Mechanism and Synthetic Use of Paternò-Büchi Reactions:
Spin-Mapping and Photo-Aldol Reactions

Inaugural-Dissertation

zur
Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät
der Universität zu Köln

vorgelegt von

Samir Bondock

aus Mansoura
(Ägypten)

Köln 2003
Berichterstatter:
Prof. Dr. A. G. Griesbeck
Prof. Dr. H. G. Schmalz

Tag der mündlichen Prüfung:
7. 05. 2003
Acknowledgements

I would like to thank Prof. Dr. Axel G. Griesbeck for giving me the opportunity to perform my Ph.D in his group and for his valuable help throughout this work.

I am also grateful to Prof. Dr. H. G. Schmalz and Prof. Dr. G. Meyer for the interest they have shown in this manuscript by accepting to act as referees.

I would like also to acknowledge Prof. Dr. M. S. Gudipati, University of Maryland, for his help and cooperation.

I owe special thanks to the Egyptian government for the Ph.D grant.

Prof. Dr. D. Döpp, University of Duisburg is thanked for providing unpublished work during the preparation of CRC reviews.

I am indebted to all staff member of Chemistry Department, Faculty of Science, Mansoura University, Egypt.

All my thanks go to my colleagues Tamer El-Idreesy, Stefan Schiffer, Claus Miara, Nesmíne Maptue and Anna Bartoschek for the nice work atmosphere. Peter Cygon receives special thanks for his help and friendly cooperation.

Dr. Hans Schmickler, Ms. Ingrid Hoven and Ms. Kathrin Ermer receive a special thanks not only for NMR analyses but also for friendly reaction even when I brought ten probes every day.

The author thanks Mr. Christof Schmitz for UV, IR and elemental analyses and Dr. Mathias Schäfer for mass spectrometry. Dr. Johann Lex is thanked for the X-ray analyses.

Ms. Ingrid Vongerichten and Ms. Monika Boyo should not be forgotten here for their precious help.

A last thank go to my family, my brother Ahmed and of course to my mother for their support during theses 4 years.
List of Publications and Presentations

Publications

1. “Spin-Directed Stereoselectivity of Carbonyl-Alkene Photocycloadditions“
Axel G. Griesbeck, Maren Fiege, Samir Bondock and Murthy S. Gudipati,

2. “Paternò-Büchi reactions of Allylic Alcohols and Acetates with Aliphatic Aldehydes: Evidences for Hydrogen-Bond Activation in the Excited Singlet and Triplet States?“
Axel G. Griesbeck and Samir Bondock,

Axel G. Griesbeck, Samir Bondock und Murthy S. Gudipati,

4. “Spin-Imposed Stereoselection in the Photocycloaddition of cis- and trans- Cyclooctene with Aliphatic Aldehydes“
Axel G. Griesbeck and Samir Bondock,

5. “Photo Aldol Reactions with 5-Methoxyoxazoles: Highly Regio- and Diastereoselective Synthesis of α-Amino-β-Hydroxy Carboxylic Acid Derivatives“
Axel G. Griesbeck and Samir Bondock,

Axel, G. Griesbeck, Nesmine Maptue, Samir Bondock and Michael Oelgemöller ,

7. “Photochemical Oxetane Formation: Intermolecular Reactions“
Axel G. Griesbeck and Samir Bondock,

8. “Photochemical Oxetane Formation: Mechanism and Stereochemistry“
Axel G. Griesbeck and Samir Bondock,
Axel G. Griesbeck and Samir Bondock,

10. “Synthesis of quaternary α-amino β-hydroxy carboxylic acids. 1. Photo aldol reactions of 5-methoxy oxazoles with aldehydes”
Axel G. Griesbeck, Samir Bondock and Johann Lex,

11. “Synthesis of quaternary α-amino β-hydroxy carboxylic acids. 2. Photo aldol reactions of 5-methoxy oxazoles with α-keto esters”
Axel G. Griesbeck, Samir Bondock and Johann Lex,

Posters

Axel G. Griesbeck, Samir Bondock and Murthy S. Gudipati,

Axel G. Griesbeck, Samir Bondock, Maren Fiege, and Murthy S. Gudipati,
Photochirogenesis, Osaka, Japan, September 2001

Axel G. Griesbeck, Samir Bondock and Maren Fiege,
Meeting of the German Chemical Society, Würzburg, September 2001.

4. “Diastereoselective Photochemical Synthesis of α-Amino-β-Hydroxy Carboxylic Acid Derivatives by Photocycloaddition of Carbonyl Compounds to Oxazoles“
Samir Bondock and Axel G. Griesbeck,

5. “Stereoselectivity of [2+2]-Photocycloadditions: Magnetic Isotope Effects“
Samir Bondock and Axel G. Griesbeck,
Meeting of the German Chemical Society, Mülheim/Ruhr, April 2003.
This work was carried out from May 2000 to May 2003 under the supervision of Prof. Dr. Axel G. Griesbeck at the Institute of Organic Chemistry, University of Cologne.

Abbreviation

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac</td>
<td>Acetyl</td>
</tr>
<tr>
<td>Bn</td>
<td>Benzyl</td>
</tr>
<tr>
<td>B.p</td>
<td>Boiling point (°C)</td>
</tr>
<tr>
<td>BR</td>
<td>Biradical</td>
</tr>
<tr>
<td>Bu</td>
<td>Butyl</td>
</tr>
<tr>
<td>Bu<sub>i</sub></td>
<td>Isobutyl</td>
</tr>
<tr>
<td>Bu<sub>sec</sub></td>
<td>sec-Butyl</td>
</tr>
<tr>
<td>Bu<sub>t</sub></td>
<td>tert-Butyl</td>
</tr>
<tr>
<td>cc</td>
<td>cis,cis</td>
</tr>
<tr>
<td>CIP</td>
<td>Contact ion pair</td>
</tr>
<tr>
<td>Cp</td>
<td>Centipoise</td>
</tr>
<tr>
<td>DCC</td>
<td>Dicyclohexylcarbodiimide</td>
</tr>
<tr>
<td>de</td>
<td>Diastereomeric excess</td>
</tr>
<tr>
<td>DEPT</td>
<td>Distortionless Enhancement by Polarization Transfer</td>
</tr>
<tr>
<td>DMAP</td>
<td>N,N-Dimethylaminopyridine</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamid</td>
</tr>
<tr>
<td>dr</td>
<td>Diastereomeric ratio</td>
</tr>
<tr>
<td>ΔE<sub>ST</sub></td>
<td>Energy difference between the singlet and triplet state</td>
</tr>
<tr>
<td>EA</td>
<td>Ethylacetate</td>
</tr>
<tr>
<td>EIE</td>
<td>Equilibrium isotope effect</td>
</tr>
<tr>
<td>Et</td>
<td>Ethyl</td>
</tr>
<tr>
<td>F</td>
<td>Fluorescence intensity</td>
</tr>
<tr>
<td>F<sub>0</sub></td>
<td>Initial fluorescence intensity</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>HE</td>
<td>n-Hexane</td>
</tr>
<tr>
<td>HFC</td>
<td>Hyperfine coupling</td>
</tr>
<tr>
<td>HMBC</td>
<td>Heteronuclear Multiple Bond Correlation</td>
</tr>
<tr>
<td>HOMO</td>
<td>Highest Occupied Molecular Orbital</td>
</tr>
<tr>
<td>IC</td>
<td>Internal conversion</td>
</tr>
</tbody>
</table>
i-Bu Isobutyl
i-Pr Isopropyl
ISC Intersystem Crossing
k_{\text{diff}} Molecular diffusion rate constant
k_{q} Bimolecular quenching rate constant
LUMO Lowest Unoccupied Molecular Orbital
M Molarity
Me Methyl
MIE Magnetic isotope effect
min Minute
M.p Melting point (°C)
Naph Naphthyl
NOE Nuclear Overhauser Enhancement
NOESY Nuclear Overhauser Enhancement Spectroscopy
OAc Acetate
o-Tol. ortho-Tolualdehyde
PET Photoinduced electron transfer
Ph Phenyl
Pr Propyl
Pr^{i} Isopropyl
Q Quencher
ROESY Rotating Frame Overhauser Enhancement Spectroscopy
R_{f} Retention factor
R_{s} Reaction probability from singlet channel
R_{t} Retention time
R_{T} Reaction probability from triplet channel
RT Room temperature
S_{0} Ground state
S_{1} First excited singlet state
Sbo Samir Bondock
S-1,4-BR Singlet 1,4-biradical
SLR Spin-Lattice Relaxation
SOC Spin-Orbit Coupling
SOI Secondary Orbital Interaction
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₁</td>
<td>First excited triplet state</td>
</tr>
<tr>
<td>T-1,4-BR</td>
<td>Triplet 1,4-biradical</td>
</tr>
<tr>
<td>tc</td>
<td>trans,cis</td>
</tr>
<tr>
<td>TEA</td>
<td>Triethyl amine</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin Layer Chromatography</td>
</tr>
<tr>
<td>TMEDA</td>
<td>Tetramethylethylenediamine</td>
</tr>
<tr>
<td>TMS</td>
<td>Trimethylsilyl</td>
</tr>
<tr>
<td>tt</td>
<td>trans,trans</td>
</tr>
<tr>
<td>ε</td>
<td>Molar extinction coefficient</td>
</tr>
<tr>
<td>φₜ</td>
<td>Relative triplet quantum yield</td>
</tr>
<tr>
<td>η</td>
<td>Viscosity</td>
</tr>
<tr>
<td>Δ</td>
<td>Reflux</td>
</tr>
<tr>
<td>Φ</td>
<td>Quantum yield</td>
</tr>
<tr>
<td>λₑₓ</td>
<td>Excited wavelength</td>
</tr>
<tr>
<td>µ</td>
<td>Micro (10⁻⁶)</td>
</tr>
<tr>
<td>τ</td>
<td>Lifetime</td>
</tr>
<tr>
<td>*</td>
<td>Excited state</td>
</tr>
<tr>
<td>[]</td>
<td>Molar concentration</td>
</tr>
</tbody>
</table>
Contents

Abstract ... I
Kurzzusammenfassung II

1. Introduction 1

1.1 Mechanistic studies 2
1.2 Mechanism of Paternò-Büchi reactions 3
1.3 1,6-Biradicals 5
1.4 Biradical generation and trapping 5
1.5 Lifetime of triplet 1,6-Biradicals 6
1.6 State selectivity: Singlet excited carbonyl compounds 9
1.7 Substituent effects 10
1.8 Photoinduced-electron transfer (PET) in the Paternò-Büchi reaction 11
1.9 Regioselectivity of Paternò-Büchi reactions 13
1.10 Diastereoselectivity in the Paternò-Büchi reaction 14
1.10.1 Simple diastereoselectivity 14
1.10.1.1 Paternò-Büchi reactions with 2,3-dihydrofuran and furan 14
1.10.1.2 Paternò-Büchi reactions with enamines 17
1.10.1.3 Paternò-Büchi reactions with acyclic enol ether 18
1.10.1.4 Paternò-Büchi reactions with cyclooctene 20
1.10.2 Induced diastereoselectivity 20
1.10.2.1 Induction by the carbonyl compound 20
1.10.2.2 Induction by the alkene component 21
1.11 Effect of temperature on the diastereoselectivity of Paternò-Büchi reactions 23
1.12 Effect of hydroxy groups on the stereoselectivity of Paternò-Büchi reactions 25
1.13 Synthetic applications of the Paternò-Büchi reaction 26

2. Projected work 30

3. Results and Discussion 32

3.1 Effect of concentration on the simple diastereoselectivity of Paternò-Büchi reactions 32
3.1.1 Photocycloaddition of 2,3-dihydrofuran 32
3.1.1.1 Reaction with benzaldehyde 32
3.1.1.2 Reaction with acetaldehyde 33
3.1.1.3 Reaction with propionaldehyde 34
3.1.1.4 Reaction with 3-methylbutyraldehyde 36
3.1.1.5 Reaction with pivalaldehyde 37
3.1.1.6 Reaction with 3-phenylpropionaldehyde 38
3.1.2 Photocycloaddition of 2,3-dihydropyran 38
3.1.2.1 Reaction with benzaldehyde 38
3.1.2.2 Reaction with acetaldehyde 39
3.1.2.3 Reaction with propionaldehyde 40
3.1.2.4 Reaction with 3-methylbutyaldehyde 41
3.1.3 Photocycloaddition of cyclopentene with propionaldehyde 42
3.1.4 Photocycloaddition of 5-methyl-2,3-dihydrofuran 43
3.1.4.1 Reaction with benzaldehyde 43
3.1.4.2 Reaction with acetaldehyde 44
3.1.4.3 Reaction with propionaldehyde 44
3.1.4.4 Reaction with 3-methylbutyaldehyde 45
3.1.5 Synthesis of 2,2-dimethyl-2,3-dihydrofuran 46
3.1.5.1 Photocycloaddition of 2,2-dimethyl-2,3-dihydrofuran with aldehydes 47
3.1.6 Effect of concentration on simple and induced diastereoselectivity of Paternò-Büchi reactions 49
3.1.6.1 Photocycloaddition of 2,3-dihydrofuran with 2-methylbutyaldehyde 49
3.1.6.2 Photocycloaddition of 5-methyl-2,3-dihydrofuran with 2-methylbutyaldehyde 50
3.1.7 Photocycloaddition of furan with acetaldehyde 51
3.1.8 Fluorescence quenching 52
3.1.9 Quantum yield 53
3.2 Effect of solvent polarity on the simple diastereoselectivity of Paternò-Büchi reactions 56
3.2.1 Solvent polarity effect on the stereoselectivity of the 2,3-dihydrofuran/propionaldehyde photocycloaddition reaction 56
3.2.2 Solvent polarity effect on the stereoselectivity of the 2,3-dihydrofuran/acetaldehyde photocycloaddition reaction 57
3.3 Effect of solvent viscosity on the simple diastereoselectivity of Paternò-Büchi reactions 58
3.3.1 Solvent viscosity effect on the stereoselectivity of the benzaldehyde/2,3-dihydrofuran photocycloaddition reaction 58
3.3.2 Solvent viscosity effect on the stereoselectvity of the acetaldehyde/2,3-dihydrofuran photocycloaddition reaction 59

3.3.3 Solvent viscosity effect on the stereoselectvity of the propionaldehyde/2,3-dihydrofuran photocycloaddition reaction 60

3.3.4 Solvent viscosity effect on the stereoselectvity of the 3-methylbutyraldehyde/2,3-dihydrofuran photocycloaddition reaction 62

3.4 Effect of temperature on the simple diastereoselectivity of Paternò-Büchi reactions 64

3.4.1 Effect of temperature on the simple diastereoselectivity of benzaldehyde/2,3-dihydrofuran photocycloaddition reaction 65

3.4.2 Effect of temperature on the concentration/selectivity correlation of propionaldehyde/2,3-dihydrofuran photocycloaddition reaction 65

3.4.3 Effect of temperature on the simple diastereoselectivity of acetaldehyde/2,3-dihydrofuran photocycloaddition reaction 66

3.4.4 Effect of temperature on the simple diastereoselectivity of 3-methylbutyraldehyde/2,3-dihydrofuran photocycloaddition reaction 67

3.4.5 Effect of temperature on the simple diastereoselectivity of propionaldehyde/2,3-dihydrofuran photocycloaddition reaction 69

3.5 Paternò-Büchi reaction of cis and trans-cyclooctene with aliphatic aldehydes 74

3.5.1 Synthesis of trans-cyclooctene 74

3.5.2 Irradiation of cis-cyclooctene with propionaldehyde 74

3.5.3 Irradiation of trans-cyclooctene with propionaldehyde 76

3.5.4 Irradiation of cis-cyclooctene with acetaldehyde 77

3.6 Paternò-Büchi reaction of allylic alcohols and acetates with aldehydes 80

3.6.1 Synthesis of allylic alcohols and acetates 80

3.6.2 Simple diastereoselectivity 80

3.6.2.1 Photolysis of prenol with aldehydes 80

3.6.2.2 Photolysis of prenol acetate with aldehydes 83

3.6.3 Spin-directed simple diastereoselectivity 86

3.6.4 Enhanced reactivity of allylic alcohols 87

3.6.5 Induced and simple diastereoselectivity with chiral allylic alcohols 88

3.6.5.1 Photolysis of mesitylol with aliphatic aldehydes 89

3.6.5.2 Photolysis of mesityl acetate with acetaldehyde 89
3.7 Diastereoselective photochemical synthesis of α-amino-β-hydroxy carboxylic acid derivatives by photocycloaddition of carbonyl compounds to oxazoles 91

3.7.1 Synthesis of oxazole substrates 91
3.7.1.1 Synthesis of 2-methyl-5-methoxyoxazole 91
3.7.1.2 Synthesis of 4-substituted 2-methyl-5-methoxyoxazoles 92
3.7.2 Photoreactions of 2-methyl-5-methoxyoxazoles with aldehydes 94
3.7.2.1 Ring-opening of the bicyclic oxetanes 38a-f 95
3.7.2.2 Synthesis of (Z)-α,β-didehydroamino acid derivatives 97
3.7.2.3 Synthesis of methyl 1-methylisoquinoline-3-carboxylate 100
3.7.3 Photoreactions of 4-substituted 2-methyl-5-methoxyoxazoles with aldehydes 101
3.7.3.1 Synthesis of erythro (S*,S*) α-alkylated-α-acetamido-β-hydroxy esters 108
3.7.3.2 Transacylation 122
3.7.4 Asymmetric photocycloaddition between oxazoles and chiral aldehyde 126
3.7.4.1 Synthesis of lyxo- & ribo- α-acetamido-β-hydroxy esters 128
3.8 Photo-Aldol reactions of 5-methoxyoxazoles with α-keto esters: Selectivity pattern and synthetic route to erythro (S*,R*) & threo (S*,S*) α-amino-β-hydroxy succinic acid derivatives 131
3.8.1 Synthesis of 2-substituted 4-methyl-5-methoxyoxazoles 131
3.8.2 Synthesis of α-keto ester substrates 132
3.8.2.1 Synthesis of methyl trimethylpyruvate 132
3.8.2.2 Synthesis of isopropyl & tert-butyl phenylglyoxylates 132
3.8.2.3 Synthesis of (-)-menthyl phenylglyoxylate 132
3.8.3 Photocycloaddition reactions of aliphatic α-keto esters with oxazoles 133
3.8.3.1 Reaction with methyl pyruvate 133
3.8.3.2 Reaction with methyl trimethylpyruvate 138
3.8.4 Photocycloaddition reactions of aromatic α-keto esters with oxazoles 140
3.8.4.1 Reaction with methyl phenylglyoxylate 140
3.8.4.2 Reaction with ethyl phenylglyoxylate 145
3.8.4.3 Reaction with isopropyl phenylglyoxylate 149
3.8.4.4 Reaction with tert-butyl phenylglyoxylate 151
3.8.5 Asymmetric induction 157
3.8.5.1 Photoreactions of menthyl phenylglyoxylate with oxazoles 36a-f 157
3.8.6 Effect of the substituent at C-2 of the oxazole substrates on the stereoselectivity of the photocycloaddition reactions with \(\alpha \)-keto esters

3.8.6.1 Photocycloaddition reactions of 2-ethyl-4-methyl-5-methoxyoxazole with \(\alpha \)-keto esters

3.8.6.2 Photocycloaddition reactions of 2-isopropyl-4-methyl-5-methoxyoxazole with \(\alpha \)-keto esters

3.8.6.3 Photocycloaddition reactions of 2-\(\text{tert} \)-butyl-4-methyl-5-methoxyoxazole with \(\alpha \)-keto esters

3.9 Synthesis of \(\text{erythro} (S^*,R^*) \) & \(\text{threo} (S^*,S^*) \) \(\alpha \)-amino-\(\beta \)-hydroxy succinic acid derivatives

3.9.1 Synthesis of \(\text{erythro} (S^*,R^*) \) \(\alpha \)-acetamido-\(\beta \)-hydroxy succinic acid derivatives 67a-f

3.9.2 Synthesis of \(\text{threo} (S^*,S^*) \) \(\alpha \)-acetamido-\(\beta \)-hydroxy succinic acid derivatives 68a-f

3.9.3 Synthesis of \(\text{erythro} (S^*,R^*) \) & \(\text{threo} (S^*,S^*) \) \(\alpha \)-acetamido-\(\beta \)-hydroxy succinic acid derivatives 69a-f

3.9.4 Synthesis of \(\text{erythro} (S^*,R^*) \) & \(\text{threo} (S^*,S^*) \) \(\alpha \)-acetamido-\(\beta \)-hydroxy succinic acid derivatives 70a-f

3.9.5 Synthesis of \(\text{erythro} (S^*,R^*) \) & \(\text{threo} (S^*,S^*) \) \(\alpha \)-acetamido-\(\beta \)-hydroxy succinic acid derivatives 71a-f

3.9.6 Synthesis of \(\text{erythro} (S^*,R^*) \) & \(\text{threo} (S^*,S^*) \) \(\alpha \)-acetamido-\(\beta \)-hydroxy succinic acid derivatives 72a-f

3.9.7 Synthesis of \(\text{erythro} (S^*,R^*) \) & \(\text{threo} (S^*,S^*) \) \(\alpha \)-acetamido-\(\beta \)-hydroxy succinic acid derivatives 73a-f

3.9.8 Synthesis of \(\text{erythro} (S^*,R^*) \) & \(\text{threo} (S^*,S^*) \) \(\alpha \)-propionylamino-\(\beta \)-hydroxy succinic acid derivatives 74a-f

3.9.9 Synthesis of \(\text{erythro} (S^*,R^*) \) & \(\text{threo} (S^*,S^*) \) \(\alpha \)-isobutyrylamino-\(\beta \)-hydroxy succinic acid derivatives 75a-f

3.9.10 Synthesis of \(\text{erythro} (S^*,R^*) \) & \(\text{threo} (S^*,S^*) \) \(\alpha \)-(2,2-dimethyl-propionylamino)-\(\beta \)-hydroxy succinic acid derivatives 76a-f

3.10 Magnetic isotope effects on the diastereoselectivity of the triplet photocycloaddition reactions

3.10.1 Synthesis of starting materials
3.10.1.1 Synthesis of benzaldehyde-1-d
3.10.1.2 Synthesis of propionaldehyde-1-d
3.10.1.3 Synthesis of 5-deuterio-2,3-dihydrofuran
3.10.1.4 Synthesis of 1-trimethylsilyloxyycloalkenes
3.10.2 Photoreactions of benzaldehyde & benzaldehyde-1-d with cyclic alkenes
3.10.3 Photoreactions of propanal & propanal-1-d with 2,3-dihydrofuran and 5-deuterio-2,3-dihydrofuran

4. Experimental Part

4.1 General Remarks

4.2 General procedure for the photolyses of aldehydes and alkenes on the analytical scale

4.2.1 General procedure for the photolyses of aldehydes and alkenes on the preparative scale

4.2.1.1 Photolyses of 2,3-dihydrofuran with aldehydes

4.2.1.2 Photolyses of 2,3-dihydropyran with aldehydes

4.2.1.3 Photolysis of cyclopentene with propionaldehyde

4.2.1.4 Photolyses of 5-methyl-2,3-dihydrofuran with aldehydes

4.3 Synthesis of 2,2-dimethyl-2,3-dihydrofuran

4.3.1 Photolyses of 2,2-dimethyl-2,3-dihydrofuran with aldehydes; general procedure

4.4 Photolysis of 2,3-dihydrofuran with 2-methylbutyraldehyde

4.4.1 Photolysis of 5-methyl-2,3-dihydrofuran with 2-methylbutyraldehyde

4.5 Photolysis of furan with acetaldehyde

4.6 Determination of solvent polarity effects on the stereoselectivity of the Paternò-Büchi reaction of 2,3-dihydrofuran with aldehydes

4.7 Determination of solvent viscosity effects on the stereoselectivity of the Paternò-Büchi reaction of 2,3-dihydrofuran with aldehydes

4.8 Determination of temperature effects on the stereoselectivity of the Paternò-Büchi reaction of 2,3-dihydrofuran with aldehydes

4.9 Fluorescence quenching study

4.10 Quantum yield determination

4.11 Preparation of trans-cyclooctene
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.11.1</td>
<td>General procedure for the photolyses of aldehydes with cyclooctene on the analytical scale</td>
<td>245</td>
</tr>
<tr>
<td>4.11.2</td>
<td>General procedure for the photolyses of aldehydes with cyclooctene on the preparative scale</td>
<td>245</td>
</tr>
<tr>
<td>4.12</td>
<td>Synthesis of allylic alcohols and acetates</td>
<td>248</td>
</tr>
<tr>
<td>4.12.1</td>
<td>General procedure for the photolysis of propionaldehyde with allylic substrates on the analytical scale</td>
<td>250</td>
</tr>
<tr>
<td>4.12.2</td>
<td>General procedure for the photolyses of aldehydes and allylic substrates on the preparative scale</td>
<td>250</td>
</tr>
<tr>
<td>4.13</td>
<td>Synthesis of oxazole substrates</td>
<td>262</td>
</tr>
<tr>
<td>4.14</td>
<td>Photolyses of 2-methyl-5-methoxyoxazole with aldehydes</td>
<td>273</td>
</tr>
<tr>
<td>4.14.1</td>
<td>Ring opening of the bicyclic oxetanes; General procedure</td>
<td>278</td>
</tr>
<tr>
<td>4.14.2</td>
<td>Synthesis of (Z)-α,β-didehydroamino acid derivatives:</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>General procedure</td>
<td></td>
</tr>
<tr>
<td>4.14.3</td>
<td>Synthesis of methyl 1-methylisoquinoline-3-carboxylate</td>
<td>285</td>
</tr>
<tr>
<td>4.15</td>
<td>Photolyses of 4-substituted 2-methyl-5-methoxyoxazoles with aldehydes</td>
<td>286</td>
</tr>
<tr>
<td>4.15.1</td>
<td>Synthesis of epytho (S*,S*) α-alkylated-α-acetamido-β-hydroxy esters</td>
<td>305</td>
</tr>
<tr>
<td>4.15.2</td>
<td>Transacylation; General procedure</td>
<td>327</td>
</tr>
<tr>
<td>4.16</td>
<td>Photolyses of 5-methoxyoxazoles with 2-methylbutyraldehyde:</td>
<td>329</td>
</tr>
<tr>
<td></td>
<td>General procedure</td>
<td></td>
</tr>
<tr>
<td>4.16.1</td>
<td>Synthesis of lyxo- & ribo- α-acetamido-β-hydroxy esters:</td>
<td>334</td>
</tr>
<tr>
<td></td>
<td>General procedure</td>
<td></td>
</tr>
<tr>
<td>4.17</td>
<td>Synthesis of 2-substituted 4-methyl-5-methoxyoxazoles</td>
<td>342</td>
</tr>
<tr>
<td>4.18</td>
<td>Synthesis of α-keto ester substrates</td>
<td>345</td>
</tr>
<tr>
<td>4.19</td>
<td>Photolyses of α-keto esters with 5-methoxyoxazoles</td>
<td>349</td>
</tr>
<tr>
<td>4.20</td>
<td>Synthesis of epytho (S*,R*) & theo (S*,R*) α-amino-β-hydroxy succinic acid derivatives</td>
<td>419</td>
</tr>
<tr>
<td>4.21</td>
<td>Synthesis of starting materials</td>
<td>492</td>
</tr>
<tr>
<td>4.21.1</td>
<td>Preparation of benzaldehyde-1d</td>
<td>492</td>
</tr>
<tr>
<td>4.21.2</td>
<td>Preparation of propanal-1d</td>
<td>493</td>
</tr>
<tr>
<td>4.21.3</td>
<td>Preparation of 5-deuterio-2,3-dihydrofuran</td>
<td>493</td>
</tr>
<tr>
<td>4.21.4</td>
<td>Preparation of 1-trimethylsilyloxyalkenes</td>
<td>493</td>
</tr>
</tbody>
</table>
4.22 General procedure for photolyses of benzaldehyde & benzaldehyde-1d with cycloalkenes 496

4.23 Photolyses of propanal & propanal-1-d with 2,3-dihydrofuran & 5-deuterio-2,3-dihydrofuran 510

5. Appendix 514

6. Summary 516

7. Zusammenfassung 522

8. References 528
Abstract

The concentration dependence of the diastereoselectivity of the Paternò-Büchi reaction of a series of cyclic enolethers, cyclooctene, allylic alcohols and acetates, respectively, with aromatic as well as aliphatic aldehydes was studied. For most aliphatic aldehydes, a sharp transition from low to high diastereoselectivity was observed, indicating a distinct switch from singlet to triplet photocycloaddition with different selectivity controlling mechanisms.

Furthermore, the effect of solvent viscosity and temperature on the spin-directed stereoselectivity of the carbonyl-ene photocycloaddition was investigated. The variation of the solvent viscosity over a large range resulted in a weak but significant increase in the endo-selectivity of triplet benzaldehyde cycloaddition to 2,3-dihydrofuran from 82 to 91%. For aliphatic aldehydes, the diastereoselectivity strongly increased with increasing solvent viscosity. The temperature dependence of the endo/exo-selectivity with aliphatic aldehydes RCHO (R = Me, Et, i-Bu) showed characteristic non-linear behaviour with inversion points from which activation parameters for singlet as well as the triplet photocycloaddition were determined.

5-Methoxyoxazole derivatives were prepared and evaluated with respect to their use as diene components in stereoselective Paternò-Büchi reaction. These oxazoles were versatile synthetic building blocks that reacted with various photoexcited aliphatic as well as aromatic carbonyl compounds with high regioselectivity and excellent exo-diastereoselectivity. Hydrolysis of the primary photoadducts resulted in twofold ring-opening and provided a convenient and high yielding access to erythro (S*,S*) α-amino-β-hydroxy carboxylic acid derivatives.
Kurzzusammenfassung

Weiterhin wurde der Effekt von Lösungsmittelviskosität sowie Reaktionstemperatur auf die spin-gesteuerte Stereoselektivität der Carbonyl-En-Photocycloaddition untersucht. Die Variation der Lösungsmittelviskosität über einen grossen Bereich ergab eine kleine, aber signifikante Erhöhung der endo-Selektivität von 82% auf 91% für die Addition von Triplett-Benzaldehyd an 2,3-Dihydrofuran. Im Falle aliphatischer Aldehyde stieg die Diastereoselektivität stark mit zunehmender Lösungsmittelviskosität an. Die Temperaturabhängigkeit der endo/exo-Selektivität aliphatischer Aldehyde RCHO (R = Me, Et, i-Bu) wies ein charakteristisches nicht-lineares Verhalten mit Inversionspunkten auf, aus dem Aktivierungsparameter sowohl für die Singulett- als auch die Triplett-Photocycloaddition ermittelt wurden.

Derivate von 5-Methoxyoxazol wurden hergestellt und auf ihre Eignung als Dienkomponenten in stereoselektiven Paternò-Büchi-Reaktionen untersucht. Diese Oxazole erwiesen sich als vielseitige Bausteine, welche mit verschiedenen angeregten aliphatischen sowie aromatischen Carbonylkomponenten mit hoher Regio- und exzellenter (exo)-Diastereoselektivität reagierten. Die Hydrolyse der primären Cycloaddukte führte zu einer zweifachen Ringöffnung und ergab so einen bequemen und mit hohen Ausbeuten verlaufenden Zugang zu erythro (S*,S*) α-Amino-β-hydroxycarbonsäurederivaten.

\[
\begin{align*}
\text{low (endo/} & \text{exo)} \quad \text{high (endo/} & \text{exo)} \\
\text{diastereoselectivity} & \quad \text{diastereoselectivity} \\
\text{R = Me, Et, i-Bu} & \quad \text{R = Me, Et, i-Bu, Ph}
\end{align*}
\]
1. Introduction

General outlook of spin chemistry
In a recent brilliant feature article, Ahmed H. Zewail presented a striking and impressive overview of the new frontier in modern chemistry-femtochemistry, which explores atomic motions on the potential energy surface, vibrational and rotational coherence of the wave packets, and transition state spectra, geometry, and dynamics. Another new frontier is *spin chemistry*, which monitors the behavior of angular momentum (spin) of electrons and nuclei in chemical reactions (including coherence of spin wave packets), spin dynamics and spin state of evolution of reactants.

Spin chemistry is based on the fundamental and universal principle of spin conservation: all chemical reactions are spin-selective, they are allowed only for those spin states of reactants whose total spin is identical to that of products. Spin chemistry is unique: it introduces in chemistry magnetic interactions. Contributing almost nothing in chemical energy, being negligibly small and traditionally ignorable, magnetic interactions are the only ones which are able to change electron spin of reactants and switch over the reaction between spin-allowed and spin-forbidden channels. Ultimately, they control chemical reactivity and write a new magnetic scenario of chemical reaction.

Historical
The [2+2] photocycloaddition of a carbonyl compound with an alkene is termed Paternò-Büchi reaction. The process described in the original publication by Paternò and Chieffi in 1909 was the addition of benzaldehyde to 2-methyl-2-butene using solar irradiation. Although Paternò and Chieffi suggested the correct structure for the photoproduct, it was not until 1954 that Büchi and collaborators reinvestigated the reaction and confirmed unambiguously the structure proposed originally by the Italian scientists.

Scheme 1.1: Paternò-Büchi reaction of benzaldehyde with 2-methyl-2-butene.

The Paternò-Büchi reaction has become familiar to chemists interested in both the mechanistic aspects of the photochemistry and applications in modern organic synthesis. Since the first review of the Paternò-Büchi reaction in 1968, several reviews have been devoted to the mechanistic aspects and also to synthetic application.
1. Introduction

1.1 Mechanistic studies

The light-absorbing species responsible for Paternò-Büchi cycloaddition is usually the carbonyl addend. The long wavelength absorption band for alkanones and alkanals appears at 280-300 nm and corresponds to a weak transition (log $\varepsilon \sim 10-20$) involving excitation of a non-bonding electron on oxygen (n, π^*) (Figure 1.1).

Aromatic and other simple conjugated carbonyl compounds undergo a similar n, π^* transition at 320-350 nm. Quinones and 1,2-dicarbonyl compounds absorb in the 400-500 nm range. Absorption data for representative carbonyl compounds is collected in Table 1.1.

Table 1.1: Absorption data and excitation energies for carbonyl compounds.

<table>
<thead>
<tr>
<th>Carbonyl compound</th>
<th>λ_{max} (nm)</th>
<th>$E (S_1)$ (kcal/mol)</th>
<th>$E (T_1)$ (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butanal</td>
<td>280</td>
<td>85</td>
<td>78</td>
</tr>
<tr>
<td>Acetone</td>
<td>280</td>
<td>85</td>
<td>78</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>290</td>
<td>82</td>
<td>72</td>
</tr>
<tr>
<td>Benzophenone</td>
<td>330</td>
<td>75</td>
<td>68</td>
</tr>
<tr>
<td>Biacetyl</td>
<td>420</td>
<td>62</td>
<td>56</td>
</tr>
<tr>
<td>p-Benzoquinone</td>
<td>456</td>
<td>58</td>
<td>50</td>
</tr>
</tbody>
</table>

Excitation in the short wavelength bands of these carbonyl chromophores or at higher energy is followed by rapid non-radiative decay to the lowest vibrational level of the first excited singlet carbonyl state (S_1) (Figure 1.2). The half occupied molecular orbitals (e.g., n and π^*), generated on absorption of a photon, initially have paired electron spins (Figure 1.1). However, a more stable electronic configuration is one having unpaired or parallel spins. The
triplet excited electronic state (T_1) is not easily accessible through direct excitation due to spin forbidden excitation, but is generated through intersystem crossing (ISC) (Figure 1.2).

1.2 Mechanism of Paternò-Büchi reactions
The early step of the reaction mechanism involves the addition of the triplet excited carbonyl compound to the alkene and the formation of a triplet 1,4-biradical. The triplet 1,4-biradical must undergo ISC to form a singlet 1,4-biradical, which might cleave to give the starting material or undergo carbon-carbon bond formation to give the oxetane (see Scheme 1.2).
1. Introduction

Scheme 1.2: Mechanism of Paternô-Büchi reactions.

It is widely accepted, that the immediate precursors of the oxetanes are biradicals\(^\text{10}\) whose existence has been evidenced by chemical means\(^\text{11}\) as well as by the application of picosecond spectroscopy.\(^\text{12}\) Two mechanisms have been proposed to explain the low-energy pathways leading to the biradical intermediate.\(^\text{10,13}\)

1. Nucleophilic attack initiated by the half-occupied \(\pi^*\)-orbital of the carbonyl oxygen atom to the unoccupied \(\pi^*\)-orbital of an electron-deficient olefin in the plane of the molecule. This LUMO-LUMO interaction is called “parallel approach”.

2. An electrophilic attack initiated by the half occupied \(n\)-orbital of the carbonyl oxygen atom to the unoccupied \(\pi^*\)-orbital of an electron rich olefin in a perpendicular direction to the plane of the molecule. This HOMO-HOMO interaction is called a “perpendicular approach”. Thus, the immediate precursors of these intermediates are \(^3\pi\pi^*\) or \(^3n\pi^*\) states. From their interaction with a suitable ground state substrate, three types of intermediates can possibly be formed:\(^\text{13}\)

 a. an exciplex with the excitation localized on one of the two partners.
 b. a neutral “conventional” biradical.
 c. an ionic biradical or radical ion pair.
1. Introduction

The π^* interaction

\[\pi^* \quad \cdot \quad \pi^* \]

Perpendicular approach

The $\pi \rightarrow n$ interaction

\[\pi \quad \cdot \quad n \]

Parallel approach

\textbf{Figure 1.3:} Orbital interactions for the n, π^* addition of carbonyl compounds to alkenes.

1.3 $1, n$-Biradicals

Biradicals have been proposed as reaction intermediates in thermal and photochemical reactions since many years, but only recently were trapping reactions and direct detection reported.14 Berson15 defined biradicals as “even-electron molecules that have one bond less than the number permitted by the standard rules of valence”. Michl16 and Bonacic-Koutecky defined a biradical or a biradicaloid as a molecule with an even number of electrons whose simple MO description contains two approximately nonbonding orbitals containing only two electrons in low energy electronic states. In a perfect biradical these orbitals are degenerate (of exactly the same energy) whereas in a biradicaloid they are only approximately degenerate. They represent the active space in the simple model. Wirz17 reported that the energy difference between the singlet and the triplet state of a biradical is not more than 10 kJ/mol whereas in a biradicaloid this difference could be reach to 100 kJ/mol.

1.4 Biradical generation and trapping

Biradicals can be generated by a wide range of thermal and photochemical reactions.18 Norrish type II19, 20 reaction of aryl alkyl ketones is usually used for the production of 1,4-biradicals as well as Paternò-Büchi reactions. Furthermore, the photoenolization of α-alkyl-substituted aromatic ketones, Norrish type I21 cleavage of aliphatic carbonyl compound after the elimination of carbon monoxide and photoinduced nitrogen loss from azo compounds22 have been employed as source of generation of biradicals. 1,4-Paternò-Büchi biradicals have been proposed as intermediates in the cycloaddition of triplet ketones to olefins. The 1,4-
biradicals were trapped directly with oxygen12,23 and sulfur dioxide.24 Freilich and Peters have detected the 1,4-biradical from benzophenone and 1,4-dioxene which was also trapped by oxygen to give a 1,2,4-trioxane.

\[
\begin{array}{c}
\text{Ph} \quad \text{Ph} \\
\text{O} \\
\text{Ph} \\
\quad + \quad \text{hv} \\
\text{O} \\
\text{Ph} \\
\text{O} \\
\quad \rightarrow \quad \text{O} \\
\text{Ph} \\
\text{O} \\
\quad \rightarrow \quad \text{Ph}
\end{array}
\]

\[\lambda = 525 \text{ nm} \quad \tau = 1.6 \text{ ns}\]

Scheme 1.3: Trapping of 1,4-triplet biradical with oxygen.

1.5 Lifetime of triplet $1,n$-biradicals

The lifetime of triplet $1,n$-biradicals is usually determined by the intersystem crossing rate ($\tau_{\text{BR}} = 1/\kappa_{\text{ISC}}$). This means, that the biradical has to stay in the triplet manifold for a defined time, because without spin flip it can not undergo bond formation or bond cleavage. These steps would lead to triplet excited open-shell species and thus would be highly endergonic.25

Three mechanisms operate for the interaction between singlet and triplet states of 1,n-biradicals: electron-nuclear hyperfine coupling (HFC), spin-lattice relaxation (SLR), and spin-orbit coupling (SOC).26 HFC is an important control factor for biradicals with long carbon chains between the radical centers.27 SOC plays the dominant role in biradicals with shorter distances between the radical centers, whereas SLR seems to contribute only marginally in general. In contrast to other mechanisms, SOC is strongly dependent on the geometry of the triplet biradical. This was first summarized in three rules stated by Salem and Rowland28 in 1972:

(a) SOC decreases with increasing distance between the two spin-bearing atoms. Because there is also the possibility of through-bond interaction, not only is the actual distance between the two radical centers important (corresponding to a conformational dependence) but also the number of bonds ($n-1$).

(b) Conservation of total angular momentum could be achieved when the axes of the p orbitals at the radical centers are oriented perpendicular to each other (see Figure 1.4).
(c) SOC is proportional to the ionic character of the singlet state.
Summarizing these three rules, a pronounced conformational and structural dependence should result for the lifetime of triplet 1,\(n\)-biradical.
A numerical equation for SOC was given by Doubleday \textit{et al.} from calculations on trimethylene: \(\text{SOC} = B(R) \left| S \right| \sin \Phi\)

where \(B(R)\) is a function of the distance \(R\) between the radical centers, \(\Phi\) is the angle between the \(p\) orbitals at these positions, and \(\left| S \right|\) is the overlap integral for these orbitals.
Spin-orbit coupling (SOC) controls the rate of ISC for tetramethylene, 2-oxatetramethylene or trimethylene triplet biradicals, i.e. strong SOC enhances the intersystem crossing rate and lowers the lifetime of triplet biradicals. A remarkable proof for these rules are the 1,3-biradical lifetimes for triplet 1,3-cyclopentadiyl (I, \(\tau = \text{ca. 100 ns}\)) and for bicyclo [2.2.1] heptane-2,7-diyld (II, \(\tau < 100 \text{ ps}\)).

In contrast to rather long-lived tetramethylenes (e.g., biradical III, with \(\tau = 190 \text{ ns}\)),\(^{18a}\) the 2-oxatetramethylenes (preoxetane) formed during the Paternô-Büchi reaction are much shorter lived. For the triplet biradical IV from benzophenone and dioxene, a lifetime of 1.6 ns was determined by laser flash photolysis.\(^{23}\)
1. Introduction

In recent publications by Michl30 and Adam31 and coworkers, these rules which help to estimate the magnitude of SOC, were modified due to new experimental and theoretical results. The spatial orientation of the two singly occupied orbitals has been determined to be highly important for the biradical lifetime, whereas the through-space distance between the radical centers plays a subordinate role and the degree of ionic contribution in the corresponding singlet state often seems to be overestimated. This clearly indicates that for flexible 1,4-biradicals not only one conformational arrangement is responsible for facilitating ISC, but many. After transition from the triplet to singlet potential energy surface, immediate product formation is expected. Thus, the ISC is expected to proceed concerted with the formation of a new bond or the cleavage of the primary formed single bond. Recently, conformational dependence of spin-orbit coupling (SOC) in flexible Paternò-Büchi biradicals has been studied with high-level \textit{ab initio} methods by A. Kutateladze32 for the originally published model system 2,3-dihydrofuran and benzaldehyde. The relevant geometrical parameters are presented in Figure 1.7. Spin-orbit coupling was mapped out as a function of three torsional angles: α (rotation about C1-C2 bond), β (C2-O3), and γ (O3-C4), with conformations designated as (α, β, γ). The \textit{ab initio} results revealed two distinct areas of elevated SOC values (Figure 1.7), one corresponding to the region whereby a \textit{cisoid} conformation in the C-C-O-C fragment brings the two odd-electron orbitals closer to each other, and the other area corresponding to the partially eclipsed conformation lacking direct overlap between the spin centers.

Figure 1.6: Conformation of 1,4-triplet biradicals.

Figure 1.7: Selected 3-D sections of the four-dimensional SOC dependence in PB diradical.
The largest single-triplet energy gap, approximately 2 kcal/mol, was found for a gauche conformer (also a minimum SOC conformation). This accounts for the experimental results, i.e. high diastereoselectivity and moderate quantum yield as well as relatively short biradical lifetimes in comparison with the tetramethylenes. The decisive role of the oxygen in the 2-oxatetramethylene radical becomes apparent in the second important area from which lower diastereoselectivity is expected.

1.6 State Selectivity: Singlet excited carbonyl compounds

Due to rapid intersystem crossing from S\(_1\), the aromatic carbonyl compounds used for the investigation of product stereoselectivity reflect “pure” T\(_1\) (n,π*) photochemistry.\(^{33}\) The corresponding aliphatic carbonyl compounds have a k\(_{isc}\) about 10-fold lower and therefore they can react from S\(_1\) as well as T\(_1\).\(^{34}\) Addition of triplet quenchers moderates the reactivity pattern. Using cyclohexene as starting material and acetaldehyde as carbonyl added in the presence and absence of a triplet quencher (1,3-pentadiene), different endo/exo ratios were obtained. The amount of endo diastereoisomer decreased with increasing amounts of triplet quencher. This indicates that the reaction via the triplet biradical is highly endo selective in contrast to analogous reaction via the singlet excited acetaldehyde. Turro and Wriede\(^{35}\) reported that photolysis of acetone and 1-methoxy-1-butene gave two stereoisomers of the 2-methoxy oxetane. The stereoselectivity of the photoaddition was dependent on the spin state of the reacted acetone. Singlet excited acetone gave cis oxetane predominantly, whereas triplet excited acetone gave a mixture of cis and trans oxetanes in equal ratio.

\[
\begin{align*}
\text{acetone } T_1 & : 1 : 1 \\
\text{acetone } S_1 & : 4 : 1
\end{align*}
\]

Scheme 1.4: Photocycloaddition of acetone with 1-methoxy-1-butene.

Naphthaldehydes can be used in Paternò-Büchi reactions as singlet excited carbonyl components.\(^{36}\) The reaction efficiencies and chemical yields are normally much lower compared to other aromatic ketones or aldehydes, but chemo- and regioselectivities are often identical. The Paternò-Büchi reaction of 2-naphthaldehyde with 2,3-dihydrofuran is a singlet process (as shown by triplet sensitization experiments) and gives exclusively the exo-diastereoisomer.
1. Introduction

Scheme 1.5: Photocycloaddition of aromatic aldehydes with 2,3-dihydrofuran.

A similar example was found for the photoaddition of 2,2-bis-isopropyl-1,3-dioxolene: the endo/exo-ratio is inverted for oxetane formation when going from triplet excited mesitaldehyde to the singlet excited naphthaldehyde as substrate.

Scheme 1.6: Photocycloaddition of aromatic aldehyde with 2,2-bis-isopropyl-1,3-dioxene.

1.7 Substituent effects

Two structural features made the conformational analysis of the spin-inversion geometries of unsubstituted cycloalkenes straightforward: the two sites of the alkene part were well differentiated concerning the degree of substitution and steric hindrance. Methyl-substituted cycloalkenes, however, have two ISC-reactive sites and thus, the endo/exo ratio, drops significantly. The Paternò-Büchi reaction of 1,2-dimethylcyclobutene with benzaldehyde gave solely the exo-diastereoisomer.

Scheme 1.7: Photocycloaddition of benzaldehyde with 1,2-dimethylcyclobutene.

This is exactly predicted by ISC-geometry model, because the bis-methylated site of the cycloalkene is now sterically more demanding and the biradical combination trajectory involves the approach from the less shielded cyclobutene plane.
1. Introduction

Steric hindrance can also reach a critical value during bond formation and might favor the formation of the thermodynamically stable product. Park and coworkers reported, that the photocycloaddition of benzaldehyde to 2,2-diethoxy-3,4-dihydro-2H-pyran gave preferentially the exo-phenyl product.

![Scheme 1.8:](image)

Scheme 1.8: Photocycloaddition of benzaldehyde with 2,2-diethoxy-3,4-dihydro-2H-pyran.

1.8 Photoinduced-electron transfer (PET) in the Paternò-Büchi reaction

Another feature which might oppose the ISC-geometry model is primary photoinduced electron transfer (PET). If this process is energetically feasible, the geometric restrictions might be circumvented, i.e. intersystem crossing can occur at the stage of the radical ion pair and a singlet 1,4-biradical or 1,4-zwitterion can be formed depending on the reaction conditions. In polar solvents, the assumption of a 1,4-zwitterion as decisive intermediate is reasonable. Both regio- and diastereoselectivity are influenced by this mechanistic scenario. The regioselectivity is now only a consequence of a maximum charge stabilization and the no longer a consequence of the primary interaction between the excited carbonyl compound and alkene. Whereas 3-alkoxyoxetanes are prefentially formed from triplet excited aldehydes and enol ethers, 2-alkoxyoxetanes result from the reaction of triplet excited ketones or aldehydes and highly electron rich ketene silylacetals.

![Scheme 1.9:](image)

Scheme 1.9: PET control of the regioselectivity.

In the second case, PET which gives the carbonyl radical anion and the ketene acetal radical cation is energetically feasible. PET might be followed by ISC and formation of a highly stabilized 1,4-zwitterion intermediate. By processing the photocycloaddition in a highly polar solvent which reduces the coulombic term in the Rehm-Weller equation, PET becomes compatible with radical pathways. This effect was observed with 2,3-dihydropyran as electron-rich substrate which gave the 3-alkoxyoxetane in high (88:12) endo-selectivity when reacted with triplet excited benzaldehyde in unpolar solvents.
1. Introduction

![Scheme 1.10: PET in Paternò-Büchi reaction.]

In acetonitrile, however, also the corresponding 2-alkoxyoxetane was detected. The relative amount of this product correlated with solvent polarity parameters, thus indicates PET as the responsible mechanism. The major diastereoisomer obtained from the PET-cycloaddition of benzaldehyde with 2,3-dihydrofuran was the *exo*-phenyl isomer (d.r. 90 : 10). Thus, a switch from 1,4-biradical to 1,4-zwitterion path leads also to an *inversion* of regio- and diastereoselectivity. A mechanism which involves a sequence of PET, formation of a contact ion pair (CIP) and charge recombination to give a triplet 1,4-biradical also explains the change in regioselectivity.

Abe and coworkers have also observed this stereochemical effect in the Paternò-Büchi reaction of aromatic aldehydes with cyclic ketene acetals. The addition of benzaldehyde to the 5-silyloxy-substituted 2,3-dihydrofuran resulted in the *exo*-phenyl product in low yield.

![Scheme 1.11: Photocycloaddition of cyclic enolether with benzaldehyde.]

Kulkarni and coworkers reported the photocycloaddition of benzaldehyde with 2,3-dialkylated ascorbic acid acetonides result in the formation of two regioisomeric products. Both oxetanes were formed exclusively with *exo*-phenyl configuration. The observed regio- and diastereoselectivity are in accord with the assumption of a PET process involving the oxidation of the ascorbic derivatives and the formation of the carbonyl radical anions. In these special cases, the 1,4-biradical and 1,4-zwitterion stabilization result in the same product regioselectivity. The relative configuration of the products favors the assumption of a PET process.
1. Introduction

Scheme 1.12: Photocycloaddition of benzaldehyde with 2,3-dialkylated ascorbic acid acetonides.

1.9 Regioselectivity of Paternò-Büchi reactions

The Paternò-Büchi reaction is a powerful synthetic tool because it can be applied to a wide of alkenes and carbonyl compounds. However, the application of the reaction is greatly limited because the normal regioselectivity does not always satisfy the synthetic requirement. In general, the regioselectivity of the Paternò-Büchi reaction is controlled by the substituents on the alkenes and the type of carbonyl compound involved. The photoaddition of benzophenone to isobutene46 gave two regioisomer in 90 : 10 ratio with preference of the oxetane that results from the most stable biradical intermediate.

This rule holds relatively weak if cycloadditions involving a pronounced degree of charge transfer are also considered (for example, photoreactions of biacetyl). In addition, photoreactions of aliphatic ketones and electron-deficient alkenes often lead to high yields of 2,4-disubstituted oxetanes. The photocycloaddition of acetone to 2-methyl propenenitrile give only one regioisomer.47 The mechanism proposed for singlet addition of acetone to alkene involves formation of an exciplex with a certain degree of charge transfer.48 These results were rationalized in terms of a Michael addition of the electronically excited carbonyl compound (\textit{umpolung}) to acrylonitrile.6
1.10 Diastereoselectivity in the Paternò-Büchi reaction

Simple (non-induced) diastereoselectivity in general describes a selection process where two stereogenic elements (or more) are generated in a chemical process without stereogenic elements present already in the starting materials, whereas induced diastereoselectivity describes a selection process where stereogenic elements are generated in a chemical process from substrates with at least one stereogenic element already present. Thus, in case of Paternò-Büchi reactions, the combination of two prostereogenic substrate molecules leads to a photoadduct with a maximum of three new stereogenic centers.

1.10.1 Simple diastereoselectivity

1.10.1.1 Paternò-Büchi reactions with 2,3-dihydrofuran and furan

The simple diastereoselectivity of Paternò-Büchi reaction of 2,3-dihydrofuran and furan with prochiral carbonyl compounds was intensively investigated by Griesbeck and coworkers.\(^{49}\) They found that the [2+2] photocycloaddition of 2,3-dihydrofuran with different aliphatic aldehydes in nonpolar solvent gave oxetanes with high regioselectivity and surprising simple diastereoselectivities. The dihydrofuran addition to acetaldehyde resulted in a 45 : 55 mixture of endo and exo diastereoisomer. With increasing size of the α-carbonyl substituted (Me-Et-Bu\(^i\)-Bu\(^t\)), the simple diastereoselectivity increased with preferential formation of the endo stereoisomer.

\[
\begin{align*}
\text{R} & \quad \text{d.r.} = \text{endo} : \text{exo} \\
\text{Me} & \quad 45 : 55 \\
\text{Et} & \quad 58 : 42 \\
\text{i-Bu} & \quad 67 : 33 \\
\text{t-Bu} & \quad 91 : 9
\end{align*}
\]

\[\text{Scheme 1.15: Photocycloaddition of aliphatic aldehydes with 2,3-dihydrofuran.}\]
The benzaldehyde addition, which was most intensively investigated gave a 88 : 12 mixture of endo and exo diastereoisomers in benzene solution. Thus, the thermodynamically less stable stereoisomers (> 1.5 kcal/mol, *ab initio* calculation) were formed preferentially. To further enlarge the phenyl substituent, o-tolyl and mesitaldehyde as well as 2,4-di-tert-butyl-6-methylbenzaldehyde were used and actually the diastereoselectivity did further increase.\(^{50}\)

\[
\text{Ar} = \begin{array}{l}
\text{Ph} & 88 : 12 \\
\text{o-Tol.} & 92 : 8 \\
\text{Mes.} & > 98 : 2 \\
2,4-di-t-Bu- & > 98 : 2 \\
6-Me-Ph & \\
\end{array}
\]

Scheme 1.16: Photocycloaddition of aromatic aldehydes with 2,3-dihydrofuran.

The formation of the endo isomers can be rationalized on the basis of spin-orbit coupling controlled geometries of the triplet 1,4-biradical.\(^{51}\) The conformer A and B are expected to be similarly populated; however, ISC from A results in product formation, whereas ISC from B leads to cleavage of the singlet biradical and formation of the starting material. Spin inversion is coupled with a torque, which in the case of conformers A and C leads to an immediate formation of the new C-C bond. Thus, the torque induced in conformer A rotates the large substituent (R) over the plane and results in formation of the endo diastereoisomer. From conformer C, preferentially the exo diastereoisomeric product is formed.

Figure 1.8: Model for endo-selective formation of oxetanes derived from 2,3-dihydrofuran.

The photocycloaddition of furan with aromatic and aliphatic aldehydes processed with unusual high *exo*-diastereoselectivity to give the bicyclic oxetanes in good yield. The diastereoselectivities (exo/endo) of the Paternò-Büchi reaction of furan with acetaldehyde,
propionaldehyde and benzaldehyde were 19 : 1, 82 : 1 and 212 : 1, respectively. Surprisingly, the exchange of the hydrogen in benzaldehyde by a methoxy group completely inverts the diastereoselectivity in the photocycloaddition with furan. Further modification of the α-substituent in the benzoyl substrates uncovered a distinct dependence of the \(\text{exo/endo} \) -ratio on the size of this substituent. The photocycloaddition of acetoephone with furan gave only one product, whereas a 77 : 23 mixture of diastereoisomers resulted from the addition of benzoyl cyanide. Increasing the size of the aryl group from phenyl to mesityl in aroyl cyanides led to an increase in \(\text{exo} \)-diastereoselectivity from 3.7 : 1 up to 16 : 1.\(^{42}\)

![Scheme 1.17: Paternò-Büchi reaction of furan.](image)

As already described for the dihydrofuran case, ISC from conformer \(\text{A} \) and \(\text{C} \) are expected to lead to \(\text{endo} \) and \(\text{exo} \) diastereoisomer, respectively. An alternative explanation for the high \(\text{exo} \)-selectivity in the furan-aldehyde photocycloaddition could be an enlarged lifetime of the singlet 1,4-biradical which is formed after ISC. However, this concept predicts thermodynamic control for the formation of all cycloaddition products, whether, they are formed from triplet excited aldehydes or ketones, ester, etc. In addition to that, an interaction between the allylic and the exocyclic radical in the 1,4-biradical (as depicted in structure \(\text{C} \)) must be crucial for the dominance of this biradical geometry for rapid ISC. This effect can be described as secondary orbital interaction which facilitates intersystem crossing by means of an increase in spin-orbit coupling.
1. Introduction

![Diagram](image)

Figure 1.9: Model for *exo*- selective formation of oxetanes derived from furan.

1.10.1.2 Paternò-Büchi reactions with enamines

In the last decade, there were many reports on the reaction of acyclic olefins with asymmetric carbonyl compounds which proceed with high simple diastereoselectivity. Bach52 and coworkers investigated the photocycloaddition of N-acyl enamine with benzaldehyde and noticed that the reaction proceeds with excellent regioselectivity and good diastereoselectivity. Also, the thermodynamically less stable *cis* isomer prevailed similar to the *endo* selectivity in the case of 2,3-dihydrofuran.

![Scheme](image)

Scheme 1.18: Photocycloaddition of benzaldehyde with enamides.

Recently, Bach and coworker reported, that the photocycloaddition of α-alkyl-substituted ene carbamates to benzaldehyde afforded 3-aminooxetanes in moderate to good yields (46-71%). An increase in the steric bulk of the alkyl substituent R shifted the diastereomeric ratio *cis/trans* in the direction of the thermodynamically less stable *cis*-product (29:71 for R = Me) up to (57:43 for R = cyclohexyl).53
1. Introduction

\[
\begin{align*}
\text{Ph} & \quad \text{H} + \begin{array}{c}
\text{R} \quad \text{BOC} \\
\text{N} \quad \text{BOC}
\end{array} \xrightarrow{hv} \begin{array}{c}
\text{Ph} \quad \text{H} \\
\text{N} \quad \text{BOC}
\end{array}
\end{align*}
\]

\[
\begin{align*}
\text{R} &= \text{d.r. = cis/trans} \\
\text{Me} &= 29:71 \\
\text{Et} &= 34:66 \\
\text{i-Pr} &= 54:46 \\
\text{Chx} &= 57:43 \\
\text{H} &= 87:13
\end{align*}
\]

Scheme 1.19: Photocycloaddition of benzaldehyde with enamide.

1.10.1.3 Paternò-Büchi reactions with acyclic enol ether

Alkenes with moderate oxidation potentials were investigated by the Bach group in the last decade.\(^5^4\) They have intensively studied the complex stereoselectivity of the Paternò-Büchi reaction of acyclic trialkyl silylenol ethers with aromatic aldehydes and developed an impressive set of synthetic applications.\(^5^5\) A series of photocycloaddition reactions of benzaldehyde to trimethylsilyl (TMS) enol ethers showed a stereoselectivity trend which at the first sight was in contradiction to the rules described above, i.e. the thermodynamically more stable trans stereoisomers (with respect to the C-substituent at C-2 and C-3) were formed preferentially and the trans/cis ratio increases with increasing size of the C-3 substituent.

\[
\begin{align*}
\text{Ph} & \quad \text{H} + \begin{array}{c}
\text{R} \quad \text{OTMS} \\
\text{benzene}
\end{array} \xrightarrow{hv} \begin{array}{c}
\text{Ph} \quad \text{H} \\
\text{R} \quad \text{OTMS}
\end{array}
\end{align*}
\]

\[
\begin{align*}
\text{R} &= \text{d.r. = cis/trans} \\
\text{Me} &= 30:70 \\
\text{Et} &= 17:83 \\
\text{i-Pr} &= 12:88 \\
\text{t-Bu} &= 9:91 \\
\text{Ph} &= 8:92
\end{align*}
\]

Scheme 1.20: Paternò-Büchi reactions of benzaldehyde with silylenol ether.

The stereoselectivity might in these cases be attributed to a memory effect from the approach geometry between the triplet excited benzaldehyde and the alkene as depicted in Figure 1.10.
Abe and coworkers have also observed this stereochemical effect in the Paternò-Büchi reaction of p-cyanobenzaldehyde with thiosilyketene acetals.56

\[
\begin{align*}
\text{Ar} = \text{p-CN-C}_6\text{H}_4
\end{align*}
\]

Scheme 1.21: Photocycloaddition of ketene-O,S-acetal with p-cyanobenzaldehyde.

Abe rationalized the formation of the thermodynamically more stable \textit{trans} isomer due to the interaction between the electronically excited carbonyl and the sulfur atom, this interaction favors the formation of conformer (A) than (B). The sulfur-derived control of \textit{trans} isomer formation is depicted in Figure 1.11.
1.10.1.4 Paternò-Büchi reactions with cyclooctene

Recently, cyclooctene was used as an olefinic substrate in Paternò-Büchi reaction with different carbonyl compounds. The simple diastereoselectivity was moderate. In all cases, there were two diastereoisomers (cis and trans oxetanes) with moderate diastereomeric ratio. Butanal, 1,4-naphthoquinone, 1,4-benzoquinone and acetone were applied as the carbonyl compounds with cis-cyclooctene. The authors rationalized the cis/trans selectivity on the basis of the formation of triplet 1,4-biradical which has a relatively long lifetime in order to allow rotate around C-C bond and hence led to formation of the trans-diastereoisomer.

Scheme 1.22: Paternò-Büchi reactions with cyclooctene.

1.10.2 Induced diastereoselectivity

There are many reviews in the literature on the induced-diastereoselectivity of the Paternò-Büchi reaction using chiral reaction partners. In principle, one can induce diastereoselectivity through using chiral carbonyl compounds or chiral olefins.

1.10.2.1 Induction by the carbonyl compound

The first report concerning an asymmetric Paternò-Büchi reaction with a chiral carbonyl component was reported in 1979 by Gotthardt and Lenz. The photocycloaddition of the enantiomerically pure (-)-menthyl ester of phenylglyoxylic acid with 2,3-dimethyl-2-butene gave the oxetane with a diastereomeric excess of only 37%.
Scheme 1.23: Photocycloaddition of chiral phenylglyoxylates with tetramethylethylene.

Oppenländer and Schönholzer studied the diastereofacial differentiation in the Paternò-Büchi reaction using 4-(S)-isopropyl-2-benzoyl-2-oxazoline (prepared from condensation of phenylglyoxylic acid with (S)-valinol) as a chiral auxiliary. The [2+2] photocycloaddition gave a mixture of diastereoisomeric \(l \)-and \(u \)-oxetanes with equal amounts.

Scheme 1.24: Paternò-Büchi reaction of a benzoyloxazoline with tetramethylethylene.

The unique behavior of chiral phenylglyoxylates was demonstrated by Scharf and coworkers. Despite the fact that in all cases the stereogenic centers are localized in the alcohol part of the \(\alpha \)-keto ester and therefore remarkably far away from the reactive triplet excited carbonyl group, the induced diastereoselectivities were exceedingly high, e.g. \(>98\% \), in the photocycloaddition of 1,3-dioxole with 8-phenylmenthol as the chiral auxiliary.

Scheme 1.25: Asymmetric induction in Paternò-Büchi reaction.

1.10.2.2 Induction by the alkene component

The induced diastereoselectivity in the Paternò- Büchi reaction using stereogenic center in the olefin was recently investigated by Bach and coworkers in the photocycloaddition for chiral silylenolethers with benzaldehyde. The substituent \(R^L \) at the stereogenic center attached to
the γ-position of the silyl enolether were varied in order to evaluate the influence of steric bulk and electronic effect. In accordance with the 1,3-allylic strain model the facial diastereoselectivity was best with large (R[^L] = t-Bu, SiMe₂Ph) and polar (R[^L] = OMe) substituents at the γ-position of the silyl enolether (d.r. up to 95:5).

\[
\begin{align*}
\text{Ph} & \quad \text{Bu} \quad \text{O} \quad \text{TMS} \\
\text{O} & \quad \text{H} & \quad \text{R} & \quad \text{H} & \quad \text{Bu} \\
\text{a} & \quad \text{b}
\end{align*}
\]

\[
R = \begin{cases}
\text{Et} & 61:39 \\
\text{i-Pr} & 70:30 \\
\text{Ph} & 71:29 \\
\text{t-Bu} & 95:5
\end{cases}
\]

Scheme 1.26: Photocycloaddition of benzaldehyde with silylenol ether.

Several efforts, made by Bach and coworkers to apply chiral auxiliaries in N-acyl enamines that facilitated a facial differentiation in 1,4-biradical intermediate, failed. In all cases, they obtained a racemic mixture of oxetanes with moderate diastereoselectivity.

\[
\begin{align*}
\text{Ph} & \quad \text{H} & \quad \text{O} \\
\text{N} & \quad \text{R} & \quad \text{O} \\
\text{a} & \quad \text{b}
\end{align*}
\]

\[
R = \begin{cases}
\text{Ph} & 65:35 \\
\text{Bn} & 19:81
\end{cases}
\]

Scheme 1.27: Photocycloaddition of benzaldehyde with a chiral enamide.

Moreover, the photocycloaddition of axially chiral racemic N-acyl enamine with benzaldehyde yielded predominantly oxetanes with moderate diastereomeric excess.

\[
\begin{align*}
\text{Ph} & \quad \text{H} & \quad \text{O} \\
\text{N} & \quad \text{R} \\
\text{de. 62 %}
\end{align*}
\]

Scheme 1.28: Photocycloaddition of benzaldehyde with chiral acylenamine.
1.11 Effect of temperature on the diastereoselectivity of Paternò-Büchi reactions

The temperature dependence of the auxiliary-induced diastereoselectivity was intensively studied by Scharf group.68 In the Paternò-Büchi reaction of the chiral phenylglyoxylates with electron-rich cycloalkenes, the diastereomeric oxetanes are formed \textit{endo}-phenyl selective in high chemical yields. Scharf \textit{et al.} observed a striking temperature dependence of the facial selectivity which resembled the isoselectivity reactions investigated by Giese69 in carbene and simple radical reactions. In addition to isoselectivity points, however, inversion temperatures were discovered at which the influence of the reaction temperature on the degree of stereoselectivity was inverted.

\[
\begin{array}{c}
\text{Ph} & \text{O} & \text{OR}' & + & \text{HO} & \overset{\text{hv}}{\text{benzene}} & \text{O} & \text{O} & \text{Ph} & \text{CO}_{R'} & \text{Ph} & \text{CO}_{R'}

\text{Oxetane A} & \text{Oxetane B}
\end{array}
\]

\textbf{Scheme 1.29:} Photocycloaddition of chiral phenylglyoxylates with 2,2-dimethyl-1,3-dioxole.

A straightforward mechanistic interpretation of this phenomenon in Paternò-Büchi reaction is the assumption of a two-stage process with one stage predominately determined by the activation entropy term and the other by the activation enthalpy. At the inversion temperature, the selectivity determining step changes from entropy to enthalpy determined and thus also the temperature/selectivity behavoir. No inversion temperatures were detected for simple diastereoselectivity. Actually, the diastereoselectivity of the second bond formation is more than 98% in all cases investigated by Scharf \textit{et al.} This clearly results from a process at stage (2) that can not be influenced by temperature effects on stage (1). From the analysis of simple and induced diastereoselectivities, as well as from the temperature dependence of the facial diastereoselectivity, a reaction mechanism results which described the origin of product stereochemistry as a subtle combination of facial approach, biradical conformational equilibration, retrocleavage, and C-C bond formation. A simple kinetic picture for this scenario is shown in scheme 1.30. The \textit{endo}/\textit{exo} (simple) selectivity (\textit{endo}-Ph selectivity) results from the last step in the reaction sequence, i.e., after spin-inversion from several possible biradical conformers, the \textit{exo-} and \textit{endo}-diastereoisomers (with already determined facial selectivity) are formed in competition with C-O bond cleavage. Whether or not singlet biradicals are involved in this process is still an open question. In any case, the lifetimes for these species are expected to be extremely short, and bond rotations cannot compete with C-C
bond formation or C-O bond cleavage. Thus, the simple diastereoselectivity maps the ISC geometry for the triplet 1,4-biradicals.

![Scheme 1.30: The two-stage model for the Paternò-Büchi reaction.](image)

Recently, Adam and coworker investigated the Paternò-Büchi reaction of cis-cyclooctene as well as trans-cyclooctene with triplet carbonyl partners.\(^7\) They reported an unprecedented temperature-dependent diastereoselectivity in the [2+2] photocycloaddition of benzophenone with cis and trans cyclooctenes. They document the unusual case, that the lower-energy substrate diastereoisomer (cis-cyclooctene) affords, with increasing temperature the higher-energy product diastereoisomer (trans-oxetane). These unprecedented experimental facts on the [2+2] photocycloaddition of the diastereomeric cyclooctenes with benzophenone were rationalized in terms of a consistent mechanism: (i) The cis-cyclooctene displays a remarkable temperature dependence, in that the trans-oxetane is favored with increasing temperature; (ii) for trans-cyclooctene, the trans geometry is preserved in trans-oxetane cycloadduct over a broad temperature range of 180 °C; (iii) the extent of trans to cis isomerisation in the cycloaddition with trans-cyclooctene increase with temperature.
1.12 Effect of hydroxy groups on the stereoselectivity of Paternò-Büchi reactions

The first study of the effect of the hydroxy group on the Paternò-Büchi reaction of substituted norbornene with biacetyl was reported by Sauers and coworker. The addition of biacetyl to norbornene is highly exo selective, whereas the syn-7-tert-butyl derivative showed inverted exo-selectivity. Introduction of a hydroxy group at the 7-syn-position of norbornene reverts the diastereoselectivity: in this case, the exo-adduct is formed with de >97%. The later effect could be due to the hydrogen bonding forces between the hydroxy function and the electron-rich π* system orient the reactive species on the exo-face of the molecule.

The Paternò-Büchi reaction between 2-furylmethanol derivatives and benzophenone was recently reported by D’Auria and coworkers. They explained the regio- and stereoselectivity of the reaction by assuming a controlling function of both the substituent on the 2-furylmethanol derivatives and the hydroxy group in order to favor the approach of the carbonyl group towards a prochiral face of the furan. They have also reported that no photoadduct was obtained when the hydroxy group is protected by alkylation.
Scheme 1.33: Photocycloaddition of 2-furylmethanols with benzophenone.

More recently, Adam reported that hydrogen bonding directed regio and diastereoselectivity of the [2+2] photocycloaddition of benzophenone to chiral allylic alcohols.73 The Paternò-Büchi reaction of electronically excited benzophenone with chiral allylic alcohols afforded only one regioisomer of the diastereomeric \textit{threo}, \textit{erythro}-oxetanes. Hydrogen bonding between the allylic alcohol and the incoming triplet excited benzophenone as an attractive interaction accounts for the marked regio- and the \textit{threo}-diastereoselectivity. The diastereoselectivity was reduced in the presence of protic solvents (due to competition intermolecular hydrogen bonding) and disappeared when the hydroxy group is protected by silyl ether which can not serve as hydrogen-bonding donor.

Scheme 1.34: Paternò-Büchi reaction of allylic alcohols with benzophenone.

1.13 Synthetic applications of the Paternò-Büchi reaction

Kubota and coworkers found that irradiation of propanal in the presence of 1,3-cyclohexadiene produced the corresponding oxetanes in a 4:1 ratio.74 These adduct were thought to occur \textit{via} an attack of the first excited singlet state of propanal to the diene. The synthesis of (E)-6-nonen-1-ol, a component of the sex pheromone of the Mediterranean fruit fly, applied this process as the first step.75 Hydrogenation and metal catalyzed [2+2] cycloversion gave aldehyde, which then was easily converted to the target molecule by reduction.
Schreiber and coworkers have used the photocycloadduct of furan and carbonyl compound as the key intermediate for the synthesis of complex molecules. Schreiber was the first to recognize that the bicyclic adducts formed in these reactions could be unmasked under acidic conditions to afford threo aldol products of 1,4-dicarbonyl compounds. This strategy has been exploited in the synthesis of a variety of novel natural products.

An application of this strategy is the synthesis of the antifungal metabolite (±)-avenaciolide, shown in Scheme 1.37. The photoadduct was hydrogenated and hydrolyzed to give the aldehyde. Reaction of the aldehyde with vinyl magnesium bromide and subsequent manipulation afforded another aldehyde, which could be transformed via ozonolysis, epimerization of the dialdehyde and acidification of the dialdehyde acetonide to a protected bis-lactol. Oxidation and methylenation then afforded the desired target.
Scharf and coworkers have explored the 2,3-dihydrooxazole-carbonyl photocycloaddition for asymmetric synthesis. Irradiation of chiral α-keto ester with 2,2-dimethyl-3-N-acetyl-2,3-dihydrooxazole gave two regioisomeric oxetanes which under solvolysis yield erythro sugars and erythro α-amino carbohydrates.\(^\text{78}\)

Recent investigations from the Bach group were focused on enamides as substrates. The resulting 3-aminooxetanes were used for the synthesis of chiral 1,2-aminoalcohols.\(^\text{79}\) The photocycloaddition of N-vinyl formamide and benzaldehyde gave 3-aminooxetane, which was converted to pseudoephedrine in a single step by treatment with LiAlH\(_4\).}

Bach and coworkers have been also developed the total synthesis of the antifungal agent (±)-preussin via the photocycloaddition of benzaldehyde with 2,3-dihydropyrrole. The ring
opening of the photoadduct gave a hydroxypyrrolidine which after hydrogenolysis gave the enantiomerically pure target molecule (+)-preussin.\(^{80}\)

\[
\begin{align*}
\text{PhCHO} & \xrightarrow{hv} \text{H}_2 [\text{Pd (OH)}_2] (\text{MeOH}) \\
& \quad 91\% \\
\text{PhCHO} & \xrightarrow{LiAlH}_4 (\text{THF}) \quad 91\%
\end{align*}
\]

Scheme 1.40: Synthesis of (+)-preussin.

Recently, Griesbeck and Fiege published the photocycloaddition of an oxazole to carbonyl compounds as a convenient route for the synthesis of **erythro** \(\alpha\)-amino-\(\beta\)-hydroxy ketones. Irradiation of 2,4,5-trimethyloxazole with benzaldehyde gave the bicyclic oxetane with highly \textit{exo}-diastereoselectivity. The bicyclic oxetane is highly sensitive to hydrolysis and underwent twofold ring opening to give **erythro**- \(\alpha\)-acetamido-\(\beta\)-hydroxy ketone.\(^{81}\)

\[
\begin{align*}
\text{PhCHO} & \xrightarrow{hv} \text{H}_2 [\text{Pd (OH)}_2] (\text{MeOH}) \\
& \quad 91\% \\
\text{PhCHO} & \xrightarrow{LiAlH}_4 (\text{THF}) \quad 91\%
\end{align*}
\]

Scheme 1.41: Synthesis of **erythro** \(\alpha\)-acetamido-\(\beta\)-hydroxy ketone.
2. Projected work

To the best of our knowledge, there was no detailed investigation on the connection between spin state and stereoselectivity in [2+2]-photocycloadditions. At first, I decided to study the concentration dependence of the simple diastereoselectivity of the Paternò-Büchi reaction of electron-rich cycloalkenes with aliphatic as well as aromatic aldehydes in order to evaluate the difference of stereoselectivity between singlet and triplet photoreaction. In addition, I proposed to investigate the effect of solvent polarity as well as solvent viscosity on the spin-selectivity of the photocycloaddition reaction of 2,3-dihydrofuran with aldehydes. The unusual nonlinear temperature dependence of the stereoselectivity of Paternò-Büchi photocycloadditions of electron-rich cycloalkenes with chiral phenylglyoxylates served as the basis for the development of the isoinversion principle by Scharf and coworkers. The influence of the excited-state spin multiplicity was not observed in these studies because substrates with high ISC rates were used and thus exclusive bimolecular triplet reactions were expected. Thus, I intended to study the effect of temperature on simple diastereoselectivity in the singlet and the triplet photocycloaddition reaction of 2,3-dihydrofuran with aldehydes.

\[\text{R= Ph, Me, Et, Bu}^1 \]

In the light of recent research activities in the field of enantioselective cyclooctene photoisomerisation and diastereoselective photocycloaddition, I became interested in spin-directed effects on both the addition of electronically excited carbonyl compounds and the photoisomerisation process of cyclooctene. In a previous study by Jones et al., it was shown that the stereoselectivity of the Paternò-Büchi reaction with cis-cyclooctene is indeed influenced by the substrate concentration, but no further conclusions were drawn concerning the mechanism of the spin-inversion process from the triplet 1,4-biradical. Triplet excited aliphatic aldehydes with E_T in the 80 kcal/mol range are capable of cis-trans photoisomerisation of cyclooctenes wheras the singlets have energies that are too low for singlet-singlet energy transfer. It was thus of interest to study whether aliphatic aldehydes show spin-selectivity with respect to the cis/trans oxetane ratio and/or the endo/exo-selectivity relevant for the cis-photoadduct.
The concept of hydrogen-bonding as a tool for directing photochemical reactions has been reported for intermolecular [2+2] and [4+2] cycloadditions. However, there was yet no conclusion about the effect of hydrogen bonding on the excited singlet and triplet states. I investigated the Paternò-Büchi reaction of allylic alcohols and acetates with aldehydes to test the influence of hydrogen bonding on the excited singlet and triplet state. The study addressed the following questions:

(a) is there a specific spin-directing effect connected with hydrogen bonding?,
(b) do hydrogen-bonding interactions influence induced as well as non-induced “simple” diastereoselectivity?,
(c) does hydrogen-bonding effect the rate of the Paternò-Büchi reaction?

In a second part, I studied synthetic applications of the Paternò-Büchi reaction of aldehydes and α-ketoesters with oxazoles, a reaction which has been developed in this research group in the last years. A series of interesting starting materials from the chiral pool of amino acids should be synthesized and transformed photochemically into bicyclic oxetanes. The selectivity of these reactions and further transformations of these highly interesting and reactive products were to be investigated in order to examplify the importance of this synthetic pathway.
3. Results and Discussion

3.1 Effect of concentration on simple diastereoselectivity of Paternò-Büchi reactions

In order to evaluate the differences in simple diastereoselectivity of the Paternò-Büchi reaction in the singlet versus the triplet channel, the concentration dependence of the [2+2] photocycloaddition of aldehydes with electron-rich cycloalkenes was investigated. As alkene reagents, 2,3-dihydrofuran, 2,3-dihydropyran, cyclopentene, 5-methyl-2,3-dihydrofuran, 2,2-dimethyl-2,3-dihydrofuran and furan were used. As aliphatic aldehydes I used acetaldehyde, propionaldehyde, 3-methylbutyraldehyde, pivalaldehyde, 3-phenylpropionaldehyde and 2-methylbutyraldehyde. Benzaldehyde was applied as an aromatic aldehyde.

3.1.1 Photocycloaddition of 2,3-dihydrofuran

3.1.1.1 Reaction with benzaldehyde

It is well known that aromatic aldehydes exhibit high intersystem crossing rates and quantum yields and thus exclusively react via their first excited triplet states in intermolecular photocycloaddition. On irradiation of a benzene solution of benzaldehyde 1a and 2,3-dihydrofuran 2, two cycloadducts exo-3a and endo-3b were formed in a 12 : 88 ratio with high yield.

Scheme 3.1: Photocycloaddition of benzaldehyde with 2,3-dihydrofuran.

Both substrates (1a and 2) were applied in a 1:1 ratio over a broad concentration range, showing no significant effect on the simple (endo/exo) diastereoselectivity (see Figure 3.1).
3. Results & Discussion

Figure 3.1: Concentration/selectivity profile of the benzaldehyde/2,3-dihydrofuran photocycloaddition.

The relative configuration of the diastereoisomers *exo*-3a and *endo*-3a were deduced from their 1H-NMR spectra on the basis of the aromatic ring current effect by the phenyl group. H 5 in the *exo*-diastereoisomer absorbs at higher field (4.64 ppm) compared with the *endo*-isomer (5.05 ppm) due to the shielding effect of the benzene ring (see Table 3.1).

Table 3.1: Chemical shift (δ ppm) of H-1, H-5 and H-7 for *exo*-3a and *endo*-3a.

<table>
<thead>
<tr>
<th>Compound</th>
<th>H-1</th>
<th>H-5</th>
<th>H-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>exo-3a</td>
<td>5.50</td>
<td>4.64</td>
<td>5.41</td>
</tr>
<tr>
<td>endo-3a</td>
<td>5.51</td>
<td>5.05</td>
<td>5.80</td>
</tr>
</tbody>
</table>

3.1.1.2 Reaction with acetaldehyde

The lifetimes of the first excited singlet state of aliphatic aldehydes are in the 1-2 ns range. Thus, appropriate trapping reagents can intercept these singlets in diffusion-controlled bimolecular processes. The addition of 2,3-dihydrofuran to electronically excited acetaldehyde in benzene at a wide range of substrate concentrations afforded two diastereoisomers *exo*-3b and *endo*-3b. The diastereomeric ratios were determined by GC and NMR analyses.
3. Results & Discussion

Scheme 3.2: Photocycloaddition of acetaldehyde with 2,3-dihydrofuran.

Figure 3.2 shows the effect of concentration variation on the endo/exo diastereoselectivity of acetaldehyde/2,3-dihydrofuran photocycloaddition. At higher concentrations the selectivity switched to 42 : 58 whereas at lower concentration the selectivity reached 76 : 24 with preferential formation of the endo diastereoisomer.

Figure 3.2: Concentration/selectivity profile of the acetaldehyde/2,3-dihydrofuran photocycloaddition.

3.1.1.3 Reaction with propionaldehyde
Photolysis of an equimolar ratio of propionaldehyde and 2,3-dihydrofuran in benzene solution gave the two diastereoisomers exo-3c and endo-3c.

Scheme 3.3: Photocycloaddition of propionaldehyde with 2,3-dihydrofuran.

The diastereomeric ratios of the photoadducts were strongly affected by the concentration of substrate. Figure 3.3 displays the effect of concentration variation on the endo/exo diastereoselectivity of the propionaldehyde/2,3-dihydrofuran photocycloaddition. In the low concentration region (< 0.02 M), the diastereoselectivity reached a plateau with an endo/exo
ratio of ca. 85 : 15. Likewise, in the high concentration region (>0.8M) the
diastereoselectivity become constant with ca. 1: 1 endo/exo ratio. The diastereomeric ratios
were determined by GC and \(^1\)H-NMR analyses. Figure 3.4 shows the GC trace of the \textit{exo}- and
\textit{endo}-diastereoisomers of the photocycloaddition of propionaldehyde with 2,3-dihydrofuran at
different substrate concentrations. The \textit{exo}-isomer has low retention time compared with the
\textit{endo}-isomer.

The relative configuration of the photoadducts were established by nOe measurements. The
\textit{exo}-diastereoisomer shows strong nOe enhancements between H-1 and CH\(_3\) group. This
phenomena is illustrated in Figure 3.5, which summarizes the pertinent nOe data recorded for
the diastereoisomer \textit{exo}-3c. The \textit{endo}-diastereoisomer did not show significant nOe
enhancements between the CH\(_3\) group and the proton H-1.

Furthermore, the chemical shift of the proton H-1 is distinctly different in either pair of
bicyclic oxetane diastereoisomers \textit{exo}-3c and \textit{endo}-3c. It resonates at lower field in the \textit{endo}-isomer (\(\delta = 4.75\) ppm) and at higher field in the \textit{exo}-isomer (\(\delta = 4.51\) ppm) (see Table 3.2).
Table 3.2: Chemical shift (δ_{ppm}) of H-1, H-5 and H-7 for *exo-*3c and *endo-*3c.

<table>
<thead>
<tr>
<th>Compound</th>
<th>H-1</th>
<th>H-5</th>
<th>H-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>*exo-*3c</td>
<td>4.51</td>
<td>5.25</td>
<td>4.31</td>
</tr>
<tr>
<td>*endo-*3c</td>
<td>4.75</td>
<td>5.34</td>
<td>4.60</td>
</tr>
</tbody>
</table>

3.1.1.4 Reaction with 3-methylbutyraldehyde

The [2+2] photocycloaddition of electronically excited 3-methylbutyraldehyde with 2,3-dihydrofuran in benzene afforded the two diastereoisomers *exo-*3d and *endo-*3d.

![Scheme 3.4: Photocycloaddition of 3-methylbutyraldehyde with 2,3-dihydrofuran.](image)

Analogous to acetaldehyde and propionaldehyde, the diastereomeric ratios *endo/*exo were strongly influenced by the concentration of substrates. The diastereomeric ratios were determined by using GC and 1H-NMR analyses. Figure 3.6 shows the effect of concentration variation on the *endo/*exo diastereoselectivity of the 3-methylbutyraldehyde/2,3-dihydrofuran photocycloaddition. In the low concentration region ($< 0.01\text{M}$) the diastereoselectivity reached a plateau with an *endo/*exo ratio of ca. 87 : 13. At high concentration the selectivity switched to 53 : 47. The structure of the photoadducts were established using 1H-NMR and 13C-NMR analyses.

Figure 3.7 shows the GC trace of the *exo-* and *endo-* diastereoisomers of the photocycloaddition of 3-methylbutyraldehyde with 2,3-dihydrofuran at different substrate concentrations. Analogous to propionaldehyde/2,3-dihydrofuran photoadducts, the *exo-*isomer has low retention time compared with the *endo-*isomer.
3. Results & Discussion

3.1.1.5 Reaction with pivalaldehyde

Pivalaldehyde, when irradiated in the presence of 2,3-dihydrofuran, delivered the diastereoisomer \(\text{exo-3e} \) and \(\text{endo-3e} \) in moderate yield.

![Scheme 3.5: Photocycloaddition of pivalaldehyde with 2,3-dihydrofuran.](image)

Interestingly, the diastereomeric ratios of the photoadducts were depended only little on the concentration of substrate (see Table 3.3).

Table 3.3: Concentration dependence on simple diastereoselectivity of the pivalaldehyde/2,3-dihydrofuran photocycloaddition reaction.

<table>
<thead>
<tr>
<th>Conc. (M)</th>
<th>d.r. (exo : endo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>54.1 : 45.9</td>
</tr>
<tr>
<td>0.5</td>
<td>51.0 : 49.0</td>
</tr>
<tr>
<td>0.125</td>
<td>50.0 : 50.0</td>
</tr>
</tbody>
</table>
3. Results & Discussion

3.1.1.6 Reaction with 3-phenylpropionaldehyde

Irradiation of a benzene solution of equimolar amount of 2,3-dihydrofuran and 3-phenylpropionaldehyde afforded two diastereoisomers \textit{exo}-3f and \textit{endo}-3f.

\[
\text{Ph} \quad \text{O} \vdash H + \quad \text{h} \quad \nu \quad \text{benzene} \quad \text{O} \vdash H \quad \text{Ph} \quad \text{Ph} + \quad \text{H} \quad \text{O} \quad \text{Ph} \quad \text{H} \quad \text{O} \quad \text{Ph} \quad \text{Ph} \]

\text{Scheme 3.6: Photocycloaddition of 3-phenylpropionaldehyde with 2,3-dihydrofuran.}

Figure 3.8 displays a linear correlation between the \textit{endo}-selectivity and concentration, i.e. the \textit{endo}-selectivity increases with decreasing substrate concentration. The diastereomeric ratio \textit{endo/exo} at 1M was 50 : 50 and 70 : 30 at 0.125 M. The structure of the photoadducts were identified using 1H-NMR, 13C-NMR and DEPT analyses. The diastereomeric ratios were determined by using GC and 1H-NMR analyses.

\[
\begin{array}{c}
3-\text{phenylpropionaldehyde} + \\
2,3-\text{dihydrofuran}
\end{array}
\]

\textbf{Figure 3.8:} Concentration/selectivity profile of the 3-phenylpropionaldehyde/2,3-dihydrofuran photocycloaddition.

3.1.2 Photocycloaddition of 2,3-dihydropyran

3.1.2.1 Reaction with benzaldehyde

Photolysis of benzaldehyde with 2,3-dihydropyran in benzene afforded two diastereoisomers \textit{exo}-5a and \textit{endo}-5a in moderate yield with high regio- and stereoselectivity.

\[
\text{Ph} \quad \text{O} \vdash H + \quad \text{h} \quad \nu \quad \text{benzene} \quad \text{O} \vdash H \quad \text{Ph} \quad \text{Ph} + \quad \text{H} \quad \text{O} \quad \text{Ph} \quad \text{H} \quad \text{O} \quad \text{Ph} \quad \text{Ph} \]

\textbf{Scheme 3.7:} Photocycloaddition of benzaldehyde with 2,3-dihydropyran.
3. Results & Discussion

The diastereomeric ratios were constant over a wide range of concentration similar to the reaction with 2,3-dihydrofuran (see Figure 3.9). The diastereomeric ratios were determined by using GC and NMR analyses. The structure of the photoadducts were identified from 1H-NMR and 13C-NMR analyses.

![Figure 3.9](image_url)

Figure 3.9: Concentration/selectivity profile of the benzaldehyde/2,3-dihydropyran photocycloaddition.

3.1.2.2 Reaction with acetaldehyde

The photoaddition of electronically excited acetaldehyde to 2,3-dihydropyran in benzene gave two diastereoisomers *exo*-5b and *endo*-5b.

![Scheme 3.8](image_url)

Scheme 3.8: Photocycloaddition of acetaldehyde with 2,3-dihydropyran.

The diastereomeric ratios *endo/exo* were substantially dependent on the concentration of substrate. When the substrate concentration was lowered from 1 to 0.002 M, a distinct increase in the amount of *endo*-diastereoisomer was obtained. Figure 3.11 shows the GC trace of the *exo*- and *endo*-diastereoisomers of the photocycloaddition of acetaldehyde with 2,3-dihydropyran at different substrate concentrations. In contrast to 2,3-dihydrofuran photocycloaddition, the *endo*-isomer has low retention time compared with the *exo*-isomer of the 2,3-dihydropyran photocycloaddition.
3.1.2.3 Reaction with propionaldehyde

Irradiation of propionaldehyde with 2,3-dihydropyran in benzene gave the bicyclic oxetanes \textit{exo}-5c and \textit{endo}-5c in concentration-dependent ratios.

\begin{center}
\begin{tikzpicture}
\node at (0,0) {\textbf{Scheme 3.9:} Photocycloaddition of propionaldehyde with 2,3-dihydropyran.}
\end{tikzpicture}
\end{center}

In contrast to the results with 2,3-dihydrofuran, the selectivity curve was much less steeper and showed a non-linear behaviour in the region between 1M and 0.01M (see Figure 3.12). The diastereomeric ratios were determined by high resolution 1H-NMR measurements of the crude product mixtures and the structure of the products were elucidated by their 1H-NMR and 13C-NMR spectral data. Figure 3.13 shows the GC trace of the \textit{exo}- and \textit{endo}-diastereoisomers of the photocycloaddition of propionaldehyde with 2,3-dihydropyran at different substrate concentrations. Analogous to acetaldehyde/2,3-dihydropyran photoadducts, the \textit{endo}-isomer has low retention time compared with the \textit{exo}-isomer.
3. Results & Discussion

3.1.2.4 Reaction with 3-methylbutyraldehyde

The [2+2] cycloaddition of 3-methylbutyraldehyde with 2,3-dihydropyran afforded the two diastereoisomers *exo*-5d and *endo*-5d.

\[
\begin{align*}
\text{1d} & \quad \text{propionaldehyde} \\
\text{4} & \quad \text{2,3-dihydropyran} \\
\text{hv benzene} & \quad \text{photocycloaddition} \\
\end{align*}
\]

Scheme 3.10: Photocycloaddition of 3-methylbutyraldehyde with 2,3-dihydropyran.

Figure 3.14 displays the effect of concentration variation on the *endo/exo* diastereoselectivity of the 3-methylbutyraldehyde/2,3-dihydropyran photocycloaddition. At high concentration (1M) the diastereomeric ratio *endo/exo* was moderate (60 : 40) while at low concentration (0.002M) the *endo*-selectivity dominated (72 : 28).
3. Results & Discussion

Figure 3.14: Concentration/selectivity profile of the 3-methylbutyraldehyde/2,3-dihydrofuran photocycloaddition.

3.1.3 Photocycloaddition of cyclopentene with propionaldehyde

Cyclopentene, when irradiated with propionaldehyde in benzene, gave also two diastereoisomers exo-7b and endo-7b.

\[
\begin{array}{c}
\text{propionaldehyde} + \text{cyclopentene} \\
\text{exo-7c} \\
\text{endo-7c}
\end{array}
\]

Scheme 3.11: Photocycloaddition of cyclopentene with propionaldehyde.

The diastereomeric endo/exo ratios were slightly depended on the substrate concentration.

Figure 3.15: Concentration/selectivity profile of the propionaldehyde/cyclopentene photocycloaddition.
3. Results & Discussion

3.1.4 Photocycloaddition of 5-methyl-2,3-dihydrofuran

It was already documented that alkyl-substituted cycloalkenes react with electronically excited carbonyl compounds with moderate diastereoselectivity in comparison with unsubstituted cycloalkenes due to the additional steric hindrance by the extra alkyl group. To further understand this concept, the concentration effect on the stereoselectivity of the photoaddition of 5-methyl-2,3-dihydrofuran with aldehydes was studied.

3.1.4.1 Reaction with benzaldehyde

Irradiation of benzaldehyde with 5-methyl-2,3-dihydrofuran in benzene afforded two diastereoisomers exo-9a and endo-9a.

\[
\text{Ph} \quad H \quad O \quad + \quad \text{O} \quad \text{Ph} \quad H
\]

Scheme 3.12: Photocycloaddition of benzaldehyde with 5-methyl-2,3-dihydrofuran.

The diastereomeric ratio endo/exo (60 : 40) was independent on the concentration of the substrate. The diastereomeric ratios were determined using GC and \(^1\)H-NMR analyses (see Figure 3.17). The structure of the photoadducts were identified from \(^1\)H-NMR and \(^{13}\)C-NMR analyses.

| Figure 3.16: Concentration/selectivity profile of the benzaldehyde/5-methyl-2,3-dihydrofuran photocycloaddition. | Figure 3.17: \(^1\)H-NMR analysis of the benzaldehyde/5-methyl-2,3-dihydrofuran photocycloaddition. |
3. Results & Discussion

3.1.4.2 Reaction with acetaldehyde

The photocycloaddition of electronically excited acetaldehyde to 5-methyl-2,3-dihydrofuran gave the two diastereoisomers \textit{exo-9b} and \textit{endo-9b}.

\[
\text{Acetaldehyde} + \text{5-methyl-2,3-dihydrofuran} \xrightarrow{hv \text{ benzene}} \text{exo-9b} + \text{endo-9b}
\]

\textbf{Scheme 3.13:} Photocycloaddition of acetaldehyde with 5-methyl-2,3-dihydrofuran.

The diastereomeric ratios \textit{endo/exo} were completely inverted when processing from high to low concentration. At high concentration (1 M) the \textit{endo/exo} selectivity was 38 : 62 and changed to 62 : 38 at low concentration (0.025 M) (see Figure 3.19).

\textbf{Figure 3.18:} Concentration/selectivity profile of the acetaldehyde/5-methyl-2,3-dihydrofuran photocycloaddition.

\textbf{Figure 3.19:} 1H-NMR analysis of the acetaldehyde/5-methyl-2,3-dihydrofuran photocycloaddition.

3.1.4.3 Reaction with propionaldehyde

Irradiation of propionaldehyde with 5-methyl-2,3-dihydrofuran gave the two diastereoisomers \textit{exo-9c} and \textit{endo-9c}.

\[
\text{Propionaldehyde} + \text{5-methyl-2,3-dihydrofuran} \xrightarrow{hv \text{ benzene}} \text{exo-9c} + \text{endo-9c}
\]

\textbf{Scheme 3.14:} Photocycloaddition of propionaldehyde with 5-methyl-2,3-dihydrofuran.
The diastereomeric endo/exo ratio was 50 : 50 at high concentration (1M) and shifted to higher endo-selectivity by lowering the substrate concentrations. The endo/exo ratio was 67 : 33 at 0.01M. Figure 3.20 shows the concentration/selectivity profile of the photocycloaddition of 5-methyl-2,3-dihydrofuran with propionaldehyde.

![Figure 3.20: Concentration/selectivity profile of the propionaldehyde/5-methyl-2,3-dihydrofuran photocycloaddition.](image)

Figure 3.20: Concentration/selectivity profile of the propionaldehyde/5-methyl-2,3-dihydrofuran photocycloaddition.

Figure 3.21: 1H-NMR analysis of the propionaldehyde/5-methyl-2,3-dihydrofuran photocycloaddition.

3.1.4.3 Reaction with 3-methylbutyraldehyde

The [2+2]-photocycloaddition of 3-methylbutyraldehyde with 5-methyl-2,3-dihydrofuran afforded the mixture of exo-$9d$ and endo-$9d$.

![Scheme 3.15:](image)

Scheme 3.15: Photocycloaddition of 3-methylbutyraldehyde with 5-methyl-2,3-dihydrofuran.

At high concentration (1M) the endo/exo selectivity was 51: 49. By lowering the concentration of the substrate (0.01M) the selectivity switched constantly to 68 : 32 (see Figure 3.23).
3. Results & Discussion

![Graph showing concentration/selectivity profile](image1.png)

Figure 3.22: Concentration/selectivity profile of the 3-methylbutyraldehyde/5-methyl-2,3-dihydrofuran photocycloaddition.

![Graph showing 1H-NMR analysis](image2.png)

Figure 3.23: 1H-NMR analysis of the 3-methylbutyraldehyde/5-methyl-2,3-dihydrofuran photocycloaddition.

3.1.5 Synthesis of 2,2-dimethyl-2,3-dihydrofuran

2,2-Dimethyl-2,3-dihydrofuran was not commercially available and was prepared according to a literature procedure as depicted in scheme 3.16.\(^{86}\) To improve the yield of the primary substrate, 2-methyl-4-penten-2-ol \(10\), two different methods were used. The first method required the Grignard addition of allyl magnesium bromide to acetone in ether\(^{87}\) and the second method used Luche reaction which required the addition of allyl bromide to acetone in DMF and in the presence of zinc dust.\(^{88}\) The second reaction gave appreciable higher yields. Bromination of 2-methyl-4-penten-2-ol \(10\) in ether gave 2-methyl-4,5-dibromo-2-pentanol which \textit{in situ} underwent dehydrobromination by refluxing with quinoline to give 2,2-dimethyl-4-bromotetrahydrofuran \(11\). Distillation of 2,2-dimethyl-4-bromotetrahydrofuran over KOH pellets furnished the two regioisomers 2,2-dimethyl-2,5-dihydrofuran \(12\) and 2,2-dimethyl-2,3-dihydrofuran \(13\). The \(^1\)H-NMR spectra of the products revealed that the ratio of these regioisomers is 1 : 1.5 with preferential formation of the 2,2-dimethyl-2,3-dihydrofuran \(13\). The two regioisomers \(12\) and \(13\) were successfully separated by column chromatography. The structure of the isolated products were identified using \(^1\)H-NMR and \(^{13}\)C-NMR spectral analyses.
3. Results & Discussion

Br\textsubscript{+}O\textsubscript{Mg, ether} 40 \% OH
Zn, DMF 60 \% OH

Scheme 3.16: Synthesis of 2,2-dimethyl-2,3-dihydrofuran.

3.1.5.1 Photocycloaddition of 2,2-dimethyl-2,3-dihydrofuran with aldehydes

In order to estimate if there is a correlation between spin selectivity and steric effects on the simple diastereoselectivity of the Paternò-Büchi reaction, the photocycloaddition of 2,2-dimethyl-2,3-dihydrofuran \textit{13} with aliphatic and aromatic aldehydes was studied.

Scheme 3.17: Photocycloaddition of 2,2-dimethyl-2,3-dihydrofuran with aldehydes.

Table 3.4: Simple diastereoselectivity in the Paternò-Büchi reaction of 2,2-dimethyl-2,3-dihydrofuran with aldehydes.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conc. (M)</th>
<th>R =</th>
<th>% \textit{exo-14}</th>
<th>% \textit{endo-14}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>Ph</td>
<td>14</td>
<td>86</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>o-Tol</td>
<td>13</td>
<td>87</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td>Et</td>
<td>38</td>
<td>62</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
<td>Et</td>
<td>26</td>
<td>74</td>
</tr>
<tr>
<td>5</td>
<td>0.1</td>
<td>i-Pr</td>
<td>35</td>
<td>65</td>
</tr>
<tr>
<td>6</td>
<td>0.1</td>
<td>i-Bu</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>7</td>
<td>0.1</td>
<td>t-Bu</td>
<td>18</td>
<td>82</td>
</tr>
</tbody>
</table>
Firstly, both benzaldehyde and o-tolualdehyde were used as triplet precursor of the photocycloaddition with 2,2-dimethyl-2,3-dihydrofuran. The endo/exo selectivity was high in both cases (see Table 3.4, entry 1&2). From concentration studies, we have already learned that aliphatic aldehydes can react from both singlet and triplet excited state. The photocycloaddition of the electronically excited singlet state of propionaldehyde (1M) to 2,2-dimethyl-2,3-dihydrofuran gave a moderate endo/exo selectivity (62:38) whereas the triplet excited state of propionaldehyde (0.1M) reacted highly endo-selective (74:26) (see Table 3.4, entry 3&4). Interestingly, the diastereomeric ratios exhibit a slightly increasing trend in favor of the endo-isomers with increasing steric demand of the R-substituent (Et, iPr, i-Bu, t-Bu) of the aldehyde. The diastereomeric ratio of the photoadducts were determined from 1H-NMR and the structure of the products were identified from 1H-NMR and 13C-NMR spectral analyses. The relative configuration of the diastereoisomers exo-14c and endo-14c were unambiguously determined from NOE difference measurement. In the exo-14c isomer, irradiation of a methyl hydrogen protons at 1.51 ppm leads to nuclear Overhauser enhancements of both methyl protons signal at 1.22 ppm and methine proton signal, H-7 at 4.16 ppm. In the endo-14c, irradiation of a methyl protons signal at 1.45 ppm leads to nuclear Overhauser enhancements of the intensity of the methyl protons signal at 1.14 ppm (see Figure 3.24).

Figure 3.24: NOE interactions in bicyclic oxetanes exo-14c and endo-14c.
3. Results & Discussion

3.1.6 Effect of concentration on simple and induced diastereoselectivity of Paternò-Büchi reactions

In order to determine the difference between simple and induced diastereoselectivity in singlet and triplet reactions, the concentration dependence of the photocycloaddition reaction of a chiral aldehyde with 2,3-dihydrofuran and 5-methyl-2,3-dihydrofuran, respectively, was investigated.

3.1.6.1 Photocycloaddition of 2,3-dihydrofuran with 2-methylbutyraldehyde

2-Methylbutyraldehyde is commercially available and was applied in the Paternò-Büchi reaction. The photolysis of 2-methylbutyraldehyde with 2,3-dihydrofuran was performed in benzene at a wide range of concentrations. Two diastereoisomers \textit{exo-3g} and \textit{endo-3g} were obtained in good yield.

\[
\begin{align*}
\text{1g} + \text{2} &\xrightarrow{\text{hv, benzene}} \begin{array}{c}
\text{exo-3g} \\
\text{endo-3g}
\end{array}
\end{align*}
\]

\textbf{Scheme 3.18:} Photocycloaddition of 2-methylbutyraldehyde with 2,3-dihydrofuran.

\textbf{Figure 3.25:} NOE difference spectra (300 MHz, CDCl$_3$) of \textit{exo-14c}.

\textbf{Figure 3.26:} NOE difference spectra (300 MHz, CDCl$_3$) of \textit{endo-14c}.
3. Results & Discussion

The asymmetric induction was negligible (i.e. the diastereomeric excessess for both endo- and exo-isomers was 50 : 50); this might be a reason of the small difference in substituent size at the stereogenic center. The simple endo/exo diastereoselectivity was affected by the change of the concentration of the substrate. The results are shown in Figure 3.27: at high alkene concentration (1M), the simple endo/exo selectivity was low (47 : 53). In the low concentration region (0.025 M), the endo-selectivity became dominant (71 : 29).

![Figure 3.27](image)

Figure 3.27: Concentration/selectivity profile of the 2-methylbutyraldehyde/2,3-dihydrofuran photocycloaddition.

3.1.6.2 Photocycloaddition of 5-methyl-2,3-dihydrofuran with 2-methylbutyraldehyde

Irradiation of 2-methylbutyraldehyde with 5-methyl-2,3-dihydrofuran in benzene furnished the two diastereoisomers exo-9g and endo-9g.

![Scheme 3.19](image)

Scheme 3.19: Photocycloaddition of 2-methylbutyraldehyde with 5-methyl-2,3-dihydrofuran.

Again, the asymmetric induction was low and not affected by change of the concentration of the substrate. The simple endo/exo-selectivity at 1M was low (52 : 48), increased by dilution and switched to 63 : 37 at 0.025M (see Figure 3.28).
3. Results & Discussion

Figure 3.28: Concentration/selectivity profile of the 3-methylbutyraldehyde/5-methyl-2,3-dihydrofuran photocycloaddition.

3.1.7 Photocycloaddition of furan with acetaldehyde

The results of the concentration study of the photocycloaddition of aldehydes with electron rich-cycloalkenes have prompted me to investigate the concentration effect also on the stereoselectivity of the furan/acetaldehyde photocycloaddition. Irradiation of acetaldehyde with furan in benzene furnished two diastereoisomers exo-16b and endo-16b.

Scheme 3.20: Photocycloaddition of acetaldehyde with furan.

Table 3.5: Simple diastereoselectivity of the photocycloaddition reaction of furan with acetaldehyde.

<table>
<thead>
<tr>
<th>Conc. (M)</th>
<th>% exo</th>
<th>% endo</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>92</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>86</td>
<td>14</td>
</tr>
<tr>
<td>0.1</td>
<td>64</td>
<td>36</td>
</tr>
</tbody>
</table>

Surprisingly, the diastereomeric exo/endo ratios were also dependent on the concentration of the substrate (Table 3.5). At high concentration (10M) the simple exo/endo selectivity was 92 : 8 whereas at low concentration (0.1M) it decreased to 64 : 36. The diastereomeric ratios were determined from the 1H-NMR analysis of the crude reaction mixture.
3. Results & Discussion

3.1.8 Fluorescence quenching

Fluorescence quenching is the most valuable method for determining the probability of carbonyl singlets participation in bimolecular reaction. This measurement uses the intensities of fluorescence (band maxima) in the presence of varying concentrations of a potential quencher and leads to data correlation resolved by the Stern-Volmer equation.

\[
\frac{F_0}{F} = 1 + k_q \tau [Q]
\]

Where \(F_0\): unquenched fluorescence intensity

\(F\): quenched fluorescence intensity

\(k_q\): bimolecular quenching rate constant

\(\tau\): lifetime of the carbonyl singlet

\([Q]\): molar concentration of quencher

Solutions of propanal (0.2M) with various concentrations of 2,3-dihydrofuran as quencher (0.02-1M) were measured in benzene; both benzene and 2,3-dihydrofuran showing negligible fluorescence. Solutions were placed in 3 cm\(^2\) quartz cells after deoxygenated by nitrogen bubbling for 30 sec and the fluorescence spectra were recorded. The excitation wavelength was 310 nm, the intensity of the emission (\(F\)) at the maximum (~400 nm) for propanal was compared to the intensity (\(F_0\)) in the absence of quencher. A Stern-Volmer plot was drawn of \(F_0/F \) versus molarity of quencher, and the slope determined at least from four points using linear portion of the curve. The results are shown in Figure 3.29 & 3.30.

Figure 3.29: Fluorescence quenching of propionaldehyde 0.2M with 2,3-dihydrofuran (0.02–1.00 M) in benzene at 25°C.

Figure 3.30: Stern-Volmer plot for the fluorescence quenching of propionaldehyde with 2,3-dihydrofuran.
3. Results & Discussion

By applying the lifetime of singlet excited state of propanal (τ_s = 1.8 ns), a bimolecular quenching rate constant of k_q = 2.15 x 10^9 m^(-1) s^(-1) was determined. This result clearly shows that the reactivity of singlet excited state of propanal in the photocycloaddition reaction is high and only a factor 5 away from the diffusion limit.

3.1.9 Quantum yield (Φ)

The quantum yield of the photocycloaddition of benzaldehyde with 2,3-dihydrofuran in benzene was determined by using a merry-go-round apparatus with valerophenone as chemical actinometer. The product composition was measured as a function of time by GC analysis. The conversion of starting material is plotted as a function of time as shown in Figure 3.31.

![Figure 3.31: The relationship between conversion of the starting material versus time for the chemical actinometer and the benzaldehyde/2,3-dihydrofuran system.](image)

The best-fit line for benzaldehyde had a slope -1.43 and for valerophenone a slope of -1.004 resulted. By using the following equation.

\[
\frac{\text{slope (valerophenone)}}{\text{slope (benzaldehyde)}} = \frac{\Phi \text{(valerophenone)}}{\Phi \text{(Paternò–Büchi reaction)}}
\]

The quantum yield for the triplet photocycloaddition of benzaldehyde with 2,3-dihydrofuran (Φ = 0.48) was determined. The quantum yield is in agreement with literature value for the photocycloaddition of benzaldehyde with tetramethylethylene (Φ = 0.53). Due to the long lifetimes of the excited triplet carbonyl states, the high concentration of the excited triplet state quencher 2,3-dihydrofuran, and because the slopes are compared in the low conversion region, the method is reliably, albeit uni- and bimolecular photochemistry is compared herein.
Mechanistic analysis

Spin-directed stereoselectivity has been already reported for the photolyses of azoalkenes92 as well as for Yang cyclization processes following intramolecular hydrogen abstractions.93 In these cases, however, high diastereoselectivities were observed for singlet reactions and low selectivities for sensitized (triplet) processes. The inverse behaviour, as described herein for the cycloalkene photocycloadditions to aliphatic aldehydes, can be rationalized as follows:

In triplet Paternò-Büchi reactions \(1,4\)-triplet biradicals are generated, which have to undergo intersystem crossing in order to convert into closed-shell products. Obviously, this process requires severe geometrical restrictions and, following the “Griesbeck model”,51 leads to high endo-selectivity. The surprising result is the stereoselectivity of the singlet process: very low selectivities were determined even for the reaction of pivalaldehyde with 2,3-dihydrofuran (50 : 50 at high concentration), which gave a 95 : 5 diastereomeric ratio in the triplet channel. Thus, the stereoselectivity of the Paternò-Büchi reaction of singlet excited aldehydes which most likely involves conical intersections is not sensitive with respect to carbonyl substituents. The reaction sequence behind the concentration/selectivity plots is given in scheme 3.21.

![Scheme 3.21: Mechanistic scenario for singlet and triplet reaction.](image)

The bimolecular photocycloaddition steps resulting in the “spin-characteristic” products C and D competes with unimolecular processes, the ISC to give the triplet excited carbonyl (\(\Phi_{\text{ISC}}\) ca. 0.3-0.5 for aliphatic aldehydes) and the photophysical deactivation of the triplet state. From the correlation shown in the above scheme, \(C_0\) and \(D_0\) were estimated and the \(D/C+D\) ratio plotted versus the concentration of the trapping reagent B. Nonlinear curve fitting led to the equation \(y = [D_0-C_0/I + (x/x_0)^p] + C_0\) with \(y = D/(C+D)\) and \(x = B\). For the photocycloaddition of propionaldehyde with 2,3-dihydrofuran, the values \(x_0 = 0.09\) and \(p = 1.9\) were determined (see Figure 3.32).
Figure 3.32: Experimental and calculated concentration/selectivity profile of the propionaldehyde/2,3-dihydrofuran reaction.

The concentration $B_0(x_0)$ corresponds to a spin (singlet/triplet) selectivity of zero. These values were characteristic for every substrate combination and represent the specific kinetic data. Qualitatively, for carbonyls with shorter lived excited singlets (e.g. aromatic aldehydes), the B_0 value shifts to higher concentrations, whereas a change in bimolecular rate constants of the cycloaddition steps alters the sigmoidal behavior of the curve.

Spin selectivity for furan/acetaldehyde photocycloaddition can be explained as depicted in scheme 3.22. At high concentration, the first excited singlet state was quenched rapidly with furan to give high exo-adduct whereas at low concentration the singlet excited state undergo ISC to triplet excited state which has relatively long lifetime and then SOC controls geometry of triplet 1,4-biradical.51

\[
\begin{align*}
&\text{O} \quad \text{H} \\
\Rightarrow &\quad \text{hv} \\
\rightarrow &\quad \left[\text{O} \quad \text{H} \right]^* \\
\Rightarrow &\quad 1 \quad \text{O}^+ \quad \text{H} \\
\Rightarrow &\quad \text{ISC} \\
\Rightarrow &\quad 3 \quad \text{O}^+ \quad \text{H} \\
\tau &= 1.5-2 \text{ ns } \\
\Rightarrow &\quad \text{ex}o-16b \\
\Rightarrow &\quad \text{endo-16b}
\end{align*}
\]

Scheme 3.22: Mechanistic scenario of furan/acetaldehyde photocycloaddition.
3. Results & Discussion

3.2 Effect of solvent polarity on the simple diastereoselectivity of Paternò-Büchi reactions

To get more information on the surprising concentration effect of the simple diastereoselectivity of [2+2] photocycloaddition, solvent polarity effects of the Paternò-Büchi reaction of 2,3-dihydrofuran with aldehydes were studied. As a polar protic solvent, methanol was used, and both acetonitrile and tetrahydrofuran were used as polar aprotic solvent. In addition, n-hexane and benzene were applied as nonpolar solvent.

3.2.1 Solvent polarity effect on the stereoselectivity of the 2,3-dihydrofuran/propionaldehyde photocycloaddition reaction

The photocycloaddition of propionaldehyde with 2,3-dihydrofuran was investigated in different types of solvent and with a wide range of concentration (1-0.0125M). The diastereomeric exo/endo ratios of the photoadducts were determined by using GC and 1H-NMR analyses. Figure 3.33 shows solvent polarity effects on the concentration/selectivity profile of the propionaldehyde/2,3-dihydrofuran photocycloaddition. At singlet conditions, i.e. at high concentration range, the endo-selectivity was low in the nonpolar solvent n-hexane, and increased with increasing polarity of the solvent. In contrast to the results for the singlet reaction, for the triplet reaction (i.e. at low concentration) the endo-selectivity was dominant in the nonpolar solvent benzene whereas polar solvents (methanol and acetonitrile) gave moderate endo-selectivity.

![Figure 3.33: Solvent polarity effect on the concentration/selectivity profile of the propionaldehyde/2,3-dihydrofuran photocycloaddition.](image-url)
3. Results & Discussion

3.2.2 Solvent polarity effect on the stereoselectivity of the 2,3-dihydrofuran/acetaldehyde photocycloaddition reaction

Next, the effect of solvent polarity on the stereoselectivity of the photocycloaddition of acetaldehyde with 2,3-dihydrofuran was investigated in three solvents (tetrahydrofuran, acetonitrile and methanol). The results depicted in Figure 3.34 show, that the endo-selectivity in polar solvents (methanol and acetonitrile) was higher than in the less polar tetrahydrofuran solvent at high concentration. By lowering the concentration, the endo-selectivity increases parallel with increasing solvent polarity. Surprising, THF showed nearly no concentration effect on the diastereoselectivity in contrast to the propionaldehyde/2,3-dihydrofuran photocycloaddition reaction.

![Figure 3.34](image-url)

Figure 3.34: Solvent polarity effect on the concentration/selectivity profile of the acetaldehyde/2,3-dihydrofuran photocycloaddition.

Comment

The results of solvent polarity effect suggest that the spin-multiplicity of the excited aldehydes, singlet or triplet, may play an important role for determining the stereoselectivities. The important findings from solvent polarity experiments in the photoreactions of 2,3-dihydrofuran with acetaldehyde and propionaldehyde are as follows:

(a) polar solvents favor the formation of endo-diastereoisomers under singlet condition.

(b) nonpolar solvents also favor the formation of endo-diastereoisomers under triplet condition.

This results can be explained as follows: At singlet condition, the mechanism of Paternò-Büchi reactions proceed via conical intersections or exciplex which it might be favored in polar solvents than in nonpolar solvent. At triplet condition, SOC controls the geometry of the triplet 1,4-biradical. In polar solvents, there is a competition between biradical formation and photoinduced electron transfer (PET). The PET is favored in polar solvents, so the endo-
selectivity decreased while the biradical dominants in nonpolar solvent and hence the endo-selectivity increased.

3.3 Effect of solvent viscosity on simple diastereoselectivity of Paternò-Büchi reactions

The detection of solvent viscosity dependence on the stereoselectivity of the Paternò-Büchi reaction was essential for demonstrating the difference in simple diastereoselectivities in singlet and in triplet routes. As a model system for this study, the photocycloaddition reaction of 2,3-dihydrofuran with four aldehydes was investigated.

3.3.1 Solvent viscosity effect on the stereoselectivity of the benzaldehyde/2,3-dihydrofuran photocycloaddition reaction

The photocycloaddition of benzaldehyde with 2,3-dihydrofuran was firstly investigated as a typical triplet reaction with concentration-independent diastereoselectivity.

![Chemical structure](image)

Table 3.6: Viscosity dependence of the diastereoselectivity of the Paternò-Büchi reaction of 2,3-dihydrofuran (1M) with benzaldehyde (1M) at 293K.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>η [p]</th>
<th>$k_{\text{diff}}^{[a]}$ [M⁻¹sec⁻¹]</th>
<th>$k^{\text{Diff}}_{\text{endo} / \text{exo}}^{[b]}$ [M⁻¹sec⁻¹]</th>
<th>endo/exo [c]</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-hexane</td>
<td>0.0033</td>
<td>1.8×10^{10}</td>
<td>2.9×10^{10}</td>
<td>82 : 18</td>
</tr>
<tr>
<td>acetonitrile</td>
<td>0.0036</td>
<td>1.6×10^{10}</td>
<td>2.6×10^{10}</td>
<td>82 : 18</td>
</tr>
<tr>
<td>n-heptane</td>
<td>0.0041</td>
<td>1.4×10^{10}</td>
<td>2.3×10^{10}</td>
<td>85 : 15</td>
</tr>
<tr>
<td>methanol</td>
<td>0.0060</td>
<td>9.8×10^9</td>
<td>1.6×10^{10}</td>
<td>84 : 16</td>
</tr>
<tr>
<td>ethanol</td>
<td>0.012</td>
<td>4.8×10^9</td>
<td>7.9×10^9</td>
<td>86 : 14</td>
</tr>
<tr>
<td>n-propanol</td>
<td>0.023</td>
<td>2.5×10^9</td>
<td>4.1×10^9</td>
<td>90 : 10</td>
</tr>
<tr>
<td>n-butanol</td>
<td>0.029</td>
<td>2.0×10^9</td>
<td>3.3×10^9</td>
<td>87 : 13</td>
</tr>
<tr>
<td>n-octanol</td>
<td>0.085</td>
<td>6.9×10^8</td>
<td>1.1×10^9</td>
<td>89 : 11</td>
</tr>
<tr>
<td>glycol</td>
<td>0.20</td>
<td>2.9×10^8</td>
<td>4.7×10^8</td>
<td>83 : 17</td>
</tr>
<tr>
<td>1,2-propanediol</td>
<td>0.56</td>
<td>1.0×10^8</td>
<td>1.6×10^8</td>
<td>87 : 13</td>
</tr>
<tr>
<td>1,4-butanediol</td>
<td>0.89</td>
<td>6.6×10^7</td>
<td>1.1×10^8</td>
<td>91 : 9</td>
</tr>
</tbody>
</table>

[a] $k_{\text{diff}} = 2 \times 10^5 \ T/\eta$. [b] $k^{\text{Diff}}_{\text{endo} / \text{exo}} = 8 \times RT / 2000\eta$. [c] Determined by means of NMR spectroscopic analysis of the crude product mixture.
3. Results & Discussion

The variation of the solvent viscosity over a wide range (\(\eta = 0.3 \) to 89 cp)\(^{94} \) resulted in a weak but significant increase in *endo*-selectivity from 82\% to 91\% (Table 3.6, Figure 3.38).

3.3.2 Solvent viscosity effect on the stereoselectivity of the acetaldehyde/2,3-dihydrofuran photocycloaddition reaction

The simple diastereoselectivity of the photocycloaddition reaction of acetaldehyde with 2,3-dihydrofuran (1M substrate concentration) highly influenced by changing the viscosity of the solvent.

![Diagram of reaction](image)

Table 3.7: Viscosity dependence of the diastereoselectivity of the Paternò-Büchi reaction of 2,3-dihydrofuran (1M) with acetaldehyde (1M) at 293K.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>(\eta) [p]</th>
<th>(k_{\text{diff}}^{[a]}) [M(^{-1})sec(^{-1})]</th>
<th>(k_{\text{Diff}}^{[b]}) [M(^{-1})sec(^{-1})]</th>
<th>endo/exo(^{[c]})</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-hexane</td>
<td>0.0033</td>
<td>1.8 x 10(^{10})</td>
<td>2.9 x 10(^{10})</td>
<td>40.0 : 60.0</td>
</tr>
<tr>
<td>acetonitrile</td>
<td>0.0036</td>
<td>1.6 x 10(^{10})</td>
<td>2.6 x 10(^{10})</td>
<td>41.6 : 58.4</td>
</tr>
<tr>
<td>n-heptane</td>
<td>0.0041</td>
<td>1.4 x 10(^{10})</td>
<td>2.3 x 10(^{10})</td>
<td>44.4 : 55.6</td>
</tr>
<tr>
<td>methanol</td>
<td>0.0060</td>
<td>9.8 x 10(^{9})</td>
<td>1.6 x 10(^{10})</td>
<td>44.4 : 55.6</td>
</tr>
<tr>
<td>ethanol</td>
<td>0.012</td>
<td>4.8 x 10(^{9})</td>
<td>7.9 x 10(^{9})</td>
<td>44.7 : 55.3</td>
</tr>
<tr>
<td>n-propanol</td>
<td>0.023</td>
<td>2.5 x 10(^{9})</td>
<td>4.1 x 10(^{9})</td>
<td>46.1 : 53.9</td>
</tr>
<tr>
<td>n-butanol</td>
<td>0.029</td>
<td>2.0 x 10(^{9})</td>
<td>3.3 x 10(^{9})</td>
<td>46.5 : 53.5</td>
</tr>
<tr>
<td>n-octanol</td>
<td>0.085</td>
<td>6.9 x 10(^{8})</td>
<td>1.1 x 10(^{9})</td>
<td>47.0 : 53.0</td>
</tr>
<tr>
<td>glycol</td>
<td>0.20</td>
<td>2.9 x 10(^{8})</td>
<td>4.7 x 10(^{8})</td>
<td>50.3 : 49.7</td>
</tr>
<tr>
<td>1,2-propanediol</td>
<td>0.56</td>
<td>1.0 x 10(^{8})</td>
<td>1.6 x 10(^{8})</td>
<td>53.6 : 46.4</td>
</tr>
<tr>
<td>1,4-butanediol</td>
<td>0.89</td>
<td>6.6 x 10(^{7})</td>
<td>1.1 x 10(^{8})</td>
<td>63.5 : 36.5</td>
</tr>
</tbody>
</table>

[a] \(k_{\text{diff}} = 2 \times 10^5 \ T/\eta \). [b] \(k_{\text{Diff}} = 8 \times RT/2000\eta \). [c] Determined by means of GC analysis.

The *endo/exo* selectivity in the low viscous solvent n-hexane was 40 : 60 and increased by increasing solvent viscosity and switched to 63 : 37 in 1,4-butanediol (Table 3.7). The diastereomeric ratios *endo/exo* were determined by using GC analysis (Figure 3.35).
3. Results & Discussion

3.3.3 Solvent viscosity effect on the stereoselectivity of the propionaldehyde/2,3-dihydrofuran photocycloaddition reaction

The photoaddition of propionaldehyde to 2,3-dihydrofuran was performed in different solvents and with 1M concentration of both substrates.

\[
\text{H}_2\text{C} = \text{CH} + \text{H}_2\text{C} = \text{CH}_2 \xrightarrow{\text{hv}, 20^\circ\text{C}, 1\text{M}} \text{exo-}3\text{c} + \text{endo-}3\text{c}
\]

The variation of the solvent viscosity over a large range (\(\eta = 0.3\) to 1500 cp) resulted in a substantial increase in \textit{endo} selectivity from 45.3\% to 80.2\% (Table 3.8, Figure 3.36).

Table 3.8 shows, that the \textit{endo}-selectivity changes slightly when going from n-hexane to n-butanol and jumps to moderate selectivity in glycol and is again dramatically increased in glycerol.
Table 3.8: Viscosity dependence of the diastereoselectivity of the Paternò-Büchi reaction of 2,3-dihydrofuran (1M) with propionaldehyde (1M) at 293K.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>η [p]</th>
<th>$K_{\text{diff}}^{[a]}$ [M$^{-1}$s$^{-1}$]</th>
<th>$k_{\text{Diff}}^{[b]}$ [M$^{-1}$s$^{-1}$]</th>
<th>endo/exo$^{[c]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-hexane</td>
<td>0.0033</td>
<td>1.8×10^{10}</td>
<td>2.9×10^{10}</td>
<td>45.3 : 54.7</td>
</tr>
<tr>
<td>acetonitrile</td>
<td>0.0036</td>
<td>1.6×10^{10}</td>
<td>2.6×10^{10}</td>
<td>45.3 : 54.7</td>
</tr>
<tr>
<td>n-heptane</td>
<td>0.0041</td>
<td>1.4×10^{10}</td>
<td>2.3×10^{10}</td>
<td>48.6 : 51.4</td>
</tr>
<tr>
<td>methanol</td>
<td>0.0060</td>
<td>9.8×10^{9}</td>
<td>1.6×10^{10}</td>
<td>49.6 : 50.4</td>
</tr>
<tr>
<td>ethanol</td>
<td>0.012</td>
<td>4.8×10^{9}</td>
<td>7.9×10^{9}</td>
<td>50.4 : 49.6</td>
</tr>
<tr>
<td>n-propanol</td>
<td>0.023</td>
<td>2.5×10^{9}</td>
<td>4.1×10^{9}</td>
<td>52.1 : 47.9</td>
</tr>
<tr>
<td>n-butanol</td>
<td>0.029</td>
<td>2.0×10^{9}</td>
<td>3.3×10^{9}</td>
<td>53.6 : 46.4</td>
</tr>
<tr>
<td>n-octanol</td>
<td>0.085</td>
<td>6.9×10^{8}</td>
<td>1.1×10^{9}</td>
<td>57.5 : 42.5</td>
</tr>
<tr>
<td>glycol</td>
<td>0.20</td>
<td>2.9×10^{8}</td>
<td>4.7×10^{8}</td>
<td>59.0 : 41.0</td>
</tr>
<tr>
<td>1,2-propanediol</td>
<td>0.56</td>
<td>1.0×10^{8}</td>
<td>1.6×10^{8}</td>
<td>60.6 : 39.4</td>
</tr>
<tr>
<td>1,4-butanediol</td>
<td>0.89</td>
<td>6.6×10^{7}</td>
<td>1.1×10^{8}</td>
<td>72.6 : 27.4</td>
</tr>
<tr>
<td>glycerol</td>
<td>15.0</td>
<td>3.9×10^{6}</td>
<td>6.3×10^{6}</td>
<td>80.2 : 19.8</td>
</tr>
</tbody>
</table>

[a] $k_{\text{diff}} = 2 \times 10^{5} \frac{T}{\eta}$. [b] $k_{\text{Diff}} = 8 \times transport(RT/2000\eta)^{95}$. [c] Determined by means of GC analysis.

Figure 3.36: GC trace analysis of the diastereoselectivity of propionaldehyde/2,3-dihydrofuran photocycloaddition as a function of solvent viscosity.
3. Results & Discussion

3.3.4 Solvent viscosity effect on the stereoselectivity of the 3-methylbutyraldehyde/2,3-dihydrofuran photocycloaddition reaction

The irradiation of 2,3-dihydrofuran in presence of 3-methylbutyraldehyde gave two diastereoisomers, the ratio of which was influenced by changing the solvent viscosity.

![Diagram of reaction](image)

Table 3.9: Viscosity dependence of the diastereoselectivity of the Paternò-Büchi reaction of 2,3-dihydrofuran (1M) with 3-methylbutyraldehyde (1M) at 293K.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>η [p]</th>
<th>(k_{\text{diff}}) ([\text{M}^{-1}\text{sec}^{-1}])</th>
<th>(k_{\text{Diff}}^b) ([\text{M}^{-1}\text{sec}^{-1}])</th>
<th>endo/exo(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-hexane</td>
<td>0.0033</td>
<td>1.8 x 10(^8)</td>
<td>2.9 x 10(^9)</td>
<td>48.8 : 51.2</td>
</tr>
<tr>
<td>acetonitrile</td>
<td>0.0036</td>
<td>1.6 x 10(^8)</td>
<td>2.6 x 10(^9)</td>
<td>51.2 : 48.8</td>
</tr>
<tr>
<td>n-heptane</td>
<td>0.0041</td>
<td>1.4 x 10(^9)</td>
<td>2.3 x 10(^9)</td>
<td>51.2 : 48.8</td>
</tr>
<tr>
<td>methanol</td>
<td>0.0060</td>
<td>9.8 x 10(^6)</td>
<td>1.6 x 10(^9)</td>
<td>51.7 : 48.3</td>
</tr>
<tr>
<td>ethanol</td>
<td>0.012</td>
<td>4.8 x 10(^9)</td>
<td>7.9 x 10(^9)</td>
<td>51.8 : 48.2</td>
</tr>
<tr>
<td>n-propanol</td>
<td>0.023</td>
<td>2.5 x 10(^9)</td>
<td>4.1 x 10(^9)</td>
<td>52.4 : 47.6</td>
</tr>
<tr>
<td>n-butanol</td>
<td>0.029</td>
<td>2.0 x 10(^9)</td>
<td>3.3 x 10(^9)</td>
<td>53.5 : 46.5</td>
</tr>
<tr>
<td>n-octanol</td>
<td>0.085</td>
<td>6.9 x 10(^8)</td>
<td>1.1 x 10(^9)</td>
<td>55.7 : 44.3</td>
</tr>
<tr>
<td>glycol</td>
<td>0.20</td>
<td>2.9 x 10(^8)</td>
<td>4.7 x 10(^8)</td>
<td>62.2 : 37.8</td>
</tr>
<tr>
<td>1,2-propanediol</td>
<td>0.56</td>
<td>1.0 x 10(^8)</td>
<td>1.6 x 10(^8)</td>
<td>65.4 : 34.6</td>
</tr>
<tr>
<td>1,4-butandiol</td>
<td>0.89</td>
<td>6.6 x 10(^7)</td>
<td>1.1 x 10(^8)</td>
<td>73.5 : 26.5</td>
</tr>
</tbody>
</table>

[a] \(k_{\text{diff}} = 2 \times 10^5 \frac{T}{\eta} \). [b] \(k_{\text{Diff}}^b = 8 \times RT/2000\eta \). [c] Determined by means of GC analysis.

The results in Table 3.9 display, that the endo/exo selectivity changes slightly when going from n-hexane to ethanol and increased by increasing solvent viscosity and were switched to 73.5 : 26.5 in 1,4-butandiol.
3. Results & Discussion

The results of the viscosity dependence on the diastereoselectivity of the photocycloaddition reaction of 2,3-dihydrofuran with aliphatic aldehydes suggest that the differences in endo/exo selectivity in the singlet reaction are more pronounced than in the triplet reactions (see Figure 3.38).

![Figure 3.37: GC trace analysis of the diastereoselectivity of 3-methylbutyraldehyde/2,3-dihydrofuran photocycloaddition as a function of solvent viscosity.](image)

![Figure 3.38: Viscosity dependence (normalized) of the Paternò-Büchi reaction of 2,3-dihydrofuran with aldehydes (1M) at 293 K.](image)
Comment
The results of the viscosity studies can be explained as follows:
An increase in solvent viscosity should favor the triplet channel as a result of a reduction in the diffusion rate limit (about 4 orders of magnitude in the viscosity range). Thus, the viscosity of the medium only slightly influences the diastereoselectivity of the triplet photocycloaddition (k₃) which is controlled by the geometry of 2-oxatetramethylene triplet 1,4-biradical. The influence of the solvent viscosity on the diastereoselectivity of singlet reactions which can be estimated from the correlation in Figure 3.38 is more distinct.

Mechanistic analysis
The shape of concentration/diastereoselectivity correlations as well as the viscosity/diastereoselectivity correlations reflects the different kinetic contribution to this complex reaction scenario (Scheme 3.23). Recognize that the difference to Scheme 3.21 is that identical products are now formed via the singlet as well as the triplet path, only with different C/D-composition. The endo/exo selectivity is controlled by the geometry of the conical intersections for the singlet reaction and by the optimal ISC-geometry of the 2-oxatetramethylene biradical (OTM) for the triplet path reaction.

Scheme 3.23: Mechanistic scenario for singlet and triplet reaction.

3.4 Effect of temperature on the simple diastereoselectivity of Paternò-Büchi reactions
The effect of temperature on the diastereoselectivity has recently been observed and its influence is not uniform: On increasing the reaction temperature the diastereoselectivity may decline, but it can also be constant or even increase. Scharf et al. intensively investigated the effect of temperature on facial selectivities in the triplet photocycloaddition reaction of electron-rich cycloalkenes with chiral phenyl glyoxylates. It was thus of interest to study the influence of excited-state spin multiplicity (singlet versus triplet) at different temperatures on
3. Results & Discussion

the simple diastereoselectivity of the [2+2] photocycloaddition reaction of 2,3-dihydrofuran with prochiral aldehydes.

3.4.1 Effect of temperature on the simple diastereoselectivity of benzaldehyde/2,3-dihydrofuran photocycloaddition reaction

Firstly, the temperature dependence of the simple diastereoselectivity of the Paternò-Büchi reaction was studied for the triplet reaction between benzaldehyde and 2,3-dihydrofuran. No influence was detected, within the error margin (see Table 3.10). The results of the temperature dependence of the simple diastereoselectivity in the triplet reaction suggest that the reaction is solely controlled by the activation entropy.

![Diagram](Ph H O + O h ν n-hexane, 1M Ph H O + 1a 2 exo-3a endo-3a)

Table 3.10: Temperature dependence of the diastereoselectivity of the Paternò-Büchi reaction of 2,3-dihydrofuran (1M) with benzaldehyde (1M) in n-hexane.

<table>
<thead>
<tr>
<th>Entry</th>
<th>T (°C)</th>
<th>d.r. (endo : exo)[a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>90.9 : 9.1</td>
</tr>
<tr>
<td>2</td>
<td>-10</td>
<td>90.0 : 10.0</td>
</tr>
<tr>
<td>3</td>
<td>-15</td>
<td>91.1 : 8.9</td>
</tr>
<tr>
<td>4</td>
<td>-25</td>
<td>88.0 : 12.0</td>
</tr>
<tr>
<td>4</td>
<td>-32</td>
<td>87.8 : 12.2</td>
</tr>
<tr>
<td>6</td>
<td>-42</td>
<td>90.5 : 9.5</td>
</tr>
<tr>
<td>7</td>
<td>-52</td>
<td>90.4 : 9.6</td>
</tr>
<tr>
<td>8</td>
<td>-61</td>
<td>86.2 : 13.8</td>
</tr>
<tr>
<td>9</td>
<td>-72</td>
<td>89.9 : 10.1</td>
</tr>
<tr>
<td>10</td>
<td>-78</td>
<td>90.2 : 9.8</td>
</tr>
</tbody>
</table>

[a] Determined by means of 1H-NMR spectroscopic analysis of the crude product mixture.

3.4.2 Effect of temperature on the concentration/selectivity correlation of propionaldehyde/2,3-dihydrofuran photocycloaddition reaction

In the next experiment, the concentration dependence of the [2+2] photocycloaddition reaction at different temperatures was investigated with the standard system propionaldehyde
and 2,3-dihydrofuran. This substrate combination was used primarily to determine the different simple diastereoselectivities of singlet and triplet photocycloadditions.\(^{97}\)

![Figure 3.39: Temperature effect on the concentration/selectivity profile of the propionaldehyde/2,3-dihydrofuran photocycloaddition in n-hexane.](image)

In the temperature region between –14 and +25 °C, the diastereoselectivity/concentration correlation showed only small changes, whereas at lower (–78 °C) temperatures the point of isospinselectivity is shifted significantly to higher concentrations (see Figure 3.39). This shift is not yet a proof for nonlinear temperature dependence, but a clear indication that not only the concentration, but also the temperature influences the diastereoselectivity of photocycloadditions with carbonyl compounds which can react from initial S\(_1\) and T\(_1\) states.

3.4.3 Effect of temperature on the simple diastereoselectivity of acetaldehyde/2,3-dihydrofuran photocycloaddition reaction

The temperature dependence of the endo/exo-selectivity of Paternò-Büchi reaction of acetaldehyde with 2,3-dihydrofuran was investigated at constant concentration (1M) in order to evaluate the difference in spin selectivity in singlet and in triplet reaction. With decreasing temperature, the endo-selectivity decreased in the region from +25 °C to –32 °C, and was inverted at –37°C (see Table 3.11 and Figure 3.40).

\[
\begin{align*}
\text{H} & \quad \text{O} \\
\end{align*}
\]

\[1b \quad 2 \quad \xrightarrow{\text{hv, n-hexane, 1M}} \quad \begin{align*}
\text{H} & \quad \text{O} \\
\end{align*} \quad + \quad \begin{align*}
\text{H} & \quad \text{O} \\
\end{align*}
\]

\[\text{endo-3b} \quad \text{exo-3b}\]
Table 3.11: Temperature dependence of the diastereoselectivity of the Paterno-Büchi reaction of 2,3-dihydrofuran (1M) with acetaldehyde (1M) in n-hexane.

<table>
<thead>
<tr>
<th>Entry</th>
<th>T (°C)</th>
<th>d.r. ((endo : exo))[^{[a]}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>53.2 : 46.8</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>48.6 : 51.4</td>
</tr>
<tr>
<td>3</td>
<td>-10</td>
<td>46.3 : 53.7</td>
</tr>
<tr>
<td>4</td>
<td>-15</td>
<td>45.5 : 54.5</td>
</tr>
<tr>
<td>5</td>
<td>-25</td>
<td>41.0 : 59.0</td>
</tr>
<tr>
<td>6</td>
<td>-32</td>
<td>41.5 : 58.5</td>
</tr>
<tr>
<td>7</td>
<td>-42</td>
<td>45.5 : 54.5</td>
</tr>
<tr>
<td>8</td>
<td>-52</td>
<td>50.0 : 50.0</td>
</tr>
<tr>
<td>9</td>
<td>-61</td>
<td>51.4 : 48.6</td>
</tr>
<tr>
<td>10</td>
<td>-72</td>
<td>57.9 : 42.1</td>
</tr>
<tr>
<td>11</td>
<td>-78</td>
<td>58.3 : 41.7</td>
</tr>
</tbody>
</table>

\[^{[a]}\] Determined by means of GC and NMR spectroscopic analysis of the crude product mixture.

Furthermore, Figure 3.40 shows the strongest deviation from linearity with an inversion temperature at –37°C. For this specific reaction, we have already detected from concentration studies that the acetaldehyde triplet adds to 2,3-dihydrofuran with high \(endo\) selectivity (up to 75%) whereas the singlet gives the same products with moderate \(exo\) selectivity (up to 65%). Thus, the temperature correlation can be interpreted qualitatively as follows: at room temperature under high concentration conditions, the cycloaducts 3b were formed with low \(exo\) selectivity, predominantly through the singlet channel. This selectivity increases with decreasing temperature (as intuitively expected) and reaches an inversion point at –37°C (Figure 3.40). At this point, the triplet reactivity gains sufficient influence to increase the \(endo\) selectivity. The rate of the intersystem crossing process \(k_{ISC}\) is expected to be nearly temperature-independent.\(^{98}\)

3.4.4 Effect of temperature on the simple diastereoselectivity of 3-methylbutyraldehyde /2,3-dihydrofuran photocycloaddition reaction

In contrast to the results of acetaldehyde, the temperature dependence of the photocycloaddition of 3-methylbutyraldehyde with 2,3-dihydrofuran showed a positive
deviation from linearity with an inversion temperature at –28°C. In addition, the \textit{endo/exo} selectivity was altered slightly by lowering the temperature (see Table 3.12 and Figure 3.40).

\begin{center}
\begin{tikzpicture}
\node[below] at (current bounding box.center) {\textbf{Table 3.12:} Temperature dependence of the diastereoselectivity of the Paternò-Büchi reaction of 2,3-dihydrofuran (1M) with 3-methylbutyraldehyde (1M) in n-hexane.}
\begin{tabular}{|c|c|c|}
\hline
Entry & T (°C) & d.r. (\textit{endo} : \textit{exo})[a] \\
\hline
1 & 25 & 51.8 : 48.2 \\
2 & 0 & 52.7 : 47.3 \\
3 & -10 & 52.8 : 47.2 \\
4 & -15 & 53.4 : 46.6 \\
5 & -25 & 53.6 : 46.4 \\
6 & -32 & 53.4 : 46.6 \\
7 & -42 & 52.7 : 47.3 \\
8 & -52 & 51.7 : 48.3 \\
9 & -61 & 51.0 : 49.0 \\
10 & -72 & 50.9 : 49.1 \\
11 & -78 & 50.6 : 49.4 \\
\hline
[a] Determined by means of GC and NMR spectroscopic analysis of the crude product mixture.
\end{tabular}
\end{tikzpicture}
\end{center}

\textbf{Figure 3.40:} Temperature dependence (normalized) of the Paternò-Büchi reaction of 2,3-dihydrofuran with aldehydes in n-hexane (1M both of substrate).
3. Results & Discussion

3.4.5 Effect of temperature on the simple diastereoselectivity of propionaldehyde/2,3-dihydrofuran photocycloaddition reaction

The results of the temperature dependence of simple diastereoselectivity of the photocycloaddition reaction of propionaldehyde (1M) with 2,3-dihydrofuran (1M) was surprising. The endo selectivity increased gradually with decreasing the temperature and no inversion temperature was detected (see Table 3.13 and Figure 3.40).

![Reaction scheme](image)

Table 3.13: Temperature dependence of the diastereoselectivity of the Paternò-Büchi reaction of 2,3-dihydrofuran with propionaldehyde at (1M & 5M) in n-hexane.

<table>
<thead>
<tr>
<th>Entry</th>
<th>T (°C)</th>
<th>d.r. (endo : exo)[a]</th>
<th>d.r. (endo : exo)[b]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>45.3 : 54.7</td>
<td>47.7 : 52.3</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>48.4 : 51.6</td>
<td>43.8 : 56.2</td>
</tr>
<tr>
<td>3</td>
<td>-10</td>
<td>50.5 : 49.5</td>
<td>41.4 : 58.6</td>
</tr>
<tr>
<td>4</td>
<td>-15</td>
<td>54.6 : 45.4</td>
<td>37.3 : 62.7</td>
</tr>
<tr>
<td>5</td>
<td>-25</td>
<td>56.6 : 43.4</td>
<td>35.7 : 64.3</td>
</tr>
<tr>
<td>6</td>
<td>-32</td>
<td>57.4 : 42.6</td>
<td>37.1 : 62.9</td>
</tr>
<tr>
<td>7</td>
<td>-42</td>
<td>58.9 : 41.1</td>
<td>42.2 : 47.8</td>
</tr>
<tr>
<td>8</td>
<td>-52</td>
<td>61.5 : 38.5</td>
<td>48.0 : 52.0</td>
</tr>
<tr>
<td>9</td>
<td>-61</td>
<td>61.7 : 38.3</td>
<td>52.4 : 47.6</td>
</tr>
<tr>
<td>10</td>
<td>-72</td>
<td>63.2 : 36.8</td>
<td>58.1 : 41.9</td>
</tr>
<tr>
<td>11</td>
<td>-78</td>
<td>63.6 : 36.4</td>
<td>63.3 : 36.7</td>
</tr>
</tbody>
</table>

[a] 1M, [b] 5M.

This selectivity reversal could be detected for both acetaldehyde and 3-methylbutyraldehyde-additions to 2,3-dihydrofuran in a temperature region that is experimentally accessible. A marginal change in activation parameter, however, “catapults” this effect out of the experimental window (+40 to –78 °C). This might have been the reason why I did not detect an inversion effect in the propionaldehyde photocycloaddition. If this assumption is true, a change in substrate concentration might shift the inversion region back into the experimentally accessible range. Thus, the temperature dependence of propionaldehyde/2,3-
dihydrofuran system at 5M (both substrates) was measured, and indeed an inversion point at –27°C was detected (see Table 3.13 & Figure 3.42).

![Figure 3.41: 1H-NMR analysis of propionaldehyde/2,3-dihydrofuran photocycloaddition reaction at 1M and 5M.](image)

![Figure 3.42: Eyring plots of the Paternò-Büchi reaction of 2,3-dihydrofuran 2 with propionaldehyde 1c at 1M and 5M in n-hexane.](image)

Presumably, in this case an increase in concentration led to a low-temperature shift of the inversion region (Figure 3.42). The reverse should be observed in reactions with their inversion points at low temperatures; which could be shifted to higher temperature with concentration variation.

In order to determine kinetic parameters out of the experimental results, we simulated the curves shown in Figure 3.42 in collaboration with Dr. Gudipati. The simulations have been carried out based on the following considerations: the amount of product P_j formed, which in
the present case is either the *exo* or *endo* oxetane 3 from the singlet and triplet channels, is given by equation (1):

\[P_j = A_j \cdot e^{-\frac{E_j}{RT}} \]

(1)

with the four channels \((j)\) being *exo* \((j = 1)\) and *endo* \((j = 2)\) from the singlet state, as well as *exo* \((j = 3)\) and *endo* \((j = 4)\) from the triplet state of the aldehyde. As the lifetime of the \(S_1\) state of aliphatic aldehydes is of the order of \(\sim 1\) ns,\(^8^5\) the reaction probability from the singlet channel is further restricted by molecular diffusion in order to encounter the reaction partner during the lifetime of the singlet state in diluted solutions. Under such conditions the photophysical deactivation processes compete with the photochemical channels. Thus, in dilute solutions, the probability of reaction from the singlet channel \((R_S)\) decreases and the probability of triplet population \((\phi_T)\) increases. On the other hand, when the concentrations of the aldehyde and olefin are increased, though one expects reaction from the singlet channels to dominate, in reality other processes like collisional quenching of the excited singlet and triplet aldehyde by the ground-state aldehyde can not be ignored. If the temperature is lowered, then diffusion controlled diminution of the reaction from the singlet channel is to be expected. Due to the ca. 200 times longer lifetime of the \(T_1\) state of the aldehyde \((200-400\) ns)\(^8^5\) the reaction probability \((R_T)\) from the triplet channel should be less dependent on the temperature. From previous studies we know that at concentrations above 1M, the reaction takes place only through the singlet channel at room temperature. Normalized temperature dependent reaction probabilities from the singlet and triplet channels with respect to room temperature \((300\) K) can be approximated by equation \((2a & 2b)\). Here \(n\) reflects the non-linearity of the temperature dependent contributions from molecular diffusion, viscosity and concentration.

\[R_S = \left(\frac{T}{300K}\right)^n \]

\[R_T = (1-R_S)\phi_T \]

\[(2a) \]

\[(2b) \]

From the concentration studies at 300K, we know the *endo/exo* ratios for pure singlet and pure triplet channels.\(^9^7\) By using this information we can reduce the number of parameters as follows:

\[S_{endo/exo}^{300K} = \frac{P_2}{P_1} = \frac{A_2}{A_1} \cdot e^{-\frac{(E_2-E_1)}{300R}} \]

\[(3) \]

\[E_i = E_i + 300R \cdot \ln \left(\frac{S_{endo/exo}^{300K} \cdot A_1}{A_2} \right) \]

\[(4) \]

similarly, for the triplet channel:
3. Results & Discussion

\[E_3 = E_4 + 300R \cdot \ln \left(\frac{S_{\text{endo}}^{300K} \cdot A_3}{A_4} \right) \]

(5)

Thus, the temperature-dependent overall endo/exo ratio \(\Sigma \) is given by equation (6).

\[\Sigma_{\text{endo/exo}}^T = \frac{R_S P_2 + (1 - R_S) \Phi_T P_4}{R_S P_1 + (1 - R_S) \Phi_T P_3} \]

(6)

The simulated endo/exo selectivity using these eight parameters for 1M and 5M concentrations of propionaldehyde and dihydrofuran are shown in Figure 3.43.

![Figure 3.43: Simulation of temperature dependence of the Paternò-Büchi reaction of 2,3-dihydrofuran 2 with propionaldehyde 1c at 1M and 5M.](image)

The reliability of the present simulations (notwithstanding the high number of parameters) comes from the fact that after fitting the experimental data from 5M solutions, all the other parameters were fixed and only \(n \) and \(\Phi_T \) were varied to simulate the curve for the 1M data. It should be noted that these variable parameters are not independent, but are highly correlated with each other.

<table>
<thead>
<tr>
<th>Conc.</th>
<th>(E_1^{[a]})</th>
<th>(E_2)</th>
<th>(E_3)</th>
<th>(E_4)</th>
<th>(A_1)</th>
<th>(A_2)</th>
<th>(A_3)</th>
<th>(A_4)</th>
<th>(n)</th>
<th>(\Phi_T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5M</td>
<td>157</td>
<td>8992</td>
<td>-12.5</td>
<td>5.8</td>
<td>0.054</td>
<td>1.599</td>
<td>0.057</td>
<td>0.327</td>
<td>8.99</td>
<td>0.0079</td>
</tr>
<tr>
<td>1M</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>0.88</td>
<td>0.9975</td>
</tr>
</tbody>
</table>

[a] J/Mol.
The qualitative interpretation of the “selectivity-inversion” is as follows: from the singlet channel the activation barrier for the formation of the \(\text{exo} \) product is much smaller than for the \(\text{endo} \) product. However, the pre-exponential factor for the \(\text{endo} \) product is larger than for the \(\text{exo} \) product. With decreasing temperature, the exponential part dominates and more \(\text{exo} \) product is formed than the \(\text{endo} \) product.

The situation is completely different for triplet channel, namely, the formation of both the \(\text{endo} \) and \(\text{exo} \) products has almost no barrier whereas the pre-exponential factors favor the formation of the \(\text{endo} \) product. Due to the lack of activation barrier for both the products, one should expect no temperature dependence of \(\text{endo}/\text{exo} \) ratio from the triplet channel. This has been experimentally proven, as discussed earlier, in the case of photocycloaddition of benzaldehyde (1a) with 2 (\textit{vide supra}). If in this case the reaction probabilities \(R_S \) and \(R_T \) were not temperature dependent, then one should not observe any „selectivity inversion“. The temperature dependent reaction probabilities \(R_S \) and \(R_T \) are reflected in the values \(n \) and \(\phi_T \).

For the 5M data, \(n \) is large, reflecting faster decrease in the reaction probability \((R_S) \) from the singlet channel. This may be due to quenching of the excited singlet aldehyde molecule by the ground-state aldehydes. Similarly, the relative triplet quantum yield, \(\phi_T \), is very small, implying that at higher concentrations the majority of the excited singlet aldehyde molecules undergo reaction or get deactivated. For the 1M data, \(n \) is small and the value \(R_S \) decreases less steeply with temperature and \((1-R_S) \) increases correspondingly from the initial value of 0 at 300 K. Simultaneously, the relative triplet population \(\phi_T \) is predicted to be close to unity.

Thus, both singlet and triplet channels compete with each other at 1M concentration. With decreasing temperature, the triplet contribution increases. Due to larger \(\text{endo}/\text{exo} \) selectivity from the triplet channels \((5.6)^{97} \) with decreasing temperature, the total \(\text{endo}/\text{exo} \) ratio increases steadily.

The simulations do not indicate an abrupt change in the selectivity correlation like in isoinversion curves,\(^{68} \) but a inversion region as described by Hale and Ridd.\(^{99} \)
3. Results & Discussion

3.5 Paternò-Büchi reactions of cis and trans cyclooctene with aliphatic aldehydes

3.5.1 Synthesis of trans-cyclooctene

Trans-cyclooctene was not commercially available and was prepared by photoisomerisation of cis-cyclooctene using dimethylisophthalate as a sensitizer.100 Another method was applied to improve the yield.101 In this method, trans-cyclooctene was obtained by irradiation of a solution of Cu\textsubscript{2}Cl\textsubscript{2} in a 2.6 fold excess of cis-cyclooctene at 250 nm for 24h. Unisomerized cis-cyclooctene was removed in \textit{vacuo} and the Cu(I) salts were successively extracted with aqueous ammonia and cyanide. Separation of trans from cis was accomplished by taking advantage of the better solubility of trans-cyclooctene in aqueous silver nitrate solution.

\[\text{CO}_2\text{CH}_3 \quad \text{CO}_2\text{CH}_3 \]

\(\text{h} \nu \)

\[\text{Cu}_2\text{Cl}_2 \]

\(\text{h} \nu \)

\[\text{Z)-17 (Z)-17 (E)-17} \]

\[\text{(Z)-17} \]

\[\text{(E)-17} \]

\[\text{(Z)-17} \]

\[\text{Scheme 3.24: Synthesis of trans-cyclooctene.} \]

3.5.2 Irradiation of cis-cyclooctene with propionaldehyde

The [2+2]-cycloaddition of propionaldehyde with cis-cyclooctene in benzene afforded three products with high chemoselectivity.

\[\text{1c} \quad \text{(Z)-17} \]

\[\text{hv benzene} \]

\[\text{cc-18} \]

\[\text{tt-18} \]

\[\text{te-18} \]

\[\text{Scheme 3.25: Paternò-Büchi reaction of cis-cyclooctene with propionaldehyde.} \]

The relative configurations of the cis-fused oxetanes cc-18 and tc-18 were determined by proton and carbon chemical shift comparison with literature data57,70,74 and CH-COSY. The assignment of the configuration of the trans-fused product tt-18 resulted from a comparison of chemical shift data of the oxetane ring hydrogen and carbon resonates with the structurally related tc-18 (see Table 3.15 & experimental section).
3. Results & Discussion

Table 3.15: Comparison of the 1H-NMR chemical shift (δ_{ppm}) of H^a of cyclooctene-propionaldehyde photoadducts with cyclohexadiene-propionaldehyde photoadducts.

<table>
<thead>
<tr>
<th>Compound</th>
<th>cc-18</th>
<th>cc</th>
<th>tt-18</th>
<th>tc-18</th>
<th>tc</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ_{ppm} (H^a)</td>
<td>4.63</td>
<td>4.63</td>
<td>4.25</td>
<td>4.13</td>
<td>3.89</td>
</tr>
</tbody>
</table>

When the substrate concentration was lowered from 5M to 0.01M, a distinct sharp increase in the relative amount of *trans*-fused oxetane tt-18 resulted between 3 and 1M concentration (Figure 3.44 & 3.45).

Figure 3.44: Concentration dependence of the photocycloaddition of propionaldehyde to *cis*-cyclooctene.

Figure 3.45: 13C-NMR analysis of the stereoisomers of propionaldehyde cycloaddition to *cis*-cyclooctene.

Additionally, the ratio between the *cis*-fused *exo* and *endo*-configured diastereoisomers cc-18 and tc-18 did respond to changes in concentrations in a similar fashion as already determined for less complicated cases, i.e. the Paternò-Büchi reaction of aliphatic aldehydes to cyclic enol ether. At high substrate concentrations preferentially singlet reactivity was observed with low (simple) *endo/exo*-selectivity whereas at low concentrations the *endo*-diastereoisomer dominated with a limiting *endo/exo* ratio of 58 : 42.
Fluorescence quenching of propionaldehyde by cis-cyclooctene was observed and from the concentration dependence (Stern-Volmer analysis) the bimolecular quenching rate constant of 2.2×10^8 m$^{-1}$ s$^{-1}$ was determined (Figure 3.46 & 3.47).

![Figure 3.46: Fluorescence quenching of propionaldehyde (0.2M) by cis-cyclooctene (0.02 – 1.00 M) in benzene at 25°C.](image1)

![Figure 3.47: Stern-Volmer plot for the fluorescence quenching of propionaldehyde by cis-cyclooctene.](image2)

The change from the singlet-determined to triplet determined stereoselectivity occurs parallel to the increase in trans-isomer tt-18 formation indicating that the triplet 1,4-biradical involved in the photocycloaddition of the triplet excited aldehyde to (Z)-17 preferentially converts to the singlet potential energy hypersurface at points which essentially differ from the corresponding reaction channel involving the singlet excited carbonyl species. It was also striking to find that only one out of the two possible diastereoisomeric trans-fused oxetanes was formed: only isomer tt-18 was detected and none (i.e.< 5 %) of the ct-isomer. The low content of tt-18 at high substrate concentrations (Figure 3.44) indicated that this product is predominantly formed via the triplet 1,4-biradical. Thus, the diastereoselectivity of the triplet photocycloaddition path in the reaction of propionaldehyde to cis-cyclooctene is remarkably higher for the formation of trans-fused products than as for the formation of cis-fused products.

3.5.3 Irradiation of trans-cyclooctene with propionaldehyde

In order to compare this selectivity behaviour with the reactivity of trans-cyclooctene (E)-17, the product pattern of the photocycloaddition of propionaldehyde to mixtures of (Z)-17 and (E)-17 with increasing amounts of the trans-isomer was investigated.
3. Results & Discussion

Scheme 3.26: Paternò-Büchi reaction of trans-cyclooctene with propionaldehyde.

The oxetane compositions of the photoadducts were detected from 2M starting material concentration; the results are depicted in Figure 3.48.

Figure 3.48: Photocycloaddition of propionaldehyde with a mixture of cis & trans-cyclooctene.

Figure 3.48 shows that, even from high proportions of trans-17, only the tt-18 isomer was detected and none of ct-18. This shows that the 1,4-triplet biradicals preceding the formation of tt-18 are identical from cis-17 and trans-17. The selectivity values have been corrected to low conversions and thus the appearance of tt-18 is not connected to cis-trans isomerisation of cis-17 under the reaction conditions.

3.5.4 Irradiation of cis-cyclooctene with acetaldehyde

Analogous to propionaldehyde, the photocycloaddition of cyclooctene with acetaldehyde furnished three diastereoisomers cc-19, tc-19 and tt-19.

Scheme 3.27: Paternò-Büchi reaction of cis-cyclooctene with acetaldehyde.
Again, the relative configurations of the photoadducts were unambiguously assigned from the 1H-NMR spectroscopy of the crude reaction mixture and reconfirmed by comparison with data from cyclohexene-acetaldehyde photoadduct (Table 3.16).

Table 3.16: Comparison of the 1H-NMR chemical shift (δ_{ppm}) of H^a of cyclooctene-acetaldehyde photoadducts with cyclohexene-acetaldehyde photoadducts.

<table>
<thead>
<tr>
<th>Compound</th>
<th>δ_{ppm} (H^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cc-19</td>
<td>4.94</td>
</tr>
<tr>
<td>cc</td>
<td>4.94</td>
</tr>
<tr>
<td>tt-19</td>
<td>4.44</td>
</tr>
<tr>
<td>tc-19</td>
<td>4.55</td>
</tr>
<tr>
<td>tc</td>
<td>4.36</td>
</tr>
</tbody>
</table>

Under high concentration conditions (> 3M) less than 10 % of tt-19 was formed beside a 1 : 1 mixture of cc-19 and tc-19, whereas under low concentration conditions (< 0.05M) 62 % of tt-19 was observed together with 38 % of a 2 : 1 mixture of cc-19 and tc-19 (Table 3.17). Thus, the tt-isomer is formed by singlet/triplet photocycloaddition of 1b to trans-cyclooctene as well as by triplet photocycloaddition of 1b to cis-cyclooctene.

Table 3.17: Concentration dependence of the diastereoselectivity of the acetaldehyde/cis-cyclooctene photocycloaddition reaction.

<table>
<thead>
<tr>
<th>Conc. (M)</th>
<th>d.r. (cc-19 : tc-19 : tt-19)$^{[a]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>45.6 : 46.9 : 7.5</td>
</tr>
<tr>
<td>3</td>
<td>46.4 : 41.9 : 11.7</td>
</tr>
<tr>
<td>2</td>
<td>43.7 : 37.4 : 18.9</td>
</tr>
<tr>
<td>1</td>
<td>46.3 : 32.8 : 20.9</td>
</tr>
<tr>
<td>0.5</td>
<td>45.6 : 31.2 : 23.2</td>
</tr>
<tr>
<td>0.1</td>
<td>43.3 : 26.3 : 30.4</td>
</tr>
<tr>
<td>0.05</td>
<td>39.6 : 22.0 : 38.4</td>
</tr>
<tr>
<td>0.025</td>
<td>40.6 : 21.2 : 38.2</td>
</tr>
</tbody>
</table>

[a] Determined by means of 1H-NMR spectroscopic analysis of the crude product mixture.

The results indicate a moderate but still significant spin correlation effect in the Paternò-Büchi reaction of cyclooctenes with aliphatic aldehydes; the exo-diastereoisomers tc-18, tc-19 were formed with similar probability than the endo-diastereoisomers cc-18, cc-19 in the singlet

78
manifold of the excited carbonyl species, whereas the triplet excited aldehydes preferred the formation of the endo-diastereoisomers cc-18, cc-19 and the trans-fused products tt-18, tt-19.

Scheme 3.28: Mechanistic scenario for the cyclooctene triplet photocycloaddition reaction from (Z)- and (E)-17.

The preference of endo-isomers in triplet photocycloaddition reaction can be rationalized on the basis of the already described spin-orbit coupling (SOC) model which controls intersystem crossing geometries favorable for product formation from the triplet 1,4-biradical intermediate, a concept which has recently been corroborated by a profound ab initio study. Following the classical “90° rule” as originally described in the Salem rules, the triplet 2-oxatetramethylene biradical intermediate 3BRc (Scheme 3.28) is expected to prevail due to minimized steric interactions between the substituent R and the localized hydrogen atom at C-4. The radical-radical combination is coupled to a torque (indicated by the curved arrow) leads to the endo-(cc) diastereoisomer. In competition with this process, bond rotation about the central C-C single bond driven by release of gauche strain generates the isomeric triplet biradical intermediate 3BRt which exhibits a similar orbital orientation minimizing steric interactions. In this case, however, the formation of the trans-trans-diastereoisomer is largely preferred because the biradical conformer 3BRt preceding the terminating bond formation has an optimal substituent orientation. The alternative structure leading to the ct-isomer is reasonably expected to be much higher in energy due to severe steric repulsion between the R group and the trans-cyclooctene ring.
3. Results & Discussion

3.6 Paternò-Büchi reactions of allylic alcohols and acetates with aldehydes
The following questions were addressed in this investigation: (a) is there a specific spin-directing effect connected with hydrogen-bonding, (b) do hydrogen-bonding interactions influence induced as well as noninduced (simple diastereoselectivity) of the Paternò-Büchi reaction?, (c) does hydrogen-bonding effects the rate of the Paternò-Büchi reaction?
The role of hydrogen-bonding interactions in the Paternò-Büchi reaction of allylic alcohols can be easily tested by comparison of the free alcohols with O-protected substrates, i.e. the corresponding acetates.

3.6.1 Synthesis of allylic alcohols and acetates
Two allylic alcohols were used in this study, prenol 21, which was commercially available and mesitylol 22 which was prepared via reduction of mesityl oxide in dry ether with LiAlH₄.¹⁰²

![Scheme 3.29: Synthesis of mesitylol.](image)

Stirring of an equimolar ratio of prenol as well as mesitylol with acetic anhydride in the presence of catalytic amount of pyridine at room temperature, respectively, led to formation of the corresponding allylic acetates 23¹⁰³ and 24¹⁰⁴ in high yields.

![Scheme 3.30: Synthesis of prenyl acetate and mesityl acetate.](image)

3.6.2 Simple diastereoselectivity

3.6.2.1 Photolysis of prenol with aldehydes
As a typical triplet precursor, benzaldehyde 1a was irradiated in benzene in the presence of prenol 21. Additionally, three aliphatic aldehydes (acetaldehyde 1b, propionaldehyde 1c & 3-
methylbutyraldehyde 1d) which can react either from their singlet as well as triplet excited states were applied (all substrate 0.1M).

\[
\text{R-OH} + \text{H} \rightarrow \text{hv} \rightarrow \text{R-O} + \text{H}
\]

Scheme 3.31: Paternò-Büchi reaction of prenol with aldehydes.

Table 3.18: Simple diastereoselectivity of the photocycloaddition of 1a-d with 21.

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>d.r. (cis:trans)[a]</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ph</td>
<td>> 97 : 3</td>
<td>80</td>
</tr>
<tr>
<td>B</td>
<td>Me</td>
<td>81 : 19</td>
<td>85</td>
</tr>
<tr>
<td>C</td>
<td>Et</td>
<td>86 : 14</td>
<td>86</td>
</tr>
<tr>
<td>D</td>
<td>Bu'</td>
<td>83 : 17</td>
<td>82</td>
</tr>
</tbody>
</table>

\[a\] Determined by means of \(^1\text{H}-\text{NMR}\) spectroscopic analysis of the crude product mixture.

The structure of oxetanes were assigned on the basis of the spectroscopic analyses (\(^1\text{H}-\text{NMR} \) and \(^{13}\text{C}-\text{NMR}\)) and mass spectra. In the \(^1\text{H}-\text{NMR}\) spectrum, the hydrogen on the carbon α to oxygen of an oxetane ring has a chemical shift 4.00 - 4.45 ppm which in good agreement with the data reported by Arnold.\(^{105}\) The mass spectra of compound 25a and 25c support the oxetane structure but are not conclusive for their structure. The molecular ion peaks are not observed (usual situation for oxetanes)\(^{106}\) and the most important fragmentation is cleavage to prenol and a charged carbonyl fragment, the latter then undergoing further decomposition.

Figure 3.49: \(^1\text{H}-\text{NMR} \) (300 MHz, CDCl\(_3\)) spectrum of 25a.

Figure 3.50: \(^{13}\text{C}-\text{NMR} \) (75 MHz, CDCl\(_3\)) spectrum of 25a.
3. Results & Discussion

From all substrate combinations, the \textit{cis}-oxetanes were formed as the major diastereoisomers in good yields. The relative configurations of the major diastereoisomers were unambiguously determined from the NOE effects which were detected for one of the \textit{gem}-methyl groups at the oxetane ring by saturation of both methine hydrogens at C-2 and C-4 of 25c (Figure 3.53 & 3.54). NOE enhancements were also detected for the methylene hydrogens of the hydroxymethyl and the ethyl substituents at C-2 and C-4 by saturation of the second methyl group. The pseudoaxial methyl group at C-3 ($\delta = 0.83$ ppm) is shifted upfield by ca. 0.2 ppm with respect to the other methyl ($\delta = 0.98$ ppm).

![Figure 3.53: NOE-effects for oxetane 25c.](image)

The diastereomeric values were nearly identical for the three aliphatic aldehydes but higher with benzaldehyde (> 97 : 3) (Table 3.18).
3. Results & Discussion

3.6.2.2 Photolysis of prenyl acetate with aldehydes

Analogous to prenol, the [2+2] photocycloaddition reaction of prenyl acetate with aldehydes in benzene afforded two diastereoisomers *cis*-26a-d and *trans*-26a-d in good yield.

![Diagram of the reaction](image)

Scheme 3.32: Paternò-Büchi reaction of prenylacetate with aldehydes.
3. Results & Discussion

Table 3.19: Simple diastereoselectivity of the photocycloaddition of 1a-d with 23.

<table>
<thead>
<tr>
<th>Entry</th>
<th>R =</th>
<th>d.r. (cis : trans)(^{[a]})</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ph</td>
<td>93 : 7</td>
<td>75</td>
</tr>
<tr>
<td>B</td>
<td>Me</td>
<td>77 : 23</td>
<td>80</td>
</tr>
<tr>
<td>C</td>
<td>Et</td>
<td>81 : 19</td>
<td>83</td>
</tr>
<tr>
<td>D</td>
<td>Bu(^{i})</td>
<td>80 : 20</td>
<td>85</td>
</tr>
</tbody>
</table>

\(^{[a]}\) Determined by means of \(^{1}\)H-NMR spectroscopic analysis of the crude product mixture.

The chemical structure of compounds 26a-d were established by IR, \(^{1}\)H-NMR, \(^{13}\)C-NMR and mass spectrometry. The \(^{1}\)H-NMR showed signals at \(\delta\) 4.53 and 4.64 ppm indicated two methine hydrogens on carbons \(\alpha\) of oxetanes ring. The \(^{13}\)C-NMR spectra of compounds 26a-d showed signal at \(\delta\) 39 ppm for the quaternary carbon confirmed the regioselective addition of aldehydes to prenyl acetate. In the IR spectra, the peak at 1710 cm\(^{-1}\) suggests the presence of (C=O) carbonyl ester group.

Interestingly, the diastereomeric cis/trans ratio of compounds 26a-d slightly decreased by comparison with compounds 25a-d (Table 3.19).

![Figure 3.55: \(^{1}\)H-NMR (300 MHz, CDCl\(_3\)) spectrum of 26a.](image)

![Figure 3.56: \(^{13}\)C-NMR (75MHz, CDCl\(_3\)) spectrum of 26a.](image)
3. Results & Discussion

Conclusion I

The regioselectivity of the Paternò-Büchi reaction with prenol as well as prenyl acetate is high and corresponds to the classical biradical stabilization concept.\(^{107}\) The comparison shows that hydrogen-bonding effects are not responsible for controlling the product regioselectivity. The simple diastereoselectivity is moderately high for aliphatic aldehydes reacting with prenol and very high for benzaldehyde with prenol. Comparing these numbers with prenyl acetate shows, that hydrogen-bonding effects might slightly increase the simple diastereoselectivity, but also other reasons like steric effects might explain the marginal differences.

From the numbers in Table 3.18 & 3.19, one can unambiguously derive that the triplet excited carbonyl state reacts highly cis-selective with prenol and prenyl acetate. This effect strongly resembles the pronounced endo-selectivity which was observed for the Paternò-Büchi reaction of aromatic aldehydes with cycloalkenes. This contrathermodynamic selectivity is again rationalized by the assumption of spin-orbit coupling (SOC) controlled intersystem crossing (ISC) geometries at the stage of the triplet 1,4-biradical (1,4-\(^3\)BR). Optimal ϕ-values for strong SOC are in the range of $90^\circ \pm 10^\circ$. This model presupposes conformational mobility at this intermediate stage in contrast to the reaction of singlet excited carbonyl states where conical intersections guide the substrates to the cycloaddition products nearly barrier-free.\(^{51}\) A view along the central C-C bond of the intermediate triplet 1,4-biradical (Figure 3.59) shows the relevant contribution to this high degree of stereocontrol: increasing gauche interactions are expected for biradical approach from the same half space as the hydroxymethyl or acetoxyethyl group, respectively.
3. Results & Discussion

Thus, the approach of the two radical centers is expected to proceed preferentially as shown in Figure 3.59 leading to the cis-diastereoisomer. An additional internal hydrogen-bonded interaction between the primary hydroxy group and the oxygen atom at position 2 of the 1,4-3BR slightly increases this conformational preference.

3.6.3 Spin-directed simple diastereoselectivity

In order to evaluate the differences in simple diastereoselectivity of the Paternò-Büchi reaction in the singlet and in the triplet channel, the concentration dependence of the reaction of propionaldehyde with prenol and prenyl acetate was investigated. As already described for analogous reactions with 2,3-dihydrofuran as alkene component, the spin profile of a bimolecular photochemical reaction can be traced by variation of substrate concentrations provided that the lifetime of the excited singlet state allows diffusion-controlled processes. This is the case of aliphatic aldehydes which have lifetimes in the 1-2 ns range.85

Figure 3.60: Concentration dependence of the propionaldehyde photocycloaddition with prenol and prenyl acetate.
3. Results & Discussion

At higher alkene concentration (alkene and aldehyde were used in equimolar concentrations) the simple cis/trans-stereoselectivity is identical (ca. 2 : 1) with both substrates prenol and prenyl acetate. In the low concentration region, the selectivity increases constantly to values > 9 : 1 always with the prenol reactions being slightly more selective.

Conclusion II

The curvature of the spin map indicates, that very high selectivities are expected for “pure” triplet reactions, whereas the singlet excited carbonyls only give moderate selectivities. This perfectly corresponds to the results on the spin-directed Paternò-Büchi reaction with cyclic alkenes and clearly shows that the SOC-determined ISC-geometry model is a powerful rationale for explaining simple diastereoselectivities originating from 1,4-triplet biradical combination.

3.6.4 Enhanced reactivity of allylic alcohols

Competition experiments were performed in order to examine the difference in reactivity comparing free and O-protected allylic alcohols. As a standard olefin, 2,3-dihydrofuran in equimolar concentrations (1.0M) as the aldehyde and the acyclic alkene was applied.

Scheme 3.33: Competition experiments.

Table 3.20: Results of competition experiment.

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>R¹</th>
<th>Conc. (M)</th>
<th>25,26 : 3²³</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ph</td>
<td>H</td>
<td>1.0</td>
<td>47 : 53</td>
</tr>
<tr>
<td>B</td>
<td>Et</td>
<td>H</td>
<td>1.0</td>
<td>55 : 45</td>
</tr>
<tr>
<td>C</td>
<td>Et</td>
<td>H</td>
<td>0.01</td>
<td>60 : 40</td>
</tr>
<tr>
<td>D</td>
<td>Et</td>
<td>Ac</td>
<td>1.0</td>
<td>13 : 87</td>
</tr>
</tbody>
</table>

[a] Determined by means of ¹H-NMR spectroscopic analysis of the crude product mixture.

Firstly, benzaldehyde was applied as precursor to a triplet excited carbonyl state: from the ratio of prenol-cycloadduct 25a and the adduct with dihydrofuran 3, it was concluded that the
alkenes have similar reactivities toward triplet excited carbonyls (Table 3.20, entry A). In a second experiment, propionaldehyde was used in high (1.0M) and low (0.01M) concentrations in order to trace spin effects. The triplet reactivity of propionaldehyde was slightly higher with prenol than with 2,3-dihydrofuran, an effect which vanished with increasing amount of singlet-derived products (Table 3.20, entry B,C). When prenyl acetate was applied, the adduct 26c was observed in minor quantities and the dihydrofuran adduct prevailed. Thus, the reactivity difference between prenol and prenyl acetate is about a factor 3 which can originate either from hydrogen bonding interactions or simply from the electronic deactivation of the alkene.

3.6.5 Induced and simple diastereoselectivity with chiral allylic alcohols

3.6.5.1 Photolysis of mesitylol with aliphatic aldehydes

When the aliphatic aldehydes, which gave moderate simple diastereoselectivities with prenol, were irradiated with mesitylol, only one cis-diastereoisomers were obtained in high (induced) threo-diastereoselectivities (>95 : 5) from the NMR analysis of the crude reaction mixture. This result is fitted well with the results published by Adam in the photocycloaddition of the triplet excited benzophenone with chiral allylic alcohols.73

```
R O
  H
+ OH \(\text{hv benzene 1M} \) \(\text{threo-27b-d} \)
\(\text{d.r.} > 95 : 5\)
```

Scheme 3.34: Paternò-Büchi reaction of mesitylol with aliphatic aldehydes.

The chemical structure of the compounds 27b-d were assigned by \(^1\text{H}-\text{NMR}\) and \(^{13}\text{C}-\text{NMR}\) analyses. Again, the \(^{13}\text{C}-\text{NMR}\) spectrum showed a signal at \(\delta 40.0\) ppm for the quaternary carbon and confirmed the regiochemical addition of mesitylol to aldehydes. The IR spectra of compounds 27b-d exhibit a broad absorption bands at 3300 cm\(^{-1}\) to the free OH group.
3. Results & Discussion

3.6.5.1 Photolysis of mesityl acetate with acetaldehyde

In contrast to mesitylol, when the mesityl acetate was reacted with acetaldehyde, a mixture of all four diastereoisomers resulted, and the *threo/erythro*-selectivity for the *cis*-isomers dropped.

\[
\text{Scheme 3.34: Paternò-Büchi reaction of mesityl acetate with acetaldehyde.}
\]

The relative configuration of the four stereoisomers of compound \(28b\) was assigned by comparing the chemical shifts of the methine hydrogen in the oxetane ring with the literature data from Adam group.\(^{73a,b}\)

Conclusion III

In light of the mechanistic picture shown in Figure 3.59, an increase in bulk of the hydroxyalkyl chain is expected to lead to an increase in simple diastereoselectivity due to increasing steric interaction in one half-space of the ISC-reactive conformer. This effect was also apparent for the corresponding allylic acetate and thus is not coupled with hydrogen-bonding interactions and also vanishes in the singlet manifold (Figure 3.60). When allylic 1,3-
strain operates (as in substrates 22 & 24), an additional selectivity increase is observed which is connected with hydrogen-bonding interaction with singlet as well as triplet excited carbonyl states prior to bond formation. Surprisingly, also the induced (threo) stereoselectivity was also high with aliphatic aldehydes. This fact, in contrast to the simple diastereoselectivity, cannot be explained by assuming SOC-determined ISC-geometries, because at the given substrate concentrations a noticeable amount of singlet reactivity must be assumed (Scheme 3.36). Also this singlet path gives rise to high selectivity and thus hydrogen bonding interaction in the singlet as well as triplet channel prior to bond formation is most probably.

Scheme 3.36: Mechanistic scenario for singlet and triplet Paternò-Büchi reaction of allylic alcohols and acetates.
3. Results & Discussion

3.7 Diastereoselective photochemical synthesis of α-amino-β-hydroxy carboxylic acid derivatives by photocycloaddition of carbonyl compounds to oxazoles

The interest in α-amino-β-hydroxy acids, a class of primary metabolites, is based on their biological activity as enzyme inhibitors and as starting materials for the synthesis of complex molecules.108 For example, β-hydroxy tyrosine and β-hydroxy phenylalanine derivatives are found as parts of clinically important glycopeptide antibiotics, which include teicoplanin, ristocetin, actaplanin A4696 and A33512b.109 The “photoaldol route” has been initially developed by Schreiber \textit{et al.} as a powerful photochemical tool for the synthesis of \textit{threo} β-hydroxy carbonyls compounds.110 Recently, Griesbeck and Fiege reported on the first example of oxazole-carbonyl photocycloaddition as an efficient route to \textit{erythro} α-amino-β-hydroxy ketones.81 It was thus of interest to extend the photo aldol route to the synthesis of α-amino-β-hydroxy acids which could be accessible \textit{via} photocycloaddition reaction of 5-methoxy oxazoles with carbonyl compounds.

3.7.1 Synthesis of oxazole substrates

3.7.1.1 Synthesis of 5-methoxy-2-methyl oxazole

5-Methoxy-2-methyl oxazole was prepared from glycine \textit{via} protection as the glycine methyl ester hydrochloride, followed by acylation with acetyl chloride in the presence of triethyl amine to give 31 which upon heating with POCl\textsubscript{3} in chloroform afforded oxazole 32 in good yield.111,112

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{CO}_2\text{H} + \text{CH}_3\text{OH/SOCl}_2 \quad (i) \quad 0-10^\circ\text{C} \\
29 & \quad \text{ClH}_3\text{N} + \text{CO}_2\text{CH}_3 \\
& \quad (ii) \quad \Delta, \quad 3\text{h.} \\
\text{ClH}_3\text{N} & \quad \text{CO}_2\text{CH}_3 \\
30 & \quad \text{AcHN} + \text{CO}_2\text{CH}_3 \\
& \quad \text{TEA/CHCl}_3 \\
& \quad 0^\circ\text{C}, \quad 30 \text{ min.} \\
\text{AcHN} & \quad \text{CO}_2\text{CH}_3 \\
31 & \quad \text{H}_2\text{C} + \text{OCH}_3 \\
& \quad \text{POCl}_3/\text{CHCl}_3 \\
& \quad \Delta, \quad 6\text{h.} \\
\text{H}_2\text{C} & \quad \text{OCH}_3 \\
32 & \quad \text{N} \\
& \quad \text{O} \\
\text{N} & \quad \text{O} \\
\end{align*}
\]

\textbf{Scheme 3.37:} Synthesis of 5-methoxy-2-methyl oxazole.

The structure of compound 32 was established on the basis of spectroscopic data. For example, the IR spectrum showed two absorption bands at 1589 and 1625 cm-1 correspond to
the presence of C=N and C=C groups, respectively. The 1H-NMR spectrum shows the olefinic hydrogen resonance at 5.87 ppm.

Figure 3.63: 1H-NMR spectrum (300 MHz, CDCl$_3$) of 32.

Figure 3.64: 13C-NMR spectrum (75 MHz, CDCl$_3$) of 32.

3.7.1.2 Synthesis of 4-substituted 2-methyl-5-methoxy oxazoles

A convenient method for the synthesis of 5-methoxy oxazoles with additional substituents at position C-4 is the reaction of an N-acetyl-L-aminoacid methyl ester with PCl$_5$ as dehydrating agent following a Robinson-Gabriel synthesis as shown in Scheme 3.38.113,114,115

Scheme 3.38: Synthesis of 4-substituted 2-methyl-5-methoxy oxazoles.
3. Results & Discussion

Table 3.21: Characteristic properties of 4-substituted 2-methyl-5-methoxy oxazoles.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R =</th>
<th>(^1\text{H-NMR}[\text{a}])</th>
<th>(^{13}\text{C-NMR}[\text{b}])</th>
<th>B.p (10) torr (\circ\text{C})</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>36a</td>
<td>Me</td>
<td>3.83</td>
<td>111.2</td>
<td>61-63</td>
<td>60</td>
</tr>
<tr>
<td>36b</td>
<td>Et</td>
<td>3.77</td>
<td>117.1</td>
<td>64-67</td>
<td>74</td>
</tr>
<tr>
<td>36c</td>
<td>n-Pr</td>
<td>3.77</td>
<td>115.6</td>
<td>75-78</td>
<td>68</td>
</tr>
<tr>
<td>36d</td>
<td>i-Pr</td>
<td>3.75</td>
<td>121.1</td>
<td>71-73</td>
<td>65</td>
</tr>
<tr>
<td>36e</td>
<td>i-Bu</td>
<td>3.74</td>
<td>114.8</td>
<td>86-88</td>
<td>70</td>
</tr>
<tr>
<td>36f</td>
<td>sec-Bu</td>
<td>3.79</td>
<td>119.9</td>
<td>89-93</td>
<td>75</td>
</tr>
</tbody>
</table>

[a] chemical shift of OCH\(_3\) in ppm, [b] chemical shift of C-4 in ppm.

The chemical structures of compounds 36a-f were established on the basis of rigorous spectroscopic (UV, IR, \(^1\text{H-NMR},^{13}\text{C-NMR}\)) and elemental analyses. The UV spectra of 5-methoxy-2-methyl oxazoles exhibit one major band of strong intensity at 245-270 nm. Alkyl substitution on oxazole ring has little effect on the position and intensity of this band. The IR spectrum of 2,4-dimethyl-5-methoxy oxazole 36a shows a strong band at 1555-1598 cm\(^{-1}\) which was assigned to the \(\text{–N=C-O}\) ring stretching frequency. This band is shifted to higher frequency when an additional alkyl substituent is introduced to the oxazole ring either in C-2 or C-4 position. In the \(^1\text{H-NMR}\) spectra of 5-methoxy oxazoles, the methoxy group absorbs at around 3.7 ppm and the CH\(_3\) at position C-2 absorbs at 2.00 ppm. The \(^{13}\text{C-NMR}\) spectra of oxazoles showed two signals at 152 and 154 ppm assigned to the C-2 and C-5, respectively.

![Figure 3.65: \(^1\text{H-NMR}\) spectrum (300 MHz, CDCl\(_3\)) of 36c.](image)

![Figure 3.66: \(^{13}\text{C-NMR}\) spectrum (75 MHz, CDCl\(_3\)) of 36c.](image)
3. Results & Discussion

Figure 3.67: DEPT spectrum (75 MHz, CDCl₃) of 36c.

3.7.2 Photoreactions of 5-methoxy-2-methyl oxazole with aldehydes

First of all, the photoreactions (λ_{ex} = 300 nm) of aldehydes (0.05M) with 5-methoxy-2-methyl oxazole (0.05M) were performed in 50 mL benzene at 10°C. In all cases, <i>exo</i>-selective (>98 : 2) formation of the 4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-enes 38a-f was observed in medium yields (Table 3.22).

![Scheme 3.40: Paternò-Büchi reaction of 5-methoxy-2-methyl oxazole with aldehydes.](image)

Table 3.22: Results of the photocycloaddition of 32 with 37a-f.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R =</th>
<th>d.r. (exo : endo)<sup>[a]</sup></th>
<th>Yield (%)<sup>[b]</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>38a</td>
<td>Ph</td>
<td>>98 : 2</td>
<td>87</td>
</tr>
<tr>
<td>38b</td>
<td>β-Naph</td>
<td>>98 : 2</td>
<td>85</td>
</tr>
<tr>
<td>38c</td>
<td>BnCH₂</td>
<td>>98 : 2</td>
<td>87</td>
</tr>
<tr>
<td>38d</td>
<td>Et</td>
<td>>98 : 2</td>
<td>90</td>
</tr>
<tr>
<td>38e</td>
<td>i-Pr</td>
<td>>98 : 2</td>
<td>86</td>
</tr>
<tr>
<td>38f</td>
<td>i-Bu</td>
<td>>98 : 2</td>
<td>88</td>
</tr>
</tbody>
</table>

[a] based on the integration of characteristic signals in the ¹H-NMR spectra of the crude product mixture; [b] yield (%) based on conversion of the oxazole.

The formation of the acid-labile bicyclic oxetanes 38a-f was proven by the characteristic ¹³C-NMR signals of the orthoester carbon (δ_C ca. 124 ppm). The stereochemical assignment of the
bicyclic oxetanes 38a-f was performed on the basis of 1H-NMR analysis (especially the strong ring current induced upfield-shift for the aryl-substituted products 38a and 38b (Table 3.23).

<table>
<thead>
<tr>
<th>Compound</th>
<th>R =</th>
<th>H-1</th>
<th>C-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>38a</td>
<td>Ph</td>
<td>4.58</td>
<td>122.9</td>
</tr>
<tr>
<td>38b</td>
<td>β-Naph</td>
<td>4.62</td>
<td>123.1</td>
</tr>
<tr>
<td>38c</td>
<td>BnCH$_2$</td>
<td>4.87</td>
<td>124.5</td>
</tr>
<tr>
<td>38d</td>
<td>Et</td>
<td>5.04</td>
<td>124.6</td>
</tr>
<tr>
<td>38e</td>
<td>i-Pr</td>
<td>4.92</td>
<td>124.6</td>
</tr>
<tr>
<td>38f</td>
<td>i-Bu</td>
<td>4.97</td>
<td>124.7</td>
</tr>
</tbody>
</table>

3.7.2.1 Ring opening of the bicyclic oxetanes 38a-f

The primary photoadducts 38a-f were hydrolytically unstable and underwent twofold ring opening to give the α-acetamido-β-hydroxy esters 39a-f. The diastereomeric ratio of the ring opened products was identical to the diastereomeric ratio of the oxetane precursors except for 39d (Table 3.24).

![Scheme 3.40: Synthesis of erythro (2S*, 3S*) α-acetamido-β-hydroxy esters.](image)

<table>
<thead>
<tr>
<th>Compound</th>
<th>R =</th>
<th>d.r. (erythro : threo)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>39a</td>
<td>Ph</td>
<td>>98 : 2</td>
<td>70</td>
</tr>
<tr>
<td>39b</td>
<td>β-Naph</td>
<td>>98 : 2</td>
<td>75</td>
</tr>
<tr>
<td>39c</td>
<td>BnCH$_2$</td>
<td>>98 : 2</td>
<td>65</td>
</tr>
<tr>
<td>39d</td>
<td>Et</td>
<td>95 : 5</td>
<td>72</td>
</tr>
<tr>
<td>39e</td>
<td>i-Pr</td>
<td>>98 : 2</td>
<td>78</td>
</tr>
<tr>
<td>39f</td>
<td>i-Bu</td>
<td>>98 : 2</td>
<td>74</td>
</tr>
</tbody>
</table>

[a] based on the integration of characteristic signals in the 1H-NMR spectra of the crude product mixture, [b] yield (%) of the isolated mixture of diastereoisomers.
3. Results & Discussion

In order to elucidate the relative configuration of the photoaldol adducts 39a-f, N-acetyl threonine methyl ester 39g was prepared.116 Figure 3.68 displays the X-ray analysis of compound 39g.

\textbf{Figure 3.68:} X-ray analysis of \textit{threo}-39g.

Furthermore, the relative configuration of methyl esters of phenylserine 39a117 and \(\beta\)-hydroxy-leucine118 were already elucidated in the literature and, by comparison with our data, the \textit{erythro} (S*, S*) configuration for the major diastereoisomers of 39a-f was established (Table 3.25).

\textbf{Table 3.25:} Comparison of NMR spectra of compounds 39d-f with similar known compounds.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(\delta) ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H-2</td>
</tr>
<tr>
<td>39d</td>
<td>4.88</td>
</tr>
<tr>
<td>39e</td>
<td>4.75</td>
</tr>
<tr>
<td>39f</td>
<td>4.87</td>
</tr>
<tr>
<td>39g[a]</td>
<td>4.35</td>
</tr>
<tr>
<td>Li118</td>
<td>4.84</td>
</tr>
</tbody>
</table>

[a] Prepared from \((2S^*,3R^*)\) threonine.
3. Results & Discussion

The structural assignments of compounds \textbf{39a-f} were made on the basis of spectroscopic data. The IR spectra of compounds \textbf{39a-f} showed characteristic absorption bands for hydroxy, amino, amide and ester groups at 3400, 3320, 1670 and 1720 cm$^{-1}$, respectively. The 13C-NMR spectra clearly showed resonances which correspond to the carbinol C-3 at 65.3 ppm. Moreover, there appeared two signals at 169.1 and 169.6 ppm pointing out the presence of CON and COO, respectively.

![Figure 3.69: 1H-NMR spectrum (300 MHz, CDCl$_3$) of 39c](image)

![Figure 3.70: 13C-NMR spectrum (75 MHz, CDCl$_3$) of 39c](image)

\textbf{3.7.2.2 Synthesis of (Z)-α, β-didehydroamino acid derivatives}

Dehydroamino acids have recently become a topic of increasing interest as important constituents of many fungal metabolites with antibiotic or phytotoxic properties such as nisin and subtilin.119 In addition, dehydroamino acids are versatile precursors for the asymmetric synthesis of amino acids and peptides.120 Acid-catalyzed water elimination from the α-acetamido-β-hydroxy esters \textbf{39} gave the (Z)-α, β-didehydroamino acid derivatives preferentially.

![Scheme 3.41: Synthesis of (Z)-α, β-didehydroamino acid derivatives](image)
3. Results & Discussion

Table 3.26: Diastereomeric ratio of the products 40a-d.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R =</th>
<th>d.r. (Z : E)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40a</td>
<td>Ph</td>
<td>>98 : 2</td>
<td>80</td>
</tr>
<tr>
<td>40b</td>
<td>Et</td>
<td>97 : 3</td>
<td>75</td>
</tr>
<tr>
<td>40c</td>
<td>i-Pr</td>
<td>95 : 5</td>
<td>78</td>
</tr>
<tr>
<td>40d</td>
<td>i-Bu</td>
<td>93 : 7</td>
<td>83</td>
</tr>
</tbody>
</table>

The relative configurations of the major and the minor diastereoisomers of the compound 40d were unambiguously determined by NOE and ROESY analyses at -63°C. The amide proton signal overlaped and exchanged with the deuterium atom from CDCl₃ and was not available for NOE measurement at room temperature. At –63°C the NH signal was lowfield-shifted to 7.58 ppm and could be used for saturation experiments.

![Figure 3.71: NOE interaction of the major and minor diastereoisomer of compound 40d.](image)

By irradiation of the amide proton at 7.75 ppm, NOE enhancement was observed for the vinyl proton at 6.95 ppm for the minor diastereoisomer E-40d. In the major diastereoisomer Z-40d, no enhancement of the vinyl proton signal at 6.75 ppm was observed by irradiation the amide proton at 7.58 ppm (Figure 3.72).
The constitution of the compounds 40a-d was established by 1H-NMR and 13C-NMR analyses. The 1H-NMR spectra of these compounds show the olefinic hydrogen at around 6.7 ppm and the 13C-NMR spectra show two singlets at around 165 and 168 ppm indicating the presence of two conjugated carbonyl groups.
3. Results & Discussion

3.7.2.3 Synthesis of methyl 1-methyl isoquinoline-3-carboxylate

Compound 40a when treated with POCl₃ in methylene chloride afforded methyl 1-methyl isoquinoline-3-carboxylate 41 in good yield via a Bischler-Napieralski cyclization.

\[
\begin{align*}
\text{H} & \quad \text{CO₂CH₃} \\
\text{NHAc} & \quad \text{CH₃}
\end{align*}
\]

Scheme 3.42: Synthesis of methyl 1-methyl isoquinoline-3-carboxylate 41.

The structure of compound 41 was confirmed by spectroscopic analysis and by comparison with literature data. For example, the ¹H-NMR spectrum showed two singlets at 2.99, 3.99 ppm attributed to methyl and methoxy groups, respectively. In the ¹³C-NMR spectrum two signals at 159.4 and 166.5 ppm indicated the presence of conjugated C=N and COOMe groups, respectively.
3. Results & Discussion

3.7.3 Photoreactions of 4-substituted 2-methyl-5-methoxyoxazoles with aldehydes

In order to extend the versatility of 5-methoxyoxazole-carbonyl photocycloaddition as an synthetic approach to α-alkylated-α-amino-β-hydroxy carboxylic acid derivatives, the Paternò-Büchi reaction of 4-substituted 2-methyl-5-methoxyoxazoles with aliphatic and aromatic aldehydes was investigated. The substituents R at position C-4 of the oxazole were varied in order to evaluate the influence of steric bulk and possible electronic effects. Analogous to 32, photolysis of aliphatic or aromatic aldehydes in presence of oxazole substrates 36a-f gave the bicyclic oxetanes 42aa-ff with high regio- and stereoselectivity.

Scheme 3.43: Paternò-Büchi reaction of aldehydes with oxazole substrates 36a-f.
From the results in Table 3.27, one can clearly notice that the exo-selectivity of the photoadducts was exceedingly high (>98 : 2) except for the benzaldehyde additions to
3. Results & Discussion

oxazole substrates with bulky substituents R^1. Again, the formation of the acid-labile bicyclic oxetanes $42aa$-ff was proven by the significant 13C-NMR signals of the orthoester carbon (δ_c ca. 124.5 ppm). The relative configuration of compound $42aa$ was unambiguously assigned from NOE measurement. Irradiation of the methine hydrogen at 5.23 ppm leads to nuclear Overhauser enhancement of a methyl signal at 2.03 ppm which clearly confirmed the exo-Ph configuration of the bicyclic oxetane. Figure 3.77 summarizes the NOE data recorded for compound $42aa$.

![Figure 3.77: NOESY (300 MHz, CDCl$_3$) spectrum of 42aa.](image)

Moreover, the stereochemical assignment was performed on the basis of 1H-NMR analysis (especially the strong ring current-induced upfield-shift for the C-1 and C-3 methyl groups in the aryl-substituted, see e.g. Table 3.28).

Table 3.28: 1H-NMR chemical shifts of the methyl protons on exo-$42ad$ & endo-$42ad$.

<table>
<thead>
<tr>
<th></th>
<th>δ / ppm</th>
<th>a CH$_3$</th>
<th>b CH$_3$</th>
<th>c CH$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>exo-$42ad$</td>
<td>2.00</td>
<td>0.55</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>endo-$42ad$</td>
<td>1.67</td>
<td>0.93</td>
<td>0.98</td>
<td></td>
</tr>
</tbody>
</table>
The chemical structures of the photoadducts 42aa-ff were established on the basis of the spectroscopic data. For example, the 1H-NMR spectrum of compound 42ac showed three singlets at 2.00, 3.54 and 5.17 ppm corresponding to CH$_3$ at position C-3, OCH$_3$ and CH at position C-7, respectively. In the 13C-NMR spectrum, there are three signals characteristic for the oxetane ring at 79.0, 89.9 and 124.6 ppm attributed to C-1, C-7 and C-5, respectively. The signal for C-3 appears down-field shifted at 165.0 ppm (Figure 3.78 & 3.79).

The 1H-NMR spectrum of compound 42ae showed doublets at 0.58 and 0.69 ppm due to the isopropyl group and confirmed the exo-Ph configuration of the photoadduct. In addition, there are three singlets at 2.12, 3.66 and 5.25 ppm corresponding to CH$_3$, OCH$_3$ and CH of the oxetane ring, respectively. In the 13C-NMR spectrum, the characteristic signals for the oxetane ring resonate at 78.7, 90.4 and 124.7 ppm due to C-1, C-7 and C-5, respectively.
3. Results & Discussion

The IR spectrum of compound 42af showed a strong absorption band at 1620 cm\(^{-1}\) attributed to the presence of a C=N group. The mass spectrum showed the base peak at m/z 105 due to the retrocleavage of the photoadduct and formation of the benzoyl cation (PhCO\(^+\)). The \(^1\)H-NMR spectrum showed an upfield-shifted triplet signal at 0.31 ppm corresponding to CH\(_3\) group attached to CH and again strongly supported the \textit{exo}-configuration of the bicyclic oxetane. In the \(^{13}\)C-NMR spectrum, one can clearly show the facial selectivity of the photoadduct is about 50 : 50 with each carbon appears as a signal pair with the same intensity (Figure 3.82 & 3.83).

![Figure 3.82](image1.png) \textbf{Figure 3.82}: \(^1\)H-NMR spectrum (300 MHz, CDCl\(_3\)) of 42af.

![Figure 3.83](image2.png) \textbf{Figure 3.83}: \(^{13}\)C-NMR spectrum (75 MHz, CDCl\(_3\)) of 42af.

The chemical structure of compound 42ca was established on the basis of \(^1\)H-NMR and \(^{13}\)C-NMR analyses. In the \(^1\)H-NMR spectrum, there are three singlets absorbing at 1.18, 1.94 and 3.42 ppm corresponding to the CH\(_3\) at position C-1, CH\(_3\) at position C-3, and OCH\(_3\), respectively. In addition there appears a doublet of doublet signal at 4.15 ppm due to the CH of the oxetane ring. The \(^{13}\)C-NMR spectrum revealed, three signals for the oxetane ring at 73.4, 87.9 and 124.5 ppm attributed to C-1, C-7, and C-5, respectively (Figure 3.84 & 3.85).
The structural assignment of compound 42dc was based on the IR spectrum, mass spectrum and NMR analyses. The IR spectrum showed a strong absorption band at 1615 cm\(^{-1}\) attributed to a C=N, and a weak absorption band at 1110 cm\(^{-1}\) due to a C-O bond. The mass spectrum showed the base peak at 57 corresponding to the (CH\(_3\)CH\(_2\)CO+) which results after retro cycloaddition of the photoadduct. The \(^1\)H-NMR spectrum revealed a doublet of doublet signal at 4.03 ppm attributed to the CH of the oxetane ring. The \(^{13}\)C-NMR spectrum showed three triplet signals at 16.8, 24.9, and 28.3 ppm due to the presence of three methylene groups. In addition three further signals in the aliphatic range (8.9, 14.2, 14.8 ppm) and the OCH\(_3\) group appears at 50.8 ppm.
3. Results & Discussion

The constitution of compound 42df was established by IR, mass spectrum and NMR analyses. The IR spectrum showed absorption bands at 987 and 1605 cm\(^{-1}\) attributed to a C-O bond and a C=N bond, respectively. In the mass spectrum, the molecular ion peak did not appear and the most important fragments correspond to the retrocycloaddition to oxazole and propionaldehyde which decompose to further fragment. The \(^1\)H-NMR spectrum showed two singlets at 2.00 and 3.47 ppm due to the presence of CH\(_3\) and OCH\(_3\), respectively. In addition, the oxetane ring signal absorbs at 4.16 ppm. The \(^{13}\)C-NMR spectrum confirms the facial selectivity induced by chiral oxazole 36f is about 50 : 50 as shown from the intensity of the carbon signals. Furthermore, the characteristic signals of the oxetane ring appear at 80.5, 90.9 and 124.5 ppm corresponding to C-1, C-7, and C-5, respectively (Figure 3.88 & 3.89).

![Figure 3.88: \(^1\)H-NMR spectrum (300 MHz, CDCl\(_3\)) of 42df.](image1)

![Figure 3.89: \(^{13}\)C-NMR spectrum (75 MHz, CDCl\(_3\)) of 42df.](image2)

The \(^1\)H-NMR spectrum of compound 42fe showed singlets at 2.00 and 3.44 ppm attributed to CH\(_3\) and OCH\(_3\), respectively. In addition a doublet of doublet signal for one proton at 4.25 ppm corresponding to the CH of the oxetane ring. In the \(^{13}\)C-NMR spectrum, there are two triplets at 34.2 and 40.7 ppm indicating the presence of two methylene groups. In addition, three signals appear at 76.3, 88.3, and 124.5 ppm due to C-1, C-7, and C-5, respectively (Figure 3.90 & 3.91).
3.7.3.1 Synthesis of erythro (S*,S*) α-alkylated-α-acetamido-β-hydroxy esters

Analogous to 38a-f, hydrolysis of the bicyclic oxetanes 42aa-ff resulted in twofold ring-opening and provided a convenient and a high yielding access to erythro (S*,S*) α-alkylated-α-acetamido-β-hydroxy esters 43aa-ff. In most cases, the diastereomeric ratio of the opened products matched the diastereomeric ratio of the bicyclic oxetanes.

\[
\text{Scheme 3.44: Synthesis of erythro (S*,S*) α-alkylated-α-acetamido-β-hydroxy esters.}
\]

The erythro (S*,S*) configuration of compound 43df was unambiguously determined by single crystal X-ray analysis as depicted in Figure 3.92.

Figure 3.90: \(^1\text{H}-\text{NMR spectrum (300 MHz, CDCl}_3\) of 42fe.

Figure 3.91: \(^{13}\text{C}-\text{NMR spectrum (75 MHz, CDCl}_3\) of 42fe.

Figure 3.92: X-ray analysis of erythro-43df: without and with hydrogen-bonds.
Table 3.29: Diastereomeric ratio of compounds 43aa-ff.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R =</th>
<th>R¹ =</th>
<th>d.r.(erythro : threo)[^a]</th>
<th>Yield (%)[^b]</th>
</tr>
</thead>
<tbody>
<tr>
<td>43aa</td>
<td>Ph</td>
<td>Me</td>
<td>>98 : 2</td>
<td>65</td>
</tr>
<tr>
<td>43ab</td>
<td>Ph</td>
<td>Et</td>
<td>93 : 7</td>
<td>73</td>
</tr>
<tr>
<td>43ac</td>
<td>Ph</td>
<td>n-Pr</td>
<td>90 : 10</td>
<td>58</td>
</tr>
<tr>
<td>43ad</td>
<td>Ph</td>
<td>i-Pr</td>
<td>90 : 10</td>
<td>48</td>
</tr>
<tr>
<td>43ae</td>
<td>Ph</td>
<td>i-Bu</td>
<td>90 : 10</td>
<td>58</td>
</tr>
<tr>
<td>43af</td>
<td>Ph</td>
<td>sec-Bu</td>
<td>92 : 8</td>
<td>40</td>
</tr>
<tr>
<td>43ba</td>
<td>β-Naph.</td>
<td>Me</td>
<td>>98 : 2</td>
<td>48</td>
</tr>
<tr>
<td>43ca</td>
<td>BnCH₂</td>
<td>Me</td>
<td>85 : 15</td>
<td>55</td>
</tr>
<tr>
<td>43cd</td>
<td>BnCH₂</td>
<td>i-Pr</td>
<td>>98 : 2</td>
<td>55</td>
</tr>
<tr>
<td>43da</td>
<td>Et</td>
<td>Me</td>
<td>>98 : 2</td>
<td>70</td>
</tr>
<tr>
<td>43db</td>
<td>Et</td>
<td>Et</td>
<td>95 : 5</td>
<td>65</td>
</tr>
<tr>
<td>43dc</td>
<td>Et</td>
<td>n-Pr</td>
<td>92 : 8</td>
<td>55</td>
</tr>
<tr>
<td>43dd</td>
<td>Et</td>
<td>i-Pr</td>
<td>95 : 5</td>
<td>68</td>
</tr>
<tr>
<td>43de</td>
<td>Et</td>
<td>i-Bu</td>
<td>>98 : 2</td>
<td>70</td>
</tr>
<tr>
<td>43df</td>
<td>Et</td>
<td>sec-Bu</td>
<td>90 : 10</td>
<td>67</td>
</tr>
<tr>
<td>43ea</td>
<td>i-Pr</td>
<td>Me</td>
<td>>98 : 2</td>
<td>70</td>
</tr>
<tr>
<td>43eb</td>
<td>i-Pr</td>
<td>Et</td>
<td>88 : 12</td>
<td>71</td>
</tr>
<tr>
<td>43ec</td>
<td>i-Pr</td>
<td>n-Pr</td>
<td>85 : 15</td>
<td>68</td>
</tr>
<tr>
<td>43ed</td>
<td>i-Pr</td>
<td>i-Pr</td>
<td>93 : 7</td>
<td>73</td>
</tr>
<tr>
<td>43ee</td>
<td>i-Pr</td>
<td>i-Bu</td>
<td>90 : 10</td>
<td>59</td>
</tr>
<tr>
<td>43ef</td>
<td>i-Pr</td>
<td>sec-Bu</td>
<td>96 : 4</td>
<td>68</td>
</tr>
<tr>
<td>43fa</td>
<td>i-Bu</td>
<td>Me</td>
<td>>98 : 2</td>
<td>55</td>
</tr>
<tr>
<td>43fb</td>
<td>i-Bu</td>
<td>Et</td>
<td>93 : 7</td>
<td>66</td>
</tr>
<tr>
<td>43fc</td>
<td>i-Bu</td>
<td>n-Pr</td>
<td>>98 : 2</td>
<td>68</td>
</tr>
<tr>
<td>43fd</td>
<td>i-Bu</td>
<td>i-Pr</td>
<td>>98 : 2</td>
<td>62</td>
</tr>
<tr>
<td>43fe</td>
<td>i-Bu</td>
<td>i-Bu</td>
<td>92 : 8</td>
<td>45</td>
</tr>
<tr>
<td>43ff</td>
<td>i-Bu</td>
<td>sec-Bu</td>
<td>90 : 10</td>
<td>73</td>
</tr>
</tbody>
</table>

\[^a\] based on the integration of characteristic signals in the \(^1\)H-NMR spectra of the crude product mixture, \[^b\] yield (%) of the isolated mixture of diastereoisomers.
3. Results & Discussion

The mechanism of the ring opening process of bicyclic oxetanes is illustrated in Scheme 3.45. The first step is probably the protonation of the oxetane-oxygen atom followed by opening of the oxetane ring. Then attack of water to the carbenium ion, protonation of the nitrogen atom of the oxazole and the second ring opening follows. Thus, ring opening of the bicyclic oxetanes proceeded with retention of configuration to give the *erythro* \((S^*,S^*)\) \(\alpha\)-alkylated-\(\alpha\)-acetamido-\(\beta\)-hydroxy esters \(43\text{aa-ff}\).

![Scheme 3.45: Proposed mechanism for the formation of *erythro* \((S^*,S^*)\) \(\alpha\)-alkylated-\(\alpha\)-acetamido-\(\beta\)-hydroxy esters \(43\text{aa-ff}\).](image)

Structural assignment of the photoaldol adduct

The relative configurations of the compounds \(43\text{aa-ff}\) were assigned by using \(^{13}\text{C}\)-NMR analysis and also by comparison with similar compounds in the literature.\(^\text{122}\) In the \(^{13}\text{C}\)-NMR spectra of these compounds, there is a striking difference between *erythro* and *threo* isomers. Both C-2 and C-3 resonate upfield in *erythro*-isomer in compared with the corresponding *threo*-isomer. This phenomena fits well with the results reported by Heathcock who used \(^{13}\text{C}\)-NMR as a tool for the assignment of the configuration of \(\beta\)-hydroxy carbonyl compounds (Table 3.30).\(^\text{123}\)
Table 3.30: Characteristic 13C-NMR signals (δ ppm) of photoaldol products in (CDCl$_3$).

<table>
<thead>
<tr>
<th>Compound</th>
<th>R =</th>
<th>R1 =</th>
<th>erythro C-2</th>
<th>C-3</th>
<th>threo C-2</th>
<th>C-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>43af</td>
<td>Ph</td>
<td>sec-Bu</td>
<td>71.9</td>
<td>74.9</td>
<td>82.3</td>
<td>83.9</td>
</tr>
<tr>
<td>43ca</td>
<td>BnCH$_2$</td>
<td>Me</td>
<td>75.1</td>
<td>75.6</td>
<td>86.2</td>
<td>87.2</td>
</tr>
<tr>
<td>43dc</td>
<td>Et</td>
<td>n-Pr</td>
<td>70.1</td>
<td>78.0</td>
<td>86.1</td>
<td>88.7</td>
</tr>
<tr>
<td>43df</td>
<td>Et</td>
<td>sec-Bu</td>
<td>69.2</td>
<td>70.3</td>
<td>78.4</td>
<td>86.9</td>
</tr>
<tr>
<td>43ea</td>
<td>i-Pr</td>
<td>Me</td>
<td>68.3</td>
<td>71.0</td>
<td>83.3</td>
<td>90.0</td>
</tr>
</tbody>
</table>

In order to account for the difference in the 13C-NMR shifts in *erythro* and its epimers, I suggest the predominance of a conformation stabilized by an intramolecular hydrogen bond between the hydroxy and amide group (see X-ray structure of compound 43df). Figure 3.93 shows that such an effect is clearly manifested in the *erythro* and *threo* pairs. However, in the *threo*-isomer, there is a *gauche* interaction between R & R1 substituents which weakens the hydrogen bond and might be also responsible for the deshielding effect of C-2 & C-3. If this assumption is true, one should also note the *anti* conformation between the R and R1 in the *erythro*-isomer resulting in a higher field shift of C-2 and C-3 in comparison with the *threo*-isomer. In fact, this was proven experimentally. Thus, the 13C-NMR shifts of the C-2 & C-3 in the photoaldol adducts *erythro* & *threo* should unambiguously show correct trends and corroborated the proposed relative configurations.

![Newman projection of the *erythro* & *threo*-isomers.](image)

The constitutions of the products 43aa-ff were established on the basis of IR, mass spectrum, NMR analyses and elemental analysis. For example, the IR spectrum of compound 43aa displayed absorption bands at 3350, 3220, 1720 and 1680 cm$^{-1}$ corresponding to OH, NH, COO and CON groups, respectively. Scheme 3.46 summarizes the fragmentation pattern of the mass spectrum of compound 43aa.
Scheme 3.46: Fragmentation pattern of compound 43aa.

In the 1H-NMR spectrum, there are four singlets at δ 1.22, 2.14, 3.79 and 4.06 ppm attributed to CH$_3$, CH$_2$CO, OCH$_3$ and CHOH, respectively. The 13C-NMR showed the disappearance of the orthoester signal and the formation of new signals at δ 47.6, 49.6, 169.9 and 179.4 ppm corresponding to C-2, C-3, CON and COO, respectively (Figure 3.94 & 3.95).
The IR spectrum of compound 43ca showed two strong absorption bands at 1735 and 1690 cm\(^{-1}\) indicating the presence of ester and amide groups, respectively. In addition, there are two broad bands at 3420 and 3270 cm\(^{-1}\) attributed to OH and NH groups, respectively. The \(^1\)H-NMR spectrum revealed three singlets at δ 1.35, 2.05, 3.76 ppm corresponding to CH\(_3\), CH\(_3\)CO, and OCH\(_3\), respectively. The carbinol hydrogen absorbs at δ 4.68 ppm (dd, J = 11.2, 3.1Hz). The \(^{13}\)C-NMR spectrum shows signals at δ 75.0, 89.9, 165.2 and 174.3 ppm corresponding to C-2, C-3, CON, and COO, respectively (Figure 3.96 & 3.97).

The mass spectrum showed the molecular ion peak at m/z 279 which strongly supports the structure of compound 43ca. The fragmentation pattern are summarized in scheme 3.47.
Scheme 3.47: Fragmentation pattern of compound 43ca.

The constitution of compound 43da was confirmed by IR and NMR analyses. Analogous to the compounds mentioned above, there are four distinct absorption bands in the infrared spectrum at 3330, 3260, 1720 and 1685 cm$^{-1}$ attributed to OH, NH, ester and amide groups, respectively. The 1H-NMR spectrum revealed three singlets at δ 1.53, 1.95 and 3.71 ppm corresponding to CH$_3$, CH$_3$CO and OCH$_3$, respectively. In addition, there is a low-field signal at δ 4.14 ppm for the carbinol proton. In the 13C-NMR spectrum, there are signals resonate at δ 63.5, 69.9, 169.3 and 171.6 ppm for C-2, C-3, CON, and COO, respectively (Figure 3.98 & 3.99).
It was possible to separate the two diastereoisomers of compound 43dc, i.e. erythro (S*,S*) and threo (S*,R*) by chromatographic purification. The relative configurations of both diastereoisomers were established on the basis of NMR analyses:

There are two main differences in the 1H-NMR spectra of erythro- and threo-isomer:
(a) both acetyl and methoxy groups in the threo-isomer absorb at δ 1.95 and 3.69 ppm, respectively, while in the erythro-isomer, this absorption is shifted downfield to 2.00 and 3.77 ppm; (b) the carbinol proton of the erythro-isomer resonates at a much higher field (δ = 4.24 ppm, dd, $J = 11.6$, 2.1 Hz) than in the threo-isomer which absorbs at δ 4.34 ppm, dd, $J = 10.1$, 3.5 Hz.

In the 13C-NMR spectrum, there are also two main differences between the erythro- and threo-isomers: (a) in the erythro-isomer, both C-2 and C-3 resonate at higher field δ 69.1 and 70.3 ppm than in the threo-isomer which resonate at δ 78.4 and 86.9 ppm, respectively; (b) the carbonyl of amide and ester appears for the erythro-isomer at 169.4 and 172.3 ppm whereas at 165.1 and 174.5 ppm, respectively in the threo-isomer (see Figure 3.100, 3.101, 3.102 and 3.103).
The constitution determination of the compound 43dd was based on IR, mass spectrum and NMR analyses. The IR spectrum showed absorption bands characteristic for OH, NH, CON and COO at 3335, 3210, 1745 and 1675 cm\(^{-1}\), respectively. The mass spectrum showed the base peak at m/z 130 due to the formation of methyl propioacetate. Scheme 3.48 illustrates the fragmentation pattern of compound 43dd.
Scheme 3.48: Fragmentation pattern of compound 43dd.

In the 1H-NMR spectrum, there are two singlet signals at δ 4.04, 3.79 ppm indicating the presence of CH_3CO and OCH_3, respectively. In addition, at δ 4.52 and 6.45 ppm, there are two signals corresponding to CHOH and NH, respectively. The 13C-NMR spectrum shows signals at δ 69.9, 73.5, 169.7 and 171.8 ppm attributed to C-2, C-3, CON, and COO, respectively.
The constitution of compound 43de was elucidated by 1H-NMR and 13C-NMR analyses. In the 13C-NMR spectrum, both C-2 and C-3 resonate at lower field in comparison with the spectra of the compounds mentioned above indicating the *threo*-configuration of compound 43de. The 1H-NMR spectrum shows two singlets at δ 3.70 and 1.96 ppm corresponding to OCH$_3$ and CH$_3$CO, respectively. In addition, there appears a doublet of doublet signal at 4.22 ppm dd, $J = 10.8$, 3.5 Hz for the CHO$_2$H.
Moreover, the CH-COSY correlation supported the chemical structure of compound 43de as depicted in Figure 3.108.

Figure 3.108: HMQC spectrum (300 MHz, CDCl₃) of threo-43de.

The constitution of compound 43fd was established by IR and NMR analyses. The IR spectrum showed four strong absorption bands at 3452, 3310, 1725 and 1685 cm⁻¹ corresponding to the OH, NH, COO and CON groups, respectively. The ¹H-NMR spectrum showed singlets at δ 2.04, 3.78 and 6.43 ppm attributed to CH₃CO, OCH₃ and NH, respectively. The carbinol proton appears at δ 4.73 ppm with doublet of doublet multiplicity (dd, J = 11.2, 2.1 Hz). The ¹³C-NMR spectrum showed signals at δ 65.9, 73.5, 169.6 and 171.8 ppm corresponding to C-2, C-3, CON and COO, respectively. Figure 3.111 shows the HMQC spectrum which also confirms the NMR assignments.

119
3. Results & Discussion

Figure 3.109: 1H-NMR spectrum (300 MHz, CDCl$_3$) of 43fd.

Figure 3.110: 13C-NMR spectrum (75 MHz, CDCl$_3$) of 43fd.

Figure 3.111: HMQC spectrum (300 MHz, CDCl$_3$) of 43fd.

Analogous to compound 43de, the relative configuration of compound 43ff was assigned by using the down-field shift of both C-2 and C-3 as guide for the *threo*-isomer. The constitution
3. Results & Discussion

of compound *threo-43ff* was established on the basis of IR, mass spectrum and NMR analyses. The IR spectrum revealed bands at 3335, 3225, 1735 and 1680 cm\(^{-1}\) attributed to OH, NH, COO, CON groups, respectively. The mass spectrum showed the base peak at m/z 255 due to (M\(^+\)-H\(_2\)O). In the \(^1\)H-NMR spectrum, there are signals at \(\delta\) 4.40, 3.66 and 1.97 ppm corresponding to CH\(_{\text{OH}}\), OCH\(_3\) and CH\(_3\)CO, respectively. The \(^{13}\)C-NMR spectrum displayed signals at \(\delta\) 82.7, 84.6, 165.8 and 174.8 ppm related to C-2, C-3, CON and COO, respectively. Figure 3.114 shows the HH-COSY spectrum of the off-digonal cross peak which correctly correlated the coupled protons.

Figure 3.112: \(^1\)H-NMR spectrum (300 MHz, CDCl\(_3\)) of *threo-43ff*.

Figure 3.113: \(^{13}\)C-NMR spectrum (75 MHz, CDCl\(_3\)) of *threo-43ff*.
3. Results & Discussion

3.7.3.2 Transacylation

In order to test the stability of the photoaldol adducts, compounds 43da, 43dc and 43fc were stirred in CHCl₃ in the presence of catalytic amount of conc. HCl at r.t. for 24 h.

Scheme 3.49: Transacylation.

Thin layer chromatography revealed a new spot in addition to the spot of starting material. The result of ¹H-NMR analysis indicated that there are a pair of each signals with only small differences in chemical shifts for each proton except for the signal of carbinol hydrogen. These signals were strongly different (about 1.0 ppm). The carbinol proton in the starting
3. Results & Discussion

material resonates at higher field than in the new compound. So, I assumed that this may be related to a migration of the acetyl group from amino to hydroxy (i.e transacylation). This assumption was supported by chemical shift comparison of the carbinol hydrogen with similar compounds in literature (Table 3.31).124,125

Table 3.31: Comparison of carbinol 1H-NMR signals of compounds 43da & 44da with similar known compounds in the literature.

<table>
<thead>
<tr>
<th></th>
<th>43da</th>
<th>44da</th>
<th>Lit.124</th>
<th>Lit.124</th>
<th>Lit.125</th>
<th>Lit.125</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ / ppm</td>
<td>4.15</td>
<td>5.25</td>
<td>3.60</td>
<td>5.12</td>
<td>4.01</td>
<td>5.29</td>
</tr>
</tbody>
</table>

The constitution of compounds 44da, 44dc and 44fc were confirmed by NMR analyses. For example, the 1H-NMR spectrum of compound 44da showed a signal at δ 5.25 ppm related to CHOAc. In the 13C-NMR spectrum, C-3 resonates at lower field δ 75.1 in comparison with that in 43da (Figure 3.115 & 3.116).

Figure 3.115: 1H-NMR (300 MHz, CDCl\textsubscript{3}) spectrum of compounds 43da & 44 da.

Figure 3.116: 13C-NMR (75MHz, CDCl\textsubscript{3}) spectrum of compounds 43da & 44 da.
3. Results & Discussion

Scheme 3.50 illustrates the suggested mechanism for transacylation via formation of an oxazolidine ring intermediate.

Scheme 3.50: Proposed mechanism for transacylation.

In contrast to the result with the photoaldol adducts in acidic medium, treatment of compound 43dc with aqueous NaOH (10%) led to a cleavage process with the formation of compound 45. The formation of this product was rather unexpected and may be probably formed via nucleophilic substitution by hydroxyl group.

Scheme 3.51: “Retro-aldol” reaction of compound 43dc.

The structure determination of compound 45 was based on spectroscopic analysis, elemental analysis and X-ray analysis. The IR spectrum showed strong absorption bands at 3400, 3250, 1730 & 1685 cm\(^{-1}\) corresponding to OH, NH, COO & CON groups, respectively. The \(^1\)H-NMR spectrum showed the disappearance of the carbinol signal at 4.12 ppm. In the \(^{13}\)C-NMR spectrum, there is a new signal at 82.5 ppm related to a quaternary carbon attached to n-Pr, CON & COO groups.
Moreover, the elemental analysis confirmed the molecular formula C₈H₁₅NO₄ of the compound 45. The structure determined by single crystal X-ray analysis of compound 45 is shown in Figure 3.119.

Mechanistic analysis

The regioselectivity of the Paternò-Büchi reaction of aldehydes with oxazoles is high (>99 : 1) and corresponds to the classical biradical stabilization concept. Whereas the high exo-selectivity of the photocycloaddition of electronically excited aldehydes to the C-4 unsubstituted oxazole 32 is analogous to the furan case, the high diastereoselectivity for the trisubstituted oxazoles 36a-f deserves further explanation. In the triplet photocycloaddition reaction to cycloalkenes, the ring alkylation leads to a decrease in selectivity and in some cases even to selectivity inversion due to the interference with the spin-orbit coupling geometries. This is obviously not the case for the oxazoles 36a-f which indicates that the secondary orbital interaction model originally applied for the benzaldehyde-furan reaction is operating. Scheme 3.52 shows the triplet 1,4-biradical conformers A-C with reactive spin-orbit coupling geometries. If most of the spin inversion process is directed through the channel C, high
3. Results & Discussion

exo-selectivity is expected. The endo-contribution from A becomes only relevant for bulky groups R and R₁ (as for 42ad-42af).

![Mechanistic scenario for oxazole-carbonyl photocycloaddition.](image)

Scheme 3.52: Mechanistic scenario for oxazole-carbonyl photocycloaddition.

3.7.4 Asymmetric photocycloaddition between oxazoles and chiral aldehyde

The oxazole-carbonyl photocycloaddition reaction provides a method for the addition of an enolate equivalent (oxazole) to an aldehyde which allows access to erythro-aldol products as described above. In the light of the above results photochemical asymmetric synthesis of oxazoles appeared interesting and worth of study. Thus, the photocycloaddition of 4-substituted 2-methyl-5-methoxyoxazoles 36a-f with 2-methylbutyaldehyde as a chiral carbonyl component was investigated. Irradiation of 2-methylbutyaldehyde in benzene in the presence of oxazole substrates 36a-f afforded a 1.12 : 1 mixture of the diastereomeric products with high exo-selective (> 99 : 1) and in good yields.

![Photocycloaddition reaction of 2-methylbutyaldehyde with 36a-f.](image)

Scheme 3.53: Photocycloaddition reaction of 2-methylbutyaldehyde with 36a-f.

The results in Table 3.32 show that the facial selectivity decreased with increasing size of substituent on the oxazole ring. The high exo-selective (relative face selectivity) in combination with the poor diastereotopic face selectivity with regard to the chiral aldehyde was expected on the basis of the results from previous studies.
Table 3.32: Diastereoselectivity of the photocycloaddition of 1g with 36a-f.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R¹</th>
<th>d.r.[a]</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>46a</td>
<td>Me</td>
<td>63 : 37</td>
<td>75</td>
</tr>
<tr>
<td>46b</td>
<td>Et</td>
<td>56 : 44</td>
<td>80</td>
</tr>
<tr>
<td>46c</td>
<td>n-Pr</td>
<td>55 : 45</td>
<td>65</td>
</tr>
<tr>
<td>46d</td>
<td>i-Pr</td>
<td>47 : 53</td>
<td>84</td>
</tr>
<tr>
<td>46e</td>
<td>i-Bu</td>
<td>50 : 50</td>
<td>76</td>
</tr>
<tr>
<td>46f</td>
<td>sec-Bu</td>
<td>40 : 60</td>
<td>79</td>
</tr>
</tbody>
</table>

[a] based on the integration of characteristic signals in the ¹H-NMR spectra of the crude product mixture, [b] yield (%) based on converted oxazole.

The stereochemical assignments of the bicyclic oxetanes 46a-f were based on the configuration of their hydrolysis products, i.e. the aldol type adducts 47a-f which were easily formed due to the instability of the bicyclic oxetanes 46a-f under the isolation conditions. The constitution of the photoadducts were elucidated by NMR analyses. For example, in the ¹H-NMR spectrum of compound 46a (R¹ = Me), three singlets at δ 3.79, 1.98 and 1.24 ppm appeared corresponding to OCH₃, CH₃ at position C-3 and CH₃ at position C-1, respectively, whereas these signals in the corresponding diastereoisomer (both exo-isomers) resonate at δ 3.65, 2.23 and 1.26 ppm. The ¹³C-NMR spectrum showed one signal at δ 124.1 ppm indicating the presence of the orthoester carbon. At this point, the relative configuration of both diastereoisomer is unknown.

![Figure 3.120: ¹H-NMR (300 MHz, CDCl₃) spectrum of 46a.](image1)

![Figure 3.121: ¹³C-NMR (75 MHz, CDCl₃) spectrum of 46a.](image2)
3. Results & Discussion

3.7.4.1 Synthesis of lyxo- & ribo- α-acetamido-β-hydroxy esters

The bicyclic oxetanes 46a-f possesses an inherent potential as precursors to lyxo- & ribo- α-acetamido-β-hydroxy esters. Acid treatment of the bicyclic oxetanes 46a-f afforded a mixture of two diastereoisomers which could not be separated by preparative thick layer chromatography.

Scheme 3.54: Ring opening of bicyclic oxetanes 46a-f.

Table 3.33: Diastereomeric ratio of the photo aldol adducts 47a-f.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R^1 =</th>
<th>d.r. (lyxo : ribo)^[a]</th>
<th>Yield (%)^[b]</th>
</tr>
</thead>
<tbody>
<tr>
<td>47a</td>
<td>Me</td>
<td>62 : 37</td>
<td>75</td>
</tr>
<tr>
<td>47b</td>
<td>Et</td>
<td>56 : 44</td>
<td>80</td>
</tr>
<tr>
<td>47c</td>
<td>n-Pr</td>
<td>55 : 45</td>
<td>73</td>
</tr>
<tr>
<td>47d</td>
<td>i-Pr</td>
<td>47 : 53</td>
<td>69</td>
</tr>
<tr>
<td>47e</td>
<td>i-Bu</td>
<td>49 : 51</td>
<td>80</td>
</tr>
<tr>
<td>47f</td>
<td>sec-Bu</td>
<td>38 : 62</td>
<td>74</td>
</tr>
</tbody>
</table>

[a] based on the integration of characteristic signals in the ^1H-NMR spectra of the product mixture, [b] yield (%) of the crude mixture of diastereoisomers.

The results for the photo aldol adducts are summarized in Table 3.33. The diastereomeric ratio of the ring-opened products matched the diasteremeric excessess of the precursor oxetanes. From the previous studies, the relative configuration of C-2 and C-3 was anticipated to be erythro- (S*,S*), since the precursor bicyclic oxetanes have exo-configurations. The relative configuration of C-3 and C-4 of the products 47a-f was determined on the basis of ^1H-NMR coupling constants between the hydrogens on C-3 and C-4 in each diastereoisomer following Karplus^126 curve analysis. According to Karplus correlation, the coupling constant of two trans vicinal protons (having a dihedral angle of about φ = 180°) is expected to be in the range of 9-12 Hz. The coupling constant of the two protons of C-3 and C-4 in the major diastereoisomer was found to be ^3J = 9.1 Hz which is consistent with the trans configuration and assignable to xylo-isomer (R*,R*,S*) whereas the minor diastereoisomer had ^3J = 6.1 Hz which established the ribo-configuration (S*,S*,S*).
3. Results & Discussion

The constitutions of compounds 47a-f were determined on the basis of IR, NMR analyses. For example, the IR spectrum of compound 47c showed absorption bands at 3455, 3330, 1720 and 1685 cm$^{-1}$ attributed to OH, NH, COO and CON groups, respectively. The 1H-NMR spectrum showed two doublets, one at δ 4.2 ppm (d, $J = 9.1$ Hz) assigned to the xylo-isomer and the second at δ 4.33 ppm (d, $J = 6.9$ Hz), attributed to the ribo-isomer. In the 13C-NMR spectrum, there are signals at δ 78.6, 89.8, 165.1 and 174.7 ppm corresponding to C-2, C-3, CON and COO, respectively.

![Figure 3.122: 1H-NMR (300 MHz, CDCl$_3$) spectrum of 47c.](image)

![Figure 3.123: 13C-NMR (75 MHz, CDCl$_3$) spectrum of 47c.](image)

In the 1H-NMR spectrum of compound 47f, there are two downfield signals at δ 4.42 ppm, (d, $J = 6.9$ Hz, 1H) and δ 4.16 ppm, (d, $J = 9.2$ Hz, 1H) attributed to the carbinol protons of ribo- and xylo-isomers, respectively. The 13C-NMR spectrum showed signals at δ 82.4, 88.9, 174.4 and 179.8 ppm corresponding to C-2, C-3, CON and COO, respectively.

![Figure 3.124: 1H-NMR (300 MHz, CDCl$_3$) spectrum of 47f.](image)

![Figure 3.125: 13C-NMR (75 MHz, CDCl$_3$) spectrum of 47f.](image)
Mechanistic analysis

The lack of facial selectivity in the addition of oxazoles to the excited state of a chiral aldehyde is in contrast to the normal aldol reaction.127 This feature of the photoreaction suggests a mechanism that is insensitive to the substitution pattern on the chiral aldehyde. One such mechanism is depicted in Scheme 3.53.

Scheme 3.53: Mechanism of the photoaddition of a chiral aldehyde to oxazoles.

The reaction between an triplet excited aldehyde and the oxazole proceeds with initial carbon-oxygen bond formation to produce the two biradical species shown above. The k_1/k_2 -ratio represents the amount of induced diastereoselectivity. The asymmetric induction comes from the difference in the distance between the stereocenter of incoming aldehyde and C-5 of oxazole substrates. The top attack (k_1) is slightly favor than the bottom attack (k_2).

A stereogenic center adjacent to the carbonyl is now in a 1,4-relationship to the newly formed stereogenic center at the acetal carbon and is expected to exert little influence as a stereocontrol device. Two stereogenic centers are present in these intermediates, but the stereogenic center at the acetal carbon is expected to completely dictate the stereochemical outcome of the biradical bond formation. In each case ring closure will produce a \textit{cis} ring fusion with an \textit{exo}-substituted side chain, as in the reaction of achiral aldehydes. The stereogenic center on the side chain is unrelated to the outcome of biradical closure and has minimal influence, stereochemicaly, on the initial acetal formation.
3. Results & Discussion

3.8 Photo-Aldol reactions of 5-methoxyoxazoles with α-keto esters: Selectivity pattern and synthetic route to erythro (S^*,R^*) & threo (S^*,S^*) α-amino-β-hydroxy succinic acid derivatives

Photochemical cycloaddition between oxazoles and aldehydes affords, with remarkably high regio- and stereoselectivity, 7-exo substituted derivatives of 2-aza-4,6-dioxa-bicyclo[3.2.0]hept-2-enes. Exploring the utility of these highly functionalized compounds for the synthesis of amino acids derivatives seems attractive. The photocycloaddition of oxazoles to α-keto esters appeared to me interesting, not only for mechanistic studies but also from a synthetic point of view, where the photoadducts represent building blocks for the synthesis of β-hydroxy aspartic acid derivatives which are known as naturally occurring amino acids.128

3.8.1 Synthesis of 2-substituted 4-methyl-5-methoxyoxazoles

Treatment of L-alanine methyl ester hydrochloride with different acid chlorides (propionyl chloride, isobutyrolyl chloride and pivaloyl chloride) in the presence of TEA afforded the amides which cyclized to 2-substituted 4-methyl-5-methoxyoxazoles $49a-c$ when heated with PCl$_5$.129

\[
\begin{align*}
34a & \quad \begin{array}{c}
\text{ClCH}_2 \text{N} \\
\text{CO}_2 \text{CH}_3 \\
\end{array} \quad + \quad \begin{array}{c}
\text{R} \\
\text{Cl} \\
\end{array} \quad \text{TEA/CHCl}_3 \quad \text{0°C, 30 min.} \\
\text{ROCHN} & \quad \begin{array}{c}
\text{CO}_2 \text{CH}_3 \\
\end{array} \\
\end{align*}
\]

\[
\begin{align*}
48a-c & \quad \begin{array}{c}
\text{ROCHN} \\
\text{CO}_2 \text{CH}_3 \\
\end{array} \quad \text{PCl}_5/\text{CHCl}_3 \quad \Delta, \text{30 min.} \\
49a-c & \quad \begin{array}{c}
\text{R} \\
\text{OCH} \\
\end{array} \\
\end{align*}
\]

Scheme 3.54: Synthesis of 2-substituted 4-methyl-5-methoxy oxazoles $49a-c$.

| Table 3.34: Characteristic properties of 2-substituted 4-methyl-5-methoxy oxazoles $49a-c$. |
|---|---|---|---|---|
| Compound | R = | 1H-NMR[a] | 13C-NMR[b] | B.p[c] 10 torr (°C) | Yield (%) |
| 49a | Et | 3.78 | 156.1 | 80-83 | 75 |
| 49b | i-Pr | 3.78 | 159.2 | 94-97 | 80 |
| 49c | t-Bu | 3.79 | 161.2 | 100-102 | 78 |

[a] chemical shift of OCH$_3$ in ppm, [b] chemical shift of C-2 in ppm.

The chemical structures of the compounds $49a-c$ were established on the basis of spectroscopic data (UV, IR, 1H-NMR, 13C-NMR) and elemental analyses. The UV spectra of the 2-substituted 4-methyl-5-methoxy oxazoles $49a-c$ exhibit one major band of strong
intensity at 245-270 nm. The IR spectra showed strong bands at 1555-1598 cm\(^{-1}\) assigned to the –N=C-O ring stretching frequency. The \(^{13}\)C-NMR spectra showed that alkyl substitution at C-2 deshield C-2 in the order t-Bu > i-Pr > Et as depicted in Table 3.34.

3.8.2 Synthesis of \(\alpha\)-keto ester substrates

3.8.2.1 Synthesis of methyl trimethylpyruvate
Methyl trimethylpyruvate was prepared from the commercially available methyl tert-butyl ketone via oxidation with KMnO\(_4\) in the presence of sodium hydroxide to give the \(\alpha\)-keto acid followed by refluxing with methanol in the presence of conc. H\(_2\)SO\(_4\).\(^{130}\)

\[
\text{O} \quad \text{KMnO}_4 \quad \text{NaOH (10%)} \quad \text{CO}_2 \quad \text{H}_2\text{O} \quad \text{CH}_3\text{OH/H}_2\text{SO}_4 \quad \Delta, 3h. \quad \text{O}
\]

Scheme 3.55: Synthesis of methyl trimethylpyruvate.

3.8.2.2 Synthesis of isopropyl & tert-butyl phenylglyoxylates
Both isopropyl and tert-butyl phenylglyoxylates were prepared following a procedure described by Neckers\(^{131}\) from the reaction of phenyl glyoxylic acid with isopropyl alcohol as well as tert-butyl alcohol in presence of DCC/DMAP as coupling reagent. The products were isolated as colorless oils after column chromatography.

\[
\begin{align*}
\text{Ph} & \quad \text{O} \quad \text{OH} & \quad + & \quad \text{DCC/DMAP} & \quad \text{Benzene} & \quad \text{Ph} & \quad \text{O} \quad \text{O} \\
\text{Ph} & \quad \text{O} \quad \text{OH} & \quad + & \quad \text{DCC/DMAP} & \quad \text{Benzene} & \quad \text{Ph} & \quad \text{O} \quad \text{O}
\end{align*}
\]

Scheme 3.56: Synthesis of isopropyl and tert-butyl phenylglyoxylates.

3.8.2.3 Synthesis of (-)-menthyl phenylglyoxyxlate
Treatment of phenyl glyoxylic acid with (-)-menthol at -15°C in the presence of coupling reagents (oxalyl chloride, DMF/CH\(_3\)CN) following the Stadler procedure afforded the (-)-menthyl phenylglyoxyxlate \(\text{53}\) in high yields.\(^{132}\)
3. Results & Discussion

![Scheme 3.57: Synthesis of (-)-menthyl phenylglyoxylate 53.]

The structure of the menthyl phenylglyoxylate 53 was confirmed on the basis of the spectroscopic analysis (UV, IR, 1H-NMR, 13C-NMR) and elemental analysis. The UV spectrum showed two absorption bands, one with low intensity at 353 nm and the other with high intensity at 300 nm. The IR spectrum showed two strong signals at 1735 and 1680 cm$^{-1}$ indicating the presence of two carbonyl groups (C=O & OC=O), respectively.

3.8.3 Photocycloaddition reactions of aliphatic α-keto esters with oxazoles 36a-f

3.8.3.1 Reaction with methyl pyruvate

Photolysis of methyl pyruvate with oxazole substrates 36a-f in benzene using a Rayonet photoreactor (λ = 350 nm) at 10 °C afforded the bicyclic oxetanes 55a-f with high regio- and stereoselectivity in good yields.

![Scheme 3.58: Photoreaction of methyl pyruvate with oxazoles 36a-f.]

Table 3.35: Results of the photocycloaddition of methyl pyruvate to oxazole substrates 36a-f.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R^1</th>
<th>d.r. (exo : endo)$^{[a]}$</th>
<th>Yield (%)$^{[b]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>55a</td>
<td>Me</td>
<td>>98 : 2</td>
<td>85</td>
</tr>
<tr>
<td>55b</td>
<td>Et</td>
<td>>98 : 2</td>
<td>87</td>
</tr>
<tr>
<td>55c</td>
<td>n-Pr</td>
<td>>98 : 2</td>
<td>90</td>
</tr>
<tr>
<td>55d</td>
<td>i-Pr</td>
<td>>98 : 2</td>
<td>92</td>
</tr>
<tr>
<td>55e</td>
<td>i-Bu</td>
<td>>98 : 2</td>
<td>84</td>
</tr>
<tr>
<td>55f</td>
<td>sec-Bu</td>
<td>>98 : 2</td>
<td>88</td>
</tr>
</tbody>
</table>

$^{[a]}$ based on the integration of characteristic signals in the 1H-NMR spectra of the crude product mixture, $^{[b]}$ based on the degree of conversion of the oxazole.
3. Results & Discussion

The relative configuration of the bicyclic oxetane 55a was unambiguously determined from NOE effects which were detected for the CH$_3$ group at C-3 by saturation of both methyl hydrogens at C-7 and the methoxy hydrogens at C-5.

![Diagram](image)

Figure 3.126: NOESY spectrum (300 MHz, CDCl$_3$) of compound 55a.

The formation of acid-labile bicyclic oxetanes were proven by the characteristic 13C-NMR signals of the orthoester at δ ca. 124.0 ppm. The structure determination of the photoadducts 55a-f were based on IR, mass spectra and NMR analyses. For example, the IR spectrum of compound 55a showed absorption bands at 1735 and 1610 cm$^{-1}$ attributed to COO, C=N groups, respectively. The 1H-NMR spectrum showed five singlets at δ 1.22, 1.44, 2.08, 3.56 and 3.78 ppm corresponding to CH$_3$ at C-1, CH$_3$ at C-7, CH$_3$ at C-3, OCH$_3$ at C-5 and OCH$_3$ of the ester group, respectively. In the 13C-NMR spectrum, the signals of the oxetane ring resonate at δ 76.0, 88.7 and 123.9 ppm due to C-7, C-1 and C-5, respectively. Additionally, there appeared two signals at low field δ 166.2 and 171.5 ppm attributed to C-3 and the COO group.
The mass spectrum showed the major peak at m/z = 170 corresponding to (M+ - COOMe). The fragmentation pattern is depicted in Scheme 3.59.

Scheme 3.59: Fragmentation pattern of compound 55a.

Figure 3.129 shows the HMBC-spectrum of the bicyclic oxetane 55a which clearly correlates the protons with the corresponding carbon atoms and further assigns the chemical structure of compound 55a.
3. Results & Discussion

\[\text{Figure 3.129: HMBC spectrum (300 MHz, CDCl}_3\text{) of compound 55a.}\]

The 1H-NMR spectrum of compound 54d showed two doublets at δ 0.82 ppm (d, $J = 6.6$ Hz, 3H) and 1.20 ppm (d, $J = 6.6$ Hz, 3H) corresponding to the two methyl protons of the isopropyl group. In addition, there appeared four singlets at δ 1.55, 2.13, 3.63 and 3.79 ppm attributed to CH$_3$ at C-1, CH$_3$ at C-3, OCH$_3$ at C-5 and OCH$_3$ of the ester group. The 13C-NMR spectrum revealed signals at δ 82.8, 90.7 and 124.0 ppm due to C-1, C-7 and C-5 of the oxetane ring, respectively. Both C-3 and carbonyl ester resonate at δ 166.4 and 171.2 ppm, respectively.
Compound 55f was analyzed by 1H-NMR and 13C-NMR spectroscopy. In the 1H-NMR spectrum at δ 1.47, 2.07, 3.57 and 3.77 ppm, there appeared four singlets attributed to CH$_3$ at C-1, CH$_3$ at C-2, OCH$_3$ at C-5 and OCH$_3$ of the ester group, respectively. In addition, there appeared a triplet at δ 0.76 and a doublet at δ 0.89 ppm assigned to the CH$_3$ group attached to CH$_2$ and CH$_3$ attached to a CH group, respectively. The 13C-NMR spectrum revealed signals at δ 83.5, 90.5 and 124.2 ppm for the C-1, C-7 and C-5 of the oxetane ring, respectively.
3. Results & Discussion

3.8.3.2 Reaction with methyl trimethylpyruvate

In contrast to methyl pyruvate, photolysis of methyl trimethylpyruvate in the presence of oxazole substrates afforded the bicyclic oxetanes 56a-f with exo-tert-butyl substituent at position C-7. The diastereomeric ratio was significantly affected by the size of alkyl groups at position C-4 of the oxazole substrates.

![Scheme 3.60: Photoreaction of methyl trimethylpyruvate with oxazoles 36a-f.](image)

Table 3.36: Results of the photocycloaddition reaction of methyl trimethylpyruvate with oxazole substrates 36a-f.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R(^1)</th>
<th>d.r. (exo : endo)(^{[a]})</th>
<th>Yield (%)(^{[b]})</th>
</tr>
</thead>
<tbody>
<tr>
<td>56a</td>
<td>Me</td>
<td>>98 : 2</td>
<td>80</td>
</tr>
<tr>
<td>56b</td>
<td>Et</td>
<td>>98 : 2</td>
<td>75</td>
</tr>
<tr>
<td>56c</td>
<td>n-Pr</td>
<td>>98 : 2</td>
<td>68</td>
</tr>
<tr>
<td>56d</td>
<td>i-Pr</td>
<td>49 : 51</td>
<td>79</td>
</tr>
<tr>
<td>56e</td>
<td>i-Bu</td>
<td>63 : 37</td>
<td>84</td>
</tr>
<tr>
<td>56f</td>
<td>sec-Bu</td>
<td>56 : 44</td>
<td>89</td>
</tr>
</tbody>
</table>

\(^{[a]}\) based on the integration of characteristic signals in the \(^1\)H-NMR spectra of the crude product mixture, \(^{[b]}\) based on the degree of conversion of the oxazole.

The exo-tert-butyl configuration of the bicyclic oxetane 56a was determined by NOE measurement. Irradiation of a methyl protons of the tert-butyl group at 1.11 ppm led to NOE enhancement of both signals of CH\(_3\) on C-1 at 1.48 ppm and OCH\(_3\) group on C-5 at 3.55 ppm (see Figure 3.134).
3. Results & Discussion

The chemical structure determination of the bicyclic oxetanes 56a-f was based on IR, NMR analyses and mass spectrometry. For example, the infrared spectrum of compound 56a showed strong absorption bands at 1735 and 1620 cm\(^{-1}\) indicating the presence of COO and C=N groups, respectively. Again, the mass spectrum of the bicyclic oxetane did not show the molecular ion peak but peaks which were characteristic for retro-cycloaddition to oxazole and methyl trimethylpyruvate. The \(^1\)H-NMR spectrum of compound 56a showed five singlets at \(\delta\) 1.11, 1.48, 2.01, 3.54 and 3.71 ppm attributed to the tert-butyl group, CH\(_3\) at C-1, CH\(_3\) at C-3, OCH\(_3\) at C-5 and OCH\(_3\) of ester group, respectively. The \(^13\)C-NMR spectrum revealed signals at \(\delta\) 80.6, 97.3 and 118.7 ppm corresponding to C-1, C-7 and C-5 of the oxetane ring, respectively. In addition, there appeared two signals at \(\delta\) 167.8 and 173.3 ppm assigned to C-3 and the carbonyl methyl ester, respectively.

Figure 3.134: NOESY (300 MHz, CDCl\(_3\)) spectrum of compound 56a.
3. Results & Discussion

3.8.4 Photocycloaddition reactions of aromatic α-keto esters with oxazoles 36a-f

In order to evaluate the influence of steric as well as electronic factors on the stereoselectivity of the Paternò-Büchi reaction of oxazoles with aromatic α-keto esters, the photocycloaddition of 4-substituted oxazoles with different types of alkyl phenylglyoxylates was investigated.

3.8.4.1 Reaction with methyl phenylglyoxylate

Photolysis of equimolar amounts of methyl phenylglyoxylate and an oxazole in benzene at 350 nm furnished mixture of diastereoisomers exo-58a-f and endo-58a-f in good yields.

Scheme 3.61: Photoreaction of methyl phenylglyoxylate with oxazole substrates 36a-f.

The exo/endo diastereomeric ratios of the photoadducts 58a-f were slightly affected by changing the alkyl substituent of the oxazole substrates (see Table 3.37).
Table 3.37: Results of the photocycloaddition reaction of methyl phenylglyoxylate with oxazole substrates 36a-f.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R^1</th>
<th>d.r. (exo : endo)a</th>
<th>Yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>58a</td>
<td>Me</td>
<td>79 : 21</td>
<td>86</td>
</tr>
<tr>
<td>58b</td>
<td>Et</td>
<td>77 : 23</td>
<td>79</td>
</tr>
<tr>
<td>58c</td>
<td>n-Pr</td>
<td>75 : 25</td>
<td>78</td>
</tr>
<tr>
<td>58d</td>
<td>i-Pr</td>
<td>71 : 29</td>
<td>85</td>
</tr>
<tr>
<td>58e</td>
<td>i-Bu</td>
<td>72 : 28</td>
<td>89</td>
</tr>
<tr>
<td>58f</td>
<td>sec-Bu</td>
<td>74 : 26</td>
<td>90</td>
</tr>
</tbody>
</table>

a based on the integration of characteristic signals in the 1H-NMR spectra of the crude product mixture, b based on the degree of conversion of the oxazole.

The bicyclic oxetanes 58a-f were formed with moderate simple diastereoselectivity favoring the exo-Ph products. In most examples, the diastereomeric exo and endo oxetane products were separated by preparative chromatography after treatment with 1% TEA/CH$_2$Cl$_2$. No side products were formed except the inevitable pinacol formation, which is due to hydrogen abstraction of the photoexcited methyl phenylglyoxylate and its subsequent addition to another substrate molecule. In order to determine the preferred mode of diastereofacial attack of methyl phenylglyoxylate to the chiral oxazole 36f, a NOESY experiment was performed with the isolated endo-Ph bicyclic oxetane 58f. Saturation of the methyl hydrogen at 1.22 ppm led to an enhancement of the aromatic proton signal at 7.51 ppm assigned the lk-attack ($lk = like$) of the methyl phenylglyoxylate whereas irradiation of the methylene proton at 2.09 ppm led to enhancement of the aromatic proton at 7.51 ppm assigned to ul-attack ($ul = unlike$) of methyl phenylglyoxylate to the chiral oxazole (see Figure 3.137).
Figure 3.137: NOESY spectrum (300 MHz, CDCl\textsubscript{3}) of endo-58f.

Scheme 3.62 displays the formation of the two diastereoisomers of the bicyclic oxetanes from the \textit{lk}-attack and \textit{ul}-attack of methyl phenylglyoxylate to the chiral oxazole 36f.

Scheme 3.62: \textit{lk}- and \textit{ul}- attack of methyl phenylglyoxylate to the chiral oxazole.

The assignment the relative configuration of the two diastereoisomers was possible by 1H-NMR analysis, which showed two main differences between the \textit{exo}-Ph and the \textit{endo}-Ph diastereoisomers in the 1H-NMR spectra: (a) the methyl protons at C-3 in the \textit{exo}-Ph isomer absorb at 2.00 ppm, while in the \textit{endo}-Ph isomer this absorption is shifted upfield to 1.70 ppm due to shielding effect of the benzene ring; (b) the methoxy protons at C-5 in the \textit{exo}-Ph
isomer is shielded by the benzene ring and resonates at much higher field ($\delta = 3.00$ ppm) than the methoxy protons in the *endo*-Ph isomer which absorb at $\delta = 3.67$ ppm.

The constitutions of the bicyclic oxetanes 58a-f were elucidated on the basis of NMR analyses. For example, the 1H-NMR spectrum of *exo*-58a showed four singlets at δ 2.03, 2.08, 3.05 and 3.73 ppm attributed to CH$_3$ at C-1, CH$_3$ at C-3, OCH$_3$ at C-5 and OCH$_3$ of the ester group, respectively. The 13C-NMR spectrum revealed signals at δ 80.9, 90.9 and 121.7 ppm due to C-1, C-7 and C-5 of the oxetane ring, respectively.

![Figure 3.138: 1H-NMR (300 MHz, CDCl$_3$) spectrum of *exo*-58a.](image1)

![Figure 3.139: 13C-NMR (75 MHz, CDCl$_3$) spectrum of *exo*-58a.](image2)

In the 1H-NMR spectrum of compound 58c, the methyl protons at C-3 resonates at higher field ($\delta = 1.66$ ppm) influenced by the ring current effect of the benzene ring and assigned to the *endo*-Ph configuration of the bicyclic oxetane. In addition, the two methoxy groups absorb at δ 3.64 and 3.73 ppm. The 13C-NMR spectrum revealed signals at δ 81.6, 91.0, 123.7, 165.2 and 169.8 ppm attributed to C-1, C-7, C-5, C-3 and the carbon of carbonyl ester, respectively.
The 1H-NMR spectrum of *endo-58e* revealed two doublets at δ 0.79 ppm (d, $J = 6.6$ Hz, 3H) and 0.92 ppm (d, $J = 6.6$ Hz, 3H) indicating the presence of an isopropyl group. Again, the methyl protons at C-3 resonate at higher field at δ 1.72 ppm confirming the *endo*-Ph configuration of the bicyclic oxetane. Further prove of the *endo*-Ph configuration came from the chemical shift of OCH$_3$ group at C-5 (3.69 ppm) indicating that the phenyl group is distant from OCH$_3$ group. The 13C-NMR spectrum showed signals at δ 81.8, 90.9 and 123.8 ppm due to C-1, C-7 and C-5 of the oxetane ring, respectively. Both C-3 and carbonyl ester resonate at lower field at δ 164.7 and 169.9 ppm, respectively.

In the 1H-NMR spectrum of *endo-58f*, three singlets appeared at δ 1.70, 3.71 and 3.77 ppm related to CH$_3$ at C-1, OCH$_3$ at C-5 and OCH$_3$ of the ester group, respectively. The 13C-NMR spectrum revealed signals at δ 86.3, 92.3 and 123.9 ppm assigned to C-1, C-7 and C-5 of the
3. Results & Discussion

oxetane ring, respectively. Moreover, from the intensity of the signals it was detected that the facial selectivity of the photoadduct was low (de. 58 : 42).

Figure 3.144: 1H-NMR spectrum (300 MHz, CDCl$_3$) of endo-58f.

Figure 3.145: 13C-NMR spectrum (75 MHz, CDCl$_3$) of endo-58f.

3.8.4.2 Reaction with ethyl phenylglyoxylate

Analogous to methyl phenylglyoxylate, irradiation of ethyl phenylglyoxylate in benzene in the presence of the oxazole substrates afforded two diastereoisomers exo-60a-f and endo-60a-f in good yields with preferential formation of the exo-Ph photoadducts.

Scheme 3.63: Photoreaction of ethyl phenylglyoxylate with oxazole substrates 36a-f.

The exo/endo diastereoselectivity of the photoadducts was slightly changed by increasing the size of the alkyl substituent of the oxazole substrates. Comparing the diastereoselectivity of the photoadducts from methyl phenylglyoxylate and ethyl phenylglyoxylate showed that the exo/endo diastereoselectivity slightly decreased in case of ethyl phenylglyoxylate than for methyl phenylglyoxylate.
Table 3.38: Results of the photocycloaddition reaction of 59 with 36a-f.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(R^1)</th>
<th>d.r. (exo : endo)[a]</th>
<th>Yield (%)[b]</th>
</tr>
</thead>
<tbody>
<tr>
<td>60a</td>
<td>Me</td>
<td>73 : 27</td>
<td>89</td>
</tr>
<tr>
<td>60b</td>
<td>Et</td>
<td>72 : 28</td>
<td>85</td>
</tr>
<tr>
<td>60c</td>
<td>n-Pr</td>
<td>70 : 30</td>
<td>78</td>
</tr>
<tr>
<td>60d</td>
<td>i-Pr</td>
<td>67 : 33</td>
<td>75</td>
</tr>
<tr>
<td>60e</td>
<td>i-Bu</td>
<td>65 : 35</td>
<td>90</td>
</tr>
<tr>
<td>60f</td>
<td>sec-Bu</td>
<td>66 : 34</td>
<td>76</td>
</tr>
</tbody>
</table>

[a] based on the integration of characteristic signals in the \(^1\)H-NMR spectra of the crude product mixture, [b] based on conversion of the oxazole.

The \(\text{exo-Ph} \) and \(\text{endo-Ph} \) bicyclic oxetane diastereoisomers were separated by preparative chromatography although the separation was not always fully successful. The relative configurations of the two separated isomers of compound 60d were deduced from NOESY studies. The \(\text{endo-Ph} \) diastereoisomer shows strong NOEs effect between the methyl protons at C-3 and aromatic phenyl protons at C-7. This phenomenon is illustrated in Figure 3.147 which summarizes the NOE data recorded for the \(\text{endo-Ph-60d} \). The \(\text{exo-Ph} \) isomer showed a strong nuclear Overhauser enhancement of the aromatic protons signal when both methoxy protons at 3.54 ppm and methyl protons at 0.85 ppm were irradiated (see Figure 3.146).

![Figure 3.146: NOESY (300 MHz, CDCl\(_3\)) spectrum of \(\text{exo-60d} \).](image-url)
3. Results & Discussion

Figure 3.147: NOESY (300 MHz, CDCl₃) spectrum of endo-60d.

The constitutions of the bicyclic oxetanes 60a-f were confirmed by the 1H-NMR and 13C-NMR analyses. For examples, the 1H-NMR spectrum of endo-60b showed two triplets at δ 0.93 (t, $J = 7.5$ Hz, 3H), 1.27 (t, $J = 7.4$ Hz, 3H) indicating the presence of two ethyl groups. In addition, there appeared two singlets at δ 1.72, 3.69 ppm attributed to methyl protons at C-3 and methoxy protons at C-5, respectively and confirmed the endo-Ph configuration of the bicyclic oxetane. The 13C-NMR spectrum revealed signals at δ 81.9, 90.9 and 123.8 ppm attributed to C-1, C-7 and C-5 of the oxetane ring, respectively. Moreover, there appeared two down-field shifted signals at δ 165.4 and 169.3 ppm related to C-3 and carbonyl ester group, respectively.
There are two main differences in the 1H-NMR spectra of the exo-Ph and endo-Ph diastereoisomers of compound 60d: a) the methyl protons of the isopropyl group in the exo-Ph isomer resonate upfield-shifted at δ 0.66 (d, $J = 6.6$ Hz, 3H), and 0.84 (d, $J = 6.6$ Hz, 3H) while in the endo-Ph isomer the corresponding signals appear at δ 0.84 (d, $J = 6.6$ Hz, 3H) and 1.22 (d, $J = 6.8$ Hz, 3H); b) the methyl protons at C-3 absorb at higher field in the endo-Ph isomer in comparison with the exo-Ph isomer. The 13C-NMR spectrum revealed, that the methine carbon of isopropyl group in the exo-Ph isomer resonate at higher field ($\delta = 25.9$ ppm) than in the endo-Ph isomer which resonates at δ 27.8 ppm. This phenomena is related to the ring current effect of the benzene ring which was often used as a tool for the assignment of the relative configuration of the bicyclic oxetanes.
The IR spectrum of compound 60e showed two strong absorption bands at 1740 and 1620 cm\(^{-1}\) attributed to the COO and C=N groups, respectively. The \(^1\)H-NMR spectrum showed two singlets at \(\delta\) 1.72 and 3.69 ppm attributed to methyl protons at C-3 and methoxy protons at C-5, respectively, and confirmed the \textit{endo}-Ph configuration. In the \(^13\)C-NMR spectrum, at \(\delta\) 81.6, 90.8 and 123.8 ppm, there signals appeared corresponding to C-1, C-7 and C-5 of the oxetane ring, respectively.

\textbf{3.8.4.3 Reaction with isopropyl phenylglyoxylate}

The [2+2]-photocycloaddition of the electronically excited triplet state of isopropyl phenylglyoxylate with the oxazole substrates 36a-f afforded two diastereoisomer of the bicyclic oxetanes 61a-f in high chemical yields.
The \(\text{exo-Ph}/\text{endo-Ph}\) diastereomeric ratios exhibited a strong trend disfavoring the \(\text{endo-Ph}\) isomers with increasing steric demand of the \(R^1\) substituent (Me, Et, n-Pr, i-Bu, sec-Bu and i-Pr) of the oxazole substrates (see Table 3.39). Interestingly, the \(\text{exo-Ph}\) diastereoisomer is still favored even with the bulky isopropyl substituent.

Table 3.39: Results of the photocycloaddition reaction of isopropyl phenylglyoxylate with oxazole substrates 36a-f.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(R^1)</th>
<th>d.r. ((\text{exo} : \text{endo})^{[a]})</th>
<th>Yield (%)(^{[b]})</th>
</tr>
</thead>
<tbody>
<tr>
<td>61a</td>
<td>Me</td>
<td>67 : 33</td>
<td>85</td>
</tr>
<tr>
<td>61b</td>
<td>Et</td>
<td>66 : 34</td>
<td>87</td>
</tr>
<tr>
<td>61c</td>
<td>n-Pr</td>
<td>63 : 37</td>
<td>80</td>
</tr>
<tr>
<td>61d</td>
<td>i-Pr</td>
<td>51 : 49</td>
<td>90</td>
</tr>
<tr>
<td>61e</td>
<td>i-Bu</td>
<td>56 : 44</td>
<td>86</td>
</tr>
<tr>
<td>61f</td>
<td>sec-Bu</td>
<td>55 : 45</td>
<td>84</td>
</tr>
</tbody>
</table>

\([a]\) based on the integration of characteristic signals in the \(^1\)H-NMR spectra of the crude product mixture, \([b]\) based on conversion of the oxazole.

The \(\text{exo-Ph}\) and \(\text{endo-Ph}\) diastereoisomers of the bicyclic oxetanes 61a-f were separated by preparative chromatography. The relative configurations of the photoadducts were assigned from the \(^1\)H-NMR chemical shift comparsion of the methyl protons at C-3 in both the \(\text{exo}\) and \(\text{endo}\)-isomers similar to the results described above. The chemical structure of the bicyclic oxetanes were elucidated by the \(^1\)H-NMR and \(^13\)C-NMR analyses. For example, the \(^1\)H-NMR spectrum of compound 61a showed two doublets at \(\delta\) 1.20 (d, \(J = 6.2\) Hz, 3H), 1.28 (d, \(J = 6.2\) Hz, 3H) indicating the presence of an isopropyl group. In addition, at \(\delta\) 1.50, 1.69 and 3.67 ppm, three singlets appeared related to CH\(_3\) at C-1, CH\(_3\) at C-3 and OCH\(_3\) at C-5, respectively, and confirmed the \(\text{endo-Ph}\) configuration. In the \(^13\)C-NMR spectrum, three signals appeared at \(\delta\) 78.5, 90.5 and 123.7 ppm attributed to C-1, C-7 and C-5 of the oxetane ring, respectively.
3. Results & Discussion

3.8.4.4 Reaction with tert-butyl phenylglyoxylate

Analogous to isopropyl phenylglyoxylate, irradiation of tert-butyl phenylglyoxylate in benzene in the presence of the oxazole substrates 36a-f delivered two diastereoisomers of the bicyclic oxetanes 62a-f in high chemical yields.

![Figure 3.156: 1H-NMR (300 MHz, CDCl$_3$) spectrum of endo-61a.](image1)

![Figure 3.157: 13C-NMR (75 MHz, CDCl$_3$) spectrum of endo-61a.](image2)

Scheme 3.65: Photoreaction of tert-butyl phenylglyoxylate with oxazole substrates 36a-f.

Table 3.40: Results of the photocycloaddition reaction of tert-butyl phenylglyoxylate with oxazole substrates 36a-f.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R^1</th>
<th>d.r. (exo : endo)$^{[a]}$</th>
<th>Yield (%)$^{[b]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>62a</td>
<td>Me</td>
<td>69 : 31</td>
<td>85</td>
</tr>
<tr>
<td>62b</td>
<td>Et</td>
<td>67 : 33</td>
<td>87</td>
</tr>
<tr>
<td>62c</td>
<td>n-Pr</td>
<td>61 : 39</td>
<td>80</td>
</tr>
<tr>
<td>62d</td>
<td>i-Pr</td>
<td>53 : 47</td>
<td>90</td>
</tr>
<tr>
<td>62e</td>
<td>i-Bu</td>
<td>55 : 45</td>
<td>86</td>
</tr>
<tr>
<td>62f</td>
<td>sec-Bu</td>
<td>55 : 45</td>
<td>84</td>
</tr>
</tbody>
</table>

[a] based on the integration of characteristic signals in the 1H-NMR spectra of the crude product mixture, [b] based on the degree of conversion of the oxazole.
3. Results & Discussion

Again, the \textit{exo}-Ph/ \textit{endo}-Ph diastereoselectivities of the photoadducts decreased by increasing size of the substituent at C-4 of the oxazole substrates 36a-f, albeit the \textit{exo}-Ph isomer is still favored (see Table 3.40).

The two diastereoisomers of the bicyclic oxetanes could be separated by preparative chromatography. The relative configuration of the \textit{endo}-Ph bicyclic oxetane 62a was clearly assigned by NOESY measurements. Irradiation of the methyl hydrogen protons at 1.67 ppm led to an enhancement of the intensity of the phenyl protons signal at 7.48 ppm. Also, irradiation of the phenyl protons at 7.48 ppm led to an enhancement of the intensity of both the methyl signal at 1.53 ppm and the \textit{tert}-butyl protons signal at 1.44 ppm (see Figure 3.158).

\begin{center}
\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure3_158.png}
\caption{NOESY (300 MHz, CDCl$_3$) spectrum of \textit{endo}-62a.}
\end{figure}
\end{center}

The constitutions of compounds 62a-f were determined by IR, mass spectroscopy and NMR analyses. For example, the IR spectrum of compound 62a showed two strong absorption bands at 1615 and 1725 cm$^{-1}$ corresponding to the C=N and COO group, respectively. The mass spectrum showed the base peak at m/z 276 due to [M$^+$ - (CH$_3$)$_3$C], in addition there are two peaks at m/z 127 and 206 related to retrocycloaddition to give 2,4-dimethyl-5-
methoxyoxazole and tert-butyl phenylglyoxylate. Scheme 3.66 summarizes the fragmentation pattern of the compound 62a.

There are two main differences in the 1H-NMR spectra between the exo-Ph and the endo-Ph diastereoisomer of compound 62a: (a) the methyl protons at C-3 in the exo-Ph isomer absorb at 2.07 ppm, while in the endo-Ph isomer this absorption is shifted upfield to 1.67 ppm due to the shielding effect of the benzene ring; (b) the methyl protons at C-1 in the exo-Ph isomer are shielded by the benzene ring and resonate at a much higher field ($\delta = 1.04$ ppm) than in the endo-Ph which absorbs at 1.52 ppm. The 13C-NMR spectra of both the exo- and endo-Ph isomers revealed signals at δ 78.8, 91.1 and 123.4 ppm attributed to C-1, C-7 and C-5 of the oxetane ring, respectively. Figure 3.163 shows the DEPT spectrum of the compound endo-62a which clearly displayes the CH and CH$_3$ groups.
3. Results & Discussion

Figure 3.159: 1H-NMR (300 MHz, CDCl$_3$) spectrum of exo-$62a$.

Figure 3.160: 13C-NMR (75 MHz, CDCl$_3$) spectrum of exo-$62a$.

Figure 3.161: 1H-NMR (300 MHz, CDCl$_3$) spectrum of $endo$-$62a$.

Figure 3.162: 13C-NMR (75 MHz, CDCl$_3$) spectrum of $endo$-$62a$.

Figure 3.163: DEPT (75MHz, CDCl$_3$) spectrum of $endo$-$62a$.

154
3. Results & Discussion

Proving the chemical structure of compound 62b was based on NMR analyses. Analogous to compound 62a, there are also two main differences in the 1H-NMR spectra between the exo- and the endo-Ph diastereoisomers. The 1H-NMR spectrum of the exo-Ph isomer showed a triplet ($J = 7.5$ Hz, 3H) at higher chemical shift ($\delta = 0.72$ ppm) related to the methyl group attached to the methylene group and assigned to the exo-Ph configuration. Additionally, there appeared three singlets at $\delta = 1.47, 2.09$ and 3.65 ppm attributed to the tert-butyl, methyl, and methoxy groups, respectively. In the 1H-NMR spectrum of the endo-Ph isomer, the chemical shift of the methyl protons of ethyl group is shifted downfield to 0.92 ppm, whereas the chemical shift of the methyl protons at C-3 is shifted upfield to 1.70 ppm. The 13C-NMR spectra of both the exo-Ph and endo-Ph diastereoisomers revealed signals characteristic for the oxetane ring at $\delta = 81.9, 91.3$ and 123.3 ppm corresponding to C-1, C-7 and C-5, respectively.
The structure elucidation of both the \textit{exo-} and \textit{endo-}Ph diastereoisomer of compound 62d was based on their NMR analyses. Analogous to 62a, there are two main differences between the \textit{exo-} and \textit{endo-}Ph isomers in the 1H-NMR spectra: (a) the methyl protons of the isopropyl group in the \textit{exo-}isomer appears at 0.68 and 0.84 ppm, while in the \textit{endo-}isomer, this absorption is shifted downfield to 0.87 and 1.26 ppm; (b) the methyl protons at C-3 in the \textit{exo-}isomer resonates at 2.09 ppm, while in the \textit{exo-}isomer this absorption is shifted to 1.75 ppm due to shielding effect of the benzene ring. In the 13C-NMR spectra of both the \textit{exo-} and \textit{endo-}isomers, the signals at 85.8, 92.6 and 123.2 ppm correspond to C-1, C-7, and C-7 of the oxetane ring, respectively. In addition, the methine carbon of \textit{exo-}isomer appears at 25.9 ppm, while in the \textit{endo-}isomer this absorption is shifted to 27.6 ppm.

\begin{figure}[h]
\centering
\includegraphics[width=0.45\textwidth]{exo-62d_H-NMR}
\caption{1H-NMR (300 MHz, CDCl$_3$) spectrum of \textit{exo-}62d.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.45\textwidth]{exo-62d_C-NMR}
\caption{13C-NMR (75 MHz, CDCl$_3$) spectrum of \textit{exo-}62d.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.45\textwidth]{endo-62d_H-NMR}
\caption{1H-NMR (300 MHz, CDCl$_3$) spectrum of \textit{endo-}62d.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.45\textwidth]{endo-62d_C-NMR}
\caption{13C-NMR (75 MHz, CDCl$_3$) spectrum of \textit{endo-}62d.}
\end{figure}
3. Results & Discussion

3.8.5 Asymmetric induction

Phenyl glyoxylates derived from chiral alcohols were already described to be excellent substrates for the photocycloaddition to a variety of alkenes. Depending on the facial bias exerted by the auxiliary they yield the corresponding oxetanes with modest to excellent diastereomeric excesses. It was thus of interest to study the asymmetric induction in the Paternò-Büchi reaction of 5-methoxyoxazoles 36a-f with (-)-menthyl phenylglyoxylate.

3.8.5.1 Photoreactions of menthyl phenylglyoxylate with 5-methoxyoxazoles

When (-)-menthyl phenylglyoxylate was irradiated in benzene in the presence of 5-methoxyoxazoles 36a-f at 350 nm, mixtures of the exo- and endo-Ph diastereoisomers 63a-f were formed in high chemical yields.

![Scheme 3.67](image)

Scheme 3.67: Photocycloaddition of (-)-menthyl phenylglyoxylate with 5-methoxyoxazoles 63a-f.

Table 3.41: Results of the photocycloaddition reaction of menthyl phenylglyoxylate with 5-methoxyoxazoles 36a-f.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R<sup>1</sup></th>
<th>(exo : endo)<sup>[a]</sup></th>
<th>de. exo-Ph</th>
<th>de. endo-Ph</th>
<th>Yield (%)<sup>[b]</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>63a</td>
<td>Me</td>
<td>76 : 24</td>
<td>55 : 45</td>
<td>54 : 46</td>
<td>85</td>
</tr>
<tr>
<td>63b</td>
<td>Et</td>
<td>69 : 31</td>
<td>53 : 47</td>
<td>53 : 47</td>
<td>92</td>
</tr>
<tr>
<td>63c</td>
<td>n-Pr</td>
<td>66 : 34</td>
<td>56 : 44</td>
<td>52 : 48</td>
<td>84</td>
</tr>
<tr>
<td>63d</td>
<td>i-Pr</td>
<td>54 : 46</td>
<td>60 : 40</td>
<td>58 : 42</td>
<td>73</td>
</tr>
<tr>
<td>63e</td>
<td>i-Bu</td>
<td>64 : 36</td>
<td>52 : 48</td>
<td>53 : 47</td>
<td>92</td>
</tr>
<tr>
<td>63f</td>
<td>sec-Bu</td>
<td>55 : 45</td>
<td>56 : 44</td>
<td>55 : 45</td>
<td>85</td>
</tr>
</tbody>
</table>

[a] based on the integration of characteristic signals in the ^1^H-NMR spectrum of the crude products mixture, [b] yield (%) based on the degree of conversion of the oxazole.

Interestingly, the substituent R¹ in the oxazole substrates 36a-f has significant influence on both the simple exo-endo diastereoselectivity and and also facial selectivity of the photoadducts. The simple exo-endo diastereoselectivity decreased with increasing steric demand of the substituent R¹ like the non-induced photocycloaddition of achiral alkyl
phenylglyoxylates with \textbf{36a-f}. The facial selectivities of the photoadducts for both \textit{exo}- and \textit{endo}-isomers were low and slightly influenced by increasing size of \(R^1\) groups in oxazole substrates. The low facial selectivity of the photoadducts is similar to furan-menthyl phenylglyoxylate photoadducts which were described by Scharf and coworker.63 The relatively low diastereomeric excess values observed for both the \textit{exo}- and the \textit{endo}-Ph diastereoisomers might be due to the fact that the bond formation proceeds in an early transition state at high energy of the diabatic reaction coordinate. Another reason for the lack of facial selectivity could be related to the excited menthyl phenyl glyoxylate which attacks the oxazole ring in an \textit{exo}- or \textit{endo}-fashion and might lead to partial cancellation of the inducing effect of the chiral auxiliary.

The relative configurations of the four stereoisomers of the photoadduct \textbf{63a} were determined on the basis of the chemical shifts comparison of the methyl protons at C-1, OCH\textsubscript{3} at C-5 and also the chemical shift of the orthoester carbon (see Table 3.42).

\textbf{Table 3.42:} NMR chemical shifts of the four stereoisomers of compound \textbf{63a}.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(\delta) ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{exo}-((a))</td>
<td>\textit{exo}-((b))</td>
</tr>
<tr>
<td>(\text{\textit{CH}_3})</td>
<td>1.04</td>
</tr>
<tr>
<td>OCH\textsubscript{3}</td>
<td>3.63</td>
</tr>
<tr>
<td>C-5</td>
<td>122.9</td>
</tr>
</tbody>
</table>

By use of preparative chromatography both the \textit{exo}- and the \textit{endo}-Ph isomers could be separated. The relative configuration of the major \textit{exo}-Ph diastereoisomer of compound \textbf{63a} was determined unambiguously \textit{via} NOE spectroscopy. Significant effects were observed for aromatic phenyl protons (\(\delta = 7.66\) ppm) by irradiation of the methyl protons (\(\delta = 1.04\) ppm) and the methoxy protons at 3.63 ppm.
3. Results & Discussion

Figure 3.172: NOESY (300 MHz, CDCl$_3$) spectrum of exo-63a.

Structure elucidation of the bicyclic oxetanes 63a-f was based on the NMR analyses. For example, the 1H-NMR spectrum of compound 63a revealed three singlets at δ 1.04, 2.05 and 3.63 ppm corresponding to the methyl protons at C-1, CH$_3$ at C-3 and OCH$_3$ at C-5, respectively, and confirmed the exo-Ph configuration. In the 13C-NMR spectrum, at δ 79.4, 91.8, 123.7, 166.3 and 168.8 ppm, five signals appeared which were attributed to C-1, C-7, C-5, C-3 and COO group, respectively.

Figure 3.173: 1H-NMR (300 MHz, CDCl$_3$) spectrum of exo-63a.

Figure 3.174: 13C-NMR (75 MHz, CDCl$_3$) spectrum of exo-63a.
The IR spectrum of compound 63c showed strong absorption bands at 1630 and 1735 cm$^{-1}$ characteristic for the C=N and COO groups, respectively. The 1H-NMR spectrum showed two singlets at δ 2.06 and 3.67 ppm attributed to CH$_3$ at C-3 and OCH$_3$ group, respectively, and assigned to the exo-Ph configuration. The 13C-NMR spectrum revealed signals at δ 81.9, 91.8 and 123.2 ppm corresponding to C-1, C-7 and C-5 of the oxetane ring, respectively. In addition, two signals appeared down-field shifted at δ 165.4 and 168.3 ppm due to C-3 and CO group, respectively.

Figure 3.175: HMQC (300 MHz, CDCl$_3$) spectrum of exo-63a.
The 1H-NMR spectrum of compound 63f showed two singlets at δ 2.05 and 3.73 ppm due to CH$_3$ at C-3 and OCH$_3$ at C-5, respectively, and were assigned to the exo-Ph configuration. In the 13C-NMR spectrum, three signals at δ 86.5, 93.1 and 123.3 ppm appeared which were attributed to C-1, C-7 and C-5 of the oxetane ring, respectively. In addition, both C-3 and CO resonate at lower field at δ 165.1 and 167.8 ppm, respectively.

3.8.6 Effect of the substituent at C-2 of the oxazole substrates on the stereoselectivity of the photocycloaddition with α-keto esters

The successful explanation of the strong endo preference for a large number of Diels-Alder reactions has been usually considered as an example of secondary orbital interaction (SOI). Recently, Griesbeck et al. reported that the exo preference for the triplet carbonyl photocycloaddition to dienes could also be related to secondary orbital interactions that
facilitates intersystem crossing by means of an increase in spin-orbit coupling.42 In order to clarify the role of secondary orbital interactions in controlling the stereoselectivity of the triplet carbonyl-diene photocycloadditions, the Paternò-Büchi reaction of 5-methoxyoxazoles bearing an additional substituent at C-2 with aliphatic and aromatic \(\alpha\)-keto esters was investigated.

3.8.6.1 Photocycloaddition reactions of 2-ethyl-4-methyl-5-methoxyoxazole with \(\alpha\)-keto esters

Analogous to 2,4-dimethyl-5-methoxyoxazole 36a, irradiation of aliphatic as well as aromatic \(\alpha\)-keto esters in benzene in the presence of 2-ethyl-4-methyl-5-methoxyoxazole 49a afforded the bicyclic oxetanes 64a-f in high chemical yields.

![Scheme 3.68: Photoreaction of 49a with \(\alpha\)-keto esters.](image)

Table 3.43: Simple diastereoselectivity of the Paternò-Büchi reaction of \(\alpha\)-keto esters with 2-ethyl-4-methyl-5-methoxy oxazole 49a.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R =</th>
<th>R' =</th>
<th>d.r.(exo : endo)[a]</th>
<th>Yield (%)[b]</th>
</tr>
</thead>
<tbody>
<tr>
<td>64a</td>
<td>Me</td>
<td>Me</td>
<td>2 : >98</td>
<td>80</td>
</tr>
<tr>
<td>64b</td>
<td>t-Bu</td>
<td>Me</td>
<td>>98 : 2</td>
<td>86</td>
</tr>
<tr>
<td>64c</td>
<td>Ph</td>
<td>Me</td>
<td>68 : 32</td>
<td>87</td>
</tr>
<tr>
<td>64d</td>
<td>Ph</td>
<td>Et</td>
<td>67 : 33</td>
<td>78</td>
</tr>
<tr>
<td>64e</td>
<td>Ph</td>
<td>i-Pr</td>
<td>63 : 37</td>
<td>90</td>
</tr>
<tr>
<td>64f</td>
<td>Ph</td>
<td>t-Bu</td>
<td>65 : 35</td>
<td>83</td>
</tr>
</tbody>
</table>

[a] based on the integration of characteristic signals in the \(^1\)H-NMR spectrum of the crude products mixture, \[b\] yield (%) based on the degree of the conversion of the oxazole.

The results in Table 3.43 show that the simple exolendo diastereoselectivity of the photoadducts 64a-f were very high with aliphatic \(\alpha\)-keto esters in comparison with the aromatic \(\alpha\)-keto esters. From aromatic \(\alpha\)-keto esters photoadducts, the simple exolendo diastereoselectivity slightly decreased with increasing steric demand of the alkyl phenylglyoxylate substrates. In all cases, the diastereoisomers were successfully separated by preparative chromatography.

The structural determination of compounds 64a-f was based on the \(^1\)H-NMR and the \(^{13}\)C-NMR analyses. For example, the \(^1\)H-NMR spectrum of compound
3. Results & Discussion

64e showed a triplet at a chemical shift $\delta = 0.68$ ppm due to a methyl group attached to methylene group and established the endo-Ph configuration of the bicyclic oxetane. Additionally, two singlets at δ 1.53 and 3.66 ppm appeared corresponding to CH$_3$ at C-1 and OCH$_3$ at C-5, respectively. In the 13C-NMR spectrum, at δ 78.1, 90.3 and 123.6 ppm, three signals appeared characteristic for C-1, C-7 and C-5 of the oxetane ring, respectively. Moreover, both C-3 and COO group resonate at δ 168.6 and 169.6 ppm, respectively.

![Figure 3.180: 1H-NMR (300 MHz, CDCl$_3$) spectrum of endo-64e.](image1)

![Figure 3.181: 13C-NMR (75 MHz, CDCl$_3$) spectrum of endo-64e.](image2)

The 1H-NMR spectrum of compound 64f showed a triplet at 0.67 ppm attributed to the methyl protons of the ethyl group and confirmed the endo-Ph configuration. Furthermore, there were three singlets at δ 1.44, 1.54 and 3.66 ppm due to the tert-butyl, CH$_3$ at C-1 and OCH$_3$ at C-5, respectively. The 13C-NMR spectrum revealed signals at δ 77.9, 90.4, 123.5, 167.9 and 169.5 ppm indicating C-1, C-7, C-5, C-3, and COO group, respectively.

![Figure 3.182: 1H-NMR (300 MHz, CDCl$_3$) spectrum of endo-64f.](image3)

![Figure 3.183: 13C-NMR (75 MHz, CDCl$_3$) spectrum of endo-64f.](image4)
3.8.6.2 Photocycloaddition reactions of 2-isopropyl-4-methyl-5-methoxyoxazole with \(\alpha\)-keto esters

Irradiation of \(\alpha\)-keto ester substrates in benzene in the presence of 2-isopropyl-4-methyl-5-methoxyoxazole resulted in a mixture of diastereoisomers of the bicyclic oxetanes \(65a-f\) in high chemical yields.

\[
\begin{align*}
&\text{Scheme 3.69: Photoreaction of } 49b \text{ with } \alpha\text{-keto esters.}
\end{align*}
\]

Table 3.44: Simple diastereoselectivity of the Paternò-Büchi reaction of \(\alpha\)-keto esters with 2-isopropyl-4-methyl-5-methoxy oxazole \(49b\).

<table>
<thead>
<tr>
<th>Compound</th>
<th>(R =)</th>
<th>(R' =)</th>
<th>d.r.(exo : endo)(^{[a]})</th>
<th>Yield (%)(^{[b]})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(65a)</td>
<td>Me</td>
<td>Me</td>
<td>60 : 40</td>
<td>87</td>
</tr>
<tr>
<td>(65b)</td>
<td>t-Bu</td>
<td>Me</td>
<td>70 : 30</td>
<td>90</td>
</tr>
<tr>
<td>(65c)</td>
<td>Ph</td>
<td>Me</td>
<td>69 : 31</td>
<td>94</td>
</tr>
<tr>
<td>(65d)</td>
<td>Ph</td>
<td>Et</td>
<td>67 : 33</td>
<td>80</td>
</tr>
<tr>
<td>(65e)</td>
<td>Ph</td>
<td>i-Pr</td>
<td>42 : 58</td>
<td>83</td>
</tr>
<tr>
<td>(65f)</td>
<td>Ph</td>
<td>t-Bu</td>
<td>37 : 63</td>
<td>85</td>
</tr>
</tbody>
</table>

\(^{[a]}\) based on the integration of characteristic signals in the \(^1\)H-NMR spectrum of the crude products mixture, \(^{[b]}\) yield (%) based on the degree of the conversion of the oxazole.

Surprisingly, the simple \(exo\)-endoo-R diastereoselectivity of methyl pyruvate photoadducts \(65a\) did not only decrease but inverte, compared to the photoadduct from \(49a\). For trimethyl methylpyruvate photoadducts \(65b\), the \(exo\)-endo-tert-butyl diastereoselectivity decreased when compared with the photoadduct from \(49a\), but the \(exo\)-tert-butyl isomer still dominated. In case of alkyl phenylglyoxylates photoaddition, by changing the alkyl substituents from Me to Et, the \(exo\)-endo-Ph diastereoselectivity slightly decreased and was compleletly inverted when processing from Et to i-Pr and tert-Bu. The diastereoisomers of the photoadducts \(65a-f\) in most cases were isolated by preparative chromatography.

The relative configuration of the major diastereoisomer of compound \(65b\) was unambiguously determined by NOE experiments. Strong NOE enhancements were detected from tert-butyl protons to CH\(_3\) at 1.51 ppm, OCH\(_3\) at 3.57 ppm and OCH\(_3\) at 3.73 ppm, likewise from the methyl protons of isopropyl group at 1.16 ppm to OCH\(_3\) at 3.73 ppm. Thus, the relative configuration is all \(exo\)- with respect to the tert-butyl group at C-7 of the bicyclic oxetane.
3. Results & Discussion

Figure 3.184: NOESY (300 MHz, CDCl₃) spectrum of compound 65b.

The relative configurations of both the exo-Ph and the endo-Ph diastereoisomers of compound 65f were determined unambiguously from NOESY studies. For exo-Ph isomer, the cross peaks between the phenyl protons resonances at 7.65 ppm and the methyl protons at 1.06 ppm and the methoxy protons at 3.61 ppm indicate a strong NOE-effects and hence spatial proximity (cis relationship between Ph, CH₃ and OCH₃ groups) which can be assigned to an exo-Ph configuration. Other NOE-effects between the phenyl protons and the tert-butyl protons at 1.45 ppm were also detected. For the endo-Ph isomer, no interaction between the phenyl protons and the methoxy protons is observable while a weak NOE enhancement is present for the methyl protons at 1.56 ppm and the aromatic protons at 7.27 ppm. Furthermore, cross peaks between a methyl protons of the isopropyl group at 0.72 and 0.79 ppm and the phenyl protons at 7.27 ppm was observed again indicating their spatial proximity.
The constitutions of compounds 65a-f were elucidated on the basis of IR, mass spectrometry and NMR analyses. For example, the IR spectrum of compound 65a showed two strong absorption bands at 1615 and 1740 cm\(^{-1}\) corresponding to C=N and ester group, respectively. The \(^1\)H-NMR spectrum showed two doublets at \(\delta\) 0.92 and 1.10 ppm assigned to the isopropyl group. Additionally, there appeared four singlets at \(\delta\) 1.44, 1.91, 3.69 and 3.74 ppm corresponding to CH\(_3\) at C-7, CH\(_3\) at C-1, OCH\(_3\) at C-5 and OCH\(_3\) of the ester group, respectively. In the \(^{13}\)C-NMR spectrum, signals at \(\delta\) 72.4, 87.2, 120.3, 170.4 and 176.2 ppm were attributed to C-1, C-7, C-5, C-3 and COO group, respectively.

Figure 3.185: NOESY (300 MHz, CDCl\(_3\)) spectrum of compound 65f.
Prove of the chemical structure of compound \(\mathbf{65c} \) was based on NMR analysis. The \(^1\)H-NMR spectrum shows two doublets at \(\delta \, 1.18 \) and \(1.43 \) ppm due to the isopropyl group. Furthermore, three singlets appeared at \(\delta \, 1.96, \, 3.11 \) and \(3.29 \) ppm attributed to \(\text{CH}_3 \) at C-1, \(\text{OCH}_3 \) at C-5 and \(\text{OCH}_3 \) of ester group, respectively, indicating the \textit{exo}-Ph configuration. In the \(^{13}\)C-NMR spectrum, five signals at \(81.3, \, 92.0, \, 123.3, \, 169.1 \) and \(173.4 \) ppm appeared which were attributed to C-1, C-7, C-5, C-3 and CO, respectively.

Unfortunately, the diastereoisomers of compound \(\mathbf{65e} \) could not be separated by preparative chromatography and hence the constitution of both isomers were determined from the NMR analysis of the diastereoisomer mixture. There are two main differences in the \(^1\)H-NMR spectrum between the \textit{exo-} and the \textit{endo-}Ph diastereoisomers as shown in Figure 3.190: (1) the methyl protons of the isopropyl group at C-3 resonates at higher field compared with the...
3. Results & Discussion

exo-Ph isomer. (2) the methyl protons at C-3 resonates at 2.19 ppm in the *endo-Ph* isomer; while in the *exo-Ph* isomer, this absorption is shifted upfield to 1.06 ppm due to ring current effect of the benzene ring. The 13C-NMR spectrum showed five signals at δ 77.8, 90.2, 123.5, 167.9 and 173.6 ppm related to C-1, C-7, C-5, C-3 and COO group, respectively.

![Figure 3.190: 1H-NMR (300 MHz, CDCl$_3$) spectrum of *exo-65e* & *endo-65e*.](image)

The diastereoisomers of compound *65f* could not be separated by preparative chromatography and the structure determination was thus based on NMR analysis of the diastereoisomer mixture. Analogous to compound *65e*, there are also two main differences in the 1H-NMR spectrum between the *exo- and endo-*isomer: (a) the methyl protons at C-3 in the *exo-*isomer resonates at higher field than in the *endo-*isomer; (b) methyl protons of the isopropyl group at C-3 in the *endo-*isomer appear at 0.71 ppm, while it is shifted in the *exo-*isomer to 1.24 ppm. In the 13C-NMR spectrum three signals appeared at δ 77.6, 90.3, 122.9 ppm corresponding to C-1, C-7 and C-5 of the oxetane ring, respectively.

![Figure 3.191: 13C-NMR (75 MHz, CDCl$_3$) spectrum of *exo-65e* & *endo-65e*.](image)

![Figure 3.192: 1H-NMR (300 MHz, CDCl$_3$) spectrum of *exo-65f* & *endo-65f*.](image)

![Figure 3.193: 13C-NMR (75 MHz, CDCl$_3$) spectrum of *exo-65f* & *endo-65f*.](image)
3. Results & Discussion

3.8.6.3 Photocycloaddition reactions of 2-tert-butyl-4-methyl-5-methoxyoxazole with α-keto esters

The [2+2]-photocycloaddition of 2-tert-butyl-4-methyl-5-methoxyoxazole 49c with aliphatic and aromatic α-keto esters gave two stereoisomers of the bicyclic oxetanes 66a-f in high chemical yields.

Scheme 3.70: Photoreaction of 49c with α-keto esters.

Table 3.45: Simple diastereoselectivity of the Paternò-Büchi reaction of α-keto esters with 2-tert-butyl-4-methyl-5-methoxy oxazole 49c.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R =</th>
<th>R¹ =</th>
<th>d.r.(exo : endo)[a]</th>
<th>Yield (%)[b]</th>
</tr>
</thead>
<tbody>
<tr>
<td>66a</td>
<td>Me</td>
<td>Me</td>
<td>54 : 46</td>
<td>86</td>
</tr>
<tr>
<td>66b</td>
<td>t-Bu</td>
<td>Me</td>
<td>55 : 45</td>
<td>92</td>
</tr>
<tr>
<td>66c</td>
<td>Ph</td>
<td>Me</td>
<td>63 : 37</td>
<td>90</td>
</tr>
<tr>
<td>66d</td>
<td>Ph</td>
<td>Et</td>
<td>61 : 39</td>
<td>88</td>
</tr>
<tr>
<td>66e</td>
<td>Ph</td>
<td>i-Pr</td>
<td>40 : 60</td>
<td>89</td>
</tr>
<tr>
<td>66f</td>
<td>Ph</td>
<td>t-Bu</td>
<td>46 : 54</td>
<td>90</td>
</tr>
</tbody>
</table>

[a] based on the integration of characteristic signals in the 1H-NMR spectrum of the crude products mixture, [b] yield (%) based on the degree of conversion of the oxazole.

In case of aliphatic α-keto esters (both methyl pyruvate and trimethyl methylpyruvate) photocycloaddition with 49c, the simple exo/endo-R diastereoselectivity substantially decreased compared with the photoadducts of these substrates with 49b. Whereas, in the case of aromatic α-keto esters, the exo/endo-Ph diastereoselectivity was inverted when changing the substituents from Et to i-Pr and t-Bu similar to 49b.

The difference in the heat of formation (ΔH_f) between the exo- and endo-Ph diastereoisomers of compound 66f from AM1 is approx. 1.00 kcal/mol. The molecular mechanics calculations revealed, that the observed stereoselectivity corresponds to contrathermodynamic control.
In most cases, the diastereoisomers of compound 66a-f were successfully separated by preparative chromatography except compounds 66a and 66f which were separated from the crude reaction mixtures as pair of stereoisomers.

The relative configuration of the major diastereoisomer of compound 66b was unambiguously determined by NOE experiment. Irradiation of the tert-butyl protons at 1.12 ppm led to NOE enhancement of both signals of the methyl protons at 1.50 ppm and the methoxy protons at 3.56 ppm. Furthermore, NOE enhancement was observed for tert-butyl protons signal at 1.18 ppm when methoxy protons signal at 3.73 ppm irradiated.
The relative configuration of the *exo*- and *endo*-Ph diastereoisomers of compound 66f were unambiguously determined by NOE measurement. For the *endo*-Ph isomer, cross peaks between the phenyl protons at 7.49 ppm and *tert*-butyl protons at 0.82 ppm indicate a strong NOE-effect and hence spatial proximity (*cis* relationship between Ph and *tert*-butyl group). Other NOE effects between the phenyl protons and the *tert*-butyl at 1.58 ppm and the methyl protons at 1.58 ppm were determined. For the *exo*-Ph isomer, no interaction between the *tert*-butyl protons and phenyl protons is observable while a weak one is present for *tert*-butyl protons at 1.45 ppm and the phenyl protons at 7.65 ppm. Furthermore, a cross peak between the methyl protons at 1.07 ppm and phenyl protons at 7.65 ppm was observed again indicating their spatial proximity.

Figure 3.197: NOESY (300 MHz, CDCl$_3$) spectrum of compound 66f.

The structural assignments of compound 66a-f were made on the basis of the spectroscopic data. The 1H-NMR spectrum of compound 66a showed five singlets at δ 0.93, 1.35, 1.81, 3.67 and 3.77 ppm attributed to *tert*-butyl group, CH$_3$ at C-7, CH$_3$ at C-1, OCH$_3$ at C-5 and OCH$_3$...
of ester group respectively. In the 13C-NMR spectrum, there appeared three signals at 74.0, 86.7 and 124.1 ppm attributed to C-1, C-7 and C-5 of the oxetane ring, respectively.

Figure 3.198: 1H-NMR (300 MHz, CDCl$_3$) spectrum of compound 66a.

Figure 3.199: 13C-NMR (75 MHz, CDCl$_3$) of compound 66a.

Prove the chemical structure of compound 66c was based on IR, mass spectra and NMR analyses. The IR spectrum showed two strong absorption bands at 1617 and 1735 cm$^{-1}$ indicating the presence of an C=N and C=O of ester group, respectively. The mass spectrum showed a base peak at m/z 292 due to [M$^+$ - CH$_3$CN]. Furthermore, the fragmentation pattern is summarized in scheme 3.71.

Scheme 3.71: Fragmentation pattern of compound 66c.
3. Results & Discussion

The 1H-NMR spectrum showed four singlets at δ 1.08, 1.25, 3.63 and 3.75 ppm attributed to CH$_3$ at C-1, tert-butyl group at C-3, OCH$_3$ at C-5 and OCH$_3$ of the ester group, respectively, and assigned to the exo-Ph configuration. In the 13C-NMR spectrum, signals appeared at δ 78.6, 91.6, 123.2 ppm due to C-1, C-7 and C-5 of the oxetane ring, respectively. Moreover, both C-3 and COO resonate at lower field at δ 169.0 and 175.6 ppm, respectively.

Figure 3.200: 1H-NMR (300 MHz, CDCl$_3$) spectrum of exo-66c.

Figure 3.201: 13C-NMR (75 MHz, CDCl$_3$) spectrum of exo-66c.

Figure 3.202 shows the 1H-NMR spectrum of the exo-Ph and endo-Ph diastereoisomers of compound 66f. The tert-butyl protons resonances of the exo-isomer appear at 1.22 ppm while in the endo-isomer this absorption is shifted upfield to 0.78 ppm due to the ring current effect of the benzene ring. The 13C-NMR spectrum revealed signals at δ 77.8, 90.2 and 123.0 ppm corresponding to C-1, C-7 and C-5 of the oxetane ring, respectively.

Figure 3.202: 1H-NMR (300 MHz, CDCl$_3$) spectrum of exo-66f & endo-66f.

Figure 3.203: 13C-NMR (75 MHz, CDCl$_3$) spectrum of exo-66f & endo-66f.
Mechanistic analysis

The regioselectivity of the Paternò-Büchi reaction of aliphatic and aromatic α-keto esters with 5-methoxyoxazoles with additional alkyl substituents either in position C-2 or C-4 is high and corresponds to the classical 1,4-biradical stabilization concept. The stereochemistry of the triplet 1,4-biradical is attributed to a conformational memory effect during the intersystem crossing (ISC) process of the triplet 1,4-biradical. According to the Salem-Rowland rules, strong spin-orbit coupling (SOC) occurs when the p-orbitals at the spin-bearing atoms are orthogonal to each other. The possible conformers (A-C) of the triplet 1,4-biradical are represented by the Newman projections A, B and C, and A', B' and C' in Scheme 3.72. Bulky phenyl group prefer to stay away from the former oxazole ring so that conformers A-C are favored over $A' - C'$. Among A-C, A and B are expected to be similary populated whereas C is higher in energy. ISC from A leads to immediate C-C bond formation, whereby the phenyl group is rotated over the former oxazole ring plane resulting in the endo-Ph product. ISC from B leads to cleavage of the initially formed C-O bond restoring the starting materials. Similarly, ISC from C gives the exo-Ph product. The experimental results show that the exo-Ph product is dominant, thus an interaction between the allylic and exocyclic radical in triplet 1,4-biradical (SOI) as depicted in conformer C must be crucial for the dominance of this biradical geometry for rapid ISC. The relative stabilities of A and C depend on the the size of both the substituent R^1 in the oxazole moiety and the size of the α-substituent of the phenyl carbonyl compounds. When the α-substituent is small (such as H) compared to the benzene ring, C is the conformer responsible for product formation and the exo-Ph is selectively produced. When the α-substituent is large as in the case of COOR, steric interactions between COOR and R^1 disfavor conformer C, and hence the amount of exo-Ph isomer is expected to be decreased. If only conformers A-C are responsible for product formation, the exolendo-Ph selectivity should not alter significantly with the change of the alkyl group at position C-2 of the oxazole because the same phenyl substituent is involved in all these compounds, and therefore the energy differences between A and C are expected to be similar with different COOR groups. However, I observed significat changes in the product stereochemistry with variation of the alkyl substituent at position C-2 indicating that the other set of conformers $A' - C'$ also plays a role in the product formation process. Analogously to the situation in A-C, A leads to the exo-Ph product, C leads to the endo-Ph product and B restores the starting materials after ISC. Conformer C is highly congested but still populated because secondary orbital interaction facilitates ISC by means of an increase in spin-orbit coupling and furnishes the endo-Ph product. Therefore, when the alkyl substituent at position C-2 in oxazole is small
3. Results & Discussion

enough to populate conformer C, \(\text{exo-Ph}\) products results preferentially. Bulky alkyl groups at position C-2 of oxazole favor conformer \(C\) and this leads to \(\text{endo-Ph}\)-isomer.

![Diagram](image)

Scheme 3.72: Mechanistic scenario of the oxazoles-\(\alpha\)-keto esters photocycloaddition reaction.

Comment

The results of the stereochemistry study of the photocycloaddition of 5-methoxyoxazoles with alkyl phenylglyoxylates are remarkable because the stereochemistry did decrease in contrast to the results described by Scharf and coworkers,\(^7\) and additionally the direction of the stereocontrol has inverted.

The results of the photocycloaddition of \(\alpha\)-keto esters with 5-methoxyoxazoles bearing an additional substituent either in position C-2 or C-4 suggest, that secondary orbital interactions (SOI) may play an important role for determining stereoselectivities.
The important findings from the α-keto esters–oxazole photocycloaddition reactions are as follows:

1. Methyl pyruvate adds photochemically to 5-methoxyoxazole with high regio- and stereoselectivity when the oxazole substrate has small alkyl substituents (Me or Et) in position C-2 and irrespectively of the nature of alkyl substituent in position C-4. The stereoselectivity decreased when bulky alkyl substituents (i-Pr and t-Bu) in position C-2 were employed.

2. The stereoselectivity of the photocycloaddition of methyl trimethylpyruvate with oxazoles was strongly influenced by the size of alkyl substituent either in position C-2 or C-4.

3. The exo/endo-Ph diastereoselectivity of the photocycloaddition of alkyl phenylglyoxylates with 4-substituted oxazoles decreased with increasing steric demand of the alkyl group either in the oxazole moiety or phenylglyoxylate moiety, albeit the exo-Ph isomer is still favored.

4. Using bulky alkyl substituents (i-Pr & t-Bu) either in position C-2 of oxazole substrates or in alkyl phenyl glyoxylates led to an inversion of the exolendo diastereoselectivity and the endo-Ph isomer was formed preferentially.

5. The facial selectivity for both exo and endo photoadducts of the photocycloaddition of menthyl phenylglyoxylate to oxazole substrates was low, whereas the simple exolendo-Ph diastereoselectivity was moderate.
3. Results & Discussion

3.9 Synthesis of erythro (S*,R*) & threo (S*,S*) α-amino-β-hydroxy succinic acid derivatives

From a synthetic point of view, the bicyclic oxetanes obtained by the Paternò-Büchi reaction of aliphatic and aromatic α-keto esters with 5-methoxyoxazoles are not only interesting by themselves, but also because they might serve as building blocks for the stereoselective construction of α-amino-β-hydroxy succinic acid derivatives. Ring opening of the bicyclic oxetanes represents the simplest and straightforward strategy for the stereoselective synthesis of erythro (S*,R*) and threo (S*,S*) α-amino-β-hydroxy succinic acid derivatives depending on the relative configuration of a substituent at C-7.

3.9.1 Synthesis of erythro (S*,R*) α-acetamido-β-hydroxy succinic acid derivatives 67a-f

Acid treatment of the bicyclic oxetanes 54a-f led to the formation of erythro (S*,R*) α-acetamido-β-hydroxy succinic acid derivatives 67a-f in high chemical yields.

Scheme 3.73: Synthesis of erythro (S*,R*) α-acetamido-β-hydroxy succinic acid derivatives 67a-f.

The relative configurations of the ring-opened products 67a-f were expected to be erythro (S*,R*) since the bicyclic oxetane precursors had exo-CO₂CH₃ configuration as was shown by NOE measurement. As ultimate proof, the erythro (S*,R*) stereochemistry of compound 67b was confirmed by X-ray analysis, depicted in Figure 3.204.
3. Results & Discussion

Figure 3.204: X-ray analysis of compound 67b.

The structure assignments of the photoaldol products 67a-f were based on IR, mass spectra and NMR analyses. For example, the IR spectrum of compound 67d showed five strong absorption bands at 3510, 3340, 1745, 1735 and 1685 cm$^{-1}$ indicating the presence of OH, NH, COO, COO and CON groups, respectively. In the 1H-NMR spectrum at δ 0.88 and 1.24 ppm, two doublets appeared assigned to two methyl protons of the isopropyl group. The acetyl methyl protons appears at δ 2.02 ppm. The 13C-NMR spectrum showed signals at δ 73.6, 82.4, 171.1, 171.6 and 174.9 ppm corresponding to C-2, C-3, CON, COO and COO groups, respectively.

Figure 3.205: 1H-NMR (300 MHz, CDCl$_3$) spectrum of compound 67d.

Figure 3.206: 13C-NMR (75MHz, CDCl$_3$) spectrum of compound 67d.
3. Results & Discussion

The 1H-NMR spectrum of compound 67f showed four singlets at δ 1.56, 2.03, 3.56 and 3.65 ppm corresponding to CH$_3$, CH$_2$CO, OCH$_3$ and OCH$_3$ groups, respectively. The amide proton absorbs at 6.53 ppm. In the 13C-NMR spectrum, there signals at δ 82.4, 89.7, 164.7, 171.3 and 172.5 ppm appeared which were attributed to C-2, C-3, CON, COO and COO groups, respectively.

![Figure 3.207: 1H-NMR (300 MHz, CDCl$_3$) spectrum of compound 67f.](image)

![Figure 3.208: 13C-NMR (75MHz, CDCl$_3$) spectrum of compound 67f.](image)

3.9.2 Synthesis of threo (S*,S*) α-acetamido-β-hydroxy succinic acid derivatives 68a-f

The exo-tert-butyl bicyclic oxetanes 56a-f underwent twofold ring opening when treated with a mild acid and led to the formation of threo (S*,S*) α-acetamido-β-hydroxy succinic acid derivatives 68a-f in high chemical yields.

![Scheme 3.74: Synthesis of threo (S*,S*) α-acetamido-β-hydroxy succinic acid derivatives 68a-f.](image)

The ring-opening reaction is stereospecific; only one stereoisomer is formed. Again, the relative configurations of the products were expected to be threo (S*,S*), since the oxetanes precursor had exo-tert-butyl configuration as indicated by NOE measurement.

Proving the chemical structure of compounds 68a-f were based on IR and NMR analyses. For example, the IR spectrum revealed five strong absorption bands at 3490, 3360, 1740, 1735 and 1685 cm$^{-1}$ indicating the presence of OH, NH, COO, COO, CON groups, respectively.
3. Results & Discussion

The 1H-NMR spectrum of compound 68a showed five singlets at δ 1.11, 1.49, 1.97, 3.56 and 3.72 ppm attributed to the tert-butyl, CH$_3$, CH$_3$CO, OCH$_3$ and OCH$_3$ groups, respectively. In the 13C-NMR spectrum, signals at δ 80.7, 82.3, 169.8, 177.5, 180.9 appeared corresponding to C-2, C-3, CON, COO and COO groups, respectively.

![Figure 3.209: 1H-NMR (300 MHz, CDCl$_3$) spectrum of compound 68a.](image)

![Figure 3.210: 13C-NMR (75MHz, CDCl$_3$) spectrum of compound 68a.](image)

3.9.3 Synthesis of erythro (S*,R*) and threo (S*,S*) α-acetamido-β-hydroxy succinic acid derivatives 69a-f

Acid-treatment of the chromatographically separated exo-Ph and endo-Ph diastereoisomers of the bicyclic oxetanes 58a-f led to the formation of threo (S*,S*) and erythro (S*,R*) α-acetamido-β-hydroxy succinic acid derivatives 69a-f in 80-90 % yields, respectively.

\[
\text{exo-Ph-58a-f} \xrightarrow{\text{H}^+ / \text{H}_2\text{O}} \text{threo (S*,S*)-69a-f} \\
\text{endo-Ph-58a-f} \xrightarrow{\text{H}^+ / \text{H}_2\text{O}} \text{erythro (S*,R*)-69a-f}
\]

Scheme 3.74: Synthesis of threo (S*,S*) and erythro (S*,R*) α-acetamido-β-hydroxy succinic acid derivatives 69a-f.

The relative configurations of the products 69a-f were determined on the basis of the characteristic signals in NMR spectra of the diastereoisomeric aldol products. For example, in
3. Results & Discussion

the 1H-NMR spectra of the erythro-isomer, the methoxy group appears around 3.7 ppm, while in the threo-isomer this absorption is shifted upfield to 3.0 ppm due to ring current effect of the benzene ring. Also the chemical shift of the α-alkyl group appears at higher field in the erythro-isomer than in the threo-isomer. As already described for the photoaldol adduct from aldehydes, both threo and erythro-isomer favor conformations which are stabilized by hydrogen bonding. This phenomena is displayed in scheme 3.76 and supported by NOE measurement.

![Scheme 3.76: Explanation model.](image)

The constitutions of compounds 69a-f were confirmed by IR, mass spectra and NMR analyses. For example, the IR spectrum of compound 69b showed absorption bands at 3500, 3340, 1745, 1735, 1670, 1600 cm$^{-1}$ indicating the presence of the OH, NH, COO, COO, CON, and Ph groups, respectively.

In the 1H-NMR spectrum of compound 69b, there are two striking differences between the erythro- and the threo-isomers: (a) the methoxy carbonyl group at C-2 in the threo-isomer appears at higher field ($\delta = 3.0$ ppm) than in the erythro-isomer which resonates at 3.76 ppm; (b) the diastereotopic protons of the methylene group at C-2 appear down-field shifted in the threo-isomer at 2.46 ppm, while in the erythro-isomer this resonance is shifted upfield to 2.0 ppm. The 13C-NMR spectra revealed that a significant difference in the chemical shifts of C-2 and C-3 by ca. 10 ppm depending on the configuration; the threo-isomer shows the low-field shifted signals (see Figure 3.212 and 3.214).
3. Results & Discussion

The 1H-NMR spectrum of compound 69c showed three singlets at δ 2.23, 3.00 and 3.75 ppm attributed to CH$_3$CO, OCH$_3$ and OCH$_3$ groups, respectively, and confirmed the threo-configuration. In the 13C-NMR spectrum, five signals at δ 86.6, 92.6, 165.2, 168.7, 169.5 ppm appear corresponding to C-2, C-3, CON, COO and COO groups, respectively.
3. Results & Discussion

Figure 3.215: 1H-NMR spectrum (300 MHz, CDCl$_3$) spectrum of threo-69c.

Figure 3.216: 13C-NMR (75 MHz, CDCl$_3$) spectrum of threo-69c.

Figure 3.217 shows the HMQC spectrum which also confirms the NMR assignments. Figure 3.218 shows the HH-COSY spectrum; the off-diagonal cross peak correctly correlate the coupled protons.

Figure 3.217: HMQC (300 MHz, CDCl$_3$) spectrum of compound 69c.

Figure 3.218: HH-COSY (300 MHz, CDCl$_3$) spectrum of compound 69c.

3.9.4 Synthesis of erythro (S^*,R^*) and threo (S^*,S^*) α-acetamido-β-hydroxy succinic acid derivatives 70a-f

Analogous to compounds 58a-f, ring opening of the exo- and endo-Ph bicyclic oxetanes 59a-f proceeded with retention of configuration and gave the threo (S^*,S^*) and erythro (S^*,R^*) α-acetamido-β-hydroxy succinic acid derivatives 70a-f in high chemical yields, respectively.

183
3. Results & Discussion

![Scheme 3.77: Synthesis of threo (S*,S*) and erythro (S*,R*) α-acetamido-β-hydroxy succinic acid derivatives 70a-f.](image)

The constitution of compounds 70a-f was established on the basis of IR and NMR analyses. For example the IR spectrum of compound 70e exhibits five strong absorption bands at 3490, 3360, 1755, 1729 and 1680 cm\(^{-1}\) indicating the presence of the OH, NH, COO, COO and CON groups, respectively. Additionally, a band at 1580 cm\(^{-1}\) suggests the presence of phenyl group. The \(^1\)H-NMR spectrum revealed two singlet signals at 2.26 and 3.05 ppm due to CH\(_3\)CO and OCH\(_3\) groups, respectively, and indicates the threo-configuration. In addition, a quartet at 4.24 ppm appeared which was attributed to the OCH\(_2\) group. In the \(^{13}\)C-NMR spectrum five signals at δ 86.4, 92.9, 164.7, 168.1 and 170.1 ppm appear attributed to C-2, C-3, CON, COOEt and COOMe groups, respectively.

![Figure 3.219: \(^1\)H-NMR (300 MHz, CDCl\(_3\)) spectrum of threo-70e.](image)

![Figure 3.220: \(^{13}\)C-NMR (75 MHz, CDCl\(_3\)) spectrum of threo-70e.](image)
3. Results & Discussion

Figure 3.221 shows the HMQC spectrum which also confirms the NMR assignments.

![Figure 3.221: HMQC (300 MHz, CDCl₃) spectrum of compound 70e.](image)

3.9.5 Synthesis of *erythro* (S*,R*) and *threo* (S*,S*) α-amino-β-hydroxy succinic acid derivatives 71a-f

Acid hydrolysis of the chromatographically separated *exo*-Ph and *endo*-Ph bicyclic oxetanes 61a-f furnished *threo* (S*,S*) and *erythro* (S*,R*) α-acetamido-β-hydroxy succinic acid derivatives 71a-f in high chemical yields, respectively.
3. Results & Discussion

Scheme 3.78: Synthesis of \textit{threo} (S^*,S^*) and \textit{erythro} (S^*,R^*) α-acetamido-β-hydroxy succinic acid derivatives 71a-f.

The chemical structures of compounds 71a-f were established on the basis of NMR analyses. For example, the 1H-NMR spectrum of compound 71c revealed two singlets at δ 2.26 and 3.04 ppm indicating the presence of CH$_3$CO and OCH$_3$ groups, respectively, and assigned the \textit{threo}-configuration. Additionally, the methine proton appears at 5.03 ppm. In the 13C-NMR spectrum, five signals at 86.3, 92.5, 165.4, 167.6 and 169.7 ppm appeared, corresponding to C-2, C-3, CON, COO and COO groups, respectively, and reconfirmed the \textit{threo} assignment (see Figure 3.222 & 3.223).

![Figure 3.222: 1H-NMR (300 MHz, CDCl$_3$) spectrum of \textit{threo}-71c.](image1)

![Figure 3.223: 13C-NMR (75 MHz, CDCl$_3$) spectrum of \textit{threo}-71c.](image2)

The IR spectrum of compound 71e showed six strong absorption bands at 3500, 3370, 1745, 1728, 1645 and 1600 cm$^{-1}$ suggesting the presence of OH, NH, COO, COO, CON and Ph groups, respectively. In the 1H-NMR spectrum, the methoxy group appears as a singlet at 3.05 ppm assigning the \textit{threo}- configuration as already described for the compound.
mentioned above. Additionally, four doublets appeared upfield-shifted at δ 0.86, 0.97, 1.27 ppm indicating the presence of two isopropyl groups. The 13C-NMR spectrum showed signals at δ 86.3, 92.9, 164.9, 167.5 and 170.1 ppm attributed to C-2, C-3, CON, COO and COO groups, respectively (see Figure 3.224 and 3.225).

![Figure 3.224: 1H-NMR (300 MHz, CDCl$_3$) spectrum of threo-71e.](image1)

![Figure 3.225: 13C-NMR (75 MHz, CDCl$_3$) spectrum of threo-71e.](image2)

3.9.6 Synthesis of erythro (S^*,R^*) and threo (S^*,S^*) α-acetamido-β-hydroxy succinic acid derivatives 72a-f

Analogous to the compounds mentioned above, ring-opening of the chromatographically separated exo-Ph and endo-Ph of the bicyclic oxetanes 62a-f proceeds smoothly and leads to the formation of threo (S^*,S^*) and erythro (S^*,R^*) α-acetamido-β-hydroxy succinic acid derivatives 72a-f in (80-90 %) yields, respectively.

![Scheme 3.79: Synthesis of threo (S^*,S^*) and erythro (S^*,R^*) α-acetamido-β-hydroxy succinic acid derivatives 72a-f.](image3)

187
The assignment of the relative configurations of the photoaldol adducts were based on characteristic signals in NMR analyses. For example, in the 1H-NMR spectra of the *threo*- and *erythro*-isomers of compound 72a, there is a pronouncing difference: the methyl protons resonance in the *threo*-isomer appears at 1.71 ppm, while in the *erythro*-isomer, this resonance is shifted upfield to 1.50 ppm influencing by a ring current effect of the phenyl group. The 13C-NMR spectra showed also a strong chemical shift difference of C-2 and C-3 of about 30 ppm, the *threo*-isomer absorbs at lower-field chemical shift (see Figure 3.226, 3.227, 3.228 & 3.229). The mass spectrum showed the base peak at m/z 145 due to retro aldol fragment of N-acetyl alanine methyl ester. Scheme 3.80 summarizes the fragmentation pattern of compound 72a.
3. Results & Discussion

Scheme 3.80: Fragmentation pattern of compound 72a.

3.9.7 Synthesis of erythro (S*,R*) and threo (S*,S*) α-acetamido-β-hydroxy succinic acid derivatives 73a-f

Despite of the relatively low diastereoselection in the photocycloaddition of menthyl phenyl glyoxylate with 5-methoxyoxazoles, the ring-opening reaction is a simple and versatile preparative method to synthesize diastereomERICally pure oxetane derivatives, since the four stereoisomers obtained have quite different physical properties and can be separated by HPLC. The bicyclic oxetanes are valuable chiral building blocks for natural product synthesis because the degree of chemical yields and conversion allow to produce them in large amounts. Hydrolysis of the chromatographically separated exo-Ph and endo-Ph oxetanes 63a-f resulted in the threo (S*,S*) and erythro (S*,R*) α-acetamido-β-hydroxy succinic acid derivatives 73a-f, respectively, as depicted in scheme 3.81.
Scheme 3.81: Synthesis of *threo*
(S*,S*) and *erythro*
(S*,R*) α-acetamido-β-hydroxy succinic acid derivatives 73a-f.

The constitutions of compounds 73a-f were analyzed on grounds of IR, mass spectra and NMR spectral analyses. For example, the IR spectrum of compound 73a showed strong absorption bands at 3540, 3370, 1736, 1725, 1670, 1595 cm⁻¹ characteristic for the OH, NH, COO, COO, CON and Ph groups, respectively. The mass spectrum revealed the base peak at m/z 374 for the fragment [M⁺-COOMe]. In the ¹H-NMR spectrum, the methoxy protons resonance which used as guide for assignment of the relative configuration of the photoaldol adducts appeared at 3.06 ppm indicating the compound has *threo*-configuration. The ¹³C-NMR spectrum showed signals at δ 82.1, 92.7, 166.2, 167.9 and 170.3 ppm attributed to C-2, C-3, CON, COO and COO groups, respectively (see Figure 3.230 and 3.231).

Figure 3.230: ¹H-NMR (300 MHz, CDCl₃) spectrum of *threo*-73a.

Figure 3.231: ¹³C-NMR (75 MHz, CDCl₃) spectrum of *threo*-73a.
There are two main differences in the 1H-NMR spectra of compound 73d between the erythro- and the threo-isomers: (1) the methoxy group in the threo-isomer absorbs at δ 3.15 ppm, while in the erythro-isomer, this absorption is shifted downfield to 3.82 ppm; (2) the methine proton of the isopropyl group in the erythro-isomer resonates at a much higher field ($\delta = 1.53$ ppm) than in the threo-isomer which resonates at ($\delta = 1.79$ ppm).

In the 13C-NMR spectrum, five signals at δ 89.9, 91.2, 163.4, 167.1 and 170.3 ppm appeared attributed to C-2, C-3, CON, COO and COO groups, respectively (see Figure 3.232, 3.233, 3.234 and 3.235).
3.9.8 Synthesis of erythro (S*,R*) and threo (S*,S*) \(\alpha\)-propionylamino-\(\beta\)-hydroxy succinic acid derivatives 74a-f

The chromatographically separated exo-R and endo-R bicyclic oxetanes 64a-f underwent two fold ring-opening when treated with acid and led to the formation of threo (S*,S*) and erythro (S*,R*) \(\alpha\)-propionylamino-\(\beta\)-hydroxy succinic acid derivatives 74a-f, respectively, in high chemical yields.

![Scheme 3.82: Synthesis of threo (S*,S*) and erythro (S*,R*) \(\alpha\)-propionylamino-\(\beta\)-hydroxy succinic acid derivatives 74a-f.]

Again, the relative configuration of the photoaldol adducts 74a-f was determined on the basis of NMR analyses (especially the chemical shift of both methoxy and methyl groups). The results are summarized in Table 3.46.

<table>
<thead>
<tr>
<th>Table 3.46: Characteristic (^1)H-NMR signals ((\delta_{ppm})) of photo-aldol products 74c-f in (CDCl(_3)).</th>
</tr>
</thead>
<tbody>
<tr>
<td>compound</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>74c</td>
</tr>
<tr>
<td>74d</td>
</tr>
<tr>
<td>74e</td>
</tr>
<tr>
<td>74f</td>
</tr>
</tbody>
</table>

The constitutions of compounds 74a-f were determined on the basis of IR and NMR analyses. For example, the IR spectrum of compound 74d revealed strong bands at 3490, 3365, 1743, 1720 and 1650 cm\(^{-1}\) indicating the presence of OH, NH, COO, COO and CON groups, respectively. The \(^1\)H-NMR spectrum exhibits two singlets at \(\delta\) 1.67 and 3.61 ppm attributed to methyl and methoxy groups, respectively, and assigned to the erythro-configuration. In the
3. Results & Discussion

13C-NMR spectrum, there signals at δ 66.2, 82.9, 172.1, 172.4 and 174.7 ppm appeared corresponding to C-2, C-3, CON, COO, COO groups, respectively (see Figure 3.236 and 3.237).

Figure 3.236: 1H-NMR (300 MHz, CDCl$_3$) spectrum of erythro-74d.

Figure 3.237: 13C-NMR (75 MHz, CDCl$_3$) spectrum of erythro-74d.

3.9.9 Synthesis of erythro (S^*,R^*) and threo (S^*,S^*) α-isobutyrylamino-β-hydroxy succinic acid derivatives 75a-f

Analogous to compounds 64a-f, ring opening of the exo- and endo-R bicyclic oxetanes 65a-f proceeded with retention of configuration and gave the threo (S^*,S^*) and erythro (S^*,R^*) α-isobutyrylamino-β-hydroxy succinic acid derivatives 75a-f in high chemical yields, respectively.

![Scheme 3.83](image)

Scheme 3.83: Synthesis of threo (S^*,S^*) and erythro (S^*,R^*) α-isobutyrylamino-β-hydroxy succinic acid derivatives 75a-f.

The structure determination of compounds 75a-f were made on the basis of IR, mass spectra and NMR analyses. For example, the IR spectrum of compound 75e showed strong
absorption bands at 3525, 3370, 1756, 1730 and 1645 cm$^{-1}$ suggesting the presence of OH, NH, COO, COO and CON groups, respectively. The 1H-NMR spectra revealed that there is a striking differences between the threo- and erythro isomer: (a) the methoxy group in the threo-isomer resonates at higher field chemical shift ($\delta = 3.00$ ppm) than in the erythro-isomer which appears at 3.68 ppm; (b) the methyl group at C-2 absorbs down-field shifted in the threo-isomer at 1.68 ppm, while in the erythro-isomer this absorption is shifted upfield to 1.54 ppm.

Also, the 13C-NMR spectra showed a pronouncing differences in the chemical shifts of C-2 and C-3 by ca. 10 ppm depending on the relative configuration, the threo-isomer has low-field shifted signals (see Figure 3.238, 3.239, 3.240 and 3.241).

![Figure 3.238: 1H-NMR (300 MHz, CDCl$_3$) spectrum of erythro-75e.](image)

![Figure 3.239: 13C-NMR (75 MHz, CDCl$_3$) spectrum of erythro-75e.](image)

![Figure 3.240: 1H-NMR (300 MHz, CDCl$_3$) spectrum of threo-75e.](image)

![Figure 3.241: 13C-NMR (75 MHz, CDCl$_3$) spectrum of threo-75e.](image)
In the 1H-NMR spectrum of compound 75f three singlets at δ 1.44, 1.72 and 3.00 ppm appeared which are characteristic for tert-butyl, methyl and methoxy groups, respectively, and confirmed the threo-configuration. Additionally, there a doublet at 1.34 ppm appears for the isopropyl group. In the 13C-NMR spectrum, there signals at δ 82.1, 91.9, 167.3, 170.5 and 173.0 ppm appeared attributed to C-2, C-3, CON, COO and COO groups, respectively (see Figure 3.242 and 3.243).

![Figure 3.242: 1H-NMR (300 MHz, CDCl$_3$) spectrum of threo-75f.](image1)

![Figure 3.243: 13C-NMR (75 MHz, CDCl$_3$) spectrum of threo-75f.](image2)

3.9.10 Synthesis of erythro (S*,R*) and threo (S*,S*) α-(2,2-dimethyl-propionylamino)-β-hydroxy succinic acid derivatives 76a-f

Acid hydrolysis of the chromatographically separated exo-R and endo-R bicyclic oxetanes 66a-f furnished threo (S*,S*) and erythro (S*,R*) α-(2,2-dimethyl-propionylamino)-β-hydroxy succinic acid derivatives 76a-f in high chemical yields.

![Scheme 3.84: Synthesis of threo (S*,S*) and erythro (S*,R*) α-(2,2-dimethyl-propionylamino)-β-hydroxy succinic acid derivatives 76a-f.](image3)
The structure of the compounds 76a-f were established on the basis of IR, mass spectra and NMR analyses. For example, the IR spectrum of compound 76d exhibits five strong absorption bands at 3530, 3420, 1755, 1724, 1675 cm\(^{-1}\) characteristic for OH, NH, COO, COO and CON groups, respectively. The mass spectrum showed the base peak at m/z 306 due to [M\(^+\) - COOMe]. In the \(^1\)H-NMR spectra, there are two distinct differences between the erythro- and threo- isomers: (a) in the threo-isomer, the methoxy resonance appears at 3.00 ppm, while in the erythro-isomer appears down-field shifted to 3.70 ppm; (b) the methyl protons in the threo-isomer absorbs at 1.67 ppm, whereas in the erythro-isomer this absorption is shifted upfield to 1.55 ppm. The \(^{13}\)C-NMR spectra also revealed two significant differences between the threo- and erythro- isomers. Both C-2 and C-3 in the threo-isomer resonate lower-field shifted than in the erythro-isomer (see Figure 3.244, 3.245, 3.246 and 3.248).
The 1H-NMR spectrum of compound 76e exhibits three singlets at δ 1.38, 1.69 and 2.99 ppm characteristic for tert-butyl, methyl and methoxy groups, respectively, and supports the threo-configuration. Furthermore, two doublets at δ 1.23 ppm appeared attributed to the isoropyl group. The 13C-NMR spectrum showed signals at δ 82.3, 91.7, 168.1, 170.3 and 175.1 ppm corresponding to C-2, C-3, CON, COO and COO groups, respectively, and reconfirmed the threo-configuration (see Figure 3.248 and 3.249).

![Figure 3.248: 1H-NMR (300 MHz, CDCl₃) spectrum of threo-76e.](image1)

![Figure 3.249: 13C-NMR (75 MHz, CDCl₃) spectrum of threo-76e.](image2)

Proving the constitution of compound 76f was made on the basis of IR, mass spectrum and NMR analyses. The IR spectrum showed absorption bands at 3510, 3450, 1740, 1735, 1670 and 1605 cm⁻¹ indicating the presence of OH, NH, COO, COO, CON and Ph groups, respectively. The mass spectrum showed the base peak at m/z 187 due to retro aldol cleavage and formation of 2,2-dimethylpropionylamino alanine methyl ester. As already mentioned above, there are two striking differences in the 1H-NMR spectra between the threo- and erythro-isomer: (a) the methoxy group resonates in the threo-isomer at a higher chemical shift ($\delta = 2.99$ ppm) than in the erythro-isomer which resonates at 3.78 ppm; (b) the methyl group resonance in the threo-isomer appears at 1.73 ppm, while in the erythro-isomer this resonance is shifted upfield to 0.96 ppm.

The 13C-NMR spectrum showed signals at δ 82.4, 91.8, 167.4, 170.6 and 174.9 ppm attributed to C-2, C-3, CON, COO and COO groups, respectively (see Figure 3.250, 3.251, 3.252 and 3.253).
3. Results & Discussion

Figure 3.250: 1H-NMR (300 MHz, CDCl$_3$) spectrum of erthro-$76f$.

Figure 3.251: 13C-NMR (75 MHz, CDCl$_3$) spectrum of erthro-$76f$.

Figure 3.252: 1H-NMR (300 MHz, CDCl$_3$) spectrum of threo-$76f$.

Figure 3.253: 13C-NMR (75 MHz, CDCl$_3$) spectrum of threo-$76f$.
3.10 Magnetic isotope effects on the diastereoselectivity of the triplet photocycloaddition reactions

Studies of isotope effects are exceedingly important for our understanding of reaction mechanism. Primary and secondary kinetic isotope effects (KIE) as well as equilibrium isotope effects (EIE) are frequently discussed as central features. In recent years, spectacular reinvestigation of numerous basic organic reactions have been performed by Singleton and coworkers demonstrating the significance of kinetic isotope effects. Less often have isotope effects been used in photochemical reactions, partly due to the larger difficulties in determining reaction rate constants. Furthermore, photochemical reactions present an additional degree of complexity, the appearance of different spin states which only slowly interconvert. As already been stated by Turro and Kräuter in a seminal review in 1980, difference in the nuclear–spin hyperfine coupling constants (HFC) might leads to substantial differences in process where spin states are interchanging. This speculation has created a new concept, spin chemistry as defined and described in several reviews by Buchachenko.

In the first part of my dissertation, I have described spin chemistry effects in the photocycloaddition reactions which were generated by spin-orbit coupling (SOC) phenomena determining the geometries of triplet biradical intermediates when crossing into singlet potential hypersurface. Spin-orbit coupling is thought to be the dominant factor for triplet biradicals connected by short hydrocarbon chains as in tetramethylenes or in 2-oxatetramethylenes. Additional effects may arise from HFC differences and manifest themselves in substantial magnetic isotope effects (MIE).

To test the magnetic isotope effect (MIE) on the stereoselectivity of the [2+2] carbonyl-ene photocycloaddition (Paterno-Büchi reaction), benzaldehyde-1-d, propanal-1d, and 5-d-2,3-dihydrofuran were prepared in more than 96 % isomeric purity. These substrates are ideal for this purpose because they bear a deuterium α- to carbonyl and / or double bond, which allow estimation of a possible magnetic isotope effect.

3.10.1 Synthesis of starting materials

3.10.1.1 Synthesis of benzaldehyde-1-d

Benzaldehyde-1d was prepared in 60 % yield from benzil when treated with deuterium oxide and potassium cyanide in p-dioxane following a literature procedure.
3. Results & Discussion

Scheme 3.85: Synthesis of benzaldehyde-1d.

The structure assignment of compound 77 was based on NMR analyses and also on comparison with literature data (see Figure 3.254 and 3.255).

3.10.1.2 Synthesis of propanal-1-d

Propanal-1d was synthesized in higher than 96 % isomeric purity by a minor modification of the Nef reaction with nitropropane-1,1-d2 which was prepared by H/D exchange of nitropropane using deuterium oxide in the presence of sodium hydroxide as depicted in Scheme 3.86.

Scheme 3.86: Synthesis of propanal-1d.

The constitution of propanal-1-d was confirmed by spectroscopic analysis. The 1H-NMR spectrum showed two signals, one appears as a triplet at 0.87 ppm and the other appears as a quartet at 2.25 ppm, indicating the presence of ethyl group. In the 13C-NMR spectrum, there
3. Results & Discussion

appeared three signals at 6.0, 37.0, and 202.8 ppm (triplet) attributed to CH$_3$, CH$_2$, and COD group, respectively.

![Figure 3.256: 1H-NMR (300 MHz, CDCl$_3$) spectrum of compound 79.](image)

![Figure 3.257: 13C-NMR (75 MHz, CDCl$_3$) spectrum of compound 79.](image)

3.10.1.3 Synthesis of 5-deuterio-2,3-dihydrofuran

When 2,3-dihydrofuran 2 was allowed to react with n-butyllithium in n-hexane in the presence of catalytic amounts of tetramethylethylenediamine (TMEDA) at room temperature, 5-litho-2,3-dihydrofuran was formed immediately, which upon quenching with deuterium oxide afforded 5-deuterio-2,3-dihydrofuran 80 in good yield.\(^{140}\)

![Scheme 3.85: Synthesis of 5-deuterio-2,3-dihydrofuran 80.](image)

The constitution of compound 80 was established by NMR analyses and also by comparison with the literature data. The 13C-NMR spectrum of compound 80 displays a triplet signal down-field shifted for C-5 and confirmed the attachment of C-5 to a deuterium atom. In the 1H-NMR spectrum the disappearance of the H-5 signal proved complete deuteration (see Figure 3.258 & 3.259).
3. Results & Discussion

3.10.1.4 Synthesis of 1-trimethylsilyloxy cycloalkenes

Treatment of cyclic ketones (cyclopentanone, cyclohexanone, cycloheptanone) with the trimethylchlorosilane-sodium iodide-triethylamine reagent in acetonitrile was a convenient method for the preparation of 1-trimethylsilyloxy cycloalkenes in excellent yields as depicted in Scheme 3.88. 141, 142, 143, 144

\[
\text{Me}_3\text{SiCl, NaI, Et}_3\text{N, MeCN} \quad \xrightarrow{} \quad \text{OTMS} \quad n = 1, 2, 3
\]

Scheme 3.88: Synthesis of 1-trimethylsilyloxy cycloalkenes 81-83.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(^1\text{H-NMR},[\text{ppm}])</th>
<th>(^{13}\text{C-NMR},[\text{ppm}])</th>
<th>B.p(_{10\text{torr}},[\text{°C}])</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>83</td>
<td>4.58</td>
<td>154.9</td>
<td>55-57</td>
<td>75</td>
</tr>
<tr>
<td>84</td>
<td>4.98</td>
<td>150.2</td>
<td>78-80</td>
<td>82</td>
</tr>
<tr>
<td>85</td>
<td>4.82</td>
<td>155.9</td>
<td>78-81</td>
<td>85</td>
</tr>
</tbody>
</table>

[a] chemical shift of CH= in ppm, [b] chemical shift of C-1 in ppm.

The constitutions of compounds 81-83 were confirmed by NMR analyses. For example, the \(^1\text{H-NMR}\) spectrum of compound 82 showed a down-field shifted signal at 4.82 ppm attributed to the olefinic proton. In addition, there appeared a singlet upfield shifted at 0.14 ppm characteristic for the trimethylsilyl group. In the \(^{13}\text{C-NMR}\) spectrum, the olefinic carbons...
appear at 104.1 and 150.3 ppm corresponding to C-2 and C-1, respectively (see Figure 3.260 and 3.261).

Figure 3.260: 1H-NMR (300 MHz, CDCl$_3$) spectrum of compound 82.

Figure 3.261: 13C-NMR (300 MHz, CDCl$_3$) spectrum of compound 82.

3.10.2 Photoreactions of benzaldehyde and benzaldehyde-1-d with cyclic alkenes

In order to evaluate isotope effects on the diastereoselectivity of “pure” triplet photocycloadditions, benzaldehyde and benzaldehyde-1-d were used as carbonyl substrates. These carbonyl substrates have high intersystem crossing rates (ISC) (for benzaldehyde, $k_{ISC} \cong 1 \times 10^{11}$ sec$^{-1}$ and $\Delta E_{ST} = 4$ kcal/mol) which excludes singlet reactivity. As olefinic reaction partners two sets of cycloalkenes were employed: unsubstituted cycloalkenes (2,3-dihydrofuran, 5-deuterio-2,3-dihydrofuran, cyclopentene, cyclohexene) and substituted cycloalkenes (5-methyl-2,3-dihydrofuran, 1-methylcyclohexene, 1-trimethylsilyloxy-cyclopentene, 1-trimethylsilyloxy-cyclohexene, 1-trimethylsilyloxy-cycloheptene). Photolysis of benzaldehyde as well as benzaldehyde-1-d with substituted and unsubstituted cycloalkenes in benzene gave mixtures of two diastereoisomers as depicted in Scheme 3.89.

Scheme 3.89: Photoreaction of benzaldehyde and benzaldehyde-1-d with cyclic alkenes.

The exo/endo diastereomeric ratios of the photoadducts 84a-r were determined by 1H-NMR and GC analyses, for reactions with benzaldehyde-1-d additionally by 2H-NMR analysis. The results are presented in Table 3.48.
Table 3.48: Simple diastereoselectivity of the photocycloaddition of benzaldehyde and benzaldehyde-1-d with cyclic alkenes.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>X =</th>
<th>R =</th>
<th>R' =</th>
<th>d.r. (endo : exo)[a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>84a</td>
<td>O</td>
<td>H</td>
<td>H</td>
<td>82 : 18</td>
</tr>
<tr>
<td>B</td>
<td>84b</td>
<td>O</td>
<td>H</td>
<td>D</td>
<td>93 : 07</td>
</tr>
<tr>
<td>C</td>
<td>84c</td>
<td>O</td>
<td>D</td>
<td>H</td>
<td>89 : 11</td>
</tr>
<tr>
<td>D</td>
<td>84d</td>
<td>O</td>
<td>D</td>
<td>D</td>
<td>90 : 10</td>
</tr>
<tr>
<td>E</td>
<td>84e</td>
<td>O</td>
<td>Me</td>
<td>H</td>
<td>65 : 35</td>
</tr>
<tr>
<td>F</td>
<td>84f</td>
<td>O</td>
<td>Me</td>
<td>D</td>
<td>67 : 33</td>
</tr>
<tr>
<td>G</td>
<td>84g</td>
<td>CH₂</td>
<td>H</td>
<td>H</td>
<td>61 : 39</td>
</tr>
<tr>
<td>H</td>
<td>84h</td>
<td>CH₂</td>
<td>H</td>
<td>D</td>
<td>87 : 13</td>
</tr>
<tr>
<td>I</td>
<td>84i</td>
<td>(CH₂)₂</td>
<td>H</td>
<td>H</td>
<td>74 : 26</td>
</tr>
<tr>
<td>J</td>
<td>84j</td>
<td>(CH₂)₂</td>
<td>H</td>
<td>D</td>
<td>85 : 15</td>
</tr>
<tr>
<td>K</td>
<td>84k</td>
<td>(CH₂)₂</td>
<td>Me</td>
<td>H</td>
<td>67 : 33</td>
</tr>
<tr>
<td>L</td>
<td>84l</td>
<td>(CH₂)₂</td>
<td>Me</td>
<td>D</td>
<td>75 : 25</td>
</tr>
<tr>
<td>M</td>
<td>84m</td>
<td>CH₂</td>
<td>OTMS</td>
<td>H</td>
<td>60 : 40</td>
</tr>
<tr>
<td>N</td>
<td>84n</td>
<td>CH₂</td>
<td>OTMS</td>
<td>D</td>
<td>63 : 37</td>
</tr>
<tr>
<td>O</td>
<td>84o</td>
<td>(CH₂)₂</td>
<td>OTMS</td>
<td>H</td>
<td>80 : 20</td>
</tr>
<tr>
<td>P</td>
<td>84p</td>
<td>(CH₂)₂</td>
<td>OTMS</td>
<td>D</td>
<td>83 : 17</td>
</tr>
<tr>
<td>Q</td>
<td>84q</td>
<td>(CH₂)₃</td>
<td>OTMS</td>
<td>H</td>
<td>60 : 40</td>
</tr>
<tr>
<td>R</td>
<td>84r</td>
<td>(CH₂)₃</td>
<td>OTMS</td>
<td>D</td>
<td>70 : 30</td>
</tr>
</tbody>
</table>

[a] based on integration of the characteristic signals in the 1NMR spectra of the crude reaction mixture and also on the GC analysis.

In agreement with literature results, the endo-selectivity of the triplet Paternò-Büchi reaction of benzaldehyde and benzaldehyde-1-d with substituted cycloalkenes was moderate and high with unsubstituted cycloalkenes (see Table 3.48, entry A, E). The comparison between benzaldehyde with benzaldehyde-1-d photoadducts revealed that:

(a) the endo-selectivity increases when the reaction partner contains deuterium;
(b) from the four possible combinations of benzaldehyde/2,3-dihydrofuran (entry A, B, C & D), the endo-selectivity of benzaldehyde-1-d/2,3-dihydrofuran was the highest one;
3. Results & Discussion

(c) the *endo/exo*-selectivity of the benzaldehyde-1-d/cyclopentene photoadduct increases by a factor of 4.2 in comparison with the benzaldehyde/cyclopentene photoadduct (see entry H & I);

(d) the same trend appeared in the substituted cycloalkene series; the diastereoselectivity (favoring the *endo*-photoadduct) increases with benzaldehyde-1-d compared to benzaldehyde.

The structure determination of the deuterated photoadducts were based on NMR analyses and mass spectrometry. For example, Figure 3.262A displays 1H-NMR traces of H-7, H-5 and H-1 for benzaldehyde/2,3-dihydrofuran photoadduct (top) *versus* benzaldehyde-1-d/2,3-dihydrofuran photoadduct (bottom). In the bottom spectrum, one can clearly see the disappearance of H-7 signal at 5.72 ppm and the appearance of H-1 at 4.95 ppm as a doublet which confirmed again the regioselectivity.

![Figure 3.262A: 1H-NMR spectra of 84a & 84b.](image)

There are two main differences in the 1H-NMR spectra of benzaldehyde/2,3-dihydrofuran and benzaldehyde/5-deuterio-2,3-dihydrofuran photoadducts:

(1) in the bottom spectrum, H-7 appears as singlet and H-5 as doublet whereas in the top spectrum H-7 appears as doublet and H-5 appears as a doublet of doublet; (2) the disappearance of the H-1 signal in the bottom spectrum confirmed again the regioselectivity (see Figures 3.263A & 3.263B).
3. Results & Discussion

Figures 3.263A & 3.263B display the 1H-NMR spectra of benzaldehyde-1-d/5-deuterio-2,3-dihydrofuran photoadducts. As can be seen in the bottom spectrum, the disappearance of both the H-7 and H-1 signals and the appearance of the H-5 signal as doublet reveal the correct regiochemistry.

In order to obtain further information on kinetic isotope effects, the reactivity differences between benzaldehyde and benzaldehyde-1-d competing for the 2,3-dihydrofuran was determined. The k_H/k_D values from 1H-NMR analyses for competition reactions with initial concentrations of 1:1:1 and 2:2:1 for benzaldehyde : benzaldehyde-1d : 2,3-dihydrofuran were 1.05 and 1.1, respectively. Thus, benzaldehyde-1-d is only slightly less reactive with 2,3-dihydrofuran than benzaldehyde, but gives significantly higher diastereomeric ratios. The effect on k_H/k_D might also be due to the reduced triplet benzaldehyde lifetimes. An alternative
3. Results & Discussion

The quantum yield for the photocycloaddition of benzaldehyde to 2,3-dihydrofuran was estimated as 0.45. Thus, the cleavage channel can compete with product formation with similar probability in the non-deuterated case.

3.10.3 Photoreactions of propanal and propanal-1-d with 2,3-dihydrofuran and 5-deuterio-2,3-dihydrofuran

In order to obtain more evidence for magnetic isotope effects (MIE), the concentration dependence of the [2+2] photocycloaddition of propanal and propanal-1d with 2,3-dihydrofuran as well as 5-deuterio-2,3-dihydrofuran was investigated. This unlabelled combination (propanal/2,3-dihydrofuran) was used primarily to determine the different in simple diastereoselectivities of singlet and triplet photocycloadditions. The addition of 2,3-dihydrofuran or 5-deuterio-2,3-dihydrofuran to electronically excited propanal-1-d in hexane at a wide range of substrate concentrations afforded two diastereoisomers. The endo/exo diastereomeric ratios of the photoadducts were strongly influenced by the concentration of substrates. The diastereomeric ratios of the photoadducts were determined by GC and ¹H-NMR analyses.

Scheme 3.90: Photocycloaddition reactions of propanal, propanal-1d with 2,3-dihydrofuran and 5-deuterio-2,3-dihydrofuran in n-hexane.
Table 3.49: Concentration dependence of the simple diastereoselectivity of the photocycloaddition reactions of propanal and propanal-1-d with 2,3-dihydrofuran as well as 5-deutero-2,3-dihydrofuran in hexane.

<table>
<thead>
<tr>
<th>Conc. (M)</th>
<th>d.r.(endo : exo)[^a]</th>
<th>d.r.(endo : exo)[^b]</th>
<th>d.r.(endo : exo)[^c]</th>
<th>d.r.(endo : exo)[^d]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>47.3 : 52.7</td>
<td>46.1 : 53.9</td>
<td>46.9 : 53.1</td>
<td>45.2 : 54.8</td>
</tr>
<tr>
<td>0.5</td>
<td>50.2 : 49.8</td>
<td>49.9 : 50.1</td>
<td>50.9 : 49.9</td>
<td>48.3 : 51.7</td>
</tr>
<tr>
<td>0.25</td>
<td>54.9 : 45.1</td>
<td>55.1 : 44.9</td>
<td>55.8 : 44.2</td>
<td>53.2 : 46.8</td>
</tr>
<tr>
<td>0.125</td>
<td>60.4 : 39.6</td>
<td>60.2 : 39.8</td>
<td>61.4 : 38.6</td>
<td>57.6 : 42.4</td>
</tr>
<tr>
<td>0.1</td>
<td>62.8 : 37.2</td>
<td>60.7 : 39.3</td>
<td>62.9 : 37.1</td>
<td>60.3 : 39.7</td>
</tr>
<tr>
<td>0.05</td>
<td>64.3 : 35.7</td>
<td>67.8 : 32.2</td>
<td>67.1 : 32.9</td>
<td>66.7 : 33.3</td>
</tr>
<tr>
<td>0.025</td>
<td>66.3 : 33.7</td>
<td>70.1 : 29.9</td>
<td>70.3 : 29.7</td>
<td>66.9 : 33.1</td>
</tr>
<tr>
<td>0.0125</td>
<td>69.2 : 30.8</td>
<td>73.5 : 26.5</td>
<td>71.4 : 28.6</td>
<td>72.9 : 27.1</td>
</tr>
</tbody>
</table>

\[^a\] simple diastereoselectivity of propanal/2,3-dihydrofuran photocycloaddition reaction determined by 1H-NMR analysis, \[^b\] simple diastereoselectivity of propanal-1-d/2,3-dihydrofuran photocycloaddition reaction determined by 1H-NMR analysis, \[^c\] simple diastereoselectivity of propanal/5-deutero-2,3-dihydrofuran photocycloaddition reaction determined by 1H-NMR analysis, \[^d\] simple diastereoselectivity of propanal-1-d/5-deutero-2,3-dihydrofuran photocycloaddition reaction determined by 1H-NMR analysis.

As can be seen from Table 3.49, in all combinations, at higher concentration, the endo/exo selectivity levels oft around 46 : 54 whereas at lower concentration, the selectivity reached a maximum value of 74 : 26 with preferential formation of the endo-diastereoisomer. Comparing the endo/exo selectivity of propanal-1-d/2,3-dihydrofuran, propanal/5-deutero-2,3-dihydrofuran and propanal-1-d/5-deutero-2,3-dihydrofuran photoadducts with propanal/2,3-dihydrofuran photoadducts showed that the selectivity of the singlet reaction is the same for all combinations whereas the triplet reaction gave higher endo-selectivities when one or two reaction partners bear a deuterium atom.

In the triplet region (low substrate concentration), a similar isotope effect on the endo/exo-ratio was determined for the 5-deutero-2,3-dihydrofuran/propanal and the 2,3-dihydrofuran/propanal-1-d combinations (Figure 3.265). An average isotope selectivity effect of 1.2 resulted for both reactions at 0.01M. These results orginate from several factors, all in connection with intersystem crossing processes: ISC-rates are reduced and thus singlet as well as triplet lifetimes are increased. This effect seems to be balanced out for the 2,3-dihydrofuran/propanal reaction: the inversion regions are nearly identical for all combinations.
3. Results & Discussion

![Graph showing concentration/selectivity profiles for the photocycloaddition of propanal with 2,3-dihydrofuran and deuterated substrate combination.](image)

Figure 3.265: Concentration / selectivity profiles for the photocycloaddition of propanal with 2,3-dihydrofuran and deuterated substrate combination.

The stereochemistry of all deuterated photoadducts was confirmed via NOE spectroscopy for the *exo*-stereoisomers. A common feature of the NOE measurements was the enhancement of oxetane ring hydrogen (H-5) resonances following saturation of the methyl group.

![Structure diagrams for exo-85, exo-86, exo-87](image)

Figure 3.266: NOE interactions of the deuterated *exo*-diastereoisomers.

The structure assignments of the bicyclic oxetanes were based on the NMR analyses. Table 3.50 summarizes the characteristic signals of all possible photoadducts.

<table>
<thead>
<tr>
<th>Compound</th>
<th>H-7</th>
<th>H-5</th>
<th>H-1</th>
<th>C-7</th>
<th>C-5</th>
<th>C-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>exo-3c</td>
<td>4.19</td>
<td>5.17</td>
<td>4.42</td>
<td>88.3</td>
<td>84.2</td>
<td>80.7</td>
</tr>
<tr>
<td>endo-3c</td>
<td>4.50</td>
<td>5.22</td>
<td>4.66</td>
<td>86.4</td>
<td>84.1</td>
<td>78.6</td>
</tr>
<tr>
<td>exo-85</td>
<td>-</td>
<td>5.15</td>
<td>4.41</td>
<td>87.5</td>
<td>84.0</td>
<td>80.4</td>
</tr>
<tr>
<td>endo-85</td>
<td>-</td>
<td>5.22</td>
<td>4.64</td>
<td>85.7</td>
<td>83.8</td>
<td>78.3</td>
</tr>
<tr>
<td>exo-86</td>
<td>4.24</td>
<td>5.19</td>
<td>-</td>
<td>88.2</td>
<td>84.2</td>
<td>80.4</td>
</tr>
<tr>
<td>endo-86</td>
<td>4.53</td>
<td>5.27</td>
<td>-</td>
<td>86.4</td>
<td>84.0</td>
<td>78.3</td>
</tr>
<tr>
<td>exo-87</td>
<td>-</td>
<td>5.14</td>
<td>-</td>
<td>87.6</td>
<td>84.1</td>
<td>80.2</td>
</tr>
<tr>
<td>endo-87</td>
<td>-</td>
<td>5.22</td>
<td>-</td>
<td>85.8</td>
<td>83.9</td>
<td>78.1</td>
</tr>
</tbody>
</table>

Table 3.50: Characteristic \(^1\)H-NMR and \(^{13}\)C-NMR signals of compounds 3c, 85, 86, 87.
3. Results & Discussion

Figure 3.267: 1H-NMR (300 MHz, CDCl$_3$) spectrum of *exo-* & *endo-*3c.

Figure 3.268: 13C-NMR (75 MHz, CDCl$_3$) spectrum of *exo-* & *endo-*3c.

Figure 3.269: 1H-NMR (300 MHz, CDCl$_3$) spectrum of *exo* & *endo-*85.

Figure 3.270: 13C-NMR (75 MHz, CDCl$_3$) spectrum of *exo* & *endo-*85.

Figure 3.271: 1H-NMR (300 MHz, CDCl$_3$) spectrum of *exo* & *endo-*86.

Figure 3.272: 13C-NMR (75 MHz, CDCl$_3$) spectrum of *exo* & *endo-*86.
Mechanistic analysis
The formation of the thermodynamically unfavored \textit{endo}-products in the triplet photocycloaddition of a carbonyl to a cyclic alkene was rationalized by assuming spin-orbit coupling (SOC) controlled intersystem crossing (ISC) geometries at the stage of triplet 1,4-biradical.\footnote{42} Figure 3.275 shows the triplet 1,4-biradical conformer with all possible three spin-orbit coupling-active geometries.

![Figure 3.275: Conformers of 1,4-biradical intermediates.](image)

The significant increase in \textit{endo}-selectivity of the deuterated benzaldehyde/2,3-dihydrofuran-photoadducts can be explained as follows: If the radical centers in the triplet biradicals are separated by distance of several Å or more (like in conformer B), the singlet (S)-triplet (T) energy gap \(\Delta E_{ST} \) decreases and intersystem crossing (ISC) is more strongly controlled by the weak hyperfine coupling (HFC) induced by nuclear-electron-spin interactions which are isotope dependent.
As easily recognized from the gyromagnetic ratios of 1H and 2H, hyperfine coupling is stronger by a factor of 6 for 1H than for 2H interaction with adjacent carbon radical. Thus, HFC-induced ISC is more relevant for 1H-substituted radicals and consequently the alternative (strong) SOC-mechanism is expected to dominate for 2H-substituted biradicals. As the endo-selectivity was interpreted (vide supra) as a mechanistic signature for SOC-mechanism, it appears logical, that endo-selectivity increases for 2H-substituted 1,4-biradicals. Basically one has to assume, that the triplet 1,4-biradical lifetime is decreased when going from deuterated to non-deuterated intermediates, and this expectation has been also revealed.136

It was reported that the effect of deuterium substitution on the singlet and triplet lifetimes of carbonyl compounds in the vapor phase is dramatic. For example, the fluorescence quantum yield of formaldehyde147 increases by a factor of about 20 upon going from CH$_2$=O to CD$_2$=O. The effect of deuteration on acetone lifetime148 is less apparent (τ, acetone –h$_6$ is 1.7 ns, acetone-d$_6$ is 2.3 ns) but nonetheless significant. The substitution of D for H decreases the magnitude of k_{ISC} or IC. It is not yet clear whether a spin-orbit or Franck-Condon inhibition is involved

The lifetime of triplet propanal-1-d149 is increased in comparsion with undeuterated propanal in vapor phase by a factor of 4.4. Thus, one should expect the rate of ISC from T$_1$ to S$_1$ will be decreased on going from propanal to propanal-1-d. However, our experiment did not at all visualize this effect, i.e. the endo-selectivity of “pure” triplet propanal-1d photoaddition was higher than for the propanal/2,3-dihydrofuran reaction. The results of propanal-1d/dihydrofuran photocycloaddition supported the results of benzaldehyde-1-d/cycloalkene photocycloaddition and may shed some light on the role of SOC and HFC on ISC.
4. Experimental part

4.1 General Remarks

Spectroscopic methods:

UV/VIS: Electronic spectra were recorded in acetonitrile unless otherwise stated, using a Perkin-Elmer Lambda 7 spectrophotometer and are listed as absorbance maxima (nm) followed by the extinction coefficient ε (cm$^{-1}$ M$^{-1}$).

IR: Infrared spectra were recorded as KBr or CsI disc for solids or as neat films between sodium chloride plates for liquids using a Perkin-Elmer 1600 Series FTIR spectrophotometer.

1H-NMR: The 1H-NMR spectra were recorded on a Brucker AC 300 (300 MHz) spectrometer. The 1H NMR chemical shifts are reported in δ_{ppm} using residual CHCl$_3$ (δ 7.24) in the perdeuterated solvent as the internal standard. Multiplicities were reported as s (singlet), d (doublet), t (triplet), q (quartet), and m (multiplet). Coupling constants J are given in Hz.

13C-NMR: The 13C-NMR spectra were recorded on Brucker AC 300 (75.5 MHz) spectrometer. 13C NMR chemical shifts are reported in δ_{ppm} relative to the internal standard CDCl$_3$ (δ 77). Carbon multiplicities were determined by distortionless enhancement by polarization transfer (DEPT).

MS: Mass spectra were recorded using Finnigan Incos 500 instrument using positive ion electron impact (EI) techniques at 20 and 70 eV. Ions are quoted as an m/z value followed by intensity (%).

HRMS: High resolution mass spectra were recorded on a Finnigan MAT H-SQ 30 (FAB) spectrometer.

Chromatographic methods:

CC: Column chromatography was performed using SiO$_2$ 60 (0.063 – 0.200 mm) as stationary phase. As a mobile phase, a mixture of n-hexane and ethyl acetate were used.
4. Experimental part

TLC: Thin layer chromatography was conducted on commercially precoated polygram® SIL – G/UV 254 plates (Macherey – Nagel) and also on precoated silica gel foils 60 F$_{254}$ supplied by Merck and the chromatograms were visualized under a 254 nm UV lamp and / or with 5 % I$_2$ solution.

PLC: Preparative thick layer chromatography was carried out on 20 x 20 cm glass plates coated with silica gel (Merck Kieselgel G F$_{254}$) and eluted with the solvent system indicated. The separated compounds were located under 254 nm UV light and extracted using methylene chloride.

GC: Gas chromatography was performed on a Hewlett-Packard 5890 Series II instrument equipped with a capillary HP-5 cross-linked phenylmethylpolysiloxane (30 m x 0.32 mm) column, connected to FI- Detector and a HP 3395 calculating integrator, temperature program, 60–250°C in 20°C/min steps (1 min initial time), N$_2$ was used as flow gas.

Analytical methods:

X-ray analysis: The X – ray analysis was performed on an Enraf-Nonius CAD4 diffractometer at the Institute of Organic Chemistry-University of Cologne.

Elemental analysis: Combustion analyses were conducted at a Elementar Vario El. Instrument.

Melting points (M.p °C): All melting points were determined with a Büchi melting point apparatus (type Nr. 535) and are uncorrected.

Photolyses:

Glas apparatus: Quartz and pyrex® vessel were used for irradiation.

Reactors: Rayonet chamber photoreactors PRR- 208 (8 x 3000 Å lamps, ca. 800 W, λ = 300 ± 10 nm), RPR – 100 (16 x 3500 Å lamps, ca. 400 W, λ = 350 ± 20 nm) were used for irradiation and high pressure mercury lamp(λ > 290 nm).
4. Experimental part

Solvent and Reagents: Benzene was purchased from Fluka and used without purification. All reagents were purchased from standard chemical supplies and purified to match the reported physical and spectral data.

Solvent and Reagents:
Solvents were dried by distillation over drying agents as follows: acetonitrile (P₂O₅), dichloromethane, chloroform, dimethyl formamide and pentane (CaH₂), diethylether, THF (Na / benzophenone), methanol, ethanol, propanol (Mg), pyridine and triethyl amine (KOH).

Conversion and Yield (%):
The conversion and yield % were determined by integration of characteristic signals in the crude ¹NMR spectra with an approx. error ± 5%.

Nomenclature:
All new compounds were named according to the Autonom program.¹⁵⁰

4.2 General procedure for the photolyses of aldehydes and alkenes on the analytical scale:

Concentration study:
The mechanistic studies of carbonyl-ene photoreaction including concentration effect were carried out on a merry-go-round apparatus. This equipment consists of a rotating turntable having nine holes in an inner ring surrounding a quartz immersion well. The light source was a high pressure mercury lamp. Use of the merry-go-round apparatus ensured that all the samples recieve the same light quantity. The quartz tubes that were used were of a uniform quality, the samples to be irradiated always contained the same concentration of both aldehydes and alkenes so that equal light quantity were absorbed by all samples in any given run. Samples were made up in 10 mL volumetric flasks, then transferred to the tubes which were deoxygenated using N₂, corked and placed in the merry-go-round for irradiation at 10°C for 10 h. After photolysis the samples were analysed by GC and spectroscopic data. There are several common features in the spectral data of these bicyclic oxetane products. In the IR spectra, the two asymmetric C-O-C stretching bands of the oxetane ring are at ≈ 980 and 1030 cm⁻¹.¹⁵¹ In the mass spectrum, retro-cycloaddition leads to the cation-radical peak for the carbonyl compound.
4. Experimental part

4.2.1 General procedure for the photolyses of aldehydes and alkenes on the preparative scale:

Alkenes (5 mmol) and aldehydes (5 mmol) were dissolved in 100 mL benzene, the solution transfered to a vacum – jacket pyrex tube and deoxygenated with a steady stream of \(\text{N}_2 \) gas. The reaction mixture was cooled to 10°C by means of a cold finger and irradiated in a Rayonet photoreactor (RPR 300 nm). The solvent was evaporated (40 °C, 20 torr) and the residue was purified by bulb-to-bulb distillation.

4.2.1.1 Photolyses of 2,3-dihydrofuran with aldehydes 1a-f:

Irradiation of 2,3-dihydrofuran with benzaldehyde (sbo-157)

A solution of 2,3-dihydrofuran (0.35 g, 5 mmol) and benzaldehyde (0.53 g, 5 mmol) in 100 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the residue after evaporation of the solvent afforded 0.76 g (86 %) of inseparable mixture of oxetanes as a pale yellow viscous oil.

endo-7-Phenyl-2,6-dioxo-bicyclo[3.2.0]heptane (endo-3a)\(^{152}\)

![Diagram](image)

IR: (Nujol, mixture of *endo* & *exo*)

\[\tilde{\nu} (\text{cm}^{-1}) = 3020, 2920, 1605, 1505, 1470, 1400, 1050, 835, 778. \]

\[^{1}\text{H}-\text{NMR}:\] (300 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 1.64 (\text{ddd, J = 8.4, 11.2, 13.4 Hz, 1H, 4-H}), 2.12 (\text{dd, J = 5.4, 13.7 Hz, 1H, 4-H}), 3.73 (\text{ddd, J = 8.4, 8.6, 11.2 Hz, 1H, 3-H}), 3.97 (\text{dd, J = 8.4, 8.6 Hz, 1H, 3-H}), 5.05 (\text{dd, J = 4.5, 4.5 Hz, 1H, 1-H}), 5.51 (\text{dd, J = 4.5, 4.5 Hz, 1H, 5-H}), 5.80 (\text{d, J = 4.5 Hz, 1H, 7-H}), 7.15-7.35 (\text{m, 5H, H}_{\text{arom}}). \]

\[^{13}\text{C}-\text{NMR}:\] (75.5 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 32.9 (\text{t, C-4}), 69.0 (\text{t, C-3}), 79.7 (\text{d, C-1}), 85.2 (\text{d, C-5}), 85.3 (\text{d, C-7}), 124.6 (\text{d, CH}_{\text{arom}}), 127.0 (\text{d, CH}_{\text{arom}}), 127.8 (\text{d, CH}_{\text{arom}}), 137.6 (\text{s, Cq}_{\text{arom}}). \]

MS: (EI, 20 eV)

\[\text{m/z (\%)} = 176 (M^+, 27), 120 (40), 105 (20), 104 (25), 91 (100), 77 (20), 70 (20). \]
4. Experimental part

exo-7-Phenyl-2,6-dioxabicyclo[3.2.0]heptane (*exo*-3a)¹⁵²

![Structure](image)

¹H-NMR: (300 MHz, CDCl₃)

δ_{ppm} = 1.77 (dddd, J = 4.2, 8.8, 10.8, 13.7 Hz, 1H, 4-H), 2.24 (dd, J = 4.5, 13.7 Hz, 1H, 4-H), 4.37 (m, 2H, 3-H & 3-H), 4.64 (dd, J = 2.4, 4.0 Hz, 1H, 1-H), 5.41 (d, J = 2.4 Hz, 1H, 1-H), 5.50 (dd, J = 4.2, 4.2 Hz, 1H, 5-H), 7.20-7.50 (m, 5H, H_{arom.}).

¹³C-NMR: (75.5 MHz, CDCl₃)

δ_{ppm} = 32.9 (t, C-4), 69.0 (t, C-3), 79.7 (d, C-1), 85.2 (d, C-5), 85.3 (d, C-7), 124.6 (d, CH_{arom.}), 127.0 (d, CH_{arom.}), 127.8 (d, CH_{arom.}), 137.6 (s, C_{arom.}).

Irradiation of 2,3-dihydrofuran with acetaldehyde (sbo-167)

A solution of 2,3-dihydrofuran (0.35 g, 5 mmol) and acetaldehyde (0.22 g, 5 mmol) in 100 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the residue after evaporation of the solvent afforded 0.55 g (91 %) of inseparable mixture of oxetanes as a colorless viscous oil.

endo-7-Methyl-2,6-dioxabicyclo[3.2.0]heptane (*endo*-3b)¹⁵³

![Structure](image)

GC: R_t = 3.5 min.

¹H-NMR: (300 MHz, CDCl₃)

δ_{ppm} = 1.10 -1.85 (m, 2H, 4-H), 1.25 (d, J = 6.5 Hz, 3H, CH₃), 3.65 – 4.40 (m, 2H, 3-H), 4.58 (dq, J = 2.8, 6.5 Hz, 1H, 7-H), 4.73 (dd, J = 3.8, 3.8 Hz, 1H, 5-H), 5.36 (dd, J = 2.8, 3.8 Hz, 1H, 1-H).

¹³C-NMR: (75.5 MHz, CDCl₃)

δ_{ppm} = 20.1 (q, CH₃), 33.3 (t, C-4), 67.2 (t, C-3), 79.2 (d, C-1), 82.2 (d, C-5), 83.9 (d, C-7).
4. Experimental part

exo-7-Methyl-2,6-dioxa-bicyclo[3.2.0]heptane (*exo*-3b)153

![Graphic of *exo*-7-Methyl-2,6-dioxa-bicyclo[3.2.0]heptane (*exo*-3b)]

GC: \(R_t = 3.4 \) min.

\textbf{1H-NMR:} (300 MHz, CDCl\textsubscript{3})

\[\delta_{ppm} = 1.10 - 1.85 \text{ (m, 2H, 4-H)}, 1.41 \text{ (d, } J = 6.4 \text{ Hz, 3H, CH}_3\text{)}, 3.65 - 4.40 \text{ (m, 2H, 3-H)}, 4.49 \text{ (dd, } J = 2.6, 4.0 \text{ Hz, 1H, 5-H)}, 4.93 \text{ (dq, } J = 4.2, 6.4 \text{ Hz, 1H, 7-H}), 5.32 \text{ (dd, } J = 4.0, 4.2 \text{ Hz, 1H, 1-H}). \]

\textbf{13C-NMR:} (75.5 MHz, CDCl\textsubscript{3})

\[\delta_{ppm} = 20.5 \text{ (q, CH}_3\text{), 32.8 (t, C-4), 69.8 (t, C-3), 81.6 (d, C-1), 83.8 (d, C-5), 84.4 (d, C-7)}. \]

Irradiation of 2,3-dihydrofuran with propionaldehyde (sbo-P2)

A solution of 2,3-dihydrofuran (0.35 g, 5 mmol) and propionaldehyde (0.29 g, 5 mmol) in 100 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the residue after evaporation of the solvent afforded 0.51 g (80\%) of inseparable mixture of oxetanes as a colorless viscous oil.

endo-7-\textit{Ethyl}-2,6-dioxa-bicyclo[3.2.0]heptane (*endo*-3c)154

![Graphic of *endo*-7-\textit{Ethyl}-2,6-dioxa-bicyclo[3.2.0]heptane (*endo*-3c)]

GC: \(R_t = 6.5 \) min.

\textbf{1H-NMR:} (300 MHz, CDCl\textsubscript{3})

\[\delta_{ppm} = 0.85 \text{ (t, } J = 7.4 \text{ Hz, 3H, CH}_3\text{)}, 1.59 - 1.65 \text{ (m, 2H, CH}_2\text{CH}_3\text{), 1.66 - 2.06 \text{ (m, 2H, 4-H)}, 4.17 - 4.27 \text{ (m, 2H, 3-H)}, 4.60 \text{ (ddd, } J = 4.1, 4.0, 4.1 \text{ Hz, 1H, 7-H)}, 4.75 \text{ (dd, } J = 3.8, 4.0 \text{ Hz, 1H, 1-H}), 5.34 \text{ (dd, } J = 3.8, 3.8 \text{ Hz, 1H, 5-H}). \]

\textbf{13C-NMR:} (75.5 MHz, CDCl\textsubscript{3})

\[\delta_{ppm} = 8.6 \text{ (q, CH}_3\text{), 22.5 (t, CH}_2\text{), 32.9 (t, C-4), 70.0 (t, C-3), 78.8 (d, C-1), 84.3 (d, C-5), 86.6 (d, C-7)}. \]

\textbf{MS:} (EI, 20 eV)

\[m/z \% = 128 \text{ (M}^\text{+}, 20), 99 \text{ (100), 86 (43), 71 (50), 70 (68), 58 (60), 57 (78)}. \]
4. Experimental part

exo-7- Ethyl-2,6-dioxa-bicyclo[3.2.0]heptane (exo-3c)

![exo-7- Ethyl-2,6-dioxa-bicyclo[3.2.0]heptane (exo-3c)](image)

GC: $R_t = 6.4$ min.

1H-NMR: (300 MHz, CDCl$_3$)

δ_{ppm} = 0.94 (t, $J = 7.4$ Hz, 3H, CH$_3$), 1.67-1.76 (m, 2H, CH$_2$CH$_3$), 1.77 - 2.08 (m, 2H, 4-H), 4.17 - 4.26 (m, 2H, 3-H), 4.31 (dd, $J = 2.5$, 2.9 Hz, 1H, 7-H), 4.51 (dd, $J = 4.1$, 4.3 Hz, 1H, 1-H), 5.25 (dd, $J = 3.8$, 3.8 Hz, 1H, 5-H).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ_{ppm} = 8.2 (q, CH$_3$), 27.2 (t, CH$_2$), 33.5 (t, C-4), 67.3 (t, C-3), 80.9 (d, C-1), 84.4 (d, C-5), 88.5 (d, C-7).

Irradiation of 2,3-dihydrofuran with 3-methylbutyraldehyde (sbo-P4)

A solution of 2,3-dihydrofuran (0.35 g, 5 mmol) and 3-methylbutyraldehyde (0.43 g, 5 mmol) in 100 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the residue after evaporation of the solvent afforded 0.68 g (87 %) of inseparable mixture of oxetanes as a colorless viscous oil.

endo-7-Isobutyl-2,6-dioxa-bicyclo[3.2.0]heptane (endo-3d)

![endo-7-Isobutyl-2,6-dioxa-bicyclo[3.2.0]heptane (endo-3d)](image)

GC: $R_t = 9.2$ min.

1H-NMR: (300 MHz, CDCl$_3$)

δ_{ppm} = 0.85 (d, $J = 6.6$ Hz, 6H, 2CH$_3$), 1.43 (m, 1H, CH), 1.54 - 1.61 (m, 2H, CH$_2$), 1.96 - 2.16 (m, 2H, 4-H), 4.18 (m, 2H, 3-H), 4.73 (dd, $J = 3.8$, 4.0 Hz, 1H, 1-H), 4.78 (ddd, $J = 4.0$, 4.0, 3.5 Hz, 1H, 7-H), 5.33 (dd, $J = 3.7$, 3.8 Hz, 1H, 5-H).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ_{ppm} = 22.7 (q, CH$_3$), 22.8 (q, CH$_3$), 22.9 (d, CH), 33.3 (t, C-4), 38.4 (t, CH$_2$), 70.2 (t, C-3), 79.9 (d, C-1), 84.8 (d, C-5), 84.9 (d, C-7).
4. Experimental part

exo-7-Isobutyl-2,6-dioxa-bicyclo[3.2.0]heptane (exo-3d)

\[
\text{\begin{center}
\includegraphics[width=0.2\textwidth]{exo-3d.png}
\end{center}}
\]

\textbf{GC:} R_t = 9.1 min.

\textbf{1H-NMR:} (300 MHz, CDCl₃)
\[
\delta_{ppm} = 0.92 (d, J = 6.7 Hz, 6H, 2CH₃), 1.43 - 1.48 (m, 2H, CH₂), 1.96 - 2.10 (m, 2H, 4-H), 2.11-2.13 (m, 1H, CH), 4.12 (m, 2H, 3-H), 4.30 (dd, J = 4.1, 2.6 Hz, 1H, 1-H), 4.5 (ddd, J = 2.8, 1.3, 2.2 Hz, 1H, 7-H), 5.27 (dd, J = 4.1, 4.1 Hz, 1H, 5-H).
\]

\textbf{13C-NMR:} (75.5 MHz, CDCl₃)
\[
\delta_{ppm} = 22.8 (q, CH₃), 22.9 (q, CH₃), 23.0 (d, CH₃), 33.9 (t, C-4), 43.3 (t, CH₂), 68.6 (t, C-3), 82.2 (d, C-1), 84.8 (d, C-5), 86.6 (d, C-7).
\]

\textbf{Irradiation of 2,3-dihydrofuran with pivalaldehyde (sbo-P16)}

A solution of 2,3-dihydrofuran (0.35 g, 5 mmol) and pivalaldehyde (0.43 g, 5 mmol) in 100 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the residue after evaporation of the solvent afforded 0.62 g (80 \%) of inseparable mixture of oxetanes as a colorless viscous oil.

\textbf{endo-7-tert-Butyl-2,6-dioxa-bicyclo[3.2.0]heptane (endo-3e)}

\[
\text{\begin{center}
\includegraphics[width=0.2\textwidth]{endo-3e.png}
\end{center}}
\]

\textbf{1H-NMR:} (300 MHz, CDCl₃)
\[
\delta_{ppm} = 0.98 (s, 9H, 3CH₃), 1.99 (m, 2H, 4-H), 3.50-3.66 (m, 2H, 3-H), 3.82 (d, J = 3.5Hz, 1H, 7-H), 4.60 (dd, J = 3.7, 3.5 Hz, 1H, 1-H), 5.10 (dd, J = 3.7, 4.0 Hz, 1H, 5-H).
\]

\textbf{13C-NMR:} (75.5 MHz, CDCl₃)
\[
\delta_{ppm} = 23.4 (q, CH₃), 24.8 (q, CH₃), 26.7 (q, CH₃), 31.3 (s, Cq), 37.8 (t, C-4), 69.3 (t, C-3), 81.1 (d, C-1), 86.5 (d, C-5), 90.6 (d, C-7).
4. Experimental part

exo-7-tert-Butyl-2,6-dioxa-bicyclo[3.2.0]heptane (exo-3e)

![Chemical Structure](image)

1H-NMR: (300 MHz, CDCl₃)

\[\delta_{ppm} = 0.67 \text{ (s, 9H, 3CH₃)}, 1.88 \text{ (m, 2H, 4-H)}, 3.50 - 3.66 \text{ (m, 2H, 3-H)}, 4.05 \text{ (d, J = 3.67 Hz, 1H, 7-H)}, 4.45 \text{ (dd, J = 3.7, 4.1 Hz, 1H, 1-H)}, 5.0 \text{ (dd, J = 4.1, 4.1 Hz, 1H, 5-H)}. \]

13C-NMR: (75.5 MHz, CDCl₃)

\[\delta_{ppm} = 23.4 \text{ (q, CH₃)}, 24.8 \text{ (q, CH₃)}, 26.7 \text{ (q, CH₃)}, 32.7 \text{ (s, Cq)}, 33.3 \text{ (t, C-4)}, 66.6 \text{ (t, C-3)}, 83.0 \text{ (d, C-1)}, 83.8 \text{ (d, C-5)}, 83.9 \text{ (d, C-7)}. \]

Irradiation of 2,3-dihydrofuran with 3-phenylpropionaldehyde (sbo-P6)

A solution of 2,3-dihydrofuran (0.35 g, 5 mmol) and 3-phenylpropionaldehyde (0.67 g, 5 mmol) in 100 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the residue after evaporation of the solvent afforded 0.76 g (75 %) of inseparable mixture of oxetanes as a pale yellow viscous oil.

endo-7-Phenethyl-2,6-dioxa-bicyclo[3.2.0]heptane (endo-3f)

![Chemical Structure](image)

1H-NMR: (300 MHz, CDCl₃)

\[\delta_{ppm} = 1.15 \text{ (t, J = 7.7 Hz, 2H, CH₂)}, 1.45 \text{ (m, 2H, CH₂)}, 1.98 \text{ (m, 2H, 4-H)}, 4.05 \text{ (m, 2H, 3-H)}, 4.60 \text{ (dd, J = 4.0, 4.0 Hz, 1H, 1-H)}, 4.70 \text{ (dt, J = 4.1, 4.0, 4.0 Hz, 1H, 7-H)}, 5.30 \text{ (dd, J = 3.7, 3.7 Hz, 1H, 5-H)}, 7.21 - 7.77 \text{ (m, 5H, H_{arom.})}. \]

13C-NMR: (75.5 MHz, CDCl₃)

\[\delta_{ppm} = 29.9 \text{ (t, CH₂)}, 30.3 \text{ (t, CH₂)}, 35.4 \text{ (t, C-4)}, 69.4 \text{ (t, C-3)}, 78.3 \text{ (d, C-1)}, 83.8 \text{ (d, C-5)}, 84.0 \text{ (d, C-7)}, 125.4 \text{ (d, CH_{arom.})}, 127.8 \text{ (d, CH_{arom.})}, 129.3 \text{ (d, CH_{arom.})}, 140.7 \text{ (s, Cq_{arom.})}. \]
4. Experimental part

exo-7-Phenethyl-2,6-dioxa-bicyclo[3.2.0]heptane (*exo*-3f)

![Structure of exo-7-Phenethyl-2,6-dioxa-bicyclo[3.2.0]heptane (*exo*-3f)](image)

1H-NMR: (300 MHz, CDCl₃)

δ ppm = 1.15 (t, J = 7.7 Hz, 2H, CH₂), 1.45 (m, 2H, CH₂), 1.98 (m, 2H, 3-H), 4.20 (m, 2H, 4-H), 4.38 (dddd, J = 2.5, 2.5, 2.4, 2.2 Hz, 1H, 7-H), 4.49 (dd, J = 2.5, 2.5 Hz, 1H, 1-H), 5.27 (dd, J = 4.1, 4.0 Hz, 1H, 5-H), 7.20 - 7.45 (m, 5H, Hₐrom.).

13C-NMR: (75.5 MHz, CDCl₃)

δ ppm = 29.9 (t, CH₂), 32.4 (t, CH₂), 32.9 (t, C-4), 66.7 (t, C-3), 80.5 (d, C-1), 83.9 (d, C-5), 85.9 (d, C-7), 126.4 (d, CHₐrom.), 127.4 (d, CHₐrom.), 128.4 (d, CHₐrom.), 140.8 (s, Cqₐrom.).

4.2.1.2 Photolyses of 2,3-dihydropyran with aldehydes 1a-d:

Irradiation of 2,3-dihydropyran with benzaldehyde (sbo-68)

A solution of 2,3-dihydropyran (0.42 g, 5 mmol) and benzaldehyde (0.53 g, 5 mmol) in 100 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the residue after evaporation of the solvent afforded 0.84 g (88 %) of inseparable mixture of oxetanes as a pale yellow viscous oil.

endo-8-Phenyl-2,7-dioxa-bicyclo[4.2.0]octane (*endo*-5a)

![Structure of endo-8-Phenyl-2,7-dioxa-bicyclo[4.2.0]octane (*endo*-5a)](image)

1H-NMR: (300 MHz, CDCl₃)

δ ppm = 1.50 – 2.20 (m, 4H, 4-H & 5-H), 3.25 (dt, J = 2.2, 11.2 Hz, 2H, 3-H), 4.66 (dd, J = 4.0, 4.0 Hz, 1H, 1-H), 4.91 (m, 1H, 6-H), 5.70 (d, J = 4.0 Hz, 1H, 8-H), 7.20 – 7.50 (m, 5H, Hₐrom.).

13C-NMR: (75.5 MHz, CDCl₃)

20.9 (t, C-4), 26.0 (t, C-5), 63.5 (t, C-3), 73.5 (d, C-1), 74.8 (d, C-6), 82.9 (d, C-8), 126.7 (d, CHₐrom.), 127.7 (d, CHₐrom.), 128.9 (d, CHₐrom.), 136.9 (s, Cqₐrom.).
4. Experimental part

exo-8-Phenyl-2,7-dioxa-bicyclo[4.2.0]octane (exo-5a)\(^{152}\)

\[
\begin{align*}
\text{H-NMR:} & \ (300 \text{ MHz, CDCl}_3) \\
\delta_{\text{ppm}} &= 1.52 – 2.20 \ (m, \ 4H, \ 4-H \ & 5-H), \ 3.25 \ (dt, \ J = 2.2, \ 11.2 \ Hz, \ 2H, \ 3-H), \ 4.36 \ (dd, \ J = 4.0, \ 4.0 \ Hz, \ 1H, \ 1-H), \ 4.91 \ (m, \ 1H, \ 6-H), \ 5.62 \ (d, \ J = 4.1 \ Hz, \ 1H, \ 8-H), \ 7.20 – 7.50 \ (m, \ 5H, \ H_{\text{arom}}). \\
\text{C-NMR:} & \ (75.5 \text{ MHz, CDCl}_3) \\
& 20.5 \ (t, \ C-4), \ 26.2 \ (t, \ C-5), \ 64.5 \ (t, \ C-3), \ 73.6 \ (d, \ C-1), \ 74.5 \ (d, \ C-6), \ 82.8 \ (d, \ C-8), \ 126.7 \ (d, \ CH_{\text{arom}}), \ 127.3 \ (d, \ CH_{\text{arom}}), \ 128.2 \ (d, \ CH_{\text{arom}}), \ 136.9 \ (s, \ Cq_{\text{arom}}).
\end{align*}
\]

Irradiation of 2,3-dihydropyran with acetaldehyde (sbo-67)

A solution of 2,3-dihydropyran (0.42 g, 5 mmol) and acetaldehyde (0.22 g, 5 mmol) in 100 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the residue after evaporation of the solvent afforded 0.64 g (86 %) of inseparable mixture of oxetanes as a colorless viscous oil.

endo-8-Methyl-2,7-dioxa-bicyclo[4.2.0]octane (endo-5b)\(^{153}\)

\[
\begin{align*}
\text{GC:} & \ R_t = 4.5 \text{ min.} \\
\text{H-NMR:} & \ (300 \text{ MHz, CDCl}_3) \\
\delta_{\text{ppm}} &= 1.21 \ (d, \ J = 5.2 \ Hz, \ 3H, \ CH_3), \ 1.52 – 2.20 \ (m, \ 4H, \ 4-H \ & 5-H), \ 3.25 \ (dt, \ J = 2.2, \ 11.2 \ Hz, \ 2H, \ 3-H), \ 4.36 \ (dd, \ J = 4.0, \ 4.0 \ Hz, \ 1H, \ 1-H), \ 4.69 \ (d, \ J = 5.2 \ Hz, \ 1H, \ 6-H), \ 5.41 \ (dq, \ J = 4.1, \ 5.2 \ Hz, \ 1H, \ 8-H). \\
\text{C-NMR:} & \ (75.5 \text{ MHz, CDCl}_3) \\
& 19.9 \ (q, \ CH_3), \ 21.5 \ (t, \ C-4), \ 28.2 \ (t, \ C-5), \ 67.5 \ (t, \ C-3), \ 79.6 \ (d, \ C-1), \ 84.5 \ (d, \ C-6), \ 89.8 \ (d, \ C-8).
\end{align*}
\]
4. Experimental part

exo-8-Methyl-2,7-dioxa-bicyclo[4.2.0]octane (*exo*-5b)\(^{153}\)

![Image of *exo*-8-Methyl-2,7-dioxa-bicyclo[4.2.0]octane (*exo*-5b)](attachment)

GC: \(R_t = 4.6\) min.

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[
\delta_{ppm} = 1.35 \text{ (d, } J = 6.5 \text{ Hz, } 3\text{H, CH}_3), 2.34 \text{ (m, } 2\text{H, 5-H}), 2.37 \text{ (m, } 2\text{H, 4-H}), \text{ } 3.58 - 3.73 \text{ (m, } 2\text{H, 3-H}), 4.36 \text{ (dd, } J = 4.0, 4.0 \text{ Hz, } 1\text{H, 1-H}), 4.64 \text{ (dq, } J = 3.4, 6.5 \text{ Hz, } 1\text{H, 8-H}), 5.54 \text{ (d, } J = 4.3 \text{ Hz, } 1\text{H, 6-H}).
\]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[
20.8 \text{ (q, CH}_3), 26.2 \text{ (t, C-5), } 33.7 \text{ (t, C-4), } 62.5 \text{ (t, C-3), } 72.6 \text{ (d, C-1), } 78.5 \text{ (d, C-6), } 83.8 \text{ (d, C-8).}
\]

Irradiation of 2,3-dihydropyran with propionaldehyde (sbo-66)

A solution of 2,3-dihydropyran (0.42 g, 5 mmol) and propionaldehyde (0.29 g, 5 mmol) in 100 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the residue after evaporation of the solvent afforded 0.53 g (75 \%) of inseparable mixture of oxetanes as a colorless viscous oil.

endo-8-Ethyl-2,7-dioxa-bicyclo[4.2.0]octane (*endo*-5c)\(^{153}\)

![Image of *endo*-8-Ethyl-2,7-dioxa-bicyclo[4.2.0]octane (*endo*-5c)](attachment)

GC: \(R_t = 5.3\) min.

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[
\delta_{ppm} = 0.85 \text{ (t, } J = 7.4 \text{ Hz, } 3\text{H, CH}_3), 1.74 \text{ (dq, } J = 2.0, 7.4 \text{ Hz, } 2\text{H, CH}_2), 1.82 - 2.20 \text{ (m, } 4\text{H, 4-H & 5-H}), 3.25 \text{ (dt, } J = 2.2, 11.2 \text{ Hz, } 2\text{H, 3-H}), 4.41 \text{ (dd, } J = 4.0, 4.0 \text{ Hz, } 1\text{H, 1-H}), 4.98 \text{ (m, } 1\text{H, 6-H}), 5.35 \text{ (d, } J = 4.1 \text{ Hz, } 1\text{H, 8-H}).
\]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[
8.5 \text{ (q, CH}_3), 22.4 \text{ (t, CH}_2), 23.5 \text{ (t, C-4), } 26.2 \text{ (t, C-5), } 64.5 \text{ (t, C-3), } 73.6 \text{ (d, C-1), } 78.5 \text{ (d, C-6), } 92.8 \text{ (d, C-8).}
\]
4. Experimental part

exo-8-Ethyl-2,7-dioxa-bicyclo[4.2.0]octane (exo-5c)

![Exo-8-Ethyl-2,7-dioxa-bicyclo[4.2.0]octane](image)

GC: $R_t = 5.4$ min.

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 0.92$ (t, $J = 7.3$ Hz, 3H, CH$_3$), 1.67 (dq, $J = 2.6$, 7.3 Hz, 2H, CH$_2$), 1.82 – 2.25 (m, 4H, 4-H & 5-H), 3.25 (dt, $J = 2.2$, 11.2 Hz, 2H, 3-H), 4.44 (dd, $J = 4.2$, 4.2 Hz, 1H, 1-H), 4.87 (m, 1H, 6-H), 5.45 (dd, $J = 4.2$, 4.1 Hz, 1H, 8-H).

13C-NMR: (75.5 MHz, CDCl$_3$)

8.6 (q, CH$_3$), 23.2 (t, CH$_2$), 25.8 (t, C-4), 26.9 (t, C-5), 69.5 (t, C-3), 78.6 (d, C-1), 79.5 (d, C-6), 86.8 (d, C-8).

Irradiation of 2,3-dihydropyran with 3-methylbutyraldehyde (sbo-74)

A solution of 2,3-dihydropyran (0.42 g, 5 mmol) and 3-methylbutyraldehyde (0.43 g, 5 mmol) in 100 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the residue after evaporation of the solvent afforded 0.68 g (80 %) of inseparable mixture of oxetanes as a colorless viscous oil.

endo-8-Isobutyl-2,7-dioxa-bicyclo[4.2.0]octane (endo-5d)

![Endo-8-Isobutyl-2,7-dioxa-bicyclo[4.2.0]octane](image)

GC: $R_t = 6.6$ min.

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 0.87$ (d, $J = 6.8$ Hz, 6H, 2CH$_3$), 1.12 (m, 1H, CH), 1.34 - 1.43 (m, 2H, CH$_2$), 1.52 – 2.20 (m, 4H, 4-H & 5-H), 3.25 (dt, $J = 2.2$, 11.2 Hz, 2H, 3-H), 4.41 (dd, $J = 4.1$, 4.0 Hz, 1H, 1-H), 4.96 (m, 1H, 6-H), 5.52 (d, $J = 4.1$ Hz, 1H, 8-H).

13C-NMR: (75.5 MHz, CDCl$_3$)

16.3 (q, CH$_3$), 17.4 (q, CH$_3$), 20.9 (t, C-4), 25.3 (d, CH), 26.8 (t, C-5), 37.5 (t, CH$_2$), 67.5 (t, C-3), 78.6 (d, C-1), 79.5 (d, C-6), 87.8 (d, C-8).
4. Experimental part

exo-8-Isobutyl-2,7-dioxa-bicyclo[4.2.0]octane (exo-5d)

\[
\text{GC: } R_t = 6.7 \text{ min.}
\]

\[^1\text{H-NMR: } (300 \text{ MHz, CDCl}_3)\]

\[
\delta_{\text{ppm}} = 0.93 (d, J = 6.6 \text{ Hz, } 6\text{H}, 2\text{CH}_3), 1.18 (m, 1\text{H}, \text{CH}), 1.38-1.48 (m, 2\text{H}, \text{CH}_2), 1.52-2.20 (m, 4\text{H}, 4\text{-H} & 5\text{-H}), 3.25 (dt, J = 2.2, 11.2 \text{ Hz, } 2\text{H}, 3\text{-H}), 4.36 (dd, J = 4.0, 4.0 \text{ Hz, } 1\text{H}, 1\text{-H}), 4.91 (m, 1\text{H}, 6\text{-H}), 5.62 (d, J = 4.1 \text{ Hz, } 1\text{H}, 8\text{-H}).
\]

\[^{13}\text{C-NMR: } (75.5 \text{ MHz, CDCl}_3)\]

\[
\delta_{\text{ppm}} = 18.6 (q, \text{CH}_3), 18.9 (q, \text{CH}_3), 20.5 (t, \text{C}-4), 24.7 (d, \text{CH}), 26.2 (t, \text{C}-5), 64.5 (t, \text{C}-3), 73.6 (d, \text{C}-1), 74.5 (d, \text{C}-6), 82.8 (d, \text{C}-8).
\]

4.1.2.3 Photolysis of cyclopentene with propionaldehyde (sbo-P1)

A solution of propionaldehyde (0.29 g, 5 mmol) and cyclopentene (0.34 g, 5 mmol) in 100 mL benzene was irradiated following the general procedure for 24 h. Distillation of the residue after evaporation of the solvent afforded 0.52 g (83 %) of inseparable mixture of oxetanes as a colorless viscous oil.

endo-7-Ethyl-6-oxa-bicyclo[3.2.0]heptane (endo-7c)

\[^1\text{H-NMR: } (300 \text{ MHz, CDCl}_3)\]

\[
\delta_{\text{ppm}} = 0.72 (t, 3\text{H}, \text{CH}_3), 1.59 - 1.65 (m, 2\text{H}, \text{CH}_2), 1.70-2.38 (m, 6\text{H}, 3\text{CH}_2), 3.93 (dd, J = 4.2, 4.1, 4.0 \text{ Hz, } 1\text{H}, 1\text{-H}), 4.55 (dd, J = 7.2, 7.1 \text{ Hz, } 1\text{H}, 7\text{-H}), 5.10 (dd, J = 4.2, 4.3 \text{ Hz, } 1\text{H}, 5\text{-H}).
\]

\[^{13}\text{C-NMR: } (75.5 \text{ MHz, CDCl}_3)\]

\[
\delta_{\text{ppm}} = 8.6 (q, \text{CH}_3), 25.4 (t, \text{CH}_2), 29.8 (t, \text{C}-2), 30.1 (t, \text{C}-3), 33.85 (t, \text{C}-4), 40.3 (d, \text{C}-5), 82.1 (d, \text{C}-1), 84.4 (d, \text{C}-7).
\]
4. Experimental part

exo-7-Ethyl-6-oxa-bicyclo[3.2.0]heptane (exo-7c)

![exo-7-Ethyl-6-oxa-bicyclo[3.2.0]heptane (exo-7c)](image)

1H-NMR: (300 MHz, CDCl₃)

$\delta_{ppm} = 0.94$ (t, 3H, CH₃), 1.67 - 1.76 (m, 2H, CH₂), 1.77 - 2.38 (m, 6H, 3CH₂), 3.50 (m, 1H, 1-H), 4.05 (dd, J = 4.1, 4.3 Hz, 1H, 7-H), 4.99 (dd, J = 5.0, 4.3 Hz, 1H, 5-H).

13C-NMR: (75.5 MHz, CDCl₃)

$\delta_{ppm} = 7.9$ (q, CH₃), 25.8 (t, CH₂), 26.6(t, C-2), 30.8 (t, C-3), 34.4 (t, C-4), 42.9 (d, C-5), 84.5 (d, C-1), 86.4 (d, C-7).

4.2.1.4 Photolyses of 5-methyl-2,3-dihydrofuran with aldehydes 1a-d:

Irradiation of 5-methyl-2,3-dihydrofuran with benzaldehyde (sbo-268)

A solution of 5-methyl-2,3-dihydrofuran (0.42 g, 5 mmol) and benzaldehyde (0.53 g, 5 mmol) in 100 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the residue after evaporation of the solvent afforded 0.8 g (84 %) of inseparable mixture of oxetanes as a pale yellow viscous oil.

endo-7-Phenyl-1-methyl-2,6-dioxa-bicyclo[3.2.0]heptane (endo-9a)

![endo-7-Phenyl-1-methyl-2,6-dioxa-bicyclo[3.2.0]heptane (endo-9a)](image)

1H-NMR: (300 MHz, CDCl₃)

$\delta_{ppm} = 1.52$ (s, 3H, CH₃), 1.68 (dddd, J = 4.2, 8.2, 11.2, 13.8 Hz, 1H, 4-H), 2.04 (dd, J = 5.3, 13.8 Hz, 1H, 4-H), 3.71 (dddd, J = 5.3, 8.8, 11.2 Hz, 1H, 3-H), 3.88 (dd, J = 8.2, 8.8 Hz, 1H, 3-H), 5.10 (d, J = 4.5 Hz, 1H, 5-H), 5.58 (s, 1H, 7-H), 7.17 - 7.32 (m, 5H, Hₐrøm.).

13C-NMR: (75.5 MHz, CDCl₃)

$\delta_{ppm} = 21.4$ (q, CH₃), 33.0 (t, C-4), 69.1 (t, C-3), 77.2 (s, C-1), 89.1 (d, C-5), 89.6 (d, C-7), 124.3 (d, Cₐrøm.), 127.0 (d, Cₐrøm.), 128.1 (d, Cₐrøm.), 137.8 (s, Cₐrøm.).

exo-7-Phenyl-1-methyl-2,6-dioxa-bicyclo[3.2.0]heptane (exo-9a)

227
4. Experimental part

\[\text{1H-NMR: (300 MHz, CDCl}_3\]\n\[\delta_{\text{ppm}} = 0.88 \text{ (s, 3H, CH}_3\text{)}, 1.80 \text{ (m, 1H, 4-H)}, 2.14 \text{ (m, 1H, 4-H)}, 4.29-4.36 \text{ (m, 2H, 3-H)}, 4.99 \text{ (d, J = 4.0 Hz, 1H, 5-H)}, 5.44 \text{ (s, 1H, 7-H)}, 7.19 - 7.33 \text{ (m, 5H, H}_{\text{arom.}}\text{).}\]

\[\text{13C-NMR: (75.5 MHz, CDCl}_3]\n\[\delta_{\text{ppm}} = 17.8 \text{ (q, CH}_3\text{)}, 34.1 \text{ (t, C-4)}, 67.7 \text{ (t, C-3)}, 89.3 \text{ (d, C-5)}, 89.5 \text{ (s, C-1)}, 90.9 \text{ (d, C-7)}, 125.3 \text{ (d, C}_{\text{arom.}}\text{)}, 127.6 \text{ (d, C}_{\text{arom.}}\text{)}, 128.4 \text{ (d, C}_{\text{arom.}}\text{)}, 138.8 \text{ (s, C}_{\text{aroms.}}\text{).}\]

Irradiation of 5-methyl-2,3-dihydrofuran with acetaldehyde (sbo-203)

A solution of 5-methyl-2,3-dihydrofuran (0.42 g, 5 mmol) and acetaldehyde (0.22 g, 5 mmol) in 100 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the residue after evaporation of the solvent afforded 0.59 g (92 %) of inseparable mixture of oxetanes as a colorless viscous oil.

endo-1,7-Dimethyl-2,6-dioxoa-bicyclo[3.2.0]heptane (endo-9b)

\[\text{1H-NMR: (300 MHz, CDCl}_3\]}
\[\delta_{\text{ppm}} = 1.10 \text{ (d, J = 6.5 Hz, 3H, CH}_3\text{)}, 1.21 \text{ (s, 3H, CH}_3\text{)}, 2.35 \text{ (dd, J = 6.9, 6.9 Hz, 2H, 4-H)}, 4.15 - 4.21 \text{ (m, 2H, 3-H)}, 4.62 \text{ (q, J = 6.5 Hz, 1H, 7-H)}, 4.87 \text{ (d, J = 3.8 Hz, 1H, 5-H)}.\]

\[\text{13C-NMR: (75.5 MHz, CDCl}_3\]
\[\delta_{\text{ppm}} = 15.9 \text{ (q, CH}_3\text{)}, 19.8 \text{ (q, CH}_3\text{)}, 32.6 \text{ (t, C-4)}, 69.5 \text{ (t, C-3)}, 85.2 \text{ (s, C-1)}, 85.5 \text{ (d, C-5)}, 88.0 \text{ (d, C-7)}.\]

exo-1,7-Dimethyl-2,6-dioxoa-bicyclo[3.2.0]heptane (exo-9b)

\[\text{1H-NMR: (300 MHz, CDCl}_3\]}

228
4. Experimental part

\[\delta_{\text{ppm}} = 1.22 \ (s, \ 3H, \ CH_3), \ 1.28 \ (d, \ J = 6.5 \ Hz, \ 3H, \ CH_3), \ 2.43 \ (dd, \ J = 7.2, 7.2 \ Hz, \ 2H, \ 4-H), \ 4.15 - 4.21 \ (m, \ 2H, \ 3-H), \ 4.54 \ (q, \ J = 6.5 \ Hz, \ 1H, \ 7-H), \ 4.77 \ (d, \ J = 4.1 \ Hz, \ 1H, \ 5-H). \]

\[^{13}\text{C-NMR}: \ (75.5 \ MHz, \ CDCl_3)\]

\[\delta_{\text{ppm}} = 14.4 \ (q, \ CH_3), \ 18.2 \ (q, \ CH_3), \ 33.8 \ (t, \ C-4), \ 67.0 \ (t, \ C-3), \ 85.3 \ (s, \ C-1), \ 85.6 \ (d, \ C-5), \ 87.9 \ (d, \ C-7). \]

Irradiation of 5-methyl-2,3-dihydrofuran with propionaldehyde (sbo-251)

A solution of 5-methyl-2,3-dihydrofuran (0.42 g, 5 mmol) and propionaldehyde (0.29 g, 5 mmol) in 100 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the residue after evaporation of the solvent afforded 0.72 g (88 %) of inseparable mixture of oxetanes as a colorless viscous oil.

endo-7-Ethyl-1-methyl-2,6-dioxa-bicyclo[3.2.0]heptane (endo-9c)

\[1\text{H-NMR}: \ (300 \ MHz, \ CDCl_3) \]

\[\delta_{\text{ppm}} = 0.85 \ (t, \ J = 7.5 \ Hz, \ 3 \ H, \ CH_3), \ 1.34 \ (s, \ 3H, \ CH_3), \ 1.63 - 1.78 \ (m, \ 2H, \ CH_2), \ 1.85 - 2.00 \ (m, \ 2H, \ CH_2), \ 4.05 - 4.15 \ (m, \ 2H, \ 3-H), \ 4.45 \ (dd, \ J = 7.2, 7.35 \ Hz, \ 1H, \ 7-H), \ 4.93 \ (d, \ J = 3.8 \ Hz, \ 1H, \ 5-H). \]

\[^{13}\text{C-NMR}: \ (75.5 \ MHz, \ CDCl_3)\]

\[\delta_{\text{ppm}} = 8.4 \ (q, \ CH_3), \ 19.8 \ (q, \ CH_3), \ 21.8 \ (t, \ CH_2), \ 33.1 \ (t, \ C-4), \ 66.2 \ (t, \ C-3), \ 84.4 \ (s, \ C-1), \ 86.9 \ (d, \ C-5), \ 89.8 \ (d, \ C-7). \]

exo-7-Ethyl-1-methyl-2,6-dioxa-bicyclo[3.2.0]heptane (exo-9c)

\[1\text{H-NMR}: \ (300 \ MHz, \ CDCl_3) \]

\[\delta_{\text{ppm}} = 0.92 \ (t, \ J = 7.5 \ Hz, \ 3H, \ CH_3), \ 1.32 \ (s, \ 3H, \ CH_3), \ 1.63 - 1.78 \ (m, \ 2H, \ CH_2), \ 1.85 - 2.00 \ (m, \ 2H, \ 4-H), \ 4.05 \ (m, \ 2H, \ 3-H), \ 4.30 \ (dd, \ J = 5.6, 5.4 \ Hz, \ 1H, \ 7-H), \ 4.82 \ (d, \ 4.0 \ Hz, \ 1H, \ 5-H). \]
4. Experimental part

13C-NMR: (75.5 MHz, CDCl$_3$)

\[\delta_{ppm} = 7.8 \text{ (q, CH$_3$)}, 15.2 \text{ (q, CH$_3$)}, 25.3 \text{ (t, CH$_2$)}, 32.0 \text{ (t, C-4)}, 68.9 \text{ (t, C-3)}, 84.8 \text{ (s, C-1)}, 87.2 \text{ (d, C-5)}, 89.9 \text{ (d, C-7)}. \]

Irradiation of 5-methyl-2,3-dihydrofuran with 3-methylbutyraldehyde (sbo-260)

A solution of 5-methyl-2,3-dihydrofuran (0.42 g, 5 mmol) and 3-methylbutyraldehyde (0.43 g, 5 mmol) in 100 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the residue after evaporation of the solvent afforded 0.69 g (81%) of inseparable mixture of oxetanes as a colorless viscous oil.

endo-7-Isobutyl-1-methyl-2,6-dioxo-bicyclo[3.2.0]heptane (*endo*-9d)

\[\text{H-NMR: (300 MHz, CDCl}_3) \]

\[\delta_{ppm} = 0.83 \text{ (d, J = 6.6 Hz, 2CH$_3$)}, 0.85 - 0.93 \text{ (m, 1H, CH)}, 1.25 \text{ (s, 3H, CH$_3$)}, 1.55 - 1.65 \text{ (m, 2H, CH$_2$)}, 1.92 \text{ (m, 2H, 4-H)}, 4.10 - 4.19 \text{ (m, 2H, 3-H)}, 4.56 \text{ (dd, J = 6.8, 6.6 Hz, 1H, 7-H)}, 4.85 \text{ (d, J = 3.8 Hz, 1H, 5-H)}. \]

13C-NMR: (75.5 MHz, CDCl$_3$)

\[\delta_{ppm} = 19.9 \text{ (q, CH$_3$)}, 21.8 \text{ (q, CH$_3$)}, 22.3 \text{ (q, CH$_3$)}, 24.0 \text{ (d, CH)}, 32.4 \text{ (t, C-4)}, 37.6 \text{ (t, CH$_2$)}, 69.1 \text{ (t, C-3)}, 85.0 \text{ (s, C-1)}, 87.4 \text{ (d, C-5)}, 87.4 \text{ (d, C-7)}. \]

exo-7-Isobutyl-1-methyl-2,6-dioxa-bicyclo[3.2.0]heptane (*exo*-9d)

\[\text{H-NMR: (300 MHz, CDCl}_3) \]

\[\delta_{ppm} = 0.83 \text{ (d, J = 6.7 Hz, 6 H, 2CH$_3$)}, 1.25 \text{ (s, 3H, CH$_3$)}, 1.55 - 1.65 \text{ (m, 2H, CH$_2$)}, 2.12 \text{ (m, 2H, 4-H)}, 4.10 - 4.20 \text{ (m, 2H, 3-H)}, 4.44 \text{ (dd, J = 3.7, 9.7 Hz, 1H, 7-H)}, 4.74 \text{ (d, J = 4.0 Hz, 1H, 5-H)}. \]

13C-NMR: (75.5 MHz, CDCl$_3$)

\[\delta_{ppm} = 15.7 \text{ (q, CH$_3$)}, 21.5 \text{ (q, CH$_3$)}, 22.5 \text{ (q, CH$_3$)}, 24.2 \text{ (d, CH)}, 33.4 \text{ (t, C-4)}, 41.4 \text{ (t, CH$_2$)}, 66.6 \text{ (t, C-3)}, 85.4 \text{ (s, C-1)}, 87.4 \text{ (d, C-5)}, 87.6 \text{ (d, C-7)}. \]
4. Experimental part

4.3 Synthesis of 2,2-dimethyl-2,3-dihydrofuran

Preparation of 2-methyl-pent-4-en-2-ol (10) (sbo-211)

Method A: \(^{87}\)
A 250 mL three neck round-bottomed flask, containing a magnetic stirring bar, was equipped with a dropping funnel, and a reflux condenser. Finely powdered magnesium of good quality (18.3 g, 0.75 mol) was covered with dry ether (50 mL), and allyl bromide (30.3 g, 0.25 mol) dissolved in ether (150 mL), was added with vigorous stirring during 4 h, the solvent continued in gentle boiling through the reaction, and stirred for further 3 h, then heated to reflux for 30 min. After cooling to room temperature, acetone (14.5 g, 0.25 mol) in ether (25 mL) was added dropwise and the stirring is continued further for 1 h. Then the mixture was added dropwise into a cold saturated solution of ammonium chloride, extracted with ether, washed with brine solution and dry over anhydrous Mg\(\text{SO}_4 \). Then evaporated the solvent under reduced pressure and the remainder solution was subjected to long column distillation to give the pure product in 40 % yield, (B.p = 117 – 118 °C, Lit,\(^ {87}\) 115-118°C).

Method B: \(^ {88}\)
Into a stirred solution of acetone (7.34 g, 0.127 mol) and allyl bromide (19.88 g, 0.127 mol) in a 125 mL dimethylformamide, zinc dust (12.5 g) was added at room temperature under the atmosphere. An exothermic reaction started within 10 min. and it ceased in 30 min. Then the reaction mixture was poured into a saturated aqueous solution of ammonium chloride (100 mL), extracted with ether (30 mL x 3), and the combined organic phase was dried over anhydrous Mg\(\text{SO}_4 \). Rotoevaporation of the solvent (20 °C, 15 torr) yielded 8.3 g (70%) of a yellow liquid, which on distillation (B.p = 117-118 °C) afforded 7.5 g (68 %) of the allylic alcohol as a colorless liquid.

\(^1\text{H-NMR:}\) (300 MHz, CDCl\(_3\))
\[\delta_{\text{ppm}} = 1.13 \ (s, 6H, 2\text{CH}_3), \ 2.00 \ (s, 1H, \text{OH}), \ 2.15 \ (d, J = 7.5 \text{ Hz, 2H, CH}_2), \ 5.04 \ (m, 2\text{H, 5-H}), \ 5.83 \ (m, 1H, 4-H).\]

\(^{13}\text{C-NMR:}\) (75.5 MHz, CDCl\(_3\))
\[\delta_{\text{ppm}} = 28.9 \ (q, 2\text{CH}_3), \ 48.1 \ (t, \text{CH}_2), \ 70.18 \ (s, \text{Cq}), \ 118.2 \ (t, \text{C-5}), \ 134.2 \ (d, \text{C-4}).\]
4. Experimental part

Preparation of 4-bromo-2,2-dimethyl-tetrahydrofuran (11)86 (sbo-215)

A 250- mL two-necked round-bottomed flask, containing stirring bar, is equipped with a dropping funnel, reflux condenser. The dropping funnel is charged with Br\textsubscript{2} (8.8 g, 55 mmol). The flask is charged with dimethyl allyl carbinol (5.5 g, 55 mmol) with 100 mL of dry ether and cooled with an ice-water bath (0-5°C). Bromine is added dropwise over a period of 8 min. The solution is stirred for a further 2h, then quinoline (7.8 g) is added in one portion and the solution is slowly heated to reflux. The reflux is continued for 2h, (notice the separation of a white ppt from quinoline hydrobromide salt during the heating). Then the solution is allowed to cool to room temperature and the precipitate was filtered, washed with dry ether and the solvent was evaporated under \textit{vacum}. Fractional distillation of the residue (B.p 62 °C, 10 torr) yielded 3.5 g (70 %) of 4-bromo-2,2-dimethyl-tetrahydrofuran 11 as a colorless liquid.

1H-NMR: (300 MHz, CDCl\textsubscript{3})
\[\delta_{ppm} = 1.20 \ (s, \ 3H, \ CH_3), \ 1.37 \ (s, \ 3H, \ CH_3), \ 2.12 \ (dd, \ J = 13.8, \ 5.6 \ Hz, \ 1H, \ 3-H), \ 2.33 \ (dd, \ J = 13.8, \ 7.7 \ Hz, \ 3-H), \ 4.0 \ (dd, \ J = 10.0, \ 5.6 \ Hz, \ 1H, \ 5-H), \ 4.16 \ (dd, \ J = 10.1, \ 5.7 \ Hz, \ 1H, \ 5-H), \ 4.36 \ (dddd, \ J = 13.2, \ 11.2, \ 7.7, \ 5.6 \ Hz, \ 4-H). \]

13C-NMR: (75.5 MHz, CDCl\textsubscript{3})
\[\delta_{ppm} = 28.4 \ (q, \ CH_3), \ 28.5 \ (q, \ CH_3), \ 45.2 \ (t, \ C-3), \ 48.9 \ (d, \ C-4) , \ 74.6 \ (t, \ C-5) , \ 81.2 \ (s, \ C-2). \]

Preparation of 2,2-dimethyl-2,3-dihydrofuran (13)86 (sbo-216)

Distillation of 2,2-dimethyl-4-bromotetrahydrofuran (3.58 g, 20 mmol) with 2 g of potassium hydroxide pellets gave a mixture of two regioisomers of dihydrofuran at B.p 78 –82 °C which separated by column chromatography using a mixture of ethyl acetate and n-hexane as eluent, the less polar being the major product, 2,2-dimethyl-2,3-dihydrofuran (13).

\textbf{Yield:} 0.9 g (46 %)

\textbf{TLC:} \textit{R}_f = 0.23 (EA/n-HE 1 : 4)
4. Experimental part

1H-NMR: (300 MHz, CDCl$_3$)
\[\delta_{ppm} = 1.31 \text{ (s, 6H, 2CH$_3$), 2.37 \text{ (m, 2H, 3-H), 4.73 \text{ (m, 1H, 4-H), 6.61 \text{ (m, 1H, 5-H).}} } \]

13C-NMR: (75.5 MHz, CDCl$_3$)
\[\delta_{ppm} = 28.1 \text{ (q, CH$_3$), 28.1 \text{ (q, CH$_3$), 42.2 \text{ (t, C-3), 73.9 \text{ (s, C-2), 98.2 \text{ (d, C-4), 144.0 \text{ (d, C-5).}} } \]

2,2-Dimethyl-2,5-dihydrofuran (12)86

![Diagram of 2,2-Dimethyl-2,5-dihydrofuran (12)]

Yield: 0.23 g (12 %)

TLC: R$_f$ = 0.43 (EA/n-HE 1 : 4)

1H-NMR: (300 MHz, CDCl$_3$)
\[\delta_{ppm} = 1.31 \text{ (s, 6H, 2CH$_3$), 4.59 \text{ (m, 2H, 5-H), 5.71 \text{ (m, 2H, 3-H & 4-H).}} } \]

13C-NMR: (75.5 MHz, CDCl$_3$)
\[\delta_{ppm} = 27.6 \text{ (q, CH$_3$), 29.0 \text{ (q, CH$_3$), 84.3 \text{ (t, C-5), 87.4 \text{ (s, C-2), 124.6 \text{ (d, C-3), 135.2 \text{ (d, C-4).}} } \]

4.3.1 Photolyses of 2,2-dimethyl-2,3-dihydrofuran with aldehydes; General procedure:
Under a nitrogen atmosphere, a solution of 2,2-dimethyl-2,3-dihydrofuran (3 mmol) and aldehyde (3 mmol) in 30 mL benzene in a quartz tube was irradiated in a Rayonet Photoreactor (300 nm) at room temperature. The solvent was removed in vacuo, and the residue was purified by bulb to bulb distillation.

Irradiation of 2,2-dimethyl-2,3-dihydrofuran with benzaldehyde (sbo-220)
A solution of 2,2-dimethyl-2,3-dihydrofuran (0.29 g, 3 mmol) and benzaldehyde (0.31 g, 3 mmol) in 30 mL benzene was irradiated for 24 h following the above general procedure. Distillation of the residue after evaporation of the solvent yielded 0.45 g (74 %) of inseparable mixture of oxetanes as a colorless viscous oil.

endo-3,3-Dimethyl-7-phenyl-2,6-dioxa-bicyclo[3.2.0]heptane (endo-14a)

![Diagram of endo-3,3-Dimethyl-7-phenyl-2,6-dioxa-bicyclo[3.2.0]heptane (endo-14a)]
4. Experimental part

H-NMR: (300 MHz, CDCl₃)

δₓppm = 1.15 (s, 3H, CH₃), 1.47 (s, 3H, CH₃), 1.74 - 1.94 (m, 2H, 4-H), 4.38 (dd, J = 3.7, 3.8 Hz, 1H, 1-H), 5.30 (dd, J = 3.8, 3.8 Hz, 1H, 5-H), 5.73 (d, J = 3.8 Hz, 1H, 7-H), 7.25 - 7.32 (m, 5H, Hₐrom.).

C-NMR: (75.5 MHz, CDCl₃)

δₓppm = 29.3 (q, CH₃), 29.9 (q, CH₃), 46.8 (t, C-4), 79.8 (s, C-3), 80.4 (d, C-1), 85.2 (d, C-5), 89.4 (d, C-7), 126.4 (d, CHₐrom.), 128.4 (d, CHₐrom.), 129.2 (d, CHₐrom.), 134.3 (s, Cₐqₐrom.).

HRMS: (C₁₃H₁₆O₂, M = 204.12)
Calcd: 204.1178
Found: 204.1176

exo-3,3-Dimethyl-7-phenyl-2,6-dioxa-bicyclo[3.2.0]heptane (exo-14a)

![exo-3,3-Dimethyl-7-phenyl-2,6-dioxa-bicyclo[3.2.0]heptane (exo-14a)](image)

H-NMR: (300 MHz, CDCl₃)

δₓppm = 1.21 (s, 3H, CH₃), 1.51 (s, 3H, CH₃), 1.79 - 1.98 (m, 2H, 4-H), 4.64 (dd, J = 3.8, 3.8 Hz, 1H, 1-H), 4.97 (d, J = 3.8 Hz, 1H, 7-H), 5.23 (dd, J = 3.8, 3.8 Hz, 1H, 5-H), 7.26 – 7.33 (m, 5H, Hₐrom.).

C-NMR: (75.5 MHz, CDCl₃)

δₓppm = 29.2 (q, CH₃), 30.7 (q, CH₃), 49.4 (t, C-4), 76.3 (s, C-3), 86.4 (d, C-1), 89.0 (d, C-5), 90.4 (s, C-7), 126.8 (d, CHₐrom.), 128.9 (d, CHₐrom.), 129.6 (d, CHₐrom.), 135.3 (s, Cₐqₐrom.).

Irradiation of 2,2-dimethyl-2,3-dihydrofuran with o-tolualdehyde (sbo-224g)

A solution of 2,2-dimethyl-2,3-dihydrofuran (0.29 g, 3 mmol) and o-tolualdehyde (0.36 g, 3 mmol) in 30 mL benzene was irradiated for 24 h following the above general procedure. Distillation of the residue after evaporation of the solvent yielded 0.42 g (64 %) of inseparable mixture of oxetanes as a pale yellow viscous oil.

endo-3,3-Dimethyl-7-o-tolyl-2,6-dioxa-bicyclo[3.2.0]heptane (endo-14b)
4. Experimental part

\[
\text{exo-3,3-Dimethyl-7-o-tolyl-2,6-dioxa-bicyclo[3.2.0]heptane (exo-14b)}
\]

\[
\begin{align*}
\text{H-NMR:} & \quad (300 \text{ MHz, CDCl}_3) \\
\delta_{\text{ppm}} &= 1.27 \ (s, \ 3H, \ CH_3), \ 1.53 \ (s, \ 3H, \ CH_3), \ 1.78 - 2.05 \ (m, \ 2H, \ 4-H), \ 2.15 \ (s, \ 3H, \ CH_3), \ 4.67 \ (dd, \ J = 4.0, \ 3.9 \ Hz, \ 1H, \ 1-H), \ 5.15 \ (d, \ J = 3.9 \ Hz, \ 1H, \ 7-H), \ 5.35 \ (dd, \ J = 3.8, \ 3.9 \ Hz, \ 1H, \ 5-H), \ 7.28 - 7.35 \ (m, \ 4H, \ H_{\text{arom}}).
\end{align*}
\]

\[
\text{C-NMR:} \quad (75.5 \text{ MHz, CDCl}_3) \\
\delta_{\text{ppm}} &= 23.1 \ (q, \ CH_3), \ 29.4 \ (q, \ CH_3), \ 33.5 \ (q, \ CH_3), \ 50.8 \ (t, \ C-4), \ 79.3 \ (s, \ C-3), \ 88.3 \ (d, \ C-1), \ 89.8 \ (d, \ C-5), \ 91.6 \ (s, \ C-7), \ 126.8 \ (d, \ CH_{\text{arom}}), \ 128.4 \ (d, \ CH_{\text{arom}}), \ 129.3 \ (d, \ CH_{\text{arom}}), \ 135.4 \ (s, \ Cq_{\text{arom}}).
\]

Irradiation of 2,2-dimethyl-2,3-dihydrofuran with propionaldehyde (sbo-235)

A solution of 2,2-dimethyl-2,3-dihydrofuran (0.29 g, 3 mmol) and propionaldehyde (0.17 g, 3 mmol) in 30 mL benzene was irradiated for 24 h following the above general procedure. Distillation of the residue after evaporation of the solvent yielded 0.41 g (88 %) of inseparable mixture of oxetanes as a colorless viscous oil.

\[
\text{endo-7-Ethyl-3,3-dimethyl-2,6-dioxa-bicyclo[3.2.0]heptane (endo-14c)}
\]
4. Experimental part

\[\text{exo} \cdot 7\text{-Ethyl-3,3-dimethyl-2,6-dioxa-bicyclo[3.2.0]heptane (exo-14c)} \]

\[\text{H-NMR: (300 MHz, CDCl}_3 \)\]
\[\delta_{\text{ppm}} = 0.83 \ (t, J = 7.5 \text{ Hz}, 3\text{H, CH}_3), 1.22 \ (s, 3\text{H, CH}_3), 1.51 \ (s, 3\text{H, CH}_3), 1.55 - 1.63 \ (m, 2\text{H, CH}_2), 1.60 - 2.07 \ (m, 2\text{H, 4-H}), 4.16 \ (dd, J = 3.7, 3.8 \text{ Hz}, 1\text{H, 7-H}), 4.4 \ (dd, J = 6.5, 6.8 \text{ Hz}, 1\text{H, 1-H}), 5.23 \ (dd, J = 5.0, 4.9 \text{ Hz}, 1\text{H, 5-H}). \]

\[\text{C-NMR: (75.5 MHz, CDCl}_3 \)\]
\[\delta_{\text{ppm}} = 8.1 \ (q, \text{CH}_3), 26.9 \ (t, \text{CH}_2), 29.1 \ (q, \text{CH}_3), 45.5 \ (t, \text{C-4}), 82.0 \ (s, \text{C-3}), 85.7 \ (d, \text{C-1}), 86.8 \ (d, \text{C-5}), 89.8 \ (d, \text{C-7}). \]

\[\text{HRMS: (C}_{9}\text{H}_{16}\text{O}_{2}, M = 156.12) \]
Calcd: 156.1264
Found: 156.1256

\[\text{Irradiation of 2,2-dimethyl-2,3-dihydrofuran with isobutyraldehyde (sbo-224c)} \]
A solution of 2,2-dimethyl-2,3-dihydrofuran (0.29 g, 3 mmol) and isobutyraldehyde (0.22 g, 3 mmol) in 30 mL benzene was irradiated for 24 h following the above general procedure. Distillation of the residue after evaporation of the solvent yielded 0.37 g (75 %) of inseparable mixture of oxetanes as a colorless viscous oil.

\[\text{endo} \cdot 7\text{-Isopropyl-3,3-dimethyl-2,6-dioxa-bicyclo[3.2.0]heptane (endo-14d)} \]
4. Experimental part

\[\begin{array}{c}
\text{H}\text{NMR: } (300 \text{ MHz, CDCl}_3) \\
\delta_{ppm} = 0.83 (d, J = 6.8 \text{ Hz}, 6\text{H}, 2\text{CH}_3), 1.24 (s, 3\text{H}, \text{CH}_3), 1.51 (s, 3\text{H}, \text{CH}_3), 1.55 - 1.63 (m, 1\text{H}, \text{CH}), 1.78 - 2.07 (m, 2\text{H}, 4\text{H}), 4.21 (dd, J = 3.8, 3.8 \text{ Hz}, 1\text{H}, 7\text{-H}), 4.41 (dd, J = 5.0, 6.8 \text{ Hz}, 1\text{H}, 1\text{-H}), 5.25 (dd, J = 5.0, 4.9 \text{ Hz}, 1\text{H}, 5\text{-H}).
\end{array}\]

\[\begin{array}{c}
\text{C-NMR: } (75.5 \text{ MHz, CDCl}_3) \\
\delta_{ppm} = 18.3 (q, \text{CH}_3), 18.9 (q, \text{CH}_3), 25.4 (d, \text{CH}), 29.1 (q, \text{CH}_3), 29.7 (q, \text{CH}_3), 46.5 (t, \text{C-4}), 82.6 (s, \text{C-3}), 86.7 (d, \text{C-1}), 88.8 (d, \text{C-5}), 89.9 (d, \text{C-7}).
\end{array}\]

\textit{exo-7-Isopropyl-3,3-dimethyl-2,6-dioxa-bicyclo[3.2.0]heptane (exo-14d)}

\[\begin{array}{c}
\text{H-NMR: } (300 \text{ MHz, CDCl}_3) \\
\delta_{ppm} = 0.93 (d, J = 6.8 \text{ Hz}, 6\text{H}, 2\text{CH}_3), 1.17 (m, 1\text{H}, \text{CH}), 1.21 (s, 3\text{H}, \text{CH}_3), 1.50 (s, 3\text{H}, \text{CH}_3), 1.64 - 2.06 (m, 2\text{H}, 4\text{-H}), 4.18 (dd, J = 4.0, 6.8 \text{ Hz}, 1\text{H}, 7\text{-H}), 4.46 (dd, J = 4.0, 5.0 \text{ Hz}, 1\text{H}, 1\text{-H}), 5.29 (dd, J = 5.0, 4.8 \text{ Hz}, 1\text{H}, 5\text{-H}).
\end{array}\]

\[\begin{array}{c}
\text{C-NMR: } (75.5 \text{ MHz, CDCl}_3) \\
\delta_{ppm} = 18.1 (q, \text{CH}_3), 18.6 (q, \text{CH}_3), 25.4 (d, \text{CH}), 29.5 (q, \text{CH}_3), 30.4 (q, \text{CH}_3), 48.5 (t, \text{C-4}), 84.7 (s, \text{C-3}), 85.9 (d, \text{C-1}), 87.8 (d, \text{C-5}), 90.8 (d, \text{C-7}).
\end{array}\]

\text{HRMS: } (C_{10}H_{18}O_2, M = 170.13)
\begin{itemize}
 \item Calcd: 170.1264
 \item Found: 170.1269
\end{itemize}

\textbf{Irradiation of 2,2-dimethyl-2,3-dihydrofuran with 3-methylbutyraldehyde (sbo-224e)}

A solution of 2,2-dimethyl-2,3-dihydrofuran (0.29 g, 3 mmol) and 3-methylbutyraldehyde (0.26 g, 3 mmol) in 30 mL benzene was irradiated for 24 h following the above general procedure. Distillation of the residue after evaporation of the solvent yielded 0.46 g (83 %) of inseparable mixture of oxetanes as a colorless viscous oil.
4. Experimental part

endo-7-Isobutyl-3,3-dimethyl-2,6-dioxo-bicyclo[3.2.0]heptane (endo-14e)

![Chemical structure](image)

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{\text{ppm}} = 0.83$ (d, $J = 6.2$ Hz, 6H, 2CH$_3$), 0.88 (m, 2H, CH$_2$), 1.14 (s, 3H, CH$_3$), 1.29 (m, 1H, CH), 1.45 (s, 3H, CH$_3$), 1.74 - 1.94 (dd, $J = 13.9$, 4.7 Hz, 2H, 4-H), 4.57 (dd, $J = 3.7$, 3.8 Hz, 1H, 7-H), 4.68 (dd, $J = 4.3$, 3.8 Hz, 1H, 1-H), 5.15 (dd, $J = 4.3$, 4.3 Hz, 1H, 5-H).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{\text{ppm}} = 22.4$ (q, CH$_3$), 22.9 (q, CH$_3$), 24.4 (d, CH), 29.1 (q, CH$_3$), 29.8 (q, CH$_3$), 38.0 (t, CH$_2$), 45.6 (t, C-4), 80.30 (s, C-3), 82.9 (d, C-1), 85.7 (d, C-5), 86.3 (d, C-7).

exo-7-Isobutyl-3,3-dimethyl-2,6-dioxo-bicyclo[3.2.0]heptane (exo-14e)

![Chemical structure](image)

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{\text{ppm}} = 0.83$ (d, $J = 6.18$ Hz, 6H, 2CH$_3$), 0.88 (m, 2H, CH$_2$), 1.14 (s, 3H, CH$_3$), 1.29 (m, 1H, CH), 1.45 (s, 3H, CH$_3$), 1.74 - 1.94 (dd, $J = 13.9$, 4.7 Hz, 2H, 4-H), 4.30 (ddd, $J = 2.1$, 4.1, 6.0 Hz, 1H, 7-H), 4.38 (dd, $J = 4.9$, 4.6 Hz, 1H, 1-H), 5.23 (dd, $J = 4.9$, 4.9 Hz, 1H, 5-H).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{\text{ppm}} = 22.2$ (q, CH$_3$), 22.4 (q, CH$_3$), 24.4 (d, CH), 29.9 (q, CH$_3$), 30.0 (q, CH$_3$), 42.9 (t, CH$_2$), 46.4 (t, C-4), 79.3 (s, C-3), 80.0 (d, C-1), 85.0 (d, C-5), 87.5 (d, C-7).

Irradiation of 2,2-dimethyl-2,3-dihydrofuran with pivalaldehyde (sbo–224f)

A solution of 2,2-dimethyl-2,3-dihydrofuran (0.29 g, 3 mmol) and pivalaldehyde (0.26 g, 3 mmol) in 30 mL benzene was irradiated for 24 h following the above general procedure. Distillation of the residue after evaporation of the solvent yielded 0.35 g (78 %) of inseparable mixture of oxetanes as a colorless viscous oil.
4. Experimental part

endo-7-tert-Butyl-3,3-dimethyl-2,6-dioxa-bicyclo[3.2.0]heptane (endo-14f)

![Diagram of endo-7-tert-Butyl-3,3-dimethyl-2,6-dioxa-bicyclo[3.2.0]heptane (endo-14f)]

1H-NMR: (300 MHz, CDCl₃)

\[\delta_{ppm} = 0.90 \text{ (s, 9H, 3CH₃), 1.45 (s, 3H, CH₃), 1.51 (s, 3H, CH₃), 1.79 - 2.04 (dd, J = 13.9, 4.7 Hz, 2H, 4-H), 4.27 (d, J = 4.0 Hz, 1H, 7-H), 4.54 (dd, J = 4.0, 4.3 Hz, 1H, 1-H), 5.33 (dd, J = 4.0, 5.0 Hz, 1H, 5-H).} \]

13C-NMR: (75.5 MHz, CDCl₃)

\[\delta_{ppm} = 22.2 \text{ (q, CH₃), 22.4 (q, CH₃), 23.8 (q, 3CH₃), 33.7 (s, Cq), 48.9 (t, C-4), 80.6 (s, C-3), 83.4 (d, C-1), 85.0 (d, C-5), 87.5 (d, C-7).} \]

exo-7-tert-Butyl-3,3-dimethyl-2,6-dioxa-bicyclo[3.2.0]heptane (exo-14f)

![Diagram of exo-7-tert-Butyl-3,3-dimethyl-2,6-dioxa-bicyclo[3.2.0]heptane (exo-14f)]

1H-NMR: (300 MHz, CDCl₃)

\[\delta_{ppm} = 0.83 \text{ (s, 9H, 3CH₃), 1.21 (s, 3H, CH₃), 1.41 (s, 3H, CH₃), 1.83 - 2.34 (dd, J = 13.9, 4.7 Hz, 2H, 4-H), 4.17 (d, J = 4.0 Hz, 1H, 7-H), 4.34 (dd, J = 4.0, 4.3 Hz, 1H, 1-H), 5.30 (dd, J = 4.0, 4.9 Hz, 1H, 5-H).} \]

13C-NMR: (75.5 MHz, CDCl₃)

\[\delta_{ppm} = 22.4 \text{ (q, CH₃), 22.8 (q, CH₃), 24.8 (q, 3CH₃), 33.9 (s, Cq), 49.7 (t, C-4), 81.6 (s, C-3), 85.4 (d, C-1), 86.2 (d, C-5), 88.5 (d, C-7).} \]

4.4 Photolysis of 2,3-dihydrofuran with 2-methylbutyraldehyde (sbo-237)

Under a nitrogen atmosphere, a solution of 2,3-dihydrofuran (0.7 g, 10 mmol) and 2-methylbutyraldehyde (0.82 g, 10 mmol) in 100 mL benzene was irradiated in Rayonet Photoreactor (300 nm) for 24 h. Distillation of the solvent under vacuum, followed by Büchi distillation of the residue afforded 0.9 g (90 %) of inseparable mixture of oxetanes as a colorless oil.

endo-7-sec-Butyl-2,6-dioxa-bicyclo[3.2.0]heptane (endo-3g)
4. Experimental part

\[\text{exo-7-sec-Butyl-2,6-dioxa-bicyclo[3.2.0]heptane (exo-9g)} \]

\[\text{1H-NMR: (300 MHz, CDCl}_3) \quad \delta_{\text{ppm}} = 0.84 - 0.97 (m, 6H, 2CH}_3, 1.28 - 1.83 (m, 4H), 2.08 (dd, J = 4.7, 5.0 Hz, 1H, 4-H), 4.03 - 4.29 (m, 3H, 3-H & 5-H), 4.55 (m, 1H, 7-H), 5.18 (dd, J = 4.2, 6.7 Hz, 1H, 1-H). \]

4.4.1 Photolysis of 5-methyl-2,3-dihydrofuran with 2-methylbutyraldehyde (sbo-261)

Under a nitrogen atmosphere, a solution of 5-methyl-2,3-dihydrofuran (0.84 g, 10 mmol) and 2-methylbutyraldehyde (0.82 g, 10 mmol) in 100 mL benzene was irradiated in Rayonet Photoreactor (300 nm) for 24 h. Distillation of the solvent under vacuum, followed by Büchi distillation of the residue afforded 0.94 g (87 %) of inseparable mixture of oxetanes as a colorless oil.

\[\text{endo-7-sec-Butyl-1-methyl-2,6-dioxabicyclo[3.2.0]heptane (endo-9g)} \]

\[\text{1H-NMR: (300 MHz, CDCl}_3) \]

\[\text{13C-NMR: (75.5 MHz, CDCl}_3) \quad \text{(endo & exo mixture)} \]

\[\delta_{\text{ppm}} = 10.6, 10.9, 11.0, 11.3 \text{ (each q)}, 12.5, 13.2, 13.4, 13.6 \text{ (each q)}, 23.7, 23.8, 23.9, 24.3 \text{ (each t)}, 32.9, 33.4, 33.9, 34.0 \text{ (each t)}, 38.0 \text{ (d, 2C)}, 67.1, 67.5, 69.7, 69.9 \text{ (each t)}, 78.7 \text{ (d, 2C)}, 79.9 \text{ (d)}, 80.0 \text{ (d)}, 83.4 \text{ (d)}, 83.5 \text{ (d)}, 84.1 \text{ (d)}, 84.2 \text{ (d)}, 89.0 \text{ (d)}, 89.6 \text{ (d)}, 90.9 \text{ (d)}, 91.0 \text{ (d)}. \]
4. Experimental part

δ_{ppm} = 0.73 (s, 3H, CH$_3$), 0.81 - 0.91 (m, 6H, 2 CH$_3$), 1.26 - 1.33 (m, 4H), 2.31 (dd, J = 7.4, 7.2 Hz, 2H, 4-H), 4.15 (dd, J = 7.7, 7.9 Hz, 1H, 3-H), 4.19 (m, 1H, 5-H), 4.81 (dd, J = 4.0, 4.0 Hz, 1H, 7-H).

exo-7-sec-Butyl-1-methyl-2,6-dioxabicyclo[3.2.0]heptane (exo-9g)

![Structure](image)

1H-NMR: (300 MHz, CDCl$_3$)

δ_{ppm} = 0.71 (s, 3H, CH$_3$), 0.81-0.91 (m, 6H, 2CH$_3$), 1.26 - 1.33 (m, 4H), 2.42 (dd, J = 6.9, 7.1 Hz, 2H, 4-H), 4.00 (dd, 3.5, 3.0 Hz, 1H, 3-H), 4.19 (m, 1H, 5-H), 4.65 (d, 1H, J = 3.97 Hz, 1H, 7-H).

13C-NMR: (75.5 MHz, CDCl$_3$) (endo & exo mixture)

δ_{ppm} = 9.7, 9.8, 9.9, 10.2 (each q), 12.6, 12.7, 13.1, 13.4 (each q), 16.0 (q), 23.2, 23.5, 23.6, 24.1 (each t), 32.1, 33.2, 33.2, 33.8 (each t), 37.2 (d, 2C), 38.1 (d, 2C), 66.3, 66.5, 69.1, 69.2 (each t), 84.3 (d, 2C), 84.5 (d), 85.1 (d), 86.3 (d), 86.7 (d), 86.8 (d), 91.8 (d), 86.7 (d).

4.5 Photolysis of furan with acetaldehyde (sbo-192)

A solution of furan (0.34 g, 5 mmol) and acetaldehyde (0.22 g, 5 mmol) in 25 mL benzene was degassed by N$_2$ bubbling. The test-tube shaped reaction apparatus was equipped parallel to Rayonet lamp (300 nm) and irradiated for 24 h. The solvent was removed using a rotary evaporator to give the products. The photolysate was analysed by 1H-NMR in order to determine the product ratios. Distillation of the residue yielded 0.5 g (89 %) of oxetane as a colorless liquid.

exo-6 Methyl-2,7-dioxa-bicyclo[3.2.0]hept-3-ene (exo-16b)

![Structure](image)

1H-NMR: (300 MHz, CDCl$_3$)
4. Experimental part

\[\delta_{\text{ppm}} = 1.52 \text{ (d, J = 6.3 Hz, 3H, CH}_3\text{)}, \ 3.42 \text{ (dddd, J = 1.2, 2.9, 3.1, 4.3 Hz, 1H, 5-H),} \]
\[4.71 \text{ (ddq, J = 0.6, 3.1, 6.3 Hz, 1H, 6-H),} 5.33 \text{ (dd, J = 2.9, 2.9 Hz, 1H, 4-H),} 6.31 \text{ (d, J = 4.3 Hz, 1H, 1-H),} 6.61 \text{ (dd, J = 1.0, 2.9 Hz, 1H, 3-H).} \]

\[^{13}\text{C-NMR: (75.5 MHz, CDCl}_3\text{)} \]
\[\delta_{\text{ppm}} = 23.3 \text{ (q, CH}_3\text{)}, 50.2 \text{ (d, C-5),} 88.8 \text{ (d, C-6),} 104.1 \text{ (d, C-4),} 107.5 \text{ (d, C-1),} 147.9 \text{ (d, C-3).} \]

endo-6 Methyl-2,7-dioxo-bicyclo[3.2.0]hept-3-ene (endo-16b)

\[1^H\text{-NMR: (300 MHz, CDCl}_3\text{)} \]
\[\delta_{\text{ppm}} = 1.52 \text{ (d, J = 6.3 Hz, 3H, CH}_3\text{)}, \ 3.42 \text{ (dddd, J = 1.2, 2.9, 3.1, 4.3 Hz, 1H, 5-H),} \]
\[4.71 \text{ (ddq, J = 0.6, 3.1, 6.3 Hz, 1H, 6-H),} 5.13 \text{ (dd, J = 2.9, 2.9 Hz, 1H, 4-H),} 6.21 \text{ (d, J = 4.3 Hz, 1H, 1-H),} 6.61 \text{ (dd, J = 1.0, 2.9 Hz, 1H, 3-H).} \]

\[^{13}\text{C-NMR: (75.5 MHz, CDCl}_3\text{)} \]
\[\delta_{\text{ppm}} = 23.1 \text{ (q, CH}_3\text{)}, 50.7 \text{ (d, C-5),} 88.9 \text{ (d, C-6),} 104.4 \text{ (d, C-4),} 107.9 \text{ (d, C-1),} 147.3 \text{ (d, C-3).} \]

4.6 Determination of solvent polarity effects on the stereoselectivity of the Paternò-Büchi reaction of 2,3-dihydrofuran with aldehydes 1b & 1c: (sbo-90, sbo-93, sbo-94, sbo-95, sbo-96, sbo-97, sbo-98)

A solution of an equimolar ratio of aldehydes and 2,3-dihydrofuran in different solvents (acetonitrile, THF, methanol, n-hexane, benzene) was irradiated in Rayonet Photoreactor (300 nm) until complete conversion of the aldehydes. The product composition was determined directly from crude mixture by both GC and \(^1\text{H-NMR} \) analyses.

4.7 Determination of solvent viscosity effects on the stereoselectivity of the Paternò-Büchi reaction of 2,3-dihydrofuran with aldehydes 1a-d: (sbo-127, sbo-141, sbo-156, sbo-158, sbo-159, sbo-162)

A solution of 1M of aldehydes 1a-d and 1M of 2,3-dihydrofuran in 10 mL solvent (benzene, n-hexane, acetonitrile, methanol, ethanol, propanol, octanol, glycol, 1,2-propandiol, 1,4-butandiol, glycerol) was irradiated in quartz tube using Rayonet Photoreactor (300 nm) for 8 h. The product composition was determined from crude mixture by GC analysis.
4.8 Determination of temperature effects on the stereoselectivity of the Paternò-Büchi reaction of 2,3-dihydrofuran with aldehydes 1a-d: (sbo-114, sbo-116, sbo-120, sbo-166, sbo-167, sbo-168, sbo-198, sbo-204)

A quartz tube was charged with equimolar ratio of aldehydes and 2,3-dihydrofuran in 10 mL n-hexane (both substrates 1M). The samples were put in a dewar had a window and irradiated at > 290 nm using using high pressure mercury lamp at a wide range of temperature (from 30 °C to –78 °C) for 8 h. The product distribution was determined directly by both GC and 1H-NMR analyses.

4.9 Fluorescence quenching study: (sbo-272)

Solutions of propionaldehyde (0.2 M) with various concentrations of 2,3-dihydrofuran as quencher (0.02 – 1.00 M) were measured in benzene; both benzene and quencher showing negligible fluorescence. Solutions were placed in 3 cm2 quartz cells after deoxygenated by N$_2$ bubbling for 30 sec and the fluorescence spectra were recorded. The excitation wavelength was 310 nm, the intensity of the emission (F) at the maximum (~400 nm) for propionaldehyde was compared to the intensity (F$_0$) in the absence of quencher. A stern – Volmer plot was drawn of F$_0$/F versus molarity of quencher, and the slope determined at least from four points using linear portion of the curve.

4.10 Quantum yield determination: (sbo-201)

A benzene solution of valerophenone (0.1 M) as chemical actiometer ($\Phi_{acetophenone} = 0.33$)90 was irradiated parallel to the sample solution (1M of 2,3-dihydrofuran & 0.1 M of benzaldehyde) on a merry – go – round apparatus. The reactions were monitored by GC. The intergration of the peaks from GC were callibrated with n-undecane as internal standard. Quantum yield reported are average of three measurement.

4.11 Preparation of trans-cyclooctene (E-17) (sbo-122)

Method (A):100

A pentane solution (150 mL) of 6.6 g (0.06 mol, 7.8 mL) of cyclooctene and 1.0 g (3.65 mmol) of dimethylisophthalate placed in quartz photoreactor and then irradiated at 254 nm under N$_2$ with cooling to 10°C. The irradiation was occurred with RPR (254 nm) for 72 h. The irradiated
solution was extracted with three 25 mL portions of 20% aq. Ag NO₃ solution at < 5°C. The aqueous extracts were combined, washed with two 10 mL portions of pentane at < 5°C, and then added dropwise into a stirred conc. aq. NH₃ solution (100 mL) at 0°C. The resulting mixture was extracted with three 25 mL portions of pentane. The combined pentane extracts were washed with water, dried over Mg SO₄, and concentrated at a reduced pressure (50-100 torr) to give an almost pure product, which was finally trap to trap distilled in vacuo to afford trans-cyclooctene in 13 % yield (Lit.¹⁰⁰, 18 %).

Method (B):¹⁰¹ (sbo-152)

A 150 mL quartz irradiation vessel was charged with 25 mL of cis-cyclooctene, (0.18mol) and 7.0 g of freshly cuprous chloride (0.07 mol). The vessel was fitted with a condenser and nitrogen bubbler was purged, the mixture was irradiated at 253 nm for 24 h. The solution was then evaporated at 1.0 mmHg to a thick oil. To this oil was added concentrated ammonia and pentane, and it was shaken, decolorized with sodium cyanide and separted. The aqueous layer was then extracted twice with pentane, and all pentane solutions were combined, dried over Mg SO₄, and concentrated by distillation to ca. 50 mL. The solution was then extracted with 20% aqueous Ag NO₃ and the aqueous layer was washed once with pentane. Treatment of the aqueous layer with concentrated ammonia followed by extractions three time with pentane. Evapouation of the solvent and distillation of the residue under vacum yielded trans-cyclooctene 1.4 g (19 %).¹⁰¹

¹H-NMR: (300 MHz, CDCl₃)

δ ppm = 0.75 - 0.84 (m, 2H), 1.38 - 1.56 (m, 2H), 1.79 - 1.84 (m, 2H), 1.91 - 2.00 (m, 4H), 2.35 - 2.39 (m, 2H), 5.48-5.52 (m, 2H, CH=).

¹³C-NMR: (75.5 MHz, CDCl₃)

δ ppm = 29.3 (t), 35.7 (t), 35.8 (t), 133.9 (d, CH=).

4.11.1 General procedure for the photolyses of aldehydes (1b & 1c) with cyclooctene (Z-17 & E-17) on the analytical scale:

An equimolar ratio of cyclooctene (Z-17 or E-17) and aldehydes (1b or 1c) were dissolved in 10 mL benzene, and transfered to quartz tube. The samples were degassed for 2 min with a steady stream of N₂ gas, the quartz tubes were sealed and placed into a Rayonet Photoreactor (λ = 300 nm), and irradiated for 24 h. The solvent was evaporated (40°C, 20 torr) and the residue were analyzed by ¹H-NMR spectroscopy to determine the diastereomeric ratios from the relative areas of the relevant ¹H-NMR peaks.
4.11.2 General procedure for the photolyses of aldehydes (1b & 1c) with cyclooctene (Z-17 & E-17) on the preparative scale:

The cyclooctene (1.1 g, 0.01 mol) and aldehydes (0.01 mol) were dissolved in 50 mL benzene, the solution transferred to a vacuum-jacket pyrex tube and degassed with a steady stream of nitrogen gas. The reaction mixture was cooled to 10°C by means of a cold finger and irradiated in a Rayonet Photoreactor (RPR \(\lambda = 300 \) nm) for 48 h. The solvent was evaporated (40°C, 20 torr) and the residue was purified by bulb to bulb distillation.

Irradiation of cyclooctene with propionaldehyde (sbo-107)

A solution of cyclooctene (1.1 g, 10 mmol) and propionaldehyde (0.58 g, 10 mmol) in 50 mL benzene was irradiated for 48 h according to the above general procedure. Distillation of the residue after evaporation of the solvent yielded 1.2 g (71 %) of inseparable mixture of oxetanes as a colorless viscous oil.

\textit{cis, cis-10-Ethyl-9-oxa-bicyclo[6.2.0]decane (cc-18)}

\[\text{H-NMR:} (300 \text{ MHz, CDCl}_3)\]
\[\delta_{ppm} = 0.90 \text{ (t, } J = 7.5 \text{ Hz, } 3 \text{H, CH}_3), 1.64 \text{ (m, } 2 \text{H, CH}_2), 0.82 - 1.92 \text{ (m, } 12 \text{H, 2-H to 7-H), 2.78 (ddd, } J = 11.8, 7.5, 3.4 \text{ Hz, } 1 \text{H, 1-H}), 4.63 (dt, } J = 7.5, 6.5 \text{ Hz, } 1 \text{H, 10-H}), 4.76 (ddd, } J = 11.8, 7.5, 2.8 \text{ Hz, } 1 \text{H, 8-H}).\]

\[\text{C-NMR: (75.5 MHz, CDCl}_3)\]
\[\delta_{ppm} = 9.2 \text{ (q), 24.8, 25.5, 25.8, 25.9, 26.6, 28.9, 30.7 (7 t), 40.7 (d, C-1), 82.5 (d, C-10), 82.9 (d, C-8).}\]

\textit{trans, cis-10-Ethyl-9-oxa-bicyclo[6.2.0]decane (tc-18)}

\[\text{H-NMR:} (300 \text{ MHz, CDCl}_3)\]
4. Experimental part

\[\delta_{ppm} = 0.93 \text{ (t, } J=7.5 \text{ Hz, } 3\text{H, CH}_3\text{), } 1.73 \text{ (m, } 2\text{H, CH}_2\text{), } 0.54 - 1.77 \text{ (m, } 12\text{H, 2-H to 7-H), } 2.44 \text{ (ddd, } J=11.8, 7.5, 3.4 \text{ Hz, } 1\text{H, 1-H), } 4.13 \text{ (dt, } J=6.5, 6.5 \text{ Hz, } 1\text{H, 10-H), } 4.64 \text{ (ddd, } J=11.8, 7.9, 2.7 \text{ Hz, } 1\text{H, 8-H).} \]

\[^{13}C\text{-NMR: (75.5 MHz, CDCl}_3\text{)} \]
\[\delta_{ppm} = 8.23 \text{ (q), } 22.7, 25.6, 25.6, 26.7, 28.3, 29.6, 32.2 \text{ (7 t), } 43.0 \text{ (d, C-1), } 82.3 \text{ (d, C-8), } 85.9 \text{ (d, C-10).} \]

trans, trans-10-Ethyl-9-oxa-bicyclo[6.2.0]decane (tt-18)

\[\begin{align*}
\delta_{ppm} &= 0.91 \text{ (t, } J=6.5 \text{ Hz, } 3\text{H, CH}_3\text{), } 1.68 \text{ (m, } 2\text{H, CH}_2\text{), } 0.82 - 1.95 \text{ (m, } 12\text{H, 2-H to 7-H), } 2.33 \text{ (ddd, } J=10.9, 7.5, 3.2 \text{ Hz, } 1\text{H, 1-H), } 4.25 \text{ (dt, } J=7.5, 6.6 \text{ Hz, } 1\text{H, 10-H), } 4.53 \text{ (ddd, } J=10.9, 7.5, 3.3 \text{ Hz, } 1\text{H, 8-H).}
\end{align*} \]

\[^{13}C\text{-NMR: (75.5 MHz, CDCl}_3\text{)} \]
\[\delta_{ppm} = 8.07 \text{ (q), } 26.9, 28.3, 28.4, 29.0, 29.2, 30.0, 38.5 \text{ (7 t), } 48.7 \text{ (d, C-1), } 84.9 \text{ (d, C-8), } 85.6 \text{ (d, C-10).} \]

Irradiation of cyclooctene with acetaldehyde (sbo-113)

A solution of cyclooctene (1.1 g, 10 mmol) and acetaldehyde (0.44 g, 10 mmol) in 50 mL benzene was irradiated for 48 h according to the above general procedure. Distillation of the residue after evaporation of the solvent yielded 0.98 g (68 %) of inseparable mixture of oxetanes as a colorless viscous oil.

cis, cis-10-Methyl-9-oxa-bicyclo[6.2.0]decane (cc-19)

\[\begin{align*}
\delta_{ppm} &= 0.82 - 1.92 \text{ (m, } 12\text{H, 2-H to 7-H), } 1.24 \text{ (d, } J=6.03 \text{ Hz, } 3\text{H, CH}_3\text{), } 2.76 \text{ (ddd, } J=11.8, 7.4, 2.8 \text{ Hz, } 1\text{H, 1-H), } 4.77 \text{ (ddd, } J=11.8, 7.5, 2.8 \text{ Hz, } 1\text{H, 8-H), } 4.94 \text{ (dq, } J=7.5, 6.0 \text{ Hz, } 1\text{H, 10-H).}
\end{align*} \]
4. Experimental part

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\(\delta_{ppm} = 18.28\) (q), 22.0, 24.9, 25.8, 25.9, 26.9, 28.8 (6 t), 40.8 (d, C-1), 77.3 (d, C-10), 83.7 (d, C-8).

trans, cis-10-Methyl-9-oxa-bicyclo[6.2.0]decane (tc-19)

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\(\delta_{ppm} = 1.06\) (m, 1H), 1.15 - 1.33 (m, 6H), 1.37 (m, 1H), 1.40 (d, J = 6.2 Hz, 3H, CH\(_3\)), 1.86 (m, 1H), 4.36 (dq, J = 7.9, 6.2 Hz, 1H, 10-H), 4.66 (ddd, J = 11.8, 7.9, 2.7 Hz, 1H, 8-H).

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\(\delta_{ppm} = 22.6\) (q), 24.8, 25.8, 25.9, 26.6, 28.9, 30.7 (6 t), 45.2 (d, C-1), 81.3 (d, C-10), 82.5 (d, C-8).

trans, trans-10-Methyl-9-oxa-bicyclo[6.2.0]decane (tt-19)

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\(\delta_{ppm} = 1.34\) (d, J = 6.5 Hz, 3H, CH\(_3\)), 0.82 - 1.96 (m, 12H, 2-H to 7-H), 2.76 (ddd, J = 10.9, 7.5, 3.4 Hz, 1H, 1-H), 4.44 (dq, J = 7.5, 6.5 Hz, 1H, 10-H), 4.52 (ddd, J = 10.9, 7.5, 3.2 Hz, 1H, 8-H).

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\(\delta_{ppm} = 22.8\) (q), 26.9, 28.3, 28.4, 29.0, 29.2, 38.5 (6 t), 51.1 (d, C-1), 80.9 (d, C-10), 85.2 (d, C-8).

Fluorescence Quenching: (sbo-273)

A propanal solution 0.2 M was prepared in benzene. A known volume of the propanal solution was pipetted into a quartz fluorescence cell and the fluorescence was observed using excitation wavelength of 310 nm. Aliquots of cyclooctene was added to the solution by means of a micro syringe while monitoring the decrease in fluorescence intensity at 420 nm.
4. Experimental part

4.12 Synthesis of allylic alcohols and acetates

Preparation of mesityl methyl (22)

Under a N₂ atmosphere, a solution of (50.0 g, 0.51 mol) of mesityl oxide in 100 mL of dry ether was added dropwise to a suspension of (9.8 g, 0.26 mol) of LiAlH₄ in dry ether. After stirring for 1 h at room temperature (ca. 20°C), the reaction was stopped by adding carefully 15 mL of ice water, 15 mL of a 15% NaOH solution and 50 mL of water. The phases were separated, the aqueous phase was extracted with ether (3 x 50 mL), the combined organic phases were dried over MgSO₄, and the solvent was rotoevaporated (20°C, 30 torr). Fractional distillation of the residue (B.p 52°C, 22 torr) yielded 35.0 g (70%) of 4-methyl-pent-3-en-2-ol (22) as a colorless liquid.

¹H-NMR: (300 MHz, CDCl₃)

δ = 1.15 (d, J = 6.3 Hz, 3H, CH₃), 1.62 (d, J = 1.2 Hz, 3H, CH₃), 1.65 (d, J = 1.2 Hz, 3H, CH₃), 2.41 (brs, 1H, OH), 4.48 (dq, J = 8.5, 6.3 Hz, 1H, CHO), 5.13 (d, J = 8.5 Hz, 1H, CH=)

¹³C-NMR: (75.5 MHz, CDCl₃)

δ = 17.9 (q, CH₃), 23.5 (q, CH₃), 25.5 (q, CH₃), 64.5 (d, CHO), 129.3 (d, CH), 133.7 (s, Cq)

Preparation of prenyl acetate (23)

To prenol (4.3 g, 0.05 mol), in 20 mL of dry pyridine, acetic anhydride (10 g, 0.09 mol) was added at room temperature with stirring. After stirring overnight, the reaction mixture was poured into water from which the product was recovered by ether extraction. Washing of the combined extracts with 10% HCl, saturated NaHCO₃, and saturated NaCl, drying (MgSO₄), and
4. Experimental part

Evaporation left the product as a yellow oil. Distillation gave a colorless oil: B.p 74°C (55 mmHg); yield 85%.

1H-NMR: (300 MHz, CDCl$_3$)

δ = 1.59 (s, 3H, CH$_3$), 1.64 (s, 3H, CH$_3$), 1.92 (s, 3H, CH$_3$CO), 4.46 (d, J = 7.4 Hz, 2H, CH$_2$), 5.24 (m, 1H, CH=).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ = 17.6 (q, CH$_3$), 20.6 (q, CH$_3$), 25.4 (q, CH$_3$), 61.1 (t, CH$_2$), 118.6 (d, CH), 138.6 (s, Cq), 170.8 (s, CO).

Preparation of mesityl acetate (24)104 (sbo-536)

To 4-methyl-3-penten-2-ol (5.0 g, 0.05 mol), in 20 mL of dry pyridine, acetic anhydride (10.0 g, 0.09 mol) was added at room temperature with stirring. After stirring overnight, the reaction mixture was poured into water from which the product was recovered by ether extraction. Washing of the combined extracts with 10% HCl, saturated NaHCO$_3$, and saturated NaCl, drying (MgSO$_4$), and evaporation left the product as a yellow oil. Distillation gave a colorless oil: B.p 50-52°C (15 mmHg); yield 87%.

1H-NMR: (300 MHz, CDCl$_3$)

δ = 1.25 (d, J = 6.0 Hz, 3H, CH$_3$), 1.70 (d, J = 1.5 Hz, 6H, 2CH$_3$), 1.95 (s, 3H, CH$_3$CO), 4.40 (dq, J = 9.0, 6.0 Hz, 1H, CHO), 4.85 (d, J = 9.0 Hz, 1H, CH=).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ =18.2 (q, CH$_3$), 20.9 (q, CH$_3$), 21.4 (q, CH$_3$), 25.6 (q, CH$_3$), 68.1 (d, CHO), 124.9 (d, CH), 136.2 (s, Cq), 170.4 (s, CO).

4.12.1 General procedure for the photolyses of propionaldehyde and allylic substrates (21&23) on the analytical scale: (sbo-83, sbo-89, sbo-105)

An equimolar ratio of both allylic substrates (21 or 23) and propionaldehyde were dissolved in 10 mL benzene, and transferred to a quartz tube. The samples were degassed for 2 min with a steady stream of N$_2$ gas, the quartz tubes were sealed and placed into a merry-go-round system equipped with a 125 W high pressure mercury lamp (λ > 290 nm), cooled to 13°C, and irradiated.
for 24h. The solvent was evaporated (40 °C, 20 torr) and the residue were analyzed by \(^1\)H-NMR spectroscopy to determine the diastereomeric ratios from the relative areas of the relevant \(^1\)H-NMR peaks.

4.12.2 General procedure for the photolyses of aldehydes and the allylic substrates on the preparative scale:
The allylic substrates (2.9 mmol) and aldehydes (2.9 mmol) were dissolved in 50 mL benzene, the solution transferred to a vacuum-jacket pyrex vessel and degassed with a steady stream of nitrogen gas. The reaction mixture was cooled to 10 °C by means of a cold finger and irradiated in a Rayonet photoreactor (RPR, \(\lambda = 300 \text{ nm}\)). The solvent was evaporated (40°C, 20 torr) and the residue was purified by Kugelrohr distillation or by silica gel preparative chromatography using a mixture of ethyl acetate and n-hexane as eluent.

Irradiation of prenol with benzaldehyde (sbo-534a)
A solution of (0.25 g, 2.9 mmol) of prenol and (0.31 g, 2.9 mmol) of benzaldehyde in 50 mL benzene was irradiated for 24 h according to the above general procedure. Preparative chromatography of the residue yielded 0.32 g (65 %) of oxetane as colorless oil.

cis- (3,3-Dimethyl-4-phenyl-oxetan-2-yl)-methanol (cis-25a)

![Structure of cis-25a](image)

TLC: \(R_f = 0.36 \) (ethyl acetate/n-hexane 1: 3)

IR: (Nujol)

\[\tilde{\nu} \text{ (cm}^{-1}\text{)} = 3500, 3055, 1559, 1445, 1035, 975, 835, 770.\]

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 0.54 \text{ (s, } 3H, \text{ CH}_3) , 1.25 \text{ (s, } 3H, \text{ CH}_3) , 1.55 \text{ (bs, } 1H, \text{ OH}) , 3.51 \text{ (dd, } J = 12.0, 4.3 \text{ Hz, } 1H, \text{ CHO}) , 3.72 \text{ (dd, } J = 12.0, 7.4 \text{ Hz, } 1H, \text{ CHOH}) , 4.52 \text{ (dd, } J = 4.3, 7.4 \text{ Hz, } 1H, \text{ 2-H}) , 5.31 \text{ (s, } 1H, 4-H) , 7.12 - 7.14 \text{ (m, } 5H, \text{ H}_{\text{arom}}\text{).}\]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 16.9 \text{ (q, } \text{ CH}_3) , 27.5 \text{ (q, } \text{ CH}_3) , 42.0 \text{ (s, } C-3) , 62.9 \text{ (t, } \text{ CH}_2\text{O}) , 87.8 \text{ (d, } C-2) , 89.3 \text{ (d, } C-4) , 124.9 \text{ (d, } \text{ CH}_{\text{arom}}\text{) , 125.4 \text{ (d, } \text{ CH}_{\text{arom}}\text{) , 127.3 \text{ (d, } \text{ CH}_{\text{arom}}\text{) , 128.0 \text{ (d, } \text{ CH}_{\text{arom}}\text{) , 139.4 \text{ (s, } C_{\text{arom}}\text{).}}\]
4. Experimental part

MS: (EI, 70 eV)

\[
m/z (%) = 191 (M^+-1, 38), 161 (25), 105 (75), 91 (24), 85 (42), 77 (45), 71 (100).
\]

HRMS: (C_{12}H_{16}O_{2}, M = 192.11 g/mol)

Calcd: 192.1072

Found: 192.1070

Irradiation of prenol with acetaldehyde (sbo-548)

A solution of (0.25 g, 2.9 mmol) of prenol and (0.13 g, 2.9 mmol) of acetaldehyde in 50 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the residue (B.p = 65-68 °C, 10 torr) yielded 0.28 g (75 %) of oxetane as a colorless oil.

cis- (3,3,4-Trimethyl-oxetan-2-yl)-methanol (cis-25b)

\[
\begin{array}{c}
\text{OH} \\
\text{O} \\
\end{array}
\]

IR: (Nujol)

\[\tilde{\nu} \text{ (cm}^{-1}\text{)} = 3515, 30330, 1538, 1425, 1055, 972, 885, 770.\]

^1H-NMR: (300 MHz, CDCl₃)

\[\delta_{ppm} = 1.01 \text{ (s, 3H, CH₃)}, 1.17 \text{ (s, 3H, CH₃)}, 1.19 \text{ (d, J = 6.5 Hz, 3H, CH₃)}, 1.25 \text{ (bs, 1H, OH)}, 3.60 \text{ (dd, J = 12.1, 4.8 Hz, 1H, CHOH)}, 3.70 \text{ (dd, J = 12.1, 6.5 Hz, 1H, CHOH)}, 4.37 \text{ (dd, J = 4.3, 6.5 Hz, 1H, 2-H)}, 4.52 \text{ (q, J = 6.5 Hz, 1H, 2-H)}.\]

^13C-NMR: (75.5 MHz, CDCl₃)

\[\delta_{ppm} = 15.5 \text{ (q, CH₃)}, 17.6 \text{ (q, CH₃)}, 27.7 \text{ (q, CH₃)}, 39.4 \text{ (s, C-3)}, 63.1 \text{ (t, CH₂O), 85.2 (d, C-2), 87.7 (d, C-4)}.\]

Anal: (C₇H₁₄O₂, M = 140.1 g/mol)

Calcd: C 64.58 H 10.84

Found: C 63.98 H 10.37

trans- (3,3,4-Trimethyl-oxetan-2-yl)-methanol (trans-25b)

\[
\begin{array}{c}
\text{OH} \\
\text{O} \\
\end{array}
\]
4. Experimental part

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 1.02$ (s, 3H, CH$_3$), 1.09 (s, 3H, CH$_3$), 1.26 (d, J = 4.4Hz, 3H, CH$_3$), 3.73 (dd, J = 12.0, 6.9 Hz, 1H, CH$_2$OH), 3.77 (dd, J = 12.0, 4.3Hz, 1H, CH$_2$OH), 4.12 (dd, J = 4.3, 6.9 Hz, 1H, 2-H), 4.75 (q, J = 4.4 Hz, 1H, 2-H).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 20.5$ (q, CH$_3$), 24.6 (q, CH$_3$), 30.3 (q, CH$_3$), 40.1 (s, C-3), 67.2 (t, CH$_2$O), 90.2 (d, C-2), 95.7 (d, C-4).

Irradiation of prenol with propionaldehyde (sbo-529)

A solution of (0.25 g, 2.9 mmol) of prenol and (0.17 g, 2.9 mmol) of propionaldehyde in 50 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the residue (B.p = 73-75 °C, 10 torr) yielded 0.32 g (78 %) of oxetane as a colorless oil.

cis- 4-Ethyl-(3,3-dimethyl-oxetan-2-yl)-methanol (cis-25c)

IR: (Nujol)

$\tilde{\nu} \text{ (cm}^{-1}) = 3508, 3058, 1534, 1445, 1035, 970, 865, 778.$

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 0.62$ (t, J = 7.4 Hz, 3H, CH$_3$), 0.81 (s, 3H, CH$_3$), 0.96 (s, 3H, CH$_3$), 1.25 (s, 1H, OH), 1.35 (m, 2H, CH$_2$), 3.33 (dd, J = 12.0, 4.9 Hz, 1H, CH$_2$OH), 3.44 (dd, J = 12.0, 6.6Hz, 1H, CH$_2$OH), 4.15 (dd, J = 4.9, 6.6 Hz, 1H, 2-H), 4.23 (dd, J = 6.3, 7.8 Hz, 1H, 4-H).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 8.2$ (q, CH$_3$), 14.3 (q, CH$_3$), 24.3 (t, CH$_2$), 38.6 (s, C-3), 61.9 (t, CH$_2$O), 86.6 (d, C-2), 89.4 (d, C-4).

MS: (EI, 70 eV)

m/z (%) = 127 (M$^+$-OH, 30), 111 (25), 109 (30), 97 (27), 85 (87), 71 (50), 69 (82), 59 (23), 57 (100).

Anal: (C$_8$H$_{16}$O$_2$, M = 144.2 g/mol)

Calcd: C 66.63 H 11.18

Found: C 66.61 H 11.20
4. Experimental part

\textit{trans- 4-Ethyl-(3,3-dimethyl-oxetan-2-yl)-methanol (\textit{trans-25c})}

\[
\text{\textit{\textbf{H-NMR:} (300 MHz, CDCl}_3)}
\]
\[
\delta_{\text{ppm}} = 0.62 \ (t, J = 7.5 \text{ Hz}, 3H, CH\textsubscript{3}),
0.87 \ (s, 3H, CH\textsubscript{3}),
0.92 \ (s, 3H, CH\textsubscript{3}),
1.30 \ (m, 2H, CH\textsubscript{2}),
3.53 \ (dd, J = 12.0, 3.8, 1H, CH\textsubscript{OH}),
3.62 \ (dd, J = 12.0, 6.8, 1H, CH\textsubscript{OH}),
3.83 \ (dd, J = 7.4, 9.0 \text{ Hz}, 1H, 4-H),
3.93 \ (dd, J = 3.8, 6.8 \text{ Hz}, 1H, 2-H).
\]

\[
\text{\textit{\textbf{13C-NMR:} (75.5 MHz, CDCl}_3)}
\]
\[
\delta_{\text{ppm}} = 9.0 \ (q, CH\textsubscript{3}),
20.0 \ (q, CH\textsubscript{3}),
23.5 \ (t, CH\textsubscript{2}),
29.0 \ (q, CH\textsubscript{3}),
37.3 \ (s, C-3),
56.4 \ (t, CH\textsubscript{2}O),
87.0 \ (d, C-2),
90 \ (d, C-4).
\]

\textbf{Irradiation of prenol with 3-methylbutyraldehyde (sbo-530)}

A solution of (0.25 g, 2.9 mmol) of prenol and (0.25 g, 2.9 mmol) of 3-methylbutyraldehyde in 50 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the residue (B.p = 84 °C, 10 torr) yielded 0.37 g (80 %) of oxetane as a pale yellow oil.

\textit{cis- (4-Isobutyl-3,3-dimethyl-oxetan-2-yl)-methanol (\textit{cis-25d})}

\[
\text{\textbf{IR:} (Film)}
\]
\[
\tilde{\nu} \ (\text{cm}^{-1}) = 3406, 2956, 2871, 1467, 1385, 1169, 1042, 997.
\]

\[
\text{\textbf{\textit{\textbf{H-NMR:} (300 MHz, CDCl}_3)}
\]
\[
\delta_{\text{ppm}} = 0.85 \ (d, J = 6.5 \text{ Hz}, 3H, CH\textsubscript{3}),
0.88 \ (d, J = 6.5Hz, 3H, CH\textsubscript{3}),
0.89 \ (m, 1H, CH),
1.02 \ (s, 3H, CH\textsubscript{3}),
1.19 \ (s, 3H, CH\textsubscript{3}),
1.25 \ (bs, 1H, OH),
1.35 \ (m, 2H, CH\textsubscript{2}),
3.55 \ (dd, J = 12.0, 4.4 \text{ Hz}, 1H, CH\textsubscript{OH}),
3.65 \ (dd, J = 12.0, 6.5 \text{ Hz}, 1H, CH\textsubscript{OH}),
4.31 \ (dd, J = 4.4, 6.5 \text{ Hz}, 1H, 2-H),
4.5 \ (dd, J = 4.5, 8.5 \text{ Hz}, 1H, 4-H).
\]

\[
\text{\textbf{\textit{\textbf{13C-NMR:} (75.5 MHz, CDCl}_3)}
\]
\[
\delta_{\text{ppm}} = 15.67 \ (q, CH\textsubscript{3}),
22.4 \ (q, CH\textsubscript{3}),
23.2 \ (q, CH\textsubscript{3}),
24.6 \ (d, CH),
27.7 \ (q, CH\textsubscript{3}),
39.7 \ (t, CH\textsubscript{2}),
41.1 \ (s, C-3),
63.0 \ (t, CH\textsubscript{2}O),
87.3 \ (d, C-2),
87.5 \ (d, C-4).
\]
4. Experimental part

Anal: (C\textsubscript{10}H\textsubscript{20}O\textsubscript{2}, M = 172.2 g/mol)

Calcd: C 69.72 H 11.70

Found: C 69.45 H 12.00

trans- (4-Isobutyl-3,3-dimethyl-oxetan-2-yl)-methanol (*trans*-25d)

\[
\begin{align*}
OH \\
\text{O} \\
\text{O} \\
\text{trans- (4-Isobutyl-3,3-dimethyl-oxetan-2-yl)-methanol (trans-25d)}
\end{align*}
\]

\[^1\text{H-NMR:} (300 \text{ MHz, CDCl}_3) \]

\[\delta_{\text{ppm}} = 0.86 (\text{d, } J = 6.5 \text{ Hz, } 6\text{H, } 2\text{CH}_3), 0.91 (\text{m, } 1\text{H}), 1.13 (\text{s, } 3\text{H, CH}_3), 1.32 (\text{s, } 3\text{H, CH}_3), 1.35 (\text{bs, } 1\text{H, OH}), 1.42 (\text{m, } 2\text{H, CH}_2), 3.70 (\text{dd, } J = 12.0, 4.0 \text{ Hz, } 1\text{H, CHOH}), 3.75 (\text{dd, } J = 12.0, 6.5 \text{ Hz, } 1\text{H, CHOH}), 3.82 (\text{dd, } J = 4.0, 6.5 \text{ Hz, } 1\text{H, 2-H}), 4.2 (\text{dd, } J = 4.5, 8.0 \text{ Hz, } 1\text{H, 2-H}).
\]

\[^{13}\text{C-NMR:} (75.5 \text{ MHz, CDCl}_3) \]

\[\delta_{\text{ppm}} = 15.7 (\text{q, CH}_3), 22.4 (\text{q, CH}_3), 23.2 (\text{q, CH}_3), 24.6 (\text{d, CH}), 27.7 (\text{q, CH}_3), 39.7 (\text{t, CH}_2), 41.1 (\text{s, C-3}), 63.0 (\text{t, CH}_2\text{O}), 87.3 (\text{d, C-2}), 87.5 (\text{d, C-4}).
\]

Irradiation of prenyl acetate with benzaldehyde (sbo-537a)

A solution of (0.35 g, 3.0 mmol) of prenyl acetate and (0.32 g, 3.0 mmol) of benzaldehyde in 50 mL benzene was irradiated for 24 h according to the above general procedure. Preparative chromatography of the residue yielded 0.37 g (75 %) of oxetane as a colorless oil.

cis-3,3-Dimethyl-4-phenyl-oxetan-2-ylmethylacetate (cis-26a)

\[
\begin{align*}
\text{OAc} \\
\text{Ph}
\end{align*}
\]

TLC: \(R_f = 0.43\) (ethyl acetate/n-hexane 1: 4)

IR: (Film)

\[\tilde{\nu} (\text{cm}^{-1}) = 3100, 2989, 1742, 1559, 1445, 1035, 975, 835, 770.
\]

\[^1\text{H-NMR:} (300 \text{ MHz, CDCl}_3) \]
4. Experimental part

\[\delta_{\text{ppm}} = 0.68 \text{ (s, } 3 \text{H, CH}_3), \ 1.40 \text{ (s, } 3 \text{H, CH}_3), \ 2.08 \text{ (s, } 3 \text{H, CH}_3\text{CO}), \ 4.18 \text{ (dd, } J = 12.0, \ 6.9 \text{ Hz, } 1 \text{H, CHOAc}), \ 4.23 \text{ (dd, } J = 12.0, \ 4.9 \text{ Hz, } 1 \text{H, CHOAc}), \ 4.70 \text{ (dd, } J = 6.9, \ 4.9 \text{ Hz, } 1 \text{H, 2-H}), \ 5.47 \text{ (s, } 1 \text{H, 4-H}), \ 7.12 - 7.28 \text{ (m, } 5 \text{H, H}_{\text{arom}}). \]

**\[^{13}\text{C-NMR:} \text{ (75.5 MHz, CDCl}_3\text{) \]}

\[\delta_{\text{ppm}} = 17.1 \text{ (q, } CH_3), \ 20.9 \text{ (q, } CH_3), \ 27.4 \text{ (q, } CH_3), \ 42.5 \text{ (s, C-3), } 64.8 \text{ (t, CH}_2\text{OAc),} \ 84.5 \text{ (d, C-2), } 89.4 \text{ (d, C-4), } 125.7 \text{ (d, CH}_{\text{arom}}), \ 127.3 \text{ (d, CH}_{\text{arom}}), \ 136.4 \text{ (s, Cq}_{\text{arom}}), \ 170.7 \text{ (s, CO).} \]

Anal: \((C_{14}H_{18}O_3, \ M = 234.2 \text{ g/mol})\)
- Calcd: \ C 71.77 \ H 7.74
- Found: \ C 71.64 \ H 7.70

Irradiation of prenyl acetate with acetaldehyde \((\text{sbo-549b})\)

A solution of \((0.35 \text{ g, } 3.0 \text{ mmol})\) of prenyl acetate and \((0.32 \text{ g, } 3.0 \text{ mmol})\) of acetaldehyde in 50 mL benzene was irradiated for 24 h according to the above general procedure. Preparative chromatography of the residue yielded 0.33 g (65 %) of oxetane as a colorless oil.

cis-3,3,4-Trimethyl-oxetan-2-ylmethylacetate \((\text{cis-26b})\)

![cis-3,3,4-Trimethyl-oxetan-2-ylmethylacetate](attachment:image)

TLC: \(R_f = 0.40 \text{ (ethyl acetate/n-hexane 1: 4)}\)

IR: (Film)

\(\bar{\nu} \ (\text{cm}^{-1}) = 2965, \ 1737, \ 1547, \ 1462, \ 1380, \ 1020, \ 970, \ 855, \ 770.\)

**\[^1\text{H-NMR:} \text{ (300 MHz, CDCl}_3\text{) \]}

\[\delta_{\text{ppm}} = 1.03 \text{ (s, } 3 \text{H, CH}_3), \ 1.18 \text{ (d, } J = 6.5 \text{ Hz, } 3 \text{H, CH}_3), \ 1.20 \text{ (s, } 3 \text{H, CH}_3), \ 2.04 \text{ (s, } 3 \text{H, CH}_3\text{CO),} \ 4.10 \text{ (dd, } J = 12.0, \ 7.6 \text{ Hz, } 1 \text{H, CHOAc),} \ 4.17 \text{ (dd, } J = 12.0, \ 4.3 \text{ Hz, } 1 \text{H, CHOAc),} \ 4.64 \text{ (dd, } J = 7.6, \ 4.3 \text{ Hz, } 1 \text{H, 2-H),} \ 4.53 \text{ (q, } J = 6.5 \text{ Hz, } 1 \text{H, 4-H).} \]

**\[^{13}\text{C-NMR:} \text{ (75.5 MHz, CDCl}_3\text{) \]}

\[\delta_{\text{ppm}} = 15.6 \text{ (q, } CH_3), \ 17.5 \text{ (q, } CH_3), \ 20.8 \text{ (q, } CH_3), \ 27.1 \text{ (q, } CH_3), \ 39.8 \text{ (s, C-3),} \ 65.2 \text{ (t, CH}_2\text{OAc),} \ 84.4 \text{ (d, C-2),} \ 85.1 \text{ (d, C-4),} \ 170.9 \text{ (s, CO).} \]

Anal: \((C_{10}H_{18}O_3, \ M = 186.3 \text{ g/mol})\)
- Calcd: \ C 64.49 \ H 9.74
- Found: \ C 64.87 \ H 9.68
4. Experimental part

trans-3,3,4-Trimethyl-oxetan-2-ylmethylacetate (trans-26b)

![Chemical Structure](attachment:image.png)

1H-NMR: (300 MHz, CDCl$_3$)

\[\delta_{ppm} = 1.00 \text{ (s, 3H, CH$_3$)}, 1.05 \text{ (s, 3H, CH$_3$)}, 1.26 \text{ (d, J = 6.4 Hz, 3H, CH$_3$)}, 1.97 \text{ (s, 3H, CH$_3$CO)}, 3.98 \text{ (dd, J = 12.0, 6.9 Hz, 1H, CHOAc)}, 4.17 \text{ (dd, J = 12.0, 4.4 Hz, 1H, CHOAc)}, 4.12 \text{ (dd, J = 4.4, 6.9 Hz, 1H, 4-H)}, 4.65 \text{ (q, J = 6.4 Hz, 1H, 2-H).} \]

13C-NMR: (75.5 MHz, CDCl$_3$)

\[\delta_{ppm} = 18.4 \text{ (q, CH$_3$)}, 20.8 \text{ (q, CH$_3$)}, 24.8 \text{ (q, CH$_3$)}, 32.3 \text{ (q, CH$_3$)}, 40.0 \text{ (s, C-3), 67.7 (t, CH$_2$O)}, 86.6 \text{ (d, C-2), 87.7 (d, C-4), 171.3 (s, CO).} \]

Irradiation of prenyl acetate with propionaldehyde (sbo-543)

A solution of (0.35 g, 3.0 mmol) of prenyl acetate and (0.20 g, 3.0 mmol) of propionaldehyde in 50 mL benzene was irradiated for 24 h according to the above general procedure. Preparative chromatography of the residue yielded 0.36 g (70 %) of oxetane as a colorless oil.

cis-4-Ethyl-3,3-dimethyl-oxetan-2-ylmethylacetate (cis-26c)

![Chemical Structure](attachment:image.png)

TLC: $R_f = 0.48$ (ethyl acetate/n-hexane 1: 4)

IR: (Nujol)

\[\tilde{\nu} \text{ (cm}^{-1}\text{)} = 3085, 2980, 1740, 1490, 1475, 1380, 1245, 1035, 970, 865, 710. \]

1H-NMR: (300 MHz, CDCl$_3$)

\[\delta_{ppm} = 0.77 \text{ (t, J = 7.5 Hz, 3H, CH$_3$)}, 0.84 \text{ (m, 2H, CH$_2$)}, 1.00 \text{ (s, 3H, CH$_3$)}, 1.15 \text{ (s, 3H, CH$_3$)}, 1.95 \text{ (s, 3H, CH$_3$CO)}, 4.12 \text{ (dd, J = 12.0, 7.6 Hz, 1H, CHOAc)}, 4.16 \text{ (dd, J = 12.0, 4.4 Hz, 1H, CHOAc)}, 4.22 \text{ (dd, J = 6.2, 7.8Hz, 1H, 2-H)}, 4.43 \text{ (dd, J = 4.4, 7.6 Hz, 1H, 4-H).} \]

13C-NMR: (75.5 MHz, CDCl$_3$)

4. Experimental part

\[\delta_{ppm} = 9.1 \text{ (q, CH}_3\text{), 15.3 \text{ (q, CH}_3\text{), 20.7 \text{ (q, CH}_3\text{), 27.4 \text{ (q, CH}_3\text{), 32.0 \text{ (t, CH}_2\text{), 39.9 (s, C-3), 64.9 \text{ (t, CH}_2\text{OAc), 83.9 (d, C-2), 90.3 (d, C-4), 170.1 (s, CO).} } \]

Anal: \(\text{C}_{10}\text{H}_{18}\text{O}_3, \text{M} = 186.13 \text{ g/mol} \)

Calcd: C 64.49 H 9.74

Found: C 64.38 H 9.48

trans-4-Ethyl-3,3-dimethyl-oxetan-2-ylmethylacetate (trans-26c)

\[^1\text{H-NMR: } (300 \text{ MHz, CDCl}_3) \]

\[\delta_{ppm} = 0.62 \text{ (t, J = 7.5 Hz, 3H, CH}_3\text{), 0.87 (s, 3H, CH}_3\text{), 0.92 (s, 3H, CH}_3\text{), 1.30 (m, 2H, CH}_2\text{), 2.12 (s, 3H, CH}_2\text{O), 3.59 (dd, J = 12.0, 3.8 Hz, 1H, CHOAc), 3.64 (dd, J = 12.0, 7.8, 1H, CHOAc), 3.89 (dd, J = 7.8, 9.0 Hz, 1H, 4-H), 3.99 (dd, J = 3.8, 7.8 Hz, 1H, 2-H).} \]

\[^{13}\text{C-NMR: } (75.5 \text{ MHz, CDCl}_3) \]

\[\delta_{ppm} = 9.4 \text{ (q, CH}_3\text{), 20.4 \text{ (q, CH}_3\text{), 22.8 \text{ (q, CH}_3\text{), 23.8 (t, CH}_2\text{), 29.3 (q, CH}_3\text{), 39.3 (s, C-3), 59.4 (t, CH}_2\text{O), 84.8 (d, C-2), 90.6 (d, C-4), 171.2 (s, CO).} \]

Irradiation of prenyl acetate with 3-methylbutyraldehyde (sbo-546d)

A solution of (0.35 g, 3.0 mmol) of prenyl acetate and (0.26 g, 3.0 mmol) of 3-methylbutyraldehyde in 50 mL benzene was irradiated for 24 h according to the above general procedure. Preparative chromatography of the residue yielded 0.39 g (80 %) of oxetane as a colorless oil.

cis-4-Isobutyl-3,3-dimethyl-oxetan-2-ylmethylacetate (cis-26d)

\[^1\text{H-NMR: } (300 \text{ MHz, CDCl}_3) \]

\[\delta_{ppm} = 0.88 (d, J = 6.5 Hz, 6H, 2CH}_3\text{), 0.99 (s, 3H, CH}_3\text{), 1.13 (s, 3H, CH}_3\text{), 1.30 (m, 1H, CH), 1.55 (m, 2H, CH}_2\text{), 2.04 (s, 3H, CH}_2\text{O), 4.05 (dd, J = 12.0, 7.6 Hz, 1H,} \]

\[\text{TLC: } R_f = 0.54 \text{ (ethyl acetate/n-hexane 1: 4)} \]

\[^1\text{H-NMR: } (300 \text{ MHz, CDCl}_3) \]

\[\delta_{ppm} = 0.88 (d, J = 6.5 Hz, 6H, 2CH}_3\text{), 0.99 (s, 3H, CH}_3\text{), 1.13 (s, 3H, CH}_3\text{), 1.30 (m, 1H, CH), 1.55 (m, 2H, CH}_2\text{), 2.04 (s, 3H, CH}_2\text{O), 4.05 (dd, J = 12.0, 7.6 Hz, 1H,} \]
4. Experimental part

\[
\text{CHOAc}, 4.17 (dd, J = 12.0, 4.4 Hz, 1H, CHOAc) , 4.43 (dd, J = 4.4, 7.6 Hz, 1H, 2-H), 4.46 (dd, J = 4.7, 7.9 Hz, 1H, 4-H).
\]

\[\text{trans}\text{-}4\text{-Isobutyl-3,3-dimethyl-oxetan-2-ylmethylacetate (trans-26d)}\]

\[
\begin{align*}
\text{1H-NMR:} & \ (300 \text{ MHz, CDCl}_3) \\
\delta_{\text{ppm}} & = 0.86 (d, J = 6.5 \text{ Hz}, 6H, 2CH_3), 0.91 (m, 1H), 1.13 (s, 3H, CH_3), 1.32 (s, 3H, CH_3), 1.42 (m, 2H, CH_2), 2.00 (s, 3H, CH_3CO), 4.05 (dd, J = 12.0, 4.0 Hz, 1H, CHOAc), 4.17 (dd, J = 12.0, 6.5 Hz, 1H, CHOAc), 4.28 (dd, J = 4.0, 6.5 Hz, 1H, 2-H), 4.44 (dd, J = 4.5, 8.0 Hz, 1H, 4-H).
\end{align*}
\]

\[\text{13C-NMR:} \ (75.5 \text{ MHz, CDCl}_3) \\
\delta_{\text{ppm}} = 15.7 (q, CH_3), 21.3 (q, CH_3), 22.4 (q, CH_3), 23.2 (q, CH_3), 24.6 (d, CH), 27.7 (q, CH_3), 39.8 (s, C-3), 41.1 (t, CH_2), 63.9 (t, CH_2O), 85.3 (d, C-2), 87.5 (d, C-4), 171.3 (s, CO).
\]

\text{Irradiation of mesitylol with acetaldehyde (sbo-554)}

A solution of (0.3 g, 3.0 mmol) of mesitylol and (0.25 g, 3.5 mmol) of acetaldehyde in 50 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the residue (B.p = 80-82 °C, 10 torr) yielded 0.32 g (68 %) of oxetane as a colorless oil.

\[\text{threo-1-(3,3,4-Trimethyl-oxetan-2-yl)-ethanol (threo-27b)}\]
4. Experimental part

IR: (Nujol)
\[\tilde{\nu} \text{ (cm}^{-1}) = 3514, 3068, 1536, 1453, 1031, 975, 868, 777. \]

1H-NMR: (300 MHz, CDCl$_3$)
\[\delta_{ppm} = 0.91 \text{ (s, 3H, CH$_3$), 0.93 (d, J = 6.5 Hz, 3H, CH$_3$), 1.05 (s, 3H, CH$_3$), 1.09 (d, J = 6.5 Hz, 3H, CH$_3$), 3.75 (dq, J = 8.4, 6.2 Hz, 1H, CHOH), 3.92 (d, J = 8.4 Hz, 1H, 2-H), 4.42 (q, J = 6.5 Hz, 1H, 2-H).} \]

13C-NMR: (75.5 MHz, CDCl$_3$)
\[\delta_{ppm} = 14.7 \text{ (q, CH$_3$), 16.8 (q, CH$_3$), 17.1 (q, CH$_3$), 26.2 (q, CH$_3$), 38.5 (s, C-3), 66.5 (d, CHOH), 83.1 (d, C-2), 90.5 (d, C-4).} \]

Anal: (C$_8$H$_{16}$O$_2$, M = 144.12 g/mol)
Calcd: C 66.63 H 11.18
Found: C 66.60 H 11.12

Irradiation of mesitylol with propionaldehyde (sbo-104)
A solution of (0.3 g, 3.0 mmol) of mesitylol and (0.20 g, 3.0 mmol) of propionaldehyde in 50 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the residue (B.p = 76-78 °C, 10 torr) yielded 0.34 g (60 %) of oxetane as a colorless oil.

threo-1-(4-Ethyl-3,3-dimethyl-oxetan-2-yl)-ethanol (*threo*-27c)

IR: (Nujol)
\[\tilde{\nu} \text{ (cm}^{-1}) = 3510, 3050, 1544, 1435, 1039, 978, 885, 773. \]

1H-NMR: (300 MHz, CDCl$_3$)
\[\delta_{ppm} = 0.77 \text{ (t, J = 7.5 Hz, 3H, CH$_3$), 0.91 (d, J = 6.2 Hz, 3H, CH$_3$), 0.95 (s, 3H, CH$_3$), 1.07 (s, 3H, CH$_3$), 1.45 (m, 2H, CH$_2$), 3.73 (dq, J = 8.4, 6.2 Hz, 1H, CHOH), 3.92 (d, J = 8.4 Hz, 1H, 2-H), 4.12 (dd, J = 6.4, 7.7 Hz, 1H, 4-H).} \]

13C-NMR: (75.5 MHz, CDCl$_3$)
4. Experimental part

\[\delta_{ppm} = 8.4 \text{ (q, CH}_3\text{)}, 14.7 \text{ (q, CH}_3\text{)}, 17.3 \text{ (q, CH}_3\text{)}, 24.2 \text{ (t, CH}_2\text{)}, 26.7 \text{ (q, CH}_3\text{)}, 38.8 \text{ (s, C-3)}, 66.6 \text{ (d, CH}O\text{)}, 88.6 \text{ (d, C-2)}, 90.0 \text{ (d, C-4)}. \]

Anal: (C\textsubscript{9}H\textsubscript{18}O\textsubscript{2}, M = 158.2 g/mol)

Calcd: \quad C 68.31 \quad H 11.47

Found: \quad C 68.57 \quad H 11.32

Irradiation of mesitylol with 3-methylbutyraldehyde (sbo-559a)

A solution of (0.3 g, 3.0 mmol) of mesitylol and (0.25 g, 3.0 mmol) of 3-methylbutyraldehyde in 50 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the residue (B.p = 80-82 °C, 10 torr) yielded 0.43 g (84 %) of oxetane as a colorless oil.

threeo-1-(4-Isobutyl-3,3-dimethyl-oxetan-2-yl)-ethanol (threeo-27d)

\[\begin{align*}
\delta_{ppm} &= 0.86 \text{ (d, J = 6.6 Hz, 3H, CH}_3\text{)}, 0.92 \text{ (d, J = 6.6 Hz, 3H, CH}_3\text{)}, 1.02 \text{ (d, J = 6.2 Hz, 3H, CH}_3\text{)}, 1.03 \text{ (s, 3H, CH}_3\text{)}, 1.18 \text{ (s, 3H, CH}_3\text{)}, 1.30 \text{ (m, 1H, CH)}, 1.53 \text{ (m, 2H, CH}_2\text{)}, 3.83 \text{ (dq, J = 8.1, 6.2 Hz, 1H, CH}_2OH\text{)}, 3.92 \text{ (d, J = 8.1 Hz, 1H, 2-H)}, 4.42 \text{ (dd, J = 4.7, 8.7 Hz, 1H, 2-H)}. \\
\end{align*} \]

13C-NMR: (75.5 MHz, CDCl\textsubscript{3})

\[\begin{align*}
\delta_{ppm} &= 15.9 \text{ (q, CH}_3\text{)}, 18.2 \text{ (q, CH}_3\text{)}, 22.3 \text{ (q, CH}_3\text{)}, 23.3 \text{ (q, CH}_3\text{)}, 24.5 \text{ (d, CH)}, 27.7 \text{ (q, CH}_3\text{)}, 39.5 \text{ (s, C-3)}, 41.0 \text{ (t, CH}_2\text{)}, 67.6 \text{ (d, CH}_O\text{)}, 86.47 \text{ (d, C-2)}, 90.6 \text{ (d, C-4)}. \\
\end{align*} \]

Anal: (C\textsubscript{11}H\textsubscript{12}O\textsubscript{2}, M = 186.2 g/mol)

Calcd: \quad C 70.92 \quad H 11.90

Found: \quad C 70.43 \quad H 11.64

Irradiation of mesityl acetate with acetaldehyde (sbo-134)

A solution of (0.47 g, 3.0 mmol) of mesityl acetate and (0.32 g, 3.8 mmol) of acetaldehyde in 50 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the residue afforded 0.42 g (75 %) of the product as a pale yellow oil.

threeo-1-(3,3,4-Trimethyl-oxetan-2-yl)-ethylacetate (threeo-28b)
4. Experimental part

\[\text{\(^1\)H-NMR: (300 MHz, CDCl}_3 \)} \]
\[\delta_{ppm} = 1.02 \text{ (d, } J = 6.5 \text{ Hz, 3H, CH}_3), 1.13 \text{ (s, 3H, CH}_3), 1.20 \text{ (d, } J = 6.5 \text{ Hz, 3H, CH}_3), 1.25 \text{ (s, 3H, CH}_3), 4.12 \text{ (dq, } J = 9.2, 6.5 \text{ Hz, 1H, CHOAc}, 4.46 \text{ (d, } J = 9.2 \text{ Hz, 1H, 2-H), 4.55 \text{ (q, } J = 6.5 \text{ Hz, 1H, 2-H).} \]
\[\text{\(^13\)C-NMR: (75.5 MHz, CDCl}_3 \)} \]
\[\delta_{ppm} = 15.7 \text{ (q, CH}_3), 17.4 \text{ (q, CH}_3), 20.9 \text{ (q, CH}_3), 27.8 \text{ (q, CH}_3), 39.5 \text{ (s, C-3), 66.2 \text{ (d, CHOAc), 86.4 \text{ (d, C-2), 98.2 \text{ (d, C-4), 171.4 \text{ (s, CO).}}} \]

\text{erythro-1-(3,3,4-Trimethyl-oxetan-2-yl)-ethylacetate (erythro-28b)}

\[\text{\(^1\)H-NMR: (300 MHz, CDCl}_3 \)} \]
\[\delta_{ppm} = 1.05 \text{ (d, } J = 6.5 \text{ Hz, 3H, CH}_3), 1.17 \text{ (s, 3H, CH}_3), 1.26 \text{ (d, } J = 6.5 \text{ Hz, 3H, CH}_3), 1.29 \text{ (s, 3H, CH}_3), 4.32 \text{ (dq, } J = 6.2, 6.5 \text{ Hz, 1H, CHOAc), 4.47 \text{ (d, } J = 6.2 \text{ Hz, 1H, 2-H), 4.62 \text{ (q, } J = 6.5 \text{ Hz, 1H, 2-H).} \]
\[\text{\(^13\)C-NMR: (75.5 MHz, CDCl}_3 \)} \]
\[\delta_{ppm} = 15.9 \text{ (q, CH}_3), 17.6 \text{ (q, CH}_3), 21.4 \text{ (q, CH}_3), 27.4 \text{ (q, CH}_3), 40.5 \text{ (s, C-3), 65.8 \text{ (d, CHOAc), 88.4 \text{ (d, C-2), 97.6 \text{ (d, C-4), 171.7 \text{ (s, CO).}}} \]

\[261\]
4.13 Synthesis of oxazole substrates

Preparation of glycine methyl ester hydrochloride (30)

A 250 mL two necked round bottomed flask containing a magnetic stirring bar, is equipped with a dropping funnel, reflux condenser protected from moisture by a CaCl₂ tube and a rubber septum. The dropping funnel is charged with (4.2 mL, 60 mmol) of thionyl chloride. The flask is charged with 50 mL of absolute methanol and cooled with ice-salt bath to -10°C. Thionyl chloride is added dropwise over a period of 5 min. The solution is stirred for a further 5 min, then glycine (2.25 g, 30 mmol) is added in one portion and the solution is slowly heated to reflux. The reflux is continued for 3 h, then the solution is allowed to cool to room temperature and the solvent is removed under reduced pressure to give glycine methyl ester hydrochloride as a white crystalline material.

Yield: 92 %
M.p: 175-176 °C (Lit. 156, 180°C).

\(^{1}\)H-NMR: (300 MHz, CDCl₃)
\[\delta_{ppm} = 3.54 \text{ (s, 3H, OCH₃)}, 3.97 \text{ (s, 2H, CH₂)}, 8.64 \text{ (s, 3H, NH₃)}. \]

\(^{13}\)C-NMR: (75.5 MHz, CDCl₃)
\[\delta_{ppm} = 42.5 \text{ (t, CH₂)}, 52.1 \text{ (q, OCH₃)}, 170.1 \text{ (s, CO)}. \]

Preparation of N-acetyl glycine methyl ester (31)

To a stirred suspension of glycine methyl ester hydrochloride (3.0 g, 24 mmol) in chloroform (50 mL) was added triethyl amine (6.7 mL, 53 mmol) at 0°C and the mixture was stirred for 5 min at room temperature. The acetyl chloride (2.1 g, 26 mmol) was added dropwise and stirring was continued for 30 min, the solvent was removed under reduced pressure; ethyl acetate (300 mL) was added and the mixture was filtered through a pad of silica gel. Evaporation of the solvent under reduced pressure afforded 3.0 g of N-acetyl glycine methyl ester as white solid.

Yield: 96 %

\(^{1}\)H-NMR: (300 MHz, CDCl₃)
\[\delta_{ppm} = 1.90 \text{ (s, 3H, CH₃CO)}, 3.52 \text{ (s, 3H, OCH₃)}, 3.75 \text{ (d, J = 5.7 Hz, 2H, CH₂)}. \]
4. Experimental part

13C-NMR: (75.5 MHz, CDCl$_3$)

\[\delta_{\text{ppm}} = 22.0 \text{ (q, CH$_3$), 40.7 \text{ (t, CH$_2$), 51.7 \text{ (q, OCH$_3$), 170.2 \text{ (s, CON), 170.9 \text{ (s, CO).}}} \]

Synthesis of 2-methyl-5-methoxyoxazole (32)111 (sbo-417)

Method (A):112

A mixture of (13.1 g, 0.1 mol) N-acetyl glycine methyl ester and (40.0 g, 0.15 mol) of phosphorous pentoxide in (100 mL) chloroform was heated to reflux with mechanical stirring for a period of 24 h. After cooling to room temperature, the residual phosphorous pentoxide was carefully crushed, and the resulting thick suspension was slowly added, in small portions, to ice-cold saturated sodium bicarbonate maintaining the pH of 6-7. The organic layer was separated and the aqueous layer was extracted with 4 x 75 mL of methylene chloride. The combined extracts were then washed with brine, dried over anhydrous magnesium sulphate, concentrated and distilled to afford 10.0 g (80 %) as a colorless oil.

Method (B):111

N-Acetyl glycine methyl ester (655 mg, 5 mmol) was added to phosphorous oxychloride (2.3 mL, 25 mmol) and heated at reflux temperature for 4 h. After cooling to room temperature, the reaction mixture was poured onto crushed ice with stirring and neutralized with 20% aq. KOH solution. It was extracted with chloroform (3 x 15 mL), washed with water (2 x 15 mL), and brine solution (20 mL). The organic phase was dried over anhydrous Na$_2$SO$_4$, the solvent was removed in vacuo and the residual oil was distilled over Kugelrohr apparatus to give the product (32) as a colorless liquid.

Yield: 70 %

B.p: 64-66°C, 10 torr (Lit.,113 60°C, 0.2 mmHg).

UV/Vis: (CH$_3$CN, c $= 1.6 \times 10^{-4}$ mol/l, d = 1 cm)

\[\lambda_{\text{max}} \text{ (nm, log } \varepsilon) = 220 \text{ (} 4.18) \text{.} \]

IR: (Nujol)

\[\nu \text{ (cm}^{-1}) = 2984, 1623, 1580, 1084, 980, 770. \]

1H-NMR: (300 MHz, CDCl$_3$)

\[\delta_{\text{ppm}} = 2.27 \text{ (s, 3H, CH$_3$), 3.79 \text{ (s, 3H, OCH$_3$), 5.87 \text{ (s, 1H, CH).} \}

13C-NMR: (75.5 MHz, CDCl$_3$)

\[\delta_{\text{ppm}} = 13.9 \text{ (q, CH$_3$), 58.4 \text{ (q, OCH$_3$), 97.8 \text{ (d, C-4), 152.0 \text{ (s, C-5), 160.5 \text{ (s, C-2).} \}} \]

263
4. Experimental part

Synthesis of amino acid methyl ester hydrochloride 34a-f : General procedure:
A 250 mL, two-necked, round-bottomed flask, containing a magnetic stirring bar, is equipped with a dropping funnel, reflux condenser protected from moisture by a calcium chloride-filled drying tube and a rubber septum. The dropping funnel is charged with (4.2 mL, 60 mmol) of thionyl chloride. The flask is charged with 50 mL of absolute methanol and cooled with ice-salt bath to (-10°C). Thionyl chloride is added dropwise over a period of 5 min. The solution is stirred for a further 5 min, then solid (L)-amino acid (30 mmol) is added in one portion and the solution is slowly heated to reflux. The reflux is continued for 3 h, then the solution is allowed to cool to room temperature and the solvent is removed under reduced pressure to give aminoacid methyl ester hydrochloride as a white crystalline solid that is used without further purification.

L-Alanine methyl ester hydrochloride (34a)

The reaction was carried out according to the above general procedure using L-alanine (2.67 g, 30 mmol) and thionyl chloride (4.2 mL, 60 mmol) to give 3.85 g of the product as a white powder.

Yield: 92%

M.p: 151-153°C (Lit.158, 154-155°C).

1H-NMR: (300 MHz, CDCl₃)
\[\delta_{ppm} = 1.72 (d, J = 7.2 Hz, 3H, CH₃), 3.79 (s, 3H, OCH₃), 4.26 (m, 1H, CHN), 8.67 (bs, 3H, NH₃). \]

13C-NMR: (75.5 MHz, CDCl₃)
\[\delta_{ppm} = 16.0 (q, CH₃), 49.3 (d, CHN), 53.2 (q, OCH₃), 170.5 (s, CO). \]

2-Amino butyric acid methyl ester hydrochloride (34b)

The reaction was carried out according to the above general procedure using 2-amino butyric acid (3.1 g, 30 mmol) and thionyl chloride (4.2 mL, 60 mmol) to give 4.4 g of the product as a white powder.
Yield: 96 %
M.p: 1444-146 °C (Lit.159, 145-146°C).

1H-NMR: (300 MHz, CDCl\textsubscript{3})
\[\delta_{\text{ppm}} = 1.06 \text{ (t, } J = 6.8 \text{ Hz, 3H, CH}_3) \text{, } 2.06 \text{ (quintet, } J = 6.8 \text{ Hz, 2H, CH}_2) \text{, } 3.77 \text{ (s, 3H, OCH}_3\text{)} \text{, } 4.12 \text{ (d, } J = 6.8 \text{ Hz, 1H, CHN}) \text{, } 8.69 \text{ (bs, 3H, NH}_3\text{)}.\]

13C-NMR: (75.5 MHz, CDCl\textsubscript{3})
\[\delta_{\text{ppm}} = 9.6 \text{ (q, CH}_3\text{), } 23.7 \text{ (t, CH}_2\text{), } 52.9 \text{ (q, OCH}_3\text{), } 54.4 \text{ (d, CHN), } 169.8 \text{ (s, CO).}\]

L-Norvaline methyl ester hydrochloride (34c)160 (sbo-330)

The reaction was carried out according to the above general procedure using norvaline (3.51 g, 30 mmol) and thionyl chloride (4.2 mL, 60 mmol) to give 4.76 g of the product as a white powder.
Yield: 95 %
M.p: 86-88°C (Lit.160, 85°C).
1H-NMR: (300 MHz, CDCl\textsubscript{3})
\[\delta_{\text{ppm}} = 0.71 \text{ (t, } J = 7.5 \text{ Hz, 3H, CH}_3) \text{, } 1.14 \text{ (sextet, } J = 7.5 \text{ Hz, 2H, CH}_2) \text{, } 1.43 \text{ (m, 2H, CH}_2\text{), } 3.56 \text{ (s, 3H, OCH}_3\text{), } 4.41 \text{ (m, 1H, CHN), } 8.61 \text{ (bs, 3H, NH}_3\text{)}.\]
13C-NMR: (75.5 MHz, CDCl\textsubscript{3})
\[\delta_{\text{ppm}} = 13.0 \text{ (q, CH}_3\text{), } 22.1 \text{ (t, CH}_2\text{), } 33.7 \text{ (t, CH}_2\text{), } 51.6 \text{ (q, OCH}_3\text{), } 51.7 \text{ (d, CHN), } 173.0 \text{ (s, CO).}\]

L-Valine methyl ester hydrochloride (34d)161 (sbo-315)

The reaction was carried out according to the above general procedure using L-valine (3.51 g, 30 mmol) and thionyl chloride (4.2 mL, 60 mmol) to give 4.5 g of the product as a white powder.
Yield: 90 %
M.p: 178-179°C (Lit.161, 180°C).
4. Experimental part

\[^{1}H-NMR: \] (300 MHz, CDCl\textsubscript{3})
\[\delta_{ppm} = 0.85 \text{ (d, } J = 7.5 \text{ Hz, } 6\text{H, } 2\text{CH}_3\text{), } 2.0 \text{ (m, } 1\text{H, CH), } 3.70 \text{ (s, } 3\text{H, OCH}_3\text{), } 4.51 \text{ (m, } 1\text{H, CHN), } 8.50 \text{ (bs, } 3\text{H, NH}_3\text{).} \]

\[^{13}C-NMR: \] (75.5 MHz, CDCl\textsubscript{3})
\[\delta_{ppm} = 17.7 \text{ (q, } \text{CH}_3\text{), } 18.7 \text{ (q, } \text{CH}_3\text{), } 30.0 \text{ (d, } \text{CH), } 51.9 \text{ (q, } \text{OCH}_3\text{), } 56.0 \text{ (d, } \text{CHN), } 173.0 \text{ (s, } \text{CO).} \]

L-Leucine methyl ester hydrochloride (34e)162 (sbo-329a)

The reaction was carried out according to the above general procedure using L-leucine (3.93 g, 30 mmol) and thionyl chloride (4.2 mL, 60 mmol) to give 5.0 g of the product as a white powder.

Yield: 93 %

M.p: 151-153°C (Lit.162, 153-154°C).

\[^{1}H-NMR: \] (300 MHz, CDCl\textsubscript{3})
\[\delta_{ppm} = 0.80 \text{ (d, } J = 6.0 \text{ Hz, } 6\text{H, } 2\text{CH}_3\text{), } 1.47 \text{ (m, } 1\text{H, CH), } 1.57 \text{ (m, } 2\text{H, CH}_2\text{), } 3.71 \text{ (s, } 3\text{H, OCH}_3\text{), } 4.41 \text{ (m, } 1\text{H, CH), } 8.64 \text{ (bs, } 3\text{H, NH}_3\text{).} \]

\[^{13}C-NMR: \] (75.5 MHz, CDCl\textsubscript{3})
\[\delta_{ppm} = 21.8 \text{ (q, } \text{CH}_3\text{), } 22.6 \text{ (q, } \text{CH}_3\text{), } 24.7 \text{ (d, } \text{CH), } 41.9 \text{ (t, } \text{CH}_2\text{), } 51.0 \text{ (q, } \text{OCH}_3\text{), } 52.3 \text{ (d, } \text{CHN), } 173.7 \text{ (s, } \text{CO).} \]

L-Isoleucine methyl ester hydrochloride (34f)163 (sbo-327)

The reaction was carried out according to the above general procedure using L-isoleucine (3.93 g, 30 mmol) and thionyl chloride (4.2 mL, 60 mmol) to give 5.1 g of the product as a white powder.

Yield: 94 %

M.p: 118-120°C (Lit.163, 117-119°C).

\[^{1}H-NMR: \] (300 MHz, CDCl\textsubscript{3})
4. Experimental part

\[\delta_{ppm} = 0.87 \text{ (d, } J = 7.0 \text{ Hz, 6H, } \text{CH}_3) , 1.17 \text{ (m, 2H, CH}_2, 1.90 \text{ (m, 1H, CH), 3.67 (s, 3H, OCH}_3, 4.51 \text{ (m, 1H, CHN), 8.70 (bs, 3H, NH}_3). \]

\text{\textbf{\textbf{\textbf{C-NMR}}} (75.5 MHz, CDCl}_3) \]

\[\delta_{ppm} = 11.0 \text{ (q, CH}_3), 15.3 \text{ (q, CH}_3), 25.2 \text{ (t, CH}_2), 37.0 \text{ (d, CH), 51.0 (q, OCH}_3), 56.0 \text{ (d, CHN), 173.0 (s, CO).} \]

\text{\textbf{Synthesis of N-acetylamino acid methyl ester 35a-f; General procedure:}}

To a stirred suspension of amino acid methyl ester hydrochloride (100 mmol) in absolute chloroform (150 mL) was added triethyl amine (28 mL, 200 mmol) at 0°C and the mixture was stirred for 15 min at room temperature. The acetyl chloride (7.2 mL, 100 mmol) was added dropwise and stirring was continued for 45 min. The solvent was removed under reduced pressure; ethyl acetate (750 mL) was added and the mixture was filtered through a pad of silica gel. Evaporation of the solvent under reduced pressure afforded the amide in high purity.

\text{\textbf{Methyl 2-acetylaminopropionate (35a)164 (sbo-292)}}

Alanine methyl ester hydrochloride (13.96 g, 0.1 mol) and acetyl chloride (7.2 mL, 0.1 mol) were allowed to react according to the above general procedure to give 13.1 g of methyl 2-acetylaminopropionate as a white powder.

\text{\textbf{Yield:} 90 \%}

\text{\textbf{M.p:} 45-47 °C (Lit.164, 47-48°C).}

\text{\textbf{\textbf{\textbf{H-NMR}}} (300 MHz, CDCl}_3) \]

\[\delta_{ppm} = 1.34 \text{ (d, } J = 7.2 \text{ Hz, 3H, CH}_3), 1.98 \text{ (s, 3H, CH}_3\text{CO)}, 3.70 \text{ (s, 3H, OCH}_3), 4.51 \text{ (m, 1H, CHN).} \]

\text{\textbf{\textbf{\textbf{\textbf{C-NMR}}} (75.5 MHz, CDCl}_3) \]

\[\delta_{ppm} = 17.3 \text{ (q, CH}_3), 22.2 \text{ (q, CH}_3), 47.6 \text{ (d, CHN), 51.8 (q, OCH}_3), 170.0 \text{ (s, CON), 173.2 (s, CO).} \]

\text{\textbf{Methyl 2-acetylaminobutyrate (35b)165 (sbo-364)}}

\[\delta_{ppm} = 0.87 \text{ (d, } J = 7.0 \text{ Hz, 6H, } \text{CH}_3) , 1.17 \text{ (m, 2H, CH}_2, 1.90 \text{ (m, 1H, CH), 3.67 (s, 3H, OCH}_3, 4.51 \text{ (m, 1H, CHN), 8.70 (bs, 3H, NH}_3). \]

\text{\textbf{\textbf{\textbf{C-NMR}}} (75.5 MHz, CDCl}_3) \]

\[\delta_{ppm} = 11.0 \text{ (q, CH}_3), 15.3 \text{ (q, CH}_3), 25.2 \text{ (t, CH}_2), 37.0 \text{ (d, CH), 51.0 (q, OCH}_3), 56.0 \text{ (d, CHN), 173.0 (s, CO).} \]
2-Acetylamino butyric acid methyl ester hydrochloride (15.4 g, 0.1 mol) and acetyl chloride (7.2 mL, 0.1 mol) were allowed to react according to the above general procedure to give 14.9 g of methyl 2-acetylaminopentanoate as a white powder.

Yield: 94%

M.p: 43-45 °C (Lit.165, 44-45°C).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[
\delta_{ppm} = 0.72 \ (t, \ J = 7.5 \ Hz, 3H, \ CH_3), \ 1.45 \ (septet, \ J = 7.4 \ Hz, 1H, \ CH), \ 1.66 \ (d, \ J = 7.5 \ Hz, 1H, \ CH), \ 1.82 \ (s, \ 3H, \ CH_2CO), \ 3.52 \ (s, \ 3H, \ OCH_3), \ 4.29 \ (m, \ 1H, \ CHN), \ 6.94 \ (d, \ J = 7.7 \ Hz, 1H, \ NH).
\]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[
\delta_{ppm} = 9.4 \ (q, \ CH_3), \ 22.4 \ (q, \ CH_3), \ 24.8 \ (t, \ CH_2), \ 51.7 \ (q, \ OCH_3), \ 53.1 \ (d, \ CHN), \ 170.3 \ (s, \ CON), \ 172.7 \ (s, \ CO).
\]

Methyl 2-acetylaminopentanoate (35c)166 (sbo-342)

Norvaline methyl ester hydrochloride (16.8 g, 0.1 mol) and acetyl chloride (7.2 mL, 0.1 mol) were allowed to react according to the above general procedure to give 15.6 g of methyl 2-acetylaminopentanoate as a white powder.

Yield: 90%

M.p: 78-79 °C (Lit.166, 78°C).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[
\delta_{ppm} = 0.72 \ (t, \ J = 7.5 \ Hz, 3H, \ CH_3), \ 1.16 \ (sextet, \ J = 7.5 \ Hz, 2H, \ CH_2), \ 1.50 \ (m, 2H, \ CH_2), \ 1.83 \ (s, 3H, \ CH_2CO), \ 3.53 \ (s, 3H, \ OCH_3), \ 4.38 \ (m, 1H, \ CHN), \ 6.94 \ (d, \ J = 7.2 \ Hz, 1H, \ NH).
\]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[
\delta_{ppm} = 13.2 \ (q, \ CH_3), \ 18.3 \ (q, \ CH_3), \ 22.3 \ (t, \ CH_2), \ 33.7 \ (t, \ CH_2), \ 51.7 \ (d, \ CHN), \ 51.8 \ (q, \ OCH_3), \ 170.3 \ (s, \ CON), \ 173.0 \ (s, \ CO).
\]

Methyl 2-acetylamino-3-methylbutyrate (35d)167 (sbo-315a)
Valine methyl ester hydrochloride (16.8 g, 0.1 mol) and acetyl chloride (7.2 mL, 0.1 mol) were allowed to react according to the above general procedure to give 15.9 g of methyl 2-acetylamino-3-methylbutyrate as a white powder.

Yield: 92%

M.p: 67-68 °C (Lit.\(^{167}\), 68-69°C).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 0.83 \text{ (d, } J = 9.4 \text{ Hz, } 3\text{H, CH}_3), 0.86 \text{ (d, } J = 9.4 \text{ Hz, } 3\text{H, CH}_3), 1.97 \text{ (s, } 3\text{H, CH}_3\text{CO}), 2.06 \text{ (m, } 1\text{H, CH}), 3.67 \text{ (s, } 3\text{H, OCH}_3\text{)}, 4.49 \text{ (dd, } 1\text{H, } J = 5.1, 2.5 \text{ Hz, } 1\text{H, CHN}), 6.13 \text{ (d, } J = 5.1\text{Hz, } 1\text{H, NH}). \]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 17.7 \text{ (q, CH}_3\text{)}, 18.7 \text{ (q, CH}_3\text{)}, 23.0 \text{ (q, CH}_3\text{)}, 31.1 \text{ (d, CH)}, 51.9 \text{ (q, OCH}_3\text{)}, 56.9 \text{ (d, CHN), 169.9 (s, CON), 172.6 (s, CO)}. \]

Methyl 2-acetylamino-4-methylpentanoate (35e)\(^{168}\)

Leucine methyl ester hydrochloride (18.2 g, 0.1 mol) and acetyl chloride (7.2 mL, 0.1 mol) were allowed to react according to the above general procedure to give 17.6 g of methyl 2-acetylamino-4-methylpentanoate as a white powder.

Yield: 94%

M.p: 75-77 °C (Lit.\(^{168}\), 77°C).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 0.86 \text{ (d, } J = 5.9 \text{ Hz, } 6\text{H, 2CH}_3\text{)}, 1.45 \text{ (m, } 1\text{H, CH}), 1.55 \text{ (m, } 2\text{H, CH}_2\text{)}, 1.95 \text{ (s, } 3\text{H, CH}_3\text{CO}), 3.66 \text{ (s, } 3\text{H, OCH}_3\text{)}, 4.56 \text{ (ddd, } J = 7.8, 5.2, 4.9 \text{ Hz, } 1\text{H, CHN}), 6.30 \text{ (d, } 1\text{H, } J = 7.8 \text{ Hz, } 1\text{H, NH}). \]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 21.8 \text{ (q, CH}_3\text{)}, 22.6 \text{ (q, CH}_3\text{)}, 22.9 \text{ (q, CH}_3\text{)}, 24.7 \text{ (d, CH)}, 41.4 \text{ (t, CH}_2\text{)}, 50.6 \text{ (q, OCH}_3\text{)}, 52.1 \text{ (d, CHN), 170.0 (s, CON), 173.7 (s, CO)}. \]

Methyl 2-acetylamino-3-methylpentanoate (35f)\(^{169}\)
Isolated methyl ester hydrochloride (18.2 g, 0.1 mol) and acetyl chloride (7.2 mL, 0.1 mol) were allowed to react according to the above general procedure to give 17.77 g of methyl 2-acetylamino-3-methylpentanoate as a white powder.

Yield: 95%

M.p: 54-56 °C (Lit., 54-55°C).

^1H-NMR: (300 MHz, CDCl$_3$)
\[\delta_{ppm} = 0.84 \text{ (d, } J = 7.1 \text{ Hz, } 6\text{H, CH}_3), 1.13 \text{ (m, 1H, CH), 1.98 (s, 3H, CH}_3\text{CO), 3.70 } \text{ (s, 3H, OCH}_3\text{), 4.57 (m, 1H, CH), 6.14 (bs, } 1\text{H, NH).} \]

^13C-NMR: (75.5 MHz, CDCl$_3$)
\[\delta_{ppm} = 11.5 \text{ (q, CH}_3\text{), 15.3 (q, CH}_3\text{), 23.1 (q, CH}_3\text{), 25.2 (t, CH}_2\text{), 37.9 (d, CH), 52.0 (q, OCH}_3\text{), 56.4 (d, CHN), 169.9 (s, CON), 172.6 (s, CO).} \]

Synthesis of 4-substituted 2-methyl-5-methoxyoxazoles (36a-f); General procedure:

N-Acetyl-L-amino acid methyl ester (0.1 mol) was dissolved in 20 ml of chloroform in a 250 ml flask, 20.8 g (0.1 mol) of phosphorous pentachloride was added and the flask was fitted with a calcium chloride tube. The solution was gently warmed by means of a water bath (ca. 60 °C) with stirring until the HCl gas evolution ceased and the solution became intensively yellow. Then, the flask was cooled by an ice-salt bath and 50 ml of absolute ether was added. To the cooled mixture, 20 % aqueous KOH was added dropwise until neutralization with vigorous stirring. The mixture was stirred at room temperature for 30 min. The organic layer was subsequently separated and the aqueous layer was extracted with 2 x 200 mL of ether. The combined organic extracts were washed with water and brine and dried over anhydrous MgSO$_4$. After removal of the solvents under vacuum, the remaining oil was distilled by a Büchi Kugelrohr apparatus to give the product 36a-f.

2,4-Dimethyl-5-methoxyoxazole (36a)

\[\begin{align*}
\text{H}_3\text{C} & \quad \text{OCH}_3 \\
\text{N} & \quad \text{CH}_3
\end{align*} \]
4. Experimental part

Reaction of methyl N-acetylamino alaninate (14.5 g, 0.1 mol) and PCl₅ (20.8 g, 0.1 mol) according to the above general procedure afforded 7.6 g of 2,4-dimethyl-5-methoxyoxazole as a colorless liquid.

Yield: 60 %

B.p: 61-63 °C, 10 torr.

IR: (Film)

\[\tilde{\nu} \text{ (cm}^{-1}\text{)} = 2943, 1625, 1598, 1440, 1341, 1052, 967. \]

1H-NMR: (300 MHz, CDCl₃)

\[\delta_{\text{ppm}} = 1.96 \text{ (s, 3H, CH}_3\text{), 2.27 (s, 3H, CH}_3\text{), 3.83 (s, 3H, OCH}_3\text{).} \]

13C-NMR: (75.5 MHz, CDCl₃)

\[\delta_{\text{ppm}} = 9.8 \text{ (q, CH}_3\text{), 14.1 (q, CH}_3\text{), 61.2 (q, OCH}_3\text{), 111.2 (s, C-4), 151.9 (s, C-5), 154.6 (s, C-2).} \]

4-Ethyl-2-methyl-5-methoxyoxazole (36b)¹¹⁵ (sbo-365)

Reaction of methyl 2-acetylamino butyrate (15.9 g, 0.1 mol) and PCl₅ (20.8 g, 0.1 mol) according to the above general procedure afforded 10.4 g of 4-ethyl-2-methyl-5-methoxyoxazole as a colorless liquid.

Yield: 74 %

B.p: 64-67 °C, 10 torr (Lit.¹¹⁵, 65 °C, 10 torr).

1H-NMR: (300 MHz, CDCl₃)

\[\delta_{\text{ppm}} = 1.07 \text{ (t, J = 7.5 Hz, 3H, CH}_3\text{), 2.22 (s, 3H, CH}_3\text{), 2.28 (q, J=7.5 Hz, 2H, CH}_2\text{), 3.77 (s, 3H, OCH}_3\text{).} \]

13C-NMR: (75.5 MHz, CDCl₃)

\[\delta_{\text{ppm}} = 13.0 \text{ (q, CH}_3\text{), 14.1 (q, CH}_3\text{), 17.9 (t, CH}_2\text{), 61.2 (q, OCH}_3\text{), 117.1 (s, C-4), 151.8 (s, C-5), 154.0 (s, C-2).} \]

2-Methyl-4-propyl-5-methoxyoxazole (36c) (sbo-343)
4. Experimental part

Reaction of methyl N-acetylamino norvalinate (17.3 g, 0.1 mol) and PCl₅ (20.8 g, 0.1 mol) according to the above general procedure afforded 10.5 g of 2-methyl-4-propyl-5-methoxyoxazole as a colorless liquid.

Yield: 68 %

B.p: 75-78 °C, 10 torr.

¹H-NMR: (300 MHz, CDCl₃)

\[\delta_{\text{ppm}} = 0.83 (t, J = 7.5 \text{ Hz}, 3H, \text{CH}_3), 1.52 \text{ (sextet, } J = 7.5 \text{ Hz, } 2H, \text{CH}_2), 2.21 \text{ (t, } J = 7.5 \text{ Hz, } 2H, \text{CH}_2), 2.22 \text{ (s, } 3H, \text{CH}_3), 3.77 \text{ (s, } 3H, \text{OCH}_3). \]

¹³C-NMR: (75.5 MHz, CDCl₃)

\[\delta_{\text{ppm}} = 13.6 \text{ (q, CH}_3), 14.1 \text{ (q, CH}_3), 21.7 \text{ (t, CH}_2), 26.5 \text{ (t, CH}_2), 115.6 \text{ (s, C-4), 151.9 \text{ (s, C-5), 154.6 \text{ (s, C-2).}} \]

4-Isopropyl-2-methyl-5-methoxyoxazole (36d)\(^{115}\) (sbo-322)

Reaction of methyl N-acetylamino valinate (17.3 g, 0.1 mol) and PCl₅ (20.8 g, 0.1 mol) according to the above general procedure afforded 10.0 g of 4-isopropyl-2-methyl-5-methoxyoxazole as a colorless liquid.

Yield: 65 %

B.p: 71-73 °C, 10 torr (Lit.,\(^{115}\) 72°C, 10 torr).

¹H-NMR: (300 MHz, CDCl₃)

\[\delta_{\text{ppm}} = 1.09 \text{ (d, } J=7.1 \text{ Hz, } 6H,2\text{CH}_3), 2.20 \text{ (s, } 3H, \text{CH}_3), 2.65 \text{ (septet, } J=7.1 \text{ Hz, } 1H, \text{CH}), 3.75 \text{ (s, } 3H, \text{OCH}_3). \]

¹³C-NMR: (75.5 MHz, CDCl₃)

\[\delta_{\text{ppm}} = 14.1 \text{ (q, CH}_3), 21.5 \text{ (q, CH}_3), 24.7 \text{ (d, CH), 61.2 \text{ (q, OCH}_3), 121.1 \text{ (s, C-4), 151.8 \text{ (s, C-5), 153.2 \text{ (s, C-2).}} \]

4-Isobutyl-2-methyl-5-methoxyoxazole (36e)\(^{115}\) (sbo-331)
4. Experimental part

Reaction of methyl N-acetylamino leucinate (18.7 g, 0.1 mol) and PCl₅ (20.8 g, 0.1 mol) according to the above general procedure afforded 11.8 g of 4-isobutyl-2-methyl-5-methoxyoxazole as a colorless liquid.

Yield: 70 %

B.p: 86-88 °C, 10 torr (Lit.¹¹⁵, 88°C, 10 torr).

¹H-NMR: (300 MHz, CDCl₃)

δ ppm = 0.80 (d, J = 6.8 Hz, 6H, 2CH₃), 1.79 (sextet, J = 6.6 Hz, 1H, CH), 2.08 (d, J = 6.8 Hz, 2H, CH₂), 2.19 (s, 3H, CH₃), 3.74 (s, 3H, OCH₃).

¹³C-NMR: (75.5 MHz, CDCl₃)

δ ppm = 14.0 (q, CH₃), 22.1 (q, CH₃), 22.2 (q, CH₃), 27.6 (t, CH₂), 33.5 (d, CH), 60.9 (q, OCH₃), 114.8 (s, C-4), 151.7 (s, C-5), 154.9 (s, C-2).

4-sec-Butyl-2-methyl-5-methoxyoxazole (36f) (sbo-333)

Reaction of methyl N-acetylamino isoleucinate (18.7 g, 0.1 mol) and PCl₅ (20.8 g, 0.1 mol) according to the above general procedure afforded 12.7 g of 4-sec-butyl-2-methyl-5-methoxyoxazole as a colorless liquid.

Yield: 75 %

B.p: 89-93 °C, 10 torr.

¹H-NMR: (300 MHz, CDCl₃)

δ ppm = 0.77 (t, J = 7.4 Hz, 3H, CH₃), 1.12 (d, J = 7.1 Hz, 3H, CH₃), 1.50 (m, 2H, CH₂), 2.26 (s, 3H, CH₃), 2.42 (m, 1H, CH), 3.79 (s, 3H, OCH₃).

¹³C-NMR: (75.5 MHz, CDCl₃)

δ ppm = 11.9 (q, CH₃), 14.1 (q, CH₃), 19.3 (q, CH₃), 28.6 (d, CH), 31.5 (t, CH₂), 61.3 (q, OCH₃), 119.9 (s, C-4), 152.1 (s, C-5), 154.1 (s, C-2).

4.14 Photolyses of 2-methyl-5-methoxyoxazole (32) with aldehydes (37a-f); General procedure:

2-Methyl-5-methoxyoxazole 32, (0.56 g, 0.005 mol) and aldehydes (0.005 mol) were dissolved in 50 mL benzene, the solution transferred to a vacuum-jacket quartz tube and degassed with a steady stream of N₂ gas. The reaction mixture was irradiated at 10°C in a
Rayonet photoreactor (RPR 300 nm) for 24 h. The solvent was evaporated (40°C, 20 torr) and the residue was submitted to 1H-NMR analysis to determine the diastereomeric ratio of the photoadducts. Purification was carried out by bulb to bulb distillation. The thermally and hydrolytically unstable primary products could in most cases not be characterized by combustion analysis and were hydrolyzed subsequently to the more stable α-amino-β-hydroxy esters.

$\textit{exo-5-Methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene}$
($\textit{exo-38a}$)
(sbo-419)

A solution of benzaldehyde (0.53 g, 5 mmol) and 2-methyl-5-methoxyoxazole (0.57 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general procedure. Distillation of the solvent under vaccum afforded 0.82 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy ester (see later).

Yield: 75 %

IR: (Film)
$\tilde{\nu}$ (cm$^{-1}$) = 2987, 1635, 1600, 1558, 1440, 1341, 1012, 967.

1H-NMR: (300 MHz, CDCl$_3$)
$\delta_{\text{ppm}} = 2.11$ (s, 3H, CH$_3$), 3.79 (s, 3H, OCH$_3$), 4.58 (d, $J = 7.7$ Hz, 1H, 1-H), 5.68 (d, $J = 7.7$ Hz, 1H, 7-H), 7.26-7.31 (m, 5H, H$_{\text{arom}}$).

13C-NMR: (75.5 MHz, CDCl$_3$)
$\delta_{\text{ppm}} = 15.9$ (q, CH$_3$), 52.8 (q, OCH$_3$), 76.2 (d, C-1), 83.0 (d, C-7), 122.9 (s, C-5), 125.4 (d, CH$_{\text{arom}}$), 126.2 (d, CH$_{\text{arom}}$), 128.1 (d, CH$_{\text{arom}}$), 134.3 (s, C$_{\text{qarom}}$), 167.7 (s, C-3).

HRMS: (C$_{12}$H$_{13}$NO$_3$, M = 219.09 g/mol)
Calcd: 219.0892
Found: 219.0886

$\textit{exo-5-Methoxy-3-methyl-7-naphthalen-2-yl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene}$
($\textit{exo-38b}$)
(sbo-428)
4. Experimental part

A solution of 2-naphthaldehyde (0.78 g, 5 mmol) and 2-methyl-5-methoxyoxazole (0.57 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general procedure. Distillation of the solvent under vacuum afforded 1.1 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding \(\alpha\)-amino-\(\beta\)-hydroxy ester (see later).

Yield: 82 %

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 2.00 \text{ (s, 3H, CH}_3\text{)}, 3.76 \text{ (s, 3H, OCH}_3\text{)}, 4.62 \text{ (d, J = 7.8 Hz, 1H, 1-H)}, 5.91 \text{ (d, J = 7.8 Hz, 1H, 7-H)}, 7.25-8.00 \text{ (m, 7H, H}_{arom}\text{)}.\]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 15.5 \text{ (q, CH}_3\text{)}, 51.9 \text{ (q, OCH}_3\text{)}, 78.0 \text{ (d, C-1)}, 84.1 \text{ (d, C-7)}, 123.1 \text{ (s, C-5)}, 126.1 \text{ (d, CH}_{arom}\text{)}, 128.1 \text{ (d, CH}_{arom}\text{)}, 129.3 \text{ (d, CH}_{arom}\text{)}, 134.5 \text{ (s, Cq}_{arom}\text{)}, 137.1 \text{ (s, Cq}_{arom}\text{)}, 139.1 \text{ (s, Cq}_{arom}\text{)}, 168.0 \text{ (s, C-3)}.\]

exo-5-Methoxy-3-methyl-7-phenethyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene (exo-38c) (sbo-439)

A solution of 3-phenylpropionaldehyde (0.67 g, 5 mmol) and 2-methyl-5-methoxyoxazole (0.57 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general procedure. Distillation of the solvent under vacuum afforded 0.98 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding \(\alpha\)-amino-\(\beta\)-hydroxy ester (see later).

Yield: 79 %

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))
4. Experimental part

\[\delta_{ppm} = 1.99 \text{ (s, 3H, CH}_3\text{), 2.08 \text{ (m, 2H, CH}_2\text{), 2.82 \text{ (m, 2H, CH}_2\text{), 3.69 \text{ (s, 3H, OCH}_3\text{),} } \\
4.87 \text{ (d, J = 5.2 Hz, 1H, 1-H), 4.91 \text{ (dd, J = 5.2, 3.4 Hz, 1H, 7-H), 7.20-7.28 \text{ (m, 5H, } H_{arom}.} \]

**\[^{13}\text{C-NMR: (75.5 MHz, CDCl}_3\text{)} \]

\[\delta_{ppm} = 15.9 \text{ (q, CH}_3\text{), 27.9 \text{ (t, CH}_2\text{), 35.1 \text{ (t, CH}_2\text{), 52.2 \text{ (q, OCH}_3\text{), 73.3 \text{ (d, C-1),} } \\
73.6 \text{ (d, C-7), 124.5 \text{ (s, C-5), 125.7 \text{ (d, C}_{arom}\text{), 127.6 \text{ (d, C}_{arom}\text{), 135.5 \text{ (s, C}_{arom}\text{),} } \\
169.6 \text{ (s, C-3).} \]

exo-7-Ethyl-5-methoxy-3-methyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene (exo-38d)

(sbo-422)

A solution of propionaldehyde (0.29 g, 5 mmol) and 2-methyl-5-methoxyoxazole (0.57 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general procedure. Distillation of the solvent under vaccum afforded 0.76 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy ester (see later).

Yield: 89 %

**\[^1\text{H-NMR: (300 MHz, CDCl}_3\text{)} \]

\[\delta_{ppm} = 0.98 \text{ (t, J = 7.5 Hz, 3H, CH}_3\text{), 1.25 \text{ (m, 2H, CH}_2\text{), 2.07 \text{ (s, 3H, CH}_3\text{), 3.83 \text{ (s,} } \\
3H, \text{ OCH}_3\text{), 5.04 \text{ (d, J = 7.4 Hz, 1H, 1-H), 5.24 \text{ (ddd, J = 11.6, 7.4, 4.7 Hz, 1H, 7-H).} \]

**\[^{13}\text{C-NMR: (75.5 MHz, CDCl}_3\text{)} \]

\[\delta_{ppm} = 8.7 \text{ (q, CH}_3\text{), 14.7 \text{ (q, CH}_3\text{), 24.7 \text{ (t, CH}_2\text{), 52.2 \text{ (q, OCH}_3\text{), 73.3 \text{ (d, C-1),} } \\
75.5 \text{ (d, C-7), 124.6 \text{ (s, C-5), 167.5 \text{ (s, C-3).} } \]

exo-7-Isopropyl-5-methoxy-3-methyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene (exo-38e)

(sbo-435)
A solution of isobutyraldehyde (0.36 g, 5 mmol) and 2-methyl-5-methoxyoxazole (0.57 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general procedure. Distillation of the solvent under vaccum afforded 0.78 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy ester (see later).

Yield: 84 %

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 1.05$ (d, J = 6.2 Hz, 6H, 2CH$_3$), 1.54 (m, 1H, CH), 1.95 (s, 3H, CH$_3$), 3.65 (s, 3H, OCH$_3$), 4.52 (d, J = 3.5 Hz, 1H, 1-H), 4.64 (dd, J=3.5, 7.9 Hz, 1H, 7-H).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 15.7$ (q, CH$_3$), 18.8 (q, CH$_3$), 18.9 (q, CH$_3$), 31.1 (d, CH), 52.0 (q, OCH$_3$), 78.4 (d, C-1), 87.3 (d, C-7), 124.6 (s, C-5), 170.3 (s, C-3).

exo-7-Isobutyl-5-methoxy-3-methyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene (exo-38f)

A solution of 3-methylbutyraldehyde (0.43 g, 5 mmol) and 2-methyl-5-methoxyoxazole (0.57 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general procedure. Distillation of the solvent under vaccum afforded 0.85 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy ester (see later).

Yield: 85 %

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 0.82$ (d, J = 6.6 Hz, 6H, 2CH$_3$), 1.62 (m, 1H, CH), 1.90 (m, 2H, CH$_2$), 1.97 (s, 3H, CH$_3$), 3.65 (s, 3H, OCH$_3$), 4.32 (d, J = 4.2 Hz, 1H, 1-H), 4.44 (dd, J = 4.2, 6.8 Hz, 1H, 7-H).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 13.4$ (q, CH$_3$), 22.2 (q, CH$_3$), 24.2 (q, CH$_3$), 27.5 (d, CH), 37.2 (t, CH$_2$), 51.7 (q, OCH$_3$), 80.8 (d, C-1), 84.5 (d, C-7), 144.7 (s, C-5), 167.4 (s, C-3).

HRMS: (C$_{10}$H$_{17}$NO$_3$, M = 199.12 g/mol)

Calcd: 199.1275
4. Experimental part

Found: 199.1271

4.14.1 Ring opening of the bicyclic oxetanes (exo-38a-f); General procedure:
A (0.002 mol) of bicyclic oxetanes 38a-f was dissolved in 20 mL of methylene chloride and 0.5 ml of conc. HCl was added. The mixture is stirred in an open flask at room temperature for 2 h and the reaction was controled by TLC. When the reaction is finished, the reaction mixture was poured into water and extract with methylene chloride. The organic layer was washed with 5 % NaHCO$_3$, brine, dried over anhydrous MgSO$_4$. The solvent was removed in vacuo and the residual oil was purified by preparative chromatography using a mixture of ethyl acetate and n-hexane as eluent.

Synthesis of erythro (S*,S*) α-acetamido-β-hydroxy esters 39a-f:
erythro-Methyl (2S*,3S*) 2-acetylamino-3-hydroxy-3-phenylpropionate (erythro-39a)117
(sbo-419a)

According to the the above general procedure, the bicyclic oxetane 38a (0.44 g, 2 mmol) was cleaved hydrolytically in 3h. Preparative chromatography yielded 0.33 g of the product as a colorless oil.

Yield: 70 %

TLC: $R_f = 0.34$ (ethylacetate/n-hexane 1: 4)

1H-NMR: (300 MHz, CDCl$_3$)

δppm = 2.07 (s, 3H, CH$_3$CO), 3.97 (s, 3H, OCH$_3$), 4.45 (d, J = 9.7 Hz, 1H, CHN), 5.85 (d, J = 9.7 Hz, 1H, CHO), 6.37 (bs, 1H, NH), 7.28-7.35 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

δppm = 23.7 (q, CH$_3$), 52.4 (q, OCH$_3$), 75.4 (d, C-2), 81.6 (d, C-3), 126.2 (d, CH$_{arom}$), 128.9 (d, CH$_{arom}$), 129.6 (d, CH$_{arom}$), 134.3 (s, C$_{arom}$), 169.3 (s, CON), 170.3 (s, COO).

Anal: (C$_{12}$H$_{15}$NO$_4$, M = 237.10 g/mol)
Calcd: C 60.75 H 6.37 N 5.90
Found: C 60.86 H 6.52 N 6.00
4. Experimental part

erythro-Methyl (2S*,3S*) 2-acetylamino-3-hydroxy-3-naphthalen-2-yl-propionate (erythro-39b) (sbo-428a)

According to the above general procedure, the bicyclic oxetane \textit{38b} (0.54 g, 2 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.43 g of the product as a colorless oil.

Yield: 75 %

TLC: \(R_f = 0.41 \) (ethylacetate/n-hexane 1: 4)

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[
\delta_{ppm} = 2.12 \text{ (s, 3H, CH}_3\text{CO)}, \ 3.85 \text{ (s, 3H, OCH}_3\text{)}, \ 4.47 \text{ (d, J = 9.6 Hz, 1H, CHN)}, \ 5.91 \text{ (d, J = 9.6 Hz, 1H, CHO)}, \ 6.24 \text{ (bs, 1H, NH)}, \ 7.25-8.04 \text{ (m, 7H, H}_\text{arom}.)
\]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[
\delta_{ppm} = 23.0 \text{ (q, CH}_3\text{)}, \ 51.9 \text{ (q, OCH}_3\text{)}, \ 76.1 \text{ (d, C-2)}, \ 83.1 \text{ (d, C-3)}, \ 126.7 \text{ (d, CH}_\text{arom}.), \ 128.5 \text{ (d, CH}_\text{arom}.), \ 129.1 \text{ (d, CH}_\text{arom}.), \ 134.5 \text{ (s, Cq}_\text{arom}.), \ 135.7 \text{ (s, Cq}_\text{arom}.), \ 139.1 \text{ (s, Cq}_\text{arom}.), \ 169.3 \text{ (s, CON)}, \ 172.0 \text{ (s, COO).}
\]

erythro-Methyl (2S*,3S*) 2-acetylamino-3-hydroxy-5-phenylpentanoate (erythro-39c) (sbo-439a)

According to the above general procedure, the bicyclic oxetane \textit{38c} (0.49 g, 2 mmol) was cleaved hydrolytically in 3h. Preparative chromatography yielded 0.35 g of the product as a colorless oil.

Yield: 65 %

TLC: \(R_f = 0.32 \) (ethylacetate/n-hexane 1: 4)

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[
\delta_{ppm} = 1.97 \text{ (s, 3H, CH}_3\text{CO)}, \ 2.43 \text{ (m, 2H, CH}_2\text{)}, \ 2.89 \text{ (m,2H, CH}_2\text{)}, \ 3.74 \text{ (s, 3H, OCH}_3\text{)}, \ 4.84 \text{ (dd, J=3.2, 8.2 Hz, 1H, CHN)}, \ 5.06 \text{ (dd, J = 3.2, 7.4 Hz, 1H, CHO)}, \ 6.24 \text{ (bs, 1H, NH)}, \ 7.12-7.28 \text{ (m, 5H, H}_\text{arom}.)
\]
4. Experimental part

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 23.1$ (q, CH$_3$), 30.6 (t, CH$_2$), 36.4 (t, CH$_2$), 52.6 (q, OCH$_3$), 55.0 (d, C-2), 73.8 (d, C-3), 126.2 (d, CH$_{arom}$), 128.5 (d, CH$_{arom}$), 129.3 (d, CH$_{arom}$), 140.6 (s, C$_{arom}$), 169.8 (s, CON), 172.8 (s, COO).

HRMS: (C$_{15}$H$_{21}$NO$_4$, M = 279.15 g/mol)
Calcd: 279.1465
Found: 279.1458

erythro-Methyl (2S*, 3S*) 2-acetylamino-3-hydroxy pentanoate (**erythro-39d**) 171

(sbo-422b)

According to the above general procedure, the bicyclic oxetane 38d (0.34 g, 2 mmol) was cleaved hydrolytically in 3h. Preparative chromatography yielded 0.27 g of the product as a colorless oil.

Yield: 72 %

TLC: $R_f = 0.36$ (ethylacetate/n-hexane 1: 4)

IR: (Film)

$\tilde{\nu}$ (cm$^{-1}$) = 3320, 3300, 2989, 1725, 1648, 1440, 1341, 1052, 967.

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 1.06$ (t, J = 7.5 Hz, 3H, CH$_3$), 1.67 (m, 2H, CH$_2$), 2.03 (s, 3H, CH$_3$CO), 3.77 (s, 3H, OCH$_3$), 4.01 (dd, J = 8.2, 4.7 Hz, 1H, CHN), 4.88 (dd, J = 8.2, 3.4 Hz, 1H, CHO).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 11.5$ (q, CH$_3$), 23.1 (q, CH$_3$), 28.6 (t, CH$_2$), 52.6 (q, OCH$_3$), 56.5 (d, C-2), 65.3 (d, C-3), 169.1 (s, CON), 169.6 (s, COO).

erythro-Methyl (2S*, 3S*) 2-acetylamino-3-hydroxy-4-methylpentanoate (**erythro-39e**) 118

(sbo-435a)
According to the above general procedure, the bicyclic oxetane 38e (0.37 g, 2 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.32 g of the product as a colorless oil.

Yield: 78 %

TLC: $R_f = 0.44$ (ethylacetate/n-hexane 1: 4)

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 0.93$ (d, $J = 6.6$ Hz, 3H, CH$_3$), 0.98 (d, $J = 6.8$ Hz, 3H, CH$_3$), 1.67 (m, 1H, CH), 2.04 (s, 3H, CH$_3$CO), 3.76 (s, 3H, OCH$_3$), 4.45 (dd, $J = 8.6$, 3.3 Hz, 1H, CHN), 4.75 (dd, $J = 7.4$, 3.3 Hz, 1H, CHOH).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 18.5$ (q, CH$_3$), 19.9 (q, CH$_3$), 20.5 (q, CH$_3$), 32.7 (d, CH), 53.1 (q, OCH$_3$), 54.3 (d, C-2), 69.8 (d, C-3), 169.3 (s, CON), 171.1 (s, COO).

erythro-Methyl (2S*,3S*) 2-acetylamino-3-hydroxy-5-methylhexanoate (erythro-39f)

(sbo-427b)

According to the above general procedure, the bicyclic oxetane 38f (0.4 g, 2 mmol) was cleaved hydrolytically in 3h. Preparative chromatography yielded 0.32 g of the product as a colorless oil.

Yield: 74 %

TLC: $R_f = 0.51$ (ethylacetate/n-hexane 1: 4)

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 0.98$ (d, $J = 6.6$ Hz, 6H, 2CH$_3$), 1.25 (m, 1H, CH), 1.54 (m, 2H, CH$_2$), 2.04 (s, 3H, CH$_3$CO), 3.75 (s, 3H, OCH$_3$), 4.18 (ddd, $J = 7.6$, 3.2, 4.7 Hz, 1H, CHN), 4.87 (dd, $J = 8.2$, 3.2 Hz, 1H, CHO).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 19.5$ (q, CH$_3$), 21.3 (q, CH$_3$), 21.4 (q, CH$_3$), 28.3 (d, CH), 34.1 (t, CH$_2$), 52.7 (q, OCH$_3$), 56.8 (d, C-2), 61.8 (d, C-3), 169.3 (s, CON), 171.3 (s, COO)

HRMS: (C$_{10}$H$_{19}$NO$_4$, $M = 217.13$ g/mol)

Calcd: 217.1287

Found: 217.1281
4. Experimental part

Independent synthesis of methyl (2S*,3R*) 2-acetylamino-3-hydroxy butanoate (threo-39g)116 (sbo-425a)

A 100 mL, three-necked, round bottomed flask, containing a magnetic stirring bar, is equipped with a dropping funnel and reflux condenser. The dropping funnel is charged with 7.8 mL of acetyl chloride. The flask is charged with 50 mL of methanol and cooled with an ice-bath to 0°C. Acetyl chloride is added dropwise over a period of 10 min. The solution is stirred for a further 5 min, then L-threonine (4.5 g, 38 mmol) is added in one portion and the solution is slowly heated to reflux. Reflux is continued for 3h, then the solution is allowed to cool to room temperature and the solvent is removed under reduced pressure to give 4.8 g (94\%) of methyl threoniate hydrochloride.

A 250 mL two necked flask, is equipped with a magnetic stirring bar, reflux condenser and a pressure-equalizing dropping funnel that is charged with acetyl chloride (2.1 mL, 30 mmol). Methyl threoniate hydrochloride (4.6 g, 30 mmol) is placed in the flask and suspended in 100 mL of chloroform and triethyl amine (7.6 mL, 60 mmol). The resulting white suspension is cooled with an ice-bath and the solution of acetyl chloride is added dropwise over a period of 30 min. After 15 min of additional stirring, the ice-bath is removed and the suspension is stirred for a further 2h. The solvent was removed under vacuo, ethylacetate (150 mL) was added and the mixture was filtered through a pad of silica gel, evaporation of the solvent under reduced pressure afforded 4.9 g (89\%) of N-acetyl methyl threoniate as white crystal.

M.p: 106-108°C (Lit.116, 105-106°C).

1H-NMR: (300 MHz, CDCl\textsubscript{3})

\[\delta_{ppm} = 0.92 \text{ (d, J = 6.4 Hz, 3H, CH}_3\text{)}, 1.97 \text{ (s, 3H, CH}_3\text{CO)}, 3.59 \text{ (s, 3H, OCH}_3\text{)}, 4.16 \text{ (ddq, J = 2.6, 6.0, 6.4 Hz, 1H, CHOH)), 4.35 \text{ (dd, J = 8.8, 2.6 Hz, 1H, CHN)}.\]

13C-NMR: (75.5 MHz, CDCl\textsubscript{3})

\[\delta_{ppm} = 13.4 \text{ (q, CH}_3\text{)}, 20.2 \text{ (q, CH}_3\text{)}, 52.1 \text{ (q, OCH}_3\text{)}, 57.6 \text{ (d, C-2)}, 67.3 \text{ (d, C-3)}, 171.3 \text{ (s, CON)}, 171.4 \text{ (s, COO)}.\]
4. Experimental part

4.14.2 Synthesis of (Z)-α,β-didehydroamino acid derivatives (40a-d); General procedure:
The aldol product (1 mmol) was added to methylene chloride (15 mL) previously saturated with conc. HCl for 5 min and the solution stirred at room temperature until TLC indicated completion of the reaction. The reaction mixture was then washed with saturated NaHCO₃, saturated NaCl, dried over anhydrous Na₂SO₄ and then evaporated. The residue was purified by preparative thick-layer chromatography.

Methyl 2-acetylamino-3-phenylacrylate (Z-40a)¹⁷² (sbo-419b)

According to the above general procedure, methyl 2-acetylamino-3-hydroxy-3-phenylpropionate ³⁹a (0.24 g, 1 mmol) was dehydrated in 20h. Preparative chromatography yielded 0.17 g of the product as a colorless oil which was solidified from a mixture of chloroform and petroleum ether as a white powder.

Yield: 80 %
M.p: 122-124°C (Lit.¹⁷², 125°C).
TLC: Rₚ = 0.52 (ethylacetate/n-hexane 1:4)
¹H-NMR: (300 MHz, CDCl₃)
δ ppm = 2.05 (s, 3H, CH₃CO), 3.82 (s, 3H, OCH₃), 6.73 (s, 1H, CH=), 7.23-7.35 (m, 5H, Harom).
¹³C-NMR: (75.5 MHz, CDCl₃)
δ ppm = 22.5 (q, CH₃), 52.1 (q, OCH₃), 123.6 (d, CHolefin), 125.2 (d, CHarom), 126.2 (d, Carom), 127.3 (d, CHarom), 135.5 (s, Cqolefin), 135.9 (s, Cqarom), 165.1 (s, CON), 168.3 (s, COO).

Methyl 2-acetylamino-pent-2-enoate (Z-40b)¹⁷³ (sbo-422c)

According to the above general procedure, methyl 2-acetylamino-3-hydroxypentanoate ³⁹d (0.19 g, 1 mmol) was dehydrated in 24h. Preparative chromatography yielded 0.13 g of
4. Experimental part

the product as a colorless oil which was solidified by treatment with petroleum ether as a white powder.

Yield: 75 %

M.p: 55-56°C (Lit.\(^{173}\), 58-60°C).

TLC: \(R_f = 0.44 \) (ethylacetate/n-hexane 1:4)

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 0.98 \text{ (t, } J = 7.5 \text{ Hz, } 3 \text{H, CH}_3), 1.65 \text{ (m, } 2 \text{H, CH}_2), 2.08 \text{ (s, } 3 \text{H, CH}_3\text{CO}), 3.83 \text{ (s, } 3 \text{H, OCH}_3), 6.84 \text{ (t, } J=7.5 \text{ Hz, } 1 \text{H, CH=}). \]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 9.5 \text{ (q, CH}_3), 21.7 \text{ (q, CH}_3), 24.5 \text{ (t, CH}_2), 52.1 \text{ (q, OCH}_3), 125.1 \text{ (d, CH olefin)}, 138.1 \text{ (s, C olefin), 165.1 (s, CON), 167.1 (s, COO).} \]

Methyl 2-acetylamino-4-methyl-pent-2-enoate (Z-40c)\(^{174}\) (sbo-435b)

According to the above general procedure, methyl 2-acetylamino-3-hydroxy-4-methylpentanoate 39e (0.2 g, 1 mmol) was dehydrated in 24h. Preparative chromatography yielded 0.14 g of the product as a colorless oil which was solidified by treatment with petroleum ether as a white powder.

Yield: 78 %

M.p: 71-72°C (Lit.\(^{174}\), 73-75°C).

TLC: \(R_f = 0.49 \) (ethylacetate/n-hexane 1:4)

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 0.98 \text{ (d, } J = 6.8 \text{ Hz, } 6 \text{H, 2 CH}_3), 1.35 \text{ (m, } 1 \text{H, CH}), 2.06 \text{ (s, } 3 \text{H, CH}_3\text{CO}), 3.82 \text{ (s, } 3 \text{H, OCH}_3), 6.54 \text{ (d, } J = 6.6 \text{ Hz, } 1 \text{H, CH=}). \]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 18.3 \text{ (q, CH}_3), 21.3 \text{ (q, CH}_3), 21.5 \text{ (q, CH}_3), 28.1 \text{ (d, CH), 52.1 (q, OCH}_3), 124.1 \text{ (d, CH olefin), 139.1 (s, C olefin), 165.1 (s, CON), 167.5 (s, COO).} \]

Methyl 2-acetylamino-5-methyl-hex-2-enoate (Z-40d)\(^{175}\) (sbo-427c)
4. Experimental part

According to the above general procedure, methyl 2-acetylamino-3-hydroxy-5-methylhexanoate 39f (0.22 g, 1 mmol) was dehydrated in 24 h. Preparative chromatography yielded 0.17 g of the product as a colorless oil which was solidified by treatment with petroleum ether as a white powder.

Yield: 83 %

M.p: 66-68°C (Lit.175, 70-71°C).

TLC: Rf = 0.45 (ethylacetate/n-hexane 1: 3)

IR: (Film)

\[\tilde{\nu} \ (\text{cm}^{-1}) = 3305, 2978, 1698, 1625, 1580, 1440, 1340, 1062, 987. \]

1H-NMR: (300 MHz, CDCl₃)

\[\delta_{\text{ppm}} = 0.90 \ (d, J = 6.6 \text{ Hz}, 6 \text{H}, 2 \text{CH}_3), \ 1.74 \ (m, 1 \text{H}, \text{CH}), \ 2.03 \ (m, 2 \text{H}, \text{CH}_2), \ 3.74 \ (s, 3 \text{H}, \text{OCH}_3), \ 6.70 \ (t, J = 7.2 \text{ Hz}, 1 \text{H}, \text{CH}=), \ 6.84 \ (s, 1 \text{H}, \text{NH}). \]

13C-NMR: (75.5 MHz, CDCl₃)

\[\delta_{\text{ppm}} = 22.4 \ (q, \text{CH}_3), \ 22.5 \ (q, \text{CH}_3), \ 23.4 \ (q, \text{CH}_3), \ 27.9 \ (d, \text{CH}), \ 37.8 \ (t, \text{CH}_2), \ 52.5 \ (q, \text{OCH}_3), \ 125.3 \ (s, \text{C} \text{olefin}), \ 138.2 \ (d, \text{CH} \text{olefin}), \ 165.1 \ (s, \text{CON}), \ 168.3 \ (s, \text{COO}). \]

MS: (EI, 70 eV)

\[m/z \ (%) = 199 \ (\text{M}^+, 5), \ 168 \ (\text{M}^+\text{-OMe}, 8), \ 167 \ (\text{M}^+\text{-MeOH}, 13), \ 156 \ (\text{M}^+\text{-COMe}, 22), \ 125 \ (10), \ 114 \ (100), \ 97 \ (12), \ 55 \ (17), \ 54 \ (65). \]

HRMS: (C₁₀H₁₇NO₃, M = 199.12 g/mol)

Calcd: 199.1208

Found: 199.1203

4.14.3 Synthesis of methyl 1-methyl isoquinoline-3-carboxylate (41)¹²¹ (sbo-419c)

To a solution of (Z)-2-acetylamino-3-phenylacrylate (0.21 g, 0.001 mol) in methylene chloride (20 mL), phosphorous oxychloride (0.2 g, 0.0015 mol) was added, and the mixture was warmed at 60 °C for 2 h. After the reaction was quenched with saturated sodium bicarbonate (25 mL), the mixture was extracted with methylene chloride (3 x 10 mL) and dried over MgSO₄. After removal of the solvent, the residue was purified by preparative chromatography to give 0.29 g of the product as a white powder.

Yield: 78 %
4. Experimental part

M.p: 105-107°C (Lit., 104-105°C).

TLC: $R_f = 0.43$ (ethylacetate/n-hexane 1:4)

IR: (CsI)

\[\nu \text{ (cm}^{-1}) = 2985, 1685, 1600, 1013, 970. \]

1H-NMR: (300 MHz, CDCl$_3$)

\[
\delta_{ppm} = 3.03 \text{ (s, 3H, CH$_3$), 4.03 \text{ (s, 3H, OCH$_3$), 7.72 \text{ (t, J = 1.7 Hz, 1H, 7-H$_{arom}$), 7.74}}
\]
\[\text{ (t, J = 1.7 Hz, 1H, 6-H$_{arom}$), 7.93 \text{ (dd, J = 1.7, 2.2 Hz, 1H, 5-H$_{arom}$), 8.17 \text{ (m, 1H, 8-}}
\]
\[\text{H$_{arom}$), 8.44 \text{ (s, 1H, 4-H).} \]

13C-NMR: (75.5 MHz, CDCl$_3$)

\[
\delta_{ppm} = 22.7 \text{ (q, CH$_3$), 52.9 \text{ (q, OCH$_3$), 125.8 \text{ (d, CH$_{arom}$), 128.7 \text{ (d, CH$_{arom}$), 128.9 \text{ (s,}}}
\]
\[\text{C$_{qarom}$), 129.4 \text{ (d, CH$_{arom}$), 130.7 \text{ (d, CH$_{arom}$), 135.5 \text{ (s, C$_{qarom}$), 140.4 \text{ (s, C-3), 159.4}}}
\]
\[\text{ (s, C-1), 166.5 \text{ (s, CO).} \]

4.15 Photolyses of 4-substituted 2-methyl-5-methoxyoxazoles 36a-f with aldehydes 37a-f:

General procedure:

5-Methoxyoxazoles (0.005 mol) and aldehydes (0.005 mol) were dissolved in 50 mL of benzene, the solution transferred to a vacuum-jacket quartz vessel and degassed with a steady stream of N$_2$ gas. The reaction mixture was irradiated at 10°C in a Rayonet photoreactor (RPR 300 nm) for 24 h. The solvent was evaporated (40°C, 20 torr) and the residue was analyzed by 1H-NMR analysis. Purification was carried out by bulb to bulb distillation. The thermally and hydrolytically unstable primary products could in most cases not be characterized by combustion analysis and were hydrolyzed subsequently to the more stable α-amino-β-hydroxy esters.

Photolyses of benzaldehyde with 5-methoxyoxazoles 36a-f:

exo-5-Methoxy-1,3-dimethyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene (exo-42aa) (sbo-573)

A solution of benzaldehyde (0.53 g, 5 mmol) and 2,4-dimethyl-5-methoxyoxazole (0.64 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general procedure. Distillation of the solvent under vacuum afforded 0.96 g of the oxetane as a pale yellow oil.
The product was thermally unstable and was subsequently hydrolyzed to give the corresponding \(\alpha \)-amino-\(\beta \)-hydroxy ester (see later).

Yield: 82 %

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 0.79 \text{ (s, 3H, CH}_3\text{)}, \; 1.99 \text{ (s, 3H, CH}_3\text{)}, \; 3.52 \text{ (s, 3H, OCH}_3\text{)}, \; 5.19 \text{ (s, 1H, 7-H)}, \; 7.21-7.25 \text{ (m, 5H, H}_\text{arom}\text{)}.\]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 13.4 \text{ (q, CH}_3\text{)}, \; 14.8 \text{ (q, CH}_3\text{)}, \; 51.2 \text{ (q, OCH}_3\text{)}, \; 75.8 \text{ (s, C-1)}, \; 89.3 \text{ (d, C-7)}, \; 124.5 \text{ (s, C-5)}, \; 125.7 \text{ (d, CH}_\text{arom}\text{)}, \; 128.6 \text{ (d, CH}_\text{arom}\text{)}, \; 129.3 \text{ (d, CH}_\text{arom}\text{)}, \; 136.9 \text{ (s, Cq}_\text{arom}\text{)}, \; 164.9 \text{ (s, C-3)}.\]

HRMS: (C\(_{13}\)H\(_{15}\)NO\(_3\), M = 233.1 g/mol)

Calcd: 233.0762

Found: 233.0758

A solution of benzaldehyde (0.53 g, 5 mmol) and 4-ethyl-2-methyl-5-methoxyoxazole (0.71 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general procedure. Distillation of the solvent under vaccum afforded 1.31 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding \(\alpha \)-amino-\(\beta \)-hydroxy ester (see later).

Yield: 87 %

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 0.84 \text{ (t, J = 7.2 Hz, 3H, CH}_3\text{)}, \; 1.06 \text{ (q, J = 7.2 Hz, 2H, CH}_2\text{)}, \; 2.00 \text{ (s, 3H, CH}_3\text{)}, \; 3.89 \text{ (s, 3H, OCH}_3\text{)}, \; 5.79 \text{ (s, 1H, 7-H)}, \; 7.26-7.35 \text{ (m, 5H, H}_\text{arom}\text{)}.\]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 8.5 \text{ (q, CH}_3\text{)}, \; 23.7 \text{ (q, CH}_3\text{)}, \; 24.9 \text{ (t, CH}_2\text{)}, \; 51.7 \text{ (q, OCH}_3\text{)}, \; 79.2 \text{ (s, C-1)}, \; 82.0 \text{ (d, C-7)}, \; 124.5 \text{ (s, C-5)}, \; 125.6 \text{ (d, CH}_\text{arom}\text{)}, \; 127.3 \text{ (d, CH}_\text{arom}\text{)}, \; 129.2 \text{ (d, CH}_\text{arom}\text{)}, \; 136.5 \text{ (s, Cq}_\text{arom}\text{)}, \; 164.9 \text{ (s, C-3)}.\]

HRMS: (C\(_{14}\)H\(_{17}\)NO\(_3\), M = 247.12 g/mol)

Calcd: 247.1204
4. Experimental part

Found: 247.1197

exo-5-Methoxy-3-methyl-7-phenyl-1-propyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene

(exo-42ac) (sbo-348)

A solution of benzaldehyde (0.53g, 5 mmol) and 2-methyl-4-propyl-5-methoxyoxazole (0.75 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general procedure. Distillation of the solvent under vaccum afforded 1.14 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy ester (see later).

Yield: 87%

IR: (Film)

\[\nu \text{ (cm}^{-1}\text{)} = 2992, 1628, 1598, 1440, 1348, 1042, 960. \]

1H-NMR: (300 MHz, CDCl$_3$

\[\delta_{ppm} = 0.55 \text{ (t, } J = 7.1 \text{ Hz, } 3\text{H, CH$_3$}), 0.78 \text{ (sextet, } J = 7.1 \text{ Hz, } 2\text{H, CH$_2$}), 1.12 \text{ (t, } J = 7.1 \text{ Hz, } 2\text{H, CH$_2$}), 2.00 \text{ (s, } 3\text{H, CH$_3$}), 3.55 \text{ (s, } 3\text{H, OCH$_3$}), 5.17 \text{ (s, } 1\text{H, 7-H}), 7.25-7.32 \text{ (m, } 5\text{H, H$_{arom}$}). \]

13C-NMR: (75.5 MHz, CDCl$_3$

\[\delta_{ppm} = 14.1 \text{ (q, } \text{CH$_3$}), 15.1 \text{ (q, } \text{CH$_3$}), 16.4 \text{ (t, } \text{CH$_2$}), 29.6 \text{ (t, } \text{CH$_2$}), 51.3 \text{ (q, } \text{OCH$_3$}), 78.9 \text{ (s, } \text{C-1}), 89.9 \text{ (d, } \text{C-7}), 124.6 \text{ (s, } \text{C-5}), 126.4 \text{ (d, } \text{CH$_{arom}$}), 128.2 \text{ (d, } \text{CH$_{arom}$}), 137.1 \text{ (s, } \text{C$_{arom}$}), 165.1 \text{ (s, } \text{C-3}). \]

HRMS: (C$_{15}$H$_{19}$NO$_3$, M = 261.14 g/mol)

Calcd: 261.1360

Found: 261.1356

exo-1-Isopropyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene

(exo-42ad) (sbo-326)

A solution of benzaldehyde (0.53g, 5 mmol) and 4-isopropyl-2-methyl-5-methoxyoxazole (0.75 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general
Experimental part

procedure. Distillation of the solvent under vacuum afforded 1.1 g of the oxetane as a pale yellow oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

Yield: 85%

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 0.53$ (d, J = 6.8 Hz, 3H, CH$_3$), 0.76 (d, J = 6.8 Hz, 3H, CH$_3$), 1.89 (m, 1H, CH), 2.02 (s, 3H, CH$_3$), 3.61 (s, 3H, OCH$_3$), 5.26 (s, 1H, 7-H), 7.28-7.35 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 14.5$ (q, CH$_3$), 15.3 (q, CH$_3$), 16.3 (q, CH$_3$), 24.9 (d, CH), 50.5 (q, OCH$_3$), 82.2 (s, C-1), 90.2 (d, C-7), 124.3 (s, C-5), 127.4 (d, CH$_{arom}$), 127.8 (d, CH$_{arom}$), 128.2 (d, C$_{arom}$), 135.9 (s, Cq$_{arom}$), 164.8 (s, C-3).

endo-1-Isopropyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene (endo-42ad) (sbo-326)

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 0.93$ (d, J = 6.8 Hz, 3H, CH$_3$), 0.98 (d, J = 6.9 Hz, 3H, CH$_3$), 1.95 (m, 1H, CH), 1.67 (s, 3H, CH$_3$), 3.71 (s, 3H, OCH$_3$), 5.28 (s, 1H, 7-H), 7.30-7.35 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 14.7$ (q, CH$_3$), 15.4 (q, CH$_3$), 16.3 (q, CH$_3$), 24.7 (d, CH), 50.8 (q, OCH$_3$), 82.7 (s, C-1), 90.7 (d, C-7), 124.3 (s, C-5), 127.3 (d, CH$_{arom}$), 127.8 (d, CH$_{arom}$), 128.2 (d, CH$_{arom}$), 135.5 (s, Cq$_{arom}$), 165.1 (s, C-3).

exo-1-Isobutyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene (exo-42ae) (sbo-338)

A solution of benzaldehyde (0.53 g, 5 mmol) and 4-isobutyl-2-methyl-5-methoxyoxazole (0.84 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general
procedure. Distillation of the solvent under vacuum afforded 1.16 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding \(\alpha\)-amino-\(\beta\)-hydroxy ester (see later).

Yield: 84 %

\(^{1}\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 0.58 \text{ (d, } J = 6.8 \text{ Hz, } 3\text{H, CH}_3), 0.72 \text{ (d, } J = 6.6 \text{ Hz, } 3\text{H, CH}_3), 0.90 \text{ (m, } 1\text{H, CH}), 1.20 \text{ (dd, } J = 5.3, 7.8 \text{ Hz, } 2\text{H, CH}_2), 2.21 \text{ (s, } 3\text{H, CH}_3), 3.67 \text{ (s, } 3\text{H, OCH}_3), 5.26 \text{ (s, } 1\text{H, 7-H}), 7.30-7.49 \text{ (m, } 5\text{H, H}_{arom}).\]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 15.1 \text{ (q, CH}_3), 22.9 \text{ (q, CH}_3), 23.7 \text{ (q, CH}_3), 23.8 \text{ (d, CH), 35.6 \text{ (t, CH}_2), 51.3 \text{ (q, OCH}_3), 78.7 \text{ (s, C-1), 90.4 \text{ (d, 7-H), 124.8 \text{ (s, C-5), 126.8 \text{ (d, C}_{arom}, 127.9 \text{ (d, C}_{arom}, 128.8 \text{ (d, C}_{arom}, 164.7 \text{ (s, C-3).}}\]

\textit{exo-1-sec-Butyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene (exo-42af) (sbo-344)}

A solution of benzaldehyde (0.53 g, 5 mmol) and 4-\(\text{sec}\)-butyl-2-methyl-5-methoxyoxazole (0.64 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general procedure. Distillation of the solvent under vacuum afforded 1.24 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding \(\alpha\)-amino-\(\beta\)-hydroxy ester (see later).

Yield: 90 %

IR: (Film)

\[\tilde{\nu} \text{ (cm}^{-1}) = 2985, 1620, 1600, 1550, 1108, 1042, 980.\]

\(^{1}\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 0.34 \text{ (t, } J = 7.4 \text{ Hz, } 3\text{H, CH}_3), 0.52 \text{ (d, } J = 6.6 \text{ Hz, } 3\text{H, CH}_3), 0.73 \text{ (m, } 2\text{H, CH}_2), 0.91 \text{ (m, } 1\text{H, CH}), 2.13 \text{ (s, } 3\text{H, CH}_3), 3.68 \text{ (s, } 3\text{H, OCH}_3), 5.27 \text{ (s, } 1\text{H, 7-H), 7.30-7.53 \text{ (m, } 5\text{H, H}_{arom}).\]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 11.3 \text{ (q, CH}_3), 11.5 \text{ (q, CH}_3), 11.7 \text{ (t, CH}_2), 20.9 \text{ (d, CH), 32.0 \text{ (t, CH}_2), 51.1 \text{ (q, OCH}_3), 82.9 \text{ (s, C-1), 90.8 \text{ (d, CH), 124.7 \text{ (s, C-5), 126.4 \text{ (d, C}_{arom), 127.9 \text{ (d, C}_{arom), 128.5 \text{ (d, C}_{arom}, 137.3 \text{ (s, Cq}_{arom}, 165.2 \text{ (s, C-3).}}\]

290
4. Experimental part

MS: (EI, 70 eV)
\[m/z \text{ (\%)} = 234 (M^{+}-\text{CH}_3\text{CN, 15}), 218 (M^{+}-\text{Bu}^{\text{sec}}, 10), 198 (28), 169 (100), 168 (52), 155 (32), 144 (75), 126 (63), 112 (43), 99 (20), 95 (15), 84 (55), 70 (18), 57 (60). \]

Photolysis of 2-naphthaldehyde with 2,4-dimethyl-5-methoxyoxazole 36a:
exo-5-Methoxy-1,3-dimethyl-7-naphth-2-yl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene (*exo*-42ba) (sbo-304)

A solution of 2-naphthaldehyde (0.64 g, 5 mmol) and 2,4-dimethyl-5-methoxyoxazole (0.64 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general procedure. Distillation of the solvent under vaccum afforded 1.3 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy ester (see later).

Yield: 92 %

1H-NMR: (300 MHz, CDCl$_3$)
\[\delta_{\text{ppm}} = 0.82 \text{ (s, 3H, } \text{CH}_3), 2.00 \text{ (s, 3H, } \text{CH}_3), 3.54 \text{ (s, 3H, } \text{OCH}_3), 5.21 \text{ (s, 1H, 7-H), 7.42-7.81 \text{ (m, 7H, } \text{H}_{\text{arom}})}. \]

13C-NMR: (75.5 MHz, CDCl$_3$)
\[\delta_{\text{ppm}} = 13.6 \text{ (q, } \text{CH}_3), 14.9 \text{ (q, } \text{CH}_3), 51.4 \text{ (q, } \text{OCH}_3), 75.9 \text{ (s, C-1), 89.5 \text{ (d, C-7), 124.6 \text{ (s, C-5), 125.9 \text{ (d, CH}_{\text{arom}}), 128.2 \text{ (d, CH}_{\text{arom}}), 129.5 \text{ (d, CH}_{\text{arom}}, 134.3 \text{ (s, C}_{\text{qarom}}), 136.2 \text{ (s, C}_{\text{qarom}}, 137.0 \text{ (s, C}_{\text{qarom}}, 165.3 \text{ (s, C-3)}.} \]

Photolyses of 3-phenylpropionaldehyde with 5-methoxyoxazoles 36a & 36d:
exo-5-Methoxy-1,3-dimethyl-7-phenethyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene (*exo*-42ca) (sbo-313)
A solution of 3-phenylpropionaldehyde (0.67 g, 5 mmol) and 2,4-dimethyl-5-methoxyoxazole (0.64 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general procedure. Distillation of the solvent under vacuum afforded 1.27 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding \(\alpha \)-amino-\(\beta \)-hydroxy ester (see later).

Yield: 87%

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[
\delta_{\text{ppm}} = 1.18 \text{ (s, 3H, CH\(_3\))} , 1.95 \text{ (s, 3H, CH\(_3\))} , 2.70 \text{ (m, 2H, CH\(_2\))} , 2.92 \text{ (m, 2H, CH\(_2\))} , 3.43 \text{ (s, 3H, OCH\(_3\))} , 4.15 \text{ (dd, J = 4.3, 9.5 Hz, 1H, 7-H)} , 7.26 \text{ (m, 5H, H\(_{\text{arom}}\))}.
\]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[
\delta_{\text{ppm}} = 12.1 \text{ (q, CH\(_3\))} , 14.9 \text{ (q, CH\(_3\))} , 27.9 \text{ (t, CH\(_2\))} , 45.1 \text{ (t, CH\(_2\))} , 51.3 \text{ (q, OCH\(_3\))} , 73.4 \text{ (s, C-1)} , 87.9 \text{ (d, C-7)} , 124.5 \text{ (s, C-5)} , 128.0 \text{ (d, CH\(_{\text{arom}}\))} , 128.8 \text{ (d, CH\(_{\text{arom}}\))} , 129.5 \text{ (d, CH\(_{\text{arom}}\))} , 140.7 \text{ (s, C\(_{\text{arom}}\))} , 164.8 \text{ (s, C-3)}.
\]

HRMS: (C\(_{15}\)H\(_{19}\)NO\(_3\), M = 261.14 g/mol)

Calcd: 261.1360
Found: 261.1358

\(\text{exo-1-Isopropyl-5-methoxy-3-methyl-7-phenethyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene (exo-42cd)} \) (sbo-313)

A solution of 3-phenylpropionaldehyde (0.67 g, 5 mmol) and 4-isopropyl-2-methyl-5-methoxyoxazole (0.75 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general procedure. Distillation of the solvent under vacuum afforded 1.27 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding \(\alpha \)-amino-\(\beta \)-hydroxy ester (see later).

Yield: 87%

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[
\delta_{\text{ppm}} = 0.71 \text{ (d, J = 6.6 Hz, 3H, CH\(_3\))} , 0.85 \text{ (d, J = 6.8 Hz, 3H, CH\(_3\))} , 1.87 \text{ (m, 2H, CH\(_2\))} , 1.95 \text{ (s, 3H, CH\(_3\))} , 2.44 \text{ (m, 2H, CH\(_2\))} , 2.75 \text{ (m, 1H, CH)} , 3.46 \text{ (s, 3H, OCH\(_3\))} , 4.18 \text{ (dd, J = 11.2, 2.7 Hz, 1H, 7-H)} , 7.21-7.34 \text{ (m, 5H, H\(_{\text{arom}}\))}.
\]
4. Experimental part

\[^{13} \text{C-NMR: (75.5 MHz, CDCl}_3] \]
\[\delta_{ppm} = 14.0 (q, \text{CH}_3), 14.8 (q, \text{CH}_3), 16.6 (q, \text{CH}_3), 17.7 (d, \text{CH}), 30.6 (t, \text{CH}_2), 33.4 (t, \text{CH}_2), 50.8 (q, \text{OCH}_3), 79.9 (s, \text{C-1}), 88.3 (d, \text{C-7}), 124.5 (s, \text{C-5}), 125.6 (d, \text{CH}_\text{arom}), 126.1 (d, \text{CH}_\text{arom}), 128.9 (d, \text{CH}_\text{arom}), 140.2 (s, \text{C}_\text{qarom}), 165.2 (s, \text{C-3}). \]

Photolyses of propionaldehyde with 5-methoxyoxazoles 36a-f:

exo-1-Ethyl-5-methoxy-1,3-dimethyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene \((\text{exo-42da})\)
(sbo-300)

\[\text{H}_2\text{C} \quad \text{N} \quad \text{CH}_3 \quad \text{OCH}_3 \]

A solution of propionaldehyde (0.29 g, 5 mmol) and 2,4-dimethyl-5-methoxyoxazole (0.64 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general procedure. Distillation of the solvent under vaccum afforded 0.78 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding \(\alpha\)-amino-\(\beta\)-hydroxy ester (see later).

Yield: 84 %

\[^1 \text{H-NMR: (300 MHz, CDCl}_3] \]
\[\delta_{ppm} = 0.84 (t, J = 7.2 Hz, 3H, \text{CH}_3), 1.80 (s, 3H, \text{CH}_3), 1.55 (dt, J = 7.8, 7.2 Hz, 2H, \text{CH}_2), 1.95 (s, 3H, \text{CH}_3), 3.41 (s, 3H, \text{OCH}_3), 4.05 (dd, J = 7.8, 6.3 Hz, 1H, 7-H). \]

\[^{13} \text{C-NMR: (75.5 MHz, CDCl}_3] \]
\[\delta_{ppm} = 8.7 (q, \text{CH}_3), 11.8 (q, \text{CH}_3), 14.7 (q, \text{CH}_3), 25.1 (t, \text{CH}_2), 51.0 (q, \text{OCH}_3), 73.2 (s, \text{C-1}), 90.1 (d, \text{C-7}), 124.3 (s, \text{C}), 164.7 (s, \text{C-3}). \]

HRMS: \((\text{C}_9\text{H}_{15}\text{NO}_3, \text{M} = 185.11 \text{ g/mol})\)

Calcd: 185.1048

Found: 185.1039

exo-1-Diethyl-5-methoxy-3-methyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene \((\text{exo-42db})\)
(sbo-410)

\[\text{H}_2\text{C} \quad \text{N} \quad \text{OCH}_3 \]

A solution of propionaldehyde (0.29 g, 5 mmol) and 4-ethyl-2-methyl-5-methoxyoxazole (0.71 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general
procedure. Distillation of the solvent under vacuum afforded 0.9 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy ester (see later).

Yield: 90 %

1H-NMR: (300 MHz, CDCl$_3$)
\[
\delta_{ppm} = 0.76 \text{ (t, } J = 7.5 \text{ Hz, } 3\text{H, CH}_3\text{)}, 0.82 \text{ (t, } J = 7.4 \text{ Hz, } 3\text{H, CH}_3\text{)}, 1.55 \text{ (q, } J = 7.5 \text{ Hz, } 2\text{H, CH}_2\text{)}, 1.58 \text{ (m, } 2\text{H, CH}_2\text{)}, 1.93 \text{ (s, } 3\text{H, CH}_3\text{)}, 3.58 \text{ (s, } 3\text{H, OCH}_3\text{)}, 4.03 \text{ (dd, } J = 5.7, 8.3 \text{ Hz, } 1\text{H, 7-H}).
\]

13C-NMR: (75.5 MHz, CDCl$_3$)
\[
\delta_{ppm} = 7.8 \text{ (q, CH}_3\text{)}, 8.9 \text{ (q, CH}_3\text{)}, 14.7 \text{ (q, CH}_3\text{)}, 19.0 \text{ (t, CH}_2\text{)}, 24.9 \text{ (t, CH}_2\text{)}, 50.8 \text{ (q, OCH}_3\text{)}, 76.7 \text{ (s, C-1)}, 90.4 \text{ (d, C-7)}, 124.3 \text{ (s, C-5)}, 164.8 \text{ (s, C-3)}.
\]

exo-7-Ethyl-5-methoxy-3-methyl-1-propyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene (exo-42dc) (sbo-349)

A solution of propionaldehyde (0.29 g, 5 mmol) and 2-methyl-4-propyl-5-methoxyoxazole (0.75 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure. Distillation of the solvent under vacuum afforded 0.92 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy ester (see later).

Yield: 86 %

IR: (Film)
\[
\nu \text{ (cm}^{-1}\text{)} = 2998, 1615, 1440, 1110, 967.
\]

1H-NMR: (300 MHz, CDCl$_3$)
\[
\delta_{ppm} = 0.81 \text{ (t, } J = 7.1 \text{ Hz, } 3\text{H, CH}_3\text{)}, 0.84 \text{ (t, } J = 7.5 \text{ Hz, } 3\text{H, CH}_3\text{)}, 0.85 \text{ (t, } J = 7.1 \text{ Hz, } 2\text{H, CH}_2\text{)}, 1.21 \text{ (m, } 2\text{H, CH}_2\text{)}, 1.65 \text{ (m, } 2\text{H, CH}_2\text{)}, 1.96 \text{ (s, } 3\text{H, CH}_3\text{)}, 3.41 \text{ (s, } 3\text{H, OCH}_3\text{)}, 4.07 \text{ (dd, } J = 6.0, 8.0 \text{ Hz, } 1\text{H, 7-H}).
\]

13C-NMR: (75.5 MHz, CDCl$_3$)
\[
\delta_{ppm} = 8.9 \text{ (q, CH}_3\text{)}, 14.2 \text{ (q, CH}_3\text{)}, 16.9 \text{ (t, CH}_2\text{)}, 24.9 \text{ (t, CH}_2\text{)}, 28.3 \text{ (t, CH}_2\text{)}, 50.8 \text{ (q, OCH}_3\text{)}, 76.4 \text{ (s, C-1)}, 90.5 \text{ (d, C-7)}, 124.3 \text{ (s, C-5)}, 164.5 \text{ (s, C-3)}.
\]

MS: (El, 70 eV)
4. Experimental part

\[m/z \text{ (\%)} = 184 (M^+ - \text{Et}, 12), 172 (M^+ - \text{CH}_3\text{CN}, 16), 155 (80), 144 (75), 126 (34), 112 (43), 99 (20), 95 (15), 86 (55), 68 (88), 57 (100). \]

exo-7-Ethyl-1-isopropyl-5-methoxy-3-methyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene

(exo-42dd) (sbo-324)

A solution of propionaldehyde (0.29 g, 5 mmol) and 4-isopropyl-2-methyl-5-methoxyoxazole (0.75 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general procedure. Distillation of the solvent under vacuum afforded 0.88 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding \(\alpha\)-amino-\(\beta\)-hydroxy ester (see later).

Yield: 83 %

\[{^1}H\text{-NMR: (300 MHz, CDCl}_3) \]

\[\delta_{\text{ppm}} = 0.71 (\text{d, } J = 6.8 \text{ Hz, } 3\text{H, CH}_3), 0.87 (\text{t, } J = 7.5 \text{ Hz, } 3\text{H, CH}_3), 1.65 (\text{m, } 2\text{H, CH}_2), 1.97 (\text{s, } 3\text{H, CH}_3), 2.15 (\text{s, } 3\text{H, CH}_3), 3.42 (\text{s, } 3\text{H, OCH}_3), 4.10 (\text{dd, } J = 9.4, 4.4 \text{ Hz, } 1\text{H, 7-H}). \]

\[{^{13}}C\text{-NMR: (75.5 MHz, CDCl}_3) \]

\[\delta_{\text{ppm}} = 9.0 (\text{q, CH}_3), 14.9 (\text{q, CH}_3), 16.6 (\text{q, CH}_3), 17.7 (\text{q, CH}_3), 21.5 (\text{d, CH}), 24.7 (\text{t, CH}_2), 50.7 (\text{q, OCH}_3), 80.0 (\text{s, C-1}), 90.8 (\text{d, C-7}), 124.5 (\text{s, C-5}), 164.9 (\text{s, C-3}). \]

exo-7-Ethyl-1-isobutyl-5-methoxy-3-methyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene

(exo-42de) (sbo-337)

A solution of propionaldehyde (0.29 g, 5 mmol) and 4-isobutyl-2-methyl-5-methoxyoxazole (0.84 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general procedure. Distillation of the solvent under vacuum afforded 0.99 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding \(\alpha\)-amino-\(\beta\)-hydroxy ester (see later).

Yield: 87 %

\[{^1}H\text{-NMR: (300 MHz, CDCl}_3) \]
4. Experimental part

\[\delta_{ppm} = 0.75 \text{ (d, J = 6.6 Hz, 3H, CH\textsubscript{3})}, 0.86 \text{ (d, J = 7.4 Hz, 3H, CH\textsubscript{3})}, 1.05 \text{ (m, 1H, CH)}, 1.54 \text{ (t, J = 7.5 Hz, 3H, CH\textsubscript{3})}, 1.67 \text{ (m, 2H, CH\textsubscript{2})}, 1.88 \text{ (m, 2H, CH\textsubscript{2})}, 1.95 \text{ (s, 3H, CH\textsubscript{3})}, 3.42 \text{ (s, 3H, OCH\textsubscript{3})}, 4.05 \text{ (dd, J = 7.6, 6.2 Hz, 1H, 7-H)}. \]

\[^{13}\text{C-NMR: (75.5 MHz, CDCl\textsubscript{3})} \]
\[\delta_{ppm} = 8.9 \text{ (q, CH\textsubscript{3})}, 13.9 \text{ (q, CH\textsubscript{3})}, 14.8 \text{ (q, CH\textsubscript{3})}, 20.8 \text{ (d, CH)}, 22.9 \text{ (q, CH\textsubscript{3})}, 27.6 \text{ (t, CH\textsubscript{3})}, 34.1 \text{ (t, CH\textsubscript{2})}, 50.8 \text{ (q, OCH\textsubscript{3})}, 76.9 \text{ (s, C-1)}, 90.9 \text{ (d, C-7)}, 124.4 \text{ (s, C-5)}, 164.0 \text{ (s, C-3)}. \]

\[\text{HRMS: (C\textsubscript{12}H\textsubscript{21}NO\textsubscript{3}, M = 227.15 g/mol)} \]
Calcd: 227.1516
Found: 227.1512

\[\text{exo-1-sec-Butyl-7-ethyl-5-methoxy-3-methyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene (exo-42df) (sbo-341)} \]

A solution of propionaldehyde (0.29 g, 5 mmol) and 4-sec-butyl-2-methyl-5-methoxyoxazole (0.84 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general procedure. Distillation of the solvent under vaccum afforded 1.0 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy ester (see later).

\[\text{Yield: 88 %} \]

\[^{1}\text{H-NMR: (300 MHz, CDCl\textsubscript{3})} \]
\[\delta_{ppm} = 0.76 \text{ (d, J = 6.6 Hz, 3H, CH\textsubscript{3})}, 0.83 \text{ (m, 3H, CH\textsubscript{3})}, 0.92 \text{ (t, J = 7.4 Hz, 3H, CH\textsubscript{3})}, 1.43 \text{ (m, 1H, CH)}, 1.83 \text{ (m, 2H, CH\textsubscript{2})}, 2.10 \text{ (s, 3H, CH\textsubscript{3})}, 3.47 \text{ (s, 3H, OCH\textsubscript{3})}, 4.16 \text{ (dd, J = 3.7, 7.5 Hz, 1H, 7-H)}. \]

\[^{13}\text{C-NMR: (75.5 MHz, CDCl\textsubscript{3})} \]
\[\delta_{ppm} = 9.0 \text{ (q, CH\textsubscript{3})}, 11.5 \text{ (q, CH\textsubscript{3})}, 12.9 \text{ (q, CH\textsubscript{3})}, 13.9 \text{ (q, CH\textsubscript{3})}, 23.5 \text{ (d, CH)}, 24.9 \text{ (t, CH\textsubscript{2})}, 32.0 \text{ (t, CH\textsubscript{2})}, 51.8 \text{ (q, OCH\textsubscript{3})}, 80.4 \text{ (s, C-1)}, 91.0 \text{ (d, C-7)}, 124.6 \text{ (s, C-5)}, 164.9 \text{ (s, C-3)}. \]

\[\text{MS: (EI, 70 eV)} \]
\[m/z (\%) = 216 \text{ (M+-Et, 10)}, 196 \text{ (5)}, 186 \text{ (18)}, 170 \text{ (20)}, 169 \text{ (35)}, 168 \text{ (52)}, 155 \text{ (32)}, 144 \text{ (75)}, 126 \text{ (100)}, 112 \text{ (43)}, 99 \text{ (20)}, 95 \text{ (15)}, 84 \text{ (55)}, 70 \text{ (18)}, 57 \text{ (60)}. \]
Photolyses of isobutyraldehyde with 5-methoxyoxazoles 36a-f:

exo-7-Isopropyl-5-methoxy-1,3-dimethyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene (*exo*-42ea) (sbo-320)

![Diagram of exo-42ea](image1)

A solution of isobutyraldehyde (0.36 g, 5 mmol) and 2,4-dimethyl-5-methoxyoxazole (0.64 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general procedure. Distillation of the solvent under vaccum afforded 0.93 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy ester (see later).

Yield: 93 %

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 0.82$ (d, J = 7.5 Hz, 3H, CH$_3$), 0.85 (d, J = 7.2 Hz, 3H, CH$_3$), 0.87 (m, 1H, CH), 1.31 (s, 3H, CH$_3$), 2.10 (s, 3H, CH$_3$), 3.48 (s, 3H, OCH$_3$), 4.28 (d, J = 3.4 Hz, 1H, 7-H).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 12.4$ (q, CH$_3$), 14.9 (q, CH$_3$), 17.7 (q, CH$_3$), 19.3 (q, CH$_3$), 23.8 (d, CH), 52.5 (q, OCH$_3$), 73.0 (s, C-1), 93.9 (d, C-7), 124.6 (s, C-5), 165.0 (s, C-3).

exo-1-Ethyl-7-isopropyl-5-methoxy-3-methyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene (*exo*-42eb) (sbo-415)

![Diagram of exo-42eb](image2)

A solution of isobutyraldehyde (0.36 g, 5 mmol) and 4-ethyl-2-methyl-5-methoxyoxazole (0.71 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general procedure. Distillation of the solvent under vaccum afforded 0.93 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy ester (see later).

Yield: 87 %

1H-NMR: (300 MHz, CDCl$_3$)
4. Experimental part

\[\delta_{\text{ppm}} = 0.75 \ (d, J = 7.2 \ Hz, \ 6H, \ 2CH_3), \ 0.85 \ (m, \ 1H, \ CH), \ 1.00 \ (t, J = 7.5 \ Hz, \ 3H, \ CH_3), \ 1.58 \ (m, \ 2H, \ CH_2), \ 2.15 \ (s, \ 3H, \ CH_3), \ 3.60 \ (s, \ 3H, \ OCH_3), \ 4.04 \ (d, J = 8.4 \ Hz, \ 1H, \ CH). \]

\[^{13}C\text{-NMR:} \ (75.5 \ MHz, \ CDCl_3)\]

\[\delta_{\text{ppm}} = 8.7 \ (q, \ CH_3), \ 15.0 \ (q, \ CH_3), \ 18.3 \ (q, \ CH_3), \ 18.9 \ (q, \ CH_3), \ 21.2 \ (t, \ CH_2), \ 27.8 \ (d, \ CH), \ 50.8 \ (q, \ OCH_3), \ 78.3 \ (s, \ C-1), \ 85.1 \ (d, \ C-7), \ 124.1 \ (s, \ C-5), \ 164.1 \ (s, \ C-3). \]

exo-7-Isopropyl-5-methoxy-3-methyl-1-propyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene (exo-42ec) (sbo-353)

A solution of isobutyraldehyde (0.36 g, 5 mmol) and 2-methyl-4-propyl-5-methoxyoxazole (0.75 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general procedure. Distillation of the solvent under vacuum afforded 0.98 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding \(\alpha \)-amino-\(\beta \)-hydroxy ester (see later).

Yield: 86 %

\[^{1}H\text{-NMR:} \ (300 \ MHz, \ CDCl_3)\]

\[\delta_{\text{ppm}} = 0.79 \ (d, J = 6.8 \ Hz, \ 6H, \ 2CH_3), \ 0.82 \ (t, J = 7.2 \ Hz, \ 3H, \ CH_3), \ 1.12 \ (m, \ 2H, \ CH_2), \ 1.23 \ (m, \ 2H, \ CH_2), \ 1.75 \ (m, \ 2H, \ CH_2), \ 1.78 \ (m, \ 1H, \ CH), \ 2.21 \ (s, \ 3H, \ CH_3), \ 3.44 \ (s, \ 3H, \ OCH_3), \ 3.66 \ (d, J = 12.2 \ Hz, \ 1H, \ 7-H). \]

\[^{13}C\text{-NMR:} \ (75.5 \ MHz, \ CDCl_3)\]

\[\delta_{\text{ppm}} = 13.5 \ (q, \ CH_3), \ 13.9 \ (q, \ CH_3), \ 14.3 \ (q, \ CH_3), \ 16.7 \ (q, \ CH_3), \ 17.7 \ (q, \ CH_3), \ 26.3 \ (t, \ CH_2), \ 28.6 \ (t, \ CH_2), \ 50.8 \ (q, \ OCH_3), \ 90.7 \ (s, \ C-1), \ 94.1 \ (d, \ C-7), \ 124.1 \ (s, \ C-5), \ 164.8 \ (s, \ C-3). \]

HRMS: (C\(_{12}\)H\(_{21}\)NO\(_3\), M = 227.15 g/mol)

Calcd: 227.1516

Found: 227.1509

exo-1,7-Diisopropyl-5-methoxy-3-methyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene (exo-42ed) (sbo-p38)

298
A solution of isobutyraldehyde (0.36 g, 5 mmol) and 4-isopropyl-2-methyl-5-methoxyoxazole (0.75 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general procedure. Distillation of the solvent under vacuum afforded 0.92 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy ester (see later).

Yield: 81%

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 0.78$ (d, J = 6.6 Hz, 6H, 2CH$_3$), 0.82 (m, 1H, CH), 0.85 (d, J = 7.2 Hz, 3H, CH$_3$), 0.92 (t, J = 7.4 Hz, 3H, CH$_3$), 1.43 (m, 1H, CH), 1.85 (m, 2H, CH$_2$), 2.00 (s, 3H, CH$_3$), 3.62 (s, 3H, OCH$_3$), 4.18 (d, J = 8.4 Hz, 1H, 7-H).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 8.7$ (q, CH$_3$), 11.3 (q, CH$_3$), 11.9 (t, CH$_2$), 14.5 (q, CH$_3$), 19.3 (q, CH$_3$), 19.5 (q, CH$_3$), 22.3 (d, CH), 27.2 (d, CH), 52.0 (q, OCH$_3$), 82.3 (s, C-1), 88.1 (d, C-7), 124.3 (s, C-5), 165.7 (s, C-3).

exo-1-Isobutyl-7-isopropyl-5-methoxy-3-methyl-4,6-dioxo-2-aza-bicyclo[3.2.0]hept-2-ene (exo-42ee) (sbo-340)

A solution of isobutyraldehyde (0.36 g, 5 mmol) and 4-isobutyl-2-methyl-5-methoxyoxazole (0.84 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general procedure. Distillation of the solvent under vacuum afforded 1.1 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy ester (see later).

Yield: 91%

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 0.82$ (d, J = 6.8 Hz, 6H, 2CH$_3$), 0.85 (d, J = 7.2 Hz, 6H, 2CH$_3$), 1.12 (m, 2H, 2CH), 1.78 (m, 2H, CH$_2$), 1.98 (s, 3H, CH$_3$), 3.46 (s, 3H, OCH$_3$), 3.79 (d, J = 12.1 Hz, 1H, 7-H).
4. Experimental part

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 14.1$ (q, CH$_3$), 14.9 (q, CH$_3$), 17.7 (q, CH$_3$), 18.6 (q, CH$_3$), 18.9 (q, CH$_3$), 29.7 (d, CH), 34.4 (d, CH), 40.6 (t, CH$_2$), 50.8 (q, OCH$_3$), 91.5 (s, C-1), 94.1 (d, C-7), 124.3 (s, C-5), 164.5 (s, C-3).

$\textit{exo-1-sec-Butyl-7-isopropyl-5-methoxy-3-methyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene (exo-42ef)}$ (sbo-346)

A solution of isobutyraldehyde (0.36 g, 5 mmol) and 4-\textit{sec}-butyl-2-methyl-5-methoxyoxazole (0.84 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general procedure. Distillation of the solvent under vaccum afforded 0.97 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy ester (see later).

Yield: 83%

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 0.82$ (d, J = 6.6 Hz, 3H, CH$_3$), 0.84 (d, J = 6.8 Hz, 3H, CH$_3$), 0.89 (d, J = 7.2 Hz, 3H, CH$_3$), 0.91 (t, J = 7.1 Hz, 3H, CH$_3$), 1.10 (m, 2H, CH$_2$), 1.43 (m, 1H, CH), 2.00 (s, 3H, CH$_3$), 3.53 (s, 3H, OCH$_3$), 4.17 (d, J = 4.2 Hz, 1H, 7-H).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 9.3$ (q, CH$_3$), 11.8 (q, CH$_3$), 12.7 (q, CH$_3$), 19.3 (q, CH$_3$), 19.4 (q, CH$_3$), 23.3 (d, CH), 24.2 (t, CH$_2$), 27.3 (d, CH), 52.3 (q, OCH$_3$), 80.0 (s, C-1), 81.3 (d, C-7), 124.3 (s, C-5), 164.7 (s, C-3).

HRMS: (C$_{13}$H$_{23}$NO$_3$, M = 241.17 g/mol)
Calcd: 241.1672
Found: 241.1667

Photolyses of 3-methylbutyraldehyde with 5-methoxyoxazoles 36a-f:

$\textit{exo-7-Isobutyl-5-methoxy-1,3-dimethyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene (exo-42fa)}$ (sbo-312)
A solution of 3-methylbutyraldehyde (0.43 g, 5 mmol) and 2,4-dimethyl-5-methoxyoxazole (0.64 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general procedure. Distillation of the solvent under vacuum afforded 0.89 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding \(\alpha \)-amino-\(\beta \)-hydroxy ester (see later).

Yield: 84 %

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 0.83 \ (d, \ J = 6.6 \ \text{Hz}, \ 3\ H, \ CH_3), \ 0.86 \ (d, \ J = 6.6 \ \text{Hz}, \ 3\ H, \ CH_3), \ 0.92 \ (m, \ 1\ H, \ CH), \ 1.23 \ (s, \ 3\ H, \ CH_3), \ 1.43 \ (m, \ 2\ H, \ CH_2), \ 2.02 \ (s, \ 3\ H, \ CH_3), \ 3.47 \ (s, \ 3\ H, \ OCH_3), \ 4.32 \ (d, \ J = 4.0, \ 8.5 \ \text{Hz}, \ 1\ H, \ 7\ H). \]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 12.2 \ (q, \ CH_3), \ 14.9 \ (q, \ CH_3), \ 21.9 \ (q, \ CH_3), \ 23.2 \ (d, \ CH), \ 24.4 \ (q, \ CH_3), \ 40.8 \ (t, \ CH_2), \ 51.3 \ (q, \ OCH_3), \ 73.6 \ (s, \ C-1), \ 82.8 \ (d, \ C-7), \ 124.6 \ (s, \ C-5), \ 165.0 \ (s, \ C-3). \]

HRMS: \((C_{11}H_{19}NO_3, \ M = 213.14 \ \text{g/mol}) \)

Calcd: 213.1360

Found: 213.1353

\textit{exo-1-Ethyl-7-isobutyl-5-methoxy-3-methyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene (exo-42fb)} (sbo-412)

A solution of 3-methylbutyraldehyde (0.43 g, 5 mmol) and 4-ethyl-2-methyl-5-methoxyoxazole (0.64 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general procedure. Distillation of the solvent under vacuum afforded 0.98 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding \(\alpha \)-amino-\(\beta \)-hydroxy ester (see later).

Yield: 86 %

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))
4. Experimental part

\[\delta_{ppm} = 0.88 \text{ (d, } J = 6.8 \text{ Hz, } 3H, \text{ CH}_3), 0.92 \text{ (d, } J = 6.6 \text{ Hz, } 3H, \text{ CH}_3), 1.02 \text{ (t, } J = 7.5 \text{ Hz, } 3H, \text{ CH}_3), 1.23 \text{ (m, } 1H, \text{ CH), 1.43 \text{ (m, } 2H, \text{ CH}_2), 1.54 \text{ (m, } 2H, \text{ CH}_2), 1.54 \text{ (m, } 2H, \text{ CH}_2), 2.03 \text{ (s, } 3H, \text{ CH}_3), 3.78 \text{ (s, } 3H, \text{ OCH}_3), 4.12 \text{ (dd, } J = 9.2, 2.1 \text{ Hz, } 1H, 7-H) \].

\[_{13}^{13} \text{C-NMR: (75.5 MHz, CDCl}_3 \]

\[\delta_{ppm} = 9.0 \text{ (q, CH}_3), 15.4 \text{ (q, CH}_3), 19.2 \text{ (q, CH}_3), 19.7 \text{ (q, CH}_3), 23.1 \text{ (t, CH}_2), 27.3 \text{ (d, CH), 34.1 (t, CH}_2), 50.2 \text{ (q, OCH}_3), 79.2 \text{ (s, C-1), 88.3 (d, C-7), 124.2 (s, C-5), 164.7 (s, C-3).} \]

exo-7-Isobutyl-5-methoxy-3-methyl-1-propyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene

(\textit{exo-42fc}) (sbo-350)

A solution of 3-methylbutyraldehyde (0.43 g, 5 mmol) and 2-methyl-4-propyl-5-methoxyoxazole (0.75 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general procedure. Distillation of the solvent under vacuum afforded 1.0 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding \(\alpha \)-amino-\(\beta \)-hydroxy ester (see later).

Yield: 83 %

\[_{1}^{1} \text{H-NMR: (300 MHz, CDCl}_3 \]

\[\delta_{ppm} = 0.80 \text{ (d, } J = 7.1 \text{ Hz, } 6H, \text{ CH}_2), 0.83 \text{ (t, } J = 7.2 \text{ Hz, } 3H, \text{ CH}_3), 1.23 \text{ (m, } 2H, \text{ CH}_2), 1.65 \text{ (m, } 2H, \text{ CH}_2), 1.73 \text{ (m, } 1H, \text{ CH), 1.98 (s, } 3H, \text{ CH}_3), 3.41 (s, } 3H, \text{ OCH}_3), 4.27 (dd, } J = 10.2, 4.9 \text{ Hz, } 1H, 7-H) \].

\[_{13}^{13} \text{C-NMR: (75.5 MHz, CDCl}_3 \]

\[\delta_{ppm} = 14.3 \text{ (q, CH}_3), 14.9 \text{ (q, CH}_3), 16.9 \text{ (t, CH}_2), 21.7 \text{ (d, CH), 23.2 (q, CH}_3), 24.2 \text{ (q, CH}_3), 28.4 \text{ (t, CH}_2), 40.4 \text{ (t, CH}_2), 50.9 \text{ (q, OCH}_3), 76.5 (s, C-1), 87.8 (d, C-7), 124.4 (s, C-5), 164.7 (s, C-3).} \]

HRMS: (\(C_{13}H_{23}NO_3 \), \(M = 241.17 \) g/mol)

Calcd: 241.1764

Found: 241.1762
4. Experimental part

exo-7-Isobutyl-1-isopropyl-5-methoxy-3-methyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene
(exo-42fd) (sbo-325)

![Chemical structure of exo-7-Isobutyl-1-isopropyl-5-methoxy-3-methyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene](image)

A solution of 3-methylbutyraldehyde (0.43 g, 5 mmol) and 4-isopropyl-2-methyl-5-methoxyoxazole (0.75 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general procedure. Distillation of the solvent under vacuum afforded 1.1 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding \(\alpha\)-amino-\(\beta\)-hydroxy ester (see later).

Yield: 87 %

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 0.72 \text{ (d, J = 6.6 Hz, 3H, CH}_3\text{)}, 0.81 \text{ (d, J = 6.5 Hz, 3H, CH}_3\text{)}, 0.88 \text{ (d, J = 6.8 Hz, 6H, 2CH}_3\text{)}, 1.35 \text{ (m, 2H, 2CH)}, 1.76 \text{ (m, 2H, CH}_2\text{)}, 1.98 \text{ (s, 3H, CH}_3\text{)}, 3.42 \text{ (s, 3H, OCH}_3\text{)}, 4.29 \text{ (dd, J = 11.2, 2.3 Hz, 1H, 7-H)}.\]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 14.8 \text{ (q, CH}_3\text{), 16.6 \text{ (q, CH}_3\text{), 17.7 \text{ (q, CH}_3\text{), 21.3 \text{ (q, CH}_3\text{), 23.5 \text{ (q, CH}_3\text{), 23.9 \text{ (d, CH), 24.7 \text{ (d, CH), 40.1 \text{ (t, CH}_2\text{), 50.7 \text{ (q, OCH}_3\text{), 80.0 \text{ (s, C-1), 87.9 \text{ (d, C-7), 124.4 \text{ (s, C-5), 164.9 \text{ (s, C-3).}}}}}\]

exo-1,7-Diisobutyl-5-methoxy-3-methyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene
(exo-42fe) (sbo-339)

![Chemical structure of exo-1,7-Diisobutyl-5-methoxy-3-methyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene](image)

A solution of 3-methylbutyraldehyde (0.43 g, 5 mmol) and 4-isobutyl-2-methyl-5-methoxyoxazole (0.84 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general procedure. Distillation of the solvent under vacuum afforded 1.12 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding \(\alpha\)-amino-\(\beta\)-hydroxy ester (see later).

Yield: 88 %

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

303
δ_{ppm} = 0.81 (d, J = 6.8 Hz, 3H, CH₃), 0.83 (d, J = 6.7 Hz, 3H, CH₃), 0.85 (d, J = 7.1 Hz, 3H, CH₃), 0.89 (d, J = 7.5 Hz, 3H, CH₃), 1.53 (m, 2H, CH₂), 1.54 (m, 2H, CH₂), 1.56 (m, 2H, CH₂), 2.00 (s, 3H, CH₃), 3.46 (s, 3H, OCH₃), 4.27 (dd, J = 1.3, 7.7 Hz, 1H, 7-H).

13C-NMR: (75.5 MHz, CDCl₃)
δ_{ppm} = 15.0 (q, CH₃), 21.6 (q, CH₃), 23.1 (q, CH₃), 23.4 (q, CH₃), 23.9 (q, CH₃), 24.2 (d, CH), 24.4 (d, CH), 34.3 (t, CH₂), 40.7 (t, CH₂), 51.0 (q, OCH₃), 76.3 (s, C-1), 88.3 (d, C-7), 124.6 (s, C-5), 164.2 (s, C-3).

HRMS: (C₁₄H₂₅NO₃, M = 255.18 g/mol)
Calcd: 255.1828
Found: 255.1822

exo-1-sec-Butyl-7-isobutyl-5-methoxy-3-methyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene
(exo-42ff) (sbo-345)

A solution of 3-methylbutyraldehyde (0.43 g, 5 mmol) and 4-sec-butyl-2-methyl-5-methoxyoxazole (0.84 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general procedure. Distillation of the solvent under vaccum afforded 0.89 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy ester (see later).

Yield: 88%

IR: (Film)
ν (cm⁻¹) = 2984, 1605, 1445, 1009, 980.

1H-NMR: (300 MHz, CDCl₃)
δ_{ppm} = 0.81 (t, J = 7.4 Hz, 3H, CH₃), 0.83 (d, J = 6.8 Hz, 3H, CH₃), 0.89 (d, J = 7.2 Hz, 3H, CH₃), 0.91 (d, J = 7.1 Hz, 3H, CH₃), 1.10 (m, 2H, CH₂), 1.43 (m, 1H, CH), 1.65 (m, 2H, CH₂), 2.0 (s, 3H, CH₃), 2.35 (m, 1H, CH), 3.47 (s, 3H, OCH₃), 4.25 (dd, 1H, J = 5.3, 6.0 Hz, 1H, 7-H).

13C-NMR: (75.5 MHz, CDCl₃)
4. Experimental part

\[\delta_{\text{ppm}} = 9.0 \ (q, \text{CH}_3), 11.5 \ (q, \text{CH}_3), 11.9 \ (q, \text{CH}_3), 12.9 \ (q, \text{CH}_3), 13.9 \ (q, \text{CH}_3), 14.9 \ (q, \text{CH}_3), 23.5 \ (d, \text{CH}), 24.7 \ (d, \text{CH}), 24.8 \ (t, \text{CH}_2), 32.1 \ (t, \text{CH}_2), 50.8 \ (q, \text{OCH}_3), 80.5 \ (s, \text{C}-1), 80.9 \ (d, \text{C}-7), 124.6 \ (s, \text{C}-5), 165.2 \ (s, \text{C}-3). \]

MS: (EI, 70 eV)

m/z (%) = 214 (M\(^+\)-CH\(_3\)CN, 5), 198 (M\(^+\)-Bu\(^+\), 23), 169 (55), 168 (32), 155 (52), 144 (75), 126 (100), 112 (43), 99 (20), 95 (15), 86 (55), 68 (18), 57 (40).

4.15.1 Synthesis of erythro (2S\(^*\),3S\(^*\))-\(\alpha\)-acetamido-\(\alpha\)-alkylated-\(\beta\)-hydroxy esters 43aa-ff;

General procedure:

To a solution of the bicyclic oxetane 42aa-ff (0.002 mol) in 20 mL of methylene chloride, 0.5 ml of conc. HCl was added. The mixture is stirred in an open flask at room temperature for 2 h and the reaction was controled by TLC. The reaction mixture was quenched with water and extracted with methylene chloride (3 x 20 mL). The organic layer was washed with 5 % NaHCO\(_3\), brine, and dried over anhydrous MgSO\(_4\). The solvent was removed in *vacuo* and the residual oil was purified by preparative chromatography.

erythro-Methyl (2S\(^*\),3S\(^*\)) 2-(N-acetylamino)-3-hydroxy-2-methyl-3-phenylpropanoate (erythro-43aa) (sbo-305b)

Following the above general procedure, the bicyclic oxetane 42aa (0.47 g, 2 mmol) was hydrolytically cleaved in 3 h. Preparative chromatography yielded 0.33 g of the product as a colorless oil.

Yield: 65 %

TLC: R\(_f\) = 0.33 (ethylacetate/n-hexane 1: 4)

IR: (Film)

\[\tilde{\nu} \ (\text{cm}^{-1}) = 3350, 3320, 2988, 1720, 1680, 1580, 1440, 1340, 1062, 987. \]

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 1.23 \ (s, 3\ H, \text{CH}_3), 2.12 \ (s, 3\ H, \text{CH}_3\text{CO}), 3.79 \ (s, 3\ H, \text{OCH}_3), 4.06 \ (s, 1\ H, \text{CHOH}), 7.32 \ (m, 5\ H, \text{H}_\text{arom}). \]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))
4. Experimental part

\[\delta_{ppm} = 13.5 \ (q, \ CH_3), 21.4 \ (q, \ CH_3), 23.4 \ (q, \ CH_3), 47.7 \ (s, \ C-2), 49.1 \ (d, \ C-3), 52.9 \ (q, \ OCH_3), 127.6 \ (d, \ CH_{arom}), 128.4 \ (d, \ CH_{arom}), 133.5 \ (s, \ C_q{arom}), 169.9 \ (s, \ CON), 179.4 \ (s, \ COO). \]

MS: (El, 70 eV)

\[m/z \ (%) = 249 \ (M^+\text{-H}_2, \ 4), 236 \ (M^+\text{-Me, \ 8}), 202 \ (8), 192 \ (M^+\text{-CO}_2\text{Me, \ 15}), 191 \ (78), 160 \ (10), 132 \ (12), 131 \ (100), 105 \ (50), 91 \ (20), 77 \ (30), 51 \ (10). \]

HRMS: (C_{13}H_{17}NO_{4}, M = 251.12 \text{ g/mol})

Calcd: 251.1254

Found: 251.1249

erythro-Methyl \ (2S^*,3S^*) \ 2-(N-acetylamino)-2-ethyl-3-hydroxy-3-phenylpropanoate (erythro-43ab) (sbo-400a)

![erythro-Methyl (2S^*,3S^*) 2-(N-acetylamino)-2-ethyl-3-hydroxy-3-phenylpropanoate](image)

Following the above general procedure, the bicyclic oxetane 42ab (0.49 g, 2 mmol) was hydrolytically cleaved in 5h. Preparative chromatography yielded 0.39 g of the product as a colorless oil.

Yield: 73 %

TLC: \(R_f = 0.36 \) (ethylacetate/n-hexane 1: 4)

**\(^1\text{H-NMR:}\) (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 1.08 \ (t, \ J = 7.5 \text{ Hz, } 3H, \ CH_3), 1.35 \ (q, \ J = 7.5 \text{ Hz, } 2H, \ CH_2), 1.99 \ (s, \ 3H, \ CH_3CO), 3.89 \ (s, \ 3H, \ OCH_3), 4.35 \ (s, \ 1H, \ CHOH), 7.26-7.34 \text{ (m, } 5H, \ H_{arom})). \]

**\(^{13}\text{C-NMR:}\) (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 8.8 \ (q, \ CH_3), 24.1 \ (q, \ CH_3), 25.4 \ (t, \ CH_2), 53.0 \ (q, \ OCH_3), 63.2 \ (s, \ C-2), 70.2 \ (d, \ C-3), 126.1 \ (d, \ CH_{arom}), 128.1 \ (d, \ CH_{arom}), 129.3 \ (d, \ CH_{arom}), 134.5 \ (s, \ C_q{arom}), 170.3 \ (s, \ CON), 171.5 \ (s, \ COO)). \]

erythro-Methyl \ (2S^*,3S^*) \ 2-(N-acetylamino)-2-(hydroxy-phenyl-methyl)pentanoate (erythro-43ac) (sbo-348a)

![erythro-Methyl (2S^*,3S^*) 2-(N-acetylamino)-2-(hydroxy-phenyl-methyl)pentanoate](image)
Following the above general procedure, the bicyclic oxetane 42ac (0.52 g, 2 mmol) was hydrolytically cleaved in 6h. Preparative chromatography yielded 0.32 g of the product as a colorless oil.

Yield: 58 %

TLC: \(R_f = 0.21 \) (ethylacetate/n-hexane 1: 4)

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 0.88 \text{ (t, } J = 7.4 \text{ Hz, } 3\text{H, CH}_3\), \]
\[1.27 \text{ (m, } 2\text{H, CH}_2\), \]
\[1.51-1.81 \text{ (m, } 2\text{H, CH}_2\), \]
\[1.98 \text{ (s, } 3\text{H, CH}_3\text{CO})\], \]
\[3.78 \text{ (s, } 3\text{H, OCH}_3\), \]
\[4.02 \text{ (s, } 1\text{H, CHOH)}\], \]
\[6.21 \text{ (bs, } 1\text{H, NH)}\], \]
\[7.22-7.26 \text{ (m, } 5\text{H, H}_\text{arom}\).

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 13.6 \text{ (q, } CH_3\), \]
\[18.5 \text{ (q, } CH_3\), \]
\[23.1 \text{ (t, } CH_2\), \]
\[34.6 \text{ (t, } CH_2\), \]
\[52.2 \text{ (q, } OCH_3\), \]
\[70.1 \text{ (s, C-2), } 78.0 \text{ (d, C-3), } 125.7 \text{ (d, CH}_\text{arom}\), \]
\[126.9 \text{ (d, CH}_\text{arom}\), \]
\[128.1 \text{ (d, CH}_\text{arom}\), \]
\[136.4 \text{ (s, Cq}_\text{arom}\), } 169.8 \text{ (s, CON), } 173.3 \text{ (s, COO).} \]

MS: (EI, 70 eV)

\(m/z \text{ (%) = 278 (M}^+\text{-1, 5), 262 (M}^+\text{-OH, 7), 202 (8), 220 (M}^+\text{-CO}_2\text{Me, 10), 219 (55), } \]
\[155 (78), 127 (100), 105 (43), 91 (15), 77 (30), 59 (13). \]

Anal: (C\(_{15}\)H\(_{21}\) NO\(_4\), M = 279.33 g/mol)

\begin{align*}
\text{Calcd:} & \quad \text{C 64.50} & \quad \text{H 7.58} & \quad \text{N 5.01} \\
\text{Found:} & \quad \text{C 64.72} & \quad \text{H 7.42} & \quad \text{N 5.16}
\end{align*}

erythro-Methyl (2S*,3S*) 2-(N-acetylamino)-2-(hydroxy-phenyl-methyl)-3-methylbutanoate (erythro-43ad) (sbo-336c)

Following the above general procedure, the bicyclic oxetane 42ad (0.52 g, 2 mmol) was hydrolytically cleaved in 4h. Preparative chromatography yielded 0.27 g of the *erythro*-isomer and 0.12 g of the *threo*-isomer, both as a colorless oil.

Yield: 48 %

TLC: \(R_f = 0.47 \) (ethylacetate/n-hexane 1: 4)

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 0.76 \text{ (d, } J = 6.9 \text{ Hz, } 3\text{H, CH}_3\), \]
\[1.23 \text{ (d, } J = 6.8 \text{ Hz, } 3\text{H, CH}_3\), \]
\[1.43 \text{ (sextet, } J = 6.8 \text{ Hz, } 1\text{H, CH)}\], \]
\[2.13 \text{ (s, } 3\text{H, CH}_3\text{CO})\], \]
\[3.78 \text{ (s, } 3\text{H, OCH}_3\), \]
\[4.14 \text{ (s, } 1\text{H, CHOH)}\], \]
\[7.32-7.34 \text{ (m, } 5\text{H, H}_\text{arom}\). \]
4. Experimental part

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 17.5$ (q, CH$_3$), 18.2 (q, CH$_3$), 23.7 (q, CH$_3$), 30.3 (d, CH), 52.8 (q, OCH$_3$), 75.1 (s, C-2), 75.6 (d, C-3), 125.8 (d, CH$_{arom}$), 127.8 (d, CH$_{arom}$), 128.8 (d, CH$_{arom}$), 141.2 (s, C$_{qarom}$), 170.2 (s, CON), 171.4 (s, COO).

Anal: (C$_{15}$H$_{21}$NO$_4$, M = 279.33 g/mol)

Calcd: C 64.50 H 7.58 N 5.01
Found: C 64.65 H 7.38 N 4.98

threo-Methyl (2S*,3R*) 2-(N-acetylamino)-2-(hydroxy-phenyl-methyl)-3-methyl butanoate (threo-43ad) (sbo-326a)

![Structure of threo-43ad](image)

Yield: 25 %

TLC: R$_f$ = 0.31 (ethylacetate/n-hexane 1: 4)

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 0.95$ (d, J = 6.8 Hz, 3H, CH$_3$), 0.99 (d, J = 6.6 Hz, 3H, CH$_3$), 2.19 (s, 3H, CH$_3$CO), 2.33 (sextet, J = 6.8 Hz, 1H, CH), 3.09 (s, 3H, OCH$_3$), 3.83 (s, 1H, CH$_{OH}$), 7.14-7.26 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 13.8$ (q, CH$_3$), 15.7 (q, CH$_3$), 18.2 (q, CH$_3$), 35.9 (d, CH), 51.3 (q, OCH$_3$), 86.2 (s, C-2), 87.2 (d, C-3), 125.8 (d, CH$_{arom}$), 127.8 (d, CH$_{arom}$), 128.8 (d, CH$_{arom}$), 137.4 (s, C$_{qarom}$), 165.9 (s, CON), 171.3 (s, COO).

HRMS: (C$_{15}$H$_{21}$NO$_4$, M = 279.15 g/mol)

Calcd: 279.1465
Found: 279.1460

erythro-Methyl (2S*,3S*) 2-(N-acetylamino)-2-(hydroxy-phenyl-methyl)-4-methylpentanoate (erythro-43ae) (sbo-338a)

![Structure of erythro-43ae](image)
4. Experimental part

Following the above general procedure, the bicyclic oxetane 42ae (0.55 g, 2 mmol) was hydrolytically cleaved in 3h. Preparative chromatography yielded 0.34 g of the erythro-isomer and 0.13 g of the threo-isomer, both as a colorless oil.

Yield: 58 %

TLC: $R_f = 0.39$ (ethylacetate/n-hexane 1: 3)

1H-NMR: (300 MHz, CDCl$_3$)

δ ppm = 0.81 (d, $J = 6.6$ Hz, 3H, CH$_3$), 0.83 (d, $J = 6.6$ Hz, 3H, CH$_3$), 0.90 (m, 1H, CH), 1.89 (dd, $J = 13.4$, 6.7 Hz, 1H, CH), 1.92 (s, 3H, CH$_3$CO), 2.72 (dd, $J = 13.4$ Hz, 4.5 Hz, 1H, CH), 3.80 (s, 3H, OCH$_3$), 3.82 (s, 1H, CHOH), 7.25-7.38 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ ppm = 21.7 (q, CH$_3$), 21.9 (q, CH$_3$), 23.9 (q, CH$_3$), 24.6 (q, CH$_3$), 40.8 (t, CH$_2$), 52.8 (q, OCH$_3$), 68.3 (s, C-2), 71.0 (d, C-3), 126.1 (d, CH$_{arom}$), 129.8 (d, CH$_{arom}$), 137.2 (s, C$_{arom}$), 169.6 (s, CON), 172.9 (s, COO).

MS: (EI, 70 eV)

m/z (%) = 278 (M$^+$-1, 5), 261 (M$^+$-H$_2$O, 8), 218 (10), 202 (12), 156 (15), 155 (100), 140 (38), 127 (80), 112 (45), 105 (65), 84 (27), 77 (30), 55 (8).

threo-Methyl (2S*,3R*) 2-(N-acetylamino)-2-(hydroxy-phenyl-methyl)-4-methyl pentanoate (threo-43ae) (sbo-338b)

Yield: 24 %

TLC: $R_f = 0.33$ (ethylacetate/n-hexane 1: 3)

1H-NMR: (300 MHz, CDCl$_3$)

δ ppm = 0.86 (d, $J = 6.8$ Hz, 3H, CH$_3$), 1.00 (d, $J = 6.6$ Hz, 3H, CH$_3$), 1.33 (m, 1H, CH), 1.70 (dd, $J = 13.5$, 5.6 Hz, 1H, CH), 2.17 (s, 3H, CH$_3$CO), 2.80 (dd, $J = 13.5$, 5.6 Hz, 1H, CH), 3.09 (s, 3H, OCH$_3$), 3.77 (s, 1H, CHOH), 7.23-7.36 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ ppm = 14.2 (q, CH$_3$), 22.9 (q, CH$_3$), 24.3 (q, CH$_3$), 24.5 (q, CH$_3$), 24.9 (t, CH$_2$), 52.9 (q, OCH$_3$), 83.3 (s, C-2), 90.0 (d, C-3), 125.8 (d, CH$_{arom}$), 126.1 (d, CH$_{arom}$), 128.6 (d, CH$_{arom}$), 140.6 (s, C$_{arom}$), 165.7 (s, CON), 171.5 (s, COO).
4. Experimental part

erythro-Methyl (2S*,3S*) 2-(N-acetylamino)-2-(hydroxy-phenyl-methyl)-3-methylpentanoate (*erythro*-43af) (sbo-344c)

Following the above general procedure, the bicyclic oxetane 42af (0.55 g, 2 mmol) was hydrolytically cleaved in 6h. Preparative chromatography yielded 0.23 g of the *erythro*-isomer and 0.11 g of the *threo*-isomer, both as a colorless oil.

Yield: 40 %

TLC: $R_f = 0.36$ (ethylacetate/n-hexane 1: 4)

1H-NMR: (300 MHz, CDCl$_3$)

\[
\delta_{ppm} = 0.77 \text{ (d, } J = 6.9 \text{ Hz, } 3\text{H, CH}_3), 0.87 \text{ (d, } J = 7.4 \text{ Hz, } 3\text{H, CH}_3), 1.32 \text{ (m, 2H, CH}_2), 1.94 \text{ (s, 3H, CH}_3\text{CO)}, 2.67 \text{ (m, 1H, CH)}, 3.82 \text{ (s, 3H, OCH}_3), 4.13 \text{ (s, 1H, CHOH), 6.65 (bs, 1H, NH), 7.05-7.16 (m, 5H, H}_\text{arom}).
\]

13C-NMR: (75.5 MHz, CDCl$_3$)

\[
\delta_{ppm} = 12.8 \text{ (q, CH}_3), 14.1 \text{ (q, CH}_3), 23.6 \text{ (q, CH}_3), 24.9 \text{ (t, CH}_2), 36.9 \text{ (d, CH), 52.7 (q, OCH}_3), 74.7 \text{ (s, C-2), 75.8 (d, C-3), 125.7 (d, CH}_\text{arom}, 127.9 \text{ (d, CH}_\text{arom}, 128.6 (d, CH}_\text{arom}, 141.2 \text{ (s, Cq}_\text{arom}, 171.5 \text{ (s, CON), 171.9 (s, COO).}
\]

Anal: (C$_{16}$H$_{23}$NO$_4$, M = 293.3 g/mol)

Calcd: C 65.51 H 7.90 N 4.77

Found: C 65.66 H 7.53 N 4.74

threo-Methyl (2S*,3R*) 2-(N-acetylamino)-2-(hydroxy-phenyl-methyl)-3-methylpentanoate (*threo*-43af) (sbo-344b)

Yield: 19 %

TLC: $R_f = 0.27$ (ethylacetate/n-hexane 1: 4)

1H-NMR: (300 MHz, CDCl$_3$)

\[
\delta_{ppm} = 0.89 \text{ (d, } J = 7.5 \text{ Hz, } 3\text{H, CH}_3), 0.94 \text{ (d, } J = 6.8 \text{ Hz, } 3\text{H, CH}_3), 1.23 \text{ (m, 1H, CH), 1.47 (m, 2H, CH}_2), 2.20 \text{ (s, 3H, CH}_3\text{CO), 3.08 (s, 3H, OCH}_3), 3.84 \text{ (s, 1H, CHOH), 7.21-7.53 (m, 5H, H}_\text{arom}).
\]
4. Experimental part

\[^{13} \text{C-NMR: (75.5 MHz, CDCl}_3 \] \]
\[\delta_{\text{ppm}} = 11.9 \text{ (q, CH}_3 \text{), 12.1 \text{ (q, CH}_3 \text{), 13.8 \text{ (q, CH}_3 \text{), 22.3 \text{ (d, CH), 42.9 \text{ (t, CH}_2 \text{), 51.3 \text{ (q, OCH}_3 \text{), 78.1 \text{ (s, C}-2\text{), 86.8 \text{ (d, C}-3\text{), 126.4 \text{ (d, CH}_\text{arom} \text{), 128.5 \text{ (d, CH}_\text{arom} \text{), 128.6 \text{ (d, CH}_\text{arom} \text{), 133.3 \text{ (s, C}_\text{arom} \text{), 169.9 \text{ (s, CON), 185.7 \text{ (s, COO).}}) \]

erythro-Methyl (2S\text{*},3S\text{*}) 2-(N-acetylamino)-3-hydroxy-2-methyl-3-naphthen-2-ylpropanoate (eryth|o-43ba) (sbo-304c)

Following the above general procedure, the bicyclic oxetane 42ba (0.57 g, 2 mmol) was hydrolytically cleaved in 7h. Preparative chromatography yielded 0.29 g of the product as a colorless oil.

Yield: 48 %

TLC: \(R_f = 0.47 \) (ethylacetate/n-hexane 1: 2)

\[^1 \text{H-NMR: (300 MHz, CDCl}_3 \] \]
\[\delta_{\text{ppm}} = 1.25 \text{ (s, 3H, CH}_3 \text{), 2.17 \text{ (s, 3H, CH}_3 \text{CO), 3.82 \text{ (s, 3H, OCH}_3 \text{), 4.22 \text{ (s, 1H, CHOHH), 7.46-7.92 \text{ (m, 7H, H}_\text{arom}.}}) \]

\[^{13} \text{C-NMR: (75.5 MHz, CDCl}_3 \] \]
\[\delta_{\text{ppm}} = 13.5 \text{ (q, CH}_3 \text{), 23.5 \text{ (q, CH}_3 \text{), 47.9 \text{ (s, C}-2\text{), 49.3 \text{ (d, C}-3\text{), 53.0 \text{ (q, OCH}_3 \text{), 126.3 \text{ (d, CH}_\text{arom} \text{), 127.8 \text{ (d, CH}_\text{arom} \text{), 128.3 \text{ (d, CH}_\text{arom} \text{), 129.3 \text{ (d, CH}_\text{arom} \text{), 133.2 \text{ (s, C}_\text{arom} \text{), 136.9 \text{ (s, C}_\text{arom} \text{), 166.9 \text{ (s, CON), 180.0 \text{ (s, COO).}}) \]

MS: (EI, 70 eV)
\[m/z (%) = 299 \text{ (M}^+\text{-H}_2, 5), 242 (4), 241 (50), 207 (28), 206 (30), 182 (19), 181 (100), 140 (30), 139 (48), 102 (10), 89 (5), 63 (4). \]

erythro-Methyl (2S\text{*},3S\text{*}) 2-acetylamino-3-hydroxy-2-methyl-5-phenylpentanoate (eryth|o-43ca) (sbo-313a)
Following the above general procedure, the bicyclic oxetane 42ca (0.52 g, 2 mmol) was hydrolytically cleaved in 4h. Preparative chromatography yielded 0.31 g of the product as a colorless oil.

Yield: 55 %

TLC: $R_f = 0.41$ (ethylacetate/n-hexane 1: 4)

IR: (Film) ν (cm$^{-1}$) = 3420, 3270, 2986, 1735, 1690, 1600, 1550, 1340, 1062, 957.

1H-NMR: (300 MHz, CDCl$_3$)

δ_{ppm} = 1.35 (s, 3H, CH$_3$), 1.94 (dd, J = 6.3, 14.0 Hz, 2H, CH$_2$), 2.03 (s, 3H, CH$_3$CO), 2.68-2.92 (dd, J = 7.4, 14.0 Hz, 2H, CH$_2$), 3.76 (s, 3H, OCH$_3$), 4.66 (dd, J = 7.4, 6.3 Hz, 1H, CH$_2$OH), 5.30 (s, 1H, NH), 7.21-7.31 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ_{ppm} = 14.2 (q, CH$_3$), 19.6 (q, CH$_3$), 31.9 (t, CH$_2$), 32.9 (t, CH$_2$), 52.6 (q, OCH$_3$), 75.0 (s, C-2), 83.9 (d, C-3), 126.1 (d, C$_{arom}$), 128.3 (d, C$_{arom}$), 129.3 (d, C$_{arom}$), 141.0 (s, C$_{arom}$), 165.2 (s, CON), 174.3 (s, COO).

MS: (EI, 70 eV)

m/z (%) = 279 (M$^+$, 5), 261 (M$^+$-H$_2$O, 6), 220 (M$^+$-CO$_2$Me, 5), 178 (8), 145 (45), 119 (8), 113 (40), 102 (100), 92 (10), 91 (78), 77 (15), 51 (7).

erythro-Methyl (2S*,3S*) 2-acetylamino-3-hydroxy-2-isopropyl-5-phenylpentanoate (erythro-43cd) (sbo-328b)

Following the above general procedure, the bicyclic oxetane 42cd (0.58 g, 2 mmol) was hydrolytically cleaved in 5h. Preparative chromatography yielded 0.34 g of the product as a colorless oil.

Yield: 55 %

TLC: $R_f = 0.48$ (ethylacetate/n-hexane 1: 3)

1H-NMR: (300 MHz, CDCl$_3$)

δ_{ppm} = 0.85 (d, J = 6.8 Hz, 3H, CH$_3$), 1.23 (m, 1H, CH), 2.02 (s, 3H, CH$_3$CO), 2.13 (dd, J = 7.4, 14.0 Hz, 2H, CH$_2$), 2.63-2.92 (dd, J = 6.4, 14.0 Hz, 2H, CH$_2$), 3.68 (s, 3H, OCH$_3$), 4.32 (dd, J = 10.4, 3.3 Hz, 1H, CH$_2$OH), 7.21-7.33 (m, 5H, H$_{arom}$).
4. Experimental part

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} =$ 14.1 (q, CH$_3$), 17.5 (q, CH$_3$), 18.8 (q, CH$_3$), 30.7 (d, CH), 31.3 (t, CH$_2$), 33.5 (t, CH$_2$), 52.1 (q, OCH$_3$), 67.5 (s, C-2), 75.1 (d, C-3), 126.1 (d, CH$_{arom}$), 128.3 (d, CH$_{arom}$), 129.3 (d, CH$_{arom}$), 141.0 (s, C$_q$$_{arom}$), 169.5 (s, CON), 171.3 (s, COO).

MS: (EI, 70 eV)

m/z (%) = 307 (M$^+$, 5), 290 (M$^+$-OH, 4), 289 (M$^+$-H$_2$O, 10), 246 (M$^+$-CO$_2$Me, 8), 231 (15), 230 (100), 214 (20), 188 (13), 141 (10), 133 (28), 130 (40), 105 (60), 91 (78), 79 (7), 70 (10), 55 (8).

erythro-Methyl (2S*,3S*) 2-acetylamino-3-hydroxy-2-methylpentanoate (erythro-43da) (sbo-300a)

Following the above general procedure, the bicyclic oxetane 42da (0.37 g, 2 mmol) was hydrolytically cleaved in 3h. Preparative chromatography yielded 0.28 g of the product as a colorless oil.

Yield: 70%

TLC: $R_f = 0.15$ (ethylacetate/n-hexane 1: 4)

IR: (Film)

$\tilde{\nu}$ (cm$^{-1}$) = 3330, 3260, 2983, 1720, 1685, 1448, 1345, 1042, 987.

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} =$ 1.03 (t, $J = 7.2$ Hz, 3H, CH$_3$), 1.55 (s, 3H, CH$_3$), 1.76 (dq, $J = 2.1, 7.2$ Hz, 2H, CH$_2$), 1.96 (s, 3H, CH$_3$CO), 3.71 (s, 3H, OCH$_3$), 4.15 (dd, $J = 11.1, 2.1$ Hz, 1H, CHO), 6.22 (bs, 1H, NH).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} =$ 11.8 (q, CH$_3$), 17.2 (q, CH$_3$), 23.3 (q, CH$_3$), 26.2 (t, CH$_2$), 52.9 (q, OCH$_3$), 63.5 (s, C-2), 69.9 (d, C-3), 169.4 (s, CON), 171.7 (s, COO).

HRMS: (C$_9$H$_{17}$NO$_4$, M = 203.12 g/mol)

Calcd: 203.1248

Found: 203.1247

erythro-Methyl (2S*,3S*) 2-acetylamino-2-ethyl-3-hydroxypentanoate (erythro-43db) (sbo-410b)

313
Following the above general procedure, the bicyclic oxetane 42db (0.4 g, 2 mmol) was hydrolytically cleaved in 3h. Preparative chromatography yielded 0.28 g of the product as a colorless oil.

Yield: 65%

TLC: $R_f = 0.19$ (ethylacetate/n-hexane 1: 4)

1H-NMR: (300 MHz, CDCl$_3$)

δ ppm = 0.75 (t, $J = 7.4$ Hz, 3H, CH$_3$), 1.03 (t, $J = 7.4$ Hz, 3H, CH$_3$), 1.50 (m, 2H, CH$_2$), 2.07 (s, 3H, CH$_3$CO), 2.13 (sextet, $J = 7.4$ Hz, 1H, CH), 3.78 (s, 3H, OCH$_3$), 4.23 (dd, $J = 11.6$, 2.1 Hz, 1H, CH$_2$O), 6.40 (bs, 1H, NH).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ ppm = 9.0 (q, CH$_3$), 12.0 (q, CH$_3$), 24.5 (t, CH$_2$), 26.7 (t, CH$_2$), 53.2 (q, OCH$_3$), 69.9 (s, C-2), 70.2 (d, C-3), 169.5 (s, CON), 172.2 (s, COO).

Anal: (C$_{10}$H$_{19}$NO$_4$, M = 217.3 g/mol)

Calcd: C 55.28 H 8.81 N 6.46

Found: C 55.85 H 8.22 N 6.41

erythro-Methyl (2S*,3S*) 2-acetylamino-3-hydroxy-2-propylpentanoate (erythro-43dc)

(sbo-349b)

Following the above general procedure, the bicyclic oxetane 42dc (0.43 g, 2 mmol) was hydrolytically cleaved in 3h. Preparative chromatography yielded 0.35 g of the *erythro*-isomer and 0.08 g of the *threo*-isomer, both as a colorless oil.

Yield: 75%

TLC: $R_f = 0.19$ (ethylacetate/n-hexane 1: 4)

1H-NMR: (300 MHz, CDCl$_3$)

δ ppm = 0.85 (t, $J = 6.9$ Hz, 3H, CH$_3$), 1.00 (t, $J = 7.2$ Hz, 3H, CH$_3$), 1.53 (m, 2H, CH$_2$), 1.64 (dd, $J = 7.2$, 2.1 Hz, 1H, CH), 1.76 (ddd, $J = 7.2$, 4.6, 3.2 Hz, 1H, CH), 2.00 (s, 3H, CH$_3$CO), 2.15 (m, 1H, CH), 2.85 (m, 1H, CH), 3.77 (s, 3H, OCH$_3$), 4.21 (dd, $J = 11.6$, 2.1 Hz, 1H, CH$_2$O), 6.41 (bs, 1H, NH).
4. Experimental part

13C-NMR: (75.5 MHz, CDCl$_3$)

δ ppm = 12.0 (q, CH$_3$), 13.9 (q, CH$_3$), 18.1 (q, CH$_3$), 24.5 (t, CH$_2$), 26.6 (t, CH$_2$), 33.4 (t, CH$_2$), 53.2 (q, OCH$_3$), 69.2 (s, C-2), 70.3 (d, C-3), 169.5 (s, CON), 172.3 (s, COO).

HRMS: (C$_{11}$H$_{21}$NO$_4$, M = 231.15 g/mol)

Calcd: 231.1465
Found: 231.1461

threo-Methyl (2S*,3R*) 2-acetylamino-3-hydroxy-2-propylpentanoate (threo-43dc) (sbo-349a)

Yield: 12 %

TLC: R_f = 0.15 (ethylacetate/n-hexane 1: 4)

1H-NMR: (300 MHz, CDCl$_3$)

δ ppm = 0.84 (t, J = 7.2 Hz, 3H, CH$_3$), 1.02 (t, J = 7.4 Hz, 3H, CH$_3$), 1.23 (m, 2H, CH$_2$), 1.48 (m, 2H, CH$_2$), 1.67 (m, 2H, CH$_2$), 1.95 (s, 3H, CH$_3$CO), 3.69 (s, 3H, OCH$_3$), 4.33 (dd, J = 10.1, 3.5 Hz, 1H, CHOH), 6.41 (bs, 1H, NH).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ ppm = 11.3 (q, CH$_3$), 14.2 (q, CH$_3$), 14.3 (q, CH$_3$), 17.9 (t, CH$_2$), 22.9 (t, CH$_2$), 36.0 (t, CH$_2$), 52.3 (q, OCH$_3$), 78.4 (s, C-2), 86.9 (d, C-3), 165.1 (s, CON), 174.5 (s, COO).

erythro-Methyl (2S*,3S*) 2-acetylamino-3-hydroxy-2-isopropylpentanoate (erythro-43dd) (sbo-324b)

Following the above general procedure, the bicyclic oxetane 42dd (0.43 g, 2 mmol) was hydrolytically cleaved in 3h. Preparative chromatography yielded 0.31 g of the product as a colorless oil.

Yield: 67 %

TLC: R_f = 0.47 (ethylacetate/n-hexane 1: 4)
4. Experimental part

IR: (Film)

\[\tilde{\nu} (\text{cm}^{-1}) = 3339, 3220, 2998, 1740, 1665, 1450, 1355, 1042, 980. \]

1H-NMR: (300 MHz, CDCl$_3$)

\[\delta_{\text{ppm}} = 0.83 \text{ (d, } J = 6.9 \text{ Hz, } 3\text{H, CH}_3), 1.00 \text{ (d, } J = 7.1 \text{ Hz, } 3\text{H, CH}_3), 1.05 \text{ (t, } J = 7.2 \text{ Hz, } 3\text{H, CH}_3), 1.56 \text{ (ddq, } J = 7.2, 7.1, 4.4 \text{ Hz, 1H, CH), } 2.01 \text{ (s, } 3\text{H, CH}_3\text{CO}), 2.14 \text{ (dd, } J = 7.2, 1.6 \text{ Hz, 1H, CH), } 2.71 \text{ (sextet, } J = 6.9 \text{ Hz, 1H, CH), } 3.79 \text{ (s, } 3\text{H, OCH}_3), 4.51 \text{ (dd, } J = 11.7, 1.7 \text{ Hz, 1H, CHOH), } 6.45 \text{ (bs, 1H, NH).} \]

13C-NMR: (75.5 MHz, CDCl$_3$)

\[\delta_{\text{ppm}} = 12.1 \text{ (q, CH}_3), 17.2 \text{ (q, CH}_3), 18.6 \text{ (q, CH}_3), 25.1 \text{ (q, CH}_3), 26.8 \text{ (t, CH}_2), 52.9 \text{ (q, OCH}_3), 69.9 \text{ (s, C-2), } 73.5 \text{ (d, C-3), } 169.7 \text{ (s, CON), } 171.8 \text{ (s, COO).} \]

MS: (EI, 70 eV)

\[m/z (\%) = 215 \text{ (M$^+$-H}_2\text{O, 27), 214 \text{ (M$^+$-OH, 21), } 172 \text{ (29), } 164 \text{ (42), } 154 \text{ (50), } 130 \text{ (100), } 112 \text{ (48), } 98 \text{ (25), } 95 \text{ (30), } 70 \text{ (87), } 60 \text{ (67), } 57 \text{ (50).} \]

HRMS: (C$_{11}$H$_{21}$NO$_4$, M = 231.15 g/mol)

Calcd: 231.1465

Found: 231.1463

\textit{threo-Methyl (2S*,3R*) 2-acetylamino-3-hydroxy-2-isobutylpentanoate (threo-43de)} (sbo-337a)

Following the above general procedure, the bicyclic oxetane \textit{42de} (0.45 g, 2 mmol) was hydrolytically cleaved in 5h. Preparative chromatography yielded 0.34 g of the product as a colorless oil.

\textbf{Yield:} 70 %

TLC: $R_f = 0.40$ (ethylacetate/n-hexane 1:3)

IR: (Film)

\[\tilde{\nu} (\text{cm}^{-1}) = 3335, 3210, 2978, 1745, 1675, 1453, 1355, 1042, 980. \]

1H-NMR: (300 MHz, CDCl$_3$)

\[\delta_{\text{ppm}} = 0.80 \text{ (d, } J = 6.6 \text{ Hz, } 3\text{H, CH}_3), 0.88 \text{ (d, } J = 6.6 \text{ Hz, } 3\text{H, CH}_3), 1.02 \text{ (t, } J = 7.4 \text{ Hz, } 3\text{H, CH}_3), 1.41 \text{ (dd, } J = 13.4, 5.0 \text{ Hz, 1H, CH), } 1.62 \text{ (m, 2H, CH}_2), 1.87 \text{ (m, 1H, CH), } 1.96 \text{ (s, } 3\text{H, CH}_3\text{CO), } 2.03 \text{ (dd, } J = 13.9, 3.5\text{Hz, 1H, CH), } 3.64 \text{ (s, } 3\text{H, OCH}_3), 4.20 \text{ (dd, } J = 10.1, 3.5 \text{ Hz, 1H, CHOH).} \]
4. Experimental part

13C-NMR: (75.5 MHz, CDCl$_3$)

δ_{ppm} = 11.4 (q, CH$_3$), 14.3 (q, CH$_3$), 22.7 (q, CH$_3$), 23.7 (q, CH$_3$), 24.4 (d, CH), 24.6 (t, CH$_2$), 42.0 (t, CH$_2$), 52.3 (q, OCH$_3$), 77.9 (s, C-2), 87.8 (d, C-3), 164.9 (s, CON), 174.9 (s, COO).

Anal: (C$_{12}$H$_{23}$O$_4$, M = 245.16 g/mol)

Calcd: C 58.75 H 9.45 N 5.71

Found: C 58.52 H 9.27 N 5.49

erythro-Methyl (2S*,3S*) 2-acetylamino-2-(1-hydroxy-propyl)-3-methylpentanoate (erythro-43df) (sbo-341d)

Following the above general procedure, the bicyclic oxetane 42df (0.45 g, 2 mmol) was hydrolytically cleaved in 3h. Preparative chromatography yielded 0.37 g of the product as a colorless oil. A crystalline sample for X-ray crystal structure analysis could be obtained by crystallization of the product from chloroform.

Yield: 75 %

M.p: 43-45 °C

TLC: R_f = 0.55 (ethylacetate/n-hexane 1: 3)

1H-NMR: (300 MHz, CDCl$_3$)

δ_{ppm} = 0.76 (d, J = 6.9, Hz, 3H, CH$_3$), 0.85 (t, J = 7.2, Hz, 3H, CH$_3$), 0.96 (t, J = 7.1 Hz, 3H, CH$_3$), 1.21 (m, 1H, CH), 2.08 (s, 3H, CH$_3$CO), 2.42 (m, 1H, CH), 3.77 (s, 3H, OCH$_3$), 4.62 (dd, J = 11.7, 1.7 Hz, 1H, CHOCH), 6.90 (bs, 1H, NH).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ_{ppm} = 10.8 (q, CH$_3$), 12.3 (q, CH$_3$), 13.3 (q, CH$_3$), 13.9 (q, CH$_3$), 23.7 (d, CH), 27.3 (t, CH$_2$), 37.4 (t, CH$_2$), 52.9 (q, OCH$_3$), 73.7 (s, C-2), 74.2 (d, C-3), 170.8 (s, CON), 172.8 (s, COO).

Anal: (C$_{12}$H$_{23}$O$_4$, M = 245.32 g/mol)

Calcd: C 58.75 H 9.45 N 5.71

Found: C 59.03 H 9.38 N 5.62

erythro-Methyl (2S*,3S*) 2-acetylamino-3-hydroxy-2,4-dimethylpentanoate (erythro-43ea) (sbo-320a)
Following the above general procedure, the bicyclic oxetane 42ea (0.4 g, 2 mmol) was hydrolytically cleaved in 3h. Preparative chromatography yielded 0.3 g of the product as a colorless oil.

Yield: 70 %

TLC: R$_f$ = 0.51 (ethylacetate/n-hexane 1: 3)

1H-NMR: (300 MHz, CDCl$_3$

δ ppm = 0.88 (d, J = 6.6 Hz, 3H, CH$_3$), 0.90 (d, J = 6.8 Hz, 3H, CH$_3$), 1.25 (m, 1H, CH), 1.43 (s, 3H, CH$_3$), 2.10 (s, 3H, CH$_3$CO), 3.78 (s, 3H, OCH$_3$), 4.43 (d, J = 9.2 Hz, 1H, CHO),

13C-NMR: (75.5 MHz, CDCl$_3$

δ ppm = 18.7 (q, CH$_3$), 18.9 (q, CH$_3$), 19.3 (q, CH$_3$), 23.9 (q, CH$_3$), 27.3 (d, CH), 52.3 (q, OCH$_3$), 68.1 (s, C-2), 78.1 (d, C-3), 169.1 (s, CON), 170.3 (s, COO).

erythro-Methyl (2S*,3S*) 2-acetylamino-2-ethyl-3-hydroxy-4-methylpentanoate (*erythro*-43eb) (sbo-415a)

Following the above general procedure, the bicyclic oxetane 42eb (0.43 g, 2 mmol) was hydrolytically cleaved in 3h. Preparative chromatography yielded 0.33 g of the product as a colorless oil.

Yield: 71 %

TLC: R$_f$ = 0.45 (ethylacetate/n-hexane 1: 3)

1H-NMR: (300 MHz, CDCl$_3$

δ ppm = 0.90 (t, J = 7.4 Hz, 3H, CH$_3$), 0.95 (d, J = 6.9 Hz, 6H, 2CH$_2$), 1.31 (m, 1H, CH), 1.59 (m, 2H, CH$_2$), 1.99 (s, 3H, CH$_3$CO), 3.74 (s, 3H, OCH$_3$), 4.16 (d, J = 8.4 Hz, 1H, CHO),

13C-NMR: (75.5 MHz, CDCl$_3$

δ ppm = 8.9 (q, CH$_3$), 14.1 (q, CH$_3$), 19.8 (q, CH$_3$), 19.9 (q, CH$_3$), 25.6 (t, CH$_2$), 27.9 (d, CH), 52.4 (q, OCH$_3$), 78.6 (s, C-2), 90.8 (d, C-3), 165.2 (s, CON), 174.5 (s, COO).
4. Experimental part

Anal: (C\(_{11}\)H\(_{21}\)NO\(_4\), M = 231.29 g/mol)

Calcd: C 57.12 H 9.12 N 6.06

Found: C 56.92 H 8.96 N 5.87

erythro-Methyl (2S\(^*\),3S\(^*\)) 2-acetylamino-3-hydroxy-4-methyl-2-propylpentanoate (erythro-43ec) (sbo-353a)

Following the above general procedure, the bicyclic oxetane 42ec (0.45 g, 2 mmol) was hydrolytically cleaved in 3h. Preparative chromatography yielded 0.36 g of the product as a colorless oil.

Yield: 73 %

TLC: \(R_f = 0.47\) (ethylacetate/n-hexane 1: 3)

\(^1\text{H-NMR:}\) (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 0.85 \text{ (d, } J = 6.6 \text{ Hz, } 3\text{H, CH}_3\), 0.87 \text{ (d, } J = 6.8 \text{ Hz, } 3\text{H, CH}_3\), 1.00 \text{ (t, } J = 7.5 \text{ Hz, } 3\text{H, CH}_3\), 1.21 \text{ (m, } 1\text{H, CH)}, 1.24 \text{ (m, } 2\text{H, CH}_2\), 1.54 \text{ (m, } 2\text{H, CH}_2\), 2.05 \text{ (s, } 3\text{H, CH}_3\text{CO)}, 3.74 \text{ (s, } 3\text{H, OCH}_3\), 4.34 \text{ (d, } J = 8.9 \text{ Hz, } 1\text{H, CHOH}).

\(^{13}\text{C-NMR:}\) (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 8.7 \text{ (q, CH}_3\), 23.7 \text{ (q, CH}_3\), 24.5 \text{ (q, CH}_3\), 24.7 \text{ (q, CH}_3\), 27.1 \text{ (t, CH}_2\), 28.1 \text{ (d, CH)}, 39.2 \text{ (t, CH}_2\), 52.0 \text{ (q, OCH}_3\), 68.2 \text{ (s, C-2)}, 74.1 \text{ (d, C-3)}, 169.1 \text{ (s, CON), 172.1 \text{ (s, COO).}}

erythro-Methyl (2S\(^*\),3S\(^*\)) 2-acetylamino-3-hydroxy-2-isopropyl-4-methylpentanoate (erythro-43ed) (sbo-p39a)

Following the above general procedure, the bicyclic oxetane 42ed (0.45 g, 2 mmol) was hydrolytically cleaved in 3h. Preparative chromatography yielded 0.29 g of the product as a colorless oil.

Yield: 59 %

TLC: \(R_f = 0.42\) (ethylacetate/n-hexane 1: 3)

\(^1\text{H-NMR:}\) (300 MHz, CDCl\(_3\))
4. Experimental part

$\delta_{\text{ppm}} = 0.85$ (d, $J = 6.8$ Hz, 6H, 2CH$_3$), 0.89 (d, $J = 6.5$ Hz, 3H, CH$_3$), 0.93 (d, $J = 6.6$ Hz, 3H, CH$_3$), 1.03 (m, 2H, 2CH), 2.04 (s, 3H, CH$_3$CO), 3.79 (s, 3H, OCH$_3$), 4.44 (d, $J = 8.4$ Hz, 1H, CHOH).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{\text{ppm}} = 17.0$ (q, CH$_3$), 18.7 (q, CH$_3$), 19.2 (q, CH$_3$), 19.7 (q, CH$_3$), 20.3 (q, CH$_3$), 23.8 (d, CH), 27.2 (d, CH), 52.7 (q, OCH$_3$), 66.3 (s, C-2), 73.5 (d, C-3), 170.1 (s, CON), 171.8 (s, COO).

erythro-Methyl (2S*,3S*) 2-acetylamino-3-hydroxy-2-isobutyl-4-methylpentanoate (erythro-43ee) (sbo-340a)

Following the above general procedure, the bicyclic oxetane 42ee (0.48 g, 2 mmol) was hydrolytically cleaved in 3h. Preparative chromatography yielded 0.34 g of the product as a colorless oil.

Yield: 65 %

TLC: $R_f = 0.42$ (ethylacetate/n-hexane 1: 3)

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{\text{ppm}} = 0.65$ (dd, $J = 6.6$, 6.6 Hz, 6H, 2CH$_3$), 0.75 (dd, $J = 7.5$, 7.5 Hz, 6H , 2CH$_3$), 1.30 (m, 1H, CH), 1.65 (dd, $J = 1.6$, 3.4 Hz, 1H, CH), 1.94 (s, 3H, CH$_3$CO), 2.42 (dd, $J = 7.5$, 1.5 Hz, 1H, CH), 3.50 (m, 1H, CH), 3.72 (s, 3H, OCH$_3$), 3.92 (dd, $J = 4.5$, 1.6 Hz, 1H, CHOH), 6.97 (bs, 1H, NH).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{\text{ppm}} = 19.8$ (q, CH$_3$), 23.5 (q, CH$_3$), 23.6 (q, CH$_3$), 23.7 (q, CH$_3$), 24.4 (d, CH), 24.6 (d, CH), 41.1 (t, CH$_2$), 52.8 (q, OCH$_3$), 69.0 (s, C-2), 78.0 (d, C-3), 171.3 (s, CON), 174.5 (s, COO).

HRMS: (C$_{13}$H$_{25}$NO$_4$, M = 259.18 g/mol)

Calcd: 259.1777

Found: 259.1773

erythro-Methyl (2S*,3S*) 2-acetylamino-2-sec-butyl-3-hydroxy-4-methylpentanoate (erythro-43ef) (sbo-346b)
Following the above general procedure, the bicyclic oxetane 42ef (0.48 g, 2 mmol) was hydrolytically cleaved in 3h. Preparative chromatography yielded 0.35 g of the product as a colorless oil.

Yield: 68 %

TLC: \(R_f = 0.42 \) (ethylacetate/n-hexane 1: 3)

\(^1H\)-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 0.83 \text{ (d, } J = 6.9 \text{ Hz, } 3H, \text{ CH}_3), 0.84 \text{ (d, } J = 6.8 \text{ Hz, } 3H, \text{ CH}_3), 0.88 \text{ (d, } J = 6.5 \text{ Hz, } 3H, \text{ CH}_3), 0.99 \text{ (t, } J = 7.5 \text{ Hz, } 3H, \text{ CH}_3), 1.43 \text{ (m, } 1H, \text{ CH}), 1.55 \text{ (m, } 2H, \text{ 2CH}), 1.98 \text{ (s, } 3H, \text{ CH}_3CO), 3.72 \text{ (s, } 3H, \text{ OCH}_3), \]

\(^13C\)-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 11.9 \text{ (q, } \text{ CH}_3), 12.5 \text{ (q, } \text{ CH}_3), 13.7 \text{ (q, } \text{ CH}_3), 14.5 \text{ (q, } \text{ CH}_3), 24.3 \text{ (q, } \text{ CH}_3), 25.2 \text{ (t, } \text{ CH}_2), 27.1 \text{ (d, } \text{ CH}), 29.3 \text{ (d, } \text{ CH}), 52.9 \text{ (q, } \text{ OCH}_3), 74.3 \text{ (s, } \text{ C-2), 79.3 \text{ (d, } \text{ C-3), 169.5 \text{ (s, } \text{ CON), 172.0 \text{ (s, } \text{ COO).}}}

erythro-Methyl (2S*,3S*) 2-acetylamino-3-hydroxy-2,5-dimethylhexanoate (erythro-43fa) (sbo-312a)

Following the above general procedure, the bicyclic oxetane 42fa (0.43 g, 2 mmol) was hydrolytically cleaved in 3h. Preparative chromatography yielded 0.25 g of the product as a colorless oil.

Yield: 55 %

TLC: \(R_f = 0.43 \) (ethylacetate/n-hexane 1: 3)

\(^1H\)-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 0.83 \text{ (d, } J = 6.5 \text{ Hz, } 3H, \text{ CH}_3), 0.91 \text{ (d, } J = 6.5 \text{ Hz, } 3H, \text{ CH}_3), 0.94 \text{ (m, } 1H, \text{ CH}), 1.24 \text{ (dd, } J = 1.9, 1.8 \text{ Hz, } 1H, \text{ CH}), 1.54 \text{ (s, } 3H, \text{ CH}_3), 1.87 \text{ (m, } 1H, \text{ CH}), 1.96 \text{ (s, } 3H, \text{ CH}_3CO), 3.71 \text{ (s, } 3H, \text{ OCH}_3), 4.25 \text{ (dd, } J = 11.4, 1.8 \text{ Hz, } 1H, \text{ CHOH), 6.20 \text{ (bs, } 1H, \text{ NH).}}}

\(^13C\)-NMR: (75.5 MHz, CDCl\(_3\))
4. Experimental part

\[\delta_{ppm} = 17.1 \text{ (q, CH}_3\text{)}, 20.4 \text{ (q, CH}_3\text{)}, 23.3 \text{ (q, CH}_3\text{)}, 23.5 \text{ (q, CH}_3\text{)}, 25.1 \text{ (d, CH)}, 41.6 \text{ (t, CH}_2\text{)}, 52.8 \text{ (q, OCH}_3\text{)}, 63.4 \text{ (s, C-2)}, 65.9 \text{ (d, C-3)}, 169.2 \text{ (s, CON)}, 171.5 \text{ (s, COO)}. \]

MS: (El, 70 eV)

m/z (%) = 299 (M\(^+\)-H\(_2\), 5), 214 (M\(^+\)-OH, 4), 190 (15), 172 (8), 154 (18), 148 (52), 112 (22), 102 (100), 85 (20), 70 (18), 57 (18).

erythro-Methyl (2S\(^*\),3S\(^*)\) 2-acetylamino-2-ethyl-3-hydroxy-5-methylhexanoate (erythro-43fb) (sbo-412c)

Following the above general procedure, the bicyclic oxetane 42fb (0.45 g, 2 mmol) was hydrolytically cleaved in 3h. Preparative chromatography yielded 0.32 g of the product as a colorless oil.

Yield: 66%

TLC: \(R_f = 0.44 \) (ethylacetate/n-hexane 1: 3)

H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 0.75 \text{ (t, J = 7.5 Hz, 3H, CH}_3\text{)}, 0.84 \text{ (d, J = 6.6 Hz, 3H, CH}_3\text{)}, 0.92 \text{ (d, J = 6.8 Hz, 3H, CH}_3\text{)}, 1.23 \text{ (m, 1H, CH)}, 1.63 \text{ (ddd, J = 10.1, 2.1, 2.1 Hz, 2H, CH}_2\text{)}, 1.85 \text{ (m, 1H, CH)}, 2.12 \text{ (s, 3H, CH}_3\text{CO)}, 2.80 \text{ (sextet, J = 7.5 Hz, 1H, CH)}, 3.76 \text{ (s, 3H, OCH}_3\text{)}, 4.40 \text{ (dd, J = 11.5, 2.1 Hz, 1H, CHO)}, 6.39 \text{ (bs, 1H, NH)}. \]

C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 9.0 \text{ (q, CH}_3\text{)}, 20.5 \text{ (q, CH}_3\text{)}, 23.7 \text{ (q, CH}_3\text{)}, 24.4 \text{ (q, CH}_3\text{)}, 24.5 \text{ (t, CH}_2\text{)}, 25.1 \text{ (d, CH)}, 42.0 \text{ (t, CH}_2\text{)}, 53.1 \text{ (q, OCH}_3\text{)}, 65.7 \text{ (s, C-2)}, 69.7 \text{ (d, C-3)}, 169.3 \text{ (s, CON)}, 172.2 \text{ (s, COO)}. \]

HRMS: (C\(_{12}\)H\(_{23}\)NO\(_4\), M = 245.16 g/mol)

Calcd: 245.1621

Found: 245.1618

erythro-Methyl (2S\(^*\),3S\(^*)\) 2-acetylamino-3-hydroxy-5-methyl-2-propylhexanoate (erythro-43fc) (sbo-350b)
4. Experimental part

Following the above general procedure, the bicyclic oxetane 42fc (0.48 g, 2 mmol) was hydrolytically cleaved in 3h. Preparative chromatography yielded 0.35 g of the product as a colorless oil.

Yield: 68%

TLC: Rf = 0.48 (ethylacetate/n-hexane 1: 4)

1H-NMR: (300 MHz, CDCl$_3$)
\[\delta_{ppm} = 0.83 \text{ (d, J = 6.5 Hz, 3H, CH$_3$), 0.86 \text{ (t, J = 4.3 Hz, 3H, CH$_3$), 0.91 \text{ (d, J = 6.6 Hz, 3H, CH$_3$), 1.52 \text{ (dddd, J = 3.1, 3.2, 3.1, 3.2 Hz, 2H, CH$_2$), 1.65 \text{ (ddd, J = 6.5, 2.1, 1.9 Hz, 1H, CH), 1.81 \text{ (m, 2H, CH$_2$), 2.00 \text{ (s, 3H, CH$_3$CO), 3.77 \text{ (s, 3H, OCH$_3$), 4.39 \text{ (dd, J = 11.5, 2.1 Hz, 1H, CHO), 6.39 (bs, 1H, NH).}}}}}}

13C-NMR: (75.5 MHz, CDCl$_3$)
\[\delta_{ppm} = 13.9 \text{ (q, CH$_3$), 18.1 (q, CH$_3$), 20.5 (q, CH$_3$), 23.7 (q, CH$_3$), 25.1 (t, CH$_2$), 33.4 (t, CH$_2$), 41.9 (t, CH$_2$), 53.1 (q, OCH$_3$), 65.9 (s, C-2), 69.0 (d, C-3), 169.3 (s, CON), 172.3 (s, COO).}

Anal: (C$_{13}$H$_{25}$NO$_4$, M = 259.18 g/mol)
Calcd: C 60.21 H 9.72 N 5.40
Found: C 59.98 H 9.61 N 5.32

erythro-Methyl (2S*,3S*) 2-acetylamino-3-hydroxy-2-isopropyl-5-methylhexanoate (erythro-43fd) (sbo-325c)

Following the above general procedure, the bicyclic oxetane 42fd (0.48 g, 2 mmol) was hydrolytically cleaved in 3h. Preparative chromatography yielded 0.32 g of the product as a colorless oil.

Yield: 62%

TLC: Rf = 0.63 (ethylacetate/n-hexane 1: 3)

IR: (Film)
4. Experimental part

\(\tilde{\nu} \) (cm\(^{-1}\)) = 3396, 2919, 1738, 1668, 1056, 1031, 978, 680.

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\(\delta_{ppm} = 0.83 \) (d, J = 6.8 Hz, 3H, CH\(_3\)), 0.89 (d, J = 6.5 Hz, 3H, CH\(_3\)), 0.93 (d, J = 6.6 Hz, 3H, CH\(_3\)), 1.00 (d, J = 7.1 Hz, 3H, CH\(_3\)), 1.70 (m, 2H, CH\(_2\)), 1.86 (m, 1H, CH), 2.04 (s, 3H, CH\(_3\)CO), 3.57 (sextet, J = 6.9 Hz, 1H, CH), 3.79 (s, 3H, OCH\(_3\)), 4.69 (dd, J = 11.2, 2.4 Hz, 1H, \(\text{CHOH} \)), 6.43 (bs, 1H, NH).

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\(\delta_{ppm} = 17.0 \) (q, CH\(_3\)), 18.7 (q, CH\(_3\)), 20.5 (q, CH\(_3\)), 23.8 (q, CH\(_3\)), 25.1 (d, CH), 28.1 (d, CH), 41.6 (t, CH\(_2\)), 52.9 (q, OCH\(_3\)), 65.9 (s, C-2), 73.5 (d, C-3), 169.6 (s, CON), 171.8 (s, COO).

Anal: (C\(_{13}\)H\(_{25}\)NO\(_4\), M = 259.3 g/mol)

Calcd: C 60.21 H 9.72 N 5.40

Found: C 59.89 H 9.64 N 5.27

erythro-Methyl \((2S^*,3S^*) \) 2-acetylamino-3-hydroxy-2-isobutyl-5-methylhexanoate (erythro-43fe) (sbo-339c)

Following the above general procedure, the bicyclic oxetane 42fe (0.51 g, 2 mmol) was hydrolytically cleaved in 3h. Preparative chromatography yielded 0.26 g of the *erythro*-isomer and 0.09 g of the *threo*-isomer, both as a colorless oil.

Yield: 45%

TLC: \(R_f = 0.33 \) (ethylacetate/n-hexane 1: 3)

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\(\delta_{ppm} = 0.74 \) (d, J = 6.5 Hz, 3H, CH\(_3\)), 0.81 (d, J = 6.6 Hz, 3H, CH\(_3\)), 0.86 (d, J = 6.6 Hz, 3H, CH\(_3\)), 0.95 (d, J = 6.8 Hz, 3H, CH\(_3\)), 1.51 (m, 2H, CH\(_2\)), 1.57 (m, 2H, CH\(_2\)), 1.94 (s, 3H, CH\(_3\)CO), 2.21 (m, 1H, CH), 2.26 (dd, J = 13.5, 3.5 Hz, 1H, CH), 2.81 (dd, J = 13.5, 1.8 Hz, 1H, CH), 3.78 (s, 3H, OCH\(_3\)), 4.43 (dd, J = 11.6, 1.8 Hz, 1H, \(\text{CHOH} \)), 6.50 (bs, 1H, NH).

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))
4. Experimental part

δ_{ppm} = 14.4 (q, CH₃), 20.5 (q, CH₃), 21.5 (q, CH₃), 23.2 (q, CH₃), 25.1 (d, CH), 28.1 (d, CH), 37.9 (t, CH₂), 52.8 (q, OCH₃), 68.0 (s, C-2), 73.9 (d, C-3), 169.3 (s, CON), 172.9 (s, COO).

MS: (EI, 70 eV)

m/z (%) = 271 (M⁺-H₂, 5), 256 (M⁺-H₂O, 7), 214 (M⁺-CO₂Me, 12), 196 (22), 187 (60), 170 (20), 154 (30), 112 (26), 102 (100), 85 (70), 57 (52).

threo-Methyl (2S*,3R*) 2-acetylamino-3-hydroxy-2-isobutyl-5-methylhexanoate (threo-43fe) (sbo-339a)

![Structure of threo-43fe](image)

Yield: 13%

TLC: R_f = 0.23 (ethylacetate/n-hexane 1:3)

1^H-NMR: (300 MHz, CDCl₃)

δ_{ppm} = 0.81 (d, J = 6.8 Hz, 3H, CH₃), 0.88 (d, J = 6.6 Hz, 3H, CH₃), 0.93 (dd, J = 7.5, 7.4 Hz, 6H, 2CH₃), 1.00 (dd, J = 6.9 Hz, 1H, CH), 1.12 (dd, J = 7.0, 1.8 Hz, 1H, CH), 1.53 (m, 1H, CH), 2.00 (s, 3H, CH₃CO), 2.43 (dd, J = 7.5, 1.5 Hz, 1H, CH), 3.67 (s, 3H, OCH₃), 4.00 (dd, J = 8.5, 1.4 Hz, 1H, CHO), 6.97 (bs, 1H, NH).

13^C-NMR: (75.5 MHz, CDCl₃)

δ_{ppm} = 14.0 (q, CH₃), 20.0 (q, CH₃), 23.3 (q, CH₃), 23.8 (q, CH₃), 24.7 (d, CH), 27.9 (d, CH), 40.6 (t, CH₂), 52.3 (q, OCH₃), 80.0 (s, C-2), 91.5 (d, C-3), 164.9 (s, CON), 174.9 (s, COO).

Anal: (C₁₄H₂₇NO₄, M = 273.2 g/mol)

Calcd: C 61.51 H 9.96 N 5.12

Found: C 61.62 H 9.86 N 4.97

erythro-Methyl (2S*,3S*) 2-acetylamino-2-sec-butyl-3-hydroxy-5-methylhexanoate (erythro-43ff) (sbo-345a)

![Structure of erythro-43ff](image)
Following the above general procedure, the bicyclic oxetane 42ff (0.51 g, 2 mmol) was hydrolytically cleaved in 3h. Preparative chromatography yielded 0.4 g of the erythro-isomer and 0.11 g of the threo-isomer, all as a colorless oil.

Yield: 73 %
TLC: $R_f = 0.61$ (ethylacetate/n-hexane 1: 3)
IR: (Film)
\[\nu \ (cm^{-1}) = 3305, 2874, 1732, 1673, 1455, 1051, 1031, 960, 670. \]

1H-NMR: (300 MHz, CDCl$_3$)
\[\delta_{ppm} = 0.81 \ (d, \ J = 6.9, \ Hz, \ 3H, \ CH_3), \ 0.88 \ (d, \ J = 6.5, \ Hz, \ 3H, \ CH_3), \ 0.94 \ (d, \ J = 6.6, \ Hz, \ 3H, \ CH_3), \ 0.99 \ (t, \ J = 7.5, \ Hz, \ 3H, \ CH_3), \ 1.43 \ (m, \ 1H, \ CH), \ 1.53 \ (m, \ 2H, \ 2CH), \ 1.97 \ (s, \ 3H, \ CH_3CO), \ 3.71 \ (s, \ 3H, \ OCH_3), \ 4.15 \ (dd, \ J = 11.2, \ 1.6 \ Hz, \ 1H, \ CHOH), \ 6.33 \ (bs, \ 1H, \ NH). \]

13C-NMR: (75.5 MHz, CDCl$_3$)
\[\delta_{ppm} = 11.9 \ (q, \ CH_3), \ 12.7 \ (q, \ CH_3), \ 13.4 \ (q, \ CH_3), \ 14.3 \ (q, \ CH_3), \ 21.3 \ (q, \ CH_3), \ 24.7 \ (d, \ CH), \ 25.5 \ (d, \ CH), \ 34.3 \ (t, \ CH_2), \ 39.7 \ (t, \ CH_2), \ 52.6 \ (q, \ OCH_3), \ 71.9 \ (s, \ C-2), \ 74.2 \ (d, \ C-3), \ 169.4 \ (s, \ CON), \ 173.0 \ (s, \ COO). \]

Anal: (C$_{14}$H$_{27}$NO$_4$, M = 273.2 g/mol)
Calcd: C 61.51 H 9.96 N 5.12
Found: C 61.67 H 9.66 N 5.12

threo-Methyl (2S*,3R*) 2-acetylamino-2-sec-butyl-3-hydroxy-5-methylhexanoate (threo-43ff) (sbo-345c)

\[\begin{array}{c} \text{HO} \\
\text{AcHN} \\
\text{CO}_{\text{CH}_3} \end{array} \]

Yield: 15 %
TLC: $R_f = 0.46$ (ethylacetate/n-hexane 1: 3)
IR: (Film)
\[\nu \ (cm^{-1}) = 3340, 2956, 1738, 1682, 1471, 1056, 1031, 978, 680. \]

1H-NMR: (300 MHz, CDCl$_3$)
\[\delta_{ppm} = 0.81 \ (d, \ J = 7.5, \ Hz, \ 3H, \ CH_3), \ 0.84 \ (d, \ J = 7.5, \ Hz, \ 3H, \ CH_3), \ 0.88 \ (t, \ J = 6.5 \ Hz, \ 3H, \ CH_3), \ 0.93 \ (d, \ J = 6.5 \ Hz, \ 3H, \ CH_3), \ 1.21 \ (m, \ 2H, \ CH_2), \ 1.53 \ (m, \ 1H, \ CH), \]
4. Experimental part

1.75 (m, 2H, CH₂), 2.00 (s, 3H, CH₃CO), 3.69 (s, 3H, OCH₃), 4.38 (dd, J = 10.5, 2.5 Hz, 1H, CHOH), 6.33 (bs, 1H, NH).

1³C-NMR: (75.5 MHz, CDCl₃)

δppm = 11.9 (q, CH₃), 13.6 (q, CH₃), 14.1 (q, CH₃), 21.5 (q, CH₃), 23.4 (q, CH₃), 24.8 (d, CH), 26.5 (d, CH), 37.4 (t, CH₂), 37.9 (t, CH₂), 51.9 (q, OCH₃), 82.3 (s, C-2), 83.9 (d, C-3), 165.4 (s, CON), 174.3 (s, COO).

MS: (EI, 70 eV)

m/z (%) = 255 (M⁺-H₂O, 15), 218 (M⁺-CO₂Me, 18), 196 (20), 187 (68), 170 (20), 154 (30), 112 (26), 102 (100), 86 (70), 68 (52).

4.15.2 Transacylation: General procedure:

To a solution of α-acetamido-β-hydroxy ester (0.3 g, 15 mmol) in chloroform (15 mL), 1N aq. HCl (0.2 mL) was added at room temperature, the mixture was left to stir overnight. After the reaction was quenched with water, (15 mL), the mixture was extracted with methylene chloride (3 x 15 mL) and the organic extract was washed with 5% sodium bicarbonate solution, dried (Mg SO₄) and the solvent was removed under vacum. The residue was purified by preparative chromatography.

Methyl (2S*,3S*) 3-acetoxy-2-amino-2-methylpentanoate (erythro-44da) (sbo-300b)

Preparative chromatography yielded 0.21 g of the product as a colorless oil.

Yield: 82 %

TLC: Rf = 0.51 (ethylacetate/n-hexane 1: 3)

IR: (Film)

υ (cm⁻¹) = 3336, 2919, 1760, 1738, 1471, 1056, 1031, 978, 680.

¹H-NMR: (300 MHz, CDCl₃)

δ = 0.81 (t, J = 7.2, Hz, 3H, CH₃), 1.62 (m, 2H, CH₂), 1.70 (s, 3H, CH₃), 2.21 (s, 3H, CH₃CO), 3.85 (s, 3H, OCH₃), 5.24 (dd, J = 10.9, 2.9 Hz, 1H, CHOAc), 6.20 (bs, 2H, NH₂).

¹³C-NMR: (75.5 MHz, CDCl₃)

δ = 11.0 (q, CH₃), 20.8 (q, CH₃), 21.9 (q, CH₃), 23.2 (t, CH₂), 53.9 (q, OCH₃), 63.7 (s, Cq), 76.0 (d, CHOAc), 171.9 (COOCH₃), 173.0 (s, COOCH₃).
4. Experimental part

Methyl (2S*,3S*) 3-acetoxy-2-amino-2-propyl pentanoate (erythro-44dc) (sbo-349d)

Preparative chromatography yielded 0.24 g of the product as a colorless oil.

Yield: 79%

TLC: $R_f = 0.57$ (ethylacetate/ n-hexane 1: 3)

1H-NMR: (300 MHz, CDCl$_3$)
\[
\delta = 0.78 \text{ (t, } J = 7.4, \text{ Hz, } 3\text{H, CH}_3\text{)}, 0.84 \text{ (t, } J = 6.0, \text{ Hz, } 2\text{H, CH}_2\text{)}, 1.10 \text{ (t, } J = 7.6, \text{ Hz, } 3\text{H, CH}_3\text{)}, 1.42 \text{ (m, } 2\text{H, CH}_2\text{)}, 1.75 \text{ (m, } 2\text{H, CH}_2\text{)}, 1.98 \text{ (s, } 3\text{H, CH}_3\text{CO)}, 3.69 \text{ (s, } 3\text{H, OCH}_3\text{)}, 5.30 \text{ (dd, } J = 10.9, 2.6, \text{ Hz, } 1\text{H, CHOAc)}, 6.38 \text{ (bs, } 2\text{H, NH}_2\text{)}.
\]

13C-NMR: (75.5 MHz, CDCl$_3$)
\[
\delta = 9.2 \text{ (q, CH}_3\text{)}, 11.3 \text{ (q, CH}_3\text{)}, 13.3 \text{ (t, CH}_2\text{)}, 17.6 \text{ (q, CH}_3\text{)}, 23.7 \text{ (t, CH}_2\text{)}, 36.0 \text{ (t, CH}_2\text{)}, 52.8 \text{ (q, OCH}_3\text{)}, 67.8 \text{ (s, Cq)}, 77.6 \text{ (d, CHOAc)}, 172.9 \text{ (CQOCH}_3\text{)}, 173.6 \text{ (s, OCOCH}_3\text{)}.
\]

HRMS: (C$_{11}$H$_{21}$NO$_4$, M = 231.15 g/mol)

Calcd: 231.1473

Found: 231.1471

Methyl (2S*,3S*) 3-acetoxy-2-amino-5-methyl-2-propylhexanoate (erythro-44fc)

(sbo-350c)

Preparative chromatography yielded 0.17 g of the product as a colorless oil.

Yield: 72%

TLC: $R_f = 0.55$ (ethylacetate/n-hexane 1: 3)

1H-NMR: (300 MHz, CDCl$_3$)
\[
\delta = 0.84 \text{ (t, } J = 6.5, \text{ Hz, } 3\text{H, CH}_3\text{)}, 0.85 \text{ (m, } 2\text{H, CH}_2\text{)}, 0.91 \text{ (dd, } J = 6.5, 6.5, \text{ Hz, } 6\text{H, 2CH}_3\text{)}, 1.23 \text{ (m, } 1\text{H, CH)}, 1.54 \text{ (m, } 2\text{H, CH}_2\text{)}, 1.99 \text{ (s, } 3\text{H, CH}_3\text{CO)}, 3.70 \text{ (s, } 3\text{H, OCH}_3\text{)}, 5.49 \text{ (dd, } J = 7.7, 3.9, \text{ Hz, } 1\text{H, CHOAc)}, 6.36 \text{ (bs, } 2\text{H, NH}_2\text{)}.
\]

13C-NMR: (75.5 MHz, CDCl$_3$)
4. Experimental part

δ = 13.9 (q, CH₃), 17.6 (q, CH₃), 21.3 (q, CH₃), 23.6 (q, CH₃), 24.3 (t, CH₂), 32.1 (d, CH), 39.1 (t, CH₂), 43.3 (t, CH₂), 52.8 (q, OCH₃), 67.7 (s, Cq), 74.3 (d, CHOAc), 172.3 (COOCH₃), 172.9 (s, OCOCH₃).

Synthesis of methyl 2-acetylamino-2-hydroxypentanoate (45) (sbo-392)

![Chemical structure](image)

To a solution of methyl 2-acetylamino-3-hydroxy-2-propylpentanoate 43dc (0.22 g, 1 mmol) in methanol (20 mL), 10 % sodium hydroxide (20 mL) was added, and the mixture was heated under reflux for 6h. After the reaction mixture was neutralized with 1N HCl, the solvent was evaporated in vacuo and the residue was purified by preparative chromatography to give 0.15 g of 45 as a white needle crystal.

Yield: 85 %

M.p: 123-124 °C.

TLC: R_f = 0.34 (ethylacetate/n-hexane 1: 4)

IR: (CsI) \(\tilde{\nu} \) (cm⁻¹) = 3329, 2971, 2878, 1738, 1660, 1445, 1097, 1031, 968, 684.

¹H-NMR: (300 MHz, CDCl₃)

δ = 0.91 (t, J = 7.4, Hz, 3H, CH₃), 1.27 (m, 1H, CH), 1.46 (m, 1H, CH), 1.78 (m, 2H, CH₂), 1.97 (s, 3H, CH₃CO), 3.78 (s, 3H, OCH₃), 4.82 (bs, 1H, OH), 6.35 (bs, 1H, NH).

¹³C-NMR: (75.5 MHz, CDCl₃)

δ = 13.8 (q, CH₃), 16.3 (t, CH₂), 22.9 (q, CH₃), 40.0 (t, CH₂), 53.2 (q, OCH₃), 82.5 (s, Cq), 171.2 (CON), 172.2 (s, COO).

Anal: (Cs₈H₁₅NO₄, M = 189.2 g/mol)

Calcd: C 50.78 H 7.99 N 7.40

Found: C 50.76 H 7.94 N 7.42

4.16 Photolyses of 5-methoxyoxazoles 36a-f with 2-methylbutyraldehyde; General procedure:

A mixture of 5-methoxyoxazoles 36a-f (5 mmol) and 2-methylbutyraldehyde (5 mmol) in 50 mL benzene was irradiated (λ = 300 nm) in a pyrex vessel for 24 h while purging with a slow stream of nitrogen and cooling to ca. 15 °C. After irradiation, the solvent was evaporated at
4. Experimental part

40°C/200 torr and the residue was submitted to 1H-NMR analysis to determine the diastereomeric ratio of the product. Purification was carried out by Büchi distillation. The thermally and hydrolytically unstable primary products could in most cases not be characterized by combustion analysis and were hydrolyzed subsequently to the more stable α-amino-β-hydroxy esters.

exo-7-sec-Butyl-5-methoxy-1,3-dimethyl-4,6-dioxo-2-aza-bicyclo[3.2.0]hept-2-ene
(exo-46a)

A solution of 2-methylbutyraldehyde (0.43 g, 5 mmol) and 2,4-dimethyl-5-methoxyoxazole (0.64 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general procedure. Distillation of the solvent under vacuum afforded 0.95 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy ester (see later).

Yield: 90 %

1H-NMR: (300 MHz, CDCl$_3$)

δ ppm = 0.76 (d, J = 6.8, Hz, 3H, CH$_3$), 0.78 (t, J = 7.4, Hz, 3H, CH$_3$), 0.92 (m, 2H, CH$_2$), 1.43 (s, 3H, CH$_3$), 1.58 (m, 1H, CH), 2.05 (s, 3H, CH$_3$), 3.56 (s, 3H, OCH$_3$), 3.68 (d, J = 4.6 Hz, 1H, 7-H).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ ppm = 9.7 (q, CH$_3$), 10.7 (q, CH$_3$), 13.9 (q, CH$_3$), 14.8 (q, CH$_3$), 23.4 (d, CH), 36.2 (t, CH$_2$), 51.1 (q, OCH$_3$), 73.5 (s, C-1), 92.5 (s, C-7), 124.1 (s, C-5), 165.1 (s, C-3).

HRMS: (C$_{11}$H$_{19}$NO$_3$, M = 213.14 g/mol)

Calcd: 213.1360

Found: 213.1352

exo-7-sec-Butyl-1-ethyl-5-methoxy-3-methyl-4,6-dioxo-2-aza-bicyclo[3.2.0]hept-2-ene
(exo-46b)

330
A solution of 2-methylbutyraldehyde (0.43 g, 5 mmol) and 4-ethyl-2-methyl-5-methoxyoxazole (0.71 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure. Distillation of the solvent under vacuum afforded 0.99 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy ester (see later).

Yield: 87%

1H-NMR: (300 MHz, CDCl₃)

δ ppm = 0.75 (t, J = 7.5, Hz, 3H, CH₃), 0.78 (d, J = 6.8, Hz, 3H, CH₃), 0.81 (m, 2H, CH₂), 1.13 (m, 2H, CH₂), 1.17 (m, 1H, CH), 2.12 (s, 3H, CH₃), 3.57 (s, 3H, OCH₃), 3.72 (d, J = 4.2 Hz, 1H, 7-H).

13C-NMR: (75.5 MHz, CDCl₃)

δ ppm = 7.7 (q, CH₃), 10.8 (q, CH₃), 12.9 (q, CH₃), 14.8 (q, CH₃), 23.9 (d, CH), 25.9 (t, CH₂), 35.8 (t, CH₂), 52.1 (q, OCH₃), 77.1 (s, C-1), 92.7 (s, C-7), 124.2 (s, C-5), 165.1 (s, C-3).

exo-7-sec-Butyl-5-methoxy-3-methyl-1-propyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene

(exo-46c) (sbo-393)

A solution of 2-methylbutyraldehyde (0.43 g, 5 mmol) and 2-methyl-4-propyl-5-methoxyoxazole (0.75 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure. Distillation of the solvent under vacuum afforded 1.12 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy ester (see later).

Yield: 90%

1H-NMR: (300 MHz, CDCl₃)
4. Experimental part

δ_{ppm} = 0.77 (t, J = 7.4, Hz, 3H, CH₃), 0.79 (d, J = 6.9, Hz, 3H, CH₃), 0.83 (t, J = 6.5 Hz, 3H, CH₃), 0.87 (m, 2H, CH₂), 1.49 (m, 1H, CH), 1.53 (m, 2H, CH₂), 1.67 (m, 2H, CH₂), 2.00 (s, 3H, CH₃), 3.53 (s, 3H, OCH₃), 3.67 (d, J = 4.4 Hz, 1H, 7-H).

13C-NMR: (75.5 MHz, CDCl₃)

δ_{ppm} = 10.1 (q, CH₃), 10.8 (q, CH₃), 16.7 (q, CH₃), 23.9 (q, CH₃), 25.1 (d, CH), 28.6 (t, CH₂), 35.8 (t, CH₂), 36.4 (t, CH₂), 50.8 (q, OCH₃), 77.8 (s, C-1), 92.8 (s, C-7), 124.2 (s, C-5), 164.7 (s, C-3).

exo-7-sec-Butyl-1-isopropyl-5-methoxy-3-methyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene (**exo-46d**) (sbo-396)

A solution of 2-methylbutyraldehyde (0.43 g, 5 mmol) and 4-isopropyl-2-methyl-5-methoxyoxazole (0.75 g, 5 mmol) in benzene (50 mL) was irradiated for 24h according to the above general procedure. Distillation of the solvent under vacuum afforded 1.1 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy ester (see later).

Yield: 87 %

1H-NMR: (300 MHz, CDCl₃)

δ_{ppm} = 0.74 (d, J = 6.6 Hz, 3H, CH₃), 0.78 (d, J = 6.8, Hz, 3H, CH₃), 0.80 (t, J = 7.4 Hz, 3H, CH₃), 0.83 (d, J = 7.2 Hz, 3H, CH₃), 1.12 (m, 1H, CH), 1.23 (m, 2H, CH₂), 2.10 (s, 3H, CH₃), 3.64 (s, 3H, OCH₃), 4.12 (d, J = 4.7 Hz, 1H, 7-H).

13C-NMR: (75.5 MHz, CDCl₃)

δ_{ppm} = 10.7 (q, CH₃), 11.1 (q, CH₃), 14.0 (q, CH₃), 18.4 (q, CH₃), 18.9 (q, CH₃), 21.4 (d, CH), 25.4 (d, CH), 27.5 (t, CH₂), 50.4 (q, OCH₃), 80.4 (s, C-1), 93.1 (s, C-7), 124.4 (s, C-5), 164.7 (s, C-3).

exo-7-sec-Butyl-1-isobutyl-5-methoxy-3-methyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene (**exo-46e**) (sbo-398)
A solution of 2-methylbutyraldehyde (0.43 g, 5 mmol) and 4-isobutyl-2-methyl-5-methoxyoxazole (0.84 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure. Distillation of the solvent under vacuum afforded 1.0 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding \(\alpha\)-amino-\(\beta\)-hydroxy ester (see later).

Yield: 78 %

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 0.86 \text{ (d, J = 6.6 Hz, 6H, 2CH\(_3\))}, \ 0.88 \text{ (t, J = 7.4, Hz, 3H, CH\(_3\))}, \ 0.93 \text{ (t, J = 6.5 Hz, 3H, CH\(_3\))}, \ 1.12 \text{ (m, 1H, CH)}, \ 1.23 \text{ (m, 2H, CH\(_2\))}, \ 1.43 \text{ (m, 2H, CH\(_2\))}, \ 1.65 \text{ (m, 2H, CH\(_2\))}, \ 2.12 \text{ (s, 3H, CH\(_3\))}, \ 3.67 \text{ (s, 3H, OCH\(_3\))}, \ 4.12 \text{ (d, J = 4.8 Hz, 1H, 7-H)}. \]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 10.3 \text{ (q, CH\(_3\))}, \ 11.0 \text{ (q, CH\(_3\))}, \ 12.7 \text{ (q, CH\(_3\))}, \ 16.0 \text{ (q, CH\(_3\))}, \ 16.5 \text{ (q, CH\(_3\))}, \ 24.7 \text{ (d, CH)}, \ 24.9 \text{ (t, CH\(_2\))}, \ 31.0 \text{ (d, CH)}, \ 40.7 \text{ (t, CH\(_2\))}, \ 50.9 \text{ (q, OCH\(_3\))}, \ 78.0 \text{ (s, C-1)}, \ 90.3 \text{ (s, C-7)}, \ 124.5 \text{ (s, C-5)}, \ 164.9 \text{ (s, C-3)}. \]

HRMS: (C\(_{14}\)H\(_{25}\)NO\(_3\), M = 255.18 g/mol)

Calcd: 255.1825

Found: 255.1822

exo-1,7-Di-sec-butyl-5-methoxy-3-methyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene (exo-46f) (sbo-397)

A solution of 2-methylbutyraldehyde (0.43 g, 5 mmol) and 4-sec-butyl-2-methyl-5-methoxyoxazole (0.84 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure. Distillation of the solvent under vacuum afforded 1.09 g of the oxetane as a pale yellow oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding \(\alpha\)-amino-\(\beta\)-hydroxy ester (see later).

Yield: 85 %
4. Experimental part

\[^1\text{H-NMR:} \ (300 \text{ MHz, CDCl}_3 \]
\[\delta_{\text{ppm}} = 0.85 \ (d, J = 6.6 \text{ Hz}, 6\text{H}, 2\text{CH}_3), \ 0.87 \ (t, J = 6.5 \text{ Hz}, 6\text{H} , 2\text{CH}_3), \ 0.97 \ (m, 2\text{H}, \text{CH}_2), \ 1.23 \ (m, 2\text{H}, 2\text{CH}), \ 2.12 \ (s, 3\text{H}, \text{CH}_3), \ 3.66 \ (s, 3\text{H}, \text{OCH}_3), \ 4.27 \ (d, J = 6.2 \text{ Hz}, 1\text{H}, 7\text{-H}). \]

\[^{13}\text{C-NMR:} \ (75.5 \text{ MHz, CDCl}_3 \]
\[\delta_{\text{ppm}} = 8.9 \ (q, \text{CH}_3), \ 9.5 \ (q, \text{CH}_3), \ 10.2 \ (q, \text{CH}_3), \ 10.7 \ (q, \text{CH}_3), \ 14.7 \ (q, \text{CH}_3), \ 20.4 \ (d, \text{CH}), \ 25.1 \ (d, \text{CH}), \ 27.1 \ (t, \text{CH}_2), \ 29.1 \ (t, \text{CH}_2), \ 51.2 \ (q, \text{OCH}_3), \ 79.4 \ (s, \text{C}-1), \ 89.1 \ (s, \text{C}-7), \ 124.3 \ (s, \text{C}-5), \ 164.1 \ (s, \text{C}-3). \]

4.16.1 Synthesis of \textit{ly xo-} & \textit{ribo-} \alpha\text{-acetamido}\text{-}\beta\text{-hydroxy esters (47a-f)}; General procedure:

To a solution of bicyclic oxetanes 46a-f (1 mmol) in 20 mL of methylene chloride, 0.3 mL of 1N HCl was added, and the mixture was stirred at room temperature for 6 h. The reaction was quenched by the addition of water (20 mL), the mixture was extracted with methylene chloride (3 x 15 mL) and the organic extract was washed with saturated NaHCO₃, brine, dried (MgSO₄). After removal of the solvent, the residue was purified by preparative thick-layer chromatography.

\textit{ly xo-Methyl} \ (2R^*,3R^*,4S^*) 2-acetylamino-3-hydroxy-2,4-dimethylhexanoate \ (ly xo-47a) \ (sbo-372a)

Following the above general procedure, bicyclic oxetane 46a (0.43 g, 2 mmol) was hydrolytically cleaved in 6h. Preparative chromatography yielded 0.35 g of the two inseparable diastermeric \textit{ly xo-} & \textit{ribo-} isomers as a colorless oil.

Yield: 75 % \ (ly xo- & \textit{ribo-} isomer)

TLC: \(R_f = 0.39 \) (ethylacetate/n-hexane 1: 4)

\[^1\text{H-NMR:} \ (300 \text{ MHz, CDCl}_3 \]
\[\delta_{\text{ppm}} = 0.69 \ (d, J = 6.8 \text{ Hz}, 3\text{H}, \text{CH}_3), \ 0.85 \ (t, J = 7.5 \text{ Hz}, 3\text{H}, \text{CH}_3), \ 1.12 \ (m, 1\text{H}, \text{CH}), \ 1.48 \ (m, 2\text{H}, \text{CH}_2), \ 1.68 \ (m, 2\text{H}, \text{CH}_2), \ 2.12 \ (s, 3\text{H}, \text{CH}_3\text{CO}), \ 3.73 \ (s, 3\text{H}, \text{OCH}_3), \ 4.40 \ (d, J = 9.9 \text{ Hz}, 1\text{H}, \text{CHOH}). \]

\[^{13}\text{C-NMR:} \ (75.5 \text{ MHz, CDCl}_3 \]

334
4. Experimental part

δ_{ppm} = 10.4 (q, CH₃), 14.1 (q, CH₃), 15.4 (q, CH₃), 18.4 (q, CH₃), 26.2 (t, CH₂), 34.0 (d, CH), 52.8 (q, OCH₃), 74.5 (s, C-2), 88.9 (s, C-3), 165.5 (s, CON), 174.4 (s, COO).

Anal: (C₁₁H₂₁NO₄, M = 231.15 g/mol)

Calcd: C 57.12 H 9.15 N 6.06

Found: C 57.08 H 8.98 N 5.97

ribo-Methyl (2S*,3S*,4S*) 2-acetylamino-2-ethyl-3-hydroxy-4-methylhexanoate (ribo-47a) (sbo-372a)

![ribo-Methyl (2S*,3S*,4S*) 2-acetylamino-2-ethyl-3-hydroxy-4-methylhexanoate](image)

Yield: 75 % (lyxo- & ribo-isomer)

TLC: Rf = 0.39 (ethylacetate/n-hexane 1: 4)

¹H-NMR: (300 MHz, CDCl₃)

δ_{ppm} = 0.69 (d, J = 6.8 Hz, 3H, CH₃), 0.85 (t, J = 7.5 Hz, 3H, CH₃), 1.12 (m, 1H, CH), 1.48 (m, 2H, CH₂), 1.68 (m, 2H, CH₂), 2.12 (s, 3H, CH₃CO), 3.73 (s, 3H, OCH₃), 4.44 (d, J = 8.5 Hz, 1H, CHOH).

¹³C-NMR: (75.5 MHz, CDCl₃)

δ_{ppm} = 10.9 (q, CH₃), 14.2 (q, CH₃), 15.7 (q, CH₃), 18.7 (q, CH₃), 26.2 (t, CH₂), 34.7 (d, CH), 52.8 (q, OCH₃), 74.5 (s, C-2), 88.9 (s, C-3), 165.4 (s, CON), 174.5 (s, COO).

HRMS: (C₁₁H₂₁NO₄, M = 231.15 g/mol)

Calcd: 231.1519

Found: 231.1513

lyxo-Methyl (2R*,3R*,4S*) 2-acetylamino-2-ethyl-3-hydroxy-4-methylhexanoate (lyxo-47b) (sbo-369a)

![lyxo-Methyl (2R*,3R*,4S*) 2-acetylamino-2-ethyl-3-hydroxy-4-methylhexanoate](image)
Following the above general procedure, bicyclic oxetane 46b (0.45 g, 2 mmol) was hydrolytically cleaved in 6h. Preparative chromatography yielded 0.39 g of the two inseparable diastermeric lyxo- & ribo-isomers as a colorless oil.

Yield: 80 % (lyxo- & ribo-isomer)

TLC: $R_f = 0.31$ (ethylacetate/n-hexane 1: 4)

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 0.88$ (t, $J = 7.5$ Hz, 3H, CH$_3$), 0.89 (t, $J = 7.4$ Hz, 3H, CH$_3$), 1.24 (m, 2H, CH$_2$), 1.54 (m, 4H, 2CH$_2$), 1.68 (m, 1H, CH), 2.12 (s, 3H, CH$_3$CO), 3.72 (s, 3H, OCH$_3$), 4.22 (d, $J = 9.3$ Hz, 1H, CHOH).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 8.1$ (q, CH$_3$), 9.1 (q, CH$_3$), 11.1 (q, CH$_3$), 14.1 (q, CH$_3$), 15.3 (q, CH$_3$), 25.5 (d, CH), 33.9 (t, CH$_2$), 52.4 (q, OCH$_3$), 78.5 (s, C-2), 88.9 (s, C-3), 165.4 (s, CON), 174.6 (s, COO).

HRMS: (C$_{12}$H$_{23}$NO$_4$, M = 245.16 g/mol)

Calcd: 245.1621

Found: 245.1613

ribo-Methyl (2S*,3S*,4S*) 2-acetylamino-3-hydroxy-4-methyl-2-propylhexanoate (ribo-47b) (sbo-369a)

![ribo-Methyl](image)

Yield: 80 % (lyxo- & ribo-isomer)

TLC: $R_f = 0.31$ (ethylacetate/n-hexane 1: 4)

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 0.88$ (t, $J = 7.5$ Hz, 3H, CH$_3$), 0.89 (t, $J = 7.4$ Hz, 3H, CH$_3$), 1.24 (m, 2H, CH$_2$), 1.54 (m, 4H, 2CH$_2$), 1.68 (m, 1H, CH), 2.12 (s, 3H, CH$_3$CO), 3.72 (s, 3H, OCH$_3$), 4.33 (d, $J = 7.1$ Hz, 1H, CHOH).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 8.8$ (q, CH$_3$), 10.4 (q, CH$_3$), 11.4 (q, CH$_3$), 14.4 (q, CH$_3$), 15.8 (q, CH$_3$), 23.6 (d, CH), 34.5 (t, CH$_2$), 52.4 (q, OCH$_3$), 78.9 (s, C-2), 88.8 (s, C-3), 165.2 (s, CON), 174.5 (s, COO).
4. Experimental part

lyxo-Methyl (2R*,3R*,4S*) 2-acetylamino-3-hydroxy-4-methyl-2-propylhexanoate (*lyxo*-47c) (sbo-393a)

Following the above general procedure, bicyclic oxetane 46c (0.48 g, 2 mmol) was hydrolytically cleaved in 6h. Preparative chromatography yielded 0.38 g of the two inseparable diastereomeric *lyxo*-& *ribo*-isomers as a colorless oil.

Yield: 73% (*lyxo*- & *ribo*-isomer)

TLC: \(R_f = 0.36 \) (ethylacetate/n-hexane 1:4)

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 0.86 \text{ (t, } J = 7.5 \text{ Hz, } 3\text{H, CH}_3), 0.90 \text{ (t, } J = 7.5 \text{ Hz, } 3\text{H, CH}_3), 0.92 \text{ (d, } J = 6.6 \text{ Hz, } 3\text{H, CH}_3), 1.23 \text{ (m, } 2\text{H, CH}_2), 1.54 \text{ (m, } 2\text{H, CH}_2), 1.68 \text{ (m, } 1\text{H, CH}), 1.98 \text{ (s, } 3\text{H, CH}_3\text{CO}), 3.72 \text{ (s, } 3\text{H, OCH}_3), 4.20 \text{ (d, } J = 9.2 \text{ Hz, } 1\text{H, CHOH}) \]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 10.5 \text{ (q, CH}_3), 14.1 \text{ (q, CH}_3), 14.5 \text{ (q, CH}_3), 15.3 \text{ (q, CH}_3), 17.7 \text{ (t, CH}_2), 26.1 \text{ (d, CH), 33.9 \text{ (t, CH}_2), 34.9 \text{ (t, CH}_2), 52.4 \text{ (q, OCH}_3), 78.2 \text{ (s, C-2), 88.9 \text{ (s, C-3), 165.1 \text{ (s, CON), 174.7 \text{ (s, COO).} }} \]

ribo-Methyl (2S*,3S*,4S*) 2-acetylamino-3-hydroxy-4-methyl-2-propylhexanoate (*ribo*-47c) (sbo-393a)

Yield: 73% (*lyxo*- & *ribo*-isomer)

TLC: \(R_f = 0.36 \) (ethylacetate/n-hexane 1:4)

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 0.86 \text{ (t, } J = 7.5 \text{ Hz, } 3\text{H, CH}_3), 0.90 \text{ (t, } J = 7.5 \text{ Hz, } 3\text{H, CH}_3), 0.92 \text{ (d, } J = 6.6 \text{ Hz, } 3\text{H, CH}_3), 1.23 \text{ (m, } 2\text{H, CH}_2), 1.54 \text{ (m, } 2\text{H, CH}_2), 1.68 \text{ (m, } 1\text{H, CH}), 1.98 \text{ (s, } 3\text{H, CH}_3\text{CO}), 3.72 \text{ (s, } 3\text{H, OCH}_3), 4.33 \text{ (d, } J = 6.9 \text{ Hz, } 1\text{H, CHOH}) \]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))
4. Experimental part

δ_{ppm} = 11.1 (q, CH₃), 14.2 (q, CH₃), 14.6 (q, CH₃), 15.8 (q, CH₃), 18.0 (t, CH₂), 26.8 (d, CH), 34.5 (t, CH₂), 35.1 (t, CH₂), 52.5 (q, OCH₃), 78.6 (s, C-2), 89.8 (s, C-3), 165.1 (s, CON), 174.8 (s, COO).

lyxo-Methyl (2R*,3R*,4S*) 2-acetylamino-3-hydroxy-2-isopropyl-4-methylhexanoate (lyxo-47d) (sbo-396b)

Following the above general procedure, bicyclic oxetane 46d (0.48 g, 2 mmol) was hydrolytically cleaved in 6h. Preparative chromatography yielded 0.36 g of the two inseparable diastermeric **lyxo- & ribo-isomers** as a colorless oil.

Yield: 69 % (**lyxo- & ribo-isomer**)

TLC: R_f = 0.45 (ethylacetate/n-hexane 1: 4)

¹H-NMR: (300 MHz, CDCl₃)

δ_{ppm} = 0.88 (t, J = 6.5 Hz, 3H, CH₃), 0.96 (d, J = 6.6 Hz, 3H, CH₃), 1.02 (d, J = 6.6 Hz, 3H, CH₃), 1.16 (d, J = 6.9 Hz, 3H, CH₃), 1.72 (m, 2H, CH₂), 1.99 (s, 3H, CH₃CO), 3.72 (s, 3H, OCH₃), 4.06 (d, J = 10.0 Hz, 1H, CHOH).

¹³C-NMR: (75.5 MHz, CDCl₃)

δ_{ppm} = 10.3 (q, CH₃), 13.9 (q, CH₃), 16.0 (q, CH₃), 17.6 (q, CH₃), 19.1 (q, CH₃), 26.3 (d, CH), 30.4 (d, CH), 33.7 (t, CH₂), 52.1 (q, OCH₃), 81.9 (s, C-2), 89.1 (s, C-3), 167.2 (s, CON), 173.9 (s, COO).

HRMS: (C₁₃H₂₅NO₄, M = 259.18 g/mol)

Calcd: 259.1777

Found: 259.1770

ribo-Methyl (2S*,3S*,4S*) 2-acetylamino-3-hydroxy-2-isopropyl-4-methylhexanoate (ribo-47d) (sbo-396b)
4. Experimental part

Yield: 69 % (lyxo- & ribo-isomer)

TLC: Rf = 0.45 (ethylacetate/n-hexane 1: 4)

1H-NMR: (300 MHz, CDCl₃)

$\delta_{ppm} = 0.88 \ (t, J = 6.5 \text{ Hz, } 3\text{H, CH}_3), 0.96 \ (d, J = 6.6 \text{ Hz, } 3\text{H, CH}_3), 1.02 \ (d, J = 6.6 \text{ Hz, } 3\text{H, CH}_3), 1.16 \ (d, J = 6.9 \text{ Hz, } 3\text{H, CH}_3), 1.72 \ (m, 2\text{H, CH}_2), 1.99 \ (s, 3\text{H, CH}_3\text{CO), 3.72 (s, 3H, OCH}_3), 4.28 \ (d, J = 8.1 \text{ Hz, } 1\text{H, CH}_OH).$

13C-NMR: (75.5 MHz, CDCl₃)

$\delta_{ppm} = 11.0 \ (q, \text{CH}_3), 15.9 \ (q, \text{CH}_3), 17.9 \ (q, \text{CH}_3), 18.9 \ (q, \text{CH}_3), 21.6 \ (q, \text{CH}_3), 26.7 \ (d, \text{CH}), 30.3 \ (d, \text{CH}), 34.3 \ (t, \text{CH}_2), 52.1 \ (q, \text{OCH}_3), 81.9 \ (s, \text{C-2}), 89.1 \ (s, \text{C-3}), 167.2 \ (s, \text{CON}), 173.9 \ (s, \text{COO}).$

lyxo-Methyl (2R*,3R*,4S*) 2-acetylamino-3-hydroxy-2-isobutyl-4-methylhexanoate (lyxo-47e) (sbo-398b)

Following the above general procedure, bicyclic oxetane 46e (0.51 g, 2 mmol) was hydrolytically cleaved in 6h. Preparative chromatography yielded 0.44 g of the two inseparable diastermeric lyxo- & ribo-isomer as a colorless oil.

Yield: 80 % (lyxo- & ribo-isomer)

TLC: Rf = 0.40 (ethylacetate/n-hexane 1: 4)

1H-NMR: (300 MHz, CDCl₃)

$\delta_{ppm} = 0.82 \ (d, J = 6.6 \text{ Hz, } 6\text{H, 2CH}_3), 0.88 \ (t, J = 7.4 \text{ Hz, } 3\text{H, CH}_3), 0.92 \ (d, J = 6.6 \text{ Hz, } 3\text{H, CH}_3), 1.12 \ (m, 2\text{H, 2CH}), 1.54 \ (m, 2\text{H, CH}_2), 1.67 \ (m, 2\text{H, CH}_2), 1.96 \ (s, 3\text{H, CH}_3\text{CO), 3.81 (s, 3H, OCH}_3), 4.05 \ (d, J = 9.3 \text{ Hz, } 1\text{H, CH}_OH).$

13C-NMR: (75.5 MHz, CDCl₃)

$\delta_{ppm} = 10.4 \ (q, \text{CH}_3), 14.2 \ (q, \text{CH}_3), 15.3 \ (q, \text{CH}_3), 22.2 \ (q, \text{CH}_3), 23.3 \ (q, \text{CH}_3), 24.6 \ (d, \text{CH}), 26.2 \ (d, \text{CH}), 33.8 \ (d, \text{CH}), 40.7 \ (t, \text{CH}_2), 52.3 \ (q, \text{OCH}_3), 78.1 \ (s, \text{C-2}), 89.6 \ (s, \text{C-3}), 164.8 \ (s, \text{CON}), 175.2 \ (s, \text{COO}).$

ribo-Methyl (2S*,3S*,4S*) 2-acetylamino-3-hydroxy-2-isobutyl-4-methylhexanoate (ribo-47e) (sbo-398b)
4. Experimental part

Yield: 80 % (lyxo- & ribo-isomer)

TLC: \(R_f = 0.40 \) (ethylacetate/n-hexane 1: 4)

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 0.82 \ (d, \ J = 6.6 \ Hz, \ 6H, \ 2\text{CH}_3), \ 0.88 \ (t, \ J = 7.4 \ Hz, \ 3H, \ \text{CH}_3), \ 0.92 \ (d, \ J = 6.6 \ Hz, \ 3H, \ \text{CH}_3), \ 1.12 \ (m, \ 2H, \ 2\text{CH}), \ 1.54 \ (m, \ 2H, \ \text{CH}_2), \ 1.67 \ (m, \ 2H, \ \text{CH}_2), \ 1.96 \ (s, \ 3\text{H}, \ \text{CH}_3\text{CO}), \ 3.81 \ (s, \ 3\text{H}, \ \text{OCH}_3), \ 4.22 \ (d, \ J = 6.9 \ Hz, \ 1\text{H}, \ \text{CHOH}). \]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 11.0 \ (q, \ \text{CH}_3), \ 14.1 \ (q, \ \text{CH}_3), \ 15.6 \ (q, \ \text{CH}_3), \ 22.3 \ (q, \ \text{CH}_3), \ 23.7 \ (q, \ \text{CH}_3), \ 24.8 \ (d, \ \text{CH}), \ 26.7 \ (d, \ \text{CH}), \ 34.2 \ (d, \ \text{CH}), \ 40.7 \ (t, \ \text{CH}_2), \ 52.4 \ (q, \ \text{OCH}_3), \ 78.1 \ (s, \ C-2), \ 89.6 \ (s, \ C-3), \ 164.8 \ (s, \ \text{CON}), \ 175.2 \ (s, \ \text{COO}). \]

\textit{lyxo-Methyl} \ (2R*,3R*,4S*) \ 2-acetylamino-2-sec-butyl-3-hydroxy-4-methylhexanoate \ (\textit{lyxo-47f}) \ (\textit{sbo-397b})

Following the above general procedure, bicyclic oxetane \(46f \) (0.51 g, 2 mmol) was hydrolytically cleaved in 6h. Preparative chromatography yielded 0.40 g of the two inseparable diastereomic \textit{lyxo-} & \textit{ribo-} isomers as a colorless oil.

Yield: 74 % (lyxo- & ribo-isomer)

TLC: \(R_f = 0.51 \) (ethylacetate/n-hexane 1: 4)

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 0.80 \ (t, \ J = 6.6 \ Hz, \ 3H, \ \text{CH}_3), \ 0.85 \ (d, \ J = 6.8 \ Hz, \ 3H, \ \text{CH}_3), \ 0.87 \ (t, \ J = 7.5 \ Hz, \ 3H, \ \text{CH}_3), \ 0.92 \ (d, \ J = 6.6 \ Hz, \ 3H, \ \text{CH}_3), \ 1.05 \ (m, \ 2H, \ \text{CH}_2), \ 1.15 \ (m, \ 2H, \ \text{CH}_2), \ 1.54 \ (m, \ 1H, \ \text{CH}), \ 1.98 \ (s, \ 3H, \ \text{CH}_3\text{CO}), \ 3.72 \ (s, \ 3H, \ \text{OCH}_3), \ 4.15 \ (d, \ J = 9.2 \ Hz, \ 1\text{H}, \ \text{CHOH}). \]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))
4. Experimental part

\[\delta_{\text{ppm}} = 11.1 \ (\text{q, CH}_3), \ 12.1 \ (\text{q, CH}_3), \ 13.9 \ (\text{q, CH}_3), \ 14.2 \ (\text{q, CH}_3), \ 15.5 \ (\text{q, CH}_3), \ 25.9 \ (\text{d, CH}), \ 26.2 \ (\text{d, CH}), \ 33.7 \ (\text{t, CH}_2), \ 37.9 \ (\text{t, CH}_2), \ 52.1 \ (\text{q, OCH}_3), \ 82.5 \ (\text{s, C-2}), \ 88.9 \ (\text{s, C-3}), \ 174.4 \ (\text{s, CON}), \ 179.8 \ (\text{s, COO}). \]

ribo-Methyl \ (2S^*,3S^*,4S^*) 2-acetylamino-2-sec-butyl-3-hydroxy-4-methylhexanoate (ribo-47f) (sbo-397b)

Yield: 74 % (*lyxo-* & *ribo-*isomer)

TLC: \(R_f = 0.51 \) (ethylacetate/n-hexane 1: 4)

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 0.80 \ (\text{t, J = 6.6 Hz, 3H, CH}_3), \ 0.85 \ (\text{d, J = 6.8 Hz, 3H, CH}_3), \ 0.87 \ (\text{t, J = 7.5 Hz, 3H, CH}_3), \ 0.92 \ (\text{d, J = 6.6 Hz, 3H, CH}_3), \ 1.05 \ (\text{m, 2H, CH}_2), \ 1.15 \ (\text{m, 2H, CH}_2), \ 1.54 \ (\text{m, 1H, CH}), \ 1.98 \ (\text{s, 3H, CH}_3CO), \ 3.72 \ (\text{s, 3H, OCH}_3), \ 4.28 \ (\text{d, J = 8.1 Hz, 1H, CHOH}). \]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 11.8 \ (\text{q, CH}_3), \ 12.4 \ (\text{q, CH}_3), \ 13.6 \ (\text{q, CH}_3), \ 14.8 \ (\text{q, CH}_3), \ 15.9 \ (\text{q, CH}_3), \ 25.4 \ (\text{d, CH}), \ 26.7 \ (\text{d, CH}), \ 33.1 \ (\text{t, CH}_2), \ 37.4 \ (\text{t, CH}_2), \ 52.4 \ (\text{q, OCH}_3), \ 81.9 \ (\text{s, C-2}), \ 88.5 \ (\text{s, C-3}), \ 174.2 \ (\text{s, CON}), \ 179.1 \ (\text{s, COO}). \]

Anal: (C\(_{14}\)H\(_{27}\)NO\(_4\), M = 273.17 g/mol)

Calcd: C 61.51 H 9.96 N 5.12

Found: C 61.42 H 9.64 N 5.04
4. Experimental part

4.17 Synthesis of 2-substituted 4-methyl-5-methoxyoxazoles

Synthesis of N-acylalanine methyl ester 48a-c; General procedure:
To a stirred suspension of alanine methyl ester hydrochloride (13.96 g, 100 mmol) in absolute chloroform (150 mL) was added triethylamine (28 mL, 200 mmol) at 0°C and the mixture was stirred for 15 min at room temperature. The appropriate acid chloride (100 mmol) was added dropwise and stirring was continued for 45 min. The solvent was removed under reduced pressure; ethyl acetate (750 mL) was added and the mixture was filtered through a pad of silica gel. Evaporation of the solvent under reduced pressure afforded the amide in high purity.

Methyl 2-propionylaminopropionate (48a)

Alanine methyl ester hydrochloride (13.96 g, 0.1 mol) and propionyl chloride (8.74 mL, 0.1 mol) were allowed to react according to the above general procedure to give 14.3 g of methyl 2-propionylaminopropionate as a colorless viscous oil.

Yield: 90 %
B.p: 130-132 °C, 10 torr (Lit., 129-129.5°C, 10 torr).

1H-NMR: (300 MHz, CDCl₃)

\[\delta_{ppm} = 1.03 \ (t, J = 7.5 \text{ Hz, } 3H, \text{ CH}_3), 1.26 \ (d, J = 7.2 \text{ Hz, } 3H, \text{ CH}_3), 2.12 \ (q, J = 7.5 \text{ Hz, } 2H, \text{ CH}_2), 3.62 \ (s, 3H, \text{ OCH}_3), 4.46 \ (\text{quintet, } J = 7.2 \text{ Hz, } 1H, \text{ CHN}), 6.39 \ (d, J = 5.3 \text{ Hz, } 1H, \text{ NH}). \]

13C-NMR: (75.5 MHz, CDCl₃)

\[\delta_{ppm} = 9.4 \ (q, \text{ CH}_3), 17.9 \ (t, \text{ CH}_2), 29.1 \ (q, \text{ CH}_3), 47.7 \ (d, \text{ CHN}), 52.1 \ (q, \text{ OCH}_3), 173.4 \ (s, \text{ CON}), 173.5 \ (s, \text{ CO}). \]

Methyl 2-isobutyrylaminopropionate (48b)

Alanine methyl ester hydrochloride (13.96 g, 0.1 mol) and isobutyryl chloride (10.55 mL, 0.1 mol) were allowed to react according to the above general procedure to give 16.6 g of methyl 2-isobutyrylaminopropionate as a colorless white solid.
Yield: 96 %
M.p: 55-57 °C (Lit. 176, 55.5-57°C).
1H-NMR: (300 MHz, CDCl$_3$)
$\delta_{ppm} = 1.05$ (d, $J = 6.9$ Hz, 6H, 2CH$_3$), 1.28 (d, $J = 7.2$ Hz, 3H, CH$_3$), 2.32 (septet, $J = 6.9$ Hz, 1H, CH), 3.64 (s, 3H, OCH$_3$), 4.48 (quintet, $J = 7.2$ Hz, 1H, CHN), 6.26 (d, $J = 5.6$ Hz, 1H, NH).
13C-NMR: (75.5 MHz, CDCl$_3$)
$\delta_{ppm} = 18.1$ (q, CH$_3$), 19.1 (q, CH$_3$), 19.2 (q, CH$_3$), 35.1 (d, CH), 47.6 (d, CHN), 52.2 (q, OCH$_3$), 173.6 (s, CON), 176.5 (s, CO).

Methyl 2-(2,2-dimethyl-propionylamino)propionate (48c) (sbo-413)

Alanine methyl ester hydrochloride (13.96 g, 0.1 mol) and pivaloyl chloride (12.3 mL, 0.1 mol) were allowed to react according to the above general procedure to give 16.84 g of methyl 2-(2,2-dimethyl-propionylamino)propionate as a colorless white solid.
Yield: 90 %
M.p: 61-63 °C
1H-NMR: (300 MHz, CDCl$_3$)
$\delta_{ppm} = 1.03$ (s, 9H, 3CH$_3$), 1.22 (d, $J = 7.2$ Hz, 3H, CH$_3$), 3.56 (s, 3H, OCH$_3$), 4.34 (quintet, $J = 7.2$ Hz, 1H, CHN), 6.23 (bs, 1H, NH).
13C-NMR: (75.5 MHz, CDCl$_3$)
$\delta_{ppm} = 17.8$ (q, CH$_3$), 27.0 (q, 3CH$_3$), 38.2 (s, Cq), 47.6 (d, CHN), 51.9 (q, OCH$_3$), 173.4 (s, CON), 177.8 (s, CO).

Synthesis of 2-substituted 4-methyl-5-methoxyoxazoles (49a-c); General procedure:
N-Acyl-L-alanine methyl ester (0.1 mol) was dissolved in 20 ml of chloroform in a 250 ml flask, 20.8 g (0.1 mol) of phosphorous pentachloride was added and the flask was fitted with a calcium chloride tube. The solution was gently warmed by means of a water bath (ca. 60 °C) with stirring until the HCl gas evolution ceased and the solution became intensively yellow. Then, the flask was cooled by an ice-salt bath and 50 ml of absolute ether was added. To the cooled mixture, 20 % aqueous KOH was added until neutralization dropwise with vigorous stirring. The mixture was stirred at room temperature for 30 min. The organic layer was subsequently separated and the aqueous layer was extracted with 2 x 200 mL of ether. The
combined organic extracts were washed with water, brine and dried over anhydrous MgSO₄. After removal of the solvents under vacuum, the remaining oil was distilled by a Büchi Kugelrohr apparatus to give the product 49a-f.

2-Ethyl-4-methyl-5-methoxyoxazole (49a)¹²⁹ (sbo-421)

Reaction of methyl 2-propionylaminopropionate (15.9 g, 0.1 mol) and PCl₅ (20.8 g, 0.1 mol) according to the above general procedure afforded 10.6 g of 2-ethyl-4-methyl-5-methoxyoxazole as a colorless liquid.

Yield: 75 %
B.p: 80-83 °C, 10 torr (Lit.,¹²⁹ 81°C, 31 torr).
UV/Vis: (CH₃CN, c = 1.64 x 10⁻⁴ mol/l, d = 1 cm)

λ_{max} (nm, log ε) = 228 (4.18), 236 (4.28).
IR: (Film)

υ (cm⁻¹) = 2987, 1625, 1598, 1448, 1348, 1052, 963.

¹H-NMR: (300 MHz, CDCl₃)

δ_{ppm} = 1.18 (t, J = 7.5 Hz, 3H, CH₃), 1.92 (s, 3H, CH₃), 2.54 (q, J = 7.5 Hz, 2H, CH₂), 3.78 (s, 3H, OCH₃).

¹³C-NMR: (75.5 MHz, CDCl₃)

δ_{ppm} = 9.8 (q, CH₃), 10.8 (q, CH₃), 21.7 (t, CH₂), 61.0 (q, OCH₃), 111.0 (s, C-4), 154.4 (s, C-5), 156.1 (s, C-2).

2-Isopropyl-4-methyl-5-methoxyoxazole (49b) (sbo-449)

Reaction of methyl 2-isobutyrylaminopropanionate (17.3 g, 0.1 mol) and PCl₅ (20.8 g, 0.1 mol) according to the above general procedure afforded 12.4 g of 2-isopropyl-4-methyl-5-methoxyoxazole as a pale yellow liquid.

Yield: 80 %
B.p: 94-97 °C, 10 torr.
¹H-NMR: (300 MHz, CDCl₃)
4. Experimental part

\[\delta_{ppm} = 1.19 \ (d, \ J = 6.9 \ Hz, \ 6H, \ 2CH_3), \ 1.92 \ (s, \ 3H, \ CH_3), \ 2.82 \ (septet, \ J = 7.1 \ Hz, \ 1H, \ CH), \ 3.78 \ (s, \ 3H, \ OCH_3). \]

\[^{13}C-NMR: \ (75.5 \ MHz, \ CDCl_3) \]
\[\delta_{ppm} = 9.7 \ (q, \ CH_3), \ 19.9 \ (q, \ 2CH_3), \ 28.3 \ (d, \ CH), \ 60.8 \ (q, \ OCH_3), \ 110.7 \ (s, \ C-4), \ 154.1 \ (s, \ C-5), \ 159.2 \ (s, \ C-2). \]

2-tert-Butyl-4-methyl-5-methoxyoxazole (49c) (sbo-414)

Reaction of methyl 2-(2,2-dimethyl-propionylamino)propionate (18.7 g, 0.1 mol) and PCl\(_5\) (20.8 g, 0.1 mol) according to the above general procedure afforded 13.2 g of 2-tert-butyl-4-methyl-5-methoxyoxazole as a pale yellow liquid.

Yield: 78%
B.p: 100-102 °C, 10 torr.
UV/Vis: (CH\(_3\)CN, c = 1.64 x 10\(^{-4}\) mol/l, d = 1 cm)
\[\lambda_{max} \ (nm, \ log \epsilon) = 234 \ (4.15), \ 245 \ (3.94). \]

IR: (Film)
\[v \ (cm^{-1}) = 2972, \ 1672, \ 1567, \ 1480, \ 1395, \ 1332, \ 995. \]

1H-NMR: (300 MHz, CDCl\(_3\))
\[\delta_{ppm} = 1.24 \ (s, \ 9H, \ 3CH_3), \ 1.94 \ (s, \ 3H, \ CH_3), \ 3.79 \ (s, \ 3H, \ OCH_3). \]

13C-NMR: (75.5 MHz, CDCl\(_3\))
\[\delta_{ppm} = 9.8 \ (q, \ CH_3), \ 28.2 \ (q, \ 3CH_3), \ 33.5 \ (s, \ Cq), \ 60.9 \ (q, \ OCH_3), \ 110.6 \ (s, \ C-4), \ 154.2 \ (s, \ C-5), \ 161.4 \ (s, \ C-2). \]

4.18 Synthesis of α-keto ester substrates

Synthesis of methyl trimethyl pyruvate (50) (sbo-466)

3,3-Dimethyl-2-butaneone (10 g, 0.1 mol) was rapidly added to KMnO\(_4\) (31.6 g, 0.2 mol) in 750 mL of water containing 10g of sodium hydroxide at room temperature. The mixture was
stirred for 5h, then filtered on a Büchner funnel (eliminating MnO$_2$) and concentrated until one-fifth of the initial volume remained. Concentrated HCl (38 mL) was slowly added in small amounts. The supernatant oily liquid was decanted and the aqueous layer was salted out with sodium chloride and concentrated. The obtained ketoacid was stirred with 15 g of methanol and 7.5 g of conc. H$_2$SO$_4$. The mixture was heated under reflux for 2h. After cooling, the mixture was decanted, extracted three times with pentane, and the organic layer was neutralized with 5% sodium bicarbonate solution and dried over sodium sulfate. The solvents were evaporated under reduced pressure and the ketoester was distilled to give 7.5 g of pure methyl trimethylpyruvate.

Yield: 70 %

B.p: 65-67 °C, 10 torr (Lit., 130 68-70 °C, 1o torr).

UV/Vis: (CH$_3$CN, c = 1.64 x 10$^{-4}$ mol/l, d = 1 cm)

λ_{max} (nm, log ε) = 352 (2.18), 296 (3.34).

IR: (Film)

ν (cm$^{-1}$) = 2974, 2875, 1742, 1716, 1480, 1463, 1435, 1368, 833.

1H-NMR: (300 MHz, CDCl$_3$)

δ ppm = 1.20 (s, 9H, 3CH$_3$), 3.79 (s, 3H, OCH$_3$).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ ppm = 25.6 (q, 3CH$_3$), 42.5 (s, Cq), 52.1 (q, OCH$_3$), 163.9 (s, COO), 201.6 (s, CO).

Anal: (C$_7$H$_{12}$O$_3$, M = 144.2 g/mol)

Calcd: C 58.32 H 8.39

Found: C 58.15 H 8.17

Synthesis of isopropyl phenyl glyoxylate (51)

To a stirring solution of benzoyl formic acid (2.60 g, 17.3 mmol) in 40 mL of dry benzene were added 4-((dimethylamino)pyridine (DMAP) (213 mg, 1.7 mmol) and 2.21 g, 35 mmol of isopropyl alcohol and N,N-dicyclohexylcarbodiimide (DCC) (3.57 g, 17.3 mmol) was added to the reaction mixture kept in ice-bath. The mixture was stirred in the ice bath for 10 min and then stirred at room temperature for another 10 h. Precipitated urea was filtered by vacuum filtration. The resulting solution was washed with water, 0.5N HCl, and saturated sodium
bicarbonate solution three times and chromatographed with eluent (ethylacetate/hexane, 1/5) to yield 2.74 g of pure isopropyl phenylglyoxylate as a colorless viscous oil.

Yield: 90 %

TLC: $R_f = 0.45$ (ethylacetate/n-hexane 1: 5)

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 1.37$ (d, $J = 6.3$ Hz, 6H, 2CH$_3$), 5.30 (septet, $J = 6.3$ Hz, 1H, CH), 7.43 (m, 2H, H$_{arom}$), 7.59 (m, 1H, H$_{arom}$), 7.99 (d, $J = 6.0$ Hz, 2H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 21.6$ (q, 2CH$_3$), 70.6 (d, OCH), 128.8 (d, CH$_{arom}$), 129.8 (d, CH$_{arom}$), 132.4 (d, CH$_{arom}$), 134.7 (s, C$_{arom}$), 163.6 (s, COO), 186.6 (s, CO).

Synthesis of tert-butyl phenylglyoxylate (52)131a (sbo-440)

To a stirring solution of benzoyl formic acid (2.60 g, 17.3 mmol) in 40 mL of dry benzene were added 4-(dimethylamino)pyridine (DMAP) (213 mg, 1.7 mmol) and 2.22 g, 30 mmol of tert-butyl alcohol and N,N-dicyclohexylcarbodiimide (DCC) (3.57 g, 17.3 mmol) was added to the reaction mixture kept in ice-bath. The mixture was stirred in the ice bath for 10 min and then stirred at room temperature for another 10 h. Precipitated urea was filtered by vacuum filtration. The resulting solution was washed with water, 0.5N HCl, and saturated sodium bicarbonate solution, dried (MgSO$_4$). After removal of the solvent under vacum, the residue was purified by column chromatography using a mixture of ethyl acetate and n-hexane as eluent to give 3.54 g of tert-butyl phenylglyoxylate as a colorless viscous oil.

Yield: 92 %

TLC: $R_f = 0.42$ (ethylacetate/n-hexane 1: 10)

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 1.63$ (s, 9H, 3CH$_3$), 7.50 (t, $J = 6.0$ Hz, 2H, H$_{arom}$), 7.64 (t, $J = 6.0$ Hz, 1H, H$_{arom}$), 7.79 (d, $J = 6.0$ Hz, 2H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 27.9$ (q, 3CH$_3$), 84.6 (s, C$_q$), 128.7 (d, CH$_{arom}$), 129.7 (d, CH$_{arom}$), 132.4 (d, CH$_{arom}$), 134.5 (s, C$_{arom}$), 163.6 (s, COO), 186.7 (s, CO).
Synthesis of (-)-menthyl phenylglyoxylate (53)\(^\text{sbo-360}\)

Oxalyl chloride (9.45 mL, 0.11 mol) in acetonitrile (10 mL) is added dropwise to a solution of dimethylformamide (25 mL) in acetonitrile (120 mL) at \(-15^\circ\text{C}\) under nitrogen. After 15 min, phenyl glyoxylic acid (15.0 g, 0.1 mol) is added with stirring and stirring is continued until the precipitate dissolves (\(~30\) min). Menthol (15.6 g, 0.1 mol) dissolved in acetonitrile (15 mL) is added and the mixture is stirred at room temperature for 6 h. The mixture is then cooled to 0 \(^\circ\text{C}\), pyridine (15 mL) in acetonitrile (30 mL) is added dropwise, and the mixture is stirred for 1 h. Dichloromethane (300 mL) is added, the solution is washed with sodium carbonate solution (300 mL), extracted with dichloromethane (300 mL). The extract is dried with magnesium sulfate and the solvent is evaporated. The residue is cooled to \(-25^\circ\text{C}\) and mixed with an equal volume of 1/1 ether/pentane. After 5-10 h, the crystals are filtered, washed with pentane and the mother liquor is again evaporated and collected to give 24.5 g of menthyl phenylglyoxylate as a colorless needles.

Yield: 85 %

M.p: 64-67 \(^\circ\text{C}\).

UV/Vis: (CH\(_3\)CN, \(c = 1.60 \times 10^{-5}\) mol/l, \(d = 1\) cm)

\[\lambda_{\text{max}} (\text{nm}, \log \varepsilon) = 348 (2.34), 310 (3.49).\]

IR: (Film)

\[\tilde{\nu} (\text{cm}^{-1}) = 2957, 2937, 2900, 2876, 1733, 1685, 1594, 1450, 1387, 1296, 1177, 980.\]

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 0.82 (\text{d}, J = 6.9 \text{ Hz}, 3\text{H}, \text{CH}_3), 0.89 (\text{d}, J = 6.9 \text{ Hz}, 3\text{H}, \text{CH}_3), 0.95 (\text{d}, J = 6.5 \text{ Hz}, 3\text{H}, \text{CH}_3), 1.10 (\text{m}, 1\text{H}, \text{CH}), 1.20 (\text{m}, 1\text{H}, \text{CH}), 1.53 (\text{m}, 2\text{H}, \text{CH}_2), 1.73 (\text{m}, 2\text{H}, \text{CH}_2), 2.19 (\text{m}, 1\text{H}, \text{CH}), 4.98 (\text{ddd}, J = 11.0, 4.6, 4.4 \text{ Hz}, 1\text{H}, \text{OCH}), 7.49 (\text{m}, 2\text{H}, \text{H}_{\text{arom}}), 7.65 (\text{m}, 1\text{H}, \text{H}_{\text{arom}}), 7.97 (\text{m}, 2\text{H}, \text{H}_{\text{arom}}).\]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 16.2 (\text{q}, \text{CH}_3), 20.7 (\text{q}, \text{CH}_3), 22.0 (\text{q}, \text{CH}_3), 23.4 (\text{t}, \text{CH}_2), 26.2 (\text{d}, \text{CH}), 31.6 (\text{d}, \text{CH}), 40.6 (\text{t}, \text{CH}_2), 46.8 (\text{d}, \text{CH}), 77.0 (\text{d}, \text{OCH}), 128.9 (\text{d}, \text{CH}_{\text{arom}}), 129.9 (\text{d}, \text{CH}_{\text{arom}}), 132.6 (\text{s}, \text{C}_{\text{arom}}), 163.9 (\text{s}, \text{COO}), 186.8 (\text{s}, \text{CO}).\]

Anal: (C\(_{18}\)H\(_{24}\)O\(_3\), M = 288.38 g/mol)
4. Experimental part

Calcd: C 74.97 H 8.39
Found: C 74.89 H 8.31

4.19 Photolyses of α-keto esters with 5-methoxyoxazoles; General procedure:
Under a nitrogen atmosphere, a solution of α-keto ester substrates (5 mmol) and 5-methoxyoxazole substrates (5 mmol) in 50 mL of benzene was irradiated in a Rayonet photoreactor (350 nm) at 10°C for 24. The solvent was evaporated in vacuo, and the residue was analyzed by 1H-NMR spectroscopy to determine the diastereoselectivity. Purification was carried out by preparative chromatography using silica gel which was firstly neutralized by elution with 1% TEA/CH₂Cl₂. The thermally and hydrolytically unstable primary products could in most cases not be characterized by combustion analysis and were hydrolyzed subsequently to the more stable α-amino-β-hydroxy esters.

Photolyses of methyl pyruvate with 5-methoxyoxazoles 36a-f:
5-Methoxy-1,3,7-trimethyl-4,6-dioxa-2-aza-bicyclo[3,2.0]hept-2-ene-7-carboxylic acid methyl ester (55a) (sbo-494c)

A solution of methyl pyruvate (0.51 g, 5 mmol) and 2,4-dimethyl-5-methoxyoxazole (0.62 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 0.98 g of a yellow oil. Preparative chromatography on silica gel yielded 0.85 g of the oxetane as a colorless oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy ester (see later).

Yield: 74 %
TLC: Rf = 0.37 (ethylacetate/n-hexane 1: 4).
IR: (Film)

\[\nu \text{ (cm}^{-1}\text{)} = 2989, 2895, 1725, 1610, 1600, 1445, 1095, 980, 770. \]

1H-NMR: (300 MHz, CDCl₃)
\[\delta_{\text{ppm}} = 1.22 \text{ (s, 3H, CH₃), } 1.44 \text{ (s, 3H, CH₃), } 2.08 \text{ (s, 3H, CH₃), } 3.56 \text{ (s, 3H, OCH₃), } 3.78 \text{ (s, 3H, OCH₃).} \]

13C-NMR: (75.5 MHz, CDCl₃)
4. Experimental part

\[\delta_{ppm} = 14.6 \text{ (q, CH}_3\text{)}, 14.9 \text{ (q, CH}_3\text{)}, 18.0 \text{ (q, CH}_3\text{)}, 51.8 \text{ (q, OCH}_3\text{)}, 52.4 \text{ (q, OCH}_3\text{)}, 76.0 \text{ (s, C-7)}, 88.7 \text{ (s, C-1)}, 123.9 \text{ (s, C-5)}, 166.2 \text{ (s, C-3)}, 171.5 \text{ (s, COO)}. \]

HRMS: (C_{10}H_{15}NO_5, M = 229.10 g/mol)
- Calcd: 229.0946
- Found: 229.0941

1-Ethyl-5-methoxy-3,7-dimethyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (55b) (sbo-399e)

A solution of methyl pyruvate (0.51 g, 5 mmol) and 4-ethyl-2-methyl-5-methoxyoxazole (0.71 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 0.96 g of a yellow oil. Preparative chromatography on silica gel yielded 0.80 g of the oxetane as a colorless oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding \(\alpha \)-amino-\(\beta \)-hydroxy ester (see later).

Yield: 66 %

TLC: \(R_f = 0.36 \) (ethyl acetate/n-hexane 1:4).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))
\[\delta_{ppm} = 0.84 \text{ (t, J = 7.5 Hz, 3H, CH}_3\text{)}, 1.47 \text{ (s, 3H, CH}_3\text{)}, 1.58 \text{ (m, 1H, CH)}, 1.68 \text{ (m, 1H, CH)}, 2.13 \text{ (s, 3H, CH}_3\text{)}, 3.59 \text{ (s, 3H, OCH}_3\text{)}, 3.79 \text{ (s, 3H, OCH}_3\text{)}. \]

\(^13\)C-NMR: (75.5 MHz, CDCl\(_3\))
\[\delta_{ppm} = 7.7 \text{ (q, CH}_3\text{)}, 14.9 \text{ (q, CH}_3\text{)}, 19.9 \text{ (q, CH}_3\text{)}, 21.6 \text{ (t, CH}_2\text{)}, 51.7 \text{ (q, OCH}_3\text{)}, 52.4 \text{ (q, OCH}_3\text{)}, 79.5 \text{ (s, C-7)}, 89.0 \text{ (s, C-1)}, 124.0 \text{ (s, C-5)}, 166.3 \text{ (s, C-3)}, 171.7 \text{ (s, COO)}. \]

5-Methoxy-3,7-dimethyl-1-propyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (55c) (sbo-405b)

A solution of methyl pyruvate (0.51 g, 5 mmol) and 2-methyl-4-propyl-5-methoxyoxazole (0.75 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general
4. Experimental part

procedure to give 1.1 g of a yellow oil. Preparative chromatography on silica gel yielded 0.92 g of the oxetane as a colorless oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy ester (see later).

Yield: 73 %

TLC: $R_f = 0.33$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 1.05$ (t, $J = 7.5$ Hz, 3H, CH$_3$), 1.33 (t, $J = 7.1$ Hz, 2H, CH$_2$), 1.47 (s, 3H, CH$_3$), 2.08 (s, 3H, CH$_3$), 2.14 (sextet, $J = 7.5$ Hz, 2H, CH$_2$), 3.74 (s, 3H, OCH$_3$), 3.77 (s, 3H, OCH$_3$).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 12.6$ (q, CH$_3$), 16.0 (q, CH$_3$), 22.4 (q, CH$_3$), 23.4 (t, CH$_2$), 34.6 (t, CH$_2$), 52.3 (q, OCH$_3$), 52.4 (q, OCH$_3$), 63.6 (s, C-7), 73.3 (s, C-1), 124.2 (s, C-5), 165.2 (s, C-3), 168.4 (s, COO).

1-Isopropyl-5-methoxy-3,7-dimethyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (55d) (sbo-406)

A solution of methyl pyruvate (0.51 g, 5 mmol) and 4-isopropyl-2-methyl-5-methoxyoxazole (0.75 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.0 g of a yellow oil. Preparative chromatography on silica gel yielded 0.75 g of the oxetane as a colorless oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy ester (see later).

Yield: 60 %

TLC: $R_f = 0.37$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 0.84$ (d, $J = 6.6$ Hz, 3H, CH$_3$), 1.01 (d, $J = 6.6$ Hz, 3H, CH$_3$), 1.23 (septet, $J = 6.6$ Hz, 1H, CH), 1.55 (s, 3H, CH$_3$), 2.14 (s, 3H, CH$_3$), 3.64 (s, 3H, OCH$_3$), 3.79 (s, 3H, OCH$_3$).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 14.6$ (q, CH$_3$), 16.4 (q, CH$_3$), 16.9 (q, CH$_3$), 19.2 (q, CH$_3$), 27.5 (d, CH), 51.3 (q, OCH$_3$), 52.3 (q, OCH$_3$), 82.8 (s, C-7), 90.2 (s, C-1), 124.1 (s, C-5), 166.4 (s, C-3), 171.8 (s, COO).
4. Experimental part

HRMS: \((C_{12}H_{19}NO_5, \ M = 257.13 \text{ g/mol})\)
- **Calcd:** 257.1374
- **Found:** 257.1371

1-Isobutyl-5-methoxy-3,7-dimethyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (55e) (sbo-407d)

A solution of methyl pyruvate (0.51 g, 5 mmol) and 4-isobutyl-2-methyl-5-methoxyoxazole (0.84 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.12 g of a yellow oil. Preparative chromatography on silica gel yielded 0.98 g of the oxetane as a colorless oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding \(\alpha\)-amino-\(\beta\)-hydroxy ester (see later).

Yield: 72 %

TLC: \(R_f = 0.41\) (ethyl acetate/n-hexane 1:4).

\(^1H\-NMR:\((300 \text{ MHz, CDCl}_3)\)

\[\delta_{\text{ppm}} = 0.68 \ (d, \ J = 6.6 \text{ Hz, } 3\text{H, CH}_3), \ 0.85 \ (d, \ J = 6.6 \text{ Hz, } 3\text{H, CH}_3), \ 1.00 \ (m, \ 1\text{H, CH}), \ 1.18 \ (m, \ 2\text{H, CH}_2), \ 1.46 \ (s, \ 3\text{H, CH}_3), \ 1.93 \ (s, \ 3\text{H, CH}_3), \ 3.54 \ (s, \ 3\text{H, OCH}_3), \ 3.63 \ (s, \ 3\text{H, OCH}_3).\]

\(^13C\-NMR:\((75.5 \text{ MHz, CDCl}_3)\)

\[\delta_{\text{ppm}} = 14.2 \ (q, \ CH_3), \ 14.9 \ (q, \ CH_3), \ 18.8 \ (q, \ CH_3), \ 22.2 \ (q, \ CH_3), \ 23.9 \ (q, \ CH_3), \ 27.8 \ (d, \ CH), \ 36.1 \ (t, \ CH_2), \ 51.7 \ (q, \ OCH_3), \ 52.4 \ (q, \ OCH_3), \ 78.9 \ (s, \ C-7), \ 89.3 \ (s, \ C-1), \ 124.1 \ (s, \ C-5), \ 165.6 \ (s, \ C-3), \ 171.7 \ (s, \ COO).\]

1-sec-Butyl-5-methoxy-3,7-dimethyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (55f) (sbo-408b)

A solution of methyl pyruvate (0.51 g, 5 mmol) and 4-sec-butyl-2-methyl-5-methoxyoxazole (0.84 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.0 g of a yellow oil. Preparative chromatography on silica gel yielded 0.92
Experimental part

g of the oxetane as a colorless oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy ester (see later).

Yield: 68 %

TLC: \(R_f = 0.42 \) (ethyl acetate/n-hexane 1:4).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 0.76 \text{ (t, J = 6.8 Hz, 3H, CH}_3\text{), 0.90 (d, J = 6.6 Hz, 3H, CH}_3\text{), 1.47 (m, 2H, CH}_2\text{), 1.48 (s, 3H, CH}_3\text{), 2.08 (s, 3H, CH}_3\text{), 3.57 (s, 3H, OCH}_3\text{), 3.67 (m, 1H, CH), 3.77 (s, 3H, OCH}_3\text{).} \]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 11.3 \text{ (q, CH}_3\text{), 12.6 (q, CH}_3\text{), 14.8 (q, CH}_3\text{), 19.3 (q, CH}_3\text{), 23.8 (t, CH}_2\text{), 34.3 (d, CH), 51.5 (q, OCH}_3\text{), 52.4 (q, OCH}_3\text{), 83.5 (s, C-7), 90.4 (s, C-1), 124.2 (s, C-5), 165.8 (s, C-3), 171.9 (s, COO).} \]

Photolyses of methyl trimethylpyruvate with 5-methoxyoxazoles 36a-f:

7-\(\text{tert-Butyl-5-methoxy-1,3-dimethyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-} \)
carboxylic acid methyl ester (56a) (sbo-480a)

A solution of methyl trimethylpyruvate (0.36 g, 2.5 mmol) and 2,4 -dimethyl-5-methoxyoxazole (0.32 g, 2.5 mmol) in benzene (20 mL) was irradiated for 24 h according to the above general procedure to give 0.58 g of a yellow oil. Preparative chromatography on silica gel yielded 0.5 g of the oxetane as a colorless oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy ester (see later).

Yield: 74 %

TLC: \(R_f = 0.44 \) (ethyl acetate/n-hexane 1:4).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 1.03 \text{ (s, 3H, CH}_3\text{), 1.11 (s, 9H, 3CH}_3\text{), 1.49 (s, 3H, CH}_3\text{), 1.97 (s, 3H, CH}_3\text{), 3.56 (s, 3H, OCH}_3\text{), 3.72 (s, 3H, OCH}_3\text{).} \]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))
4. Experimental part

\[\delta_{\text{ppm}} = 14.7 \ (q, \ CH_3), 15.6 \ (q, \ CH_3), 25.7 \ (q, \ 3CH_3), 36.6 \ (s, \ Cq), 51.3 \ (q, \ OCH_3), 51.7 \ (q, \ OCH_3), 86.8 \ (s, \ C-1), 87.1 \ (s, \ C-7), 122.2 \ (s, \ C-5), 168.1 \ (s, \ C-3), 176.0 \ (s, \ COO). \]

HRMS: \((C_{13}H_{21}NO_5, M = 271.14 \text{ g/mol})\)
Calcd: 271.1381
Found: 271.1386

7-tert-Butyl-1-ethyl-5-methoxy-3-methyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (56b) (sbo-390)

A solution of methyl trimethylpyruvate (0.36 g, 2.5 mmol) and 4-ethyl-2-methyl-5-methoxyoxazole (0.35 g, 2.5 mmol) in benzene (20 mL) was irradiated for 24 h according to the above general procedure to give 0.63 g of a yellow oil. Preparative chromatography on silica gel yielded 0.6 g of the oxetane as a colorless oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding \(\alpha\)-amino-\(\beta\)-hydroxy ester (see later).

Yield: 84 %

TLC: \(R_f = 0.47\) (ethyl acetate/n-hexane 1:4).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))
\[\delta_{\text{ppm}} = 0.77 \ (t, \ J = 7.5 \text{ Hz}, \ 3H, \ CH_3), 0.94 \ (m, \ 2H, \ CH_2), 1.04 \ (s, \ 9H, \ 3CH_3), 1.99 \ (s, \ 3H, \ CH_3), 3.54 \ (s, \ 3H, \ OCH_3), 3.70 \ (s, \ 3H, \ OCH_3). \]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))
\[\delta_{\text{ppm}} = 8.0 \ (q, \ CH_3), 14.6 \ (q, \ CH_3), 21.8 \ (q, \ 3CH_3), 27.0 \ (s, \ Cq), 33.7 \ (t, \ CH_2), 34.6 \ (s, \ Cq), 51.6 \ (q, \ OCH_3), 53.1 \ (q, \ OCH_3), 80.6 \ (s, \ C-1), 81.2 \ (s, \ C-7), 122.9 \ (s, \ C-5), 166.2 \ (s, \ C-3), 171.8 \ (s, \ COO). \]

7-tert-Butyl-5-methoxy-3-methyl-1-propyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (56c) (sbo-389)

\[H_3CO_2C\]
\[H_2C\]
[Diagram of the molecule]
A solution of methyl trimethylpyruvate (0.36 g, 2.5 mmol) and 2-methyl-4-propyl-5-methoxyoxazole (0.38 g, 2.5 mmol) in benzene (20 mL) was irradiated for 24 h according to the above general procedure to give 0.68 g of a yellow oil. Preparative chromatography on silica gel yielded 0.52 g of the oxetane as a colorless oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy ester (see later).

Yield: 70 %

TLC: $R_f = 0.27$ (ethyl acetate/n-hexane 4:1).

1H-NMR: (300 MHz, CDCl$_3$)

\[
\delta_{ppm} = 0.88 \text{ (t, } J = 7.5 \text{ Hz, } 3\text{H, CH}_3), \quad 0.98 \text{ (t, } J = 7.1 \text{ Hz, } 2\text{H, CH}_2), \quad 1.05 \text{ (s, } 9\text{H, 3CH}_3), \quad 1.55 \text{ (m, } 1\text{H, CH}), \quad 1.78 \text{ (m, } 1\text{H, CH}), \quad 2.11 \text{ (s, } 3\text{H, CH}_3), \quad 3.54 \text{ (s, } 3\text{H, OCH}_3), \quad 3.68 \text{ (s, } 3\text{H, OCH}_3).
\]

13C-NMR: (75.5 MHz, CDCl$_3$)

\[
\delta_{ppm} = 13.3 \text{ (q, } \text{CH}_3), \quad 14.6 \text{ (q, } \text{CH}_3), \quad 21.4 \text{ (q, } \text{CH}_3), \quad 25.8 \text{ (q, } 3\text{CH}_3), \quad 27.3 \text{ (t, } \text{CH}_2), \quad 36.7 \text{ (t, } \text{CH}_2), \quad 38.2 \text{ (s, } \text{Cq}), \quad 50.8 \text{ (q, } \text{OCH}_3), \quad 51.3 \text{ (q, } \text{OCH}_3), \quad 92.3 \text{ (s, } \text{C-1}), \quad 97.3 \text{ (s, } \text{C-7}), \quad 123.9 \text{ (s, } \text{C-5}), \quad 165.6 \text{ (s, } \text{C-3}), \quad 172.1 \text{ (s, } \text{COO}).
\]

7-**tert**-Butyl-1-isopropyl-5-methoxy-3-methyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (56e) (sbo-574)

A solution of methyl trimethylpyruvate (0.36 g, 2.5 mmol) and 2-isopropyl-4-methyl-5-methoxyoxazole (0.38 g, 2.5 mmol) in benzene (20 mL) was irradiated for 24 h according to the above general procedure to give 0.63 g of a yellow oil. Preparative chromatography on silica gel yielded 0.51 g of oxetane as a colorless oil.

Yield: 69 %

TLC: $R_f = 0.27$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

\[
\delta_{ppm} = 0.82 \text{ (d, } J = 6.5 \text{ Hz, } 3\text{H, CH}_3), \quad 0.87 \text{ (d, } J = 6.6 \text{ Hz, } 3\text{H, CH}_3), \quad 1.03 \text{ (s, } 9\text{H, 3CH}_3), \quad 1.45 \text{ (m, } 1\text{H, CH}), \quad 2.12 \text{ (s, } 3\text{H, CH}_3), \quad 3.58 \text{ (s, } 3\text{H, OCH}_3), \quad 3.64 \text{ (s, } 3\text{H, OCH}_3).
\]

13C-NMR: (75.5 MHz, CDCl$_3$)
4. Experimental part

\[
\delta_{\text{ppm}} = 13.7 \text{ (q, CH}_3\text{)}, 16.6 \text{ (q, CH}_3\text{)}, 16.7 \text{ (q, CH}_3\text{)}, 26.1 \text{ (q, 3CH}_3\text{)}, 27.2 \text{ (d, C)}, 36.7 \text{ (s, Cq)}, 50.5 \text{ (q, OCH}_3\text{)}, 51.8 \text{ (q, OCH}_3\text{)}, 90.7 \text{ (s, C-1)}, 94.2 \text{ (s, C-7)}, 124.1 \text{ (s, C-5)}, 168.2 \text{ (s, C-3)}, 173.4 \text{ (s, COO)}.
\]

7-tert-Butyl-1-isobutyl-5-methoxy-3-methyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (56e) (sbo-575)

A solution of methyl trimethylpyruvate (0.36 g, 2.5 mmol) and 2-isobutyl-4-methyl-5-methoxyoxazole (0.42 g, 2.5 mmol) in benzene (20 mL) was irradiated for 24 h according to the above general procedure to give 0.68 g of a yellow oil. Preparative chromatography on silica gel yielded 0.55 g of the oxetane as a colorless oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding \(\alpha\)-amino-\(\beta\)-hydroxy ester (see later).

Yield: 70 %

TLC: \(R_f = 0.27\) (ethyl acetate/n-hexane 1:4).

\(^1\text{H-NMR:}\) (300 MHz, CDCl\(_3\))

\[
\delta_{\text{ppm}} = 0.85 \text{ (d, J = 6.8 Hz, 3H, CH}_3\text{)}, 0.92 \text{ (d, J = 6.9 Hz, 3H, CH}_3\text{)}, 1.08 \text{ (s, 9H, 3CH}_3\text{)}, 1.52 \text{ (m, 1H, CH)}, 1.78 \text{ (m, 2H, CH}_2\text{)}, 2.07 \text{ (s, 3H, CH}_3\text{)}, 3.59 \text{ (s, 3H, OCH}_3\text{)}, 3.73 \text{ (s, 3H, OCH}_3\text{)}.
\]

\(^{13}\text{C-NMR:}\) (75.5 MHz, CDCl\(_3\))

\[
\delta_{\text{ppm}} = 13.4 \text{ (q, CH}_3\text{)}, 18.9 \text{ (q, CH}_3\text{)}, 19.4 \text{ (q, CH}_3\text{)}, 25.8 \text{ (q, 3CH}_3\text{)}, 27.3 \text{ (d, CH)}, 39.7 \text{ (s, Cq)}, 40.2 \text{ (t, Cq)}, 51.2 \text{ (q, OCH}_3\text{)}, 51.8 \text{ (q, OCH}_3\text{)}, 92.4 \text{ (s, C-1)}, 96.2 \text{ (s, C-7)}, 124.4 \text{ (s, C-5)}, 169.2 \text{ (s, C-3)}, 173.4 \text{ (s, COO)}.
\]

HRMS: (C\(_{16}\)H\(_{27}\)NO\(_5\), M = 313.19 g/mol)

Calcd: 313.1927

Found: 313.1924

7-tert-Butyl-1-sec-butyl-5-methoxy-3-methyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (56f) (sbo-576)
4. Experimental part

A solution of methyl trimethylpyruvate (0.36 g, 2.5 mmol) and 4-sec-butyl-2-methyl-5-methoxyoxazole (0.42 g, 2.5 mmol) in benzene (20 mL) was irradiated for 24 h according to the above general procedure to give 0.68 g of a yellow oil. Preparative chromatography on silica gel yielded 0.54 g of oxetane as a colorless oil.

Yield: 69 %

TLC: \(R_f = 0.34 \) (ethyl acetate/n-hexane 1:4).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 0.88 \ (t, \ J = 7.5 \ Hz, \ 3H, \ CH_3), \ 1.00 \ (d, \ J = 7.4 \ Hz, \ 3H, \ CH_3), \ 1.05 \ (s, \ 9H, \ 3CH_3), \ 1.23 \ (m, \ 2H, \ CH_2), \ 1.56 \ (m, \ 1H, \ CH), \ 2.06 \ (s, \ 3H, \ CH_3), \ 3.64 \ (s, \ 3H, \ OCH_3), \ 3.73 \ (s, \ 3H, \ OCH_3). \]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 13.3 \ (q, \ CH_3), \ 14.6 \ (q, \ CH_3), \ 21.4 \ (q, \ CH_3), \ 25.8 \ (q, \ 3CH_3), \ 26.2 \ (t, \ CH_2), \ 28.7 \ (d, \ CH), \ 38.2 \ (s, \ Cq), \ 50.2 \ (q, \ OCH_3), \ 51.9 \ (q, \ OCH_3), \ 90.6 \ (s, \ C-1), \ 95.8 \ (s, \ C-7), \ 124.0 \ (s, \ C-5), \ 167.6 \ (s, \ C-3), \ 173.4 \ (s, \ COO). \]

Photolyses of methyl phenylglyoxylate with 5-methoxyoxazoles 36a-f:

exo-5-Methoxy-1,3-dimethyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (exo-58a) (sbo-35a)

A solution of methyl phenylglyoxylate (0.82 g, 5 mmol) and 2,4-dimethyl-5-methoxyoxazole (0.62 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.23 g of a yellow oil. Preparative chromatography on silica gel yielded 0.75 g of the **exo**-isomer (and 0.4 g of the **endo**-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding \(\alpha \)-amino-\(\beta \)-hydroxy esters (see later).

Yield: 51 %

TLC: \(R_f = 0.43 \) (ethyl acetate/n-hexane 1:4).

IR: (Film)
4. Experimental part

\[\tilde{\nu} \text{ (cm}^{-1}) = 2994, 2898, 1728, 1615, 1550, 1440, 1065, 980, 775. \]

\(^1H\)-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 1.09 \text{ (s, 3H, CH}_3\text{)}, 2.09 \text{ (s, 3H, CH}_3\text{)}, 3.66 \text{ (s, 3H, OCH}_3\text{)}, 7.23-7.35 \text{ (m, 5H, H}_\text{arom}.\]

\(^{13}C\)-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 14.7 \text{ (q, CH}_3\text{)}, 28.1 \text{ (q, CH}_3\text{)}, 51.8 \text{ (q, OCH}_3\text{)}, 52.6 \text{ (q, OCH}_3\text{)}, 82.3 \text{ (s, C-1)}, 91.5 \text{ (s, C-7)}, 123.3 \text{ (s, C-5)}, 125.6 \text{ (d, CH}_\text{arom}\text{)}, 126.2 \text{ (d, CH}_\text{arom}\text{)}, 134.8 \text{ (s, C}_\text{qarom}\text{)}, 165.5 \text{ (s, C-3)}, 169.6 \text{ (s, COO)}. \]

endo-5-Methoxy-1,3-dimethyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (endo-58a) (sbo-359)

Yield: 28 %

TLC: \(R_f = 0.50 \) (ethyl acetate/n-hexane 1:4).

\(^1H\)-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 1.53 \text{ (s, 3H, CH}_3\text{)}, 1.71 \text{ (s, 3H, CH}_3\text{)}, 3.68 \text{ (s, 3H, OCH}_3\text{)}, 7.23-7.38 \text{ (m, 5H, H}_\text{arom}.\]

\(^{13}C\)-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 14.7 \text{ (q, CH}_3\text{)}, 28.1 \text{ (q, CH}_3\text{)}, 51.9 \text{ (q, OCH}_3\text{)}, 52.7 \text{ (q, OCH}_3\text{)}, 80.4 \text{ (s, C-1)}, 90.2 \text{ (s, C-7)}, 124.1 \text{ (s, C-5)}, 126.5 \text{ (d, CH}_\text{arom}\text{)}, 128.4 \text{ (d, CH}_\text{arom}\text{)}, 135.9 \text{ (s, C}_\text{qarom}\text{)}, 166.6 \text{ (s, C-3)}, 172.4 \text{ (s, COO)}. \]

HRMS: \((C_{15}H_{17}NO_5, M = 291.11 \text{ g/mol})\)

Calcd: 291.1123

Found: 291.1118

exo-1-Ethyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxo-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (exo-58b) (sbo-368)

\[\text{358} \]
4. Experimental part

A solution of methyl phenylglyoxylate (0.82 g, 5 mmol) and 4-ethyl-2-methyl-5-methoxyoxazole (0.71 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.35 g of a yellow oil. Preparative chromatography on silica gel yielded 0.8 g of the exo-isomer (and 0.35 g of the endo-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

Yield: 52 %

TLC: $R_f = 0.36$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

δ_{ppm} = 0.71 (t, $J = 7.5$ Hz, 3H, CH$_3$), 1.00 (m, 1H, CH), 1.26 (m, 1H, CH), 2.08 (s, 3H, CH$_3$), 3.66 (s, 3H, OCH$_3$), 3.77 (s, 3H, OCH$_3$), 7.26-7.35 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ_{ppm} = 7.3 (q, CH$_3$), 14.3 (q, CH$_3$), 21.2 (t, CH$_2$), 51.7 (q, OCH$_3$), 52.6 (q, OCH$_3$), 82.1 (s, C-1), 91.8 (s, C-7), 123.4 (s, C-5), 126.3 (d, CH$_{arom}$), 127.1 (d, CH$_{arom}$), 128.1 (d, CH$_{arom}$), 134.7 (s, C$_q$$_{arom}$), 166.6 (s, C-3), 171.1 (s, COO).

endo-1-Ethyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (endo-58b) (sbo-368a)

![Image](https://example.com/endo-58b.png)

Yield: 23 %

TLC: $R_f = 0.57$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

δ_{ppm} = 0.68 (t, $J = 7.5$ Hz, 3H, CH$_3$), 1.55 (m, 1H, CH), 1.72 (s, 3H, CH$_3$), 1.87 (m, 1H, CH), 3.74 (s, 3H, OCH$_3$), 3.80 (s, 3H, OCH$_3$), 7.21-7.37 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ_{ppm} = 8.2 (q, CH$_3$), 14.8 (q, CH$_3$), 23.9 (t, CH$_2$), 52.7 (q, OCH$_3$), 53.1 (q, OCH$_3$), 84.4 (s, C-1), 92.1 (s, C-7), 124.1 (s, C-5), 126.1 (d, CH$_{arom}$), 127.1 (d, CH$_{arom}$), 128.1 (d, CH$_{arom}$), 137.6 (s, C$_q$$_{arom}$), 169.1 (s, C-3), 173.0 (s, COO).

exo-5-Methoxy-3-methyl-7-phenyl-1-propyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (exo-58c) (sbo-361a)
A solution of methyl phenylglyoxylate (0.82 g, 5 mmol) and 2-methyl-4-propyl-5-methoxyoxazole (0.75 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.40 g of a yellow oil. Preparative chromatography on silica gel yielded 0.82 g of the \textit{exo}-isomer (and 0.42 g of the \textit{endo}-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

\textbf{Yield:} 52 \%

\textbf{TLC:} $R_f = 0.35$ (ethyl acetate/n-hexane 1:4).

\textbf{1H-NMR:} (300 MHz, CDCl$_3$)

\[\delta_{ppm} = 0.71 \text{ (t, } J = 7.1 \text{ Hz, } 3\text{H, CH}_3), \ 1.25 \text{ (m, } 2\text{H, CH}_2), \ 1.52 \text{ (m, } 2\text{H, CH}_2), \ 2.08 \text{ (s, } 3\text{H, CH}_3), \ 3.66 \text{ (s, } 3\text{H, OCH}_3), \ 3.75 \text{ (s, } 3\text{H, OCH}_3), \ 7.25-7.35 \text{ (m, } 5\text{H, H}_{\text{arom}}). \]

\textbf{13C-NMR:} (75.5 MHz, CDCl$_3$)

\[\delta_{ppm} = 14.0 \text{ (q, } \text{CH}_3), \ 14.4 \text{ (q, } \text{CH}_3), \ 16.4 \text{ (t, } \text{CH}_2), \ 30.5 \text{ (t, } \text{CH}_2), \ 51.6 \text{ (q, } \text{OCH}_3), \ 52.7 \text{ (q, } \text{OCH}_3), \ 83.0 \text{ (s, } \text{C}-1), \ 92.6 \text{ (s, } \text{C}-7), \ 123.3 \text{ (s, } \text{C}-5), \ 126.3 \text{ (d, } \text{CH}_{\text{arom}}), \ 127.5 \text{ (d, } \text{CH}_{\text{arom}}), \ 134.6 \text{ (s, } \text{Cq}_{\text{arom}}), \ 165.7 \text{ (s, } \text{C}-3), \ 168.2 \text{ (s, } \text{COO}). \]

\textbf{HRMS:} (C$_{17}$H$_{21}$NO$_5$, $M = 319.14$ g/mol)

\text{Calcd:} \ 319.1367

\text{Found:} \ 319.1363

\textit{endo}-5-Methoxy-3-methyl-7-phenyl-1-propyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (\textit{endo}-58c) (sbo-361d)

\textbf{Yield:} 27 \%

\textbf{TLC:} $R_f = 0.49$ (ethyl acetate/n-hexane 1:4).

\textbf{1H-NMR:} (300 MHz, CDCl$_3$)

\[\delta_{ppm} = 0.87 \text{ (t, } J = 7.5 \text{ Hz, } 3\text{H, CH}_3), \ 1.32 \text{ (m, } 2\text{H, CH}_2), \ 1.72 \text{ (s, } 3\text{H, CH}_3), \ 1.95 \text{ (m, } 2\text{H, CH}_2), \ 3.64 \text{ (s, } 3\text{H, OCH}_3), \ 3.73 \text{ (s, } 3\text{H, OCH}_3), \ 7.25-7.45 \text{ (m, } 5\text{H, H}_{\text{arom}}). \]

\textbf{13C-NMR:} (75.5 MHz, CDCl$_3$)

\[\delta_{ppm} = \ldots. \]
4. Experimental part

\[\delta_{ppm} = 14.2 \ (q, \ CH_3), \ 14.3 \ (q, \ CH_3), \ 17.0 \ (t, \ CH_2), \ 31.6 \ (t, \ CH_2), \ 51.9 \ (q, \ OCH_3), \ 52.7 \ (q, \ OCH_3), \ 81.6 \ (s, \ C-1), \ 91.0 \ (s, \ C-7), \ 123.8 \ (s, \ C-5), \ 126.4 \ (d, \ CH_{arom}), \ 127.8 \ (d, \ CH_{arom}), \ 135.1 \ (s, \ C_{q-arom}), \ 165.2 \ (s, \ C-3), \ 169.9 \ (s, \ COO). \]

exo-1-Isopropyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (exo-58d) (sbo-362)

A solution of methyl phenylglyoxylate (0.82 g, 5 mmol) and 4-isopropyl-2-methyl-5-methoxyoxazole (0.75 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.42 g of a yellow oil. Preparative chromatography on silica gel yielded 0.76 g of the *exo*-isomer (and 0.48 g of the *endo*-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding \(\alpha \)-amino-\(\beta \)-hydroxy esters (see later).

Yield: 48%

TLC: \(R_f = 0.33 \) (ethyl acetate/n-hexane 1:4).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 0.68 \ (d, \ J = 6.6 \ Hz, \ 3H, \ CH_3), \ 0.88 \ (d, \ J = 6.8 \ Hz, \ 3H, \ CH_3), \ 0.98 \ (septet, \ J = 6.8 \ Hz, \ 1H, \ CH), \ 2.04 \ (s, \ 3H, \ CH_3), \ 3.67 \ (s, \ 3H, \ OCH_3), \ 3.78 \ (s, \ 3H, \ OCH_3), \ 7.33-7.62 \ (m, \ 5H, \ H_{arom}). \]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 16.3 \ (q, \ CH_3), \ 23.1 \ (q, \ CH_3), \ 25.5 \ (q, \ CH_3), \ 27.1 \ (d, \ CH), \ 52.1 \ (q, \ OCH_3), \ 52.8 \ (q, \ OCH_3), \ 82.7 \ (s, \ C-1), \ 90.7 \ (s, \ C-7), \ 124.1 \ (s, \ C-5), \ 127.2 \ (d, \ CH_{arom}), \ 128.0 \ (d, \ CH_{arom}), \ 128.7 \ (d, \ CH_{arom}), \ 134.8 \ (s, \ C_{q-arom}), \ 166.1 \ (s, \ C-3), \ 168.2 \ (s, \ COO). \]

endo-1-Isopropyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid ethyl ester (endo-58d) (sbo-362a)

Yield: 31%

TLC: \(R_f = 0.33 \) (ethyl acetate/n-hexane 1:4).
4. Experimental part

\[^1H-NMR: \ (300 \text{ MHz, CDCl}_3) \]
\[
\delta_{ppm} = 0.89 \ (d, \text{ J} = 6.9 \text{ Hz}, 3\text{H}, \text{CH}_3), 1.23 \ (d, \text{ J} = 6.8 \text{ Hz}, 3\text{H}, \text{CH}_3), 1.28 \ (\text{septet, J} = 6.8 \text{ Hz}, 1\text{H}, \text{CH}), 1.78 \ (s, 3\text{H}, \text{CH}_3), 3.54 \ (s, 3\text{H}, \text{OCH}_3), 3.67 \ (s, 3\text{H}, \text{OCH}_3), 7.27-7.34 \ (m, 5\text{H}, \text{H}_{arom}).
\]

\[^{13}\text{C-NMR:} \ (75.5 \text{ MHz, CDCl}_3) \]
\[
\delta_{ppm} = 14.3 \ (q, \text{ CH}_3), 17.3 \ (q, \text{CH}_3), 17.4 \ (q, \text{CH}_3), 27.8 \ (d, \text{CH}), 51.8 \ (q, \text{OCH}_3), 52.3 \ (q, \text{OCH}_3), 85.7 \ (s, \text{C-1}), 92.1 \ (s, \text{C-7}), 123.5 \ (s, \text{C-5}), 126.7 \ (d, \text{CH}_{arom}), 127.7 \ (d, \text{CH}_{arom}), 128.5 \ (d, \text{CH}_{arom}), 135.4 \ (s, \text{Cq}_{arom}), 165.7 \ (s, \text{C-3}), 169.1 \ (s, \text{COO}).
\]

\[\text{exo-1-Isobutyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (exo-58e)} \ (\text{sbo-366a}) \]

A solution of methyl phenylglyoxylate (0.82 g, 5 mmol) and 4-isobutyl-2-methyl-5-methoxyoxazole (0.82 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.55 g of a yellow oil. Preparative chromatography on silica gel yielded 0.84 g of the \(\text{exo} \)-isomer (and 0.42 g of the \(\text{endo} \)-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding \(\alpha \)-amino-\(\beta \)-hydroxy esters (see later).

Yield: 50 %

TLC: \(R_f = 0.38 \) (ethyl acetate/h-hexane 1:4).

\[^1H-NMR: \ (300 \text{ MHz, CDCl}_3) \]
\[
\delta_{ppm} = 0.64 \ (d, \text{ J} = 6.7 \text{ Hz}, 3\text{H}, \text{CH}_3), 0.74 \ (d, \text{ J} = 6.6 \text{ Hz}, 3\text{H}, \text{CH}_3), 0.78 \ (m, 1\text{H}, \text{CH}), 1.35 \ (dd, \text{ J} = 13.4, 5.7 \text{ Hz}, 1\text{H}, \text{CH}), 2.08 \ (s, 3\text{H}, \text{CH}_3), 2.33 \ (dd, \text{ J} = 13.4, 6.1 \text{ Hz}, 1\text{H}, \text{CH}), 3.71 \ (s, 3\text{H}, \text{OCH}_3), 3.76 \ (s, 3\text{H}, \text{OCH}_3), 7.27-7.55 \ (m, 5\text{H}, \text{H}_{arom}).
\]

\[^{13}\text{C-NMR:} \ (75.5 \text{ MHz, CDCl}_3) \]
\[
\delta_{ppm} = 14.8 \ (q, \text{CH}_3), 22.7 \ (q, \text{CH}_3), 23.6 \ (q, \text{CH}_3), 25.7 \ (d, \text{CH}), 36.6 \ (t, \text{CH}_2), 52.5 \ (q, \text{OCH}_3), 53.3 \ (q, \text{OCH}_3), 81.9 \ (s, \text{C-2}), 91.8 \ (s, \text{C-7}), 123.4 \ (s, \text{C-5}), 126.3 \ (d, \text{CH}_{arom}), 127.5 \ (d, \text{CH}_{arom}), 128.4 \ (d, \text{CH}_{arom}), 134.5 \ (s, \text{Cq}_{arom}), 165.8 \ (s, \text{C-3}), 169.2 \ (s, \text{COO}).
\]

\[\text{endo-1-Isobutyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (endo-58e)} \ (\text{sbo-366c}) \]
Yield: 25%

TLC: Rf = 0.59 (ethyl acetate/n-hexane 1:4).

H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 0.80$ (d, J = 6.6 Hz, 3H, CH$_3$), 0.92 (d, J = 6.6 Hz, 3H, CH$_3$), 1.06 (m, 1H, CH), 1.62 (dd, J = 14.2, 7.8 Hz, 1H, CH), 1.73 (s, 3H, CH$_3$), 2.07 (dd, J = 14.2, 4.7 Hz, 1H, CH), 3.69 (s, 3H, OCH$_3$), 3.77 (s, 3H, OCH$_3$), 7.24-7.49 (m, 5H, H$_{arom}$).

C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 14.3$ (q, CH$_3$), 23.0 (q, CH$_3$), 24.2 (q, CH$_3$), 24.3 (d, CH), 37.2 (t, CH$_2$), 51.9 (q, OCH$_3$), 52.7 (q, OCH$_3$), 81.8 (s, C-1), 90.9 (s, C-7), 123.8 (s, C-5), 126.4 (d, CH$_{arom}$), 127.8 (d, CH$_{arom}$), 129.9 (d, CH$_{arom}$), 135.3 (s, C$_{arom}$), 164.7 (s, C-3), 169.9 (s, COO).

exo-1-*sec*-Butyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methylester (*exo*-58f) (sbo-367a)

A solution of methyl phenylglyoxylate (0.82 g, 5 mmol) and 4-*sec*-butyl-2-methyl-5-methoxyoxazole (0.84 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.50 g of a yellow oil. Preparative chromatography on silica gel yielded 0.8 g of the *exo*-isomer (and 0.39 g of the *endo*-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

Yield: 48%

TLC: Rf = 0.59 (ethyl acetate/n-hexane 1:4).

H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 0.50$ (t, J = 7.4 Hz, 3H, CH$_3$), 0.68 (quintet, J = 7.4 Hz, 2H, CH$_2$), 0.85 (d, J = 6.6 Hz, 3H, CH$_3$), 1.35 (m, 1H, CH), 2.09 (s, 3H, CH$_3$), 3.72 (s, 3H, OCH$_3$), 3.80 (s, 3H, OCH$_3$), 7.26-7.56 (m, 5H, H$_{arom}$).

C-NMR: (75.5 MHz, CDCl$_3$)
4. Experimental part

δ_{ppm} = 11.3 (q, CH₃), 13.7 (q, CH₃), 14.6 (q, CH₃), 25.0 (d, CH), 37.2 (t, CH₂), 52.3 (q, OCH₃), 53.3 (q, OCH₃), 86.5 (s, C-1), 93.2 (s, C-7), 123.3 (s, C-5), 126.9 (d, CH_{arom}), 127.4 (d, CH_{arom}), 128.8 (d, CH_{arom}), 134.6 (s, C_{qarom}), 166.7 (s, C-3), 169.0 (s, COO).

HRMS: (C₁₈H₂₃NO₅, M = 333.16 g/mol)

Calcd: 333.1578

Found: 333.1572

endo-1-sec-Butyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methylester (endo-58f) (sbo-367d)

![Structure of endo-1-sec-Butyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methylester](image)

Yield: 24 %

TLC: R_f = 0.49 (ethyl acetate/n-hexane 1:4).

¹H-NMR: (300 MHz, CDCl₃)

δ_{ppm} = 0.86 (d, J = 6.8 Hz, 3H, CH₃), 0.94 (t, J = 7.5 Hz, 3H, CH₃), 1.25 (m, 1H, CH), 1.77 (s, 3H, CH₃), 1.93 (m, 2H, CH₂), 3.71 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃), 7.27-7.52 (m, 5H, H_{arom}).

¹³C-NMR: (75.5 MHz, CDCl₃)

δ_{ppm} = 12.2 (q, CH₃), 13.3 (q, CH₃), 14.3 (q, CH₃), 24.3 (d, CH), 34.8 (t, CH₂), 51.9 (q, OCH₃), 52.9 (q, OCH₃), 86.3 (s, C-1), 92.4 (s, C-7), 124.0 (s, C-5), 126.7 (d, CH_{arom}), 127.6 (d, CH_{arom}), 128.9 (d, CH_{arom}), 135.3 (s, C_{qarom}), 165.4 (s, C-3), 170.2 (s, COO).

Photolyses of ethyl phenylglyoxylate with 5-methoxyoxazoles 36a-f:

exo-5-Methoxy-1,3-dimethyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid ethyl ester (exo-60a) (sbo-351)

![Structure of exo-5-Methoxy-1,3-dimethyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid ethyl ester](image)

A solution of ethyl phenylglyoxylate (0.89 g, 5 mmol) and 2,4-dimethyl-5-methoxyoxazole (0.64 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general
procedure to give 1.42 g of a yellow oil. Preparative chromatography on silica gel yielded 0.65 g of the \textit{exo}-isomer (and 0.41 g of the \textit{endo}-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

\textbf{Yield:} 43 \%

\textbf{TLC:} R$_f$ = 0.39 (ethyl acetate/n-hexane 1:4).

\textbf{1H-NMR:} (300 MHz, CDCl$_3$)
\[
\delta_{ppm} = 1.06 \text{ (s, 3H, CH$_3$)}, 1.24 \text{ (t, J = 7.2 Hz, 3H, CH$_3$)}, 2.06 \text{ (s, 3H, CH$_3$)}, 3.63 \text{ (s, 3H, OCH$_3$)}, 4.21 \text{ (q, J = 7.2 Hz, 2H, OCH$_2$)}, 7.23-7.52 \text{ (m, 5H, H$_{arom}$)}.
\]

\textbf{13C-NMR:} (75.5 MHz, CDCl$_3$)
\[
\delta_{ppm} = 13.8 \text{ (q, CH$_3$)}, 14.0 \text{ (q, CH$_3$)}, 15.6 \text{ (q, CH$_3$)}, 51.7 \text{ (q, OCH$_3$)}, 61.7 \text{ (t, OCH$_2$)}, 78.4 \text{ (s, C-1)}, 90.4 \text{ (s, C-7)}, 123.3 \text{ (s, C-5)}, 126.2 \text{ (d, CH$_{arom}$)}, 128.2 \text{ (d, CH$_{arom}$)}, 134.9 \text{ (s, C$_{qarom}$)}, 166.3 \text{ (s, C-3)}, 168.5 \text{ (s, COO)}.
\]

\textbf{HRMS:} (C$_{16}$H$_{19}$NO$_5$, M = 305.13 g/mol)

Calcd: 305.1271

Found: 305.1268

\textit{endo}-5-Methoxy-1,3-dimethyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid ethyl ester (\textit{endo}-60a) (sbo-351b)

\textbf{Yield:} 27 \%

\textbf{TLC:} R$_f$ = 0.49 (ethyl acetate/n-hexane 1:4).

\textbf{1H-NMR:} (300 MHz, CDCl$_3$)
\[
\delta_{ppm} = 1.27 \text{ (t, J = 7.2 Hz, 3H, CH$_3$)}, 1.51 \text{ (s, 3H, CH$_3$)}, 1.70 \text{ (s, 3H, CH$_3$)}, 3.67 \text{ (s, 3H, OCH$_3$)}, 4.22 \text{ (q, J = 7.2 Hz, 2H, OCH$_2$)}, 7.27-7.48 \text{ (m, 5H, H$_{arom}$)}.
\]

\textbf{13C-NMR:} (75.5 MHz, CDCl$_3$)
\[
\delta_{ppm} = 14.1 \text{ (q, CH$_3$)}, 14.3 \text{ (q, CH$_3$)}, 15.7 \text{ (q, CH$_3$)}, 52.1 \text{ (q, OCH$_3$)}, 61.9 \text{ (t, OCH$_2$)}, 78.5 \text{ (s, C-1)}, 90.5 \text{ (s, C-7)}, 123.7 \text{ (s, C-5)}, 126.4 \text{ (d, CH$_{arom}$)}, 127.7 \text{ (d, CH$_{arom}$)}, 135.0 \text{ (s, C$_{qarom}$)}, 166.3 \text{ (s, C-3)}, 168.5 \text{ (s, COO)}.
\]

\textit{exo}-1-Ethyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid ethyl ester (\textit{exo}-60b) (sbo-371a)
4. Experimental part

A solution of ethyl phenylglyoxylate (0.89 g, 5 mmol) and 4-ethyl-2-methyl-5-methoxyoxazole (0.71 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.39 g of a yellow oil. Preparative chromatography on silica gel yielded 0.68 g of the \textit{exo}-isomer (and 0.38 g of the \textit{endo}-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

\textbf{Yield:} 42 \%

\textbf{TLC:} $R_f = 0.35$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

\begin{align*}
\delta_{ppm} &= 1.25 \text{ (t, } J = 7.5 \text{ Hz, } 6\text{H, } 2\text{CH$_3$}), \ 1.58 \text{ (q, } J = 7.5 \text{ Hz, } 2\text{H, } \text{CH$_3$}), \ 2.09 \text{ (s, } 3\text{H, } \text{CH$_3$}), \ 3.67 \text{ (s, } 3\text{H, } \text{OCH$_3$}), \ 4.23 \text{ (q, } J = 7.5 \text{ Hz, } 2\text{H, } \text{OCH$_2$}), \ 7.25-7.71 \text{ (m, } 5\text{H, } \text{H$_{arom}$}).
\end{align*}

13C-NMR: (75.5 MHz, CDCl$_3$)

\begin{align*}
\delta_{ppm} &= 7.3 \text{ (q, CH$_3$), } 9.8 \text{ (q, CH$_3$), } 14.1 \text{ (q, CH$_3$), } 28.8 \text{ (t, CH$_2$), } 51.7 \text{ (q, OCH$_3$), } 61.8 \text{ (t, OCH$_2$), } 82.1 \text{ (s, C-1), } 86.9 \text{ (s, C-7), } 123.4 \text{ (s, C-5), } 126.3 \text{ (d, CH$_{arom}$), } 127.5 \text{ (d, CH$_{arom}$), } 128.0 \text{ (d, CH$_{arom}$), } 134.9 \text{ (s, C$_{qarom}$), } 165.4 \text{ (s, C-3), } 166.4 \text{ (s, COO).}
\end{align*}

\textit{endo-1-Ethyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid ethyl ester (endo-60b)} (sbo-371b)

\begin{align*}
\textbf{Yield:} \ 24 \%
\end{align*}

\textbf{TLC:} $R_f = 0.55$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

\begin{align*}
\delta_{ppm} &= 0.93 \text{ (t, } J = 7.5 \text{ Hz, } 3\text{H, } \text{CH$_3$}), \ 1.27 \text{ (t, } J = 7.2 \text{ Hz, } 3\text{H, } \text{CH$_3$}), \ 1.72 \text{ (s, } 3\text{H, } \text{CH$_3$}), \ 1.85 \text{ (sextet, } J = 7.5 \text{ Hz, } 1\text{H, } \text{CH}), \ 2.08 \text{ (sextet, } J = 7.5 \text{ Hz, } 1\text{H, } \text{CH}), \ 3.69 \text{ (s, } 3\text{H, } \text{OCH$_3$}), \ 4.22 \text{ (q, } J = 7.2 \text{ Hz, } 2\text{H, } \text{OCH$_2$}), \ 7.27-7.31 \text{ (m, } 5\text{H, } \text{H$_{arom}$}).
\end{align*}

13C-NMR: (75.5 MHz, CDCl$_3$)

\begin{align*}
\end{align*}
4. Experimental part

\[\delta_{ppm} = 8.0 \ (q, \ CH_3), \ 14.0 \ (q, \ CH_3), \ 14.3 \ (q, \ CH_3), \ 22.6 \ (t, \ CH_2), \ 51.9 \ (q, \ OCH_3), \ 61.9 \ (t, \ OCH_2), \ 81.9 \ (s, \ C-1), \ 90.9 \ (s, \ C-7), \ 123.8 \ (s, \ C-5), \ 126.3 \ (d, \ CH_{arom}), \ 128.5 \ (d, \ CH_{arom}), \ 129.0 \ (d, \ CH_{arom}), \ 135.0 \ (s, \ Cq_{arom}), \ 165.4 \ (s, \ C-3), \ 169.3 \ (s, \ COO). \]

exo-5-Methoxy-3-methyl-7-phenyl-1-propyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid ethyl ester (*exo*-60c) (sbo-354a)

A solution of ethyl phenylglyoxylate (0.89 g, 5 mmol) and 2-methyl-4-propyl-5-methoxyoxazole (0.75 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.49 g of a yellow oil. Preparative chromatography on silica gel yielded 0.73 g of the *exo*-isomer (and 0.37 g of the *endo*-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding \(\alpha \)-amino-\(\beta \)-hydroxy esters (see later).

Yield: 44 %

TLC: \(R_f = 0.36 \) (ethyl acetate/n-hexane 1:4).

\(^1{H} \)-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 0.72 \ (t, \ J = 6.8 \ Hz, \ 3H, \ CH_3), \ 0.92 \ (t, \ J = 7.5 \ Hz, \ 3H, \ CH_3), \ 1.47 \ (m, \ 2H, \ CH_2), \ 2.06 \ (s, \ 3H, \ CH_3), \ 2.33 \ (m, \ 2H, \ CH_2), \ 3.64 \ (s, \ 3H, \ OCH_3), \ 4.20 \ (q, \ J = 7.5 \ Hz, \ 2H, \ OCH_2), \ 7.25-7.67 \ (m, \ 5H, \ H_{arom}). \]

\(^{13}{C} \)-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 13.9 \ (q, \ CH_3), \ 14.1 \ (q, \ CH_3), \ 14.8 \ (q, \ CH_3), \ 16.4 \ (t, \ CH_2), \ 30.7 \ (t, \ CH_2), \ 51.6 \ (q, \ OCH_3), \ 61.7 \ (t, \ OCH_2), \ 86.4 \ (s, \ C-1), \ 92.5 \ (s, \ C-7), \ 123.4 \ (s, \ C-5), \ 126.3 \ (d, \ CH_{arom}), \ 127.5 \ (d, \ CH_{arom}), \ 128.5 \ (d, \ CH_{arom}), \ 134.9 \ (s, \ Cq_{arom}), \ 165.3 \ (s, \ C-3), \ 168.2 \ (s, \ COO). \]

endo-5-Methoxy-3-methyl-7-phenyl-1-propyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid ethyl ester (*endo*-60c) (sbo-354)

Yield: 23 %
4. Experimental part

TLC: \(R_f = 0.36 \) (ethyl acetate/n-hexane 1:4).

\(^1H\)NMR: (300 MHz, CDCl₃)

\[\delta_{\text{ppm}} = 0.75 \ (t, J = 6.9 \ Hz, \ 3H, \ CH_3), \ 0.93 \ (t, J = 7.5 \ Hz, \ 3H, \ CH_3), \ 1.49 \ (m, \ 2H, \ CH_2), \ 1.67 \ (m, \ 2H, \ CH_2), \ 1.70 \ (s, \ 3H, \ CH_3), \ 3.67 \ (s, \ 3H, \ OCH_3), \ 4.25 \ (q, J = 7.5 \ Hz, \ 2H, \ OCH_2), \ 7.27-7.37 \ (m, \ 5H, \ H_{arom}) \]

\(^13C\)NMR: (75.5 MHz, CDCl₃)

\[\delta_{\text{ppm}} = 14.1 \ (q, \ CH_3), \ 14.3 \ (q, \ CH_3), \ 14.9 \ (q, \ CH_3), \ 16.5 \ (t, \ CH_2), \ 31.2 \ (t, \ CH_2), \ 51.7 \ (q, \ OCH_3), \ 61.8 \ (t, \ OCH_2), \ 84.3 \ (s, \ C-1), \ 91.7 \ (s, \ C-7), \ 123.7 \ (s, \ C-5), \ 127.2 \ (d, \ CH_{arom}), \ 128.3 \ (d, \ CH_{arom}), \ 128.5 \ (d, \ CH_{arom}), \ 135.1 \ (s, \ C_{qarom}), \ 166.0 \ (s, \ C-3), \ 169.1 \ (s, \ COO) \]

exo-1-Isopropyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid ethyl ester (*exo*-60d) (sbo-352b)

A solution of ethyl phenylglyoxylate (0.89 g, 5 mmol) and 4-isopropyl-2-methyl-5-methoxyoxazole (0.75 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.44 g of a yellow oil. Preparative chromatography on silica gel yielded 0.69 g of the *exo*-isomer (and 0.35 g of the *endo*-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding \(\alpha \)-amino-\(\beta \)-hydroxy esters (see later).

Yield: 42 %

TLC: \(R_f = 0.36 \) (ethyl acetate/n-hexane 1:4).

IR: (Film)

\[\tilde{\nu} \ (\text{cm}^{-1}) = 2983, \ 2895, \ 1725, \ 1612, \ 1600, \ 1558, \ 1435, \ 1085, \ 980, \ 770. \]

\(^1H\)NMR: (300 MHz, CDCl₃)

\[\delta_{\text{ppm}} = 0.66 \ (d, J = 6.8 \ Hz, \ 3H, \ CH_3), \ 0.86 \ (d, J = 6.6 \ Hz, \ 3H, \ CH_3), \ 1.16 \ (\text{septet}, \ J = 6.8 \ Hz, \ 1H, \ CH), \ 1.29 \ (t, J = 6.8 \ Hz, \ 3H, \ CH_3), \ 2.08 \ (s, \ 3H, \ CH_3), \ 3.72 \ (s, \ 3H, \ OCH_3), \ 4.25 \ (q, J = 6.8 \ Hz, \ 2H, \ OCH_2), \ 7.33-7.82 \ (m, \ 5H, \ H_{arom}) \]

\(^13C\)NMR: (75.5 MHz, CDCl₃)

\[\delta_{\text{ppm}} = 14.2 \ (q, \ CH_3), \ 14.7 \ (q, \ CH_3), \ 15.9 \ (q, \ CH_3), \ 16.5 \ (q, \ CH_3), \ 25.9 \ (d, \ CH), \ 51.6 \ (q, \ OCH_3), \ 61.6 \ (t, \ OCH_2), \ 86.0 \ (s, \ C-1), \ 92.9 \ (s, \ C-7), \ 123.3 \ (s, \ C-5), \ 127.2 \ (d, \ C-5) \]
4. Experimental part

CH_{arom}, 128.0 (d, CH_{arom}), 128.7 (d, CH_{arom}), 134.8 (s, C_{qarom}), 166.0 (s, C-3), 168.3 (s, COO).

HRMS: (C₁₈H₂₃NO₅, M = 333.16 g/mol)

Calcd: 333.1570

Found: 333.1561

endo-1-Isopropyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid ethyl ester (**endo-60d**) (sbo-352d)

![structure](image)

Yield: 21 %

TLC: R_f = 0.57 (ethyl acetate/n-hexane 1:4).

¹H-NMR: (300 MHz, CDCl₃)

\[\delta_{ppm} = 0.86 \text{ (d, J = 6.6 Hz, 3H, CH)}_3, 1.24 \text{ (d, J = 6.8 Hz, 3H, CH)}_3, 1.28 \text{ (t, J = 7.2 Hz, 3H, CH)}_3, 1.77 \text{ (s, 3H, CH)}_3, 2.27 \text{ (septet, J = 6.6 Hz, 1H, CH), 3.71} \text{ (s, 3H, OCH)}_3, 4.22 \text{ (q, J = 7.2 Hz, 2H, OCH)}_2, 7.25-7.34 \text{ (m, 5H, H_{arom})}.

¹³C-NMR: (75.5 MHz, CDCl₃)

\[\delta_{ppm} = 13.9 \text{ (q, CH)}_3, 14.3 \text{ (q, CH)}_3, 17.4 \text{ (q, CH)}_3, 17.4 \text{ (q, CH)}_3, 27.8 \text{ (d, CH), 51.8 (q, OCH)}_3, 61.9 \text{ (t, OCH)}_2, 86.3 \text{ (s, C-1), 91.9 (s, C-7), 123.9 (s, C-5), 126.7 (d, CH_{arom}), 127.7 (d, CH_{arom}), 128.5 (d, CH_{arom}), 135.4 (s, C_{qarom}), 165.4 (s, C-3), 169.6 (s, COO).}

exo-1-Isobutyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid ethyl ester (**exo-60e**) (sbo-355a)

![structure](image)

A solution of ethyl phenylglyoxylate (0.89 g, 5 mmol) and 4-sec-butyl-2-methyl-5-methoxyoxazole (0.84 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.60 g of a yellow oil. Preparative chromatography on silica gel yielded 0.75 g of the **exo**-isomer (and 0.37 g of the **endo**-isomer) as a colorless oil. The
products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

Yield: 43 %

TLC: $R_f = 0.34$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

$$\delta_{ppm} = 0.62 \text{ (d, J = 6.6 Hz, 3H, CH$_3$)}, 0.72 \text{ (d, J = 6.6 Hz, 3H, CH$_3$)}, 1.27 \text{ (t, J = 7.5 Hz, 3H, CH$_3$)}, 1.56 \text{ (m, 2H, CH$_2$)}, 1.58 \text{ (m, 1H, CH)}, 2.04 \text{ (s, 3H, CH$_3$)}, 3.64 \text{ (s, 3H, OCH$_3$)}, 4.22 \text{ (q, J = 7.5 Hz, 2H, OCH$_2$)}, 7.26-7.52 \text{ (m, 5H, H$_{arom}$)}.$$

13C-NMR: (75.5 MHz, CDCl$_3$)

$$\delta_{ppm} = 13.8 \text{ (q, CH$_3$)}, 14.0 \text{ (q, CH$_3$)}, 22.6 \text{ (q, CH$_3$)}, 23.5 \text{ (q, CH$_3$)}, 25.7 \text{ (d, CH)}, 36.5 \text{ (t, CH$_2$)}, 51.6 \text{ (q, OCH$_3$)}, 62.1 \text{ (t, OCH$_2$)}, 81.7 \text{ (s, C-2)}, 91.5 \text{ (s, C-3)}, 123.3 \text{ (s, C-5)}, 126.3 \text{ (d, CH$_{arom}$)}, 127.3 \text{ (d, CH$_{arom}$)}, 128.5 \text{ (d, CH$_{arom}$)}, 134.2 \text{ (s, C$_{qarom}$)}, 165.5 \text{ (s, C-3)}, 169.9 \text{ (s, COO)}.$$

HRMS: (C$_{19}$H$_{25}$NO$_5$, M = 347.17 g/mol)
Calcd: 347.1717
Found: 347.1716

endo-1-Isobutyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid ethyl ester (endo-60e) (sbo-355d)

![Structure of endo-1-Isobutyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid ethyl ester](image)

Yield: 21 %

TLC: $R_f = 0.54$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

$$\delta_{ppm} = 0.79 \text{ (d, J = 6.5 Hz, 3H, CH$_3$)}, 0.92 \text{ (d, J = 6.6 Hz, 3H, CH$_3$)}, 1.18 \text{ (m, 1H, CH)}, 1.27 \text{ (t, J = 7.2 Hz, 3H, CH$_3$)}, 1.38 \text{ (m, 2H, CH$_2$)}, 1.72 \text{ (s, 3H, CH$_3$)}, 3.69 \text{ (s, 3H, OCH$_3$)}, 4.24 \text{ (q, J = 7.5 Hz, 2H, OCH$_2$)}, 7.26-7.80 \text{ (m, 5H, H$_{arom}$)}.$$

13C-NMR: (75.5 MHz, CDCl$_3$)

$$\delta_{ppm} = 14.0 \text{ (q, CH$_3$)}, 14.3 \text{ (q, CH$_3$)}, 22.9 \text{ (q, CH$_3$)}, 24.1 \text{ (q, CH$_3$)}, 24.2 \text{ (d, CH)}, 37.3 \text{ (t, CH$_2$)}, 51.9 \text{ (q, OCH$_3$)}, 61.8 \text{ (t, OCH$_2$)}, 81.8 \text{ (s, C-2)}, 90.8 \text{ (s, C-3)}, 123.8 \text{ (s, C-5)}, 126.4 \text{ (d, CH$_{arom}$)}, 127.8 \text{ (d, CH$_{arom}$)}, 129.9 \text{ (d, CH$_{arom}$)}, 135.3 \text{ (s, C$_{qarom}$)}, 164.7 \text{ (s, C-3)}, 169.3 \text{ (s, COO)}.$$
4. Experimental part

exo-1-sec-Butyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxo-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid ethylester (exo-60f) (sbo-356b)

A solution of ethyl phenylglyoxylate (0.89 g, 5 mmol) and 4-sec-butyl-2-methyl-5-methoxyoxazole (0.84 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.62 g of a yellow oil. Preparative chromatography on silica gel yielded 0.71 g of the exo-isomer (and 0.36 g of the endo-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

Yield: 41 %

TLC: $R_f = 0.31$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

δ ppm = 0.67 (t, J = 6.8 Hz, 3H, CH$_3$), 0.85 (d, J = 6.6 Hz, 3H, CH$_3$), 1.23 (t, J = 7.5 Hz, 3H, CH$_3$), 1.31 (m, 2H, CH$_2$), 1.47 (m, 1H, CH), 2.08 (s, 3H, CH$_3$), 3.73 (s, 3H, OCH$_3$), 4.25 (q, J = 7.5 Hz, 2H, OCH$_2$), 7.22-7.38 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ ppm = 11.2 (q, CH$_3$), 12.1 (q, CH$_3$), 13.8 (q, CH$_3$), 14.2 (q, CH$_3$), 23.4 (d, CH), 32.6 (t, CH$_2$), 51.6 (q, OCH$_3$), 61.6 (t, OCH$_2$), 86.6 (s, C-1), 93.1 (s, C-7), 123.4 (s, C-5), 126.9 (d, CH$_{arom}$), 127.4 (d, CH$_{arom}$), 128.8 (d, CH$_{arom}$), 135.6 (s, C$_{arom}$), 165.8 (s, C-3), 168.3 (s, COO).

endo-1-sec-Butyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxo-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid ethylester (endo-60f) (sbo-356d)

Yield: 21 %

TLC: $R_f = 0.49$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)
4. Experimental part

$\delta_{ppm} = 0.78$ (d, $J = 6.8$ Hz, 3H, CH$_3$), 0.86 (t, $J = 7.5$ Hz, 3H, CH$_3$), 1.18 (t, $J = 7.4$ Hz, 3H, CH$_3$), 1.28 (m, 2H, CH$_2$), 1.69 (s, 3H, CH$_3$), 1.98 (m, 1H, CH), 3.64 (s, 3H, OCH$_3$), 4.24 (q, $J = 7.5$ Hz, 2H, OCH$_2$), 7.17-7.45 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 11.6$ (q, CH$_3$), 13.2 (q, CH$_3$), 13.9 (q, CH$_3$), 14.2 (q, CH$_3$), 23.9 (d, CH), 34.5 (t, CH$_2$), 51.8 (q, OCH$_3$), 61.9 (t, OCH$_2$), 86.2 (s, C-1), 92.3 (s, C-7), 123.9 (s, C-5), 126.7 (d, CH$_{arom}$), 127.6 (d, CH$_{arom}$), 128.9 (d, CH$_{arom}$), 134.6 (s, C$_q$$_{arom}$), 165.1 (s, C-3), 169.6 (s, COO).

Photolyses of isopropyl phenylglyoxylate with 5-methoxyoxazoles 36a-f:

exo-5-Methoxy-1,3-dimethyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid isopropyl ester (exo-61a) (sbo-582a)

A solution of isopropyl phenylglyoxylate (0.96 g, 5 mmol) and 2,4-dimethyl-5-methoxyoxazole (0.64 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.40 g of a yellow oil. Preparative chromatography on silica gel yielded 0.74 g of the exo-isomer (and 0.43 g of the endo-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

Yield: 46 %

TLC: $R_f = 0.43$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 0.88$ (d, $J = 6.2$ Hz, 3H, CH$_3$), 0.95 (d, $J = 6.2$ Hz, 3H, CH$_3$), 1.05 (s, 3H, CH$_3$), 1.99 (s, 3H, CH$_3$), 3.72 (s, 3H, OCH$_3$), 5.3 (septet, $J = 6.2$ Hz, 1H, OCH), 7.24-7.49 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 14.5$ (q, CH$_3$), 15.9 (q, CH$_3$), 21.8 (q, CH$_3$), 21.9 (q, CH$_3$), 52.2 (q, OCH$_3$), 70.0 (d, OCH), 79.5 (s, C-1), 92.5 (s, C-7), 124.3 (s, C-5), 126.4 (d, CH$_{arom}$), 127.7 (d, CH$_{arom}$), 135.0 (s, C$_q$$_{arom}$), 166.3 (s, C-3), 168.5 (s, COO).

endo-5-Methoxy-1,3-dimethyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid isopropyl ester (endo-61a) (sbo-582b)
Yield: 27 %

TLC: $R_f = 0.45$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 1.22$ (d, $J = 6.2$ Hz, 3H, CH$_3$), 1.26 (d, $J = 6.2$ Hz, 3H, CH$_3$), 1.51 (s, 3H, CH$_3$), 1.68 (s, 3H, CH$_3$), 3.67 (s, 3H, OCH$_3$), 5.08 (septet, $J = 7.2$ Hz, 1H, OCH), 7.27-7.49 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 14.3$ (q, CH$_3$), 15.8 (q, CH$_3$), 21.6 (q, CH$_3$), 21.7 (q, CH$_3$), 52.0 (q, OCH$_3$), 69.9 (d, OCH), 78.5 (s, C-1), 90.5 (s, C-7), 123.7 (s, C-5), 126.4 (d, CH$_{arom}$), 127.7 (d, CH$_{arom}$), 135.0 (s, C$_{arom}$), 165.3 (s, C-3), 168.6 (s, COO).

exo-1-Ethyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxo-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid isopropyl ester (exo-61b) (sbo-582c)

A solution of isopropyl phenylglyoxylate (0.96 g, 5 mmol) and 4-ethyl-2-methyl-5-methoxyoxazole (0.71 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.50 g of a yellow oil. Preparative chromatography on silica gel yielded 0.7 g of the exo-isomer (and 0.38 g of the endo-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

Yield: 42 %

TLC: $R_f = 0.35$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 0.81$ (d, $J = 6.6$ Hz, 3H, CH$_3$), 0.97 (d, $J = 6.8$ Hz, 3H, CH$_3$), 1.12 (t, $J = 7.2$ Hz, 3H, CH$_3$), 1.43 (q, $J = 7.2$ Hz, 2H, CH$_2$), 2.09 (s, 3H, CH$_3$), 3.67 (s, 3H, OCH$_3$), 5.02 (septet, $J = 6.6$ Hz, 1H, OCH), 7.25-7.71 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

373
4. Experimental part

$$\delta_{\text{ppm}} = 9.8 \text{ (q, CH}_3\text{), 14.1 \text{ (q, CH}_3\text{), 21.4 \text{ (q, CH}_3\text{), 21.8 \text{ (q, CH}_3\text{), 29.4 \text{ (t, CH}_2\text{), 51.7 \text{ (q, OCH}}_3\text{), 71.0 \text{ (d, OCH), 82.2 \text{ (s, C-1), 86.5 \text{ (s, C-7), 123.6 \text{ (s, C-5), 126.3 \text{ (d, CH}}_{\text{arom}}\text{), 127.5 \text{ (d, CH}}_{\text{arom}}\text{), 128.0 \text{ (d, CH}}_{\text{arom}}\text{), 134.9 \text{ (s, Cq}}_{\text{arom}}\text{), 165.4 \text{ (s, C-3), 167.4 \text{ (s, COO).}}$$

HRMS: ($$C_{18}H_{23}NO_5\text{, M = 333.16 g/mol}$)
Calcd: 333.1639
Found: 333.1638

endo-1-Ethyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid isopropyl ester (*endo*-61b) (sbo-582d)

Yield: 23 %

TLC: $R_f = 0.58$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

$$\delta_{\text{ppm}} = 0.93 \text{ (t, J = 7.5 Hz, 3H, CH}_3\text{), 1.20 \text{ (d, J = 6.2 Hz, 3H, CH}_3\text{), 1.28 \text{ (d, J = 6.2 Hz, 3H, CH}_3\text{), 1.67 \text{ (m, 2H, CH}_2\text{), 1.72 \text{ (s, 3H, CH}_3\text{), 3.69 \text{ (s, 3H, OCH}_3\text{), 5.28 \text{ (septet, J = 6.2 Hz, 1H, OCH), 7.27-7.31 \text{ (m, 5H, H}}_{\text{arom}}\text{).}}$$

^{13}C-NMR: (75.5 MHz, CDCl$_3$)

$$\delta_{\text{ppm}} = 14.0 \text{ (q, CH}_3\text{), 14.3 \text{ (q, CH}_3\text{), 21.4 \text{ (q, CH}_3\text{), 21.8 \text{ (q, CH}_3\text{), 22.6 \text{ (t, CH}_2\text{), 51.9 \text{ (q, OCH}_3\text{), 70.4 \text{ (d, OCH), 81.9 \text{ (s, C-1), 90.9 \text{ (s, C-7), 123.8 \text{ (s, C-5), 126.3 \text{ (d, CH}}_{\text{arom}}\text{), 128.5 \text{ (d, CH}}_{\text{arom}}\text{), 129.0 \text{ (d, CH}}_{\text{arom}}\text{), 135.0 \text{ (s, Cq}}_{\text{arom}}\text{), 165.4 \text{ (s, C-3), 169.3 \text{ (s, COO).}}$$

exo-5-Methoxy-3-methyl-7-phenyl-1-propyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid isopropyl ester (*exo*-61c) (sbo-584b)

A solution of isopropyl phenylglyoxylate (0.96 g, 5 mmol) and 2-methyl-4-propyl-5-methoxyoxazole (0.75 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.56 g of a yellow oil. Preparative chromatography on silica
gel yielded 0.73 g of the exo-isomer (and 0.43 g of the endo-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

Yield: 43 %

TLC: $R_f = 0.42$ (ethyl acetate/n-hexane 1:4).

IR: (Film)

\[\tilde{\nu} \text{ (cm}^{-1} \text{)} = 2990, 2893, 1745, 1610, 1550, 1440, 1075, 980, 770. \]

1H-NMR: (300 MHz, CDCl$_3$)

\[\delta_{ppm} = 0.92 \text{ (t, J = 7.5 Hz, 3H, CH}_3\text{), 1.18 (d, J = 6.2 Hz, 3H, CH}_3\text{), 1.22 (d, J = 6.2 Hz, 3H, CH}_3\text{), 1.47 (m, 2H, CH}_2\text{), 2.06 (s, 3H, CH}_3\text{), 2.33 (m, 2H, CH}_2\text{), 3.64 (s, 3H, OCH}_3\text{), 5.20 (septet, J = 6.2 Hz, 1H, OCH), 7.25-7.67 (m, 5H, H}_\text{arom}. \]

13C-NMR: (75.5 MHz, CDCl$_3$)

\[\delta_{ppm} = 13.9 \text{ (q, CH}_3\text{), 14.1 (q, CH}_3\text{), 16.4 (t, CH}_2\text{), 22.3 (q, CH}_3\text{), 22.6 (q, CH}_3\text{), 30.7 (t, CH}_2\text{), 51.6 (q, OCH}_3\text{), 71.5 (t, OCH), 86.4 (s, C-1), 92.5 (s, C-7), 123.4 (s, C-5), 126.3 (d, CH}_\text{arom}, 127.5 (d, CH}_\text{arom}, 128.5 (d, CH}_\text{arom}, 134.9 (s, Cq}_\text{arom}, 165.3 (s, C-3), 168.2 (s, COO). \]

MS: (EI, 70 eV)

\[m/z \% = 347 (M^+, 10), 305 (15), 262 (8), 260 (38), 173 (28), 155 (78), 130 (40), 105 (100), 102 (38), 91 (10), 77 (25), 71 (28), 57 (60). \]

HRMS: (C$_{19}$H$_{25}$NO$_5$, M = 347.17 g/mol)

Calcd: 347.1726

Found: 347.1721

endo-5-Methoxy-3-methyl-7-phenyl-1-propyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid isopropyl ester (endo-61e) (sbo-584)

\[\text{Yield: 25 %} \]

TLC: $R_f = 0.36$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

\[\delta_{ppm} = 0.75 \text{ (t, J = 6.9 Hz, 3H, CH}_3\text{), 1.23 (d, J = 6.2 Hz, 3H, CH}_3\text{), 1.28 (d, J = 6.2 Hz, 3H, CH}_3\text{), 1.49 (m, 2H, CH}_2\text{), 1.67 (m, 2H, CH}_2\text{), 1.73 (s, 3H, CH}_3\text{), 3.67 (s, 3H, OCH}_3\text{), 5.15 (septet, J = 6.2 Hz, 1H, OCH), 7.27-7.37 (m, 5H, H}_\text{arom}. \]
4. Experimental part

13C-NMR: (75.5 MHz, CDCl$_3$)

\[
\delta_{ppm} = 14.3 \text{ (q, CH$_3$), 14.9 \text{ (q, CH$_3$), 16.5 \text{ (t, CH$_2$), 22.4 \text{ (q, CH$_3$), 22.6 \text{ (q, CH$_3$), 31.2 \text{ (t, CH$_2$), 51.7 \text{ (q, OCH$_3$), 71.2 \text{ (d, OCH), 84.3 \text{ (s, C-1), 91.7 \text{ (s, C-7), 123.7 \text{ (s, C-5), 127.2 \text{ (d, CH$_{arom}$), 128.3 \text{ (d, CH$_{arom}$), 128.5 \text{ (d, CH$_{arom}$), 135.1 \text{ (s, C$_{q arom}$), 166.0 \text{ (s, C-3), 169.1 \text{ (s, COO).}}}}}}}}}}

exo-1-Isopropyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid isopropyl ester (exo-61d) (sbo-577a)

A solution of isopropyl phenylglyoxylate (0.96 g, 5 mmol) and 4-isopropyl-2-methyl-5-methoxyoxazole (0.75 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.49 g of a yellow oil. Preparative chromatography on silica gel yielded 0.7 g of the exo-isomer (and 0.4 g of the endo-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

Yield: 41%

TLC: \(R_f = 0.36 \) (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

\[
\delta_{ppm} = 0.66 \text{ (d, J = 6.8 Hz, 3H, CH$_3$), 0.86 \text{ (d, J = 6.6 Hz, 3H, CH$_3$), 0.92 \text{ (d, J = 6.2 Hz, 3H, CH$_3$), 0.98 \text{ (d, J = 6.2 Hz, 3H, CH$_3$), 1.16 \text{ (septet, J = 6.8 Hz, 1H, CH), 2.08 \text{ (s, 3H, CH$_3$), 3.72 \text{ (s, 3H, OCH$_3$), 5.25 \text{ (septet, J = 6.2 Hz, 1H, OCH), 7.33-7.82 \text{ (m, 5H, H$_{arom}$).}}}}}}}

13C-NMR: (75.5 MHz, CDCl$_3$)

\[
\delta_{ppm} = 14.7 \text{ (q, CH$_3$), 15.9 \text{ (q, CH$_3$), 16.5 \text{ (q, CH$_3$), 21.8 \text{ (q, CH$_3$), 22.0 \text{ (q, CH$_3$), 25.9 \text{ (d, CH), 51.6 \text{ (q, OCH$_3$), 71.0 \text{ (d, OCH), 86.0 \text{ (s, C-1), 92.9 \text{ (s, C-7), 123.6 \text{ (s, C-5), 127.2 \text{ (d, CH$_{arom}$), 128.0 \text{ (d, CH$_{arom}$), 128.7 \text{ (d, CH$_{arom}$), 134.8 \text{ (s, C$_{q arom}$), 166.0 \text{ (s, C-3), 168.3 \text{ (s, COO).}}}}}}}}}}}

endo-1-Isopropyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid isopropyl ester (endo-61d) (sbo-577b)
4. Experimental part

Yield: 23 %

TLC: R$_f$ = 0.57 (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 0.86$ (d, J = 6.6 Hz, 3H, CH$_3$), 1.13 (d, J = 6.2 Hz, 3H, CH$_3$), 1.18 (d, J = 6.2 Hz, 3H, CH$_3$), 1.24 (d, J = 6.8 Hz, 3H, CH$_3$), 1.77 (s, 3H, CH$_3$), 2.27 (septet, J = 6.6 Hz, 1H, CH), 3.71 (s, 3H, OCH$_3$), 5.22 (septet, J = 6.2 Hz, 1H, OCH), 7.25-7.34 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 14.3$ (q, CH$_3$), 17.4 (q, CH$_3$), 17.7 (q, CH$_3$), 22.8 (q, CH$_3$), 23.0 (q, CH$_3$), 27.8 (d, CH), 51.8 (q, OCH$_3$), 70.0 (d, OCH), 86.3 (s, C-1), 91.9 (s, C-7), 124.2 (s, C-5), 126.7 (d, CH$_{arom}$), 127.7 (d, CH$_{arom}$), 128.5 (d, CH$_{arom}$), 135.4 (s, C$_{qarom}$), 165.4 (s, C-3), 169.6 (s, COO).

exo-1-Isobutyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxo-2-aza-bicyclo[3.2.0]hept-2-ene-7carboxylic acid isopropyl ester (exo-61e) (sbo-578a)

A solution of isopropyl phenylglyoxylate (0.96 g, 5 mmol) and 4-isobutyl-2-methyl-5-methoxyoxazole (0.84 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.62 g of a yellow oil. Preparative chromatography on silica gel yielded 0.76 g of the exo-isomer (and 0.43 g of the endo-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

Yield: 42 %

TLC: R$_f$ = 0.54 (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 0.62$ (d, J = 6.6 Hz, 3H, CH$_3$), 0.72 (d, J = 6.6 Hz, 3H, CH$_3$), 0.92 (d, J = 6.2 Hz, 3H, CH$_3$), 0.94 (d, J = 6.2 Hz, 3H, CH$_3$), 1.56 (m, 2H, CH$_2$), 1.58 (m, 1H, CH),
4. Experimental part

2.04 (s, 3H, CH$_3$), 3.64 (s, 3H, OCH$_3$), 5.22 (septet, J = 6.2 Hz, 1H, OCH), 7.26-7.52 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ ppm = 14.0 (q, CH$_3$), 21.4 (q, CH$_3$), 21.6 (q, CH$_3$), 22.6 (q, CH$_3$), 23.5 (q, CH$_3$), 25.7 (d, CH), 38.5 (t, CH$_2$), 51.6 (q, OCH$_3$), 70.1 (d, OCH), 81.7 (s, C-2), 91.5 (s, C-3), 123.3 (s, C-5), 126.3 (d, CH$_{arom}$), 127.3 (d, CH$_{arom}$), 128.5 (d, CH$_{arom}$), 134.2 (s, C$_{q-arom}$), 165.5 (s, C-3), 169.9 (s, COO).

HRMS: (C$_{20}$H$_{27}$NO$_5$, M = 361.19 g/mol)
Calcd: 361.1864
Found: 361.1860

endo-1-Isobutyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid isopropyl ester (endo-61e) (sbo-578b)

Yield: 24 %

TLC: R$_f$ = 0.58 (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

δ ppm = 0.79 (d, J = 6.5 Hz, 3H, CH$_3$), 0.92 (d, J = 6.6 Hz, 3H, CH$_3$), 1.18 (m, 1H, CH), 1.20 (d, J = 6.2 Hz, 3H, CH$_3$), 1.25 (d, J = 6.2 Hz, 3H, CH$_3$), 1.38 (m, 2H, CH$_2$), 1.62 (s, 3H, CH$_3$), 3.69 (s, 3H, OCH$_3$), 5.32 (septet, J = 6.2 Hz, 1H, OCH), 7.26-7.80 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ ppm = 14.3 (q, CH$_3$), 22.9 (q, CH$_3$), 23.0 (q, CH$_3$), 24.1 (q, CH$_3$), 24.3 (q, CH$_3$), 25.2 (d, CH), 39.8 (t, CH$_2$), 52.0 (q, OCH$_3$), 71.0 (d, OCH), 81.8 (s, C-2), 90.8 (s, C-3), 123.8 (s, C-5), 126.4 (d, CH$_{arom}$), 127.8 (d, CH$_{arom}$), 129.9 (d, CH$_{arom}$), 135.3 (s, C$_{q-arom}$), 164.7 (s, C-3), 169.3 (s, COO).

exo-1-sec-Butyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid isopropyl ester (exo-61f) (sbo-586g)
A solution of isopropyl phenylglyoxylate (0.96 g, 5 mmol) and 4-sec-butyl-2-methyl-5-methoxyoxazole (0.84 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.65 g of a yellow oil. Preparative chromatography on silica gel yielded 0.74 g of the exo-isomer (and 0.39 g of the endo-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

Yield: 41 %

TLC: R_f = 0.44 (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

\[\delta_{ppm} = 0.67 (t, J = 6.8 Hz, 3H, CH$_3$), 0.85 (d, J = 6.6 Hz, 3H, CH$_3$), 0.93 (d, J = 6.2 Hz, 3H, CH$_3$), 1.12 (d, J = 6.2 Hz, 3H, CH$_3$), 1.31 (m, 2H, CH$_2$), 1.47 (m, 1H, CH), 2.08 (s, 3H, CH$_3$), 3.73 (s, 3H, OCH$_3$), 5.25 (septet, J = 6.2 Hz, 1H, OCH), 7.22-7.38 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

\[\delta_{ppm} = 11.2 (q, CH$_3$), 12.1 (q, CH$_3$), 14.2 (q, CH$_3$), 22.2 (q, CH$_3$), 22.8 (q, CH$_3$), 23.4 (d, CH), 32.6 (t, CH$_2$), 51.6 (q, OCH$_3$), 70.2 (d, OCH), 86.6 (s, C-1), 93.1 (s, C-7), 123.4 (s, C-5), 126.9 (d, CH$_{arom}$), 127.4 (d, CH$_{arom}$), 128.8 (d, CH$_{arom}$), 135.6 (s, Cq$_{arom}$), 165.8 (s, C-3), 168.3 (s, COO).

endo-1-sec-Butyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid isopropyl ester (endo-61f) (sbo-586f)

Yield: 22 %

TLC: R_f = 0.49 (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

\[\delta_{ppm} = 0.78 (d, J = 6.8 Hz, 3H, CH$_3$), 0.86 (t, J = 7.5 Hz, 3H, CH$_3$), 1.22 (d, J = 6.2 Hz, 3H, CH$_3$), 1.24 (d, J = 6.2 Hz, 3H, CH$_3$), 1.28 (m, 2H, CH$_2$), 1.69 (s, 3H, CH$_3$),
4. Experimental part

1.98 (m, 1H, CH), 3.64 (s, 3H, OCH₃), 5.24 (septet, J = 6.2 Hz, 1H, OCH), 7.17-7.45 (m, 5H, Hₐrom).

¹³C-NMR: (75.5 MHz, CDCl₃)

δ ppm = 11.6 (q, CH₃), 13.2 (q, CH₃), 14.2 (q, CH₃), 22.2 (q, CH₃), 22.6 (q, CH₃), 23.9 (d, CH), 34.5 (t, CH₂), 51.8 (q, OCH₃), 71.4 (d, OCH), 86.2 (s, C-1), 92.3 (s, C-7), 123.9 (s, C-5), 126.7 (d, CHₐrom), 127.6 (d, CHₐrom), 128.9 (d, CHₐrom), 134.6 (s, Cₗarom), 165.1 (s, C-3), 169.6 (s, COO).

Photolyses of tert-butyl phenylglyoxylate with 5-methoxyoxazoles 36a-f:

exo-5-Methoxy-1,3-dimethyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid tert-butyl ester (exo-62a) (sbo-445d)

A solution of tert-butyl phenylglyoxylate (1.0 g, 5 mmol) and 2,4-dimethyl-5-methoxyoxazole (0.64 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.4 g of a yellow oil. Preparative chromatography on silica gel yielded 0.76 g of the exo-isomer (and 0.37 g of the endo-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

Yield: 46 %

TLC: R_f = 0.48 (ethyl acetate/n-hexane 1:4).

¹H-NMR: (300 MHz, CDCl₃)

δ ppm = 1.04 (s, 3H, CH₃), 1.46 (s, 9H, 3CH₃), 2.07 (s, 3H, CH₃), 3.62 (s, 3H, OCH₃), 7.23-7.67 (m, 5H, Hₐrom).

¹³C-NMR: (75.5 MHz, CDCl₃)

δ ppm = 14.3 (q, CH₃), 14.9 (q, CH₃), 27.9 (q, 3CH₃), 51.8 (q, OCH₃), 78.8 (s, C-1), 82.9 (s, Cq), 91.1 (s, C-7), 123.4 (s, C-5), 126.2 (d, CHₐrom), 128.2 (d, CHₐrom), 134.9 (s, Cₗarom), 166.2 (s, C-3), 167.4 (s, COO).

endo-5-Methoxy-1,3-dimethyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid tert-butyl ester (endo-62a) (sbo-445c)
4. Experimental part

Yield: 22 %

TLC: R_f = 0.42 (ethyl acetate/n-hexane 1:4).

^1H-NMR: (300 MHz, CDCl_3)

δ_{ppm} = 1.44 (s, 9H, 3CH_3), 1.52 (s, 3H, CH_3), 1.67 (s, 3H, CH_3), 3.67 (s, 3H, OCH_3),
7.25-7.49 (m, 5H, H_arom).

^13C-NMR: (75.5 MHz, CDCl_3)

δ_{ppm} = 14.3 (q, CH_3), 15.8 (q, CH_3), 27.9 (q, 3CH_3), 51.9 (q, OCH_3), 78.2 (s, C-1),
83.1 (s, C_q), 90.5 (s, C-7), 123.7 (s, C-5), 126.4 (d, CH_arom), 127.7 (d, CH_arom),
135.0 (s, C_qarom), 165.2 (s, C-3), 168.0 (s, COO).

exo-1-Ethyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid tert-butyl ester (exo-62b) (sbo-583c)

A solution of tert-butyl phenylglyoxylate (1.0 g, 5 mmol) and 4-ethyl-2-methyl-5-methoxyoxazole (0.71 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.62 g of a yellow oil. Preparative chromatography on silica gel yielded 0.72 g of the exo-isomer (and 0.38 g of the endo-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

Yield: 41 %

TLC: R_f = 0.45 (ethyl acetate/n-hexane 1:4).

IR: (Film)

ν (cm^{-1}) = 2983, 2895, 1751, 1615, 1600, 1555, 1440, 1085, 980, 770.

^1H-NMR: (300 MHz, CDCl_3)

δ_{ppm} = 0.73 (t, J = 7.5 Hz, 3H, CH_3), 1.21 (m, 1H, CH), 1.46 (s, 9H, 3CH_3), 1.60 (m,
1H, CH), 2.09 (s, 3H, CH_3), 3.65 (s, 3H, OCH_3), 7.28-7.35 (m, 5H, H_arom).

^13C-NMR: (75.5 MHz, CDCl_3)
δ_{ppm} = 7.4 (q, CH₃), 14.8 (q, CH₃), 21.8 (t, CH₂), 27.9 (q, 3CH₃), 51.6 (q, OCH₃),
81.9 (s, C-1), 82.9 (s, Cq), 91.4 (s, C-7), 123.4 (s, C-5), 126.3 (d, CH_arom), 127.5 (d,
CH_arom), 128.0 (d, CH_arom), 134.9 (s, Cq_arom), 166.5 (s, C-3), 167.4 (s, COO).

MS: (El, 70 eV)
m/z (%) = 347 (M⁺, 10), 310 (4), 264 (40), 222 (25), 159 (75), 127 (40), 116 (100),
105 (80), 102 (38), 91 (10), 77 (25), 71 (28), 57 (60).

HRMS: (C₁₉H₂₅NO₅, M = 347.17 g/mol)
Calcd: 347.1726
Found: 347.1722

**endo-1-Ethyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-
carboxylic acid tert-butyl ester (endo-62b) (sbo-583d)**

Yield: 22 %

TLC: Rₚ = 0.50 (ethyl acetate/n-hexane 1:4).

¹H-NMR: (300 MHz, CDCl₃)
δ_{ppm} = 0.93 (t, J = 7.5 Hz, 3H, CH₃), 1.44 (s, 9H, 3CH₃), 2.07 (s, 3H, CH₃), 2.14 (m,
1H, CH), 2.18 (m, 1H, CH), 3.69 (s, 3H, OCH₃), 7.27-7.49 (m, 5H, H_arom).

¹³C-NMR: (75.5 MHz, CDCl₃)
δ_{ppm} = 8.2 (q, CH₃), 14.3 (q, CH₃), 22.6 (t, CH₂), 28.0 (q, 3CH₃), 51.9 (q, OCH₃),
81.7 (s, C-1), 83.1 (s, Cq), 90.9 (s, C-7), 123.8 (s, C-5), 126.3 (d, CH_arom), 128.5 (d,
CH_arom), 129.0 (d, CH_arom), 135.0 (s, Cq_arom), 165.3 (s, C-3), 168.1 (s, COO).

**exo-5-Methoxy-3-methyl-7-phenyl-1-propyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-
carboxylic acid tert-butyl ester (exo-62c) (sbo-585a)**

A solution of tert-butyl phenylglyoxylate (1.0 g, 5 mmol) and 2-methyl-4-propyl-5-
methoxoxyazazole (0.75 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the
above general procedure to give 1.68 g of a yellow oil. Preparative chromatography on silica
gel yielded 0.84 g of the *exo*-isomer (and 0.41 g of the *endo*-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

Yield: 47 %

TLC: $R_f = 0.46$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl₃)

\[
\delta_{ppm} = 0.72 \text{ (t, } J = 6.8 \text{ Hz, 3H, CH₃), 0.92 \text{ (m, 2H, CH₂), 1.17 \text{ (m, 2H, CH₂), 1.46 \text{ (s, 9H, 3CH₃), 2.08 \text{ (s, 3H, CH₃), 3.64 \text{ (s, 3H, OCH₃), 7.25-7.69 \text{ (m, 5H, H-arom).)}}}
\]

13C-NMR: (75.5 MHz, CDCl₃)

\[
\delta_{ppm} = 14.1 \text{ (q, CH₃), 14.8 \text{ (q, CH₃), 16.4 \text{ (t, CH₂), 27.9 \text{ (q, 3CH₃), 30.9 \text{ (t, CH₂), 51.6 \text{ (q, OCH₃), 81.6 \text{ (s, C-1), 82.9 \text{ (s, Cq), 91.4 \text{ (s, C-7), 123.3 \text{ (s, C-5), 126.3 \text{ (d, CH-arom)}, 127.5 \text{ (d, CH-arom)}, 128.5 \text{ (d, CH-arom), 134.9 \text{ (s, Cq-arom), 166.0 \text{ (s, C-3), 167.5 \text{ (s, COO).}})}}}}}
\]

endo-5-Methoxy-3-methyl-7-phenyl-1-propyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid tert-butyl ester (endo-62c) (sbo-585b)

\[\text{Yield: 23 %}
\]

TLC: $R_f = 0.41$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl₃)

\[
\delta_{ppm} = 0.93 \text{ (t, } J = 7.5 \text{ Hz, 3H, CH₃), 1.40 \text{ (m, 2H, CH₂), 1.44 \text{ (s, 9H, 3CH₃), 1.77 \text{ (s, 3H, CH₃), 1.79-1.83 \text{ (m, 2H, CH₂), 3.69 \text{ (s, 3H, OCH₃), 7.27-7.48 \text{ (m, 5H, H-arom).)}}}
\]

13C-NMR: (75.5 MHz, CDCl₃)

\[
\delta_{ppm} = 14.3 \text{ (q, CH₃), 14.4 \text{ (q, CH₃), 17.1 \text{ (t, CH₂), 27.9 \text{ (q, 3CH₃), 31.9 \text{ (t, CH₂), 51.9 \text{ (q, OCH₃), 81.3 \text{ (s, C-1), 83.1 \text{ (s, Cq), 91.0 \text{ (s, C-7), 123.7 \text{ (s, C-5), 127.2 \text{ (d, CH-arom)}, 128.3 \text{ (d, CH-arom)}, 128.5 \text{ (d, CH-arom), 135.1 \text{ (s, Cq-arom), 165.1 \text{ (s, C-3), 168.1 \text{ (s, COO).}})}}}}}
\]

exo-1-Isopropyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid tert-butyl ester (exo-62d) (sbo-579a)
A solution of tert-butyl phenylglyoxylate (1.0 g, 5 mmol) and 4-isopropyl-2-methyl-5-methoxyoxazole (0.75 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.65 g of a yellow oil. Preparative chromatography on silica gel yielded 0.74 g of the exo-isomer (and 0.46 g of the endo-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

Yield: 42%

TLC: R_f = 0.39 (ethyl acetate/n-hexane 1:4).

¹H-NMR: (300 MHz, CDCl₃)

δ_{ppm} = 0.68 (d, J = 6.8 Hz, 3H, CH₃), 0.82 (d, J = 6.8 Hz, 3H, CH₃), 1.54 (s, 9H, 3CH₃), 2.09 (s, 3H, CH₃), 3.72 (s, 3H, OCH₃), 7.33-7.82 (m, 5H, H_{arom}).

¹³C-NMR: (75.5 MHz, CDCl₃)

δ_{ppm} = 14.2 (q, CH₃), 15.9 (q, CH₃), 16.7 (q, CH₃), 25.9 (d, CH), 28.1 (q, 3CH₃), 51.5 (q, OCH₃), 82.9 (s, Cq), 85.8 (s, C-1), 92.6 (s, C-7), 123.2 (s, C-5), 127.2 (d, CH_{arom}), 128.0 (d, CH_{arom}), 128.7 (d, CH_{arom}), 134.8 (s, Cq), 166.0 (s, C-3), 168.3 (s, COO).

MS: (El, 70 eV)

m/z (%) = 361 (M⁺, 5), 348 (45), 334 (35), 278 (40), 236 (20), 218 (10), 173 (25), 130 (60), 105 (100), 102 (18), 91 (10), 77 (25), 71 (28), 57 (60).

HRMS: (C₂₀H₂₇NO₅, M = 361.19 g/mol)

Calcd: 361.1882

Found: 361.1876

endo-1-Isopropyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxo-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid tert-butyl ester (*endo*-62d) (sbo-579b)

Yield: 26%

TLC: R_f = 0.47 (ethyl acetate/n-hexane 1:4).
4. Experimental part

1H-NMR: (300 MHz, CDCl$_3$)
\[\delta_{ppm} = 0.86 \text{ (d, } J = 6.6 \text{ Hz, } 3\text{H, CH}_3), \] 1.24 (d, J = 6.8 Hz, 3H, CH$_3$), 1.45 (s, 9H, 3CH$_3$), 1.75 (s, 3H, CH$_3$), 2.36 (septet, J = 6.6 Hz, 1H, CH), 3.72 (s, 3H, OCH$_3$), 7.25-7.34 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)
\[\delta_{ppm} = 14.3 \text{ (q, CH$_3$), 17.4 (q, CH$_3$), 17.7 (q, CH$_3$), 27.5 (d, CH), 27.8 (s, 9H, 3CH$_3$), 51.8 (q, OCH$_3$), 83.0 (s, Cq), 84.5 (s, C-1), 92.4 (s, C-7), 123.9 (s, C-5), 126.7 (d, CH$_{arom}$), 127.7 (d, CH$_{arom}$), 128.5 (d, CH$_{arom}$), 135.4 (s, Cq$_{arom}$), 165.2 (s, C-3), 168.5 (s, COO).}

exo-1-Isobutyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid tert-butyl ester (exo-62e) (sbo-580c)

A solution of tert-butyl phenylglyoxylate (1.0 g, 5 mmol) and 4-isobutyl-2-methyl-5-methoxyoxazole (0.84 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.69 g of a yellow oil. Preparative chromatography on silica gel yielded 0.75 g of the exo-isomer (and 0.39 g of the endo-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

Yield: 40 %

TLC: R_f = 0.52 (ethyl acetate/n-hexane 1:4).

IR: (Film)
\[\tilde{\nu} \text{ (cm}^{-1}) = 2983, 2895, 1755, 1610, 1607, 1558, 1440, 1075, 980, 778. \]

1H-NMR: (300 MHz, CDCl$_3$)
\[\delta_{ppm} = 0.62 \text{ (d, } J = 6.6 \text{ Hz, } 3\text{H, CH}_3), 0.72 \text{ (d, } J = 6.6 \text{ Hz, } 3\text{H, CH}_3), 1.42 \text{ (s, 9H, } 3\text{CH}_3), 1.56 \text{ (m, } 2\text{H, CH}_2), 1.58 \text{ (m, } 1\text{H, CH}), 2.04 \text{ (s, } 3\text{H, CH}_3), 3.64 \text{ (s, } 3\text{H, OCH}_3), 7.26-7.52 \text{ (m, } 5\text{H, H}_{arom}). \]

13C-NMR: (75.5 MHz, CDCl$_3$)
\[\delta_{ppm} = 14.0 \text{ (q, CH$_3$), 22.6 (q, CH$_3$), 23.5 (q, CH$_3$), 25.7 (d, CH), 27.9 (q, CH$_3$), 36.5 (t, CH$_2$), 51.6 (q, OCH$_3$), 82.4 (s, Cq), 86.7 (s, C-2), 93.5 (s, C-3), 123.3 (s, C-} \]
4. Experimental part

5), 126.3 (d, CH\textsubscript{arom}), 127.3 (d, CH\textsubscript{arom}), 128.5 (d, CH\textsubscript{arom}), 134.2 (s, C\textsubscript{qarom}), 165.5 (s, C-3), 169.9 (s, COO).

MS: (EI, 70 eV)

m/z (%) = 375 (M+, 10), 348 (12), 320 (8), 292 (20), 274 (20), 187 (40), 168 (20), 144 (80), 105 (100), 102 (18), 91 (10), 77 (25), 71 (28), 57 (60).

HRMS: (C\textsubscript{21}H\textsubscript{29}NO\textsubscript{5}, M = 375.20 g/mol)

Calcd: 375.2038

Found: 375.2034

endo-1-Isobutyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid tert-butyl ester (endo-62e) (sbo-580e)

![Structure](image)

Yield: 21 %

TLC: R\textsubscript{f} = 0.54 (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl\textsubscript{3})

δ\textsubscript{ppm} = 0.79 (d, J = 6.5 Hz, 3H, CH\textsubscript{3}), 0.92 (d, J = 6.6 Hz, 3H, CH\textsubscript{3}), 1.18 (m, 1H, CH), 1.38 (m, 2H, CH\textsubscript{2}), 1.44 (s, 9H, 3CH\textsubscript{3}), 1.72 (s, 3H, CH\textsubscript{3}), 3.69 (s, 3H, OCH\textsubscript{3}), 7.26-7.80 (m, 5H, H\textsubscript{arom}).

13C-NMR: (75.5 MHz, CDCl\textsubscript{3})

δ\textsubscript{ppm} = 14.0 (q, CH\textsubscript{3}), 22.9 (q, CH\textsubscript{3}), 24.1 (q, CH\textsubscript{3}), 24.2 (d, CH), 28.1 (q, 3CH\textsubscript{3}), 37.3 (t, CH\textsubscript{2}), 51.9 (q, OCH\textsubscript{3}), 83.0 (s, C\textsubscript{q}), 85.8 (s, C-2), 92.8 (s, C-3), 123.8 (s, C-5), 126.4 (d, CH\textsubscript{arom}), 127.8 (d, CH\textsubscript{arom}), 129.9 (d, CH\textsubscript{arom}), 135.3 (s, C\textsubscript{qarom}), 164.7 (s, C-3), 169.3 (s, COO).

exo-1-sec-Butyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid tert-butyl ester (exo-62f) (sbo-586c)

![Structure](image)

A solution of tert-butyl phenylglyoxylate (1.0 g, 5 mmol) and 2-sec-butyl4-methyl-5-methoxyoxazole (0.84 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the
above general procedure to give 1.72 g of a yellow oil. Preparative chromatography on silica gel yielded 0.76 g of the \textit{exo}-isomer (and 0.4 g of the \textit{endo}-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding \(\alpha\)-amino-\(\beta\)-hydroxy esters (see later).

Yield: 41%

TLC: \(R_f = 0.46\) (ethyl acetate/n-hexane 1:4).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 0.67 \text{ (t, } J = 6.8 \text{ Hz, } 3\text{H, CH}_3\), 0.85 \text{ (d, } J = 6.6 \text{ Hz, } 3\text{H, CH}_3\), 1.44 \text{ (s, } 9\text{H, } 3\text{CH}_3\), 1.31 \text{ (m, } 2\text{H, CH}_2\), 1.47 \text{ (m, } 1\text{H, CH}\), 2.08 \text{ (s, } 3\text{H, CH}_3\), 3.73 \text{ (s, } 3\text{H, OCH}_3\), 7.22-7.38 \text{ (m, } 5\text{H, H}_{\text{arom}}\).

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 11.7 \text{ (q, CH}_3\), 12.1 \text{ (q, CH}_3\), 13.8 \text{ (q, CH}_3\), 14.2 \text{ (q, CH}_3\), 23.4 \text{ (d, CH}_3\), 27.8 \text{ (q, } 3\text{CH}_3\), 34.4 \text{ (t, CH}_2\), 51.7 \text{ (q, OCH}_3\), 82.9 \text{ (t, OCH}_2\), 86.0 \text{ (s, C-1)}, 92.5 \text{ (s, C-7)}, 123.9 \text{ (s, C-5)}, 126.9 \text{ (d, CH}_{\text{arom}}\), 127.4 \text{ (d, CH}_{\text{arom}}\), 128.8 \text{ (d, CH}_{\text{arom}}\), 135.6 \text{ (s, Cq}_{\text{arom}}\), 164.9 \text{ (s, C-3)}, 168.5 \text{ (s, COO)}\).

\textit{endo-1-sec-Butyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid tert-butyl ester (\textit{endo-62f}) (sbo-586b)}

Yield: 21%

TLC: \(R_f = 0.49\) (ethyl acetate/n-hexane 1:4).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 0.78 \text{ (d, } J = 6.8 \text{ Hz, } 3\text{H, CH}_3\), 0.86 \text{ (t, } J = 7.5 \text{ Hz, } 3\text{H, CH}_3\), 1.28 \text{ (m, } 2\text{H, CH}_2\), 1.44 \text{ (s, } 9\text{H, } 3\text{CH}_3\), 1.69 \text{ (s, } 3\text{H, CH}_3\), 1.98 \text{ (m, } 1\text{H, CH}\), 3.64 \text{ (s, } 3\text{H, OCH}_3\), 7.17-7.45 \text{ (m, } 5\text{H, H}_{\text{arom}}\).

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 11.3 \text{ (q, CH}_3\), 12.0 \text{ (q, CH}_3\), 12.9 \text{ (q, CH}_3\), 14.8 \text{ (q, CH}_3\), 23.4 \text{ (d, CH}_3\), 27.8 \text{ (q, } 3\text{CH}_3\), 32.8 \text{ (t, CH}_2\), 51.6 \text{ (q, OCH}_3\), 82.9 \text{ (s, Cq)}, 86.2 \text{ (s, C-1)}, 92.7 \text{ (s, C-7)}, 123.3 \text{ (s, C-5)}, 126.7 \text{ (d, CH}_{\text{arom}}\), 127.6 \text{ (d, CH}_{\text{arom}}\), 128.9 \text{ (d, CH}_{\text{arom}}\), 134.6 \text{ (s, Cq}_{\text{arom}}\), 165.4 \text{ (s, C-3)}, 167.2 \text{ (s, COO)}\).

\textit{Photolyses of menthyl phenylglyoxylate with 5-methoxyoxazoles 36a-f:}
A solution of menthyl phenylglyoxylate (1.44 g, 5 mmol) and 2,4-dimethyl-5-methoxyoxazole (0.64 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.87 g of a yellow oil. Preparative chromatography on silica gel yielded 0.95 g of the \textit{exo}-isomer (and 0.45 g of the \textit{endo}-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding \(\alpha\)-amino-\(\beta\)-hydroxy esters (see later).

\textbf{Yield:} 46 %

\textbf{TLC:} \(R_f = 0.36\) (ethyl acetate/n-hexane 1:4).

\textbf{\(^1H\)-NMR:} (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 0.65 \ (d, \ J = 6.9 \ Hz, \ 3H, \ CH_3), \ 0.81 \ (d, \ J = 7.1 \ Hz, \ 3H, \ CH_3), \ 0.82 \ (d, \ J = 6.5 \ Hz, \ 3H, \ CH_3), \ 1.04 \ (s, \ 3H, \ CH_3), \ 1.45 \ (m, \ 3H), \ 1.63 \ (m, \ 3H), \ 1.85 \ (m, \ 1H, \ CH), \ 1.99 \ (m, \ 1H), \ 2.05 \ (s, \ 3H, \ CH_3), \ 3.63 \ (s, \ 3H, \ OCH_3), \ 4.74 \ (ddd, \ J = 11.0, \ 4.4, \ 4.6 \ Hz, \ 1H, \ OCH), \ 7.31-7.52 \ (m, \ 5H, \ H_{arom}).\]

\textbf{\(^13C\)-NMR:} (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 15.3 \ (q, \ CH_3), \ 15.4 \ (q, \ CH_3), \ 16.4 \ (q, \ CH_3), \ 21.1 \ (q, \ CH_3), \ 22.3 \ (q, \ CH_3), \ 23.6 \ (t, \ CH_2), \ 26.0 \ (d, \ CH), \ 31.8 \ (d, \ CH), \ 34.6 \ (t, \ CH_2), \ 41.1 \ (t, \ CH_2), \ 47.2 \ (d, \ CH), \ 52.3 \ (q, \ OCH_3), \ 76.6 \ (d, \ OCH), \ 79.4 \ (s, \ C-1), \ 91.9 \ (s, \ C-7), \ 123.7 \ (s, \ C-5), \ 126.6 \ (d, \ CH_{arom}), \ 128.4 \ (d, \ CH_{arom}), \ 135.8 \ (s, \ Cq_{arom}), \ 166.3 \ (s, \ C-3), \ 168.7 \ (s, \ COO).\]

\textbf{HRMS:} (C\(_{24}\)H\(_{33}\)NO\(_5\), M = 415.24 g/mol)

Calcd: \ 415.2425

Found: \ 415.2427

\textit{endo-5-Methoxy-1,3-dimethyl-7-phenyl-4,6-dioxo-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid 2-isopropyl-5-methyl-cyclohexyl ester (\textit{endo-63a})} (sbo-373)
Yield: 22 %

TLC: $R_f = 0.52$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

δ ppm = 0.68 (d, $J = 6.9$ Hz, 3H, CH$_3$), 0.83 (d, $J = 7.2$ Hz, 3H, CH$_3$), 0.84 (d, $J = 6.5$ Hz, 3H, CH$_3$), 1.02 (m, 2H, CH$_2$), 1.23 (m, 1H, CH), 1.37 (m, 2H, CH$_2$), 1.49 (s, 3H, CH$_3$), 1.54 (m, 2H, CH$_2$), 1.67 (m, 2H, CH$_2$), 1.70 (s, 3H, CH$_3$), 3.70 (s, 3H, OCH$_3$), 4.72 (ddd, $J = 11.1$, 4.6, 4.4 Hz, 1H, OCH), 7.32-7.58 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ ppm = 15.2 (q, CH$_3$), 15.4 (q, CH$_3$), 16.5 (q, CH$_3$), 21.2 (q, CH$_3$), 22.5 (q, CH$_3$), 23.7 (t, CH$_2$), 26.2 (d, CH), 31.9 (d, CH), 34.8 (t, CH$_2$), 41.3 (t, CH$_2$), 47.4 (d, CH), 52.5 (q, OCH$_3$), 76.8 (d, OCH), 80.2 (s, C-1), 91.2 (s, C-7), 123.5 (s, C-5), 126.7 (d, CH$_{arom}$), 128.3 (d, CH$_{arom}$), 135.5 (s, C$_q$$_{arom}$), 165.6 (s, C-3), 168.1 (s, COO).

exo-5-Ethyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid 2-isopropyl-5-methyl-cyclohexyl ester (exo-63b) (sbo-374b)

A solution of menthyl phenylglyoxylate (1.44 g, 5 mmol) and 4-ethyl-2-methyl-5-methoxyoxazole (0.71 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.9 g of a yellow oil. Preparative chromatography on silica gel yielded 0.88 g of the exo-isomer (and 0.47 g of the endo-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

Yield: 41 %

TLC: $R_f = 0.36$ (ethyl acetate/n-hexane 1:4).
4. Experimental part

\textbf{H-NMR:} (300 MHz, CDCl$_3$)

\[\delta_{ppm} = 0.63 \text{ (d, J = 6.9 Hz, 3H, CH$_3$)}, 0.73 \text{ (t, J = 7.5 Hz, 3H, CH$_3$)}, 0.78 \text{ (d, J = 7.1 Hz, 3H, CH$_3$)}, 0.89 \text{ (d, J = 6.6 Hz, 3H, CH$_3$)}, 1.03 \text{ (m, 3H)}, 1.27 \text{ (m, 1H)}, 1.50 \text{ (m, 3H)}, 1.57 \text{ (m, 2H, CH$_2$)}, 1.65 \text{ (m, 2H, CH$_2$)}, 1.73 \text{ (s, 3H, CH$_3$)}, 1.93 \text{ (m, 2H, CH$_2$)}, 3.70 \text{ (s, 3H, OCH$_3$)}, 4.75 \text{ (ddd, J = 11.0, 4.4, 4.6 Hz, 1H, OCH), 7.35-7.78 (m, 5H, H$_{arom}$).}

\textbf{C-NMR:} (75.5 MHz, CDCl$_3$)

\[\delta_{ppm} = 7.4 \text{ (q, CH$_3$)}, 14.9 \text{ (q, CH$_3$)}, 15.2 \text{ (q, CH$_3$)}, 16.2 \text{ (q, CH$_3$)}, 20.9 \text{ (q, CH$_3$)}, 21.8 \text{ (d, CH)}, 22.0 \text{ (t, CH$_2$)}, 23.5 \text{ (d, CH)}, 25.7 \text{ (t, CH$_2$)}, 31.5 \text{ (t, CH$_2$)}, 34.7 \text{ (t, CH$_2$)}, 41.0 \text{ (t, CH$_2$)}, 47.0 \text{ (d, CH)}, 51.9 \text{ (q, OCH$_3$)}, 75.9 \text{ (d, OCH)}, 83.0 \text{ (s, C-1)}, 92.3 \text{ (s, C-7)}, 123.7 \text{ (s, C-5)}, 126.6 \text{ (d, CH$_{arom}$)}, 128.4 \text{ (d, CH$_{arom}$)}, 135.8 \text{ (s, C$_{arom}$)}, 166.3 \text{ (s, C-3)}, 168.1 \text{ (s, COO).}

Yield: 22%

TLC: $R_f = 0.58$ (ethyl acetate/n-hexane 1:4).

\textbf{H-NMR:} (300 MHz, CDCl$_3$)

\[\delta_{ppm} = 0.63 \text{ (d, J = 6.9 Hz, 3H, CH$_3$)}, 0.73 \text{ (t, J = 7.5 Hz, 3H, CH$_3$)}, 0.78 \text{ (d, J = 7.1 Hz, 3H, CH$_3$)}, 0.89 \text{ (d, J = 6.6 Hz, 3H, CH$_3$)}, 1.03 \text{ (m, 3H)}, 1.27 \text{ (m, 1H)}, 1.50 \text{ (m, 3H)}, 1.57 \text{ (m, 2H, CH$_2$)}, 1.65 \text{ (m, 2H, CH$_2$)}, 1.73 \text{ (s, 3H, CH$_3$)}, 1.93 \text{ (m, 2H, CH$_2$)}, 3.70 \text{ (s, 3H, OCH$_3$)}, 4.75 \text{ (ddd, J = 11.0, 4.4, 4.6 Hz, 1H, OCH), 7.35-7.78 (m, 5H, H$_{arom}$).}

\textbf{C-NMR:} (75.5 MHz, CDCl$_3$)

\[\delta_{ppm} = 7.4 \text{ (q, CH$_3$)}, 14.9 \text{ (q, CH$_3$)}, 15.2 \text{ (q, CH$_3$)}, 16.2 \text{ (q, CH$_3$)}, 20.9 \text{ (q, CH$_3$)}, 21.8 \text{ (d, CH)}, 22.0 \text{ (t, CH$_2$)}, 23.5 \text{ (d, CH)}, 25.7 \text{ (t, CH$_2$)}, 31.5 \text{ (t, CH$_2$)}, 34.7 \text{ (t, CH$_2$)}, 41.0 \text{ (t, CH$_2$)}, 47.0 \text{ (d, CH)}, 51.9 \text{ (q, OCH$_3$)}, 75.9 \text{ (d, OCH)}, 83.0 \text{ (s, C-1)}, 92.3 \text{ (s, C-7)}, 123.7 \text{ (s, C-5)}, 126.6 \text{ (d, CH$_{arom}$)}, 128.4 \text{ (d, CH$_{arom}$)}, 135.8 \text{ (s, C$_{arom}$)}, 166.3 \text{ (s, C-3)}, 168.1 \text{ (s, COO).}

endo-5-Ethyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid 2-isopropyl-5-methyl-cyclohexyl ester (endo-63b) (sbo-374)

![Image of chemical structure]
4. Experimental part

exo-5-Methoxy-3-methyl-7-phenyl-1-propyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid 2-isopropyl-5-methyl-cyclohexyl ester (*exo*-63c) (sbo-375c)

A solution of menthyl phenylglyoxylate (1.44 g, 5 mmol) and 2-methyl-4-propyl-5-methoxyoxazole (0.75 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.98 g of a yellow oil. Preparative chromatography on silica gel yielded 0.94 g of the *exo*-isomer (and 0.63 g of the *endo*-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

Yield: 43%

TLC: $R_f = 0.37$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

δ ppm = 0.61 (d, J = 6.9 Hz, 3H, CH$_3$), 0.71 (t, J = 7.2 Hz, 3H, CH$_3$), 0.78 (d, J = 7.1 Hz, 3H, CH$_3$), 0.85 (d, J = 6.5 Hz, 3H, CH$_3$), 1.14 (m, 2H, CH$_2$), 1.17 (m, 3H), 1.45 (m, 3H), 1.62 (m, 2H, CH$_2$), 1.68 (m, 2H, CH$_2$), 2.06 (s, 3H, CH$_3$), 3.67 (s, 3H, OCH$_3$), 4.73 (ddd, J = 11.0, 4.4, 4.6 Hz, 1H, OCH), 7.34–7.71 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ ppm = 14.2 (q, CH$_3$), 14.9 (q, CH$_3$), 16.0 (q, CH$_3$), 16.4 (q, CH$_3$), 20.6 (q, CH$_3$), 21.9 (d, CH), 23.3 (t, CH$_2$), 25.6 (d, CH), 30.7 (t, CH$_2$), 31.4 (d, CH), 34.2 (t, CH$_2$), 40.8 (t, CH$_2$), 46.7 (d, CH), 51.7 (q, OCH$_3$), 76.0 (d, OCH), 81.9 (s, C-1), 91.8 (s, C-7), 123.2 (s, C-5), 126.6 (d, CH$_{arom}$), 128.4 (d, CH$_{arom}$), 135.8 (s, C$_{arom}$), 165.4 (s, C-3), 168.4 (s, COO).

HRMS: (C$_{26}$H$_{37}$NO$_5$, M = 443.27 g/mol)

Calcd: 443.2659

Found: 443.2654

endo-5-Methoxy-3-methyl-7-phenyl-1-propyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid 2-isopropyl-5-methyl-cyclohexyl ester (*endo*-63c) (sbo-375):
Yield: 28 %

TLC: \(R_f = 0.61 \) (ethyl acetate/n-hexane 1:4).

\(^1{H}\text{-NMR:} (300 \text{ MHz, CDCl}_3) \)
\[
\delta_{\text{ppm}} = 0.63 \text{ (d, } J = 6.9 \text{ Hz, } 3\text{H, CH}_3), 0.73 \text{ (t, } J = 7.5 \text{ Hz, } 3\text{H, CH}_3), 0.80 \text{ (d, } J = 7.1 \text{ Hz, } 3\text{H, CH}_3), 0.87 \text{ (d, } J = 6.6 \text{ Hz, } 3\text{H, CH}_3), 1.15 \text{ (m, } 2\text{H, CH}_2), 1.18 \text{ (m, } 3\text{H), 1.49 (m, } 3\text{H), 1.65 (m, 2H, CH}_2), 1.68 \text{ (s, 3H, CH}_3), 1.83 \text{ (m, } 2\text{H, CH}_2), 3.74 \text{ (s, 3H, OCH}_3), 4.76 \text{ (ddd, } J = 11.0, 4.4, 4.6 \text{ Hz, 1H, OCH}), 7.35-7.46 \text{ (m, 5H, H}_\text{arom}).
\]

\(^{13}{C}\text{-NMR:} (75.5 \text{ MHz, CDCl}_3) \)
\[
\delta_{\text{ppm}} = 14.3 \text{ (q, CH}_3), 15.0 \text{ (q, CH}_3), 16.2 \text{ (q, CH}_3), 16.7 \text{ (q, CH}_3), 20.9 \text{ (q, CH}_3), 22.0 \text{ (d, CH), 23.5 (t, CH}_2), 25.8 \text{ (d, CH), 30.9 (t, CH}_2), 31.9 \text{ (t, CH}_2), 34.6 \text{ (t, CH}_2), 41.0 \text{ (t, CH}_2), 47.0 \text{ (d, CH), 51.6 (q, OCH}_3), 76.1 \text{ (d, OCH), 82.0 (s, C-1), 92.0 (s, C-7), 123.7 (s, C-5), 126.6 (d, CH}_\text{arom}), 128.4 \text{ (d, CH}_\text{arom}, 135.8 \text{ (s, Cq}_\text{arom), 165.2 (s, C-3), 168.1 (s, COO).}
\]

\textit{exo-1-Isopropyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid 2-isopropyl-5-methyl-cyclohexyl ester (exo-63d) (sbo-379d)}

A solution of menthyl phenylglyoxylate (1.44 g, 5 mmol) and 4-isopropyl-2-methyl-5-methoxyoxazole (0.75 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.95 g of a yellow oil. Preparative chromatography on silica gel yielded 0.98 g of the \textit{exo}-isomer (and 0.53 g of the \textit{endo}-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding \(\alpha \)-amino-\(\beta \)-hydroxy esters (see later).
Yield: 45 %

TLC: \(R_f = 0.38 \) (ethyl acetate/n-hexane 1:4).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 0.64 \text{ (d, } J = 6.9 \text{ Hz, 3H, CH}_3) , 0.68 \text{ (t, } J = 6.8 \text{ Hz, 3H, CH}_3) , 0.76 \text{ (d, } J = 7.1 \text{ Hz, 3H, CH}_3) , 0.85 \text{ (d, } J = 6.5 \text{ Hz, 3H, CH}_3) , 0.88 \text{ (d, } J = 6.6 \text{ Hz, 3H, CH}_3) , 1.03 \text{ (m, 2H, CH}_2) , 1.22 \text{ (m, 1H, CH)} , 1.46 \text{ (m, 2H, CH}_2) , 1.62 \text{ (m, 2H, CH}_2) , 1.69 \text{ (m, 2H, CH}_2) , 1.79 \text{ (m, 2H, CH}_2) , 2.07 \text{ (s, 3H, CH}_3) , 3.79 \text{ (s, 3H, OCH}_3) , 4.86 \text{ (ddd, } J = 11.0, 4.4, 4.6 \text{ Hz, 1H, OCH}) , 7.34-7.61 \text{ (m, 5H, H}_\text{arom}) . \]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 14.8 \text{ (q, CH}_3) , 15.8 \text{ (q, CH}_3) , 16.0 \text{ (q, CH}_3) , 16.5 \text{ (q, CH}_3) , 20.6 \text{ (q, CH}_3) , 21.9 \text{ (d, CH)} , 23.0 \text{ (d, CH)} , 25.2 \text{ (t, CH}_2) , 26.0 \text{ (t, CH}_2) , 31.4 \text{ (d, CH)} , 34.1 \text{ (d, CH)} , 40.9 \text{ (t, CH}_2) , 46.6 \text{ (d, CH)} , 51.6 \text{ (q, OCH}_3) , 75.7 \text{ (d, OCH)} , 85.9 \text{ (s, C-1)} , 92.9 \text{ (s, C-7)} , 123.2 \text{ (s, C-5)} , 126.6 \text{ (d, CH}_\text{arom}) , 128.4 \text{ (d, CH}_\text{arom}) , 135.2 \text{ (s, C}_\text{qarom}) , 165.4 \text{ (s, COO)} . \]

\textit{endo-1-Isoproyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid 2-isopropyl-5-methyl-cyclohexyl ester (\textit{endo}-63d)} (sbo-379)

Yield: 24 %

TLC: \(R_f = 0.54 \) (ethyl acetate/n-hexane 1:4).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 0.65 \text{ (d, } J = 6.9 \text{ Hz, 3H, CH}_3) , 0.69 \text{ (t, } J = 6.9 \text{ Hz, 3H, CH}_3) , 0.78 \text{ (d, } J = 7.1 \text{ Hz, 3H, CH}_3) , 0.86 \text{ (d, } J = 6.5 \text{ Hz, 3H, CH}_3) , 0.90 \text{ (d, } J = 6.7 \text{ Hz, 3H, CH}_2) , 1.05 \text{ (m, 3H)} , 1.23 \text{ (m, 1H)} , 1.48 \text{ (m, 2H, CH}_2) , 1.64 \text{ (m, 2H, CH}_2) , 1.70 \text{ (s, 3H, CH}_3) , 1.75 \text{ (m, 2H, CH}_2) , 1.85 \text{ (m, 2H, CH}_2) , 3.74 \text{ (s, 3H, OCH}_3) , 4.78 \text{ (ddd, } J = 11.0, 4.4, 4.6 \text{ Hz, 1H, OCH}) , 7.35-7.61 \text{ (m, 5H, H}_\text{arom}) . \]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 14.6 \text{ (q, CH}_3) , 15.8 \text{ (q, CH}_3) , 16.2 \text{ (q, CH}_3) , 16.7 \text{ (q, CH}_3) , 21.7 \text{ (q, CH}_3) , 22.0 \text{ (d, CH)} , 22.6 \text{ (t, CH}_2) , 23.1 \text{ (d, CH)} , 26.1 \text{ (t, CH}_2) , 31.4 \text{ (t, CH}_2) , 35.5 \text{ (t, CH}_2) , \]
4. Experimental part

40.4 (t, CH₂), 47.0 (d, CH), 51.7 (q, OCH₃), 76.0 (d, OCH), 86.0 (s, C-1), 93.2 (s, C-7), 123.7 (s, C-5), 126.6 (d, CH₆ arom), 128.4 (d, CH₆ arom), 134.2 (s, Cq arom), 164.7 (s, C-3), 168.2 (s, COO).

exo-1-Isobutyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid 2-isopropyl-5-methyl-cyclohexyl ester (exo-63e) (sbo-384c)

A solution of menthyl phenylglyoxylate (1.44 g, 5 mmol) and 4-isobutyl-2-methyl-5-methoxyoxazole (0.84 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 2.0 g of a yellow oil. Preparative chromatography on silica gel yielded 0.95 g of the *exo*-isomer (and 0.48 g of the *endo*-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

Yield: 42 %

TLC: Rₚ = 0.34 (ethyl acetate/n-hexane 1:4).

IR: (Film)

\[\tilde{\nu} (\text{cm}^{-1}) = 2983, 2895, 1745, 1610, 1600, 1550, 1440, 1075, 980, 770. \]

¹H-NMR: (300 MHz, CDCl₃)

\[\delta_{\text{ppm}} = 0.60 (d, J = 6.9 \text{ Hz}, \text{CH}_3), 0.68 (d, J = 6.9 \text{ Hz}, \text{CH}_3), 0.74 (d, J = 7.1 \text{ Hz}, \text{CH}_3), 0.78 (d, J = 6.6 \text{ Hz}, \text{CH}_3), 0.83 (d, J = 7.2 \text{ Hz}, \text{CH}_3), 0.95 (m, 2H, CH₂), 1.00 (m, 1H, CH), 1.12 (m, 2H, CH₂), 1.24 (m, 2H, CH₂), 1.43 (m, 2H, CH₂), 1.53 (m, 2H, CH₂), 1.67 (m, 1H, CH), 1.83 (m, 2H, CH₂), 2.04 (s, 3H, CH₃), 3.67 (s, 3H, OCH₃), 4.76 (ddd, J = 11.0, 4.4, 4.6 Hz, 1H, OCH), 7.26-7.49 (m, 5H, H₆ arom).

¹³C-NMR: (75.5 MHz, CDCl₃)

\[\delta_{\text{ppm}} = 14.8 (q, \text{CH}_3), 16.0 (q, \text{CH}_3), 16.1 (q, \text{CH}_3), 20.6 (q, \text{CH}_3), 21.9 (q, \text{CH}_3), 22.3 (d, \text{CH}), 23.0 (d, \text{CH}), 23.2 (t, \text{CH}_2), 23.6 (d, \text{CH}), 24.1 (t, \text{CH}_2), 34.1 (d, \text{CH}), 40.8 (t, \text{CH}_2), 46.7 (d, \text{CH}), 51.7 (q, OCH₃), 75.9 (d, OCH), 81.9 (s, C-1), 91.9 (s,
4. Experimental part

\[(\text{endo})-1-\text{Isobutyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid 2-isopropyl-5-methyl-cyclohexyl ester (endo-63e)}\] (sbo-384)

Yield: 21 %

TLC: \(R_f = 0.58\) (ethyl acetate/n-hexane 1:4).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 0.62\ (d, J = 6.9\ Hz, 3H, CH\(_3\)), 0.70\ (d, J = 6.9\ Hz, 3H, CH\(_3\)), 0.75\ (d, J = 6.9\ Hz, 3H, CH\(_3\)), 0.79\ (d, J = 6.6\ Hz, 3H, CH\(_3\)), 0.85\ (d, J = 7.2\ Hz, 3H, CH\(_3\)), 0.97\ (m, 2H,CH\(_2\)), 1.12\ (m, 2H), 1.17\ (m, 1H), 1.45\ (m, 2H, CH\(_2\)), 1.55\ (m, 2H, CH\(_2\)), 1.70\ (s, 3H, CH\(_3\)), 1.87\ (m, 2H, CH\(_2\)), 3.74\ (s, 3H, OCH\(_3\)), 4.75\ (ddd, J = 11.0, 4.4, 4.6\ Hz, 1H, OCH), 7.27-7.45\ (m, 5H, H\(_{\text{arom}}\)).

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 14.9\ (q, CH\(_3\)), 15.9\ (q, CH\(_3\)), 16.5\ (q, CH\(_3\)), 21.0\ (q, CH\(_3\)), 21.7\ (q, CH\(_3\)), 23.1\ (q, CH\(_3\)), 23.8\ (d, CH), 24.1\ (t, CH\(_2\)), 32.5\ (t, CH\(_2\)), 37.2\ (t, CH\(_2\)), 40.1\ (t, CH\(_2\)), 47.1\ (d, CH), 52.7\ (q, OCH\(_3\)), 76.1\ (d, OCH), 84.1\ (s, C-1), 92.8\ (s, C-7), 123.7\ (s, C-5), 126.6\ (d, CH\(_{\text{arom}}\)), 128.4\ (d, CH\(_{\text{arom}}\)), 134.7\ (s, CQ\(_{\text{arom}}\)), 165.1\ (s, C-3), 168.1\ (s, COO).

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 14.9\ (q, CH\(_3\)), 15.9\ (q, CH\(_3\)), 16.5\ (q, CH\(_3\)), 21.0\ (q, CH\(_3\)), 21.7\ (q, CH\(_3\)), 23.1\ (q, CH\(_3\)), 23.8\ (d, CH), 24.1\ (t, CH\(_2\)), 32.5\ (t, CH\(_2\)), 37.2\ (t, CH\(_2\)), 40.1\ (t, CH\(_2\)), 47.1\ (d, CH), 52.7\ (q, OCH\(_3\)), 76.1\ (d, OCH), 84.1\ (s, C-1), 92.8\ (s, C-7), 123.7\ (s, C-5), 126.6\ (d, CH\(_{\text{arom}}\)), 128.4\ (d, CH\(_{\text{arom}}\)), 134.7\ (s, CQ\(_{\text{arom}}\)), 165.1\ (s, C-3), 168.1\ (s, COO).

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 14.9\ (q, CH\(_3\)), 15.9\ (q, CH\(_3\)), 16.5\ (q, CH\(_3\)), 21.0\ (q, CH\(_3\)), 21.7\ (q, CH\(_3\)), 23.1\ (q, CH\(_3\)), 23.8\ (d, CH), 24.1\ (t, CH\(_2\)), 32.5\ (t, CH\(_2\)), 37.2\ (t, CH\(_2\)), 40.1\ (t, CH\(_2\)), 47.1\ (d, CH), 52.7\ (q, OCH\(_3\)), 76.1\ (d, OCH), 84.1\ (s, C-1), 92.8\ (s, C-7), 123.7\ (s, C-5), 126.6\ (d, CH\(_{\text{arom}}\)), 128.4\ (d, CH\(_{\text{arom}}\)), 134.7\ (s, CQ\(_{\text{arom}}\)), 165.1\ (s, C-3), 168.1\ (s, COO).
A solution of menthyl phenylglyoxylate (1.44 g, 5 mmol) and 4-sec-butyl-2-methyl-5-methoxyoxazole (0.84 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.98 g of a yellow oil. Preparative chromatography on silica gel yielded 0.9 g of the exo-isomer (and 0.5 g of the endo-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

Yield: 39 %

TLC: $R_f = 0.35$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

\[
\delta_{ppm} = 0.65 \text{ (d, J = 6.9 Hz, 3H, CH$_3$)}, 0.70 \text{ (d, J = 7.2 Hz, 3H, CH$_3$)}, 0.76 \text{ (d, J = 7.1 Hz, 3H, CH$_3$)}, 0.87 \text{ (d, J = 6.5 Hz, 3H, CH$_3$)}, 0.90 \text{ (d, J = 7.2 Hz, 3H, CH$_3$)}, 0.97 \text{ (m, 1H, CH)}, 1.10 \text{ (m, 2H, CH$_2$)}, 1.38 \text{ (m, 2H, CH$_2$)}, 1.40 \text{ (m, 2H, CH$_2$)}, 1.43 \text{ (m, 1H, CH)}, 1.47 \text{ (m, 2H, CH$_2$)}, 1.64 \text{ (m, 1H, CH)}, 2.05 \text{ (s, 3H, CH$_3$)}, 3.73 \text{ (s, 3H, OCH$_3$)}, 4.87 \text{ (ddd, J = 11.0, 4.4, 4.5 Hz, 1H, OCH)}, 7.35-7.79 \text{ (m, 5H, H$_{arom}$)}.
\]

13C-NMR: (75.5 MHz, CDCl$_3$)

\[
\delta_{ppm} = 11.2 \text{ (q, CH$_3$)}, 12.1 \text{ (q, CH$_3$)}, 14.8 \text{ (q, CH$_3$)}, 15.8 \text{ (q, CH$_3$)}, 20.6 \text{ (q, CH$_3$)}, 22.0 \text{ (q, CH$_3$)}, 23.1 \text{ (d, CH)}, 23.3 \text{ (t, CH$_2$)}, 25.3 \text{ (d, CH)}, 31.4 \text{ (t, CH$_2$)}, 32.7 \text{ (d, CH)}, 34.1 \text{ (t, CH$_2$)}, 40.9 \text{ (t, CH$_2$)}, 46.6 \text{ (d, CH)}, 51.7 \text{ (q, OCH$_3$)}, 75.7 \text{ (d, OCH)}, 86.5 \text{ (s, C-1)}, 93.1 \text{ (s, C-7)}, 123.3 \text{ (s, C-5)}, 126.6 \text{ (d, CH$_{arom}$)}, 128.4 \text{ (d, CH$_{arom}$)}, 135.3 \text{ (s, C$_{arom}$)}, 165.1 \text{ (s, C-3)}, 167.8 \text{ (s, COO)}.
\]

HRMS: (C$_{27}$H$_{39}$NO$_5$, M = 457.28 g/mol)

Calcd: 457.2764
Found: 457.2760

endo-1-sec-Butyl-5-methoxy-3-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid 2-isopropyl-5-methyl-cyclohexyl ester (endo-63f) (sbo-385):

Yield: 39 %

TLC: $R_f = 0.35$ (ethyl acetate/n-hexane 1:4).
4. Experimental part

H-NMR: (300 MHz, CDCl₃)

\[\delta_{ppm} = 0.85 \text{ (d, } J = 6.9 \text{ Hz, } 3H, \text{ CH}_3), 0.87 \text{ (d, } J = 7.4 \text{ Hz, } 3H, \text{ CH}_3), 0.90 \text{ (d, } J = 7.1 \text{ Hz, } 3H, \text{ CH}_3), 0.93 \text{ (t, } J = 6.5 \text{ Hz, } 3H, \text{ CH}_3), 0.97 \text{ (d, } J = 7.2 \text{ Hz, } 3H, \text{ CH}_3), 1.00 \text{ (m, } 1H, \text{ CH}), 1.07 \text{ (m, } 2H), 1.18 \text{ (m, } 2H), 1.27 \text{ (m, } 2H, \text{ CH}_2), 1.39 \text{ (m, } 2H, \text{ CH}_2), 1.47 \text{ (m, } 2H, \text{ CH}_2), 1.53 \text{ (m, } 1H, \text{ CH}), 1.67 \text{ (m, } 2H, \text{ CH}_2), 1.70 \text{ (s, } 3H, \text{ CH}_3), 3.75 \text{ (s, } 3H, \text{ OCH}_3), 4.83 \text{ (ddd, } J = 11.0, 4.4, 4.6 \text{ Hz, } 1H, \text{ OCH}), 7.36-7.80 \text{ (m, } 5H, \text{ H}_{arom}). \]

C-NMR: (75.5 MHz, CDCl₃)

\[\delta_{ppm} = 11.3 \text{ (q, } \text{ CH}_3), 12.3 \text{ (q, } \text{ CH}_3), 15.0 \text{ (q, } \text{ CH}_3), 15.9 \text{ (q, } \text{ CH}_3), 20.9 \text{ (q, } \text{ CH}_3), 22.3 \text{ (q, } \text{ CH}_3), 23.2 \text{ (q, } \text{ CH}_3), 23.7 \text{ (t, } \text{ CH}_2), 25.7 \text{ (d, } \text{ CH}), 31.7 \text{ (t, } \text{ CH}_2), 32.9 \text{ (d, } \text{ CH}), 34.3 \text{ (t, } \text{ CH}_2), 41.0 \text{ (t, } \text{ CH}_2), 47.0 \text{ (d, } \text{ CH}), 52.8 \text{ (q, } \text{ OCH}_3), 76.0 \text{ (d, } \text{ OCH}), 85.7 \text{ (s, } \text{ C-1), 92.5 \text{ (s, } \text{ C-7), 123.7 \text{ (s, } \text{ C-5), 126.6 \text{ (d, } \text{ CH}_{arom}), 128.4 \text{ (d, } \text{ CH}_{arom}), 135.7 \text{ (s, } \text{ Cq}_{arom}), 166.1 \text{ (s, } \text{ C-3), 168.2 \text{ (s, } \text{ COO).} \]

Photolyses of α-keto esters with 2-ethyl-4-methyl-5-methoxyoxazole 49a:

exo-3-Ethyl-5-methoxy-1,7-dimethyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (exo-64a) (sbo-442b)

![Chemical Structure](image)

A solution of methyl pyruvate (0.51 g, 5 mmol) and 2-ethyl-4-methyl-5-methoxyoxazole (0.71 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 0.98 g of a yellow oil. Preparative chromatography on silica gel yielded 0.87 g of the oxetane as a colorless oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy ester (see later).

Yield: 70 %

TLC: \(R_f = 0.41 \) (ethyl acetate/n-hexane 1:4).

IR: (Film)

\[\nu \text{ (cm}^{-1}) = 2998, 2895, 1715, 1605, 1440, 1075, 980, 770. \]

H-NMR: (300 MHz, CDCl₃)

\[\delta_{ppm} = 1.01 \text{ (t, } J = 7.5 \text{ Hz, } 3H, \text{ CH}_3), 1.43 \text{ (s, } 3H, \text{ CH}_3), 1.75 \text{ (q, } J = 7.5 \text{ Hz, } 2H, \text{ CH}_2), 1.90 \text{ (s, } 3H, \text{ CH}_3), 3.71 \text{ (s, } 3H, \text{ OCH}_3), 3.76 \text{ (s, } 3H, \text{ OCH}_3). \]

C-NMR: (75.5 MHz, CDCl₃)
4. Experimental part

\[\delta_{ppm} = 7.5 \text{ (q, CH}_3\text{), 17.8 \text{ (q, CH}_3\text{), 22.2 \text{ (q, CH}_3\text{), 31.6 \text{ (t, CH}_2\text{), 52.6 \text{ (q, OCH}_3\text{), 53.1 \text{ (q, OCH}_3\text{), 72.5 \text{ (s, C-1), 87.5 \text{ (s, C-7), 118.7 \text{ (s, C-5), 170.5 \text{ (s, C-3), 175.9 \text{ (s, COO).}}}} \]

HRMS: (C\text{11H}_{17}\text{NO}_5, M = 243.11 \text{ g/mol})

Calcd: 243.1126

Found: 243.1122

exo-7-tert-Butyl-3-ethyl-5-methoxy-1-methyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (exo-64b) (sbo-442b)

A solution of methyl trimethylpyruvate (0.36 g, 5 mmol) and 2-ethyl-4-methyl-5-methoxyoxazole (0.35 g, 2.5 mmol) in benzene (20 mL) was irradiated for 24 h according to the above general procedure to give 0.53 g of a yellow oil. Preparative chromatography on silica gel yielded 0.58 g of the oxetane as a colorless oil. The product was thermally unstable and was subsequently hydrolyzed to give the corresponding \(\alpha\)-amino-\(\beta\)-hydroxy ester (see later).

Yield: 60 %

TLC: \(R_f = 0.41\) (ethyl acetate/n-hexane 1:4).

\(^1\)H-NMR: (300 MHz, CDCl\text{3})

\[\delta_{ppm} = 1.01 \text{ (t, } J = 7.5 \text{ Hz, CH}_3\text{), 1.12 \text{ (s, 9H, 3CH}_3\text{), 1.47 \text{ (s, 3H, CH}_3\text{), 1.75 \text{ (q, } J = 7.5 \text{ Hz, 2H, CH}_2\text{), 3.56 \text{ (s, 3H, OCH}_3\text{), 3.76 \text{ (s, 3H, OCH}_3\text{).}}}} \]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\text{3})

\[\delta_{ppm} = 8.5 \text{ (q, CH}_3\text{), 17.8 \text{ (q, CH}_3\text{), 27.9 \text{ (q, 3CH}_3\text{), 31.4 \text{ (t, CH}_2\text{), 51.6 \text{ (q, OCH}_3\text{), 52.6 \text{ (q, OCH}_3\text{), 78.5 \text{ (s, C-1), 97.5 \text{ (s, C-7), 120.7 \text{ (s, C-5), 170.5 \text{ (s, C-3), 175.9 \text{ (s, COO).}}}}}} \]

exo-3-Ethyl-5-methoxy-1-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (exo-64c) (sbo-441d)

\[\text{H}_3\text{CO}_2\text{C} \quad \text{OCH}_3 \]

\[\text{C}_2\text{H}_5 \quad \text{N} \quad \text{CH}_3 \]

\[\text{PhH} \]

\[\text{OCH}_3 \]
4. Experimental part

A solution of methyl phenylglyoxylate (0.82 g, 5 mmol) and 2-ethyl-4-methyl-5-methoxyoxazole (0.71 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.39 g of a yellow oil. Preparative chromatography on silica gel yielded 0.72 g of the \textit{exo}-isomer (and 0.38 g of the \textit{endo}-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding \(\alpha\)-amino-\(\beta\)-hydroxy esters (see later).

Yield: 47 \%

TLC: \(R_f = 0.43\) (ethyl acetate/n-hexane 1:4).

\(^1H\)-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 1.05 \ (s, \ 3H, \ CH_3), \ 1.29 \ (t, \ J = 7.4 \ Hz, \ 3H, \ CH_3), \ 2.60 \ (q, \ J = 7.4 \ Hz, \ 2H, CH_2), \ 3.03 \ (s, \ 3H, \ OCH_3), \ 3.45 \ (s, \ 3H, \ OCH_3), \ 7.31-7.59 \ (m, \ 5H, \ H_{arom}).\]

\(^{13}C\)-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 8.2 \ (q, \ CH_3), \ 17.3 \ (q, \ CH_3), \ 31.8 \ (t, \ CH_2), \ 52.2 \ (q, \ OCH_3), \ 52.3 \ (q, \ OCH_3), \ 74.8 \ (s, \ C-1), \ 80.4 \ (s, \ C-7), \ 121.3 \ (s, \ C-5), \ 126.3 \ (d, \ CH_{arom}), \ 128.2 \ (d, \ CH_{arom}), \ 134.7 \ (s, \ C_{q-arom}), \ 168.9 \ (s, \ C-3), \ 173.1 \ (s, \ COO).\]

HRMS: \((C_{16}H_{19}NO_5, M = 305.13 \ g/mol)\)

Calcd: 305.1258

Found: 305.1254

\textit{endo}-3-Ethyl-5-methoxy-1-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (\textit{endo}-64c) (sbo-441d)

Yield: 24 \%

TLC: \(R_f = 0.51\) (ethyl acetate/n-hexane 1:4).

\(^1H\)-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 1.14 \ (t, \ J = 7.4 \ Hz, \ 3H, \ CH_3), \ 2.11 \ (s, \ 3H, \ CH_3), \ 2.40 \ (q, \ J = 7.4 \ Hz, \ 2H, CH_2), \ 3.25 \ (s, \ 3H, \ OCH_3), \ 3.78 \ (s, \ 3H, \ OCH_3), \ 7.32-7.60 \ (m, \ 5H, \ H_{arom}).\]

\(^{13}C\)-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 7.99 \ (q, \ CH_3), \ 16.9 \ (q, \ CH_3), \ 33.6 \ (t, \ CH_2), \ 52.7 \ (q, \ OCH_3), \ 53.2 \ (q, \ OCH_3), \ 75.7 \ (s, \ C-1), \ 91.6 \ (s, \ C-7), \ 123.4 \ (s, \ C-5), \ 126.4 \ (d, \ CH_{arom}), \ 127.7 \ (d, \ CH_{arom}), \ 134.6 \ (s, \ C_{q-arom}), \ 169.7 \ (s, \ C-3), \ 174.8 \ (s, \ COO).\]
4. Experimental part

exo-3-Ethyl-5-methoxy-1-methyl-7-phenyl-4,6-dioxo-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid ethyl ester (exo-64d) (sbo-465)

![diagram]

A solution of ethyl phenylglyoxylate (0.89 g, 5 mmol) and 2-ethyl-4-methyl-5-methoxyoxazole (0.71 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.42 g of a yellow oil. Preparative chromatography on silica gel yielded 0.70 g of the *exo*-isomer (and 0.35 g of the *endo*-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

Yield: 43 %

TLC: $R_f = 0.43$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

\[
\delta_{ppm} = 1.05 \ (s, \ 3H, \ CH_3), \ 1.26 \ (t, \ J = 7.4 \ Hz, \ 3H, \ CH_3), \ 1.27 \ (t, \ J = 7.5 \ Hz, \ 3H, \ CH_3), \ 2.53 \ (q, \ J = 7.5 \ Hz, \ 2H, \ CH_2), \ 3.60 \ (s, \ 3H, \ OCH_3), \ 4.16 \ (q, \ J = 7.5 \ Hz, \ 2H, \ OCH_2), \ 7.28-7.63 \ (m, \ 5H, \ H_{arom}).
\]

13C-NMR: (75.5 MHz, CDCl$_3$)

\[
\delta_{ppm} = 9.5 \ (q, \ CH_3), \ 9.9 \ (q, \ CH_3), \ 13.6 \ (q, \ CH_3), \ 21.4 \ (t, \ CH_2), \ 52.3 \ (q, \ OCH_3), \ 61.6 \ (t, \ OCH_2), \ 78.4 \ (s, \ C-1), \ 90.2 \ (s, \ C-7), \ 123.0 \ (s, \ C-5), \ 126.3 \ (d, \ CH_{arom}), \ 128.2 \ (d, \ CH_{arom}), \ 134.5 \ (s, \ Cq_{arom}), \ 169.6 \ (s, \ C-3), \ 170.4 \ (s, \ COO).
\]

endo-3-Ethyl-5-methoxy-1-methyl-7-phenyl-4,6-dioxo-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid ethyl ester (endo-64c) (sbo-465)

![diagram]

Yield: 22 %

TLC: $R_f = 0.57$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

\[
\delta_{ppm} = 0.68 \ (t, \ J = 7.5 \ Hz, \ 3H, \ CH_3), \ 1.23 \ (t, \ J = 7.5 \ Hz, \ 3H, \ CH_3), \ 1.54 \ (s, \ 3H, \ CH_3), \ 2.36 \ (q, \ J = 7.5 \ Hz, \ 2H, \ CH_2), \ 3.62 \ (s, \ 3H, \ OCH_3), \ 4.21 \ (q, \ J = 7.5 \ Hz, \ 2H, \ OCH_2), \ 7.26-7.53 \ (m, \ 5H, \ H_{arom}).
\]
4. Experimental part

13C-NMR: (75.5 MHz, CDCl$_3$)
\[\delta = 9.3 \text{ (q, CH}_3\text{)}, 9.6 \text{ (q, CH}_3\text{)}, 13.7 \text{ (q, CH}_3\text{)}, 22.0 \text{ (t, CH}_2\text{)}, 51.6 \text{ (q, OCH}_3\text{)}, 61.7 \text{ (t, OCH}_2\text{)}, 80.2 \text{ (s, C-1)}, 92.1 \text{ (s, C-7)}, 123.4 \text{ (s, C-5)}, 126.4 \text{ (d, CH)}, 127.7 \text{ (d, CH)}, 135.6 \text{ (s, Cq)}, 168.4 \text{ (s, C-3)}, 170.1 \text{ (s, COO)}.\]

1H-NMR: (300 MHz, CDCl$_3$)
\[\delta_{ppm} = 1.05 \text{ (s, 3H, CH}_3\text{)}, 1.12 \text{ (t, J=7.5 Hz, 3H, CH}_3\text{)}, 1.17 \text{ (t, J=6.3 Hz, 3H, CH}_3\text{)}, \\
1.19 \text{ (d, J=6.3 Hz, 3H, CH}_3\text{)}, 2.13 \text{ (q, J=7.5 Hz, 2H, CH}_2\text{)}, 3.65 \text{ (s, 3H, OCH}_3\text{)}, 5.12 \\
\text{(septet, J= 6.3 Hz, 1H, OCH)}, 7.28-7.63 \text{ (m, 5H, H}_\text{arom}\text{)}.\]

13C-NMR: (75.5 MHz, CDCl$_3$)
\[\delta_{ppm} = 9.8 \text{ (q, CH}_3\text{)}, 15.9 \text{ (q, CH}_3\text{)}, 21.7 \text{ (q, CH}_3\text{)}, 21.8 \text{ (q, CH}_3\text{)}, 21.9 \text{ (t, CH}_2\text{)}, 52.3 \\
\text{(q, OCH}_3\text{)}, 70.1 \text{ (d, OCH)}, 79.2 \text{ (s, C-1)}, 91.2 \text{ (s, C-7)}, 123.5 \text{ (s, C-5)}, 126.4 \text{ (d, CH}_\text{arom}\text{)}, 128.2 \text{ (d, CH}_\text{arom}\text{)}, 134.8 \text{ (s, Cq}_\text{arom}\text{)}, 168.1 \text{ (s, C-3)}, 169.8 \text{ (s, COO)}.\]

$\text{exo-3-Ethyl-5-methoxy-1-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid isopropyl ester (exo-64e) (sbo-463)}$

A solution of isopropyl phenylglyoxylate (0.96 g, 5 mmol) and 2-ethyl-4-methyl-5-methoxyoxazole (0.71 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.52 g of a yellow oil. Preparative chromatography on silica gel yielded 0.73 g of the exo-isomer (and 0.41 g of the endo-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

Yield: 43 %

TLC: $R_f = 0.44$ (ethyl acetate/n-hexane 1:4).

$\text{endo-3-Ethyl-5-methoxy-1-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid isopropyl ester (endo-64e) (sbo-463a)}$

Yield: 24 %
4. Experimental part

TLC: \(R_f = 0.55\) (ethyl acetate/n-hexane 1:4).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 0.71 \text{ (t, } J = 7.5 \text{ Hz, } 3 \text{H, CH}_3), 1.22 \text{ (d, } J = 6.2 \text{ Hz, } 3 \text{H, CH}_3), 1.26 \text{ (d, } J = 6.2 \text{ Hz, } 3 \text{H, CH}_3), 1.53 \text{ (s, } 3 \text{H, CH}_3), 2.26 \text{ (q, } J = 7.5 \text{ Hz, } 2 \text{H, CH}_2), 3.66 \text{ (s, } 3 \text{H, OCH}_3), 5.07 \text{ (septet, } J = 6.2 \text{ Hz, } 1 \text{H, OCH}), 7.26-7.54 \text{ (m, } 5 \text{H, H}_{arom}).\]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 9.7 \text{ (q, CH}_3\), 15.7 \text{ (q, CH}_3\), 21.6 \text{ (q, CH}_3\), 21.7 \text{ (t, CH}_2\), 21.9 \text{ (q, CH}_3\), 52.1 \text{ (q, OCH}_3\), 69.9 \text{ (d, OCH), 78.1 \text{ (s, C-1), 90.3 \text{ (s, C-7), 123.6 \text{ (s, C-5), 126.7 \text{ (d, CH}_{arom}\), 127.4 \text{ (d, CH}_{arom}\), 135.1 \text{ (s, C}_{qarom}\), 168.6 \text{ (s, C-3), 169.6 \text{ (s, COO).}}\]

exo-3-Ethyl-5-methoxy-1-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid tert-butyl ester (exo-64f) (sbo-450c)

A solution of tert-butyl phenylglyoxylate (1.0 g, 5 mmol) and 2-ethyl-4-methyl-5-methoxyoxazole (0.71 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.60 g of a yellow oil. Preparative chromatography on silica gel yielded 0.74 g of the *exo*-isomer (and 0.36 g of the *endo*-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

Yield: 42 %

TLC: \(R_f = 0.41\) (ethyl acetate/n-hexane 1:4).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 1.06 \text{ (s, } 3 \text{H, CH}_3\), 1.28 \text{ (s, } 9 \text{H, 3CH}_3\), 1.32 \text{ (q, } J = 7.5 \text{ Hz, } 3 \text{H, CH}_3\), 2.52 \text{ (q, } J = 7.5 \text{ Hz, } 2 \text{H, CH}_2\), 3.62 \text{ (s, } 3 \text{H, OCH}_3\), 2.13 \text{ (q, } J = 7.5 \text{ Hz, } 2 \text{H, CH}_2\), 3.62 \text{ (s, } 3 \text{H, OCH}_3\), 7.26-7.54 \text{ (m, } 5 \text{H, H}_{arom}).\]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 9.7 \text{ (q, CH}_3\), 15.0 \text{ (q, CH}_3\), 22.4 \text{ (t, CH}_2\), 28.0 \text{ (q, 3CH}_3\), 52.4 \text{ (q, OCH}_3\), 78.4 \text{ (s, C-1), 83.1 \text{ (s, C}_{q}\), 91.1 \text{ (s, C-7), 123.1 \text{ (s, C-5), 125.9 \text{ (d, CH}_{arom}\), 127.2 \text{ (d, CH}_{arom}\), 134.7 \text{ (s, C}_{qarom}\), 170.1 \text{ (s, C-3), 170.3 \text{ (s, COO).}}\]

HRMS: (C\(_{19}\)H\(_{25}\)NO\(_5\), \(M = 347.17 \text{ g/mol})

Calcd: 347.1739

Found: 347.1734
4. Experimental part

endo-3-Ethyl-5-methoxy-1-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid tert-butyl ester (endo-64f) (sbo-450d)

Yield: 21 %

TLC: R_f = 0.53 (ethyl acetate/n-hexane 1:4).

¹H-NMR: (300 MHz, CDCl₃)

\[\delta_{ppm} = 0.69 \text{ (t, J = 7.5 Hz, 3H, CH}_3), 1.44 \text{ (s, 9H, 3CH}_3), 1.54 \text{ (s, 3H, CH}_3), 2.16 \text{ (q, J = 7.5 Hz, 2H, CH}_2), 3.66 \text{ (s, 3H, OCH}_3), 7.29-7.63 \text{ (m, 5H, H}_\text{arom}). \]

¹³C-NMR: (75.5 MHz, CDCl₃)

\[\delta_{ppm} = 9.7 \text{ (q, CH}_3), 15.8 \text{ (q, CH}_3), 21.9 \text{ (t, CH}_2), 27.9 \text{ (q, 3CH}_3), 52.0 \text{ (q, OCH}_3), 77.9 \text{ (s, C-1), 83.1 \text{ (s, C-1), 90.4 \text{ (s, C-7), 123.5 \text{ (s, C-5), 126.3 \text{ (d, CH}_\text{arom}, 129.2 \text{ (d, CH}_\text{arom}, 135.6 \text{ (s, Cq}_\text{arom), 167.9 \text{ (s, C-3), 169.5 \text{ (s, COO).}} \]

Photolyses of α-keto esters with 2-isopropyl-4-methyl-5-methoxyoxazole 49b:

exo-3-Isopropyl-5-methoxy-1,7-dimethyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (exo-65a) (sbo-460)

A solution of methyl pyruvate (0.51 g, 5 mmol) and 2-isopropyl-4-methyl-5-methoxyoxazole (0.75 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.13 g of a yellow oil. Preparative chromatography on silica gel yielded 0.58 g of the *exo*-isomer (and 0.42 g of the *endo*-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

Yield: 46 %

TLC: R_f = 0.41 (ethyl acetate/n-hexane 1:4).

¹H-NMR: (300 MHz, CDCl₃)

\[\delta_{ppm} = 0.95 \text{ (d, J = 6.9 Hz, 3H, CH}_3), 1.10 \text{ (d, J = 6.7 Hz, 3H, CH}_3), 1.42 \text{ (s, 3H, CH}_3), 1.87 \text{ (septet, J = 6.7 Hz, 1H, CH), 1.91 \text{ (s, 3H, CH}_3), 3.70 \text{ (s, 3H, OCH}_3), 3.75 \text{ (s, 3H, OCH}_3). \]
4. Experimental part

13C-NMR: (75.5 MHz, CDCl$_3$)

δ ppm = 15.6 (q, CH$_3$), 16.3 (q, CH$_3$), 18.6 (q, CH$_3$), 22.5 (q, CH$_3$), 37.8 (d, CH), 52.5 (q, OCH$_3$), 53.0 (q, OCH$_3$), 72.4 (s, C-1), 87.4 (s, C-7), 124.3 (s, C-5), 170.4 (s, COO), 176.2 (s, C-3).

endo-3-Isopropyl-5-methoxy-1,7-dimethyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (endo-65a) (sbo-460a)

Yield: 33 %
TLC: R_f = 0.41 (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

δ ppm = 0.95 (d, J = 6.6 Hz, 3H, CH$_3$), 1.08 (d, J = 6.6 Hz, 3H, CH$_3$), 1.45 (s, 3H, CH$_3$), 1.87 (septet, J = 6.7 Hz, 1H, CH), 1.91 (s, 3H, CH$_3$), 3.70 (s, 3H, OCH$_3$), 3.75 (s, 3H, OCH$_3$).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ ppm = 15.7 (q, CH$_3$), 16.3 (q, CH$_3$), 18.6 (q, CH$_3$), 22.5 (q, CH$_3$), 37.8 (d, CH), 52.5 (q, OCH$_3$), 53.1 (q, OCH$_3$), 72.4 (s, C-1), 87.2 (s, C-7), 120.3 (s, C-5), 170.4 (s, COO), 176.2 (s, C-3).

exo-7-tert-Butyl-3-isopropyl-5-methoxy-1-methyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (exo-65b) (sbo-483b)

A solution of methyl trimethylpyruvate (0.36 g, 2.5 mmol) and 2-isopropyl-4-methyl-5-methoxyoxazole (0.38 g, 2.5 mmol) in benzene (20 mL) was irradiated for 24 h according to the above general procedure to give 0.71 g of a yellow oil. Preparative chromatography on silica gel yielded 0.34 g of the exo-isomer (and 0.21 g of the endo-isomer) as a colorless oil.

Yield: 46 %
TLC: R_f = 0.43 (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)
4. Experimental part

\[\delta_{ppm} = 1.12 \text{ (s, 9H, 3CH}_3\text{)}, 1.16 \text{ (d, } J = 6.2 \text{ Hz, 6H, 2CH}_3\text{)}, 1.51 \text{ (s, 3H, CH}_3\text{)}, 2.53 \text{ (septet, } J = 6.2 \text{ Hz, 1H, CH)}, 3.57 \text{ (s, 3H, OCH}_3\text{)}, 3.73 \text{ (s, 3H, OCH}_3\text{)}.\]

\[^{13}\text{C-NMR: (75.5 MHz, CDCl}_3\text{)} \]

\[\delta_{ppm} = 15.7 \text{ (q, CH}_3\text{), 19.2 \text{ (q, CH}_3\text{), 19.3 \text{ (q, CH}_3\text{), 26.3 \text{ (q, 3CH}_3\text{), 28.6 \text{ (d, CH), 37.0 \text{ (s, Cq), 51.4 \text{ (q, OCH}_3\text{), 51.6 \text{ (q, OCH}_3\text{), 76.7 \text{ (s, C-1), 97.3 \text{ (s, C-7), 122.6 \text{ (s, C-5), 170.7 \text{ (s, COO), 172.3 \text{ (s, C-3).}}} \]

HRMS: (C\textsubscript{15}H\textsubscript{25}NO\textsubscript{5}, M = 299.17 g/mol)

Calcd: 299.1685

Found: 299.1681

endo-7-tert-Butyl-3-isopropyl-5-methoxy-1-methyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (endo-65b) (sbo-483)

\[\text{Yield: 28 %} \]

TLC: \(R_f = 0.38 \) (ethyl acetate/n-hexane 1:4).

\[^{1}\text{H-NMR: (300 MHz, CDCl}_3\text{)} \]

\[\delta_{ppm} = 1.05 \text{ (s, 9H, 3CH}_3\text{), 1.18 \text{ (d, } J = 6.3 \text{ Hz, 6H, 2CH}_3\text{), 1.45 \text{ (s, 3H, CH}_3\text{), 1.87 \text{ (septet, } J = 6.3 \text{ Hz, 1H, CH)}, 3.56 \text{ (s, 3H, OCH}_3\text{)}, 3.75 \text{ (s, 3H, OCH}_3\text{)}.\]

\[^{13}\text{C-NMR: (75.5 MHz, CDCl}_3\text{)} \]

\[\delta_{ppm} = 15.7 \text{ (q, CH}_3\text{), 19.3 \text{ (q, CH}_3\text{), 19.6 \text{ (q, CH}_3\text{), 26.5 \text{ (q, 3CH}_3\text{), 27.8 \text{ (d, CH), 38.1 \text{ (s, Cq), 51.5 \text{ (q, OCH}_3\text{), 52.1 \text{ (q, OCH}_3\text{), 75.4 \text{ (s, C-1), 97.2 \text{ (s, C-7), 123.3 \text{ (s, C-5), 170.7 \text{ (s, COO), 179.2 \text{ (s, C-3).}}} \]

exo-3-Isopropyl-5-methoxy-1-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (exo-65c) (sbo-458)

A solution of methyl phenylglyoxylate (0.82 g, 5 mmol) and 2-isopropyl-4-methyl-5-methoxyoxazole (0.75 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.43 g of a yellow oil. Preparative chromatography on silica
gel yielded 0.76 g of the *exo*-isomer (and 0.39 g of the *endo*-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

Yield: 47%

TLC: $R_f = 0.47$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

$$\delta_{ppm} = 1.23 \text{ (d, } J = 6.8 \text{ Hz, } 3\text{H, CH}_3), 1.27 \text{ (d, } J = 6.8 \text{ Hz, } 3\text{H, CH}_3), 1.54 \text{ (s, } 3\text{H, CH}_3), 1.79 \text{ (septet, } J = 6.8 \text{ Hz, } 1\text{H, CH}), 3.54 \text{ (s, } 3\text{H, OCH}_3), 3.64 \text{ (s, } 3\text{H, OCH}_3), 7.35-7.54 \text{ (m, } 5\text{H, H}_\text{arom}).$$

13C-NMR: (75.5 MHz, CDCl$_3$)

$$\delta_{ppm} = 16.2 \text{ (q, CH}_3), 17.9 \text{ (q, CH}_3), 18.6 \text{ (q, CH}_3), 37.5 \text{ (d, CH), 52.3 \text{ (q, OCH}_3), 52.7 \text{ (q, OCH}_3), 78.2 \text{ (s, C-1), 90.2 \text{ (s, C-7), 123.7 \text{ (s, C-5), 126.3 \text{ (d, CH}_\text{arom), 128.2 \text{ (d, CH}_\text{arom), 135.1 \text{ (s, C}_\text{qarom), 170.1 \text{ (s, C-3), 172.1 \text{ (s, COO).}})\)}$$

endo-3-Isopropyl-5-methoxy-1-methyl-7-phenyl-4,6-dioxo-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (endo-65c) (sbo-458d)

Yield: 25%

TLC: $R_f = 0.37$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

$$\delta_{ppm} = 1.19 \text{ (d, } J=6.8 \text{ Hz, } 3\text{H, CH}_3), 1.43 \text{ (d, } J = 6.8 \text{ Hz, } 3\text{H, CH}_3), 1.96 \text{ (s, } 3\text{H, CH}_3), 2.84 \text{ (septet, } J = 6.8 \text{ Hz, } 1\text{H, CH}), 3.11 \text{ (s, } 3\text{H, OCH}_3), 3.30 \text{ (s, } 3\text{H, OCH}_3), 7.30-7.64 \text{ (m, } 5\text{H, H}_\text{arom}).$$

13C-NMR: (75.5 MHz, CDCl$_3$)

$$\delta_{ppm} = 16.4 \text{ (q, CH}_3), 17.2 \text{ (q, CH}_3), 18.0 \text{ (q, CH}_3), 38.4 \text{ (d, CH), 52.7 \text{ (q, OCH}_3), 53.2 \text{ (q, OCH}_3), 74.5 \text{ (s, C-1), 81.4 \text{ (s, C-7), 123.4 \text{ (s, C-5), 126.4 \text{ (d, CH}_\text{arom), 127.7 \text{ (d, CH}_\text{arom), 134.6 \text{ (s, C}_\text{qarom), 169.1 \text{ (s, C-3), 173.4 \text{ (s, COO).}})\)}$$
4. Experimental part

exo-3-Isopropyl-5-methoxy-1-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid ethyl ester (exo-65d) (sbo-459e)

A solution of ethyl phenylglyoxylate (0.89 g, 5 mmol) and 2-isopropyl-4-methyl-5-methoxyoxazole (0.75 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.46 g of a yellow oil. Preparative chromatography on silica gel yielded 0.67 g of the *exo*-isomer (and 0.33 g of the *endo*-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

Yield: 39 %

TLC: R_f = 0.51 (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

δ ppm = 0.96 (t, J = 7.5 Hz, 3H, CH$_3$), 1.20 (d, J = 6.9 Hz, 3H, CH$_3$), 1.36 (d, J = 6.8 Hz, 3H, CH$_3$), 2.00 (s, 3H, CH$_3$), 2.86 (septet, J = 6.8 Hz, 1H, CH), 3.12 (s, 3H, OCH$_3$), 4.28 (q, J = 7.5 Hz, 2H, OCH$_2$), 7.30-7.63 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ ppm = 13.7 (q, CH$_3$), 16.1 (q, CH$_3$), 17.3 (q, CH$_3$), 17.4 (q, CH$_3$), 38.4 (d, CH), 52.2 (q, OCH$_3$), 62.4 (t, OCH$_2$), 74.5 (s, C-1), 81.7 (s, C-7), 123.2 (s, C-5), 126.3 (d, CH$_{arom}$), 128.2 (d, CH$_{arom}$), 134.5 (s, C$_{arom}$), 168.7 (s, C-3), 169.2 (s, COO).

HRMS: (C$_{18}$H$_{23}$NO$_5$, M = 333.16 g/mol)

Calcd: 333.1587

Found: 333.1581

endo-3-Isopropyl-5-methoxy-1-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid ethyl ester (endo-65d) (sbo-459)

Yield: 19 %

TLC: R_f = 0.36 (ethyl acetate/n-hexane 1:4).

IR: (Film)
4. Experimental part

\[\tilde{\nu} \text{ (cm}^{-1}\text{)} = 2988, 2892, 1755, 1600, 1550, 1440, 1075, 980, 770. \]

\textbf{1H-NMR:} (300 MHz, CDCl\textsubscript{3})

\[\delta_{\text{ppm}} = 0.78 \text{ (d, J = 6.8 Hz, 3H, CH\textsubscript{3})}, 0.98 \text{ (d, J = 6.9 Hz, 3H, CH\textsubscript{3})}, 1.23 \text{ (t, J = 7.5 Hz, 3H, CH\textsubscript{3})}, 1.69 \text{ (s, 3H, CH\textsubscript{3})}, 2.24 \text{ (septet, J = 6.8 Hz, 1H, CH\textsubscript{3})}, 3.65 \text{ (s, 3H, OCH\textsubscript{3})}, 4.23 \text{ (q, J = 7.5 Hz, 2H, OCH\textsubscript{2})}, 7.32-7.47 \text{ (m, 5H, H\textsubscript{arom})}. \]

\textbf{13C-NMR:} (75.5 MHz, CDCl\textsubscript{3})

\[\delta_{\text{ppm}} = 13.9 \text{ (q, CH\textsubscript{3})}, 17.6 \text{ (q, CH\textsubscript{3})}, 17.8 \text{ (q, CH\textsubscript{3})}, 18.5 \text{ (q, CH\textsubscript{3})}, 36.2 \text{ (d, CH\textsubscript{3})}, 52.7 \text{ (q, OCH\textsubscript{3})}, 62.1 \text{ (t, OCH\textsubscript{3})}, 82.1 \text{ (s, C-1)}, 92.1 \text{ (s, C-7)}, 123.4 \text{ (s, C-5)}, 126.4 \text{ (d, CH\textsubscript{arom})}, 127.7 \text{ (d, CH\textsubscript{arom})}, 135.6 \text{ (s, C\textsubscript{qarom})}, 166.2 \text{ (s, C-3)}, 170.2 \text{ (s, COO)}. \]

\textit{exo-3-Isopropyl-5-methoxy-1-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid isopropyl ester (exo-65e) (sbo-456d)}

A solution of isopropyl phenylglyoxylate (0.96 g, 5 mmol) and 2-isopropyl-4-methyl-5-methoxyoxazole (0.75 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.52 g of a yellow oil. Preparative chromatography on silica gel yielded 0.43 g of the \textit{exo}-isomer (and 0.72 g of the \textit{endo}-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding \(\alpha\)-amino-\(\beta\)-hydroxy esters (see later).

\textbf{Yield:} 25 \%

\textbf{TLC:} \(R_f = 0.49\) (ethyl acetate/n-hexane 1:4).

\textbf{1H-NMR:} (300 MHz, CDCl\textsubscript{3})

\[\delta_{\text{ppm}} = 1.07 \text{ (s, 3H, CH\textsubscript{3})}, 1.20 \text{ (d, J = 6.2 Hz, 3H, CH\textsubscript{3})}, 1.22 \text{ (d, J = 6.2 Hz, 3H, CH\textsubscript{3})}, 1.26 \text{ (d, J = 6.9 Hz, 3H, CH\textsubscript{3})}, 1.32 \text{ (d, J = 6.9 Hz, 3H, CH\textsubscript{3})}, 2.68 \text{ (septet, J = 6.9 Hz, 1H, CH\textsubscript{3})}, 3.62 \text{ (s, 3H, OCH\textsubscript{3})}, 5.07 \text{ (septet, J = 6.2 Hz, 1H, OCH\textsubscript{3})}, 7.25-7.51 \text{ (m, 5H, H\textsubscript{arom})}. \]

\textbf{13C-NMR:} (75.5 MHz, CDCl\textsubscript{3})

\[\delta_{\text{ppm}} = 15.0 \text{ (q, CH\textsubscript{3})}, 18.8 \text{ (q, CH\textsubscript{3})}, 18.9 \text{ (q, CH\textsubscript{3})}, 21.7 \text{ (q, CH\textsubscript{3})}, 21.8 \text{ (q, CH\textsubscript{3})}, 28.8 \text{ (d, CH\textsubscript{3})}, 51.8 \text{ (q, OCH\textsubscript{3})}, 70.0 \text{ (d, OCH\textsubscript{3})}, 78.3 \text{ (s, C-1)}, 90.2 \text{ (s, C-7)}, 123.5 \text{ (s, C-5)}, 126.4 \text{ (d, CH\textsubscript{arom})}, 128.2 \text{ (d, CH\textsubscript{arom})}, 134.8 \text{ (s, C\textsubscript{qarom})}, 168.0 \text{ (s, C-3)}, 173.2 \text{ (s, COO)}. \]
4. Experimental part

endo-3-Isopropyl-5-methoxy-1-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid isopropyl ester (endo-65e) (sbo-456d)

![Structural formula of endo-65e](image)

Yield: 42 %

TLC: $R_f = 0.57$ (ethyl acetate/n-hexane 1:4).

$^1\text{H-NMR}$: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 0.72$ (d, $J = 6.9$ Hz, 3H, CH$_3$), 0.81 (d, $J = 6.9$ Hz, 3H, CH$_3$), 1.20 (d, $J = 6.2$ Hz, 3H, CH$_3$), 1.22 (d, $J = 6.2$ Hz, 3H, CH$_3$), 1.54 (s, 3H, CH$_3$), 2.24 (septet, $J = 6.9$ Hz, 1H, CH), 3.66 (s, 3H, OCH$_3$), 5.02 (septet, $J = 6.2$ Hz, 1H, OCH), 7.32-7.62 (m, 5H, H$_{arom}$).

$^{13}\text{C-NMR}$: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 15.8$ (q, CH$_3$), 19.0 (q, CH$_3$), 19.2 (q, CH$_3$), 21.5 (q, CH$_3$), 21.6 (q, CH$_3$), 28.5 (d, CH), 52.1 (q, OCH$_3$), 69.8 (d, OCH), 77.8 (s, C-1), 91.2 (s, C-7), 123.0 (s, C-5), 126.7 (d, CH$_{arom}$), 127.4 (d, CH$_{arom}$), 135.1 (s, C$_{arom}$), 168.6 (s, C-3), 169.6 (s, COO).

exo-3-Isopropyl-5-methoxy-1-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid tert-butyl ester (exo-65f) (sbo-453d)

![Structural formula of exo-65f](image)

A solution of tert-butyl phenylglyoxylate (1.0 g, 5 mmol) and 2-isopropyl-4-methyl-5-methoxyoxazole (0.75 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.62 g of a yellow oil. Preparative chromatography on silica gel yielded 0.46 g of the exo-isomer (and 0.74 g of the endo-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

Yield: 26 %

TLC: $R_f = 0.52$ (ethyl acetate/n-hexane 1:4).

$^1\text{H-NMR}$: (300 MHz, CDCl$_3$)
4. Experimental part

\[\delta_{ppm} = 1.06 \text{ (s, } 3\text{H, CH}_3\text{), 1.22 \text{ (d, } J = 6.2 \text{ Hz, } 3\text{H, CH}_3\text{), 1.25 \text{ (d, } J = 6.2 \text{ Hz, } 3\text{H, CH}_3\text{), 1.45 \text{ (s, } 9\text{H, } 3\text{CH}_3\text{), 2.58 \text{ (septet, } J = 6.2 \text{ Hz, } 1\text{H, CH}, 3.61 \text{ (s, } 3\text{H, OCH}_3\text{), CH}_2\text{), 7.26-7.66 \text{ (m, } 5\text{H, H}_{arom}\text{).}} \]

\[^{13}\text{C-NMR: (75.5 MHz, CDCl}_3\text{)}\]

\[\delta_{ppm} = 15.9 \text{ (q, CH}_3\text{), 19.1 \text{ (q, CH}_3\text{), 19.2 \text{ (q, CH}_3\text{), 29.0 \text{ (d, CH), 28.0 \text{ (q, } 3\text{CH}_3\text{), } 51.8 \text{ (q, OCH}_3\text{), 78.2 \text{ (s, C-1), 82.8 \text{ (s, C}_3\text{), 90.3 \text{ (s, C-7), 123.0 \text{ (s, C-5), 125.9 \text{ (d, CH}_{arom}\text{), 127.2 \text{ (d, CH}_{arom}\text{), 134.7 \text{ (s, } C_{arom}\text{), 167.1 \text{ (s, C-3), 173.2 \text{ (s, COO).}} \]

\[\text{MS: (EI, 70 eV)} \]

\[m/z \text{ (\%) = 332 (10), 278 (8), 260 (15), 105 (35), 86 (65), 84 (100), 77 (10), 57 (38).} \]

endo-3-Isopropyl-5-methoxy-1-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid tert-butyl ester (endo-65f) (sbo-453d)

![Structure](image)

Yield: 42 %

TLC: \(R_f = 0.52 \) (ethyl acetate/n-hexane 1:4).

\[^{1}H\text{-NMR: (300 MHz, CDCl}_3\text{)}\]

\[\delta_{ppm} = 0.71 \text{ (d, } J = 6.2 \text{ Hz, } 3\text{H, CH}_3\text{), 0.78 \text{ (d, } J = 6.2 \text{ Hz, } 3\text{H, CH}_3\text{), 1.44 \text{ (s, } 9\text{H, } 3\text{CH}_3\text{), 1.56 \text{ (s, } 3\text{H, CH}_3\text{), 2.23 \text{ (septet, } J = 6.2 \text{ Hz, } 1\text{H, CH}, 3.65 \text{ (s, } 3\text{H, OCH}_3\text{), CH}_2\text{), 7.29-7.66 \text{ (m, } 5\text{H, H}_{arom}\text{).}} \]

\[^{13}\text{C-NMR: (75.5 MHz, CDCl}_3\text{)}\]

\[\delta_{ppm} = 15.1 \text{ (q, CH}_3\text{), 18.8 \text{ (q, CH}_3\text{), 18.9 \text{ (q, CH}_3\text{), 27.9 \text{ (q, } 3\text{CH}_3\text{), 52.0 \text{ (q, OCH}_3\text{), 77.6 \text{ (s, C-1), 83.1 \text{ (s, C}_3\text{), 91.1 \text{ (s, C-7), 123.5 \text{ (s, C-5), 126.3 \text{ (d, CH}_{arom}\text{), 129.2 \text{ (d, CH}_{arom}\text{), 135.6 \text{ (s, } C_{arom}\text{), 167.9 \text{ (s, C-3), 172.6 \text{ (s, COO).}} \]

MS: (EI, 70 eV)

\[m/z \text{ (\%) = 346 (M}^+\text{-Me, 10), 324 (45), 306 (15), 278 (20), 260 (18), 254 (25), 154 (28), 105 (100), 102 (38), 91 (10), 77 (25), 71 (28), 57 (60).} \]

HRMS: (C\(_{20}\)H\(_{27}\)NO\(_{5}\), M = 361.19 g/mol)

Calcd: 361.1882

Found: 361.1874

410
Photolyses of α-keto esters with 2-tert-butyl-4-methyl-5-methoxyoxazole 49c:
exo-3-tert-butyl-5-methoxy-1,7-dimethyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (exo-66a) (sbo-436c)

A solution of methyl pyruvate (0.51 g, 5 mmol) and 2-tert-butyl-4-methyl-5-methoxyoxazole (0.84 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.21 g of a yellow oil. Preparative chromatography on silica gel yielded 0.37 g of the exo-isomer (and 0.38 g of the endo-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

Yield: 28%
TLC: \(R_f = 0.47 \) (ethyl acetate/n-hexane 1:4).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))
\[\delta_{ppm} = 0.95 \text{ (s, 9H, CH}_3\text{)}, \ 1.43 \text{ (s, 3H, CH}_3\text{)}, \ 1.83 \text{ (s, 3H, CH}_3\text{)}, \ 3.67 \text{ (s, 3H, OCH}_3\text{)}, \ 3.76 \text{ (s, 3H, OCH}_3\text{)}. \]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))
\[\delta_{ppm} = 16.8 \text{ (q, CH}_3\text{)}, \ 18.3 \text{ (q, CH}_3\text{)}, \ 25.3 \text{ (q, 3CH}_3\text{)}, \ 42.4 \text{ (s, Cq)}, \ 52.8 \text{ (q, OCH}_3\text{)}, \ 53.4 \text{ (q, OCH}_3\text{)}, \ 75.6 \text{ (s, C-1)}, \ 87.2 \text{ (s, C-7)}, \ 122.7 \text{ (s, C-5)}, \ 171.2 \text{ (s, COO)}, \ 179.6 \text{ (s, C-3)}. \]

HRMS: (C\(_{13}\)H\(_{21}\)NO\(_5\), M = 271.14 g/mol)
Calcd: 271.1435
Found: 271.1433

endo-3-tert-Butyl-5-methoxy-1,7-dimethyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (endo-65f) (sbo-436c)

Yield: 29%
TLC: \(R_f = 0.43 \) (ethyl acetate/n-hexane 1:4).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))
δ_{ppm} = 0.93 (s, 9H, 3CH₃), 1.36 (s, 3H, CH₃), 1.81 (s, 3H, CH₃), 3.67 (s, 3H, OCH₃), 3.77 (s, 3H, OCH₃).

¹³C-NMR: (75.5 MHz, CDCl₃)
δ_{ppm} = 19.2 (q, CH₃), 23.8 (q, CH₃), 25.1 (q, 3CH₃), 40.6 (s, C_q), 52.8 (q, OCH₃), 53.4 (q, OCH₃), 74.7 (s, C-1), 86.7 (s, C-7), 124.6 (s, C-5), 171.4 (s, COO), 179.2 (s, C-3).

exo-3,7-Di-<i>tert</i>-butyl-5-methoxy-1-methyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (exo-66b) (sbo-484c)

A solution of methyl trimethylpyruvate (0.36 g, 2.5 mmol) and 2-<i>tert</i>-butyl-4-methyl-5-methoxyoxazole (0.42 g, 2.5 mmol) in benzene (20 mL) was irradiated for 24 h according to the above general procedure to give 0.69 g of a yellow oil. Preparative chromatography on silica gel yielded 0.33 g of the <i>exo</i>-isomer (and 0.25 g of the <i>endo</i>-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

Yield: 40 %

TLC: R_f = 0.47 (ethyl acetate/n-hexane 1:4).

¹H-NMR: (300 MHz, CDCl₃)
δ_{ppm} = 1.12 (s, 9H, 3CH₃), 1.18 (s, 9H, 3CH₃), 1.50 (s, 3H, CH₃), 3.56 (s, 3H, OCH₃), 3.73 (s, 3H, OCH₃).

¹³C-NMR: (75.5 MHz, CDCl₃)
δ_{ppm} = 15.7 (q, CH₃), 24.1 (q, 3CH₃), 27.3 (q, 3CH₃), 33.5 (s, C_q), 33.7 (s, C_q), 51.8 (q, OCH₃), 52.4 (q, OCH₃), 76.8 (s, C-1), 97.3 (s, C-7), 122.7 (s, C-5), 170.4 (s, COO), 174.4 (s, C-3).

HRMS: (C₁₆H₂₇NO₅, M = 313.19 g/mol)
Calcd: 313.1886
Found: 313.1882
4. Experimental part

endo-3,7-Di-tert-Butyl-5-methoxy-1-methyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (*endo*-66b) (sbo-484)

\[
\text{\begin{tabular}{c}
\text{CO}_2\text{CH}_3 \\
\text{N} \\
\text{O} \\
\text{OCH}_3 \\
\text{CH}_3 \\
\text{OCH}_3 \\
\end{tabular}}
\]

Yield: 32 %

TLC: \(R_f = 0.47 \) (ethyl acetate/n-hexane 1:4).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))
\[
\delta \text{ppm} = 1.10 \text{ (s, 9H, CH}_3\text{)}, 1.20 \text{ (s, 9H, CH}_3\text{)}, 1.47 \text{ (s, 3H, CH}_3\text{)}, 3.57 \text{ (s, 3H, OCH}_3\text{)}, 3.77 \text{ (s, 3H, OCH}_3\text{)}.
\]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))
\[
\delta \text{ppm} = 15.2 \text{ (q, CH}_3\text{)}, 23.8 \text{ (q, CH}_3\text{)}, 28.1 \text{ (q, CH}_3\text{)}, 33.6 \text{ (s, Cq)}, 33.9 \text{ (s, Cq)}, 51.3 \text{ (q, OCH}_3\text{)}, 52.4 \text{ (q, OCH}_3\text{)}, 77.0 \text{ (s, C-1)}, 96.7 \text{ (s, C-7)}, 124.0 \text{ (s, C-5)}, 171.4 \text{ (s, COO)}, 179.2 \text{ (s, C-3)}.
\]

exo-3-tert-Butyl-5-methoxy-1-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (*exo*-66c) (sbo-432c)

\[
\text{\begin{tabular}{c}
\text{H}_3\text{CO}_2\text{C} \\
\text{N} \\
\text{O} \\
\text{PhH} \\
\text{CH}_3 \\
\text{OCH}_3 \\
\end{tabular}}
\]

A solution of methyl phenylglyoxylate (0.82 g, 5 mmol) and 2-tert-butyl-4-methyl-5-methoxyoxazole (0.84 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.47 g of a yellow oil. Preparative chromatography on silica gel yielded 0.69 g of the *exo*-isomer (and 0.41 g of the *endo*-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding \(\alpha\)-amino-\(\beta\)-hydroxy esters (see later).

Yield: 39 %

TLC: \(R_f = 0.52 \) (ethyl acetate/n-hexane 1:4).

IR: (Film)
\[\tilde{\nu} \text{ (cm}^{-1}\text{)} = 2993, 2885, 1725, 1608, 1600, 1558, 1440, 1085, 980, 775.\]

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))
\[
\delta \text{ppm} = 1.09 \text{ (s, 3H, CH}_3\text{)}, 1.25 \text{ (s, 9H, CH}_3\text{)}, 3.63 \text{ (s, 3H, OCH}_3\text{)}, 3.76 \text{ (s, 3H, OCH}_3\text{)}, 7.26-7.70 \text{ (m, 5H, H}_{\text{arom}}\text{).}
\]
4. Experimental part

\[^{13}\text{C-NMR:} \ (75.5 \text{ MHz, CDCl}_3) \]
\[
\delta_{ppm} = 14.9 \ (q, \text{ CH}_3), \ 27.4 \ (q, \text{ 3CH}_3), \ 33.8 \ (s, \text{ Cq}), \ 51.9 \ (q, \text{ OCH}_3), \ 52.5 \ (q, \text{ OCH}_3), \ 78.6 \ (s, \text{ C-1}), \ 91.6 \ (s, \text{ C-7}), \ 123.2 \ (s, \text{ C-5}), \ 126.1 \ (d, \text{ CH}_\text{arom}), \ 127.2 \ (d, \text{ CH}_\text{arom}), \ 135.0 \ (s, \text{ Cq}_\text{arom}), \ 169.0 \ (s, \text{ COO}), \ 175.6 \ (s, \text{ C-3}).
\]

\[\text{HRMS:} \ (\text{C}_{18}\text{H}_{23}\text{NO}_5, M = 333.16 \text{ g/mol}) \]
Calcd: \ 333.1576
Found: \ 333.1580

endo-3-tert-Butyl-5-methoxy-1-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid methyl ester (endo-66c) (sbo-432)

Yield: 25 %
TLC: \(R_f = 0.56 \) (ethyl acetate/n-hexane 1:4).

\[^1\text{H-NMR:} \ (300 \text{ MHz, CDCl}_3) \]
\[
\delta_{ppm} = 1.27 \ (s, 9\text{H, 3CH}_3), \ 1.56 \ (s, 3\text{H, CH}_3), \ 3.62 \ (s, 3\text{H, OCH}_3), \ 3.78 \ (s, 3\text{H, OCH}_3), \ 7.30-7.64 \ (m, 5\text{H, H}_\text{arom}).
\]

\[^{13}\text{C-NMR:} \ (75.5 \text{ MHz, CDCl}_3) \]
\[
\delta_{ppm} = 15.3 \ (q, \text{ CH}_3), \ 27.0 \ (q, \text{ 3CH}_3), \ 33.3 \ (s, \text{ Cq}), \ 51.5 \ (q, \text{ OCH}_3), \ 52.7 \ (q, \text{ OCH}_3), \ 83.7 \ (s, \text{ C-1}), \ 92.8 \ (s, \text{ C-7}), \ 124.5 \ (s, \text{ C-5}), \ 126.2 \ (d, \text{ CH}_\text{arom}), \ 128.4 \ (d, \text{ CH}_\text{arom}), \ 136.5 \ (s, \text{ Cq}_\text{arom}), \ 170.2 \ (s, \text{ CoO}), \ 175.9 \ (s, \text{ C-3}).
\]

exo-3-tert-Butyl-5-methoxy-1-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid ethyl ester (exo-66d) (sbo-451d)

A solution of ethyl phenylglyoxylate (0.89 g, 5 mmol) and 2-tert-butyl-4-methyl-5-methoxyoxazole (0.84 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.57 g of a yellow oil. Preparative chromatography on silica gel yielded 0.72 g of the exo-isomer (and 0.36 g of the endo-isomer) as a colorless oil. The
products were thermally unstable and were subsequently hydrolyzed to give the corresponding \(\alpha\)-amino-\(\beta\)-hydroxy esters (see later).

Yield: 40 %

TLC: \(R_f = 0.46 \) (ethyl acetate/n-hexane 1:4).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 0.98 \text{ (s, } \text{CH}_3), 1.21 \text{ (t, } J = 7.5 \text{ Hz, } \text{CH}_3), 1.27 \text{ (s, } 9\text{H, } \text{CH}_3), 3.75 \text{ (s, } \text{CH}_3, \text{ OCH}_3), 4.17 \text{ (q, } J = 7.5 \text{ Hz, } 2\text{H, OCH}_2), 7.26-7.59 \text{ (m, } 5\text{H, H}_\text{arom}). \]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 13.9 \text{ (q, } \text{CH}_3), 23.7 \text{ (q, } \text{CH}_3), 27.5 \text{ (q, } \text{CH}_3), 33.5 \text{ (s, } \text{Cq}), 52.6 \text{ (q, } \text{OCH}_3), 62.1 \text{ (t, } \text{OCH}_2), 80.9 \text{ (s, } C-1), 92.1 \text{ (s, } C-7), 124.1 \text{ (s, } C-5), 126.4 \text{ (d, } \text{CH}_\text{arom}), 128.4 \text{ (d, } \text{CH}_\text{arom}), 134.5 \text{ (s, } \text{Cq}_\text{arom}), 169.9 \text{ (s, } \text{COO}), 172.9 \text{ (s, } C-3). \]

endo-3-tert-Butyl-5-methoxy-1-methyl-7-phenyl-4,6-dioxo-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid ethyl ester (endo-66d) (sbo-451)

A solution of ethyl phenylglyoxylate (0.89 g, 5 mmol) and 2-\(\text{tert}\)-butyl-4-methyl-5-methoxyoxazole (0.84 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.57 g of a yellow oil. Preparative chromatography on silica gel yielded 0.72 g of the \(\text{exo}\)-isomer (and 0.36 g of the \(\text{endo}\)-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding \(\alpha\)-amino-\(\beta\)-hydroxy esters (see later).

Yield: 40 %

TLC: \(R_f = 0.55 \) (ethyl acetate/n-hexane 1:4).

IR: (Film)

\[\tilde{\nu} \text{ (cm}^{-1}) = 2983, 2895, 1745, 1610, 1600, 1550, 1440, 1075, 980, 770. \]

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 1.12 \text{ (s, } 9\text{H, } \text{CH}_3), 1.23 \text{ (t, } J = 7.5 \text{ Hz, } \text{CH}_3), 1.54 \text{ (s, } 3\text{H, } \text{CH}_3), 3.67 \text{ (s, } \text{CH}_3, \text{ OCH}_3), 4.21 \text{ (q, } J = 7.5 \text{ Hz, } 2\text{H, OCH}_2), 7.31-7.72 \text{ (m, } 5\text{H, H}_\text{arom}). \]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 14.3 \text{ (q, } \text{CH}_3), 23.2 \text{ (q, } \text{CH}_3), 27.9 \text{ (q, } \text{CH}_3), 34.1 \text{ (s, } \text{Cq}), 52.3 \text{ (q, } \text{OCH}_3), 62.1 \text{ (t, } \text{OCH}_2), 81.3 \text{ (s, } C-1), 93.7 \text{ (s, } C-7), 124.7 \text{ (s, } C-5), 127.2 \text{ (d, } \text{CH}_\text{arom}), 128.3 \text{ (d, } \text{CH}_\text{arom}), 134.6 \text{ (s, } \text{Cq}_\text{arom}), 169.3 \text{ (s, } \text{COO}), 172.8 \text{ (s, } C-3). \]
4. Experimental part

HRMS: \((C_{19}H_{25}NO_5, M = 347.17 \text{ g/mol})\)

Calcd: 347.1698

Found: 347.1694

\textit{exo-3-\textit{tert}-Butyl-5-methoxy-1-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid isopropyl ester (exo-66e)} (sbo-457c)

A solution of isopropyl phenylglyoxylate (0.96 g, 5 mmol) and 2-\textit{tert}-butyl-4-methyl-5-methoxyoxazole (0.84 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.64 g of a yellow oil. Preparative chromatography on silica gel yielded 0.42 g of the \textit{exo}-isomer (and 0.74 g of the \textit{endo}-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding \(\alpha\)-amino-\(\beta\)-hydroxy esters (see later).

\textbf{Yield:} 23 %

\textbf{TLC:} \(R_f = 0.44\) (ethyl acetate/n-hexane 1:4).

\textbf{1H-NMR:} (300 MHz, CDCl\textsubscript{3})

\[\delta_{\text{ppm}} = 0.97 \text{ (s, 3H, CH}_3\text{)}, 1.16 \text{ (d, J = 6.2 Hz, 3H, CH}_3\text{)}, 1.22 \text{ (d, J = 6.2 Hz, 3H, CH}_3\text{)}, 1.35 \text{ (s, 9H, 3CH}_3\text{)}, 3.76 \text{ (s, 3H, OCH}_3\text{)}, 5.00 \text{ (septet, J = 6.2 Hz, 1H, OCH)}\]

7.26-7.35 \text{ (m, 5H, H}_{\text{arom}}\text{)}.

\textbf{13C-NMR:} (75.5 MHz, CDCl\textsubscript{3})

\[\delta_{\text{ppm}} = 21.5 \text{ (q, CH}_3\text{)}, 22.6 \text{ (q, CH}_3\text{)}, 24.0 \text{ (q, CH}_3\text{)}, 27.5 \text{ (q, 3CH}_3\text{)}, 33.4 \text{ (s, Cq)}, 52.5 \text{ (q, OCH}_3\text{)}, 70.0 \text{ (d, OCH)}, 80.9 \text{ (s, C-1)}, 91.9 \text{ (s, C-7)}, 124.7 \text{ (s, C-5)}, 126.1 \text{ (d, CH}_{\text{arom}}\text{)}, 127.2 \text{ (d, CH}_{\text{arom}}\text{)}, 135.1 \text{ (s, Cq}_{\text{arom}}\text{)}, 169.4 \text{ (s, COO)}, 172.9 \text{ (s, C-3)}\.

\textit{endo-3-\textit{tert}-Butyl-5-methoxy-1-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid isopropyl ester (endo-66e)} (sbo-457)

\textbf{Yield:} 40 %

\textbf{TLC:} \(R_f = 0.57\) (ethyl acetate/n-hexane 1:4).
4. Experimental part

H-NMR: (300 MHz, CDCl₃)

δ/ppm = 1.02 (s, 9H, 3CH₃), 1.18 (d, J = 6.2 Hz, 3H, CH₃), 1.54 (s, 3H, CH₃), 3.76 (s, 3H, OCH₃), 5.02 (septet, J = 6.2 Hz, 1H, OCH), 7.28-7.62 (m, 5H, Hₐrom).

C-NMR: (75.5 MHz, CDCl₃)

δ = 20.9 (q, CH₃), 21.3 (q, CH₃), 23.7 (q, CH₃), 28.1 (q, 3CH₃), 33.5 (s, Cq), 52.7 (q, OCH₃), 71.2 (d, OCH), 82.3 (s, C-1), 92.3 (s, C-7), 124.3 (s, C-5), 126.1 (d, CHₐrom), 128.5 (d, CHₐrom), 134.6 (s, Cqₐrom), 165.7 (s, COO), 179.1 (s, C-3).

HRMS: (C₂₀H₂₇NO₅, M = 361.20 g/mol)
Calcd: 361.1946
Found: 361.1941

exo-3-tert-Butyl-5-methoxy-1-methyl-7-phenyl-4,6-dioxo-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid tert-butyl ester (exo-66f) (sbo-444e)

A solution of tert-butyl phenylglyoxylate (1.0 g, 5 mmol) and 2-tert-butyl-4-methyl-5-methoxyoxazole (0.84 g, 5 mmol) in benzene (50 mL) was irradiated for 24 h according to the above general procedure to give 1.69 g of a yellow oil. Preparative chromatography on silica gel yielded 0.73 g of the exo-isomer (and 0.74 g of the endo-isomer) as a colorless oil. The products were thermally unstable and were subsequently hydrolyzed to give the corresponding α-amino-β-hydroxy esters (see later).

Yield: 37%

TLC: Rₜ = 0.52 (ethyl acetate/n-hexane 1:4).

H-NMR: (300 MHz, CDCl₃)

δ/ppm = 1.07 (s, 3H, CH₃), 1.26 (s, 9H, 3CH₃), 1.43 (s, 9H, 3CH₃), 3.60 (s, 3H, OCH₃), 7.22-7.36 (m, 5H, Hₐrom).

C-NMR: (75.5 MHz, CDCl₃)

δ/ppm = 15.2 (q, CH₃), 27.0 (q, 3CH₃), 27.3 (q, 3CH₃), 33.4 (s, Cq), 51.8 (q, OCH₃), 78.3 (s, C-1), 82.8 (s, Cq), 90.2 (s, C-7), 123.0 (s, C-5), 126.2 (d, CHₐrom), 128.4 (d, CHₐrom), 135.9 (s, Cqₐrom), 167.1 (s, COO), 175.2 (s, C-3).
4. Experimental part

endo-3-tert-Butyl-5-methoxy-1-methyl-7-phenyl-4,6-dioxa-2-aza-bicyclo[3.2.0]hept-2-ene-7-carboxylic acid tert-butyl ester (endo-66f) (sbo-444e)**

![Chemical structure](image)

Yield: 42%

TLC: $R_f = 0.43$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)
\[
\delta_{ppm} = 0.82 \text{ (s, 9H, 3CH}_3\text{)}, 1.45 \text{ (s, 9H, 3CH}_3\text{)}, 1.58 \text{ (s, 3H, CH}_3\text{)}, 3.64 \text{ (s, 3H, OCH}_3\text{)}, 7.48-7.67 \text{ (m, 5H, H}_{arom}\text{)}.
\]

13C-NMR: (75.5 MHz, CDCl$_3$)
\[
\delta_{ppm} = 15.9 \text{ (q, CH}_3\text{)}, 27.9 \text{ (q, 3CH}_3\text{)}, 28.1 \text{ (q, 3CH}_3\text{)}, 33.8 \text{ (s, Cq)}, 52.1 \text{ (q, OCH}_3\text{)}, 77.7 \text{ (s, C-1)}, 83.1 \text{ (s, Cq)}, 91.1 \text{ (s, C-7)}, 123.6 \text{ (s, C-5)}, 126.3 \text{ (d, CH}_{arom}\text{)}, 129.2 \text{ (d, CH}_{arom}\text{)}, 135.4 \text{ (s, Cq}_{arom}\text{)}, 167.9 \text{ (s, COO)}, 172.6 \text{ (s, C-3)}.
\]

HRMS: ($C_{21}H_{29}NO_5$, $M = 375.20$ g/mol)
- Calcd: 375.1849
- Found: 375.1847
4. Experimental part

4.20 Synthesis of erythro (S*,R*) & threo (S*,S*) α-amino-β-hydroxy succinic acid derivatives

Ring-opening of the bicyclic oxetanes; (Typical hydrolysis procedure):

To a stirred solution of the bicyclic oxetane (2 mmol) in chloroform (10 mL) was added 1N HCl (0.5 mL). After 2h at room temperature, the course of reaction was monitored by TLC. Upon complete conversion, the reaction mixture was diluted with chloroform, washed with saturated sodium bicarbonate, water, and brine, dried (MgSO\(_4\)), and concentrated in *vacuo*. The crude product was purified by preparative thick-layer chromatography over silica gel using a mixture of ethylacetate/n-hexane as an eluent.

Synthesis of erythro (S*,R*) α-acetamido-β-hydroxy succinic acid derivatives 67a-f:

erythro (2S*,3R*) 2-Acetylamino-3-hydroxy-2,3-dimethyl-succinic acid dimethyl ester (*erythro*-67a) (sbo-394c)

![Chemical structure of 2-Acetylamino-3-hydroxy-2,3-dimethyl-succinic acid dimethyl ester](image)

According to the typical hydrolysis procedure, the bicyclic oxetane 55a (0.5 g, 2 mmol) was cleaved hydrolytically in 3h. Preparative chromatography yielded 0.4 g of the product as a colorless oil.

Yield: 81 %

TLC: \(R_f = 0.40 \) (ethyl acetate/n-hexane 1:4).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 1.29 \text{ (s, 3H, CH\(_3\))}, 1.58 \text{ (s, 3H, CH\(_3\))}, 2.26 \text{ (s, 3H, CH\(_3\)CO)}, 3.52 \text{ (s, 3H, OCH\(_3\))}, 3.82 \text{ (s, 3H, OCH\(_3\))}, 6.06 \text{ (s, 1H, NH)} \]

\(^13\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 14.2 \text{ (q, CH\(_3\))}, 18.4 \text{ (q, CH\(_3\))}, 21.4 \text{ (q, CH\(_3\))}, 52.4 \text{ (q, OCH\(_3\))}, 52.9 \text{ (q, OCH\(_3\))}, 79.1 \text{ (s, C-2)}, 89.1 \text{ (s, C-3)}, 169.6 \text{ (s, CON)}, 171.2 \text{ (COO)}, 171.9 \text{ (s, COO)} \]

erythro (2S*,3R*) 2-Acetylamino-2-ethyl-3-hydroxy-3-methyl-succinic acid dimethyl ester (*erythro*-67b) (sbo-399d)
According to the typical hydrolysis procedure, the bicyclic oxetane 55b (0.51 g, 2 mmol) was cleaved hydrolytically in 3h. Preparative chromatography yielded 0.45 g of the product as a colorless oil. A crystalline sample for X-ray crystal structure analysis could be obtained by crystallization of the product from pentane at –10 °C.

Yield: 86 %

M.p: 67-69 °C.

TLC: $R_f = 0.39$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$

$$
\delta_{ppm} = 0.81 \text{ (t, J = 7.2 Hz, 3H, CH}_3\text{), 1.49 (s, 3H, CH}_3\text{), 1.55 \text{ (m, 1H, CH), 1.63 (m, 1H, CH), 2.13 (s, 3H, CH}_2\text{CO), 3.61 (s, 3H, OCH}_3\text{), 3.81 (s, 3H, OCH}_3\text{)}.

13C-NMR: (75.5 MHz, CDCl$_3$

$$
\delta_{ppm} = 7.8 \text{ (q, CH}_3\text{), 14.9 (q, CH}_3\text{), 19.2 (q, CH}_3\text{), 21.6 (t, CH}_2\text{), 51.7 (q, OCH}_3\text{), 52.4 (q, OCH}_3\text{), 81.2 (s, C-2), 89.1 (s, C-3), 169.5 (s, CON), 170.1 (COO), 171.3 (s, COO).

HRMS: (C$_{11}$H$_{19}$NO$_6$, M = 261.12 g/mol)

Calcd: 261.1207

Found: 261.1204

erythro (2S*,3R*) 2-Acetylamino-3-hydroxy-3-methyl-2-propyl-succinic acid dimethyl ester (*erythro*-67c) (sbo-405b)

According to the typical hydrolysis procedure, the bicyclic oxetane 55c (0.5 g, 2 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.47 g of the product as a colorless oil.

Yield: 82 %

TLC: $R_f = 0.41$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)
4. Experimental part

\[\delta_{\text{ppm}} = 0.88 \text{ (t, } J = 7.5 \text{ Hz, } 3\text{H, CH}_3\text{), 1.21 \text{ (m, } 2\text{H, CH}_2\text{), 1.85 \text{ (dt, } J = 11.0, 6.2 \text{ Hz, 1H, CH}), 1.53 \text{ (s, } 3\text{H, CH}_3\text{), 2.04 \text{ (s, } 3\text{H, CH}_3\text{CO), 2.42 \text{ (dt, } J = 10.8, 6.2 \text{ Hz, 1H, CH}), 3.21 \text{ (s, } 3\text{H, OCH}_3\text{), 3.80 \text{ (s, } 3\text{H, OCH}_3\text{), 6.39 \text{ (s, 1H, NH).}} \]

\[\delta_{\text{ppm}} = 13.8 \text{ (q, CH}_3\text{), 14.1 \text{ (q, CH}_3\text{), 16.9 \text{ (q, CH}_3\text{), 23.8 \text{ (t, CH}_2\text{), 37.4 \text{ (t, CH}_2\text{), 51.5 \text{ (q, OCH}_3\text{), 53.1 \text{ (q, OCH}_3\text{), 74.1 \text{ (s, C-2), 81.9 \text{ (s, C-3), 169.3 \text{ (s, CON), 177.4 \text{ (COO), 178.3 \text{ (s, COO).}}} \]

HRMS: (C\textsubscript{12}H\textsubscript{21}NO\textsubscript{6}, M = 275.14 g/mol)

Calcd: 275.1363
Found: 275.1359

\textit{erythro} (2S#,3R#) 2-Acetylamino-3-hydroxy-2-isopropyl-3-methyl-succinic acid dimethyl ester (\textit{erythro}-67d) (sbo-406b)

According to the typical hydrolysis procedure, the bicyclic oxetane 55d (0.5 g, 2 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.42 g of the product as a colorless oil.

Yield: 78 \%

TLC: R\textsubscript{f} = 0.46 (ethyl acetate/n-hexane 1:4).

IR: (Film)

\[\nu \text{ (cm}^{-1}\text{)} = 3510, 3340, 2988, 2896, 1745, 1735, 1685, 1445, 1075, 980, 770. \]

\[\delta_{\text{ppm}} = 0.83 \text{ (d, } J = 6.9 \text{ Hz, } 3\text{H, CH}_3\text{), 1.23 \text{ (d, } J = 6.8 \text{ Hz, } 3\text{H, CH}_3\text{), 1.51 \text{ (s, 1H, OH), 1.61 \text{ (s, } 3\text{H, CH}_3\text{), 2.02 \text{ (s, } 3\text{H, CH}_3\text{CO), 2.98 \text{ (septet, } J = 6.8 \text{ Hz, 1H, CH), 3.67 \text{ (s, } 3\text{H, OCH}_3\text{), 3.86 \text{ (s, } 3\text{H, OCH}_3\text{), 7.04 \text{ (s, 1H, NH).}}} \]

Anal: (C\textsubscript{12}H\textsubscript{21}NO\textsubscript{6}, M = 275.3 g/mol)

Calcd: C 52.35 H 7.69 N 5.09
Found: C 52.52 H 7.89 N 5.12

421
4. Experimental part

erythro (2S*,3R*) 2-Acetylamino-3-hydroxy-2-isobutyl-3-methyl-succinic acid dimethyl ester (**erythro-67e**) (sbo-407c)

![Chemical structure of erythro-67e](image)

According to the typical hydrolysis procedure, the bicyclic oxetane **55e** (0.54 g, 2 mmol) was cleaved hydrolytically in 2.5h. Preparative chromatography yielded 0.5 g of the product as a colorless oil.

Yield: 86 %

TLC: $R_f = 0.47$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

δ ppm = 0.86 (d, $J = 6.6$ Hz, 3H, CH$_3$), 0.95 (d, $J = 6.6$ Hz, 3H, CH$_3$), 1.41 (m, 1H, CH), 1.56 (s, 3H, CH$_3$), 1.89 (m, 2H, CH$_2$), 2.04 (s, 3H, CH$_3$CO), 3.66 (s, 3H, OCH$_3$), 3.68 (s, 3H, OCH$_3$), 6.53 (s, 1H, NH).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ ppm = 14.3 (q, CH$_3$), 17.9 (q, CH$_3$), 23.4 (q, CH$_3$), 24.5 (q, CH$_3$), 24.8 (d, CH), 43.3 (t, CH$_2$), 52.4 (q, OCH$_3$), 52.7 (q, OCH$_3$), 82.4 (s, C-2), 89.7 (s, C-3), 164.7 (s, CON), 171.3 (COO), 172.5 (s, COO).

erythro (2S*,3R*) 2-Acetylamino-2-sec-butyl-3-hydroxy-3-methyl-succinic acid dimethyl ester (**erythro-67f**) (sbo-408a)

![Chemical structure of erythro-67f](image)

According to the typical hydrolysis procedure, the bicyclic oxetane **55f** (0.54 g, 2 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.46 g of the product as a colorless oil.

Yield: 80 %

TLC: $R_f = 0.47$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

δ ppm = 0.83 (t, $J = 7.5$ Hz, 3H, CH$_3$), 0.86 (d, $J = 6.8$ Hz, 3H, CH$_3$), 1.23 (m, 2H, CH$_2$), 1.57 (s, 3H, CH$_3$), 1.89 (m, 1H, CH), 1.96 (s, 3H, CH$_3$CO), 3.61 (s, 3H, OCH$_3$), 3.76 (s, 3H, OCH$_3$), 6.60 (s, 1H, NH).

13C-NMR: (75.5 MHz, CDCl$_3$)
δ\text{ppm} = 10.9 (q, CH\textsubscript{3}), 11.1 (q, CH\textsubscript{3}), 15.1 (q, CH\textsubscript{3}), 23.3 (q, CH\textsubscript{3}), 25.6 (t, CH\textsubscript{2}), 34.4 (d, CH), 51.6 (q, OCH\textsubscript{3}), 52.6 (q, OCH\textsubscript{3}), 78.2 (s, C-2), 82.0 (s, C-3), 170.7 (s, CON), 170.9 (COO), 173.2 (s, COO).

MS: (EI, 70 eV)

\[\text{m/z} (\%) = 273 (M^{+}-O, 5), 272 (M^{+}-OH, 7), 246 (M^{+}-MeCO, 15), 232 (5), 188 (55), 144 (15), 141 (100), 113 (90), 83 (27), 57 (25), 55 (30). \]

HRMS: (C\textsubscript{13}H\textsubscript{23}NO\textsubscript{6}, M = 289.15 g/mol)

Calcd: 289.1519
Found: 289.1515

Synthesis of threo (S*,S*) α-acetamido-β-hydroxy succinic acid derivatives 68a-f:

\textit{threo} (2S*,3S*) 2-Acetylamino-3-\textit{tert}-butyl-3-hydroxy-2-methyl-succinic acid dimethyl ester (**threo-68a**) (sbo-387a)

According to the typical hydrolysis procedure, the bicyclic oxetane 56a (0.27 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.21 g of the product as a colorless oil.

Yield: 73 %

TLC: \(R_f = 0.45 \) (ethyl acetate/n-hexane 1:4).

IR: (Film)

\[\text{\it{V}} (\text{cm}^{-1}) = 3490, 3360, 2994, 2934, 1740, 1735, 1685, 1443, 1065, 985, 770. \]

\(^1\text{H-NMR:} \) (300 MHz, CDCl\textsubscript{3})

\[\delta_{\text{ppm}} = 1.02 \text{ (s, 3H, CH}_3\text{), 1.12 \text{ (s, 9H, 3CH}_3\text{), 1.50 \text{ (s, 3H, CH}_3\text{CO), 3.55 \text{ (s, 3H, OCH}_3\text{), 3.73 \text{ (s, 3H, OCH}_3\text{).}} } \]

\(^{13}\text{C-NMR:} \) (75.5 MHz, CDCl\textsubscript{3})

\[\delta_{\text{ppm}} = 14.6 \text{ (q, CH}_3\text{), 15.6 \text{ (q, CH}_3\text{), 25.7 \text{ (q, CH}_3\text{), 41.3 \text{ (s, Cq), 51.4 \text{ (q, OCH}_3\text{), 51.7 \text{ (q, OCH}_3\text{), 92.2 \text{ (s, C-2), 97.3 \text{ (s, C-3), 167.1 \text{ (s, CON), 171.3 \text{ (COO), 174.5 \text{ (s, COO).}} } } \]

HRMS: (C\textsubscript{13}H\textsubscript{23}NO\textsubscript{6}, M = 289.15 g/mol)

Calcd: 289.1519
Found: 289.1512
threo (2S*,3S*) 2-Acetylamino-3-tert-butyl-2-ethyl-3-hydroxy-succinic acid dimethyl ester (threo-68b) (sbo-390a)

According to the typical hydrolysis procedure, the bicyclic oxetane 56b (0.30 g, 1 mmol) was cleaved hydrolytically in 3h. Preparative chromatography yielded 0.27 g of the product as a colorless oil.

Yield: 89 %

TLC: R_f = 0.38 (ethyl acetate/n-hexane 1:4).

^1H-NMR: (300 MHz, CDCl_3)

δ ppm = 0.81 (t, J = 7.4 Hz, 3H, CH₃), 1.12 (s, 9H, 3CH₃), 1.92 (m, 1H, CH), 2.00 (s, 3H, CH₂CO), 2.13 (s, 1H, CH), 3.56 (s, 3H, OCH₃), 3.72 (s, 3H, OCH₃).

^13C-NMR: (75.5 MHz, CDCl₃)

δ ppm = 8.0 (q, CH₃), 14.6 (q, CH₃), 21.8 (q, CH₃), 26.4 (t, CH₂), 37.9 (s, C₆), 51.2 (q, OCH₃), 52.0 (q, OCH₃), 80.7 (s, C-2), 81.3 (s, C-3), 169.8 (s, CON), 177.5 (COO), 180.9 (s, COO).

threo (2S*,3S*) 2-Acetylamino-3-tert-butyl-3-hydroxy-2-propyl-succinic acid dimethyl ester (threo-68c) (sbo-389d)

According to the typical hydrolysis procedure, the bicyclic oxetane 56c (0.31 g, 1 mmol) was cleaved hydrolytically in 3.5h. Preparative chromatography yielded 0.25 g of the product as a colorless oil.

Yield: 80 %

TLC: R_f = 0.42 (ethyl acetate/n-hexane 1:4).

^1H-NMR: (300 MHz, CDCl₃)

δ ppm = 0.83 (t, J = 7.5 Hz, 3H, CH₃), 1.06 (s, 9H, 3CH₃), 1.23 (m, 2H, CH₂), 1.53 (m, 2H, CH₂), 2.02 (s, 3H, CH₂CO), 3.58 (s, 3H, OCH₃), 3.77 (s, 3H, OCH₃).

^13C-NMR: (75.5 MHz, CDCl₃)
4. Experimental part

\[\delta_{\text{ppm}} = 13.6 \text{ (q, CH}_3\text{)}, 14.3 \text{ (q, CH}_3\text{)}, 14.8 \text{ (q, CH}_3\text{)}, 21.6 \text{ (q, CH}_3\text{)}, 25.4 \text{ (q, 3CH}_3\text{)}, 32.9 \text{ (t, CH}_2\text{)}, 37.5 \text{ (t, CH}_2\text{)}, 39.9 \text{ (s, C}_q\text{)}, 52.4 \text{ (q, OCH}_3\text{)}, 53.4 \text{ (q, OCH}_3\text{)}, 80.5 \text{ (s, C-2)}, 81.0 \text{ (s, C-3)}, 165.5 \text{ (s, CON)}, 171.4 \text{ (COO)}, 175.4 \text{ (s, COO)}. \]

HRMS: (C\text{\textsubscript{15}}H\text{\textsubscript{27}}NO\textsubscript{6}, M = 317.18 g/mol)
Calcd: 317.1786
Found: 317.1782

\textit{threo} (2S*,3S*) 2-Acetylamino-3-\textit{tert}-butyl-3-hydroxy-2-isopropyl-succinic acid dimethyl ester (\textit{threo}-68d) (sbo-574b)

According to the typical hydrolysis procedure, the bicyclic oxetane 56d (0.31 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.21 g of the product as a colorless oil.

Yield: 67 %

TLC: \(R_f = 0.49 \) (ethyl acetate/n-hexane 1:4).

\textbf{\textit{1H-NMR}}: (300 MHz, CDCl\textsubscript{3})
\[\delta_{\text{ppm}} = 0.89 \text{ (d, J = 6.8 Hz, 3H, CH}_3\text{)}, 0.94 \text{ (d, J = 6.6 Hz, 3H, CH}_3\text{)}, 1.05 \text{ (s, 9H, 3CH}_3\text{)}, 1.23 \text{ (m, 1H, CH)}, 2.12 \text{ (s, 3H, CH}_3\text{CO)}, 3.64 \text{ (s, 3H, OCH}_3\text{)}, 3.73 \text{ (s, 3H, OCH}_3\text{)}. \]

\textbf{\textit{13C-NMR}}: (75.5 MHz, CDCl\textsubscript{3})
\[\delta_{\text{ppm}} = 14.2 \text{ (q, CH}_3\text{)}, 17.2 \text{ (q, CH}_3\text{)}, 17.5 \text{ (q, CH}_3\text{)}, 24.6 \text{ (d, CH)}, 38.7 \text{ (s, C}_q\text{)}, 52.3 \text{ (q, OCH}_3\text{)}, 53.6 \text{ (q, OCH}_3\text{)}, 83.5 \text{ (s, C-2)}, 85.0 \text{ (s, C-3)}, 165.3 \text{ (s, CON)}, 171.4 \text{ (COO)}, 175.7 \text{ (s, COO)}. \]

\textit{threo} (2S*,3S*) 2-Acetylamino-3-\textit{tert}-butyl-3-hydroxy-2-isobutyl-succinic acid dimethyl ester (\textit{threo}-68e) (sbo-575c)
According to the typical hydrolysis procedure, the bicyclic oxetane 56e (0.33 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.24 g of the product as a colorless oil.

Yield: 73 %

TLC: $R_f = 0.52$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

δ ppm = 0.93 (d, $J = 6.8$ Hz, 6H, 2CH$_3$), 1.05 (s, 9H, 3CH$_3$), 1.23 (m, 1H, CH), 1.53 (m, 2H, CH$_2$), 2.12 (s, 3H, CH$_3$CO), 3.63 (s, 3H, OCH$_3$), 3.71 (s, 3H, OCH$_3$).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ ppm = 13.8 (q, CH$_3$), 19.3 (q, CH$_3$), 19.5 (q, CH$_3$), 26.4 (q, 3CH$_3$), 27.5 (d, CH), 39.5 (t, CH$_2$), 40.2 (s, Cq), 52.2 (q, OCH$_3$), 53.2 (q, OCH$_3$), 82.5 (s, C-2), 84.0 (s, C-3), 165.6 (s, CON), 171.8 (COO), 175.9 (s, COO).

threo (2S*,3S*) 2-Acetylamino-2-sec-butyl-3-tert-butyl-3-hydroxy-succinic acid dimethyl ester (*threo*-68f) (sbo-576b)

According to the typical hydrolysis procedure, the bicyclic oxetane 56f (0.33 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.29 g of the product as a colorless oil.

Yield: 87 %

TLC: $R_f = 0.50$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

δ ppm = 0.87 (t, $J = 7.5$ Hz, 3H, CH$_3$), 0.94 (d, $J = 6.8$ Hz, 3H, CH$_3$), 1.02 (s, 9H, 3CH$_3$), 1.23 (m, 1H, CH), 1.59 (m, 2H, CH$_2$), 2.02 (s, 3H, CH$_3$CO), 3.58 (s, 3H, OCH$_3$), 3.75 (s, 3H, OCH$_3$).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ ppm = 13.8 (q, CH$_3$), 14.2 (q, CH$_3$), 14.8 (q, CH$_3$), 21.6 (d, CH), 27.4 (q, 3CH$_3$), 32.9 (t, CH$_2$), 39.9 (s, Cq), 52.2 (q, OCH$_3$), 53.6 (q, OCH$_3$), 87.5 (s, C-2), 89.3 (s, C-3), 167.2 (s, CON), 173.4 (COO), 176.4 (s, COO).
Synthesis of *erythro* (S*,R*) & *threo* (S*,S*) α-acetamido-β-hydroxy succinic acid derivatives 69a-f:

threo (2S*,3S*) 2-Acetylamino-3-hydroxy-2-methyl-3-phenyl-succinic acid dimethyl ester (*threo*-69a) (sbo-359e)

According to the typical hydrolysis procedure, the bicyclic oxetane *exo*-58a (0.58 g, 2 mmol) was cleaved hydrolytically in 6h. Preparative chromatography yielded 0.51 g of the product as a colorless oil.

Yield: 87 %

TLC: R\(_f\) = 0.29 (ethyl acetate/n-hexane 1:4).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\begin{align*}
\delta_{ppm} &= 2.06 \text{ (s, 3H, CH\(_3\))},
2.11 \text{ (s, 3H, CH\(_3\)CO)},
3.09 \text{ (s, 3H, OCH\(_3\))},
3.77 \text{ (s, 3H, OCH\(_3\))},
7.32-7.38 \text{ (m, 5H, H\(_{arom}\)).}
\end{align*}\]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\begin{align*}
\delta_{ppm} &= 16.3 \text{ (q, CH\(_3\))},
28.1 \text{ (q, CH\(_3\))},
52.2 \text{ (q, OCH\(_3\))},
53.2 \text{ (q, OCH\(_3\))},
80.4 \text{ (s, C-2)},
90.9 \text{ (s, C-3)},
125.9 \text{ (d, CH\(_{arom}\))},
126.1 \text{ (d, CH\(_{arom}\))},
128.6 \text{ (d, CH\(_{arom}\))},
135.2 \text{ (s, Cq\(_{arom}\))},
168.7 \text{ (s, CON)},
169.6 \text{ (s, COO)},
174.7 \text{ (COO)}.
\end{align*}\]

HRMS: (C\(_{15}\)H\(_{19}\)NO\(_6\), M = 309.12 g/mol)

Calcd: 309.1176

Found: 309.1172

erythro (2S*,3R*) 2-Acetylamino-3-hydroxy-2-methyl-3-phenyl-succinic acid dimethyl ester (*erythro*-69a) (sbo-359c)

According to the typical hydrolysis procedure, the bicyclic oxetane *endo*-58a (0.29 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.28 g of the product as a colorless oil.

Yield: 91 %

TLC: R\(_f\) = 0.43 (ethyl acetate/n-hexane 1:4).
4. Experimental part

IR: (Film)
\[\tilde{\nu} \text{ (cm}^{-1}\text{)} = 3500, 3346, 2983, 2890, 1745, 1735, 1670, 1600, 1550, 1440, 1075, 980, 770. \]

\(^1\)H-NMR: (300 MHz, CDCl\textsubscript{3})
\[\delta_{\text{ppm}} = 1.97 \text{ (s, } \text{CH}_3\text{), 2.27 \text{ (s, } \text{CH}_2\text{CO), 3.65 \text{ (s, } \text{CH}_3\text{OCH}_3\text{), 3.83 \text{ (s, } \text{CH}_3\text{OCH}_3\text{), 7.23-7.31 \text{ (m, } 5\text{H, H}_\text{arom}).} \]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\textsubscript{3})
\[\delta_{\text{ppm}} = 18.2 \text{ (q, } \text{CH}_3\text{), 27.9 \text{ (q, } \text{CH}_3\text{), 52.3 \text{ (q, } \text{OCH}_3\text{), 52.7 \text{ (q, } \text{OCH}_3\text{), 74.6 \text{ (s, C-2), 83.6 \text{ (s, C-3), 126.1 \text{ (d, CH}_\text{arom}\text{), 127.0 \text{ (d, CH}_\text{arom}\text{), 135.5 \text{ (s, C}_\text{qarom}\text{), 168.8 \text{ (s, CON), 169.0 \text{ (s, COO), 172.0 \text{ (COO).}} \]

threo (2S*,3S*) 2-Acetylamino-2-ethyl-3-hydroxy-3-phenyl-succinic acid dimethyl ester
(threo-69b) (sbo-368a)

According to the typical hydrolysis procedure, the bicyclic oxetane exo-58b (0.61 g 2 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.54 g of the product as a colorless oil.

Yield: 82 %

TLC: \(R_f = 0.24 \) (ethyl acetate/n-hexane 1:4).

IR: (Film)
\[\tilde{\nu} \text{ (cm}^{-1}\text{)} = 3540, 3446, 2993, 2898, 1748, 1739, 1678, 1605, 1554, 1435, 1085, 980, 770. \]

\(^1\)H-NMR: (300 MHz, CDCl\textsubscript{3})
\[\delta_{\text{ppm}} = 1.10 \text{ (t, } J = 7.2 \text{ Hz, } \text{CH}_3\text{), 1.55 \text{ (m, } 1\text{H, CH), 2.25 \text{ (s, } 3\text{H, CH}_2\text{CO), 2.45 \text{ (m, } 1\text{H, CH), 3.05 \text{ (s, } 3\text{H, OCH}_3\text{), 3.78 \text{ (s, } 3\text{H, OCH}_3\text{), 7.27-7.55 \text{ (m, } 5\text{H, H}_\text{arom}).} \]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\textsubscript{3})
\[\delta_{\text{ppm}} = 9.8 \text{ (q, } \text{CH}_3\text{), 14.2 \text{ (q, } \text{CH}_3\text{), 28.9 \text{ (t, } \text{CH}_2\text{), 51.8 \text{ (q, } \text{OCH}_3\text{), 52.9 \text{ (q, } \text{OCH}_3\text{), 87.1 \text{ (s, C-2), 92.6 \text{ (s, C-3), 126.4 \text{ (d, CH}_\text{arom}\text{), 127.5 \text{ (d, CH}_\text{arom}\text{), 128.0 \text{ (d, CH}_\text{arom}\text{), 134.8 \text{ (s, C}_\text{qarom}\text{), 165.4 \text{ (s, CON), 168.7 \text{ (s, COO), 169.4 \text{ (s, COO).}} \]

HRMS: (C\textsubscript{16}H\textsubscript{21}NO\textsubscript{6}, M = 333.14 g/mol)
Calcd: 333.1363
4. Experimental part

Found: 333.1356

<chem>erythro</chem> (2S*,3R*) 2-Acetylamino-2-ethyl-3-hydroxy-3-phenyl-succinic acid dimethyl ester (erythro-69b) (sbo-368c)

According to the typical hydrolysis procedure, the bicyclic oxetane endo-58b (0.31 g, 1 mmol) was cleaved hydrolytically in 3 h. Preparative chromatography yielded 0.29 g of the product as a colorless oil.

Yield: 90 %

TLC: R_f = 0.54 (ethyl acetate/n-hexane 1:4).

¹H-NMR: (300 MHz, CDCl₃)

\[\delta_{ppm} = 0.96 \text{ (t, J = 7.4 Hz, 3H, CH}_3\text{)}, 1.73 \text{ (s, 3H, CH}_3\text{CO)}, 1.85 \text{ (m, 1H, CH)}, 2.07 \text{ (m, 1H, CH)}, 3.69 \text{ (s, 3H, OCH}_3\text{)}, 3.77 \text{ (s, 3H, OCH}_3\text{)}, 7.29-7.47 \text{ (m, 5H, H}_\text{arom} \text{)}.\]

¹³C-NMR: (75.5 MHz, CDCl₃)

\[\delta_{ppm} = 8.0 \text{ (q, CH}_3\text{)}, 14.3 \text{ (q, CH}_3\text{)}, 22.6 \text{ (t, CH}_2\text{)}, 51.9 \text{ (q, OCH}_3\text{)}, 52.7 \text{ (q, OCH}_3\text{)}, 77.2 \text{ (s, C-2)}, 82.0 \text{ (s, C-3)}, 126.4 \text{ (d, CH}_\text{arom} \text{)}, 127.9 \text{ (d, CH}_\text{arom} \text{)}, 128.8 \text{ (d, CH}_\text{arom} \text{)}, 135.1 \text{ (s, Cq}_\text{arom} \text{)}, 164.9 \text{ (s, CON)}, 165.5 \text{ (s, COO)}, 169.9 \text{ (s, COO)}.\]

<chem>threo</chem> (2S*,3S*) 2-Acetylamino-3-hydroxy-3-phenyl-2-propyl-succinic acid dimethyl ester (threo-69c) (sbo-361b)

According to the typical hydrolysis procedure, the bicyclic oxetane exo-58c (0.63 g, 2 mmol) was cleaved hydrolytically in 4 h. Preparative chromatography yielded 0.51 g of the product as a colorless oil.

Yield: 79 %

TLC: R_f = 0.23 (ethyl acetate/n-hexane 1:4).

¹H-NMR: (300 MHz, CDCl₃)

\[\delta_{ppm} = 0.92 \text{ (t, J = 7.5 Hz, 3H, CH}_3\text{)}, 1.44 \text{ (m, 2H, CH}_2\text{)}, 2.26 \text{ (s, 3H, CH}_3\text{CO)}, 2.34 \text{ (m, 2H, CH}_2\text{)}, 3.04 \text{ (s, 3H, OCH}_3\text{)}, 3.78 \text{ (s, 3H, OCH}_3\text{)}, 7.27-7.58 \text{ (m, 5H, H}_\text{arom} \text{)}.\]
4. Experimental part

13C-NMR: (75.5 MHz, CDCl$_3$

δ ppm = 14.2 (q, CH$_3$), 14.4 (q, CH$_3$), 18.7 (t, CH$_2$), 37.9 (t, CH$_2$), 51.8 (q, OCH$_3$),
52.9 (q, OCH$_3$), 86.6 (s, C-2), 92.6 (s, C-3), 126.5 (d, CH$_{arom}$), 128.4 (d, CH$_{arom}$),
134.8 (s, C$_{arom}$), 165.2 (s, CON), 168.7 (COO), 169.5 (s, COO).

erythro (2S*,3R*) 2-Acetylamino-3-hydroxy-3-phenyl-2-propyl-succinic acid dimethyl ester (erythro-69c) (sbo-361a)

According to the typical hydrolysis procedure, the bicyclic oxetane endo-58c (0.31 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.28 g of the product as a colorless oil.

Yield: 84 %

TLC: R_f = 0.46 (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$

δ ppm = 0.93 (t, J = 7.2 Hz, 3H, CH$_3$), 1.18 (m, 2H, CH$_2$), 1.53 (m, 2H, CH$_2$), 1.78 (s, 3H, CH$_3$(CO)), 3.71 (s, 3H, OCH$_3$), 3.73 (s, 3H, OCH$_3$), 7.26-7.36 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$

δ ppm = 14.1 (q, CH$_3$), 14.8 (q, CH$_3$), 17.9 (t, CH$_2$), 32.7 (t, CH$_2$), 52.8 (q, OCH$_3$),
53.3 (q, OCH$_3$), 72.7 (s, C-2), 81.7 (s, C-3), 126.3 (d, CH$_{arom}$), 128.1 (d, CH$_{arom}$),
138.3 (s, C$_{arom}$), 166.4 (s, CON), 170.7 (COO), 172.4 (s, COO).

threo (2S*,3S*) 2-Acetylamino-3-hydroxy-2-isopropyl-3-phenyl-succinic acid dimethyl ester (threo-69d) (sbo-362g)

According to the typical hydrolysis procedure, the bicyclic oxetane exo-58d (0.63 g, 2 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.58 g of the product as a colorless oil.

Yield: 86 %

TLC: R_f = 0.27 (ethyl acetate/n-hexane 1:4).
4. Experimental part

H-NMR: (300 MHz, CDCl$_3$)
\[
\delta_{ppm} = 0.86 \text{ (d, J = 6.9 Hz, 3H, CH$_3$)}, 0.98 \text{ (d, J = 6.9 Hz, 3H, CH$_3$)}, 1.21 \text{ (m, 1H, CH)}, 2.04 \text{ (s, 3H, CH$_3$CO)}, 3.28 \text{ (s, 3H, OCH$_3$)}, 3.77 \text{ (s, 3H, OCH$_3$)}, 7.24-7.58 \text{ (m, 5H, H$_{arom}$)}.
\]

C-NMR: (75.5 MHz, CDCl$_3$)
\[
\delta_{ppm} = 16.2 \text{ (q, CH$_3$)}, 18.0 \text{ (q, CH$_3$)}, 23.6 \text{ (q, CH$_3$)}, 34.7 \text{ (d, CH)}, 52.4 \text{ (q, OCH$_3$)}, 52.8 \text{ (q, OCH$_3$)}, 90.3 \text{ (s, C-2)}, 91.2 \text{ (s, C-3)}, 125.6 \text{ (d, CH$_{arom}$)}, 127.9 \text{ (d, CH$_{arom}$)}, 135.8 \text{ (s, C$_{qarom}$)}, 169.6 \text{ (s, CON)}, 170.1 \text{ (s, COO)}, 172.1 \text{ (s, COO)}.
\]

erythro (2S*,3R*) 2-Acetylamino-3-hydroxy-2-isopropyl-3-phenyl-succinic acid dimethyl ester (*erythro*-69d) (sbo-362g)

According to the typical hydrolysis procedure, the bicyclic oxetane *endo*-58d (0.31 g, 1 mmol) was cleaved hydrolytically in 3h. Preparative chromatography yielded 0.22 g of the product as a colorless oil.

Yield: 75 %

TLC: R$_f$ = 0.49 (ethyl acetate/n-hexane 1:4).

H-NMR: (300 MHz, CDCl$_3$)
\[
\delta_{ppm} = 0.91 \text{ (d, J = 6.8 Hz, 3H, CH$_3$)}, 1.23 \text{ (d, J = 6.9 Hz, 3H, CH$_3$)}, 1.68 \text{ (s, 3H, CH$_3$CO)}, 1.85 \text{ (septet, J = 6.8 Hz, 1H, CH)}, 3.67 \text{ (s, 3H, OCH$_3$)}, 3.85 \text{ (s, 3H, OCH$_3$)}, 7.23-7.46 \text{ (m, 5H, H$_{arom}$)}.
\]

C-NMR: (75.5 MHz, CDCl$_3$)
\[
\delta_{ppm} = 13.9 \text{ (q, CH$_3$)}, 15.8 \text{ (q, CH$_3$)}, 19.1 \text{ (q, CH$_3$)}, 32.6 \text{ (d, CH)}, 51.6 \text{ (q, OCH$_3$)}, 53.1 \text{ (q, OCH$_3$)}, 83.1 \text{ (s, C-2)}, 90.4 \text{ (s, C-3)}, 126.7 \text{ (d, CH$_{arom}$)}, 127.4 \text{ (d, CH$_{arom}$)}, 135.6 \text{ (s, C$_{qarom}$)}, 168.1 \text{ (s, CON)}, 170.2 \text{ (s, COO)}, 171.4 \text{ (s, COO)}.
\]

threo (2S*,3S*) 2-Acetylamino-3-hydroxy-2-isobutyl-3-phenyl-succinic acid dimethyl ester (*threo*-69e) (sbo-366b)
According to the typical hydrolysis procedure, the bicyclic oxetane \textit{exo-58e} (0.67 g, 2 mmol) was cleaved hydrolytically in 6h. Preparative chromatography yielded 0.59 g of the product as a colorless oil.

\textbf{Yield: 89 \%}

\textbf{TLC: }R_f = 0.28 \text{ (ethyl acetate/n-hexane 1:4).}

1H-NMR: (300 MHz, CDCl$_3$)
\[\delta_{ppm} = 0.88 \text{ (d, } J = 6.6 \text{ Hz, } 3\text{H, CH$_3$}), 0.95 \text{ (d, } J = 6.6 \text{ Hz, } 3\text{H, CH$_3$}), 1.35 \text{ (dd, } J = 13.3, 5.7 \text{ Hz, } 1\text{H, CH}), 1.80 \text{ (septet, } J = 6.6 \text{ Hz, } 1\text{H, CH}), 2.27 \text{ (s, } 3\text{H, CH$_2$CO}), 2.37 \text{ (dd, } J = 13.3, 6.1 \text{ Hz, } 1\text{H, CH}), 3.05 \text{ (s, } 3\text{H, OCH$_3$}), 3.78 \text{ (s, } 3\text{H, OCH$_3$}), 7.25-7.55 \text{ (m, } 5\text{H, H$_{arom}$}). \]

13C-NMR: (75.5 MHz, CDCl$_3$)
\[\delta_{ppm} = 14.2 \text{ (q, } CH$_3$), 23.3 \text{ (q, } CH$_3$), 24.5 \text{ (q, } CH$_3$), 25.8 \text{ (d, CH)}, 43.9 \text{ (t, } CH$_2$), 51.8 \text{ (q, OCH$_3$), 52.8 \text{ (q, OCH$_3$), 86.5 \text{ (s, } C-2), 93.0 \text{ (s, } C-3), 125.6 \text{ (d, CH)}, 126.4 \text{ (d, CH$_{arom}$), 127.5 \text{ (d, CH$_{arom}$), 134.8 \text{ (s, } C_{arom}), 164.6 \text{ (s, CON)}, 168.6 \text{ (s, COO), 170.0 \text{ (s, COO).}}} \]

HRMS: (C$_{18}$H$_{25}$NO$_6$, M = 351.17 g/mol)

Calcd: 351.1657
Found: 351.1652

\textit{erythro} \textit{(2S*,3R*) 2-Acetylamino-3-hydroxy-2-isobutyl-3-phenyl-succinic acid dimethyl ester (erythro-69e)} (sbo-366b)

According to the typical hydrolysis procedure, the bicyclic oxetane \textit{endo-58e} (0.33 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.3 g of the product as a colorless oil.

\textbf{Yield: 85 \%}

\textbf{TLC: }R_f = 0.56 \text{ (ethyl acetate/n-hexane 1:4).}

1H-NMR: (300 MHz, CDCl$_3$)
\[\delta_{ppm} = 0.81 \text{ (d, } J = 6.6 \text{ Hz, } 3\text{H, CH$_3$}), 0.92 \text{ (d, } J = 6.6 \text{ Hz, } 3\text{H, CH$_3$}), 1.61 \text{ (dd, } J = 13.4, 5.8 \text{ Hz, } 1\text{H, CH}), 1.72 \text{ (s, } 3\text{H, CH$_2$CO}), 1.83 \text{ (m, } 1\text{H, CH}), 2.02 \text{ (dd, } J = 13.4, 6.1 \text{ Hz, } 1\text{H, CH}), 3.69 \text{ (s, } 3\text{H, OCH$_3$}), 3.76 \text{ (s, } 3\text{H, OCH$_3$}), 7.26-7.37 \text{ (m, } 5\text{H, H$_{arom}$}). \]

13C-NMR: (75.5 MHz, CDCl$_3$)
4. Experimental part

\[\delta_{\text{ppm}} = 14.4 \text{ (q, CH}_3\text{), 23.1 \text{ (q, CH}_3\text{), 24.1 \text{ (q, CH}_3\text{), 25.6 \text{ (d, CH), 37.1 \text{ (t, CH}_2\text{), 51.7 \text{ (q, OCH}_3\text{), 52.3 \text{ (q, OCH}_3\text{), 83.1 \text{ (s, C-2), 93.1 \text{ (s, C-3), 126.7 \text{ (d, CH}_\text{arom}\text{), 127.3 \text{ (d, CH}_\text{arom}\text{), 129.2 \text{ (d, CH}_\text{arom}\text{), 135.7 \text{ (s, C}_\text{arom}\text{), 165.1 \text{ (s, CON), 168.6 \text{ (s, COO), 171.0 (s, COO).}}\]

threo (2S*,3S*) 2-Acetylamino-2-sec-butyl-3-hydroxy-3-phenyl-succinic acid dimethyl ester (**threo-69f**) (sbo-367)

According to the typical hydrolysis procedure, the bicyclic oxetane **exo-58f** (0.67 g, 2 mmol) was cleaved hydrolytically in 6h. Preparative chromatography yielded 0.62 g of the product as a colorless oil.

Yield: 92 %

TLC: \(R_f = 0.26 \) (ethyl acetate/n-hexane 1:4).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 0.88 \text{ (t, J = 7.5 Hz, 3H, CH}_3\text{), 0.95 \text{ (d, J = 6.6 Hz, 3H, CH}_3\text{), 1.23 \text{ (m, 2H, CH}_2\text{), 1.35 \text{ (m, 1H, CH), 2.26 \text{ (s, 3H, CH}_3\text{CO), 3.05 \text{ (s, 3H, OCH}_3\text{), 3.78 \text{ (s, 3H, OCH}_3\text{), 7.27-7.56 \text{ (m, 5H, H}_\text{arom}.}}\]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 11.5 \text{ (q, CH}_3\text{), 13.5 \text{ (q, CH}_3\text{), 14.2 \text{ (q, CH}_3\text{), 18.7 \text{ (d, CH), 37.9 \text{ (t, CH}_2\text{), 51.8 \text{ (q, OCH}_3\text{), 52.9 \text{ (q, OCH}_3\text{), 86.6 \text{ (s, C-2), 92.6 \text{ (s, C-3), 125.7 \text{ (d, CH}_\text{arom}\text{), 127.3 \text{ (d, CH}_\text{arom}\text{), 128.6 \text{ (d, CH}_\text{arom}\text{), 135.9 \text{ (s, C}_\text{arom}\text{), 165.2 \text{ (s, CON), 168.8 (s, COO), 169.5 (COO).}}\]

erythro (2S*,3R*) 2-Acetylamino-2-sec-butyl-3-hydroxy-3-phenyl- succinic acid dimethyl ester (**erythro-69f**) (sbo-367)

According to the typical hydrolysis procedure, the bicyclic oxetane **endo-58f** (0.33 g, 1 mmol) was cleaved hydrolytically in 5h. Preparative chromatography yielded 0.28 g of the product as a colorless oil.
4. Experimental part

Yield: 80 %

TLC: $R_f = 0.56$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

\[\delta_{ppm} = 0.91 \text{ (t, J = 7.2 Hz, 3H, CH}_3\text{)}, 0.97 \text{ (d, J = 6.6 Hz, 3H, CH}_3\text{)}, 1.47-1.55 \text{ (m, 2H, CH}_2\text{)}, 1.69 \text{ (m, 1H, CH)}, 2.21 \text{ (s, 3H, CH}_3\text{CO)}, 3.67 \text{ (s, 3H, OCH}_3\text{)}, 3.78 \text{ (s, 3H, OCH}_3\text{)}, 7.28-7.54 \text{ (m, 5H, H}_\text{arom}\text{).}

13C-NMR: (75.5 MHz, CDCl$_3$)

\[\delta_{ppm} = 12.3 \text{ (q, CH}_3\text{)}, 14.1 \text{ (q, CH}_3\text{)}, 14.7 \text{ (q, CH}_3\text{)}, 19.2 \text{ (d, CH)}, 39.1 \text{ (t, CH}_2\text{)}, 51.6 \text{ (q, OCH}_3\text{)}, 52.3 \text{ (q, OCH}_3\text{)}, 86.2 \text{ (s, C-2)}, 93.5 \text{ (s, C-3)}, 126.7 \text{ (d, CH}_\text{arom}\text{)}, 129.1 \text{ (d, CH}_\text{arom}\text{)}, 134.5 \text{ (s, C}_\text{q-arom}\text{)}, 166.1 \text{ (s, CON)}, 169.3 \text{ (s, COO)}, 172.1 \text{ (COO).}

Synthesis of erythro (S*,R*) & threo (S*,S*) α-acetamido-β-hydroxy succinic acid derivatives 70a-f:

threo (2S*,3S*) 2-Acetylamino-3-hydroxy-2-methyl-3-phenyl-succinic acid 4-ethyl ester 1-methyl ester (threo-70a) (sbo-351b)

According to the typical hydrolysis procedure, the bicyclic oxetane exo-60a (0.61 g, 2 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.58 g of the product as a colorless oil.

Yield: 90 %

TLC: $R_f = 0.29$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

\[\delta_{ppm} = 1.27 \text{ (t, J = 6.6 Hz, 3H, CH}_3\text{)}, 1.66 \text{ (s, 3H, CH}_3\text{)}, 2.23 \text{ (s, 3H, CH}_3\text{CO)}, 3.05 \text{ (s, 3H, OCH}_3\text{)}, 4.22 \text{ (q, J = 6.6 Hz, 2H, OCH}_2\text{)}, 7.25-7.35 \text{ (m, 5H, H}_\text{arom}\text{).}

13C-NMR: (75.5 MHz, CDCl$_3$)

\[\delta_{ppm} = 14.3 \text{ (q, CH}_3\text{)}, 21.7 \text{ (q, CH}_3\text{)}, 51.8 \text{ (q, OCH}_3\text{)}, 62.3 \text{ (t, OCH}_2\text{)}, 82.2 \text{ (s, C-2)}, 92.6 \text{ (s, C-3)}, 126.06 \text{ (d, CH}_\text{arom}\text{)}, 127.6 \text{ (d, CH}_\text{arom}\text{)}, 128.2 \text{ (d, CH}_\text{arom}\text{)}, 135.2 \text{ (s, C}_\text{q-arom}\text{)}, 168.3 \text{ (s, CON)}, 169.2 \text{ (s, COO)}, 170.2 \text{ (COO).}

Anal: (C$_{16}$H$_{21}$NO$_6$, M = 323.34 g/mol)

Calcd: C 59.43 H 6.55 N 4.33

Found: C 59.73 H 6.42 N 4.33
erythro (2S*,3R*) 2-Acetylamino-3-hydroxy-2-methyl-3-phenyl-succinic acid 4-ethyl ester 1-methyl ester (erythro-70a) (sbo-351a)

According to the typical hydrolysis procedure, the bicyclic oxetane endo-60a (0.31 g, 1 mmol) was cleaved hydrolytically in 3h. Preparative chromatography yielded 0.26 g of the product as a colorless oil.

Yield: 80 %

TLC: R_f = 0.46 (ethyl acetate/n-hexane 1:4).

^1H-NMR: (300 MHz, CDCl_3)
\[\delta_{ppm} = 1.25 \text{ (t, J = 7.2 Hz, 3H, CH}_3\text{)}, 1.50 \text{ (s, 3H, CH}_3\text{)}, 2.07 \text{ (s, 3H, CH}_3\text{CO)}, 3.66 \text{ (s, 3H, OCH}_3\text{)}, 4.23 \text{ (q, J = 7.2 Hz, 2H, OCH}_2\text{)}, 7.25-7.34 \text{ (m, 5H, H}_\text{arom}.\text{)}

^13C-NMR: (75.5 MHz, CDCl_3)
\[\delta_{ppm} = 14.8 \text{ (q, CH}_3\text{)}, 15.7 \text{ (q, CH}_3\text{)}, 51.9 \text{ (q, OCH}_3\text{)}, 61.8 \text{ (t, OCH}_2\text{)}, 78.5 \text{ (s, C-2), 91.3 \text{ (s, C-3), 126.7 \text{ (d, CH}_\text{arom}.\text{)}, 127.3 \text{ (d, CH}_\text{arom}.\text{)}, 135.2 \text{ (s, Cq}_\text{arom}.\text{)}, 165.3 \text{ (s, CON), 168.3 \text{ (s, COO), 169.2 (COO).}}

threo (2S*,3S*) 2-Acetylamino-2-ethyl-3-hydroxy-3-phenyl-succinic acid 4-ethyl ester 1-methyl ester (threo-70b) (sbo-371a)

According to the typical hydrolysis procedure, the bicyclic oxetane exo-60b (0.64 g, 2 mmol) was cleaved hydrolytically in 6h. Preparative chromatography yielded 0.55 g of the product as a colorless oil.

Yield: 84 %

TLC: R_f = 0.23 (ethyl acetate/n-hexane 1:4).

^1H-NMR: (300 MHz, CDCl_3)
\[\delta_{ppm} = 0.72 \text{ (t, J = 7.5 Hz, 3H, CH}_3\text{)}, 1.04 \text{ (t, J = 7.5 Hz, 3H, CH}_3\text{)}, 1.52 \text{ (sextet, J = 7.5 Hz, 1H, CH)}, 2.26 \text{ (s, 3H, CH}_3\text{CO)}, 2.41 \text{ (sextet, J = 7.5 Hz, 1H, CH)}, 3.04 \text{ (s, 3H, OCH}_3\text{)}, 4.23 \text{ (q, J = 7.5 Hz, 2H, OCH}_2\text{)}, 7.25-7.58 \text{ (m, 5H, H}_\text{arom}.\text{)}

^13C-NMR: (75.5 MHz, CDCl_3)
4. Experimental part

\[\delta_{\text{ppm}} = 8.0 \text{ (q, CH}_3\text{), 14.0 \text{ (q, CH}_3\text{), 21.7 \text{ (q, CH}_3\text{), 22.5 \text{ (t, CH}_2\text{), 51.7 \text{ (q, OCH}_3\text{), 62.2 \text{ (t, OCH}_2\text{), 91.6 \text{ (s, C-2), 92.4 \text{ (s, C-3), 126.4 \text{ (d, CH}_\text{arom}\text{), 127.5 \text{ (d, CH}_\text{arom}\text{), 128.0 \text{ (d, CH}_\text{arom}\text{), 134.6 \text{ (s, C}_q\text{arom}\text{), 168.2 \text{ (s, CON}, 168.7 \text{ (s, COO), 169.4 \text{ (s, COO).}} \]

MS: (EI, 70 eV)
\[m/z \% = 320 (M^+\text{-OH}, 5), 309 (M^+\text{-CH}_2=\text{CH}_2, 10), 294 (M^+\text{-COMe}, 15), 277 (7), 264 (25), 260 (12), 244 (5), 159 (53), 127 (26), 105 (100), 91 (20), 77 (30), 51 (45). \]

HRMS: (C_{17}H_{23}NO_6, M = 337.15 g/mol)
Calcd: 337.1519
Found: 337.1511

erythro (2S*,3R*) 2-Acetylamino-2-ethyl-3-hydroxy-3-phenyl-succinic acid 4-ethyl ester 1-methyl ester (**erythro-70b**) (sbo-371c)

According to the typical hydrolysis procedure, the bicyclic oxetane **endo-60b** (0.32 g, 1 mmol) was cleaved hydrolytically in 3h. Preparative chromatography yielded 0.28 g of the product as a colorless oil.

Yield: 83%

TLC: \(R_f = 0.53 \) (ethyl acetate/n-hexane 1:4).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))
\[\delta_{\text{ppm}} = 0.71 \text{ (t, J = 7.5 Hz, 3H, CH}_3\text{), 1.23 \text{ (t, J = 7.5 Hz, 3H, CH}_3\text{), 1.51 \text{ (sextet, J = 7.5 Hz, 1H, CH), 1.82 \text{ (sextet, J = 7.5 Hz, 1H, CH), 2.16 \text{ (s, 3H, CO}_2\text{CH}, 3.76 \text{ (s, 3H, OCH}_3\text{), 4.20 \text{ (q, J = 7.5 Hz, 2H, OCH}_2\text{), 7.23-7.32 \text{ (m, 5H, H}_\text{arom}.}} \]

\(^13\)C-NMR: (75.5 MHz, CDCl\(_3\))
\[\delta_{\text{ppm}} = 7.9 \text{ (q, CH}_2\text{), 8.2 \text{ (q, CH}_3\text{), 14.6 \text{ (q, CH}_3\text{), 22.4 \text{ (t, CH}_2\text{), 51.6 \text{ (q, OCH}_3\text{), 61.7 \text{ (t, OCH}_2\text{), 90.8 \text{ (s, C-2), 92.3 \text{ (s, C-3), 126.2 \text{ (d, CH), 127.9 \text{ (d, CH), 128.8 \text{ (d, CH), 134.8 \text{ (s, C}_q\text{), 167.9 \text{ (s, CON}, 169.1 \text{ (s, COO), 171.2 \text{ (s, COO).}} \]

threo (2S*,3S*) 2-Acetylamino-3-hydroxy-3-phenyl-2-propyl-succinic acid 4-ethyl ester 1-methyl ester (**threo-70c**) (sbo-354b)

436
4. Experimental part

According to the typical hydrolysis procedure, the bicyclic oxetane *exo*-60c (0.66 g, 2 mmol) was cleaved hydrolytically in 6h. Preparative chromatography yielded 0.57 g of the product as a colorless oil.

Yield: 88 %

TLC: $R_f = 0.53$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 1.23$ (t, $J = 7.4$ Hz, 3H, CH$_3$), 1.25 (t, $J = 7.2$ Hz, 3H, CH$_3$), 1.51 (m, 2H, CH$_2$), 2.23 (s, 3H, CH$_3$CO), 2.33 (m, 2H, CH$_2$), 3.02 (s, 3H, OCH$_3$), 4.21 (q, $J = 7.4$ Hz, 2H, OCH$_2$), 6.39 (s, 1H, NH), 7.25-7.56 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 14.0$ (q, CH$_3$), 14.2 (q, CH$_3$), 14.8 (q, CH$_3$), 18.7 (t, CH$_2$), 37.9 (t, CH$_2$), 51.8 (q, OCH$_3$), 62.2 (t, OCH$_2$), 81.8 (s, C-2), 91.6 (s, C-3), 126.5 (d, CH$_{arom}$), 128.4 (d, CH$_{arom}$), 134.9 (s, C$_{q arom}$), 166.2 (s, CON), 168.1 (COO), 169.6 (s, COO).

erythro $\left(2S^*,3R^*\right)$ 2-Acetylamino-3-hydroxy-3-phenyl-2-propyl-succinic acid 4-ethyl ester 1-methyl ester (*erythro*-70c) (sbo-354)

According to the typical hydrolysis procedure, the bicyclic oxetane *endo*-60c (0.33 g, 1 mmol) was cleaved hydrolytically in 3.5h. Preparative chromatography yielded 0.26 g of the product as a colorless oil.

Yield: 84 %

TLC: $R_f = 0.43$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 1.25$ (t, $J = 7.4$ Hz, 3H, CH$_3$), 1.27 (t, $J = 7.2$ Hz, 3H, CH$_3$), 1.53 (m, 2H, CH$_2$), 2.17 (s, 3H, CH$_3$CO), 2.45 (m, 2H, CH$_2$), 3.76 (s, 3H, OCH$_3$), 4.27 (q, $J=7.4$ Hz, 2H, OCH$_2$), 6.21 (s, 1H, NH), 7.27-7.48 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)
4. Experimental part

\[\delta_{ppm} = 13.9 \text{ (q, CH}_3\text{)}, 14.2 \text{ (q, CH}_3\text{), 15.0 \text{ (q, CH}_3\text{), 19.0 \text{ (t, CH}_2\text{), 36.9 \text{ (t, CH}_2\text{), 51.9} \]
\[\text{ (q, OCH}_3\text{), 61.9 \text{ (t, OCH}_2\text{), 82.1 \text{ (s, C-2), 91.7 \text{ (s, C-3), 127.1 \text{ (d, CH}_arom\text{), 128.9 \text{ (d, CH}_arom\text{), 134.6 \text{ (s, C}_q\text{arom}, 169.1 \text{ (s, CON), 170.1 \text{ (COO), 171.3 \text{ (s, COO).}}}}\]

threo (2S*,3S*) 2-Acetylamino-3-hydroxy-2-isopropyl-3-phenyl-succinic acid 4-ethyl ester 1-methyl ester (threo-70d) (sbo-352)

According to the typical hydrolysis procedure, the bicyclic oxetane **exo-60d** (0.66 g, 2 mmol) was cleaved hydrolytically in 5h. Preparative chromatography yielded 0.6 g of the product as a colorless oil.

Yield: 89 %

TLC: \(R_f = 0.26 \) (ethyl acetate/n-hexane 1:4).

\[^1\text{H-NMR: (300 MHz, CDCl}_3\text{)} \]
\[\delta_{ppm} = 0.74 \text{ (d, J = 6.6 Hz, 3H, CH}_3\text{), 0.90 \text{ (d, J = 6.8 Hz, 3H, CH}_3\text{), 1.31 \text{ (t, J = 7.2} \]
\[\text{Hz, 3H, CH}_3\text{), 2.29 \text{ (s, 3H, CH}_3\text{CO), 2.96 \text{ (septet, J = 6.6 Hz, 1H, CH), 3.11 \text{ (s, 3H, OCH}_3\text{), 4.28 \text{ (q, J = 7.2 Hz, 2H, OCH}_2\text{), 7.25-7.38 \text{ (m, 5H, H}_arom\text{).}}}}\]

\[^1\text{C-NMR: (75.5 MHz, CDCl}_3\text{)} \]
\[\delta_{ppm} = 13.8 \text{ (q, CH}_3\text{), 13.9 \text{ (q, CH}_3\text{), 15.9 \text{ (q, CH}_3\text{), 19.1 \text{ (q, CH}_3\text{), 32.5 \text{ (d, CH), 51.5} \]
\[\text{ (q, OCH}_3\text{), 62.1 \text{ (t, OCH}_2\text{), 90.3 \text{ (s, C-2), 91.2 \text{ (s, C-3), 125.6 \text{ (d, CH}_arom\text{), 127.9 \text{ (d, CH}_arom\text{), 135.8 \text{ (s, C}_q\text{arom}, 163.4 \text{ (s, CON), 167.5 \text{ (s, COO), 170.2 \text{ (s, COO).}}}}\]

erythro (2S*,3R*) 2-Acetylamino-3-hydroxy-2-isopropyl-3-phenyl-succinic acid 4-ethyl ester 1-methyl ester (erythro-70d) (sbo-352a)

According to the typical hydrolysis procedure, the bicyclic oxetane **endo-60d** (0.33 g, 1 mmol) was cleaved hydrolytically in 3h. Preparative chromatography yielded 0.32 g of the product as a colorless oil.

Yield: 90 %

TLC: \(R_f = 0.46 \) (ethyl acetate/n-hexane 1:4).
4. Experimental part

\[^1 \text{H-NMR:} \ (300 \text{ MHz, CDCl}_3) \]
\[\delta_{\text{ppm}} = 0.65 \ (d, J = 6.8 \text{ Hz}, 3H, \text{CH}_3), \ 0.82 \ (d, J = 6.8 \text{ Hz}, 3H, \text{CH}_3), \ 0.98 \ (t, J = 7.4 \text{ Hz}, 3H, \text{CH}_3), \ 2.12 \ (s, 3H, \text{CH}_3\text{CO}), \ 2.71 \ (\text{septet, } J = 6.8 \text{ Hz}, 1H, \text{CH}), \ 3.74 \ (s, 3H, \text{OCH}_3), \ 4.28 \ (q, J = 7.4 \text{ Hz}, 2H, \text{OCH}_2), \ 7.26-7.79 \ (m, 5H, \text{H}_{\text{arom}}). \]

\[^{13} \text{C-NMR:} \ (75.5 \text{ MHz, CDCl}_3) \]
\[\delta_{\text{ppm}} = 13.7 \ (q, \text{CH}_3), \ 14.0 \ (q, \text{CH}_3), \ 17.2 \ (q, \text{CH}_3), \ 18.9 \ (q, \text{CH}_3), \ 32.4 \ (d, \text{CH}), \ 51.4 \ (q, \text{OCH}_3), \ 61.4 \ (t, \text{OCH}_2), \ 85.9 \ (s, \text{C}-2), \ 92.7 \ (s, \text{C}-3), \ 126.7 \ (d, \text{CH}_{\text{arom}}), \ 127.4 \ (d, \text{CH}_{\text{arom}}), \ 135.1 \ (s, \text{C}_q_{\text{arom}}), \ 169.2 \ (s, \text{CON}), \ 170.2 \ (s, \text{COO}), \ 172.8 \ (s, \text{COO}). \]

Anal: \((C_{18}H_{25}NO_6, M = 351.2 \text{ g/mol})\)

Calcd: C 61.52 H 7.17 N 3.99
Found: C 61.98 H 7.11 N 4.31

threo (2S*,3S*) 2-Acetylamino-3-hydroxy-2-isobutyl-3-phenyl-succinic acid 4-ethyl ester 1-methyl ester (**threo-70e**) (sbo-355b)

According to the typical hydrolysis procedure, the bicyclic oxetane **exo-60e** (0.69 g, 2 mmol) was cleaved hydrolytically in 6 h. Preparative chromatography yielded 0.61 g of the product as a colorless oil.

Yield: 87 %

TLC: \(R_f = 0.29\) (ethyl acetate/n-hexane 1:4).

IR: (Film)
\[\tilde{\nu} \ (\text{cm}^{-1}) = 3490, 3360, 2993, 2967, 1755, 1729, 1680, 1604, 1550, 1440, 1075, 980, 770. \]

\[^1 \text{H-NMR:} \ (300 \text{ MHz, CDCl}_3) \]
\[\delta_{\text{ppm}} = 0.86 \ (d, J = 6.8 \text{ Hz}, 3H, \text{CH}_3), \ 0.97 \ (d, J = 6.6 \text{ Hz}, 3H, \text{CH}_3), \ 1.28 \ (t, J = 7.2 \text{ Hz}, 3H, \text{CH}_3), \ 1.39 \ (dd, J = 13.4, 5.9 \text{ Hz}, 1H, \text{CH}), \ 1.80 \ (\text{septet, } J = 6.6 \text{ Hz}, 1H, \text{CH}), \ 2.26 \ (s, 3H, \text{CH}_3\text{CO}), \ 2.38 \ (dd, J = 13.4, 6.0 \text{ Hz}, 1H, \text{CH}), \ 3.05 \ (s, 3H, \text{OCH}_3), \ 4.25 \ (q, J = 7.2 \text{ Hz}, 2H, \text{OCH}_2), \ 7.25-7.56 \ (m, 5H, \text{H}_{\text{arom}}). \]

\[^{13} \text{C-NMR:} \ (75.5 \text{ MHz, CDCl}_3) \]
\[\delta_{\text{ppm}} = 13.9 \ (q, \text{CH}_3), \ 14.2 \ (q, \text{CH}_3), \ 23.3 \ (q, \text{CH}_3), \ 24.5 \ (q, \text{CH}_3), \ 25.8 \ (d, \text{CH}), \ 43.9 \ (t, \text{CH}_2), \ 51.7 \ (q, \text{OCH}_3), \ 62.2 \ (t, \text{OCH}_2), \ 86.4 \ (s, \text{C}-2), \ 92.9 \ (s, \text{C}-3), \ 125.6 \ (d, \text{CH}_2). \]
4. Experimental part

\[\text{CH}_{\text{arom}}, 126.4 \text{ (d, CH}_{\text{arom}}, \text{ 127.5 (d, CH}_{\text{arom}}, \text{ 134.8 (s, Cq}_{\text{arom}}, \text{ 164.7 (s, CON)}, \text{ 168.1 (s, COO)}, \text{ 170.1 (s, COO}).} \]

erythro \((2S^*,3R^*)\) 2-Acetylamino-3-hydroxy-2-isobutyl-3-phenyl-succinic acid 4-ethyl ester 1-methyl ester (**erythro-70e**) (sbo-355)

According to the typical hydrolysis procedure, the bicyclic oxetane **endo-60e** (0.35 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.32 g of the product as a colorless oil.

Yield: 88 %

TLC: \(R_f = 0.56 \) (ethyl acetate/n-hexane 1:4).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 0.75 \text{ (d, } J = 6.6 \text{ Hz, 3H, CH}_3), 0.90 \text{ (d, } J = 6.8 \text{ Hz, 3H, CH}_3), 1.27 \text{ (t, } J = 7.5 \text{ Hz, 3H, CH}_3), 1.41 \text{ (septet, } J = 6.6 \text{ Hz, 1H, CH}), 1.60 \text{ (m, 2H, CH}_2\), 2.10 \text{ (s, 3H, CH}_3\text{CO}), 3.78 \text{ (s, 3H, OCH}_3\), 4.25 \text{ (q, } J = 7.5 \text{ Hz, 2H, CH}_2\), 7.26-7.35 \text{ (m, 5H, H}_{\text{arom}}).} \]

\(^13\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 13.9 \text{ (q, CH}_3\), 14.2 \text{ (q, CH}_3\), 22.6 \text{ (q, CH}_3\), 23.7 \text{ (q, CH}_3\), 25.7 \text{ (d, CH), 37.1 (t, CH}_2\), 51.8 \text{ (q, OCH}_3\), 61.7 \text{ (t, OCH}_2\), 83.5 \text{ (s, C-2), 91.6 (s, C-3), 126.7 (d, CH}_{\text{arom}}\), 127.3 \text{ (d, CH}_{\text{arom}}\), 129.2 \text{ (d, CH}_{\text{arom}}\), 135.7 \text{ (s, Cq}_{\text{arom}}, 165.7 \text{ (s, CON), 169.2 (s, COO), 171.3 (s, COO).} \]

threo \((2S^*,3S^*)\) 2-Acetylamino-2-sec-butyl-3-hydroxy-3-phenyl-succinic acid 4-ethyl ester 1-methyl ester (**threo-70f**) (sbo-356a)

According to the typical hydrolysis procedure, the bicyclic oxetane **exo-60f** (0.69 g, 2 mmol) was cleaved hydrolytically in 6h. Preparative chromatography yielded 0.61 g of the product as a colorless oil.

Yield: 87 %
4. Experimental part

TLC: Rf = 0.23 (ethyl acetate/n-hexane 1:4).

\[\text{H-NMR:} (300 \text{ MHz, CDCl}_3)\]
\[
\delta_{\text{ppm}} = 0.74 (d, J = 6.3 \text{ Hz, CH}_3), 0.88 (t, J = 6.6 \text{ Hz, CH}_3), 1.23 (t, J = 7.5 \text{ Hz, CH}_3), 1.25 (m, 1H, CH), 1.54 (m, 2H, CH), 2.23 (s, 3H, \text{CH}_3CO), 3.05 (s, 3H, OCH), 4.26 (q, J = 7.5 \text{ Hz, 2H, OCH}_2), 7.27-7.35 (m, 5H, \text{H}_{\text{arom}}).
\]

\[\text{C-NMR:} (75.5 \text{ MHz, CDCl}_3)\]
\[
\delta_{\text{ppm}} = 11.2 (q, \text{CH}_3), 12.2 (q, \text{CH}_3), 13.9 (q, \text{CH}_3), 14.7 (q, \text{CH}_3), 22.1 (d, \text{CH}), 37.8 (t, \text{CH}_2), 51.5 (q, \text{OCH}_3), 62.2 (t, \text{OCH}_2), 86.5 (s, C-2), 92.9 (s, C-3), 125.7 (d, \text{CH}_{\text{arom}}), 127.3 (d, \text{CH}_{\text{arom}}), 128.6 (d, \text{CH}_{\text{arom}}), 135.9 (s, \text{C}_q\text{arom}), 167.3 (s, \text{CON}), 169.1 (s, \text{COO}), 172.3 (\text{COO}).
\]

\[\text{MS:} (\text{EI, 70 eV})\]
\[
m/z (\%) = 354 (4), 316 (10), 277 (18), 169 (50), 141 (45), 140 (100), 105 (43), 91 (20), 77 (30), 59 (10).
\]

\[\text{HRMS:} (\text{C}_{19}\text{H}_{27}\text{NO}_6, M = 365.18 \text{ g/mol})\]

\text{erythro (2S*,3R*) 2-Acetylamino-2-sec-butyl-3-hydroxy-3-phenyl-succinic acid 4-ethyl ester 1-methyl ester (erythro-70f) (sbo-356b)}

According to the typical hydrolysis procedure, the bicyclic oxetane \text{endo-60f} (0.35 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.3 g of the product as a colorless oil.

\text{Yield: 82 %}

TLC: Rf = 0.59 (ethyl acetate/n-hexane 1:4).

\[\text{H-NMR:} (300 \text{ MHz, CDCl}_3)\]
\[
\delta_{\text{ppm}} = 0.84 (d, J = 6.6 \text{ Hz, CH}_3), 0.94 (t, J = 7.4 \text{ Hz, CH}_3), 1.26 (m, 1H, CH), 1.27 (t, J = 7.2 \text{ Hz, CH}_3), 1.62 (m, 2H, CH), 2.12 (s, 3H, \text{CH}_3CO), 3.69 (s, 3H, OCH), 4.25 (q, J = 7.2 \text{ Hz, 2H, OCH}_2), 7.28-7.36 (m, 5H, \text{H}_{\text{arom}}).
\]

\[\text{C-NMR:} (75.5 \text{ MHz, CDCl}_3)\]
\[
\delta_{\text{ppm}} = 11.3 (q, \text{CH}_3), 12.3 (q, \text{CH}_3), 14.0 (q, \text{CH}_3), 14.9 (q, \text{CH}_3), 22.7 (d, \text{CH}), 39.1 (t, \text{CH}_2), 51.6 (q, \text{OCH}_3), 62.3 (t, \text{OCH}_2), 84.1 (s, C-2), 91.5 (s, C-3), 126.7 (d, \text{CH}_{\text{arom}}), 129.1 (d, \text{CH}_{\text{arom}}), 134.5 (s, \text{C}_q\text{arom}), 169.1 (s, \text{CON}), 169.9 (s, \text{COO}), 172.3 (\text{COO}).
\]

\[\text{MS:} (\text{EI, 70 eV})\]
\[
m/z (\%) = 354 (4), 316 (10), 277 (18), 169 (50), 141 (45), 140 (100), 105 (43), 91 (20), 77 (30), 59 (10).
\]

\[\text{HRMS:} (\text{C}_{19}\text{H}_{27}\text{NO}_6, M = 365.18 \text{ g/mol})\]
4. Experimental part

Calcd: 365.1831
Found: 365.1827

Synthesis of erythro (S*,R*) & threo (S*,S*) α-acetamido-β-hydroxy succinic acid derivatives 71a-f:

threo (2S*,3S*) 2-Acetylamino-3-hydroxy-2-methyl-3-phenyl-succinic acid 4-isopropyl ester 1-methyl ester (threo-71a) (sbo-562c)

According to the typical hydrolysis procedure, the bicyclic oxetane exo-61a (0.64 g, 2 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.6 g of the product as a colorless oil.

Yield: 89 %

TLC: \(R_f = 0.31 \) (ethyl acetate/n-hexane 1:4).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 0.86 \text{ (d, J = 6.6 Hz, 3H, CH}_3\text{)}, \ 0.94 \text{ (d, J = 6.6 Hz, 3H, CH}_3\text{)}, \ 1.67 \text{ (s, 3H, CH}_3\text{)}, \ 2.11 \text{ (s, 3H, CH}_3\text{CO)}, \ 3.05 \text{ (s, 3H, OCH}_3\text{)}, \ 5.07 \text{ (septet, J = 6.6 Hz, 1H, COH)}, \ 7.32-7.38 \text{ (m, 5H, H}_{\text{arom}}\text{)}.\]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 21.3 \text{ (q, CH}_3\text{)}, \ 21.5 \text{ (q, CH}_3\text{)}, \ 23.1 \text{ (q, CH}_3\text{)}, \ 52.2 \text{ (q, OCH}_3\text{)}, \ 70.2 \text{ (d, OCH)}, \ 83.4 \text{ (s, C-2), 91.9 (s, C-3), 125.9 (d, CH}_{\text{arom}}\text{), 126.1 (d, CH}_{\text{arom}}\text{), 128.6 (d, CH}_{\text{arom}}\text{, 135.2 (s, Cq}_{\text{arom}}\text{), 165.7 (s, CON), 170.2 (s, COO), 174.7 (COO).}\]

MS: (EI, 70 eV)

\[m/z (%) = 279 (M^+\text{-MeCONH}, 4), 260 (M^+\text{-Ph, 5), 246 (8), 191 (71), 150 (10), 144 (10), 127 (60), 105 (100), 105 (50), 87 (6), 86 (50), 77 (60), 51 (45).}\]

HRMS: (C\(_{17}\)H\(_{23}\)NO\(_6\), M = 337.15 g/mol)
Calcd: 337.1519
Found: 337.1514

erythro (2S*,3R*) 2-Acetylamino-3-hydroxy-2-methyl-3-phenyl-succinic acid 4-isopropyl ester 1-methyl ester (erythro-71a) (sbo-562)
According to the typical hydrolysis procedure, the bicyclic oxetane **endo-61a** (0.32 g, 1 mmol) was cleaved hydrolytically in 4 h. Preparative chromatography yielded 0.28 g of the product as a colorless oil.

Yield: 87 %

TLC:
R_f = 0.43 (ethyl acetate/n-hexane 1:4).

^1H-NMR: (300 MHz, CDCl_3)

\[
\delta_{ppm} = 0.96 \text{ (d, } J = 6.6 \text{ Hz, 3H, CH}_3), 0.98 \text{ (d, } J = 6.6 \text{ Hz, 3H, CH}_3), 1.05 \text{ (s, 3H, CH}_3), 2.00 \text{ (s, 3H, CH}_3CO), 3.65 \text{ (s, 3H, OCH}_3), 5.23 \text{ (septet, } J = 6.6 \text{ Hz, 1H, OCH)}, 7.32-7.42 \text{ (m, 5H, H}_\text{arom}).
\]

^13C-NMR: (75.5 MHz, CDCl_3)

\[
\delta_{ppm} = 21.5 \text{ (q, CH}_3), 21.8 \text{ (q, CH}_3), 23.5 \text{ (q, CH}_3), 52.3 \text{ (q, OCH}_3), 70.1 \text{ (d, OCH),}
\]

79.4 (s, C-2), 87.9 (s, C-3), 126.4 (d, CH_arom), 127.4 (d, CH_arom), 129.2 (d, CH_arom), 135.2 (s, Cq_arom), 168.7 (s, CON), 171.2 (s, COO), 173.6 (COO).

threo (2S*,3S*) 2-Acetylamino-2-ethyl-3-hydroxy-3-phenyl-succinic acid 4-isopropyl ester 1-methyl ester (**threo-71b**) (sbo-582a)

According to the typical hydrolysis procedure, the bicyclic oxetane **exo-61b** (0.67 g, 2 mmol) was cleaved hydrolytically in 4 h. Preparative chromatography yielded 0.62 g of the product as a colorless oil.

Yield: 85 %

TLC:
R_f = 0.24 (ethyl acetate/n-hexane 1:4).

^1H-NMR: (300 MHz, CDCl_3)

\[
\delta_{ppm} = 0.92 \text{ (d, } J = 6.2 \text{ Hz, 3H, CH}_3), 0.95 \text{ (d, } J = 6.2 \text{ Hz, 3H, CH}_3), 1.10 \text{ (t, } J = 7.2 \text{ Hz, 3H, CH}_3), 1.55 \text{ (m, 1H, CH), 2.25 \text{ (s, 3H, CH}_3CO), 2.45 \text{ (m, 1H, CH), 3.05 \text{ (s, 3H, OCH}_3), 5.08 \text{ (septet, } J = 6.2 \text{ Hz, 1H, OCH), 7.27-7.55 \text{ (m, 5H, H}_\text{arom}).}
\]

^13C-NMR: (75.5 MHz, CDCl_3)
4. Experimental part

δ\textsubscript{ppm} = 9.8 (q, CH\textsubscript{3}), 14.2 (q, CH\textsubscript{3}), 22.2 (q, CH\textsubscript{3}), 22.6 (q, CH\textsubscript{3}), 28.9 (t, CH\textsubscript{2}), 51.5 (q, OCH\textsubscript{3}), 70.9 (d, OCH), 86.4 (s, C-2), 91.6 (s, C-3), 126.4 (d, CH\textsubscript{arom}), 127.5 (d, CH\textsubscript{arom}), 128.0 (d, CH\textsubscript{arom}), 134.8 (s, C\textsubscript{qarom}), 168.4 (s, CON), 169.7 (s, COO), 169.4 (s, COO).

\textit{erythro} (2S\textsuperscript*,3R\textsuperscript*) 2-Acetylamino-2-ethyl-3-hydroxy-3-phenyl-succinic acid 4-isopropyl ester 1-methyl ester (\textit{erythro}-71b) (sbo-582c)

According to the typical hydrolysis procedure, the bicyclic oxetane \textit{endo-61b} (0.33 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.26 g of the product as a colorless oil.

\textbf{Yield: 74 %}

\textbf{TLC: } R\textsubscript{f} = 0.54 (ethyl acetate/n-hexane 1:4).

\textbf{1H-NMR:} (300 MHz, CDCl\textsubscript{3})

δ\textsubscript{ppm} = 0.96 (t, J = 7.4 Hz, 3H, CH\textsubscript{3}), 1.21 (d, J = 6.2 Hz, 3H, CH), 1.26 (d, J = 6.2 Hz, 3H, CH\textsubscript{3}), 1.85 (m, 1H, CH\textsubscript{arom}), 1.93 (s, 3H, CH\textsubscript{3}CO), 2.07 (m, 1H, CH), 3.69 (s, 3H, OCH\textsubscript{3}), 5.07 (septet, J = 6.2 Hz, 1H, OCH), 7.29-7.47 (m, 5H, H\textsubscript{arom}).

\textbf{13C-NMR:} (75.5 MHz, CDCl\textsubscript{3})

δ\textsubscript{ppm} = 8.4 (q, CH\textsubscript{3}), 14.7 (q, CH\textsubscript{3}), 22.6 (t, CH\textsubscript{2}), 22.8 (q, CH\textsubscript{3}), 22.9 (q, CH\textsubscript{3}), 51.8 (q, OCH\textsubscript{3}), 70.3 (d, OCH), 79.2 (s, C-2), 84.0 (s, C-3), 126.4 (d, CH\textsubscript{arom}), 127.9 (d, CH\textsubscript{arom}), 128.8 (d, CH\textsubscript{arom}), 135.1 (s, C\textsubscript{qarom}), 167.8 (s, CON), 169.5 (s, COO), 170.2 (s, COO).

\textit{threo} (2S\textsuperscript*,3S\textsuperscript*) 2-Acetylamino-3-hydroxy-3-phenyl-2-propyl-succinic acid 4-isopropyl ester 1-methyl ester (\textit{threo}-71c) (sbo-584b)

According to the typical hydrolysis procedure, the bicyclic oxetane \textit{exo-61c} (0.68 g, 2 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.58 g of the product as a colorless oil.
Yield: 82 %
TLC: R_f = 0.23 (ethyl acetate/n-hexane 1:4).

^1H-NMR: (300 MHz, CDCl_3)

δ_ppm = 0.92 (t, J = 6.8 Hz, 3H, CH_3), 1.25 (d, J = 6.2 Hz, 3H, CH_3), 1.30 (d, J = 6.2 Hz, 3H, CH_3), 1.51 (m, 2H, CH_2), 2.26 (s, 3H, CH_3CO), 2.34 (m, 2H, CH_2), 3.04 (s, 3H, OCH_3), 5.06 (septet, J = 6.2 Hz, 1H, OCH), 7.27-7.56 (m, 5H, H_arom).

^13C-NMR: (75.5 MHz, CDCl_3)

δ_ppm = 14.2 (q, CH_3), 14.4 (q, CH_3), 18.4 (t, CH_2), 21.5 (q, CH_3), 21.6 (q, CH_3), 37.9 (t, CH_2), 51.7 (q, OCH_3), 70.5 (d, OCH), 86.3 (s, C-2), 92.5 (s, C-3), 126.4 (d, CH_arom), 128.4 (d, CH_arom), 134.9 (s, C_qarom), 165.4 (s, CON), 167.6 (COO), 169.7 (s, COO).

HRMS: (C_{19}H_{27}NO_6, M = 365.18 g/mol)
Calcd: 365.1784
Found: 365.1781

erythro (2S*,3R*) 2-Acetylamino-3-hydroxy-3-phenyl-2-propyl-succinic acid 4-isopropyl ester 1-methyl ester (erythro-71c) (sbo-584d)

According to the typical hydrolysis procedure, the bicyclic oxetane endo-61c (0.34 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.32 g of the product as a colorless oil.

Yield: 89 %
TLC: R_f = 0.46 (ethyl acetate/n-hexane 1:4).

^1H-NMR: (300 MHz, CDCl_3)

δ_ppm = 0.93 (t, J = 7.2 Hz, 3H, CH_3), 1.18 (m, 2H, CH_2), 1.23 (d, J = 6.2 Hz, 3H, CH_3), 1.26 (d, J = 6.2 Hz, 3H, CH_3), 1.53 (m, 2H, CH_2), 2.02 (s, 3H, CH_3CO), 3.65 (s, 3H, OCH_3), 5.07 (septet, J = 6.2 Hz, 1H, OCH), 7.26-7.36 (m, 5H, H_arom).

^13C-NMR: (75.5 MHz, CDCl_3)

δ_ppm = 14.1 (q, CH_3), 14.8 (q, CH_3), 17.9 (t, CH_2), 21.5 (q, CH_3), 21.9 (q, CH_3), 32.7 (t, CH_2), 52.8 (q, OCH_3), 70.3 (d, OCH), 76.7 (s, C-2), 82.7 (s, C-3), 126.3 (d, CH_arom), 128.1 (d, CH_arom), 138.3 (s, C_qarom), 169.4 (s, CON), 170.7 (COO), 172.4 (s, COO).
4. Experimental part

threo (2S*,3S*) 2-Acetylamino-3-hydroxy-2-isopropyl-3-phenyl-succinic acid 4-isopropyl ester 1-methyl ester *(threo-71d)* (sbo-577e)

According to the typical hydrolysis procedure, the bicyclic oxetane *exo-61d* (0.68 g, 2 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.36 g of the product as a colorless oil.

Yield: 62 %

TLC: $R_t = 0.27$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

δ_{ppm} = 0.86 (d, $J = 6.9$ Hz, 3H, CH$_3$), 0.98 (d, $J = 6.9$ Hz, 3H, CH$_3$), 1.17 (d, $J = 6.2$ Hz, 3H, CH$_3$), 1.19 (d, $J = 6.2$ Hz, 3H, CH$_3$), 1.21 (m, 1H, CH), 2.04 (s, 3H, CH$_3$CO), 3.08 (s, 3H, OCH$_3$), 5.07 (septet, $J = 6.2$ Hz, 1H, OCH), 7.24-7.58 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ_{ppm} = 16.2 (q, CH$_3$), 18.0 (q, CH$_3$), 21.8 (q, CH$_3$), 22.0 (q, CH$_3$), 23.6 (q, CH$_3$), 34.7 (d, CH), 52.4 (q, OCH$_3$), 70.8 (d, OCH), 88.3 (s, C-2), 91.2 (s, C-3), 125.6 (d, CH$_{arom}$), 127.9 (d, CH$_{arom}$), 135.8 (s, Cq$_{arom}$), 169.6 (s, CON), 170.1 (s, COO), 172.1 (s, COO).

erythro (2S*,3R*) 2-Acetylamino-3-hydroxy-2-isopropyl-3-phenyl-succinic acid 4-isopropyl ester 1-methyl ester *(erythro-71d)* (sbo-577d)

According to the typical hydrolysis procedure, the bicyclic oxetane *endo-61d* (0.34 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.21 g of the product as a colorless oil.

Yield: 62 %

TLC: $R_t = 0.49$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)
4. Experimental part

\[\delta_{\text{ppm}} = 0.91 \quad (d, J = 6.8 \text{ Hz}, \ 3H, \ CH_3), 1.23 \quad (d, J = 6.9 \text{ Hz}, \ 3H, \ CH_3), 1.25 \quad (d, J = 6.2 \text{ Hz}, \ 3H, \ CH_3), 1.85 \quad (\text{septet}, J = 6.8 \text{ Hz}, \ 1H, \ CH), 2.18 \quad (s, \ 3H, \ CH_3CO), 3.67 \quad (s, \ 3H, \ OCH_3), 5.05 \quad (\text{septet}, J = 6.2 \text{ Hz}, \ 1H, \ OCH), 7.23-7.46 \quad (m, \ 5H, \ H_{\text{arom}}). \]

\[^{13}\text{C-NMR:} \quad (75.5 \text{ MHz, CDCl}_3) \]

\[\delta_{\text{ppm}} = 13.9 \quad (q, \ CH_3), 15.8 \quad (q, \ CH_3), 19.1 \quad (q, \ CH_3), 22.2 \quad (q, \ CH_3), 22.6 \quad (q, \ CH_3), 32.6 \quad (d, \ CH), 51.6 \quad (q, \ OCH_3), 70.1 \quad (d, \ OCH), 83.1 \quad (s, \ C-2), 90.4 \quad (s, \ C-3), 126.7 \quad (d, \ CH_{\text{arom}}), 127.4 \quad (d, \ CH_{\text{arom}}), 135.6 \quad (s, \ C_{\text{qarom}}), 165.1 \quad (s, \ CON), 170.2 \quad (s, \ COO), 171.4 \quad (s, \ COO). \]

threo (2S*,3S*) 2-Acetylamino-3-hydroxy-2-isobutyl-3-phenyl-succinic acid 4-isopropyl ester 1-methyl ester (*threo-71e*) (sbo-578c)

According to the typical hydrolysis procedure, the bicyclic oxetane *exo-61e* (0.72 g, 2 mmol) was cleaved hydrolytically in 6h. Preparative chromatography yielded 0.45 g of the product as a colorless oil.

Yield: 67 %

TLC: \(R_f = 0.28 \) (ethyl acetate/n-hexane 1:4).

IR: (Film)

\[\tilde{\nu} \quad (\text{cm}^{-1}) = 3500, \ 3370, \ 2993, \ 2898, \ 1745, \ 1728, \ 1670, \ 1600, \ 1550, \ 1440, \ 1075, \ 980, \ 770. \]

**\(^1\text{H-NMR:} \quad (300 \text{ MHz, CDCl}_3) **

\[\delta_{\text{ppm}} = 0.88 \quad (d, J = 6.6Hz, \ 3H, \ CH_3), 0.95 \quad (d, J = 6.6 \text{ Hz}, \ 3H, \ CH_3), 1.12 \quad (m, \ 1H, \ CH), 1.27 \quad (d, J = 6.2 \text{ Hz}, \ 3H, \ CH_3), 1.38 \quad (d, J = 6.2 \text{ Hz}, \ 3H, \ CH_3), 1.79 \quad (\text{dd}, J = 13.3, \ 5.7 \text{ Hz}, \ 1H, \ CH), 1.80 \quad (\text{septet}, J = 6.6 \text{ Hz}, \ 1H, \ CH), 2.27 \quad (s, \ 3H, \ CH_3CO), 2.37 \quad (\text{dd}, J = 13.3, \ 6.1 \text{ Hz}, \ 1H, \ CH), 3.05 \quad (s, \ 3H, \ OCH_3), 5.10 \quad (\text{septet}, J = 6.2 \text{ Hz}, \ 1H, \ OCH), 3.67 \quad (s, \ 3H, \ OCH_3), 7.25-7.55 \quad (m, \ 5H, \ H_{\text{arom}}). \]

**\(^{13}\text{C-NMR:} \quad (75.5 \text{ MHz, CDCl}_3) **

\[\delta_{\text{ppm}} = 14.2 \quad (q, \ CH_3), 22.1 \quad (q, \ CH_3), 22.3 \quad (q, \ CH_3), 23.3 \quad (q, \ CH_3), 24.5 \quad (q, \ CH_3), 25.8 \quad (d, \ CH), 43.9 \quad (t, \ CH_2), 51.8 \quad (q, \ OCH_3), 70.8 \quad (d, \ OCH), 86.5 \quad (s, \ C-2), 93.0 \quad (s, \ C-3), 125.6 \quad (d, \ CH_{\text{arom}}), 126.4 \quad (d, \ CH_{\text{arom}}), 127.5 \quad (d, \ CH_{\text{arom}}), 134.8 \quad (s, \ C_{\text{qarom}}), 164.6 \quad (s, \ CON), 168.6 \quad (s, \ COO), 170.0 \quad (s, \ COO). \]

HRMS: \((C_{20}H_{29}NO_6, \ M = 379.20 \text{ g/mol}) \)
4. Experimental part

Calcd: 379.2018
Found: 379.2014

erythro (2S*,3R*) 2-Acetylamino-3-hydroxy-2-isobutyl-3-phenyl-succinic acid 4-isopropyl ester 1-methyl ester (erythro-71e) (sbo-578b)

According to the typical hydrolysis procedure, the bicyclic oxetane endo-61e (0.36 g, 1 mmol) was cleaved hydrolytically in 4 h. Preparative chromatography yielded 0.13 g of the product as a colorless oil.

Yield: 58 %

TLC: R_f = 0.56 (ethyl acetate/n-hexane 1:4).

^1H-NMR: (300 MHz, CDCl_3)

δ ppm = 0.81 (d, J = 6.6 Hz, 3H, CH₃), 0.92 (d, J = 6.6 Hz, 3H, CH₃), 1.24 (d, J = 6.2 Hz, 3H, CH₃), 1.26 (d, J = 6.2 Hz, 3H, CH₃), 1.61 (dd, J = 13.4, 5.8 Hz, 1H, CH), 1.72 (s, 3H, CH₃CO), 1.83 (m, 1H, CH), 2.02 (dd, J=13.4, 6.1 Hz, 1H, CH), 3.69 (s, 3H, OCH₃), 5.06 (septet, J = 6.2 Hz, 1H, OCH), 7.26-7.37 (m, 5H, Hₐrom).

^13C-NMR: (75.5 MHz, CDCl_3)

δ ppm = 14.4 (q, CH₃), 22.7 (q, CH₃), 22.9 (q, CH₃), 23.1 (q, CH₃), 24.1 (q, CH₃), 25.6 (d, CH), 37.1 (t, CH₂), 51.7 (q, OCH₃), 70.3 (d, OCH), 83.1 (s, C-2), 93.1 (s, C-3), 126.7 (d, CHₐrom), 127.3 (d, CHₐrom), 129.2 (d, CHₐrom), 135.7 (s, Cqₐrom), 165.1 (s, CON), 168.6 (s, COO), 171.0 (s, COO).

threo (2S*,3S*) 2-Acetylamino-2-sec-butyl-3-hydroxy-3-phenyl-succinic acid 4-isopropyl ester 1-methyl ester (threo-71f) (sbo-586h)

According to the typical hydrolysis procedure, the bicyclic oxetane exo-61f (0.72 g, 2 mmol) was cleaved hydrolytically in 5 h. Preparative chromatography yielded 0.38 g of the product as a colorless oil.

Yield: 58 %

TLC: R_f = 0.27 (ethyl acetate/n-hexane 1:4).
4. Experimental part

H-NMR: (300 MHz, CDCl₃)

\[\delta_{\text{ppm}} = 0.88 \text{ (t, } J = 7.5 \text{ Hz, } 3\text{H, CH}_3), 0.95 \text{ (d, } J = 6.6 \text{ Hz, } 3\text{H, CH}_3), 1.20 \text{ (d, } J = 6.2 \text{ Hz, } 3\text{H, CH}_3), 1.22 \text{ (d, } J = 6.2 \text{ Hz, } 3\text{H, CH}_3), 1.23 \text{ (m, } 2\text{H, CH}_2), 1.35 \text{ (m, } 1\text{H, CH}), 2.26 \text{ (s, } 3\text{H, CH}_3\text{CO}), 3.05 \text{ (s, } 3\text{H, OCH}_3), 5.18 \text{ (septet, } J = 6.2 \text{ Hz, } 1\text{H, OCH}), 7.27-7.56 \text{ (m, } 5\text{H, H}_\text{arom}).

C-NMR: (75.5 MHz, CDCl₃)

\[\delta_{\text{ppm}} = 11.5 \text{ (q, CH}_3), 13.5 \text{ (q, CH}_3), 14.2 \text{ (q, CH}_3), 18.7 \text{ (d, CH), 21.4 \text{ (q, CH}_3), 21.6 \text{ (q, CH}_3), 37.9 \text{ (t, CH}_2), 51.8 \text{ (q, OCH}_3), 70.9 \text{ (d, OCH), 86.6 \text{ (s, C-2), 92.6 \text{ (s, C-3), 125.7 \text{ (d, CH}_\text{arom}), 127.3 \text{ (d, CH}_\text{arom}), 128.6 \text{ (d, CH}_\text{arom}), 135.9 \text{ (s, Cq}_\text{arom}), 165.2 \text{ (s, CON), 168.8 \text{ (s, COO), 169.5 \text{ (COO).}}}

erythro (2S*,3R*) 2-Acetylamino-2-sec-butyl-3-hydroxy-3-phenyl-succinic acid 4-isopropyl ester 1-methyl ester (*erythro*-71f) (sbo-586i)

According to the typical hydrolysis procedure, the bicyclic oxetane *endo*-61f (0.36 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.21 g of the product as a colorless oil.

Yield: 65 %

TLC: R_f = 0.55 (ethyl acetate/n-hexane 1:4).

H-NMR: (300 MHz, CDCl₃)

\[\delta_{\text{ppm}} = 0.91 \text{ (t, } J = 7.2 \text{ Hz, } 3\text{H, CH}_3), 0.97 \text{ (d, } J = 6.6 \text{ Hz, } 3\text{H, CH}_3), 1.47-1.55 \text{ (m, } 2\text{H, CH}_2), 1.69 \text{ (m, } 1\text{H, CH), 2.21 \text{ (s, } 3\text{H, CH}_3\text{CO), 3.67 \text{ (s, } 3\text{H, OCH}_3), 3.78 \text{ (s, } 3\text{H, OCH}_3), 7.28-7.54 \text{ (m, } 5\text{H, H}_\text{arom}).}

C-NMR: (75.5 MHz, CDCl₃)

\[\delta_{\text{ppm}} = 12.3 \text{ (q, CH}_3), 14.1 \text{ (q, CH}_3), 14.7 \text{ (q, CH}_3), 19.2 \text{ (d, CH), 22.4 \text{ (q, CH}_3), 22.7 \text{ (q, CH}_3), 39.1 \text{ (t, CH}_2), 51.6 \text{ (q, OCH}_3), 70.3 \text{ (d, OCH), 86.2 \text{ (s, C-2), 93.5 \text{ (s, C-3), 126.7 \text{ (d, CH}_\text{arom), 129.1 \text{ (d, CH}_\text{arom), 134.5 \text{ (s, Cq}_\text{arom), 166.1 \text{ (s, CON), 169.3 \text{ (s, COO), 172.1 \text{ (COO).}}}

449
4. Experimental part

Synthesis of erythro (S*,R*) & threo (S*,S*) α-acetamido-β-hydroxy succinic acid derivatives 72a-f:

threo (2S*,3S*) 2-Acetylamino-3-hydroxy-2-methyl-3-phenyl-succinic acid 4-tert-butyl ester 1-methyl ester (**threo-72a**) (sbo-455b)

![Chemical Structure of threo-72a](image)

According to the typical hydrolysis procedure, the bicyclic oxetane **exo-62a** (0.67 g, 2 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.57 g of the product as a colorless oil.

Yield: 82 %

TLC: $R_f = 0.29$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

\[\delta_{ppm} = 1.49 \ (s, \ 9H, \ 3CH_3), \ 1.71 \ (s, \ 3H, \ CH_3), \ 2.13 \ (s, \ 3H, \ CH_3CO), \ 3.79 \ (s, \ 3H, \ OCH_3), \ 7.33-7.48 \ (m, \ 5H, \ H_{arom}).\]

13C-NMR: (75.5 MHz, CDCl$_3$)

\[\delta_{ppm} = 16.4 \ (q, \ CH_3), \ 24.2 \ (q, \ CH_3), \ 27.8 \ (q, \ 3CH_3), \ 52.7 \ (q, \ OCH_3), \ 83.4 \ (s, \ Cq), \ 96.9 \ (s, \ C-2), \ 107.9 \ (s, \ C-3), \ 125.5 \ (d, \ CH_{arom}), \ 126.2 \ (d, \ CH_{arom}), \ 128.7 \ (d, \ CH_{arom}), \ 136.0 \ (s, \ Cq), \ 168.4 \ (s, \ CON), \ 169.9 \ (s, \ COO), \ 170.3 \ (COO).\]

MS: (EI, 70 eV)

m/z (%) = 334 (M$^+\cdot$OH, 40), 318 (100), 296 (12), 278 (72), 250 (8), 145 (10), 105 (80), 91 (20), 77 (30), 51 (10).

HRMS: (C$_{18}$H$_{25}$NO$_6$, M = 351.17 g/mol)

Calcd: 351.1675

Found: 351.1669

erythro (2S*,3R*) 2-Acetylamino-3-hydroxy-2-methyl-3-phenyl-succinic acid 4-tert-butyl ester 1-methyl ester (**erythro-72a**) (sbo-455a)

![Chemical Structure of erythro-72a](image)
According to the typical hydrolysis procedure, the bicyclic oxetane **endo-62a** (0.33 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.28 g of the product as a colorless oil.

Yield: 80 %

TLC: $R_f = 0.43$ (ethyl acetate/n-hexane 1:4).

IR: (Film)

\[\tilde{\nu} \text{ (cm}^{-1}\text{)} = 3500, 3346, 2983, 2890, 1745, 1738, 1662, 1605, 1558, 1441, 1085, 980, 778. \]

1H-NMR: (300 MHz, CDCl$_3$)
\[\delta_{ppm} = 1.50 \text{ (s, 3H, CH$_3$)}, \ 1.53 \text{ (s, 9H, 3CH$_3$)}, \ 1.95 \text{ (s, 3H, CH$_3$CO)}, \ 3.65 \text{ (s, 3H, OCH$_3$)}, \ 3.83 \text{ (s, 3H, OCH$_3$)}, \ 7.23-7.31 \text{ (m, 5H, H$_{arom}$)}. \]

13C-NMR: (75.5 MHz, CDCl$_3$)
\[\delta_{ppm} = 18.6 \text{ (q, CH$_3$)}, \ 23.9 \text{ (q, CH$_3$)}, \ 27.8 \text{ (q, CH$_3$)}, \ 52.4 \text{ (q, OCH$_3$)}, \ 66.5 \text{ (s, C-2)}, \ 79.6 \text{ (s, C-3)}, \ 126.9 \text{ (d, CH$_{arom}$)}, \ 127.9 \text{ (d, CH$_{arom}$)}, \ 137.2 \text{ (s, C$_{arom}$)}, \ 169.7 \text{ (s, CON)}, \ 171.3 \text{ (s, COO)}, \ 172.0 \text{ (COO)}. \]

threo $(2S^*,3S^*)$ **2-Acetylamino-2-ethyl-3-hydroxy-3-phenyl-succinic acid 4-tert-butyl ester 1-methyl ester** (**threo-72b**) (sbo-583b)

According to the typical hydrolysis procedure, the bicyclic oxetane **exo-62b** (0.69 g, 2 mmol) was cleaved hydrolytically in 5h. Preparative chromatography yielded 0.65 g of the product as a colorless oil.

Yield: 89 %

TLC: $R_f = 0.24$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)
\[\delta_{ppm} = 1.04 \text{ (t, J = 7.5 Hz, 3H, CH$_3$)}, \ 1.47 \text{ (s, 9H, 3CH$_3$)}, \ 1.56 \text{ (m, 1H, CH)}, \ 2.10 \text{ (s, 3H, CH$_3$CO)}, \ 2.25 \text{ (m, 1H, CH)}, \ 3.00 \text{ (s, 3H, OCH$_3$)}, \ 7.27-7.55 \text{ (m, 5H, H$_{arom}$)}. \]

13C-NMR: (75.5 MHz, CDCl$_3$)
\[\delta_{ppm} = 9.9 \text{ (q, CH$_3$)}, \ 14.2 \text{ (q, CH$_3$)}, \ 21.8 \text{ (t, CH$_2$)}, \ 27.8 \text{ (q, 3CH$_3$)}, \ 51.6 \text{ (q, OCH$_3$)}, \ 82.9 \text{ (s, C$_q$)}, \ 86.7 \text{ (s, C-2)}, \ 92.6 \text{ (s, C-3)}, \ 126.5 \text{ (d, CH$_{arom}$)}, \ 127.5 \text{ (d, CH$_{arom}$)}, \ 128.0 \text{ (d, CH$_{arom}$)}, \ 134.8 \text{ (s, C$_{arom}$)}, \ 165.6 \text{ (s, CON)}, \ 166.9 \text{ (s, COO)}, \ 169.6 \text{ (s, COO)}. \]
4. Experimental part

erythro (2S*,3R*) 2-Acetylamino-2-ethyl-3-hydroxy-3-phenyl-succinic acid 4-tert-butyl ester 1-methyl ester (**erythro-72b**) (sbo-368c)

According to the typical hydrolysis procedure, the bicyclic oxetane **endo-62b** (0.35 g, 1 mmol) was cleaved hydrolytically in 3h. Preparative chromatography yielded 0.29 g of the product as a colorless oil.

Yield: 79 %

TLC: R_f = 0.54 (ethyl acetate/n-hexane 1:4).

¹H-NMR: (300 MHz, CDCl₃)

\[\delta_{ppm} = 0.96 \text{ (t, J = 7.4 Hz, 3H, CH}_{3}\), 1.49 (s, 9H, 3CH₃), 1.73 (s, 3H, CH₃CO), 1.85 (m, 1H, CH), 2.07 (m, 1H, CH), 3.69 (s, 3H, OCH₃), 4.29-7.47 (m, 5H, H_{arom}).

¹³C-NMR: (75.5 MHz, CDCl₃)

\[\delta_{ppm} = 8.0 \text{ (q, CH}_{3}\), 14.3 (q, CH₃), 22.6 (t, CH₂), 27.9 (q, CH₃), 51.9 (q, OCH₃), 77.2 (s, C-2), 82.0 (s, C-3), 83.4 (s, Cq), 126.4 (d, CH_{arom}), 127.9 (d, CH_{arom}), 128.8 (d, CH_{arom}), 135.1 (s, Cq_{arom}), 164.9 (s, CON), 165.5 (s, COO), 169.9 (s, COO).]

threo (2S*,3S*) 2-Acetylamino-3-hydroxy-3-phenyl-2-propyl-succinic acid 4-tert-butyl-1-methyl ester (**threo-72c**) (sbo-585c)

According to the typical hydrolysis procedure, the bicyclic oxetane **exo-62c** (0.71 g, 2 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.59 g of the product as a colorless oil.

Yield: 79 %

TLC: R_f = 0.23 (ethyl acetate/n-hexane 1:4).

¹H-NMR: (300 MHz, CDCl₃)

\[\delta_{ppm} = 0.92 \text{ (t, J = 7.5 Hz, 3H, CH}_{3}\), 1.44 (m, 2H, CH₂), 1.48 (s, 9H, 3CH₃), 2.26 (s, 3H, CH₃CO), 2.34 (m, 2H, CH₂), 3.04 (s, 3H, OCH₃), 7.27-7.58 (m, 5H, H_{arom}).

¹³C-NMR: (75.5 MHz, CDCl₃)
4. Experimental part

\[\delta_{\text{ppm}} = 14.2 \text{ (q, CH}_3\text{)}, \ 14.4 \text{ (q, CH}_3\text{)}, \ 18.7 \text{ (t, CH}_2\text{)}, \ 28.2 \text{ (q, CH}_3\text{)}, \ 37.9 \text{ (t, CH}_2\text{)}, \ 51.8 \text{ (q, OCH}_3\text{)}, \ 82.9 \text{ (s, Cq)}, \ 86.6 \text{ (s, C-2)}, \ 92.6 \text{ (s, C-3)}, \ 126.5 \text{ (d, CH}_\text{arom}\text{)}, \ 128.4 \text{ (d, CH}_\text{arom}\text{)}, \ 134.8 \text{ (s, Cq}_\text{arom}\text{)}, \ 165.2 \text{ (s, CON)}, \ 168.7 \text{ (COO)}, \ 169.5 \text{ (s, COO)}. \]

erythro (2S*,3R*) 2-Acetylamino-3-hydroxy-3-phenyl-2-propyl-succinic acid 4-tert-butyl-1-methyl ester (erythro-72c) (sbo-585d)

According to the typical hydrolysis procedure, the bicyclic oxetane **endo-62c** (0.36 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.29 g of the product as a colorless oil.

Yield: 88 %

TLC: \(R_f = 0.46 \) (ethyl acetate/n-hexane 1:4).

\(^1H\)-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 0.93 \text{ (t, J = 7.2 Hz, 3H, CH}_3\text{)}, \ 1.18 \text{ (m, 2H, CH}_2\text{)}, \ 1.53 \text{ (m, 2H, CH}_2\text{)}, \ 1.56 \text{ (s, 9H, 3CH}_3\text{)}, \ 1.78 \text{ (s, 3H, CH}_3\text{CO)}, \ 3.71 \text{ (s, 3H, OCH}_3\text{)}, \ 7.26-7.36 \text{ (m, 5H, H}_\text{arom}\text{)}. \]

\(^13C\)-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 14.1 \text{ (q, CH}_3\text{)}, \ 14.8 \text{ (q, CH}_3\text{)}, \ 17.9 \text{ (t, CH}_2\text{)}, \ 27.8 \text{ (q, CH}_3\text{)}, \ 32.7 \text{ (t, CH}_2\text{)}, \ 52.8 \text{ (q, OCH}_3\text{)}, \ 72.7 \text{ (s, C-2)}, \ 81.7 \text{ (s, C-3)}, \ 83.3 \text{ (s, Cq)}, \ 126.3 \text{ (d, CH}_\text{arom}\text{)}, \ 128.1 \text{ (d, CH}_\text{arom}\text{)}, \ 138.3 \text{ (s, Cq}_\text{arom}\text{)}, \ 166.4 \text{ (s, CON)}, \ 170.7 \text{ (COO)}, \ 172.4 \text{ (s, COO)}. \]

threo (2S*,3S*) 2-Acetylamino-3-hydroxy-2-isopropyl-3-phenyl-succinic acid 4-tert-butyl 1-methyl ester (threo-72d) (sbo-579c)

According to the typical hydrolysis procedure, the bicyclic oxetane **exo-62d** (0.71 g, 2 mmol) was cleaved hydrolytically in 5h. Preparative chromatography yielded 0.65 g of the product as a colorless oil.

Yield: 89 %

TLC: \(R_f = 0.27 \) (ethyl acetate/n-hexane 1:4).

IR: (Film)
4. Experimental part

\[\tilde{\nu} \text{ (cm}^{-1}) = 3543, 3349, 2993, 2899, 1740, 1735, 1670, 1608, 1559, 1448, 1075, 980, 770. \]

H-NMR: (300 MHz, CDCl₃)

\[\delta_{\text{ppm}} = 0.86 \text{ (d, } J = 6.9 \text{ Hz, } 3\text{H, CH}_3), 0.98 \text{ (d, } J = 6.9 \text{ Hz, } 3\text{H, CH}_3), 1.21 \text{ (m, } 1\text{H, CH}), 1.47 \text{ (s, } 9\text{H, } 3\text{CH}_3), 2.04 \text{ (s, } 3\text{H, CH}_3\text{CO}), 3.08 \text{ (s, } 3\text{H, OCH}_3), 7.24-7.58 \text{ (m, } 5\text{H, H}_{\text{arom}}). \]

C-NMR: (75.5 MHz, CDCl₃)

\[\delta_{\text{ppm}} = 16.2 \text{ (q, } \text{CH}_3), 18.0 \text{ (q, } \text{CH}_3), 23.6 \text{ (q, } \text{CH}_3), 27.9 \text{ (q, } 3\text{CH}_3), 34.7 \text{ (d, CH), 52.4 \text{ (q, OCH}_3), 83.2 \text{ (s, } \text{Cq}), 90.3 \text{ (s, } \text{C-2), 91.2 \text{ (s, } \text{C-3), 125.6 \text{ (d, CH}_{\text{arom}}, 127.9 \text{ (d, CH}_{\text{arom}, 135.8 \text{ (s, } \text{Cq}_{\text{arom}}, 169.6 \text{ (s, } \text{CON), 170.1 \text{ (s, } \text{COO), 172.1 \text{ (s, } \text{COO).} \]

HRMS: (C₂₀H₂₉NO₆, M = 379.20 g/mol)

Calcd: 379.2039
Found: 379.2034

erythro (2S*,3R*) 2-Acetylamino-3-hydroxy-2-isopropyl-3-phenyl-succinic acid 4-tert-butyl-1-methyl ester (**erythro-72d**) (sbo-579d)

According to the typical hydrolysis procedure, the bicyclic oxetane **endo-62d** (0.36 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.32 g of the product as a colorless oil.

Yield: 86 %

TLC: \(R_f = 0.49 \) (ethyl acetate/n-hexane 1:4).

H-NMR: (300 MHz, CDCl₃)

\[\delta_{\text{ppm}} = 0.91 \text{ (d, } J = 6.8 \text{ Hz, } 3\text{H, CH}_3), 1.23 \text{ (d, } J = 6.9 \text{ Hz, } 3\text{H, CH}_3), 1.52 \text{ (s, } 9\text{H, } 3\text{CH}_3), 1.68 \text{ (s, } 3\text{H, CH}_3\text{CO), 1.85 (septet, } J = 6.8 \text{ Hz, } 1\text{H, CH), 3.67 \text{ (s, } 3\text{H, OCH}_3), 7.23-7.46 \text{ (m, } 5\text{H, H}_{\text{arom}}). \]

C-NMR: (75.5 MHz, CDCl₃)

\[\delta_{\text{ppm}} = 13.9 \text{ (q, } \text{CH}_3), 15.8 \text{ (q, } \text{CH}_3), 19.1 \text{ (q, } \text{CH}_3), 32.6 \text{ (d, CH), 51.6 \text{ (q, OCH}_3), 82.9 \text{ (s, } \text{Cq), 83.1 \text{ (s, } \text{C-2), 90.4 \text{ (s, } \text{C-3), 126.7 \text{ (d, CH}_{\text{arom}, 127.4 \text{ (d, CH}_{\text{arom), 135.6 \text{ (s, } \text{Cq}_{\text{arom}, 168.1 \text{ (s, } \text{CON), 170.2 \text{ (s, } \text{COO), 171.4 \text{ (s, } \text{COO).} \]

454
4. Experimental part

threo (2S*,3S*) 2-Acetylamino-3-hydroxy-2-isobutyl-3-phenyl-succinic acid 4-tert-butyl ester 1-methyl ester (threo-72e) (sbo-580c)

According to the typical hydrolysis procedure, the bicyclic oxetane **exo-62e** (0.75 g, 2 mmol) was cleaved hydrolytically in 5h. Preparative chromatography yielded 0.45 g of the product as a colorless oil.

Yield: 63 %

TLC: \(R_f = 0.32 \) (ethyl acetate/n-hexane 1:4).

\[^1^H\text{-NMR:} \] (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 0.88 \text{ (d, } J = 6.6 \text{ Hz, } 3 \text{H, CH}_3), 0.95 \text{ (d, } J = 6.6 \text{ Hz, } 3 \text{H, CH}_3), 1.35 \text{ (dd, } J = 13.3, 5.7 \text{ Hz, } 1 \text{H, CH}), 1.49 \text{ (s, } 9 \text{H, } 3 \text{CH}_3), 1.81 \text{ (septet, } J = 6.6 \text{ Hz, } 1 \text{H, CH}), 2.13 \text{ (s, } 3 \text{H, CH}_2 \text{CO}), 2.37 \text{ (dd, } J = 13.3, 6.1 \text{ Hz, } 1 \text{H, CH}), 3.05 \text{ (s, } 3 \text{H, OCH}_3), 7.25-7.55 \text{ (m, } 5 \text{H, H}_{\text{arom}}) \]

\[^{13}\text{C-NMR:} \] (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 14.2 \text{ (q, } \text{CH}_3), 23.3 \text{ (q, } \text{CH}_3), 24.5 \text{ (q, } \text{CH}_3), 25.8 \text{ (d, } \text{CH}), 27.9 \text{ (q, } 3 \text{CH}_3), 43.9 \text{ (t, } \text{CH}_2), 51.8 \text{ (q, } \text{OCH}_3), 83.7 \text{ (s, } \text{Cq}), 86.1 \text{ (s, } \text{C-2}), 93.2 \text{ (s, } \text{C-3}), 125.6 \text{ (d, } \text{CH}_{\text{arom}}), 126.4 \text{ (d, } \text{CH}_{\text{arom}}), 127.5 \text{ (d, } \text{CH}_{\text{arom}}), 134.8 \text{ (s, } \text{Cq}_{\text{arom}}), 163.7 \text{ (s, } \text{CON}), 164.9 \text{ (s, } \text{COO}), 166.8 \text{ (s, } \text{COO}) \]

erythro (2S*,3R*) 2-Acetylamino-3-hydroxy-2-isobutyl-3-phenyl-succinic acid 4-tert-butyl ester 1-methyl ester (erythro-72e) (sbo-580d)

According to the typical hydrolysis procedure, the bicyclic oxetane **endo-62e** (0.38 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.22 g of the product as a colorless oil.

Yield: 65 %

TLC: \(R_f = 0.56 \) (ethyl acetate/n-hexane 1:4).

\[^1^H\text{-NMR:} \] (300 MHz, CDCl\(_3\))

\[^{13}\text{C-NMR:} \] (75.5 MHz, CDCl\(_3\))
4. Experimental part

\[\delta_{ppm} = 0.81 \text{ (d, } J = 6.6 \text{ Hz, } 3H, \text{ CH}_3), \ 0.92 \text{ (d, } J = 6.6 \text{ Hz, } 3H, \text{ CH}_3), \ 1.47 \text{ (s, } 9H, \text{ 3CH}_3), \ 1.61 \text{ (dd, } J = 13.4, \ 5.8 \text{ Hz, } 1H, \text{ CH), } 1.72 \text{ (s, } 3H, \text{ CH}_3\text{CO}), \ 1.83 \text{ (m, } 1H, \text{ CH), } 2.02 \text{ (dd, } J = 13.4, \ 6.1 \text{ Hz, } 1H, \text{ CH), } 3.69 \text{ (s, } 3H, \text{ OCH}_3), \ 7.26-7.37 \text{ (m, } 5H, \text{ H}_{arom}). \]

\[^{13}\text{C-NMR:} \text{ (75.5 MHz, CDCl}_3)\]

\[\delta_{ppm} = 14.4 \text{ (q, CH}_3), \ 23.1 \text{ (q, CH}_3), \ 24.1 \text{ (q, CH}_3), \ 25.6 \text{ (d, CH), } 28.3 \text{ (q, 3CH}_3), \ 37.1 \text{ (t, CH}_2), \ 51.7 \text{ (q, OCH}_3), \ 82.9 \text{ (s, Cq), } 83.1 \text{ (s, C-2), } 93.1 \text{ (s, C-3), } 126.7 \text{ (d, CH}_{arom}), \ 127.3 \text{ (d, CH}_{arom}), \ 129.2 \text{ (d, CH}_{arom}), \ 135.7 \text{ (s, Cq}_{arom}), \ 165.1 \text{ (s, CON), } 168.6 \text{ (s, COO), } 171.0 \text{ (s, COO)}. \]

\[\text{threo (2S*,3S*) 2-Acetylamino-2-sec-butyl-3-hydroxy-3-phenyl- succinic acid 4-tert-butyl ester 1-methyl ester (threo-72f) (sbo-586a)} \]

According to the typical hydrolysis procedure, the bicyclic oxetane \textit{exo-62f} (0.75 g, 2 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.6 g of the product as a colorless oil.

Yield: 82 %

TLC: \(R_f = 0.26 \) (ethyl acetate/n-hexane 1:4).

\[^{1}\text{H-NMR:} \text{ (300 MHz, CDCl}_3)\]

\[\delta_{ppm} = 0.88 \text{ (t, } J = 7.5 \text{ Hz, } 3H, \text{ CH}_3), \ 0.95 \text{ (d, } J = 6.6 \text{ Hz, } 3H, \text{ CH}_3), \ 1.23 \text{ (m, } 2H, \text{ CH}_2), \ 1.35 \text{ (m, } 1H, \text{ CH), } 1.47 \text{ (s, } 9H, \text{ 3CH}_3), \ 2.26 \text{ (s, } 3H, \text{ CH}_3\text{CO), } 3.05 \text{ (s, } 3H, \text{ OCH}_3), \ 7.27-7.56 \text{ (m, } 5H, \text{ H}_{arom}). \]

\[^{13}\text{C-NMR:} \text{ (75.5 MHz, CDCl}_3)\]

\[\delta_{ppm} = 11.5 \text{ (q, CH}_3), \ 13.5 \text{ (q, CH}_3), \ 14.2 \text{ (q, CH}_3), \ 18.7 \text{ (d, CH), } 27.8 \text{ (q, 3CH}_3), \ 37.9 \text{ (t, CH}_2), \ 51.8 \text{ (q, OCH}_3), \ 83.2 \text{ (s, Cq), } 86.6 \text{ (s, C-2), } 92.6 \text{ (s, C-3), } 125.7 \text{ (d, CH}_{arom}), \ 127.3 \text{ (d, CH}_{arom}), \ 128.6 \text{ (d, CH}_{arom}), \ 135.9 \text{ (s, Cq}_{arom}), \ 165.2 \text{ (s, CON), } 168.8 \text{ (s, COO), } 169.5 \text{ (COO)}. \]

HRMS: \((C_{21}H_{31}NO_6, M = 399.22 \text{ g/mol}) \)

Calcd: 399.2236

Found: 399.2233
4. Experimental part

erythro (2S*,3R*) 2-Acetylamino-2-sec- butyl-3-hydroxy-3-phenyl-succinic acid 4-tert- butyl 1-methyl ester (*erythro*-72f) (sbo-586d)

According to the typical hydrolysis procedure, the bicyclic oxetane *endo*-62f (0.38 g, 1 mmol) was cleaved hydrolytically in 5h. Preparative chromatography yielded 0.24 g of the product as a colorless oil.

Yield: 72 %

TLC: R_f = 0.56 (ethyl acetate/n-hexane 1:4).

^1H-NMR: (300 MHz, CDCl_3)

δ/ppm = 0.91 (t, J = 7.2 Hz, 3H, CH_3), 0.97 (d, J = 6.6 Hz, 3H, CH_3), 1.42 (s, 9H, 3CH_3), 1.47-1.55 (m, 2H, CH_2), 1.69 (m, 1H, CH), 2.21 (s, 3H, CH_3CO), 3.67 (s, 3H, OCH_3), 7.28-7.54 (m, 5H, H_arom).

^13C-NMR: (75.5 MHz, CDCl_3)

δ/ppm = 12.3 (q, CH_3), 14.1 (q, CH_3), 14.7 (q, CH_3), 19.2 (d, CH), 28.2 (q, 3CH_3), 39.1 (t, CH_2), 51.6 (q, OCH_3), 86.2 (s, Cq), 87.6 (s, C-2), 93.6 (s, C-3), 125.7 (d, CH_arom), 127.3 (d, CH_arom), 128.6 (d, CH_arom), 134.5 (s, Cq_arom), 166.2 (s, CON), 169.3 (s, COO), 172.1 (COO).
4. Experimental part

Synthesis of erythro (S*,R*) & threo (S*,S*) α-acetamido-β-hydroxy succinic acid derivatives 73a-f:

threo (2S*,3S*) 2-Acetylamino-3-hydroxy-2-methyl-3-phenyl-succinic acid 4-(2-isopropyl-5-methyl-cyclohexyl) ester 1-methyl ester (*threo*-73a) (sbo-373d)

According to the typical hydrolysis procedure, the bicyclic oxetane *exo*-63a (0.83 g, 2 mmol) was cleaved hydrolytically in 6h. Preparative chromatography yielded 0.62 g of the product as a colorless oil.

Yield: 75 %

TLC: $R_f = 0.29$ (ethyl acetate/n-hexane 1:4).

IR: (Film)

$\tilde{\nu}$ (cm$^{-1}$) = 3540, 3370, 2983, 2890, 1725, 1670, 1595, 1550, 1440, 1075, 980, 770.

1H-NMR: (300 MHz, CDCl$_3$)

δ ppm = 0.65 (d, $J = 6.9$ Hz, 3H, CH$_3$), 0.85 (d, $J = 6.9$ Hz, 3H, CH$_3$), 0.86 (d, $J = 7.0$ Hz, 3H, CH$_3$), 0.95 (m, 2H, CH$_2$), 1.03 (m, 2H, CH$_2$), 1.45 (m, 2H, CH$_2$), 1.68 (s, 3H, CH$_3$), 1.74 (m, 2H, CH$_2$), 1.84 (m, 2H, CH$_2$), 1.84 (m, 2H, CH$_2$), 2.23 (s, 3H, CH$_3$CO), 3.05 (s, 3H, OCH$_3$), 4.66 (ddd, $J = 11.0$, 4.6, 4.4 Hz, 1H, OCH), 7.25-7.35 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ ppm = 14.0 (q, CH$_3$), 15.6 (q, CH$_3$), 16.1 (q, CH$_3$), 20.6 (q, CH$_3$), 21.5 (q, CH$_3$), 21.9 (q, CH$_3$), 22.9 (d, CH), 23.3 (d, CH), 25.5 (t, CH$_2$), 26.1 (d, CH), 31.4 (d, CH), 33.9 (t, CH$_2$), 40.2 (t, CH$_2$), 46.9 (d, CH), 51.8 (q, OCH$_3$), 77.2 (t, OCH), 82.1 (s, C-2), 92.7 (s, C-3), 126.06 (d, CH$_{arom}$), 127.6 (d, CH$_{arom}$), 128.2 (d, CH$_{arom}$), 135.3 (s, C$_{arom}$), 166.2 (s, CON), 167.9 (s, COO), 170.2 (COO).
4. Experimental part

erythro (2S*,3R*) 2-Acetylamino-3-hydroxy-2-methyl-3-phenyl-succinic acid 4-(2-isopropyl-5-methyl-cyclohexyl) ester 1-methyl ester (*erythro*-73a) (sbo-373a)

According to the typical hydrolysis procedure, the bicyclic oxetane *endo*-63a (0.41 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.29 g of the product as a colorless oil.

Yield: 68 %

TLC: $R_f = 0.49$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 0.67$ (d, $J = 6.9$ Hz, 3H, CH$_3$), 0.80 (d, $J = 6.9$ Hz, 3H, CH$_3$), 0.82 (d, $J = 6.5$ Hz, 3H, CH$_3$), 0.87 (m, 2H, CH$_2$), 1.00 (m, 2H, CH$_2$), 1.34 (m, 2H, CH$_2$), 1.47 (m, 2H, CH$_2$), 1.53 (s, 3H, CH$_3$), 2.12 (s, 3H, CH$_3$CO), 3.74 (s, 3H, OCH$_3$), 4.74 (ddd, $J = 11.0$, 4.6, 4.4 Hz, 1H, OCH), 7.32-7.50 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 15.7$ (q, CH$_3$), 15.8 (q, CH$_3$), 16.2 (q, CH$_3$), 20.7 (q, CH$_3$), 21.9 (q, CH$_3$), 22.0 (q, CH$_3$), 23.2 (q, CH$_3$), 25.6 (d, CH), 25.8 (d, CH), 31.4 (d, CH), 34.2 (t, CH$_2$), 40.3 (t, CH$_2$), 47.1 (d, CH), 52.2 (q, OCH$_3$), 74.9 (t, OCH), 75.9 (d, OCH), 109.9 (s, C-3), 127.3 (d, H$_{arom}$), 128.2 (d, H$_{arom}$), 134.1 (s, C$_{qarom}$), 164.9 (s, CON), 169.0 (s, COO), 169.2 (COO).

threo (2S*,3S*) 2-Acetylamino-2-ethyl-3-hydroxy-3-phenyl-succinic acid 4-(2-isopropyl-5-methyl-cyclohexyl) ester 1-methyl ester (*threo*-73b) (sbo-374a)
According to the typical hydrolysis procedure, the bicyclic oxetane \textit{exo-63b} (0.86 g, 2 mmol) was cleaved hydrolytically in 5h. Preparative chromatography yielded 0.52 g of the product as a colorless oil.

Yield: 60%

TLC: \(R_f = 0.36 \) (ethyl acetate/n-hexane 1:4).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[
\delta_{\text{ppm}} = 0.59 \text{ (d, } J = 6.9 \text{ Hz, } 3\text{H, } \text{CH}_3\text{), 0.76 \text{ (d, } J = 7.1 \text{ Hz, } 3\text{H, } \text{CH}_3\text{), 0.86 \text{ (d, } J = 6.6 \text{ Hz, } 3\text{H, } \text{CH}_3\text{), 1.02 \text{ (t, } J = 7.2 \text{ Hz, } 3\text{H, } \text{CH}_3\text{), 1.12 \text{ (m, } 2\text{H, } \text{CH}_2\text{), 1.25 \text{ (m, } 1\text{H, } \text{CH}\text{), 1.35 \text{ (m, } 2\text{H, } \text{CH}_2\text{), 1.43 \text{ (m, } 2\text{H, } \text{CH}_2\text{), 1.54 \text{ (m, } 2\text{H, } \text{CH}_2\text{), 1.67 \text{ (m, } 1\text{H, } \text{CH}\text{), 1.83 \text{ (m, } 2\text{H, } \text{CH}_2\text{), 2.22 \text{ (s, } 3\text{H, } \text{CH}(\text{CO})\text{), 2.46 \text{ (m, } 1\text{H, } \text{CH}\text{), 3.03 \text{ (s, } 3\text{H, } \text{OCH}_3\text{), 4.67 (ddd, } J = 11.0, 4.5, 4.4 \text{ Hz, } 1\text{H, } \text{OCH}\text{), 7.26-7.48 (m, } 5\text{H, } \text{H}_{\text{arom}}\text{).}}}
\]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[
\delta_{\text{ppm}} = 9.9 \text{ (q, } \text{CH}_3\text{), 14.1 \text{ (q, } \text{CH}_3\text{), 15.5 \text{ (q, } \text{CH}_3\text{), 20.7 \text{ (q, } \text{CH}_3\text{), 21.9 \text{ (q, } \text{CH}_3\text{), 22.9 \text{ (q, } \text{CH}_3\text{), 25.5 \text{ (d, } \text{CH}\text{), 28.9 \text{ (t, } \text{CH}_2\text{), 31.4 \text{ (d, } \text{CH}\text{), 33.9 \text{ (t, } \text{CH}_2\text{), 40.3 \text{ (t, } \text{CH}_2\text{), 46.9 \text{ (d, } \text{CH}\text{), 51.7 \text{ (q, } \text{OCH}_3\text{), 81.9 \text{ (d, } \text{OCH}\text{), 86.8 \text{ (s, C-2), 92.7 \text{ (s, C-3), 126.4 \text{ (d, } \text{CH}_{\text{arom}}\text{), 127.4 \text{ (d, } \text{CH}_{\text{arom}}\text{), 128.3 \text{ (d, } \text{CH}\text{), 134.9 \text{ (s, C_{qarom}}\text{), 165.5 \text{ (s, CON), 167.8 \text{ (s, COO), 169.5 (COO).}}}
\]

MS: (EI, 70 eV)

\[
m/z (\%) = 430 \text{ (M}^+ – \text{OH), 392 (4, 388 (M}^+\text{-CO}_2\text{Me, 6), 288 (30), 353 (7), 244 (8), 159 (30), 127 (15), 105 (40), 83 (100), 57 (43), 55 (62).}
\]

HRMS: (C\(_{25}\)H\(_{37}\)NO\(_6\), M = 447.26 g/mol)

Calcd: 447.2611

Found: 447.2605

\textit{erythro} \ (2S^*,3R^*) \ 2\text{-Acetylamino-2-ethyl-3-hydroxy-3-phenyl-succinic acid 4-(2-isopropyl-5-methyl-cyclohexyl) ester 1-methyl ester (\textit{erythro-73b})} \ (sbo-374b)
According to the typical hydrolysis procedure, the bicyclic oxetane \textit{endo-63b} (0.43 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.25 g of the product as a colorless oil.

\textbf{Yield:} 53 %

\textbf{TLC:} R\textsubscript{f} = 0.49 (ethyl acetate/n-hexane 1:4).

\textbf{1H-NMR:} (300 MHz, CDCl\textsubscript{3})

\begin{align*}
\delta_{ppm} &= 0.62 (d, J = 6.9 \text{ Hz}, 3H, CH\textsubscript{3}), 0.78 (d, J = 7.2 \text{ Hz}, 3H, CH\textsubscript{3}), 0.88 (d, J = 6.6 \text{ Hz}, 3H, CH\textsubscript{3}), 1.03 (t, J = 7.2 \text{ Hz}, 3H, CH\textsubscript{3}), 1.14 (m, 2H, CH\textsubscript{2}), 1.27 (m, 2H, CH\textsubscript{2}), 1.37 (m, 1H, CH), 1.45 (m, 2H, CH\textsubscript{2}), 1.57 (m, 2H, CH\textsubscript{2}), 1.68 (m, 1H, CH), 1.89 (m, 2H, CH\textsubscript{2}), 2.12 (s, 3H, CH\textsubscript{3}CO), 3.67 (s, 3H, OCH\textsubscript{3}), 4.67 (ddd, J = 11.0, 4.5, 4.4 Hz, 1H, OCH), 7.26-7.53 (m, 5H, H\textsubscript{arom}).
\end{align*}

\textbf{13C-NMR:} (75.5 MHz, CDCl\textsubscript{3})

\begin{align*}
\delta_{ppm} &= 9.7 (q, CH\textsubscript{3}), 14.2 (q, CH\textsubscript{3}), 15.7 (q, CH\textsubscript{3}), 20.9 (q, CH\textsubscript{3}), 22.0 (q, CH\textsubscript{3}), 22.8 (q, CH\textsubscript{3}), 25.7 (q, CH\textsubscript{3}), 29.0 (t, CH\textsubscript{2}), 31.7 (d, CH), 33.5 (t, CH\textsubscript{2}), 40.7 (t, CH\textsubscript{2}), 47.0 (d, CH), 52.3 (q, OCH\textsubscript{3}), 76.0 (d, OCH), 82.7 (s, C-2), 93.2 (s, C-3), 126.1 (d, CH\textsubscript{arom}), 127.6 (d, CH\textsubscript{arom}), 128.2 (d, CH), 134.7 (s, C\textsubscript{qarom}), 169.1 (s, CON), 170.1 (s, COO), 171.3 (COO).
\end{align*}

\textit{threo} (2S*,3S*) 2-Acetylamino-3-hydroxy-3-phenyl-2-propyl-succinic acid 4-(2-isopropyl-5-methyl-cyclohexyl) ester 1-methyl ester (\textit{threo-73c}) (sbo-375a)
According to the typical hydrolysis procedure, the bicyclic oxetane \textit{exo-63c} (0.87 g, 2 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.54 g of the product as a colorless oil.

Yield: 64 %

\textbf{TLC:} R\textsubscript{f} = 0.27 (ethyl acetate/n-hexane 1:4).

\textbf{1H-NMR:} (300 MHz, CDCl\textsubscript{3})

\begin{align*}
\delta_{\text{ppm}} &= 0.74 (d, J = 6.9 \text{ Hz}, 3H, CH\textsubscript{3}), 0.82 (d, J = 6.9 \text{ Hz}, 3H, CH\textsubscript{3}), 0.84 (t, J = 7.2 \text{ Hz}, 3H, CH\textsubscript{3}), 0.88 (d, J = 6.5 \text{ Hz}, 3H, CH\textsubscript{3}), 0.98 (m, 2H, CH\textsubscript{2}), 1.24 (m, 2H, CH\textsubscript{2}), 1.37 (m, 2H, CH\textsubscript{2}), 1.43 (m, 1H, CH), 1.47 (m, 2H, CH\textsubscript{2}), 1.68 (m, 2H, CH\textsubscript{2}), 2.20 (s, 3H, CH\textsubscript{3}CO), 3.00 (s, 3H, OCH\textsubscript{3}), 4.68 (ddd, J = 11.1, 4.6, 4.4 Hz, 1H, OCH), 7.20-7.52 (m, 5H, H\textsubscript{arom}).
\end{align*}

\textbf{13C-NMR:} (75.5 MHz, CDCl\textsubscript{3})

\begin{align*}
\delta_{\text{ppm}} &= 14.2 (q, CH\textsubscript{3}), 14.4 (q, CH\textsubscript{3}), 15.7 (q, CH\textsubscript{3}), 18.8 (q, CH\textsubscript{3}), 20.8 (q, CH\textsubscript{3}), 21.9 (d, CH), 22.9 (t, CH\textsubscript{2}), 25.6 (d, CH), 31.4 (t, CH\textsubscript{2}), 34.0 (t, CH\textsubscript{2}), 38.2 (t, CH\textsubscript{2}), 40.4 (t, CH\textsubscript{2}), 46.9 (d, CH), 51.8 (q, OCH\textsubscript{3}), 73.2 (d, OCH), 86.2 (s, C-2), 92.7 (s, C-3), 126.2 (d, CH\textsubscript{arom}), 127.6 (d, CH\textsubscript{arom}), 128.2 (d, CH\textsubscript{arom}), 134.9 (s, C\textsubscript{4arom}), 165.5 (s, CON), 167.8 (s, COO), 168.6 (COO).
\end{align*}

\textbf{Anal:} (C\textsubscript{21}H\textsubscript{37}NO\textsubscript{6}, M = 339.3 g/mol)

Calcd: C 63.32 H 9.33 N 3.51

Found: C 64.00 H 9.12 N 3.59

\textbf{erythro} (2S*,3R*) 2-Acetylamino-3-hydroxy-3-phenyl-2-propyl-succinic acid 4-(2-isopropyl-5-methyl-cyclohexyl) ester 1-methyl ester (\textit{erythro-73c}) (sbo-375b)

According to the typical hydrolysis procedure, the bicyclic oxetane \textit{endo-63c} (0.44 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.28 g of the product as a colorless oil.
4. Experimental part

Yield: 74 %

TLC: $R_f = 0.59$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

δ ppm = 0.75 (d, $J = 6.9$ Hz, 3H, CH$_3$), 0.82 (d, $J = 6.9$ Hz, 3H, CH$_3$), 0.83 (d, $J = 7.0$ Hz, 3H, CH$_3$), 0.85 (d, $J = 6.5$ Hz, 3H, CH$_3$), 0.95 (m, 2H, CH$_2$), 1.05 (m, 2H, CH$_2$), 1.25 (m, 1H, CH), 1.29 (m, 2H, CH$_2$), 1.34 (m, 2H, CH$_2$), 1.45 (m, 2H, CH$_2$), 1.56 (m, 2H, CH$_2$), 2.06 (s, 3H, CH$_3$CO), 3.46 (s, 3H, OCH$_3$), 4.72 (ddd, $J = 11.1$, 4.5, 4.4 Hz, 1H, OCH), 7.26-7.68 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ ppm = 13.9 (q, CH$_3$), 16.1 (q, CH$_3$), 17.2 (q, CH$_3$), 17.3 (q, CH$_3$), 20.7 (q, CH$_3$), 21.9 (q, CH$_3$), 23.9 (t, CH$_2$), 25.9 (d, CH), 29.9 (d, CH), 31.5 (t, CH$_2$), 34.1 (t, CH$_2$), 39.8 (t, CH$_2$), 42.6 (t, CH$_2$), 46.4 (d, CH), 52.5 (q, OCH$_3$), 72.8 (d, OCH), 80.4 (s, C-2), 86.1 (s, C-3), 126.2 (d, CH$_{arom}$), 127.6 (d, CH$_{arom}$), 128.2 (d, CH$_{arom}$), 137.9 (s, C$_{arom}$), 171.5 (s, CON), 172.3 (s, COO), 175.8 (COO).

threo (2S*,3S*) 2-Acetylamino-3-hydroxy-2-isopropyl-3-phenyl-succinic acid 4-(2-isopropyl-5-methyl-cyclohexyl) ester 1-methyl ester (threo-73d) (sbo-379a)

![Chemical structure](image)

According to the typical hydrolysis procedure, the bicyclic oxetane exo-63d (0.87 g, 2 mmol) was cleaved hydrolytically in 3h. Preparative chromatography yielded 0.69 g of the product as a colorless oil.

Yield: 72 %

TLC: $R_f = 0.29$ (ethyl acetate/n-hexane 1:4).

IR: (Film)

$\tilde{\nu}$ (cm$^{-1}$) = 3500, 3346, 2956, 2873, 1738, 1732, 1683, 1600, 1550, 1494, 1055, 942, 640.

1H-NMR: (300 MHz, CDCl$_3$)
4. Experimental part

\[\delta_{ppm} = 0.75 \text{ (d, J = 6.6 Hz, 3H, CH}_3, 0.72 \text{ (d, J = 6.9 Hz, 3H, CH}_3, 0.78 \text{ (d, J = 6.6 Hz, 3H, CH}_3, 0.88 \text{ (d, J = 6.9 Hz, 3H, CH}_3, 0.92 \text{ (d, J = 6.8 Hz, 3H, CH}_3, 1.10 \text{ (m, 2H, CH}_2, 1.23 \text{ (m, 2H, CH}_2, 1.29 \text{ (m, 1H, CH), 1.34 (m, 2H, CH}_2, 1.44 \text{ (m, 2H, CH}_2, 1.56 \text{ (m, 2H, CH}_2, 2.29 (s, 3H, CH}_3\text{CO), 3.15 (s, 3H, OCH}_3, 4.80 (ddd, J = 11.0, 4.5 , 4.4 Hz, 1H, OCH), 7.23-7.31 (m, 5H, H}_{arom})}. \]

\[^{13}\text{C-NMR:} (75.5 \text{ MHz, CDCl}_3\]

\[\delta_{ppm} = 13.9 \text{ (q, CH}_3, 15.8 \text{ (q, CH}_3, 16.3 \text{ (q, CH}_3, 18.9 \text{ (q, CH}_3, 20.4 \text{ (q, CH}_3, 21.9 \text{ (q, CH}_3, 23.2 \text{ (d, CH), 25.6 (d, CH), 31.4 (t, CH}_2, 31.5 \text{ (d, CH), 23.4 (t, CH}_2, 34.1 \text{ (t, CH}_2, 40.1 \text{ (t, CH}_2, 46.8 \text{ (d, CH), 51.6 \text{ (q, OCH}_3, 76.2 \text{ (d, OCH), 89.9 (s, C-2), 91.3 (s, C-3), 126.6 (d, CH}_{arom}, 127.6 (d, CH}_{arom}, 128.2 \text{ (d, CH}_{arom}, 136.0 \text{ (s, Cq}_{arom}, 163.4 \text{ (s, CON), 167.1 (s, COO), 170.4 (COO).} \]

Anal: (C\textsubscript{26}H\textsubscript{39}NO\textsubscript{6}, M = 461.59 g/mol)
- Calcd: C 67.65 \ H 8.52 \ N 3.03
- Found: C 66.98 \ H 8.22 \ N 3.14

erythro (2S*,3R*) 2-Acetylamino-3-hydroxy-2-isopropyl-3-phenyl-succinic acid 4-(2-isopropyl-5-methyl-cyclohexyl) ester 1-methyl ester (erythro-73d) (sbo-379b)

According to the typical hydrolysis procedure, the bicyclic oxetane endo-63d (0.44 g, 1 mmol) was cleaved hydrolytically in 5h. Preparative chromatography yielded 0.4 g of the product as a colorless oil.

Yield: 88 %

TLC: R\textsubscript{f} = 0.49 (ethyl acetate/n-hexane 1:4).

**\[^{1}\text{H-NMR:} (300 \text{ MHz, CDCl}_3\]

\[\delta_{ppm} = 0.54 \text{ (d, J = 6.5 Hz, 3H, CH}_3, 0.62 \text{ (d, J = 6.9 Hz, 3H, CH}_3, 0.80 \text{ (d, J = 6.9 Hz, 3H, CH}_3, 0.82 \text{ (d, J = 6.8 Hz, 3H, CH}_3, 0.85 \text{ (d, J = 6.5 Hz, 3H, CH}_3, 1.23 \text{ (m, 2H, CH}_2, 1.34 \text{ (m, 2H, CH}_2, 1.37 \text{ (m, 1H, CH), 1.53 \text{ (m, 2H, CH}_2, 1.57 \text{ (m, 2H,} \]
4. Experimental part

CH\(_2\), 1.60 (m, 2H, CH\(_2\)), 1.83 (m, 2H, CH\(_2\)), 2.18 (s, 3H, CH\(_3\)CO), 3.81 (s, 3H, OCH\(_3\)), 4.48 (ddd, J = 11.0 , 4.6, 4.4 Hz, 1H, OCH), 7.25-7.35 (m, 5H, H\(_{\text{arom}}\)).

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\(\delta_{\text{ppm}} = 13.9 \text{ (q, CH} _3\text{)}, 15.9 \text{ (q, CH} _3\text{)}, 18.7 \text{ (q, CH} _3\text{)}, 20.7 \text{ (q, CH} _3\text{)}, 21.8 \text{ (q, CH} _3\text{)}, 21.9 \text{ (q, CH} _3\text{)}, 22.9 \text{ (d, CH)}, 23.0 \text{ (t, CH} _2\text{)}, 25.6 \text{ (d, CH)}, 31.2 \text{ (t, CH} _2\text{)}, 34.0 \text{ (d, CH)}, 34.2 \text{ (d, CH)}, 40.1 \text{ (t, CH} _2\text{)}, 46.8 \text{ (d, CH)}, 52.4 \text{ (q, OCH} _3\text{)}, 77.0 \text{ (t, OCH)}, 82.1 \text{ (s, C-2)}, 92.7 \text{ (s, C-3)}, 126.3 \text{ (d, CH} _\text{arom}\text{)}, 127.6 \text{ (d, CH} _\text{arom}\text{)}, 128.2 \text{ (d, CH} _\text{arom}\text{)}, 134.1 \text{ (s, C} _\text{arom}\text{)}, 163.4 \text{ (s, CON)}, 169.8 \text{ (s, COO)}, 173.4 \text{ (COO)}.

threo (2S*,3S*) 2-Acetylamino-3-hydroxy-2-isobutyl-3-phenyl-succinic acid 4-(2-isopropyl-5-methyl-cyclohexyl) ester 1-methyl ester (threo-73e) (sbo-384b)

According to the typical hydrolysis procedure, the bicyclic oxetane *exo*-63e (0.9 g, 2 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.85 g of the product as a colorless oil.

Yield: 89 %

TLC: \(R_f = 0.26\) (ethyl acetate/n-hexane 1:4).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\(\delta_{\text{ppm}} = 0.64 \text{ (d, J = 6.9 Hz, 3H, CH} _3\text{)}, 0.82 \text{ (d, J = 6.9 Hz, 3H, CH} _3\text{)}, 0.83 \text{ (d, J = 6.8 Hz, 3H, CH} _3\text{)}, 0.85 \text{ (d, J = 6.6 Hz, 3H, CH} _3\text{)}, 0.96 \text{ (d, J = 6.6 Hz, 3H, CH} _3\text{)}, 1.02 \text{ (m, 1H, CH)}, 1.23 \text{ (m, 2H, CH} _2\text{)}, 1.34 \text{ (m, 2H, CH} _2\text{)}, 1.43 \text{ (m, 2H, CH} _2\text{)}, 1.54 \text{ (m, 2H, CH} _2\text{)}, 1.67 \text{ (m, 2H, CH} _2\text{)}, 1.83 \text{ (m, 2H, CH} _2\text{)}, 2.12 \text{ (s, 3H, CH} _3\text{CO)}, 3.03 \text{ (s, 3H, OCH} _3\text{)}, 4.74 \text{ (ddd, J = 11.0, 4.6 , 4.5Hz, 1H, OCH)}, 7.23-7.55 \text{ (m, 5H, H} _\text{arom}\text{)}.

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\(\delta_{\text{ppm}} = 14.2 \text{ (q, CH} _3\text{)}, 14.3 \text{ (q, CH} _3\text{)}, 15.8 \text{ (q, CH} _3\text{)}, 15.9 \text{ (q, CH} _3\text{)}, 20.8 \text{ (q, CH} _3\text{)}, 21.8 \text{ (q, CH} _3\text{)}, 23.0 \text{ (d, CH)}, 23.4 \text{ (t, CH} _2\text{)}, 24.1 \text{ (d, CH)}, 25.9 \text{ (d, CH)}, 31.2 \text{ (t, CH} _2\text{)}, 33.9 \text{ (t, CH} _2\text{)}, 40.1 \text{ (t, CH)}, 46.8 \text{ (d, CH)}, 52.3 \text{ (q, OCH} _3\text{)}, 76.8 \text{ (d, OCH)}, 86.2 \text{ (s, C-}
4. Experimental part

erythro (2S*,3R*) 2-Acetylamino-3-hydroxy-2-isobutyl-3-phenyl-succinic acid 4-(2-isopropyl-5-methyl-cyclohexyl) ester 1-methyl ester (erythro-73e) (sbo-384)

According to the typical hydrolysis procedure, the bicyclic oxetane endo-63e (0.46 g, 1 mmol) was cleaved hydrolytically in 5h. Preparative chromatography yielded 0.4 g of the product as a colorless oil.

Yield: 84 %

TLC: R_f = 0.36 (ethyl acetate/n-hexane 1:4).

^1H-NMR: (300 MHz, CDCl₃)

δ_ppm = 0.65 (d, J = 6.9 Hz, 3H, CH₃), 0.83 (d, J = 6.9 Hz, 3H, CH₃), 0.85 (d, J = 6.8 Hz, 3H, CH₃), 0.87 (d, J = 6.6 Hz, 3H, CH₃), 0.98 (d, J = 6.6 Hz, 3H, CH₃), 1.19 (m, 1H, CH), 1.23 (m, 2H, CH₂), 1.37 (m, 2H, CH₂), 1.47 (m, 2H, CH₂), 1.58 (m, 2H, CH₂), 1.69 (m, 2H, CH₂).1.87 (m, 2H, CH₂), 2.13 (s, 3H, CH₃ CO), 3.69 (s, 3H, OCH₃), 4.78 (ddd, J = 11.0, 4.6, 4.5 Hz, 1H, OCH), 7.28-7.55 (m, 5H, H arom).

^13C-NMR: (75.5 MHz, CDCl₃)

δ_ppm = 14.3 (q, CH₃), 14.6 (q, CH₃), 15.6 (q, CH₃), 16.0 (q, CH₃), 21.0 (q, CH₃), 21.8 (q, CH₃), 23.2 (d, CH), 23.4 (t, CH₂), 24.3 (d, CH), 25.8 (d, CH), 31.3 (t, CH₂), 34.5 (t, CH₂), 42.1 (t, CH), 47.0 (d, CH), 52.7 (q, OCH₃), 76.9 (d, OCH), 87.3 (s, C-2), 94.1 (s, C-3), 126.9 (d, CH arom), 127.6 (d, CH arom), 128.2 (d, CH arom), 135.1 (s, Cq arom), 169.1 (s, CON), 170.1 (s, COO), 172.1 (COO).

threo (2S*,3S*) 2-Acetylamino-2-sec-butyl-3-hydroxy-3-phenyl-succinic acid 4-(2-isopropyl-5-methyl-cyclohexyl) ester 1-methyl ester (threo-73f) (sbo-385c)
According to the typical hydrolysis procedure, the bicyclic oxetane *exo-63f* (0.9 g, 2 mmol) was cleaved hydrolytically in 6h. Preparative chromatography yielded 0.82 g of the product as a colorless oil.

Yield: 88 %

TLC: R_f = 0.27 (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

δ ppm = 0.53 (d, $J = 6.8$ Hz, 3H, CH$_3$), 0.65 (d, $J = 6.8$ Hz, 3H, CH$_3$), 0.75 (d, $J = 6.5$ Hz, 3H, CH$_3$), 0.83 (d, $J = 6.9$ Hz, 3H, CH$_3$), 0.90 (t, $J = 7.2$ Hz, 3H, CH$_3$), 1.03 (m, 2H, CH$_2$), 1.15 (m, 1H, CH), 1.23 (m, 2H, CH$_2$), 1.25 (m, 2H, CH$_2$), 1.37 (m, 2H, CH$_2$), 1.45 (m, 1H, CH), 1.89 (m, 2H, CH$_2$), 2.29 (s, 3H, CH$_3$CO), 3.14 (s, 3H, OCH$_3$), 4.84 (ddd, $J = 11.0$, 4.6, 4.4 Hz, 1H, OCH), 7.25-7.37 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ ppm = 11.8 (q, CH$_3$), 12.3 (q, CH$_3$), 12.7 (q, CH$_3$), 13.9 (q, CH$_3$), 15.8 (q, CH$_3$), 20.4 (q, CH$_3$), 20.8 (t, CH$_2$), 21.9 (d, CH), 23.2 (d, CH), 25.6 (t, CH$_2$), 26.3 (d, CH), 31.5 (t, CH$_2$), 34.0 (d, CH), 39.3 (t, CH$_2$), 40.1 (t, CH$_2$), 46.8 (d, CH), 51.6 (q, OCH$_3$), 76.3 (d, OCH), 88.5 (s, C-2), 90.8 (s, C-3), 125.7 (d, CH$_{arom}$), 127.3 (d, CH$_{arom}$), 128.1 (d, CH$_{arom}$), 135.9 (s, C$_4$$_{arom}$), 163.4 (s, CON), 167.1 (s, COO), 170.5 (COO).

erythro *(2S*,3R*) 2-Acetylamino-2-sec-butyl-3-hydroxy-3-phenyl-succinic acid 4-(2-isopropyl-5-methyl-cyclohexyl) ester 1-methyl ester *(erythro-73f)* (sbo-385)
According to the typical hydrolysis procedure, the bicyclic oxetane **endo-63f** (0.46 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.42 g of the product as a colorless oil.

Yield: 89 %

TLC: \(R_f = 0.47 \) (ethyl acetate/n-hexane 1:4).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 0.55 \text{ (d, J = 6.9 Hz, 3H, CH}_3) , 0.67 \text{ (d, J = 6.8 Hz, 3H, CH}_3) , 0.77 \text{ (d, J = 6.5 Hz, 3H, CH}_3) , 0.85 \text{ (d, J = 7.2 Hz, 3H, CH}_3) , 0.93 \text{ (t, J = 7.2 Hz, 3H, CH}_3) , 1.17 \text{ (m, 2H, CH}_2) , 1.27 \text{ (m, 1H, CH)} , 1.30 \text{ (m, 2H, CH}_2) , 1.34 \text{ (m, 2H, CH}_2) , 1.43 \text{ (m, 2H, CH}_2) , 1.49 \text{ (m, 1H, CH)} , 1.93 \text{ (m, 2H, CH}_2) , 2.17 \text{ (s, 3H, CH}_3\text{CO}) , 3.74 \text{ (s, 3H, OCH}_3) , 4.76 \text{ (ddd, J = 11.0, 4.6, 4.4 Hz, 1H, OCH)} , 7.26-7.35 \text{ (m, 5H, H}_\text{arom}). \]

\(^1\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 11.3 \text{ (q, CH}_3) , 12.7 \text{ (q, CH}_3) , 12.9 \text{ (q, CH}_3) , 13.5 \text{ (q, CH}_3) , 15.9 \text{ (q, CH}_3) , 20.5 \text{ (q, CH}_3) , 20.9 \text{ (t, CH}_2) , 22.3 \text{ (d, CH)} , 27.4 \text{ (d, CH)} , 29.3 \text{ (t, CH}_2) , 30.1 \text{ (d, CH)} , 34.1 \text{ (t, CH}_2) , 37.2 \text{ (d, CH)} , 40.1 \text{ (t, CH}_2) , 42.3 \text{ (t, CH}_2) , 47.0 \text{ (d, CH)} , 52.7 \text{ (q, OCH}_3) , 76.0 \text{ (d, OCH)} , 89.1 \text{ (s, C-2)} , 92.3 \text{ (s, C-3)} , 125.7 \text{ (d, CH}_\text{arom}) , 127.3 \text{ (d, CH}_\text{arom}) , 128.1 \text{ (d, CH}_\text{arom}) , 136.5 \text{ (s, Cq}_\text{arom}) , 165.4 \text{ (s, CON)} , 169.1 \text{ (s, COO)} , 173.1 \text{ (COO)}. \]

Synthesis of erythro \((S^*,R^*)\) & threo \((S^*,S^*)\) \(\alpha\)-propionylamino-\(\beta\)-hydroxy succinic acid derivatives 74a-f:

erythro \((2S^*,3R^*)\) 2,3-Dimethyl-3-hydroxy-2-propionylamino-succinic acid dimethyl ester (erythro-74a) (sbo-442)

According to the typical hydrolysis procedure, the bicyclic oxetane **64a** (0.49 g, 2 mmol) was cleaved hydrolytically in 3h. Preparative chromatography yielded 0.48 g of the product as a colorless oil.

Yield: 89 %

TLC: \(R_f = 0.45 \) (ethyl acetate/n-hexane 1:4).
4. Experimental part

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 1.12$ (t, $J = 7.2$ Hz, 3H, CH$_3$), 1.45 (s, 3H, CH$_3$), 1.67 (s, 3H, CH$_3$), 1.98 (q, $J = 7.2$ Hz, 2H, CH$_2$), 3.67 (s, 3H, OCH$_3$), 3.76 (s, 3H, OCH$_3$).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 7.9$ (q, CH$_3$), 19.2 (q, CH$_3$), 25.7 (q, CH$_3$), 35.2 (t, CH$_2$), 52.9 (q, OCH$_3$), 53.2 (q, OCH$_3$), 78.3 (s, C-2), 87.2 (s, C-3), 169.2 (s, CON), 172.1 (COO), 174.3 (s, COO).

threo (2S*,3S*) 3-tert-Butyl-2-propionylamino-3-hydroxy-2-methyl-succinic acid dimethyl ester (threo-74b) (sbo-442c)

According to the typical hydrolysis procedure, the bicyclic oxetane 64b (0.3 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.23 g of the product as a colorless oil.

Yield: 81 %

TLC: $R_f = 0.45$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 1.14$ (t, $J = 7.2$ Hz, 3H, CH$_3$), 1.42 (s, 9H, 3CH$_3$), 1.65 (s, 3H, CH$_3$), 1.98 (q, $J = 7.2$ Hz, 2H, CH$_2$), 3.69 (s, 3H, OCH$_3$), 3.76 (s, 3H, OCH$_3$).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 8.7$ (q, CH$_3$), 20.2 (q, CH$_3$), 28.7 (q, 3CH$_3$), 35.2 (t, CH$_2$), 37.8 (s, Cq), 52.9 (q, OCH$_3$), 53.2 (q, OCH$_3$), 82.3 (s, C-2), 89.2 (s, C-3), 169.2 (s, CON), 172.1 (COO), 175.3 (s, COO).

threo (2S*,3S*) 2-Hydroxy-3-methyl-2-phenyl-3-propionylamino-succinic acid dimethyl ester (threo-74c) (sbo-441c)

469
According to the typical hydrolysis procedure, the bicyclic oxetane **exo-64c** (0.61 g, 2 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.52 g of the product as a colorless oil.

Yield: 85%

TLC: $R_f = 0.47$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

\[
\delta_{ppm} = 1.04 \text{ (t, } J = 7.5 \text{ Hz, } 3H, \text{ CH}_3), 1.60 \text{ (s, } 3H, \text{ CH}_3), 2.14 \text{ (q, } J = 7.5 \text{ Hz, } 2H, \text{ CH}_2), 3.12 \text{ (s, } 3H, \text{ OCH}_3), 3.67 \text{ (s, } 3H, \text{ OCH}_3), 7.28-7.62 \text{ (m, } 5H, \text{ H}_{arom}).
\]

13C-NMR: (75.5 MHz, CDCl$_3$)

\[
\delta_{ppm} = 9.4 \text{ (q, CH}_3), 16.0 \text{ (q, CH}_3), 29.9 \text{ (t, CH}_2), 52.8 \text{ (q, OCH}_3), 53.9 \text{ (q, OCH}_3), 80.9 \text{ (s, C-2), 83.2 (s, C-3), 126.3 (d, CH}_{arom}), 128.2 \text{ (d, CH}_{arom}), 137.2 \text{ (s, Cq}_{arom}), 168.4 \text{ (s, CON), 172.2 (s, COO), 173.9 (s, COO).}
\]

erythro (2R*,3S*) 2-Hydroxy-3-methyl-2-phenyl-3-propionylamino-succinic acid dimethyl ester (**erythro-74c**) (sbo-441d)

According to the typical hydrolysis procedure, the bicyclic oxetane **endo-64c** (0.31 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.27 g of the product as a colorless oil.

Yield: 88%

TLC: $R_f = 0.51$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

\[
\delta_{ppm} = 1.30 \text{ (t, } J = 7.5 \text{ Hz, } 3H, \text{ CH}_3), 1.67 \text{ (s, } 3H, \text{ CH}_3), 2.53 \text{ (q, } J = 7.5 \text{ Hz, } 2H, \text{ CH}_2), 3.68 \text{ (s, } 3H, \text{ OCH}_3), 3.78 \text{ (s, } 3H, \text{ OCH}_3), 7.28-7.52 \text{ (m, } 5H, \text{ H}_{arom}).
\]

13C-NMR: (75.5 MHz, CDCl$_3$)
4. Experimental part

$\delta_{ppm} = 9.6$ (q, CH$_3$), 16.1 (q, CH$_3$), 30.1 (t, CH$_2$), 52.8 (q, OCH$_3$), 53.4 (q, OCH$_3$), 66.6 (s, C-2), 82.1 (s, C-3), 126.2 (d, CH$_{arom}$), 128.2 (d, CH$_{arom}$), 136.5 (s, C$_q$$_{arom}$), 170.3 (s, CON), 172.6 (s, COO), 174.9 (s, COO).

threo (2S*,3S*) 2-Hydroxy-3-methyl-2-phenyl-3-propionylamino-succinic acid 1-ethyl ester-4-methyl ester (threo-74d) (sbo-465b)

![Structure](image)

According to the typical hydrolysis procedure, the bicyclic oxetane **exo-64d** (0.64 g, 2 mmol) was cleaved hydrolytically in 6h. Preparative chromatography yielded 0.44 g of the product as a colorless oil.

Yield: 76%

TLC: $R_f = 0.43$ (ethyl acetate/n-hexane 1:4).

IR: (Film)

$\tilde{\nu}$ (cm$^{-1}$) = 3490, 3365, 2983, 2890, 1743, 1720, 1650, 1600, 1550, 1440, 1075, 980, 770.

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 1.08$ (t, J = 7.5 Hz, 3H, CH$_3$), 1.28 (t, J = 7.2 Hz, 3H, CH$_3$), 1.67 (s, 3H, CH$_3$), 2.56 (q, J = 7.5 Hz, 2H, CH$_2$), 3.03 (s, 3H, OCH$_3$), 4.26 (q, J = 7.5 Hz, 2H, OCH$_2$), 7.26-7.32 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 9.5$ (q, CH$_3$), 14.0 (q, CH$_3$), 21.7 (q, CH$_3$), 30.1 (t, CH$_2$), 51.8 (q, OCH$_3$), 62.3 (t, OCH$_2$), 82.3 (s, C-2), 84.5 (s, C-3), 126.2 (d, CH$_{arom}$), 128.3 (d, CH$_{arom}$), 136.9 (s, C$_q$$_{arom}$), 168.4 (s, CON), 170.1 (s, COO), 172.5 (s, COO).

HRMS: (C$_{17}$H$_{23}$ NO$_6$, M = 337.15 g/mol)

Calcd: 337.1468

Found: 351.1463

erythro (2R*,3S*) 2-Hydroxy-3-methyl-2-phenyl-3-propionylamino-succinic acid 1-ethyl ester-4-methyl ester (erythro-74d) (sbo-465d)
According to the typical hydrolysis procedure, the bicyclic oxetane *endo-64d* (0.32 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.21 g of the product as a colorless oil.

Yield: 76 %

TLC: $R_f = 0.53$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

\[
\delta_{ppm} = 1.11 \ (t, J = 7.5 \ Hz, 3H, CH$_3$), 1.28 \ (t, J = 7.2 \ Hz, 3H, CH$_3$), 1.57 \ (s, 3H, CH$_3$), 2.19 \ (q, J = 7.5 \ Hz, 2H, CH$_2$), 3.61 \ (s, 3H, OCH$_3$), 4.22 \ (q, J = 7.2 \ Hz, 2H, OCH$_2$), 6.38 \ (s, 1H, NH), 7.31-7.66 \ (m, 5H, H$_{arom}$).
\]

13C-NMR: (75.5 MHz, CDCl$_3$)

\[
\delta_{ppm} = 9.6 \ (q, CH$_3$), 13.9 \ (q, CH$_3$), 19.9 \ (q, CH$_3$), 30.0 \ (t, CH$_2$), 52.7 \ (q, OCH$_3$), 62.2 \ (t, OCH$_2$), 66.7 \ (s, C-2), 82.9 \ (s, C-3), 126.5 \ (d, CH$_{arom}$), 128.5 \ (d, CH$_{arom}$), 136.7 \ (s, C$_{arom}$), 172.1 \ (s, CON), 172.4 \ (s, COO), 174.7 \ (s, COO).
\]

threo (2S*,3S*) 2-Hydroxy-3-methyl-2-phenyl-3-propionylamino-succinic acid 1-isopropyl ester-4-methyl ester (*threo-74e*) (sbo-463)

According to the typical hydrolysis procedure, the bicyclic oxetane *exo-64e* (0.67 g, 2 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.51 g of the product as a colorless oil.

Yield: 74 %

TLC: $R_f = 0.44$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)
4. Experimental part

\[\delta_{ppm} = 1.07 \ (t, \ J = 7.5 \ Hz, \ 3H, \ CH_3), \ 1.24 \ (d, \ J = 6.2 \ Hz, \ 3H, \ CH_3), \ 1.27 \ (d, \ J = 6.2 \ Hz, \ 3H, \ CH_3), \ 1.67 \ (s, \ 3H, \ CH_3), \ 2.32 \ (q, \ J = 7.5 \ Hz, \ 2H, \ CH_2), \ 3.05 \ (s, \ 3H, \ OCH_3), \ 5.17 \ (septet, \ J = 6.2 \ Hz, \ 1H, \ OCH), \ 7.28-7.39 \ (m, \ 5H, \ H_{arom}). \]

\[\delta_{ppm} = 9.7 \ (q, \ CH_3), \ 15.7 \ (q, \ CH_3), \ 21.6 \ (q, \ CH_3), \ 21.7 \ (q, \ CH_3), \ 28.3 \ (t, \ CH_2), \ 52.8 \ (q, \ OCH_3), \ 70.3 \ (t, \ OCH_2), \ 85.6 \ (s, \ C-2), \ 92.3 \ (s, \ C-3), \ 126.3 \ (d, \ CH_{arom}), \ 129.2 \ (d, \ CH_{arom}), \ 134.7 \ (s, \ C_{arom}), \ 165.1 \ (s, \ CON), \ 170.1 \ (s, \ COO), \ 171.3 \ (s, \ COO). \]

Analytical: (C_{18}H_{25}NO_{6}, M = 351.17 g/mol)

Calcd: C 61.52 H 7.17 N 3.99

Found: C 61.72 H 7.14 N 4.03

erythro (2R*,3S*) 2-Hydroxy-3-methyl-2-phenyl-3-propionylamino-succinic acid 1-isopropyl ester-4-methyl ester (**erythro-74e**) (sbo-463a)

According to the typical hydrolysis procedure, the bicyclic oxetane **endo-64e** (0.33 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.2 g of the product as a colorless oil.

Yield: 74 %

TLC: R \(_f\) = 0.56 (ethyl acetate/n-hexane 1:4).

\[\delta_{ppm} = 1.04 \ (t, \ J = 7.5 \ Hz, \ 3H, \ CH_3), \ 1.23 \ (d, \ J = 6.2 \ Hz, \ 3H, \ CH_3), \ 1.25 \ (d, \ J = 6.2 \ Hz, \ 3H, \ CH_3), \ 1.54 \ (s, \ 3H, \ CH_3), \ 2.13 \ (q, \ J = 7.5 \ Hz, \ 2H, \ CH_2), \ 3.76 \ (s, \ 3H, \ OCH_3), \ 5.12 \ (septet, \ J = 6.2 \ Hz, \ 1H, \ OCH), \ 7.28-7.39 \ (m, \ 5H, \ H_{arom}). \]

\[\delta_{ppm} = 9.8 \ (q, \ CH_3), \ 15.9 \ (q, \ CH_3), \ 21.7 \ (q, \ CH_3), \ 21.9 \ (q, \ CH_3), \ 27.2 \ (t, \ CH_2), \ 52.7 \ (q, \ OCH_3), \ 70.1 \ (d, \ OCH), \ 82.7 \ (s, \ C-2), \ 87.3 \ (s, \ C-3), \ 126.2 \ (d, \ CH_{arom}), \ 128.3 \ (d, \ CH), \ 135.6 \ (s, \ C_{arom}), \ 169.2 \ (s, \ CON), \ 172.1 \ (s, \ COO), \ 173.1 \ (s, \ COO). \]
4. Experimental part

threo (2S*,3S*) 2-Hydroxy-3-methyl-2-phenyl-3-propionylamino-succinic acid 1-tert-butyl ester-4-methyl ester (threo-74f) (sbo-450c)

According to the typical hydrolysis procedure, the bicyclic oxetane exo-64f (0.69 g, 2 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.64 g of the product as a colorless oil.

Yield: 79 %
TLC: $R_f = 0.42$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

δ ppm = 1.22 (t, $J = 7.5$ Hz, 3H, CH$_3$), 1.44 (s, 9H, 3CH$_3$), 1.72 (s, 3H, CH$_3$), 2.37 (q, $J = 7.5$ Hz, 2H, CH$_2$), 3.02 (s, 3H, OCH$_3$), 7.28-7.67 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ ppm = 10.1 (q, CH$_3$), 21.6 (t, CH$_2$), 21.7 (q, CH$_3$), 27.9 (q, 3CH$_3$), 52.8 (q, OCH$_3$), 82.0 (s, C-2), 83.8 (s, C$_q$), 92.3 (s, C-3), 126.3 (d, CH$_{arom}$), 129.2 (d, CH$_{arom}$), 134.7 (s, C$_q$$_{arom}$), 167.1 (s, CON), 170.1 (s, COO), 170.2 (s, COO).

Anal: (C$_{19}$H$_{27}$NO$_6$, M = 365.2 g/mol)
Calcd: C 62.45 H 7.45 N 3.83
Found: C 62.92 H 7.38 N 3.96

erythro (2R*,3S*) 2-Hydroxy-3-methyl-2-phenyl-3-propionylamino-succinic acid 1-tert-butyl ester-4-methyl ester (erythro-74f) (sbo-450a)

According to the typical hydrolysis procedure, the bicyclic oxetane endo-64f (0.35 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.31 g of the product as a colorless oil.

Yield: 82 %
TLC: $R_f = 0.56$ (ethyl acetate/n-hexane 1:4).
4. Experimental part

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{\text{ppm}} = 1.09$ (t, $J = 7.5$ Hz, 3H, CH$_3$), 1.50 (s, 3H, CH$_3$), 1.55 (s, 9H, 3CH$_3$), 2.19 (q, $J = 7.5$ Hz, 2H, CH$_2$), 3.67 (s, 3H, OCH$_3$), 7.35-7.48 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{\text{ppm}} = 9.5$ (q, CH$_3$), 18.7 (q, CH$_3$), 27.8 (q, 3CH$_3$), 30.1 (t, CH$_2$), 52.4 (q, OCH$_3$), 66.4 (s, C-2), 79.7 (s, C-3), 85.3 (s, Cq), 126.2 (d, CH$_{arom}$), 128.3 (d, CH$_{arom}$), 135.6 (s, C$_{arom}$), 171.3 (s, CON), 172.1 (s, COO), 173.4 (s, COO).

Synthesis of erythro (S*,R*) & threo (S*,S*) α-isobutyrylamo-β-hydroxy succinic acid derivatives 75a-f:

erythro (2R*,3S*) 2-Hydroxy-3-isobutyrylamo-2,3-dimethyl-succinic acid dimethyl ester (*erythro*-75a) (sbo-460)

According to the typical hydrolysis procedure, the bicyclic oxetane *endo*-65a (0.25 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.21 g of the product as a colorless oil.

Yield: 82%

TLC: $R_f = 0.43$ (ethyl acetate/n-hexane 1:3).

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{\text{ppm}} = 1.05$ (d, $J = 6.8$ Hz, 3H, CH$_3$), 1.13 (d, $J = 6.9$ Hz, 3H, CH$_3$), 1.45 (s, 3H, CH$_3$), 1.95 (s, 3H, CH$_3$), 2.45 (septet, $J = 6.8$ Hz, 1H, CH), 3.64 (s, 3H, OCH$_3$), 3.74 (s, 3H, OCH$_3$).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{\text{ppm}} = 15.9$ (q, CH$_3$), 18.3 (q, CH$_3$), 18.5 (q, CH$_3$), 23.5 (q, CH$_3$), 42.1 (d, CH), 52.7 (q, OCH$_3$), 53.5 (q, OCH$_3$), 75.6 (s, C-2), 89.1 (s, C-3), 169.1 (s, CON), 171.1 (COO), 176.2 (s, COO).
4. Experimental part

threo (2S*,3S*) 2-Hydroxy-3-isobutyrylamino-2,3-dimethyl-succinic acid dimethyl ester (*threo*-**75a**) (sbo-460a)

![Chemical Structure](image)

According to the typical hydrolysis procedure, the bicyclic oxetane *exo*-**65a** (0.5 g, 2 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.42 g of the product as a colorless oil.

Yield: 84 %

TLC: $R_f = 0.38$ (ethyl acetate/n-hexane 1:3).

1H-NMR: (300 MHz, CDCl$_3$)

\[\delta_{ppm} = 1.08 \text{ (d, } J = 6.8 \text{ Hz, } 3\text{H, CH$_3$}), 1.19 \text{ (d, } J = 6.9 \text{ Hz, } 3\text{H, CH$_3$}), 1.47 \text{ (s, } 3\text{H, CH$_3$}), 1.98 \text{ (s, } 3\text{H, CH$_3$}), 2.49 \text{ (septet, } J = 6.8 \text{ Hz, } 1\text{H, CH}), 3.67 \text{ (s, } 3\text{H, OCH$_3$}), 3.74 \text{ (s, } 3\text{H, OCH$_3$}).\]

13C-NMR: (75.5 MHz, CDCl$_3$)

\[\delta_{ppm} = 15.6 \text{ (q, CH$_3$), 18.8 \text{ (q, CH$_3$), 18.9 \text{ (q, CH$_3$), 23.5 \text{ (q, CH$_3$), 42.1 \text{ (d, CH), 52.7 \text{ (q, OCH$_3$), 53.5 \text{ (q, OCH$_3$), 75.6 \text{ (s, C-2), 89.1 \text{ (s, C-3), 169.1 \text{ (s, CON), 174.1 \text{ (COO), 175.2 \text{ (s, COO).}}} \]

threo (2S*,3S*) 2-**tert**-Butyl-2-hydroxy-3-isobutyrylamino-3-methyl-succinic acid dimethyl ester (*threo*-**75b**) (sbo-461)

![Chemical Structure](image)

According to the typical hydrolysis procedure, the bicyclic oxetane *exo*-**65b** (0.31 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.29 g of the product as a colorless oil.

Yield: 86 %

TLC: $R_f = 0.52$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)
4. Experimental part

\[\delta_{\text{ppm}} = 1.0 (\text{d, } J = 6.8 \text{ Hz, } 3\text{H, CH}_3), 1.12 (\text{d, } J = 6.9 \text{ Hz, } 3\text{H, CH}_3), 1.45 (\text{s, } 9\text{H, }3\text{CH}_3), 1.95 (\text{s, } 3\text{H, CH}_3), 2.45 (\text{septet, } J = 6.8 \text{ Hz, } 1\text{H, CH}), 3.54 (\text{s, } 3\text{H, OCH}_3), 3.74 (\text{s, } 3\text{H, OCH}_3). \]

\[^{13}\text{C-NMR:} (75.5 \text{ MHz, CDCl}_3)\]

\[\delta_{\text{ppm}} = 15.9 (\text{q, CH}_3), 18.3 (\text{q, CH}_3), 18.5 (\text{q, CH}_3), 27.5 (\text{q, } 3\text{CH}_3), 38.1 (\text{s, Cq}), 42.1 (\text{d, CH}), 52.7 (\text{q, OCH}_3), 53.5 (\text{q, OCH}_3), 75.6 (\text{s, C-2}), 89.1 (\text{s, C-3}), 169.1 (\text{s, CON}), 171.1 (\text{COO}), 176.2 (\text{s, COO}). \]

erythro (2R*,3S*) 2-tert-Butyl-2-hydroxy-3-isobutyrylamino-3-methyl-succinic acid dimethyl ester (*erythro*-75b) (sbo-461a)

According to the typical hydrolysis procedure, the bicyclic oxetane *endo*-65b (0.21 g, 0.8 mmol) was cleaved hydrolytically in 2h. Preparative chromatography yielded 0.15 g of the product as a colorless oil.

Yield: 76 %

TLC: \(R_f = 0.38 \) (ethyl acetate/n-hexane 1:4).

\[^1\text{H-NMR:} (300 \text{ MHz, CDCl}_3)\]

\[\delta_{\text{ppm}} = 1.03 (\text{d, } J = 6.8 \text{ Hz, } 3\text{H, CH}_3), 1.15 (\text{d, } J = 6.9 \text{ Hz, } 3\text{H, CH}_3), 1.49 (\text{s, } 9\text{H, }3\text{CH}_3), 1.98 (\text{s, } 3\text{H, CH}_3), 2.49 (\text{septet, } J = 6.8 \text{ Hz, } 1\text{H, CH}), 3.57 (\text{s, } 3\text{H, OCH}_3), 3.71 (\text{s, } 3\text{H, OCH}_3). \]

\[^{13}\text{C-NMR:} (75.5 \text{ MHz, CDCl}_3)\]

\[\delta_{\text{ppm}} = 15.6 (\text{q, CH}_3), 18.8 (\text{q, CH}_3), 18.9 (\text{q, CH}_3), 28.5 (\text{q, } 3\text{CH}_3), 39.2 (\text{s, Cq}), 42.1 (\text{d, CH}), 52.7 (\text{q, OCH}_3), 53.5 (\text{q, OCH}_3), 75.6 (\text{s, C-2}), 89.1 (\text{s, C-3}), 169.1 (\text{s, CON}), 174.1 (\text{COO}), 175.2 (\text{s, COO}). \]

threo (2S*,3S*) 2-Hydroxy-3-methyl-2-phenyl-3-isobutyrylamino-succinic acid dimethyl ester (*threo*-75c) (sbo-458c)
According to the typical hydrolysis procedure, the bicyclic oxetane *exo*-65c (0.63 g, 2 mmol) was cleaved hydrolytically in 5h. Preparative chromatography yielded 0.52 g of the product as a colorless oil.

Yield: 82 %

TLC: \(R_f = 0.38 \) (ethyl acetate/n-hexane 1:4).

\(^1\)H-NMR: (300 MHz, CDCl₃)

\[
\delta_{ppm} = 1.13 \text{ (d, } J = 6.6 \text{ Hz, } 3\text{H, CH₃}), 1.27 \text{ (d, } J = 6.9 \text{ Hz, } 3\text{H, CH₃}), 1.67 \text{ (s, } 3\text{H, CH₃}), 2.54 \text{ (septet, } J = 6.6 \text{ Hz, } 1\text{H, CH}), 3.00 \text{ (s, } 3\text{H, OCH₃}), 3.67 \text{ (s, } 3\text{H, OCH₃}), 7.28-7.47 \text{ (m, } 5\text{H, H}_{\text{arom}}).
\]

\(^{13}\)C-NMR: (75.5 MHz, CDCl₃)

\[
\delta_{ppm} = 15.9 \text{ (q, CH₃)}, 17.9 \text{ (q, CH₃)}, 18.1 \text{ (q, CH₃)}, 36.7 \text{ (d, CH)}, 52.1 \text{ (q, OCH₃)}, 52.9 \text{ (q, OCH₃)}, 78.1 \text{ (s, C-2)}, 83.1 \text{ (s, C-3)}, 126.7 \text{ (d, } CH_{\text{arom}}), 128.4 \text{ (d, } CH_{\text{arom}}), 135.1 \text{ (s, } C_{\text{arom}}), 170.1 \text{ (s, } \text{CON}), 173.1 \text{ (s, } \text{COO}), 175.1 \text{ (s, } \text{COO}).
\]

HRMS: (C₁₇H₂₃NO₆, M = 337.15 g/mol)

Calcd: 337.1474

Found: 337.1470

erythro (2R*,3S*) 2-Hydroxy-3-methyl-2-phenyl-3-isobutyrylamino-succinic acid dimethyl ester (*erythro*-75c) (sbo-458d)

According to the typical hydrolysis procedure, the bicyclic oxetane *endo*-65c (0.31 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.22 g of the product as a colorless oil.

Yield: 73 %

TLC: \(R_f = 0.53 \) (ethyl acetate/n-hexane 1:4).
4. Experimental part

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 1.10$ (d, $J = 6.6$ Hz, 3H, CH$_3$), 1.30 (d, $J = 6.9$ Hz, 3H, CH$_3$), 1.54 (s, 3H, CH$_3$), 2.79 (septet, $J = 6.6$ Hz, 1H, CH), 3.71 (s, 3H, OCH$_3$), 3.78 (s, 3H, OCH$_3$), 7.32-7.54 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 16.1$ (q, CH$_3$), 18.2 (q, CH$_3$), 18.5 (q, CH$_3$), 37.2 (d, CH), 52.3 (q, OCH$_3$), 52.7 (q, OCH$_3$), 75.5 (s, C-2), 79.7 (s, C-3), 126.2 (d, CH$_{arom}$), 128.2 (d, CH$_{arom}$), 136.5 (s, C$_{arom}$), 169.1 (s, CON), 172.1 (s, COO), 175.1 (s, COO).

threo ($2S^*,3S^*$) 2-Hydroxy-3-methyl-2-phenyl-3-isobutyrylamino-succinic acid 1-ethyl ester-4-methyl ester (threo-75d) (sbo-459e)

According to the typical hydrolysis procedure, the bicyclic oxetane *exo-65d* (0.66 g, 2 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.51 g of the product as a colorless oil.

Yield: 79 %

TLC: $R_f = 0.43$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 0.79$ (d, $J = 6.8$ Hz, 3H, CH$_3$), 1.30 (t, $J = 7.5$ Hz, 3H, CH$_3$), 1.35 (d, $J = 6.9$ Hz, 3H, CH$_3$), 2.12 (s, 3H, CH$_3$), 2.54 (septet, $J = 6.8$ Hz, 1H, CH), 3.13 (s, 3H, OCH$_3$), 4.26 (q, $J = 7.5$ Hz, 2H, OCH$_2$), 7.35-7.53 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 13.9$ (q, CH$_3$), 16.5 (q, CH$_3$), 17.6 (q, CH$_3$), 17.9 (q, CH$_3$), 37.3 (d, CH), 52.3 (q, OCH$_3$), 62.8 (t, OCH$_2$), 79.7 (s, C-2), 91.9 (s, C-3), 126.2 (d, CH$_{arom}$), 127.5 (d, CH$_{arom}$), 136.9 (s, C$_{arom}$), 168.8 (s, CON), 169.2 (s, COO), 173.3 (s, COO).

erythro ($2R^*,3S^*$) 2-Hydroxy-3-methyl-2-phenyl-3-isobutyrylamino-succinic acid 1-ethyl ester-4-methyl ester (erythro-75d) (sbo-459a)
According to the typical hydrolysis procedure, the bicyclic oxetane *endo-65d* (0.33 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.24 g of the product as a colorless oil.

Yield: 82 %

TLC: $R_f = 0.51$ (ethyl acetate/hexane 4:1).

1H-NMR: (300 MHz, CDCl$_3$)

\[
\delta_{ppm} = 1.05 \ (d, J = 6.9 \text{ Hz}, \text{CH}_3), 1.08 \ (d, J = 6.8 \text{ Hz}, \text{CH}_3), 1.28 \ (t, J = 7.5 \text{ Hz}, \text{CH}_3), 1.58 \ (s, \text{CH}_3), 2.36 \ (\text{septet}, J = 6.8 \text{ Hz}, \text{1H, CH}), 3.69 \ (s, \text{3H, OCH}_3), 4.31 \ (q, J = 7.5 \text{ Hz}, 2H, \text{OCH}_2), 7.31-7.67 \ (m, 5H, \text{H}_{\text{arom}}).
\]

13C-NMR: (75.5 MHz, CDCl$_3$)

\[
\delta_{ppm} = 14.0 \ (q, \text{CH}_3), 18.9 \ (q, \text{CH}_3), 19.3 \ (q, \text{CH}_3), 19.8 \ (q, \text{CH}_3), 35.9 \ (d, \text{CH}), 52.7 \ (q, \text{OCH}_3), 62.2 \ (t, \text{OCH}_2), 80.6 \ (s, \text{C-2}), 83.0 \ (s, \text{C-3}), 126.5 \ (d, \text{CH}_{\text{arom}}), 128.5 \ (d, \text{CH}_{\text{arom}}), 136.7 \ (s, \text{C}_{\text{arom}}), 172.1 \ (s, \text{CON}), 172.2 \ (s, \text{COO}), 172.4 \ (s, \text{COO}).
\]

threo (2S*,3S*) 2-Hydroxy-3-methyl-2-phenyl-3-isobutyrylamino-succinic acid 1-isopropyl ester-4-methyl ester (*threo-75e*) (sbo-456c)

According to the typical hydrolysis procedure, the bicyclic oxetane *exo-65e* (0.34 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.22 g of the product as a colorless oil.

Yield: 78 %

TLC: $R_f = 0.43$ (ethyl acetate/hexane 1:4).

IR: (Film)

\[
\tilde{\nu} \ (\text{cm}^{-1}) = 3525, 3370, 2983, 2890, 1756, 1730, 1645, 1605, 1550, 1440, 1075, 980, 770.
\]
4. Experimental part

H-NMR: (300 MHz, CDCl₃)

\[\delta_{ppm} = 1.22 \text{ (d, } J = 6.5 \text{ Hz, } 3H, CH₃), 1.24 \text{ (d, } J = 6.3 \text{ Hz, } 3H, CH₃), 1.33 \text{ (d, } J = 6.9 \text{ Hz, } 3H, CH₃), 1.36 \text{ (d, } J = 6.9 \text{ Hz, } 3H, CH₃), 1.68 \text{ (s, } 3H, CH₃), 2.83 \text{ (septet, } J = 6.9 \text{ Hz, } 1H, CH), 3.00 \text{ (s, } 3H, OCH₃), 5.03 \text{ (septet, } J = 6.5 \text{ Hz, } 1H, OCH), 7.26-7.45 \text{ (m, } 5H, H_{arom}).\]

C-NMR: (75.5 MHz, CDCl₃)

\[\delta_{ppm} = 21.5 \text{ (q, } CH₃), 21.6 \text{ (q, } CH₃), 21.7 \text{ (q, } CH₃), 19.3 \text{ (q, } CH₃), 19.5 \text{ (q, } CH₃), 28.5 \text{ (d, } CH), 51.8 \text{ (q, } OCH₃), 70.4 \text{ (d, } OCH), 82.1 \text{ (s, } C-2), 91.8 \text{ (s, } C-3), 126.3 \text{ (d, } CH_{arom}), 129.2 \text{ (d, } CH_{arom}), 134.7 \text{ (s, } C_{qarom}), 167.9 \text{ (s, } CON), 170.4 \text{ (s, } COO), 173.1 \text{ (s, } COO).\]

erythro (2R*,3S*) 2-Hydroxy-3-methyl-2-phenyl-3-isobutyrylamino-succinic acid 1-isopropyl ester-4-methyl ester (erythro-75e) (sbo-456a)

According to the typical hydrolysis procedure, the bicyclic oxetane **endo-65e** (0.66 g, 2 mmol) was cleaved hydrolytically in 8h. Preparative chromatography yielded 0.53 g of the product as a colorless oil.

Yield: 84 %

TLC: Rₚ = 0.56 (ethyl acetate/n-hexane 1:4).

H-NMR: (300 MHz, CDCl₃)

\[\delta_{ppm} = 1.05 \text{ (d, } J = 6.9 \text{ Hz, } 3H, CH₃), 1.10 \text{ (d, } J = 6.8 \text{ Hz, } 3H, CH₃), 1.14 \text{ (d, } J = 6.2 \text{ Hz, } 3H, CH₃), 1.19 \text{ (d, } J = 6.2 \text{ Hz, } 3H, CH₃), 1.54 \text{ (s, } 3H, CH₃), 2.35 \text{ (septet, } J = 6.2 \text{ Hz, } 1H, CH), 3.68 \text{ (s, } 3H, OCH₃), 5.13 \text{ (septet, } J = 6.2 \text{ Hz, } 1H, OCH), 7.28-7.59 \text{ (m, } 5H, H_{arom}).\]

C-NMR: (75.5 MHz, CDCl₃)

\[\delta_{ppm} = 18.7 \text{ (q, } CH₃), 18.8 \text{ (q, } CH₃), 19.2 \text{ (q, } CH₃), 19.3 \text{ (q, } CH₃), 21.6 \text{ (q, } CH₃), 36.0 \text{ (d, } CH), 52.5 \text{ (q, } OCH₃), 66.6 \text{ (d, } OCH), 71.6 \text{ (s, } C-2), 80.1 \text{ (s, } C-3), 126.2 \text{ (d,}}
4. Experimental part

\[\text{CH}_{\text{arom}}, 128.3 \text{ (d, CH}_{\text{arom}}), 135.6 \text{ (s, C_{qarom}}), 171.8 \text{ (s, CON}, 172.4 \text{ (s, COO), 176.8 (s, COO).} \]

Anal: (C\(_{19}\)H\(_{27}\)N\(_{6}\), M = 365.2 g/mol)

Calcd: C 62.45 H 7.45 N 3.83

Found: C 62.10 H 7.52 N 4.00

threo \((2S^*, 3S^*)\) 2-Hydroxy-3-methyl-2-phenyl-3-isobutyrylamino-succinic acid 1-tert-butyl ester-4-methyl ester (**threo-75f**) (sbo-453c)

\[
\begin{align*}
\text{PrOCHN CO}_2 \text{CH}_3 \\
\text{PhHO CO}_2 \text{Bu}_3 \\
\end{align*}
\]

According to the typical hydrolysis procedure, the bicyclic oxetane **exo-65f** (0.36 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.26 g of the product as a colorless oil.

Yield: 78 %

TLC: \(R_f = 0.41 \) (ethyl acetate/n-hexane 1:4).

\(^1\text{H-NMR:}\) (300 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 1.34 \text{ (d, J = 6.2 Hz, 3H, CH}_3), 1.36 \text{ (d, J = 6.2 Hz, 3H, CH}_3), 1.44 \text{ (s, 9H, 3CH}_3), 1.72 \text{ (s, 3H, CH}_3), 2.18 \text{ (septet, J= 6.2 Hz, 1H, CH), 3.00 (s, 3H, OCH}_3), 7.28-7.54 \text{ (m, 5H, H}_{\text{arom}}). \]

\(^{13}\text{C-NMR:}\) (75.5 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 19.4 \text{ (q, CH}_3), 19.5 \text{ (q, CH}_3), 21.6 \text{ (q, CH}_3), 27.9 \text{ (q, 3CH}_3), 28.4 \text{ (d, CH), 51.8 \text{ (q, OCH}_3), 82.1 \text{ (s, C}_q), 83.7 \text{ (s, C-2), 91.9 \text{ (s, C-3), 126.3 (d, CH}_{\text{arom}}, 129.2 (d, CH}_{\text{arom}), 134.7 (s, C_{qarom}), 167.3 (s, CON), 170.5 (s, COO), 173.0 (s, COO).} \]

erythro \((2R^*, 3S^*)\) 2-Hydroxy-3-methyl-2-phenyl-3-isobutyrylamino-succinic acid 1-tert-butyl ester-4-methyl ester (**erythro-75f**) (sbo-453a)

\[
\begin{align*}
\text{PrOCHN CO}_2 \text{CH}_3 \\
\text{PhCO}_2 \text{Bu}_3 \\
\end{align*}
\]
According to the typical hydrolysis procedure, the bicyclic oxetane \textit{endo-65f} (0.71 g, 2 mmol) was cleaved hydrolytically in 6h. Preparative chromatography yielded 0.68 g of the product as a colorless oil.

\textbf{Yield:} 90 \%

\textbf{TLC:} R_f = 0.51 (ethyl acetate/n-hexane 1:4).

\textbf{1H-NMR:} (300 MHz, CDCl$_3$)

\[\delta_{ppm} = 0.97 \text{ (d, J = 6.2 Hz, 6H, 2CH$_3$)}, 1.50 \text{ (s, 3H, CH$_3$)}, 1.52 \text{ (s, 9H, 3CH$_3$)}, 2.32 \text{ (septet, J = 6.2 Hz, 1H, CH)}, 3.66 \text{ (s, 3H, OCH$_3$)}, 7.28-7.60 \text{ (m, 5H, H$_{arom}$)}. \]

\textbf{13C-NMR:} (75.5 MHz, CDCl$_3$)

\[\delta_{ppm} = 18.5 \text{ (q, CH$_3$)}, 19.2 \text{ (q, 2CH$_3$)}, 27.8 \text{ (q, 3CH$_3$)}, 36.0 \text{ (d, CH)}, 52.5 \text{ (q, OCH$_3$)}, 66.4 \text{ (s, C-2)}, 79.9 \text{ (s, C-3)}, 83.9 \text{ (s, C$_q$)}, 126.2 \text{ (d, CH$_{arom}$)}, 128.3 \text{ (d, CH$_{arom}$)}, 135.6 \text{ (s, C$_q$$_{arom}$)}, 170.9 \text{ (s, CON)}, 174.1 \text{ (s, COO)}, 174.6 \text{ (s, COO)}. \]

\textbf{Anal:} (C$_{20}$H$_{29}$NO$_6$, M = 379.45 g/mol)

Calcd: C 63.31 H 7.70 N 3.69

Found: C 63.51 H 7.65 N 4.05

\textbf{Synthesis of \textit{erythro} (S*,R*) \& \textit{threo} (S*,S*) \(\alpha\)-(2,2-dimethyl-propionylamino)-\(\beta\)-hydroxy succinic acid derivatives 76a-f:}

\textit{erythro} (2S*,3R*) 2-(2,2-Dimethyl-propionylamino)-3-hydroxy-2,3-dimethyl-succinic acid dimethyl ester \textit{(erythro-76a)} \textit{(sbo-436b)}

![Chemical structure of erythro-76a](image)

According to the typical hydrolysis procedure, the bicyclic oxetane \textit{exo-66a} (0.25 g, 1 mmol) was cleaved hydrolytically in 2h. Preparative chromatography yielded 0.23 g of the product as a colorless oil.

\textbf{Yield:} 81 \%

\textbf{TLC:} R_f = 0.44 (ethyl acetate/n-hexane 1:4).

\textbf{1H-NMR:} (300 MHz, CDCl$_3$)
4. Experimental part

\[\delta_{ppm} = 1.36 \text{ (s, 9H, 3CH}_3\text{), 1.43 \text{ (s, 3H, CH}_3\text{), 1.49 \text{ (s, 3H, CH}_3\text{), 2.12 \text{ (s, 3H, CH}_3\text{), 3.54 \text{ (s, 3H, OCH}_3\text{), 3.67 \text{ (s, 3H, OCH}_3\text{).}} } \]

\[^{13}\text{C-NMR: (75.5 MHz, CDCl}_3\text{)}\]

\[\delta_{ppm} = 18.3 \text{ (q, CH}_3\text{), 19.3 \text{ (q, CH}_3\text{), 23.1 \text{ (q, CH}_3\text{), 52.1 \text{ (q, OCH}_3\text{), 52.7 \text{ (q, OCH}_3\text{), 74.9 \text{ (s, C-2), 82.1 \text{ (s, C-3), 169.1 \text{ (s, CON), 172.1 \text{ (COO), 173.2 \text{ (s, COO).}} } } \]

threo (2S\(^*\),3S\(^*\)) 2-(2,2-Dimethyl-propionylamino)-3-hydroxy-2,3-dimethyl-succinic acid dimethyl ester (threo-76a) (sbo-436)

According to the typical hydrolysis procedure, the bicyclic oxetane endo-66a (0.25 g, 1 mmol) was cleaved hydrolytically in 2h. Preparative chromatography yielded 0.24 g of the product as a colorless oil.

Yield: 83 %

TLC: \(R_f = 0.47 \) (ethyl acetate/n-hexane 1:4).

\[^{1}\text{H-NMR: (300 MHz, CDCl}_3\text{)}\]

\[\delta_{ppm} = 1.33 \text{ (s, 9H, 3CH}_3\text{), 1.44 \text{ (s, 3H, CH}_3\text{), 1.53 \text{ (s, 3H, CH}_3\text{), 2.23 \text{ (s, 3H, CH}_3\text{), 3.65 \text{ (s, 3H, OCH}_3\text{), 3.76 \text{ (s, 3H, OCH}_3\text{).}} } \]

\[^{13}\text{C-NMR: (75.5 MHz, CDCl}_3\text{)}\]

\[\delta_{ppm} = 17.2 \text{ (q, CH}_3\text{), 18.7 \text{ (q, CH}_3\text{), 22.9 \text{ (q, CH}_3\text{), 52.3 \text{ (q, OCH}_3\text{), 53.2 \text{ (q, OCH}_3\text{), 78.2 \text{ (s, C-2), 87.2 \text{ (s, C-3), 165.1 \text{ (s, CON), 170.1 \text{ (COO), 172.1 \text{ (s, COO).}} } } \]

erythro (2R\(^*\),3S\(^*\)) 2-tert-Butyl-3-(2,2-dimethyl-propionylamino)-2-hydroxy-3-methyl-succinic acid dimethyl ester (erythro-76b) (sbo-484a)

484
According to the typical hydrolysis procedure, the bicyclic oxetane *endo*-66b (0.25 g, 0.8 mmol) was cleaved hydrolytically in 2h. Preparative chromatography yielded 0.24 g of the product as a colorless oil.

Yield: 87 %

TLC: $R_f = 0.44$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

δ ppm = 1.36 (s, 9H, 3CH$_3$), 1.43 (s, 9H, 3CH$_3$), 1.56 (s, 3H, CH$_3$), 3.54 (s, 3H, OCH$_3$), 3.67 (s, 3H, OCH$_3$).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ ppm = 18.3 (q, CH$_3$), 28.3 (q, 3CH$_3$), 28.6 (q, 3CH$_3$), 33.8 (s, Cq), 52.1 (q, OCH$_3$), 52.7 (q, OCH$_3$), 78.2 (s, C-2), 84.1 (s, C-3), 169.1 (s, CON), 172.1 (COO), 173.2 (s, COO).

threo (2S*,3S*) 2-tert-Butyl-3-(2,2-dimethyl-propionylamino)-2-hydroxy-3-methyl-succinic acid dimethyl ester (*threo*-76b) (sbo-484b)

According to the typical hydrolysis procedure, the bicyclic oxetane *exo*-66b (0.33 g, 1 mmol) was cleaved hydrolytically in 2h. Preparative chromatography yielded 0.27 g of the product as a colorless oil.

Yield: 85 %

TLC: $R_f = 0.49$ (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl$_3$)

δ ppm = 1.33 (s, 9H, 3CH$_3$), 1.44 (s, 9H, 3CH$_3$), 1.67 (s, 3H, CH$_3$), 3.65 (s, 3H, OCH$_3$), 3.76 (s, 3H, OCH$_3$).

13C-NMR: (75.5 MHz, CDCl$_3$)
δ ppm = 18.2 (q, CH₃), 27.8 (q, 3CH₃), 28.3 (q, 3CH₃), 33.6 (s, Cq), 52.3 (q, OCH₃), 53.2 (q, OCH₃), 78.2 (s, C-2), 87.2 (s, C-3), 165.1 (s, CON), 170.1 (COO), 172.1 (s, COO).

threo (2S*,3S*) 2-(2,2-Dimethylpropionylamino)-3-hydroxy-2-methyl-3-phenyl-succinic acid dimethyl ester (threo-76c) (sbo-432a)

According to the typical hydrolysis procedure, the bicyclic oxetane exo-66c (0.67 g, 2 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.55 g of the product as a colorless oil.

Yield: 82 %

TLC: Rf = 0.39 (ethyl acetate/n-hexane 1:4).

1H-NMR: (300 MHz, CDCl₃)
δ ppm = 1.47 (s, 9H, 3CH₃), 1.54 (s, 3H, CH₃), 3.05 (s, 3H, OCH₃), 3.67 (s, 3H, OCH₃), 7.28-7.48 (m, 5H, H_arom).

13C-NMR: (75.5 MHz, CDCl₃)
δ ppm = 18.1 (q, CH₃), 27.9 (q, CH₃), 38.1 (s, Cq), 52.1 (q, OCH₃), 53.2 (q, OCH₃), 78.2 (s, C-2), 83.5 (s, C-3), 126.2 (d, CH_arom), 128.3 (d, CH_arom), 134.7 (s, Cq_arom), 169.1 (s, CON), 170.1 (s, COO), 171.3 (s, COO).

HRMS: (C₁₈H₂₅NO₆, M = 351.17 g/mol)
Calcd: 351.1689
Found: 351.1683

erythro (2S*,3R*) 2-(2,2-Dimethylpropionylamino)-3-hydroxy-2-methyl-3-phenyl-succinic acid dimethyl ester (erythro-76c) (sbo-432b)
According to the typical hydrolysis procedure, the bicyclic oxetane \textit{endo-66c} (0.33 g, 1 mmol) was cleaved hydrolytically in 2h. Preparative chromatography yielded 0.35 g of the product as a colorless oil.

\textbf{Yield:} 87 \%

\textbf{TLC:} \(R_f \) = 0.53 (ethyl acetate/n-hexane 1:4).

\textbf{\(^1\)H-NMR:} (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 1.27 \text{ (s, 9H, CH}_3\text{)}, 1.67 \text{ (s, 3H, CH}_3\text{)}, 3.67 \text{ (s, 3H, OCH}_3\text{)}, 3.78 \text{ (s, 3H, OCH}_3\text{)}, 7.32-7.54 \text{ (m, 5H, H}_{arom}\text{).} \]

\textbf{\(^{13}\)C-NMR:} (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 18.3 \text{ (q, CH}_3\text{), 28.0 \text{ (q, 3CH}_3\text{), 40.1 \text{ (s, Cq), 52.3 \text{ (q, OCH}_3\text{), 53.2 \text{ (q, OCH}_3\text{), 79.2 \text{ (s, C-2), 84.1 \text{ (s, C-3), 126.8 \text{ (d, CH}_{arom}\text{), 129.1 \text{ (d, CH}_{arom}\text{), 134.6 \text{ (s, Cq}_{arom}\text{), 169.2 \text{ (s, CON), 172.1 \text{ (s, COO), 173.1 \text{ (s, COO).}} \]

\textit{threo} \ (2S^*,3S^*) \ 2-(2,2-Dimethylpropionylamino)-3-hydroxy-2-methyl-3-phenyl-succinic acid 4-ethyl ester-1-methyl ester (\textit{threo-76d}) (sbo-451e)

According to the typical hydrolysis procedure, the bicyclic oxetane \textit{exo-66d} (0.69 g, 2 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.64 g of the product as a colorless oil.

\textbf{Yield:} 89 \%

\textbf{TLC:} \(R_f \) = 0.46 (ethyl acetate/n-hexane 1:4).

\textbf{\(^1\)H-NMR:} (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 1.25 \text{ (t, J = 7.5 Hz, 3H, CH}_3\text{), 1.38 \text{ (s, 9H, 3CH}_3\text{), 1.67 \text{ (s, 3H, CH}_3\text{), 3.00 \text{ (s, 3H, OCH}_3\text{), 4.20 \text{ (q, J = 7.5 Hz, 2H, OCH}_2\text{), 7.27-7.53 \text{ (m, 5H, H}_{arom}\text{).}} \]

\textbf{\(^{13}\)C-NMR:} (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 13.9 \text{ (q, CH}_3\text{), 21.4 \text{ (q, CH}_3\text{), 27.4 \text{ (q, 3CH}_3\text{), 33.5 \text{ (s, Cq), 51.8 \text{ (q, OCH}_3\text{), 62.1 \text{ (t, OCH}_2\text{), 82.3 \text{ (s, C-2), 91.9 \text{ (s, C-3), 126.2 \text{ (d, CH}_{arom}\text{), 127.5 \text{ (d, CH}_{arom}\text{), 135.1 \text{ (s, Cq}_{arom}\text{), 168.6 \text{ (s, CON), 168.6 \text{ (s, COO), 175.1 \text{ (s, COO).}} \]
4. Experimental part

erythro \((2S^*,3R^*)\) \(2(2,2\text{-Dimethylpropionylamino})\text{-3-hydroxy-2-methyl-3-phenyl-succinic acid 4-ethyl ester-1-methyl ester (erythro-76d)}\) (sbo-451b)

According to the typical hydrolysis procedure, the bicyclic oxetane **endo-66d** (0.35 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.25 g of the product as a colorless oil.

Yield: 84 %

TLC: \(R_f = 0.51\) (ethyl acetate/n-hexane 1:4).

IR: (Film)

\[
\tilde{\nu} (\text{cm}^{-1}) = 3530, 3420, 2993, 2898, 1755, 1724, 1675, 1600, 1558, 1440, 1078, 980, 770.
\]

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[
\delta_{\text{ppm}} = 1.11 \text{ (s, 9H, 3CH}_3\text{)}, 1.32 \text{ (t, J = 7.5 Hz, 3H, CH}_3\text{)}, 1.55 \text{ (s, 3H, CH}_3\text{)}, 3.70 \text{ (s, 3H, OCH}_3\text{)}, 4.29 \text{ (q, J = 7.5 Hz, 2H, OCH}_2\text{)}, 7.32\text{-}7.69 \text{ (m, 5H, H}_\text{arom}\text{).}
\]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[
\delta_{\text{ppm}} = 14.0 \text{ (q, CH}_3\text{)}, 18.5 \text{ (q, CH}_3\text{)}, 27.2 \text{ (q, 3CH}_3\text{)}, 39.0 \text{ (s, Cq)}, 52.6 \text{ (q, OCH}_3\text{)}, 63.1 \text{ (t, OCH}_2\text{)}, 66.6 \text{ (s, C-2)}, 80.5 \text{ (s, C-3)}, 126.2 \text{ (d, CH}_\text{arom}\text{)}, 127.1 \text{ (d, CH}_\text{arom}\text{)}, 134.6 \text{ (s, Cq)}, 172.1 \text{ (s, CON)}, 172.7 \text{ (s, COO)}, 178.5 \text{ (s, COO).}
\]

Anal: (C\(_{19}\)H\(_{27}\)NO\(_6\), M = 365.42 g/mol)

Calcd: C 62.45 H 7.45 N 3.83

Found: C 62.67 H 7.27 N 3.91

threo \((2S^*,3S^*)\) \(2(2,2\text{-Dimethylpropionylamino})\text{-3-hydroxy-2-methyl-3-phenyl-succinic acid 4-isopropyl ester-1-methyl ester (threo-76e)}\) (sbo-457d)
According to the typical hydrolysis procedure, the bicyclic oxetane exo-66e (0.36 g, 1 mmol) was cleaved hydrolytically in 3h. Preparative chromatography yielded 0.24 g of the product as a colorless oil.

Yield: 84 %

TLC: \(R_f = 0.42 \) (ethyl acetate/n-hexane 1:4).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 1.24 \text{ (d, } J = 6.3 \text{ Hz, } 3H, \text{ CH}_3), 1.25 \text{ (d, } J = 6.3 \text{ Hz, } 3H, \text{ CH}_3), 1.38 \text{ (s, } 9H, \text{ 3CH}_3), 1.69 \text{ (s, } 3H, \text{ CH}_3), 3.00 \text{ (s, } 3H, \text{ OCH}_3), 5.03 \text{ (septet, } J = 6.3 \text{ Hz, } 1H, \text{ OCH}), 7.26-7.55 \text{ (m, } 5H, \text{ H}_{arom}). \]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 21.4 \text{ (q, } \text{ CH}_3), 21.6 \text{ (q, } \text{ CH}_3), 21.7 \text{ (q, } \text{ CH}_3), 27.5 \text{ (q, } 3\text{CH}_3), 33.5 \text{ (s, } \text{ Cq}), 51.7 \text{ (q, } \text{ OCH}_3), 70.3 \text{ (d, } \text{ OCH}), 82.3 \text{ (s, } \text{ C-2}), 91.7 \text{ (s, } \text{ C-3}), 126.3 \text{ (d, } \text{ CH}_{arom}), 129.2 \text{ (d, } \text{ CH}_{arom}), 134.7 \text{ (s, } \text{ Cq}_{arom}), 168.1 \text{ (s, } \text{ CON}), 170.3 \text{ (s, } \text{ COO}), 175.1 \text{ (s, } \text{ COO}). \]

\(erythro \) \((2\text{S}^*,3\text{R}^*)\) \(2\)-(2,2-Dimethylpropionylamino)-3-hydroxy-2-methyl-3-phenylsuccinic acid 4-isopropyl ester-1-methyl ester \((erythro-76e)\) (sbo-457b)

According to the typical hydrolysis procedure, the bicyclic oxetane endo-66e (0.72 g, 2 mmol) was cleaved hydrolytically in 6h. Preparative chromatography yielded 0.56 g of the product as a colorless oil.

Yield: 88 %

TLC: \(R_f = 0.56 \) (ethyl acetate/n-hexane 1:4).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 1.15 \text{ (s, } 3H, \text{ CH}_3), 1.16 \text{ (d, } J = 6.2 \text{ Hz, } 3H, \text{ CH}_3), 1.18 \text{ (d, } J = 6.3 \text{ Hz, } 3H, \text{ CH}_3), 1.36 \text{ (s, } 9H, \text{ 3CH}_3), 3.76 \text{ (s, } 3H, \text{ OCH}_3), 5.00 \text{ (septet, } J = 6.2 \text{ Hz, } 1H, \text{ OCH}), 7.28-7.59 \text{ (m, } 5H, \text{ H}_{arom}). \]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))
4. Experimental part

\[\delta_{ppm} = 21.5 \ (q, \text{CH}_3), \ 21.7 \ (q, \text{CH}_3), \ 21.8 \ (q, \text{CH}_3), \ 27.8 \ (q, \text{3CH}_3), \ 33.4 \ (s, \text{Cq}), \ 51.3 \ (q, \text{OCH}_3), \ 70.1 \ (d, \text{OCH}), \ 83.5 \ (s, \text{C-2}), \ 92.8 \ (s, \text{C-3}), \ 126.3 \ (d, \text{CH}_\text{arom}), \ 128.3 \ (d, \text{CH}_\text{arom}), \ 134.7 \ (s, \text{Cq}), \ 169.1 \ (s, \text{CON}), \ 171.2 \ (s, \text{COO}), \ 176.2 \ (s, \text{COO}). \]

threo (2S*,3S*) 2-(2,2-Dimethylpropionylamino)-3-hydroxy-2-methyl-3-phenyl-succinic acid 4-tert-butyl ester-1-methyl ester (**threo-76f**) (sbo-444d)

According to the typical hydrolysis procedure, the bicyclic oxetane **exo-66f** (0.38 g, 1 mmol) was cleaved hydrolytically in 4h. Preparative chromatography yielded 0.22 g of the product as a colorless oil.

Yield: 70%

TLC: \(R_f = 0.41 \) (ethyl acetate/n-hexane 1:4).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 1.38 \ (s, \text{9H, 3CH}_3), \ 1.45 \ (s, \text{9H, 3CH}_3), \ 1.73 \ (s, \text{3H, CH}_3), \ 3.00 \ (s, \text{3H, OCH}_3), \ 7.28-7.54 \ (m, \text{5H, H}_\text{arom}). \]

\(^1\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 21.6 \ (q, \text{CH}_3), \ 27.6 \ (q, \text{3CH}_3), \ 28.0 \ (q, \text{3CH}_3), \ 33.4 \ (s, \text{Cq}), \ 51.7 \ (q, \text{OCH}_3), \ 82.4 \ (s, \text{C-2}), \ 83.6 \ (s, \text{Cq}), \ 91.8 \ (s, \text{C-3}), \ 126.3 \ (d, \text{CH}_\text{arom}), \ 129.2 \ (d, \text{CH}_\text{arom}), \ 134.7 \ (s, \text{Cq}_\text{arom}), \ 167.4 \ (s, \text{CON}), \ 170.6 \ (s, \text{COO}), \ 174.9 \ (s, \text{COO}). \]

erythro (2S*,3R*) 2-(2,2-Dimethylpropionylamino)-3-hydroxy-2-methyl-3-phenyl-succinic acid 4-tert-butyl ester-1-methyl ester (**erythro-76f**) (sbo-444c)

According to the typical hydrolysis procedure, the bicyclic oxetane **endo-66f** (0.75 g, 2 mmol) was cleaved hydrolytically in 6h. Preparative chromatography yielded 0.58 g of the product as a colorless oil.
4. Experimental part

Yield: 69 %

TLC: $R_f = 0.51$ (ethyl acetate/n-hexane 1:4).

IR: (Film)

\[
\tilde{\nu} \text{ (cm}^{-1}\text{)} = 3510, 3450, 2989, 2897, 1740, 1735, 1670, 1600, 1550, 1440, 1075, 980, 770.
\]

1H-NMR: (300 MHz, CDCl$_3$)

\[
\delta_{ppm} = 0.96 \text{ (s, 3H, CH$_3$), 1.38 (s, 9H, 3CH$_3$), 1.39 (s, 9H, 3CH$_3$), 3.78 (s, 3H, OCH$_3$), 7.31-7.58 (m, 5H, H$_{arom}$).}
\]

^{13}C-NMR: (75.5 MHz, CDCl$_3$)

\[
\delta_{ppm} = 24.5 \text{ (q, CH$_3$), 27.7 (q, 3CH$_3$), 27.8 (q, 3CH$_3$), 33.4 (s, Cq), 52.5 (q, OCH$_3$), 80.8 (s, C-2), 83.0 (s, Cq), 92.3 (s, C-3), 126.3 (d, CH$_{arom}$), 128.3 (d, CH$_{arom}$), 135.6 (s, C$_{arom}$), 168.8 (s, CON), 172.6 (s, COO), 173.4 (s, COO).}
\]

HRMS: (C$_{21}$H$_{31}$NO$_6$, $M = 399.22$ g/mol)

Calcd: 399.2175
Found: 399.2171
4.21 Synthesis of starting materials

4.21.1 Preparation of benzaldehyde-1-d (77)\(^{138}\) (sbo-461d)

\[
\begin{align*}
\text{\text{O}} & \text{D} \\
\text{H} & \text{H} & \text{H} & \text{H}
\end{align*}
\]

To a stirred solution of benzil (13.9 g, 66.1 mmol) in p-dioxane (30 mL) was added deuterium oxide (14.4 g, 0.719 mol) and then potassium cyanide (4.68 g, 71.9 mmol) in five portions over 0.5 h. The mixture was stirred for another 0.5 h and then diluted with water (120 mL). The mixture was extracted with ether (3 x 50 mL) and the ether solution washed with saturated sodium bicarbonate (2 x 50 mL) and saturated sodium chloride (2 x 50 mL). After evaporation of the dried (MgSO\(_4\)) ether solution, distillation gave pure 4.32 g of the product as a pale yellow oil.

Yield: 61 %

B.p: 74-76 °C, 22 mmHg (Lit.\(^{138}\), 76-78 °C, 22 mmHg).

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[
\delta_{\text{ppm}} = 7.45-7.51 (\text{m, } 2\text{H, H}_{\text{arom}}), 7.55-7.61 (\text{m, } 1\text{H, H}_{\text{arom}}), 7.81-7.85 (\text{m, } 1\text{H, H}_{\text{arom}}).
\]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[
\delta_{\text{ppm}} = 126.5 (\text{d, CH}_{\text{arom}}), 128.9 (\text{d, CH}_{\text{arom}}), 129.6 (\text{d, CH}_{\text{arom}}), 136.2 (\text{s, Cq}_{\text{arom}}), 192.0 (\text{t, COD}).
\]

Preparation of nitropropane-1,1-d\(_2\) (78)\(^{139}\) (sbo-589)

\[
\begin{align*}
\text{D} & \text{D} \\
\text{NO}_2 &
\end{align*}
\]

A mixture of nitropropane (50 mL) and deuterium oxide (50 mL) containing 3 drops of NaOD (40 wt. % solution in D\(_2\)O) was refluxed for two days. Then the layer of deuterated nitropropane was separated and distilled off. The yield of colorless liquid was 26 mL. The product was 85 % deuterated by \(^1\)H-NMR analysis.

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[
\delta_{\text{ppm}} = 0.88 (\text{t, } J = 7.5 \text{ Hz, } 3\text{H, CH}_3), 1.89 (\text{q, } J = 7.5 \text{ Hz, } 2\text{H, CH}_2).
\]
4. Experimental part

\subsubsection*{4.21.2 Preparation of propanal-1-d (79)139 (sbo-589a)}

\begin{center}
\includegraphics[width=0.1\textwidth]{propanal1d.png}
\end{center}

Nitropropane-1,1-d\textsubscript{2} (26 mL) was dissolved in 290 mL of ice-cold aqueous 15 \% sodium hydroxide in a separatory funnel. The solution was added slowly dropwise to a beaker containing 53.2 mL of conc. sulfuric acid dissolved in 355 mL water. The sulfuric acid solution was cooled in an ice-bath and stirred continuously while the solution of nitropropane-1,1-d\textsubscript{2} was added. After the addition was completed, the reaction was stirred an additional 30 min. The product, propanal-1-d (96 \% D) was purified by distillation to give 2.5 g as a colorless liquid.

\textbf{Yield:} 35 \%

\textbf{B.p:} 43-45°C.

\subsubsection*{4.21.3 Preparation of 5-deuterio-2,3-dihydrofuran (80)140 (sbo-566c)}

\begin{center}
\includegraphics[width=0.1\textwidth]{5-deuterio-2,3-dihydrofuran.png}
\end{center}

To a stirred solution of a freshly distilled 2,3-dihydrofuran (0.9 g, 13 mmol) and TMEDA (0.3 g, 25 mmol) was added rapidly a solution of 1.6 M butyllithium (6.0 mL, 13 mmol) until the precipitation of a solid began. The reaction mixture was cooled with an ice-bath and then the addition of butyllithium was completed. The resulting solid was washed with hexane (3 x 4 mL) and then suspended in 1 mL of hexane. To this suspension was added 1 mL of D\textsubscript{2}O. The hexane layer was isolated and dried over MgSO\textsubscript{4} and kept under N\textsubscript{2}.
4. Experimental part

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 2.55$ (dt, $J = 2.5, 9.5$ Hz, 2H, 3-H), 4.29 (t, $J = 9.5$ Hz, 2H, 2-H), 4.93 (t, $J = 2.5, 1$H, 4-H).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{ppm} = 28.4$ (t, C-3), 69.5 (t, C-2), 99.2 (d, C-2), 145.6 (t, C-5).

4.2.1.4 Preparation of 1-trimethylsilyloxycycloalkenes (81-83); General procedure:

Sodium iodide (9.3 g, 62 mmol) in acetonitrile (62 mL) was added dropwise (15 min), at room temperature to a solution of the ketone (50 mmol); triethyl amine (6.26 g, 62 mmol) and trimethylchlorosilane (6.72 g, 62 mmol) successively introduced in the reaction flask. An exothermic reaction generally occured with concomitant formation of a white precipitation (Et$_3$NHI^{-}), while the acetonitrile solution become brownish. The stirring was continued for 4 h. The reaction was quenched by adding cold pentane (50 mL) and then ice water (50 mL). After decantation, the aqueous layer was extracted with pentane (2 x 50 mL) and the collected organic layers were washed with ice water (2 x 50 mL) or with aqueous solution of NH$_4$Cl until neutrality, dried over MgSO$_4$ and evaporation under vacum gave the crude product. Purification was carried out by Büchi distillation.

1-Trimethylsilyloxycyclopentene (81) 142 (sbo-482)

The reaction was carried out following the above general procedure using cyclopentanone (4.2 g, 50 mmol). Distillation of the crude product under vacum afforded 5.8 g of the pure product as a colorless liquid.

Yield: 75 %

B.p: 55-57°C, 10 torr (Lit., 142 99°C, 40 torr)

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{ppm} = 0.17$ (s, 9H, 3CH$_3$), 1.77-1.87 (m, 2H, CH$_2$), 2.19-2.26 (m, 4H, 2CH$_2$), 4.58 (dd, $J = 2.7, 1.6$ Hz, 1H, CH=).

13C-NMR: (75.5 MHz, CDCl$_3$)
4. Experimental part

$$\delta_{\text{ppm}} = -0.06 \text{ (q, 3CH}_3\text{), 21.3 \text{ (t, C-4), 28.7 \text{ (t, C-3), 33.5 \text{ (t, C-5), 102.0 \text{ (s, C-1), 154.9 \text{ (d, C-2).}})$$

1-Trimethylsilyloxycyclohexene (82)

The reaction was carried out following the above general procedure using cyclohexanone (4.9 g, 50 mmol). Distillation of the crude product under vacuum afforded 7.0 g of the pure product as a colorless liquid.

Yield: 82 %

B.p: 78-80°C, 10 torr (Lit., 60-62°C, 8 torr)

1H-NMR: (300 MHz, CDCl$_3$)

$$\delta_{\text{ppm}} = 0.14 \text{ (s, 9H, 3CH}_3\text{), 1.45-1.49 \text{ (m, 2H, CH}_2\text{), 1.60-1.64 \text{ (m, 2H, CH}_2\text{), 1.93-1.99 \text{ (m, 4H, 2CH}_2\text{), 4.82 (dd, J = 1.3, 1.3 Hz, 1H, CH=}).}$$

13C-NMR: (75.5 MHz, CDCl$_3$)

$$\delta_{\text{ppm}} = 0.24 \text{ (q, 3CH}_3\text{), 22.3 \text{ (t, CH}_2\text{), 23.1 \text{ (t, CH}_2\text{), 23.8 \text{ (t, CH}_2\text{), 29.9 \text{ (t, CH}_2\text{), 104.1 \text{ (s, C-2), 150.3 (d, C-2).}})$$

1-Trimethylsilyloxycyclopentene (83)

The reaction was carried out following the above general procedure using cycloheptanone (5.6 g, 50 mmol). Distillation of the crude product under vacuum afforded 7.8 g of the pure product as a colorless liquid.

Yield: 85 %

B.p: 78-81°C, 10 torr (Lit., 73-74°C, 8 torr).

1H-NMR: (300 MHz, CDCl$_3$)
4. Experimental part

\[\delta_{ppm} = 0.13 \text{ (s, 9H, 3CH}_3 \text{)}, \ 1.48-1.65 \text{ (m, 8H, 4CH}_2 \text{)}, \ 1.92-1.98 \text{ (m, 2H, CH}_2 \text{)}, \ 2.17-2.22 \text{ (m, 2H, CH}_2 \text{)}, \ 4.98 \text{ (t, } J = 6.6 \text{ Hz, 1H, CH=) .} \]

\[^{13}\text{C-NMR: (75.5 MHz, CDCl}_3 \text{)} \]

\[\delta_{ppm} = 0.13 \text{ (q, CH}_3 \text{)}, \ 25.2 \text{ (t, CH}_2 \text{)}, \ 25.3 \text{ (t, CH}_2 \text{)}, \ 27.8 \text{ (t, CH}_2 \text{)}, \ 31.5 \text{ (t, CH}_2 \text{)}, \ 35.5 \text{ (t, CH}_2 \text{)}, \ 108.6 \text{ (s, C-1), 155.9 (d, C-2).} \]

4.22 General procedure for photolyses of benzaldehyde and benzaldehyde-1d with cycloalkenes:

Under a nitrogen atmosphere, a solution of either benzaldehyde or benzaldehyde-1d (0.3 g, 3 mmol) and cyclic alkene (3 mmol) in 25 mL benzene was irradiated in a Rayonet photoreactor (\(\lambda = 300 \text{ nm}\)) for 24 h. After removal of the solvent under vacum, the crude photolysate was subjected to \(^1\text{H-NMR analysis to determine the diastereoselectivity. Purification was carried out by Büchi distillation.} \]

Irradiation of benzaldehyde with 2,3-dihydrofuran (sbo-542)

A solution of benzaldehyde (0.3 g, 3 mmol) and 2,3-dihydrofuran (0.21 g, 3 mmol) in 25 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the crude photolysate yielded 0.42 g (80 %) of inseparable mixture of oxetanes as a colorless oil.

Both \(^1\text{H-NMR and } ^{13}\text{C-NMR data was reported earlier (} \text{endo- & exo- 3a).} \]

Irradiation of benzaldehyde-1-d with 2,3-dihydrofuran (sbo-464)

A solution of benzaldehyde-1d (0.3 g, 3 mmol) and 2,3-dihydrofuran (0.21 g, 3 mmol) in 25 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the crude photolysate yielded 0.47 g (89 %) of inseparable mixture of oxetanes as a colorless oil.

\textit{endo-7-Deuterio-7-phenyl-2,6-dioxa-bicyclo[3.2.0]heptane (endo-84b)}

\[
\begin{array}{c}
\text{O} \\
\text{H} \\
\text{D} \\
\end{array}
\]

IR: (Film, mixture of \textit{endo} & \textit{exo})

\[\tilde{v} \text{ (cm}^{-1}) = 3020, 2928, 1600, 1505, 1470, 1400, 1050, 835, 778. \]
4. Experimental part

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{\text{ppm}} = 1.62$-$1.70$ (m, 2H, 4-H), 3.72-3.80 (m, 2H, 3-H), 5.00 (d, $J = 3.8$ Hz, 1H, 1-H), 5.48 (dd, $J = 4.1$, 3.8 Hz, 1H, 5-H), 7.15-7.35 (m, 5H, H$_{\text{arom.}}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{\text{ppm}} = 32.7$ (t, C-4), 68.8 (t, C-3), 79.4 (d, C-1), 84.6 (d, C-5), 85.1 (t, C-7), 124.4 (d, CH$_{\text{arom.}}$), 127.0 (d, CH$_{\text{arom.}}$), 127.8 (d, CH$_{\text{arom.}}$), 137.1 (s, Cq$_{\text{arom.}}$).

GC-MS: (EI, 70 eV, endo & exo)

m/z (%) = 177 (M$^+$, 15), 121 (20), 105 (20), 92 (50), 77 (10), 70 (100), 65 (4), 51 (10).

exo-7-Deuterio-7-phenyl-2,6-dioxa-bicyclo[3.2.0]heptane (exo-84b)

1H-NMR: (300 MHz, CDCl$_3$)

$\delta_{\text{ppm}} = 2.08$-$2.15$ (m, 2H, 4-H), 3.97 (t, $J = 8.4$ Hz, 2H, 3-H), 4.57 (d, $J = 4.3$ Hz, 1H, 1-H), 5.44 (dd, $J = 4.3$, 4.4 Hz, 1H, 5-H), 7.20-7.50 (m, 5H, H$_{\text{arom.}}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

$\delta_{\text{ppm}} = 32.1$ (t, C-4), 67.3 (t, C-3), 82.9 (d, C-1), 84.7 (d, C-5), 85.8 (d, C-7), 125.2 (d, CH$_{\text{arom.}}$), 126.8 (d, CH$_{\text{arom.}}$), 127.8 (d, CH$_{\text{arom.}}$), 135.8 (s, Cq$_{\text{arom.}}$).

Irradiation of benzaldehyde with 5-deuterio-2,3-dihydrofuran (sbo-567)

A solution of benzaldehyde (0.3 g, 3 mmol) and 5-deuterio-2,3-dihydrofuran (0.21 g, 3 mmol) in 25 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the crude photolysate yielded 0.51 g (94 %) of inseparable mixture of oxetanes as a colorless oil.

endo-1-Deuterio-7-phenyl-2,6-dioxa-bicyclo[3.2.0]heptane (endo-84c)
4. Experimental part

1H-NMR: (300 MHz, CDCl$_3$)

δ_{ppm} = 1.48-1.75 (m, 2H, 4-H), 3.55-3.86 (t, J = 6.5 Hz, 2H, 3-H), 5.49 (d, J = 4.3 Hz, 1H, 5-H), 5.77 (s, 1H, 7-H), 7.26-7.35 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ_{ppm} = 32.7 (t, C-4), 68.8 (t, C-3), 78.9 (t, C-1), 84.9 (d, C-5), 85.0 (d, C-7), 124.5 (d, CH$_{arom}$), 127.9 (d, CH$_{arom}$), 127.8 (d, CH$_{arom}$), 134.3 (s, C$_q$$_{arom}$).

GC-MS: (EI, 70 eV, endo & exo)

m/z (%) = 177 (M$^+$, 10), 121 (17), 105 (14), 91 (30), 77 (10), 71 (100), 65 (4), 51 (10).

exo-1-Deuterio-7-phenyl-2,6-dioxa-bicyclo[3.2.0]heptane (exo-84c)

1H-NMR: (300 MHz, CDCl$_3$)

δ_{ppm} = 1.78-2.12 (m, 2H, 4-H), 3.94 (t, J = 7.8 Hz, 2H, 3-H), 5.37 (s, 1H, 7-H), 5.44 (d, J = 4.4 Hz, 1H, 5-H), 7.26-7.42 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ_{ppm} = 32.1 (t, C-4), 67.2 (t, C-3), 79.5 (t, C-1), 85.1 (d, C-5), 85.2 (d, C-7), 126.2 (d, CH$_{arom}$), 126.8 (d, CH$_{arom}$), 128.9 (d, CH$_{arom}$), 133.8 (s, C$_q$$_{arom}$).

HRMS: (C$_{11}$H$_{11}$DO$_2$, M = 177.1 g/mol)

Calcd: 177.0918

Found: 177.0913

Irradiation of benzaldehyde-1-d with 5-deuterio-2,3-dihydrofuran (sbo-568)

A solution of benzaldehyde-1-d (0.3 g, 3 mmol) and 5-deuterio-2,3-dihydrofuran (0.21 g, 3 mmol) in 25 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the crude photolysate yielded 0.49 g (92 %) of inseparable mixture of oxetanes as a colorless oil.

endo-1,7-Dideuterio-7-phenyl-2,6-dioxa-bicyclo[3.2.0]heptane (endo-84d)
4. Experimental part

1H-NMR: (300 MHz, CDCl₃)

\[\delta_{ppm} = 1.52-1.72 \text{ (m, 2H, 4-H)}, 3.57 \text{ (t, J = 6.8 Hz, 2H, 3-H)}, 5.44 \text{ (d, J = 4.3 Hz, 1H, 5-H)}, 7.28-7.39 \text{ (m, 5H, H}_{arom}.). \]

13C-NMR: (75.5 MHz, CDCl₃)

\[\delta_{ppm} = 32.7 \text{ (t, C-4), 68.7 (t, C-3), 78.9 (t, C-1), 84.9 (d, C-5), 85.6 (t, C-7), 124.4 (d, C}_{arom}.), 126.8 (d, C}_{arom}.), 128.1 (d, C}_{arom}.), 134.2 (s, Cq}_{arom}.). \]

GC-MS: (El, 70 eV, endo & exo)

\[m/z (%) = 178 \text{ (M}, 10), 122 (20), 105 (21), 92 (20), 77 (10), 71 (100), 65 (4), 51 (12). \]

exo-1,7-Dideuterio-7-phenyl-2,6-dioxabicyclo[3.2.0]heptane (exo-84d)

1H-NMR: (300 MHz, CDCl₃)

\[\delta_{ppm} = 1.81-2.14 \text{ (m, 2H, 4-H)}, 3.91 \text{ (t, J = 7.8 Hz, 2H, 3-H)}, 5.40 \text{ (d, J = 4.3 Hz, 1H, 5-H)}, 7.26-7.38 \text{ (m, 5H, H}_{arom}.). \]

13C-NMR: (75.5 MHz, CDCl₃)

\[\delta_{ppm} = 31.3 \text{ (t, C-4), 67.3 (t, C-3), 79.0 (t, C-1), 85.2 (d, C-5), 87.1 (t, C-7), 124.4 (d, C}_{arom}.), 124.8 (d, C}_{arom}.), 128.1 (d, C}_{arom}.), 134.2 (s, Cq}_{arom}.). \]

HRMS: (C₁₁H₁₀D₂O₂, M = 178.1 g/mol)

Calcd: 178.1348
Found: 178.1343

Irradiation of benzaldehyde with 5-methyl-2,3-dihydrofuran (sbo-474a)

A solution of benzaldehyde (0.3 g, 3 mmol) and 5-methyl-2,3-dihydrofuran (0.25 g, 3 mmol) in 25 mL benzene was irradiated for 24 h according to the above general procedure.
4. Experimental part

Distillation of the crude photolysate yielded 0.48 g (84 %) of inseparable mixture of oxetanes as a colorless oil. Both \(^1\)H-NMR and \(^{13}\)C-NMR data was reported earlier.

Irradiation of benzaldehyde-1-d with 5-methyl-2,3-dihydrofuran (sbo-474)

A solution of benzaldehyde-1-d (0.3 g, 3 mmol) and 5-methyl-2,3-dihydrofuran (0.25 g, 3 mmol) in 25 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the crude photolysate yielded 0.5 g (87 %) of inseparable mixture of oxetanes as a colorless oil.

endo-7-Deuterio-7-phenyl-1-methyl-2,6-dioxa-bicyclo[3.2.0]heptane (*endo*-84f)

\[\text{\(\begin{array}{c}
\text{O} \\
\text{Ph} \\
\text{H} \\
\text{D}
\end{array}\)}\]

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 1.60 (s, 3H, \text{CH}_3), 1.69-2.14 (m, 2H, 4-H), 3.71-3.82 (m, 2H, 3-H), 5.17 (d, J = 4.0 Hz, 1H, 5-H), 7.23-7.39 (m, 5H, H_{arom}).\]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{ppm} = 21.7 (q, \text{CH}_3), 33.8 (t, \text{C-4}), 68.9 (t, \text{C-3}), 75.1 (s, \text{C-1}), 89.0 (d, \text{C-5}), 91.1 (t, \text{C-7}), 124.4 (d, \text{CH}_{arom.}), 126.8 (d, \text{CH}_{arom.}), 128.1 (d, \text{CH}_{arom.}), 134.2 (s, \text{Cq}_{arom}).\]

GC-MS: (EI, 70 eV, *endo* & *exo*)

\[m/z (\%) = 191 (M^+, 10), 135 (155), 105 (30), 92 (12), 84 (100), 77 (30), 69 (10), 63 (4), 52 (12).\]

exo-7-Deuterio-7-phenyl-1-methyl-2,6-dioxa-bicyclo[3.2.0]heptane (*exo*-84f)

\[\text{\(\begin{array}{c}
\text{O} \\
\text{Ph} \\
\text{H} \\
\text{D}
\end{array}\)}\]

\(^1\)H-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{ppm} = 1.00 (s, 3H, \text{CH}_3), 1.82-2.28 (m, 2H, 4-H), 4.21-4.38 (m, 2H, 3-H), 5.06 (d, J = 4.1 Hz, 1H, 5-H), 7.20-7.35 (m, 5H, H_{arom}).\]

\(^{13}\)C-NMR: (75.5 MHz, CDCl\(_3\))
4. Experimental part

\[\delta_{\text{ppm}} = 17.5 \text{ (q, CH}_3\text{), 33.7 \text{ (t, C-4), 67.8 \text{ (t, C-3), 79.1 \text{ (s, C-1), 89.2 \text{ (d, C-5), 90.7 \text{ (t, C-7), 125.6 \text{ (d, CH}_{\text{arom.}}), 127.3 \text{ (d, CH}_{\text{arom.}}), 128.1 \text{ (d, CH}_{\text{arom.}}), 137.2 \text{ (s, Cq}_{\text{arom.}}).} \]

Irradiation of benzaldehyde with cyclopentene (sbo-474a)

A solution of benzaldehyde (0.3 g, 3 mmol) and cyclopentene (0.2 g, 3 mmol) in 25 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the crude photolysate yielded 0.45 g (86 \%) of inseparable mixture of oxetanes as a colorless oil. Both \(^1^H\)-NMR and \(^{13}^C\)-NMR data was reported earlier in literature.\(^{37}\)

Irradiation of benzaldehyde-1-d with cyclopentene (sbo-474)

A solution of benzaldehyde-1d (0.3 g, 3 mmol) and cyclopentene (0.2 g, 3 mmol) in 25 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the crude photolysate yielded 0.47 g (90 \%) of inseparable mixture of oxetanes as a colorless oil.

endo-7-Deutero-7-phenyl-6-oxa-bicyclo[3.2.0]heptane (endo-84h)

\[\begin{array}{c}
\text{H} \\
\text{O} \\
\text{H} \\
\text{D} \\
\text{Ph} \\
\text{H} \\
\text{H}
\end{array} \]

\(^1^H\)-NMR: (300 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 1.25-2.38 \text{ (m, 6H), 3.31 \text{ (dd, J = 7.2 Hz, 5.6 Hz, 1H, 1-H), 5.39 \text{ (dd, J = 5.6, 3.4 Hz, 1H, 5-H), 7.20-7.50 \text{ (m, 5H, H}_{\text{arom.}}).} \]

\(^{13}^C\)-NMR: (75.5 MHz, CDCl\(_3\))

\[\delta_{\text{ppm}} = 24.7 \text{ (t), 25.1 \text{ (t), 34.6 \text{ (t), 42.8 \text{ (d, C-1), 83.7 \text{ (d, C-5), 85.4 \text{ (t, C-6), 124.4 \text{ (d, CH}_{\text{arom.}}), 126.8 \text{ (d, CH}_{\text{arom.}}), 128.1 \text{ (d, CH}_{\text{arom.}}), 139.2 \text{ (s, Cq}_{\text{arom.}}).} \]

exo-7-Deutero-7-phenyl-6-oxa-bicyclo[3.2.0]heptane (exo-84h)

\[\begin{array}{c}
\text{H} \\
\text{O} \\
\text{D} \\
\text{Ph} \\
\text{H} \\
\text{H}
\end{array} \]

\(^1^H\)-NMR: (300 MHz, CDCl\(_3\))
4. Experimental part

\[\delta_{\text{ppm}} = 1.25-2.40 \text{ (m, 6H)}, 2.98 \text{ (dd, } J = 6.2, 6.2 \text{ Hz, 1H, 1-H)}, 5.30 \text{ (dd, } J = 4.0, 6.2 \text{ Hz, 1H, 5-H)}, 7.25-7.48 \text{ (m, 5H, } H_{\text{arom}}). \]

\[^{13}\text{C-NMR: (75.5 MHz, CDCl}\text{)} \]

\[\delta_{\text{ppm}} = 23.8 \text{ (t), 30.3 \text{ (t), 34.1 \text{ (t), 46.8 \text{ (d, C-1), 83.6 \text{ (d, C-5), 85.3 \text{ (t, C-6), 125.6 \text{ (d, CH}}_{\text{arom}}), 127.3 \text{ (d, CH}}_{\text{arom}}), 129.2 \text{ (d, CH}}_{\text{arom}}), 139.2 \text{ (s, Cq}_\text{arom}}). \]

Irradiation of benzaldehyde with cyclohexene (sbo-472a)

A solution of benzaldehyde (0.3 g, 3 mmol) and cyclohexene (0.25 g, 3 mmol) in 25 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the crude photolysate yielded 0.49 g (87 %) of inseparable mixture of oxetanes as a colorless oil. Both \(^1\)H-NMR and \(^{13}\)C-NMR data was reported earlier in literature.\(^{37}\)

Irradiation of benzaldehyde-1-d with cyclohexene (sbo-472)

A solution of benzaldehyde-1-d (0.3 g, 3 mmol) and cyclohexene (0.25 g, 3 mmol) in 25 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the crude photolysate yielded 0.51 g (89 %) of inseparable mixture of oxetanes as a colorless oil.

endo-8-Deuterio-8-phenyl-7-oxa-bicyclo[4.2.0]octane (endo-84j)

\[\delta_{\text{ppm}} = 0.92-1.49 \text{ (m, 8H)}, 2.99 \text{ (m, 2H, 1-H)}, 5.00 \text{ (m, 1H, 6-H)}, 7.22-7.48 \text{ (m, 5H, } H_{\text{arom}}). \]

\[^{13}\text{C-NMR: (75.5 MHz, CDCl}\text{)} \]

\[\delta_{\text{ppm}} = 19.9 \text{ (t), 21.1 \text{ (t), 28.7 \text{ (t), 37.0 \text{ (d, C-7), 75.6 \text{ (d, C-6), 81.0 \text{ (t, C-8), 125.0 \text{ (d, CH}}_{\text{arom}}), 126.8 \text{ (d, CH}}_{\text{arom}}), 128.1 \text{ (d, CH}}_{\text{arom}}), 139.7 \text{ (s, Cq}_\text{arom}}). \]

GC-MS: (EI, 70 eV, endo & exo)

\[m/z \text{ (\%) = 189 (M\text{*}, 5), 178 (10), 120 (15), 108 (27), 105 (100), 91 (15), 80 (30), 77 (60), 50 (27).} \]
4. Experimental part

exo-8-Deuterio-8-phenyl-7-oxa-bicyclo[4.2.0]octane (*exo*-84j)

\[
\begin{align*}
\text{H-NMR: } & (300 \text{ MHz, CDCl}_3) \\
\delta_{ppm} = 0.92 - 1.49 (m, 8H), 2.92 (m, 1H, 1'-H), 4.95 (m, 1H, 6'-H), 7.22 - 7.48 (m, 5H, H_{arom.}).
\end{align*}
\]

\[
\begin{align*}
\text{C-NMR: } & (75.5 \text{ MHz, CDCl}_3) \\
\delta_{ppm} = 19.8 (t), 20.9 (t), 29.0 (t), 40.3 (d, C-1), 76.7 (d, C-6), 85.6 (t, C-8), 126.6 (d, CH_{arom.}), 127.8 (d, CH_{arom.}), 129.3 (d, CH_{arom.}), 143.1 (s, Cq_{arom.}).
\end{align*}
\]

Irradiation of benzaldehyde with 1-methylcyclohexene (sbo-473a)

A solution of benzaldehyde (0.3 g, 3 mmol) and 1-methylcyclohexene (0.29 g, 3 mmol) in 25 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the crude photolysate yielded 0.54 g (89 %) of inseparable mixture of oxetanes as a colorless oil. Both \(^1\text{H-NMR}\) and \(^{13}\text{C-NMR}\) data was reported earlier in literature.\(^{37}\)

Irradiation of benzaldehyde-1-d with 1-methylcyclohexene (sbo-473)

A solution of benzaldehyde-1-d (0.3 g, 3 mmol) and 1-methylcyclohexene (0.29 g, 3 mmol) in 25 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the crude photolysate yielded 0.53 g (87 %) of inseparable mixture of oxetanes as a colorless oil.

endo-8-Deuterio-8-phenyl-1-methyl-7-oxa-bicyclo[4.2.0]octane (*endo*-84l)

\[
\begin{align*}
\text{H-NMR: } & (300 \text{ MHz, CDCl}_3) \\
\delta_{ppm} = 1.60 (s, 3H, CH_3), 0.93 - 2.05 (m, 8H), 4.61 (m, 1H, 6-H), 7.18 - 7.48 (m, 5H, H_{arom.}).
\end{align*}
\]
4. Experimental part

\[^{13} \text{C-NMR: (75.5 MHz, CDCl}_3 \]

\[\delta_{ppm} = 19.5 (t), 20.2 (t), 21.0 (q), 28.3 (t), 35.0 (t), 42.0 (s, C-1), 84.1 (d, C-6), 88.6 (t, C-7), 124.8 (d, CH\textit{arom.}), 126.8 (d, CH\textit{arom.}), 128.1 (d, CH\textit{arom.}), 139.7 (s, C\textit{qarom.}). \]

GC-MS: (EI, 70 eV, \textit{endo} \& \textit{exo})

\[m/z (\%) = 203 (M^+, 5), 202 (M^+-1, 9), 181 (21), 166 (30), 109 (53), 108 (75), 105 (24), 90 (11), 80 (100), 50 (20). \]

\textit{exo-8-Deuterio-8-phenyl-1-methyl-7-oxa-bicyclo[4.2.0]octane (exo-84l)}

\[\begin{array}{ccc}
 & & O \\
 & D & Ph
\end{array} \]

\[^1\text{H-NMR: (300 MHz, CDCl}_3 \]

\[\delta_{ppm} = 0.68 (s, 3H, CH_3), 0.93-2.05 (m, 8H), 4.55 (m, 1H, 6-H), 7.18-7.48 (m, 5H, H\textit{arom.}). \]

\[^{13} \text{C-NMR: (75.5 MHz, CDCl}_3 \]

\[\delta_{ppm} = 19.7 (t), 20.2 (t), 23.9 (t), 27.8 (q, CH_3), 28.9 (t), 42.4 (s, C-1), 81.5 (d, C-6), 87.3 (t, C-8), 126.5 (d, CH\textit{arom.}), 128.5 (d, CH\textit{arom.}), 129.3 (d, CH\textit{arom.}), 140.5 (s, C\textit{qarom.}). \]

Irradiation of benzaldehyde with 1-trimethylsilyloxydecapentene (sbo-493)

A solution of benzaldehyde (0.3 g, 3 mmol) and 1-trimethylsilyloxydecapentene (0.47 g, 3 mmol) in 25 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the crude photolysate yielded 0.69 g (88 %) of inseparable mixture of oxetanes as a colorless oil.

\textit{endo-7-Phenyl-1-trimethylsilyoxy-6-oxa-bicyclo[3.2.0]heptane (endo-84m)}

\[\begin{array}{ccc}
 & & O \\
 & OTMS & \mu Ph
\end{array} \]

\[^1\text{H-NMR: (300 MHz, CDCl}_3 \]

504
δ\text{ppm} = 0.15 (s, 9H, 3CH\textsubscript{3}), 1.25-2.38 (m, 6H), 5.18 (d, J = 3.5 Hz, 1H, 5-H), 5.92 (s, 1H, 7-H), 7.20-7.45 (m, 5H, H\textsubscript{arom}).

13C-NMR: (75.5 MHz, CDCl\textsubscript{3})
δ\text{ppm} = 1.2 (q, 3CH\textsubscript{3}), 24.7 (t), 24.9 (t), 34.3 (t), 81.0 (d, C-5), 85.4 (s, C-1), 98.1 (d, C-7), 124.9 (d, CH\textsubscript{arom.}), 126.8 (d, CH\textsubscript{arom.}), 129.2 (d, CH\textsubscript{arom.}), 135.2 (s, C\textsubscript{qarom.}).

\textit{exo}-7-Phenyl-1-trimethylsilyoxy-6-oxa-bicyclo[3.2.0]heptane (\textit{exo}-84m)

\begin{center}
\includegraphics[width=0.2\textwidth]{exo.jpg}
\end{center}

1H-NMR: (300 MHz, CDCl\textsubscript{3})
δ\text{ppm} = -0.12 (s, 9H, 3CH\textsubscript{3}), 1.25-2.42 (m, 6H), 5.05 (s, 1H, 7-H), 5.15 (d, J = 2.6 Hz, 1H, 7.20-7.45 (m, 5H, H\textsubscript{arom}).

13C-NMR: (75.5 MHz, CDCl\textsubscript{3})
δ\text{ppm} = 1.3 (q, 3CH\textsubscript{3}), 24.1 (t), 30.6 (t), 34.8 (t), 85.6 (d, C-5), 86.3 (d, C-1), 90.1 (t, C-7), 126.4(d, CH\textsubscript{arom.}), 127.3 (d, CH\textsubscript{arom.}), 129.2 (d, CH\textsubscript{arom.}), 134.2 (s, C\textsubscript{qarom.}).

\textbf{Irradiation of benzaldehyde-1-d with 1-trimethylsilyloxy cyclopentene (sbo-494)}

A solution of benzaldehyde-1-d (0.3 g, 3 mmol) and 1-trimethylsilyloxy cyclopentene (0.47 g, 3 mmol) in 25 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the crude photolysate yielded 0.62 g (79 %) of inseparable mixture of oxetanes as a colorless oil.

\textit{endo}-7-Deuterio-7-phenyl-1-trimethylsilyloxy-6-oxa-bicyclo[3.2.0]heptane (\textit{endo}-84n)

\begin{center}
\includegraphics[width=0.2\textwidth]{endo.jpg}
\end{center}

1H-NMR: (300 MHz, CDCl\textsubscript{3})
δ\text{ppm} = 0.17 (s, 9H, 3CH\textsubscript{3}), 1.26-2.43 (m, 6H), 5.14 (d, J = 3.4 Hz, 1H, 5-H), 7.25-7.45 (m, 5H, H\textsubscript{arom}).

13C-NMR: (75.5 MHz, CDCl\textsubscript{3})
4. Experimental part

δ_{ppm} = 1.6 (q, 3CH₃), 21.2 (t), 23.3 (t), 28.6 (t), 84.4 (d, C-5), 90.5 (s, C-1), 101.2 (t, C-7), 125.41(d, CH_{arom.}), 126.8 (d, CH_{arom.}), 129.1 (d, CH_{arom.}), 139.3 (s, C_{qarom.}).

exo-7-Deuterio-7-phenyl-1-trimethylsilyoxy-6-oxa-bicyclo[3.2.0]heptane (exo-84n)

![exo-84n](image)

1H-NMR: (300 MHz, CDCl₃)

δ_{ppm} = -0.13 (s, 9H, 3CH₃), 1.26-2.43 (m, 6H), 5.18 (d, J = 2.5 Hz, 1H, 5-H), 7.25-7.48 (m, 5H, H_{arom.}).

13C-NMR: (75.5 MHz, CDCl₃)

δ_{ppm} = 1.2 (q, 3CH₃), 23.9 (t), 32.3 (t), 38.2 (t), 85.8 (d, C-5), 92.4 (s, C-1), 102.3 (t, C-7), 125.6 (d, CH_{arom.}), 127.3 (d, CH_{arom.}), 129.2 (d, CH_{arom.}), 140.1 (s, C_{qarom.}).

Irradiation of benzaldehyde with 1-trimethylsilyloxy-cyclohexene (sbo-495)

A solution of benzaldehyde (0.3 g, 3 mmol) and 1-trimethylsilyloxy-cyclohexene (0.51 g, 3 mmol) in 25 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the crude photolysate yielded 0.75 g (90 %) of inseparable mixture of oxetanes as a colorless oil.

endo-8-Phenyl-1-trimethylsilyoxy-7-oxa-bicyclo[4.2.0]octane (endo-84o)

![endo-84o](image)

1H-NMR: (300 MHz, CDCl₃)

δ_{ppm} = 0.17 (s, 9H, 3CH₃), 0.92-1.99 (m, 8H), 5.00 (m, 1H, 6-H), 5.93 (s, 1H, 8-H), 7.23-7.48 (m, 5H, H_{arom.}).

13C-NMR: (75.5 MHz, CDCl₃)

δ_{ppm} = 0.14 (q, 3CH₃), 20.1 (t), 21.2 (t), 24.2 (t), 30.1 (t), 74.4 (d, C-6), 86.1 (s, C-1), 90.6 (s, C-8), 125.0 (d, CH_{arom.}), 126.8 (d, CH_{arom.}), 128.1 (d, CH_{arom.}), 135.1 (s, C_{qarom.}).
4. Experimental part

exo-8-Phenyl-1-trimethylsilyoxy-7-oxa-bicyclo[4.2.0]octane (exo-84o)

![Structure of exo-84o]

1H-NMR: (300 MHz, CDCl$_3$)

δ ppm = -0.12 (s, 9H, 3CH$_3$), 0.90-1.99 (m, 8H), 5.10 (m, 1H, 6-H), 5.85 (s, 1H, 8H), 7.23-7.49 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ ppm = 0.21 (q, 3CH$_3$), 19.2 (t), 23.8 (t), 29.7 (t), 83.7 (d, C-6), 85.7 (d, C-8), 90.6 (s, C-1), 126.6 (d, CH$_{arom}$), 127.8 (d, CH$_{arom}$), 129.3 (d, CH$_{arom}$), 137.2 (s, C$_{arom}$).

Irradiation of benzaldehyde-1d with 1-trimethylsilyloxy cyclohexene (sbo-496)

A solution of benzaldehyde-1d (0.3 g, 3 mmol) and 1-trimethylsilyloxy cyclohexene (0.51 g, 3 mmol) in 25 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the crude photolysate yielded 0.72 g (87 %) of inseparable mixture of oxetanes as a colorless oil.

endo-8-Deuterio-8-phenyl-1-trimethylsilyoxy-7-oxa-bicyclo[4.2.0]octane (endo-84p)

![Structure of endo-84p]

1H-NMR: (300 MHz, CDCl$_3$)

δ ppm = 0.14 (s, 9H, 3CH$_3$), 0.93-1.99 (m, 8H), 4.93 (m, 1H, 6-H), 7.19-7.38 (m, 5H, H$_{arom}$).

13C-NMR: (75.5 MHz, CDCl$_3$)

δ ppm = 0.13 (q, 3CH$_3$), 19.1 (t), 22.2 (t), 29.7 (t), 35.1(t), 74.4 (d, C-6), 86.9 (s, C-1), 104.1 (t, C-8), 124.8 (d, CH$_{arom}$), 126.8 (d, CH$_{arom}$), 128.1 (d, CH$_{arom}$), 139.7 (s, C$_{arom}$).

exo-8-Deuterio-8-phenyl-1-trimethylsilyoxy-7-oxa-bicyclo[4.2.0]octane (exo-84p)
4. Experimental part

\[
\begin{array}{c}
\hfill \includegraphics[width=0.1\textwidth]{figure1.png} \\
\hfill \text{1H-NMR: (300 MHz, CDCl}_3) \\
\delta_{ppm} = -0.17 \text{ (s, 9H, 3CH}_3), \ 0.92-1.99 \text{ (m, 8H), 4.98 \text{ (m, 1H, 6-H), 7.19-7.38 \text{ (m, 5H, H}_\text{arom.})}. \\
\end{array}
\]

\[
\begin{array}{c}
\hfill \text{13C-NMR: (75.5 MHz, CDCl}_3) \\
\delta_{ppm} = 0.20 \text{ (q, 3CH}_3), \ 21.2 \text{ (t), 23.9 (t), 26.0 (t), 29.7 (t), 76.9 (d, C-6), 83.9 (t, C-7), 107.8 \text{ (s, C-1), 126.6 (d, CH}_\text{arom.}, \ 127.8 \text{ (d, CH}_\text{arom.}, \ 129.3 \text{ (d, CH}_\text{arom.}, \ 134.6 \text{ (s, Cq}_\text{arom.})}. \\
\end{array}
\]

Irradiation of benzaldehyde with 1-trimethylsilyoxyoctylheptene (sbo-503)

A solution of benzaldehyde (0.3 g, 3 mmol) and 1-trimethylsilyoxyoctylheptene (0.55 g, 3 mmol) in 25 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the crude photolysate yielded 0.8 g (92 %) of inseparable mixture of oxetanes as a colorless oil.

endo-9-Phenyl-1-trimethylsilyoxy-8-oxa-bicyclo[5.2.0]nonane (endo-84q)

\[
\begin{array}{c}
\hfill \includegraphics[width=0.1\textwidth]{figure2.png} \\
\hfill \text{1H-NMR: (300 MHz, CDCl}_3) \\
\delta_{ppm} = 0.13 \text{ (s, 9H, 3CH}_3), \ 1.12-2.44 \text{ (m, 10H), 4.75 \text{ (t, J = 8.4 Hz, 1H, 7-H), 5.22 \text{ (s, 1H, 9-H), 7.18-7.36 \text{ (m, 5H, H}_\text{arom.})}. \\
\end{array}
\]

\[
\begin{array}{c}
\hfill \text{13C-NMR: (75.5 MHz, CDCl}_3) \\
\delta_{ppm} = 0.14 \text{ (q, 3CH}_3), \ 24.6 \text{ (t), 25.0 (t), 27.1 (t), 41.7 (t), 83.8 (d, C-7), 91.1 (d, C-9), 93.4 \text{ (d, C-9), 125.0 (d, CH}_\text{arom.}, \ 126.8 \text{ (d, CH}_\text{arom.}, \ 128.1 \text{ (d, CH}_\text{arom.}, \ 134.6 \text{ (s, Cq}_\text{arom.})}. \\
\end{array}
\]

exo-9-Phenyl-1-trimethylsilyoxy-8-oxa-bicyclo[5.2.0]nonane (exo-84p)
4. Experimental part

\[\text{![Chemical structure image]} \]

\(^1\text{H-NMR:} (300 \text{ MHz, CDCl}_3) \]
\[\delta_{\text{ppm}} = -0.26 (s, 9\text{H}, 3\text{CH}_3), 1.12-2.45 (m, 10\text{H}), 4.80 (t, J = 8.2 \text{ Hz}, 1\text{H}, 7-\text{H}), 5.07 (s, 1\text{H}, 9-\text{H}), 7.18-7.36 (m, 5\text{H}, \text{H}_{\text{arom}}). \]

\(^{13}\text{C-NMR:} (75.5 \text{ MHz, CDCl}_3) \]
\[\delta_{\text{ppm}} = 0.21 (q, 3 \text{ CH}_3), 23.7 (t), 25.7 (t), 28.1 (t), 42.1 (t), 81.6 (d, C-7), 90.3 (s, C-1), 92.4 (d, C-9), 126.6 (d, \text{CH}_{\text{arom}}), 127.8 (d, \text{CH}_{\text{arom}}), 129.3 (d, \text{CH}_{\text{arom}}), 134.1 (s, \text{Cq}_{\text{arom}}). \]

Irradiation of benzaldehyde-1d with 1-trimethylsilyloxycycloheptene (sbo-504)

A solution of benzaldehyde-1d (0.3 g, 3 mmol) and 1-trimethylsilyloxycycloheptene (0.55 g, 3 mmol) in 25 mL benzene was irradiated for 24 h according to the above general procedure. Distillation of the crude photolysate yielded 0.75 g (86 %) of inseparable mixture of oxetanes as a colorless oil.

endo-9-Deuterio-9-phenyl-1-trimethylsilyoxy-8-oxa-bicyclo[5.2.0]nonane (endo-84r)

\[\text{![Chemical structure image]} \]

\(^1\text{H-NMR:} (300 \text{ MHz, CDCl}_3) \]
\[\delta_{\text{ppm}} = 0.19 (s, 9\text{H}, 3\text{CH}_3), 1.12-2.44 (m, 10\text{H}), 4.83 (t, J = 8.4 \text{ Hz}, 1\text{H}, 7-\text{H}), 7.26-7.52 (m, 5\text{H}, \text{H}_{\text{arom}}). \]

\(^{13}\text{C-NMR:} (75.5 \text{ MHz, CDCl}_3) \]
\[\delta_{\text{ppm}} = 1.8 (q, 3 \text{ CH}_3), 24.1 (t), 25.2 (t), 26.9 (t), 30.4 (t), 41.6 (t), 81.3 (d, C-7), 90.3 (s, C-1), 93.4 (t, C-9), 124.7 (d, \text{CH}_{\text{arom}}), 126.8 (d, \text{CH}_{\text{arom}}), 128.1 (d, \text{CH}_{\text{arom}}), 134.7 (s, \text{Cq}_{\text{arom}}). \]

exo-9-Deuterio-9-phenyl-1-trimethylsilyoxy-8-oxa-bicyclo[5.2.0]nonane (exo-86r)
4. Experimental part

1H-NMR: (300 MHz, CDCl$_3$)

\[\delta_{ppm} = -0.18 \ (s, \ 9H, \ 3\ CH_3), \ 1.12-2.44 \ (m, \ 10H), \ 4.76 \ (t, \ J = 8.2 \ Hz, \ 1H, \ 7-H), \ 7.26-7.52 \ (m, \ 5H, \ H_{arom.}) \]

13C-NMR: (75.5 MHz, CDCl$_3$)

\[\delta_{ppm} = 2.1 \ (q, \ 3CH_3), \ 24.1 \ (t), \ 25.2 \ (t), \ 26.9 \ (t), \ 30.4 \ (t), \ 34.4 \ (t), \ 42.3 \ (t), \ 81.0 \ (d, \ C-7), \ 90.7 \ (s, \ C-1), \ 92.3 \ (t, \ C-9), \ 126.6 \ (d, \ CH_{arom.}), \ 127.8 \ (d, \ CH_{arom.}), \ 129.3 \ (d, \ CH_{arom.}), \ 134.7 \ (s, \ C_{qarom.}) \]

4.23 Photolyses of propanal & propanal-1-d with 2,3-dihydrofuran & 5-deuterio-2,3-dihydrofuran

Irradiation of propanal with 2,3-dihydrofuran (sbo-596)

Under a nitrogen atmosphere, a solution of propanal (0.17 g, 3 mmol) and 2,3-dihydrofuran (0.21 g, 3 mmol) in 25 mL hexane was irradiated in a Rayonet photoreactor ($\lambda = 300$ nm) for 24 h. Distillation of the residue after removal of the solvent afforded 0.37 g (96 %) of inseparable mixture of oxetanes as a colorless oil. Both 1H-NMR and 13C-NMR data was reported earlier (endo- & exo- 3c).

Irradiation of propanal-1-d with 2,3-dihydrofuran (sbo-596)

Under a nitrogen atmosphere, a solution of propanal-1-d (0.17 g, 3 mmol) and 2,3-dihydrofuran (0.21 g, 3 mmol) in 25 mL hexane was irradiated in a Rayonet photoreactor ($\lambda = 300$ nm) for 24 h. Distillation of the residue after removal of the solvent afforded 0.36 g (93 %) of inseparable mixture of oxetanes as a colorless oil.

$endo$-7-Deuterio-7-ethyl-2,6-dioxa-bicyclo[3.2.0]heptane ($endo$-85)
4. Experimental part

H-NMR: (300 MHz, CDCl₃)

\[\delta_{ppm} = 0.78 \text{ (t, } J = 7.5 \text{ Hz, } 3H, \text{ CH}_3), 1.52 \text{ (m, } 1H, \text{ 4-H}), 1.54 \text{ (m, } 2H, \text{ CH}_2), 1.96 \text{ (m, } 1H, \text{ 4-H}), 4.08-4.17 \text{ (m, } 2H, \text{ 3-H}), 4.64 \text{ (d, } J = 3.8 \text{ Hz, } 1H, \text{ 1-H}), 5.22 \text{ (dd, } J = 3.8, \text{ 3.8 Hz, } 1H, \text{ 5-H}).

C-NMR: (75.5 MHz, CDCl₃)

\[\delta_{ppm} = 8.2 \text{ (q, } \text{ CH}_3), 22.1 \text{ (t, } \text{ CH}_2), 32.6 \text{ (t, C-4), 69.6 (t, C-3), 78.3 (d, C-1), 83.8 (d, C-5), 85.7 (t, C-7).}

exo-7-Deuterio-7-ethyl-2,6-dioxa-bicyclo[3.2.0]heptane (exo-85)

\[
\begin{align*}
\text{H} & \quad \text{O} \\
\text{O} & \quad \text{Et} \\
\text{H} & \quad \text{D}
\end{align*}
\]

H-NMR: (300 MHz, CDCl₃)

\[\delta_{ppm} = 0.86 \text{ (t, } J = 7.5 \text{ Hz, } 3H, \text{ CH}_3), 1.56 \text{ (m, } 1H, \text{ 4-H}), 1.62 \text{ (m, } 2H, \text{ CH}_2), 1.98 \text{ (m, } 1H, \text{ 4-H}), 4.08-4.16 \text{ (m, } 2H, \text{ 3-H}), 4.41 \text{ (d, } J = 4.3 \text{ Hz, } 1H, \text{ 1-H}), 5.15 \text{ (dd, } J = 4.3, \text{ 3.7 Hz, } 1H, \text{ 5-H}).

C-NMR: (75.5 MHz, CDCl₃)

\[\delta_{ppm} = 7.8 \text{ (q, } \text{ CH}_3), 26.7 \text{ (t, } \text{ CH}_2), 33.2 \text{ (t, C-4), 66.8 (t, C-3), 80.4 (d, C-1), 84.0 (d, C-5), 87.5 (t, C-7).}

HRMS: (C₇H₁₁DO₂, M = 129.1 g/mol)

Calcd: 129.0947

Found: 129.0943

Irradiation of propanal with 5-deuterio-2,3-dihydrofuran (sbo-592)

Under a nitrogen atmosphere, a solution of propanal (0.17 g, 3 mmol) and 5-deuterio-2,3-dihydrofuran (0.21 g, 3 mmol) in 25 mL hexane was irradiated in a Rayonet photoreactor (λ = 300 nm) for 24 h. Distillation of the residue after removal of the solvent afforded 0.34 g (88 %) of inseparable mixture of oxetanes as a colorless oil.

endo-1-Deuterio-7-ethyl-2,6-dioxa-bicyclo[3.2.0]heptane (endo-86)
4. Experimental part

exo-1-Deuterio-7-ethyl-2,6-dioxa-bicyclo[3.2.0]heptane (exo-86)

\[^1H-NMR: (300 MHz, CDCl_3) \]

\[\delta_{ppm} = 0.79 \text{ (t, } J = 7.5 \text{ Hz, } 3\text{H, CH}_3), 1.55 \text{ (m, } 2\text{H, CH}_2), 1.58 \text{ (m, } 1\text{H, 4-H), 2.00 \text{ (m, } 1\text{H, 4-H), 4.12-4.20 \text{ (m, } 2\text{H, 3-H), 4.53 \text{ (t, } J = 7.5 \text{ Hz, 1H, 7-H), 5.27 \text{ (d, } J = 4.0 \text{ Hz, 1H, 5-H).} \]

\[^13C-NMR: (75.5 MHz, CDCl_3) \]

\[\delta_{ppm} = 8.5 \text{ (q, CH}_3), 22.4 \text{ (t, CH}_2), 32.8 \text{ (t, C-4), 69.9 \text{ (t, C-3), 78.3 \text{ (d, C-1), 84.0 \text{ (d, C-5), 86.4 \text{ (t, C-7).} \]

Irradiation of propanal-1-d with 5-deuterio-2,3-dihydrofuran (sbo-593)

Under a nitrogen atmosphere, a solution of propanal-1-d (0.17 g, 3 mmol) and 5-deuterio-2,3-dihydrofuran (0.21 g, 3 mmol) in 25 mL hexane was irradiated in a Rayonet photoreactor (\(\lambda = 300 \text{ nm} \)) for 24 h. Distillation of the residue after removal of the solvent afforded 0.33 g (85\%) of inseparable mixture of oxetanes as a colorless oil.

endo-1,7-Dideuterio-7-ethyl-2,6-dioxa-bicyclo[3.2.0]heptane (endo-87)
Experimental part

1H-NMR: (300 MHz, CDCl₃)

\[\delta_{ppm} = 0.75 \ (t, J = 7.5 \text{ Hz}, 3H, CH₃), 1.50 \ (m, 2H, CH₂), 1.53 \ (m, 1H, 4-H), 1.95 \ (m, 1H, 4-H), 4.06-4.15 \ (m, 2H, 3-H), 5.22 \ (d, J = 4.0 \text{ Hz}, 1H, 5-H). \]

13C-NMR: (75.5 MHz, CDCl₃)

\[\delta_{ppm} = 8.4 \ (q, CH₃), 22.2 \ (t, CH₂), 32.8 \ (t, C-4), 69.6 \ (t, C-3), 78.1 \ (t, C-1), 83.9 \ (d, C-5), 85.8 \ (t, C-7). \]

exo-1,7-Dideuterio-7-ethyl-2,6-dioxabicyclo[3.2.0]heptane (exo-87)

1H-NMR: (300 MHz, CDCl₃)

\[\delta_{ppm} = 0.83 \ (t, J = 7.5 \text{ Hz}, 3H, CH₃), 1.56 \ (m, 1H, 4-H), 1.60 \ (m, 2H, CH₂), 1.97 \ (m, 1H, 4-H), 4.06-4.14 \ (m, 2H, 3-H), 5.14 \ (dd, J = 4.0 \text{ Hz}, 1H, 5-H). \]

13C-NMR: (75.5 MHz, CDCl₃)

\[\delta_{ppm} = 7.9 \ (q, CH₃), 26.8 \ (t, CH₂), 33.3 \ (t, C-4), 67.0 \ (t, C-3), 80.2 \ (t, C-1), 84.1 \ (d, C-5), 87.6 \ (t, C-7). \]

HRMS: (C₇H₁₀D₂O₂, M = 130.1 g/mol)

Calcd: 130.1345

Found: 130.1340
“Crystal growth is a science and an art. The scientists role in the crystal growth process is that of an assistant who helps molecules to crystallize.”

<table>
<thead>
<tr>
<th>Crystal data</th>
<th>39g</th>
<th>43df</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C₇H₁₃NO₄</td>
<td>C₁₂H₂₃NO₄</td>
<td>C₈H₁₅NO₄</td>
</tr>
<tr>
<td>Formula mass</td>
<td>175.18</td>
<td>245.31</td>
<td>189.21</td>
</tr>
<tr>
<td>Size [mm]</td>
<td>0.25 x 0.15 x 0.15</td>
<td>0.15 x 0.08 x 0.05</td>
<td>0.25 x 0.20 x 0.20</td>
</tr>
<tr>
<td>a [Å]</td>
<td>4.831 (10)</td>
<td>6.434 (1)</td>
<td>6.163 (1)</td>
</tr>
<tr>
<td>b [Å]</td>
<td>11.381 (10)</td>
<td>14.945 (1)</td>
<td>7.834 (1)</td>
</tr>
<tr>
<td>c [Å]</td>
<td>8.634 (10)</td>
<td>15.721 (1)</td>
<td>11.184 (1)</td>
</tr>
<tr>
<td>α [°]</td>
<td>90</td>
<td>90</td>
<td>95.93 (1)</td>
</tr>
<tr>
<td>β [°]</td>
<td>105.17</td>
<td>90</td>
<td>95.28 (1)</td>
</tr>
<tr>
<td>γ [°]</td>
<td>90</td>
<td>90</td>
<td>105.65 (1)</td>
</tr>
<tr>
<td>V [Å³]</td>
<td>458.17 (12)</td>
<td>1511.7 (3)</td>
<td>513.11 (12)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>d<sub>calc.</sub> [g/cm³]</td>
<td>1.270</td>
<td>1.078</td>
<td>1.225</td>
</tr>
<tr>
<td>Crystal system</td>
<td>monoclinic</td>
<td>orthorhombic</td>
<td>triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P-2₁</td>
<td>P₂₁2₁2₁</td>
<td>P-1</td>
</tr>
<tr>
<td>No. refl. meas.</td>
<td>1022</td>
<td>3219</td>
<td>4338</td>
</tr>
<tr>
<td>No. uni. Refl.</td>
<td>1022</td>
<td>3219</td>
<td>2223</td>
</tr>
<tr>
<td>No. obs. Refl.</td>
<td>815</td>
<td>1762</td>
<td>1570</td>
</tr>
<tr>
<td>R</td>
<td>0.0373</td>
<td>0.0605</td>
<td>0.0438</td>
</tr>
<tr>
<td>R<sub>w</sub></td>
<td>0.0746</td>
<td>0.1396</td>
<td>0.0685</td>
</tr>
<tr>
<td>Largest diff. Peak / hole [e/Å³]</td>
<td>0.123/-0.111</td>
<td>0.116/-0.134</td>
<td>0.155/-0.197</td>
</tr>
</tbody>
</table>

[a] For I > 2σ (I)
Crystal data for 67b

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{11}H_{19}NO_{6}</td>
</tr>
<tr>
<td>Formula mass</td>
<td>261.27</td>
</tr>
<tr>
<td>Size [mm]</td>
<td>0.35 x 0.08 x 0.08</td>
</tr>
<tr>
<td>a [Å]</td>
<td>7.319 (1)</td>
</tr>
<tr>
<td>b [Å]</td>
<td>21.573 (1)</td>
</tr>
<tr>
<td>c [Å]</td>
<td>8.799 (1)</td>
</tr>
<tr>
<td>α [°]</td>
<td>90</td>
</tr>
<tr>
<td>β [°]</td>
<td>108.02 (1)</td>
</tr>
<tr>
<td>γ [°]</td>
<td>90</td>
</tr>
<tr>
<td>V [Å^3]</td>
<td>1321.2 (12)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>d_{calc.} [g/cm^3]</td>
<td>1.314</td>
</tr>
<tr>
<td>Crystal system</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Space group (^{178})</td>
<td>P-2_{1}/c</td>
</tr>
<tr>
<td>No. refl. meas.</td>
<td>5302</td>
</tr>
<tr>
<td>No. uni. refl.</td>
<td>2722</td>
</tr>
<tr>
<td>No. obs. refl. (^{[a]})</td>
<td>1023</td>
</tr>
<tr>
<td>R</td>
<td>0.0559</td>
</tr>
<tr>
<td>R_w</td>
<td>0.0997</td>
</tr>
<tr>
<td>Largest diff. Peak / hole [e/Å^3]</td>
<td>0.150/-0.230</td>
</tr>
</tbody>
</table>

\(^{[a]}\) For I > 2σ (I)
6. Summary

This work was performed in order to study the mechanism and synthetic applications of the Paternò-Büchi reaction: Spin-mapping of the stereoselectivity of [2+2]-photocycloaddition via concentration, viscosity and temperature effects and, as a synthetic tool, the photo-aldol reaction of 5-methoxyoxazoles.

The difference between the simple diastereoselectivities in the photocycloaddition reactions following the singlet versus the triplet route were studied by determination of the concentration dependence of the Paternò-Büchi reaction. Carbonyl substrates which have both reactive singlet and triplet states, exhibit one characteristic substrate concentration where a 1:1 ratio of singlet and triplet reactivity, i.e isospinselectivity could be detected.a

\begin{center}
\begin{tikzpicture}
\end{tikzpicture}
\end{center}

Scheme I

The effect of solvent viscosity and temperature on the spin-directed stereoselectivity of the carbonyl-ene photocycloaddition was investigated. The variation of the solvent viscosity over a large effective range (\(\eta = 0.3\) to 1500 cp) resulted in a weak but significant increase in the endo-selectivity of the (triplet) benzaldehyde cycloaddition to 2,3-dihydrofuran from 82 % to 91 %. For aliphatic aldehydes, the diastereoselectivity strongly increased with increasing solvent viscosity. The temperature dependence of the endo/exo selectivity with aliphatic aldehydes \textbf{1b-d} showed characteristic non-linear curves with inversion points from which activation parameters for singlet as well as the triplet photocycloaddition were determined.b

The concentration dependence of the photocycloaddition of \textit{cis}- and \textit{trans}-cyclooctene with aliphatic aldehydes was studied.c The results showed that a moderate but still significant spin-
correlation effect. The exo-diastereoisomer tc-18 was formed with similar probability as the endo-diastereoisomer cc-18 in the singlet carbonyl manifold, whereas the triplet excited aldehydes preferred the formation of the endo-diastereoisomer and trans fused product, tt-18.

Scheme II
The effect of hydrogen bonding in the first excited singlet versus the first excited triplet state of aliphatic aldehydes in the photocycloaddition was compared for allylic alcohols and acetates. The simple diastereoselectivity for oxetanes was nearly the same, but the presence of hydrogen bonding interactions increased the rate of the Paternò-Büchi reaction. Moreover, the effect of hydrogen bonding for simple diastereoselectivity was completely different than that for the induced diastereoselectivity, what was confirmed by comparison with the mesitylol photocycloaddition to aliphatic aldehydes.\(^d\)

Scheme III
5-Methoxyoxazoles were prepared in three steps and evaluated with respect to their use as dienes in stereoselective Paternò-Büchi reaction. The photocycloaddition of 2-methyl-5-methoxyoxazole (glycine equivalent) with a series of aldehydes was investigated. In all cases only one regioisomeric bicyclic oxetane was detected in the crude photolysis mixture and in most cases also only one (exo)-diastereoisomer. Ring-opening of the bicyclic oxetanes proceeded with retention of configuration to give erythro (S\(^*\),S\(^*\)) \(\alpha\)-acetamido-\(\beta\)-hydroxy esters.\(^e\)
Scheme IV

Acid-catalyzed water elimination from α-acetamido-β-hydroxy esters gave the (Z)-α,β-didehydroamino acid preferentially.

Scheme V

Compound 40a, when treated with POCl$_3$ in methylene chloride afforded methyl 1-methylisoquinoline-3-carboxylate 41 in good yield via a Bischler-Napieralski cyclization.

Scheme VI

Furthermore, the photocycloaddition of a series of 5-methoxyoxazoles as substrate with an additional substituent at C-4 was studied. The primary photoadducts were formed with excellent exo-diastereoselectivities except for the benzaldehyde addition to oxazole substrates with bulky substituents R$_1$. The products were hydrolyzed to give the erythro (S^*,S^*) α-alkylated-α-acetamido-β-hydroxy esters.

Scheme VII

Treatment of the photo aldol adducts with a catalytic amount of conc. HCl in chloroform led to formation of transacylation products.
6. Summary

Scheme VIII

When compound 43c was heated in aqueous NaOH (10%), the retro-aldol cleavage product 45 was obtained. The structure of compound 45 was established by means of an X-ray crystallographic analysis.

Scheme IX

Following the seminal work by Scharf et al., the photo aldol addition of 5-methoxyoxazoles to aliphatic and aromatic α-keto esters was investigated in detail. Photolysis of methylpyruvate with 5-methoxyoxazoles in benzene at 350 nm gave only one regio- and (exo)-diastereoisomer in high chemical yield. Acid treatment of the bicyclic oxetanes furnished erythro (S*,R*) α-acetamido-β-hydroxy succinic acid derivatives in quantitative chemical yield. The erythro configuration of compound 67b was unambiguously established by means of an X-ray structure analysis.

Scheme X

In contrast to aliphatic α-keto ester, irradiation of alkyl phenylglyoxylate in the presence of 5-methoxyoxazoles afforded two diastereoisomers with preferential formation of the exo-Ph diastereoisomer. The exo/endo-Ph diastereoselectivity decreased with increasing steric demand either at C-4 of oxazole and/or the alkyl group of the phenylglyoxylate. Acid hydrolysis of the chromatographically separated exo-Ph and endo-Ph bicyclic oxetanes afforded threo (S*,S*) and erythro (S*,R*) α-acetamido-β-hydroxy succinic acid derivatives in high chemical yield, respectively.
6. Summary

Scheme XI

Furthermore, the asymmetric induction in the Paternò-Büchi reaction of menthyl phenylglyoxylate with 5-methoxyoxazoles was investigated. The simple exo/endo-Ph diastereoselectivity was moderate, the facial selectivity for both exo and endo diastereoisomers was low. Hydrolysis of the chromatographically isolated exo-Ph and endo-Ph bicyclic oxetanes led to formation of threo (S*,S*) and erythro (S*,R*) α-acetamido-β-hydroxy succinic acid derivatives in high chemical yield, respectively.

Scheme XII

The effect of the substituent at C-2 of the oxazole substrates on the diastereoselectivity of the triplet α-keto ester photocycloaddition was also studied. Surprisingly, the exo/endo-Ph diastereoselectivity of the photocycloaddition of tert-butyl phenylglyoxlate to 2-isopropyl-4-methyl-5-methoxyoxazole was inverted. This result indicated that secondary orbital interactions (SOI) may play an important role for determining the stereoselectivity in the triplet photocycloaddition reaction. Acid hydrolysis of the chromatographically isolated exo and endo-Ph bicyclic oxetanes led to the formation of threo (S*,S*) and erythro (S*,R*) α-isobutyrylamino-β-hydroxy succinic acid derivatives in high chemical yields, respectively.
Finally, a substantial magnetic isotope effect on stereoselectivity in the triplet [2+2]-photocycloaddition of benzaldehyde-1-d to 2,3-dihydrofuran was measured. The results revealed that spin-orbit coupling (SOC) is not the only responsible interaction for intersystem crossing (ISC) as well as product distribution but also hyperfine coupling (HFC) plays an additional role for ISC even for 1,4-biradical intermediate.

Scheme XIV

7. Zusammenfassung

\[
\begin{align*}
&\text{2} \quad \text{EiCHO (1e)} \quad \text{hv} \\
&\text{0.5 M} \quad \text{48 : 52} \\
&\text{0.05 M} \quad \text{22 : 78} \\
&\text{0.005 M} \quad \text{15 : 85}
\end{align*}
\]

\textbf{Schema I}

Der Effekt der Viskosität des Lösungsmittels und der Reaktionstemperatur auf die spin-gesteuerte Stereoselektivität der Carbonyl-En-Photocycloaddition wurde ebenfalls untersucht. Eine Erhöhung der Lösungsmittelviskosität über einen grossen Bereich (\(\eta = 0.3 \text{ bis } 1500 \text{ cp}\)) führte zu einem schwachen, aber signifikanten Anstieg der \textit{endo}-Selektivität bei der Addition von (Tripplett) Benzaldehyd an 2,3-Dihydrofuran von 82\% auf 91\%. Bei aliphatischen Aldehyden hingegen stieg die Diastereoselektivität stark mit der Lösungsmittelviskosität an.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Selectivity Increase \textit{viscosity: log }\(\eta\) (cP)}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{Selectivity change (rel. to room temp.) \textit{Temperature: }T (°C)}
\end{figure}

Die Temperaturabhängigkeit der \textit{endolexo}-Selektivität mit den aliphatischen Aldehyden \textbf{1b-d} zeigte charakteristische nicht-lineare Korrelationen mit Inversionspunkten, aus denen die Aktivierungsparameter sowohl für die Singulett- als auch die Tripplettphotocycloadditionen bestimmt wurden.\(^b\)

Schema II

Schema III
mit Retention der Konfiguration unter Bildung der *erythro* (S*,S*) α-Azetamido-β-hydroxyester.

![Schema IV](image)

Schema IV

Die durch Brönsted-Säuren katalysierte Wassereliminierung ergab ausgehend von den α-Azetamido-β-hydroxyestern bevorzugt die (Z)-α,β-Didehydroaminsäuren.

![Schema V](image)

Schema V

Aus der Verbindung 40a wurde durch Umsetzung mit POCl₃ in Methylenclorid das Methylisoquinolin-3-carboxylat 41 in guten Ausbeuten über eine Bischler-Napieralski-Cyclisierung gebildet.

![Schema VI](image)

Schema VI

7. Zusammenfassung

Schema VII
Die Umsetzung der Photo-Aldol-Produkte mit katalytischen Mengen conc. HCl führte zur quantitativen Bildung der Transacylierungsprodukte.

\[
\text{Schema VII} \\
\text{43da, 43dc & 43fc} \xrightarrow{\text{H}^+/\text{CHCl}_3} \text{44da, 44dc & 44fc}
\]

Schema VIII
Bei der Umsetzung von Verbindung 43c mit wässriger NaOH (10\%) wurde das Retro-Aldol Spaltungsprodukt 45 erhalten. Die Struktur von Verbindung 45 wurde zusätzlich durch eine Kristallstrukturanalyse bestätigt.

\[
\text{Schema VIII} \\
\text{43dc} \xrightarrow{\text{NaOH (10\%)}} \text{45}
\]

Schema IX

\[
\text{Schema IX} \\
\text{36a-f} \xrightarrow{\text{hv}} \text{54} \xrightarrow{\text{H}^+/\text{H}_2\text{O}} \text{erythro}(S^*,R^*)-67a-f
\]

Schema X
Im Gegensatz zu den aliphatischen \(\alpha\)-Ketoestern, ergab die Belichtung von Alkylphenylglyoxylaten in Gegenwart von 5-Methoxyoxazolen zwei Diastereoisomere unter bevorzugter Bildung des \(\text{exo}\)-Phenyl-Stereoisomeren. Die \(\text{exo/endo}\)-Phenyl-Diastereoselektivität nahm mit zunehmenden Raumspruch an C-4 der Oxazolkomponente und / oder der Alkylgruppe am Phenylglyoxylat ab. Die saure Hydrolyse der chromatographisch getrennten \(\text{exo}\)-Ph- und
7. Zusammenfassung

endo-Ph-Oxetane lieferte die *threo* (S*,S*) und *erythro* (S*,R*) α-Acetamido-β-hydroxybernstainsäurederivate in hohen Ausbeuten.

Schema XI

Weiterhin wurde die asymmetrische Induktion bei der Paternò-Büchi-Reaktion von Menthylphenylglyoxylat mit 5-Methoxyoxazolen untersucht. Die einfache *exo/endo*-Ph-Diastereoselektivität war mässig, die induzierte Diastereoselektivität für beide *exo*- und *endo*-Diastereoisomere gering. Die Hydrolyse der chromatographisch getrennten *exo*-Ph- und *endo*-Ph-Oxetane ergab in sehr guten Ausbeuten die *threo* (S*,S*) und *erythro* (S*,R*) α-Acetamidobeta-hydroxybernstainsäurederivate.

Schema XII

Der Einfluss eines Substituenten an C-2 der Oxazolkomponente auf die Diastereoselektivität bei der Photocycloaddition von Triplett-angeregten α-Ketoestern wurde untersucht. Überraschenderweise drehte sich die *exo/endo*-Ph-Diastereoselektivität bei der Cycloaddition von *tert*-Butylphenylglyoxat an 2-Isopropyl-4-methyl-5-methoxyoxazol um. Dieses Ergebnis lässt vermuten, dass sekundäre Orbitalwechselwirkungen (SOI) eine wichtige Rolle bei der Steuerung der Stereoselektivität von Triplett-Photocycloadditionen spielen. Die säurekatalysierte Hydrolyse der chromatographisch getrennten *exo* und *endo*-Ph-Oxetane...
ergab die *threo* (*S*,*S*) und *erythro* (*S*,*R*) α-Isobutyrylamino-β-hydroxybernsteinsäurederivate in guten Ausbeuten.

Schema XIII
Schliesslich wurde ein beachtlicher magnetischer Isotopeneffekt auf die Stereoselektivität der Triplett-[2+2]-Photocycloaddition von Benzaldehyd-1-d an 2,3-Dihydrofuran bestimmt. Diese Ergebnisse zeigten, dass die Spin-Bahn-Kopplung (SOC) nicht die einzige Wechselwirkung ist, die für das Intersystem-Crossing (ISC) und somit auch für die Produktverteilung verantwortlich ist, sondern dass auch die Hyperfeinkopplung (HFC) eine zusätzliche Rolle beim ISC, sogar bei 1,4-Biradikalen, spielt.

Schema XIV
8. References

8. References

8. References

8. References

84. a) Yokoyama, A., Mizuno, K., Org. Lett. 2000, 2, 3457-3459.
8. References

8. References

8. References

150. Autonom 1.0, *Beilstein-Institut*, Beilstein Information System **1991**.
152. Stadtmüller, S., *Dissertation*, Universität Würzburg **1991**.
8. References

Die von mir vorgelegte Dissertation ist von Herrn Prof. Dr. Axel G. Griesbeck betreut worden.

Samir Bondock
Lebenslauf

Persönliche Daten

Name Samir Bahgat Abd El-Razek Bondock
Geburtsdatum 20.09.1970
Geburtsort Mansoura/Ägypten
Familienstand ledig
Staatsangehörigkeit ägyptisch

Schulbildung

1976-1982 Grundschule Meet El-Sarem
1982-1985 Mittelschule Ameria
1985-1988 El-Malek El-Kamel-Gymnasium
07/1988 Abitur

Studium

1988-1992 Studium der Chemie an der Mansoura Universität
05/1992 B.Sc. in Chemie
1992-1993 Magister-Vorprüfung
1993-1995 Magisterarbeit an der Mansoura Universität im Arbeitskreis von Prof. Dr. Ahmed Fadda
Thema: “Synthesis of Some New Azo Disperse Dyes for Dyeing Synthetic Fibers”
09/1995 M.Sc. in Chemie
1995-2000 Forschungsarbeit im Arbeitskreis von Prof. Dr. M.A. Metwally
2000-2003 Promotionsstudium an der Universität zu Köln im Arbeitskreis von Prof. Dr. Axel G. Griesbeck
Thema: “Mechanism and Synthetic Use of Paternò-Büchi Reactions: Spin-Mapping and Photo-Aldol Reactions”

Berufserfahrung

1992-1995 Assistent an der Mansoura Universität
1995-2003 Oberassistent an der Mansoura Universität
2002-2003 Wissenschaftlicher Assistent an der Universität zu Köln