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Abstract 

I 

ABSTRACT 

Seeds represent the link between one plant generation and the next and 

constitute the main system for dispersal of higher plants, both in space and time. One 

key trait for seed dispersal in time is seed longevity, which encompasses the period 

of time a mature seed remains viable and can germinate. The span of time that seeds 

remain quiescent and yet able to germinate when favourable conditions are 

perceived results from a combination of their genetic background and the 

environmental conditions they experienced both during development and once they 

shed from the mother plant. As such, seed longevity is an adaptive trait which can be 

under positive or negative selective pressure, affecting plant persistence and 

survivability. From a human perspective, seed longevity is fundamental for storage of 

seeds, be it as germplasm, as food sources or for planting in the coming seasons. 

This PhD thesis describes a study of the regulatory mechanisms affecting seed 

longevity in Arabidopsis thaliana using diverse approaches. Temperature and drought 

stresses applied during seed maturation altered seed longevity and RNA-sequencing 

was used to evaluate how they modified the dry seed transcriptome. These analyses 

allowed the identification of several potential candidate genes that contribute to the 

regulation of seed longevity. Furthermore, the molecular regulation of seed longevity 

was investigated and two genes previously not associated with seed longevity were 

identified. Lastly, a novel procedure to evaluate seed quality was validated based on 

the use of biochemical probes. These probes helped to characterise two enzymatic 

activities which can be used to monitor seed longevity. 
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ZUSAMMENFASSUNG 

Samen stellen den vegetativen Übergang von einer Pflanzengeneration zur 

nächsten dar und bilden gleichzeitig die Grundlage für räumliche und zeitliche 

Ausbreitungsmechanismen von samentragenden Pflanzen. Die Langlebigkeit der 

Samen spielt bei der zeitlichen Ausbreitung von Pflanzengenerationen  eine 

entscheidende Rolle und wird als die Zeitspanne definiert, in der ein reifer Samen die 

Fähigkeit zum Keimen besitzt. Die Zeitspanne, in der ein Samen in diesem 

Überdauerungszustand verbleiben kann, ohne seine Keimungsfähigkeit bei 

geeigneten Umweltbedingungen zu verlieren, wird durch eine Kombination aus dem 

jeweiligen genetischen Hintergrund der Pflanze und den Umwelteiflüssen, die 

während der Samenreifung und nach der Streuung des Samens von der 

Mutterpflanze vorherrschen, beeinflusst. Daher kann man die Langlebigkeit von 

Samen als ein adaptives Merkmal betrachten, welches durch positiven oder negativen 

Selektionsdruck die Persistenz und Überlebensfähigkeit von Pflanzenarten 

beeinflusst. Die Langlebigkeit von Samen stellt somit eine fundamentale Grundlage 

für die Lagerung von Samen als Saatgut, Lebensmittel oder in der Form von 

Keimplasma- als eine reichhaltige und vielfältige pflanzengenetische Ressource dar. 

Diese Dissertation beschäftigt sich, unter Verwendung diverser Methoden, mit 

den regulatorischen Mechanismen, die die Langlebigkeit von Samen am 

Modellorganismus Arabidopsis thaliana beeinflussen. Um herauszufinden, wie diese 

Mechanismen das Transkriptiom von reifen Samen verändern, wurden die Samen 

während des Reifeprozesses Trocken- und Temperaturstress ausgesetzt. Die 

Auswirkungen dieser abiotischen Stressfaktoren in reifen Samen wurden zudem 

mittels RNA-Sequenzierung untersucht. Diese Analysen ermöglichten es, einige 

potenzielle Gene zu identifizieren, die an der Regulierung der Langlebigkeit beteiligt 

sein könnten. Zudem wurde die molekulare Regulation der Langlebigkeit von Saatgut 

untersucht. Dabei konnten zwei Gene identifiziert werden, die bisher noch nicht mit 

Saatgutlanglebigkeit in Zusammenhang gebracht werden konnten. Schließlich wurde 

eine biochemische Testmethode evaluiert, die zur Qualitätsüberprüfung von 

Saatgutlanglebigkeit eingesetzt werden kann. Dadurch konnten zwei 

Enzymaktivitäten im Zusammenhang mit Langlebigkeit von Saatgut näher 

charakterisiert werden. 

SCHLÜSSELWÖRTER 
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1 

1 INTRODUCTION 

eeds are the main structures for plant reproduction, allowing their 

perpetuation and distribution. Although highly diverse in shape, size and 

composition, seeds share the common feature of carrying the embryo, a 

miniaturised version of the plant that, upon germination, will develop and give rise to 

the new generation. Seeds enable plants to disseminate both in space and time, given 

they are equipped with different mechanisms that allow to stagger germination, 

increasing the chances that they will meet the optimal conditions for germination and 

subsequent seedling establishment (Finch-Savage and Bassel, 2016). Furthermore, 

they allow persistence in time, as some of them will remain in the soil as a part of the 

soil seed bank. This is especially relevant in those environments with changing or 

unstable conditions, in which it may occur that the next season does not bring 

favourable conditions for the seed to germinate.  

From a human perspective, seeds constitute the foundation of man and animal 

feeding, with as much as 75 % of our food sources coming from seeds, specially 

cereals and legumes. In addition, ex situ conservation of plant germplasm is done 

mainly in the form of seeds (Li and Pritchard, 2009). This has promoted many studies 

to find the best conditions for storage as well as the processes taking place during 

this storage (Roberts, 1973; Ellis and Roberts, 1980b; Fu et al., 2015). Besides, the seed 

industry has great interest in the study of seed storage, as they are expected to deliver 

seed batches which germinate close to 100 % and many of their economic loses 

originate from seed deterioration during storage.  

A key contributor to seed storage and the main focus of this study is seed 

longevity. Specifically, seed longevity is the span of time seeds remain viable and able 

to germinate and it encompasses all those mechanisms present in the seed 

contributing to this end. The two most extreme cases of seed longevity reported were 

in seeds of sacred lotus (Nelumbo nucifera) and date palm (Phoenix dactylifera), 

which remained able to germinate and produce normal seedlings even after a 

thousand years (Shen-Miller J., 2002; Sallon et al., 2008). Seed longevity is established 

during the last phases of seed maturation and the various factors contributing and 

modifying it will be discussed in the following sections. 

1.1 SEED DEVELOPMENT 

Seeds are composed of three differentiated tissues, including the embryo, the 

endosperm and the seed coat or testa, which are formed over the course of seed 

S 
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development (Goldberg et al., 1994). This process encompasses two major steps: 

embryogenesis and seed maturation. Seed embryogenesis includes all cell divisions 

following fertilisation that lead to the formation of the embryo and its surrounding 

tissues, i.e. endosperm and seed coat. Once the full size embryo has developed and 

stopped growing, seeds enter the maturation phase, during which seed reserves will 

accumulate, seed dormancy, longevity and desiccation tolerance will be established 

and the seed will lose most of its moisture content.  

Seed embryogenesis starts with a double fertilization of the ovule by the pollen, 

which triggers a complex developmental process which encompasses several sub-

phases. One of the nuclei within the pollen grain merges with the egg cell, creating a 

diploid (2n) zygote from which the embryo will form following several rounds of cell 

divisions (Baud et al., 2002). Simultaneously, the second pollen nucleus merges 

together with the central cell producing a triploid (3n) cell from which the endosperm 

will develop, a nourishing tissue which supports the growth of the embryo and 

surrounds it (Olsen, 2001; Berger et al., 2006). Cell divisions continue until the embryo 

reaches the heart stage (Mayer et al., 1991). From this point, the embryo expands 

filling the embryo sac, after which cell divisions are arrested and the seed maturation 

phase begins (Goldberg et al., 1994; Raz et al., 2001). The fertilization process cues 

several other developmental switches, including the initiation of the seed coat 

development (Figueiredo et al., 2015).  

Contrary to the embryo and the endosperm, the seed coat is a tissue of maternal 

origin which does not involve the pollen. It develops from the outer and inner 

integument layers of the embryonic sac following fertilisation (Haughn and 

Chaudhury, 2005), regulated by signalling pathways involving auxins and gibberellins 

(GAs) (Kim et al., 2005a; Figueiredo et al., 2016). During seed coat development, 

several layers differentiate that accumulate different chemical compounds, which 

participate in seed protection (Debeaujon et al., 2007). All these different layers 

contribute to the final degree of seed coat permeability, which has a great impact in 

the resulting seed longevity. In Arabidopsis thaliana (hereafter referred to as 

Arabidopsis), the innermost layer of the seed coat accumulates colourless 

proanthocyanidins (PAs) during early seed development, which are oxidised into 

brown pigments by TRANSPARENT TESTA 10 (TT10) during seed desiccation (Pourcel 

et al., 2005). The subepidermal cell layer thickens and accumulates yellow flavonoids 

termed flavonols (Pourcel et al., 2007). The importance of these compounds in seed 

longevity was demonstrated analysing mutant Arabidopsis seeds with an altered 

flavonoid composition, which showed increased sensitivity to artificial and natural 

ageing (Debeaujon et al., 2000; Clerkx et al., 2004). The seed coat also accumulates 
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lignin, a polymer that reinforces it and reduces its water permeability and whose 

biosynthesis in Arabidopsis is also participated by TT10 (Liang et al., 2006). Two 

transcription factors affecting seed longevity in Arabidopsis have been described, 

which are speculated to do so by altering the seed coat composition or permeability. 

Increased expression of the transcription factor ARABIDOPSIS THALIANA 

HOMEOBOX 25 (ATHB25) was reported to increase the expression of gibberellin 

biosynthetic genes and GA content of seeds, possibly related with alteration of the 

seed coat composition (Bueso et al., 2014). Similarly, COGWHEEL 1 (COG1)-

overexpressing lines were reported to display decreased sensitivity to artificial ageing 

and greater levels of suberin accumulation in the seed coat, which showed reduced 

permeability compared to the wild type (Bueso et al., 2016). 

1.2 SEED MATURATION 

After embryogenesis, the seed enters the phase of maturation, during which it 

will accumulate storage reserves, acquire germination capacity and lose most of its 

water content. Among storage reserves, that will support the embryo after 

germination, carbohydrates, lipids and storage proteins are the most common. 

Carbohydrates are mainly represented by starch, although other less abundant such 

as hemicellulose and raffinose family oligosaccharides (RFOs) are also present. The 

role of RFOs in seed longevity has been long speculated (Bentsink et al., 2000; Buitink 

et al., 2000). Raffinose biosynthesis requires galactinol, which is produced combining 

UDP-Galactose and myoinositol in a reaction catalysed by GALACTINOL SYNTHASE 

(GOLS) (Taji et al., 2002). In Arabidopsis, only two GOLS are expressed in seeds. The 

galactinol content of seeds was demonstrated to correlate with seed longevity and 

the gols2 mutant showed increased sensitivity to artificial ageing (de Souza Vidigal et 

al., 2016). Transgenic Arabidopsis lines expressing the chickpea (Cicer arietinum) 

CaGolS1 and CaGolS2 transcripts under a seed specific promoter also showed an 

enhancement of seed longevity (Salvi et al., 2016).  

Lipids in seeds are mainly triacylglycerols (TAGs), which accumulate in oil bodies 

or oleosomes in the cytosol and become mobilised after seed germination. Seed 

storage proteins constitute the main source of N and S and are mainly composed of 

12 S albumins and 2 S globulins, which are deposited in protein storage vacuoles. 

Apart from their role as storage compounds that will sustain the initial phases of 

seedling growth after germination, a recent study showed that cruciferins, a type of 

12 S albumins, are also important for the establishment of seed longevity in 

Arabidopsis (Nguyen et al., 2015).  Organic phosphorus also accumulates during 
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development of the seed, mainly in the form of phytic acid and its derivatives, which 

were proposed to play a role in oxidative stress responses in seeds (Doria et al., 2009). 

Four main transcription factors govern the progression of seed maturation: 

LEAFY COTYLEDON 1 (LEC1), LEC2, ABA INSENSITIVE 3 (ABI3) and FUSCA 3 (FUS3) 

(Nambara et al., 1995; Parcy et al., 1997; Kagaya et al., 2005; To et al., 2006). They all 

act coordinated, regulating each other’s expression through feedback loops (Parcy et 

al., 1997; To et al., 2006). Mutations in any of these genes result in severe abnormalities 

during seed development and an array of pleiotropic effects, including intolerance to 

desiccation, failure to accumulate storage proteins and reduced seed dormancy and 

longevity (Meinke, 1992; Ooms et al., 1993; Clerkx et al., 2004; Tiedemann et al., 2008). 

HISTONE MONOUBIQUITINATION 1 (HUB1), a RING E3 ubiquitin ligase initially 

identified for its reduced dormancy phenotype (Peeters et al., 2002; Liu et al., 2007b), 

participates in transcriptional regulation through chromatin modifications, regulating 

the levels of gene expression (Cao et al., 2008; Himanen et al., 2012b; Ménard et al., 

2014). hub1 mutants also exhibit pleiotropic phenotypes, including reduced seed 

dormancy and longevity alongside altered flowering time and chlorophyll content 

(Liu et al., 2007b), and all of them are most likely a consequence of transcriptional 

misregulation (Himanen et al., 2012a). 

Late stages of seed maturation comprise the degradation of chlorophyll and 

other pigments present in seeds. This seems to be an important step in seed 

maturation, as seeds retaining chlorophyll were reported to exhibit low levels of 

quality and reduced longevity (Jalink et al., 1998; Clerkx et al., 2003; Nakajima et al., 

2012; Zinsmeister et al., 2016). The program regulating chlorophyll degradation is 

under the control of ABI3, as abi3 mutants retain most of their chlorophyll in mature 

seeds, and is intimately related with biosynthesis of tocopherols, antioxidant 

components that will play a role in preventing seed ageing (Clerkx et al., 2003; Yang 

et al., 2014; vom Dorp et al., 2015). ABI3 also controls the expression of seed specific 

vacuolar aquaporins (Mao and Sun, 2015). Two of these, named tonoplast intrinsic 

proteins (TIPs), were shown to be functionally redundant and expressed during late 

stages of seed maturation. These proteins are water and H2O2 transporters and it was 

shown that they contribute to the maintenance of seed longevity, as the tip3 double 

mutant showed increased sensitivity to artificial ageing (Mao and Sun, 2015).  

Late seed maturation encompasses the expression of heat shock proteins 

(HSPs), without the need of heat stress (Wehmeyer et al., 1996). During heat 

responses, these proteins play a defensive role acting as molecular chaperones and 

preventing irreversible protein aggregation by promoting protein folding. Probably, 
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their function in maturation drying is similar, as indicated by recent studies (Kaur et 

al., 2015). HSPs expression during maturation is promoted by heat shock factors. 

Specifically, it was shown how the seed-specific HEAT SHOCK TRANSCRIPTION 

FACTOR A9 (HSFA9), directly regulated by ABI3, induces the expression of a whole 

network of HSPs during the later phases of seed maturation (Kotak et al., 2007; 

Tejedor-Cano et al., 2010). This is in agreement with the role of these proteins as 

protective chaperones and also with another report pointing towards enhanced seed 

longevity after overexpression of HaHSF9 in sunflower (Helianthus annuus) seeds 

(Tejedor-Cano et al., 2010). 

1.3 DESICCATION TOLERANCE 

Seed desiccation tolerance is intimately related with the acquisition of seed 

longevity, although their regulatory processes are separated (Leprince et al., 2016). 

Based on their tolerance to desiccation, seeds are classified in two main types. On the 

one hand, recalcitrant seeds are defined as those which are unable to withstand 

desiccation and require an elevated moisture content to survive. They are usually 

present in fleshy fruits and their longevity is relatively low. On the other hand, 

orthodox seeds (including Arabidopsis) are defined as desiccation-tolerant, which 

lose most of their water content during the late phases of seed maturation (Roberts, 

1973). Although highly variable between species, orthodox seeds are able to survive 

for relatively long periods of time in this dry state and germinate afterwards.  

Desiccation tolerance is acquired through different mechanisms involving ABA 

and its regulatory networks, which trigger the accumulation of non-reducing sugars 

and late embryogenesis abundant proteins (LEAs). When seeds lose moisture content, 

the cytoplasm reduces its volume, which can induce several lesions and damages 

(Hoekstra et al., 2001). To help to protect against these, the presence of previously 

accumulated RFOs and LEAs is crucial, since they confer stability to the membranes 

and contribute to the formation of a cytoplasmic glass, which allows metabolism to 

be stopped and prevents cell constituents from suffering irreparable damages 

(Ballesteros and Walters, 2011). During this process, water replacement occurs, a 

mechanism involving the substitution of water molecules by sugars, which helps to 

conserve the protein structure and lipid spacing, avoiding further membrane fusions 

(Buitink and Leprince, 2008).  

LEA proteins accumulate during seed maturation and comprise a wide variety 

of protein families (Hundertmark and Hincha, 2008). Despite of their abundance, their 

molecular roles are not completely clear, although some evidence is available. In 

Arabidopsis, silencing of three specific dehydrins led to reduction of seed survival 
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after storage (Hundertmark et al., 2011), whereas accumulation of four specific LEAs 

was correlated with an increase of seed longevity during seed maturation in 

Medicago truncatula (Chatelain et al., 2012). It is speculated that LEAs can exert 

diverse roles in the cell based on the level of hydration. These functions include those 

expected from traditional chaperones, such as protecting the integrity of membranes 

and stabilizing proteins, but other studies speculate they can increase the density of 

the cellular glass after desiccation, therefore reducing molecular mobility and 

increasing seed longevity (Chakrabortee et al., 2007; Tunnacliffe et al., 2010). 

1.4 SEED DORMANCY 

It is also during the later stages of seed maturation when seed dormancy and 

longevity are established. These are two key traits that determine the life span of the 

seed. During the course of evolution, plants have developed strategies that allow 

them to time seed germination and make it coincide with the adequate 

environmental conditions (Finch-Savage and Leubner-Metzger, 2006). One such 

mechanism is seed dormancy, which is defined as the temporary inability of an intact, 

viable seed to germinate under favourable conditions (Bewley, 1997). Seed dormancy 

can be alleviated or completely released by dry storage of the seeds, a process 

referred to as after-ripening. From an ecological perspective, seed dormancy is key 

as it ensures that seeds will germinate at the correct environmental conditions, 

preventing them from germinating at a short period of favourable conditions amidst 

an unfavourable season. Besides, seed dormancy maximises the chances of seeds 

developing into an adult plant and producing offspring, given that even seeds from 

the same mother plant will exhibit different depths of seed dormancy. In crops, 

negative selection for seed dormancy was conducted during the domestication 

process, aiming for fast and uniform germination. However, a certain degree of seed 

dormancy is required to prevent pre-harvest sprouting. 

The establishment and maintenance of seed dormancy is regulated by the 

balance between abscisic acid (ABA) and GAs. ABA is essential for the induction of 

dormancy, as indicated by the altered dormancy levels observed in different mutants 

with impaired ABA biosynthesis or signalling (Koornneef et al., 1982; Karssen et al., 

1983; Koornneef et al., 1984). Conversely, GAs promote seed germination, considering 

that Arabidopsis mutants impaired in GA biosynthesis fail to germinate, an effect 

mimicked after incubation with inhibitors of GA biosynthesis (Koornneef and van der 

Veen, 1980; Debeaujon and Koorneef, 2000). Both hormones are linked through a 

delicate balance, as they exert a negative influence on the other’s biosynthesis and 

signalling pathways (Finkelstein et al., 2008; Graeber et al., 2012; Gazzarrini et al., 
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2015). Aside from ABA and GAs, other hormones have been reported to affect seed 

dormancy and germination, including brassinosteroids, ethylene and nitric oxide 

(Steber and McCourt, 2001; Arc et al., 2013a; Gazzarrini et al., 2015). 

DELAY OF GERMINATION 1 (DOG1) was initially described as a quantitative trait 

locus (QTL) for seed dormancy in Arabidopsis (Alonso-Blanco et al., 2003). It has a 

major role in the regulation of seed dormancy considering that dog1 mutants are 

completely non-dormant (Bentsink et al., 2006). DOG1 expression and accumulation 

are induced by low temperatures during seed maturation, causing enhanced levels of 

seed dormancy (Chiang et al., 2011; Kendall et al., 2011; Nakabayashi et al., 2012). The 

DOG1 protein lacks domains with a known function, which complicated the 

elucidation of its molecular function. Several studies explored how DOG1 is regulated, 

for example by alternative splicing and polyadenylation (Nakabayashi et al., 2015; 

Cyrek et al., 2016). It was also shown that DOG1 can modify the expression of GA-

related genes, thus altering cell wall properties (Graeber et al., 2014). Other works 

showed it can affect the expression of genes involved in microRNA processing (Huo 

et al., 2016) and its participation in seed development by affecting ABA signalling 

pathways (Dekkers et al., 2016). However, only recently the molecular mechanism of 

action of DOG1 was demonstrated (Née et al., 2017). It was shown that DOG1 interacts 

with two PP2C phosphatases in seeds of Arabidopsis and negatively affects their 

function in dormancy release, although the exact mechanism of this regulation is not 

clear yet. 

DOG1 also participates in the acquisition of seed longevity, as mutants of this 

gene exhibit reduced resistance to ageing (Bentsink et al., 2006). However, if the 

mechanism underlying this process is similar as that described for seed dormancy 

remains to be determined. A recent publication showed that the dog1-1 mutant 

enhances abi3-1 phenotypes and phenocopies those from stronger abi3 alleles, 

including a severe reduction in seed longevity and chlorophyll retention in seeds 

(Dekkers et al., 2016). This suggests that DOG1 actively participates in seed 

development and may explain its effect on seed longevity. 

The connection between seed dormancy and seed longevity is not clear. Seed 

dormancy and longevity are studied as separate traits in plants and most of the 

mutants described showed a positive correlation between these traits, such as in abi3, 

tt mutants, dog1 or hub1 (Ooms et al., 1993; Debeaujon et al., 2000; Bentsink et al., 

2006; Liu et al., 2007b). Contrary to this notion, the analysis of recombinant inbred 

lines (RILs) between different Arabidopsis accessions showed that several QTLs for 

seed longevity collocated with QTLs for seed dormancy and revealed a negative 
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correlation between these two traits (Nguyen et al., 2012). These authors proposed 

that the apparent trade-off between seed dormancy and longevity may arise as a 

result of ecological variation and varying selective pressure on one or the other, but 

this is yet to be determined (Nguyen and Bentsink, 2015). 

1.5 SEED DETERIORATION AND AGEING DURING STORAGE 

Either buried in the soil seed bank or stored in the dry state, seeds deteriorate 

over time, a process referred to as seed ageing that involves a loss of vigour and 

viability and thereby directly related to seed longevity (Walters, 1998; Grappin et al., 

2008). As previously explained, orthodox seeds are both desiccation-tolerant and able 

to survive in this dry state for a prolonged period of time. The main factor contributing 

to this is the glassy conformation acquired by the cytoplasm of cells (Buitink and 

Leprince, 2008). In this state of extreme cytoplasmic viscosity, molecular diffusion is 

severely reduced and the low levels of available moisture deter most chemical 

reactions (Fernández-Marín et al., 2013). However, and despite these protective 

mechanisms and quiescent metabolism, seeds age and deteriorate, eventually losing 

viability. 

Environmental conditions are of key importance for seed storage, considering 

factors as temperature and relative humidity (RH) during this storage have profound 

effects on seed longevity and on the rate of seed ageing (Ellis and Roberts, 1980a; 

Dickie et al., 1990; Ellis et al., 1995). The combination of low temperatures and reduced 

seed moisture content ensures that seeds are in the glassy state, minimising the 

deleterious impact of ageing (Walters, 1998). Increasing temperature or moisture 

content of the seeds softens the cellular glass to a rubbery state or even back to the 

liquid state, reactivating metabolism and deteriorative processes. This is the 

theoretical basis for artificial seed ageing methods, which apply elevated 

temperatures and humidity levels to mimic the effects of the natural ageing process 

in a short period of time (Delouche and Baskin, 1973; Tesnier et al., 2002). 

Ageing damages during dry seed storage have been thoroughly investigated 

during the years. The main contributors to seed deterioration are free radical-

mediated lipid peroxidation, loss of integrity of nucleic acids, disruption of cellular 

membranes, enzyme inactivation and protein degradation  (Smith and Berjak, 1995; 

Walters, 1998; Murthy et al., 2003; Rajjou et al., 2008a). Most of these damages 

originate from oxidative processes, which in most cases lead to the production of 

reactive oxygen species (ROS) that subsequently can damage cellular components.  
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Evidence of these deteriorative processes during dry seed storage has been 

documented. For example, dry seeds were shown to release volatiles associated with 

lipid peroxidation or alcoholic fermentation (Buckley and Buckley, 2009; Colville et al., 

2012; Mira et al., 2016). A particular case of chemical oxidation occurring in dry seeds 

are Maillard reactions (Murthy and Sun, 2000) in which, through a non-enzymatic 

process, reducing sugars or aldehydes react with the amino groups present in 

proteins. This results in glycosylated end-products whose accumulation negatively 

affects seed longevity (Wettlaufer and Leopold, 1991). 

1.6 SEED LONGEVITY AND ITS REGULATION 

The capacity of a seed to survive relatively long periods of time while retaining 

the ability to germinate is termed longevity. More specifically, seed longevity refers 

to the span of time mature seeds remain viable and it encompasses all those 

mechanisms present contributing to this end. Consequently, seed longevity is 

affected by those factors affecting seed deterioration and those which participate in 

seed ageing. Mechanisms regulating seed longevity can be divided into two main 

categories, according to their mode of action: protection and repair and 

detoxification (Rajjou and Debeaujon, 2008). Protection mechanisms are established 

during seed maturation and partially overlap with those involved in maturation 

drying, as demonstrated by mutants with impaired seed desiccation tolerance (Ooms 

et al., 1993). On the other hand, repair and detoxification systems become active upon 

seed imbibition and contribute to minimise the effect of ageing-induced damages 

and compounds which are potentially harmful for seed viability.  

1.6.1 Protective mechanisms 

It was already discussed in the previous section that one of the main 

contributing factors to seed survival in the dry state is the glassy conformation of the 

cell cytoplasm established during seed maturation drying. The reduction of the water 

content of the cytoplasm together with the accumulation of non-reducing sugars and 

LEAs conforms a glassy matrix that severely impedes molecular mobility and chemical 

reactions. The accumulation of non-reducing sugars, particularly RFOs, is thought to 

be a key agent in the acquisition and maintenance of seed longevity. These 

compounds can be used as energy sources during germination and some reports 

linked them to the maintenance of membrane integrity and protection of labile 

proteins (Sano et al., 2015).  

Another fundamental contributor to seed longevity is the seed coat, as 

previously discussed. The seed coat is a tissue of maternal origin whose cells are dead 
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by the end of seed development. However, it acts as a chemical and mechanical 

barrier, limiting the interaction of the embryo with the environment. Flavonoids 

accumulated in the seed coat act as antioxidants and may help scavenge ROS 

produced during ageing, besides their contribution to the seed coat permeability 

(Debeaujon et al., 2000).  

Seed ageing is associated with oxidative damage to different cell constituents. 

Mild levels of oxidation during seed storage are linked with the release of seed 

dormancy (Bazin et al., 2011; Arc et al., 2013a), but a prolonged exposure may 

endanger seed survival. Consequently, seeds are equipped with an array of 

antioxidants to protect them from excessive oxidative damage. As dry seeds are 

devoid of ascorbic acid (vitamin C), its role in preventing oxidative damage is minor. 

However, mutants with a reduced redox buffering capacity were recently shown to 

display reduced seed longevity and germination speed (De Simone et al., 2017). The 

glutathione system regulates the redox status of cells and the balance between the 

reduced and oxidised forms was used to monitor seed ageing (Kranner et al., 2006). 

Tocopherols (vitamin E) and tocotrienols have drawn quite some interest, as they help 

preventing non-enzymatic lipid peroxidation and buffering oxidative stress at the 

photosynthetic apparatus (Sattler et al., 2006a). Mutants involved in the biosynthesis 

of tocopherols, including vitamin E deficient 1 (vte1), vte2 and vte6 displayed reduced 

seed longevity (Sattler et al., 2004; vom Dorp et al., 2015). Prevention of non-

enzymatic lipid peroxidation is also contributed by lipocalins, a group of small 

proteins involved in the transport of lipophilic substrates. It was shown that AtTIL, a 

temperature-induced lipocalin and AtCHL, a chloroplastic lipocalin, prevent lipid 

oxidation and single and double mutants exhibited reduced seed longevity, whereas 

increased accumulation of AtCHL caused enhanced resistance to seed ageing (Boca 

et al., 2014). Seed storage proteins (SSPs) were shown to be targets of oxidation in 

seeds, resulting in carbonylated proteins (Arc et al., 2011). Besides, Arabidopsis 

mutants affected in 12 S globulin biosynthesis, a type of SSPs, were shown to have 

reduced seed longevity and that these proteins function as oxidation buffers in dry 

seeds, preventing carbonylation of other proteins (Nguyen et al., 2015). 

1.6.2 Repair and detoxification systems 

The protective mechanisms of the dry seed are finite and consequently, 

prolonged storage can exhaust them. At this point, damages to different seed 

constituents will start accumulating, which could prevent seed germination. This is 

why seeds are equipped with several systems that, upon imbibition, allow them to 

deal with those damages incurred during storage. The extent of this damage is usually 
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accompanied by a reduction of seed vigour and a delay of seed germination 

(Matthews and Khajeh-Hosseini, 2007; Rajjou et al., 2008a). 

Imbibition of quiescent dry seeds allows for a rapid resumption of metabolic 

activity, alongside an increase in ROS production. In order to control this production 

and to process the hazardous free radicals accumulated during ageing, seeds have 

detoxification systems. These comprise antioxidant enzymes such as glutathione and 

dehydroascorbate reductases, catalases, superoxide dismutases (SOD) or glutathione 

and ascorbate peroxidases (Bailly et al., 1996; Bailly, 2004). However, these enzymes 

can also be affected by the oxidative damages incurred during ageing, which would 

compromise seed vigour and viability. Contrary to this notion, a recent study in 

chickpea showed how galactinol synthases became active as a consequence of 

artificial ageing and helped to scavenge ROS species (Salvi et al., 2016). A recent 

publication described how overexpression of a Pseudomonas aldo-keto reductase 

PsAKR1, a protein involved in detoxification of reactive groups resulting from lipid 

peroxidation, led to enhanced seed longevity in seeds of tobacco (Nicotiana tabacum) 

and rice (Oryza sativa) (Narayana et al., 2017). Likewise, lipooxygenases were reported 

to affect the rate of lipid peroxidation in seeds during seed development and 

germination. Specifically, several studies conducted on rice reported that decreasing 

the expression level of OsLOX2 and OsLOX3 increased resistance of seeds to artificial 

ageing by reducing the levels of lipid peroxidation end-products (Huang et al., 2014a; 

Ma et al., 2015; Xu et al., 2015). Along with ROS, accumulation of cyanide as a result 

of seed ageing was suggested as a possible contributor to the ageing process (Rajjou 

et al., 2008a). In apple tree (Malus domestica) seeds, accumulation of hydrogen 

cyanide caused release of embryo dormancy by increasing the concentration of H2O2 

(Krasuska et al., 2014), although the long term effects on seed viability were not 

addressed. 

Certain groups of cysteine-rich proteins are known to act as antioxidants, such 

as metallothioneins and peroxyredoxins, and were also reported to influence seed 

longevity. Specifically, two studies described how overexpression of sacred lotus 

metallothioneins NnMT2a and NnMT3 and 1-CYSTEINE PEROXIREDOXIN 1 (NnPER1) 

in Arabidopsis seeds resulted in enhanced resistance to artificial ageing and seed 

vigour (Zhou et al., 2012; Chen et al., 2016). Overexpression of metallothioneins 

caused increased activity of SODs after artificial ageing compared to the wild type, 

whereas increased expression of NnPER1 led to a reduction of ROS production and 

lipid peroxidation during the treatment. In both cases, expression of the transcripts 

was also detected during seed development, which suggest they may also contribute 

to buffer the oxidative stresses seeds undergo during maturation drying. 
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As already mentioned, proteins are also affected by oxidative damages and 

accumulate oxidations or covalent modifications, which can impose a loss of 

enzymatic activity or protein function (Rajjou et al., 2008b). ROS oxidise methionine 

residues to methionine sulfoxide, a modification commonly reported in all ageing 

organisms (Stadtman, 2006). These modifications are repaired by methionine 

sulfoxide reductases (MSR) and accumulation of these proteins in Medicago 

truncatula and Arabidopsis seeds was positively correlated with seed longevity 

(Châtelain et al., 2013). Covalent modification of proteins cause the alteration of L-

aspartyl or asparaginyl residues to isoaspartyl (isoAsp) residues, causing a loss of 

protein function. These anomalous residues are repaired by L-isoaspartyl O-

methyltransferases (PIMTs). Overexpression of PIMT1 in Arabidopsis enhanced seed 

resistance to artificial ageing while reducing isoAsp accumulation (Oge et al., 2008). 

In addition, Arabidopsis seeds overexpressing the chickpea CaPIMT2 displayed 

increased resistance to artificial ageing (Verma et al., 2013) and similar results were 

found for transgenic rice seeds (Wei et al., 2015; Petla et al., 2016).  

Another group of macromolecules affected by oxidative damages during 

ageing are nucleic acids, whose integrity is crucial for seed germination and longevity 

(Waterworth et al., 2015). ROS can induce breaks in DNA, either by desaturating the 

deoxyribose backbone or by covalent modification of the bases. One of the most 

abundant modifications is the hydroxylation of the C-8 position guanine into 7,8-

dihydro-8-oxoguanine (8-oxoG), which is potentially mutagenic (Bray and West, 

2005). In Arabidopsis, transgenic seeds overexpressing a bifunctional glycosylase/AP 

lyase, a protein participating in the repair of 8-oxoG modifications, showed increased 

resistance to artificial ageing and reduced levels of 8-oxoG (Chen et al., 2012). DNA 

damage also includes the loss of integrity, represented by single and double strand 

breaks. In Arabidopsis, mutants impaired in DNA ligases AtLIG4 and AtLIG6, which 

participate in strand-break repair, were shown to have reduced seed longevity and 

vigour (Waterworth et al., 2010). 

Translation but not transcription was demonstrated to be required for 

Arabidopsis seed germination, highlighting the importance of mRNAs stored during 

seed development that can partially compensate for those proteins damaged during 

ageing (Rajjou et al., 2004; Kimura and Nambara, 2010). Similar to DNA, RNA is also 

affected by oxidative damages. Studies in pea (Pisum sativum) showed that artificial 

ageing induced RNA degradation, alongside DNA laddering (Chen et al., 2013), an 

effect also observed in seeds of soybean (Glycine max) (Fleming et al., 2017). Targeted 

degradation and decay of stored mRNAs was shown to contribute to dormancy 

alleviation in sunflower and Arabidopsis seeds during after ripening (Bazin et al., 2011; 
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Basbouss-Serhal et al., 2017). These studies reported how 5’UTR sequences carry 

specific motifs to which components of the cell machinery can bind, which opens the 

possibility for RNA-binding proteins as a protective mechanism. However, no such 

system has been described so far. 

1.6.3 The influence of the environment 

Apart from the specific mechanisms in place to protect the seed and assist it to 

cope with ageing, the maternal environment at which the seed develops plays a key 

role in the resulting seed longevity and quality. The impact of the environmental 

conditions experienced by the mother plant on traits of its offspring is referred to as 

maternal effects and they represent a major adaptive response in plants (Donohue, 

2009). The contribution of maternal environments to the regulation of seed 

germination has been a topic of research for a long time now (Fenner, 1991). 

Seed longevity is a plastic trait that exhibits natural variation and as such, it is 

likely that maternal effects can modify it (Miura et al., 2002; Nguyen et al., 2012). Some 

studies have explored the contribution of maternal effects to seed longevity. 

Temperatures experienced during seed maturation are known to affect the levels of 

seed dormancy. Likewise, some studies have reported that they can also alter seed 

longevity in a species-specific manner. Some investigations reported opposite effects 

of low temperatures experienced by the mother plant on the resulting seed longevity 

(Kochanek et al., 2011; Mondoni et al., 2014). As these studies were conducted in 

different species, it is possible that the underlying mechanisms to the altered seed 

longevity differ between them. In Arabidopsis, it has been shown that lower 

temperatures during seed maturation have a detrimental effect on seed longevity 

depending on the studied genotype (He et al., 2014). These authors reported a similar 

genotype-dependent effect on seed longevity caused by the light intensity at which 

the seeds developed.  

1.7 SEED GERMINATION 

Germination starts with water uptake by the seed (imbibition) and continues 

until the radicle protrudes through the seed surrounding structures (Bewley, 1997). 

Seed germination represents a major phase transition in the life history of plants and 

as such, it is a tightly regulated process. Extensive literature is available on the 

regulation and mechanisms participating in germination, so this introduction will only 

highlight the key aspects of the process (Bewley, 1997; Holdsworth et al., 2008; 

Nonogaki et al., 2010; Rajjou et al., 2012; Bewley et al., 2013). 
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The water uptake process is divided in three distinct phases. During the first one, 

seeds rapidly take water as a result of the difference in water potential, which can 

cause solute leakage and imbibition damages in the seed. During this phase, 

metabolism will re-activate, alongside the repair mechanisms already described and 

protein translation from stored mRNAs will begin (Nonogaki et al., 2010). Following 

this initial imbibition, water uptake is slowed down, representing the second or lag 

phase. Although the increase in water content during this phase is relatively minor, 

the seed cells expand as a result of diverse processes and seed volume increases, 

which can result in cracking of the seed coat. During this phase, mitochondrial 

respiration is already active as well as DNA repair systems. Therefore, transcription 

and translation of new mRNAs can occur. As the cells continue to grow and elongate, 

seeds enter the third phase of water uptake, which in fact corresponds to the final 

steps leading to radicle protrusion and the end of germination. Prior to radicle 

emergence, storage reserves remain mostly not mobilised, although a small fraction 

is used to feed the ongoing cellular respiration (Bewley et al., 2013). 

Plant phytohormones play fundamental roles during the process of seed 

germination (Holdsworth et al., 2008). As described for the regulation of seed 

dormancy, ABA and GAs exert opposite roles in seed germination, with ABA 

associated with the inhibition of seed germination whereas GAs promote it. It is the 

balance between them what determines the resulting seed behaviour (Finkelstein et 

al., 2008; Gazzarrini et al., 2015; Topham et al., 2017). Specifically, seed germination 

requires high levels of GAs and reduced amounts of ABA.  

GAs are fundamental for seed germination. Early studies identified mutants 

impaired in GA biosynthesis which only germinated after addition of exogenous GAs 

(Koornneef and van der Veen, 1980). Alteration in GA biosynthetic genes can exhibit 

distinct phenotypes. For example, disruption of GA REQUIRING 1 (GA1) completely 

prevents germination, considering it is a single-copy gene in Arabidopsis that 

catalyses one of the first committed steps in GA biosynthesis (Sun and Kamiya, 1994). 

Conversely, single mutants of GIBBERELLIN 3-OXIDASE 1 (GA3OX1) and GA3OX2, 

which are expressed in the embryo following imbibition, exhibit germination levels 

comparable to that of the wild type as a result of functional redundancy, although 

the double ga3ox1 ga3ox2 mutant is severely affected in its germination behaviour 

(Yamauchi et al., 2004; Mitchum et al., 2006). The activation of GA biosynthesis leads 

to accumulation of GAs, which in turn causes the degradation of DELLA-domain 

proteins, which are repressors of GA responses (Sun and Gubler, 2004). The DELLA 

protein RGA-LIKE 2 (RGL2) was shown to be a repressor of seed germination in the 

absence of GA biosynthesis, but it is degraded when GAs are present (Tyler et al., 
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2004). GA accumulation causes the activation of GA-responsive genes and the onset 

of germination. For example, EXPANSIN 2 (EXP2), a gene involved in cell wall 

loosening and active cell expansion is expressed in response to GAs but repressed in 

the presence of DELLAs (Yan et al., 2014). 

The CYTOCHROME P450, FAMILY 707, SUBFAMILY A, POLYPEPTIDE 2 

(CYP707A2) locus, involved in ABA degradation, was shown to be up-regulated 

following imbibition of the seed and mutant cyp707a2 imbibed seeds accumulated 

six times more ABA and were hyperdormant (Kushiro et al., 2004; Okamoto et al., 

2006). ABI4 regulates both ABA and GA metabolic genes to repress seed germination 

and maintain seed dormancy and can directly bind to the promoter of CYP707A2 

(Shu et al., 2013). This shows the importance of ABA degradation for seed 

germination. Moreover, it was shown that ABA produced by the endosperm can 

repress seed germination after embryo imbibition through the action of RGL2 and 

ABA DEFICIENT 1 (ABA1), whereas removal of the testa can alleviate this repression 

(Debeaujon and Koorneef, 2000; Lee et al., 2010).  

Extensive evidence is available that illustrates the cross-talk between ABA and 

GAs in seeds to control germination (Holdsworth et al., 2008; Graeber et al., 2012).  

For example, transcription factors SPATULA (SPT) and PHYTOCHROME INTERACTING 

FACTOR 3-LIKE 5 (PIL5) were shown to repress the expression of GA3OX1 and 

GA3OX2, thereby blocking seed germination (Penfield et al., 2005). ABA also 

represses GA biosynthesis in imbibed seeds, as illustrated by the ABA-deficient 

mutant aba2-2 (Seo et al., 2006). RGL2 enhances ABA accumulation and activity of 

ABI5, which results in the repression of germination (Piskurewicz et al., 2008).  

Apart from the balance between ABA and GAs, other plant hormones have been 

shown to contribute to seed germination. Ethylene and brassinosteroids (BRs) also 

participate in the regulation of seed germination, which they usually do through 

interactions with ABA signalling routes. Ethylene reduces ABA levels or sensitivity and 

in turn, ABA reduces ethylene biosynthesis and perception, resulting in an 

antagonistic mechanism in the regulation of seed germination (Ghassemian et al., 

2000; Cheng et al., 2009; Linkies and Leubner-Metzger, 2012; Arc et al., 2013b). BR-

deficient or insensitive mutants were found to be ABA-sensitive, which suggest that 

BRs mode of action involves a modification of the ABA signalling pathway, which 

would agree with a proposed GA-parallel mechanism for BRs (Steber and McCourt, 

2001; Leubner-Metzger, 2003). Interestingly, a recent publication showed that BR-

deficient mutants are more resistant to artificial ageing before and after application 

of a priming treatment, which suggests that BRs have a negative impact on seed 
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longevity, apart from their role in seed germination (Sano et al., 2017). Auxins were 

also reported to play a role in seed germination, again by interfering with ABA 

signalling. Specifically, altering auxin signalling by enhancing the expression of AUXIN 

RESPONSE FACTOR 10 (ARF10) caused increased ABA sensitivity and exogenous 

application of auxin potentiated the inhibitory effect of ABA on seed germination (Liu 

et al., 2007a). 

Germination also represents one of the most vulnerable stages of the plant life 

cycle. If seeds are exposed to environmental stresses or adverse conditions, several 

repressive mechanisms can become active to arrest seed germination. One such 

example is the existence of a checkpoint immediately after seed germination. It was 

shown that at early stages of seed germination, if conditions of water stress are 

present, ABI3 and ABI5 can re-induce late seed maturation programmes and stop the 

germination process (Lopez-Molina et al., 2001, 2002). 

1.8 SEED QUALITY MARKERS 

Seed quality is determined by several factors, such as genetic purity, 

germination capacity and uniformity, vigour, storability and performance under 

suboptimal conditions (McDonald, 1998). Seed vigour is defined as the sum of those 

properties of the seed which determine the potential level of activity and performance 

of seed lots during germination and seedling emergence in a wide range of 

environments (Finch-Savage and Bassel, 2016). From this definition, it is clear that 

seed vigour is not a single measurable trait but a concept associated with different 

aspects of seed performance.  

Generally speaking, high quality seeds: a) germinate completely; b) germinate 

quickly and at the same time; c) generate normal and healthy seedlings; d) show little 

variation of germination in response to external factors; and e) have high storability 

(Corbineau, 2012). To obtain this is a major challenge for seed companies, which are 

always looking for novel ways to evaluate and discriminate the quality level of seed 

lots.  

Ageing during seed storage was shown to negatively impact seed vigour, 

considering it involves a whole set of damages to cell constituents as well as 

disruption of the cell machinery. Based on this, the germination of seeds after artificial 

ageing is considered to be a vigour test (Delouche and Baskin, 1973). As mentioned 

above, seed storability is one of the factors contributing to the overall seed quality 

and it is the one on which this section will be focused. As artificial ageing combined 



Introduction 

17 

with germination tests are considered an estimator of seed vigour, the term seed 

quality will be used to refer to the seed germination percentage of a seed batch. 

Classically, the approaches used to evaluate seed storability and viability have 

relied on the use of germination tests combined with accelerated ageing treatments 

(Delouche and Baskin, 1973) or the use of a tetrazolium test, which stains only living 

tissues and allows quantification of living seeds (Wharton, 1955). During the years, 

several methods have been proposed to investigate seed quality. In Brassica, the 

fluorescence of sinapine was used to distinguish dead seeds from those viable (Taylor 

et al., 1990). Similarly, the chlorophyll fluorescence of Brassica oleracea seeds was also 

used as a marker of seed performance (Jalink et al., 1998). Likewise, the abundance of 

HSP17.6I was positively correlated with seed performance in this species (Bettey and 

Finch-Savage, 1998) and changes in enzyme activities in four Brassica species were 

proposed as indicators of seed deterioration (Ramiro et al., 1995). 

The half-cell reduction potential of glutathione (EGSSG/2GSH), a major cellular 

antioxidant and redox buffer, was also proposed as a valid marker to evaluate seed 

viability, as alterations of this indicator are usually associated with programmed cell 

death (PCD) events and loss of cell viability (Kranner et al., 2006; Seal et al., 2010). 

Thermal seed-profiling was demonstrated to be able to discriminate viable pea seeds 

upon imbibition in a non-destructive approach (Kranner et al., 2010). Another non-

invasive method showed a positive correlation between oxygen influx to the seed 

upon imbibition and seed viability (Xin et al., 2013). Recently, the integrity of RNA in 

soybean seeds was proposed as a viability marker, although its resolution is limited 

(Fleming et al., 2017).  

The production of low molecular weight volatiles resulting from seed 

deterioration was also explored to monitor seed quality (Zhang and Roos, 1997). 

Methanol was suggested as a good marker candidate, since all studied species 

released it (Colville et al., 2012). Similarly, seeds of Brassica rapa, B. napus, B. oleracea 

and Arabidopsis showed that ethanol release can be a good predictor of seed 

deterioration (Buckley and Buckley, 2009; Kodde et al., 2012).  

The role of sugars in seed longevity has been long speculated, although a 

satisfactory correlation could not be established (Bentsink et al., 2000; Buitink et al., 

2000; Buitink and Leprince, 2008). However, recent studies have reported that 

accumulation of galactinol in mature, dry seeds of Arabidopsis, cabbage, tomato 

(Solanum lycopersicum) (de Souza Vidigal et al., 2016) and chickpea (Salvi et al., 2016) 

showed a direct correlation with seed longevity and can therefore be used to monitor 

it.  
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1.9 THE ECOSEED PROJECT AND SCOPE OF THIS THESIS 

This PhD thesis is part of the European consortium EcoSeed, whose aim is to 

ensure the availability of future plant genetic resources across Europe and to provide 

the basis for improving seed quality traits and seed handling protocols. To this end, 

the impact of different environmental conditions during seed maturation and storage 

on seed quality was explored. This consortium is a joint venture bringing together 11 

groups with expertise in different fields of seed biology. Using the plant model species 

Arabidopsis thaliana in combination with three major crops, Brassica oleracea, 

sunflower and barley (Hordeum vulgare), the project aims to determine how the 

changing climate impacts seed quality during production and storage, alongside the 

molecular mechanisms underlying it. Furthermore, the project aims to establish new 

tools to determine seed quality and to translate the generated knowledge to other 

species. 

The aim of this thesis is to gain a better understanding on the genetic and 

environmental regulatory mechanisms that govern seed longevity in Arabidopsis 

thaliana and to evaluate novel tools to evaluate seed quality. For this, we conducted 

a multidisciplinary approach combining transcriptomics, molecular biology, cytology 

and biochemical labelling of proteins.  

The first part of this thesis addresses the impact of the environmental stresses 

temperature and drought on seed resistance to artificial ageing and evaluates the 

accompanying modifications of the seed transcriptome by RNA-sequencing analyses. 

We show that temperatures experienced by the mother plant during seed 

development result in alterations of seed longevity and the transcriptome (section 

3.1.1). Similarly, the application of drought during seed maturation severely reduces 

yield, but increases seed quality in two studied genotypes. We evaluated the 

modification of the seed transcriptome by drought and explored the possible role of 

cell wall modification in the observed responses to drought (section 3.1.2).  

The genetic regulation of seed longevity in Arabidopsis is investigated in two 

separate approaches in this thesis. First, the role of DOG1 in seed longevity is studied 

by analysing its interaction with other proteins in vivo and characterising T-DNA 

insertion mutants of these candidate genes (section 3.2.1). Second, the possible 

contribution to seed longevity of the flowering time regulator FRIGIDA (FRI) is 

addressed (section 3.2.2). FRI was initially identified together with 3 other genes 

contained within a natural modifier from the Shahdara accession that enhanced seed 

longevity in the longevity-deficient mutant lec1-3.  
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The last part of this thesis examines the feasibility of two distinct methods to 

monitor seed quality. The effect of maternal temperatures on seed quality was used 

as the starting point to determine whether nuclear size and chromatin compaction in 

Arabidopsis embryos correlated with the observed quality levels (section 3.3.1). Next, 

the labelling of Activity-Based Protein Profiling (ABPP) probes in protein extracts from 

seeds of different quality levels is evaluated as a possible predictor of seed quality 

(section 3.3.2).
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2 MATERIALS AND METHODS 

2.1 MATERIALS 

2.1.1 Plant material 

The Arabidopsis thaliana accessions Columbia (Col-0), Landsberg erecta (Ler) 

and Shahdara (Sha), together with NIL DOG1, originate from the laboratory of Prof. 

Dr Maarten Koornneef at the University of Wageningen. Accession C24 was kindly 

provided by Lei Zhang (Max Planck Institute for Plant Breeding Research; Cologne, 

Germany). All the vpe mutants were kindly provided by Dr Renier van der Hoorn 

(University of Oxford, United Kingdom). All T-DNA insertion lines and mutants used 

in this work are listed in Supplemental Table 1 and were ordered from the 

Nottingham Arabidopsis Stock Centre (NASC). If not indicated otherwise, the 

accession used is Col-0. 

2.1.2 Antibiotics 

All the antibiotics used in this work were purchased from Duchefa (Haarlem, The 

Netherlands) and they were used for selection at the concentrations shown in Table 

1. Stock solutions were prepared, aliquoted and stored at -20 °C. 

Table 1. Antibiotics used in this study. The solvent and final working concentration are 

indicated. 

Antibiotic Solvent mg/l 

Ampicilin H2O 100 

Gentamycin H2O 30 

Hygromycin H2O 50 

Kanamycin H2O 50 

Rifampicin DMSO 50 

Spectinomycin H2O 100 

 

2.1.3 Bacterial and yeast strains 

For cloning purposes and plasmid multiplication, the chemically competent 

DH5α strain of Escherichia coli (Hanahan, 1983) was used. For plant transformation, 

the electrocompetent GV3101 strain of Agrobacterium tumefaciens carrying the 
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pMP90 helper plasmid (Koncz and Schell, 1986) was used. For yeast two-hybrid 

assays, Saccharomyces cerevisiae strain pJ69-4A was used (James et al., 1996).  

2.1.4 Buffers and culture media 

Unless stated otherwise, all buffers and media mentioned were prepared as 

described by Sambrook et al. (1989). Yeast cells were grown on non-selective yeast 

extract, peptone and dextrose medium supplemented with adenine (YPDA) medium, 

whereas yeast two-hybrid assays were conducted using the selective synthetic define 

(SD) medium (Table 2). 

 

Table 2. Media used for growth and selection of yeast cells. 

YPDA SD 

20 g/l peptone 6.7 g/l yeast nitrogen base without amino 

acids 

10 g/l yeast extract 0.64 or 0.62 g/l Drop out (DO) 

supplement  

(-Leu/-Trp or -Leu/-Trp/-His, respectively) 

20 g/l glucose 20 g/l glucose 

0.01 % adenine hemisulfate 18 g/l agar (for solid plates) 

18 g/l agar (for solid plates)  

 

For some applications, additional solutions and buffers were required (Table 3). 

 

Table 3. Additional solutions and buffers used. 

Enzyme mix High-salt solution for RNA precipitation 

0.3 % (w/v) pectolyase 1.2 M sodium citrate 

0.5 % (w/v) cytohelicase 0.8 M sodium chloride 

0.5 % (w/v) cellulose  

Diluted in 10 mM citrate buffer at pH 

4.5 
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MES running buffer 0.5 X Murashige and Skoog (MS) media 

50 mM MES 2.2 g/l MS basal salt mixture (Duchefa) 

50 mM Tris-Base 0.5 g/l MES 

1 mM EDTA pH 5.7 

0.1 % (w/v) SDS 10 g/l agar  

pH 7.3 From Murashige and Skoog (1962) 

4X SDS-PAGE loading buffer NuPAGE transfer buffer 

250 mM Tris-Hcl (pH 6.8) 25 mM Bicine 

8 % (w/v) SDS 25 mM Bis-Tris 

20 % β-mercaptoethanol 1 mM EDTA 

40 % glycerol pH 7.2 

0.008 % bromophenol blue 10 % (v/v) ethanol 

 

2.1.5 Chemicals 

All the chemicals used in this work were purchased from the following suppliers: 

Becton Dickinson (Franklin Lakes, USA), Bio-Budget (Krefeld, Germany), Bio-Rad 

(Hercules, USA), Carl Roth (Karlsruhe, Germany), Invitrogen (Karlsruhe, Germany), 

Merck (Darmstadt, Germany) and Sigma-Aldrich (San Luis, USA). 

2.1.6 Commercial kits and reagents  

o ActivX™ Desthiobiotin-FP Serine Hydrolase Probe (ThermoFisher, Waltham, 

USA) 

o Amersham ECL Prime Western Blotting Detection Reagent (GE Healthcare, 

Chicago, USA) 

o Amino Acid -Leu/-Trp and -Leu/-Trp/-His Dropout Mixes (Clontech, Mountain 

View, USA) 

o BioSprint 96 DNA Plant Kit (Qiagen, Hilden, Germany) 

o Gateway® BP-Clonase® and LR-Clonase® (Invitrogen, Karlsruhe, Germany) 

o iQ™ SYBR® Green Supermix (Bio-Rad, Hercules, USA) 

o NucleoSpin® Gel and PCR Clean-up (Macherey-Nagel, Düren, Germany) 

o NucleoSpin® Plasmid (Macherey-Nagel, Düren, Germany) 
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o O’GeneRuler 1 kb DNA Ladder (ThermoFisher, Waltham, USA) 

o PageRuler™ Prestained Protein Ladder (ThermoFisher, Waltham, USA) 

o Pierce™ BCA Protein Assay Kit (ThermoFisher, Waltham, USA) 

o QuantiTect Reverse Transcription Kit (Qiagen, Hilden, Germany) 

o RNAqueous® Total RNA Isolation Kit together with Plant RNA isolation aid 

(Ambion™, Life Technologies, Austin, USA) 

o RNeasy Plant Mini® Kit (Qiagen, Hilden, Germany) 

o Streptavidin−Peroxidase Polymer, Ultrasensitive (Sigma-Aldrich, San Luis, 

USA) 

o Streptavidin Sepharose High Performance beads (GE Healthcare, Chicago, 

USA) 

o SYPRO® Ruby Protein Gel Stain (ThermoFisher, Waltham, USA) 

o TURBO DNA-free™ Kit (Ambion™, Life Technologies, Austin, USA) 

o Vectashield® mounting medium with DAPI (Vector Laboratories, Burlingame, 

USA) 

2.1.7 Enzymes 

All the restriction enzymes used were acquired from New England Biolabs® 

(Ipswich, USA) or ThermoFisher (Waltham, USA). 

Taq DNA polymerase was purchased from Ampliqon (Odense, Denmark). 

KOD Hot Start DNA polymersase was ordered from Merck Millipore (Billerica, 

USA). 

Pectolyase and cellulase were acquired from Duchefa (Haarlem, The 

Netherlands). 

Cytohelicase was ordered from Sigma-Aldrich (San Luis, USA). 

Liquid RNase A (100 mg/ml) was purchased from Macherey-Nagel (Düren, 

Germany). 

2.1.8 Primers and plasmids 

All primers used in this work were ordered from Invitrogen (Karlsruhe, Germany) 

or Sigma-Aldrich (San Luis, USA) and are listed in Supplemental Table 2 and 

Supplemental Table 3. 

Entry vectors pDONR201 and 207 from Invitrogen (Karlsruhe, Germany) were 

used as donors for PCR-amplified fragments by Gateway® cloning (Invitrogen, 

Karlsruhe, Germany). Binary vector pGWB1 (Nakagawa et al., 2007) was provided by 
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Dr Kazumi Nakabayashi (Royal Holloway, University of London, United Kingdom). 

Binary vectors R02 and R07 from the FAST collection (Shimada et al., 2010) were also 

used. For yeast two-hybrid assays, pACT2-gateway (GAL4-AD fusion) and pAS2-

gateway (GAL4-BD fusion) vectors (modified from Clontech) were used. 

2.1.9 Software and websites 

All DNA sequences were downloaded from the Arabidopsis 1001 genomes 

project (http://signal.salk.edu/atg1001/3.0/gebrowser.php) and The Arabidopsis 

Information Resource (www.arabidopsis.org).  

Arabidopsis genome and transcript TAIR10 assemblies were downloaded from 

The Arabidopsis Information Resource (www.arabidopsis.org).  

Alignment of sequences, design of primers and all in-silico cloning reactions 

were performed using different tools from the DNASTAR® Lasergene Core Suite. 

Primer design and characteristics were evaluated using Primer3 (Untergasser et al., 

2012). 

Microarray expression data was obtained from the Arabidopsis eFP-browser 

(Winter et al., 2007). 

All software used for processing and analysing RNA-sequencing data is listed in 

the Methods section. 

  

http://signal.salk.edu/atg1001/3.0/gebrowser.php
http://www.arabidopsis.org/
http://www.arabidopsis.org/
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2.2 METHODS 

2.2.1 Plant growth and seed storage conditions 

Arabidopsis seeds were sown on 6-cm Petri dishes containing a water-saturated 

filter paper (Macherey-Nagel, Düren, Germany) and allowed to germinate in a 

MC785-VDB germination cabinet (Van den Berg Klimaattechniek, Reeuwijk, The 

Netherlands) under long day conditions (12 h light/12 h dark; 25/20 °C) for three to 

five days. Seedlings were then transferred to a soil mixture of substrate and 

vermiculite in a 3:1 proportion. Plants were grown in a growth chamber (Elbanton BV, 

Kerkdriel, The Netherlands) with long day cycles (16 h light/8 h darkness; 22/16 °C) 

with controlled humidity and allowed to set seeds and ripen. Seeds were harvested 

from plants which had at least two thirds of their siliques ripened, sieved and collected 

in paper bags. Plants used for seed propagation were grown in a greenhouse where 

the temperature was maintained close to 23 °C and 16 h of light were provided daily. 

Plants used to evaluate dormancy phenotypes were allowed to bolt and 

immediately transferred to a low temperature growth chamber (Percival Scientific Inc., 

Perry, USA) with long day conditions at 16/14 °C, because this temperature regime 

allows an easier observation of differences in the depth of seed dormancy. 

Freshly harvested seeds were immediately used in experiments or stored under 

constant conditions (21 °C, 50 % humidity, in the dark) in an Climacell 222 incubator 

(MMM Group, Planegg, Germany) for dormancy release. Unless indicated, seeds were 

not stratified in any of the experiments. Once dormancy was released, seeds were 

stored at room temperature on the bench. 

Seeds used in sections 3.1.1 and 3.1.2 were produced and harvested in Warwick 

(United Kingdom), from Arabidopsis plants grown in a soil mixture of compost, sand 

and perlite (6:1:1) under long day conditions (16 h light/8 h dark; 22/18 °C). Before the 

first flower opened, plants were transferred to low (16/14 °C), control (22/18 °C) or 

elevated (28/25 °C) temperature regimes, maintaining long day conditions. For the 

drought treatment, a negative water potential of -1 MPa was applied by weighing 

pots and restraining water to a previously determined level. 

Seeds from the wild species used in section 3.3.2.1 were produced and their 

viability constants determined by Dr Charlotte Seal at the Royal Botanical Gardens in 

Kew, United Kingdom. 
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2.2.2 Seed germination assays 

To evaluate dormancy release or the effect of artificial ageing, the proportion 

of germinating seeds was determined. At least 50 seeds per replicate were distributed 

on 6-cm Petri dishes containing a round filter paper (Macherey-Nagel, Düren, 

Germany) soaked with 580 µl of water. Plates were then placed in transparent boxes 

with wet filter paper at the bottom to keep the moist atmosphere and prevent plates 

from drying. These moisture boxes were transferred to a MC785-VDB germination 

cabinet (Van den Berg Klimaattechniek, Reeuwijk, The Netherlands) with controlled 

conditions (16 h light /8 h darkness, at 25/20 °C). After seven days, the number of 

germinated seeds was counted with the help of a MZ6 dissecting microscope (Leica 

Microsystems, Wetzlar, Germany) and a KL1500LCD reflected light lamp (Schott, 

Mainz, Germany). Seeds were considered to have germinated when radicle 

emergence through the seed coat was observed (Bewley et al., 2013). 

For dormancy release assays, these experiments were conducted weekly until 

seed batches reached at least 95 % germination and were considered to be non-

dormant. Seed stratification was conducted exactly as described for germination 

assays (either on moist filter paper or on MS media using previously sterilised seeds), 

but storing the imbibed seeds for three days at 4 °C in the dark. 

For ABA germination assays, the procedure was as described but filter papers 

were soaked with a solution of the indicated ABA concentration instead of water.  

Unless indicated otherwise, all germination experiments were conducted using 

independent biological replicates. A biological replicate is comprised by the whole 

batch of seeds harvested from a single mother plant. 

2.2.3 Accelerated ageing of seeds  

Seed longevity was studied by quantifying the number of germinated seeds 

after different periods of accelerated ageing (Delouche and Baskin, 1973). Accelerated 

ageing is a seed vigour test that evaluates the potential seed storability, as it provokes 

a rapid ageing of seeds. Specifically, aliquots of 100-200 seeds were placed on open 

PCR tube-stripes and incubated in hermetically sealed boxes containing a saturated 

solution of KCl at the bottom which, when placed at 37 °C, generates an atmosphere 

of 85 % RH within the container. Under these conditions, seeds lose their viability after 

a short period of time, which can then be monitored by periodic germination assays 

as described above.  
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Seed used in sections 3.1.1.3 and 3.3.1 were aged for 4 days at 40 °C and 75 % 

relative humidity (provided by a saturated NaCl solution) in Paris, France. 

For the wild species assays described in section 3.3.2.1, dry seeds were first 

equilibrated to 75 % relative humidity over a saturated NaCl solution in an air-tight 

container at 20 °C. Seeds were weighed every third day. The treatment was applied 

until the seed mass stopped increasing, meaning seeds had reached a 75 % relative 

humidity content. Once equilibrated, seeds were aged at 40 °C for the required period 

of time using the same container as for the equilibration, over the saturated NaCl 

solution. 

2.2.4 Seed coat permeability assays 

Seed coat permeability was determined as previously described (Debeaujon et 

al., 2000). 

2.2.5 Flowering time determination 

The time required to flower was evaluated by counting the total number of 

rosette leaves (excluding cotyledons) present when the first flower opened 

(Koornneef et al., 1991). All flowering time experiments were conducted under long 

day conditions (16 h light / 8 h dark). 

2.2.6 Seed surface sterilization 

Seed sterilisation was performed either with chlorine gas or liquid bleach, 

depending on the number of samples to be processed, always under sterile 

conditions. For chlorine gas sterilisation, aliquots of seeds were transferred to open 

2-ml microcentrifuge tubes (Eppendorf, Hamburg, Germany) which were then placed 

into in a glass desiccator. 100 ml of bleach and 3 ml of concentrated HCl (37 %) were 

mixed in a beaker within the desiccator, which was then immediately sealed. Seeds 

were incubated for three to six hours in this atmosphere and then allowed to release 

the remaining fumes in the clean bench before sowing. 

For bleach sterilisation, seeds in a microcentrifuge tube were incubated for 1 

min with constant shaking in a 50 % commercial bleach solution including 0.05 % 

Tween® 20 (Sigma-Aldrich, San Luis, USA). After incubation and removal of the 

solution, the remaining bleach was removed by rinsing the seeds with sterile water 

five times. After discarding the last wash, seeds were suspended in either water or 40 

% glycerol (Carl Roth, Karlsruhe, Germany) and sown on sterile MS medium. 
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2.2.7 Plant transformation and selection of transgenic lines 

Arabidopsis plants were transformed following the floral dip method (Clough 

and Bent, 1998) with A. tumefaciens cells carrying the desired construct. For each 

transformation event, 6 to 10 pots (9 x 9 cm) with five plants each were used. These 

plants were clipped after the first shoot appeared in order to remove apical 

dominance and enhance the formation of additional, secondary shoots to increase 

the number of flowers available for transformation. Unless indicated otherwise, 

Arabidopsis wild type Col-0 was used for transformation. 

For hygromycin-based selection of transgenic plants, seeds were first surface-

sterilised (section 2.2.6), sown on half strength MS media (section 2.1.4) containing 

hygromycin and stratified for three days in the dark at 4 °C. Plates were then 

transferred to an incubator with long day conditions (12 h light/ 12 h dark; 25/20 °C) 

and incubated for 6 h with light and two days in the dark and then screened for 

elongated hypocotyls (Harrison et al., 2006). T2 segregation ratios were analysed to 

isolate T3 homozygous plants with a single insertion using a χ2 (chi-squared) test. For 

fluorescent-seed-coat markers (Shimada et al., 2010), T1 transformed seeds were 

manually selected using a MZ16 FA fluorescence stereomicroscope (Leica 

Microsystems, Wetzlar, Germany) combined with a LEJ EBQ 100 isolated mercury and 

xenon discharge lamp power supply (Hofstra Group, Santa Fe, USA) and further 

analysis of the fluorescent marker’s segregation was conducted as described above.  

2.2.8 Crossing of Arabidopsis 

Young plants at the early stages of flowering were selected as parents. For the 

female parent, stems carrying three or four immature, closed flower buds were 

selected, further removing any open flowers, developing siliques, leaves and the 

apical meristem from these stems. Using a small pair of forceps and a MZ6 dissecting 

microscope (Leica Microsystems, Wetzlar, Germany), these flower buds were cleared 

from petals, sepals and stamens, leaving the pistil undamaged. A recently opened 

flower with dehiscent anthers was then selected from the male parent, gently 

removed with clean forceps and used for pollinating the female pistils by brushing its 

anthers against the stigma of the female flower. Each cross was labelled with a 

coloured thread for easy recognition. For each genetic cross, reciprocal crosses were 

conducted. These crosses were allowed to grow for two weeks and then bagged to 

avoid losing seeds. 
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2.2.9 Preparation of nuclear spreads of Arabidopsis embryos 

Nuclei were isolated from embryos of Arabidopsis seeds, which were either dry 

or imbibed (72 h at 10 °C, continuous light). Seeds were artificially aged by storing 

them for 4 days at 40 °C and 75 % relative humidity in a sealed container. The area 

of the spread nuclei was measured as an indicator for nuclear size. To avoid radicle 

emergence, seeds were never allowed to be imbibed at room temperature longer 

than 2 hours. 

For each sample, at least 75 embryos were isolated and processed as previously 

described (Liu et al., 2011; Pavlova et al., 2010). Slides were then mounted with 20 µl 

of 4',6-Diamidino-2-phenylindole (DAPI; 1.5 µg/ml) in Vectashield mounting medium 

(Vector Laboratories, Burlingame, USA) and covered with a coverslip. DAPI signals 

were detected using a Zeiss Axioplan 2 Imaging (Carl Zeiss, Oberkochen, Germany) 

fluorescence microscope and a 100X objective together with immersion oil. Pictures 

were acquired using a Leica DFC 490 digital camera (Leica Microsystems, Wetzlar, 

Germany). 

The sizes of spread Arabidopsis nuclei from seeds of different treatments were 

measured by taking pictures of at least 50 nuclei per slide followed by measurement 

of their surface using the image analysis software ImageJ (Schneider et al., 2012). After 

measurements, tests for statistical significance were conducted in order to determine 

whether the treatments under evaluation had a significant effect on nuclear size. 

2.2.10 Bacterial transformation 

Chemically competent DH5α E. coli cells were transformed by heat shock 

(Hanahan, 1983), whereas electrocompetent A. tumefaciens were transformed using 

electroporation (Weigel and Glazebrook, 2006). Transformed cells were plated on 

solid LB media including the corresponding antibiotics. Successful transformation was 

further confirmed by colony PCR and restriction analysis of the transformed construct.  

2.2.11 Yeast culture and transformation 

S. cerevisiae strain pJ69-4A cells were grown in YPDA at 30 °C in liquid culture. 

These cells were then co-transformed with the desired combination of vectors to test 

protein-protein interactions using the LiAc/SS carrier DNA/PEG method (Gietz et al., 

1992). Briefly, cells from a liquid culture were precipitated at 5,000 rpm for 10 min, 

rinsed with sterile water and pelleted again. The pellet was then re-suspended in 1 ml 

of 0.1 M LiAc, precipitated by centrifugation and suspended in 0.5 ml of 0.1 M LiAc, 

which rendered the cells competent for transformation. This suspension was 
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aliquoted in volumes of 50 µl. To each aliquot, the following mix was added: 240 µl 

of 50 % PEG 3350, 35 µl of 1 M LiAC and 25 µl of carrier salmon sperm DNA (2 mg/ml, 

previously boiled for 10 min) and a combination of both bait and prey DNA constructs 

(500 µg each in a final volume of 50 µl). Tubes containing these mixes were incubated 

for 30 min at 30 °C and immediately transferred to 42 °C during 20 min. Cells were 

then precipitated and re-suspended in 200 µl of 1 M sorbitol, from which 90 % of the 

volume was plated on SD -Leu/-Trp/-His plates and the remaining 10 % on SD -Leu/-

Trp plates. These plates were incubated at 30 °C for five days. 

2.2.12 Yeast two-hybrid assays 

Yeast cells co-transformed with both bait and prey constructs (section 2.2.11) 

were plated in either SD -Leu/Trp or SD -Leu/-Trp/-His medium plates. The first 

medium allows to evaluate whether both constructs have been successfully delivered 

into the yeast cells whereas the second one evaluated if the protein-protein 

interaction is taking place and thus activating the system. Strength of the interactions 

was further tested by using increasing concentrations of 3-Amino-1,2,4-triazole (3-

AT), which specifically inhibits histidine biosynthesis (Hilton et al., 1965). The positive 

control used was previously described (Fields and Song, 1989). 

2.2.13 Genomic DNA isolation 

Plant genomic DNA from leaves was isolated using the BioSprint 96 DNA Plant 

Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. When the 

number of samples was not sufficient to fill up the entire Biosprint 96-well plate, 

genomic DNA was isolated as previously described (Edwards et al., 1991).  

2.2.14 Polymerase Chain Reaction (PCR) 

For all genotyping and colony-PCR reactions, Taq-DNA polymerase from 

Ampliqon (Odense, Denmark) was used, whereas for high-accuracy cloning, KOD Hot 

Start DNA polymerase form Merck Millipore (Billerica, USA) was employed. In both 

cases, specifications from the manufacturers were followed, although genotyping 

reactions were usually down-scaled to a final volume of 10 µl, as follows: 1 µl of PCR 

buffer 10X (+15 mM MgCl2), 0.2 µl of dNTPs mix (10 mM each), 0.2 µl of forward primer 

(10 µM), 0.2 µl of reverse primer (10 µM), 0.1 µl of Taq DNA polymerase (5 U/µl), 1 µl 

of template (ca. 100 ng/µl) and distilled water up to 10 µl. 

All PCR reactions were performed in a Mastercycler® pro thermal cycler 

(Eppendorf, Hamburg, Germany). The general conditions used for PCR were: an initial 

denaturation phase of 2 minutes at 95 °C, followed by denaturation for 20 seconds 
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at 95 °C, primer annealing for 30 seconds at the specific Tm for the primer pair and 

an extension phase at 72 °C of variable duration, depending on the size of the 

amplicon and the processing speed of the DNA polymerase. These three steps were 

repeated for 30 cycles. A final extension phase of 3 minutes at 72 °C was included. 

2.2.15 DNA fragment purification 

After PCR amplification, DNA fragments were separated by electrophoresis in 

agarose gels. The band of interest was then excised from the gel and purified using 

NucleoSpin® Gel and PCR Clean-up (Macherey-Nagel, Düren, Germany) according 

to the manufacturer’s instructions. 

2.2.16 Gateway® cloning and vector construction 

Fragments of interest were first amplified by PCR and purified. In these PCR 

reactions, specific attB overhangs for Gateway® cloning (Invitrogen, Karlsruhe, 

Germany) were added to allow BP recombination into a pDONR201/207 entry vector 

(Supplemental Figure 1; Invitrogen, Karlsruhe, Germany). To clone promoter and 

coding sequences together, specific primers were designed to create an overlapping 

region between both sequences that allowed PCR amplification of the whole 

construct. When necessary, this approach was conducted in several sub-cloning 

steps.  

Once the insert was cloned into the entry vector, this construct was further 

sequenced to ensure no DNA mismatches existed between the clone and the 

expected sequence. After confirmation by sequencing, constructs were further 

delivered into a destination vector containing a Gateway® cloning cassette by LR 

recombination (Invitrogen, Karlsruhe, Germany). Successful recombination was 

evaluated by PCR and band analysis after restriction. 

A construct carrying the DOG1 promoter from the Arabidopsis Cape Verde 

Islands (Cvi) accession was kindly provided by Dr Kazumi Nakabayashi. Construct 

pDOG1Cvi::FLCCol was delivered into the binary vector pFAST-R07 (Shimada et al., 

2010). Construct pDOG1Cvi::FRISha was cloned into the binary vector pGWB1 (Nakagawa 

et al., 2007). The coding sequence of VTE3 was cloned under control of the 

Cauliflower mosaic virus 35S promoter using the binary vector pFAST-R02 (Shimada 

et al., 2010). 
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2.2.17 Plasmid purification 

Plasmids were isolated from liquid cultures of DH5α E. coli cells using the 

NucleoSpin® Plasmid (Macherey-Nagel, Düren, Germany) kit and following the 

manufacturer’s instructions. 

2.2.18 DNA sequencing 

All DNA sequencing reactions were performed by the Sanger Sequencing 

Group of the Max Planck Institute for Plant Breeding Research (Cologne, Germany) 

using an Applied Biosystems 3730XL Genetic Analyzer (ThermoFisher, Waltham, USA). 

2.2.19 Total RNA isolation and purification 

RNA from leaves was isolated using the RNeasy Plant Mini® Kit from Qiagen 

(Hilden, Germany), according to the manufacturer’s instructions.  

To extract RNA from Arabidopsis seeds, around 20 mg of seeds were used per 

extraction and the RNAqueous® Total RNA Isolation Kit together with Plant RNA 

isolation aid (Ambion™, Life Technologies, Austin, USA) was used as previously 

described (Kushiro et al., 2004). Briefly, instructions from the manufacturer were 

followed that led to isolation of 100 µl of non-pure RNA, due to the high 

concentration of polysaccharides and lipids present in seeds of Arabidopsis. Isolated 

RNA was further purified by conducting two consecutive rounds of RNA precipitation, 

the first using 20 % isopropanol containing 0.24 M sodium citrate and 0.16 M NaCl 

(Table 3), and the second with 2 M LiCl. For each precipitation, isolated RNA was 

incubated at 4 °C overnight to allow for complete removal of contaminants. RNA was 

recovered by centrifugation at 20,000 g for 15 min at 4 °C. After removal of the 

supernatant, the pellet was rinsed with 70 % ice-cold ethanol, precipitated, allowed 

to air-dry and re-suspended in an adequate volume of water to reach a concentration 

of 200 ng/µl.  

RNA purity was first determined using a Nanodrop ND-1000 spectrophotometer 

(PEQLAB Biotechnologie, Erlangen, Germany) and evaluated by its absorbance (A) 

ratios. The ratio A260/A280 was used to estimate protein contamination and A260/A230 

for polysaccharides. RNA was considered to be clean when these two parameters 

were between 1.8 ≤ (A260/A280) ≥ 2.0 and 2.0 ≤ (A260/A230) ≥ 3.0. Extra rounds of 

precipitation were conducted when necessary. RNA quality was further evaluated by 

combining a small amount of pure RNA (ca. 400 ng) mixed with 0.5 volumes of 

formaldehyde loading buffer (Ambion™, Life Technologies, Austin, USA) and 

incubating it 5 min at 65 °C. This solution was then loaded on a 1 % agarose gel and 
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separated by gel electrophoresis. If RNA quality is good and it is not degraded, two 

major bands corresponding to the 28 S and 18 S ribosomal RNA bands should be 

visible, with no or very little smear (the rest of smaller bands are lost during LiCl 

precipitation and therefore do not appear in the gel). 

2.2.20 DNAse treatment of RNA 

A DNAse treatment was performed on all RNA samples prior to sequencing, 

using the TURBO DNA-free™ Kit (Ambion™, Life Technologies, Austin, USA) 

according to manufacturer’s instructions. 

2.2.21 cDNA synthesis 

Synthesis of cDNa was done using the QuantiTect Reverse Transcription Kit 

(Qiagen, Hilden, Germany) following the manufacturer’s instructions. For all reactions, 

1 µg of total RNA template was used and primed with a combination of random 

hexamers and oligo-dT oligonucleotides. After synthesis, cDNA was diluted 10 times 

before using it for quantitative PCR analyses. 

2.2.22 Quantitative PCR (qPCR) 

All qPCR reactions were conducted using a CFX96 Touch™ Real-Time PCR 

Detection System (BioRad, Hercules, USA) and prepared using the iQ™ SYBR® Green 

Supermix according to the instructions provided by the manufacturer. All qPCR 

reactions included a melting curve analysis to ensure the primer pair used amplified 

a single product. All qPCR primers used were designed to cover exon-exon junctions 

to avoid genomic DNA contamination and their efficiency was tested before 

conducting any of the experiments. Efficiency values ranging from 85 to 110 % were 

considered valid. All primers used for relative quantification of gene expression are 

listed in Supplemental Table 3. 

In all experiments, at least three biological replicates were used per data point 

and reactions of each biological replicate were conducted in sets of three technical 

replicates. For all reactions, 1 µl of cDNA was used as template. All reactions were 

prepared in Hard-Shell® 96-Well PCR Plates of low profile (BioRad, Hercules, USA) 

which were then sealed with Microseal® 'B' PCR Plate Sealing Film (BioRad, Hercules, 

USA). 

Relative expression of target genes was quantified by the 2-ΔΔCq method (Livak 

and Schmittgen, 2001) and normalised with the expression of a reference gene. In 

each set of experiments, several reference genes were evaluated and the one with 

the most stable expression levels was used for normalisation.  
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2.2.23 Next Generation Sequencing of RNA (RNA-seq) 

An aliquot of 1 µg total RNA was used for the RNA-seq analyses. RNA 

sequencing was performed using three biological replicates per treatment. Libraries 

were prepared from total RNA with a RNA integrity number > 7 (Bioanalyzer; Agilent, 

Santa Clara, USA) using the TruSeq RNA kit (Illumina, San Diego, USA) and including 

polyA-enrichment. Libraries were then sequenced as 100-bp single-end reads on a 

HiSeq 2500 (Illumina, San Diego, USA). Library preparation and sequencing were 

performed by the Max Planck Genome Centre (Cologne, Germany). 

2.2.24 Trimming and mapping of the reads to a reference genome 

Quality of the reads was evaluated using FASTQC (Andrews, 2010). Low quality 

reads were discarded and the remaining were trimmed for adapters and short reads 

(<25 bp) using the Python package CutAdapt (Martin, 2011). After trimming, each 

library produced at least 17 million good quality reads that were subsequently 

mapped to the TAIR10 Arabidopsis reference genome assembly using Tophat2 (Kim 

et al., 2013) with default settings. Reads mapping to individual genes were calculated 

using the HTseq-count function from the HTseq Python package (Anders et al., 2015). 

2.2.25 Differential expression analyses  

Differential expression of transcripts was determined using the DeSeq2 package 

(Love et al., 2014) for statistical analysis of transcriptomic data in R (R Development 

Core Team, 2008). 

2.2.26 GO analyses 

The identified subsets of differentially expressed transcripts were classified in 

Gene Ontology categories using the online analysis toolkit AgriGO 

(http://bioinfo.cau.edu.cn/agriGO) (Du et al., 2010). GO analysis results were further 

summarised using ReviGO, which allows visual interpretation of large GO datasets 

and clusters GO terms based on semantic similarity (http://revigo.irb.hr) (Supek et al., 

2011). 

2.2.27 Protein extraction 

For protein extraction, 20 mg seeds of Arabidopsis were imbibed for 24 h, 

subsequently ground in liquid nitrogen to a fine powder and immediately suspended 

in 600 µl of the appropriate extraction buffer. For VPE labelling, this buffer consisted 

of 67 mM Tris-HCl at pH 7.5 including 10 mM dithiothreitol (DTT), whereas for serine 

hydrolases, the buffer contained 67 mM sodium acetate at pH 5.5 including 10 mM 

http://bioinfo.cau.edu.cn/agriGO
http://revigo.irb.hr/
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DTT. Protein extracts were then centrifuged at least three times at 21,000 g for 20 

minutes, recovering the supernatant in a new microcentrifuge tube every time, until 

no oil traces or debris were visible. For the wild species described in section 3.3.2.1, 

20-30 seeds were used per protein extraction, depending on the number of seeds 

available. The rest of the process was as described for Arabidopsis. 

2.2.28 Protein labelling 

Four different fluorescent probes were evaluated (Table 13). For the labelling, 

60 µl of protein extract were incubated with the probe for 2 h in the dark. The final 

concentrations of probe used for labelling were: 1 µM AMS101, 1 µM MV151 and 0.2 

µM FP-rhodamine (FP-Rh). After incubation, the labelling reactions were stopped by 

adding 20 µl of 4X SDS-PAGE loading buffer.  

For negative-labelling controls, a pooled sample of protein extracts was first 

incubated for 30 minutes in the dark with a specific inhibitor of the enzymatic activity 

studied before adding the probe (Table 4). These inhibitors were used at a final 

concentration that allowed them to outcompete the tested probe and therefore 

inhibit the labelling. 

An additional no probe control (NPC) was prepared for each set of samples by 

combining a small fraction from each proteome. In this control, neither probe nor 

inhibitor was added and they were substituted by dimethyl sulfoxide (DMSO), which 

was the solvent for both probes and inhibitors.  

Table 4. Specific inhibitors used to supress ABPP-probe labelling. 

Inhibitor Final concentration (µM) Inhibits 

YVAD-cmk 50 AMS101 

E64 20 MV151 (at pH 6.0) 

Epoxomicin 50 MV151 (at pH 7.5) 

DiFP 100 FP-Rh 
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2.2.29 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

Labelled protein samples were boiled for 5 minutes at 95 °C prior to loading. 

These protein extracts were loaded in NuPAGE™ 4-12 % Bis-Tris Protein Gels 

(ThermoFisher, Waltham, USA) and  separated by electrophoresis (Laemmli, 1970) 

applying 120-130 V for 65-75 minutes. To preserve the fluorescent probes from 

degradation, the electrophoretic chamber was fully covered so protein 

electrophoresis took place in the dark. 

After separation, labelled proteins were visualized by in-gel fluorescence 

scanning using a Typhoon FLA 9000 scanner (GE Healthcare, Chicago, USA) with 

excitation and emission at 532 and 580 nm, respectively. After scanning, gels were 

stained with SYPRO® Ruby (ThermoFisher, Waltham, USA) for total protein 

assessment following the manufacturer’s indications and scanned with excitation and 

emission at 450 and 610 nm, respectively. 

2.2.30 Serine hydrolase pull-down experiments 

100 µl of protein extract (in 67 mM Tris-HCl, pH 7.5 buffer including 10 mM DTT) 

from 24 h imbibed, non-aged Arabidopsis seeds were first incubated with 50 µl 

streptavidin sepharose beads (GE Healthcare, Chicago, USA) for 1 h with constant 

mixing on a rotator at room temperature in order to remove the excess of biotinylated 

background proteins. After incubation, samples were centrifuged for 3 minutes at 

1,000 g and the supernatant collected in a clean tube, after which 1 volume of freshly-

prepared 10 M urea dissolved in extraction buffer was added. This mixture was then 

labelled with 2 µM ActivX™ Desthiobiotin-FP Serine Hydrolase Probe (ThermoFisher, 

Waltham, USA) for 2 h. An identical no-probe control was prepared following these 

instructions, but replacing the volume of probe with DMSO. After incubation, 50 µl of 

streptavidin sepharose beads were added and samples were incubated for 1 h with 

constant mixing on a rotator. After incubation, samples were centrifuged for 3 

minutes at 1,000 g and the supernatant collected in a clean tube. For elution of bound 

proteins, an appropriate volume of 2X SDS-PAGE loading buffer was added and 

samples incubated for 5 minutes at 95 °C. Proteins bound to the streptavidin 

sepharose beads were sent for mass spectrometry (MS) analysis to the Analytics Core 

Facility Essen (ACE), at the University of Duisburg-Essen, Germany. 

Protein concentration was determined for all eluted fractions (except those 

eluted with 2X SDS-PAGE loading buffer) using the Pierce™ BCA Protein Assay Kit 

(ThermoFisher, Waltham, USA). 
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2.2.31 Western Blot 

All eluted fractions were separated by SDS-PAGE and proteins were then blotted 

on an Immobilon-P PVDF membrane (Merck Millipore, Billerica, USA) using semi-dry 

electrotransfer for 70 minutes at constant 1.25 mA/cm2 provided by a PowerPac 3000 

power source (Bio-Rad, Hercules, USA). After transfer, membrane was blocked with 2 

% BSA in PBS including 0.005 % Tween® 20 (Sigma-Aldrich, San Luis, USA; PBS-T) for 

1 h with constant shaking. Membrane was then washed two times for 5 minutes each 

with PBS-T and afterwards incubated with Streptavidin−Peroxidase Polymer 

conjugate (Sigma-Aldrich, San Luis, USA) diluted 1:10,000 times in PBS-T for 1 hour. 

After incubation, six rounds of 5-minute washing with PBS-T were performed prior to 

gel imaging. Amersham ECL Prime Western Blotting Detection Reagent (GE 

Healthcare, Chicago, USA) was used following the manufacturer’s instructions and the 

blot was visualised using a ChemiDoc XRS+ (Bio-Rad, Hercules, USA). 
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3 RESULTS 

3.1 THE IMPACT OF ENVIRONMENTAL STRESSES DURING SEED DEVELOPMENT 

ON SEED LONGEVITY AND THE SEED TRANSCRIPTOME 

The transcriptome of a cell comprises the whole set of transcripts present in that 

cell at a certain time. Contrary to the genome, which is fixed and relatively stable, the 

cellular transcriptome is a dynamic entity, which varies in response to different stimuli 

and stresses. Therefore, the transcriptome reflects the different transcriptional 

responses and its analysis allows a better understanding of how living organisms deal 

with perturbations.  

3.1.1 The effect of temperature during seed development and of artificial 

ageing on the seed transcriptome of Arabidopsis 

Maternal environments play a key role in determining how a plant’s offspring 

will perform, as they can exert a determinant role in processes such as germination 

and dormancy behaviour (Donohue, 2009). Previous work characterised seed 

longevity as a plastic trait that is responsive to parental effects (Kochanek et al., 2011). 

In addition, parental effects were shown to affect seed longevity of the following 

generation (Mondoni et al., 2014). A previous study in Arabidopsis showed that 

different temperatures applied to the mother plant do modulate seed performance 

(He et al., 2014).  

Artificial ageing of seeds is a vigour test that allows to predict the storage life of 

seed batches in a comparatively short period of time (Delouche and Baskin, 1973). 

Similarly to the natural deterioration process, artificial ageing encompasses 

modifications of the seed transcriptome and proteome (Rajjou et al., 2008b; Chen et 

al., 2013).  

The combined effects of temperature during seed maturation, artificial ageing 

and time of imbibition on the transcriptome of Arabidopsis Col-0 seeds were 

investigated. To this end, seeds that matured under different temperature regimes 

(low, 16/14 °C; control, 22/18 °C; and elevated, 28/25 °C), and that were artificially 

aged (4 days at 40 °C and 75 % RH) were used to assess the effect of these factors 

on the seed transcriptome. To evaluate the contribution of imbibition, three different 

time points were included: dry seeds, 6 h (from here on referred to as early imbibition) 

and 72 h after seed imbibition (from here on referred to as late imbibition) at 10 °C 

with constant light. These time points were experimentally determined and 
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correspond to the end of phase 1 of water uptake and to 80 % of the time required 

for the first radicles to emerge, respectively (section 1.7).  

 

Figure 1. Different temperatures during seed development affect sensitivity to artificial 

ageing. Seed longevity phenotypes of Col-0 (A) and dog1-2 (B) in response to three different 

temperature regimes during seed maturation: low (16/14 °C, light red), control (18/22 °C, 

black) and elevated (28/25 °C, dark red). Each data point represents the mean of three 

biological replicates and error bars correspond to standard deviation. 

First, the effect of artificial ageing on seed lots grown at the conditions 

mentioned above was evaluated. Specifically, the wild type Col-0 and the dog1-2 

mutant (Nakabayashi et al., 2012), which has a reduced seed longevity phenotype 

(Bentsink et al., 2006) were compared and the effect of each maternal environment 

on sensitivity to artificial ageing evaluated (Figure 1). In the wild type, low and 

elevated temperatures during seed maturation led to reduced resistance to artificial 

ageing, in comparison to the control (Figure 1A). Conversely, dog1-2 mutant seeds 

were able to resist the treatment better when grown at lower temperatures, while 

elevated temperatures at seed maturation caused a marked decline in resistance to 

ageing (Figure 1B). These observations confirm that the maternal environment 

during seed maturation does affect subsequent seed performance after accelerated 

ageing in a genotype-dependent manner, as previously reported (He et al., 2014).  

After confirming the phenotypes, RNA-sequencing and mapping of individual 

reads were conducted for Col-0 and transcriptional expression profiles were 

compared by principal components analysis (PCA, Figure 2), which facilitates visual 

interpretation of data (Ringnér, 2008). Component 1 separates the late imbibed seeds 

on the right side of the plot and dry, whereas early imbibed samples cluster on the 

left side. This component accounts for almost 90 % of the observed variability. 

Component 2 separates samples based on their imbibition status. Additionally, within 

each imbibition cluster, it allows to distinguish between aged and non-aged samples, 

although in the case of dry seeds a certain overlap is present. Samples from the early 
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imbibition point have more similar transcriptional profiles, i.e. are less variable than 

those from late imbibition samples, which are more scattered. This indicates that 

differences at the transcriptional level between seeds produced under different 

temperature regimes become more pronounced after longer imbibition times (Figure 

2). 

 

Figure 2. Principal Component Analysis plot of samples. Three different temperature 

regimes were applied during seed maturation and are represented with different colours. 

Three different imbibition time points were evaluated: dry seed (DS, triangles), early 

imbibition (EI, 6h imbibed; circles) and late imbibition (LI, 72 h imbibed; squares). Filled 

symbols correspond to non-aged seeds and open symbols to seeds aged for 4 days at 40 °C 

and 75 % RH. 

To identify differentially expressed transcripts (DETs), an additional log2-fold-

change (log2FC) threshold of 1.0 was established in addition to the calculated p-value. 

For all comparisons, dry, non-aged seeds grown at control temperature were used as 

the reference. Table 5 shows the number of differentially expressed transcripts found 

for each studied condition. It was observed that imbibition causes a greater number 

of genes to be differentially expressed than any of the other treatments (Table 5). 

Nevertheless, considering that the main aim of this work was to determine how 

maternal environments alter seed performance, as reflected by the effect they had on 
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the germination phenotype after artificial ageing (Figure 1), special focus will be put 

onto these factors.  

Table 5. Number of differentially expressed transcripts identified for each condition. For 

a transcript to be considered differentially expressed, a cut-off for log2FC ≥ |1| and adjusted 

p-value ≤ 0.05 were applied. 

Condition Up-regulated transcripts Down-regulated transcripts 

Low temperature 74 264 

Elevated temperature 111 175 

Artificial ageing 68 132 

Early imbibition 503 1790 

Late imbibition 5,364 5,403 

 

3.1.1.1 The effect of low temperature during seed maturation on the seed 

transcriptome 

Low temperature during seed maturation caused increased sensitivity to 

artificial ageing in Col-0 (Figure 1A), despite the number of transcripts differentially 

expressed was not very high. For those transcripts upregulated by this temperature 

regime, only two gene ontology (GO) categories related to molecular function were 

enriched: transcription factor (TF) activity and DNA binding (Table 6). Closer 

examination of these transcripts showed several interesting genes. Within the 

enriched GO category transcription factor activity, the presence of TEMPRANILLO 1 

(TEM1) is surprising. This gene was previously linked to the regulation of flowering 

time under long days, as well as the repression of GA biosynthesis (Castillejo and 

Pelaz, 2008; Osnato et al., 2012). Specifically, it was shown that TEM1 represses the 

two main genes responsible for the biosynthesis of bioactive gibberellic acid (GA) 

GA3OX1 and GA3OX2. Also part of this GO category and related to flowering time 

regulation, DWARF AND DELAYED FLOWERING 1 (DDF1) was reported to affect 

flowering time and GA biosynthesis and its overexpression caused delayed flowering 

time and reduced GA content (Magome et al., 2004, 2008). Furthermore, it was shown 

to be responsive to several abiotic stresses, including low temperatures (Kang et al., 

2011). Other upregulated TFs are related with auxin and ethylene signalling. For 

example, INDOLE-3-ACETIC ACID INDUCIBLE 28 (IAA28) and ETHYLENE RESPONSE 

FACTOR 10 (ERF10) were induced by this treatment. ERF10 was reported to be a 

transcriptional repressor (Ohta et al., 2001) and has been related to auxin and ethylene 
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responses (Chilley et al., 2006). Similarly, IAA28 belongs to the Aux/IAA family of 

auxin-response repressors (Pierre-Jerome et al., 2013) and has been shown to 

regulate lateral root development in response to auxin (Rogg et al., 2001; De Rybel et 

al., 2010; Wang and Guo, 2015). Additionally, iaa28-1 displayed delayed and reduced 

germination, together with a certain degree of ABA insensitivity (Rinaldi et al., 2012). 

Apart from TFs, transcript abundance of the cold and ABA-inducible gene KIN1 

(Kurkela and Franck, 1990) was also increased in the transcriptome of seeds grown at 

lowered temperatures.  

For transcripts downregulated by lowered temperatures, numerous GO 

categories were overrepresented (Table 6). As for molecular function, transcription 

factor activity, catalytic and hydrolase activities were enriched. The presence of 

transcripts involved in responses to auxin was remarkable and represented by those 

directly involved with auxin signalling, such as IAA9, IAA17 (Ouellet et al., 2001) and 

SMALL AUXIN UPREGULATED RNA 3 (SAUR3) and SAUR4 (Paponov et al., 2008). In 

addition, several genes in this set were reported to be involved in embryo patterning 

together with auxins. For example, WUSCHEL RELATED HOMEOBOX 2 (WOX2) and 

DORNRÖSCHEN-LIKE (DRNL). Both these genes are transcription factors that 

coordinate or affect the auxin signalling. WOX2 was demonstrated to participate in 

embryo patterning, regulating the establishment of the auxin gradients required for 

embryo development and cotyledon primordia initiation (Haecker et al., 2004; 

Palovaara and Hakman, 2009; Lie et al., 2012). DRNL is also implicated in the 

patterning of the embryo of Arabidopsis and its expression is also required for 

cotyledon organogenesis (Chandler et al., 2008, 2011). Related to embryo patterning, 

the expression of MONOPOLE (MNP) was also down-regulated. MNP is involved in 

the establishment of the boundary between two distinct developmental domains that 

precedes the development of the radicle, to which auxins also contribute (Nawy et 

al., 2010). MYB DOMAIN PROTEIN 34 (MYB34) is another transcription factor which is 

involved in the biosynthesis of tryptophan, which is a precursor in auxin biosynthesis 

(Smolen and Bender, 2002; Zhao et al., 2002). XYLOGLUCAN ENDO-

TRANSGLUCOSYLASE / HYDROLASE 19 (ATXTH19) is found to be expressed in 

imbibed seeds, probably associated with germination. This gene was downregulated 

by low temperatures, which is possibly linked to the observed reduction in auxin 

responses, provided its expression has been connected to auxin (Pitaksaringkarn et 

al., 2014). Interestingly, the transcription factor AINTEGUMENTA (ANT) was found 

downregulated. Transgenic lines overexpressing this gene produce bigger seeds with 

enhanced resistance to drought, as a result of ABA imbalances and it was proposed 

as a downstream target in the auxin signalling pathway (Meng et al., 2015). A recent 
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publication further linked this gene to regulation of auxin accumulation and cell wall 

composition (Krizek et al., 2016). 

Aside from auxins, lipid metabolism appeared as an enriched GO category. 

Within this category, three genes were found to be relevant regarding the observed 

phenotypes. FATTY ACID REDUCTASE 1 (FAR1) is involved in the biosynthesis of fatty 

alcohols which are components of suberin (Domergue et al., 2010), a polymer found 

in cell walls of different organs, including the seed coat. Seeds with altered suberin 

composition were reported to display increased permeability and sensitivity to ABA 

(Vishwanath et al., 2013). Also in this category, DELTA 9 DESATURASE 1 (ADS1) was 

previously shown to be downregulated by low temperatures in leaves of Arabidopsis 

(Fukuchi-Mizutani et al., 1998). ADS1 is involved in lipid biosynthesis in diverse organs 

and mutants for this gene exhibited reduced seed lipid content (Smith et al., 2013). 

LONG-CHAIN ACYL-COA SYNTHETASE 2 (LACS2) was also downregulated by low 

temperature. LACS2 participates in wax and cuticle synthesis in Arabidopsis (Schnurr 

et al., 2004) and lacs2 mutants were reported to show increased cuticle permeability 

(L’Haridon et al., 2011). Interestingly, this gene is downregulated in the hub1 mutant, 

which was previously linked to increased sensitivity to artificial seed ageing (Liu et al., 

2007b; Ménard et al., 2014; De Giorgi et al., 2015). 

A GO category related to hormone responses was enriched within this set. Two 

genes involved in the biosynthesis of the active form of GAs were downregulated. 

Specifically, GA3OX1 and 2 were downregulated by low temperatures during seed 

maturation, although it is possible that the upregulated TEM1 is contributing to this 

reduced expression. These two genes are involved in the final step catalysing the 

formation of bioactive gibberellins and their expression is associated with a diverse 

range of developmental processes, especially seed germination (Mitchum et al., 

2006). Besides, the GA-responsive gene EXP2, involved in seed germination (Yan et 

al., 2014), was also present in this set.  

ARABIDOPSIS THALIANA HOMEOBOX 1 (ATH1), included in the category of light 

responses (Quaedvlieg et al., 1995) was downregulated by cold. This gene was 

reported to be a transcriptional activator of the expression of the floral repressor 

FLOWERING LOCUS C (FLC) (Proveniers et al., 2007). 

3.1.1.2 The effect of elevated temperatures during seed maturation on the 

seed transcriptome 

Elevated temperatures during seed maturation caused reduced levels of seed 

dormancy and altered resistance to artificial ageing of the seeds (Figure 1). Two GO 
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categories related to biological processes were significantly enriched by this 

treatment: regulation of biological process and multi-organism process. Interestingly, 

some GO categories related to molecular function were also enriched: namely, 

hydrolase activity affecting glycosyl bonds and compounds (Table 6). This could be 

indicative of cell wall modification mechanisms and, taken together with various 

genes related to seed coat development and composition, might be related to the 

observed phenotypes. Two genes involved in mucilage synthesis were present in this 

set. Mutants of BETA-XYLOSIDASE 1 (BXL1) displayed delayed germination and patchy 

production of mucilage upon imbibition (Arsovski et al., 2009). MUCILAGE-MODIFIED 

2 (MUM2) participates in biosynthesis of the seed mucilage and mutants of this gene 

fail to expand their mucilage upon hydration (Dean et al., 2007). Expression of the 

orphan gene QUA-QUINE STARCH (QQS) also increased as a result of elevated 

temperature. QQS has been linked to starch biosynthesis (Li et al., 2009), modulating 

seed composition by interacting with other transcriptional regulators (Li et al., 2015).  

Among the upregulated transcripts, some were linked to hormone signalling. 

DHFS-FPGS HOMOLOG B (DFB) participates in seed reserve accumulation (Meng et 

al., 2014) and mutants for this gene were reported to display altered auxin signalling 

in the quiescent centre of the root tip and altered amino acid profiles (Srivastava et 

al., 2011). SLEEPY2 (SLY2) is involved in the degradation of DELLA proteins and 

therefore acts as a positive regulator of GA signalling (Ariizumi et al., 2011). Also linked 

with GA responses, expression of GA-STIMULATED ARABIDOPSIS 6 (GASA6) was 

increased. This gene is a positive regulator of seed germination, which promotes by 

enhancing the expression of EXP1, therefore contributing to cell wall loosening 

(Zhong et al., 2015). NITRATE REDUCTASE 2 (NIA2) is involved in nitrate metabolism 

and participates in the synthesis of the gaseous free radical nitric oxide, which is 

involved in the release of seed dormancy and promotes germination (Arc et al., 2013a; 

Yu et al., 2014; Albertos et al., 2015).  

Transcripts downregulated by elevated temperatures during seed maturation 

showed no overrepresentation of any GO categories. However, included in this group 

there were some interesting candidates. DELAY OF GERMINATION 1 (DOG1), together 

with ABSCISIC ALDEHYDE OXIDASE 3 (AAO3), appeared downregulated. AAO3 is 

involved in the biosynthesis of ABA in seeds and leaves (Seo et al., 2000, 2004) and 

mutants of this gene displayed reduced seed dormancy (González-Guzmán et al., 

2004). DOG1 was first described as a major QTL regulating seed dormancy and the 

dog1 mutant has reduced seed longevity (Bentsink et al., 2006). In addition, its 

expression has been shown to be responsive to temperature (Chiang et al., 2011). 

BANYULS (BAN), which is a negative regulator of anthocyanin and flavonoid 
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biosynthesis and accumulation in the seed coat was downregulated, and mutations 

in this gene were reported to cause reduced germination after storage (Albert et al., 

1997). 

3.1.1.3 Modification of the seed transcriptome by artificial ageing  

Contrary to the effects of maternal temperatures, artificial ageing is applied to 

the seeds once they are dry and mature. Therefore, its ability to modify the 

transcriptome could be assumed to be relatively low. However, artificial ageing of 

seeds is conducted at elevated levels of relative humidity, which allow a certain 

degree of moisture content within the seed, thus allowing activation of metabolism 

and signalling (Chen et al., 2013). 

No GO category was overrepresented for the set of upregulated transcripts. 

Artificial ageing of seeds and their subsequent deterioration is associated with 

oxidative damage caused by the treatment. Therefore, genes involved in these 

responses would be expected. Expression of GLUTATHIONE S-TRANSFERASE 6 

(GSTF6), which belongs to a family of redox-responsive genes (Sappl et al., 2009), was 

found to be increased. A gene coding a 17.6 kDa class II heat shock protein (HSP17.6II) 

showed enhanced expression as well. These proteins were initially described for their 

role in heat responses, but have been shown to play fundamental roles during seed 

maturation and drying as a part of transcriptional networks regulated by ABI3 (Kotak 

et al., 2007). Interestingly, AAO3 was also upregulated by ageing, which could relate 

to stress responses activated by ABA as a result of the ageing treatment. This enzyme 

also participates in the biosynthesis of H2O2, which could in turn contribute to the 

redox imbalance already present (Zarepour et al., 2012). Transcripts of the ROS-

responsive gene HIGH AFFINITY K+ TRANSPORTER 5 (HAK5) were increased as well. 

This gene is involved in potassium uptake and its expression has been shown to be 

responsive to low levels of potassium (Kim et al., 2010). Another potassium 

transporter, K+ EFFLUX ANTIPORTER 2 (KEA2), was upregulated by artificial ageing. It 

is involved in the maintenance of plastid ionic homeostasis and correct plastid 

development (Zheng et al., 2013; Aranda-Sicilia et al., 2016), besides being activated 

in response to osmotic stresses in an ABA-dependent manner (Kunz et al., 2014). The 

increased expression of these transporters may be reflecting an ionic imbalance as a 

result of the oxidative damage to cellular membranes. 

In addition to oxidative stress responses, genes related to cell wall modification 

were also upregulated. GALACTURONOSYLTRANSFERASE 6 (GAUT6) has been 

speculated to participate in pectin biosynthesis, given that the mutants exhibit altered 

cell wall composition (Caffall et al., 2009). The expression of 3-BETA 
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HYDROXYSTEROID-DEHYDROGENASE/DECARBOXYLASE ISOFORM 1 

(3BETAHSD/D1) was also upregulated. Overexpression of this gene affects auxin 

signalling by altering the plasma membrane composition and thereby interfering with 

the mobility of auxin transporters (Kim et al., 2012). 

For transcripts downregulated by artificial ageing, GO categories related to 

hormone, water and abiotic stimuli responses were enriched (Table 6). Included in 

this group, ARABIDOPSIS ZINC-FINGER PROTEIN 2 (AZF2) is a transcriptional 

repressor induced by abiotic stresses that acts as a negative regulator of ABA and 

auxin responses (Drechsel et al., 2010; Kodaira et al., 2011). Also related to ABA, CBL-

INTERACTING PROTEIN KINASE 3 (CIPK3) was shown to exert a negative regulation 

of ABA responses, including germination and seed dormancy (Pandey et al., 2008). 

SIN3-LIKE 1 (SNL1) has been previously reported to affect seed dormancy and 

longevity and shown to be involved in ABA and ethylene responses, but with opposed 

effects (Wang et al., 2013). Its role as a hormone repressor was further demonstrated, 

given that it contributes as a negative regulator of auxin responses during seed 

germination (Wang et al., 2016). In addition to this, the regulator of auxin transport 

and homeostasis PIN-FORMED 6 (PIN6) was also downregulated by artificial ageing 

(Cazzonelli et al., 2013), as was the auxin-regulated and senescence-responsive 

XTH24 (Shi et al., 2015). ANT also appeared downregulated by artificial ageing, as did 

the positive regulator of GA signalling SLY2. 1-AMINO-CYCLOPROPANE-1-

CARBOXYLATE SYNTHASE 7 (ACS7) participates in the biosynthesis of ethylene and 

its expression is responsive to GAs, ABA and ethylene (Mishra et al., 2008; Dong et al., 

2011). Surprisingly, both abiotic stress-responsive genes KIN1 and KIN2 appeared 

downregulated by artificial ageing. 
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Table 6. Gene Ontology categories enriched for each set of differentially expressed 

transcripts. The last column shows the log10 of the p-value associated with each 

overrepresented category. 

GO ID Description 
log10 p-

value 

Upregulated low temperature 

GO:0003677 DNA binding -0.6198 

GO:0003700 transcription factor activity, sequence-specific DNA binding -0.6198 

Downregulated low temperature 

GO:0007275 multicellular organism development -0.3468 

GO:0010468 regulation of gene expression -0.3565 

GO:0008610 lipid biosynthetic process -0.3565 

GO:0032501 multicellular organismal process -0.3979 

GO:0019222 regulation of metabolic process -0.3979 

GO:0032787 monocarboxylic acid metabolic process -0.4559 

GO:0031323 regulation of cellular metabolic process -0.4685 

GO:0006351 transcription, DNA-templated -0.4685 

GO:0006790 sulphur compound metabolic process -0.5086 

GO:0051171 regulation of nitrogen compound metabolic process -0.5086 

GO:0050789 regulation of biological process -0.5376 

GO:0032502 developmental process -0.5528 

GO:0050794 regulation of cellular process -0.5528 

GO:0009719 response to endogenous stimulus -0.5528 

GO:0042221 response to chemical -0.5528 

GO:0009628 response to abiotic stimulus -0.5528 

GO:0006355 regulation of transcription, DNA-templated -0.5528 

GO:0019219 
regulation of nucleobase-containing compound metabolic 

process 
-0.5528 

GO:0080090 regulation of primary metabolic process -0.5528 

GO:0010556 regulation of macromolecule biosynthetic process -0.5528 

GO:0009605 response to external stimulus -0.5686 

GO:0009725 response to hormone -0.585 

GO:0046394 carboxylic acid biosynthetic process -0.585 

GO:0016053 organic acid biosynthetic process -0.585 

GO:0009889 regulation of biosynthetic process -0.585 

GO:0031326 regulation of cellular biosynthetic process -0.585 

GO:0006629 lipid metabolic process -0.6383 

GO:0065007 biological regulation -0.6383 

GO:0009791 post-embryonic development -0.7696 

GO:0009733 response to auxin -0.7696 

GO:0051704 multi-organism process -0.7959 

GO:0009639 response to red or far red light -1.2218 

GO:0051707 response to other organism -1.2218 



Genetic and environmental regulation of seed longevity in Arabidopsis thaliana 

 

48 

GO:0009620 response to fungus -1.2218 

GO:0009416 response to light stimulus -1.2291 

GO:0010114 response to red light -1.2291 

GO:0050896 response to stimulus -1.2291 

GO:0009607 response to biotic stimulus -1.2291 

GO:0009314 response to radiation -1.2291 

Upregulated elevated temperature 

GO:0046914 transition metal ion binding -0.4437 

GO:0004553 hydrolase activity, hydrolysing O-glycosyl compounds -0.4437 

GO:0016798 hydrolase activity, acting on glycosyl bonds -0.585 

Downregulated elevated temperature 

GO:0043167 ion binding -0.3098 

GO:0043169 cation binding -0.3098 

Downregulated artificial ageing 

GO:0009628 response to abiotic stimulus -0.5086 

GO:0009719 response to endogenous stimulus -0.5086 

GO:0009725 response to hormone -0.5528 

GO:0009415 response to water -0.5528 
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3.1.2 The influence of drought during seed maturation on seed quality and 

the seed transcriptome 

The effect of drought stress or water scarcity has been extensively studied in 

plants, as this is one of the most common problems that plants are faced with 

worldwide. The lack of water imposes severe restrictions to plant growth and seed 

production, therefore being one of the main threats to agriculture and industry due 

to the severe economic loses it implicates. Many studies have been conducted to 

elucidate the molecular mechanisms and transcriptional networks underlying plant 

acclimation and adaption to this condition, as well as the signalling processes that it 

involves (Shinozaki and Yamaguchi-Shinozaki, 2007; Farooq et al., 2009). However, 

the effects of drought on seed traits have been largely overlooked, considering its 

overall detrimental effect for the adult plant. Some studies already showed, 

nonetheless, that drought can exert a positive effect on seed quality traits, such as 

modifying seed composition and increasing responses to oxidative stresses (Britz and 

Kremer, 2002; Li et al., 2013). 

The impact of drought stress imposed during the course of seed development 

and maturation on seed dormancy and sensitivity to artificial ageing was evaluated in 

a mutant with reduced seed longevity. Specifically, seeds from the seed longevity-

deficient mutant dog1-1 and its background NIL DOG1 (in Ler wild type) were used 

and their response to water deficit during seed maturation evaluated. NIL DOG1 

carries a chromosomal region from the Cvi accession containing the DOG1 gene 

introgressed into Ler (Alonso-Blanco et al., 2003). Whereas the dog1-1 mutant has 

reduced seed longevity and is non-dormant, NIL DOG1 shows deep seed dormancy 

levels due to the strong DOG1 allele from the Cvi accession. The dog1-1 mutant is the 

result of a nucleotide substitution that introduces a premature stop codon, therefore 

rendering the plant devoid of DOG1 (Bentsink et al., 2006).  

Drought treatment caused an alleviation of seed dormancy in the NIL DOG1 

control (Figure 3A), as determined in a germination test of freshly harvested seeds. 

Furthermore, when seed longevity was evaluated, it was observed that seeds from 

drought-treated plants showed reduced sensitivity to accelerated ageing compared 

to the non-treated controls and that this effect was comparable in both the mutant 

and the control genotypes (Figure 3B). Control NIL DOG1 seeds were partially 

dormant (Figure 3A), so when subjected to artificial ageing, a first phase of dormancy 

release was observed prior to the ageing deterioration (Figure 3B, 0-2 days of 

treatment).  
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RNA-sequencing of dry seeds was used to elucidate the transcriptional 

responses underlying this enhanced resistance to artificial ageing. The expression 

profiles of treated and control samples were first compared using a principal 

component analysis. Figure 4 shows that the main component that separates samples 

is genotype, which accounts for 80 % of the observed variability and determines a 

clear clustering of samples. The drought treatment, represented by component 2, 

explains 10 % of the observed variability and separates control samples at the bottom 

of the chart from those grown under drought stress at the top. 

 
Figure 3. Drought treatment during seed maturation affects seed dormancy and 

longevity. Panel A shows the mean germination percentages of freshly harvested seeds used 

for this study. Panel B shows the germination proportion after different periods of artificial 

ageing of the same seed batches. Data points represent the mean value of three biological 

replicates. Error bars correspond to the associated standard deviation. Solid lines represent 

control samples, whereas drought-treated samples are represented with dashed lines. 

All comparisons were made using the NIL DOG1 untreated control as a 

reference. Table 7 shows the number of differentially expressed transcripts identified 

for each condition. It is apparent that the dog1-1 mutant profoundly affects the dry 

seed transcriptome, causing over 2,000 genes to be differentially expressed, whereas 

the effect of drought led to the identification of 582 differentially expressed 

transcripts.  

3.1.2.1 The effect of drought during seed maturation on the dry seed 

transcriptome 

Water scarcity imposed during seed set and maturation led to reduced levels of 

seed dormancy and increased resistance to artificial ageing (Figure 3), as well as an 

increase in seed weight (Supplemental Figure 2). Transcriptomic analysis of drought 

treated seeds and their corresponding controls led to the identification of 501 
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differentially expressed transcripts (Table 7). Figure 5 illustrates that determination 

of differentially expressed transcripts using either NIL DOG1 or dog1-1 as the reference 

for the comparisons led to very similar results, which means that the effect of the 

drought treatment in both genotypes is comparable. The number of DETs might be 

slightly higher in the mutant as a result of its altered transcriptome (Table 7).  GO 

enrichment analyses of upregulated transcripts found several overrepresented 

categories (Table 8).  

 
Figure 4. Principal Component Analysis plot of samples. Drought stress was applied during 

seed maturation to the dog1-1 mutant and its wild type control NIL DOG1. Shapes represent 

genotypes and colours represent treatment, as indicated. 

As mentioned above, drought imposes stresses to the plant that result in overall 

detrimental effects. Therefore, the presence of enriched GO categories related to 

abiotic stimulus responses was predictable. In this group, HSP22 and HSP17.6II were 

previously linked to these stress responses and to play a part during seed 

development (Helm et al., 1995; Kotak et al., 2007). Also linked to abiotic stress 

responses, RESPONSIVE TO ABA AND SALT 1 (RAS1) was upregulated by drought. 

This gene encodes a plant-specific protein responsive to ABA and which expression 

is indirectly enhanced by drought (Ren et al., 2010; Yin et al., 2017).  TOUCH 4 (TCH4) 

participates in cell wall modification and was shown to be responsive to 

environmental stresses (Xu et al., 1995; Iliev et al., 2002). The latter study showed that 

the promoter of TCH4 is enriched in motifs associated with different responses, 

including touch and several phytohormones. Two transcripts encoding genes 
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participating in responses to oxidative stress were also present. ASCORBATE 

PEROXIDASE 5 (APX5) and its close relative genes participate in detoxification of 

hydrogen peroxide (Panchuk et al., 2002; Chen et al., 2014a), whereas VITAMIN E 

DEFECTIVE 4 (VTE4) participates in the degradation of chlorophyll linked to the 

biosynthesis of tocopherols, a set of compounds involved in protection of lipids from 

oxidative stress (Bergmüller et al., 2003). In addition, this gene was reported to 

participate in oxidative stress responses by affecting the pool of tocopherols available 

in the cell (Semchuk et al., 2009; Cela et al., 2011). Also included in this category was 

LIPID TRANSFER PROTEIN 4 (LTP4), which participates in lipid transport and was 

shown to be upregulated by salinity stress (Chae et al., 2010). In close connection with 

stress responses, two transcripts related with ABA were upregulated. First, 

MECHANOSENSITIVE CHANNEL OF SMALL CONDUCTANCE-LIKE 9 (MSL9), which is 

responsive to touch and a downstream target of ABA. Second, DROUGHT-INDUCED 

21, reported to be responsive to ABA (Gosti et al., 1995).  

Table 7. Number of differentially expressed transcripts identified for each condition. For 

a transcript to be considered differentially expressed, a cut-off for log2FC ≥ |1| and adjusted 

p-value ≤ 0.05 were applied. 

Condition Up-regulated transcripts Down-regulated transcripts 

Drought 210 372 

Drought (dog1-1 

reference) 
324 475 

dog-1-1 mutation 1944 460 

 

Upregulated transcripts also showed several overrepresented categories related 

to cell wall organisation, modification and loosening. A detailed examination of genes 

present in these categories showed that they are also included in categories related 

to cellular and developmental growth (Table 8). Specifically, EXPANSIN 2, 3, 9, 10 and 

20 were upregulated by the drought treatment. These enzymes are involved in cell 

wall loosening associated with growing organs and some of them have been linked 

to responses to abiotic stresses (Cho and Cosgrove, 2000; Kwon et al., 2008; Zou et 

al., 2013; Yan et al., 2014). TCH4 was also present in this group. Also present here was 

the transcription factor WEREWOLF (WER), which was described as a positive 

regulator of TRANSPARENT TESTA GLABRA 2 (TTG2) and in turn may affect 

composition of the seed coat (Ishida et al., 2007), as well as  XTH19, which is 

upregulated by drought. 
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Within the upregulated transcripts, GO categories for gene expression, 

translation and translational elongation were also found overrepresented. Several 

chloroplast-encoded ribosome constituents (Supplemental Dataset 1), as well as some 

encoded in the nucleus (At1g22110, At5g12110) were present, together with two RNA 

polymerases from both the chloroplast (AtCg00740) and nucleus (RNA-DEPENDENT 

RNA POLYMERASE 6, RDR6). The latter was shown to mediate gene silencing and to 

help degrading incorrectly processed transcripts (Luo and Chen, 2007; Hoffer et al., 

2011; De Alba et al., 2015). DEFECTIVE IN MERISTEM SILENCING 3 (DMS3) was also 

present in this category. This gene was reported to contribute to de novo DNA 

methylation, acting as a transcriptional repressor (Ausin et al., 2009; Lorković et al., 

2012).  

 

Figure 5. Number of differentially expressed transcripts caused by drought. Venn 

diagram illustrating the number of differentially expressed transcripts determined for each 

genotype. For each set of genes, the genotype from which it was determined is indicated. 

Down indicates downregulation and up refers to upregulation.  

Intriguingly, another overrepresented GO category was photosynthesis, 

together with the closely related generation of precursor metabolites and energy, 

with which most genes are common. Included here, several transcripts encoding 

subunits of the photosystem II (PSII), electron transport chain and ATP biosynthetic 

pathway were upregulated (Supplemental Dataset 1). Furthermore, several subunits 

of the NAD(P)H dehydrogenase complex were present as well (Supplemental Dataset 

1). Also related, 2-CYS PEROXIREDOXIN B (2CPB), which participates in the responses 

to oxidative stresses within the chloroplast and which has been demonstrated to 
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participate in the protection of the photosynthetic apparatus (Rey et al., 2007; Awad 

et al., 2015), was upregulated. Furthermore, DEGP PROTEASE 5 (DEG5) transcripts 

showed increased abundance. This protease was linked to repair and degradation 

mechanisms affecting photo-damaged components of the PSII (Sun et al., 2007; Kato 

et al., 2012).  

Table 7 illustrates how the number of transcripts downregulated by drought 

during seed maturation is higher than that of those upregulated. When evaluating 

the overrepresented GO categories in this dataset, several related to pollen tube 

growth and development were present, along with other more general categories 

such as cell morphogenesis and developmental cell growth. All these categories 

included several transcripts involved in the development of the pollen tube and the 

pollination process. These transcripts comprise genes related to synthesis and 

expansion of the pollen tube, such as KINKY POLLEN (KIN), VANGUARD 1 (VGD1) and 

EXPA4 (Procissi et al., 2003; Jiang et al., 2005); or modification of the pollen cell wall, 

represented by an elevated numbers of transcripts, including several 

ARABINOGALACTAN PROTEINS (AGPs; Pereira et al., 2016) and MICROTUBULE 

ASSOCIATED PROTEINS (MAPs). In addition, LORELEI (LRE) transcripts, previously 

demonstrated to play a central role in fertilisation (Tsukamoto et al., 2010), was also 

downregulated. One of the most well-known effects of drought is its detrimental 

effect on seed yield and gamete development (Barnabás et al., 2008), which would fit 

with the enrichment of downregulated transcripts in GO categories related to pollen 

development. 

Another group enriched within the set of downregulated transcripts is related 

with toxin metabolism. A closer examination of the genes present revealed that this 

category exclusively includes transcripts encoding different glutathione S-

transferases. This is a striking result, considering most of these genes are known to 

be responsive to stresses (Sappl et al., 2009). Connected with the previous, response 

to chitin, a polymer found in the cell wall of fungi, was also enriched. Transcripts within 

this group are mainly represented by ETHYLENE RESPONSIVE ELEMENT BINDING 

FACTORS (ERFs) 2, 5, 6 and 11. ERF5 was previously linked to chitin responses (Son et 

al., 2012). It is a close relative of ERF6 and together they were shown to participate in 

responses to water deprivation in growing leaves of Arabidopsis, where ERF6 

promotes the expression of GA2OX6, thus limiting growth by stabilising DELLA 

proteins (Dubois et al., 2013, 2015). In addition, two genes involved in the biosynthesis 

of ethylene were also found downregulated: ETHYLENE-FORMING ENZYME (EFE) and 

AT1G12010 (Gómez-Lim et al., 1993). GA2OX6 is involved in active GA catabolism, a 

role partially activated by DOG1 (Kendall et al., 2011), which was also found 
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downregulated by drought treatment and fits with the observed reduction in 

dormancy depth (Figure 3A). Also related to the induction of seed dormancy, 9-cis-

EPOXYCAROTENOID DIOXYGENASE 6 (NCED6), which participates in ABA 

biosynthesis during seed development, was downregulated (Martínez-Andújar et al., 

2011). Two close relatives of this gene appeared downregulated as well. On the one 

hand, NCED4, which plays a role in thermoinhibition of seed germination in lettuce 

(Huo et al., 2013). Interestingly, this study reported that drought did not alter NCED4 

expression in leaves, contrary to the observed downregulation occurring in seeds. On 

the other hand, CAROTENOID CLEAVEAGE DEOXYGENASE 7 (CCD7), which was 

linked to the biosynthesis of strigolactones, appeared downregulated as well (Booker 

et al., 2004). This would be in agreement with the reduced ethylene responses, as 

these phytohormones were described to enhance strigolactone biosynthesis (Ueda 

and Kusaba, 2015). Nevertheless, it is possible that these genes are downregulated 

because of their role in carotenoid degradation i.e., to enhance carotenoid 

accumulation. Carotenoids act as antioxidants protecting the photosynthetic 

apparatus (Zakar et al., 2016), which could also fit with the observed upregulation of 

photosynthesis-related GO categories in the group of upregulated transcripts.  

Transcripts of two genes involved in seed coat composition were 

downregulated as well. Specifically, TT5 and TT10, involved in flavonoid biosynthesis 

and in lignin and soluble proanthocyanidin (PA) oxidation, respectively (Pourcel et al., 

2013; Liang et al., 2006), were found downregulated by drought. PAs were 

demonstrated to be able to enhance ABA accumulation by enhancing expression of 

NCED6 (Jia et al., 2012). Interestingly, a recent study reported that, similar to tt10, the 

mutant nitrate transporter 2.7 (nrt2.7) also accumulates increased amounts of soluble 

PAs (David et al., 2014). Within the dataset of downregulated transcripts, NRT1.1, 1.2 

and 2.5 were present. The nrt1.1 mutant was described to show reduced transpiration 

and therefore to be more resistant to drought stress (Guo et al., 2003), whereas 

NRT1.2 was reported to participate in ABA transport (Kanno et al., 2012). 

Although not represented by any enriched category, several transcripts involved 

in chromatin modification had reduced transcript abundance. Specifically, VARIANT 

IN METHYLATION (VIM) 2, 3 and 4 were downregulated by drought. These genes are 

involved in transcriptional silencing by contributing to the maintenance of DNA 

methylation levels (Woo et al., 2008; Shook and Richards, 2014). This would agree 

with previous work showing that abiotic stresses modified epigenetic marks in the 

promoter of TT5, altering its expression (Bharti et al., 2015) and with previous studies 

reporting the effect of abiotic stresses on chromatin marks (Kim et al., 2015).  
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Among transcripts downregulated by drought, red light and far-red light 

responses were also enriched. TYPE-A RESPONSE REGULATOR 4 (ARR4) is involved 

in the crosstalk between light and cytokinin responses (Sweere, 2001; Mira-Rodado et 

al., 2007). Another study, however, showed that this gene also contributes to 

ethylene-mediated stomatal closure in leaves (Mira-Rodado et al., 2012). Also 

included in the category of light responses, SIGMA FACTOR E (SIGE) is a nuclear-

encoded regulator of plastid transcription (Noordally et al., 2013) whose expression 

was shown to be responsive to abiotic stresses (Nagashima et al., 2004). Specifically, 

SIGE expression is induced by ABA treatment (Yamburenko et al., 2015) and its 

presence in this group of transcripts would fit the observed reduction in ABA 

biosynthetic genes. 

Table 8. Gene Ontology categories enriched for each set of differentially expressed 

transcripts. The last column shows the log10 of the p-value associated with each 

overrepresented category. 

GO ID Description 
log10 p-

value 

Upregulated Drought 

GO:0051179 localization -0.3279 

GO:0032502 developmental process -0.4437 

GO:0009791 post-embryonic development -0.4437 

GO:0046483 heterocycle metabolic process -0.4437 

GO:0009409 response to cold -0.4815 

GO:0006811 ion transport -0.5229 

GO:0065008 regulation of biological quality -0.5376 

GO:0006796 phosphate-containing compound metabolic process -0.5686 

GO:0006793 phosphorus metabolic process -0.5686 

GO:0032989 cellular component morphogenesis -0.6383 

GO:0032535 regulation of cellular component size -0.699 

GO:0090066 regulation of anatomical structure size -0.699 

GO:0040007 growth -0.8539 

GO:0048869 cellular developmental process -1 

GO:0009266 response to temperature stimulus -1.1487 

GO:0006508 proteolysis -1.1871 

GO:0007166 cell surface receptor signalling pathway -1.3665 

GO:0055085 transmembrane transport -1.4202 

GO:0048589 developmental growth -1.4318 

GO:0007169 
transmembrane receptor protein tyrosine kinase signalling 

pathway 
-1.699 

GO:0044260 cellular macromolecule metabolic process -1.7959 

GO:0009628 response to abiotic stimulus -2.1367 

GO:0009059 macromolecule biosynthetic process -2.3098 
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GO:0010467 gene expression -2.3188 

GO:0034645 cellular macromolecule biosynthetic process -2.3279 

GO:0034220 ion transmembrane transport -3.2291 

GO:0043170 macromolecule metabolic process -3.2441 

GO:0044238 primary metabolic process -3.3468 

GO:0009825 multidimensional cell growth -3.4815 

GO:0009827 plant-type cell wall modification -3.4815 

GO:0009058 biosynthetic process -3.5086 

GO:0044249 cellular biosynthetic process -3.585 

GO:0044267 cellular protein metabolic process -3.6198 

GO:0009987 cellular process -3.7212 

GO:0006091 generation of precursor metabolites and energy -3.7212 

GO:0044237 cellular metabolic process -3.7959 

GO:0019684 photosynthesis, light reaction -3.8239 

GO:0042547 cell wall modification involved in multidimensional cell growth -4.0862 

GO:0008152 metabolic process -4.3188 

GO:0006412 translation -4.9586 

GO:0015979 photosynthesis -5.1308 

GO:0019538 protein metabolic process -5.1308 

Downregulated Drought 

GO:0043933 macromolecular complex subunit organization -0.3188 

GO:0009653 anatomical structure morphogenesis -0.3188 

GO:0032535 regulation of cellular component size -0.3665 

GO:0090066 regulation of anatomical structure size -0.3665 

GO:0009639 response to red or far red light -0.3665 

GO:0050896 response to stimulus -0.4949 

GO:0051704 multi-organism process -0.4949 

GO:0005975 carbohydrate metabolic process -0.4949 

GO:0070271 protein complex biogenesis -0.4949 

GO:0048589 developmental growth -0.4949 

GO:0042545 cell wall modification -0.5086 

GO:0065003 macromolecular complex assembly -0.6576 

GO:0010200 response to chitin -0.699 

GO:0019748 secondary metabolic process -0.7447 

GO:0060560 developmental growth involved in morphogenesis -0.8239 

GO:0010114 response to red light -1.1135 

GO:0007267 cell-cell signalling -2.0088 

GO:0000904 cell morphogenesis involved in differentiation -2.1938 

GO:0009404 toxin metabolic process -2.2757 

GO:0048868 pollen tube development -2.2757 

GO:0035295 tube development -2.2757 

GO:0009407 toxin catabolic process -2.2757 
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3.1.2.2 The seed transcriptome of the dog1-1 mutant 

A recent publication conducted microarray analysis comparing the dog1-1 

mutant to its background NIL DOG1 (Dekkers et al., 2016). The authors proposed a 

role of DOG1 as a repressor of genes associated with germination, considering many 

of these were upregulated in the mutant. In addition, they described how several 

genes whose expression is induced during the late stages of seed maturation fail to 

do so in this mutant. These observations prompted the hypothesis that DOG1 could 

be a regulator of seed maturation, which was further supported by the altered 

metabolic profile of the mutant. 

In this study, the dry seed transcriptome of dog1-1 was evaluated by RNA-seq 

in both control and drought conditions. Comparisons between microarray and RNA-

seq approaches showed that, although comparable, the latter allows for more 

detailed analyses, as this sequencing approach captures a larger fraction of the low-

abundance transcripts (Izadi et al., 2016). In agreement with this, the number of 

differentially expressed transcripts detected is three times higher than that described 

by Dekkers and colleagues (Table 7). 

Among the transcripts upregulated in the mutant, several GO categories were 

overrepresented related to stress responses and hormones, such as gibberellins and 

ethylene and oxidative and osmotic stresses, which is in agreement with previous 

work (Dekkers et al., 2016). Furthermore, this group also included categories linked to 

germination processes, such as growth, modification of the cell wall and ribosome 

biogenesis (Supplemental Dataset 2). Nevertheless, other overrepresented categories 

were present that were not previously reported. Among these, response to cold was 

found overrepresented. Within this category, the abiotic stress responsive genes KIN1 

and KIN2 were present (Kurkela and Franck, 1990), together with LEA5. The latter was 

shown to be responsive to several abiotic stresses and its expression proposed to be 

linked to ROS signalling in roots (Salleh et al., 2012). This category also included 

SENSITIVE TO FREEZING 2 (SFR2), a gene that participates in the protection of 

chloroplast membranes by modification of their lipid composition (Moellering et al., 

2010). Likewise, STARCH EXCESS 1 (SEX1) participates in degradation of starch and 

was shown to contribute to freezing tolerance (Yano et al., 2005), besides of affecting 

the resulting seed composition and thus, post-germination growth (Andriotis et al., 

2012). Surprisingly, the transcription factor SPT was also upregulated and present in 

this category. SPT was described as a repressor of seed germination that contributes 

to the maintenance of seed dormancy (Penfield et al., 2005). Further work 

characterised its regulatory role as affecting the expression of ABI4 and ABI5, together 
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with DELLA proteins (Vaistij et al., 2013). Intriguingly, this study reported the induction 

of ABI5 and the repression of ABI4 expression by SPT, whereas our results showed 

that ABI5 is downregulated and ABI4 is upregulated in dog1-1, in agreement with the 

previous study (Dekkers et al., 2016). Furthermore, previous research reported that 

DELLA proteins can exert a negative regulation on SPT expression (Josse et al., 2011), 

but the dog1-1 dry seed transcriptome showed upregulation of most DELLA-encoding 

genes, including REPRESSOR OF GA1-3 1 (RGA1), RGL1, RGL2 and GIBBERELLIC ACID 

INSENSITIVE (GAI). Upregulation of these transcripts might seem unexpected, 

especially considering that several genes related to GA biosynthesis had increased 

expression in the mutant as well, such as GA1, GIBBERELLIN 20-OXIDASE 1 (GA20OX1), 

GA20OX2, GA20OX3 and GA3OX2. Besides, DELLA proteins were shown to repress 

the expression of EXP2 (Yan et al., 2014), but this gene and its close relatives EXP3, 8, 

9, 10, 15 and 20 were upregulated in the mutant as well. However, a previous study 

showed that DELLA proteins target genes involved in GA biosynthesis and signalling 

and suggested that DELLAs could contribute to GA homeostasis (Zentella et al., 2007). 

Another study reported that exogenous application of GAs induced mRNA 

accumulation of RGA1 in ga1-3 mutants, an observation further confirmed in the wild 

type Ler after treatment with an inhibitor of GA biosynthesis (Ariizumi et al., 2008). 

This would agree with the observed increases in both GA biosynthetic and repressive 

transcripts. In addition, it is possible that other feedback loops are exerting their 

regulation simultaneously, including those affected by protein accumulation, which 

could in turn be affecting expression in the mutant. It is then difficult to draw 

conclusions from transcriptomic data alone. 

Similarly, auxin responses appeared overrepresented in the group of 

upregulated transcripts. PINOID (PID) modulates auxin effluxes through 

phosphorylation of auxin carriers such as PIN-FORMED 1 (PIN1) and PIN2, which in 

turn affect different processes, including the establishment of cell polarity (Zhang et 

al., 2010; Zourelidou et al., 2014; Weller et al., 2017). MONOPTEROS (MP) is a 

transcription factor also involved in auxin signalling by modulating the expression of 

PIN genes (Schuetz et al., 2008; Krogan et al., 2016). This gene was recently linked to 

the regulation of cell fate by chromatin switches in response to auxins (Wu et al., 

2015). The transporter AUXIN RESISTANT 1 (AUX1) was present in this category as well. 

This gene was shown to be involved in regulating germination speed and its 

expression to be controlled through chromatin modifications (Wang et al., 2016). The 

transcript encoding for POLARIS (PLS), a small peptide linking the crosstalk between 

auxins, ethylene and cytokinins in roots was also upregulated (Chilley et al., 2006; Liu 

et al., 2013a). TT4 is also present in this category and mutants for this gene were 
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reported to show altered auxin transport, as well as light and gravity responses (Buer 

and Muday, 2004), categories which also appeared overrepresented (Supplemental 

Dataset 2). 

For downregulated transcripts, the results from RNA-seq data accommodate 

well with those previously described. As pointed out by Dekkers et al. (2016), one of 

the overrepresented categories within the set of downregulated transcripts is 

response to heat. This group comprises a broad array of heat shock proteins. Of 

special interest here is the presence of HEAT SHOCK TRANSCRIPTION FACTOR A9 

(HSFA9). This is a transcription factor whose expression is induced during the later 

stages of seed maturation under the control of ABI3 (Kotak et al., 2007). As described 

in this work, HSFA9 regulates the expression of several downstream targets, such as 

HSP17.4CI, HSP17.7CII, HSP70 and HSP101, all of which are also part of the category 

of response to heat. Furthermore, this transcriptional network was linked to the 

acquisition of seed longevity in sunflower, through a separate pathway from that 

involved in the acquisition of desiccation tolerance (Tejedor-Cano et al., 2010).  

3.1.2.3 The influence of drought during seed maturation on cell wall 

composition 

Drought imposed during seed set in Arabidopsis causes a considerable 

reduction in the overall seed yield. The possible reasons for this reduction include 

ovule and pollen abortion, deficient seed filling and overall reduced plant growth, 

which reflects in a reduced number of seeds produced (Farooq et al., 2009). In 

Arabidopsis plants, seed production occurs gradually over time. Imposing drought 

during this phase causes a reduction in plant growth, which implies that the 

subsequent formation of floral shoots and seeds becomes compromised. The results 

from the RNA-seq data analysis revealed that many of the differentially expressed 

transcripts caused by drought were related to cell wall composition and modification. 

This prompted the hypothesis that the observed enhanced resistance to artificial 

ageing might be caused by these modifications. To evaluate this, cell wall composition 

analyses were conducted. As drought imposed a strong limitation on the amount of 

available seeds for the experiments, these studies were conducted pooling all three 

biological samples together in order to reach the minimum amount of sample 

required for these analyses. All the cell wall composition analysis were conducted by 

the group of Professor Simon McQueen-Mason, at the University of York (United 

Kingdom). 
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Analysis of the monosaccharide profile of the non-crystalline fraction of the 

seed cell walls between control and drought-treated samples showed that differences 

in monosaccharide content were already present at control conditions (Figure 6). The 

dog1-1 mutant exhibited higher amounts of monosaccharides than NIL DOG1. 

However, the application of drought during seed maturation alleviated these 

differences, resulting in similar profiles between the control and the mutant. 

 
 

Figure 6. Monosaccharide profile of the non-crystalline fraction of seed cell walls. Total 

amount of monosaccharides in the xyloglucan fraction in control and drought treated seeds 

of NIL DOG1 and dog1-1. GluA: glucuronic acid; GalA: galacturonic acid; Man: mannose; Xyl: 

xylose; Glu: glucose; Gal: galactose; Rha: rhamnose; Ara: arabinose; Fuc: fucose. 

Monosaccharides present in the pectin-enriched fraction were also evaluated 

and found to exhibit the same trend. Analysis of monosaccharides present in the 

esterified-pectin fraction showed a higher amount of these already in the non-treated 

mutant (Figure 7A). Similarly to the non-crystalline fraction, drought treatment led to 

a reduction of the monosaccharide content in dog1-1, whereas in this specific fraction, 

it led to the exact opposite pattern in NIL DOG1, as it showed increased 

monosaccharide content after drought treatment (Figure 7A). As for 

monosaccharides present in the non-esterified pectin fraction, the initial situation was 

comparable, with dog1-1 having the highest content and the drought treatment 

leading to a considerable reduction in both genotypes (Figure 7B). It is interesting 

that in control seeds, NIL DOG1 had galactose (Gal), but dog1-1 did not and, 
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conversely, whereas the control had reduced pool of glucose (Glu), this 

monosaccharide was more baundant in the mutant (Figure 7B).  

Taken together, these results do not accommodate with the initially observed 

phenotypes, considering both genotypes showed enhanced resistance to artificial 

ageing when drought was applied during seed maturation (Figure 3B). From these 

observations, a similar behaviour of the seed cell wall composition could be expected 

if this was the underlying factor for this phenotype. However, cell wall composition 

analyses revealed that dog1-1 shows an altered composition at control conditions, 

displaying a higher abundance of monosaccharides and an increased overall amount 

in comparison to NIL DOG1 (Figure 6 and Figure 7).  

Drought treatment applied during seed maturation led to a reduction of the 

monosaccharides present in cell walls of dog1-1 seeds, reducing them to proportions 

similar to those of the control. dog1-1 seeds were shown to have an altered 

composition (Dekkers et al., 2016), which is in agreement with the observed cell wall 

composition. Altered seed coat composition was demonstrated to have a detrimental 

effect on seed longevity (Debeaujon et al., 2000; Clerkx et al., 2004), which could 

support the increased monosaccharide content in the mutant as a contributing factor 

to its reduced longevity due to a weaker seed coat. It is striking, however, that water 

deprivation applied either to the control or the mutant resulted in a similar 

phenotypic response. Moreover, the monosaccharide profiles behave with opposite 

trends in each genotype. It is possible that drought treatment leads to a certain cell 

wall composition involving a specific proportion of monosaccharides, thus allowing 

seeds to deal better with water scarcity. This specific composition would then explain 

the opposite observed behaviours, as each genotype starts from a different 

composition, although further experiments are required to substantiate this. 
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Figure 7. Monosaccharide profile of the pectin-enriched fraction of seed cell walls. Total 

amount of monosaccharides in the esterified (A) and non-esterified (B) pectin fraction in 

control and drought treated seeds of NIL DOG1 and dog1-1. GluA: glucuronic acid; GalA: 

galacturonic acid; Man: mannose; Xyl: xylose; Glu: glucose; Gal: galactose; Rha: rhamnose; 

Ara: arabinose; Fuc: fucose. 
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3.2 IDENTIFICATION OF GENES AFFECTING SEED LONGEVITY IN ARABIDOPSIS 

THALIANA 

3.2.1 The role of DOG1-interacting proteins in seed longevity 

DELAY OF GERMINATION 1 (DOG1) was initially described as a major 

quantitative trait locus regulating seed dormancy in recombinant inbred lines that 

originated from a cross between low and high dormant accessions of Arabidopsis 

thaliana (Alonso-Blanco et al., 2003). DOG1 was cloned over a decade ago and 

reported to be involved in the regulation of seed dormancy and longevity (Bentsink 

et al., 2006), but its molecular role has only started being elucidated. A recent 

publication showed that DOG1 regulates seed dormancy together with ABA through 

genetic and in vivo interactions with clade A PP2C protein phosphatases (Née et al., 

2017). This study showed that both ABA and DOG1 negatively regulate the actions of 

these phosphatases in the release of dormancy. However, if this mechanism underlies 

the role of DOG1 in the acquisition of seed longevity remains to be determined.  

 

Figure 8. DOG1 protein accumulation affects the depth of seed dormancy but not 

sensitivity to artificial ageing. Germination proportion after different periods of dry storage 

(A) and after different lengths of accelerated seed ageing treatment (B) of wild type Ler 

(circles, red line), dog1-1 mutant (triangles, black line) and two transgenic lines of the dog1-1 

mutant complemented  with pDOG1Cvi:YFP:DOG1Cvi, accumulating DOG1 at relatively low 

(Comp. 1, diamonds, green line) or high (Comp. 2, squares, purple line) levels (Nakabayashi 

et al., 2012). Data points represent the mean of three biological replicates and error bars the 

associated standard deviation. 

DOG1 protein accumulation directly correlates with the depth of seed 

dormancy. Nevertheless, this effect was never established for seed longevity. The seed 

longevity phenotype of previously generated complemented dog1-1 mutants over-

accumulating DOG1 (Nakabayashi et al., 2012) was evaluated (Figure 8). Although 

DOG1 accumulation has a profound effect on the depth of seed dormancy (Figure 
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8A), its protein abundance levels do not correlate with sensitivity to artificial ageing. 

The presence of DOG1 complements seed longevity in dog1-1, confirming its role the 

establishment of this trait, but enhanced accumulation does not further improve seed 

longevity (Figure 8B). This raises the possibility that the role of DOG1 in determining 

seed longevity is different from the one it plays in the establishment and maintenance 

of seed dormancy (Nguyen et al., 2012).  

 

Considering the participation of DOG1 in the acquisition of seed longevity, 

proteins that interact in vivo with it could also be involved in this process. Hence, a 

recently produced DOG1 pull-down dataset, consisting of proteins able to interact 

with DOG1 in dry and imbibed seeds (Née et al., 2017), was used to select possible 

candidates according to their expression profiles and available literature. Table 9 

shows the list of genes selected to evaluate their role in seed longevity. 

 

Table 9. DOG1-interacting proteins selected to evaluate their role in seed longevity. 

Locus Symbol Description 

At4g26740 CLO1 CALEOSIN 1 

At5g42980 TRX3 THIOREDOXIN 3 

At2g24420 ATPrel DNA repair ATPase-related 

At4g39730 PLAT1 Lipase/lipooxygenase, PLAT/LH2 family protein 

At3g63410 VTE3 VITAMIN E DEFECTIVE 3 

At1g48130 PER1 1-CYSTEINE PEROXIREDOXIN 1 

At1g56070 LOS1 
LOW EXPRESSION OF OSMOTICALLY RESPONSIVE 

GENES 1 

 

Candidate genes were first cloned and their ability to physically interact with 

DOG1 in vivo was confirmed in a yeast two-hybrid assay. Firstly, successful delivery of 

both constructs into the yeast cells was evaluated by plating them on SD -Leu/-Trp 

medium, in which all of them grew. Auto-activation tests for each construct were 

conducted and no construct showed ability to auto-activate the system. After this, the 

interactions were evaluated in SD -Leu/-Trp/-His and it was observed that all tested 

candidates could interact with DOG1 in vivo (Figure 9), as indicated by growth of 

yeast cells in the selective medium. All interactions were tested in both directions, 

fusing all genes to both the activation domain (pACT2 vector) and the DNA-binding 

domain (pAS2 vector). All interactions were further evaluated in plates including 2 

and 5 mM of 3-AT, as an indicator for the strength of the interaction (Figure 9).  

From these results, it can be concluded that all tested candidates can interact in 

vivo with DOG1, confirming the results from the pull-down assay. CLO1, PLAT1 and 
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VTE3 showed the strongest interactions, as they were able to grow up to 5 mM of 3-

AT. Surprisingly, when LOS1 is fused to the binding domain instead, its interaction 

with DOG1 is also maintained up to 5 mM of 3-AT. Interestingly, TRX3 only could 

interact with DOG1 when it was fused to the binding domain (Figure 9). 

After confirming the interactions, T-DNA insertion lines for these genes were 

ordered (Figure 10). Homozygous T-DNA insertion mutants were isolated for most 

of the candidates, with the exception of CLO1 and VTE3. Only one T-DNA insertion 

line was available for CLO1 (GK_823D08) and neither homozygous nor heterozygous 

lines could be identified. For VTE3, a previous report showed that the homozygous 

T-DNA insertion line used (SALK_105903) was soil lethal and does not reach the adult 

phase (Cheng et al., 2003). A second allele was also described in the same study, but 

was no longer available.  

 

Figure 9. Interactions between DOG1 and the selected candidate proteins in a yeast two-

hybrid assay.  Yeast cultures co-expressing the indicated protein combinations were plated 

as 1:1, 1:10 and 1:100 dilutions from left to right on SD –LWH selective media. All pictures 

correspond to medium without 3-AT. Growth of yeast cells indicates protein-protein 

interaction. * and ** indicate that the interaction is maintained at 2 and 5 mM 3-AT, 

respectively. The interaction between SNF1 and SNF4 was used as a positive control. 
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Figure 10. Schematic representation of the gene structure of selected candidates and 

the relative position of T-DNA insertion lines used. White boxes represent the untranslated 

regions (UTR). Black boxes represent exons and the lines connecting them correspond to 

introns. White triangles represent the T-DNA insertion line and the name given to the allele. 

los1-1 carries a single amino acid mutation (Guo et al., 2002). All genes are represented in 5’-

3’ orientation, with an arrowhead at the 3’-end. 

All isolated homozygous T-DNA lines were evaluated for their seed longevity 

phenotype. Figure 11A shows that no significant differences were found between 

these lines and the wild type control. Several available alleles of los1 were evaluated, 

but they did not exhibit significant differences in seed longevity (Figure 11B). los1-2 

carries an insertion at the 3’UTR region and los1-3 carries the T-DNA insertion at the 

promoter region (Figure 10) but expression of the gene was unaffected when 

evaluated by qPCR (Supplemental Figure 3). 

Evaluation of seed longevity on the progeny of heterozygous lines of vte3-2 

showed that this trait is affected, although this also included one third of wild type 

seeds as well as some lethal vte3 homozygotes (Figure 12A). As homozygous lines 

for this insertion mutant were not viable, transgenic lines overexpressing the VTE3 

coding sequence under the control of a 35S promoter were constructed and their 

seed longevity phenotype evaluated. Interestingly, as depicted in Figure 12B, 
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overexpression of VTE3 in the wild type causes a reduction of seed longevity. These 

transgenic lines were further analysed and qPCR confirmed that they were 

overexpressing VTE3, contrary to vte3-2, which showed reduced expression (Figure 

12C). 

 

Figure 11. Seed longevity phenotypes of selected DOG1-interacting-protein insertion 

mutants. Germination after different periods of accelerated ageing (days of treatment) of T-

DNA insertion lines of candidate genes. In panel B, los1-1 is in C24 background and los1-2 in 

Col-0. Data points represent the mean of three (A) or five (B) biological replicates. Error bars 

represent standard deviation. 

To determine the possible cause of the reduced longevity in these 

overexpressing lines, germination in the presence of ABA was evaluated. ABA 

regulates many abiotic responses related to oxidative stress, and germination 

sensitivity to ABA can indicate altered responses or perception. Germination assays 

using increasing concentrations of ABA showed no differences in germination 

behaviour between transgenic lines and the wild type (Figure 12D). Permeability of 

the seed coat is another possible cause of reduced seed longevity, but these lines 

showed no differential staining with tetrazolium chloride when compared with the 

wild type (Figure 13).  
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Figure 12. VTE3 expression affects seed longevity. Panel A shows the germination after 

accelerated ageing of heterozygous vte3-2 mutants. Panel B shows germination after 

accelerated ageing of two independent transgenic lines overexpressing VTE3. Panel C shows 

the relative expression in dry seeds of VTE3 in the vte3-2 mutant and two lines overexpressing 

it compared to the wild type Col-0 (represented by the baseline 0). Values plotted correspond 

to the log2-fold-change compared to Col-0. Panel D shows the germination of these 

transgenic lines in increasing concentrations of ABA. Each data point corresponds to the 

average of three (A, C) or four biological replicates (B and C). Error bars in panels correspond 

to standard deviation (A, B and D) or standard error of the mean (C). 

 

Figure 13. VTE3 overexpression does not alter seed coat permeability. Representative 

pictures of seeds of Col-0 and two transgenic lines overexpressing VTE3. Panel A shows seeds 

of Col-0 imbibed in water for 48 h in the dark. Panels B-D show seeds from the control Col-

0 (B) and two independent transgenic lines expressing the 35S:VTE3 construct (C and D) after 

48 h of tetrazolium staining. Scale bars correspond to 1 mm.   
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3.2.2 The role of the flowering repressors FRI and FLC in the regulation of 

seed longevity 

Previous work exploiting the existing natural variation in Arabidopsis combined 

with the use of mutants with very poor seed longevity identified several seed 

longevity modifiers (Sugliani et al., 2009). Specifically, three independent modifiers 

introgressed from the Shahdara accession contributed to enhance seed longevity in 

the lec1-3 mutant. From these three modifiers, one of them named lec/Sha1 and 

located at the top of chromosome 4 conferred the strongest increase in seed 

longevity. Further fine-mapping of this region narrowed it down to a segment of 18 

kb containing four full-length genes (At4g00620, At4g00630, At4g00650 and 

At4g00651). Three of these genes did not show complementation of the longevity 

phenotype when individually cloned and transformed. The fourth one, FRIGIDA (FRI), 

showed varying results when seed longevity in these complementation lines was 

evaluated, a variation that may originate from the influence of this gene in the 

regulation of flowering time.  

Together with germination, the transition to flowering is the most important 

life-history decision that plants adopt during their life cycle. Similar to the former, it 

is regulated by a broad range of factors that fine-tune this decision and time it 

according to different environmental cues and genetic determinants (Amasino, 2010). 

Proper timing of flowering is of utmost importance, as it will determine in which way 

a plant will commit its resources for reproductive success. FLOWERING LOCUS C (FLC) 

is a MADS-box transcription factor that acts as a repressor of the floral transition in 

Arabidopsis (Michaels and Amasino, 1999) and whose action is repressed by exposing 

the vegetative plant to a long period of cold, a process termed vernalisation (Sheldon 

et al., 2000). FRIGIDA (FRI) is an enhancer of FLC expression which does so by acting 

as a scaffolding protein in a transcriptional activator complex that mediates chromatin 

modification of the FLC locus (Johanson et al., 2000; Choi et al., 2011).  

The role of the floral regulator FRI on seed traits was evaluated. To this end, a 

first approach was conducted making use of genetic material carrying functional and 

non-functional alleles of this gene. Specifically, lines of flc-3, flc-3 FRISf2 and Col-0 

were evaluated. The flc-3 mutant, in Col-0 background, was produced using fast-

neutron mutagenesis and carries a 104 bp deletion at the 5’UTR region of the FLC 

gene that removes the start codon (Michaels and Amasino, 1999). It was used because 

it lacks a functional FRI allele (FRI is non-functional in the Col-0 background) and to 

avoid any possible interference of flowering time regulation. The line flc-3 FRISf2 is the 

same mutant but carrying an introgressed functional FRI allele from the San Feliu 
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accession (Michaels and Amasino, 1999). The wild type Col-0 was included as an 

additional control. It carries a non-functional FRI allele due to a premature stop codon 

(Johanson et al., 2000), besides a strong, functional FLC allele. Evaluation of the 

phenotypes from this material showed no differences either for seed dormancy or 

longevity (Figure 14). These results prompted the idea that it might be necessary that 

both FRI and FLC have to be present in order to affect seed longevity. This raised the 

issue of the role of these two genes as repressors of flowering, as they strongly delay 

flowering in Arabidopsis (Michaels and Amasino, 2001). The problem is that even 

when conducting staggered seed sowing to achieve simultaneous seed set and 

harvesting, the age of the plant and physiological status would not be equivalent 

between lines with strong differences in flowering time, which might cause distortions 

when evaluating seed longevity. 

 

Figure 14. Different combinations of FRI alleles do not affect seed dormancy and 

sensitivity to artificial ageing. Germination proportion after different periods of dry storage 

(A) and after different lengths of accelerated seed ageing treatment (B) of Col-0 (circles, red 

line), flc-3 (squares, blue line) and flc-3 FRISf2 (triangles, green line). Data points represent the 

mean of six (A) or three (B) biological replicates. Error bars represent standard deviation.  

An experimental approach using transgenic lines expressing either FRI or FLC 

under the control of a seed specific promoter was chosen, considering these 

constructs were not expected to influence flowering time. The promoter of DOG1 was 

shown to be seed specific (Bentsink et al., 2006; Nakabayashi et al., 2012). As this gene 

displays a range of natural variation, causing different levels of seed dormancy 

between accessions, the promoter from the Cvi accession was used, considering 

DOG1 expression in this specific background is strong, as reflected by its deep 

dormancy levels (Alonso-Blanco et al., 2003). The FRI allele from Sha was used, as it 

was included in the lec/Sha1 modifier conferring enhanced seed longevity to the lec1-

3 mutant (Sugliani et al., 2009). Moreover, Sha was reported to carry a functional FRI 

allele, contrary to the one in Col-0 (Johanson et al., 2000). This study also reported 
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that Col-0 carries a strong FLC allele, which was the one used for this work. Only the 

coding sequence of these genes was used, as the first intron of FLC is known to be 

under a strong regulation (Crevillén and Dean, 2011; Berry and Dean, 2015). Both 

constructs were transformed in the flc-3 background, which lacks both FRI and FLC 

functional alleles (Johanson et al., 2000). After transformation, plants were selected 

based on marker segregation until homozygous T3 transgenic plants for both 

constructs were isolated.  

Four independent transgenic lines expressing the pDOG1Cvi:FLCCol construct 

were isolated, named A5.9, C5.9, D2.6 and G1.1. These lines were first evaluated for 

their seed phenotypes. It was observed that all of them released dormancy faster than 

the flc-3 control (Figure 15A). In addition, they all showed increased sensitivity to 

artificial ageing (Figure 15B), although line C5.9 had an intermediate phenotype.  

 

Figure 15. Phenotypic characterisation of transgenic lines expressing the 

pDOG1Cvi:FLCCol construct. Germination proportion after different periods of dry storage (A) 

and after different lengths of accelerated seed ageing treatment (B) of four independent 

transgenic lines and their control flc-3. Panel C shows the flowering time of transgenic lines 

represented as the total number of leaves when the floral bud appeared. Panels D and E 

show relative expression of FLC in dry seeds and leaves, respectively, of these transgenic lines 

compared to the flc-3 background (represented as the baseline 0). Values plotted correspond 

to the log2-fold-change compared to flc-3. Data points represent the mean value of six (A), 

eight (B, C) or three (D, E) biological replicates. Error bars represent standard deviation (A-C) 

or standard error of the mean (D, E). 
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To further confirm that the construct was not affecting the flowering time of 

these transgenic lines, this trait was evaluated (Figure 15C) and no differences 

between transgenic lines and the control were observed. Next, the expression of FLC 

in these lines was assessed. All four lines showed enhanced expression of this gene 

in dry seeds in comparison to the mutant background flc-3 (Figure 15D). 

Furthermore, expression of FLC was evaluated in leaves of these lines. Expression of 

the construct was expected to be seed-specific but strikingly, levels of FLC expression 

in rosette leaves were even higher than those of dry seeds (Figure 15E). Based on the 

reduced seed dormancy levels and increased sensitivity to artificial ageing, the 

germination behaviour of the transgenic lines in the presence of increasing 

concentrations of ABA was evaluated, as a proxy of altered ABA perception or 

signalling. However, none of the lines differed significantly from the control 

(Supplemental Figure 4). 

Confirmation that the pDOGCvi:FLCCol construct caused leaky expression of the 

gene in leaves complicated the evaluation of its specific role in seeds, as the construct 

did not drive FLC expression as anticipated. Nevertheless, all transgenic lines 

displayed similar trends regarding dormancy release and sensitivity to artificial 

ageing, besides showing no differences in flowering time (Figure 15) or sensitivity to 

ABA (Supplemental Figure 4). This reflects that, although not only restricted to seeds, 

ectopic expression of FLC was achieved and caused phenotypes not described before. 

Based on these observations, the expression of several targets of FLC was evaluated 

in the transgenic lines. These candidates were chosen based on literature (Chiang et 

al., 2009; Deng et al., 2011) and seed-specific co-expression networks (Bassel et al., 

2011) and are listed in Table 10.  

Table 10. Candidate FLC targets evaluated for altered expression in transgenic lines 

expressing pDOG1Cvi:FLCCol. The effect of FLC regulation on the target gene expression is 

indicated, when known, with + for upregulation and – for downregulation. 

Locus Symbol Description Regulation 

At3g15500 ANAC055 NAC DOMAIN CONTAINING PROTEIN 55  

At1g75390 bZIP44 BASIC LEUCINE-ZIPPER 44  

At3g56660 bZIP49 BASIC LEUCINE-ZIPPER 49  

At4g36910 CDCP2 
CYSTATHIONE [BETA]-SYNTHASE 

DOMAIN-CONTAINING PROTEIN 2 
 

At4g11140 CRF1 CYTOKININ RESPONSE FACTOR 1  
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At2g29090 CYP707A2 
CYTOCHROME P450, FAMILY 707, 

SUBFAMILY A, POLYPEPTIDE 2 
+ 

At4g25480 DREB1A DEHYDRATION RESPONSE ELEMENT B1A + 

At4g25490 DREB1B DEHYDRATION RESPONSE ELEMENT B1B + 

At1g65480 FT FLOWERING LOCUS T - 

At4g25420 GA20OX1 GIBBERELLIN 20-OXIDASE 1 + 

At4g22920 NYE1 NON-YELLOWING 1  

At3g54990 SMZ SCHLAFMÜTZE + 

At2g45660 SOC1 
SUPPRESSOR OF OVEREXPRESSION OF 

CO 1 
- 

At3g57920 SPL15 
SQUAMOSA PROMOTER BINDING 

PROTEIN-LIKE 15 
- 

Although the expression of some of these genes is expected to be very low or 

absent in dry seeds, all genes were evaluated as they are known targets of FLC. Out 

of these 14 genes, expression in dry seeds could not be detected for SOC1 and SPL15. 

Among the rest, different expression patterns were observed. Firstly, several of these 

candidates displayed reduced expression in dry seeds of all transgenic lines compared 

to flc-3 (Figure 16). Specifically, expression of the flowering promoter FT was found 

downregulated in all four transgenic lines. Similarly, expression of CDCP2, a regulator 

of the cellular redox balance appeared downregulated, as well as that of NYE1, a gene 

involved in the degradation of chlorophyll in senescing leaves. CRF1, which is involved 

in cytokinin signalling, showed reduced expression in three of the lines (Figure 16D). 

The rest of evaluated genes did not show a consistent expression between transgenic 

lines (Supplemental Figure 5). 

 

Figure 16. Genes with reduced expression in transgenic lines expressing the 

pDOG1Cvi:FLCCol construct. Relative expression of FT (A), CDCP2 (B), NYE1 (C) and CRF1 (D) 

in dry seeds of these transgenic lines compared to the flc-3 background (represented as the 
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baseline 0). Values plotted correspond to the log2-fold-change compared to flc-3. Data 

points represent the mean value of at least two biological replicates. Error bars represent 

standard error of the mean. 

FT is a main regulator of flowering in Arabidopsis and its expression is partially 

repressed by FLC (Searle et al., 2006). Besides, it is strongly expressed during the first 

stages of embryogenesis, where it has been shown to integrate temperature cues and 

alter seed coat composition, which is later reflected by seed dormancy depth (Chen 

et al., 2014b). This work showed that FT contribution to flowering time and 

establishment of seed dormancy could be uncoupled and showed a maternal effect, 

in agreement with it affecting the seed coat. This scenario would also fit with the 

transgenic lines described, which have enhanced levels of FLC, which would in turn 

reduce FT expression. Modifications of the seed coat could then be linked to the 

observed reduction in seed dormancy and longevity. 

CDCP2 was shown to participate in activation of thioredoxins (TRXs) and its 

overexpression caused deficient lignin deposition in pollen of Arabidopsis due to a 

lack of available H2O2 (Yoo et al., 2011). It is then plausible that the opposite situation 

happened in transgenic lines expressing the pDOGCvi:FLCCol construct. As the 

expression of FLC reduced expression of CDCP2, an increased abundance of ROS 

could be expected that led to the observed reduction in seed dormancy and 

longevity.  

NYE1 has been linked to chlorophyll degradation in senescing leaves (Ren et al., 

2007). It was shown before that chlorophyll degradation is necessary for the 

acquisition of seed longevity, as seeds retaining chlorophyll display reduced longevity 

(Ooms et al., 1993; Nakajima et al., 2012). This gene was also linked to the production 

of tocopherols in maturing seeds of Arabidopsis, where the nye1 mutant was shown 

to have reduced levels of these compounds, a phenotype fitting with the observed 

reduction in resistance to artificial ageing.  

CRF1 is a member of a transcription factor family involved in cytokinin signalling 

and responses (Raines et al., 2016). Single mutants of these genes showed no 

phenotypic differences, which points to a certain degree of functional overlap among 

them. In this work, the authors showed that some of them participate in the regulation 

of leaf senescence. 

However, these results should be addressed with caution. Firstly, the construct 

did not confine FLC expression to seeds and therefore it might be exerting its 

regulation in different organs. Secondly, the qPCR results showed that the reduction 

of expression is small and might not relate to the observed phenotypes. 
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To determine if FRI is affecting seed longevity, five independent transgenic lines, 

named B2.2.2, B2.6.3, C3.8.1, D1.1.1 and F4.4.1, expressing the pDOG1Cvi:FRISha 

construct  in the flc-3 mutant background were isolated and their phenotypes 

evaluated. Seed dormancy release of these transgenic lines showed an uncommon 

pattern (Figure 17A). Although a general trend of dormancy release was observed, 

two of them exhibited reduced dormancy levels right after harvest (lines D1.1.1 and 

F4.4.1), but their germination rates did not reach 100 % during the after-ripening 

process (Figure 17A). The control flc-3 showed peaks in its germination rate during 

dormancy release, which might be caused by the conditions at the after-ripening 

chamber being not stable during the entire storage period or that conditions at the 

germination chamber were not constant during the experiments.  

To ensure a complete release of seed dormancy, seeds were stratified for three 

days after the artificial ageing treatment. None of the five independent transgenic 

lines showed differences compared to flc-3, similar to the observed number of leaves 

at flowering (Figure 17). Evaluation of the expression of FRI in dry seeds of these 

transgenic lines showed no consistent expression of FRI between lines, with most of 

them showing decreased expression in contrast with the expected enhanced 

expression (Figure 17D). Inconsistent expression patterns were also observed in 

leaves of these lines (Figure 17E). No conclusion on the role of FRI in seed longevity 

could be drawn from the results presented in Figure 17, considering no phenotypic 

differences were observed after accelerated ageing (Figure 17B) and that irregular 

expression patterns of the gene were found between transgenic lines. Most certainly, 

this points to an unsuccessful assembly of the construct or the subsequent delivery, 

even though the selectable marker did segregate as expected and sequencing of the 

construct matched the cloned sequence. 

Based on these results it cannot be concluded whether FRI is responsible for the 

enhanced longevity phenotype observed in the lec/Sha1 modifier lines (Sugliani et al., 

2009). A second revision of this work revealed an additional mistake. The FRISha 

sequence was retrieved from the Arabidopsis 1001 genomes project website 

(http://signal.salk.edu/atg1001/3.0/gebrowser.php) and primers were designed based 

on it. This database uses Col-0 as the background reference, which caused the 

mistake, considering the FRI allele from Col-0 carries a 16 bp deletion that causes an 

early stop codon (Johanson et al., 2000; Schmalenbach et al., 2014). This deletion is 

not included in the gene sequence in this database. For this reason, the primers 

designed covered the CDS corresponding to the Col-0 allelic version, and not the 

functional one from Sha. Therefore, this experiment was not properly designed and 

cannot conclude about the role of the FRI allele from Sha in seed longevity.  

http://signal.salk.edu/atg1001/3.0/gebrowser.php
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Figure 17. Phenotypic characterisation of transgenic lines expressing the pDOG1Cvi:FRISha 

construct. Germination proportion after different periods of dry storage (A) and after 

different lengths of accelerated seed ageing treatment (B) of five independent transgenic 

lines and their control flc-3. Panel C shows the flowering time of transgenic lines represented 

as the total number of leaves when the floral bud appeared. Panels D and E show relative 

expression of FRI in dry seeds and leaves, respectively, of these transgenic lines compared to 

the flc-3 background (represented as the baseline 0). Values plotted correspond to the log2-

fold-change compared to flc-3. Data points represent the mean value of six (A), eight (B, C) 

or three (D, E) biological replicates. Error bars represent standard deviation (A-C) or standard 

error of the mean (D, E). 
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3.3 IDENTIFICATION OF NOVEL SEED QUALITY MARKERS IN ARABIDOPSIS 

Overall seed quality results from the combination of several factors, such as 

genetic purity, germination capacity and uniformity, vigour, storability and 

performance under suboptimal conditions (McDonald, 1998). As seeds deteriorate 

during storage and lose vigour, different methods have been proposed to determine 

the quality level of a given seed batch (Corbineau, 2012). In this section, two distinct 

approaches to evaluate seed quality are presented. 

3.3.1 The influence of temperature during seed development and of artificial 

ageing on nuclear size and chromatin compaction in embryos of 

Arabidopsis 

Chromatin is a conglomerate of DNA, RNA and proteins found within the cell 

nucleus and named after its staining properties. Chromatin is classically divided into 

eu- and heterochromatin, mainly depending on the degree of staining. In Arabidopsis 

nuclei, heterochromatin is organised in visible chromocenters (Fransz et al., 2002), 

which comprise highly condensed and repeat-rich heterochromatin. Previous studies 

have shown that Arabidopsis dry seeds exhibit reduced nuclear size and increased 

chromatin compaction (van Zanten et al., 2011), probably due to their reduced 

moisture content (van Zanten et al., 2012). Abiotic stresses, including heat, have been 

reported to cause decondensation of certain chromatic regions in rice (Santos et al., 

2011) and prolonged heat stresses also led to decondensation of chromocenters in 

leaves of Arabidopsis (Pecinka et al., 2010). 

The effect of different temperatures applied during seed maturation on nuclear 

size and degree of chromatin compaction was evaluated to assess the suitability of 

these phenotypes as predictors of seed quality. In addition, the influence of 

accelerated ageing and imbibition on these nuclear phenotypes was measured. 

Nuclei were isolated from Arabidopsis embryos, for which either dry (referred to as 

DS) or imbibed (72 h at 10 °C, referred to as imb) seeds were used that matured under 

low (16/14 °C), control (22/18 °C) or elevated (28/25 °C) temperatures. In addition, the 

effect of artificial ageing (4 days at 40 °C and 75 % RH) in these same seed batches 

was investigated. The area of the spread nuclei was measured as an indicator for 

nuclear size.  

Evaluating the degree of chromatin compaction requires a clear distinction of 

brightly stained heterochromatic chromocenters from their darker euchromatic 

background, measured as the difference in DAPI-fluorescence intensity (Soppe et al., 
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2002). However, the highly compacted nuclei of Arabidopsis dry seeds did not show 

distinct differences between heterochromatic chromocenters and euchromatin 

(Figure 18) and hence, a reliable measurement of the heterochromatin fraction was 

not feasible. 

 

 

Figure 18. Representative nuclei from Arabidopsis embryos. Nuclei dissected from stress-

treated Arabidopsis seeds. The lighter spots within the nuclei correspond to the 

chromocenters. The white scale bar at the bottom right panel corresponds to 1 µm. 

Comparison of nuclear surfaces between different treatments revealed that the 

main factor affecting nuclear size is imbibition (Figure 19), in agreement with 

previous reports (van Zanten et al., 2011). The combined effect of imbibition with 

either low or elevated maturation temperatures caused significant differences in size, 

in contrast with the mild effects observed for control samples. This suggests that the 

nuclei of seeds matured at low and high temperatures increase faster in size during 

imbibition compared to seeds matured at control temperatures. Conversely, artificial 

ageing treatment exerted a buffering effect on nuclear size increase following 

imbibition.  

To evaluate the statistical significance of each treatment’s contribution to 

nuclear size, a factorial ANOVA was conducted (Table 11). Interestingly, each stress 

treatment analysed showed a significant contribution, including several of the 

interactions between factors. However, it is more informative to evaluate the overall 

contribution of each factor to explain the observed variability. One way to do this is 
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by evaluating the eta-squared (η2) value, which provides an indication of the 

proportion of variance explained by each factor (Richardson, 2011). Table 11 shows 

that, as observed in Figure 19, imbibition explains most of the observed changes in 

nuclear sizes. However, its contribution is still small, accounting for only 7.8 % of the 

variance. Interestingly, temperature and artificial ageing also appear as significant 

factors, but their total contribution is below 2 %. 

 

Figure 19. Temperature differences during seed maturation do not influence nuclear 

size. Nuclear sizes of measured Arabidopsis spread nuclei. The three temperatures applied 

are shown (low, 16/14 °C; control, 22/18 °C; or elevated, 28/25 °C) and the imbibition status 

is displayed (dry seed, DS, black boxes; imbibed seed, red boxes), as well as the ageing 

treatment (non-aged, continuous lines; aged, dotted lines). The horizontal line in the boxes 

represents the median. Whiskers represent 1.5 times the interquartile range. Values outside 

this range are depicted as dots. 

The only non-significant factor is the interaction between temperature and 

ageing, with the rest of interactions being significant and in some cases having a 

higher η2 score than temperature or ageing alone. Taken together, these results 

indicated that, although the studied stresses contribute to the overall observed 

variance, there are still other factors which account for 81 % of the observed variance.  

Table 12 shows pairwise comparisons of all treatments after a post-hoc Tukey’s 

test and those comparisons that were found to be statistically significant. An analysis 

of the effects of the three different temperature regimes during seed maturation on 

nuclear size revealed several significant effects (Table 12), but did not result in a clear, 
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consistent pattern related to temperature. Dry, non-aged seeds that had matured at 

low temperatures had smaller nuclei compared to seeds matured at standard 

temperatures. In contrast, imbibed seeds matured at low temperatures had larger 

nuclei compared to the control temperature regime (Figure 19). 

Table 11. Summary statistics of factorial ANOVA test on nuclear size differences. 

Underlined values correspond to those found to be statistically significant. df: degrees of 

freedom. 

 

Overall, we observed that our model does not explain most of the observed 

variability, which means there are more factors contributing to the observed nuclear 

size phenotypes than those addressed in this study. Considering that the unexplained 

variability accounts for 81 % of the total, it cannot only be attributed to biological 

variation between samples, but it necessarily implies that extra sources of variation 

are present which were not covered by the experimental approach. These results, 

together with the concerns just mentioned, lead us to conclude that nuclear size 

phenotypes are not good predictors of seed quality. A more in-depth study will be 

required to characterise these extra factors affecting nuclear size and establish a more 

comprehensive model which could then be linked with seed quality. 

 

Factor Sum Sq. df Mean Sq. F Signif. η2 

Temperature 0.141317 2 0.070659 4.950195 7.27E-03 0.008656 

Imbibition 1.281746 1 1.281746 89.79652 0.00E+00 0.078513 

Ageing 0.254806 1 0.254806 17.8512 2.62E-05 0.015608 

Temperature x 

Imbibition 
0.461546 2 0.230773 16.16749 1.25E-07 0.028272 

Temperature x 

Ageing 
0.001657 2 0.000829 0.058051 9.44E-01 0.000102 

Imbibition x Ageing 0.429048 1 0.429048 30.05823 5.40E-08 0.026281 

Temperature x 

Imbibition x Ageing 
0.358114 2 0.179057 12.54437 4.21E-06 0.021936 

Residuals 13.33182 934 0.014274 NA NA 0.816636 
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Table 12. Pairwise comparisons of all treatments after a post-hoc Tukey’s test. Underlined values correspond to statistically significant comparisons. 

 

  

Low Control Elevated 

Non-aged Aged Non-aged Aged Non-aged Aged 

DS imbibed DS imbibed DS imbibed DS imbibed DS imbibed DS imbibed 

E
le

v
a
te

d
 A
g

e
d

 

im
b

 
0 0.11642 0.00035 0.00465 0.23207 0.98735 0.11670 0.00314 0.00826 0.34815 

1.69E-

05 
- 

D
S
 

0.38727 0 0.99858 0.98993 0.42676 0.00767 0.84091 0.96127 0.99289 0 - - 
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d

 

im
b

 

0 1 0 0 
2.83E-

05 
0.01607 1.55E-05 0 0 - - - 
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0.01891 0 1 1 0.97815 0.18327 0.99985 1 - - - - 
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b

 

0.00574 0 1 1 0.9942 0.25615 0.99999 - - - - - 
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0.00466 1.7E-06 0.99805 0.99996 1 0.82090 - - - - - - 
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1E-07 0.00285 0.07764 0.25924 0.95785 - - - - - - - 

D
S
 

0.00021 2.8E-06 0.91515 0.98948 - - - - - - - - 
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o
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0.01979 0 1 - - - - - - - - - 

D
S
 

0.02681 0 - - - - - - - - - - 

N
o

n
-a

g
e
d
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b

 

0 - - - - - - - - - - - 
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S
 

- - - - - - - - - - - - 
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3.3.2 Assessment of seed quality in Arabidopsis by Activity-Profiling of 

Proteases 

Activity-Based Protein Profiling (ABPP) is a powerful biochemical approach that 

allows to monitor the functional status of proteins in a proteome extract or in living 

cells (Cravatt et al., 2008). This technique relies on the use of small, reporter-tagged 

probes that specifically react with the active site of an enzyme in a mechanism-

dependent manner (Cravatt et al., 2008; Edgington et al., 2011). Probes are designed 

to bind only certain enzyme subfamilies in their active state. During the ageing 

process, seeds endure oxidative stresses, which damage cell constituents and 

progressively reduce the seed capacity to germinate (section 1.5). Among those 

cellular components, proteins are also affected by these oxidative damage and 

rendered inactive by processes such as carbonylation (Rajjou et al., 2008b).  

Considering the specificity of ABPP probes for active targets and the above-

mentioned effects of ageing, it is plausible that these probes and their target proteins 

could be used to monitor seed quality.  

Plant proteases are a wide group of enzymes involved in the degradation of 

non-functional proteins by cleaving specific peptide bonds. This processing also 

occurs as a response to environmental and developmental cues, which makes 

proteases interesting candidates in different studies (van der Hoorn and Kaiser, 2012). 

To determine the feasibility of ABPP as a novel approach for evaluating seed quality, 

several probes targeting different subsets of proteases in Arabidopsis were evaluated 

(Table 13). 

Table 13. ABPP probes tested in this study. The probe target, pH value used for labelling, 

inhibitor used and reference are indicated. 

Probe Target pH Inhibitor Reference 

AMS101 
Vacuolar Processing 

Enzymes 
5.5 YVAD-CMK Misas-Villamil et al. (2013) 

MV151 26 S proteasome 7.5 Epoxomicin Gu et al. (2010) 

MV151 
Papain-like cysteine 

proteases 
6.0 E64 Gu et al. (2010) 

FP-Rh Serine proteases 7.5 DiFP Kaschani et al. (2012) 

 

ABPP assays were conducted using artificially aged seeds from the Arabidopsis 

accessions Col-0 and Ler representing different levels of seed quality, as determined 
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in a germination assay (Figure 20). Evaluation of these four probes in dry seeds 

showed no changes in labelling between non-aged and aged seeds. Consequently, 

these seeds were imbibed for 24 hours and proteins were extracted in the 

corresponding buffer depending on the targeted enzyme (Table 13). Testing of the 

four probes showed that only two of them (AMS101 and FP-Rh) exhibited a differential 

band pattern in the differently aged seed batches after 24 h of imbibition. 

 

Figure 20. Germination proportion after different periods of accelerated seed ageing 

treatment of seed lots from Ler and Col-0 accessions. Each data point represents the mean 

of three biological replicates. Error bars represent the standard deviation. 

Fluorophosphanate (FP)-based probes bind the active site of serine hydrolases, 

which are hydrolytic enzymes involved in a wide range of physiological processes, 

including development, defence and homeostasis (Kaschani et al., 2009). This group 

of enzymes comprises more than 200 members and their activity is tightly regulated 

by several mechanisms, such as post-translational modifications and the presence of 

cofactors or inhibitors. Figure 21 illustrates that serine protease activities are 

gradually lost the longer the artificial ageing treatment is applied, in both Col and Ler. 

Two high-molecular weight bands (> 70 kDa, Figure 21) virtually disappear after 8 

days of treatment whereas lower bands that appear strong in non-aged samples 

become fainter after 8 and 12 days. This profile of decreased activity can be caused 

by the ageing treatment damaging these enzymes, thus rendering them inactive and 

unable to bind the probe.  

Considering that FP probes have a wide range of action and can therefore bind 

several targets, a pull-down assay was conducted in order to identify the proteins 

underlying the observed band patterns. A combination of biotin-tagged FP probe 

and streptavidine beads (section 2.2.30) was used in protein extracts of non-aged 
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seeds to purify several bands (Supplemental Figure 6) which were submitted for MS 

analyses. The reason to use non-aged seeds was to maximise the number of bands 

isolated, as they become fainter during ageing (Figure 21). These analyses identified 

twenty candidate hydrolases enriched bound to the beads (Table 14). 

Probe AMS101 specifically targets Arabidopsis Vacuolar Processing Enzymes 

(VPEs, Misas-Villamil et al., 2013), which are cysteine proteases responsible for the 

processing and maturation of seed storage proteins (Hara-Nishimura et al., 1998; 

Gruis et al., 2002). Four VPE-encoding genes (α, β, γ and δ) have been described in 

Arabidopsis, which are involved in plant immune responses (Misas-Villamil et al., 

2013), stress responses (Albertini et al., 2014) and development (Kinoshita et al., 1999; 

Nakaune et al., 2005). Interestingly, although initially classified into seed and 

vegetative types, it was observed that all of them are expressed during seed 

maturation (Gruis et al., 2004). 

Table 14. List of candidate serine proteases identified by MS after pull-down assays. 

Analysis of the pull-down MS data was conducted by Dr Farnusch Kaschani at the Analytics 

Core Facility Essen (ACE), Germany. 

Locus Alias Description 

AT4G18970 - GDSL esterase/lipase  

AT4G20850 TPP2 Tripeptidyl-peptidase 2  

AT2G23590 MES8 Methylesterase 8 

AT2G23610 MES3 Methylesterase 3  

AT1G09390 - GDSL esterase/lipase  

AT1G77440 PBC2 Proteasome subunit beta type-3-B  

AT2G27920 SCPL51 Serine carboxypeptidase-like 51 

AT5G45920 - GDSL esterase/lipase  

AT4G22300 - Probable carboxylesterase SOBER1-like  

AT4G12910 SCPL20 Serine carboxypeptidase-like 20  

AT5G20060 - Phospholipase/carboxylesterase 

AT2G23620 MES1 Methylesterase 1  

AT3G50440 MES10 Methylesterase 10 

AT5G45670 - GDSL esterase/lipase  

AT1G49660 CXE5 Probable carboxylesterase 5  

AT3G05180 - GDSL esterase/lipase  

AT3G48690 CXE12 Probable carboxylesterase 12  

AT3G09405 PAE4 Pectin acetylesterase 4  
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AT3G09410 PAE5 Pectin acetylesterase 5  

AT2G27360 - GDSL esterase/lipase  

 

Contrary to the observed band pattern found for serine hydrolases, VPEs 

increase their activity as a result of artificial ageing (Figure 22) in both Ler and Col-0. 

The observed band pattern includes several bands at different sizes, which probably 

correspond to different maturation stages of the enzymes (Kuroyanagi et al., 2002). 

In addition, the four VPEs in Arabidopsis have very similar molecular sizes, making it 

complicated to discriminate whether the increased activity is caused by one or more 

of them (Misas-Villamil et al., 2013).  

 

Figure 21. Serine hydrolases turn inactive during artificial ageing. Protein extracts from 

Arabidopsis Col (A) and Ler (B) accessions labelled with FP-Rh. For each time point, three 

biological replicates are shown. The NPC column corresponds to a non-labelled sample (no-

probe control) prepared combining aliquots of all proteomes. The inhibitor used was DiFP, 

corresponding to the last column (+inh). The bottom section in each panel corresponds to 

total protein loaded stained with SyproRuby Protein Gel stain.  

To determine which VPE activity is enhanced during the treatment, seeds from 

different vpe mutant lines were evaluated (Gruis et al., 2002). These mutants were first 

checked for any phenotype related to seed longevity, but their behaviour was not 

significantly different from that of the control (Figure 23A). Seeds from these mutant 

lines were then artificially aged for 8 days to reach a strong activation of VPEs (Figure 

22), subsequently protein extracts were isolated and labelled. It was expected to 

discriminate which of the four Arabidopsis VPEs is behind the observed activation 

pattern. Nevertheless, a clear distinction based on the observed labelling could not 

be achieved (Figure 23B). 
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Figure 22. VPEs become active during artificial ageing. Protein extracts from Arabidopsis 

Ler (A) and Col-0 (B) accessions labelled with AMS101. For each time point, three biological 

replicates are shown. The NPC column corresponds to a non-labelled sample (no-probe 

control) prepared combining aliquots of all proteomes. The bottom section in each panel 

corresponds to total protein loaded stained with SyproRuby Protein Gel stain. 

A publication described that γ-VPE becomes active after heat stress (Li et al., 

2012) as part of the signalling pathway leading to programmed cell death. Specifically, 

this study described how heat treatments of 1 hour at 40 °C caused significant 

increases in γ-VPE activity. These conditions are quite similar to those used in this 

study for the artificial ageing of seeds (several days at 37 °C). 

 

Figure 23. Seed longevity phenotype and labelling profile of several vpe mutants. Panel 

A shows the germination proportion of several vpe mutants after different periods of artificial 

seed ageing. Each data point represents the mean of five biological replicates. Error bars 

represent the standard deviation. Section B shows protein extracts from eight-day-aged 

seeds of these mutants labelled with AMS101 (top panel) and the total protein loaded stained 

with SyproRuby Protein Gel stain (bottom panel). 1: Col-0; 2: α-vpe; 3: β-vpe; 4: ɣ-vpe; 5: βδ-

vpe; 6: αβδ-vpe; 7: αβɣδ-vpe. The NPC column corresponds to a non-labelled sample (no 

probe control) prepared combining aliquots of all proteomes. The inhibitor used was YVAD-

cmk and corresponds to the last column (+inh).  

To verify that the observed activation pattern reflects the effect of accelerated 

ageing and is not caused by a response to high temperature, the labelling pattern of 

naturally aged seeds was evaluated. Specifically, seeds naturally aged for eight years 



Genetic and environmental regulation of seed longevity in Arabidopsis thaliana 

 

88 

from Ler and dog1-1 were used to confirm the previous results. First, a germination 

kinetics assay was conducted to determine the quality level of these seed batches 

(Figure 24A). It was observed that Ler seeds germinated up to 40 %, whereas the 

longevity-deficient mutant dog1-1 was unable to germinate. The comparison with 

proteins isolated from fresh, viable seeds and these naturally aged seeds confirmed 

that the activation of VPEs observed after artificial ageing also holds true in naturally 

aged samples (Figure 24B, C).  

Taken together, these results confirm ABPP as a valid approach to evaluate seed 

quality. Using this experimental approach, two different markers with opposite 

behaviours were identified. Specifically, the activity of VPEs was demonstrated to be 

induced by both artificial and natural seed ageing.  

Serine hydrolases exhibited the exact opposite trend, decreasing their activity 

as the ageing treatment progressed. Furthermore, several interesting candidates were 

identified which can now be further analysed and their role in seed quality and 

longevity studied. However, some concerns regarding the reliability of these data 

were raised, as the MS analysis found that the non-labelled control was also enriched 

for serine hydrolases (Supplemental Figure 7). 
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Figure 24. VPEs show increased activity in naturally aged seeds. Panel A shows the 

germination kinetics of 8-year-old naturally aged seed batches of Ler and dog1-1. Each data 

point represents the mean of three biological replicates. Error bars correspond to standard 

deviation. Panels B and C show AMS101-labelled protein extracts from eight-year old seeds 

of Ler (B) and dog1-1 (C). In each panel, three biological replicates are shown from either 

fresh (left side) or naturally aged (right side) seeds. The inhibitor used was YVAD-cmk and 

corresponds to the last column (+inh). The NPC column corresponds to a non-labelled 

sample (no probe control) prepared combining aliquots of all proteomes. The bottom section 

of panels B and C corresponds to the total protein load stained with SyproRuby Protein Gel 

stain.   
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3.3.2.1 Validation of the identified seed quality markers on wild species 

Transitioning the results found in model species as Arabidopsis thaliana to a 

wider range of species is among the aims of the EcoSeed consortium. To provide 

further substantiation for the identified markers as robust predictors of seed quality, 

eight wild species, closely related to well-established crops, were selected and their 

viability constants determined as a part of the project (Table 15).  

The two probes identified to exhibit a differential labelling pattern in aged seeds 

of Arabidopsis were further tested in seed protein extracts of these eight wild species. 

It was decided to compare non-aged seeds and seeds aged to reach a proportion of 

25 % germination, as this point showed a strong differential labelling in Arabidopsis 

(Figure 20 and Figure 22). Due to the reduced amount of seeds available, the 

germination proportion of seeds following the artificial ageing treatment could not 

be determined except for Brassica rapa spp. campestris (Supplemental Figure 8). 

Similarly, the labelling conditions used were those described to be optimal for 

Arabidopsis, because there were not enough seeds available to conduct extra trials. 

Due to a mistake during sample preparation, only the seeds of Brassica rapa spp. 

campestris were imbibed for 24 h prior to protein extraction. The rest of the extracts 

were directly isolated from dry seeds.  

Table 15. List of the eight wild species used to evaluate the markers identified in 

Arabidopsis. Initial viability is presented as the mean germination percentage ± standard 

deviation. Days of ageing refers to the estimated number of days of incubation required for 

seeds to reach a germination proportion of 25 %. All data presented in this table were 

experimentally determined by Dr Charlotte Seal at the Royal Botanic Gardens in Kew, United 

Kingdom. 

Species Initial viability (%) Days of ageing  

Brassica rapa spp. campestris 100 ± 0 18 

Brassica rapa spp. sylvestris 100 ± 0 8 

Brassica tournefortii 90 ± 1 16 

Hordeum marinum 77 ± 25 2 

Hordeum brachyantherum 97 ± 6 5 

Helianthus argophylus 93 ± 12 2 

Helianthus angustifolius 100 ± 0 2 

Helianthus gracilentus 37 ± 21 2 



Results 

91 

 

Figure 25. Characterisation of the identified seed quality markers on seeds of eight wild 

species. Section A shows protein extracts from the indicated eight wild species labelled with 

AMS101 (top panels) and the total protein loaded stained with SyproRuby Protein Gel stain 

(bottom panels). Section B shows protein extracts from the indicated eight wild species 

labelled with FP-Rh (top panels) and the total protein loaded stained with SyproRuby Protein 

Gel stain (bottom panels). For each species, a non-aged and an aged sample were used, 

together with an inhibitor control prepared combining aliquots from both samples. The 

inhibitor used in section A was YVAD-cmk. The inhibitor used in section B was DiFP. The 

molecular weight markers at the top right panel in section B represent 70 (upper band) and 

40 kDa (lower band). 

Probe AMS101 was able to label protein extracts from most of the wild species, 

although the labelling in Brassica tournefortii and Hordeum marinum was very faint 

(Figure 25A). For the rest of species, a specific labelling could be observed, which 

hypothetically corresponds to VPE-like proteins in these species. This is also 



Genetic and environmental regulation of seed longevity in Arabidopsis thaliana 

 

92 

supported by the fact that these enzymatic activities are supressed in the presence of 

the specific inhibitor YVAD-cmk. Nevertheless, comparison between control and aged 

samples from these species did not show major differences in the labelling. For the 

two Brassica rapa subspecies, the fluorescence gel shows a slightly stronger signal in 

the control compared to the aged sample, although the total protein loaded in the 

Brassica rapa ssp. sylvestris non-aged sample was higher and therefore the 

differential labelling could be caused by that (Figure 25A).  

Based on the results from Arabidopsis, it was expected that extracts from aged 

seeds would display stronger signals than those from non-aged seeds, but none of 

the tested species exhibited this pattern. On the contrary, no differences were 

observed for most of the species (Figure 25A). This absence of differential labelling 

probably originated from the mistake of using dry instead of 24 h-imbibed seeds.  

Protein extracts labelled using the FP-Rh probe showed an abundance of bands, 

as expected for a probe with a less stringent target specificity (Figure 25B). Contrary 

to the observations for the AMS101 probe, it is clear that the addition of the specific 

FP-Rh inhibitor could not supress all signals, indicating a certain degree of unspecific 

labelling in all eight species. In all Brassica species, strong signals were detected 

around 40 kDa, but no evident reduction of the labelling caused by the ageing 

treatment could be observed. None of the Hordeum species exhibited differential 

labelling between control and aged samples. Similarly, no strong differences could 

be appreciated between treatments in samples from Helianthus species. It looks that 

the signals around 25 kDa decrease their intensity in the aged sample in Helianthus 

argophylus and Helianthus angustifolius, but this reduction is relatively minor (Figure 

25B). 

From these observations, it can be concluded that both probes identified in 

Arabidopsis are functional in the evaluated wild species. However, further research 

will be required in order to establish the most adequate conditions to conduct the 

labelling in these species. It is clear that probe AMS101 conserves a very specific 

pattern of labelling in most species, meaning the identified activities most certainly 

correspond to VPE-like proteins in those species. However, no increased signals were 

detected in aged samples, which could stem from a variety of factors, such as the lack 

of the 24 h imbibition period or inappropriate labelling conditions. Nonetheless, 

seeds from Brassica rapa spp. campestris were imbibed and did not show a 

differential labelling (Figure 25A). It is then plausible that seeds of these wild species 

have different mechanisms to cope with ageing damages from those of Arabidopsis, 

which again will require further investigation. 
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The same reasoning is valid for the results observed in samples labelled with 

FP-Rh. Identically, the lack of a consistent reduction in the signals of aged samples, 

as was expected based on Arabidopsis results, can originate from the above-

mentioned concerns. It is conceivable that seeds from these species are equipped 

with different mechanisms to deal with damages incurred during the ageing process 

that result in serine hydrolases being more protected than in Arabidopsis thus 

explaining the absence of differential labelling. However, more studies are required 

to substantiate these speculations.  

Lastly, it is worth mentioning that the seed biology and physiology from these 

species is not as well-known and established as in Arabidopsis thaliana. Therefore, 

growing these plants at optimal conditions and obtaining high quality seeds from 

them is challenging, as reflected in Table 15. 
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4 DISCUSSION 

Seed longevity is a complex trait governed by a combination of genetic and 

environmental factors. Furthermore, its role in seed dispersal and persistence in 

natural environments as well as during seed storage stresses the importance of 

improving our understanding of the factors and mechanisms regulating it. In this 

thesis, we have conducted a study on different molecular and environmental factors 

that affect seed longevity using multiple approaches. Moreover, we have explored 

novel strategies to evaluate the quality levels of seed batches with different levels of 

quality.  

4.1 THE EFFECT OF MATERNAL TEMPERATURE DURING SEED DEVELOPMENT 

ON THE SEED TRANSCRIPTOME OF ARABIDOPSIS 

Modifications of a particular trait of the offspring exerted by conditions 

experienced by the mother plant are referred to as maternal effects. These effects 

determine how a plant’s offspring will perform in the next growing season and 

represent a major adaptive response in plants (Donohue, 2009). Maternal 

temperatures were previously shown to be able to affect different traits in seeds. In 

Arabidopsis, it is now well established that seeds that matured at lower temperatures 

exhibit increased levels of seed dormancy, contrary to those matured at higher 

temperatures, which are usually non-dormant or have very shallow levels of 

dormancy.  

Although not many studies have explored the contribution of maternal 

temperatures to seed longevity, some examples are available. In Plantago 

cunninghamii, low-temperature maternal environments led to longer-lived seeds as 

a result of improved seed quality (Kochanek et al., 2011). Further work in Silene vulgaris 

reported that seed longevity, although genetically determined, exhibits great 

plasticity in response to the maternal environment (Mondoni et al., 2014). In this work 

the authors explored how seeds of alpine plants, which exhibit reduced seed longevity 

as this trait is under no selective pressure in this natural environment, exhibited 

improved longevity when grown at warmer temperatures. They suggest that this 

effect could be caused, at least partially, by an altered provisioning of mRNAs in the 

developing seed. In Arabidopsis, the contribution of maternal temperatures to 

resistance to artificial ageing was previously reported, with low temperatures 

increasing seed sensitivity to artificial ageing and elevated temperatures having the 

opposite effect, in a genotype-dependent manner (He et al., 2014).  
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The experimental approach conducted in this thesis led to the same observed 

phenotypes, as depicted in Figure 1A. Lower seed maturation temperatures caused 

increased sensitivity to artificial ageing. It was expected that elevated temperatures 

would result in comparable resistance levels to those of the control, but increased 

sensitivity was also observed for this treatment. This could be caused by experimental 

variability, as experiments conducted by project collaborators using the same 

biological material revealed a similar pattern of resistance to that of the control 

(Supplemental Figure 9). RNA-sequencing was conducted to elucidate the 

transcriptomic responses underlying the observed phenotypes and it was found that 

maternal effects altered the seed transcriptome (Table 5).  

Lowered temperatures during seed maturation were demonstrated to cause 

increased levels of seed dormancy in Arabidopsis (Schmuths et al., 2006). We 

observed that lowered temperatures during seed maturation caused reduced 

resistance to artificial ageing (Figure 1A), in agreement with previous reports (He et 

al., 2014). Our transcriptomic analysis of seeds that matured at lowered temperatures 

revealed an overall reduction in expression of GA biosynthesis transcripts, which may 

be expected to lead to reduced GA accumulation. This is consistent with the enhanced 

expression of TEM1 and DDF1, flowering time regulators which were reported to 

repress the expression of GA3OX genes and reduce the final GA content (Magome 

et al., 2004, 2008; Osnato et al., 2012). In addition, this is further supported by the 

finding that GA3OX1 and 2 were downregulated in this temperature regime. This 

reduced expression of GA biosynthesis transcripts in seeds could be responsible for 

an altered seed development and coat formation, as these phytohormones are 

required for completion of these processes (Singh et al., 2002; Kim et al., 2005b). 

Besides, considering that GAs are required for seed germination, it is likely that the 

observed effects of low temperature do alter the GA/ABA balance towards a more 

dormant status, in agreement with a recent report (Topham et al., 2017). 

Further support for an altered seed coat composition is provided by the 

downregulation of three genes known to participate in this regulation: FAR1, ADS1 

and LACS2. The first two were reported to affect suberin formation and seed lipid 

content, respectively (Domergue et al., 2010; Smith et al., 2013). LACS2 participates in 

cuticle biosynthesis in Arabidopsis and mutant lines of this gene showed increased 

sensitivity to artificial ageing (De Giorgi et al., 2015). Previous reports showed that low 

temperatures during seed maturation do contribute to an altered suberin and seed 

coat composition, as reflected by their degree of permeability to tetrazolium salts 

(MacGregor et al., 2015; Fedi et al., 2017). The first study showed that the altered seed 

coat permeability was, at least partially, resulting from enhanced expression of several 
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genes involved in the biosynthesis of phenylpropanoids. Intriguingly, our RNA-seq 

results showed no differential expression for any of these genes, even though both 

studies were conducted using the Col-0 accession. Whereas our study was conducted 

using mature, dry seeds, MacGregor et al. (2015) analysed green cotyledon stage 

seeds, i.e., an earlier stage of seed development, which can at least partially explain 

this discrepancy and the transcription of genes more abundant during seed 

maturation. In addition, the software used to analyse their RNA-seq data was also 

different, which can further substantiate the different genes found differentially 

expressed. The same transcriptomic dataset was used by Fedi et al. (2017) and, 

strikingly, they found that low temperatures during seed set enhanced the expression 

of FAR1 and LACS2, contrary to the results exposed in this thesis. Public available 

microarray data illustrates that expression of these genes is considerably reduced 

from green cotyledon stage seeds to dry seeds (Winter et al., 2007), so we hypothesise 

this is the causal reason for this disagreement. 

The upregulation of ERF10 by low temperatures during seed development could 

also contribute to the observed reduction of GA responses, as this TF was previously 

shown to be able to interact in vivo with DELLA proteins, repressors of GA signalling 

(Zhou et al., 2016). In this study, Zhou and colleagues showed that ERF11 and 4, closely 

related genes to ERF10 (Nakano et al., 2006), are positive regulators of GA responses 

in Arabidopsis hypocotyls, by both enhancing expression of GA biosynthetic genes 

and interacting with DELLA proteins (Zhou et al., 2016). Nevertheless, it is plausible 

that ERF10 acts in an opposite manner in seeds, repressing GA responses, although 

further experiments will be required to evaluate this.  

The role of auxins in seed development was initially related with embryo 

patterning during seed embryogenesis (Möller and Weijers, 2009; Locascio et al., 

2014). Moreover, this plant hormone was recently identified as the triggering signal 

inducing seed coat development in Arabidopsis (Figueiredo et al., 2016). As for their 

regulation by temperature, several studies have explored these responses. 

Arabidopsis plants grown at elevated temperatures showed increased auxin content 

and responses, which led to elongated hypocotyls in the presence of light (Gray et 

al., 1998; Miyazaki et al., 2016). Consistent with these observations, another study 

found reduced expression of the auxin-responsive reporter DR5:GUS in response to 

low temperature in roots, which would correspond with reduced amounts of free 

auxins (Lee et al., 2005) and could relate with the observed downregulation of 

transcripts involved in auxin responses which we observed. 
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Auxin responses are complexly regulated by an intricate network of positive and 

negative regulators. These include Aux/IAA proteins, which usually act as repressors 

of the second type, the auxin response transcription factors (ARFs). Both types of 

regulators have been extensively studied and shown to form homo- or heterodimers 

to maximise their regulatory specificity (Dreher et al., 2006; Vernoux et al., 2011; Piya 

et al., 2014). This interlinked regulation could explain the presence in the dataset of 

IAA9, IAA17 and IAA28 among the upregulated transcripts. However, it still does not 

provide insights on how temperature is affecting these regulatory loops. The 

observed downregulation of ANT could be linked with the previous hypothesis that 

low temperatures during seed maturation cause an alteration of the seed coat 

composition, as this gene was shown to affect cell wall composition by altering the 

expression of pectin-modifying enzymes and auxin accumulation (Krizek et al., 2016). 

In sunflower, HaIAA27 was shown to participate in the regulation of seed longevity 

by repressing expression of HaHSFA9 (Carranco et al., 2010). Our results showed that 

lowered temperatures caused increased expression of IAA28, but further evidence is 

required to determine a similar role of this gene in the regulation of seed longevity, 

especially considering that no HSF transcript was found to be downregulated. It is as 

well possible that IAA28 is not involved in this regulation. 

Elevated temperatures during seed maturation cause shallow levels of seed 

dormancy (Kendall et al., 2011). The results presented here showed that they led to 

increased sensitivity to artificial ageing compared to the control (Figure 1A). This 

phenotype was unexpected, considering previous reports showing how elevated 

temperatures during seed maturation caused similar levels of sensitivity to artificial 

ageing to those of the control (He et al., 2014). This could be the result of experimental 

variability, provided that even though seeds are treated in the same manner, 

sometimes not all batches exhibit the exact same behaviour. Besides, seeds are highly 

sensitive to the environment, so many factors experienced by the seed could have 

caused the observed variation of the phenotype. Despite the lack of a differential 

phenotype between control and elevated temperatures with regard to sensitivity to 

artificial ageing, several differentially expressed transcripts were found, although no 

overrepresented GO categories were identified. However, a number of genes was 

found differentially expressed which can be linked, at least partially, with responses 

to the maternal environment. The presence of upregulated transcripts involved in 

mucilage biosynthesis might point towards an adaptive response to high 

temperatures. It seems fitting that increasing the amount of mucilage in the seeds 

could help them cope with the predictable lack of water usually encompassed by high 
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temperatures (Penfield et al., 2001). This could be accompanied by altered seed 

composition, as hinted by upregulation of several genes affecting this trait. 

The presence of genes related to the enhancement of germination and GA 

signalling is not surprising, considering the available literature pointing to the shallow 

dormancy caused by this temperature regime (Huang et al., 2014b). Following this 

reasoning, the presence of DOG1 among the downregulated transcripts by elevated 

temperature was expected, as DOG1 partially contributes to the active degradation of 

GAs (Kendall et al., 2011) and maintenance of seed dormancy (Née et al., 2017). Also 

downregulated, AAO3 is responsible for the final step in ABA biosynthesis. When 

seeds are non-dormant and prone to germinate, the GA/ABA balance is skewed 

towards GAs, so it is reasonable that ABA biosynthesis is not promoted (Holdsworth 

et al., 2008; Topham et al., 2017).  

Based on these results and although elevated temperatures seem to participate 

in the establishment of seed dormancy and do cause differential expression of genes, 

their contribution to sensitivity to artificial ageing seems minor under the studied 

experimental conditions. Taken together, these observations and the cited literature 

illustrate an active effect of lowered temperatures during seed maturation on the seed 

cell wall composition that in turn results in altered seed phenotypes (MacGregor et 

al., 2015), increasing seed dormancy while reducing seed longevity. The relationship 

between seed dormancy and seed longevity has been seldom studied. Recent work 

in Arabidopsis reported that both traits are negatively correlated (Nguyen et al., 2012), 

an observation further supported by work with Eruca sativa, which showed opposite 

trends for seed dormancy and longevity (Hanin et al., 2013). Some authors speculated 

that low temperatures exert selective pressure on seed dormancy rather than 

longevity. These environments, usually more humid and with sufficient water 

available, allow dormancy cycling and re-hydration phases, that would thus activate 

repair mechanisms. On the other hand, more extreme environments would impose 

harsher conditions, with less water availability and therefore an increased seed 

longevity would be favoured (He et al., 2014). However, our data does not 

accommodate the second part of this hypothetical trade-off, at least in terms of seed 

longevity, considering that even though elevated temperatures reduced seed 

dormancy, no enhancement was observed for seed longevity. 

4.2 MODIFICATION OF THE SEED TRANSCRIPTOME BY ARTIFICIAL AGEING 

The effect of ageing damages on seed constituents is mainly associated with 

oxidative stress and the subsequent detrimental effects incurred on the cells (Kranner 

et al., 2006; Hu et al., 2012). Although not directly related with maternal effects, studies 
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in barley showed that abiotic stresses experienced during seed maturation can be 

aggravated by subsequent application of artificial ageing (Nagel et al., 2015). 

As a result of the oxidative stress imposed during artificial ageing, the presence 

of upregulated transcripts associated with responses to oxidative stresses was 

expected, such as GSTF6 or HDP17.6II. Upregulation of the ABA biosynthetic gene 

AAO3 may also fit with the role of ABA in abiotic stress responses. Additionally, its 

role in the production of H2O2 could also enhance the ageing process (Zarepour et 

al., 2012). Considering that among downregulated transcripts there were several 

genes implicated in the negative regulation of ABA responses, such as AZF2 and 

CIPK3, both options seem plausible. Moreover, previous studies reported that H2O2 

is required for the initiation of programmed cell death processes, which would fit with 

the reduced viability (Kranner et al., 2006; Hu et al., 2012). However, more experiments 

will be required to verify these claims. 

Considering that oxidative damage incurred during seed ageing causes leakage 

of solutes due to loss of membrane integrity (Buitink and Leprince, 2008), it makes 

sense that ionic transporters become upregulated, as a response to the resulting ionic 

imbalance. Conversely, the presence of genes related to cell wall modification is more 

controversial. Although artificial ageing is conducted at elevated levels of relative 

humidity, it seems rather unlikely that the seed’s resources would be invested in cell 

wall remodelling rather than in repair mechanisms. A possible explanation could be 

that these transcripts are responsive to oxidative stress, in a similar manner to that 

occurring during cell wall loosening following apoplast acidification (Cosgrove, 2005).  

The presence of SNL1, a member of a histone deacetylase complex (Wang et al., 

2013), among the downregulated transcripts hints the possibility that post-

translational modifications of proteins are taking place during artificial seed ageing, 

which would agree with previous reports (Chen et al., 2013). Although conducted in 

recalcitrant seeds, a recent study also reported that artificial ageing does induce 

profound modifications of the epigenetic landscape in seeds of Quercus robur 

(Michalak et al., 2015). 

A transcriptomic analysis of aged pea seeds found that many of the differentially 

expressed genes were related to translation (Chen et al., 2013), a similar result to that 

found in proteomic analysis of artificially aged Arabidopsis seeds (Rajjou et al., 2008b). 

In the transcriptomic study of pea seeds, the authors described how the number of 

identified differentially expressed genes directly correlated with the length of the 

ageing treatment. In our case, only one time point was used corresponding to four 

days, which might miss on some of the effects of this treatment, especially considering 
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that some of the maternal effects could be amplified (Nagel et al., 2015). In addition, 

they reported that progressive artificial ageing of the seeds encompasses an 

increasing degradation of RNA, therefore threatening the robustness of the analyses. 

In our case, the short period of ageing applied ensured that the isolated RNA 

remained unharmed (the RNA integrity was evaluated prior to sequencing), but 

maybe it was at the cost of a more comprehensive picture of the transcriptome. The 

lack of GO categories related to translation could be the result of the ageing 

treatment not being long enough or that more time points were necessary to 

establish a more complete landscape of the aged seed transcriptome.   
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4.3 THE INFLUENCE OF DROUGHT DURING SEED MATURATION ON SEED 

QUALITY AND THE SEED TRANSCRIPTOME 

Drought stress imposes strong limitations to plant growth and fertility, therefore 

threatening crop production (Gall et al., 2015). Although many studies have been 

conducted to evaluate plant responses to drought, not so many have dealt with its 

effect on seed traits. Previous reports on the effect of water deprivation during seed 

maturation described that drought led to reduced levels of seed dormancy in wild 

oat (Avena fatua) seeds, but did not alter seed vigour after artificial ageing (Sawhney 

and Naylor, 1982; Gallagher et al., 2013). Seeds of soybean that matured under 

drought conditions exhibited altered composition of seed storage compounds, 

enhanced accumulation of α-tocopherols and an earlier accumulation of seed-

specific dehydrins (Dornbos and Mullen, 1992; Britz and Kremer, 2002; Samarah et al., 

2006). Similar results were also found for yellow lupine (Lupinus luteus) and triticale 

(x Triticosecale) seeds, in which drought modified the carbohydrate composition of 

seeds (Zalewski et al., 2001). These responses could have positive effects on the 

resulting seed longevity, but none of these studies evaluated this trait. In Arabidopsis, 

only one study explored the relationship between artificial ageing and seeds matured 

under drought conditions (Bueso et al., 2014), showing a detrimental effect of drought 

in resistance to artificial ageing. 

In this thesis, the effects of drought imposed during seed maturation on the 

seed longevity-deficient mutant dog1-1 and its control were evaluated. It was 

observed that for both the mutant and the control, drought treatment led to 

enhanced resistance to artificial ageing, besides of partially alleviating the levels of 

seed dormancy in the NIL DOG1 control (Figure 3). The reduction of seed dormancy 

depth does fit with the previously described effects in other species. However, our 

results on seed sensitivity to artificial ageing disagree with those previously reported 

for drought-grown Arabidopsis seeds (Bueso et al., 2014). These differences could 

originate from different plant growing conditions, as this publication does not provide 

details on how the plants were taken care of after the interruption of watering. 

Besides, the protocol used for artificial ageing of the seeds was not the same and 

these authors only aged seeds for one day. In addition, they used a different genotype 

(Col-0). All these differences may explain the different phenotypes reported.  

RNA-sequencing of dry seeds was conducted to elucidate the mechanisms 

underlying the enhanced resistance to artificial ageing caused by drought. The effect 

of drought during seed maturation led to the identification of around 500 

differentially expressed transcripts (Table 7). We observed a big overlap in the 
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number of differentially expressed transcripts (at least 49 %) when using either NIL 

DOG1 or dog1-1 as the reference for determining differential expression, which 

indicates that the transcriptomic response of both genotypes is similar (Figure 5), as 

expected from the similar phenotypes observed (Figure 3). 

Early responses to drought stress are linked to the biosynthesis and 

accumulation of ABA, which subsequently triggers an array of transcriptional 

responses which will lead to adaption or resistance to water deprivation (Benech 

Arnold et al., 1991; Huang et al., 2008; Wang et al., 2008; Farooq et al., 2009). In our 

analysis, two genes involved in the biosynthesis of ABA (NCED4 and NCED6) and an 

ABA transporter (NRT1.2) were found downregulated, which seems to contradict 

these reports. Nevertheless, several genes which expression is reported to be ABA-

responsive were upregulated as well. It is plausible that the imposition of drought 

stress during seed maturation triggered ABA accumulation. However, considering 

that our transcriptomic analysis was conducted on mature, dry seeds, this initial 

upregulation of ABA synthesis may have been reduced during the process of seed 

maturation, which would explain the observed reduction in expression for these 

transcripts. NCED6 participates in ABA biosynthesis during seed maturation and 

contributes to the establishment of seed dormancy (Lefebvre et al., 2006; Martínez-

Andújar et al., 2011). Therefore, its downregulation accomodates with the observed 

reduction of seed dormancy caused by drought. Moreover, the presence of DOG1 

among the downregulated transcripts is in line with the reduced dormancy 

phenotype observed Figure 3A.  

Increased levels of ABA signalling would fit with the observed reduction in 

ethylene-related genes. These two phytohormones are known to establish a complex 

crosstalk at different stages of plant development, such as seed germination, in which 

ABA and ethylene play antagonistic roles (Ghassemian et al., 2000; Tanaka et al., 

2005). The presence of ERF5 and ERF6 among downregulated transcripts seems to 

agree with the enhanced growth responses represented by the upregulation of 

expansins, as these two ERFs were reported to reduce the GA levels present in water-

deprived growing Arabidopsis leaves (Dubois et al., 2013).  

Our study also showed that VTE4, a gene implicated in chlorophyll degradation, 

was upregulated, and this process was demonstrated to be induced by ABA (Yang et 

al., 2014). The presence of VTE4 is of particular interest considering it is also involved 

in the biosynthesis of tocopherols, antioxidant compounds that protect lipids from 

oxidative damage and partial contributors to seed longevity (Sattler et al., 2004). 

Specifically, this enzyme catalyses the conversion of ɣ-tocopherol into α-tocopherol 
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(Bergmüller et al., 2003). vte4 mutants displayed altered proportions of seed 

tocopherols, which in turn can modulate certain transcriptional responses (Semchuk 

et al., 2009; Cela et al., 2011). However, no strong claims can be extracted from this 

observation, as neither the ABA nor the tocopherol content of these drought-

matured seeds were determined. 

Several GO categories related to cell wall organisation and modification were 

found (Table 8). Specifically, five different expansins were found to have enhanced 

expression in seeds matured under drought stress. This could be related with the fact 

that seeds are sink organs, actively growing and as such, drought does not induce a 

cease of growth as it does in other vegetative tissues (Shao et al., 2008; Harb et al., 

2010). The latter study also showed how expression of expansins is enhanced in the 

first stages of drought treatment, but became downregulated when water deprivation 

was prolonged in time. Similarly, previous studies described that root tips of maize 

plants (Zea mays) deprived of water exhibited increased expansin activity and 

expression (Wu et al., 1996, 2001). Further work corroborated the induction of 

expansin activities upon dehydration of the resurrection plant Craterostigma 

plantagineum (Jones and McQueen-Mason, 2004). The enhanced expression of 

expansins also fits the observed increase in seed weight caused by drought, which 

could result from increased cell expansion and growth and which was observed in 

both genotypes (Supplemental Figure 2). This contrasts with a previous study in 

wheat (Triticum aestivum) that reported that drought applied during seed maturation 

caused a strong reduction in seed size (Begcy and Walia, 2015). This study also 

reported that drought treatment strongly enhanced expression of NCED4, contrary 

to the results we found for Arabidopsis seeds. These discrepancies possibly originate 

from the fact that the seed developmental program is different between cereals and 

dicotyledonous plants.  

Our results also showed the presence of upregulated transcripts involved in 

epigenetic modifications and gene silencing as a result of restraining water availability 

during seed development. Drought imposed during seed maturation led to the 

upregulation of RDR6 and DMS3. These two genes contribute to gene silencing 

through small interference RNA (siRNA)-mediated maintenance of methylation levels 

(Lorković et al., 2012). On the other hand, three VIM genes involved in DNA 

methylation (Kim et al., 2014) were found downregulated. Previous studies showed 

that drought stress leads to chromatin modifications that can contribute to adaption 

responses (Ding et al., 2012; Kinoshita and Seki, 2014; Kim et al., 2015). A previous 

study on mature seeds of pear (Pyrus communis) found that desiccation of these 

seeds altered their DNA methylation levels (Michalak et al., 2013). It is then possible 
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that drought experienced during seed maturation helps seeds adapting to future 

exposure to this type of stress. Anyway, further research will be necessary to evaluate 

and confirm the impact of drought during seed maturation on the levels of DNA 

methylation, as DMS3 and RDR6 were also upregulated in the dog1-1 mutant.  

We have described several mechanisms that may underlie the observed 

enhancement of seed resistance to artificial ageing after drought treatment. 

Considering that seed longevity is a plastic trait with great capacity to respond to 

environmental cues (Nguyen and Bentsink, 2015), it is difficult to draw a single claim 

in the light of these results. We cannot rule out that several of the mentioned genes 

may be partially contributing to the observed final seed longevity, but additional 

experimental evidence is necessary prior to any final conclusion.  

4.4 THE SEED TRANSCRIPTOME OF THE DOG1-1 MUTANT 

Although the aim of this study was to determine the effects of drought applied 

during seed maturation on seed quality and the dry seed transcriptome, RNA-seq 

analysis of the dry seed transcriptome of dog1-1 was conducted as a part of the 

experimental design. This analysis revealed a set of differentially expressed transcripts 

which are in agreement with the ones previously described in microarray studies 

(Dekkers et al., 2016). However, as RNA-seq approaches allow for more in-depth 

studies, some extra categories were identified which were not previously reported.  

Dekkers and colleagues already described the downregulation of heat-

responsive transcripts in dog1-1 and linked it with the acquisition of seed longevity 

orchestrated by HSFA9 (Tejedor-Cano et al., 2010; Dekkers et al., 2016), provided that 

this gene and several of its HSP targets are downregulated in the mutant, a result we 

also found in our analyses. In addition to this, we found that upregulated transcripts 

in dog1-1 dry seeds showed overrepresentation of responses to cold. Figure 1 shows 

data regarding the effect of maternal temperatures on seed sensitivity to artificial 

ageing treatments. Specifically, Figure 1B shows how these conditions affected seed 

performance of the dog1-2 mutant. The phenotypes observed clearly match the 

responses identified with our RNA-seq analysis, as the mutant performed better than 

the control when grown at lowered temperatures and worse when elevated 

temperatures were applied.  

Our results also showed that several GA biosynthesis genes, as well as multiple 

GA-response repressors were upregulated. We speculate that there might be positive 

and negative feedback regulatory loops, including at the protein level, which alter the 

expression of these genes and could underlie this apparent inconsistence in GA 
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responses. We applied the same reasoning for the observed SPT expression pattern. 

Initially, SPT was described as a repressor of seed germination and a contributor to 

the maintenance of seed dormancy, in cooperation with ABI4, ABI5 and DELLA 

proteins (Josse et al., 2011; Vaistij et al., 2013). However, our transcriptomic approach 

showed opposite expression patterns of these transcripts compared to those 

previously described. Therefore we think that other regulatory loops are acting, giving 

as a result the observed expression patterns. In addition, a recent publication linked 

SPT to the regulation of gynoecium development, alongside cytokinins and auxins 

(Reyes-Olalde et al., 2017). This could fit with the proposed role of DOG1 as a 

developmental regulator (see the following paragraph), so when it is absent, the 

expression of other genes involved in developmental processes becomes altered. 

The authors of the previous transcriptomic study on dog1-1 seeds speculated 

on the role of DOG1 as a regulator of seed maturation, based on the observation that 

the dog1-1 mutation aggravates the phenotypes of abi3-1 in dog1-1 abi3-1 double 

mutants. We found that auxin-related transcripts were overrepresented among 

upregulated transcripts, especially auxin transporters. Two studies in Medicago 

truncatula have reported an abundance of auxin-related transcripts in co-expression 

networks associated with the acquisition of seed longevity (Righetti et al., 2015; Pereira 

Lima et al., 2017). Moreover, a previous study reported that auxins act as positive 

regulators of ABI3 expression (Liu et al., 2013b). The observed genetic interaction 

between DOG1 and ABI3 might indicate that in the absence of the first, auxin 

responses are enhanced to take over the role of DOG1 and maintain the levels of ABI3 

expression. However, more research will be required to shed light on this regulatory 

mechanism. 

4.5 THE INFLUENCE OF DROUGHT DURING SEED MATURATION ON CELL WALL 

COMPOSITION 

The observation that many of the overrepresented GO categories were related 

to cell wall composition and modification made us consider the possibility that the 

enhanced resistance to artificial ageing we observed might be caused by 

modifications of this structure. To validate this, we conducted cell wall composition 

analysis of the drought-grown seeds and their controls. 

Cell wall composition analyses revealed that at control conditions, the cell wall 

composition of the dog1-1 mutant was different from that of the NIL DOG1 control 

(Figure 6 and Figure 7). Specifically, it was observed that in both the non-crystalline 

and the pectin-enriched fractions, dog1-1 exhibited a higher abundance of 
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monosaccharides than the control. Conversely, application of drought during the 

course of seed maturation led to a reduction of monosaccharide levels in dog1-1, 

bringing them closer to those observed for the NIL DOG1 control, which in turn 

remained relatively stable, apart from a slight increase in monosaccharide content in 

the esterified pectin fraction as a result of drought (Figure 7A). 

This increased abundance of monosaccharides in control samples of dog1-1 

seeds could be one contributing factor explaining the reduced longevity phenotype 

of this mutant, as seed coat composition exerts a key role in the resulting seed 

longevity (Debeaujon et al., 2000). Upon drought treatment, Arabidopsis seeds 

accumulate raffinose, galactinol and stachyose (Taji et al., 2002). dog1-1 mutant seeds 

were shown to have an altered seed sugar composition, with increased levels of 

glucose, fructose and xylose, whereas the relative amounts of galactinol, raffinose and 

stachyose were reduced in comparison to NIL DOG1 (Dekkers et al., 2016). Raffinose 

and stachyose are oligosaccharides, whereas galactinol is a sugar alcohol derived 

from galactose. Stachyose is synthesised from galactinol and raffinose, and the latter 

requires galactinol for its biosynthesis as well (Taji et al., 2002). Since the initial levels 

of these compounds in the mutant are low in comparison to the control, it is probable 

that upon drought treatment these levels increase at the expense of other 

monosaccharides, which would explain the relative reduction in monosaccharide 

content observed.  

However, based on the initially observed phenotypes, it is difficult to associate 

the altered seed cell wall composition with increased resistance to artificial ageing in 

drought-matured seeds. This is especially stressed by the fact that most of the 

differentially expressed genes caused by drought were shared between genotypes, 

which seems to suggest a common regulation. From this point, we can only 

hypothesise that drought does induce changes in seed cell wall composition and that 

considering that each genotype has a different initial composition, they converge at 

a specific composition which would hypothetically increase the resistance of seeds to 

artificial ageing. Nevertheless, further experimental support will be required to 

substantiate this claim.  
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4.6 THE ROLE OF DOG1-INTERACTING PROTEINS IN SEED LONGEVITY 

DOG1 plays a key role in the establishment and acquisition of seed dormancy. 

Besides, the presence of a functional allele is required for the establishment of seed 

longevity, as dog1 mutants exhibit reduced seed longevity (Bentsink et al., 2006). 

However, levels of DOG1 protein accumulation had not previously been studied in 

relation with seed longevity. We first evaluated if, like for seed dormancy (Figure 8A), 

accumulation of DOG1 correlated with the levels of seed longevity. We observed that, 

contrary to seed dormancy, increased DOG1 protein accumulation does not enhance 

seed longevity (Figure 8B). From this observation, we can conclude that DOG1 protein 

is necessary for the establishment of seed longevity (as seed longevity is reduced in 

dog1 mutants), but further increasing its accumulation does not improve this trait 

beyond the levels of the Ler wild type (Figure 8B), which was used as a control instead 

of NIL DOG1 (Bentsink et al., 2006). In this section, we evaluated the involvement of 

proteins that interact with DOG1 in vivo to gain insight on the mechanisms through 

which DOG1 regulates seed longevity. 

Seven candidate genes were chosen (Table 9) which were identified in a 

previous pull-down assay conducted in dry and imbibed seeds of the dog1-1 mutant 

complemented with pDOG1Cvi:YFP:DOG1 (Née et al., 2017). We found that all the 

proteins evaluated were able to interact in vivo with DOG1 in a yeast two-hybrid assay 

(Figure 9). DOG1 localisation was shown to be restricted to the nucleus and the 

cytosol (Nakabayashi et al., 2012; Née et al., 2017). Similarly, PER1 was shown to be 

located in the nucleus and cytoplasm (Haslekås et al., 2003), whereas TRX3 is 

restricted to the cytoplasm (Park et al., 2009). However, CLO1 was described to be 

associated with the membrane of oil bodies (Næsted et al., 2000), whereas PLAT1 was 

detected at the endoplasmic reticulum (Hyun et al., 2014) and VTE3 is a nuclear-

encoded gene targeted to the inner membrane of the chloroplast (Motohashi et al., 

2003). Web-based online tools for subcellular localisation prediction showed that 

ATPrel is expected to be located at the endoplasmic reticulum and LOS1 in the cytosol. 

Based on these data, some discrepancies exist regarding the reported localisation of 

DOG1. For CLO1, PLAT1 and ATPrel, their subcellular localisation could still match with 

that described for DOG1 as cytoplasmic, in case they are exposed in the outer 

membrane of the organelles. However, further research will be required to elucidate 

this. For VTE3, the protein carries a signal peptide that targets it to the inner 

chloroplast membrane facing the stroma, not the cytoplasm (Motohashi et al., 2003). 

Considering that this interaction was detected in vivo by pull-down assays and further 

confirmed in yeast two-hybrid assays, it seems that it is a real interaction and not a 
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false positive. Nonetheless, further studies using bimolecular fluorescence 

complementation (BiFC) should determine the precise localisation of this interaction 

in planta. 

To study the possible role of the interactors in seed longevity, we used T-DNA 

insertion mutants, although homozygous lines could not be isolated for all 

candidates. The reasons for unsuccessful isolation of T-DNA insertion mutants can be 

diverse. For CLO1, no insertion could be detected in the T-DNA insertion line used 

(Figure 10). This line was ordered in two separate occasions, so it is possible that the 

stock contains mislabelled wild type seeds. Disruptions in this gene might cause 

lethality and therefore, only wild type plants survive. However, a previous study 

described two mutant alleles of clo1 with undistinguishable phenotypes from the wild 

type (Poxleitner et al., 2006), so this reasoning is unlikely. For VTE3, the vte3-2 mutant 

was shown to be soil lethal, so no homozygous lines could be isolated. The albino or 

pale green mutant 1 (apg1) mutant is allelic to vte3 and also soil lethal. This lethality 

is caused by a lack of plastoquinone (PQ), which prevents these plants from 

performing photosynthesis and autotrophic growth (Cheng et al., 2003; Motohashi et 

al., 2003). For LOS1, T-DNA insertion lines could only be isolated either at the 

promoter or the 3’UTR regions of the coding sequence (Figure 10). All the other lines 

carrying an insertion located within the gene coding sequence (including introns) 

could not be isolated, which suggests that this gene is essential for the correct growth 

of the plant or for a developmental process during seed formation. For the isolated 

los1 alleles, qPCR evaluation of gene expressions showed no strong differences in 

expression levels (Supplemental Figure 3). This is why the longevity phenotype of 

los1-3 was not assessed.  

Homozygous T-DNA insertion lines for ATPrel, LOS1, PLAT1, PER1 and TRX3 

were evaluated and showed no differences in sensitivity to artificial ageing (Figure 

11). From all tested candidates, only PER1 was previously linked to seed longevity. 

Specifically, it was shown that ectopic expression of Nelumbo nucifera NnPER1 in 

Arabidopsis Col-0 enhanced seed resistance to artificial ageing (Chen et al., 2016). 

However, our results showed no significant differences between per1 mutants and 

Col-0 (Figure 11A).  

One drawback in our experimental approach is functional redundancy. All genes 

chosen to evaluate their possible role in seed longevity belong to gene families. 

Therefore, when evaluating the phenotype of a single mutant, it is always possible 

that their function is being taken over by another member from the same gene family. 
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However, it is also possible that the chosen candidates do not contribute to the 

establishment of seed longevity, despite their ability to interact in vivo with DOG1.  

Characterisation of seed longevity in heterozygous lines of vte3-2 showed that 

this trait is impaired (Figure 12A). VTE3 is a methyltransferase that catalyses the 

methylation of 2-methyl-6-phytylbenzoquinone (MPBQ) to yield 2,3-dimethyl-5-

phytylbenzoquinone (DMPBQ). In addition, it participates in the biosynthesis of 

plastoquinone (Cheng et al., 2003). We demonstrated that transgenic seeds 

overexpressing VTE3 had reduced longevity (Figure 12B). Our results illustrate that 

either reduced or enhanced expression of VTE3 led to reduced resistance to artificial 

ageing and that this reduction could not be linked with altered ABA perception or 

seed coat permeability (Figure 12 and Figure 13). The vte3-2 mutant only 

accumulates β- and δ-tocopherols, whereas transgenic lines overexpressing VTE3 in 

seeds were reported to have increased levels of α- and ɣ-tocopherols (Van 

Eenennaam et al., 2003). An altered composition of tocopherols was shown to 

influence the expression of transcriptional networks related to defence responses and 

ethylene and jasmonic acid (Sattler et al., 2006b; Cela et al., 2011). It is possible that 

our VTE3-overexpressing lines caused a similar effect resulting from enhanced 

accumulation of tocopherols that, in turn, had a detrimental effect on seed longevity. 

Anyhow, further analyses of the tocopherol levels and transcriptional responses in 

these lines will be required to confirm this. Likewise, VTE3 is involved in the 

biosynthesis of plastoquinone, and the available pools of this compound were shown 

to be responsive to oxidative stresses, provided that they act as antioxidants 

(Szymańska and Kruk, 2010). In addition, the redox state of these pools was 

demonstrated to regulate gene expression under stress conditions (Adamiec et al., 

2008). Taken together, these observations may indicate that altering the expression 

of VTE3 causes a modification of gene expression, as it affects both pools of 

tocopherols and plastoquinone. 

From our observations, the role of the interaction between DOG1 and VTE3 in 

the regulation of seed longevity is yet unclear, apart from both dog1 and vte3 mutants 

having reduced seed longevity (Figure 11 and Figure 12). A search through the 

transcriptome of dog1-1 described in section 3.1.2.2 revealed that VTE3, VTE4 and 

VTE5 are differentially upregulated in the dog1-1 mutant, which suggest that DOG1 

could affect transcription of these genes. VTE3, VTE4 and VTE5 participate in the 

biosynthesis of tocopherols in seeds, which requires compounds originating from 

chlorophyll degradation (Valentin et al., 2006; vom Dorp et al., 2015). Chlorophyll 

degradation during seed maturation is regulated by ABI3, as abi3 mutant seeds retain 

chlorophyll (Ooms et al., 1993). ABI3 was shown to genetically interact with DOG1 
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(Dekkers et al., 2016). However, transcriptome analyses of abi3 mutant seeds did not 

find altered expression of these VTE genes (González-Morales et al., 2016). Further 

research will be necessary to determine the exact role of the interaction between 

DOG1 and VTE3 and the possible cause of the transcriptional misregulation we 

observed. 

We have shown that DOG1 is able to interact in vivo with several proteins 

involved in different processes. However, from all evaluated candidate genes, only 

VTE3 showed an effect on seed longevity. Previous work proposed a role for DOG1, 

beyond its involvement in seed dormancy, as a regulator of seed development, 

considering that it interacts genetically with ABI3 and affects the expression of other 

regulators such as ABI5 (Dekkers et al., 2016). A recent study showed that DOG1 

interacts in vivo with PP2C phosphatases, regulating seed dormancy release in 

Arabidopsis (Née et al., 2017). Our data confirmed the ability of DOG1 to physically 

interact with several proteins in vivo, which could be an additional function to this 

regulatory role. Further research will be necessary, nonetheless, to determine the 

biological meaning and importance of these interactions.  
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4.7 THE ROLE OF THE FLOWERING REPRESSORS FLC AND FRI IN THE 

REGULATION OF SEED LONGEVITY IN ARABIDOPSIS 

We have explored the possible contribution of FRI to seed longevity, as it was 

previously shown that an introgressed fragment from Sha that contained this gene 

enhanced seed longevity in the longevity-deficient mutant lec1-3 (Sugliani et al., 

2009). Complementation assays using the other genes contained within this 

chromosomal fragment showed no enhancement of seed longevity, whereas FRI 

showed fluctuating results between experiments. However, evaluation of genetic 

material carrying different allele combinations of this gene showed no differences in 

terms of seed dormancy or longevity (Figure 14), which prompted the idea that both 

FRI and FLC have to be present to affect these traits. To avoid interferences in terms 

of flowering time, transgenic lines expressing each gene’s coding sequence under the 

DOG1 seed-specific promoter were constructed, but neither of the constructs caused 

an improvement of seed longevity (Figure 15 and Figure 16).  

Our results showed that the DOG1 promoter could not confine the expression 

of FLC nor FRI to the seeds, as their expression was also detected in rosette leaves 

(Figure 14). However, previous work reported successful seed-specific expression of 

constructs under the control of this promoter (Nakabayashi et al., 2012; Née et al., 

2017). Besides, expression of FLC under control of an heterologous promoter was 

previously reported to be functional, as illustrated by the observed delay in flowering 

time (Searle et al., 2006; Sheldon et al., 2008). The reason for this absence of seed-

specific expression in the transgenic lines described in this thesis is not clear.  

We have shown that ectopic expression of FLC leads to reduced levels of seed 

dormancy and seed longevity, whereas flowering time remained unaltered (Figure 

15). We evaluated if these seed phenotypes were related to an altered sensitivity to 

exogenous ABA, but we observed no differences compared to the flc-3 control 

(Supplemental Figure 4). A previous study showed that FLC participates in the 

regulation of seed germination at low temperatures (Chiang et al., 2009), a role that 

a second report linked to the levels of seed dormancy and the germination-

promoting conditions present (Blair et al., 2017). In both reports, the authors showed 

that enhanced expression of FLC causes increased germination. Our results are in 

agreement with this, as we observed reduced levels of seed dormancy and high FLC 

expression in our transgenic lines. However, none of these reports explored the 

contribution of FLC to seed longevity. We have shown that increased levels of FLC 

expression led to a dramatic reduction in seed resistance to artificial ageing (Figure 

15B), whereas ABA sensitivity remained unaffected (Supplemental Figure 4). 
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Therefore, we examined the expression of several FLC targets, in case they could 

explain the increased sensitivity to artificial ageing of the transgenic lines. Despite the 

high levels of expression of FLC, we observed a relatively minor modification of 

expression of its targets. Among all evaluated targets, only four of them showed the 

same trend in terms of regulation in all transgenic lines evaluated (Figure 16), 

although their possible contribution to seed longevity has yet to be examined. One 

possible candidate from this group is NYE1, considering it participates in the 

degradation of chlorophyll (Ren et al., 2007), a process known to affect the resulting 

seed longevity. However, further research should evaluate this possible role of NYE1. 

Previous work showed that overexpression of FLC in Ler caused a delay of 

flowering time (Michaels and Amasino, 1999). However, other studies reported that 

Col-0 and C24 accessions overexpressing FLC controlled by a 35S promoter could 

flower earlier or at the same time as the wild type (Sheldon et al., 1999; Ratcliffe et al., 

2001). This is a possible explanation for the absence of a flowering delay despite of 

the elevated expression levels of FLC we observed (Figure 15). The unaltered 

flowering time observed could also be caused by the expression of the construct at a 

slightly different stage of development during seed maturation. FLC is expressed 

throughout embryo development, but it is also expressed later during plant 

development (Sheldon et al., 2008). On the other hand, DOG1 expression is seed 

specific and peaks during seed maturation (Bentsink et al., 2006; Nakabayashi et al., 

2012). Nevertheless, since the expression of the construct was not restricted to the 

seeds, this explanation seems unlikely. 

The high levels of FLC expression detected in leaves could also be associated 

with the absence of cis-regulatory elements. As we wanted to remove as many 

flowering time regulatory elements as possible, we only cloned the CDS of the gene. 

Several reports have explored the complex regulatory mechanisms fine-tuning the 

expression of FLC and found that many of the sequences responsible for stably 

repressing FLC expression are located within the first intron of the gene (Bastow et 

al., 2004; Li et al., 2014). This first intron also encodes the non-coding RNA COLDAIR, 

which recruits chromatin-modifying complexes that further repress FLC expression 

(Heo and Sung, 2011). Furthermore, the promoter of this gene also carries sequences 

which are necessary for vernalisation-independent expression of FLC (Sheldon et al., 

2002). For DOG1, it is know that its promoter carries RY repeats, involved in the seed-

specific expression and ABI3 regulation and ABA-response elements (ABRE) motifs, 

which are linked to ABA responses through ABI5 (Bentsink et al., 2006; Graeber et al., 

2010). The strong increase in FLC expression in rosette leaves could originate from 
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the altered regulation of gene expression introduced with the promoter switch, which 

drove FLC expression in a manner that we did not anticipate. 

The aim of this section was to evaluate the possible role of the FRI allele from 

the Sha accession in the regulation of seed longevity. However, a mistake was made 

during the construction of these lines that led to the cloning of an allelic version 

identical to that of Col-0. This accession was reported to carry a 16 bp deletion that 

introduces an early stop codon and generates a truncated version of the protein 

(Johanson et al., 2000). This truncated version is the one we cloned and constructed 

our transgenic lines with. Therefore, no conclusions on the role of the Sha allele of 

FRI on seed longevity can be drawn. A first evaluation using genetic material carrying 

the Sf-2 allele showed no effect on seed longevity (Figure 14), despite it is also a 

functional FRIGIDA (Johanson et al., 2000). However, the effect of the Sha allele should 

be determined experimentally prior to any further conclusion, as these alleles differ 

in several SNPs. Previous work found different effects of FRI on the germination 

behaviour depending on the background accession. Chiang et al. described that FLC-

mediated germination did not require the action of FRI in a Ler background (Chiang 

et al., 2009). Conversely, Blair et al. (2017) argued that this apparent lack of effect of 

FRI on germination resulted from the Cvi allele of FLC used, which does not require 

FRI to enhance its expression (Gazzani et al., 2003). Moreover, this work reported that, 

in a Col background, disruption of FLC only affected seed germination in the presence 

of a functional FRI and that without a functional FLC, disruption of FRI slightly 

improved the germination behaviour (Blair et al., 2017), an effect also confirmed on a 

second report (Auge et al., 2017) 

It is also possible that the observed enhancement of seed longevity was not 

caused by any of the genes present in the introgressed region alone but from a 

combination of them. Further studies should evaluate how different sub-fragments 

of this introgressed fragment affect seed longevity. Lastly, the presence of several 

long non-coding RNA (lnRNA) within this region should not be overlooked. These 

transcripts, such as At4g03675 or At4g03685, could underlie the initial observations. 

Anyhow, further investigation will be required to determine the basis of the observed 

enhancement of seed longevity initially reported (Sugliani et al., 2009).   
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4.8 THE INFLUENCE OF TEMPERATURE DURING SEED DEVELOPMENT AND OF 

ARTIFICIAL AGEING ON NUCLEAR SIZE AND CHROMATIN COMPACTION IN 

EMBRYOS OF ARABIDOPSIS 

In this section, we evaluated whether changes in nuclear traits can be used as 

predictors of seed quality. Specifically, we evaluated how different temperature 

regimes applied during seed maturation, in combination with artificial ageing, 

affected seed nuclear size and the degree of chromatin compaction. Additionally, we 

established the effect of seed imbibition on these traits, in comparison with dry seeds. 

Previous studies showed that dry seeds of Arabidopsis are characterised by reduced 

nuclear size and increased chromatin condensation (van Zanten et al., 2011). 

Furthermore, they identified that the shrinkage of the nucleus is developmentally 

controlled, in part by ABI3, as a part of the maturation drying process that seeds 

undergo. Upon germination, nuclear size increases again, a process partially 

contributed by LITTLE NUCLEI 1 (LINC1) and LINC2 (van Zanten et al., 2011). 

A clear distinction between the bright, stained heterochromatic chromocenters 

and the darker euchromatic background was not achieved (Figure 18), which did not 

allow further determination of the degree of chromatin compaction imposed by the 

evaluated stresses. The absence of clearly distinguishable heterochromatin could 

have been caused by the specific growing conditions of the plants during seed 

maturation or by the fact that we analysed nuclei isolated from the entire embryo, 

whereas previous work restricted these analyses to embryonic cotyledons (van Zanten 

et al., 2011). 

Nuclear sizes of embryos that matured under standard and high temperatures 

were similar in dry seeds, but imbibed seeds matured at high temperatures had 

bigger nuclei than those matured at control temperatures (Figure 19), similar to what 

we observed in imbibed seed that matured at lowered temperatures. It is possible 

that the nuclei of seeds matured either at low or high temperatures enlarge faster 

during imbibition compared to seeds matured at control temperatures. As the 

increase in nuclear size was previously linked with germination (van Zanten et al., 

2011), it could be connected with faster germination of seeds grown at these 

temperature regimes. However, this faster increase in size cannot be associated with 

improved seed quality because seeds matured at lower temperatures had lower 

quality and high dormancy whereas seeds matured at high temperatures showed a 

similar performance compared to seeds matured at control temperatures (section 

3.1.1). Artificial ageing of seeds caused a decrease in nuclear size expansion upon 
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imbibition (Figure 19). This could be explained by the decreased germination 

capacity of the aged seeds, which after imbibition, instead of commencing the 

process or germination, are committed to cellular damage repair and is in agreement 

with previous reports which showed that aged seeds exhibit reduced germination 

speed and rate (Rajjou et al., 2008b). 

Imbibition of seeds for 72 h had the strongest effect on nuclear size, whereas 

maternal temperatures and artificial ageing exerted a relatively small impact on this 

trait. Strikingly, 81 % of the observed variability could not be explained by the variables 

we studied (Table 11). Since we could not evaluate the levels of chromatin 

compaction, it is possible we missed substantial information. High levels of chromatin 

compaction are associated with reduced levels of transcription (Fransz and De Jong, 

2011). Environmental cues, such as light, were reported to be able to affect chromatin 

organisation and transcriptional activity (Bourbousse et al., 2015). Therefore, it is 

possible that the maternal environments at which plants were grown exerted a 

modification on the chromatin landscape that we did not detect. Therefore, new 

studies will be required to establish a more comprehensive model that can better 

explain the observed variability in nuclear size and that includes an evaluation of 

chromatin compaction levels.  
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4.9 ASSESSMENT OF SEED QUALITY IN ARABIDOPSIS BY ACTIVITY-PROFILING 

OF PROTEASES 

We have evaluated the feasibility of activity-profiling of proteases as a tool to 

monitor levels of seed quality. To this end, we used artificially aged seeds from the 

Arabidopsis accessions Col and Ler and looked for differential labelling in protein 

extracts from these seeds. Seed germination after different periods of artificial ageing 

was used as a proxy for seed quality (Figure 20), considering artificial ageing reduces 

seed vigour and overall seed quality (Delouche and Baskin, 1973; McDonald, 1998).  

ABPP probes are designed to covalently bind the active site of target enzymes 

in an activity-dependent manner, usually by substrate-mimicking or the use of tagged 

inhibitors (Morimoto and Van Der Hoorn, 2016). This means that if, for any reason, 

the protein loses its conformation or the active site becomes blocked, the labelling 

will not occur. Apart from the fragment binding the active site, these probes usually 

carry reporter tags that allow downstream analyses of the labelled proteome. In this 

work, we evaluated the activity-dynamics of several protease families during seed 

ageing, as they are involved in a wide array of processes within the cell (van der Hoorn 

and Kaiser, 2012). 

We evaluated four biochemical probes targeting different subsets of plant 

proteases (Table 13) and found that two of them exhibited a differential pattern of 

labelling. However, this labelling was only observed when seeds had been imbibed 

for 24 h prior to protein isolation and labelling, whereas labelled protein extracts from 

dry seeds showed no differences. This could mean that imbibition and restoration of 

the metabolic activity of the cell are required to observe the changes induced by 

artificial ageing. In line with this, some proteases were shown to be synthesised in an 

inactive form, resulting from a propeptide masking the active site (Kuroyanagi et al., 

2002). This propeptide is removed during translation, a process requiring enzymatic 

activities and therefore a hydrated cytoplasm. 

We observed that the activity of serine hydrolases is reduced during the ageing 

treatment in both Col and Ler accessions (Figure 21). This is in agreement with 

previous reports that described the different damages incurred on the seed proteome 

during ageing (Rajjou et al., 2008b). As a result of the oxidative damage caused by 

seed ageing, protein denaturalisation and carbonylation occur, so the observed loss 

of activity is possibly caused by these processes, although this should be 

experimentally confirmed.  
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The FP probe used labelled several enzymes. To determine the identity of the 

characterised bands, we conducted a pull-down assay using a biotin-tagged version 

of the FP probe. Our initial attempt identified 20 different serine hydrolases in protein 

isolates from non-aged seeds compared to an identical non-labelled sample (Table 

14). However, the MS analysis showed that several of these candidates were also 

enriched in the non-labelled control (Supplemental Figure 7), which suggests that 

some mistake happened during sample preparation. For this reason, we will repeat 

this experiment using a differential-enrichment approach. We will employ non-aged 

and 12 days aged seeds, in order to determine those bands whose abundance is 

heavily reduced or disappear after the ageing treatment. This will allow to confirm 

the identity of these proteases. 

Contrary to the pattern observed for serine hydrolases, VPEs showed a pattern 

of increasing activity during the ageing treatment (Figure 22). From these 

observations, we tried to elucidate which VPE was responsible for the increased 

activity. However, artificial ageing of seeds of different vpe mutants and subsequent 

labelling did not provide a clear answer (Figure 23). Previous studies showed that 

VPEs have redundant functions in protein processing and they can take over the role 

of others (Gruis et al., 2002; Shimada et al., 2003; Gruis et al., 2004) and a similar 

compensation effect was reported in programmed cell death (PCD) responses (Rojo 

et al., 2004). It is likely that a similar process happened in the responses induced upon 

artificial ageing and more than one VPE is involved in the observed activity. 

Furthermore, we confirmed that the increase in VPE activity also occurred in naturally 

aged seeds and was not an artifact caused by the artificial ageing treatment (Figure 

24). The lack of a seed longevity phenotype in the vpe mutants is probably observed 

because they play no part in the acquisition of this trait. Even mutants in ɣ-VPE, 

required for seed coat development, or the quadruple vpe mutant are 

indistinguishable from the wild type (Nakaune et al., 2005), which suggests VPEs do 

not contribute to seed longevity. 

The observed increase in VPE activity can arise from the fact that ageing 

damages produce hazardous compounds within the cell, which would act as a trigger 

to enhance VPE activity in order to process or isolate them into the vacuole (Kinoshita 

et al., 1999; Hatsugai et al., 2015). Several studies have described that, apart from their 

role during seed maturation, VPEs play a role during PCD, both developmentally-

regulated (Nakaune et al., 2005) or as a result of pathogen attacks, including 

hypersensitive responses (Hatsugai, 2004; Kuroyanagi et al., 2005; Hatsugai et al., 

2015). PCD processes can be elicited by vacuolar collapse (Hatsugai et al., 2006) and 

VPE-silenced lines were shown to not commence tonoplast disintegration and 
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subsequent cell death (Hatsugai, 2004). The ageing process in seeds was also 

connected to PCD responses, considering DNA laddering, RNA degradation and 

membrane leakage were observed (Kranner et al., 2006; El-Maarouf-Bouteau et al., 

2011; Hu et al., 2012; Chen et al., 2013). Interestingly, a recent study found decreasing 

VPE activities in senescing leaves of Arabidopsis (Pružinská et al., 2017), although leaf 

senescence and PCD are not regulated in the same manner (Schippers et al., 2015). 

Given the role of VPEs as proteases, it is conceivable they are contributing to process 

damaged proteins or that they are becoming active as a part of PCD responses, but 

this is not clear yet.  

The two ABPP probes identified in Arabidopsis seeds were further evaluated in 

seeds of eight wild species (Table 15). We confirmed VPE-like activities in seeds of 

most of these species, in agreement with previous reports that labelled them in leaf 

extracts (Misas-Villamil et al., 2013; Lu et al., 2015). However, we did not observe the 

same pattern of increased activity in aged seeds (Figure 25) that was identified in 

Arabidopsis. This was possibly caused because we mistakenly used dry instead of 

imbibed seeds. Similarly, we could not identify a reduction of activity of serine 

hydrolases. From these observations, we confirmed that both probes are functional 

in protein extracts of other species. However, since no differential labelling was 

observed, we cannot conclude if they are valid to monitor seed quality in these 

species. Further research should characterise the labelling of 24 h-imbibed seeds to 

determine if the patterns observed in Arabidopsis are common to the studied wild 

species. We speculate with the possibility that the ageing process in these species 

could differ from that of Arabidopsis. Further investigation will be required to 

determine the optimal conditions of labelling in these species to establish robust 

markers of seed quality.  

From these results, we conclude that two markers of seed quality in seeds of 

Arabidopsis thaliana were identified. The activities labelled by these two markers 

exhibited opposite trends, which could allow for a combination of these probes in 

order to achieve a more refined approach to determine levels of seed quality. In 

addition, several serine hydrolase activities were identified which could be linked to 

the initial levels of seed quality, although these connections remain to be determined.  
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4.10 FINAL REMARKS 

The research presented in this PhD thesis has explored how seed longevity in 

Arabidopsis thaliana is controlled by both genetic and environmental factors. The 

temperatures applied during seed maturation altered the seed transcriptome. 

Specifically, lower temperatures, which resemble those faced by plants when growing 

in their natural environments, were able to induce differential expression of transcripts 

which can alter the seed coat composition. Even though some reports addressed 

some of these effects (MacGregor et al., 2015; Fedi et al., 2017), our study identified 

auxin and GA responses in response to cold, which may suggest additional 

mechanisms through which the environment can shape seed longevity.  

We have described how drought applied during seed maturation, despite its 

overall detrimental effect on seed yield, increased seed quality in two studied 

genotypes. However, we could not determine the specific mechanisms that underlie 

this enhancement of seed resistance to artificial ageing. It seems that modifications 

of the seed cell walls originate from the treatment, but each genotype behaves 

differently, whereas their transcriptomic response was similar. Nevertheless, this 

opens a new field of opportunity to explore how water scarcity experienced by the 

plant can improve seed longevity, protecting the plant’s offspring.  

This thesis has documented the interaction between DOG1 and several proteins 

in Arabidopsis, including VTE3. Although additional experiments should address the 

exact subcellular localisation of these interactions, our observations support the 

proposition of DOG1 as a master regulator of seed development (Dekkers et al., 2016), 

beyond its role in seed dormancy. 

Our results could not determine the role of the Sha allele of FRIGIDA in the 

regulation of seed longevity in Arabidopsis. Nonetheless, as previous reports showed 

it can effect on seed germination independently from FLC, this possibility remains 

open (Blair et al., 2017). However, we showed that overexpression of FLC, a repressor 

of the flowering transition in Arabidopsis, does alter seed longevity. This effect was 

not previously reported and adds an additional layer to the already complicated 

regulation that governs this locus (Rouse et al., 2002; Deng et al., 2011; Wu et al., 

2016). 

We identified two probes which label two different enzymatic activies with 

opossed patterns of activity in aged seeds. This qualifies them as markers of seed 

quality in Arabidopsis. Adittionally, we confirmed that the activities identified were 
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also present in seeds of other eight wild species, which opens the possibility of using 

the marker probes in a wider range of species to evaluate seed quality. 
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6 APPENDIX  

Supplemental Table 1. Arabidopsis mutants and T-DNA insertion lines used in this 

thesis. 

Locus Allele NASC code ID Reference 

At5g45830 
dog1-1 - - Bentsink et al. (2006) 

dog1-2 - - Nakabayashi et al. (2012) 

At4g26740 clo1 N355586 GABI_823D08  

At5g42980 
trx3-1 

N682779 SALK_111160 Yamamoto and Nasrallah 

(2013) 

trx3-2 N877494 SAIL_864_G11  

At2g24420 ATPrel N682426 SALK_061840  

At4g39730 plat1-1 N656873 SALK_112728  

At3g63410 vte3-2 N605903 SALK_105903 Cheng et al. (2003) 

At1g48130 
per1-1 N653878 SALK_133714  

per1-2 N653600 SALK_036808  

At1g56070 

los1-1 N24936 - Guo et al. (2002) 

los1-2 N671080 SALK_004229  

los1-3 N504041 SALK_004041  

los1-4 N804803 SAIL_100_B12  

los1-5 N834645 SAIL_775_C02  

los1-6 N831700 SAIL_715_B12  

At2g25940 α-vpe - - 

Gruis et al. (2002) 
At1g62710 β-vpe - - 

At4g32940 ɣ-vpe - - 

At3g20210 δ-vpe - - 
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Supplemental Table 2. Primers used in this work. For each primer, the purpose (P) is 

indicated: cloning (C), sequencing (S) or genotyping. 

Primer name Target P Sequence 5’-3’ 

pDOG1-F At5g45830 C AGGCTACCAAATTGTTTGTGCATGCTTCAG 

pDOG1-Adapt-R At5g45830 C AAGGGACTGACCACCGATCTCTTTTGGTTTGCGTGTTTGTG 

pDOG1_2F At5g45830 S GATCACCACCACTACTATAC 

pDOG1_3F At5g45830 S GTGTCGAACTATCCTCATAC 

pDOG1_4F At5g45830 S GTACAATCCGCTGTCTCAGGACATC 

pDOG1_5F At5g45830 S GGAACAACAACTCGCACTCTC 

pDOG1_6F At5g45830 S GACATTTGTCATTGTTTCCC 

Adapt-FLC-F At5g10140 C GGTGGTCAGTCCCTTATGGGAAGAAAAAAACTAGAAATC 

FLC-R At5g10140 C CTAATTAAGTAGTGGGAGAGTCACC 

Adapt-FRI-F At4g00650 C GGTGGTCAGTCCCTTATGTCCAATTATCCACCGACGGTG 

FRI-2R At4g00650 C CTATACCTGAGACCATAGGGAC 

At5g42980 LP1 At5g42980 G AGGTTTGAATTGTCCCCAATC 

At5g42980 RP1 At5g42980 G ATTGAAATTCCTCATGGCCTC 

At5g42980 LP2  At5g42980 G GCTGCGAGTAATCAAGTTTGC 

At5g42980 RP2  At5g42980 G ACCGACACAGAGACGAAGAAG 

At4g26740 LP  At4g26740 G GACAAAACCATCAAAAATTTCG 

At4g26740 RP  At4g26740 G ACGACCCAAGAAAGCTTTTTC 

At4g39730 LP  At4g39730 G ATGGATGGGTCCTAATCGATC  

At4g39730 RP At4g39730 G GCTCGTGCTTGAGCTTTACTC 

At2g24420 LP At2g24420 G ACACCAGTGACAGAACATCCC 

At2g24420 RP At2g24420 G TTTGCAGAAAAATGCCAAAAC 

At3g63410 LP At3g63410 G CAAACACACACTGTGGGAATG 

At3g63410 RP  At3g63410 G AACACTGTTGCTATGGTTGGG 

At1g56070 LP At1g56070 G GACAAAACCATCAAAAATTTCG 

At1g56070 RP At1g56070 G ACGACCCAAGAAAGCTTTTTC 



Appendix 

163 

LOS1_RP2 At1g56070 G TCCCTTGTACAACATCAAGGC 

LOS1_LP2 At1g56070 G AACGAGTCAATGGACGTGTTC 

VTE3_1Fw At3g63410 C ATGGCCTCTTTGATGCTC 

VTE3_1Rv At3g63410 C TTAGATGGGTTGGTCTTTGG 

LOS1_1Fw At1g56070 C ATGGTGAAGTTTACAGCTGATG 

LOS1_1Rv At1g56070 C TTAAAGCTTGTCTTCGAACTC 

CLO1_1Fw At4g26740 C ATGGGGTCAAAGACGGAGATG 

CLO1_1Rv At4g26740 C TTAGTAGTATGCTGTCTTGTCTTCAC 

ATPrel_1Fw At2g24420 C ATGGCGGCCGCGAAACTC 

ATPrel_1Rv At2g24420 C TCATTTGTCAGAATGACCCC 

PLAT1_1Fw At4g39730 C ATGGCTCGTCGCGATGTTC 

PLAT1_1Rv At4g39730 C TTAAACGACCCAAGAAAGC 

PER1_1Fw AT1G48130 C ATGCCAGGGATCACACTAGG 

PER1_1Rv AT1G48130 C TCAAGAGACCTCTGTGTGACG 

TRX3_1Fw At5g42980 C ATGGCCGCAGAAGGAGAAG 

TRX3_1Rv At5g42980 C TCAAGCAGCAGCAACAACTG 

SALK_LBb1.3 - G ATTTTGCCGATTTCGGAAC 

SAIL LB2 - G GCTTCCTATTATATCTTCCCAAATTACCAATACA 

GABI T-DNA - G CCCATTTGGACGTGAATGTAGACAC 

SelA pDONR201 S TCGCGTTAACGCTAGCATGGATCTC 

SelB pDONR201 S GTAACATCAGAGATTTTGAGACAC 

attB1-F - C GGGGACAAGTTTGTACAAAAAAGCAGGCT 

attB2-R - C GGGGACCACTTTGTACAAGAAAGCTGGGT 

 

Supplemental Table 3. Primers used to evaluate relative expression in qPCR assays. 

Primer name Target Sequence 5’-3’ 

ACT8_qPCR_2Fw At1g49240 GCAGACCGTATGAGCAAAGAG 

ACT8_qPCR_2Rv At1g49240 ACATCTGCTGGAAAGTGCTG 

At4g12590_qPCR_Fw At4g12590 CTTCAGCAACGAGGAGAATGG 
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At4g12590_qPCR_Rv At4g12590 AGAAGAAGAAGTTGACCCATGC 

At1g16970_qPCR_Fw At1g16970 AGAGCTAAGGATGCACAAGACC 

At1g16970_qPCR_Rv At1g16970 CTTCAGTTGGTCCTTCATGTCC 

VTE3_qPCR_1Fw At3g63410 AGTCGCCACATCAGCTGG 

VTE3_qPCR_1Rv At3g63410 GGCCAGTACTCAATGCTTCC 

LOS1_qPCR_1Fw At1g56070 GACCACGGGAAATCCACTC 

LOS1_qPCR_1Rv At1g56070 CACGTTCAGCCTCATCAGC 

FLC_qPCR_2Fw At5g10140 AGCCAAGAAGACCGAACTCA 

FLC_qPCR_2Rv At5g10140 TTTGTCCAGCAGGTGACATC 

FRI_qPCR_2Fw At4g00650 ATCTGAACAGCGACGAAGAG 

FRI_qPCR_2Rv At4g00650 CGCAGCTAATTCGTCTATGG 

FT_qPCR_Fw At1g65480 ATCATCACCGTTCGTTACTCG 

FT_qPCR_Rv At1g65480 ACAACTGGAACAACCTTTGGC 

SOC1_qPCR_Fw At2g45660 ATTCGCCAGCTCCAATATGC 

SOC1_qPCR_Rv At2g45660 TGAGCTGCTCAATTTGTTCC 

DIN10_qPCR_Fw At5g20250 CTTCTTCGCTTTCTGGCATTG 

DIN10_qPCR_Rv At5g20250 CGAACCGCCGGTTTAATCGT 

DREB1B_qPCR_Fw At4g25490 GGTTTCTGAAGTGAGAGAGCC 

DREB1B_qPCR_Rv At4g25490 GCGAAGTTGAGACATGCTGA 

DREB1A_qPCR_Fw At4g25480 TCGTCACCCAATATACAGAG 

DREB1A_qPCR_Rv At4g25480 GGTTTGAAATGTTCCGAGCC 

SPL15_qPCR_Fw At3g57920 CGCTCCATCTCTTTACGGAAAC 

SPL15_qPCR_Rv At3g57920 GAGATCCTACTGCGTGGTCAA 

SMZ_qPCR_Fw At3g54990 GGGAATCTCATATTTGGGATTG 

SMZ_qPCR_Rv At3g54990 CATGAGTTTTGAATTGGGTGCA 

bZIP44_qPCR_Fw At1g75390 CTTAACCACCGTCTCCAATCTC 

bZIP44_qPCR_Rv At1g75390 ACCGTCGAATAATCCCTGAC 

bZIP49_qPCR_1Fw At3g56660 TGCATTCCTCCTGACGCTAC 

bZIP49_qPCR_1Rv At3g56660 CACAATCGCCTGAAATTCCC 

CRF1_qPCR_Fw At4g11140 CGGCGGCGATTTATTTGGAG 

CRF1_qPCR_Rv At4g11140 GTTAAGACAGGATCCGACCCG 

ANAC055_qPCR_Fw At3g15500 ACGCGCTGCCTCATAGTC 

ANAC055_qPCR_Rv At3g15500 GAGTTCTGTCCAATCAAATTCGC 

CDCP2_qPCR_Fw At4g36910 AGCTCCACTAGTTGTTGAGGAA 

CDCP2_qPCR_Rv At4g36910 GGCTCTAACCACGTTTCCTCT 

GA20ox1_qPCR_Fw At4g25420 TACTTTCATGGCTCTATCGAACG 

GA20ox1_qPCR_Rv At4g25420 TGGAGAGTGTTCATGTCTGCT 

CYP707A2_qPCR_Fw At2g29090 ACTCGCCAAAACAAGTACGG 

CYP707A2_qPCR_Rv At2g29090 GCCTCTGGTCCAATCATACGC 

 

  



Appendix 

165 

 

Supplemental Figure 1. Schematic map of the entry vectors pDONR201 and pDONR207. 

pDONR201 carries a cassette for kanamycin resistance whereas the selectable marker in 

pDONR207 is gentamicin. Location of the Gateway® recombination cassette is highlighted. 

Taken form the Invitrogen Gateway® pDONR™ Vector manual. 

 

Supplemental Figure 2. Drought applied during seed maturation caused an increase in 

dry seed weight. Comparison of the 1000 seed weight between control and drought-treated 

dry seeds of NIL DOG1 and dog1-1. Statistical significance after a two-tailed T-test is 

represented by * (p<0.05) and *** (p<0.001). Each data point represents the mean of three 

biological replicates and error bars represent the standard deviation. All data presented in 

this figure was produced by Dr Sajjad Awan at the University of Warwick, United Kingdom. 
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Supplemental Figure 3. Relative expression of LOS1 in the T-DNA insertion lines los1-2 

and los1-3. Relative expression of LOS1 in dry seeds of the los1-2 and los1-3 lines compared 

to the wild type Col-0 (represented by the baseline 0). Values plotted correspond to the log2-

fold-change compared to Col-0. Each data point corresponds to the average of three 

biological replicates. Error bars represent the standard error of the mean. 

 

Supplemental Figure 4. Germination of transgenic lines expressing the pDOG1Cvi:FLCCol 

construct in increasing concentrations of ABA. Each data point corresponds to the average 

of five biological replicates and error bars represent standard deviation. 
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Supplemental Figure 5. Relative expression of FLC targets in four independent 

transgenic lines expressing the pDOG1Cvi:FLCCol construct. Relative expression of the 

selected FLC targets in dry seeds of these transgenic lines compared to the flc-3 background 

(represented as the baseline 0). Values plotted correspond to the log2-fold-change compared 

to flc-3. Data points represent the mean value of at least two biological replicates. Error bars 

represent standard error of the mean. 

 

Supplemental Figure 6. Samples used for MS analyses of pulled-down proteins after FP-

desthiobiotin labelling. Numbers 1-6 represent the bands that were excised from the gel 
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and sent for MS analyses. These bands were cut from both the labelled and the NPC samples. 

Molecular weights (in kDa) are indicated on the left side. 

 

Supplemental Figure 7. Serine hydrolases identified after MS analyses of labelled (FP) 

and NPC samples. Some of the identified hydrolases were also enriched in the non-labelled 

control (NPC). All data presented in this figure was analysed by Dr Farnusch Kaschani at the 

University of Duisburg-Essen, Germany. 
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Supplemental Figure 8. Germination of Brassica rapa spp. campestris seeds. Germination 

of seeds from two technical replicates used for evaluation of ABPP probes before and after 

artificial ageing. 

 

Supplemental Figure 9. Different temperatures during seed development affect 

sensitivity to artificial ageing. Seed longevity phenotypes of Col-0 in response to three 

different temperature regimes during seed maturation: low (16/14 °C, dark blue), control 

(18/22 °C, khaki) and elevated (28/25 °C, brown). Each data point represents the mean of 

three biological replicates and error bars correspond to standard deviation. All data 

presented in this figure was produced by Dr Sajjad Awan at the University of Warwick, United 

Kingdom. 



 

170 

ACKNOWLEDGEMENTS 

I would like to start thanking my supervisor Dr Wim Soppe for taking me as a 

member of his research group and guiding me through the PhD. His support, 

friendliness and constructive comments helped towards the completion of this thesis. 

I also want to thank all the members of AG Soppe with whom I shared time and work. 

Thank you Christina and Yong for all the technical assistance and advice. Thanks to 

Kazumi for her kindness, patience and invaluable insight. A big thanks to Guillaume, 

with whom I spent a lot of good moments inside and outside the lab. I want to thank 

Bill, for all the nice conversations… and the statistics! Also, thanks to my colleagues 

Hannah and Bingjian and to all the students who passed by the lab. A special mention 

to Hannah, which translated the German parts of this work and shared my fears and 

concerns about research, making it less scary. 

My sincere gratitude to Professor Maarten Koornneef, always ready to share his 

passion for science and who contributed valuable observations to this manuscript. I 

would like to extend this gratefulness to Professor Ute Höcker and Professor 

Wolfgang Werr for being part of my evaluating committee. 

I want to thank all the collaborators who contributed to this work. Thanks to 

Professor Renier van der Hoorn, Dr Johana Misas-Villamil and Dr Farnusch Kaschani 

for their help with ABPP assays. Thank you also to Professor Bill Finch-Savage and Dr 

Sajjad Awan for production and phenotyping of seeds and the scientific discussion.  

My sincerest appreciation to all the members of the upper floor of building E 

(former Koornneef department), especially AGs Albani and Pecinka (and Lei). They all 

created and contributed to a friendly and relaxed atmosphere in the lab. Special 

thanks to Evelyn, Alice, Ana and Mariana for all the laughs, help, advice, complaints 

and dinners shared.  

I want to thank the European project that funded this work and myself, which 

also gave me the opportunity to meet outstanding researchers and colleagues. 

I would like to mention all those friends, old and new, who care about me and 

make me happy.  

Thanks to my parents and to Jon, for everything. 



 

171 

ERKLÄRUNG 

"Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig 

angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die 

Stellen der Arbeit − einschließlich Tabellen, Karten und Abbildungen − , die anderen 

Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als 

Entlehnung kenntlich gemacht habe; dass diese Dissertation noch keiner anderen 

Fakultät oder Universität zur Prüfung vorgelegen hat; dass sie − abgesehen von unten 

angegebenen Teilpublikationen − noch nicht veröffentlicht worden ist, sowie, dass 

ich eine solche Veröffentlichung vor Abschluss des Promotionsverfahrens nicht 

vornehmen werde. Die Bestimmungen der Promotionsordnung sind mir bekannt. Die 

von mir vorgelegte Dissertation ist von Prof. Dr. Maarten Koornneef und Dr. Wim 

Soppe betreut worden".  

 

Köln, September 2017 

        Natanael Viñegra de la Torre 

Teilpublikationen 

De Simone, A., Hubbard, R., Viñegra de la Torre, N., Velappan, Y., Wilson, M., 

Considine, M.J., Soppe, W., and Foyer, C.H. (2017). Redox changes during the 

cell cycle in the embryonic root meristem of Arabidopsis thaliana. Antioxid. 

Redox Signal. 0: ars.2016.6959. 

 



 

172 

LEBENSLAUF 

Persönliche Informationen 

 Name:  Natanael Viñegra de la Torre 

 Geburtstdatum: 11.04.1988 

 Geburtsort:  Logroño (La Rioja), Spanien 

 

Ausbildung 

2006: Abitur an der Sekundarschule Práxedes Mateo Sagasta in Logroño, Spanien. 

2006 – 2011: Bachelorabschluss in Biologie an der Universidad de Salamanca in 

Salamanca, Spanien. 

2011 – 2012: Masterabschluss in Agrobiotechnologie an der Universidad de 

Salamanca in Salamanca, Spanien. Titel der experimentellen Arbeit: 

“Characterisation of Plant Protein Interactions by Yeast Two-Hybrid and 

Bimolecular Fluorescence Complementation Assays”. 

2013: Forscher am Projekt: “Regulation of Leaf Abscission in London Plane Tree 

(Platanus x acerifolia)” in der Centro Hispano-Luso de Investigaciones Agrarias 

in Salamanca, Spanien. Leitung: Dr Óscar Lorenzo Sánchez. 

2014: Doktorand am Max Planck Institut für Pflanzenzüchtungsforschung in Köln, in 

der Arbeitsgruppe von Dr Wim Soppe. Thema: “Genetic and environmental 

regulation of seed longevity in Arabidopsis thaliana”. 

 

 

Köln, September 2017 


