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Abstract

In this thesis, we study the interplay of constraints and complexity in quantum esti-
mation. We investigate three inference problems, where additional structure in the
form of constraints is exploited to reduce the sample and/or computational com-
plexity. The first example is concerned with uncertainty quantification in quantum
state estimation, where the positive-semidefinite constraint is used to construct more
powerful, that is smaller, error regions. However, as we show in this work, doing
so in an optimal way constitutes a computationally hard problem, and therefore, is
intractable for larger systems. This is in stark contrast to the unconstrained version
of the problem under consideration. The second inference problem deals with phase
retrieval and its application to characterizing linear optical circuits. The main chal-
lenge here is the fact that the measurements are insensitive to complex phases, and
hence, reconstruction requires deliberate utilization of interference. We propose a
reconstruction algorithm based on ideas from low-rank matrix recovery. More specif-
ically, we map the problem of reconstruction from phase-insensitive measurements
to the problem of recovering a rank-one matrix from linear measurements. For the
efficient solution of the latter it is crucial to exploit the rank-one constraint. In this
work, we adapt existing work on phase retrieval to the specific application of char-
acterizing linear optical devices. Furthermore, we propose a measurement ensemble
tailored specifically around the limitations encountered in this application. The main
contribution of this work is the proof of efficacy and efficiency of the proposed proto-
col. Finally, we investigate low-rank tensor recovery – the problem of reconstructing
a low-complexity tensor embedded in an exponentially large space. We derive a
sufficient condition for reconstructing low-rank tensors from product measurements,
which relates the error of the initialization and concentration properties of the mea-
surements. Furthermore, we provide evidence that this condition is satisfied with
high probability by Gaussian product tensors with the number of measurements only
depending on the target’s intrinsic complexity, and hence, scaling polynomially in the
order of tensor. Therefore, the low-rank constraint can be exploited to dramatically
reduce the sample complexity of the problem. Additionally, the use of measurement
tensors with an efficient representation is necessary for computational efficiency.
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Kurzzusammenfassung

In dieser Arbeit untersuchen wir das Zusammenspiel von Zwangsbedingungen und
Komplexität in Quantenschätzproblemen. Für diesen Zweck betrachten wir drei
Schätzprobleme, deren zusätzliche Struktur in der Form von Zwangsbedingungen
ausgenutzt werden kann um die notwendige Zahl der Messungen oder die Berech-
nungskomplexität zu verringern. Das erste Beispiel beschäftigt sich mit der Un-
sicherheitsabschätzung in Quantenzustandstomographie. In diesem nutzen wir die
Zwangsbedingung, dass physikalische gemischte Zustände durch positiv-semidefinite
Matrizen beschrieben werden, um kleinere und damit aussagekräftigere Fehlerregio-
nen zu konstruieren. Wir zeigen jedoch in dieser Arbeit, dass ein optimales Nutzen
der Zwangsbedingungen ein rechnerisch schweres Problem darstellt und damit nicht
effizient lösbar ist. Im Vergleich dazu existieren effiziente Algorithmen für die Berech-
nung optimaler Fehlerregionen im Falle des Models ohne Zwangsbedingungen. Das
zweite Schätzproblem beschäftigt sich mit Phase Retrieval und dessen Anwendung für
die Charakterisierung von linear-optischen Schaltkreisen. Hier ist die größte Heraus-
forderung, dass die Messungen phasenunempfindlich sind und deshalb das gezielte
Ausnutzen von Interferenz für die vollständige Rekonstruktion notwendig ist. Für
diesen Zweck entwickeln wir einen Algorithmus, der auf Techniken der effizienten
Rekonstruktion von Matrizen mit niedrigem Rang basiert. Genauer gesagt bilden
wir das Problem der Rekonstruktion aus phasenunempfindlichen Messungen auf das
Problem der Rekonstruktion von Matrizen mit Rang 1 aus linearen Messungen ab.
Für dessen effiziente Lösung ist es notwendig die Zwangsbedingung an den Rang
auszunutzen. Hierzu adaptieren wir existierende Arbeiten aus dem Bereich des
Phase Retrievals für die Anwendung auf die Charakterisierung von linear-optischen
Schaltkreisen. Außerdem entwickeln wir ein Ensemble von Messvektoren, das speziell
auf diese Anwendung zugeschnitten ist. Zuletzt untersuchen wir die Rekonstruk-
tion von Tensoren mit niedrigem Rang, also das Problem einen Tensor mit niedriger
Komplexität in einem exponentiell großem Hilbertraum zu rekonstruieren. Wir leiten
eine hinreichende Bedingung für die erfolgreiche Rekonstruktion von Tensoren mit
niedrigem Range aus Rang 1 Messungen ab, die den erlaubten Fehler der Initial-
isierung und Konzentrationseigenschaften der Messungen miteinander in Verbindung
setzt. Außerdem zeigen wir numerisch, dass Gauss’sche Produktmessungen diese
Eigenschaft mit hoher Wahrscheinlichkeit erfüllen, auch wenn die Zahl der Messun-
gen polynomiell in der Ordnung des Zieltensors skaliert. Damit können die Rangbe-
dingungen ausgenutzt werden um die Zahl der notwendigen Messungen drastisch zu
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reduzieren. Zusätzlich dazu ist unser Ansatz auch recheneffizient, da wir effizient
darstellbare Produkttensoren als Messungen verwenden.
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1. Introduction

Physics as an inherently empirical science relies on experimental data to single out
theories that are compatible with observations. It is therefore a fundamental problem
to transform data into answers to questions posed by the physicist. A large fraction
of experimental problems can be phrased in terms of parametric estimation: Given a
mathematical model that relates the parameters of interest to observable outcomes,
estimate the parameters that fit the data “best”. In other words, parameter estima-
tion is an inverse problem for a fixed model of the system.

Two crucial aspects of estimation problems in general are constraints and com-
plexity. The former refers to the fact that many models are specified in terms of
continuous parameters, but not all parameter values correspond to valid models. One
typical example for constraints are mathematical facts, e.g. the standard deviation σ
of a Gaussian distribution N (µ, σ) should be positive. Others include assumptions
on the particular model such as the constraint that a valid density matrix of a quan-
tum system is positive semi-definite. Note that not all constraints need to be hard
constraints as the examples stated above. Soft constraints can be used to promote
desired properties of the estimate or to penalize values due to prior knowledge.

In general, the notion of complexity refers to the amount of resources required to
solve inference problems as the size of the underlying models grows. On the one hand,
we use “complexity” to refer to the amount of experimental resources required, which
is often phrased in terms of sample complexity, i.e. the number of measurements.
Also, other measures such as the time required to perform a given experiment are
possible if the necessary information can be quantified. On the other hand, we are
interested in the amount of computational resources required to extract the desired
information from the available data. Theses are often quantified in terms of runtime of
the inference computation. Note that these two notions of complexity can be strongly
related: If an experiment – such as the ones performed at the LHC – truly deserves the
ubiquitous “Big Data” label, then an enormous amount of computational resources is
necessary to perform even simple computations on the whole dataset. Additionally,
inference problems can also be intrinsically hard to solve such as inference in general
Bayesian networks [Coo90; Rot96].

In this work, we are interested in the interaction of constraints and complexity. The
main motivation stems from recent progress in quantum technologies in general and
quantum computing in particular: Many established techniques for characterization
– i.e. inferring a complete description of a system from experimental data – work well
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1. Introduction

for small systems with only a few qubits, which were prevalent in the past. However,
many of these approaches do not scale to larger systems as they require exponentially
large amounts of resources. With the recent announcements of quantum devices with
up to 72-qubits [Con18], it becomes clear that new techniques for characterization
need to be developed. One way to go forward is to exploit physical constraints or
to impose additional assumptions on the model to reduce the amount of resources
necessary or to improve estimates. To better understand the interplay of constraints
and complexity, we investigate three inference problems with applications to quantum
estimation in this work.

In Chapter 2, we examine uncertainty quantification in quantum state estimation
– the problem of estimating the density matrix ρ of a quantum system from mea-
surements. Since all outcomes of quantum measurements are inherently random, one
should not only report the final estimate, but also answer the question whether the
result is statistically reliable or simply arose due to chance. For this purpose, we
use the notion of “error bars” or “error regions” from statistical inference. To in-
vestigate the effects of constraints on the computational complexity of the problem,
we consider models that allow for easily computable optimal error regions in the un-
constrained case. For those models, we show that taking into account the physical
constraints on ρ, i.e. positive semi-definiteness, renders the problem of computing
optimal error regions intractable. We also show that there are settings, where ex-
actly those physical constraints drastically improve the power of error regions, and
therefore, are necessary for optimality. In conclusion, we show that exploiting the
physical constraints on ρ is essential to obtain optimal error regions, but doing so in
an optimal way poses an intractable computational problem in general.

The second main result of this thesis is concerned with characterizing linear optical
circuits, which have been proposed as one possible architecture for quantum comput-
ing. By measuring the output of such a device for different inputs, the problem is to
reconstruct the transfer matrix of the device. Here, the main challenge is that the
standard measurement devices in optics – single photon detectors and photo diodes
– are insensitive to the phases of the output. Therefore, we need to deliberately use
interference between different modes of the device to gain information on the complex
phases. This raises the question of how to choose the inputs in an optimal way, in
order to reduce the total number of measurements required, and how to reconstruct
the transfer matrix in a computationally efficient way. In Chapter 3, we propose a
characterization method that is asymptotically optimal w.r.t. the sample complexity,
comes with a rigorous proof of convergence, and is robust to noise. The suggested
method adapts ideas from low-rank matrix recovery and leverages an exact mathe-
matical constraint on the signal to be recovered to derive a reconstruction algorithm
that is efficient w.r.t. both sample and computational complexity.

Chapter 4 is dedicated to efficiently reconstructing low-rank tensors from linear
measurements. As a natural extension of low-rank matrix recovery, this challeng-
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ing problem has received a lot of attention recently. Here, we consider tensors
X ∈

(
Rd
)⊗N , where d is the local dimension and N the order of the tensor. Without

any additional structure, reconstructing X from measurements of the form 〈A,X〉 for
measurement tensors A requires at least dN such overlaps as each component of X is
independent from the other. Therefore, the sample complexity scales exponentially
in N and the problem becomes infeasible already for moderate values of N . Further-
more, any reconstruction algorithm of an arbitrary tensor requires an exponentially
long runtime as simply outputting the result takes this amount of time. However,
many tensors naturally occurring, e.g. in quantum physics, have additional structure
that can be used to render their description and reconstruction efficient. Here, we
consider low-MPS rank tensors, which are a generalization of low-rank matrices and
constitute a variational class of tenors that have an efficient description in terms
of the matrix product state (MPS) representation. More precisely, the number of
parameters required to express a tensor of fixed MPS rank in said representation
scales linearly in N . The question we are trying to answer is whether such low-MPS
rank tensors can be recovered from m linear measurements such that m scales poly-
nomially in the intrinsic complexity, i.e. polynomially in N , instead of depending
on the dimension of the embedding space. Additionally, we want the reconstruction
algorithm to be efficient. For this purpose, it is necessary to consider measurement
tensors A that also have an efficient representation, e.g. in the MPS tensor format. In
this work, we provide a partial answer to this question We derive a condition on the
measurement tensors that is sufficient for recovery via an alternating-minimization
algorithm. Numerically, show that random Gaussian product tensors are a viable
candidate for measurement tensors fulfilling this condition. The role of the low-MPS
rank constraint in this problem is in stark contrast to Chapter 2, where imposing
constraints on the parameter to be inferred rendered the problem computationally
intractable. Here, the problem of tensor recovery only becomes tractable with the
additional low-rank constraint.
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2. Uncertainty quantification for quantum
state estimation

Due to the intrinsic randomness of quantum mechanics, any information we obtain
about a quantum system through measurements is subject to statistical uncertainty.
Consequently, one should not only report the final result of an experiment, but also
answer the question whether this result is statistically reliable or simply arose due to
chance. This motivated the recent development of techniques for uncertainty quan-
tification in quantum state estimation (QSE) [Blu12; Fer14a; Sha+13; FR16; CR12;
AS09; Aud+08]. Despite the large body of work concerned with this problem, none
of these constructions are known to be both optimal and computationally feasible.

In this chapter, we investigate the question whether the lack of an efficient algo-
rithm for computing optimal error regions in QSE simply is due to a lack of imagi-
nation or if there are fundamental restrictions that prevent the existence of such an
algorithm. We provide evidence that the latter case is true: Based on the generally
accepted conjecture that P 6= NP in computational complexity we show that no such
algorithm can exist. More specifically, we show that the computational intractability
does not simply arise due to the general difficulties of statistics in high dimensions.
Instead, by considering models which render the unconstrained problem tractable,
we show that the computational intractability is caused by the quantum mechanical
shape constraints: For % to constitute a valid quantum state, it has to be a Hermitian,
positive semi-definite (psd) matrix with unit trace. The Hermiticity and trace con-
straints are linear and easily satisfiable by means of a suitable linear parametrization.
In contrast, the psd constraint is non-linear, and hence, more problematic to satisfy.

The motivation for studying uncertainty quantification under quantum constraints
is that these constraints can lead to a significant reduction in uncertainty. This is
particularly evident if the true state is close to the boundary of state space, e.g. in the
case of almost pure states, which are of interest in quantum information processing
experiments. In this case, it is plausible that a large fraction of possible estimates
that seem compatible with the observations can be discarded, as they lie outside of
state space.

Indeed, it is known that taking the quantum constraints into account can result in
a dramatic – even unbounded – reduction in uncertainty. Prime examples are results
that employ positivity to show that even informationally incomplete measurements
can be used to identify a state with arbitrarily small error [Cra+10; Gro+10; Gro11;
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2. Uncertainty quantification for quantum state estimation

Fla+12; NG+13; KKD15]. More precisely, these papers describe ways to rigorously
bound the size of a confidence region for the quantum state based only on the ob-
served data and on the knowledge that the data comes from measurements on a
valid quantum state. While these uncertainty bounds can always be trusted with-
out further assumptions, only in very particular situations have they been proven to
actually become small. These situations include the cases where the true state is of
low rank [Fla+12; NG+13], or admits an economical description as a matrix-product
state [Cra+10]. It stands to reason that there are further cases – not yet identified
– for which the size of an error region can be substantially reduced simply by taking
into account the quantum shape constraints.

Throughout this work, we consider the task of non-adaptive QSE, where a fixed set
of measurements specified by the choice of positive operator valued measure (POVM)
is performed on independent copies of the system. For a given POVM, the measure-
ment outcomes of this setup can be described in terms of a generalized linear model
(GLM) with parameter % – the quantum mechanical state or density matrix of the
system. The well-established theory of GLMs then provides methods for inferring
% [MN89].

However, what sets the task of QSE apart from inference in GLMs in general are
the additional quantum mechanical shape constraints. Nevertheless, there are esti-
mators for % that on the one hand always yield a psd density matrix, and on the other
hand, are well-understood theoretically with near-optimal performance and scalable
to intermediate sized quantum experiments [PR04]. Unfortunately, the same cannot
be said for error bars for %.

This chapter is structured as follows: We introduce the necessary concepts from
statistical inference and computational complexity in Section 2.1 and 2.2, respectively.
Then, in Section 2.3 we provide more details on QSE and the One of the main
results of this work concerning the proof of computational intractability of frequentist
confidence region is given in Section 2.4. The Bayesian counterpart for credible
regions is the topic of Section 2.5. Finally, we conclude this chapter with remarks on
limitations of the hardness results as well as possible future work in Section 2.6.

Relevant publications

• D. Suess, Ł. Rudnicki, T. O. Maciel, D. Gross: Error regions in quantum state
tomography: computational complexity caused by geometry of quantum states,
New J. Phys. 19 093013 (2017)
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2.1. Introduction to statistical inference

2.1. Introduction to statistical inference

The objective of statistical inference is to obtain information about the distribution
of a random variable X from observational data. Here, we focus on the special case
of inference in parametric models, which can be described as follows [Was13]: A
parametric model is a family of distributions {Pθ}θ∈Ω labeled by a finite number of
parameters θ, where Ω ⊆ Rk is called the state space of the model. For simplicity,
we only consider the scalar case k = 1 for now. Then, any function θ̂ mapping
observations to the space R containing the parameter space is called a point estimator
for the parameter θ. In general, we do not require θ̂ to map to the state space Ω as
this restriction would preclude many relevant estimators such as the linear inversion
estimator introduced in Section 2.4.2. However, since we are interested in learning
about the distribution of X, not every estimator is equally useful. Indeed, the goal
should be to find an estimator, which yields the parameter value that describes the
observed data best. What we mean by “best” in this context not only depends on
the specific model and what the estimate is supposed to be used for, but also on the
fundamental interpretation of probability. Broadly speaking, there are two different
interpretations of probability, namely the frequentist (or orthodox) interpretation and
the Bayesian interpretation [Háj12], which lead to distinct schools of inference [Kie12;
BC16; Was13]. Although the two approaches yield the same results for very simple
models or – under mild regularity assumptions – in the limit of many measurements,
they generally differ and in some cases even yield contradictory results [Was13, Sec.
11.9].

So far we have only discussed point estimators, which yield a single value for
the parameters. However, even if our model describes the data perfectly for some
choice of θ, we cannot exactly recover this value from a finite amount of data due to
statistical fluctuations in general. The concept of error bars, or more specifically error
regions, allows for quantifying the uncertainty of a given estimate. In Section 2.1.1, we
introduce the basic concepts of frequentist inference and the corresponding notion
of confidence regions. Section 2.1.2 is concerned with Bayesian inference and the
corresponding notion of error regions, namely credible regions.

2.1.1. Frequentist statistics

In the frequentist framework, the probability of an outcome of a random experiment is
defined in terms of its relative frequency of occurrence when the number of repetitions
goes to infinity [Key07; Kie12]. More precisely, denote the number of repetitions of an
experiment by N and the number of times the event under consideration x occurred
by nN . Then, a frequentist interprets the probability P(x) as the statement that
nN
N → P(x) as N →∞.
For the task of parameter estimation, we assume that the model is well-specified,
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2. Uncertainty quantification for quantum state estimation

i.e. that the observed data are generated from the parametric model with the fixed
“true” parameter θ0 ∈ Ω, which is unknown. From a finite number of observations
X1, . . . XN , we must construct an estimate θ̂(X) for θ0. Although there are some
intuitive approaches to this problem such as the method of moments [Was13, Sec.
9.2], the principle of maximum likelihood is often employed to construct an estimator
with good frequentist properties. First, let us introduce the likelihood function of the
model

L(θ;X) = Pθ(X) =

N∏
i=1

Pθ(Xi), (2.1)

where we have assumed independence of the samples for the second equality. The
maximum likelihood estimator (mle) is then defined by1

θ̂MLE(x) = argmaxθ∈Ω L(θ;x). (2.2)

The justification for using (2.2) is that under mild conditions on the model, the MLE
posses many appealing properties [Was13, Sec. 9.4] such as consistency and efficiency:
Consistency means that the MLE converges to the true value θ0 in probability as
N → ∞ and efficiency roughly means that among all well behaved estimators, the
MLE has the smallest variance in the large sample limit.

A more flexible approach to the problem of how to single out a “good” estimator
is formalized in statistical decision theory [CB02; LC98]. For this purpose, we need
to introduce a loss function

L : Ω× R→ R, (θ0, θ̂) 7→ L(θ0, θ̂), (2.3)

which measures the discrepancy between the true value θ0 and an estimate θ̂(X).
Keep in mind that since the Xi are random variables, so is θ̂(X) and its loss. In
order to asses the estimator θ̂, that is the function mapping data to an estimate, we
evaluate the average loss or risk function

R(θ0, θ̂) = Eθ0(L(θ0, θ̂(X))) =

∫
L(θ0, θ̂(x))Pθ0(x) dx. (2.4)

Then, the problem of finding a good estimator reduces to the problem of finding
an estimator that yields small values for Eq. (2.4). However, note that the risk
function (2.4) for a given estimator still depends on the unknown true value. To
obtain a single-number summary of the performance of an estimator for all possible
values of θ0, there are different strategies such as maximizing or averaging the risk
function over all θ0 [Was13, Sec. 12.2]. By minimizing these risks over all possible
estimators, we try to determine a single estimator that performs best in the worst case

1Note that we have constrained the values of the MLE to the state space Ω of the model. Otherwise,
the right hand side of Eq. (2.2) might not be well defined.
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2.1. Introduction to statistical inference

or on average, respectively. However, in the following we introduce a less ambitious
notion of optimality, namely admissibility.

Definition 2.1. [Was13, Def. 12.17] A point estimator θ̂ is inadmissible if there
exists another estimator θ̂′ such that

R(θ0, θ̂′) ≤ R(θ0, θ̂) for all θ0 ∈ Ω

R(θ0, θ̂′) < R(θ0, θ̂) for at least one θ0 ∈ Ω.

Otherwise, we call θ̂ admissible.

In words, θ̂ is admissible if there is no other estimator θ̂′ that performs at least as
good as θ̂ and strictly better for at least one value of the true value θ0.

The choice of loss function generally depends on the problem at hand and deter-
mines the properties of the corresponding estimator. Some examples for commonly
used loss functions include the 0/1-loss for discrete parameter models

L(θ0, θ) =

{
1 θ0 = θ

0 otherwise
, (2.5)

and the mean squared error (MSE)

L(θ0, θ) = (θ0 − θ)2, (2.6)

which is often used for continuous parameter models, e.g. Ω = R. The use of the
MSE loss is often motivated by the fact that it gives the same results as the principle
of maximum likelihood for many problems. As an example, consider the task of
estimating the mean from iid normal random variables X(k) ∼ N (θ0, σ) with σ ∈ R+

known. In this case, a straightforward estimator for θ0 is the empirical mean

X̄ :=
1

m

m∑
i=1

X(k), (2.7)

which is admissible with respect to MSE [Was13, Thm. 12.20]. Furthermore, X̄ is
also the MLE as a transformation to log-likelihood shows:

argmaxθ L(θ;x(1), . . . , x(m)) = argmaxθ

m∑
k=1

logPθ(X
(k) = x(k))

= argminθ

m∑
k=1

1

2σ2

(
x(k) − θ

)2
,

(2.8)

where we have used that the X(k) are independent and that the logarithm is mono-
tonic increasing. Furthermore, we discarded all contributions independent of θ is the
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2. Uncertainty quantification for quantum state estimation

second line. Finally, note that the right hand side of the last equation is minimized
by the choice θ = x̄, which proofs the claim.

Now we consider a multivariate generalization of the above problem, that is the
task of estimating θ0 ∈ Rd from a linear Gaussian model X ∼ N (θ0,1) with unit
covariance matrix. Suppose we only have a single observation X, i.e. m = 1. Since
all the components Xi are independent, one expects that a separate estimation of
the components via X̄ = X constitutes a “good estimator”. Indeed, the same com-
putation as in Eq. (2.8) shows that the empirical mean is the MLE for this model
as well. However, Stein shocked the statistical community when he proved that for
d ≥ 3, this estimator is inadmissible [Ste+56]. It can be shown that the James-Stein
estimator

θ̂S := max

{
0,

(
1− d− 2

‖X‖2

)}
X (2.9)

has smaller MSE risk than the empirical mean for all values of θ0 [Ste+56; LC98].
It is often referred to as a shrinkage estimator because it shrinks the empirical mean
estimate X towards 0. Note however, that the choice of the origin as the fix point
of the shrinkage operation is arbitrary – the James-Stein estimator outperforms the
empirical mean estimator for any choice of fix point. Interestingly, Eq. (2.9) shows
that by taking into account all the components Xi, we can improve the MSE of the
mean-estimator even if the Xi are independent. However, this only applies to the si-
multaneous MSE error of all the components of θ0. The James-Stein estimator (2.9)
cannot be used to improve the MSE of a single component. Equation (2.9) can also
be generalized to the case of more than one observation, i.e. m > 1. Finally, note
that the James-Stein estimator is also not admissible: More elaborate shrinkage es-
timators are known to outperform (2.9) w.r.t. the MSE. Even worse, to the best of
the author’s knowledge, no admissible construction exists for estimating the mean of
a d-variate Gaussian w.r.t. MSE for d ≥ 3.

As already mentioned in the introduction, point estimators cannot convey uncer-
tainty in the estimate. For this purpose, we need to introduce a precise notion of
“error bars”, namely confidence regions in the framework of frequentist statistics.

Definition 2.2. Consider a statistical model with k parameters, that is Ω ⊆ Rk. A
confidence region C with coverage α ∈ [0, 1] is a region estimator – that is a function
that maps observed data x to a subset C(x) ⊆ Rk of the space containing the state
space – such that the true parameter is contained in C with probability greater than
α:

∀θ0 ∈ Ω: Pθ0 (C(X) 3 θ0) ≥ 1− α. (2.10)

Note that the coverage condition (2.10) is not a probabilistic statement about
the true parameter θ0 for fixed observed data x. Instead, Definition 2.2 should
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2.1. Introduction to statistical inference

be interpreted as a statistical guarantee for the region estimator C: Say we repeat
an experiment m times and obtain data x(1), …x(M) from a distribution with true
parameter θ0. Then, in the limit m → ∞ at least a fraction of 1 − α of the regions
C(x(1)), …, C(x(m)) contain the true parameter θ0. In other words, the probabilistic
statement in (2.10) refers to the random variable C(X) for fixed θ0.

Similarly to point estimators, Eq. (2.10) does not uniquely determine a confidence
region construction. Additional constraints are necessary to exclude trivial construc-
tions such as the following: Take the region estimator that is always equal to the full
parameter space independent of the data C(X) = Ω, then

Pθ (C(X) 3 θ0) = 1 ≥ 1− α (2.11)

for all confidence levels α. Although, this construction trivially fulfils the coverage
condition (2.10), it does not provide useful information on the uncertainty as it does
not restrict the parameter space at all. Therefore, we have to impose a notion of
what constitutes a good confidence region by introducing a loss function. Clearly, if
we have two confidence regions C1 and C2 with the same confidence level and C1 ⊂ C2,
then C1 is more informative. More generally, smaller regions should be preferred
since they convey more confidence in the estimate and exclude more alternatives.
Therefore, measures of size such as (expected) volume or diameter are commonly
used as loss functions for region estimators. We now introduce a notion of optimality
similar to Definition 2.1.

Definition 2.3. [Jos69, Def. 2.2] A confidence region C for the parameter estimation
of θ0 ∈ Ω is called (weakly) admissible if there is no other confidence region C′ that
fulfils

1. (equal or smaller volume) V(C′(x)) ≤ V(C(x)) for almost all observations x.

2. (same or better coverage) Pθ0(C′ 3 θ0) ≥ Pθ0(C 3 θ0) for all θ0 ∈ Ω.

3. (strictly better) strict inequality holds for one θ0 ∈ Ω in (ii) or on a set of
positive measure in (i).

This notion of optimality uses “pointwise” volume as a risk function instead of the
average volume. The conditions in Definition 2.3 are stated only for “almost all” x
since one can always modify the region estimators on sets of measure zero without
changing their statistical performance. In Section 2.4.1 we show that this notion of
admissibility is especially suitable for studying constrained inference problems.

2.1.2. Bayesian statistics
Let us now introduce the Bayesian point of view on statistical inference: In the
Bayesian interpretation, probabilities do not describe frequencies in the limit of in-
finitely many repetitions, but they reflect subjective degrees of belief. Put differently,

11



2. Uncertainty quantification for quantum state estimation

in the Bayesian framework randomness reflects one’s ignorance or lack of knowledge
of the value of a parameter. In contrast to frequentist inference, this enables us to
make probabilistic statements about the values of parameters even for a single fixed
set of observations. Generally, Bayesian inference for a parametric model is carried
out in the following way: First, we choose a prior distribution P(θ), which expresses
our belief about the parameter θ before taking any data into account. Given an ob-
servation X, the distribution of θ is updated according to Bayes’ rule [BC16; Gel+95]

P(θ|X) =
P(X|θ)P(θ)

P(X)
. (2.12)

Here, P(X|θ) is the likelihood function of the model analogous to (2.1) and P(θ|X)
is the posterior distribution – or short posterior – of θ. Of course, the update in
Eq. (2.12) is not limited to a single observation and can be iterated for independent
data.

Computing the Bayesian update (2.12) analytically is possible only in a few rare
cases: If for a given likelihood function, the prior and the posterior are in the same
family of distributions, the prior is called a conjugate prior for the likelihood function.
For example, consider a Gaussian random variableX ∼ N (θ, τ2) with known variance
τ2. If we assume a Gaussian prior θ ∼ N (µ, σ2), we have [Gel+95, Eq. (2.10)]

θ|X = x ∼ N (µ′, σ′2) (2.13)
with

µ′ =
µ
σ2 + x

τ2

1
σ2 + 1

τ2

, and σ′ =

(
1

σ2
+

1

τ2

)−1
2
. (2.14)

In other words, an update of a Gaussian prior with a Gaussian likelihood function
yields a Gaussian posterior distribution. Although there are other well-known conju-
gate priors with explicit formulas for the parameter update, in practice the Bayesian
update (2.12) can only be approximated numerically. Commonly used methods in-
clude sampling techniques such as Markov Chain Monte Carlo and Sequential Monte
Carlo [Gel+95] as well as variational Bayes [FR12].

Note that the posterior distribution encodes all the information on θ we have. To
summarize important features of the posterior, we introduce point and region esti-
mators similar to the frequentist case: One commonly used estimator is the Bayesian
mean estimator (BME) given by

θ̂BME(X) =

∫
θ P(θ|X) dθ. (2.15)

A justification for the BME is that it minimizes (under normal circumstances [LC98;
BGW05]) the expected risk E

(
R(θ, θ̂(X))

)
, provided the corresponding loss func-

tion L is a Bregman divergence. Note that the expectation is taken over θ w.r.t. the
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2.2. Introduction to computational complexity theory

posterior with observation X. Another example of a point estimator is the maxi-
mum a posteriori (MAP) estimator. As the name suggests, the MAP estimator is
obtained by maximizing the posterior (2.12). Since this does not require the expen-
sive computation of the denominator in Eq. (2.12) and – at least local – minima
of the posterior can be found efficiently via gradient descent, the MAP estimator is
often used for high dimensional problems in machine learning [Mur12] that otherwise
would be intractable.

Let us now introduce the appropriate concept of error regions in the Bayesian
framework.

Definition 2.4. A credible region2 C with credibility 1−α is a subset of the parameter
space Ω containing at least mass 1− α of the posterior

P(θ ∈ C|X1, . . . , XN ) ≥ 1− α. (2.16)

Notice the different notion of randomness compared to Eq. (2.10): Confidence
regions are random variables due to their dependence on the data and Eq. (2.10) de-
mands that the true value is contained in the confidence region with high probability.
Here, “probability” refers to (possibly hypothetical) repetitions of the experiment –
no statement can be made for a single run of an experiment with given outcomes. In
contrast, the definition of credible regions (2.16) only refers to probability w.r.t. the
posterior, and therefore, is well defined even for a single run of the experiment.

In order to single out “good” credible regions, we need to introduce a notion of op-
timality. As argued in Section 2.1.1, smaller error regions are generally more informa-
tive. Therefore, good credible regions are minimal-volume credible regions (MVCRs)
or credible regions with the smallest diameter. Although in the following we deal
with MVCRs w.r.t. a geometric notion of volume, some authors have proposed to
measure the volume of a region by its prior probability [EGS06; Sha+13]. In case the
posterior has probability density Π w.r.t. the volume measure under consideration,
the MVCR is given by highest posterior sets [Fer14a]

C = {θ ∈ Ω: Π(θ) ≥ λ}. (2.17)

The constant λ is determined by the saturation of the credibility level condition (2.16).

2.2. Introduction to computational complexity theory
The objective of computational complexity theory is to classify computational prob-
lems according to their inherent difficulty. Broadly speaking, we quantify the diffi-
culty by the runtime needed to solve the problem. Other resources, which one may

2We use the same letter for confidence and credible regions when the meaning is clear from the
context.
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. . . � 1 0 1 1 0 1 � . . . Input/Output Tape

q0 qh q1 . . . qN

Register

Read/Write Head

Figure 2.1.: Illustration of a Turing machine with alphabet Γ = {0, 1,�} and register
Q = {q0, qh, q1, . . . , qN}.

want to consider, are the amount of memory or communication between parties re-
quired.

At a first glance, an answer to the question whether a given problem can be solved
efficiently might depend on what we consider as a “computer”: Clearly, a modern
high-performance cluster can solve problems in seconds, which would take a human
equipped with pen and paper more than a lifetime to finish. Maybe surprisingly, it
turns out that a single, simple mathematical model – the Turing machine – describes
the capabilities and restrictions of almost all physical implementations of computation
well enough for the purpose of complexity theory. The only conceivable exception so
far are quantum computers that exploit quantum mechanical phenomena. Although
so far no unconditional proof of an advantage of quantum computers exists, there
is overwhelming evidence that they are able to solve problems efficiently for which
there is no efficient classical algorithm. Note that quantum computers only provide
efficient algorithms for problems that are considered hard classically. The class of
uncomputable functions is the same for classical and quantum computers [AB09].

This section introduces the main concepts needed for the hardness results of Sec-
tion 2.4 and 2.5. Especially the definition of NP-hard computational problems and
polynomial-time reductions is crucial for the rest of this chapter. For a more thorough
treatment, we refer the reader to [AB09; GJ79].

A Turing machine (TM) can be thought of as a simplified and idealized mathemat-
ical model of an electronic computer. It is defined by a tuple (Γ, Q, δ) and figuratively
speaking consists of the following parts as shown in Fig. 2.1:

• An infinite tape, that is a bi-directional line of cells that can take the values
from a finite set Γ called the alphabet. Γ must contain a designated symbol �
called “blank”.

• A register that can take on values from a finite set of states Q. Q must contain
the initial state q0 and the halting state qh.

14



2.2. Introduction to computational complexity theory

• A transition function

δ : Q× Γ→ Q× Γ× {L, S,R}, (2.18)

which describes the “programming” of the TM.

The operation of a TM can be summarized as follows. Initially, the reading head of
the tape is over a certain cell and the register is in the initial state q0. Furthermore,
we assume that only a finite number of tape cells have a value different from � –
these are referred to as the input. For one step of the computation, denote by γ ∈ Γ
the value of tape cell under the reading head and by q ∈ Q the current value of the
register. The action of the TM is determined by the transition function

(q′, γ′, h) = δ(q, γ). (2.19)

as follows: The register is set to value q′, the tape head overwrites the cell with symbol
γ′, and it moves depending on the value of h: If h = L or h = R, it moves one cell to
the left or right, respectively and if h = S it stays in the current position. This cycle
repeats until the register takes on the halting state qh. If the TM halts, the state of
the tape with leading and trailing blanks removed is taken as its output. Note that
the definition of a TM given above is one of many; others may include additional
scratch tapes or have tapes that only extend to infinity only in one direction [AB09].
However, they are all equivalent, i.e. the architecture given above can simulate all
the other architectures with a small overhead and vice versa. Furthermore, we can
assume Γ = {0, 1,�}, that is, we use a binary encoding for all non-blank values of
the alphabet.

We now formalize the notion of runtime of a TM and the complexity of a given
problem. Denote by

{0, 1}∗ =
⋃
n∈N
{0, 1}n (2.20)

the set of all finite bit strings.

Definition 2.5. [AB09, Def. 1.3] Let f : {0, 1}∗ → {0, 1}∗ and T : N → N be some
functions. Furthermore, let M be a Turing machine. We say M computes f in
T (n)-time if for every input x ∈ {0, 1}∗, whenever M is initialized with input x, it
halts with f(x) written on its output tape in at most T (|x|) steps. Here, |x| denotes
the length of x.

In words, Definition 2.5 gives a formal notion of the runtime of a TM for computing
a function f in terms of the number of elemental steps required. But as stated in
the introduction, we are more interested in the intrinsic complexity of computing
the function f instead of a specific implementation. For this purpose, we introduce
complexity classes, which are sets of functions that can be computed within given
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2. Uncertainty quantification for quantum state estimation

resource bounds. The most important examples of complexity classes pertain to
boolean functions f : {0, 1}∗ → {0, 1}, which correspond to decision problems. The
corresponding set of “truthy” inputs L = {x in{0, 1}∗ : f(x) = 1} is referred to as a
language.

Definition 2.6. Let T : N → N be some function. We say that a language L is in
DTIME(T (n)) if and only if there is a TM M that computes f in time c×T (n) for
some constant c > 0. The complexity class P is then defined by

P =
⋃
λ≥1

DTIME(nλ). (2.21)

In words, P is the set of all languages that can be decided by a TM in a number of
steps that scales polynomially in the input size. The problems in P are considered to
be efficiently solvable. Therefore, in order to show that some problem is “easy”, we
just have to provide a TM, or put differently an algorithm, that decides the problem
in polynomial time. On the other hand, showing that no polynomial-time algorithm
exists for a given problem shows that it is computationally hard. However, proving
the nonexistence of efficient algorithms for many natural computational problems has
turned out to be a tremendous challenge – notwithstanding deep results for computa-
tional models strictly less powerful than the TM model [AB09, Part Two]. Hence, we
are going to follow a less ambitious, but very fruitful strategy: Instead of proving that
a given problem is infeasible to solve efficiently, we are comparing its computational
complexity to other problems that are conjectured to be computationally infeasible.
If we can show that the problem under consideration is at least as hard as many other
problems, which could not be solved efficiently by a myriad of computer scientists in
the last decades, then we have strong evidence to believe it is intrinsically hard. This
idea is formalized in the definition of polynomial-time reductions.

Definition 2.7. Def. 2.2 from [AB09] A language L ⊆ {0, 1}∗ is polynomial-
time (Karp) reducible to a Language L′ ⊆ {0, 1}∗ denoted by L ≤p L

′, if there is a
polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗
we have x ∈ L ⇐⇒ f(x) ∈ L′.

Less formally speaking, if we have L ≤p L
′ then L′ is at least as hard to decide

as L. Indeed, by using the reduction f , we can turn any TM deciding L′ into a TM
deciding L with at most polynomial runtime overhead. Particularly, if additionally
L′ ∈ P then so is L. Conversely, if no efficient algorithm for L exists and L ≤p L

′,
then there cannot be an efficient algorithm L′. The latter observation is the basis
of the strategy mentioned above: We show that a given problem is computationally
hard by establishing that is at least as hard as a large class of other problems, which
have withstood numerous attempts at solving them efficiently so far. For this purpose
we introduce the complexity class NP.
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Definition 2.8. A language L ⊆ {0, 1}∗ is in NP if there exists a polynomial-time
computable function M such that for every x ∈ {0, 1}∗

x ∈ L ⇐⇒ ∃u ∈ {0, 1}p(|x|)s.t. M(x, u) = 1. (2.22)

The function M is called the verifier and for x ∈ L, the bitstring u is called a
certificate for x.

Clearly, P ⊆ NP with p(|x|) = 0. On the other hand, the question whether
NP ⊆ P, and hence, P = NP is one of the major unsolved problems in math and
science [Coo06; Aar; GJ79]. One argument against this hypothesis goes as follows:
Whereas the problems in P are considered to be easily solvable, the problems in
NP are at least easily checkable given the certificate. In other words the question
whether P = NP boils down to the question whether finding the solution to a prob-
lem is harder than verifying whether a given solution is correct. However, these
philosophical considerations are not the main reason for the importance of Defini-
tion 2.8 from a computer scientific point of view. The main justification of the class
NP is twofold: On the one hand, there are a myriad of problems known to be in NP
and many of them have resisted all efforts of finding a polynomial-time algorithm.
On the other hand, there is a tremendous number of problems known to be at least
as hard as any problem in NP [GJ79] – these are referred to as NP-hard problems:

Definition 2.9. We say that a language L is NP-hard if for every L′ ∈ NP we
have L′ ≤p L. We say that a language L is NP-complete if L ∈ NP and L is
NP-complete.

Clearly, for any NP-hard problem L, L ≤p L
′ implies that L′ is NP-hard as well,

and hence, any problem in NP is polynomial-time reducible to L′. Therefore, an
efficient algorithm for L′ would provide an efficient algorithm for a large number
of other problems, which are widely considered difficult and which have been con-
founding experts for years. This fact is taken as very strong evidence that L′ cannot
be solved efficiently. As an example of an NP-complete problem, we consider the
number partition problem.

Problem 2.10. Given a vector a ∈ Nd, decide whether there exists a vector ψ with

∀k ψk ∈ {−1, 1} and a ·ψ = 0. (2.23)

In case there is such a vector ψ one says that the instance a allows for a partition
because the sum of components of a labeled by ψi = 1 is equal to the sum of compo-
nents ai labeled by ψi = −1. For a proof of NP-hardness of Problem 2.10, see [GJ79].
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2. Uncertainty quantification for quantum state estimation

The question remains what the notion of NP-hardness means in practice. Due to
its strict definition in terms of worst-case runtime needed for any instance, Defini-
tion 2.8 leaves open many possibilities for the existence of “good-enough” solutions.
First, approximative or probabilistic algorithms often suffice for all practical pur-
poses and are not bounded by NP-hardness results [GJ79; AB09]. A prime example
is the number partition problem 2.10: It is often considered the “easiest hard prob-
lem” because although it is NP-hard, highly efficient approximative algorithms for
it exist [Kel+03]. Furthermore, considering only the worst-case behavior is often too
pessimistic in practice. A more appropriate classification of the difficulty of “typical”
instances is given in terms of average case complexity [AB09].

2.3. Introduction to QSE

The goal of state estimation is to provide a complete description of an experimen-
tal preparation procedure from experimental feasible measurements. In the case
of QSE, this complete description is given in terms of the density matrix % of the
system [PR04]. Another common procedure performed in quantum experiments is
quantum process estimation, where the goal is to recover a quantum channel [NC10].
However, the task of process estimation can be mapped to QSE by way of the Choi-
Jamiolkowski isomorphism [NC10; JFH03; Alt+03], and therefore, we are only con-
cerned with the problem of QSE in this work.

Since its inception in the fifties [Fan57], QSE has proven to be a crucial experi-
mental tool – in particular in quantum information-inspired setups. It has been used
to characterize quantum states in a large number of different platforms [OBr+04;
Lun+09; Mol+04; KRB08; Rip+08; Ste+06; Chi+06; Rie+07; Sch+14] and even
been scaled to systems with dimension on the order of 100 [Häf+05]. However, as
the Hilbert space dimensions of quantum systems implemented in the lab grow, it is
unclear whether this approach to “quantum characterization” will continue to make
sense.

Acquiring and post-processing the data necessary for fully-fledged QSE is already
prohibitively costly for intermediated sized quantum experiments. As an extreme ex-
ample, the eight qubit MLE reconstruction with bootstrapped error bars in [Häf+05]
required weeks of computation in 2005 (private communication, see [Gro+10]). Some
sol This problem can be partially mitigated by means of more efficient algorihtms [SGS12;
Qi+13; Hou+16; SZN17] or approaches exploiting structural assumptions to improve
the sampling and computational complexity of state estimation [Cra+10; Gro+10;
Fla+12; Sch+15; Bau+13b; Bau+13a].

There is also the question what use is a giant density matrix with millions of entries
to an experimentalist? In many cases, the full quantum state contains more infor-
mation than necessary. For example, consider the case when a single number such
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as the fidelity of the state in the lab w.r.t. some target state is sufficient whether the
experiment works “sufficiently well” or not. For this purpose, a variety of theoreti-
cal tools for quantum hypothesis testing, certification, and scalar quantum parameter
estimation [OW15; Aud+08; GT09; FL11; Sch+15; Li+16] have been developed in
the past years that avoid the costly step of full QSE.

However, there remain use cases that necessitate fully-fledged QSE. We see a partic-
ularly important role in the emergent field of quantum technologies: Any technology
requires means of certifying that components function as intended and, should they
fail to do so, identify the way in which they deviate from the specification. As an
example, consider the implementation of a quantum gate that is designed to act as
a component of a universal quantum computing setup. One could use a certifica-
tion procedure – direct fidelity estimation, say – to verify that the implementation is
sufficiently close to the theoretical target that it meets the stringent demands of the
quantum error correction threshold. If it does, the need for QSE has been averted.
However, should it fail this test, the certification methods give no indication in which
way it deviated from the intended behavior. They yield no actionable information
that could be used to adjust the preparation procedure. The pertinent question
“what went wrong” cannot be cast as a hypothesis test. Thus, while many estima-
tion and certification schemes can – and should – be formulated without resorting
to full state estimation, the above example shows that QSE remains an important
primitive.

2.3.1. Existing work on error regions

In practice (e.g. [Häf+05]), uncertainty quantification for tomography experiments is
usually based on general-purpose resampling techniques such as “bootstrapping” [ET94].
A common procedure is this: For every fixed measurement setting, several repeated
experiments are performed. This gives rise to an empirical distribution of outcomes
for this particular setting. One then creates a number of simulated data sets by
sampling randomly from a multinomial distribution with parameters given by the
empirical values. Each simulated data set is mapped to a quantum state using max-
imum likelihood estimation. The variation between these reconstructions is then re-
ported as the uncertainty region. There is no indication that this procedure grossly
misrepresents the actual statistical fluctuations. However, it seems fair to say that
its behavior is not well-understood. Indeed, it is simple to come up with pathological
cases in which the method would be hopelessly optimistic: E.g. one could estimate
the quantum state by performing only one repetition each, but for a large number of
randomly chosen settings. The above method would then spuriously find a variance
of zero.

On the theoretical side, some techniques to compute rigorously defined error bars
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for quantum tomographic experiments have been proposed in recent years. The works
of Blume-Kohout [Blu12] as well as Christandl, Renner, and Faist [CR12; FR16]
exhibit methods for constructing confidence regions for QST based on likelihood level
sets. While very general, neither paper provides a method that has both a runtime
guarantee and also adheres to some notion of non-asymptotic optimality [Kie12; Le
12].

Some authors have proposed a “sample-splitting” approach, where the first part
of the data is used to construct an estimate of the true state, whereas the second
part serves to construct an error region around it [Fla+12] (based on [FL11]), as
well as [Car+15b]. These approaches are efficient, but rely on specific measurement
ensembles (operator bases with low operator norm), approach optimality only up
to poly-logarithmic factors, and – in the case of [Fla+12; FL11] – rely on adaptive
measurements.

Regarding Bayesian methods, the Kalman filtering techniques of [Aud+08] provide
a efficient algorithm for computing credible regions. This is achieved by approximat-
ing all Bayesian distributions over density matrices by Gaussians and restricting
attention to ellipsoidal credible regions. The authors develop a heuristic method for
taking positivity constraints into account – but the degree to which the resulting
construction deviates from being optimal remains unknown. A series of recent pa-
pers aim to improve this construction by employing the particle filter method for
Bayesian estimation and uncertainty quantification [GFF17; Wie+15; Fer14a]. Here,
Bayesian distributions are approximated as superpositions of delta distributions and
credible regions constructed using Monte Carlo sampling. These methods lead to
fast algorithms and are more flexible than Kalman filters with regard to modelling
prior distributions that may not be well-approximated by any Gaussian. However,
once more, there seems to be no rigorous estimate for how far the estimated credible
regions deviate from optimality. Finally, the work in [Sha+13] constructs optimal
credible regions w.r.t. a different notion of optimality: Instead of penalizing sets with
larger volume, they aim to minimize the prior probability as suggested by [EGS06].

2.3.2. The QSE statistical model

We now introduce the statistical model and the corresponding likelihood function
used for the rest of this chapter. The first major assumption is that the system’s
state in the lab is sufficiently stable for the duration of the experiment. Therefore,
we can assume that all data is generated from a fixed, but unknown state %0 ∈ S,
where

S :=
{
% ∈ Cd×d : %† = %, tr % = 1, % ≥ 0

}
(2.24)

denotes the state space of density matrices. Note that this assumption is not neces-
sary for QSE in general, see e.g. [GFF17] for Bayesian methods that allow for tracking
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time-dependent states.
Since we consider the case of non-adaptive state estimation, the measurements

performed are characterized by a fixed POVM {Ek}mk=1 and the probability of the
event k when the system is in the state %0 is given by the Born rule

pk = trEk%0. (2.25)

However, in reality the quantum expectation values are never observed directly. In-
stead, when the experiment is repeated on N independent copies of %0, the observa-
tions are counts ni ≥ 0 with

∑
i ni = N following a multinomial distribution

Pp(n1, . . . , nm) =
N !

n1! · · ·nm!
pn1
1 × · · · × p

nm
m . (2.26)

In case N is large and all the pi are sufficiently large, the multinomial distribu-
tion (2.26) is local asymptotic normal [Sev05]. Therefore, we can approximate
Eq. (2.26) by a Gaussian distribution

Pp(y1, . . . , ym) ≈ Πp,Σ(y1, . . . , ym) (2.27)

with yi =
ni
N and Πp,Σ denoting the probability density of a Gaussian distribution

with mean p and covariance matrix Σ = diag(p)− ppT . Hence, under this Gaussian
approximation, the relative counts yi are given in terms of a linear Gaussian model
with Gaussian likelihood function

L(%;y) = Pp(y) (2.28)

defined in terms of Eq. (2.27) and the probabilities pk = trEk%. However, if some of
the pi are close or equal to zero, which happens for rank deficient %0, local asymtotic
normality (LAN) – that is the approximation in Eq. (2.27) – does not hold. In [SB18]
the authors discuss some implications of the lack of LAN in QSE.

2.4. Hardness results for confidence regions
In this section we are going to present the first major result of our work [SRG+17]
concerned with frequentist confidence regions in QSE. Optimal confidence regions for
high-dimensional parameter estimation problems in are generally intricate even with-
out additional constraints as there are only few elementary settings, where optimal
confidence regions are known and easily characterized.

Since the goal of this work is to demonstrate that quantum shape constraints
severely complicate even “classically” simple confidence regions, in the further dis-
cussion we restrict the discussion to a simplified setting: We focus on confidence
ellipsoids for Gaussian distributions, which are one of the few easily characterizable
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2. Uncertainty quantification for quantum state estimation

examples. Furthermore, Gaussian distributions arise in the limit of many measure-
ments due to local asymptotic normality. In this section we show that even charac-
terizing these highly simplifying ellipsoids with the quantum constraints taken into
account constitutes a hard computational problem. This simplification is motivated
by the goal to show that the computational intractability exclusively stems from
the quantum constraints and that it is not caused by difficulties of high-dimensional
statistics in general. Furthermore, any less restrictive formulation encompassing this
simplified setting must be at least as hard to solve.

In conclusion, although exploiting the physical constraints may help to reduce the
uncertainty tremendously as mentioned in the introduction, doing so in an optimal
way is computationally intractable in general. Therefore, our work can be interpreted
as a trade-off between computational efficiency and statistical optimality in QSE.

2.4.1. Optimal confidence regions for quantum states

As already indicated in the introduction, additional constraints on the parameter
θ0 under consideration can be exploited to possibly improve any confidence region
estimator. This is especially clear for notions of optimality with a loss function
stated in terms of a volume measure V(·), as we will show in this section. Therefore,
assume that θ0 ∈ Ωc, where the constrained parameter space Ωc ⊆ Ω has non-zero
measure w.r.t. V. We consider an especially simple procedure to take the constraints
into account, namely truncating all θ /∈ Ωc from tractable confidence regions for the
unconstrained problem.

Although such an ad-hoc approach does not seem to exploit the constraints in an
optimal way, it has multiple advantages as we discuss in more detail in Section 2.4.3:
First and foremost, some notions of optimality, e.g. admissibility, are preserved under
truncation as shown in Lemma 2.11. In other words, there are notions of optimality
such that truncation of an optimal confidence region for the unconstrained problem
gives rise to an optimal region for the constrained one. Furthermore, as already men-
tioned in the introduction, our goal is to show that the intractability arises purely due
taking the constraints imposed by quantum mechanics into account. Therefore, we
start from a tractable solution in the unconstrained setting and show that even this
simple approach of taking the constraints into account leads to an computationally
intractable problem. Finally, the truncation approach simplifies the discussion but
as we discuss in Section 2.4.3, our results apply to a much larger class of confidence
regions such as likelihood ratio based Gaussian ellipsoids.

We start by showing that the truncation of confidence regions preservers admissi-
bility. Notice that Definition 2.3 can be stated for both, the unconstrained estimation
problem θ0 ∈ Ω as well as the constrained estimation problem θ0 ∈ Ωc. The ques-
tion is: How are admissible confidence regions for the constrained setting related to
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admissible confidence regions for the unconstrained estimation problem?

Lemma 2.11. Let C denote an admissible confidence region for the unconstrained
estimation problem for the parameter θ0 ∈ Ω. Then, the truncated region estimator
C∩ := C ∩ Ωc is an admissible confidence region for the constrained problem with
θ0 ∈ Ωc.

Proof. Under the assumption that C∩ is not admissible, there must exist a better
confidence region C+ for the constrained parameter estimation problem. W.l.o.g.
assume that both C+ and C∩ have the same coverage. Therefore, we must have
V(C+(y)) ≤ V(C∩(y)) for almost all observations y ∈ Rm, and there is a set Y ⊆ Rm

of non-zero measure such that V(C+(y)) < V(C∩(y)) for y ∈ Y . Define a new
confidence region for the unconstrained problem

C′ := C+ ∪ Cc, (2.29)

where Cc = C\C∩ denotes the compliment of C∩ in C. Then, C′ has the given coverage
level, since C+ provides coverage for θ0 ∈ Ωc, whereas Cc provides coverage for the
case θ0 ∈ Ω \ Ωc. Furthermore, we have for almost all y

V(C′(y)) = V(C+(y)) + V(Cc(y))
≤ V(C∩(y)) + V(Cc(y))
= V(C(y)).

(2.30)

Finally, strict inequality holds in Eq. (2.30) for all y ∈ Y due to the assumption
on C+. However, this would imply C not being admissible in contradiction to the
assumptions of the Lemma.

A similar procedure of computing optimal point estimators for constrained prob-
lems by modifying an optimal estimator for the unconstrained problem was intro-
duced for the maximum likelihood estimator in [SGS12].

One criticism raised against the use of the truncated confidence regions is the
possibility that they may yield empty realizations and, hence, are considered “un-
physical” [FC98]. However, according to the standard definition in Section 2.1.1, a
procedure that reports 95% confidence regions is allowed to give any result 5% of the
time.

Furthermore, a different strategy often adopted for point estimator is to use an
unconstrained parametrization for the constrained parameter space. A typical exam-
ple is a coin toss model with bias p ∈ [0, 1]. Instead of p, the problem can also be
parametrized in terms of of log-odds log p

1−p , which can take any value in (−∞,∞).
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%̂

S

H
A−1(Cy)

A−1

A

ŷ

Cy

Rm

Figure 2.2.: Geometric construction of a confidence region for %0. Quantum states are
mapped by a measurement matrix A to the respective quantum expecta-
tion values y. Conversely, the pre-image of a confidence region Cy under
A gives rise to a confidence region for %0. These may be unbounded if
the measurements are not tomographically complete – a drawback that
can be cured by taking into account the physical constraints on quantum
states, i.e. positive semi-definiteness.

Similar, one could use the following parametrization for quantum states guaranteed
to give a positive semidefinite, Hermitian matrix with trace 1

ρ(X) =
XX†

trXX† (2.31)

with X ∈ Cd×d. Although this parametrization can certainly be advantageous for
point estimation, it is unlikely to be helpful for uncertainty quantification: While X
and ρ(X) carry equivalent information, the size of a region measured in “X-space”
is hardly related to the size of a region in the physical state space unless one chooses
highly unnatural volume measures. This is necessarily so, as any map from an un-
bounded space onto the compact quantum state space must grossly distort the ge-
ometry. So, having obtained a “small confidence region” in parameter space does not
imply that the state has been well-estimated w.r.t. any physically relevant metric.

2.4.2. Confidence regions from linear inversion

A particularly simple approach to QSE is the method of linear inversion, which
we are going to review now: First, assume that the true but unknown quantum
state is represented by a d × d density matrix %0 ∈ S ⊆ H. The data is obtained
from measurements of m ≥ d2−1 tomographically-complete measurement projectors
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E1, . . . , Em. By yk = tr (Ek%0), k = 1, . . . ,m we denote the (quantum) expectation
values of Ek for the true state %0. Since these relations are linear, we can rewrite
them as y = A%0, where A is the measurement (or design) matrix independent of %0.
The (pseudo)-inverse of the above relation is given by

%0 =
(
ATA

)−1
ATy (2.32)

and simplifies to %0 = A−1y if m = d2 − 1.
Of course, in an experiment, the expectation values y are unknown and can only be

approximated by some estimate ŷ based on the observed data. The linear inversion
estimate for the quantum state %̂ is then given by Eq. (2.32) with the probabilities y
replaced by the empirical frequencies ŷ. However, due to statistical fluctuations the
estimated state %̂ is not necessarily positive semidefinite [Kni+15], which led to the
development of estimators enforcing the physical constraints such as the maximum
likelihood estimator [Hra+04]. Although the linear inversion and maximum likelihood
estimator solve two distinct problems – namely the unconstrained and constrained
one, respectively – in certain cases the two are related. More precisely, if the outcomes
approximately follow a Gaussian distribution, a fast projection algorithm computes
the maximum likelihood estimate from the linear inversion estimate directly [SGS12].

Here, we take a similar approach. First, the simple geometric interpretation of the
linear inversion estimator (see Fig. 2.2) allows us to map confidence regions for the
expectation values to confidence regions for the state without taking into account the
positivity constraint: If Cy is a confidence region for y with confidence level 1 − α,
then so is its pre-image under the measurement map

C%0 := A−1(Cy) (2.33)

for %0. Second, the truncation C∩%0 := C%0 ∩S yields an improved confidence region for
the problem with quantum constraints taken into account. As shown in Lemma 2.11,
this approach yields admissible confidence region provided the original region was
admissible.

The same construction can also be carried out for tomographically incomplete
measurements, i.e. for m < d2: Since the measurement matrix A is non-invertible
in this case, the estimate for the state %̂ satisfying A%̂ = ŷ is not uniquely defined.
However, under additional structural assumptions, one can single out a unique es-
timate [Gro+10; Fla+12]. The singularity of the measurement map A also reflects
in the confidence region defined by Eq. (2.33). Even if Cy is a bounded region, the
confidence region for the state C%0 extends to infinity in the directions “unobserved
by A”. In both cases, the tomographically complete and incomplete, we can use the
intersection with the psd states S to reduce the the region’s size while not sacrific-
ing coverage. This improvement is especially far-reaching in the latter case, where it
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turns an unbounded region to a bounded one just by taking into account the physical
constraints.

Of course, the question is whether we can somehow characterize the truncated con-
fidence region C∩%0 := A−1(Cy) ∩ S computationally efficiently. As already mentioned
in Section 2.3, we are going to make the simplifying assumption that the measured
frequencies are approximately Gaussian distributed. Furthermore, we are going to
focus on a class of confidence regions that are efficiently characterizable in the uncon-
strained setting, namely Gaussian confidence ellipsoids or, more precisely, ellipsoidal
balls of the form

Cy =
{
y ∈ Rm : (y − ŷ)TB (y − ŷ) ≤ 1

}
(2.34)

centered at the the empirical frequencies ŷ. The m ×m, symmetric, positive semi-
definite matrix B completely specifies the ellipsoidal shape of this confidence region.
These are the natural generalizations of the well-known 2σ confidence intervals to
multivariate Gaussian distributions.

However, even in the unconstrained setting, the ellipsoidal construction (2.34) is
known to be admissible only for m = {1, 2} [Jos69], while it is not admissible for
m ≥ 3 [Jos67] due to Stein’s phenomenon discussed in Section 2.1.1: By shifting
the center of the ellipsoid from the empirical mean ŷ to the Stein estimator (2.9),
one can improve the coverage while keeping the volume constant [Jos67]. Smaller
confidence ellipsoids with the same coverage can be obtained by shifting the center
slightly [TB+97; HC82] or even by using more complicated shapes [Shi89; BCG95].
Nevertheless, none of these constructions is known to be optimal and, to the best of
the author’s knowledge, no optimal confidence region for multivariate Gaussians in
dimensions m ≥ 3 is known. But since our discussion is focused on the question how
the physical psd constraints can be used to improve confidence regions, we are still
going to use the ellipsoids (2.34) as a tractable example: As we will prove later, it is
impossible to characterize the truncated ellipsoids efficiently although they are fully
described by only few parameters, namely ŷ and B.

In the remainder of this section, we are going to discuss a useful parametrization of
the ellipsoids C%0 = A−1(Cy) with Cy given by Eq. (2.34). To this end we use the fact
that any d× d Hermitian matrix can be expanded in a basis formed by the identity
1 and d2− 1 traceless Hermitian matrices σi, i = 1, . . . , d2− 1, normalized according
to Tr(σiσj) = 2δij . With the symbols σi we associate here the most common choice
of the basis elements [Kim03] – explicitly provided in Appendix A.1. Any other basis
σ′i =

∑
j Ojiσj , which can be obtained from σi by a d2 − 1 dimensional, orthogonal

matrix O, is of course equally valid. For d = 2 the choice stated in A.1 is simply the
Bloch basis of Pauli matrices: σ1 = σx, σ2 = σy and σ3 = σz. In higher dimensions
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the matrices σi maintain the Bloch basis structure:s Let

id =
d(d− 1)

2
, (2.35)

then the definition of σi mimics σx for 1 ≤ i ≤ id, σy for id + 1 ≤ i ≤ 2id and σz
for 2id + 1 ≤ i ≤ d2 − 1. Therefore, we are going to refer to the σi as (general-
ized) Bloch matrices and the corresponding parametrization of Hermitian matrices
as the (generalized) Bloch representation. The following theorem provides a useful
parameterization of pre-images under the design matrix A of ellipsoids.

Theorem 2.12. For the tomographically complete case m ≥ d2 − 1, the pre-image
under the design matrix of any ellipsoid of the form (2.34) can be written as

C%0 = A−1 (Cy) =

{
%̂+

∑
i

Riuiσ
′
i : u

Tu ≤ 1

}
. (2.36)

Here, %̂ is the linear inversion estimator corresponding to Eq. (2.32), that is a Her-
mitian matrix with tr %̂ = 1. The Ri > 0 (i = 1, . . . , d2 − 1) are the ellipsoid’s radii
in the directions given by σ′i =

∑
j Ojiσj and the orthogonal matrix O ∈ SO

(
d2 − 1

)
furnishes any orientation of the semi-major axes of the ellipsoid.

Proof. Note that whenever the sum has no limits specified (like in Eq. (2.36)), by
default it extends from 1 to d2 − 1. Let us parameterize both % ∈ C%0 and %̂ in the
Bloch representation with coordinates wi and ŵi, respectively:

% =
1

d
1+

∑
i

wiσi, %̂ =
1

d
1+

∑
i

ŵiσi. (2.37)

Since y = Tr (E%) and ŷ = Tr (E%̂) we find

y − ŷ = Q (w − ŵ) , (2.38)

where Q is a m × (d2 − 1) matrix with elements Qki = Tr (Ekσi). In other words,
the Bloch coordinates satisfy the same ellipsoid equation (2.34) as the measure-
ment outcomes with B substituted by the d2 − 1 dimensional square matrix B′ =
QTBQ. Since B is symmetric and positive definite, the same holds for B′. Hence,
B′ can be diagonalized to the form B′ = ODOT , where O ∈ SO(d2 − 1) and
D = diag(R−2

1 , . . . , R−2
d2−1

) is a diagonal matrix with positive entries. If we rescale
w − ŵ = OD−1/2u, then uTu ≤ 1 and

%− %̂ =
∑
j

(∑
i

OjiRiui

)
σj . (2.39)

In the last step of the proof we simply change the orientation of the basis to σ′i =∑
j Ojiσj .
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2.4.3. Computational intractability of truncated ellipsoids
Guided by the discussion from the previous section we now study the confidence
region for the linear inversion QST defined as

C∩%0 := C%0 ∩ S = A−1(Cy) ∩ S, (2.40)

where C%0 is given by the ellipsoid (2.36) for the tomographically complete case m =
d2 − 1. In this section, we are going to show that in contrast to the full ellipsoid
C%0 , the truncated ellipsoid C∩%0 cannot be characterized computationally efficiently.
This shows, for example, in the fact that there is no efficient algorithm to answer
the following question: How much does taking into account the physical constraints
reduce the size of the confidence region on a particular set of observed data? Note
that we will not be concerned with properties of the region estimator but with a
single instance corresponding to a fixed set of data. By abuse of notation, we are
going to refer to these instances as C%0 and C∩%0 as well.

More precisely, we are concerned with the question if a fixed ellipsoid C%0 changes
due to the constraints in Eq. (2.40) or if C%0 is fully contained in the set of psd states.
For the precise formulation, we use the representation of ellipsoids from Thm. 2.12.

Problem 2.13. Given the center %̂, radii Ri, and a basis σ′i for H. Is there a
u ∈ Rd2−1 with uTu ≤ 1 such that

%̂+
∑
i

Riuiσ
′
i ∈ H \ S? (2.41)

The main result of this section is the following statement on the computational
complexity of the aforementioned problem.

Theorem 2.14. Problem 2.13 is NP-complete.

As a consequence of Theorem 2.14, the problem of “characterizing” the truncated
confidence ellipsoids C∩%0 := A−1(Cy) ∩ S defined in Sec. 2.4.2 computationally is
hard in general. By characterizing we mean computing any property of C∩%0 that
is sensitive to whether the truncation influences the original ellipsoid or not, e.g.
computing the volume of the truncated ellipsoid or its distance to boundary of the
quantum state space with high enough precision. Note, however, that there are also
properties such as the diameter that might be unaffected by the truncation in certain
special cases and, hence, their computational complexity cannot be classified using
Theorem 2.14. Furthermore, the more general problem of characterizing truncated
confidence regions in general (without the Gaussian approximation) is hard as well
since it subsumes Problem 2.13.

Another consequence of the theorem concerns confidence regions for the con-
strained problem, which output “good regions” for the unconstrained problem when
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the constraints are not active: More precisely, it is extremely natural to use likelihood
ratio-based ellipsoidal confidence regions for unconstrained Gaussian data although
they cannot be optimal due to Stein’s phenomenon. So it is natural to require any
quantum region estimator to behave this way in the particular case that the likelihood
function is concentrated well away from the boundary of state space. What Theo-
rem 2.14 shows is that any region estimator subject to this criterion must necessarily
solve NP-hard problems.

2.4.4. Proof of Theorem 2.14

The remainder of this section is dedicated to the proof of Theorem 2.14 and to
discuss a tractable special case. First, note Problem 2.13 is in NP as any u fulfilling
Eq. (2.41) serves as a certificate. The rest of the proof of Theorem 2.14 is inspired by
a similar result due to Ben-Tal and Nemirovski [BN98] in robust optimization theory,
who showed that the following problem is NP-complete.

Problem 2.15. Given k ∈ N and k d × d symmetric matrices A1, . . . , Ak, check
whether there is a u ∈ Rk with uTu ≤ 1 such that

∑k
i=1 uiAi > 1d.

Although the two problems are strongly related, the intractability result of Prob-
lem 2.15 cannot be applied directly to Problem 2.13 due to the following crucial
difference: The proof of NP-hardness of Problem 2.15 constructs a reduction of the
number partition problem 2.10 to the special case of Problem 2.15 with k = d(d−1)

2 +1
and real symmetric matrices Ai, which are not necessarily pairwise orthogonal to each
other [BN98, Sec. 3.4.1]. However, in Prob. 2.13, the σ′i (i = 1, . . . , d2 − 1) form an
orthogonal basis of the space of complex Hermitian, traceless matrices. Hence, we
need to adapt the original proof strategy to deal with the restrictions imposed by our
QSE related problem.

For the proof of Theorem 2.14, we show that it is already hard to decide Prob-
lem 2.13 for the special case of ellipsoids that have their semi-major axes aligned with
the generalized Bloch basis In other words, we assume σ′i = σi. We consider the same
radius R1 for all directions generalizing the x-direction to higher dimensions and the
distinct radius R2 for the remaining directions:

Ri = R1 i = 1, . . . , id

Ri = R2 i = id + 1, . . . , d2 − 1.
(2.42)

Recall the definition of id Eq. (2.35). To prove the hardness of Problem 2.13, we use
a reduction from the number partition problem 2.10. The main technical difficulty is
to identify the values of R1 and R2 as well as ρ̂ depending on an instance of the bal-
anced sum problem a such that the corresponding ellipsoid C given by Theorem 2.12
contains an element with negative eigenvalues if and only if a has a balanced sum
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partition.

For this purpose, we introduce an explicit representation of pure states in terms of
the orthonormal basis {|i〉}i from Appendix A.1. Let |Ψ〉 denote denote any element
from the d dimensional Hilbert space of pure states and define the corresponding
complex vector ψ in terms of its coordinates

ψk = 〈k|Ψ〉 , k = 1, . . . , d, (2.43)

Consequently,
√
〈Ψ|Ψ〉 is the norm of |Ψ〉, while ‖ψ‖ denotes the norm of ψ. Obvi-

ously both norms are equal.
In a first step of the proof we write down the positivity condition for the ellipsoid

under investigation: The confidence ellipsoid C is fully contained in the set of psd
states if and only if for all % ∈ C and all |Ψ〉, 〈Ψ|%|Ψ〉 ≥ 0. holds. In the parametriza-
tion from Theorem 2.12, this condition can be rewritten as

〈Ψ|%̂|Ψ〉+R1

id∑
i=1

uivi (ψ) +R2

d2−1∑
i=id+1

uivi (ψ) ≥ 0, (2.44)

where we have already restricted our attention to the special case from Eq. (2.42).
Furthermore, we have used the shorthand vi (ψ) = 〈Ψ|σi|Ψ〉, which are the rescaled
Bloch coordinates of the density matrix |Ψ〉〈Ψ|. Condition (2.44) is independent of
the norm of |Ψ〉. Thus, we can fix 〈Ψ|Ψ〉 = d. Recall that Eq. (2.44) has to hold for
all values of u with uTu ≤ 1. Since the left hand side assumes its minimal value for

ui = −
vi (ψ)√∑
j v

2
i (ψ)

, (2.45)

we find that Eq. (2.44) is equivalent to

〈Ψ|%̂|Ψ〉 −

√√√√R2
1

id∑
i=1

v2i (ψ) +R2
2

d2−1∑
i=id+1

v2i (ψ) ≥ 0. (2.46)

Using the unusual normalization of |Ψ〉, we find∑
i

v2i (ψ) = 2d (d− 1) =: P, (2.47)

which can be utilized to simplify (2.46)

g(ψ) := 〈Ψ|%̂|Ψ〉 −

√√√√PR2
2 +

(
R2

1 −R2
2

) id∑
i=1

v2i (ψ) ≥ 0. (2.48)
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In the following, we restrict our attention to R1 > R2, so that both term inside the
square root are manifestly positive.
In the second step of the proof we show and utilize the following lemma:

Lemma 2.16. If %̂ is a real, symmetric matrix w.r.t. |i〉, then the minimum of g(ψ)
is attained by a vector ψ with real coordinates.

Proof. Note that we can decompose any vector |Ψ〉 into its real and imaginary part

|Ψ〉 = |Ψ1〉+ i |Ψ2〉 , (2.49)

where the |Ψi〉 are defined in terms of real vectors ψi. Therefore, for %̂ being real
and symmetric, we find

〈Ψ|%̂|Ψ〉 = 〈Ψ1|%̂|Ψ1〉+ 〈Ψ2|%̂|Ψ2〉. (2.50)

A similar equality holds with %̂ replaced by 1 or σi for i = 1, . . . , id, since the latter
matrices are symmetric and real as well. To shorten the notation, we now define two
id + 1 dimensional vectors x1 and x2 with components (α = 1, 2)

xα0 =

√
P
d
R2‖ψα‖

2

xαi =
√
R2

1 −R2
2 vi (ψα) (i = 1, . . . , id).

(2.51)

Since d = ‖ψ‖2 = ‖ψ1‖
2 + ‖ψ2‖

2, we find√√√√PR2
2 + (R2

1 −R2
2)

id∑
i=1

v2i (ψ) = ‖x
1 + x2‖ ≤ ‖x1‖+ ‖x2‖, (2.52)

where we used triangle inequality in the last step. Therefore we have

g(ψ) ≥ g(ψ1) + g(ψ2) (2.53)

Equation (2.53) implies that if g(ψ) is non-negative for all real vectors then it is also
non-negative for any vector ψ. More intuitively, the above result is true because
the construction of g(ψ) utilizes only the generalized σX Pauli matrices and the
expectation values of such generalized Pauli matrices are depend on the real parts of
ψ∗⊗ψ w.r.t. the fixed basis. The imaginary part of such projectors only show up in
expectation values of the generalized σY matrices.

The next step of the proof, which is crucial for encoding an instance number
partition problem, is the choice of the ellipsoid’s center %̂. We choose

%̂ =
q

d
1+

1− q
a2
|a〉〈a|, 0 ≤ q ≤ 1, a = ‖a‖, (2.54)
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with q ∈ R to be specified below and |a〉 =
∑

k ak|k〉 denoting a state represented by
a real, integral vector a. The latter are exactly the instances of the number partition
problem 2.10. Since %̂ given by Eq. (2.54) is manifestly real and symmetric, we can
restrict our attention to ψ ∈ Rd due to Lemma 2.16. We find

〈Ψ|%̂|Ψ〉 = q +
1− q
a2

(a ·ψ)2, (2.55)

and
id∑
i=1

v2i (ψ) = 4
∑

1≤j<k≤d

ψ2
jψ

2
k ≡ 2d2 − 2

d∑
k=1

ψ4
k. (2.56)

Before we will be ready to take an advantage of the above encoding we need to
perform a sequence of tedious algebraic manipulations. In short, the function we
work with has an algebraic form g(ψ) = κ −

√
∆, with both κ and ∆ being non-

negative. Testing if this function is non-negative is thus equivalent to checking the
inequality κ2 −∆ ≥ 0. If we divide this inequality by 2(R2

1 − R2
2) and fix q = q+ or

q = q− with

q± =
1

2

(
1±

√
1− 8d

(
R2

1 −R2
2

) a2

1 + a2

)
. (2.57)

we can rearrange it to the convenient form

f (ψ)− C2(a ·ψ)4 ≤ C1, (2.58)

where:

f (ψ) = 2d2 −
d∑

k=1

ψ4
k − 2d

(a ·ψ)2

1 + a2
, (2.59)

C1 = d2 +
1

R2
1 −R2

2

[
q2±
2
− d (d− 1)R2

2

]
, (2.60)

C2 =
q2∓

2a4
(
R2

1 −R2
2

) > 0 (2.61)

Both solutions (2.57) assure that (2.58) is free from additional terms proportional to
(a ·ψ)2, except those already included in f .

Hence, the original problem of deciding whether the ellipsoid E centered at %̂ and
with radii (2.42) is contained in the psd states can be rephrased as deciding whether
the maximum of the left hand side of Eq. (2.58) is smaller or equal to some constant:

E ⊆ S ⇐⇒ max
ψ∈Sd−1

d

[
f (ψ)− C2(a ·ψ)4

]
≤ C1. (2.62)
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Here, Sd−1
ζ denotes a (d− 1)-dimensional sphere in Rd with radius

√
ζ, i.e.

ψ ∈ Sd−1
d ⇐⇒ ψ ∈ Rd ∧ ‖ψ‖2 = d. (2.63)

The relation of Problem 2.13 to the number partition problem is derived in the
following Lemma.

Lemma 2.17. If the instance a of Problem 2.10 allows for a partition, then

max
ψ∈Sd−1

d

[
f (ψ)− C2(a ·ψ)4

]
= 2d2 − d. (2.64)

On the other hand, if there is no such partition, we have

max
ψ∈Sd−1

d

[
f (ψ)− C2(a ·ψ)4

]
< max
ψ∈Sd−1

d

f (ψ) (2.65)

≤ 2d2 − d− 2

p(ad)
. (2.66)

where p(x) = 2x4 is a non-negative polynomial.

For the sake of clarity we relegate the proof of the above lemma to the end of this
section and discuss its implications now. As a consequence of Lemma 2.17 the choice,

C1 = 2d2 − d− p(ad)−1, (2.67)

implies that an efficient algorithm deciding whether the inequality (2.58) is satisfied
or not is also capable of deciding the number partition problem 2.10 efficiently. This
proves the claim of Theorem 2.14 that Problem 2.13 is NP-hard.

The last step we need to make is to find the parameters R1 and R2 leading to
the choice (2.67). To this end, we set R2 = εR1 with 0 < ε < 1 and introduce two
positive parameters

B1 = p(ad)−1, B2 =
da2

1 + a2
. (2.68)

Note that if 1 ≤ j ≤ d is such that |aj | = mink |ak|, then for ψj given by ψj
k =
√
dδjk

the function f(ψj) is equal to

f
(
ψj
)
=

d2

1 + a2
(
1 + a2 − 2a2j

)
. (2.69)

Since a2 − 2a2j ≥ (d − 2)a2j the quantity f(ψj) is non-negative, so is the right hand
side of Eq. (2.65). From (2.66) we can find the bound

B1 ≤ d2 − d/2. (2.70)
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Furthermore, B2 ≤ d.
Rearranging Eq. (2.60), taking the square root and substituting (2.67) we can see

that R1 is implicitly defined by the relation
√
2
√

(d2 − d−B1) (1− ε2) + d (d− 1) ε2R1 = q±. (2.71)

If the left hand side of (2.71) happens to be bigger than 1/2, we need to take the q+
solution on the right hand side (and q− in the opposite case). In order for the square
roots in Eq. (2.71) to be real-valued, we need to assume(

d2 − d−B1

) (
1− ε2

)
+ d (d− 1) ε2 ≥ 0. (2.72)

and
1− 8R2

1

(
1− ε2

)
B2 ≥ 0, (2.73)

The latter condition assures that q± are real while the former condition, as it does
not depend on R1, can be immediately solved for ε:

ε2 ≥ 1− d (d− 1)

B1
. (2.74)

However, Eq. (2.74) does not yield a universal bound for acceptable values of ε since
B1 depends on the particular instance a. To obtain a lower bound independent of a,
we use Eq. (2.70), obtaining:

ε2 ≥ 1

2d− 1
. (2.75)

Since both sides of (2.71) are non-negative, we can take the square of this relation
and turn it it into a quadratic equation for R1. Surprisingly, this equation has a
trivial solution R1 = 0 (only relevant while dealing with q−) and a single non-trivial
solution which can be simplified to the form:

R1 =
1√
2

√
d (d− 1)−B1 (1− ε2)

d (d− 1)− (B1 −B2) (1− ε2)
, (2.76)

The condition (2.73) becomes trivially satisfied, while the left hand side of Eq. (2.71)
is greater than 1/2 (relevant for q+) for

ε2 ≥ 1− d (d− 1)

(B1 +B2)
. (2.77)

In the opposite case the inequality is reversed. When (2.77) occurs, we find that

q+ =
d (d− 1)−B1

(
1− ε2

)
d (d− 1)− (B1 −B2) (1− ε2)

, (2.78)

q− =
B2

(
1− ε2

)
d (d− 1)− (B1 −B2) (1− ε2)

, (2.79)
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while in the opposite case the parameters q+ and q− swap. These interrelations be-
tween the parameters imply that regardless of the validity of (2.77), the solution (2.76)
uniquely determines q initially introduced in (2.54) as given by the formula (2.78).
This parameter is manifestly smaller than 1 and due to (2.74) it is also non-negative.
With the given choice of parameters (2.76) and (2.77) as well as q specified above,
we complete the reduction from the number partition problem. To finalize the proof
of Theorem 2.14, we now state the proof of Lemma 2.17.

Proof of Lemma 2.17. The first part of the proof – Eq. (2.64) – follows from a simple
calculation utilizing the partition vector ψ defined in (2.23). Note that as a ·ψ = 0,
we immediately obtain the first equality in (2.64), which since C2 is non-negative
turns into inequality in (2.65).

To prove (2.66), we define the set of all possible (2d in total) partition vectors

Z :=
{
z ∈ Rd : ∀i zi = ±1

}
(2.80)

and (for an arbitrary 0 < λ < 1) the set of vectors that are “close” to some element
from Z

B :=

{
ψ ∈ Rd : min

z∈Z
‖ψ − z‖ ≤ λ

a

}
. (2.81)

Because a ≥ 1, the set B can be thought of as a disjoint union of 2d balls centered
around the elements of Z. For further convenience we denote z̃ = argminz∈Z ‖ψ − z‖,
and δ := ψ − z̃. By construction z̃k = signψk so that for all k = 1, . . . , d

z̃kδk = z̃kψk − z̃2k = |ψk| − 1 ≥ −1. (2.82)

Since ‖ψ‖2 = d we find that
2z̃ · δ = −‖δ‖2. (2.83)

Using all the above, the fact that z̃2k = 1 and z̃3k = z̃k, and the Jensen inequality we
can further estimate

−
d∑

k=1

ψ4
k ≤ −d−

d∑
k=1

δ4k ≤ −d−
‖δ‖4

d
. (2.84)

As a does not allow for partition and both, z̃ and a are integral, we must necessarily
have |a · z̃| ≥ 1. Thus

1 ≤ |a · z̃| = |a · (ψ − δ)| ≤ |a ·ψ|+ |a · δ| ≤ |a ·ψ|+ a‖δ‖, (2.85)

so that
− |a ·ψ| ≤ min {0, a‖δ‖ − 1} , (2.86)
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Taking all the above results together with |a ·ψ| ≤ a‖ψ‖ = a
√
d we obtain

f(ψ) ≤ 2d2 − d− ‖δ‖
4

d
+ 2d3/2a

min {0, a‖δ‖ − 1}
1 + a2

. (2.87)

We will now study two cases. For ψ ∈ B, we have 0 ≤ ‖δ‖ ≤ λ/a, so that

f(ψ) ≤ 2d2 − d− 2d3/2a
1− λ
1 + a2

, (2.88)

while for the opposite case (ψ /∈ B), when ‖δ‖ > λ/a, one finds

f(ψ) ≤ 2d2 − d− λ4

da4
. (2.89)

Therefore, we have for any ψ ∈ Rd with ‖ψ‖2 = d

f(ψ) ≤ 2d2 − d−min

{
2d3/2a

1− λ
1 + a2

,
λ4

da4

}
, (2.90)

so that by setting λ = d−3/4 we obtain the desired result with p(ad) = 2(ad)4.

We conclude this section by investigating a tractable special case of Problem 2.13.
Consider Ri = R for all i = 1, . . . , d2−1 that is all radii are equal and the ellipsoid is
a ball. With no loss of generality, we can assume σ′i = σi. The following Lemma pro-
vides an easily checkable, necessary, and sufficient condition to decide Problem 2.13
for this special case.

Lemma 2.18. Let C denote a ball parameterized according to Theorem 2.12 with
with radii Ri = R and midpoint %̂. C is fully contained in the set of psd density
matrices if and only if

R ≤

√
d

2 (d− 1)
mineig %̂, (2.91)

where mineig %̂ denotes the smallest eigenvalue of %̂.

Proof. To check whether a sphere with radius R centered at %̂ is contained in the set
of psd states, specialize Eq. (2.46) to the special case R1 = R2:

〈Ψ|%̂|Ψ〉 −R
√∑

i

v2i (ψ) ≥ 0. (2.92)

Since for any pure state |Ψ〉 the identity∑
i

v2i (ψ) =
2 (d− 1)

d
, (2.93)
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holds (Bloch vectors of pure states live on the hypersphere), the inequality in question
becomes

〈Ψ|%̂|Ψ〉 −R
√

2 (d− 1)

d
≥ 0. (2.94)

Simple minimization with respect to |Ψ〉 concludes the proof.

The statement is a straightforward but interesting extension of the known result
that the largest ball centered at the completely mixed state and fully contained in the
set of psd density matrices has radius Rmax =

√
1

2d(d−1) . Intuitively, when the center
of the ball is moved away from the completely mixed state, the allowed radii become
smaller. This correction happens to be quantified by the smallest eigenvalue of the
new center. In conclusions, spherical ellipsoids do not constitute hard instances of
Problem 2.13 provided that the minimal eigenvalue of %̂ can be computed efficiently
with high enough accuracy. However, the slight modification with two distinct radii
considered above

2.5. Hardness results for credible regions

In this section we are going to present the second major result of [SRG+17] con-
cerned with Bayesian credible regions in QSE. Bayesian techniques in the context
of QSE have been introduced by different authors [Jon91; Sla95; Der+97; SBC01;
Buž+98]. The main advantage the Bayesian approach to QSE has over the more
established frequentist’s methods is the ability to include prior knowlege naturally
into the inference procedure. Furthermore, the Bayesian framework is conceptually
simpler and it provides notion of error region with a more natural interpretation as
discussed in Section 2.5. However, analytical solutions for Bayesian inference prob-
lems only exist in special cases when we consider conjugate priors for the likelihood
functions. In [AS09], the authors use the self-conjugate Gaussian priors to provide an
approximative estimate of the state and the corresponding credible region. However,
in order to deal with the psd constraints, the authors had to resort to an uncon-
trolled approximation. In this work we use the same model and show that the exact
inference problem under quantum shape constraints cannot be solved efficiently. A
different approach, which was pioneered in [HH12; Fer14b], is to use Monte Carlo
algorithms to perform approximate inference. Such sampling algorithms also allow
the computation of highest posterior density ellipsoids, which are near-optimal cred-
ible region for the posteriors relevant to QSE, i.e. Pauli measurements on multiple
qubits [Fer14a]. For more details on the practical application of Bayesian inference
to QSE, we refer the reader to [GFF17].
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2. Uncertainty quantification for quantum state estimation

2.5.1. MVCR for Gaussian distributions
As a first step towards obtaining good credible regions for the QSE model we ignore
the positivity constraints in this section. The Gaussian approximation of the mea-
surement statistics in Eq. (2.27) suggests that we use a Gaussian prior for %: On
the one hand, this yields a Gaussian posterior as well and the parameters can be
computed analytically by means of linear Kalman filter update equations similar to
Eq. (2.14) [AS09, Sec. 2.4]. On the other hand, the MVCR for Gaussian distribu-
tions are simply ellipsoids, and therefore, can be characterized by a few parameters.
Below, we show how those parameters can be computed efficiently.

Since credible regions are purely defined in terms of the posterior, we can ignore
the details how the posterior arose. Hence, we assume that the posterior distribution
of % under consideration is a Gaussian with mean θ and covariance matrix Σ. In
other words, we assume the posterior for % has probability density

Πθ,Σ(%) = (2π)−
N
2 |Σ|−

1
2 exp

(
−1

2
‖%− θ‖2Σ

)
. (2.95)

where
‖%− θ‖Σ :=

√
(%− θ)TΣ−1(%− θ) (2.96)

is the Mahalanobis distance and |Σ| denotes the determinant of Σ. As elaborated in
Section 2.1.2, the MVCRs are exactly the highest posterior density sets as defined in
Eq. (2.17). Therefore, the MVCR with credibility α for the Gaussian posterior (2.95)
is given by

C = {x ∈ RN : ‖x− θ‖Σ ≤ rα} =: E(rα). (2.97)
This is an ellipsoid centered at θ with radius rα determined by the saturated credi-
bility condition (2.16):

α = (2π)−
N
2 |Σ|−

1
2

∫
E(rα)

exp

(
−1

2
‖x− θ‖2Σ

)
dNx

=
γ
(
N
2 ,

r2α
2

)
Γ
(
N
2

) ≡ P
(
N
2 ,

r2α
2

)
.

(2.98)

By γ(·, ·) we denote the incomplete Γ-function and P (·, ·) is its normalized version.
The above condition fixes rα uniquely since x 7→ P (N2 , x) is strictly monotonic for any
N > 0. Hence, determining the MVCR for a multivariate Gaussian posterior with
known mean and covariances reduces to computing the radius rα, which is formalized
in the following problem.

Problem 2.19. For given mean θ ∈ RN , covariance matrix Σ ∈ RN×N with Σ ≥ 0,
credibility α ∈ [0, 1], and accuracy δ with δ−1 ∈ N, determine the radius of the MVCR
rα defined in Eq. (2.98) with given accuracy.
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Note that this does not constitute a decision problem, but an algebraic computa-
tion: We are asking to compute a number y such that

y ∈ (rα − δ, rα + δ). (2.99)

Although there are elaborate algebraic computational models [AB09, Sec. 16], we are
going to use the following simpler strategy here: We are going to consider algorithms
for problems such as Problem 2.19 that compute a rational number y with binary
encoding of its numerator and denominator. Such an algorithm exists for solving
Problem 2.19 that runs in polynomial time in the sense of Definition 2.5. With the
shorthand notation x = r2α/2, the algorithm is outlined below:

1. W.l.o.g. we can assume that α ≤ 0.9 (or some other arbitrary constant). Oth-
erwise, the problem can be restated in terms of Q(N2 , x) = 1− P (N2 , x), which
allows for a similar analysis. The condition α ≤ 0.9 restricts the search space
for x to some finite interval [0, tmax]. Note that the upper bound tmax grows at
worst polynomially in N

2 .

2. The above restriction, the finite precision, and the fact that x 7→ P (N2 , x) is
strictly monotonic allow for interpreting the problem of finding x given α as a
search in an ordered, finite list of size M ∼ tmax

δ .

3. Each entry of this list can be evaluated with exponential precision in polynomial
time using a power series expansion of P (N2 , x) (for more details see Lemma 2.27
in 2.5.4).

4. Since finding x in this list only requires logM evaluations using binary search,
the whole problem can be solved in polynomial time.

2.5.2. Bayesian QSE
In order to incorporate the positivity constraints on % imposed by quantum mechan-
ics, we choose a prior distribution that is concentrated on S and vanishes on its
complement. One possible choice are truncated Gaussian priors. These are defined
in terms of their density Π+

θ,Σ(%) with respect to the flat Hilbert-Schmidt measure d%
on H

Π+
θ,Σ(%) = Cθ,Σ χ(%) Πθ,Σ(%). (2.100)

Here, Πθ,Σ is the multivariate Gaussian from Eq. (2.95) with θ ∈ H. The other factors
in Eq. (2.100) ensure that Π+

θ,Σ is a proper probability distribution supported on S:
χ(%) is the indicator function of S and Cθ,Σ is the normalization constant defined by

C−1
θ,Σ =

∫
S
Πθ,Σ(%) d%. (2.101)
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2. Uncertainty quantification for quantum state estimation

Since the numerator in Bayes rule (2.12) is linear in the prior, the posterior distri-
bution updated with Gaussian likelihood function is also of the form (2.100). Fur-
thermore, we can use the same linear Kalman filter update equations for both the
standard and the truncated Gaussian distributions. The only additional complication
of computing the posterior corresponding to the truncated prior (2.100) is that the
normalization factor Cθ,Σ needs to be reevaluated after each update step in order to
obtain a properly normalized probability distribution. From now on we only consider
a fixed posterior distribution and drop the subscripts indicating the mean θ and the
covariance matrix Σ if no confusion arises. It is then important to remember that
the constant in question is denoted by C, while the credibility region is C.

The problem we try to solve is the following: Given the mean θ, covariance matrix
Σ, and credibility α, can we find the MVCR for the truncated Gaussian distribution
supported on S? Since the truncated density (2.100) is supported on the psd states
and MVCRs are highest-density sets due to (2.17), the MVCR is of the form

E(r+α ) ∩ S = {% ∈ S : ‖%− θ‖Σ ≤ r
+
α }. (2.102)

Similar to Eq. (2.98), the radius is determined by the credibility condition

α = C

∫
E(r+α )∩S

Πθ,Σ(%)d%. (2.103)

However, this case involves the normalization constant C from (2.100) and the inte-
gral is restricted to the psd states. Also, there is no closed-form analogue to Eq. (2.98)
due to the psd constraint.

2.5.3. Computational intractability
Our main result from this section concerns MVCR for Gaussian posteriors that are
fully supported on the psd states. We will show that the following problem is com-
putational hard.

Problem 2.20. For given mean θ ∈ H, covariance matrix Σ, credibility α ∈ [0, 1],
and accuracy δ with δ−1 ∈ N, determine the radius of the MVCR r+α defined in
Eq. (2.103) with given accuracy.

In other words, there is no efficient algorithm that outputs smallest volume credibil-
ity regions for every Gaussian distribution on H restricted to the positive semidefinite
states and every credibility α. Consequently, there cannot be an efficient algorithm
to solve the problem of MVCR for QSE, since the latter more general problem con-
tains the instances of Problem 2.20. To prove Problem 2.20, we use a reduction from
Problem 2.13, which has already been shown to be NP-complete. This reduction
runs along the following lines:
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E(r α
C
) E(r+α )

psd psd

E(r α
C
)

E(r+α )

Figure 2.3.: The two possible cases for the credible regions. Left: The original el-
lipsoid E(r α

C
) with credibility α

C (yellow) lies completely inside the psd
states and is, therefore, equal to the ellipsoid taking into account positiv-
ity E(r+α ) with credibility α (blue hatched). Right: Parts of the original
ellipsoid E(r α

C
) lie outside the psd states (blue). Hence, the ellipsoid that

takes into account positivity E(r+α ) has to have a larger radius in order
to achieve the sought for credibility.

1. Assume that Prob. 2.20 can be solved efficiently.

2. As we will prove later, every ellipsoid E∗ in H can be encoded as a minimum
volume credible ellipsoid for some Gaussian distribution Π with a suitable choice
of θ, Σ, and R:

E∗ = Eθ,Σ(R). (2.104)

Note that only θ is uniquely defined. Σ is defined only up to a multiplica-
tive, positive constant, since every rescaling of Σ can be compensated by an
appropriate rescaling of R.

3. Using the assumed efficient algorithm for Prob. 2.20, we can compute the nor-
malization constant C of the truncated distribution (2.100) for given θ and Σ
with sufficient precision in polynomial time.

4. Based on this, we can compute a credibility α such that R = r α
C
and, therefore,

E∗ = Eθ,Σ(r α
C
). (2.105)
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5. The crucial observation is that this ellipsoid is contained in the psd states if
and only if the corresponding MVCR for the truncated distribution Π+ fulfills

r+α = r α
C
. (2.106)

See Fig. 2.3 for an illustration. Since we can compute r+α efficiently by assump-
tion, checking Eq. (2.106) allows us to decide Prob. 2.13.

In conclusion, the main result from this section is the following lower bound on the
computational complexity of Problem 2.19.

Theorem 2.21. If Problem 2.20 has a polynomial time algorithm, then we can also
decide Problem 2.13 in polynomial time. Therefore, there is no efficient algorithm
for Problem 2.20 unless P = NP.

The proof runs along the lines outlined above and can be found in the next section.
The main technical problem is that we are dealing with finite-precision arithmetic.

2.5.4. Proof of Theorem 2.21
Let us now construct the polynomial time reduction of Problem 2.13 to Problem 2.19.
We will begin with the main observation of this proof, namely Eq. (2.106).

Lemma 2.22. Let Π(%) denote a Gaussian distribution on H and Π+(%) = CΠ(%)χ(%)
the corresponding restricted Gaussian with the same mean and covariance matrix, as
defined in Eq. (2.100). For any α ∈ [0, 1], the credible ellipsoid E(r α

C
) with credibility

α
C is contained in the psd if and only if the credible ellipsoid for Π+, E(r+α ), with
credibility α has the same radius, that is Eq. (2.106) holds.

Proof. The two cases of E(r α
C
) being contained and not being contained in the psd

states are illustrated in Fig. 2.3. First, assume that E(r α
C
) ⊆ S, then

α

C
=

∫
E(r α

C
)
Π(%) d%. =⇒ α =

∫
E(r α

C
)∩S

CΠ(%) d%. (2.107)

Note that the right equation is exactly the defining Eq. (2.103) for the positive radius
r+α if r+α = r α

C
.

Now, assume that a part of the ellipsoid O = E(r α
C
) \ S 6= ∅ lies outside the psd

states. Then, as can be seen on the right side of Fig. 2.3, we need to enlarge r+α to
compensate for the lost probability weight of O. The latter cannot be vanishing, since
the Gaussian density Π(%) is strictly positive. Therefore, r+α > r α

C
in this case.

Of course, the difference between r α
C

and r+α may in general become too small to
be efficiently detectable. However, we will show that for the instances of the number
partition problem encoded in Problem 2.13, this is not the case. A first step toward
this is the following Lemma.
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Lemma 2.23. Let a ∈ Nd be an instance of the number partition problem 2.10 and

Ea =

%0 +R1

id∑
i=1

uiσ
+
i R2

d2−1∑
i=id+1

uiσi : u
Tu ≤ 1

 (2.108)

the corresponding encoding ellipsoid for Problem 2.13 defined in Section 2.4.4. Then,
there exists a polynomial p̃ such that if Ea is not a subset of S, there is an element
% ∈ Ea with

mineig(%) ≤ −p̃(‖a‖)−1 < 0. (2.109)

Proof. The main proof idea is to trace back the proof for polynomial gap in Lemma 2.17.
Recall that Eqs. (2.64) and (2.67) ensure that if a has a partition, there is a Ψ ∈
{±1}d such that a ·Ψ = 0 and

d2 −
∑
k

ψ4
k +

(
d− (a ·ψ)2

1 + ‖a‖2

)2

− C2(a ·ψ)4 = C1 + p(‖a‖)−1. (2.110)

By tracing back the steps which lead to this equation, we find for |Ψ〉 :=
∑d

k=1 ψk/
√
d|k〉

2(R2
1 −R2

2)

d
p(‖a‖)−1 + 〈Ψ|%0|Ψ〉2 (2.111)

= R2
1

∑
i

(
〈Ψ|σ(x)i |Ψ〉

)2
+R2

2

∑
i

(
〈Ψ|σ(y,z)i |Ψ〉

)2
(2.112)

=:
∑
i

R2
i (〈Ψ|σi|Ψ〉)

2 (2.113)

Due to the special choice for %0 in (2.54) and a ·ψ = 0, we have

〈Ψ|%0|Ψ〉 =
q

d
(2.114)

with q defined in (2.57). Therefore, we can rewrite Eq. (2.111) as

〈Ψ|%0|Ψ〉 −
√∑

i

R2
i 〈Ψ|σi|Ψ〉

2 =
q

d

(
1−

√
1 +

2d(R2
1 −R2

2)

q2 p(‖a‖)

)

≤ −min

(
R2

1 −R2
2

2q p(‖a‖)
,
2q

d

)
(2.115)

where we have used

1−
√
1 + x2 ≤

{
−x2/4 x ≤ 2

√
2

−2 x > 2
√
2

(2.116)
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Since all the constants on the right hand side of Eq. (2.115) can be expressed as
polynomials in the input, it defines the polynomial p̃(‖a‖) of the lemma. The left
hand side of Eq. (2.115) is equal to 〈Ψ|%|Ψ〉, where

% = %0 +
∑
i

Riuiσi ∈ Ea (2.117)

for the special choice of u from (2.44). The claim of the lemma follows for this %
using Eq. (2.115).

We will now show how the explicitly parameterized ellipsoid (2.108) can be encoded
as a MVCR-ellipsoid of a Gaussian distribution.

Lemma 2.24. Denote by

E∗ =

%0 +
d2−1∑
i=1

uiRiσi : ‖u‖2 = 1

 (2.118)

an ellipsoid E∗ ⊆ H, which is axis-aligned with the coordinate axes defined by the
generalized Pauli operators. Then, E∗ can be encoded as a α

C MVCR-ellipsoid for
a Gaussian distribution with mean %0 ∈ S and covariance matrix Σ. The latter
is diagonal in the generalized Bloch basis σi with entries Σij = R2

i δij and for the
corresponding radius we have r α

C
=
√
2. Hence, the credibility is given by

α = C P
(
N
2 , 1

)
, (2.119)

which can be calculated efficiently with exponential precision for given C and N .

Proof. Since the generalized Pauli operators form an orthogonal system with tr(σiσj) =
2δij , we find for % ∈ E∗

‖%‖22 =
∑
i,j

uiuj RiRj (Σ
−1)ij 2δij = 2‖u‖22. (2.120)

Therefore, E∗ = E(
√
2) with mean %0 and the stated covariance matrix. The efficient

computation of the credibility (2.119) is given later in the proof of Lemma 2.26.

Based on the gap proven in Lemma 2.23, we will now turn to the following question:
In case Eq. (2.106) does not hold – that is the corresponding ellipsoid is not fully
contained in the psd states – is the corresponding gap always large enough to be
efficiently detectable?
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psd

E(r 1−α
C

)
E(r+1−α)

Figure 2.4.: Same as Fig. 2.3 (right). Note that the solid blue and hatched blue
regions need to have the same volume.

Lemma 2.25. Let a ∈ Nd be an instance of the number partition problem and denote
by Ea the corresponding encoding ellipsoid as given by Eq. (2.108). Furthermore,
denote by Π%0,Σ the Gaussian density, which encodes Ea = E(r α

C
) as an α

C credible
region as given by Lemma 2.24. Assume that a has a balanced sum partition and,
therefore, Ea is not a subset of S.

Then, there exists a polynomial p such that

r+α
2 − r α

C

2 ≥ 2−p(log ‖a‖1). (2.121)

Here, ‖a‖1 =
∑

k |ak|. In words, the gap of violation of Eq. (2.106) can only become
polynomially small in the logarithm of the size of the problem specification.

Proof. First, let us lower bound the volume of E(r α
C
) that lies outside the psd states

(the solid blue region in Fig. 2.4). From Lemma 2.23 we know, that there exists a
% ∈ E(r α

C
) with smallest eigenvalue smaller than −p̃(‖a‖)−1 for some polynomial p̃.

This also gives us a lower bound on

dist(%,S) = inf
%′∈S
‖%− %′‖2. (2.122)

From [Bha13, Theorem III.2.8] we know that for every %+ ∈ S the following bound
holds:

‖%− %+‖2 ≥ ‖%− %−‖∞ ≥ ‖λ
↑(%)− λ↑(%+)‖2

≥ |mineig(%)−mineig(%+)| ≥ p̃(‖a‖)−1.
(2.123)
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2. Uncertainty quantification for quantum state estimation

Here, λ↑(ρ) denotes the vector of eigenvalues of ρ in ascending order. Therefore,

dist(%,S) ≥ p̃(‖a‖)−1. (2.124)

This allows us to lower bound the volume of E(r α
C
) that lies outside the psd states

by an ellipsoid with the same covariance, but radius (2 p̃(‖a‖) maxeig(Σ))−1

Vol
(
E(r α

C
) \ S

)
≥ π

N
2 |Σ|

Γ(N2 + 1)

1

(2p̃(‖a‖) maxeig(Σ))N
(2.125)

(2.126)

Furthermore, we have

Vol
(
E(r+1−α) \ E(r 1−α

C
)
)
= Vol

(
E(r 1−α

C
) \ S

)
(2.127)

since the solid blue and hatched blue regions in Fig. 2.4 must be of same size. We now
relate the volume inequality (2.125) to a lower bound for the mass of the ellipsoid
outside the psd states w.r.t. the Gaussian density: Due to the set of states S having
finite radius

√
2(d−1)

d [Kim03, Eq. (18)], we must have r+α ≤ 2
√
2. Therefore,

P
(
N
2 ,

r+α
2

2

)
− P

(
N
2 ,

r α
C

2

2

)
=

1

(2π)
N
2 |Σ|

1
2

∫
E(r+α )\E(r α

C
)
e−

1
2
‖%−%0‖2dN% (2.128)

≥ e−4

(2π)
N
2 |Σ|

1
2

Vol
(
E(r+α ) \ E(r α

C
)
)

(2.129)

≥ e−4π
N
2 |Σ|

1
2

2
N
2 Γ(N2 + 1)

1

(2p̃(‖a‖) maxeig(Σ))N
(2.130)

=: 2−p(log ‖a‖1)−1 (2.131)

Finally, note that the following crude inequality

P
(
N
2 ,

r+α
2

2

)
− P

(
N
2 ,

r α
C

2

2

)
=

∫ x

y

t
N
2 −1e−t

Γ(N2 + 1)
dt ≤ x− y (2.132)

holds for x ≥ y, since the integrand is less than 1. Therefore, with Eq. (2.131)

r+α
2 − r α

C

2 ≥ 2−p(log ‖a‖1), (2.133)

which proofs the claim.
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We now turn to the problem of computing the normalization constant C for the
restricted Gaussian distribution (2.100). First, we efficiently compute a credibility
α′ ∈ [0, 1] such that the corresponding credible ellipsoid E(rα′

C

) is guaranteed to be
contained in the psd states without knowing the value of C. This allows us to leverage
Eq. (2.106) to compute C.

Lemma 2.26. Let a ∈ Nd be an instance of the number partition problem and
denote by Ea the corresponding encoding ellipsoid as defined by Eq. (2.108). Denote
by Π%0,Σ the Gaussian density, which encodes Ea as an α credible region according to
Lemma 2.24. Then, the ellipsoid E(r) is fully contained in the psd states provided

r ≤

√
d

2(d− 1)

mineig %0√
maxeig Σ

(2.134)

Proof. We know that for any % ∈ E(r) with r fulfilling (2.134) the following inequal-
ities hold

‖%− %0‖ ≤
1√

mineig Σ−1
‖%− %0‖Σ

≤ 1√
mineig Σ−1

r

≤

√
d

2(d− 1)
mineig %0.

Here, we have used mineig Σ−1 = (maxeig Σ)−1, which holds for any positive definite
matrix Σ. Therefore, E(r) ⊆ S due to Lemma 2.18.

Lemma 2.27. Using the same notation as Lem. 2.26 and assuming Prob. 2.20 can
be solved efficiently. Then, for every instance a of the number partition problem con-
sider the corresponding ellipsoid encoding distribution according to Lemma 2.24 with
parameters θ,Σ. Then, we can efficiently approximate the normalization constant C
of Π+

θ,Σ with exponentially small multiplicative error. More precisely, we have

C = C̃(1 + ε), (2.135)

where C̃ can be computed in polynomial time making the correction term ε exponen-
tially small.

Proof. Due to Lemma 2.26 and mineig θ > 0, we can always find an r > 0 such that
E(r) is fully contained in the psd. Indeed, the eigenvalues of θ and Σ are readily
calculated because of their particular simple form in Eq. (2.54) and Lemma 2.24:√

d

2(d− 1)

mineig θ√
maxeig Σ

=
q

R1

√
2d(d− 1)

(2.136)
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Set3

α := P
(
N
2 ,

r2

2

)
. (2.137)

Since we can choose r as small as we want, we may assume that x = r2

2 � 1 < N
2 .

In this regime, we can expand the normalized incomplete Γ-function P in a power
series [GST12]

P
(
N
2 , x

)
=

x
N
2 e−x

Γ
(
N
2 + 1

) ∞∑
k=0

xk(
N
2 + 1

)
k

, (2.138)

where (
N
2 + 1

)
k
=

Γ
(
N
2 + k + 1

)
Γ
(
N
2 + 1

) . (2.139)

Truncating the series in Eq. (2.138) for k ≥ k0

P
(
N
2 , x

)
= Pk0

(
N
2 , x

)
+Rk0

(
N
2 , x

)
, (2.140)

with

Pk0

(
N
2 , x

)
=

x
N
2 e−x

Γ
(
N
2 + 1

) k0∑
k=0

xk(
N
2 + 1

)
k

(2.141)

we can derive a bound on the truncation error Rk0(
N
2 , x) [GST12, Eq. (2.18)]

Rk0(
N
2 , x) ≤

x
N
2 +k0e−x

Γ(N2 + k0 + 1)

N
2 + k0

N
2 + k0 − x− 1

. (2.142)

Since x � 1, the term xk0 ensures that we can make the error in computing α
exponentially small using only polynomial time in evaluating Pk0(

N
2 , x).

Now, assume that we have computed α̃ = α − ε for some truncation error ε =
Rk0(

N
2 , x) > 0. We may now use the postulated efficient algorithm for Prob. 2.20 to

compute the radius of the manifestly positive MVCR r+α̃ and, hence, using Eq. (2.106)
the normalization constant: Since C > 1, we have with rα = r

r α̃
C
= rα−ε

C
< rα =⇒ E(r α̃

C
) ⊆ S =⇒ r α̃

C
= r+α̃ ≤ rα. (2.143)

Therefore, the ellipsoid with radius r+α̃ is also contained in the psd states. The same
holds true if we replace r+α̃ by the actual output r+α̃ ± δ of the postulated efficient
algorithm for Prob. 2.19 Here, δ denotes the accuracy that is part of the input to the

3Note that α does not denote the credibility used for encoding the ellipsoid in question, but an
auxiliary ellipsoid used for computing C here.
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problem of computing r+α̃ . By choosing δ small enough and possibly replacing the
original radius r by r − δ, we can ensure that

E(r+α̃ ± δ) ⊆ S, (2.144)

as well. Therefore, Eq. (2.106) holds and we find

α̃

C
= P

(
N
2 ,

r+α̃
2

2

)
(2.145)

= P

(
N
2 ,

(r+α̃±δ)
2

2

)
− 1

Γ(N2 )

∫ (r+α̃±δ)
2

2

r+α̃
2

2

t
N
2 −1e−tdt. (2.146)

The first addend on the right hand side can be evaluated using the same series
expansion as in Eq. (2.140), since we are in the same regime r+α̃

2

2 �
N
2 . The second

addend can be bounded by∣∣∣∣∣∣∣
1

Γ(N2 )

∫ (r+α̃±δ)
2

2

r+α̃
2

2

t
N
2 −1e−tdt

∣∣∣∣∣∣∣ <
(
2r+α̃ δ + δ2

)
2

(2.147)

since
t
N
2 −1e−t

Γ(N2 )
< 1. (2.148)

Let us assume w.l.o.g. r+α̃ ≤ 1. This bound, as well as the error bound ε′ > 0 for the
finite series-evaluation of P in (2.145) leads to

α̃

C
= Pk0

(
N
2 ,

(r+α̃±δ)
2

2

)
+ ε′ ±Dδ (2.149)

for some appropriate constant D. A little arithmetic gives

C =
α̃

Pk0(. . .)

(
1− ε′ ±Dδ

Pk0(. . .) + ε′ ±Dδ

)
. (2.150)

By assumption we can make both ε′ and δ exponentially small using only polynomial
time Furthermore, Pk0(

N
2 , x) ↑ P (

N
2 , x) for k0 →∞ and the correction to

C̃ =
α̃

Pk0

(
N
2 ,

(r+α̃±δ)
2

2

) (2.151)

in Eq. (2.150) can be made exponentially small using polynomial time. On the other
hand, C̃ can be computed in polynomial time as well.
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We now have all the necessary parts for the proof of the main theorem 2.21, which
concludes this section.

Proof of Thm. 2.21. The proof follows the outline stated in the main text: First, we
encode the ellipsoid of Problem 2.13 to be checked as a MVCR of a Gaussian with
mean %0 and covariance matrix Σ according to Lemma 2.24. Using Lemma 2.27, we
compute an estimate C̃ to the normalization constant C. Using the techniques from
the proof of the aforementioned Lemma, we may compute an estimate

α = C P
(
N
2 , 1

)
= C̃(1 + ε)

(
Pk0

(
N
2 , 1

)
+ ε′

)
= α̃+ ε′′. (2.152)

This can be done for exponential small errors ε, ε′ in polynomial time. Here, the
computable value is given by

α̃ = C̃ Pk0

(
N
2 , 1

)
. (2.153)

An exponential small difference of α and α̃ also implies an exponential small difference
of r+1−α and r+α̃ : Set x := r+α and x̃ := r+α̃ and assume x > x̃ – the opposite case
can be treated along the same lines by choosing a larger constant as a bound for x̃.
Following Eq. (2.131), we have

P
(
N
2 ,

x2

2

)
− P

(
N
2 ,

x̃2

2

)
≥ e−4

(2π)
N
2 |Σ|

1
2

Vol (E(x) \ E(x̃))

=
e−4

2
N
2 Γ(N2 + 1)

(
xN − x̃N

)
.

Since for fixed N , the left hand side can be made exponentially small in polynomial
time by improving α̃, so can the right hand side. Therefore, the difference |x− x̃|
can be made exponentially small as well.

Now, choose the errors ε and ε′ in such a way that

|r+α − r+α̃ | ≤
∆

4
. (2.154)

Here, ∆ = 2−p(log ‖a‖1) is the (at worst exponentially small) gap from Lemma 2.25.
Furthermore, we run the algorithm for computing r+α̃ with precision δ = ∆

4 and
denote the result by r̃. If |r̃ −

√
2| ≤ ∆

2 , we know that r+α = r α
C

and the ellipsoid is
fully contained in the psd states. Otherwise we know that it is not.

2.6. Conclusion & outlook
The goal of this work is to provide an absolute “upper bound” on what we can expect
from algorithms computing error regions for QSE and to demonstrate that there is
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a trade-off between optimality and efficiency. This work should not be understood
as providing a no-go theorem for efficient algorithms in practice. As discussed in
the end of Section 2.2, the negative result of this work does not rule out efficient
algorithms for practically acceptable approximations to optimal regions. Also, there
is no indication that the various approaches used in practice give rise to regions that
are far from optimal or do not have the advertised coverage. The reason our result
leaves room for feasible approaches in practice are twofold: First, like any result
showing NP-hardness, we prove that there is no efficient algorithm solving the exact
problem deterministically for any instance. Hence, our result neither precludes the
existence of efficient approximate or probabilistic algorithms, nor cannot make any
statement about average case hardness. Second, although the experimental effort
necessary for full-fledged QSE scales polynomially in the dimension of the system
– and is, therefore, efficient in the sense of computational complexity – in practice
other characterization techniques such as randomized benchmarking or direct fidelity
estimation become more important for larger dimensions. It should now be the goal
of future work to further close down the gap between existing positive results and
the proven no-go theorems from either side.

More specifically, due to the simplifying assumptions made, we investigate com-
putational intractability that is solely caused by the quantum constraints and not
by the general complications in high-dimensional statistics. In the Bayesian settings
we show that minimal volume (w.r.t. the Hilbert-Schmidt measure) credible regions
for truncated Gaussian posterior distributions are hard to compute. Therefore, the
problem of determining MVCR for QSE cannot be solved efficiently as well, since
any algorithm solving the latter must also be able to solve instances with the specific
prior used in Prob. 2.20.

The result for frequentist confidence regions is somewhat weaker since optimal con-
fidence regions for high-dimensional Gaussian distributions are not known for most
natural notions of optimality. Nevertheless, Gaussian confidence ellipsoids constitute
a viable choice due to their simplicity and tractability. However, our results show
that the constraints imposed by quantum mechanics render the task of characteriz-
ing the confidence regions for the constrained problem computationally intractable –
even under the simplifying assumptions made. Of course, any more general setting
encompassing the Gaussian approximation will be at least as hard to treat as the one
used in this work. Furthermore, it also shows that computing any confidence region
estimator yielding ellipsoids when the constraints are not active (and anything pos-
sibly better when they are) involves solving NP-hard problems.

Recently, the mathematical statistics community has started to analyze the trade-
offs between computational complexity and optimality in inference problems – see
e.g. [BR13a; BR13b; ZWJ14]. Early papers concentrated on the problem of sparse
principal component analysis, which roughly asks whether the covariance matrix of
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a random vector possess a sparse eigenvector with large eigenvalue [BR13a; BR13b;
ZWJ14]. Later works have addressed the much better-studied problem of sparse in-
ference [ZWJ14]. The main difference between these papers and the present one is
that we always condition on a data set and show that certain operations for quanti-
fying uncertainty given the data are hard. This approach is canonical for a Bayesian
analysis, but merely “natural” for frequentist confidence regions (c.f. Section 2.1.1).
In contrast, Refs. [BR13a; BR13b; ZWJ14] analyze the “global” performance of or-
thodox estimators – i.e. they do not require looking at worst-case scenarios over the
data. References [BR13a; BR13b; ZWJ14] achieve this by reducing a certain prob-
lem (“hidden clique”) – that is conjectured to be hard in the average case – to the
sparse PCA problem; while [ZWJ14] employs a more subtle argument involving the
non-uniform complexity class P/poly. It would be very interesting to adapt such
arguments to the problem of quantum uncertainty quantification.

Of course, from the practical point of view, “positive” results – i.e. new algorithms
to solve the problem – would be more beneficial. Here, recent work on sampling
distributions restricted to convex bodies [CV14; CV15] could be a starting point for
further investigations.

Beside quantum state tomography, our results might also be relevant to problems
involving psd constraints such as the estimation of covariance matrices.
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via PhaseLift

Even though photonics is often considered the “ugly duckling” of the approaches to
quantum computing and simulation [Rud17], it has two main advantages over other
approaches: It is inherently robust towards stochastic noise and integrated photonic
devices can be fabricated using present-day fabrication techniques for silicon-based
semi-conductors [Rud17]. Passive and reconfigurable linear optical circuits have
been proposed and demonstrated for many applications including telecommunica-
tions [Mil15], machine learning [She+17] as well as quantum computation [Car+15a]
and simulation [Har+17]. With the continuing development of large-scale integrated
photonic platforms [Sil+16; Seo+16], practical and reliable techniques for character-
izing and validating the operation of these devices are crucial. Here, characterization
refers to the problem of recovering a full mathematical description of the linear optical
devices in terms of its transfer matrix M from measurable quantities.

In this chapter, we propose an efficient, robust, and conceptually simple technique
for characterizing linear optical circuit by exploiting a connection to the phase re-
trieval problem [Wal63]. Not only do we adapt existing results from phase retrieval
and low-rank matrix recovery to the problem of characterizing linear-optical net-
works, we also propose a measurement ensemble tailored to this specific application.
To present the rigorous analysis of both approaches, we develop a unified proof strat-
egy. Besides having these stringent recovery guarantees, the PhaseLift reconstruction
algorithm proposed here is robust to noise and efficient with respect to the number
of measurements.

Well-known techniques for characterizing linear optical circuits include quantum
process tomography with non-classical [OBr+04] or coherent [Rah+11] states, though
the sample complexity of these approaches scales exponentially with the number of
modes. Simpler protocols tailored to linear optics have been proposed that use either
single and two-photon probe states [LO12; Dha+16; Spa+17] or multimode coher-
ent states [Rah+13; TSW16]. The most similar scheme to the one presented here
is [Rah+13], where coherent light is input into single modes and split over pairs of
modes with the intensity at each output measured. While their recovery method is
strikingly simple and relies only on 2n − 1 input configurations, for each configu-
ration it requires varying over a phase shift between the two modes until maximal
constructive interference is observed. Hence, the experiment needs to be performed
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interactively, where the phase shift is adjusted gradually throughout an individual
measurement, or a large number of phase shifter settings need to be probed. Both
alternatives require a large number of measurements to be performed in order to
recover M successfully. Furthermore, by construction, the protocol from [Rah+13]
utilizes the obtained reconstruction of the first row to recover the remaining rows of
M . This makes it a priori susceptible towards noise as any error in the determination
of the first row propagates to the remaining rows.

This chapter is structured as follows: In Section 3.1, we recapitulate the funda-
mental problem of characterizing linear optical devices using either coherent states
of light or single photon states. Section 3.2 is concerned with introducing the funda-
mental problem of phase retrieval. Section 3.3 contains the main theoretical results
of this work, namely the proposed measurement scheme, the related recovery guar-
antees for the PhaseLift reconstruction algorithm as well as the characterization of
linear-optical networks via PhaseLift. We present results from numerical and exper-
imental investigation in Section 3.4. Section 3.5 concludes this chapter and provides
an outlook on possible future work.

3.1. Device characterization
Mathematically, a linear optical device is fully characterized by its transfer matrix,
which relates the output to the input of the device by

a†j → b†j =
∑
i

Mi,ja
†
i. (3.1)

Here, a†j and b†j denote the creation operators of the j-th input and output mode,
respectively. Determining M experimentally is the crucial step to validate and verify
a linear optical circuit. For this purpose, we propose a protocol that can be im-
plemented easily in an experiment using either classical laser light or single photon
sources. We first introduce the former approach as it is conceptually simpler.

For now, we assume that the input is described by a classical multi-mode coherent
state |α〉 = |α1, . . . , αn〉 with

|α〉 = e−
‖α‖`2

2

∑
k1,...,kn

αk1
1 . . . αkn

n√
k1! . . . kn!

|k1〉 . . . |kn〉. (3.2)

Then, due to Eq. (3.1), the output is a coherent state |β〉 as well and its components
are given by

βj =
∑
k

Mj,k αk. (3.3)
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Note that for an ideal, unitary transfer matrix, ‖α‖`2 = ‖β‖`2 as the squared norm
of a coherent state vector describes its total intensity. The standard measurable
quantities in an optical experiment with coherent states are the intensities of the
output modes

Ij(α) = |βj |2 + εj =

∣∣∣∣∣∑
k

Mj,k αk

∣∣∣∣∣
2

+ εj (3.4)

for certain coherent inputs |α〉. Here, εj describes noise due to statistical fluctuations
or systematic errors. A schematic of such an experiment is depicted in Fig. 3.1 a).
Although the output coherent states (3.3) are linear in M , the resulting intensity
measurements (3.4) are quadratic in M and oblivious to the phases of β. Therefore,
the problem of reconstructing M from such measurements is ill-posed and requires
deliberate utilization of interference between the modes to recover the phases of M .

We propose an approach for recovering M from the measurements (3.4) with the
coherent states α sampled randomly from appropriate distributions. Preparing theses
states reliably is the major challenge of implementing the proposed protocol experi-
mentally. A first experimental demonstration is performed using the universal linear
optics device from [Car+15a]: The silica-on-silicon device performs a linear-optical
circuit comprising 30 directional couplers and 30 tunable thermo-optic phase-shifters
on six optical waveguides. Using the setup outlined in Fig. 3.1, we are able to pre-
pare any coherent input state from a single laser input in the bottom mode using
the left-most cascade of couplers and phase-shifters. The remaining triangular array
of components colored blue in Fig. 3.1 is then sufficient to implement any five mode
unitary transfer matrix M [Rec+94]. Reconfiguring the target M then enables us to
experimentally test the protocol across a number of configurations including Identity,
Swap, and Fourier matrices as well as Haar random unitaries.

To prepare an arbitrary coherent state |α̃〉 experimentally, we use the red colored
cascade of couplers and phase-shifters in Fig. 3.1: First, we input a single laser with
intensity ‖α̃‖2 in the first mode, which is mathematically described by the coherent
state |‖α̃‖e1〉. Here, e1 denotes the first canonical basis vector. Then, the couplers
and phase-shifters in the left-most cascade are set in such a way to implement a
transfer matrix P (α) with

α̃ = P (α)(‖α̃‖e1). (3.5)

Note that due to linearity, P can only depend on the normalized coherent label
α = α̃

‖α̃‖ . Therefore, for the proposed preparation scheme, it is beneficial to consider
ensembles of coherent states with fixed norm as it allows for keeping the input laser at
constant intensity. Alternatively, we could redirect parts of the light in the topmost,
unobserved mode, which is challenging when the required ‖α̃‖ varies a lot.
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Although performing recovery ofM using only classical sources of light and photo-
diodes simplifies the experiment, it also has a large drawback in practice: Our main
motivation for studying linear optical devices is their application in quantum com-
puting, which requires the use of single-photon sources. However, readily available
laser and single photon sources often have slightly different characteristics such as
wavelength or polarization. Since the properties of the components, and therefore,
also the transfer matrix are generally dependent on these characteristics, a charac-
terization using coherent light is generally unsuitable for predicting the performance
of the device when used with single photon sources. Instead, the device should be
evaluated under the same experimental conditions under which it will be used. For
this purpose, we now turn to an experimental implementation of the idea introduced
above based on single-photon sources and detectors.

The idea is to estimate the outcomes of the intensity measurements (3.4) using
single photon states: If we set the preparation stage to P (α), but feed a single
photon Fock state in the bottom waveguide, the prepared state prior to M is

|ψ(α)〉 =
∑
j

αjaj
†|0〉, (3.6)

where |0〉 denotes the vacuum state. For |ψ(α)〉 to be well-normalized, we need to
choose ‖α‖`2 = 1. The probability of measuring the photon at detector j is then
given by

pj = P(j|α) =

∣∣∣∣∣∑
k

Mj,kαk

∣∣∣∣∣
2

. (3.7)

Hence, finite-sample frequency estimates of the probabilities (3.7) are equivalent to
the noisy intensity measurements (3.4). Note that α is now simply a parameter vector
for the achievable single-photon Fock states (3.6).

To estimate the probabilities (3.7), we subsequentially feed N single photon Fock
states into the device such that they do not interfer with each other. Then, the
photon counting statistics is governed by a multinomial distribution, i.e.

P(N1, . . . , Nn|α) =
N !

N1! . . . Nn!
pN1
1 × · · · × p

Nn
n δN1+···+Nn,N . (3.8)

Here the right hand side is the probability of simultaneously measuring Nj photons
in the j-th mode for j = 1, . . . , n.

3.2. Phase retrieval
The crucial observation of this work is that measurements (3.4) closely resemble the
model of the phase retrieval problem, i.e. the problem of recovering a complex vector

56



3.2. Phase retrieval

Figure 3.1.: Schematic of PhaseLift characterization protocol and experiment. a)
Protocol summary using coherent states: A calibrated and trusted opti-
cal network is used to prepare multimode coherent states |α〉, sampled
from an appropriate ensemble. These states are then fed into the un-
known linear optical device described by the transfer matrix M , and
the intensities at each output mode are measured. b) Experimental im-
plementation using single photon sources: Heralded single photons are
injected into the bottom waveguide of a six-mode integrated photonic
device. A cascade of Mach-Zehnder interferometers is used to prepare
single-photon states |ψ(α)〉 over the bottom five modes of the device.
The remainder of the device is used to implement arbitrary 2, 3 and 5
dimensional unitary transformations which are to be characterized. Each
output port is coupled to a single photon detector.
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3. Characterizing linear-optical networks via PhaseLift

x ∈ Cn from m intensity measurements of the form

y(l) =
∣∣∣〈α(l), x〉

∣∣∣2 + ε(l) l = 1, . . . ,m. (3.9)

Here, α(l) ∈ Cn denote measurement vectors and ε(l) the additive measurement errors.
The major difficulty in recovering x from these intensity measurements is the loss
of phase information. In order to infer the phase information, we need to exploit
interference effects by carefully selecting different measurement vectors. Note, x can
only be recovered up to a global phase since x and eiφx are indistinguishable from
the measurements (3.9) for any phase angle φ.

One practical solution to the phase retrieval problem is based on its connection to
the field of low-rank matrix recovery. The quadratic measurements of x in Eq. (3.9)
can be rewritten as ∣∣∣〈x, α(l)〉

∣∣∣2 = tr
(
(|α(l)〉〈α(l)|)(|x〉〈x|)

)
. (3.10)

This “lifts” the phase retrieval problem to the problem of recovering the positive
semi-definite (psd) rank-1 matrix |x〉〈x| from linear measurements. Note that an
efficient solution to this problem needs to exploit the low-rank constraint, as we have
embedded the low-complexity signal |x〉〈x| into a n2 dimensional ambient space. This
problem – and its generalization to arbitrary low-rank matrices – has been studied
extensively in the field of low-rank matrix recovery, see e.g. [ARR14; CR09; CP11;
RFP10; Gro11; Che15] for a highly incomplete list of references.

The fundamental idea is to find the matrix Z with the smallest rank that is com-
patible with the observations. As an example, consider the idealized noiseless case
of Eq. (3.9), i.e. ε(l) = 0. Then, we can reconstruct |x〉〈x| using the following rank-
minimization problem

minimize
Z

rankZ

subject to tr
(
|α(l)〉〈α(l)|Z

)
= yl (l = 1, . . . ,m)

(3.11)

provided the α(l) suffice to single out |x〉〈x|. However, rank minimization is NP-hard
in general [BV04], and therefore, Eq. (3.11) cannot be solved efficiently. Nevertheless,
there are algorithms for recovering |x〉〈x| that are computationally efficient with only
a slight overhead in the sample complexity. Here, we consider the following convex
algorithm termed PhaseLift [CSV13]

minimize
Z

m∑
l=1

∣∣∣tr(|α(l)〉〈α(l)|Z
)
− y(l)

∣∣∣
subject to Z ≥ 0.

(3.12)
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From the minimizer Z] of Eq. (3.12), we obtain the recovered signal vector x] as
follows: Consider the eigenvalue decomposition of Z]

Z] =
∑
i

λi|zi〉〈zi| (3.13)

with ‖zi‖`2 = 1 and λ1 ≥ λ2 ≥ . . . λn. Then, we set

x] =
√
λ1z1. (3.14)

Several analytic proofs of convergence have been established for phase retrieval
via PhaseLift. With few notable exceptions [Kec16], these are probabilistic in nature
and assume that each measurement vector is chosen from an appropriate distribution.
Probabilistic in this context means that we allow for a small probability w.r.t. the
random sampled measurement vectors of failing to reconstruct x. Paradigmatic ex-
amples are the Gaussian and the uniform (spherical) measurement ensemble [CSV13]:
In case of the Gaussian ensemble, the components α(l)

i of the measurement vectors
are i.i.d. standard complex Gaussian random variables. In the uniform scheme, the
α(l) are chosen uniformly from the complex unit sphere. The two are closely related,
as the latter arises by normalizing all Gaussian vectors to a fixed length. However,
these two measurement ensembles are often too demanding for practical applications,
which led to a large body of work proving similar recovery guarantees for measure-
ment ensembles that feature less randomness [GKK15b; KRT17; KRT17; KZG16] or
additional structure tailored to specific applications [CSV13; GKK17; Vor13; Kue15].
The main result of this chapter presented in the next section is of this type.

3.3. Theory
The main theoretical contribution of this chapter is a recovery guarantee for a mea-
surement ensemble motivated by the experimental architecture of linear optical de-
vices: The randomly erased complex Rademacher (RECR) ensemble defined below
is easier to implement experimentally by the circuit depicted in Fig. 3.1 than e.g.
the uniform ensemble. In Section 3.3.1, we introduce this sampling scheme and show
that it can be used for phase retrieval. The main technical proof related to the pre-
vious section can be found in Section 3.3.2. Section 3.3.3 is concerned with applying
the ideas from phase retrieval to the problem of recovering transfer matrices of lin-
ear optical circuits. We also discuss the advantages of the RECR ensemble for our
particular application in this section.

3.3.1. The RECR ensemble
The uniform ensemble introduced in Section 3.2 is well-suited for theoretical analysis.
However, this sampling scheme places high demands on practical implementations as
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3. Characterizing linear-optical networks via PhaseLift

it necessitates the ability to prepare any input state |α〉 with α from the complex
unit sphere. Therefore, we propose an alternative measurement ensemble that lends
itself better to implementations in linear optics: For p ∈ [0, 1], we define a randomly
erased complex Rademacher (RECR) random variable a to be distributed according
to

a =



+1 with prob. p/4
+i with prob. p/4
0 with prob. 1− p
−i with prob. p/4
−1 with prob. p/4

. (3.15)

Here, the constant 1 − p is referred to as the erasure probability. For the (unnor-
malized) RECR measurement model, we sample the components α(l)

k of the input
vectors α(l) according to Eq. (3.15). We also consider the normalized version below.
Since there are only four different values for the phases of the components (3.15), the
RECR scheme is easier to implement experimentally as we discuss in Section 3.3.3.

Note that a non-zero erasure probability is crucial for phase retrieval as the follow-
ing example shows: Denote by ej the canonical basis vectors. For p = 1, the complex
Rademacher measurement vectors cannot distinguish between the signals x = e1 and
x = e2 from measurements (3.9) even in the idealized noiseless case ε(l) = 0.

The rest of this section is devoted to proving recovery guarantees for the RECR
ensemble for phase retrieval via PhaseLift (3.12). In order to be more self-contained,
we also provide recovery guarantees for the Gaussian and uniform ensembles, which
are well known [CL14; DH14]. For this purpose, we develop a unified proof strategy
inspired by Ref. [DLR16], who derived strong result for sparse vector recovery using
similar assumptions, and Ref. [Kab+16] in the non-commutative setting. In the
following we consider ensembles of measurement vectors α that satisfy the following
moment conditions.

Definition 3.1. A random vector α ∈ Cn is said to be attentive if there are positive
constants CI, CSI, and CSG such that the following conditions are satisfied.

• Isotropy on Cn: for every z ∈ Cn

E
[
|〈α, z〉|2

]
= CI‖z‖2`2 (3.16)

• Sub-Isotropy on Hn: denote by Hn the set of all Hermitian n × n matrices.
Then, we the following condition should hold for every Z ∈ Hn

E
[
〈α,Zα〉2

]
≥ CSI‖Z‖22 (3.17)
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• Sub-Gaussian tail behavior: For every normalized z ∈ Cn (‖z‖`2 = 1), |〈α, z〉|
is sub-Gaussian in the sense that its moments obey

E
[
|〈α, z〉|2N

]
≤ CSGN ! N ∈ N. (3.18)

The following proposition shows that these conditions are satisfied by the unnor-
malized Gaussian and RECR ensembles as well as the normalized uniform ensemble.
However, we do not have a proof that the practically relevant normalized RECR
ensemble is attentive. Therefore, we are going to treat it separately below.

Proposition 3.2. The following measurement ensembles are attentive according to
Definition 3.1:

1. Gaussian sampling scheme: α ∈ Cn chosen from the standard complex normal
distribution N (0, 121n) + iN (0, 121n). In this case

CI = CSI = CSG = 1. (3.19)

2. Uniform sampling scheme: α ∈ Cn chosen uniformly from the complex sphere
with radius

√
n. In this case

CI = 1, CSI =
n

n+ 1
, CSG =

N−1∏
k=1

n

n+ k
≤ 1. (3.20)

3. (unnormalized) Randomly Erased Complex Rademacher (RECR) sampling scheme:
the components of α ∈ Cn are chosen independently from the distribution (3.15).
The constants depend only on the erasure probability 1− p ∈ [0, 1]:

CI = p, CSI = pmin {p, 1− p} , CSG = e
3
2 . (3.21)

Proof. For case 1, consider α ∈ Cn be a standard (complex) Gaussian vector and
fix any z ∈ Cn. Then, the random variable 〈α, z〉 is an instance of a standard
(complex normal) random variable a =

‖z‖`2√
2

(aR + iaI) with aR, aI ∼ N (0, 1). In

turn, |a|2 =
‖z‖2`2

2 (a2R + a2I) is a rescaled version of a χ2-distributed random variable
with two degrees of freedom. The moments of such a random variable are well-known
and we obtain

E(|〈α, z〉|2N ) =

(
‖z‖`2√

2

)N

× 2NN ! = ‖z‖N`2N ! . (3.22)

From this, we can readily infer CSG = 1, and the special case N = 1 yields CI = 1.
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For the remaining expression, use an eigenvalue decomposition Z =
∑d

k=1 ζk|z(k)〉〈z(k)|
(with normalized eigenvectors z(k) ∈ Cn) and note that the random variables |〈a, z(1)〉|,. . .,
|〈a, z(n)〉| are independently distributed and obey Eq. (3.22). Consequently:

E
[
tr (AZ)2

]
=E

( d∑
k=1

ζk|〈α, z(k)〉|2
)2
 (3.23)

=
∑
k 6=l

ζkζlE
[
|〈α, z(k)〉|2

]
E
[
|〈a, z(l)〉|2

]
+

d∑
k=1

ζ2kE
[
|〈a, z(k)〉|4

]
(3.24)

=
∑
k 6=l

ζkζl‖z(k)‖2`2‖z
(l)‖2`2 + 2

d∑
k=1

ζ2k‖z(k)‖4`2 =
d∑

k,l=1

ζkζl + 2
d∑

k=1

ζ2k

(3.25)
=tr(Z)2 + tr(Z2) ≥ ‖Z‖22, (3.26)

which implies CSI = 1.

Now consider the case 2, where α is chosen uniformly from the complex sphere
with radius

√
n. This in turn implies that the distribution of α ∈ Cn is invariant

under arbitrary unitary transformations. Techniques from representation theory –
more precisely: Schur’s Lemma – then imply

E
[
(|α〉〈α|)⊗N

]
= nN

(
n+N − 1

N

)−1

P∨N , (3.27)

see e.g. [Sco06, Lemma 1]. Here, P∨N , denotes the projector onto the totally symmet-
ric subspace

∨
N ⊆ (Cn)⊗N . Note that (|z〉〈z|)⊗N ∈

∨
N and, moreover 2tr

(
P∨2Z2

)
=

‖Z‖22 + tr(Z)2 for any matrix Z, see e.g. [KZG16, Lemma 17]. Consequently,

E
[
|〈α, z〉|2

]
=tr (|z〉〈z|E [|α〉〈α|]) = tr (|z〉〈z|I) = ‖z‖2`2 , (3.28)

E
[
〈α|Z|α〉2

]
=tr

(
E
[
(|α〉〈α|)⊗2

]
Z⊗2

)
=

n

n+ 1

(
‖Z‖22 + tr(Z)2

)
≥ n

n+ 1
‖Z‖22,

(3.29)

E
[
|〈α, z〉|2N

]
=tr

(
E
[
(|α〉〈α|)⊗N

]
(|z〉〈z|)⊗N

)
= nN

(
n+N − 1

N

)−1

‖z‖2N`2 (3.30)

=N !
nN (n− 1)!

(n+N − 1)!
≤ N !, (3.31)

which implies CI = 1, CSI =
n

n+1 and CSG = 1.
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Finally, consider the case 3, with α sampled from the unnormalized RECR ensem-
ble. Let αk = 〈ek, α〉, where e1, . . . , en is the orthonormal basis with respect to which
the RECR vector is defined. Theses components obey E [αk] = E [α∗

k] = 0, as well as
E
[
|αk|2

]
= p. For any z ∈ Cn we then have

E
[
|〈α, z〉|2

]
=

n∑
i,j=1

E [α∗
iαj ] 〈ei|z〉〈z|ej〉 = p

n∑
i=1

|〈ei, z〉|2 = p‖z‖2`2 . (3.32)

Now, Fix Z ∈ Hn and compute

E
[
〈α|Z|α〉2

]
=
∑
i,j,k,l

E
[
ᾱiαjα

′
k
∗
α′
l

]
〈ei|Z|ej〉〈ek|Z|el〉 (3.33)

=
∑
i

E
[
|αi|4

]
〈ei|Z|ei〉2 +

∑
i 6=k

E
[
|αi|2|αk|2

]
(〈ei|Z|ei〉〈ek|Z|ek〉+ 〈ei|Z|ek〉〈ek|Z|ei〉)

(3.34)

=p
n∑

i=1

〈ei|Z|ei〉2 + p2
∑
i 6=k

(〈ei|Z|ei〉〈ek|Z|ek〉+ 〈ei|Z|ek〉〈ek|Z|ei〉)

(3.35)

=p2
n∑

i,k=1

(〈ei|Z|ei〉〈ek|Z|ek〉+ 〈ei|Z|ek〉〈ek|Z|ei〉) + p(1− 2p)
n∑

i=1

〈ei|Z|ei〉2

(3.36)

=p2
(
tr(Z)2 + ‖Z‖22

)
+ p(1− 2p)

n∑
i=1

〈ei|Z|ei〉2 (3.37)

≥p2‖Z‖22 + p(1− p)
n∑

i=1

〈ei|Z|ei〉2 (3.38)

To proceed, we consider the following two cases:

p ≤ 1/2 : This implies p(1− 2p) ≥ 0 and consequently

E
[
〈α|Z|α〉2

]
≥ p2‖Z‖22. (3.39)

p ≥ 1/2 : Use
∑n

i=1〈i|X|i〉2 ≤ ‖X‖22 to conclude

E
[
〈α|Z|α〉2

]
≥ (p2 − p|1− 2p|)‖Z‖22 = p(1− p)‖Z‖22. (3.40)

This shows that the RECR example is sub-isotropic on Hn.
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Finally, fix z ∈ Cn with ‖z‖`2 = 1 and note that |αk| ≤ 1 together with the
independence of αk, αl for k 6= l implies

E
[
exp

(
|〈α, z〉|2

)]
=E

 n∏
k=1

exp
(
|αk|2|zk|2

)∏
k 6=l

exp (α∗
kαlz

∗
kzl)


≤ exp

(
‖z‖2`2

)∏
k 6=l

E [exp (α∗
kαlz

∗
kzl)] . (3.41)

Now note that for k 6= l, α∗
kαl is again a RECR random variable α̃k,l, but with erasure

probability 1−p2. Moreover, every RECR random variable α can be decomposed into
the product of two independent random variables: α = ηω, where η is a Rademacher
random variable and ω ∈ {0, 1, i} obeys |ω| ≤ 1. Consequently

E [exp (ᾱkαlz̄kzl)] =E [exp (α̃k,lz̄kzl)] = Eω [Eη [ηωz̄kzl]] = Eω [cosh (ωz̄kzl)] (3.42)

≤Eω

[
exp

(
|ωz̄kzl|2/2

)]
≤ exp

(
|zk|2|zl|2

2

)
, (3.43)

where we have used the standard estimate cosh(x) ≤ exp
(
|x|2/2

)
∀x ∈ C, as well as

|ω| ≤ 1. Inserting this bound into (3.41) yields

E
[
exp

(
|〈α, z〉|2

)]
≤ exp

(
‖z‖22

)∏
k 6=l

exp

(
|zk|2|zl|2

2

)
≤ exp

(
‖z‖22 +

1

2
‖z‖4`2

)
= e

3
2 ,

(3.44)

because ‖z‖`2 = 1. Markov’s inequality shows that this exponential bound implies a
subexponential tail bound for the random variable |〈α, z〉|2:

P
[
|〈α, z〉|2 ≥ t

]
=P
[
exp

(
|〈α, z〉|2

)
≥ exp (t)

]
≤

E
[
exp

(
|〈α, z〉|2

)]
exp(t)

≤ e
3
2
−t. (3.45)

This in turn implies the following bound on the moments:

E
[
|〈α, z〉|2N

]
= N

∫ ∞

0
P
[
|〈α, z〉|2 ≥ t

]
tN−1dt ≤ Ne

3
2

∫ ∞

0
e−ttN−1dt = e

3
2N !,

(3.46)

where we have used a well-known integration formula for moments, see e.g. [FR13,
Prop. 7.1], as well as integration by parts.

The conditions in Definition 3.1 naturally appear in the proof of the following
theorem, which is the fundamental technical part of this work. It is used to provide
rigorous recovery guarantees for phase retrieval via PhaseLift.
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Proposition 3.3. Suppose that m = Cn vectors α(1), . . . , α(m) ∈ Cn have been
chosen independently at random from an attentive ensemble. Let Z ≥ 0 and x ∈ Cn.
Then, the measurement operator

A(Z) =
∑
l

tr
(
|α(l)〉〈α(l)|Z

)
el (3.47)

satisfies

‖Z − |x〉〈x|‖2 ≤
1

m
max

{
τ,

6

ν

}
‖A (Z − |x〉〈x|)‖`1 . (3.48)

with probability at least 1− 3e−γm. Here, C and γ denote suitable positive constants.

Note that the measurement operator notation (3.47) is simply a shorthand for

y(l) = 〈α(l), Zα(l)〉 (l = 1, . . . ,m). (3.49)

We postpone the proof of this proposition to Section 3.3.2. Instead, we consider a
slight generalization of the properties in Definition 3.1, which are the most general
class of measurement ensembles we consider in this work.

Definition 3.4. We say that a random vector α ∈ Cn is super-attentive, if there is
an attentive random vector α̃ and a function fCn → R with f(α̃) ≥ 1 almost surely
such that α = f(α̃) : α̃.

The main example of a super-attentive distribution in this work is a normalized
RECR vector with length

√
n. Denote by α̃ an unnormalized RECR vector and set

f(α̃) =
√
n/‖α̃‖`2 , then

α = f(α̃)α̃ (3.50)

is a normalized RECR vector. Note that every attentive random vector is super-
attentive trivially.

Let us now state the central result of this section, namely a recovery guarantee
for super-attentive measurement ensembles. The following theorem is a substan-
tial generalization of existing results regarding Gaussian and uniform measurement
ensembles [CL14; DH14].

Theorem 3.5. Suppose that m = Cn vectors α(1), . . . , α(m) ∈ Cn have been chosen
independently at random from a super-attentive ensemble. Then, the optimizer X]

of the convex program (3.12) satisfies

∥∥∥X] − |x〉〈x|
∥∥∥
2
≤
C ′‖ε‖`1
m

. (3.51)
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with probability at least 1− 3e−γm for some constant γ > 0. Here, ‖ · ‖2 denotes the
Hilbert-Schmitt norm ‖Z‖22 = tr

(
ZZ†), while C,C ′ and γ represent constants of suffi-

cient size. Furthermore, ‖ε‖`1 is a bound on the total noise of all measurements (3.9)

‖ε‖`1 =
m∑
l=1

|ε(l)|. (3.52)

Proof of Theorem 3.5. Denote by α̃(l) the attentive vector corresponding to α(l) and
by f the scaling function from Definition 3.4. Then, the measurements outcomes y(l)
can be mapped to measurement outcomes of α̃(l) by

ỹ(l) :=
1

f(α̃)2
y(l) =

∣∣∣〈α̃(l), x〉
∣∣∣2 + ε̃(l). (3.53)

with the rescaled error vectors given by

ε̃(l) =
1

f(α̃)2
ε(l). (3.54)

Now, Proposition 3.3 implies that a measurement operator Ã containing m ≥ Cn
measurements sampled from an attentive distribution satisfies Eq. (3.48) with prob-
ability at least 1 − 3e−γm. Conditioned on this event, we have for any Z ≥ 0 and
x ∈ Cn

‖Z − |x〉〈x|‖2 ≤
C ′

2m

∥∥∥Ã(Z)− ỹ + ε̃
∥∥∥
`1
≤ C ′

2m

(
‖ε̃‖`1 + ‖Ã(Z)− ỹ‖

)
, (3.55)

with C ′ = 2max {τ, 6/ν}. For the first summand, we have.

‖ε̃‖`1 =
∑
l

∣∣∣∣∣ 1

f(α̃(l))
2 ε

(l)

∣∣∣∣∣ ≤ ‖ε‖`1 (3.56)

since f(α̃(l)) ≥ 1. For the second summand on the right hand side of Equation (3.55),
the same argument gives

‖Ã(Z)− ỹ‖`1 =
∑
l

∣∣∣〈α̃(l), Zα̃(l)〉 − ỹ(l)
∣∣∣ (3.57)

=
∑
l

1

f(α̃(l))
2

∣∣∣〈α(l), Zα(l)〉 − y(l)
∣∣∣ (3.58)

≤ ‖A(Z)− y‖`1 (3.59)

PhaseLift – the convex optimization problem (3.12) – minimizes the right hand side
of this bound over all Z ≥ 0. Since Z = |x〉〈x| is a feasible point of this optimization,
we can conclude that the minimizer Z] obeys

‖A(Z])− y‖`1 ≤ ‖A(|x〉〈x|)− y‖`1 = ‖ε‖`1 (3.60)

which concludes the proof.
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The constants C, C ′, and γ implicitly depend on the ensemble constants CI, CSI,
and CSG and can in principle be extracted from the proof. Note that although we are
recovering |x〉〈x|, which is embedded in the n2 dimensional space of all n×n matrices,
the demand on the number of measurements m in Theorem 3.5 scales linearly in the
original problem’s dimension n. This is optimal up to the constant multiplicative
factor C. Analytical bounds on this constant C are usually too pessimistic to be
practical and it is widely believed that m = 4n − 4 such measurements are actually
sufficient, that is C = 4 + o(n) [HMW13].

Recall from Eq. (3.14) that we obtain the recovery of the signal vector x] from the
minimizer X] of the PhaseLift program Eq. (3.12) via an eigenvalue decomposition.
In [CL14] it was shown that Eq. (3.51) implies

min
0≤φ≤2π

‖x] − eiφx‖`2 ≤ C ′′ ‖ε‖`1
m‖x‖`2

, (3.61)

where C ′′ denotes another constant of sufficient size. In words, we are able to recover
the original signal x up to a global phase and up to an error that is determined by
the signal-to-noise ratio.

3.3.2. Proof of Proposition 3.3
In this section we present a proof for the fundamental Proposition 3.3. Our analysis
is inspired by Ref. [DLR16] (who derived strong results for sparse vector recovery us-
ing similar assumptions) and Ref. [Kab+16] in the non-commutative setting. More-
over, Krahmer and Liu considered a real-valued version of the problem addressed
here [KL18].

Our analysis is based on two fundamental results in random matrix theory. First,
the assumption of subgaussian tails (3.18) implies strong bounds on the operator
norm of matrices of the form

∑m
k=1 |α(l)〉〈α(l)|:

Theorem 3.6 (Variant of Theorem 5.35 in [Ver10]). Suppose that α(1), . . . , α(m) are
independent copies of a subgaussian random vector obeying Eq. (3.18) with constant
CSG. Let

H̃ =
1

m

m∑
k=1

(
ak|α(l)〉〈α(l)| − E

[
ak|α(l)〉〈α(l)|

])
, (3.62)

where ak ∈ C and |ak| ≤ 1. Then,

P
[
‖H̃‖2→2 ≥ t

]
≤

{
2 exp

(
2 ln(3)n− mt2

8CSG

)
0 ≤ t ≤ 2CSG,

2 exp
(
2 ln(3)n− m

2 (t− CSG)
)

t ≥ 2CSG,
(3.63)

where ‖ · ‖2→2 denotes the operator norm.
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The second result is a generalization of “Gordon’s escape through a mesh”-Theorem
[Gor88] (a random subspace avoids a subset provided the subset is small in some
sense). The version we use here is due to Mendelson [Men14; KM15], see also see
also [Tro15].
Theorem 3.7 (Mendelson’s small ball method). Suppose that the measurement op-
erator A : Hn → Rm contains m independent copies A(l) of a random matrix A ∈ Hn,
that is

A(Z) =
m∑
l=1

tr(A(l)Z) el (3.64)

with el denoting the l-th canonical basis vector. For D ⊆ Hn and ξ > 0 define

Qξ(D,A) = inf
Z∈D

P
[
| tr(A(l)Z)| ≥ ξ

]
(marginal tail funtion), (3.65)

Wm(D,A) = 2E
[
sup
Z∈D

tr (ZH)

]
(mean empirical width), (3.66)

where

H =
1√
m

m∑
l=1

ηlA
(l). (3.67)

Here, the ηl are independent Rademacher random variables, i.e. P(ηl = 1) = P(ηl =
−1) = 1

2 . Then for any ξ > 0 and t > 0

1√
m

inf
Z∈D
‖A(Z)‖`1 ≥ ξ

√
mQ2ξ(D,A)−Wm(D,A)− ξt (3.68)

with probability at least 1− e−2t2.
The following two propositions summarize several results presented in [Kab+16]

and adapt them to the problem of phase retrieval.
Proposition 3.8. Let Sn2−1 = {Z ∈ Hn : ‖Z‖2 = 1} be the (Frobenius norm) unit
sphere and B1 = conv

{
±|x〉〈x| : x ∈ Sn−1

}
the trace-norm ball in Hn. Define

D := Sd2−1 ∩ 3B1. (3.69)

Also, let A(Z) =
∑m

l=1 tr(A
(l)Z) el be a measurement operator that obeys

τ

m
‖A(Z)‖`1 ≥‖Z‖2 ∀Z ∈ D (3.70)

‖ 1

νm

m∑
l=1

A(l) − I‖∞ ≤
1

6
(3.71)

for some τ, ν > 0. Then, the following relation holds for any Z ≥ 0 and any |x〉〈x|:

‖Z − |x〉〈x|‖2 ≤
1

m
max

{
τ,

6

ν

}
‖A (Z − |x〉〈x|)‖`1 . (3.72)
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Proof. In the proof we will frequently use the decomposition Z = Z1 + Zc for Z
with eigenvalue decomposition Z =

∑n
k=1 λk|z(k)〉〈z(k)|. Assuming λ1 ≥ . . . ≥ λn,

Z1 = λ1|z(1)〉〈z(1)| is the leading rank-one component and Zc = Z − Z1 is the “tail”.
Note that, in particular, Z = Z1 if and only if Z has unit rank. Equation (3.72) is
invariant under re-scaling, so we may w.l.o.g. assume ‖Z−|x〉〈x|‖2 = 1. We treat the
following two cases separately:

I.) ‖(Z − |x〉〈x|)1‖1 ≥
1

2
‖(Z − |x〉〈x|)c‖1, (3.73)

II.) ‖(Z − |x〉〈x|)1‖1 <
1

2
‖(Z − |x〉〈x|)c‖1. (3.74)

Note that I.) implies

‖Z − |x〉〈x|‖1 ≤‖(Z − |x〉〈x|)1‖1 + ‖(Z − |x〉〈x|)c‖1 ≤ 3‖(Z − |x〉〈x|)1‖1 (3.75)
=3‖(Z − |x〉〈x|)1‖2 ≤ 3‖Z − |x〉〈x|‖2 = 3 (3.76)

which in turn implies that Z − |x〉〈x| is contained in 3B1. Thus, (3.70) is applicable
and yields

‖Z − |x〉〈x|‖2 ≤
τ

m
‖A(Z − |x〉〈x|)‖`1 (3.77)

which establishes Eq. (3.72) for the case (3.73).

For the second case, we use a consequence of von Neumann’s trace inequality, see
e.g. [HJ94, Theorem 7.4.9.1]: Let A,B be matrices with singular values σk(A), σk(B)
arranged in non-increasing order. Then

‖A−B‖1 ≥
n∑

k=1

|σk(A)− σk(B)| (3.78)

This relation implies

‖Z‖1 =‖|x〉〈x| − (|x〉〈x| − Z)‖1 ≥
n∑

k=1

|σk(|x〉〈x|)− σk(|x〉|〈x| − Z)| (3.79)

≥σ1(|x〉〈x|)− σ1 (|x〉〈x| − Z) +
n∑

k=2

σk (|x〉〈x| − Z) (3.80)

=‖|x〉〈x|‖1 − ‖(|x〉〈x| − Z)1‖1 + ‖(|x〉〈x| − Z)c‖1 (3.81)

>‖|x〉〈x|‖1 +
1

2
‖(|x〉〈x| − Z)c‖1, (3.82)

where the last inequality follows from (3.74). Consequently,

‖|x〉〈x| − Z‖1 =‖(|x〉〈x| − Z)1‖1 + ‖(|x〉〈x| − Z)c‖1 ≤
3

2
‖(|x〉〈x| − Z)c‖1

<3 (‖Z‖1 − ‖|x〉〈x|‖1) . (3.83)
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Now, positive semidefiniteness of both Z and |x〉〈x| together with assumption (3.71)
implies

‖Z‖1 − ‖|x〉〈x|‖1 =tr(Z − |x〉〈x|) = tr (I (Z − |x〉〈x|)) (3.84)

=tr

((
I− 1

νm

m∑
k=1

A(l)

)
Z − |x〉〈x|

)
+

1

νm

m∑
k=1

tr (Ak(Z − |x〉〈x|))

(3.85)

≤

∥∥∥∥∥I− 1

νm

m∑
k=1

Ak

∥∥∥∥∥
∞

‖Z − |x〉〈x|‖1 +
1

νm
‖A(|x〉〈x| − Z)‖`1 (3.86)

≤1

6
‖Z − |x〉〈x|‖1 +

1

νm
‖A(|x〉〈x| − Z)‖`1 . (3.87)

Inserting this into (3.83) yields

‖|x〉〈x| − Z‖1 <
1

2
‖|x〉〈x| − Z‖1 +

3

νm
‖A(|x〉〈x| − Z)‖`1 (3.88)

which implies the claim for case II in (3.74).

Lemma 3.9. Let D be the set introduced in Eq. (3.69) and let A = |α〉〈α|, where α
satisfies Eqs. (3.17) and (3.18). Then, the marginal tail function (3.65) obeys

Qξ(D,A) ≥ CQ

(
1− ξ2

CSI

)2

∀0 ≤ ξ ≤
√
CSI, (3.89)

where CQ > 0 is a sufficiently small constant.

Proof. Fix Z ∈ D, then ‖Z‖2 = 1 by definition of D. Note that sub-isotropy (3.17)
and the Paley-Zygmund inequality imply for any ξ ∈ [0, 1]

P [|〈a|Z|a〉| ≥ ξ] ≥P
[
〈α|Z|α〉2 ≥ ξ2

CSI
E
[
〈α|Z|α〉2

]]
(3.90)

≥
(
1− ξ2

CSI

)2 E
[
〈α|Z|α〉2

]2
E [〈α|Z|α〉4]

. (3.91)

Sub-isotropy ensures that the numerator is lower bounded by C2
SI‖Z‖42 = C2

SI. In
order to derive an upper bound on the denominator, we use the constraint ‖Z‖1 ≤ 3
for any Z ∈ D together with the subgaussian tail behavior (3.18) of α. Insert an
eigenvalue decomposition Z =

∑n
i=1 λi|z(i)〉〈z(i)| (with λi ∈ R and z(i) ∈ Sn−1) and

note

E
[
〈α|Z|α〉4

]
≤

n∑
i1,i2,i3,i4=1

|λi1λi2λi3λi4 |E

[
4∏

k=1

|〈α, z(ik)〉|2
]
. (3.92)
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Now fix z(i1), . . . , z(i4) and use the inequality of arthimetic and geometric means as
well as the fundamental relation between `p-norms (‖v‖`1 ≤ k1−

1
k ‖v‖`k for v ∈ Rk)

to conclude

E

[
4∏

k=1

|〈α, z(ik)〉|2
]
≤ 1

4

4∑
k=1

E
[
|〈α, z(ik)〉|8

]
≤ CSG4!, (3.93)

where the last inequality follows from condition (3.18). Consequently,

E
[
〈α|Z|α〉4

]
≤ CSG4!

∑
i1,i2,i3,i4

|λi1λi2λi3λi4 | = 24CSG‖Z‖41 ≤ 24× 34CSG, (3.94)

because Z ∈ D implies ‖Z‖1 ≤ 3. In summary,

P [|〈α|Z|α〉| ≥ ξ] ≥
(
1− ξ2

CSI

)2 E
[
〈α|Z|a〉2

]2
E [〈α|Z|α〉4]

≥
(
1− ξ2

CSI

)2
C2
SI

1944CSG
(3.95)

and the bound on Qξ(D,A) with CQ =
C2

SI
1944CSG

follows from the fact that this lower
bound holds for any Z ∈ D.

Lemma 3.10 (Bound on the mean empirical width). Let D be the set introduced in
Eq. (3.69) and let H = 1√

m

∑m
l=1 ηl|α(l)〉〈α(l)|, where each α(l) is subexponential in

the sense of (3.18) and m ≥ 2 ln(3)
CSG

n. Then there exists a constant CW > 0 such that

Wm(D,A) ≤ CW

√
n. (3.96)

Proof. Note that by construction D ⊆ 3B1, and consequently,

Wm(D,A) = 2E
[
sup
Z∈D

tr(ZH)

]
≤ 6E

[
sup
Z∈B1

tr(ZH)

]
= 6E [‖H‖∞] , (3.97)

where the last equality follows from the duality of trace and operator norm. Now note
that H̃ =

√
mH is of the form (3.62), where each α(l) is an independent Rademacher

random variable. Theorem 3.6 thus implies

P [‖H‖∞ ≥ t] ≤

2× 9n exp
(
− t2

8CSG

)
t ≤ 2CSG

√
m,

2× 9n exp
(
−

√
m
2 (t− CSG

√
m)
)

t ≥ 2CSG
√
m

(3.98)

and we can bound E [‖H‖∞] by using the absolute moment formula, see e.g. [FR13,
Propostion 7.1], and bounding the effect of the tails via (3.98). To this end, we split

71



3. Characterizing linear-optical networks via PhaseLift

the real line into three intervals [0, c
√
n], [c

√
n, 2CSG

√
m], [2CSG

√
m,∞[, where c is a

constant that we fix later:

E [‖H‖∞] =

∫ ∞

0
P [‖H‖∞ ≥ t] dt (3.99)

≤

∫ c
√
n

0
1dt+ 2× 9n

(∫ 2CSG
√
m

c
√
n

2 exp

(
− t2

8CSG

)
dt

+e
mCSG

2

∫ ∞

2CSG
√
m
exp

(
−
√
mt

2

)
dt

) (3.100)

≤ c
√
n+ 2× 9n

(∫ 2CSG
√
m

c
√
n

exp

(
− t2

8CSG

)
dt+

2√
m
e−

CSGm

2

)
. (3.101)

For the remaining Gauss integral, we use t
c
√
n
≥ 1 ∀t ≥ c

√
n to conclude

∫ 2CSG
√
m

c
√
n

exp

(
− t2

8CSG

)
dt ≤

∫ ∞

c
√
n

t

c
√
n
exp

(
− t2

8CSG

)
dt =

8CSG

c
√
n

exp

(
− c2n

8CSG

)
.

(3.102)

Now, fixing c = 4
√

ln(3)CSG assures exp
(
− c2n

8CSG

)
= 9−n and consequently

E [‖H‖∞] ≤4
√
ln(3)CSGn+

4
√
CSG√

ln(3)n
+

4√
m
e2 ln(3)n−CSGm (3.103)

≤4
√
CSG

(√
ln(3)n+

2√
ln(3)n

)
≤ 12

√
ln(3)CSGn. (3.104)

where the second inequality follows from m ≥ 2 ln(3)
CSG

n. Inserting this bound into
(3.97) yields the claim with CW = 72

√
ln(3)CSG.

Proof of Proposition 3.3. Now we are ready to apply Mendelson’s small ball method
(3.68). For D defined in (3.69) and measurements Al = |α(l)〉〈α(l)| with αl obeying
Eqs. (3.17) and (3.18), the bounds from the previous Lemmas imply

1√
m

inf
Z∈D
‖A(Z)‖`1 ≥ ξ

√
mCQ

(
1− 4ξ2

CSI

)2

− 2CW

√
n− ξt ∀ξ ∈ (0, 1/

√
CSI),∀t ≥ 0

(3.105)

with probability at least 1 − e−2t2 . We choose ξ =
√
CSI/4 and t = γ1

√
m, where
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γ1 =
9CQ

32 and obtain with probability at least 1− exp (−2γ1m):

1√
m

inf
Z∈D
‖A(Z)‖`1 ≥

9CQ

√
CSI

64

√
m− CW

√
n−
√
CSI

4

9CQ

32

√
m (3.106)

=CW

(
9CQ

√
CSI

128CW

√
m−

√
n

)
. (3.107)

Setting m = Cn with C =
(

256CW

9CQ
√
Cl

)2
implies

1√
m

inf
Z∈D
‖A(Z)‖`1 ≥ 2CW

√
n =

2CW√
C

√
m (3.108)

with probability at least 1− e−2γ1m. For τ = 2CW√
C
, the first claim in Proposition 3.3

follows from rearranging this expression and using ‖Z‖2 = 1 for all Z ∈ D.

Let us now move on to establishing the second statement (3.71): Isotropy (3.16)
implies

1

CIm

m∑
l=1

|α(l)〉〈α(l)| − I =
1

CSGm

m∑
l=1

(
|α(l)〉〈α(l)| − E

[
|α(l)〉〈α(l)|

])
(3.109)

and each α(l) has subgaussian tails by assumption (3.18). Thus, Theorem 3.6 is
applicable and setting t = min

{
1
6 , 2CSG

}
yields

P

[∥∥∥∥∥ 1

CIm

m∑
l=1

|α(l)〉〈α(l)| − I

∥∥∥∥∥
∞

≥ 1

6

]
≤ 2 exp

(
2 ln(3)n− CImmin {1/6, 2CSG}

8CSG

)
(3.110)

≤ 2 exp (−γ2m) , (3.111)

where the second inequality follows from m ≥ Cn, provided that C is sufficiently
large. Finally, we use the union bound for the overall probability of failure and set
γ := min {2γ1, γ2}.

3.3.3. Characterization via PhaseLift
In this section, we are going to apply the results from the last section to the original
problem of recovering the transfer matrix of a linear optical circuit. The measured
intensity at detector j as given by Eq. (3.4) exclusively provides us with information
about the j-th row vector of M :

Ij(α) =

∣∣∣∣∣
n∑

k=1

Mj,kαk

∣∣∣∣∣
2

+ εj = |〈Mj
∗, α〉|2 + εj . 1 ≤ j ≤ n (3.112)
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Here, we have defined Mj as the row vectors of M . Since the measured intensities in
Eq. (3.112) exactly resemble the measurement model of the phase retrieval problem
in Eq. (3.9), we can use the ideas introduced in Section 3.2 to recover M : For this
purpose, we propose the following protocol:

1. sample m random coherent input vectors α(l) from an appropriate ensemble,

2. measure the m× n intensities I1(α(l)), . . . , In(α
(l)) with l = 1, . . . ,m, and

3. use PhaseLift (3.12) to recover each Mj individually.

In Section 3.3.1, we introduced multiple ensembles to choose the α(l) from. How-
ever, not all of these are equally well suited for the problem at hand. First and fore-
most, we recall from Section 3.1 that input vectors with constant norm ‖α(l)‖`2 = 1
are better suited for the setup depicted in Fig. 3.1. Also, recall that the RECR sam-
pling scheme was conceived with our application in linear optics in mind: One major
drawback of the uniform scheme is that each component may take any possible value
for its complex phase. In contrast, the RECR scheme has only four possible values
for the phase shift, namely kπ

2 for k = 1, . . . , 4. Therefore, the reconfigurable phase
shifters in the implementation outlined in Fig. 3.1 can be calibrated to these val-
ues. A similar argument applies to the magnitudes of the RECR components, which
can only assume n possible values due to the additional normalization constraint
‖α(l)‖`2 = 1. However, the current linear architecture does not benefit from this
additional constraints. Using a tree-like structure in the preparation stage could fur-
ther improve the practical performance of the PhaseLift reconstruction using RECR
vectors. We discuss this idea further in the conclusion and outlook section.

The rest of this section is devoted to adapting the results from Section 3.3.1 to
derive rigorous performance guarantees for the proposed characterization protocol
outlined above. We start by stating its rigorous version.

Protocol 3.11 (Reconstruction of the transfer matrix M). Let M be an arbitrary
n × n transfer matrix as defined in (3.3). In order to approximately recover it,
sample m = Cn random coherent input states |α(1)〉, . . . , |α(m)〉, with α(l) chosen
from the uniform or RECR scheme normalized such that ‖α(l)‖`2 = 1. Measure the
mn intensities

y
(l)
j =

∣∣∣∣∣∑
i

Mj,i α
(l)
i

∣∣∣∣∣
2

+ ε
(l)
j ∀1 ≤ j ≤ n, 1 ≤ l ≤ m, (3.113)

where ε(l)j denotes the additive noise at detector site j when measuring the intensity
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resulting from input state |α(l)〉. For each 1 ≤ j ≤ n, solve the semi-definite program

Z]
j = argmin

Z∈Hn

m∑
l=1

∣∣∣tr((|αl〉〈α(l)|)Z
)
− y(l)j

∣∣∣ (3.114)

subject to Z ≥ 0

and let M∗
j
] be the complex conjugate of the eigenvector of Z]

j corresponding to its

largest eigenvalue rescaled to have length
∥∥∥M∗

j
]
∥∥∥
`2

=
√
‖Z]

j‖∞. Then, we estimate
M by

M ] =


M ]

1
T

...
M ]

n
T

 . (3.115)

Note that Eq. (3.115) simply amounts to stacking the separately recovered row vec-
tors M ]

j . Now, a simple extension of Theorem 3.5 yields a similar performance guar-
antee for Protocol 3.11: Due to the similarity of the intensity measurements (3.112)
for a single row Mj of the transfer matrix and the measurements assumed in Theo-
rem 3.5, the latter guarantees recovery of said row with high probability by means
of PhaseLift (3.12). In order to succinctly state the final result, we introduce some
additional notation. Define the total noise at detector j (measured in `1-norm) to be

εtotj =

m∑
l=1

|ε(l)j | (3.116)

and the overall noise strength:

εtot =

√√√√ n∑
j=1

εtotj
2
. (3.117)

This formulation allows for treating the different output modes and their detector
noise levels individually. In particular, we do not require a universal type of noise for
all detectors, but allow for taking into account detector dependent noise of different
strength, i.e. varying noise levels.

Corollary 3.12 (Performance guarantee for Protocol 3.11). The reconstruction M ]

of any transfer matrix M by means of Protocol 3.11 satisfies

min
µ:|µj |=1

∥∥∥M ] − diag(µ1, . . . , µn)M
∥∥∥
2
≤ Cnε

tot

mν
. (3.118)
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with probability at least 1−O (e−γm). Here, C and γ are positive constant of sufficient
size and

ν = min
1≤j≤n

‖Mj‖`2 . (3.119)

Recall that diag(µ1, . . . , µn) are the row-phases of M , which are unrecoverable
from the intensity measurements (3.4). We include the additional correction (3.119)
to deal with possible loss. Unitary transfer matrices satisfy ν = 1.

Proof. For any fixed row vector Mj ,

min
0≤φ≤2π

∥∥∥M ]
j − eiφMj

∥∥∥
`2
≤ C ′nmin

{
‖Mj‖`2 ,

εtotj

m‖Mj‖`2

}
. (3.120)

follows directly from Theorem 3.5. Note that the additional n factor compared to
Eq. (3.61) is due to the normalization of the input vectors. The input vectors need
to be scaled by

√
n in order to be able to apply Theorem 3.5.

Before we can move on to determine the remaining row vectors Mi (i 6= j) of M , it
is important to point out that the recovery guarantees of Theorem 3.5 are universal:
one instance of randomly chosen measurement vectors suffices to recover any vector
x ∈ Cn. This allows for applying this reconstruction guarantee to all n row vectors
Mj simultaneously. The total noise bound (3.118) now follows from the entry-wise
definition of the Frobenius norm:

min
µ

∥∥∥M ] −D(µ)M
∥∥∥2
2
= min

0≤φ1,...,φn≤2π

n∑
j=1

∥∥∥M ]
j − eiφjMj

∥∥∥2
`2

(3.121)

=

n∑
j=1

min
0≤φj≤2π

∥∥∥M ]
j − eiφjMj

∥∥∥2
`2

(3.122)

≤ C2n2
n∑

j=1

min

{
‖Mj‖2`2 ,

η2(j)

m2‖Mj‖2`2

}
(3.123)

≤ (Cn)2
n∑

j=1

η2j
m2‖Mj‖2`2

(3.124)

≤ (Cn)2

m2ν

n∑
j=1

η2j (3.125)

=

(
Cn

ηtot

mν

)2

, (3.126)

Here, we have used Eq. (3.61) for each summand in Eq. (3.123).
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The performance guarantee above has an interesting consequence for experimental
design: The right hand side of Eq. (3.118) is mainly determined by the signal-to-noise
ratio ν

εtot/m . Remarkably, the noise term does not become smaller for increasing m.
To be more precise, let us assume that each detection error is independent and
normally distributed with standard deviation σ, i.e. ε(l)j ∼ N (0, σ2). Then,

Eεtotj =
1

m

∑
l

Eε(l)j = Eε(1)j =

√
2

π
σ, (3.127)

and hence, the expected error Eεtot is independent of m. Of course, the standard
deviation of εtotj scales as 1√

m
. Therefore, an increase of m past the threshold Cn in

Corollary 3.12 mainly influences the (exponentially small) failure probability. In other
words, said corollary implies that once the sampling threshold is reached, there is not
much use to further increase the number of measurements as the error bound (3.118)
is primarily determined by the uncertainties of a single measurements. Hence, any
additional experimental time should be invested to reduce the uncertainty of the
single measurements, e.g. by increasing the number of single photon events used to
estimate Ij(α).

By studying the assumptions and the proof of the underlying Theorem 3.5, we also
note that this behavior is to be expected. Since this theorem does not assume any
statistical properties of the noise, but only assumes that the noise ε(l) is bounded,
we cannot expect a statistical improvement by increasing the number of measure-
ments. For example, if we assume a constant, purely systematic error ε(l) = c for all
measurements, then no improvement can be expected even for m→∞.

However, it should be kept in mind that Corollary 3.12 only provides necessary
conditions for recovery, which are not optimal in the large m regime. Therefore,
we perform numerical simulations in the next chapter to further investigate how
experimental time should be spent. In other words, we study the question how the
reconstruction performs as a function of m when the total experimental time budget
is fixed. Note that this behavior has already been explored in the context of quantum
state tomography via compressed sensing in [Fla+12].

3.4. Application
3.4.1. Numerical results
We demonstrate the practical applicability of the PhaseLift characterisation protocol
using simulated experiments. The simulation depicted in Fig. 3.2 aims to visualize
the performance guarantees from Corollary 3.12: For each given dimension n, we
choose 100 target unitaries. Each of these is reconstructed by means of Protocol 3.11
with a varying number of measurements m. The input vectors are sampled from the
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Figure 3.2.: Simulated recovery-probability using the two different sampling schemes
under noisy measurements with σ = 0.05. For each given dimension, the
transfer matrices to be recovered consist of 97 Haar random unitaries as
well as the identity, the swap-matrix, and the discrete Fourier transform.
The red line indicates the conjectured phase transition at 4n− 4.

uniform ensemble in Fig. 3.2a and from the normalized RECR ensemble in Fig. 3.2b.
For the measurement noise εj from Eq. (3.112), we assume independent, centered
Gaussian noise with standard deviation σ = 0.05. The density plots show the fraction
of successfully recovered unitaries. Here, the criterion for success is whether the
distance of the reconstruction M ] measured in Frobenius norm is smaller than the
threshold 4σn in accordance with the error bound (3.118).

Figures 3.2a and 3.2b show a pronounced phase transition around m = 4n. This
demonstrates the high sample efficiency of the PhaseLift reconstruction. Not only
does the number of measurements scale linearly in the system size – as rigorously
proven in Corollary 3.12 – but the scaling coefficient is small as well.

In the simulations depicted in Fig. 3.2, we assumed a constant noise level for each
m. Therefore, the lab-time required for taking the data or, put differently, the number
of single photon events required for estimating the intensities increases linear in m.
We now investigate the question posed at the end of Section 3.3.3, namely how the
reconstruction performs as a function of m when the total experimental time budget
is fixed. Recall from Eq. (3.8) that the single photon counting statistics is given by a
multinomial distribution with number of trials N given by the total photon number
and the probabilities pj given by the expectation values in Eq. (3.7). Denote by N (l)

the number of photons used to estimate the output intensities for a single photon
input state |ψ(α(l))〉 with l = 1, . . . ,m. In Fig. 3.3, we depict the reconstruction error
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Figure 3.3.: Simulated reconstruction error using RECR measurements for a fixed
time budget as a function of the number of distinct input vectors for
two different circuit sizes and different time budgets. The total photon
number budget for each reconstruction isN = Γ×t, where Γ = 4600s−1 is
a typical counting rate of the experiment and t the time available. Then,
the output for each input vector α is a multinomial distribution with
the number of trials given by N

m . We sample 100 sets of measurement
data for each value of m and run the PhaseLift reconstruction on each
of them. The solid line indicates the mean error and the colored areas
the 0.025 and 0.975 quantiles.

with the total number of photons used for reconstruction N =
∑

lN
(l) kept fixed.

To be more precise, we choose the total number of photons N as a multiple of the
counting rate from the experiment Γ = 4600 s−1 introduced in Section 3.1, i.e.

N = t× Γ, (3.128)

where t is the time spent only on taking the single-photon data. Therefore, we have
N (l) = N

m , where m is the number of preparation vectors. The reconstructions in
Fig. 3.3 are then performed by randomly sampling 100 outcomes from the output
counting statistics of each input state. For larger m, the N (l) becomes smaller, and
therefore, the statistical error in each estimated intensity grows.

First, we see from Fig. 3.3 that – as expected – taking more data by increasing t
improves the overall reconstruction quality. Also note that the reconstruction error
is approximately independent of m above a certain threshold. This clearly shows
that the recovery guarantee in Corollary 3.12 is not tight for larger values of m, as
the right hand side of Eq. (3.118) grows with the individual statistical error of each
measurement.
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3. Characterizing linear-optical networks via PhaseLift

From Fig. 3.3, one could conclude that there is no advantage of taking a small
value of m in the experiments. This conclusion rests on the assumption that the
total number of photons is the figure of merit that best describes an experimentalist’s
budget. However, in the concrete experimental architecture introduced in Section 3.1,
this is not the case: In reality, the number of distinct settings for the reconfigurable
chip is more critical for the time required to perform a given experiment. This is due
to the fact that switching the reconfigurable phase shifters and couplers takes more
time that the actual data taking process. Therefore, if we take into account this
additional cost for reconfiguring the preparation stage on the chip, reconstructions
with a smaller number of more precise measurements perform better when the “time
budget” is kept fixed.

3.4.2. Experimental results

To demonstrate its practical utility, we use the PhaseLift protocol to perform experi-
mental reconstruction on the reconfigurable integrated photonic circuit introduced in
Section 3.1 In Fig. 3.4, we show the reconstruction error of the PhaseLift approach.
Since our aim is to benchmark the performance of the characterization technique, and
not the performance of the chip itself, we compare to other reconstructions obtained
through established but more costly techniques: For the smaller transfer matrices
of dimension two and three, we perform a complete HOM-dip-reconstruction based
on two photon interference as described in Appendix A.2.1. However, since this is
infeasibly costly for the five-dimensional transfer matrices, we only compare these to
single-photon reconstructions of the absolute values of the transfer matrix compo-
nents. For more details, see Appendix A.2.

The number of input vectors used in each PhaseLift reconstruction is m = 5n.
This slight overhead compared to the conjectured and numerically observed phase
transition in Fig. 3.2 is used to counteract systematic errors in the preparation of
the input vectors. To be more precise, we conjecture that the main source of error
in this experiment is due comparatively large errors in preparation of certain input
states. By increasing m slightly, these effects average out and provide in total a
smaller reconstruction error.

We see that the PhaseLift reconstructions and the references agree well for most
settings in Fig. 3.4 Even without exploiting the possible advantages of the RECR
ensemble due to a better calibration, it generally performs as well as the uniform
ensemble. Both display a similar behavior: for a fixed number of modes, the devia-
tions are generally larger for the random unitaries compared to the more structured
identity and Fourier transfer matrices. The errors for the two-dimensional transfer
matrices are slightly smaller than for the corresponding three-dimensional transfer
matrices as expected from Eq. (3.118). Furthermore, the currently used sequential
arrangement of the Mach-Zehnder interferometers in the preparation stage of the
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Figure 3.4.: Comparing reconstructions from experimental data for different target
transfer matrices and sampling schemes. For each matrix and sampling
scheme, we subsamplem = 5n preparation vectors and the corresponding
measured intensities from the experimental data 100 times. To estimate
the quality of the reconstruction, we plot the discrepancy between the
PhaseLift reconstruction and an alternative method. The diamonds in-
dicate the median and the colored area sketches the distribution of this
reconstruction discrepancy. In the left picture, the reference is obtained
through a HOM-dip reconstruction as discussed in the appendix. How-
ever, since this technique is too costly for larger dimensions, the five
dimensional reconstructions on the right are only compared in magni-
tude to a reference from single photon data, which is observation to all
phase information. Since for n = 2 there are only six distinct RECR
vectors up to a global phase, only the median is shown in these cases.
For more details on the data analysis see the supplemental material.

experiment leads to higher deviations of the actual prepared compared to the in-
tended measurement vectors with an increase in n. Of course, this leads to larger
reconstruction errors as well – possible solutions to this problem are discussed in the
conclusions. For the reference reconstruction, we also expect larger deviations with
an increase in the size of the transfer matrix, since errors from reconstructing one
row accumulate in the error for other rows as well. Note that the errors for the five-
dimensional transfer matrices are relatively small since they only take into account
the absolute values of the components and neglect all phases.

In Fig. 3.5, we directly compare the performances of the reconstruction protocols,
namely of the PhaseLift reconstruction and the HOM-dip reconstruction. In contrast
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Figure 3.5.: Same as Fig. 3.4, but the reconstructions are compared to the theoret-
ical target unitaries. “HOM-dip” refers to the reconstructions used as
references in Fig. 3.4. We do not show the results for the 5 dimen-
sional unitaries since the corresponding HOM-dip reconstructions were
too costly to take.

to Fig. 3.4, we use the theoretical target unitary as a reference. Generally, the errors
of the PhaseLift reconstructions and the HOM-dip reconstructions are of the same
order of magnitude. This is despite the fact that the HOM-dip reconstruction is not
just insensitive to the row phases, but also to the column phases. Therefore, the
reported errors for the HOM-dip reconstruction are minimized over both row- and
column phases instead of just the row phases for the PhaseLift reconstruction. The
additional free parameters in the minimization may lead to overfitting, and hence, to
an underestimation of the actual error of the HOM-dip reconstruction.

Finally, we study the influence of varying the number of measurements and the
statistical error on each measurement in Fig. 3.6. In the left picture, we randomly
select m measurements from the existing data for 100 times and plot the mean as
well as the spread of the error. Except for a larger error for very few measurements,
the RECR ensemble performs equally well as the Gaussian ensemble. We see that
the error saturates at a non-zero value, which might be due to systematic errors.
Also, note that the reconstruction error already saturates around m = 4n = 20

82



3.4. Application

0 5 10 15 20 25 30 35
# of measurements m

0.25

0.50

0.75

1.00

1.25

1.50

1.75

1 n
‖|
M

d
ip

s|
−
|M

] | ‖
2

0 5 10 15 20 25 30
# of time bins t

0.001

0.000

0.001

0.002

1 n
‖|
M

d
ip

s|
−
|M

] | ‖
2
−
E
∞

Uniform
RECR

Figure 3.6.: Reconstruction errors for a random 5×5 transfer matrix from experimen-
tal data. For each picture, we plot the mean (solid) as well as the 0.025
and 0.975 quartiles over 100 samples. In the left picture, each sample
consists of a recovery from m preparation vectors and the corresponding
photon counts measured over 30 s In the right picture we fix a randomly
selected set of m = 20 preparation vectors and run the recovery with
the photon counts from t randomly selected time bins, each of which is
one second long. The constant shift E∞ in the right picture is equal
to the mean error for t = 29 and it serves the purpose to equalize any
differences between the Gaussian and the RECR reconstructions due to
the choice of preparation vectors.

measurements.
To further investigate the source of the reconstruction error, we vary the statistical

error of the measurements ε(l) in the right picture by changing the number of photons
used to estimate Ij(α(l)) in terms of Eq. (3.7). Since the experimental data consists
of photon counts per one second time bin, we can vary the number of total photons
by randomly selecting t time bins per reconstruction. In the right hand picture of
Fig. 3.6, we fixed a random subset of 20 measurements and observe the reconstruction
error as a function of t. Furthermore, we normalized the reconstruction error with a
constant offset E∞ for each measurement scheme to cancel out reconstruction errors
due to the different choice of measurement vectors. As we can see in the left image,
the spread of the reconstruction error for m = 20 is still on the order of ±0.1, and
therefore, dominating the smaller error due to statistical fluctuations. We chose
E∞ such that the mean error for the largest value of t is 0. First, we see that the
reconstruction error due to statistical uncertainty is small compared to the total error
even for very small values of t. This is due to the large counting rates of modern
single photon experiments, which is Γ ≈ 4600 s−1 in this case. Therefore, the main
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3. Characterizing linear-optical networks via PhaseLift

source of error in this experiment is due to systematic errors such as an relatively
inaccurate preparation of the vectors α(l). We already mentioned that this can be
rectified by better calibrating the preparation stage, which is much easier to perform
for the RECR ensemble than for the uniform ensemble.

3.5. Conclusion & outlook

In this chapter, we introduce a characterization technique for linear optical networks
based on this problem’s connection to phase retrieval. First and foremost, we show
that recovering each row of the transfer matrix constitutes a separate phase retrieval
problem, which can be solved using convex programming. Provided that the input
vectors are chosen and random from a suitable distribution, the number of distinct
inputs required scales linear in the number of modes. To prove this statement, we
exploit the rank-one constraint, which arises from lifting the quadratic phaseless
measurements to linear measurements on a larger spaces.

Motivated by the specific application in linear optics, we propose the RECR mea-
surement ensemble. The main technical contribution of this work is the proof that
despite being highly structured, the RECR ensemble performs just as well for phase
retrieval as the well-established uniform/Gaussian measurement ensembles. More
generally, we introduce the notion of (super)-attentive measurement ensembles and
show their efficacy for efficiently reconstructing rank-one matrices from few measure-
ments.

Finally, we report on ongoing experimental work to implement the proposed recon-
struction protocol using a small-scale universal optics chip. Our preliminary results
show that the PhaseLift characterization technique is a valuable tool for experimen-
talists due to its sample efficiency and robustness to noise.

Future work on phase retrieval may benefit from the general reconstruction guaran-
tees proven in this work as the conditions for (super)-attentiveness are quite general.
The same statement applies to the majorization trick, which we use to generalize the
proofs from attentive to super-attentive ensembles. The question remains whether
any other practically relevant measurement ensembles fall within this framework.

Furthermore, the current work is restricted to the reconstruction of rank-one ma-
trices. We are interested in the question whether the RECR ensemble can be used
for low-rank matrix recovery in general as the Gaussian ensemble [KRT17]. Matrix
multiplications with structured measurements are often computationally faster, and
therefore, structured ensembles are also interesting outside of particular applications.

For the specific application of characterizing linear optical networks, future work
should investigate the applicability of our approach to larger systems, which may be
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out of reach for other techniques. One of the main problems that need to be solved
for this is a more accurate preparation stage: The preparation procedure used so far
has not explicitly made use of the advantages of the RECR ensemble, that is the
finite number of phases and magnitudes, which need to be prepared in each mode.
Another drawback of the current architecture is that possible errors in the preparation
state for the coherent state inputs |α〉 add up linearly due to the serial wiring. To
circumvent these two problems, we propose to investigate a tree-like arrangement of
the directional couplers. This way, we could attain more independence of the phase
shifters and couplers.
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The theoretical and numerical study of many-body quantum systems is severely hin-
dered by the curse of dimensionality, which in this context refers to the exponential
growth of the dimension of the Hilbert space of quantum states w.r.t. the number of
constituents. However, many realistic systems do not exhibit this pathological com-
plexity and can be described efficiently in terms of tensor networks [BC17; Orú14].
Here, “efficient description” refers to the fact that the number of parameters required
to describe such a state scales polynomially in the number of subsystem. An espe-
cially simple but important special case of tensor networks is known under names
such as finitely correlated states [FNW92] or matrix-product states (MPS) [Per+07;
VMC08]. Many states used in quantum information processing have an efficient
description in terms of an MPS.

The idea of low-complexity tensor representations have also received attention
in the context of machine learning. One important application is model compres-
sion: State of the art deep neural networks have millions of parameters and high-
dimensional hidden layers, which complicates deploying them on devices with limit
capabilities such as smart phones or IoT devices. By “compressing” the learned
weights using efficient tensor formats, we can reduce the complexity of the model
with only slight degradation in performance [Nov+15; Tai+15; YH16].

The question we are attempting to answer in this chapter is whether such MPS
can be efficiently reconstructed from few linear measurements1. More precisely, we
provide analytical and numerical evidence that the number of measurements required
to recover an MPS is related to its intrinsic complexity – and hence, scales polyno-
mially in the number of constituents – although the Hilbert space of tensors grows
exponentially in the number of constituents. This work is a natural extension of
low-rank matrix recovery, which formed the foundation of the results in Chapter 3,
to higher-order tensors.

This chapter is structured as follows: In Section 4.1, we introduce the MPS tensor
format and in Section 4.2, we present the software library mpnum dealing with tensors
in MPS representation. mpnum was developed as part of this work to facilitate
numerical computations in a user friendly and reusable manner and is the foundation

1Note that since we assume a linear measurement model, the results of this section do not apply to
the problem of estimating pure quantum states. We use the term “matrix product state” to not
only refer to quantum states, but to general tensors in the MPS format.
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of all the numerical experiments in this chapter. Finally, Section 4.3 reports on
work in progress, which is concerned with provably recovering MPS from few linear
measurements using an Alternating Least Squares (ALS) algorithm.

Relevant publications

• Ž. Stojanac, D. Suess, M. Kliesch: On the distribution of a product of N Gaus-
sian random variables, Proceedings Volume 10394, Wavelets and Sparsity XVII;
1039419 (2017)

• Ž. Stojanac, D. Suess, M. Kliesch, On products of Gaussian random variables,
arXiv:1711.10516

• D. Suess, M. Holzaepfel, mpnum: A matrix product representation library for
Python, Journal of Open Source Software, 2(20), 465 (2017)

4.1. Matrix Product States

Tensors are a generalization of vectors and matrices. Although there is a coordinate-
free definition for tensors in terms of multi-linear functionals [Bro12], we are going
to identify a tensor with its coordinate representation w.r.t. a fixed basis here. A
complex tensor of order N is an element X ∈ Cd1×···×dN , where the di are called local
dimensions. Hence, a vector is a tensor of order 1 and a matrix is a tensor of order
2. For the sake of simplicity, we assume that d1 = · · · = dN throughout this chapter.

4.1.1. Graphical notation

Since formulas with higher-order tensors may become incomprehensible due to the
large amount of indices, we introduce a widely used graphical notation [Orú14; BC17]
here. A tensorX ∈ CdN is represented by a geometric shape with legs attached, where
each leg corresponds to one index. For example, consider the case N = 3, then the
components of the tensor X are given by

Xi,j,k = X

i j k

. (4.1)

A variable written next to a leg fixes the corresponding index to the given value,
while an unlabeled tensor leg represents an unmatched index. In the following, we
make use of the following notation for an unmatched index inspired by Python’s

88



4.1. Matrix Product States

and Matlab’s syntax: As an example, consider X as above, then we define the slice
X:,j,: ∈ Cd2 for each j by

X:,j,: = X

j

. (4.2)

Written out explicitly, we have the slightly cumbersome equality (X:,j,:)i,k = Xi,j,k.
The advantage of this graphical notation becomes clear once we express tensors com-
posed of other tensors by operations such as contraction or tensor products. The
most common operations and their graphical notation are summarized below:

• Contractions are indicated by joining two legs, e.g. for matrices A,B ∈ Cd×d, their
product AB is written as

AB = A B :=
∑
k

(
A k Bk

)
(4.3)

• Tensor products correspond to drawing two tensors side by side, e.g. for x, y ∈ Cd

their tensor product x⊗ y is written as

x⊗ y = x y (4.4)

• Grouping indices – that is the canonical identification Cd1 ⊗ Cd2 ∼= Cd1d2 – is
indicated by merging two or more legs together.

∼= (4.5)

This operation is often used in numerical implementations of tensor network
algorithms as it reduces most tensor operations to standard matrix operations.
For example, the twofold contraction on the left hand side of Eq. (4.5) is con-
verted to a matrix multiplication on the right hand side. In the following, we
often perform grouping on neighboring tensor legs implicitly.

4.1.2. MPS tensor representation
The tensor representation we are interested in has been established independently
in quantum physics under the names finitely correlated states [FNW92] and matrix-
product states [KSZ91; KSZ92]. However, similar structures have been known for
much longer in the form of hidden Markov models [CMR06]. Subsequently, it has
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been rediscovered in other contexts: It is known under the guise of the density matrix
renormalization group [Whi92; Sch11] in condensed matter physics. Furthermore, the
MPS representation is also known as a special case of the Hierarchical Tucker tensor
format [Hac12; Gra10] and under name tensor-train [Ose11] in the applied math
community.

To introduce the MPS representation, consider a tensor X ∈ CdN . By splitting off
the first index, grouping the remaining N − 1 indices, and performing a SVD on the
resulting matrix, we can factor X into three parts

X = M (1) Λ(1) R̃N−1 (4.6)

whereM (1) denotes the left-singular vectors, Λ(1) the diagonal matrix composed of the
singular values λ(i), and R̃N−1 the left-singular vectors after the index-grouping has
been reversed. For convenience, we contract the singular values with the remainder
R̃N−1 and obtain

X = M (1) RN−1 (4.7)

This procedure can now be iterated by performing the same steps on RN−1:

X = M (1) RN−1 (4.8)

= M (1) M (2) RN−2 (4.9)

= M (1) M (2) M (3) M (4) (4.10)

This yields a representation of X in terms of the local tensors M (l). The above
algorithm for computing the local tensors is referred to as TT-SVD in [Ose11]. In
the following, we identify the index order as follows:

M
(l)
i,j,k = M (l)i

j

k (4.11)
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Figure 4.1.: A 4th order tensor in MPS representation with open boundary condition
as described in Eq. (4.13).

The horizontal legs corresponding to the indices i and k are often referred to as bonds
or virtual legs, and the vertical ones corresponding to j are referred to as physical
legs. By fixing each physical leg to some value kl in Eq. (4.10), we see that each
component of X is given by product of N matrices

M
(l)
kl

:=M
(l)
:,kl,:

, (4.12)

hence the name “matrix-product representation”. In this case, we have

Xi1,...,iN =M
(1)
i1
· · · M (N)

iN
, (4.13)

where we used the shorthand notation from Eq. (4.12)
So far this construction is exact and completely general, i.e. every tensor can be

represented in MPS form. However, this representation still requires exponentially
many parameters in general: Generically, the SVD in the i-th step yields

ri = min di, dN−i (4.14)

non-zero singular values λ(i), and therefore, the local tensorsM (i) have shape (ri−1, d, ri).
However, suppose that all but r of the singular values in each cut vanish, then we
can truncate the local tensor M (i) to shape (r, d, r) while still preserving the exact
equality (4.10). In this case, the number of parameters scales as O(r2Nd) and X
can be represented efficiently. Although this assumption may seem overly strict on
a first glance, many tensors in our applications of interest are well approximated by
such an MPS with small r. The following definition sums up the discussion in this
section so far.

Definition 4.1. A matrix-product state representation of a tensor X ∈ CdN is
defined in terms of a tuple of local tensors (M (l))l∈[N ] with M (l) ∈ Crl−1×d×rl where
r0 = rN = 1. Then, the components of X are given by

Xi1,...,iN =M
(1)
:,i1,:

· · · M (N)
:,iN ,:. (4.15)

We say that the representation in Eq. (4.15) has open boundary conditions.
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By allowing larger boundary ranks r0 and rN , and tracing over the resulting matrix
in Eq. (4.15), we obtain MPS with periodic boundary conditions. These are more
suited if there are strong correlations between the first and the last site as well, e.g.
if the geometry of subsystems is not linear but circular. As already noted above,
the crucial parameter balancing the efficiency of the variational class of MPS on one
hand and its expressive power on the other hand is the size of the virtual legs rl.
This warrants the following definition.

Definition 4.2. Let (M (l))l∈[N ] denote an MPS representation with M (l) ∈ Crl−1×d×rl.
We call maxl rl the (MPS-)rank or bond dimension of the MPS. Furthermore, for any
tensor X, we define its MPS-rank to be the smallest rank of any MPS representation
of X.

Note that by [Ose11, Thm. 2.2], the definition of MPS-rank in Definition 4.2 agrees
with the usual definition using matrications of X, and hence, is well defined. In
contrast to the matrix case, there are multiple inequivalent definitions rank for ten-
sors [KB09], which arise from different tensor representations. Throughout this work,
we focus on the MPS-representation and the corresponding notion of rank due to its
advantages outlined in Section 4.1.3 Therefore, we simply call the MPS-rank “rank”.

With the factorization of the tensor X in Definition 4.1, we have introduced new
virtual degrees of freedom such that the partial trace over them equals X. Clearly,
the following gauge transformation leaves Eq. (4.13) invariant

M̃
(1)
i =M

(1)
i R(1), M̃

(N)
i = R(N−1)M

(N)
i , (4.16)

M̃
(l)
i = L(l−1)M

(l)
i R(l) (1 < l < N) (4.17)

provided the (generally non-square) matrices L(l) and R(l) satisfy L(l)R(l) = 1 since
then

M (1) M (2) M (3) M (4) = M (1) M (2) M (3) M (4)R(1) R(2) R(3)L(1) L(2) L(3)

(4.18)
As shown in [Per+07, Thm. 2], these local transformations on the virtual degrees of
freedom are the only possible gauge transformations of the MPS representation. A
number of canonical forms exist that partially fix the gauge [Per+07; Sch11; BC17].
The following definition summarizes the corresponding gauge conditions.

Definition 4.3. We say that a local tensor M (l) is left-normalized if it satisfies

∑
k

M
(l)
k

†
M

(l)
k = 1 = (4.19)
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A MPS with all but the rightmost local tensors in left-normalized form is called
left-canonical. Similarly, a right-normalized local tensor fulfills

∑
k

M
(l)
k M

(l)
k

†
= 1 = (4.20)

and a right-canonical MPS has all local tensors in right-normalized form except for
the first.

The exceptions for the local tensors at the beginning and end of the chain are nec-
essary to accommodate tensors with Frobenius norm different from one. In practice,
we often deal with a mixed left-right-canonical form, e.g. in variational algorithms
updating one local tensor at a time such as DMRG or the alternating least squares
algorithm presented in Section 4.3. For these purposes, efficient algorithms exist that
transform an MPS to a canonical form [Sch11; Orú14]. If we set aside transforma-
tions that change the bond dimensions, the remaining gauge group is unitary, and
hence, computations on canonical MPS are far more stable numerically.

We have already emphasized the ability of the MPS representation to represent
certain tensors efficiently, i.e. with a number of parameters scaling polynomially in
the order of the tensor. One crucial advantage of this tensor format is that it also
facilitates efficient arithmetical operations for tensors [Sch11; Orú14]. In other words,
operations such as sums and contractions of MPS are also MPS and the corresponding
local tensors can be computed efficiently from the local tensors of the inputs. For
example, consider the scalar product of two tensors A,B ∈ CdN :

〈A,B〉 =
A(1)

B(1)

A(2)

B(2)

A(3)

B(3)

(4.21)

By contracting the physical legs of the local tensors first as indicated by the gray
boxes2, we obtain an MPS representation of a tensor of 0th order, i.e. a scalar, which
can be contracted afterwards to compute its value.

As most arithmetic operations increase the virtual dimension substantially, we
need methods to approximate the result by another MPS with lower virtual dimen-
sion while keeping the approximation error small. Although computing the best rank
r approximation of an MPS is computationally infeasible in general [HL13], there are

2Note that this strategy is not optimal in many cases [Sch11] but suffices as an example here.
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Many-body Hilbert space

MPS with small bond dimension

Figure 4.2.: The manifold of quantum states with an efficient MPS description occu-
pies only a tiny corner in the full Hilbert space.

efficient algorithms that produce good results in practice: One of them is SVD com-
pression, which successively performs an SVD followed by a truncation of negligible
singular values on the local tensors similar to the higher-order SVD (4.10) [Sch11].
If we truncate all but the r largest singular values in each step, we obtain a quasi-
optimal rank r approximation of X ∈ CdN , i.e.

‖X −XSVD‖ ≤
√
N − 1‖X −Xbest‖. (4.22)

Here, ‖ · ‖ denotes the Frobenius norm of tensors, XSVD the rank r SVD compression,
and Xbest the best rank r approximation of X.

4.1.3. Applications of the MPS format
The main application of the MPS representation in quantum information and con-
densed matter physics is the efficient description of certain many-body states. As the
corresponding Hilbert space grows exponentially fast in the number of constituents
N , the full description of any state in terms of its coefficients w.r.t. a fixed basis is
only feasible for small N . Fortunately, not all quantum states of a many-body sys-
tem are equally relevant in practice. Many systems of interest are well described by a
Hamiltonian with local interactions, e.g. nearest neighbor interactions, which reflects
in the structure of correlations in their low energy spectrum. More specifically, low
energy eigenstates of gapped Hamiltonians with local interactions obey the area-law
for entanglement entropy [Has06; VC06; ECP10]: For those states, the entanglement
entropy of a subsystem asymptotically only depends on its boundary size and not
on its volume. Although those stats occupy only a small corner of the enormous
many-body Hilbert space as depicted in Fig. 4.2, they are exceptionally important in
practice.

In one dimensional systems, any many-body state |ψ〉 with an area law3 has an
efficient representation. If we expand |ψ〉 in a product basis with coefficient tensor C,

3In one dimension, the boundary area of any connected region is constant and independent of
the size of the region, and therefore, the area law implies constant entanglement entropy across
bipartitions.
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A =
i1 i1

j1 j1
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i2 i2
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i3 i3
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row leg
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Figure 4.3.: An MPO with open boundary conditions.

|ψ〉 =
∑

i1,...,iN

Ci1,...,iN |i1〉 ⊗ · · · ⊗ |iN 〉, (4.23)

then C can be efficiently approximated by an MPS with bond dimension scaling poly-
nomially in N and the inverse approximation error [Has06; VC06; ECP10; Ara+13;
Ara+17]. States of the form (4.23) are appropriately referred to as matrix product
states.

For higher dimensional regular latices, one can generalize the MPS representation.
The resulting efficient tensor network representation is referred to as projected entan-
gled pair states (PEPS). However, a statement analogous to the one above does not
hold: For dimensions D > 1, not every state satisfying an area law can be efficiently
represented as a PEPS [GE16] .

So far, we were only concerned with multi-body pure states. The MPS tensor
format from Section 4.1.2 can also be adapted for the description of mixed sates. As
an example consider an MPS4 |ψ〉. The corresponding pure state projector can be
written as

|ψ〉〈ψ| = =: (4.24)

Here, the right hand side is a matrix product operator (MPO). Its local tensors A(l)

are defined in terms of the local tensors B(l) of |ψ〉 as follows

A(l) =
B∗(l)

B(l)

(4.25)

4From now on we do not distinguish between the state and its corresponding coordinate represen-
tation w.r.t. a fixed product basis.
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|ψ〉 =
i1 i1j1 j1i2 i2j2 j2i3 i3j3 j3

physical leg auxilliary leg

Figure 4.4.: An PMPS with open boundary condition.

with implicit grouping of the virtual indices of B(l). This is an example of a matrix-
product density operator (MPDO) [VGC04; ZV04]. In general, any operator acting
on the many-body Hilbert space can be expressed as an MPO with local tensors
A(l) ∈ Cr×d×d×r as depicted in Fig. 4.3. This representation is efficient if the operator
acts “locally”, e.g. for a Hamiltonian with nearest neighbor interactions.

The explicit parametrization (4.25) of the local tensors makes it easy to see that
the corresponding MPO is positive semidefinite (psd), and hence, represents a valid
physical state. A crucial question for numerical computations with density operators
expressed as MPO is if there is an efficient algorithm that decides whether the MPO is
psd or not. Unfortunately, this problem is NP-hard, even if we restrict to dimensions
d = 2 and translational invariant states [KGE14].

One way to cope with this problem is to use a manifest psd parameterization
of the mixed state. Denote by H1 the Hilbert space of the system and by ρ the
corresponding mixed state. By introducing a second auxiliary Hilbert space H2, we
can write [NC10]

ρ = trH2 |ψ〉〈ψ|, (4.26)

where |ψ〉 ∈ H1⊗H2. Note that we can take H2 to be of the same dimension as H1.
Similarly, a local purification matrix product state (PMPS) [De +13] is a matrix

product state with two legs per site as depicted in Fig. 4.4 such that

︸ ︷︷ ︸
ρ

= (4.27)

This is a manifestly positive semidefinite parametrization of ρ in matrix product form.
However, this advantage comes at a price: The PMPS representation of a state can be
arbitrarily more costly than its MPDO representation [De +13]. More precisely, there
a families of states (ρN )N∈N with ρN ∈ CdN such that ρN has constant MPO-rank,
but the PMPS-rank of ρN scales asO(N). This and the hardness result from [KGE14]
shows that no efficient algorithm for computing an exact local purification from an
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MPDO exists in general. However, the questions, how generic this hardness is and
how hard approximative versions of this problem are, remain open.

Besides the original applications in physics, the MPS tensor format has recently
also found applications in the field of machine learning: Deploying the latest neural
networks on mobile devices such as smart phones or IoT devices is challenging due to
the high dimensional hidden layers, e.g. a single weight matrix of a fully connected
layer can have millions of parameters. By approximating this weight matrix by an
MPS with small bond dimension, the authors in [Nov+15] were able to compress
state-of-art image detection networks by a factor of seven with only minor perfor-
mance penalties. Other examples of applications of tensor decompositions in deep
learning include regularization [Tai+15] and deep representation learning [YH16].

Another use of the MPS tensor format in machine learning was pioneered in [MS16].
They consider a binary support vector machine classifier with a decision function

f(X) = 〈W,X〉 . (4.28)

Here, X is the input vector and W is the model vector. The goal is to determine
W in such a way that f(X) > 0 if X is in the “yes” class and f(X) < 0 otherwise.
By using an MPS representation for W and X, they are able to efficiently learn
such a model even in high-dimensional settings. A similar approach can also be
applied to learning polynomial classifiers [Che+17] as well as to image compression
and classification [BPT15; Ben+17].

4.2. The Python Library mpnum

The Python library mpnum [Sue17a] was developed during this work to simplify
the process of prototyping numerical algorithms with MPS. Its main design princi-
ples are flexibility, user-friendliness, and expandability. We placed special emphasis
on making the API of mpnum as accessible as possible for researchers with little
background in programming: Compared to the existing TT-toolboxes for Matlab
and Python [Ose18a; Ose18b], we used object-oriented design principles to make
the syntax as close to mathematical notation as possible and to hide the details
of the MPS representation for the user. We were partly inspired by the fantastic
ITensor library [Sto18] for C++, but preferred an implementation in pure Python
due to its ease of use and widespread use in science. Beside our own work, mpnum
has been used in the study of experimental techniques in quantum optics [Sch+17a;
Sch+17b], optical quantum simulation [Dha+18], as well as quantum many-body
tomography [Lan+17]
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4.2.1. The MPArray class

In this section, we exemplify the usage of mpnum in the context of quantum physics.
The main goal is not to provide a comprehensive introduction, but to showcase the
main design choices and goals of mpnum: flexibility, user-friendliness, and expand-
ability. For a more thorough reference, we refer the reader to the online documenta-
tion under http://mpnum.readthedocs.io/en/latest/. Let us start by importing
the necessary packages.

>>> import numpy as np
... import mpnum as mp

The fundamental data structure of mpnum is the MPArray, which stands for matrix
product array. It is composed of an arbitrary number of local tensors with an arbitrary
number of legs per site arranged in a linear chain. MPS and MPOs are special cases
of this structure with one and two legs per site, respectively.

We start by performing the TT-SVD from Eq. (4.10) on a random tensor X ∈ R210 .

>>> shape = 10 * (2,)
... X = np.random.randn(*shape)
... X /= np.linalg.norm(X.ravel())
... X_mps = mp.MPArray.from_array(X, ndims=1)
... X_mps.ndims

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

This computes the MPS representation of X. By specifying ndim=1, we make sure
the resulting tensor has one leg per site, which we check by X_mps.ndims.

Note here and throughout the rest of this section that the internal representation
of the local tensors as a list of numpy.ndarray are hidden from the user behind
an acccessible, high-level interface. However, direct access to the local tensors is
provided using the MPArray.lt property, e.g. to compute how many floating point
numbers are used in the MPS representation:

>>> sum(M.size for M in X_mps.lt)

2728

This is more than twice as large as the number of components for X itself, which
is 210, or

>>> X.size
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1024

Since the original tensor X is generated by sampling its components from a normal
distribution, it is not compressible in MPS form. We see that the ranks of the tensor
are exponentially increasing towards the middle as expected from Eq. (4.14)

>>> X_mps.ranks

(2, 4, 8, 16, 32, 16, 8, 4, 2)

Furthermore, even a moderate compression incurs a large approximation error.

>>> X_compressed, overlap = X_mps.compression(rank=11)
... overlap

0.6676040905553423

>>> X_compressed.ranks

(2, 4, 8, 11, 11, 11, 8, 4, 2)

Let us now demonnstrate the MPArray class for a compressible state, e.g. the
W-state.

>>> from qutip.states import w_state
...
... psi = w_state(10).data.toarray().reshape((2,) * 10)
... psi_mps = mp.MPArray.from_array(psi, ndims=1)
... overlap = psi_mps.compress(rank=2)
...
... overlap

0.9999999999999996

>>> psi_mps.ranks

(2, 2, 2, 2, 2, 2, 2, 2, 2)

Note that in contrast to the previous case, we use in-place compression to reduce
memory consumption. Clearly, the rank 2 MPS approximates the W-state up to
numerical precission and requires staggeringly fewer parameters.

>>> sum(M.size for M in psi_mps.lt)
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72

One main motivation behind encapsulating the local tensors in the MPArray data
type is to ensure that they represent a valid MPS at all times and prevent common
errors such as mismatch of the virtual dimensions. Furthermore, it allows us to keep
track of the canonical form of the tensor.

>>> psi_mps.canonical_form

(9, 10)

Here, the first number indicates the index up to which all local tensors are left-
normalized and the second number the index after which all local tensors are right-
normalized. The psi_mps tensor in this example is in left-canonical form according to
Definition 4.3. If we change one of the local tensors, e.g. by rescaling, the canonical
form changes.

>>> M = psi_mps.lt[3]
... psi_mps.lt.update(3, 2 * M)
... psi_mps.canonical_form

(3, 10)

To bring it back to full canonical form, we need to call the appropriate method.

>>> psi_mps.canonicalize(left=9)
... psi_mps.canonical_form

(9, 10)

4.2.2. Arithmetic Operations
We now demonstrate the high-level interface for arithmetic operations on MPArray
by simulating the preparation of a N -qubit GHZ state

|GHZ〉 = 1√
2
(|0, . . . , 0〉+ |1, . . . , 1〉) (4.29)

One possible circuit for this task is a succesive application of CNOT gates~[NC10]

|GHZ〉 = CNOTN−1,N . . .CNOT1,2H1|0, . . . , 0〉. (4.30)

Here Hi is a Hadamard gate on the i-th qubit and CNOTi,j denotes a controlled
not gate with control on qubit i and target on qubit j. We start by defining the
necessary local operations.
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>>> from qutip.qip.gates import hadamard_transform
... from qutip.qip.gates import cnot as cnot_transform
...
... hadamard_local = hadamard_transform().data.toarray()
... cnot_local = cnot_transform().data.toarray()
... cnot_local

array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],
[0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j]])

Next, generate the initial state in MPS form and convert the local operators to the
MPArray data type.

>>> N = 10
...
... ket_down_local = np.array([1, 0], dtype=complex)
... ket_down = mp.MPArray.from_kron(N * [ket_down_local])
... hadamard = mp.MPArray.from_array(hadamard_local, ndims=2)
... len(ket_down)

10

>>> len(hadamard)

1

Note that the initial state |0, . . . , 0〉 is a product, and hence, can be represented by
an MPS of rank 1.

>>> ket_down.ranks

(1, 1, 1, 1, 1, 1, 1, 1, 1)

Since cnot_local is in matrix form, we cannot directly perform the TT-SVD on
it. First, we have to convert it to a tensor of order four -- two legs per site -- and
rearrange the legs in such a way such that legs from the same site are adjacent.

>>> cnot_local = cnot_local.reshape(4 * (2,)).transpose((0, 2, 1, 3))
... cnot = mp.MPArray.from_array(cnot_local, ndims=2)
... len(cnot)
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2

>>> cnot.ranks

(4,)

Now we can start to perform the circuit from Eq. (4.30).

>>> ket_ghz = mp.partialdot(hadamard, ket_down, start_at=0)
... ket_ghz.ranks

(1, 1, 1, 1, 1, 1, 1, 1, 1)

The function partialdot performs an efficient contraction of two MPArray of possi-
bly unequal length. The result is an MPArray of the same order and -- since hadamard
is a one-body operator -- of the same rank. We continue by applying the first CNOT,
which results in an MPS with higher rank as CNOT entangles the two qubits on site
one and two.

>>> ket_ghz = mp.partialdot(cnot, ket_ghz, start_at=0)
... ket_ghz.ranks

(4, 1, 1, 1, 1, 1, 1, 1, 1)

The other CNOT gates follow similarly.

>>> for site in range(1, N - 1):
... ket_ghz = mp.partialdot(cnot, ket_ghz, start_at=site)
... ket_ghz.ranks

(4, 4, 4, 4, 4, 4, 4, 4, 4)

This yields an GHZ state in MPS representation.
A different approach is to simply generate the GHZ-state~(4.29) as a diagonal

tensor. The two tensors are equal up to numerical precission.

>>> ket_ghz2 = mp.diagonal_mpa(np.array([1, 1]), N)
... ket_ghz2 /= mp.norm(ket_ghz2)
... mp.norm(ket_ghz - ket_ghz2)

1.5700924586837752e-16
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Figure 4.5.: The local measurements used for the reconstruction of MPS, MPO, and
unitary channels in [Cra+10; Bau+13a; Bau+13b; Lan+17; Hol+15].
These consist of informationally complete measurements on blocks of R
consecutive qudits, e.g. all Pauli product measurements on R qudits.

4.3. Efficient low-rank tensor reconstruction

So far, we have seen that the MPS tensor format provides the means to efficiently
represent and manipulate tensors, which occur in practical applications in e.g. quan-
tum physics or machine learning. In this context, the question arises: How can we
efficiently recover this representation in practice from measurable quantities? Here,
“efficiency” refers to two different aspects. On the one hand, we want to bound the
number of measurements required to perform reconstruction, i.e. the sample com-
plexity. On the other hand, it refers to the computational complexity as outlined in
Section 2.2. Both aspects are especially critical for tensor reconstruction as naïve
approaches generally suffer from the curse of dimensionality.

We first review existing work on efficient QSE using the MPS tensor format, which
relies on local measurements on few neighboring sites, in Section 4.3.1 Although
the notion of “tracing out” unobserved degrees of freedom is natural in quantum
mechanics, it does not exist for the linear measurement model considered in this work,
which we introduce also in said section. In Section 4.3.2, we describe the alternating
least squares algorithm used for reconstruction from general product measurements,
which is further analysed in Section 4.3.3. In Section 4.3.4 we consider the special case
of Gaussian product measurements and present numerical reconstruction experiments
in Section 4.3.5.

4.3.1. Existing work

In the context of quantum estimation, existing work addresses this question for the
reconstruction of MPS [Cra+10], MPDO [Bau+13a; Bau+13b; Lan+17], and unitary
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quantum processes [Hol+15] from local measurements. More precisely, they consider
informationally complete measurement on blocks of length R as depicted in Fig. 4.5.
Since there are exactly N−R+1 such blocks, this requires a number of measurements
scaling as O(N × dR) compared to the O(dN ) scaling of full-fledged quantum state
tomography. Numerical experiments in [Cra+10; Bau+13a; Bau+13b] demonstrate
successful recovery of W-states as well as ground and thermal states of nearest-
neighbor Hamiltonians for small values of R independent of N . Naturally, these are
all examples of MPS or MPO with small bond dimension. The drastically reduced
sampling complexity makes the approaches efficient and viable for large-scale quan-
tum experiments. However, only the numerically inferior algorithm5 from [Bau+13a]
comes with a proof of convergence. Similar rigorous recovery guarantees have only
been proven for comparable, but inefficient versions of the algorithms in [Cra+10;
Bau+13b].

The question that motivated the work presented in this chapter is whether we
can identify other measurement schemes and algorithms that provably allow for effi-
ciently reconstructing low-rank tensors. However, a rigorous analysis of the local
measurement model introduced above is very challenging. Furthermore, it requires
“tracing out” the N − R unobserved sites for each measurements, which relies on
the operator-structure of mixed quantum states. For a general linear measurement
model on tensors, there is no natural notion of partial trace, and hence, no R-local
measurements. Therefore, we consider the problem of efficient reconstruction from a
linear measurement model with product tensors here.

Recall that we already encountered a similar question in Chapter 3 for the problem
of low-rank matrix recovery. The latter is concerned with the question, under which
conditions we can recover a low-rank matrix X ∈ Cd×d from m linear measurements
of the form6

b(l) = 〈A(l), X〉 , l = 1, . . . ,m. (4.31)

Here, A(l) ∈ Cd×d denote the measurement matrices and

〈A,X〉 = trA†X (4.32)

the Frobenius inner product. For a general matrix X, the number of measurements
m needs to scale as d2 by simple parameter counting. However, by exploiting the
low-rank structure of X, we can reduce m. For example, Theorem 3.5 shows that
we can recover any positive semi-definite rank-1 matrix X from only m = O(d)
measurements provided the A(l) are sampled from an appropriate distribution of

5T. Baumgratz, private communications.
6Note that we take up the notation from Chapter 3 for the rest of this chapter, where the index l

in A(l) labels different measurement tensors, and not their local tensors.
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random matrices. Furthermore, said theorem also provides an efficient reconstruction
algorithm, namely the semi-definite program (3.12).

More generally, we can recover any X ∈ Cd×d with rankX = r from m = O(dr)
randomly chosen measurements [CP11; KRT17]. Intuitively, this sample complexity
is asymptotically optimal since we need at least 2dr complex parameters to spec-
ify the left- and right-singular vectors of X, see [ENP12; LLB16] for rigorous lower
bounds.

Here, we consider the generalization of low-rank matrix recovery to higher order
tensors7 X ∈ RdN of low MPS-rank. For this purpose, we study an Alternating Least
Squares (ALS) algorithm. The observable quantities are – analogous to Eq. (4.31) –
given by overlaps with measurement tensors A(l) ∈ R

b(l) = 〈A(l), X〉 (4.33)

with the Frobenius inner product of tensors defined by Eq. (4.21).
The field of low-rank tensor recovery has attracted increasing attention in recent

years. Especially the problem of tensor completion, i.e. inferring missing values of
a low-rank tensor, has been thoroughly studied due to its broad applicability in
computer vision, neuroscience, remote sensing, and context-aware recommender sys-
tems [LL10; ZH16; WNH14]. In contrast to our work, most analytical results in
this area are concerned with different notions of tensor rank such as the Tucker
rank [KSV14; Zha16] or the canonical tensor rank [KS13; PS17; GPY17]. The Tucker
model still requires exponentially many parameters, and therefore, is unsuitable for
our purposes. Although the canonical tensor representation captures the structure of
many applications very well, it has some drawbacks in practice [KB09]: Approxima-
tion with fixed canonical rank in the Frobenius norm can be ill-posed [DL08]. Also,
no equivalently tight bound on the approximation error as Eq. (4.22) is known for
the canonical format.

The best analytical recovery guarantees for low-MPS rank tensor completion re-
quire – to the best of the authors knowledge – a number of measurements scaling
exponentially in the order of the tensor [Phi+16]. Although their result gives a
square-root advantage compared to naïve reconstruction, it is still infeasible for high-
order tensors. However, numerical investigations using an alternating least squares
algorithm similar to the one used in this work demonstrate successful recovery with
sub-exponential sample complexity [GKK15a; WAA16].

Stronger analytical results exist for a different measurement ensemble: The authors
in [RSS15; RSS17], consider fully Gaussian measurements, i.e. measurement tensors
with independent components sampled from a normal distribution. In this approach,
a number of measurements scaling polynomially in the crucial parameters d, N ,

7In contrast to the rest of this chapter, we consider real tensors in order to simplify notation.
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and r is sufficient to recover any rank r tensor. Although their result is highly
efficient in the sample complexity, it is still infeasible for high-order tensors due to
the exponentially scaling memory requirement for the measurement tensors and the
resulting exponential runtime of any algorithm using them.

In existing work [HRS12; RU13], the authors proof local convergence result for
general minimization problems in the MPS format. Their work shows that alternating
minimization-type algorithms can be used to provable find local minima of a large
class of cost functions.

In conclusion, the existing rigorous work on recovering low MPS-rank tensors is
currently situated at two different ends of a spectrum: On the on hand, there is tensor
completion, which is highly relevant for practical applications and efficiently imple-
mentable, but without any recovery guarantees for a polynomially scaling number of
measurements. On the other hand, the authors in [RSS15] prove reconstruction with
near-optimal sample complexity, but their full Gaussian measurements are computa-
tionally very demanding.

This situation can be understood better by comparing to the history of low-rank
matrix recovery and compressive sensing – the related problem of reconstructing
sparse vectors from few measurements. The first rigorous on compressed sensing from
Gaussian measurements were due to Donoho [Don06] in 2006. In the same year, Can-
des, Romberg, and Tao – a Fields Medalist – proved guarantees for orthonormal basis
vector measurements [CRT06], which can be considered as the analogue of matrix
completion for vectors. Candes and Tao also proved the first matrix recovery guaran-
tees for matrix completion [CT10], while the first guarantees for Gaussian matrices
were proven in [RFP10]. Here, we are going to study a measurement ensemble for
tensors that combines the advantages of both approaches. We take the measurement
tensors to be of the form

A(l) = a
(l)
1 ⊗ · · · a

(l)
N (4.34)

with local tensors randomly chosen from a standard multivariate normal distribution
a
(l)
k ∼ N (0,1d). In contrast to the fully Gaussian model from [RSS15; RSS17], the

measurement tensors (4.34) can be represented efficiently as MPS of unit rank. And,
unlike the tensor completion problem, history does not suggest that its solution re-
quires at least one Fields Medalist.

The rest of this section is structured as follows: In Section 4.3.2, we introduce
the alternating least squares (ALS) algorithm for tensors, which we analyse analyt-
ically in Section 4.3.3 for general rank-1 measurements. This section also contains
the main analytical result of this section, namely a sufficient condition for recovery,
which connects the deviation of the initialization from the true value and inherent
properties of the measurements. The particular case of Gaussian rank-1 Gaussian
measurements is further investigated in Section 4.3.4. As the analysis of Gaussian
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product measurements poses tremendous challenges, this section contains work in
progress. We develop mathematical tools, which might be useful in future work, and
perform detailed numerical experiments investigation of the properties of said mea-
surements. Finally, in Section 4.3.5, we report on numerical simulations of tensor
recovery via ALS and some optimization strategies for scaling the implementation to
large tensors.

4.3.2. The alternating least squares algorithm

To recapitulate, the goal is to recover a tensor X ∈ RdN with MPS-rank8 r from M
linear measurements of the form

b(l) = 〈A(l), X〉 , . . . l = 1, . . . ,M, (4.35)

where A(l) is a product of Gaussian vectors as defined in Eq. (4.34). For this purpose,
we want an efficient reconstruction algorithm and M to scale polynomially in the
parameters d, N , and r.

The idea to recover X is simply to find the tensor Y of desired rank that minimizes
the empirical `2 error

1

M

∑
l

(
b(l) − 〈A(l), Y 〉

)2
. (4.36)

In general, this problem is hard to solve directly since the space of MPS of given rank
is non-convex. Nevertheless, in the case of M = O(((N − 1)r3 + dNr) log dr) fully
Gaussian measurements, a projected gradient descent on (4.36) is able to recover
X [RSS15; RSS17]. However, the same proof techniques are not suitable for the
Gaussian rank-one measurements under consideration here. This is due to the fact
that the measurement tensors lie in the variational class of tensors we try to recover.
For more details, see Appendix B in [ZJD15].

Instead of updating all local tensor simultaneously as in the gradient descent, we
iteratively optimize the empirical error over a single local tensor at a time. Since the
minimization of Eq. (4.36) over a single local tensor is a linear-least squares problem,

8From now on, we simply say “rank” instead of “MPS-rank”.
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it can be solved efficiently. The resulting algorithm is presented below:
Algorithm 1: Alternating Least Squares (ALS) for `2 minimization

Input : Number of epochs H and initialization MPS Xinit of order N ,
rank r, and local dimension d,
measurement tensors A(l) = a

(l)
1 ⊗ · · · ⊗ a

(l)
N and measurement

outcomes b(l) with i = 1, . . . , H ×N ×m divided into HN batches
of size m, which are denoted by

(
A(h,n;l), b(h,n;l)

)
l

(h ∈ [H], n ∈ [N ])
1 Y ← Xinit

2 for h← 1 to H do
/* right-normalize all local tensors, i.e. bring Y to

right-canonical form */
3 right_canonicalize(Y )
4 for n← 1 to N do
5 for l← 1 to m do

/* contract A(h,n;l) with all but n-th local tensors */
6 B(l) ← contract(A(h,n;l), Y[N ]\n)

7 Ẑ ← argminZ
∑

l

(
b(h,n;l) −B(l)Z

)2
/* update the n-th local tensor inplace with a

left-normalized form of Ẑ */
8 Yn ← left_normalize(Ẑ)

Output: Y
In this version of the alternating least squares scheme, we start updating the left-

most tensor and then move through the chain all the way to the right. When we
reach the last tensor of the MPS, we start again on the left after bringing the MPS
to right-canonical form. Hence, all tensors to the left and right of the currently
updated tensor are left- and right-normalized, respectively. This process for a total
of H epochs.

The crucial step in this algorithm is the local minimization in line 7. It amounts
to keeping all but the n-th local tensor of Y fixed and minimizing the empirical error
over Yn. The minimizer Ẑ can be computed efficiently from the linear least squares
problem

Ẑ = argminZ
∑
l

(
b(h,n;l) −B(l)Z

)2
= ‖b(h,n) −BZ‖2`2 . (4.37)

Here, the rows of the matrix9 B ∈ Rm×(dr2) are defined in line 6 in terms of partial

9More specifically, we have B ∈ Rm×(rd) for n = 1 or n = N .
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contractions of A(h,n;l) and Y leaving out the n-th local tensor of Y :

B(l) =

Y

A(h,n;l)

(4.38)

Therefore, the solution Ẑ of Eq. (4.37) is a dr2 dimensional vector, which can be
reshaped to the correct form. If we replace the exact local minimization in Eq. (4.37)
by a finite gradient descent step, we obtain a standard nonlinear block Gauss–Seidel
iteration [Sch62].

Finally, note that the sample splitting into H epochs at the beginning is necessary
for the analysis of the algorithm below as it requires stochastically independent up-
dates for each micro-iteration. Therefore, we use a fresh batch of measurement tensors
and measurement values in each step, which results in a total number of M = HNm
measurements. Provided that both, the number of epochs H and the batch size m
scale polynomially in the system’s parameters, then so does M . However, numer-
ical experiments in Section 4.3.5 show that this resampling is unnecessary in practice.

4.3.3. Analysis of the ALS

Alternating algorithms such as ALS updating only a few local tensors at a time are
a very common approximation technique for circumventing intractabilities when deal-
ing with MPS. Well known examples include variational compression and DMRG [Sch11]
– an iterative algorithm for approximating the smallest eigenvalue of a hermitian
MPO. Local convergence of these alternating algorithms has been proven for a large
class of problems in [HRS12; RU13]. These results show that alternating minimiza-
tion algorithms of many cost functions converge to a local minimum. However, it
remains to be shown that the minimizer of the empirical `2 error (4.36) with given
rank is equal to X, i.e. that the given measurements suffice to identify X.

For this purpose, we generalize the ideas from the matrix case [ZJD15] to the tensor
case. More precisely, We adapt the idea from [ZJD15] to analyse the micro-iterations
of Alg. 1 directly by deriving a closed form expression for the minimizer of Eq. (4.37).
However, as the notation and the analysis is much more involved in the tensor case,
we only treat the case of a product signal tensor, i.e. X is assumed to have rank one.
Furthermore, we also assume w.l.o.g. that X is normalized in Frobenius norm, i.e.
‖X‖2 = 1. Then, X can be written as a tensor product of N normalized vectors
xi ∈ Rd and we have

b(l) = 〈A(l), X〉 =
N∏
i=1

〈a(l)i , xi〉 . (4.39)
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One main result of this chapter is Theorem 4.7. It shows that under certain assump-
tions on the initialization and measurement tensors, each micro-iteration brings the
local tensor closer to its true value in a suitable metric. In the case of rank-1 tensor
reconstruction, this metric between the local tensors x and y with ‖x‖`2 = ‖y‖`2 = 1
is given by

dist(x, y) =

√
1− |〈x, y〉|2. (4.40)

It is known as infidelity if x, y ∈ Cd represent pure quantum states [NC10]. Equa-
tion (4.40) is also the one-dimensional special case of the principle angle distance of
subspaces [GV12], which is the appropriate distance measure for higher-rank gen-
eralizations of the results presented here. The following lemma relates the “global”
distance of two tensors, which is measured in Frobenius norm, to the distances of the
local tensors measured by (4.40). Therefore, it shows how a reduction of the errors
of the local tensors leads to a reduction of the error of the full tensor measured in
Frobenius norm.

Lemma 4.4. Let X = ⊗N
i=1xi and Y = ⊗N

i=1yi be two product tensors of unit norm.
Assume that for each i ∈ [N ], we have ‖xi‖`2 = ‖yi‖`2 = 1 and

1− 〈xi, yi〉2 ≤ δ2i . (4.41)

Then,

min
η=±1

‖X − ηY ‖2 ≤
√
2

N∑
i=1

δi. (4.42)

Proof. First, note that Eq. (4.41) implies

min
η=±1

‖xi − ηyi‖2`2 = min
η=±1

2(1− η 〈xi, yi〉) = 2(1− | 〈xi, yi〉 |) (4.43)

≤ 2(1− 〈xi, yi〉2) ≤ 2δ2i . (4.44)

Therefore, we get for the Frobenius norm distance of the full tensors

min
η=±1

‖X − ηY ‖2 = min
η∈{±1}

‖x1 ⊗ · · · ⊗ xN − η y1 ⊗ · · · yN‖2 (4.45)

≤ min
η,ξ∈{±1}

(‖x1 ⊗ x2 ⊗ · · · ⊗ xN − ηξ x1 ⊗ y2 ⊗ · · · ⊗ yN‖2

+‖ηξ x1 ⊗ y2 ⊗ · · · ⊗ yN − η y1 ⊗ y2 ⊗ · · · yN‖2)
(4.46)

= min
η∈{±1}

‖x2 ⊗ · · · ⊗ xN − η y2 ⊗ · · · ⊗ yN‖2

+ min
η∈{±1}

‖x1 − η y1‖2.
(4.47)
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By telescoping this argument, we get

min
η=±1

‖xi − ηyi‖2`2 ≤
N∑
i=1

(
min

η∈{±1}
‖xi − ηyi‖2

)
≤
√
2

N∑
i=1

δi, (4.48)

which completes the proof.

We now turn to the main problem in this section, namely investigating the ALS
update step. In the following, we denote by [N ] = 1, . . . , N the set of all integers up
to N and by [N ]\j = [N ] \ {j}. For our analysis, the following two conditions on the
measurement tensors A(l) are crucial:

1. Concentration of the Bj operators: For all j ∈ [N ], let vi ∈ Rd with
‖vi‖2 = 1 (i ∈ [N ]\j) independent of all the a

(l)
i . Define

Bj

(
(vi)i∈[N ]\j

)
=

1

m

m∑
l=1

∏
i 6=j

〈
a
(l)
i , vi

〉2 ∣∣∣a(l)j 〉〈a(l)j ∣∣∣ , (4.49)

Then, the smallest eigenvalue of Bj

(
(vi)i∈[N ]\j

)
should satisfy

λmin

(
Bj

(
(vi)i∈[N ]\j

))
≥ δB (4.50)

for some constant δB > 0

2. Concentration of the Gj operators: For all j ∈ [N ], let vi, v⊥i ∈ Rd (i ∈
[N ]\j) independent of all the a(l)i . Furthermore, they should satisfy ‖vi‖2 =

‖v⊥i ‖ = 1 and 〈vi, v⊥i 〉 = 0 for i ∈ [N ]\j . Define

Gj

(
(vi, v

⊥
i )i∈[N ]\j

)
=

1

m

m∑
l=1

∏
i 6=j

〈
a
(l)
i , vi

〉〈
a
(l)
i , v

⊥
i

〉∣∣∣a(l)j 〉〈a(l)j ∣∣∣ . (4.51)

Then, the largest singular value of Gj

(
(vi, v

⊥
i )i∈[N ]\j

)
should satisfy∥∥∥Gj

(
(vi, v

⊥
i )i∈[N ]\j

)∥∥∥
2→2
≤ δG. (4.52)

for some constant δG > 0

In Section 4.3.4 we elaborate on work in progress with the goal of proving that ran-
dom local tensors a(l)i sampled independently from a standard d-variate Gaussian
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distribution satisfy these conditions with high probability.

We start the analysis by examining a single ALS update step for the leftmost local
tensor with n = 1. Denote by ỹh+1

1 the minimizer Ẑ in line 7 of Alg. 1 and by yhi the
remaining local tensors of Y , which are kept fixed during this micro-iteration. The
empirical error as a function of ỹh+1

n then reads

F
(
ỹh+1
1

)
=
∑
l

∏
i

〈a(l)i , xi〉 − 〈a
(l)
1 , ỹ

h+1
1 〉

∏
i 6=1

〈a(l), yhi 〉

2

(4.53)

Since in the following, we only consider the optimization over ỹh+1
1 and keep the

other yhi fixed, we write ỹ1 and yi (for i > 1), respectively, if there is no risk of
confusion. In contrast to the (yi)i>1, ỹ1 is not normalized. We now derive an explicit
representation of the minimizer of Eq. (4.53).

Lemma 4.5. Denote by F the empirical `2 error defined in Eq. (4.53). Then, the
extremal point ỹ1 with ∂F (ỹ1)

∂ỹ1
= 0 is given by

ỹ1 =

∏
i 6=1

〈xi, yi〉

x1 − B̃−1
1 G̃1x1 (4.54)

with B̃1 and G̃1 given by

B̃1 =
1

m

∑
l

∏
i 6=1

〈
a
(l)
i , yi

〉2 ∣∣∣a(l)1 〉〈a(l)1 ∣∣∣ (4.55)

G̃1 =
1

m

∑
l

∏
i 6=1

〈
a
(l)
i , ỹ

⊥
i

〉〈
a
(l)
i , yi

〉∣∣∣a(l)1 〉〈a(l)1 ∣∣∣ (4.56)

ỹ⊥i = (|yi〉〈yi| − 1)xi (i ∈ [N ]\1). (4.57)

Proof. We begin by computing the derivative of F

∂F (ỹ1)

∂ỹ1
= −2

∑
l

∏
i

〈
a
(l)
i , xi

〉
−
〈
a
(l)
1 , ỹ1

〉 ∏
i 6=1

〈
a
(l)
i , yi

〉 ∏
i 6=1

〈
a
(l)
i , yi

〉 a
(l)
1 ,

(4.58)
which is equal to zero if and only if

∑
l

〈a(l)1 , ỹ1〉 ∏
i 6=1

〈
a
(l)
i , yi

〉∏
i 6=1

〈
a
(l)
i , yi

〉 a
(l)
1 =

∑
l

∏
i

〈
a
(l)
i , xi

〉∏
i 6=1

〈
a
(l)
i , yi

〉 a
(l)
1 .

(4.59)
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Reordering terms and factoring out the terms with i = 1 gives

∑
l

∏
i 6=1

〈
a
(l)
i , yi

〉2

a
(l)
1

〈
a
(l)
1 , ỹ1

〉
=
∑
l

∏
i 6=1

〈
a
(l)
i , xi

〉〈
a
(l)
i , yi

〉 a
(l)
1

〈
a
(l)
1 , x1

〉
,

(4.60)
and therefore,

B̃1 |ỹ1〉 =
1

m

∑
l

∏
i 6=1

〈
a
(l)
i , xi

〉〈
a
(l)
i , yi

〉 ∣∣∣a(l)1 〉〈a(l)1 ∣∣∣


︸ ︷︷ ︸
=:Õ1

x1. (4.61)

Note that B̃1 = B1(y2, . . . , yN ) as defined in Eq. (4.49). Since we assume by Eq. (4.50)
that the smallest eigenvalue of B̃1 is larger than zero, it is invertible and we can
multiply the last equation by its inverse and obtain

ỹ1 =

∏
i 6=1

〈xi, yi〉

xi − B̃−1
1

∏
i 6=1

〈xi, yi〉

 B̃1 − Õ1

xi, (4.62)

where the first and second summand cancel each other. Finally, we simplify the
expression in parentheses, which completes the proof:∏

i 6=1

〈xi, yi〉

 B̃1 − Õ1 (4.63)

=
1

m

∑
l

∏
i 6=1

〈xi, yi〉 〈a(l)i , yi〉
2
−
∏
i 6=1

〈a(l)i , yi〉 〈a
(l)
i , xi〉

∣∣∣a(l)1 〉〈a(l)1 ∣∣∣ (4.64)

=
1

m

∑
l

∏
i 6=1

〈a(l)i , yi〉
(
〈xi, yi〉 〈a(l)i , yi〉 − 〈a

(l)
i , xi〉

)∣∣∣a(l)1 〉〈a(l)1 ∣∣∣ (4.65)

=
1

m

∑
l

∏
i 6=1

〈a(l)i , yi〉
(〈
a
(l)
i , 〈yi, xi〉 yi − xi

〉)∣∣∣a(l)1 〉〈a(l)1 ∣∣∣ (4.66)

= G̃1. (4.67)

From Eq. (4.54) we see that if the error term B̃−1
1 G̃1x1 is small, then the overlaps

of the remaining local tensors 〈xi, yi〉 for i = 2, . . . , N determine how close ỹ1 is to
its true value x1. The following lemma makes this precise.
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Lemma 4.6. Let y1 := ỹ1
‖ỹ1‖`2

with ỹ1 given by Eq. (4.54). Furthermore, define

κ1 =
δB
δG

∏
i 6=1

|〈xi, yi〉| −
∏
i 6=1

√
1− 〈xi, yi〉2. (4.68)

Assume that the conditions of Eqs. (4.50) and (4.52) hold and κ1 > 0, then we have

1− 〈x1, y1〉2 ≤
∏

i 6=1(1− 〈xi, yi〉
2)

κ21
. (4.69)

Proof. First recall that B̃1 = B1(y2, . . . , yN ) as defined in Eq. (4.49). Since ‖yi‖`2 = 1

and B̃1 is positive definite, the lower bound on the smallest eigenvalue of B̃1 in
Eq. (4.50) translates to ∥∥∥B̃−1

1

∥∥∥
2→2

=
1

λmin(B̃1)
≤ 1

δB
. (4.70)

Furthermore, G̃1 = G1(y2, ỹ
⊥
2 , . . . , yN , ỹ

⊥
N ), and hence, normalization of the ỹ⊥i yields

∥∥∥G̃1

∥∥∥
2→2
≤ δG

∏
i 6=1

‖ỹ⊥i ‖`2

≤ δG
∏
i 6=1

√
1− 〈xi, yi〉2.

(4.71)

Combining Eqs. (4.70) and (4.71) as well as the condition ‖x1‖`2 = 1 yields the bound
on the error term ∥∥∥B̃−1

1 G̃1x1

∥∥∥
`2
≤ δG
δB

∏
i 6=1

√
1− 〈xi, yi〉2. (4.72)

Next, using Eq. (4.54), we can lower bound the overlap

|〈x1, ỹ1〉| =

∣∣∣∣∣∣
∏
i 6=1

〈xi, yi〉 − 〈xi, B−1
1 G1x1〉

∣∣∣∣∣∣ (4.73)

≥

∣∣∣∣∣∣
∏
i 6=1

| 〈xi, yi〉 | −
∣∣〈x1, B−1

1 G1x1〉
∣∣∣∣∣∣∣∣ (4.74)

≥
∏
i 6=1

|〈xi, yi〉| −
∥∥B−1

1 G1x1
∥∥
`2

(4.75)

≥
∏
i 6=1

|〈xi, yi〉| −
δG
δB

∏
i 6=1

√
1− 〈xi, yi〉2. (4.76)
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by the Cauchy-Schwartz inequality and Eq. (4.72). Along the same lines, we obtain
for any x⊥1 with ‖x⊥1 ‖`2 = 1 and 〈x1, x⊥1 〉 = 0

∣∣∣〈x⊥1 , ỹ1〉∣∣∣ =
∣∣∣∣∣∣
〈
x⊥1 , x1

〉∏
i 6=1

〈xi, yi〉 −
〈
x⊥1 , B̃

−1
1 G̃1x1

〉∣∣∣∣∣∣ (4.77)

=
∣∣∣〈x⊥1 , B̃−1

1 G̃1x1

〉∣∣∣ (4.78)

≤
∥∥∥x⊥1 ∥∥∥

`2

∥∥∥B̃−1
1 G̃1x1

∥∥∥
`2

(4.79)

≤ δG
δB

∏
i 6=1

√
1− 〈xi, yi〉2. (4.80)

Finally, note that by the Pythagorean Theorem, we have

‖ỹ1‖2`2 = 〈x1, ỹ1〉2 + 〈x⊥1 , ỹ1〉
2
. (4.81)

Combining Eqs. (4.76), (4.80) and (4.81) then gives the final estimate

1− 〈x1, y1〉2 = 1− 〈x1, ỹ1〉
2

‖ỹ1‖2`2
(4.82)

=

〈
x⊥1 , ỹ1

〉2
〈x1, ỹ1〉2 +

〈
x⊥1 , ỹ1

〉2 (4.83)

≤
〈
x⊥1 , ỹ1

〉2
〈x1, ỹ1〉2

(4.84)

≤

(
δG
δB

)2∏
i 6=1

(
1− 〈xi, yi〉2

)
(∏

i 6=1 |〈xi, yi〉| −
δG
δB

∏
i 6=1

√
1− 〈xi, yi〉2

)2 (4.85)

provided the right hand side of Eq. (4.76) is positive. This completes the proof.

We are now ready to state the main theorem of this section. It shows that the
Alternating Least Squares algorithm improves the overlap of each local tensor with
its true value provided their initial values are close enough to the true value and the
conditions (4.50) and (4.52) for the measurements hold.

Theorem 4.7. Let N > 2. Assume that the initial values for the local tensors satisfy∣∣〈xi, y0i 〉∣∣ ≥√1− δ2I 1 = 2, . . . , N (4.86)
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for a constant δI ≥ 0 and the conditions (4.50) and (4.52) hold. Set

θ :=
δN−2
I√

δB
δG

(1− δ2I )
N−1

2 − δN−1
I

. (4.87)

If θ < 1, the local updates after completing one epoch satisfy√
1− 〈xi, y1i 〉

2 ≤ θ2i−1
δI. (4.88)

Proof. Note that the initialization condition (4.86) implies that

κ01 =
δB
δG

∏
i 6=1

∣∣〈xi, y0i 〉∣∣−∏
i 6=1

√
1− 〈xi, y0i 〉

2 (4.89)

≥ δB
δG

(
1− δ2I

)N−1
2 − δN−1

I (4.90)

> 0, (4.91)

since Eq. (4.87) would be ill-defined otherwise. Therefore, we have with Lemma 4.6

1− 〈x1, y11〉
2 ≤ 1

κ2δI

∏
i 6=1

(1− 〈xi, y0i 〉
2
) (4.92)

≤
δ
2(N−2)
I

κ2δI
δ2I . (4.93)

= θ2 δ2I . (4.94)

Under the assumption that θ < 1, Eq. (4.94) implies that the upper bound on the
overlap of the first local tensors decreases. Similarly, we find for the second local
tensor

1− 〈xi, y12〉
2 ≤ 1

κ2δI
(1−

〈
x1, y

1
1

〉2
)
∏
i>2

(1−
〈
xi, y

0
i

〉2
) (4.95)

≤ 1

κ2δI
θ2δ2I δ

2(N−2)
I (4.96)

= θ4δ2I . (4.97)

Iterating this argument shows that for the i-th local tensor, we have

1− 〈x2, y1i 〉
2
= θ2niδ2I , (4.98)

where ni satisfies n1 = 1 and ni+1 = 1 +
∑i

j=1 nj , and hence, ni = 2i−1

116



4.3. Efficient low-rank tensor reconstruction

Note that for θ = const < 1, Eq. (4.88) implies an improbable fast, double-
exponential convergence inN for some local tensors. Hence, we expect anN -dependent
“constant” θ with θ → 1 as N →∞. Also, Eq. (4.88) suggests that the order in which
we optimize the local tensors in Alg. 1 is not optimal: Due to the dependence of the
right hand side of said equation on the site-index i, the rightmost local tensor bene-
fits the most from the improvements of the previous steps. Therefore, an alternating
left-right-left sweep may be more beneficial for improving the global error of the recon-
struction as the latter is determined by the largest error of the local tensors according
to Lemma 4.4. Such sweeping strategy also is widely used in related algorithms such
as DMRG. In contrast to such alternating sweep strategies, one-directional sweeping
requires additional canonicalization after each completed sweep in order to bring the
tensor into the necessary form.

Let us now investigate the convergence condition on θ more closely. A straightfor-
ward computation shows that θ < 1 is equivalent to

δB
δG

>

(
δ2I

1− δ2I

)N−1
2 1 + δI

δI
. (4.99)

Hence, there is a trade-off between the measurement-constants δB and δG, and the
initialization constant δI: On the one hand, if δI > 1√

2
, Eq. (4.99) the right hand side

of Eq. (4.99) grows exponentially fast as a function of N . Since effectively, we need
to lower bound δB

δG
, Eq. (4.99) necessitates very strong concentration properties of

the measurement ensemble. On the other hand, if δI < 1√
2
, the right hand side goes

to zero exponentially fast in N . Therefore, the better the initialization, the more
leeway we have for the bounds of the concentration constants δB and δG.

Finally, note that Theorem 4.7 only guarantees that the ALS algorithm improves
the absolute values of the overlaps of the local tensors. Therefore, we are only able
to reconstruct the local tensors up to a sign.10 This is due to the Gauge symmetry
of MPS mentioned in Section 4.1.2: Since we deal with a rank-1 MPS and fix all
the norms of the local tensors, the remaining gauge freedom is exactly given by
transformations of the form

xi 7→ −xi and xj 7→ −xj (4.100)

for i 6= j. The ability to reconstruct all local tensors only up to sign implies that
we are able to reconstruct X only up to a global sign using ALS as we show in
Lemma 4.4 below. However, in our idealized scenario without noise, the sign can be
easily recovered simply by comparing b(l) = 〈A(l), X〉 to 〈A(l), Y ]〉 for any l provided
b(l) is larger than the small remaining reconstruction error. Here, Y ] denotes the
final output of ALS.
10Or up to a phase factor in the complex case.
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4. Low-rank tensor recovery

4.3.4. Gaussian measurements
The results from Section 4.3.3 apply to general rank-1 measurements

A(l) = a
(l)
1 ⊗ · · · ⊗ a

(l)
N , (4.101)

which satisfy the fundamental concentration conditions in Eqs. (4.50) and (4.52). In
this section, we consider measurements of the form (4.101), where the local tensors
are chosen independently from a standard normal d-variate distribution, i.e. a(l)N ∼
N (0,1d). In this case, the operators Bj(v) defined in Eq. (4.49) are of the form

Bj(v) =
1

m

m∑
l=1

Y
(l)
j

∣∣∣a(l)j 〉〈a(l)j ∣∣∣ , (4.102)

where

Y
(l)
j =

∏
i 6=j

〈
a
(l)
i , vi

〉2
=

N−1∏
i=1

g
(l)
i

2
(4.103)

is a product of squares of N − 1 independent standard Gaussians g(l)i ∼ N (0, 1).
Similarly, for Gj(v, v

⊥) defined in Eq. (4.51)

Gj(v, v
⊥) =

1

m

m∑
l=1

X
(l)
j

∣∣∣a(l)j 〉〈a(l)j ∣∣∣ , (4.104)

with

X
(l)
j =

2(N−1)∏
i=1

g
(l)
i (4.105)

being a product of 2(N − 1) independent standard Gaussians. Therefore, the prob-
lem of proving the concentration properties Eqs. (4.50) and (4.52) requires a better
understanding of the distribution of products of Gaussian random variables.

In this section we are going to summarize the results from [SSK17a; SSK17b],
where we compute a power-log series expansion for the cumulative distribution func-
tion of products of independent standard Gaussians as well their absolute values and
squares. As the main work in these publications was done by the first author, we only
sketch the results here. In numerical simulations, we also show that truncations of
said expansions at the first-order provide very close approximations, and therefore,
may be used to derive strong concentration properties for said random variables.
However, since at this time, we do not have explicit error bounds for these trunca-
tions, we investigate the concentration properties of the operators (4.102) and (4.104)
numerically at the end of this section.
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Figure 4.6.: Distribution function of log Y = logX2 = log
(∏n

i=1 g
2
i

)
with Y given by

Eq. (4.106) for different numbers of factors n. The histogram is taken
over 100,000 samples and the solid line depicts the probability density
function of a normal random variable with mean µn and standard devi-
ation σ

√
n. Here, µ and σ denotes the mean and standard deviation of

log g2i as given by Eq. (4.109).
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4. Low-rank tensor recovery

Recall from Section 4.3.3 that one of the conditions needed for successful recovery
via ALS is a lower bound on λmin(Bj(v)) with Bj(v) from Eq. (4.102). In words, we
need a lower tail bound on the smallest eigenvalue of sums of independent random
operators of the form Y × |a〉〈a|, where a ∼ N (0,1d) and Y is a product of squares
of standard Gaussians, i.e.

Y =

n∏
i=1

g2i , with gi ∼ N (0, 1). (4.106)

We encountered a similar problem in Chapter 3, where the proof of the main Theo-
rem 3.5 relied on the moment conditions in Definition 3.1. However, these standard
concentration inequalities are not applicable to the problem of tensor recovery due
to the large fluctuations of Y in Eq. (4.106): Because of the independence of the gi,
the k-th moments of Y are given by

EY k =

n∏
i=1

Eg2ki = ((2k − 1)!!)n . (4.107)

So although the expectation value of Y is 1 for all values of n, the variance of X
scales as (3!!)n = 3n. This might be surprising since Y > 0 almost surely. The reason
for the exponentially strong fluctuations about the mean are realizations of Y which
are exponentially large, but which only occur with extremely small probability.

In order to illustrate the strong fluctuations of Y more clearly, note that

log Y =

n∑
i=1

log g2i . (4.108)

That is, the logarithm of Y is a sum of independent random variables with

E log g2i = µ = −(γ + log 2) and V log g2i = σ2 =
π2

2
. (4.109)

By the central limit theorem, we can approximate log Y for large n by a normal dis-
tribution with mean µn and standard deviation σ

√
n as depicted in Fig. 4.6. In other

words, Y is approximately log-normal distributed, and hence, the fluctuations of Y
are of order σ

√
n on a logarithmic scale, i.e. they manifest on the order of magnitude

of Y . In contrast, the sum of n independent standard Gaussian is a Gaussian with
standard deviation

√
n, which is naturally measured on a linear scale.

From the discussion above it becomes clear that standard tail bounds for sums of
independent random variables are not suitable to bound λmin(Bj(v)) efficiently. For
this purpose, a more thorough understanding of the distribution of the product of
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4.3. Efficient low-rank tensor reconstruction

squares of n independent Gaussian random variables is necessary. This was the main
motivation behind the publications [SSK17b; SSK17a]. In this work, we derive a
power-log series expansion of the cumulative density functions (cdf) of the following
three random variables:

X =

n∏
i=1

gi Y =

n∏
i=1

g2i Z =

n∏
i=1

|gi|, (4.110)

based on the theory of special functions. More precisely, we show that the cdfs
of said random variables can be expressed in terms of Meijer G-functions. Meijer
G-functions are a family of special functions in one variable x that is closed under
several operations including x 7→ −x, x 7→ 1/x, multiplication by xp, differentiation,
and integration. For the sake of completeness, we provide the definition of Meijer
G-functions and further references in Appendix A.3. We refer the reader to [SSK17a]
for the proofs of the following statements.

Lemma 4.8. Denote by X, Y , and Z the product of N independent Gaussians,
Gaussians squared, and their absolute value as defined in Eq. (4.110). Define the
function gα by

fα(z) := 1− 1

2α
· 1

π
n
2

G0,n+1
n+1,1

(
z
∣∣∣1, 1/2, . . . , 1/2

0

)
. (4.111)

Here, G0,n+1
n+1,1 denotes a Meijer-G function. Then, for any t > 0,

P(X ≤ t) = P(X ≥ −t) = f1

(
2n

t2

)
(4.112)

P(Y ≤ t) = f0

(
2n

t

)
(4.113)

P(Z ≤ t) = f0

(
2n

t2

)
. (4.114)

Based on the identities in Lemma 4.8, we now develop a power-log series of the
cdfs of X, Y , and Z based on the theory of Fox H-functions.

Theorem 4.9. Denote by X, Y , and Z the product of n independent Gaussians,
Gaussians squared, and their absolute value, respectively, as given by Eq. (4.110).
Define the function

fν,ξ(u) := ν +
1

2ξ
· 1

πn/2

∞∑
k=0

u−1/2−k
n−1∑
j=0

Hkj · [log u]j (4.115)
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with

Hkj :=
(−1)nk

j!

n−1∑
q=j

(
1

2
+ k

)−(q−j+1)

×
∑

j1+...+jn=n−1−q

n∏
t=1

 ∑
`1+...+`k+1=jt

Γ(`k+1)(1)

`k+1!

{
k−1∏
i=1

(k − i+ 1)−(`i+1)

}
(4.116)

Here, ji ∈ N0 and `i ∈ N. Then, for any t > 0,

P(X ≤ t) = P(X ≥ −t) = f1/2,1

(
2n

t2

)
, (4.117)

P(Y ≤ t) = f0,0

(
2n

t

)
, (4.118)

P(Z ≤ t) = f0,0

(
2n

t2

)
. (4.119)

The proof can be found in [SSK17a]. Here, we are mostly interested in the power-
log series expansion (4.115), because already its zeroth and first order truncation
approximate the cdfs of X, Y , and Z well as shown in Fig. 4.7. Said figure depicts
the true cdf as well as their series approximations from Eq. (4.115) for k = 0 and
k = 1. We can see that for all three random variables as well as for all values of n, the
zeroth order approximation is good for small values of t, but worsens for increasing t.
The first order approximation behaves similarly, but the approximation error remains
small enough so that it cannot be distinguished from the true cdf in the linear plots.
Therefore, we show the logarithmic approximation error in Fig. 4.7b, where we see
that the first-order approximation error remains below 10−2 for all shown cases. Note
that the approximation also gets better for increasing n. Therefore, we obtain the
worst approximations for the generally better behaved smaller values of n.

In conclusion, Fig. 4.7 shows that the power-log series expansion of the cdfs of the
random variables X, Y , and Z provides excellent approximation the very truncation
order k = 1. The problem of proving such a statement rigorously remains, however.
Furthermore, applying this approximation to prove the concentration properties from
Section 4.3.3 is also left for future work.

For the remainder of this section, we investigate the distribution and scaling of the
crucial constant δB

δG
introduced in Section 4.3.3 w.r.t. the parameters N and d . Recall

the main result of Section 4.3.3, the condition (4.99), which relates the quotient of
the measurement constants δB

δG
to the error δI in the initialization. We are now going

to investigate the scaling of said fraction numerically for the Gaussian measurement
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Figure 4.7.: Figure 4.7a shows the CDFs (k =∞) of the random variables X, Y , and
Z with their power-log series (4.117)–(4.119), respectively, truncated at
different orders k. Note that the first order approximation k = 1 lies
right on top of the true value, and hence, is not visible in this plot. In
Fig. 4.7b, we show the approximation error, i.e. the absolute value of the
difference of the truncation and the true value, on a log-scale.
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Figure 4.8.: Empirical distribution of ZB
ZG

for Gaussian product measurements. Here,
ZB and ZG are given by Eq. (4.120). The solid lines indicate the
smoothed histograms over 10000 samples and the dotted lines their 0.05
quantiles, i.e. 5% of the samples are smaller than the value shown. For
each combination of the number of sites N and local dimension d, we
choose the number of measurements m = CNd. For the blue curve we
have C = 10 and for the red curve C = 100.
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Figure 4.9.: Quantiles of the random variable ZB
ZG

for Gaussian measurements. The
solid lines indicate the empirical 5% quantile x0.05. The dotted lines
show the fractions of the “uncorrelated” quantiles of ZB and ZG, i.e.
xB,0.025

xG,0.975
. Therefore, the dotted lines represent a lower bound on x0.05,

which might be easier to proof.
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ensemble. For this purpose, we sample the operators Bj(v) and Gj(v, v
⊥) defined

in Eqs. (4.49) and (4.51), respectively for Gaussian measurements and for different
values of N , d, and m. In the following, we use the shorthand notation

ZB = λmin (Bj(v)) , and ZG =
∥∥∥Gj(v, v

⊥)
∥∥∥
2→2

. (4.120)

In Fig. 4.8, we show the empirical distribution of ZB
ZG

over 10000 realizations. Here,
we chose the number of measurements according to m = CNd for C ∈ {10, 100},
which is the same asymptotical scaling as the information-theoretic lower bound Nd.
The most influential parameter on the empirical distribution of ZB

ZG
is the number of

sites N . From Fig. 4.8, we see with that increasing N , the distribution becomes more
spread out. With Fig. 4.6 in mind, this is to be expected as the strong fluctuations
of ZB and ZG are due to their weighting factors, which are products of independent
Gaussian. The dependence of the empirical distribution of ZB

ZG
on d is weak for the

depicted parameter range, as the histograms look very similar in each row.
The dotted lines in Fig. 4.8 shows the 0.05 quantile x0.05 of each empirical distribu-

tion. In general, for a random variable X the q-th quantile is defined as the smallest
number xq such that

P (X ≤ xq) ≤ q. (4.121)

Therefore, the conditions on the measurements (4.49) and (4.51) hold with proba-
bility 0.95 for δB

δG
= x̃0.05, if we denote by x̃0.05 the quantile of the true distribution.

Here, we approximate the latter by the quantile of the empirical distribution over
10000 samples.

To further investigate the scaling of the quantiles, we plot them as a function of
N in Fig. 4.9 for different values of d and for different sampling rates m. In general,
for the parameters under consideration, the quantiles either grow monotonically, or
do so after attaining their minimum value for some value of N . In other words, the
plots indicate that for fixed d and m > 10Nd, the quantiles are bounded from below.
Furthermore, comparing the plots with linear scaling for C = 10 and C = 100 shows
that, as expected, increasing the constants also increases the quantiles throughout.
We also get larger quantiles for the other two quadratic sampling rates.

Finally, the dashed lines in Fig. 4.9 show the lower bound from combining separate
quantiles for ZB and Zg incoherently: Note that if ZB ≥ δB with probability 1 − q

2
and ZG ≤ δG with probability 1− q

2 , then a union bound argument shows that

ZB

ZG
≥ δB
δG

(4.122)

with probability 1− q
2 −

q
2 = 1− q. Therefore, we can lower bound the q-th quantile

of ZB
ZG

by the fraction of the q
2 and 1− q

2 quantiles of ZB and ZG, respectively. This
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lower bound indicated by the dashed lines is exactly used by the proof strategy with
separate probabilistic bound of ZB and ZG.

Note that the dotted lines show a similar behavior as the solid lines, and in partic-
ular, they are lower bounded for all values depicted as well. Hence, these numerics
suggest that such an approximation of the quantiles of ZB

ZG
is might be able to provide

suitable analytic bounds. In conclusion, Fig. 4.9 indicates that the crucial random
variable ZB

ZG
can – at least for fixed local dimension d – be lower bounded by a con-

stant.

4.3.5. Numerical reconstruction

In this section, we are going to numerically demonstrate the recovery of low-rank –
and not unnecessarily rank one – tensors via ALS. For this purpose, we introduce a
modified version of the ALS algorithm and also comment on implementation details,
which enable the reconstruction of large tensors.

The ALS algorithm as introduced in Alg. 1 has two drawbacks in practice: On the
one hand, it uses a fresh batch of size m of measurements for each micro-iteration.
Therefore, it requires HNm measurements and measurement tensors. On the other
hand, it does not provide an explicit initialization Xinit. These choices were made to
simplify the analysis of the algorithm, but they make Alg. 1 less suited in practice.

For the numerical experiments in this section, we are going to use a modified ALS
algorithm. To alleviate the drawbacks mentioned above, we are simply going to reuse
the same batch of size m of measurements in each iteration. Furthermore, we use
these measurements to compute a suitable initialzation: Consider the problem of
recovering a rank r tensor X ∈ RdN . Let

X̃init =

m∑
l=1

b(l)A(l), (4.123)

then we use a rank r approximation of X̃init as initialization, that is

Xinit = compressr(X̃init). (4.124)

Here, compressr denotes a suitable compression routine such as SVD-compression
introduced in Section 4.1.2 yielding a rank r approximation. To understand the mo-
tivation behind Eq. (4.123), note that X̃init =

1
mA

†AX, where A is the measurement
operator introduced in Proposition 3.3

A =

m∑
l=1

|el〉〈A(l)| (4.125)
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with el denoting the l-th canonical basis vector. Therefore, for the Gaussian mea-
surements introduced in Section 4.3.4, we have

EA†A = E

(∑
l

∣∣∣A(l)
〉〈
A(l)

∣∣∣) (4.126)

= mE
(
⊗N

i=1 |ai〉〈ai|
)

(4.127)
= m⊗N

i=1 (E |ai〉〈ai|) (4.128)
= m1d ⊗ · · ·1d, (4.129)

and hence EX̃init = X. In words, in expectation, the (uncompressed) initialization
is exactly the tensor we are trying to reconstruct. Therefore, we expect that X̃init is
close to X provided m is “large enough”. The exact value of m to make this precise
depends on the fluctuations of A.

Additionally, we also employ a left-right-left sweep as suggested by the analysis
in Section 4.3.3. The “practical” ALS algorithm used throughout this section is
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summarized below:
Algorithm 2: Practical Alternating Least Squares (ALS) for `2 minimiza-
tion

Input : Number of epochs H, target rank r, measurement tensors A(l) and
measurement outcomes b(l) with i = 1,m

/* Spectral initialization */
1 Y ← compressr(

∑m
l=1 b

(l)A(l)) right_canonicalize(Y )
2 for h← 1 to H do
3 for n← 1 to N do
4 for l← 1 to m do

/* contract A(l) with all but n-th local tensors */
5 B(l) ← contract(A(l), Y[N ]\n)

6 Ẑ ← argminZ
∑

l

(
b(l) −B(l)Z

)2
/* update the n-th local tensor inplace */

7 Yn ← left_normalize(Ẑ)
8 for n← N to 1 do
9 for l← 1 to m do

/* contract A(l) with all but n-th local tensors */
10 B(l) ← contract(A(l), Y[N ]\n)

11 Ẑ ← argminZ
∑

l

(
b(l) −B(l)Z

)2
/* update the n-th local tensor inplace */

12 Yn ← right_normalize(Ẑ)

Output: Y
In Fig. 4.10, we show the reconstruction error of Alg. 2 as a function of the epoch

h for different ranks of the target X as well as different sampling rates m. The target
tensor was chosen randomly and is kept fixed in each figure. Each line corresponds
to a different set of randomly chosen measurement tensors A(l) from the Gaussian
ensemble.

Figure 4.10a depicts the reconstruction error for the recovery of a rank 1 tensor
X from m = 0.05dN measurements. The convergence of the estimate to the true
value is very fast as about six sweeps are enough for most runs to reduce the error
below 10−2. Since the reconstruction error decays approximately linear on a semi-
logarithmic scale, the convergence in these examples is exponentially fast. We see
a slower convergence of the reconstruction error for a rank-10 tensor in Fig. 4.10b.
This is expected as the number of parameters for a rank-r MPS scale as O(Ndr2),
and hence, more measurements are necessary to recover such a tensor successfully.
By doubling mm in Fig. 4.10c, we are able to speed up convergence and obtain a
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(c) r = 10, m = 0.2 dN

Figure 4.10.: Recovery error of ALS (Algorithm 2) as a function of the epoch h. All
pictures show the recovery of a fixed randomly chosen tensor X ∈ RdN

for d = 4 and N = 8. Each line corresponds to a different set of
Gaussian product measurements. In Fig. 4.10a, we chose X to be of
rank 1, whereas Figs. 4.10b and 4.10c show the reconstruction of a rank
10 tensor. For initialization, we used the spectral initialization (4.124).

similar speed as for the rank-1 case. Note that the reconstruction error curves for
the rank-10 tensor are more uniform for different measurement tensors. This is likely
due to correlations between local tensors for non-product tensors.

In all the examples shown, we are able to recover the target tensor with only few it-
erations from fewer measurements than dN . By exploiting the low-rank structure, we
are not only able to reduce the sample complexity, but also speed up the computation.

For the remainder of this section, we comment on implementation details, which
enable scaling Alg. 2 even to large instances. The first bottleneck in a straight-
forward implementation of the ALS algorithm is the initialization in line 1 of Alg. 2.
A naïve implementation in mpnum would read

A = [mp.random_mpa(N, d, rank=1) for _ in range(m)]
b = [mp.inner(a, X) for a in A]
X_init, _ = mp.sumup(A, weights=b).compression(rank=r)

The first two lines are simply generating the random measurement tensors A and
the corresponding measurement values b. Here, X is the original tensor of rank r,
we are trying to recover. The third line first computes X̃init from Eq. (4.123) and
then compresses it to the desired rank. Note that as a sum of m rank-1 operators,
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X̃init is of rank m. The main bottleneck here is bringing X̃init to canonical form as
required for the compression: A general-purpose canonicalization as implemented in
mpnum has to compute matrix products of md × m and m × dm matrices in this
case. Furthermore, the subsequent compression is based on SVDs of similar sized
matrices.

In order to speed this up, we implemented a joint sum-and-compression routine in
mpnum, which benefits from the explicit representation of sums of rank-1 tensors.
The corresponding local tensors are highly sparse, and up to a constant factor, already
normalized. The last line of the example above then translates to

X_init = mp.special.sumup(A, rank=r, weights=b)

which provides a 5× speedup for the computations in Fig. 4.10c and reduces memory
footprint significantly.

For the iteration steps of Alg. 2, the main bottleneck for large instances is the
computation of the matrices B in the lines 5 and 10. These can be speed up in two
different ways: First, not all contractions in Eq. (4.38) have to be recomputed in every
step. In a left-sweep, the contraction at the i-th site are reused i times until said site
is update. Furthermore, once the site is updated, its contraction is required for the
following N − i − 1 updates. Therefore, by using dynamic programming techniques
and caching intermediate computation, which are reused later, we are able to speed
up the computation of the B significantly.

Second, we note that the computation of each row B(l) of B is independent from all
the other rows, and therefore, can be parallelized on shared-memory architectures.
In particular, since this is a typical example of a same-instruction-multiple-data par-
allelism (SIMD), it is suitable for implementation on modern GPUs. The latter are
especially suited for problems with number of independent SIMD computations much
larger than the number of GPU cores, and which do not require a lot of data copying
between the CPU and the GPU. Both points apply in our case: For the rather small
example of Fig. 4.10c, we already have m = 13107, which is significantly larger than
3584 – the number of cores of the state-of-art NVIDIA Pascal P100 GPU accelerator.
Since each micro-iteration only requires updating the previous local tensor of size r2d
on the GPU and downloading the matrix B of size m × r2d to the CPU, the faster
computation of B on the GPU amortizes already for medium-sized instances and
provides speedups on the order of 10× even on older GPUs.

We provide optimized implementations of the ALS algorithm 2 for both CPU and
GPU at https://github.com/dseuss/pycsalgs.

4.4. Conclusion & outlook
The MPS tensor format provides an efficient representation for many tensors occur-
ring in practical applications. In contrast to general tensors, which require exponen-
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tially many parameters w.r.t. the order of the tensor, tensors of MPS rank r can be
parameterized using only O(Ndr2) real numbers. Here, we show how to recover such
an efficient representation from few linear measurements using the ALS algorithm.
In contrast to previous work, which either requires an exponentially large number
of measurements or incompressible Gaussian measurement tensors, our work inves-
tigates recovery using product measurements. Therefore, the proposed scheme aims
no only to be sample efficient, but also computationally efficient.

The main result of this chapter is the sufficient condition for reconstruction from
rank-one measurements via ALS in Eq. (4.99). It relates the fraction δB

δG
of con-

stants quantifying concentration properties of the measurements and the deviation
of the initialization from the true value. As discussed below said equation, there is a
trade-off between the properties of the measurements and the initialization: A tighter
bound for the conditions (4.50) and (4.52) allows us to weaken the requirements on
the initialization, and vice versa. In Section 4.3.4, we examine the conditions for
Gaussian product measurements. These results suggest that for fixed d, m = O(N)
measurements are indeed sufficient to fulfill the conditions with high probability. Fur-
thermore, we also demonstrate successful numerical reconstruction in Section 4.3.5 of
rank-one and low-rank tensors with severe under-sampling. To support the numeri-
cal experiments, we developed mpnum – a library for MPS representation algorithms.

The most pressing goal for future work is to proof a lower bound for the fraction
δB
δG

for Gaussian rank-one measurements. For this purpose, we have computed a
power-log series expansion for the cdfs of products of independent Gaussians and
their square. Numerical experiments have shown that the low order truncations of
this series provide extremely accurate approximations. Therefore, one viable option
to bound the measurement constants is to use the zeroth- or first order truncation of
the power-log series expansion and bound the error of the truncation. An alternative
approach is based on the observation that sums of products of independent Gaussians
are dominated by a single, namely the largest summand. This is due to the fact that
products of Gaussians exhibit fluctuations on orders of magnitude instead of on a
linear scale. Making this precise would allow for a tremendous simplification of the
problem as the full sum can be replaced by a sum over few terms.

Another important point for future work is the generalization of the convergence
proof to higher-rank target tensors X. As mentioned in Section 4.3.3, the setting of
higher-rank matrices is analysed by means of the principle angle distance in [ZJD15].
This, or a similar distance measure for the local tensors, should also be useful for the
higher-rank tensor case.

We also note that the proof in of Theorem 4.7 is certainly not optimal. Strengthen-
ing the condition for the initialization from a local condition, i.e. a condition for each
local tensor, to a global condition, i.e. a condition for the full initialization tensor,
would make the result more robust. However, note that the ALS algorithm does not
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necessarily improve the error of the full tensor in each micro-iteration: Consider the
case, where the first local tensor equal to its true value, i.e. y01 = x1, while the other
local tensor deviate from their true values. Then, the exact form of the minimizer in
Lemma 4.5 shows that the update y11 is not equal to x1 any longer. This increases the
global error ‖Y −X‖2 in the first micro-iteration. One way to bound the possible
error in each micro iteration is to replace the exact minimization of the empirical
`2-error in each step by a finite gradient descent step.

Finally, a better understanding of the initial value is an important point for future
work. Note that the initialization used in Section 4.3.5 is based on the following naïve
intuition: First, the uncompressed initialization X̃init defined in Eq. (4.123) should be
“close” to the true value11. Second, the compression of X̃init to the appropriate rank
should not increase the error too dramatically. One way to bound the error caused by
compression is Eq. (4.22). However, in numerical experiments, we note that after re-
normalization, Xinit is often closer to X than X̃init, especially for very large N . This
is not surprising as the compression regularizes the initial estimate – this is exactly
the effect that allows for recovering X from fewer than dN measurements. A better
understanding of these effects and possibly more elaborate initialization schemes
would further reduce the number of required measurements for reconstruction.

11Note that close is very vague in this context: In principle, the local condition in Theorem 4.7 still
allows for an exponentially small overlap of X and Xinit.
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To summarize, we have investigated three inference problem from quantum physics,
which are subject to different types of constraints. The main motivation of this work
stems from the observation that exploiting additional structure in inference problems
often helps to reduce their sample complexity. However, the examples in this work dif-
fer in how taking the constraints into account affects their computational complexity.

The first inference problem under consideration is quantum state estimation – re-
constructing the density matrix of a quantum system from measurements. More
specifically, we are interested in optimal error regions that take the positive semi-
definite constraint of physical states into account. For this purpose, we show that
deciding whether an ellipsoid is contained in the set of positive semi-definite matrices
is NP-hard. As a consequence, computing the radius of optimal Bayesian credible
ellipsoids for QSE is computationally intractable, whereas the unconstrained prob-
lem can be solved efficiently. For Frequentist confidence regions, this result implies
that computing any property of truncated confidence ellipsoids that is sensitive to
truncation is hard as well. In conclusion, although there are settings where taking
into account the physical constraints of QSE drastically improves the power of the
error region, doing so in an optimal way is computationally intractable.

Note that this work does not preclude the existence of algorithms for uncertainty
quantification in QSE that work well-enough in practice. Our hardness results relies
on strong assumptions, some of which might be relaxed for practical applications.
For example, our results leave room for the existence of efficient approximate solu-
tions. Rather, our hardness result should be understood as an absolute upper bound
on what such algorithms can achieve.

In Chapter 3, we investigate characterizing linear optical circuits and the related
phase retrieval problem. To overcome to challenge of phase-insensitive measurements,
we map the problem to rank-one matrix recovery. By exploiting the exact rank-one
constraint, we are able to perform reconstruction using an asymptotically optimal
number of measurements. Furthermore, our recovery protocol can be implemented
efficiently using a positive-semidefinite program called “PhaseLift” and it is robust
to noise as the rigorously proven recovery guarantees show.

We also propose a measurement ensemble for phase retrieval tailored to the ap-
plication in optics. In contrast to the Gaussian ensemble used in previous work,
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the RECR ensemble only necessitates the ability to prepare four complex phases
per mode and discrete magnitudes. This allows for calibrating the preparation stage
more accurately, and hence, reduce the total error due to a mismatch of theoretical
and implemented input vectors. Using a unified proof strategy, which was developed
for this work, as well as numerical experiments we are able to show that the RECR
ensemble’s performances matches the well-established Gaussian scheme.

From an experimentalist’s point of view, characterization of linear-optical networks
via PhaseLift is favourable because it reduces the number of different measurement
configurations required. As reconfiguring the currently used hardware to prepare an-
other input takes more time than the actual measuring process, the sample efficiency
of our protocol reduces the total amount of time required.

The problem of low-rank tensor reconstruction shows that in some cases constraints
are necessary for an efficient solution. High-order tensors are hard to deal with com-
putationally due to the exponential scaling of the number of parameters. This moti-
vated the development of different tensor formats such as the MPS format considered
here, which by construction reflects the correlation structure of certain tensors oc-
curring in applications. Therefore, they allow for an efficient representation of these
relevant tensors. Here, we answer the question whether such a tensor with efficient
MPS representation can be reconstructed from few linear measurements. In contrast
to previous work, we are interested in both sample efficiency and computational com-
plexity. Hence, we consider product measurements, which are efficiently representable
as well.

The analysis of the ALS algorithm yields a sufficient condition that guarantees
successful recovery of any rank-one tensor using rank-one measurements. As a proto-
typical example, we consider Gaussian product measurements, which are numerically
shown to satisfy these conditions for a large variety of parameters. Additionally, nu-
merical reconstruction experiments show that we are able to reconstruct large tensors
from serenely under sampled measurements.

The ALS algorithm using rank-one measurements combines both sample and com-
putational efficiency for tensor reconstruction. By exploiting the low-rank constraint
we obtain an exponential improvement for the sampling rate compared to naïve
approaches under the assumptions stated. This reduction of the number of measure-
ments necessary for recovery is also crucial for making the reconstruction computa-
tionally efficient. The reduction of sample and computational complexity for low-rank
tensor recovery is For the latter, reconstruction without additional constraints is still
feasible and, at least in the sense of polynomial scaling, still efficient. Future work is
necessary to prove the recovery condition for certain measurement ensembles. The
most promising – as the numerical investigation in this chapter shows – are Gaussian
product measurements.
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What these three estimation problems have in common is the fact that the addi-
tional structure present in the form of constraints can be used to improve the quality
of the estimate in principle. However, the ability to make use of this in practice highly
depends on the problem. On the one hand, exploiting those constraints optimally
constitutes a computationally hard problem in the case of uncertainty quantifica-
tion for quantum state estimation. On the other hand, the problem of efficiently
reconstructing tensors only becomes feasible due to this additional structure as the
embedding space grows exponentially as a function of the order of the tensor. Phase
retrieval and, more generally, low-rank matrix recovery lies somewhere between those
two extreme cases as the sample complexity is reduced only by a linear factor at the
cost of a slightly higher – but still efficient – computational complexity.
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A.1. Generalized Bloch representation
Here, we provide the particular generalizations σi of the Pauli matrices used in
Sec. 2.4.2. These are exactly the generators of the group SU(d), see e.g. [Kim03;
BK03] for more details. Denote by {|i〉}i an orthonormal basis and let

Ξ
(Re)
jk = |j〉〈k|+ |k〉〈j|,

Ξ
(Im)
jk = −i

(
|j〉〈k| − |k〉〈j|

)
,

Ξ
(diag)
l =

√
2

l (l + 1)

 l∑
j=1

|j〉〈j| − l|l + 1〉〈l + 1|

 .

We now define the generalized Pauli matrices in terms of these auxiliary matrices:

{σi : i = 1, . . . , id} =
{
Ξ
(Re)
jk : 1 ≤ j < k ≤ d

}
, (A.1)

{σi : i = id + 1, . . . , 2id} =
{
Ξ
(Im)
jk : 1 ≤ j < k ≤ d

}
, (A.2){

σi : i = 2id + 1, . . . , d2 − 1
}
=
{
Ξ
(diag)
l : 1 ≤ l ≤ d− 1

}
, (A.3)

where id = d(d − 1)/2. Note that the elements of the sets in Eq. (A.1), (A.2), and
(A.3) generalize the Pauli matrices σX, σY, and σZ, respectively. Since only this
structure is crucial to our proof, the order of the elements in Eq. (A.1)–(A.3) in
arbitrary, and hence, the definition in terms of sets is well defined for our purposes.

A.2. Experimental details
A.2.1. Reference Reconstructions
Since our goal is to benchmark the PhaseLift characterisation technique, and not
the performance of the optical chip, we compare the experimental reconstructions to
reconstructions obtained with a different technique. These reference reconstructions
are obtained in two steps. First, we estimate the absolute value of each component
from single photon data: From Eq. (3.4), we see that by inserting single photons into
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Dimension n 2 3 5
Gaussian 20 30 40
RECR 6 31 39

Table A.1.: Total number of preparation vectors taken during experiment.

the k-th input of the device – that is choosing the standard basis vectors as inputs
α = ek – we can estimate |Mi,k|. For each input port, the counts of each detector
are normalised to take into account the detector efficiencies and then divided by the
total of the counts in all detectors. The square roots of these numbers are used as
the estimated amplitudes of the matrix elements. Second, we estimate the phase of
each component using HOM-dips [HOM87], following a similar approach to [LO12;
Dha+16]. However, this second step is time-consuming and only reliable for small
devices. Therefore, for the larger devices, we only perform the first step and compare
only the magnitudes of the matrix elements of the reconstructions.

A.2.2. Data analysis

As mentioned in the main text, we estimate the intensity measurements from single
photon counting rates. After correcting for detector efficiency, all counting rates are
scaled by a constant such that the resulting intensities obey maxl

∑
j Ij(α

(l)) = 1.
This only amounts to scaling the transfer matrix by a constant, which does not influ-
ence the end result since we later rescale the obtained reconstruction appropriately
(see Eq. (A.4)). However, this simple rescaling helps with numerical stability in the
SDP solver. We provide a ready for use implementation of the PhaseLift convex pro-
gram (3.12) as well as related algorithms in the open source library pypllon [Sue17b],

The post-processing of a reconstruction M ] consists of two steps: First, we rescale
the reconstruction by a constant such that

max
i
‖(M ])i‖`2 = 1, (A.4)

where (M ])i denotes the i-th row of M ]. In an ideal experiment, M ] would be
unitary and, therefore, every row would have unit norm. However, due to loss in
the characterised circuit as well as detector inefficiencies, the norm of each row is
smaller than one. Since we cannot distinguish the two sources of loss in our current
experimental setup, we cannot characterise the absolute photon loss in the circuit, but
only the relative losses of the rows. Estimating the dark counts in future experiments
would enable characterising the absolute photon loss in the circuit as well.

The second post-processing step consists of fixing phases of the reconstructions:
Recall that we are only able to recover the transfer matrix up to its row phases since
the global phases of the rows are lost in the intensity measurements. Therefore, we
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fix the row phases of the PhaseLift reconstructions in Fig. 3.5 by minimizing the
Frobenius distance to the target unitary and compute the error as

min
µ:|µi|=1

∥∥∥Mtarget − diag(µ)M ])
∥∥∥
2

(A.5)

However, since the HOM-dip reconstruction is insensitive to global phases of the
columns as well, we have to minimize both row and column phases for the HOM-dip
reconstructions in Fig. 3.5. Furthermore, since in Fig. 3.4 the HOM-dip reconstruc-
tion is taken as reference value, we have to minimize the row and column phases
for all PhaseLift reconstructions in that picture as well. The raw data as well as
the analysis scripts are going to be made available at https://github.com/dseuss/
phaselift-paper.

A.3. Meijer G-functions
Meijer G-functions are a family of special functions in one variable that is closed
under several operations including

x 7→ −x, x 7→ 1/x, multiplication by xp, differentiation, and integration. (A.6)

Definition A.1. For integers m,n, p, q satisfying 0 ≤ m ≤ q, 0 ≤ n ≤ p and for

ai, bj ∈ C (with i = 1, . . . , p; j = 1, . . . , q), the Meijer G-function Gm,n
p,q

(
·
∣∣∣a1, a2, . . . ap
b1, b2, . . . , bq

)
is defined by the line integral

Gm,n
p,q

(
z
∣∣∣a1, a2, . . . ap
b1, b2, . . . , bq

)
=

1

2π

∫
L
Hm,n

p,q (s)z−s , (A.7)

with
Hm,n

p,q (s) :=

∏m
j=1 Γ(bj + s)

∏n
i=1 Γ(1− ai − s)∏p

i=n+1 Γ(ai + s)
∏q

j=m+1 Γ(1− bj − s)
. (A.8)

Here,
z−s = exp (−s{log |z|+ arg z}), z 6= 0, =

√
−1, (A.9)

where log |z| represents the natural logarithm of |z| and arg z is not necessarily the
principal value. Empty products are identified with one. The parameter vectors a
and b need to be chosen such that the poles

bj` = −bj − ` (j = 1, 2, . . . ,m; ` = 0, 1, 2, . . .) (A.10)

of the gamma functions s 7→ Γ(bj + s) and the poles

aik = 1− ai + k (i = 1, 2, . . . , n; k = 0, 1, 2, . . .) (A.11)
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of the gamma functions s 7→ Γ(1− ai − s) do not coincide, i.e.

bj + ` 6= ai − k − 1 (i = 1, . . . , n; j = 1, . . . ,m; k, ` = 0, 1, 2, . . .). (A.12)

The integral is taken over an infinite contour L that separates all poles bj` in
Eq. (A.10) to the left and aik in Eq. (A.11) to the right of L, and has one of the
following forms:

1. L = L−∞ is a left loop situated in a horizontal strip starting at the point
−∞+ φ1 and terminating at the point −∞+ φ2 with −∞ < φ1 < φ2 < +∞;

2. L = L+∞ is a right loop situated in a horizontal strip starting at the point
+∞+ φ1 and terminating at the point +∞+ φ2 with −∞ < φ1 < φ2 < +∞;

3. L = Lγ∞ is a contour starting at the point γ −∞ and terminating at the point
γ +∞, where γ ∈ R.
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