Nitrotetrazolium Blue Exclusion Assay (NBTx)

Demonstration of a novel assay to quantify cytochrome c oxidase deficiency

Inaugural-Dissertation

zur

Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät
der Universität zu Köln

vorgelegt von

Marie-Lune Simard

aus
Montreal, Kanada

-2018-
“Science is built up with facts, as a house is with stones. But a collection of facts is no more science than a heap of stones is a house.”

Jules Henri Poincaré
TABLE OF CONTENTS

Abstract .. ix
Zusammenfassung ... x
Acknowledgements .. xii
List of publications .. xiv
List of abbreviations .. xv

INTRODUCTION ... 1

1.1 The origin of the mitochondrion .. 1
1.2 Mitochondrial structure .. 2
1.3 Mitochondrial genome ... 3
1.4 Mitochondrial function ... 8
1.4.1 Oxidative phosphorylation .. 8
1.4.2 Metabolic pathways within the mitochondria ... 10
1.4.3 Control of mitochondrial activity .. 11
1.4.4 Cell signalling pathways and modulation of cellular response 13
1.4.5 Cell death through apoptosis ... 14
1.5 Mitochondrial diseases .. 15
1.6 Enzyme histochemistry .. 20

AIMS OF THIS STUDY ... 23
MATERIAls AND METHODS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Ethics statement</td>
<td>24</td>
</tr>
<tr>
<td>3.2</td>
<td>Preparation of incubation media</td>
<td>24</td>
</tr>
<tr>
<td>3.3</td>
<td>NBTx assay</td>
<td>24</td>
</tr>
<tr>
<td>3.4</td>
<td>Inhibiting the respiratory chain</td>
<td>25</td>
</tr>
<tr>
<td>3.5</td>
<td>Mouse tissues</td>
<td>26</td>
</tr>
<tr>
<td>3.6</td>
<td>Human tissues</td>
<td>26</td>
</tr>
<tr>
<td>3.7</td>
<td>Fruit flies, Drosophila melanogaster</td>
<td>26</td>
</tr>
<tr>
<td>3.8</td>
<td>Hypoxic conditions</td>
<td>27</td>
</tr>
<tr>
<td>3.9</td>
<td>COX/SDH assay</td>
<td>27</td>
</tr>
<tr>
<td>3.10</td>
<td>Succinate dehydrogenase activity</td>
<td>27</td>
</tr>
<tr>
<td>3.11</td>
<td>DAB histochemistry</td>
<td>28</td>
</tr>
<tr>
<td>3.12</td>
<td>Laser microdissection and quantitative pyrosequencing</td>
<td>28</td>
</tr>
<tr>
<td>3.13</td>
<td>Statistical analyses</td>
<td>29</td>
</tr>
<tr>
<td>3.14</td>
<td>Image acquisition, processing and analysis</td>
<td>29</td>
</tr>
<tr>
<td>3.15</td>
<td>Quantitative analysis of skeletal muscle</td>
<td>29</td>
</tr>
</tbody>
</table>

RESULTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Competing biochemical reactions</td>
<td>30</td>
</tr>
<tr>
<td>4.2</td>
<td>COX-deficient mitochondria in mouse models</td>
<td>37</td>
</tr>
<tr>
<td>4.3</td>
<td>Quantification of COX deficiencies</td>
<td>40</td>
</tr>
<tr>
<td>4.4</td>
<td>MtDNA heteroplasmy in heart tissues</td>
<td>45</td>
</tr>
<tr>
<td>4.5</td>
<td>NBTx assay in the brain</td>
<td>50</td>
</tr>
<tr>
<td>4.6</td>
<td>The application of the NBTx assay to study Drosophila melanogaster</td>
<td>60</td>
</tr>
<tr>
<td>4.7</td>
<td>NBTx Assay in Human Diagnostics</td>
<td>61</td>
</tr>
</tbody>
</table>

DISCUSSION

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>64</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>References</td>
<td>68</td>
</tr>
<tr>
<td>Appendix</td>
<td>79</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Fiji Macro for NBTx Quantitative Analysis</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Raw Data</td>
</tr>
<tr>
<td>Appendix C</td>
<td>NBTx Protocol</td>
</tr>
<tr>
<td>Erklärung</td>
<td>94</td>
</tr>
<tr>
<td>Curriculum Vitae</td>
<td>Error! Bookmark not defined.</td>
</tr>
</tbody>
</table>
Abstract

Respiratory chain impairment, interfering with energy production in the cell, is a major underlying cause of mitochondrial diseases. Yet, the surprising variety of clinical symptoms and the wide gap between ages of onset, as well as the involvement of mitochondrial impairment in ageing and age-related diseases continues to challenge our understanding of the pathogenic processes. The explanation for this complexity likely lays in the multiple roles of mitochondria in cellular function, a unique set of requirements for each cell types, and a convergence of a complex dual genetic predispositions and environmental factors. As the defined gene defect poorly predicts clinical manifestations in humans it remains essential to carefully assess the etiopathology of mitochondrial diseases. Given the heterogeneity of mitochondrial activity in cells and their functional relevance, clarifying the contribution of mitochondrial metabolic dysfunction at the cellular level is fundamental. For this purpose, we developed a novel enzyme histochemical method that enables precise quantification of COX deficiency in fresh-frozen tissues. I demonstrate that the loss of oxidative activity is detected at very low levels – an achievement unequaled by previous techniques and opens up new opportunities for the study of early disease processes or comparative investigations. Moreover, human biopsy samples of several genotypic origins were used and the successful detection of COX-deficient cells suggests a broad application for this new method. Lastly, the assay can be adapted to a wide range of tissues in the mouse and extends to other animal models, illustrated here with the fruit fly, *Drosophila melanogaster*. Overall, the new assay enables the quantification and precise mapping of single cells presenting impaired COX activity with the full extent of COX deficiency in tissues being made visible. This work makes the demonstration that the new enzyme histochemistry assay is a reliable tool for exposing COX-deficient cells and thereby expends new possibilities for future investigation.
Zusammenfassung

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor Dr. James B. Stewart for his support and encouragements. It was mere chance and happy coincidences that brought us to work together in Cologne but it was through his trust and his unusual laissez-faire philosophy that I was able to seize this exciting project and make it my own. Thank you, Jim, for the long and passionate talks, for your knowledge, which you generously shared with me, and for pushing me to take my time and stay critical. With all the nuances and flaws that we are made of, I could not have imagined a better suited, more supportive supervisor for my PhD study.

A very special gratitude goes to Dr. Arnaud Mourier who offered his support from the first observation I made and all the way to the end of this project. His general enthusiasm was contagious and very energizing. I am thankful for his knowledge of the mitochondrial biochemistry which has been indispensable, and his supervision throughout.

I was privileged to be invited to try my new method on human biopsy samples and for this I would like to acknowledge the generosity of Dr. Laura C. Greaves and Prof. Robert W. Taylor at the Wellcome Center for Mitochondrial Research, in Newcastle University. I would like to thank them for their continuing support and valuable contribution to the peered reviewed publication. I am also very grateful for the technical help I received while in Newcastle and later on, when extra images of human tissues were needed to complete the project. I thank in particular Gavin Falkous and Anna Smith for technical assistance with obtaining the histochemical images of human tissue sections.

I would also like to thank the members of my thesis committee: Prof. Rudolf Wiesner and Prof. Jan Riemer who offered guidance and support during my studies. I am grateful for the time they gave me and for the valuable advice I received. The lab members of Prof. Wiesner should also be mentioned has they have greatly contributed
to the exploration and adaptation of the NBTx assay to brain and skin tissue. Special thanks to Kai Faehrmann, Konrad Ricke and Oliver Baris.

Many thanks as well to the group of Nils-Göran Larsson at the Max Planck Institute with whom I was lucky to share all of the common lab space. The NGL lab contributed in many ways to enrich my environment throughout my PhD. I am very grateful to Timo Kauppila and Ana Bratic who helped me with the fly work. Also, a shout-out to my office team: Min, Sara, Johanna and Timo with whom I could always have a good discussion.

This work was made possible by the generous accessibility to leading edge equipment and valuable technical support of the FACS & Imaging Core Facility at the Max Planck Institute for Biology of Ageing as well as the CECAD Imaging Facility (University of Cologne, Cluster of Excellence in Ageing Research). In addition, I would like to acknowledge the contribution of Peter Zentis from the CECAD Imaging Facility for the Fiji macro which enabled all of the quantitative analysis.

A very special thank should also go to Sara and Marita who have been there during the ups and downs and did not hesitate to offer me a hand when I needed. I will always smile at the thought of our burger and caipirinha’s night; thank you for opening up and being yourselves!

And finally a special mention to my children, Emma and Miriam, who will certainly remember those days when I sat in the living room and worked my way through this PhD thesis. Thank you for quietly falling asleep on the couch and letting me work a little longer! You give me endless joy and because of you I found the courage to be that person that I want to be.
List of Publications

PART OF THIS WORK WAS ORIGINALLY PUBLISHED ONLINE IN WILEY ONLINE LIBRARY; THE JOURNAL OF PATHOLOGY, 2018 WITH AN OPEN ACCESS AGREEMENT:

OTHER PUBLICATIONS RELEVANT TO THIS WORK:

List of Abbreviations

AAV Adeno-associated virus
ADP Adenosine diphosphate
ALA Alanine
AMP Adenosine monophosphate
AMPK AMP kinase
ATP Adenosine triphosphate
ATP6, ATP8 ATP synthase F0 subunit 6 and 8
Ca2+ Calcium ion
CO1, CO2, CO3 Cytochrome c oxidase subunit I, II, III
COX Cytochrome c oxidase
CYTB Cytochrome b
DAB 3-3’ diaminobenzidine
DNA Deoxyribonucleic acid
DOA Dominant optic atrophy
Drp1 Dynamin-related protein 1
ETC Electron transport chain
FAD Flavin adenine dinucleotide
FADH Reduced FAD
GTP Guanosine triphosphate
H+ Hydron
HCl Hydrogen chloride
HS Heavy strand
HSP HS promoter
IM Inner membrane
IMS Intermembrane space
LECA Last eukaryotic common ancestor
LH Light strand
LHON Leber hereditary optic neuropathy
Lrprrc Leucine-rich pentatricopeptide repeat containing protein
LS LSP LS promoter
M Matrix
MCU Mitochondrial calcium uniporter
Mfn 1, 2 Mitofusin 1 and 2
mNCX Mitochondrial Na+/Ca2+ exchanger
mtDNA Mitochondrial DNA
mtZFN Mitochondrial zinc finger nuclease
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na+</td>
<td>Sodium ion</td>
</tr>
<tr>
<td>NAD</td>
<td>Nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NADH</td>
<td>Reduced NAD</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>NBT</td>
<td>Nitrotetrazolium blue chloride</td>
</tr>
<tr>
<td>NBTx</td>
<td>Nitrotetrazolium blue exclusion assay</td>
</tr>
<tr>
<td>NCR</td>
<td>Non-coding region</td>
</tr>
<tr>
<td>ND1-4, 4L, 5, 6</td>
<td>NADH dehydrogenase subunit 1-4, 4L, 5, 6</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>OM</td>
<td>Outer membrane</td>
</tr>
<tr>
<td>OPA-1</td>
<td>Optic atrophy 1</td>
</tr>
<tr>
<td>OriH</td>
<td>Origin of replication, heavy strand</td>
</tr>
<tr>
<td>OriL</td>
<td>Origin of replication, light strand</td>
</tr>
<tr>
<td>OXPHOS</td>
<td>Oxidative phosphorylation</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate-buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>Pi</td>
<td>Inorganic phosphate</td>
</tr>
<tr>
<td>PMS</td>
<td>Phenazine methosulfate</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>rRNA</td>
<td>Ribosomal RNA</td>
</tr>
<tr>
<td>SDH</td>
<td>Succinate dehydrogenase</td>
</tr>
<tr>
<td>TCA</td>
<td>Tricarboxylic acid</td>
</tr>
<tr>
<td>Tfam</td>
<td>Mitochondrial transcription factor A</td>
</tr>
<tr>
<td>tRNA</td>
<td>Transfer RNA</td>
</tr>
<tr>
<td>TTFA</td>
<td>Thenoyltrifluoroacetone</td>
</tr>
</tbody>
</table>
Nitrotetrazolium Blue Exclusion Assay (NBTx)
INTRODUCTION

1.1 The origin of the mitochondrion

The endosymbiosis event of an oxygen consuming bacteria inside a primitive eukaryote cell was a defining event in the history of life as we know it today (Sagan 1967; Koonin 2010; O’Malley 2015). The small organelle known as the mitochondrion (plural: mitochondria) was once, billions of years ago, a free-living bacteria. The endosymbiosis idea took roots in the early observations of this organelle through the lens of a microscope as its resemblance to bacteria – rod-shaped structures with a double membrane – captured attention (Ernster & Schatz 1981). But it was through the discovery of small circular DNA inside the organelle that ultimately led the way to ascertain its bacterial ancestral origin (Nass & Nass 1963; Gray 2012).

Through the development of DNA isolation methods and more advanced sequencing techniques, mitochondrial DNA (mtDNA) fragments from eukaryotes were aligned to sequences across all three domains of life (bacteria, archaea and eukaryota); mtDNA matches most closely the phylogenetic group of the α-proteobacteria genome, whereas the nuclear genome traces back to the archaea (Martin 2005; Gray 2012; Gray 1999; Cedergren et al. 1988). Although the exact process by which eukaryotic cells have evolved and acquired the features observed today is still a matter of debate (Gray et al. 2001; Gray 2017; Martin et al. 2015), it is fairly accepted that the endosymbiosis of proteobacteria has enabled the last eukaryotic common ancestor (LECA) to develop both in size and in complexity; an evolutionary breakthrough attributable to the increase in energy resources conveyed by the mitochondria (Lane & Martin 2010). In mammals, it is estimated that more than 90% of cellular adenosine triphosphate (ATP) is produced by aerobic respiration in the mitochondria, a process known as the oxidative phosphorylation (OXPHOS) pathway.
1.2 Mitochondrial structure

Mitochondria are found in multiple copies within the cytoplasm of eukaryotic cells, enclosed by an outer and inner membrane. The outer membrane is porous to ions diffusion and small uncharged molecules easily enter through porin channels. On the other hand, the inner membrane is impermeable and many times folded, forming mitochondrial cristae, and isolating the matrix; the inner most compartment of the mitochondria (Figure 1.1). The distinct areas provide the structural support for the coordination and regulation of several enzymatic reactions that define mitochondrial function (Green & Beinert 1955). Protein translocases on both membranes ensure the distribution of proteins assembled in the cytosol to be sorted within the right compartments of the mitochondria.

Contrary to the porous nature of the outer membrane, the inner membrane selectively transports ions and protons across, thereby maintaining an electrochemical membrane potential of ~ 180 mV. This membrane potential is the result of coordinated efforts from specialized ion channels as well as from the movement of electrons and protons through the electron transport chain (ETC): a group of 4 complexes composed of reducing and oxidizing enzymes and electron carrying proteins such as heme- and flavo- proteins (reviewed in O’Rourke 2007). This highly controlled flux of ions is fundamental for mitochondrial response to energy demands and for ATP generation through the use of the proton-motive force by the ATP synthase. In the mitochondrial inner most compartment (the matrix), important enzymatic reactions take place, such as the tricarboxylic acid (TCA) cycle, fatty acid β-oxidation, steroids synthesis and the urea cycle. Furthermore, the matrix is home to the mitochondrial genome - packed in small nucleoli - and is the site of mtDNA transcription, replication and translation.
1.3 Mitochondrial genome

The mitochondrial genome universally encodes for proteins necessary for mitochondrial function. Proteins encoded within the animal mtDNA consist of subunits of the electron transport chain (Complex I, II, III and IV) as well as Complex V (ATP synthase). The translational components are also partly found in the mtDNA, namely ribosomal RNAs (rRNAs, 12S and 16S subunits), sometimes also the 5S rRNA, as well as complete or partial set of transfer RNAs (tRNAs) (Gustafsson et al. 2016; Gray 2012). Despite similarities across species, sequence analysis of full mitochondrial genome from diverse organisms has revealed that there exist a notable variability in size, gene content and arrangement across eukaryotes (reviewed in Gray et al. 1999). Mitochondrial genome size can be as small as 6 kilobase pairs (kbp) in the human malaria parasite (Plasmodium falciparum) or up to more than 200 kbp in a plant (Arabidopsis thaliana). In humans, as well as other mammals such as the common laboratory mouse Mus musculus, the circular double stranded mtDNA is ~ 16-17 kbp and encodes 37 genes.
which consist of 13 proteins (polypeptides), 2 rRNAs (small and large subunit) and 22 tRNAs (Figure 1.2). Under the control of the nucleus are more than 1000 additional proteins which make up the mitochondrial proteome (Calvo et al. 2016) - among them are proteins of the respiratory chains, regulatory proteins involved in mtDNA transcription and maintenance and part of the translation machinery such as ribosomal proteins (reviewed in Gustafsson et al. 2016). It is unclear why primarily genes encoding for the OXPHOS system have been retained in the organellar genome along with rRNAs and tRNAs. It is speculated that a local control of gene expression could be linked to changes in membrane potential and/or redox state and act as regulatory mechanism for metabolic needs (Allen 2015). The reasons for mitochondrial genome differences across species and the evolutionary driving force which led to gene loss or gene transfer to the nucleus remain unclear.
Figure 1.2 | Illustration of the dual genome regulation of mitochondrial protein synthesis and the mouse mtDNA organization. Most mitochondrial proteins are encoded in the nucleus and are synthesized in the cytoplasm, subsequently imported inside the mitochondria (mitochondrial outer membrane (OM), inner membrane (IM) and intermembrane space (IMS)). A Schematic representation of the double-stranded mtDNA molecule showing the heavy strand (HS) and light strand (LS), the origin of replication (OriH, OriL), two promoters (HSP, HSL) and the non-coding region (NCR). Genes are represented by colored rectangles including 22 tRNA genes (black rectangle, each tRNA is identified with a corresponding capital letter), 2 rRNAs (12S, 16S) and 13 mRNAs (CYTB, cytochrome b; CO1-3, cytochrome c oxidase subunit I-III; ND1-4, 4L, 5-6, NADH dehydrogenase subunit 1-4, 4L, 5-6; ATP6 and 8, ATP synthase F0 subunit 6 and 8). Illustration used with permission from Isokallio, M., 2017. The source and fate of mitochondrial DNA mutations using high-sensitivity next-generation sequencing technologies. (PhD Dissertation), Retrieved from Universitäts- und Stadtbibliothek Köln.

Genes encoding for proteins necessary for mitochondrial function are therefore found on either the mitochondrial or the nuclear genome and spread across several chromosomes, including the X chromosome. A particularity of the mitochondrial genome is that, unlike the nuclear DNA who is confined in the nucleus with two copies of each gene compacted into chromosomes, multiple copies of mtDNA reside within a mitochondrion (2-10 mtDNA molecules, depending on the type of cell or tissue) and several hundreds of mitochondria are found within each mammalian cell (Bogenhagen
& Clayton 1974). This impressive amount of mtDNA within a given cell enables mutations and sequence variations to be tolerated given that a certain threshold for energy production is not reached. Phenotypic expression of mitochondrial disease caused by mtDNA defect depends on the proportion of mutated mtDNA to the amount of wild-type mtDNA within a cell and segregation of mutant mtDNA across tissues partially explains the variation in clinical features typically observed in mitochondrial diseases (Turnbull & Rustin 2016). The term homoplasmy refers to cells or tissues where nearly all mtDNA molecules are identical, whereas heteroplasmy describes a situation where more than one mtDNA variant, which usually contains a deletion or a point mutation, is found within one organism (Larsson & Clayton 1995). Homoplasmic mtDNA deletions or point mutations that drastically impair the electron transport chain or the ATP synthase are embryonic lethal but at a low heteroplasmy level the mutated mtDNA molecules remain in the pedigree of families with asymptomatic individuals until a critical threshold is reached. Because of the biological mechanisms defining mtDNA inheritance, heteroplasmy levels can change drastically between generations. In addition, every offspring of a mother carrying low levels of a heteroplasmic mutation will inherit the mutant mtDNA with an unpredictable variation in heteroplasmy levels between siblings (Taylor & Turnbull 2005).

Inheritance of mitochondrial genome is normally strictly maternal; mitochondria from sperm are greatly outnumbered by the oocyte mitochondrial content and quickly eliminated after fecundation (Sato & Sato 2013). The term mitochondrial genetic bottleneck was given to the process by which segregation of mutated mtDNA randomly occurs during oogenesis giving rise to offspring with different load of mutant mtDNA (Laipis et al. 1988; Brown et al. 2001; Upholt & Dawid 1977; Olivo et al. 1983). Germline cells develop into mature oocytes that contain an impressive amount of mitochondria per cell – on average approximately 100,000 mitochondria are found in human oocytes (Chen et al. 1995) – but it was shown that primordial germ cells first divide into primary oocytes without mitochondrial biogenesis, thereby reducing the total amount of
mitochondria per cell and randomly distributing mutant and wild-type mtDNA molecules between immature oocytes (Wai et al. 2008, Figure 1.3).

The complexity of mitochondrial genetic and the dual genetic control of mitochondrial functions are important fields of research which aim to better predict clinical outcome, to estimate the risk of maternal transmission of pathologic mtDNA mutation, and developing efficient treatment strategies.

Figure 1.3 | Oocyte development and the bottleneck effect. Primordial germ cells divide in smaller primary oocytes where only a fraction of the mitochondria are randomly distributed, creating what is known as the bottleneck effect. This causes an unpredictable segregation of mutant mtDNA per oocyte and explains the variation in mutational load between generations and among offspring of a mother carrying low levels of pathogenic mtDNA mutations. Illustration adapted by permission from RightsLink Permissions Springer Customer Service Center GmbH: Springer Nature, Nature Reviews Genetics, (Mitochondrial DNA mutations in human disease, Taylor and Turnbull), COPYRIGHT, 2005.
1.4 Mitochondrial function

Mitochondria are an integral part of eukaryote cells and as such are essential participants in several of the cell basic functions. Predominantly, mitochondria are specialized energy producing organelles (in the form of ATP molecules) but their role expands beyond that of ATP production to a more intricate coordination of basic cellular function. Mitochondria are involved in cell cycle events, cell signalling pathways, modulation of cellular response, regulation of metabolism and cell death through apoptosis (reviewed in Kasahara & Scorrano 2014; McBride et al. 2006).

1.4.1 Oxidative phosphorylation

Energy production in the form of ATP molecules is tightly regulated within the inner membrane of the mitochondria. The OXPHOS pathway is composed of enzymes within the inner membrane which effectively move protons (hydrogen atoms, H+) across and transfer electrons in a series of redox reaction ending with the reduction of oxygen to water molecules. The accumulation of protons in the intermembrane space creates a pH gradient and an electrical potential which drives the ATP synthase activity (Complex V). The mitochondrial respiratory chain produces the majority of ATP molecule; only a small fraction comes from anaerobic glycolysis in the cell cytoplasm. The electron transport chain takes place in four distinct complexes: Complex I, nicotinamide adenine dinucleotide (NADH) dehydrogenase; Complex II, succinate dehydrogenase, SDH; Complex III, cytochrome bc1 complex and Complex IV, cytochrome c oxidase, COX (Figure 1.4). Being at the center of mitochondrial metabolic activity, the discovery of those enzymes in the 1950s and subsequent investigation regarding their biological function is relevant to this work. Understanding the complex redox activity associated with enzymes within the electron transport chain has enabled histochemistry assays to be developed allowing researchers to specifically assess focal mitochondrial enzyme dysfunction in diseased tissue. Since respiratory chain complexes are assembled in the mitochondria from proteins encoded in both the nuclear genes and the mtDNA itself,
with the exception of Complex II which genes are found exclusively in the nuclear DNA, dysfunctional enzymatic activity in the mitochondria can be detected regardless if the problem is of nuclear or mitochondrial DNA in origin.

Figure 1.4 | Electron transport chain. A simplified view of the electron transport chain within the inner membrane bilayer, showing the 4 enzyme complexes with the flow of electrons and protons. Complex I, II, III and IV are marked with roman numbers respectively. CoQ, coenzyme Q; Cyt,c, cytochrome c; e, electron; H+, proton; IMS, intermembrane space; IM, inner membrane; M, matrix.

The major source of electron entry into the respiratory chain is through removal of hydrogen from NADH by Complex I, resulting in proton translocation across the inner membrane and electron transfer to the membrane-bound ubiquinone molecule. Another source of electrons is through the enzymatic activity of Complex II: succinate which is generated within the citric cycle is stripped of two hydrogen atoms to form fumarate with the resulting reduction of flavin adenine dinucleotide (FAD) into FADH2 and subsequently the reduction of ubiquinone. Reduced ubiquinone move electrons to Complex III where cytochrome c serves as the next electron acceptor in the chain. Complex IV terminates the electron transfer with the oxidation of cytochrome c, proton translocation and reduction of oxygen to water molecules. Finally, the electrochemical gradient generated is used by the ATP synthase (Complex V) to generate ATP from adenosine diphosphate (ADP) and inorganic phosphate (Pi). Protons pass through a channel formed by 2 main subunits: F0, a hydrophobic octameric protein complex and F1, a hydrophilic subunit rotating upon the passage of protons (the proton-motive force).
thereby catalyzing the production of ATP (Reviewed in Junge & Nelson 2015; Yoshida et al. 2001, Figure 1.5).

Figure 1.5 | Illustration of the mammalian ATP synthase. The ATP synthase is composed of several subunits together forming a hydrophobic (F₀) part, embedded in the mitochondrial inner membrane, and a hydrophilic (F₁) multisubunit complex. On the passage of protons through the barrel-shaped F₀ subunit (dashed arrows), a mechanical rotation of the F₀ subunit (shown with a black arrow) provides the energy for ATP synthesis within the F₁ subunit. Image adapted from Antoniel et al 2014, International Journal of Molecular Sciences (Open Access).

1.4.2 *Metabolic pathways within the mitochondrion*

The OXPHOS system described above is central to mitochondrial function but is not the only metabolic activity attributed to this organelle. Indeed, mitochondria are also the site of other key metabolic events such as production of reducing equivalents by the TCA cycle, steroid synthesis – in mitochondria of specific cells of the adrenal glands, the gonads and the kidney (Miller 2013) – gluconeogenesis and ketone bodies in the liver, as well as the urea cycle and amino acid synthesis. In addition, fatty acid β-oxidation which ultimately feeds into the OXPHOS system and contributes to a high yield of ATP production takes place within the mitochondrial matrix. The importance of fatty acid-oxidizing metabolism is exemplified by human diseases associated with defect in either
transport of fatty acid into the mitochondria or defects in β-oxidation (Vishwanath 2016). Fatty acids are taken up into the mitochondria and metabolized through repetitive 4 step enzymatic reactions (dehydrogenation, hydration, a second dehydrogenation step and finally thiolytic cleavage), the process ends when the chain of carbon atoms has been fully cleaved into several molecules of acetyl-CoA. In the mitochondria of the liver, acetyl-CoA does not enter the TCA cycle but is used for the synthesis of ketone bodies; another important source of alternative energy for many organs, particularly for the brain (Rinaldo et al. 2002).

1.4.3 Control of mitochondrial activity

Overall, metabolic events taking place in the mitochondria are unequivocally interlaced with that of the cell and have an incredible adaptability and responsiveness to cellular demands. Given its structure, this feature seems coherent; mitochondria are built with an isolating double membrane equipped with several ion channels (as well as numerous exchangers and pumps), it contains specialized enzymes and a small genome, including its own transcription machinery. The details of the molecular pathways and biochemical events by which cellular metabolic demands are translated into a mitochondrial response are still largely unknown.

Nevertheless, advancing research on the topic shows that mitochondrial activity is controlled through the convergence of distinct regulatory mechanisms that include: substrate limitation for ATP production (ADP and phosphate concentration), mitochondrial calcium concentration, tissue specific or developmental expression of isozymes, allosteric control (expression of small proteins affecting OXPHOS enzyme kinetics) and cell signalling induced phosphorylation and dephosphorylation of OXPHOS components. In addition, mitochondria form a network that dynamically reshapes itself upon fusion or fission events. Described as an integrated reticulum this reshaping of the mitochondrial architecture is thought to serve as a way for mitochondrial quality control as well as being part of the complex orchestration of
mitochondrial metabolism modulation (Shutt & McBride 2013; Scalettar et al. 1991). The equilibrium between the fused or fragmented state has been shown to correspond to cellular energetic state. For example, mitochondria will fragment when apoptosis signals are triggered (Liu et al. 1996) or will fuse and elongate during starvation (Gomes et al. 2011). Furthermore, properly coordinated mitochondrial dynamic has been associated with successful progress of cellular events such as cell division (Kianian & Kianian 2014), immune responses (Rambold & Pearce 2017) and tissue differentiation and development (Chen et al. 2003). The machinery behind fusion and fission include guanosine-5′-triphosphate (GTP)-dependent proteins, the mitofusin 1 and 2 (Mfn1 and Mfn2 located on the outer membrane) and optic atrophy 1 (OPA-1, located in the inner membrane) and the GTPase dynamin-related protein 1 (Drp1) which forms ring-like structure around the mitochondrial outer membrane and cause fragmentation (reviewed in Liesa et al. 2009). Several more genes involved in mitochondrial dynamic or its regulation have been identified or remain to be found but the last decade of research in the field has certainly exposed the crucial role of mitochondrial dynamic in cellular functions and health. Most of the pioneer work has been done on yeast or cell culture which begs the question as to how mitochondrial dynamic shapes tissue function in human or mouse tissues and what is the relevance of this in terms of the physiopathology of mitochondrial diseases. In physiological conditions, fusion and fission events take place to maintain a stable mitochondrial network that is adaptive to cellular demands. Human mitochondrial diseases such as axonal Charcot-Marie-Tooth and Dominant optic atrophy (DOA) are examples of the dire consequences of gene mutations that affect mitochondrial dynamic (Cohn et al. 2007; Kijima et al. 2005). Depending on the cell type, the mitochondrial network requires more or less motility and adaptability, making certain subsets of cells more susceptible to mitochondrial dysfunction. For example, neuronal cells have high energy demands – consumes around 20% of oxygen at rest - and critically rely on mitochondrial OXPHOS metabolism (Kann & Kovács 2007). Mitochondria dynamically position themselves at sites of high neuronal activity where mitochondrial calcium buffering and ATP production contributes to
support neuronal activity and some form of synaptic plasticity (Kann et al. 2003; Tang & Zucker 1997); the reliance of neuronal cells on mitochondrial motility to sustain complex signalling patterns might provide one explanation for the vulnerability of certain neuronal network to mitochondrial dysfunction.

1.4.4 Cell signalling pathways and modulation of cellular response

Mitochondria are strongly implicated in cell signalling events but our knowledge of this crucial interaction is still incomplete. What we know so far is that mitochondria are not just recipients of cellular signals which command mitochondrial activity to fulfill cellular requirements but rather, there exists a level of greater complexity which position mitochondria as active modulators of cellular functions. The ubiquitous organelles occupy part of the cytosol and with fusion and fission dynamically remodeling the network, mitochondria integrate cellular signal and influence their outcome. This is true for cell cycle events which have been shown to come to a halt under low energy conditions – an outcome of a stop signal coming from the mitochondrial network. Cell division is initiated by external signals and requires sufficient nutrients and available ATP to synthesize protein and double in size. Glucose availability has been shown to be an intermediate “checkpoint” (Jones et al. 2005) which low level will be translated in the mitochondria by the activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) and reversibly interrupt the initiation of cell division. The active form of AMPK induces the phosphorylation of p53, a transcription factor that act on several genes which regulate cell cycle arrest, cellular senescence and apoptosis (Harris & Levine 2005).

The mitochondria are also contributing to the shape and intensity of signalling pathways through their ability to uptake and release calcium ions (Ca$^{2+}$). The calcium uptake capacity of mitochondria has been discovered very early on, even before the OXPHOS system (Rizzuto et al. 2012). It is constituted primarily of the mitochondrial Ca$^{2+}$ uniporter (MCU) that selectively permits a rapid flow of calcium ions inside the
matrix and slower Na+/Ca2+ exchangers (mNCX) which returns Ca2+ to the cytosol. Increase in cellular Ca2+ concentration engages a wide range of cellular events and cells spend a considerable amount of energy maintaining low cytosol Ca2+ concentration – in the nanomolar range inside the cell compared to millimolar concentrations in the extracellular space – (reviewed in Clapham 2007). Increasing intracellular Ca2+ concentration is readily used by cells to trigger all sorts of events: neurotransmitter release, muscle contraction or cellular motility, and modulation of gene expression, cell growth and apoptosis. Interestingly, Ca2+ signalling is very variable; through different means of regulation, intracellular changes in Ca2+ concentration produces a spectrum of outcomes which lead sometimes to opposite changes in the same cell. For example, long-term potentiation and long-term depression in neurons are two opposing consequences observed in certain neuronal circuit following a transient increase in intracellular Ca2+. It was shown that the difference lies merely in the timing and duration of Ca2+ influx (Yang et al. 1999, reviewed in Burgoyne 2007). Others have also demonstrated the effect of oscillation of intracellular Ca2+ changes in gene expression and on the redox state of the mitochondria (Hajnóczky et al. 1995; Dolmetsch et al. 1998). Mitochondria are not the main Ca2+-storage organelles, in fact, the endo/sarcoplasmic reticulum, the golgi apparatus, endosomes/lysosomes and secretory vesicles are stronger contributors to calcium homeostasis but in terms of fine tuning signal transduction where spatial distribution and temporal regulation of cytosolic Ca2+ transients has been shown to play a crucial role, the Ca2+ buffering capacity of mitochondria is relevant to cellular function. Mitochondrial Ca2+ uptake plays a role in neuronal plasticity, for example in post-tetanic potentiation (Yang et al. 1999; Yang et al. 2003), or in segregating Ca2+ diffusion in polarized cells such as the pancreatic acinar cells (Tinel 1999).

1.4.5 Cell death through apoptosis

Another well-known function of mitochondria is its role in apoptosis. Apoptosis is an internal cell death program essential in multicellular organism for proper embryonic development but also eliminates old or damaged cells in adults (tissue homeostasis) and
is initiated as part of the immune defense system to destroy compromised cells (reviewed in Wang and Youle 2009). The central role of mitochondria in cell death by apoptosis established itself in the mid 1990’s when both proapoptotic and antiapoptotic proteins were found to reside or localize upon activation on the mitochondria and with the notable discovery that cytochrome c release is a key event in the activation of caspases (Liu et al. 1996; Zamzami et al. 1996). Internal signals such as DNA damage or prolonged nutrient starvation lead to activation of proapoptotic proteins (e.g.: Bax and Bak) and inhibition of antiapoptotic Bcl-2 family proteins ultimately causing the permeabilization of the mitochondrial inner membrane, the loss of the electrochemical gradient and the release of cytochrome c in the cytosol. Apoptosis is tightly regulated in the cell and a decrease or increase in apoptosis can lead to diseases such as cancer, autoimmune diseases or neurodegenerative disorders such as Alzheimer’s or Parkinson’s disease (Favaloro et al. 2012). Considering the important function attributed to the mitochondria in the execution of apoptotic signals, dysregulation of programmed cell death is another lurking consequence of mitochondrial dysfunction.

1.5 Mitochondrial diseases

Even though the intricate links between mitochondria and cellular function is well studied today, pathologic processes of mitochondrial disease still largely elude us. Syndromes associated with mitochondrial dysfunctions are very diverse. In some cases single organs are affected although most mitochondrial diseases are multisystemic syndromes. Symptoms can manifest themselves for the first time at any age and different severity levels are also commonly observed. Adding to this, disease phenotypes are overlapping; the same genetic defect can result in different phenotype expression and different gene mutations are seen in patients with similar clinical features (Wallace 1999; Turnbull & Rustin 2016). Defects in mitochondrial function unequivocally lead to human diseases but the spectrum of clinical manifestations is broad; neuromuscular problems, myopathy, cardiomyopathy, lactic acidosis, stroke, encephalopathy, optic neuropathy and deafness are among the most common symptoms
encountered (see Table 1). Over the years, mitochondrial diseases have been classified according to different criteria such as their genetic origin (nuclear or mitochondrial), biochemical impairments, or clinical syndromes (see Table 2). In addition, studies of mitochondrial dysfunction are important to human health as a number of hereditary disorders (such as diabetes), age-related diseases and normal ageing are associated with various degrees of mitochondrial impairment (see reviewed in Gorman et al. 2016; Swerdlow 2011; Finsterer 2004; Kauppila et al. 2016).
<table>
<thead>
<tr>
<th>System</th>
<th>Clinical Manifestations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peripheral nervous system</td>
<td>Myopathy (ptosis, fatigue intolerance, cramps, muscle aching, lactic acidosis, stiffness), polyneuropathy (weakness, reduced or absent tendon reflexes, neuropathic pain, restless legs, sicca syndrome, absent or excessive sweating)</td>
</tr>
<tr>
<td>Central nervous system</td>
<td>Developmental delay, mental retardation or regression, early or late onset dementia, fatigue, epilepsy, myoclonic, migraine, stroke-like episodes, dystonia, dyskinesia, atypical cerebral palsy, leukoencephalopathy, basal ganglia calcifications, psychosis, myelopathy, coma</td>
</tr>
<tr>
<td>Endocrine system</td>
<td>Short stature, polyphagia, failure to gain weight, diabetes mellitus and insipidus, hypoglycemia, thyroid and parathyroid dysfunction, amenorrhea, hypogonadism, delayed puberty, gynaecomastia, osteoporosis, hyperlipidaemia, hypopituitarism, hypoparathyroidism, hyperaldosteronism, adrenocorticotropin deficiency</td>
</tr>
<tr>
<td>Sensory nervous system</td>
<td>Hypacusis, sensorineural deafness, tinnitus, peripheral vertigo, cataract, glaucoma, pigmentary retinopathy, optic atrophy, uveitis, acquired strabism</td>
</tr>
<tr>
<td>Gastrointestinal system</td>
<td>Paradontosis, impaired swallowing, gastro-oesophageal reflux, delayed gastric emptying, dysphagia, chronic vomiting, inability to produce digestive enzymes, hepatopathy with liver failure and hyperammonaemia, recurrent diarrhea, villous atrophy, pancreatitis, constipation, failure to thrive, anorexia, malabsorption, intestinal pseudo-obstruction</td>
</tr>
<tr>
<td>Heart</td>
<td>Impulse generation and conduction defects, myocardial thickening, left ventricular hypertrabeculation/non-compaction, heart failure</td>
</tr>
<tr>
<td>Kidney</td>
<td>Renal tubular insufficiency, Fanconi syndrome, renal cysts</td>
</tr>
<tr>
<td>Bone marrow</td>
<td>Sideroblastic anaemia, leucopenia, thrombopenia, pancytopenia</td>
</tr>
</tbody>
</table>

Table 2 Mitochondrial Disease Classification

Classical classification (by acronym/syndrome)

CPEO, KSS, Pearson syndrome, MELAS, MERRF, LHON, Leigh syndrome, NARP, etc.

Biochemical classification

- Defects of substrate transport
- Defect of substrate utilization
- Defects of the Krebs cycle
- Defects of the oxidation-phosphorylation coupling
- Defects of the respiratory chain

Genetic classification

- Disorders due to mutations in the mtDNA genes encoding for RC proteins, tRNAs or rRNAs
- Disorders due to mutations in the nDNA genes encoding for RC proteins
- Disorders due to mutations in nDNA genes encoding for non_RC proteins
- Disorders associated with the RC defects due to mutations in nDNA genes encoding for non-mitochondrial proteins.

It was first postulated that impairment in ATP production was at the origin of mitochondrial diseases and that the vast diversity in the clinical manifestation was attributed to the energy requirements of each organ and the degree to which a gene mutation impairs respiratory chain function and ATP production (Wallace 1992; Wallace 1993). The particularity of mtDNA gene mutations which coexist with wild-type mtDNA molecule within a cell (heteroplasmcy) also provided a rational to explain the variation in clinical presentations of mitochondrial diseases. Today, the engineering of several animal models and the identification of patients with a variety of symptoms did not yet provide a satisfactory explanation for the unpredictability of mitochondrial diseases manifestation. The double nature of the genetic origin of mitochondrial diseases
(nuclear or mitochondrial) and the biochemical/metabolic dysregulation that leads to organ failure suggest that there is a much greater complexity at play and that the correlation between mitochondrial ATP production impairment and organ energy requirement is a poor predictor of the clinical manifestations of mitochondrial diseases. Indeed, in order to better understand the role of mitochondrial dysfunction in human health and disease, the organelle should be seen for its complex involvement in cellular function and as such more than just a power house (McBride et al. 2006).

A compelling discussion about the topic was formulated by several groups in the early 2000s (Brière et al. 2004; McBride et al. 2006). An interesting example is that of the optic nerve which was believed to be a vulnerable site due to its particularly high energy requirement. The optic nerve is the main organ affected in Leber hereditary optic neuropathy (LHON) but over the years, it was shown that the most common homoplasmic mutations causing LHON disease affect Complex I activity (K_m for NADH and electron transfer activity) albeit without significant decrease in ATP production (Majander et al. 1991; Larsson et al. 1991). In addition, several more mutations were discovered which impairs the respiratory chain and ATP production without any deleterious effect on the optic nerve. This theory also fell short to explain late onset mitochondrial diseases and the implication of mitochondrial dysfunction in age-related degenerative diseases. In other words, new hypotheses were needed to explain the wide clinical spectrum of mitochondrial and mitochondrial-related diseases. More than 10 years later, the complexing clinical manifestation of the majority of mitochondrial diseases is still widely discussed (McBride 2015; Turnbull & Rustin 2016; El-Khoury et al. 2013). Other hypotheses were brought forward and some remain hot topics today: superoxide toxicity, metabolic imbalance, accumulation of somatic mtDNA mutation with age, polymorphism of mtDNA, mitochondrial dynamics, etc.; but none of which have, on their own, been able to be a satisfactory explanation. The answer probably lay in the multifaceted functions of mitochondria, the cellular specific demands for
mitochondrial activity and additional stressors such as the environment and genetic predisposition.

The question remains therefore as to which extent OXPHOS dysfunction contributes to disease phenotypes, which cell types are vulnerable to mitochondrial activity loss (within which threshold) and how other aspects of mitochondrial function can be integrated in our understanding of mitochondrial disease physiopathology.

1.6 Enzyme histochemistry

Investigating the state of the electron chain activity in single cells is easily done with the use of mitochondrial enzyme histochemistry. This accessible method allows the visualization of mitochondrial activity without disturbing the structural integrity of the tissue, permitting each cell to be individually analyzed. By the 1980’s, histochemical techniques had already identified focal mitochondrial Complex IV deficiency in diseases later found to be due to pathogenic, nuclear-encoded mitochondrial gene alleles (Müller-Höcker et al. 1983) or in normal ageing of human hearts (Müller-Höcker 1989). Later, again using mitochondrial enzyme histochemical methods, it was found that clonal expansion of mtDNA mutations with age leads to COX deficiency in many human tissues, and in vertebrate animal models of ageing (reviewed in Baines et al. 2014). Enzyme histochemical techniques have an advantage in the visualization of single cell dysfunction, compared to other biochemical measurements of tissue homogenates, where the averaging of biochemical competence across individual cells can mask cell-specific mitochondrial defects.

Quantitative analysis of COX activity has been described by several groups, where the oxidation of 3-3’ diaminobenzidine (DAB) catalyzed by COX is monitored using microphotometric assays (Old & Johnson 1989; Gonzalez-Lima & Jones 1994; Melendez-Ferro et al. 2013). A major drawback of this approach is the difficulty to clearly distinguish pathologic loss of COX activity due to normal activity being tightly linked to the unique energy demands of each cell type, where even segments of a cell
display heterogeneous activity (Wong-Riley 1989). Given the mosaic pattern of COX-deficiency typically observed in mitochondrial diseases, the distinction between a pathological decrease in COX activity and normal variation due to physiological characteristics is laborious. Alternatively, deficient COX activity can be revealed using a double-labelling method known as COX/SDH (cytochrome c oxidase / succinate dehydrogenase) histochemistry (Ross 2011). The COX/SDH method cleverly reveals cells with normal mitochondrial function in brown, through the oxidation of DAB, while cells with deficiencies in COX activity are revealed in blue. This dual color hinders the detection of low or intermediate deficiency levels which light blue color is obstructed by the predominant brown pigment, therefore, detection and quantification of COX deficiency remains incomplete (Murphy et al. 2012).

Immunofluorescence technique is also used to quantify the presence of several subunits of the respiratory chain complexes in tissues (Rocha et al. 2015; Hevner & Wong-Riley 1989; Grünewald et al. 2014). This later approach, on the plus side, enables simultaneous evaluation of Complex I and Complex IV expression in a single cell. In addition, immunofluorescence labelling is semi-quantitative and provides reliable and sensitive detection of protein expression. The downsides of this approach are the costs of species specific antibodies, the detection of protein rather than a measurement of enzyme function and like DAB cytochemical methods, a stringent comparison of very specific areas is required in order to reveal moderate changes in protein expression.

To obtain a greater sensitivity of a cell-by-cell detection of deficient COX activity, we developed a new enzyme histochemical assay that exploits the competing redox reactions between phenazine methosulfate (PMS), cytochrome c oxidase, and nitrotetrazolium blue chloride (NBT) - reagents well established in mitochondrial enzyme histochemistry. Old and Johnson in 1989 described with a microphotometric assay, optimal protocols for both the histochemical assay of SDH and COX activity. Their work was confirmed in mouse tissues, thereafter (Nakae & Stoward 2001). In addition, literature dating back to the 1950’s describes the use of PMS for the reduction
of NBT (Farber & Bueding 1956; Nachlas et al. 1960) as well as the interaction of reduced PMS with Complex IV (Kearney & Singer 1955; Löw et al. 1964; Worsfold et al. 1977; Brody & Engel 1964). Building up on these previous works, we uncovered that the dual affinity of PMS for either NBT or Complex IV can be exploited to reveal COX-deficient cells without the use of DAB and sequential reactions. Indeed, PMS is a strong electron carrier that transfers electrons from Complex II to NBT, but in a complete system where mitochondrial COX activity is optimal, PMS preferentially passes on electrons to molecular oxygen via electron acceptors located in the COX subunits (Löw et al. 1964; Brody & Engel 1964; McMillan 1967). We show here that the alternative enzyme histochemical method - hereafter named nitrotetrazolium blue exclusion assay (NBTx) - can efficiently reveal surprisingly low levels of COX deficiency in single cells. The strength of this new assay is through the catalysis of formazan only where COX activity is dysfunctional, leading to the direct visualization of respiratory-deficient cells rather than a reduction in the predicted COX activity. The NBTx assay offers the unique opportunity to measure and quantify COX deficiency directly and unambiguously.
AIMS OF THIS STUDY

The development of a new enzyme histochemistry assay to visualize COX-deficient cells is the main focus of this study. We pursued the idea that a direct assessment of COX dysfunction with a single color would improve the read-out and provide a stronger tool for the evaluation of COX deficiency in fresh-frozen tissue samples.

With this body of work, we aimed to validate the biochemical interactions which regulate the new assay and demonstrate the strong correlation between COX deficiency and blue formazan deposition. In addition, we sought to define the limits and experimental set-up for a variety of tissue and organisms, including human tissues, to pave the way for a successful use of this new assay and improve reproducibility. Lastly, we developed ways to quantify COX deficiencies in heart tissues and skeletal muscles and demonstrate how being able to quantify COX-deficiency at the cellular level can help in advancing our knowledge of the physiopathology of mitochondrial diseases as well as being a valuable tool to assess treatment efficacy in regards to tissue recovery and respiratory chain activity.
MATERIALS AND METHODS

1.7 Ethics statement

All animal work was approved by the Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen in accordance with German and European Union regulations (Permits 84-02.042015.A103; 84-02.05.50.15.004).

The use of human tissues in this study was under the ethical guidelines issued by the Newcastle and North Tyneside Local Research Ethics Committees (reference 09/H0906/75 & REC ref. no.: 2001/188) and comply with the Declaration of Helsinki.

1.8 Preparation of incubation media

Phosphate-buffered saline (PBS, 0.1 M, pH 7.0) was prepared from mixing sodium dihydrogen orthophosphate monohydrate (0.04 M) to di-sodium hydrogen phosphate anhydrous (0.06 M).

NBTx solution contained 5 mg NBT dissolved in 3.2 ml PBS to which thawed stock solutions of PMS (100 µl/ml, 2.0 mM in purified water) and sodium succinate (100 µl/ml, 1.3 M in 0.1 M PBS) were added. Final concentrations were 130 mM sodium succinate, 2 mM NBT and 0.2 mM PMS, pH 7.0.

1.9 NBTx assay

Tissue Preparation – Small pieces of heart tissue were quickly frozen in 2-methylbutane, in a glass beaker cooled by immersion in liquid nitrogen. Frozen tissues were stored at -80 °C until ready to use. Testis and colons were frozen in Tissue-Tek® O.C.T. compound (supplied by A. Hartenstein GmbH, Wuerzburg, Germany) immersed into liquid nitrogen. Brain tissues were frozen slowly on dry ice. Heart tissues were cut
at 7 µm whereas brains, skeletal muscles, testis and colons were cut at 10 µm with a
cryostat at -20 °C (OFT 5000, Bright Instruments, Luton, UK), mounted on Superfrost
Plus microscope slides (Menzel, Thermo Scientific, Waltham, MA, USA) and air-dried
for 5 to 10 minutes. Slides were kept at -80 °C for maximum a few months to avoid the
loss of enzyme activity.

Staining Protocol – Slides were taken out of the -80 °C freezer and thawed briefly
at room temperature on a slide holder without lid. Sections (3 sections per slide) were
then covered with 1 ml PBS for 10 minutes in an incubator set at the desired temperature
(1 ml per slide). PBS was discarded and replaced with 1 ml NBTx solution. Incubation
time and temperature varies according to tissue type. Generally, best results were
obtained with heart sections at 18 °C for 30 minutes. Brain, skeletal muscles and testis
required a higher incubation temperature (22 to 25 °C).

Sections were washed briefly in purified water followed by dehydration in ethanol
(2 minutes in 50 %, 75 %, 96 %, 100 % followed by an extra 5 minutes in 100 % ethanol).
Finally, slides were immersed for 5 minutes in two changes of xylene before mounted on
coverslips with Cytoseal™ (Thermo Scientific, Darmstadt, Germany).

1.10 Inhibiting the respiratory chain

Sodium azide and potassium cyanide were dissolved in water, malonate in 1 M
sodium hydroxide and all other inhibitors in absolute ethanol at the following
concentration: thenoyltrifluoroacetone (TTFA, 1 mM), atpenin A5 (0.1 mM) sodium
azide (100 mM), potassium cyanide (100 mM), rotenone (1 mM), antimycin A (1 mM),
myxothiazol (0.2 mM), oligomycin (3 mM) and malonate (6 M). Stock solutions were
stored at -20 °C and thawed shortly before use. Inhibitors were added to PBS for the
preincubation time as well as to the NBTx solution (rotenone, oligomycin, antimycin A
1:500; myxothiazol, atpenin A5, TTFA 1:200; sodium azide, potassium cyanide 1:100,
malonate 1:1000). Control conditions contained 5 µl/ml of 100 % ethanol or 1 µl/ml 1 M
NaOH accordingly. All conditions retained a neutral pH value between 6.9 and 7.2.
1.11 Mouse tissues

All mouse lines used in all experiments were maintained on the C57Bl/6NCrl nuclear background (Charles River Laboratories, Germany, strain code 027). *Lrpprc* conditional knockouts (MGI:5438915) and *Surf1* knockout mice (MGI:2651426) were kindly provided by the group of Nils-Göran Larsson, Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne. mtDNA mutator mice (MGI:3046825) were F1 animals born to true C57Bl/6NCrl females from the P generation to minimized mtDNA mutagenesis (Trifunovic et al. 2004). The *mt-tRNA^ALA^ m.5024C>T* mice (MGI:5902095) are maintained by female transmission of the mutated mtDNA in crosses to C57Bl/6NCrl males (Kauppila et al. 2016).

1.12 Human tissues

Human skeletal muscle (*vastus lateralis*) and cardiac tissue were obtained through the NHS Highly Specialised Services located within the Wellcome Centre for Mitochondrial Research at Newcastle University. All samples were obtained and used with informed consent. Human colon tissue was obtained from patients with colorectal tumors undergoing surgical resection. Normal mucosa was taken from at least 20 cm from the resection margin. Informed written consent was obtained prior to surgery and samples were coded to maintain confidentiality. This project was approved by the Joint Ethics Committee of Newcastle and North Tyneside Health Authority (REC ref. no.: 2001/188). All tissues were cut at 7 µm and consecutive sections were used to compare COX/SDH (40 minutes COX, 40 minutes SDH at 37 °C), NBTx (20 minutes at 37 °C) and COX-only (skeletal muscles and hearts - 40 minutes, colons – 30 minutes at 37 °C).

1.13 Fruit flies, Drosophila melanogaster

Fly models were kindly provided by the group of Nils-Göran Larsson, Department of Mitochondrial Biology, Cologne, Germany. See references for maintenance and engineering of *Lrpprc2* RNAi (Baggio et al. 2014) and *DmPolyA* –
compound heterozygous tamD263A/tamH1038A – (Bratic et al. 2015). Flies were quickly frozen in liquid nitrogen and subsequently glued on a cryostat mounting disk with fixing gel (Tissue-Tek® O.C.T. compound). Sections of the thorax muscles were cut at 10 µm and mounted on microscope slides. NBTx assays were performed at 18°C for 10 minutes.

1.14 Hypoxic conditions

Heart tissues were cut and sections placed on microscope slides as for the standard NBTx experiments. PBS buffer was placed with lid open inside an oxygen controlling chamber system (COY Laboratory Products) 30 minutes before the start of the experiment. Chamber parameters were set for 2.0 % oxygen and 5.0 % CO₂. Temperature and humidity inside the chamber was measured around 24 °C and 22 % relative humidity. Microscope slides with 7 µm thin section of mouse heart tissue were placed inside the chamber. PBS buffer was added to the slides and incubated for 10 minutes followed by the usual NBTx buffer for 10, 20 or 30 minutes. After the incubation time, slides were taken out of the chamber and transferred into water for 5 minutes, dehydrated in ethanol and xylene before mounting with cover slips.

1.15 COX/SDH assay

The protocol used here is according to a standard protocol utilized across diagnostic histopathology laboratories (Ross 2011).

1.16 Succinate dehydrogenase activity

SDH activity was measured by removing PMS from the NBTx staining solution. Without the presence of PMS as an intermediate electron carrier, the catalysis of NBT into formazan crystals is weak but independent of the activity of Complex IV. Alternatively, to mimic 100% COX deficiency in tissues, SDH activity was also assessed with 1 mM sodium azide in the NBTx solution.
1.17 DAB histochemistry

3,3 diaminobenzidine tetrahydrochloride (DAB) is dissolved in purified water followed by an equal part of 0.2 M phosphate buffer, pH 7.0 for a final concentration of 5 mM. Prior to staining, cytochrome c (100 µM) and catalase (0.2 mg/ml) are added.

1.18 Laser microdissection and quantitative pyrosequencing

Heart tissues are cut at 12 µm and collected onto PEN-membrane slides (Leica, Microsystems GmbH, Wetzlar, Hesse, Germany) and stained for 30 minutes using the NBTx assay. Areas stained blue or areas with no coloration were then laser microdissected (LMD7000, Leica) and collected into sterile 0.5 ml centrifuge tube. The collected sections are lyzed with 10 µl of lysis buffer (50 mM Tris-HCl pH 8.5, 1% Tween-20, 20 mg/ml proteinase K) followed by a 2 hours incubation at 55°C. Proteinase K is denatured by a 10 minutes incubation at 95°C. Pyrosequencing analysis of the m.5024C>T mutation was performed using a PyroMark Q24 pyrosequencer and the design software v2.0 (Qiagen GmbH, Hilden, Germany). A single PCR reaction amplifies a 178 bp PCR fragment spanning the m.5024 mutation site, using a biotinylated forward primer and a non-biotinylated reverse primer (forward primer: 5’-Biotin-TTCCACCCTAGCTATCATAAGC, reverse primer: GTAGGTATTCCTGCTGCAAAT). PCR products were combined with dH2O, PyroMark binding buffer (Qiagen) and 1 µl Streptavidin sepharose™ high performance beads (GE Healthcare, Little Chalfont, UK), and purified and denatured using a Pyromark Q24 vacuum workstation. Sequencing was carried out with PyroMark Gold Q24 Reagents according to manufacturer’s directions, using the sequencing primer (TGTAGGATGAAGTCTTACA). For calibration curves, mixture of synthetic biotin-labelled oligos were mixed, which correspond to wild-type and mutant sequences.
1.19 Statistical analyses

Pyro sequencing data was analyzed with GraphPad Prism 7 software. A one-way ANOVA with Dunn’s multiple comparisons test was used to establish statistical significance between the percentage of m.5024C>T mutations in clear versus light blue areas, white versus dark blue areas and light blue versus dark blue areas.

1.20 Image acquisition, processing and analysis

Images were obtained using a Nikon Eclipse Ci microscope and processed with Fiji (open-source software, Schindelin et al. 2012). The following steps were written in a single macro command: white balancing, color deconvolution and threshold (Huang and Wang 1995) followed by total image analysis of area, mean intensity and standard deviation values. In addition, processed images were stacked and the total pixel number for each intensity value (0-255) was analyzed with the histogram command. Full details of the macro can be found in the section Appendix A. The macro is written to process many images at once, making it easier to analyze groups of images. When prompted by the macro, select a folder containing the images.

1.21 Quantitative analysis of skeletal muscle

Skeletal muscles of mice hindlimb (gastrocnemius and soleus) were cut in serial sections of 10 µm for NBTx and SDH assays and 12 µm for myosin ATPase reactions. Images processed with the macro were loaded to ImageJ again and single fibres were selected and analyzed individually. Excel and GraphPad Prism 7 were used to compare maximal formazan catalysis (SDH assay) to the blue intensity generated with the NBTx reaction (mean relative OD). Single cells were identified in 3 consecutive sections placed side-by-side on one slide. Values were normalized to the mean intensity of a large area of each slide to account for variability (see also Appendix B for raw data).
RESULTS

1.22 Competing biochemical reactions

In the course of our research on heart tissues of a variety of mouse models presenting intermediate or low level respiratory chain defects, we came across several difficulties when attempting to confidently assert the degree of COX deficient cells with available enzyme histochemistry methods (Figure 4.1). Standard sequential cytochrome c oxidase/succinate dehydrogenase (COX/SDH) protocol used in our laboratory fell short to identify COX deficiency in our mouse models. Besides the long incubation time required for a successful exposure of COX-deficient mitochondria, cells with low or intermediate levels of COX deficiency appear purple or greyish which makes detection and quantification difficult. Animal models with near threshold level of mitochondrial dysfunction display cells with a tint of blue that is confusingly close to colors observed in wild-type sections where the SDH activity was unsuccessfully blocked. An attempt to find the best parameters to reveal maximum deficient mitochondria without unmasking healthy ones easily becomes a struggle.
Figure 4.1 | Sequential COX/SDH staining has drawbacks in models with near threshold deficiency. (A) Heart sections of wild-type C57BL/6N mice stained at 37°C for 20 minutes with DAB and 15 minutes SDH, shows insufficient blocking of SDH activity as shown with the mix of unsaturated and blueish browns. (B) 30 minutes DAB and 30 minutes SDH appear to sufficiently block SDH. (C) 60 minutes DAB and 30 minutes SDH reveals a much saturated and yellowish brown suggesting that the previous condition was only partly blocking formazan catalysis. (D) Surf1 knockout mouse, (E) mtDNA mutator mouse, (F) mt-tRNA^{ALA} mutant mouse. Number of animals tested for each condition equals at least 3. Scale bar, 50 µm.
It will be demonstrated here that a strong biochemical competition between COX and NBT for the acquisition of electrons from PMS forms the basis for the NBTx assay, a new enzyme histochemistry assay which identifies lower threshold of COX deficiency and allows the acquisition of quantifiable data.

The NBTx assay involves only one color (blue formazan crystals from NBT) and is based on a strong biochemical competition between COX and NBT for the acquisition of electrons from PMS (see reaction scheme Figure 4.6). In COX-competent mitochondria, minimal or no catalysis of formazan takes place and cells remain colourless.

Using sodium succinate as a substrate and in absence of PMS, NBT reduction leads to visible formazan pigments accumulation - an indication of the succinate dehydrogenase activity (Figure 4.2A). This activity is independent of Complex IV and no effect is observed when blocking its oxidative activity with sodium azide (Figure 4.2B). However, formazan formation was strongly blocked by atpenin A5 (Figure 4.2C), a potent Complex II inhibitor (Miyadera et al. 2003).

Adding PMS has long been shown to improve the rate of formazan catalysis, but its use in tissue sections is known to be beneficial only with a COX inhibitor (Löw et al. 1964). We therefore speculated that PMS is capable of transferring electrons to Complex IV and that this reaction is favored over its ability to reduce NBT. To confirm this, we incubated heart sections with PMS (0.2 mM), NBT (2 mM) and sodium succinate (130 mM) in the absence of any COX inhibitors. We observed that catalysis of formazan is effectively suppressed, suggesting the inability of PMS to reduce NBT in the presence of a functional COX activity. NBT molecules remained in their oxidized form even after prolonged incubation (Figure 4.2D-F). As expected, NBT reduction is fully restored using sodium azide (1 mM) or potassium cyanide (1 mM), two COX inhibitors (Figure 4.2G,H). Sodium succinate removal prevents this effect (Figure 4.2I).
Figure 4.2 | PMS engages both the activity of Complex II and Complex IV. (A) Succinic dehydrogenase activity is detected in wild-type heart tissues using sodium succinate as a substrate and NBT as a final electron acceptor (n = 3). (B) Blocking COX activity with sodium azide does not prevent NBT reduction (n = 3). (C) Inhibiting the quinone-binding site of Complex II with atpenin A5 fully blocks the transfer of electrons to NBT (500nM, n = 3). Wild-type heart tissues treated with a solution containing 0.2 mM PMS in addition to sodium succinate and NBT significantly represses the catalysis of blue formazan crystals for (D) 10 minutes (E) 20 minutes or (F) 30 minutes incubation at 18°C (n = 5). (G) Complete reduction of NBT is rescued by chemically blocking COX with sodium azide (1mM, 10 minutes, n = 15), or (H) potassium cyanide (1mM, 10 minutes, n = 3). (I) Removing sodium succinate prevents formazan formation even in the presence of sodium azide (10 minutes, n = 3). Scale bar, 100 µm

To confirm the specificity of Complex IV in preventing the transfer of electrons from PMS to NBT, we attempted to restore NBT reduction with various electron transport chain inhibitors: Complex I (rotenone, 2 µM), Complex III (antimycin A, 1 µM and myxothiazol, 1 µM) and inhibited ATP synthesis (oligomycin A, 6 µM). None of the tested inhibitors could restore NBT reduction (Figure 4.3). In addition, the source of electron transfer from Complex II to PMS was confirmed using antimycin A, atpenin A5 and malonate (Figure 4.4).
Figure 4.3 | Inhibiting mitochondrial complexes other than Complex IV does not reestablish the reduction of NBT. Heart sections from wild-type mice were incubated 10 minutes in NBTx solution containing the following inhibitors: (A) rotenone (2µM), (B) antimycin A (1 µM), (C) myxothiazol (1 µM), (D) oligomycin (6 µM). Representative images of 3 experiments. Scale bar, 100 µm.

Figure 4.4 | Site of electron transfer from Complex II to PMS. (A) NBTx + sodium azide (1 mM) (B) NBTx + sodium azide and antimycin A (1 µM) (C) NBTx + sodium azide and atpenin A5 (5 µM), (D) NBTx + sodium azide and malonate (6 mM). Representative images of 3 experiments. Scale bar, 100 µm.
Our results indicate that once reduced by Complex II, PMS will transfer electrons to COX or NBT bypassing the classical respiratory chain electron pathway. Thus, in the presence of PMS, NBT reduction into formazan only depends on the respective activities of Complex II and COX.

As NBT reduction depends on the absence of COX activity and because oxygen is a substrate of COX, its concentration modulates COX catalytic activity and substrate affinity (Chandel et al. 1996), we hypothesized that formazan formation could be influenced by oxygen pressure and availability. This possibility was examined with heart tissues of young (12 weeks old) wild-type mice in a chamber containing 2% oxygen. Low-oxygen conditions led to a rapid accumulation of formazan pigments (Figure 4.5A). Likewise, elevated levels of formazan deposition were noted in young hearts incubated at high temperature, which we speculate increased the reaction rate and caused a more rapid depletion of dissolved oxygen in the incubation media (Figure 4.5B). High relative humidity also led to a slow deposition of formazan crystals over time, suggesting again that oxygen depletion is an important factor which influences the outcome of the NBTx assay (Figure 4.5C).

Our findings point to a strong interplay between PMS, Complex II and Complex IV that is independent of the rest of the respiratory chain, in agreement with previous reports (Farber & Bueding 1956; Nachlas et al. 1960; Kearney and Singer 1955, Löw et al. 1964). In light of these observations, we suggest a model where PMS interacts preferentially with Complex IV, hindering its ability to deliver electrons to NBT. In this scenario, NBT reduction serves as an indicator of the loss of COX activity and thus enables fast and sensitive detection of COX-deficient cells (Figure 4.6).
Figure 4.5 | Stability of a negative signal is dependent on oxygen. Wild-type hearts from 12 weeks old mice were used to test the stability of a negative signal. (A) Hypoxic conditions (2% oxygen) induced formazan deposition after 10 minutes at room temperature. (B) Slight variation in the temperature (between 18 and 25°C) did not significantly increase formazan deposition although high temperature (37°C) for heart tissues causes a gradual accumulation of formazan crystals. (C) Lastly, we observed that high relative humidity levels (65%) increase formazan deposition in a healthy tissue and can influence the maintenance of a colorless background at a given temperature. N = at least 3 for each condition.

Figure 4.6 | Proposed interaction scheme. PMS is reduced within Complex II and subsequently re-oxidized by COX, leaving NBT in its colorless, oxidized form (marked as ①). When the oxidative activity of Complex IV is either artificially blocked or deficient, PMS is efficiently passing electrons to NBT which triggers the formation of blue formazan crystals (marked as ②).
1.23 COX-deficient mitochondria in mouse models

Based on the biochemical interactions described above, we predicted that deficient cells within tissues of transgenic mice with known COX deficiency would be revealed by the deposition of formazan crystals. In order to verify this, we analyzed four different transgenic mouse models previously characterized and presenting different levels of COX deficiency in the heart, namely: *Lrpprc* conditional knockout (*Lrpprc/CKMM-cre*) (Ruzzenente et al. 2011; Mourier et al. 2014), *Surf1* knockout (Dell’Agnello et al. 2007; Agostino et al. 2003), the *PolgA^{D257A}* mtDNA mutator (Trifunovic et al. 2004) and a mouse heteroplasmic for an mtDNA m.5024C>T mutation in the *tRNA_{ALA}* gene (*mt-tRNA_{ALA}* mice, Kauppila et al 2016). *Lrpprc/CKMM-cre* conditional knockout mice have an extensive loss of Complex IV in heart tissues, with enzyme activities decreased by 90% already at 12 weeks of age (Ruzzenente et al. 2011). *Surf1* knockout mice are reported to suffer a loss between 30-50% of COX activity (Mourier et al. 2014, Dell’Agnello et al. 2007) whereas mtDNA mutator mice lose around 25-30% (Ross et al. 2013). Mice harboring the *mt-tRNA_{ALA}* mutation show only sparse COX impairment (Kauppila et al. 2016). The NBTx assay revealed that across all mouse models, qualitative levels of formazan crystal deposition correlated to the mitochondrial COX deficiency previously reported (Figure 4.7). The darkest blue pigments were seen in *Lrpprc* knockout heart sections, followed by *Surf1* knockout, the mtDNA mutator mouse, with the lowest amount observed in mouse heart with the *mt-tRNA_{ALA}* mice. The ease at which COX-deficient cells are revealed is especially evident in the *Surf1* knockout model (Figure 4.7B). The relevance for this new approach is particularly striking when compared side-by-side with sequential COX/SDH or COX-only histochemistry. The NBTx assay reveals even slight changes in COX activity, with cells clearly distinguishable with a light blue tint, whereas the same area in the COX/SDH serial section reveals a puzzling presentation of colors that vary from purple-brown or even greyish-blue, which may lead to ambiguous interpretations and hinder proper quantification (Murphy et al.
2012). Likewise, images of heart tissue reacted to DAB only show COX-positive activity which is a disadvantage when assessing for the presence of defective oxidative activity. For example, in the Lrp4pc knockout heart tissue (Figure 4.7A) we identified 3 areas with distinct intensity of formazan deposition (labelled 1 to 3) in the NBTx assay. The same areas in the COX/SDH shows characteristic colour variation but the light blue, seen in the NBTx section of area #1, is undetected in both the COX/SDH and the COX-only histochemistry methods. Furthermore, when COX deficiency is partial and equally distributed across the tissue (as seen in Surf1 knockout mice) COX-only histochemistry poorly performs in revealing COX-deficient mitochondria (Figure 4.7C). Overall, the newly developed NBTx assay successfully reveals COX-deficient mitochondria in tissue sections and is more sensitive than previous methods.
Figure 4.7 | COX-deficient cells in mouse heart tissues. Fresh frozen heart tissues from mice models with COX deficiencies are shown here after COX/SDH, NBTx or COX-only histochemistry. (A) Lrpprc knockout (n = 3), (B) mtDNA mutator (n = 3), (C) Surf1 knockout (n = 3) (D) mt-tRNA$^{\text{ALA}}$ m.5024C>T (n = 5), (E) wild-type (n = 5). Scale bar, 100 µm.
1.24 Quantification of COX deficiencies

A mosaic distribution of affected cells within a given tissue is a characteristic of many mitochondrial diseases. Quantifying this variation would help decipher the correlation between cellular OXPHOS deficiencies and disease mechanism. To demonstrate the high sensitivity and reproducibility of the NBTx reaction, we proceeded to evaluate the degree of blue formazan crystals in wild-type heart tissues exposed to increasing amounts of sodium azide.

For this purpose, a simple and accessible workflow was developed using images captured with an upright microscope and subsequently analyzed with Fiji, a free image processing software (see Appendix A, Fiji Macro).

Concentrations as low as 5 µM induced a small, detectable change in relative optic density (ROD) measurements followed by a gradual increase which plateaus at about 100 µM. A linear relationship was detected in the range of 5 to 25 µM sodium azide (Figure 4.8A). Completely blocking mitochondrial activity with 1 mM sodium azide saturates the image with an average ROD of 252 ± 1.5 (not shown).

The variation in cellular dysfunction within the tissue is lost when the average ROD is calculated rather than the single cell values. We reanalyzed the images from the sodium azide treated heart tissues and extracted total number of pixels for each intensity level. Figure 8c shows a distribution curve with an important distribution of values across the range but interestingly, each sodium azide concentration creates a unique and consistent curve. The distribution of mitochondria within a cell and the variation in mitochondrial density between regions, as well as spaces between cells in the tissue might explain this distribution (see close up images in Figure 4.8B). We arbitrarily assigned a range of blue optical densities which would represent low, intermediate and high levels of COX deficiency, with the goal of establishing the distribution levels in distinct animal models. Plotting the number of pixels versus the blue ROD values for the
four different animal models resulted in similar curves (Figure 4.8D). Moreover, each animal was plotted individually as to assess variability within each group.

Our data shows that the new NBTx assay accurately reveals COX deficiency with a very high sensitivity. The absence of brown pigments in functional mitochondria led to a clearer and consistent distinction of blue intensities. Our image analysis enables the extraction of valuable information such as: COX deficiency levels – as an average ROD for the entire tissue or as a spectrum within the tissue (number of pixels per ROD), variability within one specific genetic line (e.g.: we found that mtDNA mutator mice as well as Surf1 knockout mice varied substantially between each animal, whereas Lrpprc knockout and mt-tRNAALA mice tended to be consistent (Figure 4.8D)).
Figure 4.8 | Quantifying COX deficiency in heart tissues. (A) Fresh frozen heart tissues, sectioned at 7 µm, were exposed to different concentrations of sodium azide (0, 5, 10, 15, 25, 50, 75 and 100 µM). Average blue intensity is calculated using Fiji software and plotted against each sodium azide concentration. Numbers represent mean ± SD from 6 images per animal (n = 3, 12 week old males). Representative images for each azide concentration are shown under the graph. (B) Images of a section of heart tissue exposed to 75 µM sodium azide and the NBTx solution. Arrows show unstained areas of connective tissues or holes in the tissue. Image inset shows the non-homogenous intensity of formazan deposition within the cytoplasm. (C) Selected concentrations of sodium azide were plotted showing total pixel number from 6 images against each ROD value. Dashed lines are arbitrary range for background, low, intermediate and high deficiency which we transposed also to tissues of animal models. (D) Heart tissues of Lrp0r knockout, Surf1 knockout, mtDNA mutator and mt-tRNA_{ALA} mice compared to aged matched wild-type tissue. Each line represents results of replicate experiments for different animals.
In skeletal muscles, where mitochondrial activity varies greatly between muscle fibre types, we performed single cell analysis. Consecutives slides were used to distinguish fibre types with myosin ATPase reactions at pH 4.3 and 10 in addition to a section for histochemical assay of SDH activity. The intensity of formazan deposition as measured in the SDH assay was used to distinguish fiber types of similar mitochondrial activity. Three different types of fibers in mtDNA mutator mice hindlimb (gastrocnemius and soleus) - fiber type I, type II (oxidative) and type II (glycolytic) - were identified and used to make an evaluation of each fiber’s characteristic COX impairment (Figure 4.9A to H). We found no significant difference in SDH activity between wild-type or mutant animals (Figure 4.9I, see also Appendix B for raw data).

Figure 4.9 | Quantification of skeletal muscle fibre types. Consecutive sections of the gastrocnemius and soleus muscles of mtDNA mutator mice were reacted to (A, E) myosin ATPase at pH 4.3, (B, F) myosin ATPase at pH 10, (C, G) SDH assay, (D, H) NBTx assay. SDH and NBTx reactions were run simultaneously at 18°C for 30 minutes. (I) Relative optical density (OD) depicting SDH activity in the skeletal muscle. Individual cells from type II (oxidative, ox or glycolytic, gly) and type I fibres were selected in wild-type and mtDNA mutator mice. Mean relative OD ± SD (n = 3). Scale bar, 100 µm.
Having established that baseline SDH activity was characteristic across the different fiber types but uniformed between cells of the same type and is not significantly altered in the mtDNA mutator mice compared to wild-type mice, we completed our analysis with measurements of single cell COX deficiency levels. Our results show that fiber types with greater oxidative activity (type II (oxidative) and type I) are more strongly affected than glycolytic fibers (Figure 4.10A). Although in oxidative type II fibres COX deficiency can reach high levels (seen in our samples up to 70%), there is no correlation between a high COX deficiency and a high SDH activity. In other words, this demonstrate further that formazan deposition in the NBTx assay strongly correlates with COX deficiency and that the scenario where a shift in the stoichiometric proportion between SDH and COX in favor of more SDH molecules is unlikely (Figure 4.10B).

Figure 4.10 | COX deficiency measured in 3 different fibre types. (A) Fiber type II (oxidative, ox), type II (glycolytic, gly) and type I from the skeletal muscle of three mtDNA mutator mice. Each dot represents a single cell, with 15 cells per column, with mean and standard deviation shown. (B) Oxidative type II fibres were used to compare % COX deficiency to the value of SDH activity (relative OD, mean value of 3 replicates with standard deviation) obtained for each single cell.
1.25 MtDNA heteroplasmy in heart tissues

Cellular heteroplasmy describes the presence of wild-type and mutated copies of mtDNA molecules at a ratio that varies between organs and individual cells. The increase of this ratio towards the mutated variant is critical in the development of mtDNA-induced mitochondrial disease or may be a risk factor in the development of other age-related diseases (Stewart & Chinnery 2015). Using the NBTx assay, we were able to easily expose various levels of COX deficiency in heart tissues of mice with a point mutation in the \textit{mt-trNA}^{ALA} gene. Pups were assayed at weaning for their relative levels of the m.5024C>T mtDNA mutation using whole tissue quantitative pyrosequencing. Even mice with relatively high levels of the m.5024C>T mutation had low numbers of detectable dysfunctional cells within the tissue (Kaupilla et al. 2016). Heart sections reacted with the NBTx assay revealed areas with low (clear), intermediate (light blue) or high (dark blue) formazan catalysis (Figure 4.11A). We proceeded to isolate the different areas using laser capture microdissection with subsequent pyrosequencing to assay the relative m.5024C>T mutation level within the laser captured area. As expected, we observed a significant increase in the relative levels of the m.5024C>T mutation in dark or light blue areas, confirming a correlation between high relative levels of this pathogenic mutations and the presence of deficient COX activity (Figure 4.11B).
Figure 4.11 | Link between heteroplasmy levels and COX deficiency. (A) The high contrast ensued from the NBTx treatment of heart sections, allows a clear distinction of areas with low (clear), intermediate (light blue) or high (dark blue) formazan deposition. Scale bar, 20 µm. (B) Each area was collected separately with a laser dissecting microscope and analyzed using pyrosequencing technology. Results of at least 5 laser-capture microdissections for each color, from 4 different mice carrying heteroplasmic m.5024C>T mutation in the mt-tRNA^{ALA} gene. Single point values ± SD. One-way ANOVA: clear versus light blue or clear versus dark blue, p < 0.05. Light blue vs dark blue values are not statistically different. (C) Using a laser capturing microscope, COX-competent (clear) and COX-deficient (dark blue) cells were isolated from mt-tRNA^{ALA} mice treated with vehicle, low (1 x 10¹² vg) or a high (5 x 10¹² vg) dose of mitochondrially targeted zinc finger nucleases. N = at least 3 per group.

We proceeded to isolate the different areas using laser capture microdissection with subsequent pyrosequencing to assay the relative m.5024C>T mutation level within each region. Our results show a significant difference between the dark or light blue areas, compared to the clear areas (Fig. 4.11B). There was no statistically significant difference between the mutation loads in light versus dark blue areas, but the distribution suggests a greater variability in the mutation levels in the light blue areas. We demonstrate how the improved visibility of the NBTx reaction provides a robust and sensitive tool to study within-tissue heteroplasmy and the threshold to which pathologic mtDNA variants affect COX activity.

The NBTx was subsequently used to assess changes in the levels of COX deficiency after infusions of mitochondrially targeted zinc finger nucleases (mtZFNs). Engineered mtZFNs were specifically designed to target m.5024C>T mutation in the mt-tRNA^{ALA} mouse model so as to reduce its mutation load and test this approach as a
potential treatment strategy (Gammage et al 2014; Gammage et al 2018). Cardio-tropic adeno-associated virus (AAV9.45) was used as a vehicle and administered systemically to deliver mtZFNs to the host animal. After 65 days of recovery following tail-vein injection, animals were sacrificed and heteroplasmy levels in the heart were measured by pyrosequencing. Animals with high dose delivery showed a drastic drop in the m.5024C>T mutation load whereas low dose or vehicle had no effect (see Table 3).

<table>
<thead>
<tr>
<th>Animal #</th>
<th>Dose</th>
<th>Pre-treatment (mutation load in %)</th>
<th>Post-treatment (mutation load in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5×10^{12} vg</td>
<td>81</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>5×10^{12} vg</td>
<td>74</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>5×10^{12} vg</td>
<td>68</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>5×10^{12} vg</td>
<td>68</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>1×10^{12} vg</td>
<td>80</td>
<td>75</td>
</tr>
<tr>
<td>6</td>
<td>1×10^{12} vg</td>
<td>69</td>
<td>66</td>
</tr>
<tr>
<td>7</td>
<td>1×10^{12} vg</td>
<td>73</td>
<td>72</td>
</tr>
<tr>
<td>8</td>
<td>1×10^{12} vg</td>
<td>68</td>
<td>69</td>
</tr>
<tr>
<td>9</td>
<td>vehicle</td>
<td>67</td>
<td>72</td>
</tr>
<tr>
<td>10</td>
<td>vehicle</td>
<td>71</td>
<td>71</td>
</tr>
<tr>
<td>11</td>
<td>vehicle</td>
<td>68</td>
<td>69</td>
</tr>
<tr>
<td>12</td>
<td>vehicle</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>13</td>
<td>vehicle</td>
<td>74</td>
<td>74</td>
</tr>
<tr>
<td>14</td>
<td>vehicle</td>
<td>74</td>
<td>75</td>
</tr>
<tr>
<td>15</td>
<td>vehicle</td>
<td>75</td>
<td>74</td>
</tr>
<tr>
<td>16</td>
<td>vehicle</td>
<td>76</td>
<td>76</td>
</tr>
<tr>
<td>17</td>
<td>mt-tRNA$^{\text{ALA}}$ control</td>
<td>76</td>
<td>no treatment</td>
</tr>
<tr>
<td>18</td>
<td>mt-tRNA$^{\text{ALA}}$ control</td>
<td>75</td>
<td>no treatment</td>
</tr>
<tr>
<td>19</td>
<td>mt-tRNA$^{\text{ALA}}$ control</td>
<td>76</td>
<td>no treatment</td>
</tr>
<tr>
<td>20</td>
<td>mt-tRNA$^{\text{ALA}}$ control</td>
<td>73</td>
<td>no treatment</td>
</tr>
<tr>
<td>21</td>
<td>mt-tRNA$^{\text{ALA}}$ control</td>
<td>80</td>
<td>no treatment</td>
</tr>
<tr>
<td>22</td>
<td>mt-tRNA$^{\text{ALA}}$ control</td>
<td>78</td>
<td>no treatment</td>
</tr>
<tr>
<td>23</td>
<td>mt-tRNA$^{\text{ALA}}$ control</td>
<td>71</td>
<td>no treatment</td>
</tr>
<tr>
<td>24</td>
<td>mt-tRNA$^{\text{ALA}}$ control</td>
<td>70</td>
<td>no treatment</td>
</tr>
<tr>
<td>25</td>
<td>mt-tRNA$^{\text{ALA}}$ control</td>
<td>69</td>
<td>no treatment</td>
</tr>
</tbody>
</table>

Gammage and colleagues are reporting a successful reduction in heteroplasmy levels in favor of the wild-type variant. The heteroplasmy shift is accompanied by a significant increase in mt-tRNA$^{\text{ALA}}$ steady-state levels. In addition, analysis of heart tissue revealed metabolomic signatures of a rebalancing between oxidative and glycolytic metabolism.
These signatures included elevated phosphoenol pyruvate and pyruvate levels, lower lactate levels, higher glucose levels and lower glucose-6-phosphate and fructose-6-phosphate levels. Despite the apparent successful reduction of mutant mtDNA from cardiac tissue and promising recovery of metabolic function, the NBTx histochemistry exposed the presence of persistent COX-deficient cells. We analyzed the intensity of formazan deposition after the NBTx reaction in mice of 3 distinct mutation loads (70 %, 75 %, and 80 %) to match those used for the mtZFNs treatment. We have found that mice of each group displayed a characteristic distribution of relative OD, reflecting the load of COX-deficient cells in each group (Figure 9). Based on this, we were able to predict where on the graph an animal of a certain mutation load would be found. Subsequently, we plotted the results from NBTx reacted hearts of mt-tRNA^{ALA} treated with low (1 x 10^{12} viral genomes (vg) per monomer per mouse) or high (5 x 10^{12} vg) doses and compared them with control animals (untreated animals or vehicle injection). We found that despite a high viral dose which shifted the heteroplasmia levels in favor of the wild-type mtDNA copy, similar or increased levels of COX-deficiency were measured (Figure 4.12). More surprisingly, mtZFNs induced reduction in m.5024C>T mutation was equally strong in COX-competent and COX-deficient areas, as measured by pyrosequencing (Figure 4.11C). The persistent COX deficiency in cells despite a strong reduction in mutant mtDNA load is not yet elucidated.
Figure 4.12 | Range of COX deficiency in the mt-tRNA^{ALA} heart. (A) Quantification of COX-deficient cells in mt-tRNA^{ALA} with 70, 75 and 80 % (± 2) mutation load. N = 2 controls, 5 at 70 %, 5 at 75 % and 4 at 80 %. Each line represents the mean value of 3 replicates. (B) Comparison of COX deficiency distribution between control and mtDNA ZFNs treated animals at 70 %, (C) 75 % and (D) 80 % mutation load. Each line is 1 of 3 replicate for each animal. 2 animals at low dose and 2 animals at high dose were used for the 70 % group and only one animal at low dose and high dose were used at the 75 % and the 80 %. Due to this low number of treated animals, no statistical analysis was performed.
1.26 NBTx assay in the brain

Brain tissues show great heterogeneity in the distribution of mitochondria which varies according to the type of cell and the area within the neuronal cell. It is therefore particularly difficult to use the current enzyme histochemical methods to expose COX-deficiency in neuronal tissue. Protocols that succeed in revealing COX-deficiency nevertheless come short to properly expose low or intermediate levels. We adapted the NBTx assay for brain tissue by evaluating the capacity to maintain colorless tissue in wild-type animals as well as being able to expose low levels of COX deficiency (Figure 4.13, 4.14 and 4.15).
Figure 4.13 | Detection of COX-deficient cells in brain tissue: section 1. Coronal sections of young (12 weeks) male mouse brain corresponding to frontal area where the following structures are identified: 1. Cortex, 2. Corpus callosum, 3. Lateral ventricle, 4. Striatum, 5. Anterior commissure. 10 µm think sections reacted using the NBTx protocol or SDH activity with partial or full inhibition of COX activity with sodium azide. 30 minutes incubation at 25°C. Representative images of 3 replicates. Scale bar 50 µm.
Figure 4.14 | Detection of COX-deficient cells in brain tissue: section 2. The following structures are identified: 1. Cortex, 2. Hippocampus, 3. Thalamus, 4. Hypothalamus. 10 µm think sections reacted using the NBTx protocol or SDH activity with partial or full inhibition of COX activity with sodium azide. 30 minutes incubation at 25°C. Representative images of 3 replicates. Scale bar 50µm.
Figure 4.15 Detection of COX-deficient cells in brain tissue: section 3. The following structures within the cerebellum are identified: 1. Granular layer, 2. Molecular layer, 3. Arbor vitae, 4. 4th ventricle, 5. Reticular nucleus. 10 µm thick sections reacted using the NBTx protocol or SDH activity with partial or full inhibition of COX activity with sodium azide. 30 minutes incubation at 25°C. Representative images of 3 replicates. Scale bar 50 µm.
The NBTx assay in brain sections of different mouse models displaying various levels of COX deficiency was tested and compared to COX/SDH histochemical method. The Surf1 knockout revealed an easily observable deposition of blue pigments across the tissue (Figure 4.16A,B), whereas we found serial sections of control and mutant brain sections after a COX/SDH reaction difficult to analyze (Figure 4.16A,B second panel). The color is, as seen in the heart, similar to what one would see if the DAB incubation is insufficient to block all of the SDH activity in normal brain controls (Figure 4.16A, 20 minutes COX, third panel). Within these sections, it appears as though brown deposits within functional mitochondria are mixed with blue deficient mitochondria, rendering the coloration of Surf1 knockout brain sections difficult to interpret. There was no ambiguity with the NBTx assay; detection of COX-deficient cells against the background of COX-functional cells that lack any coloration provided excellent contrast.

Figure 4.16 | NBTx assay in brain tissue of Surf1 knockout mice. (a) Brain sections of wild-type mice are shown reacted either with the NBTx or the COX/SDH histochemical method. (b) Consecutive section of brain Surf1 knockout mice (n = 3). Scale bar, 500 µm.
The NBTx assay also proved efficient in mouse models where COX deficiency is not general but specific to targeted areas. For example, we used the Dars2NEKO mutant expressing Cre recombinase under the calcium/calmodulin-dependent kinase II alpha promoter (CaMKII\textalpha-Cre). Depletion of the DARS2 protein in this model is targeted to forebrain, hippocampal and striatum neurons (Arandjanski et al. 2017). Dars2 gene encodes for the mitochondrially expressed aspartyl-tRNA synthetase and is linked to severe mitochondrial dysfunction in humans (Scheper et al. 2007). The NBTx reveals substantial COX deficiency in 15 weeks old animals in hippocampal and cortical neurons (Figure 4.17), as it was previously shown with the sequential COX/SDH reactions (Arandjanski et al. 2017).

Figure 4.17 | NBTx assay in conditional knockout mouse models. Brain sections of wild-type mice remain clear in the hippocampus or the cortex area. Dars2NEKO mice on the other hand display strong formazan deposition. NBTx reaction, 1h at 25°C. representative images of 2 wild-type and 2 Dars2NEKO mice. Scale bar 50 µm.
One caveat with performing the NBTx assay is the assumption that a certain amount of mitochondrial activity is present in the tissue. The intensity of blue formazan deposition is proportional to the amount of Complex II molecules paired to a deficient Complex IV. Severe mitochondrial defects though can lead not only to a detectable OXPHOS deficiency but also to the loss of mtDNA and eventually cell death. For this reason, in tissues with low baseline levels of mitochondrial activity, the presence of disease causing genetic defects might render the mitochondrial activity critically low, making detection difficult.

To assess the limitations of the NBTx assay, we looked at the MitoPark mouse model where the knockout of the nucleus encoded mitochondrial transcription factor A ($Tfam$) gene in dopamine neurons leads to the reduction of mtDNA copy number with a severe respiratory chain dysfunction and a progressive loss of dopamine neurons in the midbrain (Ekstrand et al. 2007, Ekstrand & Galter 2009). Deficiency could not be detected with a standard NBTx assay, even after one hour incubation. We struggled equally to detect deficiency using the standard COX/SDH protocol. In this mouse model, it is reasonable to speculate that COX deficiency remains undetected because of a critically low level of mitochondrial activity and neuronal cell death. Indeed, deficient mitochondria were finally detected by changing the protocol to a long incubation of 2 hours (with a change of solution after the first hour), which suggest that the overall mitochondrial activity in this model is low due to impaired mitochondrial biogenesis and cell death. This was consistent with the incubation time also needed for the COX/SDH assay to reveal COX-deficient cells (Figure 4.18). This later set of data highlights the importance of considering mitochondrial content and cell death when interpreting negative data. The successful application of a considerably longer incubation time is, on the other hand, a good demonstration of the versatility and potential of the NBTx assay.
Figure 18 | NBTx assay in conditional knockout mouse models. Sections of midbrain area from wild-type or MitoPark mice reacted 2 hours in NBTx medium. Last panel shows midbrain of MitoPark mice after serial COX/SDH reaction (60 minutes in DAB solution followed by 2 hours in SDH solution). N = 3, Scale bar, 50 µm.

We proceeded with the evaluation of a few other mouse organs which are commonly used in our laboratories as an example of how various tissues respond to the NBTx assay. Deficient COX activity is easily revealed in colonic crypts (Figure 4.19, first panel, PolgA^{D257A} mtDNA mutator mice) and in skeletal muscles (Figure 4.19, second panel, Surf1 knockout mice). Furthermore, small developing sperm cells in the testis were also successfully detected with the NBTx method (Figure 4.19, third panel, PolgA^{D257A} mtDNA mutator mice). In the latter, a strong pink discoloration is easily recognizable. This additional pinkish color was seen in all tissue tested and is interpreted as a half-reduced intermediate which is partly washed away in ethanol (Nachlas et al. 1956, Altman 1976).
Figure 4.19 | NBTx assay on various mouse tissues. Detection of COX-deficient mitochondria was possible with several tissues taken from either mtDNA mutator mice or Surf1 knockout mice. First panel: colon, second panel: skeletal muscle, third panel: testis. Fresh frozen sections were cut at 10 µm and incubated for 30 minutes at 25°C. N = 3 per tissue, Scale bar, 100 µm.

Lastly we attempted to apply the NBTx assay on skin tissue. As anticipated, wild-type skin tissue remains clear and the mitochondrial activity is detected with formazan deposition in tissue treated with sodium azide (Figure 4.20A). Nevertheless, not all areas of wild-type skin tissue remain clear. Some significant amount of formazan is catalyzed despite the lack of COX deficiency in the wild-type tissue (Figure 4.20B). The reason for this unspecific deposition of formazan is unknown. One possible explanation is the composition of skin tissue which might interfere with proper diffusion of the reactants. Such conditions are not optimal and interfere with the interpretation of a positive signal in genetically modified animals.

Overall, we were able to successfully distinguish COX-functional and COX-dysfunctional regions using the single step NBTx assay in a variety of tissue types. As the concentration of respiratory complexes varies between tissues, incubation conditions need to be adjusted accordingly. For each organ, the correct incubation time and temperature is established by reacting wild-type tissue and assessing the best parameters to maintain a colorless tissue, indicating efficient PMS to COX electron
transfer. Additionally, incubation in SDH solution (1mM sodium azide to block all COX activity) provides information as to the maximum formazan deposition in a given tissue and whether the chosen incubation time and temperature is sufficient to expose slight decreases in COX activity (see full protocol Appendix C).

Figure 4.20 | NBTx assay in skin tissue. (A) Mouse skin tissue after NBTx assay (left panel) or SDH activity measured with the addition of sodium azide in the NBTx solution (right panel). (B) Sections of skin tissue from wild-type animal showing formazan deposition despite the presumed healthy mitochondria. Representative images of 3 replicates. Scale bar 50 µm
1.27 The application of the NBTx assay to study Drosophila melanogaster

The fruit fly Drosophila melanogaster is becoming more commonly used as an alternative animal model for mitochondrial research (Sánchez-Martínez et al. 2006). We therefore applied the NBTx reaction to the detection of mitochondrial COX activity in muscle sections from the fly thorax. Wild-type flies, as well as two different genetically engineered models were investigated. The fly Lrpprc2 gene is one of two homologs of the mouse Lrpprc gene also involved in coordinating mitochondrial gene translation. Manipulation of the Lrpprc2 knockout or knockdown leads to a drastic loss of respiratory chain complexes (Baggio et al. 2014). The DmPolγA flies are flies trans-complementing two deleterious mitochondrial polymerase gamma mutant alleles (the exo- deficient PolγA^{1257A} and the processivity impairing PolγA^{11134A} alleles), which present no pathogenic phenotype (Bratic et al. 2015). However using the NBTx assay, we were able to observe mild deficiency in COX activity. The high Complex IV content in the fly thoracic muscles require a short incubation time of only 10 minutes at 18°C to allow strong formazan deposition in the Lrpprc2 RNAi fly. DmPolγA muscles had only minimal formazan deposition, whereas wild-type healthy muscles remained colorless under these conditions (Figure 4.21).

Figure 4.21 | Skeletal muscles from the thorax of Drosophila melanogaster stained for 10 minutes at 18 °C. Representative images of 5 flies per genotype. Scale bar, 100 µm.
1.28 NBTx Assay in Human Diagnostics

The sequential COX/SDH histochemical assay is universally-applied in pathology laboratories as part of the diagnostic work-up of human tissue, including muscle biopsies, to identify COX deficient cells (Alston et al. 2016). To test the applicability of the NBTx method in human diagnostics, we compared serial sections of NBTx images against sequential COX/SDH and COX-only reactions for a variety of human biopsy samples, (Figure 4.22). Seven distinct genotypes were used to evaluate human skeletal muscles as well as seven samples of heart tissues (Figure 4.23 and 4.24). We found that regardless of the genetic defect (mtDNA mutations Figure 4.22A or nuclear gene mutations Figure 4.22B and 4.22C) the NBTx successfully exposed the full range of COX-deficient cells, as predicted from the COX/SDH sections, with the advantage that low and intermediate levels of dysfunction were distinguished with a quantifiable variation in blue intensity. In contrast to the classical COX/SDH reaction, the NBTx assay does not identify cells with functional mitochondria, regardless of the COX activity level (Figure 4.22A marked I and II) but, as seen in the mouse, reveals dysfunctional COX activity with the accumulation of blue formazan pigments with varying intensity (Figure 4.22A marked III, IV and V). Thus, NBTx successfully detected COX-deficient cells in all three types of tissue, in patterns consistent with the COX/SDH method. These data show that the NBTx assay is suitable for human diagnostic work, revealing high-contrast sections that allow for quantification and rapid diagnosis.
Figure 4.22. Human tissues analyzed using COX/SDH, NBTx or COX histochemical methods. (A) Skeletal muscle tissue with a novel m.16015T>C MTTP mutation. Roman numerals point to individual cells with: I) no COX deficiency, high COX activity, II) no COX deficiency, low COX activity III) mild COX deficiency, low SDH activity levels, IV) mild COX deficiency, mild SDH activity levels, V) strong COX deficiency, high SDH activity levels. (B) Section of skeletal muscle from patient with identified nuclear gene p.(Arg371Trp) TWNK (formerly PEO1) mutation. (C) Human heart tissue, p.Asn238Ser; c.829_830+2her_delGAGT RMND1 mutations. (D) Sections of colonic tissue from patient with no known mitochondrial disease. COX-deficient colonic crypts are detected in elderly patients. (n = 2, 78 and 72 years old). Scale bar, 100 μm.
Figure 4.23 | Skeletal muscle sections from patients with various genetic background. Tissue was cut at 10 µm and consecutive slides were used for comparing COX/SDH to the new NBTx method. Scale bar, 100 µm.

Figure 4.24 | Heart tissues from patients with various genetic background. Tissue was cut at 10 µm and consecutive slides were used for comparing COX/SDH to the new NBTx method. Scale bar, 100 µm.
DISCUSSION

Accurately quantifying COX impairment at the cellular level will contribute to understand the role of respiratory chain defects in mitochondrial disease processes and the implication of mitochondrial dysfunction in age-related diseases. The currently available methods for cell specific detection, like the COX-only histochemistry, immunolabeling of mitochondrial complex subunits or the sequential COX/SDH assay, involve either many steps or are limited to detection of high levels of COX deficiency, failing to clearly expose low or intermediate levels. Detecting deficiencies with the COX-only histochemistry or by using immunohistochemistry methods is achieved through the interpretation of a reduction in signal – indicating a poor COX activity – but since COX activity naturally varies between cells or sections of cell bodies, mild COX deficiencies cannot be ascertain with the use of those methods. As a direct visualization of deficient COX activity, the sequential COX/SDH method improves the quantification of dysfunctional cells. By highlighting areas of reduced COX activity with formazan deposition (blue) in addition to revealing positive COX activity with DAB oxidation (brown), the COX/SDH method also comes short in clearly detecting mild dysfunction.

The core of this work was to show that deficiency in cytochrome c oxidase activity can be detected with the simple reduction of NBT. It was demonstrated that the NBTx method exploits tightly competing biochemical interactions between PMS, NBT and Complex IV to evaluate the integrity of COX activity in an enzyme histochemical assay. Compare to the sequential COX/SDH reactions, the NBTx has the advantage of not requiring a double staining and eliminates the need for DAB. The presence of DAB has been reported to interfere with certain assays, such as real-time qPCR (Murphy et al. 2012) and therefore, the capacity to reveal COX deficient cells without DAB is advantageous in many ways. The NBTx assay generates images with a high-contrast between COX-deficient and COX-competent cells and not only reduces the overall cost; it is quick, and allows clear identification of cells harboring even mildly COX-deficient mitochondria. This single-color reaction has the added advantage that simple
automation and quantitative analysis are possible, without having to rely on comparing activity levels between samples.

The biological process driving the segregation of mutant mtDNA variants in some cells and not others, creating the typical mosaic distribution of COX-deficient cells across tissues, remains an important question to which there are currently no definite answers. As we demonstrated in the skeletal muscles of mtDNA mutator mice, individual fibers show COX deficiency with a variable intensity. With the acquisition of quantifiable data with the NBTx assay and, subsequently our ability to quantify fiber cell individually, we were able to distinguish the overall greater burden of COX-deficiency in oxidative type II fibers compared to glycolytic fibers. This degree of precision, to the best of our knowledge, had not been previously achieved. In addition, the sensitivity of the NBTx assay to low or intermediate levels of COX-deficiency made it possible to quantify the loss of COX activity in heart tissues of tRNAALA mice. This is a model with a single pathologic mtDNA mutation; an opportunity to study in vivo the distribution patterns of the mtDNA variants (heteroplasmy levels between tissues) as well as the consequences over the animal life span on the OXPHOS system and possibly on other mitochondrial functions. The ease at which cellular COX dysfunction was revealed and the detection of the full spectrum of deficiency with the NBTx assay permitted to establish that the COX deficiency burden within the heart of tRNAALA mice is predictable within a certain range based on the animal’s mutant mtDNA heteroplasmy level (see Figure 4.12). This surprising predictability opens up new avenues to address the complexing ways by which mutant mtDNA variants behave and their effect on COX activity in single cells. The NBTx assay will be advantageous in studying COX deficiencies in age-related mitochondrial diseases and in investigations of environmental factors or genetic backgrounds where their contribution to the clinical manifestations remains difficult to establish. Additionally, as shown here, the precision with which we were able to quantify COX deficiencies in tRNAALA mice enabled us to confidently evaluate the impact of a newly developed treatment: the injection of engineered mtZFNs
to eliminate the mutant variants. Hopefully more such attempts to find effective treatments can be supported by the NBTx assay in the future.

The one-step NBTx assay eliminates the confounding results observed with the sequential COX/SDH reaction of intermediate COX deficiency (Murphy et al. 2012). Unarguably, the strong contrast of blue COX-deficient cells over a clear background of fully-functional cells in the NBTx assay offers an improvement on previous methods. Our results on brain sections of Surf1 constitutive KO mice illustrate how intermediate levels of COX activity are easily identified. Beyond primary mitochondrial disease, loss of mitochondrial activity in the brain is a domain of investigation in normal ageing processes or age-related diseases such as Alzheimer’s or Parkinson’s disease (Navarro & Boveris 2006; Boveris & Navarro 2008; Swerdlow 2011). Reduction of COX activity in aged brain tissue has been reported in humans, rodents or monkeys using COX cytochemical or immunohistochemical methods (Itoh et al. 1996; Bertoni-Freddari et al. 2004; Navarro et al. 2002). Analysis of DAB accumulation or detection of immunolabeled Complex IV subunits is challenging because it requires imaging at very precise brain area and comparing those areas between samples. This limits the field of view to precisely where investigators make their measurements and given the heterogeneous distribution of mitochondrial activity in the brain, assessment of a loss of enzyme activity in the nervous system is difficult. Detection of COX-deficient cells in genetic models with neuron targeted gene knockouts, like the Dars2^{NEKO} or the Mitopark model, showed that the NBTx assay can be adapted to several models which display either strong COX deficiency (easily detectable and quantifiable) or in severe mitochondrial activity loss.

Based on the successful identification of COX deficiency in human tissues of a wide range of genetic background, we set the basis for establishing the NBTx within the diagnostic workflow. Although other approaches such as the COX/SDH, COX-only histochemistry or immunohistochemistry are routinely used and appreciated by
clinicians and pathologists, the new NBTx assay stands out as a new alternative to reveal the wider spectrum of COX-deficiency within a tissue.

The new NBTx assay is a strong complimentary tool to assess deficient COX activity for a variety of mouse or human tissues and smaller model organisms such as the fly, *Drosophila melanogaster*. In addition, we showed the potential for the acquisition of quantitative data, which will support research on mitochondrial disease mechanisms and also in the evaluation of therapeutic approaches and anticipate that the advantages of this method will benefit many in the field of mitochondrial research. This new assay not only gives an accurate readout of deficiency, it is the first enzyme histochemistry assay that exploits not a single enzyme activity but rather, the ratio of activity between 2 enzymes connected within one biochemical pathway. As such, the NBTx assay is of benefit for the field of mitochondrial biology research but also introduces a new avenue for the development of new enzyme histochemistry assays.
References

Wang, C., Youle, R.J., 2009. The role of mitochondria in apoptosis. Annual Reviews in Genetics, 43, 95-118

Appendix
Appendix A | Fiji Macro for NBTx Quantitative Analysis

Before

![Before Image]

After

![After Image]

```java
optionalManualRoiSelection=0; // if 1 manual ROI selection is offered for each image, if 0 autothresholding is applied without callback

directory=getDirectory("Choose a Directory");
filelist=getFileList(directory);
filelist=cleanFileList(filelist);
resultpath=directory+File.separator+"ImageJ";
origFile="";
if(!File.exists(resultpath)){
    File.makeDirectory(resultpath);
}
run("Clear Results");
run("Set Measurements...", "area mean standard min median area_fraction redirect=None decimal=3");
totalArea=newArray(filelist.length);
for(i=0;i<filelist.length;i++){
    open(filelist[i]);
    origImg=getImageID;
    origFile=File.nameWithoutExtension;
    deconvFile=resultpath+File.separator+origFile+"_"+i+".tif";
    selectImage(origImg);
    //TODO: Implement white balancing
    //TODO: Implement interactive component vector creation
```
//selectWindow("02_1345_NBTx15min_22DC_080616_001.tif - (Colour_3)"); close("*Colour_2*"); //selectWindow("02_1345_NBTx15min_22DC_080616_001.tif - (Colour_2)"); close("*Colour_3*"); //selectWindow("02_1345_NBTx15min_22DC_080616_001.tif - (Colour_1)"); deconvimg=getImageID; run("Invert"); run("Invert LUT"); run("Duplicate...", " "); maskimg=getImageID; setAutoThreshold("Huang"); setOption("BlackBackground", true); run("Convert to Mask"); run("Create Selection"); if(optionalManualRoiSelection){ discardAutothreshold=getBoolean("Would you like to change the selected ROI?"); if(discardAutothreshold){
 close;
 selectImage(deconvimg);
 run("Duplicate...", " ");
 maskimg=getImageID;

 //Prompt until user selected ROI
 setSelection=-1;
 while(setSelection<0){
 waitForUser("Create user defined selection");
 setSelection=selectionType();
 }
}
}
roiManager("Add"); selectImage(deconvimg);
roiManager("Select", i);
run("Measure");
selectImage(deconvImg);
run("Select All");
getStatistics(area); // assumes constant image size!
totalArea[i]=area;
save(deconvFile);
roiManager("Save", resultpath+File.separator+"RoiSet.zip");
close("**");
}
saveAs("Results", resultpath+File.separator+"Values.csv");
roiManager("reset");
plottitle=origFile;

xlabel="Image number";
ylabel="Stain Intensity [a.u.]";
thrshAreaValues=newArray(nResults);
thrshMeanValues=newArray(nResults);
thrshStdDevValues=newArray(nResults);

for(i=0;i<nResults;i++){
 thrshAreaValues[i]=getResult("Area", i);
 thrshMeanValues[i]=getResult("Mean", i);
 thrshStdDevValues[i]=getResult("StdDev", i);
}
yValues=thrshMeanValues;

Plot.create(plottitle, xlabel, ylabel);
Plot.setColor("darkGray");
Plot.add("line", thrshMeanValues);
Plot.add("error bars", thrshStdDevValues);

Plot.setColor("lightGray");
for(i=0;i<nResults;i++){
x=i*(1/(nResults-1));
areaPercentage=round((thrshAreaValues[i]/totalArea[i])*100);
Plot.addText(areaPercentage+"%", x, 0.12);
row=nResults-(nResults-i);
setResult("%Area",row,areaPercentage);
}
Plot.show();
saveAs("png",resultpath+File.separator+"Plot.png");

function cleanFilelist(filelist)

 origLength=filelist.length;
 cleanLength=origLength;
 for(i=0;i<origLength;i++){
 if(!endsWith(filelist[i],".tif"){

 cleanLength=cleanLength-1;

 filelist[i]="-";

 } } if(cleanLength==origLength) {

 return filelist;

 } cleanList=newArray(cleanLength);
 idx=0;
 for(i=0;i<origLength;i++){
 if(filelist[i]!="-"{

 cleanList[idx]=filelist[i];

 idx=idx+1;

 } } return cleanList;
Wild Types SDH activity

<table>
<thead>
<tr>
<th>Strain</th>
<th>Type 1</th>
<th>Type 2</th>
<th>Type 3</th>
<th>Type 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adj512</td>
<td>Adj552</td>
<td>Adj553</td>
<td>Adj554</td>
</tr>
<tr>
<td></td>
<td>Adj512</td>
<td>Adj552</td>
<td>Adj553</td>
<td>Adj554</td>
</tr>
<tr>
<td></td>
<td>Adj512</td>
<td>Adj552</td>
<td>Adj553</td>
<td>Adj554</td>
</tr>
</tbody>
</table>

Appendix B | Raw Data
Appendix B | Raw Data

mtDNA mutator (#21-4418): SDH and NBTa

Sample	Adjusted (Ug)	AF	NBTa	Adjusted	Average	AF	NBTa	Adjusted	Average	AF	NBTa	Adjusted	Average	AF	NBTa						
51	121.11	18.79	1.06																		
52	175.92	15.99	0.89																		
133	8.9970	18.69	1.00																		
13	11.3343	17.87																			

GA

<table>
<thead>
<tr>
<th>Cell #</th>
<th>Type 1</th>
<th>Type 2</th>
<th>Type 3</th>
<th>Type 4</th>
<th>Type 5</th>
<th>Type 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20.96</td>
<td>210.86</td>
<td>183.39</td>
<td>179.76</td>
<td>179.76</td>
<td>187.00</td>
</tr>
<tr>
<td>2</td>
<td>210.24</td>
<td>213.54</td>
<td>187.27</td>
<td>193.00</td>
<td>190.00</td>
<td>193.00</td>
</tr>
<tr>
<td>3</td>
<td>205.25</td>
<td>207.32</td>
<td>185.94</td>
<td>165.63</td>
<td>163.72</td>
<td>170.92</td>
</tr>
<tr>
<td>4</td>
<td>208.43</td>
<td>212.87</td>
<td>165.13</td>
<td>225.60</td>
<td>216.84</td>
<td>205.03</td>
</tr>
<tr>
<td>5</td>
<td>192.81</td>
<td>206.84</td>
<td>184.05</td>
<td>134.50</td>
<td>134.50</td>
<td>157.50</td>
</tr>
<tr>
<td>6</td>
<td>184.28</td>
<td>185.90</td>
<td>180.12</td>
<td>180.30</td>
<td>180.30</td>
<td>181.30</td>
</tr>
<tr>
<td>7</td>
<td>190.05</td>
<td>193.75</td>
<td>154.28</td>
<td>163.36</td>
<td>160.00</td>
<td>159.38</td>
</tr>
<tr>
<td>8</td>
<td>210.57</td>
<td>214.52</td>
<td>225.66</td>
<td>221.31</td>
<td>221.31</td>
<td>226.40</td>
</tr>
<tr>
<td>9</td>
<td>181.34</td>
<td>189.69</td>
<td>194.10</td>
<td>190.23</td>
<td>189.85</td>
<td>189.85</td>
</tr>
<tr>
<td>10</td>
<td>205.86</td>
<td>210.82</td>
<td>171.30</td>
<td>170.72</td>
<td>169.50</td>
<td>170.50</td>
</tr>
<tr>
<td>11</td>
<td>212.37</td>
<td>215.60</td>
<td>211.26</td>
<td>207.15</td>
<td>206.20</td>
<td>207.15</td>
</tr>
<tr>
<td>12</td>
<td>200.33</td>
<td>213.69</td>
<td>198.59</td>
<td>196.50</td>
<td>196.50</td>
<td>196.50</td>
</tr>
<tr>
<td>13</td>
<td>197.84</td>
<td>210.77</td>
<td>211.48</td>
<td>210.50</td>
<td>210.50</td>
<td>210.50</td>
</tr>
<tr>
<td>14</td>
<td>213.92</td>
<td>217.58</td>
<td>213.92</td>
<td>212.50</td>
<td>212.50</td>
<td>212.50</td>
</tr>
<tr>
<td>16</td>
<td>213.84</td>
<td>212.86</td>
<td>213.84</td>
<td>212.86</td>
<td>212.86</td>
<td>212.86</td>
</tr>
<tr>
<td>17</td>
<td>192.81</td>
<td>206.84</td>
<td>192.81</td>
<td>192.81</td>
<td>192.81</td>
<td>192.81</td>
</tr>
</tbody>
</table>

Selena

<table>
<thead>
<tr>
<th>Sample</th>
<th>Type 1</th>
<th>Type 2</th>
<th>Type 3</th>
<th>Type 4</th>
<th>Type 5</th>
<th>Type 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.876</td>
<td>26.645</td>
<td>20.549</td>
<td>28.064</td>
<td>0.878</td>
<td>4.328</td>
</tr>
<tr>
<td>2</td>
<td>50.945</td>
<td>62.768</td>
<td>75.36</td>
<td>73.822</td>
<td>58.32</td>
<td>51.77</td>
</tr>
<tr>
<td>4</td>
<td>25.714</td>
<td>33.029</td>
<td>24.99</td>
<td>24.72</td>
<td>23.16</td>
<td>22.68</td>
</tr>
<tr>
<td>5</td>
<td>50.689</td>
<td>64.287</td>
<td>51.104</td>
<td>56.102</td>
<td>52.00</td>
<td>53.28</td>
</tr>
<tr>
<td>6</td>
<td>35.762</td>
<td>43.032</td>
<td>28.23</td>
<td>27.974</td>
<td>26.92</td>
<td>26.49</td>
</tr>
<tr>
<td>7</td>
<td>35.246</td>
<td>50.835</td>
<td>27.40</td>
<td>26.096</td>
<td>26.57</td>
<td>26.13</td>
</tr>
<tr>
<td>8</td>
<td>42.083</td>
<td>48.388</td>
<td>34.534</td>
<td>34.534</td>
<td>41.48</td>
<td>41.48</td>
</tr>
<tr>
<td>9</td>
<td>50.201</td>
<td>51.373</td>
<td>71.402</td>
<td>70.056</td>
<td>71.95</td>
<td>70.95</td>
</tr>
<tr>
<td>10</td>
<td>4.016</td>
<td>46.942</td>
<td>4.016</td>
<td>46.942</td>
<td>4.016</td>
<td>46.942</td>
</tr>
<tr>
<td>11</td>
<td>30.889</td>
<td>82.454</td>
<td>74.111</td>
<td>74.297</td>
<td>80.56</td>
<td>81.11</td>
</tr>
<tr>
<td>12</td>
<td>7.256</td>
<td>76.703</td>
<td>82.82</td>
<td>81.69</td>
<td>82.82</td>
<td>81.69</td>
</tr>
<tr>
<td>13</td>
<td>30.728</td>
<td>32.058</td>
<td>35.06</td>
<td>33.109</td>
<td>35.06</td>
<td>33.10</td>
</tr>
<tr>
<td>14</td>
<td>32.875</td>
<td>29.596</td>
<td>36.028</td>
<td>35.109</td>
<td>36.028</td>
<td>35.10</td>
</tr>
<tr>
<td>15</td>
<td>72.144</td>
<td>72.264</td>
<td>72.103</td>
<td>72.103</td>
<td>72.103</td>
<td>72.103</td>
</tr>
</tbody>
</table>
Appendix B | Raw Data

mtDNA mutator (421-4336): SDH and NBT

<table>
<thead>
<tr>
<th>Type</th>
<th>Adjacent Factor</th>
<th>mtDNA</th>
<th>NBTb</th>
<th>Adjusted Average</th>
<th>NBTb Avg</th>
<th>Adjusted</th>
<th>NBTb Avg</th>
<th>Adjusted</th>
<th>NBTb Avg</th>
<th>Adjusted</th>
<th>NBTb Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>10.04</td>
<td>141.8</td>
<td>5.79</td>
<td>23.72</td>
<td>19.05</td>
<td>23.72</td>
<td>19.05</td>
<td>23.72</td>
<td>19.05</td>
<td>23.72</td>
<td>19.05</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 (Continued)

<table>
<thead>
<tr>
<th>Cell A</th>
<th>Adjacent Factor</th>
<th>mtDNA</th>
<th>NBTb</th>
<th>Adjusted Average</th>
<th>NBTb Avg</th>
<th>Adjusted</th>
<th>NBTb Avg</th>
<th>Adjusted</th>
<th>NBTb Avg</th>
<th>Adjusted</th>
<th>NBTb Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Adjacent Factor</th>
<th>mtDNA</th>
<th>NBTb</th>
<th>Adjusted Average</th>
<th>NBTb Avg</th>
<th>Adjusted</th>
<th>NBTb Avg</th>
<th>Adjusted</th>
<th>NBTb Avg</th>
<th>Adjusted</th>
<th>NBTb Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Type</th>
<th>Adjacent Factor</th>
<th>mtDNA</th>
<th>NBTb</th>
<th>Adjusted Average</th>
<th>NBTb Avg</th>
<th>Adjusted</th>
<th>NBTb Avg</th>
<th>Adjusted</th>
<th>NBTb Avg</th>
<th>Adjusted</th>
<th>NBTb Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>Type</th>
<th>Adjacent Factor</th>
<th>mtDNA</th>
<th>NBTb</th>
<th>Adjusted Average</th>
<th>NBTb Avg</th>
<th>Adjusted</th>
<th>NBTb Avg</th>
<th>Adjusted</th>
<th>NBTb Avg</th>
<th>Adjusted</th>
<th>NBTb Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
</tbody>
</table>

Table 5

<table>
<thead>
<tr>
<th>Type</th>
<th>Adjacent Factor</th>
<th>mtDNA</th>
<th>NBTb</th>
<th>Adjusted Average</th>
<th>NBTb Avg</th>
<th>Adjusted</th>
<th>NBTb Avg</th>
<th>Adjusted</th>
<th>NBTb Avg</th>
<th>Adjusted</th>
<th>NBTb Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
</tbody>
</table>
Value of Azide ROD: Comparing Wild-Type versus Mutator

<table>
<thead>
<tr>
<th></th>
<th>Type IIc</th>
<th>Type I</th>
<th>Type IIb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sneu26</td>
<td>Sneu27</td>
<td>Sneu28</td>
</tr>
<tr>
<td></td>
<td>201.06</td>
<td>195.69</td>
<td>164.04</td>
</tr>
<tr>
<td></td>
<td>197.60</td>
<td>202.37</td>
<td>179.61</td>
</tr>
<tr>
<td></td>
<td>212.55</td>
<td>202.33</td>
<td>152.03</td>
</tr>
<tr>
<td></td>
<td>194.07</td>
<td>213.52</td>
<td>183.61</td>
</tr>
<tr>
<td></td>
<td>204.88</td>
<td>206.20</td>
<td>161.09</td>
</tr>
<tr>
<td></td>
<td>198.71</td>
<td>192.44</td>
<td>165.31</td>
</tr>
<tr>
<td></td>
<td>197.71</td>
<td>203.68</td>
<td>178.39</td>
</tr>
<tr>
<td></td>
<td>199.06</td>
<td>210.94</td>
<td>213.75</td>
</tr>
<tr>
<td></td>
<td>188.59</td>
<td>201.59</td>
<td>205.03</td>
</tr>
<tr>
<td></td>
<td>188.38</td>
<td>205.87</td>
<td>218.05</td>
</tr>
<tr>
<td></td>
<td>196.07</td>
<td>216.60</td>
<td>212.21</td>
</tr>
<tr>
<td></td>
<td>201.68</td>
<td>191.80</td>
<td>191.98</td>
</tr>
<tr>
<td>Average</td>
<td>198.36</td>
<td>203.59</td>
<td>185.42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Type IIc</th>
<th>Type I</th>
<th>Type IIb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4335</td>
<td>4410</td>
<td>4336</td>
</tr>
<tr>
<td></td>
<td>216.65</td>
<td>191.95</td>
<td>228.44</td>
</tr>
<tr>
<td></td>
<td>213.51</td>
<td>193.27</td>
<td>218.10</td>
</tr>
<tr>
<td></td>
<td>222.67</td>
<td>179.28</td>
<td>171.85</td>
</tr>
<tr>
<td></td>
<td>224.07</td>
<td>200.51</td>
<td>216.84</td>
</tr>
<tr>
<td></td>
<td>210.07</td>
<td>193.50</td>
<td>213.95</td>
</tr>
<tr>
<td></td>
<td>208.17</td>
<td>190.00</td>
<td>215.86</td>
</tr>
<tr>
<td></td>
<td>215.25</td>
<td>168.00</td>
<td>235.75</td>
</tr>
<tr>
<td></td>
<td>218.01</td>
<td>218.06</td>
<td>236.32</td>
</tr>
<tr>
<td></td>
<td>212.08</td>
<td>190.96</td>
<td>228.64</td>
</tr>
<tr>
<td></td>
<td>215.25</td>
<td>192.73</td>
<td>219.54</td>
</tr>
<tr>
<td></td>
<td>205.76</td>
<td>215.12</td>
<td>207.19</td>
</tr>
<tr>
<td></td>
<td>199.41</td>
<td>205.48</td>
<td>225.76</td>
</tr>
<tr>
<td>Average</td>
<td>213.41</td>
<td>194.90</td>
<td>218.19</td>
</tr>
</tbody>
</table>
Appendix C | NBTx Protocol

NBTx Protocol

Marie-Lune Simard
Research Group Stewart, Genome Evolution and Aging
Created on June 2017

Material

1. Sodium succinate dibasic hexahydrate (Sigma S2378, 100 g)
2. Phenazine methosulfate (Sigma P9625, 500 mg)
3. Nitrotetrazolium Blue chloride (Sigma N6876, 500 mg)
4. Sodium azide (Sigma 71289, 50 g)
5. Sodium dihydrogen orthophosphate monohydrate (VWR 102454R)
6. Disodium hydrogen phosphate anhydrous(VWR 444423K)
7. 96 % Ethanol denatured with 1 % MEK(Appli-Chem A2551, 5 L)
8. 99 % Ethanol denatured with 1 % MEK (Appli-Chem A5007, 5 L)
9. Superfrost Plus microscope slides from Menzel (24x60 mm, 1.5, VWR 631-0853)
10. Xylene (Appli-Chem A2476, 5 L)
11. Cytoseal (Thermo Scientific 8312-4)
12. Cooling and heating incubator

Reagents Preparation and Storage

Phosphate Buffer 0.1M pH 7.0

1. Solution A: dissolve 15.6 g sodium dihydrogen orthophosphate in 500 ml deionized water
2. Solution B: dissolve 28.3 g disodium hydrogen phosphate in 1 L deionized water
3. Mix 390 ml solution A to 610 ml solution B
4. Adjust to pH 7.0
5. Make up to 2 L with deionized water
6. Aliquot into 50 ml Falcon tubes
7. Store at -20 °C

Phenazine methosulfate (PMS, 2.0 mM)

PMS solutions should be prepared in deionized water. Solutions in water are stable and decomposition of solutions with formation of pyocyanine and other products can be avoided. PMS is also very sensitive to light exposure and as such should be stored in a dark area.

1. Dissolve 6.12 mg PMS in 10 ml deionized water
2. Aliquot 410 µl into 0.5 ml tubes
3. Store at -20 °C in a light protected area

Nitroblue tetrazolium chloride (NBT)

NBT solution is prepared fresh. Non-enzymatic formation of formazan crystals can form over time in solution. To avoid this, we prepare aliquots of 5 mg of NBT powder in Eppendorf tubes which we dilute in PBS when needed. 3.2ml of 0.1 M PBS is added to 5 mg NBT (1.875 mM final concentration).

Sodium succinate (1.3 M)

1. Dissolve 3.5 g in 10 ml 0.1 M phosphate buffer, pH 7.0.
2. Aliquot 410 µl into 0.5 ml microtubes.
3. Store at -20 °C.

Sodium azide (100 mM)

1. Dissolve 32.5 mg sodium azide in 5 ml 0.1 M phosphate buffer, pH 7.0.
2. Aliquot 100 µl into 0.2 ml microtubes
3. Store at -20 °C.
Establishing Staining Conditions

Before getting started, determining proper staining conditions is essential. Ideally, temperature and incubation time are optimized to obtain both colorless tissues from wild-type animals AND a strong and rapid deposition of blue formazan crystals when blocking complex IV with either sodium azide or potassium cyanide. When these two conditions are met, unspecific staining in healthy mitochondria is avoided and sensitive detection of low levels of complex IV deficiency is possible. Because mitochondrial enzymatic activity varies between species and organs, it is important to set up staining conditions that are valid for the tissue which is to be evaluated.

1. Choose incubation temperature (see Table 1 for guidelines)
 Caution: dissolved oxygen in the incubation solution is limited and quickly depleted when mitochondrial activity is increased at high temperatures. Lack of oxygen will cause the reduction of NBT in healthy tissues.

2. Incubate healthy tissues from young animals (e.g. 12 weeks’ old mice) for 15, 30, 45 and 60 minutes in NBTx solution (see Basic Protocol below). Note if or when tissue appears blue.

3. Adjust temperature so that tissue remains clear, preferentially even after 60 minutes.
 Troubleshooting: If tissue does not remain clear, consider the following aspects: Tissue thickness (7 to 12 µm are recommended), relative humidity in incubation chamber (below 50%), slide should not be covered (remove lid), temperature.

4. Test formazan deposition with 1 mM sodium azide (or potassium cyanide). Add 10 µl of sodium azide stock solution (see section: Reagents Preparation and Storage) to 1 ml NBTx solution. Incubate for 30 minutes at desired temperature.
 Note: If, in the presence of 1 mM sodium azide, formazan deposition after 30 minutes is weak, small changes in complex IV oxidative activity in affected tissues might not be detectable. Consider changing parameters.
Basic Protocol

1. Cut frozen tissue onto Superfrost plus microscope slides. Let sections thaw briefly to stick to the slide then store at -20 °C or -80 °C for long term storage. Section thickness can be adjusted to fit the tissue at hand (see section: Establishing Staining Conditions).

 Caution: storing tissue sections will reduce mitochondrial enzymatic activity over time.

2. Preincubate sections 10 minutes in 0.1 M PBS at the desired temperature.

 Note: see Establishing Staining Conditions section to determine temperature.

3. Prepare fresh NBT solution by adding 3.2 ml PBS to 5 mg NBT powder. Calculate 1 ml NBTx solution per slide.

 Caution: reducing the volume of solution covering tissue sections might increase unspecific formazan catalysis.

4. Rapidly thaw 0.4 ml 1.3 M sodium succinate and 0.4 ml 2.0 mM phenazine methosulphate. Mix to 3.2 ml NBT solution.

5. Remove PBS by tipping slides on a piece of paper and add 1 ml NBTx solution to each slide.

6. Incubate for 30 minutes or according to your established staining conditions.

7. Wash in purified water for 2 to 5 minutes.

8. Dehydrate tissue through a series of increasing concentrations of ethanol (e.g. 50 %, 70 %, 96 %, 100 %, 100 %), allowing at least 5 minutes in the final 100 % ethanol.

 Note: A reddish color, which is attributed to a semi-reduced form of NBT, is ethanol soluble and should be washed away easily in the final ethanol steps. Blue formazan is ethanol insoluble (Itoh et al. 1996; Bertoni-Freddari et al. 2004; Navarro et al. 2002).

9. Proceed to two changes, 5 minutes each, in 100 % xylene.

10. Mount with Cytoseal.
Figures and Tables

Table 1: Staining Guidelines

<table>
<thead>
<tr>
<th></th>
<th>Section Thickness (µm)</th>
<th>Temperature (°C)</th>
<th>Time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart</td>
<td>7 to 10</td>
<td>37</td>
<td>20-30</td>
</tr>
<tr>
<td>Skeletal muscle</td>
<td>7 to 10</td>
<td>37</td>
<td>30-45</td>
</tr>
<tr>
<td>Colon</td>
<td>7 to 10</td>
<td>37</td>
<td>30-45</td>
</tr>
<tr>
<td>Mus musculus (C57BL/6N)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart</td>
<td>7 to 12</td>
<td>18 to 25</td>
<td>30</td>
</tr>
<tr>
<td>Brain</td>
<td>10 to 16</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>Skeletal muscle</td>
<td>10 to 16</td>
<td>18 to 25</td>
<td>30</td>
</tr>
<tr>
<td>Testis</td>
<td>10 to 16</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>Drosophila melanogaster</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorax muscle</td>
<td>7 to 10</td>
<td>18 to 25</td>
<td>10</td>
</tr>
</tbody>
</table>

Figure 1: Schema of the NBTx’s biochemical reactions. Succinate is used to engage the activity of Complex II. Phenazine methosulfate (PMS) acts as an intermediate electron carrier between Complex II and either Complex IV or tetrazolium salts (NBT).
Erklärung

Marie-Lune Simard
Köln, Sept. 2018