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Coarse Spaces for Nonlinear Schwarz Methods

on Unstructured Grids

Alexander Heinlein and Martin Lanser

1 Introduction

We are concerned with the solution of nonlinear problems

F(u) = 0 (1)

in some finite element space V . The function F : V ! V
0 is obtained by a finite

element discretization of a nonlinear partial differential equation (PDE) on a do-
main W ⇢ Rd , d = 2,3. To solve (1), we consider nonlinear domain decomposition
methods of the Schwarz type, e.g., ASPIN (Additive Schwarz Preconditioned Inex-
act Newton) [1, 9] or RASPEN (Restricted Additive Schwarz Preconditioned Exact
Newton) [3]. More precisely, we suggest a new approach to implement a second
level or coarse level into RASPEN, which is different to FAS-RASPEN (Full Ap-
proximation Scheme - RASPEN) introduced in [3]. The coarse space is applied
multiplicatively, similar to the application of multiplicative nonlinear corrections
in MSPIN (Multiplicative Schwarz Preconditioned Inexact Newton); see, e.g., [8].
Therefore, we consider a standard Lagrangian coarse space as well as multiscale
coarse spaces that can also be constructed for unstructured meshes and unstruc-
tured domain decompositions, e.g., decompositions obtained using METIS [7]. We
compare our new approaches for the example of homogeneous and heterogeneous
p-Laplace equations; see section 2. In section 3, we first describe the one level
RASPEN method and our approach to implement a multiplicative second level for
ASPIN and RASPEN. Second, we define three different coarse spaces - one based
on a P1 discretization on a coarse mesh and the other two based on MsFEM (Multi-
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Fig. 1 Left: Definition of WR (black part); Right: Solution of equation (2) with coefficient func-
tions defined in (3).

scale Finite Element Method) [6] type discretizations on the subdomains. The Ms-
FEM coarse spaces can easily be used in the case of unstructured decompositions
and differ only in the chosen extensions from the interface to the interior parts of
the nonoverlapping domain decomposition. Finally, we present numerical results
considering homogeneous and heterogeneous model problems in section 4.

2 Model Problem

We consider the nonlinear model problem:

�aDpu�bD2u = 1 in W
u = 0 on ∂W ,

(2)

with the scaled p-Laplace operator aDpu := div(a|—u|p�2—u) for p � 2 and the
coefficient functions a,b : W ! R. For all computations in this paper, we always
use the unit square W = [0,1]⇥ [0,1] as the computational domain. However, our
approach is not restricted to this case. We consider two different coefficient distribu-
tions: a homogeneous p-Laplace equation, i.e., a(x) = 1 and b (x) = 0 for all x 2 W ,
and a heterogeneous problem with a channel and two circular inclusions carrying
different coefficients than the remainder of W , i.e.,

a(x) =

⇢
1000 if x 2 WR,
0 elsewhere, b (x) =

⇢
0 if x 2 WR,
1 elsewhere. (3)

The set WR and the solution of the corresponding heterogeneous model problem are
depicted in Figure 1. If not stated otherwise, p is always chosen as 4.

With a standard finite element discretization of a variational formulation of (2),
we can derive the nonlinear discrete problem

K(u)� f = 0 :, F(u) = 0. (4)

Let us remark that (4) is linear for p = 2. We define the corresponding equation
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K
lin

u� f = 0, (5)

where K
lin is equivalent to the stiffness matrix of the (scaled) diffusion equation.

3 The RASPEN Method

In this section, we provide a brief description of the RASPEN method, which is
based on the ASPIN algorithm; see [1, 3] for a more detailed description and a
local convergence analysis. As all nonlinear domain decomposition approaches,
RASPEN is based on a reformulation of (1) using a decomposition of the under-
lying nonlinear PDE. In the case of RASPEN, a nonlinear system

G(F(u)) =: F (u) = 0 (6)

is derived, where the nonlinear left-preconditioner G is given implicitly. We con-
sider a decomposition of W into nonoverlapping subdomains Wi, i= 1, ...,N, and, by
adding layers of finite elements, we obtain overlapping subdomains W 0

i
, i = 1, ...,N.

We denote the local finite element spaces associated with the overlapping subdo-
mains by Vi, i = 1, ...,N. With standard restriction operators Ri : V ! Vi and corre-
sponding prolongation operators Pi := R

T

i
we can define nonlinear local corrections

Ti(u) by
RiF(u�PiTi(u)) = 0, i = 1, ...,N. (7)

Using restricted prolongation operators ePi, i = 1, ...,N, which fulfill the condition
ÂN

i=1
ePiRi = I, we can define the nonlinear reformulation

FRA(u) :=
N

Â
i=1

ePiTi(u). (8)

of (1). Let us remark that (8) and (1) have the same solution; see [1, 3]. In the
RASPEN method, (8) is solved using Newton’s method, i.e., using the iteration

u
(k+1) = u

(k)�
⇣

DFRA(u
(k))

⌘�1
FRA

⇣
u
(k)
⌘
, (9)

with the jacobian

DFRA (u) =
N

Â
i=1

ePiDTi (u) =
N

Â
i=1

ePi (RiDF(ui)Pi)
�1

RiDF(ui) =:
N

Â
i=1

Qi(ui). (10)

Here, we have ui = u�PiTi(u) and DTi(u) is obtained by deriving (7). Let us remark
that, in each Newton iteration and on each overlapping subdomain, the local nonlin-
ear problem (7) has to be solved for Ti(u(k)). This can again be done using Newton’s
method. The necessary local Newton iterations can be carried out in parallel. We
distinguish in this paper between outer iterations, i.e., global Newton iterations as
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in (9), and inner iterations, i.e., local Newton iterations on the subdomain problems
to compute the local nonlinear corrections Ti(ui).

3.1 A Multiplicative Coarse Space

In general, there are several approaches to implement a second level for RASPEN or
ASPIN. A simple additive coarse space is suggested in [9] for ASPIN, and a multi-
plicative coarse space using an FAS approach is used in [3]. We choose a slightly dif-
ferent multiplicative approach not relying on FAS. Our coarse correction is applied
after the local corrections, but different variants, i.e., applying the coarse correction
before the local corrections as well as a symmetric variant doing both are suggested
in [5]. All these variants can analogously be applied to ASPIN, but, for the mo-
ment, we restrict ourselves to RASPEN due to space limitations. In [5], we also
discuss the differences between our proposed methods and, e.g., FAS-RASPEN,
in detail. Now, let V0 be a discrete coarse space, R0 : V ! V0 a corresponding re-
striction, and P0 := R

T

0 . Note that the columns of P0 are just representations of the
coarse basis functions on the fine mesh. We define a nonlinear coarse problem by
F0(u0) := R0F(P0u0) using a simple Galerkin approach. The nonlinear coarse cor-
rection T0(u) is then implicitly given by

R0F(u�P0T0(u)) = 0. (11)

We can now define the two-level RASPEN method by

F2l(u) :=
N

Â
i=1

ePiTi(u)+P0T0(u�
N

Â
i=1

ePiTi(u)). (12)

Note that the coarse correction is here applied multiplicatively after the local cor-
rections Ti(ui). A linearization with Newton’s method leads to

u
(k+1) = u

(k)�
⇣

DF2l(u
(k))

⌘�1
F2l

⇣
u
(k)
⌘
,

where

DF2l(u) =
N

Â
i=1

ePiDTi (u)+P0DT0(u�
N

Â
i=1

ePiTi(u))

✓
I �

N

Â
i=1

ePiDTi(u)

◆

=
N

Â
i=1

Qi(ui)+Q0(v0)(I �
N

Â
i=1

Qi(ui))

= Q0(v0)+(I �Q0(v0))
N

Â
i=1

Qi(ui).

(13)

Here, we have v0 = u�ÂN

i=1 PiTi(u)�P0T0(u�ÂN

i=1 PiTi(u)) and ui = u�PiTi(u).
The projection operators Qi(ui), i = 1, ...,N are defined in (10) and
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Q0(v0) := P0 (R0DF(v0)P0)
�1

R0DF(v0)

is defined analogously and obtained by deriving (11). Additionally to the local New-
ton iterations, Newton’s method is used to compute the coarse correction (11) in
each outer iteration. We refer to this iterations as coarse iterations.

3.2 Different coarse basis functions

We consider three different coarse spaces. The simplest one is a Lagrangian coarse
space based on a coarse triangular mesh. Therefore, for a structured domain de-
composition into square subdomains, each subdomain is split into two triangular
finite elements. The coarse basis functions are just piecewise linear (P1) nodal ba-
sis functions corresponding to this triangulation. In general, this coarse space relies
on the availability of a suitable coarse triangulation. Therefore, we only use it for
structured domain decompositions.

For arbitrary domain decompositions, we consider energy-minimizing coarse
spaces of MsFEM [6] type. They are also related to reduced dimension GDSW
coarse spaces [2]. As in those approaches, we use a nodal basis, i.e., containing one
basis function F ( j), j = 1, ...,NV , corresponding to each of the NV vertices of the
domain decomposition. Collecting the vectors F ( j) as columns in the matrix F , we
obtain the restriction to the coarse space R0 := FT . In particular, we construct the
coarse basis functions such that they form a partition of unity on all subdomains
which do not touch the Dirichlet boundary. This can be achieved by building a par-
tition of unity on the interface of those subdomains and then extending the interface
values to the interior in an energy-minimizing way.

To define the interface part F ( j)
G of the basis function F ( j)T = (F ( j)T

I
,F ( j)T

G ) cor-
responding to a vertex V j, let Ek be one of the adjacent open edges and Vl the other
vertex adjacent to Ek. Then, we set F ( j)

G (V j) = 1 and F ( j)
G (x) = 1� ||x�V j ||

||x�V j ||+||x�Vl ||
for any x 2 Ek. We proceed equivalently with all other edges adjacent to V j and de-
fine F ( j)

G as zero on the remaining interface. This results in a partition of unity on
the interface, even for a METIS decomposition.

As already stated, the interior values F ( j)
I

are then computed by energy-minimizing
extensions. In order to do so, we propose the use of energy functionals correspond-
ing to related linear problems. In the first alternative, we compute discrete harmonic
extensions with respect to the linear operator K

lin; see (5). Therefore, we consider
the block structure

K
lin =

✓
K

lin

II
K

lin

IG
K

lin

G I
K

lin

G G

◆

and compute the values in the interior degrees of freedom by

F (i)
I

=�
⇣

K
lin

II

⌘�1
K

lin

IG F (i)
G , i = 1, ...,NV .
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Alternatively, we use the tangential matrix for the initial value u
(0), i.e.,

DK(u(0)) =

✓
DK(u(0))II DK(u(0))IG
DK(u(0))G I DK(u(0))G G

◆
,

to compute the energy-minimizing extensions. In particular, we then define the ex-
tension to the interior of the subdomains by

F (i)
I

=�
⇣

DK(u(0))II

⌘�1
DK(u(0))IG F (i)

G , i = 1, ...,NV .

In general, this is advantageous since it only depends on the nonlinear operator F

and no linear Laplacian has to be assembled additionally.
Let us remark that the energy-minimizing basis functions can be computed lo-

cally by the solution of linear problems on the interior part of the nonoverlapping
subdomains. Also, they are zero on all subdomains not adjacent the corresponding
vertex by construction, and therefore, no extensions have to be computed on the
remaining subdomains. All three coarse spaces build a partition of unity on all sub-
domains which do not touch the Dirichlet boundary. This property is crucial for a
good linear coarse space. All coarse spaces have the same size and therefore have
the same computational cost per nonlinear or linear iteration; only the costs for the
construction of the energy-minimizing coarse basis functions are higher.

4 Numerical Results

For all tests and all methods, we choose the same initial value u
(0)(x,y) = xy(x�

1)(y� 1) and the same relative stopping tolerance, i.e., we stop the outer iteration
if F(u(k))/F(u(0))< 1e�6. All inner or, respectively, coarse iterations are stopped
with an equivalent relative residual criterion in the corresponding local or, respec-
tively, coarse finite element space, after a reduction of 1e� 3 is reached. This is
sufficient since the inner and coarse initial values get more and more accurate while
the outer loop converges. As a linear solver for the tangential systems, we use GM-
RES (Generalized Minimal RESidual) iterations with a relative stopping tolerance
of 1e�8. Of course, in particular, in the first Newton steps, we might over-solve the
linear systems, and choosing the forcing terms correctly could be beneficial for all
methods; see [4].

We first consider a numerical scalability study for the homogeneous p-Laplace
for p = 4; see Table 1. Here, for regular domain decompositions, we choose
H/h = 32 and therefore 2048 triangular finite elements per nonoverlapping subdo-
main. For the METIS decompositions, the global problem sizes are identical to the
corresponding regularly decomposed problems. We present the number of outer or
global Newton iterations, which is up to 2.5 times higher in the one level RASPEN
method compared with the best of the two-level approaches. All three coarse levels
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Table 1 Homogeneous p-Laplace: Comparison of different coarse spaces for regular and METIS
domain decompositions; best results for the largest experiment are marked in bold; outer it. gives
the number of global Newton iterations; inner it. gives the number of local Newton iterations
summed up over the outer Newton iterations (average over subdomains); coarse it. gives the num-
ber of nonlinear iterations on the second level summed up over the outer Newton iterations; GM-

RES it. gives the number of GMRES iterations summed up over the outer Newton iterations.
p-Laplace homogeneous

p = 4; H/h = 32 for regular domains; overlap d = 2;

Regular METIS
RASPEN outer inner coarse GMRES outer inner coarse GMRES

N Coarse Space it. it. (avg.) it. it. (sum) it. it. (avg.) it. it. (sum)

- 5 25.9 - 99 7 41.4 - 238
9 P1 5 30.2 17 88 - - - -

DK(u(0)) ext. 5 30.7 16 83 5 31.3 22 123
K

lin ext. 5 29.9 16 83 5 30.7 19 121
- 14 73.8 - 358 11 62.8 - 458

16 P1 6 32.4 20 122 - - - -
DK(u(0)) ext. 7 38.9 30 140 7 36.8 27 180

K
lin ext. 5 30.6 18 99 6 32.5 21 152

- 6 28.4 - 201 12 57.6 - 578
25 P1 5 27.4 18 116 - - - -

DK(u(0)) ext. 5 27.6 19 108 5 28.6 20 126
K

lin ext. 5 27.2 18 108 6 31.4 22 151
- 15 66.9 - 563 11 53.1 - 617

36 P1 6 30.6 21 145 - - - -
DK(u(0)) ext. 7 34.3 30 164 6 30.4 23 155

K
lin ext. 5 28.7 19 117 6 30.0 21 152

- 6 29.0 - 268 13 60.9 - 811
49 P1 5 27.3 18 126 - - - -

DK(u(0)) ext. 5 27.4 19 121 7 32.0 27 178
K

lin ext. 5 27.2 18 122 6 29.4 21 152

Table 2 Heterogeneous p-Laplace: See Table 1 for description of column labels and Fig. 1 for
the coefficient distribution.

p-Laplace heterogeneous (channel + 2 circles)

p = 4; H/h = 32 for regular domains; overlap d = 2;

Regular METIS
RASPEN outer inner coarse GMRES outer inner coarse GMRES

N Coarse Space it. it. (avg.) it. it. (sum) it. it. (avg.) it. it. (sum)

- 5 14.3 - 321 5 14.2 - 346
36 P1 5 15.6 17 139 - - - -

DK(u(0)) ext. 5 15.1 16 139 5 15.2 18 125

K
lin ext. 4 12.7 13 108 5 15.5 18 128

show a similar performance for the regular domain decomposition and both exten-
sion based coarse spaces perform well for the METIS decompositions. In general,
the two-level RASPEN method needs less inner iterations and significantly less GM-
RES iterations, especially for irregular domain decompositions.

For the chosen heterogeneous problem (see Table 2), the number of outer New-
ton iterations is similar for all methods. Nevertheless, the linear convergence, i.e.
the number of GMRES iterations, is superior in the two-level variants. All in all,
our experiments show that our multiplicative second level with the chosen coarse
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basis functions has a superior linear convergence and, in some cases, also a better
nonlinear convergence - regardless if regular or METIS decompositions are used.

In general, the discrete extension using Klin shows a slightly better performance
than the extension with the tangent DK(u(0)), but the latter one will always be avail-
able, also for different nonlinear model problems where a suitable linear operator
Klin cannot be found easily. Considering, e.g., nonlinear hyperlelasticity or elasto-
plasticity problems, the linear elasticity model or a multi-dimensional Laplacian
could be used to form Klin, but for large loads or highly plastic behavior, DK(u(0))
might be a better choice.

5 Conclusion

We have presented a new approach to implement a multiplicative coarse space for
ASPIN or RASPEN, which is robust for the considered model problems. Addition-
ally, we presented two different coarse spaces usable for irregular domain decompo-
sitions and compared both against the one level RASPEN method and, for regular
domain decompositions, also against a classical P1 coarse space. Both coarse spaces
are competitive and cheap to compute.

References

1. X.-C. Cai and D. E. Keyes. Nonlinearly preconditioned inexact Newton algorithms. SIAM J.
Sci. Comput., 24(1):183–200, 2002.

2. C. R. Dohrmann and O. B. Widlund. On the design of small coarse spaces for domain decom-
position algorithms. SIAM J. Sci. Comput., 39(4):A1466–A1488, 2017.

3. V. Dolean, M. J. Gander, W. Kheriji, F. Kwok, and R. Masson. Nonlinear preconditioning: how
to use a nonlinear Schwarz method to precondition Newton’s method. SIAM J. Sci. Comput.,
38(6):A3357–A3380, 2016.

4. S. C. Eisenstat and H. F. Walker. Choosing the forcing terms in an inexact Newton method.
SIAM J. Sci. Comput., 17(1):16–32, 1996. Special issue on iterative methods in numerical
linear algebra (Breckenridge, CO, 1994).

5. A. Heinlein and M. Lanser. New multiplicative coarse spaces for nonlinear schwarz methods
on unstructured grids. Technical report.

6. T. Y. Hou and X.-H. Wu. A multiscale finite element method for elliptic problems in composite
materials and porous media. Journal of Computational Physics, 134(1):169 – 189, 1997.

7. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput., 20(1):359–392, 1998.

8. L. Liu and D. E. Keyes. Field-split preconditioned inexact Newton algorithms. SIAM J. Sci.
Comput., 37(3):A1388–A1409, 2015.

9. L. Marcinkowski and X.-C. Cai. Parallel performance of some two-level ASPIN algorithms. In
Domain decomposition methods in science and engineering, volume 40 of Lect. Notes Comput.
Sci. Eng., pages 639–646. Springer, Berlin, 2005.


