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Machine Learning in Adaptive FETI-DP – A
Comparison of Smart and Random Training
Data

Alexander Heinlein, Axel Klawonn, Martin Lanser, and Janine Weber

1 Introduction

The convergence rate of classical domain decomposition methods for di�usion or
elasticity problems usually deteriorates when large coe�cient jumps occur along or
across the interface between subdomains. In fact, the constant in the classical condi-
tion number bounds [11, 12] will depend on the coe�cient jump. Therefore, several
adaptive approaches to enrich the coarse space with additional coarse modes or
primal constraints, which are constructed from the solutions of localized eigenvalue
problems, have been developed to overcome this limitation, e.g., [7, 6, 13, 14, 3, 2].
For many realistic coe�cient distributions, however, only a few adaptive constraints
on a few edges or faces are necessary for robustness. Although some heuristic ap-
proaches [6, 7] exist to reduce the number of eigenvalue problems that have to be
solved, in general, we do not know in advance on which edges or faces additional
adaptive constraints are needed to obtain a robust algorithm.

To overcome this issue, we consider an approach to train a neural network to
predict the geometric location of adaptive constraints in a preprocessing step, i.e., to
make the decision whether or not we have to solve a certain eigenvalue problem. First
results using this machine learning based strategy in the context of adaptive domain
decomposition methods for a concrete and carefully designed set of training data
can be found in [5]. In addition to [5], we test the feasibility of randomly generated
training data for the neural network, which can be easily generated without any
knowledge of the considered model problem. We provide numerical results for four
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di�erent sets of training data to train the neural network and compare the robustness
of the resulting algorithms both with respect to the training and validation data as
well as for a concrete test problem.

We focus on a stationary di�usion problem in two dimensions and a certain adap-
tive coarse space technique for the FETI-DP (Finite Element Tearing and Intercon-
necting - Dual-Primal) algorithm [13, 14]. The adaptive coarse space is implemented
using a balancing preconditioner. Let us remark that all strategies introduced here
and in [5] can be generalized for arbitrary adaptive domain decomposition methods
in two dimensions.

2 Model Problem and Adaptive FETI-DP

As a model problem, we use a stationary di�usion problem in two dimensions with
various highly heterogenous coe�cient functions ⇢ : ⌦ :=[0, 1] ⇥ [0, 1] ! R, i.e.,
the weak formulation of

div (⇢ru) = �1 in ⌦
u = 0 on @⌦. (1)

In this paper, we apply the proposed machine learning based strategy to a certain
adaptive FETI-DP method. We thus decompose the domain ⌦ into N 2 N nonover-
lapping subdomains ⌦i, i = 1, . . . , N . Due to space limitations, we do not explain
the standard FETI-DP algorithm in detail. For a detailed description of the FETI-DP
algorithm, see, e.g., [12]. Note that we choose the vertices of all subdomains as
primal variables.

As already mentioned, for arbitrary and complex coe�cient functions ⇢, using
solely primal vertex constraints is not su�cient to obtain a robust algorithm or con-
dition number bound, respectively. Additional adaptive constraints, resulting from
the solution of localized eigenvalue problems, are needed to enrich the coarse space
and guarantee robustness. In our case, the adaptive constraints are implemented in
FETI-DP by using a balancing preconditioner. For a detailed description of projec-
tor or balancing preconditioning, see [10]. In all our computations, we exclusively
use ⇢-scaling. Please note that also other approaches are possible to enforce coarse
constraints, e.g., a transformation of basis approach [12].

The main idea of the concrete adaptive FETI-DP algorithm [13, 14] is to solve
a local generalized eigenvalue problem for each edge between two neighboring
subdomains. For a detailed description of the specific local edge eigenvalue problem
as well as the resulting enforced coarse constraints, see [13, 14]. Usually, it is not
known in advance on which edges additional coarse components are necessary.
Although the solution of the di�erent eigenvalue problems and thus the computation
of the adaptive constraints can be parallelized, building the adaptive coarse space
can make up the larger part of the overall time to solution. As already mentioned,
we suggest a machine learning based approach to avoid the solution of unnecessary
eigenvalue problems in order to save compute time.
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Fig. 1 Sampling of the coe�cient function ⇢; white color corresponds to a low coe�cient and red
color to a high coe�cient. In this representation, the samples are used as input data for a neural
network with two hidden layers. Figure from [5, Fig. 2].

3 Machine Learning for Adaptive FETI-DP

Our approach is to train a neural network to automatically make the decision whether
an adaptive constraint needs to be enforced on a specific edge, or not, to retain the
robustness of the algorithm, depending on a user-given tolerance TOL.
Supervised machine learning in general approximates nonlinear functions, which
associate input and output data. The training of a neural network in supervised
machine learning corresponds to the solution of a high-dimensional nonlinear op-
timization problem. In this paper, we use a dense feedfoward neural network, or
more precisely, a multilayer perceptron. For more details on multilayer perceptrons,
see, e.g., [15, 1, 16]. As input data for our neural network, we use samples of the
coe�cient functions within the two subdomains adjacent to an edge; cf. Figure 1. We
use a sampling approach which is independent on the finite element discretization.
In particular, we use a fixed number of sampling points for all mesh resolutions but
assume the sampling grid to resolve all geometric details of the coe�cient function.
Our sampling grid is oriented to the tangential and orthogonal direction of an edge.
Therefore, our approach is also valid for more general subdomain geometries than
square subdomains; see also [5]. As output of the neural network, we save the infor-
mation whether an adaptive coarse constraint has to be computed for the considered
edge or not. Our neural network consists of three hidden layers with 30 neurons
each. For all hidden layers, we use the ReLU function as an activation function and
a dropout rate of 20%. For the training of the neural network, we use the stochastic
gradient descent algorithm with an adaptive scaling of the learning rate and a batch
size of 100. As an optimizer for the stochastic gradient descent method, we use
the Adam (Adaptive moments) optimizer. All the aforementioned parameters result
from applying a grid-search algorithm with cross-validation over a discrete space of
hyper-parameters for the neural network; see [5] for more details on the parameters.
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Fig. 2 Nine di�erent types of coe�cient functions used for training and validation of the neural
network. The inclusions, channels, boxes, and combs with high coe�cient are displaced, modified
in sized, and mirrored with respect to the edge in order to generate the complete training data set.

For the numerical results presented in this paper, we only train on two regular
subdomains sharing a straight edge. Regarding the coe�cient functions, we use
di�erent sets of coe�cient distributions to generate di�erent sets of training data.
For the first set of training data, we use a total of 4,500 configurations varying the
coe�cient distributions as shown in Figure 2. These coe�cient distributions are
inspired by those used in [8, 3], and all coe�cient distributions shown in Figure 2
are varied in size, location, and orientation to obtain the full set of training data. We
refer to this set of training data, which already has been used in [5], as smart data.

Next, we consider random data to train the neural network. Let us note that a com-
pletely random coe�cient distribution is not appropriate since in this case coe�cient
jumps appear at almost all edges. Thus, for almost every edge an eigenvalue problem
has to be solved. This yields a neural network which overestimates the number of
eigenvalue problems needed and thus leads to a large number of false positive edges
in the test data which here is given by the microsection problem.

Thus, as a second set of training data, we use a slightly more structured set of
randomly generated coe�cients with a varying ratio of high and low coe�cient
values. For the first part of this training set, we randomly generate the coe�cient
for each pixel, consisting of two triangular finite elements, independently and only
control the ratio of high and low coe�cient values. Here, we use 30%, 20%, 10%, and
5% of high coe�cient values. For the second part, we also control the distribution
of the coe�cients to a certain degree by randomly generating either horizontal
or vertical stripes of a maximum length of four or eight pixels, respectively; see
Figure 3. Additionally, we generate new coe�cient distibutions by superimposing
pairs of horizontal and vertical coe�cient distributions. We refer to this second set
of training data as random data.

To generate the output data that is necessary to train the neural network, we solve
the eigenvalue problems as described in [13, 14] for all the aforementioned training
and validation configurations. Here, we basically propose two di�erent classification
approaches as already considered in [5]. The first approach is referred to as ’two-class
classification’ and classifies an edge to belong to class 0 if no adaptive constraint
needs to be added to the coarse space for the respective edge, depending on the
user-based tolerance TOL. It is classified to belong to class 1 if at least one adaptive
constraint needs to be added. We further provide a second approach, which is referred
to as ’three-class classification’. Here, besides class 0, we further distinguish between
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Fig. 3 Examples of three di�erent randomly distributed coe�cient functions obtained by using the
same randomly generated coe�cient for a horizontal (left) or vertical (middle) stripe of a maximum
length of four finite element pixels, as well as by pairwise superimposing (right).

class 1, for edges where exactly one adaptive constraint needs to be added to the
coarse space, and class 2, for edges where more than one constraint is necessary. For
class 1, we replace the eigenvalue problem and the resulting eigenvector by a single
edge constraint designed using ⇢, which therefore also avoids the solution of some
eigenvalue problems. These edge constraints can be interpreted as a generalization
of the weighted edge averages suggested in [9] and are robust for a broader range of
heterogeneities; see [4] for a detailed discussion. For all our training and validation
data, we use a tolerance of TOL = 100 to generate the output for each edge.

4 Numerical Results

In this section, we compare the performance of the proposed machine learning
based adaptive strategy for the FETI-DP algorithm using di�erent sets of training
and validation data to train our neural network. In particular, we use a set of 4,500
smart data configurations (denoted by ’S’) and sets of 4,500 and 9,000 random data
configurations (denoted by ’R1’ and ’R2’, respectively) each individually as well
as a combination of 4,500 smart and 4,500 random data configurations, which will
be denoted by ’SR’. Note that we did not observe a significant improvement for the
larger number of 18,000 random data configurations.

First, we will present results for the whole set of training data using cross-
validation and a fixed ratio of 20% as validation data to test the generalization
properties of our neural network. Please note that due to di�erent heterogeneity of
the various training data, the accuracies in Table 1 are not directly comparable with
each other. However, the results in Table 1 serve as a sanity check to prove that
the trained model is able to generate appropriate predictions. We will then use 10
di�erent randomly chosen subsections of a microsection of a dual-phase steel as
shown in Figure 4 (right) as a test problem for the trained neural network. In all the
computations, we consider ⇢ = 1e6 in the black part of the microsection and ⇢ = 1
elsewhere. Here, we use a regular decomposition of the domain ⌦ into 64 square
subdomains, a subdomain size of H/h = 64, and a tolerance of TOL = 100. For the
test data, we will only compute the local eigenvalue problems on edges which are
classified as critical (class 1 or 2) by the neural network. On all uncritical edges (class
0), we do not enforce any constraints. We use an ML (Machine Learning) threshold ⌧
of 0.5 and 0.45 for the two-class classification as well as 0.5 and 0.4 for the three-class
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class
training configuration ⌧ fp fn acc 0 1 2

4,500 smart data S, two-class 0.45 8.8% 1.9% 89.2% 67% 33% -0.5 5.4% 5.1% 89.5%

4,500 smart data S, three-class 0.4 5.1% 1.0% 93.9% 67% 20% 13%0.5 3.2% 2.3% 94.5%

4,500 random data R1, two-class 0.45 11.4% 6.7% 81.9% 49% 51% -0.5 8.8% 9.0% 82.2%

4,500 random data R1, three-class 0.4 9.1% 7.1% 83.8% 49% 39% 12%0.5 8.9% 7.0% 84.1%

9,000 random data R2, two-class 0.45 9.6% 5.3% 85.1% 53% 47% -0.5 7.2% 7.5% 85.3%

9,000 random data R2, three-class 0.4 10.7% 4.4% 84.9% 53% 28% 19%0.5 7.4% 6.9% 85.7%

4,500 smart + 4,500 random data SR, two-class 0.45 5.1% 2.1% 92.8% 58% 42% -0.5 3.4% 3.5% 93.1%

4,500 smart + 4,500 random data SR, three-class 0.4 5.2% 2.0% 92.8% 58% 29.5% 12.5%0.5 4.3% 2.2% 93.5%

Table 1 Results on the complete training data set; the numbers are averages over all training
configurations. We define the accuracy (acc) as the number of true positives and true negatives
divided by the total number of training configurations.

Fig. 4 Left: Subsection of a microsection of a dual-phase steel obtained from the image on the right.
We consider ⇢ = 1e6 in the black part and ⇢ = 1 elsewhere. Right: Complete microsection of a
dual-phase steel. Right image: Courtesy of Jörg Schröder, University of Duisburg-Essen, Germany,
orginating from a cooperation with ThyssenKruppSteel.

classification, respectively, for the decision boundary between critical and uncritical
edges. A lower threshold decreases the false negative rate of the predictions and thus
increases the robustness of our algorithm. All computations are performed using the
machine learning implementations in TensorFlow and Scikit-learn as well as our
Matlab implementation of the adaptive FETI-DP method.

Results on the training data: With respect to the training data, the results in
terms of accuracy in Table 1 show that, besides training the neural network with the
set of smart data, also the training with randomly generated coe�cient functions as
well as with a combination of both training sets lead to an appropriate model. Thus,
it is reasonable to apply all of the trained models to our test problem in form of
microsection subsections.
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Alg. T-Data ⌧ cond it evp fp fn acc
standard - - - >300 0 - - -
adaptive - - 11.0 ( 15.9) 34.6 (38) 112.0 (112) - - -

ML S 0.5 8.6e4 (9.7e4) 39.5 (52) 45.0 ( 57) 1.6 ( 2) 1.9 (3) 0.97 (0.96)
S 0.45 11.0 ( 15.9) 34.6 (38) 46.9 ( 59) 4.4 ( 6) 0 (0) 0.96 (0.94)

R1 0.5 1.3e5 (1.6e5) 49.8 (52) 43.2 ( 44) 7.4 ( 8) 3.8 (4) 0.88 (0.87)
R1 0.45 11.0 ( 15.9) 34.6 (38) 53.8 ( 58) 14.6 (16) 0 (0) 0.86 (0.84)
R2 0.5 1.5e5 (1.6e5) 50.2 (51) 40.4 ( 41) 5.6 ( 6) 3.4 (4) 0.91 (0.89)
R2 0.45 11.0 ( 15.9) 34.6 (38) 50.4 ( 52) 11.2 (12) 0 (0) 0.90 (0.87)
SR 0.5 9.6e4 (9.8e4) 45.8 (48) 38.2 ( 39) 1.8 ( 2) 1.6 (2) 0.96 (0.95)
SR 0.45 11.0 ( 15.9) 34.6 (38) 43.4 ( 44) 4.8 ( 5) 0 (0) 0.96 (0.94)

Table 2 Comparison of standard FETI-DP, adaptive FETI-DP, and ML-FETI-DP for regular
domain decompositions for the two-class model, for 10 di�erent subsections of the microsection
in Figure 4 (right). Here, training data is denoted as T-Data. We show the ML-threshold (⌧),
the condition number (cond), the number of CG iterations (it), the number of solved eigenvalue
problems (evp), the number of false positives (fp), the number of false negatives (fn), and the
accuracy in the classification (acc). We show the average values as well as the maximum values (in
brackets).

Alg. T-Data ⌧ cond it evp e-avg fp fn acc
standard - - - >300 0 - - - -
adaptive - - 11.0 ( 15.9) 34.6 (38) 112.0 (112) - - - -

ML S 0.5 147.4 (271.4) 48.8 (58) 4.2 ( 10) 43.6 (46) 1.8 ( 3) 1.4 (3) 0.97 (0.95)
S 0.4 12.4 ( 16.4) 34.8 (39) 16.0 ( 24) 24.2 (28) 10.6 (16) 0 (0) 0.90 (0.85)

R1 0.5 1.8e4 (1.8e4) 70.4 (72) 7.4 ( 8) 31.4 (33) 1.8 ( 2) 1.2 (2) 0.97 (0.94)
R1 0.4 12.4 ( 16.4) 34.8 (39) 28.2 ( 30) 20.4 (26) 16.4 (21) 0 (0) 0.84 (0.83)
R2 0.5 2.2e4 (2.5e4) 69.4 (72) 5.8 ( 7) 28.8 (31) 1.6 ( 2) 1.2 (2) 0.96 (0.95)
R2 0.4 12.4 ( 16.4) 34.8 (39) 23.6 ( 24) 17.0 (18) 15.6 (17) 0 (0) 0.84 (0.83)
SR 0.5 142.5 (286.3) 52.4 (66) 7.2 ( 9) 30.6 (32) 1.8 ( 2) 1.8 (2) 0.96 (0.94)
SR 0.4 12.4 ( 16.4) 34.8 (39) 18.2 ( 20) 16.2 (18) 10.0 (12) 0 (0) 0.90 (0.89)

Table 3 Comparison of standard FETI-DP, adaptive FETI-DP, and ML-FETI-DP for regular
domain decompositions for the three-class model, for 10 di�erent subsections of the microsection
in Figure 4 (right). Here, training data is denoted as T-Data. By e-avg we denote the generalized
edge average described at the end of Section 3. See Table 2 for the column labeling. We show the
average values as well as the maximum values (in brackets).

Results on microsection subsections: For the mircosections and the two-class
classification, see Table 2, all four di�erent training data sets result in a robust
algorithm when using an ML threshold ⌧ = 0.45. For all

these approaches, we obtain no false negative edges, which are critical for the
convergence of the algorithm. However, the usage of 4,500 and 9,000 random data
(see R1 and R2) results in a higher number of false positive edges compared to the
sole use of 4,500 smart data, resulting in a larger number of computed eigenvalue
problems. Also for the three-class classification, see Table 3, the usage of all four
aforementioned training data sets results in zero false negative edges when using
the ML threshold ⌧ = 0.4. In this case, we further obtain a quantitatively smaller
di�erence between the training data S and R1 or R2, respectively, in terms of false
positive edges than for the two-class classification.
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As a conclusion, we observe that we were able to achieve comparable results
when using randomly generated coe�cient distributions as training data compared
to the manually selected smart data; this is beneficial since the random data can
be generated without a priori knowledge. However, we need a higher number of
random data and a slight structure in the random coe�cient distributions to achieve
the same accuracy as for the smart data. It also seems possible to slightly improve
the performance of the neural network trained using a combination of smart data and
random data for the training.
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