Simulation von Tunnelstrukturen
Experimentelle und theoretische Untersuchungen an Systemen mit anomaler Dispersion

Inaugural-Dissertation
zur
Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät
der Universität zu Köln

vorgelegt von
Ralf-Michael Vetter
aus Hürt, Rheinland

Köln 2002
Berichterstatter: Prof. Dr. G. Nimtz
 Prof. Dr. D. Stauffer

Inhaltsverzeichnis

1 Einleitung ... 4

2 Signale und Frequenzbandbegrenzung 6
 2.1 Signale .. 6
 2.2 Gruppen-, Phasen- und Frontverzögerung 8

3 Simulation im Frequenzbereich 9
 3.1 Hohlleiter ... 9
 3.1.1 Allgemeine Eigenschaften 9
 3.1.2 Ersatzschaltbild 10
 3.1.3 Tunnelstrecke 11
 3.1.4 Test der Simulationsroutinen: Unterlichtgeschwindigkeit im Hohlleiter ... 11
 3.2 Strukturen mit diskreten Reflexionsstellen 12
 3.2.1 Grundelement 12
 3.2.2 Streumatrix 13
 3.2.3 Test der Simulationsroutinen: Resonanzen einer Leitung 14
 3.3 Strukturen mit kontinuierlichen Reflexionsstellen 14
 3.3.1 Anpassung durch „exponentielle“ Leitung 14
 3.3.2 Simulation und Vergleich mit analytischer Lösung 15
 3.4 Transmission und Reflexion eines periodischen Gitters ... 16
 3.4.1 Theoretische Grundlagen 16
 3.4.2 Anwendung: Ideale und nichtideale λ/4–Struktur 19
 3.5 Reflexions- und Transmissionsdauer 20
 3.5.1 Theoretische Grundlagen 20
 3.5.2 Symmetrische und unsymmetrische Strukturen 20

4 Simulation im Zeitbereich 24
 4.1 Impulsantwort-Funktionen 24
 4.1.1 Einzelne Platte 24
 4.1.2 λ/4–Struktur 25
4.1.3 Resonante Struktur ... 26
4.2 Simulation: Einzelne Platte als Tunnelstruktur 27
 4.2.1 Transmission, Phase und Gruppengeschwindigkeit 28
 4.2.2 Signalübertragung ... 29
4.3 Übertragung einer Signalfolge 31
 4.3.1 Theoretische Grundlagen 31
 4.3.2 Tunnelübertragung einer frequenzbandbegrenzten Signalfolge 32
5 Anwendung: Tunneln am Gitter 35
 5.1 Experimenteller Aufbau ... 35
 5.2 Eigenschaften der Tunnelstrukturen 36
 5.3 Verwendete Signale ... 37
 5.3.1 Amplitudenmodulation (AM) 38
 5.3.2 Frequenzmodulation (FM) 40
 5.4 Abschließende Bemerkungen 41
6 Kombinierte Zeit- und Frequenzbereichssimulation 43
 6.1 Theoretische Grundlagen ... 43
 6.2 Anwendungen ... 44
 6.2.1 Periodische resonante Struktur im Hohleiter 44
 6.2.2 Verjüngter Hohleiter .. 46
7 Anomale Dispersion .. 47
 7.1 Theoretische Grundlagen .. 47
 7.2 Experimente am Quantentopf 48
 7.2.1 Streuung am Quantentopf 49
 7.2.2 Streuung im Hohleiter 51
 7.2.3 Messungen an Teflon .. 52
 7.2.4 Messungen an Plexiglas 54
 7.3 Negative Geschwindigkeiten 55
8 X-Wellen und Besselstrahlen .. 58
 8.1 Lokalisiertes Objekt: Teilchen bzw. Wellenpaket 58
 8.2 Unendlich ausgedehntes Signal: Ebene Welle 59
 8.3 Besselwellen ... 60
9 Das Doppelprisma ... 62
 9.1 Simulationsmethode ... 62
 9.2 Änderung des Einfallwinkels 64
INHALTSVERZEICHNIS

10 Universelle Tunnelzeit 67
 10.1 Imaginäre Wellenzahl ... 67
 10.2 Tunnelzeit–Hypothese ... 70
 10.2.1 Übergang zu opaker Struktur 71
 10.2.2 Test der 1/f–Hypothese in anderen Frequenzbereichen 72
 10.2.3 Korrekturterm zur Tunnelzeit–Hypothese 73
 10.3 Gruppengeschwindigkeit beim resonanten Tunneln 74
 10.3.1 Analytische Lösung für einfache und resonante Tunnel 75

11 Zusammenfassung 78

A Anhang 81
 A.1 Digitaler Tiefpaßfilter .. 81
 A.2 Kettenmatrix ... 82
 A.3 Analytische Bestimmung der Phasenzeit 83
 A.4 Relativistische Aspekte überlichtschneller Signale 84
 A.4.1 Punktformige Signale 84
 A.4.2 Zeitlich ausgedehnte Signale 85
 A.5 Resonanzen im Hohlraum .. 86

Literatur ... 88
Kapitel 1

Einleitung

Es existieren eine Reihe unterschiedlicher physikalischer Strukturen, die aufgrund ihres anomalen Dispersionsverhaltens bei Anregung mit speziellen Wellenpaketen ein ungewöhnliches Transmissions- bzw. Reflexionsverhalten aufweisen. Diese Wellenpakete durchqueren die Strukturen mit Gruppengeschwindigkeiten, die größer als die Lichtgeschwindigkeit sind und auch negativ schnell werden können. Auch die Reflexion kann instantan bzw. mit negativer Reflexionszeit erfolgen.

Zunächst werden die verschiedenen Simulationsmethoden, die zur Untersuchung der Strukturen angewandt wurden, vorgestellt. Für eine detaillierte Beschreibung sowie für Anwendungen der Methoden wird auf die entsprechenden Kapitel verwiesen.

Simulation im Zeitbereich

Strukturen wie unterdimensionierte Hohlleiter, in denen unmittelbar evaneszente Ausbreitung stattfindet, lassen sich im Zeitbereich durch Hochpassfilter darstellen, die unterhalb ihrer Abschneidefrequenz betrieben werden. Hierfür können auch elektrische Leitungen verwendet werden, deren Übertragungscharakteristik durch zusätzliche Elemente zu einem Hochpassfilter verändert wurden.

Alternativ kann die Impulsantwortfunktion der Struktur bestimmt werden und die Reaktion der Struktur auf beliebige Eingangssignale durch Faltung mit der Impulsantwort des Systems simuliert werden, siehe Kapitel 4.
Simulation im Frequenzbereich

Alternativ können die Transformatoren der einzelnen Bauelemente verkettet werden. Die Gesamtdarstellung ist in die Streumatrix umgerechnet, siehe Kapitel 3. Diese enthält die Streuparameter für Transmission und Reflexion, welche experimentell auch mit Hilfe eines Network analysers gemessen werden können.

Kombinierte Zeit- und Frequenzbereichssimulation

Auch die Zeitbereichssimulation können zur Bestimmung der frequenzabhängigen Streuparameter verwendet werden. Dazu wird das System jeweils nur mit einer harmonischen Schwingung angeregt und solange gewartet, bis es sich im eingeschwungenen Zustand befindet. In der Simulation werden spezielle künstliche Leitungstypen verwendet, mit denen vor- und zurücklaufende Wellen ausgekoppelt\(^1\) werden können, bzw. Leitungen, die Wellenausbreitung in nur eine Richtung zulassen, und in der anderen Richtung als Absorber wirken. Dadurch lassen sich unendlich lange Leitungen simulieren, die für asymptotische Messungen im Zeitbereich verwendet werden können.

Anomale Dispersion und Frequenzbandbegrenzung

Eine anomale Dispersion oder ein konstanter Phasenverlauf treten nur in bestimmten Frequenzintervallen auf. Um sie für eine Signalübertragung nutzen zu können, muß das verwendete Signal frequenzbandbegrenzt sein. In Kapitel 2 werden zunächst die Eigenschaften frequenzbandbegrenzter Signale vorgestellt.

In Abschnitt 4.3 wird demonstriert, wie eine frequenzbandunbegrenzte Signalfolge durch Filterung auf ein geeignetes Frequenzintervall begrenzt wird, ohne das Information verloren geht. Für physikalische Signale ist diese Filterung unter Umständen nicht notwendig, da sie aufgrund ihrer Entstehung automatisch frequenzbandbegrenzt sind.

\(^{1}\) dies entspricht dem S-Parameter-Set eines Networkanalysers
Kapitel 2

Signale und Frequenzbandbegrenzung

Tunnelstrukturen besitzen in bestimmten Frequenzintervallen eine nicht normale Dispersion. In diesen Bereichen anomaler Dispersion ändert sich die Phase eines transmittierten Signals entweder nur schwach oder die Phase fällt sogar mit zunehmender Frequenz. Um diese Eigenschaft für eine Signalübertragung nutzbar zu machen, muß das Frequenzspektrum des Signals auf ein solches Frequenzintervall beschränkt sein. Im folgenden werden die Charakteristika einiger frequenzbandbegrenzter Signale im Zeit- und Frequenzbereich beschrieben [19]. Die Signale stehen dadurch sowohl für eine Zeitbereichs- als auch einer Frequenzbereichsimulation zur Verfügung.

2.1 Signale

Die folgenden Ergebnisse gelten für die Zentral- bzw. Trägerfrequenz 0 Hz, d.h. es wird zunächst nur das eigentliche Signal ohne die Trägerfrequenz betrachtet. Die Frequenzbereichsfunktionen sind dadurch achsensymmetrisch, die transformierten Zeitbereichsfunktionen sind rein reell. Die Ergebnisse können mittels $F(\omega - \omega_0) \leftrightarrow f(t) \cdot e^{j\omega_0 t}$ für beliebige Trägerfrequenzen ω_0 umgeschrieben werden.

Delta–Impuls $\delta(t)$

Das Spektrum eines Delta–Impulses enthält alle Frequenzen zwischen $\omega = 0$ und $\omega = \infty$ gleichermaßen:

$$ f(t) = \delta(t) \quad \leftrightarrow \quad F(\omega) = 1 $$

(2.1)

Im Zeitbereich kann jedes beliebige Signal durch eine Folge von gewichteten δ–Impulsen dargestellt werden.

Rechteckimpuls

Ein rechteckförmiger Impuls $u(t)$ mit zeitlicher Breite ΔT besitzt das Spektrum:

$$ f(t) = u \left[-\frac{\Delta T}{2}; \frac{\Delta T}{2} \right] \quad \leftrightarrow \quad F(\omega) = 2 \sin \frac{\Delta T \omega}{2} \omega $$

(2.2)

Aufgrund der Unstetigkeit der Zeitbereichsfunktion entstehen im Spektrum des Signals starke Seitenbänder. Das höchste Seitenband ist nur -13 dB kleiner als das Hauptsignal, die weiteren Seitenbänder fallen nur mit $1/\omega$ bzw. mit 6 dB pro Oktave ab [58].
2.1. SIGNALE

Cosinusband

Das Spektrum des Signals $F(\omega)$ sei nun auf ein Frequenzband $\Delta \omega = 2\pi \Delta f$ beschränkt. Zu den Seiten des Frequenzbandes hin falle die Intensität cosinusförmig ab. Dies führt im Zeitbereich zu einem zeitlich unbegrenzten Signal $f(t)$, vgl. Abb. 2.1.

$$F(\omega) = \begin{cases} \cos \frac{\omega}{\Delta \omega}, & \omega \in \left[-\frac{\Delta \omega}{2}, \frac{\Delta \omega}{2} \right] \\ 0, & \text{sonst} \end{cases} \quad \leftrightarrow \quad f(t) = \frac{1}{2\pi} \left[\sin \left(\frac{\omega}{2} t + \frac{\pi}{2} \right) + \sin \left(\frac{\omega}{2} t - \frac{\pi}{2} \right) \right] \quad (2.3)$$

Abbildung 2.1: Frequenzband der Breite $\Delta f = 1/2\pi$ GHz = 160 MHz, das an den Seiten durch eine Cosinus-Funktion begrenzt wird (links), sowie zugehörige Zeitbereichsfunktion (rechts).

Damit kann gleichzeitig das Spektrum eines cosinusförmigen Zeitbereichsimpulses angegeben werden. Aus dem Funktionenpaar $F(\omega) \leftrightarrow f(t)$ erhält man das vertauschte Paar über $F(t) \leftrightarrow 2\pi f(-\omega)$. Ein cosinusförmiger Zeitbereichsimpuls beginnt und endet stetig. Die Höhe des stärksten Seitenbandes wird dadurch auf -23 dB verringert und die weiteren Seitenbänder fallen mit $1/\omega^2$ bzw. mit 12 dB pro Oktave ab.

Relaxation

Ein Beispiel für ein einseitig unstetiges Signal ist die plötzliche Anregung eines Resonators oder Schwingkreises durch eine Sprungfunktion. Nach der Anregung schwingt der Resonator mit seiner Eigenfrequenz ω_0. Ein Dämpfungsgesetz γ sorgt für ein exponentielles Abklingen der Anregung:

$$f(t) = \begin{cases} 0 & t < 0 \\ Ae^{-\gamma t} e^{i\omega_0 t} & t \geq 0 \end{cases} \quad \leftrightarrow \quad F(\omega) = \frac{A}{\sqrt{2\pi}} \frac{1}{i(\omega - \omega_0) + \gamma} \quad (2.4)$$

Diese Funktion wird später noch zur Erklärung eines negativen Brechungsindexes und anomaler Dispersion benötigt.

Blackman–Impuls

Bei einem Blackman–Impuls ist nicht nur die Impulsfunktion, sondern auch die 1. Ableitung der Funktion an den Impulsenden stetig und differenzierbar. Der Impuls besitzt dadurch ein sehr schmalbandiges Spektrum, dessen höchstes Seitenband -58 dB schwächer als das Hauptsignal ist, und dessen Seitenbänder mit $1/\omega^3$ bzw. 18 dB pro Oktave abfallen.
2.2 Gruppen-, Phasen- und Frontverzögerung

Die Verzögerungen bzw. Laufzeiten der unterschiedlichen Anteile eines Signals bei Durchquerung eines linearen Systems kann aus dessen Übertragungsfunktion \(H(\omega) = A(\omega) \ e^{-i\varphi(\omega)} \) bestimmt werden. Für frequenzbandbegrenzte Signale \(f(t) \) ist es ausreichend, nur den Teil des Spektrums von \(H(\omega) \) zu untersuchen, in dem \(f(t) \) signifikante Anteile besitzt. Ein einfaches System mit konstanter Phasenlaufzeit und frequenzunabhängiger Dämpfung ist in Abbildung 2.2 (links) dargestellt. Frequenzkomponenten außerhalb des dunkel markierten Bereichs müssen bei einer Signalübertragung durch das System nicht berücksichtigt werden.

![Diagramm zur Veranschaulichung von Gruppenzeit, Phasenzeit und Frontzeit](image.jpg)

Abbildung 2.2: Links: Übertragungsfunktion eines linearen Systems und Ausschnitt, der von einem frequenzbandbegrenzten Signal benutzt werden könnte (dunkel schraffiert). Rechts: Anhand des Phasenverlaufs kann die Gruppenlaufzeit \(t_{gr} \), die Phasenlaufzeit \(t_{ph} \) und evtl. die Frontlaufzeit \(t_{fr} \) bestimmt werden. In beiden Diagrammen ist normale Dispersion dargestellt, d.h. die Phase \(\varphi \) wächst mit zunehmender Frequenz.

Aus der Phase der Übertragungsfunktion \(H(\omega) \) erhält man die Gruppenlaufzeit \(t_{gr} \), die Phasenlaufzeit \(t_{ph} \) und die Frontlaufzeit \(t_{fr} \), die das Signal zum Durchqueren der Struktur benötigt [19]

\[
t_{gr} = \frac{d\varphi(\omega)}{d\omega} \quad t_{ph} = \frac{\varphi(\omega)}{\omega} \quad t_{fr} = \lim_{\omega \to \infty} \frac{\varphi(\omega)}{\omega}
\]

(2.5)

Die Gruppenlaufzeit wird oft auch als Phasenzeit bezeichnet [29, 30]. Abbildung 2.2 (rechts) zeigt, wie sich die Gruppenlaufzeit \(t_{gr} \) aus dem lokalen Anstieg der Phasenkurve ergibt, während die Phasenlaufzeit \(t_{ph} \) der Anstieg der Verbindungslinie von Ursprung zum betrachteten Punkt der Phasenkurve ist. Eine definierte Frontlaufzeit \(t_{fr} \) existiert nur, wenn die Phasenkurve \(\varphi(\omega) \) eine Asymptote im Hochfrequenzbereich besitzt. Dieser Grenzwert existiert insbesondere nicht im Spektrum eines frequenzbandbegrenzten Signals. Für das frequenzbandbegrenzte Signal ist nur der dunkel dargestellte Bereich der Übertragungsfunktion wichtig, über den Grenzwert für hohe Frequenzen kann keine Aussage gemacht werden.
Kapitel 3

Simulation im Frequenzbereich

3.1 Hohlleiter

Ein klassischer Aufbau einer Tunnelstrecke besteht aus einem verjüngten Hohlleitersegment, in dem eine einfallende Welle nicht mehr ausbreitungsfähig ist. Dieser Aufbau läßt sich am einfachsten in einer Frequenzbereichssimulation\(^1\) erfassen, aufgrund der Dispersion der Hohlleiterstrecke ist eine Analyse im Zeitbereich dagegen relativ aufwendig.

3.1.1 Allgemeine Eigenschaften

Im Hohlleiter findet oberhalb der Grenz- oder Cutoff-Frequenz \(\omega_c\) Wellenausbreitung mit reeller Wellenzahl \(k\) statt. Die Cutoff-Frequenz ergibt sich aus der Höhe \(a\) und Breite \(b\) des Hohlleiters. Ein Medium innerhalb des Hohlleiters wird durch den Brechungsindex \(n\) beschrieben, \(m_1\) und \(m_2\) geben die angeregte Hohlleiter-Mode \(H_{m_1,m_2}\) an, die im folgenden die \(H_{10}\)-Mode ist.

\[
k(\omega) = \frac{n}{c} \sqrt{\omega^2 - \omega_c^2} \quad \text{mit} \quad \omega_c = \frac{\pi}{n} \sqrt{\left(\frac{m_1}{a} \right)^2 + \left(\frac{m_2}{b} \right)^2} \quad \text{\(H_{10}\)-Mode} \quad \frac{\pi}{a} \quad (3.1)
\]

Aus der Freiraum-Wellenlänge \(\lambda\) ergibt sich die Wellenlänge im Hohlleiter \(\lambda_l\) sowie die Grenzwellenlänge \(\lambda_c\)

\[
\lambda_l = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_c} \right)^2}} \quad \text{mit} \quad \lambda_c = \frac{2\pi}{\omega_c} \quad \text{\(H_{10}\)-Mode} \quad 2a \quad (3.2)
\]

Sie hängen nicht vom Medium \(n = \sqrt{\varepsilon_r \mu_r}\) ab. Daraus ergibt sich der Wellenwiderstand \(Z\)

\[
Z = \eta \frac{\lambda_l}{\lambda_c} \quad \text{mit} \quad \eta = \sqrt{\frac{\mu_0 \mu_r}{\varepsilon_0 \varepsilon_r}} \quad \varepsilon_r \mu_r = 1 \quad 377 \ \Omega \quad (3.3)
\]

\(^1\)Die Frequenzbereichssimulation entspricht einer Messung im eingeschwungenem Zustand, wie sie auch von einem Networkanalyser durchgeführt wird.
oder \[Z = \frac{\eta / n}{\sqrt{1 - \left(\frac{\omega_c}{\omega}\right)^2}}. \] (3.4)

Der effektive Brechungsindex \(n_{\text{eff}}(\omega) \) eines mit Medium \(n \) gefüllten Hohlleiterabschnittes ist

\[
n_{\text{eff}} = \frac{c}{v_{\text{ph}}} = \frac{ck}{\omega} = n \sqrt{1 - \left(\frac{\omega_c}{\omega}\right)^2} H_{1,0-\text{Mode}} \sqrt{n^2 - \left(\frac{\pi c}{a\omega}\right)^2}. \tag{3.5}
\]

Der effektive Brechungsindex \(n_{\text{eff}} \) wird bei der Cutoff-Frequenz \(\omega_c \) gleich Null, oberhalb von \(\omega_c \) ist er stets kleiner als Eins. Dies korrespondiert mit einer überlichtschnellen Phasengeschwindigkeit \(v_{\text{ph}} = c / n_{\text{eff}} \). Den Reflexionsfaktor \(r \) an der Übergangsstelle zwischen zwei Abschnitten mit unterschiedlichem effektivem Brechungsindex \(n_{\text{eff}} \) und \(n'_{\text{eff}} \) erhält man aus:

\[
R = \frac{n'_{\text{eff}} - n_{\text{eff}}}{n'_{\text{eff}} + n_{\text{eff}}} = \frac{k' - k}{k' + k} = \frac{Z' - Z}{Z' + Z}
\]

Für die Phasen- und Gruppengeschwindigkeit im Hohlleiter erhält man schließlich:

\[
v_{\text{ph}} = \frac{\omega}{k} = \frac{c/n}{\sqrt{1 - \left(\frac{\omega_c}{\omega}\right)^2}} \quad v_{\text{gr}} = \frac{d\omega}{dk} = \frac{c}{n} \sqrt{1 - \left(\frac{\omega_c}{\omega}\right)^2} \quad \Rightarrow \quad v_{\text{ph}} v_{\text{gr}} = \left(\frac{c}{n}\right)^2. \tag{3.7}
\]

3.1.2 Ersatzschaltbild

Die beschriebenen Eigenschaften eines Hohlleiters können in einer Netzwerksimulation von einem Vierpol-Ersatzschaltbild aus drei komplexen Impedanzen nachgebildet werden, Abb. 3.1. Da Real- und Imaginäranteil der Impedanzen frequenzabhängig sind, müssen für jede betrachtete Frequenz drei andere Impedanzen verwendet werden.

Abbildung 3.1: Gleichförmiges Hohlleitersegment der Länge \(l \) (links) und elektrisches Π-Ersatzschaltbild aus drei komplexen frequenzabhängigen Impedanzen (rechts).

Ein Hohlleiter verhält sich analog einer Übertragungsleitung, d.h. die Kettenmatrix der Leitung

\[
A = \begin{pmatrix} \cosh ikl & -\sinh ikl \\ -\sinh ikl & \cosh ikl \end{pmatrix}
\]

kann zur Hohlleitersimulation verwendet werden, indem man anstelle der Leitungsparameter den frequenzabhängigen Wellenwiderstand \(Z(\omega) \) und die Wellenzahl \(k(\omega) \) des Hohlleiters

\[
Z = \frac{\eta / n}{\sqrt{1 - \left(\frac{\omega_c}{\omega}\right)^2}} \quad \text{mit} \quad \eta = 377 \ \Omega \quad k = \sqrt{\frac{\omega^2 n^2}{c^2} - \frac{m_1 \pi}{a} - \frac{m_2 \pi}{b}} \tag{3.9}
\]
3.1. HOHLEITER

verwendet, die sich aus den Abmessungen a und b und der Länge des Hohlleiters l ergeben; m_1 und m_2 beschreiben die angeregte Hohleitermode. Die Widerstände des Ersatzschaltbildes sind

$$Z_1 = Z_2 = Z \tanh(ikl/2), \quad Z_3 = Z \sinh(ikl),$$

(3.10)

3.1.3 Tunnelstrecke

Die zu Beginn des Kapitels erwähnte Tunnelstruktur kann nachgebildet werden, indem drei geeignete Hohleiterabschnitte verkettet werden. Dabei wird entweder jeweils der erste und letzte Abschnitt mit einem Medium n gefüllt [35] oder die Abmessung2 a des mittleren Abschnitts wird gegenüber den anderen Abschnitten verkleinert [33, 34], siehe Abb. 3.2. Die beiden diskreten Reflexionsstellen am Tunnelein- und -ausgang werden dadurch automatisch berücksichtigt.

Abbildung 3.2: Hohleiteraufbau mit verjüngter Tunnelstrecke im mittleren Bereich (links) und Ersatzschaltbild der gesamten Struktur (rechts). Das Widerstandsnetzwerk aus neun Impedanzen kann wiederum in einem einzigen II–Ersatzschaltbild analog zu Abb. 3.1 zusammengefaßt werden [2].

3.1.4 Test der Simulationsroutinen: Unterlichtgeschwindigkeit im Hohlleiter

Als Test wird der Amplituden- und Phasenverlauf eines 20 cm langen Hohlleiter simuliert und mit gemessenen Werten verglichen.\(^3\) Als Frequenzintervall wurde dafür speziell der Bereich unmittelbar oberhalb der Cutoff-Frequenz 6.56 GHz gewählt. In diesem Bereich ist eine besonders starke Phasenänderung zu erwarten. Abbildung 3.3 (links) zeigt zum Vergleich auch die Phasenänderung im Freiraum. Für die Messung wurde der Networkanalyser direkt auf die Enden des Hohlleiters kalibriert. Die hohe Transmissionsdämpfung des relativ langen Hohlleiters führt zu Ungenauigkeiten in der Phasenmessung nahe des Cutoffs. Die gemessenen Phasenwerte wurden geglättet und aus der Änderung der Phase wurde die Gruppengeschwindigkeit im Hohlleiter bestimmt (rechts). Die gemessene Hohlleiterschwindigkeit schwingt um die simulierten Werte. Im weniger verrauchten Bereich oberhalb von 6.566 GHz beträgt sie nur ca. 4%–8% der Lichtgeschwindigkeit im Freiraum.

\(^2\)Die Breite b des Hohlleiters blieb unverändert, damit konnten beide Hohleiterabschnitte in der H_{10}-Mode betrieben werden.

\(^3\)Die Simulationsroutinen wurden auch an komplexeren Systemen und für größere Frequenzintervalle getestet. Die geringen Abweichungen zwischen Simulation und Experiment wurden meist durch frequenzabhängige Verluste bzw. Leitfähigkeiten verursacht, die als Simulationsparameter nicht unmittelbar zur Verfügung standen.

3.2 Strukturen mit diskreten Reflexionsstellen

3.2.1 Grundelement

Im letzten Abschnitt wurden die diskret auftretenden Reflexionen am Eingang und Ausgang der Tunnelstrecke durch drei unterschiedliche Ersatzschaltbilder in Abb. 3.2 nachgebildet. Die Reflexionen lassen sich aber auch direkt in die Beschreibung des Systems integrieren und man erhält eine Transmissionsmatrix für das Gesamtsystem.

Die Transmissionsmatrix T beschreibt die Ausbreitung der Wellen durch das System. A und B sind die links in das System ein- bzw. austretenden Wellen, F und G treten am Ende des Systems aus bzw. ein, siehe Abb. 3.4 (links). Für die Transmissionsmatrix gilt

$$
\begin{pmatrix}
A \\
B
\end{pmatrix}
= T
\begin{pmatrix}
F \\
G
\end{pmatrix}.
$$

(3.11)

Die Wellen an Eingang und Ausgang der Struktur stehen auf getrennten Seiten der Gleichung, d.h. die Wellen, die eine Struktur verlassen haben, können als Anregung für eine weitere Struktur verwendet werden.

3.2. STRUKTUREN MIT DISKRETTEN REFLEXIONSSTELLEN

\[
\begin{align*}
T_R & = \begin{pmatrix} 1/T & R/T \\ R/T & 1/T \end{pmatrix}, \quad T_T = \begin{pmatrix} e^{-ikx} & 0 \\ 0 & e^{ikx} \end{pmatrix} \quad \Rightarrow \quad T = T_T T_R = \frac{1}{T} \begin{pmatrix} e^{-ikx} & R e^{-ikx} \\ R e^{ikx} & e^{ikx} \end{pmatrix} \\
\text{mit} \quad R & = \frac{Z' - Z}{Z' + Z}, \quad T = \frac{2\sqrt{Z'} Z}{Z' + Z}, \quad k = \frac{\omega n}{c}, \quad \text{Energieerhaltung:} \quad |R|^2 + |T|^2 = 1.
\end{align*}
\]

Die Transmissionsmatrix \(T \) beschreibt die Ausbreitung der Wellen über ein Segment. Eine Struktur aus mehreren Segmenten 1, 2, 3 kann beschrieben werden, indem man die Matrizen der einzelnen Abschnitte verkettet, d.h. man erhält die Gesamtkettenmatrix aus \(T_1 \cdot T_2 \cdot T_3 \).

3.2.2 Streumatrix

Aus der Transmissionsmatrix kann die Streumatrix \(S \) gebildet werden, die in experimentellen Untersuchungen oft Anwendung findet. Die anregenden Größen \(A \) und \(G \) und die gemessenen Antworten \(B \) und \(F \) stehen hierbei auf getrennten Seiten der Gleichung, siehe auch Abb. 3.4:

\[
\begin{pmatrix} B \\ F \end{pmatrix} = S \begin{pmatrix} A \\ G \end{pmatrix}
\]

mit

\[
\begin{align*}
S_{11} & = \frac{T_{21}}{T_{22}}, & S_{12} & = \frac{T_{12} T_{21} - T_{11} T_{22}}{T_{22}}, & S_{21} & = \frac{T_{12} T_{21}}{T_{22}}, & S_{22} & = \frac{1}{T_{22}}.
\end{align*}
\]

Die Elemente der Streumatrix heißen Streuparameter, sie entsprechen unmittelbar den Reflexions- und Transmissionskoeffizienten \(r_\pm \) bzw. \(t_\pm \) des Systems

\[
r_+ = S_{11}, \quad r_- = -r_+ = S_{22}, \quad t_+ = t_- = t = S_{12} = S_{21}.
\]

Aus den Matrixelementen der Transmissionsmatrix können die Ersatzwiderstände für ein \Pi-\-Ersatzschaltbild analog zu Abb. 3.1 berechnet werden

\[
Z_1 = \frac{T_{12}}{T_{22} - 1}, \quad Z_2 = \frac{T_{12}}{T_{11} - 1}, \quad Z_3 = T_{12},
\]

im hier betrachteten Fall einer verlustlosen Ausbreitung ist das Ersatzschaltbild symmetrisch, d.h. die Widerstände \(Z_1 \) und \(Z_2 \) sind gleich groß.

\footnote{Bei der Verkettung ist die Reihenfolge zu beachten, damit die Reflexionsstelle am Ende des Grundelementes liegt.}
3.2.3 Test der Simulationsroutinen: Resonanzen einer Leitung

Abbildung 3.5 zeigt die Spannung auf einer $l = 30 \text{ m}$ langen verlustlosen Leitung. Zur Untersuchung der Spannungsverteilung wurde die Leitung in zehn je 3 m lange Teilleitungen unterteilt, an deren Übergängen keine Reflexionen stattfinden. Reflexionen entstehen nur an den Leitungsenden. Der Wellenwiderstand der Leitung beträgt $Z_w = 100 \Omega$, die Abschlußwiderstände dagegen nur $R_0 = R_1 = 10 \Omega$, daraus resultiert ein Reflexionsfaktor von $R = 0.8$. Unterhalb von 100 kHz verhält sich die Leitung ideal, darüber tritt ein Spannungsabfall entlang der Leitung auf und bei 500 MHz ist die erste Resonanz zu beobachten.\(^5\)

\[\text{Abbildung 3.5: Spannungsverteilung auf einer 30 m langen Leitung, deren Ein- und Ausgang annähernd kurzgeschlossen wurden, bei Anregung durch eine Spannungsquelle mit 1 V. Bei tiefen Frequenzen ist die Spannung auf der Leitung 0.5 V, die Abschlußwiderstände wirken als Spannungsteiler. Oberhalb von ca. 100 kHz fällt auch entlang der Leitung Spannung ab, bei Vielfachen von 5 MHz treten Resonanzen auf.}\]

3.3 Strukturen mit kontinuierlichen Reflexionsstellen

Strukturen, in denen sich das Medium langsam ändert, besitzen kontinuierliche Reflexionsstellen. Ein Prototyp einer solchen Struktur ist eine Anpassungs-Strecke, mit der zwei Leitungen oder Hohlleiter unterschiedlichen Wellenwidersstands möglichst reflexionsfrei angepasst werden können. Soll dies nur für eine spezielle Frequenz geschehen, kann ein $\lambda/4$-Transformator verwendet werden. Um eine akzeptable Anpassung für einen größeren Frequenzbereich zu erzielen, benutzt man Strukturen, deren Wellenwiderstand sich langsam ändert. Diese Strukturen weisen kontinuierliche Reflexionsstellen auf.

3.3.1 Anpassung durch „exponentielle“ Leitung

Die einfachste Struktur mit kontinuierlichen Reflexionsstellen ist eine Leitung, deren Wellenwiderstand exponenziell zu- bzw. abnimmt [51]. Der Reflexionsfaktor entlang einer solchen Leitung ist konstant.\(^6\) Aufgrund dieser Tatsache kann die Streu- bzw. Transmissionsmatrix für eine exponentielle Leitung analytisch berechnet werden. Die zu lösende Differentialgleichung ist

\[
\frac{d}{dx} \begin{pmatrix} A(x) \\ B(x) \end{pmatrix} = \begin{pmatrix} -ik & 0 \\ 0 & ik \end{pmatrix} \begin{pmatrix} R & -R' \\ -R' & R \end{pmatrix} \begin{pmatrix} A(x) \\ B(x) \end{pmatrix} .
\]

\(^5\)Die Ausbreitungsgeschwindigkeit auf der Leitung ist c, die Resonanzen liegen bei Vielfachen von $f = c/2l$.
\(^6\)Genauer gesagt ist die Reflexionsdichte konstant, d.h. die Reflexionen pro infinitesimalen Leitungsabschnitt.
3.3. STRUKTUREN MIT KONTINUIERLICHEREN REFLEXIONSSTELLEN

wobei A und B die nach rechts bzw. links laufenden Wellen darstellen, siehe Abb. 3.4, und der ortsabhängige Reflexionsfaktor $R(x) = B(x)/A(x)$ die kontinuierlichen Reflexionsstellen entlang der Leitung beschreibt:

$$ R(x) := \frac{1}{2} \frac{1}{Z(x)} \left(\frac{d}{dx} Z(x) \right) = \frac{1}{2} \frac{d}{dx} \ln Z(x) $$

(3.17)

Der Wellenwiderstand einer exponentiellen Leitung ändert sich vom Wert Z_0 am Eingang der Leitung auf Z_l am Ausgang gemäß der Formel

$$ Z(x) = Z_0 \exp \{c \cdot x\} \equiv Z_0 \left(\frac{Z_l}{Z_0} \right)^{\frac{x}{l}} \quad \text{mit} \quad c := \frac{1}{l} \ln \left(\frac{Z_l}{Z_0} \right). $$

(3.18)

3.3.2 Simulation und Vergleich mit analytischer Lösung

Eine exponentielle Leitung kann simuliert werden, indem sie in viele gleichförmige Abschnitte unterteilt wird. Man erhält so ein System mit quasi- kontinuierlichen Reflexionsstellen. Unterteilt man eine Leitung der Länge l in n gleichförmige Abschnitte, dann erhält man an jeder Stoßstelle den konstanten Reflexionsfaktor

$$ R = \left(\frac{Z_l}{Z_0} \right)^{\frac{1}{n}} - 1. $$

(3.19)

Abbildung 3.6 zeigt die simulierte Spannungsverteilung entlang einer solchen Anpassungs- Leitung, deren Wellenwiderstand exponentiell von 100 Ω auf 400 Ω ansteigt. Für die Simulation wurde die $l = 30$ m lange Leitung in $n = 100$ gleichförmige Abschnitte der Länge 30 cm unterteilt. Damit ergibt sich an jeder Übergangsstelle der Reflexionsfaktor $^7 R = 0.007$. Zur Vermeidung zusätzlicher Reflexionen wurden Eingang und Ausgang der Leitung reflexionsfrei mit $R_0 = 100$ Ω bzw. $R_l = 400$ Ω abgeschlossen.

Abbildung 3.6: Spannungsverteilung auf einer 30 m langen Anpassungs-Leitung, deren Wellenwiderstand gemäß (3.18) von $Z_0 = 100$ Ω auf $Z_l = 400$ Ω ansteigt. Die Simulation unterteilt das System in 100 gleichförmige Abschnitte, zwischen denen Reflexionen quasi- kontinuierlich stattfinden. Aus der analytischen Lösung erhält man Spannungsverläufe für die Enden der Leitung bei 0 und 30 m, die mit den hier simulierten übereinstimmen.

7Ohne Anpassungs-Leitung würde der Reflexionsfaktor an der Übergangsstelle $R = 0.6$ betragen.
Die analytische Lösung für die exponentielle Leitung⁸ lautet in der Darstellung als Kettenmatrix [51]

\[
M = \frac{1}{\sqrt{\frac{q^2}{2} - k^2}} \begin{pmatrix}
 e^{-\frac{q}{2}l} \left[\sqrt{\cosh \sqrt{l} + \frac{q}{2} \sinh \sqrt{l}} \right] & e^{\frac{q}{2}ik} Z_0 \sinh \sqrt{l} \\
 e^{-\frac{q}{2}l} \left[\sqrt{\cosh \sqrt{l} - \frac{q}{2} \sinh \sqrt{l}} \right] & e^{\frac{q}{2}l} \left[\sqrt{\cosh \sqrt{l} - \frac{q}{2} \sinh \sqrt{l}} \right]
\end{pmatrix}
\]

(3.20)

mit \(\sqrt{\frac{q^2}{2} - k^2} \).

(3.21)

Die Determinante \(|M|\) ist Eins, d.h. die elektromagnetische Energie bleibt während des Streuvorgangs am System erhalten. Für \(q = 0 \) erhält man die Lösung für eine gleichförmige Leitung. Die Matrixelemente der analytischen Lösung können wieder in einem II–Ersatzschaltbild wie in Abb. 3.1 dargestellt werden. Die frequenzabhängigen Impedanzen berechnen sich nach

\[
Z_3 = M_{12} = \frac{Z}{\sqrt{\frac{q^2}{2} - k^2}}
\]

(3.22)

\[
Z_2 = \frac{M_{12}}{M_{11} - 1} = e^{-\frac{q}{2}l} \left(\sqrt{\cosh \sqrt{l} + \frac{q}{2} \sinh \sqrt{l}} \right) - \sqrt{\frac{q^2}{2} - k^2}
\]

(3.23)

\[
Z_1 = \frac{M_{12}}{M_{22} - 1} = e^{\frac{q}{2}l} \left(\sqrt{\cosh \sqrt{l} - \frac{q}{2} \sinh \sqrt{l}} \right) - \sqrt{\frac{q^2}{2} - k^2}
\]

(3.24)

mit \(Z := e^{\frac{q}{2}l} Z_0 \sinh \sqrt{l} \).

(3.25)

Damit kann im Frequenzbereich die gesamte exponentielle Leitung durch nur ein Ersatzschaltbild simuliert werden. Allerdings kann dadurch nicht mehr der Spannungsverlauf entlang der gesamten Leitung untersucht werden. Strom und Spannung stehen nur noch an den Enden der Leitung zur Verfügung, sie stimmen dort aber mit den simulierten Werten aus Abb. 3.6 überein.

3.4 Transmission und Reflexion eines periodischen Gitters

In den folgenden Kapiteln werden periodische Gitter als Tunnelstrukturen verwendet. Die Eigenschaften dieser Strukturen, wie z.B. die Lage und Tiefe der Bandlücken, können im Frequenzbereich mit Hilfe der Beugungstheorie analytisch untersucht werden. Es werden hier die Ergebnisse für die Reflexion \(R \) besprochen, die Transmission kann daraus unmittelbar über \(T = \sqrt{1 - R^2} \) erhalten werden.

3.4.1 Theoretische Grundlagen

Für die Reflexion sind in erster Näherung nur die einmal reflektierten Anteile von Bedeutung. In diesem Fall kann die allgemeine Beugungstheorie mit 1. Bornscher Näherung angewandt werden [18]. Mehrfach gestreute Wellen werden dabei nicht berücksichtigt.

Die Reflexionen können mit Hilfe des reziproken Gitters bestimmt werden. Das reziproke Gitter wird normalerweise in der Festkörperphysik verwendet, um aus den Reflexionen von Photonen,

⁸d.h. die Lösung der Differentialgleichung (3.16) für den exponentiellen Wellenwiderstandsverlauf (3.18)
3.4. TRANSMISSION UND REFLEXION EINES PERIODISCHEN GITTERS

Als letzten Unterschied zur herkömmlichen Beugungstheorie an Kristallstrukturen sei darauf hingewiesen, daß bei der Streuung am Übergang Plexiglas/Luft kein Phasensprung von der Größe \(\pi \) auftritt. Dieser tritt nur bei einer Reflexion am optisch dichteren Medium auf. Er muß in der herkömmlichen Beugungstheorie nicht explizit berücksichtigt werden, da er dort bei jeder Streuung auftritt, weil zwischen den einzelnen Streuern kein Medium vorhanden ist.

Streubedingung

Betrachten wir eine periodische Struktur, deren Elementarzelle sich mit einer Periode \(d \) wiederholt, Abb. 3.7 (links). Alle Längen und Abstände sind effektive Längen, die sich aus der geometrischen Länge, multipliziert mit dem Brechungsindex \(n \) des Materials, ergeben. Die von der Struktur erzeugten Reflexionen können besonders einfach untersucht werden, indem man von den Elementarzellen der Ortrautundarstellung zur Impulsraumdarstellung des reziproken Gitters übergeht [18]. Das zugehörige reziproke Gitter hat die Periode \(g = 2\pi/d \), die Punkte des reziproken Gitters \(G = h \cdot g \) liegen bei Vielfachen von \(g \) (mit \(h = \pm 1, \pm 2, \ldots \)).

\[G = 4g \]

\[k_0 > k \]

Abbildung 3.7: Links: Periodische Struktur mit Periode \(d \). Die Elementarzelle besteht aus Plexiglas der optischen Dicke \(d_1 \) und einer Luftschicht. Innerhalb der Elementarzelle entstehen Reflexionen an den Stellen 0 und \(d_1 \). Rechts: Reziprokes Gitter der Basis \(g = 2\pi/d \). Reflexionen treten auf, wenn der Streuvektor \(k - k_0 \) gerade ein reziproker Gittervektor \(G \) ist.

\[9 \text{bzw. keine Substanz, die als effektives Medium wirken könnte} \]

\[10 \text{Braggreflexe} \]
Betrachtet man die Reflexion einer einfallenden Welle k_0 an einer periodischen Struktur, so treten Beugungsexzesse k dort auf, wo der Streuvektor $k - k_0$ ein Punkt des reziproken Gitters G ist, siehe Abb. 3.7 (rechts):\(^{11}\)

\[G = k - k_0 \] \hfill (3.26)

Im hier betrachteten System Plexiglas/Luft erfolgt die Streuung elastisch, d.h. es tritt während des Reflexionsvorgangs kein Energieverlust durch Absorption auf. Dadurch bleibt die Wellenlänge von einfallender und reflektierter Welle gleich, es gilt $k = k_0 = 2\pi/\lambda$. Starke Beugungsexzesse sollten nach (3.26) daher für die Wellenlängen λ_h bzw. die Frequenzen f_h auftreten:

\[\lambda_h = \frac{2d}{h} \quad \text{bzw.} \quad f_h = \frac{c}{2d} \quad \text{mit} \quad h = 1, 2, \ldots \] \hfill (3.27)

Struktur- und Atomformfaktor

Die Streudefinition (3.27) folgt aus der Gitterperiodizität d der einzelnen Elementarzellen. Sie besagt zunächst nur, welche Reflexionen prinzipiell auftreten können. Die Intensität g_h der einzelnen Reflexionen—und somit ihr tatsächliches Auftreten—hängt aber noch vom Aufbau der Elementarzelle ab, der durch den sogenannten Struktur- und den Atomformfaktor beschrieben wird:

\[S_h = \frac{1}{V Z} \sum_\alpha e^{-iG \cdot r_\alpha} \int \rho_\alpha(r') e^{-iG \cdot r'} \, dr'. \] \hfill (3.28)

Das Integral entspricht dem *Atomfaktor*. Der Faktor $1/V Z$ normiert die Streuung auf das Volumen bzw. die Länge der Elementarzelle. Das Integral erstreckt sich jeweils über den Bereich einer Streustelle und erfaßt das Reflexionsverhalten der einzelnen Stellen α. Im Fall der periodischen Struktur aus Plexiglasplatten und Luft geschieht die Streuung innerhalb der Elementarzelle nur an den beiden diskreten Stellen 0 und d_1, vergleiche Abb. 3.7. Das Integral ist daher proportional zum Reflexionsfaktor R an der betrachteten Stelle r_α:

\[R = \frac{n - 1}{n + 1} = 0.231 \quad \text{für Plexiglas/Luft}. \] \hfill (3.29)

Hierbei ist zu beachten, daß die Stelle d_1 den Übergang vom optisch dichteren zum optisch dünneren Medium darstellt. Die reflektierten Wellen erhalten dadurch einen zusätzlichen Phasensprung von $+\pi$, der im folgenden durch einen negativen Reflexionsfaktor $-R$ berücksichtigt wird. Die Summe in (3.28) addiert die Streuungen aller Streuzentren α der Elementarzelle. Sie entspricht dem *Strukturfaktor*

\[S_h \sim \sum_\alpha R_{\alpha} e^{-iG \cdot r_\alpha} = -R e^{-iG \cdot 0} + R e^{-iG \cdot d_1} = R \left[e^{-iGd_1} - 1 \right]. \] \hfill (3.30)

Setzt man schließlich noch den reziproken Gittervektor $G = h \cdot 2\pi/d$ ein, ergibt sich für $h = 1, 2, \ldots$

\[S_h \sim R \left[e^{-i2\pi \frac{d_1}{d}h} - 1 \right] \quad \text{bzw.} \quad |S_h|^2 \sim 2R^2 \left[1 - \cos \left(2\pi \frac{d_1}{d}h \right) \right]. \] \hfill (3.31)

\(^{11}\)Die endliche Länge einer realen Struktur bewirkt, daß die Punkte des reziproken Gitters zu ausgedehnten Bereichen 'aufweichen', in denen die Bedingung (3.26) nicht nur von einer scharfen Frequenz bzw. Wellenlänge erfüllt wird.
Diese Funktion beschreibt die Intensität der Reflexionen, die nach (3.27) bei allen Vielfachen \(h \) der Grundfrequenz \(f_1 = c/2d \) auftreten. Im nächsten Abschnitt wird mit dieser Beziehung das Reflexionsverhalten sowohl einer idealen \(\lambda/4 \)-Struktur als auch der in den Experimenten verwendeten Struktur untersucht.

3.4.2 Anwendung: Ideale und nichtideale \(\lambda/4 \)-Struktur

Bei einer \(\lambda/4 \)-Struktur entsprechen die Schichtdicken \(d_i = \lambda/4 \) einem Viertel der Wellenlänge der Frequenz \(f_1 = c/4nd_1 \). Einfallende Wellen dieser Frequenz werden durch Interferenz fast vollständig reflektiert, der transmittierte Anteil nimmt exponentiell mit der Anzahl der Schichten ab.

Es wird zunächst eine ideale \(\lambda/4 \)-Struktur simuliert. Die Elementarzelle besteht aus zwei Schichten Plexiglas \(d_{\text{plex}} = 5 \text{ mm} \) und Luft \(d_{\text{Lauf}} = 8 \text{ mm} \), die die gleiche optische Dicke \(d_i = 8 \text{ mm} \) besitzen. Die optische Breite der Elementarzelle ist somit \(d = 16 \text{ mm} \), die Resonanzen sind nach (3.27) für Vielfache der Grundfrequenz \(f_1 = c/2d = 9.38 \text{ GHz} \) zu erwarten. Allerdings wird wegen \(d_i/d = 1/2 \) der Strukturfaktor (3.31) für alle geradzahlligen \(h \) Null. Es treten nur die ungeradzahlligen Reflexionsmaxima auf, für die der Strukturfaktor 1 ist. In Abbildung 3.8 ist links der Strukturfaktor für Vielfache der Grundfrequenz dargestellt, er liegt abwechselnd bei 0 und 1. Zur besseren Darstellung wurden die diskret auftretenden Werte durch Hilfslinien verbunden (blaue Linien). Zusätzlich wurden die Reflexionen für alle dargestellten Frequenzen numerisch simuliert und im Diagramm dargestellt.\(^\text{12}\) An den berechneten Stellen ergeben beide Verfahren die gleichen Werte für die Reflexion.

![Abbildung 3.8: Vergleich der simulierten Reflexionen und den Vorhersagen der Streutheorie. Links: Ideale \(\lambda/4 \)-Struktur mit \(d = 16 \text{ mm} \), beide Schichten besitzen gleiche optische Länge \(d_1 = d_{\text{Lauf}} = 8 \text{ mm} \), \(d_{\text{plex}} = 5 \text{ mm} \). Aufgrund der Streuung sind Reflexionen jeweils bei Vielfachen der Grundfrequenz 9.38 GHz zu erwarten, es treten jedoch nur ungeradzahlige Vielfache auf, da der Strukturfaktor (3.31) wegen \(d = 2d_1 \) für alle geradzahligen \(h \) Null wird. Rechts: Reales Gitter mit \(d_1 = 1.6 \cdot 4.7 \text{ mm} \), \(d = d_1 + 8.8 \text{ mm} \). Hier treten auch geradzahlige Reflexionen auf, ihre Intensität variiert gemäß (3.31). Die Vernachlässigung der Vielfachreflexionen in der Streutheorie führt zu den Abweichungen von der Simulation.](image)

Anschließend wird das real verwendete photonische Gitter untersucht und simuliert. Die optische Länge einer Plexiglasschicht ist \(d_1 = 1.6 \cdot 4.7 \text{ mm} \), zusammen mit der Luftschicht ergibt das für die Elementarzelle die optische Länge \(d = d_1 + 8.8 \text{ mm} = 16.32 \text{ mm} \). Damit erhält man eine leicht geänderte Grundfrequenz von \(f_1 = c/2d = 9.19 \text{ GHz} \). Weil \(d \) nun kein Vielfaches von \(d_1 \) mehr ist, treten nur auch die ungeradzahligen Reflexionsmaxima auf, Abb. 3.8 (rechts). Die

\(^{12}\)Das Simulationsverfahren wird später erläutert.

Ursache hierfür ist, daß die Streutheorie nur Einfachreflexionen an jeder Elementarzelle berücksichtigt. Die Vernachlässigung der Vielfachreflexionen führt zu den Abweichungen in der Reflexionshöhe, gemäß Streutheorie wäre jeweils nur eine geringere Reflexionsstärke zu erwarten. In der eindimensionalen Struktur müssen aber Reflexionen an weiter hinten liegenden Elementarzellen zunächst auch alle vorgelagerten Zellen durchqueren, werden dabei bereits teilweise reflektiert und verstärken somit die Gesamtreflexion.

Die Ergebnisse für die Größe der Reflexion R können unter Verwendung der Beziehung $|T|^2 = 1 - |R|^2$ auch zur Bestimmung der Transmission T der Struktur angewandt werden. Dabei werden die Maxima der Reflexion zu photonischen Bandlücken in der Transmission.

3.5 Reflexions- und Transmissionsdauer

3.5.1 Theoretische Grundlagen

Die Streuparameter entsprechen den Reflexions- bzw. Transmissionskoeffizienten, aus ihnen erhält man die Phasenzeiten bzw. Gruppenlaufzeiten τ für Reflexion bzw. Transmission als Ableitungen der Phasen

\[
\tau_+ = \frac{d}{d\omega} \arg(r_+) , \quad \tau_- = \frac{d}{d\omega} \arg(r_-) , \quad \tau_i = \frac{d}{d\omega} \arg(t) .
\] (3.32)

Zwischen den Verzögerungszeiten für die Reflexionen und die Transmission einer Struktur gilt folgender Zusammenhang [24]

\[
\tau_i = \frac{\tau_+ + \tau_-}{2} ,
\] (3.33)

d.h. die Gruppenlaufzeit für die Transmission ergibt sich als Mittelwert der Gruppenverzögerungen der Reflexionen. Dies gilt sowohl innerhalb einer evaneszenten Tunnelregion als auch für einen Bereich mit normaler Wellenausbreitung.

Unsymmetrische Strukturen besitzen in beiden Richtungen unterschiedliche Reflexionszeiten τ_+ und τ_-. Eine Reflexionszeit τ_+, die viel größer als die Transmissionszeit τ_i ist, kann dabei bewirken, daß die Reflexion an der anderen Seite der Struktur eine negative Zeit $\tau_- < 0$ dauert. Dies entspricht einer negativen Geschwindigkeit in der Signalausbreitung. Die Bedeutung von negativen Geschwindigkeiten und Gruppenverzögerungen wird in Kapitel 7 näher erläutert.

3.5.2 Symmetrische und unsymmetrische Strukturen

Die drei Tunnelstrukturen in Abbildung 3.9 bestehen jeweils aus acht Plexiglasplatten und weisen im Bereich der Bandlücke die gleiche Transmissionsdämpfung auf ca. 5% auf. Die beiden oberen Strukturen besitzen die gleiche geometrische Länge, die optische Länge der mittleren
Struktur ist aber durch den Einsatz eines Plexiglas-Resonators vergrößert. Bei der unteren Struktur wurden sowohl die geometrische als auch die optische Länge vergrößert.\footnote{Geometrie der Anordnungen: Dicke der Plexiglasplatten 4.7 mm, Luftspalte 7.52 mm, Luft-Resonator $l_1 = 18.8$ cm, Plexiglas-Resonator 19.27 cm, breiter Luft-Resonator $l_2 = 37.6$ cm, Verlängerungstrecke $\Delta l = 18.8$ cm. Gesamtlängen der Strukturen: „kurz“ 27.1 cm, „plexi“ 27.8 cm, „lang“ 45.9 cm}

Abbildung 3.9: Tunnelstrukturen unterschiedlicher geometrischer und optischer Länge: Alle Strukturen bestehen aus acht Platten Plexiglas und weisen in der Bandlücke die gleiche Transmissionsdämpfung auf, vgl. Abb. 3.10 (oben links). Die beiden oberen Strukturen „kurz“ und „plexi“ haben (fast) die gleiche Gesamtlänge $l_{ges} \approx 27.5$ cm, aber unterschiedlich lange optische Wege. Bei der unteren Struktur „lang“ wurde sowohl der optische Weg als auch die Gesamtlänge um $\Delta l = 0.188$ cm vergrößert. Die mittlere Struktur ist unsymmetrisch, links und rechts des Plexiglas-Resonators befinden sich unterschiedlich viele Plexiglasplatten. Dadurch ergeben sich unterschiedliche Reflexionszeiten an beiden Seiten der Struktur, die auch negativ werden können, vgl. Abb. 3.10.

Die Transmissionen der Strukturen sind in Abb. 3.10 (oben links) gezeigt, die Transmissions- und Reflexionszeiten in beide Richtungen in den weiteren Diagrammen. Alle Strukturen weisen gleiche Transmissionszeiten für beide Einstrahrlrichtungen auf. Desweiteren sind bei den symmetrischen Strukturen „kurz“ und „plexi“ auch die Reflexionszeiten gleich, d.h. die Phasenzeiten für S_{11}, S_{12}, S_{21} und S_{22} liegen alle übereinander. Die unsymmetrische Struktur „lang“ besitzt außerhalb des Tunnelbereichs verschiedene Reflexionszeiten, deren Mittelwert gemäß (3.33) wieder die Transmissionszeit ergibt.

Im Tunnelbereich, z.B. um 10.5 GHz, besitzen alle drei Strukturen eine ähnliche Transmissionsbzw. Tunnelzeit von $\tau \approx 120$ ps. Da die beiden oberen Strukturen „kurz“ und „plexi“ die gleiche geometrische Länge $l = 27.5$ cm besitzen, durchquert ein Signal in diesem Frequenzbereich sie mit der Gruppengeschwindigkeit $l/\tau \approx 8$ c. Bei der unteren Struktur „lang“ wurde der Resonator und damit die Gesamtlänge auf $l = 45.9$ cm vergrößert. Die größere Gesamtlänge führt zu einer Gruppengeschwindigkeit von 11 c, allerdings wird gleichzeitig das Frequenzband, in dem überlichtschnelle Übertragung möglich ist, schmaler, siehe Abb. 3.10 (oben links).

Außerhalb des Tunnelbereichs, z.B. oberhalb bei 13 GHz, besitzen alle Strukturen unterschiedliche Laufzeiten. Der hochfrequente Bereich oberhalb der Tunnelregion ist besonders für die Ausbreitung einer Signalfront von Bedeutung, gemäß (2.5) muß dazu der Grenzwert für hohe Frequenzen existieren. Dieser Grenzwert existiert nicht, wenn in den Simulationen ein konstanter, frequenzunabhängiger Brechungsexponent der Plexiglasplatten von $n = 1.6$ angenommen wird, weil die Struktur dann auch für beliebig hohe Frequenzen immer neue Bandlücken aufweist, vgl. Abschnitt 3.4.\footnote{Der Brechungsexponent von Plexiglas $n(\omega)$ ist frequenzabhängig und geht für hohe Frequenzen gegen Eins. Die Struktur verliert dadurch ihre Tunnelleigenschaft und es treten keine weiteren Bandlücken mehr auf.}

Sind in einem frequenzbandbegrenzten Signal, dessen Spektrum im wesentlichen in einer Bandlücke liegt, zusätzlich scharfe Einschaltggründe enthalten, z.B. verursacht durch eine Signalfront, dann ist für die Signalausbreitung auch der Frequenzbereich unmittelbar oberhalb der Bandlücke von Bedeutung. In diesem Durchlaßbereich sind die Phasenzeiten der Strukturen ca. $\tau_{kurz} = 1.1$ ns, $\tau_{plexi} = 1.6$ ns und $\tau_{lang} = 1.7$ ns, daraus ergeben sich die Ausbreitungsgeschwindigkeiten $v_{kurz} = 0.8$ c, $v_{plexi} = 0.6$ c, und $v_{lang} = 0.9$ c. Die Ergebnisse sind in Tabelle 3.1 zusammengefaßt.

Bei der Simulation der unsymmetrischen Struktur „plexi“ fällt auf, daß sich die Reflexionszeiten S_{11} und S_{22} in beiden Richtungen unterscheiden, während die Transmissionseiten weiter übereinander liegen. Die Reflexionseiten verlaufen jeweils im gleichen Abstand zu den Transmissionseiten, sodaß ihr Mittelwert immer die Transmissionszeit ergibt, siehe auch Gl. (3.33). In den Resonanzen innerhalb der Bandlücke wird immer die Reflexionseiten an der linken Seite der Struktur negativ, außerhalb der Bandlücke werden abwechselnd beide Reflexionseiten kleiner als Null, siehe Abb. 3.10 (unten rechts).

Strukturen, die auch in Transmission negative Phasenzeiten aufweisen, werden später in Kapitel 7 vorgestellt. Zunächst wird besprochen, wie die hier vorgestellten Strukturen auch im
Zeitbereich simuliert werden können, um damit die Signalpropagation durch die Strukturen genauer zu analysieren.

Tabelle 3.1: Vergleich der Simulationsdaten der drei Strukturen aus Abb. 3.9: Geometrische Länge l, optische Gesamtlänge l_{eff}, Transmissionszeit im Bereich der Bandlücke $\tau_{10.5\,\text{GHz}}$ und oberhalb bei $\tau_{13.5\,\text{GHz}}$, sowie daraus resultierende Gruppengeschwindigkeiten $l/\tau = v_{10.5\,\text{GHz}}$ und $v_{13.0\,\text{GHz}}$.

<table>
<thead>
<tr>
<th>Struktur</th>
<th>l (cm)</th>
<th>l_{eff} (cm)</th>
<th>$\tau_{10.5,\text{GHz}}$ (ps)</th>
<th>$\tau_{13.5,\text{GHz}}$ (ps)</th>
<th>$v_{10.5,\text{GHz}}$ (c)</th>
<th>$v_{13.0,\text{GHz}}$ (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>„kurz“</td>
<td>27.1 cm</td>
<td>29.3 cm</td>
<td>111 ps</td>
<td>1130 ps</td>
<td>8.1 c</td>
<td>0.8 c</td>
</tr>
<tr>
<td>„plexi“</td>
<td>27.8 cm</td>
<td>48.1 cm</td>
<td>135 ps</td>
<td>1570 ps</td>
<td>6.9 c</td>
<td>0.6 c</td>
</tr>
<tr>
<td>„lang“</td>
<td>45.9 cm</td>
<td>48.1 cm</td>
<td>142 ps</td>
<td>1676 ps</td>
<td>10.8 c</td>
<td>0.9 c</td>
</tr>
</tbody>
</table>
Kapitel 4

Simulation im Zeitbereich

4.1 Impulssantwort-Funktionen

Es werden zunächst die Impulssantwort-Funktionen $h(t)$ einer einzelnen Platte, der Elementarzelle einer $\lambda/4$-Struktur und des resonanten Gitters bestimmt. Die Zeitskala wird dafür so eingerichtet, daß eine Zeiteinheit gerade der einfachen Laufzeit durch eine Platte bzw. durch einen Luftspalt entspricht.\(^1\)

4.1.1 Einzelne Platte

In Abbildung 4.1 (links) fällt zum Zeitpunkt $t = 0$ ein Delta-Impuls der Höhe 1 von links auf eine Plexiglasplatte. An der Grenzfläche Luft/Plexiglas wird ein Teil R des Impulses reflektiert (hier nicht eingezeichnet), ein Teil T wird ins Medium durchgelassen. Nach der Laufzeit $\Delta t = 1$ erreicht der durchgelassene Teil die zweite Grenzfläche. Es wird erneut ein Teil R des einlaufenden Impulses zurück ins Medium reflektiert und ein Teil T hindurchgelassen. Nach $t = 1$ verläßt daher ein Impuls der Größe $T \cdot T$ die Struktur.

Der zurück ins Medium reflektierte Teil trifft nach der doppelten Laufzeit $\Delta t = 2$ und einer weiteren Reflexion an der ersten Grenzfläche erneut an der zweiten Grenzfläche ein. Hier wird zum Zeitpunkt $t = 3$ also ein Impuls der Größe $T \cdot R \cdot R \cdot T$ transmittiert.

Jeweils nach Vielfachen der doppelten Laufzeit $\Delta t = 2$, also zu den Zeiten $t = 5, 7, \ldots$, treffen weitere Reflexionen an der zweiten Grenzfläche ein und verlassen die Struktur. Jeder Impuls ist durch die weiteren Reflexionen an hinterer und vorderer Grenzfläche um einen Faktor R^2 schwächer als sein Vorgänger. In Tabelle 4.1 sind alle Impulse $h_{\text{Platte}}(t)$, die die Plexiglasplatte zum Zeitpunkt t verlassen, noch einmal übersichtlich dargestellt.

\(^1\)Bei einer idealen $\lambda/4$-Struktur besitzen Platte und Luftspalt gleiche optische Längen $n_1 d_1 = n_2 d_2$, d.h. gleiche Laufzeiten.
4.1. IMPULSANTWORT-FUNKTIONEN

![Diagram](image)

Abbildung 4.1: Vielfachreflexionen in einer halbdurchlässigen Platte (links) und innerhalb der Elementarzelle der $\lambda/4$-Struktur (rechts). Die transmitierte Welle ergibt sich aus der Überlagerung aller gleichzeitig austretenden Vielfachreflexionen, in der Abbildung durch die \oplus-Zeichen angedeutet.

Tabelle 4.1: Impulsantwortfunktion $h_{\text{Platte}}(t)$ einer einzelnen Platte der Dicke d mit Brechungsindex n. Die Zeitskala wurde auf die einfache Laufzeit durch Platte normiert, als Reaktion auf die Anregung mit einem Delta-Impuls der Höhe Eins treten Vielfachreflexionen zu ungeradzahlnen Zeiten aus der Platte aus, vgl. Abb. 4.1 (links).

<table>
<thead>
<tr>
<th>Zeit t $[nd/c]$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_{\text{Platte}}(t)$</td>
<td>T^2</td>
<td>T^2R^2</td>
<td>T^2R^4</td>
<td>T^2R^6</td>
<td>\ldots</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Plexiglas: $d = 4.7$ mm, $R = \frac{1.6 - 1}{1.6 + 1} = 0.231$, $T = \sqrt{1 - R^2} = 0.973$, Zeit einheit $nd/c = 25$ ps)

Aus Tabelle 4.1 kann die Impulsantwortfunktion einer einzelnen Platte mit Brechungsindex n als analytische Funktion abgelesen werden:

$$h(t) = \begin{cases} T^2R^{t-1} - R^{t+1}, & \text{für ungerade } t \\ 0, & \text{sonst} \end{cases} \quad (4.1)$$

4.1.2 $\lambda/4$-Struktur

Auf die gleiche Weise kann die Impulsantwortfunktion $h_{\lambda/4}(t)$ der Elementarzelle einer idealen $\lambda/4$-Struktur bestimmt werden. In Abbildung 4.1 (rechts) fällt wieder zum Zeitpunkt $t = 0$ ein Delta-Impuls der Höhe 1 von links auf die Struktur ein. Die Laufzeiten durch die Plexiglas- und Luftschicht sind aufgrund der gleichen optischen Länge identisch, an jedem Übergang wird der Impuls um den Faktor T geschwächt. Zur Zeit $t = 2$ verlässt daher ein Impuls der Höhe T^3 die Struktur.

Zum Zeitpunkt $t = 4$ verlassen gleichzeitig zwei Impulse die Struktur. Der erste Impuls wurde zweimal innerhalb der Plexiglasplatte reflektiert, der zweite dagegen im Luftspalt. Die beiden Reflexionen führen zusammen mit den drei Transmissionen bei beiden Impulsen zu einer Abschwächung auf T^3R^2. Zusätzlich erfuhr der im Luftspalt reflektierte Impuls bei der Reflexion am dichteren Medium einen Phasensprung von π. Da dieser Phasensprung bei beiden Reflexionen auftritt, besitzt der im Luftspalt reflektierte Impuls schließlich wieder die gleiche Phase wie der im Plexiglas reflektierte Impuls. Der Gesamtimpuls, der die Struktur zum Zeitpunkt $t = 4$ verlässt, ist also die phasengleiche Überlagerung beider Impulse $2T^3R^2$.

Zum Zeitpunkt $t = 6$ treten vier Impulse aus der Struktur aus. In Abbildung 4.1 (rechts) wur-
den die obersten beiden Impulse entweder zweimal in Plexiglas oder zweimal in Luft hin- und herreflektiert. Der dritte wurde zunächst einmal im Plexiglas und anschließend ein weiteres mal im Luftpalt reflektiert. Für diese drei Impulse gilt das bereits im vorherigen Absatz besprochene, aufgrund der mehrfachen Hin- und Zurückreflexion besitzen sie jeweils die Stärke $T^3 R^4$. Der vierte Impuls durchquerte die gesamte Elementarzelle zweimal. Er wird dabei nur einmal am Übergang Luft/Plexiglas reflektiert, d.h. er erhält nur einen zusätzlichen Phasensprung π. Er hat die Stärke $T^5 R^2$ und aufgrund des Phasensprungs ist er gegenphasig zu den übrigen drei Impulsen. Die phasenrichtige Überlagerung aller Impulse, die zum Zeitpunkt $t = 6$ austreten, ergibt daher den Gesamtpuls $(2 + 1) T^3 R^4 - T^5 R^2$. Die Tabelle 4.2 faßt die bis hierhin erhaltenen Ergebnisse für die $\lambda/4$-Struktur zusammen.

Tabelle 4.2: Impulsantwort $h_{\lambda/4}(t)$ der Elementarzelle einer idealen $\lambda/4$-Struktur, siehe Abb. 4.1 (rechts). Die Laufzeiten durch die Platte und den Luftpalt sind gleich groß, die Zeitskala wurde wieder auf diese Laufzeit normiert.

<table>
<thead>
<tr>
<th>Zeit t [nd/c]</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_{\lambda/4}(t)$</td>
<td>T^3</td>
<td>$2 T^3 R^2$</td>
<td>$3 T^3 R^4 - T^5 R^2$</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.1.3 Resonante Struktur

Mit Hilfe der Ergebnisse der $\lambda/4$-Struktur können auch die ersten Terme der Impulsantwortfunktion $h_{\text{Struktur}}(t)$ der resonanten periodischen Plexiglas-Struktur in Abb. 4.3 (oben) bestimmt werden. Die Struktur besteht aus 8 Plexiglasplatten, 6 Luftpalteln und einem zentralen Resonator, der die Länge von 25 Luftpalten besitzt. Die Laufzeit eines Impulses durch die gesamte Struktur ist daher $8 + 6 + 25 = 39$ Zeiteinheiten. Ein Impuls der Höhe 1 wird dabei an den 2 · 8 Übergängen Luft/Plexiglas bzw. Plexiglas/Luft auf T^{16} abgeschwächt.

Zwei Zeitschritte später, d.h. zu Zeitpunkt $t = 41$ verlassen Impulse die Struktur, die einmal innerhalb des Plexiglas bzw. eines Luftpaltes hin- und zurückreflektiert wurden. In der resonanten Struktur gibt es dafür $8 + 6$ mögliche Wege, die Einzelimpulse werden dabei auf $T^{16} R^2$ abgeschwächt. Der Gesamtmpuls ist daher $14 T^{16} R^2$.

4.2 Simulation: Einzelne Platte als Tunnelstruktur

Im folgenden wird eine einzelne Platte mit Brechungsindex n als Tunnelstruktur verwendet. Die Platte stellt für eine Trägerfrequenz f_0 eine Tunnelstruktur dar, wenn ihre Dicke $d = c/4nf_0$ ist. Die Eigenschaften der Platte können in einer Zeitbereichssimulation unter Verwendung der Impulsantwortfunktion (4.1) untersucht werden. Die Diagramme im Frequenzbereich wurden mit Hilfe später beschriebener Methoden erstellt, siehe Abschnitt 10.1, Gl. (10.5).
Tabelle 4.3: Impulsantwort $h_{\text{Struktur}}(t)$ der resonanten periodischen Plexiglas-Struktur aus Abb. 3.9 (oben). Die Breite des zentralen Resonators beträgt 25 Luftschichten, die einfache Laufzeit durch die Gesamtstruktur ist $8+6+25=39$ Zeiteinheiten.

<table>
<thead>
<tr>
<th>Zeit t [rad/c]</th>
<th>37</th>
<th>38</th>
<th>39</th>
<th>40</th>
<th>41</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_{\text{Struktur}}(t)$</td>
<td>T^{16}</td>
<td>$14 T^{16} R^2$</td>
<td>$(14+91) T^{16} R^4 - 12 T^{18} R^2$</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2.1 Transmission, Phase und Gruppengeschwindigkeit

Für ein Material mit Brechungsindex $n = 40$ erhält man eine Transmissionsdämpfung auf ungefähr 5%, siehe Abb. 4.3 (links). Zum Vergleich sind auch die Daten einer Plexiglasplatte mit $n = 1.6$ angegeben. Damit beide Strukturen für die gleiche Trägerfrequenz f_0 eine Tunnelstruktur darstellen, muß die Plexiglasplatte 25-fach breiter als die Platte mit $n = 40$ sein. Die Transmission der Plexiglasplatte beträgt im Minimum noch 90% des Eingangssignals, der Reflexionsfaktor an den Übergängen Plexiglas/Luft beträgt $R = 0.23$.

Abbildung 4.3: Transmission, Phasenverlauf und Gruppengeschwindigkeit einer Platte mit Brechungsindex $n = 1.6$ (Plexiglas) und $n = 40$. Die Plattendicke $d = c/4nf_0$ entspricht jeweils einem Viertel der Wellenlänge der Trägerfrequenz im Medium. Die Frequenzachse ist auf die Trägerfrequenz f_0 normiert. Links: Die Transmission der Platte $n = 40$ entspricht mit 5% ungefähr der Dämpfung einer periodischen Struktur aus acht Plexiglasplatten. Rechts: Die Gruppengeschwindigkeit der Plexiglasplatte (gestrichelte Linie) schwankt um den Wert $c/1.6$ (punktiert), die Platte $n = 40$ führt aufgrund ihrer 25-fach größeren optischen Länge nur zu 0.5 c. Verwendet man anstelle der Platte ein Fabry-Perot-Interferometer aus zwei halbdurchlässigen Spiegeln mit gleichen Reflexionsfaktoren $R = (40-1)/(40+1)$, dann erhält man über die gleiche Distanz maximal 20-fache Lichtgeschwindigkeit.

Die mittlere Abbildung zeigt die Phasenverläufe beider Platten. Der Phasenverlauf der Plexiglasplatte unterscheidet sich nur geringfügig von einer Ausbreitung im Freiraum. Der flache Verlauf der Platte mit Brechungsindex $n = 40$ läßt dagegen zunächst eine deutlich höhere Gruppengeschwindigkeit als bei Freiraumausbreitung erwarten. Allerdings zeigt die rechte Abbildung, daß dies nicht zutrifft. Die maximale Gruppengeschwindigkeit in der Platte mit $n = 40$ beträgt nur 0.5 c und liegt damit unter der Gruppengeschwindigkeit innerhalb der Plexiglasplatte. Die Zeit τ, die ein Wellenpaket zur Durchquerung der Platten benötigt, ergibt sich als Ableitung der hier aufgetragenen Phasen nach der Kreisfrequenz ω. In der Berechnung der Gruppengeschwindigkeit $v_g = l/\tau$ fließt außerdem auch die Länge der jeweiligen Struktur ein. Die 25-fache Länge der Plexiglasplatte bewirkt also, daß die Gruppengeschwindigkeit hier letztlich höher als im Medium $n = 40$ ist.

Eine einzelne Platte besitzt Reflexionsstellen jeweils nur an Eingang und Ausgang. Durch Ände-
4.2. SIMULATION: EINZELNE PLATTE ALS TUNNELSTRUKTUR

4.2.2 Signalübertragung

In Abbildung 4.3 wurde gezeigt, daß für die Signalübertragung durch eine Platte mit Brechungsindex \(n = 40 \) keine überlichtschnelle Gruppengeschwindigkeit zu erwarten ist. Im folgenden wird daher auf das Medium innerhalb der Platte verzichtet, es werden nur die Reflexionsstellen \(R = (40 - 1)/(40 + 1) = 0.95 \) an Eingang und Ausgang der Platte berücksichtigt. Dieser Aufbau entspricht einem Fabry–Perot–Interferometer aus zwei halbdurchlässigen Spiegeln im Abstand \(d \) mit Reflexionsfaktor \(R \). Das Interferometer besitzt bei gleicher Anregungsfrequenz \(f_0 \) denselben flachen Phasenverlauf wie die Platte mit \(n = 40 \), erzeugt aber aufgrund seiner 40-fachen geometrischen Länge Gruppengeschwindigkeiten bis 20 c.

Anregung durch Trägerfrequenz

Das Interferometer wird zunächst nur mit der Trägerfrequenz \(f_0 \) angeregt, Abb. 4.4 (links). Auf der rechten Seite sind die Reaktionen der Tunnelstruktur dargestellt. In der oberen Abbildung beginnt der Träger stetig beim Wert Null. Die Reaktion der Struktur zeigt einen Einschwingvorgang, in dem sich die Transmission auf 5% des Eingangswertes einpendelt.

Abbildung 4.4: Reaktion eines Fabry–Perot–Interferometers mit Reflexionsfaktoren \(R = 0.95 \) auf eine Anregung durch ein sinusförmiges Signal im Zentrum der Bandlücke. Links: Das Eingangssignal beginnt stetig (oben) und mit einem Sprung (unten). Rechts: Das Ausgangssignal fällt nach einem Einschwingvorgang auf ca. 5% des Eingangswertes ab (oben). Der Einschaltvorgang im unteren Signal wird im Interferometer reflektiert und tritt im Ausgangssignal mehrfach auf, die grüne Impuls-Folge entspricht der Delta-Funktion an der Sprungstelle.

In den unteren Simulationen der Abb. 4.4 beginnt der Träger mit einem Sprung auf den Wert Eins. Dieser Sprung wird innerhalb der Struktur vielfach reflektiert und tritt nach jeweils der

Anregung durch amplitudenmoduliertes Signal

![Abbildung 4.5: Links: Eingangs- und Ausgangssignal eines Fabry–Perot–Interferometers. Beide Impulse erreichen fast zeitgleich ihr Maximum, die geringe Zeitdifferenz $\tau = 0.05$ entspricht der Tunnelzeit. Die Eingehende desSignals breitet sich mit der Gruppengeschwindigkeit $v_g = 20 \, c$ aus (schwache Linie). Rechts: Vergleich der Impulse am Strukturausgang. Das Maximum des getunnelten Impulses ist gegenüber dem Freiraum-Impuls nach vorne verschoben. Würde das Fabry–Perot–Interferometer durch eine Platte mit Brechungsindex $n = 40$ realisiert, dann träge der getunnelte Impuls aufgrund der Verzögerung im Medium erst hinter dem Freiraum-Impuls ein (schwache Linie).](image)

Aus den theoretischen Betrachtungen folgte eine Gruppengeschwindigkeit von $20 \, c$ innerhalb des Interferometers, d.h. das Ausgangssignal verläßt es bereits nach $\tau = 1/20 = 0.05$ Zeiteinheiten. Um dies zu überprüfen, wurde die Eingehende des Eingangssignals um 0.05 Zeiteinheiten verzögert und so skalariert, daß sie auf dem getunnelten Signal zum Liegen kommt. Abbildung 4.5 (links) zeigt die Übereinstimmung des getunnelten Signals (grün) mit der Eingehenden, die sich mit $20 \, c$ bewegte (schwarz).

Auf der rechten Seite von Abb. 4.5 werden die unterschiedlichen Impulse am Plattenausgang verglichen. Der getunnelte Impuls trifft vor dem Freiraum-Impuls ein, dieser wiederum vor dem Impuls, der durch die Platte mit $n = 40$ gelaufen ist. Die Eingehende des (nichtnormierten) getunnelten Impulses verläuft dabei unterhalb der Eingehenden des Freiraumsignals. In der Abbildung liegen selbst die einzelnen Trägerschwingungen des getunnelten Impulses vollständig innerhalb des Freiraum-Impulses. Dieser Effekt tritt auf, wenn die Trägerfrequenz f_0 exakt die $\lambda/4$-Bedingung erfüllt, d.h. wenn $f_0 = c/4nd$ gilt. Die Maxima der Reflexionen an Vorder- und Rückseite fallen dann zeitlich mit denen der Trägerschwingung zusammen. Für leicht ver-
stimmte Strukturen tritt dieser Effekt nicht auf, bei stärkerer Verstimmung gehen auch die Tunneleigenschaften verloren.

4.3 Übertragung einer Signalfolge

4.3.1 Theoretische Grundlagen

Die hier betrachteten Tunnelstrukturen\(^2\) sind lineare zeitinvariante (LTI) Systeme, d.h. die Form der Reaktion hängt nur von der Form der Anregung ab, nicht von ihrer Stärke. Die Reaktion ist außerdem unabhängig von der Vorgeschichte der Struktur.

In den numerischen Simulationen wird mit zeitdiskreten Signalen gearbeitet, das kontinuierliche Signal wird dabei mit einer beliebigen Abtastfrequenz \(f_a = 1/\Delta t \) gesampt. Dazu muß das Spektrum des kontinuierlichen Signals auf das Frequenzband \(0 \leq f \leq 0.5f_a \) beschränkt sein, wobei die obere Grenze die Nyquistfrequenz ist.

Ein LTI-System ist kausal, wenn seine Antwort auf jede Eingangsfolge \(x(t) \), die bis zu einem gewissen Zeitpunkt identisch Null war, ebenfalls bis zum gleichen Zeitpunkt identisch Null ist.\(^3\) Dies ist erfüllt, wenn seine Impulsantwort-Funktion \(h(t) \) zu negativen Zeiten \(t < 0 \) verschwindet. Die in Abschnitt 4.1 hergeleiteten Impulsantworten der einzelnen Platte, der Elementarzelle der periodischen Struktur, sowie der resonanten Struktur, erfüllen diese Bedingung.

Die Reaktion des Systems \(y(t) \) auf beliebige Eingangsfolgen erhält man als diskrete Faltung mit der Impulsantwort

\[
y(t) = \sum_{t'=0}^{\infty} x(t') \ h(t-t') .
\]
(4.2)

Mit dieser Methode wurden bereits die Zeitbereichssimulationen des Fabry-Perot-Interferometers im letzten Abschnitt durchgeführt. Ein gravierender Nachteil dieser Methode ist, daß die Faltung mit zunehmender Simulationszeit \(t \) über immer längere Zeitintervalle ausgeführt werden muß. Dies ist notwendig, um alle Vielfachreflexionen zu berücksichtigen, die im Laufe der Zeit in der Struktur neu entstehen. Der numerische Aufwand wird besonders dann groß, wenn zur Realisierung eines asymptotischen Meßaufbaus Zuleitungsstücke mit langen Laufzeiten verwendet werden müssen.

In den folgenden Simulationen wurde die Impulsantwortfunktion deshalb in einer anderen Weise eingesetzt: Für die Zeitbereichssimulation werden die einzelnen Schichten einer periodischen Struktur durch Verzögerungsleitungen der effektiven Länge \(nd \) realisiert, die die Laufzeit \(\tau = nd/c \) einer Welle im Medium \(n \) der Länge \(d \) nachbilden, siehe Abb. 4.6. Die Impulsantwort eines solchen dispersionsfreien Verzögerungsgliedes ist einfach nur \(h(t) = \delta(t-\tau) \), d.h. ein einzelner Delta-Impuls zum Zeitpunkt \(\tau \). Dieses Signal wird als Eingangsgröße der folgenden Verzögerungsleitung verwendet. Dabei wird an der Grenzfläche zwischen beiden Verzögerungsleitungen ein Teil \(R = S_{11} \) der einlaufenden Welle reflektiert, ein Teil \(T \) wird in die nächste Verzögerungsleitung durchgelassen. Die Ausbreitung der vor- und zurücklaufenden Wellen geschieht auf den Verzögerungsleitungen unabhängig voneinander, die Wellen mischen sich nur an den Übergangsstellen, wo der Reflexionsfaktor durch eine Änderung des Wellenwiderstandes der Leitungen erzeugt wird. Auf den Leitungen breiten sich die Wellen mit Lichtgeschwindigkeit aus.

\(^2\)Bandpassfilter, Interferometer, Hohlleiter, periodische bzw. resonante Struktur, Doppelprisma und Quantenentopf

\(^3\)Dies entspricht der Definition von Kausalität im Sinne von Wigner.
Abbildung 4.6: Periodische Struktur aus Plexiglas und Luft (oben) und analoger Aufbau aus verlustlosen Leitungen mit Wellenwiderstand \(Z_w \) und Ausbreitungsgeschwindigkeit \(c \) (unten).

Mit 30 dieser Verzögerungsgliedern (für jede Ausbreitungsrichtung 8 mal Plexiglas sowie 6+1 mal Luft) wird im folgenden eine resonante Struktur nachgebildet. Hinzu kommt eine lange Zuleitung für die asymptotische Anregung der Struktur. Auf eine lange Ausgangsleitung kann verzichtet werden, wenn die Struktur reflexionsfrei mit dem Wellenwiderstand des letzten Segments abgeschlossen wird. Der gleiche Aufbau kann für die Freiraum-Vergleichsstruktur verwendet werden, wenn die Reflexionsfaktoren Null gesetzt werden.\(^4\)

4.3.2 Tunnelübertragung einer frequenzbandbegrenzten Signalfolge

Die oben beschriebene Struktur aus Verzögerungsgliedern soll nun mit einer frequenzbandbegrenzten Signalfolge angeregt werden und die komplette Signalfolge soll die Struktur nach Möglichkeit überlichtschnell passieren.

Die zu übertragende digitale Signalfolge sei '101011010111001...'; diese Information kann durch das idealisierte mathematische Signal in Abb. 4.7 (oben) dargestellt werden. Hierin werden die Werte '1' und '0' durch ein- bzw. ausgeschaltete Rechteckfunktionen realisiert, deren Höhe für jedes einzelne Bits eine festgelegte Zeitdauer — hier über 20 ns — konstant gehalten wird.

Nach Abschnitt 2.1 ist das Spektrum der Rechteckfolge frequenzbandbegrenzt, die Seitenbänder fallen aufgrund der Unstetigkeiten nur mit 1/\(\omega \) ab. Zur überlichtschnellen Übertragung des Signals durch die Gitterstruktur müssen diese unerwünschten Frequenzkomponenten vor unterdrückt werden. Dazu wird die Rechteckfolge durch einen digitalen Tiefpassfilter mit Grenzfrequenz \(f_g = 50 \text{ MHz} \) geschickt. Der Aufbau des Filters ist in Anhang A.1 genauer erläutert.

Abbildung 2.1 (unten) zeigt einen doppellogarithmischen Vergleich der Frequenzspektren der Rechteckfolge und des frequenzbandbegrenzten gefilterten Signals. Die Spektren beider Signale haben ihren Hauptanteil im „Gleichstrombereich“, d.h. um 0 Hz. Im gefilterten Signal können alle Frequenzkomponenten oberhalb von ca. 100 MHz vernachlässigt werden.

4.3. ÜBERTRAGUNG EINER SIGNALFOLGE

Zur überlichtschnellen Übertragung muß das Spektrum des frequenzbandbegrenzten Signals vollständig im Bereich der Bandbreite der Struktur liegen. Dazu wird das gefilterte Signal auf einem hochfrequenten Träger moduliert, dessen Frequenz f_0 im Zentrum der Bandbreite bei 9.15 GHz liegt. Abbildung 4.8 (oben) zeigt das frequenzbandbegrenzte Signal nach der Modulation auf den Träger. Im Frequenzspektrum des modulierten Signals (unten) erkennt man, daß das Spektrum des unmodulierten Signals aus Abb. 4.7 zwischen 0 und 100 MHz, nun symmetrisch auf beiden Seiten der Trägerfrequenz $f_0 = 9.15$ GHz liegt.

Das modulierte Signal weist keine relevanten Frequenzkomponenten außerhalb des dargestellten Intervalls 9.15 GHz ± 100 MHz auf. Die gestrichelte Linie (blau) ist die Transmission der Tunnelstruktur im diesem Bereich. Das Signal erfährt bei der Transmission eine fast frequenzunabhängige Dämpfung um den Faktor 1/20. Abbildung 4.9 zeigt das getunnelte Signal, das zur besseren Darstellung um den Faktor 10 verstärkt wurde. Es trifft vor einem Referenzsignal ein, das sich über die gleiche Strecke im Freiraum ausgebreitet hat.
Abbildung 4.8: Oben: Die physikalische Signalfolge aus Abb. 4.7 wird auf einen hochfrequenten Träger $f_0 = 9.15$ GHz moduliert. Unten: Das Spektrum des modulierten Signals ist achsensymmetrisch um f_0. Die rechte Seite von 9.15 bis 9.25 GHz entspricht dem Spektrum zwischen 0 und 100 MHz aus Abb. 4.7.

Dieser Zeitgewinn durch den Tunnelprozess wird im folgenden Kapitel 5 genauer untersucht. Dort werden auch die Transmissionseigenschaften der hier verwendeten Tunnelstruktur detailliert erläutert. Anschließend wird auf unterschiedliche Arten der Signalmodulation eingegangen und entsprechende Simulationsrechnungen vorgestellt.

Abbildung 4.9: Vergleich des getunnelten Signals und eines Signals, das die gleiche Distanz im Freiraum zurückgelegt hat. Wegen der Dämpfung durch die Tunnelstrecke auf 5% des Eingangssignals, wurde das getunnelte Signal um den Faktor 10 verstärkt.
Kapitel 5

Anwendung: Tunneln am Gitter

Die zuvor besprochenen Frequenz- und Zeitbereichssimulationsmethoden werden im folgenden eingesetzt, um den Tunnelvorgang an einer resonanten Struktur im Freiraum nachzu vollziehen. Dabei werden die Eigenschaften der Tunnelstrukturen detailliert erklärt und verschiedene Arten der Signalmodulation vorgestellt [24, 50].

5.1 Experimenteller Aufbau

In den Zeitbereichsexperimenten wird die Ausbreitung eines Mikrowellenimpulses im Freiraum mit der Ausbreitung durch die periodische Struktur aus Plexiglasplatten verglichen, Abb. 5.1. Die Signale werden durch zwei Parabolantennen gesendet und empfangen, die Abstände zwischen Antennen und Struktur erlaubten eine asymptotische Messung des Reflexions- und Transmissionsvorgangs. Einweghohleiter verhinderten eine Rückkopplung der reflektierten Signale auf die Sende einrichtungen. Eine Diode demoduliert anschließend die aufgefangenen Signale, die Signalein hüllende lässt sich auf einen Oszilloskop darstellen und ver messen.

Im Freiraum würde ein Referenzimpuls, der sich mit \(v_{gr} = v_{ph} = c \) ausbreitet, zur Zeit \(t_0 \) detektiert (Abb. 5.2, gestrichelte Linie). Ein Impuls, der die gleiche Distanz inklusive periodischer Struktur zurückgelegt hat, wird zur früheren Zeit \(t_1 \) detektiert.

Abbildung 5.2: Messungen durch ein Oszilloskop: Der schnellere Impuls (durchgezogene Linie) wird vor dem Referenzimpuls (unterbrochene Linie) detektiert. Aus dem Unterschied der Laufzeiten \(\Delta t \) kann die Ausbreitungsgeschwindigkeit in der Struktur bestimmt werden, Gl. (5.1). In der rechten Abbildung wurden die Impulshöhen normiert.

Aus dem Laufzeitunterschied \(\Delta t = t_1 - t_0 \) und der Länge der Struktur \(l \) kann die Ausbreitungsgeschwindigkeit in der Struktur berechnet werden:

\[
\Delta t = \frac{l}{v_{gr}} - \frac{l}{c} \quad \text{bzw.} \quad v_{gr} = \frac{l}{\Delta t + \frac{l}{c}}
\]

Ein negativer Laufzeitunterschied entspricht Ausbreitungsgeschwindigkeiten größer als \(c \).

5.2 Eigenschaften der Tunnelstrukturen

Die Simulation der Transmission zeigt für die periodische Struktur ein Frequenzintervall stärker Dämpfung auf ca. 5% des Eingangswertes, verursacht durch Reflexionen, siehe Abb. 5.3 (oben links). Dieses Frequenzintervall um 9.15 GHz ist der sogenannte *evaneszenten Bereich* bzw. die *Tunnelregion* oder *verbotene Bandlücke*. Erweitert man die periodische Struktur durch weitere Plexiglasplatten, dann wächst die Dämpfung innerhalb der evaneszenten Region exponentiell mit der Länge \(l \) der Struktur, während der Phasenunterschied zwischen Eingangs- und Ausgangssignal im wesentlichen konstant bleibt.

Der flacher Anstieg der Phase \(\varphi(\omega) \) in der evaneszenten Region bewirkt hohe Gruppendgeschwindigkeiten

\[
v_{gr}(\omega) = \frac{d\omega}{dk} = \frac{l}{\frac{d}{d\omega} \varphi(\omega)},
\]

wobei der in diesem Bereich fast *lineare Anstieg* der Phase \(\varphi \sim \omega \) eine dispersionsfreie Signalübertragung mit konstanter Gruppendgeschwindigkeit \(v_{gr}(\omega) = v_{gr} \) erlaubt. Die Halbwertsbreite und auch die übrige Signalform wird daher bei der Übertragung nicht verändert, auch wenn das Gesamtsignal durch Reflexionsdämpfung an den Plexiglasplatten stark gedämpft wird.

Trennt man die Hälfte der Plexiglasplatten durch einen größeren Luftspalt \((d = 189 \text{ mm}) \), dann erhöht sich die Gesamtlänge \(l \) der Struktur, ohne daß eine weiter Dämpfung im evaneszenten Bereich auftritt, Abb. 5.1 (unten). Die so erhaltene Struktur stellt eine resonante Tunnelstruktur dar. Der Bereich exponentieller Abschwächung ist nun durch scharfe Resonanzlinien unterbrochen, die durch Mehrfachreflexionen innerhalb des Luftspaltes verursacht werden und die bei Vielfachen von \(c/2d \approx 800 \text{ MHz} \) liegen, Abb. 5.3 (unten). Bei diesen Frequenzen zeigt die Phase einen starken Anstieg, der einer langsamen Gruppengeschwindigkeit entspricht, während die scharfen Resonanzlinien mit einer langen Lebensdauer der damit angeregten Zustände verbunden sind.
Abbildung 5.3: Simulation der periodischen und der resonanten Struktur: Transmission und Phase im Frequenzintervall von 0 bis 12 GHz. Bei \(f = 9.15 \) GHz liegt ein Transmissionsminimum von ca. 5\% des Eingangssignals, gleichzeitig zeigt die Phase einen flachen Anstieg (oben). Die resonante Struktur (unten) weist eine gleichstarke Dämpfung auf, allerdings wird der evaneszente Bereich durch scharfe Transmissions-Resonanzen unterbrochen.

Die Ableitung der Phasenkurven führen auf die Phasenzeiten \(\tau_\varphi \)

\[
\tau_\varphi = \frac{d}{d\omega} \varphi(\omega) = \frac{1}{2\pi} \frac{d}{df} \varphi(f)
\]

(5.3)

für beide Strukturen, Abb. 5.4. Die Phasenzeit ist die Transmissionszeit für ein Wellenpaket, in der evaneszenten Region entspricht die Phasenzeit der Tunnelzeit. Kurze Phasenzeiten bedeuten hohe Gruppengeschwindigkeiten.

Die Gruppengeschwindigkeiten \(v_{gr} = l/\tau_\varphi \) können daraus unter Berücksichtigung der Gesamtlängen der Strukturen berechnet werden, Abb. 5.5. Die maximale Gruppengeschwindigkeit ist \(v_{gr} = 3.7 \) \(c \) für die periodische Struktur und \(v_{gr} = 7.9 \) \(c \) für die resonante Struktur. Gemäß (5.1) erwartet man Laufzeitunterschiede gegenüber einer Ausbreitung im Freiraum von annähernd \(\Delta t = -0.24 \) ns für die periodische und \(-0.81 \) ns für die resonante Struktur.

5.3 Verwendete Signale

Es wird angenommen, daß das zu übertragende Signal keine relevanten Frequenzkomponenten oberhalb einer Maximalfrequenz \(\omega_s \) besitzt. Im folgenden wird die zu übertragende Information \(s(t) \) der Einfachheit halber durch eine Sinusfunktion dieser Maximalfrequenz dargestellt:

\[
s(t) = A_s \cos \omega_s t
\]

(5.4)
Abbildung 5.4: Phasenzeiten für die periodische (links) und die resonante periodische Struktur (rechts).

Abbildung 5.5: Gruppengeschwindigkeit für die periodische ($l = 99.2$ mm) und die resonante Struktur ($l = 279.4$ mm) in Einheiten der Lichtgeschwindigkeit gemäß Gl. (5.2). Die maximale Gruppengeschwindigkeit tritt jeweils bei $f = 9.15$ GHz auf und beträgt 3.7 bzw. 7.9 c.

Zur Übertragung wird dieses Signal auf einen hochfrequenten Träger der Frequenz f_c moduliert. Für eine Übertragung mit Überlichtgeschwindigkeit ist die Frequenz $f_c = \frac{2c}{\lambda} = 9.15$ GHz im Zentrum des evaneszenten Bereichs als Trägerfrequenz zu wählen. Auch das modulierte Signal ist, abhängig von der Art der Modulation, beschränkt auf ein bestimmtes Frequenzintervall.

5.3.1 Amplitudenmodulation (AM)

Im Zeitbereich kann eine Amplitudenmodulation von Signal und Träger beschrieben werden durch

$$f_{AM}(t) = A_c \left[1 + m \cos \omega_s t\right] \cos \omega_c t,$$ \hspace{1cm} (5.5)

wöriin $m = A_s/A_c$ der Grad der Modulation ist. Das Spektrum der Amplitudenmodulation besitzt ausschließlich Frequenzkomponenten im Bereich zwischen $\omega_c \pm \omega_s$, Abb. 5.6 (links). Um eine Verformung des zu übertragenen Signals zu vermeiden, sollte dieses Frequenzintervall vollständig innerhalb der evaneszenten Region liegen.

In den Experimenten an der periodischen Struktur werden gaußartige Impulse mit einer zeitlichen Breite von ungefähr $\Delta T \approx 3$ ns als Signale verwendet.\footnote{1/\sqrt{e}-Breite, d.h. Breite auf ca. 61% der Impulshöhe} Sie besitzen ein Frequenzspektrum
5.3. VERWENDETE SIGNALE

von $\Delta f = \frac{2}{\pi \Delta T} \approx 200$ MHz.

Die Ergebnisse einer Zeitbereichssimulation² werden in Abb. 5.7 gezeigt. Dargestellt sind das getunnelte Signal sowie ein Referenzsignal, das eine gleich lange Freiraumstrecke durchlief. Beide Signale wurden auf gleiche Höhe normiert. Die Signale durchliefen bereits eine Gleichrichter-Diode, der hochfrequente Träger des Signals ist zum Teil mit eingezeichnet.

Um dem schmalen evanescenzen Frequenzband der resonanten Struktur gerecht zu werden, wird in der Simulation ein zeitlich breiterer Impuls mit ca. $\Delta T \approx 7$ ns verwendet, der eine Frequenzbandbreite von nur noch $\Delta f \approx 90$ MHz aufweist. Abbildung 5.7 (rechts) zeigt die Ergebnisse für die resonante Struktur.³

²Die Zeitbereichssimulation beruht auf einem Netzwerksimulator mit Verzögerungsleitung. Sie arbeitet vollkommen unabängig von den zuvor diskutierten Frequenzbereichssimulationen und benutzt nicht deren Ergeb-
KAPITEL 5. ANWENDUNG: TUNNELN AM GITTER

Auf der rechten Seite der Abb. 5.8 ist zu sehen, was geschieht, wenn die Frequenzkomponenten des eigentlichen Signals teilweise nicht im evaneszenten Bereich liegen. Die überlichtschnelle Übertragung des zeitlich zu schmalen Impulses scheitert am zu breiten Frequenzspektrum, das zu starken Impulsverformungen und „Nachschwingern“ führt. Während der gesamten Signalübertragung sind nichtevaneszente Wellen vorhanden, die, wie im zuvor beschrieben Fall, innerhalb der Struktur hin- und herreflektiert und dabei nur schwach gedämpft werden.

5.3.2 Frequenzmodulation (FM)

Im Falle einer Frequenzmodulation wird die Phase der Trägerfrequenz \(\omega_c \) durch das zu übertragende Signal \(s(t) \) gemäß

\[
 f_{FM}(t) = A_c \cos(\omega_d + \Delta \varphi_c \cos \omega_s t),
\]

(5.6)

modifiziert, wobei \(\Delta \varphi_c \) den Grad der Modulation beschreibt\(^4\), siehe Abb. 5.9 (links). Solange das Signal aus einer einzelnen harmonischen Schwingung \(\omega_s \) besteht, treten im Spektrum des frequenzmodulierten Signals \(f_{FM} \) nur diskrete Frequenzen \(\omega_c \pm n \omega_s \) mit \(n = 0, 1, 2 \ldots \) auf, die mit zunehmendem Abstand zur Trägerfrequenz immer stärker abfallen. Diese Seitenbänder fallen um so schneller ab, je kleiner \(\Delta \varphi_c \) ist. In der Simulation wurden \(\Delta \varphi_c = 1 \) und \(\omega_s = 46 \text{ MHz} \) verwendet (dies entspricht \(0.5\% \) der Trägerfrequenz \(\omega_c \)), um zu gewährleisten, daß alle signifikanten Frequenzkomponenten innerhalb des evaneszenten Bereichs liegen.

Das frequenzmodulierte Signal wurde durch die resonante Tunnelstruktur geschickt und mit einem Referenzsignal verglichen, das sich im Freiraum ausbreiten konnte. Die Demodulation des Signals geschah durch Bestimmung der Nullstellen–Abstände des modulierten Trägersignals. Das Beispiel des stark frequenzmodulierten Signals in Abb. 5.9 (links) zeigt, daß

\(^4 \)

\(\Delta \omega_c = \Delta \varphi_c \omega_s \) entspricht der maximalen Abweichung von der Trägerfrequenz \(\omega_c \).

\(^3 \)

Für eine klarere Darstellung wurde in der rechten Abbildung der Träger eines Impulses nicht mitgezeichnet.
die Abstände der Nullstellen entsprechend der Modulation variieren. Es wurden daher die Nullstellen-Abstände des getunnelten Signals und des Freiraum-Signals bestimmt und in Abb. 5.9 (rechts) aufgetragen. Die sinusförmige Variation der Nullstellen zeigt jeweils das aufmodulierte Signal $\omega_c = 46$ MHz. Im getunnelten Impuls tritt das Signal ca. 1 ns früher auf.\footnote{Der Beginn des Signal ist durch einen Einschalteffekt noch leicht verrauscht.}

5.4 Abschließende Bemerkungen

Darüber hinaus stellt man speziell für amplitudenmodulierte Signale fest, daß die Einhüllende eines getunnelten Impulses sich immer noch innerhalb der Einhüllenden eines entsprechenden ungedämpften Freiraum-Impulses befindet. Der getunnelte Impuls ist zwar nach vorne verschoben, überholt die Einhüllenden des Freiraum-Impulses aber nicht. Erst durch eine Um skalierung, z.B. durch Normierung der Impulshöhen, kann erreicht werden, das der getunnelte Impuls die Einhüllende verläßt.

Allerdings darf auch das frequenzmodulierte Signal nicht sprunghaft eingeschaltet werden. Ansonsten überlagern nichtevaneszenten Frequenzkomponenten, die von der Sprungstelle erzeugt werden, störend zumindest den Beginn des getunnelten Signals. Zum langsamen Einschalten des frequenzmodulierten Signals wird daher zusätzlich eine Amplitudenmodulation benötigt,
d.h. es wird wieder eine Einhüllende erzeugt, die vom Signal nicht verlassen werden kann. Diese Einhüllende enthält aber keine Information über den Inhalt des anschließend folgenden phasenmodulierten Signals.

Kapitel 6

Kombinierte Zeit- und Frequenzbereichssimulation

Diese Methode ist besonders dann geeignet, wenn die frequenzabhängige Übertragungsfunktion \(H(\omega) \) des Systems bekannt ist, aber nicht auf einfachem Wege in eine Zeitbereichsfunktion \(h(t) \leftrightarrow H(\omega) \) transformiert werden kann.

Die Methode kann außerdem angewandt werden, wenn bei der Rücktransformation der Übertragungsfunktion eine Impulsantwortfunktion \(h(t) \) mit ungünstigen numerischen Eigenschaften entsteht. Dies gilt z.B. für Systeme mit Dispersion: Die Impulsantwort solcher Systeme beginnt meist mit einem steilen Anstieg gefolgt von einem relativ langsamen Abklingen. Um den steilen Anstieg zu erfassen sind kurze Simulationszeitschritte notwendig. Zusammen mit dem langsamen Abklingen bewirkt dies, daß die diskrete Faltung (4.2) über sehr viele Zeitschritte auszuführen ist, um eine ausreichende Genauigkeit zu erhalten.

6.1 Theoretische Grundlagen

Im Frequenzbereich wird ein Eingangssignal \(x(t) \) durch sein Amplituden- \(|X(\omega)| \) und Phasenspektrum \(\arg [X(\omega)] \) dargestellt. Die Eigenschaften des Systems bestimmen die Übertragungsfunktion \(H(\omega) \), für die Transmission entspricht \(H \) gerade dem Streuparameter \(S_{21} \). Die Antwort des Systems \(Y(\omega) \) auf eine Anregung erhält man—anders als im Zeitbereich nicht über eine numerisch aufwendige Faltung—durch eine einfache Multiplikation mit der Übertragungsfunktion:

\[
Y(\omega) = H(\omega) \cdot X(\omega)
\]

(6.1)

Die Übertragungsfunktion des Systems kann dabei z.B. als analytische Funktion gegeben sein. Für komplexere Strukturen kann aber auch eine zuvor durch Simulation erhaltene Übertragungsfunktion verwendet werden, bzw. können auch Meßdaten eines Networkanalysers genutzt werden.

Den zeitlichen Verlauf des Antwortsignals \(y(t) \) erhält man schließlich durch eine Rücktransformation von \(Y(\omega) \). Wenn die Simulation im Zeitbereich mit äquidistanten Zeitschritten arbeitet,
kann die Hin- und Rücktransformation der Signale mit Hilfe einer schnellen Fouriertransformation\(^1\) geschehen. Die Spektren der Signale sind symmetrisch um \(\omega = 0\): die Amplitudenspektren sind achsensymmetrisch, die Phase verläuft punktsymmetrisch. In den folgenden Abbildungen wird immer nur der positive Ausschnitt der Spektren gezeigt. Die Multiplikation mit der Übertragungsfunktion ändert diese Symmetrieigenschaften nicht, daher ergibt die Rücktransformation schließlich wieder rein reelle Antwortsignale \(y(t)\).

6.2 Anwendungen

6.2.1 Periodische resonante Struktur im Hohleiter

Die Struktur ist ein resonanter Aufbau in einem Hohleiter mit 6.56 GHz Cutoff-Frequenz, Abb. 6.1. Sie besteht aus 8 Plexiglasplättchen mit Brechungsindex \(n = 1.6\), die jeweils 6 mm breit sind und die durch 12 mm breite Luftspalte getrennt werden. In der Mitte der Struktur befindet sich ein 13 cm breiter Resonator, die Gesamtlänge der Struktur beträgt 25 cm. Aufgrund des höheren effektiven Brechungsindex des Plexiglases im Hohleiter (3.5) ist die Transmissionsdämpfung der Struktur größer als bei einem vergleichbaren Aufbau im Freiraum.

![Abbildung 6.1: Resonante Struktur im Hohleiter. Die Übertragungsfunktion \(S_{21}\) ist in Abb. 6.2 dargestellt (3. v. oben).](image)

Im folgenden Beispiel wurde die Übertragungsfunktion der Struktur zunächst im Frequenzbereich für ein weites Frequenzintervall von 0 bis 350 GHz in Schrittweiten von 2 MHz bestimmt. Ausschnitte der Übertragungsfunktion \(H\) bzw. \(S_{21}\) sind in Abb. 6.2 (3. v. oben) dargestellt. Durch den Aufbau im Hohleiter konnten die Übertragungsfunktion bzw. die Streuparameter auch experimentell mit Hilfe eines Networkanalysers bestimmt werden. In den untersuchten Frequenzintervallen stimmt sie mit der simulierten Funktion überein.

\(^{1}\)Englisch: Fast Fourier Transform (FFT)
6.2.2 Verjüngter Hohlleiter

Im letzten Beispiel war der Hohlleiter nur meßtechnisch von Bedeutung, er ermöglichte die Bestimmung der Übertragungsfunktion mit Hilfe eines Networkanalyzers. In folgenden wird ein unterdimensionierter Hohlleiter verwendet, um eine Tunnelstruktur wie in Abb. 3.2 aufzubauen. Die Cutoff-Frequenz der Zuleitungen betrug 6.56 GHz, den verjüngten Abschnitt der Länge 10 cm konnten nur Wellen oberhalb von 9.49 GHz passieren.

Abbildung 6.3 (oben links) zeigt die Übertragungsfunktion des verjüngten Hohlleiters (blau), sowie das Frequenzspektrum des Eingangs- und des Ausgangssignals (grün und rot). Durch die Multiplikation mit der Übertragungsfunktion verschiebt sich das Maximum des Spektrums—d.h. die Trägerfrequenz—zu leicht höheren Werten.

Zum Vergleich wurde auch die Signalaustrahlung über eine gleich lange nicht-verjüngte Hohlleiterstrecke mit Cutoff-Frequenz 6.56 GHz simuliert. Der Impuls, der durch die nicht-verjüngte Strecke lief, kommt aufgrund der geringen Gruppengeschwindigkeit im Hohlleiter später als ein vergleichbarer Freiraumimpuls an. Gemäß (3.7) beträgt die Ausbreitungsgeschwindigkeit im betrachteten Frequenzbereich im Hohlleiter nur ca. \(v_{gr} = 0.6 \, c \), dies entspricht einer Laufzeit von 0.56 ns. Dagegen weist der getunnelte Impuls eine Laufzeit von ca. \(\tau = 170 \, \text{ps} \) auf, dies entspricht einer Ausbreitungsgeschwindigkeit von ca. \(v_{gr} = 2 \, c \).

2In der Simulation konnte die Länge der nicht-verjüngten Zuleitungsstücke Null gesetzt werden. Es bleiben nur noch die Sprünge im Wellenwiderstand, die oberhalb der Cutoff-Frequenz zu Resonanzen führen.
Kapitel 7

Anomale Dispersion

7.1 Theoretische Grundlagen

Ein einfaches System, in dem anomale Dispersion auftritt, ist ein Medium, das eine einzelne Absorptionslinie besitzt. Der Brechungsindex eines solchen Mediums mit Absorption bei der Frequenz ω_0 kann dargestellt werden durch einen Lorentz–Lorenz–Oszillator [21]:

$$ n(\omega) = \sqrt{1 - \frac{M}{(\omega - \omega_0) + i\gamma}}. \quad (7.1) $$

Hierin beschreibt M die Stärke der Absorption, γ gibt die Breite der Absorptionslinie an. Der Brechungsindex n beschreibt die Phasengeschwindigkeit $v_{ph} = c/n$ im Medium, man erhält daraus die frequenzabhängige Gruppengeschwindigkeit

$$ v_{gr} = \frac{1}{c} \frac{d}{d\omega} n(\omega) = \frac{c}{n(\omega) + \omega n'(\omega)}. \quad (7.2) $$

Die Gruppengeschwindigkeit wird überlutschnell für $\omega < (1 - n)/n'$ und negativ für $\omega < -n/n'$. Abbildung 7.1 (links) zeigt den Verlauf von Transmission und Brechungsindex in der Umgebung der Absorptionslinie. Für sehr hohe bzw. sehr niedrige Frequenzen wird die Transmission Eins und auch der Brechungsindex nähert sich dem Freiraumwert. Der Brechungsindex verläuft in diesen Bereichen fernab der Absorption monoton wachsend. Anders ist dies im Bereich der Absorption; hier zeigt der Brechungsindex ein anomales Verhalten, d.h. er fällt mit steigender Frequenz (dunkelgrün markiert).

Das anomale Verhalten des Brechungsindexes in der Resonanzabsorption läßt sich aufgrund der gleichzeitigen starken frequenzabhängigen Dämpfung nicht zu einer dispersionsfreien Signalübertragung nutzen. Ein möglicher Ansatz, diese Dämpfung zu umgehen, ist die Verwendung eines Materials, das zwei dicht benachbarte invertierte Resonanzlinien besitzt. Dieses Material kann durch

$$ k(\omega) = \frac{\omega}{c} \sqrt{1 + \frac{M_1}{\omega - \omega_1 + i\gamma} + \frac{M_2}{\omega - \omega_2 + i\gamma}} \quad (7.3) $$

beschrieben werden, Abb. 7.1 (mitte) zeigt, daß der Brechungsindex nun im Bereich zwischen den beiden invertierten Resonanzlinien anomal verläuft, während ein Signal gleichzeitig verstärkt wird [65, 67].

\footnote{Im Beispiel bei $\omega_1 = 6$ GHz und $\omega_2 = 9$ GHz}

Um die anomale Dispersion experimentell beobachten zu können, muß sich dieser Bereich bis über die Topfkante hinaus erstrecken. Im folgenden werden die Eigenschaften des Quantentopfes näher analysiert und eine experimentelle Realisierung durch einen Hohlleiteraufbau beschrieben.

7.2 Experimente am Quantentopf

Negative Phasenänderung führt zur Ausbreitung mit negativer Gruppengeschwindigkeit, d.h. es sieht so aus, als wenn Teile eines Impulses den Potentialtopf verlassen noch bevor sie ihn betreten haben. Ein analoger Effekt wurde kürzlich bei stimulierter Emission beobachtet [67]. Dabei wurde ausgenutzt, daß die Gruppengeschwindigkeit im Frequenzbereich zwischen zwei eng benachbarten Resonanzlinien $-c/310$ wird, während das Signal selbst um ca. 40% vergrößert wird.

Im Gegensatz dazu weist der Potentialtopf negative Gruppengeschwindigkeit im Frequenzbereich zwischen dem höchsten im Topf gebundenen Zustand und dem ersten Streuzustand (der ersten Resonanz) oberhalb des Potentialtopfes auf. Ähnlich wie bei einem Fabry–Perot–Interferometer liegt die Beschränkung einer Signalübertragung mit negativer Gruppengeschwindigkeit in der Frequenzbandbreite, für die der Effekt auftritt. Das Frequenzband wird um so schmaler, je breiter man die Interferometerstrecke bzw. die Potentialtopfbreite wählt. Allerdings führt die fast konstante Phase zwischen zwei Resonanzfrequenzen des Interferometers nur zu Überlichtgeschwindigkeit, nicht aber zu negativer Gruppengeschwindigkeit [25], vergleiche dazu auch die Simulation eines Fabry–Perot–Interferometers in Abschnitt 4.2.2.

Aufgrund der Frequenzbandbegrenzung können nur Impulse mit einer entsprechenden zeitlichen Ausdehnung den Potentialtopf mit negativer Gruppengeschwindigkeit durchqueren. Die Zeitspanne zwischen Ursache und Wirkung kann dadurch gegenüber einer Freiraumausbreitung verkürzt werden, allerdings können Ursache und Wirkung aufgrund der endlichen Impulsdauer nicht vertauscht werden [105].

Im folgenden wird eine experimentelle Simulation eines Quantenentopfes durch einen Mikrowellenlaufbau realisiert, indem von der Analogie zwischen Schrödinger- und Helmholtzgleichung Gebrauch gemacht wird. Das Maximum eines quantenmechanischen Wellenpakets mit mittlerem Impuls $p_0 = \hbar k_0$ breitet sich im Rahmen der Stationären-Phasen-Approximation mit der Gruppengeschwindigkeit $v_g = \omega/|k_0|$ aus. Dieser Zusammenhang kann auch durch Begriffe der Klassischen Mechanik beschrieben werden als $v_g = \frac{\omega}{2\pi} = \frac{\omega}{\pi}$, wobei ein Teilchen die Strecke x in der Zeit τ durchquert. Der Term $kx = \varphi$ entspricht der Phasenänderung über die betrachtete Strecke, $\frac{d}{d\omega} \varphi = \tau \varphi$ ist die für die Ausbreitung notwendige Zeit, die sogenannte Phasenzeit [30].

7.2.1 Streuung am Quantenentopf

Um den Streuvorgang eines Teilchens an einem Potentialtopf zu untersuchen, muß die Schrödingergleichung für einen Potentialverlauf wie in Abb. 7.2 (links) gelöst werden. Andererseits kann durch die Analogie zwischen Schrödinger- und Helmholtzgleichung (7.4) der gleiche Vorgang im Experiment mit geführten elektromagnetischen Wellen studiert werden.

$$\left[\frac{d^2}{dx^2} + \frac{2m}{\hbar^2} (E - V(x)) \right] \psi(x) = 0, \quad \left[\frac{d^2}{dx^2} + \frac{1}{v^2} \left(\omega^2 - \omega_c^2(x) \right) \right] \phi(x) = 0 \quad (7.4)$$

Im Gegensatz zur Quantenmechanik können Phase und Absolutwert der transmitierten elektromagnetischen Welle gemessen werden. Identische Randbedingungen für das elektromagne-
tische Feld \(\phi \) (\(E \) oder \(H \) Feld) und die Wellenfunktion \(\psi \) führen zu analogen Lösungen des Streuproblems [33].

Abbildung 7.2: Energieschema des Quantentopfes, Koeffizienten und Wellenzahlen der Wellenfunktion (links); Mikrowellen-Analogon aus Hohlleiterstücken mit unterschiedlichen Cutoff-Frequenzen \(\omega_0 \) und \(\omega_n \) (mitte); und der experimentelle Aufbau (rechts): ein Hohlleiter der Länge \(l \) ist über zwei Koaxialadapter mit einem Netzwerkansalyssator verbunden. Der Bereich des Hohlleiters, der mit einem Dielektrikum des Brechungsindexes \(n \) gefüllt ist, entspricht dem Quantentopf.

Die Energiestufen \(V(x) \) des Quantentopfes können im Mikrowellenexperiment durch Hohlleiterstücke mit unterschiedlichen Cutoff-Frequenzen \(\omega_c(x) \) konstruiert werden, Abb. 7.2 (mitte). Entsprechend der Analogie verschiebt sich dabei die Energie-Nulllinie des Topfes um den konstanten Wert \(E_0 = \hbar \omega_0 \), der die Cutoff-Frequenz \(\omega_0 \) des ersten Hohlleiter-Abschnittes darstellt:

\[
V(x) = \begin{cases}
E_0 , & \omega_0 , \quad x \leq 0 \\
E_0 - V_0 , & \omega_n , \quad 0 < x < a \\
E_0 , & \omega_0 , \quad a \leq x
\end{cases}
\]

(7.5)

Benutzt man folgenden Ansatz für die Wellenfunktion, siehe Abb. 7.2 (links),

\[
\psi(x) = \begin{cases}
 Ae^{ikx} + B e^{-ikx} , & x \leq 0 \\
 C e^{ikx} + D e^{-ikx} , & 0 < x < a \\
 F e^{ik(x-a)} + G e^{-ik(x-a)} , & a \leq x
\end{cases}
\]

(7.6)

so führt dies für Energie \(E > E_0 \) zu einer Wellenausbreitung mit reellen Wellenzahlen:

\[
k = \frac{1}{\hbar} \sqrt{2m(E-E_0)} \quad \text{and} \quad k' = \frac{1}{\hbar} \sqrt{2m(E+V_0-E_0)} .
\]

(7.7)

Die Randbedingungen für die Wellenfunktion und ihre erste Ableitung an den Stellen \(x = 0 \) und \(x = a \) legen die Koeffizienten \(A, B, \ldots G \) aus (7.6) fest, siehe z.B. [22]. Unsere spezielle Definition von \(\psi \) für \(x \geq a \) bewirkt, daß sich die gesamte Phasenänderung, die im Topf auftritt, nur in den Koeffizienten \(F \) und \(G \) niederschlägt. Diese Eigenschaft kann auch für die Lösung in [22] erreicht werden, indem sie durch den Faktor \(e^{-ika} \) ergänzt wird:

\[
\begin{pmatrix} A \\ B \end{pmatrix} = e^{-i\alpha} \begin{pmatrix}
(\cos k'a - \frac{i}{2} (k' + k) \sin k'a) e^{ika}, & -\frac{i}{2} (k' - k) \sin k'a \\
\frac{i}{2} (k' + k) \sin k'a, & (\cos k'a + \frac{i}{2} (k' + k) \sin k'a) e^{-ika}
\end{pmatrix} \begin{pmatrix} F \\ G \end{pmatrix} .
\]

(7.8)

Betrachten wir eine von links einlaufende Welle an der Stelle \(x = 0 \) und setzen \(A = 1 \) und \(G = 0 \) und finden

\[
F = \left[\cos k'a - \frac{i}{2} \left(\frac{k'}{k} + \frac{k}{k'} \sin k'a \right) \right]^{-1} .
\]

(7.9)
7.2. EXPERIMENTE AM QUANTENPOPF

Die Transmission des Topfes ergibt sich daraus als

$$|F|^2 = \left[1 + \frac{1}{4} \left(\frac{k'}{k} - \frac{k}{k'} \right)^2 \sin^2 k' a \right]^{-1},$$ \hspace{1cm} (7.10)

die gesamte Phasenänderung der transmitierten Welle an der Stelle \(x = a \) ist

$$\varphi = \arg(F) = \arctan \left(\frac{1}{2} \left(\frac{k'}{k} + \frac{k}{k'} \right) \tan k' a \right).$$ \hspace{1cm} (7.11)

Die letzte Gleichung gilt gleichermaßen für Quantentöpfe und für das elektromagnetische Analogon. Demgegenüber hängt die Phasenzeit \(\tau_\varphi = \frac{d\varphi}{d\omega} = \frac{d\varphi}{dk} \frac{dk}{d\omega} \) von der Dispersionsrelation des betrachteten Systems ab.

7.2.2 Streuung im Hohlleiter

Im Hohlleiter gelten für die Wellenzahlen die folgenden Dispersionsbeziehungen

$$k(\omega) = \frac{1}{c} \sqrt{\omega^2 - \omega_0^2}, \quad k'(\omega) = \frac{n}{c} \sqrt{\omega^2 - \omega_n^2},$$ \hspace{1cm} (7.12)

wobei \(c/n = \nu \) die Phasengeschwindigkeit im Dielektrikum ist. Im Analogieexperiment wird ein rechteckiger Hohlleiter der Länge \(l = 250 \, \text{mm} \) verwendet, der teilweise mit einem Dielektrikum mit Brechungsindex \(n \) gefüllt ist, Abb. 7.2 (rechts). Die Cutoff-Frequenz der leeren und der gefüllten Hohlleiterabschnitte beträgt \(\omega_0 = \pi c/b \) bzw. \(\omega_n = \pi c/nb \), wobei \(b \) die Breite des Hohlleiters ist. Der hier verwendete X-Band Hohlleiter \((b = 22.86 \, \text{mm}) \) besitzt die cutoff-Frequenz \(f_0 = \omega_0/2\pi = 6.56 \, \text{GHz} \), gefüllt mit Teflon \((n = 1.432) \) vermindert sich die cutoff-Frequenz auf \(f_n = \omega_n/2\pi = 4.58 \, \text{GHz} \). Die Energieniveaus des Quantentopfes entsprechen daher im Analogieexperiment \(E_0 = \tilde{n}\omega_0 = 27.1 \, \mu\text{eV} \) und \(V_0 = \tilde{n}(\omega_0 - \omega_n) = 8.2 \, \mu\text{eV} \).

Die Ableitung der Phasenzeit für die speziellen Dispersionsrelationen des gefüllten Hohlleiters (7.12) ist im Anhang A.3 dargestellt, es ergibt sich schließlich

$$\tau_\varphi = \frac{d\varphi}{d\omega} = \frac{a \omega 2 n^2 k^2 (k'^2 + k^2) - (k'^2 - k^2) k'^2}{4k^2 k'^2 + (k'^2 - k^2)^2} \sin(2k' a)/k' a$$

mit konstantem \(k'^2 = k^2 - n^2 k^2 \).

Als Grenzwert für hohe Frequenzen\(^2\), also für \(k, k' \to \infty \), ergibt sich daraus mit Hilfe der Phasengeschwindigkeit \(v_\text{ph} = \omega/k \) und der Gruppengeschwindigkeit \(v_\text{gr} = a/\tau_\varphi \)

$$\tau_\varphi = \frac{a \omega}{c^2 k} \quad \text{bzw.} \quad v_\text{gr} v_\text{ph} = c^2,$$ \hspace{1cm} (7.14)

d.h. Wellenpakete mit sehr hoher Energie spüren den Topf nicht und verhalten sich wie in einem ungefüllten Hohlleiter.

Unter gewissen Umständen wird die Phasenzeit (7.13) negativ: Abbildung 7.3 (links) zeigt Regionen in denen die Phasenzeit, abhängig von der Frequenz \(f \) und der Breite des Topfes \(a \), negativ wird. Der gezeigte Frequenzbereich liegt dabei knapp oberhalb der Cutoff-Frequenz des leeren Hohlleiters zwischen 6.56 und 6.9 GHz. Rechts ist zusätzlich die Transmission (7.10) des Topfes in diesen Frequenzbereichen aufgetragen.

\(^2\)Der Hochfrequenz-Limes des Brechungsindex \(n(\omega) \) ist 1, unabhängig vom dielektrischen Material. Dadurch wird der Term \((k'^2 - k^2)^2 \) im Nenner von (7.13) konstant und kann im Vergleich zu \(4k^2 k'^2 \) vernachlässigt werden.
Abbildung 7.3: Links: Regionen negativer Phasenzeit \(\tau_\phi \) für einen mit Teflon gefüllten Hohlleiterabschnitt nach Gl. (7.13). Innerhalb der markierten Bereiche treten, abhängig von der Frequenz \(f \) und der Breite \(a \) des Abschnitts, Phasenzeiten zwischen 0 und -1 ns auf. Das Diagramm beginnt unmittelbar oberhalb der Cutoff-Frequenz 6.56 GHz des ungefüllten Hohlleiters; unterhalb dieser Frequenz existieren nur evaneszente Moden im Hohlleiter. Nur für gewisse Breiten \(a \) ergeben sich negative Phasenzeiten, je länger der Topf, um so schmaler wird das Frequenzband, in dem der Effekt auftritt. Die Region negativer Phasenzeit um \(a = 0 \) reicht bis ca. 7.6 GHz. Rechts: Transmission \(|F|^2 \) der Töpfe nach Gl. (7.10). An Resonanzstellen erreicht die Transmission ihren Maximalwert 1 bzw. 0 dB. Regionen negativer Phasenzeit (schattiert) liegen jeweils oberhalb einer solchen Resonanz. Innerhalb dieser Regionen ist die Abschwächung unabhängig von der Breite des Topfes.

Resonanzen treten bei \(k'a = \nu \pi \) auf, dort erreicht die Transmission den maximalen Wert 1. Daraus ergeben sich unter Benutzung von (7.12) die Resonanzfrequenzen:

\[
f_\nu = \sqrt{\left(\frac{c}{n^2a} \right)^2 + f_n^2} \quad \text{mit} \quad \nu = 1, 2, \ldots \quad \text{und} \quad f_\nu > f_0 .
\]

(7.15)

Vergrößert man die Breite des Topfes \(a \), dann verschieben sich die Resonanzen zu kleineren Frequenzen. Eine Resonanz, die unterhalb die Cutoff-Frequenz \(f_0 \) verschoben wird, wandelt sich in einen gebundenen Zustand um und der Frequenzbereich unmittelbar oberhalb dieses neuen gebundenen Zustands weist einen negativen Phasenverlauf auf, der sich, je nach Lage des Zustands, auch oberhalb der Cutoff-Frequenz beobachten läßt, Abb. 7.4.

7.2.3 Messungen an Teflon

Abbildung 7.4: Gebundene und nicht gebundene Zustände der Teflon-Töpfe gemäß Gl. (7.15). Für bestimmte Topfbreiten (a = 4.0, 27.0, 47.0 und 71.1 mm) liegt ein gebundener Zustand unmittelbar unterhalb der Topf-Oberkante (grüne Züge). Dieser Zustand verursachte einen negativen Phasenverlauf der Transmission, der auch noch oberhalb der Topf-Oberkante nachweisbar ist.

Für jedes Teflonstück wird der Streuparameter S_{21}, der das Verhältnis von transmitterter zu einfallender Welle angibt, im Frequenzbereich gemessen. Der verwendete Networkanalyser HP-8510 erlaubt dabei asymptotische Messungen, indem er die unerwünschten Einflüsse der elektrischen Anschlüsse durch eine Kalibrierung auf zwei Bezugszenen an Anfang und Ende des Hohlleiters eliminiert, Abb. 7.2 (rechts) [57]. Die gemessenen Transmissionen S_{21} müssen noch um einen Faktor korrigiert werden, der die Änderung der Phase innerhalb der ungefüllten Hohlleiterstücke der Gesamtlänge $l - a$ beschreibt:

$$F = S_{21} \cdot e^{-\varphi(l-a)}$$ \hspace{1cm} (7.16)

Durch diese Operation werden die Referenzen aus Abb. 7.2 (rechts) unmittelbar auf die Oberfläche des Teflonstücks verschoben. Für diese Korrektur benutzen wir die gemessene Transmission des ungefüllten Hohlleiters S_{21}^{ref} als Referenz. Aus den gemessenen Daten erhält man daraus die gesamte Phasenänderung innerhalb des Mediums, die mit (7.11) übereinstimmen sollte, durch

$$\varphi = \arg(S_{21}) - (l-a) \cdot \arg(S_{21}^{\text{ref}}).$$ \hspace{1cm} (7.17)

Abbildung 7.5 zeigt $|F|^2$ und die Phase φ von F für Mikrowellentransmission als Funktion der Frequenz durch die Töpfe für die unterschiedlichen Topfbreiten a. Maxima der Transmission $|F|^2$ stellen Resonanzen dar, die theoretischen Werte (7.15) liegen für die Töpfe der Breiten $a = 62.6$ und 82.3 mm bei $f_3 = 6.80$ bzw. $f_4 = 6.85$ GHz. Für $a = 38.7, 62.6$ und 82.3 mm wächst die Phase mit zunehmender Frequenz, während für $a = 4.0, 27.0, 47.5$ und 71.1 mm die Phase in der Nähe der Cutoff-Frequenz fällt.

Aus den gemessenen Phasenverläufen wurden die Phasenzeiten $\tau_\varphi = (2\pi)^{-1}d\varphi/df$ durch numerische Ableitung bestimmt. Abbildung 7.5 (rechts) zeigt die Ergebnisse für die Transmission der verschiedenen Teflonstücke. Für die Breiten $a = 4.0, 27.0, 47.5$ und 71.1 mm treten negative Phasenzeiten auf, während die anderen Töpfe das normale Verhalten eines positiven Phasenanstiegs
Abbildung 7.5: Links und Mitte: Absolutwert $|F|^2$ und Phase φ des Transmissionskoeffizienten F gegen die Frequenz für verschiedene Breiten der Teflonsticker bzw. Töpfe. Die Absolutwerte sind durch die Reflexionen an den Übergangsstellen $x = 0, a$ und durch Energiespeicherung in der Nähe der Cutoff-Frequenz geschwächt, die Maxima der Transmission sind Resonanzen. Für einige Breiten ($a = 4.0, 27.0, 47.5$ and 71.1 mm) fällt die Phasenkurve mit zunehmender Frequenz, schwarze Linien stellen den theoretischen Phasenverlauf dar (7.11). Zur besseren Übersicht wurden die Phasenkurven nach zunehmender Topfbreite angeordnet. Rechts: Phasenzeit τ_{φ} numerisch abgeleitet aus den gemessenen Phasenverläufen von Abb. 7.5 und theoretische Phasenzeiten (schwarz) berechnet durch (7.13). Die Kurven für die Topfbreiten $a = 4.0, 27.0, 47.5$, and 71.1 mm zeigen negative Phasenzeiten bei Frequnzen nahe der Cutoff-Frequenz des ungefüllten Hohlleiters. Verantwortlich für die Abweichungen zwischen experimenteller und theoretischer Ergebnisse ist wahrscheinlich die endliche Leitfähigkeit der realen Hohlleiterwände, insbesondere in der Nähe der Cutoff-Frequenz.

die Frequenzintervalle mit negativen Phasenzeiten liegen in guter Übereinstimmung mit den vorhergesagten Intervallen in Abb. 7.3.

7.2.4 Messungen an Plexiglas

Zur Überprüfung der Ergebnisse wurde die Tiefe V_0 der Töpfe verändert, indem Plexiglas als weiteres Dielektrikum mit $n = 1.6$, $f_n = 4.10$ GHz and $V_0 = 10.2$ μeV verwendet wurde. Gemäß Gleichung (7.13) werden negative Phasenzeiten nun für schmale Topfbreiten und für breitere Frequenzbänder erwartet, vergleiche Abb. 7.6. Für die Topfbreiten $a = 6, 18$, and 24 mm wurden Messungen im Bereich von 6.6 bis 8.0 GHz ausgeführt, wobei die Töpfe $a = 6$ and 24 mm negative Phasenzeiten aufweisen sollten.

Die gemessenen Phasenverläufe in Abb. 7.7 (links) und die daraus berechneten Phasenzeiten (rechts) sind wieder in guter Übereinstimmung mit den theoretischen Vorhersagen für die Pheleglastöpfe (dünne Linien). Obwohl die Topfbreite $a = 18$ mm in unmittelbarer Nähe einer Region mit negativer Phasenzeit liegt, ist der gemessene Phasenverlauf noch klar positiv. Dies zeigt wie exakt das Auftreten negativer Phasenzeiten von den Breiten des Potentialtopfes abhängt.
7.3. Negative Geschwindigkeiten

Die im letzten Abschnitt bestimmte Phasenzeit \(\tau = \frac{d\varphi}{d\omega} \) entspricht der Zeitspanne, die das Maximum eines Wellenpakets benötigt, um eine Struktur mit Phasenverlauf \(\varphi(\omega) \) zu durchlaufen. Mit Hilfe der Gesamtänge der Struktur \(L \) läßt sich daraus die Gruppengeschwindigkeit des Wellenpaketes \(v = L/\tau \) berechnen, negative Phasenzeiten führen dabei zu negativen Gruppengeschwindigkeiten. Im folgenden wird die Bedeutung von negativen Geschwindigkeiten erklärt und mit den überlichtschnellen Geschwindigkeiten, die im Tunnelprozeß auftreten, verglichen.

Beim Tunnelprozeß bestimmt man in einer asymptotischen Messung die Laufzeitdifferenz zweier Wellenpakete, die die Tunnelbarriere bzw. die gleiche Distanz im Freiraum durchlaufen, vgl. auch Abb. 5.2. Die Laufzeitdifferenz \(\Delta t \) entspricht der Tunnelzeit \(\tau \) abzüglich der Zeit, die notwendig für die Ausbreitung über die Freiraumstrecke \(L \) war:

\[
\Delta t = \frac{L}{v} - \frac{L}{c} = \tau - \frac{L}{c} \quad \text{bzw.} \quad v = \frac{L}{\Delta t + \frac{L}{c}}
\]
(7.18)

Ist die gemessene Laufzeitdifferenz \(\Delta t = 0 \), dann gibt es keinen Zeitgewinn und die Tunnelzeit \(\tau = \frac{L}{c} \) entspricht der Ausbreitungszeit im Freiraum. Dagegen ist für eine instantane Ausbreitung die Tunnelzeit \(\tau = 0 \) und der Zeitgewinn erreicht den Wert \(\Delta t = -\frac{L}{c} \), die daraus resultierende Geschwindigkeit \(v \) geht gegen \(+\infty \), siehe Abb. 7.8 (rechts).

Die instantane Ausbreitung bewirkt, daß für ein Signal die Länge der Tunnelstrecke quasi aus dem Ausbreitungsweg herausgeschnitten erscheint, da alle Teile des Signals, die in die Struktur eindringen, sie auf der anderen Seite zeitgleich wieder verlassen, Abb. 7.8 (links mitte). Um
Abbildung 7.7: Gemessene Phase (links) und abgeleitete Phasenzeit (rechts) für die Plexiglas-Potentialtöpfe. Der Phasenverlauf ist negativ bis 7.1 GHz für die Potentialtopf $a = 6$ mm und bis 6.7 GHz für $a = 24$ mm. Die Schwingungen um die theoretischen Kurven (dünne Linien) werden durch eine leichte Fehlanpassung zwischen Hohlleiter und Anschlußstücken verursacht. Der Potentialtopf der Breite $a = 18$ mm liegt außerhalb der markierten Regionen von Abb. 7.6, die Phase zeigt in diesem Fall einen normalen positiven Anstieg.

Ein noch größeren Zeitgewinn als $\Delta t = -\frac{L}{c}$ zu erzielen, müssen Teile des Signals die Struktur verlassen, noch bevor der zugehörige Teil in die Struktur eingedrungen ist, Abb. 7.8 (unten).³

Diese Eigenschaft haben Strukturen mit negativem Phasenverlauf, der größere Zeitgewinn führt dabei zu negativen Geschwindigkeiten. Beim Vergleich negativer Geschwindigkeiten ist zu beachten, daß eine im Absolutwert höhere negative Geschwindigkeit kleiner als eine Geschwindigkeit mit geringerem Absolutwert ist, d.h. eine Geschwindigkeit von $-2c$ ist langsamer als die Geschwindigkeit $-0.5c$, da der Zeitgewinn durch sie geringer ist, siehe auch Abb. 7.8 (rechts). In Tabelle 7.1 sind die besprochenen Zusammenhänge zwischen Zeitgewinn, Tunnelzeit und Ausbreitungsgeschwindigkeit noch einmal zusammengefaßt.

³Dies ist für ausgedehnte Signale wie Wellenpakete möglich, der transmittierte Teil verläßt dabei wiederum nicht die Einhüllende, die von einem Signal gebildet wird, das die gleiche Strecke im Freiraum läuft.
Abbildung 7.8: Links: Die Eingangs- und Ausgangssignale sind auf gleiche Höhe normiert. Im Vergleich zu einer Ausbreitung im Freiraum (oben) erreicht ein Signal aufgrund der konstanten Phase das Ende eines langen Tunnels instantan (mitte). In einem System mit negativem Phasenverlauf (unten) erscheinen dagegen Teile eines Signals, z.B. das Maximum, bereits am Ausgang bevor sie in das System eintreten. Rechts: Gruppengeschwindigkeiten, die sich nach (7.18) aus den Zeitgewinnen Δt ergeben. Wird der (negative) Zeitgewinn größer als die Zeit $\frac{1}{c}$, die bei einer instantanen Ausbreitung gegenüber einer Freiraumausbreitung einspart werden kann, dann ergeben sich negative Geschwindigkeiten (rot). Hierbei ist $v = +\infty = -\infty$ gleich schnell, während z.B. $-0.5c$ schneller als $-2c$ ist. Die transmittenen Impulse verlassen dabei nicht die Einhüllende eines Impulses, der ungedämpft über die gleiche Distanz im Freiraum lief.

Tabelle 7.1: Zusammenhang zwischen den gemessenen Zeitdifferenzen Δt, den Ausbreitungsgeschwindigkeiten v und den Phasenzeiten τ der Signale nach Gl. (7.18). Eine graphische Darstellung dieser Zusammenhänge ist in Abb. 7.8 (rechts) gezeigt.

Δt > 0	\Rightarrow	$v < c$	$\tau > L/c$	langsamer als Licht
Δt = 0	\Rightarrow	$v = c$	$\tau = L/c$	Lichtgeschwindigkeit
Δt < 0	\Rightarrow	$v > c$	$\tau < L/c$	überlichtschnell
Δt = $-L/c$	\Rightarrow	$v = \infty$	$\tau = 0$	instantan
Δt < $-L/c$	\Rightarrow	$v < 0$	$\tau \equiv L/v < 0$	negative Geschwindigkeit
Kapitel 8

X–Wellen und Besselstrahlen

8.1 Lokalisiertes Objekt: Teilchen bzw. Wellenpaket

In Abbildung 8.1 (links) ist ein Teilchen dargestellt, das sich mit dem mittleren Impuls \(\mathbf{p} = \hbar \mathbf{k} \) ausbreitet. Im dispersionslosen Freiraum kann dies auch ein lokalisiertes Wellenpaket sein, das sich mit Gruppen- bzw. Phasengeschwindigkeit \(c \) bewegt. Die Koordinatenachsen wurden dabei

![Diagramm](image)

Abbildung 8.1: Ausbreitung eines lokalisierten Wellenpakets (links) und einer ebenen Welle (rechts) mit Wellenvektor \(\mathbf{k} \).

in Analogie zu den Besselstrahlen mit \(z \) und \(\rho \) bezeichnet.\(^1\) In diesen Richtungen gilt für die

\(^1\) Bei einer Besselwelle beschreibt \(\rho \) den Anteil radial zur Ausbreitungsrichtung.
Impulskomponenten \(k(\omega) \) des Pakets:

\[
\begin{align*}
k_\rho &= k \sin \alpha = \frac{\omega}{c} \sin \alpha \\
k_z &= k \cos \alpha = \frac{\omega}{c} \cos \alpha .
\end{align*}
\] (8.1) (8.2)

Um die Ausbreitung des Pakets in \(z- \) bzw. in \(\rho- \)Richtung zu untersuchen, wird die Dispersionsrelation des Freiraums umgeschrieben zu

\[
\omega = c k = c \sqrt{k_\rho^2 + k_z^2} .
\] (8.3)

Daraus erhält man die Gruppengeschwindigkeit in \(z- \) bzw. \(\rho- \)Richtung formal über

\[
\mathbf{v}_g = \left(\frac{v_z}{v_\rho} \right) = \left(\frac{\frac{\partial \omega}{\partial k_z}}{\frac{\partial \omega}{\partial k_\rho}} \right) \left(\frac{8.3}{8.1-8.3} \right) \frac{c}{k} \left(\frac{\cos \alpha}{\sin \alpha} \right) \leq c,
\] (8.4)

d.h. die Ausbreitungsgeschwindigkeit des lokализierten Objekts ist in jeder Richtung kleiner gleich der Lichtgeschwindigkeit.

Alternativ kann die Gruppengeschwindigkeit auch direkt aus dem mittleren Impuls \(\mathbf{p} \) des Teilchens bzw. dem Wellenvektor \(\mathbf{k} \) über

\[
\mathbf{v} = \frac{\omega}{k^2} \mathbf{k} \quad \text{wobei} \quad |\mathbf{v}| \equiv c
\] (8.5)

bestimmt werden.\(^2\) Wieder erhält man als Ausbreitungsgeschwindigkeit in \(z- \) bzw. \(\rho- \)Richtung Unterlichtgeschwindigkeit:

\[
\begin{align*}
v_z &= \frac{\omega}{k^2} k_z \quad \text{8.2}
\quad \frac{\omega}{k} \cos \alpha = \frac{\omega}{k} \cos \alpha = c \cos \alpha \leq c
\end{align*}
\] (8.6)

\[
\begin{align*}
v_\rho &= c \sin \alpha \leq c .
\end{align*}
\] (8.7)

8.2 Unendlich ausgedehntes Signal: Ebene Welle

Unendlich ausgedehnte Signale, wie ebene Wellen, breiten sich dagegen anders als lokализierte Wellenpakete aus. So wird z. B. in [86] fälschlicherweise angenommen, dass die Ausbreitungsgeschwindigkeit auch für ebene Wellen aus (8.1) und (8.2) berechnet werden kann. Auf diese Weise erhält man aber immer nur Unterlichtgeschwindigkeit.

Betrachten wir eine ebene Welle, die sich mit Wellenvektor \(\mathbf{k} \) ausbreitet, siehe Abb. 8.1 (rechts).

\[
f(\mathbf{r}, t) = e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)} \equiv \exp \left\{ i \left[\left(\begin{array}{c} k \sin \alpha \\ k \cos \alpha \end{array} \right) \cdot \left(\begin{array}{c} \rho \\ z \end{array} \right) - \omega t \right] \right\}
\] (8.8)

Wie schnell muß man sich entlang der \(z- \)Achse bewegen, um der ebenen Welle zu folgen? Betrachten wir dazu nur die Ausbreitung in \(z- \)Richtung, d.h. setzen wir \(\rho = 0 \)

\[
f(z, t) = \exp \left\{ i \left[k \sin \alpha \cdot \left(\begin{array}{c} 0 \\ z \end{array} \right) - \omega t \right] \right\} = e^{i(k z \cos \alpha - \omega t)} = e^{i(k z \cos \alpha - k c t)} = e^{i k (\cfrac{\cos \alpha}{\cos \alpha}) (z - \cfrac{ct}{c} t)}. \] (8.9)

\(^2\)Bei der komponentenweisen Berechnung der Geschwindigkeit ist zu beachten, daß \(v_z \neq \frac{\omega}{k_z} \) gilt; insbesondere ist \(\frac{\omega}{k_\rho} = \frac{\omega}{k \cos \alpha} = \frac{c}{\cos \alpha} \) immer größer gleich \(c \).
Wenn man sich entlang der \(z \)-Achse mit der Geschwindigkeit
\[
v_z = \frac{c}{\cos \alpha} \geq c \tag{8.10}
\]
bewegt, bleibt das Argument \(z - \frac{c}{\cos \alpha} t \) in (8.9) und somit auch der Funktionswert bzw. die Phase von \(f(z, t) \) konstant. Analog findet man als Spurgegeschwindigkeit entlang der \(\rho \)-Achse
\[
v_\rho = \frac{c}{\sin \alpha} \geq c \, . \tag{8.11}
\]
Anhand dieser Spurgegeschwindigkeiten kann mittels (8.5)
\[
k = \frac{\omega}{v^2} \mathbf{v} \tag{8.12}
\]
formal ein Wellenvektor für die Ausbreitung der ebenen Welle angegeben werden:
\[
k \equiv \begin{pmatrix} k_z \\ k_\rho \end{pmatrix} = \frac{\omega}{v^2} \begin{pmatrix} v_z \\ v_\rho \end{pmatrix} = \frac{\omega}{c} \begin{pmatrix} 1 \\ \frac{\cos \alpha}{\sin \alpha} \end{pmatrix} \quad \text{mit} \quad v^2 \equiv c^2 \, . \tag{8.13}
\]
Aus diesem effektiven Wellenvektor \(k \) erhält man über die Dispersionrelation (8.3)
\[
\omega = c |k| = c \sqrt{k_z^2 + k_\rho^2} \tag{8.14}
\]
die Gruppengeschwindigkeit
\[
v_{gr} = \nabla_k \omega = \left(\frac{\partial \omega}{\partial k_z}, \frac{\partial \omega}{\partial k_\rho} \right) \overset{(8.14)}{=} \frac{c}{\sqrt{k_z^2 + k_\rho^2}} \begin{pmatrix} k_z \\ k_\rho \end{pmatrix} \overset{(8.13)}{=} c \begin{pmatrix} \frac{1}{\cos \alpha} \\ \frac{\cos \alpha}{\sin \alpha} \end{pmatrix} \, . \tag{8.15}
\]
Die Gruppengeschwindigkeiten entlang der Achsen sind gleich den Phasengeschwindigkeiten (8.10) bzw. (8.11), d.h. Signale laufen dispersionsfrei mit Überlichtgeschwindigkeit entlang der Achsen.

8.3 Besselwellen

Die rotationssymmetrische Überlagerung aller ebenen Wellen unter gleichem Winkel \(\alpha \) führt zu Besselwellen [81]. Ein Besselwellen-Strahl kann erzeugt werden, indem eine ringförmige Blende in einen Strahl ebener Wellen gestellt wird. An den Stellen der ringförmigen Öffnung bilden sich Elementarwellen, die in ausreichender Entfernung von der Blende wieder als ebene Wellen angesehen werden können, siehe Abb. 8.2.

Die Überlagerung dieser Wellen führt in jeder Ebene senkrecht zur Ausbreitungsrichtung auf eine Intensitätsverteilung, die einer Besselfunktion entspricht: Die Ebenen gleicher Phase liegen senkrecht zur \(z \)-Achse, die Amplitude ist in \(\rho \)-Richtung nicht konstant, wie im Fall ebener Wellen, sondern folgt der Besselfunktion \(J_0(k_\rho \rho) \):
\[
\psi(r, t) = J_0(k_\rho \rho) e^{i(k_z z - \omega t)} \equiv J_0(k \sin \alpha \rho) e^{i(k \cos \alpha z - \omega t)} \, . \tag{8.16}
\]
Dieses Intensitätsmuster breitet sich überlichtschnell entlang der \(z \)-Achse aus, so daß ein Beobachter den Eindruck einer überlichtschnellen \textit{Signalübertragung} bekommen kann. Die Amplitude hängt nicht von \(z \) ab, das Besselwellen-Muster breitet sich daher unverändert entlang
8.3. BESSELWELLEN

der z-Achse aus. Analog zu (8.9) erhält man als Phasen- und Gruppengeschwindigkeit einer Besselwelle \(v_z = \frac{c}{\cos \alpha} \geq c \).

Die Funktion (8.16) ist eine mögliche Lösung der quellenfreien Maxwellgleichungen im Vakuum, d.h. sie erfüllt die Wellengleichung

\[
\frac{1}{c^2} \frac{\partial^2}{\partial t^2} \psi(r, t) = \nabla^2 \psi(r, t) \quad \left(\neq \frac{\partial^2}{\partial z^2} \psi(r, t) \right).
\]

(8.17)

Peshkin [86] verwendet in (8.17) anstelle von \(\nabla^2 \) lediglich die partielle Ableitung \(\frac{\partial^2}{\partial z^2} \). Man erhält dadurch den Widerspruch

\[
\left(-i \omega \right)^2 \frac{\partial^2}{\partial t^2} J_0(k \rho \rho) e^{i(k \cos \alpha - \omega t)} = (i k \cos \alpha)^2 J_0(k \rho \rho) e^{i(k \cos \alpha - \omega t)}
\]

(8.18)\[
\Leftrightarrow \frac{\omega}{c} = k \cos \alpha \quad \text{(8.3)} \quad c = c \cos \alpha
\]

Dagegen wird in [86] aus \(\frac{\omega}{c} = k \cos \alpha \) fälschlicherweise auf eine Phasengeschwindigkeit \(v \equiv \frac{\omega}{k} = c \cos \alpha \) kleiner als \(c \) geschlossen.

Tatsächlich breitet sich das Besselwellen-Intensitätsmuster mit Überlichtgeschwindigkeit \(v_z = \frac{c}{\cos \alpha} \) entlang der z-Achse aus. Dieser Effekt ist auf kurze Distanzen beschränkt, da sich der Winkel \(\alpha \) mit zunehmendem Abstand zur Blende verkleinert. Für große Distanzen geht die Geschwindigkeit der Besselwellen asymptotisch gegen die Lichtgeschwindigkeit.

Bemerkenswert ist, daß sich im Falle der Besselwellen ein kompliziertes Muster scheinbar mit überlichtschneller Gruppengeschwindigkeit ausbreitet. Tatsächlich wird dieses Muster in jedem Abstand zur Blende neu aus der Überlagerung der Elementarwellen der Blendeneinmündung erzeugt. Die Elementarwellen breiten sich dispersionslos mit Lichtgeschwindigkeit aus, ihre überlichtschnelle Spurgeschwindigkeit entlang der z-Achse führt zur scheinbar überlichtschnellen Bewegung des Besselmusters, siehe Abb. 8.2 (rechts).
Kapitel 9

Das Doppelprisma

9.1 Simulationsmethode

Aus den Überlagerungen an den Gitterpunkten zu aufeinanderfolgenden Zeitschritten erhält man eine animierte Darstellung der Wellenausbreitung, in der die Entstehung neuer Wellenfronten

\footnote{bzw. die längere Laufzeit durch die verminderte Geschwindigkeit}
9.1. SIMULATIONS METHODE

![Diagramm]

Abbildung 9.1: Transmitterter Anteil bei Totalreflexion: Der Winkel des einfallenden Strahls α ist größer als der Winkel der Totalreflexion $\sin \alpha_{\text{total}} = 1/n$. Die Streuzentren entlang der Oberfläche Plexiglas/Luft werden mit einer Spurgeschwindigkeit $v_{\text{spur}} < c$ angeregt. Die im Luftspalt mit c auslaufenden Elementarwellen überlagern sich nicht und bilden keine gemeinsame Wellenfront. Erst beim Übergang Luft/Plexiglas entsteht durch die geringere Ausbreitungsgeschwindigkeit im Medium c/n eine neue Wellenfront (gestrichelte Linie). Die Goos-Hänchen-Verschiebung ist nicht eingezeichnet. In der numerischen Simulation werden an bestimmten Meßpunkten (schwarzes Gitter) alle einlaufenden Elementarwellen unter Berücksichtigung ihrer Phasen addiert. Die Amplitudendichteverteilung über dem Meßraster kann dreidimensional dargestellt werden, vgl. Abb. 9.2.

Test der Simulationsroutinen: Beugung am Spalt

Als Test wird das Beugungsmuster von Mikrowellen an einem Spalt simuliert und mit den theoretischen Vorhersagen verglichen. Dazu werden in der Nähe des Ursprungs 100 Streuzentren über eine Breite $b = 0.2$ m mit $f = 9.15$ GHz phasengleich angeregt und die Überlagerung der Elementarwellen im Abstand $D = 0$ bis 10 m und seitlich von $d = -5$ bis 5 m vor dem
Spalt bestimmt, Abb. 9.2 (oben). Schnittbilder zeigen den normierten Amplitudenverlauf bei den festen Abständen \(D = 1 \) und 10 m (unten). Nullstellen bzw. Knoten bilden sich erst für Abstände \(D \gg b \) aus. Die Knoten liegen an den theoretisch zu erwartenden Stellen \(d/D = \tan(\arcsin(m \frac{c}{f_0})) \) mit \(m = 1, 2, 3 \ldots \); in unserem Fall bei \(d/D = 0.17, 0.35 \) und 0.57.

\[\text{Amplitude [a.u.]} \]

\[\text{Abstand} d/D \]

\[D = 1 \text{ m} \]
\[D = 10 \text{ m} \]

Abbildung 9.2: Beugung am Spalt: 100 Streuzentren verteilt über die Spaltbreite 20 cm ergeben bei einer Anregung mit 9.15 GHz obiges Beugungsbild. Die Spaltbreite entspricht ca. dem 6-fachen der Wellenlänge. Unten: Schnittbilder in \(D = 1 \) und 10 m Entfernung. Die Amplitude des letzteren beträgt nur noch 1/96 des 1-m-Bildes.

9.2 Änderung des Einfallwinkels

Der simulierte einfallende Strahl stand bisher senkrecht auf den Streuzentren. Man kann nun den Einfallwinkel des Strahls ändern, indem man die Linie der Streuzentren dreht. Es ist allerdings einfacher, die Streuzentren an ihrem Platz entlang der \(x \)-Achse zu belassen und sie phasenverzögert anzuregen, so als ob der Strahl sie aus einer anderen Richtung \(\alpha \) kommend
träfe. Ein Streuzentrum an der Stelle \(x \) wird dabei durch die Funktion

\[
F_x(t) = \sin(\omega t + k x) \quad \text{mit} \quad k = \sin(\alpha) \frac{\omega}{c}
\]

(9.1)

sinusförmig angeregt. Für \(\alpha = 0^\circ \) erhält man eine gleichphasige Anregung, für \(\alpha = 90^\circ \) erfolgt die Anregung gerade mit der Geschwindigkeit der Welle im Medium \(c/n \).

Bei Anregung der Streuzentren unter einem Winkel \(\alpha \), der größer als der kritische Winkel \(\alpha_{\text{total}} = \arcsin(1/n) \approx 39^\circ \) ist, tritt Totalreflexion auf. Das Beugungsbild in Abbildung 9.2 dreht sich dabei von \(0^\circ \) auf den Winkel \(\alpha \). Damit Totalreflexion auftritt, muß die breite Keule des Hauptmaximums vollständig unter dem Winkel der Totalreflexion auf die Grenzfläche treffen. Messungen der frustrierten Totalreflexion \textit{unmittelbar oberhalb} des kritischen Winkels werden daher durch nicht totalreflektierte Anteile des Strahls erschwert.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image.png}
\caption{Abbildung 9.3: Die Streuzentren (grün) werden über (9.1) unter einem Winkel von \(\alpha = 26^\circ \) angegriffen, die Richtung des gebrochenen Strahls \(\beta \) ergibt sich nach dem Brechungsgesetz \(\sin \alpha = n \sin \beta \) zu \(\beta = 45^\circ \). \textbf{Links} erkennt man, daß der gebrochene Strahl von starken Beugungerscheinungen begleitet wird. Das Strahlprofil war rechteckig, d.h. die grün eingezeichneten Streuzentren wurden gleich stark angeregt. \textbf{Rechts} wurde als Strahlprofil eine Kaiser-Bessel-Funktion (9.2) verwendet. Durch die verminderten Absehnideffekte an den Strahlkanten entstehen schwächere Beugungsmaxima und der gebrochene Strahl wird besser erkennbar. Einen Vergleich der beiden Strahlprofile zeigt Abb. 9.4.}
\end{figure}

In den experimentellen Untersuchungen am Doppelsprismas wurde Mikrowellenstrahlung verwendet, deren Intensität über die Strahlbreite annähernd konstant war. Entweder wurde unmittelbar der breite Strahl der parabolischen Sendeanenne verwendet, oder die Strahlbreite wurde durch Lochblenden verringert. In beiden Fällen besitzt der Strahl einen rechteckigen Intensitätsverlauf, der nach (2.2) zu starken Beugungseffekten im Ortsraum führt.

\footnote{d.h. die Anregung erfolgt mit der Spurgeschwindigkeit \(\infty \)}

\[I(n) = a_0 + a_1 \cdot \cos \left(2\pi \frac{n}{N}\right) + a_2 \cdot \cos \left(4\pi \frac{n}{N}\right) + a_3 \cos \left(6\pi \frac{n}{N}\right) . \] (9.2)

mit \(a_0 = 0.4021 \), \(a_1 = -0.4986 \), \(a_2 = 0.0981 \), \(a_3 = -0.0012 \).

Abbildung 9.4 zeigt den rechteckigen und den modulierten Intensitätsverlauf, der für die einfallenden Strahlen in den Simulationen in Abb. 9.3 angenommen wurde.

Abbildung 9.4: Intensitätsverteilung der einfallenden Strahlen in Abb 9.3: Entlang des 5 cm breiten Spaltes zwischen beiden Prismen sind auf jeder Seite \(N = 200 \) Streuzentren äquidistant verteilt (schwarze Geraden in Abb. 9.3). Davon wurden die Streuzentren \(n = 20 \) bis \(n = 180 \) angeregt (grün markiert), dies entspricht einer Strahlbreite von 19 cm. Als Anregung wurde die hier gezeigte Rechteckfunktion und die Kaiser-Besselfunktion verwendet.
Kapitel 10
Universelle Tunnelzeit

Innerhalb einer Hohlleiter–Tunnelbarriere ist die Wellenzahl \(k(\omega) \) rein imaginär, d.h. ein-
mal in die Barriere eingedrungenes Signal erleidet innerhalb der Barriere der Länge \(x \) keine
weitere Phasenänderung, d.h. \(e^{ikx} \rightarrow e^{-i\omega} \). Aufgetragen über die Frequenz \(\omega \) ergibt dies einen
konstanten Phasenverlauf für alle Frequenzen, die unterhalb der Grenzfrequenz liegen. Weil
die Ableitung der Phase die für die Ausbreitung benötigte Phasenzeit ergibt, bewirkt dieses
Verhalten eine instantane Ausbreitung über die jeweilige Tunnellänge [94, 104].

Sowohl experimentell als auch theoretisch wurde jedoch festgestellt, daß die Zeit, die zur Durch-
querung einer photonischen Barriere benötigt wird, zunächst mit zunehmender Tunnellänge
ansteigt und schließlich gegen einen festen Grenzwert geht, der sehr klein aber ungleich Null
ist [30, 31, 32]. Dieses Verhalten kann erklärt werden, wenn nicht nur die Ausbreitung in der
Tunnelregion betrachtet wird, sondern auch die Zeitverluste berücksichtigt werden, die durch
die teilweise Reflexion am Barrieraanfang entstehen. Die Zeitverluste stehen im Zusammen-
hang mit der Frequenz der eingestrahlten Wellen [94].

Andererseits findet innerhalb einer Tunnelbarriere, die aus einer periodischen Anordnung, z.B.
von Plexiglas und Luft besteht, in jedem Abschnitt normale Wellenausbreitung mit realer Wel-
lenzahl \(k = \frac{\omega}{v} \) statt. Erst die phasenrichtige Überlagerung der Einzelwellen innerhalb der Struk-
tur führt zu einer exponentiellen Abschwächung des transmittierten Signals und damit zum Ver-
halten einer Tunnelstruktur mit imaginärer Wellenzahl. In Abschnitt 4.2 wurde gezeigt,
dß dazu bereits eine einzelne dielektrische Platte mit Reflexionsstellen am Ein- und Ausgang
ausreicht.

Im folgenden wird untersucht, wie beim Aufbau einer Tunnelstruktur aus dielektrischen Platten
mit reeller Wellenzahl eine Gesamtstruktur entsteht, deren Wellenzahl imaginäre Anteile auf-
weist. Anschließend wird in Simulationen untersucht, wie sich die Tunnelzeit bei Verlängerung
der Barriere verhält.

10.1 Imaginäre Wellenzahl

Abbildung 10.1 zeigt einen Ausschnitt einer periodischen Struktur, in deren Grundelementen
normale Wellenausbreitung mit ortsabhängiger Wellenzahl \(k(x) \) stattfindet. Die Elementarzelle
der Struktur besteht aus einer Schicht mit Wellenzahl \(k_1 \) und einer Schicht mit \(k_2 \). Die Trans-
missionsmatrix \(T \) der Elementarzelle\(^1\) kann nach der gleichen Methode, wie in Abschnitt 7.2
vorgestellt, bestimmt werden [22]. Die Ausbreitung über die einzelnen Grundelemente wird

\(^1\)Die Transmissionsmatrix wurde bereits in Abschnitt 3.2 eingeführt und genauer besprochen.
Abbildung 10.1: Periodische Anordnung von Abschnitten mit unterschiedlicher Wellenzahl $k(x)$. Innerhalb der Abschnitte der Länge a_1 bzw. a_2 ist die reelle Wellenzahl konstant k_1 bzw. k_2. Die Ausbreitung der Wellen innerhalb der Abschnitte wird durch die Matrizen T_{k_1} bzw. T_{k_2} beschrieben. Die Ausbreitung über mehrere Abschnitte erhält man durch Verkettung dieser Matrizen, Gl. (10.3).

darin beschrieben durch

$$
\begin{pmatrix} A \\ B \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 + \frac{k_2}{k_1} & e^{-ik_2a_1} \\ 1 - \frac{k_2}{k_1} & e^{+ik_2a_1} \end{pmatrix} \begin{pmatrix} 1 + \frac{k_2}{k_1} & e^{-ik_1a_1} \\ 1 - \frac{k_2}{k_1} & e^{+ik_1a_1} \end{pmatrix} \begin{pmatrix} C \\ D \end{pmatrix}
$$

T_{k_1}

$$
\begin{pmatrix} C \\ D \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 + \frac{k_1}{k_2} & e^{-ik_2a_2} \\ 1 - \frac{k_1}{k_2} & e^{+ik_2a_2} \end{pmatrix} \begin{pmatrix} 1 + \frac{k_1}{k_2} & e^{-ik_1a_2} \\ 1 - \frac{k_1}{k_2} & e^{+ik_1a_2} \end{pmatrix} \begin{pmatrix} F \\ G \end{pmatrix}
$$

T_{k_2}

Daraus erhält man die Transmissionsmatrix T der Elementarzelle durch Verkettung:

$$
\Rightarrow \begin{pmatrix} A \\ B \end{pmatrix} = T_{k_1}T_{k_2} \begin{pmatrix} F \\ G \end{pmatrix}.
$$

(10.3)

Speziell für das Matrixelement T_{11} von T findet man:

$$
T_{11} = e^{-ik_1a_1} \left(\cos k_2a_2 - \frac{i}{2} \left(\frac{k_1}{k_2} + \frac{k_2}{k_1} \right) \sin k_2a_2 \right).
$$

(10.4)

Für eine von links einfallende Welle A ergibt sich als transmittierter Anteil ($G=0$)

$$
A = T_{11} \cdot F + T_{12} \cdot 0 \quad \text{bzw.} \quad F = T_{11}^{-1} A.
$$

(10.5)

Andererseits kann für die Wellenausbreitung von A nach F eine Übertragungsfunktion e^{-ikx} mit einer zunächst unbekannten komplexen Wellenzahl $k = \text{Re}(k) + i \text{Im}(k)$ angesetzt werden

$$
A \triangleq e^{-ikx} F \quad \text{bzw.} \quad F = e^{ikx} A = e^{i\text{Re}(k)x} e^{-i\text{Im}(k)x} A,
$$

wobei die Strecke $x = a_1 + a_2$ ist. Im Vergleich von (10.6) mit (10.5) und (10.23) erkennt man, daß dazu

$$
e^{-ik(a_1+a_2)} \triangleq e^{-ik_1a_1} \left(\cos k_2a_2 - \frac{i}{2} \left(\frac{k_1}{k_2} + \frac{k_2}{k_1} \right) \sin k_2a_2 \right)
$$

(10.7)
gelten muß. Daraus läßt sich k bestimmen als

$$k(\omega) = \frac{k_1 a_1 + i \ln \left(\cos k_2 a_2 - i \left(\frac{k_1^2 + k_2^2}{k_1^2 + k_2^2} \right) \sin k_2 a_2 \right)}{a_1 + a_2} \quad (10.8)$$

Durch Umschreiben des komplexen Logarithmus findet man²

$$k(\omega) = \frac{1}{a_1 + a_2} \left[k_1 a_1 + \arccot \left(\frac{2k_1 k_2}{k_1^2 + k_2^2} \cot k_2 a_2 \right) + i \ln \left(1 + \frac{(k_1^2 - k_2^2)^2}{4k_1^2 k_2} \sin^2 k_2 a_2 \right) \right] \quad (10.9)$$

Man erkennt, daß die Wellenzahl k der Elementarzelle einen imaginären Anteil aufweist, zusätzlich aber noch einen reellen Anteil hat, der mit normaler Wellenausbreitung—und daher mit Laufzeitverlusten—verbunden ist.

Einzelne Platte

Um eine einzelne Platte mit Brechungsindex n wie in Abschnitt 4.1 zu simulieren, kann die Länge der Luftstrecke a_1 Null gesetzt werden. Wichtig ist nur, daß der Sprung, der mit der Änderung der Wellenzahlen verbunden ist, erhalten bleibt. Für die Wellenausbreitung im Freiraum gilt $k_1 = \frac{\omega}{c}$ und $k_2 = \frac{\omega}{c} n$. Damit vereinfacht sich (10.9) in

$$\Delta \varphi = \arccot \left(\frac{2}{n + n} \cot \frac{\omega}{c} n a_2 \right) \quad (10.10)$$

$$\kappa a_2 = \frac{1}{2} \ln \left(1 + \frac{1}{4} \left(n - n \right)^2 \sin^2 \frac{\omega}{c} n a_2 \right) \quad (10.11)$$

woraus sich gemäß (10.6) die Wellenzahl der Platte zu $k = \frac{\Delta \varphi}{\kappa} + ik$ ergibt. Hierin ist $\Delta \varphi$ die Phasenänderung, die in der Wellenausbreitung zu Laufzeitverlusten führt.

Unendlich viele Platten

Die Wellenzahl der Elementarzelle k besitzt also neben dem bereits vorhandenen imaginären Anteil auch noch einen reellen Anteil. Dieser verschwindet vollständig erst für eine perfekte periodische Struktur, die aus unendlich vielen Elementarzellen besteht. Die Wellen, die innerhalb der perfekten periodischen Struktur auftreten, sind modifizierte ebenen Wellen, sogenannte *Bloch-Wellen* [17]. Die Wellenzahl k der Bloch-Wellen hängt mit den Wellenzahlen der Grund-\[\text{elemente} \quad \text{zusammen über}
\cos k(a_1 + a_2) = \cos(k_1 a_1) \cos(k_2 a_2) - \frac{1}{2} \left(\frac{n_1}{n_2} + \frac{n_2}{n_1} \right) \sin(k_1 a_1) \sin(k_2 a_2) \quad (10.12)\]

Evaneszent Blochwellen treten für Frequenzen ω auf, bei denen die Bloch-Wellenzahl k rein imaginär wird [17, 40]. In diesen Frequenzbereichen, den photonischen Bandlücken, findet kein Energietransport statt. Im allgemeinen gibt es eine unendliche Anzahl dieser Bandlücken.

Im Gegensatz zu den hier beschriebenen periodischen Gittern, in denen die Wellenzahlen erst für unendlich viele Elementarzellen rein imaginär wird, besitzen Hohlleiter—unabhängig von ihrer Länge—unterhalb der Abschneidefrequenz rein imaginäre Wellenzahlen. Die Änderung der Wellenzahl am Ein- und Ausgang der Tunnelstruktur führt aber auch hier zu reellen Anteilen und damit zu endlichen Tunnelzeiten, wie man im folgenden Abschnitt sehen wird [37].

²\ln(x + iy) = \frac{1}{2} \ln(x^2 + y^2) + i \text{sgn}(y) \arccot \left(\frac{x}{y} \right)
10.2 Tunnelzeit–Hypothese

Abbildung 10.2 zeigt die Transmission und Phase eines Hohleiter–Tunnelbaus, wie in Abb. 3.2 vorgestellt. Die Länge der Tunnelstrecke wurde von \(l = 1 \text{ cm} \) bis zu einer Länge von 20 cm erhöht, die Tunnelstrecke ist ab einer Länge von \(lk > 1 \) opak. Die Cutoff–Frequenz der Tunnelstrecke liegt bei 9.49 GHz. Unterhalb dieser Frequenz zeigt die Phase \(\varphi \) nur einen schwachen linearen Anstieg, der sich ab ca. 2 cm Tunnelstrecke nicht weiter erhöht. Dies führt zu einer kurzen Phasenzeit \(\tau = \frac{d\varphi}{d\omega} \) für die Transmission der Tunnelstrecke und ermöglicht überlichtschnelle Gruppengeschwindigkeiten \(v_{gr} = \frac{l}{\tau} \) für genügend lange Strukturen.

Durch den fast linearen Anstieg der Phase unterhalb der Cutoff–Frequenz 9.49 GHz, Abb. 10.2 (rechts), ist die Gruppengeschwindigkeit \(v_{gr} \) in diesem Bereich annähernd frequenzunabhängig. Dies ermöglicht eine dispersionsfreie Signalübertragung durch die Tunnelstrecke. Zur Vermeidung einer frequenzabhängigen Dämpfung muß außerdem ein genügend großer Abstand zum Cutoff–Bereich gehalten werden, in dem sich die Transmission schnell ändert, Abb. 10.2 (links).

3Die Transmission des 20 cm langen Hohleiters ist nur bis zur Cutoff–Frequenz eingezeichnet, oberhalb des Cutoffs liegen viele Resonanzen, die die Darstellung beeinträchtigen würden.
10.2. TUNNELZEIT-HYPOTHESE

10.2.1 Übergang zu opaker Struktur

Zur Untersuchung der 1/f-Hypothese wurden Hohlleiterstücke steigender Länge simuliert, ab einer Länge von ca. 4 bis 5 cm war kein weiterer Anstieg der Phasenzeiten bzw. Tunnelzeiten zu beobachten, Abb. 10.3 (rechts). Zusätzlich ist die Tunnelzeit eingetragen, die aus der 1/f-Hypothese folgt. Die simulierten Tunnelzeiten nähern sich von unten kommend, erreichen diesen Wert von $\tau = 1/5.7$ GHz $= 175$ ps allerdings nicht ganz. Die Abweichung kann in einem Korrekturterm zu 1/f-Hypothese erfaßt werden, siehe Abschnitt 10.2.3.

Bei der periodischen und der resonanten Struktur wurde die Anzahl der Plexiglasplatten erhöht und dadurch die Tiefe der Bandlücke vergrößert. Dazu wurde die Anzahl der Plexiglasplatten beginnend bei einer Platte auf maximal zwölf Platten erhöht, die maximale Transmissionsdämpfung betrug $T = 0.007$. Die zugehörigen Tunnelzeiten sind in Abb. 10.3 (links) aufgetragen.

Abbildung 10.3: Links: Phasenzeiten für Transmission S_{21} und Reflexion S_{11} von periodischen und resonanten Strukturen unterschiedlicher Länge. Für lange, d.h. opake, Strukturen nähern sich die Zeiten dem gemeinsamen Wert $\tau \approx 95$ ps. Die resonante Struktur nähert sich von oben kommend, da ab einer Länge von zwei Platten der eingeschlossene Resonator Laufzeitverluste bewirkt, die erst bei der opaken Struktur wieder wegfallen. **Rechts:** Phasenzeiten für Hohlleiter unterschiedlicher Länge. Die durchgezogene Linie entspricht der $\tau = 1/f$-Hypothese. Bei allen Strukturen sind Reflexions- und Transmissionszeiten identisch.

Die Tunnelzeit der periodischen Struktur (grün) verhält sich ähnlich wie die Tunnelzeit des Hohlleiters, d.h. sie steigt mit zunehmender Länge und nähert sich von unten kommend einem Grenzwert, der hier gut mit der Vorhersage der 1/f-Hypothese übereinstimmt. Anders verhält sich dagegen die Tunnelzeit der resonanten Struktur (blau): im wesentlichen fällt hier die Zeit und nähert sich von oben kommend dem gleichen Grenzwert. Dieses Verhalten wird durch den Resonator verursacht, der ab der zweiten Platte für die zusätzliche Laufzeit verantwortlich ist. Die Laufzeit durch den Resonator verschwindet erst wieder, wenn auf beiden Seiten des Resonators ausreichend viele Plexiglasplatten stehen und die Struktur opak wird.

In allen Simulationen wurde zusätzlich zur Transmissionszeit auch die Reflexionszeit (S_{11}) bestimmt und in die Diagramme in Abb. 10.3 eingetragen. Man erkennt, daß beide Zeiten in allen hier vorgestellten Simulationen übereinstimmen.
10.2.2 Test der 1/f-Hypothese in anderen Frequenzbereichen

Zunächst sei darauf hingewiesen, daß speziell die periodische und die resonante Struktur nach den Untersuchungen im Abschnitt 3.4 nicht nur eine Bandlücke besitzen, sondern daß nach (3.27) bei allen Vielfachen der Grundfrequenz \(f_1 = c/2d \) Bandlücken auftreten können, wobei \(d \) die optische Länge der Elementarzelle ist. In der Simulation wurden ideale \(^4\lambda/4\)-Gitter verwendet, daher tritt jeweils nur bei einem geradzahligen Vielfachen der Grundfrequenz eine weitere Bandlücke auf. Abbildung 10.4 (oben) zeigt die Phasenzeiten (nicht die Transmission!) der beiden Strukturen. Man erkennt, daß die 1/f-Hypothese jeweils nur für die erste Bandlücke, d.h. nur für die Grundfrequenz gilt. Alle weiteren Bandlücken weisen zwar gleiche Transmissionsdämpfung und Phasenzie auf, sind jedoch viel höherfrequenter, deshalb entfernt sich die Vorhersage der 1/f-Hypothese immer weiter.

\[\text{Abbildung 10.4: Vergleich der Phasenzeiten einer opaken periodischen Struktur aus 12 Platten Plexiglas sowie einer entsprechenden resonanten Struktur (Dämpfung auf 0.007) (Resonator 189 mm) und eines Hohlleiters (Dämpfung 0.002) (n = 1.6–1.0–1.6, 6.56 GHz, 10 cm) mit der 1/f-Hypothese. In der ersten Bandlücke stimmen die Zeiten gut überein. Die horizontalen Linien stellen Ausbreitungszeit im Freiraum mit und ohne Berücksichtigung der Laufzeit im Plexiglas dar.}\]

Der Hohlleitertunnel besitzt die geringste Phasenzeit im Bereich zwischen den beiden Cutoff-

\(^4\text{d.h. die optischen Längen von Plexiglas und Luft waren gleich}\)
10.2. TUNNELZEIT–HYPOTHESE

Frequenzen von Tunnelstrecke und Zuleitungen, siehe Abb. 10.4 (unten links). Bei höheren Frequenzen wird die Tunnelstrecke transparent, allerdings steigt die Tunnelzeit auch an, wenn die Frequenz weiter verkleinert wird und man sich dem Cutoff der Zuleitungen nähert. Unten der Cutoff–Frequenz der Zuleitungen verliert die Simulation ihre Gültigkeit.

10.2.3 Korrekturterme zur Tunnelzeit–Hypothese

Die Simulationen über einen großen Frequenzbereich ergaben eine gute Übereinstimmung mit der $1/f$–Hypothese. Die Abweichungen, die in Abb. 10.4 erkennbar waren, können durch Korrekturterme vollständig eliminiert werden [95].

Betrachten wir im folgenden eine Tunnelstrecke mit rechteckigem Potentialverlauf. Links und rechts der Barriere können sich Wellen mit der Wellenzahl k ausbreiten, innerhalb der Barriere der Breite a wird die imaginäre Wellenzahl $k' = i\kappa$ durch das reelle κ dargestellt. Analog zu Abschnitt 7.2 findet man für die Transmission durch die Barriere:

$$T = \frac{(1 - r^2) e^{-\kappa a}}{1 - r^2 e^{-2\kappa a}}$$ mit Reflexionsfaktor $r = \frac{i\kappa - k}{i\kappa + k}$ \hspace{1cm} (10.13)

Aus der Transmission erhält man die Phasenänderung φ eines Signals beim Durchqueren der Barriere, die Ableitung der Phase ergibt die Transmissionszeit:

$$\varphi = \arg(T), \hspace{1cm} \tau = \frac{d\varphi}{d\omega}. \hspace{1cm} (10.14)$$

Die Tunnelzeit–Hypothese wurde für opake Barrieren aufgestellt. Eine Barriere ist opak, wenn die Transmission $e^{-\kappa a}$ viel kleiner als Eins ist, d.h. wenn für Barrierenlänge a und Potentialhöhe die Beziehung $\kappa a \gg 1$ erfüllt ist. Für opake Barrieren vereinfacht sich die Transmission (10.13) und man erhält schließlich die Phasenzeit einer opaken Barriere:

$$\tau = \frac{2}{1 + \left(\frac{k}{\kappa}\right)^2} \frac{d}{d\omega} \frac{k}{\kappa} \hspace{1cm} (10.15)$$

Die Tunnelzeit τ hängt für eine opake Barriere nur vom Verhältnis k/κ ab. Dieses Ergebnis läßt sich nun auf die unterschiedlichen Tunnelbarrieren anwenden.

Quantenmechanisches Tunneln

Um die Tunnelzeit eines quantenmechanischen Teilchens durch eine opake Barriere zu bestimmen, werden in (10.15) für $k(\omega)$ und $\kappa(\omega)$ die Dispersionsrelationen (7.7) verwendet:

$$\frac{k}{\kappa} = \sqrt{\frac{E}{V_0 - E}}, \hspace{1cm} \tau = \frac{\hbar}{\sqrt{E(V_0 - E)}} = \frac{1}{\hbar} \frac{2m}{\kappa} \hspace{1cm} (10.16)$$
Obige Formel kann angewandt werden, um aus einer gemessenen Tunnelzeit die Energie der Teilchen vor dem Tunnelprozeß zu bestimmen: Experimentelle Untersuchungen an einem Feldemissions-Mikroskop [97] ergaben eine Tunnelzeit $\tau = 7 \pm 1 \text{ fs}$. Die Energie der zu überwindenden Potentialbarriere ist beim Tunnelmikroskop die Austrittsenergie der Elektronen von $V_0 = 1.7 \text{ eV}$. Unter Anwendung von Gl. (10.16) ergibt sich daraus die Energie der getunnelten Elektronen $E = 0.6 \text{ eV}$.

Hohlliebertunnel

Eine Hohlliefer-Tunnelstrecke wie in Abb. 3.2 besteht aus zwei Zuleitungsstücken mit Cutoff-Frequenz $\omega_1 = 2\pi f_1$ und dem eigentlichen Tunnelabschnitt mit erhöhter Cutoff-Frequenz $\omega_2 = 2\pi f_2$. Unter Verwendung der Dispersionsrelationen einer Hohlliefer-Tunnelstruktur (7.12) findet man:

$$\frac{k}{\kappa} = \sqrt{\frac{\omega^2 - \omega_1^2}{\omega_2^2 - \omega^2}} , \quad \tau = \frac{1}{f} \frac{1}{\pi} \sqrt{\frac{f^4}{(f^2 - f_1^2)(f_2^2 - f^2)}} .$$ \hspace{1cm} (10.17)

Totalreflexion am Prisma

Die Wellenausbreitung im Doppelspalt ist ein zweidimensionaler Prozess. Im Prisma breiten sich die Wellen mit $k_1 = \omega n/c$ in Richtung θ aus, im Luftpalt ändert sich der Wellenvektor aufgrund der höheren Ausbreitungsgeschwindigkeit auf $k_2 = \omega / c$. Bei Unterschreitung des Winkels der Totalreflexion wird der Wellenvektor in y-Richtung imaginär, während in x-Richtung weiterhin normale Wellenausbreitung stattfindet. Man zerlegt daher die Wellenvektoren in Komponenten

$$k_1 = k_x e_x + k_y e_y$$
$$k_2 = k_x e_x + k_y' e_y \equiv k_x e_x + i \kappa e_y ,$$ \hspace{1cm} (10.18)

wobei beide x-Komponenten gleich sind [23], während für die y-Komponenten gilt

$$k = \frac{\omega}{c} n \cos \theta , \quad \kappa = \frac{\omega}{c} \sqrt{n^2 \sin^2 \theta - 1} .$$ \hspace{1cm} (10.20)

Das Verhältnis k/κ hängt hier nicht von der Frequenz ω ab und aus (10,15) ergibt sich ein konstanter Korrekturfaktor zur $\tau = 1/f$-Hypothese:

$$\tau = \frac{1}{f} \frac{n \sin^2 \theta}{\pi \cos \theta \sqrt{n^2 \sin^2 \theta - 1}} .$$ \hspace{1cm} (10.21)

10.3 Gruppengeschwindigkeit beim resonanten Tunneln

Anhand der resonanten Tunnelstruktur in Abschnitt 5.2 wurde bereits gezeigt, daß die Tunnelgeschwindigkeit durch Einfügen eines Hohlrums zwischen zwei Tunnelstrukturen erhöht werden kann, ohne gleichzeitig die Reflexionsdämpfung zu vergrößern. Mit zunehmender Hohlraumlänge treten dabei Resonanzen auf, die das nutzbare Frequenzband einschränken. Das schmalere Frequenzband entspricht einem zeitlich ausgedehnten Signal. Dessen räumliche Ausdehnung wiederum muß größer als die Tunnelstruktur—inklusive Resonator—sein, um den Tunneleffekt nutzen zu können.
10.3. GRUPPENGESCHWINDIGKEIT BEIM RESONANTEN TUNNELN

Die Tunnelzeit bleibt dagegen zunächst konstant, d.h. durch Vergrößerung des Hohlraums lassen sich zunehmend größere Tunnelgeschwindigkeiten erzielen. Im folgenden wird gezeigt, daß für sehr große⁵ Hohlräume die Tunnelzeit schließlich wieder anwächst und die Tunnelgeschwindigkeit nicht weiter linear mit der Tunnellänge ansteigt. Dies steht im Gegensatz zu [47] und [96]. In diesen Arbeiten wird angenommen, daß die Tunnelgeschwindigkeit alleine auf Kosten der nutzbaren Frequenzbandbreite unbegrenzt erhöht werden kann.

10.3.1 Analytische Lösung für einfache und resonante Tunnel

Mit Hilfe des Kettenmatrix-Formalismus aus Abschnitt 10.1 kann die Transmission für die einfache und die resonante Tunnelstruktur in Abb. 10.5 bestimmt werden.

\[T = \frac{-(4k_1 k_2)^2 e^{i(k_1 + 2ak_2)}}{e^{2i(k_1 - 1)} (k_1^2 - k_2^2)^2 + 4e^{2iak_1} [2i(k_1 k_2) \cos ak_2 + (k_1^2 + k_2^2) \sin ak_2]} \]

(10.22)

Daraus ergibt sich für die Resonatorlänge \(b = 0 \) die Transmission einer einfachen Tunnelstrecke:

\[T = \frac{1}{\cos k_2 a - \frac{i}{2} (k_1 + k_2)} \sin k_2 a \]

(10.23)

Für die folgenden Abbildungen wurde aus der Phase \(\varphi \) von \(T \) zunächst die Phasenzeit \(\tau = \frac{d\varphi}{d\omega} \) bestimmt, aus der man über die Gesamtlänge der Struktur die Gruppengeschwindigkeit erhält, vgl. dazu auch Abschnitt 7.2. Zur analytische Berechnung wurde das Computeralgorithm Programm Mathematica genutzt, die resultierenden Funktionen konnten wegen ihres Umfangs nicht mehr abgedruckt werden.

Abbildung 10.6 zeigt die Gruppengeschwindigkeiten in Abhängigkeit von der Frequenz und der Länge der Struktur. Die Länge des einfachen Tunnels wurde zwischen \(a = 0 \) und 10 cm variiert. Bei der resonanten Struktur wurde in einem einfachen Tunnel der Länge \(a = 5 \) cm (rote Linie) ein \(b = 0 \ldots 15 \) cm breiter Resonator eingefügt.

⁵ab mehreren zehn Wellenlängen
Abbildung 10.6: Oben: Gruppengeschwindigkeit für einen Hohleitertunnel. Die blauen Linien markieren die Cutoff-Frequenzen des breiten und des verjüngten Hohleiters (f=6.56 und 9.49 GHz). Oberhalb dieses Bereichs ist normale Wellenausbreitung möglich, die Gruppengeschwindigkeit geht für hohe Frequenzen gegen c. Reflexionen an den Übergangsstellen führen zu den leichten Oszillationen. Im Tunnelbereich tritt die höchste Gruppengeschwindigkeit zwischen beiden Cutoff-Frequenzen auf, gelbe Linie bei 8 GHz. Sie steigt mit zunehmender Tunnellänge und erreicht ab ca. a = 3 cm Überlichtgeschwindigkeit. Unten: Gruppengeschwindigkeit für einen resonanten Hohleitertunnel, bestehend aus zwei verjüngten Hohleiterabschnitten (jeweils a = 2.5 cm), die einen Resonator variabler Länge b einschliessen. Für b = 0 entsteht ein normaler Hohleitertunnel der Länge a = 5 cm (rote Linie unten und oben). Mit zunehmender Resonatorlänge treten Resonanzen auf, in denen die Gruppengeschwindigkeit stark abfällt, gelbe Linie.
10.3. GRUPPENGESCHWINDIGKEIT BEIM RESONANTEN TUNNELN

Abbildung 10.7 zeigt, daß die Gruppengeschwindigkeit sowohl beim einfachen als auch beim resonanten Tunnel mit zunehmender Länge der Struktur ansteigt. Beim resonanten Tunnel wird der Anstieg allerdings durch periodisch auftretende Resonanzen unterbrochen, in denen die Gruppengeschwindigkeit stark abfällt, Abb. 10.7 (links). In der rechten Abbildung wurde nur die Gruppengeschwindigkeit zwischen den Resonanzen aufgetragen, d.h. für die Resonatorlängen $b = n\nu_{ph}(\omega)/2f$ mit $n = 1, 2, \ldots$. Die Länge der Gesamtstruktur ist dabei in Wellenlängen der Trägerfrequenz $f = 8$ GHz angegeben. Für kurze Resonatoren, bis zur Breite von einigen zehn Wellenlängen, steigt die Gruppengeschwindigkeit zunächst linear an. Dies entspricht dem linearen Geschwindigkeitszuwachs bei Verlängerung eines normalen Tunnels, in letzterem Fall allerdings zu Lasten der Transmission. Für noch größere Resonatoren fällt der Geschwindigkeitszuwachs ab, er bleibt unter dem linearen Zuwachs eines normalen Tunnels. Gleichzeitig ist auch die Tunnelzeit nicht mehr konstant. Für die Ausbreitung durch den sehr langen Resonator wird zusätzliche Zeit benötigt. Dieser Effekt resultiert nicht aus der Frequenzbandbegrenzung, er tritt auch bei einem unendlich ausgedehnten Wellenpaket mit Trägerfrequenz $f = 8$ GHz auf.

Kapitel 11

Zusammenfassung

Entwicklung der Simulationsroutinen

\footnote{entspricht der Green-Funktion des Systems}
die Vorteile beider Methoden mit Hilfe der kombinierten Zeit- und Frequenzbereichssimulation verbunden werden.

Anwendung der Simulationsroutinen

Anschließend wurden die getesteten Modelle als Tunnelbarrieren eingesetzt. Dazu wurden sie mit speziellen frequenzbandbegrenzten Signalen angeregt.

- Mit entsprechenden Zeitbereichssimulationen konnten die Freiraummessungen an der periodischen und an der resonanten Struktur nachvollzogen werden.
- Es konnte gezeigt werden, dass eine Signalfront den Tunnelprozess zwar störend überlagert kann, die überlichtschnelle Übertragung der Modulation aber nicht verhindert.
- Zusätzlich zu den bereits bekannten Anwendungen und Experimenten, die amplitudennmodulierte Signale verwenden, konnte ein frequenzmoduliertes Signal mit überlichtschneller Gruppengeschwindigkeit übertragen werden.
- Es wurde gezeigt, wie eine ideale mathematische Signalfolge durch Tiefpassfilterung und Modulation auf einen hochfrequenten Träger überlichtschnell übertragen werden kann. Diese Methode der Tiefpassfilterung findet in abgewandelter Form auch im aktuellen Demonstrationsexperiment zur Überlichtgeschwindigkeit Verwendung.
- Mit der kombinierten Zeit- und Frequenzbereichsanalyse konnten die Tunnelzeitergebnisse reproduziert werden, die bisher nur auf indirektem Wege mit Hilfe einer Streuparametermessung möglich waren. Dabei wurden die Dispersionseffekte unterhalb des Cutoff genauer betrachtet.
- Zusätzlich zu den Tunnelzeiten wurden auch die Reflexionszeiten untersucht. Dabei konnte gezeigt werden, dass bei unsymmetrischen Gitterstrukturen außerhalb der Bandlücke sogar negative Reflexionszeiten auftreten können.
- Es wurde gezeigt, dass die Überlichtgeschwindigkeitseffekte bei der Ausbreitung von Bessel-Wellen rein geometrischer Natur sind und nichts mit überlichtschneller Signalausbreitung zu tun haben.
- Die Tunnelzeit-Hypothese $\tau \approx 1/f$ wurde überprüft, ihre Gültigkeit konnte über viele Frequenzdekaden bestätigt werden, noch bevor eine analytische Lösung zu diesem Problem zur Verfügung stand.
Abstract

The present work is divided into two tasks: first, the different physical mechanism leading to a tunneling behavior were examined and rebuilt in numerical simulation routines. After that, the simulation routines were used to design and optimize experimental setups and to obtain numerical results for setups where analytical solutions were not available.

Many different physical processes can result in a tunneling phenomenon: Due to the cutoff effect a wave guide acts in the frequency regime below as a barrier for incoming waves. Inside a periodic or resonant structure the superposition of the multiple reflections lead to a destructive interference of the output signal. Finally, in the frustrated reflection of a double prism the imperfect superposition of the elementary waves causes an evanescent spreading of the incident wave.

These physical processes were simulated by numerical algorithms in the frequency and in the time domain. The frequency domain analysis is suitable if some parameters of the physical system, like the dispersion inside a waveguide, depend on frequency. In a time domain analysis the impulse response function of the physical system is used to guarantee a causal reaction for any input signal. Eventually both methods are concatenated in the combined time–and–frequency–simulation. The numerical routines were tested for non-tunneling setups. After that, they were used in tunneling experiments, in which the input signal has to be limited to a certain frequency band width.

It was shown, that non-evanescent effects caused by a signal front may disturb the signal propagation, but they could not impede a superluminal propagation of the modulation. The time domain simulations were used to verify the tunneling experiments with dielectric heterostructures in free space. In addition to the amplitude modulation, a frequency modulated signal was also transmitted. An ideal mathematical signal sequence can be transmitted through a tunnel barrier after converting it into a physical signal by the use of a low pass filter and a modulation on a high frequency carrier. Using the combined time–and–frequency–domain simulation, the results of tunneling time measurements by a networkanalyser were verified. In addition to the tunneling time computation, also the reflection time at both sides of barriers was examined. It was shown, that negative reflection times can occur for unsymmetric lattices, and the tunneling time hypothesis $\tau = 1/f$ was verified over a wide frequency range. A theoretical prediction about negative transmission times of quantum wells was applied in a microwave analogy and verified by measurements. The simulations lead to a mechanism which is in charge of the negative transmission times.
Anhang A

Anhang

A.1 Digitaler Tiefpaßfilter

Bei einem nichtrekursiven\(^1\) Tiefpaßfilter hängt die Ausgangsfolge \(y(n)\) ausschließlich von den gegenwärtigen und früheren Werten der Eingangsfolge \(x(n)\) ab [4]

\[
y(n) = \sum_{k=0}^{N-1} h_k x(n - k),
\]

(A.1)

dabei ist \(N\) die Ordnung des Filters und \(h_k\) seine Einheitsimpulsantwort, die sich aus der \(Z\)-Transformierten der Systemfunktion \(H(z)\)

\[
H(z) = \sum_{n=0}^{N-1} h(n) z^{-n} \quad \text{mit} \quad z = e^{j\omega} = e^{j2\pi f}
\]

(A.2)

ergibt. Auf dem Einheitskreis entspricht sie der Übertragungsfunktion \(H(f)\) des Systems.

Wenn die Einheitsimpulsantwort symmetrisch oder antisymmetrisch zum Mittelpunkt der Folge \([0, \ldots, N]\) ist, besitzt der Filter einen linearen Phasengang, d.h. einedispersionsfreie Signalsausbreitung. Das Signal wird beim Durchgang durch den Filter verzögert, die Gruppenlaufzeit beträgt [16]

\[
\tau = \frac{N - 1}{2} T \quad \text{mit} \quad T = \frac{1}{f_a},
\]

(A.3)

wobei \(T\) die Simulationsschrittweite und \(f_a = \omega_a/2\pi\) die Abtastfrequenz ist. Gewünscht ist das Übertragungsverhalten eines *idealen* Tiefpaßfilters, der Frequenzanteile unterhalb einer Grenzfrequenz \(f_g = \omega_g/2\pi\) ungestört durchläuft, und alle darüberliegenden Komponenten blockiert. Die Systemfunktion ist daher ein Rechteckfenster, die Impulsantwort ist gemäß (2.2)

\[
h(n) = \frac{2 \sin[(n - \tau) \omega_g/\omega_a]}{(n - \tau) \omega_g/\omega_a} \quad \text{für} \quad n \in [0, \ldots, N].
\]

(A.4)

Die Impulsantwort muß aus Kausalitätsgründen bei \(n = 0\) und, wegen die Symmetrie um \(\tau\), auch bei \(n = N\) abgeschnitten werden. Diese Unstetigkeiten erzeugen nach Kapitel 2 Abweichungen\(^2\).

\(^1\)Ein nichtrekursiver Filter benötigt gegenüber einem rekursiven Filter, in den auch die Ausgangssequenz eingeht, eine größere Anzahl an Filterkoeffizienten \(N\), verhilft sich dafür aber absolut stabil gegenüber allen Eingangssignalen.
von einer idealen Tiefpass-Filterfunktion. Die Funktion eines realen Tiefpaßfilters kann an die Ideale angenähert werden, indem die Unstetigkeiten durch Verwendung einer Fensterfunktion gemildert werden.

In den Simulationen in Abschnitt 4.3 wurden mit \(N = 1200 \) sehr viele Filterkoeffizienten verwendet, die Signallaufzeit durch den Filter beträgt 600 Simulationsschritte \(T \) oder \(\tau = 12 \) ns, erkennbar in Abb. 4.3.2. Dieses breite Intervall bewirkt eine Abschwächung der Unstetigkeiten, zusätzlich wurde die Impulsantwortfunktion mit einer Gauß-Fensterfunktion gewichtet.

Mit dem Filter kann eine frequenzbandunbegrenzte Signalfolge von störenden hochfrequenten Anteilen befreit werden. Außerdem kann damit ein getunneltes Signal von dem hochfrequenten Träger getrennt werden, der für eine Tunnelübertragung durch eine Bandlücke notwendig war.

A.2 Kettenmatrix

Jeder lineare Vierpol kann im Frequenzbereich durch eine II–Ersatzschaltung wie in Abb. A.1 (rechts) dargestellt werden.

\[
\begin{bmatrix}
1 & Z \\
\frac{1}{Z_1} & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & Z \\
\frac{1}{Z_4} & 1
\end{bmatrix}
= \begin{bmatrix}
\frac{Z_4+Z_3}{Z_4+Z_2+Z_3} & \frac{Z_3}{Z_4+Z_2} \\
\frac{Z_2}{Z_4+Z_2+Z_3} & \frac{Z_1+Z_2}{Z_4+Z_2}
\end{bmatrix}
\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\]

\[
(A.5)
\]

Abbildung A.1: Aus den beiden Elementarvierpolen (links) erhält man durch mehrfache Verkettung das II–Ersatzschaltbild (rechts).

Die Kettenmatrix der Gesamtschaltung erhält man, indem drei der Elementaryvierpole in Abb. A.1 (links) für parallel und sequentiell geschaltete Impedanzen verkettet werden:

\[
\begin{bmatrix}
1 & 0 \\
\frac{1}{Z_1} & 1
\end{bmatrix}
\begin{bmatrix}
1 & Z_3 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & \frac{1}{Z_4} \\
0 & 1
\end{bmatrix}
= \begin{bmatrix}
Z_1 & 0 \\
0 & Z_3
\end{bmatrix}
\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\]

Bei bekannter Kettenmatrix \(A \) können daraus die drei Ersatzwiderstände der II–Schaltung bestimmt werden:

\[
Z_1 = \frac{A_{12}}{A_{22} - 1} \quad Z_2 = \frac{A_{12}}{A_{11} - 1} \quad Z_3 = A_{12}
\]

\[
(A.6)
\]

Sind Strom \(I_1 \) und Spannung \(U_1 \) an einem Eingang bekannt, dann können mit Hilfe der Kettenmatrix die Größen \(I_2 \) und \(U_2 \) des Ausgangs bestimmt werden:

\[
\begin{bmatrix}
U_2 \\
I_2
\end{bmatrix}
= A
\begin{bmatrix}
U_1 \\
I_1
\end{bmatrix}
\]

\[
(A.7)
\]

Die Kettenmatrix benutzt dabei eine unsymmetrische Strompeilrichtung, siehe Strom \(I_1 \) in Abb. A.1. Für die Integration in eine Netzwerksimulation wird dagegen eine symmetrische Strompeilrichtung benötigt, d.h. alle \(i \) in die Schaltung fließenden Ströme werden positiv gezählt. Dazu sind die Matrixelemente \(A_{12} \) und \(A_{22} \) durch \(-A_{12} \) und \(-A_{22} \) zu ersetzen. Aus dieser symmetrischen Kettenmatrix werden die Ersatzwiderstände berechnet.

In einer Netzwerksimulation, die mit Strömen und Spannungen rechnet, ersetzen die komplexe frequenzabhängigen Widerstände \(Z_1 \), \(Z_2 \) und \(Z_3 \) die Vierpoleigenschaften. Andere Anwendungen arbeiten dagegen mit kombinierten Strom- / Spannungswellen. In diesen Fällen ist die Umrechnung der Kettenmatrix \(A \) in die Transmissions- \(T \) oder die Streumatrix \(S \) notwendig.
A.3 Analytische Bestimmung der Phasenzeit

Phasenverlauf im Analogieexperiment:

\[\varphi = \arctan \left[\frac{1}{2} \left(k' \frac{k}{k'} + k \right) \tan k' \right] \]
\[\text{mit } k(\omega) = \frac{1}{c} \sqrt{\omega^2 - \omega_0^2} \quad \text{und } k'(\omega) = \frac{n}{c} \sqrt{\omega^2 - \omega_n^2}. \]

Mit Hilfe der Ableitungen

\[\frac{d}{d\omega} k(\omega) = \frac{\omega}{c^2 k}, \quad \frac{d}{d\omega} k'(\omega) = \frac{n^2 \omega}{c^2 k'}, \]
\[\frac{d}{d\omega} \left(\frac{k'}{k} + \frac{k}{k'} \right) = \frac{1}{2} \omega \left(\frac{n^2 + 1}{k k'} - \frac{k'}{k^3} - \frac{n^2 k}{k'^3} \right), \]
\[\frac{d}{d\omega} \tan k' a = \frac{n^2 \omega}{c^2 k'} \cos^2 k' a, \]

und \(\frac{d}{dx} \arctan x = \frac{1}{1 + x^2} \) berechnet sich die Ableitung der Phase \(\varphi(\omega) \) zu

\[\frac{d}{d\omega} \varphi = \frac{\omega}{2 \omega} \left((n^2 + 1) \frac{k^3 k^3}{k'} - \frac{k^3}{k'} - \frac{n^2 k^3}{k'} \right) \frac{1}{2} \sin 2k' a + \frac{1}{2} \left(\frac{k'}{k} + \frac{k}{k'} \right) \frac{n^2 \omega}{c^2 k'} \frac{a}{\cos^2 k' a} \]
\[= \frac{1}{2} \left(\frac{k'}{k} + \frac{k}{k'} + 2 \frac{k^3}{k'} \right) \frac{\sin 2k' a}{\cos^2 k' a}, \]
\[= \frac{1}{2} \left(\frac{2k^3 k^3}{k'} - \frac{2k^3 k^3}{k'} - \frac{n^2 k^3}{k'} \right) \frac{1}{2} \sin 2k' a + \frac{1}{2} \left(\frac{k'}{k} + \frac{k}{k'} \right) \frac{n^2 \omega}{c^2 k'} \frac{a}{\cos^2 k' a} \]
\[= \frac{1}{2} \left(k'^3 k^3 - k'^3 k^3 \sin^2 k' a + \frac{1}{4} \left(k'^3 k^3 + k^3 k' + 2k^3 k^3 \right) \sin^2 k' a \right), \]
\[= \frac{1}{2} \left(k'^3 k^3 - k'^3 k^3 \sin^2 k' a + \frac{1}{4} \left(k'^3 k^3 + k^3 k' + 2k^3 k^3 \right) \sin^2 k' a \right), \]
\[= \frac{1}{2} \left(k'^3 k^3 - k'^3 k^3 \sin^2 k' a + \frac{1}{4} \left(k'^3 k^3 + k^3 k' + 2k^3 k^3 \right) \sin^2 k' a \right), \]
\[= \frac{1}{2} \left(k'^3 k^3 - k'^3 k^3 \sin^2 k' a + \frac{1}{4} \left(k'^3 k^3 + k^3 k' + 2k^3 k^3 \right) \sin^2 k' a \right), \]
\[= \frac{1}{2} \left(k'^3 k^3 - k'^3 k^3 \sin^2 k' a + \frac{1}{4} \left(k'^3 k^3 + k^3 k' + 2k^3 k^3 \right) \sin^2 k' a \right), \]
\[= \frac{1}{2} \left(k'^3 k^3 - k'^3 k^3 \sin^2 k' a + \frac{1}{4} \left(k'^3 k^3 + k^3 k' + 2k^3 k^3 \right) \sin^2 k' a \right), \]

mit \(k'^2_0 := k'^2 - n^2 k^2 = \frac{n^2}{c^2} (\omega_0^2 - \omega_n^2) = \text{const.} \)
A.4 Relativistische Aspekte überlichtschneller Signale

A.4.1 Punktförmige Signale

Ein Signal, daß sich in einem System \((x, t)\) mit Überlichtgeschwindigkeit \(v_s = Nc\) ausbreitet, bewegt sich weiterhin in Richtung positiver Zeiten. Im Falle einer instantanen Ausbreitung verläuft es im Minkowski-Diagramm entlang einer horizontalen Linie. Dieses Signal wird nun an einem Spiegel in einem dazu bewegten Inertialsystem \((x', t')\) reflektiert und zum Sender zurückgeschickt.

Das Signal startet im ersten System (Ereignis \(E_0\)) im Punkt \((0, 0) = (0, 0)'\) und erreicht den Spiegel im zweiten, bewegten System im Punkt

\[
\text{Ereignis } E_1 : \quad x = L \quad \text{bzw.} \quad x' = \frac{x-vt}{\sqrt{1-\beta^2}}
\]

\[
t = \frac{L}{Nc} \quad t' = \frac{t}{\sqrt{1-\beta^2}}
\]

(A.22)

und wird dort reflektiert. Hierbei entspricht \(t_1 = \frac{L}{Nc}\) der Zeit, die bis zur Reflexion im ersten System vergangen ist, vgl. Abb. A.2 (links).

![Minkowski-Diagramme zur Reflexion eines überlichtschnellen Signals](image)

\textbf{Abbildung A.2:} Minkowski-Diagramme zur Reflexion eines überlichtschnellen Signals, Erläuterungen im Text.

Um die Zeit \(t_2\) nach der Reflexion bis zum Eintreffen beim Sender zu bestimmen, werden beide Systeme zum Reflexionszeitpunkt wieder übereinander gelegt, d.h. \((0, 0) = (0, 0)\)' . Ein Signal mit Geschwindigkeit \(v_s' = N'c\) erreicht die Aussendestelle (Ereignis \(E_2\)) in beiden Systemen bei, siehe Abb. A.2 (rechts),

\[
\text{Ereignis } E_2 : \quad x' = -L' \quad \text{bzw.} \quad x = \frac{x'+v't'}{\sqrt{1-\beta'^2}} \quad \frac{1}{\sqrt{1-\beta'^2}} = -L
\]

\[
t' = \frac{-L'}{N'c} \quad t = \frac{t'}{\sqrt{1-\beta'^2}} = t_2
\]

(A.23)

Daraus erhält man zunächst

\[
L' = L \frac{N'c\sqrt{1-\beta'^2}}{N'c - v} \quad \text{und} \quad t_2 = L \frac{1 - \frac{v}{c}N'}{N'c - v}
\]

(A.24)
und schließlich als Gesamtlauftzeit

\[\Delta t = t_1 + t_2 = -\frac{L}{c} \left(\frac{1}{N'N} + 1 \right) v - \left(\frac{1}{N'} + \frac{1}{N} \right) c, \]

(A.25)

Die Gesamtlauftzeit \(\Delta t \) wird negativ, wenn Zähler und Nenner positiv sind. Der Nenner ist positiv für \(c(1 - \frac{v}{c}) > 0 \), das ist für

\[v'_{s} > v \]

(A.26)
der Fall, also wenn die Signalgeschwindigkeit \(v'_{s} \) größer als die Relativgeschwindigkeit \(v \) der beiden Inertialsysteme ist. Der Zähler wird positiv für \(\frac{v}{c} > \frac{N + N'}{N'N + 1} \) oder für

\[v < \frac{v_0 v'_{s} + c^2}{(v_0 + v'_{s}) c^2} \quad \text{falls} \quad v'_{s} = v_0 \quad \left(\frac{v}{c} \right)^2 + 1. \]

(A.27)

Abbildung A.3 zeigt den Bereich, in dem negative Laufzeiten \(\Delta t \) auftreten. Dies ist für überlichtschnellen Signalen der Fall, wenn gleichzeitig die Relativgeschwindigkeit der Systeme hoch ist. Für die linke Abbildung wurde angenommen, dass die Signalgeschwindigkeiten \(v'_{s} \) und \(v_{s} \) gleich sind, rechts ist die Abhängigkeit der Laufzeit von den Signalgeschwindigkeiten \(v_{s} \) und \(v'_{s} \) bei fester Relativgeschwindigkeit \(v = 0.75 \, c \) gezeigt.

Abbildung A.3: Bereich, in dem negative Laufzeiten \(\Delta t \) bei einer überlichtschnellen Signalübertragung zwischen zwei bewegten Inertialsystemen nach Gl. (A.25) auftreten. Links: Die Relativgeschwindigkeit \(v \) der Systeme liegt zwischen 0 und 1 c, die Signalgeschwindigkeiten \(v_{s} = v'_{s} \) sind überlichtschnell zwischen 1 c und 10 c. Innerhalb des markierten Bereichs wird \(\Delta t \) negativ, d.h. eine Signalübertragung in die Vergangenheit findet statt. Rechts: Einfluss unterschiedlicher Signalgeschwindigkeiten \(v_{s} \) und \(v'_{s} \) für Hin- und Rückweg bei fester Relativgeschwindigkeit \(v = 0.75 \, c \) der beiden Systeme.

A.4.2 Zeitlich ausgedehnte Signale

Bei einem zeitlich ausgedehnten Signal kann der bisher berechnete Punkt z.B. der Punkt der Halbwertsbreite in der ansteigenden Flanke eines Impulses sein. Der hintere Punkt in der abfallenden Flanke folgt erst nach der Halbwertsbreite \(T \) in \((0,T) \). Bis zur Reflexion dieses hinteren Punktes hat sich aber der Spiegel um die zusätzliche Strecke \(vT \) vom ersten Inertialsystem entfernt, die Reflexion findet statt bei

\[
\text{Ereignis } E_4 : \quad x = L + vT \\
\quad t = \frac{L + vT}{Nc}
\]

(A.28)
Mit (A.25) kann Rückkehrzeit im ersten System bestimmt werden, die Differenz der Rückkehrzeiten von vorderer und hinterer Flange ergibt die neue Halbwertsbreite T' des reflektierten Signals:

$$
T' = T - \frac{vT}{c} \left(\frac{1}{N'N} + 1 \right) v - \left(\frac{1}{N} + \frac{1}{N'} \right) c = T \left[\frac{N'N'(c^2 - v^2) - v^2 + N'v c}{N_c (N'c - v)} \right]. \quad (A.29)
$$

Wenn die Relativgeschwindigkeit v Null ist, ändert sich die Halbwertsbreite nicht, d.h. $T' = T$.
Unberücksichtigt blieb hierbei die zusätzliche Dämpfung des hinteren Signalteils, die durch die zunehmende Länge $L + vT$ der Tunnelstrecke entsteht. Benutzt man statt dessen eine feste Tunnellänge L, dann darf für die zunehmende Strecke vT zwischen Tunnel und Spiegel keine überlichtschnelle Signalausbreitung angenommen werden.

A.5 Resonanzen im Hohlraum

![Abbildung A.4: Reflexionen an den Resonatorwänden: Bei jeder Reflexion geht ein Anteil $|T|^2$ der im Hohlraum eingeschlossenen Schwingung verloren.](image)

Innerhalb eines infinitesimalen Zeitschritts dt geschehen $dt \cdot f_0$ Reflexionen, d.h. der Resonator verliert $dt \cdot f_0$ mal die Energie $|T|^2 \cdot U$:

$$
\frac{d}{dt} U = -\frac{\omega_0}{2\pi} |T|^2 U = -\frac{\omega_0}{Q} U, \quad (A.30)
$$

wobei die Größe

$$
Q := 2\pi \frac{1}{|T|^2} = \frac{2\pi}{Energie im Hohlraum} = \frac{Energieverlust bei jeder Reflexion}{(A.31)}
$$

die Güte des Resonators beschreibt. Hohe Güten $Q \gg 1$ entsprechen einem Reflexionsfaktor $|R|^2$ nahe 1. Als Folge von (A.30) klingt die eingeschlossene Energie exponentiell ab:

$$
U(t) = U_0 \cdot e^{-\omega_0 t/Q} \quad (A.32)
$$

Diese Energie ist in einer Schwingung $\sim e^{-i\omega_0 t}$ gespeichert, d.h. für die Feldstärke gilt

$$
E(t) = E_0 \cdot e^{-\omega_0 t/2Q} \cdot e^{-i\omega_0 t} \quad (A.33)
$$

Das Frequenzspektrum erhält man durch Fouriertransformation:

$$
E(\omega) = \int_0^\infty E(t) \cdot e^{i\omega t} \, dt = \int_0^\infty E_0 \cdot e^{-\omega_0 t/2Q} \cdot e^{i(\omega-\omega_0) t} \, dt = E_0 \cdot \frac{1}{iQ} - i(\omega - \omega_0) \quad (A.34)
$$
Die Resonanzlinie

\[|E(\omega)|^2 \sim \frac{1}{(\omega - \omega_0)^2 + \left(\frac{\omega_0}{2Q}\right)^2} \]

(A.35)

besitzt die Halbwertsbreite \(\omega_0/Q \). Bei konstanter Resonator-Güte \(Q \) werden die Resonanzen bei Vielfachen von \(\omega_0 \) immer breiter. Dies entspricht einer kürzeren Lebensdauer der resonanten Zustände höherer Ordnung.

Resonator-Güte

Aus der Transmission kann über (A.31) die Resonator-Güte bestimmt werden. Für eine scharfe Resonator-Kante mit sprunghafter Änderung der Wellenzahl erhält man als Transmission:

\[T = \frac{4|k_1||k_2|}{|k_1 + k_2|^2} \]

(A.36)

Ein resonanter Hohlleiter-Aufbau wie in Abb. 10.5 unterscheidet sich von einem idealen Resonator durch die endliche Eindringtiefe in die Resonatorwände. Die Gesamttransmission durch jede Wand ist näherungsweise \(T = \exp\{-\kappa a_2\} \), wobei \(\kappa \) der Imaginärteil der Wellenzahl im Tunnelbereich ist. Der exakte Wert ist gemäß Gl. (10.22):

\[T = \frac{1}{\cos k_2 a_2 - \frac{i}{2} \left(\frac{k_2}{k_{1}} + \frac{k_1}{k_{2}}\right) \sin k_2 a_2} \]

(A.37)
Literaturverzeichnis

bandgaps, Phys. Rev. E 64 (2001) 037601

[26] S. Longhi, M. Marano, P. Laporta, M. Belmonte, and P. Crespi, Experimental observation of
superluminal pulse reflection in a double-Lorentzian photonic band gap, Phys. Rev. E
65 (2002) 045602

[27] S. Longhi, M. Marano, P. Laporta, and M. Belmonte, Superluminal optical pulse propa-
gation at 1.5 μm in periodic fiber Bragg gratings, Phys. Rev. E 64 (2001) 055602

[31] A. Steinberg, P. Kwiat, and R. Chiao, Measurement of the single-photon tunneling time,

[32] Ch. Spielmann, R. Szipös, A. Stingle, and F. Krausz, Tunneling of Optical Pulses through

France 3 (1993) 1083

[35] H. M. Brodowsky, W. Heitmann, and G. Nimtz, Comparison of Experimental Microwave
Tunneling Data with Calculations based on Maxwell’s Equations, Phys. Lett. A 222
(1996) 125

[36] Y. Japha, G. Kurizki, Superluminal delay of coherent pulses in nondissipative media:

[37] J. M. Bendickson and J. P. Dowling, Analytic expression for the electromagnetic mode
density in finite, one–dimensional, photonic band–gap structures, Phys. Rev. E 53
(1996) 4107

[38] D. Mugnai, A. Ranfagni, R. Ruggeri, and A. Agresti, Path–Integral Solution of the Tele-
Lett. 68 (1992) 259

[40] V. Romero-Rochin, R. P. Duarte-Zamorano, S. Nilsen-Hotseth, and R. G. Barrera,
“Superluminal“ transmission of light pulses through optical opaque barriers, Phys.
Rev. E 63 (2001) 027601

[41] Ch. Spielmann, R. Szipös, A. Stingle, and F. Krausz, Tunneling of Optical Pulses through

[42] E. Cuevas, V. Gasparian, M. Ortuno, and J. Ruiz, Traversal time in periodically loaded

[74] D. Mugnai, Passage of a Bessel beam through a classically forbidden region, arXiv:physics/0111185

[89] R. A. Shelby et al., Experimental Verification of a Negative Index of Refraction, Science 292 (2001)

LITERATURVERZEICHNIS

(R.-M. Vetter)

Teilpublikationen

A. Haibel, R.-M. Vetter, and G. Nimtz
Negative Reflection Time by Asymmetric Photonic Band Gaps
to be published (2002)

R.-M. Vetter, A. Haibel, and G. Nimtz
Nonlocal reflection by photonic barriers

G. Nimtz, A. Haibel, and R.-M. Vetter
The Superluminal Features of Tunnelling

R.-M. Vetter, A. Haibel and G. Nimtz
Negative phase time for scattering at quantum wells: A microwave analogy experiment

G. Nimtz, A. Haibel, A.A. Stahlhofen, and R.-M. Vetter
On Universal Properties of Tunnelling

J. Nitsch, T. Steinmetz, R.-M. Vetter
Modeling and Simulation in Multiconductor Line Theory
EMC Zurich '99, Switzerland, Conference Proceedings, ISBN 3-9521199-3-8
Tutorial Lectures: EMC Modeling and Simulation Codes

J. Nitsch, R.-M. Vetter
An Alternative Approach to Solve the Telegrapher Equations for Nonuniform Multiconductor Transmission Lines
EuroEM '98, Tel-Aviv, Israel
J. Nitsch, R.-M. Vetter
Analytische Lösung ungleichförmiger Leitungen für eine Netzwerksimulation
Fachtagung Informations- und Mikrosystemtechnik '98, IPE Magdeburg, Symposiurnsband

R.-M. Vetter, J. Nitsch
Numerische Simulation elektrischer Netzwerke und Leitungen
Fachtagung Informations- und Mikrosystemtechnik '98, IPE Magdeburg, Symposiumsband

J. Nitsch, R.-M. Vetter
Der Einfluß ungleichförmig geführter Leitungen auf die Signalf orm
EMV '98, Düsseldorf
Hrsg.: A. Schwab, VDE-Verlag, ISBN 3-8007-2324-7

J. Nitsch, R.-M. Vetter
Analytische Lösung ungleichförmiger Leitungen für eine Netzwerksimulation
VDE-Tagung Günzburg '97

J. Nitsch, R.-M. Vetter
Die Einkopplung hochfrequenter modulierter Signale in nichtlineare Schaltungen
URSI-Tagung Kleinheubach '97

R.-M. Vetter, J. Nitsch
Time Domain Network Analysis including Field-Excited Lossy Multiconductor Transmission Lines with Nonlinear Terminations
AmerEM '96, Albuquerque, New Mexico
Lebenslauf

Ralf-Michael Vetter
Sonnenwinkel 12
D-50354 Hürth
post@rmvetter.de

Persönliche Daten
geboren: 23. Juni 1969 in Hürth, Rheinland
Nationalität: deutsch
Familienstand: ledig

Schulausbildung
1975 - 79 Grundschule im Wiesengrund, Hürth
1979 - 88 Albert-Schweitzer-Gymnasium, Hürth
Mai 1988 Abitur
Juli 88 - Sep. 89 Grundwehrdienst in Wentorf bei Hamburg

Studium
Okt. 89 - Nov. 95 Studium der Physik an der Universität zu Köln mit dem
Schwerpunkt Theoretische Festkörperphysik
Sep. 94 - Okt. 95 Diplomarbeit zum Thema „Simulation nichtlinearer Netzwerke und Leitungen im Zeitbereich“
Nov. 1995 Diplom
seit 1998 Promotion in Physik über das Thema „Simulation von Tunnelstrukturen“

Tätigkeiten
Aug. 94 - Dez. 96 Studentische Hilfskraft am II. Physikalischen Institut der Universität zu Köln und Tätigkeiten als Praktikant am
Wehrwissenschaftlichen Institut für Schutztechnologien, Munster
Mai 96 - Aug. 96 Wissenschaftlicher Mitarbeiter am II. Physikalischen Institut der Universität zu Köln
Okt. 96 - Dez. 97 Wissenschaftlicher Mitarbeiter am Institut für Automatisierungstechnik der Universität der Bundeswehr Hamburg
Apr. 98 - Apr. 00 Wissenschaftlicher Mitarbeiter am Institut für Pathologie der Medizinischen Einrichtungen der Universität zu Köln
seit Mai 2000 Wissenschaftlicher Mitarbeiter am II. Physikalischen Institut der Universität zu Köln