msec. Modified BAC 

was purified via caesium chloride gradient (section 6.3.2) and injected into the pronucleus of 

fertilized oocytes. Transgenic BAC lines were maintained as heterozygous. List of transgenic 

lines used in this thesis is in table S1 and genotyping primers is in table S2.  
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Animals were housed in individually ventilated cages under specific-pathogen-free 

conditions with constant temperature (21°C) and humidity (50 - 60%) and a 12 h light/dark 

cycle. All mice were fed commercial rodent chow and provided with acidified water ad libitum. 

Mice were sacrificed by cervical dislocation. The health status of the animals is specific 

pathogen free according to the Federation of the European Laboratory Animal Science 

Association (FELASA) recommendations. All animal procedures were conducted in 

accordance with European, national and institutional guidelines and protocols (no.: AZ.: 84-

02.05.50.15.004 and AZ.: 84-02.04.2015.A103) were approved by the Landesamt für Natur, 

Umwelt und Verbraucherschutz, Nordrhein-Westfalen, Germany. 
 
6.1.2. Cell lines 
 
HeLa (ATTC CCL-2) and 143B (CRL8303) cells were maintained at 37°C and 5% CO2 in 

Dulbecco’s modified eagle medium with high glucose (DMEM GlutaMax, 4.5 g/L glucose, 

Gibco) and supplemented with 10% foetal bovine serum (Gibco) and 1% 

Penicillin/Streptomycin (Gibco). 143Br0 (King & Attardi 1989) cell culture media was 

supplemented with uridine (50µg/mL). All cell lines were tested to be negative for Mycoplasma.  

 
6.2. Methods in cell culture 
 
6.2.1. Cell harvesting and passaging 
 
Cells were passaged when they reached 80 - 100% confluency. To harvest the cells, the 

culture media was removed and the cells were washed with Dulbecco’s modified PBS (DPBS, 

Gibco) to remove residual traces of the culture medium. Next, 0.05% trypsin/0.02% EDTA 

(Gibco) was added to the cells followed by a 5 min incubation at 37°C under a 5% CO2 

atmosphere to detach the adherent cells from the culture flasks. The detached cells were 

resuspended and passaged to a new flask containing fresh culture media.  

 
6.2.2. Cell thawing and freezing  
 
Cells were harvested as described in section 6.2.1 and resuspended in freezing media (DMEM 

GlutaMax, 4.5 g/L glucose, supplemented with 20% FBS and 10% DMSO). Cells were 

transferred to a cryo-vial (Nalgene) and placed in a Mr. Frosty Cryo container (Nalgene) with 

isopropanol, placed at -80°C for 24 h and then transferred to a liquid nitrogen tank for long 

term storage. To thaw, cells were transferred directly from the cryo-storage liquid nitrogen tank, 

to a 37 °C water bath. After thawing, the cells were transferred on T175 culture flasks with 

standard pre-warmed cell culture medium. The medium was changed after 24 h. 
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6.2.3. Transfection of mammalian cells 
 
Transfection of cell lines to was performed by lipofection using lipofectamine 2000 or 3000 

(Invitrogen) for expression vectors and lipofectamine RNAi max (Invitrogen) for small 

interference RNA (siRNA). For mammalian expression vectors, 70 - 80% confluent cells were 

transfected according to manufacturer’s instructions for 24 - 48 h. For siRNA, 50% confluent 

cells were transfected and transfections were repeated every 24 h.  
 
6.3.  Methods in molecular biology 
 
6.3.1. DNA isolation from mouse tissues and mitochondria 
 
For genotyping and pyrosequencing, tail or ear-clip biopsies DNA was extracted using 

chloroform and ethanol precipitation. Briefly, samples were lysed overnight in 400 µL TNES 

buffer (0.5% SDS, 0.1 M NaCl, 50 mM Tris pH 8.0, 2.5 mM EDTA pH 8.0) and 8 µL proteinase 

K (10 mg/mL) at 56°C. Next, 75 µL potassium acetate was added followed by 500 µL cloroform. 

The samples were vortexed and centrifuged at maximum speed for 10 minutes. The 

supernatant was collected and DNA was precipitated with 100% ethanol at -20 or -80°C. After 

centrifugation, the DNA pellet was washed with 70% ethanol and resuspended in dH2O. For 

Southern blotting or qPCR snap frozen tissues were grinded in a cold mortar. 20 - 30 µg of 

grinded tissue or ~ 9 x 106 frozen cells were used to extract DNA using the blood and tissue 

kit or the Gentra Puregene tissue kit (Qiagen) following manufacturer’s instructions. All 

samples used for Southern blotting and qPCR were treated with RNase (Qiagen). Frozen 

crude mitochondria were used for mtDNA isolation. Briefly, mitochondria were lysed in 400 µL 

TNES buffer and 10 µL proteinase K (10 mg/mL) for 2 – 3 h at 56°C. Then, lysates were treated 

with 3 µL RNase A (4 mg/mL) (Qiagen) and incubated 5 min at room temperature. DNA was 

extracted using 1 mL Phenol:Chloroform:Isoamyl alcohol (25:24:1 v/v) (ambion), followed by 

~400 µL of chloroform. DNA was precipitated overnight with 1/10 v/v 3M NaAc (ambion) and 

100% ethanol at -20 °C, washed with 75% ethanol, and resuspended in nuclease-free water.  

 
6.3.2. BAC DNA isolation for pro-nuclear injection 
 
BAC DNA was isolated as previously described (Milenkovic et al. 2013). Bacteria containing 

the BAC were streaked in LB agar with 18 µg/µL chloramphenicol and 50 µg/µL streptomycin. 

Single colonies were selected for overnight pre-cultures in 3 mL LB with antibiotics. The 

following day, 600 µL of the preculture were used to inoculate 1 L LB agar with antibiotics and 

cultured shaking at 180 rpm overnight. Next, bacterial cultures containing the mutated BACs 

were pelleted by centrifugation 6000 rcf at room temperature. Bacterial pellets were carefully 

resuspended in 50 mL buffer P1 (Qiagen) with RNase, followed by alkaline lysis using 50 mL 

of buffers P2 and P3 (Qiagen) on ice. Lysates were cleared by two sequential centrifugations 
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at 10000 rpm at 4 °C for 20 min and filtered using a 70 µm cell strainer. DNA was precipitated 

with isopropanol and pelleted at 10000 rcf for 15 min. The DNA pellet was resuspended in 3.8 

mL of nuclease-free water under gentle rotation overnight at 4°C. Then, 3.8 g of CsCl2 were 

added to the resuspended DNA and dissolved by gentle rotation. 290 µL of ethidium bromide 

(10 mg/µL; Sigma) were added to the resuspended DNA and homogenized by gentle inversion. 

Samples were centrifuged at 3000 rcf at room temperature to remove protein precipitates and 

ultra-centrifuged in a 100Ti rotor (Beckman Coulter) at 70000 rpm for 22 h at 25°C in a 

Beckman Coulter Optima L-100 XP ultracentrifuge. Supercoiled BAC DNA was visualized 

under a UV lamp (UVP) and collected. The ethidium bromide was eliminated by organic solvent 

extraction using 1-butanol. Finally, the DNA was precipitated using ice-cold 95% ethanol, 

washed with 70% ethanol, and resuspended in embryo-toxic free water. The isolated DNA was 

quantified using a Qubit Fluorometer and microinjected into the pro-nuclei of one-cell stage 

mouse embryos.  

 
6.3.3. RNA isolation from cells, mouse tissues, and mitochondria 
 
Total RNA from mouse tissues was extracted from snap-frozen tissues using the ToTALLY 

RNATM Kit (Ambion) or miRNAeasy kit (Qiagen) following the manufacturers’ instructions. 50-

100 mg of grinded mouse tissues were homogenized using lysing matrix D (MPBio) in a fast 

prep machine with 2x 30 sec pulses at speed 6 (MPBio). The homogenization step was 

repeated after 5 min incubation at room temperature.  Cells pellets were resuspended in Qiazol 

by pipetting (Qiagen). The isolated RNA was DNase treated using by in-column digestion using 

RNase-free DNase I (Qiagen) or TURBO DNA-freeTM kit (Ambion). The RNA concentration 

was measured with a NanoDrop 2000c spectrophotometer (Peqlab). Concentration, purity, and 

integrity of RNA for RNA-Seq were confirmed using Bioanalyzer or northern blotting (section 

6.4.7). Mitochondrial pellets were either resuspended in Qiazol and extracted using the 

miRNAeasy kit (Qiagen) or in Trizol LS (Life technologies) and extracted following 

manufacturer’s instructions.  

 
6.3.4. Pyrosequencing 
 
Quantification of Polrmt c420G>T was performed on tail DNA using a PyroMark Q24 

pyrosequencer (Qiagen). Allele Quantification assay was developed using PyroMark assay 

design software v. 2.0 (Qiagen). A single PCR reaction was employed to amplify a 192 bp 

fragment spanning the c.420G>T mutation site, using a biotinylated forward primer and a non-

biotinylated reverse primer. PCR products were combined with distilled water, PyroMark 

binding buffer (Qiagen), and 1µL Streptavidin sepharose TM high performance beads (GE 

Healthcare). Next, PCR products were purified and denatured using a Pyromakr Q24 vacuum 

workstation (Qiagen). Sequencing was performed with PyroMark Gold Q24 reagents according 



 89 

to manufacturer’s instructions using the sequencing primer. Primer sequences are listed in 

Table S2 (supplementary material section 8.2). 

 
6.3.5. RNA sequencing 
 
RNA sequencing was performed on total RNA by the Cologne Genomics Centre (Cologne, 

Germany) on the Illumina HiSeq platform, according to the Illumina Tru-Seq protocol. Random 

hexamer primers were used for cDNA library generation and cytoplasmic rRNA depletion using 

the Ribo-Zero rRNA removal kit was carried out. The alignment to the Mus musculus reference 

genome (GRCm38) was performed using HISAT2 version 2.0.4 (hisat2 -p 8 --dta) (Kim et al. 

2015). Alignment files were sorted and indexed with SAMtools version 1.3.1 (samtools sort -

@ 8; samtools index -b)(H. Li et al. 2009). The transcript abundances were estimated with 

StringTie 1.2.4 (stringtie -p 18 -e –B –G) using the Ensembl 81 annotation (Pertea et al. 2016). 

The raw reads count matrix at gene-level was extracted with prepDE.py script provided at 

http://ccb.jhu.edu/software/stringtie/dl/prepDE.py on Python version 2.7.6.  

 
Paired-end deep sequencing of the mitochondrial RNAs was performed as previously 

described (Mercer et al. 2011) on an Illumina MiSeq according to the manufacturer’s 

instructions. Sequenced reads were aligned to the mouse genome (GRCm38) with HISAT 

0.1.6 (66) (–fr –rna-strandness RF; total RNA library). Reads that aligned to mtDNA were 

extracted and subsequently realigned with spliced alignment disabled to reflect the unspliced 

nature of the mitochondrial transcriptome and prevent the introduction of spurious splice 

junctions. Gene-specific counts were summarized with featureCounts 1.3.5-p4 (67) (-p -s 2 -Q 

10; total RNA library) using the Ensembl 75 gene annotation for nuclear-encoded genes and 

a modified annotation for mitochondrial genes. The modified annotation contains merged mt-

Atp8/mt-Atp6 and mt-Nd4l/mt-Nd4 annotations to reflect their bicistronic nature. Initially, genes 

with a zero count in any sample were filtered from the count table (in addition to mt-tRNAs), 

followed by loess and upper quartile normalization for guanine/cytosine content and 

sequencing depth, performed with EDASeq 2.3.2 (68).  

 
6.3.6. Southern blotting  
 
1 - 3 µg of digested DNA were separated in 0.8% agarose gel and transferred to HybondTM-XL 

or Hybond N+ membranes (Amersham Biosciences) by capillary transfer in 20X SSC (3M NaCl, 

0.3 M sodium citrate, pH 7.0). Prior transfer, the gels were treated for 10 min with 0.2 M HCl, 

15 min in denaturation solution (1.5 M NaCl; 0.5 M NaOH) and 15 min in neutralization solution 

(1.5 M NaCl, 0.5 M Tris pH 7.4). After ultraviolet (UV) crosslinking, the membranes were 

successively hybridized with various probes at 65°C in RapidHyb buffer (Amersham) and then 

washed in 2x and 0.2x SSC/0.1% SDS before exposure. Probes used were gel-purified 
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restriction fragments labelled with [a -32P]2’-deoxycytidine-5′-triphosphate (dCTP) and the 

Prime-IT Random Primer Labeling kit random priming kit (Agilent). The Polrmt probe was 

generated by PCR amplification of Polrmt cDNA containing exon 2 to exon 4. The PCR product 

was cloned into pCRII-blunt TOPO vector (Invitrogen), excised by restriction digest using 

EcoRI, and gel-purified using Qiaquick Gel extraction kit (Qiagen). All other probes were 

previously generated previously in the laboratory (Table S3 in supplementary material section 

8.2). Radioactive signals were detected by autoradiography and the quantifications were 

performed using the programs ImageJ or MultiGauge with images generated from a 

Phosphorimager. For the D-loop Southern, samples were heated for 5 min at 95°C prior 

loading and hybridization was performed at 42 °C. BAC DNA was digested with HindIII and 

mouse DNA for mtDNA detection was digested with SacI.  

 
6.3.7. Northern blotting 
 
1-3 μg of total RNA was separated in a 1.8% formaldehyde-MOPS [3-(N-morpholino) 

propanesulfonic acid] agarose gel and transferred to HybondTM-XL or Hybond N+ membranes 

(Amersham Biosciences) by capillary transfer in 20X SSC. After UV crosslinking, the blots 

were successively hybridized with various probes at 42 or 65°C in RapidHyb buffer 

(Amersham) and then washed in 2x and 0.2x SSC/0.1% SDS before exposure. Mitochondrial 

probes used for visualization of mt-mRNA and mt-rRNA levels were gel-purified restriction 

fragments labelled with [a -32P]dCTP and the Prime-IT Random Primer Labeling kit random 

priming kit (Agilent). Mt-tRNAs and 7S RNA were detected using specific end-labelled 

oligonucleotides with 30 µCi [γ-32P]ATP and the T4 Polynucleotide kinase (New England 

Biolabs). The membranes were stripped before rehybridization. The images were obtained by 

autoradiography and the quantifications were performed using the programs ImageJ or 

MultiGauge with images generated from a Phosphorimager. The list of probes and 

oligonucleotides is in Table S4 (supplementary material section 8.2).  

 
6.3.8. RT-PCR and qRT PCR 
 
cDNA synthesis was performed on 1-2 µg of DNase treated RNA using the High Capacity 

cDNA reverse transcription kit (Applied Biosystems). qRT-PCR was performed using the 

Taqman 2x Universal PCR mastermix, No Amperase UNG (Applied Biosystems) and 

commercially available assays against mouse from Life technologies on a 7900HT or 

QuantStudio 6 RealTime PCR System (Applied Biosystems). List of oligonucleotides for RT-

PCR and Taqman assays are listed in tables S3 and S4 (supplementary material section 8.2), 

respectively. 
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6.3.9. In organello replication and transcription assays 
 
In organello replication and transcription assays were performed on mitochondria isolated from 

mouse hearts by differential centrifugation as described in section 6.4.1. 0.5-1 mg of freshly 

isolated mitochondria were resuspended in transcription labelling buffer (25 mM sucrose, 75 

mM sorbitol, 100 mM KCl, 10 mM K2HPO4, 50 μM EDTA, 5 mM MgCl2, 1 mM ADP, 10 mM 

glutamate, 2.5 mM malate, 10 mM Tris pH 7.4, 1 mg/ml of bovine serum albumin (BSA), and 

1 mM ADP) and incubated with 40 μCi of [α-32P]uridine-5’-triphoshphate (UTP) under rotation 

for 1 h at 37°C. To reduce the background signal, mitochondria were washed and resuspended 

in transcription labelling buffer containing 0.2 mM UTP and incubated at 37°C for 10 min. 

Finally, mitochondria were pelleted and resuspended in washing buffer (10% glycerol, 10 mM 

Tris-HCl pH 6.8, and 0.15 mM MgCl2). An aliquot of resuspended mitochondria was collected 

as the input and analysed by western blot (section 6.4.9). Mitochondrial RNA was isolated from 

the final pellet using the TRIzol LS reagent (Ambion) and resuspended in 10 μl of nuclease-

free water to which 10 μL of 2X RNA Sample loading buffer (Sigma) was added. Samples were 

heated for 10-15 min at 65°C, separated in 1.2% formaldehyde-MOPS horizontal agarose gels 

at 120 V for 2 h or 1.8% formaldehyde-MOPS vertical agarose gels at 80 V for 1 h and 160 V 

for 4-5 h. RNA was transferred by northern blotting (section 6.3.7). UV-crosslinked membranes 

were exposed to autoradiography or decorated with radiolabelled probes. 

 

 For in organello replication, the same procedure was performed with the following 

modifications. Labelling buffer was supplemented with 50 mM dCTP, dTTP 2′-deoxythymidine-

5′-triphosphate (dTTP), 2′-deoxyguanosine-5′-triphosphate (dGTP), and 20 µCi of [a-

32P]deoxyadenosine-5’-triphosphate (dATP) (PerkinElmer or Hartmann analytics). Incubation 

in labelling buffer was performed for 2 h. mtDNA was isolated by phenol:chloroform:isoamyl 

alcohol extraction or by Puregene Core Kit A (Qiagen) (section 6.3.1), and radiolabelled 

replicated DNA was analysed by D-loop Southern blotting and visualized by autoradiography 

(section 6.3.6). Quantifications of mtDNA and transcript levels were performed using the 

program MultiGauge with images generated from a PhosphorImager instrument.  

 
6.3.10. In vitro transcription assay 
 
Transcription reactions were performed in 25 µl total volume containing 25 mM Tris pH 8.0, 10 

mM MgCl2, 64 mM NaCl, BSA (100 mg/ml), 1 mM dithiothreitol (DTT), 400 µM ATP, 150 µM 

guanosine-5′- triphosphate (GTP), 150 µM CTP, 10 µM uridine 5′-triphosphate (UTP), 0.02 µM 

[a-32P]UTP, and 4 U RNase Inhibitor Murine (New England Biolabs). The transcription 

template was added at 4 nM and consisted of a restriction cut (HindIII/EcoRI), purified 

(QIAquick PCR Purification Kit) human LSP/HSP plasmid, where a fragment consisting of 
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positions 325 to 742 of human mtDNA was cloned between the SmaI and HindIII sites of 

pUC18  (Farge et al. 2014). For each reaction, 128 nM human TFB2M and 320 nM human 

TFAM (corresponding to 1 TFAM per 40 bp) were added. Human POLRMT was added at five 

different concentrations: 128, 32, 8, 2, and 0.5 nM. The reactions were incubated at 32°C for 

30 min and stopped by the addition of stop buffer (10 mM Tris pH 8.0, 0.2 M NaCl, 1 mM 

EDTA, and proteinase K (100 mg/ml)) followed by incubation at 42°C for 45 min. The 

transcription products were ethanol-precipitated, dissolved in 20 ml loading buffer (98% 

formamide, 10 mM EDTA, 0.025% xylene cyanol FF, and 0.025% bromophenol blue), and 

analyzed on 4% denaturing polyacrylamide gels (1× tris-borate EDTA and 7 M urea). 

Quantifications of transcript levels were performed using the program MultiGauge with images 

generated from a PhosphorImager instrument.  

 
6.3.11. Linear density glycerol gradients 
 
10 to 45% linear density glycerol gradient were modified from previous studies (Lee et al. 

2013). Crude mitochondria (1 - 3 mg) from 4 to 5 week-old mouse hearts were isolated by 

differential centrifugation as described in section 6.4.1, pelleted by centrifugation 15 min at 

9.300 rcf and 4°C, and then lysed in a glass potter on ice in lysis buffer (5% glycerol, 20 mM 

NaCl, 30 mM Hepes pH 8.0, 1 mM EDTA, 2 mM DTT, and 1.2% Triton X-100 supplemented 

with EDTA-free complete protease inhibitor cocktail and PhosSTOP Tablets (Roche)). After 10 

min of incubation, lysates were cleared by centrifugation 5 min at 800 rcf and 4°C and overlaid 

on top of a 10 to 45% linear glycerol gradient prepared in 20 mM NaCl, 25 mM Hepes pH 8.0, 

1 mM EDTA, 1 mM DTT, 0.2% Triton X-100, and EDTA-free complete protease inhibitor 

cocktail (Roche). Gradients were centrifuged in a SW41 rotor at 21000 rcf at 4°C for 3 hours 

in a Beckman Coulter Optima L-100 XP ultracentrifuge. Gradients were prepared using 

Gradient Master (Biocomp Instruments Inc) in 14 mm × 89 mm Ultra-Clear Centrifuge Tubes 

(Beckman Instruments Inc.). Fractions of 750 ml were collected from the top of the gradients, 

and 20 µl of each fraction were analysed and western blotting (section 6.4.9). For analysis of 

mtDNA sedimentation profiles, mtDNA was isolated from two-thirds of each fraction using 

phenol/chloroform extraction (section 6.3.1), digested with SacI, and subjected to Southern 

blotting (section 6.3.6).  
 
6.4. Methods in biochemistry 
 
6.4.1. Total protein isolation from mouse tissues 
 
Frozen heart tissue was pulverized with liquid nitrogen and 20-30 mg were resuspended in 

tissue lysis buffer (25 mM HEPES pH 7.5, 5 mM MgCl2, 0.5 mM EDTA, 1% NP-40, and 140 

mM NaCl) containing 1X complete protease inhibitor cocktail (Roche). The tissue homogenate 

was mixed by pipetting and then sonicated for 10 cycles (30 sec sonication and 30 sec rest). 
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Finally, the samples were centrifuged at 13000 rpm for 10 min at 4°C to remove cell debris. 

The supernatant with the total proteins was collected and kept at -20°C. Total proteins were 

quantified using the Protein DC – Lowry based assay (BioRad). 

 
6.4.2. Isolation of crude mitochondria from mouse tissues 
 
Mouse heart, kidney, liver, brown adipose tissue, and spleen were washed in ice-cold PBS, 

minced, and homogenized using a Potter S homogenizer (Sartorius) in mitochondrial isolation 

buffer (320 mM sucrose, 1 mM EDTA, and 10 mM Tris-HCl pH 7.4) containing 1X complete 

protease inhibitor cocktail (Roche). Then, the homogenized tissue was centrifuged at 1000 rcf 

for 10 min to pellet cell debris and nuclei and the supernatant was re-centrifuged at 10000 rcf 

for 15 min to pellet the mitochondria. The mitochondrial pellet was resuspended in 

mitochondrial isolation buffer and the differential centrifugation was repeated to obtain more 

pure mitochondria.  

  

Isolation of mitochondria from skeletal muscle was performed as previously described 

(Frezza et al. 2007). Briefly, skeletal muscle was collected in ice-cold DPBS with 10 mM EDTA, 

trimmed from visible fat, ligaments and connective tissue, and minced into small pieces. After 

washing three times in DPBS with 10 mM EDTA, samples were incubated with 0.05% trypsin 

in DPBS for 30 min, transferred to IBm1 buffer (67 mM sucrose, 50 mM Tris pH 7.4, 50 mM 

KCl, 10 mM EDTA, 0.2% BSA) and homogenised using a Potter S homogenizer (Sartorius). 

Tissue homogenates were centrifuged two times 10 min at 800 rcf, and the supernatant was 

centrifuged at 8000 rcf for 10 min. The mitochondrial pellet was then resuspended in IBm2 

buffer (250 mM sucrose, 3 mM EGTA/Tris pH 7.4, 10 mM Tris pH 7.4) and centrifuged at 8000 

rcf for 10 min.  

 

All the isolation steps were performed on ice and the centrifugations at 4°C. Mitochondria 

were snap-frozen in liquid nitrogen and kept at -80°C. An aliquot of the isolated mitochondria 

was quantified using the Bradford reagent. Absorbance at 595 nm was measured using a 

Tecan 2000 microplate reader. A BSA standard curve was used to determine the protein 

concentration. 

 
6.4.3. Subcellular fractionation from cells and mouse tissues 
  
Subcellular fractionation of mouse heart was performed as previously described (Cox & Emili 

2006). Hearts were minced and washed in ice cold DPBS (Gibco) to remove excess of blood. 

Then, tissues were rinsed and homogenized using a Potter S homogenizer (Sartorius) in ice 

cold 250-STMDPS buffer (250 mM sucrose, 50 mM Tris pH 7.4, 5 mM MgCl2, 1 mM DTT, 

Spermine 25 mg/mL, Sermidine 25 ml/mL) containing 1x complete protease inhibitor cocktail. 
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An aliquot was collected as the total input fraction. The tissue homogenate was centrifuged 

800 rcf for 15 min at 4°C. The supernatant was re-centrifuged and saved for mitochondrial 

isolation. The pellet from the first centrifugation round was resuspended in buffer 250-STMDPS 

and re-homogenized using a Potter S homogenizer for 1 min. The homogenized tissue was 

centrifuged at 800 rcf for 15 min at 4°C. The nuclei were resuspended in 4 volumes of buffer 

2 M STMDPS (2M sucrose, 50 mM Tris pH 7.4, 5 mM MgCl2, 1 mM DTT, Spermine 35 mg/mL, 

Spermidine 25 mg/mL) containing 1x complete protease inhibitor cocktail. The resuspended 

nuclei were added to a 14 mm × 89 mm Ultra-Clear Centrifuge Tubes (Beckman Instruments 

Inc.) containing 4 mL of buffer 2 M STMDPS and centrifuged at 80000 rcf for 35 min at 4°C in 

SW 41Ti rotor using a L-100 XP ultracentrifuge (Beckman Instruments Inc). The pellet 

containing pure nuclei was saved as the nuclear fraction. The supernatant containing the 

mitochondria were centrifuged at 6000 rcf for 15 min to pellet the mitochondria and the 

mitochondrial pellet was resuspended as the mitochondrial fraction. Equal volumes of each 

fraction were lysed using 2x LDS buffer (Invitrogen) with 50 mM DTT and analysed by western 

blotting (section 6.4.9).   

 

Subcellular fractionation of cells was performed using the cell fractionation kit (Abcam). 

70-90% confluent cells were harvested using 0.05% trypsin (Gibco), washed in cold DPBS and 

pelleted by centrifugation at 800 rcf for 5 min. 6.6 x 106 cells were resuspended in buffer A and 

an equal volume of buffer B (buffer A + 1:1000 v/v detergent I) was added. An aliquot was 

collected as the total input fraction. The cell suspension was mixed for 7 min by constant 

rotation at room temperature followed by centrifugation at 5000 rcf for 1 min at 4°C. The 

supernatant was then re-centrifuged at 10000 rcf for 1 min at 4°C and the resulting supernatant 

was collected as the cytoplasmic fraction. The pellets resulting from both centrifugation steps 

containing nuclei and mitochondria were resuspended in an equal starting volume of buffer A 

and an equal volume of buffer C (buffer A + 1:25 v/v detergent II) was added. The samples 

were mixed for 10 min by constant rotation at room temperature followed by centrifugation at 

5000 rcf for 1 min at 4°C. The supernatant was then re-centrifuged at 10000 rcf for 1 min at 

4°C and the resulting supernatant was collected as the mitochondrial fraction. The pellets 

resulting from both centrifugation steps were resuspended in two times the original volume of 

buffer A and corresponded to the nuclear fraction. Equal volumes of each fraction were lysed 

using 2x LDS buffer (Invitrogen) with 50 mM DTT and analysed by western blotting (section 

6.4.9).   

 
6.4.4. Percoll-purification of mitochondria from mouse tissues 
 
Crude mitochondria from mouse tissues were isolated as described in section 6.4.1. 

Mitochondria isolation buffer was in addition supplemented with PhosStop tablets (Roche). 
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Mitochondrial pellets were washed in 1x M buffer (220 mM mannitol, 70mM sucrose, 5mM 

HEPES pH 7.4, 1 mM EGTA pH 7.4; pH was adjusted with potassium hydroxide; supplemented 

with EDTA-free complete protease inhibitor cocktail and PhosSTOP Tablets (Roche)) and 

purified on a Percoll density gradient (12%:19%:40% prepared with 2x M buffer) via 

centrifugation in a SW41 rotor at 15.500 rpm at 4°C for 1 h in a Beckman Coulter Optima L-

100 XP ultracentrifuge using 14 mm × 89 mm Ultra-Clear Centrifuge Tubes (Beckman 

Instruments Inc.). Mitochondria were harvested at the interphase between 19% and 40%, 

washed three times with buffer 1xM. Mitochondrial pellets were snap-frozen in liquid nitrogen 

and stored at -80°C.  

 
6.4.5. Peptide digestion and stage-tip peptide clean-up for label-free mass spectrometry 
 
Percoll-purified frozen mitochondria pellets were suspended in lysis buffer (6 M guanidinium 

chloride, 10 mM Tris(2-carboxyethyl)phosphine hydrochloride, 40 mM chloroacetamide, and 

100 mM Tris-HCl) (Kulak et al. 2014). After complete lysis, samples were diluted 1:10 in 20 

mM Tris pH 8.0 and quantified a NanoDrop 2000c spectrophotometer (Peqlab).  80 μg of 

protein were mixed with 3 μg of Trypsin gold (1m/mL)(Promega) and incubated overnight at 

37°C to achieve complete digestion. Peptides were cleaned with home-made STAGEtips 

(Rappsilber et al. 2003) (Empore Octadecyl C18; 3M) and eluted in 60% acetonitrile/0.1% 

formic acid buffer. Samples were dried in a SpeedVac apparatus (Eppendorf concentrator plus 

5305) at 45°C and the peptides were suspended with 0.1% formic acid. Approximately 1.5 μg 

of peptides were analysed by LC-MS/MS.  

 
6.4.6. LC-MS/MS analysis 
 
For mass spectrometric analysis, peptides were separated on a 25 cm, 75 μm internal diameter 

PicoFrit analytical column (New Objective, Part No. PF7508250) packed with 1.9 μm ReproSil-

Pur 120 C18-AQ media (Dr. Maisch, Mat. No. r119.aq) using an EASY-nLC 1000 or EASY-

nLC 1200 (Thermo Fisher Scientific). The column was maintained at 50°C. Peptides were 

separated on a segmented gradient of buffer A (0.1% formic acid) from 2% to 5% buffer B 

(0.1% formic acid in acetonitrile) for 10 min, from 5% to 20% buffer B for 100 min, from 20% 

to 25% buffer B for 10 min, and from 25% to 45% buffer B for 10 min at 200 nl / min (EASY-

nLC 1000). Using the EASY-nLC 1200 system, peptides were separated on a segmented 

gradient of buffer A from 3% to 6% buffer B’ (80% acetonitrile, 0.1% formic acid) for 10 min, 

from 6% to 25% buffer B’ for 100 min, from 25% to 31% buffer B’ for 10 min, and from 31% to 

60% buffer B’ for 10 min, at 200 nl / min. Eluting peptides were analysed on a QExactive HF 

mass spectrometer (Thermo Fisher Scientific). Peptide precursor mass to charge ratio (m/z) 

measurements (MS1) were carried out at 60000 resolution in the 300 to 1800 m/z range. The 

top ten most intense precursors with charge state from 2 to 7 only were selected for HCD 
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fragmentation using 25% collision energy. The m/z of the peptide fragments (MS2) were 

measured at 30000 resolution using an AGC target of 2e5 and 80 ms maximum injection time. 

Upon fragmentation precursors were put on an exclusion list for 45 sec. Peptides from the five 

knockout strains were analysed in two runs and Polrmt knockout was used to control for the 

variability within runs. The time course analysis on Lrpprc knockout was performed in a single 

run. Peptides from different tissues of the Polrmt overexpressor mice were analysed in a single 

run.  

 
6.4.7. Determination of Coenzyme Q and amino acid content from mouse tissues 
 
Quinones were extracted as previously described (Mourier et al. 2015). 20 mg of pulverized 

frozen mouse hearts were resuspended in 200 µl 1 mM cupric sulfate (CuSO4) and 200 µl 

100% ethanol and then sonicated for 10 cycles (30 sec sonication and 30 sec rest; diagenode 

Bioruptor plus). Then, 400 µl of hexane were added, the samples were vortexed and sonicated. 

The upper face was collected and samples were dried in a SpeedVac apparatus (Eppendorf 

concentrator plus 5305) at 60°C for 25 min. For absolute quantification of Q9 and Q10 in 

positive ESI multiple reaction monitoring (MRM) mode, an Acquity UPLC system (Waters) was 

connected to a Xevo TQ (Waters). An Acquity UPLC (Waters). A BEH C18 1.7 μm, 2.1 × 50 

mm column was used at 40°C. Solvent A was 90% methanol + 10% propanol + 0.1% FA, and 

solvent B was 45% acetonitrile/acetone + 10% propanol + 0.1% FA. A linear gradient of solvent 

A ranging from 100% to 0% in 3.5 min at a low rate of 0.45 ml/min was used. Between 2 and 

6 μl of the samples were injected. The sample manager was set to 6°C for the standards and 

the samples were defrozen and directly injected. The source temperature was set to 150°C, 

desolvation temperature was 650°C, desolvation gas was set to 800 L/h, and cone gas was 

set to 50 liter/h. All compounds were freshly prepared daily and dissolved in ethanol/methanol 

(9:1). Quality control standards of each standard were used during sample analysis and 

showed between 0.5% and 40% deviation for Q9 and Q10. Standard curve range was 4 – 

3500 ng/mL for Q10 and 100-2800 ng/mL for Q9.  

 

Other metabolites analysed in this study were extracted from 20-30 mg grinded frozen 

mouse hearts in 1 mL sample buffer (methanol:H2O:chloroform in a 7:2:1 ratio). Samples were 

mixed, sonicated (10 cycles; 30 sec sonication and 30 sec rest; diagenode Bioruptor plus) and 

centrifuged at 15000 rcf at 4°C for 5 min. Supernatants were centrifuged through 0.25 μm 

Centrifugal filters (VWR) and re-centrifuged twice at 15000 rcf for 5 min, placed at -80°C for 2 

h and re-centrifuged. Supernatants were dried in a SpeedVac apparatus (Eppendorf 

concentrator plus 5305) at 45°C for 1h. Next, samples were suspended in 100 µl and diluted 

1/20 in 5 mM ammonium formiate + 0.15% formic acid (Sigma), mixed, sonicated for 2 min 

and filtrated through a 0.2 µm modified nylon centrifugal filter (VWR). For absolute 
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quantification in positive and negative ESI MRM (multi reaction monitoring) mode an Acquitiy 

UPLC I-Class System (Waters) was connected to a XevoTM TQ-S (Waters). A Discovery HS 

F5-3 (Supelco) 3 µm, 2.1 x 100 mm column was used at 25°C. Solvent A was 5 mM ammonium 

formiate + 0.15% formic acid and B was acetonitrile (VWR). A gradient from 100% A to 80% 

in 3 min, to 4 min isocrate, to 4,5 min 50%, to 7 min 0%, to 10 min isocrate at a flow rate of 

0.35 ml/min was used. An equilibration step of 7 min was performed after each injection. The 

dilutions were injected twice of each injection volume, 0.1 µL and 8 µL. The sample manager 

was set to 8°C and the source temperature to 150°C, desolvation temperature was 500°C and 

desolvation gas was set to 800 L/h, cone gas to 150 L/h. The following MRM transitions were 

used as quantifier for sarcosine m/z 89.84 to 44.02 cone 14 V collision 18 V, glycine m/z 75.9 

to 30.08 cone 28 V collision 6 V and in a negative mode serine m/z 105.9 to 42.09 cone 72 V 

collision 10 V. All compounds were freshly prepared and dissolved in 5 mM ammonium 

formiate + 0.15% formic acid. An external standard calibration curve was calculated using 11 

concentrations from 100 to 20000 ng/ml (all of them were prepared from stock solutions 100 

µg/ml). Correlation coefficient: r < 0.990, the peak integrations were corrected manually, if 

necessary. Quality control standards of each standard were used during sample analysis and 

showed between 0.5% and 40% deviation respectively. Blanks after the standards, quality 

control and sample batch proved to be sufficient. No carry over was detected. The MassLynx 

(Waters) software was used for data management and TargetLynx (Waters) was used for data 

evaluation and absolute quantification of all metabolite compounds. Two to three technical 

replicates were performed for each measurement. 

 
6.4.8. Mitochondrial enzyme activity and respiration measurements  
 
To measure mitochondrial respiratory chain complex activities 15 to 50 µg of mitochondria 

were diluted in phosphate buffer (KH2PO4 50 mM, pH 7.4), followed by spectrophotometric 

analysis of isolated respiratory chain complex activities at 37°C, using a HITACHI UV-3600 

spectrophotometer. To follow citrate synthase activity, increase in absorbance at 412 nm 

(E=13600M-1.cm-1) was recorded after addition of acetyl-CoA (0.1 mM), oxaloacetate (0.5 

mM) and DTNB (0.1 mM). Succinate dehydrogenase (SDH) activity was measured at 600 nm 

(E=21000M-1.cm-1) after the addition of 10 mM succinate, 35 µM dichlorphenolindophenol 

(DCPIP) and 1 mM KCN. Succinate dehydrogenase - cytochrome c reductase (II-III) activity 

was measured at 550 nm after the addition of 10 mM succinate, 0.5 mg cytochrome c, and 1 

mM KCN. NADH dehydrogenase activity was determined at 340 nm (E=6220M-1.cm-1) after 

the addition of 0.25 mM NADH, 0.25 mM duroquinone, and 25 mM Azide and controlling for 

Antimycin A sensitivity. Cytochrome c oxidase activity was measured by standard TMPD 

ascorbate/KCN sensitive assays. Each activity was normalized to mg protein using the Lowry-

based BioRad protein DC kit. All chemicals were obtained from Sigma Aldrich. 
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Mitochondrial oxygen consumption flux was measured at 37°C using 65–125 µg of 

crude mitochondria diluted in 2.1 ml of mitochondrial respiration buffer (120 mM sucrose, 50 

mM KCl, 20 mM Tris-HCl, 4 mM KH2PO4, 2 mM MgCl2, 1 mM EGTA, pH 7.2) in an Oxygraph-

2k (OROBOROS INSTRUMENTS, Innsbruck, Austria). The oxygen consumption rate was 

measured using either 10 mM pyruvate, 5 mM glutamate, and 5 mM malate or 10 mM 

succinate and 10 nM rotenone. Oxygen consumption was assessed in the phosphorylating 

state with 1 mM ADP or non-phosphorylating state by adding 2.5 µg/ml oligomycin. Respiration 

was uncoupled by successive addition of carbonyl cyanide m-chlorophenyl hydrazone (CCCP) 

up to 3 µM to reach maximal respiration. 

 
6.4.9. Western blot 
 
5-50 µg of isolated mitochondria of total protein extracts were resuspended in NuPage LDS 

sample buffer with 50 mM DTT (Invitrogen). Proteins were separated by SDS-PAGE using 

either 4-12% or 10% precast gels (Invitrogen) and then transferred onto polyvinylidene 

difluoride membranes (HybondTM-P from GE Healthcare). Immunodetection was performed 

according to standard techniques using enhanced chemiluminiscence (Immun-Star HRP 

Luminol/Enhancer from BioRad). The antibodies used are listed in table S5 

 
6.4.10. BN-PAGE and in gel enzyme activity 
 
100 mg of crude heart mitochondria were solubilized in solubilization buffer (1% (w/v) digitonin 

(Calbiochem), 20 mM Tris pH 7.4, 0.1 mM EDTA, 50 mM NaCl, 10% (v/v) glycerol) and 

incubated on ice for 15 min. Non-solubilized material was removed by centrifugation and the 

supernatant was mixed with loading die (5% (w/v) Coomasie Brilliant Blue G-250 (Serva), 100 

mM Tris pH 7.0, 500 mM 5-aminocaproic acid). Samples were resolved on a 4 – 10% (w/v) 

acrylamide gradient BN- gels (Schägger & Jagow 1991). BN gels were further subjected to 

western blot (section 6.4.9) or Coomassie Brilliant Blue R staining. The antibodies used are 

listed in Table S5 (supplementary material section 8.2) 

 
6.4.11. Immunofluorescence 
 
HeLa cells were grown at 37°C, 5% CO2 on coverslips. To detect spRNAP-IV, cells were 

transfected with a mammalian expression vector encoding spRNAP-IV fused to an EGFP tag 

using lipofectamine 2000 (Invitrogen). Cells were stained with MitoTracker red CMXRos 

(Invitrogen) and subsequently fixed with 4% paraformaldehyde. To visualize endogenous 

POLRMT, cells were incubated with antibodies against human POLRMT and visualized using 

AlexaFluor 488 goat anti-rabbit secondary antibody. After immunolabelling, samples were 

stained with 1 g/mL DAPI (AppliChem) and mounted in Prolong Gold (ThermoFisher). The 

image acquisition was performed with a Leica TCS SP8-X inverted confocal microscope (Leica 
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Microsystems) using a 100×/1.4 oil objective. The antibodies used are listed in Table S5 

(supplementary material section 8.2) 

 
6.4.12. Morphological analyses heart sections 
 
Hematoxylin and eosin stainings were performed on paraformaldehyde (PFA)–fixed 

cryosections from 4-week old mouse hearts that were immediately embedded in OCT Tissue-

Tek in cooled methyl-butan. Images of heart sections were generated by stitching of several 

images taken with the Nikon Eclipse Ci microscope. For transmission electron microscopy, 

pieces of the mouse heart apex were fixed in 2% glutaraldehyde and 2% PFA in 0.1 M sodium 

cacodylate buffer (pH 7.4). Specimens were postfixed in 1% osmium tetroxide [in 0.1 M sodium 

cacodylate buffer (pH 7.4)]. After thorough washing with water, specimens were dehydrated in 

ethanol followed by acetone and embedded in medium-grade Agar Low Viscosity Resin 

(Plano). Ultrathin sections (70 to 80 nm) were cut with a Reichert-Jung Ultracut E 

Ultramicrotome, stained with 2% uranyl acetate in 70% ethanol, followed by lead citrate, and 

examined with a Hitachi H-7650 transmission electron microscope operating at 100 kV fitted 

with a midmounted AMT XR41-M digital camera (Advanced Microscopy Techniques).  
 
6.5. Data and statistical analyses  
 
6.5.1. LC-MS/MS data analysis 
 
The raw data were analysed with MaxQuant version 1.4.1.2 (Cox and Mann, 2008) using the 

integrated Andromeda search engine (Cox et al. 2011). Peptide fragmentation spectra were 

searched against the canonical and isoform sequences of the mouse reference proteome 

(proteome ID UP000000589, August 2015 from UniProt). The database was complemented 

with 245 sequences of contaminating proteins by MaxQuant. For the analysis methionine 

oxidation and protein N-terminal acetylation were set as variable modifications. The digestion 

parameters were set to “specific” and “Trypsin/P,” allowing for cleavage after lysine and 

arginine also when followed by proline. The minimum number of peptides and razor peptides 

for protein identification was 1; the minimum number of unique peptides was 0. Protein 

identification was performed at a peptide spectrum matches and protein false discovery rate 

(FDR) of 0.01. The “second peptide” option was on to identify co-fragmented peptides. 

Successful identifications were transferred between the different raw files using the “Match 

between runs” option, using a match time window of 0.7 min. LFQ (Cox et al. 2014) was 

performed using a minimum ratio count of 2. 
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6.5.2. Protein LFQ quantification analysis 
 
Analysis of the LFQ results was done using the Perseus computation platform (Tyanova et al. 

2016), version 1.5.0.0 and R, version 3.3.0 (R Development Core Team, 2010). For the 

analysis, LFQ intensity values were loaded in Perseus and all identified proteins marked as 

“Reverse”, “Only identified by site”, and “Potential contaminant” were removed. The 

corresponding L/L and the L/L, cre genotypes were loaded separately in Perseus, the LFQ 

intensity values were log2 transformed and all proteins that contained less than two to five 

missing values in one of the groups (L/L or L/L, cre) were removed. Missing values in the 

resulting subset of proteins were imputed with a width of 0.3 and down shift of 1.8. Imputed 

LFQ intensities were loaded into R where a two-sided moderated t-test analysis was performed 

using limma, version 3.30.13 (Ritchie et al. 2015). Proteins with an adjusted p value (“BH” 

correction) of less than 0.05 were designated as differentially expressed. Our list of 

differentially expressed proteins was combined with annotations from MitoCarta2.0 (Calvo, 

Clauser & Mootha 2016). The first of the semicolon separated entries in the “Gene names” 

column was used to merge annotations through the “Symbol” or “Synonyms” columns of the 

Mouse.MitoCarta2.0.txt file. For protein entries that lacked a “Gene names” entry, gene name 

information was retrieved using UniProt.ws, version 2.14 (Carlson, 2017). Using the principles 

of the ‘Total Protein approach’ (Wiśniewski et al. 2014), the LFQ intensity values were used to 

calculate the contribution of all mitochondrial proteins, according to MitoCarta2.0, to the total 

protein mass. Log2 transformed LFQ intensity and fold changes were used to generate density 

ad MA-plots plots. The mean LFQ value of controls was used to generate MA-plots.  

 

Mouse MitoCarta2 protein sequences (Mouse.MitoCarta2.0.fasta) were downloaded 

from https://www.broadinstitute.org/scientific-community/science/programs/metabolic-

disease-program/publications/mitocarta/mitocarta-in-0. The sequences were combined with 

the Mouse Mitocarta2 protein annotations using the RefSeq ID and the protein length. In cases 

of multiple matches with identical sequences, a single sequence was randomly selected. The 

extracted sequences were analyzed using TargetP 1.1 (Emanuelsson et al. 2000). The 

analysis was performed using “Non-plant” and “no cutoffs” parameters. The “Perform cleavage 

site predictions” option (Nielsen et al. 1997) was enabled. Protein sequences predicted to 

localize to the Mitochondrion, indicated by “M” in the Loc column, with reliability class (RC) of 

one, two, or three, were N-terminally trimmed by the value of predicted mitochondrial target 

peptide (mTP) presequence length (TPlen columns). The initial methionine was removed from 

the remaining of sequences. In addition, a second set of sequences was derived by removing 

the initial methionine only. The seqinr package (Charif and Lobry, 2007) was used to calculate 

the isoelectric points (pI) and the grand average of hydropathy (GRAVY) scores of the two sets 

of sequences. The GRAVY scores were computed by calculating the sum of the Hydropathy 
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index (Kyte and Doolittle, 1982) of all amino acids in the protein sequence and dividing the 

value by the protein sequence length. The pI and GRAVY score values were combined with 

the average log2 RNA reads count per L/L, cre genotype and with the number of genotypes 

that had quantification values in the proteomic analysis. The data was divided into two disjoint 

sets, namely proteins quantified in zero genotypes and proteins quantified in at least one 

genotype. The empirical cumulative distributions of the pIs, GRAVY scores and the average 

log2 RNA counts of the two sets were visualized using the stat_ecdf function of the ggplot2 

package. 

 

Mitochondrial proteins were manually placed in functional categories based on literature and 

Uniprot (The UniProt Consortium 2017). For the L/L comparison across different time points, 

MaxQuant’s proteinGroups.txt file was combined with annotations from MitoCarta2.0 (Calvo, 

Clauser & Mootha 2016) as described above. The MitoCarta annotated data were imported 

into Perseus and filtered for at least nine valid LFQ intensity values across all samples (26 in 

total). Only proteins annotated as mitochondrial, according to the “MitoCarta2_List” column, 

were kept for analysis. Missing values were imputed as described above. Limma’s F-statistic 

was used to detect proteins with significant differences in protein expression across the time 

points. Testing was performed after the data were grouped per week (nine week-groups in 

total). The fold changes of the average LFQ intensity for all time points, relative to week three 

were calculated, scaled, and z-score normalized in R. Hierarchical clustering of the normalized 

data was performed with pheatmap, version 1.0.8 (Kolde, 2015), using Euclidean distance as 

a metric. The rows (proteins) dendrogram was cut into to ten clusters and proteins, which 

partitioned into the four main clusters. Profiles plots of the normalized fold change values were 

color-coded using the distance of each profile from the cluster center (mean value).    

 

For the Lrpprc knockout time course analysis data were imported into Perseus, filtered 

for at least 23 valid LFQ intensity values across all samples (46 in total), and missing values 

were imputed as described above. Limma’s F-statistic was used to detect proteins with 

significant differences in protein expression across the time-points for either the L/L or the L/L, 

cre genotype. In addition, the F-statistic was used to identify differentially expressed proteins 

that have a significant difference in the profile across the time-points. To compare complete 

categories of proteins, Wilcoxon signed-ranked test followed by FDR correction was 

performed.  

 
6.5.3. RNA-Seq data analysis 
  
Differential expression analyses of total RNA-Seq were performed with DESeq2 package R 

version 3.3.2 according to the standard DESeq2 tutorial that is part of the package (Love et al. 
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2014). Mt-RNAs were analysed according to the same protocol except the NUMT regions were 

masked, filtered to reads in proper pairs and analysed by DESeq2 as described above. 

Differential expression analysis of PARE sequencing was performed in R 3.2.0 with edgeR 

3.11.2 using a generalized linear model approach with tagwise dispersion estimates, and the 

offsets were generated by EDASeq (Robinson et al. 2010). 

 

 RNA-Seq data were analysed through the use of Ingenuity Pathways Analysis 

(Ingenuity® Systems, www.ingenuity.com). Log2 transformed fold changes and adjusted p 

values were uploaded to the program. Genes from the data set that met the adjusted p value 

cutoff of 0.05 in all the knockout strains of this study and were associated with a canonical 

pathway in Ingenuity’s Knowledge Base were considered for the analysis. The significance of 

the association between the data set and the canonical pathway was measured in 2 ways: 1) 

A ratio of the number of molecules from the data set that map to the pathway divided by the 

total number of molecules that map to the canonical pathway is displayed, 2) Fisher’s exact 

test was used to calculate a p value determining the probability that the association between 

the genes in the dataset and the canonical pathway is explained by chance alone. Genes from 

the RNA-Seq data sets that had a p value < 0.05 for all the knockout strains were loaded into 

Cytoscape (version 3.5.0; Shannon et al. 2003) and used as queries to the iRegulon plug-in 

(Janky et al. 2014). The putative regulatory region was selected to be 20 kb centred on the 

transcriptional start site (TSS), the normalized enrichment score (NES) threshold was set at 

3.0, and the maximum FDR on motif similarity was set at 0.001. Transcription factor enrichment 

analyses were performed based on motif or ChIP-Seq peaks enrichment using the 10K (9713 

PWMs) motif collection and the 1120 ChIP-Seq track collection, respectively. Target genes for 

MYC and ATF4 were obtained from published ChIP-Seq experiments (Han et al. 2013; Seitz 

et al. 2011).  

 
6.5.4. 2D annotation enrichment analysis 
 
2D annotation enrichment analysis of the proteomic and transcriptomic data was performed 

with Perseus (Cox & Mann 2012) using Benjamini-Hochberg FDR for truncation and a 

threshold value of 0.2. For the evaluation of the protein abundances during the post-natal 

development, identification of overrepresented functional categories in separate clusters was 

performed using Fisher exact test in Perseus. Benjamini-Hochberg FDR for truncation with a 

threshold value of 1. The top three overrepresented categories in each cluster, based on 

adjusted p value, are shown.  
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6.5.5. Statistical analyses 
 
Each mouse was considered an independent biological replicate (n) and repeated 

measurements of the same biological replicate were considered technical replicates. Unless 

indicated otherwise, ≥3 biological replicates of transgenic mouse strain and their respective 

age-matched control mice were used for all the experiments presented. Statistical analyses for 

RNA-Seq and MS protein quantification analyses were performed as described above. For 

qRT-PCR and metabolomics analyses variance was assessed using an F-test and statistical 

significance was assessed by a two-sample, two-tailed unpaired Student’s t-test in Excel. In 

organello experiments were analysed using a one-sample, two-tailed Student’s t-test with µ: 

100. Multiple comparison was corrected using Benjamini-Hochberg or Bonferroni correction as 

indicated in the figure legends. Statistical analyses were performed in Excel or R Studio version 

1.1.383. Data visualization in R was done using ggplot2 version 2.2.1 or pheatmap R packages 

version 1.08, respectively. The definition of centre and precision measures, and p values are 

provided in the figure legends. p < 0.05 was considered significant.  
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8. SUPPLEMENTARY MATERIAL  
 
8.1. Heatmaps of gene expression profiles 
8.1.1. Transcript and protein expression profiles of genes encoding mitochondrial proteins by 

category (excluding other and unknown) 
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8.1.2. Transcript expression profiles of MYC and ATF4 target genes 
 

 
  



 124 

8.2. Lists of reagents 

 
Table S1: List of transgenic strains 
 

Mouse strain Reference Genotyping primers 

LrpprcloxP/loxP, Ruzzenente et al. 2011 Lrpprc F and R 

LrpprcloxP/loxP, +/Ckmm-cre Ruzzenente et al. 2011 Ckmm cre F and R 

Lrpprc+/T Ruzzenente et al. 2011 Lrpprc +/T F and R 

Mterf4loxP/loxP, Camara et al. 2011 Mterf4 loxP F and R 

Mterf4loxP/loxP, +/Ckmm-cre Camara et al. 2011 Ckmm cre F and R 

PolrmtloxP/loxP, This thesis; Kühl et al. 2014; 
2016 Polrmt loxP F and R 

PolrmtloxP/loxP, +/Ckmm-cre This thesis; Kühl et al. 2014; 
2016 Ckmm cre F and R 

Polrmt+/- This thesis; Kühl et al. 2014; 
2016 Polrmt loxP F and R and Polrmt KO R 

Polrmt+/T This thesis Polrmt +/T F and R 

Polrmt+/T; Lrpprc+/T This thesis  Same as single transgenic lines 

TfamloxP/loxP, Larsson et al. 1998 Tfam loxP F, R1 and R2 

TfamloxP/loxP, +/Ckmm-cre Larsson et al. 1998 Ckmm cre F and R 

TwnkloxP/loxP, Milenkovic et al. 2013 Twnk loxP F and R 

TwnkloxP/loxP, +/Ckmm-cre Milenkovic et al. 2013 Ckmm cre F and R 
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Table S2: List of oligonucleotides for genotyping, cloning, RT-PCR, and 
pyrosequencing 
 

Primer Sequence  

Genotyping Lrpprc loxP F 5’ GGAGAACAGGCCGCATCACAA 3’ 

Genotyping Lrpprc loxP R 5’ TGCCTTCCACCTCAGCTTACCACT 3’ 

Genotyping Lrpprc +/T F 5’ GCTGAAAGCTTGGGTACTCG 3’ 

Genotyping Lrpprc +/T R 5’ AAAAGGCCCAGCGACTAAAT 3’ 

Genotyping Mterf4 loxP F 5’ GGGATGTCCAGCCTTTTGATAGTA 3’  

Genotyping Polrmt loxP F 5’ CACTGGAGAGCCCCACCTCCCTTCTCCAGAAGGGT 3’ 

Genotyping Polrmt loxP R 5‘ CCACTAACCATGGCTGTCTGC 3’ 

Genotyping Polrmt KO R 5‘ GGCACATACTTGATACAGCTTGG 3‘ 

Genotyping Polrmt +/T F 5’ GAGGCTCGGGTGCGGCAGCTC 3’ 

Genotyping Polrmt +/T R 5‘ GTGCAGTGTGAGCACCTGCTGTC 3‘ 

Genotyping Tfam loxP F 5’ CTGCCTTCCTCTAGCCCGGG 3’ 

Genotyping Tfam loxP R1 5’ GTAACAGCAGACAACTTGTG 3’ 

Genotyping Tfam loxP R2 5’ CTCTGAAGCACATGGTCAAT 3’ 

Genotyping Twnk loxP F 5’ CAGGGATGGTAGTTGGTTCC 3’ 

Genotyping Twnk loxP R 5’ CTAGCTGAGACCTTGCATGG 3’ 

Genotyping Ckmm cre F 5’ CACGACCAAGTGACAGCAAT 3’ 

Genotyping Ckmm cre R 5’ AGAGACGGAAATCCATCGCT 3’ 

Figure 3.1 primer a 5′ CGGCGCTCCGGTGGACCCGAAGCG 3’ 

Figure 3.1 primer b 5’ GTGGCTTCTGCAGCTCAAGA 3’ 

Figure 3.1 primer c 5’ GCATCACGGTGTTGTACATGTGC 3’ 

Figure 3.1 primer d 5’ TCTTGAGCTGCAGAAGCCAC 3’ 

Figure 3.1 primer e 5‘ CGACGAGAAGTGACTGGACCAG 3‘ 

Figure 3.3 primer a 5’ CTTGGCCGGGTTCTGCGCTCC 3’ 

Figure 3.3 primer b 5’ TCCAGCAGTTCAGCATGGCC 3’ 

Figure 3.3 primer c 5’ GTGGCTTCTGCAGCTCAAGA 3’ 

Figure 3.3 primer d 5’ TTCACCCTCATCTCAGGTG3’ 

Figure 3.3 primer d’ 5’ CTTCACCCTCATCTCAG 3’ 

Pyrosequencing Polrmt +/T F 5’ AGAGGCGCCAAAAGGAAGTT 3’ 

Pyrosequencing Polrmt +/T R- biotin  5’ TCTTGCTTGGCTGCAGGTAG 3’ 

Pyrosequencing Polrmt +/T Seq 5’ CAAGATCTGGAACAAGAA 3’ 
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Table S3: List of probes and oligonucleotides for radioactive labelling  
 
Probe Sequence  
7S DNA AGTACATAAATTTACATAGTACAACAGTACATTTATGTATATCGTACATTAAACTATTTTCC

CCAAGCATATAAGCTAGTACATTAAATCAATGGTTCAGGTCATAAAATAATCATCAACATA
AATCAATATATATACCATGAATATTATCTTAAACACATTAAACTAATGTTATAAGGACATATC
TGTGTTATCTGACATACACCATACAGTCATAAACTCTTCTCTTCCATATGACTATCCCCTTC
CCCATTTGGTCTATTAATCTACCATCCTCCGTGAAACCAACAACCCGCCCACCAATGCCC
CTCTTCTCGCTCCGGGCCCATTAAACTTGGGGGTAGCTAAACTGAAACTTTATCAGACAT
CTGGTTCTTACTTCAGGGCCATCAAATGCGTTATCGCCCATACGTTCCCCTTAAATAAGAC
ATCTCGATGGTATCGGGTCTAATCAGCCCATGACCAACATAACTGTGGTGTCATGCATTT
GGTATCTTTTTATTTTGGCCTACTTTCATCAACATAGCCGTCAAGGCATGAAAGGACAGCA
CACAGTCTAGACGCACCTACGGTGAAGAATCATTAGTCCGCAAAACCCAATCACCTAAGG
CTAATTATTCATGCTTGTTAGACATAAATGCTACTCAATACCAAATTTTAACTCTCCAAACC
CCCCACCCCCTCCTCTTAATGCCAAACCCCAAAAACACTAAGAACTTGAAAGACATATAAT
ATTAACTATCAAACCCTATGTCCTGATCAATTCTAGTAGTTCCCAAAATATGACTTATATTT
TAGTACTTGTAAAAATTTTACAAAATCATGTTCCGTGAACCAAAACTCTAATCATACTCTAT
TACGCAATAAACATTAACAA 
 

7S RNA GACATATAATATTAACTATCAAACCCTATGTCCTGATCAATTCTA 

18S rRNA GGTCTACAAGACGCCACATCCCCTATTATAGAAGAGCTAATAAATTTCCATGATCACACAC
TAATAATTGTTTTCCTAATTAGCTCCTTAGTCCTCTATATCATCTCGCTAATATTAACAACA
AAACTAACACATACAAGCACAATAGATGCACAAGAAGTTGAAACCATTTGAACTATTCTAC
CAGCTGTAATCCTTATCATAATTGCTCTCCCCTCTCTACGCATTCTATATATAATAGACGAA
ATCAACAACCCCGTATTAACCGTTAAAACCATAGGGCACCAATGATACTGAAGCTACGAA
TATACTGACTATGAAGACCTATGCTTTGATTCATATATAATCCCAACAAACGACCTAAAAC
CTGGTGAACTACGACTGCTAGAAGTTGATAACCGAGTCGTTCTGCCAA 
 

mt-12S TACACATGCAAACCTCCATAGACCGGTGTAAAATCCCTTAAACATTTACTTAAAATTTAAG
GAGAGGGTATCAAGCACATTAAAATAGCTTAAGACACCTTGCCTAGCCACACCCCCACGG
GACTCAGCAGTGATAAATATTAAGCAATAAACGAAAGTTTGACTAAGTTATACCTCTTAGG
GTTGGTAAATTTCGTGCCAGCCACCGCGGTCATACGATTAACCCAAACTAATTATCTTCG
GCGTAAAACGTGTCAACTATAAATAAATAAATAGAATTAAAATCCAACTTATATGTGAAAAT
TCATTGTTAGGACCTAAACTCAATAACGAAAGTAATTCTAGTCATTTATAATACACGACAG
CTAAGACCCAAACTGGGATTAGATACCCCACTATGCTTAGCCATAAACCTAAATAATTAAA
TTTAACAAAACTATTTGCCAGAGAACTACTAGCCATAGCTTAAAACTCAAAGGACTTGGCG
GTACTTTATATCCATCTAGAGGAGCCTGTTCTATAATCGATAAACCCCGCTCTACCTCACC
ATCTCTTGCTAA 
 

mt-16S ATGCAACACTGTTAGTATGAGTAACAAGAATTCCAATTCTCCAGGCATACGCGTATAACAA
CTCGGATAACCATTGTTAGTTAATCAGACTATAGGCAATAATCACACTATAAATAATCCAC
CTATAACTTCTCTGTTAACCCAACACCGGAATGCCTAAAGGAAAGATCCAAAAAGATAAAA
GGAACTCGGCAAACAAGAACCCCGCCTGTTTACCAAAAACATCACCTCTAGCATTACAAG
TATTAGAGGCACTGCCTGCCCAGTGACTAAAGTTTAACGGCCGCGGTATCCTGACCGTG
CAAAGGTAGCATAATCACTTGTTCCTTAATTAGGGACTAGCATGAACGGCTAAACGAGGG
TCCAACTGTCTCTTATCTTTAATCAGTGAAATTGACCTTTCAGTGAAGAGGCTGAAATATA
ATAATAAGACGAGAAGACCCTATGGAG 
 

mt-Co1 GTTCATTATTTTTGGTTGGTTGTCTTGGGTTAGCATTAAAGCCTTCACCTATTTATGGAGG
TTTAGGTTTAATTGTTAGTGGGTTTGTTGGTTGTTTAATGGTTTTAGGGTTTGGTGGATCG
TTTTTAGGTTTAATAGTTTTTTTAATTTATTTAGGGGGGATGTTGGTTGTGTTTGGATATAC
GACTGCTATAGCTACTGAGGAATATCCAGAGACTTGGGGATCTAACTGATTAATTTTGGG
TTTTTTAGTATTGGGGGTGATTATAGAGGTTTTTTTAATTTGTGTGCTTAATTATTATGATG
AAGTTGGAGTAATTAATCTTGATGGTTTGGGAGATTGGTTGATGTATGAGGTTGATGATGT
TGGAGTTATGTTGGAAGGAGGGATTGGGGTAGCGGCAATATATAGTTGTGCTACTTGAAT
GATGGTAGTAGCTGGGTGATCTTTGTTTGCGGGTATTTTTATT 
 

mt-Co2 GGTCTACAAGACGCCACATCCCCTATTATAGAAGAGCTAATAAATTTCCATGATCACACAC
TAATAATTGTTTTCCTAATTAGCTCCTTAGTCCTCTATATCATCTCGCTAATATTAACAACA
AAACTAACACATACAAGCACAATAGATGCACAAGAAGTTGAAACCATTTGAACTATTCTAC
CAGCTGTAATCCTTATCATAATTGCTCTCCCCTCTCTACGCATTCTATATATAATAGACGAA
ATCAACAACCCCGTATTAACCGTTAAAACCATAGGGCACCAATGATACTGAAGCTACGAA
TATACTGACTATGAAGACCTATGCTTTGATTCATATATAATCCCAACAAACGACCTAAAAC
CTGGTGAACTACGACTGCTAGAAGTTGATAACCGAGTCGTTCTGCCAA 
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Probe Sequence  
mt-Cytb AGTAGACAAAGCCACCTTGACCCGATTCTTCGCTTTCCACTTCATCTTACCATTTATTATC

GCGGCCCTAGCAATCGTTCACCTCCTCTTCCTCCACGAAACAGGATCAAACAACCCAACA
GGATTAAACTCAGATGCAGATAAAATTCCATTTCACCCCTACTATACAATCAAAGATATCC
TAGGTATCCTAATCATATTCTTAATTCTCATAACCCTAGTATTATTTTTCCCAGACATACTA
GGAGACCCAGACAACTACATACCAGCTAATCCACTAAACACCCCACCCCATATTAAACCC
GAATGATATTTCCTATTTGCATACGCCATTCTACGCTCAATCCCCAATAAACTAGGAGGTG
TCCTAGCCTTAATCTTATCTATCCTAATTTTAGCCCTAATACCTTTCCTTCATACCTCAAAG
CAACGAAGCCTAATATTCCGCCCAATCACACAAATTTTGTACTGAATCCTAGTAGCCAACC
TACTTATCTTAACCTGAATTGGGGGCCAACCAGTAGAACACCCATTT 
 

mt-Nd1 ACGCAAAATCTTAGGGTACATACAACTACGAAAAGGCCCTAACATTGTTGGTCCATACGG
CATTTTACAACCATTTGCAGACGCCATAAAATTATTTATAAAAGAACCAATACGCCCTTTAA
CAACCTCTATATCCTTATTTATTATTGCACCTACCCTATCACTCACACTAGCATTAAGTCTA
TGAGTTCCCCTACCAATACCACACCCATTAATTAATTTAAACCTAGGGATTTTATTTATTTT
AGCAACATCTAGCCTATCAGTTTACTCCATTCTATGATCAGGATGAGCCTCAAACTCCAAA
TACTCACTATTCGGAGCTTTACGAGCCGTAGCCCAAACAATTTCATATGAAGTAACCATAG
CTATTATCCTTTTATCAGTTCTATTAATAAATGGATCCTACTCTCTACAAACACTTATTACAA
CCCAAGAACACATATGATTACTTCTGCCAGCCTGACCCATAGCCATAATATGATTTATCTC
AACCCTAGCAGAAACAAAC 
 

mt-Nd5 ACAAGACATCCGAAAAATAGGAAACATCACAAAAATCATACCATTCACATCATCATGCCTA
GTAATCGGAAGCCTCGCCCTCACAGGAATACCATTCCTAACAGGGTTCTACTCAAAAGAC
CTAATTATTGAAGCAATTAATACCTGCAACACCAACGCCTGAGCCCTACTAATTACACTAA
TCGCCACTTCTATAACAGCTATGTACAGCATACGAATCATTTACTTCGTAACAATAACAAA
ACCGCGTTTTCCCCCCCTAATCTCCATTAACGAAAATGACCCAGACCTCATAAACCCAAT
CAAACGCCTAGCATTCGGAAGCATCTTTGCAGGATTTGTCATCTCATATAATATTCCACCA
ACCAGCATTCCAGTCCTCACAATACCATGATTTTTAAAAACCACAGCCCTAATTATTTCAG
TATTAGGATTCCTAATCGCACTAGAACTAAACAACCTAACCATAAAACTATCAATAAATAAA
GCAAATCCATATTCATCCTTCTCAACTTTACTGGGGTTTTTCCCATCTATTATTCACCGCAT
TACACC 
 

mt-Nd6 GTTCATTATTTTTGGTTGGTTGTCTTGGGTTAGCATTAAAGCCTTCACCTATTTATGGAGG
TTTAGGTTTAATTGTTAGTGGGTTTGTTGGTTGTTTAATGGTTTTAGGGTTTGGTGGATCG
TTTTTAGGTTTAATAGTTTTTTTAATTTATTTAGGGGGGATGTTGGTTGTGTTTGGATATAC
GACTGCTATAGCTACTGAGGAATATCCAGAGACTTGGGGATCTAACTGATTAATTTTGGG
TTTTTTAGTATTGGGGGTGATTATAGAGGTTTTTTTAATTTGTGTGCTTAATTATTATGATG
AAGTTGGAGTAATTAATCTTGATGGTTTGGGAGATTGGTTGATGTATGAGGTTGATGATGT
TGGAGTTATGTTGGAAGGAGGGATTGGGGTAGCGGCAATATATAGTTGTGCTACTTGAAT
GATGGTAGTAGCTGGGTGATCTTTGTTTGCGGGTATTTTTATT 
 

mt-Ta 5’ GACTTCATCCTACATCTATTG 

mt-Tc 5’ TCTCTACACCTTCGAATTTG 

mt-Te 5 ‘AACTGCGACCAATGACATGAAAAATC 

mt-Tf 5’ CATTTTCAGTGCTTTGCTTTGTTATTA 

mt-Tk TCACTATGGAGATTTTAAGGTC 

mt-Tl1 AAGTCTTACGCAATTTCCTGGCTCTG 

mt-Tl2 GGTTTTTGGTTCCTAAGAC 

mt-Tm CCCGATAGCTTAATTAGCTGACCTTAC 

mt-Tn TACCCTATTACTGGCTTCAA 

mt-Tp TCAAGAAGAAGGAGCTACT 

mt-Tq TTCAAAATTCTCCGTGCTACCTAAACA 

mt-Ts2 GCATGAATTAGCAGTTCTTGCAATC 

mt-Tt AAGATCTTCATTTCAGGTTTACAA 

mt-Tv GTGTAGGCCAGATGCTTTAAT 
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Probe Sequence  
Polrmt E2 – E4 AATTCGCCCTTGTGGGGCCATGCTGAACTGCTGGAAGTGCTGGAGGCTCGGGTGCGGC

AGCTCCGGGCAGAGGGCACACCTGAGATGAGGGTGAAGAAGGTGCAGGTGGACCGGC
CTCCACAGGGCCACAGCAGCCGCTGGGCGCAAAAGCTAGAGGCTGAGAAAAGGGTGAA
GCAGAGGCGCCAAAAGGAAGTTGACCAGCAGAAGCAAGCCCTCACACAGGAGTTCTGG
ACCCTTCACAAGGAGCCCAAGATCTGGAACAAGAAGCTGGCTGGCTACCTGCAGCCAAG
CAAGAAGGGAACACCCACGAACTCAGAGGAAAAGCAGCTGGCCCAGGCCCTTCAGGCT
GCTCTGGGGAGGCTCAGCTCCCGTGAGGCAGAGGCCCTGGCCAGGAAGAAAGCCAAGG
CGGTGGAGGCGCAGATCCTGGTCCTCCAGCAGAAGTTCCTGGCTTTCTTTGAGTGCTGC
GTCTGCACTGGCCAAGTGCCCCTCGCTCACCACGTGCTGGTCACTCACCATAACAACGG
AGACAGACAGCAGGTGCTCACACTGCACATGTACAACACCGTGATGCTTGGCTGGGCCC
GCAAGGGCTCCTTCAGAGAGCTGGTCTATGTGAAGGGCG 

*All the probes and oligonucleotides were previously generated in the laboratory except Porlmt E2 – E4 
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Table S4: List of Taqman assays 
 

Taqman Assay Catalog Number 

Human 18S rRNA Hs99999901_s1 

Mouse Acta1 Mm00808218_g1 

Mouse Actc1 Mm01333821_m1 

Mouse Actg1 Mm01963702_s1 

Mouse Actg2 Mm00656102_m1 

Mouse Adck3 Mm00469737_m1 

Mouse Adck4 Mm00505363_m1 

Mouse Atf4 Mm00515325_m1 

Mouse Coq2 Mm01203260_g1 

Mouse Coq4 Mm00618552_m1 

Mouse Coq5 Mm00518239_m1 

Mouse Coq7 Mm00501587_m1 

Mouse Fdps Mm00836315_g1 

Mouse Gabpa Mm00484598_m1 

Mouse Hmgcs1 Mm01304569_m1 

Mouse Hmgcr Mm01282499_m1 

Mouse Lrpprc Mm00511512_m1 

Mouse mt-Atp6 Mm03649417-g1 

Mouse mt-Co1 Mm04225243_g1 

Mouse mt-Cytb Mm04225271_g1 

Mouse mt-Nd1 Mm04225274_s1 

Mouse mt-Nd5 Custom-made AIHSNT9 

Mouse mt-Rnr2 (mt-16S) Mm04260181_s1 

Mouse Mterf2 Mm01233053_m1 

Mouse Mterf3 Mm00481557_m1 

Mouse Mterf4 Mm00508298_m1 

Mouse Myc Mm00487804_m1 

Mouse Nrf1 Mm00447996_m1 

Mouse Pdss1 Mm00450958_m1 

Mouse Pdss2 Mm01190168_m1 

Mouse Ppargc1(Pgc1a) Mm00447183_m1 

Mouse Polrmt Mm00553272_m1 

Mouse Polga Mm00450527_m1  
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Taqman Assay Catalog Number 

Mouse Serca2 Mm01201431_m1 

Mouse Ssbp1 Mm01131763_g1 

Mouse Tbp Mm00446973_m1 

Mouse Tefm Mm01304209_m1 

Mouse Tfam Mm00627275_m1 

Mouse Tfb2m Mm01620397_s1 

Mouse Peo1/Twnk Mm00467928_m1 

Mouse Pcyox1 Mm00482162_m1 

Mouse Zbtb1 Mm01281881_m1 
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Table S5: List of primary antibodies 
 

Antibody Source Catalog Number 
 
ALDH18A1 

 
Thermofisher Scientific 

 
PA5-19392  

CLPP Sigma-Aldrich WH0008192M1 

COX4 Cell Signaling 4850 

CS Abcam ab129095 

ELAC2 Proteintech 10071-1-AP 

FDPS Abcam ab189874 

FLAG M2 Sigma-Aldrich F1804 

GFP Millipore MAB3580 

GLS Abcam ab93434 

GRSF1 Sigma-Aldrich HPA036985 

HISTONE H3 Sigma-Aldrich H0164 

HMGCS1 Abcam ab194971 

HSPA9/mtHSP70/Grp75 Abcam ab82591 

LONP1 Abcam or Lu et al. 2013 ab103809 or self-made 
polyclonal antisera  

LRPPRC mouse N.-G. Larsson; Ruzzenente et 
al. 2012  

Self-made 

MRPL12 Sigma-Aldrich HPA022853 

MRPL37 Sigma-Aldrich HPA025826 

MRLP44 Proteintech 16394-1-AP 

MRPS35 Proteintech 16457-1-AP 

Mt-CO2 N.-G Larsson; Larsson et al. 
1998 
 

Self-made polyclonal antisera 
 

MTHFD1 Abcam ab103698 

MTHFD2 Abcam ab37840 

NDUFA9 Abcam ab14713 

POLRMT mouse N.-G. Larsson; Kühl et al. 2014 Self-made purified antibody 

POLRMT human Abcam ab32988 
 

POLgA Abcam ab128899 

PYCR1 Proteintech 13108-1-AP 

SDHA Thermofisher Scientific 459200 

SHMT2 Sigma-Aldrich HPA020543 

SLIRP15C4; rat IgG2a N.-G Larsson; Lagouge et al. 
2015 
 

Self-made polyclonal antisera 
 

Antibody Source Catalog Number 
SSBP1 Sigma-Aldrich HPA002866 
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SDHA Thermofisher Scientific 459200 
 
SHMT2 

 
Sigma-Aldrich 

 
HPA020543 
 

TFAM Abcam ab131607 

TEFM Sigma-Aldrich HPA023788 

TFB2M N.-G. Larsson, Harmel et al. 
2013 
 

Self-made purified antibody 

Total OXPHOS Rodent WB Antibody 
Cocktail 

Abcam ab110413 

Tubulin Cell Signaling 2125 

TWINKLE mouse N.-G. Larsson, Milenkovic et al. 
2013  

Self-made purified antibody 

UQCRFS1 Abcam ab131152 

VDAC1 Millipore MABN504 
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8.5. Abbreviations 

 
1C    One carbon 

AARE   Amino acid response element 

ACTA1   Actin, alpha skeletal muscle 

ACTC1  Actin, alpha cardiac muscle 1 

ACTG1  Actin, cytoplasmic 2 

ADP   Adenosine diphosphate 

AFG3L2  AFG3-like protein 2 

ALDH18A1  Delta-1-pyrroline-5-carboxylate synthase 

ALDH4A1  Delta-1-pyrroline-5-carboxylate dehydrogenase, mitochondrial 

AMP    Adenosine monophosphate 

AMPK   AMP-activated protein kinase 

ATF   Cyclic AMP-dependent transcription factor 

ATFS-1  Stress activated transcription factor atfs-1 

ATP   Adenosine triphosphate 

ATP5A1  ATP synthase subunit alpha, mitochondrial  

ATP5B   ATP synthase subunit beta, mitochondrial 

ATP5C1  ATP synthase subunit gamma, mitochondrial 

ATP5D   ATP synthase subunit delta, mitochondrial 

ATP5E   ATP synthase subunit epsilon, mitochondrial 

AUC   Area under the cumulative recovery curve (iRegulon) 

B2M   Beta-2-microglobulin 

BAC   Bacterial artificial chromosome 

BAX   Apoptosis regulator BAX 

BID   BH3-interacting domain death agonist 

BN-PAGE  Blue-native polyacrylamide gel electrophoresis 

C/EBPb  CCAAT enhancer binding protein beta 

cDNA   Complementary DNA 

ChIP-Seq  Chromatin immunoprecipitation sequencing 

CI   OXPHOS complex I - NADH:Q oxidoreductase 

CII   OXPHOS complex II - succinate dehydrogenase 

CIII   OXPHOS complex III - ubiquinol:cytochrome c oxidoreductase 

CIV   OXPHOS complex IV - cytochrome c oxidase 

CV   OXPHOS complex V - ATP synthase 

Ckmm   Creatinine kinase, muscle 

CLPP   ATP-dependent Clp protease proteolytic subunit, mitochondrial 
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CoA   Coenzyme A 

COQ10A  Coenzyme Q-binding protein COQ10 homolog A, mitochondrial 

COQ2   4-hydroxybenzoate polyprenyltransferase, mitochondrial 

COQ3   Q biosynthesis O-methyltransferase, mitochondrial 

COQ4   Q biosynthesis protein COQ4 homolog, mitochondrial 

COQ5   2-methoxy-6-polyprenyl-1,4-benzoquinol methylase, mitochondrial 

COQ6   Q biosynthesis monooxygenase COQ6, mitochondrial 

COQ8A  Atypical kinase COQ8A, mitochondrial 

COQ8B  Atypical kinase COQ8B, mitochondrial 

COQ9   Q biosynthesis protein COQ9, mitochondrial 

COX15  Cytochrome c oxidase assembly protein COX15 homolog 

COX19  Cytochrome c oxidase assembly protein COX19 

CSB    Conserved sequence block 

CTD   C-terminal domain 

DAP-Seq  DNA affinity purification sequencing 

D-loop   Displacement loop 

DARS2  Aspartate-tRNA ligase, mitochondrial 

DDIT3/CHOP  DNA damage-inducible transcript 3 protein 

DNAJA3  DnaJ homolog subfamily A member 3, mitochondrial 

dsDNA   Double-stranded DNA 

EGFP   Enhanced green fluorescent protein 

eIF2   Eukaryotic translation initiation factor 2 

ELAC2   Zinc phosphodiesterase ELAC protein 2 

ENDOG  Endonuclease G 

ERAL1   Era G-protein like 1 

ERR   Estrogen-related receptors 

FAD+   Flavin adenine dinucleotide, oxidized 

FADH2  Flavin adenine dinucleotide, reduced 

FAO   Fatty acid oxidation  

FASTKD1-5  FASTK-domain containing proteins 1-5  

FASTK   Fas-activated serine/threonine kinase 

FDPS   Farnesyl pyrophosphate synthase 

FDR   False discovery rate 

FeS   Iron sulfur 

FGF21   Fibroblast growth factor 21 

GABPA  GA-binding protein alpha chain  

GDF15   Growth differentiation factor 15 
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gDNA   genomic DNA 

GRSF1  G-rich sequence factor 1 

H   Heavy 

HMGCR  3-hydroxy-3-methylglutaryl-CoA reductase 

HMGCS1  HMG-CoA synthase 

HSP   Heavy-strand promoter 

HSPA9/mtHSP70 Stress-70 protein, mitochondrial -  

HSPD1/mtHSP60 60 kDa heat shock protein, mitochondrial 

HSPE1  10 kDa heat shock protein, mitochondrial 

IC   Initiation complex 

IMM   Inner mitochondrial membrane 

IMS   Inter membrane space 

ISR   Integrated stress response 

L   Light 

LFQ   Label-free quantification 

LIG3   DNA ligase 3 

LONP1  AAA+ LON P protease 

LRPPRC  Leucin-rich PPR motif-containing protein 

LSP   Light-strand promoter 

m/z   mass/charge ratio 

MAOA   Monoamine oxidase A 

MEF   Mouse embryonic fibroblast 

MGME1  Mitochondrial genome maintenance exonuclease - 1 

Mitoproteome  Mitochondrial proteome 

MM   Mitochondrial matrix 

MRM1-3  mitochondrial rRNA methyl transferases 

MRPL   Mitochondrial 39S ribosomal protein 

MRPP1-3   Mitochondrial RNAse P protein 1-3 

MRPS   Mitochondrial 28S ribosomal protein 

mtDNA   Mitochondrial DNA 

mt-mRNA  Mitochondrial messenger RNA 

mt-RNA  Mitochondrial RNA 

mt-rRNA  Mitochondrial ribosomal RNA 

mt-tRNA  Mitochondrial transfer RNA 

MTERF1-4  Mitochondrial transcription termination factor 1-4 

MTG1   Mitochondrial ribosome associated GTPase 1 

MTHFD1  C-1 THF synthase, cytosolic 
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MTHFD2 bi-functional methyleneTHF dehydrogenase/cyclohydrolase, 

mitochondrial 

MTIF3   Mitochondrial translation inititation factor 3 

mTOR   Mechanistic target of rapamycin 

mTORC1  mTOR complex 1 

MTS   Mitochondrial targeting sequence 

mtUPR   Mitochondrial unfolded protein response 

MURE 1/2  Mitochondrial unfolded protein response elements 

MYC   Myc proto-oncogene protein 

NAD+   Nicotinamide adenine dinucleotide, oxidized 

NADH   Nicotinamide adenine dinucleotide, reduced 

NADP+   Nicotinamide adenine phosphate dinucleotide, oxidized 

NADPH  Nicotinamide adenine phosphate dinucleotide, reduced 

NCR   Non-coding control region 

NES   Normalized enrichment score (iRegulon) 

NGRN   Neugrin 

NRF1   Nuclear respiratory factor 1 

NSUN4  5-methylcytosine rRNA methyl transferase NSUN4 

NTD   N-terminal domain 

NTE   N-terminal extention 

OH   H-strand origin of replication 

OL   L-strand origin of replication 

OMM   Outer mitochondrial membrane 

OXPHOS  Oxidative phosphorylation 

PCK2   Phosho-enol pyruvate carboxykinase 

PCYOX1  Prenylcysteine oxidase gene 

PDSS1  Decaprenyl-diphosphate synthase subunit 1 

PDSS2  Decaprenyl-diphosphate synthase subunit 1 

PGC1   Peroxisome proliferated-activated receptors 

PHGDH  D-3-phosphoglycerate dehydrogenase 

pI   Isoelectric point 

PNPT1   Polyribonucleotide nucleotidyltransferase 1, mitochondrial 

POLg   DNA polymerase gamma 

PPAR   Peroxisome proliferated-activated receptors 

PPR   Pentatricopeptide repeat 

PPRC1  Peroxisome proliferator-activated receptor gamma coactivator-related 

protein 1 
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PRIMPOL  DNA-directed primase/polymerase protein 

PRODH  Proline dehydrogenase 1 

PSAT1   Phosphoserine aminotransferase 

PTCD2  PPR-containing protein 2 

PYCR1  Pyrroline-5-carboxylate reductase 1, mitochondrial 

PYCR2  Pyrroline-5-carboxylate reductase 2 

Q   Ubiquinone, Coenzyme Q 

qRT-PCR  Quantitative real-time PCR 

R-loop   RNA loop 

RCC1L/WBSCR16 RCC1-like G exchanging factor-like protein 

Redox   Oxido reduction 

RNA-Seq  RNA sequencing 

RNASEH1  RNase H1 

RPUSD3-4  Mitochondrial mRNA pseudouridine synthase RPUSD3-4 

RT-PCR  Reverse-transcriptase PCR 

SCO2   Protein SCO2 homolog, mitochondrial 

siRNA   Small interfering RNA 

SLIRP   SRA stem-loop-interacting RNA-binding protein, mitochondrial 

spRNAP-IV  Single-polypeptide RNA polymerase IV 

SSBP1   Single-stranded binding protein 1 

SUPV3L1  ATP-dependent RNA helicase, mitochondrial 

T7-RNAP  T7 RNA polymerase 

TACO1  Translational activator of cytochrome c oxidase 1 

TAS   Termination associated sequences 

TBP   TATA binding protein 

TCA   Tricarboxylic acid cycle 

TEFM   Mitochondrial transcription elongation factor 

TFAM   Mitochondrial transcription factor A 

TFB1M  Mitochondrial transcription factor B1 

TFB2M  Mitochondrial transcription factor B2 

THF   Tetrahydrofolate 

TOP1MT  DNA topoisomerase I, mitochondrial 

TRAP1   Heat shock protein 75 kDa, mitochondrial 

TRUB2  Mitochondrial mRNA pseudouridine synthase TRUB2 

TSS Transcription start site 

Twnk/TWINKLE Mitochondrial DNA helicase TWINKLE  

UTR   Untranslated region 



 140 

VDAC   Voltage-dependent anion-selective channel 

YME1L1  ATP-dependent zinc metalloprotease YME1L1 

ZBTB1   Zinc-finger BTB domain-containing protein 1 

 
 
Abbreviations one-letter code of amino acids 
 
A   Alanine 

R   Arginine 

N   Asparagine 

D   Aspartic acid 

C   Cysteine 

E   Glutamic acid 

Q   Glutamine 

G   Glycine 

H   Histidine 

I    Isoleucine 

L   Leucine 

K   Lysine 

M   Methionine 

F   Phenylalanine 

P   Proline 

S    Serine 

T   Threonine 

W   Tryptophan 

Y    Tyrosine 

V   Valine 
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