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Zusammenfassung

In der Populationsgenetik ist es vor allem von Interesse, genetische Daten einer

Populationsstichprobe zu analysieren und zu verstehen. Hierbei spielt die Koa-

leszenz Theorie eine wichtige Rolle. Die Koaleszenz Theorie basiert auf der Idee,

die genealogischen Eigenschaften einer Population anhand von Datensätzen einer

gegenwärtigen Stichprobe von Individuen rückwärts in der Zeit zu analysieren.

Wenn bei dieser Rückwärtsbetrachtung zwei Individuen einen gemeinsamen Vor-

fahren haben, werden diese zusammengefasst, das heißt sie verschmelzen. Grafisch

lässt sich das durch einen Baum darstellen. Mit Hilfe dieser Bäume ist es möglich,

nicht nur genetische Beziehungen oder Substrukturierung von Populationen zu erken-

nen, sondern auch Hinweise auf positive Selektion zu erkennen. Der Grundgedanke

hierzu beruht darauf, dass sich Loci unter selektiven Einflüssen anders verhalten als

Loci unter neutralen Bedingungen. Wenn eine neu aufgetretene Mutation mit Selek-

tionsvorteil in einer Population fixiert wird, steigt nicht nur deren Allelhäufigkeit,

sondern auch die Allelhäufigkeit von neutralen Regionen, die mit dem selektierten

Locus gekoppelt sind. Als Resultat dieses sogenannten ’Hitchhiking-Effekt’ weist

die Region in der Umgebung des selektierten Locus eine signifikante Reduktion

der genetischen Variabilität auf im Vergleich zu Regionen unter neutralem Einfluss.

Dies wirkt sich auf die Topologie des genealogischen Baumes aus. Eine Reduktion

der genetischen Variabilität verursacht durch eine positive Selektion wird ’selec-

tive sweep’ genannt. Den Umstand nutzend, dass ’selective sweeps’ extrem unbal-

ancierte genealogische Baum-Topologien in der Umgebung des selektierten Locus

erzeugen können, leiten wir daraus einen neuen statistischen Test, basierend auf

einer Log-Likelihood-Methode und aufbauend auf dem bereits bekannten T3-Test,

her: den LRT3-Test. Der Vorteil an statistischen Methoden, die nur die Information

der zugrundeliegenden genealogischen Baum-Topologie benötigen, liegt darin, dass

diese nicht durch Schwankungen in der Populationsgröße beeinflusst werden. Wir

haben alle 26 Populationen des Phase-3-Datensatzes des 1,000 Genome-Projektes mit

dem LRT3 Test untersucht, um Kandidatenregionen für positive Selektion zu identi-

fizieren. Darüber hinaus stellen wir ein Maß für die Korrelation von Chromosom-

Segmenten an verschiedenen Chromosom-Positionen vor, welches anhand der zu

Grunde liegenden genealogischen Baum-Topologie bestimmt werden kann. Auch

hierfür werden wir eine praxisorientierte Anwendung anhand der humanen Daten

demonstrieren.
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Abstract

One of the major interests in population genetics is how genetic variation within

and among populations can be explained by evolutionary forces such as natural se-

lection. It is known that recent events of positive selection can leave a specific pattern

of polymorphism surrounding the selected site. As a new beneficial mutation arises

in a population and eventually becomes fixed, also neutral variants linked to the se-

lected site will increase in frequency. This leads to a reduction of genetic diversity

around the selected site, a process known as ’selective sweep’. Still today, identify-

ing loci, which underwent recent selective sweeps is a difficult task, since traces are

typically obscured by other evolutionary and demographic factors, such as genetic

drift or population bottleneck events. Therefore, several methods have been devel-

oped to reliably detecting genomic patterns left by the action of positive selection.

The representation of evolutionary history of a sample as a tree is an elementary

approach in population genetics. The process in which two lineages merge at a com-

mon ancestor, when going back in time, is known as a coalescent event. To detect

candidate loci of selective sweeps, we take here an approach which considers the

genealogical relationships among individuals and the topological properties of the

inferred coalescent tree. Selective sweeps can produce highly unbalanced coalescent

tree topologies in region close to a selective sweep site. Building on a previously

known test statistic called T3, which detects bias in the balance of binary genealog-

ical trees, we derive a new test statistic based on a log likelihood approach and we

call it the LRT3-test.

We present the results of genome wide screens of the LRT3-test applied to the 26 pop-

ulations of the phase 3 data set of the human 1,000 genomes project. Furthermore,

we present a measure of topological linkage disequilibrium (tLD), which is based

on clustering individuals with respect to their position in the genealogy rather than

clustering alleles and haplotypes. We demonstrate its application to the beforehand

processed human data.
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Chapter 1

Introduction

1.1 Theoretical population genetics

Population geneticists are concerned with how genetic variation within and among

populations can be explained by evolutionary factors such as mutation, natural se-

lection, recombination and demography. Using mathematical tools makes the con-

struction of theoretical models possible trying to describe the evolution of genetic

patterns under the influence of different components. Although those models rely

on simplified representations of the real-world situation in the sense that they are

idealised enough to be mathematically tractable, they help us to better understand

the rules of inheritance and thus how the genetic composition of a population has

evolved. Such a model might even help us to make future predictions about the oc-

currence of specific alleles or combinations of alleles. These approaches might also

be useful in medical research areas, for example, by studying the evolution of drug

resistance or developing treatments with regard to the prevention, diagnosis, and

treatment of diseases (e.g. Wilson et al., 2016; Polimanti et al., 2014; Carlsten et al.,

2014).

The beginnings∗ of theoretical population genetics started to develop in the late

1920s with the research of Haldane (1927), Fisher (1930), and Wright (1931). Up

to then, there had been a big discrepancy between supporters of Mendel’s studies

of heredity (1865) and supporters of Darwin’s theory of evolution, which was first

proposed by Darwin and Wallace (1858) stating that beneficial traits which improve

an individual’s ability to survive and reproduce will become frequent in a popu-

lation with time. The three pioneers of theoretical population genetics merged the

ideas of Darwin’s theory and the ideas of Mendel’s genetics by reinforcing the con-

sequences of natural selection acting on a population simultaneously fulfilling the
∗See also: (Boero, 2015; Okasha, 2016; Charlesworth and Charlesworth, 2017)
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Mendelian rules of inheritance with mathematical models. Their work provides a

decisive contribution to our understanding of the evolutionary process. It was the

start of exploring the consequences of various evolutionary hypotheses by using ex-

plicit mathematical arguments. Whereas Fisher and Haldane thought that natural

selection was by far the most important factor, Wright was convinced that random

factors also played an important role in altering the genetic composition in a popu-

lation. He proposed the concept of genetic drift which is the random change in allele

frequencies in a population.

During the following two decades, in the late 1940s and early 1950s the research on

evolution was further extended in several directions. Several attempts to explain

mechanisms in evolution were introduced and put into a theoretical framework.

Gradually, the idea solidified that allele frequencies in a population may change due

to four fundamental forces of evolution: the two previously mentioned forces

• natural selection∗

• genetic drift

and in addition to these two

• gene flow, which is the change in allele frequencies due to immigration or mi-

gration in populations

• mutation pressure, which is the change of allele frequencies solely due to the

same mutations occurring over and over again.

With the introduction of technical tools to sequence DNA in the 1960s, it was then
possible to test these theoretical models on real experimental data. However, at that
time, data sets were relatively small and hence analyses were limited. Kimura made
in (1968) an important discovery: by comparing the average number of nucleotide
substitutions from data on amino acid substitutions in hemoglobins and a few other
proteins in several mammalian species, he found that the number of mutant substi-
tutions was in disagreement with Haldane’s theory of natural selection (1957). The
number he found was too large. Building on this discovery, Kimura proposed the
neutral theory (reviewed in (Kimura, 1983)), which states that most mutations have
no or negligible fitness advantage or disadvantage, and consequently most muta-
tions are neutral. Therefore, in Kimura’s view randomness takes the leading role in
the process of evolution.
To prove his statement, Kimura used a diffusion equation approach to compute the
probability and time until mutant alleles become fixated.

∗Note, that the general term ’natural selection’ refers to different modes of selective pressure.
Mostly, these modes are known as: ’Positive selection’, where a beneficial allele is selected for in a
population, ’negative selection’, where deleterious alleles are selected against and thus nature acts to
remove them from a population, or ’balancing selection’, where the existence of multiple alleles gives
a fitness advantage and thus they are maintained in a population. Also note that, since in this thesis
we focus on ’positive selection’, we will not explain the latter two modes in detail.
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The neutral theory was a further pioneering development in population genetics. It
laid the foundations for the establishment of statistical methods to test for neutral-
ity. The basic idea is that the neutral theory can be seen as a null hypothesis, and
deviations from it may be caused by various kinds of evolutionary forces.
However, determining the evolutionary force and the role of natural selection shap-
ing the observed genomic patterns is to date a difficult task. Most models are es-
tablished in a setting of idealised assumptions. The two most commonly applied
models of a population are the Wright-Fisher model (Fisher, 1930; Wright, 1931) and
the Moran model (Moran, 1958). Whilst, the Wright-Fisher model represents a case
of idealised non-overlapping generations, the Moran model represents an idealised
case of overlapping generations (see also Box 1.1). In the context of these two mod-
els, Kingman introduced a theoretical model to describe the genealogy of popula-
tions (1982a; 1982b). In a retrospective view, alleles of a gene of individuals in a
population can be traced back to a single ancestral copy in what is then called the
most recent common ancestor. Kingman showed that the merging of alleles into a
common ancestor can be described by a random process, and he called this process
the coalescent. Instead of describing how a population will evolve in the future with
given parameters, coalescent theory looks backward in time by reconstructing the
evolutionary history of a present-day sample. These days, coalescent theory has
become of central importance in population genetics. We will look more closely at
this in chapter 2.1. A huge advantage of coalescent models is that they enable the
efficient simulation of data which can be observed under several evolutionary sce-
narios. They are mostly easier to implement than diffusion approaches and more
time-efficient. As we will see, simulations play a significant role in a population
geneticist’s daily life. Theoretical genealogies of samples can be generated under
various assumptions and scenarios, these simulated samples can then be compared
with observed data to test neutral hypotheses or estimating population parameters.

Nowadays, with the theoretical knowledge and background established, several
simulation programs exist and are still being developed. Also, the technical im-
provements in sequencing methods contribute enormously to the continual progress.
High-throughput sequencing technology allows the sequencing of entire genomes at
low cost in a very short period of time. The availability of a large amount of data
sources gives the opportunity to apply theoretical models to experimental data, and
also to test the power and reliability of these models.
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Box 1.1: Wright-Fisher and Moran Model, a brief overview

Wright-Fisher

• Forward in time

• Population size is constant.

• Random mating (panmictic).

• Discrete and non-overlapping generations.

• Generation t + 1 is obtained by each offspring individual picking one ancestor

at random in the parental generation t. (Hence, all individuals in a population

die each generation and are replaced by offspring.)

Moran

• Forward in time

• Population size is constant.

• At discrete time intervals, two individuals are chosen randomly: one to die and

one to reproduce. The two individuals can be the same.

• Generations are allowed to overlap.

1.2 Aim and overview of the thesis

One of the main concerns in population genetics is to detect genomic patterns left by

the action of natural selection. Several test statistics have been developed in the past.

However, many tests suffer from high false positives, mainly due to the confound-

ing impacts of demographic events like population bottleneck events, since they can

leave a similar pattern behind as those caused by natural selection.

Some recently introduced test statistics exploit the fact that sweeps produce highly

unbalanced coalescent tree topologies. Tree topology based test statistics have the

advantage that they are free from the confounding effects caused by varying popu-

lation sizes (Hudson, 1990; Li, 2011). Therefore, building on a test statistic called T3

(Li and Wiehe, 2013) which detects bias in the balance of binary genealogical trees,

we derived a new test statistic based on a log likelihood approach and we called it

the LRT3-test. Since in general the tree topology is not known, we developed an esti-

mation method using SNP data. We showed, that the estimated tree topology agrees

quite well with the true topology. Furthermore, we applied the new test statistic to

experimental data. For this end, we screened all 26 populations from the human

1,000 genomes project phase 3 data (Auton et al., 2015) with the LRT3-test. Results of

this screen will be presented.

Moreover, we introduced a measure of topological linkage disequilibrium (tLD)
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which is based on clustering individuals with respect to their position in the ge-

nealogy rather than clustering alleles and haplotypes (Wirtz, Rauscher, and Wiehe,

2018). Also here, we will demonstrate its practical application.

The thesis is organised as follows:

Chapter 2 gives an overview of the basic concepts of coalescent theory and its classi-

cal properties. Furthermore, classical test statistics for detecting traces left by natural

selection and their underlying ideas will be presented.

Chapter 3 starts with the concept of the test statistic T3 (Li and Wiehe, 2013). Further

on, we show that the gene tree topology can be well approximated using single nu-

cleotide polymorphism (SNP) data. We present a suitable clustering method and show

its reliability. Building on the test statistic T3, we establish the LRT3-test, based on a

log likelihood approach. We will show that the power to detect candidate regions

for selective sweeps can be improved by far in that way.

In Chapter 4, we apply the LRT3-test to all 26 populations of the phase 3 release

of the human 1,000 genomes project. We found new potential candidate regions

which might have undergone selective sweeps, and also many of previously known

candidates were confirmed. We present our top candidate genes and discuss their

potential beneficial trait they may bring along for their carriers.

Chapter 5 introduces the concept of the topological linkage disequilibrium (Wirtz, Rauscher,

and Wiehe, 2018). We start with a short introduction recapitulating the concepts

of classical linkage disequilibrium. Advantages of the topological linkage disequilibrium

compared to the classical linkage disequilibrium are pointed out. We conclude with

practical applications.

Finally, in Chapter 6 we present an overview of the results and conclusions of the

thesis. Suggestions of possible future research questions will be given.
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Chapter 2

Inferring population history

At one time or another surely the thought of getting to know one’s ancestors has

crossed most people’s minds to discover his or her origins. Besides, questions like

how closely humans are related to apes or other animals occasionally decorate the

headlines of diverse articles.

Exploring the evolutionary relationship, for instance among various species or be-

tween individuals of population samples, has always been of keen interest in human

history. A basic approach to this concern is the graphical representation of evolution-

ary history in form of a ’tree’.

In theoretical population genetics, the introduction of the coalescent theory marked

a milestone. It provides mathematical tools to study the evolutionary history of a

population and enables the establishment of several test statistics for natural selec-

tion. In this chapter, we will start with a brief overview of the basic concepts of

coalescent theory and mention some classical properties∗.

2.1 Coalescent theory

The first who came up with the idea of describing the common ancestry of two al-

leles mathematically by looking backwards in time was the French Mathematician

Gustave Malécot in the 1940s, see e.g. (Epperson, 1999). He asked, given a Wright-

Fisher population (see Box 1.1), how far, on average, do you have to go back in time

to find a common ancestor for two randomly chosen alleles?

Looking backward in time, the process in which the lines of descent of two alleles

merge at a common ancestor is known as the coalescent. Being independently devel-

oped by several population geneticists (Ewens, 1972; Tajima, 1983; Hudson, 1983),

∗In this chapter, throughout all sections, information content is mainly obtained from the textbooks
(Hartl and Clark, 2007; Wakeley, J., 2009; Nielsen and Slatkin, 2013)
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the first to record the theory behind a coalescent process as a mathematical model

was Kingman (1982a) and he called it the n-coalescent. The idea is as follows:

Assuming a population of size 2N, the probability that two randomly chosen alleles

share the same parental allele in the previous generation is 1/2N, and the proba-

bility that they do not share the same parental allele in the previous generation is

(1 − 1/2N). In the latter case, we can continue by asking what the probability is

that these two alleles share the same grand-parental allele: It is 1/2N that they do

share, (1− 1/2N) that they do not share. We can proceed like this and arrive at the

probability that two alleles do not coalesce in generation (t− 1), but do coalesce in

the t-th generation

P(2 alleles coalesce at time t) =
(

1− 1
2N

)t−1 1
2N

.

Now, let us consider a sample of n alleles in which all lineages coalesce indepen-

dently and only one coalescent event can occur each generation. In any generation,

the probability of a pair of alleles coalescing is 1/2N and there are n(n− 1)/2 such

pairs. Hence, the probability of coalescent times can be approximated by the expo-

nential distribution (for sufficiently large N)

P(2 out of n alleles coalesce at time t) =
(

1− n(n− 1)
4N

)t−1 n(n− 1)
4N

≈ n(n− 1)
4N

e
−n(n−1)t

4N (2.1)

with average waiting time Tn for a coalescent event:

E[Tn] =
4N

n(n− 1)
.

Eventually, all lineages will merge into one node, which is called the most recent

common ancestor (MRCA). The expected time to the MRCA is equal to the sum of the

expected waiting time E[Ti]:

E[TMRCA] =
n

∑
i=2

E[Ti] =
n

∑
i=2

4N
i(i− 1)

= 4N
(

1− 1
n

)
.
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FIGURE 2.1: One possible coalescent tree of a sample of size seven. The lineages are
represented by the leaves of the tree. The times between coalescent events are exponentially
distributed and are denoted by Ti. On the right side, the respective expected waiting time is
given.

The expected complete branch length of the tree E(T) can be computed by summing

up the branch lengths E(Ti) for the entire tree:

E(T) = E

(
n

∑
i=2

iTi

)
=

n

∑
i=2

iE(Ti) =
n

∑
i=2

i
4N

i(i− 1)
= 4N

n−1

∑
i=1

1
i

.

Note that the coalescent time is increasing as one goes back further in time and the

last coalescent time from two alleles to the MRCA is the longest. If n is large, almost

half the time is required for the last coalescent event (Felsenstein, 2004).

In this thesis, we consider only binary trees. However, it is worth mentioning that

while Kingman’s coalescent only produces binary trees, many studies exist dealing

with multiple merger coalescent events, e.g. the Λ-coalescent (Pitman, 1999), which

allows a coalescent event involving more than two lineages, or the more generalized

Ξ-coalescent, which in addition allows simultaneous multiple coalescent events of

multiple lineages per generation (Schweinsberg, 2000; Moehle and Sagitov, 2001).

2.1.1 Adding mutation

We now turn to adding mutations to the coalescent model. The infinite-sites model

is assumed, where each mutation can occur at an infinite number of sites and every
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new mutation occurs at a novel site. Mutations are rare events occurring with rate

µ during time t per individual. Hence, the number of mutations which occur over

coalescent tree branches of a given length is Poisson distributed,

P(k mutations in t generations) =
e−tµ(tµ)k

k!
,

and the expected number of mutations is tµ.

Adding mutations to the coalescent tree also means graphically: Mutations affect-

ing only one chromosome can only have occurred on an external branch, mutations

affecting many chromosomes have occurred earlier in time, see FIGURE 2.2.

FIGURE 2.2: Coalescent tree for a sample of size n = 16, mutations are represented as dots,
the respective DNA sequences are drawn below as vertical lines. Colours of mutations
indicate the different number of chromosomes which are affected by that mutation: The red
one affects only 1 chromosome (= singleton), the blue one two chromosomes (= doubleton),
orange affects 15 chromosomes.

One can also compute the expected number of segregating sites E(S). It is

E(S) = µE(T) = µ4N
n−1

∑
i=1

1
i
= θ

n−1

∑
i=1

1
i

, (2.2)

where µ is the per site mutation rate and θ := 4Nµ. θ is also called the population

scaled mutation rate.

By rearranging the above equation, it holds that

θ =
E(S)

∑n−1
i=1

1
i

.

Actually, Watterson (1975) was the first to derive the expected number of segregating
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sites. Nowadays, it is common to use that as means for the estimation of θ. It is also

known as ’Watterson’s Estimator’:

θ̂W =
S

∑n−1
i=1

1
i

. (2.3)

Note that another popular estimator for the population mutation rate is θ̂T (or also

θπ), called after Tajima, who first described it (1989a):

The number of nucleotide site differences between a pair of sequences is simply the

number of counts of nucleotide positions at which pairwise sequences differ, divided

by all possible pairwise comparisons that can be made:

π =
2

n(n− 1) ∑
i<j

dij,

where dij is the number of differences between the ith and jth sequence.

Since the number of nucleotide site differences between a pair of sequences is the

same as the number of segregating sites in a sample of size two, from 2.2 we know

that an average pair of sequences differs at θ sites. Averaging over all the pairs in a

sample doesn’t change this, so it follows that

E(π) = 4Nµ = θ. (2.4)

From this result, one can deduce ’Tajima’s Estimator’:

θ̂π =
2

n(n− 1) ∑
i<j

dij. (2.5)

(The ˆ indicates that these formulas are intended to estimate the parameter θ.)

2.1.2 Site frequency spectrum

Further on, to obtain information about the frequency spectrum of mutations, con-

sider the site frequency spectrum (SFS): The (unfolded) SFS is the distribution of the

proportion of segregating sites where the derived allele (the mutant) is at the ab-

solute frequency i. For a sample of size n, the SFS can be represented as a vector

f = ( f1, f2, ..., fn−1), where fi denotes the proportion of the derived allele in fre-

quency i. For example, f1 is the proportion of mutations affecting only one chromo-

some, also called singletons, f2 is the proportion of mutations affecting two chromo-

somes, also called doubletons, and so forth.
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Box 2.1.2: Example: SFS for the DNA sequence

Example of a coalescent for a sample of size 5. The five black horizontally drawn lines on the bottom

of the picture represent DNA sequences. The dots indicate mutations, the different colouring represents

the (absolute) frequency of the mutation in the sample. There are 8 segregating sites, 3 out of these are

singletons, 3 are doubletons and 2 are tripletons. In the upper right corner (the picture in the framed

box), the SFS for this DNA data example is given. Note: Tree genealogy can influence the frequency of

segregating sites in the sense that the observed patterns are a result of the given genealogical tree.

The expected SFS can be calculated by means of the coalescent and is given by

E[ fi] =
θ/i

θ ∑n−1
k=1

1
k

=
1/i

∑n−1
k=1

1
k

, i = 1, 2, ..., n− 1. (2.6)

In some cases it is unknown which allele is the derived one and which is the ancestral

one. Then one can consider the folded SFS which is the distribution of the frequencies

or counts of minor alleles in a sample. Obviously, here i = 1, ..., bn/2c, and

E[ fi] =

( 1
i +

1
n−i

)
∑n−1

k=1
1
k

, i = 1, 2, ..., bn/2c. (2.7)

2.1.3 Adding recombination

In its simplest form, coalescent theory assumes no recombination. Recombination is

a process during meiosis by which two DNA sequences exchange genetic material

when crossing over occurs. Adding recombination into the coalescent framework is

not straight-forward. FIGURE 2.3 illustrates the difficulty.
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a) b) c)

FIGURE 2.3: Picture modified from (Hartl and Clark, 2007, Chapter 3.7, figure 3.17).
Shown here is an example of coalescence and recombination in a sample of size n = 4. The
A/a represents the allele on one site, the B/b allele on the second site. Plot a) shows the
coalescent tree with respect to the A and a pair of alleles. The red circle indicates the
mutation from a to A. The horizontal lines indicate that one AB-bearing chromosome
recombines with an ab-bearing chromosome. Here, suppose the leaves are labelled 1 to 4
from left to right, 1 and 2 are joined together and 3 and 4. Plot b) shows the coalescent tree
with respect to the B and b pair of alleles. The green circle indicates the mutation from B to
b, and again, the horizontal lines indicate that one AB-bearing chromosome recombines
with an ab-bearing chromosome. Here, 1 and 3 are joined together, and 2 and 4. Hence,
both trees in a) and b) represent the ancestry of the A, a and B, b pairs of alleles, respectively.
But the order of the tree is different. Plot c) A possibility to deal with recombination events:
The arrow in the coalescent tree in plot c) points at the coalescence where the recombination
took place and the recombinant chromosomes create their own parental node.

Nowadays, recombination and coalescent process is usually studied in the frame-

work of the ancestral recombination graph (ARG), which was introduced by Grif-

fiths and Marjoram (1996). In the ARG, each nucleotide position along the chromo-

some is associated with a coalescent tree. Due to recombination events, tree topology

at different sequence positions may change. Within a chromosome segment with

no recombination events, all positions have the same tree topology, the so-called

’marginal tree’. Therefore, by dividing chromosomes into fragments with ideally

no recombination events, coalescent trees can be associated to each of a fragment.

Recombination is embedded by a random ’prune and re-graft event’: A branch of a

marginal tree is randomly chosen, pruned and subsequently re-grafted somewhere

else above the pruning point or even onto the ancestral lineage of the root. In the

latter case, this would lead to a change of root, hence a change of the MRCA.

The ARG can be well approximated by a so-called ’Sequential Markov Coalescent’

(McVean and Cardin, 2005; Eriksson, Mahjani, and Mehlig, 2009). The basic idea

here is that the ARG is approximated by a process which iteratively determines the

genealogy along a chromosome, the local tree at a site depends only on the tree at

the previous site.
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2.2 A side note on evolutionary trees

In evolutionary biology, the graphically representation of relationships among indi-

viduals in the form as a tree has a long history.

So far, we have focused on the coalescent approach. Coalescence theory concentrates

on reconstructing possible gene histories to explore what causes might have led to

the observation of the underlying genealogy tree. Whilst here the focus lies on the

intra-species history, the field of phylogeny is interested in inter-species history.

It was the famous zoologist E. Haeckel who coined the word ’phylogeny’ in the

1860’s, which can be read e.g. in (Dayrat, 2003). A phylogenetic tree represents

the evolutionary history of a species observed through time. They are also known as

species trees. The aim is to reconstruct the ’true’ species tree. To build the tree, various

data types can be used, however, nowadays it is most common to built phylogenetic

trees from molecular data, like DNA or protein data. In molecular phylogenetic

analysis, the sequence of a common gene or protein are used to infer the evolution-

ary relationship of species. The most common methods for estimating the trees are

distance-based methods (like UPGMA or neighbour joining algorithms), maximum

parsimony methods (i.e. ’choosing’ the tree that requires the least amount of muta-

tions to be constructed), and Bayesian methods based on likelihood functions (Yang

and Rannala, 2012).

There has been a long-standing debate about which phylogenetic method performs

best and how reliable each one is, strongly depending on the type of data used,

though. Phylogeneticists are concerned with questions like which the true tree is, if

a true tree exists at all.

A species tree might be different from the gene tree. One reason for this phenomenon

is called incomplete lineage sorting:

If the divergence time was short and the ancestral population sizes were large, it can

happen that by the time of the divergence event, not all lineages in a sample from

each population have found their MRCA yet. In such a case, one or more lineages

from one species will share the MRCA with lineages from the other species (see also

FIGURE 2.4).

Other reasons causing the discord between species tree and gene tree can be e.g.

horizontal gene transfer (Davidson et al., 2015), gene duplication and loss or hy-

bridization (Szollosi et al., 2015).
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FIGURE 2.4: The gene tree in blue matches the species tree in black, while the gene tree in
red does not. Reason for the mismatch might be incomplete lineage sorting: By tracing back
three sampled lineages from species A, B and C backward in time, alleles from A and B
might succeed (right side: tree on top) or might not succeed (right side: tree on bottom) to
coalesce in the common ancestor.

2.3 Tests on neutrality

With the advent of new and rapid sequence technologies, a huge amount of DNA

data is now available. It is mostly stored in so-called ’gene data banks’ and are pub-

licly available; genomic patterns can be actually analysed and extensively studied.

These patterns might have been shaped by factors such as demography, natural se-

lection or genetic drift.

However, distinguishing between those can be difficult, for instance, demographic

events like population bottlenecks can leave a similar genomic pattern behind as

those left by the action of natural selection. The construction of a robust test statistic

aiming in identifying the correct underlying dynamic behind, received a high degree

of attention for researchers in the past decades.

In this section, we will present the characteristic genomic signatures of positive se-

lection and classical approaches to detect them.

2.3.1 Genomic footprints of positive selection

In a fundamental work, Maynard Smith and Haigh (1974) introduced the following

model: When a beneficial mutation arises on a chromosome and subsequently gets

fixed in the population, not only the frequency of the advantageous mutation will
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increase but so will selectively neutral mutations which are linked to the selected

site. This effect occurs due to physical linkage between alleles at different loci, a

term called linkage disequilibrium (LD) which was first used by Lewontin and Kojima

(1960) (more on LD in chapter 5).

While the advantageous mutation and the linked neutral variant are swept to high

frequency, other neutral variants are swept out of the population, a phenomenon

called ’selective sweep’ (illustrated in FIGURE 2.5) which results in strongly reduced

levels of polymorphism around the selected site.

FIGURE 2.5: Consider a sample of size n = 10. 1.) Each of the 10 DNA sequence is
represented by a horizontal line. Each blue dot represents a neutral mutation, which can be
present in more than one sequence. 2.) An advantageous mutation occurs, indicated by a
red dot. 3.) The beneficial mutation increases in frequency in the population, and hereby
also the frequency of neutral mutations located close to the selected site increase due to
their association with the beneficial allele. 4.) A recombination event creates a new
combination associated with the selected site. 5.)-6.) The selected site and linked neutral
variants increase in frequency and finally are fixed in the population.

Maynard Smith and Haigh called this process ’genetic hitch-hiking’. The work of

Maynard Smith and Haigh marked a milestone for population geneticists. Building

on this model, a variety of strategies to detect positive selection have been devel-

oped. They mostly rely on the idea of detecting specific shifts of the SFS, searching

for reduced genomic variation in the genome, or finding specific LD patterns. More

recently, machine learning approaches gain growing attention, e.g. (Schrider and

Kern, 2018).

In the following, we give a short overview of rather ’classical’ tests.
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2.3.2 Classical neutrality tests

In general, methods detecting selective sweeps can be divided into groups based on

their underlying idea. One big group is formed by those based on shifts in the site

frequency spectrum (SFS). Selective sweeps affect the SFS in the sense that the SFS

creates a shift towards an excess of low- and high-frequency derived alleles (Braver-

man et al., 1995). In the previous section we have seen that a consequence of a

selective sweep is the reduction of genetic diversity around the selected area. Some

time after the sweep has been completed, the region will recover from the sweep

again, new mutations will occur, however, they can not rise to high frequency due

to the short time, creating an excess of rare alleles around the swept region. SFS

based neutrality tests exploit this fact. By means of θ-estimators such a shift can be

measured. In the section before, we have already seen two estimators for the popu-

lation scaled mutation rate: θ̂W and θ̂π (equation (2.3) and (2.5) respectively). Under

neutrality both estimators are expected to be equal. After a selective sweep, θ̂π will

be smaller than θ̂W , because mean pairwise differences are less to what is expected

from the number of segregating sites. The classical Tajima’s D test is the comparison

between these two quantities (Tajima, 1989a):

D =
θ̂π − θ̂W√

Var(θ̂π − θ̂W)
,

where θ̂W and θ̂π are given in (2.3) and (2.5), respectively.

There are other estimators for θ than we have seen thus far. E.g. define ξ1 as the

absolute number of singletons, then according to equation (2.6) the E[ξ1] = θ and

thus

θ̂e = ξ1. (2.8)

Fu and Li (1993) derived the test statistics Fu and Li’s D and Fu and Li’s F, comparing

the number of derived singleton mutations and the total number of derived variants:

D =
θ̂W − θ̂e√

Var(θ̂W − θ̂e)

and

F =
θ̂π − θ̂e√

Var(θ̂π − θ̂e)
.
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Another noteworthy test from this group is Fay and Wu’S H (2000). Their θ-estimator

gives in addition much weights to high frequency variants relative to the intermediate-

frequency ones. It is defined as

θ̂H =
2

n(n− 1)

n−1

∑
i=1

i2ξi,

where ξi are the counts of derived allele with absolute frequency i, and hence

H =
θ̂π − θ̂H√

Var(θ̂π − θ̂H)
.

We now turn to a further big group of neutrality tests: haplotype-based tests. A

haplotype is the configuration of segregating sites lying on the same chromosome

(see also FIGURE 3.3). In contrast to SFS based tests, these tests also include linkage.

In a seminal paper, Sabeti et al. (2002) developed an extended haplotype homozy-

gosity (EHH) which detects long haplotypes at unusually high frequencies in candi-

date regions. It measures the decay of haplotypes carrying a specified ’core’ allele at

one end as a function of distance. Building on this, the integrated haplotype score

(iHS) was developed by Voight et al. (2006). It measures the amount of EHH at a

given site along the ancestral allele relative to the derived allele.

Also a notable consequence of the hitch-hiking effect is that the LD levels are ex-

pected to remain high in comparison on each side of the advantageous mutation,

and drop drastically for loci across the beneficial mutation, motivating to develop

LD-based methods to detect positive selection (Kim and Nielsen, 2004; Wang et al.,

2006).

A disadvantage of most statistical tests is that they are affected by the confounding

effects of demographic factors (Ramirez-Soriano et al., 2008). Events like popula-

tion expansions, recoveries from a recent population bottleneck or gene flow lead to

shifts in the SFS. For instance, both population expansion or recovery from a recent

population bottleneck lead to an excess of low-frequency variants (Fu and Li, 1993;

Tajima, 1989a; Tajima, 1989b). Gene flow can result in increasing high-frequency de-

rived variants (De and Durrett, 2007). Also haplotype-based tests suffer from these

effects, since they are functions of the recombination rate, the mutation rate and pop-

ulation size (Pritchard and Przeworski, 2001). For instance, LD can be increased by

temporary reductions in population size and declines more slowly after the occur-

rence of such a bottleneck event (Reich et al., 2001).
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2.3.3 Tests using coalescent tree topology

We now want to focus on how the tree topology can be used to establish neutrality

tests. Suppose an excess of singletons or an excess of rare derived alleles is observed

(remember: singletons can only lie on external branches). In terms of tree topology

this means that the external branches are likely to be relatively long compared to the

short internal branches. Furthermore, after the fixation of a positively selected allele

in a population, the tree height is drastically reduced due to its short fixation time

at the selected locus. All genealogical branches coalesce at a recent time at the se-

lected site. Not only branch length or tree height in general is affected by a selective

sweep, but also the shape. ’Due to the effect of hitch-hiking, one lineage of a neu-

tral locus partially linked to a selected locus may escape from the selective sweep

through recombination’ (Li, 2011). This lineage will not coalesce with any other lin-

eages before the most recent common ancestor (Kaplan, Hudson, and Langley, 1989;

Fay and Wu, 2000) and that leads to a long branch which is linked to the root of the

tree. The tree topology is highly asymmetric; the tree is also said to be highly unbal-

anced. Taking the underlying tree topology additionally into account in establishing

neutrality tests can provide a more reliable conclusion about what role positive se-

lection might have actually played.

Recently, several test statistics based on coalescent tree topology were established.

Li (2011) used the maximum frequency of derived mutations to examine the unbal-

ancedness of the tree of a locus. Furthermore Li showed, that topology-based tests

are robust with respect to demographic changes such as bottleneck events. Ferretti

et al. (2017) analysed the impact of the structure of genealogical trees upon the SFS

by decomposing the SFS in terms of waiting times and tree shape. Yang et al. (2018)

took into account the ratio between the lengths of two subtrees in addition to the

information of the unbalancedness of the tree.

Li and Wiehe (2013) introduced a simple test for selective sweeps based on mi-

crosatellite variation. They called the test statistic T3 and it only uses tree topology

in the sense of tree shape. Basically, the T3-test is a measurement for the unbalanced-

ness of tree topology. Based on the same model as in (Li and Wiehe, 2013), in the

next chapter, we will introduce the T3 test statistic using SNP data. Furthermore, we

will embed the test statistic T3 in a log likelihood ratio test, and we call it the LRT3-

test. We will show that the power to detect candidate regions for selective sweeps

can thus be improved.
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Chapter 3

Using genealogical tree topology to detect

positive selection

Hudson (1990) proved that in a Wright–Fisher population varying population size

does not affect tree topology. Moreover, Li (2011) showed that tree topology is not

affected by demographic events like population bottleneck events or size expansion.

It therefore stands to reason that tree topology-based statistics are to be considered

to search for traces of selective sweeps. As we have already seen in a previous chap-

ter, a selective sweep also leaves visible traces on tree topology: After the fixation of

a positively selected allele in a population, the tree height is drastically reduced due

to its short fixation time at the selected locus. Genealogical branches will all coalesce

in a recent time at the selected site, leading to a tree of low height. Genetic diver-

sity is strongly reduced around that site. But when one moves away, recombination

breaks this link, one or a few lineages might escape the selective sweep leading to an

unbalance in tree topology. (Kaplan, Hudson, and Langley, 1989; Fay and Wu, 2000)

Most existing coalescent tree topology based tests require more information than just

tree topology∗ (e.g. Li, 2011; Yang et al., 2018). We aim to derive a robust test statistic

solely relying on tree topology. Therefore, we will build upon the already known

T3-test (Li and Wiehe, 2013), which is based on the latter idea.

∗When we talk about ’tree topology’, we mean solely the branching pattern. This means other
information like tree height, branch length etc. are of no significance.
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3.1 The test statistic T3

The test statistic T3 was introduced by Li and Wiehe (2013). A detailed review of

the derivation of the T3-test is provided in the APPENDIX A.1. In the following, only

results which will be needed in further sections will be pointed out.

First, we will introduce some terminology:

Consider a binary tree with a fixed number n of leaves. This number is also defined

as the size of the tree and represents a sample of size n. The tree has n− 1 internal

nodes, denoted by νi, i = 1, ..., n− 1. The labelling starts at the root of the tree, which

also refers to the most common recent ancestor (MRCA). As can be seen in FIGURE 3.1,

the n leaves of the tree can be divided into two disjoint groups: the left- and right-

descendants of root ν1. The two groups are indicated as L1 and R1, respectively.

Further on, let n = n1 and define Ω1 = min{|L1|, |R1|}. Without loss of generality,

let |L1| be smaller than |R1|, thus Ω1 = |L1|.
Next, label the root of the subtree consisting of the leaves which belongs to the

’larger’ set, in this case the root of subtree with leaf set R1, with ν2. This subtree

is now of size n2 = n1 −Ω1 ≥ n1
2 , since |R1| = n1 −Ω1 ≥ n1

2 . Again, divide the n2

leaves merging at root ν2 into two disjoint groups: the group containing the right-

descendants, |R2|, and the group containing the left-descendants, |L2|. And again,

without loss of generality let |L2| < |R2|, and Ω2 = min{|L2|, |R2|} = |L2|. In the

same manner, we can proceed to determine Ω3, Ω4 and so on.

FIGURE 3.1: Example of a binary tree of size n = 20. A: Tree with root ν1, n = n1 = 20,
|L1| = 7, |R1| = 13, and thus Ω1 = min{|L1|, |R1|} = 7. B: Label root of set with
max{|L1|, |R1|} by ν2, hence n2 = 13, |L2| = 2, |R2| = 11, and Ω2 = 2. C: Proceed in this
way and get n3 = 11, |L3| = 1, |R1| = 10, and thus Ω3 = 1.

Assuming that trees are generated by the coalescent process, it follows that Ω1 is a

random variable which is ’almost’-uniformly distributed on {1, 2, ..., bn/2c} with

p(n, ω1) := Prob(Ω1 = ω1) =
2− δω1,n/2

n− 1
,

where δ.,. denotes the Kronecker symbol.

Furthermore, Ωi given Ωj, 1 < i < j, is ’almost’-uniformly distributed on {1, 2, ..., bni/2c}
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with

p(ni, ωi) := Prob(Ωi = ωi),

where ni = n−ω1 − ...−ωi−1 and 1 ≤ ωi ≤ bni/2c .

Note that the Ωi depend on Ωj, j = 1, ..., i− 1.

It can be shown that the expectation for Ω1 is

E(Ω1) ≈
n
4

and the variance

V(Ω1) ≈
n2

48
.

In general, it holds that

E(Ωi) ≈
3i−1n

4i ,

and the variance

V(Ωi) ≈
1
3
(1− 3i−1n

4i )2.

(see APPENDIX A.1 for more details on calculations.)

By defining the normalised random variables Ω∗i = 2Ωi/ni, it can be deduced that

E(Ω∗1) ≈
1
2

(3.1)

and

V(Ω∗1) ≈
1
12

.

In general, it holds that

E(Ω∗i ) ≈
1
2

, (3.2)

V(Ω∗i ) ≈
1
12

,

and hence

σ(Ω∗i ) ≈
√

1/12.
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We will mostly work with the normalised random variables Ω∗i = 2Ωi/ni instead of

Ωi. In this way, they can be well approximated by independent continuous uniforms

on the unit interval. With

E(Ω∗i ) ≈ 1/2 and σ(Ω∗i ) ≈
√

1/12,

it holds that

N (0, 1) ∼
√

1
k
·

k

∑
i=1

(Ω∗i − E(Ω∗i ))
σ(Ω∗i )

=

√
12
k
·

k

∑
i=1

(
Ω∗i −

1
2

)
=: Tk (3.3)

by applying the central limit theorem, which states that the sum of continuous uni-

forms converges in distribution to a normal random variable.

Already k = 3 produces a distribution close enough to a standard normal distribu-

tion, as shown in (Li and Wiehe, 2013) and re-checked with simulations (see FIGURE

3.2). Hence, set k = 3.

The resulting test statistic T3 is a measurement for tree balance of binary coalescent

trees:

T3 = 2 ·
3

∑
i=1

(
Ω∗i −

1
2

)
∼ N (0, 1).

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

standard normal
k=1
k=2
k=3

FIGURE 3.2: Agreement of Tk (see equation (3.3)) with the standard normal. As can be seen,
already k = 3 yields a distribution close to the standard normal distribution.

In the case of neutral evolution T3 is expected to be standard-normally distributed,

i.e. E(T3) = 0, V(T3) = 1. Genealogies after selective sweeps tend to be unbalanced
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and produce negative values of T3
∗.

3.2 Estimation of tree topology using SNP data

In practice, tree topology is not known and has to be estimated. Therefore, the relia-

bility of the T3-test depends on the quality of the reconstruction of the tree topology.

Li and Wiehe (2013) showed the application to microsatellite data. They found that

the unweighted pair-group method with arithmetic mean (UPGMA) yielded a reliable re-

sult. The idea was that the microsatellite alleles were grouped into two disjoint sets

according to their repeat size and size distance from each other. In the end, the au-

thors could successfully show significance for two microsatellite markers out of the

used 16 markers of the Plasmodium falciparum surrounding a known drug resistance

locus.

In the following, we will demonstrate that the T3-test can also be well applied to

single nucleotide polymorphism (SNP) data.

3.2.1 Clustering method

Consider a sample of size n = n1. By using a sliding window approach for a given

window length in number of base pairs (bp) and a given step size, we consider the

combination of SNPs in each window (see FIGURE 3.3 ). For clustering the observed

haplotypes in two disjoint groups, we apply a 2-means like clustering approach:

We determine the two sequences with maximal Hamming distance. These two most

different sequences are now treated as centroids of the two clusters the n1 sequences

have to be grouped into. Next, we assign the remaining n− 2 sequences according

to their similarity to one of the two ’centroidal’ sequences. If the allocation to one

of the two groups is not clearly resolvable, for instance when the focal sequence has

the same distance to the two ’centroidal’ sequences, we randomly assign the alleles

to one of the two clusters with equal probability. This gives preference to clusters of

balanced size. Once all n1 sequences have been assigned to one of the two clusters,

we are able to determine Ω1, which is simply the minimum size of the two groups.

Now, we can proceed to the next step: Determining Ω2. For this, we now focus on

the remaining n2 = n1 −Ω1 sequences not contributing to Ω1. The whole clustering

procedure is carried out in exactly the same way as before. In this manner, we can

estimate Ω2 and Ω3.

∗An illustration of T3-profile under different scenarios will be given later, see FIGURE 3.11.
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FIGURE 3.3: Part of a chro-
mosome (black line), and a
window of a given size, e.g.
number of base pairs which
slides along this chromosome
(blue box). Now let’s assume
we are analysing this stretch
of chromosome for five dif-
ferent sequences in a popula-
tion: Most of the DNA se-
quence is identical (black let-
ters), SNPs are indicated in red.
A haplotype is made up of a
particular combination of alle-
les nearby SNPs. Here, only
SNPs contained in the window
are denoted, since this is suf-
ficient to define the haplotypes
uniquely.whitespace-whitespac

Number of SNPs and fragment length

Coalescent tree topologies along the chromosome are not independent. Multiple re-

combination events within a fragment may lead to confounding effects on cluster

estimation. This means that fragment length can not be arbitrarily large. But at the

same time, it should contain a minimum number of segregating sites to enable a

fairly good approximation of the true tree topology.

Minimum number of SNPs

To investigate how many SNPs are at least needed to obtain a good cluster estima-

tion result for the Ωi’s, we generated simulated data for population samples using

the simulation program msms by Ewing and Hermisson (2010) with varying num-

ber of segregating sites. The program msms is a coalescent simulation program for

genealogies in general structured populations and based on the widely used and

well-known simulation program ms∗ by Hudson and Kaplan (1988), with the differ-

ence of allowing selection at a single locus. Since the output of msms provides both

SNP data and trees representing the history of the sampled chromosomes in Newick

format, in each run we can compare our estimated tree topology from SNP data with

the true one (for an example output see FIGURE 3.4).

To choose the appropriate minimum number of segregating sites needed to get a

fairly good approximation of the true tree topology, we generated 16 different data

sets under neutral assumptions but with various number of segregating sites (ss):

∗Note, the difference between ms and msms is that msms contains the option for simulating selec-
tion. Both, interface and output format are consistent and therefore, with no selection both can be used
equally.
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11 msms -N 10000 -ms 5 1 -s 20 -T
12 0x48853d412a07f114
13
14 //
15 (((5:0.025,4:0.025):0.249,3:0.274):0.184,(1:0.042,2:0.042):0.416);
16 segsites: 20
17 positions: 0.00805 0.02248 0.03072 0.05581 0.05693 0.09182 0.29899
15 0.39859 0.43621 0.48719 0.53773 0.55121 0.61512 0.62242 0.69708
15 0.71393 0.91442 0.93375 0.95735 0.96282
18 10001001010100000000
19 10001101010100000000
10 01110010101000111010
11 01000000100011100101
12 01000000100011100100

FIGURE 3.4: Example output of a simple msms command for the effective population size of
N =10000, for 1 sample consisting of 5 sequences, generated assuming that there are 20
segregating sites. The first line of the output is the command line. The second line shows
the random number seeds. The history tree in Newick format is represented in line 5,
which is triggered by the option -T in the command line (see also FIGURE 3.5). Line 6 gives
the number of segregating sites in the sample, while in line 7 the positions of the sites are
given on a scale of (0, 1). Followed by this line, the haplotypes of each of the 5 sequences
are given as a string of ’0’s, indicating the ancestral allele, and ’1’s, which stands for the
derived allele.

1. Determining Ω̂1:

sequence 1 2 3 4 5
1 0 1 15 12 11
2 1 0 16 13 12
3 15 16 0 11 10
4 12 13 11 0 1
5 11 12 10 1 0

The two centroidal sequences are
formed by sequence 2 and 3. This
results in the two clusters:
{1, 2} and {3, 4, 5}, hence Ω̂1 = 2.
Next, consider the remaining
haplotypes 3, 4, 5.

2. Determining Ω̂2:

sequence 3 4 5
3 0 11 10
4 11 0 1
5 10 1 0

The two centroidal sequences are
formed by sequence 3 and 4.
This results in the two clusters:
{3} and {4, 5}, hence Ω̂2 = 1. It
follows, that Ω̂3 = 1.

5 4 3 1 2

1

Ω1 = 2,
Ω2 = 1,
Ω3 = 1

FIGURE 3.5: Example of forming clusters using the SNP data from the output of msms in
FIGURE 3.4. Here, sequence 1 refers to the haplotype from line 8, sequence 2 to haplotype
from line 9 etc. The entries di,j of the matrix represent the hamming distance between
sequences i and j. As it can be seen in the first matrix on the left side, in the first step, the
centroidal sequences are formed by sequence two and three, since these two are differing
the most from each other (= maximum matrix entry). The remaining sequences will be
assigned to one of these two, according to their distance value, which can also be read in
the matrix. This leads to two clusters, and thus Ω̂1 can be determined. In the same way, Ω̂2
is determined (see distance matrix in the middle of the figure). On the right side, the ’true’
tree topology is shown, which refers to the tree presented in Newick format in line 5,
FIGURE 3.4. As it can be seen, the ’true’ Ω-values are: Ω1 = min{|{3, 4, 5}|, |{1, 2}|} = 2,
Ω2 = min{|{4, 5}|, |{3}|} = 1, Ω3 = 1.
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1, 2, .., 9, 10 ss, 12 ss, 15 ss, 20 ss, 30 ss and 40 ss. In total, 1, 000 runs were generated,

assuming a sample of size n = 200 and effective population size of N = 104.

Then for each set separately, we determined Ω1, with the clustering approach ex-

plained above using an R-Script written by ourselves∗ and recorded the average Ω1

for each set (FIGURE 3.7). In the following, let Ω̂i denote the estimated value of Ωi,

(·)∗ indicates the normalized value (e.g. Ω∗i = 2Ωi/ni, Ω̂∗i = 2Ω̂i/ni).

If we suppose that one segregating site is given, we can obviously form the follow-

ing two clusters: one consisting of chromosomes carrying the ancestral allele 1, and

the other one consisting of those carrying the derived allele 0. The size of the smaller

group represents Ω̂1. We can calculate the theoretically expected estimated Ω̂∗1 when

only one segregating site is used for the cluster estimation. Namely, in this scenario

Ω̂∗1 is equivalent to the minor allele frequency in the sample in each run. By means

of the folded SFS (see equation (2.7)), it follows that

E[Ω̂∗1 |(1 segregating site)] =

bn/2c
∑

i=1
i ·
( 1

i +
1

n−i

)
an−1

,

where n is the sample size and an−1 =
n−1
∑

i=1

1
i is the (n− 1)-th harmonic number.

For n=200, E[Ω̂∗1 |1 ss] ≈ 0.23. We obtain a similar value from simulated data (≈
0.21), (see table in FIGURE 3.7). However, according to equation (3.1) it holds that

E[Ω∗1 ] = 1/2, hence on average Ω̂∗1 is underestimated when using 1 segregating site.

Next, we will increase the number of segregating sites by one. Based on the same

idea as before, the expected Ω̂∗1 estimated given two segregating sites can be analyt-

ically calculated by means of the folded SFS for two neutral sites.

For the moment, let k be the number of derived alleles at locus one and l the num-

ber of derived alleles at locus two, and let the joint two-SFS of two bi-allelic sites be

defined as ξk,l for the sample. One has to be aware of two different cases: the nested

case, which is when there are chromosomes carrying the two mutations, and the dis-

joint case, when the two mutations are only present in different chromosomes (see

∗The original R-script was written by a former Master student S. Bhandari from our lab. Since
then, we have performed several modifications and changes to that R-script to meet our requirements.
Key differences are:

• If the allocation to one of the two groups is not clearly resolvable, we randomly assign the
sequences to one of the two clusters with equal probability.

• Monomorphic sites were excluded (also with regards to Ω2 and Ω3 (for determining T3 later)).

• A detailed assignment of each cluster is given in the output file.

• A window needs to contain at least a given number of SNPs, otherwise it will be extended by
1kb.
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FIGURE 3.6.) In the nested case, the haplotypes either carrying the derived version

a) ξN
1,3: b) ξD

1,3:

–0–0– –0–1–
–0–1– –0–1–
–1–1– –0–1–
–0–0– –0–0–
–0–1– –1–0–

FIGURE 3.6: Example of a nested (a) and a disjoint (b) case in a two-locus model, for n = 5.
Each line represents a chromosome, a 0 indicates that the chromosome has the ancestral
allele at that locus, a 1 the derived allele. In both cases, it holds that k = 1 and l = 3.

at both loci or those carrying the ancestral allele at both loci will form the centroidal

sequences for the two clusters, since these two differ the most from each other (they

are different at both loci). Haplotypes carrying a derived allele at one locus and an

ancestral allele at the other locus are equidistant from both centroidal sequences,

meaning that they will be randomly assigned to one of the two clusters. In the dis-

joint case, haplotypes carrying both mutations are not existent. Here, haplotypes

with the derived allele at the first locus and an ancestral allele at the second lo-

cus and those haplotypes, which are carrying the opposite combination, will be the

centroids of the two clusters. Haplotypes with the ancestral allele at both loci are

randomly assigned to one of the two clusters.

The probability of observing k derived alleles at locus one and l derived alleles at

locus two, which we define as P[ξk,l ], is the sum of the nested component P[ξN
k,l ] and

the disjoint P[ξD
k,l ]. In (Ferretti et al., 2018) the respective probabilities were given,

where the authors also elaborately provide the derivations of the following equa-

tions

P[ξN
k,l ] =


βn(k)−βn(k+1)

2 for k < l
βn(k)

2 for k = l
βn(l)−βn(l+1)

2 for k > l

P[ξD
k,l ] =



(
1
kl −

βn(k)−βn(k+1)+βn(l)−βn(l+1)
2

)
2−δk,l

2 for k + l < n(
an−ak
n−k + an−al

n−l −
βn(k)+βn(l)

2

)
2−δk,l

2 for k + l = n

0 for k + l > n

with

βn(i) =
2n

(n− i + 1)(n− i)
(an+1 − ai)−

2
n− i

.

That was the unfolded SFS. Now, we will again turn our focus to the folded SFS. Let

k be the number of the minor allele at locus one and l the number of the minor allele
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at locus two. For k < n/2 and l > n/2, or k > n/2 and l < n/2, the classification of

being nested or disjoint will be swapped, when k < n/2 and l < n/2, or k > n/2 and

l > n/2, the classification remains unchanged. Taking this into account, we can now

write down the theoretically expected estimated value Ω̂∗1 given two segregating

sites. This is calculated using following equation(s):

E[Ω̂∗1 |(2 segregating sites)] = E[ξk,l ] = E[ξN
k,l ] + E[ξD

k,l ],

where

E[ξN
k,l ] =

n/2

∑
k=1

n/2

∑
l=1

(
min{k, l, (n−max{k, l})}+ |k− l|

2

)
· P[ξN

k,l ]

+

(
min{(n− k), (n− l), (n−max{n− k, n− l})}

+
|(n− k)− (n− l)|

2

)
· P[ξN

n−k,n−l ]

+

(
min{n− k, l}+ k− l

2

)
· P[ξD

n−k,l ]

+

(
min{k, n− l}+ l − k

2

)
· P[ξD

k,n−l ]

E[ξD
k,l ] =

n/2

∑
k=1

n/2

∑
l=1

(
min{k, l}+ (n− k− l)

2

)
· P[ξD

k,l ]

+

(
min{(n− k), l, (n−max{n− k, l})}+ |(n− k)− l|

2

)
· P[ξN

n−k,l ]

+

(
min{k, n− l, n−max{k, n− l}}+ |k− (n− l)|

2

)
· P[ξN

k,n−l ]

For n = 200, E[Ω̂∗1 |(2 segregating sites)] ≈ 0.76. This value is in agreement with the

one obtained from simulated data (FIGURE 3.7). Hence, given 2 segregating sites Ω̂∗1
is on average overestimated.

So far, we have seen that the simulated expected Ω̂∗1 agreed quite well with the

theoretical value. For more than two segregating sites, we determine the expecta-

tion E[Ω̂∗1 |(# of segregating sites > 2)] by using simulations, because it becomes too

complex to be calculated explicitly. The result is illustrated in FIGURE 3.7: With an

increase of numbers of segregating sites, the average Ω̂∗1 eventually approaches 0.5

from above, but never reaches this value. The latter can be explained by the fairly

conservative cluster method we are using by always giving preference to clusters of

balanced size in not clearly resolvable cases. Moreover, with a minimum number of

10 SNPs the median difference between known Ω1 and estimated Ω̂1 is around 0, as

illustrated in FIGURE 3.8.
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FIGURE 3.7: Average Ω̂∗1 , Ω̂∗2 , Ω̂∗3 out of 1, 000 runs for each scenario, conditioned on the
number of segregating sites used for estimating Ω̂∗1 . Dashed horizontal line indicates E[Ω̂i]
(see (3.2)). For numbers see APPENDIX TABLE A.1
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FIGURE 3.8: Absolute difference between Ω1 and Ω̂1 (y-axis), where Ω̂1 was estimated
using the number of segregating sites shown on the x-axis. Same simulated data used as
before. It can be seen that already with a number of segregating sites of 10, the median is 0.

Recombination events

Too many recombination events within a fragment should be avoided since this

might increase the chance of having confounded tree topologies within one window.

This in turn leads to a distortion of the clusters. To drastically reduce correlation of

coalescent tree topologies along a recombining chromosome, it takes about 15-20
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recombination events (Ferretti, Disanto, and Wiehe, 2013). A sample of size n has

experienced on average 4Ncan−1 recombination events (Hudson and Kaplan, 1985),

where an−1 is the (n− 1)-th harmonic number and c the recombination rate per bp.

This corresponds roughly to 6,400-8,520 bp to for a sample of size n = 200, N = 104,

recombination rate of c = 10−8, since

4 · 104 · 10−8 · length(in bp) · a199
!
= 15

⇒ length(in bp) ≈ 6388. (3.4)

(For 20 recombination events the calculation is similar.) Above 10kb trees are not

strongly correlated anymore. (Correlation based on simulations of the test statistic

T3 with distance is given in APPENDIX FIGURE A.1.)

Window size

Summarising the aforementioned results, we can now conclude the following with

regards to the appropriate window size and SNP number for the estimation of tree

topology:

We have seen that a minimum number of segregating sites is required to get an ac-

ceptable estimation of tree cluster. One segregating site leads on average to under-

estimation, two segregating sites to overestimation. With an increasing number of

segregating sites, the estimated value decreases gradually approximating the theo-

retical expected value of E[Ω∗1 ] = 1/2, though a slight overestimation remains which

is a consequence of the rather conservative cluster method, giving preference to clus-

ters of balanced size when the clusters are not clearly resolvable. Furthermore, too

many recombination events within a fragment should be avoided. This means that

on the one hand, fragment length should not be too large, but on the other hand it

should contain a minimum number of segregating sites. Starting from a minimum

number of ten SNPs the median difference between the known Ω1 and the estimated

Ω̂1 is around 0, as illustrated in FIGURE 3.8. Using equation (2.2), we expect to see

ten SNPs in a magnitude of about ∼ 4,260 bp window length, assuming a sample

of size n = 200, N = 104, and a mutation rate of µ = 10−8 per bp. Summarising

the results, we suggest to estimate tree topology by using a window size of 5,000 bp

with a minimum of ten SNPs. If the latter condition was not fulfilled, we increased

the window size by 1,000 bp. The maximum window size was set to 10,000 bp (=

10kb). If still less than ten SNPs were within the maximally extended window, we

moved on by a step size of 2,500 bp.

It should be pointed out, that the final choice for fragment length rely on the as-

sumption of a recombination rate of c = 10−8 per bp per generation and µ = 10−8

per bp per generation, which are the (average) estimates for human (Roach et al.,
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2010; Li and Freudenberg, 2009). Therefore, if applying to species with different mu-

tation and recombination rates as assumed above, the parameters must be changed

correspondingly.

3.2.2 Quality of cluster assignment

At the moment, we were only interested in how well the estimated cluster size

agreed with the true one. But did we also classify the sequences into the correct

cluster? Suppose, the true tree topology T is known. Let |T| = n, L1 and R1 be the

left-descendants and right-descendants, respectively, of root ν1, and let L̂1 and R̂1

be the left-descendants and right-descendants of the estimated version of T. Fur-

thermore, let Ω = Ω1 = min{|L1|, |R1|} and Ω̂ = Ω̂1 = min{|L̂1|, |R̂1|}. W.l.o.g.

Ω = |L1| and Ω̂ = |L̂1|, and let in the following the term maximum overlap refer to

the maximum total number of sequences classified into the correct clusters (left and

right). For instance, suppose Ω = Ω̂ and all sequences belonging to subset L1 are

correctly assigned to subset L̂1, which implies that all sequences in cluster R̂1 are

also assigned correctly. In this case, the maximum overlap is equal to the sample size

n, since all n sequences are classified correctly to the left and to the right cluster,

which represents the optimal case. It is also possible, that some Ω− k sequences are

assigned to the ’the wrong’ group, namely to R̂1. In this case, the maximum overlap

would be max{(|L1 ∩ L̂1|+ |R1 ∩ R̂1|), |L1 ∩ R̂1|+ |R1 ∩ L̂1|)}.
Suppose |L1 ∩ L̂1| = k and |R1 ∩ R̂1| = n− Ω̂− (Ω− k), then the size of the overlap

is n− (Ω̂ + Ω− 2k) (see FIGURE 3.9, A). Otherwise, if left and right are ’swapped’,

the overlap is Ω̂ + Ω − 2k (see FIGURE 3.9, B). Hence, the maximum overlap is the

maximum of these two numbers:

n− (Ω̂ + Ω− 2k) or (Ω̂ + Ω− 2k).

As a benchmark for the quality of our clustering method, we want to determine the

expected maximum overlap we get by chance, given Ω and Ω̂. We assume that k

follows a hypergeometric distribution. Hence

P[k|Ω, Ω̂] =
(Ω

k ) · (
n−Ω
Ω̂−k)

(n
Ω̂)

.

Then, the expected maximum overlap, conditioned on Ω and Ω̂, is

E[overlaptotal|Ω, Ω̂] =
Ω̂

∑
k=0

max{n− (Ω̂ + Ω− 2k), (Ω̂ + Ω− 2k)} ·
(Ω

k ) · (
n−Ω
Ω̂−k)

(n
Ω̂)

.

(3.5)

Based on equation (3.5), we can calculate the expected maximum overlap, conditioned

on Ω and Ω̂, if we assign the sequences randomly.
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FIGURE 3.9: The two stripes at the top of the picture graphically represents the ’true’ cluster
and the ’estimated’ cluster of a set of size n. The Ω-cluster is further divided into two
clusters: the yellow one consisting of k sequences, and the black one consisting of Ω− k
sequences. In this example here, Ω̂ > Ω (analogous for other cases). To get the overlap of
correctly assigned sequences, there are two options (since ’left’ and ’right’ are
interchangeable here): A: |L1 ∩ L̂1|+ |R1 ∩ R̂1| or B: |L1 ∩ R̂1|+ |R1 ∩ L̂1|. The maximum
overlap is the maximum of these two.

We estimate tree topologies for 200,000 samples of size n = 200 (simulated by ms)

by using 10 SNPs. We then calculate the average maximum overlap conditioned on Ω

and Ω̂. We compare this with the expected values calculated using equation (3.5).

The result is demonstrated in FIGURE 3.10.

It can be clearly seen, if the estimation of Ω is correct ( Ω = Ω̂) our clustering ap-

proach performs very well in assigning all n = 200 sequences into the correct cluster,

for all Ω = Ω̂’s. That this is not just a random result, can be seen in particular with

increasing Ω. But if Ω 6= Ω̂, then the quality of the cluster assignment drops quite

fast, and is only slightly better than random assignment in extreme cases. Hence,

to answer the proposed question from the beginning of this section, it strongly de-

pends on how well we estimate Ω. If Ω = Ω̂, then the agreement of the assignments

is astonishingly good.
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FIGURE 3.10: A: Average maximum overlap of sequences for sample size n = 200,
conditioned on Ω and Ω̂. If Ω = Ω̂, sequences are also assigned into the correct cluster. B:
Maximum overlap if sequences are randomly assigned into one of the two clusters, given
cluster size. C: Difference between observed overlap and expected overlap.

3.3 Robustness to demographic events

3.3.1 Bottleneck events

Distinguishing genomic patterns left by the action of evolutionary forces from those

caused by demography has always been challenging, since both events can lead to

a reduction in diversity and leave similar footprints behind. Nevertheless, as was

already remarked by Li (2011), varying population size does not have an effect on

tree topology and hence statistical tests based on tree topology are more robust with

respect to this kind of demographic events. This statement is also in accordance with

our results tested on simulated data for three different scenarios: neutral, selective

sweep and bottleneck. The parameters are n = 200, N = 104, θ = 103 and r = 103,

where r = 4Nc is the scaled recombination rate. The choice for θ = 103 and r = 103

refer to a chromosome of size 2.5 Mb with a recombination rate of c = 10−8 per bp

and mutation rate µ = 10−8 per bp (l =length (in bp)= 2.5 · 106 bp, then r = 4Nc · l =
103, similarly l = 2.5 · 106 bp, then θ = 4Nµ · l = 103. ). For positive selection, we

assume that the selected site is located in the very middle of the chromosome, where

the strength of selection for the selected allele is given by α = 2Ns = 1000, where s

is the selection coefficient , and τ = 0.0001, which is the time since the completion of

the sweep. For population bottlenecks, we assumed severity 1 and onset 0.01.



36 Chapter 3. Using genealogical tree topology to detect positive selection

Box 3.3.1: Extracting windows from simulated data output.

To cut the sequences from the msms-output in appropriate windows, we used the op-
tion mscut contained in the program package coatli provided by A. Klassmann, which
can e.g. be downloaded on https://sourceforge.net/p/coatli/wiki/Home/ (or
also see (Ferretti et al., 2018)). In general, mscut filters ms-output, and retains only
those segregating sites whose positions fall into a specified interval. For example, the
following command line
msms -ms 5 1 -N 10000 -s 1000 | mscut 0 0.01
gives the output:

11 msms -ms 5 1 -N 10000 -s 1000

12 [null]Window: [0.0000,0.0100[

13

14 //

15 segsites: 10

16 positions: 0.0008 0.0009 0.0015 0.0026 0.0031 0.0068 0.0071

15 0.0076 0.0085 0.0090

17 0110010000

18 0100101000

19 1000000101

10 1001000111

11 1000000101

First, one run of sample of size n = 5, N = 104 for a chromosome containing 1,000

SNPs is generated. The positions of the SNPs are given on a scale of (0, 1) (compare

with 3.4). The command mscut 0 0.01 retains all SNPs located between 0 and 0.01.

The option msfs and ntx contained in the same program package coatli allows the cal-

culation of Tajima’s D. Hereby, msfs first calculates the standard frequency spectrum

out of the output, then ntx computes Tajima’s D value.

The result of the application of the T3-test for each three scenarios is demonstrated

in FIGURE 3.11. When tree topology is estimated based on SNP data, it produces

on average slightly larger T3-values than the true one. This can be explained by

the fairly conservative cluster method we are using in always giving preference to

clusters of balanced size in not clearly resolvable cases. Furthermore, for reasons of

comparison, we also calculated Tajima’s D for each set. In FIGURE 3.11 it can be seen,

when a population has gone through a bottleneck, the T3-test is not affected. When

tree topology is estimated, it even goes in the opposite direction producing rather

positive values. In comparison, Tajima’s D is becoming heavily negative, leading to

false positives under a bottleneck event.

To cut the simulated sequences into fragments and calculate Tajima’s D, we used

the program package coatli provided by A. Klassmann (Ferretti et al., 2018) (see box

3.3.1).

https://sourceforge.net/p/coatli/wiki/Home/
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T3, known tree topology:
pneutral ppositive selection pbottleneck

T3, estimated tree topology:
pneutral ppositive selection pbottleneck

Tajima’s D:
pneutral ppositive selection pbottleneck

FIGURE 3.11: T3-profile calculated from simulated data along a recombining chromosome
for three different scenarios: neutral, positive selection on a selected site located in the
middle of the chromosome, and population bottleneck with severity 1 and onset 0.01. Each
scenario is shown for known T3-values, for estimated T3-values and for reason of
comparison Tajima’s D.

3.3.2 Migration events

Another concern for tree-topology based tests are migration events: When a lineage

migrates from one subpopulation to another, it may not coalesce with any other
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lineages before the most recent common ancestor. Such cases can also cause unbal-

anced tree topologies. We examined sampling from a population divided into two

sub-populations with varying migration rates and varying sampling schemes. Sam-

ples were generated using ms. As previously, parameters were set such that N = 104,

n = 200, µ = 10−8 per nucleotide per generation and recombination rate c = 10−8

per nucleotide per generation.

It holds that n = n1 + n2, where n1 refers to the number of chromosomes sampled

from the first subpopulation and n2 refers to the number of chromosomes sampled

from the second subpopulation. As can be seen in TABLES 3.1 and 3.2, T3 is affected

by the existence of population substructure. When the sampling scheme is heavily

biased (n1 = 195 and n2 = 5) and migration rate is low (4Nm = 0.4 or 4Nm = 0.04),

T3 is quite negative (even compared to the selective sweep scenario) leading to a

high increase of false negatives. When sampling all chromosomes from only one

subpopulation, n1 = 200 and n2 = 0, T3 is quite robust, however when migration is

4Nm = 0.4, T3 seems to be slightly affected (see also APPENDIX FIGURE A.2,A.3 and

A.4). In TABLES 3.1 and 3.2 the values for the neutral (panmictic) scenario and the

selective sweep scenario from the same data from previous section 3.3.1 are given

for reasons of comparison.

4Nm subpopulation sample size average T3-value
(known)

average T3-value
(estimated)

4 n1 = 180 and n2 = 20 -0.0968 0.3281
0.4 n1 = 180 and n2 = 20 -0.4899 -0.1302
0.04 n1 = 180 and n2 = 20 -0.5819 -0.2587
4 n1 = 195 and n2 = 5 -0.1188 0.3219
0.4 n1 = 195 and n2 = 5 -0.6254 -0.1968
0.04 n1 = 195 and n2 = 5 -0.8534 -0.5083
4 n1 = 200 and n2 = 0 -0.1031 0.3367
0.4 n1 = 200 and n2 = 0 -0.3234 0.1111
0.04 n1 = 200 and n2 = 0 -0.0826 0.4688
- neutral scenario (panmictic) 0.0204 0.4376
- sweep scenario (α = 1000) -0.6283 0.0588

TABLE 3.1: Average T3-value (known tree topology and estimated tree topology) for
different scenarios: substructured populations with varying migration rates and varying
sampling schemes, neutral (panmictic) and selective sweep scenario. Average of 1,000 runs.
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4Nm subpopulation sample size average
1%-threshold

(known)

average
1%-threshold

(estimated)
4 n1 = 180 and n2 = 20 -2.3007 -2.0139
0.4 n1 = 180 and n2 = 20 -2.5252 -2.4357
0.04 n1 = 180 and n2 = 20 -2.3747 -2.3309
4 n1 = 195 and n2 = 5 -2.3237 -2.0317
0.4 n1 = 195 and n2 = 5 -2.7142 -2.5266
0.04 n1 = 195 and n2 = 5 -2.6516 -2.5298
4 n1 = 200 and n2 = 0 -2.314 -2.0087
0.4 n1 = 200 and n2 = 0 -2.4877 -2.2841
0.04 n1 = 200 and n2 = 0 -2.3088 -2.0626
- neutral scenario (panmictic) -2.18 -1.88
- sweep scenario (α = 1000) -2.71 -2.5259

TABLE 3.2: Average empirically determined 1%-threshold of T3 (known tree topology and
estimated tree topology) for different scenarios: substructured populations with varying
migration rates and varying sampling schemes, neutral (panmictic) and selective sweep
scenario. Average of 1,000 runs.
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FIGURE 3.12: Cumulative distribution of T3 for each sampling scheme with migration rate
4Nm = 0.4.

3.4 Power of the T3-test

Under neutral assumptions, the probability of observing highly unbalanced tree

shapes is quite low (Kirkpatrick and Slatkin, 1993; Blum and Francois, 2006). How-

ever, like all neutrality tests, the T3-test suffers from false positive results.

To check how many of the identified regions are true positives, we simulated a

chromosome of size 2.5 Mb experiencing a completed selective sweep with vary-

ing strength of selection. As previously, we assumed n = 200, N = 104, mutation

rate per bp µ = 10−8 and a recombination rate per bp c = 10−8. Simulations were

performed with msms as in section 3.3.1, 1,000 runs for each setting. The positively
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selected site was placed in the middle of the chromosome. For each of the 1,000 runs,

we empirically determined the 5% threshold and 1% threshold. Afterwards, when

we found a window with a T3-value below the respective threshold, we recorded

the position of this window. The result is illustrated in FIGURE 3.13 for the known

tree topology: The y-axis represents the counts of how often a window (located on

the x-axis) was significant. As expected, under positive selection we see two peaks

located around the selected site. What can be clearly seen, is that the power of the

T3-test depends on the distance to the selected site (see table 3.3). On average, taking

a 1% threshold, around 78.86% - 86.12% of the windows identified as being signif-

icant were found to be within a distance of 250 kb from the selected site (see table

3.3). However, as just mentioned, it strongly depends on the distance we take into

consideration to determine the actual selected site. Still an average of around 20%

(by a threshold of 1%) falls outside aforementioned region.

Data set threshold average
threshold-

value

max. 250 kb
distant from
selected site

max. 500 kb
distant from
selected site

> 500 kb
distant

α = 500
5% -2.17 70.64% 81.56% 18.44%
1% -2.58 78.86% 86.66% 13.34%

α = 1000
5% -2.45 79.34% 90.3% 9.7%
1% -2.71 85.18% 93.56% 6.44%

α = 2000
5% -2.59 80.23% 92.98% 7.02%
1% -2.76 86.12% 94.84% 5.16%

neutral
5% -1.63 19.60% 39.26% 60.74%
1% -2.18 19.60% 39.06% 60.94%

TABLE 3.3: This table shows where on the chromosome, on average, a window with a
T3-value below the respective threshold was found, with regards to the selected site (in the
neutral case: middle of the chromosome).

Moreover, in FIGURE 3.14 it can be seen, that if we only consider single windows

(regardless of their position from the selected site), the test is not very effective. Sup-

pose, we take a cut-off value of T3 = −2.0, the false positive rate is around 0.019,

however the power is only (maximum) 0.23. In the following we want to investigate

how the T3-test can be improved.
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FIGURE 3.13: Absolute counts of how many times out of 1,000 simulations a specific region,
shown on the x-axis, was referred to as ’being a significant region’. The selected site is
located in the middle of the chromosome.
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FIGURE 3.14: Shown in this figure is the cumulative frequency distribution of the T3 values
for different simulated data sets. For each scenario, we simulated 1000 runs, with
parameter n = 200, N = 104, and recombination rate per bp c = 10−8. For positive
selection, we assume α = 500, α = 1000, α = 2000, respectively.

3.4.1 Corroborate significance

Re-sampling strategy

For the reconstruction of phylogenetic trees, bootstrapping has long become a com-

mon feature to assign confidence to the inferred tree topology (Felsenstein, 1985).

Here, we are concerned with the question whether bootstrapping or related re-sam-

pling techniques can contribute to reducing false positives in our case. Of particular

interest to us is, if unbalanced tree topologies under neutrality have distinguish-

able topological features with regards to their subtree structure compared to unbal-

anced coalescent tree topologies produced by a selective sweep. Hence, the idea
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is to re-construct the genealogy of random subsamples of the original sample, so-

called induced subtrees. The most unbalanced type of tree topology is if Ωi=1, for all

i = 1, ..., n− 1.

FIGURE 3.15: Example of
a caterpillar tree, n = 10.

Such a tree is called a caterpillar tree (e.g. see FIGURE 3.15).

Under the standard neutral model, this tree shape is very

unlikely to appear by chance (Blum and Francois, 2006;

Kirkpatrick and Slatkin, 1993). A large excess of singleton

mutations which is a typical characteristic of a selective

sweep, results in the estimation of a star-like tree which

takes a caterpillar shape when forced to be binary. Cater-

pillar trees and their induced subtrees have been anal-

ysed before (Disanto and Rosenberg, 2016; Kirkpatrick

and Slatkin, 1993), its induced subtrees are also highly un-

balanced. This in turn means that a re-sampling strategy

surely helps to corroborate candidate regions found. However, as it was already

mentioned, the chances to observe such a tree shape in practice is extremely low.

In the following, we tested on simulated data if subtree topologies under neutrality

are significantly distinguishable from subtree topologies under selection. To analyse

this, we subjected the found regions (with a significance level of 0.01 and 0.05, re-

spectively) in the simulated data sets from subsection 3.4 to a re-sampling strategy.

Therefore, independent subsamples of size n′ = 40 were randomly drawn 100 times,

and T3-value was calculated each time. Then for each region, we determined how

many out of the 100 times re-confirmed the candidate region. In the end we reported

those, in which at least 30 out of 100 subsamples re-confirmed the candidate.

The following table shows how many of the regions, which were significant in

the first step using ’whole’ sample (see table 3.3), survived after applying the re-

sampling strategy just explained. As in the section before, we demonstrate this for

the known tree topology.

As can be seen in TABLE 3.4, on average, unbalanced tree topologies under neutral-

ity seem not to have significant distinguishable topological features with regards to

their subtree structure compared to unbalanced coalescent tree topologies produced

by a selective sweep. Since, if it were true, windows with a T3-value below the

threshold found close to the selected site should be re-confirmed at a much higher

rate than those located far away. However, our results presented in TABLE 3.4 could

not confirm this. The reason might be, as mentioned at the beginning of the section,

that a re-sampling strategy is only helpful for extreme cases, like caterpillar trees.

However to observe a caterpillar tree is extremely unlikely in practice. Deeper anal-

ysis is needed concerning ’non-extreme’ cases, which are more common to find.
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Data set
with

threshold average
threshold-

value

max. 250 kb
distant from
selected site

max. 500 kb
distant from
selected site

> 500 kb
distant

α = 500
5% -1.91 63.89% 63.60% 56.98%
1% -2.37 22.57% 21.88 % 9.45%

α = 1000
5% -2.14 52.23% 52.92% 38.45%
1% -2.48 11.36% 11.14 % 2.79%

α = 2000
5% -2.36 30.74% 33.55% 24.44%
1% -2.58 4.02% 4.68% 2.71%

neutral
5% -1.55 74.37% 74.43% 74.14%
1% -2.04 45.17% 46.24% 45.98%

TABLE 3.4: This table shows, how many out of the previously significant regions 3.3 were
confirmed after the re-sampling strategy.

Based on our simulation results, and the long running time and large memory needed

for this strategy, we then focused on a different approach.

Log likelihood ratio test approach: The LRT3 -test

While a beneficial mutation increases in frequency and is getting fixed in the popu-

lation, linked neutral variants also increase in frequency, sweeping out the diversity

around the selected site. As the distance from the selected site grows, recombina-

tion events will allow linked neutral sites to recombine away. However, the level

of genomic variation is maintained over a longer chromosomal distance around the

selected site than under neutrality; the basis used for haplotype-frequency based

neutrality tests, e.g. (Sabeti et al., 2002). Linkage is elevated in regions close to a

selected site, recombination events are more rare. That in turn also means that ge-

nealogical tree topology should be maintained over a longer chromosomal distance.

The probability of observing unbalanced tree topologies in multiple consecutive re-

gions is higher for selected sites than under neutrality. Therefore, we asked: When a

candidate region was found on the chromosome, that is for this region its T3-value is

below a previously determined threshold q, how likely is it that also for the follow-

ing kl flanking regions to the left and kr flanking regions to the right, the respective

T3-values of these flanking regions are also below q?

In case of positive selection, the probability that T3-values are also below q should

be higher (compared to the neutral case) for kl = 1 and kr = 1 (the immediate neigh-

bours) and decrease slowly (compared to the neutral case) with growing distance to

the ’focal’ region which is the region where we start from.

Hence, the idea is to take not only the T3-value of one window, but also the sur-

rounding ones into account and to construct a test statistic based on the concept of

likelihood ratio tests.

Likelihood ratio tests give an idea about how many times less likely the data are
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seen under a null model H0 compared to an alternative model H1. Here we have

H0 = neutral evolution

H1 = positive selection.

To construct the likelihoods P̂(·|H0) and P̂(·|H1), we used our previously simulated

data (generated under the neutral scenario and generated under the selective sweep

scenario, assuming α = 1000) and proceeded as follows:

1. Determine the 1% threshold value from the simulated data under the null hy-

pothesis, namely under the neutral scenario.

2. Start screening the data set from left to right (along the chromosome):

When a significant region is found (T3-value is below the 1% threshold deter-

mined in 1.) record this region (in the following we will refer to this region as

the ’focal region’), and inspect adjacent regions to the left and to the right.

Record whether the kl/r-th neighbour window from the focal region has a T3-

value below the 1% threshold or not. (Note: kl/r = 1, ..., ml/r, where , ml/r is

the number of consecutive windows investigated to the left and to the right

starting from the focal region. The index l and r stand for “left” and “right”

side, respectively. See also FIGURE 3.16).

3. Repeat 2. until the end of the chromosome is reached.

4. Calculate the average of how often a T3-value below the 1% threshold will

be found with distance kl/r. In the end, obtain a probability distribution of

finding another region with a T3-value below the 1% threshold with respect to

the distance of the focal region.

Repeat with simulated data under the alternative hypothesis, namely under the se-

lective sweep scenario.

The construction steps were performed for 1,000 runs of simulated data under neu-

tral assumptions and simulated data under the selective sweep scenario, which we

generated in section 3.3∗

∗As before samples were generated with msms. A chromosome of length 2.5 Mb was simulated,
mutation and recombination rate as before. The command for the selective sweep scenario was:
ms 200 1000 -N 10000 -t 1000 -r 1000 500 -T -SAA 1000 -SAa 500 -SF 1e-4 -Sp 0.5. 1 ≤ kl/r ≤ 250 and
each fragment stands for a window of size 5 kb.
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FIGURE 3.16: A simple visualization of step 2. The black line indicates a chromosome,
which was divided into 501 fragments, and the red/blue lines indicate the
fragments/regions of the chromosome, which a T3-value is referred to. The red region
indicates a region, where a T3-value under the given threshold was found, suppose it was
found in the very middle of the chromosome, thus kl/r = 1, ..., 250 for both left and right
side from the focal region.

FIGURE 3.17 illustrates the previously computed conditional probabilities. As we

can see, it is more likely to observe unbalanced trees in multiple adjacent windows

under the selective sweep scenario than under neutrality. (Under neutrality, the

probability is almost 0). In the following, we worked with the probabilities calcu-

lated for the estimated tree topologies.
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FIGURE 3.17: Probability of finding another highly unbalanced tree at window distance x,
given that one was found at x = 0.

We defined (pn1, ..., pni, ..., pn250) as the probabilities that, given a window with T3

below the threshold was found, that neighbour window i from the focal window

also has T3 below the threshold under neutrality, and analogue for psi for the selec-

tive sweep scenario.

With this background, we composed a test statistic based on likelihood ratio tests.

Each of these two models was separately fitted to the data and the log-likelihood
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was recorded, which we defined as LRT3 , and is given by the following equation:

LRT3 = −2 · ln
(

P̂(data|H0)

P̂(data|H1)

)

= −2 · ln


kl/r

∏
i=1

p∗ni

kl/r

∏
i=1

p∗si

 (3.6)

Hereby, p∗.i = p.i, if the T3-value in window i is below the threshold in the observed

data, otherwise p∗.i = (1− p.i).

Further on, we generated new simulation data, again 1,000 runs under neutral as-

sumptions and 1,000 runs under assumptions of positive selection, using the same

parameters as before. These were our test data sets.

We screened the new neutral data set and the new selective sweep data set sepa-

rately. When a ’focal window’ was found, we looked, if procurable, 100 adjacent

regions to the left and to the right from the focal region, calculated the likelihood of

observing these data under neutrality and under positive selection by means of the

previously established probability distributions, afterwards we calculated the log

likelihood ratio LRT3 with equation (3.6). For an example work-flow see box 3.4.1.
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FIGURE 3.18: The picture on the left side illustrates the cumulative distribution of LRT3 and
on the right side the density plot of LRT3 for the neutral scenario (blue) and for the selective
sweep scenario (red), for the estimated tree topology. For the neutral case, LRT3 ≥ 0 for
2.26%. For the selective sweep scenario, LRT3 ≥ 0 for 94.98%. To reduce the false positive
rate, we set the threshold of LRT3 at 15 (dashed red line). For the neutral scenario LRT3 ≥ 15
holds for 0.0007%, for the sweep case that holds for 88.41%.

The result is illustrated in FIGURE 3.18.

We empirically determined the power of this test, and found that by setting the

threshold of LRT3 to 0, we get a false positive rate of 2.26%, and a power of 94.98%.
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To reduce the false positive rate, we decided to set the threshold-score to 15. In

such way, we could reduce the false positive rate to 0.0007%, but at price of reduced

power (88.41 %).
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Box 3.4.1: Example of calculating LRT3−score.

In the following table the probabilities that the kl/r-th neighbouring window (with kl/r=1,...,5)

from the focal region has a T3-value below the empirical determined 1% threshold (:= q1%)

are given (estimated tree topology.):

kl/r -th neighbour window Probability under Probability under

from focal region neutral scenario sweep scenario

1 0.0398992 (=: pn1) 0.228805 (=: ps1)

2 0.0232045 (=: pn2) 0.203321 (=: ps2)

3 0.0162747 (=: pn3) 0.18632 (=: ps3)

4 0.0128097 (=: pn4) 0.174434 (=: ps4)

5 0.0153297 (=: pn5) 0.164617 (=: ps5)

Suppose, we focus on two windows located at different chromosomal positions, in the

following labelled as focal window A and B respectively, where a T3-value under threshold

was found. We now look at 5 adjacent windows to the left and 5 adjacent windows to the

right of the focal window and record each time whether the respective T3-value was below

the empirically determined 1% threshold given by q1% or not:

← to the left to the right→
kl/r -th neighbour window

5 4 3 2 1
focal window

1 2 3 4 5

A: T3 ≤ q1% ? 7 3 3 3 3 3 3 3 3 7 3

B: T3 ≤ q1% ? 7 7 7 7 7 3 7 7 7 7 7

3= “true” 7= “false”

By multiplying the probabilities given in the table above we get:

Probability to observe combination around focal window A under neutral scenario

= (1− pn5)pn4 pn3 pn2 pn1 pn1 pn2 pn3(1− pn4)pn5

= 4.33374e− 14

Probability to observe combination around focal window A under sweep scenario

= (1− ps5)ps4 ps3 ps2 ps1 ps1 ps2 ps3(1− ps4)ps5

= 1.48785e− 06

Probability to observe combination around focal window B under neutral scenario

= (1− pn5)(1− pn4)(1− pn3)(1− pn2)(1− pn1)(1− pn1)(1− pn2)(1− pn3)(1− pn4)(1− pn5)

= 0.804215

Probability to observe combination around focal window B under sweep scenario

= (1− ps5)(1− ps4)(1− ps3)(1− ps2)(1− ps1)(1− ps1)(1− ps2)(1− ps3)(1− ps4)(1− ps5)

= 0.118871

With equation (3.6), it follows

LRT3 -score of A = 34.7032
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LRT3 -score of B = −3.82366 .

3.4.2 LRT3-test and migration events

In section 3.3.2, we have seen that substructured population and low migration rate

affects the T3-test. Although the LRT3-test is also affected by migration events, it still

performs better than the T3-test. For instance, when sampling all n chromosomes

from only one subpopulation, n1 = 200 and n2 = 0, and by setting a stricter thresh-

old, e.g. LRT3 = 35, the false negative rate when migration rate 4Nm = 0.4 (which

was the case influencing the T3-test most) is only around 0.03, whilst LRT3 has still a

high power rate (around 0.75).
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FIGURE 3.19: On the left side: cumulative distribution of LRT3 . On the right side: Density
plot of LRT3 . Estimated tree topology.

The distributions for case (n1 = 180 and n2 = 20) and (n1 = 195 and n2 = 5) are

given in the APPENDIX FIGURE A.5 and A.6.

3.5 Side note on time point in detection of selective sweep

Thus far, when talking about ’selective sweeps’, we referred this term to a ’com-

pleted’ hard sweep, that is, when the advantageous mutation arises at some time

point in the population, quickly increases in frequency and subsequently becomes

fixed. However selective sweeps can also be ’incomplete’, they have not reached

fixation yet and are still ongoing. Whilst methods aiming to detect completed se-

lective sweeps can use the concept of the hitch-hiking process introduced by May-

nard Smith and Haigh (1974), see also section 2.3.1, genomic signatures of incom-

plete sweeps are less clear; several studies exist focusing on identifying incomplete
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sweeps (Sabeti et al., 2006; Voight et al., 2006; Ferrer-Admetlla et al., 2014; Vy and

Kim, 2015). Paying attention to this mode of selection is essential: Studies of human

demography have suggested that the dispersal of humans out of Africa started only

50,000 -100,000 years ago, see e.g. (Nielsen et al., 2017). Within this period of time

humans were confronted with new environments and were exposed to constraints

like extreme climate conditions, diseases or volatile food supply. Factors like that

are supposed to lay the foundation for adaptation and selection. Nevertheless, the

amount of time may be too short for new beneficial mutations to occur and to get

fixed, giving rise to the conclusion that complete sweeps may be rare in human his-

tory (Ferrer-Admetlla et al., 2014).

On the other hand, when some generations have already passed since fixation, the

level of diversity around the selected site might have recovered from the sweep

through an influx of new mutations, washing out the erstwhile clear signature of

the sweep and thus hindering its detection.

In this section, we want to analyse, to what extent time point matters in detecting

selective sweep using the LRT3-test.

Therefore, we used simulated data provided by Yichen Zheng (Y. Zheng, unpub-

lished data, 2018): The data were generated with a customised forward-in-time al-

gorithm. The parameters were set in such way that a DNA sequence of length 600kb

was simulated where the mutation rate was µ = 10−8 per bp per generation, the re-

combination rate was c = 10−8 per bp per generation, selection coefficient s = 0.02

and population size N = 104. In total, 100 runs were generated and evolved until

5,000 generations after the fixation time of the selected allele. During one run, twelve

so-called ’snapshots’ of the genotypes of each sequence were recorded. These ’snap-

shots’ were performed at following time points: when the frequency of the selected

allele reached 20%, 40%, 60%, 80%, 99.5% fixation, then 1,000, 2,000, 3,000, 4,000, and

5,000 generations after the selected allele reached 99.5%. On average, out of the 100

runs, it took 269 generations for the selected allele to reach a frequency of 20%, 317

generations to reach a frequency of 40%, 358 generations to reach a frequency of 60%,

407 generations to reach a frequency of 80%, 595 generations to reach a frequency of

99.5% and 1,103 generations to get fixed in the population. From each population

snapshot 50 random samples were taken.

First, we determined the T3-values for the twelve data sets in the same manner as

before: With a sliding window approach of window size 5kb and step size 2.5kb, we

estimated the respective tree topology for each window. If the window contained

less than 10 SNPs, we increased the window by 1kb, however the total window size

was not to exceed 10 kb. The result of the T3-values is illustrated in FIGURE 3.20.

Interestingly, the most extreme T3-value was obtained when the frequency of the se-

lected site reached 80%. If the frequency of the selected site increased, and finally
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got fixed, the signal seemed not to be striking. The sparseness of data in the re-

gion around the selected site in cases, when the selected allele reached a frequency

of 99.5% (which happened on average after 595 generations) until 1,000 generations

later when it was fixed, can be attributed to the strong reduction of polymorphism

data around the selected site, and therefore no tree can be estimated here.

The boxplots in FIGURE 3.20 indicate the strength of signal depends on time. The

strongest signal seems to occur when the selected site has reached a frequency of

80%, thus when the sweep is yet incomplete. But with regards to several recent

studies claiming that complete sweeps are rare and incomplete sweeps are domi-

nant, this might be a benefit of the test statistic T3. Note the rather rapid increase

from 60% to 80% and the rapid decrease after fixation.

Further on, we applied the LRT3-test on these 12 data sets. The result is illustrated in

FIGURE 3.21 and FIGURE 3.22. The most significant LRT3-score can be found when

the selected site reached a frequency of 80%, followed by the two scenarios when

99.5% was reached and when it was fixed in the population. The signal increases

quite fast within generation 358 (60%) and generation 407 (80%), and starts decreas-

ing after the fixation. Setting the threshold score for LRT3 at 15, the time, when the

sweep can be ’reasonably well’ detected, starts approximately when the frequency

of selected allele is between 60-80% (∼ generation 368) and last approximately to 400

generations after fixation (∼ generation 1502). This gives a time interval of ∼ 1134

generations (see FIGURE 3.21), in which the sweep can be well detected.

We conclude that time point matters with regards to detecting selective sweep. When

using T3-based statistics the strongest signal seems to be when the selected site has

reached a frequency of 80%. When applying the LRT3-test, the result was confirmed.

Thus, according to this simulation results, our test seems to be applicable not only

to recently completed sweeps.

Note that in previous sections, we generated data in such a way that the sweep was

already fixed in the population.
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Neutral 20% (avg. of 269 Generations) 40% (avg. of 317 Generations)

60% (avg. of 358 Generations) 80% (avg. of 407 Generations) 99.5% (avg. of 595 Generations)

Fixed (avg. of 1103 Generations) 1595 Generations 2595 GenerationsGenera

3595 Generations 4595 Generations 5595 Generations

FIGURE 3.20: Distribution of the T3-values along the 600kb DNA sequence for each twelve
different stages explained in the text. The selected site is positioned at chromosomal
position 100 kb. The strongest signal seems to be when the selected site has reached a
frequency of 80%. The sparseness of data in the region around the selected site in
generations 595 (on average) to 1,595 (on average) can be attributed to the strong reduction
of polymorphism data around the selected site, and thus we lack of data.
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FIGURE 3.21: Mean LRT3 -values of the 12 data sets, mentioned in the text. It can be seen
that the most significant LRT3 -score is found when the selected site has reached frequency
of 80%, followed by when it has reached 99.5% and then when it was fixed in the
population. Dashed black (horizontal) line indicates LRT3=15, which is the threshold score,
see section 3.4.1. Dashed gray (vertical) lines indicates time interval when the sweep is
detectable with LRT3 ≥15.
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Chapter 4

Application to experimental data

The field of DNA sequencing has been constantly evolving for decades, increasingly

becoming both more efficient and more affordable. This has resulted in the gen-

eration of massive datasets for a wide spectrum of organisms, including human.

The availability of these new data has clearly contributed to recent fundamental ad-

vances in population genetics: new models have been designed or existing mod-

els have been re-designed, simulation parameters can be chosen more plausibly,

genome variation can be reconciled with population histories of admixture, migra-

tion or bottlenecks, and genome-wide scans are performed for finding signatures

left by natural evolutionary forces leading to a deeper mechanistic understanding of

how populations evolve.

In this chapter we show the application of the LRT3-Test to experimental data. To

this end, we performed whole genome screens using human data (phase 3 dataset)

from the 1,000 genomes project (Auton et al., 2015). We aimed at identifying new

candidate regions which underwent selective sweeps. Furthermore, we expected to

confirm many of the previously proposed candidates as well. We took a deeper look

at biological functions for potential candidate genes from our ’top’ regions to figure

out what benefits selection on these genes may have brought along for their carriers.

4.1 The 1,000 Human Genomes Project

The first international effort to map and sequence all genes in the human genome

was initiated in 1990 by the Human Genome Project (HGP). However, at that time

sequencing the human genome was not only very time consuming, but also very ex-

pensive: It took approximately 13 years and $ 2.7 billion to complete the project see:

All About the Human Genome Project. For instance in comparison to that, in February

2018 a team from the Rady Children’s Institute for Genomic Medicine was awarded
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with the GUINNESS WORLD RECORDTM for sequencing a child’s genome within

19.5 hours (see: New GUINNESS WORLD RECORDSTM Title Set for Fastest Genetic

Diagnosis). Although this is an extreme example (since the team got assistance from

several sequencing companies) it shows what is possible today.

The focus of the 1,000 human genomes project was to create a detailed catalogue

of human genetic variation and genotype data from populations all over the world

(http://www.internationalgenome.org/). Therefore, more than 1,000 genomes of

humans from different ethnic groups were collected. Advances in sequencing tech-

nologies allowed the project to be completed much faster than anticipated with less

cost. The initial dataset of genomic sequences from 1,092 individuals belonging to

14 populations (also known as the phase 1 dataset) was produced in just four years,

from 2008 to 2012 (Abecasis et al., 2012). The final phase of the project (phase 3) was

announced in 2015 with a total of 2,504 sequenced human genomes from 26 popu-

lations across 5 continents (Auton et al., 2015) (table 4.1). The data include almost

90 million variants in the form of single nucleotide variants, insertions/deletions,

and structural variants (source from http://www.internationalgenome.org/, last

visited in August 2018).

FIGURE 4.1: Worldwide locations of the 26 population samples from 1,000 genomes project,
final phase. Picture from http://www.internationalgenome.org/.
Yellow: African; Red: Admixed American; Green: East Asian; Blue: European; Purple:
South Asian.

4.1.1 Examples of known recent human adaptations

The human genome consists of more than 3 billion nucleotide base pairs across 23

pairs of chromosomes (22 pairs of autosomes and one pair of sex chromosomes).

There are an estimated 19,000-20,000 protein-coding genes in the human genome

http://www.internationalgenome.org/
http://www.internationalgenome.org/
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Population Population Description Super-Population Individuals
ACB African Caribbean in Barbados AFR 96
ASW Americans of African Ancestry in

Southwest USA
AFR 61

ESN Esan in Nigeria AFR 99
GWD Gambian in Western Divisions in the

Gambia
AFR 113

LWK Luhya in Webuye, Kenya AFR 99
MSL Mende in Sierra Leone AFR 85
YRI Yoruba in Ibadan, Nigeria AFR 108
CDX Chinese Dai in Xishuangbanna, China EAS 93
CHB Han Chinese in Beijing, China EAS 103
CHS Southern Han Chinese, China EAS 105
JPT Japanese in Tokyo, Japan EAS 104
KHV Kinh in Ho Chi Minh City, Vietnam EAS 99
CEU Utah Residents (CEPH) with Northern

and Western European Ancestry
EUR 99

FIN Finnish in Finland EUR 99
GBR British in England and Scotland EUR 91
IBS Iberian Population in Spain EUR 107
TSI Toscani in Italia EUR 107
BEB Bengali from Bangladesh SAS 86
GIH Gujarati Indian from Houston, Texas SAS 103
ITU Indian Telugu from the UK SAS 102
PJL Punjabi from Lahore, Pakistan SAS 96
STU Sri Lankan Tamil from the UK SAS 102
MXL Mexican Ancestry from Los Angeles

USA
AMR 64

PUR Puerto Ricans from Puerto Rico AMR 104
CLM Colombians from Medellin, Colombia AMR 94
PEL Peruvians from Lima, Peru AMR 85

TABLE 4.1: Population samples from the final phase (phase 3) of the 1,000 genomes project.
There are 26 population samples in the whole dataset, but it can also be divided into five
so-called ’superpopulations’: African (AFR), Admixed American (AMR), East Asian (EAS),
European (EUR), South Asian (SAS). Locations illustrated on a world map can be seen in
FIGURE 4.1.

(Ezkurdia et al., 2014). The protein-coding sequences account for only a very small

fraction of the genome, though. About 98% of the human genome consists of trans-

posons and non-protein-coding sequences, such as non-coding RNA genes, regu-

latory DNA sequences, introns or sequences for which no function has been deter-

mined yet (Lander et al., 2001).

Despite enormous progress since the first human was sequenced, many things are

still unknown with regards to the evolution of the human genome. Furthermore,

there is much disagreement about the mode, strength and rate of selective sweeps

in humans. Identifying loci which underwent recent selective sweeps is difficult

because the traces are typically obscured by other evolutionary and demographic

forces, e.g. genetic drift or population sub-structuring. It has been proposed that

classical selective sweeps are rare in human populations (Hernandez et al., 2011). If
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at all, then the majority are incomplete sweeps, soft sweeps (selection on standing

variation), or selection on polygenic traits.

However, we do have evidence of differential adaptation of various traits, often asso-

ciated with the human ancestors successfully establishing (sub)populations through-

out the world. Modern humans are assumed to have spread from Africa around

50,000-100,000 years ago (Nielsen et al., 2017; Templeton, 2002), invading a variety

of habitats and getting exposed to new environments. Therefore, they had to strug-

gle with different climatic conditions or the availability of new food sources. The

combination of selective pressure together with random drift left behind population-

specific genetic patterns and phenotypic variations. Below are a few examples of

well-documented adaptations in human populations.

Lactose tolerance

One of the standard examples of a gene to have experienced recent positive selec-

tion is LCT, the gene coding for lactase (lactase-phlorizin hydrolase). Lactase is the

enzyme responsible for the ability to tolerate lactose; variants in the LCT gene influ-

ence whether the ability to digest milk persists into adulthood. Many studies have

focused on this gene and the trait of lactase persistence is found in around 35 % of

adults living in the world today (Itan et al., 2010). In Europeans, lactase persistence

shows quite a strong signal of selection in scans of the entire genome (Bersaglieri

et al., 2004). Outside Europe, lactase persistence is found in parts of Africa, the Mid-

dle East and India (Schlebusch et al., 2013; Enattah et al., 2008; Segurel and Bon,

2017). A particular allele of the LCT gene is associated with lactase persistence in

both European and Indian populations (Gallego Romero et al., 2012). However, in

Africa this phenotype appears to be polygenic instead (Gallego Romero et al., 2012;

Tishkoff et al., 2007). Thus, lactase persistence evolved several times independently

in human evolution in different areas of the world, making it an example of conver-

gent evolution. It is generally thought to be related to the domestication of dairy

cattle, as dairy milk is both a valuable source of nutrients during periods of erratic

food supply and contains high levels of vitamin D, which is a further advantage in

regions with low amount of sunlight, since the production of vitamin D is a UV-

dependent process (Parra, 2007; Wacker and Holick, 2013). In any case, despite the

numerous studies addressing the issue, much uncertainty remains about the origin

of the lactase persistence-associated variants.

High altitude

Another quite well-known example of selection in humans is associated with the

adaptation to high altitude, in particular the Tibetans and the Andeans (Beall, 2000).



4.2. Application of LRT3 -test to human data 59

Compared to the lowlands, mountaintops have less air pressure and lower oxygen

content in the air. The physical and genetic changes observed in the Tibeteans and

Andeans, in comparison to populations living in the lowlands, thus include muta-

tions affecting the regulatory systems of oxygen respiration and it’s transport via

blood circulation. Even during pregnancy, blood flow and oxygen delivery to the

uterus is increased to reduce the risk of having newborns with low birth weight (Ju-

lian, Wilson, and Moore, 2009). Studies suggest that amongst other genes, variants

at the EPAS1 (Endothelial PAS Domain Protein 1) locus are involved in the adaptation

to high altitude (Peng et al., 2017).

Skin colour

Skin colour variation is one more noteworthy example of adaptation leading to

wide-ranging human phenotypic diversity. Whereas dark skin is strongly associ-

ated with protection against UV light, lighter skin is subjected to positive selection

for reasons such as maintaining vitamin D photosynthesis (Parra, 2007). Unfor-

tunately, it is known that multiple different genes acting in concert are involved

for skin (or also hair or eye) pigmentation (Parra, 2007), making it difficult and

very complex to pinpoint the exact causative genes. For instance, according to a

colour genes database, though focusing primarily on mice and last updated in Octo-

ber 2011, (http://www.espcr.org/micemut/), there are 378 candidate loci for colour

genes described in mice and their human and zebrafish homologues, yet apparently

only a few of them have been confirmed to have potentially function-altering poly-

morphisms in humans.

In general, the question is to what extent adaptation has driven evolution and af-

fected patterns of genetic diversity.

4.2 Application of LRT3-test to human data

As previously mentioned, we have applied the LRT3-Test to the human 1,000 genomes

phase 3 data (Auton et al., 2015), which is publicly available and can be down-

loaded from the website ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/

20130502/. The data is stored in the variant call format (VCF) (Danecek et al., 2011).

Each of the 2,504 individuals carries an ID-number. A list of all the samples in the

data set and their population, super population and gender can be found at the same

public source. (Note: Only variants in form of SNP’s were considered for our pur-

poses). For the autosomal chromosomes 1-22, for all individuals the variant calls are

diploid and genotypes are phased. Thus, here two haplotypes were constructed for

each of the 2,504 individuals, so in total 5,008 haplotypes. However, for the male X

chromosome variant calls were shown as haploid, but not in the pseudoautosomal

http://www.espcr.org/micemut/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
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region (PAR), a part which is common between X and Y chromosome. Here, we

modified the X-chromosome data in such a way that only one haplotype (the actual

X-chromosome) accounted for a male individual, while for females two haplotype

were constructed. This results in a total of 3,775 haplotypes for the X-chromosome.

Y-chromosomes are not included in our analysis.

By using VCFtools (Danecek et al., 2011), a program package designed for working

with VCF files, we could easily separate the individuals with regard to their popu-

lation affiliation and thus store it in 26 separate files, each containing the respective

individual.

We re-designed the output of the files in such a way that we could apply our T3-

calculations from section 3.2.1 (see example box 4.2). We screened all 26 populations

separately by using a sliding window approach across the entire genome.

Box 4.2: Example of formatting a data file

The first table shows an extract of a 1,000 genomes data file. For demon-
stration purposes, only the following columns are shown (respectively from
left to right): the chromosome number, chromosome position/coordinates
on which the variant occurs, the reference SNP ID number, the reference
(ancestral) allele, the alternative (derived) allele, followed by columns rep-
resenting the genotype of the sample at this position (here the individuals
are represented by X1, X2,... etc. ’0’ stands for the reference allele, ’1’ for the
derived allele).
For instance, at chromosome 1 position 14464, individual X3 is heterozygous,
carrying one copy of each of the reference and derived alleles, while individ-
ual X1 is homozygous for the derived allele and individual X2 homozygous
for the reference allele.

CHR POS ID REF ALT X1 X2 X3 X4 ...

1 13110 rs540538026 G A 0|0 1|0 0|0 0|0 ...

1 13116 rs62635286 T G 0|0 1|0 0|0 0|0 ...

1 13118 rs200579949 A G 0|0 1|0 0|0 0|0 ...

1 14464 rs546169444 A T 1|1 0|0 1|0 0|0 ...

1 14599 rs531646671 T A 0|0 0|1 1|0 0|0 ...

1 14604 rs541940975 A G 0|0 0|1 1|0 0|0 ...

1 14930 rs75454623 A G 1|0 0|1 0|1 1|0 ...

1 15211 rs78601809 T G 0|1 0|1 0|1 0|1 ...

1 15820 rs2691315 G T 1|0 0|1 0|1 0|0 ...

1 16949 rs199745162 A C 0|0 0|0 0|1 0|0 ...

1 18643 rs564023708 G A 0|0 0|0 1|0 0|0 ...

We can construct two haplotypes for each individual:
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CHR POS ... X1.A X1.B X2.A X2.B X3.A X3.B X4.A X4.B ...

1 13110 ... 0 0 1 0 0 0 0 0 ...

1 13116 ... 0 0 1 0 0 0 0 0 ...

1 13118 ... 0 0 1 0 0 0 0 0 ...

1 14464 ... 1 1 0 0 1 0 0 0 ...

1 14599 ... 0 0 0 1 1 0 0 0 ...

1 14604 ... 0 0 0 1 1 0 0 0 ...

1 14930 ... 1 0 0 1 0 1 1 0 ...

1 15211 ... 0 1 0 1 0 1 0 1 ...

1 15820 ... 1 0 0 1 0 1 0 0 ...

1 16949 ... 0 0 0 0 0 1 0 0 ...

1 18643 ... 0 0 0 0 1 0 0 0 ...

Rearrangement leads to an output file similar to the msms-output file shown
in line 8-12 in FIGURE 3.4.

X1.A: 00010010100

X1.B: 00010001000

X2.A: 11100000000

X2.B: 00001111100

X3.A: 00011100001

X3.B: 00000011110

X4.A: 00000010000

X4.B: 00000001000

Thus, for position chr1:13110-18643 (= window size of 5533 bp), we have

eight haplotypes consisting of 11 SNPs, from which we can now determine

Ω1, Ω2 and Ω3 to calculate T3, in the same manner as in section 3.2.1.

As mentioned before, we took a window of size 5,000 bp and step size 2,500 bp,

with the additional condition that the fragment needed to contain at least 10 SNPs.

If the latter was not the case, the window size was increased by adding 1,000 bp

until the second condition was fulfilled, but with a maximum total window length

of 10 kb. Monomorphic sites were excluded, since that would have led to disparities

towards balanced trees. For the determination of window size and number of SNPs,

re-consider section 3.2.1. The T3-values were reported for each window as it slides

along the chromosome with a step size of 2,500 bp. The result was converted to BED

(Browser Extensible Data) format for each 26 population separately. BED files are

tab-delimited files with one line for each genomic region. The lines of a BED file

have three required fields and additional optional fields with tabs as delimiters. The
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first three (required) BED fields are: chromosome, starting position of the region

and ending position of the region in the chromosome. In our case the additional

optional fourth field represents the T3-value. Afterwards, we performed the LRT3-

test as described in section 3.4.1.

FIGURE 4.2: Visualisation of sliding window approach. Starting from the beginning of the
chromosome, a T3-value is reported for each window (shown as green line) as it slides along
the chromosome with a step size of half the window size. a) Zoom-in of a small part of
chromosome 2. b) Example of storing the T3-values in BED format, where the first column
contains the chromosome name, the second column the starting position of the window, the
third column the ending position and the fourth column the respective T3-value.

Therefore, we determined the empirical 1% T3-threshold separately for each popu-

lation and each chromosome. We identified all regions with a T3-value under the

respective threshold. These identified regions (= ’focal’ regions) were then subjected

to the LRT3-test: By looking at 100 adjacent windows to the left and to the right side

of the focal region, we recorded for each the respective LRT3-score. By reason of the

previously explained chosen window and step size, the 100 consecutive windows

correspond to approximately 250 kb (Note: Since the window length is extended if

the minimum SNP number is not fulfilled, this size can vary). The complete result of

this screen was also stored in BED format which then can be visualized on the UCSC

Browser https://genome.ucsc.edu/, see FIGURE 4.3.

In the end, we considered those regions as candidate regions, if the LRT3-value was

≥ 15.

https://genome.ucsc.edu/
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FIGURE 4.3: LRT3 -profile and T3-profile along the chromosome for region
chr2:134,571,975-138,568,190 (Visualisation via UCSC Browser
https://genome.ucsc.edu/). Shown are the LRT3 - and T3-profiles for the three
populations: CEU, CHB and YRI, in order from top to bottom.
Positive LRT3 -score is shown in red, negative LRT3 -score is shown in blue.
Negative T3-values are shown in red, positive T3-values in blue. For this area, the
populations CHB and YRI hardly contains LRT3 -scores at all, meaning, hardly found
significant T3-windows, and if, then LRT3 is negative. In contrast to CEU, where two
location spot seem to be significant as it can be seen. On the bottom of this picture, genes
associated to the respective regions are shown.

4.3 Analysis of candidate regions

In the section before, we have screened all 26 populations from the phase 3 release of

the human 1,000 genomes data (Auton et al., 2015) with the LRT3-test. Regions with

LRT3-score ≥ 15 were considered to be a candidate region for having undergone se-

lection. As expected, many of these identified candidate regions were overlapping

https://genome.ucsc.edu/
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FIGURE 4.4: Number of chromosomal regions, that can be considered candidates for recent
selective sweeps, per population. Regions span between 55 kb and 785 kb. More
information about regions per chromosome is given in the APPENDIX table B.1.

(a consequence of the sliding window approach). In all such cases, we merged the

overlapping regions into a single region. Moreover, motivated by the fact, that the

highly unbalanced tree topology is not observed directly but in the vicinity of the se-

lected site, we additionally extended these regions by 25 kb on both sides. Hence, the

resulting final candidate regions span lengths between 55 kb and 785 kb. The total

numbers of regions per population are illustrated in FIGURE 4.4 (also see APPENDIX

B.1).

In general, we found less amount of candidate regions in African populations com-

pared to the rest: We found approximately two times less candidate regions in the

African superpopulation compared to the rest (on average 214 in Africans vs ∼ 400

on average in the others; see FIGURE 4.4, or APPENDIX table B.1 for details on the

numbers). This is consistent with other studies that have found more candidate re-

gions for having undergone selection in non-African populations compared to the

African populations (Kayser, Brauer, and Stoneking, 2003; Williamson et al., 2007;

Campbell and Tishkoff, 2008). A straightforward explanation might be that while

humans dispersed out of Africa 50,000-100,000 years ago (Nielsen et al., 2017; Tem-

pleton, 2002), they were forced to adapt to the new environments they encountered

(Kayser, Brauer, and Stoneking, 2003; Williamson et al., 2007). However, another

possible reason, for swept loci being more identified in non-Africans might be that

neutrality test statistics suffer from the confounding effects of demographic events

(see chapter 2). During the Out-of-Africa migration, humans were accompanied by

bottleneck event(s) (Amos and Hoffman, 2010), a hypothesis mostly studied in the

framework to explain why the African population shows a higher level of diversity

compared to non-African populations (Campbell and Tishkoff, 2008; Rosenberg and
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Kang, 2015).

4.3.1 Identifying candidate genes

To extract genes, we used the biomaRt package in R (Smedley et al., 2015). biomaRt

offers an easy way to extract a list of different attributes, which defines the values

we are interested in. In our case, we retrieved the gene symbols, chromosomal coor-

dinates, the respective gene biotype, (giving us the information of whether the given

transcript is protein-coding or non-coding), and the respective Gene Ontology (GO)

term. We use the coordinates for human genome build hg19 for our data, to which

phase 3 of the 1,000 genomes project is mapped.

In total we found 9,725 genes that can be considered candidate loci for selection in

at least one of the 26 populations. Out of these 9,725, on average 639 are found

in African populations, 1,368 in European populations, 1,217 in East Asian popula-

tions, 1,205 in South Asian populations and 1,081 in American Admixed populations

(see APPENDIX table B.1 for more detail or FIGURE 4.5, A). Furthermore, out of the

9,725 candidate genes 3,956 genes were associated with the biotype „protein-coding“

and the rest with other biotypes. If focusing on protein-coding genes, we found an

average of 278 in African populations, 575 in European populations, 497 in East

Asian populations, 513 in South Asian populations and 455 in American Admixed

populations (see APPENDIX table B.2 for more detail or FIGURE 4.5, B).

 A  B

FIGURE 4.5: Shared and private candidate genes. The different colouring indicates the
different categories given in the legend. Private-selective sweep candidate in one
(super)population. Shared – selective sweep candidate in multiple (super)populations. A:
All genes. B: Only protein-coding genes.
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Superpopulation Average number
of candidate

regions

Average number
of all genes

Average number
of protein-coding

genes
AFR 214 639 278
EUR 422 1,368 575
EAS 417 1,217 497
SAS 400 1,205 513
AMR 348 1,081 455

TABLE 4.2: Overview of average number of candidate regions, average number of all genes
and average number of protein-coding genes per superpopulation.

Furthermore, we recorded if the detected genes were found in one population only

(private), if they were shared in (at least two) populations belonging to the same

superpopulation (private to superpopulation), if they were shared between (at least

two) populations not belonging to the same superpopulation (shared between su-

perpopulation), whereby here we additionally made the distinction between super-

population excluding and including Africa (see FIGURE 4.5). We made the latter dis-

tinction since we were interested if the hypothesis that one of the leading forces driv-

ing positive selection in non-Africans as the Out-of-Africa migration was reflected

in differential patterns and targets concerning the underlying biological function

of the selected genes. For instance, one may expect that non-African populations

share more positively selected genes involved in metabolic pathways as a response

to diverse food source or genetic adaptation as result to diverse climate changes.

These genetic adaptations should not be visible in African populations. However,

in the African populations one may expect to see local adaptations being prevalent,

for instance genetic adaptations providing resistance to the exposure to different

pathogens.

Comparison to previous studies

As already mentioned, many previous studies have focused on the detection of ge-

nomic regions which might have been targeted by positive selection. For this pur-

pose, several different methods have been established (Vitti, Grossman, and Sabeti,

2013). With the rapid development of genome scale population level DNA geno-

typing and sequencing in humans, many studies published gene candidates in the

human genome that were possibly targeted by selection.

In (Li et al., 2014a), the authors made the effort to collect all candidate sweep regions

identified until then, published them and establish a database, called dbPSHP (=

database of recent positive selection across human populations). Intrinsically, the database

consists of over 15,000 loci from either publications attempting to study positively

selected genomic locus and gene related to specific functions, traits or diseases, or
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publications to detect the genome-wide selective signals with different statistical

methods. Since the regions recorded in the database vary widely in terms of size,

we focused on the candidate genes. Taken together and removing multiple recorded

genes, approximately 8,050 unique genes are stored.

Comparing our list of candidate genes with the list in dbPSHP, we confirmed about

1,947 genes, from which 1,853 are protein-coding genes from our list. Since the last

update of dbPSHP was, according to the website http://jjwanglab.org/dbpshp

(status from July 2018) in May 2014, we took another list of candidate genes into

consideration: a list set up by Schrider and Kern, (2017). The authors used a ma-

chine learning approach developed by themselves in a previous paper, called S/HIC

(=Soft/Hard Inference through Classification). Their approach should be ’remarkably

powerful and robust to non-equilibrium demography’ as quoted from Schrider and Kern,

(2017), and allows not only the detection of hard sweeps and soft sweeps, but also

the detection of regions closely linked to hard and soft sweeps. It uses 11 popu-

lation genetic summary statistics (including Tajima’s D, Fay and Wu’s H and also

a number of distinct haplotype based test). If we compared our candidate genes

with the genes found in the SHIC paper (where in total 5,939 candidate genes were

found), we confirmed in total 1,718 genes, from which 840 were coding genes and

878 were non-coding genes. (From these 1,718 genes, 1,253 are not found in dbPSHP,

383 protein-coding and 870 non-coding.)

However, in the SHIC paper six populations (CEU, JPT, GWD, YRI, LWK, PEL) were

analysed, while here we analysed all available 26 populations. If we only took the

six populations, 4,551 genes are left in our list. We therefore conclude that with the

threshold used here, our test is more stringent than the one used in the SHIC paper.

From the aforementioned 4,551 genes we confirmed 912 genes, from which 438 are

protein-coding and 474 are non-coding. If the found genes are additional candidates

for the same population, then we could confirm 668 genes. Here, 318 are protein-

coding and 350 are non-coding.

4.3.2 Analysis of the top candidates

As we have seen in section 4.3, some identified regions ended up to be very large

with a region span between 55 kb and 785 kb. Therefore, one region can contain

multiple candidate genes. To make a clear decision about which gene is the posi-

tively selected one is rather difficult. It has to be noted, that the constituent windows

composing the resulting candidate region mostly possess similar high LRT3 scores,

making it not easier to determine which the actual ’chosen’ region/window is.

In table 4.3, we listed all protein-coding genes associated to regions with very high

http://jjwanglab.org/dbpshp
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LRT3-score (> 200). We only show the maximum LRT3-score related to the given re-

gion. Although here we focus on protein-coding genes, our method can be also ap-

plied to non-coding genes. Generally, the functional role of non-coding genes should

not be underestimated. Their functions range from regulation of gene expression at

the transcriptional and post-transcriptional level to exhibiting histone modification

patterns characteristic of specific functional elements. Recent studies have shown

the important role of non-coding RNA in cancer, e.g. (Huang et al., 2013).

max LRT3 POP Chr Position Size in bp Coding
316.972 ITU 12 44,342,384-44,904,884 562,500 NELL2, TMEM117
276.577 GBR 14 67,183,154-67,930,654 747,500 GPHN, FAM71D, MPP5, ATP6V1D, EIF2S1,

PLEK2, TMEM229B
260.28 FIN 14 67,220,427-67,905,427 685,000 GPHN, FAM71D, MPP5, ATP6V1D, EIF2S1,

PLEK2
259.153 TSI 14 67,213,154-67,928,154 715,000 GPHN, FAM71D, MPP5, ATP6V1D, EIF2S1,

PLEK2 , TMEM229B
247.929 CEU 14 67,220,445-67,897,945 677,500 GPHN, FAM71D, MPP5, ATP6V1D, EIF2S1,

PLEK2
241.559 CHB X 100,985,920-101,448,420 462,500 NXF5, ZMAT1, TCEAL2, TCEAL6, BEX5
239.56 CHB 2 108,905,521-109,650,521 745,000 EDAR, RANBP2, LIMS1, CCDC138, GCC2,

SULT1C2, SULT1C4
238.617 BEB 12 44,307,384-44,927,384 620,000 NELL2, TMEM117
237.469 CHB 15 63,764,703-64,337,203 572,500 HERC1, DAPK2, FBXL22, USP3
233.935 IBS 8 42,643,536-43,378,536 735,000 HGSNAT, POMK, FNTA, HOOK3, CHRNA6,

THAP1, RNF170, RP11-598P20.5
230.4045 GIH 5 43,588,039-44,073,039 485,000 NNT
226.406 CHB 12 44,354,884-44,699,884 345,000 TMEM117
226.39 CDX 4 41,515,167-42,215,167 700,000 LIMCH1, PHOX2B, TMEM33, DCAF4L1,

SLC30A9, BEND4
222.695 CDX 2 108,913,021-109,383,021 470,000 RANBP2, LIMS1, GCC2, SULT1C2, SULT1C4
213.416 ACB 20 20,387,585-20,787,585 400,000 RALGAPA2
211.634 CHB 3 154,167,942-154,822,942 655,000 MME
205.92 MXL 1 100,410,610-100,790,610 380,000 SLC35A3, HIAT1, SASS6, TRMT13, LRRC39,

DBT, RTCA
205.027 CHB 8 10,725,271-11,112,771 387,500 XKR6, AF131215.5
204.738 JPT 10 55,859,211-56,226,711 367,500 PCDH15
203.813 GIH 4 106,462,667-106,815,167 352,500 ARHGEF38, INTS12, GSTCD
203.628 MXL 10 74,926,660-75,406,660 480,000 SYNPO2L, MYOZ1, USP54, PPP3CB, MRPS16,

ANXA7, TTC18, MRPS16, DNAJC9, FAM149B1,
ECD

203.317 FIN 1 51,465,610-52,033,110 567,500 EPS15, TTC39A, RNF11, C1orf185

TABLE 4.3: Protein-coding genes associated to regions with very high LRT3 -score of
(> 200). Only the maximum LRT3 -score related to the respective region is shown. The
indicated chromosomal position represents the extended coordinates of +/-25kb. Gene
names in bold are newly identified candidate loci.

Most of these genes are previously known sweep candidates. Genes we could not

re-find either in the ’dbPSHP-list’ or the list from Schrider and Kern (2017) are in-

dicated in bold letters. These are potentially new candidate genes. A list with gene

names appearing in TABLE 4.3 is provided in the LIST OF ABBREVIATIONS. Although

most of these genes have been previously suggested to be under selection (for a ref-

erence list where each of these genes have been mentioned before see APPENDIX B.2),

the biological function and thus the reason why they should have been selected for

is poorly understood. For instance, the region with the highest LRT3-score is found
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in the South Asia population ITU. It contains two protein coding genes: NELL2 and

TMEM117. NELL2 is also a candidate (although smaller LRT3-score) for: BEB, GIH,

PJL and STU (hence all five South Asian populations), and for the European popula-

tion FIN and for the admixed American populations CLM, MXL and PEL. TMEM117

is a candidate gene for all five South Asia populations, for all five East Asia popu-

lations, for four of five of the European populations (CEU, FIN, GBR and TSI), and

for the admixed American populations CLM, MXL and PEL. Therefore, these two

genes are candidate genes for almost all non-African populations. As for their func-

tion, NELL2 is a neuronal growth factor; it has been shown to be involved in sexual

behaviour and the onset of puberty, at least in rats (Ryu et al., 2011). Interestingly,

in (Ramnitz and Lodish, 2013) the authors state that African American girls enter

puberty earlier than Caucasian and Hispanic girls. The gene TMEM117 on the other

hand is involved in the maintenance of the mitochondrial membrane (Tamaki et al.,

2017).

The second highest LRT3-score is found in the European population GBR; this region

is also a candidate in all other European populations. One possible gene driving se-

lection in this region is GPHN, mutations on which affect the nervous system and/or

behaviour. Diseases that GPHN disruptions might be involved in include hyperek-

plexia (Rees et al., 2003), Alzheimer’s disease, schizophrenia and autism (Lionel et

al., 2013; Hales et al., 2013). Another possible candidate from this region is MPP5,

disruption of which has be associated with cancer and diseases leading to blindness

(Li et al., 2014b; Luo et al., 2011), suggesting a possible connection with eyesight. A

newly suggested candidate gene for this region might be TMEM229B. It is mostly as-

sociated in studies with cancer (Stoletov et al., 2018).The strongest candidate region

appearing in the East Asian population CHB lies on the X chromosome (see TABLE

4.3) and has not been previously identified as a selection candidate by other works.

It contains the protein-coding genes NXF5, ZMAT1, TCEAL2, TCEAL6 and BEX5.

This region is also a candidate region for two other two East Asian populations JPT

(maximum LRT3 = 179.14) and CHS (maximum LRT3 = 80.48). Within this region,

the gene NXF5 in particular has been previously associated with mental retardation,

kidney failure and female infertility (Jun et al., 2001; Esposito et al., 2013; Fortuno

and Labarta, 2014).

A further list of all ’Top Ten per population’ candidate region for each 26 population

is provided in the APPENDIX B.3.

A few other candidate genes present in our ’Top Ten per population’ list, see AP-

PENDIX B.3, piqued our interest due to their functional importance. The EDAR gene

belongs to a region that is a sweep candidate for all five of the East Asian popu-

lations, and in none of the other populations. For four out of the five East Asian
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populations it is even a very strong candidate. An LRT3-profile along this chromo-

some region is demonstrated in FIGURE 4.6. Similar results for EDAR in East Asian

populations have also been reported by other authors (Sabeti et al., 2007; Bryk et al.,

2008; Fujimoto et al., 2008; Pickrell et al., 2009).
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FIGURE 4.6: Strong signal for the EDAR gene region for East Asian populations. Only for
JPT this is not a strong candidate, conversely a rather weak candidate (maximum
LRT3 = 16.87). For comparison reason, LRT3 -profile for population CEU and YRI is given at
the bottom. Shown is the chromosomal position chr2:108,277,201-110,839,554. EDAR is
highlighted. Illustration via https://genome.ucsc.edu/. Note: Only LRT3 -range from −10
to 100 is shown.

The EDAR gene is known to be involved in the development of hair, teeth and sweat

glands (Botchkarev and Fessing, 2005; Kamberov et al., 2013). EDAR is associated

with hair thickness, and the observation that East Asians tend to have thicker hair

https://genome.ucsc.edu/
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than Europeans and Africans, leads to the question of why thicker hair may have

been advantageous. Hypotheses range from a simple sexual selection/mating ad-

vantage to being a by-product of selection on other functions of the gene (Bryk et al.,

2008; Kamberov et al., 2013).

Another noteworthy candidate from our ’Top Ten candidate per population’, see

APPENDIX B.3, is the gene CASK. The region where this belongs to is in the ’Top Ten

candidate per population’-list for three African populations: ACB (LRT3=102.35),

YRI (LRT3=127.87) and LWK (LRT3=90.2757), and moreover is also significant for

further three African populations GWD (LRT3=22.9285), ASW (LRT3=38.3957), ESN

(LRT3= 74.7938)¶. An LRT3-profile along this chromosome region is given in FIGURE

4.8. Although selection on this gene has not received much attention in humans thus

far (although it appears in the list in (Frazer et al., 2007)), CASK has been suggested

to be positively selected in racing pigeons and is implicated in the formation of neu-

romuscular junctions (Gazda et al., 2018). Hence, the authors suggest this gene to be

involved in physical factors contributing to athletic performance.

Another sweep candidate from our list, although from neither of the top lists but

rather medium-high LRT3 score, is gene HERC2. This gene is suggested having un-

dergone selective sweep for the European population CEU (LRT3 = 76.53), GBR

(LRT3 = 50.79) and FIN (LRT3 = 58.68) (for illustration of LRT3-profile along chro-

mosome region see FIGURE 4.7). It is known that the eye colour is a result of mul-

tiple genes interacting together, nevertheless HERC2 is suggested to belong to one

of the key genes being involved for the brown/blue eye colouring. Actually, not

the HERC2 gene itself, but the nearby OCA2 seems to control the eye pigmentation.

Studies have found a region in HERC2 regulating the activity of the OCA2 gene

which in turn is involved in the production of the pigment melanin. A variant of

HERC2 leads to inhibiting OCA2 expression, causing a reduction in the production

of melanin resulting in blue eyes (Eiberg et al., 2008). However, the advantage of

having blue eyes is poorly understood, although there have been speculations that

people with blue eyes might be able to deal better with the lack of light (Sturm and

Duffy, 2012). Or it might simply be a case of sexual selection.

The last example for this section refers to genes, suggested as ’novel’ candidates for

African populations in a very recent study (Mughal and DeGiorgio, 2018): COL8A1,

CMSS1 and FILIP1L. In our analysis, the ’novel’ candidates could be confirmed: We

recover the candidates in (almost) all seven African populations: CMSS1, FILIP1L

for all seven, COL8A1 for six without ASW. For an illustration of the LRT3-profile

along chromosome region see APPENDIX, FIGURE B.2. COL8A1 may be involved in

the development of muscle and has been suggested to be positively selected in other

¶Note: The given LRT3 -score refers to the maximum value in the region
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FIGURE 4.7: LRT3 -profile for region around the HERC2 being significant for CEU, GBR and
FIN. For comparison reason, the other two (Mediterranean) European population TSI and
IBS is shown (note: no signal can be observed at all), one Asian population CHB and one
African population YRI. Shown is the chromosomal position chr15:27,828,393-28,901,088.
HERC2 is highlighted. Illustration via https://genome.ucsc.edu/. Note: Only LRT3 -range
from −10 to 80 is shown.

https://genome.ucsc.edu/
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FIGURE 4.8: LRT3 -profile for the region surrounding gene CASK, which is a (strong)
candidate for almost all African populations. The LRT3 -profile is shown for all seven
African populations, for comparison reason, LRT3 -profile for one European population
CEU and one East Asia population CHB are given. Shown is the chromosomal position
chrX:39,741,793-43,414,683. CASK is highlighted. Illustration via
https://genome.ucsc.edu/. Note: Only LRT3 -range from −10 to 100 is shown.

https://genome.ucsc.edu/
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species (Utsunomiya et al., 2013; Mughal and DeGiorgio, 2018).

Finally, we want to remark that although our test could confirm many previously

known genes, some ’famous’ candidates for selective genes do not appear in our

candidate list, for instance, LCT and the ∼ 39kb-distant MCM6, which contains reg-

ulatory elements for LCT, see e.g. (Hubacek et al., 2017). Both are associated with

lactose tolerance and enables the carrier of beneficial variants the digestion of milk

(see section 4.1.1). However, we do find a rather strong signal from the European

populations CEU (see 4.3) and GBR for a zinc finger gene lying 257 kb away from

LCT and MCM6. This gene - ZRANB3 - was already mentioned in other studies, of-

ten in connection to large candidate regions also containing LCT. In (Ferrer-Admetlla

et al., 2014) it even showed the strongest signal for their haplotype-based statistic

nSL (however for a population from Kenya). We suggest that there are unknown

interactions between ZRANB3 and closely located genes. This hypothesis will be

investigated in more detail in chapter 5.

4.3.3 Gene Ontology Enrichment Analysis of top regions

In this section we were investigating whether some gene sets can be associated with

functional genetic differences among different continents (or to be more precise:

among different superpopulations). Therefore, we performed enrichment analysis

on different gene sets by using Gene Ontology (GO) terms (Ashburner et al., 2000;

Gene Ontology Consortium, 2017). The GO is a bioinformatics project developed

by the Gene Ontology Consortium aiming at providing a set of structured, controlled

vocabularies for community use in annotating genes, gene products and sequences, as cited

from the Gene Ontology Consortium, (2008). GO defines classes which can then be

used to describe gene functions, and how these functions are related to each other.

Furthermore, GO enrichment analysis allows the assignment of biological meaning

to some groups of genes instead of looking at each individually. Generally, GO de-

picts three functional domains:

• Biological process - represents a biological objective or biological phenomena

like limb formation, DNA replication etc.

• Molecular function - describes the activities of a gene product at the molecular

level.

• Cellular component - describes the location of the gene relative to cellular com-

partments and structures.
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To find whether there are some functional sets of genes which can be associated

with genetic differences among populations located in different continents, we con-

duct GO enrichment analysis on different lists of our candidate genes.

The principal idea of the analysis is as follows: Given a background gene set and

a set of interesting genes, after identifying which GO terms are most commonly as-

sociated within the set of interesting genes, ask if this association is significantly

different from what would be expected based on the proportions of genes out of the

total having each attribute (background gene set) and compute a p-value for the ob-

served association (enrichment).

As a standard approach for identifying enriched GO terms the hypergeometric dis-

tribution is used. For the analysis we used the web-based tool GOrilla (= Gene

Ontology enRIchment anaLysis and visuaLizAtion tool) (Eden et al., 2009).

For the background set, we downloaded a full gene list of human genome on http:

//grch37.ensembl.org/downloads.html, build hg19/GRCh37. The target sets were

produced as follows:

First, we identified the top ten regions for all 26 populations separately and filtered

the respective genes belonging to each region (APPENDIX B.3). Then, we built five

target sets in grouping together genes according to their superpopulation affiliation.

In the following, we present the top three most significant enriched GO terms for

each set, including the description (column 2), the p-value (column 3), the ’FDR q-

value’∗ (column 4) and the relevant annotated genes (column 5).

The most significant results can be found in East Asian populations for a family of

histones, which are proteins playing a major role in chromatin packaging (TABLE

4.5). Since DNA is wrapped around histones, they are also important regarding the

regulation of gene expression.

However, overall it can be said that the p-values are not remarkably significant (a

fortiori the q-values, see TABLE 4.4 and 4.5). The number of genes attributed to the

enrichment is quite low and it is thus difficult to make reliable statements or conclu-

sions.

Finally, we could not see any significant differences in biological functions between

African and Non-African populations (see also APPENDIX B.6). In this regard, our

finding confirms other recent studies (Campbell and Tishkoff, 2008).

Despite what was mentioned above, we did make an intriguing observation con-

cerning the GO Term ’social behaviour’, which showed up in the analysis of candi-

date genes from both Europeans and Admixed Americans (who often have at least

some Spanish roots (Montinaro et al., 2015)), see TABLE 4.4 end of this section. When

∗’FDR q-value’ is the correction of the p-value for multiple testing using the method from (Ben-
jamini and Hochberg, 1995).

http://grch37.ensembl.org/downloads.html
http://grch37.ensembl.org/downloads.html
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performing a GO enrichment analysis for each of the five European populations sep-

arately, the GO term associated to ’social behaviour’ was also enriched, but only for

Spain (IBS) and Italy (TSI) (see APPENDIX B.6). On closer inspection of the genes

attributed to the GO Term, we found that most of its genes - CNTNAP2, ANXA7,

PPP3CB, MSS51 - are involved in autism and/or schizophrenia; CNTNAP2 is even

thought to belong to one of the major genes responsible for the autism spectrum

disorder (Canali et al., 2018; Liu et al., 2011). Although there are studies showing

a lower number of ’Hispanics’ diagnosed with autism compared to ’non-Hispanic

Whites’, it has been suggested to be mainly attributable to socioeconomic factors

like the gap in the health care system or the parental understanding of the disease

(Palmer et al., 2010). However, other studies have shown that in children of Hispanic

origin autism is more likely to be accompanied by other mental disorders (Becerra

et al., 2014). In general, comparing global prevalence of autism no conspicuous indi-

cation can be found (Elsabbagh et al., 2012), more analysis is needed towards func-

tions these gene might be involved. In any case, our results are in favour of a genetic

component being involved in the autism related differences between Hispanic and

non-Hispanic people.
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African Population
AFR - Biological process
GO Term Description P-value FDR q-value Genes
GO:0006565 L-serine catabolic process 2.03E-4 1E0 SDSL, SDS
GO:0006567 threonine catabolic process 2.03E-4 1E0 SDSL, SDS
GO:0019518 L-threonine catabolic pro-

cess to glycine
2.03E-4 1E0 SDSL, SDS

AFR - Molecular function
GO Term Description P-value FDR q-value Genes
GO:0004794 L-threonine ammonia-lyase

activity
3.4E-5 1.55E-1 SDSL-like, SDS

GO:0003941 L-serine ammonia-lyase ac-
tivity

1.02E-4 2.32E-1 SDSL-like, SDS

GO:0022834 ligand-gated channel activ-
ity

1.37E-4 2.09E-1 GRIK5, TPCN1, SCNN1G, KCNK6,
GABRA2, RYR1

AFR - Cellular component
GO Term Description P-value FDR q-value Genes
GO:0031301 integral component of or-

ganelle membrane
4.51E-4 8.6E-1 YIF1B, SLC8B1, GABRA2, SYT1,

AGK, RYR1
GO:0031300 intrinsic component of or-

ganelle membrane
6.89E-4 6.57E-1 YIF1B, SLC8B1, GABRA2, AGK,

SYT1, RYR1
GO:0042734 presynaptic membrane 9.84E-4 6.26E-1 GRIK5, CASK, GRM2, SYT1

European Population
EUR - Biological process
GO Term Description P-value FDR q-value Genes
GO:0035176 social behaviour 4.04E-5 6.1E-1 ANXA7, PPP3CB, DNAJC9, MSS51,

DVL1
GO:0051703 intraspecies interaction be-

tween organisms
4.04E-5 3.05E-1 ANXA7, PPP3CB, DNAJC9, MSS51,

DVL1
GO:0072593 reactive oxygen species

metabolic process
1.1E-4 5.55E-1 NNT, DUOXA2, CYB5R4,

DUOXA1, DUOX2, DUOX1
EUR - Molecular function
GO Term Description P-value FDR q-value Genes
GO:0016174 NAD(P)H oxidase activity 7.79E-6 3.55E-2 CYB5R4, DUOX2, DUOX1
GO:0050664 oxidoreductase activity, act-

ing on NAD(P)H, oxygen as
acceptor

6.25E-5 1.43E-1 CYB5R4, DUOX2, DUOX1

GO:0005031 tumor necrosis factor-
activated receptor activity

5.35E-4 8.14E-1 TNFRSF4, TNFRSF25

EUR - Cellular component
No GO Enrichment Found.

Admixed American Population
AMR - Biological process
GO Term Description P-value FDR q-value Genes
GO:0072673 lamellipodium morphogen-

esis
2.93E-6 4.43E-2 PLEKHO1, WASF2, SNX1

GO:0035176 social behaviour 8.38E-6 6.33E-2 ANXA7, CNTNAP2, PPP3CB,
DNAJC9, MSS51

GO:0051703 intraspecies interaction be-
tween organisms

8.38E-6 4.22E-2 ANXA7, CNTNAP2, PPP3CB,
DNAJC9, MSS51

AMR - Molecular function
GO Term Description P-value FDR q-value Genes
GO:0035035 histone acetyltransferase

binding
3.95E-4 1E0 BCAS3, TRIP4, ECD

AMR - Cellular component
No GO Enrichment Found.

TABLE 4.4: Top three significant GO terms of African, European and Admixed American
superpopulations.
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East Asian Population
EAS - Biological process
GO Term Description P-value FDR q-value Genes
GO:0006334 nucleosome assembly 7.37E-20 1.11E-15 HIST1H1[D/E], HIST1among

H2B[C/D/E/F/G/H/I],
HIST1H3[D/E/F/G],
HIST1H4[D/E/F/H]

GO:0034728 nucleosome organization 6.71E-18 5.07E-14 HIST1H1[D/E],
HIST1H2B[C/D/E/F/G/H/I],
HIST1H3[D/E/F/G],
HIST1H4[D/E/F/H]

GO:0065004 protein-DNA complex as-
sembly

3.3E-17 1.66E-13 HIST1H1[D/E],
HIST1H2B[C/D/E/F/G/H/I],
HIST1H3[D/E/F/G],
HIST1H4[D/E/F/H], GTF2H3

EAS - Molecular function
GO Term Description P-value FDR q-value Genes
GO:0046982 protein heterodimerization

activity
6.09E-12 2.78E-8 HIST1H2A[C/D/E],

HIST1H2B[C/D/E/F/G/H/I],
HIST1H3[D/E/F/G],
HIST1H4[D/E/F/G/H]

GO:0046983 protein dimerization activity 1.95E-6 4.45E-3 HIST1H2A[C/D/E],
HIST1H2B[C/D/E/F/G/H/I],
HIST1H3[D/E/F/G],
HIST1H4[D/E/F/G/H], RILPL1,
TP53I3

GO:0031491 nucleosome binding 2.08E-5 3.16E-2 HIST1H3[D/E/F/G], MLLT10
EAS - Cellular component
GO Term Description P-value FDR q-value Genes
GO:0000786 nucleosome 9.02E-29 1.72E-25 HIST1H1[D/E],

HIST1H2A[C/D/E],
HIST1H2B[C/D/E/F/G/H/I],
HIST1H3[D/E/F/G],
HIST1H2A[C/D/E/F/G],
HIST1H4[D/E/F/H]

GO:0044815 DNA packaging complex 6.57E-28 6.27E-25 HIST1H1[D/E],
HIST1H2A[C/D/E],
HIST1H2B[C/D/E/F/G/H/I],
HIST1H3[D/E/F/G],
HIST1H2A[C/D/E/F/G],
HIST1H4[D/E/F/H]

GO:0032993 protein-DNA complex 3.36E-24 2.14E-21 HIST1H1[D/E],
HIST1H2A[C/D/E],
HIST1H2B[C/D/E/F/G/H/I],
HIST1H3[D/E/F/G],
HIST1H4[D/E/F/H] GTF2H3

South Asian Population
SAS - Biological process
GO Term Description P-value FDR q-value Genes
GO:0070059 intrinsic apoptotic signalling

pathway in response to en-
doplasmic reticulum stress

3.63E-4 1E0 TMBIM6, TMEM117, MAP3K5

SAS - Molecular function
No GO Enrichment Found

SAS - Cellular component
No GO Enrichment Found.

TABLE 4.5: Top three significant GO terms of East Asian and South Asian
superpopulations.



79

Chapter 5

Measuring linkage disequilibrium using

genealogical tree topology

In this chapter, we want to demonstrate, that linkage disequilibrium between two

chromosomal loci can be measured by means of genealogical tree topology. For

this purpose, in (Wirtz, Rauscher, and Wiehe, 2018) a measure of topological linkage

disequilibrium (tLD) was introduced, based on clustering chromosomes with respect

to their position in the genealogy rather than defining haplotypes as allele combi-

nations at two loci as in the classical concept of linkage disequilibrium. In (Wirtz,

Rauscher, and Wiehe, 2018), the focus lies on the theoretical properties of tLD of

which the corresponding mathematical proofs were carried out by Johannes Wirtz

and thus details on derivations can be read in (Wirtz, Rauscher, and Wiehe, 2018).

My contribution was the performance of simulations and the application to experi-

mental data, to analyse the accordance with the theoretical results.

In the following, the concept of tLD will be introduced and the application of tLD to

the 1,000 human phase 3 data will be presented.

5.1 Classical concept of linkage disequilibrium (LD)

The classical concept of linkage disequilibrium (LD) refers to the non-random as-

sociations of alleles at different loci. Consider two markers at different sites. One

marker has alleles A and a, and the other marker alleles B and b. Four haplotypes

of these markers are possible: AB, Ab, aB and ab. Let pA be the frequency of allele

A in the population, pa frequency of allele a, pB of allele B and pb of allele b. The

expected frequency of the haplotypes is the product of the respective allele frequen-

cies, namely pAB = pA pB, pAb = pA pb, paB = pa pB and pab = pa pb. Any deviation

of the expected haplotype frequencies is linkage disequilibrium, which is typically
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indicated by the letter D, and can be calculated by, e.g.

D = pAB − pA pB.

When D = 0, the loci are said to be in linkage equilibrium.

In the following, let x1 := pAB, x2 := pAb, x3 := paB, x4 := pab.

Note, that x1 = pA pB + D, x2 = pA pb −D, x3 = pa pB −D and x4 = pa pb + D. Thus,

D can be rearranged to

D = x1x4 − x2x3.

Let c be the recombination rate between the A/a and B/b locus. The frequencies of

the haplotypes in the next generation (symbolized in the following by x′1, x′2, x′3 and

x′4) can be calculated by, for example,

x′1 = x2
1 + x1x2 + x1x3 + (1− c)x1x4 + cx2x3

= x1(x1 + x2 + x3 + x4)− c(x1x4 − x2x4)

= x1 − cD0,

where D0 is the initial state of LD.

The frequencies of the other haplotypes can be derived likewise, and thus it holds

that D in the next generation is

D1 = x′1x′4 − x′2x′x′3

= (1− c)D0.

It follows by recursion that

Dt+1 = (1− c)Dt = ... = (1− c)tD0,

where Dt is LD at generation t. Finally, for small c, D in generation t can be approx-

imated by

Dt = (1− c)tD0 ≈ e−ctD0. (5.1)

This shows an important result:

In each generation LD decays at a rate determined by the degree of recombination

and particularly, LD depends on recombination rate.
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D is easy to calculate, however, its big disadvantage is that its range is dependent on

allele frequencies in the population, given by

Dmin = max{−pA pB,−pa pb}

Dmax = min{pA pb, pa pB}.

D maximises when allele frequencies are both 0.5, but for example if pA = 0.3 and

pB = 0.1, the range is restricted to −0.03 and 0.07.

Lewontin (1964) suggested using a normalisation of D:

D′ =

{
D

Dmax
, if D pos.

D
Dmin

, if D neg.

D′ has the nice property that it is equal to 1 if two sites are in complete LD and 0 for

no LD. Its disadvantage is when alleles are rare or the population size is small, D′

tends to be enlarged, making it difficult to be interpreted correctly.

Another way of measuring LD is to use a correlation coefficient of the allelic associ-

ation, first introduced by Hill and Robertson (1968),

r =
x1x4 − x2x3√

pA pa pB pb
, (5.2)

which ranges between −1; strong negative correlation, and 1, strong positive corre-

lation. If r is equal to 0 the two sites are not correlated.

This LD measure allows for statistical testing of significance, since r is related to the

χ2-distribution: it holds that r =
√

χ2/n. This can be obtained from the 2× 2 table

of the frequencies x1, x2, x3 and x4 and n is the total number of haplotypes in the

sample.

Mostly, it is common to consider r2.

In (Wirtz, Rauscher, and Wiehe, 2018), a new approach of defining linkage disequi-

librium was introduced in the framework of coalescent theory.

5.2 The topological linkage disequilibrium (tLD)

As we have already explained in section 3.1, due to recombination event, tree topol-

ogy at different sequence positions may change along the chromosome. In the ARG,

each nucleotide position along the chromosome is associated with a coalescent tree,

and within a chromosome segment with no recombination events all positions have

the same tree topology. By dividing chromosomes into recombination-free frag-

ments, coalescent trees can be associated with a fragment.
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FIGURE 5.1: Coalescent trees along a recombining chromosome of size n = 10. Zoom-in of
a small part of a chromosome. Consider two fragments of a given window size, labelled as
fragment A and fragment B. These two fragments can be associated with a coalescent tree.
Recombination events between fragment A and B might have changed not only the tree
topology, but also the assignment of chromosomes with regards to the left and right side of
the root of the trees.

Likewise in section 3.1, consider a binary tree of size n, the n leaves of the tree can

be divided into two disjoint groups: the left and the right-descendants of the root

ν(·). The two groups are indicated as L(·) and R(·), respectively, and without loss of

generality let L(·) be the smaller of the two sets L(·) and R(·). As a consequence of

recombination events, when moving along a chromosome, the genealogical tree of

fragment A may differ from the tree at fragment B. Moreover, the descendants be-

longing to the left and right set below the root of the tree associated to fragment A

may differ from those of fragment B. In the following, let LA indicate the left set of

the tree associated to fragment A, RA the right set, and so forth (see FIGURE 5.1).

We can now define a correlation measure as follows:

• Let pLA be the frequency of chromosomes in LA:

pLA = |LA|/n, and likewise

pRA = |RA|/n, pLB = |LB|/n, pRB = |RB|/n.

• Let x1 be the proportion of chromosomes belonging to LA ∩ LB:

x1 = |LA ∩ LB|/n, and likewise

x2 = |LA ∩ RB|/n, x3 = |RA ∩ LB|/n, x4 = |RA ∩ RB|/n.

Then, we define the topological linkage disequilibrium, short tLD, as

r2
tLD =

(x1x4 − x2x3)2

pLA pRA pLB pRB

. (5.3)

The term is coined topological since it is induced by the topology of the coalescent

tree.
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In the following, we will write r2 for the conventional LD, and r2
tLD for the topologi-

cal LD.

[Remark: In (Wirtz, Rauscher, and Wiehe, 2018), tLD is defined as r2
S,U , where S and

U refers to the two fragments, whilst the conventional LD is defined by r2
α,β, where

α and β refers to the two loci.]

Box 5.2: Example of tLD using FIGURE 5.1

In this example, we have

• n = 10

• LA = {1, 2},
RA = {3, 4, 5, 6, 7, 8, 9, 10}

• LB = {2, 3, 4, 6},
RB = {1, 5, 7, 8, 9, 10}

Thus:

• pLA = |LA|/n = 2/10, pRA = |RA|/n = 8/10,

• pLB = |LB|/n = 4/10, pRB = |RB|/n = 6/10,

and

• x1 = |LA ∩ LB|/n = 1/10, x4 = |RA ∩ RB|/n = 5/10,

• x3 = |RA ∩ LB|/n = 3/10, x2 = |LA ∩ RB|/n = 1/10.

Substitute in equation (5.3) yields r2
tLD = 0.0104167.

Like in the conventional LD, the choice of the left and the right set of the root of the

tree is not of importance, since it does not have an affect on r2
tLD.

r2
tLD can only be equal 1, if LA = LB or LA = RB.

5.2.1 Properties of tLD

As we have seen in equation (5.1), recombination affects LD: LD decays in each gen-

eration at a rate determined by the degree of recombination.

However, if recombination and genetic drift is combined in a finite population N, it

is not easy to derive the expected value for r2. By assuming completely unlinked loci,

the configuration of alleles forming a haplotype behaves statistically like a random
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2× 2-table, and according to Haldane (1940)

E[r2] =
1

N − 1
. (5.4)

The question still remains how the expected LD decays with respect to the recombi-

nation rate. Several efforts to come up with a reasonable formula have been made.

Sved (Sved, 1971) approximated the expected equilibrium LD

E[r2] ≈ 1

1 + 4Nc 1− c
2

(1−c)2

c<<1≈ 1
4Nc + 1

. (5.5)

by relating r2 to the conditional probability of linked identity by descent which is

the probability that two chosen haplotypes will be identical copies from some pre-

vious generation. This formula illustrates that if 4Nc is small, the expected LD will

approach 1, if 4Nc is large, then it will approach 0. If 4Nc is large the equation can

be approximated by

E[r2] ≈ 1
4Nc

.

Note, that we have seen the quantity 4Nc before, it is the population recombination

rate. To avoid ambiguity, from now on we define the population recombination rate

by the Greek letter ρ.

Despite the discrepancy between (5.5) and (5.4), Sved’s formula (5.5) has become one

of the standard approaches.

Still today, attempts to improve the approximation (5.5) exist and researchers are

concerned to find a more suitable formula describing the expected LD with respect

to the recombination rate , e.g. (Ober et al., 2013). But none of them succeeded to

approach Haldane’s value.

By using the concept of tLD, in (Wirtz, Rauscher, and Wiehe, 2018) a new formula

for the decay of expected r2
tLD has been theoretically derived. It has been shown, that

E[r2
tLD]

ρ→∞−−−→ 1
1− N

,

by using arguments derived from coalescent properties.

Thus, tLD decays towards the same value as in Haldane’s formula (5.4).

Furthermore, by using simulated data, it could have been shown, that tLD decays

more slowly than the conventional LD with chromosomal distance (see FIGURE 5.2).

This can be explained by the fact that only a fraction of recombination events affects

tree topology at the root. Indeed, in (Wirtz, Rauscher, and Wiehe, 2018, Lemma 2),

it could be theoretically deduced, that about 1/3 of all recombination events lead

to changes in such a way that chromosomes from one side of the tree are shifted to
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the other. Tree topology is estimated from SNP data in the exact same manner as in

previous chapters (re-visit section 3.2.1 for cluster method).

FIGURE 5.2: Figure also shown in (Wirtz, Rauscher, and Wiehe, 2018, Figure 6). Illustration
of decay of tLD vs. SNP-LD with chromosomal distance from simulated data.
Data are from a single simulation run generated with the program ms. The parameters were
set in such a way that a chromosomal sequence with a recombination rate of 1cM/Mb and
length 250kb (0.25cM) was simulated, for N = 104. The corresponding ms-command line
was therefore: ms 200 1 -t 100 -r 100 1000 -T, where the option -T outputs true tree
topology in Newick-format (more on ms output see FIGURE 3.4).

5.3 Application of tLD to 1,000 Humans Data

In this section we will present the application of tLD to human data from the human

1,000 genomes project (Auton et al., 2015). The estimation of genealogical tree topol-

ogy for all 26 populations was already performed previously (see chapter 4). Since

the focus lies on the root of the entire tree T for a sample of size n, the MRCA, we

only need to consider the first clustering step: the one dividing the n chromosomes

into the ’left-descendants’ and into the ’right-descendants’ of root ν1, L1 and R1 re-

spectively (for terminology, re-visit chapter 3). In contrast to determining T3, where

the size |L1| or |R1| is needed, for this concern the ’content’ of each cluster is needed.

In section 3.2.2, we already analysed how well the assignment of the estimated clus-

ter agrees with the true one. We have shown that if |L1| = |L̂1| (or |R1| = |R̂1|), the

clusters agree very well with the true one. Moreover, in chapter 3 we have shown

as well that a minimum of 10 SNPs is sufficient to yield a good estimation result

also with regards to size: the average difference between known Ω1 and estimated

Ω̂1 was around 0 (see FIGURE 3.8). That the true and estimated values of tLD agree

quite well, is once more demonstrated by a heatmap in FIGURE 5.3, where the same

simulated data are used as in FIGURE 5.2.
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FIGURE 5.3: Figure also shown in (Wirtz, Rauscher, and Wiehe, 2018, Figure 7). Heatmaps
of tLD calculated from tree topologies and tLD calculated from estimated tree topologies,
performed on the same simulated dataset used in FIGURE 5.2. The diagonal starting from
the bottom left corner to the top right corner represents the simulated chromosome
sequence, position starts from down left and ends top right. The heatmap on the upper left
side of the diagonal represents the tLD calculated from true tree topology and the heatmap
on the right side below the diagonal tLD from estimated data.

We calculated tLD for some previously found candidates. First, we determined tLD

for a 2Mb region on chromosome 2, containing the genes ZRANB3, LCT, MCM6. Re-

member from previous chapter, that the gene ZRANB3 was suggested to be under

positive selection for some European populations, whilst according to our result the

well-known sweep candidate genes LCT and MCM6 were not amongst our list of

candidates. We wanted to investigate whether tLD provides indications for poten-

tial interaction between these genes. For reasons of comparison, we also show the

classical LD for this example.

First of all, FIGURE 5.4 illustrates a clear signal of elevated level of linkage disequilib-

rium for the European population CEU in comparison to the African population YRI.

Generally, this was expected since African populations are known to show lower

levels of linkage disequilibrium in general among loci compared to non-Africans

(Campbell and Tishkoff, 2008). However, note that the signals are stronger to be

observed for tLD than conventional LD. This may be not surprising, since tLD is

calculated over segments and can be therefore seen as ’an average’ over blocks of

SNPs and as such as a ’coarse-grained’ measure for the classical LD. However, ex-

actly this can also be seen as the advantage of using tLD, since the signal is stronger

and thus easier to detect. With regards for visual inspection, this is clearly a benefit.

Furthermore, in accordance with results mentioned in the previous section (see FIG-

URE 5.2), the level of correlation seems to be maintained at a higher level for a longer
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FIGURE 5.4: Heatmaps of tLD (upper (left) triangle) for chromosome region
chr2:135,000,000-137,000,000 for population CEU and YRI (diagonal from left to right). For
reasons of comparison heatmaps of the conventional LD (here: SNP LD for same
chromosome region is shown on lower (right) triangle. Form left to right, the positions of
the genes ZRANB3, LCT, MCM6 and DARS are indicated by the dark triangles within the
plot.

FIGURE 5.5: Zoom-in of region surrounding genes ZRANB3, LCT, MCM6, from FIGURE 5.4.

chromosomal distance compared to classical LD. Therefore, tLD may be more suit-

able for detecting long-range linkage disequilibrium.

Our findings show a clearly elevated tLD for the region containing the genes ZRANB3,

LCT and MCM6 (FIGURE 5.5). This might be an indication for interacting functions

between ZRANB3 and one of the other genes, responsible for the linkage.

As another example we determined tLD for a region on chromosome 15, containing

the genes OCA2 and HERC2. In chapter 4, we found HERC2 to be a sweep candidate
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gene for the European population CEU, GBR and FIN, a gene where some of its vari-

ants result in blue eyes. Since HERC2 contains a region regulating the activity of the

OCA2 gene, which in turn controls the eye pigmentation, we were interested if an

elevated tLD can be observed in that region. Furthermore, in (Hubacek et al., 2017)

a list of alleles was presented, which are suggested to be responsible for the blue eye

variant. Therefore, we analysed the region containing these two genes, if elevated

linkage can be observed between these regions for the three European population.

Our result in FIGURE 5.6 indicate that indeed tLD seemed to be elevated in particu-

lar in regions between the three alleles mentioned in (Hubacek et al., 2017) located

within the OCA2 and the (whole) HERC2. However, tLD is contiguously high in the

regions containing the HERC2 and OCA2 gene. Therefore, not directly the three alle-

les might be responsible for the observed strong signal in this region. Nevertheless,

the difference of strength of the signals between the classical and the topological

LD in this region is tremendous, in particular for gene HERC2, even for the African

population YRI. Whilst signals for the classical LD are rather restrained, tLD is quite

strong in this region.

SNP ID Position Within gene Gene position
rs4778138 chr15:28,335,820-28,335,820 OCA2 chr15:28,000,023-28,344,458
rs4778241 chr15:28,338,713-28,338,713 OCA2
rs7495174 chr15:28,344,238-28,344,238 OCA2
rs1129038 chr15:28,356,859-28,356,859 Herc2 chr15:28,356,183-28,567,298
rs12913832 chr15:28,365,618-28,365,618 Herc2
rs916977 chr15:28,513,364-28,513,364 Herc2
rs1667394 chr15:28,530,182-28,530,182 Herc2

TABLE 5.1: SNPs known to be responsible for the blue eye variant according to (Hubacek
et al., 2017).
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FIGURE 5.6: Heatmaps of tLD (left) and classical LD (right) for chromosome region
chr15:27,750,023-28,817,298 for population CEU, GBR, FIN and YRI. The positions of the
genes OCA2 and HERC2 are indicated by the dark triangles within the plot (diagonal from
left to right).
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Chapter 6

Conclusions and outlook

Understanding the role of evolutionary forces leading to the observed genomic pat-

terns in and between different organisms or populations is a challenging task for sci-

entists. These patterns might be shaped by factors such as demographic events, nat-

ural selection or simply random drifts. Distinguishing between those can be difficult

since demographic events, like population bottlenecks, can leave a similar genomic

pattern behind as those left by the action of natural selection. The construction of

a robust test statistic aiming in identifying the correct underlying dynamic behind,

received a high degree of attention for researchers.

Coalescent tree topology is not affected by varying population size (Hudson, 1990;

Li, 2011). This motivated us to investigate the topologies of genealogical trees in

more detail, and to establish new methods contributing to the research of evolution-

ary mechanisms.

In (Li and Wiehe, 2013), the authors proposed a test statistic called T3, which only

uses the information of coalescent tree topology. Selective sweeps can produce highly

unbalanced coalescent tree topologies in regions close to a selected site. Under neu-

tral evolution T3 is expected to be standard-normally distributed. Genealogies after

a selective sweep tend to be unbalanced and to produce negative values of T3 (see

section 3.1). Hence, T3 detects bias in tree balance. However, in practice the tree

topology is not known and has to be estimated. Whilst in (Li and Wiehe, 2013) mi-

crosatellite data was used for the estimation of tree topology, we show that SNP

data provides a good alternative to microsatellite data for estimating the tree topol-

ogy. In chapter 3 we present in detail, how many SNPs are at least needed to obtain

a good cluster estimation result. In the absence of recombination, this number can

be arbitrarily large. However many recombination events within a chromosomal

segment should be avoided, since this increases the probability of having multi-

ple tree topologies within the segment, leading to confounding tree topologies. In
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(Ferretti, Disanto, and Wiehe, 2013) it was shown that it takes about 15-20 recom-

bination events to drastically reduce correlation of coalescent tree topologies along

a recombining chromosome. 15-20 recombination events correspond to roughly to

6,400-8,520 bp to for a sample of size n = 200, N = 104 and a recombination rate

of c = 10−8 per bp (see equation (3.2.1)). We decided to set the maximum window

length to 10 kb. In the same section 3.2.1 we demonstrated that a minimum number

of SNP is needed to get a fairly good approximation of the true tree topology. A

too small number of SNPs led to an under- or overestimation of tree cluster. Besides

performing simulations, we underpinned the expected cluster size, conditioned on

the number of SNPs used for the estimation, by explicit calculations, as long as these

didn’t become too complex. We concluded that a minimum number of ten SNPs

already yield a cluster size estimation which agrees quite well with the true one. We

expect to see ten SNPs in a magnitude of about∼ 4,260 bp window length, see equa-

tion (2.2). In such way, we came to the conclusion to estimate tree topology using

chromosomal segments of size 5 kb and a step size of 2.5 kb. The chromosomal seg-

ment needed to contain at least ten SNPs. If the latter condition was not fulfilled, we

extended the window size by 1 kb, up to a maximum window of size 10 kb. If the

clusters were not clearly resolvable, we randomly assigned the sequences to one of

the two clusters with equal probability. Here, we want to point out, that our choice

for the fragment length rely on the assumption of a recombination rate of c = 10−8

per bp per generation and µ = 10−8 per bp per generation, which are the (aver-

age) estimates for human (Roach et al., 2010; Li and Freudenberg, 2009). Therefore,

if applying to species with different mutation and recombination rates as assumed

above, the parameters must be changed correspondingly.

To analyse, how the T3-test, using SNP data for the tree topology estimation, per-

forms under different demographic scenarios, we first generated three data sets:

one simulating a population bottleneck scenario, which was compared to the neu-

tral and to the selective sweep scenario (see section 3.3). The results clearly showed,

that the T3-test was quite robust under the population bottleneck scenario, as ex-

pected. Furthermore, we examined how the T3-test performs in presence of pop-

ulation substructure. For this end, we generated various sampling schemes with

varying migration rates. We have seen that substructured population and low mi-

gration rate affects the T3-test, in particular when the sampling scheme is heavily

biased (n1 = 195 and n2 = 5) and migration rate is low (4Nm = 0.4). When sam-

pling all chromosomes from only one subpopulation, n1 = 200 and n2 = 0, T3 is

quite robust when migration rate is moderate (4Nm = 4) or very low (4Nm = 0.04).

When migration rate is low (4Nm = 0.04), T3 seems to be slightly affected, see TA-

BLES 3.1 and 3.2.
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Generally, the power of the T3-test is strongly dependent of the distance to the se-

lected site (see TABLE 3.3). If considering single windows, regardless of their position

from the selected site, (although the false positive rate was only around 0.019) the

power is only around 0.23 (in case of strong selection, otherwise even below). If we

take the distance to the selected site into account, on average, taking a 1% threshold,

around 78.86% - 86.12% of the windows identified as being significant were found to

be within a distance of 250 kb from the selected site (see table 3.3). However, also an

average of around 20% (by a threshold of 1%) falls outside the 250 kb region. Next,

we investigated if a re-sampling strategy can help to corroborate significance of pre-

viously identified regions. The underlying idea was that induced subtree topologies

of unbalanced trees generated under neutrality might be distinguishable from sub-

tree topologies of unbalanced trees generated under selection. It has been shown

before, that this is true for the most extreme case of an unbalanced tree, namely a

caterpillar tree: its induced subtree is always highly unbalanced. A caterpillar tree

can result in a large excess of singleton mutations, which is a typical characteristic of

a selective sweep, however a caterpillar tree is also extremely unlikely to be observed

in practice (Blum and Francois, 2006; Kirkpatrick and Slatkin, 1993). Our simulation

results could not show a considerable improvement in filtering out previously iden-

tified false positives (see TABLE 3.4). Therefore, we suggest that the aforementioned

hypothesis (that highly unbalanced trees resulting from positive selection inherit

this property to their induced subtree whilst highly unbalanced trees generated un-

der neutrality don’t) might only hold for ’extreme’ cases like caterpillar trees, which

are very rare in practice. Besides, on the technical side, this approach requires a long

running time and a large memory, making it unsuitable for genome-wide screens.

We then turned our focus to a different strategy. Since unbalanced tree topologies

in multiple adjacent regions are more likely to be observed in regions close to the

selected sites than by chance, see section 3.4.1, we not only took the T3-value of one

window into account, but also the surrounding ones and thus constructed a test

statistic based on the concept of likelihood ratio tests. We called this test the LRT3-

test (see 3.6).

We empirically determined the power of this test, and found that by taking a thresh-

old of LRT3−score to 0, we get a false positive rate of 0.0226, and a power of 0.95.

To reduce the false positive rate, we decided to set the threshold-score to 15. In such

way, we could reduce the false positive rate to almost 0 (0.0007%), at a price of re-

duced power: 0.88, however this is still quite good.

In addition, we showed in this chapter, that our test is applicable not only to de-

tect recently completed sweeps, but also incomplete sweeps: the signal was even

strongest to be observed when the selected site has reached a frequency of around

80% (section 3.5).
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In conclusion, we derived a test statistic solely relying on the knowledge of coales-

cent tree topology. It is free from the effects of varying population size, from which

some test statistics suffer (Ramirez-Soriano et al., 2008), it is slightly affected by mi-

gration events, however when sampling scheme is in such way that all chromosomes

are sampled from only one subpopulation, it still performs quite well. Furthermore,

it is also able to detect incomplete sweeps.

One disadvantage is, that the reliability of the T3-test depends on the quality of

the estimated tree topology. Therefore, one should seek to improve the clustering

method. So far, we estimated tree topology according to a sliding window approach;

we estimated tree topology for each window independently. But whilst doing so,

we are aware of that tree topologies along a chromosome are not independent, but

correlated to each other. Instead of estimating tree topology for each window sepa-

rately, one might also take the topology of the neighbouring windows into account,

for example in determining a conditional probability or likelihood of observing the

estimated tree topology, given knowledge of the tree topology of the previous win-

dow.

In particular in cases, where the clusters were not clearly resolvable (and so far we

just randomly assigned the sequences to one of the two clusters with equal probabil-

ity), or regions, which were ’skipped’ due to the lack of data/or monomorphic sites,

the additional consideration of the neighbouring regions might help to be more ac-

curate and thus, not to be as conservative. On the contrary, this might lead to an

enormous increase of running time, just for the estimation of tree topology. The fact

that one need to estimate not only Ω1, but also Ω2 and Ω3 might add to the com-

plexity of the issue.

In chapter 4, we have applied our test statistic LRT3 to the human data from the 1,000

genomes project ((Auton et al., 2015), phase 3). For this end, we performed whole

genome screens for all 26 populations; all 22 autosomes and the X chromosome.

The 26 populations can be further divided into five so-called ’superpopulations’:

African, Admixed American, East Asian, European and South Asian (see FIGURE

4.1).

In general, we found approximately two times less candidate regions in the African

superpopulation compared to the remaining four superpopulations (see FIGURE 4.4,

or APPENDIX table B.1). Our result confirmed previous studies that have found more

candidate regions for recent selective sweeps in non-African populations compared

to the African populations (Kayser, Brauer, and Stoneking, 2003; Williamson et al.,

2007; Campbell and Tishkoff, 2008). We compared our gene candidate list with pre-

vious studies. For this purpose we took two lists into consideration: the list from

the database of recent positive selection across human populations (= dbPSHP) (Li et al.,
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2014a), downloaded from http://jjwanglab.org/dbpshp and consisting of about

approximately 8,050 candidate genes, and a more recent list taken from (Schrider

and Kern, 2017), consisting of about approximately 5,939 candidate genes. The first

list is a collection of all candidate sweep regions identified and published until then.

For generating the latter list, the authors used a new method developed by them-

selves in a previous paper, called S/HIC (Schrider and Kern, 2016)), which is based

on a supervised machine learning approach combining many statistics used to test

for selection (including ’classical’ tests like Tajima’s D, haplotype based tests etc.).

In general, the overlap between our candidates and both lists were rather moder-

ate (with the dbPSHP-list: 1,947 genes, with the S/HIC-list: 1,718 genes, of which

1,253 genes are not found in dbPSHP). However, other studies have reported a sim-

ilar result, concerning the small intersection of candidates between different studies

(Akey, 2009; Schrider and Kern, 2017). They suggest that it is due to that different

methods may produce different false positives and false negatives, resulting in this

discord between scans.

Amongst several previously known candidate genes, we also found new potential

candidates, for instance the gene NXF5 on the X chromosome. This gene is involved

in the normal functioning of the brain, kidneys and reproductive organs, since its

disruptions can lead to disorders of these (Jun et al., 2001; Esposito et al., 2013; For-

tuno and Labarta, 2014). The region where this gene is located is the strongest candi-

date region in the East Asian population CHB (see TABLE 4.3). The region containing

this gene was also significant for two other East Asian populations JPT (maximum

LRT3 = 179.14) and CHS (maximum LRT3 = 80.48).

The region where the overall highest LRT3-score was found (for the South Asia pop-

ulation ITU), is a candidate region for almost all non-African populations. One pos-

sible candidate gene driving this selection is NELL2. It has been previously recorded

to be a sweep candidate, although so far no hypothesis of what the associated ben-

eficial trait of it might be has been suggested. Previous studies have indicated a

possible connection for this gene with the onset of puberty in rats (Ryu et al., 2011).

As for humans, it is known that girls of the African American population enter pu-

berty earlier than those with Caucasian or Hispanic ancestry (Ramnitz and Lodish,

2013) and we suggest that NELL2 could be involved in variations of the human on-

set of puberty in human, although the reason for this trait to be under selection is

unclear.

Another candidate gene with clear differences between African and non-African

populations was CASK (FIGURE 4.8). This gene appears to be a strong candidate for

three African populations: ACB (LRT3=102.35), YRI (LRT3=127.87) and LWK (LRT3

=90.2757), and it is also significant for further three African populations GWD (LRT3

http://jjwanglab.org/dbpshp
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=22.9285), ASW (LRT3=38.3957), ESN (LRT3= 74.7938). Previously it has been sug-

gested as a candidate for selection in only one of these populations, YRI (Frazer et

al., 2007). Gazda et al. (2018) suggested CASK to be positively selected in racing

pigeons for contributing to athletic performance, since the gene is involved in the

formation of neuromuscular junctions. We note that athletes of African origin often

perform exceptionally well in competitions and propose that CASK gene might be

involved in that.

Furthermore, our test could confirm many other previously known genes, from

which some of them we mentioned in section 4.3.2. Further on, we investigated

whether some gene sets can be associated with functional genetic differences among

different superpopulations. Therefore, we performed GO enrichment analysis. In

doing so, we were in specific interested, if enrichment can be found for gene sets po-

tentially involved with regards to the adaptation as a result in response to the Out-

Of-Africa migration. We came to the conclusion, that in this regard no significant

differences in biological functions between African and Non-African populations

can be seen (see also APPENDIX B.6). However, our finding is consistent with other

studies, for instance in (Campbell and Tishkoff, 2008). The authors pointed out, that

despite Africans are more genetically diverse and also possess lower levels of link-

age disequilibrium among loci compared to non-Africans, Africans also do have a

number of genetic adaptations evolving due to diverse climates and diets. Further-

more, our GO enrichment analysis revealed an intriguing observation between the

analysis of candidate genes from the European population Spain (IBS) and Italy (TSI)

(see APPENDIX B.6), and the Admixed American superpopulation (see TABLE 4.4):

For all of them the GO Term ’social behaviour’ showed up to be among the top three

most significant enriched GO terms. Most of the genes attributed to the GO Term

are involved in autism and/or schizophrenia. According to our findings in section

4.3.3, we suggest that there might be an advantageous genetic component being in-

volved in the autism related differences between Hispanic and non-Hispanic people,

but we further suggest that more analysis is needed towards functions where these

genes might be involved. In conclusion of chapter 4, we want to point out, that the

application of the LRT3-test on the human 1,000 genomes data performed quite well,

not only covering several previously known candidates, but also revealing new can-

didates. There are still many candidate genes we did not investigate from our list,

including all genes not associated with the biotype ’protein-coding’. In particular,

out of our candidate list, we found several superpopulation-specific ones. It would

be interesting to analyse the biological function of genes driving the selection and

the significance of its trait, but this is left for future projects. Another important as-

pect which has to be mentioned is that the result of the LRT3-test depends on the
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underlying parameters we have set for the selective sweep scenario and the likeli-

hood distributions we have empirically determined in the beginning. One could try

to apply the LRT3-test under changed conditions and assumptions.

In chapter 5 we presented a new measure of topological linkage disequilibrium (tLD)

which is based on the topology of genealogical trees (Wirtz, Rauscher, and Wiehe,

2018). Instead of focusing on haplotypes as allele combinations at two loci as for

the classical LD, we cluster a sample of chromosomes with respect to their posi-

tion in the genealogy. Therefore, the focus lies on the first root of the tree (MRCA)

which divides the sample into two disjoint groups: the ’left-descendants’ and the

’right-descendants’ of the root, see section 5.2. The tLD is the correlation between

the members of each group, see equation (5.3). The advantage of the tLD is that

it is more sensitive than regular LD to detect long range interactions across mega-

base scales, which can be explained by the fact that only a fraction of recombination

events affects tree topology at the root. This could be confirmed by the application

of tLD to simulated data, see FIGURE 5.2. The tree topology was estimated using the

aforementioned method from section 3.2.1, chapter 3. Furthermore, again we could

have shown how well the estimated cluster agrees with the true one, 5.3 and also

compare section 3.2.2.

We then applied the tLD to some previously found candidate genes. In chapter 4,

the ’prominent’ sweep candidate gene LCT did not appear in our list, however we

did find a rather strong signal for the ZRANB3 gene for the two European popula-

tion CEU and GBR (see 4.3), which lies about 257 kb distant away from the LCT gene.

Therefore, we were in particular interested if linkage between these two genes can be

found. Indeed, our findings show a clearly elevated tLD between the genes ZRANB3

and LCT, but also MCM6, which contains regulatory elements for LCT (Hubacek et

al., 2017) (FIGURE 5.5). We suggest that there might be interacting functions be-

tween ZRANB3 and one of the other genes, responsible for the linkage. Generally,

tLD shows stronger signals than the classical LD, which is not only a benefit for an

easier detection, but also with regards to the visualisation.

This was further demonstrated for the region HERC2 and OCA2, of which HERC2

was another sweep candidate from our list for the three European population CEU,

GBR and FIN. We analysed this region since on the one hand, HERC2 is suggested to

play a key role for the brown/blue eye colouring, but on the other hand the nearby

OCA2 seems to be the one actually controlling the eye pigmentation. According

to studies (e.g. (Eiberg et al., 2008)), a region in HERC2 was found to regulate the

activity of the OCA2 gene. Furthermore, in (Hubacek et al., 2017) a list of alleles

was presented, suggested to be responsible for the blue eye variant. Therefore, we

analysed the region containing these two genes, if elevated linkage can be observed
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in particular between these regions for the three European population. Our result

showed, that indeed tLD seemed to be elevated in particular in regions between

three alleles mentioned in (Hubacek et al., 2017) located within the OCA2 gene and

the (whole) HERC2 gene, (see FIGURE 5.6). However, tLD is contiguously high in

the regions containing the HERC2 and OCA2 gene. Therefore, not directly the three

alleles might be responsible for the observed strong signal in this region, since these

are very closely located to the HERC2 gene. Nevertheless, the difference of strength

of signals between the classical and the topological LD in this region is tremendous,

in particular for gene HERC2, even for the African population YRI. Whilst signals

for the classical LD are rather restrained, tLD is quite strong in this region.

Summing up, tLD offers a new method for measuring linkage between two loci,

which only relies on the genealogical tree topology. Signals from tLD are stronger

to be observed. Since tLD decreases slower than classical LD with distance, it may

be more suitable to detect linkage disequilibrium in a long-range. To investigate this

in detail on experimental data is reserved for future perspectives. One constraint for

the tLD is, similar to the LRT3-test, that its reliability is dependent on how well the

estimation of tree topology is. As we have seen in section 3.2.1, chapter 3, the assign-

ment of the clusters agrees very well to the true one, given that the correct cluster

size was estimated. Whilst for the T3-test preference is given to the balanced tree in

not clearly resolvable cases for the test being conservative, for tLD this factor does

not need to be taken into account. Furthermore in contrast to the LRT3-test, one only

needs to consider the first ’clustering step’; namely at the root of the tree (MRCA)

dividing the sample into the two cluster. As such, in this case it might be less com-

plex (compared to the case of the LRT3-test) to establish a more suitable clustering

method for the use of tLD. One might take the cluster assignment of neighbouring

windows into account, when estimating the actual tree topology. We propose that as

a further future project.
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A.1 Derivation of test statistic T3

In the following, we re-capitulate from (Li and Wiehe, 2013) how the test statistic T3

was derived. Here, we will provide a somewhat more detailed derivation for the

formulas.

Let p(n, ω1) := Prob(Ω1 = ω1) =
2−δω1,n/2

n−1 , where δ.,. denotes the Kronecker symbol.

We will show the calculations for n even. (Same approach, if n uneven).

By applying the formula

n

∑
k=1

k =
n(n + 1)

2

in the third line, one can derive the expectation

E[Ω1] =
n/2

∑
ω1=1

ω1 p(n, ω1)

= 1 · 2
n− 1

+ 2 · 2
n− 1

+ ... +
(n

2
− 1
)
· 2

n− 1
+

n
2
· 1

n− 1

=
2

n− 1

 n−2
2

∑
k=1

k

+
n
2
· 1

n− 1

=
2

n− 1
· n2 − 2n

8
+

n
2
· 1

n− 1

=
1

n− 1

(
n2 − 2n + 2n

4

)
=

n2

4(n− 1)
≈ n

4
.

The variance is then calculated like following.

By applying the formula

n

∑
k=1

k2 =
n(n + 1)(2n + 1)

6
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in the third line, one gets

V[Ω1] =
n/2

∑
ω1=1

ω2 p(n, ω1)− (E[Ω1])
2

=

(
12 · 2

n− 1
+ 22 · 2

n− 1
+ ... +

(n
2
− 1
)2
· 2

n− 1
+
(n

2

)2
· 1

n− 1

)
−
(

n2

4(n− 1)

)2

=

 2
n− 1

n−2
2

∑
k=1

k2 +
n2

4
· 1

n− 1

− n4

16(n− 1)2

=

(
2

n− 1

(
1
6

(
n− 2

2

(
n− 2

2
+ 1
)(

2(n− 2)
2

+ 1
)))

+
n2

4
· 1

n− 1

)
− n4

16(n− 1)2

= ... =
n4 − 4n3 + 8n2 − 8n

48(n− 1)2

=
(n2 − 2n)(4 + n2 − 2n)

48(n− 1)2

=
(n− 2)n(4 + (n− 2)n)

48(n− 1)2 ≈ n2

48

And the standard variation is the square root of the variance

σ(Ω1) ≈
n

2
√

12
.

Note that Ωi depends on Ωj, j = 1, ..., i− 1, ni = n−ω1 −ω2 − ...ωi−1.

In a similar calculation like for E[Ω1], one gets for E[Ω2]

E[Ω2] =

n
2

∑
ω1=1

p(n1, ω1)

n2
2

∑
ω2=1

ω2 p(n2, ω2)

=

n
2

∑
ω1=1

p(n1, ω1)
n2

2
4(n2 − 1)

≈
n
2

∑
ω1=1

p(n1, ω1)
n2

4

=

n
2

∑
ω1=1

p(n1, ω1)
(n−ω1)

4

=
n(3n− 4)
16(n− 1)

≈ 3n
16

=
31n
42 .

In a similar way by evaluating sums iteratively one gets

E[Ω3] ≈ 9n
64 = 32n

43 , E[Ω4] ≈ 33n
44 , etc, and hence

E[Ωi] ≈
3i−1n

4i .
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With similar calculations, it follows

V[Ωi] ≈
1
3

(
1− 3i−1n

41

)2

.

Let now Ω∗1 := 2Ω1/n be the nomalised random variables.

Since n is constant, it can be easily deduced that

E[Ω∗1 ] = E[2Ω1/n] =
2
n

E[Ω1] ≈
1
2

V[Ω∗1 ] = V[2Ω1/n] =
(

2
n

)2

V[Ω1] ≈
1
12

and hence σ(Ω1) ≈
√

1
12 .

Furthermore, it holds that

E[Ω∗i ] ≈
E[2Ωi]

E[ni]
=

1
2

,

with (by using the geometric series)

E[ni] = E[n−Ω1 − ...−Ωi−1]

≈ n− 30n
41 − ...− 3i−2n

4i−1

= n

(
1−

i−2

∑
k=0

(
3k

4k+1

))

= n

(
1− 1

4

(
1− 3

4
i−1

1− 3
4

))
= n

(
3
4

)i−1

.

Similar calculations give

V[Ω∗i ] =
1

12
+

1
n2

(
4
3

)2i

− 2
3n

(
4
3

i−1
)
≈ 1

12
.

and hence

σ[Ω∗i ] =

√
1
12

.

A key result from probability theory is the central limit theorem, which states that

the sum of continuous uniforms converges in distribution to a normal random vari-

able. Hence, applying this and substitute the expectation and standard variation by
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previously results, we arrive at

N (0, 1) ∼
√

1
k
·

k

∑
i=1

(Ω∗i − E(Ω∗i ))
σ(Ω∗i )

=

√
12
k
·

k

∑
i=1

(
Ω∗i −

1
2

)
=: Tk.
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# (segregating sites) average Ω̂∗1 average Ω̂∗2 average Ω̂∗3
1 0.21316 - -
2 0.75999 0.3134 -
3 0.68913 0.3597 0.1372
4 0.61238 0.6035 0.2365
5 0.59287 0.6686 0.3259
6 0.58012 0.6664 0.4132
7 0.58306 0.6296 0.48613
8 0.57957 0.6189 0.5528
9 0.57788 0.5962 0.5959
10 0.56375 0.5722 0.628
12 0.56263 0.58 0.6151
15 0.56933 0.57529 0.5611
20 0.54727 0.56425 0.5752
30 0.54699 0.5569 0.5485
40 0.54251 0.5468 0.5436

TABLE A.1: Average Ω̂∗1 , Ω̂∗2 , Ω̂∗3 out of 1, 000 runs for each scenario, conditioned on the
number of segregating sites used for estimating Ω̂∗1 . For illustration see FIGURE 3.7
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FIGURE A.1: Correlation based on simulations of the test statistic T3 of the true tree.
Pearson’s correlation coefficient is measured between pairs of T3-values of trees at position
0 and a position x kb distance away from position 0. In the selected sweep scenario,
position 0 refers to the position of the selected site. Average of 1,000 runs.
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A.2 T3-distribution along chromosome: Migration events

Sampling scheme: n1 = 200, n2 = 0

T3, known tree topology:

T3, estimated tree topology:

.

FIGURE A.2: Distribution of T3 along chromosome. Admixed population. Sample size of
sub-population n1 = 200 and n2 = 0. Result from 1000 simulation runs. Populations
simulated with ms, parameters see section 3.3.
Left: 4Nm = 4. Middle: 4Nm = 0.4. Right: 4Nm = 0.04.
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Sampling scheme: n1 = 180, n2 = 20

T3, known tree topology:

T3, estimated tree topology:

.

FIGURE A.3: Distribution of T3 along chromosome. Admixed population. Sample size of
sub-population n1 = 180 and n2 = 20. Result from 1000 simulation runs. Populations
simulated with ms, parameters see section 3.3.
Left: 4Nm = 4. Middle: 4Nm = 0.4. Right: 4Nm = 0.04.
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Sampling scheme: n1 = 195, n2 = 5

T3, known tree topology:

T3, estimated tree topology:

.

FIGURE A.4: Distribution of T3 along chromosome. Admixed population. Sample size of
sub-population n1 = 195 and n2 = 5. Result from 1000 simulation runs. Populations
simulated with ms, parameters see section 3.3.
Left: 4Nm = 4. Middle: 4Nm = 0.4. Right: 4Nm = 0.04.
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A.3 LRT3: Migration event n1 = 180 and n2 = 20
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FIGURE A.5: On the left side: cumulative distribution of LRT3 . On the right side: Density
plot of LRT3 .

LRT3: Migration event n1 = 195 and n2 = 5
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FIGURE A.6: On the left side: cumulative distribution of LRT3 . On the right side: Density
plot of LRT3 .
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B.1 Analysis of candidate regions



112 Appendix B. Chapter 4

ch
ro

m
os

om
e

PO
P

To
ta

l
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
X

A
C

B
21

0
16

18
10

21
19

8
11

12
9

11
6

11
7

4
1

9
2

4
6

2
1

5
17

A
SW

20
3

16
14

12
15

6
15

10
9

12
9

10
17

5
3

1
11

4
5

0
4

2
3

20
ES

N
21

2
24

17
13

17
8

13
9

18
16

3
7

15
4

7
6

5
4

3
5

2
0

3
13

G
W

D
23

4
13

20
14

27
17

11
14

14
10

10
10

7
5

4
0

8
4

6
8

7
2

3
20

LW
K

20
2

16
17

5
15

14
18

9
5

11
4

11
19

7
5

3
5

2
3

4
6

0
9

14
M

SL
20

0
19

16
12

17
13

9
9

9
11

9
4

11
4

4
2

5
9

3
5

3
0

7
19

Y
R

I
24

0
16

15
17

19
16

18
17

16
14

9
4

13
4

4
4

6
10

5
6

7
0

3
17

C
EU

41
3

36
36

22
33

27
28

19
22

21
22

20
25

14
9

14
13

6
11

5
5

5
3

17
FI

N
42

8
26

37
30

34
26

32
22

25
16

17
23

30
13

10
18

11
5

9
5

8
7

4
20

G
B

R
40

5
39

40
35

27
26

33
18

18
18

15
18

24
11

8
9

12
9

12
5

6
4

5
13

IB
S

42
9

36
36

24
37

24
27

22
26

18
21

20
21

16
15

13
12

10
10

5
7

4
3

22
T

SI
43

3
31

43
29

40
31

25
23

19
12

10
29

12
20

10
20

10
10

8
6

13
6

3
23

C
D

X
42

1
34

52
29

23
26

16
21

28
19

20
22

21
17

9
14

5
10

14
3

4
8

3
23

C
H

B
37

8
24

31
30

24
29

18
27

19
13

19
20

22
15

10
11

6
9

12
6

9
4

1
19

C
H

S
44

0
33

44
31

21
33

28
25

30
19

21
22

18
14

12
14

7
12

8
5

9
10

7
17

JP
T

44
0

39
45

37
23

26
23

23
19

12
16

25
28

16
10

21
8

13
12

5
7

5
5

22
K

H
V

40
6

26
36

31
24

24
27

34
22

17
14

22
15

12
13

8
8

10
15

5
9

7
6

21
B

EB
40

5
25

37
25

31
18

28
25

23
17

17
25

22
16

12
13

8
8

14
8

9
4

2
18

G
IH

40
9

28
45

39
29

23
22

24
28

18
18

16
23

11
11

10
4

7
11

7
10

5
4

16
IT

U
37

8
26

31
31

33
24

23
26

19
15

19
26

14
11

10
8

4
7

9
6

6
5

2
23

PJ
L

40
9

30
36

29
31

22
31

25
29

16
13

19
18

12
14

12
8

10
9

9
6

4
4

22
ST

U
39

9
33

33
31

34
25

28
20

21
15

16
23

22
13

12
10

5
9

9
6

3
2

2
27

C
LM

34
8

29
28

26
18

20
23

22
17

13
11

17
25

7
10

11
15

6
5

7
7

4
2

25
M

X
L

34
9

26
24

29
28

24
20

27
16

12
14

22
19

11
14

7
7

3
11

6
5

5
2

17
PE

L
36

7
34

27
26

30
23

24
17

21
12

16
19

19
16

15
8

4
12

5
3

9
4

4
19

PU
R

32
6

27
24

31
20

13
13

18
18

18
12

17
14

12
8

3
16

7
12

9
7

7
1

19

FI
G

U
R

E
B

.1
:N

um
be

rs
of

ca
nd

id
at

e
re

gi
on

s
fo

un
d

on
ea

ch
ch

ro
m

os
om

e
an

d
in

ea
ch

po
pu

la
ti

on
.R

eg
io

ns
sp

an
be

tw
ee

n
55

kb
an

d
78

5
kb

.



B.1. Analysis of candidate regions 113

Population Total number of
candidate genes

Private to population

ACB 619 51
ASW 657 52
ESN 679 86

GWD 739 156
LWK 533 89
MSL 520 87
YRI 728 98
CEU 1348 217
FIN 1442 296
GBR 1287 117
IBS 1369 141
TSI 1392 133

CDX 1122 209
CHB 1243 158
CHS 1257 189
JPT 1278 329

KHV 1185 160
BEB 1159 105
GIH 1288 162
ITU 1153 101
PJL 1245 94
STU 1181 104
CLM 1001 133
MXL 1124 143
PEL 1163 240
PUR 1037 244

TABLE B.1: Numbers of all genes identified with LRT3 ≥ 15 per population.

Population Total number of
protein-coding genes

Private to population

ACB 263 21
ASW 266 21
ESN 309 40

GWD 323 63
LWK 217 24
MSL 229 34
YRI 338 42
CEU 593 109
FIN 558 96
GBR 594 49
IBS 564 56
TSI 568 47

CDX 426 71
CHB 559 75
CHS 498 65
JPT 514 126

KHV 490 57
BEB 487 40
GIH 541 57
ITU 494 40
PJL 558 38
STU 487 33
CLM 438 50
MXL 451 55
PEL 461 91
PUR 468 113

TABLE B.2: Numbers of protein-coding genes identified with LRT3 ≥ 15 per population.
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B.2 Top candidates (LRT3 > 200), previously known candi-

dates

In the following table, we show an overview of which of the protein-coding genes

found in our ’Top Regions’ (LRT3-score > 200 in TABLE 4.3) were previously men-

tioned in other studies (column 5). The comparison was done using dbPSHP (Li

et al., 2014a) and a more recent candidate gene list from Schrider and Kern, 2017.

Whilst in TABLE 4.3 the population possessing the LRT3 > 200 is listed (underlined

in column 5), this table also shows when these genes were candidates for other pop-

ulations.

CHR Position Gene Found in populations using
LRT3

Found in other studies

chr8 10,983,980-10,987,745 AF131215.5 CDX, CHB, CHS, JPT, KHV (Schrider and Kern, 2017)

chr10 75,134,859-75,173,834 ANXA7 FIN, GBR, IBS, MXL, TSI (Carlson et al., 2005), (Kelley

et al., 2006), (Cai et al., 2011),

(Mendizabal et al., 2012), (Liu et

al., 2013)

chr4 106,473,777-106,629,250 ARHGEF38 BEB, CDX, FIN, GBR, GIH,

KHV, PJL

(Zhang et al., 2006), (Oleksyk et

al., 2008), (Grossman et al., 2013)

chr14 67,761,088-67,826,982 ATP6V1D CEU, FIN, GBR, IBS, TSI (Oleksyk et al., 2008), (Han and

Abney, 2013), (Wagh et al., 2012),

(Liu et al., 2013), (Schrider and

Kern, 2017)

chr4 42,112,955-42,154,895 BEND4 CDX, CHB, CHS, GIH, JPT,

KHV, STU, TSI

(Barreiro et al., 2008), (Lap-

palainen et al., 2010), (Grossman

et al., 2010), (Grossman et al.,

2013), (Liu et al., 2013)

chr1 51,567,906-51,613,752 C1orf185 BEB, CEU, CLM, FIN, GBR,

GIH, ITU, PEL, PJL, PUR

(Higasa et al., 2009), (Liu et al.,

2013)

chr2 109,403,213-109,501,933 CCDC138 CDX, CHB, CHS, KHV (Grossman et al., 2010), (Liu et

al., 2013)

chr8 42,607,763-42,651,535 CHRNA6 CEU, GIH, IBS, PUR, TSI (Oleksyk et al., 2008)

chr15 64,199,235-64,364,232 DAPK2 CDX, CHB, CHS, JPT, KHV (Carlson et al., 2005),

(Williamson et al., 2007), (Tang,

Thornton, and Stoneking, 2007),

(Higasa et al., 2009), (Lopez

Herraez et al., 2009), (Cai et al.,

2011), (Liu et al., 2013)

chr1 100,652,475-100,715,390 DBT BEB, FIN, GIH, IBS, ITU, MXL,

PEL

(Kelley et al., 2006)

chr4 41,983,713-41,988,476 DCAF4L1 CDX, CHB, CHS, FIN, GIH, ITU,

JPT, KHV, MXL, STU, TSI

(Barreiro et al., 2008), (Grossman

et al., 2013), (Liu et al., 2013),

(Schrider and Kern, 2017)

chr10 75,007,118-75,036,742 DNAJC9 FIN, GBR, IBS, MXL, TSI (Carlson et al., 2005), (Kelley

et al., 2006), (Williamson et al.,

2007), (Mendizabal et al., 2012),

(Liu et al., 2013)

chr10 74,889,913-74,928,813 ECD FIN, GBR, IBS, MXL, TSI (Oleksyk et al., 2008), (Cai et al.,

2011), (Mendizabal et al., 2012),

(Liu et al., 2013)
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chr2 109,510,927-109,605,828 EDAR CDX, CHB, CHS, JPT, KHV (Akey et al., 2002), (Carlson et

al., 2005), (Kelley et al., 2006),

(Williamson et al., 2007), (Tang,

Thornton, and Stoneking, 2007),

(Frazer et al., 2007), (Sabeti et

al., 2007), (Fujimoto et al., 2008),

(Barreiro et al., 2008), (Bryk et

al., 2008), (Lopez Herraez et al.,

2009), (Grossman et al., 2010),

(Chun and Fay, 2011), (Peter,

Huerta-Sanchez, and Nielsen,

2012), (Kamberov et al., 2013),

(Grossman et al., 2013), (Liu

et al., 2013), (Tan et al., 2013),

(Hider et al., 2013)

chr14 67,826,714-67,853,233 EIF2S1 CEU, FIN, GBR, IBS, TSI (Oleksyk et al., 2008), (Han and

Abney, 2013), (Wagh et al., 2012),

(Liu et al., 2013)

chr1 51,819,935-51,985,000 EPS15 ASW, BEB, CEU, CLM, FIN,

GBR, GIH, ITU, MXL, PEL, PJL,

PUR, STU

(Han and Abney, 2013), (Liu et

al., 2013)

chr10 74,927,924-75,004,262 FAM149B1 FIN, GBR, IBS, MXL, TSI (Cai et al., 2011), (Mendizabal et

al., 2012), (Liu et al., 2013)

chr14 67,656,110-67,695,267 FAM71D CEU, FIN, GBR, IBS, TSI (Oleksyk et al., 2008), (Wagh et

al., 2012), (Liu et al., 2013)

chr15 63,889,552-63,894,627 FBXL22 CDX, CHB, CHS, JPT, KHV (Carlson et al., 2005), (Barreiro et

al., 2008), (Higasa et al., 2009),

(Lopez Herraez et al., 2009), (Cai

et al., 2011), (Liu et al., 2013),

(Karlsson et al., 2013)

chr8 42,889,337-42,940,931 FNTA ASW, CEU, GBR, GIH, IBS, ITU,

PJL, PUR, TSI, YRI

(Oleksyk et al., 2008)

chr2 109,065,017-109,125,871 GCC2 CDX, CHB, CHS, KHV (Carlson et al., 2005), (Kelley et

al., 2006), (Frazer et al., 2007),

(Sabeti et al., 2007), (Barreiro

et al., 2008), (Kudaravalli et al.,

2009), (Grossman et al., 2010),

(Grossman et al., 2013), (Liu et

al., 2013)

chr14 66,974,125-67,648,520 GPHN CEU, FIN, GBR, IBS, TSI (Oleksyk et al., 2008), (Liu et al.,

2013)

chr4 106,629,935-106,768,885 GSTCD BEB, CDX, FIN, GBR, GIH,

KHV, PJL

(Barreiro et al., 2008), (Grossman

et al., 2010), (Liu et al., 2013),

(Karlsson et al., 2013)

chr15 63,900,817-64,126,141 HERC1 CDX, CHB, CHS, JPT, KHV (Carlson et al., 2005), (Kelley

et al., 2006), (Williamson et

al., 2007), (Tang, Thornton, and

Stoneking, 2007), (Sabeti et al.,

2007), (Barreiro et al., 2008), (Hi-

gasa et al., 2009), (Grossman

et al., 2010), (Cai et al., 2011),

(Waldman et al., 2011), (Gross-

man et al., 2013), (Liu et al.,

2013), (Karlsson et al., 2013)
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chr8 42,752,075-42,885,682 HOOK3 ASW, CEU, GBR, GIH, IBS, ITU,

PJL, PUR, TSI, YRI

(Oleksyk et al., 2008)

chr4 106,603,784-106,817,143 INTS12 BEB, CDX, FIN, GBR, GIH,

KHV, PJL

(Lopez Herraez et al., 2009),

(Grossman et al., 2010), (Liu et

al., 2013), (Karlsson et al., 2013)

chr4 41,361,624-41,702,061 LIMCH1 CDX, CHS (Barreiro et al., 2008), (Higasa et

al., 2009), (Lopez Herraez et al.,

2009), (Mizuno et al., 2010)

chr2 109,150,857-109,303,702 LIMS1 CDX, CHB, CHS, KHV (Carlson et al., 2005), (Frazer et

al., 2007), (Sabeti et al., 2007),

(Barreiro et al., 2008), (Grossman

et al., 2010), (Zhong et al., 2010),

(Grossman et al., 2013), (Liu et

al., 2013)

chr3 154,741,913-154,901,497 MME BEB, CHB, CLM, FIN, GBR,

GIH, IBS, MXL, PEL, PJL, PUR,

TSI

(Schrider and Kern, 2017)

chr14 67,707,826-67,802,536 MPP5 CEU, FIN, GBR, IBS, TSI (Oleksyk et al., 2008), (Wagh

et al., 2012), (Liu et al., 2013),

(Schrider and Kern, 2017)

chr10 75,391,412-75,401,515 MYOZ1 FIN, GBR, IBS, MXL, TSI (Grossman et al., 2013), (Liu et

al., 2013)

chr12 44,902,058-45,315,631 NELL2 BEB, FIN, GIH, ITU, MXL, PEL,

PJL, STU

(Oleksyk et al., 2008), (Lopez

Herraez et al., 2009), (Chen, Pat-

terson, and Reich, 2010), (Wagh

et al., 2012), (Liu et al., 2013)

chr5 43,602,794-43,707,507 NNT ACB, BEB, CEU, CLM, FIN,

GBR, GIH, IBS, ITU, MXL, PJL,

STU, TSI

(Mendizabal et al., 2012), (Wagh

et al., 2012), (Liu et al., 2013)

chr10 55,562,531-57,387,702 PCDH15 CDX, CHB, CHS, JPT (Williamson et al., 2007), (Frazer

et al., 2007), (Sabeti et al., 2007),

(Barreiro et al., 2008), (Grossman

et al., 2010), (Zhong et al., 2010),

(Chun and Fay, 2011), (Gross-

man et al., 2013), (Liu et al.,

2013), (Schrider and Kern, 2017)

chr4 41,746,099-41,750,987 PHOX2B CDX, CHB, FIN, ITU (Higasa et al., 2009), (Lopez Her-

raez et al., 2009)

chr14 67,853,700-67,878,917 PLEK2 CEU, FIN, GBR, IBS, TSI (Oleksyk et al., 2008), (Lopez

Herraez et al., 2009), (Han and

Abney, 2013), (Wagh et al., 2012),

(Liu et al., 2013)

chr10 75,196,186-75,255,782 PPP3CB FIN, GBR, GWD, IBS, MXL, TSI (Carlson et al., 2005), (Kelley

et al., 2006), (Cai et al., 2011),

(Mendizabal et al., 2012), (Liu et

al., 2013)

chr2 109,335,937-109,402,267 RANBP2 CDX, CHB, CHS, KHV (Carlson et al., 2005), (Kelley

et al., 2006), (Tang, Thornton,

and Stoneking, 2007), (Frazer et

al., 2007), (Sabeti et al., 2007),

(Grossman et al., 2010), (Liu et

al., 2013)
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chr1 51,701,943-51,739,127 RNF11 BEB, CEU, CLM, FIN, GBR,

GIH, ITU, MXL, PEL, PJL, PUR,

STU

(Storz, Payseur, and Nachman,

2004), (Oleksyk et al., 2008),

(Grossman et al., 2013), (Liu et

al., 2013), (Schrider and Kern,

2017)

chr1 100,731,763-100,758,325 RTCA FIN, IBS, MXL (Higasa et al., 2009), (Liu et al.,

2013)

chr4 41,992,489-42,092,474 SLC30A9 CDX, CHB, CHS, FIN, GIH, ITU,

JPT, KHV, MXL, STU, TSI

(Carlson et al., 2005), (Kelley

et al., 2006), (Williamson et al.,

2007), (Frazer et al., 2007), (Sa-

beti et al., 2007), (Barreiro et al.,

2008), (Higasa et al., 2009), (Lap-

palainen et al., 2010), (Lopez

Herraez et al., 2009), (Grossman

et al., 2010), (Chen, Patterson,

and Reich, 2010), (Grossman et

al., 2013), (Liu et al., 2013),

(Karlsson et al., 2013), (Schrider

and Kern, 2017)

chr2 108,905,095-108,926,371 SULT1C2 CDX, CHB, CHS (Carlson et al., 2005), (Kelley et

al., 2006), (Frazer et al., 2007),

(Barreiro et al., 2008), (Lopez

Herraez et al., 2009), (Grossman

et al., 2013), (Liu et al., 2013)

chr2 108,994,367-109,004,513 SULT1C4 CDX, CHB, CHS, KHV (Lopez Herraez et al., 2009),

(Grossman et al., 2013), (Liu et

al., 2013)

chr10 75,404,639-75,423,561 SYNPO2L FIN, GBR, IBS, MXL, TSI (Grossman et al., 2010), (Gross-

man et al., 2013), (Liu et al.,

2013)

chr8 42,691,817-42,698,468 THAP1 ASW, CEU, GBR, GIH, IBS, ITU,

PUR, TSI, YRI

(Oleksyk et al., 2008)

chr12 44,229,770-44,783,545 TMEM117 BEB, CDX, CEU, CHB, CHS,

CLM, FIN, GBR, GIH, ITU, JPT,

KHV, MXL, PEL, PJL, STU, TSI

(Barreiro et al., 2008), (Lopez

Herraez et al., 2009), (Grossman

et al., 2010), (Zhong et al., 2010),

(Grossman et al., 2013), (Liu et

al., 2013), (Karlsson et al., 2013)

chr4 41,937,137-41,962,589 TMEM33 CDX, CHB, CHS, FIN, GIH, ITU,

JPT, KHV, MXL, STU, TSI

(Carlson et al., 2005),

(Williamson et al., 2007),

(Barreiro et al., 2008), (Higasa

et al., 2009), (Lappalainen et al.,

2010), (Grossman et al., 2010),

(Zhong et al., 2010), (Grossman

et al., 2013), (Liu et al., 2013),

(Karlsson et al., 2013), (Hider

et al., 2013), (Schrider and Kern,

2017)

chr10 75,013,517-75,118,617 TTC18 FIN, GBR, IBS, MXL, TSI (Carlson et al., 2005), (Kelley

et al., 2006), (Williamson et al.,

2007), (Cai et al., 2011), (Mendiz-

abal et al., 2012), (Liu et al., 2013)

chr1 51,752,930-51,810,788 TTC39A BEB, CEU, CLM, FIN, GBR,

GIH, ITU, MXL, PEL, PJL, PUR,

STU

(Liu et al., 2013)
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chr15 63,796,793-63,886,839 USP3 CDX, CHB, CHS, JPT, KHV (Carlson et al., 2005), (Barreiro et

al., 2008), (Higasa et al., 2009),

(Lopez Herraez et al., 2009), (Cai

et al., 2011), (Liu et al., 2013),

(Karlsson et al., 2013)

chr10 75,257,296-75,385,711 USP54 FIN, GBR, GWD, IBS, MXL, TSI (Carlson et al., 2005), (Kelley

et al., 2006), (Mendizabal et al.,

2012), (Liu et al., 2013)

chr8 10,753,555-11,058,875 XKR6 CDX, CHB, CHS, JPT, KHV (Barreiro et al., 2008), (Johansson

and Gyllensten, 2008), (Lopez

Herraez et al., 2009), (Chen, Pat-

terson, and Reich, 2010), (Wagh

et al., 2012), (Liu et al., 2013),

(Schrider and Kern, 2017)
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B.3 Top ten candidate regions per population

In the following we provide a list containing the ’Top Ten candidate region’ for each
26 population and respective genes. To extract the genes, we additionaly expand
significant regions with 25kb on each side (shown here). Overlapping regions are
put together to one region. To extract the genes, we used the R package biomaRt
(Smedley et al., 2015). We used the coordinates for human genome build hg19 for
our data, to which phase 3 of the 1,000 Genomes Project is mapped.

Top ten candidate regions for population ACB

ACB

CHR Start END max LR Coding Noncoding size in kb

chr12 87287384 87744884 288.854 RPL23AP68 457.5

chr20 20387585 20787585 213.416 RALGAPA2 EIF4E2P1, RP11-

23O13.1, RN7SL607P

400

chr4 107603887 107961387 134.471 DKK2 ACTR6P1 357.5

chr13 52797838 53337838 105.848 THSD1, VPS36, CKAP2,

HNRNPA1L2, SUGT1,

LECT1

RP11-248G5.8,

TPTE2P2, RP13-

444H2.1, RNY4P24,

LINC00345, RP11-

78J21.4, TPTE2P3,

MRPS31P4

540

chrX 41326170 41821170 102.353 NYX, CASK, GPR34,

GPR82

RP1-169I5.4, CASK-

AS1, RNU6-1321P,

RN7SL406P, RP11-

204C16.4, RN7SL144P,

RP5-1174J21.2, RP5-

1174J21.1, RNU6-202P

495

chr12 113512384 113729884 99.7771 DTX1, RASAL1,

CCDC42B, DDX54,

RITA1, IQCD, TPCN1

Y_RNA, AC089999.1,

Y_RNA, RP11-545P7.4

217.5

chr5 15345539 15553039 97.9321 FBXL7 MARK2P5, CTD-

2313D3.1

207.5

chr17 26268542 26558542 93.5331 NLK RP11-218F4.1,

SCARNA20, RP11-

218F4.2, SNORA70,

Vault, RPS29P22,

AC100852.2,

AC100852.1,

AC061975.9,

AC061975.1, CTD-

2008P7.10, AC061975.7,

PYY2

290

chr12 113764884 113872384 93.7354 SLC8B1, PLBD2, SDS,

SDSL

NONP 107.5

chr12 88009884 88192384 89.801 RP11-248E9.1,

CYCSP30, RP11-

248E9.4, MKRN9P,

RP11-248E9.5

182.5
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Top ten candidate regions for population ASW

ASW

CHR Start END max LR Coding Noncoding size in kb

chr2 194653645 195356145 200.98 RP11-764E7.1,

AC068135.1, GLULP6,

HNRNPA1P47,

AC018799.1,

AC106883.1

702.5

chr12 113512384 113934884 177.352 DTX1, RASAL1,

CCDC42B, DDX54,

RITA1, IQCD, TPCN1,

SLC8B1, PLBD2, SDS,

SDSL, LHX5

Y_RNA, AC089999.1,

Y_RNA, RP11-545P7.4,

RP11-82C23.2

422.5

chr20 20390201 20807701 159.512 RALGAPA2 EIF4E2P1, RP11-

23O13.1, RN7SL607P

417.5

chr10 134231660 134629160 144.211 C10orf91, INPP5A,

NKX6-2, TTC40

RP11-432J24.2, RP11-

432J24.3, RP11-432J24.5,

LINC01165, RP11-

288G11.3

397.5

chr8 36018715 36383715 121.145 RN7SKP201, RP11-

593P24.2, MTND6P19,

RP11-593P24.3, RP11-

139F9.1, RNU6-533P,

RP11-593P24.4

365

chr12 87534884 87674884 119.521 RPL23AP68 140

chr9 102258041 102578041 106.81 RP11-547C13.1, RP11-

554F20.1

320

chr8 37363715 37886215 105.415 ZNF703, RP11-

863K10.7, ERLIN2,

PROSC, GPR124, BRF2,

RAB11FIP1, GOT1L1,

ADRB3

RP11-150O12.1, RP11-

150O12.6, RP11-

150O12.5, RP11-

150O12.3, RP11-

150O12.4, RP11-

346L1.2, RNU6-607P,

RP11-863K10.2, RP11-

863K10.4, RN7SL709P,

AC144573.1, KB-

1836B5.3

522.5

chr5 15323039 15553039 96.7048 FBXL7 MARK2P5, CTD-

2313D3.1

230

chr13 53075338 53337838 92.4284 HNRNPA1L2, SUGT1,

LECT1

TPTE2P3, MRPS31P4 262.5
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Top ten candidate regions for population ESN

ESN

CHR Start END max LR Coding Noncoding size in kb

chr12 87274884 87754884 277.14 RPL23AP68 480

chr13 52772838 53332838 149.988 THSD1, VPS36, CKAP2,

HNRNPA1L2, SUGT1,

LECT1

RP11-248G5.8,

TPTE2P2, RP13-

444H2.1, RNY4P24,

LINC00345, RP11-

78J21.4, TPTE2P3,

MRPS31P4

560

chr4 46385167 46765167 144.487 GABRA2, COX7B2 RP11-436F23.1, RNU6-

412P, RAC1P2

380

chr4 107602667 107957667 137.085 DKK2 ACTR6P1 355

chr4 87387667 87637667 127.596 MAPK10, PTPN13 MIR4452 250

chr16 22921947 23274447 115.999 HS3ST2, USP31,

SCNN1G

RP11-20G6.2, RP11-

20G6.3, CTC-391G2.1

352.5

chr2 31862995 32115495 106.936 MEMO1, DPY30 AL133247.3,

AL133249.1,

AL121652.2, KRT18P52,

AL121652.3, AK2P2,

RP11-1057B6.1

252.5

chrX 10928670 11163670 105.113 HCCS, ARHGAP6 RP11-120D5.1, Y_RNA 235

chr20 20390085 20787585 102.184 RALGAPA2 EIF4E2P1, RP11-

23O13.1, RN7SL607P

397.5

chr12 113509884 113717384 97.5442 DTX1, RASAL1,

CCDC42B, DDX54,

RITA1, IQCD, TPCN1

Y_RNA, AC089999.1,

Y_RNA, RP11-545P7.4

207.5
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Top ten candidate regions for population GWD

GWD

CHR Start END max LR Coding Noncoding size in kb

chr12 87214884 87727384 199.606 MGAT4C RP11-202H2.1,

RPL23AP68

512.5

chr20 20387701 20775201 189.438 RALGAPA2 EIF4E2P1, RP11-

23O13.1, RN7SL607P

387.5

chr7 44363084 44593084 134.381 CAMK2B, NUDCD3,

NPC1L1

AC004453.8, RNU6-

1097P, AC004938.5

230

chr7 44248084 44360584 110.847 YKT6, CAMK2B NONP 112.5

chr12 113532384 113729884 97.3028 DTX1, RASAL1,

CCDC42B, DDX54,

RITA1, IQCD, TPCN1

Y_RNA, AC089999.1,

Y_RNA, RP11-545P7.4

197.5

chr6 45095100 45470100 95.9692 SUPT3H, RUNX2 RP11-491H9.3, MIR586,

RP1-244F24.1

375

chr3 51257726 51742726 94.0139 DOCK3, MANF,

RBM15B, VPRBP,

RAD54L2, TEX264,

GRM2

RP11-89F17.5,

RNU6ATAC29P,

RNA5SP132

485

chr4 107602667 107852667 92.9184 DKK2 ACTR6P1 250

chr7 141205584 141460584 91.1882 AGK, KIAA1147, WEE2,

SSBP1

RP11-744I24.3, RP11-

744I24.2, RP5-894A10.2,

RP5-894A10.6, WEE2-

AS1, RNU1-82P

255

chr17 26321073 26568573 90.1225 NLK SCARNA20, RP11-

218F4.2, SNORA70,

Vault, RPS29P22,

AC100852.2,

AC100852.1,

AC061975.9,

AC061975.1, CTD-

2008P7.10, AC061975.7,

PYY2, CTD-2008P7.9,

AC061975.6

247.5
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Top ten candidate regions for population LWK

LWK

CHR Start END max LR Coding Noncoding size in kb

chr12 87297384 87712384 251.482 RPL23AP68 415

chr4 87317667 87652667 115.258 MAPK10, PTPN13 MIR4452 335

chr4 107565167 107962667 108.496 DKK2 ACTR6P1 397.5

chr10 134319084 134601584 106.023 INPP5A, NKX6-2 RP11-432J24.5,

LINC01165, RP11-

288G11.3

282.5

chrX 41346170 41786170 90.2757 CASK, GPR34, GPR82 CASK-AS1, RNU6-

1321P, RN7SL406P,

RP11-204C16.4,

RN7SL144P, RP5-

1174J21.2, RP5-

1174J21.1, RNU6-202P

440

chrX 51643670 51796170 89.2977 MAGED1, RP11-

114H20.1

RP11-234P3.2, IPO7P1,

RP11-234P3.4, TPMTP3

152.5

chr3 164787719 164972719 87.5841 SI, SLITRK3 Y_RNA, RP11-

747D18.1, RP11-

85M11.2

185

chr12 87219884 87274884 86.5546 MGAT4C RP11-202H2.1 55

chrX 51933670 52121170 85.2387 MAGED4, RP11-

363G10.2, XAGE2B

SNORA11D 187.5

chr4 148027667 148280167 85.2685 MIR548G 252.5

Top ten candidate regions for population MSL

MSL

CHR Start END max LR Coding Noncoding size in kb

chr12 87287384 87694884 258.439 RPL23AP68 407.5

chr4 107610167 107847667 130.319 DKK2 ACTR6P1 237.5

chr4 46367667 46760167 128.475 GABRA2, COX7B2 RP11-436F23.1, RNU6-

412P, RAC1P2

392.5

chr4 107850167 107977667 122.342 DKK2 NONP 127.5

chr10 134341660 134629160 119.781 INPP5A, NKX6-2,

TTC40

RP11-288G11.3 287.5

chr19 42644984 42832484 101.582 POU2F2, DEDD2,

ZNF526, GSK3A,

AC006486.9,

AC006486.1, ERF, CIC,

PAFAH1B3, PRR19,

TMEM145, MEGF8

SNORD112, CTC-

378H22.2, AC010247.1

187.5

chr19 42432484 42625984 97.6973 ARHGEF1, RABAC1,

ATP1A3, GRIK5,

ZNF574, POU2F2

CTB-59C6.3 193.5

chr12 87187384 87259884 96.6737 MGAT4C RP11-202H2.1 72.5

chr16 22934413 23284413 94.2207 USP31, SCNN1G RP11-20G6.2, RP11-

20G6.3, CTC-391G2.1

350

chr3 51082725 51517725 93.8023 DOCK3, MANF,

RBM15B, VPRBP

RP11-89F17.5 435
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Top ten candidate regions for population YRI

YRI

CHR Start END max LR Coding Noncoding size in kb

chr4 107602667 107965167 168.048 DKK2 ACTR6P1 362.5

chr13 52732838 53332838 146.15 NEK3, THSD1, VPS36,

CKAP2, HNRNPA1L2,

SUGT1, LECT1

MRPS31P5, RP11-

248G5.8, TPTE2P2,

RP13-444H2.1,

RNY4P24, LINC00345,

RP11-78J21.4, TPTE2P3,

MRPS31P4

600

chr16 22931947 23229447 134.081 USP31, SCNN1G RP11-20G6.2, RP11-

20G6.3, CTC-391G2.1

297.5

chr12 113502384 113929884 132.876 DTX1, RASAL1,

CCDC42B, DDX54,

RITA1, IQCD, TPCN1,

SLC8B1, PLBD2, SDS,

SDSL, LHX5

Y_RNA, AC089999.1,

Y_RNA, RP11-545P7.4,

RP11-82C23.2

427.5

chrX 41346170 41826170 127.872 CASK, GPR34, GPR82 CASK-AS1, RNU6-

1321P, RN7SL406P,

RP11-204C16.4,

RN7SL144P, RP5-

1174J21.2, RP5-

1174J21.1, RNU6-202P

480

chr4 46452667 46740167 99.1607 GABRA2, COX7B2 RNU6-412P, RAC1P2 287.5

chr20 20410201 20652701 90.3296 RALGAPA2 EIF4E2P1 242.5

chr12 79434884 79594884 88.3779 SYT1 RP11-390N6.1 160

chr19 38754984 38924984 86.3091 SPINT2, CTB-102L5.4,

C19orf33, YIF1B,

KCNK6, CATSPERG,

PSMD8, GGN, SPRED3,

FAM98C, RASGRP4,

RYR1

Y_RNA, AC026806.2,

snoU13, AC005625.1,

AC005789.9,

AC005789.11

170

chr2 194927995 195200495 85.9595 GLULP6, HN-

RNPA1P47

272.5
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Top ten candidate regions for population CEU

CEU

CHR Start END max LR Coding Noncoding size in kb

chr14 67220445 67897945 247.929 GPHN, FAM71D, MPP5,

ATP6V1D, EIF2S1,

PLEK2

CTD-2560C21.1,

RP11-862P13.1, RP11-

125H8.1, Y_RNA

677.5

chr8 16193536 16471036 199.825 MSR1 MRPL49P2, RP11-

13N12.2

277.5

chr19 40427484 40689984 186.635 FCGBP, PSMC4,

ZNF546, ZNF780B,

ZNF780A

CTC-471F3.4,

AC007842.1, CTC-

471F3.6, CTC-

471F3.5, AC005614.5,

AC005614.3, VN1R96P

262.5

chr8 15941036 16166036 178.816 MSR1 RP11-447G11.1 225

chr1 51475610 52005610 177.243 C1orf185, RNF11,

TTC39A, EPS15

MIR4421, Y_RNA,

CFL1P2, AL162430.2,

AL162430.1, RP11-

296A18.3, snoU13,

RP11-296A18.5, RP11-

296A18.6, RP11-

275F13.1, RP11-

275F13.3, RNU6-877P,

RP11-253A20.1, RP11-

191G24.1, RNU6-1281P

530

chr1 225048110 225355610 167.216 DNAH14 NONP 307.5

chr11 38073350 38415850 155.019 RP11-436H16.1 342.5

chr11 129788350 130070850 142.815 PRDM10, AP003041.2,

APLP2, ST14

LINC00167, RP11-

567M21.3, TCEB2P2,

RP11-679I18.4,

AP003041.1, RPL34P21

282.5

chr4 176176373 176431373 134.246 RP11-287F9.1, RP11-

287F9.2, RP11-598D14.1,

AC131094.1, TSEN2P1

255

chr5 142055539 142273039 128.967 FGF1, ARHGAP26 AC005592.3,

AC005592.1,

ARHGAP26-AS1

217.5
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Top ten candidate regions for population FIN

FIN

CHR Start END max LR Coding Noncoding size in kb

chr14 67220427 67905427 260.28 GPHN, FAM71D, MPP5,

ATP6V1D, EIF2S1,

PLEK2

CTD-2560C21.1,

RP11-862P13.1, RP11-

125H8.1, Y_RNA

685

chr1 51465610 52033110 203.317 C1orf185, RNF11,

TTC39A, EPS15

MIR4421, Y_RNA,

CFL1P2, AL162430.2,

AL162430.1, RP11-

296A18.3, snoU13,

RP11-296A18.5, RP11-

296A18.6, RP11-

275F13.1, RP11-

275F13.3, RNU6-877P,

RP11-253A20.1, RP11-

191G24.1, RNU6-1281P,

CALR4P

567.5

chr5 43590539 44078039 189.27 NNT NNT-AS1, RPL29P12,

RP11-8L21.1, RNU6-

381P

487.5

chr1 100410610 100785610 186.713 SLC35A3, HIAT1,

SASS6, TRMT13,

LRRC39, DBT, RTCA

RP5-884G6.2, RNU6-

750P, RNU6-1318P,

RP4-714D9.5, RP4-

714D9.2, RP4-714D9.4,

RP11-305E17.7, BRI3P1,

RP11-305E17.4, RP11-

305E17.6, MIR553

375

chr3 129027748 129302748 161.935 H1FX, EFCAB12, MBD4,

IFT122, RHO, H1FOO,

PLXND1

H1FX-AS1, NUP210P3,

RP13-685P2.8, RP13-

685P2.7, RP11-529F4.1,

RPL32P3, SNORA7B

275

chr11 129788350 130083350 148.318 PRDM10, AP003041.2,

APLP2, ST14

LINC00167, RP11-

567M21.3, TCEB2P2,

RP11-679I18.4,

AP003041.1, RPL34P21

295

chr5 96860539 97303039 144.959 RP11-1E3.1, RP11-

72K17.2, RP11-72K17.1,

RP11-455B3.1

442.5

chr1 6298110 6473110 141.297 HES3, GPR153, ACOT7,

HES2

LINC00337, RP1-

202O8.3

175

chr1 6498110 6608110 130.651 ESPN, TNFRSF25,

PLEKHG5, NOL9

RP1-202O8.2, RNU6-

731P, RP11-58A11.2

110

chr14 66610427 66905427 130.313 Y_RNA, RP11-72M17.1 295
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Top ten candidate regions for population GBR

GBR

CHR Start END max LR Coding Noncoding size in kb

chr14 67183154 67930654 276.577 GPHN, FAM71D, MPP5,

ATP6V1D, EIF2S1,

PLEK2, TMEM229B

CTD-2560C21.1,

RP11-862P13.1, RP11-

125H8.1, Y_RNA,

MIR5694

747.5

chr11 37818350 38413350 202.999 RP11-159D8.1, RP11-

436H16.1

595

chr12 44294884 44742384 199.936 TMEM117 RP11-624G19.1, RP11-

46I1.1, RP11-46I1.2

447.5

chr13 64276465 64591465 192.156 AL445989.1 LINC00395, OR7E156P,

RP11-473M10.3, RNU6-

81P, PPP1R2P10, RP11-

394A14.2, OR7E104P,

RP11-394A14.4,

NFYAP1, LINC00355

315

chr5 43798039 44070539 153.104 RP11-8L21.1, RNU6-

381P

272.5

chr7 98853084 99265584 146.374 ARPC1A, ARPC1B,

PDAP1, BUD31, PTCD1,

ATP5J2-PTCD1, CPSF4,

AC073063.1, ATP5J2,

ZNF789, ZNF394,

ZKSCAN5, FAM200A,

ZNF655, GS1-259H13.10,

ZSCAN25, CYP3A5

MYH16, snoU13,

AC073063.10,

AC005020.1, GS1-

259H13.2, GS1-

259H13.7

412.5

chr11 129753350 130053350 146.406 NFRKB, PRDM10,

AP003041.2, APLP2,

ST14

LINC00167, RP11-

567M21.3, TCEB2P2,

RP11-679I18.4,

AP003041.1, RPL34P21

300

chr4 81677667 81955167 141.846 C4orf22, BMP3 NONP 277.5

chr8 16213536 16451036 139.258 MSR1 MRPL49P2 237.5

chr6 121367616 121707616 136.962 TBC1D32 RNU6-1286P, Y_RNA,

RP1-276J11.2

340

Top ten candidate regions for population IBS

IBS

CHR Start END max LR Coding Noncoding size in kb
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chr8 42643536 43378536 233.935 CHRNA6, THAP1,

RNF170, HOOK3, RP11-

598P20.5, FNTA, POMK,

HGSNAT

RN7SL806P, MIR4469,

Y_RNA, RNU1-

124P, RP11-598P20.3,

VN1R46P, RP11-

726G23.2, RP11-

726G23.11, RP11-

359P18.2, RP11-

726G23.3, AFG3L2P1,

RP11-726G23.7, RP11-

726G23.10, RP11-

726G23.8, POTEA,

RNU6-104P, RP11-

726G23.12, AC022616.1,

RP11-726G23.6, U3,

RN7SKP41, RP11-

359P18.1, RP11-

359P18.7, RP11-

359P18.8, SNX18P27

735

chr11 38005850 38423350 233.183 RP11-436H16.1 417.5

chr15 45108305 45438305 198.891 C15orf43, SORD,

DUOX2, DUOXA2,

DUOXA1, DUOX1

CTD-2008A1.2, CTD-

2008A1.1, Y_RNA,

RNU1-119P, CTD-

2014N11.1, CTD-

2014N11.2, RNU6-

1108P, RNU6-1332P,

CTD-2014N11.3, RNU6-

966P, RNU1-78P, RP11-

109D20.1, Y_RNA,

RP11-109D20.2

330

chr10 74916660 75421660 181.979 ECD, FAM149B1,

DNAJC9, MRPS16,

TTC18, ANXA7,

MSS51, PPP3CB, USP54,

MYOZ1, SYNPO2L

Y_RNA, EIF4A2P2,

DNAJC9-AS1, RP11-

152N13.5, RNU6-833P,

snoU13, Y_RNA,

RP11-537A6.9, RP11-

345K20.2, AL353731.1,

RP11-137L10.6, RNU6-

883P, RP11-137L10.5,

RP11-464F9.20, RP11-

464F9.22, RP11-464F9.21

505

chr5 109573039 109955539 155.822 TMEM232 MIR548F3 382.5

chr4 176180167 176522667 149.969 RP11-287F9.1, RP11-

287F9.2, RP11-598D14.1,

AC131094.1, TSEN2P1,

ADAM20P2

342.5

chr1 100428110 100745610 146.109 SLC35A3, HIAT1,

SASS6, TRMT13,

LRRC39, DBT, RTCA

RP5-884G6.2, RNU6-

750P, RNU6-1318P,

RP4-714D9.5, RP4-

714D9.2, RP4-714D9.4,

RP11-305E17.7, BRI3P1,

RP11-305E17.4, RP11-

305E17.6

317.5

chr6 84525116 84775116 142.254 RIPPLY2, CYB5R4,

MRAP2

RP4-676J13.2, RP11-

51G5.1

250

chr3 89835226 90125226 137.575 U3 290
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chr15 44990805 45098305 136.957 PATL2, B2M, TRIM69 NONP 107.5

Top ten candidate regions for population TSI

TSI

CHR Start END max LR Coding Noncoding size in kb

chr14 67213154 67928154 259.153 GPHN, FAM71D, MPP5,

ATP6V1D, EIF2S1,

PLEK2, TMEM229B

CTD-2560C21.1,

RP11-862P13.1, RP11-

125H8.1, Y_RNA,

MIR5694

715

chr11 38005850 38420850 203.257 RP11-436H16.1 415

chr4 176179190 176424190 161.649 RP11-287F9.1, RP11-

287F9.2, RP11-598D14.1,

AC131094.1, TSEN2P1

245

chr10 68916691 69286691 139.343 CTNNA3 RP11-93L14.1 370

chr5 43753039 44048039 136.326 RP11-8L21.1 295

chr15 45107600 45360100 136.935 C15orf43, SORD CTD-2008A1.2, CTD-

2008A1.1, Y_RNA,

RNU1-119P, CTD-

2014N11.1, CTD-

2014N11.2, RNU6-

1108P, RNU6-1332P,

CTD-2014N11.3, RNU6-

966P, RNU1-78P, RP11-

109D20.1, Y_RNA

252.5

chr18 67553346 67918346 131.467 CD226, RTTN NONP 365

chr1 1115610 1448110 124.542 TTLL10, TNFRSF18, TN-

FRSF4, SDF4, B3GALT6,

FAM132A, UBE2J2,

SCNN1D, ACAP3,

PUSL1, CPSF3L,

GLTPD1, TAS1R3,

DVL1, MXRA8, AU-

RKAIP1, CCNL2, RP4-

758J18.2, MRPL20,

ANKRD65, TMEM88B,

VWA1, ATAD3C,

ATAD3B, ATAD3A

RP5-902P8.12, RP5-

902P8.10, RP5-

890O3.9, RP5-890O3.3,

RN7SL657P, RP4-

758J18.13, RP4-758J18.7,

RP4-758J18.10

332.5

chr10 74686691 75299191 121.593 OIT3, PLA2G12B,

P4HA1, NUDT13,

ECD, FAM149B1,

DNAJC9, MRPS16,

TTC18, ANXA7, MSS51,

PPP3CB, USP54

RPL17P50, RP11-

344N10.4, RP11-

344N10.2, Y_RNA,

RP11-344N10.5, RP11-

152N13.16, SNORA11,

Y_RNA, EIF4A2P2,

DNAJC9-AS1, RP11-

152N13.5, RNU6-833P,

snoU13, Y_RNA,

RP11-537A6.9, RP11-

345K20.2, AL353731.1,

RP11-137L10.6, RNU6-

883P, RP11-137L10.5

612.5

chr6 110346839 110674339 120.537 WASF1, CDC40,

METTL24

NONP 327.5
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Top ten candidate regions for population CDX

CDX

CHR Start END max LR Coding Noncoding size in kb

chr4 41515167 42215167 226.39 LIMCH1, PHOX2B,

TMEM33, DCAF4L1,

SLC30A9, BEND4

RP11-227F19.5,

OR5M14P, RP11-

227F19.1, RP11-

227F19.2, RNU1-

49P, HMGB1P28,

LINC00682, RP11-

457P14.5, RP11-

457P14.6, RP11-

814H16.2, ATP1B1P1

700

chr2 108913021 109383021 222.695 SULT1C2, SULT1C4,

GCC2, LIMS1, RANBP2

RP11-443K8.1,

SULT1C2P1, RP11-

465O11.2, RP11-

465O11.1, AC012487.2,

AC010095.5,

AC010095.6,

AC010095.7

470

chr15 63850064 64305064 199.61 USP3, FBXL22, HERC1,

DAPK2

USP3-AS1, RP11-

317G6.1, MIR422A,

RP11-111E14.1

455

chr1 92983116 93438116 167.165 EVI5, RPL5, FAM69A RP4-593M8.1,

HMGB3P9, RNU4-

59P, RP11-330C7.3,

RP11-330C7.4, CCNJP2,

SNORD21, SNORA66,

SNORA66, SNORA51,

RP11-386I23.1, RNU6-

970P

455

chr5 117663039 117963039 161.902 CTD-2281M20.1, RP11-

2N5.2, RP11-2N5.1

300

chr13 64277785 64590285 143.195 AL445989.1 LINC00395, OR7E156P,

RP11-473M10.3, RNU6-

81P, PPP1R2P10, RP11-

394A14.2, OR7E104P,

RP11-394A14.4,

NFYAP1, LINC00355

312.5

chr7 136120584 136395584 142.153 AC009784.3,

AC009541.1, hsa-

mir-490

275

chr8 10735664 11108164 136.764 XKR6, AF131215.5 MIR598, AF131215.6,

AF131215.9,

AF131215.2,

AF131215.3,

AF131215.4,

AF131215.1,

AF131215.8, LINC00529

372.5

chr3 154165096 154435096 135.404 RP11-656A15.1, CTD-

2501O3.2, CTD-

2501O3.3, RPL9P15

270

chr3 17570096 17912596 131.583 TBC1D5 U7, AC104451.2 342.5
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Top ten candidate regions for population CHB

CHB

CHR Start END max LR Coding Noncoding size in kb

chrX 100985920 101448420 241.559 NXF5, ZMAT1, TCEAL2,

TCEAL6, BEX5

RP1-232L22_B.1, RP1-

3E10.2, RNU6-345P,

RP1-197J16.1, RP1-

197J16.2, MTND6P13,

TCP11X3P

462.5

chr2 108905521 109650521 239.56 SULT1C2, SULT1C4,

GCC2, LIMS1, RANBP2,

CCDC138, EDAR

RP11-443K8.1,

SULT1C2P1, RP11-

465O11.2, RP11-

465O11.1, AC012487.2,

AC010095.5,

AC010095.6,

AC010095.7,

AC073415.2

745

chr15 63764703 64337203 237.469 USP3, FBXL22, HERC1,

DAPK2

USP3-AS1, RP11-

317G6.1, MIR422A,

RP11-111E14.1

572.5

chr12 44354884 44699884 226.406 TMEM117 RP11-624G19.1, RP11-

46I1.1, RP11-46I1.2

345

chr3 154167942 154822942 211.634 MME RP11-656A15.1, CTD-

2501O3.2, CTD-

2501O3.3, RPL9P15,

RP11-439C8.1, RP11-

439C8.2

655

chr8 10725271 11112771 205.027 XKR6, AF131215.5 MIR598, AF131215.6,

AF131215.9,

AF131215.2,

AF131215.3,

AF131215.4,

AF131215.1,

AF131215.8, LINC00529

387.5

chr11 25030850 25368350 179.292 LUZP2 RP11-54J7.2 337.5

chr5 116503039 116743039 162.246 RPL35AP15 240

chr10 21454191 21846691 161.865 NEBL, CASC10,

SKIDA1, MLLT10

NEBL-AS1, RP11-

565H13.3, LUZP4P1,

RNU6-15P, RP11-

275N1.1, RNMTL1P1,

Y_RNA, U3, MIR1915

392.5

chr3 17560442 17965442 157.582 TBC1D5 U7, AC104451.2,

AC104297.1, PDCL3P3

405
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Top ten candidate regions for population CHS

CHS

CHR Start END max LR Coding Noncoding size in kb

chr2 108905521 109690521 177.833 SULT1C2, SULT1C4,

GCC2, LIMS1, RANBP2,

CCDC138, EDAR

RP11-443K8.1,

SULT1C2P1, RP11-

465O11.2, RP11-

465O11.1, AC012487.2,

AC010095.5,

AC010095.6,

AC010095.7,

AC073415.2

785

chr13 68170269 68472769 166.673 BCRP9, NPM1P22 302.5

chr16 17424477 17694477 148.044 XYLT1 RP11-916L7.1 270

chr12 123977384 124314884 147.365 RILPL1, TMED2,

DDX55, EIF2B1,

GTF2H3, TCTN2,

ATP6V0A2, DNAH10

MIR3908, RP11-

486O12.2, SNORA9,

RP11-338K17.8,

RPL27P12

337.5

chr2 197118021 197820521 146.797 HECW2, CCDC150,

GTF3C3, C2orf66,

PGAP1

AC020571.3,

RN7SL820P,

SCARNA16

702.5

chr8 10932815 11105315 142.24 XKR6, AF131215.5 AF131215.9,

AF131215.2,

AF131215.3,

AF131215.4,

AF131215.1,

AF131215.8, LINC00529

172.5

chr1 92910616 93288116 141.658 GFI1, EVI5 RP4-593M8.1,

HMGB3P9, RNU4-

59P, RP11-330C7.3,

RP11-330C7.4, CCNJP2

377.5

chr3 154172889 154507889 140.519 RP11-656A15.1, CTD-

2501O3.2, CTD-

2501O3.3, RPL9P15

335

chr2 177600521 177915521 130.548 AC092162.1, FUCA1P1,

AC092162.2,

AC073636.1, RNU6-

187P, AC079305.11

315

chr4 41805167 42142667 129.592 TMEM33, DCAF4L1,

SLC30A9, BEND4

RP11-227F19.1,

HMGB1P28,

LINC00682, RP11-

457P14.5, RP11-

457P14.6, RP11-

814H16.2, ATP1B1P1

337.5

Top ten candidate regions for population JPT

JPT

CHR Start END max LR Coding Noncoding size in kb

chr10 55859211 56226711 204.738 PCDH15 AC013737.1, RNU6-

687P

367.5

chr3 154170507 154600507 201.772 RP11-656A15.1, CTD-

2501O3.2, CTD-

2501O3.3, RPL9P15,

RP11-439C8.1

430
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chr1 92943110 93315610 180.979 GFI1, EVI5, RPL5,

FAM69A

RP4-593M8.1,

HMGB3P9, RNU4-

59P, RP11-330C7.3,

RP11-330C7.4, CCNJP2,

SNORD21, SNORA66,

SNORA66, SNORA51

372.5

chrX 100918625 101443625 179.144 NXF5, ZMAT1, TCEAL2,

TCEAL6, BEX5

GHc-602D8.2, RNU6-

587P, RP1-232L22_A.1,

RP1-232L22_B.1, RP1-

3E10.2, RNU6-345P,

RP1-197J16.1, RP1-

197J16.2, MTND6P13,

TCP11X3P

525

chr4 41805167 42215167 170.622 TMEM33, DCAF4L1,

SLC30A9, BEND4

RP11-227F19.1,

HMGB1P28,

LINC00682, RP11-

457P14.5, RP11-

457P14.6, RP11-

814H16.2, ATP1B1P1

410

chr2 24048021 24375521 168.571 ATAD2B, UBXN2A,

MFSD2B, C2orf44,

FKBP1B, SF3B14,

FAM228B, TP53I3,

PFN4, RP11-507M3.1

PGAM1P6, AC066692.3,

SDHCP3, RN7SL610P,

RNU6-370P

327.5

chr2 197155521 197818021 163.049 HECW2, CCDC150,

GTF3C3, C2orf66,

PGAP1

SCARNA16 662.5

chr6 26120112 26367612 151.624 HIST1H2BC,

HIST1H2AC,

HIST1H1E, HIST1H2BD,

HIST1H2BE,

HIST1H4D, HIST1H3D,

HIST1H2AD,

HIST1H2BF, HIST1H4E,

HIST1H2BG,

HIST1H2AE,

HIST1H3E, HIST1H1D,

HIST1H4F, HIST1H4G,

HIST1H3F, HIST1H2BH,

HIST1H3G, HIST1H2BI,

HIST1H4H, BTN3A2

LARP1P1,

HIST1H1PS1, RP1-

34B20.4, HIST1H2APS3,

HIST1H2APS4,

HIST1H3PS1, RNU6-

1259P, AL021917.1

247.5

chr9 126360904 126725904 124.604 DENND1A RP11-417B4.2, RP11-

417B4.3, PIGFP2

365

chr14 49933016 50410516 118.373 RPS29, AL139099.1,

LRR1, RPL36AL,

MGAT2, DNAAF2,

POLE2, KLHDC1,

KLHDC2, NEMF,

AL627171.2, AL627171.1,

ARF6

RNA5SP384, RPL32P29,

RN7SL1, Y_RNA,

RHOQP1, RP11-

649E7.5, RP11-649E7.7,

RP11-831F12.3,

RP11-831F12.4,

RNU6ATAC30P, RP11-

831F12.2, RNU6-539P,

RN7SL3, RN7SL2,

RNU6-189P, RP11-

58E21.4

477.5
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Top ten candidate regions for population KHV

KHV

CHR Start END max LR Coding Noncoding size in kb

chr5 117648039 117970539 216.287 CTD-2281M20.1, RP11-

2N5.2, RP11-2N5.1

322.5

chr5 117323039 117625539 196.657 CTD-3179P9.1, CTD-

3179P9.2

302.5

chr8 10710323 11112823 194.053 XKR6, AF131215.5 MIR598, AF131215.6,

AF131215.9,

AF131215.2,

AF131215.3,

AF131215.4,

AF131215.1,

AF131215.8, LINC00529

402.5

chr2 108948021 109553021 193.053 SULT1C4, GCC2, LIMS1,

RANBP2, CCDC138,

EDAR

SULT1C2P1, RP11-

465O11.2, RP11-

465O11.1, AC012487.2,

AC010095.5,

AC010095.6,

AC010095.7,

AC073415.2

605

chr13 64245285 64590285 179.917 AL445989.1 LINC00395, OR7E156P,

RP11-473M10.3, RNU6-

81P, PPP1R2P10, RP11-

394A14.2, OR7E104P,

RP11-394A14.4,

NFYAP1, LINC00355

345

chr2 197115521 197815521 164.939 HECW2, CCDC150,

GTF3C3, C2orf66,

PGAP1

AC020571.3,

RN7SL820P,

SCARNA16

700

chr15 63860064 64232564 162.322 USP3, FBXL22, HERC1,

DAPK2

USP3-AS1, RP11-

317G6.1, MIR422A,

RP11-111E14.1

372.5

chr1 238933116 239145616 161.77 MIPEPP2 212.5

chr7 136088084 136363084 160.373 AC009784.3,

AC009541.1

275

chr12 44397384 44837384 156.351 TMEM117 RP11-624G19.1, RP11-

46I1.1, RP11-46I1.2

440
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Top ten candidate regions for population BEB

BEB

CHR Start END max LR Coding Noncoding size in kb

chr12 44307384 44927384 238.617 TMEM117, NELL2 RP11-624G19.1, RP11-

46I1.1, RP11-46I1.2

620

chr1 51565610 52038110 194.666 C1orf185, RNF11,

TTC39A, EPS15

Y_RNA, CFL1P2,

AL162430.2,

AL162430.1, RP11-

296A18.3, snoU13,

RP11-296A18.5, RP11-

296A18.6, RP11-

275F13.1, RP11-

275F13.3, RNU6-877P,

RP11-253A20.1, RP11-

191G24.1, RNU6-1281P,

CALR4P

472.5

chr11 72983350 73370850 175.258 P2RY6, ARHGEF17,

RELT, FAM168A,

PLEKHB1

RP11-800A3.7,

AP002761.1, RP11-

809N8.2, RP11-809N8.4,

RP11-809N8.6, RP11-

809N8.5, HMGN2P38,

AP000860.2

387.5

chr12 49812384 50189884 174.685 SPATS2, KCNH3,

MCRS1, PRPF40B,

FAM186B, FMNL3,

TMBIM6, NCKAP5L

RP11-161H23.8, RP11-

133N21.10, RNU6-834P,

POLR2KP1, RP11-

133N21.7, HIGD1AP9,

RP11-133N21.12,

LSM6P2

377.5

chr2 81633111 81950611 157.622 AC012075.1,

AC012075.2,

RNA5SP99, AC013262.1

317.5

chr22 46548536 46856036 150.059 PPARA, CDPF1,

PKDREJ, TTC38, GTSE1,

TRMU, CELSR1

NONP 307.5

chr5 43593018 44048018 149.607 NNT NNT-AS1, RPL29P12,

RP11-8L21.1

455

chr6 121387616 121705116 148.005 TBC1D32 RNU6-1286P, Y_RNA,

RP1-276J11.2

317.5

chr1 52415610 52790610 147.496 RAB3B, TXNDC12,

KTI12, BTF3L4, ZFYVE9

RNA5SP48, RP11-

91A18.1, RN7SL290P,

RP11-91A18.4,

TXNDC12-AS1,

RN7SL788P, RP4-

800M22.1, RP4-

800M22.2, PDCL3P6,

RP4-800M22.4,

DNAJC19P7,

ANAPC10P1

375

chr1 100410610 100718110 140.666 SLC35A3, HIAT1,

SASS6, TRMT13,

LRRC39, DBT

RP5-884G6.2, RNU6-

750P, RNU6-1318P,

RP4-714D9.5, RP4-

714D9.2, RP4-714D9.4,

RP11-305E17.7, BRI3P1,

RP11-305E17.4

307.5
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Top ten candidate regions for population GIH

GIH

CHR Start END max LR Coding Noncoding size in kb

chr5 43588039 44073039 230.404 NNT NNT-AS1, CTD-

2210P15.2, RPL29P12,

RP11-8L21.1, RNU6-

381P

485

chr4 106462667 106815167 203.813 ARHGEF38, INTS12,

GSTCD

AC004066.3,

ARHGEF38-IT1, RP11-

311D14.1, RP11-45L9.1

352.5

chr12 49824884 50189884 172.123 SPATS2, KCNH3,

MCRS1, PRPF40B,

FAM186B, FMNL3,

TMBIM6, NCKAP5L

RP11-161H23.8, RP11-

133N21.10, RNU6-834P,

POLR2KP1, RP11-

133N21.7, HIGD1AP9,

RP11-133N21.12,

LSM6P2

365

chr4 29937667 30175167 166.773 RPS3AP17, RP11-

174E22.2

237.5

chr4 29740167 29927667 153.909 EEF1A1P21,

AC109351.1, RP11-

390C19.1

187.5

chr11 72938350 73355850 150.339 P2RY2, P2RY6,

ARHGEF17, RELT,

FAM168A

RP11-800A3.4, OR8R1P,

RP11-800A3.7,

AP002761.1, RP11-

809N8.2, RP11-809N8.4,

RP11-809N8.6, RP11-

809N8.5, HMGN2P38,

AP000860.2

417.5

chr7 119623084 119803084 147.573 U1, RP4-742N3.1 180

chr7 119083084 119340584 145.233 AC091320.2,

AC091320.1

257.5

chr7 119813084 120140584 138.887 KCND2 RP5-1006K12.1 327.5

chr22 46556691 46856691 138.087 PPARA, CDPF1,

PKDREJ, TTC38, GTSE1,

TRMU, CELSR1

NONP 300
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Top ten candidate regions for population ITU

ITU

CHR Start END max LR Coding Noncoding size in kb

chr12 44342384 44904884 316.972 TMEM117, NELL2 RP11-624G19.1, RP11-

46I1.1, RP11-46I1.2

562.5

chr6 136485112 137030112 174.316 PDE7B, MTFR2,

BCLAF1, MAP7,

MAP3K5

RP13-143G15.4, RP3-

406A7.1, RP3-406A7.7,

RP3-406A7.3, RP3-

406A7.5, NDUFS5P1,

7SK, RP3-325F22.5, RP3-

325F22.3, RNA5SP219

545

chr11 37928350 38345850 169.991 RP11-159D8.1, RP11-

436H16.1

417.5

chr2 81628111 81985611 165.812 AC012075.1,

AC012075.2,

RNA5SP99, AC013262.1

357.5

chr5 43840539 44033039 152.619 RP11-8L21.1 192.5

chr5 43588039 43820539 145.996 NNT NNT-AS1, CTD-

2210P15.2, RPL29P12

232.5

chr1 51735610 52165610 138.747 RNF11, TTC39A, EPS15,

OSBPL9

RP11-275F13.1, RP11-

275F13.3, RNU6-877P,

RP11-253A20.1, RP11-

191G24.1, RNU6-1281P,

CALR4P

430

chr20 52982444 53277444 133.471 DOK5 NONP 295

chr22 46558536 46836036 132.641 PPARA, CDPF1,

PKDREJ, TTC38, GTSE1,

TRMU, CELSR1

NONP 277.5

chr20 30162444 30502444 128.219 ID1, COX4I2, BCL2L1,

AL160175.1, TPX2,

MYLK2, FOXS1,

DUSP15, TTLL9

RNU6-384P, MIR3193,

RP11-243J16.7, RP11-

243J16.8, RNU1-94P

340
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Top ten candidate regions for population PJL

PJL

CHR Start END max LR Coding Noncoding size in kb

chr2 81678406 81960906 210.214 AC012075.2,

RNA5SP99, AC013262.1

282.5

chr5 43840539 44078039 170.54 RP11-8L21.1, RNU6-

381P

237.5

chr5 43593039 43830539 159.641 NNT NNT-AS1, RPL29P12 237.5

chr12 86117384 86589884 152.781 RASSF9, NTS, MGAT4C RP13-619I2.2, RP11-

18J9.3, RP11-812D23.1

472.5

chr1 87190610 87600610 139.144 SH3GLB1, SEP15,

HS2ST1, RP5-1052I5.2

RP4-612B15.2, RP4-

604K5.3, RP4-604K5.2,

RP11-384B12.2, RP11-

384B12.3, LINC01140

410

chr14 63692945 63917945 139.884 RHOJ, PPP2R5E AL049871.1, RP11-

696D21.2, GPHB5

225

chr11 72990850 73370850 134.666 P2RY6, ARHGEF17,

RELT, FAM168A,

PLEKHB1

RP11-800A3.7,

AP002761.1, RP11-

809N8.2, RP11-809N8.4,

RP11-809N8.6, RP11-

809N8.5, HMGN2P38,

AP000860.2

380

chr2 194658406 194848406 126.789 RP11-764E7.1 190

chr3 50700297 51455297 125.264 DOCK3, MANF,

RBM15B, VPRBP

RP11-804H8.6,

MIR4787, RP11-

804H8.5, RP11-

646D13.1, ZNF652P1,

ST13P14

755

chr4 33860167 34370167 119.113 RP11-79E3.3, RP11-

79E3.2, RP11-79E3.1,

RP11-548L20.1

510
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Top ten candidate regions for population STU

STU

CHR Start END max LR Coding Noncoding size in kb

chr2 81628302 81958302 176.113 AC012075.1,

AC012075.2,

RNA5SP99, AC013262.1

330

chr3 96230442 96687942 164.705 MTRNR2L12, EPHA6 RP11-124D9.1, RNU6-

1094P, RPL18AP8,

AC117444.1, RCC2P5,

CDV3P1

457.5

chr7 119178084 119788084 163.904 AC091320.1, RP11-

328J2.1, U1, RP4-

742N3.1

610

chr22 46546691 46859191 161.901 PPARA, CDPF1,

PKDREJ, TTC38, GTSE1,

TRMU, CELSR1

NONP 312.5

chr15 45114306 45351806 159.845 C15orf43, SORD CTD-2008A1.2, CTD-

2008A1.1, Y_RNA,

RNU1-119P, CTD-

2014N11.1, CTD-

2014N11.2, RNU6-

1108P, RNU6-1332P,

CTD-2014N11.3, RNU6-

966P, RNU1-78P, RP11-

109D20.1, Y_RNA

237.5

chr12 49652384 50187384 153.065 TUBA1C, PRPH,

TROAP, C1QL4,

DNAJC22, SPATS2,

KCNH3, MCRS1,

PRPF40B, FAM186B,

FMNL3, TMBIM6,

NCKAP5L

RP11-977B10.2, RP11-

161H23.5, RP11-

161H23.9, RP11-

161H23.10, RP11-

161H23.8, RP11-

133N21.10, RNU6-834P,

POLR2KP1, RP11-

133N21.7, HIGD1AP9,

RP11-133N21.12,

LSM6P2

535

chr4 29990167 30417667 152.906 RP11-174E22.2 427.5

chr4 29740167 29927667 145.058 EEF1A1P21,

AC109351.1, RP11-

390C19.1

187.5

chr14 63613154 63918154 140.92 RHOJ, PPP2R5E AL049871.1, RP11-

696D21.2, GPHB5

305

chr6 136605112 136972612 137.612 BCLAF1, MAP7,

MAP3K5

RP3-406A7.1, RP3-

406A7.7, RP3-

406A7.3, RP3-406A7.5,

NDUFS5P1, 7SK, RP3-

325F22.5, RP3-325F22.3,

RNA5SP219

367.5
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Top ten candidate regions for population CLM

CLM

CHR Start END max LR Coding Noncoding size in kb

chr2 21615551 21943051 159.323 AC067959.1,

AC011752.1,

AC009411.2,

AC009411.1,

AC018742.1

327.5

chr2 194660551 195148051 159.494 RP11-764E7.1,

AC068135.1, GLULP6,

HNRNPA1P47

487.5

chr5 15333039 15575539 151.077 FBXL7 MARK2P5, CTD-

2313D3.1

242.5

chr15 44507203 44802203 137.243 CASC4, CTDSPL2 AC073940.1,

AC090519.2,

AC090519.7,

AC090519.6,

AC090519.1,

AC090519.5,

AC090519.4,

AC090519.3, RP11-

616K22.1, RP11-

616K22.2, RP11-

516C1.1, RN7SL347P,

HNRNPMP1

295

chr1 188745610 188965610 136.491 RP11-316I3.2,

LINC01035

220

chr1 27723110 28193110 135.125 WASF2, AHDC1, FGR,

IFI6, FAM76A, STX12,

PPP1R8, AL109927.1

RP4-752I6.1, RP1-

159A19.4, RP1-

159A19.3, RP11-

288L9.1, RP11-

288L9.4, RNU6-949P,

CHMP1AP1, RNU6-

424P, RP3-426I6.2,

RPEP3, RP3-426I6.5,

RP3-426I6.6, RNU6-

1245P, SCARNA1

470

chr4 13305167 13555167 131.345 RAB28, NKX3-2 HSP90AB2P,

LINC01096

250

chr6 43410112 43650112 129.699 ABCC10, DLK2, TJAP1,

LRRC73, POLR1C,

YIPF3, XPO5, POLH,

GTPBP2, MAD2L1BP,

RSPH9, MRPS18A

RNU6-1113P, RP3-

337H4.9, RP3-337H4.6,

SCARNA15, RP3-

337H4.10, RP3-337H4.8

240

chr12 45524884 45857384 126.903 ANO6 PLEKHA8P1, RP11-

139E19.2, RP11-438E8.2

332.5

chr10 65919165 66376665 123.022 DBF4P1 457.5
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Top ten candidate regions for population MXL

MXL

CHR Start END max LR Coding Noncoding size in kb

chr1 100410610 100790610 205.92 SLC35A3, HIAT1,

SASS6, TRMT13,

LRRC39, DBT, RTCA

RP5-884G6.2, RNU6-

750P, RNU6-1318P,

RP4-714D9.5, RP4-

714D9.2, RP4-714D9.4,

RP11-305E17.7, BRI3P1,

RP11-305E17.4, RP11-

305E17.6, MIR553

380

chr10 74926660 75406660 203.628 ECD, FAM149B1,

DNAJC9, MRPS16,

TTC18, ANXA7,

MSS51, PPP3CB, USP54,

MYOZ1, SYNPO2L

Y_RNA, EIF4A2P2,

DNAJC9-AS1, RP11-

152N13.5, RNU6-833P,

snoU13, Y_RNA,

RP11-537A6.9, RP11-

345K20.2, AL353731.1,

RP11-137L10.6, RNU6-

883P, RP11-137L10.5,

RP11-464F9.20, RP11-

464F9.22

480

chr10 31454160 31896660 181.056 ZEB1 RP11-192P3.4, ZEB1-

AS1, RNA5SP309,

SPTLC1P1, RP11-

192P3.5, RP11-472N13.2

442.5

chr10 65919160 66304160 161.945 DBF4P1 385

chr11 38005850 38358350 147.295 RP11-436H16.1 352.5

chr17 58443615 58688615 144.012 USP32, C17orf64,

APPBP2, RP11-15E18.4,

PPM1D

RPL12P38, RP11-

15E18.5, RP11-15E18.1,

RP11-15E18.3, RP11-

15E18.2

245

chr10 74749160 74914160 132.076 P4HA1, NUDT13, ECD RPL17P50, RP11-

344N10.4, RP11-

344N10.2, Y_RNA,

RP11-344N10.5, RP11-

152N13.16, SNORA11

165

chr1 149998110 150188110 128.18 VPS45, PLEKHO1 RP11-458I7.1,

RN7SL480P

190

chr22 46558914 46843914 127.261 PPARA, CDPF1,

PKDREJ, TTC38, GTSE1,

TRMU, CELSR1

NONP 285

chrX 19235939 19523439 117.669 PDHA1, MAP3K15 Y_RNA 287.5
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Top ten candidate regions for population PEL

PEL

CHR Start END max LR Coding Noncoding size in kb

chr2 82426507 82874007 201.671 AC105761.1, RNU6-

685P, Y_RNA,

AC010105.1,

AC109638.1

447.5

chr3 89715225 90160225 168.113 U3 445

chr6 128550112 128945112 162.482 PTPRK RP1-86D1.2, RP1-

86D1.3, RP1-86D1.5,

RP1-86D1.4, EEF1DP5,

Y_RNA, snoU13

395

chr3 154365225 154695225 162.431 CTD-2501O3.2, CTD-

2501O3.3, RPL9P15,

RP11-439C8.1, RP11-

439C8.2

330

chr7 145830584 146065584 147.669 CNTNAP2 NONP 235

chr1 248130610 248365610 140.725 OR2L13, OR2L5, OR2L2,

OR2L3, OR2M5, OR2M2

OR2L9P, OR2L1P,

Y_RNA, OR2L6P,

Y_RNA, Y_RNA,

OR2T32P, OR2M1P

235

chr15 64424703 65129703 138.865 SNX1, SNX22, PPIB,

CSNK1G1, CTD-

2116N17.1, KIAA0101,

TRIP4, ZNF609, OAZ2,

RBPMS2, PIF1

SNORA48, RN7SL595P,

RN7SL707P, Y_RNA,

RP11-702L15.4,

GAPDHP61,

RP11-330L19.1,

RP11-330L19.2,

Y_RNA, RNU6-

549P, AC100830.4,

AC100830.5,

AC100830.3, MIR1272

705

chr17 58491115 58848615 135.623 USP32, C17orf64,

APPBP2, RP11-15E18.4,

PPM1D, BCAS3

RPL12P38, RP11-

15E18.5, RP11-15E18.1,

RP11-15E18.3, RP11-

15E18.2, RNU6-

623P, RN7SL606P,

AC111155.1, Y_RNA

357.5

chr16 14129447 14396947 128.207 MKL2 CTA-276F8.2,

TVP23CP2,

AC040173.1, Y_RNA,

RP11-65J21.3

267.5

chr22 46592628 46852628 123.798 PPARA, CDPF1,

PKDREJ, TTC38, GTSE1,

TRMU, CELSR1

NONP 260
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Top ten candidate regions for population PUR

PUR

CHR Start END max LR Coding Noncoding size in kb

chr2 194680495 195185495 193.372 RP11-764E7.1,

AC068135.1, GLULP6,

HNRNPA1P47

505

chr5 15328039 15563039 156.748 FBXL7 MARK2P5, CTD-

2313D3.1

235

chr2 195202995 195257995 140.672 AC018799.1 55

chr8 32608715 33058715 136.989 NRG1 RP11-1002K11.1,

RNU6-663P, RP11-

11N9.4, MTND1P6,

MTND2P32, RANP9,

AC104037.1

450

chr20 58387701 58575201 136.945 PHACTR3, SYCP2,

FAM217B, PPP1R3D,

CDH26

RNU7-141P 187.5

chr6 75554339 75834339 134.31 COL12A1 RP11-560O20.1 280

chr1 188758110 188958110 123.838 RP11-316I3.2,

LINC01035

200

chr17 58578615 58851115 122.751 APPBP2, RP11-15E18.4,

PPM1D, BCAS3

RP11-15E18.5, RP11-

15E18.1, RP11-15E18.3,

RP11-15E18.2, RNU6-

623P, RN7SL606P,

AC111155.1, Y_RNA

272.5

chr20 20392701 20762701 113.27 RALGAPA2 EIF4E2P1, RP11-

23O13.1, RN7SL607P

370

chr12 79032384 79244884 105.654 RP11-123M21.2, RP11-

123M21.1

212.5
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B.4 LRT3 profile for COL8A1, CMSS1 and FILIP1L
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FIGURE B.2: LRT3 -profile for region surrounding the genes COL8A1, CMSS1 and FILIP1L,
being significant for African populations. The LRT3 -profile is shown for all seven African
populations, for comparison reason, LRT3 -profile for one European population CEU and
one East Asia population CHB are given. Shown is the chromosomal position
chr3:99,270,626-100,114,711. All three genes are highlighted. Illustration via
https://genome.ucsc.edu/. Note: Only LRT3 -range from −10 to 80 is shown.

https://genome.ucsc.edu/
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B.5 LRT3 profile for region containing ZRANB3, LCT, MCM6 and DARS
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FIGURE B.3: LRT3 -profile for region surrounding the genes ZRANB3, LCT, MCM6 and
DARS. Region contatining gene ZRANB3 shows significant LRT3 for population CEU and
GBR. For comparison reason, LRT3 -profile for YRI and CHB is given. Shown is the
chromosomal position chr2:134,467,025-137,779,354. Illustration via
https://genome.ucsc.edu/. Note: Only LRT3 -range from −10 to 80 is shown.

https://genome.ucsc.edu/
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B.6 GO enrichment Analysis

In the following the top three most significant enriched GO terms (of the top 10

region list) for each European population is shown.

Population IBS

IBS
IBS - Biological process
GO Term Description P-value FDR q-value Genes

GO:0042743 hydrogen peroxide metabolic

process

8.33E-7 1.26E-2 DUOXA2, DUOXA1, DUOX2,

DUOX1

GO:0072593 reactive oxygen species

metabolic process

2.25E-6 1.7E-2 DUOXA2, CYB5R4, DUOXA1,

DUOX2, DUOX1

GO:0035176 social behavior 4.2E-6 2.12E-2 ANXA7, PPP3CB, DNAJC9,

MSS51

IBS - Molecular function
GO Term Description P-value FDR q-value Genes

GO:0016174 NAD(P)H oxidase activity 1.71E-7 7.81E-4 CYB5R4, DUOX2, DUOX1

GO:0050664 oxidoreductase activity, acting

on NAD(P)H, oxygen as accep-

tor

1.4E-6 3.2E-3 CYB5R4, DUOX2, DUOX1

IBS - Cellular component
GO Term Description P-value FDR q-value Genes

GO:0044449 contractile fiber part 4.97E-4 9.49E-1 PPP3CB, SYNPO2L, MYOZ1,

LRRC39

Population TSI

TSI
TSI - Biological process
GO Term Description P-value FDR q-value Genes

GO:0035176 social behavior 3.58E-7 5.41E-3 ANXA7, PPP3CB, DNAJC9,

MSS51, DVL1

GO:0051703 intraspecies interaction between

organisms

3.58E-7 2.71E-3 ANXA7, PPP3CB, DNAJC9,

MSS51, DVL1

GO:0051705 multi-organism behavior 1.39E-6 6.99E-3 ANXA7, PPP3CB, DNAJC9,

MSS51, DVL1

TSI - Molecular function
GO Term Description P-value FDR q-value Genes

No GO Enrichment Found.

TSI - Cellular component
GO Term Description P-value FDR q-value Genes

GO:0019866 organelle inner membrane 8.14E-4 1E0 MRPS16, C15orf43, AURKAIP1,

ATAD3A, MRPL20, ATAD3B

GO:0031966 mitochondrial membrane 9.61E-4 9.17E-1 [MRPS16, SORD, AURKAIP1,

ATAD3A, MRPL20, ATAD3B,

WASF1
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Population GBR

GBR
GBR - Biological process
GO Term Description P-value FDR q-value Genes

GO:0034314 Arp2/3 complex-mediated actin

nucleation

3.53E-4 1E0 ARPC1A, ARPC1B

GO:0045010 actin nucleation 9.01E-4 1E0 ARPC1A, ARPC1B

GBR - Molecular function
GO Term Description P-value FDR q-value Genes

No GO Enrichment Found.

GBR - Cellular component
GO Term Description P-value FDR q-value Genes

GO:0034314 Arp2/3 complex-mediated actin

nucleation

3.53E-4 1E0 ARPC1A, ARPC1B

GO:0045010 actin nucleation 9.01E-4 1E0 ARPC1A, ARPC1B

Population CEU

CEU
CEU - Biological process
GO Term Description P-value FDR q-value Genes

No GO Enrichment Found.

CEU - Molecular function
GO Term Description P-value FDR q-value Genes

No GO Enrichment Found.

CEU - Cellular component
GO Term Description P-value FDR q-value Genes

No GO Enrichment Found.

Population FIN

FIN
FIN - Biological process
GO Term Description P-value FDR q-value Genes

GO:0055086 nucleobase-containing small

molecule metabolic process

9.69E-4 1E0 NNT, SLC35A3, MBD4, ACOT7,

DBT, GPHN

FIN - Molecular function
GO Term Description P-value FDR q-value Genes

No GO Enrichment Found.

FIN - Cellular component
GO Term Description P-value FDR q-value Genes

GO:0055086 nucleobase-containing small

molecule metabolic process

9.69E-4 1E0 NNT, SLC35A3, MBD4, ACOT7,

DBT, GPHN



148 Appendix B. Chapter 4

B.6.1 Top three most significant enriched GO terms: African vs non-African

Here, we investigate once more, if a prinicipal difference can be observed between

African and non-African populations, considering biological functions and path-

ways targeted by selective sweep. One may expect that candidate genes, which are

shared between multiple different subpopulations but not Africa, that these adapta-

tions are a result of the Out-Of-Africa migration. For instance genes involved in the

adaptation to climatic changes or food supply.

Shared between several African Population
Shared between several African Population - Biological process
GO Term Description P-value FDR q-value Genes

GO:0002440 production of molecular media-

tor of immune response

1.44E-4 1E0 IGKV3D-20, DENND1B,

IGKV2D-29, IGKV2D-28,

IGKV1D-33, IGKV2D-30,

IGKV6D-21, IGKV2D-26

GO:0002377 immunoglobulin production 2.63E-4 1E0 IGKV3D-20, IGKV2D-29,

IGKV2D-28, IGKV1D-33,

IGKV2D-30, IGKV6D-21,

IGKV2D-26

GO:0030449 regulation of complement acti-

vation

5.98E-4 1E0 IGKV3D-20, SUSD4, VTN,

IGKV2D-28, IGKV1D-33,

IGKV2D-30, C8G

Shared between several African Population - Molecular function
GO Term Description P-value FDR q-value Genes

GO:0016509 long-chain-3-hydroxyacyl-CoA

dehydrogenase activity

5.74E-4 1E0 HADHB, HADHA

Shared between several African Population - Cellular component
GO Term Description P-value FDR q-value Genes

GO:0005740 mitochondrial envelope 2.11E-4 4.06E-1 HADHB, MAOB
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Shared between several Non-African SuperSuperpopulation
Shared between several Non-African Superpopulation - Biological process
GO Term Description P-value FDR q-value Genes

GO:0006396 RNA processing 3.59E-22 5.44E-18 DHX9, CDK12, AFF2, DDX5, EX-
OSC10, RBM39, SYF2, AARS, SNORA48,
GTF2F2, SNORD37, TSEN2, PAPOLB,
SCARNA1 , GTF2H3, GEMIN5, CIRH1A,
SCARNA20, THUMPD3, CPSF3,
SNORA27, SNORD74, RBM6, RBM5,
AICDA, NOL9, NOC4L, MNAT1, EX-
OSC6, SNRPN, SNORA84, SNORA49,
SNORD115-6, RBPMS2, SNORD115-5,
SNORA46, SNORD115-12, SNORD115-11,
SNORD115-14, SNORD115-8, PDCD7,
SNORD115-10, SNORA40, SNORD115-9,
SNORD115-15, ISY1, SNORD115-
17, SNORD115-16, SNORD115-
18, SNORD115-19, SNORD115-
20, SNORD115-21, SNORD115-23,
PTCD1, SNORA77, SNORD115-
29, SNORD115-22, SNORD115-
25, SNORD115-33, SNORD115-32,
SNORD115-31, CPSF4, SNORD115-
30, SNORD115-37, SNORD115-38,
SNORA62, SNORD115-35, BUD31,
SNORD115-36, SNORD115-34, SNORA51,
HNRNPLL, SNORA70F, SNORD116-7,
SNORA9, SNORD54, SNORD116-
3, SNORA1, RTCA, SNORD116-6,
SNORD116-5, SNORD116-11, SNORA66,
MTFMT, SNORD116-10, SCARNA11,
SNORD116-2, SCARNA16, SNORD116-1,
LIN28B, SNORD116-30, SNORD116-14,
SNORD116-15, SNORD116-9, SNORD60,
SNORD116-8, SCARNA15, SNORD116-23,
SNORD116-16, SF3B, SNORD116-13,
SNORA31, SNORD116-12, SNORD116-
18, SNORD73A, RPP38, SNORA70,
SNORD116-24, SNORA24, SNORD116-
27, SETX, SNORD21, SNORD64,
SNORD116-17, SNORD116-20, CDC40,
SNORD115-3, SNORD102, SNORD115-4,
SNORA11, SNORD115-2, SNORD116-
25 RRP9, INTS12, PRPF40B, PRPF6,
SNORD118, AGO3, NOL8, SNORD90,
AGO4, RPL5, C7orf60, SNORD116-
19, AGO1, PUSL1, PUS7L, UTP3,
SNORD115-28, SNORA25, SNORD115-
27, SNORD115-24, SNORD115-45,
DDX51, PPP1R8, CPSF7, PAF1, RPP40,
AURKAIP1, SNORD115-39, SNORD115-
40, SNORD116-29, SNORD115-48,
SNORD115-43, SNORD115-44 SNORD115-
41, SNORD115-42, RBPMS, TRMU, CELF6,
PUS1, NAT10, SNORD127 , RNGTT,
CPSF3L, RNMT, SNORA7A, SNORA3,
SNORD108, MRPS111, SFPQ, RBFOX2,
SNORD112, SRSF1, PSPC1, HNRNPA2B1,
SRSF2, SNORD87, TRMT13, SNORD115-1,
NOL3, SNORD109B, SNORD109A, JMJD6,
RPL10A, DHX16, SNORD3A, ECD,
RBM22, GRSF1

GO:0035194 posttranscriptional gene silenc-

ing by RNA

1.09E-17 8.26E-14 MIR551A, MIR922, MIR550A1, MIR223,
MIR422A, MIR135A1, MIR553, AGO3,
MIR63, MIR328, MIR320C2, AGO4,
MIR875, MIR125B2, AGO1, MIR636,
MIR193B , MIR181B2, MIRLET7G,
MIR181A, MIR598, MIR211, MIR99A,
MIR599, MIRLET7C, TNRC6C, MIR1275,
MIR548A3, MIR147Aa, CNOT8, MIR490
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GO:0035195 gene silencing by miRNA 1.42E-17 7.18E-14 MIR551A, MIR922, MIR223, MIR550A1,
MIR422A , MIR135A1, MIR553, MIR633 ,
MIR328, MIR320C2, MIR875, MIR125B2,
MIR636, MIR193B, MIR181B2, MIRLET7G,
MIR598, MIR181A2, MIR599, MIRLET7C,
MIR211, MIR99A, MIR1275, TNRC6C,
MIR548A3, MIR147A, CNOT8, MIR490

Shared between several Non-African Superpopulation - Molecular function
GO Term Description P-value FDR q-value Genes

GO:0034987 immunoglobulin receptor bind-

ing

2.78E-7 1.27E-3 TRBC2, IGLC1, IGLL5, IGJ, IGLC3, IGLC2,
IGLC6, FGR, IGLC7

GO:1903231 mRNA binding involved in

posttranscriptional gene silenc-

ing

1.1E-6 2.52E-3 MIRLET7G, MIR328, MIR181A2, MIR223,
MIRLET7C, MIR181B2, MIR125B2

GO:0046982 protein heterodimerization ac-

tivity

3.75E-5 5.7E-2 HIST1H3D, HIST1H3E, HIST2H2BF,
HIST1H3I, AOC3, ABCG5, HIST1H2BO,
HIST2H2BE, ABCG8, HIST1H4D,
HIST2H3D, HIST1H4F, SUCLG2,
HIST1H3G, HIST1H3J, SMC3,
HIST1H2AM, HIST2H2AC, HIST2H2AA3,
CTNNA1, HIST2H3C, HIST1H2AL,
HIST1H2AC, HIST1H2BE , HIST1H2BF,
HIST1H2BI , HIST1H2BH , PVRL1,
HIST1H2BG , KCNH5, HIST1H2BN ,
CREB3L3, P2RY1, MYOD1, PPP3CA,
CENPT, ARF1, ZHX1, IKBKB, HIST2H4A,
HIST1H4G, HIST1H4L, HIST1H4E ,
HIST1H4H , HIP1, ATF2 , HIST2H2BD,
SNX1, HIST2H2AB, HIF1A, HIST1H2BD,
FLOT1, NEUROD2, MICU1, HIST1H2AD,
TAF4B, HIST1H2AE, ABTB2, RAF1,
DYNLL2, TFAP2E, EGFR, TWIST1,
NPAS3, CD3G, TENM4, SYCP2, PPARD,
SLC51B, TENM3, TUBB2B, CLCF1, HEXA,
HIST1H3F, BCL2L1, TAS1R3, IRAK2 ,
GPHB5

Shared between several Non-African Superpopulation - Cellular component
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GO:0005730 nucleolus 2.75E-23 5.25E-20 DHX9 , MAD2L1BP, C9orf3, DDX5,
EXOSC10 , ORC1, MKI67IP, SNORA48,
DPH6 , TRAIP, OSBP, SNORD37, TSEN2,
SCARNA1, CIRH1A, SCARNA20, MOB1B,
THUMPD3, MIF4GD, CDC14B, TRERF1,
SNORA27, SNORD74, TTF1, NOL9,
NOC4L, AGPS, POLD4, accessory subunit,
EXOSC6, SNORA84, OXR11, SNORA49,
SNORD115-6, SNORD115-5, SNORA46,
SNORD115-12, SNORD115-11, BCAS3,
SNORD115-14, SNORD115-8, SNORD115-
10, SNORA40, PDHA2, SNORD115-9,
PDHA1, SNORD115-15, SNORD115-
17, SNORD115-16, SNORD115-18,
SNORD115-19, SNORD115-20 , FGF1,
SNORD115-21, NIP, SNORD115-23,
GLI2, SNORA77, SNORD115-29, MXI1,
SNORD115-22, SNAPC1, SNORD115-25,
SNORD115-33, FBXL22, SNORD115-32,
SNORD115-31, MED1, SNORD115-30,
SNORD115-37, SNORA62, SNORD115-38,
NVL, SNORD115-35, SNORD115-36,
SNORD115-34, ZNF655, SNORA51,
SNORD116-7, SNORA70F, SNORA9,
SNORD54, SNORD116-3, SNORA1,
SNORD116-6, SNORD116-5, SNORD116-
11, SNORA66, S100A3, SNORD116-10,
SCARNA11, SNORD116-2, SCARNA16,
SNORD116-1, LIN28B, SNORD116-
14, SNORD116-30, SNORD116-15,
SNORD116-9, SNORD60, SNORD116-
8, SCARNA15, SNORD116-233,
SNORD116-16, SF3B4 , SNORD116-13,
SNORA31, SNORD116-12, SNORD116-
18, SNORD73A, ZNF106, RPP38,
SNORA70, SNORD116-244, SNORA24,
SNORD116-277, SETX, SNORD116-266,
SNORD21, SNORD64, SNORD116-
17, SNORD116-200, SNORD115-3,
SNORD102, ARFGEF1, SNORD115-4,
SNORA11, SNORD115-2, SNORD116-
255, S100A16, RRP9, MCRS1 , HMGB2,
SNORD118, HN1 , NOL8, FANCD22,
SENP5, SNORD90, MAP2, MPHOSPH8,
RPL5, C7orf60, SNORD116-19, RPS3A,
UTP3, SNORD115-28, SNORA25,
SNORD115-27, SNORD115-24, CTSV,
VRK1, PAK1IP1, PPP1CA, SNORD115-
39, SNORD115-40, SNORD116-299,
RPAP2, SNORD115-48 , SNORD115-43,
SNORD115-44, PPP1CC, SNORD115-41,
VCX3A, SNORD115-42, WDR82, GRWD1,
NAT10, SNORD127, ITPR3, MACROD2,
RASL11A , SNORA7A, SNORA3,
SNORD108, ABHD14B, SDHAF2, SIX1,
CTCF, CBFA2T3, SNORD112, SNORD87,
SNORD115-1, NOL3, SNORD109B,
SNORD109A, JMJD6, SNORD3A, DDX55,
EME1, H1FX, GTF3C3

GO:0035068 micro-ribonucleoprotein com-

plex

1.49E-21 1.42E-18 DHX9, MIR551A, MIR922, MIR223,
MIR550A1, MIR422A, MIR135A1, MIR553,
AGO3, MIR633, MIR328, MIR320C2,
AGO4, MIR875, MIR636, MIR125B2,
AGO1, MIR193B, XPO5, MIRLET7G,
MIR598, MIR181A2, MIR99A, MIR599,
MIRLET7C, MIR211, MIR1275, MIR548A3,
MIR147A, MIR490
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GO:0000786 nucleosome 9.93E-16 6.33E-13 HIST1H3D, HIST1H2BD, HIST1H3E,
HIST1H3I, HIST2H2BF, HIST1H2AD ,
HIST1H2BO, HIST1H2AE, HIST2H2BE,
HIST1H1B, HIST1H1E, HIST2H3D,
HIST1H4D, HIST1H1D, HIST1H4F,
HIST1H3G, HIST1H3J, HIST1H2AM,
HIST2H2AC, HIST2H3C, HIST2H2AA3,
HIST1H2AL, MPHOSPH8, HIST1H2AC
, HIST1H2BE , HIST1H2BF, HIST1H2BI ,
HIST1H2BH , HIST1H2BG , HIST1H2BN
, HIST2H4A , HIST1H4L , HIST1H4E
, HIST1H4H , HIST1H3F, H1FX,
HIST2H2BD, HIST2H2AB
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