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Abstract

The rapid increase of CO2 concentration in the atmosphere due to the anthropogenic activi-
ties since the beginning of the industrial revolution in 1750 makes CO2 the most important
anthropogenic atmospheric trace gas. Improvements in space-based and ground-based in-
strumentation during the last decades provide a high potential to observe atmospheric CO2

spatial and temporal variability in unprecedented details. The interaction of atmospheric
CO2 with the terrestrial ecosystem such as plant photosynthesis and soil respiration can
produce a considerable diurnal change in the CO2 concentration near the surface. The mea-
surement of this diurnal evolution would provide a valuable tool to study the land-vegetation
interaction with the atmospheric CO2. Such a tool would also be useful to help evaluate the
output of numerical models which predict the CO2 flux near the surface. However, despite all
improvements in the measurement capability, capturing this diurnal change in the boundary
layer still remains a challenge.

One possibility to improve the observation of the diurnal CO2 cycle is to use the Fourier
Transform InfraRed (FTIR) spectrometer. One example of ground-based FTIR spectrom-
eter is Atmospheric Emitted Radiance Interferometer (AERI). The AERI was installed in
2011, at Jülich ObservatorY for Cloud Evolution (JOYCE), in Germany. It measures the
downwelling atmospheric radiation in the mid-infrared region from 520 cm−1 (19 µm) to 3020
cm−1 (3.3 µm). High temporal (less than 30 s) and spectral (better than 1 cm−1) resolution
as well as continuous measurements of the AERI give the opportunity to retrieve the atmo-
spheric thermodynamic profiles and cloud properties. In addition, the AERI also observes the
emission from several trace gas absorption bands, such as the 15 µm CO2 band. These bands
can be used to provide useful information about the atmospheric concentration of these trace
gases. In the present work, the ability to retrieve profiles of CO2 over the diurnal cycle from
AERI-observed radiances is investigated. For this purpose, an algorithm, called AERIoe is
utilized and modified to retrieve the CO2 profile in the boundary layer.

Prior to applying the AERIoe to real AERI measurements, simulated radiances are used to
evaluate the potential of retrieving atmospheric CO2 concentration from AERI radiance ob-
servations. A line-by-line radiative transfer model (LBLRTM) using numerical model profiles
as input are utilized to compute downwelling radiances, which are convolved with the instru-
ment function and random noise added in order to simulate an AERI observation. In the
first step, a constant atmospheric mixing ratio is considered for the atmospheric CO2 profile.
AERIoe results show about 2 ppm overestimation in retrieving the constant CO2 mixing
ratio. In order to improve the results, reduced noise, which can be interpreted as using tem-
porally averaged AERI radiances, is added to the simulated radiances. These results show
considerable improvement compared to the previous results where by ∼ 70% of the retrieved
values are within the expected uncertainty. However, a constant atmospheric profile can not
provide any information related to the diurnal change of CO2 concentration near the surface,

i



ii

meaning that a profile which can represent the diurnal CO2 variation needs to be retrieved.
Due to the low numbers of degrees of freedom for signal in retrieving the CO2 concentration,
the CO2 profile is parametrized using an exponential function. This exponential function
gives the opportunity to calculate the CO2 profile by retrieving 2 shape parameters, rather
than retrieving whole profile.

In order to evaluate the modified AERIoe, simulated radiances with the reduced noise for
one month are provided to the algorithm. The AERIoe is then run while temperature and
humidity profiles are considered as known profiles. The CO2 concentrations in different levels
are captured quite accurately by the algorithm where the root mean square values between
true and retrieved CO2 concentrations are 6.8, 5.4, 4.0 and 1.9 ppm at the surface, 90 m,
200 m and 1 km respectively. The retrieved profiles improved the root mean square between
true and prior profiles by ∼ 50%. The algorithm is then used to retrieve the temperature,
humidity and CO2 profiles simultaneously. These results show a significant reduction in the
CO2 degrees of freedom which causes poor retrieval results. Consequently, a second method
is used wherein a principal component noise filter is applied to reduce the random error in
the AERI observations. High temporal resolution simulated radiances are used to test the
new method. The results of the AERIoe run with the noise-filtered radiances demonstrate
considerable improvement in retrieving the CO2 concentration near the surface.

The AERIoe is then applied to real AERI observations from two clear sky days at Jülich to
retrieve profiles of CO2. The tower in-situ measurements at Jülich are utilized to compare
with the retrieved CO2 concentration near the surface. It is shown that the AERI radiances
have the potential to capture the diurnal variation of the CO2 concentration near the surface.
The retrieved values for the surface CO2 concentration show between 5 to 10 ppm difference
with the tower measurements during these two days, while the uncertainties in the retrieved
values are between 4 to 7 ppm. The AERI radiances are also used to estimate the height
where the CO2 concentration deviates from its background value. The diurnal change of the
derived heights for one of these two days are in good agreement with the expected diurnal
change of the boundary layer for a sunny and clear sky day.



Zusammenfassung

Der schnelle Anstieg der CO2 Konzentration in der Atmosphäre, der seit dem Beginn der
industriellen Revolution ab 1750 durch anthropogene Aktivitäten hervorgerufen wird, macht
CO2 zum wichtigsten anthropogenen Spurengas der Atmosphäre. Fortschritte der satelliten-
und bodengestützten Messtechnik in den letzten Jahrzehnten bieten ein hohes Potential,
die räumliche und zeitliche Veränderung von atmosphärischem CO2 in noch nie da gewe-
senem Detail zu erfassen. Das Zusammenspiel von atmosphärischem CO2 und dem irdischen
Ökosystem, zum Beispiel durch Pflanzenphotosynthese und Bodenatmung, kann einen er-
heblichen Tagesgang in der oberflächennahen CO2 Konzentration verursachen. Messungen
dieses Tagesgangs wären ein wertvolles Hilfsmittel zur Untersuchung des Zusammenspiels
von Land und Vegetation mit dem atmosphärischen CO2. Ein solches Hilfsmittel könnte
außerdem eine Beurteilung von numerischen Modellen, die den oberflächennahen CO2 Fluss
vorhersagen, ermöglichen. Trotz Verbesserung der Messungmöglichkeiten ist die Messung
dieses Tagesgangs in der Grenzschicht nach wie vor eine Herausforderung.

Eine Möglichkeit, die Beobachtung des CO2 Tagesgangs zu verbessern, ist die Benutzung eines
Fourier Transform InfraRot (FTIR) Spektrometers. Das Atmospheric Emitted Radiance
Interferometer (AERI) ist ein Beispiel eines bodengestützten FTIR Spektrometers. AERI
wurde 2011 am Jülich ObservatorY for Cloud Evolution (JOYCE) in Deutschland installiert.
Es misst die einfallende atmosphärische Strahlung im mittleren Infrarotbereich von 520 cm−1

(19 µm) bis 3020 cm−1 (3.3 µm). Eine hohe zeitliche (weniger als 30s) und spektrale (besser
als 1 cm−1) Auflösung sowie kontinuierliche Messungen des AERI ermöglichen es, thermody-
namische Atmosphärenprofile und Wolkeneigenschaften zu erfassen. Außerdem beobachtet
AERI die Emission von mehreren Absorptionsbanden von Spurengasen, zum Beispiel die
15 µm CO2 Bande. Diese Banden können benutzt werden, um Informationen über atmo-
sphärische Spurengaskonzentration zu liefern. In der vorliegenden Arbeit wird die Möglichkeit
untersucht, Profile von CO2 im Tagesgang durch von AERI gemessene Strahldichten zu er-
fassen. Zu diesem Zweck wird ein AERIoe genannter Algorithmus benutzt und angepasst um
CO2 Profile in der Grenzschicht ableiten.

Bevor AERIoe auf reale AERI-Messungen angewandt wird, werden simulierte Strahldichten
benutzt, um das Ableitungsotential atmosphärischer CO2-Konzentrationen aus der Strahldich-
temessung von AERI zu evaluieren. Ein line-by-line radiative transfer model (LBLRTM),
das Profile von numerischen Modellen als Eingabe benutzt, wird benutzt, um einfallende
Strahldichten zu berechnen, welche mit der Sensorfunktion gefaltet werden und mit zufälligem
Rauschen versehen werden, um Messungen von AERI zu simulieren. Im ersten Schritt wird
ein konstantes Mischungsverhältnis des atmosphärischen CO2 Profils angenommen. Ergeb-
nisse von AERIoe überschätzen das konstante CO2 Mischungsverhältnis um etwa 2 ppm. Um
die Ergebnisse zu verbessern, wird ein reduziertes Rauschen zu der simulierten Strahldichte
addiert. Dieses reduzierte Raschen kann als zeitlich gemittelte AERI Strahldichte aufge-
fasst werden. Diese Ergebnisse zeigen eine erhebliche Verbesserung verglichen zu vorherigen
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Ergebnissen: Etwa 70% der abgeleiteten Werte liegen innerhalb der erwarteten Unsicher-
heit. Jedoch kann ein konstantes atmosphärisches Profil keine Informationen über den Tages-
gang der oberflächennahen CO2 Konzentration liefern, sodass ein Profil, das den Tagesgang
repräsentieren kann, abgeleitet werden muss. Auf Grund der geringen Anzahl an Freiheits-
graden für das Signal beim Ableiten der CO2 Konzentration wird das CO2 Profil mithilfe einer
Exponentialfunktion parametrisiert. Diese Exponentialfunktion ermöglicht es, CO2 Profile
zu berechnen, indem 2 Parameter anstelle des ganzen Profiles abgeleitet werden.

Zur Evaluation des modifizierten AERIoe Algorithmus, wird er auf simulierte Strahldichten
mit reduziertem Rauschen angewendet. AERIoe wird dabei mit bekannt angenommen Temp-
eratur- und Feuchteprofilen ausgeführt. Die CO2 Konzentrationen in unterschiedlichen Höhen
werden von dem Algorithmus ziemlich genau erfasst: Die mittlere quadratische Abweichung
zwischen wahren und erfassten Konzentrationen ist jeweils 6.8, 5.4, 4.0 und 1.9 ppm an
der Oberfläche und in 90 m, 200 m und 1 km Höhe. Die abgeleiteten Profile verbessern die
mittlere quadratische Abweichung zwischen wahren und a Priori Profilen um etwa 50%. Dann
wird der Algorithmus benutzt, um die Temperatur-, Feuchte- und CO2 Profile gleichzeitig
abzuleiten. Die Ergebnisse zeigen eine signifikante Reduktion der Freiheitsgrade und damit
einhergehend eine Verschlechterung der Ableitung von CO2 Profilen. Infolgedessen wird eine
zweite Methode benutzt, in der ein Hauptkomponenten-Rauschfilter angewandt wird, um den
zufälligen Fehler in den AERI Messungen zu reduzieren. Um diese neue Methode zu testen,
werden simulierte Strahldichten mit hoher zeitlicher Auflösung benutzt. Die Ergebnisse von
AERIoe mit den gefilterten Strahldichten zeigen eine erhebliche Verbesserung in der Erfassung
von oberflächennahen CO2 Konzentrationen.

AERIoe wird letzlich auf reale AERI Messungen von zwei Strahlungstagen in Jülich ange-
wandt, um CO2 Profile abzuleiten. Die in-situ Messungen des Messmasts in Jülich werden
mit den abgeleiteten oberflächennahen CO2 Konzentrationen verglichen. Es wird gezeigt,
dass die Strahldichten von AERI das Potential haben, den Tagesgang der oberflächennahen
CO2 Konzentration darzustellen. Die abgeleiteten oberflächennahen CO2 Konzentration un-
terscheiden sich an diesen zwei Tage zwischen 5 und 10 ppm von den Messungen am Mast,
während die Unsicherheiten in den abgeleiteten Konzentration zwischen 4 und 7 ppm liegen.
Die AERI Strahldichten werden auch benutzt, um die Höhe abzuschätzen, ab der die CO2

Konzentration vom Hintergrundwert abweicht. Der Tagesgang der abgeleiteten Höhen für
einen dieser zwei Tage ist in Übereinstimmung mit dem erwarteten Tagesgang der Gren-
zschicht für einen Strahlungstag.
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Chapter 1

Introduction

Global warming, which is one of the main issues of the modern world, is a consequence
of a rapid increase of atmospheric CO2 (Houghton , 2005). Analyzing the Greenland and
Antarctic ice cores revealed a significant correlation between climate change and the increase
in concentration of some atmospheric trace gases where CO2 was one of these trace gases
(Delmas et al., 1980; Neftel et al., 1982). Therefore, during the last decades many studies
focused on measuring and analyzing the atmospheric CO2 variation. Near the surface, the
atmospheric CO2 concentration can have large diurnal variation due to interaction with the
terrestrial ecosystem. Capturing this diurnal cycle can help characterize this interaction as
one of the important parts of the natural carbon cycle. However, there is still a significant
deficiency in the continuous measurement of the CO2 diurnal cycle in the boundary layer.
In the present study, we use continuous infrared measurements provided by a ground-based
instrument to partially fill this gap.

1.1 Motivation

Thermal radiation emitted by the earth can be absorbed by several atmospheric trace gases
such as H2O, CO2, O3, CH4 and N2O which causes an increase in the temperature of the
troposphere. The troposphere then emits thermal radiation which can be absorbed by the
earth. Absorption of thermal radiation by the earth increases the earth temperature and
leads to further thermal emission by the earth. This cycle, which is known as greenhouse
effect, causes a change in the mean surface temperature of our planet from -18 °C to 15
°C (Mitchell , 1989; Lorius et al., 1990; Mudge, 1997; Houghton , 2005). CO2 is the second
most important atmospheric greenhouse gas after water vapor (Lorius et al., 1990; Houghton,
2005). However, the rapid increase of its emission due to human activities such as fossil fuel
combustion and land use change makes it the most important anthropogenic greenhouse gas
(IPCC , 1990). Since the industrial revolution at the beginning of 1750, 4000 million tons of
anthropogenic carbon mainly in the form of CO2 along with substantial amounts of other
trace gases such as CH4, N2O and chlorofluorocarbons (CFCs) have been released to the
atmosphere annually (IPCC , 2013). As a result, the CO2 concentration in the atmosphere
has increased by more than 40% since the industrial revolution (IPCC , 2013) and reached
from 278 ppm (before 1750) to more than 400 ppm in 2016 (http://cdiac.ornl.gov/). If this
growth rate continues during the 21st century, the CO2 content can reach the level that is
the highest level in the past 20 million years (Houghton , 2005).
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2 1. Introduction

The increase of the atmospheric CO2 content causes strong positive feedbacks such as an in-
crease in the water vapor amount of the atmosphere (Manabe and Wetherald , 1967; Mitchell ,
1989). The increment mainly of these two trace gases, H2O and CO2, enhances the absorp-
tion of terrestrial radiation by the atmosphere. The consequence of this rise is an increase
in the mean temperature of the earth surface as well as in the temperature of the atmo-
sphere. The ice-core analysis in Vostok (East Antarctica) showed that there is a significant
correlation (r=0.79) between atmospheric CO2 level and the change in the earth temperature
(Barnola et al., 1987). The increase of the atmospheric CO2 and other trace gases also has
some negative feedbacks such as the enhancement of low or middle clouds amount that can
compensate the increase in the earth and atmosphere temperature (Charney et al., 1979).
However, several studies showed that the overall effect is a substantial warming (IPCC ,
2001; IPCC , 2013). By using a radiative–convective model, Manabe and Wetherald (1967)
predicted the climate sensitivity, which is defined as the change in the global mean equilibrium
temperature of near surface as a result of doubling the atmospheric CO2, equals 2.2 K. Later
in 1975, they derived an increase of 3 K using a three dimensional global circulation model
(GCM). Further studies with more observational and reanalysis datasets support this overall
substantial positive feedback and it was shown that the minimum increase is very unlikely
to be below 1.5-2 K (Knutti et al., 2006). Finding an upper limit for climate sensitivity has
been more challenging. Annan and Hargreaves (2006) proposed that the upper limit with
very small probability (less than 5%) is more than 4.5 K. The range between 1.5 and 4.5 ◦C
for the climate sensitivity is confirmed by other studies based on new observations and models
during the last two decades. However, a small probability for an increase higher than 4.5 ◦C
remains (Hegerl et al., 2006; Rogelj et al., 2012; IPCC , 2013; Mart́ınez-Bot́ı et al., 2015).

Accurate prediction of the future increase in global equilibrium temperature still suffers from
different sources of uncertainty. One of them is the uncertainty in the carbon cycle mea-
surement (Knutti et al., 2006). More accurate measurements of the atmospheric CO2 as
the main carbon carrier in the atmosphere can substantially reduce this uncertainty. Sig-
nificant progress in space-borne CO2 measurements in recent years has made considerable
improvement in the accuracy of numerical model outputs. Besides, these measurements have
also made a remarkable impact on providing a global view of carbon in the atmosphere
(Chédin et al., 2002; Crevoisier et al., 2004; Buchwitz et al., 2005). However, satellite obser-
vations are usually quite poor in capturing the diurnal cycle of CO2 in lower levels of the
troposphere (Crevoisier et al., 2004; Morino et al., 2011). This problem can be solved by
ground-based instruments since they can provide more accurate measurements in lower at-
mospheric levels compared to satellites. The Total Carbon Column Observing Network (TC-
CON) is a good example of a ground-based network implemented to produce accurate mea-
surements for studying the carbon cycle as well as validation of satellites data (Wunch et al.,
2011). However, because of using sunlight radiances for measuring the CO2, this network can
only provide daytime measurements (Wunch et al., 2011) so that it does not have the abil-
ity to capture the diurnal variation of the atmospheric CO2 profile. Terrestrial mechanisms
such as photosynthesis and soil respiration as well as boundary layer processes can produce
significant diurnal variation in the CO2 profile of lower tropospheric levels. Capturing this
diurnal cycle which is important for studying the effect of the terrestrial ecosystem on the
atmospheric CO2 profile is one of the main challenges for numerical models predicting the
near surface CO2 flux (Tolk et al., 2009). Therefore, continuous CO2 measurements during
daytime and nighttime are highly needed in order to improve these models and to validate
their outputs as well as studying the CO2 diurnal variation and its effect on the carbon cycle.

The Fourier Transform InfraRed (FTIR) emission spectroscopy is a well-known method
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of remote sensing in different fields. In atmospheric research, for the first time in 1969,
an Infrared Radiation Interferometer Spectrometer (IRIS) was used on-board the Nimbus-
3 satellite (Conrath et al., 1970) and later an improved one used on-board the Nimbus-4
(Hanel et al., 1972). Afterwards, the request for more accurate measurements of atmospheric
parameters lead to the design and installation of a new generation of FTIR spectrometers
on-board several satellites (Smith et al., 1983, 1990a; Revercomb et al., 1988; Clerbaux et al.,
2009). For ground-based atmospheric measurements, the FTIR spectroscopy is applied with
roughly 20 years delay compared to satellite measurements (Smith et al., 1990b). Since
then, several FTIR spectrometers have been developed and installed around the world in
different fields of atmospheric research such boundary layer studies, climate research and
cloud studies (Smith et al., 1993, 1999; Lubin, 1994; Spänkuch et al., 1996; Feltz et al., 2003;
Löhnert et al., 2009; Turner and Löhnert , 2014). One of these FTIR instruments which were
designed to measure the atmospheric thermal emission with high spectral and temporal reso-
lution is the Atmospheric Emitted Radiance Interferometer (AERI) (Revercomb et al., 1994;
Knuteson et al., 2004a). The AERI is a ground-based instrument that measures downwelling
atmospheric mid-infrared radiances continuously. It was designed and developed at the Uni-
versity of Wisconsin-Madison (Knuteson et al., 2004a). The AERI measurements have shown
high ability to retrieve atmospheric parameters such as temperature and humidity profile as
well as cloud properties (e.g. Löhnert et al., 2009; Turner and Löhnert , 2014). Its obser-
vations also showed sensitivity to the atmospheric CO2 content (Feldman et al., 2015). In
2011, an AERI instrument was installed at Jülich ObservatorY for Cloud Evolution (JOYCE)
(Löhnert et al., 2015), Germany and it has provided measurements since 2012. Continuous
measurements of the AERI during nighttime and daytime provide a great opportunity for
studying the diurnal CO2 variation in the boundary layer. The aim of the present work is
to use these highly spectrally and temporally resolving measurements to provide information
about the CO2 diurnal cycle in the lower atmosphere in order to partially improve deficiencies
in carbon cycle studies.

This research has been supported by HITEC graduate school for energy and climate
(www.hitec-graduate-school.de). HITEC is a graduate school at the Forschungszentrum
Jülich that supports the PhD students working on energy and climate research. It is a
partner of different universities such as Universität zu Köln, RWTH Aachen University and
Heinrich-Heine-Universität Düsseldorf. The aim of HITEC is to provide an interdisciplinary
communication between PhD students in order to enhance their scientific experiences as well
as providing different opportunities to improve their professional skills and qualifications.
HITEC is funded by the Helmholtz Initiative and Networking.

1.2 Carbon cycle

Carbon does not have a natural sink; it can only flow between three natural reservoirs con-
sisting of land (the biggest one), ocean and atmosphere (the smallest one). This natural
cycle is called the global carbon cycle (IPCC , 1990). For several thousands of years, before
the industrialization, the concentration of CO2 in the atmosphere was fluctuating roughly
between 180 and 280 ppm (Petit et al., 1999; Lüthi et al., 2008; Hönisch et al., 2009). Since
the industrial era around 1750, anthropogenic activities such as extracting fossil fuels from
geological pools and burning them along with deforestation in large areas released around
240 ± 10 PgC (1 PgC = 1015 gC) anthropogenic carbon into the atmosphere (IPCC , 2013).
However, less than half of this amount remained in the atmosphere and the rest has been
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4 1. Introduction

uptaken by two other reservoirs. This extra anthropogenic carbon emission increased the
CO2 atmospheric concentration by more than 100 ppm (IPCC , 2013). Fig. 1.1 shows the
global carbon cycle between the three natural reservoirs for the time period before and after
the industrial revolution.

Carbon exchanges between atmosphere and other reservoirs can be divided into different
classifications based on their time scale; carbon cycling from decade to centuries which can
happen in the carbon exchange between plants, soils and the ocean surface with the at-
mosphere; centuries to millennia for exchanging carbon between deeper soils and the deep
ocean with the atmosphere; and up to millions of years for transferring carbon between the
atmosphere and geological pools e.g. carbonate sediments in deep sea (IPCC , 2013).

The atmospheric CO2 is growing at about half of the rate of total CO2 anthropogenic emis-
sions into the atmosphere. The other half is uptaken either by the terrestrial ecosystems or
dissolves in the sea water surface and the deep ocean (IPCC , 2001). Therefore, any small
change in these two reservoirs can have a considerable effect on the atmospheric CO2 con-
tent within years to a decade. Consequently, it is essential to learn about these reservoirs
and their mechanism for uptaking or emitting the CO2 in different conditions as well as the
impact of the rapid increase of anthropogenic atmospheric carbon on them. In the next two
subsections, these two reservoirs and their role in the global carbon cycle is briefly explained.

1.2.1 Terrestrial ecosystem

A terrestrial ecosystem can have different impacts on the atmospheric CO2 content. While
plant photosynthesis during daytime produces a sink for atmospheric CO2, soil respiration and
other oxidization processes such as decomposition or oxidation of organic materials generate
a source of atmospheric CO2.

The total amount of CO2 uptaken by plants is known as gross primary production (GPP)
(IPCC , 2001). The CO2 interacts with water inside leaves and its oxygen isotope changes from

16O to 18O. Many of these CO2 molecules participate in photosynthesis process and diffuse
out again which make them measurable in the atmosphere (Ciais et al., 1997). By measuring
this CO2 type, the contribution of plants in the uptake of the atmospheric CO2 can be
estimated. About half of the uptaken CO2 amount, known as net primary production (NPP)
remains in the plants and is consumed for growing new plant tissues such as leaves, roots and
woods; the rest returns to the atmosphere by plant tissue respiration (Lloyd and Farquhar ,
1996; Waring et al., 1998). Ultimately, all the carbon which is used for growing plant tissues
comes back to the atmospheric reservoir mainly by two processes; plant and soil respiration
by bacteria, some fungi types and herbivores; and natural combustion or human-made fires
(IPCC , 2001). The amount of carbon that is lost or gained by every ecosystem can be
influenced by anthropogenic activities, perturbation in the natural ecosystem and climate
variability (IPCC , 2001). However, currently, the terrestrial ecosystem acts as a global sink
for atmospheric carbon (IPCC , 2013).

The growth of the human population and consequently the increase in the request for more
food as well as wood products have caused deforestation in large areas and land use change
mainly for growing more agricultural products. These activities have decreased the ability
of the ecosystem for uptaking the atmospheric CO2. However, reforestation in Europe and
North America has compensated this effect in recent years (IPCC , 2013). Some other im-
portant anthropogenic factors which affect the amount of CO2 that can be uptaken by the
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Figure 1.1: The carbon cycle between the 3 natural reservoirs, land, ocean and atmosphere.
Black numbers and arrows show the estimated carbon mass in each reservoir and annual ex-
change fluxes between the three reservoirs for the time period before the industrial revolution.
Red arrows represent the mean annual anthropogenic fluxes over time period between 2000
and 2009. Red numbers indicate the cumulative change of carbon in each reservoir due to
the anthropogenic activities over the 1750-2011 industrial period (taken from IPCC , 2013).

terrestrial ecosystem are fire, drastic grazing and draining peatlands or wetlands for agricul-
tural purposes (IPCC , 2001).

A significant amount of carbon is transported from soil to water through several ways. Carbon
can be buried in the organic sediment of freshwater or it can go to the coastal ocean through
rivers while parts of it may outgas as CO2 and back to the atmosphere (Tranvik et al., 2009).
In the next subsection, the role of the ocean as the second most important natural reservoir
in the global carbon cycle is presented.

1.2.2 Ocean

Higher solubility and chemical reactivity of CO2 compared to other anthropogenic gases such
as CH4 and CFCs allows for a more efficient uptake by sea water (IPCC , 2001). The exchange
of CO2 between the ocean surface and the atmosphere can be shown as:

CO2 +H2O + CO2−
3 ⇋ 2HCO−

3 , (1.1)

where CO2−
3 and HCO−

3 indicate the carbonate ion and bicarbonate ion (IPCC , 2013). This
flux known as “solubility pump” is mainly due to the CO2 partial pressure (pCO2) difference
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between ocean surface and the atmosphere as well as the solubility of CO2. The solubility by
itself is a function of temperature and gas transfer coefficient (IPCC , 2001). The enhancement
of the anthropogenic CO2 in the atmosphere increases pCO2 so that the uptake of atmospheric
CO2 by the surface ocean rises which is a superimposed uptake on the global natural transfer
(IPCC , 2001; IPCC , 2013). The dissolved CO2 in the ocean is known as Dissolved Inorganic
Carbon (DIC). As Eq. 1.1 shows, the DIC is found in three main forms. The biggest part
belongs to the bicarbonate ion (HCO−

3 , about 90%) where the carbonate ion (CO2−
3 , about

8%) and the dissolved CO2 (non-ionic about 1%) are quite smaller parts (IPCC , 2001).

Another main source of carbon in the ocean is the Dissolved Organic Carbon (DOC) (IPCC ,
2013). The DOC is a result of the gross primary production produced by phytoplanktons
and other microorganisms in the ocean. The DOC together with dead organism and detritus
transfer organic carbon vertically into the deeper ocean. Part of this production remains as
the net primary production of the ocean (the main source of the DOC) while the other part
is returned to the DIC through autotrophic respiration i.e. respiration by photosynthetic
organisms. The sinking of a fraction of the DOC along with other particular organic carbon
which is composed of dead organisms and detritus create a downward flux of organic carbon
from upper ocean known as export production (IPCC , 2001). A very small fraction (less
than 1%) of this export production remains in the ocean reservoir as sediments, mostly in
the coastal ocean. The rest converts to the DIC. Without this mechanism which is known
as biological pump, the atmospheric concentration would be about 200 ppm higher than its
current concentration (Sarmiento and Toggweiler , 1984; Maier-Reimer et al., 1996).

Conceptually, the ocean has enough capacity to uptake more than 70 to 80% of anthro-
pogenic atmospheric CO2. However, the solubility rate of CO2 in the ocean surface sets a
considerable limit for this capacity meaning that the ocean needs several hundred years to
reach this capacity (Maier-Reimer and Hasselmann , 1987; Enting et al., 1994; Archer et al.,
1997). Since the atmosphere is the smallest reservoir of the carbon cycle, any slight change
in the atmospheric carbon amount (particularly in the atmospheric CO2 as a main carbon
barrier in the atmosphere) can cause a significant effect on the global carbon cycle. This
indicates the importance of tracking the atmospheric CO2 content. Accurate measurements
of the CO2 content in the atmosphere can help to properly estimate the effect of rising the
human-emitted CO2 mainly on the future climate. In the next section the history of atmo-
spheric CO2 measurements, as well as recently-used methods and instruments in this field,
are presented.

1.3 Atmospheric CO2 measurement

Reliable prediction of future atmospheric CO2 concentration and its impact on the earth
climate need accurate measurements of its mean atmospheric concentration as well as its
diurnal, seasonal and annual cycles in the atmosphere. In this section different kinds of
atmospheric CO2 measurements i.e. in-situ, space-based and ground-based measurements,
together with their advantages and deficiencies, are introduced.

1.3.1 In situ measurements

Because of the long lifetime of the atmospheric CO2 (Archer et al., 1997), even a local mea-
surement can represent approximately the CO2 global trend. There are many in situ mea-
surements of CO2 around the world; the oldest one is the Mauna Loa observatory located in
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Figure 1.2: The CO2 volume mixing ratio measured at the Mauna Loa Station in Hawaii.
The data are presented from 1958 to June 2017 (taken from http : //esrl.noaa.gov/gmd/).

the Hawaiian Islands (Keeling et al., 1976). The hourly collected air samples at the top of
four 7-m towers are analyzed using a nondispersive infrared gas analyzer in order to determine
the CO2 concentration. Fig. 1.2 shows the long term observation of the CO2 volume mixing
ratio (VMR) provided by this site from 1958 to 2017. In addition to the seasonal cycle of
CO2 which can be seen clearly in the plot, it shows the significant increase of atmospheric
CO2 during last 60 years in a way that it reached up to 400 ppm in 2016.

In addition to the Mauna Loa station, the Scripps Institution of Oceanography (SIO) air
sampling network has 11 observatory stations for recording the atmospheric CO2 which
are distributed mainly on the Pacific Ocean (http://cdiac.ornl.gov). Furthermore, the In-
Situ Measurement Program of the Global Monitoring Division (GMD), belonging to the
National Oceanic and Atmospheric Administration (NOAA)’s Earth System Research Lab-
oratory (ESRL), monitors several greenhouse gases including CO2 to analyze its short term
and long term variations. These in situ measurements include 4 NOAA Baseline Observato-
ries at Barrow, Mauna Loa, American Samoa and South Pole; and a tall tower network in US
(e.g. Thoning et al., 1989; 2000; www.esrl.noaa.gov). These in-situ measurements mainly
use the nondispersive infrared gas analyzer to determine the CO2 concentration of the col-
lected air samples at the towers. Besides, there are also some long term CO2 observatory
stations around the world such as the Amsterdam Island station that was located in the south
Indian Ocean 5000 km off South Africa. It measured data from 1980 to 1995 (Gaudry et al.,
1983, 1991; Lambert et al., 1995); The K-puszta air pollution monitoring station that was
set in Hungarian Great Plain and provided CO2 measurements between 1981-1997 (Haszpra ,
1995); The Jubany Station on King George Island, Antarctic belongs to the Italian PNRA
(National Research Program in Antarctica) and performed continuous CO2 measurements
recording from 1994 to 2009 (e.g. Ciattaglia et al., 1997) and the Baring Head station in New
Zealand which provided data from 1970 to 1993 (e.g. Manning and Pohl , 1986).

In addition to the ground-based in-situ measurements, there are radiosonde-based in-situ
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instruments such as AirCore (Karion et al., 2010) which is a stainless steel tube and can
evacuate while ascending in order to collect the air samples while its descending. Moreover,
the aircraft-based in-situ measurements collected during flight campaigns are used to validate
and evaluate other measurements (Wunch et al., 2010, Messerschmidt et al., 2011). As an
example, a flight campaign in 2009 over Europe which was used for calibration of ground-
based CO2 measurements (Messerschmidt et al., 2011).

1.3.2 Space-based measurements

Recent significant progress in satellite measurements had a considerable impact on the study
of the chemical components of the earth atmosphere such as CO2 and O3. The big advantage
of satellite measurements is to provide a global view of the atmospheric CO2 which is a
practical tool for studying CO2 sinks and sources on the surface (Raven and Falkowski , 1999).

One of the first atmospheric CO2 concentration retrievals from a space-borne instrument
belongs to the Television and InfraRed Operational Satellite-Next generation (TIROS-N)
Operational Vertical Sounder (TOVS) that was flown on-board the NOAA polar meteoro-
logical satellites (Chédin et al., 2002). Infrared and microwave observations from the High
resolution Infrared Radiation Sounder (HIRS-2), the Microwave Sounding Unit (MSU) and
the Stratospheric Sounding Unit (SSU) over the tropic [20S:20N] for the period of July 1987–
June 1991 were used for retrieving the monthly mean mid-tropospheric CO2 concentration.
The results show good agreement with the present knowledge of the seasonal and annual
atmospheric cycles (Chédin et al., 2002, 2003).

In March 2002, the European Space Agency (ESA) launched the environmental satellite
ENVISAT carrying the SCanning Imaging Absorption spectroMeter for Atmospheric CHar-
tographY (SCIAMACHY) (Burrows et al., 1995, Bovensmann et al., 1999). SCIAMACHY
measured the upwelling radiation in near-infrared region from 240 to 2400 nm. The de-
rived dry air column averaged mixing ratios, XCO2 from clear sky measurements over land
showed good agreement with global model data. In addition, for the first time, a regional
source/sink map of CO2 on earth was detected from the space using the SCIAMACHY ob-
servation (Buchwitz et al., 2005).

In addition, NASA’s Aqua satellite was also launched in May 2002. Thermal infrared ra-
diation near the CO2 absorption line at 15 µm has been measured by the Atmospheric
Infrared Sounder (AIRS) on-board this satellite. Due to the strong absorption of this band,
the instrument could not get any information about the CO2 near surface layer. Therefore,
the measurements are limited to the mid-tropospheric CO2 concentration between 5 and 7
km (Crevoisier et al., 2004). A global map of the CO2 amount in the upper troposphere
at a resolution of 15◦×15◦ is derived from monthly measurements over cloud-free condition
(Crevoisier et al., 2004; Chevallier et al., 2005).

The Greenhouse gases Observing SATellite (GOSAT, IBUKI in Japanese) is the first satellite
dedicated to measuring greenhouse gases (Kuze et al., 2009). GOSAT was a joint project
of Japan Aerospace Exploration Agency (JAXA), the National Institute for Environmental
Science (NIES) and the Ministry of the Environment (MOE), which was launched on 23
January 2009 (Kuze et al., 2009). One instrument on-board GOSAT is the Thermal And Near
infrared Sensor for carbon Observation (TANSO) that is a Fourier Transform Spectrometer
(FTS). The TANSO FTS uses a Michelson interferometer with two sets of detectors. It
can observe the solar radiation reflected from the earth only during the daytime as well as
atmospheric thermal radiation during both daytime and nighttime (Kuze et al., 2009). The
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shortwave radiance have been used to get information about CO2 concentration near the
earth surface while the thermal radiation has provided CO2 concentration mainly above 2
km (Saitoh et al., 2009). Only observations of clear sky condition can be applied for retrieving
the column averaged amount, XCO2 (Saitoh et al., 2009). The first validation of its retrieved
data was performed using measurements from a ground-based network. It showed a negative
bias equal to 8.85±4.75 ppm for XCO2 . However, both data showed similar CO2 seasonal
cycle for the Northern Hemisphere (Morino et al., 2011).

Another satellite dedicated to studying atmospheric CO2 is the Orbiting Carbon Observatory-
2 (OCO 2, the first one lost during the launch in 2009) which was designed to capture regional
CO2 sinks and sources on the earth surface. The OCO 2 was launched on 2 July 2014. Its
first data was sent on 6 September 2014 (Crisp et al., 2017). Same as GOSAT, OCO 2 also
measures reflected sunlight from the earth surface to retrieve the XCO2 . Around 7 to 12 %
of its monthly measurements belonging to cloud free conditions, have been used to derive
the monthly mean value of XCO2 (Crisp et al., 2017). The analysis of its first 18 months of
data revealed main features such as a considerable enhancement of XCO2 from October until
December over the eastern US and eastern China due to the strong fossil fuel combustion as
well as enhanced XCO2 in Amazon, central Africa and Indonesia because of biomass burning
in this time period; a reduction of more than 10 ppm in the XCO2 of Northern Hemisphere
in May and June (compared to other months of year) due to the plant photosynthesis and a
significant north-south gradient of XCO2 in May and June (Eldering et al., 2017).

1.3.3 Ground-based measurements

Although satellite measurements can give a global view of the atmospheric CO2 concentration,
they are usually rather poor in capturing fine CO2 variations near the earth surface. Besides,
high-precision independent datasets are needed for validation of space-borne measurements.
For these reasons, ground-base measurements are designed and developed. The Total Carbon
Column Observing Network (TCCON) is one of the best example of the ground-based network
which was established in 2004. The main purpose of this network is to provide accurate
measurements of XCO2 (0.25% or less than 1 ppm precision) for studying the global and
regional carbon cycle, for data assimilation studies and linking satellite measurements to
ground based measurements (Wunch et al., 2011). Currently, there are 18 sites affiliated with
TCCON where 15 of them are operational (Wunch et al., 2011). TCCON instruments use
near infrared measurements with sensitivity to the atmospheric CO2. Two detectors cover the
sensitivity of entire spectral region from 3900-15500 cm−1 which is the same spectral region
used by different satellites particularly SCIAMACHY, GOSAT and OCO 2. As auxiliary
measurements, accurate surface temperature and pressure measurements are used at each
site (Wunch et al., 2011).

A comparison between Park Falls TCCON data with SCIAMACHY measurements in lower
tropospheric levels showed the accuracy of SCIAMACHY for capturing the seasonal cycle
of the XCO2 as a result of growing plants on monthly time scales (Barkley et al., 2007).
Furthermore, comparing retrieved CO2 column amounts from five European TCCON sites
with CO2 profiles derived from an aircraft campaign over these sites showed the suitability of
TCCON data for calibration and validation of nadir viewing satellites (Messerschmidt et al.,
2011).

The TCCON measurements are limited to daytime measurements therefore these data are
useless for capturing diurnal variations of CO2 concentration particularly in lower atmo-
spheric levels where these variations due to the plant photosynthesis and respiration as well
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as boundary layer mechanism can be quite significant. Thermal infrared radiation can be
measured both in daytime and nighttime. The high spectral resolution measurements of ther-
mal infrared radiation which have sensitivity to several atmospheric trace gases including CO2

can help to study the diurnal cycle of CO2 near the earth surface. The Atmospheric Emitted
Radiance Interferometer (AERI) is a ground-based instrument that measures the downwelling
atmospheric thermal radiation from 520 cm−1 (19 µm) to 3020 cm−1 (3.3 µm) with a spectral
resolution of better than 1 cm−1 (Knuteson et al., 2004a). AERI was designed to improve
and evaluate the line-by-line radiation codes as well as to retrieve boundary layer properties
such as temperature and humidity profile (e.g. Revercomb et al., 2003; Turner et al., 2004).
Its highly temporally and spectrally resolving measurements have already been used for re-
trieving the temperature and humidity profile (e.g. Löhnert et al., 2009). However, there are
just a few studies about using its measurements for studying atmospheric trace gases. In the
present work, the sensitivity of AERI measurements to the atmospheric CO2 is analyzed and
is used to provide proper information about the diurnal variation of CO2 near the surface.
In the next section, the main goal of this study and the structure of the thesis are described.

1.4 Goal and structure of the thesis

The analysis of atmospheric CO2 variations mainly in the boundary layer is a great tool
for studying the impact of the terrestrial ecosystem as well as sea-water on the atmospheric
CO2 concentration. However, capturing these variations needs accurate measurements during
daytime and nighttime. Thermal infrared radiation which includes the 15 µm CO2 line and
is measurable during daytime and nighttime has the potential to be used in this respect.
The main focus of the present work is to exploit these radiances in order to provide the
atmospheric CO2 variations in the boundary layer. This information can be used for studying
land vegetation mechanisms such as photosynthesis and soil respiration. Such data are also
valuable for the validation of different numerical models which predict the near surface CO2

flux.

For this purpose, observations of the AERI instrument in 2012 at JOYCE are used. First
the sensitivity of AERI radiances to the atmospheric CO2 profile is analyzed. Then an
algorithm named AERIoe (Turner and Löhnert , 2014) is used to retrieve the CO2 profile in
the boundary layer. The AERIoe is a variational retrieval algorithm which applies the optimal
estimation method for retrieving the temperature and humidity profile. In the present study,
the AERIoe is modified to retrieve the CO2 profile mainly in the boundary layer. In order to
evaluate the theoretical potential of the algorithm in retrieving the atmospheric CO2 profile,
the AERIoe is applied to simulated AERI radiances which are provided by an accurate line-
by-line radiative transfer model. After that, the real calibrated measurements of the AERI
in clear sky cases are used for retrieving the diurnal cycle of the CO2 concentration. Then
retrieval results are compared with in-situ tower measurements in Jülich. In chapter 2, a
general description of radiative transfer theory as well as short description of the line-by-
line radiative transfer model LBLRTM are presented, followed by a section about studying
the sensitivity of simulated AERI radiances to the variation of the atmospheric CO2 profile.
Different instruments as well as all measurements and data products related to this work
are described in chapter 3. Chapter 4 deals with the calibration and the quality control of
AERI measurements at JOYCE in 2012. The principal of optimal estimation method and
the retrieval algorithm AERIoe which are used in the present work are given in chapter 5.
The modification of the AERIoe in order to retrieve the atmospheric CO2 profile is given in
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chapter 6. Applying the simulated AERI radiances in the modified AERIoe as well as its
results are also presented in this chapter. In chapter 7, real AERI observation radiances are
used in the AERIoe and the results are compared with another observation provided by the
tower mesurements at JOYCE. In addition, a discussion on some issues related to the real
AERI observation radiances at JOYCE is given in this chapter. Finally, the summary of this
study as well as the outlook for future work are presented in chapter 8.





Chapter 2

Radiative transfer

Electromagnetic radiation of the sun known as solar radiation consists of different wavelengths
from gamma rays with wavelengths less than 0.01 nm to radio waves with wavelengths larger
than 1 m. The maximum intensity of solar radiation occurs around 0.5 µm. In addition,
earth and atmosphere also emit electromagnetic radiation called terrestrial radiation with
its maximum intensity around 10 µm. According to the wavelength of the maximum inten-
sity, solar radiation is named shortwave radiation while earth-atmosphere radiation is named
longwave radiation.

Longwave radiation can be absorbed by several atmospheric trace gases such as H2O, CO2

and O3 due to the interaction between the electromagnetic radiation and these atmospheric
trace gases. This interaction can be characterized by radiative transfer theory. The main
focus of the present chapter is to shortly explain the Radiative Transfer Equation (RTE)
specifically for the infrared region in clear sky conditions. In the first section, the basic RTE is
derived. Then the possible solutions of this equation in the infrared region are investigated in
section 2.2 followed by an overview of weighting functions that show the absorption weighting
of a trace gas in terms of atmospheric altitude. In section 2.4, the line-by-line calculation
of atmospheric radiation is explained and a pretty accurate numerical model for simulating
atmospheric radiation is presented. Finally, in the last section, the sensitivity of thermal
radiation to the change of CO2 content in the atmosphere is discussed. Detailed information
can be found in many textbooks such as Petty (2006) and Liou (2002).

2.1 Basic radiative transfer in clear sky

The intensity of light (electromagnetic wave) may change along a path through a medium.
This change is due to the absorption or scattering of the light by different elements of the
medium and can be characterized by the extinction coefficient βe.

βe = βa + βs, (2.1)

where βa and βs refer to the absorption and the scattering coefficients respectively. These two
coefficients βa and βs mainly depend on the wavelength as well as physical medium. While
scattering by a particle can be negligible for a specific wavelength in a specific medium, it can
be very significant for another wavelength in the same medium. The single scatter albedo

13
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w̃ is a ratio that shows the relative importance of scattering compared to absorption in a
defined medium.

w̃ =
βs
βe

=
βs

βs + βa
. (2.2)

When this ratio goes to 0, scattering is negligible. Conversely, for a purely scattering medium,
this ratio goes to 1. From now on, all equations in this chapter are obtained for the non-
scattering atmosphere where w̃ and βs are negligible. In the next section, it is shown that
why this assumption is valid for the present work.

For the clear sky atmosphere, absorption coefficients of several trace gases need to be consid-
ered. Therefore, the total atmospheric gas absorption can be written as a sum of each trace
gas absorption:

βa =
∑

i

βa,i. (2.3)

In addition, the absorption coefficient can be written in terms of mass absorption coefficient
ka:

βa = ρka, (2.4)

where ρ shows the density of each trace gas. Consequently, we have:

βa =
∑

i

βa,i =
∑

i

ρika,i. (2.5)

When the light passes through a medium with the extinction coefficient of βa, its depletion
along a path ds can be written as:

dIλ = Iλ(s + ds)− Iλ(s) = −Iλ(s)βa(s)ds, (2.6)

where s shows the geometric distance between two points, I indicates the intensity of light
and λ refers to the wavelength of the light. Note that I is considered as monochromatic
meaning that it has a single wavelength. By integrating this equation from s1 to s2, we have:

Iλ(s2) = Iλ(s1) exp[−

∫ s2

s1

βa(s)ds]. (2.7)

The term in the bracket is a dimensionless parameter which is called optical path τ :

τ =

∫ s2

s1

βa(s)ds. (2.8)

If the path is considered as a vertical distance, this term is known as optical depth or optical
thickness and can be used as a vertical coordinate in the radiative application. Another useful
parameter is transmittance t which is defined by:

t(s1, s2) = exp[−τ(s1, s2)]. (2.9)

Eq. (2.7) can be reformulated with this new parameter:

Iλ(s2) = t(s1, s2)Iλ(s1). (2.10)

Another important interaction for radiative transfer is emission. Based on the Kirchhoff law,
in the local thermodynamic equilibrium, the absorption of a specific matter is equal to its
emission:

dIabs = −βa(s)Iλds = −dIemit = −βa(s)Bλ(T )ds, (2.11)
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where Bλ(T ) shows the Planck function for a specific wavelength and temperature. This
function gives the electromagnetic emission of a blackbody at a given temperature T in the
thermal equilibrium. A blackbody is considered as a theoretically perfect absorber of all
electromagnetic radiation which has no reflect on.

In general, for a non-scattering medium, the change in the radiation intensity can be written
as:

dIλ = dIabs,λ + dIemit,λ = βa(s)(Bλ(T )− Iλ)ds, (2.12)

or
dIλ
ds

= βa(s)(Bλ(T )− Iλ). (2.13)

Eq. 2.13 is called Schwarzschild’s equation. This equation is the basic form of the radiative
transfer equation (RTE).

The real atmosphere is often considered as a plane parallel atmosphere. The plane parallel
atmosphere is an atmosphere whose parameters vary in the vertical direction, while these pa-
rameters in the horizontal direction are assumed to be homogeneous. Therefore the variation
in the z direction, dz, can be used instead of ds and thus we have:

ds =
dz

cosθ
=

dz

µ
, (2.14)

where θ is the zenith angle between the z and the s direction and µ = cosθ. Substitution of
Eq. (2.14) in Eq. (2.13) and using the mass absorption coefficient ka gives:

− µ
dIλ(z, µ)

kaρdz
= Iλ(z, µ) −Bλ(T (z)). (2.15)

In the next section, possible solutions of this equation in the infrared region are investigated.

2.2 Radiative transfer in the infrared region for clear sky con-

dition

In the previous section, the RTE for the non-scattering plane-parallel atmosphere has been
derived. This equation is well-suited for the thermal infrared region in the clear sky since the
scattering of air molecules or aerosols, i.e. the only particles in a non-cloudy atmosphere, is
negligible in the thermal infrared region. Therefore, the RTE can be characterized by two
interactions, absorption and emission. For solving Eq. (2.15), two boundary conditions need
to be defined. In a clear sky condition, the surface and the top of the atmosphere (TOA)
can be considered as two appropriate boundaries. Note that the earth surface acts like a
black body for the thermal infrared radiation and thus Iλ(surface) = Bλ(Tsurface). Besides, the
total optical depth of the atmosphere needs to be calculated. The optical depth for a certain
wavelength τλ can be calculated as:

τλ =

∫ z∞

z
kaλ(z

′)ρ(z′)dz′. (2.16)

Rewriting the Eq. (2.15) with τ gives:

µ
dIλ(τ, µ)

dτ
= Iλ(τ, µ)−Bλ(T (τ)). (2.17)
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Solving this equation gives the upward and downward components of the atmospheric radi-
ation.

I↑λ(τ, µ) = Bλ(T (τ∗))e
−(τ∗−τ)

µ +

∫ τ∗

τ
Bλ(T (τ

′))e−
(τ ′ − τ)

µ

dτ ′

µ
, (2.18)

I↓λ(τ,−µ) =

∫ τ

0
Bλ(T (τ

′))e−
(τ − τ ′)

µ

dτ ′

µ
, (2.19)

whereBλ(T (τ∗)) in Eq. (2.18) shows the emission from the earth. For the downward radiation,
the emission from the TOA is Bλ(TOA) = 0. With these considerations, in Eq. (2.18), the
first term shows the emission from the earth surface multiplied by the transmittance between
the earth and an arbitrary altitude above it (shown by τ) which represents the attenuated
emitted radiation of the earth surface. The second term in this equation is the integrated
emission from each point between the earth and the arbitrary altitude. The downward
radiation shown in Eq. (2.19) can be interpreted same as the upward radiation. The derived
term in this equation shows the integrated emission between TOA and an arbitrary altitude
below it (shown by τ).

The most important atmospheric trace gases which lead to absorption and emission in the
infrared region are H2O, CO2 and O3. The energy that is absorbed by a trace gas molecule
can change into the different types of molecular energy such as translational kinetic energy,
rotational kinetic energy, vibrational energy or it can change its electrical charge distribution.
While the translational kinetic energy of a molecule can have any continuous amount, the
values of other three types of molecular energy are quantized. The quantized energy level
means that the molecule can not have any arbitrary amount of energy and thus the energy
levels are discrete such as E0, E1, ..., En. The electromagnetic radiation is also quantized.
The quantized unit of electromagnetic energy is called photon. Based on quantum mechanics,
the energy E of a single photon is proportional to its wavelength/frequency.

E =
hc

λ
= hν, (2.20)

where h is the Planck constant and c shows the speed of light; ν and λ refer to wavelength and
frequency of the photon respectively. A molecule can absorb/emit a photon, if the energy of
the photon changes its molecular energy from one of its allowed state to another one meaning
that only absorption/emission of a specified wavelength/frequency is allowed by a molecule.
Before reviewing the absorption/emission lines of atmospheric trace gases in the thermal
infrared region, some fundamental concepts and definitions related to this topic are shortly
summarized.

2.2.1 Vibrational and rotational transition

While the energy related to the microwave and far-infrared spectral bands can only change
the rotational energy levels of a molecule and is too low for changing the molecular vibrational
energy, the mid-infrared and near-infrared spectral region can change both the rotational and
vibrational energy levels of a molecule. For changing the molecular electrical energy levels,
higher frequency or lower wavelength such as visible or UV bands are needed. The focus of
this section is on the thermal infrared or mid-infrared region and the different types of the
molecular energy transition related to this region.

A pure vibrational transition is a transition from one allowed vibrational level to another
one. The spectral band related to the pure vibrational transition is called Q branch. For
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example, a linear triatomic molecule such as CO2 has three different types of vibrational
modes consisting of ν1, ν2 and ν3 corresponding to the symmetric stretch, bending and
asymmetric stretch respectively. However, in reality, the vibrational and rotational transition
may happen together. Consequently, the rotational levels which are shown by quantum
number J can split the vibrational levels into finer ones. The Q branch is related to the
∆J = 0 and the spectral bands corresponding to ∆J = −1 and ∆J = +1 are called P and R
branch respectively. The P and R branches present the vibrational-rotational transitions that
are related to the emission or absorption lines slightly lower/higher than a pure vibrational
line.

2.2.2 Line broadening

From the previous explanation given in section 2.2.1, one might assume that the absorption
or emission lines have an exact frequency and thus should have a zero line width. However, in
reality, they have a finite width. There are several reasons behind this physical phenomenon.
Some important ones, i.e. natural, pressure and Doppler broadening are summarized in the
following.

The Heisenberg uncertainty principal is the fundamental reason for the line width which
is called natural broadening. However, compared to other reasons, natural broadening is
relatively small. In addition, in the troposphere and stratosphere with higher pressure and
thus higher density of air molecules compared to the upper atmosphere, collision between
air molecules disturb the basic absorption/emission molecular lines which is called pressure
broadening. In the upper atmospheric levels such as the mesosphere and above it where
the air molecules can move without restriction, the Doppler broadening is more significant.
The Doppler effect due to the speed of air molecules can cause the Doppler-shift in the
absorption/emission wavelength of the molecules.

2.2.3 Continuum absorption

As it is mentioned in the previous subsection, in reality an absorption/emission line has a fi-
nite width meaning that the line needs to be characterized with a line shape. The Lorentz line
shape is the one which is used widely. This line shape is derived based on the instantaneous
interaction between two molecules. This assumption agrees well for the weak interaction;
however, the close-range interaction deviates significantly from the Lorentz shape. For sim-
plicity, an absorption/emission line is separated into two contribution, local line contribution
and continuum contribution. The local line contribution can be considered as the spectral
absorption up to some fixed distance from the line center (typically 25 cm−1) and any de-
viation from the Lorentz shape within the line cutoff considered as continuum absorption
(Turner and Mlawer , 2010).

The most important continuum absorption in the troposphere is water vapor continuum.
Although there is not any strong absorption line in 800 to 1200 cm−1, due to the water
vapor continuum absorption, there is considerable thermal energy in this region. It has
been shown that the optical depth of water vapor continuum absorption in this region varies
with the square of the atmospheric water vapor amount which implies that these continuum
bands are due to the interaction of two water vapor molecules known as “self-continuum”.
In addition, the interaction of water vapor molecules with different types of molecules can
produce the continuum absorption known as foreign water vapor continuum. Clough et al.
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Figure 2.1: Absorption lines of different atmospheric trace gases in the mid-infrared region.
The absorption lines are based on the HITRAN database.

(1989) using a generalized line shape and semi-empirical parameters modeled the observed
self-continuum absorption and showed that water vapor continuum absorption due to the
far wings of resonant lines can be hundred of wavenumbers (cm−1) away from the center of
resonant lines.

2.2.4 Some important atmospheric gas absorbers in mid-infrared

Fig. 2.1 shows the absorption lines of some important atmospheric gas absorbers in the in-
frared region from 500 to 1200 cm−1. These lines are taken from the high-resolution transmis-
sion molecular absorption (HITRAN) database (Rothman et al., 2013) which is a widely-used
database and provides absorption lines of several trace gases with high accuracy. One impor-
tant absorber in this region is CO2 which has the resonant line at the line center of 15 µm
which is spread from 600 to 800 cm−1. This line is a ν2 line and composed of finer rotational
lines with three branches, P, Q and R. Another feature in this region is strong absorption of
H2O molecules at the wavelength longer than 15 µm. In addition, the water vapor continuum
absorption due to the far wings of the resonant lines are spread from 800 to 1200 cm−1. The
other important trace gas in this region is O3 which has the resonant line at the center of
9.6 µm. However, the O3 is not the subject of this work since its absorption occurs mainly
in the stratosphere. Moreover, the contribution of the N2O in the spectral band from 510 to
610 cm−1 (17 µm) as well as in the spectral band higher than 1100 cm−1 (7.9 µm) can be
seen in the plot.

2.2.5 Example of downwelling atmospheric infrared measurement

Fig. 2.2 shows the high resolution downwelling atmospheric radiation in the mid-infrared
region measured by a ground-based infrared spectrometer called Atmospheric Emitted Ra-
diative interferometer (AERI) in Jülich, Germany. The data have been taken during a clear
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Figure 2.2: Downwelling atmospheric radiation in the mid-infrared region measured by the
AERI in Jülich, Germany. Dashed red line shows the Planck curve at the temperature equal
to 300 K.

sky hour on 25 of May, 2012. The dashed red line shows the calculated Planck function at
a temperature of 300 K representing the near surface air temperature. As the plot shows,
in two regions, i.e. in 1400-1800 cm−1 and in 550-700 cm−1, the downwelling radiances are
very close to the Planck curve. This implies that the atmosphere in these regions is relatively
opaque and radiation comes from the nearest levels close to the surface. In the region with
wavelength λ > 14 µm (ν < 730 cm−1) two important features are strong absorption by the
CO2 molecules in the vicinity of 15 µm and strong absorption by the H2O molecules at the
wavelength longer than 15 µm. The peak in the center of the CO2 band shows the pure
vibrational line (Q branch) with the strongest absorption. Therefore, the emitted radiation
comes from the levels close to the surface e.g. a few couple of meters above the surface.
The right side of the CO2 Q branch belongs to the vibrational-rotational band (R branch)
with quantum number ∆j = +1 and the left side belongs to vibrational-rotational band (P
branch) with quantum number, ∆j = −1. The second region which is close to the Planck
curve belongs to the λ < 8 µm (ν >1270 cm−1) which is also related to the strong absorption
of H2O molecules. The plot clearly shows that the atmosphere is also quite opaque in this
region. The spectral band from 8 to 13 µm shows the radiation far below the Planck curve
which means this radiation should be originating from higher atmospheric altitude. This
spectral band is regarded as a window region. In the window region, the atmosphere is quite
transparent in cloud-free scenes since there is no strong absorption line in the window region.
However, this window region (8-13 µm) is divided into many micro windows due to individual
weak water vapor continuum absorption. Another exception in this window region is the O3

line at 9.6 µm. Since the O3 molecules are mainly in the stratosphere, the radiation at this
line comes from higher atmospheric levels compared to the CO2 and water vapor where the
density of O3 molecules are much higher.

As it is mentioned in section 1.4, the aim of the present study is to get information about the
CO2 concentration in the boundary layer. Therefore it should be known in which altitude the
main absorption of CO2 (or generally each trace gas) occurs. This helps to know how much
information comes from which atmospheric level which makes the retrieval of atmospheric
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CO2 profile from a ground-based measurements possible. Answering this question leads to
definition of the absorption weighting of each trace gas in terms of the atmospheric altitude.

2.3 Weighting function

An important question in calculating the atmospheric radiation from the perspective of a
sensor is to find the altitude where the maximum absorption rate of an individual line occurs.
For answering this question, the absorption rate of a wavelength in terms of atmospheric
altitude should be determined. Eq. (2.9) gives the transmittance between two arbitrary
points. If a vertical distance between an arbitrary altitude z and TOA is considered, the
transmittance can be written as:

t(z) = exp [−
τ(z)

µ
]. (2.21)

And thus for the absorption, we have:

a(z) = 1− t(z). (2.22)

Consequently, the absorption between two altitudes z1 and z2 (refer to Eqs. 2.9 and 2.14)
can be written as:

a(z1, z2) = t(z1)− t(z2). (2.23)

If the distance between these two altitudes goes to an infinitely small distance, the local
absorption related to this particular altitude is defined as:

W (z) = lim
∆z→0

[
a(z, z +∆z)

∆z
=

t(z +∆z)− t(z)

∆z
], (2.24)

or

W (z) =
dt(z)

dz
, (2.25)

where W (z), known as weighting function relates the local absorption rate to the local rate of
the transmittance change. Weighting function can be also written in terms of optical depth
and absorption coefficient:

W (z) =
βa(z)

µ
e

−τ(z)
µ =

βa(z)

µ
t(z). (2.26)

This relation shows the transmittance from an arbitrary altitude to the TOA which is multi-
plied by the absorption coefficient. As it has been mentioned, the altitude with the strongest
absorption needs to be calculated. Consequently, the derivative of Eq. (2.26) with respect to
z needs to be taken and set to zero.

dW (z)

dz
= 0 (2.27)

The details relates of solving this equation is not shown here (more details can be found in
chapter 7, Petty (2006)). However, the final solution for the altitude with highest absorption
can be written as:

τ(z)

µ
= 1. (2.28)

This formula states that the maximum absorption occurs where the optical depth in the
direction of radiation from the TOA is equated to one.
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Figure 2.3: Weighting function (left plot) and the transmittance (right plot) of the down-
welling atmospheric radiation (upward looking for a ground-based sensor) for 6 channels in
the 15 µm CO2 spectral band.

Fig. 2.3 shows the weighting function (left) and the transmittance (right) of the downwelling
atmospheric radiation (can be derived from an upward looking ground-based sensor). Both
plots are shown for 7 channels in the 15 µm CO2 spectral band. While the transmittance for
all channels is 1 at the surface, it goes rapidly to zero for the channels near the center of the
15 µm, i.e. 625.827, 640.292, 686.096 and 700.076 cm−1. Conversely, the transmittance of
the channels at the edge of the line, i.e. 722.739 and 730.453 cm−1 goes to zero in relatively
higher altitudes. Similarly, the weighting function shows that the channels at the center of
the 15 µm band have strong absorption near the surface and all of them are nearly saturated
below 1 km. These channels can mainly provide CO2 information near the surface. On the
other hand, the channels at the edge of the CO2 band can provide information related to the
CO2 concentration in upper atmospheric levels.

2.4 The line-by-line radiative calculation

In section 2.2, the upward and the downward radiation for the non-scattering atmosphere
has been shown. Alternatively, these equations can be written in terms of atmospheric levels,
z and weighting function:

I↓ν (z) =

∫ ∞

z
Bν [T (z

′)]Wν(z
′, z)dz′, (2.29)

I↑ν (z) = Bν(Ts)tν(0, z) +

∫ z

0
Bν [T (z

′)]Wν(z
′, z)dz′, (2.30)

In order to expand this equation, βν(z) needs to be written as a sum over all trace gas
absorption coefficients of the specific atmospheric level:

βa,ν(z) =
N
∑

i=1

ρi(z)ka,i(z), (2.31)
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where ρi presents the density of each atmospheric absorber in the specific atmospheric level,
ka,i is the mass absorption coefficient of each N atmospheric trace gas absorbers. In other
words, if radiation over the thermal infrared region is considered, information about the
absorption coefficients of all atmospheric absorbers in this region is needed. As it is shown
in Fig. 2.1, some of the main atmospheric absorbers in the thermal infrared region are H2O,
CO2, O3. In order to calculate ka for each of these absorbers, accurate information about
the shape, width and positions of the absorption lines of these absorbers including continuum
and resonant lines are needed. Some of this information can be found in a line absorption
database such as HITRAN database. Similarly, for calculating the monochromatic intensity
at a specific atmospheric level, this procedure should be repeated for all atmospheric layers dz′

in the integral of Eq. 2.29 or Eq. 2.30. This procedure for calculating the radiant intensity
at an arbitrary level z is known as line-by-line calculation. The line-by-line calculation
of downwelling or upwelling atmospheric radiation coincident with a satellite or ground-
based measurements can help the comparison between calculated and measured radiances
for validation or calibration of the measurements. In the following section, a powerful model
which is used the line-by-line method for calculating the atmospheric radiation is shortly
introduced.

The Line-By-Line Radiative Transfer Model (LBLRTM) (Clough et al., 1992; Clough and J.,
1995; Clough et al., 2005) is an accurate radiative transfer model capable of performing
monochromatic radiative transfer. It has been used to evaluate both ground-based, and
space-based spectral radiance observations. It is also utilized to build radiative transfer
model parameterizations that can be used in numerical weather prediction and climate mod-
els. The LBLRTM is originally based on the FASTCODE (Clough et al., 1981). In order to
calculate the atmospheric radiation in the clear sky case, the model needs the input profiles
of temperature and humidity as well as atmospheric trace gases such as CO2, CH4, N2O and
O3. The first step is the calculation of the spectral optical depth. Note that the atmosphere
is considered as a quasi-homogeneous in the horizontal direction. Then the radiance is cal-
culated from the optical depth by a discrete radiative transfer equation. In order to use the
LBLRTM simulated radiances to evaluate the real measurements, monochromatic radiances
simulated by the LBLRTM need to be convolved with response functions to mimic realistic
instruments. The code used the Clough-Kneizys-Daies (CDK) water vapor continuum model
(Clough et al., 1989); however, in the early 2000s this model was modified and renamed the
MT CDK model (Mlawer et al., 2012). It also uses the HITRAN data base for its line base
core. The details about the core of the LBLRTM including line shape, width, position and
line coupling continuum model for different trace gases can be found in Clough et al. (2015).

The Atmospheric Radiation Measurement (ARM) Program performed several campaigns in
order to evaluate and improve the radiative transfer model while the LBLRTM was one of
the important ones. One of the first evaluations of the LBLRTM radiances was a comparison
of the LBLRTM radiances with the AERI radiances. However, the large uncertainty in the
water vapor profile measurements as an input profile to the LBLRTM was the significant lim-
itation in improving the LBLRTM model (Revercomb et al., 2003). In 1993, during the Pilot
Radiation Observation Experiment (PROBE), the observations of Fourier transform infrared
(FTIR) spectrometer from the National Oceanic and Atmospheric Administration (NOAA)
was used to compare with the LBLRTM radiances. This comparison showed a large bias in the
spectral band from 800 to 1000 cm−1 for the moist tropical condition (Mlawer and Turner ,
2016). Later analysis of this comparison showed that this large bias was due to the deficiency
in the CDK continuum model of the LBLRTM. This result was also demonstrated, in 1996,
using the new generation of the AERI as well as NOAA FTIR observations on the research
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ship Discoverer (Han et al., 1997). Moreover, improving the accuracy of the measured inte-
grated water vapor (IWV), between early 1990s and early 2000s, which reduced the measured
IWV uncertainty from 15% to 3% (Turner et al., 2016), helped the further improvement in
the CDK model of the LBLRTM, particularly in the accuracy of the spectral band 800-1300
cm−1 (Turner et al., 2004). The ARM program also performed the Surface Heat Budget of
the Arctic Ocean (SHEBA) (Uttal et al., 2002) in order to improve the strong water vapor
absorption band for wavenumbers less than 600 cm−1. In this campaign an extended range of
the AERI which measures the wavenumbers from 400 cm−1 was used. The result of this cam-
paign demonstrated that the CDK continuum model in the far-infrared was approximately
by a factor of 3 too strong (Tobin et al., 1999) and led to a significant improvement in the
CDK model in this region. Further studies in this region as well as more observations from
other campaigns provided useful information on the strength of the pure rotational water
vapor band in 400-650 cm−1 region (Delamere et al., 2010).

Furthermore, in 2002, the AERI observation radiances as well as observations from High-
resolution Interferometer Sounder (HIS) and Scanning HIS (S-HIS) were used to evaluate
and modify the CO2 line shape and CO2 continuum band from 500 to 900 cm−1 in the
LBLRTM (Mlawer and Turner , 2016).

In this work, the LBLRTM version 12.1 with the core of HITRAN 2008 (Rothman et al.,
2009) data base is used. The calculated radiances in the thermal infrared region, from 650
cm−1 to 2760 cm−1 using this LBLRTM version were validated against the observed radiances
provided by IASI satellite measurements for 120 nighttime clear sky cases (Alvarado et al.,
2013). The comparison between calculated and observed radiances as well as comparison
between the retrieved temperature profiles from both calculated and measured radiances
showed a remarkable improvement in spectroscopy of the ν2 and ν3 bands of the CO2 lines
compared to the older version of the LBLRTM. This progress is due to several improvements
in the HITRAN code such as the inclusion of the P- and R-branches CO2 line coupling
(Lamouroux et al., 2010) and improvement in the CO2 and the water vapor continuum model.
However, it was shown that still some residuals between observed and calculated radiances
exist e.g. a residual around -0.5 K at 720 cm−1, around 0.2 K between 755 and 770 cm−1

and also a small residual near the ν3 band of CO2 (Alvarado et al., 2013).

In the next section, the LBLRTM is used for calculating the downwelling atmospheric radi-
ances in the thermal infrared region in order to determine the sensitivity of 15 µm CO2 line
to the change in the atmospheric CO2 concentration near the surface during daytime and
nighttime.

2.5 Sensitivity study

In order to find the sensitivity of the 15 µm CO2 line to the diurnal variation of atmospheric
CO2 concentration mainly in the boundary layer, a sensitivity study is performed that is
presented in this section.

The LBLRTM is used to calculate the downwelling atmospheric radiances at 15 µm CO2

line (from 600 to 750 cm−1). The input temperature and humidity profiles are taken from a
regional numerical model called REMO (it is introduced in more details in section 3.6). The
input atmospheric absorbers profiles such as O3, CH4 and N2O are considered as a constant
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Figure 2.4: Calculated downwelling atmospheric radiances from 600 to 750 cm−1 using the
LBLRTM. (a) A nighttime (blue) and a daytime (red) CO2 profile for 25 of May, 2012. The
dashed black line shows the constant CO2 profile equal to 372 ppm. (b) The downwelling
atmospheric radiation in CO2 15 µm band using the dashed black CO2 profile as an input
profile for LBLRTM. (c) The radiance differences between the calculated radiance using the
constant CO2 input profile and the daytime CO2 input profile (red) and; the same radiance
difference for the nighttime CO2 input profile (blue).

atmospheric profile where their constant mixing ratio are equated to a value close to their
mean atmospheric concentration.

In the first run the input CO2 profile is considered a constant profile of 373.5 ppm. The
calculated radiances of this run are shown in Fig. 2.4b. In order to calculate the sensitivity of
15 µm CO2 line to the diurnal change of the CO2 profile, a typical daytime and nighttime CO2

profile are considered which are shown in Fig. 2.4a. The constant CO2 profile is also shown
in this plot. The LBLRTM is then run using each of these CO2 profiles (same temperature
and humidity profiles). The radiance differences between the calculated radiances using the
daytime CO2 profile and the constant CO2 profile as well as the radiance differences between
the calculated radiances using the nighttime CO2 profile and the constant profile are shown
in Fig. 2.4c.

As the plot shows, in the spectral band between 625 and 710 cm−1, the radiance differences
for both runs with the nighttime and the daytime CO2 profiles are relatively close to zero,
which is an expected consequence of strong absorption in the Q-branch. As it is shown in
Fig. 2.3, the spectral band in the center of 15 µm line has the strong absorption near the
surface meaning that the atmosphere is quite opaque close to the center of 15 µm. Therefore,
this spectral band does not have a significant sensitivity to the change in the CO2 input
profile. Conversely, the spectral bands at the edge of 15 µm line, i.e. 710-750 cm−1 and 600-
625 cm−1 show relatively higher sensitivity to the change in the input CO2 profiles. Since the
nighttime CO2 profile has an increase in the CO2 concentration near the surface compared
to the constant CO2 profile, the simulated radiances using the nighttime profile minus the
simulated radiances using the constant profile show a positive differences. Conversely, the
simulated radiances using the daytime CO2 profile minus the simulated radiances using the
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constant CO2 profile show a negative differences which is due to the decrease in the daytime
CO2 concentration near the surface compared to the constant CO2 profile. These sensitivities
can be used to get the information about the change in CO2 concentration in the boundary
layer, and thus they may be used to retrieve the CO2 profile in the boundary layer.

In conclusion, this study illustrates that 15 µm CO2 spectral band has valuable information
related to the atmospheric CO2 profile. However, in chapter 6, it is shown that the sensitivity
of 15 µm CO2 spectral band can be used to retrieve the CO2 profile, if the noise characteristic
of the instrument would be lower than this sensitivity.





Chapter 3

Instrument and model data

In this chapter, instruments as well as model data which are used in the present work,
either for comparison to the retrieved results or taking as input data in the radiative transfer
model, are shortly introduced. The main instrument that is used in the present study is a
high spectral resolution ground-based spectrometer called AERI which was installed at Jülich
ObservatorY for Cloud Evolution (JOYCE) (Löhnert et al., 2015). The AERI is introduced
in the first section. In section 3.2, a brief explanation about the microwave radiometer which
is another ground-based instrument at JOYCE is presented. Then the GPS data and the
tower measurements are introduced in section 3.3 and 3.4 respectively. These measurements
are also taken at JOYCE. Finally, two regional numerical models, COSMO DE and REMO
are described in the last two sections.

3.1 AERI

In the 1980s, the significant uncertainties in the radiative transfer parameterizations used
in climate models forced the scientists to start a program in order to measure the highly
spectrally resolved atmospheric radiation (Ellingson and Fouquart , 1991). This program ini-
tiated the Atmospheric Radiation Measurements (ARM) program by the Department of
Energy (DOE) (DOE , 1990; Turner and Ellingson , 2016). In the mid-1980s, the Univer-
sity of Wisconsin-Madison space Science and Engineering Center (UW-SSEC) developed an
airborne infrared interferometer that is called High-Resolution Interferometer Sounder (HIS)
(Revercomb et al., 1988). HIS was built in order to retrieve temperature and humidity profiles
with improved vertical resolution from space-based instrument (Revercomb et al., 1988). In
addition, the success of the HIS during the Ground-Based Atmospheric Profiling Experiment
(GAPEX; Smith et al., 1990b) led to a ground-based HIS (GB-HIS) design (Knuteson et al.,
2004a). The development and operation of GB-HIS as well as funding support by ARM
led to the first AERI system design called AERI-00 in 1992 (Knuteson et al., 2004a). The
experience of deployment of the AERI-00 during a campaign led to first operational AERI
(AERI-01) design by the UW-SSEC. AERI-01 was deployed at the Southern Great Plains
(SGP) site in summer of 1995. The experiment of operating the AERI-01 on the SGP site
led to the development of AERI v2 system that was operated later on different ARM sites
(Turner et al., 2016). Fig. 3.1 shows the AERI at JOYCE, Germany. The AERI at JOYCE
was built by ABB/BOMEN Inc and was installed at JOYCE in 2011.

27
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Figure 3.1: The AERI at Jülich ObservatorY for the Cloud Evoloution (JOYCE), Germany.
The photo was taken in 2013.

The AERI measurements showed good potential to analyze the water vapor continuum
as well as high potential for validation of infrared radiative transfer models in clear sky
cases (Revercomb et al., 2003; Turner et al., 2004); to study the cloud radiative and micro-
physical properties in cloudy cases (Collard et al., 1995; Mace et al., 1998; DeSlover et al.,
1999; Turner et al., 2003) and to provide the real time temperature and humidity profiles
(Feltz et al., 1998; Turner et al., 2000; Löhnert et al., 2009; Turner and Löhnert , 2014). In
the following section, first the AERI instrument design is presented. Then, in subsection 3.1.2,
the processes in order to abtain radiometrically and spectrally calibrated AERI radiance from
real observation as well as short explanation about the AERI noise are given. The main infor-
mation for this section is taken from Knuteson et al. (2004a) and Knuteson et al. (2004b).

3.1.1 Instrument design

The AERI is an automated ground-based spectrometer for measuring the downwelling at-
mospheric mid-infrared radiation with high temporal and spectral resolution. It measures
the infrared radiation from 520 cm−1 (19 µm) to 3020 cm−1 (3.3 µm) in the zenith view
with a spectral resolution of better than 1 cm−1. The temporal resolution of the AERI can
change from 8 min in the slow sample mode to 20 s in the rapid sample mode. While the
slow sample mode is more appropriate for retrieving the temperature and humidity profiles,
the rapid sample mode is well-suited to provide the information related to cloud properties.

The AERI is composed of two major parts, the optics bench assembly and the electronics
support equipment. The main pieces of the optics bench assembly are an interferometer,
two black bodies and two detectors. One AERI detector is responsible for longwave infrared
band and is made of mercury cadmium telluride (HgCdTe), while the other one is responsible
for the shortwave infrared band and is made of indiumantimonide (InSb). The optical part
is thermally isolated from the ambient temperature by a thermal isolated box. The AERI
interferometer consists of a helium-neon laser, a fixed mirror, a moving mirror and a beam
splitter. The blackbodies that are utilized to calibrate the measured radiances, are called hot
blackbody (HBB) and cold blackbody (CBB). The blackbodies are identical but they operate
at two different temperatures. The CBB operates at the temperature near the ambient



3.1. AERI 29

Figure 3.2: The optic part of the AERI. The hot blackbody (HBB), the ambient blackbody
(ABB), the interferometer and detectors are shown in the picture (taken from Knuteson et al.
(2004a)).

temperature while the HBB operates at a constant temperature near 60◦ C. The emissivity
of the blackbodies are greater than 0.999 with an uncertainty better than ±0.1%. Fig. 3.2
shows the optical part of the AERI.

The electronic support equipment consists of different parts where the most important ones
are the blackbody temperature controller, a housekeeping system, a Sterling cooler and a
control computer. The HBB temperature is controlled by the blackbody temperature con-
troller in order to keep it at a certain temperature with a defined uncertainty. The Sterling
cooler keeps the detectors at cryogenic temperatures (∼ 77 K) to improve the signal-to-noise
ratio of the observations. The housekeeping system measures temperatures and voltages at
different parts of AERI in order to control the instrument performance. The control com-
puter is used to control different processes inside the AERI such as working the housekeeping
system, continuously receiving the data and the performance of the interferometer.

3.1.2 Data acquisition

As it has been mentioned in the previous subsection, the optics bench assembly of AERI
includes an interferometer which is used to produce an interferogram. The atmospheric
radiation which goes to the interferometer is divided into two parts using the beamsplitter.
One part goes to the fixed mirror while the other one goes to the moving mirror. The
moving mirror has continuous forward and backward movement. The reflected beams from
two mirrors are combined together while the difference in their path cause a phase difference
between two beams. Consequently, the combined beam produce an interference pattern which
is called interferogram. The Fourier transform is then used to convert the raw interferogram
to the radiance spectra. Note that the raw interferograms are real numbers but they are
not necessarily symmetric around zero path delay (i.e., the part of the interferogram where
the distance between the moving mirror and the beamsplitter is the same as the distance
between the fixed mirror and the beamsplitter). At zero path delay, there is no destructive
interference at any wavelength, and effectively the detector is sensing the spectrally integrated
contribution from all wavelengths. Fig. 3.3 shows an example of the raw interferogram and the
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Figure 3.3: The raw interferogram derived from an AERI interferometer (upper plot) and
the AERI radiances which are computed by applying the FT on the raw interferogram (lower
plot). Source: personal communication with D. D. Turner.

calculated radiances. The high peak in the center of the interferogram shows the integrated
contribution for the zero path delay where there is no destruction.

Two black bodies of the AERI are used to derive the radiometric calibrated radiances. For this
reason, one or multiple sky views (depending on the instrument configuration) are sandwiched
between looking to the black bodies of the form HASAHS, where H and A represent looking
to the HBB and CBB respectively; and S represents the sky view. A gold mirror is used
to select the scene being viewed, i.e., the sky view, ABB view or HBB view.The calibrated
radiance for a specific wavenumber ν that is given by Nν , is calculated using the radiometric
calibration (Revercomb et al., 1988) as:

Nν = Re{
ISν − ICν
IHν − ICν

}(B̂H
ν − B̂C

ν ) + B̂C
ν , (3.1)

B̂H
ν = eHν Bν(T

H) + (1− eHν )Bν(T
R), (3.2)

B̂C
ν = eCν Bν(T

C) + (1− eCν )Bν(T
R), (3.3)

where Re{} refers to the real part of the argument; Iν is the complex spectra derived from the
observed interferogram; Bν is the Planck function radiance at the observed temperature; and
eν is the blackbody emissivity. TR shows the reflected temperature that is the temperature
of the environmental radiance that enters the blackbody and is reflected back to the detector.
Note that the H, C and S refer to HBB, CBB and sky view respectively.

The imaginary part of the complex radiance, Dν , is an estimation of each observed scene
noise and computed as:

Dν = Im{
ISν − ICν
IHν − ICν

}(B̂H
ν − B̂C

ν ), (3.4)
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where Im{} refer to the imaginary part of the radiance. The variation of Dν over different
spectral bands can be used to evaluate the quality of the observed radiances and it gives an
estimation of observed radiance noise.

Another important factor that provides a quality assessment of the instrument performance
is the instrument responsivity, Hν defined as:

Hν =
IHν − ICν

B̂H
ν − B̂C

ν

. (3.5)

Comparing this equation with Eqs. 3.1 shows that the responsivity is the inverse of the
radiometric calibration equation slope. The responsivity of the system depends on different
factors where the important one is the instrument optical transmission and this factor in
particular depends on the state of the gold scene mirror. The stability of the responsivity
over the time can be used as a valuable test to find the noisy data in order to remove them.

As mentioned, the AERI uses the interferometer to produce the interferogram for each sky
view and the interferogram is converted to the AERI spectrum using the Fourier transform.
In a Fourier transform spectrometer, the interferogram sampling interval corresponding to
the optical path delay is used for the spectral calibration. In the AERI interferometer, the
laser fringe is used to provide this sampling. For each AERI detector, the wavenumber scale
is given by:

ν = (i− 1)∆ν, (3.6)

where i changes from 1 to NDS and ∆ν = νeff/NDS . νeff refers to the effective sampling
frequency and NDS presents the number of points in a produced interferogram that is equal
to 32768 in the AERI system. The effective sampling frequency is determined by:

νeff ∼= νlaser(1 + b2/4), (3.7)

where b shows the half-angle of the AERI field of view that is equal to the interferometer
field of view. The nominal νeff of an AERI is known by design and is called true or reference
frequency. For the AERI at JOYCE, with b=16 mrad and HeNe laser frequency=15798.02
cm−1, the effective laser frequency is 15799.0 cm−1. However, after deployment of the instru-
ment in the field, any misalignment between laser optical paths and the infrared paths can
change this reference frequency and cause an inconsistency in the wavenumber calibration.
Therefore, after deployment, the data needs to be spectrally evaluated. This is shown in
section 4.4 for the AERI radiance observations at JOYCE.

The AERI noise can be calculated by several ways such as computing the square root of the
variance of magnitude radiances derived from hot black body observation over 25 cm−1 (e.g.
Knuteson et al., 2004b). However, operationally, the standard deviation of the calibrated
imaginary radiances derived from complex observed radiances, Dν over 25 cm−1 are used as
an estimation of the observed radiances noise (e.g. Knuteson et al., 2004b). Previous studies
showed that the random AERI noise between any two spectral channels can be considered
independent (e.g. Turner , 2005). This was confirmed by using a well-characterized blackbody
which was placed in the sky port of the AERI. Analyzing observation of the blackbody for a
long time series of data confirmed a correlation coefficient with absolute values of 0.3 between
any two spectral channels. This study showed that the AERI noise can be considered as
uncorrelated random noise.

The AERI at JOYCE works in rapid sample mode which has a temporal resolution of around
30 s, while the sky view is around 12 s (the rest is used to look at the HBB and CBB).
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Figure 3.4: The AERI radiance observation that was taken during a clear sky scene on 25 of
May 2012 at Jülich, Germany. The upper plot shows the AERI longwave infrared band and
the lower plot shows the AERI shortwave infrared band.

This short sky view produces high noise in the AERI observation radiances (particularly
compared to slow sample mode). In order to reduce the noise and increase the signal-to-noise
ratio, different methods can be applied such as temporally averaging radiances or using the
objective technique to determine the number of principal components of the AERI radiances
with eigenvalues higher than the noise level to reconstruct the AERI observation radiances.
The second method which is called Principal Component Analyze (PCA) is described in more
detail in section 6.2.4.

The calibrated AERI radiances are saved in two separate files as channel one and channel two
corresponding to the longwave and the shortwave detectors. The channel one includes the
spectral band from 500 to 1800 cm−1 and the channel two includes the spectral band from
1800 to 3000 cm−1. The data related to the quality control and housekeeping values are also
saved in a file known as summary file. Fig. 3.4 shows an example of the AERI observation
radiance for both channels. The data was taken during a clear sky scene at JOYCE on 25 of
May, 2012.

3.2 Microwave radiometer

The microwave radiometer is a passive instrument that measures atmospheric radiation in the
microwave region. The first studies showed that a dual-channel microwave radiometer with
one channel at the water vapor line and one at the window region has the ability for observing
liquid water path (LWP) and integrated water vapor (IWV) (Westwater , 1978). In addition,
the microwave radiometers can be used for retrieving temperature and humidity profiles using
the band measurements at the wings of water vapor or oxygen absorption lines (Solheim et al.,
1998; Crewell et al., 2001). Further studies showed that elevation scans can improve the
vertical resolution of the temperature profile in the boundary layer (Westwater et al., 1999).
Crewell and Löhnert (2007) demonstrated that elevation scans of relatively opaque channels
can improve the vertical resolution of the retrieved temperature profile in the boundary layer
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compared to a retrieval using only zenith measurements. A comparison to radiosonde data
showed that the standard deviation of the retrieved temperature profile is better than 1 K
(for the atmospheric levels below 1.5 km).

In the present study, the data of a microwave radiometer called Humidity And Temperature
PROfiler (HATPRO) is used (Rose et al., 2005). The HATPRO is a microwave radiometer
built by Radiometer Physics GmbH, Germany (RPG).

The HATPRO has 7 channels in the vicinity of rotational transitions of O2 at 60 GHz (V-band
from 51 to 58 GHz) and can be used for retrieving the temperature profile and 7 channels in
the vicinity of water vapor absorption line at 22.235 GHz (K-band from 22 to 31.4 GHz) and
can be used for determining the humidity profile as well as LWP (Rose et al., 2005). Several
studies showed the high ability of HATPRO for retrieving the temperature and humidity
profiles as well as observing the LWP with the temporal resolution of 1 s. Besides, it was
shown that the accuracy of retrieved IWV using the HATPRO is better than 0.5-1 kg/m2

(Steinke et al., 2015).

The HATPRO also has some additional sensors for measuring the surface temperature, hu-
midity and pressure as well as one sensor for detecting the rain onset and a GPS sensor for
providing the UTC time.

The accuracy of the microwave radiometer measured data, among other parameters, sig-
nificantly rely on calibration accuracy (Solheim et al., 1998). The calibration is periodically
needed since the measured voltage by the microwave radiometer needs to equivalently convert
to the brightness (radiative) temperature. The microwave radiometer ideally needs two ref-
erence points for calibration which are derived using a cold and a hot blackbody. An internal
ambient target is used typically as hot blackbody (at ∼ 300 K). For the cold blackbody, either
a liquid nitrogen (LN2) cooled blackbody of approximately 77 K (Ulaby et al., 1981), or a clear
sky zenith measurement known as Tipping Curve Calibration (TCC) (Han and Westwater ,
2000) can be used. Maschwitz et al. (2013) determined an uncertainty of 0.5 K for the TCC
method, whereas it was demonstrated that the absolute uncertainty in the blackbody bright-
ness temperature at the LN2 boiling point for all frequencies is ±0.5 K (Maschwitz et al.,
2013; Küchler et al., 2016).

In this study, the retrieved temperature profiles and the retrieved IWV amounts as well as
the in-situ surface temperatures (measured by the HATPRO sensor) from HATPRO mea-
surements at JOYCE on clear sky days in 2012 are used.

3.3 GPS data

Bevis et al. (1992) presented a new approach to calculate the atmospheric IWV using the
Global Navigation Satellite System (GNSS). It was shown that the signal propagating from a
navigation satellite has a time delay which depends, amongst other things, on the atmospheric
water vapor. Therefore, by calculating this delay, the atmospheric IWV can be estimated.
The signal transmitted from a GNSS satellite can be received by a Low Earth Orbit (LEO)
satellite or by a ground-based receiver. The signal received by a ground-based receiver can
be used to estimate the integrated parameters such as IWV. In this study, the IWV derived
from a ground-based receiver at JOYCE is used. In the rest of this section, the principle of
deriving the IWV from a ground-based GPS receiver and the approach that is used for the
ground-based receivers in Germany includes JOYCE receiver is summarized.
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The ground-based GPS station consists of a receiver and an antenna. Each GPS station can
receive signals at 12 different channels. However, receiving the signal of 4 satellites is enough
for a station to make its measurements applicable. In addition the signal needs to be received
in an elevation which is typically considered higher than 7◦ (Ning and Elgered , 2012). The
data of a GPS station is scientifically usable, once these two criteria are fulfilled.

In order to calculate the tropospheric delay in a network approach, a low computational
cost method is the Precise Point Positioning (PPP) (Zumberge et al., 1997). The IWV is
then calculated by determining the dry and the wet tropospheric delay and mapping them
to zenith. The Zenith Total Delay (ZTD) can be written as:

ZTD = ZHD + ZWD, (3.8)

where ZHD and ZWD refer to the Zenith Hydrostatic Delay and Zenith Wet Delay. The
ZHD can be approximated by:

ZHD = 10−6k1Rd

∫

z
ρdz ≈ k′1ps, (3.9)

where Rd = 287.05 Jkg−1K−1 is the specific gas constant for dry air; ρ is the air density; k1
is an empirical constant and k′1 refers to a constant that mainly depends on the k1, height
and the receiver latitude. The integral is calculated from the earth surface to the top of the
atmosphere. Furthermore, ZWD can be calculated using:

ZWD = k′(Tm)

∫

z
ρwdz, (3.10)

where ρw is the atmospheric water vapor density and k′(Tm) is a function of weighted mean
temperature. Substituting Eqs. 3.9 and 3.10 in Eq. 3.8 gives:

IWV =

∫

z
ρwdz =

1

k(Ts)(ZTD − ZHD)
. (3.11)

There is a network of GPS stations consisting of approximately 300 stations in Germany and
some of its neighboring countries in order to retrieve the IWV that is called GFZ network.
The ZTD is calculated using the PPP method. In this approach, a system of equations
including 40-50 equations is solved which leads to calculate the ZTD as well as its standard
deviation with relatively high temporal resolution of 15 min (Gendt et al., 2004).

However there are still some unsolved issues in the measured GFZ data such as a large break
between the calculated IWV at 23:45 UTC and 00:00 UTC of the following day (Steinke et al.,
2015) and the calculated IWV in this network has an uncertainty the order of 1-2 kg/m−2

(Gendt et al., 2004). In the present study, the IWVs derived at JOYCE on clear sky days in
2012 are used.

3.4 Tower measurement

The meteorological tower in Jülich, Germany is placed in a rural and predominately flat
area. It measures the concentration of trace gases such as CO2, CH4, CO and H2O as well
as meteorological data such as temperature, pressure, relative humidity, wind-direction and
wind-speed in a temporal resolution of 10 min. The tower was built in 1963 and 1964. The
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trace gases have been measured at two different altitudes, at 20 m since March 2011 and at
100 m since May 2009. There is a coal fired power plant in Weisweiler (wind-direction cir.
218 ◦ south-west, at the distance of about 9 km) which is expected to have a rather significant
effect on the trace gas measurements of the tower.

The trace gas concentration are measured using Off-Axis Integrated-Cavity-Output-Spectroscopy
(ICOS) which is developed by Los Gatos Inc (www.lgrinc.com/analyzers). The measure-
ments are based on trace gas absorption spectroscopy (Schrade , 2011). A light source is
passed through a gas sample cylinder. Then the intensity of the incoming light is compared
with the intensity of the outgoing light. According to the trace gas absorption lines of in-
coming light, the light can be absorbed by the trace gases inside the gas cylinder so that
its intensity changes. By measuring the intensity of the outgoing light the concentration of
the trace gases inside the cylinder can be estimated (Schrade , 2011). The attenuation of the
incoming light due to passing through the gas cylinder is computed using Beer-Lambert-Law
as:

Iν
I0

= e−(ǫλcL), (3.12)

where I0 shows the intensity of the incoming light and Iν shows the intensity of the outgoing
light. ǫ is the molar absorption coefficient, c is the concentration of the probe and L is the
pathlength.

The tunable diode lasers and Quantum Cascade (QC) lasers in the mid-infrared region (3-
5 µm) can be used as input light since there are several trace gas absorption lines in this
region. The ICOS-instrument uses a cavity with 50 cm pathlength and the QC laser at 4.9
µm (www.lgrinc.com).

The CO2 measurement data which were collected in 2012 were not calibrated. However, the
accuracy of the CO2 measurements are probably better than about 5 ppm. In addition, if
there would be an offset in the data, it should be constant over several days meaning that
the diurnal variation of the measurements should be rather accurate. Moreover, the precision
of the CO2 measurements in 2012 are about 1 ppm (personal communication with M. V.
Hobe).

In this study the CO2 measurements at 100 m on two clear sky days in 2012 as well as the
temperature measurements at 100 m on all clear sky days in 2012 are used.

3.5 COSMO DE model

The COnsortium for Small scale MOdelling (COSMO) (http://www.cosmo-model.org) is a
cooperation between meteorological services of different countries in order to develop regional
numerical models. COSMO DE is the operational numerical weather prediction model of the
Deutscher WetterDienst (DWD; German weather service) since 2007. It has been mainly
developed to improve the short term forecast of severe weather (Baldauf et al., 2011). The
COSMO DE is a non-hydrostatic, fully compressible model with 51 levels from the surface
up to 22 km. The model thickness range changes from 20 m close to the surface to 400 m at
5 km height and 1000 m at 20 km height. The horizontal resolution of the model is 2.8 km
with the 1200×1300 km2 domain covering Germany, the Netherlands, Belgium, Switzerland,
Austria and some parts of adjoint countries as well as a large part of the Alps (Baldauf et al.,
2011). It runs 8 times per day (at 00, 03, 06, 09, 12, 15, 18 and 21 UTC). The model output
are available in an hourly resolution (Baldauf et al., 2011).
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The input data as well as boundary conditions are provided using the interpolated data of a
7-km regional model COSMO EU which uses the input data provided by the 30-km global
model GME (Majewski et al., 2002). The COSMO DE boundary conditions are updated us-
ing the COSMO EU data of 3 h behind (e.g. the COSMO DE at 00 UTC uses the data at 21
UTC of the COSMO EU). The COSMO DE input data is adjusted using four-dimensional
data assimilation based on the nudging approach. For this purpose, the temperature, relative
humidity, pressure, geopotential height, two-dimensional horizontal wind vector and precip-
itation observations from several measurements such as observation at synoptic stations,
radiosondes data, the data of radar network and the data of ground-based wind profilers
(Stephan et al., 2008; Schraff and Hess, 2012) are used.

In this study the hourly temperature and humidity profiles of the COSMO DE from the
closest column output to the JOYCE on clear sky days in 2012 are used.

3.6 REMO model

The REgional MOdel (REMO) is an on-line atmosphere-chemistry model that uses tracer
transport modules as well as modules for tropospheric chemical quantities to simulate CO2

and some other atmospheric trace gases variation (Langmann , 2000; Chevillard et al., 2002).
The model uses the physical parametrization package of the EuropaModell (EM). It has 20
vertical levels from the surface up to 20 km with 7 levels below 1500 m. The horizontal
resolution of the model is 0.5◦ in a rotated spherical coordinate that is roughly 55 km over
Europe. It forecasts 30 hours with hourly resolution (Chevillard et al., 2002). The initial
and the boundary condition values are updated every 6 h using the European Center for
Medium-Range Weather Forecasts (ECMWF) model data. In the present section the REMO
configuration for simulating the CO2 transport is roughly summarized.

In order to simulate the CO2 profile, three different components, i.e. the biosphere, the
oceanic and the anthropogenic factors are considered. These components can be generated
by sources inside the model domain as well as external sources once the emission of external
sources enters into the domain through model boundaries. The biosphere component which
describes the exchange of CO2 between the atmosphere and the terrestrial vegetation is
provided by the Terrestrial Uptake and Release of Carbon (TURC) model (Lafont et al.,
2002; Ruimy et al., 1996). The TURC model simulates the terrestrial photosynthesis and the
respiration by plants and soil using meteorological data and satellite observations. The daily
estimation of the biosphere component provided by the TURC model is converted to hourly
biosphere fluxes in REMO. The oceanic component is computed based on the Takahashi et al.
(2002) approach. In this approach, the measurements of CO2 partial pressure difference of sea
minus air is assembled and interpolated in order to estimate the mean net fluxes with monthly
resolution (Wanninkhof , 1992). The anthropogenic component is determined according to
the Emission Database for Global Atmosphere Research (EDGAR; Olivier et al., 1996). This
database provides global emission maps with 1◦× 1◦ resolution. Emissions due to industrial
activities, heating processes, transportation and cement production are taken into account.
The REMO model uses the global transport model TM3 (Heimann, 1995) for CO2 initial
data and boundary conditions. However, the TM3 model data does not provide absolute
concentration of CO2 and hence the REMO model uses an offset correction value about
360.5 ppm that is constant in time and space and makes the REMO data comparable with
the real CO2 measurements.
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In the present work, the data of the Hegyhatsal station in Hungary is used. The station is
located in a rural area so that it has the lowest contribution of CO2 fossil fuel. This station
also shows the best agreement with the observation compared to other stations that were
analyzed in Chevillard et al. (2002) study. The CO2 profiles as well as the temperature and
humidity profiles of November in 2012 and 2013 provided by REMO for this station are used
in this study.





Chapter 4

Quality control and evaluation of

AERI data

In section 3.1, the AERI is shortly introduced. In this chapter, the methods for evaluating
and calibrating the AERI data are presented. Between 2012 and 2017, there are several
epochs of AERI data due to occasional instrument malfunctions; in this study, only the
AERI measurements in 2012 are used. Consequently, in the following chapter, the quality
control and the calibration of AERI measurements in 2012 are explained. In the first section,
the methods for finding and removing the low-quality data are presented. In order to do the
spectral and radiometric calibration, the LBLRTM are used to simulate the AERI radiances
using the COSMO DE profiles. Due to the limitation of the LBLRTM simulation to the
clear sky conditions, a method is used to find the clear sky cases in 2012 which is explained
in section 4.2. In addition, the COSMO DE temperature and humidity profiles are scaled
using observations in Jülich for a better representation of the real temperature and humidity
profiles, and thus provide the AERI simulated radiances with higher accuracy. The methods
for selecting the best surface temperature and IWV observations are explained in section 4.3.
The simulated radiances are then used for spectral and radiometric calibration which are
demonstrated in sections 4.4 and 4.5 respectively.

4.1 Flagging low-quality data

Before evaluating and calibration of the AERI data, the measurements with low-quality are
detected and flagged. The procedure for finding this data is summarized in this section.

4.1.1 Imaginary part of observed radiances

In section 3.1, it is shown that the asymmetric interferogram around the zero path delay cause
complex observed radiances. The radiometric calibration uses the real part of the complex
observed spectra to compute the calibrated radiances while the imaginary part Dν which
gives an estimation of the observation noise, can be used to asses the quality of the observed
radiances. Dν needs to be zero within the instrument noise. However, analyzing the AERI
data shows some jumps in the Dν values. These jumps refer to noisy data that and need to
be removed.

39
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Figure 4.1: The averaged imaginary part of observed radiance in the 2510-2515 cm−1 region
for each AERI sample from 2012 (top) and the longwave detector responsivity (bottom) in
2012. The red line in the imaginary plot (top) shows the threshold equal to 0.2 RU that is
used to flag the noisy data.

In the real-time AERI implementation, the Dν is calculated over different spectral bands and
its value for each sky view is saved in the summary file. In this study, the sky view imaginary
radiance between 2510 and 2515 cm−1 was used for filtering the noisy data . This variable is
saved with the name of “skyV iewImaginaryRadiance2510− 2515” for each sky view during
the AERI measurements. The upper plot in Fig. 4.1 shows this variable for all sky views in
2012. The red line in this plot shows the threshold that is used for filtering the data. All
measurements with the value higher than this threshold are flagged.

4.1.2 Instrument responsivity

Another important factor which can be used to find the low-quality data is the instrument re-
sponsivity Hν which is introduced in section 3.1. Any issues, particularly when the gold scene
mirror becomes dirty by dust or precipitation, can significantly reduce the responsivity of the
instrument, and thus can produce the data with low-quality. Therefore, the measurements
with low responsivity need to be found and flagged.

Operationally, the responsivity of the shortwave and the longwave detectors are saved sep-
arately for each sky view in the daily summary file. The lower plot in Fig. 4.1 shows the
AERI longwave detector responsivity for measurements in 2012. In order to filter the data
that was obtained with the low detector responsivity, the mean responsivity of each month is
calculated and the data with responsivity less than 90 % of the mean calculated responsivity
are flagged.

4.2 Finding clear sky cases

After flagging poor quality and noisy measurements, the remains of measurements need to
be validated by reference radiances. In this study, these radiances were calculated using an
accurate radiative transfer model. As described in section 2.4, the LBLRTM is an accurate
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Figure 4.2: Scatter plot of mean radiation of the spectral band between 898 and 904 cm−1

in terms of its standard deviation for 10 min time intervals of AERI measurements in 2012.

radiative transfer model which has been used to evaluate and calibrate the space-based or
ground-based observations. It is also used in the present study to evaluate the AERI measure-
ments and to determine if there is any systematic bias in the data. The LBLRTM does not
include clouds, and thus is limited to clear sky calculations. The accuracy of the LBLRTM
calculation is limited not only by its spectroscopy (which has been well validated by other
observations; see chapter 2) but also by the accuracy of the input temperature and humidity
profiles used to drive the LBLRTM. Therefore, in the present section, first the clear sky cases
in 2012 are determined. Then the best observation data in Jülich are selected to scale the
model profiles which are used as input data in the LBLRTM.

There are several ways using different instruments to find clouds but many of them are not
accurate enough for the infrared measurement. For example, the ceilometer backscatter is
pretty useful for capturing the low- and mid-level clouds, however, it is poor in capturing
the high and thin ice clouds while the AERI has sensitivity to both ice clouds and thin
clouds with small amounts of LWP (e.g. Turner et al., 2007; Comstock et al., 2007). Another
example is using the window channels in the microwave region but it is not applicable in the
present work since the sensitivity of this radiation to various types of clouds are different
from the infrared radiation; that means a clear sky for the microwave radiation may not be
totally clear and non-cloudy for the infrared radiation. As a result, the method applied in
this study is using the window channels of the AERI in order to filter the cloudy cases. As it
is mentioned in section 2.2.4, the spectral region from 8 to 13 µm is a window region in the
mid-infrared radiation that is divided into several micro-window bands due to water vapor
absorption lines in this area. One of these micro-window bands is 898 to 904 cm−1 with the
high sensitivity to the cloud (Turner et al., 2007) that is highly suitable for this purpose and
is used to find clear sky cases in the present work.

In a clear sky condition, the radiation of a window channel may come from the top of the
atmosphere so that its radiance should have quite small value. On the other hand, in the
8-13 µm band, and especially the 898-904 cm−1 region, the main absorbers are water vapor
and clouds. Water vapor is pretty uniform over time, but clouds can change more quickly.
Therefore, the temporal standard deviation of this band can be used to separate the cloudy
cases from clear ones. While for the clear sky conditions, the temporal standard deviations
are small, the cloudy conditions can produce larger standard deviation over this band.
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Figure 4.3: The three histograms show the mean radiation in the micro-window between
898 and 904 cm−1 in terms of its standard deviation in 10 min time intervals for AERI
observations in 2012. The left plot belongs to the atmospheric condition with the IWV lower
than 10 kg/m2, the middle one belongs to the IWV from 10 to 20 kg/m2 and the right one
belongs to IWV higher than 20 kg/m2. Based on these plots, the thresholds for filtering the
clear sky cases is determined.

Consequently, in the first step, the mean radiance of this micro-window and its standard
deviation over a small time interval that is chosen 10 min here, is calculated. Fig. 4.2 shows
the scatter plot of the mean radiation for the mentioned spectral band, 898-904 cm−1, in
terms of its standard deviation, for AERI measurements in 2012. The plot shows two dense
areas with low standard deviation. From the left side, as it is expected, the first region with
the smaller mean values between 5 and 30 radiance unit (RU; here is mW/m−2 sr cm−1)
belongs to clear sky condition. The second dense region with mean radiation higher than 70
RU belongs to the clouds which are opaque for the infrared radiation. This kind of cloud can
block all the infrared radiation and cause that the radiance comes from the cloud bottom
that means it gets higher mean value due to the radiation from the lower atmospheric level as
well as the infrared radiation of the cloud by itself. Besides, it has small standard deviation
because of emitting from the certain level.

The smallness of window channel radiances mainly depend on the atmospheric water vapor
content. While in a dry and cold atmosphere, the radiances can have very small amounts, in a
hot and humid condition, due to the increase in the optical depth of the water vapor layer, and
thus more emission, the observed radiances can have larger amounts. Consequently, AERI
measurements in 2012 are divided into the 3 different categories based on the atmospheric
IWV amounts that are calculated using the zenith observation of the microwave radiometer
HATPRO at JOYCE.

In order to define accurate thresholds to separate clear sky cases from the cloudy ones, the
histogram of the mean radiation in terms of its standard deviation for each of these categories
are plotted. Fig. 4.3 shows 3 histograms for 3 different IWV contents of the atmosphere. The
left plot shows the histogram for the IWV lower than 10 kg/m2, the middle one plotted for
the IWV between 10 and 20 kg/m2 and the right histogram belongs to measurements with the
IWV higher than 20 kg/m2. As it can be seen, in all 3 plots, the regions belonging clear sky
conditions and thick clouds are clearly separated from each other which make determining
thresholds for clear sky cases easier. According to these 3 plots, the threshold for the clear
sky standard deviation is chosen to be less than 0.2 RU. In addition, the threshold for the
mean radiation is chosen between 2 and 6; 8 and 12; and 20 and 24, for the left plot with low
IWV, middle plot with the moderate IWV and right plot with the high IWV respectively.



4.3. Finding the best measured IWV and surface temperature to scale COSMO DE profiles 43

Figure 4.4: Residuals between AERI and LBLRTM radiances for the micro-window spectral
band from 898 to 904 cm−1. For the upper plot, the LBLRTM is run using the humidity
profile scaled with the IWV measured by GPS station. In the middle plot, input humidity
profiles of the LBLRTM are scaled with the HATPRO retrieved IWV and in the lower one,
the original humidity profiles of the COSMO DE are used in LBLRTM runs.

Based on these thresholds, clear sky time intervals in 2012 are selected. Since these cases
are needed for running the LBLRTM using the COSMO DE profiles and these profiles have
hourly resolution, the clear sky time intervals are selected in a way to be suitable for using
in the LBLRTM; i.e. each 30 min clear sky duration with 15 min before and after a specific
hour for which COSMO DE profiles are available, is selected for this analysis. In this way,
221 clear sky cases are selected that are spanned from 15 January to 15 October 2012. Most
of these cases belong to cold months, January and February, while there are only few cases
in warm months such as Jun, July and August. One important reason is for many days in
these 3 months, the AERI data is missing. In addition, there is not any case in November
and December because of missing the AERI data in these two months.

4.3 Finding the best measured IWV and surface temperature

to scale COSMO DE profiles

In the previous section, clear sky cases which can be used to run the LBLRTM are found. The
LBLRTM is run using temperature and humidity profiles as well as profiles of atmospheric
absorber gases such as CO2, CH4 and O3. In the present study, temperature and humid-
ity profiles are taken from the COSMO DE data and for each atmospheric absorber gas, a
constant profile is considered with a value close to its mean atmospheric content. The un-
certainty in these profiles, particularly in temperature and humidity profiles, can reduce the
accuracy of calculated radiances by the LBLRTM and thus it can affect the accuracy of the
calibration process. In order to reduce the uncertainty in model temperature and humidity
profiles, some of the real observations of the JOYCE site are used as an auxiliary data to scale
these profiles. Two important parameters that are used in this study to correct the model
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Figure 4.5: The mean difference (upper plot) and the standard deviation (lower plot) between
AERI and LBLRTM radiances for 221 clear sky cases. The LBLRTM is run using the
COSMO DE profiles where the humidity profiles are scaled with HATPRO retrieved IWVs
(blue line), with the GPS measured IWVs (red line) as well as using original COSMO DE
humidity profiles (black line).

profiles are the IWV and the surface temperature. Using the IWV for scaling the humidity
profiles has been used in several studies (Turner et al., 2003; Turner et al., 2004). In this
section, the procedure for selecting the best option among all observations and measurements
at JOYCE for each of these parameters is explained.

The IWV is measured by two different instruments at JOYCE, the retrieved IWV by the
microwave radiometer HATPRO and the measured IWV by the ground-based GPS receiver.
Both IWVs are analyzed to find the more appropriate one for scaling model humidity profiles.
Note that IWV is a height-independent scale factor. In order to compare the accuracy of
these IWVs, the LBLRTM is run with three different settings, one for scaled humidity profile
with GPS measured IWV, one for scaled humidity with HATPRO retrieved IWV and one
for original COSMO DE profiles. The humidity profile q is scaled as:

qinput = qCOSMO DE ×
IWVobsrvation

IWVCOSMO DE
, (4.1)

where qinput refers to the input humidity profile in the LBLRTM and IWVobservation are
replaced by the retrieved IWV by HATPRO and measured IWV by the GPS. The temperature
profiles and other trace gas profiles are considered the same for all 3 settings. The LBLRTM
is then run for all 221 clear sky cases. Calculated radiances by the LBLRTM are compared
with coincidence AERI measurements. The micro-window region between 896 to 904 cm−1

which has not any strong absorption lines, is selected for this comparison. The AERI minus
LBLRTM residuals in this spectral band are calculated for all clear sky cases. Fig. 4.4 shows
these residuals in terms of IWV for each of LBLRTM runs. As the plot shows, residuals
in all three plots are clearly lower for lower IWVs while they get higher values as the IWV
increasing. This can relate to the fact that in higher IWVs the deficiency in humidity profiles
of the COSMO DE model is more significant. However, it is known that only part of this
residual is due to the uncertainty in the input humidity profile and other reasons such as
calibration issue which is discussed more in this section or spectroscopy issue in the LBLRTM
are also important. The middle plot also shows that scaling the humidity profile with the
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Figure 4.6: The mean difference (upper plots) and the standard deviation (lower plots)
between AERI and LBLRTM radiances. The left panel shows the mean and the standard
deviation for 135 clear sky cases with IWVs lower than 10 kg/m2 and the right panel shows
the same for 85 cases with IWVs between 10 and 20 kg/m2. The LBLRTM is run using the
COSMO DE profiles where the humidity profiles are scaled with HATPRO retrieved IWVs
(blue line), with the GPS measured IWVs (red line) as well as using original COSMO DE
humidity profiles (black line).

IWV retrieved by the HATPRO cause that residuals in higher IWVs are improved compared
to other two runs.

The mean difference between AERI and LBLRTM radiance spectra over all clear sky cases
as well as its standard deviation for these cases are calculated. Fig. 4.5 shows the mean
residual radiance spectra and its standard deviation for the window region from 800 to 1200
cm−1. The upper plot shows that calculated radiances using scaled humidity profiles with
the IWVs measured by GPS has the lowest mean residual, however, it has the highest stan-
dard deviation. Calculated radiances using the scaled humidity profile with the HATPRO
retrieved IWV shows the highest mean residual with the lowest standard deviation. The
lowest standard deviation implies that the residual is relatively constant for all cases and it
is independent of the IWV amount.

In order to analyze the mean residual and the standard deviation of AERI minus LBLRTM
radiances more precisely, the clear sky cases are divided into two groups based on their
IWV amounts. Fig. 4.6 shows the mean difference between AERI and LBLRTM calculated
radiance spectra as well as its standard deviation for 135 cases with the IWV lower than
10 kg/m2 and 85 cases with the IWV from 10 to 20 kg/m2. There was only 1 clear sky
case with the IWV higher than 20 kg/m2 which is ignored in this analysis. In both panels,
LBLRTM radiances calculated using the scaled humidity profiles with the HATPRO retrieved
IWV shows the highest mean residual with the lowest standard deviation. In addition, the
standard deviation shows a significant decrease for the cases with the lower IWV which makes
the HATPRO retrieved IWV even more reliable for these cases. According to this analysis,
the HATPRO retrieved IWV is selected as the appropriate one for scaling the COSMO DE
humidity profiles.

Another important parameter in the LBLRTM run is the surface temperature. Particularly,
the radiances in the CO2 line, 15 µm, that is the focus of this work, are mainly affected by the
temperature near the surface, therefore, finding the best surface temperature in order to use
in the LBLRTM run is essential for this work. Several surface temperature measurements are
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Figure 4.7: The difference between saturated AERI brightness temperature (BT) with other
near surface temperatures observed at JOYCE site for measurements in 2012.

available in the JOYCE site. In the first step, for comparing these temperatures with each
other, the difference between these temperatures with the radiative temperature measured
by the AERI is calculated for whole AERI measurements in 2012. The radiative or the
brightness temperature (BT) is calculated using the inverse of the Planck function.

BTν =
c2ν

ln(c1ν3/R + 1)
, (4.2)

where c1=1.191042e-5 [mW/m2 sr cm−4] and c2=1.4387752 [K cm] are two constant factors,
ν is the wavenumber and R represents the AERI measured radiance for each wavenumber.
The AERI BT at the surface can be calculated using the spectral band between 673 and 680
cm−1. Note that the calculated BT can only provide an estimation of the surface temperature
since due to the opacity of the absorption line, the calculated BT may show the temperature
of slightly higher altitude above the ground. The median of calculated temperatures for this
spectral band is considered as the radiative surface temperature measured by the AERI. The
temperatures that are used for comparing with the AERI BT are the HATPRO retrieved
surface temperature, the surface temperature measured by the HATPRO in-situ sensor and
the temperature measured by the tower at 100 m as well as the COSMO DE temperature at
2 m. Fig. 4.7 shows the hourly differences between each of these temperatures and the AERI
BT. As it can be seen, tower temperatures show the highest difference with the AERI BTs
that is between 4 and 5 ◦C. This large difference can be due to the difference in the altitude
where the tower temperature has been measured which is at 100 m and the altitude of the
AERI which is 111 m. The differences between HATRPO retrieved temperatures and the
AERI BTs are slightly lower, between 3 and 4 ◦C. Temperatures measured by the HATPRO
in-situ sensor are the closest ones to the AERI BTs with the differences between -1 and 1 ◦C.
COSMO DE temperatures show very unsteady behavior during the year which make them
unreliable.

The same analysis as it is done for selecting the best IWV, is done for selecting the best surface
temperature among all available ones at JOYCE. In this analysis, the LBLRTM is run using
the same humidity profile provided by the COSMO DE model and scaled with the HATPRO
retrieved IWV and different surface temperatures as the input surface temperature in the
LBLRTM. The mean residual of AERI minus LBLRTM radiances as well as its standard
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Figure 4.8: The mean difference between AERI and LBLRTM radiances for 214 clear sky cases
in 2012. The LBLRTM is run using the COSMO DE profiles where the surface temperature
is replaced by HATPRO retrieved surface temperatures (red line), by HATPRO in-situ sensor
measured temperature (black line) and by tower temperature measurements at 100 m above
ground (blue line) as well as using the original COSMO DE temperatures at 2 m above
ground (green line).

deviation for 214 clear sky cases are calculated. Fig. 4.8 shows the mean residual and its
standard deviation for the spectral band from 625 to 715 cm−1 (the center of the 15 µm
CO2 line which has the highest sensitivity to the surface temperature). As the plot shows,
calculated radiances using HATPRO retrieved temperatures has the mean difference around
1 RU while this difference for radiances calculated with tower temperatures and COSMO DE
temperatures are higher than 1 RU. Furthermore, the HATPRO in-situ sensor gives the
mean difference between -1 and 1 RU. The standard deviation for COSMO DE and tower
temperatures are relatively higher than two other surface temperatures meaning that these
two temperatures are not appropriate to use in the LBLRTM run. In addition, HATRPO
in-situ sensor and HATPRO retrieved temperature show the lowest standard deviations,
while, the standard deviation of HATPRO retrieved surface temperature is slightly lower
than the HATRPO in-situ surface temperature. Therefore, the HATPRO retrieved surface
temperature is selected as input surface temperature in the LBLRTM run. In the next two
sections, radiances calculated by the LBLRTM using scaled humidity profiles and HATPRO
retrieved surface temperatures are applied to use for spectral and radiometric calibration of
the AERI observation radiances.

4.4 Spectral calibration

In section 3.1, the acquisition of spectrally calibrated AERI radiances is shown. The laser
fringe of the AERI interferometer is used to provide the interferogram interval sampling which
is used in the spectral calibration (Knuteson et al., 2004b). The effective laser frequency
known as true or reference frequency for each AERI instrument is known by design. However,
any misalignment between AERI laser optical paths and the infrared paths can change this
frequency and produce an inconsistency in the AERI spectral calibration. In order to avoid
this problem, after deployment of AERI at site, the νeff of each AERI detector can be
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Figure 4.9: The difference between observed AERI radiances and calculated radiances using
the LBLRTM for a clear sky cases at 0600 UTC 30 October 2012 (left plot). The square
difference between calculated and observed radiances in terms of a series of multipliers used
for changing the longwave reference frequency (right plot). The blue line shows the minimum
of the curve or the best multiplier for changing the reference frequency.

determined empirically to compare with its reference frequency and to find the accuracy
of the AERI spectral calibration. If the reference frequency is found to be different that
what was assumed, the data need to be spectrally reassembled (i.e., to achieve a spectral
calibration). In the rest of this section, the evaluation of the AERI spectral calibration after
operating at JOYCE for measurements in 2012 is described.

In order to determine the νeff empirically, AERI observations need to be compared with
high accurate calculated radiances. The CO2 absorption band from 730-740 cm−1 which
has regularly spaced CO2 absorption lines and the spectral position of the centers of these
absorption lines are well-known based on the laboratory measurements (Rothman et al., 1992)
is selected to use in the longwave spectral calibration. By minimizing the differences between
calculated and observed radiances as the reference sampling frequency is varied, the νeff
used in AERI observations is figured out. An example of comparing calculated and observed
radiances is shown in the left plot of Fig. 4.9. The radiances belong to a clear sky case at 0600
UTC 30 of October 2012 . The calculated radiances are simulated with the LBLRTM using
the COSMO DE profiles. Part of the difference between calculated and observed radiances
in this plot is due to the uncertainty in the input temperature and humidity profiles used
the LBLRTM run. The right plot of Fig. 4.9 shows the square difference between observed
and calculated radiances in terms of a series of multipliers utilized for changing the reference
sampling frequency. The minimum point of this curve which is shown by the blue line is
the best multiplier for changing the reference frequency. It can be seen that the blue line is
relatively close to 1 in this case that means the νeff used for the longwave spectral calibration
is nearly close to the reference frequency. For this case, the difference between νeff and νref
is 0.17 cm−1.

The approach for finding the difference between the reference frequency and the empirically
derived effective frequency for the longwave detector is repeated for 218 clear sky cases in
2012. The LBLRTM is run for all of these cases using the COSMO DE profiles. As it is
mentioned, in order to reduce the uncertainty of model profiles, humidity profiles are scaled
with HATPRO retrieved IWVs and model surface temperatures are replaced by HATPRO
retrieved surface temperatures. The left plot in Fig. 4.10 shows the difference between cal-
culated effective frequencies and the reference frequency which is considered 15799.0 cm−1

during the AERI measurements in 2012. The plot shows that this difference is nearly less
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Figure 4.10: Time series of the difference between reference frequency and empirically cal-
culated frequency for the longwave (left plot) and shortwave (right plot) AERI detector for
clear sky cases in 2012. The reference frequency for this year is 15799.0 cm−1.

than 0.35 cm−1 for whole 2012 with an exception for clear sky cases in first days of February.
Since there was not any change in the laser setting or any other part of the AERI in this
time period, this increment can be related to the weather condition which was quite cold
and dry in these days. The gap in warm months is mainly due to the missing AERI data
for many days in these months; however, there are only few clear sky cases in these months.
The mean difference between the reference frequency and empirically derived frequencies for
the longwave detector in 2012 is 0.31 cm−1 with the standard deviation of 0.10 cm−1. This
is an acceptable uncertainty in the effective frequency for the AERI spectral calibration.
Therefore, we did not any further spectral calibration for measurements in 2012. The right
plot in Fig. 4.10 shows the distribution of these differences for the shortwave detector. The
same procedure is done for the shortwave detector using the radiances between 2207 and
2220 cm−1. The sudden change in the laser frequency can be also seen for this detector,
in first days of February; however, it seems for the rest of the year, the laser frequency is
more stable. The mean difference for the shortwave infrared radiation is -0.07 cm−1 with the
standard deviation of 0.482 cm−1.

4.5 Radiometric calibration

A radiometric calibration in the laboratory was performed for the first generation of the AERI
prior to the deployment of them in the field (Knuteson et al., 2004b). This calibration used
two extra blackbodies where one of them operated at an intermediate temperature, 318 K
and another one was kept at very cold temperature equals 217 K. Radiometric temperatures
of these two extra blackbodies were calculated and considered as reference temperatures in
order to compare with observed radiances by the instrument. It was shown that uncertain-
ties in the measured radiances of both blackbodies were close to the predicted uncertainties
(Knuteson et al., 2004b). After operating an AERI instrument in the field, several issues such
as an obstacle or dust in the AERI field of view or an unexpected increment or reduction of the
temperature inside the interferometer cavity can affect the accuracy of measured radiances.
Consequently, an assessment of the systematic error in the AERI radiance observations is
essential before the data are used.

In order to do this assessment, first, AERI measurements are compared with highly accurate
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simulated radiances to find the difference between its measurements and simulated radiances.
Same as spectral calibration, the LBLRTM is applied for simulating these radiances using
the COSMO DE profiles of temperature and humidity while humidity profiles are scaled with
HATPRO retrieved IWVs and COSMO DE surface temperatures are replaced by retrieved
HATPRO surface temperatures. Fig. 4.11 shows the AERI minus LBLRTM mean residual
and its standard deviation for 218 clear sky cases in 2012. As it can be seen, in the upper
plot, there is a mean residual around 1 RU in the spectral band from 620 to 715 cm−1 with
relatively high standard deviation around 1.5 RU. The main contribution of the residual
in this area is due to the calibration issue in AERI measurements; however, relatively high
standard deviation implies that uncertainties in the input temperature profiles particularly in
temperatures near the surface have also contribution on this residual. Another important area
in this plot is window region from 800 to 1200 cm−1 that shows quite large mean residual from
1.5 to 3 RU with the standard deviation between 0.5 and 1.5 RU. Similarly, the calibration
issue has a significant impact on the residual in this area while same as the center of the 15
µm CO2 line, the high standard deviation in this region shows the problem both in the shape
and in the content of the input humidity profiles. Note that the extremely high residual in the
spectral band between 970-1070 cm−1 is due to the high uncertainty in the input O3 profile,
notably in the stratosphere, that is not the subject of this work. Furthermore, another large
residual in the region from 715 to 800 cm−1 is mainly due to the uncertainty of input CO2

profiles in upper levels and thus it is ignored in the calibration analysis.

As it is mentioned, two important regions that are needed to be evaluated are the center of
the 15 µm CO2 line and the window region. In order to reduce the effect of the uncertainty of
the input humidity profiles, only clear sky cases with quite low IWV are used in this analysis.
For this purpose, 65 cases with the IWV amounts lower than 2.5 kg/m2 are selected (that are
found in the first 10 days of February). These cases are used to calculate the mean residual
and standard deviation of AERI minus simulated radiances again. Fig. 4.12 shows the mean
residual as well as the standard deviation for these cases. As the plot shows, the mean
residual in the window region reduces compared to Fig. 4.11 and reaches nearly less than 2
RU. There is also a significant reduction in the standard deviation in this region compared
to Fig. 4.11 that is around 0.2 RU. This very low standard deviation gives high certainty
that there is a constant bias in AERI measurements (and most probably is not due to the
uncertainty in the input profiles of LBLRTM run). Because AERI measurements are higher
than simulated radiances, this bias which has been seen in measurements of other operational
AERIs (Turner , 2003; Delamere et al., 2010) is known as warm bias. A series of tests were
performed during a series of field experiments the Radiative Heating in Underexplored Bands
Campaigns (RHUBC) that are organized by ARM which showed that the warm bias is due
to the calibrational issue in the AERI and is not related to the accuracy of the LBLRTM
(Delamere et al., 2010). This warm bias can be also seen in the spectral band 620-715 cm−1;
however, the standard deviation in this region is only slightly reduced compared to Fig. 4.11
meaning that that there are still some uncertainties in the input temperatures of LBLRTM,
particularly in temperatures near the surface. The investigation about this bias in the AERI
measurement led to two ideas behind this problem which are explained in the rest of this
section.

4.5.1 Obstruction correction

The first reason which was found for the warm bias in the AERI measurement was a probable
warm obstruction in the AERI field of view (Delamere et al., 2010). This obstruction can
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Figure 4.11: The mean residual (upper plot)
and the standard deviation (lower plot) of
AERI minus LBLRTM radiances for 218
clear sky cases in 2012. The LBLRTM in-
put humidity profiles are scaled with HAT-
PRO retrieved IWVs and retrieved surface
temperatures of HATPRO are used for the
input temperature profile.

Figure 4.12: The mean residual (upper plot)
and the standard deviation (lower plot) of
AERI minus LBLRTM radiances for 65 clear
sky cases with IWVs lower than 2.5 kg/m2 in
2012. The LBLRTM input humidity profiles
are scaled with HATPRO retrieved IWVs
and retrieved surface temperatures of HAT-
PRO are used for the input temperature pro-
file.

change the true sky view radiance Rtruth
sky to the AERI observed radiance R̃sky as:

R̃sky = (1− fν)R
truth
sky + fνB(Teffective−obstruction), (4.3)

where B is the Planck function and Teffective−obstruction is assumed to be equal to the black-
body support structure temperature which is a temperature measured at the support struc-
ture holding the blackbodies in place and saved with the name of “BBsupportStructureTempe”
in the AERI file for each sky view. Using Eq. 4.3, the fv can be calculated as:

fν =
R̃sky −Rtruth

sky

B(Teffective−obstruction)−Rtruth
sky

(4.4)

In order to solve this equation, clear sky cases with very low IWV are considered for sim-
ulating the Rtruth

sky using the LBLRTM. The micro-window region between 898-904 cm−1 is

again used to estimate the difference between Rtruth
sky and R̃sky and to calculate the fv for

each case. Fig. 4.13 shows the bar plot of calculated obstruction factors for 65 clear sky cases
with the IWV lower than 2.5 kg/m2. The mean fv is considered as the fractional obstruction
factor of the AERI measurements at JOYCE in 2012. The mean fv equal to 0.0256 is shown
by the black solid line in the plot. Two dashed solid lines in the plot show the standard
deviation of fv equals 0.0021. This value is twice the size that was seen in previous studies
(Delamere et al., 2010) and might relate to the centering of the AERI within its hatch.

After calculation of fv, AERI measurements can be calibrated using this factor. The cali-
brated AERI radiances, Rcal is calculated as:

Rcal =
R̃sky − f̄vB(Teffective−obstruction)

1− f̄v
, (4.5)
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Figure 4.13: The distribution of calculated
fv obstruction correction factors for 65 clear
sky cases with low IWV for measurements
in 2012. The solid and dashed black lines
shows the mean and the standard deviation
of fv respectively.

Figure 4.14: The mean residual of AERI mi-
nus LBLRTM radiances for 65 clear sky cases
with low IWV. The upper plot shows the
AERI original radiances - LBLRTM and the
lower plot shows AERI calibrated radiances
using median fv - LBLRTM.

where f̄v is the calculated mean value of fv. AERI measurements for 65 clear sky cases with
low IWV are calibrated using this factor and compared with simulated LBLRTM radiances
again. Fig. 4.14 shows the mean difference between AERI and simulated radiances for these
65 cases, before and after calibration. The dashed black lines in the plot are hint lines to
make the comparison between two plots easier. As it can be seen, applying this factor has
a significant effect on the window region and make the residual in this region close to zero.
However it changes slightly the residual in the CO2 band between 620-715 cm−1. Its effect on
water vapor lines from 1200 to 1700 cm−1 is also quite negligible. According to this analysis,
the obstruction correction can remove the warm bias in the window region but it has nearly
no effect on the warm bias in the CO2 and water vapor lines, therefore another reason for
this bias was found which is discussed in the next subsection.

4.5.2 Aft optic correction

The second reason that was found behind the warm bias of AERI measurements was the
aft optic contribution in the blackbody radiances that was not considered properly in the
radiometric calibration equation of the AERI (personal communication with D. D. Turner,
2014). The radiance comes from inside the interferometer shelter cause a small error in the
radiometric calibration equation. This contribution makes the hot blackbody slightly cooler
and most probably the ambient blackbody slightly warmer. The assumed blackbody radiance,
B̃ with the aft optic contribution can be written as:

B̃x = (1− fa)B̂x + faB(Taft), (4.6)

where x refer to the hot or ambient blackbody and B̂ is the blackbody radiance calculated
by Eqs. 3.3 and 3.2. Besides, The AERI measures a temperature near the interferometer for
each sky view that is saved in the AERI channel one and channel two file with the name
of “airNearInterferometerTemp”. This temperature is considered in this analysis as Taft.
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Figure 4.15: The distribution of calculated
fa at optic correction factors for 65 clear sky
cases with low IWVs lower for measurements
in 2012. The solid and dashed black lines
shows the mean and the standard deviation
of fa respectively.

Figure 4.16: The mean residual of AERI mi-
nus LBLRTM radiances for 65 clear sky cases
with low IWVs. The upper plot shows AERI
original radiances - LBLRTM and the lower
plot shows AERI calibrated radiances using
median fa - LBLRTM.

Based on this assumed bias in the blackbody radiance, the AERI measured radiance, R̃sky

can be written as:

R̃sky = (
CS − CA

CH − CA
)(B̃H−B̃A)+B̃A = (

CS − CA

CH − CA
)(1−fa)(B̂H−B̂A)+B̂A+faB(Taft), (4.7)

where CS , CA and CH refer to the complex spectra observed from sky view, ambient black-
body and hot blackbody respectively. Combining Eqs. 4.7 and 3.1 and solving for fa, gives:

fa =
R̃sky −Rtruth

sky

B(Taft − (Rtruth
sky − B̂A)

, (4.8)

with the approximation of:

(
CS − CA

CH − CA
)(B̂H − B̂A) ≈ Rtruth

sky − B̂A. (4.9)

The LBLRTM simulated radiance is considered as true radiance, Rtruth
sky . The model is run

using COSMO DE scaled profiles. fa is then calculated using the spectral band 673-680 cm−1

that has the highest sensitivity to the surface temperature. Fig. 4.15 shows the bar plot of
calculated fa for 65 low IWV cases. The mean of calculated fa for these cases is equal to
0.0101 with the standard deviation of 0.0042. The mean value and the standard deviation are
shown in the plot by the black solid line and black dashed lines respectively. The calibrated
radiance, Rcal, using this factor can be written as:

Rcal = R̃sky − f̄aB(Taft) + f̄a(R̃sky − B̂A) (4.10)

Note that this equation is also used the approximation in Eq. 4.9. The calibrated AERI
radiance is calculated using this equation for 65 low IWV cases. Fig. 4.16 shows the mean
residual of original AERI radiances minus LBLRTM radiances as well as the mean residual
of calibrated AERI radiances minus LBLRTM radiances for these cases. The plot shows that
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calibration by this factor has a considerable impact on the residual in the window region and
make it quite close to zero. It has also reduced the residual in water vapor band between
1200-1700 cm−1 down to zero. The mean residual in the spectral band, 673-680 cm−1 that is
used in this analysis for determining the fa reaches also close to zero. However, on the right
side of the band, 680-715 cm−1 and the left side of it, 625-650 cm−1, a negative residual can
be seen. The possible reason for this negative residual can be due to the fact that there is an
overestimation in calculating the aft optic factor. This overestimation most probably relies
on the uncertainty in the HATPRO retrieved temperatures used as surface temperatures
in the LBLRTM run. However, the HATPRO temperatures reduce the uncertainty in the
COSMO DE surface temperatures, they are not absolutely accurate and thus small bias on
these temperatures affect the calibration result. According to this analysis, the aft optic factor
has more improvement in AERI measurements compared to obstruction factor; however,
finding the absolute value of this factor is a challenge that needs quite absolute surface
temperatures.



Chapter 5

Retrieval algorithm

New observations and thus new instruments are essential tools to develop improved scientific
understanding of atmospheric phenomena. Atmospheric measurements can be divided into
two main groups: in-situ and remote sensing. While in-situ measurements can only provide
data about subjects which are in direct contact with them, remote sensing instruments can
observe objects a long distance away. These instruments often do not directly measure
the desired parameters. In fact, they take advantage of radiative interaction that relate
the desired parameter to their measurements. The inverse method for exploiting desired
parameters from this kind of measurements is called retrieval.

Retrieval methods can be classified into two groups: regression-based and variational-based.
The regression-based algorithms use an empirical relationship between atmospheric states
and observations such as linear or polynomial regression relationship. These algorithms
are strongly sensitive to statistical properties of background information, i.e. if the desired
parameter which is needed to be retrieved, is appropriately represented by the background
dataset, the algorithm can retrieve the desired parameter with an acceptable accuracy, other-
wise these algorithms are poor in providing an accurate result. Examples of regression-based
retrieval can be found in (Nakajima and King , 1990; Conner and Petty , 1998; Adler et al.,
2003; Protat et al., 2007).

Variational-based retrieval algorithms mainly use Bayes theorem (Rodgers , 2000). In this
approach, the probability density function (pdf) of measurements are related to the pdf of
atmospheric states to provide a pdf of the desired parameters, rather than provide an exact
solution. The main advantage of the variational-based algorithm is to provide simultaneously
the uncertainty of the retrieved parameter. In fact the pdf of the desired parameter is
considered as its uncertainty. However, these algorithms are usually more computationally
expensive compared to regression-based algorithms.

In the present work, a variational-based retrieval algorithm, called AERIoe (Turner and Löhnert ,
2014) is applied. The AERIoe is based on the optimal estimation method which is a specific
application of Bayes theorem. In this chapter, first, the optimal estimation method is gen-
erally explained. Then, in section 5.2, specifications of AERIoe are described. More details
about inverse methods and optimal estimation theory can be found in Rodgers (2000).

55
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5.1 Optimal Estimation theory

The inverse method is setting up and solving a number of linear or non-linear equations.
These equations describe relations between measurements and parameters that are needed
to be retrieved. The measurement vector is usually represented by Y that has a dimension of
m. Measurements always suffer from uncertainties that are inherent in any real observation.
These uncertainties can be due to systematic errors such calibration issues or random errors
caused by instrument noise. Consequently, in the presence of uncertainty (ǫ) it is better to
show the measurement with a pdf of ǫ.

In addition, parameters that are being retrieved, are shown by the state vector X, which has
a dimension of n. The state vector can be temperature, humidity, trace gas concentration,
cloud properties or any combination of these parameters. The state vector also needs to be
expressed with its uncertainty defined by a pdf .

While the inverse method or the retrieval algorithm maps the pdf of Y vector into the pdf
of X vector, the physical law of the measurement procedure which is called forward model,
F (X), is used to map the state vector into the measurement space. In many problems,
the forward model is considered as a perfect model. However, it may suffer from several
deficiencies such as incomplete physical basis. This means that there is also uncertainty in
the forward model. Thus, the relation between the measurement, Y , and the forward model
can be written as:

Y = F (X, b) + ǫ, (5.1)

where ǫ shows the noise or any systematic error in the measurement as well as the forward
model uncertainty and b that is called model parameter, indicates parameters that have an
impact on the forward model simulation but considered to be known to some extent. The
uncertainty in the b parameters need to be also considered in the retrieval uncertainty.

Furthermore, there can be some background information about the state vector. This infor-
mation called prior information and is given by Xa. The prior data that are used to constrain
the state vector, also define by a pdf of their uncertainty. The prior uncertainty is usually
high (for example compared to the uncertainty in the measurements). The background in-
formation can be provided using the climatological or long-term model data.

A helpful approach for relating the pdf of the measurement vector to the pdf of the state
vector in the presence of the prior data is the Bayesian method, in which the background
information of the state vector is updated using the measurement as:

P (X|Y ) =
P (Y |X)P (X)

P (Y )
, (5.2)

where P (X) shows the pdf of the prior information of X which is normalized to 1; the P (Y |X)
is the conditional pdf of Y for a given X that indicates the act of the forward model; P (X|Y )
is the posterior pdf of X for a given Y or the desired quantity; and the P (Y ) which can
be interpreted as a priori information of the measurement, is a dominator and in practice
considered as 1. The Eq. 5.2 or in general the Bayesian approach characterizes all possible
states for a given problem and assigns a pdf to each of them. However, the desired state is
the best or the optimal solution. The optimal solution can be regarded as the most probable
state with minimum uncertainty.

Before finding the most probable state, an appropriate distribution needs to be assigned to
different pdfs. A useful distribution that can well present many pdf in real problems and is
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algebraically convenient is the Gaussian distribution. Using the Gaussian distribution for the
pdf of both the measurement and the prior vector, the Eq. 5.2 can be written as:

− 2lnP (x|y) = [y − F (x)]TS−1
ǫ [y − F (x)] + [x− xa]

TS−1
a [x− xa] + c3, (5.3)

where Sǫ and Sa refer to the measurement error covariance matrix and the prior covariance
matrix respectively. A covariance matrix is a symmetric matrix where each of its diagonal
elements shows the variance of that element and non-diagonal elements indicate the covariance
between different elements. The covariance matrix is used to show the uncertainty of a vector.
In order to find the most probable state, the derivative of Eq. 5.3 need to be equated zero:

▽x {−2lnP (X|Y )} = −[▽XF (X)]TS−1
ǫ [Y − F (X)] + S−1

a [X −Xa] = 0. (5.4)

If the pdf of the prior and the measurement are considered as a Gaussian distribution, Eq. 5.4
can be regarded as a general solution for both linear and non-linear forward model. However,
in real problems such as the problem in the present work, many forward models are non-linear
which lead to a non-linear retrieval problem. In Rodgers (2000), the linearity or non-linearity
of inverse problems are qualitatively categorized where many of real inverse problems belong
to the moderately non-linear category. The moderately non-linear inverse problem means
that this problem can be regarded as a linear problem in order to analyze its error, but
for finding the solution, the problem needs to be considered as a non-linear problem. For
these kinds of problems, Eq. 5.4 can be solved numerically using the Gauss-Newton method
(Rodgers , 2000). Using this method, the solution of Eq. 5.4 can be written in two forms as:

Xi+1 = Xi + (S−1
a +KT

i S
−1
ǫ Ki)

−1KT
i S

−1
ǫ [Y − F (Xi) +Ki(Xi −Xa)] (5.5)

= Xi + SaK
T
i (KiSaK

T
i + Sǫ)

−1[y − F (Xi) +Ki(Xi −Xa)], (5.6)

where K that is called Jacobian, defined as K = ▽XF . The Jacobian is an important
parameter in the retrieval problem which shows the sensitivity of the forward model to a
change in each state vector element. The first guess in the iterative retrieval is usually Xa,
but this is not required. Note that i shows the number of iteration.

In a numerical method which produces iterative solution, criteria should be defined to stop
the algorithm. The criteria stops the retrieval when the change in the state vector (either
in X-space or in Y -space) is small, i.e., within the error of the X- or Y -space uncertainty,
respectively. There are different ways for testing the convergence of the retrieval algorithm.
A popular one is to check the size of the step between two iterations in the measurement
space or in the state space that need to be smaller than the estimated error. This test in the
measurement space can be written as:

d2i = [F (Xi+1 − F (Xi)]
T (Sǫ(KSaK

T + Sǫ)
−1Sǫ)

−1[F (Xi+1)− F (Xi)] ≪ m, (5.7)

where m is the dimension of measurement vector. And in the state space, it can be written
as:

d2i = (Xi −Xi+1)
T (S−1

a +KT
i S

−1
ǫ Ki)

−1(Xi −Xi+1) ≪ n, (5.8)

where n is the dimension of space vector.

An important parameter that needs to be determined after finding the retrieval solution is the
uncertainty of the optimal solution known as a posteriori covariance matrix. This covariance
matrix can be calculated as:

Sopt = (KT
optS

−1
ǫ Kopt + S−1

a )−1, (5.9)
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Table 5.1: Primary spectral bands as well as their primary sensitivity used in the AERIoe
algorithm.

spectral band primary sensitivity
wavenumber (cm−1)

538-588 Water vapor
612-618 Temperature
624-660 Temperature
674-713 Temperature
828-835 Cloud properties
843-848 Cloud properties
860-865 Cloud properties
872-877 Cloud properties
898-905 Cloud properties

where Kopt is the Jacobian of the forward model with respect to the retrieval solution.

Another useful parameter that can be calculated after finding the optimal solution, is degrees
of freedom for signal (DFS). The DFS shows the number of independent piece of information
in the measurement state. The DFS is defined as:

DFS = tr([KTS−1
ǫ K + S−1

a ]−1KTS−1
ǫ K), (5.10)

where tr denotes the trace of the matrix.

5.2 The AERIoe

The AERIoe is a variational-based retrieval algorithm based on the optimal estimation
method (Turner and Löhnert , 2014). The algorithm uses the AERI observation as a Y
vector, while the X vector includes temperature and humidity profile as well as cloud prop-
erties consisting of liquid water path (LWP) and cloud droplet effective radius (Reff). In the
present study, the AERIoe was modified to include the retrieval of atmospheric CO2 profile.

The AERIoe algorithm has a range of options that could be applied that affect how it runs.
For example, in section 4.5, it has been discussed how corrections could be applied to the
AERI data to account for a partial obscuration (i.e., the fa of fv parameters). Additionally,
AERI radiance data could be averaged over many minutes to improve the signal-to-noise ratio
and hence the accuracy of the retrieval. These options are controlled via the variable input
parameter (VIP) file (hereafter VIP file). A flow chart that shows the input data streams in
the AERIoe is shown in Fig. 5.1.

The spectral bands used in the retrieval algorithm are also defined in the VIP file. In the
present AERIoe version, these spectral bands need to be selected from either the AERI
channel one or the channel two file (see section 3.1), i.e. they can not be selected from both
channel one and two, simultaneously. The primary selected spectral bands to retrieve the
temperature, humidity and cloud properties are listed in Table 5.1. These are the spectral
bands that were used in the previous AERI studies (Smith et al., 1999; Turner and Löhnert ,
2014). However, in order to retrieve the CO2 concentration these spectral bands are slightly
modified. The modification is described in more details in chapter 6.
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Figure 5.1: The flow chart of the input data streams in the AERIoe. Source: personal
commuinication with D. D. Turner, 2014
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The measurement error covariance matrix (Sǫ) should include contributions from the un-
certainty in the observations (SY ), the uncertainties in the forward model (SF ), and the
uncertainties of the parameters b (Sb) that are used in the forward model (SF and Sb can be
combined into a single matrix). The SY is defined using the noise of the AERI (which is de-
termined from the imaginary component of the complex observed radiances). The noise of the
AERI is regarded as random uncorrelated noise, therefore, the measurement covariance ma-
trix is a symmetric matrix with only non-negative diagonal elements where its non-diagonal
elements are zero. The forward model error is typically difficult to determine. One way
to capture the forward model error is to inflate the SY matrix (Masiello et al., 2012). The
inflation factor depending on the spectral region can be a factor of 2-4 (Turner and Löhnert ,
2014). Note that as it has been mentioned in section 3.1, the principal component noise
filtering can be used to reduce the AERI noise; however, even after reducing the noise, the
original AERI noise is used in defining the SY matrix which is also one way to capture the
forward model uncertainty.

The algorithm can be used for both clear sky and cloudy cases. The AERIoe requires a cloud
base height estimate to know where to place a cloud vertically. The data of a collocated
ceilometer can be the primary input, and this is specified by the VIP file. However, if the
ceilometer data is missing or if the ceilometer estimates no cloud, a default cloud base height
is assumed, with the default value (often 2 km) that is also specified in the VIP file. This
possibility allows the algorithm to overcome any mistake in clear sky prediction and retrieve
the cloud properties in any case. If the case is truly clear sky, then a value equal 0 g/m2 is
expected for LWP within its uncertainties.

The prior information is given to the algorithm in the form of a prior pdf with Gaussian
distribution. The prior data corresponding to the two different AERIoe applications in the
present study, i.e. simulation study (chapter 6) and real data application (chapter 7), are
computed from REMO model data (see section 6.2.1) and radiosonde data (see section 7.1).
Mean prior profiles of temperature and humidity calculated from either the model or the
radiosonde data are interpolated on the defined vertical grid of AERIoe that is a fixed grid
spacing with a resolution of 25 m at the surface which reaches to 800 m at 3 km and 2000
m at 6 km. While the prior information of temperature and humidity profiles need to be
calculated in advance, the mean value of LWP and Reff and their standard deviation are
determined in the VIP file. The prior data are assumed to be 0 ± 50 gm−2 for LWP and 8 ±
4 for Reff. The cloud properties are considered to be uncorrelated with each other. Besides,
no correlation is considered between cloud properties and temperature or humidity profile.

Many inverse problems such as the inverse problem of the present study are ill-determined.
Therefore, additional information is often needed to stabilize the retrieval algorithm. In the
present work, the additional information (often part of the x-vector) are given in the form
of the prior information with very small uncertainty. Small prior uncertainty of a parameter
prevents the algorithm to change the parameter in successive iterations, and thus the parame-
ter assumed as a constant parameter in the algorithm. The auxiliary data used in the present
work are numerical model profiles of temperature and humidity for upper atmospheric levels
(often above 4 km) as well as in-situ observations for the surface temperature, humidity and
CO2.

The forward model in AERIoe includes different steps. First, the LBLRTM (see section 2.4)
provides the monochromatic gaseous optical depths at each layer. Then the spectral cloud
optical depth is added to the cloud layer, wherein the cloud properties are the same as those
used in the LBLRTM-DISORT model (described in Turner (2005). Then the downwelling
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Figure 5.2: An example of AERIoe retrieval using simulated AERI radiances. The blue lines
shows the profile in the state vector of different iterations. The orange line shows the true
profile (which is used as input data in the simulated radiances) and the red dashed line shows
the prior profile.

monochromatic radiance at the surface is computed, and this is convolved with the AERI
instrument spectral response function.

An important parameter in Eq. 5.12 that needs to be calculated for each iteration is the
Jacobian Ki. In order to calculate the Jacobian in each iteration, first the “base radiance“
using Xi as input profiles is calculated. Then each element in the state vector Xi is individ-
ually perturbed to provide new input profiles for a new LBLRTM run. Thus the Jacobian
for element j in the state vector is calculated as:

Kij =
F (Xij +△Xij)− F (Xij)

△Xij
, (5.11)

where i shows the iteration number. Note that Kij is a vector with a dimension equal to the
measurement vector dimension. Eq. 5.11 is repeated for all state vector elements until Ki

which is the Jacobian matrix of iteration i is derived.

In order to find the solution, the AERIoe applies the Gauss-Newton iterations to solve a
modified version of Eq. 5.6 as:

Xi+1 = Xi + (γS−1
a +KT

i S
−1
ǫ Ki)

−1KT
i S

−1
ǫ [y − F (Xi) +Ki(Xi −Xa)] (5.12)

The extra parameter in this equation compared to Eq. 5.6 is the γ factor. This equation which
has been applied in several studies (Carissimo et al., 2005; Zhou et al., 2007; Masiello et al.,
2012) is used to change the weight between the prior and the observation vector. In the limit
of an infinitely large value of γ, the Eq. 5.12 gives the prior as a solution. On the other hand,
when the γ is equal to 1, the explicit form of Eq. 5.6 can be derived. By changing this factor
between a large value and 1, the algorithm can move slowly from the information in the prior
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data to the information in the observation data, and thus helps the algorithm to be stabilize.
This method is particularly useful in cases of a poor first guess. In this case, a large γ in first
iterations lets the algorithm adjust the state vector slowly, whereas, with decreasing γ factor
in each iteration, more and more information comes from the observation vector. There are
different ways for changing the γ value from one iteration to another one such as L-curve
method (Hansen, 1992). However, in the present version of the AERIoe, the γ values are
simply decreased in a fixed sequence as 1000, 300, 100, 30, 10, 3, 1, 1, 1, .. . The algorithm
is not considered converged until γ equals 1. This means that the algorithm needs at least 7
iterations before convergence, whereas, the maximum number of iterations is set in the VIP
file. Note that, X0 in Eq. 5.12 is often chosen as the prior, Xa, however, there are different
possibilities for selecting the first guess in the AERIoe.

Fig. 5.2 shows different iterations from an example of AERIoe run in order to retrieve the
CO2 profile. In this example simulated AERI radiances (with AERI noise) are used. The
true profile which is shown in the plot is used as input profile in the simulated radiances.
The prior profile is chosen as a first guess; however, it can be seen that the true profile
is significantly different from the prior profile. The γ factor is decreasing with increasing
the iteration and reaches to 1 for the iteration 7 that is selected as optimal solution. This
example shows that how γ factor helps the algorithm to slowly moves toward the true profile
in different iterations and retrieve a profile close to the true profile even with a rather poor
first guess.

After convergence the algorithm, the optimal solution as well as other retrieval parameters
such as posterior covariance matrix and the number of DFS are saved in a output file for
further analysis. In the next sections, the application of the AERIoe for both simulation
study and real data in order to retrieve the atmospheric CO2 profile are presented.



Chapter 6

CO2 profile retrieval for simulated

radiances

In order to assess the ability of the AERIoe to retrieve the atmospheric CO2, in the first
step, a simulation study using the calculated radiances by a radiative transfer model is per-
formed. This step helps to find the strengths and the deficiencies of the algorithm because
the simulated radiances have no systematic bias or unexpected issues which can be typically
found in the real measurements. These results can show the theoretical potential of the AERI
radiances to provide the information about the atmospheric CO2.

This study is divided into two sections. In the first section, temperature and humidity profiles
as well as the mean column amounts of other trace gases are considered as known parameters
in the algorithm and the algorithm is performed only for clear sky conditions. Consequently,
the only unknown parameter in the algorithm is the CO2 profile. In this section, first, a
simple model is considered for the atmospheric CO2 profile which is a constant profile with
no diurnal change near the surface, meaning that the algorithm only needs to retrieve one
value considered as constant mixing ratio of the atmospheric CO2. These retrieval results are
shown in subsection 6.1.1. In the rest of this section, a model to parameterize the atmospheric
CO2 profile is proposed and applied in the algorithm which is presented in subsections. 6.1.2
and 6.1.3. The results of running the algorithm with this model are shown in subsections 6.1.4
and 6.1.5.

In the second section the CO2, temperature, and humidity profiles are all considered as
unknown parameters, meaning that the algorithm is performed to retrieve the temperature,
humidity and CO2 profiles simultaneously in clear sky conditions. In this section, first, the
prior data of the temperature and humidity profiles are introduced in subsection 6.2.1. The
results of simultaneous retrieval of temperature, humidity and CO2 profiles are shown in
subsection 6.2.2. In the rest of this section, two approaches in order to improve the retrieval
results are suggested and applied which are shown in subsections 6.2.3 and 6.2.4.

6.1 CO2 retrieval with fixed temperature and humidity

As it has already explained in section 5.2, the AERIoe can be used to retrieve temperature,
humidity, cloud properties and mean column amount of some trace gases such as CO2, CH4

and N2O. In order to evaluate the ability of the AERIoe to retrieve the atmospheric CO2
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concentration, first, a simple step is designed. In this step, temperature and humidity profiles
as well as mean column amount of trace gases, CH4 and N2O are considered as known
parameters in the AERIoe. Then, the AERI radiances are simulated for clear sky conditions
and thus cloud properties are considered zero in the algorithm. In this section, the only
unknown parameter is atmospheric CO2 profile.

The AERI radiances are simulated using the LBLRTM. The input temperature and humidity
profiles of the LBLRTM are provided by REMO model (see section 3.5). In order to present
the realistic random noise of the measurements to the simulated radiances, the noise of the
real AERI measurement is added to the simulated radiances. As explained in section 3.1,
the standard deviation of the imaginary part of the radiances derived from the radiometric
calibration equation over 25 cm−1 spectral band is considered as real AERI noise spectra.
These standard deviations are used to compute the random values with normal distribution.
They are then added to the simulated radiances. Note that in this step principal component
noise filter (see section. 3.1) are not used. The random AERI noise is also used to define the
measurement error covariance matrix in the AERIoe. Since the AERI noise is considered as
a random uncorrelated matrix, the computed error covariance matrix is a diagonal matrix
where its diagonal elements are equal to the square of the random AERI noise.

The spectral bands which are used in this step consist of 612-618, 624-660, 674-713 cm−1.
These are the spectral bands which are used in the previous studies to retrieve the temperature
profiles from the AERI radiances (Smith et al., 1999; Turner and Löhnert , 2014) where the
CO2 spectral band from 713 to 723 cm−1 is also used in the AERIoe run. This extra spectral
band which is on the edge of the 15 µm CO2 line, helps the algorithm to get more sensitivity
to the CO2 mixing ratio in upper atmospheric levels (see section. 2.5). Besides, the spectral
band between 538 and 588 cm−1 which has a primary sensitivity to water vapor is removed
since the algorithm does not retrieve the humidity profile in this step.

As it is mentioned, in this step, the temperature and humidity profiles are considered as
known parameters, meaning that true temperature and humidity profiles in each run should
be given to the algorithm and these profiles need to be kept constant in all iterations. The true
temperature and humidity profiles are the profiles which are used as input data to provide
the simulated radiances. These true profiles are set to equal the prior data. In addition,
the 1-σ uncertainty of temperature and humidity profiles in the prior covariance matrix set
to very small values. The small variation in the prior uncertainty prevents the algorithm
to change the retrieved humidity and temperature profiles in each iteration, so that these
profiles are constant in all iterations. Thus, when the retrieval is performed for a daily run,
the prior changes at each time step so that it can capture the evolution of the temperature
and humidity profiles over the diurnal cycle.

Besides, the spectral bands used in the algorithm were chosen so that there was no sensitivity
to other trace gases i.e. CH4 and N2O, so that these parameters have no impact on the
retrieval result. However, the true values of these trace gases which are used in simulating
the radiances are also given to the algorithm as known parameters. In the next subsection, a
simple model which is considered for the atmospheric CO2 profile and the result of running
the AERIoe with this simple model is presented.
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Figure 6.1: The retrieved values of the atmospheric CO2 mixing ratio using simulated AERI
radiances where the original AERI noise is added to the simulated radiances (left panel) and
a reduced noise is added to the simulated radiances (right panel). The upper plot shows the
retrieved value (in black), true values (in red) which are used as input values in the radiative
transfer model to simulate radiances and prior values (in blue) used in the AERIoe algorithm.
Lower plot shows 1-σ uncertainty in the prior values (in blue) and 1-σ uncertainty (in black)
in the retrieved values.

6.1.1 Retrieve the constant CO2 mixing ratio

The ability of the AERIoe to retrieve the atmospheric CO2 is first tested for a simple CO2

profile model where the CO2 is considered as a trace gas with a constant atmospheric mixing
ratio with height.

The AERI radiances are simulated with the LBLRTM using hourly REMO profiles. The
REMO temperature and humidity profiles of 15 January 2002 are used as input profiles to
run the LBLRTM. The input of constant CO2 mixing ratio for this day is equal to 373.0
ppm. The random AERI noise derived from the average noise of measurements during a
clear sky day is added to the simulated radiances. These radiances are given to the AERIoe

Figure 6.2: The noise spectrum of the AERI in rapid sample mode. The red line shows the
original noise and the blue line shows the reduced noise by a factor of 3.
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as Y vectors. In this run, the state vector, x is a scalar value, rather than a vector. The prior
value of the x is considered 371 ppm with 1-σ uncertainty of 3 ppm. The AERIoe is run for
the whole day with an hourly temporal resolution. The result is shown in Fig. 6.1.

As the left panel in Fig. 6.1 shows, the retrieved values are around 1 ppm higher than the
true values. Besides, the posterior uncertainties are around 0.5 ppm, meaning that the true
values can not be captured by the retrieved values within this uncertainty. In this run, the
calculated degrees of freedom for signal (DFS) for retrieved values are around 1 and except
for the case at 1 UTC, the algorithm converged for all cases.

As explained in section 3.1, the AERI that works in rapid sample mode, provides a sky
view approximately every 7 to 12 s. This short time interval for the sky averaging leads to
relatively high noise compared to the noise of the AERI that works in the standard mode with
8-min temporal resolution. The high noise in the AERI measurements can have a significant
impact on the retrieval result, and thus reduce its accuracy. This problem, particularly in
the present study, is significant since the sensitivities of the AERI radiances to the change
in the atmospheric CO2 can be in the same order of the AERI noise, i.e. refer to Fig. 2.4c
which shows the sensitivity of the AERI radiances to the change in the CO2 profile. In
addition, the average AERI noise spectra in a clear sky measurements are also shown in
Fig. 6.2. Comparison between these two plots shows that the noise spectra is relatively high
compared to the AERI sensitivity. One solution can be to take the average radiances to
reduce the noise, and thus increase the signal-to-noise ratio. Note that the AERIoe run with
the reduced noise simulates the results that might be achieved if the principal component
noise filter was applied to the AERI radiance data before the retrieval. This is another way
to reduce the noise in the AERI besides averaging it over time.

In order to test the impact of the noise reduction on the retrieval result, the AERIoe is
run for the second time where a reduced noise is added to the simulated radiances. The
original AERI noise spectra in divided by 3 to get reduced noise spectra. The noise spectra is
shown in blue in Fig. 6.2. This noise spectra can be achieved by averaging at least 9 (square
of 3) AERI radiances or by averaging the AERI radiances over about 5 min for the AERI
radiances with 20 s temporal resolution. Note that, the reduced noise spectra is also used
to compute the measurement error covariance matrix in the AERIoe. The right panel in
Fig. 6.1 shows new retrieval results. The retrieved values presented in the upper plot show
considerable improvement compared to the retrieved values shown in the left panel. The
posterior uncertainties are also reduced compared to the left panel and reached around 0.3
ppm. The result shows that about 70% of the true values are captured by the new retrieved
values within their uncertainties. The remaining retrieved values have difference less than 1
ppm with the true values. The median retrieved mixing ratio of CO2 for this day is equal to
373.1 ppm where it is very close to the median true value, 373.0 ppm. The DFS values in
this run also increase and reach around 1.3. Besides, the algorithm converged for 21 of 23
cases.

The AERIoe results using the reduced noise spectra in the simulated radiances show good
accuracy in capturing the constant atmospheric CO2 mixing ratio; however, assuming a
constant CO2 profile without any diurnal cycle is a rather simple CO2 model particularly
for the CO2 profile in the lower atmospheric levels. Due to different interactions in the
boundary layer, the CO2 concentration can have significant diurnal change, especially in
lower atmospheric levels. Estimation of this diurnal change is a valuable tool to analyze the
land and atmosphere interaction in the carbon cycle study. In the rest of this section, a model
to parameterize the diurnal cycle of atmospheric CO2 is presented in order to use it in the
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AERIoe and retrieve the CO2 profile in the boundary layer.

6.1.2 Parametrization of the CO2 profile

The CO2 concentration, particularly near the surface, can increase significantly during night-
time due to soil respiration or it can decrease during daytime due to plant photosynthesis.
Measurements of the change in the CO2 concentration in lower atmospheric levels especially
in the boundary layer give a powerful opportunity to the scientist to study the interac-
tion between atmospheric CO2 and land-vegetation. In order to capture this variation, the
AERIoe needs to be modified. However, due to the low sensitivity and small DFS in re-
trieving the atmospheric CO2 content which is shown in the previous subsection, the CO2

profile is not retrieved explicitly the same as temperature or humidity profile. Therefore, a
model is used to parametrize the atmospheric CO2 profile, particularly in the boundary layer.
This parametrization simplifies the CO2 profile, and thus helps the AERIoe provide essential
information for capturing the diurnal cycle of the CO2 profile in the boundary layer.

In order to find an appropriate model to parameterize the CO2 profile in the boundary
layer, the change of the CO2 concentration in lower atmospheric levels during daytime and
nighttime is analyzed. In this analysis, CO2 profiles provided by REMO model are used.
Fig. 6.3 shows the diurnal cycle of CO2 profiles provided by REMO model for two days with
different IWV amounts, a summer day with rather high IWV and a winter day with relatively
small IWV. The summer day on 15th of July, 2002 (left plot) shows a difference of about 30
ppm in the CO2 volume mixing ratio (VMR) in the lower atmosphere near the surface that
is mainly due to the plant photosynthesis and respiration of soil and vegetation. During the
daytime, the CO2 uptake by vegetation reduces CO2 amount near the surface and leaves a
rather constant atmospheric CO2 profile. After sunset and stopping the photosynthesis, the
respiration turns into the dominant process which produces a relatively large increment in
the CO2 amount near the surface. Similarly, this process can be seen in the winter day, on
1st of Feb 2002 (right plot). However, the CO2 difference in lower levels between daytime

Figure 6.3: The diurnal cycle of atmospheric CO2 profile on 15th of July (left) and 1st of Feb
(right) 2002 at the Hegyhatsal station in Hungary provided by REMO model.
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Figure 6.4: The variations of the exponential function defined in Eq. 6.1 in terms of its
parameters. The left plot shows the variation in terms of A1, while A0 and A2 are fixed and
the right plot shows the variations in terms of A2 when the A0 and A1 are fixed.

and nighttime for this day is rather lower compared to the summer day. These two examples
show that main diurnal changes in the CO2 VMR are in the lower atmospheric levels and
particularly in the CO2 surface value. In contrast, the CO2 VMR in upper levels or the levels
above the boundary layer shows no considerable diurnal change. The CO2 amount in these
levels usually known as CO2 background amount. The background CO2 can change monthly
or seasonally, while it also has smooth increases due to the rising of the anthropogenic CO2

in the atmosphere.

According to the diurnal change and the approximate shape of the CO2 profile in the bound-
ary layer, an exponential function is used to parametrize the atmospheric CO2 profile as:

F (z) = A2EXP (A1z) +A0, (6.1)

where z indicates the atmospheric levels and F (z) gives the CO2 VMR for each atmospheric
level. This exponential function is defined by three parameters, A0, A1 and A2, where A0

indicates the asymptote value of the function when z goes to the quite enough high values;
A1 shows the curvature of the function and A2 parametrizes the F (z) at z=0.

Fig. 6.4 shows variations of this function when these parameters change. As the left plot
shows, with changing the A1, the curvature of the exponential function changes. This pa-
rameter can define the specific height where the CO2 VMR deviates from the background
CO2 or in another word, it can determine the CO2 boundary layer. This plot shows that when
this parameter goes to high negative values, the height of this layer decreases. Conversely,
giving small negative values to this parameter increases the height of this layer. Note that,
the values of A1 are limited between -0.5 and -7.0, because using values out of this range for
A1 gives an unrealistic shape for the CO2 profile. The right plot of Fig. 6.4 shows the change
in the shape of this function due to variations in A2. As it can be seen, by changing the A2,
the surface value of the function can move between negative and positive values, meaning
that this parameter can parametrize the surface value of the function. In contrast to A1, this
parameter has no limitation since both negative and positive values for this parameter can
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Figure 6.5: Two examples of CO2 profiles provided by REMO which are also fitted using
the defined exponential function in Eq. 6.1. The red curve is the REMO profile, while the
dash-dot curve is the fit to the exponential function. The left plot shows a typical daytime
profile and the right plot shows a typical nighttime profile.

represent a real CO2 profile. Based on this analysis, if this function is used to parametrize
a CO2 profile, the A0 indicate the background CO2 concentration, whereas A1 and A2 can
modify the curvature and the surface value of the CO2 profile respectively.

When using this exponential function to parametrize the CO2 profile in the AERIoe, the
algorithm needs to retrieve only three parameters to determine the CO2 profile or in other
words, the unknown parameters related to the CO2 profile in the AERIoe state vector consist
of three parameters. Besides, the A0 can be considered as a rather constant parameter in
a daily run, so that the algorithm retrieves mainly two parameters which are a reasonable
number of parameters to retrieve for the low DFS shown in the previous subsection. In
order to run the AERIoe to retrieve these three parameters, a background information or
the probability density function for each of these parameters need to be determined. This is
explained in the next subsection.

6.1.3 Prior data of the three exponential function parameters

In order to compute the prior data or the probability density function of A0, A1 and A2,
the defined exponential function in Eq. 6.1 is fit to each of the CO2 profiles in the REMO
dataset. This approach estimates these three parameters for each CO2 profile. By repeating
this process for different CO2 profiles a dataset is obtained for each parameter which can
be used to compute the mean value and its standard deviation. In order to provide these
dataset, hourly REMO CO2 profiles of the Hegyhatsal station in Hungary are used. Note
that the CO2 profiles of this station are also used as input data in the LBLRTM to simulate
the AERI radiances. The REMO CO2 profiles from 2002 and 2003 are utilized which provide
more than 1400 profiles to compute monthly prior data.

For estimating the best fit for each CO2 profile, a retrieval algorithm based on the optimal
estimation method is applied. In this algorithm, the Y vector is the CO2 profile of REMO
and the X vector includes A0, A1 and A2. The uncertainty in the Y vector to define the
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Figure 6.6: The difference between CO2 pro-
files of REMO and the fitted profiles us-
ing the defined exponential function. This
plot shows the difference for the profiles in
November of 2002 and 2003.

Figure 6.7: The RMS values between CO2

profiles of REMO and the fitted profiles us-
ing the defined exponential function. This
plot shows the difference for the profiles in
November of 2002 and 2003.

measurement error covariance matrix is taken as 3 ppm in CO2 VMR from surface to 1 km,
2 ppm for levels between 1 and 5 km and 1 ppm in upper levels with no correlation between
different levels. The uncertainty in different layers are selected approximately according to
the variations of the CO2 concentration in the atmosphere which decreases with increasing
the height. The forward model of the algorithm is the given exponential function where the
Jacobian for each of three parameters is computed as:

∂F

A2
= EXP (A1z), (6.2)

∂F

A1
= A2zEXP (A1z), (6.3)

∂F

A0
= 1. (6.4)

While the Jacobian of A0 is constant in all iterations, the Jacobian of A1 and A2 needs
to be calculated in each iteration using updated values of the A1 and A2 for the current
iteration. The prior values are defined 16 and -7 for A1 and A2 respectively while the prior
of A0 is considered between 372 and 377, depending on the month. A small 1-σ uncertainty
equal 1 is defined for A0 in the prior covariance matrix with no correlation with the other two
parameters. Besides, the A1 and the A2 take 1-σ uncertainty around 10 and 4 respectively. A
negative correlation equals 0.5 is defined between these two parameters in the prior covariance
matrix. The prior values as well as the uncertainties are determined by giving a small dataset
of REMO profiles to a simple code for fitting them to the exponential function. The fitted
profiles provides a primary estimation for the parameters and their variations which is in
determining the prior data. Note that this simple code is not suitable in order to use for
large number of profiles and can not provide accurate estimation for the parameters.

Fig. 6.5 shows typical nighttime and daytime CO2 profiles of REMO which have been fitted by
the exponential function. These two profiles are appropriately captured by the exponential
function. However, since the exponential function provides a smooth profile, some small
variations in the CO2 profile can not be seen by fitted profile.
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Figure 6.8: Time series of three derived parameters in November 2002 and 2003. The top
plot shows the time series of A2, the middle plot shows the time series of A1 and the bottom
plot shows the time series of A0.

Fig. 6.6 shows the difference between fitted exponential functions provided by this algorithm
and REMO profiles in November 2002 and 2003. For this month, the algorithm converged
for 1433 profile of 1440 (more than 99%). The differences for each profile are mainly between
-3 and 3 ppm, however, for some cases, particularly in the levels between 0.5 and 2 km, some
differences higher than 5 ppm can also be seen. Fig. 6.7 shows the root mean square (RMS)
values between REMO and fitted profiles which is calculated as:

RMS =

√

∑

(REMO profiles − fitted profiles)2

number of height levels
(6.5)

This plot shows that the RMS values for this months are lower than 4 ppm, while for many
cases this value is even smaller. These RMS values are mainly due to the variations in
REMO profiles which can not be captured by a smooth exponential function. According
to the diurnal variations of the CO2 concentration in the boundary layer (that is the focus
of this study) which can be higher than 20 or 30 ppm, the RMS values lower than 4 ppm
shows that the defined exponential function with an acceptable accuracy is appropriate to
parametrize the CO2 profile.

The retrieved values for all three parameters in November are shown in Fig. 6.8. The upper
plot shows the values of A2 changing roughly between 0 and 50. This parameter has the
highest variations compared to the two other parameters. The middle plot indicates variations
of A1, that is limited between -0.5 and -7. The lower plot shows retrieved values of A0 which
is expected to have smallest variations compared to two other parameters. As explained, A0

defines the background CO2, and thus has only a slight variation during one month. However,
this plot shows a smooth and steady increase in the retrieved A0. The main reason of this
increase is due to the increase in the background CO2 in 2003 compared to 2002.
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Figure 6.9: The correlation matrix derived
from the measurement error covariance ma-
trix. The measurement error covariance ma-
trix is composed of error due to the random
AERI noise and forward model error.

Figure 6.10: The square root of diagonal ele-
ments of the forward model error covariance
matrix (in black) and the reduced random
noise of the AERI (in red). The random
noise of the AERI is divided by 5.

For this month, the mean retrieved values are 14.8, -3.6 and 374.6 for A2, A1 and A0 respec-
tively. The computed 1-σ uncertainties are around 8 for A1, 2 for A2 and 1 for A0. A negative
correlation of about 0.4 is derived between A1 and A2. These values are used as prior values
and prior covariance matrix in the AERIoe to run the algorithm. In the next subsection, the
result of running the AERIoe for some cases in November of 2002 is presented. This month is
chosen rather randomly for running the AERIoe. However, it includes different CO2 profile
shapes which make it useful to evaluate the potential of the AERIoe to retrieve different CO2

profile shapes.

6.1.4 Case studies

In order to test the strength of the AERIoe to retrieve the defined CO2 parameters, a new
simulation of the AERI radiances is provided. In this simulation, the LBLRTM is used to
simulate the AERI radiances with input profiles of temperature, humidity and CO2 from
REMO. As in the previous step, the random noise of the AERI is added to the simulated
LBLRTM radiances. In this simulation, a reduced noise by a factor of 5 is used. In the
application of real measurements, this noise can be achieved by using averaged radiances
over 10 min for AERI measurements with 20 s temporal resolution.

The measurement error covariance matrix is defined using the reduced noise. In addition, in
the present run, the error in the forward model is also added to the measurement covariance
matrix. The forward model error is caused due to using the smoothed CO2 profiles computed
by the exponential function, rather than true REMO profiles. For estimating this error, the
LBLRTM is used to calculate the radiance differences between radiances simulated with true
input CO2 profiles of REMO and radiances simulated with smooth input profiles created from
the exponential function. After calculating these radiance differences for all profiles in one
month, the corresponding covariance matrix is added to the measurement error covariance
matrix created from the random noise of the AERI. The correlation matrix derived from the
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Figure 6.11: The retrieved CO2 profiles (in black) based on the three retrieved parameters,
A0, A1 and A2. The prior profiles (in blue) are calculated using three prior values and the
true profiles (in red) are provided by REMO model.

covariance matrix of combining these two errors is shown in Fig. 6.9. The forward model error
in this plot is calculated using REMO profiles in November 2002 and 2003. As it can be seen,
the forward model error adds non-diagonal elements to the measurement error covariance
matrix, however, based on Fig. 6.10, which compares the square root of diagonal elements
of the forward model covariance matrix and the reduced AERI random noise, the forward
model error is about 5 times lower than the AERI noise, and thus this error has a minor
effect on the retrieved result.

The X or the unknown parameters in this step includes three CO2 parameters where the
prior data corresponding to these three parameters is provided by the method explained in
the previous section.

Fig. 6.11 shows the retrieved results of four different cases which are selected to show the
abilities and the deficiencies of the AERIoe to estimate the retrieved CO2 profile. The
retrieved CO2 profiles (black lines) means the calculated profiles using the retrieved values of
three parameters and the exponential function. From the left side, the first and the second
plot show a nighttime and a daytime profile respectively. The true profiles are captured rather

Figure 6.12: The calculated Monte Carlo samples using the uncertainties in the retrieval
parameters. The red line shows the true profile.
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accurately with the retrieved CO2 profiles for these two cases. These two profiles show the
strength of the AERIoe in retrieving the CO2 profile when the true profile is rather smooth.
On the other hand, when the CO2 profile is less smooth with altitude, the AERIoe can give
only an appropriate estimate of the true profile. The third plot in this panel is one of these
examples. Although in this plot, the retrieved CO2 profile does not fit to all variations of
the true profile, the estimated CO2 profile can give valuable information related to the CO2

surface value and the rough shape of the true profile. The fourth plot in this panel shows
a true CO2 profile which has deviation around 5 ppm close to the surface. This deviation
can not be captured by the retrieved CO2 profile. The problem can be related to the low
sensitivity of the AERI radiances to such a deviation which happens close to the surface or
in a low vertical height above the ground.

The posterior uncertainty or the posterior covariance matrix can be calculated for each re-
trieved vector of the AERIoe. This matrix helps to find the distribution of other CO2 profiles
within the uncertainty of retrieved results. In order to find these CO2 profiles, Monte Carlo
samples, X̂, using the posterior covariance matrix are computed as:

X̂ = S1/2
posR+X, (6.6)

where R is a three elements random vector with a normal distribution, X is the optimal

solution of the three parameters and S
1/2
pos is the square root of the posterior covariance

matrix which is calculated using singular value decomposition:

S1/2
pos = UW 1/2V T , (6.7)

where W is a diagonal matrix where its diagonal elements show eigenvalues or singular values
of the Spos; U and V are two identical matrices since the covariance matrix is symmetric and
real and their column shows the eigenvectors of Spos. The Monte Carlo samples corresponding
to each retrieved profile in Fig. 6.11 are shown in Fig. 6.12.

Each plot shows 50 samples calculated using the method in Eq. 6.6. The calculated samples
show about 5 ppm difference with the true profiles close to surface . This difference compared
to large variation of the CO2 concentration in the surface which can be larger than 20 ppm
is an acceptable uncertainty. Moreover, the plots show that with increasing the height, the
differences between true profiles and calculated samples decrease and reach to less than 3
ppm at 3 km meaning that the uncertainties are rather lower in upper levels compared to the
levels close to the surface. This is an expected consequence since the CO2 concentrations in
upper levels are determined using the A0 parameter which has small prior uncertainty in the
AERIoe.

The total DFS of the retrieved parameters are slightly lower than 2 for the profiles shown in
Fig. 6.11 which is rather consistent with the number of retrieved parameters in the AERIoe.
Although, the AERIoe retrieved three parameters, due to the small prior uncertainty of A0,
this parameter is relatively constant in the AERIoe meaning that the algorithm retrieves
mainly two parameters.

The main purpose of this work is to capture the diurnal cycle of the CO2 profile in the
boundary layer. Consequently, it is important to see the ability of the AERIoe to retrieve
the diurnal cycle. Fig. 6.13 shows the diurnal cycle of the CO2 profile provided by REMO
on 4 November 2002 and the retrieved diurnal cycle using the AERIoe for this day as well as
the difference between these profiles. The difference plot shows that the differences between
true and retrieved profiles are mainly in the order of 3 ppm. However, for some hours the
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Figure 6.13: The true diurnal cycle of the CO2 profile in the boundary layer provide by
REMO (upper plot), the retrieved diurnal cycle using the AERIoe algorithm (middle plot)
and the true minus retrieved profile (lower plot) on 4 of November 2002.
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difference around 5 ppm can also be seen between true and retrieved profiles. In addition, the
increase of the CO2 at the midnight and in the early morning, as well as a second increase in
the afternoon and after sunset, are retrieved rather accurately by the AERIoe. The retrieved
results also capture very accurately the decrease in the CO2 amount near the surface during
the daytime.

These examples show the strength of the AERIoe in estimating the CO2 profile in the bound-
ary layer, however, in order to have a better assessment, a longer dataset is needed. For this
reason, the AERI radiances are simulated with the hourly resolution for November of 2002
using REMO profiles and the AERIoe is run for one month. The statistical analysis of this
result is shown in the next subsection.

6.1.5 Statistical assessment

In order to assess the AERIoe ability to retrieve the CO2 parameters in different cases, the
AERIoe is run for one month. The AERI radiances are simulated with the LBLRTM using
hourly REMO profiles of temperature, humidity and CO2 in November 2002. The reduced
noise by a factor 5 is added to LBLRTM simulated radiances. The spectral bands which
are used in this run are 612-618, 624-660, 674-713 and 713-723 cm−1. The measurement
error covariance matrix is calculated by adding the diagonal matrix composed of reduced
random noise of the AERI and the forward model error covariance matrix. In this step the
temperature and humidity profiles are considered as known profiles in the AERIoe, and thus
the unknown vector includes only three CO2 parameters. The prior values of these three
parameters are defined as 14.8, -3.6 for A1 and A2. The prior value of A0, depending on the
background CO2 in each case, is set to 372.0 or 373.0 ppm. A very small value is defined
for the uncertainty of the A0 to make it as a rather fixed parameter in the AERIoe. The
1-σ uncertainty of the A1 and the A2 is defined around 8 and 2 ppm respectively, while a
negative correlation about 0.4 is considered between these two parameters. In the rest of this
subsection, the results of running the AERIoe for November of 2002 is shown and discussed.

The AERIoe run for more than 700 cases where about 98% of these cases converged and
fulfilled the convergence criteria. Fig. 6.14 shows the retrieved CO2 concentration and the
true CO2 concentration at the surface, 90 m, 200 m and 1 km as well as the RMS values
between true and retrieved values at each of these levels. Note that, the CO2 profile is
calculated using three retrieved parameters in each case, then the CO2 concentration at
different levels is estimated using the calculated CO2 profile. This analysis can show the
accuracy of the calculated CO2 profile using this new approach.

These plots show that the variation in the CO2 concentration decreases with height; this
is the expected behavior. While variations at the surface level can be more than 30 ppm,
the variations are smaller than 10 ppm at 1 km. Fig. 6.14a shows that the directions of
the variations at the surface are captured properly in most of the cases by the AERIoe,
however, for some cases, the retrieved values show underestimation compared to the true
values. The RMS values between true and retrieved values at the surface level as it is indicated
in Fig. 6.14b, is 6.83 ppm which shows a significant reduction compared to the RMS values
between true and prior values. The main reason for the difference between true and retrieved
values (mainly for the levels in the boundary layer) is due to the limitation of this approach
for retrieving the CO2 profile which gives always a smooth CO2 profile. Furthermore, the
RMS values reduce with increasing the height and reaches to 1.94 at 1 km. This reduction is
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Figure 6.14: The true (in red) and the retrieved (in black) CO2 concentrations at surface
(plot a), 90 m (plot c), 200 m (plot e) and 1 km (plot g) for the AERIoe run in November
2002 using simulated radiances. The right plots show the corresponding RMS values at each
level between true and retrieved values as well as the RMS values between true and prior
values.
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Figure 6.15: The upper plot shows the RMS values between true and retrieved CO2 profiles
(in black) as well as RMS values between prior and true profiles (in red) for the AERIoe
run in November 2002 using simulated radiances. The lower plot shows the total DFS for
retrieving the CO2 parameters for the same AERIoe run.

due to the decrease in the variations of the CO2 VMR in higher altitude which lead to lower
underestimation or overestimations in the retrieved CO2 VMR at these levels. As it is shown
in Fig. 6.14h, the AERIoe in this level also shows a significant improvement in the RMS value
between true and retrieved values compared to RMS values between true and prior values
which is 4.91 ppm.

The RMS values between true CO2 profiles and retrieved CO2 profiles (the difference between
whole profile) are computed for each case and compared to the RMS values between prior
CO2 profile and true CO2 profiles. This comparison is shown in the upper plot of Fig. 6.15.
This plot shows that for many cases the RMS values between true and retrieved values are
significantly reduced compared to the RMS values between true and prior profiles. This
reduction occurs mainly for the cases where the prior profile was considerably different than
the true profile, and thus the retrieved profile significantly improves the prior profile. On the
other hand, for the cases where the prior profile is close to the true profile, the retrieved profile
can improve the prior profile only slightly. For these cases, the two RMS values are close to
each other. In brief, the mean RMS value between true and retrieved profiles are 2.50 ppm
which is about 2 times smaller than the mean RMS values between true and prior profiles
that is 4.49 ppm. This can confirm the ability of the AERIoe to improve the knowledge about
the CO2 profile compared to the prior profile.

Another important quantity in the retrieved algorithm is the calculated DFS which is shown
in the lower plot of Fig. 6.15. The total DFS for retrieving these three parameters is relatively
constant for all cases and is slightly less than 2. Since the A0 is rather fixed in the algorithm
due to its small uncertainty in the prior covariance matrix, the number of retrieved parameters
(2) is consistent with the total DFS.

This analysis shows that the AERIoe can provide valuable information related to the CO2

profile in the boundary layer, if temperature and humidity profiles are considered as known
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Figure 6.16: The mean temperature profile (left plot) and the mean humidity profile (right
plot) as well as their 1-σ uncertainties for the prior dataset in November which are derived
from REMO data in 2002 and 2003.

parameters. In the next step, it is assumed that the information about the temperature
and humidity is limited to only climatological data (prior data) and the AERIoe is run to
retrieve the temperature, humidity and CO2 profile simultaneously to evaluate its potential
to retrieve three profiles simultaneously.

6.2 Simultaneous retrieval of CO2, temperature and humidity

profiles

Although the retrieved result in the previous section shows high accuracy to retrieve the
CO2 profile in the boundary layer, it is not totally applicable to the real measurements. The
main limitation in the real application is to provide accurate profiles of temperature and
humidity. Consequently, these profiles also need to be considered as unknown parameters
in the AERIoe. In the present section, the ability of the AERIoe to simultaneously retrieve
temperature, humidity and CO2 profile is tested. In order to run the AERIoe to retrieve
the temperature and humidity profiles, first, the prior data of these two profiles need to be
determined which is explained in the next subsection.

6.2.1 The prior data of temperature and humidity profile

The prior profiles of temperature and humidity are computed using REMO profiles. For
each month, REMO temperature and humidity profiles for the current month as well as
immediately preceding and immediately following month from hourly profiles of 2002 and 2003
are used to compute the mean temperature and humidity profiles as well as the covariance
matrix. This leads to more than 4000 profiles to compute the prior data for each month.

Fig. 6.16 shows the mean temperature and humidity profile derived for November. The plot
also shows the 1-σ uncertainty of temperature and humidity at each level. The correlation
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Figure 6.17: The correlation matrix for November derived from REMO data in 2002 and 2003.
The plot shows the correlation between T and T (lower left submatrix); T and H (lower right
submatrix); H and T (upper left submatrix); and H and H (upper right submatrix).

matrix derived from the calculated covariance matrix for November is shown in Fig. 6.17.
The correlation matrix shows the correlation of temperature (T) and humidity (H) in terms
of altitude which is considered from the surface up to 17 km. The corresponding pressure
levels are also shown in the plot. The correlation matrix is composed of four submatrices to
present the correlation of T and T; T and H; H and T; and H and H.

The highest correlation can be seen in the main diagonal elements as it is expected, while it
decreases for off-diagonal elements. However, in TT submatrix, the correlation of off-diagonal
elements in the boundary layer (lower than 1.5 km) due to the well-mixed condition in the
boundary layer are still close to 1. In the tropospheric levels (between 1.5 and 8 km), the
correlation of T and T decreases slightly. The behavior of HH submatrices is close to the
TT submatrices with slightly lower correlation in the tropospheric levels. The HT and TH
submatrices are identical. They show higher correlation in the boundary layer and slightly
lower correlation in the upper tropospheric levels.

6.2.2 Case studies

The main settings in the AERIoe run to retrieve temperature, humidity and CO2 profiles si-
multaneously are similar to the previous run. The input measurement vector is the LBLRTM
simulated radiances where the reduced AERI random noise is added to it. The measurement
error covariance matrix is the AERI random uncorrelated noise plus the forward model er-
ror. In addition to the spectral bands belonging to the 15 µm CO2 line which are used in
the previous runs, in order to retrieve the humidity profile, the water vapor spectral band
between 568 to 588 cm−1 is also used in this run. The prior data of the CO2 parameters are
the same as the previous run.
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Figure 6.18: The true diurnal cycle of temperature profiles (left plot) provided by REMO
and the retrieved diurnal cycle of temperature profiles (right plot) by the AERIoe using the
simulated radiances on 5 of November 2002.

Figure 6.19: The true diurnal cycle of humidity profiles (left plot) provided by REMO and
the retrieved diurnal cycle of humidity profiles (right plot) by the AERIoe using the simulated
radiances on 5 of November 2002.

Figs. 6.18 and 6.19 show the diurnal cycle of retrieved temperature and humidity profiles (left
plots) as well as true profiles (right plots) on 5 of November 2002. The retrieved temperature
profiles shows the difference less than 2 ◦C with the true profiles for the levels below 4 km
which increases slightly with height and reaches to around 4 ◦C for the levels above 6 km. The
retrieved humidity profiles shows difference around 1 g/kg with the true humidity profiles for
the levels below 4 km which decreases with height and reaches to the values close to zero for
the levels above 4 km. This comparison indicates that both temperature and humidity profiles
are retrieved rather accurately by the AERIoe. The deficiency in retrieving the temperature
profiles is mainly in the upper levels (above 4 km) where the AERIoe retrieved profiles show
an overestimation compared to the true profiles.

In contrast to the retrieved temperature and humidity profiles, the AERIoe shows rather poor
ability to retrieve the CO2 profiles shown in Figs. 6.20 and 6.21. In order to analyze the
ability of the AERIoe to retrieve the CO2 profiles in this step, a rather acceptable retrieval
case and a poor retrieval case are shown in Figs. 6.20 and 6.21 respectively.
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Figure 6.20: The true diurnal cycle of CO2

profiles (upper plot) provided by REMO
and the CO2 profiles by the AERIoe us-
ing the simulated radiances (middle plot)
as well as the difference plot (REMO-
AERIoe) between these profiles on 14 of
November 2002. The retrieved CO2 pro-
files belong to the simultaneous retrieval
of the temperature, humidity and CO2

profiles. The black column shows the pro-
file which did not converged.

Figure 6.21: The true diurnal cycle of
CO2 profiles (upper plot) provided by
REMO and the CO2 profiles by the
AERIoe using the simulated radiances
(middle plot) as well as the difference plot
(REMO-AERIoe) between these profiles
on 5 of November 2002. The retrieved
CO2 profiles belong to the simultaneous
retrieval of the temperature, humidity
and CO2 profiles.
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Figs. 6.20 and Fig. 6.21 show the diurnal cycle of the retrieved CO2 profiles for two sample
days on 14 and 5 of November 2002 respectively. In the first case, the retrieved profiles
are in an acceptable agreement with the true profiles. The rising of the CO2 concentrations
near the surface in the early morning and during the nighttime as well as the reduction of its
concentration during the daytime in lower levels are appropriately captured by the algorithm.
The difference plot in this day shows less than 2 ppm difference for the levels above 1 km,
however in the lower levels, particularly before the noon time, differences between 5 to 7
ppm can be seen. In contrast, for the second case which is shown in Fig. 6.21, the true CO2

profiles are poorly captured by the algorithm. Particularly, the increase and the decrease of
the CO2 concentration in lower levels can not be seen in the retrieved result. For more than
50% of the retrieved profiles, differences higher than 10 ppm, approximately in all levels can
be seen between true and retrieved profiles. Note that in these two runs, the total DFS of
the CO2 parameters drops compare to the previous run and reaches to around 1.

Further analysis of the CO2 profiles in these two cases shows that in the first case, the true
profiles are rather close to the prior profile, and thus even with a small DFS, the algorithm
can provide a rather acceptable result. On the other hand, in the second case, the true
profiles have a considerable difference with the prior profile which leads to a poorly retrieved
result.

The above analysis shows that the AERIoe with the current settings and with these simulated
radiances performs rather poor in retrieving the CO2 profile when the temperature and
humidity profiles are also considered as unknown profiles. In order to improve the AERIoe
result in retrieving the CO2 profiles, two different methods are used which are explained in
the next two subsections.

6.2.3 Fixed surface CO2 concentration

The simultaneous retrieval of temperature, humidity and CO2 profiles produce a significant
drop in the DFS of CO2 in the AERIoe and the retrieved results show that the AERIoe is
not successful in capturing the CO2 profile. A proper solution for this problem is to provide
additional observational information to the algorithm.

As it is explained in section. 3.4, the in-situ tower measurement of the atmospheric CO2 can
provide valuable information about the CO2 concentration near the surface. This measure-
ment is also available by the tower measurement in Jülich. The CO2 measurement near the
surface can be used as auxiliary data in the AERIoe algorithm to improve the retrieval result.
Consequently, this possibility is tested using the simulated radiances to analyze the impact
of using the CO2 surface value as known parameter on the retrieval result of the AERIoe.

In order to give the CO2 surface value as input data to the AERIoe, the same method which
is used to give the true temperature and humidity profile to the AERIoe in section. 6.1 is
applied. The prior surface value of the CO2 is replaced by the true surface CO2 provided by
REMO. In addition, the prior uncertainty of this parameter in the prior covariance matrix
is considered very low. The small uncertainty prevents the algorithm from changing this
parameter, and thus the algorithm considers this parameter as known or fixed parameter in
all iterations. By using this new setting, the AERIoe run is repeated for the previous case
with poorly retrieved results shown in Fig. 6.21.

Fig. 6.22 shows the new retrieved CO2 profiles using the new setting in the AERIoe. As
it can be seen, the retrieved result shows significant improvement compared to the previous
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Figure 6.22: The true diurnal cycle of the CO2 profile in the boundary layer provide by
REMO (upper plot), the retrieved diurnal cycle using the AERIoe algorithm (middle plot)
and the difference (REMO-AERIoe) between true and retrieved profile (lower plot) on 5
of November 2002. The retrieved CO2 profiles belong to the simultaneous retrieval of the
temperature, humidity and CO2 profiles when additional information about the CO2 surface
value is also added to the algorithm.
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Figure 6.23: The retrieved results of temperature (left plots), humidity (middle plots) and
CO2 profile (right plots) of running the AERIoe with (lower plots) and without (upper plots)
CO2 surface concentration as auxiliary data. Each plot shows retrieved profile (in black),
true profile (in red) and prior profile (in blue).

result (shown in Fig. 6.21). The increase in the CO2 concentration in lower levels in the early
morning and after the sunset as well as the decrease in the CO2 concentration in these levels
during the daytime is captured much better by the algorithm. The difference plot shows that
the difference between true and retrieved profiles are mainly lower than 3 ppm which slightly
increases for the levels between 0.5 and 1 km at the early morning and in the afternoon. This
result demonstrates that providing information of the CO2 concentration at one level close
to the surface can improve the retrieved CO2 profile in the whole boundary layer.

Another valuable improvement that can be seen in the retrieved result after the improvement
in the retrieved CO2 profiles, is the improvement in the retrieved temperature and humidity
profiles. In order to show this improvement for a specific hour from the AERIoe run on 5
of November 2002, the retrieved temperature and humidity profiles with and without giving
the CO2 surface concentration as auxiliary data to the AERIoe are shown in Fig. 6.23.

The upper panel in Fig. 6.23 shows the retrieved temperature and humidity profiles while
the retrieved CO2 profile which is shown in the right plot has differences between 5 to 15
ppm with the true profiles in the levels below 5 km. The lower panel shows the same result
when the CO2 surface concentration is given to the AERIoe, and thus the CO2 profile is
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retrieved with higher accuracy which is shows less than 5 ppm difference in the same levels
(below 5 km). The improvement in both retrieved temperature and humidity profiles in the
lower plots compared to the upper plots can be clearly seen. This improvement particularly
is considerable for the temperature profile in the upper levels (above 3 km). While in the
upper plots, the retrieved temperature profile shows overestimation about 2 to 3 ◦C above
3 km, in the lower plot, the retrieved temperature profile shows a much improved fit in the
levels below 5 km.

6.2.4 Noise filtering

The second approach which is used to improve the retrieved result of the AERIoe is the
principal component analysis (PCA) (Huang and Antonelli , 2001; Antonelli et al., 2004;
Turner et al., 2006). In the previous AERIoe runs, only the averaged radiances are used
in order to decrease the noise, and thus increase the signal-to-noise ratio. However, the poor
retrieved CO2 profiles that is shown in section. 6.2.2, may still related to the high noise in
the radiances which prevents the algorithm to get the CO2 signal from the AERI radiances.
Consequently, the principal component noise filtering is also used to further reduce the AERI
noise. A simulation approach is performed to apply this method on the AERI radiances and
to test its impact on retrieval results which is explained in the present subsection.

In the first step, the AERI radiances are simulated with high temporal resolution to provide
simulated radiances with temporal resolution identical to the AERI measurements taken in
rapid sample mode. The simulation is done using the LBLRTM for two days, 9 and 10 of June
2015. The input profiles of the LBLRTM are provided by model data with hourly temporal
resolution. The model profiles are interpolated to compute temperature and humidity profiles
with 30 s temporal resolution. The integrated water vapor (IWV) in the first day is rather
constant around 20 kg/m2 and in the second day the IWV gradually increases from 20 to
40 kg/m2. This approach allows testing the ability of the AERIoe in both dry and humid
conditions. Besides, the CO2 profiles are made artificially with a diurnal amplitude of about
25 ppm where the CO2 VMR in the levels lower than 1 km is decreased during daytime and
increased after sunset and during nighttime. The original AERI noise is then superimposed
to these highly temporally simulated radiances.

The first step in the PCA noise filter algorithm (Turner et al., 2006) is to decompose the
measurement of radiance to its eigenvectors (principal components) and to find the corre-
sponding eigenvalues. Typically, the decomposition is applied to the covariance matrix C
derived from the measurement matrix M composed of measurements samples in a certain
time interval. It was shown that the eigenvectors of M are the same as the eigenvectors of
C (Malinowski , 1977). In addition, the covariance matrix is a symmetric matrix, and thus
its decomposition is easier. The PCA consists of different steps where the important ones
are decomposition of the covariance matrix to compute eigenvectors and eigenvalues; find the
number of eigenvectors which are related to the atmospheric signal, rather than uncorrelated
random noise; and reconstruction of the radiances using the selected eigenvectors.

The main challenge in this method is to accurately determine the optimal number of the
eigenvectors to reconstruction the radiances. The uncertainty in finding the optimal number
of eigenvectors can cause to remove the valuable eigenvectors which carry the atmospheric
information. Turner et al. (2006) used an objective model to find the optimal number of
principal components (PC) for the AERI measurements. The objective method tries to find
the eigenvectors that have signal above the noise floor, assuming all noise is uncorrelated.
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Figure 6.24: The retrieved (upper plots) temperature profiles using the AERIoe with the
noise-filtered highly temporally simulated radiances on 9 (left plots) and 10 (right plots) of
June 2015. The true profiles are shown in the lower plots.

Figure 6.25: The retrieved (upper plots) humidity profiles using the AERIoe with the noise-
filtered highly temporally simulated radiances on 9 (left plots) and 10 (right plots) of June
2015. The true profiles are shown in the lower plots.
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Figure 6.26: The retrieved (in black) IWV using the AERIoe with the noise-filtered highly
temporally simulated radiances on 9 (left plots) and 10 (right plots) of June 2015. The true
IWV is shown in red.

They showed that the optimal number of eigenvectors that should be used in reconstruction
by the noise filter depends on the time of the year and the location of the observation.
For example summertime observations require more eigenvectors to capture the atmospheric
variability than winter time observations. This method is used in the present study.

In this example, real AERI observations from 8 days centered on the 9-10 June 2015 were
used to compute the measurement covariance matrix used in the PCA noise filter. These
real observations included a range of different weather conditions, and thus provides a true
test of the simultaneous retrieval of temperature, humidity and CO2 profiles using noise
filtered radiance observations. The covariance matrix is then decomposed into its principal
components. The optimal algorithm suggested that 284 is the correct number of PCs to
use in the noise filter reconstruction of the radiance data. However, using this number to
reconstruct the radiances and apply it in the AERIoe algorithm showed the poorly retrieved
CO2 profiles which leads to the fact that the important information related to the atmospheric
CO2 is probably lost with using only 284 principal components. It is found that some of the
CO2 signal is just below the noise level, and by adding the additional 200 eigenvectors to
the reconstruction, this information is included in the reconstructed radiance data (personal
communication with D.D.Turner). Consequently, the radiances are again reconstructed by
484 principal components. The results of using these noise-filtered simulated radiances with
484 principal components in the AERIoe is shown in Figs. 6.24 to 6.28.

Figs. 6.24 show the retrieved and the true temperature profiles. As it can be seen, the
retrieved temperature profiles, particularly in the lower levels (below 2 km) shows differences
less than 2 ◦C. In the middle levels (between 2 and 4 km), an overestimations in the order of
3 ◦C can be seen in retrieved profiles compared to the true profiles. Note that to stabilize the
algorithm, both the temperature and humidity values above 4 km are fixed using the true
model values.

The retrieved humidity profiles which is shown in Fig. 6.25, indicates an overestimation
between 3 to 4 g/kg compared to the true humidity profiles, particularly for the levels below
2 km. Moreover, the retrieved IWV values which are shown in Fig. 6.26 show agreement
in terms of variation with the true IWV values. The plot shows that the variations in the
IWV values on the first day as well as its significant increase on the second day are captured
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Figure 6.27: The retrieved (upper plots) CO2 profiles using the AERIoe with the noise-filtered
highly temporally simulated radiances on 9 (left plots) and 10 (right plots) of June 2015. The
true profiles are shown in the lower plots.

Figure 6.28: The retrieved (in black) CO2 surface values using the AERIoe with the noise-
filtered highly temporally simulated radiances on 9 (left plots) and 10 (right plots) of June
2015. The true CO2 surface values are shown in red.
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appropriately by the algorithm, however, an underestimation less than 4 kg/m2 can be seen
in the retrieved values compared to the true values.

The retrieved and the true CO2 profiles are shown in Fig. 6.27. The retrieved profiles in both
days show clearly the diurnal cycle of the true CO2 profiles. The retrieved results for the
hours before 13 UTC on both days show an overestimation between 5 to 10 ppm compared
to the true profiles in the levels below 1 km. On the first days this overestimation can also be
seen after 17 UTC, while on the second day, the overestimation turns to an underestimation
in the same order after 14 UTC. Fig. 6.28 shows the retrieved CO2 surface values as well as
its true values. In both days, the estimated surface values captured the nighttime increase
and the decrease during the daytime. The retrieved maximum value in the first day shows a
difference less than 3 ppm with the true maximum value, while, on the second day the true and
the retrieved maximum value shows difference around 10 ppm. This result can indicate the
higher accuracy of the AERIoe in capturing the high CO2 values in dry conditions compared
to humid conditions.

The simulation study presented in this chapter showed that the AERI radiances can provide
valuable information related to the atmospheric CO2 concentration. However, exploiting this
information from the AERI radiances could be rather challenging. This study revealed that
for the AERI measurements in rapid sample mode, the noise-filtering using the PCA method
is the key point in retrieving the CO2 profile. This method can remove the main part of
the uncorrelated random noise of the measurements and allow the algorithm to retrieve the
valuable information. The noise-filtered radiances using the PCA method can capture the
diurnal change of the CO2 concentration near the surface including nighttime increase and
daytime decrease while without using this method as it is shown in subsection 6.2.2, the
retrieved CO2 results can not give any appropriate information related to the diurnal change
of CO2 profile. In the next section, applying this method for the real AERI measurements
as well as using the real measurements in the AERIoe is presented.



Chapter 7

CO2 profile retrieval from real

AERI measurements

As shown in chapter 6, the simulated AERI radiances show good potential to retrieve the
CO2 profile approximated as an exponential function when the temperature and the humidity
profiles are known. However, in case of simultaneous retrieval of temperature, humidity and
CO2 profiles, the accuracy of the retrieved CO2 profiles are reduced. In order to improve
the results, the random AERI noise (which is added to the simulated radiances) needs to be
reduced. The main approach that is to use a PCA noise filter. The noise-filtered simulated
radiances using the PCA method show a significant improvement in the accuracy of the
retrieved CO2 profiles.

In this section, the PCA method is used to reduce the noise in the real AERI measurements.
The noise-filtered radiances are then utilized in the AERIoe algorithm to retrieve the CO2

profile. The real AERI measurements are selected from two clear sky days in 2012. The
tower measurements in Jülich that provide the CO2 measurements at 100 m are utilized to
compare with the CO2 retrieved results at the surface.

In the first section of this chapter, the prior data of temperature and humidity are introduced.
In section 7.2, first an issue in the AERI radiance observations which cause problem in the
convergence of the algorithm is presented. The noise-filtered AERI radiances are then utilized
to retrieve the temperature, humidity and CO2 profiles simultaneously. The poor results in
the first run are then improved with two approaches which are also explained in this section.
In subsection 7.2.1, it is shown that the CO2 boundary layer can be retrieved when the CO2

surface measurements used as auxiliary data in the algorithm.

7.1 Prior data of temperature and humidity profiles

The temperature and humidity profiles of radiosondes which are launched at the Essen station
in Germany are used to compute the prior data. At this station, the radiosondes are launched
at nominally 1045 and 2245 UTC. The prior data are computed using a record of about 8
years of data between 2001 and 2008, meaning that over 3000 profiles are used to make the
prior data. The radiosondes that reached at least 15 km above ground and passed the quality
control tests are utilized to compute the mean state vector Xa and the covariance matrix
Sa. The prior data of a specific month are computed using the radiosondes launched in the

91
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Figure 7.1: The mean temperature profile (left plot) and the mean humidity profile (right
plot) as well as their 1-σ uncertainties for the prior dataset in May which are derived from
radiosonde data in Essen, Germany.

current month as well as the immediately preceding and the immediately following month.
Fig. 7.1 shows the mean prior profile of temperature and humidity.
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Figure 7.2: The correlation matrix for May derived from radiosonde data in Essen, Germany.
The plot shows the correlation between T and T (TT, lower left submatrix); T and H (TH,
lower right submatrix); H and T (HT, upper left submatrix); and H and H (HH, upper right
submatrix).
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The correlation matrix derived from the calculated covariance matrix of the prior data in
May is shown in Fig. 7.2. The correlation matrix shows the correlation of temperature (T)
and humidity (H) in terms of altitude which is considered from the surface up to 8 km. The
corresponding pressure levels are also shown in the plot. The correlation matrix is composed
of four submatrices to present the correlation of T and T (TT); T and H (TH); H and T
(HT); and H and H (HH).

In both TT and HH submatrices, the correlations in the boundary layer (below 1.5 km) are
still close to 1. The correlations in the middle and upper troposphere (between 1.5 and 8 km)
in both TT and HH submatrices are lower compared to the correlation in the boundary layer.
In addition, the HH submatrix shows lower correlations in the middle and upper troposphere
compared to the TT. The HT and TH submatrices are the same, just the HT is the transposed
matrix of the HT. In general, the correlations in these two submatrices are lower compared
to the TT and HH submatrices.

7.2 Simultaneous retrieval of temperature, humidity and CO2

profile

Two clear sky days, 25 and 26 of May 2012 are selected in order to apply the AERIoe to
the real measurements. These two days are the only clear sky days in 2012 where tower
measurements of the atmospheric CO2 at Jülich are available. In the previous chapter, it was
shown that both noise-filtering with the PCA and using the average radiances are needed
to increase the signal-to-noise ratio in order to get the CO2 information from the AERI
radiances. Therefore, both of these methods are also used for the real AERI measurements
to decrease its noise.

The noise-filtered radiances are computed using 10 days of the AERI measurements which
include 25 and 26 of May, i.e. from 21 to 30 of May 2012. These measurements are utilized to
calculate the covariance matrix C. The objective algorithm used in the Turner et al. (2006)
study is then utilized to estimate the optimal number of PCs to reconstruct the radiance
spectra with no uncorrelated noise which is found 321 PCs. As explained in section 6.2.4,
since some of the CO2 signal is below the noise level, 200 additional eigenvectors are added to
the reconstruction to include this information (personal communication with D.D.Turner).
Consequently, the AERI radiances are reconstructed using 521 PCs.

In section 4.5, two different approaches to adjust the radiometric calibration of the AERI
radiances have been considered. It was shown that the aft optic correction factor shows a
higher impact to correct the 15 µm CO2 line compared to the obstruction correction factor.
However, the results show that using the HATPRO retrieved surface temperature in the
LBLRTM run gives an overestimation in calculating this factor. The impact of using the
derived fa factor in section 4.5 on the AERI radiances for these two clear sky days are shown
in Fig. 7.3.

Fig. 7.3 shows the mean residual of hourly simulated radiances using the LBLRTM minus
the AERI radiances on 25 and 26 of May 2012. The LBLRTM is run using the COSMO DE
profiles of temperature and humidity while the humidity profiles are scaled with the retrieved
HATPRO IWV values and the input surface temperatures are replaced by the retrieved
surface temperatures of the HATPRO. A constant mixing ratio equal 393.0 ppm is considered
as input CO2 profile in the LBLRTM run. This value is close to the background CO2

concentration in 2012 (https : //www.esrl.noaa.gov/). Fig. 7.3 shows the mean residual on
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Figure 7.3: The mean residual of AERI minus simulated radiances before (upper plot) and
after (lower plot) correction using the aft optic factor, fa equal 0.010.

these two days before and after radiance correction using the aft optic correction factor, fa
equal 0.010. While the upper plot shows a mean residual around 1.5 RU between AERI and
simulated radiances, the lower plot shows a negative residual less than 1 RU. The negative
residual clearly indicates that the defined fa factor is slightly larger than the true correction
factor. As it is explained in section 4.5, finding the true or the perfect correction factor needs
a quite accurate surface temperature to run the LBLRTM model. Among all available surface
temperatures at JOYCE, the one which produced the lowest standard deviation between the
calculated and the real AERI radiances is selected to run the LBLRTM. Inherently, even this
temperature has uncertainty which leads to an overestimation in computing the correction
factor. In order to avoid using a large correction factor to calibrate the AERI radiances, the
calculated fa is slightly reduced based on some correction in the input surface temperature.
The new corrected radiances using the new calibration factor equals 0.007 is shown in Fig. 7.4.

The lower plot in Fig. 7.4 shows mean residual around zero for the spectral band between 624
and 710 cm−1. The spectral band between 710 and 720 cm−1 shows a residual slightly higher
than zero which can be the result of using a constant mixing ratio for the atmospheric CO2,

Figure 7.4: The mean residual of AERI minus simulated radiances before (upper plot) and
after (lower plot) correction using the aft optic factor, fa equal 0.007.
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Figure 7.5: The retrieved temperature profile using the original AERI radiances (upper left)
as well as using the averaged AERI radiances over 3 (upper right), 30 (lower left) and 60 min
(lower right). The dashed black line show the prior profiles, while the COSMO DE profiles
are shown in dashed yellow line and the HATRPO retrieved profiles are shown in dashed red
line. The different blue lines show the last four iterations in the AERIoe.

rather than the true profile in the LBLRTM run. In addition, the residual (up to 1 RU) in the
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spectral band from 618 to 624 is mainly due to the contribution of the N2O in this region.
Because the true atmospheric N2O content is not available at JOYCE, an approximation
value is used as input profile in the LBLRTM run which leads to the uncertainty in the
simulated radiances in this region. The higher residual (up to 2 RU) between 600 and 618
cm−1 are likely due to mismatch in the input humidity profile used in the simulation with
true (or what the AERI is observing) humidity profile. Another high residual (up to 3 RU) is
a residual in the spectral band between 722 and 725 cm−1. The residual in this part can be
due to the spectroscopy issues of this band in the LBLRTM or it can be due to small errors in
accounting for the instrument finite-field-of-view correction (personal communication with
D. D. Turner).

Another issue with the observations from the AERI at Jülich (that is found in the measure-
ments of these two days) which still remains as an open problem is shown in Fig. 7.5. In this
plot, the retrieved temperature profiles are shown for the original AERI radiances as well as
the averaged radiances over 3, 30 and 60 min. For comparison, the retrieved HATPRO tem-
peratures and the temperature profiles provided by the COSMO DE are also shown in these
plots. Each plot shows four retrieved temperature profiles derived from four last successive
iterations of the AERIoe. Although, it is expected that difference in retrieved temperature
profiles between two iterations reduces in the last iterations (leading to the convergence of
the algorithm), as the plots show, a divergence can be seen in the retrieved profiles of the
last iterations. In addition, the divergence in the last iterations is more significant when
the averaged radiances are taken over increasing time interval. This problem may be due to
the issues in the temperature of the AERI detector (personal communication with D. D.
Turner). The AERI detector needs to keep an accurately constant temperature during the
measurements. This procedure is done using the Sterling cooler which keeps the detector at
cryogenic temperatures (∼77 K) (see section 3.1). Small variations in the temperature of the
detector change the responsivity of the instrument, and thus can lead to minor variations in
the observed radiance. If the responsivity is changing and many radiance observations are
averaged together, this has non-linear impacts on the mean radiance that can not be well
handled by the retrieval. Note that even the original AERI radiance is an average radiance
over 12 s, meaning that this issue can be seen even in original AERI radiances, however, it
is in a smaller order.

According to these issues with the real AERI radiances, the approach for selecting the optimal
solution of the algorithm is slightly changed. As explained in section 5.2, the AERIoe takes
an optimal solution when the difference between two iterations fulfills the convergence criteria
defined in Eq. 5.6 and the gamma factor reaches 1. According to the plots in Fig. 7.5, the
difference between retrieved profiles increases in iteration 6 or 7 where the gamma factor
is 1, meaning that these iterations can not typically fulfill the given convergence criteria.
Consequently, the algorithm now chooses the iteration with the minimum difference between
retrieved profiles of the two iteration which also fulfills the convergence criteria as the optimal
solution even if the gamma factor has a value higher than 1. As shown in eq. 5.12, the gamma
factor is a multiplier in the optimal estimation equation of the AERIoe which depresses the
prior covariance matrix, Sa. Consequently, when the gamma factor is higher than 1, the
prior uncertainty is considered lower compared to the true prior uncertainty. Therefore, the
calculated DFS is smaller than the true DFS and the calculated posterior covariance matrix
which also includes gamma in its calculation become larger (Turner and Löhnert , 2014).

In order to retrieve the temperature, humidity and CO2 profiles simultaneously, the AERIoe
is run using the averaged radiances over 1 hour. The prior data of the CO2 parameters,
A0, A1 and A2 are considered 393., -3 and 5. The prior value of A0 is selected based on
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the background CO2 concentrations measured in 2012 (https : //www.esrl.noaa.gov/). The
values of A1 and A2 are defined according to the prior values derived from two years data
of the REMO (see section 6.2.1). The 1-σ uncertainty of A2 is defined based on the REMO
data and the 1-σ uncertainty of A1 which shows the variations in the CO2 surface value, is
defined 15. This value is higher than the provided value by the REMO since the Jülich tower
measurements of the CO2 near the surface shows the diurnal cycle on the order of 20 to 30
ppm in May. A small uncertainty is considered for the A0 in order to fix it in the algorithm.
Furthermore, no correlation is considered between these three parameters.

The spectral bands used in this run are the water vapor band from 550 to 588 cm−1 and two
spectral bands, 624-660 and 674-722 cm−1 from the 15 µm CO2 line. The measurement error
covariance matrix needs to include additional sources of uncertainty such as the uncertainty
in the spectroscopy of the forward model due to using the real AERI observation radiances.
However, calculating the exact value of this uncertainty is quite difficult. Therefore, the error
covariance matrix is computed using the original AERI noise and is also inflated in order to
capture the forward model error. The inflation factor used in this work is about a factor of 4
which is close to the factor used in the previous AERI studies (Turner and Löhnert , 2014).

Figs. 7.6 to 7.10 show the results from the AERIoe retrieval. In order to do the comparison,
the retrieved temperature profiles of the HATPRO (see section 3.2) as well as the temperature
and humidity profiles provided by the COSMO DE (see section 3.5) are also shown in
Figs. 7.6, 7.7 and 7.8.

Fig. 7.6 shows the AERI and the HATPRO retrieved temperature profiles while the difference
between these profiles is also shown in this panel. As the plots show, for the levels below 500
m, the difference between AERI and HATRPO retrieved temperatures is about 1 ◦C. This
difference reaches to 2 ◦C for the levels from 500 m to 2 km. On the other hand, above 2 km,
AERI temperatures are between 2 and 6 ◦C larger than HATPRO temperatures.

Fig. 7.7 shows the plots for comparison between AERI and COSMO DE temperature profiles.
For the levels near the surface (below 500 m), a difference less than 2 ◦C can be seen between
AERI and COSMO DE temperatures. For the levels between 0.5 and 1 km, COSMO DE
temperatures are larger, in the order of 2 ◦C, compared to AERI temperatures. Above 3 km,
the same pattern can be seen on both days. Before 11 UTC, AERI profiles are around 3 ◦C
larger than COSMO DE profiles, while after 11 UTC, COSMO DE profiles are around 2 ◦C
larger than AERI profiles. At the end of the day, in both plots, AERI profiles become again
larger than COSMO DE profiles.

The water vapor mixing ratio profiles of the AERI and the COSMO DE are shown in Fig. 7.8.
The differences between AERI and COSMO DE profiles, for the levels above 3 km are mainly
lower than 0.5 g/kg, while this difference reaches to 2 g/kg for the levels below 3 km. Fur-
thermore, the derived IWV amounts from the AERI, the HATRPO and the COSMO DE are
shown in Fig. 7.9. In both days, the variations in the AERI retrieved IWV amounts are close
to the variations in the HATRPO retrieved values. However, the AERI values are around 2
kg/m2 larger than HATRPO values, except for the time interval from 15 UTC on 25 of May
until 03 UTC on 26 of May. COSMO DE IWV values show different pattern compared to
AERI and HATRPO values on both days. However, in two time intervals, from 00 UTC to
06 UTC on 25 of May and from 00 UTC to 03 UTC on 26 of May, the AERI retrieved values
are very close to COSMO DE values.

In contrast to the temperature and the humidity profiles which show to some extent good
agreement with the model and the other observational data, the retrieved CO2 surface values
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Figure 7.6: The retrieved temperature profiles using the noise-filtered real AERI measure-
ments reconstructed from 521 PCs (upper plots) and the HATPRO retrieved temperature
profiles (middle plot) on 25 (left plots) and 26 (right plots) of May 2012. The lower plots
show the differences (AERI-HATPRO) between the AERI and the HATRPO temperature
profiles. The black columns indicate the non-converged profiles.
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Figure 7.7: The retrieved temperature profiles using the noise-filtered real AERI measure-
ments reconstructed from 521 PCs (upper plots) and the COSMO DE temperature profiles
(middle plot) on 25 (left plots) and 26 (right plots) of May 2012. The lower plots show
the differences (AERI-COSMO DE) between the AERI and the COSMO DE temperature
profiles. The black columns indicate the non-converged profiles.
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Figure 7.8: The retrieved water vapor mixing ratio using the noise-filtered real AERI mea-
surements reconstructed from 521 PCs (upper plots) and the COSMO DE water vapor mixing
ratio (middle plots) on 25 (left plots) and 26 (right plots) of May 2012. The lower plots show
the differences (AERI-COSMO DE) between the AERI and the COSMO DE profiles. The
black columns indicate the non-converged profiles.
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Figure 7.9: The IWV amounts derived from the noise-filtered real AERI measurements re-
constructed from 521 PCs (in black), from the HATRPO (in blue) and from the COSMO DE
(in red) on 25 (left plot) and 26 (right plot) of May 2012.

Figure 7.10: The retrieved CO2 surface values using the noise-filtered real AERI measure-
ments reconstructed from 521 PCs (in black) on 25 (left plot) and 26 (right plot) of May 2012.
The red lines show the tower measurements of the atmospheric CO2 at 100 m in Jülich.

do not show any agreement with the tower measurements. Based on the tower measurements,
the CO2 surface concentration increases during the nighttime and in the early morning and
decreases during the daytime. However, on 25 of May, the tower measurements show some
peaks and drops in its measurements between 15 and 21 UTC. According to the in-situ wind
measurements in Jülich, an increase in the wind (wind-direction cir. 45 ◦ north-east) speed
from 14 to 20 UTC can be seen where the wind speed increases from 6 to 12 m/s during
this time interval. The increase in the tower CO2 surface measurements may relate to the
increase in the wind speed. Note that the accuracy of the tower measurements in 2012 is
better than 5 ppm, while the measurements may have an offset which would be constant over
several days meaning that the diurnal variation of the tower measurements should be rather
accurate (personal communication with M. V. Hobe). The diurnal variation captured by
the tower measurements can not be seen in the AERI retrieved values. This can be due to
low DFS of the CO2 parameters as it is shown in section 6.2. One solution for this problem is
to provide additional information to the algorithm which is explained in the next paragraph.
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As shown in section. 6.1, giving the true temperature and humidity profiles to the AERIoe can
significantly improve the retrieved CO2 profiles. Consequently, this approach is used as a first
solution to improve the AERI retrieved CO2 surface values. Since the AERI retrieved profiles
show better agreement with the COSMO DE profiles in the upper levels, the temperature
and the humidity profiles of the COSMO DE are used as true profiles above 4 km in the
AERIoe. The COSMO DE profiles are provided to the algorithm using the prior data, while
their uncertainties are set to very small values in order to fix them in the algorithm. The
new retrieved profiles are shown in Figs. 7.11 to 7.14.

Fig. 7.11, shows the retrieved AERI temperature profiles. The difference between AERI and
HATRPRO profiles as well as the difference between AERI and COSMO DE profiles are also
shown in this panel. For the levels below 2 km, the difference (less than 2 ◦C) between AERI
and HARPRO temperatures as well as between AERI and COSMO DE temperatures are
same as previous run. However, fixing the temperature above 4 km in the AERIoe cause
an increase about 2 ◦C compared to the previous run, in the difference between AERI and
HATRPO temperatures, for the layer from 2 to 4 km. Besides, a slight increase about 1 ◦C
can be also seen in the difference between AERI and COSMO DE temperatures in this layer
(from 2 to 4 km).

The AERI retrieved humidity profiles in this run are shown in Fig. 7.12. For the levels below
4 km, same as the previous run, a difference around 2 g/kg can be seen between AERI and
COSMO DE profiles. In addition, Fig. 7.13 shows the retrieved IWV amounts in this run as
well as the calculated IWV amounts from the HATRPO and the COSMO DE. The variations
and the amounts of the AERI retrieved IWVs are close to the previous run. However, for
the time interval between 15 to 23 UTC on 25 of May, AERI values are around 1 kg/m2

larger than HATPRO values which can not be seen in the results of the previous run shown
in Fig. 7.9.

Fig. 7.14 shows the retrieved CO2 surface values in this run. The plots show that adding
extra information of COSMO DE temperature and the humidity profiles above 4 km does not
help the algorithm to capture the diurnal variation of the CO2 near the surface. However,
it should be considered that COSMO DE profiles above 4 km can be biased and it may also
affect on the retrieval results meaning that using perfect temperatures above 4 km (which is
not available in this work) may improve the results. Same as the results in the previous run
shown in Fig. 7.10, the CO2 retrieved values show different variations compared to the tower
measurements which are not the expected diurnal variation of the CO2 near the surface. Since
the problem in retrieving the CO2 surface values may still relate to the low DFS, one solution
is to give extra information of temperature and humidity profiles below 4 km. However, in the
present work, this solution is not used since the available temperature and humidity profiles
at the JOYCE are not accurately reliable for the levels below 4 km. Therefore, to solve this
problem, an extra spectral band, from 722 to 723 cm−1 is added to the AERIoe spectral
bands. As explained in the present section, this spectral band is removed from the AERIoe
spectral bands because of the probable spectroscopy issues in this band in the LBLRTM
which leads to a high residual between simulated and AERI radiances shown in Fig. 7.4.
This small spectral band is added again to see its effect on the AERI retrieved CO2 surface
values. The results of the new run with adding this small spectral band is shown in Figs. 7.15
to 7.18.

The retrieved temperature profiles in this run are shown in Fig. 7.15. The behavior of the
AERI retrieved temperatures for the levels below 2 km is nearly close to two previous runs.
In contrast, both difference plots (difference between AERI and HATPRO temperatures as
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Figure 7.11: The retrieved temperature profiles using the noise-filtered real AERI measure-
ments reconstructed from 521 PCs. COSMO DE data above 4 km are used to constrain
the temperature and humidity in the AERI retrieval. The middle plots show the difference
(AERI-HATPRO) between the AERI and the HATRPO temperatures and the lower plots
shows the difference (AERI-COSMO DE) between the AERI and the COSMO DE temper-
atures. The left plots belong to 25 and the right plots belong to 26 of May 2012. The black
column indicates the non-converged profile.
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Figure 7.12: The retrieved water vapor mixing ratio profiles using the noise-filtered real
AERI measurements reconstructed from 521 PCs. COSMO DE data above 4 km are used
to constrain the temperature and humidity in the AERI retrieval. The lower plots show the
difference (AERI-COSMO DE) between the AERI and the COSMO DE humidity profiles.
The left plots belong to 25 and the right plots belong to 26 of May 2012.

Figure 7.13: The IWV amounts derived from the noise-filtered real AERI measurements
reconstructed from 521 PCs. COSMO data above 4 km are used to constrain the temperature
and humidity in the AERI retrieval (in black), from the HATRPO (in blue) and from the
COSMO DE (in red) on 25 (left plot) and 26 (right plot) of May 2012.
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Figure 7.14: The retrieved CO2 surface values (in black) using the noise-filtered real AERI
measurements reconstructed from 521 PCs. COSMO data above 4 km are used to constrain
the temperature and humidity in the AERI retrieval on 25 (left plot) and 26 (right plot)
of May 2012. The red lines show the tower measurements of atmospheric CO2 at 100 m in
Jülich.

well as difference between AERI and COSMO DE temperatures) in this panel show that
AERI temperatures are significantly larger than HATPRO and COSMO DE temperatures
in the layer between 2 and 4 km. However, an exception can be seen on both days in the
time interval approximately between 12 and 19 UTC. The difference between AERI and
COSMO DE temperatures is between 3 to 8 ◦C while the difference between AERI and
HATRPO temperatures is higher than 6 ◦C. These large differences can be due to the new
spectral band and the spectroscopy problem in this band.

The retrieved humidity profiles and the derived IWV amounts are presented in Figs. 7.16
and 7.17. The plot shows similar behavior compared to two previous runs. It is an expected
consequence since the water vapor band has no change compared to previous runs.

The retrieved CO2 surface values in this run are shown in Fig. 7.18. As the plot shows,
the AERI values in this run capture the nighttime and the early morning increase as well
as the daytime decrease in the CO2 concentrations near the surface. The second increase
after the sunset in the CO2 surface value can be also seen in the AERI retrieved values. The
maximum CO2 concentrations retrieved by the AERI on 25 of May is about 5 ppm higher than
the maximum value of the tower measurements. In addition the AERI maximum occurred
3 hours earlier compared to the maximum of the tower measurements. Furthermore, after
12 UTC, an underestimation higher than 5 ppm can be seen in the AERI retrieved values
compared to the tower measurements in this day which turns to an overestimation after 19
UTC.

The tower measurements on the 26 of May show a maximum value around 08 UTC as well as
a sudden decrease in its value after this hour. These measurements also show that the CO2

surface values are nearly constant between 13 and 20 UTC and these values slightly increase
after 20 UTC. The AERI retrieved values show nearly the same behavior, while its maximum
occurs about 1 hour earlier and it has underestimation about 10 ppm compared to the tower
measurements. The decrease in the CO2 surface values can be also seen in the AERI values
for the rest of the day, however, the AERI values show an overestimation from 3 to 10 ppm
compared to the tower measurements after 10 UTC.



106 7. CO2 profile retrieval from real AERI measurements

Figure 7.15: The retrieved temperature profiles using the noise-filtered real AERI measure-
ments reconstructed from 521 PCs. COSMO DE data above 4 km are used to constrain the
temperature and humidity in the AERI retrieval. The additional spectral band, 722-723 cm−1

is also used in the AERI retrieval. The middle plots show the difference (AERI-HATRPO)
between the AERI and the HATRPO temperatures and the lower plots shows the difference
(AERI-COSMO DE) between the AERI and the COSMO DE temperatures. The left plots
belong to 25 and the right plots belong to 26 of May 2012. The black columns indicate the
non-converged profiles.
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Figure 7.16: The retrieved water vapor mixing ratio profiles using the noise-filtered real
AERI measurements reconstructed from 521 PCs on 25 (left plot) and 26 (right plot) of
May. COSMO DE data above 4 km are used to constrain the temperature and humidity in
the AERI retrieval. The additional spectral band, 722-723 cm−1 is also used in the AERI
retrieval. The lower plots show the difference (AERI-COSMO DE) between the AERI and
the COSMO DE humidity profiles. The black columns indicate the non-converged profiles.

Figure 7.17: The IWV derived from the noise-filtered real AERI measurements (in black)
reconstructed from 521 PCs on 25 (left plot) and 26 (right plot) of May. COSMO DE data
above 4 km are used to constrain the temperature and humidity in the AERI retrieval. The
additional spectral band, 722-723 cm−1 is also used in this run. The blue lines shows the
retrieved IWV from the HATRPO and the red lines shows the IWV from the COSMO DE.
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Figure 7.18: The retrieved CO2 surface values (in black) using the noise-filtered real AERI
measurements reconstructed from 521 PCs. COSMO DE data above 4 km are used to con-
strain the temperature and humidity in the AERI retrieval. The additional spectral band,
722-723 cm−1 is also used in the AERI retrieval. The left plot belong to 25 and the right
plot belong to 26 of May 2012. The red lines show the tower measurements of atmospheric
CO2 at 100 m in Jülich.

In addition, the total DFS of the CO2 parameters and the 1-σ uncertainty in the retrieved
CO2 surface values as well as the gamma factor of the optimal solution are shown in Fig. 7.19.
As expected, the gamma factors except for two profiles are higher than 1. The values of the
gamma factor are mainly 3 and 10. The 1-σ uncertainty in the retrieved CO2 surface values
are between 4 and 8 ppm, while for only two profiles the uncertainty reaches to higher than
10 ppm. According to these uncertainties, the retrieved surface CO2 values are within the
uncertainty to the tower measurements. Moreover, the DFS values show two different ranges

Figure 7.19: The total DFS of CO2 (upper plot), the 1-σ uncertainty in the surface retrieved
CO2 (middle plot) and the gamma factor derived from AERIoe run using the the noise-
filtered real AERI measurements reconstructed from 521 PCs. COSMO DE data above 4 km
are used to constrain the temperature and humidity in the AERI retrieval. The additional
spectral band, 722-723 cm−1 is also used in the AERI retrieval. The left plot belongs to 25
and the right plot belongs to 26 of May 2012.
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which may relate to the nighttime and daytime profiles. It seems that the DFS values has a
decrease for the daytime profiles (between 10 to 19) and its values are roughly between 0.2
and 0.4 while during the nighttime the DFS values increases and reaches the values between
0.8 and 1. Note that due to the gamma factor larger than 1, the derived DFS and 1-σ
uncertainty are smaller and larger than the true ones respectively.

The results of the last run show that the AERI has the potential to capture the diurnal
change of the CO2 concentration near the surface when the spectral band from 722 to 723
cm−1 is also used in the AERIoe. However, it seems that the spectroscopy issue in this
band causes a significant error in the retrieved temperature profiles. Besides, compared
to the tower measurements, the maximum of the AERI retrieved CO2 surface values, on
both days, occurs earlier compared to the tower measurements. Furthermore, the AERI
maximum has overestimation or underestimation between 5 and 10 ppm compared to the
tower measurements. A difference less than 10 ppm can be also seen between AERI and
tower measurements for more than 80% of the AERI retrieved values. Note that in the
present work, the possibility to add the extra information of temperature and humidity
profiles below 4 km to the algorithm is not tested due to the lack of reliable profiles in this
layer.

In addition to retrieving the CO2 surface value, as shown in section 6.2.3, giving the in-
formation of CO2 concentration near the surface to the AERIoe can help the algorithm to
accurately retrieve the CO2 profile mainly in the boundary layer. This possibility is tested
with the real measurements which is explained in the next subsection.

7.2.1 Fixed the CO2 surface value

In section 6.2.3, it is shown that the A1 can be retrieved more accurately by the AERIoe
if extra information about the CO2 concentration near the surface is given to the algorithm
as auxiliary data. This parameter can give the approximate shape of the CO2 profile in the
boundary layer or in other words, it can provide the information about the height where the
CO2 concentration deviates from the background concentration.

Another test is performed wherein surface in-situ tower observations of CO2 are included
in the AERI retrieval. Because there is no measurement of the CO2 profile for the whole
boundary layer at JOYCE, in order to see the accuracy of the retrieved CO2 profiles, the
retrieved A1 values are used to estimate the evolution of the CO2 in the boundary layer over
the diurnal cycle. The diurnal variation of the calculated height is then analyzed according
to the expected diurnal variation of the boundary layer height for a sunny clear sky day. It
is expected that the derived height shows a similar evolution as boundary layer evolution. In
a sunny clear sky day, after the sunrise and heating the surface, due to the free convection,
the mixing process starts and the well-mixed boundary layer becomes deeper. The mixing
layer reaches to its maximum depth around the noon time. In the well-mixed layer, trace
gases such as CO2 are nearly constant with height meaning that a decrease in the CO2

surface concentration can occur when the CO2 is mixed over a larger volume of atmosphere
as the well-mixed boundary layer becomes deeper. In addition, due to the forest area in
Jülich during the daytime, the photosyntheses can also reduce the CO2 concentration near
the surface. Note that the selected cases are in spring time so that the photosynthesis can be
significant during this time. On the other hand, after the sunset, the mixing process stops so
that the convective mixing layer collapses to a thin layer called stable layer where the trace
gases can spread horizontally in this layer which causes an increase in their surface values.
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Figure 7.20: The retrieved A1 (shape coefficient) values using the noise-filtered real AERI
measurements reconstructed from 521 PCs. COSMO DE data above 4 km are used to con-
strain the temperature and humidity in the AERI retrieval, on 25 (left plot) and 26 (right
plot) of May 2012.

Stopping the photosynthesis as well as soil respiration during the nighttime can also help to
increase the CO2 concentration near the surface.

The surface CO2 values are provided to the algorithm using the prior data with small un-
certainties to make the surface CO2 as a fixed parameter in the algorithm. The prior value
for the A1 is considered -3 with 1-σ uncertainty of 3, same as in previous runs. The desired
height is estimated using the retrieved A1 as:

|Exp(A1z)| ≤ 0.2. (7.1)

The first altitude which fulfills the above condition is considered as the height which shows
the evolution of the CO2 in the boundary layer. This is an estimation which approximately

Figure 7.21: The calculated height where CO2 deviated from its background concentration
using the retrieved A1 values from the noise-filtered real AERI measurements reconstructed
from 521 PCs. COSMO DE data above 4 km are used to constrain the temperature and
humidity in the AERI retrieval, on 25 (left plot) and 26 (right plot) of May 2012.
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indicates the height where the deviation of the CO2 concentration from its background con-
centration reaches less than 20%. The results of the new run are shown in Figs. 7.20 and
7.21.

Fig. 7.20 shows the retrieved A1 values. The derived height are shown in Fig. 7.21. According
to the retrieved temperature profiles, the minimum surface temperature occurs around 07
UTC on both days. An increase in the derived height can be seen with 2 hours delay, around
09 UTC on both days. After that, the calculated height reaches to its maximum value between
12 and 13 UTC on both days. On 25 of May, the altitude of the derived height decreases
suddenly after 14 UTC, while on 26 of May, the decrease in the altitude happens after 21
UTC. The sudden decrease on the first day can be related to the unexpected peaks and drops
in the tower measurements on this days, for the time interval between 14 and 20 UTC. Note
that, the sunset on these two days was around 19:30 UTC. Consequently, the decrease in the
altitude of the derived height after 21 UTC on 26 of May is more consistent with this sunset
time.

In summary, the temporal evolution of the derived height where the CO2 deviates from
its background concentration for 26 of May corresponds to the temporal evolution of the
boundary layer on a sunny clear sky day. However, on 25 of May, the derived height does not
show the expected variation of the boundary layer in the afternoon. Therefore, more clear
cases are needed to test the algorithm and find the potential of the AERIoe to estimate this
height. In addition, accurate CO2 surface value can help the algorithm to better estimate
this height. Note that, the accuracy of the absolute value for the derived height can not be
guaranteed. In addition, accurate measurements of the CO2 near the surface and in upper
levels can give the opportunity for comparison of the AERI results and to analyze their
accuracy.





Chapter 8

Summary and outlook

Since the industrial revolution, the emission of anthropogenic CO2 into the atmosphere has
resulted in a concentration change from 278 ppm (before 1750) to more than 400 ppm in 2017
(IPCC , 2013; www.esrl.noaa.gov). As a consequence, many studies have analyzed the effect
of the CO2 increase on the current climate as well as on the future climate (e.g. IPCC , 2013;
Mart́ınez-Bot́ı et al., 2015). Studying the carbon cycle between three natural reservoirs, land,
ocean and atmosphere is an essential path which can help to better analyze and predict current
and future climates. The interaction of land-vegetation with the atmosphere can produce
large diurnal variation on the order of 20 ppm, but occasionally 50 ppm or more, in the
atmospheric CO2 concentration near the surface. The measurements of this diurnal variation
can be helpful in order to study the interaction between the terrestrial ecosystem and the
atmosphere as a part of the carbon cycle. However, accurately capturing the diurnal variation
of CO2 mainly in the boundary layer is still a big gap in the CO2 measurements. Many space-
based instruments such as SCIAMACHY, GOSAT and OCO 2 (Bovensmann et al., 1999;
Morino et al., 2011; Crisp et al., 2017) as well as ground-based instrumentation within the
TCCON network (Wunch et al., 2011) can provide CO2 measurements only during daytime.
Besides, satellites typically do not have sufficient sensitivity to the CO2 concentration in the
boundary layer which presents another limitation of satellites for providing information about
CO2 variations near the surface.

In the present work, a ground-based infrared spectrometer with high temporal and spec-
tral resolution is used to provide information about the variation of the CO2 concentration
mainly in the boundary layer. The Atmospheric Emitted Radiance Interferometer (AERI)
(Knuteson et al., 2004a) measures the downwelling infrared radiation at better than 1 cm−1

resolution in the mid-infrared region between 520 cm−1 (19 µm) and 3020 cm−1 (3.3 µm). The
AERI was installed at Jülich ObservatorY for Cloud Evolution (JOYCE), Germany in 2011.
Although, the AERI is originally designed to provide highly spectrally resolving atmospheric
emission for studying spectroscopic issues in the infrared region and for evaluating radiative
transfer models (e.g. Revercomb et al., 2003; Turner et al., 2004), its measurements are also
utilized to retrieve thermodynamic atmospheric profiles and cloud properties (e.g. Feltz et al.,
1998; Turner et al., 2000; Turner , 2005; Löhnert et al., 2009; Turner and Löhnert , 2014).
The mid-infrared region includes several trace gas absorption lines, e.g. CO2, CH4 and N2O
which are covered by AERI. These lines can be used to provide information about the atmo-
spheric content of these trace gases if the sensitivity of the AERI radiances to their typical
atmospheric change is higher than the noise of the AERI measurements. This possibility has
been tested for the 15 µm CO2 line. It is shown that the typical AERI noise is generally close
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to the sensitivity of the AERI radiances to the diurnal change of the CO2 concentration near
the surface. However, applying different methods such as averaging the observed radiances
with time and/or reducing the uncorrelated random error using a Principal Component Anal-
ysis (PCA) (e.g. Antonelli et al., 2004; Turner et al., 2006) can increase the signal-to-noise
ratio on appropriate time scale. Therefore, the potential of AERI radiances for retrieving the
atmospheric CO2 is examined in this study. The CO2 spectral bands used in this study are
624-660 cm−1 and 674-723 cm−1.

The algorithm used in this work called AERIoe (Turner and Löhnert , 2014). The AERIoe is
a variational retrieval algorithm based on the optimal estimation method which gives the op-
portunity to calculate the uncertainty in the retrieved result simultaneously. The algorithm
shows good ability to retrieve the temperature, humidity and cloud properties according to
the previous studies (e.g. Turner and Löhnert , 2014). In this work, it is modified in order
to retrieve a simplified model of the CO2 profile. Prior to application of real measurements
in the AERIoe, the AERI simulated radiances are used to test the algorithm and evaluate
its results. Using the simulated radiances gives the opportunity to work with the radiances
without problems of the real measurements. It also gives the opportunity to easily compare
the retrieved result with ’truth’ which makes the analysis and the evaluation of the retrieved
results much simpler. The AERI radiances are simulated using a line-by-line radiative trans-
fer model (LBLRTM). The input profiles of the LBLRTM are provided by the numerical
model called REMO which predicts the atmospheric CO2 profiles as well as temperature and
humidity profiles. Furthermore, in order to provide the simulated radiances close to the real
measurements, the real noise of the AERI is also added to the simulated radiances.

In the first application of the AERIoe, the atmospheric CO2 profile is considered as a profile
with a constant atmospheric mixing ratio. The primary results using the simulated radiances
with the original noise of the AERI show an overestimation higher than 1 ppm compared to
the true values, while the uncertainty of the retrieved values is 0.5 ppm. However, the next
run with the reduced noise applied to the simulated radiances shows significant improvement
in the results where 15 of 22 retrieved values captured the true values within their uncertainty.
The rest of retrieved values show a difference of less than 1 ppm compared to the true values.

Although, retrieving a constant CO2 profile with the AERI shows promising results, CO2

profile retrieval remains challenging. Due to the low number of degrees of freedom for signal
(DFS) in the AERI radiances for CO2 profiling, the CO2 profile is parametrized using an
exponential function. The exponential function defines the CO2 profile using 3 parameters
while one of them shows the background CO2 (CO2 concentration in the levels above bound-
ary layer), one describes the CO2 variations at the surface and one determines the main
curvature of the CO2 profile. The latter can also be used to derive the height where the
CO2 deviates from its background concentration. These three parameters provide the main
information about a CO2 profile. In addition, since the CO2 background concentration can
be considered with good approximation as a constant value for the diurnal cycle (its variation
is typically less than 0.5 ppm for the diurnal cycle), the algorithm needs only to retrieve two
parameters to estimate the CO2 profile. The REMO CO2 profiles are then approximated by
the exponential function to represent the true CO2 profiles. In addition, the fitted profiles
provide a dataset for each of the three parameters which are used as prior data of these
parameters in the algorithm. The fitted profiles for more than 1400 profiles (in November)
show that the root mean square (RMS) values between true and fitted profiles are less than
4 ppm, while due to the more smooth shape of the CO2 profiles in the upper levels (above 2
km), the fitted profiles show a better fit behavior at these levels.
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The AERIoe is applied using this new modification for retrieving the CO2 parameters in clear
sky conditions, while the temperature and the humidity profiles are considered as known
in the algorithm. This ensures that the algorithm uses all measurement information for
retrieving only the CO2 parameters, yielding a maximum possible accuracy. The algorithm
is first tested for sample cases with rather different CO2 profile shapes. It is shown that the
algorithm can retrieve the CO2 profile with high accuracy when the true CO2 profile has a
smooth exponential shape. When the true profiles are less smooth, the algorithm can still
provide the main curvature of the true profiles. The diurnal analysis of the AERIoe shows
that the estimated CO2 profiles can capture the main increase and decrease of the CO2

concentration in the boundary layer. Applying AERIoe to one month of REMO profiles and
comparing the retrieved CO2 concentrations in different levels with the true concentrations
gives RMS values of 6.8, 5.4, 4.0 and 1.9 ppm between true and retrieved CO2 concentrations
at the surface, 90 m, 200 m and 1 km respectively. As expected, due to the more smooth
shape of the CO2 profile in the upper levels, the RMS values decrease with increasing the
height. However, even for the levels close to the surface, the RMS values are still acceptable
compared to the high variation of the CO2 concentration which can be larger than 20 ppm
near the surface. In addition, RMS values between retrieved and true profiles are reduced by
about 50% compared to the mean RMS values between prior and true profiles.

Furthermore, the AERIoe is used to retrieve the temperature, humidity and CO2 profiles
simultaneously. Although, the results for the retrieved temperature and humidity profiles
show good agreement with the true ones, the retrieved CO2 profiles have poor accuracy. In
order to improve the results, some modification are considered. For example, it is confirmed
that providing additional information about the CO2 surface value (or any level close to
the surface), can significantly improve the CO2 retrieved profiles in the boundary layer. In
this case the diurnal increase and decrease of the CO2 concentration in the boundary layer
which is not captured in the original runs, can be determined. In addition, the noise filtering
method using the PCA is used in this step. For this, the AERI radiances are simulated for
two days with rather low and high integrated water vapor (IWV) and with high temporal
resolution. The temporal resolution of the simulated radiances is considered similar to the
temporal resolution of the real AERI measurements. The original AERI noise is added to the
simulated radiances. Then, the PCA method is applied to these radiances. The noise-filtered
radiances are then used in the AERIoe for hourly retrieval of the CO2 profile, meaning that
in this step, both the PCA and the averaged radiances are used to reduce the AERI noise.
Besides, additional information about the temperature and humidity profiles above 4 km
using the true temperatures and humidity profiles is also provided to the algorithm. It is
shown that the retrieved CO2 surface values capture the nighttime increase and the daytime
decrease; however, the retrieved results show between 3 to 10 ppm difference with the true
values. Furthermore, the maximum retrieved CO2 surface concentration indicates less than
3 ppm difference to the true maximum value for the dry day, while, during the humid day
a difference on the order of 10 ppm can be seen between true and retrieved maximum CO2

surface concentration.

Moreover, the AERIoe is applied to the real AERI measurements at JOYCE. Two clear sky
days are selected (25 and 26 May 2012), and the AERIoe is run on these days. These days
are selected from the AERI measurements on clear sky days in 2012, where the in-situ tower
measurements of CO2 at 100 m in Jülich are available. The real AERI measurements are
first corrected with a calculated radiometric calibration factor. In addition, it is shown that
due to an unknown issue in the AERI measurements which may relate to small oscillations
in the AERI detector temperature, the algorithm can not converge in the last iterations.



116 8. Summary and outlook

Consequently, the approach for selecting the optimal estimation solution in the AERIoe is
slightly changed to overcome this problem. This change in the AERIoe causes that the
calculated DFS and the estimated uncertainty of the solution to become smaller and larger
than the true ones, respectively. It is also shown that due to the spectroscopy problem in the
spectral bands from 722 to 723 cm−1, which causes up to 3 RU difference between simulated
and real AERI radiances, this band is not used in a first attempt to retrieve the CO2 profile.
Retrieved temperature and humidity profiles of the first run show good agreement with the
model data and other JOYCE observation. However, the retrieved CO2 surface values show
large offset as well as different temporal variations compared to the tower measurements. In
a next attempt, additional information about the temperature and humidity profiles above 4
km using the model data is provided to the algorithm. The results of the second approach
also do not show any considerable agreement in terms of temporal variations and absolute
CO2 values with the tower measurements. Due to the lack of the reliable temperature and
humidity profiles below 4 km, AERIoe could not be further constrained. Instead, the spectral
band between 722 and 723 cm−1 which is removed in the first step is added again. This new
spectral band in the AERIoe causes a large overestimation in the order of 4 to 10 ◦C in
about 70% of the retrieved temperature profiles for the levels above 2 km compared to the
retrieved temperature profiles of the previous runs. This overestimation is most probably due
to the spectroscopy problem of the new added spectral band; however, it has almost no effect
on the retrieved humidity profiles. The retrieved CO2 surface values of this run show good
qualitative agreement with the tower measurements in terms of the temporal variation. The
retrieved values on both days show about 5 to 10 ppm difference with the tower measurements
where the uncertainties of the retrieved values are between 4 to 7 ppm. Besides, the maximum
CO2 surface value that is captured by the AERIoe on both days occurs 1 to 2 hours earlier
compared to the maximum CO2 surface concentration of tower measurements.

In order to obtain the information about the height where the CO2 concentration deviates
from its background concentration, an extra run for each day is performed while in this run
additional information about the CO2 surface value is provided to the algorithm using the
tower measurements. The mentioned height is then calculated using the retrieved parameters
of the algorithm. The calculated height particularly for the second day shows an acceptable
diurnal variation according to the expected diurnal variation of the boundary layer on a sunny
clear sky day. However, due to the lack of the CO2 measurements in the boundary layer at
JOYCE, the absolute value of the calculated height can not be evaluated.

Outlook

As shown, due to the lack of the in-situ tower measurements in 2012, real AERI measurements
were tested for only two clear sky days. However, since 2013, CO2 has been measured
continuously and with higher accuracy using in-situ tower measurements in Jülich. This data
can be used to evaluate the AERI results for more cases, particularly more clear sky days
between 2015 and 2017 where the AERI measurements are also available continuously. In
addition, the tower measurements are available for more than one level, since 2014 which
can be used to evaluate the AERI retrieved CO2 concentration in several levels. The results
of using noise-filtered AERI simulated radiances with high temporal resolution (chapter 6)
revealed that the AERI radiances show different potential for dry and humid days. However,
due to the lack of the tower measurements in 2012, the potential of the AERI using the real
measurements in different weather conditions, particularly for the days with different water
vapor amounts were not tested. The available data of the AERI and tower measurements
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from 2015 to 2017 can provide the opportunity to analyze the potential of AERI radiances
for different weather conditions with different humidity amounts.

The problem in the real AERI measurements which was indicated in chapter 7 needs to
be investigated using more data from different atmospheric conditions. As mentioned, this
issue causes problems in the convergence of the AERIoe which also effects the accuracy of
the retrieved results. Solving this problem may help the AERIoe to retrieve the result with
higher accuracy.

During the recent years, there have been attempts to predict the CO2 flux near the surface at
Jülich using numerical models. Since the in-situ tower measurements provide only the CO2

concentration near the surface, the model data can be a possibility to evaluate the retrieved
CO2 concentration by the AERIoe at upper levels (0.5 to 1 km). In addition, as shown in
chapter 7, the AERIoe results provide an estimation for the height where the CO2 deviates
from its background estimation; however due to the lack of the CO2 measurements at upper
levels, the absolute value of the derived heights have not been evaluated. The model data at
Jülich can also give an estimation for this height which can be used to evaluate the derived
heights using the AERIoe results.

In chapter 6, it is shown that the simulated AERI radiances can yield the constant CO2

mixing ratio in clear sky conditions with quite good accuracy. However, this possibility is not
applied to the real measurements. The constant mixing ratio can be used to calculate the
mean column amount of the CO2 concentration. This value has been already retrieved by
different satellites and ground based instruments mainly as a monthly mean value for clear
sky cases. The retrieved value by the AERI can be an additional source for providing this
parameter and can be used to compare with other available measurements.

Moreover, the AERI measurements cover two main CO2 absorption bands, 15 and 4.3 µm.
In addition, there are some weaker CO2 lines at 9.4 and 10.4 µm in the AERI spectra. These
lines can also be used in the AERIoe to improve the CO2 retrievals. Applying the two weak
lines in the AERIoe can be simpler compared to the CO2 line at 4.3 µm because the 4.3
µm line is close to the near-infrared region, meaning that using this line may need more
efforts due to scattering of solar radiation into the AERI field of view by clouds and aerosols.
However, it would be a good test to see the effect of adding the 4.3 µm band in the algorithm
using nighttime data, when the scattering of solar radiation can be ignored.
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Löhnert, U., J. H. Schween, C. Acquistapace, K. Ebell, M. Maahn, M. Barrera-Verdejo,
A. Hirsikko, B. Bohn, A. Knaps, E. O’connor, and C. Simmer, JOYCE: Jülich observatory
for cloud evolution, Bulletin of the American Meteorological Society , 96(7), 1157–1174,
2015.
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