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Absence of evidence is not evidence of absence.
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Abstract

Exceptional error events in wind power forecasting impose a major obstacle

to today’s economic and reliable power supply. As installed capacities grow, the

impact of associated forecast errors becomes increasingly critical for the electrical

grid stability and requires the attendance of growing reserve capacities. The pre-

dictability of such error events is fundamentally restricted by the underlying weather

forecast, resting on limitations of state-of-the-art numerical weather prediction sys-

tems. These forecasts must be furnished with likelihood, implying the operation of

model ensembles. Ensembles of numerical weather predictions provide estimates of

forecast uncertainties and allow users such as grid operators and energy market par-

ticipants to prepare for potential forecast errors. However, present computational

resources restrict meteorological ensembles to a moderate number of members, which

reduces the likelihood to capture exceptional error events.

This work aims to identify imminent forecast errors affecting the energy sector.

To this end, the standard sizes of meteorological ensembles are increased from O(10)

to an ultra large ensemble size of O(1000) members to accomplish an improved ap-

proximation of the probability density function. For this purpose, a novel approach

of an ensemble control system has been developed on a 5-dimensional interconnected

Petaflop architecture. Within this system, the Weather Research and Forecasting

(WRF) model has been modified towards a stand-alone ensemble version. The devel-

oped software constitutes the meteorological part of Ensembles for Stochastic Integra-

tion of Atmospheric Systems (ESIAS-met). Further, an increased ensemble size favors

the application of nonlinear data assimilation techniques based on the particle filter,

while imposing the challenge of growing computational expenses of a resampling step

within the particle filter algorithm. ESIAS-met presents a computationally efficient

solution to the problem, by realizing a parallel execution of the ensemble within a

single executable. Performance measurements within this work demonstrate strong

scalability of the system with up to 4096 ensemble members utilizing 262,144 cores.

Moreover, for a fixed problem size, the computational expenses of a particle filter

resampling step are shown to be independent of the ensemble size. The ESIAS-met

system is further applied to investigate the benefit of an increased ensemble size on

the predictability of recent exceptional error events. The analysis reveals, that despite

the large ensemble size, the forecast error is only represented by single outliers. As an

approach to identify imminent forecast errors, higher order moments prove to provide

a robust measure of the proper direction of forecast error and to assess their likelihood

of appearance. It is shown, that at least O(100) of ensemble members are needed to

resolve the higher order moments sufficiently well. Hence, the results achieved in this

work yield important potential for future warning capabilities of exceptional error

events.





Kurzzusammenfassung

Außergewöhnlich hohe Fehler in den Windleistungsprognosen stellen ein rele-

vantes Problem für eine wirtschaftliche und gesicherte Energieversorgung dar. Mit

wachsender Anzahl installierter Windkraftanlagen bleiben die Magnitude dieser Fehl-

vorhersagen für die Netzstabilität kritisch, und immer mehr Regelleistung muss von

Übertragungsnetzbetreibern beschafft werden, um einen entsprechenden Ausgleich

gewährleisten zu können. Die Vorhersagbarkeit dieser außergewöhnlich hohen Fehler

ist durch die zugrunde liegende Wettervorhersage limitiert, da selbst modernste nu-

merische Wettervorhersagemodelle inhärente Restriktionen unterliegen. Somit ist eine

Abschätzung der Vorhersageunsicherheit erstrebenswert, die in der Praxis von mete-

orologischen Ensemblesystemen realisiert wird. Prinzipiell erlauben diese den Netz-

betreibern, sich auf mögliche Vorhersagefehler vorzubereiten. Heutige operationelle

Ensemblesysteme sind jedoch aufgrund beschränkter Rechenkapazität auf eine kleine

Anzahl von Ensemblemitgliedern beschränkt, was die Wahrscheinlichkeit reduziert,

vor außergewöhnlichen Fehlvorhersagen ausreichend warnen zu können.

Diese Arbeit hat das Ziel, potenziell auftretende Fehler in der Energievorher-

sage zu identifizieren. Für diesen Zweck werden die Standardgrößen meteorologis-

cher Ensemble von O(10) auf ein ultragroßes Ensemble mit O(1000) Mitgliedern er-

weitert, um eine verbesserte Approximation der Wahrscheinlichkeitsdichtefunktion

zu erlangen. Hierfür wird ein neuartiger Ansatz eines Ensemble-Kontrollsystems

auf einem Petaflop-Rechner entworfen. Innerhalb dieses Systems wird das Weather

Research and Forecasting (WRF) Modell zu einer eigenständigen Ensembleversion

weiterentwickelt. Diese Umgebung stellt den meteorlogischen Teil von Ensembles

for Stochastic Integrations of Atmospheric Systems (ESIAS-met) dar. Weiterhin

begünstigt die hohe Mitgliederanzahl nichtlineare Verfahren der Datenassimilation,

die auf dem Partikelfilter beruhen. Jedoch wächst mit steigender Mitgliederanzahl

der Rechenaufwand eines Partikelfilter Resampling Schrittes. ESIAS-met stellt eine

effiziente Lösung dieses Problems dar, indem der Ensemblelauf innerhalb eines Pro-

gramms realisiert wird. Laufzeitanalysen zeigen ausgeprägte parallele Skalierbarkeit

bei bis zu 4096 Ensemblemitgliedern auf 262.144 Prozessoren. Weiterhin wird gezeigt,

dass für eine feste Problemgröße der Rechenaufwand eines Resampling Schrittes

unabängig von der Anzahl der Ensemblemitglieder ist. Darüber hinaus wird das

ESIAS-met System genutzt, um das Potenzial einer vergrößerten Ensembleanzahl im

Rahmen von Vorhersagen außergewöhnlicher Fehler zu untersuchen. Die Analyse

zeigt, dass trotz der hohen Ensembleanzahl nur einzelne Ausreißer den Vorhersage-

fehler adäquat darstellen. Dabei haben sich höhere statistische Momente als ein

möglicher Ansatz herausgestellt, potenziell auftretende Fehlvorhersagen zu identi-



fizieren. Diese geben Auskunft über die Richtung des Vorhersagefehlers und bewerten

dessen Wahrscheinlichkeit. Dabei wird weiterhin gezeigt, dass mindestens einige Hun-

dert Ensemblemitglieder nötig sind, um die statistischen Momente verlässlich abzu-

bilden. Die Ergebnisse dieser Arbeit implizieren wichtige Folgerungen für zukünftige

Warnsysteme für außergewöhnliche Fehlvorhersagen.
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Chapter 1

Introduction

A limited predictability of the atmospheric state imposes wind power as an

energy source of inherent uncertainty in space and time. With the increasing amount

of installed wind power capacity, accurate wind forecasts have become invaluable for

the energy sector (Giebel et al., 2011; Bremen and Wessel, 2015). In meteorology,

the realm of predictability is a research area of its own (Kalnay, 2003; Palmer

and Hagedorn, 2006), which aims to quantify the flow-dependent uncertainties of

forecasts.

Yet, predictability issues on weather dependent energy production are subdued

by the technical and economical constraints of the energy system. In Germany,

the infeed from renewable energy sources has priority over conventional electricity

generators by governmental legislation, while transmission system operators (TSOs)

have to ensure that supply matches demand to facilitate a secure electrical grid. In

the day-ahead notice, balance responsible parties report expected load schedules

for the following day (Hirth and Ziegenhagen, 2013). TSOs derive aggregated

forecasts for the control area of Germany to anticipate regulations of power plants

or negotiate supply, and accordingly, pricings are formed on the energy stock

exchange. On the following day, if schedules deviate from the actual supply, balance

responsible parties have the chance to adjust their portfolio on the intraday energy

market (Schroedter-Homscheidt et al., 2015). Here, prices can even be negative, in

case companies need to pay for undloading excess power. The TSOs take care of

any remaining imbalances by activating physical control capacities to safeguard the

electrical grid stability. The allocation of the associated costs, the balancing price, is

distributed among the balance responsible parties. The accuracy of day-ahead wind

power forecasts is therefore not only crucial for electrical grid stability, but also for

an economically viable integration of wind power into the electrical grid (Hirth and

Ziegenhagen, 2013).

In general, numerical weather predictions (NWPs) are the basis for wind power

forecast systems for the day-ahead horizon (Focken et al., 2001; Möhrlen and

1
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Jørgensen, 2008; Vogt et al., 2016). Power curves convert model wind speed and

direction at turbine hub heights to wind power, and are either provided by the

manufacturer or derived for a whole region of wind farms upon historical data (Lydia

et al., 2014). Forecast systems utilized by the TSOs are based on multiple NWP

systems and are optimized by model output statistics to remove systematic errors.

Thereby, Germany can be treated approximately as one control area (Zolotarev and

Gökeler, 2011) and local forecast errors are in general reduced by spatial smoothing

effects (Focken et al., 2002). Nevertheless, the principle forecast skill is mainly

determined by the underlying NWP system (Giebel et al., 2005).

It is generally agreed that current wind power forecast systems show on average

a satisfactory forecast accuracy. However, there still exist exceptional error events

in the day-ahead forecast which are a major obstacle to a stable and safe grid

operation. Such events are caused by an erroneous representation of the atmospheric

state by all available NWP systems at that time (Dobschinski et al., 2017). Even

area aggregation across multiple countries may not be sufficient to balance the

forecast errors (Möhrlen and Jørgensen, 2017). Exceptional error events are rare

by definition, corresponding to 0.05% of all times where the demand for control

power exceeds the actual capacity (Consentec, 2010). According to Stark (2015),

balancing prices, which are in general of the order of ± 10e/MWh, may go up to

± 6000e/MWh, and a trader’s one month’s profit may be ruined at the energy stock

exchange (Good, 2017). Since 2012, the German Bundesnetzagentur introduced an

additional penalty of 100e/MWh to the balance responsible parties, if at least 80%

of the control power capacity have to be utilized by the TSOs (Consentec, 2012).

The revenue is shared among the consumers, however, the maintenance of control

power capacity is incorporated in the electricity price. Therefore, exceptional error

events in the day-ahead forecast are not only critical and costly to participants

of the energy sector, but also put a constant and disproportionate cost on the

electricity price and are a major obstacle to the integration of wind power into the

electrical grid.

Lundgren (2015) summarizes critical weather conditions which led to exceptional

error events in the past. For wind power, these conditions include strong

cyclogenesis, i.e. the intensity and spatiotemporal position of low pressure systems

and associated frontal movements. Further, winterly stable conditions and a

pronounced summerly diurnal cycle may cause severe systematic errors. For solar

power, these conditions include cloud coverage after the passage of a cold front, the

spatiotemporal evolution of convective systems, formation or clearing of low stratus

and large-scale dust events. Exceptional error events in wind power forecasts are

hence linked to meteorological events of low predictability (Steiner et al., 2017),

which rest on inevitable shortcomings of todays NWP systems that all major
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weather centres around the world face.

In this sense, a single deterministic forecast from a NWP system has a

fundamentally limited usefulness. Since the pioneering work of Lorenz (1963), the

atmospheric evolution is well known to be highly sensitive to its initial conditions,

characterizing its dynamics as a chaotic system. Any NWP forecast must therefore

be furbished with likelihood. Hence, exceptional error events can only be anticipated

by a forecast of forecast skill, leading to a stochastic extension of the model’s

equations. Formally, the stochastic evolution of the atmospheric state with uncertain

initial conditions is described by the Liouville equation, and as a stochastic-dynamic

extension by the Fokker-Planck equation. However, the only feasible approach leads

to the integration of model ensembles, which approximate the probability density

function (PDF) of the model state by a finite sample of different realizations of the

NWP model (Epstein, 1969; Leith, 1974).

Ensemble forecasting has become a common procedure at weather centres in

the last decades (Toth and Kalnay, 1997; Molteni et al., 1996; Li et al., 2008;

Denhard et al., 2016). Their undisputed success has been based on the identification

of flow-dependent perturbations of initial conditions that exhibit the fastest

growing modes (Toth and Kalnay, 1993; Buizza et al., 1999). Model uncertainty

representation has proven to reduce the lack of dispersion among the ensemble

members and thereby correcting the estimation of predictability (Palmer et al.,

2009; Berner et al., 2011). Most notably, convective scale instabilities, boundary

layer dynamics, cloud induced modulation of insolation, and the various mechanisms

to trigger or influence these processes, must be accounted for in the parameterization

of physical processes by various perturbations. Furthermore, ensemble forecasting

is meanwhile also applied to mesoscale convection-permitting NWPs (Wang et al.,

2008; Bouttier et al., 2012; McCabe et al., 2016; Hagelin et al., 2017). The usefulness

of mesoscale ensemble modeling is based on the notion, that although higher

resolution and enhanced representation of sub-grid scale processes produce more

realistic forecasts of severe weather phenomena, yet it is challenged by the proper

simulation of small scale processes such as convection and cloud formation (Mass

et al., 2002; Eckel and Mass, 2005; Theis et al., 2005). This notion is supported by

the work of (Lorenz, 1969), who showed that errors tend to grow more quickly in

time with increasing resolution.

Ensemble forecasting samples the PDF of the model state, subject to all available

information of uncertainty in the initial conditions and model formulation. This

procedure is essentially restricted by the sample size due to limited computational

resources. Operational ensembles of global circulation and convection-permitting

models are all of the order of O(10) ensemble members. Examples are the Global

Ensemble Forecasting System (GEFS) at the National Centre for Environmental
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Prediction (NCEP): 21 member; the Ensemble Prediction System (EPS) at the

European Centre for Medium-Range Weather Forecasts (ECMWF): 51 members;

the ICOsahedral Nonhydrostatic ensemble at the German Weather Service (DWD):

40 members; the Met Office ensemble system (MOGREPS-UK): 20 members;

the high-resolution rapid refresh (HRRR) ensemble of the Weather Research and

Forecasting (WRF) model at the National Oceanic and Atmospheric Administration

(NOAA): 20 members. Numerous studies have proven, that a limited ensemble size

restricts the ensemble performance (Richardson, 2001; Mullen and Buizza, 2002;

Hagelin et al., 2017), driven by the certainty, that the sampling error of the sample

mean is proportional to
√
N , with N the ensemble size.

Besides a restriction in the ensemble size, approximations and linearizations in

NWP data assimilation techniques prohibit the capture of exceptional error events.

Despite their sophistication and acknowledged performance in NWP systems (Rabier

et al., 2000; Fisher et al., 2011; Bishop and Hodyss, 2011; Wang and Lei, 2014),

operational methods all rest on Gaussian assumptions. Gradient methods minimize

a cost function, and in case of multimodal prior distributions, it is not clear

whether this minimization converges towards a global minimum. Four-dimensional

variational data assimilation (Courtier et al., 1994) adds spatiotemporal consistency.

However, an adjoint model is involved which relies on linearizations. The Ensemble

Kalman Filter (Evensen, 1994) assumes normal distributions for observations as well

as the model state. Although the forecast model itself is nonlinear, the Ensemble

Kalman Filter forms a Gaussian posterior, characterized by the ensemble mean and

associated covariances. Consequently, all operational data assimilation methods

tend to prohibit the capture of exceptional error events, as the evolution of low

probability tails in the prior and posterior PDF is suppressed.

Particle filters are increasingly gaining attention in the survey of a nonlinear

data assimilation technique (van Leeuwen, 2009). The particle filter solves the full

data assimilation problem, equivalent to Bayes’s theorem for probability densities,

without any assumption on the prior and posterior model state PDF. Each ensemble

member, also referred to as a particle, is related to a posterior weight according

to the likelihood upon observations. Resampling reduces the variance among the

ensemble members by rejection of members with low weights and duplication of

members with high weights (Douc et al., 2005). Thereupon, low probability events

have the potential to survive the assimilation procedure of the particle filter, though

the likelihood remains small by resampling.

The application of particle filters in high-dimensional systems faces a major

obstacle. The only approximation to the nonlinear solution of the data assimilation

problem is in the ensemble size. Yet, ensemble sizes of NWP systems are comparably

small and the particle filter in its basic form tends to degenerate. In practise,
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a single member is assigned with all the weight and a posterior PDF becomes

meaningless (Snyder et al., 2008). Upon this notion, many different variants of the

particle filter have been proposed. All have in common, that they rely on improving

the ensemble members’ likelihood to achieve posterior weights of similar sizes. The

notion is to draw the ensemble members towards observations to form a proposal

density which is subject of sampling. One might simply think of a Gaussian of a

local Ensemble Kalman Filter step as proposal density, or to nudge the ensemble

members towards observations (van Leeuwen, 2009). More sophisticated methods

target similar weights by construction, e.g. the implicit particle filter (Chorin

et al., 2010), which introduces an optimal proposal density by mapping the implicit

sampling space to the original state space, or the equal-weight particle filter (van

Leeuwen, 2010), which obtains equal weights by a proposal density which depends on

all members at the previous time steps. The localized particle filter (Poterjoy, 2016)

adopts the idea of localization used in the Ensemble Kalman Filter to formulate

weights with a limited radius of influence. The class of particle smoothers weights

the ensemble at the current time step upon information of the likelihood at a future

time step. One can think of many variants, with the auxiliary particle filter being

the most prominent (Pitt and Shephard, 1999). However, despite the sophistication

involved in all the approaches listed above, the ensemble size still remains crucial for

their performance.

Resampling requires inter-member communication and autonomous ensemble

execution appears therefore suboptimal. Further, the variance among ensemble

members should ideally be monitored frequently prior to the occurrence of filter

degeneracy. Both requirements may lead to substantial computational times for

ensemble sizes beyond state-of-the-art. It is not necessarily clear how a software

environment for this purpose may be designed, as yet no convenient approach has

been proposed in the literature.

Studies on the benefit of ultra large ensemble sizes are a rarity. The terminology

of ultra large refers here to ensemble sizes beyond 1000 members. Already Buizza

and Palmer (1998) point out, that an increase in ensemble size beyond 100 members

is expected to have a beneficial impact on the outlier statistic, which is the key

score for any prediction of exceptional error events. Miyoshi et al. (2014) realize a

10,240-member ensemble of an intermediate atmospheric model and investigate the

Gaussianity of the forecast PDF. For less than 10 % of the forecast time, they find

pronounced non-Gaussianity PDFs, and for less than 1 % a pronounced bimodality.

However, they conclude, a minimum of O(1000) ensemble members is needed to

resolve this non-Gaussianity. It can be assumed, that these results amplify in the

case of a full atmospheric model, especially in the mesoscale, as higher resolution

increases nonlinearity. Therefore, non-Gaussian model PDFs will most likely be
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suppressed by the sampling error of operational ensemble systems, leading to

insufficient representation of exceptional error events.

To summarize, the predictability of exceptional error events in wind power

forecasting is likely limited by a restricted ensemble size and Gaussian data

assimilation techniques in NWP modeling. Thereupon, this work increases the

standard ensemble sizes in NWP modeling from the order of O(10) to O(1000)

members in the frame of a demonstrator system. For this purpose, the Weather

Research and Forecasting (WRF) model (Skamarock et al., 2008) is applied,

a state-of-the-art mesoscale NWP model. Each ensemble member realizes a

convection-permitting, high-resolution forecast over the target area of Germany. The

ultra large ensemble size appears particularly favorable to apply particle filtering

or smoothing techniques as a nonlinear data assimilation technique. A software

environment shall be developed which realizes particle filtering computational

efficient, independent of the ensemble size.

The work’s objectives may be summarized by the following questions:

• How may a software environment be designed which efficiently executes particle

filtering with an ultra large ensemble size?

• What is the benefit of increasing the ensemble size of NWP models with respect

to the predictability of exceptional error events in wind power forecasting?

This thesis is structured as follows: Chapter 2 formally introduces ensemble

forecasting, with a particular attention to the methods utilized to generate the

ultra large ensemble. Further, the basic particle filter and resampling methods

are described as a basis for any software developments to follow. Chapter 3

presents a strategy to execute the particle filter in the realm of an ultra large

ensemble size in a convenient and computational efficient way. A proof of concept

is demonstrated on a Blue Gene system in the frame of a feasibility study.

Chapter 4 is designed to set the stage for the ultra large wind power ensemble.

The WRF model setup is described in detail and the wind power model is

introduced. A further aim is to derive the best possible deterministic forecast

to serve as the model setup for the ultra large ensemble. Thereby, Chapter 4

touches upon model optimization of the surface boundary conditions and planetary

boundary layer parameterization. Chapter 5 presents an evaluation of the ultra

large ensemble on one of the major error events in wind power forecasting of

the last years. Results are evaluated against meteorological observations and

the real wind power feed-in. Additionally, an analysis of a solar power case

study supports the main findings. A summary of the work is given in Chapter 6.

Concluding remarks appear in Chapter 7 and directions for future work are presented.



Chapter 2

Ensemble forecasting and

nonlinear data assimilation

Ensemble forecasting aims to quantify the flow-dependent uncertainty of the at-

mospheric state derived by a NWP model. A finite ensemble size of different model

formulations initialized from perturbed initial conditions shall represent an indistin-

guishable sample of the probability density function (PDF). Ensemble-based data as-

similation techniques incorporate this uncertainty information to formulate the prior

likelihood of the model state. Here, the class of Sequential Importance Resampling

Filters and Smoothers is of special interest, as the only approximation in their for-

mulation is the ensemble size. This chapter serves the purpose to introduce both,

ensemble forecasting and nonlinear ensemble-based data assimilation.

2.1 Uncertainties in Numerical Weather Predictions

Uncertainties in Numerical Weather Prediction (NWP) models are in general di-

vided into two types: initial condition error and model error. This distinction has

been proven to be practical, as different approaches to address uncertainty target

either one of them. However, it should be stressed that initial condition and model

error 1 are in principle inseparable, as model errors project on the analysis uncertainty

and vice versa.

Formally, a numerical integration of the NWP model may be written in its sim-

plest form as (Berner et al., 2015)

xf = xa +

∫ T

t=0

(
∂[x]dyn

∂t
+
∂[x]param

∂t

)
dt, (2.1)

1The distinction between forecast error and model error as defined in Daley (1991) is not followed
here.

7
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where xf = x(T ) denotes the model state forecast, xa = x(0) the model state analy-

sis, t the time and T the forecast length. The contributions to the tendencies from the

dynamical core [x]dyn and the parameterizations [x]param are written separately. In

the context of ensemble forecasting, this states the control model and xf is denoted

as the control, or unperturbed ensemble member forecast, subject to all available

knowledge of initial conditions and model formulation. Initial condition error is in-

herent in xa, and model error in
∫ T
t=0

(
∂[x]dyn
∂t +

∂[x]param
∂t

)
dt.

Accordingly, an ensemble forecast is formulated as a set of model integrations

given by

xfi = (xa + x′ai ) +

∫ T

t=0

(
∂[xi]dyn

∂t
+
∂[xi]param(stoch)

∂t
+
∂[xi]stoch

∂t

)
dt, (2.2)

where xfi denotes the model state of the ith ensemble member forecast, with i ∈
{1, · · · , N} and N the ensemble size. Each ensemble member is integrated forward

in time starting from a different analysis, subject to perturbation x′ai , with xai =

xa + x′ai , where the analysis xa of the control member is typically derived by an

independent data assimilation system. The contribution from parameterizations are

reformulated here as [xi]param(stoch), subject to a possible stochastic perturbation.

Possible contributions from additional processes that stem from model uncertainty

are denoted as [xi]stoch. It is assumed that the dynamical core stays unperturbed in

the ensemble formulation.

Errors in the initial conditions stem from a limited observability of the atmospheric

state as well as measurement and representativity errors. This uncertainty evolves

in the data assimilation process, subject to approximations and restricted knowledge

of error covariances. Errors in the model formulation stem from unresolved process

appearing on the sub-grid scale, lower boundary forcings and ultimately the numerical

formulation of model equation. Table 2.1 summarizes sources of uncertainties and lists

further examples.

2.2 Representation of initial condition error

The chaotic behavior of the atmosphere is known to be formulated in its sensitiv-

ity to the initial conditions (Lorenz, 1963). Ideally, a finite ensemble size selectively

samples the probability density function of the initial conditions (or analysis), such

that the possible ranges of model outcomes are covered to the best possible extend.

Different selective sampling strategies differ in how they estimate the initial condition

PDF and how it is sampled.
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Table 2.1: Sources of uncertainties in NWP models divided in the categories of initial
condition error and model error.

Error category Sources

Initial conditions Observations, e.g.
• restricted observational coverage
• measurement error
• representativity

Data Assimilation, e.g.
• linearization, Gaussian errors statistic
• mapping between model state and observations state
• static or limited knowledge of flow dependent

background covariance

Model Unresolved processes, e.g.
• parameterizations of physical processes
• closure assumptions
• feedback of energy from unresolved to resolved scales

Lower boundary forcings, e.g.
• land surface parameter: roughness length, albedo,

moisture availability, vegetation fraction
• sea surface temperature

Numerical processing, e.g.
• numerical diffusion
• truncation error and precision

The first operational implementation of ensembles2 emerged in the same years at

the European Centre for Medium-Range Weather Forecasts (ECMWF, Buizza et al.

(1999)) and the National Centre for Environmental Prediction (NCEP, Toth and

Kalnay (1997)). Their undisputed success arose by the notion, that perturbations in

the initial conditions exhibit different growth rates, favored by the underlying atmo-

spheric flow. In other words, the sampling of the analysis PDF shall be confined to

the subspace of the fastest growing perturbations. Different selective sample strate-

gies have been proposed to identify such perturbations which are most relevant for

the model dynamic.

The singular vector (SV) method (Buizza et al., 1999) samples the analysis PDF

by perturbations which possess the largest linear growth rates over a fixed optimiza-

tion interval. The directions of such perturbations are given by the singular vectors of

the tangent linear model, which are computed by applying the tangent linear model

forward and backward. In practice, this equals an iteratively solution of an eigenprob-

lem given by the tangent linear model and its adjoint, with respect to a predefined

2At the same time, the Meteorological Service of Canada (MSC) implemented an 16-member
ensemble based on the Perturbed Observation (PO) method (Houtekamer et al., 1996). Due to its
limited success, it is not further discussed.
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energy norm. The SV method owes its success to a rapid error growth, which max-

imizes ensemble spread and various probabilistic skill scores. Analysis perturbations

x′ai are given by a linear combination of singular vectors for the norther hemisphere,

southern hemisphere and the tropics, each scaled by analysis error estimates (Molteni

et al., 1996). The ensembles generated in this work have been finally initialized by a

different ensemble system (see the discussion of Section 4.1.2), and therefore, the SV

method is not discussed in further detail.

The breeding vector (BV) method (Toth and Kalnay, 1993, 1997) has been es-

tablished at NCEP and is based on the notion, that uncertainties in the analysis

are dominated by short-range forecast errors. Initial random perturbations added to

the analysis xa will, after a sufficient number of assimilation cycles, grow into the

direction of the leading local Lyapunov vectors of the dynamical system3. If pertur-

bations are rescaled at the end of each assimilation cycle, growing perturbations will

amplify with respect to nongrowing perturbations. The BV method comes with no

further expense and may be divided in the following steps: (i) a random perturbation

is added initially to the analysis, (ii) the model is integrated forward in time from

the perturbed and control analysis, (iii) the difference of both is formed and rescaled,

(iv) the negative and positive (paired) of this difference define the new perturba-

tions added to the control analysis. This procedure is cycled, restarting from (ii). It

is stressed again, that any initial random perturbation introduced at (i) will evolve

according to the local stability properties of the underlying atmospheric flow. The

breed vectors evolve according to the full nonlinear model, unlike the singular vectors

which are computed under the assumption of linearity. The BV method samples the

analysis PDF by the breeding vectors, and the analysis perturbations can be written

as

x′ai = R(λ, φ, t)xBV
i , (2.3)

where xBV
i denotes the ith breeding vector and R defines a regional rescaling factor,

with λ the latitude and φ the longitude, which modifies the perturbation amplitude

according to a spatial climatological difference in the analysis error variance derived

by two different perturbed data assimilation cycles (Toth and Kalnay, 1997).

This investigation makes use of initial condition perturbations constructed by

the Ensemble Transform method with rescaling (ETR, (Wei et al., 2008)), which is

thereupon introduced more formally. The ETR method is based on the notion, that

breeding is suboptimal in that it is firstly, not consistent with the data assimilation

system, as perturbations do not project on the analysis error variance and the regional

3Local Lyapunov vectors define the directions in which random perturbations will grow. Their
associated Lyapunov exponents determines convergence or divergence of neighboring points in the
phase space and hence, characterize the system’s stability (within the linear approximation). The BV
method is a ”nonlinear generalization of the method used to construct Lyapunov vectors” (Kalnay,
2003). For a review, the reader is referred to Kalnay (2003) and Strogatz (2014).
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rescaling mask is constructed based on a climatology, and secondly, perturbations

do not effectively cover the possible degree of freedom as they are not necessarily

orthogonal, but paired. The ETR method can be understood as an extension of the

BV method, which addresses both shortcomings.

In the Ensemble Transform (ET), analysis perturbations are obtained by

X′a = X′fT, (2.4)

where X′f = {x′f1 , . . . ,x
′f
N} and X′a = {x′a1 , . . . ,x′aN} are K × N matrices with the

ith column given by x′fi = x′i − xf and x′ai = xai − xa, respectively, and K the model

state dimension. The ensemble mean forecast is defined as xf = 1
N

∑N
i=1 xfi . The

transformation matrix T is chosen such that initial conditions in the ensemble shall

be restrained explicitly by the analysis error covariance

TT (X′f
T
P−1
a X′f )T = I. (2.5)

The matrix Pa is assumed to be diagonal and contains analysis error variances, es-

timated by an assimilation system. Equation (2.5) ensures, that the variance of the

analysis perturbations X′a equals that of Pa, under the assumption that X′f reflects

the real forecast variances. The transformation matrix T is obtained by solving the

eigenvalue problem

XfT P−1
a Xf = CΓC−1, (2.6)

where the orthogonal eigenvectors ci are listed column-wise in matrix C and the

eigenvalues λi are listed in descending order in the diagonal matrix Γ, with i ∈
{1, · · · , N}. Wei et al. (2008) shows that only the first N − 1 eigenvalues are non

zero. Thereupon, a matrix G may be defined, which sets the Nth eigenvalue to a

non zero constant, and the transformation matrix T is derived as

T = CG−1/2. (2.7)

Analysis perturbations of the ET are orthogonal under a norm defined by the inverse

of analysis error variance Pa, however, they are not centered, which might degrade the

ensemble mean forecast. To ensure that
∑N

i=1 x′ai = 0 holds, a simplex transformation

is applied and the final transformation matrix reads

Tp = CG−1/2CT . (2.8)

The simplex transformation preserves the analysis covariance, but a finite number

of ensemble member becomes quasi-orthogonal. The ETR method has proven to

outperform the simple breeding method in various probabilistic skill scores (Wei et al.

(2008)).
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2.3 Representation of model error

Meteorological ensembles are well known to overestimate the atmospheric pre-

dictability (Buizza et al., 1999), which appears most prominently in convection-

permitting ensembles of the short-range (Romine et al., 2014). Even if one may

assume perfect knowledge of the analysis distribution, the resulting ensemble still

exhibits underdispersiveness (Palmer et al., 2005; Wilks, 2005). The inherent uncer-

tainty in model formulation cannot be neglected in general, which may limit atmo-

spheric predictability to the same extend as initial condition error. This is especially

true for severe weather events, e.g. explosive cyclogenesis (Mullen and Baumhefner,

1988).

Model errors are complex in their nature and far from being fully understood.

They originate mainly from processes which appear on the sub-grid scale. Different

stochastic parameterizations have been proposed and proven to increase the ensemble

spread, while maximizing the ensemble reliability (Berner et al., 2011; Christensen

et al., 2015). Their beneficial impact has also been reported for ensemble data assim-

ilation (Ha et al., 2015), as model errors affect the uncertainty introduced by initial

conditions and vice versa. Multiple types of approaches exist, since model errors

stem from many different sources. Most of the operational schemes are formulated as

stochastic reinterpretations of deterministic parameterizations, and are somewhat ad

hoc, as they are based on empirical assumptions which are formulated a priori. How-

ever, the merit of existing schemes goes beyond simply increasing ensemble spread,

which is in general feasible to be addressed by postprocessing, but to trigger possi-

ble instabilities in the underlying flow to represent the range of possible outcomes.

Surely, the final goal to be accomplished are true stochastic parameterizations which

account for uncertainty where it actually appears.

Here, the description is restricted to the Stochastically Perturbed Parameteriza-

tion Tendency (SPPT) scheme and the Stochastically Kinetic Energy Backscatter

(SKEB) scheme, as both have been implemented in the WRF model following closely

their formulation in the ECMWF EPS ensemble. SPPT represents sub-grid scale

variability of parameterizations by sampling the net parameterized physics tenden-

cies around their deterministic value. In contrast, SKEB accounts for spurious model

dissipation by stochastically injecting energy across various spatial scales. Despite

their numerous shortcomings (Shutts, 2015), both schemes have become broadly es-

tablished in ensembles of global circulation models (Berner et al., 2009; Palmer et al.,

2009; Charron et al., 2010; Sanchez et al., 2016) as well as mesoscale models (Berner

et al., 2011; Tennant et al., 2011; Bouttier et al., 2012; Berner et al., 2015; Shutts,

2015). Their complementary has been proven in numerous studies (Romine et al.,

2014; Jankov et al., 2017), as the forcing introduced by SPPT is the largest in the

tropics and in the planetary boundary layer, and by SKEB in the free atmosphere
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and in case of strong cyclogenesis.

2.3.1 Stochastically Perturbed Parameterization Tendency scheme

By definition, physical parameterizations are estimations of unresolved atmo-

spheric processes appearing on the sub-grid and/or evolving by processes which are

insufficiently understood. Even parameters within parameterizations, arising e.g.

from closure assumptions or estimations of probabilistic mean values, possess a sig-

nificant uncertainty. Their feedback on the resolved flow is sometimes understood

as an ensemble mean of plausible ranges consistent with the resolved-scale forcing,

e.g. for cumulus parameterization (Arakawa and Schubert, 1974). This assumption is

condemned to fail with the ever increasing resolution of atmospheric models, and in

one way or the other, a transition to a stochastic reformulation of parameterizations

is inevitable.

The Stochastically Perturbed Parameterization Tendencies (SPPT) scheme does

so in a straight forward manner by introducing univariate multiplicative noise to the

net parameterized physics tendencies and reformulating their contribution to the to-

tal local tendency at each grid point as a sample of a probability density function,

which is centered on their deterministic value. With the nomenclature introduced

for (2.1), the tendency equation for the prognostic variables x ∈ {u, v, q, T}, with u

and v the wind vector components, q the humidity and T the temperature, may be

written as
∂[x]dyn

∂t
+
∂[x]param

∂t
, (2.9)

and a perturbed parameterization tendency is then defined as

∂[x]dyn

∂t
+
∂[x]param(stoch)

∂t
=
∂[x]dyn

∂t
+ (1 + r(x, y, z, t))

∂[x]param

∂t
, (2.10)

where r is a pattern which imposes spatial and temporal correlation on perturbations.

Formulations of SPPT in various ensemble systems differ essentially by the choice of

r. Here, it is restricted to the formulation as implemented in WRF, following Berner

et al. (2015).

Perturbations are drawn from a truncated Gaussian noise process in the range

r ∈ [−1, 1], with prescribes standard deviation η. Variations in the vertical are omitted

to retain conservation laws imposed by the parameterizations, yet no instabilities in

the planetary boundary layer have been reported for the WRF model. For the X×Y
horizontal grid, the stochastic pattern r is defined in spectral space as

r(x, y, t) =

K/2∑
k=−K/2

L/2∑
l=−L/2

rk,l(t)e
2πi(kx/X+ly/Y ), (2.11)
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with Fourier modes rk,l depending on wavenumbers k, l in zonal x and meridional y

direction of WRF’s rectangular grid, respectively. A first-order autoregressive process

imposes temporal correlation

rk,l(t+ ∆t) = (1− α)rk,l(t) + tk,l
√
αεk,l(t), (2.12)

such that small perturbations are associated with a short temporal range and vice

versa. This describes a Markov process, (1−α) is the autoregressive parameter with

α = ∆t/τ ∈ (0, 1] and τ the decorrelation time. εk,l is a complex Gaussian white noise

process with zero mean and covariance 〈ε(s)k,lε∗(t)m,n〉 = σ2δk,mδl,nδs,t, with σ2 set

to one. The variance spectrum of the first-order autoregressive process is determined

by the amplitudes tk,l, which are defined such that they yield an autocorrelation

according to a Gaussian on a plane:

tk,l = F0exp(−4πκρ2
k,l), (2.13)

with ρ =
√
k2/X2 + l2/Y 2 the radial wavenumber and κ the spatial correlation

length, as derived by Weaver and Courtier (2001). F0 denotes a normalization factor

that depends linearly on the spectral variance η2
k,l:

F0 =

(
ηk,l(2α− α2)

2
∑

k

∑
l exp(−8πκρ2

k,l)

)
. (2.14)

The stochastic pattern’s quantities determine directly the forcing of the scheme, with

the tuning parameters of standard deviation η as well as temporal and spatial corre-

lation τ and κ, respectively. The default values in the WRF model are η = 0.5, with

cuttoff tails above 2.0, τ = 21600 s and κ = 150 km.

Instead of a univariate formulation, one may think of perturbing each physics ten-

dency independently, which was the initial ansatz proposed by Buizza et al. (1999) in

the ECMWF EPS ensemble. However, multivariate perturbations are less consistent

with the model physics, decrease the skill of tail distribution statistics and generate

gravity waves (Palmer et al., 2009). The system tends to be pushed from its preferred

attractor too often, which may exceed the range of model uncertainty.

The forcing imposed by SPPT is flow-dependent, as the perturbation magnitude

scales with the accumulated tendencies. However, the probability distribution of

certain parameterizations varies strongly depending on the geographical location or

height. Further, uncertainties evolving in the vertical, e.g. the shape of a momentum

profile in the planetary boundary layer, can not be represented.
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2.3.2 Stochastic Kinetic Energy Backscatter scheme

The Stochastic Kinetic Energy Backscatter (SKEB) scheme was originally devel-

oped in the context of large-eddy simulations (Mason and Thomson, 1992) to account

for unresolved energy transfer from the sub-grid scales to the resolved scales, known

as an inverse energy cascade. Parts of the dissipated energy are reinjected stochas-

tically as kinetic energy to mimic an energy spectra derived by the counterpart of a

direct numerical simulation (Frederiksen and Davies, 2004). This idea was exported

to NWP ensembles (Shutts, 2005; Berner et al., 2009), motivated by the excessive

energy dissipation over various scales (Nastrom and Gage, 1985; Palmer et al., 2009).

Net energy sinks arise from parameterizations as well as the dynamical core, in parti-

cular from unbalanced motions of orographic wave drag, convection and gravity waves

as well as numerical dissipation. Hence, in the context of NWP models, the SKEB

scheme is not confined to the vicinity of the truncation scale, but energy is even

injected upscale to the subsynoptic and synoptic scale. Coarse-graining experiments

support this assumption by identifying energy sinks across the entire wavenumber

spectrum (Palmer et al., 2009; Shutts, 2013). Their high-resolution counterparts are

used to tune the SKEB in a way to correct the energy spectrum accordingly, yet in a

heuristic fashion.

The SKEB scheme introduces additive noise to the tendency equation (2.1), such

that
∂[x]dyn

∂t
+
∂[x]param

∂t
(2.15)

may be rewritten as
∂[x]dyn

∂t
+
∂[x]param

∂t
+
∂[x]SKEB

∂t
. (2.16)

Formulations of SKEB in various ensemble systems differ by the choice of prognostic

variables subject to perturbation, i.e. [x]SKEB ⊆ {u, v, T}, the dissipative sources

which are associated with such perturbations and the stochastic pattern r. Here, it is

yet again restricted to the formulation as in the WRF model, following Berner et al.

(2011).

A streamfunction tendency forcing ψ′(x, y, t) := ∂ψ(x, y, t)/∂t and a potential

temperature tendency forcing θ′(x, y, t) := ∂θ(x, y, t)/∂t are introduced to inject a

domain averaged perturbation kinetic energy E′kin = ∆Ekin/∆t and perturbation

potential energy E′pot = ∆Epot/∆t at each time step ∆t. The associated forcings are

defined in two-dimensional spectral space:

ψ′(x, y, t) =

K/2∑
k=−K/2

L/2∑
l=−L/2

ψ′k,l(t)e
2πi(kx/X+ly/Y ), (2.17)
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θ′(x, y, t) =

K/2∑
k=−K/2

L/2∑
l=−L/2

θ′k,l(t)e
2πi(kx/X+ly/Y ), (2.18)

with the nomenclature of the Fourier expansion already introduced in the previous

section. Perturbations of the wind vector are confined to the rotational part to pre-

serve the dynamical balance between pressure and wind, with u′(x, y, t) = −∂ψ′(x,y,t)
∂y

and v′(x, y, t) = ∂ψ′(x,y,t)
∂x the zonal and meridional wind tendency forcings, respec-

tively.

Finite temporal correlations are imposed by evolving each spectral coefficient ac-

cording to a first-order autoregressive process:

ψ′k,l(t+ ∆t) = (1− αψ)ψ′k,l(t) + gk,l
√
αψεk,l(t), (2.19)

θ′k,l(t+ ∆t) = (1− αθ)θ′k,l(t) + hk,l
√
αθεk,l(t). (2.20)

This process has already been described in-depth in the previous section by (2.12).

Here, αψ/θ = ∆t/τψ/θ ∈ (0, 1] again denotes the autoregressive parameter, with τψ/θ

the decorrelation time. In the WRF model, temporal and spatial constant dissipation

rates are assumed and hence, quantities of the first-order autoregressive process will

directly transfer to the effective perturbations. This appears as a somewhat drastic

simplification. However, Berner et al. (2011) shows that results are quite similar

compared to a flow-dependent dissipation rate, as estimations of the true dissipation

rate remain a challenge. One aims to prescribe the injected energies with a given

power spectrum, yielding noise amplitudes of the form

gk,l = bρβk,l, (2.21)

hk,l = fργk,l. (2.22)

The amount of backscattered dissipated energy determines the amplitudes b and f of

the forcings. For the streamfunction, an energy backscatter rate Bψ injects a total

kinetic energy ∆Ekin per unit mass into the full flow during a numerical time step

∆t:

Bψ =
∆Ekin

∆t
=

2π2

∆t

K/2∑
k=−K/2

L/2∑
l=−L/2

ρ2
k,l〈|ψk,l(t+ ∆t)|2 − |ψk,l(t)|2〉 (2.23)

=
2π2σ2

ψ∆t

αψ

K/2∑
k=−K/2

L/2∑
l=−L/2

ρ2β+2
k,l b2. (2.24)
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Solving for b yields:

b =

(
Bψαψ

2πσ2
ψΓψ∆t

) 1
2

, with Γψ =

K/2∑
k=−K/2

L/2∑
l=−L/2

ρ2β+2
k,l . (2.25)

This implies, that a streamfunction forcing with power law ρβk,l will result in a kinetic

energy spectrum with power law ρ2β+2
k,l (in radial wavenumber). Advancing in the

same manner for the potential temperature, an energy backscatter rate Bθ injects

during a numerical time step ∆t a total potential energy ∆Epot per unit mass into

the full flow:

Bθ =
∆Epot

∆t
=

cp
2θ0∆t

θ2 =
cp
θ0∆t

K/2∑
k=−K/2

L/2∑
l=−L/2

〈|θk,l(t+ ∆t)|2 − |θk,l(t)|2〉 (2.26)

=
cpσ

2
θ∆t

θ0αθ

K/2∑
k=−K/2

L/2∑
l=−L/2

ρ2γ
k,lf

2, (2.27)

with θ0 = 300 K a reference potential temperature used in the WRF model and

cp = 1004 J/K the specific heat capacity. Solving for f yields

f =

(
Bθαθθ0

cpσ2
θΓθ

∆t

) 1
2

, with Γθ =

K/2∑
k=−K/2

L/2∑
l=−L/2

ρ2γ
k,l. (2.28)

This implies, that a potential temperature forcing with power law ργk,l will result in a

kinetic energy spectrum with power law ρ2γ
k,l (in radial wavenumber). The derivation

of (2.24) is given in the appendix of Berner et al. (2009) (in spherical coordinates for

a global circulation model), and (2.27) is derived analogously.

In the WRF model, the SKEB scheme is fully controlled by the tuning parame-

ters β, γ, σ2
ψ, σ

2
θ , τψ, τθ, Bψ, Bθ. Default values are β = γ = −1.83, which results in a

perturbation kinetic energy spectrum of −5/3 and in a perturbation potential energy

spectrum of −10/3. The noise variance is set to σ2
ψ = (1/12)αψ, σ2

θ = (1/12)αθ and

decorrelation times are τψ = τθ = 10800 s. The backscattered energy rates are chosen

as Bψ = 10−5 m2/s3 and Bθ = 10−6 m2/s3. For comparison, Berner et al. (2009) re-

ports an annual global mean dissipation rate in the ECMWF model of 1.99 W/m2 for

deep convection. With an air density of 1 kg/m3 and an air column of 1 km height, this

yields 1.99 × 10−3 m2/s3 per unit mass. With the remaining sources approximately

of the same order, and assuming 1/10 of the dissipated energy being backscattered

(according to Palmer et al. (2009)), a value of 10−3 m2/s3 may be estimated. The

choice of backscatter rates in the WRF model is therefore rather conservative.

Current implementations of the SKEB schemes in operational ensemble systems
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do not come without criticism. Thuburn et al. (2013) and Shutts (2013) conclude,

that at least parts of the energy sinks are likely to be of systematic nature and should

rather be fixed in a deterministic manner. Further, with increasing model resolu-

tion, perturbations across the whole wavenumber range used by SKEB scheme will

most likely not be justifiable any more. However, as such issues remain unresolved,

the SKEB scheme states an attractive approach to account for the excessive energy

dissipation problem by a probabilistic approach, while, at the same time, increasing

ensemble spread and improving probabilistic skill scores.

2.4 The Sequential Importance Resampling Filter

The survey of fully nonlinear data assimilation in atmospheric science has drawn

large attention to Sequential Monte Carlo techniques, or simply the particle filter.

Particle filters belong to the class of recursive Bayesian estimators and solve the full

data assimilation problem, with the only approximation being the limited ensemble

size. For a comprehensive review, the reader is referred to van Leeuwen (2009).

The particle filter relates a posterior weights to ensemble members, which estimate

the likelihood of each model state given the observations. The prior density of the

model state x may be formulated as the sum of δ-functions, centered around each

ensemble member model state:

p(x) =
1

N

N∑
i=1

δ(x− xi), (2.29)

with N the ensemble size. By applying Bayes’ theorem, we find that the a posteriori

density of the model state, given observations y, reads

p(x|y) =
p(y|x)p(x)

p(y)
. (2.30)

Using the particle filter expression for the prior density, it follows

p(x|y) =

N∑
i=1

wiδ(x− xi), (2.31)

where the weights wi are given by

wi =
p(y|xi)∑N
j=1 p(y|xj)

. (2.32)

This formulation is known as Sequential Importance Sampling (SIS), or simply the

basic particle filter. However, especially for high dimensional systems like the atmo-

sphere, the ensemble size is very much limited and the basic particle filter tends to
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degenerate. A single member is assigned with all the importance weight, with the

statistical information of the system being lost. Snyder et al. (2008) shows, that the

ensemble size has to grow exponentially with the variance of the observation log like-

lihood τ2 = var
[
log
(
p(y|x)

)]
to prevent filter degeneracy. Since τ2 is proportional to

the dimension of the state vector, the basic Particle Filter is unfeasible in the realm

of high dimensional systems.

Sequential Importance Resampling provides a way to reduce the variance among

the ensemble member. Resampling proceeds from the weighted approximate posterior

density by (2.31), and draws N samples to form an unweighted posterior density

p̂(x|y) =

N∑
i=1

wi
ni
N

(x− xi), (2.33)

where ni denotes the duplication count of particle xi, with N =
∑N

i=1 ni. Different

resampling algorithms exist, a general overview is given in Douc et al. (2005)). Here,

the description is restricted to residual resampling (Lui and Chen, 1998) and stratified

resampling (Kitagawa, 1998), as both are implemented consecutively in ESIAS-met.

Residual resampling draws

n′i = max{n′i ∈ Z+ |n′i < Nwi} (2.34)

copies of each particle xi. The remaining m = N−
∑N

i=1 n
′
i particles are each assigned

with a probability w′i = Nwi − n′i. It remains to draw n′′i copies of each particle xi,

such that N =
∑N

i=1(n′i + n′′i ), using a stochastic resampling algorithm. This is

realised by stratified resampling, in which an interval I = [0, 1] is partitioned into m

disjoint sets I := ∪̇i∈mIi, with the length of Ii according to weight w′i:

Ii =
( i−1∑
j=1

w′j ,
i−1∑
j=1

w′j + w′i

]
, for i = 1, . . . ,m. (2.35)

A random number is drawn from the uniform distribution on [0, 1], and starting from

this random number, m equally sized disjoint sets L = ∪̇kLk of length 1/m, with

k = 1, . . . ,m, are overlayed on interval I. If the end of Lk lies in Ii, n
′′
i is incremented

by one. If n′i+n′′i > 1, multiple copies of the same model state are subject to different

model error representation in upcoming assimilation cycle.

Resampling may become computational costly, especially in the vicinity of large

ensemble sizes, as an increasing number of comprehensive model states has to be

duplicated. It is a common procedure in geophysical applications to set a fixed re-

sampling interval. However, this appears suboptimal, since the variance among the

ensemble members depends on the predictability of the underlying flow, and not on
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the forecast time. Adaptive resampling provides a means to monitor flow dependent

variance to perform a resampling step only when it is needed. For this purpose, an

effective sample size is taken as

Neff =
1∑N

i=1w
2
i

. (2.36)

Sequential Importance Resampling is essential for the performance of particle

filter methods. However, filter degeneracy is not cured. The ensemble is integrated

forward in time from a posterior that has been disposed from ensemble members with

low importance weight, but the quality of the posterior itself remains unaffected.



Chapter 3

ESIAS – Ensembles for

Stochastic Integration of

Atmospheric Systems

This chapter describes the appropriate software developments for generating ultra

large meteorological ensembles on a high-performance computer. These developments

are part of the software Ensembles for Stochastic Integration of Atmospheric Systems

(ESIAS). ESIAS is designed to control an ensemble implementation of the Weather

Research and Forecasting (WRF) model, denoted as ESIAS-met, with the dynamical

correspondance to ESIAS-chem (Franke, 2018), an ensemble version of the European

Air Pollution and Dispersion Inverse Model EURAD-IM (Elbern et al., 2007). The

system aims to investigate short to medium range probabilistic limited area forecasts

as well as emission and parameter estimation with the integration of novel algorithms

in the realm of data assimilation and ensemble generation.

The WRF model is described to the extend of providing the necessary background

for the software developments to follow. ESIAS has been developed on a Blue Gene

supercomputer, which is introduced, and a description about porting and tuning

the WRF model is provided. A computational analysis reveals the necessity for

code modifications of WRF’s model uncertainty schemes. As the main objective of

this chapter, a computational efficient system controlling numerous WRF ensemble

members is introduced. This system states a complete novel software approach to

execute ensemble forecasts concurrently and is in particular favorable for Sequential

Importance Resampling with large ensemble sizes. The chapter closes with a proof

of concept to demonstrate the parallel scalability of the system.

21
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3.1 The Weather Research and Forecasting (WRF)

model

The underlying NWP model of the ultra large ensemble control system ESIAS-

met is the Weather Research and Forecasting (WRF) Model (Skamarock et al., 2008).

WRF is a limited area NWP model for nonhydrostatic modelling. Since the initial

release by the end of 2000, WRF has grown to a community model and is used

extensively for research and operational real-time forecasting at numerous research

organizations and the private sector throughout the world.

The WRF model arose as a successor of the MM5 Model (Grell et al., 1994)

and has been developed jointly by the National Center for Atmospheric Research

(NCAR), the National Oceanic and Atmospheric Administration (NOAA, which has

been represented by the National Centers for Environmental Prediction (NCEP)), the

Air Force Weather Agency (AFWA), the Naval Research Laboratory, the University

of Oklahoma, and the Federal Aviation Administration (FAA), all in the USA. The

WRF modeling system consists of multiple software components, ranging from the

WRF Preprocessing System (WPS) and the WRF model itself to the WRF Data

Assimilation System (Barker et al., 2004; Huang et al., 2009) as well as associated

postprocessing utilities. A detailed description of the complete WRF modeling sys-

tem can be found in Skamarock et al. (2008).

At the beginning of every forecast with the WRF modeling system is the pre-

processing of terrestrial and meteorological input data with WPS, which is divided

in multiple steps by associated programs. Within the ungrib program, gridded me-

teorological analysis and forecast fields, typically originating from global circulation

models, are encoded, uncompressed and filtered. Terrestrial data is processed, pro-

jected and horizontally interpolated on the user defined domain within the geogrid

program. The metgrid program merges the output from the ungrib and geogrid

program by interpolating horizontally the meteorological input data onto the model

domain. Vertical interpolation is done by the real program, which provides the me-

teorological initial and boundary fields for the dynamical solver. This procedure is

depicted in Figure 3.1.

Two different dynamic solvers are available in the WRF modeling system, from

which the Advanced Research WRF (ARW) solver version 3.7.1 is used in this work.

Within the ARW solver, sophisticated numerical methods are employed. The fully

compressible nonhydrostatic Euler equations are solved, which include the conserva-

tions of momentum, mass, energy and water vapor as well as the prognostic geopo-

tential equation along with the diagnostic relations for the full pressure (vapor and

dry air) and the dry inverse density. The vertical coordinate is a terrain-following hy-

drostatic pressure coordinate (Laprise, 1992), commonly know as σ-coordinates, and
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Figure 3.1: Flowchart of the WRF modeling system with the Preprocessing System
(WPS) and the Advanced Research WRF (ARW) solver. Green parallelograms in-
dicate external input data and blue parallelograms model output and intermediate
files.

vertical mesh refinement is enabled. Spatial discretization is realized by the finite

difference scheme using an Arakawa C-grid staggering (Arakawa and Lamb, 1977),

where scalar values are defined at mass points and half σ-levels (except the geopoten-

tial at full σ-levels) and the wind vector components are staggered. Up to 6th-order

centered and upwind-biased advection schemes are available in the horizontal and ver-

tical direction. The time integration is realized by a 3rd-order Runge-Kutta scheme

for the low-frequency modes and a time-split integration scheme is applied for the

high-frequency acoustic and gravity-wave modes (Klemp et al., 2007). One-way and

two-way nesting is possible with multiple nesting levels. Multiple projections are

provided to map the earth’s sphere on the Cartesian grid’s plane.
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3.2 The supercomputer JUQUEEN

JUQUEEN (Jülich Supercomputing Centre, 2015) is a supercomputer hosted by

the Jülich Supercomputing Centre (JSC). With a peak performance of 5.9 Petaflops,

JUQUEEN has been ranked at position 7 in the Top500 list of the most powerful

supercomputer in June 2013. The IBM®Blue Gene/Q system consists of 28 racks

with each 2 midplanes à 16 nodeboards. In turn, each nodeboard consists of 32 com-

pute nodes and each compute node consists of 16 processors (with 16 GB memory per

node), which gives 458,752 processors in total. The IBM PowerPC® A2 processors

may execute 4 processes or threads in parallel (fourfold Simultaneous MultiThread-

ing, SMT) and four double-precision Single Instruction Multiple Data (SIMD) can

be realized. Each processor has a clock speed of 1.6 GHz, which is relatively slow

in comparison to other processors on which atmospheric models run routinely, e.g.

the Intel®Xeon E5-2697v4 18C processors of Cheyenne, NCAR, with 2.3 GHz or the

Intel®Xeon E5-2690v3 12C processors of Luna and Surge, respectively, NOAA, with

2.6 GHz. Thus, application codes on JUQUEEN have to be highly parallelized to run

efficiently, which is a crucial property of code development described in this chapter.

The network consists of a 5D Torus with 40 Gbytes/s bandwidth between two com-

pute nodes and a latency of 2 µs. The maximum I/O bandwidth is determined by

the number of allocated processors, with eight I/O nodes assigned to a single rack

and a maximum bandwidth of 2 Gbytes/s each. A detailed description of the BLUE

GENE/Q system can be found in Chen et al. (2012) and Vezolle (2012).

3.3 Computational performance of the WRF model on

JUQUEEN

3.3.1 Porting and Tuning

WRF has been built on the Blue Gene/Q architecture of JUQUEEN with the

IBM® XL compilers. A compilation with the open source GNU compilers has also

been tested, yet rejected due to poorer performance. WRF has further been built

with plain MPI support as well as a hybrid MPI + OpenMP configuration. Depending

on the ratio of domain size to allocated processors, i.e. the size of decomposed subdo-

mains, a hybrid configuration may perform moderately better only in some cases. A

plain MPI parallelization was therefore chosen to demonstrate the code performance

and a hybrid configuration is not further discussed.

Finding the most suitable compiler instructions for code optimization is a crucial

task for any code application on high-performance computers and requires detailed

sensitivity tests. Although the WRF software environment provides already compiler

instructions for an IBM Blue Gene system with XL compilers, such instructions have
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to be refused since simulation results show a dependence on the processor number.

Therefore, an optimization level of -O2 is taken as initial point in the following dis-

cussion.

An optimization level of -O3 is in principle applicable to the WRF code, yet

higher order transformation of loops has to be disabled. The option -qsimd=noauto

disables the conversion of loop array operations into vector instructions and has a

positive impact on the central processing unit (CPU) time. Further, the function

level of WRF is dominated by slow intrinsic mathematical functions and linking with

the IBM MASS library is not effective since the library contains different names of

entry points. By adding -qstrict=nolibrary to the compiler instructions, the XL com-

piler does not change the names of floating point routines and faster alternatives can

be used. The suboption -qnohot=noarraypad:level=2:novector:fastmath enables fast

scalar versions of math functions instead of the default. Reciprocal and square root

functions need special considerations on Blue Gene/Q. Scalar and SIMD estimate

instructions (e.g. Newton’s approximation method) with high throughput exist, and

their utilization can be enabled by adding -qdebug=recipf:forcesqrt . In summary, the

final compiler optimization instructions read:

-O3 -qnohot=noarraypad:level=2:novector:fastmath -qstrict=nolibrary

-qdebug=recipf:forcesqrt -qsimd=noauto -qarch=qp -qtune=qp.

Table 3.1 compares CPU times with initial and improved compiler optimization

for varying processor numbers for a fixed problem size of 330× 330× 50 grid points

and a forecast time of three hours (the fixed problem size defines the outer domain of

the nesting procedure used throughout this work and introduced in detail in Section

4.1.1). The reduction in CPU time with improved compiler optimization is up to

100 %. Figure 3.2 shows the corresponding parallel scaling with improved compiler

optimization. Since the problem size is kept fixed, this states the notion of strong

scaling in the notation of high performance computing. The parallel scaling perfor-

mance decreases noticeably beyond 256 processors and therefore defines the maximum

processor number for each ensemble member used for production runs.

3.3.2 Performance analysis of a single WRF run

The computational performance of the WRF model on JUQUEEN has been mon-

itored and evaluated with the Scalasca Tools version 1.3.0 (Geimer et al., 2010) with

trace analysis support by Score-P (Knüpfer et al., 2012). The following performance

metrics are computed with the improved compiler optimization described in the pre-

vious section for a single WRF run without model perturbation, referred to as a

control run. The forecast time is again three hours for the fixed problem size. A

typical number of 256 processors is allocated and 32 ranks have been put on a node,
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Table 3.1: CPU times for the WRF model on JUQUEEN with initial and improved
compiler instructions and varying processor number. The forecast time is three hours
for a fixed problem size.

# processors initial compiler instructions improved compiler instructions

512 119 s 66 s
256 192 s 108 s
128 322 s 205 s
64 593 s 363 s
32 1125 s 686 s
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Figure 3.2: Parallel scaling behavior of the WRF model on JUQUEEN for a fixed
problem size (dashed line). The speed up has been normalized to 32 processors and
a perfect speed up is shown for comparison (solid line). Corresponding CPU times
are given in Table 3.1, third column.

i.e. 32 processes are realized on each node. Further SMT is not limited by memory

(∼ 100 MB per processor), but does not necessarily lead to performance improve-

ments due to additional expenses during parallel I/O instructions. The application

is in general compute-bound with 70 % and MPI tasks require up to 20 %. Point-

to-point MPI calls prevail over collective calls since a local discretization scheme is

utilized. The average MPI message size is 16 kB and load imbalance is acceptable

with up to 5 % of the total CPU time. At least in the case of a WRF run without a

model perturbation scheme, a computational bottleneck can not be monitored.

Numerous I/O strategies suitable for different problem sizes are provided by the

WRF model. Model output may be written individually by each processor into sepa-

rate files. As favorable this strategy may appear on other systems, it is exceptionally

slow on JUQUEEN due to the inability of the GPFS file system to process a large
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number of I/O instructions congruently. WRF also offers the possibility of quilting,

that is the privation of exclusive I/O processes. However, such a partitioning appears

to be disadvantageous, since the domain is only moderately large and the application

CPU-bound, hence, computational resources are rather invested in compute tasks.

To conclude, performing parallel I/O in a classical manner with PnetCDF support

turns out to be most suitable.

The I/O behavior on JUQUEEN has been monitored and evaluated with the char-

acterization tool Darshan version 2.3.1 (Carns et al., September 2009). Aggregated

I/O costs are about 10 % of the total CPU time. The bulk of this time is due to

collective calls of parallel NetCDF operations (i.e. MPI-IO) to build larger blocks.

The costs of POSIX I/O (standard output and metadata) are negligible compared to

MPI I/O (input of initial and boundary values as well as output file). An average

43 MB/s of I/O throughput can be estimated for the fixed problem size.

3.3.3 Computational improvement of SPPT and SKEB

The previous section addressed a performance analysis of the WRF model

without model perturbation. Here, it is turned to the the case in which model

uncertainty is either represented by the SPPT or SKEB scheme (see Section 2.3 for

a detailed description of both schemes). If either one of the schemes is utilized,

CPU times increase drastically and a distinct bottleneck can be identified, which is

associated with the stochastic pattern generator used by both schemes. This matter

is discussed in the following with different approaches of improvement.

In the SPPT and SKEB scheme, random numbers are generated in

two-dimensional spectral space on the rectangular grid to either formulate a

parameterization tendency perturbation or a tendency forcing, respectively. The

energy associated with such forcings shall be transformed to physical space as a

whole, and therefore, it has to be ensured that the Fourier back transformation

is real-valued. This constraint is fulfilled as long as the symmetry condition

<(ϑ(k, l)) = <(ϑ(−k,−l)) and =(ϑ(k, l)) = =(−ϑ(−k,−l)) holds, where ϑ ∈ {r, ψ′, θ′}
denotes the spectral coefficients of both schemes according to (2.11), (2.17) and

(2.18). This implies that the real and imaginary parts of ϑk,l have to be an even or

odd function of wavenumbers k and l, respectively. The spectral coefficients evolve

according to a first-order autoregressive process (see (2.12), (2.19) and (2.20)), and

hence, the symmetry condition translates directly to the generation of a complex

Gaussian white noise εk,l on the two-dimensional grid, depicted in Figure 3.3. In the

officially released WRF code, the symmetry condition is simply realized by using

global indexes for the calculation of εk,l and the necessary symmetry conditions can

be implemented in a straight forward manner since random numbers exist over the

whole domain and are identical on every processor. This implies for each process
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Figure 3.3: Necessary symmetry conditions of complex Gaussian white noise εk,l in
spectral space to be ensured for the stochastic pattern generation in the SPPT and
SKEB scheme. Orange points mark symmetry points associated with areas of same
color, but with a change of sign. Black colored areas are left disregarded. Note that
the inner symmetry point does not coincide with the domain centre, but is shifted by
one grid point to the right.

the utilization of a pseudo random number generator1(PRNG) for every grid point

of the entire domain at every time step, to use a Box Muller transform to compute

εk,l. Mentionable, the procedure has to be done once in case of the SPPT scheme

and twice in case of the SKEB scheme. Adopting the nomenclature of Romine et al.

(2014), this initial implementation is denoted simply as STOCH code hereafter.

The STOCH code appears to be exceptionally slow on JUQUEEN, since the

computational expenses per processor are high, while the processors themselves

possess a relatively slow clock speed. The second column in Table 3.2 lists CPU

times of the WRF model with SKEB for varying number of processors. The

simulation setup is chosen identical as in Section 3.3.2. Starting with 32 processors,

CPU times of the WRF model approximately double compared to an unperturbed

run (see Table 3.1 for comparison). However, in case of 512 processors, CPU

times increase up to a factor of 14, as computational expenses for each processor

are independent of the processor number. Two competitive approaches have been

investigated to solve this issue, with associated CPU times listed in the remaining

1The XL compilers use per default a classic multiplicative congruential method (Park and Miller,
1988) for pseudo random number generation.
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Table 3.2: CPU times of the WRF model with the SKEB scheme and varying pro-
cessor number for different implementations of the STOCH code. STOCH denotes the
initial implementation. The simulation setup is chosen identical as in Table 3.1.

#processors STOCH STOCH PARALLEL STOCH PARALLEL STOCH SEED

(collective MPI) (point-to-point MPI)

512 925 s 96 s 87 s 106 s
256 973 s 159 s 145 s 164 s
128 1094 s 273 s 251 s 283 s
64 1302 s 505 s 470 s 500 s
32 1780 s 968 s 921 s 962 s

columns of Table 3.2. The different approaches will be introduced in the following.

The most straightforward approach to improve the computational performance

of the STOCH code is to parallelize the computation of εk,l over the model grid.

Each processes calculates unique random numbers exclusively over the decomposed

subdomain, with subsequent MPI communication thereafter. This implementation

is denoted as STOCH PARALLEL code. To ensure different random numbers on

different processes, a unique tag defines itself by each processes’ rank within the

MPI COMM WORLD and is added to the initial seed of the PRNG. The necessary MPI

communication has been implemented via collective MPI, i.e. random numbers from

each subdomain are broadcasted to all processes, as well as point-to-point MPI, i.e.

communication exclusively at matching symmetry points. The implementation with

point-to-point MPI communication appears nontrivial since the centre of symmetry

does not coincide with the domain centre (see Figure 3.3), and a partitioning of

the domain among the processes is not necessarily even. This instance excludes

block-wise code implementation to ensure universality. The correctness of this

implementation is simply verified by collective MPI communication. Note that

simulation results with this implementation depend on the process number and

therefore differ from results obtained with the STOCH code.

In a second approach, random numbers are again exclusively computed over the

processes’ decomposed subdomain. Yet, it is ensured that identical random numbers

exist at symmetry points. In practice, a unique seed for the PRNG has to be defined

for each grid point and time step of the decomposed subdomain, which is identical

at symmetry points but different elsewhere. This tag is added to the initial seed of

the PRNG during model initialization and modified during model integration by

an additional time step dependent scalar. As PRNGs tend to exhibit artifacts in

the statistical distribution of random numbers, an additional large prime number

ensures a more uniform spread of random numbers over the plane. The necessity

of MPI communication is therefore excluded and it is referred to the STOCH SEED
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code hereafter. Note that simulation results obtained with this implementation are

independent of the process number, but again differ from the results obtained with

the STOCH SEED code.

Returning to the efficiency results given in Table 3.2, all modified versions of the

STOCH code reduce CPU times and increase the parallel scalability to an extend

comparable with an unperturbed WRF model run. Additional computational

expenses of approximately 20 % have to be invested for the SKEB scheme,

whereas this value reduces to about 10 % for the SPPT scheme (not shown here).

Surprisingly, both implementations of the STOCH PARALLEL code perform slightly

superior to the STOCH SEED code, although no MPI communication is involved in

the latter. Hence, initialization of a pseudo-random number sequence with the

FORTRAN procedure RANDOM SEED appears to be slower on JUQUEEN than an

associated MPI communication. The STOCH PARALLEL code with point-to-point

communication performs best for all given processor numbers. Collective

communication appears to be disadvantageous, since a latency of 2 µs ensures little

computational expenses as the number of pending MPI requests increases with

decreasing processor number.

It remains to be shown, that for N → ∞ and vanishing sampling error, with N

the number of ensemble members, the ensemble’s statistical properties obtained with

either the STOCH PARALLEL or STOCH SEED code are identical with those obtained

with the initial STOCH code. For this purpose, several test runs under different

atmospheric conditions have been carried out to investigate the spatial and temporal

evolution of the ensemble mean xf = 1
N

∑N
i=1 xfi , and the ensemble spread, defined

as the standard deviation of ensemble members around the ensemble mean:

ES(Xf ) =

√√√√ 1

N

N∑
i=1

(xfi − xf )2, (3.1)

where Xf = {xf1 , . . . ,x
f
N}, with the nomenclature of Chapter 2. It is suggested,

that a point-wise root mean square comparison over the domain is a robust norm

to compare simulations results obtained with the initial STOCH code and modified

versions, which reads for xf and in case of a two-dimensional variable:

RMSE
(
xf − xf STOCH

)
=

√
1

XY

∑
x

∑
y

(
xf

(x,y)
− xf

(x,y)

STOCH

)2
, (3.2)

with X,Y the number of horizontal grid points in each direction and xf STOCH the

ensemble mean obtained with the STOCH code. RMSE
(
ES(xf )−ES(xfSTOCH)

)
is defined

accordingly.
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Figure 3.4: RMSE of increments in ensemble mean of 100 m wind speed obtained with
the initial STOCH code and the modified versions STOCHPARALLEL (blue lines) as well as
STOCHSEED (orange lines). The SKEB ensemble shares identical initial conditions.
Solid lines denote 8 members, dashed lines 32 and dashed-dotted 128. The forecast
is initialized at 00 UTC 23 June 2014.
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Figure 3.5: Same as Figure 3.4, but for ensemble spread.

Here, the discussion is restricted to a single model run, initialized at 00 UTC 23

June 2014, and a forecast time of 48 hours. Results obtained for other periods show

analogous results. Ensemble members share identical initial conditions and boundary

values to isolate the effect of different STOCH code realizations on model results. The

ensemble members have been generated solely by SKEB, while the limit N → ∞ is

approximated by N = 128.

Figure 3.4 and Figure 3.5 show the temporal evolution of RMSE
(
xf − xf STOCH

)
and RMSE

(
ES-ESSTOCH), respectively, for 100 m wind speed and varying ensemble size.

RMSE
(
xf − xf STOCH

)
and RMSE(ES-ESSTOCH) decreases continuously with increasing



32 ESIAS – Ensembles for Stochastic Integration of Atmospheric Systems

ensemble size for both, the STOCH PARALLEL and STOCH SEED code. However, the

decrease in case of the STOCH SEED code shows a slower convergence rate. Since a

seed is defined manually each time, artifacts arise which degrade the randomness and

translate to structural deviations in ensemble spread. A similar behavior is observed

for point-wise comparison of the ensemble mean (not shown here). To conclude, solely

for the STOCH PARALLEL code it can be assumed, that lim
N→∞

RMSE
(
ES-ESSTOCH) = 0

holds. Thereupon, the STOCH PARALLEL code has been implemented into ESIAS-met.

3.4 ESIAS-met

Sequential Importance Resampling links data assimilation to continuous updates

of the model ensemble. Resampling involves rejection of ensemble members with

low importance weight and duplication of ensemble members with high importance

weight to restore the ensemble size and represent the posterior density. Thus, in one

way or the other, resampling requires communication among the ensemble members.

However, present approaches to execute ensemble forecasts do not provide this re-

quirement explicitly. Each realization of the atmospheric model runs autonomously,

i.e. each ensemble member is associated with a single executable, supervised by a

generic script. In the notation of high performance computing, this states the notion

of farming. Such a procedure is in general convenient as atmospheric models are

complex and undergo continuous updates.

In the context of Sequential Importance Resampling with very large ensemble

sizes, the drawback of these approaches is twofold. First, the absence of explicit com-

munication between the ensemble members prohibits the monitoring of an effective

sample size Neff and resampling intervals have to be defined a priori. Second, and

more importantly, the ensemble model’s states and boundary values have to be du-

plicated during the resampling procedure. One can think of various ways to realize

this, but as long as the ensemble members run autonomously, considerable execution

time will result as the ensemble size increases. This is an undesirable circumstance,

as certain users demand NWP products as early as possible to anticipate economic

or environmental strategies accordingly.

ESIAS-met is a software system which addresses the above. In the following, the

basic idea to execute the WRF model in parallel is introduced in detail. The sys-

tem’s strong parallel scalability is demonstrated and its computational efficiency for

Sequential Importance Resampling.

3.4.1 A parallel ensemble version of the WRF model

The WRF modeling system has been modified towards a stand-alone ensemble

control system. The basic concept is to gather all ensemble members within a single
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Figure 3.6: Visualization of the MPI concept to modify the WRF code to
a stand-alone ensemble control system (as part of ESIAS-met). Left: Ini-
tial point where the MPI COMM WORLD communicator includes all processes dis-
tributed among a two-dimensional decomposed domain. Right: Novel con-
cept in which N ensemble member are executed in parallel, each within its
MEMBER COMM communicator. The ENSEMBLE COMM communicators gather the ensem-
ble member’s partitions of the decomposed model domain.

executable and establish the necessary inter-member communication with the MPI

library. This concept is illustrated in Figure 3.6 and will be explained in detail in the

following.

In terms of distributed memory parallelism, all allocated processes are grouped

together within the global MPI communicator MPI COMM WORLD. If one associates each

of these processes with a single partition of the decomposed model domain, the

MPI COMM WORLD communicator may then be associated with the whole model do-

main. However, it should instead also be possible to associate the MPI COMM WORLD

communicator with the whole model ensemble. For this purpose, the MPI COMM WORLD

communicator is split into N new communicators denoted as MEMBER COMM, with N

the number of ensemble members. Each of the MEMBER COMM communicators groups

the processes allocated for a single ensemble member and thus, replaces the initial

role of the MPI COMM WORLD communicator. For the sake of clarification, if the model

domain decomposition represents a first stage of parallelism, then a second stage is

added which realizes the parallel execution of the ensemble members.

In practice, the MPI library offers an intrinsic function to split any communicator.

A color has to be defined for every process within this communicator, which groups

all processes with the same color into the new communicator. Here, the overall allo-
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cated processes np group equally distributed into the N MEMBER COMM communicators

to give

npmember = np/N,

with npmember the number of processes per ensemble member. The color for this

grouping can be defined in ascending order as

num = rank/npmember,

where rank denots the process’ rank in the MPI COMM WORLD and num equals the

largest integer that does not exceed the range of num.

Once a second stage of parallelism is introduced, the required

inter-member communication is realized in an analogous manner. The

MPI COMM WORLD communicator is again split into npmember ENSEMBLE COMM

communicators. A single ENSEMBLE COMM communicator groups N processes,

each associated with a different ensemble member, but with the same partition

of the decomposed model domain. The color for this grouping is the processes’

corresponding rank within the MEMBER COMM communicator. In summary, WRF

is executed N times in parallel within N MEMBER COMM communicators, and the

ENSEMBLE COMM communicator gather the ensemble member’s partitions of the

decomposed model domain. Now, initial and boundary values as well as the state

vector can be exchanged among the ensemble members in a convenient way.

Integrating the novel MPI concept into the ARW solver can be realized in a

straight forward manner. The MPI COMM WORLD communicator is split immediately

after the MPI initialization and consecutively replaced by the MEMBER COMM

communicator throughout the code. However, as convenient this implementation

appears, there are further issues to be considered. Blocking among processes during

model I/O has to be avoided, which includes model input and output with PnetCDF

as well as POSIX I/O of metadata and standard output/error. Since the ensemble

typically possess a larger ensemble size than the global ensemble to serve as input,

the additional ensemble members are excluded from the input procedure and initial

and boundary values are distributed among the ensemble thereafter. Blockings

during model output is simply avoided by providing a single file to every ensemble

member. In case of numerous metadata files, which are also subject to perturbation,

each file is duplicated N times. Standard output/error is handled task local in the

WRF model, i.e. a single file is created each per processes. Utilizing thousands

of processes, this strategy appears to be exceptionally slow on JUQUEEN. This

pitfall is avoided by redirecting standard output/error into a single file per ensemble

member, which is created prior to the model run with append access.

The novel MPI concept has also been applied to the real program and the entire
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WPS system in the same manner as described above, such that the whole ensemble

modeling system may be executed in parallel. There are no restrictions in model

execution with ESIAS-met compared to an autonomous WRF model run and the

following list highlights key features of the system:

• parallel execution of WRF ensemble members within a single executable

• inter-member communication realized for efficient ensemble initialization and

Sequential Importance Resampling

• convenient ensemble execution on batch systems to avoid farming

• no restriction in nesting procedure

• multi-physics ensemble enabled, i.e. different parameterization among ensemble

members

• adaptive time-stepping possible, also in realm of particle filter

• change in perturbation strategy after a resampling step (SKEB, SPPT, SPP,

including resampling of stochastic field and random number seeds)

ESIAS-met converts the WRF model to a stand-alone ensemble control system. As

the WRF model undergoes continuous updates, at least biannually, it has to be

ensured that the ESIAS-met can be updated accordingly with reasonably low effort.

This can be seen as fulfilled, as such an update has been carried out once in the frame

of this work, with the investment of approximately two days of work. According to

Powers et al. (2017), there are no changes to the WRF Software Framework proposed

explicitly for the future, which might prohibit the update of ESIAS-MET to recent

versions of the WRF model.

3.4.2 Proof of concept: parallel scalability of ESIAS-met

ESIAS-met has been designed with the scope of a completely parallel and compu-

tational efficient execution of an ultra large WRF ensemble. It remains to prove (i)

the principle parallel scalability of the system and that (ii) such a parallel scalability

is independent of the ensemble size. In the context of Sequential Importance Resam-

pling, it remains to prove that also (iii) the computational efficiency of a resampling

step is independent of the ensemble size. The demonstration of (i) - (iii) is done each

in terms of a feasibility study and a conclusion about the universality is drawn at the

end of this section.

Each feasibility study is defined as a real case study and the forecast date is ran-

domly initialized at 00 UTC 24 November 2014. Each ensemble member is executed

on a moderate domain size of 240 × 240 × 30 grid points. A constant number of 64
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Table 3.3: CPU times of ESIAS-met with increasing ensemble size for an identical
ensemble without particle filtering. The number of processors per ensemble member
is kept fixed.

# members # processors CPU time [s] Loss in CPU time [%]

1 64 1161 −
2 128 1165 0.3
4 256 1166 0.4
8 512 1167 0.5
16 1,024 1165 0.3
32 2,048 1171 0.9
64 4,096 1170 0.8
128 8,192 1185 2.0
256 16,384 1188 2.3
512 32,768 1184 1.9
1024 65,536 1189 2.4
2048 131,072 1199 3.2
4096 262,144 1200 3.3

processors is allocated per ensemble member. CPU times are measured while succes-

sively increasing the ensemble size to 4096, utilizing 262,144 processors.

To demonstrate (i) the parallel scalability of the system and (ii) its independence

of ensemble size, the forecast time has to be sufficiently large and is chosen as 24 hours.

Ensemble members share identical initial and boundary values to exclude variations

in CPU time due to a diverse evolution of the atmospheric state. Measured CPU

times of this feasibility study are listed in Table 3.3. As it has been claimed above,

without the expanse of communication between the members, the CPU time remains

approximately constant with increasing ensemble size. Deviations from a perfect scal-

ability are due to a limited bandwidth during I/O processes, albeit of the order of

1− 3 % and therefore negligible. Hence, the performance analysis for a single WRF

model run (Section 3.3) also holds for the entire ensemble.

It is proceeded in the same manner to demonstrate (iii), but now a resampling

step of the basic particle filter is performed one forecast hour after initialization at

01 UTC 24 November 2014. Each ensemble member utilizes again 64 processors on

the given test domain and the ensemble shares 16 different sets of initial conditions

and boundary conditions, which are sent equally distributed to all remaining ensemble

members during the initialization process. The ensemble control system developed

within this work states a full modeling system and thus is subject to the assimilation

of data from various sources. Data assimilation is however yet restricted to conven-

tional in situ observations, the assimilation of data derived from lidar, profiler, radar

and satellites is not within the scope of this work and is left to future efforts. Reports



3.4 ESIAS-met 37

from the NCEP ADP Global Upper Air and Surface Weather Observations dataset

and various measurement towers (see Section 4.2 for a detailed description) are col-

lected according to a time stamp of 2014-11-24 01:00:00 ± 00:15:00, which yields a

sum of 15,788 observations, and assimilated thereafter. In practice, resampling within

ESIAS-met involves the following steps:

R.1 Calculation of ensemble member weights

(i) The root process reads observational data, sorts out reports depending

on the time stamp, location as well as observation type, and the selected

observations are broadcasted to all remaining processes

(ii) Each ensemble member assigns each report to a corresponding subdomain

defined by the nearest grid point (within MEMBER COMM) and model values

are interpolated for comparison

(iii) On each subdomain, the sum of all model-observation increments is cal-

culated and the results are in turn summed up for each ensemble member

(within MEMBER COMM) to yield the individual ensemble member weight

(iv) Ensemble member weights are normalized (within ENSEMBLE COMM)

R.2 If the effective sampling size Neff (Equation (2.36)) drops below a threshold:

resampling of the ensemble by the root process (a combination of residual and

stratified resampling, Equation (2.34) and (2.35)), results are broadcasted to all

remaining processes

R.3 Duplication of resampled members until the initial ensemble size is restored, i.e.

resampled members send the model state, boundary values and meta data to

rejected members (within ENSEMBLE COMM)

In the frame of the feasibility study, it is ensured that 10 % of the ensemble mem-

bers are resampled with identical weights. Let nmax denote the maximum duplication

count of a resampling step:

nmax = max
i

(ni), with i ∈ {1, . . . , N}, (3.3)

with ni = n′i + n′′i the duplication count of member i, then nmax ≤ 10 holds ∀N .

By imposing this constraint, the number of duplications per resampled member is

independent of ensemble size. However, step R.2 is explicitly executed for the sake

of performance measurement. Table 3.4 summarizes the number of MPI messages,

transferred data and CPU times associated with a resampling procedure for a single

member, separately for model state, boundary values and metadata. Here, a MPI

message is either associated with a character, a scalar, or a one-, two- or three-

dimensional array. The number of MPI messages is independent of processor number
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Table 3.4: Number of MPI messages, transferred Mbytes and CPU times associated
with the resampling procedure for a single member.

type of transfer # MPI messages # transferred Mbytes CPU time [s]
per process

model state 525 1541 3.1× 10−1

boundary conditions 80 187 4.59× 10−2

metadata 2 0.13 6.35× 10−5

or domain size, whereas the amount of transferred bytes depends in principle on

domain size and increases with the processor number due to an increasing amount

of ghosts points. CPU time is not necessarily limited by the maximum bandwidth,

which is 10 Gbytes/s per ensemble member utilizing 64 processors each. Rather, a

large number of MPI messages has to be processed with each performing an initial

handshake between the communicators.

Associated CPU times for the resampling procedure with increasing ensemble size

are shown separately for steps R.1 − R.3 in Figure 3.7. The ensemble size is again

doubled successively from 32 to 4096 members. CPU times for transfer of metadata

are negligible and excluded. Selection of suitable reports by the root process (step

R.1) takes a constant CPU time of 17 seconds. As this procedure depends on the

amount of observations assimilated, it is not further discussed. Starting with 32

members, the measured CPU times for the data transfer (R.2) are in good agreement

with a linear extrapolation of CPU times for a single member (Table 3.4), i.e. CPU

times given in Table 3.4 are multiplied by nmax. As the ensemble size is doubled

consecutively to up to 4096 members, the amount of transferred data doubles, which

is shown separately for the model state and boundary values. However, there is only

a negligible decrease in computational performance, as the increasing number of MPI

messages have to be transported across various nodeboards. This effect is clearly

noticeable for 256 members, which marks the point where an additional nodeboard

is allocated for the first time. In the case of an extreme setup with 4096 members,

8.6 Tbytes are send and received across 16 racks (262,144 cores) within 11 seconds

during a resampling step.

To conclude, it has been shown for a fixed problem size, that the CPU times of

a resampling step are independent of the ensemble size, and exclusively depend on

nmax. This results in minimal computational expenses that are in principle negligible

compared to the model integration time. A linear scaling behavior of the CPU time

with nmax does not raise concern, since ESIAS-met offers the possibility to monitor

the effective sample size Neff, which prevents a large nmax in general.
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Figure 3.7: Computational analysis for a complete particle filter resampling step with
ESIAS-met for varying ensemble sizes. Dashed and dotted lines denote CPU times
and transferred amount of data for duplication of the model state and boundary
values, respectively. The solid line denotes the overall CPU time, which includes the
processing of observations and calculation of particle weights.

3.4.3 Flowchart of ESIAS-met

A summary of the ESIAS-met system is depicted in Figure 3.8, and may be

compared to the initial point of the WRF modeling system depicted in Figure 3.1. M

different meteorological input files from a global ensemble system and M terrestrial

files are input to the ESIAS-met version of WPS. M intermediate output files are

computed, which contain horizontally interpolated input data on the model’s grid.

The ensemble version of real computes in parallel the vertically interpolated fields

to yield initial and boundary values. Within the ESIAS-met version of the ARW

solver, input files are processed by M ensemble members and distributed equally

among the remaining N−M ensemble members. Stochastic perturbations of surface

parameter define N different sets of metadata. M ensemble members are dynamically

downscaled and the remaining N−M ensemble members are generated by additional

model uncertainty representation by the SKEB, SPPT or SPP scheme. The SPP

scheme is a model uncertainty scheme which has been developed to perturb parameter

within the parameterizations. Since results with this scheme are not shown in this

work, it is not further discussed. The system enables an efficient execution of a

Sequential Importance Resampling Filter or Smoother within the ESIAS-met software

environment for continuous updates of the model’s ensemble.
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Figure 3.8: Flowchart of the ESIAS-met modeling system. Green parallelograms
indicate external input data, blue parallelograms model output as well as intermediate
files. Staggered files indicate the existence of multiple files.



Chapter 4

Wind power forecasting with the

WRF model

The deterministic forecast skill of turbine hub height winds derived by the Weather

Research and Forecasting (WRF) model is investigated. At the beginning, the WRF

model setup, meteorological observations and the utilized wind power model are in-

troduced. In a first assessment, the WRF model performance for eight different pa-

rameterization suites is evaluated against conventional in situ observations including

winds at turbine hub heights. The day-ahead forecast of wind power over Germany is

derived and is compared with the real power feed-in, which is estimated by the trans-

mission system operators (TSO). Initial results show a large positive wind bias for all

model configurations. Thereupon, the best WRF configuration is further optimized

to match a deterministic forecast skill comparable to that of the TSO day-ahead fore-

cast. This configuration serves as the deterministic WRF model setup for the ultra

large ensemble.

4.1 WRF model setup

A detailed description of the WRF model is given in Section 3.1. This section

serves the purpose to define a suitable domain configuration for to the ultra large

ensemble system and determine appropriate initial conditions from a global ensemble

system.

4.1.1 Domain configuration

An ensemble size of the order of O(1000) member certainly puts an upper limit

on the computational expenses for each ensemble member, and consequently on the

model domain configuration. As it is typically the case for regional NWP modelling,

a suitable domain configuration states a compromise between a sufficiently large do-

main size and model resolution. This is especially true for ensemble integrations of

41
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regional NWP models, as domain size and model resolution have additional effects

on the ensemble dispersion.

The benefit of an increasing domain size is multifold. A larger domain size gener-

ally reduces errors introduced by the forcing of the lateral boundary conditions (Lee

et al., 2008; Lowrey and Yang, 2008). Spurious gradients due to temporal and spa-

tial interpolation may generate gravity-inertia waves, which propagate with different

speeds to the meteorological area of interest (Warner et al., 1997). This is especially

true with increasing latitude, since the atmospheric condition tends to be more baro-

clinic, resulting in a strong flow across the boundaries. Nutter et al. (2004) discusses

this limitation in the frame of ensemble forecasting and shows how infrequently and

coarsely resolved later boundary conditions remove small scale features, which acts

to constrain ensemble dispersion on a small domain. In general, such limitations may

be reduced by limiting the grid ratio between the coarser-resolution model providing

the lateral boundaries and the outer domain of the regional NWP model. This re-

quirement leads necessarily to a lateral-buffer zone of moderate horizontal resolution

and integrated nested grids which realize high-resolution forecasts. Further, an ultra

large ensemble size may only be beneficial if the domain size is large enough such

that ensemble perturbations evolve on the synoptic scale. Otherwise, at least for

explosive cyclogenesis, ensemble dispersion will mainly be constrained to the global

ensemble system. At the same time, however, a sufficiently high model resolution

has to be provided, as it is well known to increase the general forecast skill of NWP

models. This necessarily holds for winds at turbine hub heights (Olsen et al., 2016;

Siuta et al., 2017). Additionally, in the context of ensemble forecasting, an increased

horizontal resolution leads to stronger nonlinear growth of ensemble perturbations.

Based on the considerations discussed above, the domain configuration of the

WRF model is summarized in Table 4.1 and the nesting procedure is depicted in

Figure 4.1. The outer domain covers most of Europe with a horizontal resolution of

12 km, which corresponds to horizontal resolutions of operational deterministic global

forecast systems, e.g. the Global Forecast System (GFS) from NCEP, 13 km, (Ca-

plan et al., 1997); the Integrated Forecast System (IFS) from ECMWF, 9 km, (Ritchie

et al., 1995); the Global Deterministic Prediction System (GDPS) from MSC, 15 km,

(Côté et al., 1998), and is notably higher than their corresponding ensemble system

(the Global Ensemble Forecasting System (GEFS), 33 km, (Toth and Kalnay, 1997);

the Ensemble Prediction System (EPS), 18 km (Molteni et al., 1996); the Canadian

Global Ensemble Prediction System (GEPS), 50 km, (Li et al., 2008)). The inner nest

covers most of Central Europe with a horizontal resolution of 4 km and is the target

domain for any power predictions aggregated over Germany. The domain extension

and resolution is comparable to that of other convective-scale ensembles which run op-

erationally at weather centres, e.g. the COSMO-DE-EPS from the German Weather
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Table 4.1: Configuration of the WRF model domain. The outer domain is denoted
as d01 and the inner domain as d02.

Model version 3.7.1
Map projection Lambert Conformal
Land use data MODIS
Central point 54◦ N, 12.5◦ W
Model top 50 hPa
Horizontal resolution d01 12 km
Horizontal resolution d02 4 km
Number of horizontal gridpoints d01 330× 330
Number of horizontal gridpoints d02 301× 361
Vertical layers 50
Maximum time step d01 72 s
Maximum time step d02 24 s

Figure 4.1: WRF domain configuration with its nesting procedure on a terrain height
map.

Service 2.8 km, (Hagelin et al., 2017); the AROME-France-EPS from Meteò France

2.5 km, (Bouttier et al., 2012); the MOGREPS-UK from Met Office 2.2 km, (McCabe

et al., 2016). A horizontal resolution between 10 to 5 km is intentionally avoided

due to poor performance of cumulus parameterization within this range (commonly

referred to as the ”grey zone”). The vertical grid spacing is reduced in the boundary

layer, with 2 layers within 100 m above the surface. The WRF model offers USGS

and MODIS based land use classifications and the latter have been proven to be

more suitable for the German area. The numerical time-stepping is adaptive, with

the Courant-Friedrichs-Lewy condition as a dynamical constraint.
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4.1.2 Initial conditions and lateral boundary values

The ultra large WRF ensemble is initialized by downscaling a coarser resolution

global ensemble system. Boundary values are provided in the same manner. This

approach has been a common procedure for ensembles of regional NWP models, in

case of experimental studies (Eckel and Mass, 2005; Berner et al., 2011) as well as

operational systems (Montani et al., 2011; Tennant, 2015). However, one has to be

aware that, firstly, the atmospheric model state undergoes a ”spin-up” time to adopt

to the dynamics of the regional NWP model, and secondly, insufficient resolution of

the analysis may degrade the forecast skill of the regional NWP model and constrain

ensemble spread as small scale features are smoothed (Stensrud et al., 2000).

Two global ensemble systems have been tested to serve as input to the WRF

model, the EPS ensemble (ECMWF) and the GEFS ensemble (NCEP). The methods

to generate the associated analysis perturbations of both systems have been described

in Section 2.2. During the time periods of interest, the 50-member EPS ensemble fea-

tures a horizontal resolution of 32 km on 91 vertical layers and the 20-member GEFS

ensemble a horizontal resolution of 50 km on 42 vertical layers. However, in practice,

analysis and forecast fields from operational global ensemble prediction systems are

provided solely in restricted resolution to external users. In particular, the EPS en-

semble results are available 3-hourly at 55 km resolution on 12 pressure levels, and

the GEFS ensemble 6-hourly at 110 km resolution on 11 pressure levels. Multiple test

runs under different atmospheric conditions have been conducted by dynamically

downscaling both ensemble systems with the WRF model, i.e. no model uncertainty

representation has been utilized. The resulting ensemble spread appeared insufficient

and little relationship to the model error could be found. Especially a low resolution

in the vertical heavily smoothes analysis perturbations and makes both data sets un-

suitable to drive a regional NWP system.

As the resolution of meteorological driving data has proven to be crucial for the

WRF model performance, the ESRL/PSD GEFS Reforecast Version 2 (Hamill et al.,

2013) is utilized to provide initial conditions and boundary values to the ultra large

ensemble. The National Oceanic and Atmospheric Administration (NOAA) produces

a reforecast with a fixed version of the 2012 GEFS model (version 10). The ensem-

ble has a size of 11 members, one control member and 10 perturbed members. The

reforecast is initialized once a day at 00 UTC, from December 1984 to present. The

horizontal resolution is 50 km for the first 8 days on 42 vertical levels. Analysis per-

turbations are generated with the Ensemble Transform method with rescaling (Wei

et al., 2008), described in detail in Section 2.2. The 6-hourly cycling of ETR pertur-

bations utilized in the operational GEFS model is preserved, though only 10 members

are involved. Forecast fields are given 3-hourly and the data set is available in full

model resolution at http://portal.nersc.gov/project/refcst/v2/. A detailed description
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about the data set can be found in Hamill et al. (2013).

Initial conditions and boundary values of the GEFS reforecast control member

are replaced by the final analysis and 3-hourly forecast fields, respectively, from the

GFS model, available at https://www.ncdc.noaa.gov/data-access/model-data/model-

datasets/global-forcast-system-gfs. The data set has an identical horizontal resolution

of 50 km, and 27 pressure levels are available. A series of test runs have been carried

out by dynamically downscaling both control forecasts with the WRF model. At least

for 100 m wind speed and forecast times of 48 hours, simulation results did not show

any noteworthy difference.

4.2 Meteorological observations

Conventional meteorological in situ observations are taken to evaluate the perfor-

mance of the WRF model. To target a forecast variable of 100 m wind speed utilized

for wind power predictions, meteorological observations are obtained from synoptic

measurement towers.

4.2.1 Comparison of model data and observations

Spatial comparison between model results and observations are realized in the

horizontal by inverse distance weighting, as the model grid is irregular due to the

map projection of the earth’s sphere on WRF’s rectangular grid. In general, an

inverse distance weighting interpolation for the variable C to the point z based on

given values C(zi), with i = 1, . . . ,M , reads

C(z) =


∑M

i ai(z)C(zi)∑M
i ai(z)

, for d(z, zi) 6= 0

C(zi), for d(z, zi) = 0,
(4.1)

where ai(z) = 1/d(z, zi)
p defines the weight, d is a metric operator (here the dis-

tance between two points) and p the power parameter, with smaller values tending to

increase the influence from more distant grid points. Distances between two points

are approximated with the haversine formula yielding the great-circle distance on a

sphere. The number of points involved in the interpolation is chosen as M = 4 and

the power parameter as p = 2, such that the inverse distance weighting comes clos-

est to a bilinear interpolation (and is equivalent in the case of a regular grid). For

comparison of model derived winds with observations, wind components have to be

de-staggered in the horizontal from WRF’s staggered grid by linear interpolation to

mass points. Vertical interpolation of upper-air observations is linear in pressure for

wind and linear in the logarithm of pressure for temperature, humidity and geopo-

tential. Vertical interpolation to 100 m winds and appropriate heights of various
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measurement towers involves two steps. Firstly, a height information is derived at

half σ-levels by de-staggering the geopotential, and secondly, a linear interpolation

of winds from neighboring levels is used, which has been shown to be sufficient by

Drechsel et al. (2012). Besides, it can be assumed that the vertical interpolation to

100 m is nearly free of errors, since the second lowest half σ-level is placed at a height

which approximately coincides.

Wind components derived by the WRF model are in a model-relative coordinate

system defined by the Lambert conformal map projection, in which each grid point

is associated with a local rotation angle αr between the y-axis and the meridians.

The back transformation of the wind vector components umodel to an earth-relative

coordinate system with a zonal and meridional decomposition of uearth is realized

according to

uearth =

(
cos(αr) −sin(αr)

cos(αr) +sin(αr)

)
umodel. (4.2)

Finally, the wind vector uearth has to be rotated from the earth-relative coordinate

system (in which the wind direction θearth is zero degree eastward with increasing val-

ues in counter-clockwise direction) to the observational coordinate system (in which

wind direction θobs is defined as the direction where the wind comes from) according

to θobs = mod(270◦ − θearth).

4.2.2 Conventional in situ observations

Conventional in situ observations are obtained from the NCEP ADP

Global Upper Air and Surface Weather Observations, dataset ds337.0, stored

and made publicly available at the Research Data Archive (RDA) at NCAR

(https://rda.ucar.edu/datasets/ds337.0 ). The dataset comprises the majority of

conventional surface and upper air observations, which are operationally collected

by NCEP via the Global Telecommunication System (GTS) and thereafter enter

NCEP’s various assimilation sytems (among others, the Global Data Assimilation

System used by the GFS model). This includes reports from land surface stations

(SYNOP, METAR) and marine surface (ships, bouys and platforms), upper-air

measurements (radiosondes, pilot balloons and dropsondes) as well as aircrafts.

Observed variables are pressure, specific humidity, temperature, wind speed and

direction. As the dataset provides the final form of observations prior to the

assimilation, each observation has undergone a quality check beforehand and is

assigned with a corresponding quality flag. Thereupon, no further quality check is

conducted in this investigation and the selection of observations follows the same

threshold as it is the standard in NCEP’s assimilation systems.
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4.2.3 Measurement towers

Records from the onshore measurement towers Cabauw, Falkenberg, Hamburg,

Jülich and Karlsruhe as well as the three offshore research platforms FINO1,

FINO2, and FINO3 have been collected. The temporal resolution of records is 10

minutes for all measurement towers, as averages of more frequent measurements.

Model derived winds are thereupon averaged in the same manner for comparison.

The position of all measurement towers together is shown in context of the installed

onshore wind power capacity in Figure 4.2.

The measurement towers are subject to sites with different topography and

surface features, resulting in varying complexity of planetary boundary layer

dynamics and therefore varying predictability of wind speeds. Site characteristics

of all onshore towers are summarized in Table 4.2, together with the height

level used for evaluation. The terrain complexity has been grouped into classes

depending on the subgrid-scale variance of topography σt on the outer domain.

The corresponding terrestrial data is provided by the U.S. Geological Survey

(USGS), as it is the default dataset used by the WRF model. Adopting the

classification of Drechsel et al. (2012), the terrain of the Cabauw, Hamburg and

Falkenberg site can be grouped as flat with σt < 25 m, and the terrain of the Jülich

and Karlsruhe site as moderately complex with σt > 75 m. Surface roughness is

given for the sites of Cabauw, Hamburg, Falkenberg and Karlsruhe as derived by

experimental studies. Appropriate studies are missing for the Jülich tower. Taking

the Jülich site characteristics into account and using a simple approximation of the

roughness length z0 = rH, with H the height of the surrounding surface element

and 0.08 < r < 0.15 (Hansen, 1962), an estimation of z0 ∼ 1.5 appears reasonable.

The measurement towers at Cabauw and Falkenberg can be grouped upon surface

roughness into low-roughness sites, and the measurement towers at Hamburg, Jülich

and Karlsruhe into high-roughness sites, respectively. Surface roughness at the

Hamburg site is highly dependent on wind direction, since the surroundings are

heterogeneous within a range of 200 m. The concept of roughness length is formally

introduced in Section 4.5.1, together with the WRF model equivalent for all sites.

Anemometers are installed on three booms per level at the Cabauw and

Falkenberg tower and selected according to the wind direction to avoid shadowing

effects. The Hamburg, Jülich and Karlsruhe towers provide solely one boom per

level. Here, the largest observations errors due to mast effects can be expected for

the Hamburg tower, as it is a radio tower with considerable diameter. Therefore,

a correction dependent on wind direction according to Jacob (2013) has been

applied, which involves the evaluation of a 13th-order polynomial. Measurements

at anemometer heights closest to 100 m are taken for model evaluation. Exceptions

from this are the Cabauw and Jülich towers. Here, measurements are utilized
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Table 4.2: Site characteristics of onshore measurement towers. Classification of to-
pography is adopted from Drechsel et al. (2012). Land use and roughness length is
given according to references.

Tower Topography Land use Roughness Length [m]

Hamburg flat croplands, gardens, buildings and in- 0.13− 0.96
dustrial area (Brümmer et al., 2012) (Konow, 2015)

Cabauw flat cropland, maize fields to the west 0.05− 0.15
(van Ulden and Wieringa, 1996) (Beljaars and Holstag, 1991)

Falkenberg flat grassland and agricultural 0.02
(Beyrich and Adam, 2007) (Beyrich and Adam, 2007)

Karlsruhe moderately broadleaf forest 1.5
hilly (Wenzel et al., 1991) (Thomas and Vogt, 1993)

Jülich moderately clearing surrounded by unknown, ∼ 1.5
hilly trees and buildings

at 140 m and 120 m, respectively, by reason of least disturbances (upon personal

communication with Fred Bosvelt, Royal Netherlands Meteorological Institute

(KNMI), and Axel Knaps, Forschungszentrum Jülich (FZJ)). Wind direction is

measured at the same height as wind speed for all onshore towers.

Three offshore research platforms have been installed in the frame of the

Forschungsplattformen in Nord- und Ostsee (FINO) project of the German

government. FINO1 and FINO3 are located in the North sea, FINO1 45 km north to

the island of Borkum and FINO3 80 km west to the island of Sylt. FINO2 is located

in the Baltic Sea 33 km north to the island of Rügen. FINO1 and FINO2 provide

anemometers on two booms per level, whereas FINO3 provides three booms, with

the same procedure of selection as described above for the onshore measurement

towers. At FINO1 and FINO2, wind speed is measured at a height of 102 m with

the corresponding wind direction at 90 m. At FINO3, wind speed is measured at

108 m and wind direction at 100 m.

A comparison of the measurement towers’ locations with the spatial distribution

of installed wind power capacity illustrates the limited observability of hub

height winds in areas of pronounced wind power capacity (see Figure 4.2). The

Hamburg measurement tower is located closest to areas of pronounced wind power

capacity, whereas the site characteristics of such areas are rather comparable to the

surroundings of the Cabauw and Falkenberg tower.



4.3 IWES physical wind power model 49

Figure 4.2: Spatial distribution of onshore wind power capacity over Germany, as of
2014, and location of measurement towers. Installed offshore capacity is not included
in the IWES wind power model.

4.3 IWES physical wind power model

The winds derived by the WRF model are converted to wind power using a physi-

cal wind power model applied at the Fraunhofer IWES (Vogt et al., 2016). Conversion

of 100 m wind speeds to wind power is realized by an equivalent power curve described

in detail in McLean (2008). The equivalent power curve provides an averaged estimate

of wind power over a region of typically diverse turbines and compensates for shadow-

ing effects within the wind farm as well as topographical and electrical losses. In this

manner, wind power is estimated defining gridded regions over Germany, where each

grid square defines the sum of all encompassed wind power plants. The normalized

feed-in at each grid point given by the equivalent power curve and the 100 m wind

speed is then multiplied by the capacity of all associated wind power plants to yield

the absolute value. The aggregated value for Germany is finally given by the sum of

all grid points. The TSO provide all required metadata for the wind power model,

which includes the individual power plant’s postal code as a location, the capacity as

well as the commission and decommission date. Since locations of wind power plants

are not given precisely, the installed capacity has to be assigned to each grid square

corresponding to the area portion of the postal code.

Figure 4.2 shows the installed wind power capacity over Germany, as it enters the
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wind power model. In 2014, the overall onshore capacity has been 35 GW. Offshore

wind parks are not included in the wind power model. Since this work restricts itself

on periods within the year 2014, this simplification is assumed to have a negligible

effect on model performance, as the installed offshore capacities has been less than

1 GW in this year.

The wind power model described above is simple in its design as it is fundamen-

tally physical, i.e. it does no rely on any historic data on which it is trained upon.

It has been shown by Vogt et al. (2016), that a significant error reduction can be

achieved by combining the physical wind power model with a reference wind power

plant model. However, a combination with a statistical model does not appear to

be suitable for this work, as the resulting wind power forecasts shall reflect the en-

semble’s statistical properties and skills, without any additional correction due to

mapped statistics from the past. Further details about the wind power model and its

performance can be found in Section III.B of Vogt et al. (2016).

4.4 Sensitivity of the WRF model to physical parame-

terizations

A sensitivity study is carried out to determine the best parameterization config-

uration of the WRF model with regard to the day-ahead wind power forecast over

Germany. The WRF model is known for the variety of parameterizations schemes

that are offered to the user. Numerous studies have demonstrated the model’s sensi-

tivity to the planetary boundary layer (PBL) parameterization (Cohen et al., 2015;

Garćıa-Dı́ez et al., 2013), land-surface model (LSM) (Jiming et al., 2010; Ruiz et al.,

2010), microphysics parameterization (Min et al., 2015; Pieri et al., 2015), radiation

parameterization (Borge et al., 2008; Walaszek et al., 2014) and cumulus parameter-

ization (K. Gilliland and Rowe, 2007; Pennelly et al., 2014). Finding the optimal

combination of parameterizations schemes for any particular region is crucial for the

model’s forecast skill. Krieger et al. (2009) emphasizes the importance of interac-

tions between various parameterization schemes and concludes, that variation of one

parameterization at a time relative to a control is insufficient. Rather, different config-

urations have to be tested to find the optimal setup. In the following, it is proceeded

in the same manner. Results are evaluated against conventional in situ observations,

records from measurements towers and the day-ahead forecast of associated wind

power.

4.4.1 Experimental setup

The sensitivity study is confined to eight different combinations of parameteriza-

tions, which are summarized in Table 4.3. Different configurations are numerated in
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Table 4.3: Summary of eight WRF configurations with different physical parameter-
izations.

Setup Microphysics Shortwave Longwave LSM PBL Cumulus

WRF1 Kessler Dudhia RRTM Thermal Slab YSU Kain-Fritsch
WRF2 WSM6 Dudhia RRTM Thermal Slab YSU Kain-Fritsch
WRF3 WSM5 RRTMG RRTMG Thermal Slab MYJ Grell-Freitas
WRF4 WSM6 RRTMG RRTMG Thermal Slab MYNN Grell-Freitas
WRF5 Kessler Dudhia RRTM Unified Noah YSU Kain-Fritsch
WRF6 WSM5 Dudhia RRTM Unified Noah MYJ Grell-Freitas
WRF7 WSM6 RRTMG RRTMG Unified Noah YSU Grell-Freitas
WRF8 WSM6 RRTMG RRTMG RUC MYNN Betts-Miller

ascending order from WRF1 to WRF8. One has to be aware of the potential incom-

patibility of certain schemes. Therefore, standard combinations are tested, which are

also listed in Skamarock et al. (2008). The different parameterization schemes are

described in the following. For a detailed description, the reader is referred to the

corresponding references.

Modeled hub height winds are expected to show the highest sensitivity to the

PBL parameterization and the LSM, which is an agreement with the studies of Yang

et al. (2013), Wharton et al. (2013) and Siuta et al. (2017). Thereupon, the PBL pa-

rameterization and the LSM are investigate in greater variety and described in more

detail. The LSM computes the surface heat and moisture fluxes over land (and for

sea ice) determined by radiative forcing, precipitation and exchanges with the surface

layer scheme, to provide the lower boundary conditions for their vertical transport

throughout the PBL. The PBL parameterization computes the transport of unre-

solved vertical fluxes (momentum, heat and moisture) due to turbulent eddies in the

PBL and the free atmosphere. The following PBL parameterization and LSM model

have been tested:

Planetary Boundary Layer parameterization

• Yonsei University (YSU) PBL scheme: first-order non-local closure scheme,

countergradient correction term in downgradient diffusion, explicit treatment

of the entrainment layer at the PBL top, PBL height diagnosed from buoyancy

profile (Hong et al., 2006),

• Mellor-Yamada-Janjic (MYJ) PBL scheme: 1.5-order local closure scheme,

prognostic equation for turbulent kinetic energy (TKE) for eddy diffusion and

diagnostic of PBL height (Janjić, 1994),

• Mellor-Yamada-Nakanishi and Niino Level 3 (MYNN3) scheme: second-order

local closure scheme, inclusion of buoyancy in the parameterization of pressure

covariances (in opposition to MYJ scheme), prognostic equation for turbulent
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kinetic energy for eddy diffusion and diagnostic of PBL height (Nakanishi and

Niino, 2009).

To each of the PBL schemes, at least one complementary surface layer scheme exists,

and it is referred to Skamarock et al. (2008) and references within for a description.

Land-surface model

• 5-layer Thermal Diffusion (Thermal Slab): simple model, temperature predic-

tion and constant soil moisture, inclusion of snow cover flag, no explicit vege-

tation effects, 5 soil layers (Dudhia, 1996),

• Noah Land Surface Model: temperature and soil moisture (4-layers) and frozen

soil (1-layer) prediction with force-restore method, accounts for vegetational

and hydrological processes (Tewari et al., 2004),

• NOAA Rapid Update Cycle (RUC): temperature and soil moisture prediction

(default 6-layers), as well as frozen soil (2-layer) with layer approach for the

energy budget, accounts for vegetational and hydrological processes (Benjamin

et al., 2004).

Feedback from convective and shallow clouds effects on the resolved scale are param-

eterized on the outer domain, whereas the inner domain is convection-permitting.

The Kain-Fritsch scheme (Kain, 2004), the Betts-Miller-Janjic scheme (Janjić, 1994)

and the Grell-Freitas Ensemble scheme (Grell and Freitas, 2014) have been tested

for this purpose. The Purdue Lin scheme (Lin et al., 1983) has also been tested,

but appeared to be numerically instable and results with this scheme are not shown

here. The parameterization of microphysical processes, considering the growth of

cloud droplet and ice crystals as well as the associated fallout, has been tested with

the Kessler scheme (Kessler, 1969), the WRF Single-Moment 5-Class (WSM5, Hong

et al. (2004)) and 6-Class Microsphysics scheme (WSM6, Hong and Lim (2006)). The

Kessler scheme is a simple warm cloud scheme, i.e. solely water vapor, cloud water

and rain are considered. In opposition, the WSM5 is a more sophisticated scheme

which considers freezing and melting processes (cloud ice and snow), each handled

separately to allow for mixed-phase clouds. By the inclusion of graupel, the WSM6

scheme is an extension of the WSM5 scheme. Atmospheric radiation, i.e. the cal-

culation of radiative budgets in the atmosphere and the total radiative flux at the

surface, is parameterized for the longwave with the Rapid Radiative Transfer Model

(RRTM, Mlawer et al. (1997)) or its extension, the RRTMG (also suitable for gen-

eral circulation models, Iacono et al. (2008)), which allows for random cloud overlap.

Shortwave radiation is handled either by the Dudhia scheme (Dudhia, 1989) or by

the RRTMG scheme.
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4.4.2 Evaluation Methodology

Retaining the nomenclature of Chapter 2, xf denotes the forecast model state

and y the observation vector. Let T denote the number of forecast-observation pairs.

The sample mean forecast is then defined as xf = 1
T

∑T
i=1 x

f
i , and the sample mean

observation as y = 1
T

∑T
i=1 yi. The continuous verification statistics of root mean

square error

RMSE =

√√√√ 1

T

T∑
i=1

(xfi − yi)2, (4.3)

overall bias or mean error

BIAS =
1

T

T∑
i=1

(yi − xfi ) = y − xf , (4.4)

and the Pearson correlation coefficient

CORR =

∑T
i=1(xfi − xf )(yi − y)√∑T

i=1(xfi − xf )2

√∑T
i=1(yi − y)2

, (4.5)

are computed for conventional in situ observations, records from measurement towers

and the derived wind power forecast for Germany.

In case of conventional in situ observations, observations outside Germany are

sorted out by applying a point in polygon test (Hacker, 1962) based on the Jordan

Curve Theorem. Within this scheme, an arbitrary ray is shoot from the location of

interest and the number of intersections with the polygon of the German border is

counted. If and only if the number is odd, the location lies inside the polygon and

vice versa.

4.4.3 Overview of the sensitivity study

The sensitivity study is carried out over the periods of 1 – 31 August 2014 and

1 – 30 November 2014. Both periods were chosen in order to include extreme error

events in the energy forecast, criteria as exposed in Chapter 5. The eight different

WRF configurations are each initialized daily at 00 UTC by the control GFS analysis

(see Section 4.1.2) and the forecast lead time is 48 hours. Verification statistics are

computed according to the day-ahead wind power forecast, i.e. only lead times of

24 – 48 hours are considered. Verification statistics for the GFS forecast fields are

computed for comparison. Feedback from the inner to the outer nest is disabled to

investigate the potential benefit of an integrated high-resolution nest. All results are

given in Coordinated Universal Times (UTC).
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4.4.4 Results

Conventional in situ observations

The evaluation of numerous conventional in situ observations aims to derive a

comprehensive picture of the WRF model forecast skill. Verification statistics are

computed for 10 m wind speed, 2 m temperature, 2 m specific humidity and surface

pressure, as well as upper air wind speed and temperature at 850 hPa, 500 hPa and

250 hPa height. Observations are collected from METAR and SYNOP stations as well

as radiosondes. Marine surface observations are excluded to be consistent with the

IWES wind power model, which includes solely onshore wind capacity. Between 24 –

48 hours forecast lead time and in 3-hourly intervals, matching forecast-observation

pairs are collected and a single verification statistic is calculated for root mean square

error, bias and correlation. Matching forecast-observation pairs for surface pressure

are only included if the difference in terrain height does not exceed a threshold of

25 m, and no verification statistics for surface pressure are calculated for GFS fore-

cast fields due a lower representativity.

Table 4.4 and 4.5 summarize the results for the eight different WRF configurations

(inner domain) and GFS forecast fields, separately for forecast periods 1 – 31 August

2014 and 1 – 30 November 2014, respectively. Bold numbers indicate the lowest root

mean square error and bias as well as the highest correlation. The evaluation focuses

on the results obtained on the inner domain.

Starting with the forecast period 1 – 31 August 2014, it can be summarized that

the forecast skill of the eight different WRF configurations is noticeably different and

varies among the forecast variables. Since different configurations share partly the

same parameterizations, one can clearly determine a correlation of forecast skill. As

claimed above, surface winds show the largest sensitivity to the PBL parameteriza-

tion. The MYNN PBL scheme leads to the lowest root mean square error (WRF4 and

WRF8), mainly due to a low bias, whereas the MYJ PBL scheme shows a significant

positive bias (WRF3 and WRF6). The forecast skill of the YSU PBL scheme, utilized

by the remaining configurations, can be grouped in between. However, within this

group, the simple Thermal Slab LSM (WRF1 and WRF2) appears to perform superior

to the more complex Noah LSM (WRF5 and WRF7). This results is surprising, as

the Noah LSM includes soil moisture prediction, which should have a beneficial effect

on the stability estimation throughout the boundary layer. A similar picture can be

drawn for surface temperature, except that the simple Kessler microphysics scheme

produces a significant negative bias (WRF1 and WRF5). Verification statistics for

surface pressure are quite similar for all eight configurations, with the highest root

mean square error for WRF1 and WRF5, most likely caused by the simple Kessler mi-

crophysics scheme. The same holds for the surface humidity, where the configuration
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WRF2 shows the best results. As can be expected, correlations between forecast skill

and parameterization setup are less pronounced for upper air variables. A sensitivity

of verification statistics to the radiation parameterization can not be identified.

Overall, there is only little added forecast value by dynamically downscaling the

GFS forecast fields with the WRF model, at least for periods under investigation

and the given aggregated verification statistics over Germany. Despite the lower res-

olution of GFS forecast fields, a competitive forecast skill can be noted for surface

wind speeds, surface humidity and upper air temperature. Moreover, the WRF model

degrades the forecast of 850 hPa and 500 hPa wind speed, mainly due to lower cor-

relations. Solely in case of surface temperature, the WRF model adds forecast skill.

This is mainly caused by a well known bias in the diurnal cycle of the GFS model.

It should be stressed again, that the GFS model actually possessed a horizontal res-

olution of 28 km during the periods of interest, whereas analysis and forecast fields

are only available to the public in a lower resolution of 55 km. Most likely, this is the

main reason for the observed forecast degradation, as the coarser resolution of initial

conditions smoothes smaller scale features. This effect can not be counterbalanced

by an increase in orography representation of the WRF model grid. However, im-

provements are to be expected in case of an independent regional data assimilation

system for WRF.

Among the eight WRF configurations, WRF2 appears to be most the favorable.

One can note the lowest root mean square error for 850 hPa temperature, 250 hPa

wind speed and temperature as well as surface humidity. Further, in case of the re-

maining forecast variables, no exceptional error statistic can be observed.

Results for the forecast period 1 – 30 November 2014 show a similar picture

concerning the intercomparison of different WRF configurations. Noticeably, the ver-

ification statistics for the November period are higher in general. Here, the 10 m and

850 hPa wind speed show the largest bias. As this is not the case for the GFS forecast

fields, this leads to the assumption that the lower resolution initial conditions of the

WRF model do not sufficiently resolve the stronger winterly baroclinicity, degrading

the forecast skill. As a result, the WRF model shows worse verification statistics

for nearly all upper air variables. In this context, the MYNN PBL parameterization

shows again the lowest errors for surface variables (WRF4 and WRF8).

Results for the outer domain are not shown explicitly. The computational effort

of utilizing a high-resolution and convection-permitting nest pays off in a reduction

of root mean square error by approximately 10 % for all surface variables and all

WRF model configurations. This effect is due both, an increase in correlations and

a decrease in bias. Since this is observed for all WRF model configurations, one can

not identify a favorable cumulus scheme. Although clearly noticeable, the benefit of

utilizing an inner domain is less pronounced for upper air variables.



56 Wind power forecasting with the WRF model

Table 4.4: Verification statistics for day-ahead forecasts (24 – 48 hours forecast lead
time) with eight different WRF configurations and GFS model fields for conventional
in situ observations. The forecast period is 1 – 31 August 2014. Results for the
WRF model are given in case of the inner domain. Bold numbers indicate the lowest
root mean square error and bias as well as the highest correlation. The number of
observations involved is given at the bottom.

GFS WRF1 WRF2 WRF3 WRF4 WRF5 WRF6 WRF7 WRF8

RMSE

U10m [m/s] 1.60 1.60 1.59 1.78 1.54 1.64 1.86 1.64 1.53
U850hPa [m/s] 2.36 2.56 2.47 2.61 2.49 2.63 2.62 2.54 2.46
U500hPa [m/s] 2.55 2.87 2.80 2.74 2.66 2.89 2.75 2.66 2.81
U250hPa [m/s] 4.68 5.45 4.65 4.77 4.73 5.46 4.75 4.75 4.67
T2m [K] 2.24 2.42 1.65 1.71 1.61 2.60 1.81 1.86 1.54
T850hPa [K] 1.04 0.93 0.73 0.83 0.81 1.00 0.86 0.83 0.78
T500hPa [K] 0.91 0.94 0.84 0.84 0.85 0.92 0.84 0.86 0.85
T250hPa [K] 1.29 2.09 1.55 1.55 1.53 2.15 1.60 1.59 1.46
Q2m 10−3[g/g] 1.01 1.00 0.95 1.33 1.33 1.13 0.98 1.02 1.06
PSFC [hPa] - 3.30 3.16 3.14 3.14 3.27 3.15 3.10 3.15

BIAS

U10m [m/s] − 0.16 0.02 0.13 0.71 0.06 0.25 0.88 0.36 − 0.06
U850hPa [m/s] − 0.29 − 0.03 − 0.07 0.03 0.01 0.08 0.23 − 0.06 0.06
U500hPa [m/s] −0.11 − 0.29 − 0.38 − 0.24 − 0.20 − 0.26 − 0.22 − 0.22 − 0.17
U250hPa [m/s] −0.64 − 1.45 − 1.16 − 1.25 − 1.03 − 1.45 − 1.11 − 1.00 − 0.93
T2m [K] − 0.27 − 1.30 0.02 0.32 0.06 − 1.54 − 0.23 0.55 − 0.11
T850hPa [K] 0.60 − 0.24 0.01 0.13 − 0.05 − 0.43 − 0.13 0.36 − 0.14
T500hPa [K] 0.33 − 0.13 0.12 0.17 0.24 − 0.09 0.15 0.34 0.24
T250hPa [K] 0.59 1.34 0.93 0.98 0.92 1.38 1.05 1.05 0.83
Q2m 10−4[g/g] −0.74 − 0.94 1.44 8.94 8.63 − 5.63 − 1.19 − 1.17 6.12
PSFC [hPa] - 0.84 0.48 0.15 0.13 0.73 0.35 − 0.20 0.21

CORR

U10m 0.30 0.35 0.37 0.41 0.40 0.35 0.41 0.36 0.38
U850hPa 0.66 0.56 0.61 0.58 0.61 0.55 0.61 0.59 0.60
U500hPa 0.71 0.66 0.66 0.69 0.69 0.66 0.66 0.67 0.65
U250hPa 0.77 0.67 0.78 0.75 0.75 0.68 0.74 0.75 0.77
T2m [K] 0.50 0.56 0.68 0.65 0.68 0.55 0.64 0.66 0.70
T850hPa 0.85 0.78 0.87 0.84 0.84 0.75 0.84 0.87 0.84
T500hPa 0.83 0.84 0.85 0.85 0.86 0.84 0.84 0.86 0.84
T250hPa 0.74 0.50 0.62 0.64 0.63 0.47 0.63 0.64 0.64
Q2m 0.55 0.45 0.52 0.49 0.48 0.47 0.51 0.51 0.54
PSFC - 0.77 0.79 0.78 0.78 0.77 0.77 0.77 0.77

Number of observations

U10m 36,397
U850hPa 1,166
U500hPa 1,139
U250hPa 1,136
T2m 37,758
T850hPa 1,144
T500hPa 1,141
T250hPa 1,137
Q2m 37,512
PSFC 16,878
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Table 4.5: Verification statistics for day-ahead forecasts (24 – 48 hours forecast lead
time) with eight different WRF configurations and GFS model fields for conventional
in situ observations. The forecast period is 1 – 30 November 2014. Results for the
WRF model are given in case of the inner domain. Bold numbers indicate the lowest
root mean square error and bias as well as the highest correlation. The number of
observations involved is given at the bottom.

GFS WRF1 WRF2 WRF3 WRF4 WRF5 WRF6 WRF7 WRF8

RMSE

U10m [m/s] 1.81 1.94 1.93 2.23 1.81 1.83 2.08 1.83 1.63
U850hPa [m/s] 2.61 3.08 3.06 3.10 3.03 3.08 3.11 3.04 3.08
U500hPa [m/s] 3.29 3.69 3.52 3.52 3.58 3.71 3.57 3.56 3.57
U250hPa [m/s] 4.59 6.06 4.89 5.02 4.85 6.07 4.96 4.77 4.91
T2m [K] 2.22 1.95 1.90 1.9 1.88 2.18 2.37 2.19 1.79
T850hPa [K] 1.41 1.50 1.44 1.48 1.48 1.50 1.51 1.44 1.46
T500hPa [K] 1.03 1.20 1.05 0.98 1.01 1.20 0.98 0.99 1.00
T250hPa [K] 1.13 2.12 1.55 1.61 1.56 2.09 1.58 1.59 1.52
Q2m 10−3[g/g] 0.69 0.62 0.63 0.71 0.71 0.78 0.74 0.70 0.63
PSFC [hPa] - 3.38 3.47 3.53 3.55 3.37 3.48 3.39 3.51

BIAS

U10m [m/s] − 0.65 0.63 0.72 1.25 0.48 0.48 1.04 0.60 −0.03
U850hPa [m/s] −0.68 0.69 0.81 0.84 0.82 0.72 0.80 0.73 0.84
U500hPa [m/s] − 0.81 0.01 0.25 0.25 0.44 0.17 0.37 0.36 0.41
U250hPa [m/s] − 0.96 −0.14 − 0.63 − 0.62 − 0.41 − 0.03 − 0.55 − 0.49 − 0.65
T2m [K] − 0.27 0.01 0.12 0.36 0.44 − 0.34 − 0.49 0.51 0.02
T850hPa [K] −0.03 0.21 − 0.11 0.16 0.01 0.29 0.29 0.12 − 0.13
T500hPa [K] 0.52 0.43 0.27 0.10 0.15 0.43 − 0.03 0.17 0.15
T250hPa [K] 0.47 0.46 0.89 1.09 1.00 0.48 1.04 1.06 0.92
Q2m 10−4[g/g] − 3.57 0.87 0.81 3.28 3.33 − 4.51 − 3.78 − 2.90 1.68
PSFC [hPa] - −0.07 0.50 0.49 0.39 − 0.16 0.46 0.14 0.49

CORR

U10m 0.33 0.48 0.48 0.50 0.48 0.48 0.51 0.47 0.50
U850hPa 0.66 0.59 0.63 0.62 0.63 0.58 0.63 0.62 0.62
U500hPa 0.72 0.68 0.70 0.70 0.69 0.68 0.69 0.70 0.72
U250hPa 0.77 0.64 0.75 0.72 0.75 0.63 0.73 0.76 0.74
T2m 0.51 0.72 0.73 0.71 0.74 0.69 0.68 0.70 0.75
T850hPa 0.77 0.74 0.73 0.74 0.73 0.75 0.73 0.74 0.72
T500hPa 0.72 0.74 0.78 0.78 0.77 0.74 0.78 0.78 0.77
T250hPa 0.69 0.50 0.56 0.59 0.59 0.51 0.59 0.59 0.60
Q2m 0.54 0.54 0.55 0.54 0.54 0.52 0.52 0.53 0.57
PSFC - 0.85 0.86 0.84 0.85 0.85 0.85 0.85 0.85

Number of observations

U10m 36,539
U850hPa 1,160
U500hPa 1,160
U250hPa 1,159
T2m 37,556
T850hPa 1,161
T500hPa 1,160
T250hPa 1,159
Q2m 36,981
PSFC 16,420
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Measurement towers

Verification statistics of turbine hub height wind speeds are computed at all mea-

surement towers, again in 3-hourly intervals. In case of the WRF model forecast

fields, linear interpolation is used to derive wind speeds at anemometer heights (see

Section 4.2.3 for a discussion). The GFS forecast fields include 100 m winds routinely,

which are taken for comparison. Results at the Cabauw measurement tower are not

shown for the GFS model, since the anemometer height used for evaluation deviates

significantly from 100 m. A maximum threshold of one-third of missing records is set,

which is not exceeded for any measurement towers and all times. Records from the

Jülich measurement tower could not be provided for the period of August.

Figure 4.3 and 4.4 show the root mean square error of hub height wind speeds at

all available measurement towers for the forecast period 1 – 31 August 2014 and 1 –

30 November 2014, respectively. The corresponding statistics of bias and correlation

are shown in Appendix A, Figure A.1 and A.2, as well as Figure A.3 and A.4, respec-

tively.

Starting with the forecast period 1 – 31 August 2014 and offshore measurement

towers FINO1, FINO2 and FINO3, wind speeds show only little sensitivity to the

WRF model configuration. A complete different picture appears for the onshore mea-

surement towers. Most striking, a positive wind bias can be observed for all WRF

model configurations and all measurement towers, except for Cabauw. The tendency

of a positive bias in 10 m wind speed has been noted in the previous section. Yet,

at turbine hub height the bias appears more pronounced. The overestimation of

wind develops right after model initialization and holds throughout the day. At the

Hamburg, Falkenberg and Karlsruhe measurement tower, the overestimation is of the

order of 1 − 2 m/s. It is noted that the initial negative bias for all onshore sites is

caused by the vertical interpolation of wind fields to the WRF model grid, which does

not take any stability correction into account.

A pronounced diurnal cycle of verification statistics can only be noticed for the

WRF4 and WRF8 configuration, which share the MYNN PBL scheme. The scheme

produces too little mixing during stable conditions, leading to an underestimation of

boundary layer height and too strong low level jets. Further, a slightly higher bias

remains during day time compared to the remaining configurations. For all onshore

measurement towers, the combination of the YSU PBL scheme with the Thermal

Slab LSM performs best (WRF1 and WRF2).

Surprisingly, it is not straightforward to group the predictability of hub height

winds according to the site’s surface roughness (see Section 4.2.3). One can notice

the highest correlations for the low-roughness site Cabauw, whereas the correlations

at the low-roughness site Falkenberg are comparable to those at the high-roughness
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Figure 4.3: Root mean square error of hub height wind speeds at measurement towers
for 1 – 31 August 2014. Different colors correspond to eight WRF model configura-
tions. Results for GFS forecast fields are shown in black color for comparison.
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Figure 4.4: Root mean square error of hub height wind speeds at measurement towers
for 1 – 30 November 2014. Different colors correspond to eight WRF model configu-
rations. Results for GFS forecast fields are shown in black color for comparison.
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site Karlsruhe. Despite the lower resolution forecast fields, wind speeds of the GFS

model show the lowest root mean square error at all onshore and offshore sites. This

is caused solely due the positive wind bias observed for all WRF model configurations,

whereas correlations are of comparable magnitude.

Results for the forecast period 1 – 30 November 2014 show a similar picture for the

wind bias. At the Hamburg, Falkenberg, Jülich and Karlsruhe measurement tower,

all model configurations tend to overestimate the wind speed. As for the August

period, the overestimation of wind speed is of the order of 1−2 m/s. Result obtained

at the Cabauw measurement tower state an exception. Again, the WRF4 and WRF8

configurations show the most pronounced bias, which holds throughout the day for

the November period, and the WRF1 and WRF2 configurations show the lowest bias

and lowest root mean square errors.

Wind power

A physical wind power model (see Section 4.3) has been applied by Fraunhofer

IWES to derive an aggregated wind power forecast over Germany. Results are com-

pared with the real power feed-in estimated by the TSO, which can be understood

as the ”observation”. Diurnal cycles are calculated for the sample mean, root mean

square error, bias and correlation, for the periods 1 – 31 August 2014 and 1 – 30

November 2014. Results are shown in Figure 4.5 and 4.6, respectively. All values

are normalized by the total installed wind power capacity over Germany, excluding

offshore capacity. For comparison, the statistically postprocessed, multi-model day-

ahead forecasts of the German TSOs is shown. Further, 100 m wind fields of the GFS

model have been converted to wind power. It may be assumed, that the GFS model

data is involved in the multi-model approach of the TSOs day-ahead forecasts. Table

4.6 and 4.7 list the associated aggregated verification statistics throughout the day.

The TSO day-ahead forecast shows a root mean square error of 0.031 for August

and 0.030 for November. One may assume, that postprocessing removes a possible

bias to an acceptable extend. In comparison, the wind power forecast derived with

the GFS model data performs only slightly worse. However, results for the wind

power derived with the WRF model show a consistent picture with the previous sec-

tion. As the cube of the wind speed enters the wind power model, the observed wind

speed bias is strongly amplified. This instance eventually leads to an overestimation

of wind power in the order of 100 % (Figure 4.5a and 4.6a). In this context, all WRF

configurations show a comparably large root mean square error for all forecast lead

times and both periods under investigation. However, despite the large bias, corre-

lations are of comparable size, indicating that the WRF model shows in principle a

distinct forecast skill.
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Figure 4.5: Diurnal cycle of verification statistics for the normalized day-ahead wind
power forecast with eight different WRF configurations: (a) sample mean, (b) root
mean square error, (c) bias and (d) correlation. The forecast period is 1 – 31 August
2014. For comparison, the real power feed-in, the TSO forecast and the derived
forecast with GFS model data and the IWES power model is shown.
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Figure 4.6: Diurnal cycle of verification statistics for the normalized day-ahead wind
power forecast with eight different WRF configurations: (a) sample mean, (b) root
mean square error, (c) bias and (d) correlation. The forecast period is 1 – 30 November
2014. For comparison, the real power feed-in, the TSO forecast and the derived
forecast with GFS model data and the IWES power model is shown.
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Table 4.6: Verification statistics for the day-ahead wind power forecast with eight
different WRF configurations and GFS model fields. The TSO day-ahead forecast
and the derived forecast with GFS model data is shown for comparison. The forecast
period is 1 – 31 August 2014. All values are normalized with the installed wind power
capacity.

TSO GFS WRF1 WRF2 WRF3 WRF4 WRF5 WRF6 WRF7 WRF8

RMSE 0.031 0.040 0.088 0.092 0.937 0.150 0.142 0.124 0.132 0.146

BIAS -0.001 0.005 0.063 0.068 0.069 0.108 0.108 0.098 0.103 0.105

CORR 0.969 0.967 0.952 0.954 0.957 0.965 0.946 0.951 0.952 0.971

Table 4.7: Verification statistics for the day-ahead wind power forecast with eight
different WRF configurations and GFS model fields. The TSO day-ahead forecast
and the derived forecast with GFS model data is shown for comparison. The forecast
period is 1 – 30 November 2014. All values are normalized with the installed wind
power capacity.

TSO GFS WRF1 WRF2 WRF3 WRF4 WRF5 WRF6 WRF7 WRF8

RMSE 0.0291 0.048 0.149 0.147 0.140 0.223 0.175 0.140 0.179 0.207

BIAS -0.001 0.011 0.113 0.112 0.105 0.181 0.142 0.109 0.142 0.167

CORR 0.964 0.948 0.856 0.867 0.845 0.872 0.847 0.865 0.88 0.87

The observed wind bias has a pronounced diurnal cycle for all configurations, due

to an overestimation of nocturnal low level jets in case of both periods. This is again

observed to be most distinct for WRF4 and WRF8, consistent with the previous

section. Again, the combination of the YSU PBL scheme and the Thermal Slab LSM

appears most favorable (WRF1 and WRF2). This results is surprising, as the simple

Thermal Slab LSM does not include soil moisture prediction, and one would expect

the more sophisticated LSMs to provide more realistic boundary conditions for the

PBL scheme. From this group, configuration WRF2 agrees best with the diurnal

cycle of the observations. The WRF2 configuration shows a root mean square error

of 0.092 and 0.147 for August and November, respectively.

For the August period, one can notice local minima in the daily mean cycle

around sunrise and sunset, visible in the observation as well as for all WRF model

configurations. The planetary boundary layer occasionally falls below turbine hub

height under stable conditions. After sunrise, wind speed decreases as the inversion

passes the turbine hub height and air masses of lower momentum rise. With increasing

turbulence induced by convection during day time, higher momentum from upper

levels is mixed down and wind speeds increase again. In case of the minimum around

sunset, an opposite effect can be assumed.



4.5 Optimization of the WRF model for wind power forecasting 65

4.4.5 Discussion on WRF’s wind bias

In this section it has been identified, that the WRF model shows a significant pos-

itive wind speed at the surface and nearby elevated levels. The wind bias is moderate

for 10 m wind speed, but significant at turbine hub heights. The wind bias is further

amplified in the wind power forecast, as the derived power is proportional to the cube

of wind speed. A diurnal cycle can be observed, with a stronger overestimation of

wind speed during night. The wind bias is apparent for all tested model configura-

tions as well as all lead times, and develops right after the initialization. Evidently,

this leads to the conclusion of a systematic model deficit.

A systematic overestimation of surface and elevated winds by the WRF model

has been noted in numerous studies (Cheng and Steenburgh, 2005; Bernardet et al.,

2008; Roux et al., 2009). A plausible explanation could be a missing representation

of unresolved terrain effects and additional drag at the surface. Different attempts to

include unresolved terrain effects in the formulation of the YSU PBL parameteriza-

tions have been proposed. Jiménez and Dudhia (2012) add a sink term that depends

on the standard deviation of the subgrid orography as well as on the Laplacian of the

topographic field. Mass and Ovens (2011) modulate the friction velocity according

to the subgrid orography. Both approaches have been investigated but do not cor-

rect wind speeds in the area of pronounced installed wind power capacity, where the

terrain is typically flat an subgrid orography vanishes.

The physics suite of configuration WRF2 has proven to be most favorable for fore-

casts of 100 m wind speed and associated wind power. Further, the configuration has

shown the most consistent verification statistics for numerous in situ observations,

including upper air temperature and wind speed. Thereupon, for any further inves-

tigation, the final physics suite reads: YSU PBL scheme, Thermal Slab LSM, WSM6

microphysic scheme, RRTM longwave and Dudhia shortwave radiation scheme as well

as Kain-Fritsch cumulus scheme.

4.5 Optimization of the WRF model for wind power

forecasting

In this section it is shown, that with straightforward optimizations of model pa-

rameters, the positive wind speed bias at 100 m can be reduced and day-ahead wind

power forecasts with comparable skill to the TSO multi-model approach are achiev-

able. The plausibility of such modifications is discussed with the primary argument,

that the WRF model is optimized for the Contiguous United States (CONUS).

The most straightforward way to decrease wind speeds above ground is to in-

crease the roughness of the surface. Rougher surfaces increasingly generate drag in
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the opposite direction to the flow and enhance turbulent kinetic energy. This induces

downward momentum flux which decreases the vertical wind speed gradient. The

wind speed bias of the WRF model shows a summerly diurnal cycle with maximum

values during night times. Hence, solely increasing the surface roughness is insuffi-

cient. The YSU PBL scheme is thereupon modified to enhance mixing during stable

conditions.

4.5.1 Roughness length

The surface layer is the lowest layer in the atmosphere and can be distinguished

from the remaining PBL by turbulent fluxes which are constant with height. Turbu-

lent motion solely maintains the surface layer, while Coriolis as well as pressure forces

can be neglected. The similarity theory of Monin and Obukhov has been a standard

to describe the shape of the wind profile under these assumptions and derived the

dimensionless vertical wind speed gradient as

kz

u∗

∂u

∂z
= φm(z/L), (4.6)

with k the Kármán constant, z the height above ground, u∗ the friction velocity,

u the mean flow according to Reynolds averaging and L the Obukhov length scale,

which estimates the ratio of wind shear and buoyancy in the process of turbulence

generation 1. φm(z/L) denotes the stability dependent non-dimensional universal

function for the momentum transport which is written here in the most general form

depending on the stability conditions:

φm

( z
L

)
=


1 + a zL stable

1 neutral

(1− b zL)−1/c unstable,

(4.7)

with values of the parameters a, b and c being under ongoing debate for the last

decades (Foken, 2006). Vertical integration of the gradient in (4.7) leads to a loga-

rithmic wind profile

u =
u∗
k

[
ln
( z
z0

)
− Φm

( z
L

)]
, (4.8)

with Φm the integral of φm and z0 the integration constant. For neutral conditions

the wind profile takes the well known form u = u∗
k ln( zz0 ). Parameter z0 is the

roughness length defined as the height where the logarithmic wind profile becomes

zero. The roughness length has a direct influence on the shape of the wind profile,

with increasing values decreasing ∂u/∂z.

1For a derivation and the corresponding equation for the heat exchange, the reader is referred to
Stull (1988).
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Figure 4.7: Roughness length over Germany according to the WRF model, based on
the MODIS land cover type data set.

Hub height winds are strongly effected by z0. Although the surface layer may

not reach such heights, typically the case for a non convective boundary layer,

fluxes derived at the surface layer top still serve as lower boundary conditions for

the calculation of their transport throughout the remaining mixed layer of the

PBL. In principle, z0 depends on the composition and protrusions of the surface.

The reader is referred to Pielke (1984) for a comprehensive summary of theoretical

and experimental studies on the derivations of roughness length. Theoretical and

experimental studies are typically derived under simplified conditions or ideal

locations of to a site, where surface features are less inhomogeneous, and it is there-

fore argued that z0 is a plausible parameter of high uncertainty in mesoscale modeling.

The WRF model associates a constant value of z0 to each land use category, which

have to be interpreted as averaged values. Two look-up tables exist for summer and

winter values. The Thermal Slab land-surface parameterization does not include in-

terpolation between the biannual values. Figure 4.7 shows values of the roughness

length z0 according to the WRF model based on the MODIS land cover type data

set over Germany. Predominant values are 0.15 m (0.05 m during winter) associated

with the land use category Croplands, which covers the majority of installed wind

capacity, and 0.5 m (0.2 m during winter) associated with Mixed Forests. Noticeably,
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in the area of highest wind power capacity in Germany, the coastal area of the North

Sea in Schleswig Holstein (see Figure 4.2 for comparison), z0 has a value of 0.14 m

(0.05 m during winter) associated with Cropland/Natural Vegetation Mosaic. Also

mentionable at this point is the land use category Urban/Build-Up with a maximum

value of 0.8 m (constant throughout the year).

In the following it is argued, that the surface roughness is in general assumed too

small in the WRF model. At least, this holds for the domain under investigation

and for the predominant land use categories mentioned above. The WRF model is

by development an American model and optimized for the Contiguous United States

(CONUS). Values of roughness length are thereupon not necessarily suitable for other

domains, since the same classes of land use categorization may possess quite differ-

ent characteristics depending on their cultivation. In particular, values of roughness

length for agricultural land use have been under active debate (see e.g. Pielke (1984)).

As the main argument, it is stated here that agricultural land use is by far more inho-

mogeneous in Europe compared to the CONUS, with typical agglomerations of trees,

buildings and roads within a few hundred meters. This assumption is supported by

van Dop (1983), who derives a value of 0.25 m for European agricultural land use,

which is almost twice as large as in the WRF model.

An increase in surface roughness is justified with respect to other mesoscale mod-

els which run operationally over the Germany area. Referring to the COSMO model

maintained by the German Weather Service, land use categories are in principle as-

sociated with higher values of z0. The COSMO model uses a re-evaluation of the

combined CORINE and GLC2000 data sets for surface parameter classification. Al-

though these data sets associate agricultural land use with a value of 0.15 m as well,

the category of Mosaic Crop/Tree/Net Vegetation with 0.25 m is quite widespread

over Northern Germany. Carrying on this comparison to further land use categories,

surface roughness for Mixed Forests is assumed twice as large and urban areas have

a value of 1.0 m.

The assumption of too little surface roughness is in agreement with the results ob-

tained in Section 4.4.4 for the measurement towers. For example, the ECOCLIMAP

data set (Masson et al., 2003) gives a value of 1.117 m and 1.3 m for the sides of the

Hamburg and Karlsruhe measurement towers, respectively, and it has been already

mentioned in Section 4.2, that Konow (2015) derives a value of 0.96 m for the pre-

dominant wind direction at the Hamburg side and Thomas and Vogt (1993) 1.5 m for

Karlsruhe.

4.5.2 The YSU PBL scheme

The Yonsei University (YSU) PBL scheme has been developed by Hong et al.

(2006) and follows a first-order non-local closure approach pioneered by Troen and



4.5 Optimization of the WRF model for wind power forecasting 69

Mahrt (1986). The scheme is a revised version of the former Medium-Range Forecast

(MRF) PBL scheme, which has been beforehand a standard in NCEP’s operational

models, the MM5 Model and early versions of the WRF model. A major modification

to the MRF PBL scheme is an additional explicit treatment of entrainment processes

for momentum at the inversion layer (and not exclusively for moisture and heat),

proposed originally by Noh et al. (2003). Currently, the YSU scheme is the most

frequently used PBL parameterization within the WRF model user community.

K-theory relates the turbulent stresses to vertical gradients of the mean flow via

the concept of eddy viscosity (Stull, 1988) and the turbulence diffusion equation reads

∂C

∂t
= − ∂

∂z

(
w′c′

)
=

∂

∂z
Kc

(
∂C

∂z

)
, (4.9)

with C a prognostic variable of momentum, heat or moisture and Kc the associated

eddy viscosity coefficient. The non-local K approach modifies K-theory by adding a

parameterized countergradient correction term γc to the turbulence diffusion equation

accounting for buoyancy induced large-scale eddies in a well mixed environment:

∂C

∂t
=

∂

∂z
Kc

(
∂C

∂z
− γc

)
. (4.10)

The eddy diffusivity coefficients Kc are estimated within the PBL by a prescribed

parabolic function with quantities evaluated over multiple points in the vertical (in

opposition to a local approach using local spatial gradients), which is formulated for

the momentum as

Km = kws(1−
z

h
)p, (4.11)

with ws the velocity scale and h the PBL height. The exponent p determines the shape

and magnitude of the profile. The stable regime is defined by the condition (w′θ′)0 < 1

in the YSU PBL scheme, with (w′θ′)0 the surface flux of potential temperature. The

corresponding velocity scale is given by ws = u∗/φm (in the unstable regime, ws is

modified by a convective velocity scale). As has been noted in the previous section,

the shape of the stability universal function φm is under ongoing debate, but takes

the general form φm = 1 + r zL for stable conditions, see (4.7). However, according to

Hong et al. (2006), the initial version of the YSU PBL scheme assumed

φm = 1 + 5
0.1h

L
, (4.12)

which has been changed after consecutive tuning to

φm = 1 + 5
z

L
. (4.13)
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Table 4.8: Experimental setup of WRF model optimizations for configuration WRF2.
Roughness length z0 in (4.8) is multiplied by a tuning parameter r, stability in the
YSU PBL scheme is enhanced in the stable regime by parameter s in (4.14).

WRF2 WRF2r2s1 WRF2r3s1 WRF2r2s0.5 WRF2r3s0.25 WRF2r3s0.1

r 1.0 2.0 3.0 2.0 3.0 3.0

s 1.0 1.0 1.0 0.5 0.25 0.1

This modification has been done ”to prevent smoothing nocturnal jets too much be-

cause the z/L term smooths less with height than 0.1h/L” (personal communication

with Jimy Dudhia, NCAR). This conclusion has been drawn on the CONUS domain

with a different orography and climatology. Since this study observes the opposite,

that is too strong nocturnal low level jets, it appears to be justified to reformulate

(4.13) as

φm = 1 + 5s
z

L
, (4.14)

with 0 < s ≤ 1 being a tuning parameter. With typical PBL heights of 100 m dur-

ing summerly stable conditions over Germany, (4.13) and the initial implementation

(4.12) equal at the inversion layer height in case of s = 0.1. Although this range

substantially deviates from other studies (e.g. Foken (2006) notes an accepted value

of r = 6), such a choice still appears to be coherent for the YSU PBL scheme taking

its initial implementation into account.

4.5.3 Experimental setup

In the previous section, the configuration WRF2 has been identified as the most

favorable. This configuration of physical parameterizations is retained, and five op-

timizations of the WRF2 configuration are chosen to rerun the forecast periods 1

– 31 August 2014 and 1 – 30 November 2014. The optimizations are summarized

in Table 4.8. The roughness length of the land use categories Croplands and Crop-

land/Natural Vegetation Mosaic, Mixed Forests and Urban/Build-Up is multiplied by

either a factor of r = 2.0 or r = 3.0. For the November period, summerly values for

land use categories Croplands, Cropland/Natural Vegetation Mosaic are taken as the

initial point to account for an inhomogeneous land use, which is independent of the

season. The stability parameter s is varied between s = 1, which correspond to the

default setting of the YSU PBL scheme, and s = 0.5, 0.25, 0.1 to enhance mixing in

the stable regime, with smaller values indicating stronger mixing.
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Table 4.9: Verification statistics for the day-ahead wind power forecast with model
configuration WRF2 and optimizations. The TSO forecast and the derived forecast
with GFS model data is shown for comparison. The forecast period is 1 – 31 August
2014. All values are normalized with the installed wind power capacity. Bold numbers
indicate statistics of the final model setup.

TSO GFS WRF2 r2s1 r3s1 r2s0.5 r3s0.25 r3s0.1

RMSE 0.031 0.040 0.093 0.059 0.045 0.053 0.039 0.041

BIAS -0.001 0.005 0.068 0.036 0.017 0.028 0.006 0.005

CORR 0.969 0.967 0.954 0.945 0.944 0.951 0.950 0.950

Table 4.10: Verification statistics for the day-ahead wind power forecast with model
configuration WRF2 and optimizations. The TSO forecast and the derived forecast
with GFS model data is shown for comparison. The forecast period is 1 – 30 November
2014. All values are normalized with the installed wind power capacity. Bold numbers
indicate statistics of the final model setup.

TSO GFS WRF2 r2s1 r3s1 r2s0.5 r3s0.25 r3s0.1

RMSE 0.0291 0.048 0.147 0.078 0.063 0.074 0.059 0.061

BIAS -0.001 0.011 0.112 0.045 0.024 0.040 0.016 0.016

CORR 0.964 0.948 0.867 0.880 0.877 0.882 0.883 0.883

4.5.4 Results

Simulations with tuning parameters according to Table 4.8 have been carried out

in the same manner as in the previous section. Yet, the discussion is restricted to the

day-ahead wind power forecast. Table 4.9 and 4.10 list the aggregated verification

statistics for the periods 1 – 31 August 2014 and 1 – 30 November 2014, respectively.

The largest improvement in root mean square error is due to an increase in roughness

length z0, as the positive wind bias is diminished. For the August period, the wind

bias is reduced from 0.068 to 0.036 for r = 2 (WRF2r2s1), and further reduced to

0.017 for r = 3 (WRF2r3s1). For the November period, the wind bias is reduced

from 0.112 to 0.045 for r = 2 (WRF2r2s1), and further reduced to 0.024 for r = 3

(WRF2r3s1). Form this point on, the enhancement of mixing for stable conditions in

the PBL further reduces the wind bias (WRF2rs0.5, WRF3rs0.25 and WRF3rs0.1).

The wind bias is reduced to a negligible extent for the August period, but still ap-

parent for the November period. The increase in roughness length has a negligible

effect on correlation for both periods. However, a decrease in stability parameter s

consistently increases correlations, indicating that the temporal evolution of the wind

bias is corrected. This is confirmed by Figure 4.8 and 4.9, which show the diurnal
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Figure 4.8: Diurnal cycle of verification statistics for the normalized day-ahead wind
power forecast with optimized WRF configurations: (a) sample mean, (b) root mean
square error, (c) bias and (d) correlation. The forecast period is 1 – 31 August 2014.
The green line denotes the WRF2 configuration, blue lines of different shades the
different optimizations. For comparison, the real power feed-in, the TSO forecast
and the derived forecast with GFS model data and the IWES power model is shown.
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Figure 4.9: Diurnal cycle of verification statistics for the normalized day-ahead wind
power forecast with optimized WRF configurations: (a) sample mean, (b) root mean
square error, (c) bias and (d) correlation. The forecast period is 1 – 30 November
2014. The green line denotes the WRF2 configuration, blue lines of different shades
the different optimizations. For comparison, the real power feed-in, the TSO forecast
and the derived forecast with GFS model data and the IWES power model is shown.
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cycle of the sample mean, root mean square error, bias and correlation, for both

periods. Results for WRF3rs0.25 and WRF3rs0.1 are in good agreement with the

mean diurnal cycle of the real feed-in for August (Figure 4.8a). It can be noted, that

a variation of s has only an effect during nocturnal stable conditions, whereas wind

power during day-time remains unaffected, as the boundary layer is well mixed.

Returning to Table 4.9 and 4.10, the root mean square error can be reduced to an

extent comparable to the TSO forecast. For the August period, the lowest value can

be noticed for WRF3rs0.25 with 0.039, slightly smaller than the root mean square

error of the GFS model. For the November period, again, the lowest value can be

noticed for WRF3rs0.25 with 0.059, noticeable larger than the root mean square er-

ror of the GFS model. A further decrease in the stability parameter s has a slightly

negative effect on the root mean square error, and is therefore refused.

To conclude, the configuration WRF3rs0.25 has been chosen to serve as a de-

terministic model setup for the ultra large ensemble. By multiplying the roughness

length z0 by a factor of r = 3, and enhancing the the vertical mixing in the YSU PBL

scheme with a stability parameter of s = 0.25, the forecast is of comparable skill to

the forecast derived with the GFS model, and slightly worse than the postprocessed

multi-model TSO forecast.



Chapter 5

Evaluation of an ultra large wind

power ensemble

A predictability analysis of an exceptional error event in wind power forecasting

is carried out with an ultra large meteorological ensemble of 1024 members. The ex-

perimental setup is summarized and the analysis to identify a major exceptional error

event is described. The meteorological ensemble is evaluated in terms of ensemble

dispersion of turbine hub height winds. Conversion to wind power is realized for the

entire ensemble and evaluated in terms of higher order statistics. A case study from

an exceptional error event in solar power forecasting supports the main findings.

5.1 Experimental setup

A 1024-member ensemble is set up with the ESIAS-met system. The domain

configuration is described in detail in Section 4.1.1 and is depicted in Figure 4.1. The

inner convection-permitting domain (nested domain) feeds back model values to the

outer domain (parent domain) every single time step, known as two-way nesting. The

WRF model configuration is chosen according to the results discussed in Chapter 4.

Each ensemble member is initialized by the GEFS reforecast, with perturbed analysis

fields distributed equally among the ensemble member. Initial condition perturba-

tions of the GEFS reforecast have been generated by the Ensemble Transform method

(Wei et al., 2008), introduced in Section 2.2. Model uncertainty is represented by the

SPPT (Berner et al., 2011) and SKEB scheme (Berner et al., 2015), introduced in

Section 2.3.

Table 5.1 summarizes the stochastic perturbation parameters, while Figure 5.2a,

5.2b and 5.1 show instantaneous perturbation fields in physical space (the compu-

tation of perturbation patterns is realized in spectral space, see Section 2.3). The

default settings of both schemes are varied only slightly, since simulation results from

single sensitivity studies do not show a strong dependency on the parameter choice.

75
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Table 5.1: Stochastic model parameter for SPPT and SKEB scheme. Subscripts ψ
and θ denote parameter values for the streamfunction and potential temperature,
respectively.

Parameter Value

Temporal correlation length (SPPT) τ = 21600 s
Spatial correlation length (SPPT) κ = 150 km
Grid point variance (SPPT) η = 0.125 – 0.25
Temporal correlation length (SKEB) τψ = τθ = 10800 – 21600 s
Backscattered energy rates (SKEB) Bψ = 10−5 m2/s3, Bθ = 10−6 m2/s3

Power law (SKEB) βψ = γθ = −1.83

This finding is in compliance with other studies using the WRF model at midlati-

tudes (Berner et al., 2011; Romine et al., 2014; Berner et al., 2015; Duda et al., 2016;

Jankov et al., 2017). Despite different domain setups, all studies draw the conclu-

sion, that the most favorable parameter choice remains close to the default values,

indicating their universality. For the SPPT scheme, grid point variance κ is slightly

reduced, as numerical instabilities have been observed on the nested domain. For the

SKEB scheme, a power law of βψ = γθ = −1.83 for the stochastic pattern results in

a forcing with kinetic energy spectrum of −5/3 and a potential energy spectrum of

−10/3. The steeper power law for the velocity leads to smaller spatial correlation

lengths (see Figure 5.2a and 5.2b). Stochastic patterns are generated on the outer

domain and interpolated onto the nested domain to preserve consistency. Romine

et al. (2014) and Jankov et al. (2017) report on the SKEB scheme outperforming

the SPPT scheme in terms of probabilistic skill scores. However, a combination of

both schemes is favorable, as the ensemble dispersion in the planetary boundary layer

is mainly induced by the SPPT scheme, and in the free atmosphere mainly by the

SKEB scheme. Upon this well-established knowledge, 630 members are perturbed by

the SKEB scheme and 384 members by the SPPT scheme. No a priori knowledge on

the parameter is assumed, since parameter tuning to adjust the ensemble spread to

the ensemble mean error for a single forecast period does not correspond to a realistic

scenario. The first 11 ensemble members are dynamically downscaled without any

model uncertainty representation.

5.2 Case study selection

The Fraunhofer IWES conducted an analysis to identify the days for which the

TSO day-ahead forecast showed the most extreme errors. The TSO day-ahead fore-

cast is a weighted mean of multiple NWP systems (Good, 2017). Hence, if the TSO

day-ahead forecast is exceptionally erroneous, one can assume that at least the ma-

jority of involved NWP systems showed a poor forecast skill.
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Figure 5.1: Instantaneous SPPT perturbation pattern on the outer domain.

(a) (b)

Figure 5.2: Instantaneous SKEB perturbation patterns on the outer domain for (a)
u-component of wind vector and (b) potential temperature. The perturbation pattern
for the v-component is generated by a rotation and phase shift of the u-component
perturbation pattern.

The TSO day-ahead forecast has been compared to the real power feed-in (for

convenience termed the true power supply) for the period 1 January 2014 – 31 Au-

gust 2015. Both data sets are made publicly available by the TSOs. Moments of

errors n
√

(F −O)n for each day-ahead forecast have been calculated, including data
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Figure 5.3: TSO day-ahead power forecast and real feed-in of wind power on 9 August
2014. Values are normalized by the installed wind power capacity (35 GW). Times
are in UTC.

points of 15-minutes resolution, where F denotes the power forecast and O the real

power feed-in. All values have been normalized by the root mean square error of the

entire period. In principle, the higher the moment n of the error, the higher is the

weight on more extreme error increments. Results show, that errors grow approxi-

mately linear in magnitude in the range of medium to moderate percentiles of the

distribution, whereas the errors increase sharply above the 95 % percentile. Hence,

long tails are present in the distribution of errors, defining exceptional error events.

The day-ahead forecast of 9 August 2014 proved to be exceptionally poor. Statis-

tically, it distinguishes itself from the remaining analysis period by multiple 6-hours

intervals, which are arranged in the 99.8 % percentiles of errors for the moments

n = 2, ..., 6. Therefore, the day-ahead forecast of 9 August 2014 did not only show

single, extremely large forecast-observation increments, but also severe forecast er-

rors throughout the day. Figure 5.3 shows the TSO day-ahead power forecast and

the real power feed-in, where the wind power is normalized by the installed capac-

ity. A distinct underestimation of wind power can be noticed at all lead times of

relevance. The true power production increases sharply during the morning hours,

while the TSO day-ahead forecast anticipates only a slight increase, with maximum

error values around noon. With an installed wind power capacity of 35 GW at this

time, forecast-observation increments increase from 1.6 GW at 00:00 UTC to 7.8 GW

at 10:45 UTC. The root mean square error between 03:00 UTC and 15:00 UTC is

thereby 5.4 GW. For comparison, typical root mean square errors are approximately
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1.0 GW (see Table 4.9 and 4.10). The accumulated forecast error is 34 % of the to-

tal production throughout the day. Due to the severity of the error event, it has

been subject to further studies in the realm of energy meteorology, concerning its

predictability with a cyclone detection system (Steiner et al., 2017) or energy market

effects (Stark, 2015).

5.3 Meteorological situation

From 8 – 9 August 2014, the meteorological condition over Central and Western

Europe was dominated by two low pressure systems (see Figure 5.4a and 5.4b for

the NCEP GFS analysis). At 500 hPa aloft, a stationary primary long-wave trough

extended from Southern Greenland to Western Ireland and the Norwegian Sea. At

00 UTC 9 August, its low pressure system was located about 300 km northeast of

Ireland, with a central pressure of 995 hPa. A secondary short-wave upper air trough

developed on 8 August over the Eastern Atlantic, with its low pressure system just

off the coast of Brittany at 00 UTC 8 August. This secondary cyclone moved rapidly

around the primary system and approached Southern Britain by the end of 8 August.

During that time, its central surface pressure dropped from 1100 hPa to 1000 hPa.

Both systems were connected by an occlusion directed along Scotland at 00 UTC 9

August. Within the following 12 hours, the central pressure of the secondary cyclone

dropped considerably further to 985 hPa, with the centre moving towards the North

Sea. The upper air trough developed further downward, with strong frontogenesis

aligned in North to South direction of Central Europe, propagating from the Benelux

to Denmark and North-East Germany later in the day (see Figure 5.5a and 5.5b).

Pressure gradients were strongly increasing from the cyclone centre towards south-

east in the direction of Germany. 10-minutes intervals of 10 m wind speeds reached

maximum values of 21.1 m/s in Büsum, 15.7 m/s on the island of Sylt and 12.9 m/s

in Berlin-Tegel (German Weather Service, 2017).

5.4 Results

5.4.1 Meteorological evaluation

The 1024-member ensemble is initialized at 00 UTC 8 August 2014, where forecast

lead times between 00 UTC 9 August – 00 UTC 10 August correspond to the day-

ahead forecast. The following discussion is restricted to the predictability analysis of

the secondary cyclone. Figure 5.6a shows the difference in mean sea level pressure

between the control member forecast and the NCEP GFS analysis at 12 UTC 9 Au-

gust. This time is included in the hours of extreme errors in the day-ahead forecast

(see Figure 5.3). The control member denotes the WRF model run initialized by the

unperturbed analysis and a control model formulation (without model uncertainty
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(a) 00 UTC (b) 12 UTC

Figure 5.4: NCEP GFS analysis at (a) 00 UTC 9 August 2014 and (b) 12 UTC 9
August 2014. Geopotential height is shown at 500 hPa and surface pressure contours
are shown each 4 hPa.

(a) 00 UTC (b) 12 UTC

Figure 5.5: Meteosat Second Generation SEVIRI satellite imagry, channel 9, 10.8µm,
UK projection: (a) 00 UTC 9 August 2014, (b) 12 UTC 9 August 2014. Source:
http://www.sat.dundee.ac.uk/.

representation). The position of the central pressure is represented fairly well by

the control member, between Northern Scotland and Southern Norway, only slightly

shifted to the north compared to the GFS analysis. However, the central pressure is

significantly overestimated by 4 hPa. Further, the control member overpredicts the

local decrease in pressure gradients around the centre, resulting in a strong under-
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(a) (b)

Figure 5.6: Difference in mean sea level pressure between forecast and GFS NCEP
analysis at 12 UTC 9 August 2014, where in (a) the forecast is the control member and
in (b) the dynamically downscaled fourth GEFS member without model perturbation.

estimation of pressure gradients further south-east. The combination of both results

in forecast-minus-analysis increments exceeding 8 hPa at the latitudes of Denmark.

Noticeably, an underestimation of pressure gradients extends further south-east to

coastal areas of Germany and regions of frontal movement (see Figure 5.5b for com-

parison). Results shown in Figure 5.6a are well in agreement with results obtained

by the COSMO-EU model, depicted in Figure 3b of Steiner et al. (2017). Hence, the

conclusion can be drawn, that the low predictability of the surface low shape and

central pressure represents a certain universality for todays NWP systems.

Figure 5.6b shows the forecast-minus-analysis increments in mean sea level pres-

sure for the ensemble member initialized by the fourth GEFS ensemble member (with-

out model uncertainty representation). A distinct dipole pattern can be noticed in

the area of the secondary cyclone, indicating that the low pressure system is located

considerably further south compared to the GFS analysis. The central pressure is

predicted fairly well, since the absolute values of minima und maxima increments are

approximately of the same size. However, the dipole structure is not symmetric, indi-

cating a surface low of different shape. Consequently, the evaluation of both examples

depicted in Figure 5.6 suggests that the forecast errors are strongly sensitive to the

location, shape, central pressure and local pressure gradients of the surface low.

The ensemble spread of 100 m wind speeds is displayed in Figure 5.7 at 06 UTC 9

August and 12 UTC 9 August for the complete 1024-member ensemble. Local max-

ima of ensemble spread are well in compliance with the locations of the primary and
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(a) 06 UTC (b) 12 UTC

Figure 5.7: Ensemble spread of 100 m wind speed for the 1024-member ensemble: (a)
06 UTC 9 August 2014, (b) 12 UTC 9 August 2014.

secondary cyclones (see Figure 5.4b), and therefore with regions of low predictability.

Within the short time period of 6 hours, a rapid increase in ensemble spread over

the centre of the secondary cyclone can be observed. The increase is not only con-

fined to the magnitude, but even more prominent in the spatial extent, representing

the uncertainty in the low pressure system’s location and shape. There is no pro-

nounced ensemble spread visible in regions of frontogenesis, indicating an insufficient

uncertainty representation by the ensemble spread. However, the frontal system is

distinguishable in the ensemble spread of the wind components (not shown here),

corresponding to uncertainty in the frontal orientation. In Figure 5.7b, a large en-

semble spread between 45◦ and 50◦ latitude at the western domain boundary can be

noticed. The ensemble dispersion results from the approaching extratropical remnant

of hurrican Bertha, which is not of any relevance to the discussion here.

The spaghetti plot of the first 11 ensemble members at 12 UTC 9 August 2014 is

depicted in Figure 5.8a, where each ensemble member is initialized by different initial

conditions from the GEFS ensemble, yet without model uncertainty representation.

Therein, isohypses are displayed at 850 hPa, as the initial upper air trough had al-

ready developed further downward at this time. The isohypse of the GFS analysis is

shown for comparison. The green colored line corresponds to the ensemble member

initialized by the fourth GEFS ensemble member, which is characterized by a slight

displacement of the trough to the south, in compliance with Figure 5.6b. A distinct

divergence of isohyspses can be identified over the region of the secondary cyclone.

The GFS analysis is enclosed in the ensemble realizations, however, all 11 member
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(a) First 11 member and NCEP GFS analysis (b) 1024-member ensemble

Figure 5.8: Spaghetti plot of geopotential height at 850 hPa, isohypses of 134 gpdam,
at 12 UTC 9 August 2014. (a): 11 dynamically downscaled GEFS members (no model
perturbation). The red line corresponds to the control member, the black dashed line
to the NCEP GFS analysis. (b) The complete 1024-member ensemble.

exhibit a more narrow shape of the secondary trough. This fact is identified as the

main reason of forecast failure. The ensemble’s low pressure systems are all of smaller

spatial extent. Therefore, smaller pressure gradients appear over Germany, resulting

in weaker frontogenesis and hence, smaller wind speeds were induced. Figure 5.8b

shows the spaghetti plot of the complete 1024-member ensemble. An even more dis-

tinct picture can be drawn in terms of forecast uncertainty by an increased isohypse

dispersion. Model uncertainty schemes (SPPT or SKEB) eventually trigger instabil-

ities in the flow, leading to pronounced differences in the model results, as numerous

ensemble runs estimate the trough’s location far off.

In wind and solar power forecasting, it is standard to interpret probabilistic fore-

casts by quantiles of the ensemble’s distribution (Möhrlen and Jørgensen, 2017).

Forecast intervals, known as quantiles, allow a comprehensible assessment of the cu-

mulative distribution function and indicate a range of possible outcomes. Quantiles

are frequently confused with confidence intervals, which aim to compute statistical

metrics of a distribution and indicate how well the sample distribution reflects this

metric. The latter is however not of primary interest for users of power forecasts.

Hence, quantiles are considered here in accordance to the standard.

Nested quantiles of hub height wind speeds at the locations of measurement towers

are shown in Figure 5.9, together with the correspondent observation. One can clearly

identify the approach of the surface low towards Germany on 8 August, starting at

the FINO1 tower at 10 UTC with a sharp increase in observed wind speed. During 9

August, the frontal system’s progression from Western to Eastern Germany is visible
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Figure 5.9: Nested quantiles of hub height wind speeds at measurement towers. The
boundaries of shaded areas mark the minimum, 10 % percentile, 25 % percentile,
75 % percentile, 90 % percentile and the maximum in ascending order. The dashed
line denotes the ensemble median and the solid line the observation.
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in the temporal displacement of observed wind speed maxima among the measure-

ment towers, which is also in compliance with the evolution of the error event (see

Figure 5.3). The ensemble median indicates a clear underestimation of wind speeds

during these times. Wind maxima of the ramping events are enclosed in the ensem-

ble, except for Hamburg and Falkenberg, where a slight underestimation is identified.

The distribution is clearly skewed towards overestimated wind speeds at FINO1 and

FINO3 by the end of 9 August, mainly caused by ensemble members which share

the initial conditions of the fourth GEFS ensemble member (see discussion above).

Percentiles of 10 % and 90 % are closely grouped together in case of all measurement

towers, with only a slight increase in divergence during times of exceptional errors.

The ensemble spread indicates therefore an increased likelihood of forecast failure,

but underestimates the values of extreme errors. In contrast, minimum and maxi-

mum values of wind speeds sharply increase with the onset of the exceptional error

event. Hence, the conclusion can be drawn that the exceptional error event is solely

indicated by long tails in the distribution of wind speeds due to single outliers. How-

ever, it should be noted, that the utilization of other ensemble generation techniques

may come to a different conclusion.

5.4.2 Wind power evaluation

The ultra large meteorological ensemble is transformed into a wind power genera-

tion ensemble applying the physical wind power model utilized at Fraunhofer IWES.

The wind power model is described in detail in Section 4.3. The evaluation in terms

of wind power has been subject of Good and Berndt (2017) and is reinvestigated here.

In the following analysis, all values are normalized by the total installed wind

power capacity of onshore German wind farms. The day-ahead forecast of the ultra

large wind power ensemble for 9 August 2014 is shown in Figure 5.10, together with

the ensemble mean, the TSO day-ahead forecast and the real power feed-in. A rem-

nant of WRF’s nocturnal wind bias can be observed in the ensemble mean between

00 UTC and 06 UTC. However, this bias is not carried throughout the day. The

sharp decrease in wind power around sunrise is identified as a characteristic feature

of stability transition in the PBL, followed by a reduction in wind bias (see Section

4.4). Hence, the forecast skill of the ensemble mean is of similar skill compared to

the TSO day-ahead forecast, at least during times of most extreme errors.

The real power feed-in is enclosed by the ensemble at all forecast times. However,

with respect to the size of the ensemble, only very few outliers capture the true power

production during times of maximum forecast errors. Noticeably, there are more out-

liers generated in the direction of forecast error, indicating a proper skewness of the

ensemble’s PDF towards the true power production. This is further illustrated in

Figure 5.11, which shows the nested quantiles of the ensemble. The temporal evolu-
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Figure 5.10: Day-ahead forecast of the ultra large wind power ensemble for 9 August
2014, including the ensemble mean, TSO day-ahead forecast and the real power feed-
in.

Figure 5.11: Nested quantiles of wind power. The boundaries of shaded areas mark
the minimum, 5 % percentile, 10 % percentile, 25 % percentile, 75 % percentile, 90 %
percentile, 95 % percentile and the maximum in ascending order. Additionally, the
ensemble median and real power feed-in are displayed.
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Figure 5.12: Same as Figure 5.10, but solely including ensemble members which share
the SPPT scheme.

tion of the minimum and maximum values are well in qualitative agreement with the

true power production. There is a large difference between the 95 % percentile and

the ensemble maximum, indicating the long tails of the distribution into the direc-

tion of forecast error. In contrast, the 95 % percentile underestimates the true power

production during most relevant times of the exceptional error event. In particular,

during the times of maximum errors, only the 99.5 % percentile captures the true

power production. In the previous section it is already noticed, that only a few single

outliers out of the 1024-member ensemble indicate the exceptional error event. This

conclusion is transferable to the wind power in a more pronounced manner. Thereby,

an estimated size of 250 ensemble members appears to be sufficient to enclose the

true power production at all forecast times.

Figure 5.12 shows a subset of the 1024-member ensemble by selecting solely the

384 members, which share the SPPT scheme for model uncertainty representation.

One can clearly notice a decrease in outliers which are consistent with the true power

production. This decrease is disproportional to the reduction in ensemble size, point-

ing to a general characteristic of model uncertainty schemes. As discussed in Section

2.3, different schemes address different shortcomings in NWP modeling, and therefore

may induce fairly varying forcings, depending on the atmospheric conditions. It is

well known, that the SPPT scheme is more effective in inducing ensemble dispersion

in the PBL, while forcings induced by the SKEB scheme are stronger in the free

atmosphere and during strong cyclogenesis (Berner et al., 2011). The latter is of
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Figure 5.13: Day-ahead wind power forecast of ensemble member 305 and 558, which
show the lowest root mean square error for 9 August 2014.

relevance here, making the SPPT scheme less effective. Instabilities of the underlying

flow are more likely triggered by the SKEB scheme and evolve eventually more con-

sistent with the true atmospheric state. These results are supported by Berner et al.

(2015), who show that ”the merits of model-error representation go beyond increasing

spread and removing the mean error and can account for certain aspects of structural

model uncertainty”.

A spatially aggregated value of wind power allows for a convenient determination

of the ensemble member which is most in compliance with the true weather situa-

tion in Germany during this time. Figure 5.13 shows the 556th and 305th ensemble

member, distinguished by the lowest root mean square error over the whole day, with

values of 0.0457 and 0.0459, respectively. The root mean square error is thereby in

the order of typical average values (see Table 4.9 and 4.10). Yet, a different synoptic

situation has developed later in the day in case of both members, overestimating the

calm winds in the evening. Both members have been initialized by the second GEFS

member and share the SKEB scheme for model uncertainty representation.

It has been hypothesized before, that the exceptional error event can only be

anticipated by single outliers in the ensemble, such that the tails of the distribution

are of primary interest. Central sample moments mn = E((x − µ)n) are therefore

calculated, where E(x) is the expected value of x and µ the ensemble mean. The

ensemble spread equals
√
m2, odd moments measure the skewness of the PDF and

even moments the kurtosis, with higher moments increasing the weight of the PDF’s
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Figure 5.14: Root moments of wind power distribution from n = 2 to n = 5 for the
wind power ensemble depicted in Figure 5.10. The ensemble mean error is shown for
comparison.

tails. Moments are normalized to the same unit by the nth root and shown in Figure

5.14, together with the ensemble mean error for n = 2, ..., 5. It is a common proce-

dure in meteorological ensemble forecasting to compare the average ensemble spread

to the root mean square error of the ensemble mean (Grimit and Mass, 2007), where

a perfectly reliable ensemble shows a strict agreement of both. This comparison fails

here due to the low predictability of the event. With increasing ensemble size, the

majority of members arranges around the ensemble mean. Outliers, which are consis-

tent with the true power production, are not well enough represented in the ensemble

spread. Turning to the higher moments, a sharp increase of odd moments is most

noticeable. This increase appears from negative to positive values at around 6 UTC,

and is consistent with the frontal system’s approach as well as the onset of most

extreme errors. From 12 UTC on, odd moments are approximately of the same order

as even moment, such that the even moments result mainly from the tail pointing

into the direction of forecast error.

As mentioned above, the direction of skewness corresponds to the true direction

of the forecast error. In this sense, Figure 5.14 reveals further information about

the temporal evolution of the skewness, estimating the correct time when a different

weather situation evolves, which distinguishes itself from the ensemble mean. Values

of kurtosis (n = 4) and superkurtosis (n = 6) are many times the Gaussian values

throughout the event. Thus, the ensemble shows a high probability of extreme er-

ror, compared to a normally distributed ensemble with the same ensemble spread. To
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conclude, upon a skillfully estimated skewness and kurtosis, one can properly indicate

a potential weather situation represented by the outliers, different from the situation

characterized by the ensemble mean. Furthermore, the likelihood of the weather sit-

uation to result in an extreme error event can be assessed.

It remains to be shown, how many ensemble members are needed to resolve the

ensemble statistics, as displayed in Figure 5.14. This is realized by randomly resam-

pling the ultra large ensemble with replacement by multiple samples of smaller sizes.

One may call this bootstrapping. However, in the classical sense bootstrapping aims

to compute statistics of a single sampled distribution. Here, the aim is to compute

statistics of subsets of a distribution and measure their variability. The subsets rep-

resent hypothetically reduced ensemble sizes. The complete 1024-member ensemble

thereby replaces an infinitely large ensemble and a statistical moment is treated as a

forecast variable. Hence, it is proceeded in the same manner as with the actual wind

power forecast and quantiles are used to interpret the probabilistic forecast. For this

purpose, subsets of sizes N ∈ {16, 64, 128, 256, 1024} are formed. For each subset,

5000 samples are drawn from the ultra large ensemble, and for each sample, the sec-

ond and third root moment are computed. Figure 5.15 and 5.16 show nested 5 %

and 95 % percentiles of the resulting distributions for varying ensemble sizes. Nested

percentiles of ensemble spread are arranged symmetrically around the true ensemble

spread. The qualitative evolution with time is sufficiently resolved by all ensemble

sizes. To accurately represent the ensemble spread of the 1024-member ensemble, 64

to 128 members are needed. Proceeding with the skewness, a larger ensemble size

is necessary to make an accurate predication. Starting with 16 ensemble members,

it is not obvious until 14 UTC, whether the distribution is skewed in the positive or

negative direction. At this time, the most extreme errors of that day have already

occurred. The same conclusion can be drawn for ensemble sizes of 64 and 128 mem-

bers. At the time when the 5 % percentile shows a sharp increase in skewness, parts

of the extreme error events have already occurred. To conclude, at least 256 ensemble

members are needed to resolve the skewness sufficiently well.

5.5 Outlook: Evaluation of an ultra large solar power

ensemble

In the previous section, the kurtosis and in particular the skewness of the en-

semble’s distribution are identified as key indicators that contain information about

the weather condition that might evolve differently from the bulk ensemble and lead

potentially to an exceptional error event in wind power forecasting. This concept is

taken further to a case study of solar power forecasting. The case study selection

is conducted in the way described in Section 5.2, such that the day-ahead forecast
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Figure 5.15: Nested 5 % and 95 % percentiles of the second root moment (ensemble
spread) for bootstrapped samples of different ensemble sizes N . Wind power case
study of 9 August 2014.

Figure 5.16: Nested 5 % and 95 % percentiles of the third root moment (skewness)
for bootstrapped samples of different ensemble sizes N . Wind power case study of 9
August 2014.
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Figure 5.17: Day-ahead forecast of the ultra large solar power ensemble for 28 Novem-
ber 2014, including the ensemble mean, TSO day-ahead forecast and the real power
feed-in.

of the 28 November 2014 is chosen. Results have been subject of Good and Berndt

(2017) and are summarized in the following.

Between 28 – 29 November 2014, the weather situation in Germany was domi-

nated by an anticyclonic southeasterly wind originating from a stationary high pres-

sure system located over the Baltic States. Surface winds appeared to be easterly

and advected cold air, while upper air winds at 300 hPa and 500 hPa were predom-

inantly westerly with advection of warm air. Due to adiabatic heating of subsiding

air masses, a distinct inversion layer evolved at approximately 900 hPa most notably

over Western and Southern Germany. Hence, while at 14 UTC 28 November, a tem-

perature of 6.0◦C has been measured at the Zugspitze (2964 m C) and 13.9◦C at

the Feldberg in the Black Forest (1490 m), temperatures appeared considerably lower

in Freudenstadt (797 m, also located in the Black Forest) with 2.4◦C, or Bamberg

(240 m) with 3.5◦C (German Weather Service, 2017). The temperature inversion led

to low stratus clouds throughout the day in Western and Southern Germany.

An ultra large meteorological ensemble with 1024 members is set up in the exact

same way as for the wind power case study. The WRF-Solar extension is utilized

to estimate the global horizontal irradiance, direct normal irradiance and diffusive

irradiance (Jimenez et al., 2016). The conversion to solar power is realized with

the Fraunhofer IWES regional Photovoltaic (PV) power model (Saint-Drenan et al.,

2017). Meteorological input fields are the components of solar radiation and 2 m
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Figure 5.18: Root moments of solar power distribution from n = 2 to n = 5 for the
solar power ensemble depicted in Figure 5.17.

temperature, as temperature decreases the power production due to module heating.

The PV power model is probabilistic in the sense, that the power output of various

possible orientations of PV modules is computed and trained on historical data.

Figure 5.17 shows the ultra large ensemble in comparison to the TSO day-ahead

forecast and the real feed-in of solar power. The ensemble mean is in good agree-

ment with the TSO day-ahead forecast. With an installed capacity of 38 GW, the

maximum forecast error is 5.25 GW at 11:00 UTC. An overestimation of solar power

generation is forecasted throughout the day, and even the ultra large ensemble does

not enclose the true power production for most of the times.

The root moments of the distribution are displayed in Figure 5.18 for n = 2, 3, 4, 5.

Skewness (n = 3) and superskewness (n = 5) increase rapidly in the direction of the

forecast error, while values of kurtosis and superkurtosis are multiples of the Gaussian

values. To assess the ensemble size, which is needed to resolve the proper direction of

skewness, it is proceeded as in the previous section. Nested 5 % and 95 % percentiles

of skewness are displayed in Figure 5.19 for different sample sizes. Up to a sample

size of 1024 members, it cannot be determined with certainty for all forecast times,

whether the ensemble is skewed into the direction of the forecast error. Hence, only

very few outliers are responsible for the measure of the proper skewness, which can-

not be represented sufficiently well by sample sizes smaller than 1024 member. This

result is even more striking compared to the wind power case study, due to the fact
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Figure 5.19: Nested 5 % and 95 % percentiles of the third root moment (skewness)
for bootstrapped samples of different ensemble sizes N . Solar power case study of 28
November 2014.

that radiance forecasting is in general more nonlinear.



Chapter 6

Summary

The skill of meteorological ensembles is well known to be restricted by the

available ensemble size. This work demonstrated the benefit of an increased

ensemble size in the frame of wind power forecasting, an application where

exceptional error events have a disproportionate effect on risk management and

associated costs. To analyse the impact of an ultra large ensemble size of up to 1024

members on weather dependent power forecasting, the following developments and

investigations have been carried out.

A novel approach of an ensemble control system has been developed on the

Petaflop supercomputer JUQUEEN, a 5-dimensional interconnected Blue Gene/Q

architecture. For particle filtering with an increased ensemble size, this control

system extends the WRF model to a stand-alone ensemble version. By integrating a

second stage of parallelism, ensemble members are executed concurrently within a

single executable. This approach enables inter-communication between the ensemble

members, allowing a monitoring of the particle filter’s effective sample size during

runtime. Moreover, numerous Sequential Importance Resampling steps can be

performed during the model run. This software represents the meteorological part

of Ensembles for Stochastic Integration of Atmospheric Systems (ESIAS-met).

The system’s parallel scalability was demonstrated on the basis of a feasibility

study with up to 4096 ensemble members utilizing 262,144 processors. The analysis

showed that deviations from perfect scalability are of a negligible order of 1− 3 %

and are caused by limited bandwidth during I/O processes. Furthermore, a real data

case study demonstrated that ESIAS-met efficiently realizes Sequential Importance

Resampling computations within the frame of ultra large ensemble sizes. The

conclusion can be drawn that for a fixed problem size, the computational expenses of

a resampling step with ESIAS-met depend exclusively on the maximum duplication

number nmax and are therefore independent of the ensemble size. Moreover, existing

model uncertainty schemes (SPPT and SKEB) have been made computationally

feasible on the Blue Gene/Q architecture.
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As a basis for the ultra large ensemble, it has further been the objective to

achieve a satisfactory deterministic forecast skill of the WRF model with regard to

the wind power forecast in Germany. A first assessment showed a distinct sensitivity

of hub height wind speeds to the choice of physical parameterizations, in particular

to the land surface model and planetary boundary layer scheme. However, a large

positive wind speed bias is apparent for all tested parameterization suites. The wind

bias is observed solely over land, throughout the whole day and with maximum

values during the night. These results led to the conclusion of a systematic model

deficit, at least over Germany. Thereupon, the best performing parameterization

suite served as a configuration for further model optimization. Based upon the

notion that the WRF model is optimized for the Contiguous United States, the

surface roughness length has been increased. Further, within the YSU boundary

layer scheme, the mixing of vertical momentum in the stable regime has been

enhanced. As a result, an optimized WRF model configuration could be provided,

which shows competitive forecast skill of hub height wind speeds when transformed

to a corresponding wind power forecast.

Based upon the previous developments and results, a major exceptional error

event in wind power forecasting has been analyzed. A convection-permitting

ensemble of 1024 members has been set up with perturbed initial conditions from the

GEFS reforecast and state-of-the-art model uncertainty schemes (SPPT and SKEB).

The ultra large ensemble has been transformed to a corresponding day-ahead wind

power forecast and compared to the true power production. The analysis revealed

that only few outliers could capture the error event, while exclusively assessing the

ensemble spread remained insufficient for the event’s identification, caused by it’s

low predictability. The analysis of the ensemble distribution’s tails by higher order

moments proved to be more suitable for this purpose. Here, the skewness provided

correct information about the direction of forecast error given by the outliers,

while the kurtosis indicated that these outliers are arranged in the long tails of the

distribution, evolving very differently from the ensemble mean. In other words, the

ultra large ensemble size reveals a model state distribution, that is skewed by long

tails in the proper direction of the true state. This is what ultimately defines an

exceptional error event in power forecasting — an event of low probability that leads

to a very different outcome than predicted by the majority of available forecast

systems. A statistical evaluation based on bootstrapped samples determined the

necessary ensemble sizes to resolve the higher order moments sufficiently well in

magnitude and temporal evolution. The analysis indicated, that at least a size of

O(100) ensemble members is needed.

The model uncertainty schemes used to generate the ensemble performed quite

differently. SKEB proved to be more effective in triggering instabilities in the
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underlying flow, thus induced more ensemble spread and generated outliers which

captured the error event. Since the error event was caused by the low predictability

of an evolving upper air trough, the influence of the SPPT scheme is limited by the

perturbations of parameterizations which effect this process.

To verify the main findings, a second case study of an exceptional error event in

solar power forecasting has been carried out. Here, the results showed again that

higher order moments correctly indicated the direction and likelihood of the forecast

error. In a pronounced manner, only the full 1024-member ensemble could properly

indicate the error event.

To conclude, this work showed that an ultra large meteorological ensemble

allowed for more reliable identification of the likelihood and character of exceptional

error events in weather dependent power forecasting, which are most likely to be

erroneously represented by smaller ensemble sizes.
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Chapter 7

Conclusion and outlook

The results obtained in this work suggest valuable implications for future warning

systems. If the ensemble size is large enough to warn of an imminent error event and

to estimate the direction of forecast error, this gives an opportunity to transmission

system operators to take increased and specific action on safeguard strategies to

ensure the electrical grid stability. In this case, energy market participants would be

supported to reassess their risk management on a more reliable basis, which in the

end leads to a more economic integration of weather dependent energy sources into

the electrical grid.

Although results in this work are derived from two case studies, they

demonstrated the potential of an increased ensemble size in an obvious manner.

Further research is needed upon long-term periods to support the results and provide

a more statistically significant analysis. Larger ensemble sizes will increasingly

become available with the progress towards exascale supercomputing. Here, the

combination of different parallel granularities has evolved as the preferable path.

Already promising performance improvements have been reported for atmospheric

models, utilizing for example graphics processing units (Huang et al., 2015; Fuhrer

et al., 2017) or Intel Xeon Phi processors (Michalakes, 2016; Wang et al., 2017).

Within the Energy oriented Centre of Excellence for computing applications

(EoCoE) project, a study with the ESIAS-met system and an ultra large ensemble

size investigating a one year period is in the planning stage. For this purpose,

model resolution will necessarily be reduced, such that it has to be investigated if

the results obtained with higher resolution still hold. Further, the probabilistic

skill of the ultra large ensemble may be improved by postprocessing techniques.

A long-term period of an ultra large ensemble will provide the necessary basis to

exploit the skill of non-parametric postprocessing techniques (Taillardat et al., 2016)

concerning their ability to improve the uncertainty representation of exceptional

error events.

The software developments achieved in this work will provide a basis for further
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investigations of nonlinear data assimilation in the realm of energy meteorology

related matters. ESIAS-met has been designed flexible for this purpose, allowing

for the application of different particle filtering techniques. Most notably, an

ultra large ensemble size offers the opportunity to exploit the benefit of Big Data

Analytics methods (Riedel et al., 2016). Here, the potential lies in model parameter

estimation as well as suitable ensemble selection within the particle filter algorithm.

These approaches shall be further investigated within the EoCoE project to improve

forecasts of convective cloud systems. A coupling with the ESIAS-chem system

(Franke, 2018) is planed to realize a probabilistic forecast system with uncertainty

representation in the meteorological and chemical model. Thereby, both models

will exploit the skill of nonlinear data assimilation techniques. Within the realm of

energy meteorology, this coupling appears promising with respect to Saharan dust

outbreaks, which have shown to be a further candidate for exceptional error events

in solar power forecasts (Steiner et al., 2016).



Appendix A

Verification statistics at

measurement towers
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Figure A.1: Bias of hub height wind speeds at measurement towers for 1 – 31 August
2014. Different colors correspond to eight WRF model configurations. Results for
GFS forecast fields are shown for comparison.
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Figure A.2: Correlation between hub height wind speeds and model data at measure-
ment towers for 1 – 31 August 2014. Different colors correspond to eight WRF model
configurations. Results for GFS forecast fields are shown for comparison.
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Figure A.3: Bias of hub height wind speeds at measurement towers for 1 – 30 Novem-
bert 2014. Different colors correspond to eight WRF model configurations. Results
for GFS forecast fields are shown for comparison.
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Figure A.4: Correlation between hub height wind speeds and model data at measure-
ment towers for 1 – 30 November 2014. Different colors correspond to eight WRF
model configurations. Results for GFS forecast fields are shown for comparison.
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Janjić, Z. I., The Step-Mountain Eta Coordinate Model: Further Developments

of the Convection, Viscous Sublayer, and Turbulence Closure Schemes, Monthly

Weather Review, 122, 927–945, 1994.

Jankov, I., J. Berner, J. Beck, H. Jiang, J. B. Olson, G. Grell, T. G.

Smirnova, S. G. Benjamin and J. M. Brown, A Performance Comparison

between Multiphysics and Stochastic Approaches within a North American RAP

Ensemble, Monthly Weather Review, 145, 1161–1179, 2017.
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Möhrlen, C. and J. U. Jørgensen, The Role of Ensemble Forecasting in Inte-

grating Renewables into Power Systems: From Theory to Real-Time Applications,

Integration of Large-Scale Renewable Energy into Bulk Power Systems, 2017.

Molteni, F., R. Buizza, T. N. Palmer and T. Petroliagis, The ECMWF

Ensemble Prediction System: Methodology and validation, Quarterly Journal of

the Royal Meteorological Society, 122, 73–119, 1996.



BIBLIOGRAPHY XI

Montani, A., D. Cesari, C. Marsigli and T. Paccagnella, Seven years of

activity in the field of mesoscale ensemble forecasting by the COSMO-LEPS system:

main achievements and open challenges, Tellus, 63a, 605–624, 2011.

Mullen, S. L. and D. P. Baumhefner, Sensitivity of Numerical Simulations of

Explosive Oceanic Cyclogenesis to Changes in Physical Parameterizations, Monthly

Weather Review, 116, 2289–2329, 1988.

Mullen, S. L. and R. Buizza, The Impact of Horizontal Resolution and Ensemble

Size on Probabilistic Forecasts of Precipitation by the ECMWF Ensemble Predic-

tion System, Weather and Forecasting, 17, 173–191, 2002.

Nakanishi, M. and H. Niino, Development of an improved turbulence closure

model for the atmospheric boundary layer, Journal of the Meteorological Society

Japan, 87, 895912, 2009.

Nastrom, G. D. and K. S. Gage, A Climatology of Atmospheric Wavenumber

Spectra of Wind and Temperature Observed by Commercial Aircraft, Journal of

the Atmospheric Sciences, 42, 950–960, 1985.

Noh, Y., W. G. Cheon, S. Y. Hong and S. Raasch, Improvement of the K-

profile Model for the Planetary Boundary Layer based on Large Eddy Simulation

Data, Boundary-Layer Meteorology, 107, 401–427, 2003.

Nutter, P., D. Stensrud and M. Xue, Effects of Coarsely Resolved and Tempo-

rally Interpolated Lateral Boundary Conditions on the Dispersion of Limited-Area

Ensemble Forecasts, Monthly Weather Review, 132, 2358–2377, 2004.

Olsen, B. T., A. N. Hahmann, A. M. Sempreviva, J. Badger and H. E.

Joergensen, Intercomparison of state-of-the-art models for wind energy resources

with mesoscale models, European Geosciences Union General Assembly 2016, Vi-

enna, Austria, 2016.

Palmer, T. N. and R. Hagedorn, Predictability of Weather and Climate, Cam-

bridge University Press, pp. 702, 2006.

Palmer, T., G. Shutts, R. Hagedorn, F. Doblas-Reyes, T. Jung and

M. Leutbecher, Representing model uncertainty in weather and climate pred-

ication, Annual Review of Earth and Planetary Sciences, 33, 163–193, 2005.

Palmer, T. N., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher,

G. Shutts, M. Steinheimer and A. Weisheimer, Stochastic parameteriza-

tion and model uncertainty, Technical Memorandum, 598, 42, 2009.

Park, S. K. and K. W. Miller, Random number generators: good ones are hard

to find, Communication of the ACM, 31, 1192–1201, 1988.



XII BIBLIOGRAPHY

Pennelly, C., G. Reuter and T. Flesch, Verification of the WRF model for simu-

lating heavy precipitation in Alberta, Atmospheric Environment, 135-136, 172–192,

2014.

Pielke, R. A., Mesoscale Meteorological Modelling, Academic Press, pp. 612, 1984.

Pieri, A. B., J. von Hardenberg, A. Parodi and A. Provenzale, Sensitivity of

Precipitation Statistics to Resolution, Microphysics, and Convective Parameteriza-

tion: A Case Study with the High-Resolution WRF Climate Model over Europe,

Journal of Hydrometeorology, 16, 1857–1872, 2015.

Pitt, M. K. and N. Shephard, Filtering via simulation: Auxiliary particle filters,

Journal of the American Statistical Association, 94, 590–599, 1999.

Poterjoy, J., A Localized Particle Filter for High-Dimensional Nonlinear Systems,

Monthly Weather Review, 144, 59–76, 2016.

Powers, J. G., J. B. Klemp, W. C. Skamarock, C. A. Davis, J. Dudhia,

D. O. Gill, J. L. Coen, D. J. Gochis, R. Ahmadov, S. E. Peckham, G. A.

Grell, J. Michalakes, S. Trahan, S. G. Benjamin, C. R. Alexander, G. J.

Dimego, W. Wang, C. S. Schwartz, G. S. Romine, Z. Liu, C. Snyder,

F. Chen, M. J. Barlage, W. Yu and M. G. Duda, The Weather Research

and Forecasting (WRF) Model: Overview, System Efforts, and Future Directions,

Bulletin of the American Meteorological Society, 98, 1717–1737, 2017.

Rabier, F., H. Järvinen, E. Klinker, J.-F. Mahfouf and A. Simmons, The

ECMWF operational implementation of four-dimensional variational assimilation.

I: Experimental results with simplified physics, Quarterly Journal of the Royal

Meteorological Society, 126, 1143–1170, 2000.

Richardson, D. S., Measures of skill and value of ensemble prediction systems,

their interrelationship and the effect of ensemble size, Quarterly Journal of the

Royal Meteorological Society, 127, 2473–2489, 2001.

Riedel, M., T. Lippert, D. Mallmann and G. Cavallaro, Scientific Big Data

Analytics by HPC, Innovatives Supercomputing in Deutschland, 14, 70–74, 2016.

Ritchie, H., C. Temperton, A. Simmons, M. Hortal, T. Davies, D. Dent

and M. Hamrud, Implementation of the Semi-Lagrangian Method in a High-

Resolution Version of the ECMWF Forecast Model, Monthly Weather Review, 123,

489–514, 1995.

Romine, G. S., C. S. Schwartz, J. Berner, K. R. Fossell, C. Snyder, J. L.

Anderson and M. L. Weisman, Representing Forecast Error in a Convection-

Permitting Ensemble System, Monthly Weather Review, 142, 4519–4541, 2014.



BIBLIOGRAPHY XIII

Roux, G., Y. Liu, D. L. Monache, R.-S. Sheu and T. T. Warner, Verification

of high resolution WRF-RTFDDA surface forecasts over mountains and plains,

Preprints, 2009 9th Annual WRF Users Workshop, Boulder, CO, NCAR., 2009.

Ruiz, J. J., C. Saulo and J. Nogués-Paegle, WRF Model Sensitivity to Choice

of Parameterization over South America: Validation against Surface Variables,

Monthly Weather Review, 138, 3342–3355, 2010.

Saint-Drenan, Y. M., G. H. Good and M. Braun, A probabilistic approach

to the estimation of regional photovoltaic power production, Solar Energy, 276,

147–257, 2017.

Sanchez, C., K. D. Williams and M. Collins, Improved stochastic physics

schemes for global weather and climate models, Quarterly Journal of the Royal

Meteorological Society, 142, 147–159, 2016.

Schroedter-Homscheidt, M., H. Deifel and D. Heinemann, Grundlagen des

Energiesystems für Energiemeterologen, Promet: Meteorologische Fortbildung. Me-

teorlogische Aspekte der Nutzung erneuerbarer Energien, 39, 138–150, 2015.

Shutts, G., A kinetic energy backscatter algorithm for use in ensemble prediction

systems, Quarterly Journal of the Royal Meteorological Society, 131, 3079–3102,

2005.

Shutts, G., Coarse Graining the Vorticity Equation in the ECMWF Integrated

Forecasting System: The Search for Kinetic Energy Backscatter, Journal of the

Atmospheric Sciences, 70, 1233–1241, 2013.

Shutts, G., A stochastic convective backscatter scheme for use in ensemble prediction

systems, Quarterly Journal of the Royal Meteorological Society, 141, 2602–2616,

2015.

Siuta, D., G. West and R. Stull, WRF Hub-Height Wind Forecast Sensitivity

to PBL Scheme, Grid Length, and Initial Condition Choice in Complex Terrain,

Weather and Forecasting, 32, 493–509, 2017.

Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker,

W. Wang and J. G. Powers, A Description of the Advanced Research WRF

Version 3, AVAILABLE FROM NCAR; P.O. BOX 3000; BOULDER, CO, 2008.

Snyder, C., T. Bengtsson, P. Bickel and J. Anderson, Obstacles to High-

Dimensional Particle Filtering, Monthly Weather Review, 136, 4629–4640, 2008.

Stark, M., Prognoseoptimierung vs. Wirtschaftlichkeit-Nutzen von Prognosequan-

tilen im Intra-day Handel, 5. Treffen der Industrie- und Forschungsplattform Prog-

nose, EWeLiNE project, Kassel, Germany, 2015.



XIV BIBLIOGRAPHY

Steiner, A., V. Wehner and J. Förstner, Forecasting the reduction in photo-

voltaic power production during Saharan dust outbreaks, 16th EMS Annual Meet-

ing & 11th European Conference on Applied Climatology (ECAC), Trieste, Italy,

2016.
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Centre (JSC). GCS is the alliance of the three national supercomputing centres

HLRS (Universitat Stuttgart), JSC (Forschungszentrum Jülich), and LRZ
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