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ADAPTIVE GDSW COARSE SPACES FOR OVERLAPPING
SCHWARZ METHODS IN THREE DIMENSIONS

ALEXANDER HEINLEIN†‡ , AXEL KLAWONN†‡ , JASCHA KNEPPER† , AND OLIVER

RHEINBACH§

Abstract. A robust two-level overlapping Schwarz method for scalar elliptic model problems
with highly varying coe�cient functions is introduced. While the convergence of standard coarse
spaces may depend strongly on the contrast of the coe�cient function, the condition number
bound of the new method is independent of the coe�cient function. Its coarse space is based on
discrete harmonic extensions of vertex, edge, and face interface functions, which are computed
from the solutions of corresponding local generalized edge and face eigenvalue problems. The
local eigenvalue problems are of the size of the edges and faces of the decomposition, and the
eigenvalue problems can be constructed solely from the local subdomain sti↵ness matrices and
the fully assembled global sti↵ness matrix. The new AGDSW (Adaptive Generalized Dryja–
Smith–Widlund) coarse space always contains the classical GDSW coarse space by construction
of the generalized eigenvalue problems. Numerical results supporting the theory are presented for
several model problems in three dimensions using structured as well as unstructured meshes and
unstructured decompositions.

Key words. domain decomposition, multiscale, GDSW, overlapping Schwarz, adaptive coarse
spaces
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1. Introduction. We introduce an adaptive coarse space for the two-level
overlapping Schwarz method [50, 53] and prove a condition number bound that is
independent of heterogeneities in the coe�cient function of the underlying varia-
tional problem (1); cf. section 6 and the supporting numerical results in section 9.
The presented coarse space – adaptive GDSW (AGDSW) – can be regarded as an
extension of the energy-minimizing GDSW coarse space (Generalized Dryja–Smith–
Widlund) [7, 6], as the latter of which is always contained in the former space.

The classical GDSW coarse space is constructed by an energy-minimal extension
of null space functions on the interface such that the kernel of the elliptic operator
is represented. This can also be carried out algebraically and results in a method
that is robust for a class of coe�cient functions; cf., e.g., [6, Table 5.3] and [21,
Chapter 5].

The GDSW method has been applied to a variety of model problems, see, e.g.,
[8, 9] for the application to linear elasticity. In [26], the use of GDSW was applied to
the highly nonlinear structural part in fluid-structure interaction simulations, and
in [22], it was applied to various saddle point problems. A parallel implementation
of GDSW is publicly available as the FROSch [25] preconditioner (Fast and Robust
Overlapping Schwarz) as part of the Trilinos [31] package ShyLU [48]; for implemen-
tation details and numerical results, see [26, 28, 27]. Furthermore, recently, in [29],
a three-level parallel implementation of GDSW in two dimensions was presented.
Reduced dimension GDSW coarse spaces have been considered, e.g., in [9, 5]; see
also [11] and the references therein, and [30] for results on the parallel performance.

However, classical GDSW coarse spaces are not su�cient to obtain a method
which is robust for arbitrary coe�cient jumps; see, e.g., [21, Chapter 5]. To this
end, adaptive (w.r.t. the coe�cient function) coarse spaces have been developed in
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the field of domain decomposition methods.
A natural initial choice for basis functions to treat coe�cient variations are

multiscale finite element (MsFEM) functions [33, 15]; see [1, 4, 19, 24, 16]. To define
MsFEM functions, boundary values need to be chosen carefully which in [19, 24, 16]
requires solving a problem on the interface. By contrast, the construction of GDSW
vertex-based functions, which are included in the AGDSW space, is much simpler.

In addition to vertex-based functions, the construction of the AGDSW coarse
space uses the energy-minimal extensions of low-frequency eigenmodes on the edges
and faces of the domain decomposition. Note that our approach is di↵erent from
the two-dimensional AGDSW coarse space in [23] which allows for a simpler im-
plementation and can lead to smaller coarse spaces according to our numerical
experiments. A special emphasis is placed on the reduction of the coarse space
dimension by also integrating energy-minimal extensions into the eigenvalue prob-
lems; cf. the numerical results in section 9. This strategy has also been used for the
coarse space in [24], which was inspired by a special finite element method based
on approximate component mode synthesis [32].

Local generalized eigenvalue problems to construct coarse spaces have been used
earlier to obtain methods which are robust to coe�cient jumps. In [16], the authors
present two approaches to construct coarse spaces which lead to eigenvalue prob-
lems of the same size as here. The setup of their eigenvalue problems is cheaper,
however, the coarse space dimension can be significantly larger; cf. section 9. In [17],
Galvis and Efendiev use generalized eigenvalue problems on unions of subdomains
resulting in large eigenvalue problems. Dolean et al. proposed generalized eigenvalue
problems on subdomain boundaries but a restriction on the class of coe�cient func-
tions was required to prove the condition number bound in [12]. In [51], Spillane
et al. then introduced the coarse space GenEO in which they reduced the general-
ized eigenvalue problems to the overlap of subdomains allowing arbitrary coe�cient
functions. A further reduction to edges in two dimensions, and edges and faces in
three dimensions, was realized in [18, 19, 24, 23, 16]. Other notable contributions to
multiscale domain decomposition for overlapping Schwarz are, e.g., [20, 3]. Adap-
tive coarse spaces for nonoverlapping domain decomposition methods have gained
much interest as well; see, e.g., [2, 43, 44, 52, 46, 36, 38, 47, 35, 37, 45].

2. Model problem. On a polyhedral domain ⌦ ⇢ R3, we consider the varia-
tional problem: find u 2 H

1
0
(⌦), such that

(1) a⌦ (u, v) = L(v) 8v 2 H
1

0
(⌦),

where a⌦ (u, v) :=

Z

⌦

A(x)(ru(x))Trv(x) dx and L (v) :=

Z

⌦

f(x)v(x) dx,

respectively, and where A : R3
! R is a scalar coe�cient function and f 2 L

2(⌦).
In this paper, A is typically highly heterogeneous, possibly having discrete values
with large variations. In addition to that, we denote the semi-norm corresponding
to the bilinear form a⌦ (·, ·) as

|u|
2

a,⌦
:= a⌦ (u, u) .

We assume that the coe�cient function A(x) satisfies

0 < Amin  A(x)  Amax 8x 2 ⌦.

Then, the Lax-Milgram lemma guarantees a unique solution of (1). Let

Ku = f(2)
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Fig. 1. Example of a nonoverlapping domain decomposition {⌦i}Ni=1 (left) and the corre-
sponding overlapping domain decomposition {⌦0

i}Ni=1 (right) with overlap � = 1h.

be the discretization of problem (1) by piecewise linear or trilinear finite elements
on a triangulation ⌧h. Here, K is the sti↵ness matrix, f the right hand side, and u

the vector corresponding to the finite element solution in the finite element space
V

h (⌦). Throughout this paper, we assume that the coe�cient function A is con-
stant on each finite element T 2 ⌧h. However, our method is not restricted to
these cases. In order to solve this problem, we use the conjugate gradient method
preconditioned by a two-level overlapping Schwarz preconditioner.

3. Two-level overlapping Schwarz methods. Let {⌦i}
N

i=1
be a nonover-

lapping domain decomposition of ⌦ into polyhedral subdomains ⌦i with a typical
subdomain diameter of H. The interface � of the nonoverlapping domain decom-
position is defined as � =

S
N

i=1
@⌦i \ @⌦.

Next, we obtain a corresponding overlapping decomposition {⌦0
i
}
N

i=1
of ⌦ by

extending the nonoverlapping subdomains by k layers of finite elements. This re-
sults in an overlap � = kh; cf. Figure 1. We define as Ri : V h(⌦) ! Vi := V

h(⌦0
i
),

i = 1, ..., N , the restriction to the local finite element space on the overlapping sub-
domain ⌦0

i
; RT

i
is the corresponding prolongation to V

h(⌦). In addition, let V0 be
some global coarse space and R0 : V h(⌦) ! V0 ⇢ V

h(⌦) the corresponding coarse
interpolation. We use exact solvers, and therefore the local and coarse bilinear
forms on the subspaces are given by

ãi (ui, vi) = a⌦

�
R

T

i
ui, R

T

i
vi

�
8ui, vi 2 Vi,

i = 0, ..., N . Then, the additive two-level Schwarz operator is given by

POS�2 = M
�1

OS�2
K = R

T

0
K

�1

0
R0 +

NX

i=1

R
T

i
K

�1

i
RiK

with local sti↵ness matrices Ki = RiKR
T

i
, for i = 1, ..., N ; cf. [53, Chapter 2.2] and

coarse operator K0 = R0KR
T

0
.

The condition number of the two-level Schwarz operator for the finite element
problem (2) using Lagrangian coarse basis functions for K0 depends on the contrast
of the coe�cient function A, i.e.,


�
M

�1

OS�2
K
�
 C max

T2⌧H

max
x,y2!T

✓
A (x)

A (y)

◆✓
1 +

H

�

◆
;

cf. [20]. Here, ⌧H corresponds to the set of all coarse mesh elements, and !T to
the union of all coarse mesh elements which touch a coarse mesh element T . This
bound can be improved but a dependence on the coe�cient contrast remains.
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4. The GDSW preconditioner. The GDSW preconditioner [6, 7] is a two-
level additive overlapping Schwarz preconditioner with exact solvers as described in
the previous section. Thus, the preconditioner can be written in the form

M
�1

GDSW
= �K�1

0
�T +

NX

i=1

R
T

i
K

�1

i
Ri,

where � = R
T

0
. Here, the columns of � are coe�cient vectors corresponding to the

coarse basis functions and the main ingredient of the GDSW preconditioner.

The interface can be decomposed as � =
⇣S

f2F f

⌘
[
�S

e2E e
�
[
�S

v2V v
�
,

where F is the set of all faces, E the set of all edges, and V the set of all vertices;
see, e.g., [41, Sect. 3] and [39, 40, Sect. 2]. The discrete characteristic functions �h

⇤
of the vertices, edges, and faces form a partition of unity on �, i.e.,

1 =
X

v2V
�
h

v
+
X

e2E
�
h

e
+
X

f2F
�
h

f
.

Let the columns of the matrix �� be the coe�cient vectors of the partition of unity
functions; then, the matrix �� has only entries 0 and 1. We extend the interface
values to the interior using discrete harmonic extensions. The discrete harmonic
extension w := H� ⌦(⌧�) of a finite element function ⌧� on the interface with respect
to the bilinear form a⌦ (·, ·) is given by

(3)
a⌦l

(w, v) = 0 8v 2 V
h

0
(⌦l) , l = 1, ..., N,

w = ⌧� on �.

Note that a discrete harmonic extension is energy-minimal, i.e., it is

a⌦ (H� ⌦(⌧�),H� ⌦(⌧�))  a⌦ (v, v) 8v 2 {v 2 V
h(⌦) : v|� = ⌧�};

see, e.g., [53, Sect. 4.4]. In matrix form, the discrete harmonic extension of �� can
be computed as

� =


�I

��

�
=


�K

�1

II
K

T

�I
��

��

�
.

Typically, K�1

II
K

T

�I
is not built explicitly but evaluated from right to left in the

application of K�1

II
K

T

�I
��. The matrix KII = diagN

i=1
(K(i)

II
) is a block diagonal

and contains only the local matrices K
(i)

II
from the nonoverlapping subdomains.

Therefore, the factorization of KII can be computed block-by-block and in parallel.
The condition number estimate for the GDSW preconditioner


�
M

�1

GDSW
K
�
 C

✓
1 +

H

�

◆✓
1 + log

✓
H

h

◆◆2

,

cf. [6, 7], holds also for the general case of ⌦ decomposed into John domains (in two
dimensions), and thus, in particular, for unstructured domain decompositions. Note
that, in general, the constant C depends on the contrast of the coe�cient function
A. As a remedy, we will employ the eigenmodes of local generalized eigenvalue
problems to compute an adaptive coarse space that is robust, independent of the
coe�cient function.

5. Adaptive GDSW. In this section, we will introduce the adaptive GDSW
(AGDSW) coarse space. Note that we have improved the AGDSW coarse space
compared to the variant introduced in [23] for two dimensions. In particular, the
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Fig. 2. Graphical representation of ⌦e =
S

k2ne ⌦k, the union of all subdomains adjacent
to an open edge (left), and ⌦f = ⌦i [ ⌦j , the union of all subdomains adjacent to an open face
(right).

ze ⌦e
(⌧e)

interior node of e

node in ⌦e \ e

Fig. 3. Graphical representation in two dimensions of the extension by zero of a finite
element function defined on an edge e 2 E, from the interior degrees of freedom of the edge to the
adjacent subdomains (left). Graphical representation in two dimensions of the discrete harmonic
extension (4) from the interior degrees of freedom of an edge e 2 E to ⌦e (right).

construction of the eigenvalue problems was simplified. For more details, see sec-
tion 7. We remark that the proofs for the condition number estimate for the two-
dimensional case and for the variant introduced in [23] are analogous to the proof
presented here for the 3D case.

5.1. Construction of the AGDSW coarse space. First, we will introduce
a generic local generalized eigenvalue problem which is set up for any interface
component, i.e., for any edge or face. The coarse basis functions are then constructed
as discrete harmonic extensions of corresponding eigenmodes.

Let ⇠ be an (open) edge e or (open) face f . We denote the set of indices of
adjacent subdomains by n

e, nf , and n
⇠, respectively. Then, we define the set ⌦⇠

as the union of all adjacent subdomains; cf. Figure 2. Additionally, we define the
following extension-by-zero operator from ⇠ to a connected set G ⇢ ⌦ with ⇠ ⇢ G:

z⇠ G : V h (⇠) ! V
h

0
(G) , v 7! z⇠ G(v) :=

⇢
v in all interior nodes of ⇠,
0 on all other nodes in G;

see Figure 3 (left) for a graphical representation in 2D. Here,

V
h

0
(G) :=

�
v|G : v 2 V

h(⌦), v = 0 in ⌦ \G
 
.

ByH⇠ ⌦⇠
we denote the discrete harmonic extension w.r.t. a⌦ (·, ·) from ⇠ to ⌦⇠.

Specifically, let V h

0,⇠
(⌦l) := {w|⌦l

: w 2 V
h(⌦), w = 0 on ⇠}. Then, for ⌧⇠ 2 V

h(⇠)
the extension v⇠ := H⇠ ⌦⇠

(⌧⇠) is given by the solution of

(4)
a⌦l

(v⇠, v) = 0 8v 2 V
h

0,⇠
(⌦l), l 2 n

⇠
,

v⇠ = ⌧⇠ on ⇠,

where n⇠ is the set of indices of all subdomains adjacent to the edge or face ⇠. Note
that, in contrast to (3), we do not prescribe Dirichlet boundary values on � \ ⇠.
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In particular, the boundary nodes of ⇠ are part of the Neumann boundary of the
discrete harmonic extension H⇠ ⌦⇠

; cf. Figure 3 (right). This is di↵erent from [23],
where finite elements adjacent to the vertices are removed; also see [23, Fig. 1]. Our
new approach allows to construct the left hand side of the eigenvalue problem from
the assembled subdomain sti↵ness matrix.

Now, we consider the generalized eigenvalue problem on each edge or face ⇠:
find ⌧⇤,⇠ 2 V

h

0
(⇠) :=

�
v|⇠ : v 2 V

h(⌦), v = 0 on @⇠
 
such that

a⌦⇠

�
H⇠ ⌦⇠

(⌧⇤,⇠),H⇠ ⌦⇠
(✓)
�
= �⇤,⇠a⌦⇠

�
z⇠ ⌦⇠

(⌧⇤,⇠), z⇠ ⌦⇠
(✓)
�

8✓ 2 V
h

0
(⇠) .(5)

Let the eigenvalues be sorted in non-descending order, i.e., �1,⇠  �2,⇠  ... 

�m,⇠, and the eigenmodes accordingly, where m = dim
�
V

h

0
(⇠)
�
. Furthermore,

let the eigenmodes ⌧⇤,⇠ satisfy a⌦⇠
(z⇠ ⌦⇠

(⌧k,⇠), z⇠ ⌦⇠
(⌧j,⇠)) = �kj , where �kj is the

Kronecker delta symbol. We select all eigenmodes ⌧⇤,⇠ where the eigenvalues are
below a certain threshold, i.e., �⇤,e  tolE for edges and �⇤,f  tolF for faces. Then,
the coarse basis functions corresponding to ⇠ are the extensions

(6) v⇤,⇠ := H� ⌦

�
z⇠ �(⌧⇤,⇠)

�

of the selected ⌧⇤,⇠.
We define the space of edge based coarse functions as

(7) V
tolE
E :=

 
M

e2E
span {vk,e : �k,e  tolE}

!
.

and the space of face based coarse functions as

(8) V
tolF
F :=

0

@
M

f2F
span {vk,f : �k,f  tolF}

1

A .

In addition to the edge and face basis functions, we use the vertex basis functions

�v =


�K

�1

II
K

T

�I
�
h

v
|�

�
h

v
|�

�

from the GDSW coarse space, and denote the corresponding space by

(9) VV :=
M

v2V
span {�v} ;

see also section 4. Finally, we obtain the adaptive GDSW coarse space

V
tolE ,tolF
AGDSW

=VV � V
tolE
E � V

tolF
F .

Note that the left hand side of the eigenvalue problem (5) is singular, and its kernel
contains the constant functions. Thus, the coarse basis functions corresponding
to the eigenvalue 0 are, in fact, the classical coarse GDSW edge and face basis
functions. Since tolE , tolF � 0, these are always included in the adaptive GDSW
coarse space.

Remark 1. For tolE � 0, tolF � 0, we obtain

VGDSW = V
0,0

AGDSW
⇢ V

tolE ,tolF
AGDSW

.

Remark 2. If a Dirichlet boundary condition on @⌦ is prescribed only on a

subset @⌦D ⇢ @⌦, in combination with a Neumann boundary condition on @⌦N =
@⌦ \ @⌦D, the construction of the adaptive GDSW coarse space and the proof of

the condition number estimate in section 6 are essentially the same. Finite element

nodes that lie on the Neumann boundary are simply treated as interior nodes.
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5.2. Properties of the spectral projection. For the coarse interpolation
defined in section 6, we consider the projections

⇧Ew :=
X

e2E
⇧ew, ⇧ew :=

X

�k,etolE

a⌦e
(ze ⌦e

(w), ze ⌦e
(vk,e)) vk,e,(10)

⇧Fw :=
X

f2F
⇧fw, ⇧fw :=

X

�k,ftolF

a⌦f

�
zf ⌦f

(w), zf ⌦f
(vk,f )

�
vk,f(11)

onto the spaces V tolE
E and V

tolF
F , respectively. Here, vk,e and vk,f are from (6).

These projections have typical properties, summarized in the following lemma.
The lemma may be applied to the projections in (10) and (11); cf. Lemma 2 and Re-
mark 3. The proof uses standard arguments from spectral theory.

Lemma 1. Let a symmetric, positive semi-definite bilinear form d (·, ·) and a

symmetric positive definite bilinear form c (·, ·) be given on a finite element space

Wand consider the eigenvalue problem: find v 2 W such that

d (v, w) = �c (v, w) 8w 2 W.(12)

Let the corresponding eigenpairs {(vk,�k)}
dim(W )

k=1
be chosen such that c(vk, vj) =

�kj, where �kj is the Kronecker delta symbol. Additionally, we assume that the

eigenpairs are sorted in non-descending order w.r.t. the eigenvalues. Given u 2 W ,

the operator ⇧u :=
P

�ktol

c (u, vk) vk defines a projection which is orthogonal with

respect to the bilinear form d (·, ·) and therefore |u|
2

d
= |⇧u|

2

d
+ |u�⇧u|

2

d
. Here, the

semi-norm |u|
2

d
is defined as |u|

2

d
:= d (u, u) . In addition, for ||u||

2
c
:= c(u, u), the

estimate holds

ku�⇧uk
2

c


1

tol
|u�⇧u|

2

d
.

Lemma 2. Let ⇠ ⇢ � be an open, connected interface component (e.g. an edge

or a face) with adjacent subdomains ⌦i, i 2 n
⇠
. Given a symmetric positive definite

bilinear form c : V h(⇠)⇥ V
h(⇠) ! R, assume there exists a constant Cinv,⇠,

(13) s.t.
��z⇠ ⌦⇠

(v)
��2
a,⌦⇠

 Cinv,⇠||v||
2

c
8 v 2 V

h(⇠).

Furthermore, let d : V h(⇠)⇥V
h(⇠) ! R be a symmetric positiv semi-definite bilinear

form which satisfies

(14)
��z⇠ ⌦⇠

(v)
��2
d
 |v|

2

a,⌦⇠
8 v 2 V

h(⌦).

Based on the eigenvalue problem (12) in Lemma 1 with W := V
h

0
(⇠), we have for

i 2 n
⇠
and u 2 V

h(⌦)

��z⇠ ⌦⇠
(u)�⇧z⇠ ⌦⇠

(u)
��2
a,⌦i


��z⇠ ⌦⇠

(u)�⇧z⇠ ⌦⇠
(u)
��2
a,⌦⇠


Cinv,⇠

tol⇠

X

k2n⇠

|u|
2

a,⌦k
.

Proof of Lemma 2. Using the assumptions and Lemma 1 (third and fourth in-
equality), we have

��z⇠ ⌦⇠
(u)�⇧z⇠ ⌦⇠

(u)
��2
a,⌦i


��z⇠ ⌦⇠

(u)�⇧z⇠ ⌦⇠
(u)
��2
a,⌦⇠

=
��z⇠ ⌦⇠

(z⇠ ⌦⇠
(u)�⇧z⇠ ⌦⇠

(u))
��2
a,⌦⇠

(13)

 Cinv,⇠

��z⇠ ⌦⇠
(u)�⇧z⇠ ⌦⇠

(u)
��2
c

Lemma 1


Cinv,⇠

tol

��z⇠ ⌦⇠
(u)�⇧z⇠ ⌦⇠

(u)
��2
d


Cinv,⇠

tol

��z⇠ ⌦⇠
(u)
��2
d

(14)


Cinv,⇠

tol
|u|

2

a,⌦⇠
=

Cinv,⇠

tol

X

k2n⇠

|u|
2

a,⌦k
.
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Remark 3. For an edge ⇠ = e or a face ⇠ = f , the bilinear forms are

c(·, ·) = a⌦⇠
(z⇠ ⌦⇠

(·), z⇠ ⌦⇠
(·)) and d(·, ·) = a⌦⇠

(H⇠ ⌦⇠
(·),H⇠ ⌦⇠

(·));

cf. eigenvalue problem (5). Hence, Cinv,e = Cinv,f = 1 and, due to the energy-

minimal property of the discrete harmonic extension,

d(z⇠ ⌦⇠
(v), z⇠ ⌦⇠

(v)) =
��H⇠ ⌦⇠

(z⇠ ⌦⇠
(v))

��2
a,⌦⇠

=
��H⇠ ⌦⇠

(v)
��2
a,⌦⇠

 |v|
2

a,⌦⇠
8v 2 V

h(⌦).

Thus, for the adaptive GDSW coarse space, the assumptions of Lemma 2 hold.

In subsection 7.1, we describe a variant of adaptive GDSW for which Cinv,e =
Cinv,f corresponds to the constant from an inverse inequality bounding | · |H1(T ) by

|| · ||L2(T ) on a finite element T . Subsequently, in subsection 7.2, we describe a

variant with a modified left hand side of the generalized eigenvalue problem. Both

variants are covered by Lemma 2 and the proof of the existence of a stable decom-

position in Theorem 6.

6. Convergence analysis for the overlapping Schwarz method with
the adaptive GDSW space. In this section, we will provide a condition number
estimate and a proof of this estimate. Following, e.g., [53], we prove the existence of
a stable decomposition. Therefore, we have to provide a suitable coarse interpolation
I0 into the coarse space

V0 := V
tolE ,tolF
AGDSW

=VV � V
tolE
E � V

tolF
F ;

see (9), (7), and (8) for a definition of VV , V
tolE
E , and V

tolF
F .

We construct the coarse interpolant I0 from a point-wise interpolation

IVu :=
X

v2V
u (v)�v

to the space VV and from the projections ⇧E and ⇧F onto the spaces spanned by the
edge and face coarse basis functions, respectively; cf. (10) and (11). In particular,
we define the coarse component of the stable decomposition as

u0 := I0u := IVu+⇧Eu+⇧Fu.

The projection operators IV , ⇧E , and ⇧F satisfy the following assumption:

Assumption 1. As in Lemma 2, let ⇠ be an open and connected interface com-

ponent and ⇧ the corresponding projection operator. Then,

z⇠ ⌦⇠
(⇧⇤v) = ⇧⇤z⇠ ⌦⇠

(v) = 0 8v 2 V
h(⌦)

for any other projection operator ⇧⇤ 6= ⇧.

This assumption is satisfied for the projection operators of the AGDSW coarse space
interpolation. In particuar, we have

IVze ⌦e
(v) = ze ⌦e

(IVv) = ⇧Fze ⌦e
(v) = ze ⌦e

(⇧Fv) = 0 8v 2 V
h(⌦) and

IVzf ⌦f
(v) = zf ⌦f

(IVv) = ⇧Ezf ⌦f
(v) = zf ⌦f

(⇧Ev) = 0 8v 2 V
h(⌦),

which follows from the definition of ze ⌦e
(·) and zf ⌦f

(·), since vertex basis func-
tions vanish on edges and faces, edge basis functions vanish on vertices and faces,
and face basis functions vanish on vertices and edges.

To prove the existence of a stable decomposition, we first prove the following
lemma. It states estimates for the edge and face functions that arise during the
proof; cf. Theorem 6.
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Lemma 3. Let the assumptions of Lemma 2 and Assumption 1 be satisfied,

then

|z⇠ ⌦⇠
(u� u0)|

2

a,⌦i
 |z⇠ ⌦⇠

(u� u0)|
2

a,⌦⇠


Cinv,⇠

tol⇠

X

k2n⇠

|u|
2

a,⌦k

for an edge ⇠ = e 2 E or a face ⇠ = f 2 F .

Proof. Due to Assumption 1 we have on an edge e

ze ⌦e
(u� u0) = ze ⌦e

(u)� ze ⌦e
(IVu+⇧Eu+⇧Fu)

Asm. 1
= ze ⌦e

(u)� ze ⌦e
(⇧Eu) = ze ⌦e

(u)� ze ⌦e
(⇧eu)

= ze ⌦e
(u)�⇧eze ⌦e

(u)

and, analogously, zf ⌦f
(u � u0) = zf ⌦f

(u) � ⇧fzf ⌦f
(u) on a face f . Therefore,

using Lemma 2 we obtain

|z⇠ ⌦⇠
(u� u0)|

2

a,⌦i
 |z⇠ ⌦⇠

(u� u0)|
2

a,⌦⇠
= |z⇠ ⌦⇠

(u)�⇧⇠z⇠ ⌦⇠
(u)|2

a,⌦⇠

Lemma 2


Cinv,⇠

tol⇠

X

k2n⇠

|u|
2

a,⌦k
.

Next, we derive an estimate for the energy of the coarse component on a subdomain.

Lemma 4. Under the assumptions of Lemma 3, for i 2 {1, . . . , N}, we have

|u0|
2

a,⌦i
 2 |u|2

a,⌦i
+

4Ne
Cinv,e

tolE

X

e⇢@⌦i

X

k2ne

|u|
2

a,⌦k
+

4Nf
Cinv,f

tolF

X

f⇢@⌦i

X

k2nf

|u|
2

a,⌦k
,

where N
e
and N

f
denote the maximum number of edges and faces, respectively, a

subdomain can have.

Proof. We can use the fact that u0 is discrete harmonic on each subdomain
⌦i and consider the contributions on the interface components separately. Since
u� u0 = 0 in the vertices, we obtain

|u0|
2

a,⌦i
 2 |H@⌦i ⌦i

(u)|2
a,⌦i

+ 2 |H@⌦i ⌦i
(u� u0)|

2

a,⌦i

= 2(|H@⌦i ⌦i
(u)|2

a,⌦i

+
���
X

e⇢@⌦i

H@⌦i ⌦i

�
ze @⌦i

(u� u0)
�
+
X

f⇢@⌦i

H@⌦i ⌦i

�
zf @⌦i

(u� u0)
����

2

a,⌦i

)

Using a Cauchy-Schwarz inequality and the energy-minimality of H@⌦i ⌦i
(·) gives

|u0|
2

a,⌦i
 2 |u|2

a,⌦i
+ 4Ne

X

e⇢@⌦i

��ze ⌦e
(u� u0)

��2
a,⌦i

+ 4Nf
X

f⇢@⌦i

��zf ⌦f
(u� u0)

��2
a,⌦i

,

where N
e and N

f denote the maximum number of edges and faces, respectively, a
subdomain can have. Finally, using Lemma 3, we obtain

|u0|
2

a,⌦i
 2 |u|2

a,⌦i
+

4Ne
Cinv,e

tolE

X

e⇢@⌦i

X

k2ne

|u|
2

a,⌦k
+

4Nf
Cinv,f

tolF

X

f⇢@⌦i

X

k2nf

|u|
2

a,⌦k
.
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⌦�
i

⌦i \ ⌦�
i

⌦̃i \ ⌦i

2h

Fig. 4. In the proof of Theorem 6, we consider a partition of unity corresponding to an
overlapping decomposition {⌦̃i}Ni=1 with overlap h. The corresponding regions ⌦�

i (white), G1 :=

⌦i \⌦�
i (light gray), and G2 := ⌦̃i \⌦i (dark gray) are depicted in two dimensions (left). A finite

element function  on G that is constant on the edges and vanishes on @⌦�
i (right); cf. Lemma 5.

Left figure from [24, Fig. 6.1].

In Theorem 6, we prove the existence of a stable decomposition by introducing an
overlapping decomposition {⌦̃i}

N

i=1
with overlap h corresponding to the nonoverlap-

ping decomposition {⌦i}
N

i=1
; cf. Figure 4. Note that, in general, this decomposition

di↵ers from {⌦0
i
}
N

i=1
, the one used in the first level of the preconditioner with overlap

� � h. The decomposition {⌦̃i}
N

i=1
is only used in the proof and does not place any

restriction on �. However, it does remove the dependence of the condition number
estimate in Corollary 7 on the size of the overlap �.

In the proof of the stable decomposition, we need to estimate the energy of
local components I

h(✓i(u � u0)), given a partition of unity {✓i}
N

i=1
defined on the

overlapping decomposition {⌦̃i}
N

i=1
. The following lemma is used in Theorem 6 to

estimate the energy of the local components on the overlap.

Lemma 5. Let the assumptions of Lemma 3 be satisfied. For any subdomain

⌦i, i 2 {1, . . . N}, let G ✓ ⌦̃i \ ⌦�
i
, where ⌦�

i
denotes the non-overlapping subset

of ⌦i; cf. Figure 4. We consider a finite element function  2 V
h(G) that can have

arbitrary values on @⌦i but vanishes on @(⌦̃i \⌦�
i
) \G. Moreover, we assume that

0    1, and that  |e and  |f are constant on e 2 E and f 2 F , respectively.

Then,

���Ih
⇣
 · (u� u0)

⌘���
2

a,G


2Ne

Cinv,e

tolE

X

e⇢@⌦i

X

k2ne

|u|
2

a,⌦k
+
2Nf

Cinv,f

tolF

X

f⇢@⌦i

X

k2nf

|u|
2

a,⌦k
,

where N
e
and N

f
correspond to the maximum number of edges and faces, respec-

tively, a subdomain can have.

Note that in the proof of the stable decomposition in Theorem 6, we will make use
of Lemma 5 with the sets G = G1 and G = G2; cf. Figure 4.

Proof. We observe that ze ⌦(·) and zf ⌦(·) are identity operators on e and f ,
respectively, and that u�u0 vanishes in the vertices. Then, since G1 = ⌦i \⌦�

i
and

G2 = ⌦̃i\⌦i have width 1h and since  , ze ⌦e
, and zf ⌦f

all vanish on @(⌦̃i\⌦�
i
)\G,

we have with  0 :=  · (u� u0)

��Ih( 0)
��2
a,G

=
���
X

e⇢@⌦i

ze ⌦( 0) +
X

f⇢@⌦i

zf ⌦( 0)
���
2

a,G

 2
���
X

e⇢@⌦i

ze ⌦( 0)
���
2

a,G

+ 2
���
X

f⇢@⌦i

zf ⌦( 0)
���
2

a,G

.
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Then, a Cauchy-Schwarz inequality, the fact that  |e is constant and that 0    1,
gives

���
X

e⇢@⌦i

ze ⌦

⇣
 (u� u0)

⌘���
2

a,G

 N
e
X

e⇢@⌦i

���ze ⌦

⇣
 (u� u0)

⌘���
2

a,G

 N
e
X

e⇢@⌦i

�
 |e

�2
|ze ⌦ (u� u0)|

2

a,G
 N

e
X

e⇢@⌦i

|ze ⌦ (u� u0)|
2

a,G
.

Finally, using Lemma 3, we obtain

X

e⇢@⌦i

|ze ⌦ (u� u0)|
2

a,G


X

e⇢@⌦i

|ze ⌦ (u� u0)|
2

a,⌦e


Cinv,e

tolE

X

e⇢@⌦i

X

k2ne

|u|
2

a,⌦k
.

Completely analogously, using Lemma 3, we have

���
X

f⇢@⌦i

zf ⌦

⇣
 (u� u0)

⌘���
2

a,G


N

f
Cinv,f

tolF

X

f⇢@⌦i

X

k2nf

|u|
2

a,⌦k
.

Therefore,

��Ih( 0)
��2
a,G

 2
���
X

e⇢@⌦i

ze ⌦( 0)
���
2

a,G

+ 2
���
X

f⇢@⌦i

zf ⌦( 0)
���
2

a,G


2Ne

Cinv,e

tolE

X

e⇢@⌦i

X

k2ne

|u|
2

a,⌦k
+

2Nf
Cinv,f

tolF

X

f⇢@⌦i

X

k2nf

|u|
2

a,⌦k
.

Now, we are able to prove the existence of a stable decomposition.

Theorem 6 (Stable Decomposition). Under the assumptions of Lemma 3, for

each u 2 V
h
�
⌦
�
, there exists a decomposition u =

NP
i=0

R
T

i
ui, ui 2 Vi = V

h
�
⌦0

i

�
,

where ⌦0
0
:= ⌦, such that

NX

i=0

|ui|
2

a,⌦0
i

 C
2

0
|u|

2

a,⌦
,

where C
2
0
=
⇣
20 + 34(N

e
)
2
n
e

maxCinv,e

tolE
+ 68(N

f
)
2
Cinv,f

tolF

⌘
and N

e
and N

f
correspond to

the maximum number of edges and faces, respectively, a subdomain can have, and

n
e

max corresponds to the maximum number of adjacent subdomains an edge can have.

Proof. On the overlapping decomposition {⌦̃i}
N

i=1
of width 1h, we consider

the local components ui := I
h (✓i (u� u0)) with the partition of unity {✓i}

N

i=1
,

✓i 2 V
h(⌦), where

✓i(x
h) :=

8
>>>>>><

>>>>>>:

1

|ne| on edges e 2 E ,

1

|nf | on faces f 2 F ,

1

|nv| on vertices v 2 V,

1 in ⌦�
i
,

0 elsewhere,

where xh is a finite element node and where ⌦�
i
denotes the non-overlapping subset

of ⌦̃i; cf. Figure 4. Note that, since ⌦̃i ⇢ ⌦0
i
, we still have ui 2 Vi. We consider the

partition
⌦̃i = (⌦̃i \ ⌦i) [ (⌦i \ ⌦

�
i
) [ ⌦�

i
.
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Therefore, we have

|ui|
2

a,⌦̃i
= |ui|

2

a,⌦̃i\⌦i
+ |ui|

2

a,⌦i\⌦�
i

+ |ui|
2

a,⌦�
i

.(15)

To proceed, we use the estimate for |u0|
2

a,⌦i
from Lemma 4. Let

ZE :=
4Ne

Cinv,e

tolE

X

e⇢@⌦i

X

k2ne

|u|
2

a,⌦k
, ZF :=

4Nf
Cinv,f

tolF

X

f⇢@⌦i

X

k2nf

|u|
2

a,⌦k
,

then we have for the last additive term in (15)

|ui|
2

a,⌦�
i

=
��Ih
�
✓i(u� u0)

���2
a,⌦�

i

= |u� u0|
2

a,⌦�
i

 |u� u0|
2

a,⌦i

 2 |u|2
a,⌦i

+ 2 |u0|
2

a,⌦i

Lemma 4

 2 |u|2
a,⌦i

+ 2
⇣
2 |u|2

a,⌦i
+ ZE + ZF

⌘

= 6 |u|2
a,⌦i

+ 2ZE + 2ZF .(16)

Furthermore, we have for the second additive term in (15)

|ui|
2

a,⌦i\⌦�
i

 2 |ui � (u� u0)|
2

a,⌦i\⌦�
i

+ 2 |u� u0|
2

a,⌦i\⌦�
i

 2
��Ih((1� ✓i) (u� u0)

��2
a,⌦i\⌦�

i

+ 2 |u� u0|
2

a,⌦i
.(17)

We observe that, on an edge e 2 E or a face f 2 F , the restrictions of ✓i are constant
according to its definition:

✓i|e =
1

|ne|


1

2
, ✓i|f =

1

|nf |
=

1

2
.

Therefore, setting  := 1 � ✓i and G := G1 = ⌦i \ ⌦�
i
, we can use Lemma 5 to

bound the first additive term of equation (17). Note that we cannot set  = ✓i

to derive an estimate for |ui|
2

a,⌦i\⌦�
i

directly, since Lemma 5 requires  = 0 on the

boundary of ⌦�
i
. Using Lemma 4 and equation (16), we obtain for equation (17)

|ui|
2

a,⌦i\⌦�
i

 2
��Ih
�
(1� ✓i) (u� u0)

���2
a,⌦i\⌦�

i

+ 2 |u� u0|
2

a,⌦i

 2
⇣
0.5ZE + 0.5ZF

⌘
+ 2
⇣
6 |u|2

a,⌦i
+ 2ZE + 2ZF

⌘

= 12 |u|2
a,⌦i

+ 5ZE + 5ZF .(18)

Now, setting  := ✓i on G := G2 = ⌦̃i \ ⌦i and using Lemma 5, we have

|ui|
2

a,⌦̃i\⌦i
=
���Ih
⇣
✓i(u� u0)

⌘���
2

a,⌦̃i\⌦i

 0.5ZE + 0.5ZF .(19)

Summing the edge and face contributions ZE and ZF over all subdomains, we obtain

NX

i=1

(ZE + ZF ) =
NX

i=1

4

0

@N
e
Cinv,e

tolE

X

e⇢@⌦i

X

k2ne

|u|
2

a,⌦k
+

N
f
Cinv,f

tolF

X

f⇢@⌦i

X

k2nf

|u|
2

a,⌦k

1

A


4(Ne)2ne

max
Cinv,e

tolE
|u|

2

a,⌦
+

4(Nf )22Cinv,f

tolF
|u|

2

a,⌦
,(20)

where n
e

max
corresponds to the maximum number of adjacent subdomains of an

edge. Finally, using

|u0|
2

a,⌦
=

NX

i=1

|u0|
2

a,⌦i
,
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we obtain with Lemma 4 and equations (16), (18), (19), and (20)

NX

i=0

|ui|
2

a,⌦
=

NX

i=1

⇣
|u0|

2

a,⌦i
+ |ui|

2

a,⌦̃i\⌦i
+ |ui|

2

a,⌦i\⌦�
i

+ |ui|
2

a,⌦�
i

⌘



NX

i=1

⇣
20 |u|2

a,⌦i
+ 8.5ZE + 8.5ZF

⌘



✓
20 +

34(Ne)2ne

max
Cinv,e

tolE
+

68(Nf )2Cinv,f

tolF

◆
|u|

2

a,⌦
.

From Theorem 6, we directly obtain a condition number estimate for the pre-
conditioned system.

Corollary 7. The condition number of the AGDSW two level Schwarz oper-

ator in three dimensions is bounded by


�
M

�1

AGDSW
K
�


✓
20 +

34(Ne)2ne

max

tolE
+

68(Nf )2

tolF

◆⇣
N̂c + 1

⌘
.

The constant N̂c is an upper bound for the number of overlapping subdomains each

point x 2 ⌦ can belong to. All constants are independent of H, h, and the contrast

of the coe�cient function A.

Proof. Since we use exact local solvers, we directly obtain


�
M

�1

AGDSW
K
�
 C

2

0

⇣
N̂c + 1

⌘
,

where C
2
0
is the constant of the stable decomposition; cf. [53, Lemma 3.11] and

the follow-up discussion and the proof of [13, Theorem 4.1]. We obtain the final
estimate using Theorem 6 and Cinv,e = Cinv,f = 1; cf. Remark 3.

Remark 4. The proof for the two-dimensional case can be performed analo-

gously to the three-dimensional case. In particular, the edges in two dimensions can

be handled in the same way as the faces in three dimensions. For the AGDSW two

level Schwarz operator, we obtain the condition number bound


�
M

�1

AGDSW
K
�


✓
20 +

68(Ne)2

tolE

◆⇣
N̂c + 1

⌘
.

7. Variants of adaptive GDSW. There are several modifications that can
be applied to the AGDSW coarse space. First, the right hand side of the eigenvalue
problem can be replaced by a bilinear form that corresponds to a scaled L

2-inner
product or a scaled mass matrix, respectively; cf. subsection 7.1. To the best of our
knowledge, this modification does not lead to an advantage, since the mass matrix
has to be additionally assembled whereas the sti↵ness matrices in an implementation
of the right hand side of the eigenvalue problem (5) can be extracted directly from
the fully assembled global sti↵ness matrix K. However, it shows the connection of
the AGDSW coarse space to other related coarse spaces, e.g., the OS-ACMS, SHEM,
wirebasket, and vertex-based coarse spaces; see [24, 19, 16]. Second, a parallel
implementation of the left hand side of the eigenvalue problem (5) is facilitated and
the computational cost is reduced by using a sum of local, decoupled parts that
can then be computed independently; cf. subsection 7.2. A third modification can
be used to further decrease the work for the computation of the left hand side of
the eigenvalue problem. Here, we consider discrete harmonic extensions onto slabs
of finite elements instead of the union of all subdomains which are adjacent to the
corresponding edge or face; cf. subsection 7.3.
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Remark 5. The standard AGDSW algorithm and the mentioned modifications

above can also be used in two dimensions, see [23], in which the edge basis functions

were constructed slightly di↵erently. The construction presented in subsection 5.1
significantly simplifies the setup of the generalized eigenvalue problems, reduces the

computational cost, and can decrease the coarse space dimension.

7.1. Mass matrix. As in other adaptive coarse spaces, where the generalized
eigenvalue problem is used to replace a Poincaré type inequality, cf., e.g. [17, 14, 12],
we can use a scaled mass matrix on the right hand side of the eigenvalue problems (5)
as well. Let ⇠ be an edge e 2 E or a face f 2 F , then the scaled mass matrix
corresponding to the edge e or face f arises from the discretization of the scaled
L
2-inner product

b⇠ (u, v) :=
1

h2

�
Az⇠ ⌦⇠

(u), z⇠ ⌦⇠
(v)
�
L2(⌦⇠)

.

The corresponding norm is defined as

kvk
2

b,⇠
:= b⇠ (v, v) .

Therefore, we obtain for the generalized eigenvalue problem: find ⌧⇤,⇠ 2 V
h

0
(⇠), s.t.

a⌦⇠

�
H⇠ ⌦⇠

(⌧⇤,⇠),H⇠ ⌦⇠
(✓)
�
= �⇤,⇠b⇠ (⌧⇤,⇠, ✓) 8✓ 2 V

h

0
(⇠) .

We denote the resulting coarse space by V
AGDSW�M

. For v 2 V
h(⇠), we have

��z⇠ ⌦⇠
(v)
��2
a,⌦⇠

=

Z

⌦⇠

A
�
rz⇠ ⌦⇠

(v)
�2

dx 
Cinv

h2

Z

⌦⇠

Az⇠ ⌦⇠
(v)2 dx = b⇠(v, v),

since A is constant on each fine element T 2 ⌧h(⌦). The constant Cinv > 0 arises
from the use of an inverse equality on the elements. It is independent of H, h, and
the contrast of the coe�cient function.

Remark 6. The constant Cinv depends only on the shape parameter of the tri-

angulation and the polynomial degree of the shape functions; see, e.g., [54, Section

3.6], where also a concrete upper bound for Cinv is given.

We obtain a condition number bound analogously to Corollary 7 by setting
c(·, ·) := b⇠(·, ·) in Lemma 2.

Corollary 8. The condition number of the AGDSW-M two level Schwarz op-

erator in three dimensions is bounded by


�
M

�1

AGDSW�M
K
�


✓
20 + 34Cinv

✓
(Ne)2ne

max

tolE
+

2(Nf )2

tolF

◆◆⇣
N̂c + 1

⌘
.

All constants are independent of H, h, and the contrast of the coe�cient function.

Remark 7. If the mesh regularity or uniformity is low, better numerical results

may be achieved by scaling element-wise with the radius of the largest insphere, i.e.,

let rs be a function that is constant on each finite element T 2 ⌧h(⌦), on which

it assumes the radius of the largest insphere of T . Then, we define on an edge

⇠ = e 2 E or a face ⇠ = f 2 F

b⇠(u, v) :=

✓
A

r2
s

z⇠ ⌦⇠
(u), z⇠ ⌦⇠

(v)

◆

L2(⌦⇠)

.
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7.2. Local Neumann problems. In a parallel implementation of the gener-
alized face eigenvalue problem (5) we can utilize the fact that the discrete harmonic
extension is only weakly coupled via the boundary nodes of the face. Thus, instead
of computing the (coupled) extension simultaneously to both subdomains adjacent
to the face, we can compute extensions independently to each adjacent subdomain
without losing much information. The same holds in two dimensions for the edge
eigenvalue problems. Similarly, in three dimensions for edges, we can compute the
discrete harmonic extensions independently to the adjacent subdomains. However,
the stronger the coupling between the subdomains, the more information is lost,
which can result in an increased coarse space dimension.

Let either ⇠ = e 2 E or ⇠ = f 2 F , then

a⌦⇠

�
H⇠ ⌦⇠

(⌧⇤,⇠),H⇠ ⌦⇠
(✓)
�
6=
X

k2n⇠

a⌦k
(H⇠ ⌦k

(⌧⇤,⇠),H⇠ ⌦k
(✓)) .

Nevertheless, we can replace the left hand side of the eigenvalue problem by the sum
of the local contributions and obtain the eigenvalue problems: find ⌧⇤,⇠ 2 V

h

0
(⇠) s.t.

X

k2n⇠

a⌦k
(H⇠ ⌦k

(⌧⇤,⇠),H⇠ ⌦k
(✓)) = �⇤,⇠a⌦⇠

�
z⇠ ⌦⇠

(⌧⇤,⇠), z⇠ ⌦⇠
(✓)
�

8✓ 2 V
h

0
(⇠) .

We denote the resulting coarse space by V
AGDSW�S

. Using these modified eigenvalue
problems yields the same condition number estimate as in Corollary 7.

Corollary 9. The condition number of the AGDSW-S two level Schwarz op-

erator in three dimensions is bounded by


�
M

�1

AGDSW�S
K
�


✓
20 +

34(Ne)2ne

max

tolE
+

68(Nf )2

tolF

◆⇣
N̂c + 1

⌘
.

All constants are independent of H, h, and the contrast of the coe�cient function A.

Proof. We only have to show that the assumptions of Lemma 2 are satisfied.
Then, the proof is exactly the same as for Corollary 7.

The bilinear form d(·, ·) :=
P

k2n⇠ a⌦k

�
H⇠ ⌦k

(·),H⇠ ⌦k
(·)
�
is symmetric and

positiv semi-definite and satisfies

d(v, v) =
X

k2n⇠

|H⇠ ⌦k
(v)|2

a,⌦k



X

k2n⇠

|v|
2

a,⌦k
= |v|

2

a,⌦⇠
8v 2 V

h(⇠).

As we are going to observe, this variant of AGDSW can lead to a slightly larger
coarse space. However, the implementation and computation of the eigenvalue
problems is simplified.

7.3. Economic version using slabs. In order to reduce the computational
cost of the computation of the eigenvalue problems, the size of the sets ⌦e and ⌦f

can be reduced. In particular, we propose a variant where slabs of width l elements
around the edges or faces are used instead of complete subdomains; cf. Figure 5
for the graphical representation of the slabs. We denote these slabs by ⌦l

e
and ⌦l

f
.

The idea of computing the Schur complement only on slabs of minimal width was
initially proposed in [10]. It was then applied to eigenvalue problems and more
general slabs in [38]. Finally, in [24], a multiscale coarse space based on the ACMS
space was introduced for which an economic variant on slabs was proposed.

The modified eigenvalue problem reads for an edge ⇠ = e 2 E or a face ⇠ = f 2

F : find ⌧⇤,⇠ 2 V
h

0
(⇠) such that

a⌦l

⇠

⇣
H

⇠ ⌦l

⇠

(⌧⇤,⇠),H⇠ ⌦l

⇠

(✓)
⌘
= �⇤,⇠a⌦⇠

�
z⇠ ⌦⇠

(⌧⇤,⇠), z⇠ ⌦⇠
(✓)
�

8✓ 2 V
h

0
(⇠) .



16 A. Heinlein, A. Klawonn, J. Knepper, O. Rheinbach

Fig. 5. Three-dimensional version of the slab ⌦l
e corresponding to an edge (left) and a

graphical representation of the slab ⌦l
f corresponding to the face f (right).

The slab variant is computationally cheaper and can be proven analogously to the
standard version with no modifications. However, as for the variant with local
Neumann problems, the coarse space dimension can be larger.

8. Implementation remarks. The classical GDSW coarse space can be im-
plemented algebraically. However, the new coarse space V

AGDSW
and the variant

V
AGDSW�S

require the local subdomain sti↵ness matrices, which cannot be ex-
tracted from the global sti↵ness matrix K. On the other hand, the matrix in the
right hand side of the generalized eigenvalue problem (5) can be extracted from
the fully assembled sti↵ness matrix K. Except for the slab variant, the matrix in
the left hand side of the generalized eigenvalue problem (5) can be easily computed
from the local (non-overlapping) sti↵ness matrices. For the slab variant, sti↵ness
matrices on slabs need to be assembled. In the variant with local Neumann prob-
lems, V

AGDSW�S
, the implementation is further simplified, since the discrete har-

monic extensions are then local to the subdomains and can be computed in parallel.
Furthermore, numerical results suggest that GDSW and the adaptive variant only
require a simple interface partitioning (components can be disconnected), which
facilitates the implementation.

In [28, 27, 26], a parallel implementation of GDSW was considered for vari-
ous model problems. In a future parallel implementation of AGDSW, we expect
the setup of the generalized eigenvalue problems to be the bottleneck. Note that
in [24] the inexact solution of the related generalized eigenvalue problems using
LobPCG [42] was successful.

9. Numerical results. We present numerical results for the discretized vari-
ational problem (1), f ⌘ 1, and several coe�cient functions. Except for the test
case in Figure 9 and Table 4, the computational domain is always the unit cube
with a zero Dirichlet condition prescribed on its boundary.

We discretize (1) using piecewise trilinear basis functions on voxels or piecewise
linear basis functions on tetrahedra and solve the resulting linear system with the
preconditioned conjugate gradient (PCG) method and a relative stopping criterion
kr

(k)
k2/kr

(0)
k2 < 10�8, where r

(0) and r
(k) are the initial and the k-th unprecon-

ditioned residuals. The reported condition number is the estimate obtained during
the last iteration of the PCG method using the Lanczos method [49, ch. 6.7.3].

In the case of voxels, we always consider a cubic domain that is partitioned into
smaller cubes. As for tetrahedra, we always partition the domain into subdomains
using METIS [34].

We consider the adaptive coarse spaces based on GDSW and the vertex-based
and wirebasket coarse spaces by Eikeland, Marcinkowski, and Rahman in [16].

By VGDSW and V
tolE ,tolF
AGDSW

we denote the GDSW and adaptive GDSW coarse
spaces, respectively. Note that V

0,0

AGDSW
= VGDSW. The variant, which uses a
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Fig. 6. Discontinuous coe�cient function A with coe�cients intersecting faces. The blue
color corresponds to a coe�cient of Amax = 106 and the remainder is set to Amin = 1.0. The left
image shows the coe�cient function for 23 subdomains. One face is highlighted in the right image.
The computational domain is a cube discretized using trilinear elements; 1/H = 2; H/h = 21;
� = 1h.

Coe�cient function A from Figure 7
V0 F slab width w it.  dimV0 (V,E,F)

VAGDSW 1h 51 30.7 55 (1,6,48)
VAGDSW 2h 45 32.7 47 (1,6,40)
VAGDSW 4h 45 32.6 39 (1,6,32)
VAGDSW 6h 49 32.6 31 (1,6,24)
VAGDSW 8h 51 32.6 23 (1,6,16)
VAGDSW 21h 51 32.6 23 (1,6,16)
VVB � 47 30.2 49 (1,0,48)

Table 1
Results for the coe�cient function in Figure 6: slab width, iteration counts, condition num-

ber, and resulting coarse space dimension for di↵erent coarse spaces. A tolerance for the selection
of the eigenfunctions of 10�2 was used for VAGDSW and 10�3 for VVB. The full slab width was
used for the edge eigenvalue problems of VAGDSW. 1/H = 2, H/h = 21, and � = 1h; maximum

coe�cient Amax = 106; relative stopping criterion ||r(k)||2/||r(0)||2 < 10�8.

scaled mass matrix in the right hand side of the eigenvalue problem is denoted
by V

tol

AGDSW�M
; see subsection 7.1. The variant using the sum of local Neumann

problems on the left hand side of the eigenvalue problem is denoted by V
tol

AGDSW�S
;

see subsection 7.2. If not mentioned otherwise, the full slab (i.e., the union of
subdomains which are adjacent to an edge or face) is used; see also subsection 7.3.
By V

tolE ,tolF
VB

and V
tolE ,tolF
WB

we denote the vertex-based and wirebasket coarse spaces
from [16].

We begin by showing results for V
AGDSW

and two coe�cient functions by vary-
ing the width of the slab in order to highlight the e↵ect of the harmonic extensions
in the generalized eigenvalue problems of adaptive GDSW; the same behavior can
be observed for the OS-ACMS coarse space introduced in [24]. We then show re-
sults for some realistic coe�cient functions and, finally, some averaged results for
random coe�cient functions.

9.1. Varying slab widths. In this section, we investigate the e↵ect of vary-
ing slab widths for V

AGDSW
; cf. subsection 7.3. Instead of employing the discrete

harmonic extensions in the eigenvalue problems on the union of the adjacent sub-
domains (of an edge or face), we restrict it to a slab around the edge or face. An
advantage of using small slabs is the reduced computational cost of computing the
discrete harmonic extension. However, we then weaken the detection of connected
high coe�cient components. The smaller the slab, the fewer connections can be
detected.
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Fig. 7. Discontinuous coe�cient function A with coe�cients intersecting edges and faces.
The blue color corresponds to a coe�cient of Amax = 106 and the remainder is set to Amin = 1.0.
The left image shows the coe�cient function for 23 subdomains; each vertical edge is intersected by
two high-coe�cient connected components. One such component, its corresponding edge, and one
adjacent face are highlighted in the right image. The computational domain is a cube discretized
using trilinear elements; 1/H = 2; H/h = 21; � = 1h.

Coe�cient function A from Figure 7
V0 E slab width w it.  dimV0 (V,E,F)

VAGDSW 1h 71 125.5 45 (1,24,20)
VAGDSW 2h 71 125.5 41 (1,20,20)
VAGDSW 4h 70 125.5 37 (1,16,20)
VAGDSW 6h 70 125.6 33 (1,12,20)
VAGDSW 8h 69 125.7 29 (1, 8,20)
VAGDSW 21h 69 125.7 29 (1, 8,20)
VVB � 43 37.9 105 (1,20,84)

Table 2
Results for the coe�cient function in Figure 7: slab width, iteration counts, condition num-

ber, and resulting coarse space dimension for di↵erent coarse spaces. A tolerance for the selection
of the eigenfunctions of 10�2 was used for VAGDSW and 10�3 for VVB. The full slab width was
used for the face eigenvalue problems of VAGDSW. 1/H = 2, H/h = 21, and � = 1h; maximum

coe�cient Amax = 106; relative stopping criterion ||r(k)||2/||r(0)||2 < 10�8.

Therefore, we consider the coe�cient function in Figure 6, where high coe↵cient
components intersect faces. The results for various slab widths are listed in Table 1.
As can be seen, an increasing slab width yields a decreasing coarse space dimen-
sion, since fewer face eigenfunctions are required. A slab of width 8h covering the
complete high coe�cient component is su�cient to yield the same result as for the
maximum width of 21h (in which case the slab is equal to the union of the adjacent
subdomains).

Next, we consider an example for edges; see Figure 7. The numerical results
in Table 2 show that using larger slabs in the edge eigenvalue problem reduced the
number of edge eigenfunctions. For a slab width of 1h a total of 24 edge functions
are included in V

AGDSW
. This number reduces to a minimum of 8 edge functions

for a slab width of 8h.
We conclude that, for certain coe�cient functions, the inclusion of the discrete

harmonic extension in the eigenvalue problem can significantly reduce the coarse
space dimension.

9.2. Realistic and random coe�cient functions. In the following, we
consider three coe�cient functions which exhibit structures that are more likely
to be encountered in realistic applications.

Figure 8 depicts 100 beams of high coe�cients intersecting a cube that is parti-
tioned into 125 subdomains. As is evident from Table 3 the classical GDSW method
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Fig. 8. Cross section (left) of a domain decomposition of a cube and a discontinuous co-
e�cient function A with beams of high coe�cients (light blue) crossing the domain. The beams
of high coe�cients do not touch the domain boundary. The light blue color corresponds to a
coe�cient of Amax = 106 and the remainder is set to Amin = 1.0. Number of subdomains: 125;
number of nodes: 132 651; � = 1h. Structured tetrahedral mesh; unstructured domain decomposi-
tion (METIS).

Coe�cient function A from Figure 8
V0 tolE tolF it.  dimV0 (V,E,F) dimV0/dof

VGDSW � � 1 060 467 954.2 1 987 (564, 790, 633) 1.50%
VAGDSW 10�2 10�2 60 25.1 2 763 (564, 881, 1 318) 2.08%
VAGDSW�S 10�2 10�2 60 25.1 2 763 (564, 881, 1 318) 2.08%
VAGDSW�M 10�3 10�3 60 25.1 2 763 (564, 881, 1 318) 2.08%

VVB 10�2 10�2 58 25.4 3 336 (564, 348, 2 424) 2.51%
VWB 10�2 10�2 50 26.4 5 189 (564, 4 156, 469) 3.91%
Slab width 3h
VAGDSW�S 10�2 10�2 60 25.4 2 764 (564, 881, 1 319) 2.08%

Table 3
Results for the coe�cient function in Figure 8: iteration counts, condition number, and re-

sulting coarse space dimension for di↵erent coarse spaces. Number of subdomains: 125; num-
ber of nodes: 132 651; � = 1h; maximum coe�cient Amax = 106; relative stopping crite-
rion ||r(k)||2/||r(0)||2 < 10�8. Structured tetrahedral mesh; unstructured domain decomposition
(METIS).

requires 1 060 iterations to converge, while all adaptive coarse spaces converge in
60 iterations or less. In this particular example, the adaptive variants of GDSW
lead to an increase of 39.1% in the coarse space dimension with respect to GDSW,
whereas V

VB
has a 67.9% and V

WB
a 161.1% larger coarse space. Reducing the slab

width of V
AGDSW�S

to only 3h is su�cient to obtain almost identical results.
As a second example, we consider the coe�cient function in Figure 9 with sev-

eral layers of varying coe�cients. We note that most of the domain is surrounded
by a homogeneous Neumann boundary condition and the Dirichlet boundary does
not touch a high coe�cient layer; see Figure 9 (center). Despite a condition num-
ber of 3.8·106, the classical GDSW method requires only 125 iterations to converge,
due to the relatively low number of coe�cient jumps. For adaptive GDSW, we
observe an increase in the coarse space dimension of only 13.7% compared to clas-
sical GDSW, while the dimension of V

VB
is 59.3% larger and the wirebasket coarse

space’s dimension is more than twice as large as that of classical GDSW; cf. Table 4.
As a final realistic example, we consider a foam-like structure of high coe�cients

embedded in a cube; cf. Figure 10. We note that the foam structure consists of
several disconnected smaller foam structures. The numerical results in Table 5
show that V

AGDSW
converges within 61 iterations for a tolerance of 0.01, while

increasing the coarse space dimension by only 22.5% compared to VGDSW. Using
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Fig. 9. (left) Discontinuous coe�cient function A with coe�cient layers of A = 106 in
light gray and an inclusion at the top right with A = 109 in dark grey. The remainder of the
coe�cient in white is set to Amin = 1.0. (center) Boundary partition for Dirichlet (blue) and
Neumann (orange) boundary. (right) Domain decomposition of 50 subdomains. Number of nodes:
56 053; average number of nodes per subdomain: 1313.0; � = 1h. Unstructured tetrahedral mesh;
unstructured domain decomposition (METIS).

Coe�cient function A from Figure 9
V0 tolE tolF it.  dimV0 (V,E,F) dimV0/dof

VGDSW � � 125 3 770 557.2 445 (105, 168, 172) 0.79%
VAGDSW 10�2 10�2 50 20.1 506 (105, 186, 215) 0.90%
VAGDSW�S 10�2 10�2 50 20.1 506 (105, 186, 215) 0.90%
VAGDSW�M 10�3 10�3 50 20.1 506 (105, 186, 215) 0.90%

VVB 10�3 10�3 49 18.8 709 (105, 41, 563) 1.26%
VWB 10�3 10�3 41 15.0 964 (105, 854, 5) 1.72%
Slab width 3h
VAGDSW�S 10�2 10�2 50 20.1 506 (105, 186, 215) 0.90%

Table 4
Results for the coe�cient function in Figure 9: iteration counts, condition number, and

resulting coarse space dimension for di↵erent coarse spaces. Number of subdomains: 50; number
of nodes: 56 053; average number of nodes per subdomain: 1 313.0; � = 1h; maximum coe�cient
Amax = 109; relative stopping criterion ||r(k)||2/||r(0)||2 < 10�8. Unstructured tetrahedral mesh;
unstructured domain decomposition (METIS).

a slab width of 3h and V
AGDSW�S

(and a tolerance of 0.01) results in an increase
of the coarse space dimension with respect to GDSW by 23.6% and convergence is
achieved within 60 iterations. In contrast, the coarse space V

VB
leads to an increase

in the coarse space dimension of 104.1% while requiring 58 iterations to converge
(tolerance: 10�5).

Finally, we present averaged results for 100 randomly generated coe�cient func-
tions with an average of 11.1% elements with high coe�cients Amax = 106 (the
remainder is set to Amax = 1). The results in Table 6 show that, also for random
coe�cient functions, the adaptive GDSW variants perform well. The largest coarse
space dimension 13 665 of an adaptive GDSW variant is attained by restricting
V
AGDSW�S

to a slab of width 3h (tolE = tolF = 0.1). This amounts to an increase
of 36.2% compared to VGDSW. Simultaneously, the largest number of iterations for
this setting is 80, whereas classical GDSW did not converge within 2 000 iterations.

10. Conclusion. We have presented a new adaptive coarse space for the over-
lapping Schwarz method and proved a condition number bound. This bound de-
pends on user prescribed tolerances but is independent of the mesh parameters h,
H, and of heterogeneities in the coe�cient function A.

At its core AGDSW uses generalized eigenvalue problems on edges and faces
which are thus of moderate size compared to some competing approaches. AGDSW
always contains the GDSW coarse space and only requires local nonoverlapping sti↵-
ness matrices to set up the eigenvalue problems; all other information can obtained
algebraically. Several variants have been presented among which the one in subsec-
tion 7.2 facilitates the implementation and reduces the computational complexity
by increasing sparsity.

The results in section 9 support the theory and show that using the discrete
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Fig. 10. Partial visualization of an unstructured tetrahedral mesh consisting of several dis-
connected components of foam-like structures. In the corresponding mesh of a cube, the foam
corresponds to a high coe�cient of Amax = 106 and is to Amin = 1.0 elsewhere. The high
coe�cient does not touch the domain boundary. Number of subdomains: 100; number of nodes:
588 958; average number of nodes per subdomain: 6 656.4; � = 1h. Unstructured tetrahedral mesh;
unstructured domain decomposition (METIS).

Coe�cient function A from Figure 10
V0 tolE tolF it.  dimV0 (V,E,F) dimV0/dof

VGDSW � � 565 1 337 890.8 1 601 (404, 688, 509) 0.27%
VAGDSW 10�2 10�2 61 30.7 1 962 (404, 741, 817) 0.33%
VAGDSW 10�1 10�1 54 22.5 2 055 (404, 741, 910) 0.35%
VAGDSW�S 10�2 10�2 61 30.7 1 963 (404, 742, 817) 0.33%
VAGDSW�S 10�1 10�1 54 22.7 2 060 (404, 742, 914) 0.35%

VAGDSW�M 10�3 10�3 61 30.7 1 962 (404, 741, 817) 0.33%
VAGDSW�M 10�2 10�2 60 30.1 1 966 (404, 741, 821) 0.33%

VVB 10�6 10�6 551 35 709.5 2 740 (404, 453, 1 883) 0.47%
VVB 10�5 10�5 58 27.0 3 268 (404, 453, 2 411) 0.55%
VWB 10�6 10�6 317 11 644.0 5 941 (404, 5 501, 36) 1.01%
VWB 10�5 10�5 46 19.1 6 195 (404, 5 501, 290) 1.05%
Slab width 3h
VAGDSW�S 10�2 10�2 60 29.7 1 979 (404, 744, 831) 0.34%
VAGDSW�S 10�1 10�1 48 17.9 2 241 (404, 748, 1 089) 0.38%

Table 5
Results for the coe�cient function in Figure 10: iteration counts, condition number, and

resulting coarse space dimension for di↵erent coarse spaces. Number of subdomains: 100; number
of nodes: 588 958; average number of nodes per subdomain: 6 656.4; � = 1h; maximum coe�cient
Amax = 106; relative stopping criterion ||r(k)||2/||r(0)||2 < 10�8. Unstructured tetrahedral mesh;
unstructured domain decomposition (METIS).

harmonic extension inside the eigenvalue problem (5) can help to reduce the di-
mension of the coarse space by detecting connected components of high coe�cients.
Furthermore, we have demonstrated the robustness of AGDSW for various realistic
coe�cient distributions.
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