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“Intuition is a human fallacy, the belief that you can predict random events.”

Seven of Nine, Star Trek



Zusammenfassung

In der Populationsgenetik ist es vor allem von Interesse, genetische Daten einer
Populationsstichprobe zu analysieren und zu verstehen. Hierbei spielt die Koa-
leszenz Theorie eine wichtige Rolle. Die Koaleszenz Theorie basiert auf der Idee,
die genealogischen Eigenschaften einer Population anhand von Datensitzen einer
gegenwadrtigen Stichprobe von Individuen riickwiérts in der Zeit zu analysieren.
Wenn bei dieser Riickwértsbetrachtung zwei Individuen einen gemeinsamen Vor-
fahren haben, werden diese zusammengefasst, das heifst sie verschmelzen. Grafisch
lasst sich das durch einen Baum darstellen. Mit Hilfe dieser Biume ist es moglich,
nicht nur genetische Beziehungen oder Substrukturierung von Populationen zu erken-
nen, sondern auch Hinweise auf positive Selektion zu erkennen. Der Grundgedanke
hierzu beruht darauf, dass sich Loci unter selektiven Einfliissen anders verhalten als
Loci unter neutralen Bedingungen. Wenn eine neu aufgetretene Mutation mit Selek-
tionsvorteil in einer Population fixiert wird, steigt nicht nur deren Allelhdufigkeit,
sondern auch die Allelhdufigkeit von neutralen Regionen, die mit dem selektierten
Locus gekoppelt sind. Als Resultat dieses sogenannten "Hitchhiking-Effekt” weist
die Region in der Umgebung des selektierten Locus eine signifikante Reduktion
der genetischen Variabilitdt auf im Vergleich zu Regionen unter neutralem Einfluss.
Dies wirkt sich auf die Topologie des genealogischen Baumes aus. Eine Reduktion
der genetischen Variabilitit verursacht durch eine positive Selektion wird ’selec-
tive sweep” genannt. Den Umstand nutzend, dass ’selective sweeps” extrem unbal-
ancierte genealogische Baum-Topologien in der Umgebung des selektierten Locus
erzeugen konnen, leiten wir daraus einen neuen statistischen Test, basierend auf
einer Log-Likelihood-Methode und aufbauend auf dem bereits bekannten T3-Test,
her: den LRr,-Test. Der Vorteil an statistischen Methoden, die nur die Information
der zugrundeliegenden genealogischen Baum-Topologie bendtigen, liegt darin, dass
diese nicht durch Schwankungen in der Populationsgrofie beeinflusst werden. Wir
haben alle 26 Populationen des Phase-3-Datensatzes des 1,000 Genome-Projektes mit
dem LRr, Test untersucht, um Kandidatenregionen fiir positive Selektion zu identi-
fizieren. Dariiber hinaus stellen wir ein Maf3 fiir die Korrelation von Chromosom-
Segmenten an verschiedenen Chromosom-Positionen vor, welches anhand der zu
Grunde liegenden genealogischen Baum-Topologie bestimmt werden kann. Auch
hierfiir werden wir eine praxisorientierte Anwendung anhand der humanen Daten

demonstrieren.
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Abstract

One of the major interests in population genetics is how genetic variation within
and among populations can be explained by evolutionary forces such as natural se-
lection. It is known that recent events of positive selection can leave a specific pattern
of polymorphism surrounding the selected site. As a new beneficial mutation arises
in a population and eventually becomes fixed, also neutral variants linked to the se-
lected site will increase in frequency. This leads to a reduction of genetic diversity
around the selected site, a process known as "selective sweep’. Still today, identify-
ing loci, which underwent recent selective sweeps is a difficult task, since traces are
typically obscured by other evolutionary and demographic factors, such as genetic
drift or population bottleneck events. Therefore, several methods have been devel-
oped to reliably detecting genomic patterns left by the action of positive selection.
The representation of evolutionary history of a sample as a tree is an elementary
approach in population genetics. The process in which two lineages merge at a com-
mon ancestor, when going back in time, is known as a coalescent event. To detect
candidate loci of selective sweeps, we take here an approach which considers the
genealogical relationships among individuals and the topological properties of the
inferred coalescent tree. Selective sweeps can produce highly unbalanced coalescent
tree topologies in region close to a selective sweep site. Building on a previously
known test statistic called T3, which detects bias in the balance of binary genealog-
ical trees, we derive a new test statistic based on a log likelihood approach and we
call it the LR,-test.

We present the results of genome wide screens of the LRr,-test applied to the 26 pop-
ulations of the phase 3 data set of the human 1,000 genomes project. Furthermore,
we present a measure of topological linkage disequilibrium (tLD), which is based
on clustering individuals with respect to their position in the genealogy rather than
clustering alleles and haplotypes. We demonstrate its application to the beforehand

processed human data.
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Chapter 1

Introduction

1.1 Theoretical population genetics

Population geneticists are concerned with how genetic variation within and among
populations can be explained by evolutionary factors such as mutation, natural se-
lection, recombination and demography. Using mathematical tools makes the con-
struction of theoretical models possible trying to describe the evolution of genetic
patterns under the influence of different components. Although those models rely
on simplified representations of the real-world situation in the sense that they are
idealised enough to be mathematically tractable, they help us to better understand
the rules of inheritance and thus how the genetic composition of a population has
evolved. Such a model might even help us to make future predictions about the oc-
currence of specific alleles or combinations of alleles. These approaches might also
be useful in medical research areas, for example, by studying the evolution of drug
resistance or developing treatments with regard to the prevention, diagnosis, and
treatment of diseases (e.g. Wilson et al., 2016; Polimanti et al., 2014; Carlsten et al.,
2014).

The beginnings* of theoretical population genetics started to develop in the late
1920s with the research of Haldane (1927), Fisher (1930), and Wright (1931). Up
to then, there had been a big discrepancy between supporters of Mendel’s studies
of heredity (1865) and supporters of Darwin’s theory of evolution, which was first
proposed by Darwin and Wallace (1858) stating that beneficial traits which improve
an individual’s ability to survive and reproduce will become frequent in a popu-
lation with time. The three pioneers of theoretical population genetics merged the
ideas of Darwin’s theory and the ideas of Mendel’s genetics by reinforcing the con-

sequences of natural selection acting on a population simultaneously fulfilling the

*See also: (Boero, 2015; Okasha, 2016; Charlesworth and Charlesworth, 2017)
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Mendelian rules of inheritance with mathematical models. Their work provides a
decisive contribution to our understanding of the evolutionary process. It was the
start of exploring the consequences of various evolutionary hypotheses by using ex-
plicit mathematical arguments. Whereas Fisher and Haldane thought that natural
selection was by far the most important factor, Wright was convinced that random
factors also played an important role in altering the genetic composition in a popu-
lation. He proposed the concept of genetic drift which is the random change in allele
frequencies in a population.

During the following two decades, in the late 1940s and early 1950s the research on
evolution was further extended in several directions. Several attempts to explain
mechanisms in evolution were introduced and put into a theoretical framework.
Gradually, the idea solidified that allele frequencies in a population may change due

to four fundamental forces of evolution: the two previously mentioned forces
e natural selection*
e genetic drift

and in addition to these two

o gene flow, which is the change in allele frequencies due to immigration or mi-

gration in populations

e mutation pressure, which is the change of allele frequencies solely due to the

same mutations occurring over and over again.

With the introduction of technical tools to sequence DNA in the 1960s, it was then
possible to test these theoretical models on real experimental data. However, at that
time, data sets were relatively small and hence analyses were limited. Kimura made
in (1968) an important discovery: by comparing the average number of nucleotide
substitutions from data on amino acid substitutions in hemoglobins and a few other
proteins in several mammalian species, he found that the number of mutant substi-
tutions was in disagreement with Haldane’s theory of natural selection (1957). The
number he found was too large. Building on this discovery, Kimura proposed the
neutral theory (reviewed in (Kimura, 1983)), which states that most mutations have
no or negligible fitness advantage or disadvantage, and consequently most muta-
tions are neutral. Therefore, in Kimura’s view randomness takes the leading role in
the process of evolution.

To prove his statement, Kimura used a diffusion equation approach to compute the
probability and time until mutant alleles become fixated.

*Note, that the general term ’natural selection” refers to different modes of selective pressure.
Mostly, these modes are known as: 'Positive selection’, where a beneficial allele is selected for in a
population, ‘negative selection’, where deleterious alleles are selected against and thus nature acts to
remove them from a population, or ‘balancing selection’, where the existence of multiple alleles gives
a fitness advantage and thus they are maintained in a population. Also note that, since in this thesis
we focus on "positive selection’, we will not explain the latter two modes in detail.
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The neutral theory was a further pioneering development in population genetics. It
laid the foundations for the establishment of statistical methods to test for neutral-
ity. The basic idea is that the neutral theory can be seen as a null hypothesis, and
deviations from it may be caused by various kinds of evolutionary forces.

However, determining the evolutionary force and the role of natural selection shap-
ing the observed genomic patterns is to date a difficult task. Most models are es-
tablished in a setting of idealised assumptions. The two most commonly applied
models of a population are the Wright-Fisher model (Fisher, 1930; Wright, 1931) and
the Moran model (Moran, 1958). Whilst, the Wright-Fisher model represents a case
of idealised non-overlapping generations, the Moran model represents an idealised
case of overlapping generations (see also Box 1.1). In the context of these two mod-
els, Kingman introduced a theoretical model to describe the genealogy of popula-
tions (1982a; 1982b). In a retrospective view, alleles of a gene of individuals in a
population can be traced back to a single ancestral copy in what is then called the
most recent common ancestor. Kingman showed that the merging of alleles into a
common ancestor can be described by a random process, and he called this process
the coalescent. Instead of describing how a population will evolve in the future with
given parameters, coalescent theory looks backward in time by reconstructing the
evolutionary history of a present-day sample. These days, coalescent theory has
become of central importance in population genetics. We will look more closely at
this in chapter 2.1. A huge advantage of coalescent models is that they enable the
efficient simulation of data which can be observed under several evolutionary sce-
narios. They are mostly easier to implement than diffusion approaches and more
time-efficient. As we will see, simulations play a significant role in a population
geneticist’s daily life. Theoretical genealogies of samples can be generated under
various assumptions and scenarios, these simulated samples can then be compared
with observed data to test neutral hypotheses or estimating population parameters.

Nowadays, with the theoretical knowledge and background established, several
simulation programs exist and are still being developed. Also, the technical im-
provements in sequencing methods contribute enormously to the continual progress.
High-throughput sequencing technology allows the sequencing of entire genomes at
low cost in a very short period of time. The availability of a large amount of data
sources gives the opportunity to apply theoretical models to experimental data, and
also to test the power and reliability of these models.
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Box 1.1: Wright-Fisher and Moran Model, a brief overview
Wright-Fisher

e Forward in time

e Population size is constant.

e Random mating (panmictic).

o Discrete and non-overlapping generations.

o Generation  + 1 is obtained by each offspring individual picking one ancestor
at random in the parental generation ¢. (Hence, all individuals in a population

die each generation and are replaced by offspring.)

Moran
e Forward in time
e Population size is constant.

e Atdiscrete time intervals, two individuals are chosen randomly: one to die and

one to reproduce. The two individuals can be the same.

o Generations are allowed to overlap.

1.2 Aim and overview of the thesis

One of the main concerns in population genetics is to detect genomic patterns left by
the action of natural selection. Several test statistics have been developed in the past.
However, many tests suffer from high false positives, mainly due to the confound-
ing impacts of demographic events like population bottleneck events, since they can
leave a similar pattern behind as those caused by natural selection.

Some recently introduced test statistics exploit the fact that sweeps produce highly
unbalanced coalescent tree topologies. Tree topology based test statistics have the
advantage that they are free from the confounding effects caused by varying popu-
lation sizes (Hudson, 1990; Li, 2011). Therefore, building on a test statistic called T3
(Li and Wiehe, 2013) which detects bias in the balance of binary genealogical trees,
we derived a new test statistic based on a log likelihood approach and we called it
the LRr,-test. Since in general the tree topology is not known, we developed an esti-
mation method using SNP data. We showed, that the estimated tree topology agrees
quite well with the true topology. Furthermore, we applied the new test statistic to
experimental data. For this end, we screened all 26 populations from the human
1,000 genomes project phase 3 data (Auton et al., 2015) with the LRr,-test. Results of
this screen will be presented.

Moreover, we introduced a measure of topological linkage disequilibrium (tLD)
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which is based on clustering individuals with respect to their position in the ge-
nealogy rather than clustering alleles and haplotypes (Wirtz, Rauscher, and Wiehe,

2018). Also here, we will demonstrate its practical application.
The thesis is organised as follows:

Chapter 2 gives an overview of the basic concepts of coalescent theory and its classi-
cal properties. Furthermore, classical test statistics for detecting traces left by natural

selection and their underlying ideas will be presented.

Chapter 3 starts with the concept of the test statistic T3 (Li and Wiehe, 2013). Further
on, we show that the gene tree topology can be well approximated using single nu-
cleotide polymorphism (SNP) data. We present a suitable clustering method and show
its reliability. Building on the test statistic T3, we establish the LRr,-test, based on a
log likelihood approach. We will show that the power to detect candidate regions

for selective sweeps can be improved by far in that way:.

In Chapter 4, we apply the LRp,-test to all 26 populations of the phase 3 release
of the human 1,000 genomes project. We found new potential candidate regions
which might have undergone selective sweeps, and also many of previously known
candidates were confirmed. We present our top candidate genes and discuss their

potential beneficial trait they may bring along for their carriers.

Chapter 5 introduces the concept of the topological linkage disequilibrium (Wirtz, Rauscher,
and Wiehe, 2018). We start with a short introduction recapitulating the concepts
of classical linkage disequilibrium. Advantages of the topological linkage disequilibrium
compared to the classical linkage disequilibrium are pointed out. We conclude with

practical applications.

Finally, in Chapter 6 we present an overview of the results and conclusions of the

thesis. Suggestions of possible future research questions will be given.






Chapter 2

Inferring population history

At one time or another surely the thought of getting to know one’s ancestors has
crossed most people’s minds to discover his or her origins. Besides, questions like
how closely humans are related to apes or other animals occasionally decorate the
headlines of diverse articles.

Exploring the evolutionary relationship, for instance among various species or be-
tween individuals of population samples, has always been of keen interest in human
history. A basic approach to this concern is the graphical representation of evolution-
ary history in form of a "tree’.

In theoretical population genetics, the introduction of the coalescent theory marked
a milestone. It provides mathematical tools to study the evolutionary history of a
population and enables the establishment of several test statistics for natural selec-
tion. In this chapter, we will start with a brief overview of the basic concepts of

coalescent theory and mention some classical properties*.

2.1 Coalescent theory

The first who came up with the idea of describing the common ancestry of two al-
leles mathematically by looking backwards in time was the French Mathematician
Gustave Malécot in the 1940s, see e.g. (Epperson, 1999). He asked, given a Wright-
Fisher population (see Box 1.1), how far, on average, do you have to go back in time
to find a common ancestor for two randomly chosen alleles?

Looking backward in time, the process in which the lines of descent of two alleles
merge at a common ancestor is known as the coalescent. Being independently devel-

oped by several population geneticists (Ewens, 1972; Tajima, 1983; Hudson, 1983),

*In this chapter, throughout all sections, information content is mainly obtained from the textbooks
(Hartl and Clark, 2007; Wakeley, J., 2009; Nielsen and Slatkin, 2013)
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the first to record the theory behind a coalescent process as a mathematical model
was Kingman (1982a) and he called it the n-coalescent. The idea is as follows:

Assuming a population of size 2N, the probability that two randomly chosen alleles
share the same parental allele in the previous generation is 1/2N, and the proba-
bility that they do not share the same parental allele in the previous generation is
(1 —1/2N). In the latter case, we can continue by asking what the probability is
that these two alleles share the same grand-parental allele: It is 1/2N that they do
share, (1 —1/2N) that they do not share. We can proceed like this and arrive at the
probability that two alleles do not coalesce in generation (t — 1), but do coalesce in

the t-th generation

. 1\ g

P(2 alleles coalesce at time t) = <1 — 2N> N

Now, let us consider a sample of n alleles in which all lineages coalesce indepen-

dently and only one coalescent event can occur each generation. In any generation,

the probability of a pair of alleles coalescing is 1/2N and there are n(n —1)/2 such

pairs. Hence, the probability of coalescent times can be approximated by the expo-
nential distribution (for sufficiently large N)

RN

P(2 out of n alleles coalesce at time t) = (1 _n N

n(n—1) —nonr
N ———¢ W 21
N © @1

with average waiting time T}, for a coalescent event:

BT = o1y

Eventually, all lineages will merge into one node, which is called the most recent
common ancestor (MRCA). The expected time to the MRCA is equal to the sum of the

expected waiting time E[T;]:

E[TMRCA] = izE[Tl] = él(;ﬂ_\]l) = 4N <1 — 3[) .

1
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\ past
MRCA 1

T E(T,)=2N

T = E(T3)=2N/3
T E(T.)=2N/6
T E(T,)=2N/10

T E(T,)=2N/15
T, E(T,)=2N/21
present

* coalescent event

FIGURE 2.1: One possible coalescent tree of a sample of size seven. The lineages are
represented by the leaves of the tree. The times between coalescent events are exponentially
distributed and are denoted by T;. On the right side, the respective expected waiting time is
given.

The expected complete branch length of the tree E(T) can be computed by summing
up the branch lengths E(T;) for the entire tree:

n n n AN n—1 1
Note that the coalescent time is increasing as one goes back further in time and the

last coalescent time from two alleles to the MRCA is the longest. If # is large, almost

half the time is required for the last coalescent event (Felsenstein, 2004).

In this thesis, we consider only binary trees. However, it is worth mentioning that
while Kingman'’s coalescent only produces binary trees, many studies exist dealing
with multiple merger coalescent events, e.g. the A-coalescent (Pitman, 1999), which
allows a coalescent event involving more than two lineages, or the more generalized
E-coalescent, which in addition allows simultaneous multiple coalescent events of

multiple lineages per generation (Schweinsberg, 2000; Moehle and Sagitov, 2001).

21.1 Adding mutation

We now turn to adding mutations to the coalescent model. The infinite-sites model

is assumed, where each mutation can occur at an infinite number of sites and every
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new mutation occurs at a novel site. Mutations are rare events occurring with rate
u during time t per individual. Hence, the number of mutations which occur over

coalescent tree branches of a given length is Poisson distributed,

et (tu)*

P(k mutations in t generations) = TR

and the expected number of mutations is ty.

Adding mutations to the coalescent tree also means graphically: Mutations affect-
ing only one chromosome can only have occurred on an external branch, mutations

affecting many chromosomes have occurred earlier in time, see FIGURE 2.2.

o

FIGURE 2.2: Coalescent tree for a sample of size n = 16, mutations are represented as dots,
the respective DNA sequences are drawn below as vertical lines. Colours of mutations
indicate the different number of chromosomes which are affected by that mutation: The red
one affects only 1 chromosome (= singleton), the blue one two chromosomes (= doubleton),
orange affects 15 chromosomes.

One can also compute the expected number of segregating sites E(S). It is

11
1_,¥v1
i i’

E(S) = uE(T) = y4N

'M‘

I
—_

(2.2)

*M‘

I
—_

1 1

where y is the per site mutation rate and 6 := 4Nu. 0 is also called the population

scaled mutation rate.

By rearranging the above equation, it holds that

Actually, Watterson (1975) was the first to derive the expected number of segregating



2.1. Coalescent theory 11

sites. Nowadays, it is common to use that as means for the estimation of 6. It is also

known as "Watterson’s Estimator’:

A S

i=1 i

Note that another popular estimator for the population mutation rate is Or (or also
), called after Tajima, who first described it (1989a):

The number of nucleotide site differences between a pair of sequences is simply the
number of counts of nucleotide positions at which pairwise sequences differ, divided

by all possible pairwise comparisons that can be made:

2
mT=——-=) dij,
nn—1) ; K
where d;; is the number of differences between the ith and jth sequence.
Since the number of nucleotide site differences between a pair of sequences is the
same as the number of segregating sites in a sample of size two, from 2.2 we know
that an average pair of sequences differs at 6 sites. Averaging over all the pairs in a

sample doesn’t change this, so it follows that
E(r) =4Nu = 6. (2.4)

From this result, one can deduce "Tajima’s Estimator”:

A

2
O = n 1) (2.5)

i<j

(The " indicates that these formulas are intended to estimate the parameter 6.)

2.1.2 Site frequency spectrum

Further on, to obtain information about the frequency spectrum of mutations, con-
sider the site frequency spectrum (SFS): The (unfolded) SFS is the distribution of the
proportion of segregating sites where the derived allele (the mutant) is at the ab-
solute frequency i. For a sample of size 1, the SFS can be represented as a vector
f = (f1, f2, - fu—1), where f; denotes the proportion of the derived allele in fre-
quency i. For example, f; is the proportion of mutations affecting only one chromo-
some, also called singletons, f, is the proportion of mutations affecting two chromo-

somes, also called doubletons, and so forth.
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Box 2.1.2: Example: SFS for the DNA sequence

Proportion
©oo9
=W

1 2 3 4
allele frequency

R WN R

Example of a coalescent for a sample of size 5. The five black horizontally drawn lines on the bottom
of the picture represent DNA sequences. The dots indicate mutations, the different colouring represents
the (absolute) frequency of the mutation in the sample. There are 8 segregating sites, 3 out of these are
singletons, 3 are doubletons and 2 are tripletons. In the upper right corner (the picture in the framed
box), the SFS for this DNA data example is given. Note: Tree genealogy can influence the frequency of

segregating sites in the sense that the observed patterns are a result of the given genealogical tree.

The expected SFS can be calculated by means of the coalescent and is given by

1 AN Ve S S S 2.6)

n—11 n-11"
0 i1t Licik

In some cases it is unknown which allele is the derived one and which is the ancestral
one. Then one can consider the folded SFS which is the distribution of the frequencies

or counts of minor alleles in a sample. Obviously, herei =1, ..., |[n/2], and

. i=1,2,..,|n/2]. 2.7)

2.1.3 Adding recombination

In its simplest form, coalescent theory assumes no recombination. Recombination is
a process during meiosis by which two DNA sequences exchange genetic material
when crossing over occurs. Adding recombination into the coalescent framework is

not straight-forward. FIGURE 2.3 illustrates the difficulty.
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a) b) 9)
aB aB aB
o (]
[ ) [ )
ab ab ab
AB AB AB
AB & ab
AB Ab aB ab AB Ab aB ab AB Ab aB ab
1 2 3 4 1 2 3 4 1 2 3 4

FIGURE 2.3: Picture modified from (Hartl and Clark, 2007, Chapter 3.7, figure 3.17).

Shown here is an example of coalescence and recombination in a sample of size n = 4. The
A/a represents the allele on one site, the B/b allele on the second site. Plot a) shows the
coalescent tree with respect to the A and a pair of alleles. The red circle indicates the
mutation from a to A. The horizontal lines indicate that one AB-bearing chromosome
recombines with an ab-bearing chromosome. Here, suppose the leaves are labelled 1 to 4
from left to right, 1 and 2 are joined together and 3 and 4. Plot b) shows the coalescent tree
with respect to the B and b pair of alleles. The green circle indicates the mutation from B to
b, and again, the horizontal lines indicate that one AB-bearing chromosome recombines
with an ab-bearing chromosome. Here, 1 and 3 are joined together, and 2 and 4. Hence,
both trees in a) and b) represent the ancestry of the A, a and B, b pairs of alleles, respectively.
But the order of the tree is different. Plot c) A possibility to deal with recombination events:
The arrow in the coalescent tree in plot c) points at the coalescence where the recombination
took place and the recombinant chromosomes create their own parental node.

Nowadays, recombination and coalescent process is usually studied in the frame-
work of the ancestral recombination graph (ARG), which was introduced by Grif-
fiths and Marjoram (1996). In the ARG, each nucleotide position along the chromo-
some is associated with a coalescent tree. Due to recombination events, tree topology
at different sequence positions may change. Within a chromosome segment with
no recombination events, all positions have the same tree topology, the so-called
‘marginal tree’. Therefore, by dividing chromosomes into fragments with ideally
no recombination events, coalescent trees can be associated to each of a fragment.
Recombination is embedded by a random ’prune and re-graft event”: A branch of a
marginal tree is randomly chosen, pruned and subsequently re-grafted somewhere
else above the pruning point or even onto the ancestral lineage of the root. In the
latter case, this would lead to a change of root, hence a change of the MRCA.

The ARG can be well approximated by a so-called "Sequential Markov Coalescent’
(McVean and Cardin, 2005; Eriksson, Mahjani, and Mehlig, 2009). The basic idea
here is that the ARG is approximated by a process which iteratively determines the
genealogy along a chromosome, the local tree at a site depends only on the tree at

the previous site.
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2.2 A side note on evolutionary trees

In evolutionary biology, the graphically representation of relationships among indi-
viduals in the form as a tree has a long history.

So far, we have focused on the coalescent approach. Coalescence theory concentrates
on reconstructing possible gene histories to explore what causes might have led to
the observation of the underlying genealogy tree. Whilst here the focus lies on the
intra-species history, the field of phylogeny is interested in inter-species history.

It was the famous zoologist E. Haeckel who coined the word "phylogeny” in the
1860’s, which can be read e.g. in (Dayrat, 2003). A phylogenetic tree represents
the evolutionary history of a species observed through time. They are also known as
species trees. The aim is to reconstruct the "true” species tree. To build the tree, various
data types can be used, however, nowadays it is most common to built phylogenetic
trees from molecular data, like DNA or protein data. In molecular phylogenetic
analysis, the sequence of a common gene or protein are used to infer the evolution-
ary relationship of species. The most common methods for estimating the trees are
distance-based methods (like UPGMA or neighbour joining algorithms), maximum
parsimony methods (i.e. ‘choosing’ the tree that requires the least amount of muta-
tions to be constructed), and Bayesian methods based on likelihood functions (Yang
and Rannala, 2012).

There has been a long-standing debate about which phylogenetic method performs
best and how reliable each one is, strongly depending on the type of data used,
though. Phylogeneticists are concerned with questions like which the true tree is, if

a true tree exists at all.

A species tree might be different from the gene tree. One reason for this phenomenon
is called incomplete lineage sorting:

If the divergence time was short and the ancestral population sizes were large, it can
happen that by the time of the divergence event, not all lineages in a sample from
each population have found their MRCA yet. In such a case, one or more lineages
from one species will share the MRCA with lineages from the other species (see also
FIGURE 2.4).

Other reasons causing the discord between species tree and gene tree can be e.g.
horizontal gene transfer (Davidson et al., 2015), gene duplication and loss or hy-
bridization (Szollosi et al., 2015).
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FIGURE 2.4: The gene tree in blue matches the species tree in black, while the gene tree in
red does not. Reason for the mismatch might be incomplete lineage sorting: By tracing back
three sampled lineages from species A, B and C backward in time, alleles from A and B
might succeed (right side: tree on top) or might not succeed (right side: tree on bottom) to
coalesce in the common ancestor.

2.3 Tests on neutrality

With the advent of new and rapid sequence technologies, a huge amount of DNA
data is now available. It is mostly stored in so-called ‘gene data banks” and are pub-
licly available; genomic patterns can be actually analysed and extensively studied.
These patterns might have been shaped by factors such as demography, natural se-
lection or genetic drift.

However, distinguishing between those can be difficult, for instance, demographic
events like population bottlenecks can leave a similar genomic pattern behind as
those left by the action of natural selection. The construction of a robust test statistic
aiming in identifying the correct underlying dynamic behind, received a high degree
of attention for researchers in the past decades.

In this section, we will present the characteristic genomic signatures of positive se-

lection and classical approaches to detect them.

2.3.1 Genomic footprints of positive selection

In a fundamental work, Maynard Smith and Haigh (1974) introduced the following
model: When a beneficial mutation arises on a chromosome and subsequently gets

fixed in the population, not only the frequency of the advantageous mutation will
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increase but so will selectively neutral mutations which are linked to the selected
site. This effect occurs due to physical linkage between alleles at different loci, a
term called linkage disequilibrium (LD) which was first used by Lewontin and Kojima
(1960) (more on LD in chapter 5).

While the advantageous mutation and the linked neutral variant are swept to high
frequency, other neutral variants are swept out of the population, a phenomenon
called "selective sweep’ (illustrated in FIGURE 2.5) which results in strongly reduced

levels of polymorphism around the selected site.
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FIGURE 2.5: Consider a sample of size n = 10. 1.) Each of the 10 DNA sequence is
represented by a horizontal line. Each blue dot represents a neutral mutation, which can be
present in more than one sequence. 2.) An advantageous mutation occurs, indicated by a
red dot. 3.) The beneficial mutation increases in frequency in the population, and hereby
also the frequency of neutral mutations located close to the selected site increase due to
their association with the beneficial allele. 4.) A recombination event creates a new
combination associated with the selected site. 5.)-6.) The selected site and linked neutral
variants increase in frequency and finally are fixed in the population.

Maynard Smith and Haigh called this process ‘genetic hitch-hiking’. The work of
Maynard Smith and Haigh marked a milestone for population geneticists. Building
on this model, a variety of strategies to detect positive selection have been devel-
oped. They mostly rely on the idea of detecting specific shifts of the SFS, searching
for reduced genomic variation in the genome, or finding specific LD patterns. More
recently, machine learning approaches gain growing attention, e.g. (Schrider and
Kern, 2018).

In the following, we give a short overview of rather 'classical” tests.
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2.3.2 Classical neutrality tests

In general, methods detecting selective sweeps can be divided into groups based on
their underlying idea. One big group is formed by those based on shifts in the site
frequency spectrum (SFS). Selective sweeps affect the SFS in the sense that the SFS
creates a shift towards an excess of low- and high-frequency derived alleles (Braver-
man et al., 1995). In the previous section we have seen that a consequence of a
selective sweep is the reduction of genetic diversity around the selected area. Some
time after the sweep has been completed, the region will recover from the sweep
again, new mutations will occur, however, they can not rise to high frequency due
to the short time, creating an excess of rare alleles around the swept region. SFS
based neutrality tests exploit this fact. By means of §-estimators such a shift can be
measured. In the section before, we have already seen two estimators for the popu-
lation scaled mutation rate: 0y and 8, (equation (2.3) and (2.5) respectively). Under
neutrality both estimators are expected to be equal. After a selective sweep, 8, will
be smaller than fyy, because mean pairwise differences are less to what is expected
from the number of segregating sites. The classical Tajima’s D test is the comparison
between these two quantities (Tajima, 1989a):

D: é\n_ew ,

Var (0, — )

where 8y and 8, are given in (2.3) and (2.5), respectively.

There are other estimators for 6 than we have seen thus far. E.g. define ¢; as the
absolute number of singletons, then according to equation (2.6) the E[¢;] = 6 and
thus

e = C1. (2.8)

Fu and Li (1993) derived the test statistics Fu and Li’s D and Fu and Li’s F, comparing

the number of derived singleton mutations and the total number of derived variants:

D _ éw - ég
Var(fw — 6,)
and
)
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Another noteworthy test from this group is Fay and Wu’S H (2000). Their 0-estimator
gives in addition much weights to high frequency variants relative to the intermediate-
frequency ones. It is defined as
. 2 n—1
Oy = ——— Y i°C;,
H n (n — 1) E 1 CZ

i=1
where ¢; are the counts of derived allele with absolute frequency i, and hence

H= = —.
Var (0, — 0y)

We now turn to a further big group of neutrality tests: haplotype-based tests. A
haplotype is the configuration of segregating sites lying on the same chromosome
(see also FIGURE 3.3). In contrast to SFS based tests, these tests also include linkage.
In a seminal paper, Sabeti et al. (2002) developed an extended haplotype homozy-
gosity (EHH) which detects long haplotypes at unusually high frequencies in candi-
date regions. It measures the decay of haplotypes carrying a specified "core” allele at
one end as a function of distance. Building on this, the integrated haplotype score
(iHS) was developed by Voight et al. (2006). It measures the amount of EHH at a
given site along the ancestral allele relative to the derived allele.

Also a notable consequence of the hitch-hiking effect is that the LD levels are ex-
pected to remain high in comparison on each side of the advantageous mutation,
and drop drastically for loci across the beneficial mutation, motivating to develop
LD-based methods to detect positive selection (Kim and Nielsen, 2004; Wang et al.,
2006).

A disadvantage of most statistical tests is that they are affected by the confounding
effects of demographic factors (Ramirez-Soriano et al., 2008). Events like popula-
tion expansions, recoveries from a recent population bottleneck or gene flow lead to
shifts in the SFS. For instance, both population expansion or recovery from a recent
population bottleneck lead to an excess of low-frequency variants (Fu and Li, 1993;
Tajima, 1989a; Tajima, 1989b). Gene flow can result in increasing high-frequency de-
rived variants (De and Durrett, 2007). Also haplotype-based tests suffer from these
effects, since they are functions of the recombination rate, the mutation rate and pop-
ulation size (Pritchard and Przeworski, 2001). For instance, LD can be increased by
temporary reductions in population size and declines more slowly after the occur-

rence of such a bottleneck event (Reich et al., 2001).
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2.3.3 Tests using coalescent tree topology

We now want to focus on how the tree topology can be used to establish neutrality
tests. Suppose an excess of singletons or an excess of rare derived alleles is observed
(remember: singletons can only lie on external branches). In terms of tree topology
this means that the external branches are likely to be relatively long compared to the
short internal branches. Furthermore, after the fixation of a positively selected allele
in a population, the tree height is drastically reduced due to its short fixation time
at the selected locus. All genealogical branches coalesce at a recent time at the se-
lected site. Not only branch length or tree height in general is affected by a selective
sweep, but also the shape. ‘Due to the effect of hitch-hiking, one lineage of a neu-
tral locus partially linked to a selected locus may escape from the selective sweep
through recombination” (Li, 2011). This lineage will not coalesce with any other lin-
eages before the most recent common ancestor (Kaplan, Hudson, and Langley, 1989;
Fay and Wu, 2000) and that leads to a long branch which is linked to the root of the
tree. The tree topology is highly asymmetric; the tree is also said to be highly unbal-
anced. Taking the underlying tree topology additionally into account in establishing
neutrality tests can provide a more reliable conclusion about what role positive se-
lection might have actually played.

Recently, several test statistics based on coalescent tree topology were established.
Li (2011) used the maximum frequency of derived mutations to examine the unbal-
ancedness of the tree of a locus. Furthermore Li showed, that topology-based tests
are robust with respect to demographic changes such as bottleneck events. Ferretti
et al. (2017) analysed the impact of the structure of genealogical trees upon the SFS
by decomposing the SFS in terms of waiting times and tree shape. Yang et al. (2018)
took into account the ratio between the lengths of two subtrees in addition to the
information of the unbalancedness of the tree.

Li and Wiehe (2013) introduced a simple test for selective sweeps based on mi-
crosatellite variation. They called the test statistic T3 and it only uses tree topology
in the sense of tree shape. Basically, the T3-test is a measurement for the unbalanced-
ness of tree topology. Based on the same model as in (Li and Wiehe, 2013), in the
next chapter, we will introduce the T3 test statistic using SNP data. Furthermore, we
will embed the test statistic T3 in a log likelihood ratio test, and we call it the LRT,-
test. We will show that the power to detect candidate regions for selective sweeps

can thus be improved.
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Chapter 3

Using genealogical tree topology to detect

positive selection

Hudson (1990) proved that in a Wright-Fisher population varying population size
does not affect tree topology. Moreover, Li (2011) showed that tree topology is not
affected by demographic events like population bottleneck events or size expansion.
It therefore stands to reason that tree topology-based statistics are to be considered
to search for traces of selective sweeps. As we have already seen in a previous chap-
ter, a selective sweep also leaves visible traces on tree topology: After the fixation of
a positively selected allele in a population, the tree height is drastically reduced due
to its short fixation time at the selected locus. Genealogical branches will all coalesce
in a recent time at the selected site, leading to a tree of low height. Genetic diver-
sity is strongly reduced around that site. But when one moves away, recombination
breaks this link, one or a few lineages might escape the selective sweep leading to an

unbalance in tree topology. (Kaplan, Hudson, and Langley, 1989; Fay and Wu, 2000)

Most existing coalescent tree topology based tests require more information than just
tree topology™* (e.g. Li, 2011; Yang et al., 2018). We aim to derive a robust test statistic
solely relying on tree topology. Therefore, we will build upon the already known
Ts-test (Li and Wiehe, 2013), which is based on the latter idea.

*When we talk about 'tree topology’, we mean solely the branching pattern. This means other
information like tree height, branch length etc. are of no significance.
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3.1 The test statistic T3

The test statistic T3 was introduced by Li and Wiehe (2013). A detailed review of
the derivation of the T3-test is provided in the APPENDIX A.1. In the following, only

results which will be needed in further sections will be pointed out.

First, we will introduce some terminology:

Consider a binary tree with a fixed number 7 of leaves. This number is also defined
as the size of the tree and represents a sample of size n. The tree has n — 1 internal
nodes, denoted by v;,i = 1,...,n — 1. The labelling starts at the root of the tree, which
also refers to the most common recent ancestor (MRCA). As can be seen in FIGURE 3.1,
the n leaves of the tree can be divided into two disjoint groups: the left- and right-
descendants of root v;. The two groups are indicated as L1 and R, respectively.
Further on, let n = 17 and define () = min{|Ly|, |R1|}. Without loss of generality,
let |L1| be smaller than |R;|, thus Q1 = |L4].

Next, label the root of the subtree consisting of the leaves which belongs to the
"larger” set, in this case the root of subtree with leaf set R, with v,. This subtree
is now of size 1y = n; — Oy > 4, since |Ry| = n; — Q1 > 7. Again, divide the np
leaves merging at root v, into two disjoint groups: the group containing the right-
descendants, |Rz|, and the group containing the left-descendants, |L;|. And again,
without loss of generality let |Ly| < |Rz|, and Q) = min{|Ly|, |R2|} = |Lz|. In the

same manner, we can proceed to determine ()3, (24 and so on.

A Vi B WV C

Y
FIGURE 3.1: Example of a binary tree of size n = 20. A: Tree with root v1, n = n; = 20,
|L1]| =7, |R1| = 13, and thus Q0; = min{|L;], |R;|} = 7. B: Label root of set with

max{|L1],|R1|} by va, hence ny =13, |Ly| = 2, |Rz| = 11, and Q) = 2. C: Proceed in this
way and get n3 = 11, |[Ls| = 1, |Ry| = 10, and thus Q3 = 1.

Assuming that trees are generated by the coalescent process, it follows that ; is a

random variable which is “almost’-uniformly distributed on {1,2, ..., |n/2] } with

2 — 5w1,n/2

7

where J, denotes the Kronecker symbol.

Furthermore, ); given Q);, 1 < i < j, is "almost’-uniformly distributed on {1,2, ..., [n;/2] }
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with
p(ni,wi) = PI‘Ob(Qi = wi),

wheren; =n—wy —..—wj1and 1 < w; < |n;/2] .
Note that the €); depend on Qj,j =1,..i—1.

It can be shown that the expectation for (), is

n
E((O)q) ~ —
(h) =
and the variance
2
n
In general, it holds that
31y
E(QY) 7
and the variance
1 3-n,

(see APPENDIX A.1 for more details on calculations.)

By defining the normalised random variables ()7 = 2();/n;, it can be deduced that

E(Q}) ~ % 3.1
and
In general, it holds that
EO]) ~ o, (62)
V(O ~ 1,

and hence



24 Chapter 3. Using genealogical tree topology to detect positive selection

We will mostly work with the normalised random variables ()} = 2();/n; instead of
;. In this way, they can be well approximated by independent continuous uniforms

on the unit interval. With
E(Q))~1/2 and c(Q) =~ V1/12,

it holds that

1 & (QF —E(O 12 &/, 1

N(0,1)~\/;-i21(10(m()1)): k-;(ni—2> =T (3.3)
by applying the central limit theorem, which states that the sum of continuous uni-
forms converges in distribution to a normal random variable.
Already k = 3 produces a distribution close enough to a standard normal distribu-
tion, as shown in (Li and Wiehe, 2013) and re-checked with simulations (see FIGURE
3.2). Hence, set k = 3.
The resulting test statistic T3 is a measurement for tree balance of binary coalescent

trees:

3 1
T3 =2- <Qj‘—>~./\/'(0,1).
i=1 2

1.0

0.8
|

0.4
|

— standard normal

k=2
— k=3

0.0
|

FIGURE 3.2: Agreement of T (see equation (3.3)) with the standard normal. As can be seen,
already k = 3 yields a distribution close to the standard normal distribution.

In the case of neutral evolution T3 is expected to be standard-normally distributed,

i.e. E(T3) =0, V(T3) = 1. Genealogies after selective sweeps tend to be unbalanced
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and produce negative values of T3 *.

3.2 Estimation of tree topology using SNP data

In practice, tree topology is not known and has to be estimated. Therefore, the relia-
bility of the T5-test depends on the quality of the reconstruction of the tree topology.
Li and Wiehe (2013) showed the application to microsatellite data. They found that
the unweighted pair-group method with arithmetic mean (UPGMA) yielded a reliable re-
sult. The idea was that the microsatellite alleles were grouped into two disjoint sets
according to their repeat size and size distance from each other. In the end, the au-
thors could successfully show significance for two microsatellite markers out of the
used 16 markers of the Plasmodium falciparum surrounding a known drug resistance
locus.

In the following, we will demonstrate that the Tz-test can also be well applied to

single nucleotide polymorphism (SNP) data.

3.2.1 Clustering method

Consider a sample of size n = ny. By using a sliding window approach for a given
window length in number of base pairs (bp) and a given step size, we consider the
combination of SNPs in each window (see FIGURE 3.3 ). For clustering the observed
haplotypes in two disjoint groups, we apply a 2-means like clustering approach:

We determine the two sequences with maximal Hamming distance. These two most
different sequences are now treated as centroids of the two clusters the 1; sequences
have to be grouped into. Next, we assign the remaining n — 2 sequences according
to their similarity to one of the two ‘centroidal” sequences. If the allocation to one
of the two groups is not clearly resolvable, for instance when the focal sequence has
the same distance to the two ’centroidal” sequences, we randomly assign the alleles
to one of the two clusters with equal probability. This gives preference to clusters of
balanced size. Once all 17 sequences have been assigned to one of the two clusters,
we are able to determine (), which is simply the minimum size of the two groups.
Now, we can proceed to the next step: Determining (). For this, we now focus on
the remaining n, = n1 — ()1 sequences not contributing to (2;. The whole clustering
procedure is carried out in exactly the same way as before. In this manner, we can

estimate (), and 3.

*An illustration of T3-profile under different scenarios will be given later, see FIGURE 3.11.
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FIGURE 3.3: Part of a chro-

1 part of a chromosome
I mosome (black line), and a
Sliding window along a chromosome . . .
window of a given size, e.g.
SNP  SNP SNP number of base pairs which

| | | slides along this chromosome

v v v 7
chromosome1 | ..CATGGTGGCACTGTTTGC... (blue box). Now let’s assume
we are analysing this stretch
chromosome? | ...CATGGTGGCACTGCTTGC...

of chromosome for five dif-
chromosome 3 | ...CATGGTAGCACTGCTTGC... ferent sequences in a popula-

chromosome 4 | .. GATGGTGGCACTGCTTGC... tion: Most of the DNA se-
chromosome5 | ...GATGGTAGCACTGTTTGC... quence is identical (black let-
\ I / ters), SNPs are indicated in red.

Haplotype 1 TGCGTAAC A haplotype is made up of a
Haplotype 2 CGCGCATC particular combination of alle-

les nearby SNPs. Here, only

Hapl TCCACTTG . .
apl‘)type3 SNPs contained in the window

Haplotype 4 TGGGCTIG are denoted, since this is suf-

Haplotype 5 CGGATAAC ficient to define the haplotypes

uniquely.

Number of SNPs and fragment length

Coalescent tree topologies along the chromosome are not independent. Multiple re-
combination events within a fragment may lead to confounding effects on cluster
estimation. This means that fragment length can not be arbitrarily large. But at the
same time, it should contain a minimum number of segregating sites to enable a

tairly good approximation of the true tree topology.

Minimum number of SNPs

To investigate how many SNPs are at least needed to obtain a good cluster estima-
tion result for the ();’s, we generated simulated data for population samples using
the simulation program msms by Ewing and Hermisson (2010) with varying num-
ber of segregating sites. The program msms is a coalescent simulation program for
genealogies in general structured populations and based on the widely used and
well-known simulation program ms* by Hudson and Kaplan (1988), with the differ-
ence of allowing selection at a single locus. Since the output of msms provides both
SNP data and trees representing the history of the sampled chromosomes in Newick
format, in each run we can compare our estimated tree topology from SNP data with

the true one (for an example output see FIGURE 3.4).

To choose the appropriate minimum number of segregating sites needed to get a
fairly good approximation of the true tree topology, we generated 16 different data

sets under neutral assumptions but with various number of segregating sites (ss):

*Note, the difference between ms and msms is that msms contains the option for simulating selec-
tion. Both, interface and output format are consistent and therefore, with no selection both can be used
equally.
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msms -N 10000 -ms 5 1 -s 20 -T
0x48853d412a07f114

/!
(((5:0.025,4:0.025):0.249,3:0.274):0.184,(1:0.042,2:0.042) :0.416) ;
segsites: 20

positions: 0.00805 0.02248 0.03072 0.05581 0.05693 0.09182 0.29899
0.39859 0.43621 0.48719 0.53773 0.55121 0.61512 0.62242 0.69708
0.71393 0.91442 0.93375 0.95735 0.96282

10001001010100000000

10001101010100000000

01110010101000111010

01000000100011100101

01000000100011100100

FIGURE 3.4: Example output of a simple msms command for the effective population size of
N =10000, for 1 sample consisting of 5 sequences, generated assuming that there are 20
segregating sites. The first line of the output is the command line. The second line shows
the random number seeds. The history tree in Newick format is represented in line 5,
which is triggered by the option -T in the command line (see also FIGURE 3.5). Line 6 gives
the number of segregating sites in the sample, while in line 7 the positions of the sites are
given on a scale of (0,1). Followed by this line, the haplotypes of each of the 5 sequences
are given as a string of '0’s, indicating the ancestral allele, and “1’s, which stands for the
derived allele.

1. Determining O: 2. Determining Qy:

sequence ‘ 1 2 3 4 5

I 01 15 12 1 sequence‘ 3 4 5

1 0 16 13 12 2 101 101 110
15 16 0 11 10 5 0 1 0

12 13 11 0 1
1 12 10 1 0

Qs W N

The two centroidal sequences are
formed by sequence 2 and 3. This
results in the two clusters:

{1,2} and {3,4,5}, hence () = 2.
Next, consider the remaining
haplotypes 3,4, 5.

The two centroidal sequences are | 5 /8 1 2
formed by sequence 3 and 4.
This results in the two clusters:
{3} and {4,5}A, hence (), = 1. It 0, =2,
follows, that ()3 = 1. 0, =1,
O3 =1

FIGURE 3.5: Example of forming clusters using the SNP data from the output of msms in
FIGURE 3.4. Here, sequence 1 refers to the haplotype from line 8, sequence 2 to haplotype
from line 9 etc. The entries d; ; of the matrix represent the hamming distance between
sequences i and j. As it can be seen in the first matrix on the left side, in the first step, the
centroidal sequences are formed by sequence two and three, since these two are differing
the most from each other (= maximum matrix entry). The remaining sequences will be
assigned to one of these two, according to their distance value, which can also be read in
the matrix. This leads to two clusters, and thus ()1 can be determined. In the same way, O
is determined (see distance matrix in the middle of the figure). On the right side, the "true’
tree topology is shown, which refers to the tree presented in Newick format in line 5,
FIGURE 3.4. As it can be seen, the "true’ Q-values are: () = min{|{3,4,5}|,[{1,2}|} =2,
0 = min{|{4,5}], |{3}[} = 1, O3 = 1.
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1,2,.,9,10ss, 12 ss, 15 ss, 20 ss, 30 ss and 40 ss. In total, 1,000 runs were generated,
assuming a sample of size n = 200 and effective population size of N = 10%.

Then for each set separately, we determined (), with the clustering approach ex-
plained above using an R-Script written by ourselves* and recorded the average (),
for each set (FIGURE 3.7). In the following, let Q); denote the estimated value of Q;,
(+)* indicates the normalized value (e.g. QOF = 20);/n;, (A);k =20);/n).

If we suppose that one segregating site is given, we can obviously form the follow-
ing two clusters: one consisting of chromosomes carrying the ancestral allele 1, and
the other one consisting of those carrying the derived allele 0. The size of the smaller
group represents ();. We can calculate the theoretically expected estimated ()} when
only one segregating site is used for the cluster estimation. Namely, in this scenario
f)f is equivalent to the minor allele frequency in the sample in each run. By means

of the folded SFS (see equation (2.7)), it follows that

[n/2]
Loi-(G+i)
E[O);|(1 segregating site)] = = ,

n—1
where 1 is the sample size and a,_; = ¥ 1 is the (n — 1)-th harmonic number.

i=1
For n=200, E[Q){|1ss] ~ 0.23. We obtain a similar value from simulated data (=
0.21), (see table in FIGURE 3.7). However, according to equation (3.1) it holds that

E[Q] = 1/2, hence on average ()} is underestimated when using 1 segregating site.

Next, we will increase the number of segregating sites by one. Based on the same
idea as before, the expected ()} estimated given two segregating sites can be analyt-

ically calculated by means of the folded SFS for two neutral sites.

For the moment, let k be the number of derived alleles at locus one and ! the num-
ber of derived alleles at locus two, and let the joint two-SFS of two bi-allelic sites be
defined as ¢ for the sample. One has to be aware of two different cases: the nested
case, which is when there are chromosomes carrying the two mutations, and the dis-

joint case, when the two mutations are only present in different chromosomes (see

*The original R-script was written by a former Master student S. Bhandari from our lab. Since
then, we have performed several modifications and changes to that R-script to meet our requirements.
Key differences are:

o If the allocation to one of the two groups is not clearly resolvable, we randomly assign the
sequences to one of the two clusters with equal probability.

e Monomorphic sites were excluded (also with regards to () and Q3 (for determining T3 later)).
o A detailed assignment of each cluster is given in the output file.

e A window needs to contain at least a given number of SNPs, otherwise it will be extended by
1kb.
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FIGURE 3.6.) In the nested case, the haplotypes either carrying the derived version

a) b) &Py
~0-0- ~0-1-
~0-1- ~0-1-
~1-1- ~0-1-
—0-0- ~0-0-
—0-1- ~1-0-

FIGURE 3.6: Example of a nested (a) and a disjoint (b) case in a two-locus model, for n = 5.
Each line represents a chromosome, a 0 indicates that the chromosome has the ancestral
allele at that locus, a 1 the derived allele. In both cases, it holds thatk =1 and [ = 3.

at both loci or those carrying the ancestral allele at both loci will form the centroidal
sequences for the two clusters, since these two differ the most from each other (they
are different at both loci). Haplotypes carrying a derived allele at one locus and an
ancestral allele at the other locus are equidistant from both centroidal sequences,
meaning that they will be randomly assigned to one of the two clusters. In the dis-
joint case, haplotypes carrying both mutations are not existent. Here, haplotypes
with the derived allele at the first locus and an ancestral allele at the second lo-
cus and those haplotypes, which are carrying the opposite combination, will be the
centroids of the two clusters. Haplotypes with the ancestral allele at both loci are
randomly assigned to one of the two clusters.

The probability of observing k derived alleles at locus one and ! derived alleles at
locus two, which we define as P[¢y ], is the sum of the nested component P[Ej,{\/’l] and
the disjoint P[CEI]. In (Ferretti et al., 2018) the respective probabilities were given,

where the authors also elaborately provide the derivations of the following equa-

tions
( £x)=pulictl) fork <1
Plghy] = ¢ 0 fork =1
w fork > I
( 5»1 k+1)+ﬁﬂ( ) ﬁ”(l+1)> 2725}‘,1 for k +l <n
P[gk?l] = <an ak un al _ ,BY!( );‘ﬁn(l)) 27251‘/[ fork+l =n
0 fork+1>n
with
. 2n 2
Bl = e G M T T

That was the unfolded SFS. Now, we will again turn our focus to the folded SFS. Let

k be the number of the minor allele at locus one and ! the number of the minor allele
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atlocus two. Fork < n/2and ! > n/2,ork > n/2 and [ < n/2, the classification of
being nested or disjoint will be swapped, whenk < n/2and! < n/2,ork > n/2and
I > n/2, the classification remains unchanged. Taking this into account, we can now
write down the theoretically expected estimated value ()} given two segregating

sites. This is calculated using following equation(s):

E[0)]|(2 segregating sites)] = E[Zk;] = E[2g)] + E[Cy)],

where
n/2n/2 ’k | N
B =Y (mm{kz (n— max{k,1})} + )-P[ék,l]
k=11=1

+<min{(n—k), (n—1),(n—max{n—k,n—1})}
IS S\

vz
B

»

<m1n{n —k 1} + : P[gank,l]

(mm{k n—1}+

N
»

’ P[éllc),n—l]

n/2n/2 —k—1
E[gp)] = (min{k/l} + (nz)) -PleY)]

k=11=

[y

+ (min{(n — K),1, (n — max{n — k,1})} + ’(”_2")_”) PN,

_|_

N N

min{k,n — I,n — max{k,n —1}} + W) PR, _]

For n = 200, E[Q)}|(2 segregating sites)] ~ 0.76. This value is in agreement with the
one obtained from simulated data (FIGURE 3.7). Hence, given 2 segregating sites Q)
is on average overestimated.

So far, we have seen that the simulated expected )} agreed quite well with the
theoretical value. For more than two segregating sites, we determine the expecta-
tion E[Q)}| (# of segregating sites > 2)] by using simulations, because it becomes too
complex to be calculated explicitly. The result is illustrated in FIGURE 3.7: With an
increase of numbers of segregating sites, the average ()} eventually approaches 0.5
from above, but never reaches this value. The latter can be explained by the fairly
conservative cluster method we are using by always giving preference to clusters of
balanced size in not clearly resolvable cases. Moreover, with a minimum number of
10 SNPs the median difference between known () and estimated () is around 0, as

illustrated in FIGURE 3.8.
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FIGURE 3.7: Average Qi‘, O, Q; out of 1,000 runs for each scenario, conditioned on the
number of segregating sites used for estimating €)%. Dashed horizontal line indicates E[();]
(see (3.2)). For numbers see APPENDIX TABLE A.1
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FIGURE 3.8: Absolute difference between ()4 and €); (y-axis), where (), was estimated
using the number of segregating sites shown on the x-axis. Same simulated data used as
before. It can be seen that already with a number of segregating sites of 10, the median is 0.

Recombination events

Too many recombination events within a fragment should be avoided since this
might increase the chance of having confounded tree topologies within one window.
This in turn leads to a distortion of the clusters. To drastically reduce correlation of

coalescent tree topologies along a recombining chromosome, it takes about 15-20
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recombination events (Ferretti, Disanto, and Wiehe, 2013). A sample of size n has
experienced on average 4Nca,_1 recombination events (Hudson and Kaplan, 1985),
where 4,1 is the (n — 1)-th harmonic number and ¢ the recombination rate per bp.
This corresponds roughly to 6,400-8,520 bp to for a sample of size n = 200, N = 10%,

recombination rate of ¢ = 1078, since

4-10*-10°8 -length(in bp) - a199 15
= length(in bp) ~ 6388. (3.4)

(For 20 recombination events the calculation is similar.) Above 10kb trees are not
strongly correlated anymore. (Correlation based on simulations of the test statistic

Tz with distance is given in APPENDIX FIGURE A.1.)

Window size

Summarising the aforementioned results, we can now conclude the following with
regards to the appropriate window size and SNP number for the estimation of tree
topology:

We have seen that a minimum number of segregating sites is required to get an ac-
ceptable estimation of tree cluster. One segregating site leads on average to under-
estimation, two segregating sites to overestimation. With an increasing number of
segregating sites, the estimated value decreases gradually approximating the theo-
retical expected value of E[Q)}] = 1/2, though a slight overestimation remains which
is a consequence of the rather conservative cluster method, giving preference to clus-
ters of balanced size when the clusters are not clearly resolvable. Furthermore, too
many recombination events within a fragment should be avoided. This means that
on the one hand, fragment length should not be too large, but on the other hand it
should contain a minimum number of segregating sites. Starting from a minimum
number of ten SNPs the median difference between the known ()1 and the estimated
Q); is around 0, as illustrated in FIGURE 3.8. Using equation (2.2), we expect to see
ten SNPs in a magnitude of about ~ 4,260 bp window length, assuming a sample
of size n = 200, N = 10%, and a mutation rate of # = 10~ per bp. Summarising
the results, we suggest to estimate tree topology by using a window size of 5,000 bp
with a minimum of ten SNPs. If the latter condition was not fulfilled, we increased
the window size by 1,000 bp. The maximum window size was set to 10,000 bp (=
10kb). If still less than ten SNPs were within the maximally extended window, we
moved on by a step size of 2,500 bp.

It should be pointed out, that the final choice for fragment length rely on the as-
sumption of a recombination rate of ¢ = 10~® per bp per generation and y = 108

per bp per generation, which are the (average) estimates for human (Roach et al.,
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2010; Li and Freudenberg, 2009). Therefore, if applying to species with different mu-
tation and recombination rates as assumed above, the parameters must be changed

correspondingly.

3.2.2 Quality of cluster assignment

At the moment, we were only interested in how well the estimated cluster size
agreed with the true one. But did we also classify the sequences into the correct
cluster? Suppose, the true tree topology T is known. Let |T| = n, L; and R; be the
left-descendants and right-descendants, respectively, of root v, and let I, and R,
be the left-descendants and right-descendants of the estimated version of T. Fur-
thermore, let QO = O = min{|L{|,|Ry|} and O = O = min{|L|,|R{|}. W.lo.g.
Q = |Li| and Q) = |L4|, and let in the following the term maximum overlap refer to
the maximum total number of sequences classified into the correct clusters (left and
right). For instance, suppose Q = ) and all sequences belonging to subset L; are
correctly assigned to subset L;, which implies that all sequences in cluster R; are
also assigned correctly. In this case, the maximum overlap is equal to the sample size
n, since all n sequences are classified correctly to the left and to the right cluster,
which represents the optimal case. It is also possible, that some (2 — k sequences are
assigned to the ‘the wrong’ group, namely to R;. In this case, the maximum overlap
would be max{(|L1 N L1| + |Ry N Ry]), |Li N Ry |+ [Ry N L))}

Suppose |L; N Li| = kand |[R; N Ry| = n — Q) — (Q — k), then the size of the overlap
isn— (Q + Q) — 2k) (see FIGURE 3.9, A). Otherwise, if left and right are swapped’,
the overlap is O+ 0 -2k (see FIGURE 3.9, B). Hence, the maximum overlap is the
maximum of these two numbers:

n—(Q+Q—2k)or (Q+Q —2k).

As a benchmark for the quality of our clustering method, we want to determine the
expected maximum overlap we get by chance, given Q and (). We assume that k

follows a hypergeometric distribution. Hence

D 5D

Plk|Q, Q) = @)

Then, the expected maximum overlap, conditioned on Q) and ), is

Ay A : - &
Eloverlap,,)|Q, Q] = Y~ max{n — (Q+Q - 2k), (A +Q —2k)} - %
k=0 a

(3.5)

Based on equation (3.5), we can calculate the expected maximum overlap, conditioned

on Q and (), if we assign the sequences randomly.
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FIGURE 3.9: The two stripes at the top of the picture graphically represents the "true’ cluster
and the "estimated’ cluster of a set of size n. The ()-cluster is further divided into two
clusters: the yellow one consisting of k sequences, and the black one consisting of (2 — k
sequences. In this example here, () > () (analogous for other cases). To get the overlap of
correctly assigned sequences, there are two options (since ‘left’ and "right” are
interchangeable here): A: Ly N L1|+ |R; N Ry| or B: Ly N Ry| + |Ry N Ly|. The maximum
overlap is the maximum of these two.

We estimate tree topologies for 200,000 samples of size n = 200 (simulated by ms)
by using 10 SNPs. We then calculate the average maximum overlap conditioned on ()
and Q). We compare this with the expected values calculated using equation (3.5).
The result is demonstrated in FIGURE 3.10.

It can be clearly seen, if the estimation of ) is correct ( Q) = )) our clustering ap-
proach performs very well in assigning all n = 200 sequences into the correct cluster,
for all Q = (V's. That this is not just a random result, can be seen in particular with
increasing Q). But if Q) # (), then the quality of the cluster assignment drops quite
fast, and is only slightly better than random assignment in extreme cases. Hence,
to answer the proposed question from the beginning of this section, it strongly de-
pends on how well we estimate Q. If Q = (), then the agreement of the assignments

is astonishingly good.
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observed-expected

FIGURE 3.10: A: Average maximum overlap of sequences for sample size n = 200,
conditioned on Q) and Q). If Q) = (), sequences are also assigned into the correct cluster. B:
Maximum overlap if sequences are randomly assigned into one of the two clusters, given
cluster size. C: Difference between observed overlap and expected overlap.

3.3 Robustness to demographic events

3.3.1 Bottleneck events

Distinguishing genomic patterns left by the action of evolutionary forces from those
caused by demography has always been challenging, since both events can lead to
a reduction in diversity and leave similar footprints behind. Nevertheless, as was
already remarked by Li (2011), varying population size does not have an effect on
tree topology and hence statistical tests based on tree topology are more robust with
respect to this kind of demographic events. This statement is also in accordance with
our results tested on simulated data for three different scenarios: neutral, selective
sweep and bottleneck. The parameters are n = 200, N = 10%, 6 = 10% and r = 103,
where r = 4NCc is the scaled recombination rate. The choice for § = 10° and r = 10°
refer to a chromosome of size 2.5 Mb with a recombination rate of ¢ = 10~8 per bp
and mutation rate # = 1078 per bp (I =length (inbp)= 2.5-10° bp, thenr = 4Nc-I =
103, similarly I = 2.5-10° bp, then 6§ = 4Ny -1 = 10°. ). For positive selection, we
assume that the selected site is located in the very middle of the chromosome, where
the strength of selection for the selected allele is given by « = 2Ns = 1000, where s
is the selection coefficient , and T = 0.0001, which is the time since the completion of

the sweep. For population bottlenecks, we assumed severity 1 and onset 0.01.
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Box 3.3.1: Extracting windows from simulated data output.

To cut the sequences from the msms-output in appropriate windows, we used the op-
tion mscut contained in the program package coatli provided by A. Klassmann, which
can e.g. be downloaded on https://sourceforge.net/p/coatli/wiki/Home/ (or
also see (Ferretti et al., 2018)). In general, mscut filters ms-output, and retains only
those segregating sites whose positions fall into a specified interval. For example, the
following command line

msms -ms 5 1 -N 10000 -s 1000 | mscut 0 0.01

gives the output:

msms -ms 5 1 -N 10000 -s 1000
[null]Window: [0.0000,0.0100[

//

segsites: 10

positions: 0.0008 0.0009 0.0015 0.0026 0.0031 0.0068 0.0071
0.0076 0.0085 0.0090

0110010000

0100101000

1000000101

1001000111

1000000101

First, one run of sample of sizen = 5, N = 10* for a chromosome containing 1,000
SNPs is generated. The positions of the SNPs are given on a scale of (0,1) (compare
with 3.4). The command mscut 0 0.01 retains all SNPs located between 0 and 0.01.
The option msfs and ntx contained in the same program package coatli allows the cal-
culation of Tajima’s D. Hereby, msfs first calculates the standard frequency spectrum
out of the output, then ntx computes Tajima’s D value.

The result of the application of the Ts3-test for each three scenarios is demonstrated
in FIGURE 3.11. When tree topology is estimated based on SNP data, it produces
on average slightly larger T3-values than the true one. This can be explained by
the fairly conservative cluster method we are using in always giving preference to
clusters of balanced size in not clearly resolvable cases. Furthermore, for reasons of
comparison, we also calculated Tajima’s D for each set. In FIGURE 3.11 it can be seen,
when a population has gone through a bottleneck, the Ts-test is not affected. When
tree topology is estimated, it even goes in the opposite direction producing rather
positive values. In comparison, Tajima’s D is becoming heavily negative, leading to
false positives under a bottleneck event.

To cut the simulated sequences into fragments and calculate Tajima’s D, we used
the program package coatli provided by A. Klassmann (Ferretti et al., 2018) (see box
3.3.1).
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Omb 03mb 065mb imb 13mb 165mb 2mb 23mb omb 03mb 065mb 1mb 13mb 165mb 2mb 23mb Omb 03mb 065mb imb 13mb 165mb 2mb 23mb

Omb 03mb 065mb imb 13mb 165mb 2mb 23mb omb 03mb 065mb 1mb 13mb 165mb 2mb 23mb Omb 03mb 065mb imb 13mb 165mb 2mb 23mb

Omb 03mb 065mb imb 13mb 165mb 2mb 23mb omb 03mb 065mb 1mb 13mb 165mb 2mb 23mb Omb 03mb 065mb imb 13mb 165mb 2mb 23mb

FIGURE 3.11: T3-profile calculated from simulated data along a recombining chromosome
for three different scenarios: neutral, positive selection on a selected site located in the
middle of the chromosome, and population bottleneck with severity 1 and onset 0.01. Each
scenario is shown for known T3-values, for estimated T3-values and for reason of
comparison Tajima’s D.

3.3.2 Migration events

Another concern for tree-topology based tests are migration events: When a lineage

migrates from one subpopulation to another, it may not coalesce with any other
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lineages before the most recent common ancestor. Such cases can also cause unbal-
anced tree topologies. We examined sampling from a population divided into two
sub-populations with varying migration rates and varying sampling schemes. Sam-
ples were generated using ms. As previously, parameters were set such that N = 104,
n = 200, u = 1078 per nucleotide per generation and recombination rate ¢ = 1078
per nucleotide per generation.

It holds that n = n; 4 ny, where n; refers to the number of chromosomes sampled
from the first subpopulation and 7, refers to the number of chromosomes sampled
from the second subpopulation. As can be seen in TABLES 3.1 and 3.2, T is affected
by the existence of population substructure. When the sampling scheme is heavily
biased (n; = 195 and n, = 5) and migration rate is low (4Nm = 0.4 or 4Nm = 0.04),
T3 is quite negative (even compared to the selective sweep scenario) leading to a
high increase of false negatives. When sampling all chromosomes from only one
subpopulation, n; = 200 and n, = 0, T3 is quite robust, however when migration is
4Nm = 0.4, T3 seems to be slightly affected (see also APPENDIX FIGURE A.2,A.3 and
A.4). In TABLES 3.1 and 3.2 the values for the neutral (panmictic) scenario and the
selective sweep scenario from the same data from previous section 3.3.1 are given

for reasons of comparison.

4Nm | subpopulation sample size | average T3-value | average T3-value
(known) (estimated)
4 n1 =180 and np; = 20 -0.0968 0.3281
0.4 n1 = 180 and np = 20 -0.4899 -0.1302
0.04 n1 =180 and np; = 20 -0.5819 -0.2587
4 ny =195 andn, =5 -0.1188 0.3219
0.4 ny =195 and n, =5 -0.6254 -0.1968
0.04 ny =19 andn, =5 -0.8534 -0.5083
4 ny =200and n; =0 -0.1031 0.3367
0.4 ny =200and n, =0 -0.3234 0.1111
0.04 ny =200and n, =0 -0.0826 0.4688
- neutral scenario (panmictic) 0.0204 0.4376
- sweep scenario (¢ = 1000) -0.6283 0.0588

TABLE 3.1: Average T3-value (known tree topology and estimated tree topology) for
different scenarios: substructured populations with varying migration rates and varying
sampling schemes, neutral (panmictic) and selective sweep scenario. Average of 1,000 runs.
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4Nm | subpopulation sample size average average
1%-threshold 1%-threshold
(known) (estimated)

4 np = 180 and np = 20 -2.3007 -2.0139
0.4 np = 180 and np = 20 -2.5252 -2.4357
0.04 np = 180 and np = 20 -2.3747 -2.3309
4 ni =195and n, =5 -2.3237 -2.0317
0.4 ny =195and n, =5 -2.7142 -2.5266
0.04 ny =195and n, =5 -2.6516 -2.5298
4 n; =200and n, =0 -2.314 -2.0087
0.4 ny =200 and n, =0 -2.4877 -2.2841
0.04 n; =200and n, =0 -2.3088 -2.0626
- neutral scenario (panmictic) -2.18 -1.88

- sweep scenario (x = 1000) -2.71 -2.5259

TABLE 3.2: Average empirically determined 1%-threshold of T3 (known tree topology and
estimated tree topology) for different scenarios: substructured populations with varying
migration rates and varying sampling schemes, neutral (panmictic) and selective sweep
scenario. Average of 1,000 runs.
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FIGURE 3.12: Cumulative distribution of T3 for each sampling scheme with migration rate
4Nm = 0.4.

3.4 Power of the T;-test

Under neutral assumptions, the probability of observing highly unbalanced tree
shapes is quite low (Kirkpatrick and Slatkin, 1993; Blum and Francois, 2006). How-

ever, like all neutrality tests, the Ts3-test suffers from false positive results.

To check how many of the identified regions are true positives, we simulated a
chromosome of size 2.5 Mb experiencing a completed selective sweep with vary-
ing strength of selection. As previously, we assumed n = 200, N = 10*, mutation
rate per bp ¢ = 1078 and a recombination rate per bp ¢ = 1078, Simulations were

performed with msms as in section 3.3.1, 1,000 runs for each setting. The positively
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selected site was placed in the middle of the chromosome. For each of the 1,000 runs,
we empirically determined the 5% threshold and 1% threshold. Afterwards, when
we found a window with a Tz-value below the respective threshold, we recorded
the position of this window. The result is illustrated in FIGURE 3.13 for the known
tree topology: The y-axis represents the counts of how often a window (located on
the x-axis) was significant. As expected, under positive selection we see two peaks
located around the selected site. What can be clearly seen, is that the power of the
T3-test depends on the distance to the selected site (see table 3.3). On average, taking
a 1% threshold, around 78.86% - 86.12% of the windows identified as being signif-
icant were found to be within a distance of 250 kb from the selected site (see table
3.3). However, as just mentioned, it strongly depends on the distance we take into
consideration to determine the actual selected site. Still an average of around 20%

(by a threshold of 1%) falls outside aforementioned region.

Data set | threshold | average max. 250 kb max. 500 kb > 500 kb
threshold-| distant from distant from distant
value selected site selected site
X — 500 5% -2.17 70.64% 81.56% 18.44%
1% -2.58 78.86% 86.66% 13.34%
5% -2.45 79.34% 90.3% 9.7%
« = 1000
1% -2.71 85.18% 93.56% 6.44%
X — 2000 5% -2.59 80.23% 92.98% 7.02%
1% -2.76 86.12% 94.84% 5.16%
neutral 5% -1.63 19.60% 39.26% 60.74%
1% -2.18 19.60% 39.06% 60.94%

TABLE 3.3: This table shows where on the chromosome, on average, a window with a
T3-value below the respective threshold was found, with regards to the selected site (in the
neutral case: middle of the chromosome).

Moreover, in FIGURE 3.14 it can be seen, that if we only consider single windows
(regardless of their position from the selected site), the test is not very effective. Sup-
pose, we take a cut-off value of T3 = —2.0, the false positive rate is around 0.019,
however the power is only (maximum) 0.23. In the following we want to investigate

how the T3-test can be improved.
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FIGURE 3.13: Absolute counts of how many times out of 1,000 simulations a specific region,
shown on the x-axis, was referred to as 'being a significant region’. The selected site is
located in the middle of the chromosome.
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FIGURE 3.14: Shown in this figure is the cumulative frequency distribution of the T3 values
for different simulated data sets. For each scenario, we simulated 1000 runs, with
parameter n = 200, N = 10%, and recombination rate per bp ¢ = 10~8. For positive
selection, we assume & = 500, « = 1000, « = 2000, respectively.

3.4.1 Corroborate significance
Re-sampling strategy

For the reconstruction of phylogenetic trees, bootstrapping has long become a com-
mon feature to assign confidence to the inferred tree topology (Felsenstein, 1985).
Here, we are concerned with the question whether bootstrapping or related re-sam-
pling techniques can contribute to reducing false positives in our case. Of particular
interest to us is, if unbalanced tree topologies under neutrality have distinguish-
able topological features with regards to their subtree structure compared to unbal-

anced coalescent tree topologies produced by a selective sweep. Hence, the idea
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is to re-construct the genealogy of random subsamples of the original sample, so-
called induced subtrees. The most unbalanced type of tree topology is if ();=1, for all
i=1,.,n—1.

Such a tree is called a caterpillar tree (e.g. see FIGURE 3.15).
Under the standard neutral model, this tree shape is very
unlikely to appear by chance (Blum and Francois, 2006;
Kirkpatrick and Slatkin, 1993). A large excess of singleton
mutations which is a typical characteristic of a selective
sweep, results in the estimation of a star-like tree which
takes a caterpillar shape when forced to be binary. Cater-
pillar trees and their induced subtrees have been anal- FIGURE 3.15: Example of
ysed before (Disanto and Rosenberg, 2016; Kirkpatrick a caterpillar tree, n = 10.
and Slatkin, 1993), its induced subtrees are also highly un-

balanced. This in turn means that a re-sampling strategy

surely helps to corroborate candidate regions found. However, as it was already
mentioned, the chances to observe such a tree shape in practice is extremely low.

In the following, we tested on simulated data if subtree topologies under neutrality
are significantly distinguishable from subtree topologies under selection. To analyse
this, we subjected the found regions (with a significance level of 0.01 and 0.05, re-
spectively) in the simulated data sets from subsection 3.4 to a re-sampling strategy.
Therefore, independent subsamples of size n’ = 40 were randomly drawn 100 times,
and Tz-value was calculated each time. Then for each region, we determined how
many out of the 100 times re-confirmed the candidate region. In the end we reported
those, in which at least 30 out of 100 subsamples re-confirmed the candidate.

The following table shows how many of the regions, which were significant in
the first step using ‘'whole” sample (see table 3.3), survived after applying the re-
sampling strategy just explained. As in the section before, we demonstrate this for

the known tree topology.

As can be seen in TABLE 3.4, on average, unbalanced tree topologies under neutral-
ity seem not to have significant distinguishable topological features with regards to
their subtree structure compared to unbalanced coalescent tree topologies produced
by a selective sweep. Since, if it were true, windows with a Ts-value below the
threshold found close to the selected site should be re-confirmed at a much higher
rate than those located far away. However, our results presented in TABLE 3.4 could
not confirm this. The reason might be, as mentioned at the beginning of the section,
that a re-sampling strategy is only helpful for extreme cases, like caterpillar trees.
However to observe a caterpillar tree is extremely unlikely in practice. Deeper anal-

ysis is needed concerning 'non-extreme’ cases, which are more common to find.
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Data set | threshold | average max. 250 kb max. 500 kb > 500 kb

with threshold-| distant from distant from distant
value selected site selected site

X — 500 5% -1.91 63.89% 63.60% 56.98%
1% -2.37 22.57% 21.88 % 9.45%

x — 1000 5% -2.14 52.23% 52.92% 38.45%
1% -2.48 11.36% 11.14 % 2.79%

A — 2000 5% -2.36 30.74% 33.55% 24.44%
1% -2.58 4.02% 4.68% 2.71%

neutral 5% -1.55 74.37% 74.43% 74.14%
1% -2.04 45.17% 46.24% 45.98%

TABLE 3.4: This table shows, how many out of the previously significant regions 3.3 were
confirmed after the re-sampling strategy.

Based on our simulation results, and the long running time and large memory needed

for this strategy, we then focused on a different approach.

Log likelihood ratio test approach: The LRr,-test

While a beneficial mutation increases in frequency and is getting fixed in the popu-
lation, linked neutral variants also increase in frequency, sweeping out the diversity
around the selected site. As the distance from the selected site grows, recombina-
tion events will allow linked neutral sites to recombine away. However, the level
of genomic variation is maintained over a longer chromosomal distance around the
selected site than under neutrality; the basis used for haplotype-frequency based
neutrality tests, e.g. (Sabeti et al., 2002). Linkage is elevated in regions close to a
selected site, recombination events are more rare. That in turn also means that ge-
nealogical tree topology should be maintained over a longer chromosomal distance.
The probability of observing unbalanced tree topologies in multiple consecutive re-
gions is higher for selected sites than under neutrality. Therefore, we asked: When a
candidate region was found on the chromosome, that is for this region its Tz-value is
below a previously determined threshold g, how likely is it that also for the follow-
ing k; flanking regions to the left and k, flanking regions to the right, the respective
Tz-values of these flanking regions are also below g?

In case of positive selection, the probability that Tz-values are also below g should
be higher (compared to the neutral case) for k; = 1 and k, = 1 (the immediate neigh-
bours) and decrease slowly (compared to the neutral case) with growing distance to
the "focal” region which is the region where we start from.

Hence, the idea is to take not only the T3-value of one window, but also the sur-
rounding ones into account and to construct a test statistic based on the concept of
likelihood ratio tests.

Likelihood ratio tests give an idea about how many times less likely the data are
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seen under a null model Hy compared to an alternative model H;. Here we have

Hy = neutral evolution

H; = positive selection.

To construct the likelihoods P(-|Hp) and P(-|H;), we used our previously simulated

data (generated under the neutral scenario and generated under the selective sweep

scenario, assuming &« = 1000) and proceeded as follows:

1. Determine the 1% threshold value from the simulated data under the null hy-

pothesis, namely under the neutral scenario.

. Start screening the data set from left to right (along the chromosome):

When a significant region is found (T3-value is below the 1% threshold deter-
mined in 1.) record this region (in the following we will refer to this region as

the “focal region’), and inspect adjacent regions to the left and to the right.

Record whether the k;/,-th neighbour window from the focal region has a Tz-
value below the 1% threshold or not. (Note: k;;, = 1,...,m;;,, where ,m;,, is
the number of consecutive windows investigated to the left and to the right
starting from the focal region. The index I and r stand for “left” and “right”

side, respectively. See also FIGURE 3.16).

. Repeat 2. until the end of the chromosome is reached.

. Calculate the average of how often a Tz-value below the 1% threshold will

be found with distance k;,,. In the end, obtain a probability distribution of
finding another region with a T3-value below the 1% threshold with respect to

the distance of the focal region.

Repeat with simulated data under the alternative hypothesis, namely under the se-

lective sweep scenario.

The construction steps were performed for 1,000 runs of simulated data under neu-

tral assumptions and simulated data under the selective sweep scenario, which we

generated in section 3.3

*As before samples were generated with msms. A chromosome of length 2.5 Mb was simulated,

mutation and recombination rate as before. The command for the selective sweep scenario was:
ms 200 1000 -N 10000 -t 1000 -r 1000 500 -T -SAA 1000 -SAa 500 -SF 1e-4 -Sp 0.5. 1 < k;;, < 250 and
each fragment stands for a window of size 5 kb.
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FIGURE 3.16: A simple visualization of step 2. The black line indicates a chromosome,
which was divided into 501 fragments, and the red /blue lines indicate the
fragments/regions of the chromosome, which a T3-value is referred to. The red region
indicates a region, where a T3-value under the given threshold was found, suppose it was
found in the very middle of the chromosome, thus k;,, = 1, ...,250 for both left and right
side from the focal region.

FIGURE 3.17 illustrates the previously computed conditional probabilities. As we
can see, it is more likely to observe unbalanced trees in multiple adjacent windows
under the selective sweep scenario than under neutrality. (Under neutrality, the
probability is almost 0). In the following, we worked with the probabilities calcu-

lated for the estimated tree topologies.

0.7
1

-- neutral-true tree
-- selective sweep-true tree
— neutral-estimated tree
— selective sweep-estimated tree

0.6

0.5

0.3
Il

probability to find another significant region
0.2

0.1

0.0
|

0 50 100 150 200 250

distance (in k)

FIGURE 3.17: Probability of finding another highly unbalanced tree at window distance x,
given that one was found at x = 0.

We defined (pu1, ..., Pni, - Pn2so) as the probabilities that, given a window with T
below the threshold was found, that neighbour window i from the focal window
also has T3 below the threshold under neutrality, and analogue for p,; for the selec-

tive sweep scenario.

With this background, we composed a test statistic based on likelihood ratio tests.

Each of these two models was separately fitted to the data and the log-likelihood
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was recorded, which we defined as LR7,, and is given by the following equation:

LRy, = —2-In <P(d*“a|H0)>
P(data|Hy)

ki

= —2.In| =& (3.6)

Hereby, p* = p, if the T3-value in window i is below the threshold in the observed
data, otherwise p*% = (1 — p).

Further on, we generated new simulation data, again 1,000 runs under neutral as-
sumptions and 1,000 runs under assumptions of positive selection, using the same
parameters as before. These were our test data sets.

We screened the new neutral data set and the new selective sweep data set sepa-
rately. When a “focal window” was found, we looked, if procurable, 100 adjacent
regions to the left and to the right from the focal region, calculated the likelihood of
observing these data under neutrality and under positive selection by means of the
previously established probability distributions, afterwards we calculated the log

likelihood ratio LRt, with equation (3.6). For an example work-flow see box 3.4.1.
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FIGURE 3.18: The picture on the left side illustrates the cumulative distribution of LR, and
on the right side the density plot of LRy, for the neutral scenario (blue) and for the selective
sweep scenario (red), for the estimated tree topology. For the neutral case, LR, > 0 for
2.26%. For the selective sweep scenario, LRy, > 0 for 94.98%. To reduce the false positive
rate, we set the threshold of LR, at 15 (dashed red line). For the neutral scenario LR, > 15
holds for 0.0007%, for the sweep case that holds for 88.41%.

The result is illustrated in FIGURE 3.18.
We empirically determined the power of this test, and found that by setting the
threshold of LRT, to 0, we get a false positive rate of 2.26%, and a power of 94.98%.
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To reduce the false positive rate, we decided to set the threshold-score to 15. In
such way, we could reduce the false positive rate to 0.0007%, but at price of reduced
power (88.41 %).
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Box 3.4.1: Example of calculating LR, —score.

In the following table the probabilities that the k; /,-th neighbouring window (with k;/,=1,...,5)
from the focal region has a T3-value below the empirical determined 1% threshold (:= g19,)

are given (estimated tree topology:.):

ki, -th neighbour window | Probability under | Probability under
from focal region neutral scenario sweep scenario
1 0.0398992 (=: p,1) | 0.228805 (=: ps1)
2 0.0232045 (=: ppa) | 0.203321 (=: ps2)
3 0.0162747 (=: py3) | 0.18632 (=: ps3)
4 0.0128097 (=: ppa) | 0.174434 (=: psa)
5 0.0153297 (=: pps) | 0.164617 (=: ps5)

Suppose, we focus on two windows located at different chromosomal positions, in the
following labelled as focal window A and B respectively, where a T3-value under threshold
was found. We now look at 5 adjacent windows to the left and 5 adjacent windows to the
right of the focal window and record each time whether the respective Tz-value was below

the empirically determined 1% threshold given by g1, or not:

. . + to the left . to the right —
ki, -th neighbour window focal window
5 4 3 2 1 1 2 3 4 5
A: T3 < q19% ? X v v v / v AR A G
B: T3 < q19% ? X X x X X v/ X X Xx X X

V= "“true” X= “false”

By multiplying the probabilities given in the table above we get:

Probability to observe combination around focal window A under neutral scenario

= (1 - an)pn4pn3pn2pn1pn1pn2pn3(1 - pn4)pn5
= 4.33374¢ — 14

Probability to observe combination around focal window A under sweep scenario

= (1 — ps5) PsaPs3Ps2Ps1Ps1Ps2Ps3(1 — Psa) Pss
— 1.48785¢ — 06

Probability to observe combination around focal window B under neutral scenario

=1 =pus)A = pua) (1 = pu3) (1 = pn2) (1 = pu1) (1 = pu1) (1 = pu2) (1 = pu3) (1 — pa) (1 = pius)
= 0.804215

Probability to observe combination around focal window B under sweep scenario

=(1=ps5)(1 = psa)(1 = ps3) (1 = ps2) (1 = ps1)(1 — ps1) (1 — ps2) (1 — ps3) (1 — psa) (1 — ps5)
=0.118871

With equation (3.6), it follows
LRr,-score of A = 34.7032
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LRT,-score of B = —3.82366 .

3.4.2 LRr,-test and migration events

In section 3.3.2, we have seen that substructured population and low migration rate
affects the T3-test. Although the LRr,-test is also affected by migration events, it still
performs better than the Ts-test. For instance, when sampling all n chromosomes
from only one subpopulation, n; = 200 and ny = 0, and by setting a stricter thresh-
old, e.g. LR, = 35, the false negative rate when migration rate 4Nm = 0.4 (which
was the case influencing the Tz-test most) is only around 0.03, whilst LR, has still a

high power rate (around 0.75).

scenario scenario
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1200 n2=0 Nm=0.04 [ =200 n2=0 Nm=0.04
n1=200 n2=0 Nm=0.4 [ m=200 n2=0 nm=0.4
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FIGURE 3.19: On the left side: cumulative distribution of LRT,. On the right side: Density
plot of LRr,. Estimated tree topology.

The distributions for case (n; = 180 and n, = 20) and (11 = 195 and n; = 5) are
given in the APPENDIX FIGURE A.5 and A.6.

3.5 Side note on time point in detection of selective sweep

Thus far, when talking about selective sweeps’, we referred this term to a ‘com-
pleted” hard sweep, that is, when the advantageous mutation arises at some time
point in the population, quickly increases in frequency and subsequently becomes
fixed. However selective sweeps can also be “incomplete’, they have not reached
fixation yet and are still ongoing. Whilst methods aiming to detect completed se-
lective sweeps can use the concept of the hitch-hiking process introduced by May-
nard Smith and Haigh (1974), see also section 2.3.1, genomic signatures of incom-

plete sweeps are less clear; several studies exist focusing on identifying incomplete
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sweeps (Sabeti et al., 2006; Voight et al., 2006; Ferrer-Admetlla et al., 2014; Vy and
Kim, 2015). Paying attention to this mode of selection is essential: Studies of human
demography have suggested that the dispersal of humans out of Africa started only
50,000 -100,000 years ago, see e.g. (Nielsen et al., 2017). Within this period of time
humans were confronted with new environments and were exposed to constraints
like extreme climate conditions, diseases or volatile food supply. Factors like that
are supposed to lay the foundation for adaptation and selection. Nevertheless, the
amount of time may be too short for new beneficial mutations to occur and to get
fixed, giving rise to the conclusion that complete sweeps may be rare in human his-
tory (Ferrer-Admetlla et al., 2014).

On the other hand, when some generations have already passed since fixation, the
level of diversity around the selected site might have recovered from the sweep
through an influx of new mutations, washing out the erstwhile clear signature of
the sweep and thus hindering its detection.

In this section, we want to analyse, to what extent time point matters in detecting
selective sweep using the LRr,-test.

Therefore, we used simulated data provided by Yichen Zheng (Y. Zheng, unpub-
lished data, 2018): The data were generated with a customised forward-in-time al-
gorithm. The parameters were set in such way that a DNA sequence of length 600kb
was simulated where the mutation rate was u = 1078 per bp per generation, the re-
combination rate was ¢ = 10~8 per bp per generation, selection coefficient s = 0.02
and population size N = 10%. In total, 100 runs were generated and evolved until
5,000 generations after the fixation time of the selected allele. During one run, twelve
so-called "snapshots’ of the genotypes of each sequence were recorded. These 'snap-
shots” were performed at following time points: when the frequency of the selected
allele reached 20%, 40%, 60%, 80%, 99.5% fixation, then 1,000, 2,000, 3,000, 4,000, and
5,000 generations after the selected allele reached 99.5%. On average, out of the 100
runs, it took 269 generations for the selected allele to reach a frequency of 20%, 317
generations to reach a frequency of 40%, 358 generations to reach a frequency of 60%,
407 generations to reach a frequency of 80%, 595 generations to reach a frequency of
99.5% and 1,103 generations to get fixed in the population. From each population
snapshot 50 random samples were taken.

First, we determined the T3-values for the twelve data sets in the same manner as
before: With a sliding window approach of window size 5kb and step size 2.5kb, we
estimated the respective tree topology for each window. If the window contained
less than 10 SNPs, we increased the window by 1kb, however the total window size
was not to exceed 10 kb. The result of the Ts-values is illustrated in FIGURE 3.20.
Interestingly, the most extreme T3-value was obtained when the frequency of the se-

lected site reached 80%. If the frequency of the selected site increased, and finally
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got fixed, the signal seemed not to be striking. The sparseness of data in the re-
gion around the selected site in cases, when the selected allele reached a frequency
of 99.5% (which happened on average after 595 generations) until 1,000 generations
later when it was fixed, can be attributed to the strong reduction of polymorphism

data around the selected site, and therefore no tree can be estimated here.

The boxplots in FIGURE 3.20 indicate the strength of signal depends on time. The
strongest signal seems to occur when the selected site has reached a frequency of
80%, thus when the sweep is yet incomplete. But with regards to several recent
studies claiming that complete sweeps are rare and incomplete sweeps are domi-
nant, this might be a benefit of the test statistic T3. Note the rather rapid increase
from 60% to 80% and the rapid decrease after fixation.

Further on, we applied the LRr,-test on these 12 data sets. The result is illustrated in
FIGURE 3.21 and FIGURE 3.22. The most significant LRr,-score can be found when
the selected site reached a frequency of 80%, followed by the two scenarios when
99.5% was reached and when it was fixed in the population. The signal increases
quite fast within generation 358 (60%) and generation 407 (80%), and starts decreas-
ing after the fixation. Setting the threshold score for LRr, at 15, the time, when the
sweep can be 'reasonably well” detected, starts approximately when the frequency
of selected allele is between 60-80% (~ generation 368) and last approximately to 400
generations after fixation (~ generation 1502). This gives a time interval of ~ 1134
generations (see FIGURE 3.21), in which the sweep can be well detected.

We conclude that time point matters with regards to detecting selective sweep. When
using T3-based statistics the strongest signal seems to be when the selected site has
reached a frequency of 80%. When applying the LRT,-test, the result was confirmed.
Thus, according to this simulation results, our test seems to be applicable not only
to recently completed sweeps.

Note that in previous sections, we generated data in such a way that the sweep was

already fixed in the population.
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Neutral 20% (avg. of 269 Generations)  40% (avg. of 317 Generations)

Okb 60kb 130kp 205kb 2B0kb 355kb 430kb 505kb 580KD Okb 60kb 130kb 205kb 280kb 355kb 430Kb 505kD 5BOKD Okb 60kb 130kb 205kb 280kb 355kb 430kb 505kb 580KD

60% (avg. of 358 Generations)  80% (avg. of 407 Generations) 99.5% (avg. of 595 Generations)

Okb 60kb 130kb 205kb 280kb 355kb 430kb 505kb 580kb Okb 60kb 130kb 205kb 2B0kb 355kb 430kb 505kb 580kb Okb 60kb 130kb 205kb 280kb 355kb 430kb 505kb 580kb

Fixed (avg. of 1103 Generations) 1595 Generations 2595 Generations

OKD 60KkD 130kD 205khD 280kD 355kD 430kb 505kD 580KD Okb 60KD 130kb 205kb 280kh 355kD 430KD 505kD 5BOKD Okb 60Kb 130kbD 205kb 280kD 355kb 430kD 505kb 580kD

3595 Generations 4595 Generations 5595 Generations

Okb 60kb 130kb 205kb 280kb 355kb 430kb 505kb 580kb Okb 60kb 130kb 205kb 280kb 355kb 430kb 505kb 580kb Okb 60kb 130kb 205kb 280kb 355kb 430kb 505kb 580kb

FIGURE 3.20: Distribution of the T3-values along the 600kb DNA sequence for each twelve
different stages explained in the text. The selected site is positioned at chromosomal
position 100 kb. The strongest signal seems to be when the selected site has reached a
frequency of 80%. The sparseness of data in the region around the selected site in
generations 595 (on average) to 1,595 (on average) can be attributed to the strong reduction
of polymorphism data around the selected site, and thus we lack of data.
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Chapter 4

Application to experimental data

The field of DNA sequencing has been constantly evolving for decades, increasingly
becoming both more efficient and more affordable. This has resulted in the gen-
eration of massive datasets for a wide spectrum of organisms, including human.
The availability of these new data has clearly contributed to recent fundamental ad-
vances in population genetics: new models have been designed or existing mod-
els have been re-designed, simulation parameters can be chosen more plausibly,
genome variation can be reconciled with population histories of admixture, migra-
tion or bottlenecks, and genome-wide scans are performed for finding signatures
left by natural evolutionary forces leading to a deeper mechanistic understanding of
how populations evolve.

In this chapter we show the application of the LRr,-Test to experimental data. To
this end, we performed whole genome screens using human data (phase 3 dataset)
from the 1,000 genomes project (Auton et al., 2015). We aimed at identifying new
candidate regions which underwent selective sweeps. Furthermore, we expected to
confirm many of the previously proposed candidates as well. We took a deeper look
at biological functions for potential candidate genes from our "top’ regions to figure

out what benefits selection on these genes may have brought along for their carriers.

4.1 The 1,000 Human Genomes Project

The first international effort to map and sequence all genes in the human genome
was initiated in 1990 by the Human Genome Project (HGP). However, at that time
sequencing the human genome was not only very time consuming, but also very ex-
pensive: It took approximately 13 years and $ 2.7 billion to complete the project see:
All About the Human Genome Project. For instance in comparison to that, in February

2018 a team from the Rady Children’s Institute for Genomic Medicine was awarded
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with the GUINNESS WORLD RECORD™ for sequencing a child’s genome within
19.5 hours (see: New GUINNESS WORLD RECORDS™ Title Set for Fastest Genetic
Diagnosis). Although this is an extreme example (since the team got assistance from
several sequencing companies) it shows what is possible today.

The focus of the 1,000 human genomes project was to create a detailed catalogue
of human genetic variation and genotype data from populations all over the world
(http://www.internationalgenome.org/). Therefore, more than 1,000 genomes of
humans from different ethnic groups were collected. Advances in sequencing tech-
nologies allowed the project to be completed much faster than anticipated with less
cost. The initial dataset of genomic sequences from 1,092 individuals belonging to
14 populations (also known as the phase 1 dataset) was produced in just four years,
from 2008 to 2012 (Abecasis et al., 2012). The final phase of the project (phase 3) was
announced in 2015 with a total of 2,504 sequenced human genomes from 26 popu-
lations across 5 continents (Auton et al., 2015) (table 4.1). The data include almost
90 million variants in the form of single nucleotide variants, insertions/deletions,
and structural variants (source from http://www.internationalgenome.org/, last
visited in August 2018).
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FIGURE 4.1: Worldwide locations of the 26 population samples from 1,000 genomes project,
final phase. Picture from http://www.internationalgenome.org/.

Yellow: African; Red: Admixed American; Green: East Asian; Blue: European; Purple:
South Asian.

4.1.1 Examples of known recent human adaptations

The human genome consists of more than 3 billion nucleotide base pairs across 23
pairs of chromosomes (22 pairs of autosomes and one pair of sex chromosomes).

There are an estimated 19,000-20,000 protein-coding genes in the human genome
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Population | Population Description Super-Population Individuals
ACB African Caribbean in Barbados AFR 96
ASW Americans of African Ancestry in | AFR 61
Southwest USA
ESN Esan in Nigeria AFR 99
GWD Gambian in Western Divisions in the | AFR 113
Gambia
LWK Luhya in Webuye, Kenya AFR 99
MSL Mende in Sierra Leone AFR 85
YRI Yoruba in Ibadan, Nigeria AFR 108
CDX Chinese Dai in Xishuangbanna, China | EAS 93
CHB Han Chinese in Beijing, China EAS 103
CHS Southern Han Chinese, China EAS 105
JPT Japanese in Tokyo, Japan EAS 104
KHV Kinh in Ho Chi Minh City, Vietham EAS 99
CEU Utah Residents (CEPH) with Northern | EUR 99
and Western European Ancestry
FIN Finnish in Finland EUR 99
GBR British in England and Scotland EUR 91
IBS Iberian Population in Spain EUR 107
TSI Toscani in Italia EUR 107
BEB Bengali from Bangladesh SAS 86
GIH Gujarati Indian from Houston, Texas SAS 103
ITU Indian Telugu from the UK SAS 102
PJL Punjabi from Lahore, Pakistan SAS 96
STU Sri Lankan Tamil from the UK SAS 102
MXL Mexican Ancestry from Los Angeles | AMR 64
USA
PUR Puerto Ricans from Puerto Rico AMR 104
CLM Colombians from Medellin, Colombia | AMR 94
PEL Peruvians from Lima, Peru AMR 85

TABLE 4.1: Population samples from the final phase (phase 3) of the 1,000 genomes project.
There are 26 population samples in the whole dataset, but it can also be divided into five
so-called ‘superpopulations’: African (AFR), Admixed American (AMR), East Asian (EAS),
European (EUR), South Asian (SAS). Locations illustrated on a world map can be seen in
FIGURE 4.1.

(Ezkurdia et al., 2014). The protein-coding sequences account for only a very small
fraction of the genome, though. About 98% of the human genome consists of trans-
posons and non-protein-coding sequences, such as non-coding RNA genes, regu-
latory DNA sequences, introns or sequences for which no function has been deter-
mined yet (Lander et al., 2001).

Despite enormous progress since the first human was sequenced, many things are
still unknown with regards to the evolution of the human genome. Furthermore,
there is much disagreement about the mode, strength and rate of selective sweeps
in humans. Identifying loci which underwent recent selective sweeps is difficult
because the traces are typically obscured by other evolutionary and demographic
forces, e.g. genetic drift or population sub-structuring. It has been proposed that

classical selective sweeps are rare in human populations (Hernandez et al., 2011). If
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at all, then the majority are incomplete sweeps, soft sweeps (selection on standing
variation), or selection on polygenic traits.

However, we do have evidence of differential adaptation of various traits, often asso-
ciated with the human ancestors successfully establishing (sub)populations through-
out the world. Modern humans are assumed to have spread from Africa around
50,000-100,000 years ago (Nielsen et al., 2017; Templeton, 2002), invading a variety
of habitats and getting exposed to new environments. Therefore, they had to strug-
gle with different climatic conditions or the availability of new food sources. The
combination of selective pressure together with random drift left behind population-
specific genetic patterns and phenotypic variations. Below are a few examples of

well-documented adaptations in human populations.

Lactose tolerance

One of the standard examples of a gene to have experienced recent positive selec-
tion is LCT, the gene coding for lactase (lactase-phlorizin hydrolase). Lactase is the
enzyme responsible for the ability to tolerate lactose; variants in the LCT gene influ-
ence whether the ability to digest milk persists into adulthood. Many studies have
focused on this gene and the trait of lactase persistence is found in around 35 % of
adults living in the world today (Itan et al., 2010). In Europeans, lactase persistence
shows quite a strong signal of selection in scans of the entire genome (Bersaglieri
et al., 2004). Outside Europe, lactase persistence is found in parts of Africa, the Mid-
dle East and India (Schlebusch et al., 2013; Enattah et al., 2008; Segurel and Bon,
2017). A particular allele of the LCT gene is associated with lactase persistence in
both European and Indian populations (Gallego Romero et al., 2012). However, in
Africa this phenotype appears to be polygenic instead (Gallego Romero et al., 2012;
Tishkoff et al., 2007). Thus, lactase persistence evolved several times independently
in human evolution in different areas of the world, making it an example of conver-
gent evolution. It is generally thought to be related to the domestication of dairy
cattle, as dairy milk is both a valuable source of nutrients during periods of erratic
food supply and contains high levels of vitamin D, which is a further advantage in
regions with low amount of sunlight, since the production of vitamin D is a UV-
dependent process (Parra, 2007; Wacker and Holick, 2013). In any case, despite the
numerous studies addressing the issue, much uncertainty remains about the origin

of the lactase persistence-associated variants.

High altitude

Another quite well-known example of selection in humans is associated with the
adaptation to high altitude, in particular the Tibetans and the Andeans (Beall, 2000).
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Compared to the lowlands, mountaintops have less air pressure and lower oxygen
content in the air. The physical and genetic changes observed in the Tibeteans and
Andeans, in comparison to populations living in the lowlands, thus include muta-
tions affecting the regulatory systems of oxygen respiration and it’s transport via
blood circulation. Even during pregnancy, blood flow and oxygen delivery to the
uterus is increased to reduce the risk of having newborns with low birth weight (Ju-
lian, Wilson, and Moore, 2009). Studies suggest that amongst other genes, variants
at the EPAS1 (Endothelial PAS Domain Protein 1) locus are involved in the adaptation
to high altitude (Peng et al., 2017).

Skin colour

Skin colour variation is one more noteworthy example of adaptation leading to
wide-ranging human phenotypic diversity. Whereas dark skin is strongly associ-
ated with protection against UV light, lighter skin is subjected to positive selection
for reasons such as maintaining vitamin D photosynthesis (Parra, 2007). Unfor-
tunately, it is known that multiple different genes acting in concert are involved
for skin (or also hair or eye) pigmentation (Parra, 2007), making it difficult and
very complex to pinpoint the exact causative genes. For instance, according to a
colour genes database, though focusing primarily on mice and last updated in Octo-
ber 2011, (http://www.espcr.org/micemut/), there are 378 candidate loci for colour
genes described in mice and their human and zebrafish homologues, yet apparently
only a few of them have been confirmed to have potentially function-altering poly-
morphisms in humans.

In general, the question is to what extent adaptation has driven evolution and af-

fected patterns of genetic diversity.

4.2 Application of LRr,-test to human data

As previously mentioned, we have applied the LRr,-Test to the human 1,000 genomes
phase 3 data (Auton et al., 2015), which is publicly available and can be down-
loaded from the website ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/release/
20130502/. The data is stored in the variant call format (VCF) (Danecek et al., 2011).
Each of the 2,504 individuals carries an ID-number. A list of all the samples in the
data set and their population, super population and gender can be found at the same
public source. (Note: Only variants in form of SNP’s were considered for our pur-
poses). For the autosomal chromosomes 1-22, for all individuals the variant calls are
diploid and genotypes are phased. Thus, here two haplotypes were constructed for
each of the 2,504 individuals, so in total 5,008 haplotypes. However, for the male X

chromosome variant calls were shown as haploid, but not in the pseudoautosomal
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region (PAR), a part which is common between X and Y chromosome. Here, we
modified the X-chromosome data in such a way that only one haplotype (the actual
X-chromosome) accounted for a male individual, while for females two haplotype
were constructed. This results in a total of 3,775 haplotypes for the X-chromosome.
Y-chromosomes are not included in our analysis.

By using VCFtools (Danecek et al., 2011), a program package designed for working
with VCF files, we could easily separate the individuals with regard to their popu-
lation affiliation and thus store it in 26 separate files, each containing the respective
individual.

We re-designed the output of the files in such a way that we could apply our Ts-
calculations from section 3.2.1 (see example box 4.2). We screened all 26 populations

separately by using a sliding window approach across the entire genome.

Box 4.2: Example of formatting a data file

The first table shows an extract of a 1,000 genomes data file. For demon-
stration purposes, only the following columns are shown (respectively from
left to right): the chromosome number, chromosome position/coordinates
on which the variant occurs, the reference SNP ID number, the reference
(ancestral) allele, the alternative (derived) allele, followed by columns rep-
resenting the genotype of the sample at this position (here the individuals
are represented by X1, X2,... etc. ‘0" stands for the reference allele, '1” for the
derived allele).

For instance, at chromosome 1 position 14464, individual X3 is heterozygous,
carrying one copy of each of the reference and derived alleles, while individ-
ual X1 is homozygous for the derived allele and individual X2 homozygous
for the reference allele.

CHR POS ID REF ALT X1 X2 X3 X4
1 13110 rs540538026 G A olo 1lo olo 010
1 13116  rs62635286 T G olo 1lo olo 010
1 13118 rs200579949 A G olo 1lo olo 0I0
1 14464 1rsb546169444 A T 11 olo 1lo olo
1 14599 rsb531646671 T A olo ol1 1]lo olo
1 14604 1rsb541940975 A G olo ol1 1]0 o0lo0
1 14930  rs75454623 A G 110 ol1 0I1 10
1 15211  rs78601809 T G ol1 01 ol1 0l1
1 15820 rs2691315 G T 110 o0l1 0I1 olo
1 16949 rs199745162 A C olo 0l0 ol1 olo
1 18643 rs564023708 G A olo 0l0 1lo0 olo0

We can construct two haplotypes for each individual:
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CHR P0OS ... X1.A X1.B X2.A X2.B X3.A X3.B X4.A X4.B
1 13110 0 0 1 0 0 0 0 0
1 13116 0 0 1 0 0 0 0 0
1 13118 0 0 1 0 0 0 0 0
1 14464 1 1 0 0 1 0 0 0
1 14599 0 0 0 1 1 0 0 0
1 14604 0 0 0 1 1 0 0 0
1 14930 1 0 0 1 0 1 1 0
1 15211 0 1 0 1 0 1 0 1
1 15820 1 0 0 1 0 1 0 0
1 16949 0 0 0 0 0 1 0 0
1 18643 0 0 0 0 1 0 0 0

Rearrangement leads to an output file similar to the msms-output file shown
in line 8-12 in FIGURE 3.4.

X1.A: 00010010100
X1.B: 00010001000
X2.A: 11100000000
X2.B: 00001111100
X3.A: 00011100001
X3.B: 00000011110
X4.A: 00000010000
X4.B: 00000001000

Thus, for position chrl:13110-18643 (= window size of 5533 bp), we have
eight haplotypes consisting of 11 SNPs, from which we can now determine

01, ) and )3 to calculate T3, in the same manner as in section 3.2.1.

As mentioned before, we took a window of size 5,000 bp and step size 2,500 bp,
with the additional condition that the fragment needed to contain at least 10 SNPs.
If the latter was not the case, the window size was increased by adding 1,000 bp
until the second condition was fulfilled, but with a maximum total window length
of 10 kb. Monomorphic sites were excluded, since that would have led to disparities
towards balanced trees. For the determination of window size and number of SNPs,
re-consider section 3.2.1. The T3-values were reported for each window as it slides
along the chromosome with a step size of 2,500 bp. The result was converted to BED
(Browser Extensible Data) format for each 26 population separately. BED files are
tab-delimited files with one line for each genomic region. The lines of a BED file

have three required fields and additional optional fields with tabs as delimiters. The
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first three (required) BED fields are: chromosome, starting position of the region
and ending position of the region in the chromosome. In our case the additional
optional fourth field represents the Tz-value. Afterwards, we performed the LRr,-

test as described in section 3.4.1.
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FIGURE 4.2: Visualisation of sliding window approach. Starting from the beginning of the
chromosome, a T3-value is reported for each window (shown as green line) as it slides along
the chromosome with a step size of half the window size. a) Zoom-in of a small part of
chromosome 2. b) Example of storing the T3-values in BED format, where the first column
contains the chromosome name, the second column the starting position of the window, the
third column the ending position and the fourth column the respective T3-value.

Therefore, we determined the empirical 1% T3-threshold separately for each popu-
lation and each chromosome. We identified all regions with a T3-value under the
respective threshold. These identified regions (= "focal’ regions) were then subjected
to the LRr,-test: By looking at 100 adjacent windows to the left and to the right side
of the focal region, we recorded for each the respective LRT,-score. By reason of the
previously explained chosen window and step size, the 100 consecutive windows
correspond to approximately 250 kb (Note: Since the window length is extended if
the minimum SNP number is not fulfilled, this size can vary). The complete result of
this screen was also stored in BED format which then can be visualized on the UCSC
Browser https://genome.ucsc.edu/, see FIGURE 4.3.

In the end, we considered those regions as candidate regions, if the LR,-value was
> 15.
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FIGURE 4.3: LRt,-profile and T3-profile along the chromosome for region
chr2:134,571,975-138,568,190 (Visualisation via UCSC Browser
https://genome.ucsc.edu/). Shown are the LR,- and T3-profiles for the three
populations: CEU, CHB and YRI, in order from top to bottom.
Positive LRr,-score is shown in red, negative LRT,-score is shown in blue.
Negative T3-values are shown in red, positive T3-values in blue. For this area, the
populations CHB and YRI hardly contains LRr;-scores at all, meaning, hardly found
significant T3-windows, and if, then LRy, is negative. In contrast to CEU, where two
location spot seem to be significant as it can be seen. On the bottom of this picture, genes
associated to the respective regions are shown.

4.3 Analysis of candidate regions

In the section before, we have screened all 26 populations from the phase 3 release of
the human 1,000 genomes data (Auton et al., 2015) with the LRr,-test. Regions with
LRr,-score > 15 were considered to be a candidate region for having undergone se-

lection. As expected, many of these identified candidate regions were overlapping
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FIGURE 4.4: Number of chromosomal regions, that can be considered candidates for recent
selective sweeps, per population. Regions span between 55 kb and 785 kb. More
information about regions per chromosome is given in the APPENDIX table B.1.

(a consequence of the sliding window approach). In all such cases, we merged the
overlapping regions into a single region. Moreover, motivated by the fact, that the
highly unbalanced tree topology is not observed directly but in the vicinity of the se-
lected site, we additionally extended these regions by 25 kb on both sides. Hence, the
resulting final candidate regions span lengths between 55 kb and 785 kb. The total
numbers of regions per population are illustrated in FIGURE 4.4 (also see APPENDIX
B.1).

In general, we found less amount of candidate regions in African populations com-
pared to the rest: We found approximately two times less candidate regions in the
African superpopulation compared to the rest (on average 214 in Africans vs ~ 400
on average in the others; see FIGURE 4.4, or APPENDIX table B.1 for details on the
numbers). This is consistent with other studies that have found more candidate re-
gions for having undergone selection in non-African populations compared to the
African populations (Kayser, Brauer, and Stoneking, 2003; Williamson et al., 2007;
Campbell and Tishkoff, 2008). A straightforward explanation might be that while
humans dispersed out of Africa 50,000-100,000 years ago (Nielsen et al., 2017; Tem-
pleton, 2002), they were forced to adapt to the new environments they encountered
(Kayser, Brauer, and Stoneking, 2003; Williamson et al., 2007). However, another
possible reason, for swept loci being more identified in non-Africans might be that
neutrality test statistics suffer from the confounding effects of demographic events
(see chapter 2). During the Out-of-Africa migration, humans were accompanied by
bottleneck event(s) (Amos and Hoffman, 2010), a hypothesis mostly studied in the
framework to explain why the African population shows a higher level of diversity

compared to non-African populations (Campbell and Tishkoff, 2008; Rosenberg and
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Kang, 2015).

4.3.1 Identifying candidate genes

To extract genes, we used the biomaRt package in R (Smedley et al., 2015). biomaRt
offers an easy way to extract a list of different attributes, which defines the values
we are interested in. In our case, we retrieved the gene symbols, chromosomal coor-
dinates, the respective gene biotype, (giving us the information of whether the given
transcript is protein-coding or non-coding), and the respective Gene Ontology (GO)
term. We use the coordinates for human genome build hg19 for our data, to which

phase 3 of the 1,000 genomes project is mapped.

In total we found 9,725 genes that can be considered candidate loci for selection in
at least one of the 26 populations. Out of these 9,725, on average 639 are found
in African populations, 1,368 in European populations, 1,217 in East Asian popula-
tions, 1,205 in South Asian populations and 1,081 in American Admixed populations
(see APPENDIX table B.1 for more detail or FIGURE 4.5, A). Furthermore, out of the
9,725 candidate genes 3,956 genes were associated with the biotype , protein-coding”
and the rest with other biotypes. If focusing on protein-coding genes, we found an
average of 278 in African populations, 575 in European populations, 497 in East
Asian populations, 513 in South Asian populations and 455 in American Admixed

populations (see APPENDIX table B.2 for more detail or FIGURE 4.5, B).
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FIGURE 4.5: Shared and private candidate genes. The different colouring indicates the
different categories given in the legend. Private-selective sweep candidate in one
(super)population. Shared — selective sweep candidate in multiple (super)populations. A:
All genes. B: Only protein-coding genes.
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Superpopulation | Average number Average number Average number

of candidate of all genes of protein-coding
regions genes

AFR 214 639 278

EUR 422 1,368 575

EAS 417 1,217 497

SAS 400 1,205 513

AMR 348 1,081 455

TABLE 4.2: Overview of average number of candidate regions, average number of all genes
and average number of protein-coding genes per superpopulation.

Furthermore, we recorded if the detected genes were found in one population only
(private), if they were shared in (at least two) populations belonging to the same
superpopulation (private to superpopulation), if they were shared between (at least
two) populations not belonging to the same superpopulation (shared between su-
perpopulation), whereby here we additionally made the distinction between super-
population excluding and including Africa (see FIGURE 4.5). We made the latter dis-
tinction since we were interested if the hypothesis that one of the leading forces driv-
ing positive selection in non-Africans as the Out-of-Africa migration was reflected
in differential patterns and targets concerning the underlying biological function
of the selected genes. For instance, one may expect that non-African populations
share more positively selected genes involved in metabolic pathways as a response
to diverse food source or genetic adaptation as result to diverse climate changes.
These genetic adaptations should not be visible in African populations. However,
in the African populations one may expect to see local adaptations being prevalent,
for instance genetic adaptations providing resistance to the exposure to different

pathogens.

Comparison to previous studies

As already mentioned, many previous studies have focused on the detection of ge-
nomic regions which might have been targeted by positive selection. For this pur-
pose, several different methods have been established (Vitti, Grossman, and Sabeti,
2013). With the rapid development of genome scale population level DNA geno-
typing and sequencing in humans, many studies published gene candidates in the
human genome that were possibly targeted by selection.

In (Li et al., 2014a), the authors made the effort to collect all candidate sweep regions
identified until then, published them and establish a database, called dbPSHP (=
database of recent positive selection across human populations). Intrinsically, the database
consists of over 15,000 loci from either publications attempting to study positively

selected genomic locus and gene related to specific functions, traits or diseases, or



4.3. Analysis of candidate regions 67

publications to detect the genome-wide selective signals with different statistical
methods. Since the regions recorded in the database vary widely in terms of size,
we focused on the candidate genes. Taken together and removing multiple recorded
genes, approximately 8,050 unique genes are stored.

Comparing our list of candidate genes with the list in dbPSHP, we confirmed about
1,947 genes, from which 1,853 are protein-coding genes from our list. Since the last
update of dbPSHP was, according to the website http://jjwanglab.org/dbpshp
(status from July 2018) in May 2014, we took another list of candidate genes into
consideration: a list set up by Schrider and Kern, (2017). The authors used a ma-
chine learning approach developed by themselves in a previous paper, called S/HIC
(=Soft/Hard Inference through Classification). Their approach should be ‘remarkably
powerful and robust to non-equilibrium demography” as quoted from Schrider and Kern,
(2017), and allows not only the detection of hard sweeps and soft sweeps, but also
the detection of regions closely linked to hard and soft sweeps. It uses 11 popu-
lation genetic summary statistics (including Tajima’s D, Fay and Wu’s H and also
a number of distinct haplotype based test). If we compared our candidate genes
with the genes found in the SHIC paper (where in total 5,939 candidate genes were
found), we confirmed in total 1,718 genes, from which 840 were coding genes and
878 were non-coding genes. (From these 1,718 genes, 1,253 are not found in dbPSHP,
383 protein-coding and 870 non-coding.)

However, in the SHIC paper six populations (CEU, JPT, GWD, YRI, LWK, PEL) were
analysed, while here we analysed all available 26 populations. If we only took the
six populations, 4,551 genes are left in our list. We therefore conclude that with the
threshold used here, our test is more stringent than the one used in the SHIC paper.
From the aforementioned 4,551 genes we confirmed 912 genes, from which 438 are
protein-coding and 474 are non-coding. If the found genes are additional candidates
for the same population, then we could confirm 668 genes. Here, 318 are protein-

coding and 350 are non-coding.

4.3.2 Analysis of the top candidates

As we have seen in section 4.3, some identified regions ended up to be very large
with a region span between 55 kb and 785 kb. Therefore, one region can contain
multiple candidate genes. To make a clear decision about which gene is the posi-
tively selected one is rather difficult. It has to be noted, that the constituent windows
composing the resulting candidate region mostly possess similar high LRt scores,
making it not easier to determine which the actual ‘chosen’ region/window is.

In table 4.3, we listed all protein-coding genes associated to regions with very high
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LRr,-score (> 200). We only show the maximum LRr;-score related to the given re-
gion. Although here we focus on protein-coding genes, our method can be also ap-
plied to non-coding genes. Generally, the functional role of non-coding genes should
not be underestimated. Their functions range from regulation of gene expression at
the transcriptional and post-transcriptional level to exhibiting histone modification
patterns characteristic of specific functional elements. Recent studies have shown

the important role of non-coding RNA in cancer, e.g. (Huang et al., 2013).

max LRy, | POP | Chr Position Size inbp | Coding

316.972 ITU 12 44,342,384-44,904,884 562,500 NELL2, TMEM117

PLEK2, TMEM229B

276.577 GBR 14 67,183,154-67,930,654 747,500 GPHN, FAM71D, MPP5, ATP6V1D, EIF2S1,

PLEK2

260.28 FIN 14 67,220,427-67,905,427 685,000 GPHN, FAM71D, MPP5, ATP6V1D, EIF2S1,

PLEK2 , TMEM229B

259.153 TSI 14 67,213,154-67,928,154 715,000 GPHN, FAM71D, MPP5, ATP6V1D, EIF2S1,

PLEK2

247.929 CEU 14 67,220,445-67,897,945 677,500 GPHN, FAM71D, MPP5, ATP6V1D, EIF2S1,

241.559 CHB X 100,985,920-101,448,420 462,500 NXF5, ZMAT1, TCEAL2, TCEAL6, BEX5

SULT1C2, SULT1C4

239.56 CHB 2 108,905,521-109,650,521 745,000 EDAR, RANBP2, LIMS1, CCDC138, GCC2,

238.617 BEB 12 44,307,384-44,927,384 620,000 NELL2, TMEM117

237.469 CHB 15 63,764,703-64,337,203 572,500 HERC1, DAPK?2, FBXL22, USP3

THAP1, RNF170, RP11-598P20.5

233.935 IBS 8 42,643,536-43,378,536 735,000 HGSNAT, POMK, FNTA, HOOK3, CHRNAS®,

230.4045 GIH 5 43,588,039-44,073,039 485,000 NNT

226.406 CHB 12 44,354,884-44,699,884 345,000 TMEM117

SLC30A9, BEND4

226.39 CDX 4 41,515,167-42,215,167 700,000 LIMCH1, PHOX2B, TMEM33, DCAF4L1,

222.695 CDX 2 108,913,021-109,383,021 470,000 RANBP2, LIMS1, GCC2, SULT1C2, SULT1C4

213.416 ACB 20 20,387,585-20,787,585 400,000 RALGAPA2

211.634 CHB 3 154,167,942-154,822,942 655,000 MME

DBT, RTCA

205.92 MXL 1 100,410,610-100,790,610 380,000 SLC35A3, HIAT1, SASS6, TRMT13, LRRC39,

205.027 CHB 8 10,725,271-11,112,771 387,500 XKR6, AF131215.5

204.738 JPT 10 55,859,211-56,226,711 367,500 PCDH15

203.813 GIH 4 106,462,667-106,815,167 352,500 ARHGEF38, INTS12, GSTCD

ECD

203.628 MXL 10 74,926,660-75,406,660 480,000 SYNPO2L, MYOZ1, USP54, PPP3CB, MRPS16,
ANXA7, TTC18, MRPS16, DNAJC9, FAM149B1,

203.317 FIN 1 51,465,610-52,033,110 567,500 EPS15, TTC39A, RNF11, Clorf185

TABLE 4.3: Protein-coding genes associated to regions with very high LRr,-score of

(> 200). Only the maximum LRr,-score related to the respective region is shown. The
indicated chromosomal position represents the extended coordinates of +/-25kb. Gene
names in bold are newly identified candidate loci.

Most of these genes are previously known sweep candidates. Genes we could not
re-find either in the "dbPSHP-list” or the list from Schrider and Kern (2017) are in-
dicated in bold letters. These are potentially new candidate genes. A list with gene
names appearing in TABLE 4.3 is provided in the LIST OF ABBREVIATIONS. Although
most of these genes have been previously suggested to be under selection (for a ref-
erence list where each of these genes have been mentioned before see APPENDIX B.2),
the biological function and thus the reason why they should have been selected for

is poorly understood. For instance, the region with the highest LRr,-score is found
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in the South Asia population ITU. It contains two protein coding genes: NELL2 and
TMEM117. NELL? is also a candidate (although smaller LRr,-score) for: BEB, GIH,
PJL and STU (hence all five South Asian populations), and for the European popula-
tion FIN and for the admixed American populations CLM, MXL and PEL. TMEM117
is a candidate gene for all five South Asia populations, for all five East Asia popu-
lations, for four of five of the European populations (CEU, FIN, GBR and TSI), and
for the admixed American populations CLM, MXL and PEL. Therefore, these two
genes are candidate genes for almost all non-African populations. As for their func-
tion, NELL2? is a neuronal growth factor; it has been shown to be involved in sexual
behaviour and the onset of puberty, at least in rats (Ryu et al., 2011). Interestingly,
in (Ramnitz and Lodish, 2013) the authors state that African American girls enter
puberty earlier than Caucasian and Hispanic girls. The gene TMEM117 on the other
hand is involved in the maintenance of the mitochondrial membrane (Tamaki et al.,
2017).

The second highest LRr,-score is found in the European population GBR; this region
is also a candidate in all other European populations. One possible gene driving se-
lection in this region is GPHN, mutations on which affect the nervous system and /or
behaviour. Diseases that GPHN disruptions might be involved in include hyperek-
plexia (Rees et al., 2003), Alzheimer’s disease, schizophrenia and autism (Lionel et
al., 2013; Hales et al., 2013). Another possible candidate from this region is MPP5,
disruption of which has be associated with cancer and diseases leading to blindness
(Li et al., 2014b; Luo et al., 2011), suggesting a possible connection with eyesight. A
newly suggested candidate gene for this region might be TMEM229B. It is mostly as-
sociated in studies with cancer (Stoletov et al., 2018).The strongest candidate region
appearing in the East Asian population CHB lies on the X chromosome (see TABLE
4.3) and has not been previously identified as a selection candidate by other works.
It contains the protein-coding genes NXF5, ZMAT1, TCEAL2, TCEAL6 and BEXb5.
This region is also a candidate region for two other two East Asian populations JPT
(maximum LR, = 179.14) and CHS (maximum LRr, = 80.48). Within this region,
the gene NXF5 in particular has been previously associated with mental retardation,
kidney failure and female infertility (Jun et al., 2001; Esposito et al., 2013; Fortuno
and Labarta, 2014).

A further list of all "Top Ten per population” candidate region for each 26 population
is provided in the APPENDIX B.3.

A few other candidate genes present in our "Top Ten per population” list, see AP-
PENDIX B.3, piqued our interest due to their functional importance. The EDAR gene
belongs to a region that is a sweep candidate for all five of the East Asian popu-

lations, and in none of the other populations. For four out of the five East Asian
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populations it is even a very strong candidate. An LRr,-profile along this chromo-
some region is demonstrated in FIGURE 4.6. Similar results for EDAR in East Asian
populations have also been reported by other authors (Sabeti et al., 2007; Bryk et al.,
2008; Fujimoto et al., 2008; Pickrell et al., 2009).
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FIGURE 4.6: Strong signal for the EDAR gene region for East Asian populations. Only for
JPT this is not a strong candidate, conversely a rather weak candidate (maximum

LRT, = 16.87). For comparison reason, LRr,-profile for population CEU and YRI is given at
the bottom. Shown is the chromosomal position chr2:108,277,201-110,839,554. EDAR is
highlighted. Illustration via https://genome.ucsc.edu/. Note: Only LRT,-range from —10
to 100 is shown.

The EDAR gene is known to be involved in the development of hair, teeth and sweat
glands (Botchkarev and Fessing, 2005; Kamberov et al., 2013). EDAR is associated

with hair thickness, and the observation that East Asians tend to have thicker hair
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than Europeans and Africans, leads to the question of why thicker hair may have
been advantageous. Hypotheses range from a simple sexual selection/mating ad-
vantage to being a by-product of selection on other functions of the gene (Bryk et al.,
2008; Kamberov et al., 2013).

Another noteworthy candidate from our "Top Ten candidate per population’, see
APPENDIX B.3, is the gene CASK. The region where this belongs to is in the "Top Ten
candidate per population’-list for three African populations: ACB (LRr,=102.35),
YRI (LR7,=127.87) and LWK (LR7,=90.2757), and moreover is also significant for
further three African populations GWD (LR1,=22.9285), ASW (LRt,=38.3957), ESN
(LR1,=74.7938)Y. An LRr,-profile along this chromosome region is given in FIGURE
4.8. Although selection on this gene has not received much attention in humans thus
far (although it appears in the list in (Frazer et al., 2007)), CASK has been suggested
to be positively selected in racing pigeons and is implicated in the formation of neu-
romuscular junctions (Gazda et al., 2018). Hence, the authors suggest this gene to be
involved in physical factors contributing to athletic performance.

Another sweep candidate from our list, although from neither of the top lists but
rather medium-high LRy, score, is gene HERC2. This gene is suggested having un-
dergone selective sweep for the European population CEU (LRy, = 76.53), GBR
(LR, = 50.79) and FIN (LR, = 58.68) (for illustration of LRr,-profile along chro-
mosome region see FIGURE 4.7). It is known that the eye colour is a result of mul-
tiple genes interacting together, nevertheless HERC?2 is suggested to belong to one
of the key genes being involved for the brown/blue eye colouring. Actually, not
the HERC?2 gene itself, but the nearby OCA2 seems to control the eye pigmentation.
Studies have found a region in HERC2 regulating the activity of the OCA2 gene
which in turn is involved in the production of the pigment melanin. A variant of
HERC?2 leads to inhibiting OCA2 expression, causing a reduction in the production
of melanin resulting in blue eyes (Eiberg et al., 2008). However, the advantage of
having blue eyes is poorly understood, although there have been speculations that
people with blue eyes might be able to deal better with the lack of light (Sturm and
Dufty, 2012). Or it might simply be a case of sexual selection.

The last example for this section refers to genes, suggested as 'novel” candidates for
African populations in a very recent study (Mughal and DeGiorgio, 2018): COL8A1,
CMSS1 and FILIPIL. In our analysis, the 'novel” candidates could be confirmed: We
recover the candidates in (almost) all seven African populations: CMSS1, FILIP1L
for all seven, COL8A1 for six without ASW. For an illustration of the LRr,-profile
along chromosome region see APPENDIX, FIGURE B.2. COL8A1 may be involved in

the development of muscle and has been suggested to be positively selected in other

9Note: The given LRr,-score refers to the maximum value in the region
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FIGURE 4.7: LRr,-profile for region around the HERC2 being significant for CEU, GBR and
FIN. For comparison reason, the other two (Mediterranean) European population TSI and
IBS is shown (note: no signal can be observed at all), one Asian population CHB and one
African population YRI. Shown is the chromosomal position chr15:27,828,393-28,901,088.
HERC2 is highlighted. Illustration via https://genome.ucsc.edu/. Note: Only LRr,-range
from —10 to 80 is shown.
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FIGURE 4.8: LRt,-profile for the region surrounding gene CASK, which is a (strong)
candidate for almost all African populations. The LRr,-profile is shown for all seven
African populations, for comparison reason, LRT,-profile for one European population
CEU and one East Asia population CHB are given. Shown is the chromosomal position
chrX:39,741,793-43,414,683. CASK is highlighted. Illustration via
https://genome.ucsc.edu/. Note: Only LRr,-range from —10 to 100 is shown.
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species (Utsunomiya et al., 2013; Mughal and DeGiorgio, 2018).

Finally, we want to remark that although our test could confirm many previously
known genes, some ‘famous’ candidates for selective genes do not appear in our
candidate list, for instance, LCT and the ~ 39kb-distant MCM6, which contains reg-
ulatory elements for LCT, see e.g. (Hubacek et al., 2017). Both are associated with
lactose tolerance and enables the carrier of beneficial variants the digestion of milk
(see section 4.1.1). However, we do find a rather strong signal from the European
populations CEU (see 4.3) and GBR for a zinc finger gene lying 257 kb away from
LCT and MCMeé. This gene - ZRANB3 - was already mentioned in other studies, of-
ten in connection to large candidate regions also containing LCT. In (Ferrer-Admetlla
et al., 2014) it even showed the strongest signal for their haplotype-based statistic
nSy (however for a population from Kenya). We suggest that there are unknown
interactions between ZRANB3 and closely located genes. This hypothesis will be

investigated in more detail in chapter 5.

4.3.3 Gene Ontology Enrichment Analysis of top regions

In this section we were investigating whether some gene sets can be associated with
functional genetic differences among different continents (or to be more precise:
among different superpopulations). Therefore, we performed enrichment analysis
on different gene sets by using Gene Ontology (GO) terms (Ashburner et al., 2000;
Gene Ontology Consortium, 2017). The GO is a bioinformatics project developed
by the Gene Ontology Consortium aiming at providing a set of structured, controlled
vocabularies for community use in annotating genes, gene products and sequences, as cited
from the Gene Ontology Consortium, (2008). GO defines classes which can then be
used to describe gene functions, and how these functions are related to each other.
Furthermore, GO enrichment analysis allows the assignment of biological meaning
to some groups of genes instead of looking at each individually. Generally, GO de-

picts three functional domains:

e Biological process - represents a biological objective or biological phenomena

like limb formation, DNA replication etc.

e Molecular function - describes the activities of a gene product at the molecular

level.

o Cellular component - describes the location of the gene relative to cellular com-

partments and structures.
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To find whether there are some functional sets of genes which can be associated
with genetic differences among populations located in different continents, we con-
duct GO enrichment analysis on different lists of our candidate genes.

The principal idea of the analysis is as follows: Given a background gene set and
a set of interesting genes, after identifying which GO terms are most commonly as-
sociated within the set of interesting genes, ask if this association is significantly
different from what would be expected based on the proportions of genes out of the
total having each attribute (background gene set) and compute a p-value for the ob-
served association (enrichment).

As a standard approach for identifying enriched GO terms the hypergeometric dis-
tribution is used. For the analysis we used the web-based tool GOrilla (= Gene
Ontology enRIchment anaLysis and visuaLizAtion tool) (Eden et al., 2009).

For the background set, we downloaded a full gene list of human genome on http:
//grch37.ensembl.org/downloads.html, build hg19/GRCh37. The target sets were
produced as follows:

First, we identified the top ten regions for all 26 populations separately and filtered
the respective genes belonging to each region (APPENDIX B.3). Then, we built five
target sets in grouping together genes according to their superpopulation affiliation.
In the following, we present the top three most significant enriched GO terms for
each set, including the description (column 2), the p-value (column 3), the "FDR g-
value”™ (column 4) and the relevant annotated genes (column 5).

The most significant results can be found in East Asian populations for a family of
histones, which are proteins playing a major role in chromatin packaging (TABLE
4.5). Since DNA is wrapped around histones, they are also important regarding the
regulation of gene expression.

However, overall it can be said that the p-values are not remarkably significant (a
fortiori the g-values, see TABLE 4.4 and 4.5). The number of genes attributed to the
enrichment is quite low and it is thus difficult to make reliable statements or conclu-
sions.

Finally, we could not see any significant differences in biological functions between
African and Non-African populations (see also APPENDIX B.6). In this regard, our
finding confirms other recent studies (Campbell and Tishkoff, 2008).

Despite what was mentioned above, we did make an intriguing observation con-
cerning the GO Term ’social behaviour’, which showed up in the analysis of candi-
date genes from both Europeans and Admixed Americans (who often have at least

some Spanish roots (Montinaro et al., 2015)), see TABLE 4.4 end of this section. When

*’FDR g-value’ is the correction of the p-value for multiple testing using the method from (Ben-
jamini and Hochberg, 1995).
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performing a GO enrichment analysis for each of the five European populations sep-
arately, the GO term associated to "social behaviour” was also enriched, but only for
Spain (IBS) and Italy (TSI) (see APPENDIX B.6). On closer inspection of the genes
attributed to the GO Term, we found that most of its genes - CNTNAP2, ANXA?7,
PPP3CB, MSS51 - are involved in autism and/or schizophrenia; CNTNAP?2 is even
thought to belong to one of the major genes responsible for the autism spectrum
disorder (Canali et al., 2018; Liu et al., 2011). Although there are studies showing
a lower number of "Hispanics” diagnosed with autism compared to non-Hispanic
Whites’, it has been suggested to be mainly attributable to socioeconomic factors
like the gap in the health care system or the parental understanding of the disease
(Palmer et al., 2010). However, other studies have shown that in children of Hispanic
origin autism is more likely to be accompanied by other mental disorders (Becerra
et al., 2014). In general, comparing global prevalence of autism no conspicuous indi-
cation can be found (Elsabbagh et al., 2012), more analysis is needed towards func-
tions these gene might be involved. In any case, our results are in favour of a genetic
component being involved in the autism related differences between Hispanic and

non-Hispanic people.
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African Population

AFR - Biological process

GO Term Description P-value | FDR q-value | Genes
GO:0006565 | L-serine catabolic process 2.03E-4 1EO SDSL, SDS
GO:0006567 | threonine catabolic process 2.03E-4 1EO SDSL, SDS
GO:0019518 | L-threonine catabolic pro- | 2.03E-4 1E0 SDSL, SDS
cess to glycine
AFR - Molecular function
GO Term Description P-value | FDR g-value | Genes
GO:0004794 | L-threonine ammonia-lyase 3.4E-5 1.55E-1 SDSL-like, SDS
activity
GO:0003941 | L-serine ammonia-lyase ac- | 1.02E-4 2.32E-1 SDSL-like, SDS
tivity
GO:0022834 | ligand-gated channel activ- | 1.37E-4 2.09E-1 GRIK5, TPCN1, SCNN1G, KCNK®6,
ity GABRA2, RYR1
AFR - Cellular component
GO Term Description P-value | FDR g-value | Genes
GO:0031301 | integral component of or- | 4.51E-4 8.6E-1 YIF1B, SLC8B1, GABRA2, SYTI1,
ganelle membrane AGK, RYR1
GO:0031300 | intrinsic component of or- | 6.89E-4 6.57E-1 YIF1B, SLC8B1, GABRA2, AGK,
ganelle membrane SYT1, RYR1
GO:0042734 | presynaptic membrane 9.84E-4 6.26E-1 GRIK5, CASK, GRM2, SYT1
European Population
EUR - Biological process
GO Term Description P-value | FDR g-value | Genes
GO:0035176 | social behaviour 4.04E-5 6.1E-1 ANXA?7, PPP3CB, DNAJC9, MSS51,
DVL1
GO:0051703 | intraspecies interaction be- | 4.04E-5 3.05E-1 ANXA?7, PPP3CB, DNAJC9, MSS51,
tween organisms DVL1
GO:0072593 | reactive oxygen species | 1.1E-4 5.55E-1 NNT, DUOXA2, CYB5R4,
metabolic process DUOXA1, DUOX2, DUOX1
EUR - Molecular function
GO Term Description P-value | FDR g-value | Genes
GO:0016174 | NAD(P)H oxidase activity 7.79E-6 3.55E-2 CYB5R4, DUOX2, DUOX1
GO:0050664 | oxidoreductase activity, act- | 6.25E-5 1.43E-1 CYB5R4, DUOX2, DUOX1
ing on NAD(P)H, oxygen as
acceptor
GO:0005031 | tumor necrosis factor- | 5.35E-4 8.14E-1 TNFRSF4, TNFRSF25
activated receptor activity
EUR - Cellular component
No GO Enrichment Found.
Admixed American Population
AMR - Biological process
GO Term Description P-value | FDR g-value | Genes
GO:0072673 | lamellipodium morphogen- | 2.93E-6 4.43E-2 PLEKHO1, WASF2, SNX1
esis
GO:0035176 | social behaviour 8.38E-6 6.33E-2 ANXA7, CNTNAP2, PPP3CB,
DNAJC9, MSS51
GO:0051703 | intraspecies interaction be- | 8.38E-6 4.22E-2 ANXA7, CNTNAP2, PPP3CB,
tween organisms DNAJC9, MSS51
AMR - Molecular function
GO Term Description P-value | FDR g-value | Genes
GO:0035035 | histone acetyltransferase | 3.95E-4 1EO BCAS3, TRIP4, ECD
binding
AMR - Cellular component
No GO Enrichment Found.

TABLE 4.4: Top three significant GO terms of African, European and Admixed American

superpopulat

ions.
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East Asian Population

EAS - Biological process

pathway in response to en-
doplasmic reticulum stress

GO Term Description P-value | FDR g-value | Genes

GO:0006334 | nucleosome assembly 7.37E-20 1.11E-15 HIST1H1[D/E], HIST1lamong
H2B[C/D/E/F/G/H/I],
HIST1H3[D/E/EF/G],
HIST1H4[D/E/F/H]

GO:0034728 | nucleosome organization 6.71E-18 5.07E-14 HIST1H1[D/E],
HIST1H2B[C/D/E/F/G/H/1],
HIST1H3[D/E/F/G],
HIST1H4[D/E/F/H]

GO:0065004 | protein-DNA complex as- | 3.3E-17 1.66E-13 HIST1H1[D/E],

sembly HIST1H2B[C/D/E/F/G/H/I],

HIST1H3[D/E/F/G],
HIST1H4[D/E/F/H], GTF2H3

EAS - Molecular function

GO Term Description P-value | FDR g-value | Genes

GO:0046982 | protein heterodimerization | 6.09E-12 2.78E-8 HIST1H2A[C/D/E],

activity HIST1H2B[C/D/E/F/G/H/I],

HIST1H3[D/E/F/G],
HIST1H4[D/E/F/G/H]

GO:0046983 | protein dimerization activity | 1.95E-6 4.45E-3 HIST1H2A[C/D/E],
HIST1H2B[C/D/E/F/G/H/I],
HIST1H3[D/E/F/G],
HIST1H4|D/E/F/G/H], RILPL],
TP53I3

GO:0031491 | nucleosome binding 2.08E-5 3.16E-2 HIST1H3[D/E/F/G], MLLT10

EAS - Cellular component

GO Term Description P-value | FDR g-value | Genes

GO:0000786 | nucleosome 9.02E-29 1.72E-25 HIST1H1[D/E],
HIST1H2A[C/D/E],
HIST1H2B[C/D/E/F/G/H/1],
HIST1H3[D/E/F/G],
HIST1H2A[C/D/E/F/G],
HIST1H4[D/E/F/H]

GO:0044815 | DNA packaging complex 6.57E-28 6.27E-25 HIST1H1[D/E],
HIST1H2A[C/D/E],
HIST1H2B[C/D/E/EF/G/H/I],
HIST1H3[D/E/F/G],
HIST1H2A[C/D/E/F/G],
HIST1H4[D/E/F/H]

GO:0032993 | protein-DNA complex 3.36E-24 2.14E-21 HIST1H1[D/E],
HIST1H2A[C/D/E],
HIST1H2B[C/D/E/F/G/H/I],
HIST1H3[D/E/F/G],
HIST1H4[D/E/F/H] GTF2H3

South Asian Population

SAS - Biological process

GO Term Description P-value | FDR g-value | Genes

GO:0070059 | intrinsic apoptotic signalling | 3.63E-4 1EO TMBIM6, TMEM117, MAP3K5

SAS - Molecular function

No GO Enrichment Found

SAS - Cellular component

No GO Enrichment Found.

TABLE 4.5: Top three significant GO terms of East Asian and South Asian
superpopulations.
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Chapter 5

Measuring linkage disequilibrium using

genealogical tree topology

In this chapter, we want to demonstrate, that linkage disequilibrium between two
chromosomal loci can be measured by means of genealogical tree topology. For
this purpose, in (Wirtz, Rauscher, and Wiehe, 2018) a measure of topological linkage
disequilibrium (tLD) was introduced, based on clustering chromosomes with respect
to their position in the genealogy rather than defining haplotypes as allele combi-
nations at two loci as in the classical concept of linkage disequilibrium. In (Wirtz,
Rauscher, and Wiehe, 2018), the focus lies on the theoretical properties of tLD of
which the corresponding mathematical proofs were carried out by Johannes Wirtz
and thus details on derivations can be read in (Wirtz, Rauscher, and Wiehe, 2018).
My contribution was the performance of simulations and the application to experi-
mental data, to analyse the accordance with the theoretical results.

In the following, the concept of tLD will be introduced and the application of tLD to
the 1,000 human phase 3 data will be presented.

5.1 Classical concept of linkage disequilibrium (LD)

The classical concept of linkage disequilibrium (LD) refers to the non-random as-
sociations of alleles at different loci. Consider two markers at different sites. One
marker has alleles A and 4, and the other marker alleles B and b. Four haplotypes
of these markers are possible: AB, Ab, aB and ab. Let p4 be the frequency of allele
A in the population, p, frequency of allele a, pp of allele B and p,, of allele b. The
expected frequency of the haplotypes is the product of the respective allele frequen-
cies, namely pap = PAPB, PAb = PAPb, PaB = PapB and pyy = papp. Any deviation
of the expected haplotype frequencies is linkage disequilibrium, which is typically
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indicated by the letter D, and can be calculated by, e.g.

D = pap — paps-

When D = 0, the loci are said to be in linkage equilibrium.

In the following, let x1 := pap, X2 := Pap, X3 := PaB, X4 = Pap.

Note, that x1 = papp + D, x2 = papy — D, x3 = papp — D and x4 = papp + D. Thus,
D can be rearranged to

D= X1X4 — X2X3.

Let c be the recombination rate between the A/a and B/b locus. The frequencies of
the haplotypes in the next generation (symbolized in the following by x}, x7, x5 and

x}) can be calculated by, for example,

Xy = x4+ x1x0 + 2123 + (1 — ¢)x1x4 + cx2x3
= x1(x1 + x2 + x3 + x4) — (X104 — X2X4)

= X1 — CDo,

where Dy is the initial state of LD.
The frequencies of the other haplotypes can be derived likewise, and thus it holds

that D in the next generation is

ot /i
Dy = x1x; — x5x'x3

= (1 — C)D().
It follows by recursion that
Dt+1 = (1 — C)Dt =..= (1 — C)tDO,

where Dy is LD at generation ¢. Finally, for small ¢, D in generation ¢ can be approx-

imated by
D; = (1 — C)tDo ~ eiCtDo. (5.1)

This shows an important result:
In each generation LD decays at a rate determined by the degree of recombination

and particularly, LD depends on recombination rate.
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D is easy to calculate, however, its big disadvantage is that its range is dependent on

allele frequencies in the population, given by

Dmin = maX{—PAPB/ —Pan}
Dimax = min{paps, Paps}-

D maximises when allele frequencies are both 0.5, but for example if p4 = 0.3 and
ps = 0.1, the range is restricted to —0.03 and 0.07.

Lewontin (1964) suggested using a normalisation of D:

o p—, if D pos.
if D neg.

D’ has the nice property that it is equal to 1 if two sites are in complete LD and 0 for
no LD. Its disadvantage is when alleles are rare or the population size is small, D’
tends to be enlarged, making it difficult to be interpreted correctly.

Another way of measuring LD is to use a correlation coefficient of the allelic associ-
ation, first introduced by Hill and Robertson (1968),

X1X4 — X2X3

N
V' PAPaPBPb

which ranges between —1; strong negative correlation, and 1, strong positive corre-

(5.2)

lation. If r is equal to O the two sites are not correlated.

This LD measure allows for statistical testing of significance, since r is related to the
x2-distribution: it holds that r = y/x2/n. This can be obtained from the 2 x 2 table
of the frequencies x1, xp, x3 and x4 and 7 is the total number of haplotypes in the
sample.

Mostly, it is common to consider 2.

In (Wirtz, Rauscher, and Wiehe, 2018), a new approach of defining linkage disequi-

librium was introduced in the framework of coalescent theory.

5.2 The topological linkage disequilibrium (tLD)

As we have already explained in section 3.1, due to recombination event, tree topol-
ogy at different sequence positions may change along the chromosome. In the ARG,
each nucleotide position along the chromosome is associated with a coalescent tree,
and within a chromosome segment with no recombination events all positions have
the same tree topology. By dividing chromosomes into recombination-free frag-

ments, coalescent trees can be associated with a fragment.
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chromosome

|

fragment;\ fragm.entB
N
V(A) v(B)
LA RA LB RB
1246 71058 9 3 234615 87109
A B

FIGURE 5.1: Coalescent trees along a recombining chromosome of size n = 10. Zoom-in of
a small part of a chromosome. Consider two fragments of a given window size, labelled as
fragment A and fragment B. These two fragments can be associated with a coalescent tree.
Recombination events between fragment A and B might have changed not only the tree
topology, but also the assignment of chromosomes with regards to the left and right side of
the root of the trees.

Likewise in section 3.1, consider a binary tree of size 1, the n leaves of the tree can
be divided into two disjoint groups: the left and the right-descendants of the root
V(). The two groups are indicated as L) and R(.), respectively, and without loss of
generality let L) be the smaller of the two sets L,y and R(.). As a consequence of
recombination events, when moving along a chromosome, the genealogical tree of
fragment A may differ from the tree at fragment B. Moreover, the descendants be-
longing to the left and right set below the root of the tree associated to fragment A
may differ from those of fragment B. In the following, let L4 indicate the left set of
the tree associated to fragment A, R4 the right set, and so forth (see FIGURE 5.1).

We can now define a correlation measure as follows:

e Let p;, be the frequency of chromosomes in L 4:
pr, = |La|/n, and likewise

PRy = |RA|/1’1, PLy = ‘LB|/n' PRp = |RB|/n'

e Let x1 be the proportion of chromosomes belonging to L M Lp:
x1 = |La N Lg|/n, and likewise
Xy = |LAQRB‘/1’I,X3 = |RAﬂLB|/1’l,X4 = ’RAQRB‘/?I.

Then, we define the topological linkage disequilibrium, short tLD, as

2 (x1x4 - x2x3)2

ragp = . (5.3)
‘D PLAPR4PLEPRg

The term is coined topological since it is induced by the topology of the coalescent

tree.
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In the following, we will write r? for the conventional LD, and r% p, for the topologi-
cal LD.

[Remark: In (Wirtz, Rauscher, and Wiehe, 2018), tLD is defined as r%,ur where S and
U refers to the two fragments, whilst the conventional LD is defined by ri/ﬁ, where

« and B refers to the two loci.]

Box 5.2: Example of tLD using FIGURE 5.1

In this example, we have

v(A) v(B)
e n=10
LA RA LB RB
o Ly=1{1,2},
R4 ={3,4,5,6,7,8,9,10}
e Lp=1{234,6}, HHA”OHH ------ 234“5:”09

R =1{1,5,7,8,9,10}
Thus:

e pr, = |Lal/n=2/10, pr, = |Ra|/n =8/10,
e pr, = |Lp|/n=4/10, pr, = |Rp|/n = 6/10,
and
e x1=|LaNLg|/n=1/10,x4 = |[R4NRg|/n =5/10,
e x3=|RaNLg|/n=3/10,x2 = |La NRp|/n =1/10.
Substitute in equation (5.3) yields r% ;, = 0.0104167.
Like in the conventional LD, the choice of the left and the right set of the root of the
tree is not of importance, since it does not have an affect on rfLD.
rtzLD canonly beequal 1,if L4 = Lg or L4 = Rp.
5.2.1 Properties of tLD

As we have seen in equation (5.1), recombination affects LD: LD decays in each gen-
eration at a rate determined by the degree of recombination.

However, if recombination and genetic drift is combined in a finite population N, it
is not easy to derive the expected value for r%. By assuming completely unlinked loci,

the configuration of alleles forming a haplotype behaves statistically like a random
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2 x 2-table, and according to Haldane (1940)

1
E[r] = ——. 54
= 5 54
The question still remains how the expected LD decays with respect to the recombi-
nation rate. Several efforts to come up with a reasonable formula have been made.

Sved (Sved, 1971) approximated the expected equilibrium LD

1 e<<1 1

E[rz] ~ ~ .
1—¢
1+4Neg=2, 4Nc +1

(5.5)

by relating 72 to the conditional probability of linked identity by descent which is
the probability that two chosen haplotypes will be identical copies from some pre-
vious generation. This formula illustrates that if 4Nc is small, the expected LD will
approach 1, if 4Nc is large, then it will approach 0. If 4Nc is large the equation can
be approximated by

1

E[r*] ~ NG
Note, that we have seen the quantity 4Nc before, it is the population recombination
rate. To avoid ambiguity, from now on we define the population recombination rate
by the Greek letter p.
Despite the discrepancy between (5.5) and (5.4), Sved’s formula (5.5) has become one
of the standard approaches.
Still today, attempts to improve the approximation (5.5) exist and researchers are
concerned to find a more suitable formula describing the expected LD with respect
to the recombination rate , e.g. (Ober et al., 2013). But none of them succeeded to
approach Haldane’s value.

By using the concept of tLD, in (Wirtz, Rauscher, and Wiehe, 2018) a new formula
for the decay of expected % , has been theoretically derived. It has been shown, that
E[riip] R L/

1-N

by using arguments derived from coalescent properties.

Thus, tLD decays towards the same value as in Haldane’s formula (5.4).
Furthermore, by using simulated data, it could have been shown, that tLD decays
more slowly than the conventional LD with chromosomal distance (see FIGURE 5.2).
This can be explained by the fact that only a fraction of recombination events affects
tree topology at the root. Indeed, in (Wirtz, Rauscher, and Wiehe, 2018, Lemma 2),
it could be theoretically deduced, that about 1/3 of all recombination events lead

to changes in such a way that chromosomes from one side of the tree are shifted to
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the other. Tree topology is estimated from SNP data in the exact same manner as in

previous chapters (re-visit section 3.2.1 for cluster method).

1

— tLD (true tree)
tLD (estimated tree)
0.8 — SNPLD

06
|

E(r*2)

02 \

0.05 0.10 0.15 0.20 0.25
cM

FIGURE 5.2: Figure also shown in (Wirtz, Rauscher, and Wiehe, 2018, Figure 6). Illustration
of decay of tLD vs. SNP-LD with chromosomal distance from simulated data.

Data are from a single simulation run generated with the program ms. The parameters were
set in such a way that a chromosomal sequence with a recombination rate of 1cM/Mb and
length 250kb (0.25cM) was simulated, for N = 10%. The corresponding ms-command line
was therefore:ms 200 1 -t 100 -r 100 1000 -T, where the option -T outputs true tree
topology in Newick-format (more on ms output see FIGURE 3.4).

5.3 Application of LD to 1,000 Humans Data

In this section we will present the application of LD to human data from the human
1,000 genomes project (Auton et al., 2015). The estimation of genealogical tree topol-
ogy for all 26 populations was already performed previously (see chapter 4). Since
the focus lies on the root of the entire tree T for a sample of size n, the MRCA, we
only need to consider the first clustering step: the one dividing the n chromosomes
into the ‘left-descendants’ and into the 'right-descendants’ of root v;, L1 and R; re-
spectively (for terminology, re-visit chapter 3). In contrast to determining T3, where
the size |L1]| or |Ry| is needed, for this concern the ‘content’ of each cluster is needed.
In section 3.2.2, we already analysed how well the assignment of the estimated clus-
ter agrees with the true one. We have shown that if |L;| = |L1| (or |R;| = |Ry]), the
clusters agree very well with the true one. Moreover, in chapter 3 we have shown
as well that a minimum of 10 SNPs is sufficient to yield a good estimation result
also with regards to size: the average difference between known (; and estimated
), was around 0 (see FIGURE 3.8). That the true and estimated values of tLD agree
quite well, is once more demonstrated by a heatmap in FIGURE 5.3, where the same

simulated data are used as in FIGURE 5.2.
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True tLD

Estimated tLD

FIGURE 5.3: Figure also shown in (Wirtz, Rauscher, and Wiehe, 2018, Figure 7). Heatmaps
of tLD calculated from tree topologies and tLD calculated from estimated tree topologies,
performed on the same simulated dataset used in FIGURE 5.2. The diagonal starting from
the bottom left corner to the top right corner represents the simulated chromosome
sequence, position starts from down left and ends top right. The heatmap on the upper left
side of the diagonal represents the tLD calculated from true tree topology and the heatmap
on the right side below the diagonal tLD from estimated data.

We calculated tLD for some previously found candidates. First, we determined tLD
for a 2Mb region on chromosome 2, containing the genes ZRANB3, LCT, MCM6. Re-
member from previous chapter, that the gene ZRANB3 was suggested to be under
positive selection for some European populations, whilst according to our result the
well-known sweep candidate genes LCT and MCM6 were not amongst our list of
candidates. We wanted to investigate whether tLD provides indications for poten-
tial interaction between these genes. For reasons of comparison, we also show the
classical LD for this example.

First of all, FIGURE 5.4 illustrates a clear signal of elevated level of linkage disequilib-
rium for the European population CEU in comparison to the African population YRL
Generally, this was expected since African populations are known to show lower
levels of linkage disequilibrium in general among loci compared to non-Africans
(Campbell and Tishkoff, 2008). However, note that the signals are stronger to be
observed for tLD than conventional LD. This may be not surprising, since LD is
calculated over segments and can be therefore seen as ‘an average’ over blocks of
SNPs and as such as a ‘coarse-grained” measure for the classical LD. However, ex-
actly this can also be seen as the advantage of using tLD, since the signal is stronger
and thus easier to detect. With regards for visual inspection, this is clearly a benefit.
Furthermore, in accordance with results mentioned in the previous section (see FIG-

URE 5.2), the level of correlation seems to be maintained at a higher level for a longer
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FIGURE 5.4: Heatmaps of tLD (upper (left) triangle) for chromosome region
chr2:135,000,000-137,000,000 for population CEU and YRI (diagonal from left to right). For
reasons of comparison heatmaps of the conventional LD (here: SNP LD for same
chromosome region is shown on lower (right) triangle. Form left to right, the positions of
the genes ZRANB3, LCT, MCM6 and DARS are indicated by the dark triangles within the
plot.
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FIGURE 5.5: Zoom-in of region surrounding genes ZRANB3, LCT, MCM6, from FIGURE 5.4.

chromosomal distance compared to classical LD. Therefore, {LD may be more suit-

able for detecting long-range linkage disequilibrium.

Our findings show a clearly elevated tLD for the region containing the genes ZRANB3,
LCT and MCM6 (FIGURE 5.5). This might be an indication for interacting functions
between ZRANB3 and one of the other genes, responsible for the linkage.

As another example we determined LD for a region on chromosome 15, containing
the genes OCA2 and HERC2. In chapter 4, we found HERC2 to be a sweep candidate
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gene for the European population CEU, GBR and FIN, a gene where some of its vari-
ants result in blue eyes. Since HERC2 contains a region regulating the activity of the
OCA2 gene, which in turn controls the eye pigmentation, we were interested if an
elevated tLD can be observed in that region. Furthermore, in (Hubacek et al., 2017)
a list of alleles was presented, which are suggested to be responsible for the blue eye
variant. Therefore, we analysed the region containing these two genes, if elevated
linkage can be observed between these regions for the three European population.
Our result in FIGURE 5.6 indicate that indeed tLD seemed to be elevated in particu-
lar in regions between the three alleles mentioned in (Hubacek et al., 2017) located
within the OCA2 and the (whole) HERC2. However, tLD is contiguously high in the
regions containing the HERC2 and OCA2 gene. Therefore, not directly the three alle-
les might be responsible for the observed strong signal in this region. Nevertheless,
the difference of strength of the signals between the classical and the topological
LD in this region is tremendous, in particular for gene HERC2, even for the African
population YRI. Whilst signals for the classical LD are rather restrained, tLD is quite
strong in this region.

SNP ID Position Within gene Gene position

rs4778138 chr15:28,335,820-28,335,820 OCA2 chr15:28,000,023-28,344,458

rs4778241 chr15:28,338,713-28,338,713 OCA2

rs7495174 chr15:28,344,238-28,344,238 OCA2

rs1129038 chr15:28,356,859-28,356,859 Herc2 chr15:28,356,183-28,567,298

rs12913832  chr15:28,365,618-28,365,618 Herc2

rs916977 chr15:28,513,364-28,513,364 Herc2
151667394 chr15:28,530,182-28,530,182 Herc2

TABLE 5.1: SNPs known to be responsible for the blue eye variant according to (Hubacek
etal., 2017).
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FIGURE 5.6: Heatmaps of tLD (left) and classical LD (right) for chromosome region
chr15:27,750,023-28,817,298 for population CEU, GBR, FIN and YRI. The positions of the

genes OCA2 and HERC? are indicated by the dark triangles within the plot (diagonal from

left to right).
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Chapter 6

Conclusions and outlook

Understanding the role of evolutionary forces leading to the observed genomic pat-
terns in and between different organisms or populations is a challenging task for sci-
entists. These patterns might be shaped by factors such as demographic events, nat-
ural selection or simply random drifts. Distinguishing between those can be difficult
since demographic events, like population bottlenecks, can leave a similar genomic
pattern behind as those left by the action of natural selection. The construction of
a robust test statistic aiming in identifying the correct underlying dynamic behind,
received a high degree of attention for researchers.

Coalescent tree topology is not affected by varying population size (Hudson, 1990;
Li, 2011). This motivated us to investigate the topologies of genealogical trees in
more detail, and to establish new methods contributing to the research of evolution-
ary mechanisms.

In (Li and Wiehe, 2013), the authors proposed a test statistic called T3, which only
uses the information of coalescent tree topology. Selective sweeps can produce highly
unbalanced coalescent tree topologies in regions close to a selected site. Under neu-
tral evolution T3 is expected to be standard-normally distributed. Genealogies after
a selective sweep tend to be unbalanced and to produce negative values of T3 (see
section 3.1). Hence, T3 detects bias in tree balance. However, in practice the tree
topology is not known and has to be estimated. Whilst in (Li and Wiehe, 2013) mi-
crosatellite data was used for the estimation of tree topology, we show that SNP
data provides a good alternative to microsatellite data for estimating the tree topol-
ogy. In chapter 3 we present in detail, how many SNPs are at least needed to obtain
a good cluster estimation result. In the absence of recombination, this number can
be arbitrarily large. However many recombination events within a chromosomal
segment should be avoided, since this increases the probability of having multi-

ple tree topologies within the segment, leading to confounding tree topologies. In
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(Ferretti, Disanto, and Wiehe, 2013) it was shown that it takes about 15-20 recom-
bination events to drastically reduce correlation of coalescent tree topologies along
a recombining chromosome. 15-20 recombination events correspond to roughly to
6,400-8,520 bp to for a sample of size n = 200, N = 10* and a recombination rate
of ¢ = 1078 per bp (see equation (3.2.1)). We decided to set the maximum window
length to 10 kb. In the same section 3.2.1 we demonstrated that a minimum number
of SNP is needed to get a fairly good approximation of the true tree topology. A
too small number of SNPs led to an under- or overestimation of tree cluster. Besides
performing simulations, we underpinned the expected cluster size, conditioned on
the number of SNPs used for the estimation, by explicit calculations, as long as these
didn’t become too complex. We concluded that a minimum number of ten SNPs
already yield a cluster size estimation which agrees quite well with the true one. We
expect to see ten SNPs in a magnitude of about ~ 4,260 bp window length, see equa-
tion (2.2). In such way, we came to the conclusion to estimate tree topology using
chromosomal segments of size 5 kb and a step size of 2.5 kb. The chromosomal seg-
ment needed to contain at least ten SNPs. If the latter condition was not fulfilled, we
extended the window size by 1 kb, up to a maximum window of size 10 kb. If the
clusters were not clearly resolvable, we randomly assigned the sequences to one of
the two clusters with equal probability. Here, we want to point out, that our choice
for the fragment length rely on the assumption of a recombination rate of ¢ = 1078
per bp per generation and u = 108 per bp per generation, which are the (aver-
age) estimates for human (Roach et al., 2010; Li and Freudenberg, 2009). Therefore,
if applying to species with different mutation and recombination rates as assumed
above, the parameters must be changed correspondingly.

To analyse, how the Ts-test, using SNP data for the tree topology estimation, per-
forms under different demographic scenarios, we first generated three data sets:
one simulating a population bottleneck scenario, which was compared to the neu-
tral and to the selective sweep scenario (see section 3.3). The results clearly showed,
that the Ts-test was quite robust under the population bottleneck scenario, as ex-
pected. Furthermore, we examined how the Tz-test performs in presence of pop-
ulation substructure. For this end, we generated various sampling schemes with
varying migration rates. We have seen that substructured population and low mi-
gration rate affects the Ts-test, in particular when the sampling scheme is heavily
biased (17 = 195 and n, = 5) and migration rate is low (4Nm = 0.4). When sam-
pling all chromosomes from only one subpopulation, n; = 200 and n, = 0, Tz is
quite robust when migration rate is moderate (4Nm = 4) or very low (4Nm = 0.04).
When migration rate is low (4Nm = 0.04), T3 seems to be slightly affected, see TA-
BLES 3.1 and 3.2.
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Generally, the power of the Ts-test is strongly dependent of the distance to the se-
lected site (see TABLE 3.3). If considering single windows, regardless of their position
from the selected site, (although the false positive rate was only around 0.019) the
power is only around 0.23 (in case of strong selection, otherwise even below). If we
take the distance to the selected site into account, on average, taking a 1% threshold,
around 78.86% - 86.12% of the windows identified as being significant were found to
be within a distance of 250 kb from the selected site (see table 3.3). However, also an
average of around 20% (by a threshold of 1%) falls outside the 250 kb region. Next,
we investigated if a re-sampling strategy can help to corroborate significance of pre-
viously identified regions. The underlying idea was that induced subtree topologies
of unbalanced trees generated under neutrality might be distinguishable from sub-
tree topologies of unbalanced trees generated under selection. It has been shown
before, that this is true for the most extreme case of an unbalanced tree, namely a
caterpillar tree: its induced subtree is always highly unbalanced. A caterpillar tree
can result in a large excess of singleton mutations, which is a typical characteristic of
a selective sweep, however a caterpillar tree is also extremely unlikely to be observed
in practice (Blum and Francois, 2006; Kirkpatrick and Slatkin, 1993). Our simulation
results could not show a considerable improvement in filtering out previously iden-
tified false positives (see TABLE 3.4). Therefore, we suggest that the aforementioned
hypothesis (that highly unbalanced trees resulting from positive selection inherit
this property to their induced subtree whilst highly unbalanced trees generated un-
der neutrality don’t) might only hold for ‘extreme’ cases like caterpillar trees, which
are very rare in practice. Besides, on the technical side, this approach requires a long
running time and a large memory, making it unsuitable for genome-wide screens.
We then turned our focus to a different strategy. Since unbalanced tree topologies
in multiple adjacent regions are more likely to be observed in regions close to the
selected sites than by chance, see section 3.4.1, we not only took the T3-value of one
window into account, but also the surrounding ones and thus constructed a test
statistic based on the concept of likelihood ratio tests. We called this test the LRr;-
test (see 3.6).

We empirically determined the power of this test, and found that by taking a thresh-
old of LRt,—score to 0, we get a false positive rate of 0.0226, and a power of 0.95.
To reduce the false positive rate, we decided to set the threshold-score to 15. In such
way, we could reduce the false positive rate to almost 0 (0.0007%), at a price of re-
duced power: 0.88, however this is still quite good.

In addition, we showed in this chapter, that our test is applicable not only to de-
tect recently completed sweeps, but also incomplete sweeps: the signal was even
strongest to be observed when the selected site has reached a frequency of around
80% (section 3.5).
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In conclusion, we derived a test statistic solely relying on the knowledge of coales-
cent tree topology. It is free from the effects of varying population size, from which
some test statistics suffer (Ramirez-Soriano et al., 2008), it is slightly affected by mi-
gration events, however when sampling scheme is in such way that all chromosomes
are sampled from only one subpopulation, it still performs quite well. Furthermore,
it is also able to detect incomplete sweeps.

One disadvantage is, that the reliability of the Ts-test depends on the quality of
the estimated tree topology. Therefore, one should seek to improve the clustering
method. So far, we estimated tree topology according to a sliding window approach;
we estimated tree topology for each window independently. But whilst doing so,
we are aware of that tree topologies along a chromosome are not independent, but
correlated to each other. Instead of estimating tree topology for each window sepa-
rately, one might also take the topology of the neighbouring windows into account,
for example in determining a conditional probability or likelihood of observing the
estimated tree topology, given knowledge of the tree topology of the previous win-
dow.

In particular in cases, where the clusters were not clearly resolvable (and so far we
just randomly assigned the sequences to one of the two clusters with equal probabil-
ity), or regions, which were "skipped” due to the lack of data/or monomorphic sites,
the additional consideration of the neighbouring regions might help to be more ac-
curate and thus, not to be as conservative. On the contrary, this might lead to an
enormous increase of running time, just for the estimation of tree topology. The fact
that one need to estimate not only (), but also ), and (23 might add to the com-

plexity of the issue.

In chapter 4, we have applied our test statistic LR, to the human data from the 1,000
genomes project ((Auton et al., 2015), phase 3). For this end, we performed whole
genome screens for all 26 populations; all 22 autosomes and the X chromosome.
The 26 populations can be further divided into five so-called 'superpopulations’:
African, Admixed American, East Asian, European and South Asian (see FIGURE
4.1).

In general, we found approximately two times less candidate regions in the African
superpopulation compared to the remaining four superpopulations (see FIGURE 4.4,
or APPENDIX table B.1). Our result confirmed previous studies that have found more
candidate regions for recent selective sweeps in non-African populations compared
to the African populations (Kayser, Brauer, and Stoneking, 2003; Williamson et al.,
2007; Campbell and Tishkoff, 2008). We compared our gene candidate list with pre-
vious studies. For this purpose we took two lists into consideration: the list from

the database of recent positive selection across human populations (= dbPSHP) (Li et al.,
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2014a), downloaded from http://jjwanglab.org/dbpshp and consisting of about
approximately 8,050 candidate genes, and a more recent list taken from (Schrider
and Kern, 2017), consisting of about approximately 5,939 candidate genes. The first
list is a collection of all candidate sweep regions identified and published until then.
For generating the latter list, the authors used a new method developed by them-
selves in a previous paper, called S/HIC (Schrider and Kern, 2016)), which is based
on a supervised machine learning approach combining many statistics used to test
for selection (including 'classical” tests like Tajima’s D, haplotype based tests etc.).
In general, the overlap between our candidates and both lists were rather moder-
ate (with the dbPSHP-list: 1,947 genes, with the S/HIC-list: 1,718 genes, of which
1,253 genes are not found in dbPSHP). However, other studies have reported a sim-
ilar result, concerning the small intersection of candidates between different studies
(Akey, 2009; Schrider and Kern, 2017). They suggest that it is due to that different
methods may produce different false positives and false negatives, resulting in this
discord between scans.

Amongst several previously known candidate genes, we also found new potential
candidates, for instance the gene NXF5 on the X chromosome. This gene is involved
in the normal functioning of the brain, kidneys and reproductive organs, since its
disruptions can lead to disorders of these (Jun et al., 2001; Esposito et al., 2013; For-
tuno and Labarta, 2014). The region where this gene is located is the strongest candi-
date region in the East Asian population CHB (see TABLE 4.3). The region containing
this gene was also significant for two other East Asian populations JPT (maximum
LR7, = 179.14) and CHS (maximum LR, = 80.48).

The region where the overall highest LR,-score was found (for the South Asia pop-
ulation ITU), is a candidate region for almost all non-African populations. One pos-
sible candidate gene driving this selection is NELL2. It has been previously recorded
to be a sweep candidate, although so far no hypothesis of what the associated ben-
eficial trait of it might be has been suggested. Previous studies have indicated a
possible connection for this gene with the onset of puberty in rats (Ryu et al., 2011).
As for humans, it is known that girls of the African American population enter pu-
berty earlier than those with Caucasian or Hispanic ancestry (Ramnitz and Lodish,
2013) and we suggest that NELL2 could be involved in variations of the human on-
set of puberty in human, although the reason for this trait to be under selection is
unclear.

Another candidate gene with clear differences between African and non-African
populations was CASK (FIGURE 4.8). This gene appears to be a strong candidate for
three African populations: ACB (LR7,=102.35), YRI (LR1,=127.87) and LWK (LRt
=90.2757), and it is also significant for further three African populations GWD (LRt
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=22.9285), ASW (LRT,=38.3957), ESN (LR1,= 74.7938). Previously it has been sug-
gested as a candidate for selection in only one of these populations, YRI (Frazer et
al., 2007). Gazda et al. (2018) suggested CASK to be positively selected in racing
pigeons for contributing to athletic performance, since the gene is involved in the
formation of neuromuscular junctions. We note that athletes of African origin often
perform exceptionally well in competitions and propose that CASK gene might be
involved in that.

Furthermore, our test could confirm many other previously known genes, from
which some of them we mentioned in section 4.3.2. Further on, we investigated
whether some gene sets can be associated with functional genetic differences among
different superpopulations. Therefore, we performed GO enrichment analysis. In
doing so, we were in specific interested, if enrichment can be found for gene sets po-
tentially involved with regards to the adaptation as a result in response to the Out-
Of-Africa migration. We came to the conclusion, that in this regard no significant
differences in biological functions between African and Non-African populations
can be seen (see also APPENDIX B.6). However, our finding is consistent with other
studies, for instance in (Campbell and Tishkoff, 2008). The authors pointed out, that
despite Africans are more genetically diverse and also possess lower levels of link-
age disequilibrium among loci compared to non-Africans, Africans also do have a
number of genetic adaptations evolving due to diverse climates and diets. Further-
more, our GO enrichment analysis revealed an intriguing observation between the
analysis of candidate genes from the European population Spain (IBS) and Italy (TSI)
(see APPENDIX B.6), and the Admixed American superpopulation (see TABLE 4.4):
For all of them the GO Term "social behaviour” showed up to be among the top three
most significant enriched GO terms. Most of the genes attributed to the GO Term
are involved in autism and/or schizophrenia. According to our findings in section
4.3.3, we suggest that there might be an advantageous genetic component being in-
volved in the autism related differences between Hispanic and non-Hispanic people,
but we further suggest that more analysis is needed towards functions where these
genes might be involved. In conclusion of chapter 4, we want to point out, that the
application of the LRr,-test on the human 1,000 genomes data performed quite well,
not only covering several previously known candidates, but also revealing new can-
didates. There are still many candidate genes we did not investigate from our list,
including all genes not associated with the biotype "protein-coding’. In particular,
out of our candidate list, we found several superpopulation-specific ones. It would
be interesting to analyse the biological function of genes driving the selection and
the significance of its trait, but this is left for future projects. Another important as-

pect which has to be mentioned is that the result of the LR,-test depends on the
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underlying parameters we have set for the selective sweep scenario and the likeli-
hood distributions we have empirically determined in the beginning. One could try

to apply the LRr,-test under changed conditions and assumptions.

In chapter 5 we presented a new measure of topological linkage disequilibrium (tLD)
which is based on the topology of genealogical trees (Wirtz, Rauscher, and Wiehe,
2018). Instead of focusing on haplotypes as allele combinations at two loci as for
the classical LD, we cluster a sample of chromosomes with respect to their posi-
tion in the genealogy. Therefore, the focus lies on the first root of the tree (MRCA)
which divides the sample into two disjoint groups: the 'left-descendants” and the
‘right-descendants’ of the root, see section 5.2. The ¢tLD is the correlation between
the members of each group, see equation (5.3). The advantage of the tLD is that
it is more sensitive than regular LD to detect long range interactions across mega-
base scales, which can be explained by the fact that only a fraction of recombination
events affects tree topology at the root. This could be confirmed by the application
of tLD to simulated data, see FIGURE 5.2. The tree topology was estimated using the
aforementioned method from section 3.2.1, chapter 3. Furthermore, again we could
have shown how well the estimated cluster agrees with the true one, 5.3 and also
compare section 3.2.2.

We then applied the tLD to some previously found candidate genes. In chapter 4,
the ‘prominent’ sweep candidate gene LCT did not appear in our list, however we
did find a rather strong signal for the ZRANB3 gene for the two European popula-
tion CEU and GBR (see 4.3), which lies about 257 kb distant away from the LCT gene.
Therefore, we were in particular interested if linkage between these two genes can be
found. Indeed, our findings show a clearly elevated tLD between the genes ZRANB3
and LCT, but also MCM6, which contains regulatory elements for LCT (Hubacek et
al., 2017) (FIGURE 5.5). We suggest that there might be interacting functions be-
tween ZRANB3 and one of the other genes, responsible for the linkage. Generally,
tLD shows stronger signals than the classical LD, which is not only a benefit for an
easier detection, but also with regards to the visualisation.

This was further demonstrated for the region HERC2 and OCA2, of which HERC2
was another sweep candidate from our list for the three European population CEU,
GBR and FIN. We analysed this region since on the one hand, HERC2 is suggested to
play a key role for the brown/blue eye colouring, but on the other hand the nearby
OCA2 seems to be the one actually controlling the eye pigmentation. According
to studies (e.g. (Eiberg et al., 2008)), a region in HERC2 was found to regulate the
activity of the OCA2 gene. Furthermore, in (Hubacek et al., 2017) a list of alleles
was presented, suggested to be responsible for the blue eye variant. Therefore, we

analysed the region containing these two genes, if elevated linkage can be observed
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in particular between these regions for the three European population. Our result
showed, that indeed tLD seemed to be elevated in particular in regions between
three alleles mentioned in (Hubacek et al., 2017) located within the OCA2 gene and
the (whole) HERC2 gene, (see FIGURE 5.6). However, tLD is contiguously high in
the regions containing the HERC2 and OCA2 gene. Therefore, not directly the three
alleles might be responsible for the observed strong signal in this region, since these
are very closely located to the HERC2 gene. Nevertheless, the difference of strength
of signals between the classical and the topological LD in this region is tremendous,
in particular for gene HERC2, even for the African population YRI. Whilst signals
for the classical LD are rather restrained, tLD is quite strong in this region.

Summing up, tLD offers a new method for measuring linkage between two loci,
which only relies on the genealogical tree topology. Signals from tLD are stronger
to be observed. Since tLD decreases slower than classical LD with distance, it may
be more suitable to detect linkage disequilibrium in a long-range. To investigate this
in detail on experimental data is reserved for future perspectives. One constraint for
the tLD is, similar to the LRr,-test, that its reliability is dependent on how well the
estimation of tree topology is. As we have seen in section 3.2.1, chapter 3, the assign-
ment of the clusters agrees very well to the true one, given that the correct cluster
size was estimated. Whilst for the T3-test preference is given to the balanced tree in
not clearly resolvable cases for the test being conservative, for tLD this factor does
not need to be taken into account. Furthermore in contrast to the LRr,-test, one only
needs to consider the first ‘clustering step’; namely at the root of the tree (MRCA)
dividing the sample into the two cluster. As such, in this case it might be less com-
plex (compared to the case of the LRr,-test) to establish a more suitable clustering
method for the use of tLD. One might take the cluster assignment of neighbouring
windows into account, when estimating the actual tree topology. We propose that as

a further future project.
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Appendix A

A.1 Derivation of test statistic T;

In the following, we re-capitulate from (Li and Wiehe, 2013) how the test statistic T3
was derived. Here, we will provide a somewhat more detailed derivation for the

formulas.

Let p(n,wy) := Prob(( = wy) = 2_2‘“%1’"/2, where ¢ denotes the Kronecker symbol.

We will show the calculations for n even. (Same approach, if n uneven).

By applying the formula

in the third line, one can derive the expectation

n/2
E[n] = ), wip(n,w)
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The variance is then calculated like following.

By applying the formula
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in the third line, one gets

n/2
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And the standard variation is the square root of the variance

U(Ql) ~ 2\/115.

Note that €); depends on Q]-,j =1,.,i—1,n=n—w

In a similar calculation like for E[()1], one gets for E[();]
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Ina similar way by evaluating sums iteratively one gets

E[s] ~ Zf = 3:3”, E[Qy] =~ 4—4, etc, and hence
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With similar calculations, it follows

1 3i-1p\ 2
von= (130’

Let now Q) := 2(); /n be the nomalised random variables.

Since n is constant, it can be easily deduced that

E0f] = E[201/n] = ZE[0] ~

N —

2
VO[] = V20w /n] = (2) Vi) ~ o

and hence 0(()) ~ |/ 3.

Furthermore, it holds that

E20y] 1
E Q* ~ = -,
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with (by using the geometric series)
E[Tli] = E[Tl -0 — ... — 0171]
3% 3 2n
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and hence

A key result from probability theory is the central limit theorem, which states that
the sum of continuous uniforms converges in distribution to a normal random vari-

able. Hence, applying this and substitute the expectation and standard variation by
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previously results, we arrive at

1 1
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# (segregating sites) | average ()] | average (); | average ()3

1 0.21316 - -

2 0.75999 0.3134 -

3 0.68913 0.3597 0.1372
4 0.61238 0.6035 0.2365
5 0.59287 0.6686 0.3259
6 0.58012 0.6664 0.4132
7 0.58306 0.6296 0.48613
8 0.57957 0.6189 0.5528
9 0.57788 0.5962 0.5959
10 0.56375 0.5722 0.628
12 0.56263 0.58 0.6151
15 0.56933 0.57529 0.5611
20 0.54727 0.56425 0.5752
30 0.54699 0.5569 0.5485
40 0.54251 0.5468 0.5436

TABLE A.1: Average Qi‘, Q;, f); out of 1,000 runs for each scenario, conditioned on the
number of segregating sites used for estimating ). For illustration see FIGURE 3.7
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FIGURE A.1: Correlation based on simulations of the test statistic T3 of the true tree.
Pearson’s correlation coefficient is measured between pairs of Tz-values of trees at position
0 and a position x kb distance away from position 0. In the selected sweep scenario,
position 0 refers to the position of the selected site. Average of 1,000 runs.
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A.2 T3-distribution along chromosome: Migration events
Sampling scheme: n; = 200, np = 0

T3, known tree topology:

0.15mb 0.48mb 0.81mb 1.14mb 147mb 18mb 21mb 24mb 0.15mb 0.48mb 0.81mb 1.14mb 147mb 18mb 2.1mb 2.4mb 0.15mb 048mb 081mb 1.14mb 147mb 18mb 2.imb 2.4mb

T3, estimated tree topology:

0.15mb 0.46mb 0.81mb 1.14mb 147mb 18mb 21mb 24mb 0.15mb 04Bmb 0.81mb 1.14mb 147mb 16mb 21Amb 2.4mb 0.15mb 048mb 051mb 1.14mb 147mb 1Bmb 2.imb 2.4mb

FIGURE A.2: Distribution of T3 along chromosome. Admixed population. Sample size of
sub-population 1 = 200 and 71, = 0. Result from 1000 simulation runs. Populations
simulated with ms, parameters see section 3.3.

Left: 4Nm = 4. Middle: 4Nm = 0.4. Right: 4Nm = 0.04.
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Sampling scheme: 177 = 180, n, = 20

T3, known tree topology:

0.45mb 048mb 081mb 114mb 147mb 18mb 2imb 24mb 045mb 048mb 08imb 114mb 1.47mb 1Bmb 2imb 24mb 0.45mb 0.48mb 0.81mb 1.14mb 147mb 16mb 2imb 24mb

T3, estimated tree topology:

e

0.15mb 048mb 081mb 114mb 147mb 1.8mb 2imb 24mb 0.15mb 048mb 0BImb 1.14mb 1.47mb 18mb 2imb 24mb 0.15mb 0.4Bmb 0.81mb 1.14mb 147mb 18mb 21mb 24mb

FIGURE A.3: Distribution of T3 along chromosome. Admixed population. Sample size of
sub-population n; = 180 and 1, = 20. Result from 1000 simulation runs. Populations
simulated with ms, parameters see section 3.3.

Left: 4Nm = 4. Middle: 4Nm = 0.4. Right: 4Nm = 0.04.
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Sampling scheme: 17 = 195, 1, =5

T3, known tree topology:

Omb 03mb 065mb imb 13mb 1.65mb 2mb 23mb Omb 03mb 065mb imb 13mb 1.85mb 2mb  2.3mb Omb 03mb 065mb 1mb 13mb 165mb 2mb 2.3mb

T3, estimated tree topology:

Omb 03mb 065mb 1mb 13mb 1.65mb 2mb 23mb Omb 03mb 065mb 1mb 13mb 1.65mb 2mb  2.3mb Omb 03mb 065mb 1mb 13mb 165mb 2mb 23mb

FIGURE A .4: Distribution of T3 along chromosome. Admixed population. Sample size of
sub-population 1 = 195 and n; = 5. Result from 1000 simulation runs. Populations
simulated with ms, parameters see section 3.3.

Left: 4Nm = 4. Middle: 4Nm = 0.4. Right: 4Nm = 0.04.
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A.3 LRr,;: Migration event n; = 180 and n, = 20

1.00-
0.06-
0.75-
scenario scenario
0.04-
n1=180 n2=20 Nm=0.04 D n1=180 n2=20 Nm=0.04
—— n1=180 n2=20 Nm=0.4 D n1=180 n2=20 Nm=0.4
050~
n1=180 n2=20 Nm=4 n1=180 n2=20 Nm=4
— neutral neutral
— sweep sweep
0.02-
025-
0.00-

i . . . . .
o 50 100 150 200 250
LRy,

FIGURE A.5: On the left side: cumulative distribution of LR,. On the right side: Density
plot of LRr;.

LRrt,: Migration event n; = 195and n, =5

1.00-
0.06-
0.75-
scenario scenario
0.04-
n1=195 n2=5 Nm=0.04 n1=195 n2=5 Nm=0.04
~— n1=195 n2=5 Nm=0.4 n1=195 n2=5 Nm=0.4
0.50-
Nn1=195 n2=5 Nm=4 n1=195 n2=5 Nm=4
— neutral neutral
— sweep sweep
002~
0.25-
0.00- 0004
o 50 160 1%0 200 250
LRr,

FIGURE A.6: On the left side: cumulative distribution of LR7,. On the right side: Density
plot of LRr;.
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B.1 Analysis of candidate regions
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Population Total number of Private to population
candidate genes
ACB 619 51
ASW 657 52
ESN 679 86
GWD 739 156
LWK 533 89
MSL 520 87
YRI 728 98
CEU 1348 217
FIN 1442 296
GBR 1287 117
IBS 1369 141
TSI 1392 133
CDX 1122 209
CHB 1243 158
CHS 1257 189
JPT 1278 329
KHV 1185 160
BEB 1159 105
GIH 1288 162
ITU 1153 101
PJL 1245 94
STU 1181 104
CLM 1001 133
MXL 1124 143
PEL 1163 240
PUR 1037 244

TABLE B.1: Numbers of all genes identified with LRy, > 15 per population.

Population Total number of Private to population
protein-coding genes
ACB 263 21
ASW 266 21
ESN 309 40
GWD 323 63
LWK 217 24
MSL 229 34
YRI 338 42
CEU 593 109
FIN 558 96
GBR 594 49
IBS 564 56
TSI 568 47
CDX 426 71
CHB 559 75
CHS 498 65
JPT 514 126
KHV 490 57
BEB 487 40
GIH 541 57
ITU 494 40
PJL 558 38
STU 487 33
CLM 438 50
MXL 451 55
PEL 461 91
PUR 468 113

TABLE B.2: Numbers of protein-coding genes identified with LR, > 15 per population.
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B.2 Top candidates (LRt, > 200), previously known candi-

dates

In the following table, we show an overview of which of the protein-coding genes

found in our "Top Regions” (LRr,-score > 200 in TABLE 4.3) were previously men-

tioned in other studies (column 5). The comparison was done using dbPSHP (Li

et al., 2014a) and a more recent candidate gene list from Schrider and Kern, 2017.

Whilst in TABLE 4.3 the population possessing the LRt, > 200 is listed (underlined

in column 5), this table also shows when these genes were candidates for other pop-

ulations.
CHR Position Gene Found in populations using | Found in other studies
LRr,
chr8 10,983,980-10,987,745 AF131215.5 | CDX, CHB, CHS, JPT, KHV (Schrider and Kern, 2017)
chr10 75,134,859-75,173,834 ANXA7 FIN, GBR, IBS, MXL, TSI (Carlson et al., 2005), (Kelley
et al., 2006), (Cai et al., 2011),
(Mendizabal et al., 2012), (Liu et
al., 2013)
chrd 106,473,777-106,629,250 | ARHGEF38 | BEB, CDX, FIN, GBR, GIH, | (Zhang et al., 2006), (Oleksyk et
KHYV, PJL al., 2008), (Grossman et al., 2013)
chrl4 67,761,088-67,826,982 ATP6V1D CEU, FIN, GBR, IBS, TSI (Oleksyk et al., 2008), (Han and
Abney, 2013), (Wagh et al., 2012),
(Liu et al., 2013), (Schrider and
Kern, 2017)
chrd 42,112,955-42,154,895 BEND4 CDX, CHB, CHS, GIH, JPT, | (Barreiro et al., 2008), (Lap-
KHYV, STU, TSI palainen et al., 2010), (Grossman
et al., 2010), (Grossman et al.,
2013), (Liu et al., 2013)
chrl 51,567,906-51,613,752 Clorf185 BEB, CEU, CLM, FIN, GBR, | (Higasa et al., 2009), (Liu et al.,
GIH, ITU, PEL, PJL, PUR 2013)
chr2 109,403,213-109,501,933 | CCDC138 CDX, CHB, CHS, KHV (Grossman et al., 2010), (Liu et
al., 2013)
chr8 42,607,763-42,651,535 CHRNAS6 CEU, GIH, IBS, PUR, TSI (Oleksyk et al., 2008)
chr15 64,199,235-64,364,232 DAPK2 CDX, CHB, CHS, JPT, KHV (Carlson et al, 2005),
(Williamson et al., 2007), (Tang,
Thornton, and Stoneking, 2007),
(Higasa et al., 2009), (Lopez
Herraez et al., 2009), (Cai et al.,
2011), (Liu et al., 2013)
chrl 100,652,475-100,715,390 | DBT BEB, FIN, GIH, IBS, ITU, MXL, | (Kelley et al., 2006)
PEL
chr4 41,983,713-41,988,476 DCAF4L1 CDX, CHB, CHS, FIN, GIH, ITU, | (Barreiro etal., 2008), (Grossman
JPT, KHV, MXL, STU, TSI et al., 2013), (Liu et al., 2013),
(Schrider and Kern, 2017)
chr10 75,007,118-75,036,742 DNAJC9 FIN, GBR, IBS, MXL, TSI (Carlson et al.,, 2005), (Kelley
et al., 2006), (Williamson et al.,
2007), (Mendizabal et al., 2012),
(Liu et al., 2013)
chr10 74,889,913-74,928,813 ECD FIN, GBR, IBS, MXL, TSI (Oleksyk et al., 2008), (Cai et al.,
2011), (Mendizabal et al., 2012),
(Liu et al., 2013)
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chr2 109,510,927-109,605,828 | EDAR CDX, CHB, CHS, JPT, KHV (Akey et al., 2002), (Carlson et
al., 2005), (Kelley et al., 2006),
(Williamson et al., 2007), (Tang,
Thornton, and Stoneking, 2007),
(Frazer et al., 2007), (Sabeti et
al., 2007), (Fujimoto et al., 2008),
(Barreiro et al., 2008), (Bryk et
al., 2008), (Lopez Herraez et al.,
2009), (Grossman et al., 2010),
(Chun and Fay, 2011), (Peter,
Huerta-Sanchez, and Nielsen,
2012), (Kamberov et al., 2013),
(Grossman et al.,, 2013), (Liu
et al., 2013), (Tan et al., 2013),
(Hider et al., 2013)
chrl4 67,826,714-67,853,233 EIF2S1 CEU, FIN, GBR, IBS, TSI (Oleksyk et al., 2008), (Han and
Abney, 2013), (Wagh et al., 2012),
(Liu et al., 2013)
chrl 51,819,935-51,985,000 EPS15 ASW, BEB, CEU, CLM, FIN, | (Han and Abney, 2013), (Liu et
GBR, GIH, ITU, MXL, PEL, PJL, | al., 2013)
PUR, STU
chr10 74,927,924-75,004,262 FAM149B1 FIN, GBR, IBS, MXL, TSI (Cai et al., 2011), (Mendizabal et
al., 2012), (Liu et al., 2013)
chrl4 67,656,110-67,695,267 FAM71D CEU, FIN, GBR, IBS, TSI (Oleksyk et al., 2008), (Wagh et
al., 2012), (Liu et al., 2013)
chr15 63,889,552-63,894,627 FBXL22 CDX, CHB, CHS, JPT, KHV (Carlson et al., 2005), (Barreiro et
al., 2008), (Higasa et al., 2009),
(Lopez Herraez et al., 2009), (Cai
et al.,, 2011), (Liu et al., 2013),
(Karlsson et al., 2013)
chr8 42,889,337-42,940,931 FNTA ASW, CEU, GBR, GIH, IBS, ITU, | (Oleksyk et al., 2008)
PJL, PUR, TSI, YRI
chr2 109,065,017-109,125,871 | GCC2 CDX, CHB, CHS, KHV (Carlson et al., 2005), (Kelley et
al., 2006), (Frazer et al., 2007),
(Sabeti et al., 2007), (Barreiro
et al., 2008), (Kudaravalli et al.,
2009), (Grossman et al., 2010),
(Grossman et al., 2013), (Liu et
al., 2013)
chrl4 66,974,125-67,648,520 GPHN CEU, FIN, GBR, IBS, TSI (Oleksyk et al., 2008), (Liu et al.,
2013)
chr4 106,629,935-106,768,885 | GSTCD BEB, CDX, FIN, GBR, GIH, | (Barreiro etal., 2008), (Grossman
KHYV, PJL et al., 2010), (Liu et al., 2013),
(Karlsson et al., 2013)
chr15 63,900,817-64,126,141 HERC1 CDX, CHB, CHS, JPT, KHV (Carlson et al., 2005), (Kelley
et al.,, 2006), (Williamson et

al., 2007), (Tang, Thornton, and
Stoneking, 2007), (Sabeti et al.,
2007), (Barreiro et al., 2008), (Hi-
gasa et al, 2009), (Grossman
et al.,, 2010), (Cai et al., 2011),
(Waldman et al., 2011), (Gross-
man et al.,, 2013), (Liu et al.,
2013), (Karlsson et al., 2013)
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chr8 42,752,075-42,885,682 HOOK3 ASW, CEU, GBR, GIH, IBS, ITU, | (Oleksyk et al., 2008)
PJL, PUR, TSI, YRI
chrd 106,603,784-106,817,143 | INTS12 BEB, CDX, FIN, GBR, GIH, | (Lopez Herraez et al., 2009),
KHYV, PJL (Grossman et al., 2010), (Liu et
al., 2013), (Karlsson et al., 2013)
chr4 41,361,624-41,702,061 LIMCHI1 CDX, CHS (Barreiro et al., 2008), (Higasa et
al., 2009), (Lopez Herraez et al.,
2009), (Mizuno et al., 2010)
chr2 109,150,857-109,303,702 | LIMS1 CDX, CHB, CHS, KHV (Carlson et al., 2005), (Frazer et
al., 2007), (Sabeti et al., 2007),
(Barreiro et al., 2008), (Grossman
et al.,, 2010), (Zhong et al., 2010),
(Grossman et al., 2013), (Liu et
al., 2013)
chr3 154,741,913-154,901,497 | MME BEB, CHB, CLM, FIN, GBR, | (Schrider and Kern, 2017)
GIH, 1BS, MXL, PEL, PJL, PUR,
TSI
chrl4 67,707,826-67,802,536 MPP5 CEU, FIN, GBR, IBS, TSI (Oleksyk et al., 2008), (Wagh
et al,, 2012), (Liu et al., 2013),
(Schrider and Kern, 2017)
chr10 75,391,412-75,401,515 MYOZ1 FIN, GBR, IBS, MXL, TSI (Grossman et al., 2013), (Liu et
al., 2013)
chr12 44,902,058-45,315,631 NELL2 BEB, FIN, GIH, ITU, MXL, PEL, | (Oleksyk et al.,, 2008), (Lopez
PJL, STU Herraez et al., 2009), (Chen, Pat-
terson, and Reich, 2010), (Wagh
etal., 2012), (Liu et al., 2013)
chr5 43,602,794-43,707,507 NNT ACB, BEB, CEU, CLM, FIN, | (Mendizabal et al., 2012), (Wagh
GBR, GIH, IBS, ITU, MXL, PJL, | etal., 2012), (Liu et al., 2013)
STU, TSI
chr10 55,562,531-57,387,702 PCDH15 CDX, CHB, CHS, JPT (Williamson et al., 2007), (Frazer
et al., 2007), (Sabeti et al., 2007),
(Barreiro et al., 2008), (Grossman
et al., 2010), (Zhong et al., 2010),
(Chun and Fay, 2011), (Gross-
man et al.,, 2013), (Liu et al.,
2013), (Schrider and Kern, 2017)
chrd 41,746,099-41,750,987 PHOX2B CDX, CHB, FIN, ITU (Higasa et al., 2009), (Lopez Her-
raez et al., 2009)
chrl4 67,853,700-67,878,917 PLEK2 CEU, FIN, GBR, IBS, TSI (Oleksyk et al., 2008), (Lopez
Herraez et al., 2009), (Han and
Abney, 2013), (Wagh et al., 2012),
(Liu et al., 2013)
chr10 75,196,186-75,255,782 PPP3CB FIN, GBR, GWD, IBS, MXL, TSI | (Carlson et al., 2005), (Kelley
et al.,, 2006), (Cai et al., 2011),
(Mendizabal et al., 2012), (Liu et
al., 2013)
chr2 109,335,937-109,402,267 | RANBP2 CDX, CHB, CHS, KHV (Carlson et al.,, 2005), (Kelley

et al., 2006), (Tang, Thornton,
and Stoneking, 2007), (Frazer et
al., 2007), (Sabeti et al., 2007),
(Grossman et al., 2010), (Liu et
al., 2013)
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chrl 51,701,943-51,739,127 RNF11 BEB, CEU, CLM, FIN, GBR, | (Storz, Payseur, and Nachman,
GIH, ITU, MXL, PEL, PJL, PUR, | 2004), (Oleksyk et al., 2008),
STU (Grossman et al., 2013), (Liu et
al.,, 2013), (Schrider and Kern,
2017)
chrl 100,731,763-100,758,325 | RTCA FIN, IBS, MXL (Higasa et al., 2009), (Liu et al.,
2013)
chr4 41,992,489-42,092,474 SLC30A9 CDX, CHB, CHS, FIN, GIH, ITU, | (Carlson et al., 2005), (Kelley
JPT, KHV, MXL, STU, TSI et al., 2006), (Williamson et al.,
2007), (Frazer et al., 2007), (Sa-
beti et al., 2007), (Barreiro et al.,
2008), (Higasa et al., 2009), (Lap-
palainen et al., 2010), (Lopez
Herraez et al., 2009), (Grossman
et al., 2010), (Chen, Patterson,
and Reich, 2010), (Grossman et
al, 2013), (Liu et al, 2013),
(Karlsson et al., 2013), (Schrider
and Kern, 2017)
chr2 108,905,095-108,926,371 | SULT1C2 CDX, CHB, CHS (Carlson et al., 2005), (Kelley et
al., 2006), (Frazer et al., 2007),
(Barreiro et al., 2008), (Lopez
Herraez et al., 2009), (Grossman
etal., 2013), (Liu et al., 2013)
chr2 108,994,367-109,004,513 | SULT1C4 CDX, CHB, CHS, KHV (Lopez Herraez et al., 2009),
(Grossman et al., 2013), (Liu et
al., 2013)
chr10 75,404,639-75,423,561 SYNPO2L FIN, GBR, IBS, MXL, TSI (Grossman et al., 2010), (Gross-
man et al, 2013), (Liu et al,
2013)
chr8 42,691,817-42,698,468 THAP1 ASW, CEU, GBR, GIH, IBS, ITU, | (Oleksyk et al., 2008)
PUR, TSI, YRI
chrl2 44,229,770-44,783,545 TMEM117 BEB, CDX, CEU, CHB, CHS, | (Barreiro et al., 2008), (Lopez
CLM, FIN, GBR, GIH, ITU, JPT, | Herraez et al., 2009), (Grossman
KHYV, MXL, PEL, PJL, STU, TSI et al., 2010), (Zhong et al., 2010),
(Grossman et al., 2013), (Liu et
al., 2013), (Karlsson et al., 2013)
chr4 41,937,137-41,962,589 TMEMB33 CDX, CHB, CHS, FIN, GIH, ITU, | (Carlson et al., 2005),
JPT, KHV, MXL, STU, TSI (Williamson et al., 2007),
(Barreiro et al., 2008), (Higasa
et al., 2009), (Lappalainen et al.,
2010), (Grossman et al., 2010),
(Zhong et al., 2010), (Grossman
et al.,, 2013), (Liu et al., 2013),
(Karlsson et al., 2013), (Hider
et al., 2013), (Schrider and Kern,
2017)
chr10 75,013,517-75,118,617 TTC18 FIN, GBR, IBS, MXL, TSI (Carlson et al., 2005), (Kelley
et al., 2006), (Williamson et al.,
2007), (Cai et al., 2011), (Mendiz-
abal etal., 2012), (Liu et al., 2013)
chrl 51,752,930-51,810,788 TTC39A BEB, CEU, CLM, FIN, GBR, | (Liuetal., 2013)

GIH, ITU, MXL, PEL, PJL, PUR,
STU
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chrl5

63,796,793-63,886,839

usP3

CDX, CHB, CHS, JPT, KHV

(Carlson et al., 2005), (Barreiro et
al., 2008), (Higasa et al., 2009),
(Lopez Herraez et al., 2009), (Cai
et al., 2011), (Liu et al., 2013),
(Karlsson et al., 2013)

chr10

75,257,296-75,385,711

usprs54

FIN, GBR, GWD, IBS, MXL, TSI

(Carlson et al.,, 2005), (Kelley
et al., 2006), (Mendizabal et al.,
2012), (Liu et al., 2013)

chr8

10,753,555-11,058,875

XKR6

CDX, CHB, CHS, JPT, KHV

(Barreiro et al., 2008), (Johansson
and Gyllensten, 2008), (Lopez
Herraez et al., 2009), (Chen, Pat-
terson, and Reich, 2010), (Wagh
et al.,, 2012), (Liu et al., 2013),
(Schrider and Kern, 2017)
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B.3 Top ten candidate regions per population

In the following we provide a list containing the "Top Ten candidate region” for each
26 population and respective genes. To extract the genes, we additionaly expand
significant regions with 25kb on each side (shown here). Overlapping regions are
put together to one region. To extract the genes, we used the R package biomaRt
(Smedley et al., 2015). We used the coordinates for human genome build hg19 for
our data, to which phase 3 of the 1,000 Genomes Project is mapped.

Top ten candidate regions for population ACB

ACB
CHR Start END max LR | Coding Noncoding size in kb
chr12 | 87287384 87744884 | 288.854 RPL23AP68 457.5
chr20 | 20387585 20787585 | 213.416 | RALGAPA2 EIF4E2P1, RP11- 400
23013.1, RN7SL607P
chr4 107603887 | 107961387 | 134.471 | DKK2 ACTR6P1 357.5
chrl3 | 52797838 53337838 | 105.848 | THSDI1, VPS36, CKAP2, | RP11-248G5.8, 540
HNRNPA1L2, SUGT1, | TPTE2P2, RP13-
LECT1 444H2.1, RNY4P24,
LINC00345, RP11-
78]21.4, TPTE2P3,
MRPS31P4
chrX 41326170 41821170 | 102.353 | NYX, CASK, GPR34, | RP1-169154, CASK- 495
GPR82 AS1, RNU6-1321P,
RN7SL406P, RP11-
204C16.4, RN7SL144P,
RP5-1174]21.2, RP5-
1174]21.1, RNU6-202P
chr12 | 113512384 | 113729884 | 99.7771 | DTXI1, RASAL1, | Y_RNA, AC089999.1, 217.5
CCDC42B, DDX54, | Y_RNA, RP11-545P7.4
RITA1, IQCD, TPCN1
chr5 15345539 15553039 | 97.9321 | FBXL7 MARK2P5, CTD- 207.5
2313D3.1
chrl7 | 26268542 26558542 | 93.5331 | NLK RP11-218F4.1, 290
SCARNA20, RP11-
218F4.2, SNORA?70,
Vault, RPS29P22,
AC100852.2,
AC100852.1,
AC061975.9,
AC061975.1, CTD-
2008P7.10, AC061975.7,
PYY2
chrl2 | 113764884 | 113872384 | 93.7354 | SLC8B1, PLBD2, SDS, | NONP 107.5
SDSL
chr12 | 88009884 88192384 89.801 RP11-248E9.1, 182.5
CYCSP30, RP11-
248E9.4, MKRNOP,
RP11-248E9.5
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Top ten candidate regions for population ASW

ASW
CHR Start END max LR | Coding Noncoding size in kb
chr2 194653645 | 195356145 | 200.98 RP11-764E7.1, 702.5
AC068135.1, GLULPS,
HNRNPA1P47,
AC018799.1,
AC106883.1
chr12 | 113512384 | 113934884 | 177.352 | DTXI, RASALIL, | Y_RNA, AC089999.1, 4225
CCDC42B, DDX54, | Y_RNA, RP11-545P7.4,
RITA1, IQCD, TPCNI1, | RP11-82C23.2
SLC8B1, PLBD2, SDS,
SDSL, LHX5
chr20 | 20390201 20807701 | 159.512 | RALGAPA2 EIF4E2P1, RP11- 417.5
23013.1, RN7SL607P
chrl0 | 134231660 | 134629160 | 144.211 | C10orf91, INPP5A, | RP11-432J24.2, RP11- 397.5
NKX6-2, TTC40 432]24.3, RP11-432]24.5,
LINCO01165, RP11-
288G11.3
chr8 36018715 36383715 | 121.145 RN7SKP201, RP11- 365
593P24.2, MTND6P19,
RP11-593P24.3, RP11-
139F9.1,  RNU6-533P,
RP11-593P24 .4
chrl2 | 87534884 | 87674884 | 119.521 RPL23AP68 140
chr9 102258041 | 102578041 | 106.81 RP11-547C13.1, RP11- 320
554F20.1
chr8 37363715 37886215 | 105.415 | ZNF703, RP11- | RP11-150012.1, RP11- 522.5
863K10.7, ERLIN2, | 150012.6, RP11-
PROSC, GPR124, BRF2, | 1500125, RP11-
RAB11FIP1, GOTIL1, | 1500123, RP11-
ADRB3 1500124, RP11-
346L1.2, RNU6-607F,
RP11-863K10.2, RP11-
863K10.4, RN7SL709P,
AC144573.1, KB-
1836B5.3
chr5 15323039 15553039 | 96.7048 | FBXL7 MARK2PS, CTD- 230
2313D3.1
chr13 | 53075338 53337838 | 92.4284 | HNRNPA1L2, SUGT1, | TPTE2P3, MRPS31P4 262.5

LECT1
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Top ten candidate regions for population ESN
ESN
CHR Start END max LR | Coding Noncoding size in kb
chrl2 | 87274884 | 87754884 | 277.14 RPL23AP68 480
chrl3 | 52772838 | 53332838 | 149.988 | THSDI1, VPS36, CKAP2, | RP11-248G5.8, 560
HNRNPA1L2, SUGT1, | TPTE2P2, RP13-
LECT1 444H21,  RNY4P24,
LINC00345, RP11-
78214, TPTE2P3,
MRPS31P4
chrd | 46385167 | 46765167 | 144.487 | GABRA2, COX7B2 RP11-436F23.1, RNU6- 380
412P, RACIP2
chrd | 107602667 | 107957667 | 137.085 | DKK2 ACTR6P1 355
chrd | 87387667 | 87637667 | 127.596 | MAPK10, PTPN13 MIR4452 250
chrle | 22921947 | 23274447 | 115999 | HS3ST2, USP31, | RP11-20G6.2, ~ RP11- | 3525
SCNN1G 20G6.3, CTC-391G2.1
chr2 | 31862995 | 32115495 | 106.936 | MEMO1, DPY30 AL133247.3, 252.5
AL133249.1,
AL121652.2, KRT18P52,
AL121652.3,  AK2P2,
RP11-1057B6.1
chrX | 10928670 | 11163670 | 105.113 | HCCS, ARHGAP6 RP11-120D5.1, Y_RNA 235
chr20 | 20390085 | 20787585 | 102.184 | RALGAPA2 EIF4E2P1, RP11- | 3975
23013.1, RN7SL607P
chr12 | 113509884 | 113717384 | 97.5442 | DTXI, RASALL, | Y_.RNA, AC089999.1, |  207.5
CCDC42B, DDX54, | Y_RNA, RP11-545P7.4
RITA1, IQCD, TPCN1
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Top ten candidate regions for population GWD

GWD
CHR Start END max LR | Coding Noncoding size in kb
chr12 | 87214884 | 87727384 | 199.606 | MGAT4C RP11-202H2.1, 512.5
RPL23AP68
chr20 | 20387701 20775201 | 189.438 | RALGAPA2 EIF4E2P1, RP11- 387.5
23013.1, RN7SL607P
chr7 44363084 | 44593084 | 134.381 | CAMK2B, NUDCD3, | AC004453.8, RNU6- 230
NPC1L1 1097P, AC004938.5
chr7 44248084 | 44360584 | 110.847 | YKT6, CAMK2B NONP 112.5
chr12 | 113532384 | 113729884 | 97.3028 | DTX1, RASAL1, | Y_RNA, AC089999.1, 197.5
CCDC42B, DDX54, | Y_RNA, RP11-545P7 4
RITA1, IQCD, TPCN1
chr6 45095100 45470100 | 95.9692 | SUPT3H, RUNX2 RP11-491H9.3, MIR586, 375
RP1-244F24.1
chr3 51257726 51742726 | 94.0139 | DOCKS, MANFE, | RP11-89F17.5, 485
RBM15B, VPRBP, | RNU6ATAC29P,
RAD5412, TEX264, | RNA5SP132
GRM2
chr4 107602667 | 107852667 | 92.9184 | DKK2 ACTR6P1 250
chr7 141205584 | 141460584 | 91.1882 | AGK, KIAA1147, WEE2, | RP11-744124.3, RP11- 255
SSBP1 744124.2, RP5-894A10.2,
RP5-894A10.6, WEE2-
AS1, RNU1-82P
chrl7 | 26321073 26568573 | 90.1225 | NLK SCARNA20, RP11- 247.5
218F4.2, SNORA?70,
Vault, RPS29P22,
AC100852.2,
AC100852.1,
AC061975.9,
AC061975.1, CTD-

2008P7.10, AC061975.7,
PYY2, CTD-2008P7.9,
AC061975.6
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Top ten candidate regions for population LWK
LWK
CHR Start END max LR | Coding Noncoding size in kb
chrl2 | 87297384 | 87712384 | 251.482 RPL23AP68 415
chrd | 87317667 | 87652667 | 115.258 | MAPK10, PTPN13 MIR4452 335
chrd | 107565167 | 107962667 | 108.496 | DKK2 ACTR6P1 397.5
chrl0 | 134319084 | 134601584 | 106.023 | INPP5A, NKX6-2 RP11-432J24.5, 282.5
LINCO1165, RP11-
288G11.3
chrX | 41346170 | 41786170 | 90.2757 | CASK,GPR34,GPRS2 | CASK-ASl, ~ RNU6- 440
13215,  RN7SLAO6P,
RP11-204C16.4,
RN7SL144P, RP5-
1174]21.2, RP5-
1174]21.1, RNU6-202P
chrX | 51643670 | 51796170 | 89.2977 | MAGEDI, RP11- | RP11-234P32, IPO7P1, | 1525
114H20.1 RP11-234P3.4, TPMTP3
chr3 | 164787719 | 164972719 | 87.5841 | SI SLITRK3 Y_RNA, RP11- 185
747D18.1, RP11-
85M11.2
chrl2 | 87219884 | 87274884 | 86.5546 | MGATAC RP11-202H2.1 55
chrX | 51933670 | 52121170 | 85.2387 | MAGED4, RP11- | SNORA11D 187.5
363G10.2, XAGE2B
chrd | 148027667 | 148280167 | 85.2685 MIR548G 252.5
Top ten candidate regions for population MSL
MSL
CHR Start END max LR | Coding Noncoding size in kb
chrl2 | 87287384 | 87694884 | 258.439 RPL23AP68 407.5
chrd | 107610167 | 107847667 | 130.319 | DKK2 ACTR6P1 237.5
chrd | 46367667 | 46760167 | 128.475 | GABRA2, COX7B2 RP11-436F23.1, RNU6- |  392.5
412P, RACIP2
chrd | 107850167 | 107977667 | 122.342 | DKK2 NONP 127.5
chrl0 | 134341660 | 134629160 | 119.781 | INPP5A, NKX6-2, | RP11-288G11.3 287.5
TTC40
chrl9 | 42644984 | 42832484 | 101.582 | POU2F2, DEDD2, | SNORD112, CTC- | 1875
ZNF526, GSK3A, | 378H22.2, AC010247.1
AC006486.9,
AC006486.1, ERE, CIC,
PAFAHIB3,  PRR19,
TMEM145, MEGF8
chrl9 | 42432484 | 42625984 | 97.6973 | ARHGEF1, RABACI, | CTB-59C6.3 193.5
ATP1A3, GRIKS,
ZNF574, POU2F2
chrl2 | 87187384 | 87259884 | 96.6737 | MGAT4C RP11-202H2.1 725
chrl6 | 22934413 | 23284413 | 94.2207 | USP31, SCNNIG RP11-20G6.2,  RP11- 350
20G6.3, CTC-391G2.1
chr3 | 51082725 | 51517725 | 93.8023 | DOCK3, MANE, | RP11-89F17.5 435

RBM15B, VPRBP
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Top ten candidate regions for population YRI

YRI
CHR Start END max LR | Coding Noncoding size in kb
chr4 107602667 | 107965167 | 168.048 | DKK2 ACTR6P1 362.5
chr13 | 52732838 53332838 146.15 | NEK3, THSD1, VPS36, | MRPS31P5, RP11- 600
CKAP2, HNRNPAI1L2, | 248G5.8, TPTE2P2,
SUGT1, LECT1 RP13-444H2.1,
RNY4P24, LINC00345,
RP11-78]21.4, TPTE2P3,
MRPS31P4
chrl6 | 22931947 | 23229447 | 134.081 | USP31,SCNNI1G RP11-20G6.2, RP11- 297.5
20G6.3, CTC-391G2.1
chr12 | 113502384 | 113929884 | 132.876 | DTX1, RASALL, | Y_RNA, AC089999.1, 427.5
CCDC42B, DDX54, | Y_RNA, RP11-545P7.4,
RITA1, IQCD, TPCN1, | RP11-82C23.2
SLC8B1, PLBD2, SDS,
SDSL, LHX5
chrX 41346170 41826170 | 127.872 | CASK, GPR34, GPR82 CASK-AS1, RNU6- 480
1321P, RN7SL406P,
RP11-204C16.4,
RN7SL144P, RP5-
1174J21.2, RP5-
1174]J21.1, RNU6-202P
chr4 46452667 | 46740167 | 99.1607 | GABRA2, COX7B2 RNU6-412P, RAC1P2 287.5
chr20 | 20410201 20652701 | 90.3296 | RALGAPA2 EIF4E2P1 2425
chrl2 | 79434884 79594884 | 88.3779 | SYT1 RP11-390N6.1 160
chrl9 | 38754984 | 38924984 | 86.3091 | SPINT2, CTB-102L5.4, | Y_RNA, AC026806.2, 170
C190rf33, YIF1B, | snoU13, AC005625.1,
KCNK6,  CATSPERG, | AC005789.9,
PSMD8, GGN, SPRED3, | AC005789.11
FAMO98C, RASGRP4,
RYR1
chr2 194927995 | 195200495 | 85.9595 GLULPS, HN- 272.5
RNPA1P47
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Top ten candidate regions for population CEU
CEU
CHR Start END max LR | Coding Noncoding size in kb
chrld | 67220445 | 67897945 | 247.929 | GPHN, FAM71D, MPP5, | CTD-2560C21.1, 677.5
ATP6VID, EIF2S1, | RP11-862P13.1, RP11-
PLEK2 125H8.1, Y_RNA
chr8 | 16193536 | 16471036 | 199.825 | MSRI MRPL49P2, RP11- | 2775
13N12.2
chrl9 | 40427484 | 40689984 | 186.635 | FCGBP, PSMC4, | CTC-471F34, 262.5
ZNF546, ZNF780B, | AC007842.1, CTC-
ZNF780A 471F3.6, CTC-
471F35,  AC005614.5,
AC005614.3, VN1RI6P
chr8 | 15941036 | 16166036 | 178.816 | MSRI RP11-447G11.1 225
chrl | 51475610 | 52005610 | 177.243 | Clorfl85, RNF11, | MIR4421, Y_RNA, 530
TTC39A, EPS15 CFL1P2,  AL162430.2,
AL162430.1,  RPI11-
296A18.3, snoU13,
RP11-296A18.5, RP11-
296A18.6, RP11-
275F13.1, RP11-
275F13.3, RNU6-877P,
RP11-253A20.1, RP11-
191G24.1, RNU6-1281P
chrl | 225048110 | 225355610 | 167.216 | DNAH14 NONP 307.5
chrll | 38073350 | 38415850 | 155.019 RP11-436H16.1 342.5
chrll | 129788350 | 130070850 | 142.815 | PRDMI10, AP003041.2, | LINC00167, RP11- | 2825
APLP2, ST14 567M21.3,  TCEB2P2,
RP11-679118.4,
AP003041.1, RPL34P21
chrd | 176176373 | 176431373 | 134.246 RP11-287F9.1,  RP11- 255
287F9.2, RP11-598D14.1,
AC131094.1, TSEN2P1
chr5 | 142055539 | 142273039 | 128.967 | FGF1, ARHGAP26 AC005592.3, 217.5
AC005592.1,

ARHGAP26-AS1
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Top ten candidate regions for population FIN

FIN
CHR Start END max LR | Coding Noncoding size in kb
chrl4 | 67220427 67905427 260.28 | GPHN, FAM71D, MPP5, | CTD-2560C21.1, 685
ATP6V1D, EIF2S1, | RP11-862P13.1, RP11-
PLEK2 125H8.1, Y_RNA
chrl 51465610 52033110 | 203.317 | Clorf185, RNF11, | MIR4421, Y_RNA, 567.5
TTC39A, EPS15 CFL1P2, AL162430.2,
AL162430.1, RP11-
296A18.3, snoU13,
RP11-296A18.5, RP11-
296A18.6, RP11-
275F13.1, RP11-
275F13.3, RNU6-877P,
RP11-253A20.1, RP11-
191G24.1, RNU6-1281P,
CALR4P
chrb 43590539 44078039 189.27 | NNT NNT-AS1, RPL29P12, 487.5
RP11-8L21.1,  RNU6-
381P
chrl 100410610 | 100785610 | 186.713 | SLC35A3, HIAT1, | RP5-884G6.2, RNU6- 375
SASS6, TRMT13, | 750P, RNU6-1318P,
LRRC39, DBT, RTCA RP4-714D9.5, RP4-
714D9.2, RP4-714D9.4,
RP11-305E17.7, BRI3P1,
RP11-305E17.4, RP11-
305E17.6, MIR553
chr3 129027748 | 129302748 | 161.935 | HIFX, EFCAB12, MBD4, | H1FX-AS1, NUP210P3, 275
IFT122, RHO, HIFOO, | RP13-685P2.8,  RP13-
PLXND1 685P2.7, RP11-529F4.1,
RPL32P3, SNORA7B
chrll | 129788350 | 130083350 | 148.318 | PRDM10, AP003041.2, | LINC00167, RP11- 295
APLP2,ST14 567M21.3,  TCEB2P2,
RP11-679118 .4,
AP003041.1, RPL34P21
chr5 96860539 97303039 | 144.959 RP11-1E3.1, RP11- 442.5
72K17.2, RP11-72K17.1,
RP11-455B3.1
chrl 6298110 6473110 141.297 | HES3, GPR153, ACOT7, | LINC00337, RP1- 175
HES2 20208.3
chrl 6498110 6608110 130.651 | ESPN, TNFRSF25, | RP1-20208.2, RNU6- 110
PLEKHG5, NOL9 731P, RP11-58A11.2
chrl4 | 66610427 66905427 | 130.313 Y_RNA, RP11-72M17.1 295
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Top ten candidate regions for population GBR
GBR
CHR Start END max LR | Coding Noncoding size in kb
chrl4 | 67183154 | 67930654 | 276577 | GPHN, FAM71D, MPP5, | CTD-2560C21.1, 747.5
ATP6VID, EIF2S1, | RP11-862P13.1, RP11-
PLEK2, TMEM229B 125H8.1, Y_RNA,
MIR5694
chrll | 37818350 | 38413350 | 202.999 RP11-159D8.1,  RP11- 595
436H16.1
chrl2 | 44294884 | 44742384 | 199.936 | TMEM117 RP11-624G19.1, RP11- | 4475
4611.1, RP11-4611.2
chrl3 | 64276465 | 64591465 | 192.156 | ALA445989.1 LINC00395, OR7E156P, 315
RP11-473M10.3, RNU6-
81P, PPPIR2P10, RP11-
394A142, OR7E104P,
RP11-394A14.4,
NFYAP1, LINC00355
chr5 | 43798039 | 44070539 | 153.104 RP11-8L21.1, RNU6- | 2725
381P
chr7 | 98853084 | 99265584 | 146374 | ARPC1A,  ARPCIB, | MYHI6, snoU13, | 4125
PDAP1, BUD31, PTCD1, | AC073063.10,
ATP5]2-PTCD1, CPSF4, | AC005020.1, GS1-
AC073063.1,  ATP5]2, | 259H13.2, GS1-
ZNF789, ZNF394, | 259H13.7
ZKSCANS, FAM200A,
ZNF655, GS1-259H13.10,
ZSCAN25, CYP3AS5
chrll | 129753350 | 130053350 | 146.406 | NFRKB, PRDM10, | LINC00167, RP11- 300
AP003041.2,  APLP2, | 567M21.3,  TCEB2P2,
ST14 RP11-679118.4,
AP003041.1, RPL34P21
chrd | 81677667 | 81955167 | 141.846 | Cdorf22, BMP3 NONP 277.5
chr8 | 16213536 | 16451036 | 139.258 | MSRI MRPL49P2 237.5
chr6 | 121367616 | 121707616 | 136.962 | TBC1D32 RNU6-1286P, Y_RNA, 340
RP1-276]11.2
Top ten candidate regions for population IBS
1BS
CHR ‘ Start END ‘ max LR ‘ Coding ‘ Noncoding size in kb




128 Appendix B. Chapter 4

chr8 42643536 43378536 233.935 | CHRNAS®, THAP1, | RN7SL806P, MIR4469, 735
RNF170, HOOK3, RP11- | Y_RNA, RNU1-
598P20.5, FNTA, POMK, | 124P,  RP11-598P20.3,
HGSNAT VNI1R46P, RP11-
726G23.2, RP11-
726G23.11, RP11-
359P18.2, RP11-

726G23.3, AFG3L2P1,
RP11-726G23.7, RP11-
726G23.10, RP11-
726G23.8, POTEA,
RNU6-104P, RP11-
726G23.12, AC022616.1,
RP11-726G23.6, Us,

RN7S5KP41, RP11-
359P18.1, RP11-
359P18.7, RP11-
359P18.8, SNX18P27
chrll | 38005850 38423350 233.183 RP11-436H16.1 417.5
chrl5 | 45108305 45438305 198.891 | C150rf43, SORD, | CTD-2008A1.2, CTD- 330
DUOX2, DUOXA2, | 2008A1.1, Y_RNA,
DUOXA1, DUOX1 RNU1-119P, CTD-
2014N11.1, CTD-

2014N11.2, RNU6-
1108P, RNU6-1332P,
CTD-2014N11.3, RNU6-
966P, RNU1-78P, RP11-

109D20.1, Y_RNA,
RP11-109D20.2
chrl0 | 74916660 75421660 181.979 | ECD, FAM149B1, | Y_RNA, EIF4A2P2, 505
DNAJC9, MRPS16, | DNAJC9-AS1,  RP11-
TTC18, ANXA7, | 152N13.5, RNU6-833P,
MSS51, PPP3CB, USP54, | snoU13, Y_RNA,
MYOZ1, SYNPO2L RP11-537A6.9, RP11-

345K20.2, AL353731.1,
RP11-137110.6, RNU6-
883P, RP11-137L10.5,
RP11-464F9.20, RP11-
464F9.22, RP11-464F9.21

chr5 109573039 | 109955539 | 155.822 | TMEM232 MIR548F3 382.5

chr4 176180167 | 176522667 | 149.969 RP11-287F9.1, RP11- 342.5
287F9.2, RP11-598D14.1,
AC131094.1, TSEN2P1,

ADAM20P2
chrl 100428110 | 100745610 | 146.109 | SLC35A3, HIAT1, | RP5-884G6.2, RNU6- 317.5
SASS6, TRMT13, | 750P, RNU6-1318P,
LRRC39, DBT, RTCA RP4-714D9.5, RP4-

714D9.2, RP4-714D9.4,
RP11-305E17.7, BRI3P1,
RP11-305E17.4, RP11-

305E17.6
chré 84525116 84775116 142.254 | RIPPLY2, CYB5R4, | RP4-676]13.2, RP11- 250
MRAP2 51G5.1

chr3 89835226 90125226 137.575 U3 290
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| chr15 | 44990805 | 45098305 | 136957 | PATL2, B2M, TRIM69 NONP 107.5
Top ten candidate regions for population TSI
TSI
CHR Start END max LR | Coding Noncoding size in kb
chrl4 | 67213154 | 67928154 | 259.153 | GPHN, FAM71D, MPP5, | CTD-2560C21.1, 715
ATP6V1D, EIF2S1, | RP11-862P13.1, RP11-
PLEK2, TMEM229B 125H8.1, Y_RNA,
MIR5694
chrll | 38005850 | 38420850 | 203.257 RP11-436H16.1 415
chrd | 176179190 | 176424190 | 161.649 RP11-287F9.1,  RP11- | 245
287F9.2, RP11-598D14.1,
AC131094.1, TSEN2P1
chrl0 | 68916691 | 69286691 | 139.343 | CTNNAS3 RP11-93L14.1 370
chr5 | 43753039 | 44048039 | 136.326 RP11-8L21.1 295
chrl5 | 45107600 | 45360100 | 136.935 | Cl50rf43, SORD CTD-2008A12, CTD- | 2525
2008A11,  Y_RNA,
RNUI-119F,  CTD-
2014N11.1, CTD-
2014N112,  RNU6-
1108>,  RNU6-1332P,
CTD-2014N11.3, RNU6-
966P, RNU1-78P, RP11-
109D20.1, Y_RNA
chrl8 | 67553346 | 67918346 | 131.467 | CD226, RTTN NONP 365
chrl | 1115610 | 1448110 | 124.542 | TTLLI1O, TNFRSF18, TN- | RP5-902P8.12,  RP5- | 3325
FRSF4, SDF4, B3GALT6, | 902P8.10, RP5-
FAMI324A,  UBE2J2, | 890039, RP5-89003.3,
SCNNID, ~ ACAP3, | RN7SL657P, RP4-
PUSLL, CPSF3L, | 758]18.13, RP4-758]18.7,
GLTPD1, TASIR3, | RP4-758]18.10
DVLI, MXRA8, AU-
RKAIP1, CCNL2, RP4-
758]18.2, MRPL20,
ANKRD65, TMEMSSB,
VWAL ATADSC,
ATADS3B, ATAD3A
chrl0 | 74686691 | 75299191 | 121.593 | OIT3, PLA2GI2B, | RPLI7P50, RP11- | 6125
P4HAL, NUDTI3, | 344N104, RP11-
ECD, FAMI49B1, | 344N102,  Y_RNA,
DNAJC9,  MRPSI6, | RP11-344N105, RP11-
TTC18, ANXA7, MSS51, | 152N13.16, SNORALIL,
PPP3CB, USP54 Y_RNA,  EIF4A2P2,
DNAJC9-AS1,  RP11-
152N13.5, RNU6-833P,
snoU13, Y_RNA,
RP11-537A6.9, RP11-
345K20.2, AL353731.1,
RP11-137L10.6, RNU6-
883P, RP11-137L10.5
chr6 | 110346839 | 110674339 | 120.537 | WASFL, CDC40, | NONP 3275
METTL24




130

Appendix B. Chapter 4

Top ten candidate regions for population CDX

CDX
CHR Start END max LR | Coding Noncoding size in kb
chr4 41515167 42215167 226.39 | LIMCHI, PHOX2B, | RP11-227F19.5, 700
TMEM33,  DCAF4L1, | OR5M14P, RP11-
SLC30A9, BEND4 227F19.1, RP11-
227F19.2, RNUI1-
49P, HMGB1P28,
LINC00682, RP11-
457P14.5, RP11-
457P14.6, RP11-
814H16.2, ATP1B1P1
chr2 108913021 | 109383021 | 222.695 | SULT1C2, SULT1C4, | RP11-443K8.1, 470
GCC2, LIMS1, RANBP2 | SULT1C2P1, RP11-
465011.2, RP11-
465011.1, AC012487.2,
AC010095.5,
AC010095.6,
AC010095.7
chrl5 | 63850064 64305064 199.61 | USP3, FBXL22, HERC1, | USP3-AS1, RP11- 455
DAPK2 317G6.1, MIR422A,
RP11-111E14.1
chrl 92983116 93438116 | 167.165 | EVI5, RPL5, FAM69A RP4-593M8.1, 455
HMGB3P9, RNU4-
59P, RP11-330C7.3,
RP11-330C7.4, CCNJP2,
SNORD21, SNORAG66,
SNORA66, SNORA5I,
RP11-386123.1, RNU6-
970P
chrb 117663039 | 117963039 | 161.902 CTD-2281M20.1, RP11- 300
2N5.2, RP11-2N5.1
chrl3 | 64277785 64590285 | 143.195 | AL445989.1 LINC00395, OR7E156P, 312.5
RP11-473M10.3, RNU6-
81P, PPP1R2P10, RP11-
394A14.2, OR7VE104P,
RP11-394A14.4,
NFYAP1, LINC00355
chr7 136120584 | 136395584 | 142.153 AC009784.3, 275
AC009541.1, hsa-
mir-490
chr8 10735664 11108164 | 136.764 | XKR6, AF131215.5 MIR598,  AF131215.6, 3725
AF131215.9,
AF131215.2,
AF131215.3,
AF131215 4,
AF131215.1,
AF131215.8, LINC00529
chr3 154165096 | 154435096 | 135.404 RP11-656A15.1, CTD- 270
250103.2, CTD-
250103.3, RPLIP15
chr3 17570096 17912596 | 131.583 | TBC1D5 U7, AC104451.2 3425
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Top ten candidate regions for population CHB
CHB
CHR Start END max LR | Coding Noncoding size in kb
chrX | 100985920 | 101448420 | 241559 | NXF5 ZMAT1, TCEAL2, | RP1-232L22_B.1, RP1- | 4625
TCEALS6, BEX5 3E10.2,  RNU6-345P,
RP1-197]16.1,  RP1-
197]16.2, MTND6P13,
TCP11X3P
chr2 | 108905521 | 109650521 | 23956 | SULT1C2,  SULTIC4, | RP11-443K8.1, 745
GCC2, LIMS1, RANBP2, | SULTIC2P1,  RP11-
CCDC138, EDAR 465011.2, RP11-
465011.1, AC012487.2,
AC010095.5,
AC010095.6,
AC010095.7,
AC073415.2
chrl5 | 63764703 | 64337203 | 237.469 | USP3, FBXL22, HERC1, | USP3-ASl, RP11- | 5725
DAPK2 317G6.1,  MIR422A,
RP11-111E14.1
chrl2 | 44354884 | 44699884 | 226.406 | TMEM117 RP11-624G19.1, RP11- 345
4611.1, RP11-4611.2
chr3 | 154167942 | 154822942 | 211.634 | MME RP11-656A15.1, CTD- 655
250103.2, CTD-
2501033,  RPLYPI5,
RP11-439C8.1,  RP11-
439C8.2
chr8 | 10725271 | 11112771 | 205.027 | XKR6, AF131215.5 MIR598, ~ AF1312156, | 387.5
AF131215.9,
AF131215.2,
AF131215.3,
AF131215.4,
AF131215.1,
AF131215.8, LINC00529
chrll | 25030850 | 25368350 | 179.292 | LUZP2 RP11-54]7.2 337.5
chr5 | 116503039 | 116743039 | 162.246 RPL35AP15 240
chrl0 | 21454191 | 21846691 | 161.865 | NEBL, CASC10, | NEBL-ASI, RP11- | 3925
SKIDA1, MLLT10 565H13.3,  LUZP4PI,
RNU6-15P, RP11-
275N1.1, RNMTLIP],
Y_RNA, U3, MIR1915
chr3 | 17560442 | 17965442 | 157.582 | TBCID5 U7, AC104451.2, 405
AC104297.1, PDCL3P3
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Top ten candidate regions for population CHS

CHS
CHR Start END max LR | Coding Noncoding size in kb
chr2 108905521 | 109690521 | 177.833 | SULT1C2, SULT1C4, | RP11-443K8.1, 785
GCC2, LIMS1, RANBP2, | SULT1C2P1, RP11-
CCDC138, EDAR 465011.2, RP11-
465011.1, AC012487.2,
AC010095.5,
AC010095.6,
AC010095.7,
AC073415.2
chr13 | 68170269 68472769 166.673 BCRP9, NPM1P22 302.5
chrl6 | 17424477 17694477 148.044 | XYLT1 RP11-916L7.1 270
chr12 | 123977384 | 124314884 | 147.365 | RILPLI, TMED2, | MIR3908, RP11- 337.5
DDX55, EIF2B1, | 486012.2, SNORA9,
GTF2H3, TCTN2, | RP11-338K17.8,
ATP6V0OA2, DNAH10 RPL27P12
chr2 197118021 | 197820521 | 146.797 | HECW2, CCDC150, | AC020571.3, 702.5
GTF3C3, C2orf66, | RN7SL820P,
PGAP1 SCARNA16
chr8 10932815 11105315 142.24 XKR6, AF131215.5 AF131215.9, 172.5
AF131215.2,
AF131215.3,
AF131215.4,
AF131215.1,
AF131215.8, LINC00529
chrl 92910616 | 93288116 | 141.658 | GFI1, EVI5 RP4-593M8.1, 377.5
HMGB3P9, RNU4-
59D, RP11-330C7.3,
RP11-330C7.4, CCNJP2
chr3 154172889 | 154507889 | 140.519 RP11-656A15.1, CTD- 335
250103.2, CTD-
250103.3, RPL9P15
chr2 177600521 | 177915521 | 130.548 AC092162.1, FUCA1P1, 315
AC092162.2,
AC073636.1,  RNU6-
187P, AC079305.11
chr4 41805167 42142667 129.592 | TMEM33, DCAF4L1, | RP11-227F19.1, 337.5
SLC30A9, BEND4 HMGBI1P28,
LINCO00682, RP11-
457P14.5, RP11-
457P14.6, RP11-
814H16.2, ATP1B1P1
Top ten candidate regions for population JPT
JPT
CHR Start END max LR | Coding Noncoding size in kb
chrl0 | 55859211 56226711 204.738 | PCDHI15 AC013737.1, RNUe6- 367.5
687P
chr3 154170507 | 154600507 | 201.772 RP11-656A15.1, CTD- 430
250103.2, CTD-
250103.3, RPLIP15,

RP11-439C8.1
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chrl | 92943110 | 93315610 | 180.979 | GFIl, EVI5, RPL5, | RP4-593M8.1, 372.5
FAM69A HMGB3PY9, ~ RNU4-
5P,  RP11-330C7.3,
RP11-330C7.4, CCNJP2,
SNORD21, SNORAG66,
SNORA66, SNORA51
chrX | 100918625 | 101443625 | 179.144 | NXF5,ZMAT1, TCEAL2, | GHc-602D8.2, RNU6- 525
TCEALS6, BEX5 587P, RP1-232L22 Al
RP1-232L22 B.1, RPI-
3E102,  RNU6-345P,
RP1-197]16.1,  RP1-
197]16.2, MTND6P13,
TCP11X3P
chrd | 41805167 | 42215167 | 170.622 | TMEM33, DCAF4L1, | RP11-227F19.1, 410
SLC30A9, BEND4 HMGB1P28,
LINC00682, RP11-
457P145, RP11-
457P14.6, RP11-
814H16.2, ATP1B1P1
chr2 | 24048021 | 24375521 | 168571 | ATAD2B, ~ UBXN2A, | PGAMIP6, AC066692.3, |  327.5
MEFSD2B, C2orf4d, | SDHCP3, RN7SL610P,
FKBP1B, SF3B14, | RNU6-370P
FAM228B, TP5313,
PEN4, RP11-507M3.1
chr2 | 197155521 | 197818021 | 163.049 | HECW2,  CCDC150, | SCARNA16 662.5
GTF3C3, C2orf66,
PGAP1
chr6 | 26120112 | 26367612 | 151.624 | HIST1H2BC, LARP1P1, 247.5
HIST1H2AC, HISTIHIPS],  RPI-
HIST1HIE, HISTIH2BD, | 34B20.4, HISTIH2APS3,
HIST1H2BE, HIST1H2APS4,
HIST1H4D, HISTIH3D, | HISTIH3PS1, RNU6-
HIST1H2AD, 1259F, AL021917.1
HIST1H2BF, HIST1H4E,
HIST1H2BG,
HIST1H2AE,
HIST1H3E, HIST1HID,
HIST1H4E, HIST1H4G,
HIST1H3E, HISTIH2BH,
HIST1H3G, HIST1H2BI,
HIST1H4H, BTN3A2
chr9 | 126360904 | 126725904 | 124.604 | DENNDI1A RP11-417B42,  RP11- 365
417B4.3, PIGFP2
chrl4 | 49933016 | 50410516 | 118373 | RPS29,  AL139099.1, | RNASSP384, RPL32P29, |  477.5
LRR1, RPL36AL, | RN7SLL, Y_RNA,
MGAT2,  DNAAF2, | RHOQPI, RP11-
POLE2, KLHDC1, | 649E7.5, RP11-649E7.7,
KLHDC2, NEME, | RP11-831F12.3,

AL627171.2, AL627171.1,
ARF6

RP11-831F12.4,
RNUG6ATAC30P, RP11-

831F12.2, RNU6-539P,
RN7SL3, RN7SL2,
RNU6-189P, RP11-

58E21.4
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Top ten candidate regions for population KHV

KHV

CHR

Start

END

max LR

Coding

Noncoding

size in kb

chr5

117648039

117970539

216.287

CTD-2281M20.1, RP11-
2N5.2, RP11-2N5.1

322.5

chr5

117323039

117625539

196.657

CTD-3179P9.1,
3179P9.2

CTD-

302.5

chr8

10710323

11112823

194.053

XKR6, AF131215.5

MIR598,

AF131215.9,
AF131215.2,
AF131215.3,
AF1312154,
AF131215.1,
AF131215.8, LINC00529

AF131215.6,

402.5

chr2

108948021

109553021

193.053

SULT1C4, GCC2, LIMS1,
RANBP2, CCDC138,
EDAR

SULT1C2P1, RP11-
465011.2, RP11-
465011.1, AC012487.2,
AC010095.5,
AC010095.6,
AC010095.7,
AC073415.2

605

chrl3

64245285

64590285

179.917

AL445989.1

LINCO00395, OR7E156P,
RP11-473M10.3, RNU6-
81P, PPP1R2P10, RP11-
394A14.2, OR7E104P,
RP11-394A14 .4,
NFYAP1, LINC00355

345

chr2

197115521

197815521

164.939

HECW?2,
GTF3C3,
PGAP1

CCDC150,
C2orf66,

AC020571.3,
RN7SL820P,
SCARNA16

700

chrl5

63860064

64232564

162.322

usP3, FBXL22, HERCI,
DAPK2

USP3-AS1, RP11-
317Ge.1, MIR422A,
RP11-111E14.1

372.5

chrl

238933116

239145616

161.77

MIPEPP2

212.5

chr?7

136088084

136363084

160.373

AC009784.3,
AC009541.1

275

chrl2

44397384

44837384

156.351

TMEM117

RP11-624G19.1, RP11-
4611.1, RP11-4611.2

440
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Top ten candidate regions for population BEB
BEB
CHR Start END max LR | Coding Noncoding size in kb
chrl2 | 44307384 | 44927384 | 238.617 | TMEM117, NELL2 RP11-624G19.1, RP11- 620
4611.1, RP11-4611.2
chrl | 51565610 | 52038110 | 194.666 | Clorfl85, RNF11, | Y_RNA, CFLIP2, | 4725
TTC39A, EPS15 AL162430.2,
AL162430.1,  RP11-
296A18.3, snoU13,
RP11-296A18.5, RP11-
296A18.6, RP11-
275F13.1, RP11-
275F13.3, RNU6-877F,
RP11-253A20.1, RP11-
191G24.1, RNU6-1281P,
CALR4P
chrll | 72983350 | 73370850 | 175258 | P2RY6, ~ ARHGEF17, | RP11-800A3.7, 387.5
RELT, FAM168A, | AP002761.1,  RP11-
PLEKHB1 809NS8.2, RP11-809N8 .4,
RP11-809N8.6,  RP11-
809N8.5, HMGN2P38,
AP000860.2
chrl2 | 49812384 | 50189884 | 174.685 | SPATS2, KCNH3, | RP11-161H23.8, RP11- | 3775
MCRS1, PRPF40B, | 133N21.10, RNU6-834P,
FAMI186B, FMNL3, | POLR2KP1, RP11-
TMBIM6, NCKAP5L 133N21.7, HIGDIAP9,
RP11-133N21.12,
LSM6P2
chr2 | 81633111 | 81950611 | 157.622 AC012075.1, 317.5
AC012075.2,
RNAS5SP99, AC013262.1
chr22 | 46548536 | 46856036 | 150.059 | PPARA, CDPF1, | NONP 307.5
PKDRE]J, TTC38, GTSE1,
TRMU, CELSR1
chr5 | 43593018 | 44048018 | 149.607 | NNT NNT-AS1, RPL29P12, 455
RP11-8L21.1
chr6 | 121387616 | 121705116 | 148.005 | TBC1D32 RNU6-1286P, Y_RNA, | 3175
RP1-276]11.2
chrl | 52415610 | 52790610 | 147.496 | RAB3B, ~ TXNDCI2, | RNA5SP4S, RP11- 375
KTI12, BTF3L4, ZFYVE9 | 91A18.1, RN7SL290F,
RP11-91A18.4,
TXNDC12-AS1,
RN7SL788E, RP4-
800M22.1, RP4-
800M222,  PDCL3P6,
RP4-800M22.4,
DNAJC19P7,
ANAPC10P1
chrl | 100410610 | 100718110 | 140.666 | SLC35A3, HIAT1, | RP5-884G6.2, RNU6- |  307.5
SASS6, TRMT13, | 750P,  RNU6-1318P,
LRRC39, DBT RP4-714D9.5,  RP4-
714D9.2, RP4-714D9.4,
RP11-305E17.7, BRI3P1,
RP11-305E17.4
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Top ten candidate regions for population GIH

GIH
CHR Start END max LR | Coding Noncoding size in kb
chrb 43588039 44073039 | 230404 | NNT NNT-AS1, CTD- 485
2210P15.2, RPL29P12,
RP11-8L21.1,  RNU6-
381P
chr4 106462667 | 106815167 | 203.813 | ARHGEF38,  INTS12, | AC004066.3, 352.5
GSTCD ARHGEF38-IT1, RP11-
311D14.1, RP11-45L9.1
chrl2 | 49824884 | 50189884 | 172.123 | SPATS2, KCNH3, | RP11-161H23.8, RP11- 365
MCRS1, PRPF40B, | 133N21.10, RNU6-834P,
FAM186B, FMNL3, | POLR2KP1, RP11-
TMBIM6, NCKAP5L 133N21.7, HIGDI1AP9,
RP11-133N21.12,
LSM6P2
chr4 29937667 | 30175167 | 166.773 RPS3AP17, RP11- 237.5
174E22.2
chr4 29740167 | 29927667 | 153.909 EEF1A1P21, 187.5
AC109351.1, RP11-
390C19.1
chrll | 72938350 73355850 | 150.339 | P2RY2, P2RY6, | RP11-800A3.4, ORSRI1P, 4175
ARHGEF17, RELT, | RP11-800A3.7,
FAM168A AP002761.1, RP11-
809N8.2, RP11-809N8.4,
RP11-809N8.6,  RP11-
809N8.5, HMGN2P38,
AP000860.2
chr7 119623084 | 119803084 | 147.573 U1, RP4-742N3.1 180
chr7 119083084 | 119340584 | 145.233 AC091320.2, 257.5
AC091320.1
chr7 119813084 | 120140584 | 138.887 | KCND2 RP5-1006K12.1 3275
chr22 | 46556691 46856691 | 138.087 | PPARA, CDPF1, | NONP 300

PKDRE]J, TTC38, GTSE1,
TRMU, CELSR1
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Top ten candidate regions for population ITU
ITU
CHR Start END max LR | Coding Noncoding size in kb
chrl2 | 44342384 | 44904884 | 316.972 | TMEM117, NELL2 RP11-624G19.1, RP11- 562.5
4611.1, RP11-4611.2
chr6 | 136485112 | 137030112 | 174316 | PDE7B, MTFR2, | RP13-143G154, RP3- 545
BCLAF1, MAP7, | 406A7.1, RP3-406A7.7,
MAP3K5 RP3-406A7.3, RP3-
406A7.5, NDUFS5P1,
7SK, RP3-325F22.5, RP3-
325F22.3, RNA5SP219
chril | 37928350 | 38345850 | 169.991 RP11-159D8.1,  RP11- 4175
436H16.1
chr2 | 81628111 | 81985611 | 165.812 AC012075.1, 357.5
AC012075.2,
RNAS5SP99, AC013262.1
chr5 | 43840539 | 44033039 | 152.619 RP11-8L.21.1 1925
chr5 | 43588039 | 43820539 | 145.996 | NNT NNT-AS1, CTD- 2325
2210P15.2, RPL29P12
chrl | 51735610 | 52165610 | 138.747 | RNF11, TTC39A, EPS15, | RP11-275F13.1, RP11- 430
OSBPL9 275F13.3, RNU6-877P,
RP11-253A20.1, RP11-
191G24.1, RNU6-1281P,
CALR4P
chr20 | 52982444 | 53277444 | 133471 | DOK5 NONP 295
chr22 | 46558536 | 46836036 | 132.641 | PPARA, CDPF1, | NONP 277.5
PKDREJ, TTC38, GTSE1,
TRMU, CELSR1
chr20 | 30162444 | 30502444 | 128219 | ID1, COX4I2, BCL2L1, | RNU6-384P, MIR3193, 340
AL160175.1, TPX2, | RP11-243]16.7, RP11-
MYLK2, FOXS1, | 243]16.8, RNU1-94P
DUSP15, TTLL9
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Top ten candidate regions for population PJL

PJL
CHR Start END max LR | Coding Noncoding size in kb
chr2 81678406 81960906 | 210.214 AC012075.2, 282.5
RNAS5SP99, AC013262.1
chr5 43840539 44078039 170.54 RP11-8L21.1,  RNU6- 237.5
381P
chr5 43593039 43830539 | 159.641 | NNT NNT-AS1, RPL29P12 237.5
chrl2 | 86117384 | 86589884 | 152.781 | RASSF9, NTS, MGAT4C | RP13-61912.2, RP11- 472.5
18]9.3, RP11-812D23.1
chrl 87190610 87600610 | 139.144 | SH3GLBI, SEP15, | RP4-612B15.2, RP4- 410
HS2ST1, RP5-105215.2 604K5.3, RP4-604K5.2,
RP11-384B12.2, RP11-
384B12.3, LINC01140
chrl4 | 63692945 63917945 | 139.884 | RHOJ, PPP2R5E AL049871.1, RP11- 225
696D21.2, GPHB5
chrll | 72990850 73370850 | 134.666 | P2RY6, ARHGEF17, | RP11-800A3.7, 380
RELT, FAM168A, | AP002761.1, RP11-
PLEKHBI1 809N8.2, RP11-809N8.4,
RP11-809N8.6,  RP11-
809N8.5, HMGN2P38,
AP000860.2
chr2 194658406 | 194848406 | 126.789 RP11-764E7.1 190
chr3 50700297 | 51455297 | 125.264 | DOCKS, MANEF, | RP11-804H8.6, 755
RBM15B, VPRBP MIR4787, RP11-
804H8.5, RP11-
646D13.1, ZNF652P1,
ST13P14
chr4 33860167 | 34370167 | 119.113 RP11-79E3.3, RP11- 510
79E3.2,  RP11-79E3.1,

RP11-548L20.1




B.3. Top ten candidate regions per population 139
Top ten candidate regions for population STU
STU
CHR Start END max LR | Coding Noncoding size in kb
chr2 | 81628302 | 81958302 | 176.113 AC012075.1, 330
AC012075.2,
RNA5SP99, AC013262.1
chr3 | 96230442 | 96687942 | 164.705 | MTRNR2L12, EPHA6 RP11-124D9.1, RNU6- | 4575
1094P, RPL1SAPS,
AC117444.1, RCC2P5,
CDV3P1
chr7 | 119178084 | 119788084 | 163.904 AC091320.1,  RP11- 610
32821, Ul, RP4-
742N3.1
chr22 | 46546691 | 46859191 | 161.901 | PPARA, CDPF1, | NONP 3125
PKDRE]J, TTC38, GTSE1,
TRMU, CELSR1
chrl5 | 45114306 | 45351806 | 159.845 | Cl50rf43, SORD CTD-2008A12, CTD- | 2375
2008A1.1,  Y_RNA,
RNU1-119P, CTD-
2014N11.1, CTD-
2014N112,  RNU6-
11085,  RNU6-1332P,
CTD-2014N11.3, RNU6-
966P, RNU1-78P, RP11-
109D20.1, Y_RNA
chrl2 | 49652384 | 50187384 | 153.065 | TUBAIC, PRPH, | RP11-977B10.2, RP11- 535
TROAP, C1QL4, | 161H235, RP11-
DNAJC22,  SPATS2, | 161H23.9, RP11-
KCNHS3, MCRS1, | 161H23.10, RP11-
PRPF40B, ~ FAMI86B, | 161H23.8, RP11-
FMNLS3, TMBIMS6, | 133N21.10, RNU6-834P,
NCKAP5L POLR2KP1, RP11-
133N21.7, HIGDIAP9,
RP11-133N21.12,
LSM6P2
chrd | 29990167 | 30417667 | 152.906 RP11-174E22.2 427.5
chrd | 29740167 | 29927667 | 145.058 EEF1A1P21, 187.5
AC109351.1,  RP11-
390C19.1
chrl4 | 63613154 | 63918154 | 140.92 | RHOJ, PPP2RSE AL049871.1,  RP11- 305
696D21.2, GPHB5
chr6 | 136605112 | 136972612 | 137.612 | BCLAFI, MAP7, | RP3-406A7.1,  RP3- | 367.5
MAP3K5 406A7.7, RP3-
406A7.3, RP3-406A7.5,
NDUFS5P1, 7SK, RP3-
325F22.5, RP3-325F22.3,
RNA5SP219
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Top ten candidate regions for population CLM

CLM
CHR Start END max LR | Coding Noncoding size in kb
chr2 21615551 21943051 | 159.323 AC067959.1, 327.5
AC011752.1,
AC009411.2,
AC009411.1,
AC018742.1
chr2 194660551 | 195148051 | 159.494 RP11-764E7.1, 4875
AC068135.1, GLULPS,
HNRNPA1P47
chr5 15333039 15575539 | 151.077 | FBXL7 MARK2PS, CTD- 242.5
2313D3.1
chrl5 | 44507203 44802203 | 137.243 | CASC4, CTDSPL2 AC073940.1, 295
AC090519.2,
AC090519.7,
AC090519.6,
AC090519.1,
AC090519.5,
AC090519.4,
AC090519.3, RP11-
616K22.1, RP11-
616K22.2, RP11-
516C1.1, RN7SL347P,
HNRNPMP1
chrl 188745610 | 188965610 | 136.491 RP11-31613.2, 220
LINCO01035
chrl 27723110 28193110 | 135.125 | WASF2, AHDC1, FGR, | RP4-75216.1, RP1- 470
IFI6, FAM76A, STX12, | 159A194, RP1-
PPP1RS, AL109927.1 159A19.3, RP11-
288L9.1, RP11-
288L9.4, RNU6-949P,
CHMP1AP1,  RNU6-
424P, RP3-42616.2,
RPEP3,  RP3-42616.5,
RP3-42616.6, RNU6-
1245P, SCARNA1
chr4 13305167 13555167 | 131.345 | RAB28, NKX3-2 HSP90AB2P, 250
LINC01096
chr6 43410112 43650112 | 129.699 | ABCC10, DLK2, TJAP1, | RNU6-1113P, RP3- 240
LRRC73, POLRIC, | 337H4.9, RP3-337H4.6,
YIPE3, XPO5, POLH, | SCARNAIS, RP3-
GTPBP2, MAD2LIBP, | 337H4.10, RP3-337H4.8
RSPH9, MRPS18A
chrl2 | 45524884 | 45857384 | 126.903 | ANO6 PLEKHAS8P1, RP11- 332.5
139E19.2, RP11-438E8.2
chrl0 | 65919165 66376665 | 123.022 DBF4P1 457.5
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Top ten candidate regions for population MXL
MXL
CHR Start END max LR | Coding Noncoding size in kb
chrl | 100410610 | 100790610 | 20592 | SLC35A3, HIAT1, | RP5-884G6.2, RNU6- 380
SASS6, TRMT13, | 750P,  RNU6-1318P,
LRRC39, DBT, RTCA RP4-714D9.5,  RP4-
714D9.2, RP4-714D94,
RP11-305E17.7, BRI3P1,
RP11-305E17.4, RP11-
305E17.6, MIR553
chrl0 | 74926660 | 75406660 | 203.628 | ECD, FAMI149B1, | Y_.RNA,  EIF4A2P2, 480
DNAJCY, MRPS16, | DNAJC9-AS1,  RP11-
TTC18, ANXA7, | 152N135, RNU6-833P,
MSS51, PPP3CB, USP54, | snoU13, Y_RNA,
MYOZ1, SYNPO2L RP11-537A6.9,  RP11-
345K20.2, AL353731.1,
RP11-137L10.6, RNU6-
883P,  RP11-137L10.5,
RP11-464F9.20, ~RP11-
464F9.22
chrl0 | 31454160 | 31896660 | 181.056 | ZEB1 RP11-192P34, ZEBl- | 4425
AS1, RNAS5SP309,
SPTLC1P1, RP11-
192P3.5, RP11-472N13.2
chrl0 | 65919160 | 66304160 | 161.945 DBF4P1 385
chrll | 38005850 | 38358350 | 147.295 RP11-436H16.1 352.5
chrl7 | 58443615 | 58688615 | 144.012 | USP32, Cl7orfé4, | RPL12P38, RP11- 245
APPBP2, RP11-15E184, | 15E18.5, RP11-15E18.1,
PPM1D RP11-15E183,  RP11-
15E18.2
chrl0 | 74749160 | 74914160 | 132.076 | PAHA1,NUDT13,ECD | RPL17P50, RP11- 165
344N104, RP11-
344N102,  Y_RNA,
RP11-344N10.5, RP11-
152N13.16, SNORA11
chrl | 149998110 | 150188110 | 128.18 | VPS45, PLEKHO1 RP11-45817.1, 190
RN7SLASOP
chr22 | 46558914 | 46843914 | 127.261 | PPARA, CDPF1, | NONP 285
PKDRE]J, TTC38, GTSE1,
TRMU, CELSR1
chrX | 19235939 | 19523439 | 117.669 | PDHA1, MAP3K15 Y_RNA 287.5
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Top ten candidate regions for population PEL

PKDRE]J, TTC38, GTSE1,
TRMU, CELSR1

PEL
CHR Start END max LR | Coding Noncoding size in kb
chr2 82426507 82874007 | 201.671 AC105761.1, RNU6- 4475
685D, Y_RNA,
AC010105.1,
AC109638.1
chr3 89715225 90160225 | 168.113 us 445
chr6 128550112 | 128945112 | 162.482 | PTPRK RP1-86D1.2, RP1- 395
86D1.3, RP1-86D1.5,
RP1-86D1.4, EEF1DP5,
Y_RNA, snoU13
chr3 154365225 | 154695225 | 162.431 CTD-250103.2, CTD- 330
250103.3, RPLYP15,
RP11-439C8.1,  RP11-
439C8.2
chr7 145830584 | 146065584 | 147.669 | CNTNAP2 NONP 235
chrl 248130610 | 248365610 | 140.725 | OR2L13, OR2L5, OR2L2, | OR2L9P, OR2L1P, 235
OR2L3, OR2M5, OR2M2 | Y_RNA, OR2L6P,
Y_RNA, Y_RNA,
OR2T32P, OR2M1P
chrl5 | 64424703 65129703 | 138.865 | SNX1, SNX22, PPIB, | SNORA48, RN7SL595P, 705
CSNK1G1, CTD- | RN7SL707P, Y_RNA,
2116N17.1, KIAAO0101, | RP11-702L154,
TRIP4, ZNF609, OAZ2, | GAPDHPé1,
RBPMS2, PIF1 RP11-330L19.1,
RP11-330L19.2,
Y_RNA, RNU6-
549P, AC100830.4,
AC100830.5,
AC100830.3, MIR1272
chrl7 | 58491115 58848615 | 135.623 | USP32, C17orf64, | RPL12P38, RP11- 357.5
APPBP2, RP11-15E18.4, | 15E18.5, RP11-15E18.1,
PPM1D, BCAS3 RP11-15E18.3,  RP11-
15E18.2, RNU6-
623D, RN7SL606P,
AC111155.1, Y_RNA
chrl6 | 14129447 14396947 | 128.207 | MKL2 CTA-276F8.2, 267.5
TVP23CP2,
AC040173.1, Y_RNA,
RP11-65]21.3
chr22 | 46592628 46852628 | 123.798 | PPARA, CDPF1, | NONP 260
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Top ten candidate regions for population PUR
PUR
CHR Start END max LR | Coding Noncoding size in kb
chr2 | 194680495 | 195185495 | 193.372 RP11-764E7.1, 505
AC068135.1, GLULPS,
HNRNPA1P47
chr5 | 15328039 | 15563039 | 156.748 | FBXL? MARK2P5, CTD- 235
2313D3.1
chr2 | 195202995 | 195257995 | 140.672 AC018799.1 55
chr8 | 32608715 | 33058715 | 136.989 | NRGI RP11-1002K11.1, 450
RNU6-663F,  RP11-
11N9.4,  MTNDIPs,
MTND2P32, RANPY,
AC104037.1
chr20 | 58387701 | 58575201 | 136.945 | PHACTR3, SYCP2, | RNU7-141P 187.5
FAM217B, ~ PPPIR3D,
CDH26
chré | 75554339 | 75834339 | 13431 | COL12A1 RP11-560020.1 280
chrl | 188758110 | 188958110 | 123.838 RP11-31613.2, 200
LINC01035
chrl7 | 58578615 | 58851115 | 122751 | APPBP2, RP11-15E184, | RP11-15E185, RP11- | 2725
PPM1D, BCAS3 15E18.1, RP11-15E18.3,
RP11-15E18.2, RNU6-
623P, RN7SL606P,
AC111155.1, Y_RNA
chr20 | 20392701 | 20762701 | 11327 | RALGAPA2 EIF4E2P1, RP11- 370
23013.1, RN7SL607P
chr12 | 79032384 | 79244884 | 105.654 RP11-123M21.2, RP11- | 2125
123M21.1
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B.4 LRy, profile for COL8A1, CMSS1 and FILIP1L

Scale
chr3:
80 _
YRILRT3
15-
-10
80
ESN LRT3
15-
-10
80 _
LWK LRT3
15-
-10
80 _
ACB LRT3
15-
-10
80 _
ASW LRT3
15-
-10
80 _
GWD LRT3
15-
-10
80 _|
MSL LRT3
15-
0
80 _|
CEU LRT3
15-
-10
80 _
CHB LRT3
15-
-10
MIR548G

99,400,000 |

200 kb 1 hgl9
99,600,000 | 99,700,000 | 99,800,000 | 99,900,000 |
LRT3 profilé for population YRI

99,500,000 | 100,000,000 | 100,100,000 |

III:II !

| e

LRT3 profile for population ESN

i i

LRT3 profile for population LWK

LRT3 profile for population ACB

r

LRT3 profile for population ASW

LRT3 profile for population GWD

it

LI | T
LRT3 profile for population MSL
LRT3 profile for population CEU
LRTS3 profile for population CHB
UCSC Genes (RefSeq, GenBank, CCDS, Rfam, tRNAs & Comparative Gengmif
(Refoey CRECIF SR BC1D2 -
COLBAL posssssiasinsl CMSS1 TMEM30CH| TBC1D23
COLBAL P-33553553505-5) AF0909391 TBC1D23 Hi
COL8AL MIR3921! NIT2 W
COLB8A1 prrrrrrr] NIT2 HHH
CMSS1F +=tHHI TOMM70A -
ILIPLL feedpeeest
CUIDT leedhieast

FIGURE B.2: LRT,-profile for region surrounding the genes COL8A1, CMSS1 and FILIP1L,
being significant for African populations. The LRr,-profile is shown for all seven African
populations, for comparison reason, LRr,-profile for one European population CEU and
one East Asia population CHB are given. Shown is the chromosomal position
chr3:99,270,626-100,114,711. All three genes are highlighted. Illustration via
https://genome.ucsc.edu/. Note: Only LRr,-range from —10 to 80 is shown.
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B.5 LRy, profile for region containing ZRANB3, LCT, MCM6 and DARS
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FIGURE B.3: LRr,-profile for region surrounding the genes ZRANB3, LCT, MCM6 and
DARS. Region contatining gene ZRANB3 shows significant LRy, for population CEU and
GBR. For comparison reason, LRr,-profile for YRI and CHB is given. Shown is the
chromosomal position chr2:134,467,025-137,779,354. Illustration via
https://genome.ucsc.edu/. Note: Only LR,-range from —10 to 80 is shown.
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B.6 GO enrichment Analysis

In the following the top three most significant enriched GO terms (of the top 10

region list) for each European population is shown.

Population IBS
IBS
IBS - Biological process
GO Term Description P-value | FDR g-value | Genes
GO:0042743 | hydrogen peroxide metabolic | 8.33E-7 1.26E-2 DUOXA2, DUOXA1, DUOX2,
process DUOX1
GO:0072593 | reactive oxygen species | 2.25E-6 1.7E-2 DUOXA2, CYB5R4, DUOXAL,
metabolic process DUOX2, DUOX1
GO:0035176 | social behavior 4.2E-6 2.12E-2 ANXA7, PPP3CB, DNAJC9,
MSS51
IBS - Molecular function
GO Term Description P-value | FDR g-value | Genes
GO0:0016174 | NAD(P)H oxidase activity 1.71E-7 7.81E-4 CYB5R4, DUOX2, DUOX1
GO:0050664 | oxidoreductase activity, acting 1.4E-6 3.2E-3 CYB5R4, DUOX2, DUOX1
on NAD(P)H, oxygen as accep-
tor
IBS - Cellular component
GO Term Description P-value | FDR g-value | Genes
GO:0044449 | contractile fiber part 4.97E-4 9.49E-1 PPP3CB, SYNPO2L, MYOZ1,
LRRC39
Population TSI
TSI
TSI - Biological process
GO Term Description P-value | FDR q-value | Genes
GO:0035176 | social behavior 3.58E-7 5.41E-3 ANXA7, PPP3CB, DNAJC9,
MSS51, DVL1
GO:0051703 | intraspecies interaction between | 3.58E-7 2.71E-3 ANXA7, PPP3CB, DNAJC9,
organisms MSS51, DVL1
GO:0051705 | multi-organism behavior 1.39E-6 6.99E-3 ANXA7, PPP3CB, DNAJC9,
MSS51, DVL1
TSI - Molecular function
GO Term Description P-value | FDR g-value | Genes
No GO Enrichment Found.
TSI - Cellular component
GO Term Description P-value | FDR q-value | Genes
GO:0019866 | organelle inner membrane 8.14E-4 1E0 MRPS16, Cl150rf43, AURKAIP1,
ATAD3A, MRPL20, ATAD3B
GO:0031966 | mitochondrial membrane 9.61E-4 9.17E-1 [MRPS16, SORD, AURKAIPI,
ATAD3A, MRPL20, ATAD3B,
WASF1
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Population GBR
GBR
GBR - Biological process
GO Term Description P-value | FDR g-value | Genes
GO:0034314 | Arp2/3 complex-mediated actin | 3.53E-4 1EO0 ARPC1A, ARPC1B
nucleation
GO:0045010 | actin nucleation 9.01E-4 1E0 ARPC1A, ARPC1B
GBR - Molecular function
GO Term Description P-value | FDR g-value | Genes
No GO Enrichment Found.
GBR - Cellular component
GO Term Description P-value | FDR g-value | Genes
GO:0034314 | Arp2/3 complex-mediated actin | 3.53E-4 1EO ARPC1A, ARPC1B
nucleation
GO:0045010 | actin nucleation 9.01E-4 1EO ARPC1A, ARPC1B
Population CEU
CEU
CEU - Biological process
GO Term ‘ Description ‘ P-value ‘ FDR g-value ‘ Genes
No GO Enrichment Found.
CEU - Molecular function
GO Term ‘ Description ‘ P-value ‘ FDR g-value ‘ Genes
No GO Enrichment Found.
CEU - Cellular component
GO Term ‘ Description ‘ P-value ‘ FDR g-value ‘ Genes
No GO Enrichment Found.
Population FIN
FIN
FIN - Biological process
GO Term Description P-value | FDR g-value | Genes
GO:0055086 | nucleobase-containing small | 9.69E-4 1E0 NNT, SLC35A3, MBD4, ACOT?7,

molecule metabolic process

DBT, GPHN

FIN - Molecular function

GO Term Description P-value | FDR g-value | Genes
No GO Enrichment Found.
FIN - Cellular component
GO Term Description P-value | FDR g-value | Genes
GO:0055086 | nucleobase-containing small | 9.69E-4 1EO0 NNT, SLC35A3, MBD4, ACOT?,

molecule metabolic process

DBT, GPHN
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B.6.1 Top three most significant enriched GO terms: African vs non-African

Here, we investigate once more, if a prinicipal difference can be observed between
African and non-African populations, considering biological functions and path-
ways targeted by selective sweep. One may expect that candidate genes, which are
shared between multiple different subpopulations but not Africa, that these adapta-
tions are a result of the Out-Of-Africa migration. For instance genes involved in the

adaptation to climatic changes or food supply.

Shared between several African Population

Shared between several African Population - Biological process

IGKV2D-30, C8G

GO Term Description P-value | FDR g-value | Genes
GO:0002440 | production of molecular media- 1.44E-4 1E0 IGKV3D-20, DENNDI1B,
tor of immune response IGKV2D-29, IGKV2D-28,
IGKV1D-33, IGKV2D-30,
IGKV6D-21, IGKV2D-26
GO:0002377 | immunoglobulin production 2.63E-4 1EO0 IGKV3D-20, IGKV2D-29,
IGKV2D-28, IGKV1D-33,
IGKV2D-30, IGKV6D-21,
IGKV2D-26
GO:0030449 | regulation of complement acti- | 5.98E-4 1E0 IGKV3D-20, SUSD4, VTN,
vation IGKV2D-28, IGKV1D-33,

Shared between several African Population - Molecular function

GO Term

Description

P-value

FDR g-value

Genes

GO:0016509

long-chain-3-hydroxyacyl-CoA
dehydrogenase activity

5.74E-4

1EO0

HADHB, HADHA

Shared between several African Population - Cellular component

GO Term

Description

P-value

FDR g-value

Genes

GO:0005740

mitochondrial envelope

2.11E-4

4.06E-1

HADHB, MAOB
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Shared between several Non-African SuperSuperpopulation

Shared between several Non-African Superpopulation - Biological process

GO Term

Description

P-value

FDR g-value

Genes

GO:0006396

RNA processing

3.59E-22

5.44E-18

DHX9, CDK12, AFF2, DDX5, EX-
0SC10, RBM39, SYF2, AARS, SNORA4S,
GTF2F2, SNORD37, TSEN2, PAPOLB,
SCARNA1 , GTF2H3, GEMINS5, CIRHIA,
SCARNA20,  THUMPD3,  CPSF3,
SNORA27, SNORD74, RBM6, RBMS,
AICDA, NOL9, NOC4L, MNATI1, EX-
0SC6, SNRPN, SNORAS4, SNORA49,
SNORD115-6, RBPMS2, SNORDI15-5,
SNORAA46, SNORD115-12, SNORD115-11,
SNORDI115-14, SNORDI115-8, PDCD?,
SNORD115-10, SNORA40, SNORD115-9,
SNORD115-15,  ISYl,  SNORDI15-
17, SNORD115-16, SNORD115-
18, SNORD115-19, SNORDI115-
20, SNORDI15-21,  SNORD115-23,
PTCDI, SNORA77, SNORD115-
29, SNORD115-22, SNORD115-
25, SNORDI15-33,  SNORDI15-32,
SNORDI115-31, CPSF4,  SNORDI15-
30, SNORDI15-37,  SNORD115-38,
SNORA62,  SNORDI115-35,  BUD3I,
SNORD115-36, SNORD115-34, SNORA51,
HNRNPLL, SNORA70F, SNORD116-7,
SNORA9,  SNORD54,  SNORD116-
3, SNORA1, RTCA, SNORDI16-6,
SNORD116-5, SNORD116-11, SNORAG66,
MTFMT, SNORDI116-10, SCARNALL,
SNORD116-2, SCARNA16, SNORD116-1,
LIN28B, SNORD116-30, SNORDI116-14,
SNORD116-15, SNORD116-9, SNORD60,
SNORD116-8, SCARNA15, SNORD116-23,
SNORDI116-16, SF3B, SNORD116-13,
SNORA31, SNORDI116-12, SNORD116-
18, SNORD73A, RPP38, SNORA70,
SNORD116-24, SNORA24, SNORD116-
27, SETX, SNORD21, SNORD64,
SNORD116-17, SNORD116-20, CDC40,
SNORD115-3, SNORD102, SNORD115-4,
SNORA11, SNORDI15-2, SNORD116-
25 RRP9, INTS12, PRPF40B, PRPF6,
SNORD118, AGO3, NOL8, SNORDY0,
AGO4, RPL5, C7orf60, SNORDI116-
19, AGO1, PUSL1, PUS7L, UTP3,
SNORD115-28, SNORA25, SNORD115-
27, SNORDI115-24,  SNORD115-45,
DDX51, PPPIR8, CPSE7, PAF1, RPP40,
AURKAIP1, SNORD115-39, SNORD115-
40,  SNORDI16-29,  SNORD115-48,
SNORD115-43, SNORD115-44 SNORD115-
41, SNORD115-42, RBPMS, TRMU, CELF6,
PUS1, NAT10, SNORDI27 , RNGTT,
CPSF3L, RNMT, SNORA7A, SNORAS3,
SNORD108, MRPSI11, SFPQ, RBFOX2,
SNORD112, SRSF1, PSPC1, HNRNPA2B1,
SRSF2, SNORDS7, TRMT13, SNORD115-1,
NOL3, SNORD109B, SNORD109A, JMJD6,
RPL10A, DHXI16, SNORD3A, ECD,
RBM22, GRSF1

GO:0035194

posttranscriptional gene silenc-
ing by RNA

1.09E-17

8.26E-14

MIR551A, MIR922, MIR550A1, MIR223,
MIR422A, MIR135A1, MIR553, AGO3,
MIR63, MIR328, MIR320C2, AGO4,
MIR875, MIR125B2, AGOl, MIR636,
MIR193B , MIRI81B2, MIRLETYG,
MIR181A, MIR598, MIR211, MIR99A,
MIR599, MIRLET7C, TNRC6C, MIR1275,
MIR548A3, MIR147Aa, CNOTS, MIR490
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GO:0035195

gene silencing by miRNA

1.42E-17

7.18E-14

MIR551A, MIR922, MIR223, MIR550A1,
MIR422A , MIR135A1, MIR553, MIR633 ,
MIR328, MIR320C2, MIR875, MIR125B2,
MIR636, MIR193B, MIR181B2, MIRLET7G,
MIR598, MIR181A2, MIR599, MIRLET7C,

MIR211, MIR99A, MIR1275, TNRC6C,
MIR548A3, MIR147A, CNOTS, MIR490
Shared between several Non-African Superpopulation - Molecular function
GO Term Description P-value | FDR g-value | Genes
GO0:0034987 | immunoglobulin receptor bind- 2.78E-7 1.27E-3 TRBC2, IGLC1, IGLLS5, IG], IGLC3, IGLC2,
ing IGLC6, FGR, IGLC7
GO:1903231 | mRNA binding involved in 1.1E-6 2.52E-3 MIRLET7G, MIR328, MIR181A2, MIR223,
posttranscriptional gene silenc- MIRLET7C, MIR181B2, MIR125B2
ing
GO:0046982 | protein heterodimerization ac- | 3.75E-5 5.7E-2 HISTIH3D, HISTIH3E, HIST2H2BE,
tivity HIST1H3I, AOC3, ABCG5, HISTIH2BO,
HIST2H2BE,  ABCGS, HIST1H4D,
HIST2H3D,  HISTIH4F,  SUCLG2,
HIST1H3G, HIST1H3], SMC3,
HIST1H2AM, HIST2H2AC, HIST2H2AA3,
CTNNA1, HIST2H3C, HISTIH2AL,
HIST1H2AC, HIST1H2BE , HIST1H2BF,
HISTIH2BI , HISTIH2BH , PVRLI,
HIST1H2BG , KCNH5, HISTIH2BN
CREB3L3, P2RY1, MYODI, PPP3CA,

CENPT, ARF1, ZHX1, IKBKB, HIST2H4A,
HISTIH4G, HIST1H4L, HISTIH4E
HIST1H4H , HIP1, ATF2 , HIST2H2BD,
SNX1, HIST2H2AB, HIF1A, HISTIH2BD,
FLOT1, NEUROD2, MICU1, HISTIH2AD,
TAF4B, HISTIH2AE, ABTB2, RAFI,
DYNLL2, TFAP2E, EGFR, TWISTI,
NPAS3, CD3G, TENM4, SYCP2, PPARD,
SLC51B, TENM3, TUBB2B, CLCF1, HEXA,
HIST1H3F, BCL2L1, TASIR3, IRAK2 ,
GPHB5

Shared between several Non-African Superpopulation - Cellular component
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GO:0005730

nucleolus

2.75E-23

5.25E-20

DHX9 , MAD2LIBP, C9orf3, DDX5,
EXOSC10 , ORC1, MKI67IP, SNORA4S,
DPH6 , TRAIP, OSBP, SNORD37, TSEN2,
SCARNA1, CIRH1A, SCARNA20, MOB1B,
THUMPD3, MIFAGD, CDC14B, TRERF1,
SNORA27, SNORD74, TTF1, NOL9,
NOCA4L, AGPS, POLD4, accessory subunit,
EXOSC6, SNORAS4, OXR11, SNORAA49,
SNORD115-6, SNORD115-5, SNORA46,
SNORD115-12, SNORD115-11, BCAS3,
SNORD115-14, SNORD115-8, SNORD115-
10, SNORA40, PDHA2, SNORD115-9,
PDHA1, SNORDI115-15, SNORD115-
17, SNORD115-16, SNORD115-18,
SNORD115-19, SNORD115-20 , FGFl,
SNORD115-21, NIP, SNORD115-23,
GLI2, SNORA77, SNORD115-29, MXI1,
SNORD115-22, SNAPC1, SNORD115-25,
SNORD115-33, FBXL22, SNORD115-32,
SNORD115-31, MED1, SNORD115-30,
SNORD115-37, SNORA62, SNORD115-38,
NVL, SNORD115-35, SNORD115-36,
SNORD115-34,  ZNF655, SNORAS51,
SNORD116-7, SNORA70F, SNORA9,
SNORD54, SNORD116-3, SNORA1,
SNORD116-6, SNORD116-5, SNORD116-
11, SNORAG66, S100A3, SNORD116-10,
SCARNA11, SNORD116-2, SCARNAI16,
SNORD116-1, LIN28B, SNORD116-
14, SNORD116-30, SNORD116-15,
SNORD116-9, SNORD60, SNORD116-
8, SCARNA15, SNORD116-233,
SNORD116-16, SF3B4 , SNORD116-13,
SNORA31, SNORD116-12, SNORD116-
18, SNORD73A, ZNF106, RPP38,
SNORA70, SNORD116-244, SNORA24,
SNORD116-277, SETX, SNORD116-266,
SNORD21,  SNORD64,  SNORD116-
17, SNORD116-200, SNORD115-3,
SNORD102, ARFGEF1, SNORD115-4,
SNORA11, SNORDI115-2, SNORD116-
255, S100A16, RRP9, MCRS1 , HMGB?2,
SNORD118, HN1 , NOL8S, FANCD22,
SENP5, SNORD90, MAP2, MPHOSPHS,
RPL5, C7orf60, SNORD116-19, RPS3A,
UTP3, SNORD115-28, SNORA25,
SNORD115-27, SNORD115-24, CTSV,
VRK1, PAKI1IP1, PPP1CA, SNORD115-
39, SNORD115-40,  SNORD116-299,
RPAP2, SNORD115-48 , SNORD115-43,
SNORD115-44, PPP1CC, SNORD115-41,
VCX3A, SNORD115-42, WDR82, GRWD1,
NAT10, SNORD127, ITPR3, MACROD2,
RASL11A  , SNORA7A, SNORA3,
SNORD108, ABHD14B, SDHAF2, SIX1,
CTCF, CBFA2T3, SNORD112, SNORDS7,
SNORD115-1, NOL3, SNORD109B,
SNORD1094A, JMJD6, SNORD3A, DDX55,
EME1, H1EX, GTF3C3

GO:0035068

micro-ribonucleoprotein

plex

com-

1.49E-21

1.42E-18

DHX9, MIR551A, MIR922, MIR223,
MIR550A1, MIR422A, MIR135A1, MIR553,
AGO3, MIR633, MIR328, MIR320C2,
AGO4, MIR875, MIR636, MIR125B2,
AGO1, MIR193B, XPO5, MIRLET7G,
MIR598, MIR181A2, MIR99A, MIR599,
MIRLET7C, MIR211, MIR1275, MIR548A3,
MIR147A, MIR490
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GO:0000786

nucleosome

9.93E-16

6.33E-13

HISTIH3D, HIST1H2BD, HISTIH3E,
HIST1H3I, HIST2H2BE, HISTIH2AD
HIST1H2BO, HIST1H2AE, HIST2H2BE,
HIST1H1B, HISTIHIE,  HIST2H3D,
HISTIH4D, HISTIHID,  HIST1HA4F,
HISTIH3G, HISTIH3], HISTIH2AM,
HIST2H2AC, HIST2H3C, HIST2H2AA3,
HIST1H2AL, MPHOSPHS, HIST1H2AC
, HIST1H2BE , HIST1H2BF, HIST1H2BI ,
HIST1H2BH , HISTIH2BG , HISTIH2BN
HIST2H4A , HISTIH4AL , HIST1H4E
, HISTIH4H , HISTIH3E, HIFX,
HIST2H2BD, HIST2H2AB

’
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