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Kurzzusammenfassung

Die Theorie der Evolution quantitativer Merkmale erweckt in den letzten Jahren

großes Interesse, da experimentelle Daten deutlich einfacher verfügbar sind. Dadurch,

dass experimentelle Methoden immer mehr in der Lage sind systembiologische

Datenmengen zu messen, muss die Theorie zur Beschreibung quantitativer Merk-

male über die bis jetzt bestehende Theorie zur unabhängigen Evolution quanti-

tativer Merkmale hinausgehen. Diese Thesis untersucht die asexuelle Evolution

quantitativer Merkmale, sowohl im kleinen Rahmen einzelner Merkmale, die von

externer Adaptation in genetisch verbundenen Teilen des Genoms, als auch im

großen, systembiologischen Rahmen des gesamten Organismus mit vielen verbun-

denen quantitativen Merkmalen. Die Statistik eines quantitativem Merkmals wird

durch externe Kopplungseffekte negativ beeinflusst, wobei dieser Effekt durch einen

einzigen Parameter beschrieben werden kann, die Neutralitätsschwelle. Für den sys-

tembiologischen Anwendungsbereich untersuchen wir den Einfluss der gemeinsamen

genomischen Kopplung auf Merkmale mit biophysikalischen Fitnesslandschaften.

Das überraschende Ergebnis dieser phänotypischen Interferenz ist ein schneller

als linearer Anstieg des genetischen Loads mit der Anzahl der koevolvierenden

Phänotypen. Als Konsequenz daraus ergibt sich eine biophysikalisch fundierte

Erklärung für die Evolution sexueller Reproduktion. Die negativen Auswirkungen

der Kopplung auf Adaptation und Anpassungsfähigkeit verbinden diese Themen

mit dem Thema Mendelscher Merkmale in asexuellen Genomen - mit dem Schw-

erpunkt auf die verminderte Fähigkeit, Informationen in großen, sich schnell

anpassenden Genomen zu speichern. Hier finden wir eine neue Klasse von punk-

tuierten Fitnesswellen, bei denen Perioden von Aufrechterhaltung der Funktion

durch Anpassungsimpulse unterbrochen werden.
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Abstract

The theory of the evolution of quantitative traits is a topic, which has generated a

lot of interest in recent years due to experimental data becoming much more easily

available. With experimental methods increasingly able to measure systemsbiologi-

cal amounts of data, theory needs to go beyond the so far established independent

evolution of quantitative traits. This thesis investigates the asexual evolution of

quantitative traits in two scopes. In the small scope we look at a single quantitative

trait being influenced by external adaptation in genetically linked parts of the

genome. In the grand, systems-biology scope we look at the whole organism

with multiple linked quantitative traits. The statistics of a quantitative trait are

negatively influenced by external linkage effects, where the effect can be described

by a single parameter, the neutrality threshold. For the systemsbiological scope

we study the effect of joint linkage on traits with biophysical fitness landscapes.

The surprising result, due to this phenotypic interference, is a faster-than-linear

increase of the genetic load with the number of co-evolving phenotypes. As a

consequence, this provides us with a biophysically grounded explanation for the

evolution of sex. The negative effects of linkage on adaptation and adaptability

link these topics together with a chapter on Mendelian traits in asexual genomes.

There we focus on the decreased ability to retain information in large, fast adapting

genomes. Additionally, we find a new class of punctuated fitness waves, where

periods of maintainance of function are interrupted by bursts of adaptation.
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1 Introduction

Albert grunted. ”Do you know

what happens to lads who ask

too many questions?”

Mort thought for a moment.

”No,” he said eventually,

”what?”

There was silence.

Then Albert straightened up

and said, ”Damned if I know.

Probably they get answers, and

serve ’em right.”

(Terry Pratchett, Mort)

E
volutionary theory has moved in recent years from merely trying to

explain existing genetic variation and the fossil record, to trying to anticipate

and predict future evolutionary changes. The basis for this major paradigm shift

lies both in the advancement of theoretical frameworks and the availability of

experimental data in a scope that was unimaginable before the availability of whole

genome sequencing techniques. The ability to be able to forecast evolution has far

reaching implications for human health.

The theoretical frameworks underlying this achievement have come a long way

since the beginning of population genetics describing the effect and probability of

independent mutations[Fisher, 1930; Wright, 1931; Kimura, 1962]. As the evolution

of human pathogens is often asexual, this assumption of independent mutations

does not hold in general. Asexual organisms reproduce under complete genetic

linkage, which means that mutations occurring in different individuals have to

compete with each other for fixation. This introduces long-range interactions on the

genome throughout the evolutionary process. Furthermore, pathogens usually do

not evolve in a constant environment. The co-evolution of pathogen-host systems

1



1 Introduction

introduces time-dependent selection to these systems through the immune-system

adapting to the pathogen. The evolution of drug resistance of bacteria is another

case of adaptation to an external pressure [Lukačǐsinová and Bollenbach, 2017].

Many of the properties needed for the function of a bacterium or a virus are

not simple on-or-off type traits described by a single gene. Drug resistance or

the binding of a surface protein to attack cells are described by a multitude of

genetic sites working in concert. This is called a quantitative trait. The evolution

of quantitative traits has come a long way from merely being a phenomenological

description tool to explain the adaptation towards an optimum, in the classical

geometric model by Fisher[Fisher, 1930]. Recent breakthroughs have been able to

describe the evolution of quantitative traits without all the microscopic properties

from the sequence level. On the phenotypic level it is now possible to estimate the

effect of stabilizing selection [Nour Mohammad et al., 2013] and adaptation [Held

et al., 2014] of the trait by measuring a few key trait properties.

These theories have so far been quite distinct from each other: Quantitative

traits were studied in isolation and asexual theory was mostly concerned with the

competition of mutations.

The first models to predict future short term changes have been applied with

impressive accuracy to the evolution of Influenza [Luksza and Lässig, 2014; Morris

et al., 2018]. To further improve these predictive models it is important to improve

the underlying evolutionary models. This work brings together these long standing,

independent research areas within population genetics. It combines the theory

of fitness waves [Desai and Fisher, 2007; Rouzine et al., 2008; Hallatschek, 2011;

Good et al., 2012; Neher and Hallatschek, 2013; Neher et al., 2013] with a genomic

theory, quantitative traits with fast adaptation in a genomic asexual context, and

fitness waves with many linked quantitative traits.

We aim to provide answers to the following open questions:

1. How are the statistics of quantitative traits influenced by adaptation in other

parts of the genome?

2. What are the consequences of the asexual co-evolution of a large number of

genes?

3. More broadly: How does the evolutionary process influence the genome?

2



What modes of evolution are viable for long-term evolution?

We address these key questions individually in the following chapters using

methods of statistical physics to obtain analytical results and verify our model

predictions with simulations.

Chapter 2 introduces key concepts of evolutionary biology. Starting with the

basic evolutionary forces, we then build up to the evolution of quantitative traits

and fitness wave theory needed in the later chapters.

In chapter 3 quantitative traits, which have so far been studied independently of

any genomic background, are studied under the influence of selective sweeps and

thus in an asexual genomic context. We start by recapitulating the Fokker-Planck

equations describing the evolution of a single quantitative trait and add the effect

of selective sweeps as an additional force on the trait.

Directly based on this, the next chapter 4 takes this one step further and deals

with a minimal model of the joined evolution of many linked quantitative traits.

These quantitative traits describe genes that need a folded protein to function,

giving rise to a biophysical fitness landscape that is proportional to the folding

probability, which is given by a Fermi function. In this chapter we see the well

known property in statistical mechanics that the joint behavior of many noisy

observables is much easier than studying the interacting behavior of just a few

noisy observables. The total fitness behaves quite deterministically according to

fitness wave theory, leading to a simple scaling law for the genetic load.

Chapter 5 then links the fitness wave theory, used in chapter 4, to Mendelian

genomic loci, i.e. simple loci with an additive fitness landscape only linked through

the evolutionary dynamics. There we observe a new evolutionary mode, punctuated

fitness waves, giving an anomalous scaling behavior. Also we show, that fitness wave

behavior leads to an unstable genome that cannot efficiently maintain information

in the long-term.

All chapters are accompanied by simulations to test theory predictions, which

are described in detail in the methods of the specific chapters.

3





2 Introduction to evolutionary theory

One of the things Ford Prefect

had always found hardest to

understand about humans was

their habit of continually

stating and repeating the very

very obvious.

(Douglas Adams, The

Hitchhiker’s Guide to the

Galaxy)

A
s one of the most complex systems known in nature, the evolution of species

offers a fascinating playground to population geneticists. In this chapter we

recapitulate the main concepts of population genetics needed to understand the

following chapters. The evolutionary forces can be categorized in stochastic and

deterministic forces. Let us start with the most well known aspect of evolution:

’Survival of the fittest’, i.e. natural selection.

2.1 Natural selection

The concept of natural selection, which was first formulated by Darwin and

Wallace, is by now a well established concept of general knowledge. Its structured

mathematical formulation also goes back to the beginning of the last century

with Fisher and Wright [Fisher, 1930; Wright, 1931]. Mathematically, natural

selection is a deterministic force that can be associated with a potential, the

fitness landscape. The fitness landscape can either be a map directly from the

genotype, i.e. the most basic description of an organisms information content, or

from the phenotype, which is some mapping of the genomic information content to

actual biological quantities. The genotypic fitness landscape was first modelled by

5



2 Introduction to evolutionary theory

Figure 2.1: Diagrammatic fitnesslandscape by Wright. 2-dimensional repre-
sentation of multidimensional genotype space, where plus and minus
signs mark fitness peaks and valleys respectively. Adapted from [Wright,
1932].

Wright [Wright, 1932], while a phenotypic fitness landscape was proposed by Fisher

with his geometric model [Fisher, 1930]. In this thesis we are mostly concerned

with the latter - Evolution rarely acts directly on the actual genetic basis and is

mostly concerned with the functional effect of the genetic information, when it is

transcribed into phenotypes.

For a simplified case of two possible types of individuals A and B with associated

fitnesses fA and fB, the number of individuals Ni, i ∈ A,B of each type changes

deterministically according to

d

dt
Ni(t) = fiNi(t), i ∈ A,B. (2.1)

The change of the fraction xi = Ni/N , called frequency, where N is the total

number of individuals, changes accordingly with

d

dt
xA(t) = (fA − fB)xA(t)(1− xA(t))

= sABxA(t)(1− xA(t)).

(2.2)

6



2.2 Mutation

For natural selection to matter, phenotypic diversity is a necessary condition. The

best / most fit individuals can only be selected, if there is actually a variety of

differences. Furthermore, natural selection actually leads to a decrease of this

variation up to the inevitable conclusion of only the fittest remaining. This is

in direct conflict with our observation of nature, where we see an abundance of

variation. The counteracting force replenishing variation is mutation.

2.2 Mutation

Mutations change the genetic information from one generation to the next due

to random copy errors. In spite of this randomness the mutational force from

a population genetics perspective is actually also deterministic. Depending on

the assumptions we are also able to write down a mutation potential. For the

single locus model with two alleles shown as our example in the previous section

mutations change the frequency of allele A according to

d

dt
xA(t) = µ(1− 2xA(t)). (2.3)

Adding to these two deterministic forces, an entropic force associated with random

offspring numbers called genetic drift acts on the population genetics level.

2.3 Genetic drift

Evolution due to natural selection is not a deterministic process. Randomness

enters through the variability in the offspring numbers. This process, which can

lead to unfavourable mutations being fixed in a population is called genetic drift.

For the single locus dynamics, genetic drift leads to a Langevin equation given by

d

dt
xA(t) = η(t), (2.4)

with Gaussian noise η(t) describing the genetic drift with 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 =
1
N δ(t − t

′). Though the name might imply this, it is not a drift in the physical

sense, but for population genetics it is associated with a diffusion in probability

space. The joint dynamics under these three evolutionary forces leads to a joint

7



2 Introduction to evolutionary theory

Langevin equation. An equivalent description via a Fokker-Planck equation is

given in the next section.

2.4 Fokker-Planck equation of a single locus

0.0 0.2 0.4 0.6 0.8 1.0
x

10 1

100

101

P e
q(

x)

Figure 2.2: Kimura-Ohta allele frequency spectrum. Probability distribution
of allele frequencies x for a single genetic locus with two alleles.

The evolution of a single genetic locus with two possible values - alleles- can be

described by a diffusion approximation[Kimura, 1964]. Here the fraction–called

frequency– of the allele with selective advantage s is denoted by x, which leads to

a frequency for the deleterious allele of 1− x. The population is assumed to have

a constant population size N and a uniform mutation rate µ. The distribution of

allele frequencies is then given by

∂tP (x, t) =
1

2N
∂2
x [x(1− x)P (x, t)]− ∂x [(µ(1− 2x) + s)P (x, t)] . (2.5)

The equilibrium distribution of this equation gives the well-known Kimura-Ohta

shape for the allele frequencies with directed selection

8



2.5 Asexual evolution

Peq(x) = N × (x(1− x))−1+2Nµe2Nsx, (2.6)

where N is a normalization factor[Rouzine et al., 2001], see Fig. 2.2.

The probability that a single mutation with selective advantage s becomes

present in all individuals is given by the fixation probability[Kimura, 1962]

G(s) =
1− exp(−2s)

1− exp(−2Ns)
. (2.7)

The single locus dynamics is of course only an approximation of anything resembling

real organisms. This approximation is valid for low mutation rates or under full

recombination, where correlations between sites and mutations can be neglected.

2.5 Asexual evolution

Figure 2.3: Sequential evolution and competition of mutations. a shows
the sequential fixation of mutations without interference. This means
single locus theory can be used and the classical Kimura fixation
formula is valid, see Eq. 2.7. b shows a competition between mutations
overlapping in time - here theory needs to take asexual interference
effects into account. Adapted from [Desai and Fisher, 2007]

.

In general, for asexual evolution the assumption of neglecting correlations, i.e.

9



2 Introduction to evolutionary theory

Figure 2.4: Emergent neutrality.Fixation probability under clonal interference
showing emergent neutrality with respect to Kimura / Haldane fixation
probability. Adapted from [Schiffels et al., 2011].

linkage disequilibrium, between mutations and genomic sites is no longer possible.

As a result the dynamics depends on the interplay of mutations with each other.

A general effect of this is a decrease in the speed of adaptation due to competition

between multiple beneficial mutations. Both for fitness wave theory[Good et al.,

2012] and under clonal interference[Schiffels et al., 2011] in a genomic context it

has been shown that moderately strongly selected mutations act effectively neutral,

see Fig. 2.4.

Fixation probability

The fixation probability of a single mutation with selective effect s under the

influence of a coalescence rate σ̃ is then given by

G(s, σ̃) =

 1
N e

s/2σ̃, |s| � σ̃ or s < −σ̃,
2s

1−es/2σ̃ , s� σ̃.
(2.8)

This equation was shown for fitness waves [Neher et al., 2013; Good et al., 2014]

and in a hierarchical approximation with drivers [Schiffels et al., 2011].

10



2.6 Multi-locus Fokker-Planck equation

2.6 Multi-locus Fokker-Planck equation

For many linked sites the evolution in frequency space is in a high-dimensional,

under-sampled space. The frequencies of the haplotypes x = (x1, . . . , xK), where

K is the number of possible haplotypes, can again be described by a generalized

Kimura diffusion equation [Ewens, 2004; Nour Mohammad et al., 2013]

∂tP (x, t) =
∑

a,b∈A

[
1

2N
∂xa∂xb

(
gab(x)P (x, t)

)
− ∂xa

(
(ma(x) + gab(x)sb(x))P (x, t)

)]
(2.9)

Here A is the set of possible haplotypes,gab(x) is a metric, ma(x) is associated

with mutations, and sb(x) is the selection coefficient given by the gradient of the

fitness landscape sb(x) = ∂xbF (x). This equation is under general conditions hard

to solve. For the special case of a quantitative trait the evolution can be mapped

onto a stochastic reaction diffusion equation (2.10).

2.7 Quantitative trait evolution

Figure 2.5: Quantitative trait distribution. A quantitative trait with a Gaus-
sian distribution W(E) within a population with mean value Γ and
diversity ∆.

A quantitative trait is an organism’s trait that depends on multiple genomic

loci. Thus it is able to have more than simple binary results. Any trait that has a

quasi continuous range of possible values is a quantitative trait. As long as the

fitness of the trait E does not change with time, the distribution of trait values

11



2 Introduction to evolutionary theory

W(E, t)within a population is given by a reaction-diffusion equation

∂tW(E, t) =
(
f(E)− f̄(t)

)
W(E, t) + ∂E (µ1(E)W(E, t))

+
1

2
∂2
E (µ2(E)W(E, t)) + η(E, t)

, (2.10)

where µk(E) is the kth moment of the distribution of mutation effects, f(E) is

the fitness for trait value E, and η(E, t) is a stochastic noise term related to

genetic drift. According to [Nour Mohammad et al., 2013] the between population

distribution of the mean Γ(t) = E =
∫
dEEW(E, t) and variance within the

population ∆(t) = (E − Γ)2 =
∫
dE(E − Γ)2W(E, t),see Fig. 2.5, can be described

by Fokker-Planck equations

∂Q(Γ, t)

∂t
= − ∂

∂Γ

[
(mΓ + gΓΓsΓ)Q(Γ, t)

]
+

∂2

∂Γ2

[
gΓΓ

2N
Q(Γ, t)

]
(2.11)

∂Q(∆, t)

∂t
= − ∂

∂∆

[
(m∆ + g∆∆s∆)Q(∆, t)

]
+

∂2

∂∆2

[
g∆∆

2N
Q(∆, t)

]
. (2.12)

For a quantitative trait under stabilizing selection in a quadratic fitness landscape

of the form f(E) = −c0(E − E∗)2 the two equations have the form

∂Q(Γ, t)

∂t
= − ∂

∂Γ
[(−2µ(Γ− 〈Γ〉0)− 2c0〈∆〉(Γ− E∗))Q(Γ, t)] +

∂2

∂Γ2

[
〈∆〉
2N

Q(Γ, t)

]
(2.13)

∂Q(∆, t)

∂t
= − ∂

∂∆

[
(−4µ(∆− E2

0)− ∆

N
− 2c0∆2)Q(∆, t)

]
+

∂2

∂∆2

[
∆2

N
Q(∆, t)

]
,

(2.14)

where Γ0 and E2
0 are the neutrally expected trait mean and variance, respectively.

Mutation-selection-drift equilibrium

The marginal distributions for the mean trait and the trait diversity have well

described equilibria given by

Qeq(Γ) = N ×Q0(Γ) exp(2NF (Γ)) (2.15)

Qeq(∆) = N ×Q0(∆) exp(2NF (∆)), (2.16)
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2.8 Fitness wave theory

where the neutral equilibria are changed due to selection by a Boltzmann-weight

exp(2NF ). The neutral equilibrium distributions are then given by

Q0(Γ) = N × exp

(
−(Γ− Γ0)2

2E2
0

)
(2.17)

Q0(∆) = N ×∆−3−4Nµ exp

(
−4NµE2

0

∆

)
. (2.18)

2.8 Fitness wave theory

Figure 2.6: Fitness wave schematic. Schematic of the evolution according to
fitness wave theory. The bulk is gaussian and moves deterministically,
while the tip behaves stochastically.

Since fitness depends on more than a single genetic locus, fitness is just another

example of a quantitative trait. Fitness wave theory uses this to explain the

adaptive evolution in fitness space as a gaussian wave with a stochastic tip[Cohen

et al., 2005; Desai and Fisher, 2007; Rouzine et al., 2008; Hallatschek, 2011]. The

time evolution equation for the trait value can in this case be simplified to[Good

and Desai, 2014]

∂tW(E, t) =
(
E − Ē(t))

)
W(E, t) + ∂E (µ1W(E, t))

+
1

2
∂2
E (µ2W(E, t)) + η(E, t)

. (2.19)

A standard assumption of fitness wave theory is a fixed distribution of selection

effects, which is in many classical theories just a δ-distribution with a single

selection coefficient s. Travelling fitness wave theory is a universal mode of
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2 Introduction to evolutionary theory

evolution independent of the actual genomic mechanism; only dependent on the

distribution of fitness effects of the mutations.

An important result is that the fitness variance in the population σ2 is stable

and can be related to the inverse coalescence time σ̃2 by

σ2 = cσ̃2, (2.20)

where c = c0 log(Nσ̃) is a slowly varying parameter. The actual value of c and the

logarithmic dependence on the parameters is dependent on the used model [Neher

and Hallatschek, 2013; Neher et al., 2013].

The genealogy associated with fitness wave theory belongs to the universality

class of Bolthausen-Sznitman coalescent processes [Brunet et al., 2006; Neher

and Hallatschek, 2013]. In this dissertation we will demonstrate the limits and

consequences of this mode of evolution to the genomic state of organisms. Further

we will show that assuming an underlying genotype to phenotype mapping a

standing fitness wave is a generic outcome of the asexual evolutionary process.

In the following chapter we take a closer look at quantitative traits in asexual

populations. This will then in later chapters be combined with results from fitness

wave theory.
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3 Quantitative traits in asexual

populations

”No, no! The adventures first,

explanations take such a

dreadful time.”

(Lewis Carroll, Alice’s

Adventures in Wonderland &

Through the Looking-Glass)

Q
uantitative traits are ubiquitous in nature. Any measureable biological

quantity that is not just defined by a single on-off type binary choice is the

result of many genetic loci working in concert to provide the existing variability.

The empirical analysis of these phenotypes was first possible with QTL analysis

in the 1980s, which is reviewed in[Tanksley, 1993; Mackay, 2001]. Necessarily,

many common diseases are associated with quantitative traits [Plomin et al., 2009]

and as such the theory of quantitative traits is also of central relevance in the

medical field. This is further amplified by the fact, that surface proteins binding to

cells for viruses and drug resistance of microbes are also described by quantitative

traits [Lukačǐsinová and Bollenbach, 2017]. With the development of experimental

methods and availability of data, a demand for theoretical predictions arose to

compare to the observed phenomena. Classical studies of quantitative genetics

focused on phenomenological descriptions of trait distributions of quantitative

traits [Bulmer, 1972; Barton and Turelli, 1989; Rice, 1990; Hartl and Taubes,

1996; Lynch and Walsh, 1998], often based on considerations first developed

by Fisher [Fisher, 1930] with his geometric model, which has since become a

standard model for the phenotypic evolution [Tenaillon, 2014]. Even though a

direct link to the genomic basis is not part of the framework of Fisher’s geometric

model, many recent studies have used it to describe epistatic interactions [Martin
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et al., 2007; Weinreich and Knies, 2013; Perfeito et al., 2013; Schoustra et al.,

2016]. Furthermore, the mapping of a phenotypic landscape to rugged genotypic

landscapes has led to a deeper understanding of the connection to a genomic

basis [Hwang et al., 2017]. Whereas in the framework of FGM the dimensionality of

interest is usually high, a lot of insight on quantitative traits can already be found

from one dimensional single peaked landscapes. The evolution of quantitative traits

under stabilizing selection can be approximated by a quadratic one-dimensional

fitness landscape [Lande, 1976]. Further the evolution was mostly centered near

the fitness peak, where sign-epistasis is of major concern. This is due to a generally

directionless mutation approximation, which a direct mapping of the genomic

evolution to phenotypic evolution as was done in [Nour Mohammad et al., 2013]

rectifies. The evolution is then necessarily on the flank of the fitness landscape.

Up until recently evolutionary theory for quantitative traits rested on the as-

sumption that the quantitative trait loci are in or near linkage equilibrium[Barton

and de Vladar, 2009; de Vladar and Barton, 2011] to provide analytically solvable

models. Recent studies have shown that the evolution of molecular phenotypes

can be solved independently from the genetic basis, giving rise to universal be-

haviour[Nourmohammad et al., 2013] just depending on the first and second

moment of the distribution of mutation effects. Even though the evolution of

quantitative traits under asexual evolution [Nour Mohammad et al., 2013] and

adaptive evolution of the trait itself[Held et al., 2014] has been solved and the

influence of selective sweeps within in the trait loci has been studied[Chevin and

Hospital, 2008], a missing link remains the influence of asexual evolution on the

quantitative trait due to linkage with further parts of the genome. Asexual evolu-

tion can give rise to modes of evolution, where the fate of new mutations is strongly

dependent on its genomic background(background selection, fitness wave)[Desai

and Fisher, 2007; Charlesworth, 2012], subsequent helping (hitchhiking)[Hill and

Robertson, 1966], or competing mutations (clonal interference)[Gerrish and Lenski,

1998; Park and Krug, 2007]. A consequence is the emergence of effective neutrality

[Schiffels et al., 2011; Good et al., 2012], which randomizes the behaviour of all

but the most strongly selected mutations. The regime of rapid adaptation, where

clonal interference plays a dominant role in the evolution of a population, has been

shown to occur both in evolution experiments[Barroso-Batista et al., 2014; Mc-

Donald et al., 2016] and natural populations such as the adaptation of the human
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influenza[Strelkowa and Lässig, 2012]. The influence of this strong interference

selection on quantitative traits is the subject of this chapter. This is the first

statistical theory of a non-neutral quantitative trait under complete linkage. We

show that the quantitative trait can be described by the diffusion model introduced

by[Nour Mohammad et al., 2013] with a reduced effective population size. Thus for

asexual organisms hitchhiking events due to rapid adaptations affect the statistics

of quantitative traits under stablizing selection negatively.

3.1 Genetic Draft on Quantitative Traits

We are interested in the influence of adaption in other parts of the genome on a

quantitative trait in asexual organisms. For this we study the effects of hitchhiking

due to selective sweeps on quantitative traits.

3.1.1 Trait statistics

A quantitative trait is described by its trait value E, which we assume to have an

additive map of genotype to phenotype, i.e. E(a) =
L∑
i=1

εiai, where each quantitative

trait’s sequence is given by a = (a1, . . . , aL) with εi being the phenotypic effect

of site i and ai = 0; 1 described by a binary alphabet. The statistics of the

phenotype can be fully described by its trait mean Γ and diversity ∆, if the trait

value distribution is Gaussian. For a large number of constituent sites the trait

will generally be polymorphic, since LNµ & 1. The assumption of a Gaussian

distribution of trait values for quantitative traits under stabilizing selection under

this condition is due to the large number of trait loci a good discription of the

actual distribution.

The evolution of quantitative traits can be described by a diffusion model for

the probability distribution between populations of the trait mean Γ and the trait

diversity ∆. This description is valid both in the case of a quantitative trait

under constant stabilizing selection[Nour Mohammad et al., 2013] and when the

quantitative trait itself is undergoing adaptive changes[Held et al., 2014]. The
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3 Quantitative traits in asexual populations

diffusion equations are given by

∂Q(Γ, t)

∂t
= − ∂

∂Γ

[
(mΓ + gΓΓsΓ)Q(Γ, t)

]
+

∂2

∂Γ2

[
gΓΓ

2N
Q(Γ, t)

]
(3.1)

∂Q(∆, t)

∂t
= − ∂

∂∆

[
(m∆ + g∆∆s∆)Q(∆, t)

]
+

∂2

∂∆2

[
g∆∆

2N
Q(∆, t)

]
, (3.2)

with population size N , the metric gΓΓ = 〈∆〉, change due to mutations mΓ =

−2µ(Γ − 〈Γ〉0) with mutation rate µ and selection sΓ = f ′(Γ), which is the

gradient of the fitness landscape. The neutral dynamics determines the mean

value 〈Γ〉0 =
∫

ΓQ0(Γ)dΓ. For ∆ the corresponding values are g∆∆ = 2∆2,

m∆ = −4µ(∆ − E2
0), and s∆ = f ′(∆), where E2

0 is the expected variance of a

random quantitative trait sequence. We expand this model to account for the

effect of selective sweeps affecting the quantitative trait.

Figure 3.1: Trait distribution schematic influenced by selective sweeps.
The distribution of trait values within a population is Gaussian. A
selective sweep chooses randomly a trait value, which leads to a δ
distribution. Afterwards the distribution relaxes again to a Gaussian
shape.

3.1.2 The pseudohitchhiking model on a quantitative trait

A minimal model to solve this problem is a simple tightly linked two locus model,

where one of these loci is the quantitative trait. We study quantitative traits that

are under stabilizing selection. The quantitative trait locus has many different

alleles with different trait values E and corresponding allele frequencies xE . In

general the quantitative trait locus will be polymorphic.

The second locus is assumed to be under strong adaptive selection. It incorporates

the entire adaptive process of the clonal interference regime by having a rate of

selective sweeps ρ with a typical selection coefficient given by the driver mutations
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3.1 Genetic Draft on Quantitative Traits

of adaptation process.

This relates the situation to the pseudohitchhiking model proposed by Gillespie

[Gillespie, 2000a,b]. We use the basic premises of his model and adapt it to calculate

the statistics of a quantitative trait. Just like in his situation we use simplifying

assumptions

1. The selection working on the stabilisation of the quantitative trait is negligible

with respect to the selection working on the second locus. For the following

we assume the quantitative trait to be neutral with respect to the influence

by selective sweeps.

2. The fixations at the second locus and thus the selective sweeps form a Poisson

process with rate ρ

3. The fixation time at the second locus is small compared to the fixation time

at the quantitative trait and the time between substitutions, so that the

fixations can be viewed as instantanious.

With these assumptions we can calculate the changes to the mean and the diversity

of the quantitative trait. This gives us the wanted statistics of the trait under the

influence of much stronger selective sweeps.

The opposite limit of many small effect mutations influencing the quantitative

trait gives similar results as we will see from simulations. Furthermore, the

trait diversity for neutral traits in this limit is known from fitness wave theory

and corroborates our results, when the influence of selection on the trait can be

neglected.

Change of the mean trait value Γ

After one selective sweep the population is monomorphic and thus the mean trait

value, if a sweep event may have happened is given by

Γ′ =


Eα with probabilityρδtxα,

Γ =
∑
α
Eαxα with probability1− ρδt

(3.3)
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3 Quantitative traits in asexual populations

where xα is the frequency of trait value Eα in the population before the sweep.

The change of the mean is then given by

δΓ = Γ′ − Γ =

Eα − Γ with probabilityρδtxα,

0 with probability1− ρδt
(3.4)

The mean in δΓ is then

〈δΓ〉|Γ = 0. (3.5)

Thus selective sweeps of infinite strength do not directly lead to changes in the

between population mean of the mean trait value Γ. The variance of Γ is changed

according to

Var(δΓ′)|Γ = ρδt∆. (3.6)

This means that selective sweeps increase the variance between populations of the

mean trait value Γ.

3.2 Effective diffusion model for quantitative traits

The diffusion model for Γ can still be used as an approximation even under the

influence of selective sweeps with changed diffusion coefficients, where the added

parts are due to assumed independence of the stochastic process of the fitness

sweeps and the other processes of the quantitative trait. As the selective sweeps

due not change mean of Γ this part of the equation remains unchanged. The

changed variance can be additively incorporated in the diffusion constant for Γ.
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3.2 Effective diffusion model for quantitative traits

The changed equation is then given by

∂Q(Γ, t)

∂t
= − ∂

∂Γ

[
(−2µ(Γ− 〈Γ〉0)− 〈∆〉f ′(Γ))Q(Γ, t)

]
+

∂2

∂Γ2

[
〈∆〉( 1

2N
+ ρ/2)Q(Γ, t)

]
= − ∂

∂Γ

[
(−2µ(Γ− 〈Γ〉0)− 〈∆〉f ′(Γ))Q(Γ, t)

]
+

∂2

∂Γ2
[〈∆〉σ̃Q(Γ, t)]

(3.7)

The evolution of ∆ is however under the influence of selective sweeps no longer

fully described by a diffusive model because jump moments of higher order can no

longer be neglected. The most important aspect of the trait variance is its impact

on the trait mean due to changed selection. The effect on the trait diversity can

be calculated both in response to fitness wave models and under a more idealized

saw-tooth model. Here we first show the impact of a simple saw-tooth model,see

Fig. 3.2, which is suffient to describe the effect on the trait diversity, as long as

the sweeps are the strongest constraint on the diversity. In this simple model the

replenishing of diversity is still given by 4µE2
0 , while selective sweeps cut down the

diversity to zero leading to a mean trait diversity

〈∆〉 =
4µE2

0

ρ
=

2µE2
0

σ̃
. (3.8)

Under this assumption σ̃ = 1
2N +ρ/2 ≈ ρ/2. The scaling of the mean trait diversity

∆ is confirmed by simulations and can be seen for a quadratic landscape in Fig. 3.3.

This scaling is further corroborated by an approximate diffusion model of ∆ and

from a reaction-diffusion model with sweep rates, see chapter 3.4. The approximate

diffusion model provides a way to connect the mean diversity to the regime, where

selective sweeps do not yet dominate.
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time
0

Figure 3.2: Saw-tooth model for the diversity ∆. The diversity ∆ increases
with rate 4µE2

0 and gets decreased to zero, whenever a sweep happens.

3.3 Moments of the trait average under stabilizing

selection

The solution of the diffusion equation is given by

Q(Γ) = Q0(Γ) exp
(
σ̃−1F (Γ)

)
, (3.9)

with Q0(Γ) = Z0 exp
(
− (Γ− Γ0)2 /(2E2

0)
)

the solution for neutral dynamics. A

single peaked quadratic landscape given by

f(E) = f∗ − c0(E − E∗)2 (3.10)

is an often used approximation for stabilizing selection[Lande, 1976; Barton and

de Vladar, 2009]. It has the added benefit of decoupling the dynamics of the trait

mean Γ and diversity ∆ [Nour Mohammad et al., 2013]. For traits whose diversity

is fully determined by selective sweeps the first two moments, which fully determine

the Gaussian distribution of mean trait values, are given by

〈Γ〉 = E∗ +

µ
〈∆〉

µ
〈∆〉 + c0

(Γ0 − E∗)

= E∗ +
σ̃

σ̃ + 2c0E2
0

(Γ0 − E∗)
(3.11)
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and

〈Γ2 − 〈Γ〉2〉 =
σ̃

2 µ
〈∆〉 + 2c0

=
σ̃

σ̃ + 2c0E2
0

E2
0 .

(3.12)

The squared mean distance to the optimum Λ2 = (Γ− E∗) is then given by

〈Λ2〉 = 〈(Γ− E∗)2〉 = (〈Γ〉 − E∗)2 + 〈Γ2 − 〈Γ〉2〉. (3.13)

3.4 Change of the trait diversity ∆

Calculating the effect of selective sweeps on the trait diversity, we are able to

determine the crossover for a diversity that is determined by its own selection to a

diversity fully determined by selective sweeps according to the sawtooth model.

The trait diversity due to a possible hitchhiking event is given by

∆′ =

0 with probabilityρδt,

∆ with probability1− ρδt
(3.14)

The change of the diversity is then given by

δ∆ = ∆′ −∆ =

−∆ with probabilityρδt,

0 with probability1− ρδt.
(3.15)

The mean in δ∆ is given by

〈δ∆〉|∆ = −∆ρδt. (3.16)

The variance is then

Var(δ∆)|Γ = ρδt(1− ρδt)∆2

= ρδt∆2 +O
(
(ρδt)2

) (3.17)
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. This can be incorporated in a reaction-diffusion equation giving

∂Q(∆, t)

∂t
=− ∂

∂∆

[
−4µ(∆− E2

0)−∆
1

N
− 2c0∆2Q(∆, t)

]
+

∂2

∂∆2

[
∆2 1

N
Q(∆, t)

]
− ρQ(∆, t) + ρδ(∆).

(3.18)

3.5 Fokker-Planck equation for ∆

If we for now neglect the higher order jump moments and assume ∆ could again be

described by a purely diffusive model, we can also write down the Fokker-Planck

equation for the trait diversity with the changed diffusion coefficients

∂Q(∆, t)

∂t
=− ∂

∂∆

[
(−4µ(∆− E2

0)−∆(
1

N
+ ρ)− 2c0∆2)Q(∆, t)

]
+

∂2

∂∆2

[
∆2(

1

N
+
ρ

2
)Q(∆, t)

]
.

(3.19)

This equation can be solved and the stationary solution is given by

Q(∆) = 2
N(ρ+8µ)
2Nρ+2 ∆

−3+ 8Nµ+Nρ
2+Nρ exp

(
−

8NµE2
0

∆ + 4c0N∆

Nρ+ 2

)

×
(
E2

0µ

c0

)N(8µ+ρ)
4Nρ+2

+1
1

KN(8µ+ρ)
2+Nρ

+2

(
8
√

2NE2
0c0Nµ

2+Nρ

) . (3.20)

From the distribution we can obtain the mean of the trait diversity, which is

decreasing with increasing sweep rate ρ:
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3.6 Fitness load on the quantitative trait

〈∆〉 =

√
2E2

0µ

c0

KN(8µ+2ρ)+2
2+Nρ

(
8
√

2NE2
0c0Nµ

2+Nρ

)
KN(8µ+2ρ)+2

2+Nρ
+1

(
8
√

2NE2
0c0Nµ

2+Nρ

)
≈ 4E2

0µ

4µ+ 1
N + ρ

, c� 1

16µ

≈ 2E2
0µ

σ̃
, σ̃ � µ

(3.21)

This approximation assumes small values of ∆, which can be assumed for a high

rate of selective sweeps ρ. The result for high sweep rate or small selection is

equivalent to the result obtained from the saw-tooth model.

3.6 Fitness load on the quantitative trait

The fitness load on the quantitative trait is the difference between the optimal

value f∗ and the mean population fitness of the quantitative trait f̄

L = f∗ − f̄ . (3.22)

Under the influence of selective sweeps this value can be calculated . The between

population average of the fitness load in adaptively evolving populations is given

by
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〈L〉 = c0〈(Γ− E∗)2〉+ c0〈∆〉 (3.23)

= c0
σ̃

2 µ
〈∆〉 + 2c0

+ c0

( µ
〈∆〉

µ
〈∆〉 + c0

(Γ0 − E∗)

)2

+ c0〈∆〉 (3.24)

= c0
σ̃

σ̃ + 2c0E2
0

E2
0 (3.25)

+ c0

(
σ̃

σ̃ + 2c0E2
0

)2

(Γ0 − E∗)2 (3.26)

+ c0
2E2

0µ

σ̃
(3.27)

≈ σ̃

2
+ c0

2E2
0µ

σ̃
(3.28)

≈ σ̃

2
. (3.29)

The approximations are under the assumption of strongly selected quantitative

traits. The change from the expected value of the load under strong selection

〈Lfree〉 = σ
2 = 1

4N is given by the rate of selective sweeps 〈L−Lfree〉 = ρ
4 . For small

selection all three terms scale with the strength of selection of the quantitative

trait c0. The dominant contribution is then given by c0(Γ0 − E∗)2.

The fitness diversity ∆f , which is the variance of fitness within the population

is given by

〈∆f 〉 ≈ 〈∆(f ′(Γ))2〉

≈ 〈∆〉〈(f ′(Γ))2〉

= 4c0〈∆〉〈Λ2〉.

(3.30)

We see a nice agreement of the theory expectations for the fitness observables with

numerical results obtained from simulations, see Fig. 3.3.

3.7 Numerical verification for finite sweeps

If we use a population, where the infinite sweep assumption is violated, we can

obtain a neutrality threshold σ̃ from neutral trait diversity to predict the statistics
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Figure 3.3: Trait statistics under influence of selective sweeps for a
quadratic landscape. Results from a simulation with a quadratic
landscape with sweeps of infinite strength with parameters N = 10000,
Nµ = 0.125, c0 are shown in the figure as points as a function of the
sweeprate σ̃. The lines are theory expectations. A shows the between
population mean of the mean trait value 〈Γ〉, B the variance of the
mean trait value 〈(Γ − 〈Γ〉)2〉, C the squared mean distance to the
optimum 〈Λ2〉 = 〈(Γ− E∗)2〉, D the mean population diversity 〈∆〉, E
the mean fitness diversity 〈∆f 〉, and F the genetic load 〈L〉.
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of a quantitative trait under stabilizing selection on the same genome. For a

quantitative trait under neutral dynamics, i.e. without selection, the trait diversity

is determined by Eq. 4.12, as long as the mutation rate is not too big Nµ � 1.

This gives an inferred neutrality threshold of

σ̃ =
2µE2

0

〈∆〉0
. (3.31)

Using this we verify the quantitative trait statistics as before with simulations. The

validity of this for a quantitative traits without an additional genome influencing

its statistics, is given by [Nour Mohammad et al., 2013].

As can be seen in the figures for constant(Fig. 3.4) and fluctuating selec-

tion(Fig. 3.5), the theory expectation fits the data up to a small factor of order 1.

Thus, we are able to infer the neutrality threshold from the diversity of neutral

sites and can use the inferred neutrality threshold to estimate the statistics of the

mean of other linked quantitative traits.

3.8 Discussion

We have shown that the influence on quantitative traits due to hitchhiking can be

significant and as such that quantitative traits need to be evaluated in their whole

genomic context. For the trait selective sweeps in different parts of the genome

can quickly become the strongest influence constraining the diversity. In turn the

mean trait value can still be described by a diffusion theory, where the effective

population size is given by the neutrality threshold σ̃. As such, not only can the

coalescence time be inferred from neutral sequence diversity as shown by[Rice et al.,

2015; Good et al., 2014], but also from moderately selected quantitative traits. The

decreased efficacy of selection on the quantitative traits, leads to much less adapted

traits in general, which means that in adaptively evolving asexual populations

quantitative traits are much more likely to be at the flank of a stabilizing fitness

landscape than at the peak.

We apply this result for the statistics of a quantitative trait under the influence

of external selective sweeps in the following chapter 4. There we consider the

joint evolution of many quantitative traits influencing and at the same time being

influenced by the effective neutrality threshold σ̃ together with a focus on a
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Figure 3.4: Trait statistics under influence of external sites with constant
selection for a quadratic landscape. Results from a simulation
with a quadratic landscape with a varying number of additional loci
without selection flips(γ = 0) (see Methods). Parameters are given by
N = 1000, Nµ = 0.125, c0 as shown in the figure as a function of the
neutrality threshold σ̃. This threshold is obtained from a neutral trait
via Eq. 3.31. The lines are theory expectations. A shows the between
population mean of the mean trait value 〈Γ〉, B the variance of the
mean trait value 〈(Γ − 〈Γ〉)2〉, C the squared mean distance to the
optimum 〈Λ2〉 = 〈(Γ− E∗)2〉, D the mean population diversity 〈∆〉, E
the mean fitness diversity 〈∆f 〉, and F the genetic load 〈L〉.
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Figure 3.5: Trait statistics under influence of external sites with selection
flips for a quadratic landscape. Results from a simulation with a
quadratic landscape and additional loci with varying rates of selection
flips (see Methods) with parameters N = 1000, Nµ = 0.125, c0 as
shown in the figure as a function of the neutrality threshold σ̃. This
threshold is obtained from a neutral trait via Eq. 3.31. The lines are
theory expectations. A shows the between population mean of the
mean trait value 〈Γ〉, B the variance of the mean trait value 〈(Γ−〈Γ〉)2〉,
C the squared mean distance to the optimum 〈Λ2〉 = 〈(Γ− E∗)2〉, D
the mean population diversity 〈∆〉, E the mean fitness diversity 〈∆f 〉,
and F the genetic load 〈L〉.
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3.9 Methods

biophysical fitness landscape given by a Fermi function.

3.9 Methods

3.9.1 Simulations

The theoretical predictions have been verified using Fisher-Wright simulations. A

population consists of N individuals with genomes a(1), . . . ,a(N). There are two

types of simulations:

1. For the first kind we use simulations, where we directly implement the pseu-

dohitchhiking model. A genotype a = (a1, . . . , aL) consists of a quantitative

trait with L binary alleles ak = 0, 1 (k = 1, . . . , L). Each sequence defines

a trait E(a) =
∑`

k=1 Ekak + E0, where E0 is the expectation value of the

trait under neutral evolution. The resulting effect distribution of point

mutations has as a second moment ε2G =
∑`

k=1 E2
k/` and a first moment

κ0εG =
∑`

k=1 Ek(1− 2〈ak〉)/`, where 〈ak〉 is the state-dependent probability

of a mutation at site k being beneficial and brackets 〈.〉 denote averaging

across parallel simulations or time. The genomic fitness is f(a) = f(E) with

f(E) given by a quadratic or exponential function. In each generation, the

sequences undergo point mutations with probability µτ0 for each site, where

τ0 is the generation time, and the sequences of the next generation are drawn

by multinomial sampling with a probabilities proportional to 1 + τ0f(a).

Additionally there is a probability of a sweep occuring each generation with

probability ρτ0; the next generation is then populated by identical sequences,

where the particular sequence is chosen by drawing with uniform probability

from among the current generation.

2. For the second kind of simulation, the interference is generated by an ad-

ditional sequence part, which does not encode a quantitative trait, but is addi-

tive in fitness. Here a genotype a = (a1, . . . , aLphen
, aLphen+1, . . . , aLphen+Lsingle

)

consists of a quantitative trait with L = Lphen +Lsingle binary alleles ak = 0, 1

(k = 1, . . . , L). Each sequence again defines a trait E(a) =
∑Lphen

k=1 Ekak +E0.

The genomic fitness is f(a) = f(E) +
L∑

i=Lphen+1

siηiai with f(E) given by

a quadratic or exponential function and si being a site specific additive
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3 Quantitative traits in asexual populations

fitness effect and ηi = ±1 defining the direction of selection. Just like for

the first kind, in each generation, the sequences undergo point mutations

with probability µτ0 for each site, where τ0 is the generation time, and the

sequences of the next generation are drawn by multinomial sampling with a

probabilities proportional to 1 + τ0f(a). Additionally, with probability γτ0

the selection of a given site flips ηi → −ηi.

Appendix

3.10 Time-dependent buildup of the fitness load

Starting in equilibrium and introducing selective sweeps the time dependent load

can be calculated under the assumption that the timescale for ∆ is much smaller

than the timescale for Γ to reach a stationary state. Under this assumption we

have a simple relaxation of Q(Γ) to its new equilibrium value under the influence

of selective sweeps, leading to

〈L(t)〉 = c0(
1

4N
+
ρ

4
)

1

c0 + µ
〈∆〉ρ

+

(
c0

1

4N

1

c0 + µ
〈∆〉ρ=0

−c0(
1

4N
+
ρ

4
)

1

c0 + µ
〈∆〉ρ

)
e−4(µ+c0〈∆〉ρ)t

+ c0

[
µ

µ+ c0〈∆〉ρ
(Γ0 − E∗)+( µ

〈∆〉ρ=0
Γ0 + c0E

∗

µ
〈∆〉ρ=0

+ c0
−

µ
〈∆〉ρΓ0 + c0E

∗

µ
〈∆〉ρ + c0

)
e−2(µ+c0〈∆〉ρ)t

]2

+ c0〈∆〉ρ

(3.32)
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4 Phenotypic Interference and fitness

waves

”As with all things, layer settles

upon layer, and in time the

deepest, darkest ones become

forgotten - yet they have

shaped all that lies above.”

(Steven Erikson, The

Bonehunters)

A
sexually reproducing populations evolve under complete genetic linkage.

Hence, selection on an allele at one genomic locus can interfere with the

evolution of simultaneously present alleles throughout the genome. Linkage-induced

interference interactions between loci include background selection (the spread of a

beneficial allele is impeded by linked deleterious alleles), hitchhiking or genetic draft

(a neutral or deleterious allele is driven to fixation by a linked beneficial allele), and

clonal interference between beneficial alleles originating in disjoint genetic clades

(only one of which can reach fixation). These interactions and their consequences

for genome evolution have been studied extensively in laboratory experiments

[Wiser et al., 2013; Barroso-Batista et al., 2014], natural populations [Betancourt

et al., 2009; Strelkowa and Lässig, 2012], and theory [Gerrish and Lenski, 1998;

Desai and Fisher, 2007; Rouzine et al., 2008; Hallatschek, 2011; Schiffels et al.,

2011; Good et al., 2012; Neher and Hallatschek, 2013; Neher et al., 2013]. The

most prominent global effect of interference is to reduce the speed of evolution,

which has been observed in laboratory evolution experiments [de Visser et al.,

1999; Perfeito et al., 2007; McDonald et al., 2016]. The fitness cost of interference,

which has also been measured [Cooper, 2007; Couce et al., 2017], is the center piece

of classic arguments for the evolutionary advantage of sex [Fisher, 1930; Muller,

1932; Eigen, 1971; Felsenstein, 1974; Kondrashov, 1993]. Much less clear is how
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4 Phenotypic Interference and fitness waves

interference affects the system-wide evolution of molecular phenotypes, such as

protein stabilities and affinities governing gene regulation and cellular metabolism.

This is the topic of the present chapter, which looks at the systems-biological

consequences of interference evolution. We establish that interference generates a

long-term degradation of an organism’s molecular functions by the accumulation

of deleterious mutations. This effect is strongly dependent on genome size: it

becomes an evolutionary force constraining organismic complexity and driving the

evolution of recombination.

Our analysis is based on simple biophysical models of molecular evolution [Ger-

land and Hwa, 2002; Berg et al., 2004; Chen and Shakhnovich, 2009; Goldstein,

2011; Serohijos and Shakhnovich, 2014; Manhart and Morozov, 2015; Chi and

Liberles, 2016]. In a minimal model, an individual organism consists of g genes

and each gene carries a single quantitative trait G, the stability of its protein. The

trait is encoded in multiple sites of the gene sequence and is affected by mutations

at these sites, most of which will make the protein less stable. Selection on a

gene is described by a standard thermodynamic fitness landscape f(G), which is

a sigmoid function with a high-fitness plateau corresponding to stable proteins

and a low-fitness plateau corresponding to unfolded proteins (Fig. 4.1A). We also

discuss an stability-affinity protein model with a two-dimensional fitness landscape

f(G,E); this model includes enzymatic or regulatory functions of genes, specifically

the protein binding affinity E to a molecular target. The genome-wide mutation-

selection balance in these fitness landscapes describes populations maintaining

the functionality of their molecular traits; we refer to this state as housekeeping

evolution. We analyze its long-term evolutionary forces on genome architecture

that arise independently of short-term adaptive processes, such as the evolution of

resistance.

Over a wide range of model parameters, we find that housekeeping evolution takes

place in an evolutionary mode of phenotypic interference. In this mode, genetic

and phenotypic variants in multiple genes generate standing fitness variation under

complete genetic linkage, a so-called traveling fitness wave [Desai and Fisher, 2007;

Rouzine et al., 2008; Hallatschek, 2011; Good et al., 2012; Neher and Hallatschek,

2013; Neher et al., 2013]. We show that phenotypic interference is a system-

wide collective dynamics with a universal feedback between the global fitness

wave and selection on individual phenotypic variants. This feedback generates a
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Figure 4.1: Fitness landscape and fitness cost of phenotypic interference.
A: Minimal biophysical fitness model. The fitness of an individual
gene, f , is a sigmoid function of its fold stability, G. This function
has a high-fitness region of stable, functional proteins (yellow), an
inflection point at intermediate fitness marking marginally functional
proteins, and a low-fitness region of dysfunctional proteins (blue). The
mutation-selection dynamics on this landscape generates high-fitness
equilibria (σ̃ � f0, red dot) and unstable states at lower fitness (σ̃ & f0,
red dot with arrow), depending on the fitness difference f0 between
functional and dysfunctional proteins and the coalescence rate σ̃; see
also Fig. 4.4B. The fold stability distribution of a population in these
states is shown below. B: The total genetic load L in a genome is shown
as a function of the number of genes, g, for different models of genome
evolution. Red line: Asexual evolution in the minimal biophysical
model has an evolutionary regime of phenotypic interference where L
increases quadratically with g; see Eq. (4.2) and simulation data shown
in Fig. 4.4A. This regime arises from the competition of phenotypic
variants within a population. The nonlinear scaling of L sets in at a
small gene number g0 and ends at a much larger value gm, which marks
the crossover to genomes with a large fraction of dysfunctional genes
(grey line). Blue line: Under asexual evolution in a model with discrete
gene fitness effects, the onset of load nonlinearity and interference
occurs at g ∼ gm and is associated with the onset of Muller’s ratchet
[Muller, 1964; Gordo and Charlesworth, 2000; Rouzine et al., 2008].
Brown line: Sexual evolution reduces L to a linear function of g, if the
recombination rate is above the transition point R∗ given by Eq. (4.8).
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4 Phenotypic Interference and fitness waves

fitness cost, defined as the difference between the mean population fitness and the

fitness maximum of fully functional genes, that increases quadratically with g (Fig.

4.1B). The fitness cost of interference quantifies its systems-biological effects: the

maintenance of each gene degrades stability and function of all other genes by

increasing the accumulation of deleterious mutations. The cost nonlinearity sets

in already at a small number of genes, g0, and generates strong selection against

genome complexity in viable, asexually reproducing organisms. This distinguishes

our biophysical models from classical models of mutational load, which predict a

linear fitness cost up to a much larger error threshold gm associated with mutational

meltdown [Muller, 1964; Eigen, 1971; Gordo and Charlesworth, 2000; Rouzine

et al., 2008] (Fig. 4.1B).

Remarkably, the genome-wide steady state of evolution affords an analytic

solution in our minimal model. We develop this solution in the following section;

then we turn to model extensions and biological consequences on genome complexity

under asexual evolution. Housekeeping evolution in these models also provides a

biophysically grounded rationale for the evolution of sex. We show that long-term

selective pressure on the recombination rate induces a first-order phase transition

to a mode of sexual evolution without genome-wide interference, and we obtain

a simple estimate of the transition recombination rate R∗ that can be directly

compared to data.

4.1 Theory of phenotypic interference

The solution of the minimal model has two parts that will be discussed in order.

First, the mean fitness variance of a single quantitative trait at evolutionary

equilibrium depends in a simple way on a global evolutionary parameter, the

coalescence rate σ̃. Second, for the steady state of housekeeping evolution, the

fitness variances of all traits combine to the total standing fitness variation, which

in turn sets the coalescence rate and leads to a closure of the derivation.

Evolution of a quantitative trait under interference selection

The stabilityG of a protein is the free energy difference between the unfolded and the

folded state (Methods). This trait gains heritable variation ∆G by new mutations
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4.1 Theory of phenotypic interference

at a speed uε2G, where u is the total mutation rate and ε2G is the mean square

stability effect of its sequence sites. The trait loses variation by coalescence at a rate

σ̃. These processes determine an equilibrium stability variation ∆G = u ε2G/(2σ̃).

This type of relation is well known for neutral sequence variation in models of

genetic draft [Gillespie, 2000b] and of traveling fitness waves [Good et al., 2014;

Rice et al., 2015]. It can be derived more generally from a diffusion theory for

quantitative traits under selection; see 4.4 and chapter 3. Next, we consider the

mutation-selection equilibrium of a gene on the flank of the fitness landscape f(G).

We equate the rate of stability increase by selection, ∆G f
′(G), with the rate of trait

degradation by mutations, uεG, using that most mutations in a functional trait are

deleterious (Methods). This relates the mean square selection coefficient at trait

sites, s2 = ε2Gf
′2(G), and the fitness variance ∆f ≈ ∆Gf

′2(G) to the coalescence

rate,

s2 = 4σ̃2, ∆f = 2uσ̃. (4.1)

These relations are universal; that is, they do not depend on details of the fitness

landscape and the trait effect distribution of sequence sites. Remarkably, trait

fluctuations by genetic drift and genetic draft also leave their form invariant

(Section 4.5 and Fig 4.5).

Eqs. (4.1) express a salient feature of selection on quantitative traits: the strength

of selection on genetic variants is not fixed a priori, but is an emergent property

of the global evolutionary process. A faster pace of evolution, i.e., an increase in

coalescence rate σ̃, reduces the efficacy of selection [Schiffels et al., 2011; Good

et al., 2012; Rice et al., 2015]. In a downward curved part of the fitness landscape,

this drives the population to an equilibrium point of lower fitness and higher fitness

gradients. The resulting equilibrium tunes typical selection coefficients to marginal

relevance, where mean fixation times 1/s are of the order of the coalescence time

1/σ̃. This point marks the crossover between effective neutrality (s � σ̃) and

strong selection (s � σ̃); consistently, most but not all trait sites carry their

beneficial allele [Schiffels et al., 2011].
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Figure 4.2: Additivity of the genomic fitness variance. For housekeeping
evolution in the minimal biophysical model, we plot the total fitness
variance, σ2, against the additive part ∆f,1 + · · ·+ ∆f,g. The additivity
is used in the closure of the evolutionary dynamics, Eqs. (4.2)– (4.4).

Housekeeping evolution of multiple traits

The non-adaptive stationary scenario of housekeeping evolution1 builds on the

assumption that over long time scales, selection acts primarily to repair the

deleterious effects of mutations, because these processes are continuous and affect

the entire genome. In contrast, short-term adaptive processes are often environment-

dependent, transient, and affect only specific genes. Here we discuss a closed

solution of the phenotypic interference dynamics for housekeeping evolution. In

section 4.6, we extend this approach to scenarios of adaptive evolution and show

that these do not affect the conclusions of the chapter.

In a housekeeping equilibrium, the total fitness variation σ2 is simply the

sum of the fitness variances of individual genes, σ2 = g∆f (4.2). Moreover,

traveling wave theory shows that σ2 and the coalescence rate σ̃ are simply related,

σ2/σ̃2 = c0 log(Nσ), where N is the population size and c0 ∼ 102 [Neher et al.,

2013; Neher and Hallatschek, 2013]. Together with Eq. (4.1), we obtain the global

fitness wave

σ2 = 4
u2g2

c
, σ̃ = 2

ug

c
, (4.2)

1Our terminology of housekeeping evolution must not be confused with housekeeping genes for
cell metabolism. We denote by this the non-adaptive evolutionary steady state.

38



4.1 Theory of phenotypic interference

as well as corresponding characteristics of individual traits,

∆G

ε2G
=

c

4g
, s2 = 4σ̃2 = 16

u2g2

c2
, (4.3)

in terms of the slowly varying parameter

c =
σ2

σ̃2
≈ c0 log(Nug). (4.4)

As shown in Methods, this parameter has a simple interpretation: it estimates

the complexity of the fitness wave, that is, the average number of genes with

simultaneously segregating beneficial genetic variants destined for fixation. Fisher-

Wright simulations of the minimal model confirm Eqs. (4.2)–(4.4); they reproduce

the joint pattern of σ2, σ̃2, ∆G, and s2 and infer the wave complexity c (Fig. 4.3).

These relations are the centerpiece of phenotypic interference theory. They

show that the collective evolution of molecular quantitative traits under genetic

linkage depends strongly on the number of genes that encode these traits. The

dependence is generated by a feedback between the global fitness variation, σ2,

and mean square local selection coefficients at genomic sites, s2. In section 4.4,

we show that this feedback also tunes the evolutionary process to the crossover

point between independently evolving genomic sites and strongly correlated fitness

waves composed of multiple small-effect mutations.

4.1.1 Biological implications of phenotypic interference

Interference selection against complexity

The feedback of phenotypic interference has an immediate consequence for the

genetic load, which is determined by the average position of genes on the fitness

landscape. We first consider stable and functional genes located in the concave part

of the minimal model landscape f(G) (Fig. 4.1A). This part can be approximated

by its exponential tail, where the load is proportional to the slope f ′(G). Eq. (4.3)

then predicts a load skBT/εG ≈ 2σ̃ per gene, where we have used that typical

reduced effect sizes εG/kBT are of order 1 (Methods). This implies a superlinear

39



4 Phenotypic Interference and fitness waves

10
�6

10
�4

10
�2

10
0

10
0

10
1

10
2

10
3

10
4

number of genes, g

g
lo

b
a
l 
va

ri
a
b
le

s
 σ~

2
a
n
d
 σ

2

10
�2

10
�1.5

10
�1

10
�0.5

10
0

10
0

10
1

10
2

10
3

10
4

number of genes, g

s
c
a
le

d
 t
ra

it
 d

iv
e
rs

it
y,

 δ
g

10
�6

10
�5

10
	4

10

3

10
�2

10
0

10
1

10
2

10
3

10
4

number of genes, g

s
it
e
 s

e
le

c
ti
o
n
, 
s

2

2.5

2.0

1.5

1.0

log(f0)

A B C

Figure 4.3: Global and local scaling under phenotypic interference. A: Av-
erage total fitness variance, σ2 (circles) and coalescence rate σ̃2 (tri-
angles) versus number of genes, g, for asexual evolution. Simulation
data for different average gene selection coefficients f0 (indicated by
color) are compared to model results, σ2 ∼ g2/c (short-dashed line) and
σ̃2 ∼ g2/c2 (long-dashed line) for g > g0 ∼ 102; Eqs. (4.2) and (4.4).
B: Average scaled trait diversity, δG = ∆G/ε

2
G, versus g. Simulation

data (circles); model results, δG ∼ c/g (dashed line; Eq. (4.3)). Values
δG < 1 indicate that individual proteins are in the low-mutation regime.
C: The mean square selection coefficient at sequence sites, s2, versus
g. Simulation results (circles); model results, s2 = 4σ̃2 ∼ g2/c2 (short-
dashed line as in A; Eq. (4.4)). The scaling s2 ∼ σ̃2 is independent
of f0, signalling that site selection coefficients emerge from a feedback
between global and local selection (see text). Other simulation param-
eters: N = 1000, u = 1.25 × 10−3, εG/kBT = 1; see section 4.3.4 for
simulation details.

scaling of the total equilibrium genetic load,

Lint(g) ≈ 2gσ̃ = 4
ug2

c
, (4.5)

which sets on at a small gene number g0 given by the condition g0 ≈ c/4 (Fig. 4.1B,

numerical simulations are shown in Fig. 4.4A). The superlinearity of the genetic

load is the most important biological effect of phenotypic interference. As detailed

in section 4.6 and Fig. 4.6, this scaling holds more generally for a sufficient

number of quantitative traits evolving under genetic linkage; it does not depend

on details of the fitness landscape and of the underlying biophysical processes.

For example, active protein degradation, a ubiquitous process that drives the

thermodynamics of folding out of equilibrium [Hochstrasser, 1996], does not affect
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4.1 Theory of phenotypic interference

our conclusions. Another example is the stability-affinity model, which has two

quantitative traits per gene that evolve in a two-dimensional sigmoid fitness

landscape f(G,E) [Manhart and Morozov, 2015; Chéron et al., 2016]. We show that

under reasonable biophysical assumptions, evolution in a stability-infinity model

produces a 2-fold higher interference load than the minimal model, Lint(g) ≈ 8ug2/c.

Alternative models with a quadratic single-peak fitness landscape generate an even

stronger nonlinearity of the load, Lint(g) ∼ g3. In contrast, a discrete model with

a fitness effect f0 of each gene shows a linear load up to a characteristic gene

number gm = (f0/u) log(Nf0) associated with the onset of mutational meltdown

by Muller’s ratchet [Muller, 1964; Gordo and Charlesworth, 2000; Rouzine et al.,

2008].

The interference load builds up with a time lag given by the relaxation time to

equilibrium,

τ =
1

u
= 2

g

c

1

σ̃
. (4.6)

Deleterious mutations in an organism’s genes build up on a time scale τ , which

exceeds the coalescence time σ̃−1. Therefore, the load Lint affects the long-term

fitness of a population against competing lineages. Specifically, it generates strong

long-term selection against genome complexity: the fitness cost for each additional

gene, L′int(g), can take sizeable values even at moderate genome size. For example,

in a “standard” microbe of the complexity of E. coli, a 10 % increase in gene

number may incur an additional load ∆L ≈ 3× 10−2 under the stability-affinity

model (with parameters g = 5000, u = 10−6, N = 108). In comparison, the discrete

model leads to a much smaller value ∆L = 5× 10−4 for the same parameters.

It is instructive to compare the interference load of an extra gene with its

physiological fitness cost L′phys(g), which is generated primarily by the synthesis

of additional proteins (and is part of the overall fitness effect f0). For a gene

with an average expression level, L′phys(g) = λ/g with a constant λ ∼ 1 reflecting

the (re-)allocation of metabolic resources in the cell; see refs. [Scott et al., 2010;

Lynch and Marinov, 2015]. This cost acts as a selective force on changes of genome

size, which take place within a coalescence interval σ̃−1. Importantly, L′phys is

much smaller than L′int for a standard microbe, suggesting a two-scale evolution of

genome sizes. On short time scales, the dynamics of gene numbers is permissive

and allows the rapid acquisition of adaptive genes; these changes are neutral with
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Figure 4.4: Genetic load, gene loss, and transition to sexual evolution.
A: Total genetic load L versus the number of genes g for asexual evolu-
tion. Simulation results (circles) for different values of f0 (indicated
by color, as in Fig. 4.3); model results: interference load Lint ∼ ug2/c
(red line; Eq. (4.5)) for g > g0 (dotted line) and null model L = ug
(brown line) as in Fig. 4.1B. The superlinear behavior of L indicates
strong selection against genome complexity. B: Rate of gene loss (in-
dicated by color, in units of u) as a function of the gene selection
coefficient, f0, and the number of co-evolving genes g. Genes with
f0 ∼ σ̃ (long-dashed line, cf. Fig. 4.3A) have appreciable loss rates;
genes with f0 & 10σ̃ (dashed-dotted line) have negligible loss rates, i.e.,
are conserved under phenotypic interference. C: Scaled genetic load,
L/(ug), versus scaled recombination rate, R/R∗, for different genome
sizes. The observed load rapidly drops from the superlinear scaling of
phenotypic interference, L = 4ug2/c (asymptotic data: red lines), to
the linear scaling of unlinked genes, L ∼ ug (brown line). This signals
a (fluctuation-rounded) transition to sexual evolution at the threshold
recombination rate R∗ = 2ug/c (dotted line, see Eq. (4.8)). Other
simulation parameters as in Fig. 4.3; see section 4.3.4 for simulation
details.

respect to L′int. On longer time scales (of order τ), marginally relevant genes are

pruned in a more stringent way, for example, by invasion of strains with more

compact genomes.

Interference drives gene loss

The near-neutral dynamics of genome size extends to gene losses, which become

likely when a gene gets close to the inflection point of the sigmoid fitness landscape

(Fig. 4.1A). The relevant threshold gene fitness, f c0 , is set by the coalescence rate,
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4.1 Theory of phenotypic interference

which leads to

f c0 ∼ 2σ̃ =
4ug

c
(4.7)

in the minimal model. Strongly selected genes (f0 � 2σ̃) have equilibrium trait

values firmly on the concave part of the landscape, resulting in small loss rates of

order u exp(−f0/2σ̃); these genes can be maintained over extended evolutionary

periods. Marginally selected genes (f0 . 2σ̃) have near-neutral loss rates of order

u [Schiffels et al., 2011], generating a continuous turnover of genes. According to

Eq. (4.7), the threshold f c0 for gene loss increases with genome size, which expresses

again the evolutionary constraint on genome complexity. The dependence of the

gene loss rate on f0 and σ̃ is confirmed by simulations (Fig. 4.4B). The housekeeping

coalescence rate σ̃ = 2ug/c sets a lower bound for the fitness threshold f c0 , adaptive

evolution can lead to much larger values of σ̃ and f c0 .

The transition to sexual evolution

Recombination breaks up genetic linkage at a rate R per genome and per gener-

ation (R is also called the genetic map length). Evolutionary models show that

recombination generates linkage blocks that are units of selection; a block contains

an average number ξ of genes, such that there is one recombination event per block

and per coalescence time, Rξ/(gσ̃(ξ)) = 1 [Weissman and Barton, 2012; Neher,

2013; Neher et al., 2013]. Depending on the recombination rate, these models

predict a regime of asexual evolution, where selection acts on entire genotypes

(ξ ∼ g), and a distinct regime of sexual evolution with selection acting on individual

alleles (ξ � g). Here we focus on the evolution of the recombination rate itself and

establish a selective avenue for the transition between asexual and sexual evolution.

With the phenotypic interference scaling σ̃(ξ) = 2uξ/c for ξ & c, as given by

Eq. (4.2), our minimal model produces an instability at a threshold recombination

rate

R∗ =
2ug

c
. (4.8)

This signals a first-order phase transition to sexual evolution with the genetic load

as order parameter (Fig. 4.4C). For R < R∗, the population is in the asexual mode

of evolution (ξ ∼ g), where interference produces a superlinear load Lint = 2ug2/c.

For R > R∗, efficient sexual evolution generates much smaller block sizes (ξ ∼ c). In
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4 Phenotypic Interference and fitness waves

this regime, the mutational load drops to the linear form L = ug � Lint, providing

a net long-term fitness gain ∆L ' Lint. However, the process of recombination

itself entails a direct short-term cost Lrec [Kondrashov, 1993]. If we assume that

cost to be of order 1 per event, we obtain Lrec ∼ R∗ = σ̃ close to the transition.

This cost is much smaller than the gain ∆L and remains marginal (i.e., Lrec/σ̃ ∼ 1).

Together, our theory of phenotypic interference suggests a specific two-step

scenario for the evolution of sex. Recombination at a rate of order R∗ is near-

neutral at short time scales, so a recombining variant of rate R∗ arising in an asexual

background population can fix by genetic drift and draft. Recombining strains

acquire a long-term benefit ∆L ∼ gR∗ = gσ̃, so they can outcompete asexual

strains in the same ecological niche. The threshold rate R∗ is of the order of the

genome-wide mutation rate ug, so even rare facultative recombination can induce

the transition. This scenario builds on the basic biophysics of molecular traits but

does not require ad hoc assumptions on adaptive pressure, on rate and effects of

beneficial and deleterious mutations, or on genome-wide epistasis [Kondrashov,

1993]. It is at least consistent with observed recombination rates in different parts

of the tree of life: genome average values are always well above R∗; a high-resolution

recombination map of the Drosophila genome shows low-recombining regions with

values above but of order R∗ [Comeron et al., 2012; Schiffels et al., 2017] (4.1).

4.2 Discussion

Here we have developed the evolutionary genetics of multiple quantitative traits in

non-recombining populations. We find a specific evolutionary mode of phenotypic

interference, which is characterized by a feedback between global fitness variation

and local selection coefficients at genomic sites. This feedback generates highly

universal features, which include the complexity of the evolutionary process and

the scaling of coalescence rate and genetic load with gene number, as given by Eqs.

(4.2)–(4.4).

Phenotypic interference produces strong selection against genome complexity

in asexual populations, which implies selection in favor of recombination above a

threshold rate R∗ given by Eq. (4.8). The underlying genetic load originates from

the micro-evolutionary interference of phenotypic variants within a population

and unfolds with a time delay beyond the coalescence time, as given by Eq. (4.6).
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4.2 Discussion

Saccharomyces cerevisiae Drosophila melanogaster Arabidopsis thaliana

µ 3·10−8 [Lynch et al., 2008] 3·10−9 [Keightley et al., 2014] 7·10−9[Ossowski et al., 2009]

` 1401 [Harrison et al., 2003] 1500 [Harrison et al., 2003] 2232 [Derelle et al., 2006]

g 6563 [Derelle et al., 2006] 14332 [Harrison et al., 2003] 26990 [Feng et al., 2009]

R 3·10−2 [Ruderfer et al., 2006] 2·10−3 − 1·10−0 [Fiston-Lavier
et al., 2010; Comeron et al.,
2012]

2·10−0 [Salome et al., 2012]

R∗ 6·10−5 1·10−3 9·10−3

Table 4.1: Genome data and estimates of threshold recombination rates.
Point mutation rate µ, average gene length ` (in bp), gene number g
and recombination rate R per genome (map length) are shown for three
recombining species. The parameter range for D. melanogaster describes
local recombination rates in different parts of the chromosomes (in the
same units) [Comeron et al., 2012]. An upper bond of the threshold
recombination rate R∗ marking the transition to sexual evolution is
obtained from Eq. (4.8) (with ug = µ`g and c ≈ c0 ≈ 100).

Therefore, the interference load is a macro-evolutionary selective force that impacts

the long-term fitness and survival of a population in its ecological niche.

Molecular complexity, the broad target of phenotypic interference, can be re-

garded as a key systems-biological observable. In our simple biophysical models,

we measure complexity by number of stability and binding affinity traits in a

proteome. More generally, we can define complexity as the number of (approxi-

mately) independent molecular quantitative traits, which includes contributions

from an organism’s regulatory, signalling, and metabolic networks that scale in a

nonlinear way with genome size. Interference selection affects the complexity and

architecture of all of these networks, establishing new links between evolutionary

and systems biology to be explored in future work.

We have seen that the co-evolution of quantitative traits in asexual populations

provides a framework, where fitness wave theory can be applied without an artificial

infinite sites model. We now turn in the next chapter to Mendelian traits in a

genomic model to investigate, under which conditions fitness waves occur in this

context.
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4 Phenotypic Interference and fitness waves

4.3 Methods

4.3.1 Biophysical fitness models

In thermodynamic equilibrium at temperature T , a protein is folded with probability

p+(G) = 1/[1+exp(−G/kBT )], where G is the Gibbs free energy difference between

the unfolded and the folded state and kB is Boltzmann’s constant. A minimal

biophysical fitness model for proteins takes the form

f(G) = f0 p+(G) =
f0

1 + exp(−G/kBT )
(4.9)

with a single selection coefficient capturing functional benefits of folded proteins

and metabolic costs of misfolding [Chen and Shakhnovich, 2009; Goldstein, 2011;

Serohijos and Shakhnovich, 2014]. Similar fitness models based on binding affinity

have been derived for transcriptional regulation [Gerland and Hwa, 2002; Berg

et al., 2004; Mustonen et al., 2008]; the rationale of biophysical fitness models

has been reviewed in refs. [Lässig, 2007; Chi and Liberles, 2016]. In section 4.6,

we introduce alternative fitness landscapes for proteins and show that our results

depend only on broad characteristics of these landscapes. The minimal global

fitness landscape for a system of g genes with traits G1, . . . , Gg and selection

coefficients f0,1, . . . , f0,g is taken to be additive, i.e., without epistasis between

genes,

f(G1, . . . , Gg) =

g∑
i=1

f0,i

[1 + exp(−Gi/kBT )]
. (4.10)

4.3.2 Evolutionary model

We characterize the population genetics of an individual trait G by its population

mean Γ and its expected variance ∆G. The trait mean follows the stochastic

evolution equation

Γ̇ = −uκεG + ∆Gf
′(Γ) + η(t) (4.11)

with white noise η(t) of mean 〈η(t)〉 = 0 and variance 〈η(t)η(t′)〉 = σ̃∆G δ(t− t′).
This dynamics is determined by the rate u, the mean effect (−κ)εG, and the

mean square effect ε2G of trait-changing mutations, which determine the diversity

∆G = uε2G/(2σ̃) [Nour Mohammad et al., 2013]. We use effects εG ≈ 1–3 kBT ,
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which have been measured for fold stability [Tokuriki et al., 2007; Zeldovich et al.,

2007] and for molecular binding traits [Gerland and Hwa, 2002; Kinney et al.,

2010; Tuğrul et al., 2015], and a mutational bias κ = 1, which is consistent with

the observation that most mutations affecting a functional trait are deleterious.

4.3.3 Housekeeping equilibrium

The deterministic equilibrium solution (Γ̇ = 0, η = 0) of Eq. (4.11) determines

the dependence of ∆G and the associated fitness variance ∆f = ∆Gf
′2(G) on σ̃,

as given by Eq. (4.1); the same scaling follows from the full stochastic equation

(section 4.5). The derivation of the global housekeeping equilibrium, Eqs. (4.2)–

(4.4), uses two additional inputs: the additivity of the fitness variance, σ2 =

g∆f , which is confirmed by our simulations (4.2), and the universal relation

σ2/σ̃2 = c0 log(Nσ) [Neher et al., 2013; Neher and Hallatschek, 2013] in a travelling

fitness wave, where the coalescence rate σ̃ is generated predominantly by genetic

draft. Eqs. (4.2)–(4.4) determine further important characteristics of phenotypic

interference:

(a) The complexity of the fitness wave, defined as the average number of beneficial

substitutions per coalescence time, is (v+g)/σ̃ ∼ ug/2σ̃ = c/4, using that

trait-changing mutations are marginally selected, Eq. (4.1), and have nearly

neutral fixation rates v+ ∼ u/2 per gene.

(b) The evolutionary equilibria of stable genes (f0 � σ̃) are located in the

high-fitness part of the minimal fitness landscape, f ' f0[1− exp(−G/kBT )].

These genes have an average fitness slope f ′ = (∆f/∆G)1/2 = 2σ̃/εG, an

average trait Γ = −kBT log(2σ̃kBT/f0εG), and an average load Lint(g) given

by Eq. (4.5).

(c) The scaling regime of Eqs. (4.2)–(4.4) sets in at a gene number g0 given by

the condition g0 = c/4; this point also marks the crossover from the linear

load L0(g) = ug to the nonlinear form Lint(g).

4.3.4 Simulations

In-silico evolution of stability traits. We use a Wright-Fisher process to simulate

the evolution of stability traits in a population. A population consists of N
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4 Phenotypic Interference and fitness waves

individuals with genomes a(1), . . . ,a(N). A genotype a = (a1, . . . ,ag) consists of

g segments; each segment is a subsequence ai = (ai,1, . . . , ai,`) with binary alleles

aj,k = 0, 1 (i = 1, . . . , g; k = 1, . . . , `). A segment a defines a stability trait

G(a) =
∑`

k=1 Ekak + G0, where G0 is the expectation value of the trait under

neutral evolution. The resulting effect distribution of point mutations has as a

second moment ε2G =
∑`

ı=1 E2
k/` and a first moment κ0εG =

∑`
ı=1 Ek(1− 2〈ak〉)/`,

where 〈ak〉 is the state-dependent probability of a mutation at site k being beneficial

and brackets 〈.〉 denote averaging across parallel simulations or time. The genomic

fitness is f(a) =
∑g

i=1 f(G(ai); f0,i) with f(G) given by Eq. (4.9) and gene-specific

amplitudes f0,i. In each generation, the sequences undergo point mutations with

probability µτ0 for each site, where τ0 is the generation time, and the sequences

of the next generation are drawn by multinomial sampling with a probabilities

proportional to 1 + τ0f(a).

Simulations are performed with parameters N = 1000, Nµ = 0.0125, each

trait with genomic base of size ` = 100, and each site with equal effect Ek = 1.

The quantitative trait dynamics is insensitive to the form of the effect distribu-

tion [Nour Mohammad et al., 2013; Held et al., 2014]. To increase the performance

of the simulations, we do not keep track of the full genome. We only store the

number of deleterious alleles ni =
∑`

k=1 ai,k for each trait, we draw mutations

with rate u = µ`, and we assign to each mutation a beneficial change E with

probability ni/` and a deleterious change −E otherwise. This procedure produces

the correct genome statistics for bi-allelic sites with uniform trait effects Ei = E .

Simulation data are shown with theory curves for κ = 1, which provide a good fit

to all amplitudes; the input κ0 is different by a factor of order 1 which includes

fluctuation effects (Section 4.5).

Housekeeping evolution. For the simulations in Figs. 4.3 and 4.4A, where we are

not explicitly interested in the loss of genes, we use an exponential approximation

of the stable regime of the stability fitness landscape. The reason is a limited

accessible parameter range in simulations constraining the values of f0 and σ̃ due to

finite N . We checked that the exponential approximation gives the same results as

the full model in the regime f0/σ̃ � 1, where the gene loss rate in the biophysical

landscape is negligible.
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Loss rate measurements. In the biophysical landscape used in Fig 4.4B, a long-

term stationary population is maintained by evolving 70% of the traits in a

biophysical fitness landscape with selection f0; the remaining 30% of the traits are

modeled to be essential with selection 10f0. Gene loss is defined by the condition

G < −3.5kBT . To maintain a constant number of genes, lost genes are replaced

immediately with an input trait value G > 0.

Recombination. For simulations with recombination (Fig. 4.4C), we draw recom-

bination events with rate NR for the whole population from a Poisson distribution.

Each recombination event is implemented as one crossover between the genomes of

two individuals at a random, uniformly distributed position of the genomes.
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4 Phenotypic Interference and fitness waves

Appendix

4.4 Trait diversity and cross-over scaling of the fitness

wave

Equilibrium of trait diversity. Consider a quantitative trait G evolving by mu-

tations, coalescence caused by genetic drift and genetic draft, and stabilizing

selection in a fitness landscape f(G). Mutations and coalescence alone generate an

equilibrium of the trait diversity ∆,

∆G =
uε2G
2σ̃

, (4.12)

as derived in chapter 3 and ref. [Nour Mohammad et al., 2013]. This expres-

sion is valid if stabilizing selection on the trait diversity can be neglected, i.e.,

if [Nour Mohammad et al., 2013]

L∆

σ̃
≡ ∆G|f ′′(Γ)|

σ̃
. 1. (4.13)

Here we show that this condition is self-consistently fulfilled throughout the

phenotypic interference regime. Evaluating the expected fitness curvature in

the high-fitness part of the minimal fitness landscape, Eq. (4.9), where f ′′(Γ) =

−f ′(Γ)/kBT , and in the mutation-coalescence equilibrium given by Eq. (4.12), we

obtain f ′′ = −2σ̃/(εgkBT ). By Eq. (4.3), the condition (4.13) then reduces to

∆G

ε2G
=

c

4g
. 1, (4.14)

which is identical to the condition for phenotypic interference. This relation

expresses an important scaling property of the phenotypic interference regime:

individual traits evolve in the low-mutation regime and are monomorphic at most

times. In contrast, the the global trait diversity defines a polymorphic fitness wave,

4g∆G

ε2G
=
σ2

σ̃2
= c & g0. (4.15)
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4.5 Stochastic theory of phenotypic interference

Cross-over scaling of the fitness wave. A travelling fitness wave maintained by

mutations at genomic sites with a fixed selection coefficient s has two distinct

scaling regimes [Neher et al., 2013; Neher, 2013],

σ2 =

sug, (g . gc)

cσ̃2 = ( c4)1/3(s2ug)2/3 (g & gc),
(4.16)

which correspond to independently evolving sites and to an asymptotic fitness wave

with strong interference selection, respectively. At the crossover point gc = cs/(4u),

the relation

σ̃(gc) =
2ugc
c

=
1

2
s (4.17)

is valid. Comparing this relation with the generic scaling under phenotypic

interference, σ̃ = 2ug/c = s/2 as given by Eqs. (4.2) and (4.3), we conclude

that the phenotypic fitness wave is locked in the crossover region of marginal

interference. This feature reflects the feedback between global and local selection in

a phenotypic fitness landscape, which tunes selection coefficents to the g-dependent

value s = 4ug/c. Consistently, the phenotypic fitness wave has a fitness variance

σ2 ∼ g2, compared to the scaling σ2 ∼ g4/3 of the asymptotic regime at fixed

selection coefficients (up to log corrections).

4.5 Stochastic theory of phenotypic interference

In section 4.1 we derive the scaling relations of phenotypic interference, Eqs. (4.1)

– (4.5), using the evolution equation for quantitative traits, Eq. (4.11), in its deter-

ministic limit (η = 0). Here we show that the full evolution equation generates the

same scaling. We convert Eq. (4.11) into an equivalent diffusion equation [Nour Mo-

hammad et al., 2013] and chapter 3 for the probability density Q(Γ, t),

∂

∂t
Q(Γ, t) =

[
σ̃∆G

∂2

∂Γ2
+

∂

∂Γ

(
κεGu−∆Gf

′(Γ)
)]

Q(Γ, t) (4.18)

with the average trait diversity ∆G given by Eq. (4.12). The equilibrium probability

distribution Qeq(Γ) describes the stationary fluctuations of the population mean

trait Γ(t) of a stable gene around its long-term average 〈Γ〉 =
∫

ΓQeq(Γ) dΓ; these
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fluctuations are generated by genetic drift and (predominantly) genetic draft. In

the biophysical fitness landscape, Eq. (4.9), the equilibrium distribution can be

evaluated analytically,

Qeq(Γ) =

(
f0
σ̃

)2κ
kBT

εG exp
(
−2κΓ

εG
− f0

σ̃ e−Γ/kBT
)

kBT Gamma
(

2κkBTεG

) , (4.19)

where Gamma and PolyGamma are standard transcendental functions. This

function is plotted in Fig. A in 4.5. The resulting average,

〈Γ〉
kBT

= − log

(
σ̃

f0

)
− PolyGamma

(
2κ
kBT

εG

)
, (4.20)

shows that genes are slightly more stable than estimated from the deterministic

average, Γ/kBT = − log(2κσ̃kBT/f0εG). Through the nonlinearity of the fitness

landscape, the fluctuations of the mean trait Γ induce fluctuations of the condi-

tional average fitness variance, 〈∆f 〉(Γ) = ∆Gf
′2(Γ). We obtain the equilibrium

distribution

Qeq(∆f ) = Gammagen

(
∆f ; 2κ

kBT

εG
,
1

2
uσ̃

ε2G
(kBT )2

,
1

2
, 0

)
, (4.21)

with Gammagen denoting the generalized gamma distribution (Fig. B in 4.5). The

average fitness variance

〈∆f 〉 = 2σ̃uκ2

(
1 +

εG
2κkBT

)
(4.22)

differs from its deterministic counterpart, Eq. (4.1) by a prefactor of order 1.

Similarly, the Γ fluctuations induce fluctuations of the interference load of individual

genes,

Qeq(Lgene) = Gammadist

(
Lgene; 2κ

kBT

εG
, σ̃

)
(4.23)

(Fig. C in 4.5). The resulting dependence

〈Lgene〉 = 2κ
kBT

εG
σ̃ (4.24)
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is identical to the deterministic case; the fluctuation effect on 〈Γ〉, Eq. (4.20), is

offset by the fluctuation load in a downward-curved fitness landscape.

4.6 Model extensions

In this section, we develop alternative evolutionary models of quantitative traits

under genetic linkage. The mode of phenotypic interference, which is characterized

by a superlinear scaling of the genetic load with genome complexity, occurs in all

cases, suggesting it is a generic property of this class of models. Specifically, we

discuss housekeeping dynamics in extended models of protein evolution and we

extend our analysis to adaptive processes.

Active protein degradation. This non-equilibrium process affects a wide range

of proteins, for example through the ubiquitin-proteasome pathway[Hochstrasser,

1996]. It ensures that regulatory proteins are rapidly cleared once their function

ends (at a particular point of the cell cycle). Consider a simple model, which has

a constant rate K− of active degradation and a rate K+
G = K0

GeG/kBT for the

folding process. Here we do not model details of the pathways of protein synthesis

from and degradation into amino acid constituents, which would only affect the

total protein concentration but not their state probabilities. In the steady state,

proteins are folded with probability

p̃+(G) =
1

1 + νGe−G/kBT
, (4.25)

where νG = K−/K0
G. Hence, this model retains the sigmoid form of the fitness

landscape given in Eq. (4.9) and shown in Fig. 4.1 , and our evolutionary conclusions

remain invariant.

Stability-affinity model. This model extends the minimal protein model by

explicitly including protein function, which is assumed to be mediated through

binding to a molecular target. Proteins can be in three thermodynamic states:

functional, i.e., folded and target-bound (++), folded and unbound (+−), and

unfolded (−−). We assume that unfolded proteins cannot bind their target, which
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implies that the fourth state of unfolded proteins localized to their target (−+) is

suppressed by the entropy loss of localization.

We consider two different thermodynamic ensembles of these proteins. In

thermodynamic equilibrium, the statistics of this ensemble is governed by two

quantitative traits, which are defined as free energy differences: the fold stability

G ≡ G−−−G+− and the reduced binding affinity E ≡ G+−−G++, which includes

the entropy loss of localization and depends on the ligand concentration. The

equilibrium state probabilities p++, p−−, and p−− are given by Boltzmann statistics

depending on the traits G and E; in particular,

p++(G,E) =
1

1 + e−E/kBT + e−(E+G)/kBT
. (4.26)

Equilibrium models of this kind are well known in protein biophysics [Phillips et al.,

2013; Monod et al., 1965], and have been used to build fitness landscapes [Manhart

and Morozov, 2015; Chéron et al., 2016]. Active degradation is again a ubiqui-

tous process that drives the thermodynamics out of equilibrium; this process is

particularly relevant for target-bound proteins that would have a long lifetime at

thermodynamic equilibrium. Here we assume a single degradation rate K− for

the processes (++)→ (−−) and (+−)→ (−−), a rate K+
G = K0

GeG/kBT for the

folding process (−−)→ (+−), and a rate K+
E = K0

EeE/kBT for the binding process

(+−)→ (++). In this model, the folding and binding processes decouple, and we

obtain the non-equilibrium steady-state probability

p++(G,E) =
1(

1 + νGe−G/kBT
)(

1 + (1 + νE)e−E/kBT
) (4.27)

with νG = K−/K0
G and νE = K−/K0

E . From these ensembles, we build thermody-

namic fitness landscapes

f(G,E) = f0 p++(G,E) (4.28)

analogous to Eq. (4.9); these landscapes are plotted in Fig. 4.6A and B.

The population genetics of the two-trait system is described by the population

mean values ΓG and ΓE , the diversities ∆GG and ∆EE , and the covariance ∆GE .

Under mutations, coalescence, and selection given by the fitness landscape f(G,E),
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the mean traits follow a stochastic evolution equation analogous to Eq. (4.11),(
Γ̇G

Γ̇E

)
= −

(
uGκGεG

uEκEεE

)
+

(
∆GG ∆GE

∆GE ∆EE

)(
∂Gf(E,G)

∂Ef(E,G)

)
+

(
ηG

ηE

)
(4.29)

with white noise of mean and variance(
〈ηG〉
〈ηE〉

)
=

(
0

0

)
,

(
〈ηG(t)ηG(t′)〉 〈ηG(t)ηE(t′)〉
〈ηG(t)ηE(t′)〉 〈ηE(t)ηE(t′)〉

)
= σ̃δ(t−t′)

(
∆GG ∆GE

∆GE ∆EE

)
.

(4.30)

Here we discuss the simplest stationary states of housekeeping evolution in this

model, using the deterministic limit of the evolution equation (ηG = ηE = 0). The

trait diversities ∆GG and ∆EE are given as in Eq. (4.12), and we assume that

pleiotropic sites have uncorrelated effects on both traits, i.e., ∆GE = 0; this has

recently been observed in [Otwinowski, 2018]. We again set κG = κE = 1, which

says that most random mutations reduce stability and affinity.

In equilibrium, the high-fitness part of the fitness landscape takes the asymptotic

form f(G,E) ' f0[1−e−E/kBT (1+e−G/kBT +e−E/kBT )]+O((e−E/kBT , e−G/kBT )3).

The mutation-selection equilibrium leads to mean trait values(
ΓG

ΓE

)
≈

 kBT log
(
εG
εE
− 1
)

−kBT log
(

2 σ̃
f0

(
kBT
εE
− kBT

εG

)) , (4.31)

where only the E-component depends on the coalescence rate σ̃. Comparison with

the minimal model, Eq. (4.1), shows that in the stable part of the fitness landscape,

the equilibrium stability-affinity model becomes an essentially one-dimensional

problem for the affinity trait E [Manhart and Morozov, 2015]. The total fitness

variance per gene, ∆f = 2(uG+uE)σ̃, is of the universal form (4.1) with an effective

mutation rate

u = uG + uE . (4.32)

We conclude that housekeeping evolution in this model follows the same scaling as

in the minimal model, Eqs. (4.1) – (4.8), with the parameter u given by Eq. (4.32).

However, the equilibrium model lacks evolutionary stability, because lack of folding

stability (G > 0) can be compensated by a stronger binding affinity.

With active degradation, the high-fitness part of the fitness landscape takes the
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4 Phenotypic Interference and fitness waves

asymptotic form f(G,E) ' f0[1−(1+νE)e−E/kBT−νGe−G/kBT ]+O((e−E/kBT , e−G/kBT )2).

Hence, for stable genes (f0 � σ̃), the evolutionary dynamics of the traits G and E

becomes approximately independent. The traits of each gene are at a mutation-

selection equilibrium of the universal form (4.1), generating a combined fitness

variance ∆f = 2(uG + uE)σ̃. Therefore, housekeeping evolution in this model also

follows the same scaling as in the minimal model, Eqs. (4.1) – (4.8), with a total

mutation rate per gene given by Eq. (4.32) and an effective value of g that is twice

the number of genes,

geff = 2g. (4.33)

In particular, the system-wide interference load is about twice the value of the

minimal model, Lint ≈ 8ug2/c. This estimate disregards the additional contribution

from the enhanced total mutation rate, Eq. (4.32), which takes into account that

uE � uG for many binding domains.

The form invariance of housekeeping evolution in these models shows the robust-

ness of the phenotypic interference mode. It also suggests that in more general

contexts, we can define genomic complexity as the number of quantitative traits

that evolve (approximately) independently; see the Discussion of this chapter.

Single-peak fitness model. A minimal model of stabilizing selection is a quadratic

landscape [Lande, 1976; de Vladar and Barton, 2014; Nourmohammad et al., 2013],

f(E) = −f0(E − E∗)2 (4.34)

(Fig. C in 4.6). This model penalizes deviations from an optimal trait value E∗. In

contrast to the biophysical landscape, there is no gene loss in a quadratic landscape,

because there are no constraints on its slope. As long as mutations generate

trait equilibria predominantly on one flank of the landscape, the basic scaling of

phenotypic interference, Eqs. (4.1) – (4.4), is universal and, hence, the same as in the

minimal model. The genetic load for a single gene, Lgene = −f(Γ) = u2ε2E/4∆2
Ef0,

has been derived in [Nour Mohammad et al., 2013]. With ∆E given by Eq. (4.12),

we find a system-wide interference load

Lint = gLgene =
4u2g3

c2ε2Ef0
. (4.35)
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Hence, the single-peak model has an even stronger load nonlinearity than the

biophysical fitness landscapes.

Phenotypic interference in adaptive evolution. Here we show that the pheno-

typic interference scaling extends to simple models of adaptive evolution. In the

minimal biophysical model, we assume that protein stabilities are still at an evo-

lutionary equilibrium of the universal form (4.1), generating a combined fitness

variance g∆f = 2guσ̃. However, the global fitness variance acquires an additional

contribution from adaptive evolution of other system functions,

σ2 = cσ̃2 = 2σ̃ug + φ, (4.36)

where φ is the fitness flux or rate of adaptive fitness gain [Mustonen and Lässig, 2010].

Mathematically, this term quantifies the deviations of the adaptive evolutionary

process from equilibrium (defined by detailed balance). Closure of the modified

dynamics leads to an increased coalescence rate σ̃,

σ̃ =
2ug

C
+

φ

2ug
+O

(
φ2

(ug)3

)
. (4.37)

However, the adaptive term remains subleading to the housekeeping term for large

g; this is true even if we assume that φ is proportional to g. Hence, the total

interference load, Lint = gσ̃ = 2ug2/c+ φ/u+ . . . , retains the leading nonlinearity

generated by housekeeping evolution, as given by Eq. (4.5). Only for very high

fitness flux (φ� u2g2/c), coalescence becomes dominated by adaptation, leading

to a substantial decrease in the efficacy of selection.
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Figure 4.5: Equilibrium distributions under stochastic evolution. The fig-
ure shows the probability density functions (A) of the mean population
trait, Qeq(Γ), (B) of the conditional expected fitness variance, Qeq(∆f ),
and (C) of the genetic load per gene, Qeq(Lgene); see Eqs. (4.19) –
(4.23). These distributions measure deviations from long-term averages
(dashed lines), which are generated by genetic drift and draft. The
corresponding deterministic solutions are marked by dotted lines; both
lines coincide in (C). All pdfs are shown for σ̃ = f0/100 = 10−4; other
parameters as in Fig. 2. See section 4.5.
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Figure 4.6: Extended fitness landscapes. (A, B) Thermodynamic fitness land-
scapes f(G,E) of the stability-affinity model, Eqs. (4.26) – (4.28),
are shown as functions of the stability G and the affinity E. Stable
populations, characterized by stationary mean values (ΓG,ΓE) and
variances (∆G,∆E), are marked by red ellipsoids. (A) Thermodynamic
equilibrium. (B) Non-equilibrium driven by active degradation of folded
proteins. In the high-fitness part, this landscape becomes approximately
additive in G and E. (C) Quadratic fitness landscape f(E), Eq. (4.34),
as a minimal model for stabilizing selection on a quantitative trait E.
Stable population states on a flank of the landscape are marked by red
dots. See section 4.6.
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5 Punctuated genomic fitness waves

”There is no magic. There is

only knowledge, more or less

hidden.”

(Gene Wolfe, Shadow & Claw)

T
he debate about the mode and tempo of evolution has been a long running

question. Asexual evolution in particular is strongly characterized by inter-

ference interactions due to genomic linkage. These linkage interactions, which

include the competition of beneficial mutations (clonal interference), hitchhiking of

neutral and deleterious mutations, and background selection, where a mutation’s

fate is mainly determined by its linked alleles, have been studied theoretically [Ger-

rish and Lenski, 1998; Desai and Fisher, 2007; Rouzine et al., 2008; Hallatschek,

2011; Schiffels et al., 2011; Good et al., 2012; Neher and Hallatschek, 2013; Neher

et al., 2013] and experimentally [Wiser et al., 2013; Barroso-Batista et al., 2014] to

understand this particular mode of evolution. For high mutation rates and large

population sizes a strongly background determined, collective type of behavior –

the travelling fitness wave – has been of major interest in the last 10 years due

its analytical framework, which predicts the decrease of adaptation measured

in laboratory evolution experiments[de Visser et al., 1999; Perfeito et al., 2007;

McDonald et al., 2016]. Moreover, the coalescent process of the travelling fitness

wave has been shown to belong to the universality class of the Bolthausen-Sznitman

coalescent[Brunet et al., 2007].

However a recent experimental result for E.coli has led to questioning of the

so far accepted theories for long-term evolutionary behavior. An increase to the

overall fitness does not prevent genome degradation[Couce et al., 2017]. To close

the gap between the observed long-term consequence of genome degradation with

the existing theoretical framework is the goal of this chapter. Using a genomic

model together with fitness wave theory, we are able to show that fast adaptation
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5 Punctuated genomic fitness waves

not only entails genome degradation, but even facilitates it. Furthermore, we find

a mode of punctuated fitness waves, where due to a separation of selection and

timescales maintenance of function is interrupted by adaptive bursts.

We classify stationary adaptation in a genomic framework in four different phases

as is shown in Fig. 5.3: The evolution of a small number of sites according to

independent substitutions is compatible with a viable genome, but is of no particular

interest for the mode asexual evolution considered here. Another viable stationary

evolutionary mode, we call standing fitness wave, which does still exhibit a linear

scaling with genome size, but already shows a stable fitness distribution. A viable

stationary evolutionary mode with adaptation,punctuated fitness waves, which

shows a clear separation of time- and selection scales giving rise to intermittent

adaptation. And finally, fitness waves associated with the Bolthausen-Sznitman

coalescent, which in the context of a simple genomic model cannot maintain sites

at their preferred alleles for long-term evolution, giving rise to an unstable, molten

genome. The pattern of substitutions for sites with different selection coefficients

are shown in Fig. 5.1. Increasing genome size, increases the neutrality threshold

σ̃ and in turn enables substitutions for sites with higher selection coefficients.

Alternatively, in adaptive scenarios neofunctionalization events enable adaptive

substitutions even for sites, where substitutions would otherwise be exponentially

suppressed.

As a consequence adaptation has to occur intermittently, in a turbulent way, or

can only be transient.
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A B

C D

Figure 5.1: Substitution pattern for stationary genomic asexual adapta-

tion. Different loci showing the state of the fixed allele for different

numbers of loci L (A,D: L = 100, B: L = 500, C: L = 5000) and rate

of neofunctionalization events γ (A,B,C: γ = 0, D: γ > 0) shown as

a function of evolutionary time µt. The beneficial state is shown in

blue and the deleterious state in orange. For the panel D, which is the

only panel with a neofunctionalization rate γ > 0, the light blue color

identifies the beneficial state after a neofunctionalization event. We

see the pattern of substitutions mainly constrained in the regime of

sites with selection values around and below the neutrality threshold σ̃.

Increasing the number of loci L, increases the neutrality threshold, and

increases the percentage of sites which are not fixed at the beneficial

allele.
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Figure 5.2: Mutation distribution. Distribution of mutations U(s) for L =

100(A) and L = 5000(B). The distribution of mutations in our genomic

model is an outcome of the evolutionary dynamics, since the genomic

state determines the direction of the new mutation, see Eq. 5.1. This

leads to a bi-modal distribution of mutation effects as beneficial sites

can only have deleterious mutations and deleterious sites have beneficial

mutations. For large L many more sites are in the deleterious state

giving rise to more beneficial mutations.
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Figure 5.3: Phase diagram for stationary genomic asexual adaptation.

Different evolutionary modes as a function of the number of loci L and

the rate of neofunctionalization events γ. In the limit of very low γ

we recover the equilibrium phases as function of the genomic mutation

rate: Small values of µL < 1
2N , characterize the regime of independent

substitutions, where σ2 ∼ µLs and σ̃ = 1/2N . For intermediate values

of the genomic mutation rate 1
2N < µL < cs̄ we identified the new

regime of standing fitness waves. This region of parameters is associated

with a viable genome. By increasing the genomic mutation rate, the

variance of fitness crosses over to the regime of infinitesimal fitness

waves, associated with the Bolthausen-Sznitman coalescent. Since here

σ̃ & s̄, a substantial fraction of the genome cannot be maintained and is

then molten. At intermediate values of the genomic mutation rate and

increasing values of the adaptive pressure γ, we found the new regime

of punctuated fitness waves that is compatible with a viable genome.

For high values of γ we cross-over into smooth Bolthausen-Sznitman

waves, which are again associated with a molten genome.
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5 Punctuated genomic fitness waves

5.1 Housekeeping Evolution

Of central importance to the evolutionary success of an organism is its ability

to transmit information to its offspring. This can only be achieved, if selection

acting on its genes is strong enough to counteract genetic drift or more importantly

for asexual organisms genetic draft. The probability of being in the beneficial

allele for a given genetic locus is tightly linked to its substitution probability

towards the deleterious allele state. For a minimal genomic evolutionary model

we consider housekeeping evolution, where the selective pressure remains constant

for maintaining each genes function and we consider no adaptive pressure. In this

minimal genomic model each locus has two states and a selection coefficient s,

which describes the fitness difference between the beneficial and deleterious state

of this locus. Necessarily, the distribution of mutations U(s) as seen in Fig. 5.2 is

an outcome of the evolutionary process. It is determined by the distribution of

selection effects of sites χ(s) and the genomic state λ(s)

U(s) = µLχ(s)λ(s). (5.1)

Each locus will be in a marginal evolutionary equilibrium, satisfying detailed

balance determined by the fixation probability of mutations at the locus.
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Figure 5.4: Housekeeping evolution (I): Single site statistics in the stand-
ing fitness wave regime. Collapse plot of A Site occupancy of
beneficial and deleterious allele λ±, B fixation probability π±, and C
fixation probability v± as a function of the rescaled selection coefficient
s/σ̃ in the regime µNL > 1. Results from the simulations are compared
with the theoretical expectation (black line) of Eq. 5.3, 5.2, and 5.4.
Simulation parameters are N = 1000, 2Ns̄ = 30, 2Nµ = 0.25.
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Figure 5.5: Housekeeping evolution (II):Fitness variance, coalescence
rate and frequency spectrum. A Variance of fitness σ2 (black)
and inverse coalescent time σ̃ (blue) as a function of the mutational
input/scaled genome length µL. The points are results of simulations
(see Methods) and the dashed lines show theoretical expectations of
the two known limits: for small µL the variance of fitness has a linear
dependence on the mutational input, whereas for large values it shows
the 2/3rd power dependence obtained on the universal limit of infinites-
imal fitness waves. B Frequency-spectrum of derived alleles at neutral
sites. It illustrates the crossover from Kingman behavior, with the
characteristic inverse frequency decay (1/ν), for small values of µL to
Bolthausen-Sznitman behavior with the characteristic inverse squared
frequency decay (1/ν2) at small frequencies, and the inverse logarith-
mic increase (1/((ν − 1) log(1− ν))) at large frequencies. Simulation
parameters as in Fig. 5.4.

π±(s, σ̃) =

 1
N e
±s/2σ̃, (µNL� 1 & |s| � σ̃) or s < −σ̃,
±2s

1−e±s/2σ̃ , |s| � σ̃.
(5.2)

This fixation probability was shown for mutations in waves [Neher et al., 2013;

Good et al., 2014] and in a hierarchical approximation with drivers [Schiffels et al.,

2011], i.e. different regimes. For our model, it was reproduced from simulations

in [Rice et al., 2015], who also observed an interpolation in the middle regime. The

equation defines the efficacy of selection through selected mutations with s . σ̃

acting effectively neutral, hence the neutrality threshold σ̃. The threshold has been

associated with the coalescence time in previous publications[Neher et al., 2013;
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5 Punctuated genomic fitness waves

Rice et al., 2015].

For our 2-state model for each locus the probabilities of the beneficial and

deleterious allele λ+ and λ− immediately follow from the fixation probability

⇒ λ±(s, σ̃) =
1

1 + e∓s/σ̃
. (5.3)

This has been shown in [Rice et al., 2015]. We verify that both equations, (5.2)

and (5.3) are valid in our system by simulations in figure 5.4.

Together, they define the substitution rates of beneficial and deleterious alleles,

v±(s, σ̃) = µ λ∓(s, σ̃)Π±(s, σ̃),

v±(s, σ̃) =
µ

2 cosh(s/2σ̃)

≈ µ (s . σ̃)

� µ (s & σ̃),
(5.4)

that clearly satisfy detailed balance. This expression contains important lessons

about this system. While substitutions at loci with selection coefficient s . σ̃ occur

approximately at a neutral rate µ, substitutions at loci with s & σ̃ are exponentially

rare. The important result following this analysis is that since the dynamics of

substitutions at loci with large selection coefficients is essentially frozen, fitness

fluctuations are of the order of σ̃ or smaller. The resulting substitution patterns

stressing this behavior in housekeeping evolution can be seen in Fig. 5.1.

5.1.1 Melting fitness waves

The fitness variance within a population is of central interest in population genetics,

since it determines the speed of adaptation. For small µL, because substitutions

are independent, the variance of fitness depends linearly on the genomic mutation

rate. When µL is large, interference between substitutions render the variance of

fitness sublinear in the mutational input. Fisher’s fundamental theorem relates the

fitness variance to the increase in fitness. For housekeeping evolution the fitness is

in equilibrium and the increase in fitness due to the variance σ2 is balanced by the

decrease in fitness due to deleterious mutations φ−. For our genomic model this is

66



5.1 Housekeeping Evolution

given by

σ2 = −φ− = µ`

∫
ds χ(s)s(λ+ − λ−) = µ`

∫
ds χ(s)s tanh(s/2σ̃). (5.5)

The distinction between essentially frozen sites with s > σ̃, where substitutions

are exponentially suppressed, and molten sites with s < σ̃, where substitutions

are effectively neutral, lets us split the variance into contributions from stable and

unstable sites.

σ2 = µ`

∫ σ̃

0
ds χ(s)s tanh(s/2σ̃) + µ`

∫ ∞
σ̃

ds χ(s)s tanh(s/2σ̃)

≈ µ`
∫ σ̃

0
ds χ(s)

s2

2σ̃
+ µ`

∫ ∞
σ̃

ds χ(s)s

= σ2
unstable + σ2

stable

(5.6)

For a large number of mutations the fitness distribution is approximately Gaussian

W(f) = Z−1 exp (
−(f − f)2

2σ2
). (5.7)

After a time given by the coalescence timescale τc = σ̃−1 all present individuals will

be descendents of a single individual before this time leading to a self-consistency

condition given by ∫ ∞
f+ df

dt
tc

W(f)df =
1

N
. (5.8)

The speed of the fitness increase is given by Fisher’s fundamental theorem df
dt = σ2,

which leads to √
π

2
erfc(

1√
2

σ

σ̃
) =

1

N
. (5.9)

Approximating the error function erfc(x) ≈ 1√
π
e−x

2

x , we get the fitness variance

proportional to the coalescence rate with logarithmic corrections

σ2 ∼ 2σ̃2 log(Nσ). (5.10)
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5 Punctuated genomic fitness waves

This type of proportionality of the form

σ2 = cσ̃2, (5.11)

with a proportionality factor c = c0 log(Nσ̃) is well known from fitness wave

theory[Neher et al., 2013; Neher and Hallatschek, 2013] with a model dependent

prefactor. It leads to

σ2
molten + σ2

stable=cσ̃
2. (5.12)

Extending the well known formula for the fitness wave to the prewave regime, we

get

σ̃ =

1/2N, µLN < 1

σ/
√
c, µLN > 1.

(5.13)

This extension to the prewave regime is validated by numerical results as the theory

obtained from the closure describes the numerical data far into this regime, see

Fig. 5.5. In contrast to the classical fitness wave theories, here not all mutations

are of small effect. Closing solves all the non-adaptive regimes

s2
molten

σ̃
(1− α) + sstableα = c

σ̃2

µL
(5.14)

where α :=
∫∞
σ̃ ds χ(s) is the stable fraction of the genome, s2

molten :=
∫ σ̃

0 ds χ(s)s2,

sstable :=
∫∞
σ̃ ds χ(s)s, and s2

molten � s2 in the pre-wave regime. c sets the melting

from below and the transition to the wave at c ≈ 1/2, where all s-statistics

start coinciding with σ̃, s ∼ σ̃. We can now discuss the results in these regimes

reproducing the wave [Neher and Hallatschek, 2013].

σ2 =

µLs̄, L . cs̄/µ

c1/3(µLs2)2/3, L & cs̄/µ,
(5.15)

with the factor c = c0 log(N(µLs2)), c0 ∼ 100 having a weak dependence on popu-

lation size. The two regimes correspond to the variance expected for independent

sites and the infinitesimal wave regime [Neher and Hallatschek, 2013]. Consistently

the frequency spectrum for the derived alleles at neutral loci in the independent

substitution regime is given by the scaling known for Kingman coalescence 1
ν and
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5.1 Housekeeping Evolution

for the fitness wave by the Bolthausen-Sznitman coalescent scaling 1
ν2

[Neher and

Shraiman, 2011; Neher and Hallatschek, 2013], see Fig 5.5B. The crossover between

the two regimes occurs for µL ∼ s̄, in agreement with the intuitive picture that

interference sets in when the timescale of selection is of the order of the timescale

of mutational input.

As shown in Fig. 5.5A, this is also verified in the genomic model. We identify

three regimes which differ in the behavior of σ and σ̃ as a function of the mutational

input. For small values of µL, the genomic model recovers the coalescent time of

the single-locus theory and the variance of fitness of the regime of independent

substitutions (cf. Eq. 5.15). For very large µL, the variance of fitness depends

on the mutational input with the characteristic power dependence found in the

asymptotic infinitesimal limit of travelling fitness waves (see Eq. 5.15), and which

also sets the coalescent time as given in Eq. 5.13. However, for intermediate values

of µL, we find a new regime, where the coalescent time is set by selection, but the

variance of fitness still behaves as in the regime of independent substitutions. This

regime is due to the melting of frozen sites from below. We obtain an increasing

fraction of unstable sites, but the fitness variance is still made up almost entirely

by small fluctuations of the stable sites. So in this regime the total fitness variance

is still determined by polymorphisms from stable sites with selection s� σ̃. Due

to the coalescence rate in this regime being smaller than the mean site selection

coefficient σ̃ < s̄, the average effect of positive mutations will also be smaller than

s̄.

5.1.2 Emergent neutrality and genome melting

The crossover between the regime of standing fitness waves and the Bolthausen-

Sznitman limit occurs for the same values of µL where σ̃ & s̄ (see Fig. 5.5A and B)

This has remarkable consequences in the context of a genome. Indeed, as Eq. 5.3

and Fig. 5.4 show, for s/σ̃ . 1, and cf. Eq. 5.4, substitutions occur essentially

at the neutral rate in such loci. Thus, as a function of the mutational input, the

regime where σ̃ > s̄ is the regime where the typical locus in this genome is neutral

with respect to its substitution rate, and moreover, is not strongly fixed in the

beneficial allele. This is clearly visible in Fig. 5.6, where we see a strong reduction

in the average fixed beneficial allele. Because this analysis shows this genome to
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5 Punctuated genomic fitness waves

be unfit for storage of heritable information, it implies that in the framework of

a minimal genomic model under housekeeping evolution, the limit of Bolthausen-

Sznitman waves is not compatible with a viable genome in housekeeping evolution.

This however does not exclude possible scenarios of adaptive evolution, which we

consider in the next section.
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Figure 5.6: Housekeeping evolution (III):Meltdown in equilibrium. Mean
probability of beneficial allele λ̄+ as a function of mutational input
µL. The points are simulation results, lines are theory expectations for
different site distributions. Simulation parameters as in Fig. 5.4.

5.2 Adaptive evolution and punctuated fitness waves

In nature a surplus of beneficial substitutions leads to adaptive scenarios. Extending

the minimal genomic model to adaptive scenarios, we move away from housekeeping

evolution. The selection acting on the genome is then time-dependent, which can

be quantified by a non-zero fitness flux φ[Mustonen and Lässig, 2010].

5.2.1 Minimal model of adaptation and punctuated fitness waves

A simple way of incorporating time-dependent selection in the genomic model is by

allowing the direction of selection to flip at individual loci [Mustonen and Lässig,
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5.2 Adaptive evolution and punctuated fitness waves

2007]. We call this change of selection a neofunctionalization event, which occurs

at a rate γ. Thus, upon occurrence, the deleterious state of the affected locus

becomes beneficial, and the beneficial state becomes deleterious, creating pressure

for adaptation. The adaptation can then be described by the cumulative fitness

flux Φ(τ) =
∫ τ

0(varf (t) + φ−(t)) dt, where φ−(t) is the negative change of fitness

due to mutations.

We start by considering the regime of standing fitness waves, where the genome

is still viable, and we add moderate adaptive pressure. As shown in Fig. 5.8, the

behavior of the fitness flux (scaled in units of the mean selection coefficient s̄)

as a function of scaled time (total number of neofunctionalization events γL∆t)

has a clear separation of time and selective scales. It consists of long regions of

quasi-equilibrium, where fitness flux has no average increase or decrease, with

fluctuations of the order of σ̃. These are interrupted by sudden adaptive sweeps,

where fluctuations of fitness flux are much larger than s̄, yielding a substantial

fitness flux increase. The advance in fitness flux is now punctuated, and not diffusive

as in the limit of infinitesimal fitness waves.
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Figure 5.7: Equilibrium tail. A Equilibrium distribution of fitness flux Φ in
units of s̄ z-transformed for L = 100. B Equilibrium distribution of
fitness increase z-transformed for L = 5000. The line is in both cases
the Gaussian expectation. Simulation parameters as in Fig. 5.4.

5.2.2 New universality class: Turbulent fitness waves

The punctuated character of the genomic fitness waves is a direct consequence of the

adaptive sweeps. Neofunctionalization events can affect any locus in this genome,
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Figure 5.8: Adaptive evolution (I): New universality class of a punctu-
ated fitness wave. A Total cumulative fitness flux Φ(τ) as a function
of evolutionary time τ in adaptive evolution with neofunctionalization
rate γ. B Rescaled distribution of fitness flux P∆t(Φ) showing the tail
of the distribution for various values of γ and genome size L. Simulation
parameters as in Fig. 5.4.

thereby allowing for substitutions at the loci of large effect (s & s̄) otherwise frozen

in equilibrium. Thus, in a time interval ∆t larger than the average sweep time 1/s̄,

and smaller than the mean waiting time of a neofuctionalization event 1/γL, the

advance in fitness flux Φ is generated by no-sweep and single sweep configurations,

and admits a simple description by a first order expansion in the sweep rate

P∆t = (1− γL∆t)Pbulk
∆t (Φ) + (γL∆t)χ(Φ) +O((γL∆t)2) (1/s̄� ∆t� 1/γL).

(5.16)

It depends, to first order, only on the number of neofunctionalization events γL∆t

and on the input distribution of selection coefficients of the loci χ. This can be

directly verified by comparing the probability distribution scaled with γL∆t at

different times and for systems of different number of loci. As we show in Fig. 5.8,

the result is a collapse of curves that recover χ.

This distribution of advance in fitness flux has centered moments with anomalous

scaling

〈Φk〉c∆t ∼ (γL∆t)Φk + ... (k ≥ 1). (5.17)

Here all the moments scale linearly with time, illustrating once more the departure

from the diffusive behavior, where 〈Φk〉c ∼ (∆t)k/2 for k even and zero other-

wise. Remarkably, Eq. 5.17 has the exact same properties of the distribution of
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5.2 Adaptive evolution and punctuated fitness waves

longitudinal velocity differences of processes described by the stochastic Burg-

ers equation in 1D [Bouchaud et al., 1995; Lässig, 2000] . The one-dimensional

stochastic Burgers equation is one of the simplest non-linear systems out of equi-

librium. It has a multitude of applications in the statistical physics of vehicular

dynamics [Debashish Chowdhury, 2000], surface growth [Kardar et al., 1986],

directed polymers [Kardar and Zhang, 1987; Bouchaud et al., 1995], and also

cosmology [Zel’dovich, 1970; Arnold et al., 1982; Gurbatov and Saichev, 1984;

Vergassola et al., 1994]. A key feature of this turbulent theory is the occurence of

singular events with bigger scale, which are built up dynamically by the system.

Thus, adaptive genome evolution, by punctuated fitness waves, generates a

new evolutionary regime that is different from the waves of Bolthausen-Sznitman

process and belong to the same universality class of Burger’s turbulence processes.
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Figure 5.9: Adaptive evolution (II). A Mean genomic state of the beneficial
allele λ+ as a function of the adaptive pressure given by the flip /
neofunctionalization rate γ. B Single site frequency spectrum of the de-
rived allele for neutral sites for different values of γ. We see a crossover
from the Kingman towards the Bolthausen-Sznitman frequency spec-
trum. Other parameters : 2Nµ = 0.25, 2Ns = 30, selection coefficients
gamma-distributed (k = 2). Simulation parameters as in Fig. 5.4.

5.2.3 Meltdown in non-equilibrium

Once the average time between neofunctionalization events is on the order of the

timescale of a single event, interference between these events starts to appear.

The clonal interference according to [Schiffels et al., 2011] leads to a neutrality
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5 Punctuated genomic fitness waves

threshold given by the sweeprate αγL determined by

σ̃ = σ̃eq + αγL =

αγL, in adaptive wave

σ̃eq ∝
√
µLs in housekeeping evolution.

(5.18)

leading eventually again to a fitness wave behavior, see Fig. 5.9B. This is a

consequence of the establishment time of adaptive mutations being smaller than

their fixation time[Desai and Fisher, 2007] and several beneficial mutations exist

simultaneously leading to this crossover. Studying the neutrality threshold σ̃ we

see that in this case most individual alleles are again unstable s ≤ σ̃ and a fitness

wave in non-equilibrium is again not a viable long-term mode of evolution, cf.

Fig. 5.9A. The actual dynamics in our simulations however does not fully reach

the frequencyspectrum associated with fitness waves. This is due to another effect

related with high flip rates γ. For flip rates, which are faster than the single

site substitution rate at a single locus, we observe a transition towards a neutral

site due to the site not being able to react to changes in the environment, called

micro-evolution[Takahata et al., 1975; Mustonen and Lässig, 2008]. The probability

to be in the beneficial allele shows a transition at γ = 2Nsµ given by

λ+ ≈
2Nsµ+ γ

2Nsµ+ 2γ
. (5.19)

As we are only concerned with the effect on the genomic state and not the actual

method of reduced stability of the beneficial allele λ+, we note that for micro-

evolution according to Eq. (5.19) and for adaptive evolution according to Eq. (5.18)

for different distributions leads to only small changes for critical meltdown values

of λ+ and fraction of stable sites α, see Fig 5.10. In particular, if an coalescence

time of a few hundred generations is observed in experiments [Kryazhimskiy et al.,

2014; Barroso-Batista et al., 2014], only alleles with selection coefficients larger

than 1/few hundred generations can be maintained on long-term; the rest of the

genome gets molten.
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Figure 5.10: Adaptive evolution (III):Micro-evolution and adaptation.
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for all our distributions of s.

5.3 Transient adaptation

In the context of this minimal genomic model, fixations of a large number of

deleterious mutations in the regime of fast adaptation makes this mode of evolution

incompatible with a viable genome. But clonal interference and coalescent times

of a few hundred generations - and therefore fast adaptation, are observed in

experiments with asexual populations [Kryazhimskiy et al., 2014; Barroso-Batista

et al., 2014]. So what can we learn about evolution by considering our findings in

a broader sense?

Our analysis shows that a steady-state regime of fast adaptation is possible to

occur over short periods of time. However, this comes with the cost of genetic

draft.

The time-scale and effect of genome degradation can be estimated if we consider

a hypothetical starting point of a viable genome, where most of the sites are fixed

in the beneficial allele. Our housekeeping evolution analysis has shown that sites

with selection coefficient s ≤ σ̃ are essentially neutral, and therefore substitutions

occur at a rate µ. Thus, the rate of deleterious substitutions can be written as

v− = (1− α)Lµ, (5.20)

where (1 − α) is the fraction of sites with s ≤ σ̃, with the corresponding fitness
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5 Punctuated genomic fitness waves

decline

Ḟ = −(1− α)Lµs̄. (5.21)

This decline in fitness would occur until the steady state associated with the

minimal model of housekeeping evolution would be reached. For E. Coli, where

L ∼ 106 and µ ∼ 10−10 per bp per replication, and assuming the order of 10

generations per day, this yields the loss of approximaterly one locus per year

and fitness decline, per year, of the order of the mean selection coefficient of the

genome. While such effects wouldn’t appear to be strong even in very long-term

experiments in the lab, evolution in the wild would have enough time to degrade

the genomes. This leads to an important implication: since fast adaptation as

observed in laboratory populations is only sustainable for short periods of time,

this mode of asexual evolution must be transient.

5.4 Discussion

We have shown that adaptive steady states have to be characterized by punctuated

adaptation. This has far reaching implications: First of all, this means that for

long-term processes in non-recombining populations with Mendelian traits the

classical fitness wave theory cannot be applied as this would require an unstable

genome. However, fast adaptation according to fitness waves has been observed

in laboratory experiments. This is perfectly compatible with our results as long

as this mode of evolution is only transient. Short-term fitness wave evolution is

permissible, but comes with the cost of degradation according to Eq. 5.21. This

degradation has been observed in experiments.

Introducing broad epistasis in the form of quantitative traits into the system

introduces a natural separation of scales between the selective effect of individual

mutations and the selection on the whole phenotype. Under these circumstances

quantitative trait loci can become effectively neutral, while the whole trait is still

under efficient selection. The negative effect of fast adaptation is a direct result of

the non-recombining evolutionary process. Different modes of recombination, i.e.

horizontal gene transfer, are able to break the linkage between loci and can then

reduce the negative effects of fast adaptation. The machinery to break linkage

comes with its own costs, which have to be offset by the gain of possible fast
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long-term adaptation.

In the final chapter we recapitulate the main results of this thesis and answer

the guiding questions raised in the introduction.

5.5 Methods

5.5.1 Simulations

We implement our minimal model of genome evolution as a Fisher-Wright simulation

with fixed population size N and individuals with a sequence a = (a1, . . . , aL) of

size L with a binary alphabet, so that ai ∈ 0, 1 for i ∈ [1;L]. The fitness of a

sequence is given by f(a) =
L∑
i=1

siai. In each generation, the sequences undergo

point mutations with probability µτ0 for each site, where τ0 is the generation time,

and the sequences of the next generation are drawn by multinomial sampling with

probabilities proportional to 1 + τ0f(a). Further each generation each site has a

probability τ0γ to flip the preferred allele at each site, effectively changing si to

−si.
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”M is for magic. All the letters

are, if you put them together

properly. You can make magic

with them, and dreams, and, I

hope, even a few surprises...”

(Neil Gaiman, M Is for Magic)

W
e have provided multiple ways, to improve the current status quo of evolution-

ary theory by joining together previously disjoint fields within population

genetics.

In chapter 3 we have expanded the theory of quantitative traits to include the

impact of fast adaptation in its genomic context. For the most this can be achieved

through a single parameter, the neutrality threshold as seen in Eq. (3.7). Using

the diversity of neutral sites we are able to infer the neutrality threshold as shown

in Eq. (3.31). This confirms previous results for the neutral sequence diversity

from fitness wave theories mapped onto a quantitative trait [Good et al., 2014;

Rice et al., 2015].

In chapter 4 we have investigated a minimal realistic model of an asexual organism

with many linked genes with biophysical fitness landscapes and shown that the

fitness load scales quadratically with the number of genes, Eq. (4.5). The faster-

than-linear scaling does not depend on the particular form of the fitness landscape

and only takes into account the number of independent biological functions, giving

a measure for the complexity of an organism. The correlation due to linkage of

different sites can be absorbed in an effective independent evolution model with a

given neutrality threshold σ̃ as can be seen in Fig. 4.2. Surprisingly, even a small

recombination rate on the order of the mutation rate, Eq. (4.8), is already enough

for a phase transition from phenotypic interference to the limit of independent

gene evolution under full recombination, suggesting an avenue for the evolution of

sex according to the difference in genetic load over the long-term. In our analysis
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6 Discussion

we have seen that fitness waves naturally occur in a minimal housekeeping scenario

for phenotypic interference. In this context there is a separation between the

selective scale of the individual mutations, which is given by the coalescence rate

σ̃, Eq. (4.1), and the bigger selection of the whole trait. Thus quantitative traits

can have near neutral single mutations and still describe stable genes as long as

the selection on the whole gene is strong enough .

For Mendelian traits no separation of scales is possible in the selection of the

traits. In chapter 5 we have shown that fast adaptation in a genomic context

leads to a loss of genes and thus a corresponding fitness decline, Eq. (5.21). Thus

the mode of fast adaptation as seen in evolutionary experiments can only be

transient. An adaptive mode that does not degrade the genome over the long-term,

is the punctuated fitness wave that is characterized by phases of maintenance of

function interrupted by short adaptive bursts. This mode of evolution is further

distinguished by anomalous scaling of the moments of the fitness flux as known

from Burger’s turbulence, Eq. (5.17).

To conclude we have shown how the drastic effects of asexual linkage incorporated

in the neutrality threshold link our different chapters together. As a main result

fitness wave theory is a valuable tool to describe the asexual evolution of short term

laboratory evolution experiments, but fails when it comes to long-term processes

in nature that do not incorporate quantitative traits. The combination of fitness

wave theories together with phenotypic and Mendelian genomic models can lead to

fascinating new insights to evolutionary modes – showing surprising new features

like phenotypic interference and the melting of genomic sites from below.

80



Bibliography

V. I. Arnold, S. F. Shandarin, and Y. B. Zeldovich. The large scale struc-

ture of the universe i. general properties. one-and two-dimensional models.

Geophysical & Astrophysical Fluid Dynamics, 20(1-2):111–130, 1982. doi:

10.1080/03091928208209001.

J. Barroso-Batista, A. Sousa, M. Lourenço, M.-L. Bergman, D. Sobral, J. Demen-

geot, K. B. Xavier, and I. Gordo. The first steps of adaptation of escherichia

coli to the gut are dominated by soft sweeps. PLos Genet, 10(3):1–12, 03 2014.

doi: 10.1371/journal.pgen.1004182.

N. H. Barton and H. P. de Vladar. Statistical mechanics and the evolution of

polygenic quantitative traits. Genetics, 181(3):997–1011, 2009.

N. H. Barton and M. Turelli. Evolutionary quantitative genetics: How little do we

know? Annu Rev Genet, 23(1):337–370, dec 1989. doi: 10.1146/annurev.ge.23.

120189.002005.
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T. Held, A. Nourmohammad, and M. Lässig. Adaptive evolution of molecular

phenotypes. J Stat Mech: Theory Exp, 2014(9):P09029, 2014.
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M. Lukačǐsinová and T. Bollenbach. Toward a quantitative understanding of

antibiotic resistance evolution. Curr Opin Biotechnol, 46:90–97, aug 2017. doi:

10.1016/j.copbio.2017.02.013.

86



Bibliography
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