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Kurzzusammenfassung

Das Braess-Paradoxon ist ein kontraintuitives Phänomen, welches in Verkehrsnetzen mit

egoistischen Nutzern auftreten kann. Es besagt, dass das Hinzufügen einer neuen Straße zu

einem Verkehrsnetzwerk unter bestimmten Umständen zu längeren Reisezeiten für alle Nutzer

führen kann. Dies kann wichtige Konsequenzen für die Planung neuer und den Ausbau beste-

hender Verkehrsnetzwerke haben, da die naive Annahme, dass zusätzliche Straßen immer zu

einer besseren Verkehrssituation führen, nicht immer zutrifft. Um negative Folgen vom Bau

neuer Straßen zu verhindern, ist ein detailliertes Verständnis des Paradoxons essenziell. Dies

ist insbesondere wichtig, da die Kapazitäten der Straßennetzwerke vieler großer Städte schon

lange erreicht und der Platz für den Bau neuer Straßen begrenzt ist.

Trotz vieler Beispiele, welche darauf hindeuten, dass das Paradoxon in echten Straßen-

netzwerken auftritt, fehlt ein fundiertes Verständnis dieses Effekts. Die meisten bisherigen

Arbeiten zu diesem Thema basierten auf deterministischen mathematischen Modellen, deren

Ergebnisse sich nicht direkt auf reale Verkehrsnetze übertragen lassen. Darin wurden einige

stark vereinfachende Annahmen getroffen. Die Beschreibung des Verkehrsflusses wurde auf

Reisezeitfunktionen beschränkt, welche linear mit der Anzahl der Autos auf den Straßen zu-

nehmen. Weiterhin wurde angenommen, dass allen Nutzern fehlerfreie Verkehrsinformationen

zur Verfügung stehen und dass sie ihre Routen auf dieser Basis komplett rational wählen.

In dieser Arbeit wird das Verständnis des Paradoxons auf eine realistischere Basis gehoben.

Dazu werden Netzwerke aus total asymmetrischen Exklusionsprozessen (
”
totally asymmetric

exclusion process“, TASEP) in Bezug auf das Braess-Paradoxon untersucht. Der TASEP be-

schreibt Autos als Teilchen, welche auf einem eindimensionalen Gitter springen. Er ist ein

einfaches stochastisches Transportmodell, welches mikroskopische Wechselwirkungen bein-

haltet und eine nichtlineare Fluss-Dichte Relation aufweist. Auch Reisezeitfunktionen von

TASEPs haben eine annähernd realistische Form, sie sind monoton wachsend und divergieren

bei maximalen Dichten. Der TASEP kann nicht alle Phänomene von echtem Straßenverkehr

beschreiben, bildet jedoch viele Effekte ab, welche in vorheriger Forschung oft vernachlässigt

wurden.

Die Netzwerkstruktur, welche in Braess ursprünglicher Veröffentlichung benutzt wurde,

wird in verschiedenen Varianten analysiert, wobei der Verkehrsfluss im Netzwerk durch TA-

SEPs beschrieben wird. Verschiedene Randbedingungen, Routenwahlverfahren und Dynami-

ken werden betrachtet. Zunächst werden die Entscheidungen der Nutzer extern festgelegt.

Dies bedeutet, dass die Nutzer nicht intelligent entscheiden, welche Routen sie wählen, son-

dern dass diese extern vorgegeben werden. Durch Vergleiche der Nutzeroptimumszustände

(
”
user optimum states“) der Netzwerke mit und ohne neue Straße wird gezeigt, dass das

Paradoxon in solchen Netzwerken grundsätzlich auftreten kann.

Es wird gezeigt, dass das Braess-Paradoxon in großen Bereichen des Phasenraumes des

Braess-Netzwerkes mit periodischen Randbedingungen und zufällig-sequentieller Dynamik

auftritt. Verkehrsstillstände können in großen Bereichen des Phasenraumes gefunden wer-



den, falls fixe Anzahlen von Nutzern bestimmte Routen wählen. Wenn Nutzer hingegen mit

festgelegten Wahrscheinlichkeiten auf die Routen verteilt werden, sind in großen Bereichen

des Phasenraumes starke Fluktuationen in den Reisezeiten zu beobachten.

Unerwartete Phasen, in welchen das System potentiell zwischen nicht-stabilen Zuständen

oszilliert können bei offenen Randbedingungen und zufällig-sequentieller Dynamik festgestellt

werden. Das Braess-Paradoxon wird hier indirekt beobachtet, da eine resultierende Zunahme

der Reisezeiten erwartet wird, falls dieses System von
”
intelligenten“ Teilchen genutzt wird.

Die Untersuchung der Netzwerke wird komplizierter, wenn parallele statt zufällig-sequentieller

Dynamik verwendet wird. In diesem Fall werden Ampeln eingesetzt um potentielle Konflikte

an Kreuzungen zu vermeiden. Das Braess-Paradoxon tritt auch in diesem Fall auf.

Zusätzlich zu der Erkenntnis, dass das Braess-Paradoxon in TASEP Netzwerken beobach-

tet werden kann, werden Phasendiagramme für alle untersuchten Varianten des Netzwerkes

präsentiert, welche die Auswirkungen des Hinzufügens einer neuen Straße detaillierter be-

schreiben.

Das Braess-Paradoxon tritt auch auf, wenn Teilchen ihre Routen individuell intelligent

wählen. Im zweiten Teil der Arbeit wird ein Routenwahlalgorithmus implementiert und am

Beispiel des Braess-Netzwerkes mit periodischen Randbedingungen getestet. Verschiedene Ar-

ten von Verkehrsinformationen werden als Grundlage des Algorithmus genutzt und alle Teil-

chen wählen ihre Route individuell darauf basierend. Das Paradoxon tritt auf, wenn Teilchen

Entscheidungen basierend auf ihren eigenen Erfahrungen treffen. Es tritt ebenfalls auf, wenn

die Entscheidungen auf Abschätzungen zukünftiger Reisezeiten basieren, welche für alle Teil-

chen zugänglich sind. Diese Abschätzungen werden auf Basis der aktuellen Positionen aller

Teilchen im System berechnet. Dies kann als Näherung von Verkehrsinformationen, wie sie

von Smartphone-Apps zur Verfügung gestellt werden, verstanden werden. Es wird weiter-

hin gezeigt, dass das Paradoxon auftritt, wenn einige Nutzer ihre Entscheidungen auf Basis

von persönlichen Erfahrungen und der Rest basierend auf öffentlich zur Verfügung stehenden

Informationen treffen. Dies beschreibt die Situation von Pendlern im Berufsverkehr.

Die erzielten Ergebnisse unterstreichen die Bedeutung des Braess-Paradoxons für reale Ver-

kehrsnetzwerke.



Abstract

The Braess paradox is a counterintuitive phenomenon that can occur in traffic networks, which

are used by selfish users. It states that under certain circumstances the addition of a new

road to a traffic network can result in increased travel times for all network users. This can

have important consequences for the design of new traffic networks and for the extension of

existing ones, since the näıve assumption that the traffic situation in a road network always

improves when adding new roads does not always hold. A detailed understanding of this

paradox is needed, since possible negative externalities resulting from the construction of new

roads have to be understood in order to be avoided. This is especially true, since the capacity

of the road networks of many cities has long been reached and space for the construction of

new roads is limited.

Even though there have been numerous real world examples that indicate that the Braess

paradox might occur in real world traffic networks, a deep understanding based on realistic

traffic models is still missing. This thesis provides important stepping stones towards this

much needed understanding. Most previous research on the topic focused on analysing deter-

ministic mathematical models, the results of which are not directly transferable to real traffic

networks. Often many oversimplifying assumptions were made: the description of traffic flow

is reduced to unrealistic road travel time functions that increase linearly with the numbers of

cars using the roads. Furthermore, perfect traffic information and perfectly rational decision

makings of the network users were assumed.

This thesis is dedicated to the study of the Braess paradox in networks of totally asym-

metric exclusion processes (TASEPs). The TASEP models drivers as particles hopping on a

one dimensional lattice. It is a simple stochastic transport model that includes microscopic

interactions and exhibits a nonlinear current-density relation. The travel time functions of

TASEPs have close-to-realistic shapes: they increase monotonically and diverge when ap-

proaching the maximum possible density. TASEPs do not reproduce all phenomena of real

road traffic, but many basic features which are not included in most previous research on the

Braess paradox, can be described.

The network originally used by Braess is studied in several variants, but with the traffic

flow described by TASEPs: various boundary conditions, route choice mechanisms and update

types are considered. In a first step, it is shown that states realizing the paradox exist in

TASEP networks. For this the decisions of the road users are tuned externally, i.e. users

do not decide individually in an intelligent way, but are set to choose certain routes in the

network. The user optimum states of the networks without and with the new roads are

identified and their travel times are compared.

It is shown that Braess’ paradox occurs in large regions of the phase space in the net-

works with added periodic boundary conditions and random-sequential dynamics. With fixed

amounts of drivers assigned to individual routes, gridlock states are found in large parts of

phase space. Assigning drivers to their routes according to turning probabilities results in



states with strong fluctuations in travel times that dominate large regions of the phase space.

Unexpected phases in which the system is prone to oscillations between several unstable states

are observed in the system with open boundary conditions and random-sequential dynamics:

the Braess paradox is observed in an indirect way, since an increase of travel times is expected

if this system was used by ‘intelligent’ particles. If parallel dynamics are employed instead

of random-sequential dynamics, the treatment becomes more complicated. Traffic lights are

implemented to avoid potential conflicts at junction sites. Braess’ paradox is also observed

in this case.

Beyond confirming that Braess’ paradox can be observed in TASEP networks, phase dia-

grams which characterize the influences of the new road in more detail are presented for all

analysed variants of the network.

Braess’ paradox is also realized if intelligent particles, which individually choose their routes,

use the network. In the second part of the thesis, a route choice algorithm is implemented

and results of a performance test in the Braess network with periodic boundary conditions

are presented. All particles choose their routes individually based on this algorithm. Several

types of traffic information are used as input for the algorithm. The Braess paradox occurs

if particles decide based on their own memories from previous travel experiences. It is also

realized if all particles base their decisions on publicly available approximations of future travel

times. These approximations are calculated based on the current positions of all particles in

the system and are a type of information similar to that provided by smartphone apps in real

traffic networks. It is also shown that the paradox occurs if some particles base their decisions

on personal information and the others on public information. This situation is very similar

to that of real commuters’ scenarios. These results further stress the importance of Braess’

paradox for real road networks.
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1 Introduction

Many transport systems can be modelled by stochastic nonequilibrium processes. Some ex-

amples are car traffic on a freeway [1], thermoelectricity [2] and percolation processes [3].

In the real world, most transport processes take place on networks. These networks are

comprised of various edges, connected to each other by nodes. The individual edges can be

described by transport processes that retain a current in the system which keeps it out of

equilibrium. An example from everyday life is that of car traffic on road networks [4]: a road

network of a city is comprised of many roads, i.e. many transport processes, that form the

edges of the network, which are connected through various junction sites. Some examples

from various scientific disciplines, which can also be described by networks of transport pro-

cesses, are the intracellular motor protein movement on a cytoskeleton [5], the dynamics of

supply chains [6], data transfer in computer networks [7] and predator prey models describing

population dynamics in ecosystems [8].

Many phenomena observed in such networks are consequences of the interplay of the indi-

vidual transport processes and the network’s structure. They can thus neither be explained

by a reduction to just the individual transport processes that form the network’s edges, nor by

just the network’s structure. Instead, the interaction of both has to be taken into account [9].

The Braess paradox, which was was first described by German mathematician Dietrich

Braess in 1968 [10, 11], is an especially interesting network phenomenon: it describes the fact

that under specific circumstances the addition of a new road to a congested road network

can lead to increased travel times for all drivers. Vice versa, sometimes the closure of roads

can lead to lower travel times on all other roads in a network. This specific paradox is one

example of various network effects that also became known as “more-for-less” effects [9]. The

paradox is genuinely surprising: näıvely one would expect that a new road, which increases

the number of choices for the network users, would always lead to lower travel times, especially

if the new road results in per-se faster connections between origins and destinations for the

drivers.

A crucial prerequisite for the occurrence of the paradox is that network users are selfish

(or noncooperative), i.e. that they want to minimize their own travel times and do not act

altruistically. If certain prerequisites are met, it is generally agreed that the stable state of

traffic networks of such users is given by the user optimum state: this state is reached if the

drivers distribute themselves onto the routes, such that all used routes have the same travel

times which are lower than those of any unused routes [12]. If the traffic was controlled by

some external authority, which optimizes the traffic state, the paradox would not occur: in

such cases a new road would always either improve traffic conditions or at least not worsen

1



1 Introduction

them. In most modern day street networks no such authorities are at work. The Braess

paradox is one of many examples of noncooperative games [13] in which selfish users drive

the system into a state that is worse than the optimum state.

A detailed understanding of the Braess paradox and other phenomena of traffic flow is of

great importance: the population of urban areas is increasing rapidly. Currently, 55% of the

world’s population lives in urban areas with a predicted increase to 68% in 2050 [14]. The

efficient development of new traffic networks and the expansion of existing ones, an interplay

of top-down planning and self-organizational processes [15], is just one important aspect to

be considered very carefully as a consequence. Space is limited and the road capacities have

long been reached in many cities around the world: in 2014, the average commuter in the

USA spent 42 hours and wasted approximately 70 litres of fuel in congestion [16]. According

to the TomTom traffic index [17], based on data gathered in 2016, Mexico City is the city

with the highest congestion worldwide with travel times doubling during peak hours. Even

in Cologne, which is only ranked 56th worldwide, travel times go up by 50% during peak

congestion periods, as compared to the free flow times.

Building new roads does not seem to be the right measure to tackle the problem of con-

tinuously increasing congestion. The so-called “Fundamental Law of Road Congestion” [18]

states that newly built roads might only relieve traffic conditions in the short term, while

more available roads result in an increased usage and thus in even stronger congestion in the

long term. Braess’ paradox is another indication that building new roads might not always be

a good idea: since its model-based discovery, there have been numerous real world examples

that indicate Braess’ paradox might occur in real world traffic networks [19–25]. Indeed, re-

search based on empirical road usage data identified major routes in cities such as New York

City, the closure of which could reduce congestion [26]. If new roads may potentially have

such adverse effects, city planners have to be considerably careful. A deeper understanding

of the paradox is thus needed.

In his original paper, Braess demonstrated the paradox itself and sparked an ongoing inter-

est in this phenomenon [27–34]. The original publication as well as many of the subsequent

publications on the topic employ models which represent real traffic networks in an oversim-

plified manner. Many effects occurring in real road networks are only described in their most

basic form while other effects are not included at all. Results obtained with these models can

thus not be directly applied to real road networks. In particular, they can not be used to

predict the occurrence of Braess’ paradox in a reliable way.

The assumptions that limit the real world applications can be subdivided into the following

two main categories.

a) A strongly simplified description of traffic flow.

b) Unrealistic assumptions regarding travel time information and decision makings of the

drivers.

Regarding Category a), Braess’ model uses deterministic, macroscopic mathematical models

for the description of traffic flow on the individual roads of the network. Real traffic flow,

2



resulting from the interactions of all the individual decisions made by all the participants, is

by its nature not a deterministic process. To be able to reproduce characteristic effects of real

traffic, stochastic microscopic models have proven to be effective methods [35]. Additionally,

the travel times of the roads are assumed to grow linearly with the number of cars using the

roads, omitting some decisive characteristics of real road traffic. Real travel time functions are

not linear, in particular they diverge for high densities as a consequence of traffic jams [36–42].

Some efforts have been made to analyse Braess’ network with more realistic traffic descrip-

tions: time-independent dynamics have been introduced into the study of the paradox, e.g.

by considering queueing models for the description of traffic flow [27, 43, 44]. These models do

not include microscopic dynamics and thus many important characteristics of real traffic are

not represented in these models either. To my knowledge no demonstration of the paradox

in models employing microscopic stochastic transport models has been published prior to our

research.

Regarding Category b), Braess’ model assumes that users have perfect information on all

travel times in the network and that they decide which routes to take perfectly rationally

based upon this information. User optimum states that potentially exist are assumed to al-

ways be reached, as a consequence of these assumptions. In most real road networks neither

of these assumptions hold: network users have limited knowledge about travel times based

upon their own experience or upon information from public sources, such as radio broadcast-

ing or personal navigational systems like smartphone apps [45, 46]. While the accuracy of

these predictions seems to grow, neither of them can be considered perfect. Furthermore, it

was shown that road network users do not decide perfectly rationally and that travel time

minimization is not the only aim underlying route choice processes [47–49]. The assumption

that user optima are realized in real road networks is thus also a topic of ongoing discus-

sion [33, 50]. Modifications of the original concept of the user optimum have been proposed

as more realistic concepts for stable states in road networks of selfish users [51, 52]. How-

ever, more recent research indicates that the increasing use of smartphone routing apps could

indeed realize user optima in traffic networks [53].

The aim of this thesis is to analyse and understand Braess’ paradox in more realistic

models. For this, I analysed networks of Totally Asymmetric Exclusion Processes (TASEPs)

for the occurrence of the paradox. The TASEP is a simple particle hopping model which

was first introduced to model protein translation [54]. Despite its simplicity it covers some

basic features of road traffic [1] and exhibits interesting nonequilibrium properties such as

boundary induced phase transitions [55]. It is nowadays considered one of the standard

models of nonequilibrium statistical mechanics and became known as the “mother of all

traffic models” [35], if the particles are interpreted as drivers on roads. While single TASEP

segments are well understood and analytically solvable (see e.g. [35] for a review of many

established facts on TASEP), networks of TASEPs are generally not analytically solvable [56].

In recent years, mean field approximation methods as well as Monte Carlo simulations have

been applied to study some simple networks of TASEPs [56–62].

With the aim of understanding the paradox in a more realistic scenario and improving on

3



1 Introduction

the two main categories of simplification, a) and b), two main questions were addressed:

1. Can the paradox occur in networks of TASEPs?

2. Given that the paradox may occur: is it reached by particles which base their route

choices on realistic types of traffic information?

In the following, I describe how this thesis is structured and where these two questions are

addressed throughout the thesis.

Thesis Outline

In Chapter 2 the scientific background of Braess’ paradox is explained in more detail. After

introducing some important definitions, the original example is recapitulated. Some addi-

tional results on the paradox in the context of traffic flow as well as some examples from

other scientific areas are presented. The major limitations of the model, already hinted at

in a) and b), are addressed in more detail by juxtaposing the simplifying assumptions of the

model and observations from the real world. Important results on traffic flow, traffic informa-

tion and decision makings as obtained in traffic science, the social sciences and related fields

are presented. Based on this foundation, the scope of my research is then motivated more

specifically.

Chapter 3 presents the most important models and methods which I used throughout

my thesis. The TASEP is introduced in some detail, before presenting the basic model of

the research in the following chapters: the Braess network of TASEPs. The results in all

subsequent chapters are based on this model. Furthermore, Monte Carlo simulations as used

in this thesis are explained.

Chapter 4 addresses Question 1, i.e. if the paradox can occur in networks of TASEPs.

Braess’ network of TASEPs with externally tuned global strategies is analysed. The term

“externally tuned” refers to the fact that the particles do not make their own intelligent

decisions. Instead, the decisions of all particles are set externally by fixing some model

parameters. In doing so, the question if Braess’ paradox is in principal accessible in networks

of TASEPs is answered. This is repeated for various variations of the network.

Chapter 5 addresses Question 2, i.e. if the paradox is reached by particles that base their

route choice decisions on realistic types of information. While in Chapter 4 the particles do

not decide individually but are instead assigned to their routes, Chapter 5 examines what

effect intelligent particles have onto the network’s situation. For this purpose, a route choice

mechanism was implemented. The particles make their decisions based upon various types of

information, including a combination of personal and public information. This is a scenario

occurring in many modern day commuter scenarios in which travellers have information based

upon their own experiences and from modern personal navigational systems. The question,

whether Braess’ paradox is actually realized in these cases, is answered.

A short summary, concluding remarks and some suggestions for possible future research

are given in Chapter 6.
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2 Scientific Background of the Focus Topic

In the present chapter, the scientific background of the Braess paradox is summarized. First,

some definitions which are needed to describe traffic networks and which will be used through-

out the whole thesis, are introduced. Then, Braess’ paradox is presented in detail: the original

example by Braess and some significant results of the vast amount of research on the topic are

recapitulated. Subsequently, it is worked out why the descriptions of traffic flow and decision

makings in many models, used in the context of Braess’ paradox, are unrealistic. This is

followed by a summary of some results of research on traffic flow and route choice scenarios in

real traffic networks, as obtained in various scientific fields. Based on this, the general idea of

how this thesis adds to a better understanding of Braess’ paradox is explained in some more

detail.

2.1 Transport Networks: Important Definitions

For analysing transport networks certain definitions have proven useful. They are used to

distinguish different types of networks and network users and help characterizing the perfor-

mance of such networks, as measured e.g. by the travel times experienced by its users.

Transport networks have been analysed in various scientific fields such as traffic sciences,

traffic engineering, mathematics, network sciences and physics. Therefore sometimes different

terminologies are used to describe the same things. In the present chapter some important

definitions are introduced as they will be used throughout this thesis. In this whole thesis the

primary focus is on (car-) traffic networks. The presented definitions can nevertheless also be

applied to most other transport networks.

2.1.1 Basic Definitions Used in All Kinds of Networks

The definitions presented in this subsection are used in the description of all networks in this

thesis independent of the detailed natures of the networks.

Junctions, Roads and Routes. A connection between two “junctions” (or “points”) 1 of a

traffic network is called a “road”2. Roads have to be distinguished from “routes”: in this

thesis a route is always a connection from an origin to a destination. A route can be comprised

of multiple roads. For clarification consider the example network shown in Figure 2.1. The

nodes A to F of the network could e.g. be cities which are connected by several roads. If

1In network science terminology: “nodes”.
2In network-science terminology: “edge”.
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“network users”3 want to go from point A to point F , they can choose from two different

routes which are marked in green and in blue in the figure.

Figure 2.1. A sample (transport) network. The nodes A to F could e.g. represent cities in a road
network. The grey arrows indicate that this network could be embedded into a larger network. If a
certain amount of cars wants to go from A to F , they can choose between the green route, traversing
points C and D and the blue route traversing points C and E.

Travel Times. The amount of time it takes to go from an origin to a destination using a

specific route is called the “travel time” on that route.

Network States. A “state” of the network is given by the distribution of the network users

onto the available routes. If in the network shown in Figure 2.1 a number of X network

users want to go from point A to point F , one possible state would e.g. be 0.75 · X users

choosing the blue route and 0.25 ·X users choosing the green route. Different states can lead

to different network performances as they may influence e.g. the travel times of the routes in

the network.

Individual and Global Strategies. The route choices individual network users make to get

from their origins to their desired destinations are also referred to as their “individual strate-

gies”. The set of all individual strategies is also called the “global strategy”.

An individual strategy can be given by an individual user always choosing one specific route

or by assigning probabilities for using various routes. These two variants are also called “pure

and mixed strategies”, respectively. For an example go back to the network in Figure 2.1: if

a network user has to go from A to F repeatedly (A and F could be e.g. home and workplace

of a commuter), a possible pure strategy would be him choosing the green route everyday.

A possible mixed strategy would be choosing either the green or the blue route with equal

probabilities.

3Depending on the context also referred to as “cars”, “drivers”, “particles” or “agents”.
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2.1.2 Different Types of Networks

Numerous types of traffic networks can be distinguished based on several characteristics. The

types presented here can be distinguished by their travel time characteristics and by the types

of agents using the network.

Uncongested and Congested Networks. When describing road traffic networks one has

to differentiate between uncongested and congested networks. In “uncongested networks”

the travel times of routes do not depend on the numbers of users on the routes while in a

“congested network” the travel times increase with the number of agents on the routes [28].

All real road networks become congested from a certain number of users upwards.

Networks of Selfish Users. In a network of “selfish users” all agents can decide on their

own upon which routes to take towards their destinations. In past- and present-day road

networks this is mostly the case. Users may be influenced by navigational systems, radio

traffic broadcasting or other things but ultimately they are free in their route choice decisions.

While factors like the length of the route, the road conditions or the scenery can also have an

influence, the most important factor influencing these decisions seems to be the minimization

of the expected travel time. This is especially true for traffic in cities and for commuters

route choice scenarios (see e.g. [47, 48, 63] for reviews on which factors influence traveller’s

route choices). This topic will also be discussed in greater detail in Section 2.4.

Throughout this thesis it will be assumed that the only objective of selfish users is mini-

mizing their own travel times and that they do not act altruistically in pursuing this goal.

Networks with Traffic Guidance Authorities. In some networks external4 “traffic guidance

authorities” can regulate the traffic. They can decide how the individual network users are

distributed onto the roads and routes of the network. In a road traffic network this may e.g.

be realized by the police assigning individual cars onto specific routes. Alternatively, traffic

lights could be used not only for giving the right of way to specific roads at specific times,

but also assigning route choices (e.g. if there are two routes leading to the same destination).

Another possible example could be a situation in which all users have navigational systems

which are coupled to each other, and to the infrastructure via the internet of things (also

called car-to-car or car-to-X communication [64]). If all individual devices are coupled, a

global strategy can be developed and the individual users can be assigned to their routes

accordingly. If all users make their route choices (voluntarily or by obligation) according to

this strategy, one could speak of a network with a guidance authority.

2.1.3 Characteristic States for Different Network Types

Two states are of major importance for characterizing road networks: the system optimum

and the user optimum. The former is typically associated with networks with traffic guidance

4The term “external” means ‘controlled by authorities external to the network users’, i.e. not controlled by
the users themselves.
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authorities while the latter is associated with networks of selfish users. In most cases these

states lead to different network performances. The performance differences can be quantified

by the so-called price of anarchy which is defined subsequent to the two optima.

User Optimum. The “user optimum” (uo) is the stable state or equilibrium state of a

network used by selfish users. This means that the distribution of drivers onto the routes will

not change with time once the user optimum is reached.

In an uncongested network it is always given by all users choosing the shortest available

routes. The problem of finding equilibrium states in congested transport networks used by

selfish users goes back to Pigou in 1920 [65] and Knight in 1924 [66]. The notion of the user

optimum was explicitly introduced by Wardrop in 1952 [12]. If a certain amount of agents

wants to go from the same origin to the same destination and there are multiple possible

routes to choose from, the following definition holds.

The system is in its user optimum state if the users choose their individual strate-

gies in such a way that all used routes have the same travel times which are lower

than those of any unused routes [12].

This state is stable since there is no incentive for any user to change its strategy: since in

congested networks travel time functions are always increasing with the number of users on

the road [67], a change of routes would always lead to an increase of the switching user’s

travel time.

Throughout the literature on this topic the user optimum is often also referred to as

“Wardrop equilibrium” or as “user equilibrium” (see e.g. [29]). It corresponds to the concept

of a “Nash equilibrium” [68] in game theory.

The following two variants of user optima are distinguished in this thesis.

1. The “pure user optimum” is realized if each network user chooses one specific route.

If applied e.g. to a commuter’s scenario this means that individual users keep using

the same routes over and over. The numbers of users on each route are fixed integer

numbers. This corresponds to a “pure Nash equilibrium” if one considers the situation

from a game theory perspective [68].

2. The “mixed user optimum” is in the context of game theory known as a “mixed Nash-

equilibrium” [68]: it corresponds to the case that all network users keep their strategies,

while here these strategies do not correspond to always choosing one specific route, but

are fixed probabilities for choosing (various) routes. A mixed user equilibrium is reached

if the average values of the travel times of used routes are equal and lower than those

of unused routes.

In 1955, Beckmann et al. showed for deterministic macroscopic traffic models that if travel

time functions are monotonically increasing with the number of cars, a unique user optimum

always exists [69].
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The two definitions presented above assume that network users have knowledge of travel

times on all routes, that their perceptions of travel times are not in any way distorted and

that they decide perfectly rationally. Thus if any route had a minimally lower travel time

than the route used by a certain user, this user would switch routes. This is not always the

case in real road networks, as can be explained from a simple example: imagine a person

drives to work on the same route everyday and on this route the travel time is normally 30

minutes. If there is another route which, on one day, is expected to have a travel time of

29 minutes, this would not necessarily lead the person to switch routes. If the amount of

potentially saved time is relatively small, factors like routine can be more important than

saving a small amount of time. To account for some effects of this kind, the following two

notions have been proposed.

a) The “stochastic user optimum” was introduced by Daganzo et al. in 1977 to account

for the fact that real network users may not always perceive travel times perfectly [51].

Furthermore, network users may not choose their routes on a perfectly rational basis.

To account for such effects the stochastic user optimum was defined as the state in which

no user believes that he can improve his travel time by unilaterally changing routes. To

account for this in mathematical models it was suggested that for each driver a small

random number is added to the expected travel times.

b) The “boundedly rational user optimum”, as introduced by Mahmassani et al. in 1987,

accounts for the effects already mentioned above, namely that real drivers may not be

induced to change to another route if travel times can only be decreased by a small

amount [52]. It is achieved if all selfish users are satisfied with their current travel

choices. In models it can e.g. be implemented such that users only switch routes if the

potentially saved travel time is higher than a certain threshold.

Some of these concepts will be applied throughout this thesis. It is important to keep in

mind that they all refer to the same general understanding of what a stable state is in a

network with selfish users: a state in which there is no incentive for any user to change its

strategy.

System Optimum. The “system optimum” (so) is the state which is best for the system as

a whole. Different definitions of the system optimum are used depending on how the system

is defined. Two of many possible definitions are the following: on the one hand, the system

could be considered from an external viewpoint and it could then be optimized with regard to

its performance as measured from that external perspective. On the other hand, the set of all

network users could be considered to be the system. The system could then be optimized with

regard to the set of all user experiences. Optimizing the system based on different definitions

of what the system actually is, can lead to different states being considered optimal.

Applied to a city traffic network, an external viewpoint could e.g. be that of the city

planning council. The council might want to optimize the performance of a part of the city’s

road network with regard to how this network part influences the surrounding network. From
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this point of view there could be various possible definitions of the system optimum. One is

the state which minimizes the total travel time of all users, as used e.g. in [70]. A second one

would be the state which maximizes the flow through the network. This was e.g. used in [27].

These definitions do not necessarily optimize the network with regard to the convenience of

its users.

If the system is considered to be described by the set of all the network users, among others,

the following definitions of system optima were proposed. In Wardrop’s original definition of

the system optimum [12], often referred to as the “social Wardrop equilibrium”, the system

optimum is the state in which the weighted average (with regards to the number of users on

the routes) of the travel times of all routes is minimized. This is the state which is on average

best for all network users. It is not necessarily the best for each individual user since it could

be a state in which a few users experience very high travel times while most users experience

much lower travel times. This would imply a certain altruism of some network users who take

the routes with longer travel times for ‘the greater good’. Altruistic behaviour is in general

not assumed for real road users.

A definition of the system optimum accounting for this problem was given by D. Braess in

his original paper on his paradox and will also be used throughout this thesis.

The system optimum is the state which minimizes the maximum travel time of

all used routes [10].

While in Wardrop’s definition of minimizing the average travel times individual users could

be worse off than in the user optimum, this cannot be the case in Braess’ definition: his

definition implies that each network user faces a situation which is at least as good as in the

user optimum.

All the above-mentioned definitions can, depending on the actual example, be coinciding in

the same state but are generally fulfilled by different states. Oftentimes the system optimum,

no matter the exact definition, does not coincide with the user optimum. In such cases the

system optimum is not a stable state when dealing with selfish drivers, since individual routes

may have lower travel times than other routes. Users would then tend to switch to the routes

with lower travel times. The system optimum can generally only be achieved if the traffic is

regulated by an external traffic guidance authority.

The Price of Anarchy. In an uncongested network the user optimum always equals the

system optimum: it is always the state of all users choosing the shortest route, i.e. the route

with the lowest travel time. As mentioned above, all real networks become congested from a

certain density upwards. The performance of a congested network may be different depending

on if it is used by selfish users or some traffic guidance authority is present. To quantify these

differences the “price of anarchy” (PoA) has been defined.

When applied to travel times in road networks, the price of anarchy is given by the ratio of

the travel times in the user optimum T (uo) divided by the travel times in the system optimum
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T (so):

PoA =
T (uo)

T (so)
. (2.1)

Upper bounds for the price of anarchy were derived for mathematical traffic models fulfilling

certain conditions. If e.g. all roads are considered to have travel time functions linear in the

number of cars, the price of anarchy cannot exceed a value of 4/3. If travel time functions

are continuous and nondecreasing, the user optimum travel time cannot exceed the total

travel time in the system optimum for twice as many users. [71]. These limits are valid for

deterministic mathematical models.

2.2 The Braess Paradox

The Braess paradox was first formulated by Dietrich Braess, a german mathematician, in his

1968 paper “Über ein Paradoxon aus der Verkehrsplanung” [10] (an english translation was

published in 2005 [11]). It describes, roughly speaking, the counterintuitive phenomenon that

adding a road to a road network used by selfish users can result in equilibrium states with

increased travel times for all users.

In the present section, first, Braess’ original example will be recapitulated to convey a

detailed understanding of the exact nature of the paradox. Subsequently, a short summary

of some results of additional research on Braess’ paradox in road networks is given. This is

followed by some examples of occurrences in real road networks and of some analogues of the

paradox from other scientific disciplines.

Subsequently, a detailed analysis of the simplifying assumptions, used in Braess’ original

model is presented by juxtaposing these simplifications with what is observed in real road

networks. Building on this, the section ends by explaining how the research presented in this

thesis works contributes to an understanding of the paradox in a more realistic manner.

2.2.1 Braess’ Original Example

The present subsection summarizes Braess’ example of the paradox [10, 11]. The original

example is the network shown in Figure 2.2 which became to be known as “the Braess

network” or “Braess’ network”. It is assumed that all network users want to go from the

same origin to the same destination. For this purpose, they can choose one of three available

routes: “route 14”, “route 23” or “route 153”5. Road 5 is the road which is considered to be

added to the network (or deleted from the network if one deals with the inverse situation),

resulting in the newly available route 153. The network without road 5 will from now on also

be called the “4link network”, while the network with road 5 will also be called the “5link

network”.

5Routes 14, 23 and 153 consist of roads 1 and 4, 2 and 3, and 1, 3 and 5, respectively.
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Figure 2.2. Braess’ network as introduced in his original paper [10]. All cars want to go from the
same origin to the same destination. There are five available roads, forming three possible routes:
routes 14, 23 and 153.

The travel times Ti of all roads i were chosen to be linear functions of the number of cars

n which use the roads,

Ti(n) = ai + bin, with ai, bi ≥ 0. (2.2)

As will be discussed in detail in Section 2.2.5 this is an oversimplification of travel time

functions of real roads. They do not cover, amongst other effects, neither the microscopic

dynamics of road traffic nor fluctuations due to its stochastic nature.

Nevertheless, there are possible interpretations of the parameters in the linear travel time

functions: the parameters ai can be interpreted as the free flow travel time6. This is the time

it takes for a single vehicle to traverse the road, if there are no other cars or only a sufficiently

low number of cars, such that the cars do not influence each other. The parameters bi indicate

how strongly the travel time grows with the number of cars: they could be interpreted as a

representation of the road conditions. A road which is in a good condition and has multiple

lanes will have a lower b than a narrow road with many obstacles such as potholes.

For his network, Braess chose the following specific travel time functions:

T1(n) = T3(n) =10n, (2.3)

T2(n) = T4(n) =50 + n, (2.4)

T5(n) =10 + n. (2.5)

Thus the 4link network is symmetric, as it its two routes 14 and 23 are comprised of two

equal roads. Since there are no other roads in the 4link network it has no influence on the

6Indeed, the free flow travel times are Ti(1) = ai + bi, because these are the travel times that a single road
user experiences if there are no other users on the road. However, throughout most literature on the topic,
the ai’s are referred to as free flow times [30].
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travel times that the equal roads are in reverse order on the two routes.

The total amount of cars that wants to go from the origin to the destination is denoted

by N . The numbers of cars taking routes 14, 23 and 153 are denoted by n14, n23 and n153,

respectively, with N = n14 + n23 + n153. If a total amount of N = 6 cars wants to go from

start to finish, the system optimum is given for

nso
14 = nso

23 = 3 , nso
153 = 0, (2.6)

resulting in the following travel times:

T so
14 = T so

23 = 83 , T so
153 = 70. (2.7)

In the system optimum, no car is using route 153 and the travel time on that route is lower

than the travel times on both other routes. Thus, for selfish users, this state is not stable.

Cars would tend to switch to route 153. The (pure) user optimum is found for

nuo
14 = nuo

23 = nuo
153 = 2, (2.8)

resulting in the travel times

T uo
14 = T uo

23 = T uo
153 = 92. (2.9)

Now all routes have equal travel times and there is no incentive for any driver to choose a

different route.

The travel time in the user optimum is 92 on all routes and thus higher than that of the

system optimum which is 83 on the used routes.

First, we note that the price of anarchy in the 5link network is PoA = T uo/T so
max = 92/83 ≈

1.1 > 1: selfish users drive the system into a stable state which has a higher travel time than

the best state of the whole system. The latter can only be achieved by externally regulating

the traffic.

Second, we observe Braess’ paradox in the following sense: if road 5 was taken out of

the network, only routes 14 and 23 would be left. In the remaining symmetric network the

system and user optima would coincide at n14 = n23 = 3. This means that for selfish users

the 4link system would end up in its optimum state. Thus, while the elimination of road 5

leads to the vanishing of the fastest route (if used by only one car), it also leads to lower

user optimum travel times. One can also imagine the inverse situation: if one starts with the

network without road 5 and then adds this road, and thus a a shorter route, with the aim of

decreasing travel times, one can end up in a worse situation as user optimum travel times go

up.

The occurrence of the paradox is not limited to symmetric (4link) networks. As shown

e.g. by Frank in 1981 [31] the paradox also occurs in networks with broken (4link) symme-

try. In [31] the demand-regions7 in which the paradox occurs in the Braess network were

7The “demand” refers to how many cars want to use a road network. In our it is thus given by N .
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determined for travel time functions of the form of Equation (2.2) with arbitrary ai and bi.

Mixed User Equilibria. The Braess paradox is also observed if users choose their routes

according to mixed strategies. Let p14, p23 and p153 be the probabilities with which all users

choose routes 14, 23 and 153, respectively. The probabilities are subject to p14 + p23 = 1 or

p14 + p23 + p153 = 1 for the 4link and 5link systems, respectively.

In the 4link system, for mixed strategies the expectation values, denoted by 〈Tms
i 〉, of the

travel times on the routes 14 and 23 are

〈Tms
14 〉 = 50 + (1 + p14 · (N − 1)) · 11 (2.10)

〈Tms
23 〉 = 50 + (1 + p23 · (N − 1)) · 11 (2.11)

for each car.

For N = 6 a mixed user optimum state (muo) is found for p14 = p23 = 1/2 with a travel

time expectation value of 〈Tmuo
14 〉 = 〈Tmuo

23 〉 = 88.5.

In the system with the new road, the expectation values of the travel times on the three

routes are

〈Tms
14 〉 = (1 + (p14 + p153)(N − 1)) · 10 + 50 + 1 + p14(N − 1) (2.12)

〈Tms
23 〉 = (1 + (p23 + p153)(N − 1)) · 10 + 50 + 1 + p23(N − 1) (2.13)

〈Tms
153 〉 = (2 + (p14 + p23 + 2p153)(N − 1)) · 10 + 10 + 1 + p153(N − 1). (2.14)

Here a mixed user optimum is given for p14 = p23 = 5/13 and p153 = 3/13 with travel time

values 〈Tmuo
14 〉 = 〈Tmuo

23 〉 = 〈Tmuo
153 〉 = 93.6923.

For the case of mixed strategies the expected user optimum travel times are also higher in

the 5link system than in the 4link system, i.e. the paradox occurs also with mixed strategies.

This example shows that the average number of cars on a specific route in the mixed user

optimum does not have to correspond to the (integer) number of cars on that route in the pure

user optimum: in the 5link system, the pure user optimum is for N = 6 given by distributing

the users equally on the three routes. The mixed equilibrium is not achieved by all users

choosing the routes with equal probability!

2.2.2 Braess’ Paradox in Road Networks: Some Additional Results

The first description of the paradox in 1968 sparked an ongoing interest in the traffic science

community as well as in network sciences, statistical physics and other related research areas.

A prerequisite for the occurrence was found to be the following: if a new road, and thus

a new route with lower free flow travel time is constructed, user optimum travel times in

the network can go up. This happens, if due to switching to the the new route more users

switch to roads with high marginal travel costs8 [70]. In Braess’ original example this becomes

8The marginal travel cost of a route measures how much the travel time increases (for all users) if one more
user decides to use that route. For linear travel time functions like Equation (2.2) a high marginal travel
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clear: due to switching to the new route 153 more cars use roads 1 and 3. These roads have

high marginal travel costs (high b1 = b3 = 10, cf. Equations (2.3) to (2.5)). One more user

switching to one of these roads results in a large increase in travel time for all cars using

them.

Since the occurrence of the paradox was in these terms understood as a consequence of

network design and the choice of according travel time functions, with specific roads having

high marginal costs, the paradox was not anymore considered paradoxical but as a pseudo-

paradox [32].

In 1970, Murchland showed that the paradox also occurs for different choices of (linear)

travel time functions in Braess’ network [72] and the paradox was also demonstrated to occur

in networks of different topologies by Steward in 1980 [70].

In the traffic sciences community the focus was primarily on pure user optima. Mixed user

optima in the context of Braess’ paradox were of higher interest in related research in the

social sciences, e.g. [33].

A mathematical framework for predicting the occurrence of the paradox in networks of

any topology with uncorrelated link travel time functions of the form (2.2), and also for

nonlinear monotonically increasing travel time functions, was established in the research of

Frank in 1981 [31] and Steinberg et al. in 1983 [28]. Steinberg et al. pointed out that “Braess’

Paradox is about as likely to occur as not occur [in such general transportation networks]” [28].

Dafermos et al. introduced some correlation effects into the network by considering travel

time functions which not only depend on the amount of cars on the individual roads, but also

on the flow on all other roads in the network [29].

Some new insights on the paradox in the original Braess network were obtained in 1997 by

Pas et al. [30]. In this publication it was worked out for which demands the paradox occurs

for the original Braess example (Equations (2.3) to (2.5)). The results are summarized in the

following.

Imagine the same network as presented in Braess’ original example, but with more general

travel time functions, all linear as in Equation (2.2) and subject to the conditions

a1 = a3 = 0, (2.15)

a2 = a3 = α1, (2.16)

b1 = b3 = β1, (2.17)

b2 = b4 = b5 = β2, (2.18)

a5 = α2. (2.19)

The following conditions for the paradox to occur are valid for all choices constrained to (2.15)

to (2.19).

In the 4link network, without road 5, the system is due to symmetry in its user optimum

if half of the total number of cars N choose route 14 and the other half choose route 23. The

cost would correspond to large value of bi.

15



2 Scientific Background of the Focus Topic

travel times on both routes are then equal:

T (4)
uo =

N(β1 + β2)

2
+ α1. (2.20)

In the 5link network, the user optimum can be derived from the condition that all used

routes must have equal travel times which are lower than those of any unused routes. It turns

out that for

N ≤ α1 − α2

β1 + β2
(2.21)

the user optimum is given if all N cars use only route 153. Such a state will in the following

be called an “all 153” state. In this state the user optimum travel time is

T (5)
uo = α2 +N(2β1 + β2) (2.22)

and this travel time is lower than that on the unused routes 14 and 23.

For the total numbers of cars obeying

α1 − α2

β1 + β2
< N <

2(α1 − α2)

β1 − β2
, (2.23)

all three routes are used and have the same travel times

T (5)
uo = α1 +Nβ1 + (β2 − β1)

(
α2 − α1 +N(β1 + β2)

β1 + 2β2

)
. (2.24)

For

N ≥ 2(α1 − α2)

β1 − β2
, (2.25)

only routes 14 and 23 are used and have equal travel times

T (5)
uo =

N(β1 + β2)

2
+ α1, (2.26)

which is lower than that of the unused route 153.

Given this knowledge of the 4link and the 5link user optimum travel times, one can compare

them for equal N . If the 5link travel time is higher, Braess’ paradox occurs. If it is lower, the

new road improves the system performance in the sense that it leads to lower travel times.

It is important to observe that for total numbers of cars obeying (2.25) the new route will

not be used at all in the user optimum. This regime is not considered “Braess”, but the new

road does not lead to any improvement either and is thus useless. This means that from the

the lowest number of cars for which the 5link user optimum travel time is higher than the

4link user optimum travel time the new road first renders the situation worse, since Braess’

paradox is observed. Then, at even higher densities, the paradox vanishes. Nevertheless, the

road does still not improve the traffic situation since it is not used at all.

For the specific choice of Braess’ original example, Equations (2.3) to (2.5) and 0 ≤ N ≤ 15,

the results are shown in Figure 2.3. One can see that the Braess region begins at N = 2.58,
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Figure 2.3. The travel times in the user optima of the 4link and 5link systems for Braess’ original
example against the total number of cars N . One can see that for N < 2.58 the new road leads
to lower user optimum travel times (green region). For 2.58 ≤ N . 8.89 the system shows Braess
behaviour: the 5link travel time is higher than the 4link travel time (grey region). For N > 8.89
the new route is not used in the 5link system. Thus the two systems have equal travel times (blue
region). For N . 3.64 (black dotted line), in the 5link system’s user optimum only the new route

is used (“all 153” state). Braess’ original example of N = 6 with T
(5)
uo = 92 and T

(4)
uo = 83 is also

indicated by the dotted line in a bright grey color.

where T
(5)
uo surpasses T

(4)
uo . One can also see that for 0 ≤ N . 3.64 the 5link user optimum

is an “all 153” state. This means that for N . 3.64 only the new route is used - but from

N = 2.58 upwards this leads to higher travel times than those reached in the system without

the new road. For N & 8.89 the new route is not used anymore. This is why from this N

upwards, T
(4)
uo = T

(5)
uo . Summarizing one can say that for N > 2.58 the new road renders the

situation worse and then for N > 8.89, it is not used at all9.

In 2010, Nagurney showed for networks of arbitrary topologies, comprised of roads with

monotonically increasing travel time functions: if Braess’ paradox occurs at certain densities

from a certain density upwards, the new route is not used anymore [34].

Thus city planners have to be careful when designing new roads since the effects of new

roads are density dependent. The new road could lead to higher travel times or be ignored

not only for specific fine-tuned densities but for large density regimes.

2.2.3 Real World Occurrences

The model proposed by Braess seems rather artificially constructed. In the following, first

an example of how the Braess network could be realized in the real world is presented. Then

some reports on actual realizations of the paradox in real, more complex road networks are

9Note that N does not have to refer to single cars per time unit but could be measured e.g. in 1000cars

h
. Thus

non-integer values of N get a more realistic interpretation.
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2 Scientific Background of the Focus Topic

resented: it turns out that the phenomenon of the closure of roads leading to improved traffic

situations is indeed observed.

Where Could Braess’ Network Be Realized in the Real World? To make Braess’ specific

example a bit more applicable to a real world scenario, imagine a situation as depicted in

Figure 2.4 which is based on [73]. One could imagine that there is one city at the origin and

another city at the destination. The cities are separated by a mountain (or some other kind

of obstacle which prevents the construction of a high-capacity road). To get from origin to

Figure 2.4. A more illustrative example of Braess’ network. To justify the choice of the travel time
functions of roads 1 to 5 (Equations (2.3) to (2.5)) one can imagine the origin and destination to
be two cities separated by an obstacle like a mountain. There are two equivalent routes available to
reach the destination. Both are made up of short narrow road (roads 1 and 3) and a long road with
a high capacity (roads 2 and 4). Road 5 is a short wide new road which is a tunnel through the
mountain. When this road is built it results in a per-se faster origin destination connection: route
153. This figure was inspired by [73].

destination, one can choose between route 14 which consists of a narrow rural road (road 1)

and a relatively long but well-developed freeway (road 4) around the mountain. Alternatively

one can choose route 23 which consists of equal parts, but in opposite order. Since a lot of

cars use both routes, authorities decide to build a tunnel through the mountain to construct

road 5 and thus enable route 153. Road 5 is slightly longer than roads 1 and 3 but wider.

Equations (2.3) to (2.5) capture the main aspects of the roads in this scenario. The numbers

of cars ni using the roads of the network could be measured in units of 1000 cars
h and the Ti

(and the ai) could be measured in minutes (min) and the bi in
min·h

1000 cars . If 6000 cars want

to go from origin to destination each hour, the construction of the tunnel results in a travel

time increase of 9 minutes for every car.

Examples of the Paradox in Real Road Networks Braess’ paradox, as it is described in

the original article and also in most further research that was recapitulated in the previous

subsections, describes a phenomenon occurring in very specific models of traffic flow. Many

aspects seem overly simplified and rather artificial.

First, the networks which are studied are very simple. Second, the modelling of the traffic

is also a vast simplification (more details on travel time functions can be found in Section 2.3).
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2.2 The Braess Paradox

Finally, the assumptions that all cars want to go from the same origin to the same destination

and that they all have perfect knowledge about travel times on all routes are generally not

met in real road networks.

This leads to the question if the paradox actually occurs in the real world. Generally one

speaks of an occurrence of the Braess paradox, if the closure of a road in a traffic network

leads to better traffic situations, such as shorter travel times and less jams, in the surrounding

road network. Inversely, one speaks of the (inverse) Braess paradox if a newly built road leads

to worse traffic situations for the road’s surrounding network. In real world scenarios this is

without knowing all details like the origins and destinations of all individual network users.

Braess’ paradox in this sense was observed in various real world situations. The first sci-

entific reporting was made in 1969 by Knödel in an example in the city of Stuttgart [19].

Other examples include the closure of 42nd street in New York due to Earth Day celebra-

tions in 1990 which lead to lower travel times in all surrounding streets [20]. In 2010, also

in Downtown New York, some major traffic routes were decided to be closed permanently.

Additionally to citizens and tourists enjoying pedestrian-only zones, traffic in the surround-

ing streets improved [21]. A similar situation was observed in Seoul in 2005, where a city

motorway was closed in order to restore a river bed. The closure of this vast motorway lead

to improvements in traffic flow [22–24]. A situation which could turn out to be a realization

of Braess’ paradox is at present taking place in front of our physics institute here in Cologne.

Parts of the Zülpicher Straße are shut down for cars since April 2016 [25] and it seems like

traffic in the surrounding streets did at least not get worse [74]. A final evaluation is still

missing in this case.

In addition to these actual sightings of the paradox which were mainly by accident, i.e.

a street was closed for different reasons and it turned out to be beneficial for surrounding

traffic, some research was done into forecasting the paradox in city networks. In 2008, Youn

et al. analysed the main roads of the street networks of Boston-Cambridge, London and New

York City [26]. Traffic data was obtained from Google Maps and other sources. From this

data about traffic demands, the price of anarchy under several circumstances was calculated.

For this analysis more realistic travel time functions following the Bureau of Public Roads

functions [75] (these functions will also be discussed in 2.3) were used. It was observed

that in all three networks several routes exist which would improve the traffic situation if

they were closed. This is still under some limiting assumptions as described in detail in the

article [26] but hints strongly at the possibility of improving traffic conditions in existing city

networks by closing already existing roads. Additionally, Roughgarden showed in 2006 that

Braess’ paradox occurs with high probability in natural random networks with a fixed origin

destination pair [76].

It is really difficult to completely simulate road closures and predict their effects in actual

real world scenarios since for detailed predictions one has to know all origins and destinations

of all network users and also the exact travel time functions of all roads.
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2 Scientific Background of the Focus Topic

2.2.4 Analogues from Different Disciplines

Many analogues of the Braess paradox from disciplines other than traffic sciences have been

found. Generally, when the addition of nodes and/or links to a network leads to a decrease of

the network’s performance (or if their removal leads to a performance increase) one refers to

the system as showing Braess behaviour. Among other disciplines examples have been found

in mechanical and electrical networks [77, 78], pedestrian dynamics [79], oscillator networks

and power grids [80, 81] and thermodynamic systems [82]. A review of some examples from

mechanical systems, biological networks, to power grids can be found in a 2018 article from

Motter et al. [9]. Furthermore, on the official homepage of Dietrich Braess [83] numerous

works on the paradox from various disciplines are collected.

Since this thesis focusses on Braess’ paradox in road networks, only two examples are

presented. Figure 2.5 (a) shows a mechanical analogue and Part (b) of that figure shows an

example from power grids.

Figure 2.5. Two examples of analogues of Braess’ paradox from other disciplines than traffic science.
Part (a) shows a mechanical analogue: a weight is supported by two springs that are connected by
a linking string. When this string is cut, the weight goes up. Part (b) shows an example of the
paradox in power grids: the green nodes represent generators while the blue nodes are motor nodes.
The graphs show that the grid looses synchronisation after the red link is added to the network.
Part (a) is based on [77], Part (b) is based on [80].

Figure 2.5 (a) shows a weight subject to gravity. The weight is attached to the ceiling via

two springs. There are two support strings in parallel to the two springs which are additionally

connected to each other via the linking string. If the linking string is cut, the weight goes up

instead of down. This paradoxical result can easily be explained if the force balance equation

is written down explicitly. Effectively the system of springs and the strings is changed from

a serial to a parallel system by cutting the linking string.

Figure 2.5 (b) shows an example in a power grid. The green nodes represent generators

while the blue nodes represent motor nodes. In the system with just the black connections a

stable synchronised state exists, i.e. the the sum of the angle differences is a multiple of 2π.
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2.2 The Braess Paradox

This stability criterion breaks down after adding the red connection.

2.2.5 What Can Be Improved in Braess’ Model?

As already hinted at in Section 2.2.3 there are several aspects in Braess’ original model, as

well as in many subsequent works on the paradox, which are vast oversimplifications of real

road traffic. These simplifications lead to the question, if the paradox really occurs in real

traffic networks in the way it is described in the model. The real world observations cited in

Section 2.2.3 have not been studied systematically and the traffic improvements after road

closures could also be consequences of different origin. Due to the simplifications, the models

cannot be used to predict the paradox in real road networks, either.

Obviously the structure of the network, put forward by Braess as a demonstrative example,

is very simple and rather artificial. In real traffic networks such a small structure will normally

be embedded into a larger, more complex road network. But even if the five roads are viewed

just as a substructure of a larger network one would assume that there are more connections

to the surrounding network.

If one takes the structure of the network for granted and neglects effects of a surrounding

larger network, there are still many aspects of the model which are insufficient. They can be

grouped into two main categories.

1. The description of traffic flow on the roads from a physical point of view.

a) The description of traffic flow on the individual roads by linear travel time functions

is an oversimplification.

b) Correlations between the roads are neglected.

c) Influences of a larger, surrounding network, which the Braess network is embed-

ded into, are neglected completely: even if one decides to analyse just the network

structure itself, its boundary conditions have to be addressed. The question about

how cars enter and leave the system or if they stay inside the system is not ad-

dressed in Braess’ model.

2. The assumed availability of accurate travel time information and the assumed perfectly

rational decision making of the drivers.

a) The assumption that accurate travel time information is available to all users at

any time is unrealistic as well as

b) the assumption that all users decide perfectly rational based on this information.

c) Following from a) and b), the assumption that user optima are always reached is

also unrealistic.

These two main points of criticism will be analysed in a more detailed manner in the

following sections: in Section 2.3, I will summarize some established facts from empirical

research on traffic flow on freeways. Subsequently, I will present some basic characteristics
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2 Scientific Background of the Focus Topic

which should be included in traffic models to reach a certain level of realism and juxtapose

these characteristics to those inherent to the traffic description in Braess’ model.

In Section 2.4, traffic information as it is available in real road networks is described. Some

results of research regarding the question of how such information influences road users’

decision makings are presented.

Based on this information about traffic in modern day road networks, in Section 2.5 I

describe how I analysed the paradox in an improved, more realistic model and how this thesis

adds to the understanding of Braess’ paradox in realistic contexts.

2.3 The Description of Traffic Flow on Freeways

In the following the travel time characteristics of single roads are discussed. This discussion

is limited to roads on which the interactions between the cars are the main influence on the

state of the traffic flow. This kind of traffic is also called uninterrupted flow [84]. It can be

found e.g. on freeways.

Traffic subject to other potential influences like obstacles on the road, such as potholes,

accidents or traffic lights, on top of the interactions between the cars themselves is called

interrupted flow [84]. Interrupted flow is not treated here.

Obtaining reliable experimental data of uninterrupted flow is a big challenge as detailed

e.g. in [35, 85]. Furthermore, experimental data is best to be gathered in situations which

are considered to be close to a stationary state. This is a prerequisite to capture character-

istic behaviours not influenced by factors like changing traffic densities. Making sure that

experiments are conducted under stationary state conditions poses further challenges which

are summarized in [85].

From basic reasoning it is clear that on real roads in the uncongested regime, i.e. for

low densities when individual cars do not influence each other, the travel time T should be

proportional to the length L of the road divided by the maximum allowed speed10 v: T ∝ L/v.

This means that on a road with a given maximum speed the travel time will be independent

of the density in that regime. For really high densities the travel time should diverge since

jams will form and when approaching the maximum density eventually the road will gridlock

completely.

What happens exactly throughout all possible densities has been an active field of research

for a long time. In the following, the main characteristics of freeway traffic as obtained

in experiments are summarized. The characteristics which are of highest importance are

determined and subsequently, these results are compared to the traffic description used in

Braess’ model.

10It is generally assumed that cars drive at approximately the maximum allowed speed.
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2.3.1 Established Facts from Empirical Research

The first empirical research on the characteristics of traffic flow in the traffic science com-

munity dates back to Greenshield’s work from 1935 [86], in which he used photographs to

determine traffic states. Reviews on how these earliest studies on this topic were conducted

can be found in [87] and [88] (in German). In more recent works on the topic data is generally

gathered either by inductive-loop traffic detectors11 or floating-car data. The latter are cars

equipped with sensors, such as GPS, that are emerged in traffic and gather traffic data. The

two mechanisms are different in the sense that the former gathers data at a static position

while the latter is using a moving car [35].

By analysing data from freeways at different locations (e.g. Canada [36], Germany [37] and

the Netherlands [38]) as well as from some controlled experiments in which cars were set up

to drive in a circle without any obstacles [39], several shared general characteristics of freeway

traffic were determined.

In the analysis of traffic flow the so-called fundamental diagram has proven to be the most

important characteristic. The fundamental diagram can be given in three different forms.

They are connected through the hydrodynamic equation

J = vρ (2.27)

with J being the flow12 (generally given in units of no. of cars passing a certain position
time unit ), v the

velocity (generally given in units of length unit
time unit ) and ρ the density (also called traffic volume,

generally given in units of no. of cars
length unit) [35]. The three variants of the fundamental diagram

are: the flow depending on the density, the speed depending on the density and the speed

depending on the flow.

Since the fundamental diagram relates the velocity and the flux to the density there cannot

be one unique fundamental diagram for all roads: the fundamental diagrams of different roads

can vary due to different allowed maximum speeds, different overall behaviours of the road

users and other influences. Even the fundamental diagram of a single road is not independent

of measurement time since effects like the weather or the time of the day can influence the

driver’s behaviours [35].

Nevertheless a typical general form of a fundamental diagram describing how traffic on

single roads behaves generally (or on average) has been found (see, among others, [35–39, 89]).

An example of a typical experimental dataset is shown in Figure 2.6. Part (a) of the

figure shows the J(ρ) version of the fundamental diagram, as obtained from measurements

on a Canadian freeway. As most other data collected for fundamental diagrams it shows a

characteristic linear increase of the flow for low densities13. After reaching a maximum it

decreases linearly with further growing densities. In the decreasing branch the individual

11Insulated, electrically conducting loops that are installed in the pavement.
12Or current, or flux.
13In some road networks also nonlinear increases at low densities are observed while linear increases are most

commonly found [89].
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Figure 2.6. Part (a) shows a typical experimental dataset for the fundamental diagram connecting
flow J to density ρ. The individual points show single measurements. Part (b) shows a time-
evolution path observed in experiments (the arrow represents the direction of time), indicating the
existence of hysteresis in freeway traffic. Part (c) shows a typical functional form of a fundamental
diagram in the inverse lambda shape with a non-unique part for ρ1 < ρ < ρ2. Parts (a) and (b)
show data from a Canadian freeway as published in [36]. Part (c) is taken from [35]. The visual
appearances have been slightly modified from the original figures.

measurement points scatter more widely than in the increasing branch. Analysing the data

in a more sophisticated manner revealed that, as shown in Part (c) of Figure 2.6, there exists

a density regime in which the flow-density relation is not unique. The depicted shape of the

fundamental diagram is known as the inverse lambda shape. For densities ρ1 < ρ < ρ2 there

exist metastable high-flow states. If a road is in such a high-flow state, a distortion at a

random position can lead to a drop in the flux down to a stable low-flow state14.

It was shown that hysteresis effects can be observed in the fundamental digram. Fig-

ure 2.6 (b) shows a time typical evolution in the fundamental diagram suggesting that the

high flow branch can typically only be directly reached if density increases from below ρ1 but

not if it decreases from densities above ρ2.

A more detailed, highly successful theory describing three different traffic phases was sug-

gested by Kerner [90] and is nowadays widely agreed upon [35]. The details of this theory are

beyond the scope of this thesis and will not be treated here.

If details such as potential metastable high-flow states and other subtleties are neglected

the main universal characteristics of freeway traffic can be summarized in the forms of the

fundamental diagrams shown in Figures 2.7 (a) and (b).

The travel time, which is the most important characteristic of a road in the context of

Braess’ paradox, has generally not been of major interest in most research in traffic sci-

ence. Nevertheless, an expected average travel time can be extracted from the fundamental

diagrams.

If one assumes that v(ρ) is the average speed on the freeway, which is supposedly equal on

the whole length L of the freeway, one can deduce the travel time T dependent on the density

14These metastable states are not found on all freeways [35]!
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Figure 2.7. The typical forms of fundamental diagrams of freeway traffic if details are omitted.
Part (a) shows the flow J dependent on the density ρ while Part (b) shows the velocity v depending
on ρ. Part (c) shows the form of a travel time functions deduced from the shape of the fundamental
diagrams as described by Equation (2.30). These figures are based on [35]. The visual appearances
have been modified from the original figures.

ρ. From the form of the flow we deduce that it is given by

J(ρ) =




aρ, 0 ≤ ρ < ρ⋆

b− cρ, ρ⋆ < ρ < ρmax

(2.28)

while a, b, c have to be determined through experimental data and have to fulfill (a+c)ρ⋆ = b.

From this the velocity can be deduced to be

v(ρ) =




a, 0 ≤ ρ < ρ⋆

b
ρ − c, ρ⋆ < ρ < ρmax

, (2.29)

and from this the travel time:

T (ρ) =





L
a , 0 ≤ ρ < ρ⋆

L
b/ρ−c ρ⋆ < ρ < ρmax

. (2.30)

The resulting travel time function looks as shown in Figure 2.7 (c). The travel time is constant

for low densities 0 ≤ ρ < ρ⋆ and then diverges hyperbolically for ρ approaching ρmax. We

assume this to be a reasonably realistic representation of the travel time in uninterrupted

flow.

In the traffic engineering community different forms of travel time function were proposed.

These functions are designed to mimic the main characteristics of the travel time while being

suitable for usage in traffic assignment procedures [85]. Traffic assignment procedures are

used e.g. to decide upon policies for city planning. To be applicable in these assignment

procedures the travel time functions had (at least in the time they were developed) to meet

certain prerequisites. One of them was that they do not diverge when approaching the

maximum density (or the maximum capacity). This is why these functions purposely do not

describe high density states correctly [85].
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One of the most prominent of these functions was proposed by the U.S. Bureau of Public

Roads (BPR) in 1964 [40] on the basis of experimental data. This function reads

T = T0

(
1 + α

(
ρ

Jmax

)β
)
, (2.31)

with the free flow time T0, the capacity (in this context: the maximum possible flow) Jmax

and α and β all being empirical constants specific to individual roads. Some other successful

formulas, some based on models others on empirical data are e.g. the Davidson function [41]

and the Akcelik function [42]. A review of these formulas is found e.g. in [67].

Since the functions from the traffic engineering community are designed for practical traffic

assignment purposes rather than describing reality in the most precise way they will not be

further considered.

Functions based on measurements of the fundamental diagrams shown in Figure 2.7 are

instead used as a standard to compare models to.

2.3.2 The Traffic Description in Braess’ Original Model

In Braess’ model travel time functions are linear in the density. They are of the form of

Equation (2.2), which can be rewritten as

T (ρ) =
L

vmax
+ aρ, (2.32)

with vmax being the maximum allowed speed. The first term is thus the free flow travel time.

The function was rewritten here to fit the variable names used in the previous subsection.

Braess did originally not use the density but the number of cars using a road. This number

of cars can be translated into a density if the total length of a road is given. The conversion

factor is assumed to be included in a.

Employing T = L/v and J = ρv one arrives at the according velocity function

v =
1

1
vmax

+ a
Lρ

(2.33)

and the function of the flux:

J =
1

a
L + 1

vmaxρ

. (2.34)

The forms of the travel time function and the resulting fundamental diagrams are shown

in Figure 2.8. As one can see they differ strongly from the curves based on experimentally

observed data, as shown in Figure 2.7. If the travel time is linearly increasing, there is effec-

tively no free flow phase in which the travel time is independent of the density. Furthermore,

the J(ρ) diagram shows no peak flow, instead the flow is monotonically increasing, reaching

an asymptotic limit. This is unrealistic since traffic jams cannot be modelled like this. This is
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Figure 2.8. The forms of the travel time function (Part (c)) and the corresponding fundamental dia-
grams (Parts (a) and (b)) as used in Braess’ original model. When comparing them to experimental
observations as in Figure 2.7 one can see that many important features are missing.

a major argument why a more complex approach should be used to describe traffic efficiently.

The velocity function has a similar shape as the experimental one except for a missing free

flow regime.

Overall one can see that the traffic description on the individual roads using Equations of

the form of (2.2) simplifies the traffic flow process too strongly to model traffic realistically.

This is especially true at high densities since the travel times do not diverge. The linear travel

times could be considered an appropriate approximation at low densities if the parameters

are chosen appropriately.

Additionally to the traffic description on the individual roads, Braess’ model also lacks

correlations between them. A simple example is making this clear (see Figure 2.2). If road

3 was completely gridlocked, this would lead to diverging travel times on roads 2 and 5 as

well. Such queuing effects and other spillback effects also occur in less extreme cases, not just

for complete gridlocks. Such effects are not covered in the original model and most further

research. Exceptions are found in Dafermos et al from 1984 [29] in which a model with some

correlations is established. Furthermore, in Thunig et al, 2016 [27] considered Braess’ paradox

in a queuing network. These models consider the correlations in a basic way while the traffic

flow description on the individual roads is again limited.

In addition to the fact that the travel time functions do not reproduce experimentally

observed fundamental diagrams, modelling traffic flow in a deterministic way is generally

unsuitable since deterministic models do not represent the stochastic nature of traffic that

arises due to the individual decisions of all drivers.
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2.4 Traffic Information and Decision Making Processes in Road

Networks

In Braess’ original text on the paradox, most further works on the topic and generally in most

works dealing with selfish users and user optima, it is assumed that network users have perfect

knowledge of current travel times15 in the road network. Additionally it is assumed that all

selfish network users decide rationally based only upon this knowledge to minimize their own

travel times. If these two assumptions hold for all network users, the user optimum is the

equilibrium state of the network. In the present section it is discussed why the assumption of

perfect knowledge of current travel times does not hold in most real traffic networks. Different

types of traffic information are defined and some specific types, available in present-day road

networks are discussed. Subsequently, some results from research on decision making process,

subject to various types of information, are presented.

2.4.1 Different Types of Traffic Information

Information on traffic conditions (here, I will focus specifically on travel time information)

available to network users may be divided into the following two main categories.

1. “Public Information” is in principle accessible to everyone. It can be provided by

various forms of advanced traffic information system (ATIS) [91], such as the radio

or the internet. Information from personal navigation systems can also be considered

public information since it is principally available to everyone with access to such a

device.

2. “Personal Information” is information that is only available to specific individual net-

work users. It could be information on traffic states which is built upon personal

experiences made in the road network: e.g. a person commuting everyday will gain

some knowledge about typical traffic patterns.

These two main categories can contain information from three different sub-categories [45].

a) “Historical Information” describes travel times measured in the network in previous

time periods. This information may be comprised of personal and public information.

The former refers to travel times, an individual user experienced in the past himself

(this specific type is also called “experiential information” [92]). This could refer to the

immediate past or also to long-time experiences. The latter refers to information on the

network’s performance in the past, which is publicly available.

b) “Current Information” refers to the most up-to-date information available. It can be

given in the form of providing network users with the current state of the network, e.g.

15The term “current travel time” is in this context referring to the travel time, a driver will experience if he
decides for a specific route and then starts the journey exactly in the current moment, i.e. the moment
of the decision. The current travel time then refers to the time span (reaching into the future) from the
journey’s start right in the current moment until the journey’s completion.
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providing the current traffic densities or the currently measured (average) speeds on

certain routes.

If one sticks strictly to this definition, in real traffic networks travel time information

cannot be current information, due to the following problem: if e.g. a network user

finishes a trip in a given moment and his experienced travel time information is im-

mediately made available to the public, this information does not represent the travel

time in the network right in that moment. It is instead the travel time of the used

route at the current time minus the measured travel time. In the current moment the

traffic situation might have changed and a user choosing the same route right now might

experience a different travel time.

c) “Predictive Information” is e.g. given in the form of potentially to-be-expected travel

times of routes. In contrast to the two other types of information which can be assumed

to be accurate16 since they rely on the past or the present, predictive information

can by its nature not be guaranteed to be valid. If predictive information is given to

network users in the context of route choices, a specific dilemma occurs: the information

potentially influences the recipients, leading to take certain route choice decisions which

then change the traffic state and thus falsify the information [93].

With the rise of personal navigation systems and smartphone routing apps, a special type

of predictive information is getting very important: instead of just giving information

of overall network states or potential travel times on specific routes, these systems

often suggest a specific route to the user. If specific routes are suggested this is also

called “prescriptive information” [92] as opposed to the other type being referred to as

“descriptive information” [92].

Network users may have access to combinations of all these types of information and make

their own individual route choice decisions based upon them.

2.4.2 Available Information in Present-Day Real Road Networks

Users of real road networks may combine their information sources and from them form

a personal prediction of travel times on certain routes, and then choose the route which

seems most attractive to them. Personal information is by definition not available for public

studies, since it depends on the individual. While it may be possible to obtain some insights

on personal information, e.g. by surveys, it still depends on various factors such as the specific

road network. How public information is obtained and distributed can be studied. In the

following the example of traffic information as provided by smartphone apps will be analysed.

Smartphone routing apps have become the most important source of ‘public’ traffic in-

formation (in 2018 approximately 70% of all americans owned at least one smartphone and

16Obviously historical and current information can also be false if they come from unreliable sources. This is
not be dealt with here.
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used it at least once per month [94] and 90% used their smartphones at least once for rout-

ing [95]). Among many alternatives Google Maps is the most popular routing app used in

the US in 2018 [96]. While former ATIS systems, such as variable message signs, depended

on information from public agencies and their infrastructure (e.g. induction loops or traffic

cameras [46]), Google Maps relies on crowdsourcing [97]. In the given context this means that

all people using Google Maps send their GPS location data to Google which then combines

all the received data to provide the users with a fairly accurate depiction of the current traffic

situation. Current data is combined with a large stock of historical data.

Google Maps can on the one hand just be used to see current traffic conditions and on

the other hand also to suggest the fastest route to a desired destination, including step by

step directions. For predicting the travel time, in a first step historical information is used.

If there are enough active users on a route, the to-be-expected travel time takes the current

traffic situation into consideration. One of the key components considered seems to be the

average present speed on the roads (according to information provided officially by Google in

2009 [97]). How Googles algorithms work in detail is not known to the public [97, 98].

Next to positive implications the increased knowledge of travel times on all possible routes

leads to many negative side effects for the infrastructure. The most prominent is that cut-

through traffic17 is observed to be rapidly increasing leading to many problems in city-parts

formerly not subject to a lot of traffic (see e.g. [99] for one of many examples of reports on

that topic in public media).

While travel time information provided by smartphone apps may be fairly reliable in net-

works with low congestion, prediction problems persist if networks are highly congested: one

major problem is that, as already stated above, information from such sources as smartphone

apps (or also radio broadcasting) can influence the decisions of many drivers. If there is

e.g. an accident or some other kind of unexpected obstacle blocking a road, such ATISs

suggest replacement routes. If many drivers follow these replacement routes, the whole traffic

state changes and the replacement route itself can get so congested its travel times increase

vastly. Thus the effects of such information can render the information itself wrong. This

was demonstrated e.g. in a simulation example presented in [53].

Regarding the question discussed here – if user optima are actually reached – some research

suggests that the usage of routing apps can lead traffic networks into user optima. This is

in the sense that also smaller routes get used, which might not be known to many network

users if it wasn’t for apps. This seems to lead to travel time equilibration of such alternative

routes and the main routes [53, 99].

Generally the impact of such routing apps is still under heavy discussion [100]. As will be

explained in the following subsection, indeed the whole process of route choices is not well

understood. Neither the human decision making is well agreed upon nor is there an agreement

which information is best to be provided to network users [46].

It is important to keep in mind that reaching user optima is not necessarily desirable in

17The usage of smaller side roads with the aim to reduce travel times by avoiding congested high capacity
roads
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traffic networks.

2.4.3 Some Results of Research on Route Choices

Research on route choices based upon various types of traffic information can broadly be

subdivided into three types: analyses of real world traffic data, research based on simulations

and laboratory experiments. Some research results from these three areas are summarized in

the following.

Analyses of Real World Traffic Data. Generally it is not possible to systematically control

all the different factors at play in real road networks. Thus it is difficult to gain some objective,

quantifiable information from observations of real road networks. There are of course a lot

of anecdotal observations about what happens if a certain type of information is available

to network users. An example are the many reports in the popular media about the effects

of smartphone navigation apps, such as [99]. In a more systematic study conducted by Zhu

et al. in 2015 [49] the cars of a large number of voluntary participants were equipped with

GPS sensors and the routes of all their trips were recorded over a certain time interval.

In accordance with previous, less structured approaches, it was found that on average only

approximately one third of network users choose the fastest path available. A good review of

previous studies on this topic is also found in [49]. Indeed it was shown that travel time is

not the only factor influencing route choices (see e.g. [48] for some results obtained in Taipei

city in 2001 and also a good review on previous research). Furthermore, travel times seem

to be systematically misperceived [47]. It could be the case that if more and more people

rely solely on predictions of the shortest travel time, as given by smartphone apps, the travel

time becomes the most important factor influencing route choices in the future (at least for

commuter scenarios in which other factors, such as scenery are supposedly neglected). It is

generally not agreed upon, to which extend travel time expectations influence route choices.

Since all users of real networks are individual humans, the route choices are also individual

decisions and thus the process may never be completely understood.

Research Based on Simulations. There is a large quantity of research based on simula-

tions of route choice scenarios. Some mathematical models were considered to get a detailed

understanding of route choice scenarios [45, 101, 102], while it has proven most useful to

implement models employing so-called “multi-agent techniques” [93, 103, 104]. These models

combine traffic flow simulations, based on microscopic stochastic models, with algorithms for

the individual network user’s decision makings based on certain types of information. In such

models, the description of the traffic flow is called the “tactical layer”, while the algorithms

for the information acquisition and decision making are called the “strategic layer” [103].

A simple, extensively studied, scenario that demonstrates potential negative effects of infor-

mation is a simple two route model: image a single origin and a single destination connected

by two equivalent routes which the network users can choose from (this is basically the 4link

version of Braess’ network, see Figure 2.2). The user optimum is in this situation given by
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half the cars choosing one route and the other half the other route. All network users have

to decide for one of the two routes with the aim of minimizing their origin-destination travel

times. By studying this scenario in stochastic mathematical models, the following dilemma

has been shown [45, 101]: if at the beginning of each trip the travel times of both routes in the

previous round is made available to all drivers, the amounts of drivers using the two routes

end up oscillating around the user optimum. If the travel time on the first route is much

shorter in a given time period, more and more users will switch to this route, until the travel

time on the second route is much shorter. The average travel times of both routes end up

being higher than in the user optimum. The underlying cause of such oscillatory behaviours

has been called “overreaction” [45]. It has since been reproduced in simulations employing

queueing models [105] and microscopic stochastic traffic models [93]. They all show this be-

haviour if the most up to date travel times are made available to all network users, who then

base their route choices on this information.

Studying microscopic stochastic models, especially those with the tactical layer being es-

tablished by Nagel-Schreckenberg models [106] as suggested by Wahle et al. in 2000 [93]

has been an active field of research for a long time. Important parameters in such models,

next to the type of information provided to network users, are generally the fraction of users

providing information (called floating cars, the fraction of floating cars being sFC) and the

fraction of cars reactive to this information (dynamical cars, the fraction denoted by sdyn).

It was already suggested by Hall in 1996 [105] that there may be a shift from positive to

negative consequences of ATIS with a growing number of cars having access to information.

The observation of oscillations in the two route scenario lead to an ongoing search for

‘better’ types of current information to provide to network users. The motivation behind

this research was to find types information which lead the two route system into its user

optimum. Numerous suggestions were made, such as providing information based on average

speeds [107], the so-called congestion coefficient [108] and several variants, time-flux feed-

back [109] and many others. Some suggested information methods lead to good results in the

two route network. An extensive review is found in the paper of He et al. from 2014 [110].

In the same paper it is shown that most of the suggested feedback mechanisms fail to realize

user optimum flow, when used in different scenarios then the symmetric two link network.

Recently, some studies were published in which information of the type provided by personal

navigation systems is made available to the agents. A mathematical framework for analysing

networks with this type of information was proposed by Thai et al. in 2016 [100] and large

scale simulations were carried out by Cabannes et al. in 2018 [53]. The main results of

this research indicate, that this type of information may lead to user optima, but has some

negative externalities like the growing cut-through traffic.

Most models deal with (mainly two route-) networks with open boundary conditions. Users

enter the network, are given access to a specific type of information and then perform their

route choices. Like this the effects of this public information on the traffic states can be

studied. To my knowledge not many studies examined the influences of personal historical

information, such as the knowledge of travel times that day-to-day commuters build from
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their own experiences. Levy et al. studied the influences of personal information in a paper

released in 2016 [111]: they studied a microscopic two route traffic model with dynamics

similar to TASEP dynamics18. Users route choice decisions were based on their own personal

experiences of travel times in previous rounds. It was shown that this type of information

can lead the system into its user optimum state.

To my knowledge no model was studied yet in which personal historical information and

public historical, current or predictive information are combined.

Laboratory Experiments. Next to research based on simulations, which was mainly con-

ducted in the traffic engineering and traffic science communities, many route choice experi-

ments with real human subjects were performed in the field of social and economic sciences.

Such experiments are usually designed as follows: a certain route choice scenario and a travel

time model are implemented: most often traffic flow is modelled by deterministic travel time

functions that are either linear or of the BPR-type (see Section 2.3). Human subjects are

then asked to repeatedly perform route choices, while money is paid as an incentive for find-

ing the route with the shortest travel time. These experiments are most often carried out in

laboratories and are sometimes also app-based. Certain types of information may be provided

to the participants throughout the experiments. Analysing the subjects behaviours, one can

then deduce what drives human decision making and also what types of information have

which consequences.

While these experiments yield quantitative results, which are generally not available from

observations in the real world, the validity of these results are still to be considered carefully:

generally, in such experiments, the networks or sets of routes to choose from are very simple;

indeed much simpler than most real road networks. Furthermore, many influences on the

route choice process are not covered in such studies. The travel time is by definition the only

factor influencing the route choice processes. While this is still assumed to be one of the

quantities of major importance, as already mentioned previously, in the real world it is by

far not the only factor influencing route choices [47]. Nevertheless, these studies shine some

light on the question if user optima are reached in traffic networks, under the assumption that

travel time is the only important factor.

Some results from the vast amount of literature on this topic are summarized in the fol-

lowing. A good review of a large quantity of the literature is found in [46]. I focus on results

for systems which are similar to, or directly on the topic of the Braess paradox.

In laboratory studies in which participants had to repeatedly perform route choices (in

a short period of total time) Meneguzzer et al. in 2007 [92] analysed a scenario with three

origin-destination connections with BPR-type travel time functions. In a similar study, Selten

et al. in 2007 [50] analysed a scenario with two routes connecting origin to destination. In the

latter stuy linear travel time functions were used. In both experiments participants depended

on their personal historical information, i.e. they only knew the travel times of the routes they

18The Totally Asymmetric Exclusion Process (TASEP) is a stochastic transport model which is also used in
this thesis. It will be introduced in Section 3.1
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themselves chose in the past. In both cases user optima were reached on average: the mean

number of users on the specific routes were close to the user optimum, while oscillations

around this user optimum persisted. Selten et al. [50] also added a second round of the

experiment in which the historical travel times of all routes were given to the participants.

This also resulted in the user optimum on average, with slightly smaller fluctuations than

without the public information.

A similar experiment was performed by Ye et al. in 2017 [112]: the analysed network

corresponded to the 5link Braess network with the travel time functions of the roads being

of BPR-type. The experiment was conducted using the smartphone app WeChat. Partici-

pants had to perform one round of route choices per day, while travel times of all routes on

the previous day were provided. In this experiment the user optimum was approached and

fluctuations decreased significantly after several rounds.

In some laboratory experiments, Braess’ paradox was analysed directly: participants had

to perform route choices in networks before and after the addition of a new road. Rapoport

et al. in 2009 [33] considered Braess’ original network and also an extended version. Travel

time functions were linear in the number of users. Participants had to perform route choices

in the network for several rounds before and after addition of the new road. Participants

were provided information about travel times on their chosen routes as well as on the other

routes, as realized in the previous rounds. Braess’ paradox was observed in both networks. In

the networks without the added road user optima were reached on average, while in the 5link

version of Braess’ original network a pure user optimum was approached after several rounds

(i.e. fluctuations around the user optimum decreased significantly). It has to be noted that

while the network was of the original Braess form, the travel time functions were varied such

that in the 5link network, for the given amount of participants, the “all 153” state was the

user optimum.

Mak et al. in 2018 [113] performed a route choice experiment on Braess’ paradox in a

slightly different form: the network was modified and a route with travel time decreasing

with the number of users was introduced (this route was considered to be a type of public

transportation instead of a road used by individual cars)19. Participants also had to perform

route choices repeatedly and travel time information about all routes in the previous round

was publicly available. In both networks Braess’ paradox was observed. In this case the pure

user optimum was directly reached (with almost no fluctuations) in the network without the

new route while fluctuations around the user optimum were observed in the system with the

new route.

Summarizing, in most laboratory experiments user optima were reached either directly, or

on average with persisting fluctuations around pure user optima. In none of the experiments

the participants drove the systems into states far from the user optima. While this hints at

user optima being reached in real traffic networks, it is still no proof: various other factors

19The system optimum of the network with the new route was actually different (with lower travel time)
from that of the system without the new route. The user optimum in the system with new route had
higher travel times. This type of behaviour will be called “Braess 2” behaviour later in this thesis (see
Section 3.2.4).
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than just travel time optimization, which are neglected in such experiments, influence route

choices. Furthermore, the examined networks are much simpler than real networks and in

the presented experiments no realistic microscopic traffic flow models were used. Instead

the employed models are deterministic which is, as worked out in Section 2.3, not a realistic

description of traffic flow. Overall, due to the fact that these are laboratory experiments

of scenarios which are much more complex in the real world, the results always have to be

considered carefully.

2.5 How this Thesis Adds to a More Realistic Understanding of

Braess’ Paradox

During my doctoral studies I analysed the Braess paradox in networks of TASEPs20. As will

be described in Section 3.1.2, TASEP covers important aspects of real traffic flow that are

not represented in most preious research on the topic.

My research can be subdivided into the following two parts. Both parts analyse the Braess

network shown in Figure 2.2, with the traffic described by TASEPs.

1. The first part of my research is presented in Chapter 4. In this part the question

“Does the Braess paradox appear in this model with more realistic traffic dynamics?” is

addressed by analysing several variants of the network. These variants are distinguished

by different boundary conditions, different dynamics and different route choice scenarios.

The analyses are carried out without modelling individual decisions: the network states

(i.e. how many drivers choose which route) are tuned externally and no individual

route choice behaviours are implemented. Pure and mixed user optima of the networks

with and without the new road are determined and their corresponding travel times

are compared. It is found that the paradox occurs rather generically in these networks.

Furthermore, phase diagrams of the networks are obtained.

2. The second part of my research is presented in Chapter 5. The Braess network of

TASEPs is implemented as a multi-agent model [104] with TASEP dynamics being the

tactical layer and a route choice algorithm being the strategic layer of the multi-agent

model. Building on the results from Chapter 4, i.e. that the paradox can occur in the

Braess network with TASEP dynamics, the following question is addressed: “which type

of information is needed and how do the individual drivers have to choose their routes

such that user optima – and thus Braess’ paradox – are realized?”. To answer this ques-

tion, a route choice mechanism for all drivers based on personal and public information

is implemented. It is found that the paradox is realized for different combinations of

those information types.

In the following chapter, the models and methods that I used are introduced.

20The Totally Asymmetric Exclusion Process (TASEP) will be introduced in Section 3.1
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In this chapter, the main models and methods that were used in the research presented in this

theses are introduced. The Totally Asymmetric Exclusion Process (TASEP), the stochastic

transport model that was employed to simulate traffic flow, is explained in the first section.

The focus is on the defining properties of this model with random-sequential dynamics since

this type of dynamics was used in most of my research projects. After summarizing the

main characteristics of single TASEP segments, a general framework for analysing networks

of TASEPs is presented.

In the next section the basic model system of my thesis is introduced: the Braess network

of TASEPs. This is Braess’ network as used in his original paper on his paradox, but with

traffic flow on the edges based on TASEP dynamics. All results which are presented later on

in this thesis will be based on variants of this system which are all explained and distinguished

in this section.

The last section of the present chapter explains some Monte Carlo techniques which were

used for analyses which are not accessible neither in exact nor in approximate mathematical

ways.

3.1 The Totally Asymmetric Exclusion Process

The TASEP is a simple one-dimensional transport model. Originally it was introduced as a

model for protein translation [54]. Due to its simple update rules and applicability to car

traffic and many other transport processes it became to be known as the paradigmatic model

for one-dimensional transport and is also called “the mother of all traffic models” [35]. A

single TASEP segment consists of L cells or sites (L is also called the length of a TASEP),

each of which can either be empty or occupied by a single particle. If a site is chosen to be

updated and is occupied by a particle, this particle can jump to the next site with hopping

rate1 p iff this next site is empty. TASEPs can be realized with periodic boundary conditions

(PBC) or open boundary conditions (OBC). In the periodic case, site L + 1 is associated

with site 1 and the TASEP effectively becomes a ring. In the open boundary case particles

are fed onto site 1 from a reservoir which is occupied with the so-called entrance rate α and

particles can leave the system by jumping out of site L into a reservoir which is empty with

the so-called exit rate β. A schematic of an open boundary TASEP is shown in Figure 3.1.

1Depending on the specifically chosen update scheme, simulating either discrete or continuous time, the
various parameters are either probabilities or rates. Since the main parts of this thesis consider dynamics
which approximate continuous time (except for Section 4.5) I generally talk about rates.
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Figure 3.1. A TASEP segment consisting of L sites with open boundary conditions. Each site can
either be empty or occupied by one particle. If a site is chosen to be updated and contains a particle,
this particle can jump forward with hopping rate p iff the next site is empty. Particles can enter the
segment on site 1 from an entrance reservoir which is occupied with probability α and can leave the
system by jumping out of site L into the exit reservoir which is empty with probability β. In the
case of periodic boundary conditions site L+ 1 is associated with site 1 and the system becomes a
ring.

The dynamics in the system can be generated by different update procedures. Amongst

other possibilities the two most important ones are the random-sequential and the parallel

update procedures.

In the random-sequential update procedure for periodic boundary conditions, one of the

L sites is chosen with uniform probability while in the open boundary case the entrance

reservoir is to be included and thus one of the total L+1 sites has to be chosen with uniform

probability. The chosen site is then updated with the hopping rate p. After L or L+ 1 (for

PBC and OBC respectively) of such single site updates a time step is complete. If a TASEP

system’s dynamics is simulated employing a Monte Carlo simulation (see Section 3.3), a time

step is also called a sweep.

In the parallel update procedure all L or L+1 sites are updated at the same time. One of

those updates is a time step.

The random-sequential update approximates to continuous time while the parallel update

corresponds to discrete time steps. The parameters α, β, p are thus rates in the random-

sequential update scheme and probabilities in the parallel update scheme. While the latter

is a more realistic model of car traffic, it is also more difficult to deal with, especially when

networks of TASEPs are treated. In networks, conflict situations can arise if e.g. two TASEP

segments merge into one: here it can happen that particles from two different sites want

to jump onto the same target site at the same time. Such a conflict cannot happen in the

random-sequential case.

Most research I conducted during my doctoral studies and thus most results presented in

this thesis use TASEPs with random-sequential updates and p = 1. For random-sequential

updates hopping rates p < 1 correspond to a rescaling of time which is why there is no loss of

generality when limiting the discussion to p = 1. For parallel updates a hopping probability

p = 1 corresponds to deterministic dynamics which is why it is important to consider values

p < 1 in that case [35].

In addition to the results on random-sequential updates, some results obtained by Leonard

Fischer during his Master’s thesis [114] (which I supervised partly) in which parallel updates

were employed, are shown in Section 4.5. In that section also the main differences of TASEPs

with parallel updates compared to TASEPs with random-sequential updates are summarized.
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A good overview over TASEP in general and also various extensions is found in [35].

In the following subsection the main characteristics of the TASEP with random-sequential

updates are summarized.

3.1.1 Important Results for Random-Sequential Dynamics

In the steady state the average density profile ρi, with i denoting the cell number, of a TASEP

segment does not change. The local current in the system is given by

J(i) = p · ρ(i)[1 − ρ(i+ 1)]. (3.1)

As a consequence of the continuity equation in the stationary state the current in a single

TASEP segment has to be site independent, thus

J(i) = J. (3.2)

3.1.1.1 Steady State for Periodic Boundary Conditions

For periodic boundary conditions the total number of particles in the system M is constant.

Since the system is translationally invariant, the steady state density profile is given by a flat

profile: the average density of each site is equal with ρ(i) = ρ = M/L (see e.g. [115]).

3.1.1.2 Phase Diagram for Open Boundary Conditions

For open boundary conditions the situation changes. Here the phase of the system depends

of the entrance and exit rates. This behaviour is known as boundary induced phase transi-

tions [55]. The steady state properties of the open boundary TASEP are also known exactly,

they can e.g. be derived using recursion relations [116, 117] or a matrix formulation [118].

If the entrance rate is smaller than the exit rate and smaller than 1/2 (α < 1/2, α < β)

the system is in a low density (LD) phase. In this case the limiting rate is the entrance rate

as particles are more likely to leave the system than to enter it. In this case the bulk density

(i.e. the density at i = L/2) is equal to α. If the exit rate is lower than the entrance rate

and smaller than 1/2 (β < 1/2, β < α), the system is in a high density (HD) phase, since

the system’s limiting rate is the exit rate. Here the bulk density equals 1 − β. If both rates

are larger than 1/2 (α, β > 1/2), the bulk current is limiting factor: the system is in the

maximum current (MC) phase.

The phase diagram is shown in Figure 3.2. One can see that the LD and HD phases are

both sub-divided into two sub-phases. They differ in the behaviour of the density profiles near

the boundaries. A summary of the most important features of the phases LD-I, LD-II,HD-I,

HD-II and MC is shown in Table 3.1. There is also a line in the phase diagram at α+ β = 1

at which the density profile becomes flat. Examples of how the density profiles look in the

LD, HD and MC phases are shown in Figures 3.3 (a) to (c). I do not go into details about all

the special cases and the phase transitions here (a good summary of all of them is found e.g.
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Figure 3.2. The phase diagram of the OBC TASEP. For (α < 1/2, α < β) the system is in a low
density (LD) phase, while for (β < 1/2, β < α) it is in a high density (HD) phase. These two can
both be divided into two sub-phases (dotted lines at α = 1/2, β < 1/2 and β = 1/2, α < 1/2
respectively) which differ in their density profiles near the boundaries (c.f. Table 3.1). For (α, β >
1/2) the system is in a maximum current (MC) phase. At the phase boundary between LD and
HD phases at (α = β < 1/2) a domain wall (DW) performs a random walk through the system.
Furthermore, on the dotted line at (α+β = 1) the density profile becomes a straight line. Examples
of density profiles are shown in Figure 3.3.

in [35]), but I do have a closer look at the LD/HD phase transition happening at α = β < 1/2

in the following.

Domain Wall ‘Phase’. At the LD/HD transition line (α = β < 1/2) the average density

profile becomes a straight line ascending from α at i = 1 to 1−α = 1−β at i = L. The linear

averaged density profile is a consequence of freely a diffusing shock or domain wall (DW)

in the system [119]. The shock separates a high density region with density 1 − α on the

right from a low density region with density α on the left. The shock’s position performs a

random walk through the system. An example of this behaviour is shown in Figure 3.3 (d).

The density profile obtained in a Monte Carlo simulation of this system is shown. The thick

orange line is the averaged density profile, measured over the whole measurement process of

3 · 106 sweeps. As one can see the line is not perfectly straight. It would become perfectly

straight if measured over really long times. Additionally, as thinner lines in different shades

of grey, several short-term density profiles are shown. They are measured over 2 · 104 sweeps

each during the measurement process. One can clearly see that they correspond to system

times in which the domain wall is at different positions in the system.

For a single TASEP in the hydrodynamic limit (a TASEP of inifinte length) this behaviour

only occurs on the exact line α = β < 1/2. For finite size TASEPs domain walls can also be

observed in a small region around that line. To observe this behaviour in a single TASEP one

needs to fine tune the parameters. It turns out that in some networks of TASEPs (e.g. in
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Figure 3.3. Examples of density profiles in the different phases of an OBC TASEP. The averaged
density ρ is shown against position i for various entrance and exit rates. Part (a) shows profiles in
the LD phase, Part (b) shows profiles in the HD phase, Part (c) shows profiles in the MC phase. In
Part (d) a DW state which occurs at the LD/HD boundary at α = β < 1/2 is shown. The (almost)
linear orange line shows the averaged density profile while the grey lines show different instances
during the measurement process. Data was obtained using Monte Carlo simulations.

the unbiased figure of eight network which is treated in Section 3.1.3.1) fluctuating domain

walls occur for a large parameter region. In such circumstances one can talk about a domain

wall phase. In the context of just a single TASEP there is no domain wall phase but domain

walls just occur on the phase separation line between the LD and HD phases.

3.1.1.3 Travel Times

Since this thesis’ main topic is Braess’ paradox in networks of TASEPs, an observable which

is not often addressed in the context of TASEPs is very important to be looked at in more

detail: the (average) travel time of a TASEP segment. For a TASEP with open boundary

conditions this is the time (i.e. the number of time steps) a particle needs to traverse the

TASEP, i.e. the time from entering the TASEP on site 1 till jumping out of site L. In the

case of periodic boundary conditions the travel time is the number of time steps a particle

needs to complete one round, i.e. the time from jumping out of a specific site till jumping

back into that site.
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Table 3.1. Summary of the main features of the phases of a TASEP with OBC. For the LD-I,
LD-II,HD-I, HD-II and the MC phase the current J , the density in the bulk ρL/2, at the first site
ρ1 and at the last site ρL are shown. Furthermore, the asymptotic decay of the density profile near
the entrance (left end) and the exit (right end) and the parameter regions where each phase occurs
are shown.

Phase J(α, β) ρL/2 ρ1 ρL Left end Right end Parameter region

LD-I α(1− α) α α α(1−α)
β α e−j/ξ α < β < 1/2

LD-II α(1− α) α α α(1−α)
β α j−3/2e−j/ξα 1/2 > α < β > 1/2

HD-I β(1− β) 1− β 1− β(1−β)
α 1− β e−j/ξ 1− β β < α < 1/2

HD-II β(1− β) 1− β 1− β(1−β)
α 1− β e−j/ξ 1− β 1/2 > β < α > 1/2

MC 1/4 1/2 1− 1
4α

1
4β

1
2
√
πj

− 1
2
√
π
j−1/2 α, β > 1/2

Periodic Boundary Conditions. For periodic boundary conditions, the averaged density

profile is flat. Thus the velocity

v(i) = J/ρ(i) (3.3)

is site-independent: v(i) = v. The travel time is then simply given by dividing the length by

the velocity. For p = 1 it is given by

TPBC(ρ) =
L

1− ρ
, (3.4)

with ρ = M/L.

Open Boundary Conditions. For open boundary conditions for most entrance and exit rates

the density profile is not flat throughout the whole length of the TASEP. Thus the average

velocity also depends of the site. A good approximation for the travel time can here be

obtained by substituting the density in Equation (3.4) by the bulk density ρL/2 (cf. Table 3.1)

of the given OBC case:

TOBC(α, β) ≈ TPBC[ρL/2(α, β)]. (3.5)

From the exact boundary behaviours as given in Table 3.1 and shown in Figure 3.3 one can see

that depending on the specific (sub-) phase, i.e. on α and β, the error of that approximation

can be positive or negative.

In Figure 3.4 one can see that Equation (3.5) holds relatively well for most entrance and

exit rates. The relative difference of Equation (3.5) to travel time measurements obtained by

Monte Carlo simulations TMC is shown. In the figure for each data point travel times where

measured for 106 sweeps. One can see that in the LD, HD and MC phases the difference is

well below 10 %. Only on the phase boundaries between LD/MC, HD/MC and especially

between LD and HD – i.e. in the DW phase – the difference is significantly higher, taking

values of up to 20 %.

The deviations of the measured travel times in the DW phase from Equation (3.5) is no sur-
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Figure 3.4. The relative difference of the travel times in the OBC TASEP approximated through
Equation (3.5) and Monte Carlo data (see Section 3.3 for details on Monte Carlo simulations). As
one can see the approximation is pretty good inside the LD, HD and MC phases but worse around
the phase boundaries. Especially on the LD/HD boundary, i.e. in the DW phase, the approximation
deviates strongly. This is due to the fluctuation of the domain wall position in this phase leading
to unstable travel times. Travel times were measured for 106 sweeps for 2500 individual parameter
sets.

prise: as explained previously, in the DW phase a domain wall separating a low density region

on the left from a high density region on the right diffuses through the system. Depending

on where the domain wall is when a particle enters the system, the particle will experience

another travel time. The longer the high density region is at a given time, the higher the

travel time. As the Monte Carlo data to which Equation (3.5) is compared was obtained by

measuring the system for one million sweeps, one has to note that not all possible positions of

the domain wall were covered in this measurement. If the travel times were measured over a

really long time, the difference from Equation (3.5) would decrease. Nevertheless, even when

measuring for a really long time generally not all DW positions would be achieved equally

often.

For this thesis the behaviour for shorter measurement times is of higher importance than

the limit of averaging over very long times: we will use TASEPs to simulate traffic on the

edges of Braess’ network. The traffic situation faced by each driver in the network is of

importance here. It is thus important to note that for a TASEP in the DW phase, a driver

entering at one time could face a totally different situation (and travel time) than a driver

entering the system at another time, even if the system is in its stationary state at both

times. This means that even if in the very long time limit the average of travel times will

stabilize, the situation of a TASEP in a DW phase is changing all the time and thus no stable

travel time predictions are possible (at least not for individual drivers entering the TASEP

at individual times).
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3.1.2 How Well Does TASEP Describe Road Traffic?

In Section 2.3 several characteristic aspects of traffic flow on freeways, as obtained in anal-

yses of real world data, were discussed. Defining properties which should be represented in

realistic traffic models were deduced: traffic models should be stochastic, include microscopic

interactions and they should be able to reproduce typical traffic phenomena. Some of these

phenomena can be reflected in the shapes of the fundamental diagrams and travel time func-

tions of traffic models. Furthermore, it was worked out why the traffic description in Braess’

original model is unrealistic. In the following I summarize how realistically traffic flow can

be modelled by TASEP and explain why analysing TASEP networks is a good starting point

to gain an understanding of Braess’ paradox in a more realistic way.

First, one has to note that the TASEP is a stochastic transport process. By that nature

it is better suited to model road traffic flow than deterministic descriptions. In the random-

sequential update case the stochasticity is introduced by the random choices of sites to update.

Second, one can study the fundamental diagram and travel time functions of TASEPs.

The fundamental diagram, i.e. the flow-density relation (Equation (3.1)), and the travel time

(Equation (3.4)) dependend on the density of a TASEP with periodic boundary conditions

are shown in Figures 3.5 (a) and (b). The flow is increasing with the density until a single
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Figure 3.5. The flow J dependent of the density ρ (Part (a)) and the travel time TPBC dependent
on the density ρ (Part (b)) for a TASEP with periodic boundary conditions. The travel time was
obtained for a segment of length L = 600. Comparing this to experimental observations of traffic
flow on real freeways as shwon in Figure 2.7 one can see that major aspects like the single-maximum
in the flow and a diverging travel time are covered. Still TASEP is a vast oversimplification of real
road traffic.

maximum is reached at ρ = 0.5. For ρ > 0.5 the flow decreases with the density, reaching

J = 0 at ρ = 1. Comparing Figure 3.5 (a) to a fundamental diagram based on empirical

research, as shown in Figure 2.7 (a), one can conclude: the basic shape is recovered in the

sense that the flow increases from zero up to a single maximum and then decreases back to

zero at the maximum density. The exact shape is different, as the increasing and decreasing

parts are not linear.

The travel time function (Figure 3.5 (b)) has a similar shape to that obtained from the

44
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fundamental diagram based on empirical data (Figure 2.7 (c)): the free flow travel time is

given for ρ = 0 and the travel time diverges as ρ → 1. Nevertheless, there is an important

difference. The travel time of the TASEP is strictly monotonically increasing, i.e. there is no

regime 0 < ρ < ρ⋆, in which the free flow travel time persists.

In spite of these discrepancies between experimental fundamental diagrams and travel time

functions and those of TASEPs, one can conclude that relevant features are included in

TASEP dynamics which are not included in the traffic description used in Braess’ model

(compare to Figure 2.8): the flow decreases with the density after reaching a maximum and

accordingly the travel time diverges for high densities. Neither of those effects are included

in the mathematical description used by Braess.

TASEP dynamics is still an oversimplification of real road traffic: ‘imperfect behaviour’,

inevitably found in road traffic due to human decisions, such as a finite reaction times or

overreaction, is not modelled in TASEP. Phenomena like spontaneous formations of traffic

jams are thus not covered. Furthermore, cars either drive or do not drive – there is just

one velocity. Networks of more sophisticated traffic models, such as the Nagel-Schreckenberg

model [106] or the velocity-dependent randomization model [120], should be studied in the

future to obtain even more realistic understandings about phenomena like the Braess paradox.

Nevertheless, TASEP is a good starting point for an analysis of Braess’ paradox since ma-

jor characteristics are roughly covered while the model is still relatively simple to handle.

As will be explained in the following subsection, networks of TASEPs quickly become rela-

tively complicated and are not analytically tractable despite the simplicity of single TASEP

segments.

3.1.3 Networks of TASEPs

Most other real world traffic phenomena are not limited to single roads. This is particularly

true to the focus topic of this thesis: the Braess paradox is by nature a network phenomenon.

Nevertheless, before being able to analyse what happens in a road network it is important

to understand the traffic dynamics on the individual roads. The same principle is applied to

networks of TASEPs. In the previous subsections it was established that TASEP segments

cover some important aspects of traffic on real roads and the most important characteristics

of single TASEP segments were introduced.

Several TASEP segments can easily be connected to form networks of TASEPs. While

single TASEP segments can be analytically solved, networks of TASEPs are generally not

exactly solvable. Mean field theory (MFT) with several extensions, domain wall theories and

Monte Carlo simulations have proven to be useful tools to tackle TASEP networks (Monte

Carlo simulations for TASEP dynamics will be introduced in Section 3.3).

Over the years, different simple network topologies have been studied. For the case of

random-sequential updates, among others, the cases of one TASEP splitting into two lanes,

then merging into one again [57], two TASEPs feeding into one [58] and all different variations

of four TASEPs [59] (i.e. 3 on 1, 2 on 2, 1 on 3) were studied.
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Most of these studies focused on open boundary conditions (one exception is found in [59]).

Furthermore, three general network classes (Bethe networks, Poissonian networks and strongly

correlated networks) have been examined [56]. By studying Bethe networks, it was shown

that closed regular networks2 are in large density regions dominated by domain walls [56].

Networks with parallel update schemes instead of the random-sequential updates were

studied in [60–62]. Summaries of these findings are found in [5, 121].

In the following, the general mechanism of a MFT for analysing a network of TASEPs is

exemplified based on the example network shown in Figure 3.6. This network was studied

first in [57] but with a slightly modified update scheme. In [58] it was first treated in the way

presented here. In the following the main steps of analysing this (or any other) network in

a MFT are summarized. Also some results are presented, while the reader is referred to the

article for all results on this network.

Figure 3.6. The network for which the main steps of a mean field analysis are repeated here.
It consists of four edges E1, . . . , E4 which are all TASEPs of lengths Li. The network has open
boundary conditions: edge E1 is on the left coupled to the entrance reservoir which is occupied
with entrance rate α. Edge E4 exits on its right into the exit reservoir with exit rate β. Particles
jump out of E1 onto junction j1 and form there with probability x onto edge E2 or to edge E3 with
probability 1 − x. Particles jump from the last sites of E2 and E3 onto junction j2 and from there
onto edge E4.

The network consists of four coupled TASEPs, or network edges Ei, i ∈ [1, 2, 3, 4]. The

TASEPs are connected by so-called junction sites j1 and j2. The junction sites are essentially

just normal TASEP sites that can take up one particle at a time while they can be reached

by more than just one site and can be left to various cells. While e.g. j1 could just be treated

as the last site of E1, as was done in the earliest works on TASEP networks [57], the concept

of introducing explicit junction sites has proven to be useful [59] in an MFT framework. This

is nevertheless just a conceptual difference: j1 can also regarded as the last site of E1 and j2

as the first site of E4.

Particles are fed into E1 from a reservoir with entrance rate α. From the last site of E1

they jump onto j1 from which particles jump onto E2 with probability x and onto E3 with

probability 1 − x. Particles on the last sites of E2/E3 jump onto j2 and from there to E4.

Particles can then leave the network by jumping out of E4 into an exit reservoir which is

2Networks with periodic boundary conditions, in which all nodes have the same connectivity, i.e. same
number of incoming and outgoing edges.
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empty with exit rate β.

The networks dynamics is generated by random-sequential updates. In the case of networks

this means that one of all cells is chosen randomly with uniform probability. Here these are

the
∑4

i=1 Li + 3 total sites (the sites of the four edges plus the two junction sites and the

entrance reservoir). After as many of such single site updates as sites in the system one

sweep/time step is complete.

A first step in analysing such a network is to explicitly write down the current conservation

in the system, from which possible phases of the individual TASEP segments can be deduced.

Here the current conservation reads:

Jtot = J1(α, β, x) = J2(α, β, x) + J3(α, β, x) = J4(α, β, x). (3.6)

The currents can then be expressed as follows

Jtot = α(1 − ρ11) = ρL1
(1− ρj1) = x · ρj1(1− ρ12) + (1− x) · ρj1(1− ρ13)

= (ρL2
+ ρL3

)(1 − ρj2) = ρj2(1− ρ14) = βρL4
, (3.7)

since inside the individual edges the currents are independent of position (which is a conse-

quence of the continuity equation). Until here no simplifying assumptions were made.

To be able to draw some conclusions about the possible stationary states of the network, a

first assumption is that all individual TASEP segments will be in one of the possible phases

of the single OBC TASEP (see Figure 3.2). For this assumption to be reasonably valid all

edges have to be sufficiently long. It is assumed that in the bulk of each segment, as in the

thermodynamic limit for a single OBC TASEP, the pair correlations between neighbouring

sites vanish which leads to the current through a segment being

J = ρL/2(1− ρL/2+1) (3.8)

with ρL/2 in the specific phases taking up values as in Table 3.1. Also, ρL/2+1 ≈ ρL/2 is

assumed as the density in the bulk is assumed to be constant. The differentiation between

the LD and HD sub-phases is neglected in this analysis. It turns out that the DW-phase

occurs very frequently in networks whereas in a single TASEP segment it only occurs for

fine-tuned parameters on the LD/HD transition line. Following this reasoning, each TASEP

segment can be in one of the four possible states LD, HD, MC, DW. This leads to 44 = 256

different possible states of the network depending on α, β and x.

Using Equation (3.6) combined with the assumption that all segments have to take one of

the possible states of single OBC TASEPs, it becomes clear that some of the 256 combinations

are not accessible: using J1(α, β, x) = ρL/21(1 − ρL/21) = J4(α, β, x) = ρL/24(1 − ρL/24), it

follows that either ρL/21 = ρL/24 or ρL/21 = (1− ρL/24). Thus if segment 1 is in an LD phase,

segment 4 has to be in an LD or HD phase, it cannot be in an MC phase. In the case of

x = 1/2 also the two middle segments have to be in the same state for symmetry reasons.

Several other phase combinations can be ruled out exploiting the current conservation.
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This will not be done in detail here, since this section is just presenting the idea of analysing

TASEP networks.

By neglecting the correlations between the junction sites and its neighbouring sites one

treats the individual network edges as independent open boundary TASEPs with effective

entrance and exit rates which then depend on the average densities of the junction sites.

These densities then become the physical control parameters of the network [59]3.

If correlations between junctions and its neighbouring sites are neglected, the individual

TASEP segments have the following (effective) entrance and exit rates:

α1 = α, βeff
1 = 1− ρj1 (3.9)

αeff
2 = xρj1 , βeff

2 = 1− ρj2 (3.10)

αeff
3 = (1− x)ρj1 , βeff

3 = 1− ρj2 (3.11)

αeff
4 = ρj2 , β4 = β. (3.12)

The current of each segment is then given by the piecewise functions given in Table 3.1,

depending on the (effective) entrance and exit rates of the segment. This, combined with

the current conservation (Equation (3.6)) then gives two equations which can be used to

deduce ρj1 and ρj2 depending on α, β (and x). This process is sometimes called current

matching [59]. From the obtained ρj1 and ρj2 , using Table 3.1 one can then deduce the state

of each segment given a combination of α, β (and x).

This is the general strategy when analysing TASEP networks using a MFT. It turns out

that it produces correct predictions of the general behaviour of TASEP networks, at least for

simple topologies, as can be tested employing Monte Carlo simulations (see e.g. [5, 121] for

summaries of previous work done in this fashion).

The MFT approach has some limitations. While it predicts the general phases of networks

fairly well, especially in predicting density profiles it breaks down. This is a consequence of

neglecting the correlations between the segments which are relevant for many parameter sets.

Several extensions to the simple MFT model addressing these limitations (see e.g. [125]) were

studied.

3.1.3.1 The Unbiased Figure of Eight Network

Here the main properties of a special network, the so-called unbiased figure-of-eight network,

are summarized. They are presented since this network is very similar to Braess’ 4link network

(Figure 2.2 without edge 5) with added periodic boundary conditions. The results give some

insight into how Braess’ 4link network with TASEPs as edges behaves as will be seen in

Section 4.2.2. The presented results are reproduced from [59] where more details can be

3Before this concept was first applied to networks of TASEPs it has proven to be useful in single TASEP
segments with defects [122]. In this context the site with reduced hopping probability corresponds to a
junction site in the context of networks. The general behaviour of systems with defects was predicted
correctly by this MFT treatment. Limitations of this MFT study were examined and an extended in [123].
Indeed networks of TASEPs with junction sites and TASEPs with defects behave very similarly [124].
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found.

The unbiased figure of eight network is shown in Figure 3.7. It consists of two TASEPs

EA and EB, which feed and are – unbiasedly, i.e. with equal probability – fed by junction j.

Due to the symmetry, both edges are always in the same state: either an LD, HD or domain

Figure 3.7. The figure of eight network consists of two symmetric TASEPs EA and EB which feed
onto and are, with probabilities pA and pB = 1 − pA, fed by junction j. In the unbiased case the
probabilities are equal, pA = pB = 0.5.

wall state. A MC phase can not be reached since the effective entrance rates are always

smaller than 1/2 due to the unbiased feeding. Using this symmetry, in a mean-field picture

the particle density of the junction ρj depends on the global density ρglobal as

ρj =





2ρglobal (ρglobal < 1/3)

2/3 (1/3 < ρglobal < 2/3)

ρglobal (ρglobal > 2/3)

(3.13)

and the current through the junction is given by

J =





2ρglobal(1− ρglobal) (ρglobal < 1/3)

2 · 2/9 (1/3 < ρglobal < 2/3)

2ρglobal(1− ρglobal) (ρglobal > 2/3)

(3.14)

as shown in Fig. 3.8. This has an easily understandable interpretation. For low global densities

(ρglobal < 1/3), both segments are in an LD phase, while the density increases with the global

density. At ρglobal = 1/3, the effective rates of the edges become equal αeff
A/B = βeff

A/B = 1/3

which leads to diffusing domain walls between LD and HD segments in both links. The

junction occupation saturates at ρj = 2/3, while the lengths of the HD regions grow with

growing global density. At ρglobal = 2/3, the HD regions fill the whole edges. This behaviour

is very different to single TASEPs. In single TASEPs with open boundary conditions domain

walls only appear for fine-tuned parameters α = β < 1/2, while in this network, they dominate
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Figure 3.8. The unbiased figure of eight network shows a domain wall phase in a large intermediate
density regime 1/3 < ρglobal < 2/3. This can be seen in (a) the junction occupation ρj which takes
a constant value of 2/3 in that regime according to Eq. (3.13). As seen in (b) the current density
relation shows that behaviour aswell, as the parabola for a single periodic TASEP J = ρ(1 − ρ) is
truncated with constant value 2/9 in the DW regime according to Eq. (3.14). The current for a
single TASEP is shown for comparison (blue dotted line).

the system over a large density regime (1/3 < ρglobal < 2/3) and are thus far more important

for its analysis.

The main part of the remainder of this thesis focusses on the question if and when Braess’

paradox appears in networks of TASEPs. As Braess in his original work, I addressed the

Braess network with a symmetric 4link sub-network. The system and user optima of the

symmetric 4link networks are expectedly given by a symmetric distribution of the particles

onto both routes. Thus, for the sake of applicability, the discussion of the figure of eight

network is limited to unbiased feeding.

The biased version of the figure of eight network in which the probabilities for jumps from

the junction to the edges are not equal shows two plateaus in the fundamental diagram. They

correspond to domain wall phases, for two distinct global density regimes. For more details,

see [59]. This study has also been extended to symmetric junctions feeding onto more than

two edges [56, 125].
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3.2 The Basic Model of This Thesis: The Braess Network of

TASEPs

The Braess network of TASEPs serves as the basic model for most results of my research. In

this section the network is introduced: first, the general structure, its variants of boundary

conditions and possible route choice strategies are elucidated. Second, two observables for the

determination of system optima and user optima strategies are defined. Then, the possible

phases which can be observed when comparing the 4link and 5link versions of the network for

the same demand are worked out. By analysing these different phases, the influence of the

added road can be studied beyond the question about the occurrence of Braess’ paradox. In

the last subsection, a method for finding system and user optima by Monte Carlo simulations

is explained.

3.2.1 Network’s Structure

The Braess network of TASEPs is realized with periodic and with open boundary conditions.

Both versions of the network are shown in Figure 3.9 (Part (a) shows the periodic boundary

version and Part (b) the open boundary version). The networks have the same structure

Figure 3.9. The Braess network with the edges made of TASEPs. The edges Ei are TASEPs of
lengths Li. They are connected through junction sites jk. Part (a) shows the version with added
periodic boundary conditions, achieved through E0 which is set to have length L0 = 1 throughout
this thesis. Part (b) shows the open boundary version. Here junction j1 is fed from the entrance
reservoir which is occupied with probability αin and junction j4 exits into the exit reservoir which
is empty with probability βout.
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as the network in Braess’ original publication (see Figure 2.2). Each network edge Ei, with

i ∈ [0, 1, 2, 3, 4, 5] is made up of a TASEP segment with Li discrete cells (or of the length

Li). The TASEPs are joined through junction sites jk, with k ∈ [1, 2, 3, 4], which behave as

ordinary TASEP cells, as explained in Section 3.1.3. Junction j1 is considered the origin of

network users and junction j4 is the destination (j1 and j4 are also called start and finish

points, respectively). The influence of the new edge E5 will thus, as in Braess’ original work,

be examined under the assumption that all particles want to go from j1 to j4. One complete

trip from j1 to j4 will also be referred to as one round.

As in Braess’ original work the network is always chosen to be symmetric. The individual

roads have the lengths

L1 = L3 and L2 = L4 . (3.15)

We consider the case L1 ≤ L2. Thus, for

L5 ≤ L2 − L1 − 1 (3.16)

the addition of E5 results in a new possible route through the system, which is of shorter or

equal length as the routes without the new link:

L̂153 = 4 + L1 + L3 + L5 + (L0) (3.17)

≤ 3 + L1 + L2 + (L0) (3.18)

= L̂14 = L̂23, (3.19)

with L̂i denoting lengths of routes. Routes are in this context paths to go from j1 to j4 as

opposed to individual edges, also called roads, which go from one junction, also called nodes,

to the neighbouring one. The length L0 is put into brackets to indicate that it is only added

in the case of periodic boundary conditions since it does not exist in the open boundary case.

There are then three routes from j1 to j4: route 14 goes from j1 to j4 via E1, j2 and E4.

Route 23 goes from j1 to j4 via E2, j3, E3 and route 153, the new route which is the result

of the new road E5 goes from j1 to j4 via E1, j2, E5, j3, E3.

In the analysis, the 4link and 5link systems, i.e. the networks without and with the new

edge E5, will be compared. Corresponding variables are denoted with a superscript (4) or (5)

respectively. Most parts of the analyses will deal with travel time measurements.

A travel time in the context of our network is given by the number of time steps a particle

needs to traverse the system, i.e. the number of time steps the particle needs from jumping

onto j1 till jumping out of j4.

The travel times of the different routes are denoted by T14, T23 and T153.

3.2.1.1 Boundary Conditions

The two parts of Figure 3.9 shows the Braess network of TASEPs with two different boundary

conditions. Their individual characteristics are explained in the following.
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Periodic Boundary Conditions. In the periodic boundary case (Figure 3.9 (a)) there is an

additional edge E0 which is always chosen to have length L0 = 1 which couples j4 back to

j1. Particles that finish one round are fed back to the starting point via E0. The number

of particles M and thus the global density ρglobal in the system are constant. We will use

the global densities of the system with E5 (ρ
(5)
global = M/(4 +

∑5
i=0 Li)) and without E5

(ρ
(4)
global = M/(4 +

∑4
i=0 Li)) when comparing the two systems. Both densities are related as

follows:

ρ
(5)
global = ρ

(4)
global

5 + 2L1 + 2L2

5 + 2L1 + 2L2 + L5

= ρ
(4)
global

5 + 2L1 + 2L2

2L2 +
L̂153

L̂14

(4 + L1 + L2)
. (3.20)

The latter Equation (3.20) is used in the resulting phase diagram of the system. It allows

to compare the performance of the 4link and 5link systems through their defining properties

given the same total number of particels M . These defining properties are the global densities

ρ
(4/5)
global and the length ratio L̂153

L̂14

of the new route and the old routes.

Open Boundary Conditions. In the open boundary case (see Figure 3.9 (b)) particles are

fed onto junction j1 from a reservoir which is occupied with entrance probability αin. Parti-

cles leave the system, jumping out of junction j4, into a reservoir which is empty with exit

probability βout. Since the individual particles do not stay in the system, other than in the

periodic boundary case, one cannot define a global density.

3.2.2 Route Choice Strategies

Two different route choice mechanisms were examined. In the present context the term

“route choice” refers to how particles are distributed onto the three possible routes. Both

mechanisms are sketched in Figure 3.10 and explained in the following. These strategies

are variables which are tuned externally, i.e. the particles do not decide intelligently for

themselves4.

3.2.2.1 Fixed Route Choices

The first possible route choice mechanism, as depicted in Figure 3.10 (a), can only be em-

ployed in the system with periodic boundary conditions since it requires that the same fixed

set of particles stay in the system. It works as follows: all particles have a fixed ‘personal’

route choice. N14 particles take route 14, N23 particles take route 23 and N153 particles take

route 153 respectively. These numbers are subject to

N14 +N23 +N153 = M. (3.21)

4Results obtained for these strategies presented here will be shown in Chapter 4. In Chapter 5 results obtained
by intelligently deciding particles, as implemented through route choice algorithms are shown.
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Figure 3.10. The route choices in the periodic boundary case of Braess’ network were realized in
two different ways. Part (a) shows the fixed route choices case: here the individual particles stick
to their own ‘personal’ route choices. Part (b) shows the case of turning probabilities in which
routes are assigned to the particles by the probabilities γ and δ of turning left on junctions j1 and
j2 respectively.

All particles stick to their route choices. Even if a particle on j1 or j2 cannot jump for multiple

attempts due to its target site being occupied it will stick to its route choice. A user optimum

found in the network with fixed route choices is a pure user optimum (see Section 2.1).

Useful quantities are

n
(j1)
l = 1− N23

M , (3.22)

n
(j2)
l = N14

N14+N153
, (3.23)

i.e. the fraction of particles which turn ‘left’ on junctions j1 and j2, respectively.

3.2.2.2 Turning Probabilities

The second route choice mechanism shown in Figure 3.10 (b) can be employed with periodic

and open boundary conditions. Here the particles are assigned to the routes via turning

probabilities γ and δ. These probabilities determine the probability of jumping to the left

for particles sitting on junction j1 or j2: if a particle on j1 is updated, it will jump onto E1

with probability γ and onto E2 with probability 1 − γ. A particle on j2 will jump onto E4

with probability δ and onto E5 with probability 1− δ. If the particle cannot jump due to the

first site on its target edge being occupied, the next time it is updated its target site will be

chosen anew according to γ or δ. All particles are equal and are subject to the same turning

probabilities. User optima in the network with this route choice mechanism are thus mixed

user equilibria (see Section 2.1).

For this type of route choices, there are γ · δ ·M particles on route 14, (1− γ) ·M particles

on route 14 and γ · (1− δ) ·M particles on route 153 on average.
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3.2.2.3 Comparison of the Strategies

The tunable parameters for a given set of (L5, M) are (n
(j1)
l , n

(j2)
l ) (or (N14, N23, N153)) and

(γ, δ) for the two route choice mechanisms. A set of (n
(j1)
l , n

(j2)
l ) or (γ, δ) is called a (global)

strategy. By varying (n
(j1)
l , n

(j2)
l ) or (γ, δ) from 0 to 1, all possible strategies, i.e. states with

all particles using route 14, route 23 or route 153 and all states in between, can be accessed.

Specific choices of these strategies correspond e.g. to the user optimum or system optimum

states of the system. All possible global strategies and corresponding values of observables

can be visualized in 2d heat maps.

The turning probabilities in the second route choice case are an additional source of stochas-

ticity. As will be seen in Sections 4.1 to 4.3 this difference leads to different characteristics

in the system – in our context especially in the stability of measured travel time values as

explained in detail for the 4link systems in Section 4.2.2.

Both the model with turning probabilities and the model with fixed strategies can be

regarded as realistic models of a commuter’s route choice scenario: as already discussed in

greater detail in Section 2.4, laboratory experiments with real human participants performing

route choices suggest that both fixed route choices or turning probabilities could be realistic.

Some important results which are of importance to the question, if the two chosen route choice

strategies are realistic are the following: in [33, 50] a network similar to our network without

E5 and in [33] also the network with E5 was examined. It turned out that in their aim to

minimize their individual travel times, in the network without E5 users kept varying their

individual strategies while on average the strategies stayed the same. This is an indication

that mixed user optima are approached in road networks and thus that the model with turning

probabilities is realistic. In the network with E5, strategy changes of individual users seemed

to vanish after some time rather indicating that pure user optima are realized and thus the

fixed-strategy model of the present paper is realistic.

Therefore, both models seem to have some validity and a mixture of both could be at play

in reality. Before addressing the more complex scenario of a mixture of both, it is interesting

to analyse if pure user optima and and mixed user optima can be found in their ‘pure’ forms.

Knowledge about these optima also serves as prior information for analysing systems with

intelligent particles.

3.2.3 Observables

To analyse the influence of the new road E5 on the system, the performances of the 4link

and the 5link systems have to be compared for the same number of total particles M in the

periodic boundary condition case and for the same entrance and exit rates αin and βout in the

open boundary condition case. According to Section 2.1, a network state is defined by the

distribution of cars onto the available routes. Depending on the route choice mechanism, in

our context a state is thus given by a pair of turning probabilities (γ, δ) (which determines the

average number of cars per route) or a certain combination of fixed route choices (n
(j1)
l , n

(j2)
l ).

To test the system for the occurrence of Braess’ paradox one has to compare the travel times
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in the user optima of the two systems. If the travel time in the 5link’s user optimum is higher

than in that of the 4link’s, Braess’ paradox occurs (see Section 2.2). To get more information

about the influence of the new road on the system (beyond the question if the paradox

occurs), also the two systems’ system optima were compared. As explained in Section 2.1, in

our analysis the system optimum is defined as the state which minimizes the maximum travel

time of all used routes and the user optimum is defined as the state in which all used roads

have the same travel time which is lower than that of any unused routes.

Two observables are defined, the values of which determine for which strategy (or in some

cases various strategies) the system is in its user or system optimum:

∆T = |T14 − T23|+ |T14 − T153|+ |T23 − T153| (3.24)

Tmax = max[Ti, i ∈ {14, 23, 153}]. (3.25)

The Ti denote the travel times on routes i. The user optima and system optima are given by

the strategies which minimize ∆T and Tmax, respectively. Such strategies are denoted as so

and uo.

A true user optimum is characterized by ∆T = 0 since then all routes have the same

travel times. If there are any unused routes and the travel times of these unused routes are

higher than that of the used ones, ∆T is reduced to only the absolute values of the travel

time difference of the used routes. Also when analysing the 4link network, ∆T reduces to

∆T = |T14 − T23|.
The system optimum is given by the strategy which minimizes Tmax according to the

definition of the system optimum. For the 4link system it reduces to Tmax = max[Ti, i ∈
{14, 23}].

In the following analyses of Braess’ network, the strategies which minimize ∆T are consid-

ered user optima, if their value of ∆T is below a certain threshold. This threshold is chosen

to be ∆T ≤ 100 in most cases. The case for ∆T going to zero is often not found since firstly

travel times are stochastic variables and secondly the strategies are generally examined with

a finite resolution. In a state with ∆T ≤ 100 the travel times of the roads are sufficiently

close to each other for considering such a state a user optimum. According to the definitions

of different types of user optima, those states are thus boundedly rational user optima (see

Section 2.1). For cases in which no strategy leading to a ∆T value below the threshold exits,

the strategy minimizing ∆T is called the closest candidate for a user optimum.

3.2.4 Possible Network Phases

Depending the exact parameters of the networks, such as edge-lengths or the total number

of users, the new road can have different influences onto travel times in the road network

and the network’s overall performance. By comparing the user optima and system optima of

the networks before and after the addition of E5, the new edge’s influence can be quantified

both for selfish users and for networks with traffic guidance authorities. The Braess paradox

applies to the selfish users case. The specific relations of travel times of the user and system
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optima of 4link and 5link systems for a given parameter set define what phase the two systems

are in.

For a fixed set of L1 = L3 and L2 = L4 like this a so-called phase diagram can be con-

structed. The phase diagram then contains information about the relations of travel times in

user and system optima of the 4link and 5link networks depending of the length of the new

road (denoted by the routelength ratio L̂153/L̂14) and the global density (PBC) or entrance

and exit rates/probabilities (OBC). In our publications on this topic [126, 127] and in the

following a “phase”, i.e. a comparison of the 4link and the 5link system for a given parameter

set, is sometimes also called a “state”. It is not to be confused with the state of an individual

network (e.g. the user optimum state of a specific 5link network). It should always be clear

form the context what definition of the terms “state” or “phase” is meant. The possible

Figure 3.11. The tree of possible phases (when comparing the 4link and 5link systems) the Braess
network can be in. Since the 4link system is symmetric user and system optimum coincide. If 4link
and 5link system optima are the same the system’s travel times cannot be lowered due to E5. Either
the new road will not be used if the 5link’s user and system optima coincide (“E5 not used”) or the
user optimum travel times are higher in the 5link (“Braess 1”). The latter is Braess’ paradox in its
original sense. If the 5link’s system optima is not equal to the 4link’s, the system can be improved
due to the addition of E5. Nevertheless, in the 5link user optimum travel times can be higher than
in the 4link user optimum (“Braess 2”). If user optimum travel times are lower in the 5link system,
the system is improved (“E5 improved” and “E5 optimal”).

phases, i.e. the possible influences of E5 onto the network, are shown in Figure 3.11.

The following analysis of the possible phases of the system is based on the assumption that

in both the 4link and the 5link system user and system optima exist and are unique for every

parameter set. This is true for linear mathematical models of traffic flow [69] as in Braess’

original work and is, as a starting point for our analyses, also assumed to be true in our

network of TASEPs. It turns out that this assumption does not hold in some cases in the

sense that e.g. no stable travel times can be measured (see Section 4.2.2), no user optima

exist (see Section 4.1.3) or that user optima exist but are not unique (see Section 4.1.3.1).

If the aforementioned assumptions hold, the tree of possible phases can be built as follows:

since the 4link system is symmetric, it is expected that its user and system optima always

57



3 Models and Methods

coincide in the state with turning probability γ = 0.5 or fixed route choices such that N14 =

N23 = M/2. The coinciding user and system optima of the 4link, uo(4) = so(4), build the

root of the tree. If the system optima of the 4link and the 5link are the same (so(5) = so(4),

left branch of the tree in Fig. 3.11), the system cannot be improved, even for the case of

non-selfish drivers or with traffic guidance systems. If selfish drivers lead the 5link system

into its optimum (uo(5) = so(5)) the new road will not be used at all (“E5 not used”). If

selfish drivers in the 5link do not reach the system optimum, the new road will be used but

the travel times will increase (“Braess 1”). This state is the Braess paradox in the classical

sense as described by Braess.

If the system optima of the 4link and the 5link are not the same (so(5) 6= so(4), right branch

of the tree in Fig. 3.11), the travel times of network users can potentially be improved due

to E5. Since the 4link system is included in the 5link system, the maximum travel time of

the system optimum in the 5link system can only be smaller than that of the 4link system

(Tmax(so
(5)) < Tmax(so

(4))).

If traffic is controlled by an external authority driving the system into its system optimum,

the system can always always be improved in this case. If the 5link’s system and user optima

coincide (uo(5) = so(5)) the system of selfish drivers will be in the “E5 optimal” state.

If the 5link’s system and user optima do not coincide (uo(5) 6= so(5)), two different phases

can occur. If the 5link travel times in the 5link user optimum are lower than those in the

4link user optimum, the system is in the “E5 improves” state. If they are higher, the system

is in the “Braess 2” state. In the latter, selfish network users will experience higher travel

times in the network after the addition of E5. It is thus a Braess state. It differs from Braess’

original example in the fact that by guiding the traffic to the system optimum externally,

E5 would reduce the travel times of network users. This is not possible in Braess’ original

example since in that case the 4link’s and 5link’s system optima coincide.

The “E5 improves” and “E5 optimal” states are the only cases in which the new route is

useful (in the sense of leading to lower travel times) for the case of selfish drivers.

A further possible state that could occur would be described by so(5) 6= so(4), uo(5) 6= so(5)

and T (uo(5)) = T (uo(4)). Such a state could be considered a special version of an “E5

improves” state and was never found in my analyses. Thus it is not explicitly included in the

tree of possible phases.

For the presented distinction between the possible states (or phases) it is essential to define

the system optimum as the state that minimizes the maximum travel time. For different

definitions, as e.g. the state maximizing the flow or the state minimizing the total travel

time, this classification scheme does not necessarily hold.

3.2.4.1 Approximate Phase Border of the “E5 optimal / all 153” Phase

The phase border of a special case of the “E5 optimal” phase, the “E5 optimal / all 153”

phase, can be approximated analytically. The system is in the “E5 optimal / all 153” phase

if the state in which all particles use route 153 is the system and user optimum at the same
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time. This means that if all particles use route 153 the two following conditions have to hold:

1. The travel time on route 153 is lower than that of the unused routes 14 and 23.

2. The travel time on route 153 is lower than that of the system and user optimum of the

4link system given by half the particles using route 14 and the other half route 23.

This phase is naturally expected to be present if the new route is much shorter than the old

routes and if there is only a small number of particles is the system.

Periodic Boundary Conditions. For periodic boundary conditions (Figure 3.9 (a)) the upper

border of that phase, i.e. the total number of particles in the system M or the global density

up to which is phase is present for a given route length ratio L̂153/L̂14, can be approximated

as follows.

If only route 153 is used, this route corresponds to a single TASEP with periodic boundary

conditions and length L̂153. The stationary state of a single periodic boundary TASEP is given

by a flat density profile and the exact travel time is given by Equation (3.4): TPBC(ρ) =
L

1−ρ .

The travel times of route 14 is in this state given by the fraction of the route 153 travel time

which corresponds to j4, E0, j1, E1 and j2 and the free flow travel time of E4 which is just

L4. The travel time of route 23 in this state is given by the fraction of the route 153 travel

time which corresponds to j3, E3, j4, E0 and j1 and the free flow travel time of E2 which

is just L2. The first condition requires the travel time on route 153 to be lower than on the

other two routes:

T153

(
uo(5)

)
< T14

(
uo(5)

)
= T23

(
uo(5)

)

⇔ L̂153

1− M
L̂153

<
L1 + 4

1− M
L̂153

+ L2. (3.26)

The second condition can be approximated if one assumes that the two routes 14 and 23

are independent and their stationary states were given by flat density profiles in the 4link’s

system and user optimum. This is a mean field assumption which is not exact but turns

out to be a valid approximation for small global densities. If the 4link user/system optimum

travel times are approximated like this and are required to be higher than the travel time on

route 153 if the latter is used by all particles, one arrives at the second condition:

T153

(
uo(5)

)
< T14

(
uo(4)

)
= T23

(
uo(4)

)

⇔ L̂153

1− M
L̂153

.
L̂14

1− M
2L̂14

. (3.27)

For the 5link user optimum to be the state with all particles choosing route 153, Equa-

tion (3.26) has to be valid. For the system (when comparing the 4link to the 5link) to be in

an “E5 optimal / all 153” phase, both Equations (3.26) and (3.27) have to hold.
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Open Boundary Conditions. In the open boundary case (Figure 3.9 (b)) the same two

conditions have to hold. Opposed to the periodic case, if only route 153 is used the travel

time on this route is not easily obtainable in an analytically exact way. It can nevertheless

be approximated well by Equation (3.5) with the bulk density given by the appropriate value

for the given entrance and exit rates αin and βout as given in Table 3.1. In the 5link system

the travel time on route 153 has to be shorter than those of the two unused routes. This

condition now reads like this:

T153

(
uo(5)

)
< T14

(
uo(5)

)
= T23

(
uo(5)

)

⇔ L̂153

1− ρL/2,153
<

L1 + 3

1− ρL/2,153
+ L2. (3.28)

One has to keep in mind that the travel time of route 153 is only approximated in this case.

Also the travel times of the other routes are approximated with an even bigger error since the

density profile will not be completely flat throughout the whole route 153 for open boundary

conditions (see Figure 3.3).

The second requirement for the “E5 optimal / all 153” phase is that the travel time on

route 153 in the 5link is lower than that of the 4link’s user optimum:

T153

(
uo(5)

)
< T14

(
uo(4)

)
= T23

(
uo(4)

)

⇔ L̂153

1− ρL/2,153
< T14

(
uo(4)

)
= T23

(
uo(4)

)
. (3.29)

For the 4link open boundary system a mean field theory was derived as will be explained in

Section 4.4.1. This is why the equation for T14/23

(
uo(4)

)
will be given in that section.

3.2.4.2 How to Identify the System’s Phase from the Strategy-landscapes of the

Observables

In the present subsection the question of how the phase of a system is identified by analysing

the values of the two observables Tmax (Equation (3.25)) and ∆T (Equation (3.24)) depending

on the strategy ((n
(j1)
l , n

(j2)
l ) or (γ, δ)) is addressed.

Figures 3.12 to 3.16 show example observable-landscapes of 5link networks. They are

artificially constructed landscapes and do not correspond to real measurements. They show

what the values of Tmax and ∆T could be for all possible strategies, i.e. (n
(j1)
l , n

(j2)
l ) or (γ, δ)

taking all possible values ([0, 1]× [0, 1]). The overall landscapes could be completely different

for real measurements, only the position of the minima of the two observables and the travel

times at these minima (and the travel time’s relation to the travel times in the 4link’s user

and system optima) decide upon the system’s phase.

The shown landscapes correspond to the possible 5link-strategies. Due to symmetry, the

4link’s system and user optima are both the same strategies, given by half the particles

choosing route 14 and the other half route 23. This state is also included in the shown 5link

60



3.2 The Basic Model of This Thesis: The Braess Network of TASEPs

observable landscapes at (γ/n
(j1)
l , δ/n

(j2)
l ) = (0.5, 1.0). Thus the 4link’s user and system

optimum can also be seen in the 5link landscapes.

Figure 3.12. An example of what the Tmax (Part (a)) and ∆T (Part (b)) landscapes could look like

in an “E5 not used” state. The minima of both observables are at (γ/n
(j1)
l , δ/n

(j2)
l )=(0.5,1.0) which

means that the new route will be ignored and particles distribute themselves in equal amounts onto
the old routes. The minima of Tmax and ∆T are marked by the pink ◭ and ◮, respectively.

Figure 3.12 is an example of what an “E5 not used” state could look like. The minima

of both Tmax and ∆T are at (γ/n
(j1)
l , δ/n

(j2)
l )=(0.5,1.0). This means that the new route is

neither used in the system optimum nor in the user optimum. Particles distribute themselves

(on average for turning probabilities) equally onto the two old routes. This distribution

corresponds to user and system optima of the 4link system.

Figure 3.13 shows an example of a “Braess 1” state. The minimum of Tmax, corresponding

to the system optimum, is at (0.5,1.0). This is the 4link’s optimum in which the new route

is ignored. The minimum of ∆T is found at another strategy, here at (γ/n
(j1)
l , δ/n

(j2)
l )≈

(0.7, 0.7). The user and system optima do not coincide. Furthermore, from looking at the

value of Tmax at (γ/n
(j1)
l , δ/n

(j2)
l ) ≈ (0.7, 0.7) one can see that the maximum travel time in

this strategy is higher than in the system optimum. The 5link system has a user optimum

which has higher travel times and is different from the 5link’s system optimum which coincides

with the 4link’s system optimum.

Figure 3.14 is an example of a “Braess 2” state. The system optimum is at (γ/n
(j1)
l ,

δ/n
(j2)
l ) ≈ (0.7, 0.9). This is a state different from the 4link’s system optimum, (γ/n

(j1)
l ,

δ/n
(j2)
l ) = (0.5, 1.0), which also has a lower maximum travel time than the 4link system

optimum. The user optimum is found at (γ/n
(j1)
l , δ/n

(j2)
l ) ≈ (0.2, 0.1). When looking at

the maximum travel time of this strategy one can see that Tmax(uo
(5)) > Tmax(so

(4)) >

Tmax(so
(5)).
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Figure 3.13. An example of what the Tmax (Part (a)) and ∆T (Part (b)) landscapes could look

like in an “Braess 1” state. The system optimum is at (γ/n
(j1)
l , δ/n

(j2)
l ) = (0.5, 1.0), i.e. the 4link’s

system optimum. The user optimum is at (γ/n
(j1)
l , δ/n

(j2)
l ) ≈ (0.7, 0.7), a state which has higher

travel times. The minima of Tmax and ∆T are marked by the pink ◭ and ◮, respectively.

Figure 3.15 is an example of an “E5 improves” state. As in the “Braess 2” state both the

system optimum and the user optimum differ from the 4link’s optima. The 5link’s system

optimum also has a lower travel time than the 4link’s system optimum. The 5link’s user

optimum in this case has also a higher travel time than the 5link’s system optimum but a

lower travel time than the 4link’s system optimum Tmax(so
(4)) > Tmax(uo

(5)) > Tmax(so
(5)).

Figure 3.16 is an example of an “E5 optimal” state. Here, the 5link’s user and system optima

coincide at (γ/n
(j1)
l , δ/n

(j2)
l ) ≈ (0.8, 0.2). Thus the 5link’s system will be in its optimal state

also when used by selfish drivers. The travel times in the system / user optimum are lower

than in the 4link’s optima.

There can be special cases of the described states. Examples of special cases would be that

e.g. several routes are not used at all. This is also the case in the “E5 not used” state in

which only the two old routes are used and the new one is ignored in the system optimum and

in the user optimum. In the other observable-landscapes presented in Figures 3.13 to 3.16

the user optima are given by states in which all three routes are used. This is not necessarily

always the case. One special case which is present especially at low global densities and if the

new route is really short compared to the old routes is the “all 153” state. This is a special

case of an “E5 optimal” state in that only the new route is being used and the travel time

on this route being shorter than on the two unused older routes. This special case is given if

Tmax and ∆T both have their minima at (γ/n
(j1)
l , δ/n

(j2)
l ) ≈ (1.0, 0.0).
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Figure 3.14. An example of what the Tmax (Part (a)) and ∆T (Part (b)) landscapes could look like
in an “Braess 2” state. The system optimum differns from the 4link’s system optimum. The user
optimum also differs from both, and Tmax(uo

(5)) > Tmax(so
(4)) > Tmax(so

(5)) holds. The minima
of Tmax and ∆T are marked by the pink ◭ and ◮.

3.2.5 How to Find System Optima and User Optima

The former section explained how the observable-landscapes of the possible phases of the

system look like. For this, artificial Tmax and ∆T landscapes with values for all possible

strategies were shown. The positions of the minima and the relations of the corresponding

travel time values then determine the state of the system. When describing real instances

of the systems, the travel times are not known for all possible strategies. As explained in

Section 3.1.3 networks of TASEPs are generally not analytically tractable. This is why the tool

of choice to attain travel time values and with them to deduce the system phases are Monte

Carlo simulations. Since finite sized systems are examined, for the fixed route choice case

the (n
(j1)
l , n

(j2)
l )-landscape is, other than indicated in Figures 3.12 to 3.16, not a continuous

landscape. The (γ, δ) landscapes in the turning probabilities case are in principal continuous.

When employing Monte Carlo simulations to analyse the systems, the landscapes have to

be discretized with a finite resolution since otherwise infinite computational time would be

required. In the following a strategy which was employed for finding user and system optima

is presented.

3.2.5.1 Sweeping the Observable-landscapes to Find User and System Optima

The straight forward method for finding system and user optima is, as already hinted at,

to discretize the (γ/n
(j1)
l , δ/n

(j2)
l )-landscape, measure travel times of the three routes for

all discrete strategies, calculate Tmax and ∆T from those measurements and then find the
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3 Models and Methods

Figure 3.15. An example of what the Tmax (Part (a)) and ∆T (Part (b)) landscapes could look
like in an “E5 improves” state. The 5link’s user and system optima differ from each other and from
the 4link’s optima. Tmax(so

(4)) > Tmax(uo
(5)) > Tmax(so

(5)) holds. The minima of Tmax and ∆T
are marked by the pink ◭ and ◮.

strategies which minimize Tmax and ∆T . Those strategies are then the system and user

optima. This method is good to obtain a general ‘feeling’ for how the landscapes look like.

Furthermore, one can be sure that, at least inside resolution of the discretization, all strategies

have been examined. An example of the results of this method is given in Figure 3.17. It

shows an example of an “E5 optimal” state for the fixed route choices case and periodic

boundary conditions. The landscape was sweeped in steps of 0.1.

There are some downsides to the method of sweeping the observable-landscape in a dis-

cretized way: the grid resolution sets a limit on how precisely the optima can be found. It

can be the case that the actual optima lie in between the discrete grid points. In this case

one way of improving the measurement is rescanning a smaller region around the minimum

of the observables in the current grid resolution with a finer grid resolution. Like this one can

‘zoom in’ until the real optimum is found. This procedure is exemplified in Figure 3.18.

Another downside is the fact that a lot of measurements are performed on strategies which

are very far away from the optima. The results of these measurements will not be used

afterwards and are thus a useless use of CPU time. This is why another technique was

developed which is presented in Section 3.3.2.

3.3 Monte Carlo Simulation Methods

Oftentimes one is interested in the stationary state expectation value of an observable of a

stochastic process. This could e.g. be the average density profile of a TASEP segment or the
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Figure 3.16. An example of what the Tmax (Part (a)) and ∆T (Part (b)) landscapes could look like in

an “E5 optimal” state. The 5link’s user and system optima coincide at (γ/n
(j1)
l , δ/n

(j2)
l ) ≈ (0.8, 0.2),

a strategy with lower travel times than the 4link’s user /system optimum. The minima of Tmax and
∆T are marked by the pink ◭ and ◮.

travel time of a TASEP segment. Such expectation values are given by the ensemble averages

of the given observables. In the stationary state the probabilities of each microstate do not

change with time. The ensemble average 〈O〉E of an observable O is then given by

〈O〉E =

N∑

i=1

p(si)O(si), (3.30)

with si being a microstate of the system, p(si) the stationary-state probability of microstate

si, N the total number of microstates and O(si) the value of O in microstate si.

For systems that are not analytically tractable the p(si) are not known. Monte Carlo

methods use pseudo random numbers to simulate the time evolution of the stochastic process

of interest. From the ergodic hypothesis we know that in ergodic systems the temporal

average (over infinitely long times) 〈O〉T of an observable O equals the ensemble average of

that observable, i.e.:

lim
t→∞

〈O(t)〉T = lim
t→∞

1

t · τ

t∑

i=1

O(i · τ) = 〈O〉E, (3.31)

with t being the number of time steps, τ the length of one time step and O(i · τ) the value of

O at time i · τ .
Using this knowledge, stationary state expectation values can be approximated by averaging

over the time evolutions of given observables for sufficiently long times (as infinitely long
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Figure 3.17. The Tmax (Part (a) and ∆T (Part (b)) landscapes of the 5link system for periodic
boundary conditions, fixed route choices and L1 = L3 = 100, L2 = L4 = 500, L5 = 278 and

M = 148 depending on the n
(j1)
l and n

(j2)
l . As can be seen, this is an “E5 optimal” state, since the

minima of ∆T and Tmax coincide at n
(j1)
l = 0.9 and n

(j2)
l = 0.1 and the corresponding strategy has

a lower maximum travel time than the 4link’s system optimum which is found at n
(j1)
l = 0.5 and

n
(j2)
l = 1.0. The minima of Tmax and ∆T are marked by the pink ◭ and ◮.

measurements are not possible by definition). To obtain valid results one has to let the

system relax into the stationary state before starting the measurement. This means that one

has to make sure that, when measurement begins, the system is in a state which is likely to

occur in the stationary state.

In all Monte Carlo simulations performed for this thesis the Mersenne Twister algorithm [128]

was used to generate pseudo random numbers.

3.3.1 Measurements of Observables in TASEP Networks

As mentioned previously, TASEP networks are oftentimes not analytically tractable. In some

cases mean field theory can provide valuable insights and good approximations to quanti-

ties of interest. For most results presented in the following chapters of this thesis no such

approximations could be obtained, which is why Monte Carlo methods were used.

The TASEP networks addressed in this thesis contained up to approximately 1500 sites.

Before measurement was started the system always relaxed for at least 5 · 105 sweeps/time

steps5

If not indicated otherwise, whenever values of observables, e.g. O, determined through

5When random-sequantial dynamics are simulated one sweep corresponds to N single site updates, with N

being the total number of sites in the system. If parallel dynamics are simulated one time step corresponds
to all sites being simultaneously updated once.
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Figure 3.18. The ∆T landscape of the 5link system for periodic boundary conditions, turning
probabilities and L1 = L3 = 100, L2 = L4 = 500, L5 = 37 and M = 248 depending on γ and
δ. Part (a) shows a discretization with a coarse grid resolution of 0.1 for the whole parameter
spectrum. It has its minimum at (γ, δ) = (0.9, 0.1) with ∆T ≈ 118. The strategy marked with
a green ⋆ leads to a gridlock of the system as will be explained in Section 4.2.1. Part (b) shows
a zoom with finer grid resolution of 0.01 into the area around the minimum of Part (a) (marked
therein by the green square). The minimum is here found at (γ, δ) = (0.87, 0.10) with ∆T ≈ 10.
This is pretty close to the actual user optimum. The minimum of ∆T is marked by the pink ◮.

Monte Carlo simulations are presented. The presented values are the mean values

Ō = O =
1

tτ

t∑

i=1

O(iτ) (3.32)

of measurements instances of the observable measured over a sufficiently long time. To gain

some more insights into the statistical distribution of the observable, sometimes the standard

deviation

σ(O) =

(
1

tτ

t∑

i=1

(O(iτ) − Ō)2

)1/2

(3.33)

which measures how far the individual measurements on average deviate from their mean

value is also given.

The method to approximate expectation values, Equation (3.32) with τ being the length

of one sweep or time step, can be directly applied to measure observables such as density

profiles or currents. For these observables one can get a data point every sweep/time step

and average over all data points after a sufficiently long time.

The measurement of travel times is a bit more complicated as the travel time itself is

an observable which measures time spans of multiple sweeps/time steps – it is not possible
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to measure a single travel time data point at every sweep/time step. For travel times T a

specific number n of data points is gathered and the approximation of the expectation value

is calculated as

T̄ = T =
1

n

n∑

i=1

Ti, (3.34)

while each data point corresponds to a specific time span.

Travel times in TASEP networks are the most prominent observables in this thesis. The

measurement of travel times was implemented in two different ways for the results presented

in the following sections. The two types were implemented at different times during my

research, they were not specifically designed to tackle specific tasks.

Consider as the simplest example a single TASEP with periodic boundary conditions and

length L, used by M particles. The travel time can be defined as the time a particle sitting

on site 1 needs from jumping out of site 1 until it re-enters site 1 by jumping out of site L.

The first way travel times were measured was by tagging one specific particle at a time and

keeping track of its position. The travel time is then given by the number of sweeps (or time

steps for parallel updates) for completing one round. After this one round the measurement

starts again for a second round etc. Like this the desired number of measurements for the

travel time can be obtained and from the average of those individual values an approximation

of the expectation value of the travel time is found. The second way is to keep track of

the positions of all particles in the system. Every time any particle jumps out of site 1, the

current system time will be recorded as its starting time. Once this particle jumps back into

site 1, the travel time measured by this particle can be calculated. Then after a sufficient

amount of measurements again the expectation value can be approximated by averaging over

all individual measurements.

It is important to note that with the second method it is possible to gather many individual

measurements much faster, i.e. with way less system sweeps/time steps. This is very impor-

tant to keep in mind if travel times are measured – especially in domain wall phases: since

in these phases the short-term density profile changes with the fluctuating domain walls, so

do the individual travel time measurements depending on the current position of the domain

wall. This is why e.g. a specific number of measurements gathered with the first method will

grant a travel time value much closer to its long term average than the same number of mea-

surements gathered with the second method. In the second method much less system time

(thus less potential positions of the domain wall) is covered. Gathering the same amount of

data points with the first method will take more time but will also cover ‘more of the system’s

dynamics’.

For measuring travel times in TASEP networks and with the route choice governed by

turning probabilities the first version was modified as follows: a single particle is tracked and

then forced to traverse the system on a specific route, the travel time of which is measured.

During this measurement the rest of the system keeps evolving according to the turning

probabilities. If the desired amount of data points for the travel time of one route is gathered,

a particle will be tracked and forced to traverse the system following the next route for which
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the travel time is about to be measured and so on.

Figure 3.19 shows how the measured mean value of the travel times on route 14 and 23 (with

γ = 0.5) evolves with the system for the first and second measurement methods (Figures 3.19

(a) and (b)). In both instances 3 · 104 sweeps are shown. Furthermore, on the second y-axis
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Figure 3.19. The evolution of the mean values of the travel times Ti against the number of performed
sweeps in the 4link Braess network with L1 = L3 = 100, L2 = L4 = 500, γ = 0.5 and M = 200.
The travel time on route 14 T14 is shown in red, that of route 23, T23 in green. Both plots show
a second y-axis denoting how often the travel times where measured / how many data points were
collected. The dotted lines correspond to this second y-axis. Part (a) was generated by the first
measurement method, i.e. by tagging specific particles. Part (b) was generated with the second
method, i.e. by keeping track of all particles. The inlet plot in Part (b) shows that for the second
method 200 data points are already gathered after appr. 2200 sweeps. At that point of time in the
measurement process the two mean values are still far from their actual values.

the number of gathered data points is shown. In the first method a single particle was tagged

and then forced to use route 14 for 200 rounds. Then a particle was tagged and forced to use

route 23 for 200 rounds. That means that after the 3 · 104 sweeps 200 data points for each

travel time were gathered. In the second method all particles were tracked all the time. After

the 3 · 104 sweeps approximately 40000 data points for each travel time are gathered. The

inlet in Figure 3.19 (b) shows that 200 data pints are already gathered after approximately

2200 sweeps. At this point the measured mean values are still differing very much from the

actual mean values.

This is shown to illustrate that the same amount of data point gathered by the second

method does not account for the same system time and is thus not as precise. If the second

method is used, the covered system time is more relevant than the number of data points.

If a route is not supposed to be used at all according to a given set of turning probabilities

or fixed route choices, the travel time on that unused route is also of interest. To obtain travel

time values whenever a route is not used at all a single particle was artificially forced to use

that route and the travel times of that particle were measured. This results in small errors

since one particle is forced to traverse routes which are not supposed to be used at all. Since

in most simulations there were at least 100 particles in the systems, the effects of a single

particle using a route which is technically not to be used does not result in large errors.
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3.3.2 Metropolis Algorithm for Finding User Optima

Another way to find system or user optima, different from that presented in Section 3.2.5.1,

is realized by walking through the landscape in a more directed manner. To be able to do

that a Metropolis Monte Carlo [129] method was developed. It works as follows.

1. Set maximum step width sw and ‘temperature’ τ .

2. Set start values (γ/n
(j1)
l , δ/n

(j2)
l ). In the fixed route choices case from this

• N14 = M · n(j1)
l · n(j2)

l

• N23 = M · (1− n
(j1)
l )

• N153 = M · n(j1)
l · (1− n

(j2)
l ).

3. Let the system thermalize with strategy according to (γ/n
(j1)
l , δ/n

(j2)
l ).

4. Measure travel times T14, T23, T153 and calculate ∆T .

5. Suggest new (γnew/n
(j1)
l, new, δnew/n

(j2)
l,new) by drawing a random number z between 0 and

2π and setting (γnew/n
(j1)
l, new, δnew/n

(j2)
l, new) = (γ/n

(j1)
l + sw · cos(z), δ/n(j2)

l + sw · sin(z))
(and for the fixed route choices case calculate Nnew

14 , Nnew
23 , Nnew

153 as in step 2).

6. Let the system thermalize with strategy according to (γnew/n
(j1)
l, new, δnew/n

(j2)
l,new).

7. Measure travel times T new
14 , T new

23 , T new
153 and calculate ∆T new.

8. Accept the new strategy with probability p = min
(
1, exp

(
−∆T−∆Tnew

τ

))
.

9. Repeat steps 5 to 8 as long as ∆T new > ǫ, with tolerance ǫ.

In this algorithm, the maximum step width sw is the maximum possible value, γ/n
(j1)
l and

δ/n
(j2)
l can be changed by. The temperature τ is a measure for the probability with which a

strategy with higher ∆T might be accepted and ǫ is the tolerance: if ∆T ≤ ǫ the strategy is

accepted as the user optimum. The ‘real’ user optimum is reached, if ǫ is exactly zero. An

additional tenth step could be added to the algorithm, in which sw would be reduced, if newly

suggested probabilities get rejected a certain amount of times. Fig. 3.20 (a) shows the search

path of the algorithm for periodic boundary conditions, fexed route choices, L1 = L3 = 100,

L2 = L4 = 500, L5 = 278 and M = 148 for 10 different start values (n
(j1)
l , n

(j2)
l ). The

observable-landscape with 0.1 step width as described in the previous subsection is underlayed

for visualization purposes. Furthermore, in Fig. 3.20 (b) the ∆T values against the Metropolis

step number (i.e. how often steps 5 to 8 of the algorithm were performed) is shown. From

both pictures it can be deduced that the algorithm works really well for this case. Depending

on the start values, the algorithm will not converge and has to be restarted with different

start values. The algorithm can also be used to find system optima if after each step Tmax

is calculated and the newly suggested strategy is accepted if Tmax got lower. The problem

in this case is that there is no real termination condition as there is no a priori known lower

bound to Tmax.
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Figure 3.20. An example of the performance of the Metropolis algorithm for periodic boundary
conditions, fexed route choices, L1 = L3 = 100, L2 = L4 = 500, L5 = 278 and M = 148 and
ten different start values. In (a) the search paths are shown with underlayed values of ∆T which

were obtained by sweeping the (n
(j1)
l , n

(j2)
l )-landscape as described in the previous section. The

beginnings of all paths are marked by a ◦ and the endings by a △. Also the user optimum is marked
by a white ×. In (b) the corresponding ∆T values against the number of Metropolis steps are
shown. One can see, that the algorithm converges pretty fast for all 10 start values.

For sweeping the whole strategies with a 0.1 resolution 121 measurements have to be done.

If the actual optima lie in between the grid points of the level of discretization, even more

measurements have to be performed. The Metropolis algorithm needs less measurements to

find the optima with a finer resolution in most cases.
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4 The Braess Network of TASEPs with

Externally Tuned Global Strategies

The present chapter presents the part of my research devoted to the Braess network of TASEPs

with externally tuned strategies. The term “externally tuned strategies” refers to the fact

that the individual particles do not choose their strategies intelligently, but all strategies

are set to specific values. Thus, here the first of the two major issues about what can

be improved in Braess’ model, which were worked out in Section 2.2.5, is addressed (the

second issue will be addressed in Chapter 5): Braess’ network is studied by employing a

more realistic model of traffic flow and the question whether Braess’ paradox is also observed

under these circumstances is answered under the assumption that potential user optima are

always realized. Furthermore, the influence of the new road on the network is analysed

beyond the question about the paradox’ occurrence. Phase diagrams according to the phase

classifications presented in Section 3.2.4 are presented, and for some specific networks the

new road’s influence is further quantified.

Braess’ network is studied for various combinations of boundary conditions and route choice

strategies. The variants of the network addressed in Sections 4.1 to 4.4 focus on random-

sequential dynamics, while in Section 4.5 some results on parallel dynamics are summarized.

4.1 Periodic Boundary Conditions and Fixed Strategies

In this section some results on the Braess network of TASEPs with periodic boundary con-

ditions, random-sequential updates and the drivers following fixed strategies are presented.

The results have partially been published in [127, 130]

The network and the fixed route choices mechanism have been described in Sections 3.2.1

and 3.2.2 respectively. The network is depicted in Figure 3.9 (a) and Equations (3.15) to

(3.20) hold. Furthermore, Equations (3.21) and (3.23) hold: the number of particles following

route 14, 23 and 153 are given by N14, N23 and N153, respectively, and are subject to N14 +

N23 + N153 = M . The user optima which are found in this section are pure user optima

since the individual users keep their explicit route choices fixed and do not decide based on

probabilities. The term “pure” is in the following omitted for readability reasons.

4.1.1 Gridlocks in the 5link Network

As explained in Section 3.2.2.1 in the case of fixed route choices each particle has a permanent

‘personal’ strategy. This is also the case for e.g. a particle on junction j1 that was already
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updated several times but could not jump due to its target site, i.e. the first site of either

E1 or E2. Real drivers might be tempted to decide for another route if the preferred route is

completely blocked but in the present scenario such ‘smart’ decisions are not included. This

can lead to complete gridlocks of the whole system if all sites of one route (or several routes)

are occupied. If one route is gridlocked the whole system is gridlocked since all routes share

the sites j1, j4 and E0.

Since gridlocks cannot dissolve, once they are formed they are the (absorbing) stationary

state of the system. In an ergodic system (with finite edge lengths Li) each accessible state

will be reached at some point of the time evolution. Thus if a gridlock state is possible, it will

always be reached at some point of the time evolution. Note that, depending on the initial

state, the time to reach the gridlock state can be extremely long, as will be seen in Sec. 4.1.1.1.

In the present section the requirements for gridlocks to be possible are determined.

If the system is analysed by Monte Carlo simulations it is important to initialize the system

in a way that excludes gridlocks that could occur if the system was initialized into a state

that could not occur according to the given strategy. In our simulations the system was

always initialized such that particles were placed randomly but already on routes according

to their strategies. This means that e.g. a particle following strategy 14 could not be placed

on E2. If the system was instead e.g. initialized completely randomly, i.e. particles are placed

anywhere irrespective of the strategy, gridlocks which are generally not possible for the given

global strategy could occur. A simple example for this are initial states where all sites on a

specific route are occupied by the random initialization even if this is not possible according

to the global strategy. For the following arguments to be valid in Monte Carlo simulations,

our chosen initialization strategy has to be applied.

Gridlock on Route 14. For the occurrence of a gridlock on route 14 the following three

conditions must be met:

(N14 ≥ L4 + 1) ∧ (N14 +N153 ≥ L1 + L4 + 2) ∧ (M ≥ L̂14 = L1 + L4 + 4). (4.1)

The first condition N14 ≥ L4 + 1 is necessary since all sites on E4 can only be occupied by

particles of strategy 14. Additionally to all sites on E4, also junction j2 must be occupied by a

particle of the same strategy (a particle that intends to jump to E4). As well as all sites of E4

and j2, also all sites on E1 must be occupied at the same time either by particles of strategies

14 or 153. Also junction j1 must be occupied by a particle that wants to turn left, thus one

of strategy 14 or 153. This is represented in the second condition N14 +N153 ≥ L1 + L4 + 2.

For a complete gridlock of route 14, also sites j4 and E0 must be occupied. They can be be

occupied by particles of any strategy 14, 153 or 23, which is represented in the third condition

M ≥ L̂14.
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Gridlock on Route 23. For the occurrence of a gridlock on route 23 the following three

conditions must be met:

(N23 ≥ L2 + 1) ∧ (N23 +N153 ≥ L3 + L2 + 2) ∧ (M ≥ L̂23 = L3 + L2 + 4). (4.2)

The first condition N23 ≥ L2 + 1 is necessary since all sites on E2 can only be occupied by

particles of strategy 23. Additionally to all sites on E2, also junction j1 must be occupied by

a particle intending to turn right, thus of the same strategy 23. As well as all sites of E2 and

j1, also all sites on E3 must be occupied at the same time either by particles of strategies 23

or 153. Also junction j3 must be occupied by one of those particles. This is represented in

the second condition N23 + N153 ≥ L3 + L2 + 2. For a complete gridlock of route 23, also

sites j4 and E0 must be occupied. They can be be occupied by particles of any strategy 14,

153 or 23, which is represented in the third condition M ≥ L̂23.

Gridlock on Route 153. The conditions for the occurrence of a gridlock on route 153 are a

bit more complicated since there is edge E5 which can only be used by particles of strategy

153 and there are the edges E1 and E3 which can be used by particles of strategies 153 and

14 and 153 and 23, respectively. The first condition which has to be met is

N153 ≥ L5 + 1. (4.3)

This represents all sites of E5 and junction j2 being occupied by particles of strategy 153.

Then one has to consider the remaining particles of strategy 153 which we denote by r153 =

N153 − L5 − 1. They can now be distributed onto edges E1 and E3. As the second condition

for a gridlock to be possible on route 153, there has to exist an integer number a ∈ N with

0 ≤ a ≤ r153 such that

(r153 − a+N14 ≥ L1 + 1) ∧ (a+N23 ≥ L3 + 1). (4.4)

The first part means that all sites on E1 and also junction j1 must be occupied by particles

of strategies 14 or 153. The second one means that junction j3 and all sites on E3 must be

occupied by particles of strategies 153 or 23. The third condition is

M ≥ L̂153 = L1 + L5 + L3 + 5. (4.5)

This ensures that sites j4 and E0 are occupied (by particles of any strategy 14, 23 or 153).

Summarzing, for a gridlock on route 153 to be possible the conditions in (4.3) and (4.5) have

to be met and an integer number a ∈ [0, r153] has to exist such that the two conditions in

(4.4) can be fulfilled.

Figure 4.1 shows for which points in the strategy landscape (the
(
n
(j1)
l , n

(j2)
l

)
- landscape
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Figure 4.1. The
(
n
(j1)
l , n

(j2)
l

)
- landscapes for L1 = 100, L2 = 500 and (a1) L̂153/L̂14 = 0.4 and

ρ
(5)
global = 0.2, (a2) L̂153/L̂14 = 0.4 and ρ

(5)
global = 0.5, (a3) L̂153/L̂14 = 0.4 and ρ

(5)
global = 0.8, (b1)

L̂153/L̂14 = 0.7 and ρ
(5)
global = 0.2, (b2) L̂153/L̂14 = 0.7 and ρ

(5)
global = 0.5, (b3) L̂153/L̂14 = 0.7

and ρ
(5)
global = 0.8, (c1) L̂153/L̂14 = 1.0 and ρ

(5)
global = 0.2, (c2) L̂153/L̂14 = 1.0 and ρ

(5)
global = 0.5,

(c3) L̂153/L̂14 = 1.0 and ρ
(5)
global = 0.8. The landscapes were discretized in steps of 0.01. Strategies

with potential gridlocks on routes 14, 23 and 153 are marked with blue ×’s, red +’s and green ⋆’s,
respectively.

i.e. the phase space of a 5link system for a given (M,L5)) gridlocks on the routes are possible

for several combinations of L̂153/L̂14 and ρ
(5)
global. One can see that with growing global den-

sity and thus more particles in the system, more and more strategies can lead to gridlocks.

Depending on the length ratio between the new route and the old routes, different strategies

can lead to gridlocks. For low values of L̂153/L̂14 more strategies with high n
(j1)
l and low n

(j2)
l

lead to a gridlock on route 153, which makes sense since the new route is much shorter com-

pared to the old ones. A shorter route can naturally be gridlocked at lower global densities

for certain strategies. For longer L5, thus higher L̂153/L̂14, routes 14 and 23 are becoming

76



4.1 Periodic Boundary Conditions and Fixed Strategies

more and more likely to be gridlocked as well.
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Figure 4.2. The number of strategies with potential gridlock over the total number of strate-

gies against the global density ρ
(5)
global for different values of L̂153/L̂14. To calculate the ratio the(

n
(j1)
l , n

(j2)
l

)
- landscapes were discretized in steps of 0.01 and the number of strategies with pos-

sible gridlocks were counted and then divided by the total number of strategies.

In Figure 4.2 the ratio of the number of strategies in which gridlocks are possible and the

total number of strategies is shown against the global density for various routelength ratios for

L1 = 100 and L2 = 500. This plot was obtained by discretizing the
(
n
(j1)
l , n

(j2)
l

)
- landscapes

in steps of 0.01. Then the number of strategies with potential gridlocks were counted and

this number was divided by the total number of strategies. Since in our case L̂153 is always

smaller than L̂14 = L̂23, the lowest density for which gridlock can occur is always the density

with M = L̂153 (cf. Eq. (4.5)).

For low values of L5 large regions of the
(
n
(j1)
l , n

(j2)
l

)
- landscape are comprised of strategies

with possible gridlocks even for low densities (e.g. over 60% of strategies can lead to gridlocks

at densities of ρ
(5)
global ≈ 0.4 for L̂153/L̂14 = 0.4). For longer E5 less strategies lead to gridlocks.

The shape of the curves in Figure 4.2 depends on how fine the discretization of space is chosen

and also on how phase space is described. It might look different if the phase space is chosen

to be three-dimensional and described by (N14, N23, N153) instead of
(
n
(j1)
l , n

(j2)
l

)
. The

time required for gridlock formation depends on the individual realization of the stochastic

process. A closer look at when gridlocked states occur is given in the following.

4.1.1.1 When Do Gridlocks Form?

Here we address the question about when during the time evolution of the system gridlocks

form by analysing an exemplary parameter set for which gridlocks are possible. We look at

the parameter set L̂153/L̂14 = 0.5 and ρ
(5)
global = 0.49. In Figure 4.3 we show the n

(j1/j2)
l -

landscapes and the corresponding Tmax (Part (a)) and ∆T (Part (b)) values. Strategies with
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gridlocked steady states are marked by coloured ×’s, +’s and ⋆’s, while for strategies in which

gridlocks are not possible the values of MC data for Tmax and ∆T are shown. Four strategies

are marked and the corresponding travel time values of the three routes and the Tmax and

∆T values for these points are shown in Table 4.1.
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Figure 4.3. The n
(j1/j2)
l - landscapes of (a) the Tmax and (b) the ∆T -values for L5 = 97 and

M = 638, which means L̂153/L̂14 = 0.5 and ρ
(5)
global = 0.49. States with possible gridlocks on routes

14, 23 and 153 are marked with blue ×’s, red +’s and green ⋆’s, respectively. Simulations were

performed for regions where no gridlock is possible and n
(j1/j2)
l was sweeped in steps of 0.01. The

white point ⋆1 has the lowest value of Tmax and is thus the system optimum. The pink point +1
is the point with the lowest value of ∆T of all strategies without gridlock. Thus this is the point
which is used for the phase diagram. The grey points +2 and +3 have smaller values of ∆T but
route 153 can gridlock.

In Part (a) of Figure 4.3 the point ⋆1 represents the system optimum of this parameter

set. It is given by half the particles choosing route 14 and the other half route 23. This

point has the lowest value of Tmax = 1789. It is not the user optimum as it has a high value

of ∆T = 2230 since the travel time on route 153 is much lower than on the other routes.

Strategy +1 in Part (b) of the figure is the point with the lowest value of ∆T = 2215 of all

the strategies without gridlock. From Table 4.1 we see that at this point route 153 still has a

much lower travel time than the routes 14 and 23. In a system with real selfish drivers, more

and more drivers would thus switch onto route 153. From the markings in Figure 4.3 (b) we

know that if more particles choose route 153, a gridlock on that route becomes possible. We

marked two more points (point ×2 and ×3) in this figure. From Table 4.1 we see that the

value of ∆T decreases for those two points. The travel time values of points ×2 and ×3 given

in this table were measured before the system gridlocked. From the reasoning in the previous

subsection we know that if a gridlock is possible it will in an ergodic system with finite edge

lengths definitely be reached at some point of the time evolution. In Figure 4.4 we see how
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Table 4.1. The n
(j1/j2)
l values, travel time values of all three routes and the Tmax and ∆T values of

the the four points which are marked in Figure 4.3 (a) and (b). Point ⋆1 is the system optimum.
Point +1 is the point with the lowest value for ∆T without potential for a gridlock. Thus this is
the point we chose for construction of the phase diagram. The points ×2 and ×3 are states with
gridlocked stationary states on route 153. The measured travel time values are marked with a star
because they were measured before the system gridlocked and are not stationary state values.

Point n
(j1)
l n

(j2)
l T14 T23 T153 Tmax ∆T

⋆1 0.5 1.0 1789 1789 674 1789 2230

+1 0.730 0.798 2270 2047 1162 2270 2215

×2 0.741 0.735 2113⋆ 2015⋆ 1539⋆ 2133⋆ 1148⋆

×3 0.752 0.671 2797⋆ 2744⋆ 2748⋆ 2797⋆ 106⋆

travel times of the individual routes and the value of ∆T develop during the measurement

process at point ×3. For this figure six instances of the system with different seed values

for the random number generator were generated and the travel times were measured during

the evolution of the system. The system was not relaxed before measurements begun. The

relaxation was skipped here since otherwise the system may have already gridlocked during

the relaxation process. One can see that in the beginning of the time evolution the state

×3 seems to be actually a good candidate for a user optimum since the value of ∆T is very

low since all three routes have similar travel times (also compare Table 4.1 for the numbers).

Nevertheless, as expected, all six instances of the system gridlock at some point of the time

evolution. The earliest gridlock occurs after 130000 sweeps (blue line) and the latest after

1470000 sweeps (grey line).

In a system with real drivers or intelligent particles which choose the route with the lowest

potential travel time judging from their assumed knowledge of travel times on all routes

gridlocks are very likely to develop. If a system is e.g. in a state like the +1 state in

Figure 4.3 (b), more and more drivers would switch to route 153 with the aim of reducing

their travel time. This would in the end lead the system to gridlock.

The described observations about gridlock states are why strategies with gridlocks are not

considered as candidates for user optima (or system optima) in the following analyses. This

also means that for various parameter sets there are no real user optima as exemplified by

the parameter set shown in Figure 4.3.

4.1.2 Results for the 4link Network

To analyse the impact of the new edge E5 on the network and its performance in the sense

of travel times, the user optima (and system optima) of the 4link and 5link systems have

to be compared. Since the 4link system, our reference system, is symmetric one expects the

user optimum and the system optimum to be given by half the particles taking route 14 and

the other half taking route 23 (N14 = N23 = M/2) for all possible global densities ρ
(4)
global.

Figure 4.5 shows that this is indeed the case for the case of drivers with fixed route choices.
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Figure 4.4. The time evolution of (a) - (c) the measured mean values of the travel times of the three
routes and (d) the value of ∆T for the state ×3 shown in Figure 4.3. The different coloured curves
show six different instances of the system realized with six different seed values for the random
number generator. The second y-axes on the right sides of the first three figures show how many
times ni the values of Ti were measured, represented by the dotted grey line. The vertical lines
show the points in time when the individual systems gridlocked on route 153.

When particles are distributed in equal parts onto the two symmetric routes, gridlocks are

automatically avoided since as long as there are less particles than the total number of sites

minus two in the system gridlocks are not possible on either of the two routes (compare to

Equations (4.3) and (4.4) with noting that N153 = 0 and L5 = 0 for the 4link system). This

means that user optima exist in the system up until global densities of almost 1.

In Figure 4.5 (a) we see the value of ∆T plotted against the global density in the 4link

system. The value is close to zero for all global densities which means that the travel times

are (almost) equal on both routes and this symmetric distribution of the particles is indeed

the user optimum. Since the network is symmetric, this symmetric strategy is also the system

optimum, as any unequal distribution of the particles would lead to a higher travel time on

the route with more particles.

In Figure 4.5 (b) the average of the travel times measured on routes 14 and 23 (Tav =
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Figure 4.5. Results of MC simulations of the 4link system for 50% of the particles choosing route

14 and 50% choosing route 23 (N14 = N23 = M/2) for the whole density regime 0 ≤ ρ
(4)
global ≤ 1

and L1 = L3 = 100 and L2 = L4 = 500. Part (a) shows, that throughout all densities, the travel
times on routes 14 and 23 are almost equal. Part (b) shows the average travel times on these routes
(orange ×’s) and for comparison the travel time of a single TASEP with M/2 particles according
to Equation (3.4) (blue line). One can see, that jamming at j4 plays an important role for densities

ρ
(4)
global & 0.2. As can be seen in part (c), the relative standard deviations of the travel times on

both routes are below 5% for all densities (values for route 14/23 in red/green).

(T14 +T23)/2) is shown. For comparison also the travel time of a single TASEP used by M/2

particles (obeying Equation (3.4)) is shown by the blue line. One can see that for densities

ρ
(4)
global & 0.2 the travel times on the routes in the 4link system are higher than those in the

single TASEP. This means that jamming in front of j4, which forms a bottleneck since the

two routes join at this site, leads to higher travel times from this density upwards.

In Figure 4.5 (c) we can see the relative standard deviation of the travel time measurements

of both routes (see Equation (3.33)). One can see that it stays below 5% for all densities.

This means that no matter the point of the time evolution, particles starting a new round

at j1 will experience similar travel times. This is a big difference to the system with route

choices governed by turning probabilities (see Section 4.2.2).

Figure 4.6 shows the density profiles of the two routes for the half-half strategy for the four

different global densities ρ
(4)
global ∈ {0.1, 0.2, 0.5, 0.75}. One can see that the density profiles

on both routes look almost exactly equal reflecting the symmetry of the scenario. For the

two lowest densities both routes are in LD phases. At the intermediate density there is a

domain wall on both routes separating an HD region on the right from an LD region on the
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Figure 4.6. Density profiles of the routes 14 (Part (a)) and 23 (Part (b)) in the 4link system with

L1 = L3 = 100 and L2 = L4 = 500 for the four different global densities ρ
(4)
global ∈ {0.1, 0.2, 0.5, 0.75}

printed in {purple,orange,brown,blue}. The local densities ρ
14/23
i on the two routes are shown

against the position i. The denisity on E0 is given by a +, the density of junction sites on the roads
by ×’s. One can see that in all cases the density profiles are almost equal on both routes. Domains
walls form at the same fixed positions on both routes.

left. This domain wall is at a fixed position: it appears as a sharp domain wall in the density

profile which was averaged over the whole measurement process. It is thus not to be confused

with a fluctuating domain wall which appears in single OBC TASEPs for α = β < 1/2 (see

Section 3.1.1.2). For higher densities the HD parts (averaged density higher than 1/2) of the

routes get longer. This behaviour is a big difference to the system with route choices governed

by turning probabilities (see Sections 4.2.2 and 4.3).

4.1.3 Comparison of the 4link and 5link Networks

We used Monte Carlo simulations to obtain the user optima and system optima of the 5link

system for different combinations of L5 and M . Our methods for finding user and system

optima are described in Sections 3.2.5 and 3.3.2. For the reasons described in Section 4.1.1

states with potential gridlock formation were not considered as candidates for user or system

optima.

4.1.3.1 Strategies with Multiple User Optima in the 5link Network

For some configurations we could find more than one user optimum. Here we present the

example of L̂153/L̂14 = 0.4 and ρ
(5)
global = 0.18. In Figure 4.7 the Tmax and ∆T landscapes for

this parameter set are shown. In the figure, the values of a sweep of the landscapes in steps

of 0.1 is underlayed. The travel time and ∆T and Tmax values for the four marked points are
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Figure 4.7. The Tmax (Part (a)) and ∆T (Part (b)) landscapes of the 5link system with L1 = L3 =

100, L2 = L4 = 500, L5 = 37, M = 224, ρ
(5)
global = 0.18. In Part (a), the system optimum is marked

by +1. In Part (b) one can see that there are three different user optima, ×1 to ×3, the values of
which are given in Table 4.2.

given in Table 4.2. In Part (a) of the picture one can see that the system optimum is given

by n
(j1)
l = 0.5 and n

(j2)
l = 1.0. This means that here so(5) = so(4) since this is the state where

half of the particles use route 14 and the other half route 23.

In Part (b) of Figure 4.7 one can see that there are three different user optima. The

two user optima ×1 and ×3 were found by sweeping the n
j1/j2
l landscapes (Section 3.2.5.1)

and are special cases of user optima which were already mentioned in Section 3.2.3. The

user optimum ×2 was found by our Metropolis (Section 3.3.2) algorithm. The optimum ×1

is a special case since only route 23 and 153 are used. Since both their travel times are

almost equal and smaller than that of the unused route 14 this state is a user optimum. For

calculating ∆T , only the difference between T23 and T153 is used. It would in this case not

make sense for any particle to switch to route 14 which has a higher travel time. The same

happens in the user optimum ×3, but here routes 14 and 153 are used and route 23 is not.

The other user optimum ×2 is an ‘ordinary’ user optimum in which all three routes are used

and have (almost) the same travel time. The (maximum) travel times in all three user optima

are higher than that of the system optimum (which is the same as the 4link system optimum)

which leads to the conclusion that no matter in which user optimum the system ends up, a

“Braess 1” state is present.

The fact that we found multiple user optima with different travel times (and different Tmax

values and also different total travel time values) for the same parameter set is a difference to

what is observed in mathematical models of road traffic. In these models it was shown that

“[the user optimum] is unique whenever the shortest routes between all pairs of locations are

83



4 The Braess Network of TASEPs with Externally Tuned Global Strategies

Table 4.2. The n
(j1/j2)
l values, travel time values of all three routes and the Tmax and ∆T values for

the four points which are marked in Figure 4.7. The point +1 is the system optimum while points
×1 to ×3 are three user optima of the system.

Point n
(j1)
l n

(j2)
l T14 T23 T153 Tmax ∆T

+1 0.5 1.0 743 742 294 743 898

×1 0.5 0.0 926 880 876 880 4

×2 0.808 0.221 970 975 975 975 10

×3 1.0 0.5 878 1136 875 878 3

unique and cost is strictly increasing with increasing flow” [69].

For most parameter sets which were analysed, only one user optimum was found. Also,

when multiple user optima were found, they all lead to the same system phases as in the

example presented in this section where all three different user optima result in a “Braess

1” phase. Nevertheless, I cannot guarantee that all existing user optima were found for all

parameter sets. This is why the obtained phase diagram presented in the following section may

not be totally accurate. Furthermore, from the example presented here, one can see that in

the case of multiple user optima those optima can have different travel time values (Table 4.2).

In Section 4.1.3.3 the influences of the new edge are quantified. For this quantification it has

to be kept in mind that for each parameter set only one user optimum was taken into account

and consequently the resulting quantifications are not to be taken as exact numbers but rather

as tendencies.

4.1.3.2 Phase Diagram

By comparing the global strategies and their travel times of the found 5link user and system

optima to those of the 4link system’s user and system optima for the same M the phase

diagram of the system according to the classification shown in Figure 3.11 was constructed.

The phase diagram (Figure 4.8) and the following Figure 4.9 show the influence of the control

parameters L5 and M : the x-axis is always given by L̂153/L̂14 which is the ratio of the lengths

of the new route 153 and the two old routes 14 and 23 (see Equations (3.17) - (3.19)). There

are always two y-axes which decode the number of particles M via the global densities in the

4link/5link systems ρ
(4)/(5)
global (see Equation (3.20)).

The phase diagram shown in Figure 4.8 can be divided into two super-phases which can

then be subdivided into the individual phases. The first super-phase is that in which real

user optima exist in the 5link system (there are real user optima in the 4link system for all

densities as discussed before). This is in the sense that global strategies exist which lead to

almost equal travel times on all three routes without the possibility of gridlock formation.

This super-phase is comprised of the phases A1, A2 and B and C.

The second super-phase of the phase diagram is the part in which, due to gridlocks, no real

user optima exist in the 5link system. This super-phase is marked by a hatching. It consists of
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Figure 4.8. The phase diagram for the Braess network with periodic boundary conditions, random-
sequential updates and fixed route choices according to the classification scheme given in Figure 3.11.
The shown results were obtained for L1 = L3 = 100, L2 = L4 = 500 and varying lengths of E5

(resulting in the x-axis L̂153/L̂14) and M (resulting in the two y-axes ρ
(4)/(5)
global ). The ×’s show where

simulations were performed. The phase boundaries are drawn according to those simulations and
are thus, due to this limited number of simulations, only a rough estimate of the phase boundaries.
In phases A, B and C real user optima could by found: phase A1 is an “E5 optimal - all 153” phase,
phase A2 is an “E5 optimal” phase, phase B a “Braess 1” phase, phase C a “Braess 2” phase. In
the area marked by a hatching (phases B′, C′, D′, E′) no real user optima could be found. Phase B′

is “Braess 1 - like”, phase C′ is “Braess 2 - like”, phase D′ is “E5 not used - like”, phase E′ is “E5

improves -like”. In phase F the 4link system is full. The magenta and blue lines denote the mean
field phase boundary for the “E5 optimal - all 153” phase, as given by Equations (3.26) and (3.27).

the primed phases B′, C′, D′, E′. For classifying these phases according to the scheme shown

in Figure 3.11 the states with the lowest value of ∆T that cannot lead to gridlocks where used

(compare Section 4.1.1.1 for an example) as the closest candidates for a user optimum: the

maximum travel time of that state (since unlike in a real user optimum all three routes do

not have equal travel times) was compared to the 4link user optimum travel time. One has

to always keep in mind that no stable states exist in the 5link systems in these phases and if

the system was used by real drivers, the system would at some point gridlock completely as

described in Section 4.1.1.1.

In a large part of the phase diagram, there are more particles in the 5link system than sites

in the 4link system. This part is called phase F. In this part of the phase diagram the two

systems cannot be compared. Obviously, if that many particles were in the system, the new
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road would improve the system’s performance, but only in the sense that that many particles

could not even fit into the network without the new road.

The two super-phases can also be identified in Figure 4.9 (a) which shows the value of ∆T

in the states with the lowest value of ∆T in the 5link systems for selected parameter sets

of L̂153/L̂14 and ρ
(5)
global. One can see that in the first super-phase, where real user optima

exist, it stays below 100. In the phase A1 it is actually zero while in the two other phases it

takes values of the order of 10. If one sticks strictly to the definitions of user optima given

in Section 2.1, all user optima in which ∆T is not zero are actually boundedly rational user

optima.

In the second super-phase the value grow highly above 100, up to 105 and more, indicating

that the closest candidates for user optima are actually very far from real user optima.

The First Super-phase / the Region with Real User Optima. Phases A1 and A2 which are

found at ρ
(5)
global . 0.2 are “E5 optimal” phases. The 5link system optima differ from those

of the corresponding 4link systems and the 5link user optima coincide with the 5link system

optima. This means that due to the new road, also for selfish users, in the 5link system users

will align themselves in the optimal way and this will lead to lower travel times than in the

user optimum of the system without the new road. Phase A1 which is found at low global

densities and low values of the route length ratio L̂153/L̂14 is a special case in the sense that

it is an “all 153” phase. This means that the 5link user optimum actually corresponds to

all particles using the new route 153 and the travel time on this route being lower than that

on the two unused routes. This is also the reason for the value of ∆T being zero in that

phase. The analytical approximation of the phase boundary of the “E5 optimal / all 153”

phase, given by Equations (3.26) and (3.26) is also shown in the phase diagram (magenta

and blue lines). The correspondence is very good. The region in which both Equations (3.26)

and (3.27) are valid (below both the magenta and the blue line) corresponds to the “E5

optimal / all 153” phase. This is also very well represented in the A1 phase border obtained

by Monte Carlo simulations.

In phase A2, which is present at higher route length ratios and low global densities, all

three routes are used in the 5link user optimum leading to equal travel times on all three

routes which are lower than the travel times in the 4link user optima.

Phase B which is the largest phase dominating most of the phase diagram from densities

ρ
(5)
global & 0.2 and for high route length ratios up to ρ

(5)
global . 0.6 is a “Braess 1” phase.

In this phase the 5link system optimum is equal to that of the 4link system – an equal

distribution of all particles onto routes 14 and 23. The 5link user optima are, however, given

by different distributions of the particles onto the three routes. This leads to equal travel

times on the three routes which are higher than those in the corresponding 4link user optima.

In this large phase the Braess paradox in its original form occurs. The new road leads to a

worse performance of the road network. This indicates strongly that the paradox is not only

found but of major importance in networks of exclusion processes (i.e. more realistic traffic

descriptions than mathematical models).
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Phase C which is only found in a really small part of the phase diagram at densities of

ρ
(5)
global ≈ 0.6 and L̂153/L̂14 & 0.7 is a “Braess 2” phase. This means that the system optima

of the 4link and 5link system are not the same: travel times in the 5link system optima are

lower than those in the corresponding 4link user optima. If the 5link system was forced into

its system optimum state, the new road would lead to lower travel times for all network users.

For selfish users the 5link system will be in a user optimum state with travel times higher

than those of the 4link user optimum though. Thus the new road worsens the network’s

performance in this phase if selfish users use the network.

The Second Super-phase / the Region Without Real User Optima. Phase B′ is a “Braess

1 - like” phase. It occurs at route length ratios L̂153/L̂14 . 0.7 and medium global densities

This means the 5link system optimum coincides with the corresponding 4link system’s system

optimum and statesthat the maximum travel time in the state which is the closest candidate

for a user optimum (state with lowest value for ∆T without gridlock) is higher than that of

the 4link user optimum.

The C′ phase is a “Braess 2 - like” phase. It is present at L̂153/L̂14 & 0.7 and at densities

0.8 . ρ
(4)
global . 0.9 In that phase the 5link system optimum differs from that of the 4link and

has lower travel times. The closest candidate for a user optimum has higher travel times than

those in the 4link user optimum.

In phase D′ which is found at low route length ratios L̂153/L̂14 . 0.7 and high global

densities, the 5link system optimum coincides with the 4link system optimum and the 5link

closest candidate for a user optimum also coincides with this state: it is thus an “E5 not used

- like” state. The new road will actually be completely ignored.

Phase E′ which is found at route length ratios L̂153/L̂14 & 0.6 and densities ρ
(4)
global ≈ 0.9

is an “E5 improves - like” phase. The system optimum of the 5link systems has lower travel

times than that of the corresponding 4link systems. The closest candidate for a user optimum

in the 5link does not coincide with the system optimum while it would still lead to lower travel

times than the 4link user optimum.

All primed phases are in the region in which no real user optima exist and in a system

with real selfish drivers, those would lead the system to gridlock. From this standpoint one

could argue that in all primed phases, the new road has a negative impact on the system’s

performance. If some travel guidance authority was there to force traffic into its system

optimum, in the D′ and E′ phases the new road would reduce travel times. This means only

at high routelength ratios (i.e. long lengths of E5) L̂153/L̂14 & 0.6 and ρ
(4)
global & 0.8 the new

road would lead to decreased travel times. For selfish drivers, only for small global densities

ρ
(5)
global . 0.2 the construction of the new road would lead to stable user optima with lower

travel times.

Overall one could say that if it cannot be guaranteed that the network is only used by

a small amount of drivers the construction of the new road is very risky from a network

performance perspective.

Examples of what the observable-landscapes and densiy profiles on the routes look like in
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the described phases can be found in A.1.1.

4.1.3.3 A Closer Look at the Influence of the New Edge

Additionally to just comparing the system and user optima of the 4link and 5link systems with

respect to travel times and constructing the phase diagram on this basis, one can also take a

more quantitative look at the new road’s influence on the system. The corresponding results

are shown in Figure 4.9 together with the values of ∆T of some points in the phase diagram.

The ∆T values are shown in Part (a) of that Figure and were already discussed. In Part (b)

the ratio of the maximum travel times of the 4link and 5link systems Tmax(so
(5))/Tmax(so

(4))

is shown. This measure quantifies how much the new road reduces system optimum travel

times. If the 5link system was always in its system optimum, e.g. due to traffic guidance by

some authority, travel times would be reduced in phases A1/2, C, C
′ and E′. As can be seen

in the Figure the benefits would be highest for really low densities and really small values of

L5 (thus in phase A1) and also for really high densities. The former makes sense since if there

are only a few particles and they can all use a much shorter route then the travel times on

this route will be much smaller than on the longer (old) routes. We know that travel times

diverge if the density on a periodic TASEP approaches ρ = 1 (Equation 3.4). Thus the latter

case makes sense too: at really high densities in the 4link system, the system optimum travel

times diverge and thus the travel times in the system optimum of the 5link, where there is

another, relatively long route available, are shorter.

Part (c) of Figure 4.9 shows the price of anarchy in the 5link system given by the ratio

Tmax(uo
(5))/Tmax(so

(5)): how much does the 5link network suffer from selfish users opposed

to controlled traffic. In the A1/2 phase and in the D′ phases user and system optima coincide

which is why the value of Tmax(uo
(5))/Tmax(so

(5)) equals 1. In the other phases the 5link user

optima are not equal to the system optima. In the biggest phase, the B phase or “Braess

1” phase, the price of anarchy has values around 1.1 to 1.3. Selfish users do not increase

travel times by a large factor here. The price of anarchy is highest in the C′ phase in which

it reaches values above 1.5.

In Figure 4.9 (d) the ratio of the 4link and 5link travel times Tmax(uo
(5))/Tmax(uo

(4)) is

shown. If it is larger than 1 the new road leads to higher user optimum travel times and

Braess’ paradox is present. If it is lower the road leads to lower user optimum travel times.

The positive effects are highest in the A1 and E′ phases while the negative consequences are

dominant in most parts of phase space.

88



4.1 Periodic Boundary Conditions and Fixed Strategies

0.0 0.2 0.4 0.6 0.8 1.0

L̂153/L̂14

0.0

0.2

0.4

0.6

0.8

1.0

ρ
(5

)
g
lo
b
a
l

ρ
(4

)
g
lo
b
a
l

0.0

0.2

0.4

0.6

0.8

1.0

(a)

A1

A2

B

B′

C

C
′

D′ E′

F

100 101 102 103 10
4

∆T

0.0 0.2 0.4 0.6 0.8 1.0

L̂153/L̂14

0.0

0.2

0.4

0.6

0.8

1.0

ρ
(5

)
g
lo
b
a
l

ρ
(4

)
g
lo
b
a
l

0.0

0.2

0.4

0.6

0.8

1.0

(b)

A1

A2

B

B′

C
C′

D′ E′

F

0.5 0.6 0.7 0.8 0.9 1.0
Tmax(so

(5))/Tmax(so
(4))

0.0 0.2 0.4 0.6 0.8 1.0

L̂153/L̂14

0.0

0.2

0.4

0.6

0.8

1.0

ρ
(5

)
g
lo
b
a
l

ρ
(4

)
g
lo
b
a
l

0.0

0.2

0.4

0.6

0.8

1.0

(c)

A1

A2

B

B′

C
C′

D′ E′

F

1.0 1.1 1.2 1.3 1.4 1.5
Tmax(uo

(5))/Tmax(so
(5))

0.0 0.2 0.4 0.6 0.8 1.0

L̂153/L̂14

0.0

0.2

0.4

0.6

0.8

1.0

ρ
(5

)
g
lo
b
a
l

ρ
(4

)
g
lo
b
a
l

0.0

0.2

0.4

0.6

0.8

1.0

(d)

A1

A2

B

B′

C
C′

D′ E′

F

0.5 0.75 1.0 1.25 1.5
Tmax(uo

(5))/Tmax(uo
(4))

Figure 4.9. Quantifications of the influence of E5 on the network. Part (a) shows the value of ∆T
for selected measurement points. One can see that it is below 100 (indicated by coloured ◦) in the
unhatched area and above 100 (indicated by coloured △) in the hatched area. In all three Parts (b)
to (d), white ◦ indicate values equal to 1, coloured △ indicate values between 1 and 1.5, coloured ▽
indicate values between 0.5 and 1, green ♦ indicate values below 0.5 and yellow � indicate values
above 1.5. Part (b) shows how the new road could improve the system if it was always in its system
optimum, measured by Tmax(so

(5))/Tmax(so
(4)). Part (c) measures the so-called price of anarchy

given by Tmax(uo
(5))/Tmax(so

(5)). This measure explains how much the travel times go up in the
5link, if users are selfish and not guided by external measures. Part (d) shows how much the travel
times go up/down due to E5 compared to the 4link system if the network is used by selfish drivers,
measured by Tmax(uo

(5))/Tmax(uo
(4)).
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4.2 Periodic Boundary Conditions and Turning Probabilities

In the present section some results on Braess’ network of TASEPs with periodic boundary

conditions, random-sequential updates and the route choice process governed by turning

probabilities (as described in more detail in Section 3.2.2.2) are presented. Most presented

results have been published in [126, 130]

The network is shown in Figure 3.9 (a) and the route choice process is sketched in Fig-

ure 3.10 (b). Equations (3.15) to (3.20) hold. If site j1 is updated and there is a particle on

this junction, the particle will jump onto E1 with probability γ and to E2 with probability

1 − γ. If, in the 5link network, site j2 is updated and there is a particle on this junction

site, it will jump to E4 with probability δ and to E5 with probability 1− δ. Note that if the

particle cannot jump due to its target site being occupied, the next time it is updated it will

again choose a target site according to the turning probabilities.

All particles are equal and choose their routes according to the same turning probabilities.

Thus user optima in this scenario are more precisely speaking mixed user equilibria. It turns

out that the turning probability route choice process leads to some major differences in the

travel time behaviour when compared to the model with fixed strategies.

4.2.1 Gridlocks in the 5link Network

Each time a particle on a junctions site is updated it chooses its route afresh according to

the turning probabilities. Due to this, almost no strategies can lead to permanent gridlocks

– often not even strategies leading to on average as many particles on a route as sites of

the route. Only if γ or δ become deterministic, in the sense of γ or δ being equal to 0 or 1,

permanent gridlocks can form if there are sufficiently many particles in the system. This is

the case since for a permanent gridlock not only all sites on the edges of a route have to be

permanently occupied, but also the three sites which are shared by every route: sites j4, E0

and j1. If the system is not completely full and γ is unequal to 0 or 1, at some point in time,

a particle on j1 will be able to jump to its target site. Like this all particles will be able to

move at some point, even though travel times may be really high.

Due to all routes sharing the three aforementioned sites, a gridlock on one route will lead

to the whole network being gridlocked. In the following we show under which circumstances

the three routes can gridlock, leading to a whole network gridlock:

• Gridlocks on route 23 are the stationary state for

M ≥ L̂23 = L2 + L3 + 4 ∧ γ = 0 ∧ δ = arbitrary. (4.6)

• Gridlocks on route 14 are the stationary state for

M ≥ L̂14 = L1 + L4 + 4 ∧ γ = 1 ∧ δ = 1. (4.7)
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• Gridlocks on route 153 are the stationary state for

M ≥ L̂153 = 2L1 + L5 + 5 ∧ γ = 1 ∧ δ = 0. (4.8)

• Gridlocks on route both route 14 and route 153 are the stationary state for

M ≥ L1 + L3 + L4 + L5 + 5 ∧ γ = 1 ∧ δ = arbitrary. (4.9)

• Gridlocks on route both route 23 and route 153 are the stationary state for

M ≥ L1 + L2 + L3 + L5 + 5 ∧ γ = arbitrary ∧ δ = 0. (4.10)

• Gridlocks on route both route 14 and route 23 are the stationary state for

M ≥ L1 + L2 + L3 + L4 + 5 ∧ γ = arbitrary ∧ δ = 1. (4.11)

One can see that there are significantly less states leading to gridlocks than in the network

with fixed strategies (gridlocks in that system where treated in Section 4.1.1). As can be

seen in Figure 4.1, for fixed strategies at high global densities almost all strategies become

gridlocked. In the present case of turning probabilities, permanent gridlocks are only possible

if either γ or δ is 0 or 1.

4.2.2 Results for the 4link Network

The network without E5 is symmetric. Thus one would naturally assume that the user

optimum and the system optimum is, for any number of particles M , given by the symmetric

strategy γ = 0.5 distributing on average half the particles on route 14 and the other half on

route 23. It turns out that in a large intermediate density region this is, at least for short-term

measurements, which are relevant for individual particles, not the case. This is a consequence

of domain walls whose positions are fluctuating in a coupled manner on both routes.

Figure 4.10 shows the 4link network visualized in two different, but equivalent, ways. The

right side of the figure reveals that the 4link network is very similar to the symmetric figure of

eight network, the properties of which were analysed in [59] and summarized in Section 3.1.3.1.

The difference of the 4link network to the figure of eight network is that in the latter there is

only one junction site connecting the two edges. The two edges are fed from the junction site

and exit onto the junction site. In the 4link case, there are two separate sites: site j1 from

which the edges are fed and site j4, the site the edges feed onto. They are connected by the

periodic boundary site E0. While the mean field arguments presented in Section 3.1.3.1 do

not hold anymore, the system still behaves similarly.
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Figure 4.10. Two possible visualizations of the 4link network with γ = 0.5. In the 4link system
E5 does not exist. Furthermore, throughout the whole thesis L0 = 1. Thus the 4link system with
γ = 0.5 as shown on the left side can also be visualized as shown on the right side. The visualisation
on the right side shows the network’s similarity to the figure-of-eight network, the properties of which
were summarized in Section 3.1.3.1. The difference is that in the figure-of-eight network there is
only one junction site which the two routes feed onto and are fed by. In the present case there are
three sites: j4, E0 and j1.

In Figure 4.11 the effective entrance and exit rates of routes 14 and 23,

αeff = 1
2ρ(j1) (4.12)

βeff = 1− ρ(j4), (4.13)

are shown. The values were obtained from Monte Carlo simulations. One can see that the

effective rates are almost equal in the density region 0.29 . ρ
(4)
global . 0.75. For densities

below 0.29 the effective entrance rate is lower than the exit rate, thus the two routes are in

LD states. For densities above 0.75 the opposite is the case and both routes are in HD states.

For the large intermediate density region, both routes are in DW states.

In the DW phase there are no short-term stable travel times since the positions of the

domain walls separating the LD and HD regions on both routes change constantly. Particles

queue behind the beginning of the bottleneck (junction j4). Due to the stochastic feeding

(with turning probability γ) the number of particles per route is not fixed as in the fixed

route choices model. Only on average there is the same amount of particles on both routes.

In the DW phase the densities of the LD and HD regions are given by

ρLD ≈ αeff (4.14)

ρHD ≈ 1− αeff. (4.15)

From the measurements shown in Fig. 4.11 we deduce that in the whole domain wall phase,

αeff ≈ βeff ≈ 0.22.

It turns out that the DWs on both routes perform a coupled random walk. The shorter the

HD region in front of j4 gets on one route, the longer it gets on the other route. This is also

a consequence of the particle number conservation due to the periodic boundary conditions.
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Figure 4.11. The effective entrance and exit rates αeff and βeff of both routes 14 and 23 for the 4link

system with γ = 0.5 against the global density ρ
(4)
global as obtained from Monte Carlo simulations.

One can see that they are almost equal for 0.29 . ρ
(4)
global . 0.75. In this whole density region both

routes are in DW phases. Keep in mind that in this whole thesis L0 = 1.

All possible distributions of the HD and LD regions onto the two routes are possible. From

equally long HD regions on both routes to (depending on the global density) one route being

in an HD state completely while the other route is completely in an LD state.

Using the densities of the LD and HD regions (Equations (4.14) and (4.15)) one can ap-

proximate the maximum and minimum travel times which can be measured on both routes.

To do this, first note that the following two equations have to be valid:

M = ρ
(4)
globalL

(4)
tot ≈ ρHDLHD + ρLDLLD , (4.16)

L
(4)
tot ≈ LHD + LLD, (4.17)

with LLD/HD denoting the total length of the LD/HD regions. These are not exact equal-

ities but approximations since sharp discontinous domain walls separating the LD and HD

regions were assumed. Furthermore, the junction sites and the site of E0 were neglected to

approximate the total number of sites in the system as L
(4)
tot = 2L1 + 2L2 + 5 ≈ 2L1 + 2L2.

Using ρLD ≈ 1 − ρHD from Eqs. (4.14) and (4.15), the system of Eqs. (4.16) and (4.17) can

be solved:

LHD =
ρ
(4)
globalL

(4)
tot

ρHD − ρLD
− ρLDL

(4)
tot

ρHD − ρLD
. (4.18)

This equation tells us how long the HD region is depending on the global density. If we now

make a further approximation and assume that the LD and HD regions themselves have flat

density profiles with a sharp domain wall separating them, we can assume that Equation (3.5),

TOBC ≈ L/(1− ρbulk(α, β)), holds approximately for the description of the travel time on the
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LD and HD parts of the routes. Using these assumptions we can then deduce the minimum

and maximum possible travel times of routes 14 and 23 in the DW phase:

Tmax ≈





LHD

1−ρHD
+ L̂14−LHD

1−ρLD
LHD < L̂14

L̂14

1−ρHD
LHD > L̂14

, (4.19)

Tmin ≈





L̂14

1−ρLD
LHD < L̂14

LHD−L̂14

1−ρHD
+ LLD

1−ρLD
LHD > L̂14

. (4.20)

For the case in which the whole HD segment is shorter than a route (LHD < L̂14), the

maximum travel time is always given if the whole HD segment is inside one route only. This

leads to the minimal travel time on the other route since the other route is completely in an

LD phase. The situation changes as the HD region gets longer than a whole route, LHD > L̂14.

Then the maximum travel time is realized if a whole route is in a HD state which realizes the

minimum travel time the other route where the ‘remnant’ of the HD segment is. These two

different situations are shown in Fig. 4.12.

Figure 4.12. Schematic of the possible domain wall positions. For LHD < L̂14 (upper row), the
maximum/minimum travel times can be measured on route 14/23 if the whole HD region (marked
red) is on route 14 (left column). For LHD > L̂14 (lower row), the maximum/minimum travel times
can be measured on route 14/23 if a whole route is in the HD phase, while the remnant of the HD
region is in the other route (left column). The right column shows two possible different domain
wall positions for the same LHD that occur at different measurement times.

The validity of the predicted behaviour of Equations (4.19) and (4.20) are confirmed by

Monte Carlo simulations as shown in Figure 4.13 (red and green lines). Outside the DW

region, i.e. for densities ρ
(4)
global < 0.29 and ρ

(4)
global > 0.75, the travel time is assumed to be

well-represented by a stable value according to Equation (3.5) (blue line). For each global

density 400 individual measurements for the travel times of routes 14 and 23 were performed.
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Figure 4.13. The minimum and maximum travel times of the system without E5 for L1 = 100,
L2 = 500 and γ = 0.5. In the large intermediate DW phase, Eq. (4.19) and (4.20) are good
approximations for the maximum (red line) and minimum (green line) travel times. Outside of the
DW phase, Eq. (3.5) (blue lines) is a good approximation for the travel times. The equations show
a good agreement with MC data (red/orange △ for Tmax,14/23, green/blue ▽ for Tmin,14/23). For

each global density ρ
(4)
global the travel times of each route were measured 400 times and the minimum

and maximum values are plotted.

The obtained minimum and maximum values are then plotted for each density. The expected

behaviour of a stable travel time value in the LD and HD regime as well as the approximate

expressions (4.20) and (4.19) in the DW regime are confirmed very well.

To further clarify the effects of the fluctuating domain wall in the DW region, the travel

times of 400 individual measurements of the travel times of routes 14 and 23 (travel times

for route 153 are included for completeness) were collected and binned. The histograms are

shown in Fig. 4.14 for three different global densities, ρ
(4)
global ∈ {0.2, 0.5, 0.85}. One can see

that the measured travel times in the LD and HD regions form a distribution with a sharp

peak while the distribution is almost flat in the DW region (ρ
(4)
global = 0.5). Here all the

accessible travel times between Tmin and Tmax are observed with approximately the same

frequency of occurrence.

The findings of these combined MF and MC arguments show that (for finite measurement

intervals) in the large intermediate density regime 0.29 < ρ
(4)
global < 0.75 there are no stable

short-term values for the travel times of the routes in the system, even though the system

is in a nonequilibrium stationary state. The long term expectation value is stable though as

the DW performs an unbiased random walk. Nevertheless, in the context of Braess’ paradox

one is interested in the situations of individual drivers using the network. The fact that in

the same state individuals could, depending on where the domain walls presently are, face

completely different situations with completely different travel times leads to the conclusion

that travel times are not ‘stable’ or ‘constant’ in this density region. The word stable is

here to be understood in the short-term sense. Due to there not being stable travel time

values, it is not possible to identify the system and user optima in this density region in
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Figure 4.14. Histograms of the travel time measurements in the system of size L0 = 1, L1 = 100,

L2 = 500, L5 = 37 for γ = 0.5 and δ = 1.0 and (a) ρ
(4)
global = 0.2, (b) ρ

(4)
global = 0.5, (c) ρ

(4)
global = 0.85.

The red bars represent the travel times on route 14, the blue bars those of route 23 and the green
bars those of route 153. One can see that for the intermediate density, i.e. in the DW phase, the
travel time distributions of routes 14 and 23 are almost flat. For each route 400 measurements were
performed and binned.

the straightforward way described in Sec. 3.2.4.2. It turns out that the system with E5 is

also dominated by domain walls in an even larger density regime. Thus, with the means of

travel time measurements, we can only identify the user and system optima of the system for

densities outside of the DW region.

4.2.3 Phase Diagram

From the results of the previous section one can see that there are no stable travel time values

in the assumed user and system optima of the 4link system for the large intermediate density

region 0.29 < ρ
(4)
global < 0.75. For densities outside of this region the system and user optima

of the 4link are given by γ = 0.5: the on average equal distribution of the particles onto the

two routes 14 and 23. If for these low and high global densities system and user optima of

the corresponding 5link systems can be found, one is able to construct the phase diagram of

the system according to the classification given in Figure 3.11. To find the system and user

optima the observable-landscapes were sweeped in steps of 0.1 according to Section 3.2.5.11

1Please note that the results presented here were generated and published in 2016 [126]. This was before the
Metropolis Monte Carlo method (see Section 3.3.2) for identifying user and system optima was developed.
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The resulting phase diagram is shown in Figure 4.15.
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Figure 4.15. The phase diagram for the Braess network with periodic boundary conditions, random-
sequential updates and turning probabilities. The shown results were obtained for L1 = L3 = 100,
L2 = L4 = 500 and varying lengths of E5 (resulting in the x-axis L̂153/L̂14) and M (resulting in

the two y-axes ρ
(4)/(5)
global ). The ×’s show where simulations were performed. The phase boundaries

are drawn according to those simulations and are thus, due to this limited number of simulations,
only a rough estimate of the phase boundaries. Phase Ia is an “E5 optimal - all 153” phase. Phase
Ib is an “E5 optimal” phase. Phase II is a “Braess 1” phase. In the phases marked by a hatching
no user optima could be found: phase III′ is an “E5 not used - like” phase and phase IV′ is an
“E5 improves - like” phase. The part of phase III with a brighter color marks the density regime in
which the 4link system is in the DW phase. In phase V the 4link system is full. The magenta and
blue lines denote the mean field phase boundary for the “E5 optimal - all 153” phase, as given by
Equations (3.26) and (3.27).

The phase diagram consists of five phases. Phase I is found for low global densities ρ
(5)
global .

0.2 and consists of the two sub-phases Ia and Ibb. Both of them are “E5 optimal” phases.

Sub-phase Ia is an “all 153” phase which means that the system and user optima of the 5link

are given by all particles choosing the new route. The higher the ratio L̂153/L̂14 gets, the

lower gets the density of the Ia phase border. This is to be expected and also confirmed by

Equations (3.26) and (3.27) which are represented by the magenta and blue lines in the phase

diagram. The “all 153” phase is expected to be present in the region below both lines. The

agreement between prediction and Monte Carlo simulations is good, while not as good as in

the case of fixed strategies. Sub-phase Ib is also an “E5 optimal” state but with the user

and system optimum being given by states in which all routes are used. It only occurs for
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L̂153/L̂14 & 0.7.

For slightly higher densities ρ
(5)
global & 0.15 − 0.2 and ρ

(4)
global . 0.29 phase II, the “Braess 1”,

phase is found. Here the 5link’s user optimum travel times are higher than the 4link’s user

and system optima travel times, while the 5link’s system optimum coincides with the 4link’s.

The paradox occurs in this phase which is relatively large; it does not require fine tuning to

find the paradox in the network with turning probabilities. The phase is smaller than in the

fixed route choices case.

For all densities ρ
(4)
global > 0.29 no user optima could be found in the 5link’s system. This

is indicated by the hatching in the phase diagram. This large region can be divided into two

phases.

In phase III, which is called the “domain wall phase” or the “fluctuation-dominated phase”,

fluctuating domain walls dominate the 5link system. The region in which domain walls

dominate the 4link system 0.29 < ρ
(4)
global < 0.75 is marked in the phase diagram with a slightly

brighter purple coloration than the rest of phase III. Inside this region there are no stable

short-term travel times in the 4link and the 5link system. For densities 0.75 . ρ
(4)
global . 0.9

there are stable user and system optimum travel times in the 4link system but not in the

5link. The term not stable is always used in the short-term sense, since we are interested

in the situation that individual network users face, which can even in the stationary state

be very different for different individuals. If measured over a really long time, there will

obviously be an average travel time value. In this whole region short-term measuring did not

show stable travel times but the minimum of ∆T was in the whole region III found to be at

(γ, δ) = (0.5, 1.0) which hints at the assumption that E5 would not be of any good for the

system’s travel times here. Phase III is not predicted by the straightforward identification

of possible phases which resulted in Figure 3.11. This is because in the reasoning behind

the figure it was assumed that unique user and system optima exit both in the 4link and

corresponding 5link systems. This is in the short-term sense not the case in phase III, which is

why it is a ‘new’ phase which is accordingly coloured differently than all phases in Figure 3.11.

In phase IV, an “E5 improves - like” phase, no user optima could be identified with ∆T ≈ 0

even though the travel times seem to be short-term stable. The minima of Tmax are not at

the 4link’s system optimum but at different strategies in which all routes are used and have

lower travel times than in the 4link’ system optimum. The identified minima of ∆T , which

are not real user optima since ∆T does not approach zero, are yet different strategies with

higher travel times than the 5link system optima but lower travel times than the 4link system

optima.

In phase V the 4link system is full. There are less sites in the 4link system than particles

in the corresponding 5link systems. This is why the two systems cannot be compared in this

whole region. The “Braess 2” phase is not found in the system with turning probabilities.

Examples of what the observable-landscapes and density profiles on the routes look like in

the described phases can be found in A.1.2.
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4.3 Periodic Boundary Conditions - Comparison of the Results

In Sections 4.1 and 4.2 it was shown that the Braess paradox occurs in the network with

periodic boundary conditions both for fixed route choices and turning probabilities. Large

parts of the two phase diagrams (Figures 4.8 and 4.15) share a similar structure. For all route

length ratios and low global densities ρ
(5)
global . 0.15 the added road leads to decreased user

optimum travel times. The systems are in “E5 optimal” phases in this region of the phase

space. When global densities grow above ρ
(5)
global ≈ 0.15, the system enters a “Braess 1” phase

for all route length ratios. The size of the parameter region in which this phase is observed is

different for both route choice mechanisms. In neither of the cases fine tuning is required to

observe the paradox. The paradox occurs in a significantly large phase space region for both

route choice types, while the phase space region is smaller in the case of turning probabilities.

The first question posed in the Introduction of this thesis, whether Braess’ paradox can occur

in TASEP networks, is thus affirmed.

The phase diagrams show significant differences for global densities ρ
(5)
global & 0.2. From this

density upwards, no user optima could be found in the system with turning probabilities. In

the system with fixed route choices, the “Braess 1” phase extends up to densities ρ
(5)
global ≈ 0.6

for route length ratios L̂153/L̂14 & 0.7, making this phase the one that occupies the largest

part of phase space. The fact that no user optima can be found for densities ρ
(5)
global & 0.2

in the system with turning probabilities is a consequence of fluctuating domain walls. Those

domain walls do not occur in the system with fixed route choices. The different behaviours

are visualized in Figure 4.16 on an example of the 4link networks for both strategy types.

The figure shows the density profiles on the two routes 14 and 23 at approximately half filling

of the systems. Part (a) of the figure shows the density profiles obtained in the system with

fixed route choices by half of the particles choosing route 14 and the other half choosing

route 23. Part (b) of the figure shows the density profiles in the corresponding 4link network

with turning probabilities for the case of all particles choosing one of the two routes with

equal probabilities. A localized domain wall is observed at position i ≈ L̂14/2 for the case of

fixed route choices. For this strategy type, each particle traversing either of the routes will

experience a similar travel time. Independent of the point of the time evolution of the whole

system, particles will face a similar situation on both routes. Thus we concluded that a stable

user optimum exists in this system. This is indeed the case throughout the whole density

regime 0 < ρ
(4)
global . 1, as also indicated in Figure 4.5, which provides information about the

standard deviations of travel time measurements on both routes.

The density profiles shown in Part (b) of Figure 4.16 can be interpreted as follows. In the

system with turning probabilities, particles starting their journeys on junction j1 at different

times during the system’s time evolution, can face completely different situations on the

two routes. Even though the system is in a stationary state, the short-term density profile

fluctuates strongly. At a point in time, at which the density profiles, which are printed in

lighter shades of grey in the figure, are observed, a particle choosing route 14 will experience a

significantly higher travel time than a particle choosing route 23. The situation keeps changing
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Figure 4.16. The average densities ρ14 and ρ23 on routes 14 and 23 depending on the position i in
the 4link network, as obtained by Monte Carlo simulations. The parameters in both parts of the

figure are L1 = L3 = 100, L2 = L4 = 500, M = 622, ρ
(4)
global ≈ 0.52. Part (a) shows the densities

measured in the system with fixed route choices and N14 = N23 = M/2 = 311. Part (b) shows the
densities measured in the system with turning probabilities and γ = 0.5. In both figures the red
line marks the density profiles averaged over the whole measurement process of 1 · 106 sweeps. The
lines in different shades of grey show short-term density profiles, averaged over 1 · 104 sweeps each,
obtained during the measurement process. This figure was published in [127].

during the time evolution. Thus we concluded that no short-term stable user optimum can

be found.

At really high global densities ρ
(5)
global & 0.6, no user optima could be found for either type of

route choices. In the system with fixed route choices, for low path length ratios no user optima

are found for ρ
(5)
global & 0.25. This is since in this case potential candidates for user optima

result in gridlocks. Such gridlocks do not occur at such low densities in the system with

turning probabilities, since particles keep re-deciding their routes according to the turning

probabilities if they cannot jump to their desired target sites.

The “Braess 2” phase is only observed in the system with fixed route choices, while a phase

similar to the “E5 improves” phase occurs in both systems for large route length ratios and

high global densities.

Summarizing, first one can observe that the Braess paradox is very prominent in both

types of networks. The “Braess 1” phase is the largest phase in the network with fixed route

choices and also occupies a large part of phase space in the system with turning probabilities.

The “Braess 2” phase is also observed in the system with fixed route choices. Furthermore,

both systems behave very similarly at low densities. The different route choices lead to

different behaviours at intermediate densities. The differences are mainly due to the fact that
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fluctuating domain walls dominate the system with turning probabilities while fixed domain

walls are observed in the case of fixed route choices. With regards to the general influence

of the new road on the system, it is important to note that it does not reduce user optimum

travel times in either of the systems for 0.2 & ρ
(5)
global & 0.7.
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4.4 Open Boundary Conditions and Turning Probabilities

The present section addresses Braess’ network of TASEPs with random-sequential updates

and open periodic boundary conditions. The network is shown in Figure 3.9 (b). Since

there are new particles fed into the network while others leave the network constantly, the

individual particles do not remain in the network and thus the fixed strategies case cannot

be examined. This is why only the case of turning probabilities is studied. All user optima

that were found are thus mixed user optima.

Particles are fed onto junction j1 from a reservoir which is occupied with the entrance

probability αin. From there they jump onto edge E1 with probability γ or to edge E2 with

probability 1−γ. At junction j2, particles jump onto edges E4 or E5 with probabilities δ and

1 − δ respectively. Particles leave the system when jumping out of junction j4 into the exit

reservoir which is empty with probability βout.

The total number of particles in the system is not conserved in the present case. If the

system reaches a stationary state in which none of the links is in a DW phase, the average

number of particles is constant. Nevertheless, also in these cases there will be temporal

fluctuations of the number of particles in the system. This is a significant difference from the

Braess paradox in its original sense. In the original model the road network’s performances

before and after adding the new road were compared for the same demand, i.e. the same

number of particles. The model examined in the present section is thus innately different. It

is nevertheless interesting to ask the question if Braess’ paradox occurs in the system with

open boundaries. In the present case Braess’ paradox corresponds to a situation in which the

user optimum travel times increase after adding a new link while the inflow and outflow rates

(entrance and exit rates) are kept constant.

4.4.1 The 4link Network

Due to symmetry one expects the 4link’s system and user optima to coincide at γ = 0.5. In

the periodic boundary conditions case this is true for all densities if the route choice process

is governed by fixed strategies (see Section 4.1.2). In the periodic boundary case with turning

probabilities we saw that in a large area of intermediate densities this is only true if longterm

averages are considered since there are (coupled) fluctuating domain walls on both routes

which lead to short-term unstable travel times on both routes (see Section 4.2.2). Here we

examine the travel times on both routes of the 4link network for open boundary conditions

with γ = 0.5 depending on αin and βout in a MFT. The effective rates of both routes 14 and

23 are given by

αeff
14/23 = 1

2ρj1 , (4.21)

βeff
14/23 = 1− ρj4 . (4.22)

The subscripts 14/23 are dropped in the following for readability. Both routes 14 and 23 are

expected to be in the same phase due to the unbiased feeding. Since the occupation number
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on junction j1 can only be 0 or 1 and also the longterm average lies between 0 and 1, the

effective entrance rate has to smaller or equal to 1/2: 0 ≤ αeff
14/23 ≤ 1

2 . Thus neither of the two

routes can be in a maximum current phase. Both routes have thus to be in either low density,

high density or domain wall phases. The phase diagram of the symmetrically fed 4link system

depending on αin and βout can be derived (with some approximating assumptions) as follows:

The current conservation in the network reads

Jtot = αin(1− ρj1) = 2 · J14/23 = βoutρj4 . (4.23)

Both routes 14 and 23 are assumed to be in either an LD, HD or DW state: the bulk densities

are assumed to behave according to Table 3.1.

If both routes are in an LD phase, i.e. if αeff < βeff , the bulk densities on both routes will be

equal to αeff . Plugging this assumption and the mean field assumptions of Equations (4.21)

and (4.22) into Equation (4.23) leads to:

αin(1− 2αeff) = 2αeff (1− αeff) = βout(1− βeff). (4.24)

The left part of Equation (4.24) leads to

αeff =
1 + αin

2
±

√
1 + α2

in

2
, (4.25)

while only the “-”-part makes sense physically since it yields values of αeff between 0 and 1,

while the “+”-part yields values above 1. The “-”-solution (which can be approximated as

αeff ≈ αin

2 − α2

in

4 + O(α3
in)) is actually smaller than αin

2 on the interval [0, 1]. The effective

entrance rate is smaller than half the entrance rate of the boundary conditions. Naively one

could have expected it to be equal to half the external boundary entrance rate since two edges

are fed.

Plugging this solution for αeff into the right part of Equation (4.24) leads to

βeff =
α2
in − αin

√
1 + α2

in + βout

βout
. (4.26)

For this to really be an LD phase, αeff < βeff has to hold. Applying this condition to

Equations (4.25) and (4.26) yields the phase border of the LD phase:

βout < 1 + αin −
√
1 + α2

in. (4.27)

If both routes are in HD phases, i.e. if αeff > βeff , the bulk densities on both routes

will be equal to (1 − βeff). Plugging this assumption and the mean field assumptions of

Equations (4.21) and (4.22) into Equation (4.23) leads to:

αin(1− 2αeff ) = 2βeff (1− βeff) = βout(1− βeff). (4.28)
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The right part of Equation (4.28) leads to

βeff =
βout
2

∨ βeff = 1, (4.29)

where only the first solution makes sense, since the other would imply that ρj4 = 0 independent

of αin and βout (Equation (4.22)) which does not make sense and additionally the requirement

for an HD phase, αeff > βeff , would not be fulfilled. We see that in this case the effective exit

rates are actually half the boundary exit rate.

Plugging the first part of Equation (4.29) into the left side of Equation (4.28) yields

αeff =
1

4

(
2 +

(βout − 2)βout
αin

)
. (4.30)

For both routes to be in HD phases αeff > βeff has to hold. Applying this to Equations (4.29)

and (4.30) yields, as expected, the same phase border as already found for the LD phases in

Equation (4.27):

βout > 1 + αin −
√

1 + α2
in. (4.31)

On the line

βout = 1 + αin −
√

1 + α2
in (4.32)

both routes are expected to be in DW phases.

Employing these approximative results, also the travel times on both routes, i.e. the user

and system optimum travel times of the 4link system, can be approximated employing the

approximate travel time for open TASEP segments (Equation (3.5)). In the LD phase the

bulk density will be equal to αeff and in the HD it will equal 1−βeff . In the DW phase it will

be 1/2. Note that in the DW there will be, as in the periodic boundary turning probabilities

case (Section 4.2.2), no short-term stable travel times.

The travel times in the LD phases (obeying Equation (4.27)) will be

TLD =
L̂14

1− αeff
=

2L̂14√
α2
in + 1− αin + 1

. (4.33)

The travel times in the HD phases (obeying Equation (4.31)) will be

THD =
L̂14

βeff
=

2L̂14

βout
. (4.34)

The longterm average of the travel times in the DW phases (obeying Equation (4.32)) will be

TDW =
L̂14

0.5
= 2L̂14, (4.35)
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while at specific points in time the travel time could lie anywhere inside the region

L̂14

1− αeff
=

2L̂14√
αeff2

+ 1− αeff + 1
≤ TDW ≤ L̂14

βeff
=

2L̂14

αeff + 1−
√

αeff2

+ 1
(4.36)

The results are shown in Figure 4.17. Figure 4.17 (a) shows the the mean field prediction
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Figure 4.17. Part (a) shows the difference of the mean field (MF) preditions of αeff − βeff and
Part (b) shows the mean field prediction of the travel time on route 14 and 23 in the 4link’s
user and system optimum. In both pictures the derived phase structure is underlayed while the
phase borader between the HD and LD phases on which a domain wall phase arises is given by
Equation (4.32).

of αeff − βeff and the phase diagram as predicted by the mean field considerations. Part (b)

of Figure 4.17 show the expected 4link user/system optimum travel times inside the phase

diagram. One can observe that the travel times are relatively constant in all the LD phase

and grow rapidly in the HD phase, especially for low values of βout which is as expected.

Comparisons of Monte Carlo and mean field data for the effective entrance and exit rates

and the travel times can be found in Appendix A.2.1. It can be seen that the mean field

predictions represent the system’s behaviour well. There it is also shown that the phase

boundary, i.e. the line on which DW phases can be observed according to the mean field

theory, given by Equation (4.32) is not to be seen as an exact line but that DWs can be

observed also in a small region around that line. Overall we can nevertheless conclude that

in the open boundary 4link system domain walls do not play an important role as compared

to the periodic boundary case with turning rates (Section 4.2.2). The parameters have to be

fine tuned to observe domain walls.

Summarizing we can say that the 4link system is really well understood in terms of the

mean field theory. For the context of Braess’ paradox we saw that the user and system optima

can be found at the point of γ = 0.5 throughout almost the whole parameter region. On a

small line fluctuating domain walls occur and on this line the travel times fluctuate on short
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time scales. Nevertheless in all the other areas of the phase space stable user and system

optimum travel times can be found and can be compared to the 5link system, which is done

in the following.

4.4.2 Comparing The 4link and the 5link Networks

In the present subsection, first, some phases which are observed in the 5link system that

are not expected from the straight forward reasoning in Section 3.2.4 are described. Second,

phase diagrams for the open boundary Braess network of TASEPs are presented for various

route length ratios L̂153/L̂14.

4.4.2.1 ‘Unexpected’ Phases Observed in the 5link Network

Comparing the user optima of the 5link open boundary system to its 4link counterpart one can

determine the influence of the new edge E5 onto the system. By assuming that distinct user

optima exist in both the 4link and the 5link systems, in Section 3.2.4 (especially Figure 3.11)

we derived the possible phases of the system. Several of these phases were found in the open

boundary system as will be shown in the next subsection.

Additionally to these phases, predicted on the assumption of the existence of user optima

in both the 4link and 5link system, two different phases were found. In both of these phases

no user optima exist in the 5link system: in the strategies where the value of ∆T is the lowest,

it is still highly above zero. What distinguishes the two phases are the strategies which lead

to the lowest values of ∆T .

The first phase is called the “all 153 - unstable” phase. This phase is present for small exit

rates βout < αin ≤ 0.3. Figure 4.18 shows the landscapes of the observables ∆T (Figure 4.18

(a)), Tmax (Figure 4.18 (b)) and the total number of particles in the system (Figure 4.18 (c))

depending on the turning probabilities γ and δ. From the Tmax landscape we can see that

the system optimum is found at (γ, δ) = (1, 0), i.e. the strategy at which all particles use

route 153. The ∆T landscape reveals that (γ, δ) = (1, 0) is also the strategy with the lowest

value of ∆T . But one can see that the value of is actually pretty large for that strategy:

∆T ≈ 1687. The travel time on route 153, T153 ≈ 2379, is higher than on both other routes:

T14 ≈ 1544, T23 ≈ 1535. Still, this is the strategy in which the travel time values are closest

to each other. As soon as the turning probabilities change such that more than one or even

all three routes are used, the travel time differences increase. Strategies with only one of the

other routes used, γ = 0 and δ arbitrary or γ = 1 and δ = 1, are the strategies with the

second lowest Tmax and ∆T after (γ, δ) = (1, 0).

This behaviour is specific to the system with open boundary conditions. This phase is

observed for βout < αin and βout ≤ 0.3. It turns out that due to the outer exit rate being

smaller than the outer entrance rate, whenever more than one route is used all used routes

are in HD phases. This is also represented in Part (c) of Figure 4.18. One can see that the

total number of particles in the system is much lower for strategies in which only one or only

two routes are used than if all routes are used. In the specific example of Figure 4.18 the
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Figure 4.18. The observable landscapes of an “all 153 - unstable” state for (a) Tmax, (b) ∆T
and (c) the total number of particles in the system, each depending on the turning probabilities
γ and δ. The specific data is from measurements of a system with edge lengths L1 = L3 = 100,
L2 = L4 = 500, L5 = 37, i.e. L̂153/L̂14 = 0.4 and αin = 0.3 and βout = 0.1.
The system optimum (minimum of Tmax) is marked by a pink ◭ and the closest candidate for the
user optimum (minimum of ∆T ) is marked by a pink ◮. They both coincide at (γ, δ) = (1, 0). At
this particular strategy the travel times are T14 ≈ 1544, T23 ≈ 1535, T153 ≈ 2379 and ∆T ≈ 1687
with approximately 215 particles in the system.

total number of sites in the system is
∑5

i=1 Li + 4 = 1241. For most strategies in which all

routes are used, there are close to 1200 particles in the system indicating that most of the

sites are permanently occupied and thus all routes are in HD states.

Since route 153 is the shortest, Tmax will be lowest for the strategy of all particles using

that route. Still the travel time on this route is then higher than that of unused routes. But

as soon as particles start to use the other routes, HD states will develop on these routes and

their travel times will be higher than that of route 153.

This behaviour is a consequence of the open boundaries and the infinite supply of particles

entering the system – opposed to the fixed total particle number in the periodic boundary
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4 The Braess Network of TASEPs with Externally Tuned Global Strategies

case. Such a situation could be associated with the following: imagine an accident happening

in rush hour traffic, leading to a significant slowing down of traffic of a major city route (the

major route being route 153 in our example). Modern navigational systems may then suggest

alternative routes. Since there is an almost ‘infinite supply of cars’, the traffic densities on the

alternative routes will rise, until high density states, and thus long travel times, persist on all

routes. Such a behaviour was demonstrated employing large scale simulations by Cabannes

et al. in 2018 [53].

Coming back to the direct context of Braess’ paradox, one could argue that in a system

with real drivers, in the “all 153 - unstable” phase, drivers would tend to switch to other

routes than route 153 and the system would end up in a state with higher travel times than

in the 4link user optimum (all states with γ 6= 1 or 0 and δ 6= 1 or 0 have higher Tmax

than (γ, δ) = (1.0, 0.5)). Accordingly one could argue that the system shows Braess - like

behaviour in this phase. For our non-intelligent driver / fixed turning probabilities scenario

we just conclude that no user optimum exists.

There is another state which occurs at slightly higher exit rates that shows similar behaviour

but with the minimum of ∆T at other strategies γ = 1 and δ 6= 0 (with min(∆T ) ≫ 0 like

in the “all 153 - unstable” state). This state is called “E5 optimal -unstable” state. See

Appendix A.1.3 for the observable landscapes of that state.

4.4.2.2 Phase Diagrams

In this section the phase diagrams of the open boundary system are presented. The phase of

the system depends on L̂153/L̂14 and αin and βout. Phase diagrams are shown for L1 = L3 =

100, L2 = L4 = 500 and for seven different lengths of the new road L5, leading to the seven

different route length ratios. Figure 4.19 shows the phase diagrams for route length ratios

L̂153/L̂14 = 0.4 to L̂153/L̂14 = 0.7, Figure 4.20 shows the phase diagrams for route length

ratios L̂153/L̂14 = 0.8 to L̂153/L̂14 = 1.0.

In each phase diagram the phase border line (Equation (4.32)) of the 4link system is shown

(dotted black line). On this line and in a small region around it (see Section A.2.1 for details)

the travel times of the 4link system are unstable and no short-term-stable user optimum

exists. Since this is just a line of fine tuned parameters (opposed to the domain wall region

in the periodic boundary case with turning probabilities, Section 4.2.2), a special in depth

analysis of the behaviour on this line was dropped here.

The regions in which the “E5 optimal - all 153” phase is predicted to be present by the

mean field theory are marked in green. See Section 3.2.4.1 and also Appendix A.2.2 for

details on the mean field predictions. The simulation data (orange �’s) agrees with the MFT

predictions.

Apart from the “E5 optimal - all 153” phase, no phase regions are marked in the phase

diagrams but only the phases on the individual measurement points are shown. This is because

measurements were only performed on an αin/βout grid with 0.1 resolution. In contrary to the

periodic boundary conditions phase diagrams no finer measurements to determine the exact
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Figure 4.19. Phase diagrams of Braess’ network with open boundary conditions, random-sequential
updates and turning probabilities and edge lengths L1 = L3 = 100, L2 = L4 = 500 and (a) L5 = 37,
i.e. L̂153/L̂14 = 0.4, (b) L5 = 97, i.e. L̂153/L̂14 = 0.5, (c) L5 = 157, i.e. L̂153/L̂14 = 0.6, (d)
L5 = 218, i.e. L̂153/L̂14 = 0.7. The phases depend on the outer entrance and exit rates αin and
βout. Monte Carlo simulations were performed on a 0.1 grid of the rates-landscape. The phases that
were found are denoted by the symbols as given in the legend below. Along the dotted red line an
“all 153” phase with domain walls on that route is possible. The black dotted line represents the
4link phase boundary as given by Equation (4.32) while the green area shows the region in which
MFT predicts the system to be in an “E5 optimal - all 153” phase.

phase borders were performed. Nevertheless, an intuition about which phase the system will

be in depending on the outer entrance and exit rates can be obtained.

The “E5 optimal - all 153” phase dominates the largest parts of the phase diagrams for
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Figure 4.20. Phase diagrams of Braess’ network with open boundary conditions, random-sequential
updates and turning probabilities and edge lengths L1 = L3 = 100, L2 = L4 = 500 and (a)
L5 = 278, i.e. L̂153/L̂14 = 0.8, (b) L5 = 339, i.e. L̂153/L̂14 = 0.9, (c) L5 = 399, i.e. L̂153/L̂14 = 1.
The phases depend on the outer entrance and exit rates αin and βout. Monte Carlo simulations
were performed on a 0.1 grid of the rates-landscape. The phases that were found are denoted by
the symbols as given in the legend in the lower right part of the figure. Along the dotted red line
an “all 153” phase with domain walls on that route is possible. The black dotted line represents the
4link phase boundary as given by Equation (4.32) while the green area shows the region in which
MFT predicts the system to be in an “E5 optimal - all 153” phase.

small L̂153/L̂14. This is not surprising: it is predicted by MFT and is also intuitively very

easy to understand. If route 153 is much shorter than the other two (old) routes and the

exit rate is not very small, i.e. not forcing all routes into HD states, the travel time on route

153 will be shorter than on the other routes. As the route length ratio L̂153/L̂14 gets higher,

the regions of the “E5 optimal - all 153” phase get smaller and are restricted to low entrance

rates. As the new route becomes as long as the old ones, L̂153/L̂14 = 1, the phase is not

present anymore.

On the line αin = βout < 0.5 (marked as a red dotted line in the phase diagrams) the “all
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4.4 Open Boundary Conditions and Turning Probabilities

153” strategy, and also strategies where only route 14 or 23 are used, lead to domain walls

on this route. This is since only one route is used and the situation corresponds to a single

TASEP segment with the rates such that it is on the phase transition or domain wall line (see

Section 3.1.1.2). On this line a strategy with only one route used can be the user optimum

and system optimum at the same time, i.e. be an “E5 optimal (all 153 or all 14 or all 23)”

state, but only on short time scales. If the domain wall position changes such that the HD

region becomes too large, the travel time on the used route can actually become too large

for this to be the optimum strategy. It turns out that in many instances on this line also

different strategies leading to an “E5 optimal” state were found.

In the case of L̂153/L̂14 = 0.6 for αin ≥ 0.5 and βout ≥ 0.5 the system is in an “E5 optimal”

phase. Still the user optimum strategy is very close to the all 153 strategy: γ > 0.95 and

δ < 0.05. This is why in that region the phase was marked specifically to be “E5 optimal

(almost all 153)”, marked by green •’s.
Independent of the route length ratio, the “all 153 - unstable” phase is present for small

exit rates βout < αin and βout ≤ 0.3 (marked by purple H’s). This phase and the reasons for

its occurrence were described in some detail in the previous subsection.

For route length ratios L̂153/L̂14 ≥ 0.5 also the “E5 optimal -unstable” state is found

(marked by brown N’s). As the “all 153 - unstable” it is also found for exit rates βout < αin

and for βout = 0.3 or βout = 0.4.

In the regions of the phase diagram with βout > αin or βout > 0.4 the phase diagram is either

dominated by the “E5 optimal - all 153” phase as described above or by the “E5 optimal”

(marked by gray •’s) phase. Only for L̂153/L̂14 ≥ 0.9 and αin > 0.6 the “E5 improves”

(marked by blue ⋆’s) phase is also found. In the found “E5 improves” phases the maximum

travel time in the system optimum is most times only slightly lower than that of the user

optimum. The “E5 improves” phases are thus all very close to “E5 optimal” phases.

Summarizing one can see that no Braess phase, neither the “Braess 1” nor the “Braess 2”

phase, is found in the open boundary system for the given route lengths. As explained in

the previous Section one could argue that in a system with intelligent drivers the “all 153 -

unstable” and the “E5 optimal -unstable” phases could lead to Braess like behaviour. Still

no ‘pure’ Braess phases are present (pure in the sense of a single strategy with fixed turning

probabilities).

One has to note that the open boundary conditions lead to a different behaviour than what

was first described by Braess. In the original Braess model the user optimum performances

of networks before and after addition of a network edge were compared for the same demand

(i.e. same total number of particles in the system). With open boundaries, for the same

outer entrance and exit rates, different strategies lead to different numbers of particles in

the system. This is shown in Figure 4.18 and also in Appendix A.1.3. Thus one cannot

really compare the open and periodic boundary conditions. Nevertheless the open boundary

system was analysed to check whether the Braess paradox in the sense that user optimum

travel times can go up after adding a new road – independent of the total number of network

users – can be found. This was not the case, except in the “all 153 - unstable” and the “E5
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4 The Braess Network of TASEPs with Externally Tuned Global Strategies

optimal -unstable” phases, in which no user optima exist and one could argue that real selfish

drivers would drive the system with the new road into states with higher travel times than

in the system without the new road. In all other phases the new road always influences the

system positively with respect to travel times.

Example landscapes and density profiles of all observed states are presented in Appendix A.1.3.
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4.5 Parallel Updates and Periodic Boundary Conditions

4.5 Parallel Updates and Periodic Boundary Conditions

In this section some important characteristics of Braess’ network of TASEPs with parallel

dynamics are presented. The presented results were obtained by Leonard Fischer during his

Master’s thesis [114] which he conducted under A. Schadschneider’s and my supervision.

Before briefly summarizing some of the main results which are of interest for this thesis,

the main characteristics of single TASEP segments employing parallel update schemes and

their differences to TASEPs with random-sequential updates are recapitulated.

4.5.1 Main Characteristics of TASEPs with Parallel Dynamics

As already hinted in Section 3.1 there are many different update schemes for TASEPs while

the two most widely used are the random-sequential and the parallel update schemes. In the

random-sequential update scheme one of all available sites is picked randomly and then this

site is updated. After as many of those single site updates as there are sites in the system a

time step is complete. Aside from the present Section, all results in connection to TASEP in

this thesis refer to TASEPs employing random-sequential dynamics.

In the parallel update procedure all sites of the TASEP are updated at the same time: if

a site is occupied and the next site is empty a particle can jump forward with probability p.

One of these update steps is then one discrete time step. The hopping rate p was set to be 1

in all results presented on random-sequential updates, since in that update procedure a p < 1

just corresponds to rescaling the time steps. In the parallel case, p is more important in the

sense that for p = 1 the dynamics inside a TASEP segment becomes deterministic. This is a

big difference to the random-sequential update case in which the system is always stochastic.

To introduce stochasticity into the analysis of the system with parallel updates, cases with

p < 1 have to be implemented. Variables corresponding to the parallel update procedure will

be marked with a “par.”-superscript from here on.

In the following some important characteristics of TASEPs with parallel updates are sum-

marized. For a more comprehensive description of TASEPs with parallel updates the reader

is e.g. referred to [35].

4.5.1.1 Periodic Boundary Conditions

In a single TASEP segment with parallel updates and periodic boundary conditions the

stationary state density profile is flat with the density of all sites i being equal to the global

density:

ρpar.PBC(i) = ρpar.PBC = ρpar.PBC,global =
M

L
, (4.37)

with M being the total number of particles in the system and L the total number of sites

of the TASEP segment. The flat density profile is also observed in TASEPs with periodic

boundary conditions and random-sequential updates.

Due to additional correlations, the local current takes a different form when employing
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parallel updates,

Jpar.
PBC(i) =

1

2

(
1−

√
1− 4pρpar.PBC(1− ρpar.PBC)

)
, (4.38)

which is slightly more complicated than the local current with random-sequential updates

(Equation (3.1) in connection with Equation (3.2)).

The travel time of a periodic boundary TASEP with parallel update thus is

T par.
PBC(ρ

par.
PBC) =

ρpar.PBCL

Jpar.
PBC

=
2ρpar.PBCL

1−
√

1− 4pρpar.PBC(1− ρpar.PBC)
. (4.39)

A comparison of the fundamental diagrams and the travel time functions for the random-

sequential (for p = 1) and parallel updates for various values of p are shown in Figure 4.21.
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Figure 4.21. A comparison of fundamental diagrams (Part (a)) and travel time functions (Part (b))
for random-sequential (r.s.) and parallel update for various values of hopping probability p. The
travel times T are shown for a TASEP of length L = 600. One can clearly see that the deterministic
case, i.e. parallel updates with p = 1, leads to different genral behaviours as the fundamental
diagram takes a triangular shape and the travel time is constant for densities 0 < ρ < 1/2.

The general shapes of the fundamental diagrams and the travel time functions for the

case of parallel updates are similar to those in the random-sequential update case. The

different nature of the deterministic case (parallel updates, p = 1) can be seen in both parts

of Figure 4.21.

4.5.1.2 Open Boundary Conditions

As for random-sequential updates, a TASEP segment with open boundary conditions and

parallel update procedure can also be solved analytically [131, 132]. The first site of an open

boundary TASEP is on its left connected to an entrance reservoir which feeds onto site 1

with the entrance probability α. The last site, site L, is on its right connected to an exit

reservoir which is empty with exit probability β. As in the random-sequential case, three
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distinct phases can develop in the parallely updated TASEP, depending on the entrance and

exit rates. The main features, i.e. the bulk densities ρL/2 and the currents J , of these

three phases are summarized in Table 4.3. In this table also the corresponding values for

random-sequential dynamics are shown for comparison.

Table 4.3. Some important characteristics of the phases occurring in the open boundary TASEP.
The values of the currents J , the bulk densities ρL/2 and the critical rates αc, βc in the low density
(LD), high density (HD) and maximum current (MC) phases are given both for random-sequential
and parallel updates.

Phase rand.-seq. update parallel update

LD-phases J = α(1 − α/p) J = α(p−α)
p−α2

ρL/2 = α ρL/2 =
α(1−α)
p−α2

HD-phases J = β(1− β/p) J = β(p−β)
p−β2

ρL/2 = 1− β ρL/2 =
p−β
p−β2

MC-phase J = p
4 J = 1−

√
1−p
2

ρL/2 =
1
2 ρL/2 =

1
2

Critical Rates αc = βc =
p
2 αc = βc = 1−√

1− p

The phase diagram of an open boundary TASEP with parallel update scheme is shown in

Figure 4.22. The three main phases (LD, HD and MC) meet at the critical point which is

located at αc = βc = 1 − √
1− p. For (α < β, β < αc) the system is an LD phase, for

(β < α, α < βc) the system is in an HD phase and for α, β < αc it is in an MC phase. The

two main phases LD and HD are subdivided into two subphases which differ in the behaviour

of their density profiles near the boundaries, the details of which are not of importance here.

On the phase border line between the LD and HD phases, α = β < αc, domain walls

separating a low density region on the left and a high density region on the right form – as

in the random-sequential update case. This leads to the (long-term) average density profile

being a straight line ascending from α to 1− α, while on short term the position of the sock

diffuses to the system.

On the line

(1− α)(1 − β) = 1− p (4.40)

flat density profiles form.

An important difference to the random-sequential update case is the fact that the MC

phase disappers for p = 1.

The travel time in an open boundary condition TASEP with parallel update can as in

the random-sequential update case be approximated by the formula for the travel time in a

TASEP with periodic boundary conditions but with the density replaced by the bulk density

according to Table 4.3:

T par.
OBC(α, β) = T par.

PBC(ρL/2(α, β)). (4.41)

On the LD-HD phase border line there exist no short-term stable travel times as the travel time
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Figure 4.22. The phase diagram of a TASEP with open boundary conditions, parallel updates
and hopping probability p = 3/4. Depending on entrance probability α and exit probability β the
TASEP can be in distinct phases. The phase boundaries are marked by a solid black line. The
two phases LD-I and LD-II are low density phases, phases HD-I and HD-II are high density phases.
They all meet at the critical rate αc = βc = 1 − √

1− p. On the phase boundary between the LD
and HD phases fluctuating domain walls (DW) form. On the dotted line given by Equation (4.40)
the density profile becomes flat.

depends on the location of the domain wall for each particle entering the system. Averaged

over long times, on this phase border line a bulk density of 1/2 can be assumed to approximate

the travel time.

4.5.2 Braess’ Network of TASEPs with Parallel Dynamics

When TASEPs with parallel update schemes are put together to form networks, conflict

situations which do not exist for random-sequential updates can occur. Such conflicts occur

if more than one TASEP segment feed onto one junction site.

Figure 4.23 shows Braess’ network with periodic boundary conditions and the edges made

of TASEPs. The two points with conflicts are marked by red ellipses. The conflict is sketched

in Figure 4.24 (a) for two TASEP segments feeding onto junction j: if the last sites of both

TASEPs are occupied and are then – as always in the parallel update scheme – to be updated

at the same time, they cannot both jump onto j. This conflict has to be resolved by some

rule determining the right of way. In [114], the main results of which are summarized here,

traffic lights were employed

As sketched in Figure 4.24 (b) the right of way is given to the path which sees a green

light. Which incoming route is given the right of way changes periodically.
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Figure 4.23. In Braess’ network with the edges being TASEPs with parallel update scheme conflicts
can occur on junctions j3 and j4 since they are fed by two TASEP segments.

Figure 4.24. Part (a) shows how a conflict can arise in networks of TASEPs with parallel updates. If
a (junction-) site is fed by more than one TASEP segment the situation in which multiple particles
want to jump onto the same site can occur. Part (b) shows one possible way to resolve such a
conflict: traffic lights give way to only one segment at a time. For the results presented here traffic
light which switch the right of way between two incoming edges in an unbiased way periodically
were employed.

In [114], in the 5link system on both junctions j3 and j4 traffic lights were employed with

the green light periods of

fTL,j3 = 50 (4.42)

fTL,j4 = 100. (4.43)

This means that on j3 the incoming edge E2 has the right of way for 50 time steps, then the

other incoming edge, edge E5, has the right of way for 50 time steps. On j4 the right of way

switches between edges E3 and E4 every 100 time steps. In the 4link system the traffic light

on j3 is not present since due to E5 not being there, there can be no more conflicts.

The edge lengths which were studied are the same as those that were studied employing
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random-sequential updates:

L1 = L3 = 100 (4.44)

L2 = L4 = 500, (4.45)

and varying lengths of L5 such that the route length ratio L̂153/L̂14 varies betwenn 0.4 and

1.0.

The network was studied for both route choice mechanisms, fixed route choices and turning

probabilities (c.f. Section 3.2.1.1), with p = 1 and p = 1/2 for each case.

4.5.2.1 Possible Network Phases

Due to the traffic light at j3, which is added together with E5, the 4link system is not

embedded in the 5link system. This is different to the random-sequential update case. In

the latter there are no conflicts and thus no traffic lights are needed. The tree of possible

states of the network (Figure 3.11) could be build from the starting point that uo(4) = so(4)

due to the symmetry of the 4link system. This symmetry still exists in the 4link system with

parallel updates. With random-sequential updates one could then build the two branches

so(5) = so(4) with Tmax(so
(5)) = Tmax(so

(4)) and so(5) 6= so(4) with Tmax(so
(5)) < Tmax(so

(4)).

The new traffic light for the parallel update version breaks the symmetry between routes

14 and 23 in the 5link system, even if road E5 is not used. Thus there are now more than the

two possible branches that emerge from the starting point. Figure 4.25 shows the possible

phases that can arise in the system.

Without going into details about every phase, the phases can be divided into two groups:

the first group consists of phases that exhibit Braess behaviour, i.e.

Tmax(uo
(5)) > Tmax(uo

(4)), (4.46)

meaning that the user optimum travel time in the 5link system is higher than that of the 4link’s

user optimum. The names of those phases are given inside hexagonal boxes in Figure 4.25.

The other group consists of phases in which the user optimum travel times in the 5link are

lower than in the 4ink:

Tmax(uo
(5)) < Tmax(uo

(4)). (4.47)

The names of those phases are given inside boxes with rounded edges in Figure 4.25.

In the presented phase diagrams (Figures 4.27 and 4.30) the phases will also have differently

shaped symbols to visualize if the user optimum travel times go up or down due to the addition

of E5.

The user optimum travel times can also be equal in both the 4link and 5link systems. This

case was not found to occur very often.
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4.5 Parallel Updates and Periodic Boundary Conditions

Figure 4.25. The tree of possible phases in the Braess network with parallel updates. Due to the
traffic light at junction j3 the symmetry in the 5link network is broken leading to more possible
phases than in the network with random-sequential updates without traffic lights. Names of phases
in which the user optimum travel time of the 5link system is higher than that of the 4link system
are given inside hexagonally shaped boxes while the names of phases in which E5 decreases user
optimum travel times are given in boxes with rounded edges. For details the reader is referred
to [114]. This figure is taken from [114]. The visual appearance has been slightly modified.
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4.5.3 Results for Fixed Route Choices

In this section some results on Braess’ network with parallel dynamics and fixed route choices

are presented. For fixed route choices and the hopping rate p = 1 the dynamics is completely

deterministic.

As in the the corresponding system with random-sequential dynamics, in the 4link system

(short-term) stable travel times can be measured for all densities (cf. Section 4.1.2). This

can be seen e.g. in the measured travel times and their associated standard deviations in the

4link system with n
(j1)
l = 0.5 for various densities ρ

(4)
global ∈ [0, 1[. This is shown in Figure 4.26

for hopping probabilities p = 1 and p = 1/2. The standard deviation is below 5% throughout

most of the density regime. Just for densities ρ
(4)
global > 0.8 it rises significantly. For p = 1 it

almost goes up to 30% in some cases while it does not exceed 15% for p = 1/2. This indicates

that the individual measurement values of the travel times do not stray far from their mean

value for densities up to 0.8. The detailed analysis of the 4link system found in [114] is not

repeated here.

Artefacts of the deterministic nature in the p = 1 case can be seen in the lower part of

Figure 4.26 (a) for densities ρ
(4)
global > 0.25.
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Figure 4.26. The travel time T (the mean value of T14 and T23) and its relative standard deviation

σ(T )/T against the global density ρ
(4)
global in the unbiased 4link system with parallel dynamics and

fixed route choices for (a) p = 1 and (b) p = 1/2. One can see that the relative standard deviation

is below 5% for all densities ρ
(4)
global . 0.75. For higher densities it grows to approximately 30% for

p = 1 and up to 15% for p = 1/2. This implies that the individual measurements do not deviate
strongly from their mean value for global densities lower than approximately 0.75. Short-term stable
user/system optimum travel times are found throughout this whole density regime. These figures
are taken from [114]. The visual appearances have been slightly modified.

Employing the method of sweeping the Tmax and ∆T landscapes as described in Sec-

tion 3.2.5.1, the user and system optima of the 5link system were found. For parameter sets

for which true system and user optima were found their travel time values were compared to

those of the 4link’s user and system optima. According to the scheme shown in Figure 4.25

the phase diagram could be constructed.
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4.5 Parallel Updates and Periodic Boundary Conditions

Figure 4.27 shows the phase diagrams. In Figure 4.28, the ratios of the average travel

times in the 5link’s and 4link’s user optimum travel times for hopping probabilities p = 1 and

p = 1/2. These average travel times are given by the weighted averages (wav)

Twav(uo
(4)) =

n14(uo
(4))

M
T14(uo

(4)) +
n23(uo

(4))

M
T23(uo

(4))

Twav(uo
(5)) =

n14(uo
(5))

M
T14(uo

(5)) +
n23(uo

(5))

M
T23(uo

(5) +
n153(uo

(5))

M
T153(uo

(5)).

The ratios can thus not be directly compared to those for random-sequential updates, as given

in Figure 4.9 (d), since in the latter Tmax(uo
(5))/Tmax(uo

(4)) were shown. This discrepancy

is to slightly different approaches of Leonard Fischer’s thesis and my thesis.

4.5.3.1 Hopping Probability p = 1

Figure 4.27 (a) shows the phase diagram for p = 1, i.e. for deterministic dynamics. In the

region of the phase diagram with a blue background color true user optima, i.e. states with

∆T < 300, were found. This region is present for ρ
(5)
global . 0.3 for L̂153/L̂14 ≈ 0.4 and for

ρ
(5)
global . 0.6 for L̂153/L̂14 > 0.5. This is very reminiscent of the phase diagram for random-

sequential updates and fixed route choices (see Figure 4.8, note that therein the threshold

was ∆T = 100). As in the random-sequential case, for high global densities and sufficiently

low route length ratios, strategies potentially being a user optimum get gridlocked.

A detailed analysis about which strategies can get gridlocked was not done in [114]. Thus

it could be the case that some user optima were identified which have gridlocked stationary

states (e.g. if the system was not evolved long enough to reach its stationary state while

measuring). This is only expected around the boundary of ∆T < 300.

One can observe that there is no region with clear boundaries and only instances of a single

phase. This is why no distinctive phases (or phase-regions) can be deduced. The only clear

phase-region that can be observed is the “E5 optimal, all 153” phase which is present at low

densities and low route length ratios. Another phase-like region, which contains some points

of different states, is a region that is dominated by “Braess 1” states. This is present for all

route length ratios and intermediate densities 0.3 . ρ
(5)
global . 0.6.

A more clear understanding of the influence of E5 on the system’s performance when it

is used by selfish drivers can be obtained when distinguishing of all the specific phases is

omitted and just the ratio of the 5link user optimum travel time and the corresponding 4link

user optimum (weighted average) travel times (Twav(uo
(5))/Twav(uo

(4))) is shown, as seen in

Figure 4.28 (a).

For low global densities and low route length ratios, i.e. in the “E5 optimal, all 153” phase,

the ratio is well below 1, indicating that the new road leads to much lower user optimum

travel times here. In a small region 0.4 . L̂153/L̂14 . 0.6 and 0.1 . ρ
(5)
global . 0.3 the ratio

is well above 1 indicating that here a Braess-effect of significant amount is found. In most

other parts of the phase diagram in which ∆T < 300 the ratio is very close to 1, indicating

that the new road does not significantly influence user optimum travel times.
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Figure 4.27. The phases diagrams for the Braess network of TASEPs with periodic boundary
conditions, parallel updates, fixed route choices and p = 1 (Part (a)) and p = 1/2 (Part (b))
according to the classification scheme given in Figure 4.25. The shown results were obtained for
L1 = L3 = 100, L2 = L4 = 500 and varying lengths of E5 (resulting in the x-axes L̂153/L̂14)

and M (resulting in the two y-axes ρ
(4)/(5)
global ). In the parts with blue background real user optima

with ∆T < 300 were found. In the parts with red background ∆T > 300 holds. No real phase
regions could be identified except for an “E5 optimal - all 153” phase found at low route length
ratios and low densities. Phases in which the 5link’s user optimum travel time exceed the 4link’s
user optimum travel time are marked by quadratic symbols, those in which the opposite is true by
circular symbols. These figures are taken from [114]. The visual appearances have been slightly
modified.

In the region were no real user optima exist the new road’s influence is higher. Note, that in

this region, the travel times in the closest candidate for a user optimum of the 5link network

were used for the ratio. This means that the values of the ratio are not as meaningful here in

the sense that if real drivers were using the system, the system would could end up in other,

potentially totally gridlocked, states.

4.5.3.2 Hopping Probability p = 0.5

The phase diagram obtained for hopping probability p = 1/2, as an example for stochastic

bulk dynamics, is shown in Figure 4.27 (b). It shows even less distinct phase-regions than

the phase diagram for p = 1. Except for the “E5 optimal, all 153” phase for low route length

ratios and low global densities there are no other regions that can be assigned to be of one

single phase only.

The influence of E5 becomes more clear when looking at the user optimum travel time ratio

Twav(uo
(5))/Twav(uo

(4)), as shown in Figure 4.28 (b).
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Figure 4.28. The ratio of the weighted averages of the 5link and 4link user optimum travel times
for the Braess network of TASEPs with periodic boundary conditions, parallel updates, fixed route
choices and p = 1 (Part (a)) and p = 1/2 (Part (b)). In the parts with blue background real user
optima with ∆T < 300 were found. In the parts with red background ∆T > 300 holds. Circular
markers (©) represent values Twav(uo

(5))/Twav(uo
(4)) ≥ 1, triangular markers (▽) represent values

Twav(uo
(5))/Twav(uo

(4)) > 1. One can see that user optimum travel times are significantly lower
in the 5link system in the “E5 optimal - all 153” phase found at low route length ratios and low

densities. For 0.4 . L̂153/L̂14 . 0.6 and 0.1 . ρ
(5)
global . 0.3 the ratio is significantly above 1

indicating that these are connected regions of the phase diagrams in which Braess-like behaviour
occurs. In most other parts in which real user optima are found, the influence of the new road
is not significant as the ratio is approximately 1. These figures are taken from [114]. The visual
appearances have been slightly modified.

One can see that travel times in the 5link’s user optimum are reduced significantly in the

“E5 optimal, all 153” phase. As for p = 1 there is a region in 0.4 . L̂153/L̂14 . 0.8 and

ρ
(5)
global ≈ 0.2 in which travel times go up significantly due to the addition of E5. In the other

parts where ∆T < 300 the ratio is approximately 1. It is for p = 1/2 in most parts a bit

lower than 1 while it is slightly above 1 in most parts for p = 1.

4.5.4 Results for Turning Probabilities

Here some results for the system with parallel update scheme and turning probabilities are

summarized. With turning probabilities governing the route choice mechanism, in a large

intermediate density region (0.25 . ρ
(4)
global,. 0.8) of the symmetric (γ = 0.5) 4link system

fluctuating domain walls form on both routes 14 and 23. This behaviour also occurs for the

random-sequential update scheme (cf. Section 4.2.2). Evidence of the domain walls which lead

to short-term unstable travel times is found in the standard deviation of the measured travel

time values as shown in Figure 4.29. One can see that in the density region 0.25 . ρ
(4)
global . 0.8

the standard deviation increases drastically to a maximum of approximately 30% for p = 1,
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4 The Braess Network of TASEPs with Externally Tuned Global Strategies

and even 45% for p = 1/2. This indicates that the individual measurements of the travel

times deviate very strongly from their mean value, hinting at the existence of fluctuating

domain walls. Further evidence that indeed domain walls are responsible for the high standard

deviations is found in [114]. For our analyses which aim at describing the traffic situation that
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Figure 4.29. The travel time T (the mean value of T14 and T23) and its relative standard deviation

σ(T )/T against the density ρ
(4)
global in the unbiased 4link system with parallel dynamics and fixed

route choices for (a) p = 1 and (b) p = 1/2. One can see that the relative standard deviation
grows up to 30% (p = 1) and even 45% (p = 1/2) in the large intermediate density regime 0.25 .

ρ
(4)
global . 0.8. In this regime coupled fluctuating domain walls are found on both routes 14 and 23.

No (short-term) stable user optimum travel times exist in this regime. These figures are taken from
[114]. The visual appearances have been slightly modified.

individual cars would face in the system we conclude that in these density regions there are

no stable user optimum travel times in the 4link system and hence they cannot be compared

to user optimum travel times in the 5link systems.

4.5.4.1 Hopping Probabilities p = 1 and p = 1/2

Figures 4.30 (a) and (b) and Figures 4.31 (a) and (b) show the obtained phase diagrams

and user optimum travel time ratios for p = 1 and p = 1/2 respectively. In all four figures

the region in which no short-term stable 4link user optima exist, i.e. 0.25 . ρ
(4)
global,. 0.8,

is marked by a hatching in the background. Furthermore, in all four figures the regions in

which real 5link user optima exist, i.e. strategies with ∆T < 100, exist are marked by a

blue background. Regions in which such real user optima could not be found in the 5link are

marked by a red background.

For both jumping probabilities the phase diagrams (Figures 4.30) do not show any distinct

phase-regions except for the “E5 optimal, all 153” phase which is present at route length

ratios L̂153/L̂14 . 0/8 and low global densities ρ
(5)
global . 0.1. Distinct phases could not be

identified in any other region.

For the case of turning probabilities the weighted averages of the user optimum travel times
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Figure 4.30. The phases diagrams for the Braess network of TASEPs with periodic boundary
conditions, parallel updates, turning probabilities and p = 1 (Part (a)) and p = 1/2 (Part (b))
according to the classification scheme given in Figure 4.25. The shown results were obtained for
L1 = L3 = 100, L2 = L4 = 500 and varying lengths of E5 (resulting in the x-axes L̂153/L̂14) and

M (resulting in the two y-axes ρ
(4)/(5)
global ). In the parts with blue background real user optima with

∆T < 100 were found. In the parts with red background ∆T > 100 holds. The density regime
in which no real user optima exist in the 4link system is marked by a hatching. Except for the
“E5 optimal - all 153” phase at low route length ratios and densities no connected phase regions
could be identified. These figures are taken from [114]. The visual appearances have been slightly
modified.

are defined as

Twav(uo
(4)) = γ(uo(4))T14(uo

(4)) + (1− γ(uo(4)))T23(uo
(4)) (4.48)

Twav(uo
(5)) = γ(uo(4))δ(uo(4))T14(uo

(4)) + (1− γ(uo(4)))T23(uo
(4)) (4.49)

+ γ(uo(4))(1− δ(uo(4)))T153(uo
(4)). (4.50)

From the figures showing the user optimum travel time ratio Twav(uo
(5))/Twav(uo

(4)) (Fig-

ures 4.31), one can obtain some more insights of the new road onto the network’s performance

inside the regions where real user optima exist. First one can see the user optimum is in-

fluenced most significantly – reduced by up to 1/2 – in the “E5 optimal, all 153” phase.

For small route length ratios and global densities in between the aforementioned phase and

the region were no 4link optima exist the user optima travel times are increased due to the

addition of E5. In the remaining parts with real user optima the user optimum travel time

ratio is approximately 1 which means that the influence of the new road on travel times is

negligible.
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Figure 4.31. The ratio of the weighted averages of the 5link and 4link user optimum travel times
for the Braess network of TASEPs with periodic boundary conditions, parallel updates, turning
probabilities and p = 1 (Part (a)) and p = 1/2 (Part (b)). In the parts with blue background real
user optima with ∆T < 100 were found. In the parts with red background ∆T > 100 holds. Circular
markers (©) represent values Twav(uo

(5))/Twav(uo
(4)) ≥ 1, triangular markers (▽) represent values

Twav(uo
(5))/Twav(uo

(4)) > 1. The density regime in which no real user optima exist in the 4link
system is marked by a hatching. One can see that user optimum are significantly lower in the system
with E5 in the “E5 optimal - all 153” phase found at low route length ratios and low densities. Well
defined phase regions could be identified in any other parts. These figures are taken from [114].
The visual appearances have been slightly modified.

No clear structures in the sense of regions where the ratio is all positive or all negative are

found in the regions without real user optima.

4.5.5 Summary of Results

Braess’ network with periodic boundary conditions, the edges formed by TASEPs with parallel

update scheme and two different route choice mechanisms was examined in Leonard Fischer’s

Master’s thesis [114] and some results were shortly summarized here. The parallel update

scheme leads to potential conflicts at the two junctions j3 and j4 which are both fed by two

incoming TASEP segments. To resolve these conflicts, two traffic lights were introduced.

Throughout the analysis the green phases were kept at a constant periodicity.

The traffic light at j3 is only present in the 5link system. This has the consequence that the

4link system is not anymore exactly included in the 5link system. Thus the tree of possible

phases that can arise when comparing the 4link and 5link systems gets more complicated

than in the random-sequential update version of the system.

Many characteristics that are present in the random-sequential version are also found in

the parallel update version. If route choices are governed by turning probabilities, meaning
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that all particles are treated as equal without personal fixed strategies, a large intermediate

density region of the 4link network is governed by fluctuating domain walls. If all particles

keep their personal fixed route choices, these domain walls are not found. For both route

choice processes in the 5link systems real user optima can be detected only in in parts of the

phase space. These regions are located at global densities below certain thresholds. Due to

the absence of domain walls, for the case of fixed route choices the parts with real user optima

are present up to higher densities.

Opposed to the random-sequential update versions, the phase diagrams cannot be divided

into phase regions with well defined phase borders. Only the simple “E5 optimal - all 153”

phase can be clearly identified in all examined cases with parallel updates. The fact that no

other distinct phase regions could be identified could be caused by the branching of the tree

of possible phases being too fine.

The Braess paradox can be observed in the parallely updated versions of the network in a

distinct region at intermediate densities and low route length ratios. In this region the travel

times in the user optimum increase after the addition of the new road. This phase region

is not comprised only of one single phase, but instead different Braess-phases are observed

inside that region. Instances of Braess-phases are also found at other positions throughout

the phase diagram, though not in other connected regions.

The parallel update version of the Braess’ network is more complicated to treat than the

random-sequential update versions. If traffic lights are used, as done here, with the traffic

light phases two additional parameters are introduced into the system. Those parameters

have major influence on travel times measured in the systems. Throughout the analyses

presented here these parameters were kept constant. Repeating measurements for different

values of these traffic light phases could yield different results.

To get a simpler version of the parallely updated versions one could introduce different

rules for the right of way. If at least at junction j3 a ‘right over left’ rule was established the

4link system would again be included in the 5link system reducing the number of possible

states and thus making the analysis much easier.

In his Master’s thesis Leonard Fischer also studied one version of the Braess network with

Nagel-Schreckenberg dynamics [106]. These are only first results based on Nage-Schreckenberg

dynamics and do not yield any quantifiable information, which is why they not repeated

here. An extensive analysis of the network with Nagel-Schreckenberg dynamics could be an

interesting future project.
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Intelligent Particles

This chapter answers the question if user optima are reached in Braess’ network if particles

make their own individual route choice decisions based upon different types of information.

It thus addresses the second of the two main issues about what can be improved in Braess’

model, which were laid out in Section 2.2.5.

In Sections 4.1 to 4.5 it was shown that Braess’ paradox occurs in the Braess network

of TASEPs (with the exception of the open boundary version of the network in which the

paradox is not directly observable, as discussed in Section 4.4). In those analyses the global

strategies, i.e. how all particles choose their routes, are tuned externally: either the turning

probabilities which are obeyed by all particles, or all individual particles’ personal strategies

are set to certain values. Then these values are varied to find which specific combinations

lead to user optima. By comparing travel times in the obtained user optima of the 4link and

corresponding 5link systems it can be inferred if Braess’ paradox occurs.

In the present chapter a decision making algorithm which is used by all individual particles

is implemented. The particles then choose their routes ‘intelligently’ instead of being assigned

to routes externally. The effects of the intelligent decision makings can be analysed, building

on the information about existing user optima that was obtained in the previous chapter.

The individual particles are provided with three different types of information, the defi-

nitions of which were given in Section 2.4.1, which are the bases for their decisions: public

historical information, public predictive information and personal historical information. It

is shown that two types of information drive the networks into their user optima: the Braess

paradox occurs in TASEP networks with such intelligent particles.

After analysing the effects of these three different types of information separately, the

effects of a combination of personal historical and public predictive information is studied.

This combination of information types can also be found in many modern-day real road

networks. Braess’ paradox is shown to also occur in this setting.

5.1 Decision Making Algorithm with Three Types of Information

The decision making algorithm is implemented to work on the Braess network with periodic

boundary conditions as shown in Figure 3.9 (a). The network with periodic boundary condi-

tions is chosen since in this version all individual particles stay in the system. Hence, personal

information (i.e. information available to individual particles from their own memories) can
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be implemented.

The systems are always initialized by placing a fixed number of particles M randomly on

the routes. Each particle is additionally assigned an initial pure strategy (to take either route

14, 23 or 153) randomly. For two types of information the system then has to undergo a

relaxation process, which will be explained in the following sections corresponding to these

specific types of information.

Independent of the type of information available to the particles, once the system is initial-

ized, route choice decisions are made before beginning each new round1 and also on junctions

j1 and j2. Each particle has information about travel times on all three routes denoted as

T14,info, T23,info and T153,info for routes 14, 23 and 153, respectively.

Between finishing one round and beginning the next round, i.e. after jumping onto E0 and

before jumping to j1, each particle decides upon the strategy for the next round as described

in Algorithm 5.1. Two parameters are introduced.

1. The probability pinfo with which route choice decisions are made based upon the avail-

able information. With probability 1− pinfo a random route is chosen.

2. The travel time difference threshold ∆Tthres.. For travel time differences ∆T up to this

value it is assumed that particles do not care about potential travel time savings. The

particles thus act boundedly rational (see Section 2.1).

Algorithm 5.1: The decision making of each particle before starting a new round,
used as soon as values for Ti,info are available for all routes i. The algorithm is shown
for the 5link network. In the 4link network route 153 is not available and ∆T is reduced
accordingly.

1 if (Random number between 0 and 1 smaller than pinfo) then
2 Calculate ∆T = |T14,info − T23,info|+ |T14,info − T153,info|+ |T23,info − T153,info|;
3 if (∆T > ∆Tthres.) then
4 Switch to route with smallest Tinfo;
5 end
6 else
7 Stay on same route;
8 end

9 end
10 else
11 Choose a route randomly with equal probability;
12 end

The strategy of each particle is thus updated before beginning each new round according to

Algorithm 5.1. During one round there can also be individual strategy changes if a particle

‘sits’ on junction j1 or j2 and is not able to jump to its desired target site. This could e.g. be

the case if a particle chose to take route 23: if that particle sits on j1 and the first site on E2

1A “round” refers to one complete trip that starts when a particle sits on j1 and finishes when the particle
jumps out of j4.
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is occupied, after some waiting time the particle will change its strategy in favour of route 14

or route 153. In Algorithm 5.2 it is described how these decisions during individual rounds

are implemented.

Algorithm 5.2: The algorithm for decisions made during one round for particles sitting
on junction j1 if their target site is occupied. The algorithm shown here is used in the
4link system.

// (The variable tw is the time the particle has already waited on j1
since its first attempt of jumping to its target site.)

1 if (intended route is route 14) then
2 if (T14,info < T23,info) then
3 if (tw > (T23,info − T14,info) · κj1thres.) then
4 switch to route 23
5 end

6 end
7 else
8 switch to route 23 immediately
9 end

10 end
11 else if (intended route is route 23) then
12 if (T23,info < T14,info) then
13 if (tw > (T14,info − T23,info) · κj1thres.) then
14 switch to route 14
15 end

16 end
17 else
18 switch to route 14 immediately
19 end

20 end

The algorithms for decisions on the junctions introduce the following two parameters.

1. The parameter κj1thres.. If a particle decides to take route i based on the information

that it has the lowest travel time (Ti,info is lower than Tj,info, with j 6= i) and cannot jump

immediately onto its desired route i, it waits for κj1thres. multiplied by the estimated

saved travel time on route i.

2. The parameter κj2thres. for decisions on j2 in the 5link system, which is defined equiva-

lently to κj1thres..

Basically, the junction algorithms say that, if before starting the present round, a particle

decided not to take the route with the lowest expected travel time (due to a random decision

that happened with probability 1−pinfo, as in lines 10 to 12 in Algorithm 5.1) and the desired

target route’s first site is blocked, it will immediately re-decide for another route. If a particle

chose the route with the lowest expected travel time and the first site of its target route is

blocked it will wait for a certain fraction κj1thres. of the estimated saved travel time before

switching to a different route.
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In the 5link network the algorithm for decisions on j1 is slightly more complicated: when

changing away from route 23, there are two possible alternatives to choose from. The decision

making during a round at junction j2 in the 5link system works analogously to Algorithm 5.2.

The two algorithms used in the 5link system are shown in Appendix A.3.

Algorithms 5.1 and 5.2 are implemented for each of the three types of information explained

in the following subsections. The types of information determine how the Ti,info are obtained.

5.1.1 Public Historical Information

The first type of available information that is implemented is public historical information:

each time any particle finishes a round the travel time of the used route is made available for

all particles. These travel time values are used as T14,info, T23,info and T153,info for the decision

makings of all particles based on Algorithms 5.1 and 5.2.

When using this type of information a short relaxation period is needed. The simulation

is started with all particles following randomly assigned strategies. They continue to follow

these strategies until each route has been used at least once and thus travel time information

is available for all routes. From this point in time onwards particles decide their new strategies

based on the available information.

As summarized in Section 2.4 and detailed in the references cited therein, this type of

information has been shown to lead to overreactions and thus to oscillations in a symmetric

two route network: it is already well established that user optima are not realized by providing

this type of information. It was implemented here to confirm these observations in the 4link

network (which is also a symmetric two route network) and to test how it influences route

choices and resulting travel times in the 5link network.

5.1.2 Public Predictive Information

This type of information provides estimated future travel times2 of all routes to all particles.

The predicted travel times are based on the current state of the network or, more precisely,

on the current positions of all particles.

To provide predicted travel times at any point in time, the numbers of particles on each

of the five edges E1 to E5 (or E1 to E4 in the 4link network) are added up3. If there are ni

particles on edge Ei, a density ρi = ni/Li for this edge is calculated. Employing Equation (3.4)

for the travel time of a periodic TASEP an approximation of the travel time Ti,app on edge

Ei is calculated:

Ti,app =
Li

1− ρi
. (5.1)

Even though Equation (3.4) provides fairly accurate approximations of the steady-state travel

times of periodic TASEPs, in the present case it is just a rough approximation. This is due

2The term “future travel times” refers to the fact that the travel time of a journey starting at any moment
in time reaches into the future from this point in time. It could also be called present travel times.

3In real networks such data is crowdsourced and used in navigational apps (see Section 2.4).

132



5.1 Decision Making Algorithm with Three Types of Information

to the fact that during the systems evolution the density on the edge may keep changing as

particles re-decide their strategies. The edge does not reach a steady state with the present

density.

From the approximations of the travel times of all edges the estimated route travel times

are calculated as

T14,info = T1,app + T4,app, (5.2)

T23,info = T2,app + T3,app, (5.3)

T153,info = T1,app + T5,app + T3,app, (5.4)

and decision making is then based on Algorithms 5.1 and 5.2, employing this information.

Each time any particle finishes one round, the Ti,info are updated based on the network’s

situation at that point in time. Also, if a particle considers re-deciding for another route

when waiting on junction j1 or j2 (based on Algorithm 5.2) the latest available Ti,info are

used. Thus, when deciding for a route before starting a round the predicted travel times

are calculated based on the situation in the moment of that decision. When considering re-

deciding the strategy during the same round, since a junction is blocked, the predicted travel

times may be provided according to newer information than that used before starting the

round.

For this type of information no relaxation period is needed since the densities of all edges

and thus the predicted travel times of all routes are available from the beginning of the

simulation.

This type of information is an approximation of the information provided by smartphone

routing apps widely used in real road networks nowadays (Section 2.4 and the references

therein describe the working principle and some consequences of these apps).

5.1.3 Personal Historical Information

In the scenario with personal historical information, particles decide upon which routes to

take based on their own experiences. Each particle is assigned a memory capacity of cmem

rounds, i.e. it ‘remembers’ which routes it took the last cmem rounds and the corresponding

travel times it experienced. Additionally, each particle remembers the travel times of all

three routes, as experienced when last using them, no matter how much time has passed

since. Thus, particles have memories of travel times on all three routes, even if a certain

route was not used in the last cmem rounds.

The Ti,info are different for all particles. For each particle the Ti,info for each route i is either

given by the mean of all experienced travel times on route i in the last cmem rounds or, if

route i was not used in the last cmem rounds, the Ti,info is given by the single latest memory

of route i’s travel time. The decision making in the network is then based on Algorithms 5.1

and 5.2 with each particle employing its own personal information.

The system subject to this type of information is considered to be relaxed if each particle
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has used each route at least once and if each particle has completed at least cmem rounds. To

guarantee that the system will relax, particles intentionally try to use each of the routes at

least once before starting to rely on the route choice algorithms. That way it can be achieved

that each particle has at least one travel time experience for all three routes.

In real networks route choices may be based on such a type of information, e.g. in com-

muter’s scenarios, in which the commuters do not have any external information except their

own experiences to rely on.

5.2 The Algorithm Applied on a Potential “Braess 1” State

The implemented decision making algorithm was first tested with all particles relying on only

one type of information during one simulation. Furthermore, also a system in which some

particles base their decisions on personal historical information and the remaining particles

base their decisions on public predictive information was analysed.

The algorithm was tested in a network with random-sequential updates on an example for

a “Braess 1” state: the lengths of the TASEPs are chosen to be L0 = 1, L1 = L3 = 100,

L2 = L4 = 500 and in the 5link system L5 = 37. A total of M = 248 particles are in

the system. This corresponds to a route length ratio L̂153/L̂14 ≈ 0.4 and global densities

ρ
(4)
global ≈ 0.21 and ρ

(5)
global ≈ 0.20. According to the phase diagrams this parameter set leads

to a “Braess 1” state both in the network with fixed route choices (see Figure 4.8) and

with turning probabilities (see Figure 4.15). The observable landscapes for the cases of fixed

route choices and turning probabilities are shown in Appendix A.1 in Figures A.3 and A.12,

respectively.

In the 4link system the user optimum (and also the system optimum) is

• for fixed route choices given by a pure user optimum: n14 = n23 = 124 with Tmax(uo
(4)) ≈

765,

• for turning probabilities given by a mixed user optimum: γ = 0.5 with Tmax(uo
(4)) ≈

764.

In the 5link system the user optimum is

• not unique for fixed route choices: one pure user optimum is given by n14 = n153 =

124, n23 = 0, another by n14 = n23 = 124, n153 = 0; both with Tmax(uo
(5)) ≈ 978.

• for turning probabilities uniquely given by a mixed user optimum at γ = 0.87, δ = 0.1

with Tmax(uo
(5)) ≈ 895.

In the following two subsections, the question is answered, whether these user optima are

reached if particles choose their routes according to the presented Algorithms 5.1 and 5.2.

The parameters of the route choice algorithm are in all cases chosen to be:

• pinfo = 0.9,
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• ∆Tthres. = 10,

• κj1,thres. = κj2,thres. = 0.1,

• cmem = 30 (if personal historical information is used).

A detailed analysis of the influence of varying these parameters on the performance of the

algorithm is an interesting potential future project.

5.2.1 Systems with Only One Type of Information

Figures 5.1 to 5.6 show the time evolutions of the system with decisions based on the different

types of information: Figures 5.1 and 5.2 display the influence of public historical information

in the 4link and 5link systems. Figures 5.3 and 5.4 depict what happens if decisions are

based on personal historical information in the 4link and 5link systems. Figures 5.5 and 5.6

illustrate the influence of public predictive information in the systems without and with E5.

Individual data points for Parts (b) - (d) are always obtained when one particle finishes one

round. Then this particle’s travel time is recorded and the numbers of particles following the

different strategies are counted. The “implicit turning probabilities” γimp and δimp shown

in Parts (d) of these figures are obtained from the numbers of particles using the individual

routes as γimp = n14/M in the 4link system and γimp = 1−n23/M and δimp = n14/(n14+n153)

in the 5link. They are presented to check whether the systems reach the mixed user optima.

Public historical information does not lead to user optima neither in the 4link system nor

in the 5link system. Due to overreaction the numbers of particles on the roads keep changing

in an oscillatory manner (Figures 5.1 (c) and 5.2 (c)). Accordingly, the measured individual

travel times (Parts (b) of Figures 5.1 and 5.2) are changing. The averaged travel times

equalize in the symmetric 4link system but at a much higher value than the user optimum

travel time (Figure 5.1 (a)). In the 5link system the average travel times of all three routes

stabilize at different values, all larger than the user optimum values. The fact that this type

of information does not lead to user optima is well established for two route scenarios (see

Section 2.4 and references therein).

The situation changes if personal historical information is used. If users rely on their own

memories a user optimum is reached in the 4link system, as can be seen in Figure 5.3 (c). After

the relaxation process approximately half of the particles choose route 14 and the remaining

particles choose route 23. Apart from some minor fluctuations the number of particles on the

two routes stays constant. Accordingly, the average travel times of both routes equalize at the

travel time expected in the user optimum (Figure 5.3 (a)). As can be seen in Figure 5.3 (e)

most individual particles stick to their routes, i.e. the total number of particles not switching

routes is much greater than the number of particles switching routes: particles relying on

their own experiences establish a user optimum close to a pure user optimum.

In the 5link system used by particles that base their decisions on their own memories, a user

optimum is reached as well. After the relaxation process approximately half of the particles
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Figure 5.1. The time evolution of observables in the 4link system with particle decisions based
on public historical information. All parts share the same x-axis denoting the number of sweeps
executed after random initialization. The grey vertical lines show the point in the time evolution
when the system was relaxed. Part (a) shows the time evolution of the averaged travel times T̄i of
both routes i. Part (b) shows the individual measured travel times Ti on both routes i. In Parts (a)
and (b) the dashed grey lines show the average travel times in the pure (longer dashes) and mixed
user optima (shorter dashes). Part (c) shows the number of particles ni on the routes i. The
according numbers of particles expected in the pure user optimum are also shown as dashed lines.
Part (d) shows the implicit turning probability γimp and also the turning probability which leads
to the mixed user optimum (dashed line). Part (e) shows how many decisions were made. These
numbers are collected in bins with a length of 500 sweeps. It is shown how many route switches
were made totally (“switches total”), how many of those were done at junction j1 (“j1 switches”)
and how many particles did not change their routes (“no switches”).
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Figure 5.2. The time evolution of observables in the 5link system with particle decisions based
on public historical information. All parts share the same x-axis denoting the number of sweeps
executed after random initialization. The grey vertical lines show the point in the time evolution
when the system was relaxed. Part (a) shows the time evolution of the averaged travel times T̄i of
the routes i. Part (b) shows the individual measured travel times Ti on the routes i. In Parts (a)
and (b) the dashed grey lines show the average travel times in the pure (longer dashes) and mixed
user optima (shorter dashes). Part (c) shows the number of particles ni on the routes i. The
according numbers of particles expected in the two pure user optima are also shown as dashed lines.
Part (d) shows the implicit turning probabilities γimp and δimp and also the turning probabilities
which lead to the mixed user optimum (dashed lines). Part (e) shows how many decisions were
made. These numbers are collected in bins with a length of 500 sweeps. It is shown how many
route switches were made totally (“switches total”), how many of those were done at the junctions
(“j1/j2 switches”) and how many particles did not change their routes (“no switches”).
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Figure 5.3. The time evolution of observables in the 4link system with particle decisions based
on personal historical information, i.e. particles relying on their own memories for route choice
decisions. All parts share the same x-axis denoting the number of sweeps executed after random
initialization. The grey vertical lines show the points in the time evolution when the system was
relaxed: at the first vertical lines each particle used each route once, at the second ones each
particle’s memory was filled with cmem = 30 travel time values. Part (a) shows the time evolution
of the averaged travel times T̄i of both routes i. Part (b) shows the individual measured travel
times Ti on both routes i. In Parts (a) and (b) the dashed grey lines show the average travel times
in the pure (longer dashes) and mixed user optima (shorter dashes). Part (c) shows the number of
particles ni on the routes i. The according numbers of particles expected in the pure user optimum
are also shown as dashed lines. Part (d) shows the implicit turning probability γimp and also the
turning probability which leads to the mixed user optimum (dashed line). Part (e) shows how many
decisions were made. These numbers are collected in bins with a length of 500 sweeps. It is shown
how many route switches were made totally (“switches total”), how many of those were done at
junction j1 (“j1 switches”) and how many particles did not change their routes (“no switches”).

138



5.2 The Algorithm Applied on a Potential “Braess 1” State

800

1000

1200

T̄
i

(a)

T̄14

T̄23

T̄153

300

1400

2500

T
i

(b)

T14

T23

T153

0

124

248

n
i

(c)

n14

n23

n153

0.0

0.5

1.0

γ
im

p
/
δ i
m
p

(d)

δimp

γimp

0 20000 40000 60000 80000 100000 120000 140000

no. of sweeps

0

100

200

n
o
.
o
f

d
ec
is
io
n
s

(e)

switches

j1/j2 switches

no switches

Figure 5.4. The time evolution of observables in the 5link system with particles decisions based
on personal historical information, i.e. particles relying on their own memories for route choice
decisions. All parts share the same x-axis denoting the number of sweeps executed after random
initialization. The grey vertical lines show the points in the time evolution when the system was
relaxed: at the first vertical lines each particle used each route once, at the second ones each particle’s
memory was filled with cmem = 30 travel time values. Part (a) shows the time evolution of the
averaged travel times T̄i of the routes i. Part (b) shows the individual measured travel times Ti on
the routes i. In Parts (a) and (b) the dashed grey lines show the average travel times in the pure
(longer dashes) and mixed user optima (shorter dashes). Part (c) shows the number of particles
ni on the routes i. The according numbers of particles expected in the two pure user optima are
also shown as dashed lines. Part (d) shows the implicit turning probabilities γimp and δimp and
also the turning probabilities which lead to the mixed user optimum (dashed lines). Part (e) shows
how many decisions were made. These numbers are collected in bins with a length of 500 sweeps.
It is shown how many route switches were made totally (“switches total”), how many of those were
done at the junctions (“j1/j2 switches”) and how many particles did not change their routes (“no
switches”).
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Figure 5.5. The time evolution of observables in the 4link system with particle decisions based
on public predictive information. All parts share the same x-axis denoting the number of sweeps
executed after random initialization. Part (a) shows the time evolution of the averaged travel times
T̄i of both routes i. Part (b) shows the individual measured travel times Ti on both routes i. In
Parts (a) and (b) the dashed grey lines show the average travel times in the pure (longer dashes)
and mixed user optima (shorter dashes). Part (c) shows the number of particles ni on the routes
i. The according numbers of particles expected in the pure user optimum are also shown as dashed
lines. Part (d) shows the implicit turning probability γimp and also the turning probability which
leads to the mixed user optimum (dashed line). Part (e) shows how many decisions were made.
These numbers are collected in bins with a length of 500 sweeps. It is shown how many route
switches were made totally (“switches total”), how many of those were done at junction j1 (“j1
switches”) and how many particles did not change their routes (“no switches”).

140



5.2 The Algorithm Applied on a Potential “Braess 1” State

800

955

1110

T̄
i

(a)

T̄14

T̄23

T̄153

350

825

1300

T
i

(b)

T14

T23

T153

0

124

248

n
i

(c)

n14

n23

n153

0.0

0.5

1.0

γ
im

p
/
δ i
m
p

(d)

δimp

γimp

0 20000 40000 60000 80000 100000 120000 140000

no. of sweeps

0

100

200

n
o
.
o
f

d
ec
is
io
n
s

(e)

switches total

j1/j2 switches

no switches

Figure 5.6. The time evolution of observables in the 5link system with particle decisions based
on public predictive information. All parts share the same x-axis denoting the number of sweeps
executed after random initialization. Part (a) shows the time evolution of the averaged travel times
T̄i of the routes i. Part (b) shows the individual measured travel times Ti on the routes i. In
Parts (a) and (b) the dashed grey lines show the average travel times in the pure (longer dashes)
and mixed user optima (shorter dashes). Part (c) shows the number of particles ni on the routes
i. The according numbers of particles expected in the two pure user optima are also shown as
dashed lines. Part (d) shows the implicit turning probabilities γimp and δimp and also the turning
probabilities which lead to the mixed user optimum (dashed lines). Part (e) shows how many
decisions were made. These numbers are collected in bins with a length of 500 sweeps. It is shown
how many route switches were made totally (“switches total”), how many of those were done at the
junctions (“j1/j2 switches”) and how many particles did not change their routes (“no switches”).

choose route 14 and the remaining particles choose route 153. A small amount of particles

chooses route 23 from time to time (Figure 5.4 (c)).
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The average travel times of routes 14 and 153 equalize at a value between those of the mixed

and pure user optima. The travel time on route 23 is significantly longer (Figures 5.4 (a)

and (b)). This can be considered a user optimum because route 23 is rarely used and the

other two routes have lower, almost equal travel times. The fact that some particles choose

route 23 from time to time could be due to random decisions (occurring with probability

1 − pinfo). The number of particles which stick to their routes is much greater than the

number of particles switching their routes (Figure 5.4 (e)), leading to the conclusion that the

obtained state is close to a pure user optimum.

When particles are provided with public predictive information, in the 4link system the

user optimum is also reached (see Figure 5.5). Approximately half the particles choose route

14 and the other half route 23. Almost no switches occur (Figure 5.5 (e)) and the travel

times of both routes equalize (Figure 5.5 (a) and (b)). This is expected as the 4link system

is symmetric and the predictive information is based on Equation (5.1).

In the 5link system public predictive information leads to a situation close to a user op-

timum. Similar to the case for personal historical information almost no particles choose

route 23. In the present case an oscillatory behaviour is observed: while on average half the

particles choose routes 14 and the other half route 153, some of them keep switching back and

forth between the two routes (see Figure 5.6 (c)). One can see that an almost equal amount

of particles switches routes and keeps on the same route (Figure 5.6 (e)). The oscillating

travel times of the used routes are lower than those measured on the almost unused route

23. Nevertheless, their average values are not as close to each other as in the network with

personal information. Still, one can conclude that the system is in a stable state with minor

oscillations (much lower than for public historical information, see Figure 5.1 and 5.2).

In summary, one can say that providing public historical travel time information is not

useful in a road network. However, systems of particles relying on their own memories and

systems with public predictive information seem to reach user optimum states. In the 5link

system with predictive information a state is obtained which oscillates around a user optimum.

In both 5link systems the same pure user optimum is approached. This is interesting because

a second pure user optimum and a mixed user optimum exist which were not reached in either

of the cases. These other user optima may be reached for different initializations.

Braess’ paradox occurs in the two systems with personal historical and public predictive

information. In both cases the 5link systems stabilize in states which are close to pure user

optima and have higher travel times than the stable states reached in the 4link systems.

Systematic studies of different values for L5 and M and for the parameters of the decision

making algorithm are needed to reach a final conclusion about the overall performance of the

algorithm.

5.2.2 Systems with Personal and Public Information

To obtain a better approximation of the situation occurring in present real world commuter

scenarios, the network was also studied for the case that some particles rely on their own
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memories and the rest relies on public predictive information (e.g. smartphone apps if trans-

ferred to the real world). Three different distributions of information types are studied: 75%

to 25%, 50% to 50% and 25% to 75% of particles relying on personal to public information.

The results are shown in Figures 5.7 and 5.8 for the 4link and 5link networks, respectively.

In the 4link systems the ratio of the two types of information does not seem to have a

significant effect on the network’s state. The user optima are reached for all different ratios.

Only if all users rely on their own memories the fluctuations around the user optimum seem

to be a bit higher (see Figure 5.3 (c)). If public predictive information is used in the network,

these fluctuations get smaller for all saturation levels (25%, 50%, 75% and 100%). While the

differences are indeed really small, one could thus conclude that public predictive information

is positive with respect to the realization of pure user optima in the 4link network.

In the 5link network the opposite is observed: the pure user optimum is reached with rela-

tively low fluctuations if only personal information is used: Figures 5.4 (c) and (e) show that

the number of particles on the routes stays approximately constant and the number of indi-

vidual switches is very low. If public predictive information is introduced (from 25% upwards)

the systems start to fluctuate around the pure user optimum. While the number of particles

on average stays equal on routes 14 and 153, the fluctuations increase with a growing ratio of

particles using public information (see Figures 5.8 (c1) – (c3) and Figure 5.6 (c)). Also, the

number of individual switches grows with the ratio: for only personal information almost no

individual switches occur while for only public information as many switches occur as parti-

cles sticking to their routes (see Figure 5.4 (e), Figures 5.8 (d1) – (d3) and Figure 5.6 (e)).

It can be concluded that in the 5link system public information leads to a destabilization on

the level of individual particles, while the whole system stays close to a pure user optimum.

These systems with both types of information are approximations of modern real road

traffic networks. The fact that Braess’ paradox is observed in these systems further stresses

its importance for real traffic networks.
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Figure 5.7. Comparison of the effects of different amounts of particles deciding based on either
personal historical or public predictive information in the 4link system. Parts (a1) to (d1) corre-
spond to 75% relying on personal information and 25% on public predictive information. Parts (a2)
to (d2) correspond to 50% relying on personal information and 50% on public predictive informa-
tion. Parts (a3) to (d3) correspond to 25% relying on personal information and 75% on public
predictive information. All parts share the same x-axis denoting the number of sweeps executed
after random initialization. The grey vertical lines show the points in the time evolution when the
particles relying on personal information were relaxed: at the first vertical lines each such particle
used each route once, at the second ones each of these particles’ memories were filled with cmem = 30
travel time values. Parts (a) show the time evolutions of the averaged travel times T̄i of the routes i.
Parts (b) show moving averages of the travel travel times T̄mav

i on the routes i. It was averaged over
1000 sweeps for each point. In Parts (a) and (b) the dashed grey lines show the average travel times
in the pure (longer dashes) and mixed user optima (shorter dashes). Parts (c) show the number of
particles ni on the routes i. The according numbers of particles expected in the pure user optimum
are also shown as dashed lines. Green and orange lines correspond to observables on routes 14 and
23, respectively. Parts (d) show how many decisions were made. These numbers are collected in
bins with a length of 1000 sweeps. It is shown how many route switches were made totally (purple
lines), how many of those were done at junction j1 (blue lines) and how many particles did not
change their routes (grey lines).
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Figure 5.8. Comparison of the effects of different amounts of particles deciding based on either
personal historical or public predictive information in the 5link system. Parts (a1) to (d1) corre-
spond to 75% relying on personal information and 25% on public predictive information. Parts (a2)
to (d2) correspond to 50% relying on personal information and 50% on public predictive informa-
tion. Parts (a3) to (d3) correspond to 25% relying on personal information and 75% on public
predictive information. All parts share the same x-axis denoting the number of sweeps executed
after random initialization. The grey vertical lines show the points in the time evolution when the
particles relying on personal information were relaxed: at the first vertical lines each such particle
used each route once, at the second ones each of these particle’s memories were filled with cmem = 30
travel time values. Parts (a) show the time evolutions of the averaged travel times T̄i of the routes
i. Parts (b) show moving averages of the travel travel times T̄mav

i on the routes i. It was averaged
over 1000 sweeps for each point. In Parts (a) and (b) the dashed grey lines show the average
travel times in the pure (longer dashes) and mixed user optima (shorter dashes). Parts (c) show
the number of particles ni on the routes i. The according numbers of particles expected in the
pure user optimum are also shown as dashed lines. Green, orange and brown lines correspond to
observables on routes 14, 23 and 153, respectively. Parts (d) show how many decisions were made.
These numbers are collected in bins with a length of 1000 sweeps. It is shown how many route
switches were made totally (purple lines), how many of those were done at junction j1 (blue lines)
and how many particles did not change their routes (grey lines).

145





6 Summary and Conclusions

In this thesis it was shown that the Braess paradox can be observed in networks of TASEPs.

The network structure which was used in the original article on the paradox [10, 11], with

TASEP dynamics describing transport in the network was analysed. It was shown that the

paradox can be observed in large parts of the phase space when comparing user optima travel

times of networks with and without an additional edge. Furthermore, a route choice algorithm

was implemented which simulates intelligent route choices for all particles based on various

types of information. It was shown that the paradox is realized if particles base their decisions

on information similar to that available in real road networks.

In Chapter 2 the main findings of previous research on the paradox were summarized. It

was also shown, which assumptions that are made in most of the previous publications, limit

the application of the results to real world road networks. The research methodology of

this thesis was motivated by recapitulating some important established facts about real road

networks, as obtained in various scientific fields. In Chapter 3, the main methods and models

used in my research were presented. In particular, the basic model of my reasearch, the Braess

network of TASEPs was introduced. Figure 3.11 shows a phase classification scheme which

can be used to characterize the influence of the new road on the network. This scheme was

used in the following chapters.

In Chapter 4 various variants of the network, differing in boundary conditions, route choice

strategies and update types, were analysed with the particles’ strategies being tuned exter-

nally. The particles do not decide their routes intelligently in this case, but their route choices

are set externally. Either fixed amounts of particles choose the exact same routes over and

over, a strategy type called “fixed route choices”, or all particles decide which routes they

take based on fixed probabilities. The latter route choice type is called “turning probabilites”.

Chapter 4 does not address the question whether the Braess paradox would actually be real-

ized by real drivers. Instead, it answers and affirms the question, whether the paradox is in

principal accessible in the networks (Question 1 posed in Chapter 1). Beyond affirming that

the paradox can be observed, phase diagrams that characterize the influence of the added

road in more detail could be obtained.

Different variants of the network employing random-sequential updates were analysed in

Sections 4.1 to 4.4. The cases of periodic boundary conditions with fixed route choices and

turning probabilities were studied in Sections 4.1 and 4.2, respectively. In both cases the new

road leads to lower user optimum travel times at low global densities. The Braess paradox

is observed for intermediate global densities. It is the largest phase in the case of fixed route

choices, while the phase is smaller for the case of turning probabilities. Fine tuning is not
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required for the phase to be observed in either case.

At intermediate densities, the system with turning probabilities is dominated by fluctuating

domain walls. For single open boundary TASEP segments, these domain walls only occur for

fine tuned parameters on the phase transition line separating the low density from the high

density phase. In the network with turning probabilities, they dominate the largest part of

the phase space. In this whole part, travel times are not stable in the short term, the average

travel times only stabilize when measuring for a very long time. The system can thus not

be classified with regards to the Braess paradox, since fixed travel time values are needed to

apply the phase classification scheme presented in Figure 3.11.

In the system with fixed strategies, many states which could potentially be user optima

will lead to gridlocks. This is why this system can not be properly classified for high global

densities, either. In both systems the new road seems to lead to lowered user optimum travel

times at really high densities.

The Braess networks with open boundaries and turning probabilities are analysed in Sec-

tion 4.4. The Braess paradox is not observed directly in those networks. For low outer exit

probabilities, unexpected phases are found in the 5link systems: in these phases no user op-

tima exist. The phases in which the travel times of all three routes are closest to each other,

are those phases in which only one route is used. In those phases, the travel times of the used

routes are higher than those of unused routes. If the system was used by intelligent particles,

they would not stick to such strategies but instead start using the other routes as well. Since

the total particle number is not conserved in the network with open boundary conditions,

the other routes would then also fill up with particles and the system would end up in states

with higher travel times than those of the 4link systems’ user optima. The system might also

be oscillating between phases in which only one of the three routes is used. In the remaining

parts of the phase space, the new road leads to lower travel times in the networks with open

boundary conditions.

Braess’ paradox can also be observed in TASEP networks with parallel dynamics. The

phase diagrams for the network with periodic boundary conditions and fixed route choices

as well as turning probabilities are shown in Section 4.5. If parallel dynamics are employed,

certain conflicts which cannot occur in TASEP networks with random-sequential updates, are

possible. These conflicts occur, if two TASEPs segments merge into one junction. If the last

sites of both segments are occupied, two particles try to jump onto the same site at the same

time. To avoid such conflicts, traffic lights were implemented at the two junction sites on which

such conflicts are potentially possible in Braess’ network. This leads to a more complicated

classification scheme, as shown in Figure 4.25, than in the case of random-sequential updates.

Braess’ paradox was also observed in these networks with parallel dynamics. Opposed to those

of the networks with random-sequential dynamics, the phase diagrams cannot be divided into

distinct phase areas.

In Chapter 5 the question, whether Braess’ paradox is realized if the network is used by

intelligent users (Question 2 posed in Chapter 1), is addressed. A route choice algorithm,

which is used as the basis of all individual particles’ route choice decisions, is implemented.

148



The effects of several types of information on which the algorithm is based are analysed.

The most important types are personal historical information and a type of public predictive

information. The former is knowledge that individual particles have based on their own expe-

riences of travel times in previous rounds. The latter provides approximations of future travel

times in the network, based on the current positions of all particles. It is an approximation

of information which is provided by smartphone routing apps in real road networks.

The algorithm is tested in the Braess network with random-sequential updates and periodic

boundary conditions. Route lengths and the global density are chosen such that for externally

tuned parameters a “Braess 1” state is expected both for fixed route choices and turning

probabilities. It turns out that the paradox is realized for only personal historical information,

only public predictive information and for various combinations of both types. This confirms

that states leading to Braess’ paradox are not only in principle accessible, but are actually

realized in situations which are very similar to those present in real road networks. Question 2

from Chapter 1 is thus confirmed.

In conclusion, it can be stated that Braess’ paradox occurs in networks of stochastic mi-

croscopic transport processes. The paradox is observed in large parameter regions for various

variants of the network. It is also realized, if particles choose their routes intelligently based

on information, similar to information available in real road networks. This emphasizes the

importance of the paradox.

Some Ideas for Additional Research. Further research on the paradox in realistic models

is needed. Some ideas for possible future research on the topic are given in the following.

• Analysing networks of different topologies can lead to a general understanding about

the prerequisites that need to be fulfilled for the paradox to occur.

• Studying the influence of different hopping probabilities on different edges could be used

to approximate different maximum speeds. In doing so, different types of roads, e.g.

rural roads and freeways, could be approximately distinguished.

• The influence of Langmuir dynamics [133] could be studied: this dynamics could be

used to model cars that start at various positions of the roads, which could be regarded

as an approximation of traffic in cities.

• Analysing the network employing more realistic traffic models, such as the Nagel-

Schreckenberg model [106] or the velocity-dependent randomization model [120], could

be a next step to enhance the applicability to reality. First results for the Nagel-

Schreckenberg model are presented in [114].

• The influence of the parameters of the route choice algorithm could be studied in greater

detail. It would also be interesting to test the algorithm on different states which are

expected to lead e.g. to “Braess 2” phases or “E5 optimal” phases.
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A Appendix

A.1 Observable Landscapes and Density Profiles

In this section the Tmax and ∆T landscapes (and for open boundary conditions also the

no. of particles landscapes) for some example states of all the different phases are shown.

Furthermore, density profiles of all routes in the system and user optima of the 5link systems

are shown.

A.1.1 Periodic Boundary Conditions and Fixed Route Choices

In this section examples of the Tmax and ∆T landscapes depending on
(
n
(j1)
l , n

(j2)
l

)
and

density profiles and explicit travel times of the system optimum and the (closest candidates

for the) user optimum of all phases appearing in the periodic Braess network with random-

sequential dynamics and fixed route choices (results are shown in Section 4.1) are shown.

Figures A.1 to A.9 show examples of all phases found in the phase diagram shown in Figure 4.8.

In all figures presented here the shared parameters are L0 = 1, L1 = L3 = 100, L2 = L4 = 500.

In each of the figures, Part (a) shows the Tmax and ∆T landscapes with a
(
n
(j1)
l , n

(j2)
l

)

discretization resolution of 0.1. The strategies which correspond to the system optimum

and the user optimum (in primed phases the closest candidate for a real user optimum) are

also indicated. Depending on the specific parameter set, the optima were found by different

methods (described in Sections 3.2.5 and 3.3.2) and may actually lie in between the discrete

point of the 0.1 grid which is shown. The 0.1 grid is underlayed to give a coarse impression

of how the observable landscapes look like.

Parts (b) of the figures show the density profiles of the three routes in the optimum states

and also provide travel time values with standard deviations of the routes in those states.

The exact values of
(
n
(j1)
l , n

(j2)
l

)
of the optima and the corresponding Tmax and ∆T values

are given in the figure captions as well as the travel times in the corresponding 4link user and

system optimum.

From the density profiles one can see that the roads are either all in LD, HD or MC states,

or that there are localized domain walls. There is no indication of fluctuating domain walls

which would show in parts of the density profiles being linearly ascending. Furthermore, one

can see from Parts (b) of the figures that the standard deviations of the route’s travel times

stay well below 10% in all shown user and system optima. This indicates that the travel

times are stable in the sense that all individual cars will experience similar travel times in the

stationary states.
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Figure A.1. An example of an “E5 optimal” (“all 153”) state for the case of fixed route choices.

Parameters are L5 = 97, M = 156. This means L̂153/L̂14 = 0.5, ρ
(5)
global ≈ 0.12. The travel time in

the 4link user and system optimum is Tmax(uo
(4)) = Tmax(so

(4)) ≈ 692.
Part (a) shows the Tmax (left) and ∆T (right) landscapes. The pink ◭ and ◮ indicate the system
and user optimum, respectively.
Part (b) shows density profiles and average travel times Ti ± standard deviation σ of the three

paths for min(Tmax) and min(∆T ) at so(5) = uo(5) =̂
(
n
(j1)
l , n

(j2)
l

)
= (1.0, 0.0) with ∆T (so(5)) =

∆T (uo(5)) = 0, Tmax(so
(5)) = Tmax(uo

(5)) ≈ 615.
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Figure A.2. An example of an “E5 optimal” state for the case of fixed route choices. Parameters

are L5 = 339, M = 154. This means L̂153/L̂14 ≈ 0.9, ρ
(5)
global ≈ 0.1. The travel time in the 4link

user and system optimum is Tmax(uo
(4)) = Tmax(so

(4)) ≈ 691.
Part (a) shows the Tmax (left) and ∆T (right) landscapes. The pink ◭ and ◮ indicate the system
and user optimum, respectively.
Part (b) shows density profiles and average travel times Ti ± standard deviation σ of the three

paths for min(Tmax) and min(∆T ) at so(5) = uo(5) =̂
(
n
(j1)
l , n

(j2)
l

)
= (0.8, 0.3) with ∆T (so(5)) =

∆T (uo(5)) ≈ 22, Tmax(so
(5)) = Tmax(uo

(5)) ≈ 670.
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Figure A.3. An example of a “Braess 1” state for the case of fixed route choices. Parameters are

L5 = 37, M = 248. This means L̂153/L̂14 ≈ 0.4, ρ
(5)
global ≈ 0.2. The travel time in the 4link user and

system optimum is Tmax(uo
(4)) = Tmax(so

(4)) ≈ 764.
Part (a) shows the Tmax (left) and ∆T (right) landscapes. The pink ◭ and ◮ indicate the system
and user optimum, respectively. For this parameter set there exist two user optima. The second
user optimum is marked by a pink ◮ 2. Strategies with a gridlocked stationary state on route 153
are marked with green ⋆’s.
Part (b) shows density profiles and average travel times Ti ± standard deviation σ of the three paths

for (left): min(Tmax) at so
(5) =̂

(
n
(j1)
l , n

(j2)
l

)
= (0.5, 1.0) with ∆T (so(5)) ≈ 922, Tmax(so

(5)) ≈ 765

and (right): min(∆T ) at uo(5) =̂
(
n
(j1)
l , n

(j2)
l

)
= (0.5, 0.0) with ∆T (uo(5)) ≈ 10, Tmax(uo

(5)) ≈ 978.
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Figure A.4. An example of a “Braess 1” state for the case of fixed route choices. Parameters are

L5 = 218, M = 712. This means L̂153/L̂14 ≈ 0.7, ρ
(5)
global ≈ 0.5. The travel time in the 4link user

and system optimum is Tmax(uo
(4)) = Tmax(so

(4)) ≈ 1991.
Part (a) shows the Tmax (left) and ∆T (right) landscapes. The pink ◭ and ◮ indicate the system
and user optimum, respectively. Strategies with gridlocked stationary states on routes 14, 23 and
153 are marked with blue ×’s, red +’s and green ⋆’s, respectively.
Part (b) shows density profiles and average travel times Ti ± standard deviation σ of the three paths

for (left): min(Tmax) at so
(5) =̂

(
n
(j1)
l , n

(j2)
l

)
= (0.5, 1.0) with ∆T (so(5)) ≈ 2402, Tmax(so

(5)) ≈ 1995

and (right): min(∆T ) at uo(5) =̂
(
n
(j1)
l , n

(j2)
l

)
= (0.75, 0.669) with ∆T (uo(5)) ≈ 24, Tmax(uo

(5)) ≈
2177.
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Figure A.5. An example of an “Braess 2” state for the case of fixed route choices. Parameters are

L5 = 278, M = 994. This means L̂153/L̂14 ≈ 0.8, ρ
(5)
global ≈ 0.67. The travel time in the 4link user

and system optimum is Tmax(uo
(4)) = Tmax(so

(4)) ≈ 3631.
Part (a) shows the Tmax (left) and ∆T (right) landscapes. The pink ◭ and ◮ indicate the system
and user optimum, respectively. Strategies with gridlocked stationary states on routes 14, 23 and
153 are marked with blue ×’s, red +’s and green ⋆’s, respectively.
Part (b) shows density profiles and average travel times Ti ± standard deviation σ of the three paths

for (left): min(Tmax) at so(5) =̂
(
n
(j1)
l , n

(j2)
l

)
= (0.72, 0.62) with ∆T (so(5)) ≈ 1462, Tmax(so

(5)) ≈

3578 and (right): min(∆T ) at uo(5) =̂
(
n
(j1)
l , n

(j2)
l

)
= (0.749, 0.669) with ∆T (uo(5)) ≈ 48,

Tmax(uo
(5)) ≈ 4904.
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Figure A.6. An example of an “Braess 1 - like” state for the case of fixed route choices. Parameters

are L5 = 157, M = 681. This means L̂153/L̂14 ≈ 0.6, ρ
(5)
global = 0.5. The travel time in the 4link

user and system optimum is T
(4)
uo = T

(4)
so ≈ 1904.

Part (a) shows the Tmax (left) and ∆T (right) landscapes. The pink ◭ and ◮ indicate the system
optimum and the closest candidate for a user optimum, respectively. Strategies with gridlocked
stationary states on routes 14, 23 and 153 are marked with blue ×’s, red +’s and green ⋆’s, respec-
tively.
Part (b) shows density profiles and average travel times Ti ± standard deviation σ of the three paths

for (left): min(Tmax) at so
(5) =̂

(
n
(j1)
l , n

(j2)
l

)
= (0.5, 1.0) with ∆T (so(5)) ≈ 2356, Tmax(so

(5)) ≈ 1911

and (right): min(∆T ) at uo(5) =̂
(
n
(j1)
l , n

(j2)
l

)
= (0.761, 0.669) with ∆T (uo(5)) ≈ 572, Tmax(uo

(5)) ≈
2204.
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Figure A.7. An example of an “Braess 2 - like” state for the case of fixed route choices. Parameters

are L5 = 278, M = 1038. This means L̂153/L̂14 ≈ 0.8, ρ
(5)
global ≈ 0.7. The travel time in the 4link

user and system optimum is Tmax(uo
(4)) = Tmax(so

(4)) ≈ 4615.
Part (a) shows the Tmax (left) and ∆T (right) landscapes. The pink ◭ and ◮ indicate the system
optimum and the closest candidate for a user optimum, respectively. Strategies with gridlocked
stationary states on routes 14, 23 and 153 are marked with blue ×’s, red +’s and green ⋆’s, respec-
tively.
Part (b) shows density profiles and average travel times Ti ± standard deviation σ of the three paths

for (left): min(Tmax) at so(5) =̂
(
n
(j1)
l , n

(j2)
l

)
= (0.68, 0.61) with ∆T (so(5)) ≈ 2892, Tmax(so

(5)) ≈

4092 and (right): min(∆T ) at uo(5) =̂
(
n
(j1)
l , n

(j2)
l

)
= (0.741, 0.649) with ∆T (uo(5)) ≈ 838,

Tmax(uo
(5)) ≈ 5398.
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Figure A.8. An example of an “E5 not used - like” state for the case of fixed route choices. Param-

eters are L5 = 157, M = 1022. This means L̂153/L̂14 ≈ 0.6, ρ
(5)
global ≈ 0.75. The travel time in the

4link user and system optimum is Tmax(uo
(4)) = Tmax(so

(4)) ≈ 4201.
Part (a) shows the Tmax (left) and ∆T (right) landscapes. The pink ◭ and ◮ indicate the system
optimum and the closest candidate for a user optimum, respectively. Strategies with gridlocked
stationary states on routes 14, 23 and 153 are marked with blue ×’s, red +’s and green ⋆’s, respec-
tively.
Part (b) shows density profiles and average travel times Ti ± standard deviation σ of the three

paths for min(Tmax) and min(∆T ) at so(5) = uo(5) =̂
(
n
(j1)
l , n

(j2)
l

)
= (0.5, 1.0) with ∆T (so(5)) =

∆T (uo(5)) = 5322, Tmax(so
(5)) = Tmax(uo

(5)) ≈ 4212.
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Figure A.9. An example of an “E5 improves - like” state for the case of fixed route choices. Param-

eters are L5 = 339, M = 1127. This means L̂153/L̂14 ≈ 0.9, ρ
(5)
global ≈ 0.73. The travel time in the

4link user and system optimum is Tmax(uo
(4)) = Tmax(so

(4)) ≈ 10152.
Part (a) shows the Tmax (left) and ∆T (right) landscapes. The pink ◭ and ◮ indicate system
optimum and the closest candidate for a user optimum, respectively. Strategies with gridlocked
stationary states on routes 14, 23 and 153 are marked with blue ×’s, red +’s and green ⋆’s, respec-
tively.
Part (b) shows density profiles and average travel times Ti ± standard deviation σ of the three paths

for (left): min(Tmax) at so(5) =̂
(
n
(j1)
l , n

(j2)
l

)
= (0.68, 0.56) with ∆T (so(5)) ≈ 3608, Tmax(so

(5)) ≈

4438 and (right): min(∆T ) at uo(5) =̂
(
n
(j1)
l , n

(j2)
l

)
= (0.711, 0.609) with ∆T (uo(5)) ≈ 2886,

Tmax(uo
(5)) ≈ 5714.
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A.1.2 Periodic Boundary Conditions and Turning Probabilities

This section shows examples of the Tmax and ∆T landscapes, depending on (γ, δ), and density

profiles and explicit travel times of the system optimum and the (closest candidates for the)

user optimum of all phases appearing in the periodic Braess network with random-sequential

updates and turning probabilities (results are shown in Section 4.2). Figures A.10 to A.14

show examples of all phases found in the phase diagram shown in Figure 4.15. In all figures

presented here the shared parameters are L0 = 1, L1 = L3 = 100, L2 = L4 = 500.

In each of the figures Part (a) shows the Tmax and ∆T landscapes with a (γ, δ) discretization

resolution of 0.1. The strategies which correspond to the system optimum and the user

optimum (in the domain wall phase and the “E5 improves - like” phase: the closest candidate

for a real user optimum) are also indicated. Depending on the specific parameter set, the

optima were found by different methods (compare Sections 3.2.5 and 3.3.2) and may actually

lie in between the discrete point of the 0.1 grid which is shown. The 0.1 grid is underlayed

to give a coarse impression of how the observable landscapes look like.

Parts (b) of the figures show the density profiles of the three routes in the optimum states

and also provide travel time values and their standard deviations of the routes in those states.

The exact values of (γ, δ) of the optima and the corresponding Tmax and ∆T values are given

in the figure captions as well as the travel times in the corresponding 4link user and system

optimum.

Some of the figures shown in the present subsection have been published in [126].
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Figure A.10. An example of an “E5 optimal” (“all 153”) state for the case of turning probabilities.

Parameters are L5 = 97, M = 156. This means L̂153/L̂14 = 0.5, ρ
(5)
global ≈ 0.12. The travel time in

the 4link user and system optimum is Tmax(uo
(4)) = Tmax(so

(4)) ≈ 693.
Part (a) shows the Tmax (left) and ∆T (right) landscapes. The pink ◭ and ◮ indicate the system
and user optimum, respectively.
Part (b) shows density profiles and average travel times Ti ± standard deviation σ of the three paths
for min(Tmax) and min(∆T ) at so(5) = uo(5) =̂ (γ, δ) = (1.0, 0.0) with ∆T (so(5)) = ∆T (uo(5)) = 0,
Tmax(so

(5)) = Tmax(uo
(5)) ≈ 615.
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Figure A.11. An example of an “E5 optimal” state for the case of turning probabilities. Parameters

are L5 = 339, M = 154. This means L̂153/L̂14 ≈ 0.9, ρ
(5)
global ≈ 0.1. The travel time in the 4link

user and system optimum is Tmax(uo
(4)) = Tmax(so

(4)) ≈ 692.
Part (a) shows the Tmax (left) and ∆T (right) landscapes. The pink ◭ and ◮ indicate the system
and user optimum, respectively.
Part (b) shows density profiles and average travel times Ti ± standard deviation σ of the three paths
for min(Tmax) and min(∆T ) at so(5) = uo(5) =̂ (γ, δ) = (0.8, 0.3) with ∆T (so(5)) = ∆T (uo(5)) = 12,
Tmax(so

(5)) = Tmax(uo
(5)) ≈ 667.
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Figure A.12. An example of a “Braess 1” state for the case of turning probabilities. Parameters

are L5 = 37, M = 248. This means L̂153/L̂14 ≈ 0.4, ρ
(5)
global ≈ 0.2. The travel time in the 4link user

and system optimum is Tmax(uo
(4)) = Tmax(so

(4)) ≈ 763.
Part (a) shows the Tmax (left) and ∆T (right) landscapes. The pink ◭ and ◮ indicate the system
and user optimum, respectively. Strategies with a gridlocked stationary state on route 153 are
marked with green ⋆’s.
Part (b) shows density profiles and average travel times Ti ± standard deviation σ of the three
paths for (left): min(Tmax) at so(5) =̂ (γ, δ) = (0.5, 1.0) with ∆T (so(5)) ≈ 924, Tmax(so

(5)) ≈ 764
and (right): min(∆T ) at uo(5) =̂ (γ, δ) = (0.87, 0.1) with ∆T (uo(5)) ≈ 78, Tmax(uo

(5)) ≈ 895.
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Figure A.13. An example of a “domain wall” state for the case of turning probabilities. Parameters

are L5 = 218, M = 712. This means L̂153/L̂14 ≈ 0.7, ρ
(5)
global ≈ 0.5. The travel time in the 4link

user and system optimum is Tmax(uo
(4)) = Tmax(so

(4)) ≈ 1955.
Part (a) shows the Tmax (left) and ∆T (right) landscapes. The pink ◭ and ◮ indicate the closest
candidates for system and user optimum, respectively. Strategies with gridlocked stationary states
on routes 14, 23 and 153 are marked with blue ×’s, red +’s and green ⋆’s, respectively. The travel
time in the 4link user and system optimum is Tmax(uo

(4)) = Tmax(so
(4)) ≈ 692.

Part (b) shows density profiles and average travel times Ti ± standard deviation σ of the three paths
for min(Tmax) and min(∆T ) at so(5) = uo(5) =̂ (γ, δ) = (0.5, 1.0) with ∆T (so(5)) = ∆T (uo(5)) =
2974, Tmax(so

(5)) = Tmax(uo
(5)) ≈ 2272.
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Figure A.14. An example of an “E5 improves - like” state for the case of turning probabilities.

Parameters are L5 = 157, M = 1090. This means L̂153/L̂14 ≈ 0.6, ρ
(5)
global ≈ 0.8. The travel time in

the 4link user and system optimum is Tmax(uo
(4)) = Tmax(so

(4)) ≈ 6329.
Part (a) shows the Tmax (left) and ∆T (right) landscapes. The pink ◭ and ◮ indicate the system
optimum and the closest candidate for a user optimum, respectively. Strategies with gridlocked
stationary states on routes 14, 23 and 153 are marked with blue ×’s, red +’s and green ⋆’s, respec-
tively.
Part (b) shows density profiles and average travel times Ti ± standard deviation σ of the three
paths for (left): min(Tmax) at so

(5) =̂ (γ, δ) = (0.8, 0.6) with ∆T (so(5)) ≈ 7102, Tmax(so
(5)) ≈ 5910

and (right): min(∆T ) at uo(5) =̂ (γ, δ) = (0.9, 0.8) with ∆T (uo(5)) ≈ 5846, Tmax(uo
(5)) ≈ 6258.
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A.1.3 Open Boundary Conditions and Turning Probabilities

In this section examples of the Tmax, ∆T and the number of particles in the system landscapes,

depending on (γ, δ), and density profiles and explicit travel times of the system optimum and

the (closest candidates for the) user optimum of all phases appearing in the open boundary

Braess network with random-sequential updates and turning probabilities are shown (results

are shown in Section 4.4). Figures A.15 to A.21 show examples of all phases found in the

phase diagrams shown in Figures 4.19 and 4.20. In all figures presented here the shared

parameters are L1 = L3 = 100, L2 = L4 = 500.

In each of the figures Part (a) shows the Tmax and ∆T and total number of particles in

the system landscapes with a (γ, δ) discretization resolution of 0.1. The strategies which

correspond to the system optimum and the user optimum (in unstable phases the closest

candidate for a real user optimum) are also indicated. Depending on the specific parameter

set, the optima were found by different methods (compare Sections 3.2.5 and 3.3.2) and may

actually lie in between the discrete point of the 0.1 grid which is shown. The 0.1 grid is

underlayed to give a coarse impression of how the observable landscapes look like.

One can see that neither the system optimum nor the user optimum do necessarily have to

equal to the strategy with the least number of particles in the system.

Parts (b) of the figures show the density profiles of the three routes in the optimum states

and also provide travel time values and their standard deviations of the routes in those states.

The exact values of (γ, δ) of the optima and the corresponding Tmax and ∆T values are given

in the figure captions as well as the travel times in the corresponding 4link user and system

optimum.

179



A Appendix

0.0 0.5 1.0

γ

7650 22825 38000
∆T

0.0 0.5 1.0

γ

0.0

0.5

1.0

δ

(a)

5350 14175 23000

Tmax

0.0 0.5 1.0

γ

0.0

0.5

1.0

δ

450 975 1500
no. of particles

0.0

0.5

1.0

T14 ± σ =1554±102

0.0

0.5

1.0

ρ

T23 ± σ =1547±100

0 200 400 600

position

0.0

0.5

1.0

T153 ± σ =5392±244

(b)

j1

j2

j3

j4

E1

E2

E3

E4

E5

Figure A.15. An example of an “all 153 - unstable” state for the open boundary system. Parameters
are L5 = 339, i.e. L̂153/L̂14 = 0.9, and αin = 0.3, βout = 0.1. The travel time in the 4link user and
system optimum is Tmax(uo

(4)) = Tmax(so
(4)) ≈ 11983.

Part (a) shows the Tmax (left) and ∆T (middle) and number of particles in the system (right)
landscapes. The pink ◭, ◮ and H indicate the system optimum, user optimum and strategy with
the least particles in the system respectively.
Part (b) shows density profiles and average travel times Ti ± standard deviation σ of the three paths
for min(Tmax) and min(∆T ) at so(5) = uo(5) =̂ (γ, δ) = (1.0, 0.0) with ∆T (so(5)) = ∆T (uo(5)) =
7690, Tmax(so

(5)) = Tmax(uo
(5)) ≈ 5392.
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Figure A.16. An example of an “E5 optimal - unstable” state for the open boundary system.
Parameters are L5 = 218, i.e. L̂153/L̂14 = 0.7, and αin = 0.6, βout = 0.3. The travel time in the
4link user and system optimum is Tmax(uo

(4)) = Tmax(so
(4)) ≈ 3989.

Part (a) shows the Tmax (left) and ∆T (middle) and number of particles in the system (right)
landscapes. The pink ◭, ◮ and H indicate the system optimum, user optimum and strategy with
the least particles in the system respectively.
Part (b) shows density profiles and average travel times Ti ± standard deviation σ of the three paths
for min(Tmax) and min(∆T ) at so(5) = uo(5) =̂ (γ, δ) = (1.0, 0.5) with ∆T (so(5)) = ∆T (uo(5)) = 638,
Tmax(so

(5)) = Tmax(uo
(5)) ≈ 1139.
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Figure A.17. An example of an “E5 optimal - all 153” state for the open boundary system. Param-
eters are L5 = 157, i.e. L̂153/L̂14 = 0.6, and αin = 0.3, βout = 0.6. The travel time in the 4link user
and system optimum is Tmax(uo

(4)) = Tmax(so
(4)) ≈ 694.

Part (a) shows the Tmax (left) and ∆T (middle) and number of particles in the system (right)
landscapes. The pink ◭, ◮ and H indicate the system optimum, user optimum and strategy with
the least particles in the system respectively.
Part (b) shows density profiles and average travel times Ti ± standard deviation σ of the three paths
for min(Tmax) and min(∆T ) at so(5) = uo(5) =̂ (γ, δ) = (1.0, 0.0) with ∆T (so(5)) = ∆T (uo(5)) = 0,
Tmax(so

(5)) = Tmax(uo
(5)) ≈ 514.
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Figure A.18. An example of an “E5 optimal - all 153” state with domain walls on route 153 for the
open boundary system. Parameters are L5 = 97, i.e. L̂153/L̂14 = 0.5, and αin = 0.3, βout = 0.3.
The travel time in the 4link user and system optimum is Tmax(uo

(4)) = Tmax(so
(4)) ≈ 718.

Part (a) shows the Tmax (left) and ∆T (middle) and number of particles in the system (right)
landscapes. The pink ◭, ◮ and H indicate the system optimum, user optimum and strategy with
the least particles in the system respectively.
Part (b) shows density profiles and average travel times Ti ± standard deviation σ of the three paths
for min(Tmax) and min(∆T ) at so(5) = uo(5) =̂ (γ, δ) = (1.0, 0.0) with ∆T (so(5)) = ∆T (uo(5)) = 0,
Tmax(so

(5)) = Tmax(uo
(5)) ≈ 669.
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Figure A.19. An example of an “E5 optimal - almost all 153” state for the open boundary system.
Parameters are L5 = 157, i.e. L̂153/L̂14 = 0.6, and αin = 0.6, βout = 0.6. The travel time in the
4link user and system optimum is Tmax(uo

(4)) = Tmax(so
(4)) ≈ 782.

Part (a) shows the Tmax (left) and ∆T (middle) and number of particles in the system (right)
landscapes. The pink ◭, ◮ and H indicate the system optimum, user optimum and strategy with
the least particles in the system respectively.
Part (b) shows density profiles and average travel times Ti ± standard deviation σ of the three
paths for min(Tmax) and min(∆T ) at so(5) = uo(5) =̂ (γ, δ) = (0.9889, 0.0165) with ∆T (so(5)) =
∆T (uo(5)) = 12, Tmax(so

(5)) = Tmax(uo
(5)) ≈ 707.
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Figure A.20. An example of an “E5 optimal” state for the open boundary system. Parameters are
L5 = 399, i.e. L̂153/L̂14 = 1, and αin = 0.4, βout = 0.5. The travel time in the 4link user and
system optimum is Tmax(uo

(4)) = Tmax(so
(4)) ≈ 725.

Part (a) shows the Tmax (left) and ∆T (middle) and number of particles in the system (right)
landscapes. The pink ◭, ◮ and H indicate the system optimum, user optimum and strategy with
the least particles in the system respectively.
Part (b) shows density profiles and average travel times Ti ± standard deviation σ of the three
paths for min(Tmax) and min(∆T ) at so(5) = uo(5) =̂ (γ, δ) = (0.662, 0.5998) with ∆T (so(5)) =
∆T (uo(5)) = 6, Tmax(so

(5)) = Tmax(uo
(5)) ≈ 701.
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Figure A.21. An example of an “E5 improves” state for the open boundary system. Parameters
are L5 = 399, i.e. L̂153/L̂14 = 1, and αin = 0.9, βout = 0.8. The travel time in the 4link user and
system optimum is Tmax(uo

(4)) = Tmax(so
(4)) ≈ 854.

Part (a) shows the Tmax (left) and ∆T (middle) and number of particles in the system (right)
landscapes. The pink ◭, ◮ and H indicate the system optimum, user optimum and strategy with
the least particles in the system respectively.
Part (b) shows density profiles and average travel times Ti ± standard deviation σ of the three
paths for min(Tmax) at so

(5) =̂ (γ, δ) = (1.0, 0.5) with ∆T (so(5)) = 333 and Tmax(so
(5)) = 789 (left),

and min(∆T ) at uo(5) =̂ (γ, δ) = (0.711, 0.646) with ∆T (uo(5)) = 4, Tmax(uo
(5)) ≈ 795 (right).

186



A.2 Approximations Used for Open Boundary Conditions

A.2 Approximations Used for Open Boundary Conditions

For the analysis of the Braess network of TASEPs with open boundary conditions, random-

sequential updates and turning probabilities, as presented in Section 4.4, some approximation

techniques were used. Those are examined in some more detail in the present section.

A.2.1 Mean Field Theory for the 4link Network

Here, the predictions from the mean field (MF) theory derived in Section 4.4.1 are compared

against Monte Carlo (MC) data. In said section, estimates of the effective entrance and exit

rates of routes 14 and 23 for the symmetrically fed open boundary 4link system were derived.

Figure A.22 shows the mean field predictions (Parts (a) to (c)), simulated Monte Carlo data

(Parts (d) to (f)) and their relative differences (Parts (g) to (i)) of the effective entrance rate

αeff , the effective exit rate βeff and their difference αeff − βeff . The predicted phase diagram

is underlayed in all parts of the Figure. One can see that the mean field predictions are very

accurate, the simulated data confirms the predictions and the relative difference between the

two is smaller or equal to 20% for all αin and βout. The predicted LD and HD phases and

the phase border on which DWs are expected to occur also seem valid as seen from Parts (c)

(and (f)) of the Figure. The effective entrance rate is smaller/larger than the effective exit

rate in the LD/Hd phases and the two rates are equal on the phase border.

Figure A.23 shows the average Monte Carlo travel time TMC
av = (TMC

14 + TMC
23 )/2 of the

open boundary 4link user/system optimum. Mean field predictions for this travel time where

given in Equations (4.33) to 4.35) and visualized in Figure 4.17 (b). Figure A.23 (a) shows

the simulation results for the travel times. Part (b) of the figure shows the relative difference

between the travel times on the routes 14 and 23. They are all below 1% except for some

points on the phase border where there are fluctuating domain walls on both paths leading to

the different travel times. Those differences could be eradicated by simulating and measuring

for a really long time. This part of the figure confirms the assumption that γ = 0.5 is indeed

the user and system optimum of the 4link system.

Part (c) of Figure A.23 shows the difference between the mean field predictions and the

Monte Carlo measurements of the travel times. It turns out that the predictions are very

accurate since the relative differences are below 10% except for the region close to the phase

boundary which is as expected.

To further test the validity of the phase diagram predicted by mean field theory one can

look at density profiles of the two routes in all of the three phases LD, HD and DW. This

is done here for eight exemplary points. Figures A.22 (d) and (f) already showed that the

general prediction of the LD and HD phases is correct. In Figure A.24 eight points on, or

close to, the phase border are marked and the density profiles of the two routes for these

parameter sets are shown in Figure A.25.

One can see, that for the points below the phase border HD phases are observed and for

the points above the phase border LD phases are observed. This is as expected. The points

that lie directly on the phase border are given in Figure A.25 (c) and (d). One can see that
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Figure A.22. The effective entrance and exit rates of routes 14 and 23 for the symmetrically fed
open boundary 4link system: mean field predictions (Parts (a) to (c)), simulated Monte Carlo data
(Parts (d) to (f)) and their difference (Parts (g) to (i)) of the effective entrance rate αeff , the
effective exit rate βeff and their difference αeff −βeff . One can see that the Monte Carlo data agrees
very well with the mean field predictions. The lengths of the simulated system were L1 = L3 = 100
and L2 = L4 = 500.
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Figure A.23. Travel time values of the 4link open boundary system/user optimum (results of the
mean field predictions for this can be found in Figure 4.17 (b)). Part (a) shows the average Monte
Carlo travel time TMC

av = (TMC
14 + TMC

23 )/2. Part (b) shows the difference of the travel times on
both routes 14 and 23. It can be seen that the travel times on both routes are almost equal
which confirms the assumption that this state is the user optimum of the system. Part (c) shows
the relative difference of the mean field predictions to the Monte Carlo data. It shows that the
predictions are correct since the deviations are smaller than 10% almost everywhere but on the
DW line (the phase border). Monte Carlo simulations were performed for L1 = L3 = 100 and
L2 = L4 = 500.
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Figure A.24. The four points are marked in Part (a)/(b) show the parameter sets for which the
density profiles are shown in the left/right parts of Figure A.25. For the entrance rates αin = 0.4
and αin = 0.7 for four different values of βout close to (including one point directly on) the phase
border were picked and the corresponding density profiles are shown in Figure A.25.

the density profiles in both cases still look roughly like HD phases while for both αin the

density profiles for βout slightly above the phase border (Parts (e) and (f)) look like domain

walls are present. This indicates that the position of the phase border derived by mean field

theory is not taken to be a hundred percent exact. This could e.g. be an effect of the finite

edge lengths shown here and it has to be noted that the points showing domain wall - like

density profiles are really close to the phase border.

Summarized one can conclude that the mean field theory derived in Section 4.4.1 describes

the 4link system very well.
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Figure A.25. Density profiles of the routes 14 and 23 for the parameter sets shown in Figure A.24.
Left parts (corresponding to the points in Figure A.24 (a)): Part (a): αin = 0.4, βout = 0.3, Part (c):
αin = 0.4, βout = 0.323, Part (e): αin = 0.4, βout = 0.33, Part (g): αin = 0.4, βout = 0.35.
Right parts (corresponding to the points in Figure A.24 (b)): Part (b): αin = 0.7, βout = 0.44,
Part (d): αin = 0.7, βout = 0.479, Part (f): αin = 0.7, βout = 0.5, Part (h): αin = 0.7, βout = 0.55
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A.2.2 Approximative Border of the “E5 optimal / all 153” Phase

Here the procedure for approximating the “E5 optimal / all 153” phase border based on the

MFT derived in Section 4.4.1 is described in some detail. In Section 3.2.4.1 it was established

that for the all 153 phase to be present two conditions have to be met. Firstly in the 5link

system the travel time on route 153 has to be lower than on the two other routes in the case

that all particles choose route 153. Secondly if in the 5link system all particles choose route

153, the travel time on that route has to be lower than the (equal) travel times on both routes

in the user optimum of the 4link system.

The first condition is met if Equation (3.28) is met:

ρL/2,153 <
1

L2
(L2 − L3 − L5 − 1),

i.e. the bulk density on route 153, which is determined by the entrance and exit rates (as

given in Table 3.1) to be αin (LD), 1 − βout (HD) or 1/2 (MC), has to be below the given

threshold.

The second is met if Equation (3.29),

L̂153

1− ρL/2,153
< T14

(
uo(4)

)
= T23

(
uo(4)

)
,

holds. In the open boundary case this condition takes five different forms, depending on the

entrance and exit rates.

The MFT for the user optimum of the 4link system revealed that the phase border between

LD and HD phases in the 4link user optimum is given by Equation (4.32):

βout = 1 + αin −
√
1 + α2

in.

For smaller βout the two routes of the 4link system are in HD phases, For larger βout They

are in LD phases.

This means that route 153 can be in three different phases, according to the phase diagram

of an ordinary single TASEP, and the two routes of the 4link system in either HD or LD phases

according to Equation (4.32). Superimposing the two phase diagrams results in five distinct

regions shown in Figure A.26. Each of the regions leads to different explicit realizations of

condition (3.29).

In regions I and II, the 4link system’s user optimum is given by a state in which both routes

are in HD phases. Their travel times are according to Equation (4.34) given by THD = 2L̂14

βout
.

The second all153 condition (3.29) becomes

ρL/2,153 <
β

2L̂14

(
2L̂14

β
− L̂153

)
. (A.1)

In region I if all particles choose route 153, that route is in an HD state thus ρL/2,153 =
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Figure A.26. For the “E5 optimal / all 153” phase to be present in the open boundary system
Equation (3.29) has to be valid. Depending on the entrance and exit rates αin and βout this
condition can take a different form. Superimposing the phase diagram of a single TASEP (shown
by black lines) and the phase diagram of the open boundary 4link system, shown by the MFT
phase border (grey line according to Equation (4.32)) reveals the five regions leading to different
realizations of Equation (3.29).

1− βout. Equation (3.29) becomes

L5 < 2L̂14 − 2L1 − 4 (A.2)

which is to be expected since if this Equation becomes an equality, L̂153 = 2L̂14 and the travel

time of the routes in the 4link is just twice the travel time of a single TASEP in an HD state.

For the system analysed in this thesis (L1 = L3 = 100, L2 = L4 = 500) it becomes:

L5 < 1002. (A.3)

In region II if all particles choose route 153 that route is in an MC state, thus ρL/2,153 = 1/2.

Equation (3.29) becomes

L5 <
L̂14

β
− 2L1 − 4. (A.4)

Opposed to the condition of region I it depends on βout. For region II 1/2 < βout < 2 −
√
2
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holds (2 −
√
2 being the value of βout on the phase border if αin = 1.0). For the system

analysed in this thesis (L1 = L3 = 100, L2 = L4 = 500) it becomes:

βout = 1/2 : L5 < 1002 (A.5)

βout = 2 +
√
2 : L5 < 825.385. (A.6)

The maximum length of L5 considered in this thesis is 399 (leading to L̂153 = L̂14 (= L̂23).

This means that in our systems in regions I and II condition (3.29) is always met: if the

4link system is in an HD state, the travel time of route 153 in the 5link system (if all particles

choose that route) is always smaller than that in the 4link system1. Note that this does not

mean that there is always an “E5 optimal / all 153” phase in regions I and II since the first

condition (3.28) is not always fulfilled.

In regions III, IV and V the user optimum of the 4link system is given by both routes being

in LD states and according to the derived MFT their travel times are (Equation (4.33)):

TLD =
L̂14

1− αeff
=

2L̂14√
α2
in + 1− αin + 1

.

In region III route 153 in the 5link is in an HD state if all particles choose that route, thus

ρL/2,153 = 1− βout. Equation (3.29) then becomes

L̂153

βout
< 2

L̂14

1 − αin +
√
αin + 1

(A.7)

which leads to

βout >
1
2

√
α2

in
(2L1+L5+4)2+(2L1+L5+4)2

(L1+L2+3)2

+−αin(2L1+L5+4)+2L1+L5+4
2(L1+L2+3) . (A.8)

In region IV route 153 in the 5link is in an MC state if all particles choose that route, thus

ρL/2,153 = 1/2. Equation (3.29) then becomes

2L̂153 < 2
L̂14

1− αin +
√
αin + 1

(A.9)

which leads to

αin >
2(L1 + L2 + 3)(2L1 + L5 + 4)− (L1 + L2 + 3)2

2(L1 + L2 + 3)(2L1 + L5 + 4)− 2(2L1 + L5 + 4)2
(A.10)

a lengthy equation for αin that is easily evaluated numerically for given set of Li.

1Please note that this is also true for 5link states with all particles choosing route 14 or route 23, as can also
be seen in the example landscapes of the “all 153 - unstable” states (Figure 4.18). Still since in this thesis
L̂153 ≤ L̂14 the travel time on route 153 will always be smaller than on the other routes if only one route
is chosen by all particles.
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In region V route 153 in the 5link is in an LD state if all particles choose that route, thus

ρL/2,153 = αin. Equation (3.29) then becomes

αin <
1

2L̂14

(
2L2 − L5 + 2 + (2L1 + L5 + 4)

(
αin −

√
1 + α2

in

))
(A.11)

which leads to a

αin < −4(L1+L2+3)(2L1+L5+4)+4(L1+L2+3)2+(2L1+L5+4)2

4(L1+L2+3)(−L1+L2−L5−1)

−1
4

√
−8(L1+L2+3)(2L1+L5+4)3+8(L1+L2+3)2(2L1+L5+4)2+(2L1+L5+4)4

(L1+L2+3)2(−L1+L2−L5−1)2
, (A.12)

a lengthy equation for αin that is easily evaluated numerically for a given set of Li.
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Figure A.27. The regions of the phase spaces of L1 = L3 = 100, L2 = L4 = 500 and (a)
L5 = 37, L̂153 = 0.4, (b) L5 = 97, L̂153/L̂14 = 0.5, (c) L5 = 157, L̂153/L̂14 = 0.6, (d) L5 =
218, L̂153/L̂14 = 0.7, (e) L5 = 278, L̂153/L̂14 = 0.8 and (f) L5 = 339, L̂153/L̂14 = 0.9, where the
MFT conditions for the “E5 optimal / all 153” phase hold.
The first condition (Equation (3.28)) holds in the regions marked in blue color and the second
condition (the five forms of Equation (3.29)) holds in the regions marked in red color. Where both
conditions are fulfilled, the overlayed color becomes purple.
For L5 = 399, L̂153/L̂14 = 1.0 no region of the phase space shows “E5 optimal / all 153” behaviour
which is why the landscape of this parameter-set is not shown.

Figure A.27 shows the resulting regions of the phase spaces in which the two conditions

Equation (3.28) and Equation (3.29) are valid for the parameter sets examined in this thesis

(see Section 4.4.2.2). One can see that only for the small route length ratios L̂153/L̂14 = 0.4

(Part (a)) and L̂153/L̂14 = 0.5 ((b)) there are small parts of region III in which the first
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condition holds while the second one does not. In all other parts where the first condition

holds, the second one holds as well. This is not the case vice versa: there are many regions

in which the second conditon holds (especially in regions I and II) and the first one does not.

Only the parts where both conditions hold (resulting in a purple coloration in Figure A.27)

are assumed to lead to the “E5 optimal / all 153” phase and thus they are shown in the

obtained phase diagrams in the main part of the thesis (Section 4.4.2.2).
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A Appendix

A.3 Route Choice Algorithms

In Section 5.1 the decision making algorithms for the implementation of intelligent particles

were presented. Concerning the strategy changes which can occur during one round, if a

particle sits on junction j1 or j2 and the desired target site is occupied, only the algorithm

for the 4link system was presented.

In the present section the algorithms for decision makings on junctions j1 and j2 in the

5link system are shown explicitly in Algorithms A.1 and A.2, respectively.

Algorithm A.1: Decision makings on junction j2, as used in the 5link system.

// (The variable tw is the time the particle has already waited on j2
since its first attempt of jumping to its target site.)

1 if (intended route is route 14) then
2 if (T14,info < T153,info) then
3 if (tw > (T153,info − T14,info) · κj2thres.) then
4 switch to route 153
5 end

6 end
7 else
8 switch to route 153 immediately
9 end

10 end
11 else if (intended route is route 153) then
12 if (T153,info < T14,info) then
13 if (tw > (T14,info − T14,info) · κj2thres.) then
14 switch to route 14
15 end

16 end
17 else
18 switch to route 14 immediately
19 end

20 end
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Algorithm A.2: Decision makings on junction j1, as used in the 5link system.

// (The variable tw is the time the particle has already waited on j1
since its first attempt of jumping to its target site.)

1 if (intended route is route 14 or route 153) then
2 if (intended route is route 14 then
3 if (T14,info < T23,info) then
4 if (tw > (T23,info − T14,info) · κj1thres.) then
5 switch to route 23
6 end

7 end
8 else
9 switch to route 23 immediately

10 end

11 if (intended route is route 153 then
12 if (T153,info < T23,info) then
13 if (tw > (T23,info − T153,info) · κj1thres.) then
14 switch to route 23
15 end

16 end
17 else
18 switch to route 23 immediately
19 end

20 end

21 end
22 else if (intended route is route 23) then
23 if (T23,info < T14,info) and (T23,info < T153,info) then
24 if (T14,info < T153,info) then
25 if (tw > (T14,info − T23,info) · κj1thres.) then
26 switch to route 14
27 end

28 else if (T153,info < T14,info) then
29 if (tw > (T153,info − T23,info) · κj1thres.) then
30 switch to route 153
31 end

32 end
33 else
34 if (T14,info < T153,info) then
35 switch to route 14
36 else if (T153,info < T14,info) then
37 switch to route 153
38 else
39 switch to route 14 or route 153 with equal probabilities.
40 end

41 end
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