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Zusammenfassung 

Der mutualistische Wurzelendophyt Serendipita indica fördert das Pflanzenwachstum 

und führt zu erhöhter Resistenz gegen abiotische und biotische Stressfaktoren in vielen 

experimentellen Wirtspflanzen. S. indica hat sich durch seine Anpassungsfähigkeit, sein 

großes Wirtsspektrum und die Fähigkeit auch in axenischen Kulturen wachsen zu 

können, zum Modellorganismus der Pilzordnung Sebacinales entwickelt. Zusätzlich ist 

das Genom sequenziert und der Pilz ist transformierbar. Um die molekularen 

Werkzeuge für die funktionelle Charakterisierung von Effektorproteinen 

weiterzuentwickeln, wurde ein Proteinproduktionssystem mit Hilfe des induzierbaren 

SiFGB1 Promotors zur Aufreinigung von sekretierten Proteinen in S. indica etabliert. 

Modulare Vektoren und Kulturkonditionen wurden für die Expression und Sekretion von 

homologen und heterologen Proteinen verbessert. Außerdem wurde ein 

Gendeletionssystem basierend auf homologer Rekombination mit einer geteilten 

Resistenzkassette in S. indica entwickelt.  

S. indica löst nach einer anfänglichen biotrophen Phase Zelltod während der 

kompatiblen Pflanzenbesiedlung aus. Die pilzlichen Induktoren und Effektoren, welche 

diesen Wurzelzelltod initiieren und regulieren sind unbekannt. Um den vom Pilz 

verursachten Wurzelzelltodmechanismus besser zu charakterisieren, wurde die 

Auflösung der Nuklei in kolonisierten Arabidopsiswurzeln mittels verschiedener 

Färbungen unter dem konfokalen Laserrastermikroskop analysiert. Außerdem wurde 

eine pilzliche, sekretierte Endonuklease, genannt SiNUCA, im apoplastischen Fluid 

kolonisierter Gerstenwurzeln gefunden. SiNUCA wurde funktionell charakterisiert und 

es wurde überprüft, ob das Protein in der Zelltodreaktion involviert ist. SiNUCA ist ein 

konserviertes, kleines sekretiertes Protein, welches zur Superfamilie der His-Me Finger 

Endonukleasen gehört. Das Protein wurde über heterologe Expression in Ustilago 

maydis und über Proteinaufreinigung aus dem Kulturfiltrat von S. indica charakterisiert 

und es wurde gezeigt, dass SiNUCA zuckerunspezifische Nukleaseaktivität hat. 

Ektopische Expression in Arabidopsis führte zu einem erhöhten Kolonisierungslevel von 

S. indica und mehr Wurzelzelltod. SiNUCA lokalisierte in späten Kolonisierungsphasen 

im Pflanzennukleus, wo das Protein Zelltod ausführen könnte. Im Apoplast könnte 

SiNUCA an der Inaktivierung der extrazellulären DNA, welche ein sogenanntes «damage-

associated molecular pattern» ist, beteiligt sein.   
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Abstract 

The mutualistic root endophyte Serendipita indica leads to growth promotion and 

enhanced resistance to abiotic and biotic stresses in many experimental hosts. Due to 

its versatility, broad host range and ability to grow in axenic culture S. indica emerged 

as the model species in the fungal order Sebacinales. Furthermore, its genome is 

available and the fungus is genetically tractable. To further develop the molecular tools 

for functional characterisation of effector proteins a protein production system for 

purification of secreted proteins was established in S. indica using the inducible 

promoter SiFGB1. Modular vectors and culture conditions were improved for expression 

and secretion of homologous and heterologous proteins. In addition, gene deletion via 

homologous recombination using a split resistance cassette was developed in S. indica.  

 

After an initial biotrophic phase, S. indica triggers cell death during compatible root 

colonisation. The fungal elicitors and effectors, which initiate and regulate this root cell 

death are unknown. To better characterise the mechanisms involved in fungal-mediated 

root cell death nuclei disappearance was analysed in colonised Arabidopsis roots with 

different stainings by confocal laser scanning microscopy. Additionally, a fungal-

secreted endonuclease named SiNUCA was found in the apoplastic fluid of colonised 

barley roots, functionally characterised and its involvement in cell death examined. 

SiNUCA revealed to be a conserved small secreted protein belonging to the His-Me 

finger endonucleases. Characterisation of SiNUCA by heterologous expression in 

Ustilago maydis and by purification of the protein from S. indica culture filtrate showed 

that SiNUCA has sugar non-specific nuclease activity. Ectopic expression in Arabidopsis 

led to higher colonisation levels and more root cell death. SiNUCA localised to the plant 

nucleus at later colonisation stages where it could function as an executor of plant cell 

death. In the apoplast, SiNUCA could be involved in inactivation of the damage-

associated molecular pattern extracellular DNA.  
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List of Abbreviations 

ADP Adenosine diphosphate kDa kilodalton 
AF Alexa fluor LC-

MS/MS 
Liquid chromatography-tandem 
mass spectrometry 

AMP Adenosine monophosphate MAMP Microbe-associated molecular 
pattern 

ANOVA Analysis of variance MES 2-(N-morpholino)ethanesulfonic 
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BLAST Basic Local Alignment Search Tool NET Nucleic acid extracellular trap 
BLC Border- like cells NUCA Nuclease A 
bp base pair OD600 Optical density at a wavelength of 

600 nm 
c.v. cultivar PBS phosphate-buffered saline 
ca. circa PCR Polymerase Chain Reaction 
Cas 9 CRISPR associated protein 9 PEG polyethylene glycol 
cDNA complementary DNA PRR Pattern-recognition receptor 
CLSM Confocal laser scanning microscopy qPCR quantitative PCR 
CM Complete medium RACE-

PCR 
Rapid amplification of cDNA-ends 
with PCR 

CRISPR Clustered Regularly Interspaced Short 
Palindromic Repeats  

RCD Regulated cell death 

dAdo 2’-deoxyadenosine RNA Ribonucleic acid 
DAMP Damage-associated molecular pattern RNAi RNA interference 
dAMP 2’-deoxyadenosine monophosphate RNase Ribonuclease 
DAPI 4ʹ,6-Diamidine-2ʹ-phenylindole 

dihydrochloride 
ROS Reactive oxygen species 

dd double distilled RT Room temperature 
DEPC Diethyl pyrocarbonate SDS-

PAGE 
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polyacrylamide gel electrophoresis 

DNA deoxyribonucleic acid SEM Standard error of the mean 
DNase deoxyribonuclease SMART Simple modular architecture 

research tool 
dNTP nucleoside triphosphate SNP Single nucleotide polymorphism 
dpi days post inoculation SP Signal peptide 
DTT dithiothreitol sp. species 
DUF Domain of unknown function SSP Small secreted protein 
eATP extracellular ATP ssp. subspecies 
EDTA Ethylenediaminetetraacetic acid TEF Translation elongation factor 1-a 
ER Endoplasmic reticulum UBI Ubiquitin 
ETI Effector-triggered immunity UV ultraviolet 
exDNA extracellular DNA v/v volume per volume 
FGB1 Fungal Glucan-Binding 1  VPE Vacuolar processing enzyme 
FITC fluorescein isothiocyanate w/o without 
GA Gibberellic acid w/v weight per volume 
gDNA genomic DNA WGA Wheat Germ Agglutinin 
GFP Green fluorescent protein wt wildtype 
GPD glyceraldehyde-3-phosphate 

dehydrogenase 
YNB Yeast nitrogen base 
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1 Introduction 

1.1 The fungal order Sebacinales-from saprotrophic to mycorrhizal fungi 

Organisms do not live on their own but rather in constant exchange with each other in 

a dynamic environment. The symbiosis between two species can range from antagonism 

(negative effect for both partners) over parasitism (one-sided profit) to mutualism 

(beneficial for both sides) (Martin & Schwab, 2013). Around 85 % of the land plants live 

in constant symbiosis with mycorrhizal fungi (Brundrett, 2009). Mycorrhizal fungi 

facultatively associate with their plant host or live as obligate biotrophs meaning that 

fungal growth and proliferation is plant host-dependent (Brundrett & Tedersoo, 2018). 

They make specialised structures for nutrient exchange termed arbuscules (arbuscular 

mycorrhiza), the hartig net (ectomycorrhiza) or hyphal coils (ericoid and orchid 

mycorrhiza) (Brundrett & Tedersoo, 2018).  

In general, inorganic phosphate and nitrogen in form of ammonium, nitrate, urea or 

amino acids is taken up from the fungus and given to the plant through specific 

phosphate and ammonium/nitrate transporters at the plant-fungus interface (Bonfante 

& Genre, 2010; Parniske, 2008). In exchange, the fungus receives photosynthetically 

fixed carbon via hexose transporters (Bonfante & Genre, 2010; Parniske, 2008). The 

plant does not only benefit from nutrients but also from an increased tolerance to 

abiotic stresses like drought and heat and increased resistance to soil-borne pathogens, 

nematodes and feeding insects (Cameron et al., 2013; Jung et al., 2012; Latef et al., 

2016).  

The fungal order Sebacinales (Agaricomycetes, Basidiomycota) contains fungi with 

saprotrophic, endophytic and mycorrhizal lifestyles (Weiss et al., 2016). In the 

Basidiomycota, the Sebacinales is the most basal branch with mycorrhizae and the more 

derived forms are obligate biotrophs (Weiss et al., 2004; Weiss et al., 2011). Therefore, 

a nutritional shift from saprotrophy to obligate biotrophy was suggested in this group 

(Weiss et al., 2004; Weiss et al., 2011). Fungi of the order Sebacinales can be found in 

different habitats worldwide, are highly abundant, and have a broad host range (Garnica 

et al., 2013; Oberwinkler et al., 2013; Weiss et al., 2004; Weiss et al., 2011). This suggests 

that they play a hidden but important role in natural and cultivated ecosystems (Weiss 

et al., 2011). The root endophyte Serendipita indica (basionym Piriformospora indica) is 
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the best characterised species of the Sebacinales because it is genetically tractable and 

thus, represents a model for this order (Gill et al., 2016; Weiss et al., 2016).  

 

1.2 The root endophyte Serendipita indica 

S. indica was originally isolated with an arbuscular mycorrhizal spore of Glomus mosseae 

from the woody shrubs Prosopis juliflora and Ziziphus nummularia in the Indian desert 

(Verma et al., 1998). This fungus is able to colonise a broad range of experimental plant 

hosts as an endophyte but can also saprotrophically grow in the absence of a living host 

(Franken, 2012; Varma et al., 1999). Among the tested plant hosts are the crops wheat, 

barley, maize and tomato, medicinal plants like Spilanthes calva and Withania 

somnifera, and the non-mycorrhizal model plant Arabidopsis thaliana (Fakhro et al., 

2010; Peškan-Berghöfer et al., 2004; Rai et al., 2001; Serfling et al., 2007; Varma et al., 

1999; Waller et al., 2005). S. indica plant colonisation results in plant growth promotion, 

improved development and seed germination as shown for various plant hosts (Franken, 

2012). Moreover, protection against abiotic stresses such as drought and salt in addition 

to increased local and systemic resistance to pathogens can be observed (Molitor et al., 

2011; Saddique et al., 2018; Sherameti et al., 2008; Sun et al., 2014; Waller et al., 2005).  

S. indica-colonised Chickpea and rice show elevated nitrogen, phosphate and potassium 

respectively phosphate and zinc levels (Nautiyal et al., 2010; Saddique et al., 2018). 

Furthermore, the phosphate amount is higher in shoots of colonised maize compared 

to non-colonised plants and plants colonised with a S. indica knock-down mutant of a 

high affinity phosphate transporter (Yadav et al., 2010). S. indica colonisation also leads 

to higher biomass and nitrogen levels in tobacco seedlings where S. indica induces a 

nitrate reductase (Sherameti et al., 2005). Direct phosphate uptake was shown for 

Arabidopsis and maize: higher levels of radioactively labelled phosphate were detected 

in colonised plants (Bakshi et al., 2015; Shahollari et al., 2005; Yadav et al., 2010). 

However, the phosphate or nitrogen content was not enhanced with S. indica 

colonisation in Nicotiana attenuata and barley (Achatz et al., 2010; Barazani et al., 

2005). Dependency of phosphate uptake on phosphate concentration in the medium 

was demonstrated in maize but could not be confirmed in Arabidopsis (Bakshi et al., 
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2015; Kumar et al., 2011). Thus, it was hypothesised that nutrient uptake is dependent 

on the plant host and development stage (Gill et al., 2016).  

S. indica colonises the plant root extracellularly and intra- and intercellularly the 

epidermal cells, cortex cells and root hairs but not the vascular tissue or endodermis 

(Deshmukh et al., 2006; Jacobs et al., 2011). Therefore, fungal growth is restricted to the 

roots and is not systemic. In barley and Arabidopsis, colonisation mainly occurs at the 

maturation zone but rarely at the elongation and meristematic zone (Deshmukh et al., 

2006; Jacobs et al., 2011). Cells are directly penetrated without specific structures and 

colonisation increases with root maturation, which is in contrast to mycorrhizal 

colonisation (Deshmukh et al., 2006; Gill et al., 2016; Jacobs et al., 2011; Qiang et al., 

2012a) (Fig. 1.1).  

 

 Fig.1.1: S. indica colonisation pattern 

in Arabidopsis roots.  

S. indica (green) colonises root hairs, 

epidermal and cortex cells but cannot 

enter the endodermal layer (brown) 

and the vasculature. Mainly the 

maturation zones I and II and not the 

elongation and meristematic zones 

are colonised.  

(adapted from Jacobs et al., 2011) 
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Zuccaro et al. established a protoplast-mediated S. indica transformation system in 2009 

for stable random genome integration of a linearised plasmid (Zuccaro et al., 2009). For 

selection of the transformants the Hygromycin B or Geneticin resistance cassette driven 

by the S. indica translation elongation factor 1-a (TEF) or glyceraldehyde-3-phosphate 

dehydrogenase (GPD) promoter were used. Gene silencing based on RNA interference 

(RNAi) was introduced in 2012 by Hilbert et al. The genome was sequenced in 2011 and 

transcriptomic analysis of fungal growth in planta was performed (Lahrmann et al., 

2013; Lahrmann et al., 2015; Zuccaro et al., 2011).  

S. indica harbours a heterokaryotic mycelium with two nuclei (Zuccaro et al., 2011). Only 

the asexual lifecycle with chlamydospore formation but never karyogamy, followed by 

meiosis to obtain basidiospores with germinating homokaryotic mycelium, has been 

observed so far. However, homokaryotic mycelium formation can be artificially achieved 

by fungal transformation because in some cases one of the two nuclei gets lost during 

the protoplast formation and regeneration process (Wawra et al., 2016). Homokaryotic 

and dikaryotic strains harbouring a random integrated Geneticin resistance cassette in 

the genome were analysed for their saprotrophic and endophytic growth behaviour 

(Bachelor thesis Griebel, 2016). Interestingly, in all obtained homokaryotic strains the 

same mating type is detected meaning that always protoplasts with the same nuclear 

type are regenerating after transformation. Homokaryotic strains are impaired in 

growth on plates but not in colonising barley roots seven days post inoculation (dpi) 

(Bachelor thesis Griebel, 2016). The genome of the homokaryotic strain used as 

reference strain in Wawra et al. 2016 is sequenced. Comparison to the dikaryotic 

wildtype genome from Zuccaro et al. 2011 reveals the absence of ca. 40 genes in this 

homokaryotic strain (personal communication Dr. G. Langen). The missing genes code 

for hypothetical proteins without functional domains, which could be interesting 

candidates for characterisation. These genes could be responsible for the inability of one 

of the nuclear types to regenerate or for the homokaryotic saprotrophic growth 

phenotype.  
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1.3 S. indica requires regulated host cell death for development in planta 

S. indica has a biphasic lifestyle with an early biotrophic and a later cell death-associated 

phase (Deshmukh et al., 2006; Jacobs et al., 2011; Zuccaro et al., 2011). In the first stage, 

the invasive hyphae are embedded by the host plasma membrane and the plant cell 

stays alive (Jacobs et al., 2011). In the second stage, S. indica grows and makes 

chlamydospores in dead cells (Deshmukh et al., 2006; Lahrmann et al., 2013). However, 

this host cell death is restricted to colonised cells and necrosis or tissue browning has 

never been observed (Deshmukh et al., 2006; Jacobs et al., 2011; Lahrmann et al., 2013). 

Plant development is not harmed in the long-lasting symbiosis (Deshmukh et al., 2006; 

Jacobs et al., 2011; Lahrmann et al., 2013).  

At the transition from the biotrophic to the cell death- associated phase S. indica 

undergoes a transcriptional and nutritional reprogramming (Lahrmann et al., 2013; 

Zuccaro et al., 2011). This reprogramming is activated by nitrogen depletion and leads 

to induction of fungal hydrolytic enzymes and nutrient transporters around four dpi 

(Lahrmann et al., 2013; Zuccaro et al., 2011) (Fig. 1.2). The fungal high-affinity 

ammonium transporter Amt1 might work as nitrogen sensor because down regulation 

of Amt1 leads to a prolonged biotrophic phase in barley (Lahrmann et al., 2013). BAX 

inhibitor-1 (BI-1) is a conserved suppressor of cell death, which regulates endoplasmic 

reticulum (ER) stress supporting cell integrity under stress conditions (Gill et al., 2016; 

Hückelhoven, 2004). S. indica suppresses BI-1 in barley from five dpi on and colonisation 

is reduced in plants overexpressing BI-1 (Deshmukh et al., 2006). Therefore, Deshmukh 

et al. proposed that S. indica needs to interact with host cell death for its development 

(Deshmukh et al., 2006).  
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Fig.1.2: Lifestyle of S. indica in the host barley. 

Chlamydospores germinate and emerging hyphae attach to and enter an epidermal root cell without 

forming specific structures. Effectors and hydrolytic enzymes are needed in this phase to penetrate the 

root cell. The plant reacts with defence responses including pathogenesis- related (PR) proteins and 

the phytohormones abscisic acid (ABA) and auxin (AUX). Consequently, S. indica suppresses the plant 

immune response secreting specific effectors and grows biotrophically in and between epidermal and 

cortex cells. Moreover, fungal nitrogen (N) and carbohydrate (C) transporters are upregulated. After a 

few days, a switch to the cell death-associated phase occurs where the fungus secretes effectors and 

hydrolytic enzymes. This leads to changes in brassinosteroide (BR) and gibberellic acid (GA) metabolism 

on the plant side. Subsequently, colonised cells are dying and the fungus produces chlamydospores 

intra- or extracellularly to fulfil its lifecycle.  

(adapted from Zuccaro and Lahrmann, 2014) 

 

In Arabidopsis, cell death is observed from three dpi onwards (Jacobs et al., 2011). 

Gibberellic acid (GA) levels negatively correlate with the expression levels of BOI 

(Botrytis Susceptible1 Interactor), which negatively regulates cell death (Jacobs et al., 

2011; Luo et al., 2010). Mutants deficient in GA biosynthesis are less colonised by S. 

indica at later colonisation stages and in accordance with this Arabidopsis mutants with 

constant GA signalling have a higher colonisation rate (Jacobs et al., 2011). Therefore, 

Jacobs et al. hypothesised that S. indica recruits GA, which leads to lower BOI levels and 

a reduced threshold for cell death (Jacobs et al., 2011). Cytological studies in Arabidopsis 
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roots revealed disintegration of the ER net and globular ER structures at the end of the 

biotrophic phase of colonised cells, which leads to vacuole collapse and consequently 

cell death (Qiang et al., 2012b). A marker for cell death in roots is the activity of the 

vacuolar processing enzyme (VPE) (Qiang et al., 2012b). VPE is a cysteine proteinase 

processing vacuolar proteins that arouses vacuolar rupture and cell death (Hatsugai et 

al., 2015). Its enzymatic activity resembles caspase 1- a key cysteine protease in animal 

cell death (Hatsugai et al., 2015). At 7 dpi (but not at 3 dpi) VPE and caspase 1-like activity 

is enhanced in S. indica-colonised Arabidopsis roots, which coincides with less cell 

viability detected by fluorescein diacetate (Lahrmann et al., 2013; Qiang et al., 2012b). 

In accordance, a vpe-null mutant is better colonised at 3 dpi and less colonised at 7 dpi 

(Qiang et al., 2012b). Qiang et al. showed that mainly γVPE of the four VPEs in 

Arabidopsis is involved in S. indica colonisation (Qiang et al., 2012b). Furthermore, 

colonised barley roots also have enhanced VPE activity (Lahrmann et al., 2013). Qiang 

et al. suggested that S. indica enhances ER stress and concurrently suppresses the 

adaptive unfolded protein response, which is supposed to support the ER under stress 

conditions (Bao & Howell, 2017; Qiang et al., 2012b). As a consequence, a VPE-

dependent cell death is conducted, which is essential for later colonisation stages (Qiang 

et al., 2012b) (Fig. 1.3).  
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Fig.1.3: Model for cell death-associated Arabidopsis root colonisation by S. indica. 

S. indica interacts with the immune system for example by interacting with the GA signalling to prepare 

for root cell death. S. indica enhances ER stress and inhibits the adaptive unfolded protein response 

(UPR) at the same time. This leads to ER swelling followed by vacuolar collapse and local cell death 

where VPE and caspase 1-like enzymes are active. Mainly γVPE of the four VPEs in Arabidopsis is 

involved.  

TF= transcription factor. 

(adapted from Qiang et al. 2012b) 

 

There are several types of cell death described in plants. Regulated cell death (RCD) has 

important functions in plant development, homeostasis and in coping with (a)biotic 

stresses (Galluzzi et al., 2018; Kabbage et al., 2017). In many papers programmed cell 

death is referred to apoptotic-like cell death, which shows characteristics like chromatin 

condensation, DNA laddering, cell shrinkage and maintenance of plasma membrane 

integrity. (Dickman & Fluhr, 2013; Galluzzi et al., 2018). Recently, Distefano et al. 

described an iron-dependent cell death in plants called ferroptosis-like cell death 

(Distefano et al., 2017). Ferroptosis-like cell death is induced in plant roots by heat shock 

and leads to reduction of glutathione and ascorbic acid and an increase in reactive 

oxygen species (ROS) (Distefano et al., 2017).  

Autophagy is described as a process where proteins or whole organelles are sequestered 

in autophagosomes and are finally degraded in vacuoles (Kabbage et al., 2017). It is an 

effective mechanism to gain biosynthetic building blocks under stress conditions and as 

a consequence to maintain energy homeostasis (Kabbage et al., 2017). Emerging data 

suggest that autophagy is a key regulator in the tightly controlled RCD, which can result 

in cell survival or cell death (Üstün et al., 2017). A set of conserved genes named 

autophagy related genes (Atg) are involved in this regulation (Üstün et al., 2017). 

Moreover, autophagy regulates basal immunity and hypersensitive response (HR) thus, 

connecting autophagy and plant immunity (Leary et al., 2017; Y. Liu et al., 2005). 

Autophagy can suppress RCD induced by necrotrophic pathogens and promotes locally 

restricted HR triggered by biotrophic pathogens (Üstün et al., 2017). On the other side, 

the RCD machinery can be hijacked by necrotrophic pathogens, which feed on dead host 

cells (Kabbage et al., 2017). Sclerotinia sclerotiorum is a necrotrophic pathogen that 

produces oxalic acid as a key virulence toxin, which leads to apoptotic-like cell death in 
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the hosts (Kim et al., 2008). Kabbage et al. showed that an oxalic acid deficient mutant 

is not pathogenic and exhibits a RCD type proved to be autophagy (Kabbage et al., 2013). 

Therefore, different types of RCD can lead to disease susceptibility or resistance and it 

also highly depends on whether the plant or the pathogen is controlling RCD 

(Bagniewska-Zadworna & Arasimowicz-Jelonek, 2016; Kabbage et al., 2017; Leary et al., 

2017).  

S. indica-colonised dead cells do not show accumulation of ROS or enhanced 

autofluorescence caused by phenolic compounds proposing that the RCD type is not HR 

(Deshmukh et al., 2006; Jacobs et al., 2011). Moreover, S. indica was able to better 

colonise Arabidopsis mutants compromised in autophagy suggesting that autophagy 

contains S. indica and its triggered RCD (Fig. 1.4). Deshmukh et al. observed DNA 

laddering and rarely DNA double strand breaks giving evidence for an apoptosis-like cell 

death (Deshmukh et al., 2006). It is unknown if the same kind of RCD is induced in 

different plant hosts. Furthermore, we do not know the S. indica elicitors and effectors 

that initiate and regulate RCD and if the metabolic status of the host effects the S. indica 

cell death-associated phase.  

 
 

Fig.1.4: Colonisation of Arabidopsis autophagy mutant 

lines with S. indica. 

Roots of Arabidopsis Col-0, atg 5 and atg 10 lines 

inoculated with S. indica wt and analysed 14 dpi. 

Colonisation rate detected as relative amount of fungal 

to plant DNA (measured as ratio of SiTEF to AtUBI). 

ANOVA with posthoc Tukey test p< 0.01. 

(data provided by Lisa Leson)  

 

 

1.4 The orchid mycorrhizal fungus Serendipita vermifera  

Serendipita vermifera (MAFF 305830), basionym Sebacina vermifera, is an orchid 

mycorrhizal fungus isolated from the Australian orchid Cyrtostylis reniformis and is the 

closest known homologue of S. indica (Lahrmann et al., 2015; Warcup, 1988). S. 

vermifera can grow as saprotroph and as endophyte in various experimental hosts and 
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analysis of its genome and transcriptome in Arabidopsis revealed a similar lifestyle to S. 

indica (Kohler et al., 2015; Lahrmann et al., 2015). Barley colonisation with S. vermifera 

isolates increases shoot length, shoot weight and biotic resistance (Deshmukh et al., 

2006). Inoculation of N. attenuata seeds results in growth promotion, earlier flowering 

and higher seed production (Barazani et al., 2005; Barazani et al., 2007). Moreover, 

inoculation of switchgrass under drought stress and Arabidopsis roots with S. vermifera 

leads to growth promotion (Ghimire et al., 2009; Ghimire & Craven, 2011; Lahrmann et 

al., 2015). On top, the genome was sequenced and the S. indica transformation protocol 

was adapted for S. vermifera in 2015 (Kohler et al., 2015; Lahrmann et al., 2015).  

 

1.5 Effector proteins and mutualism 

Microbes are recognised by conserved molecules called microbe-associated molecular 

patterns (MAMPs) whereby chitin for fungi and flagellin for bacteria are the best studied 

examples (Jones & Dangl, 2006; Yu et al., 2017). Moreover, damage-associated 

molecular patterns (DAMPs) are released by the host upon cellular damage (Choi & 

Klessig, 2016). MAMPs and DAMPs are specifically perceived by the plant through 

pattern-recognition receptors (PRRs) and as a consequence a fast plant response 

including calcium influx into the cytoplasm and production of extracellular ROS is 

activated (Choi & Klessig, 2016; Couto & Zipfel, 2016). Signal transduction cascades are 

followed, which lead to transcriptional changes of defence-related genes and to 

hormone signalling (Couto & Zipfel, 2016; Yu et al., 2017). This basal and undirected 

immune response is successful against non-adapted microbes and called MAMP-

triggered immunity (MTI) (Jones & Dangl, 2006).  

In order to overcome MTI, microbes secrete effectors into the apoplast (apoplastic 

effectors) or are alternatively translocated into the host cell (cytoplasmic effectors) (Win 

et al., 2012). In general, effectors bind host targets to alter plant processes, which results 

in propagation in the host (called effector-triggered susceptibility) (Jones & Dangl, 

2006). Traditionally, effectors are characterised as small secreted proteins (SSP) with a 

size of less than 300 amino acids that possess a signal peptide (SP) but lack conserved 

domains (Lo Presti et al., 2015). Moreover, many SSP are cysteine rich for the formation 

of stabilising disulphide bridges (Lo Presti et al., 2015). Effectors are highly variable and 

dispensable, and can be host, colonisation stage and organ specific (Lo Presti et al., 2015; 
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Rövenich et al., 2014; Toruno et al., 2016). If apoplastic effectors are recognised by 

receptor-like proteins on the cell surface a plant response is triggered, which ends in 

effector-triggered defence (Stotz et al., 2014). Cytoplasmic effectors might be 

intracellularly sensed by nucleotide binding-leucine rich repeat receptors, which leads 

to effector-triggered immunity (ETI). ETI typically culminates in HR with local cell death 

(Selin et al., 2016; Win et al., 2012).  

Under natural conditions a plant is not interacting with one pathogen but with a whole 

bunch of different microbes with various lifestyles - its microbiome (Hacquard et al., 

2017; Vandenkoornhuyse et al., 2015). The plant can dynamically shape its microbial 

community, which results in higher stress resistance (Vandenkoornhuyse et al., 2015). 

Along with this, MTI is needed to limit microbial growth and to control long term 

colonisation (Fesel & Zuccaro, 2016; Hacquard et al., 2017). It was shown that indolic 

glucosinolates, as part of plant innate immunity, are necessary to maintain a mutualistic 

interaction of the root endophytes S. indica, S. vermifera and Colletotrichum tofialdiae 

with Arabidopsis (Hiruma et al., 2016; Lahrmann et al., 2015; Nongbri et al., 2012). 

Therefore, not only pathogens but also mutualists need to interact with the plant 

immune system to establish their symbiosis with the host (Rövenich et al., 2014; Zipfel 

& Oldroyd, 2017). S. indica can actively suppress the plant immune system for example 

by reduction of the MAMP-induced oxidative burst (Jacobs et al., 2011; Schafer et al., 

2009).  

Therefore, the question arose how the plant immune system can distinguish between 

beneficial and pathogenic invaders (Plett & Martin, 2015). Little is known but it was 

suggested that PRRs for MAMP/ DAMP perception and nutrient monitoring on the plant 

side and symbiotic factors, effector proteins and small interfering RNAs on the microbe 

side might play key roles (Plett & Martin, 2018; Zipfel & Oldroyd, 2017). Banhara et al. 

showed that S. indica plant colonisation is independent of plant-common symbiosis 

genes, which are required for arbuscular mycorrhizae and root nodule formation of 

nitrogen-fixing bacteria (Banhara et al., 2015). Compared to pathogenic fungi only few 

effector proteins of mycorrhizal fungi have been characterised so far (Casarrubia et al., 

2018; Kloppholz et al., 2011; Plett et al., 2011; Tsuzuki et al., 2016; Zhang et al., 2018). 

Two functionally characterised effector proteins are published for the root endophyte 

S. indica. PIIN_08944 was suggested to be involved in root colonisation by suppressing 
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MTI responses (Akum et al., 2015). The fungal specific lectin FGB1 was shown to modify 

its cell wall and to suppress MTI too (Wawra et al., 2016).  

The ability of S. indica to colonise various hosts requires adaptation and specific 

response to different plant signals (Jacobs et al., 2011; Lahrmann et al., 2013; Lahrmann 

et al., 2015; Zuccaro et al., 2011). Effector proteins are proposed to have a key role in 

these processes (Lahrmann et al., 2013; Lahrmann et al., 2015; Lahrmann & Zuccaro, 

2012; Zuccaro et al., 2011). Lahrmann et al. showed that different fungal genes are 

upregulated depending on the colonisation stage and plant host (Lahrmann et al., 2013). 

463 of the genes induced in planta are putative secreted proteins with 216 of them are 

SSPs (Lahrmann et al., 2013) (Fig. 1.5). 562 putative effectors were detected in S. 

vermifera with 112 being upregulated in Arabidopsis at different colonisation time 

points (Lahrmann et al., 2015). 104 orthologous SSPs were found in S. indica with 17 of 

them transcriptionally induced in Arabidopsis suggesting that these are conserved core 

effectors (Lahrmann et al., 2015). Moreover, fungal proteins in the apoplastic fluid (APF) 

of inoculated barley roots were analysed by a proteomics approach (Wawra et al., 2016). 

102 fungal proteins are specifically found in the APF and are not secreted in axenic 

culture (Nizam et al., 2018). There are different proteins present depending on the 

colonisation stage. The combination of transcriptomic and proteomic data offers good 

effector candidates for further functional analysis in S. indica plant colonisation.  
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Fig.1.5: S. indica expression of SSPs is host and colonisation phase dependent. 

Arabidopsis (PI_AT) and barley (PI_HV) colonised with S. indica. Number of SSPs induced in planta at 3 

and 14 dpi detected by a microarray chip.  

(adapted from Lahrmann et al. 2013) 

 

1.6 Fungal protein production systems 

Heterologous protein expression and purification is routinely applied to characterise 

proteins of interest in fundamental science and is also the method of choice in industrial 

protein production. Biopharmaceuticals like vaccines, antibodies and hormones, and 

enzymes for many industrial processes are produced in heterologous protein production 

systems (Adrio & Demain, 2010; Berlec & Strukelj, 2013; Corchero et al., 2013; Demain 

& Vaishnav, 2009). The most utilised organism is Escherichia coli, which is well-studied 

and detailed information about genomics, transcriptomics and metabolomics are 

available (Corchero et al., 2013). In addition, this bacterium is very suitable for genetic 

engineering (Corchero et al., 2013). E. coli is fast-growing, can produce high protein 

yields and is cheap in production (Berlec & Strukelj, 2013; Demain & Vaishnav, 2009). 

Major drawbacks of this system are the inability to carry out eukaryotic post-

translational modifications and no or improper disulphide bridge formation (Berlec & 

Strukelj, 2013; Demain & Vaishnav, 2009). Therefore, the production of eukaryotic 

proteins in this system often leads to non-native protein folding and accumulation of 

protein aggregates in inclusion bodies (Berlec & Strukelj, 2013; Demain & Vaishnav, 

2009). Bacteria like Bacillus subtilis can overcome the inclusion body problem as 

proteins can be secreted into the culture medium (Demain & Vaishnav, 2009; Schmidt, 

2004). Generally, purification of secreted proteins is preferred as the culture medium 

contains less host proteins and downstream protein purification is faster and easier 

(Demain & Vaishnav, 2009; Schmidt, 2004).  

The most widespread eukaryotic protein expression systems are yeasts like 

Saccharomyces cerevisiae or Pichia pastoris (Berlec & Strukelj, 2013; Demain & 

Vaishnav, 2009). The main advantages over prokaryotic systems are glycosylation of 

proteins, disulphide bridge formation and efficient protein secretion (Berlec & Strukelj, 

2013; Demain & Vaishnav, 2009). Protein expression systems are also established for 

filamentous fungi mainly of the Ascomycetes Aspergillus sp. and Trichoderma sp. 
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(Nevalainen & Peterson, 2014). They are preferentially used for the production of 

industrial enzymes, metabolites and antibiotics (Adrio & Demain, 2010; Schmidt, 2004). 

The main advantages of filamentous fungi are the secretion of very high protein yields 

and post-translational modifications (Corchero et al., 2013; Demain & Vaishnav, 2009; 

Nevalainen & Peterson, 2014).  

Fungi of the Basidiomycetes are less established for protein production probably due to 

less sequenced organisms (Joint Genome Institute (JGI) (http://jgi.doe.gov/fungi)) and 

few established transformation protocols for these fungi. For example, a laccase was 

produced in high amounts in the white rot fungus Pycnoporus cinnabarinus (Alves et al., 

2004). A laccase was also overexpressed in the model organism Coprinopsis cinerea 

(Kilaru et al., 2006) and C. cinerea was established for heterologous expression of 

various enzymes like a xylanase from Aspergillus oryzae (Kikuchi et al., 2004) or a 

immunomodulatory protein from the medicinal fungus Ganoderma sinense (Han et al., 

2010). Moreover, a lectin from Pleurocybella porrigens was produced in Phanerochaete 

sordida that was not possible to express in E. coli and the yeast Kluyveromyces lactis 

(Suzuki et al., 2014). Basidiomycetes secrete unique lignin-degrading enzymes, 

(hemi)cellulases and proteases which are highly valuable in industrial processes like food 

and textile production (Erjavec et al., 2012; D. M. Mate & Alcalde, 2017; Ward, 2012). 

Some proteins were successfully produced in heterologous systems like for example a 

laccase from Cyathus bulleri in P. pastoris with high activity levels (Garg et al., 2012), a 

laccase from P. cinnabarinus in Aspergillus niger (Record et al., 2002) or a pyranose 

dehydrogenase from Agaricus meleagris in P. pastoris (Sygmund et al., 2012). However, 

there is still lots of potential for the exploration of valuable Basidiomycete proteins and 

high yield homologous or heterologous production (Erjavec et al., 2012).  

Mainly wood-degrading and edible Basidiomycete species have been characterised for 

biotechnological use so far (Erjavec et al., 2012). One of the best characterised 

Basidiomycete protein expression system of a plant-interacting fungi is Ustilago maydis 

(Feldbrugge et al., 2013). The maize pathogen U. maydis can grow in a yeast-like state 

in liquid cultures and also fermenters (Feldbrugge et al., 2013). This model 

Basidiomycete is genetically well-characterised (Kämper et al., 2006) and tools for high 

protein expression and secretion are established (Terfruchte et al., 2017). Proteins are 

fused to the chitinase Cts1 for unconventional secretion, which leads to non-
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glycosylated secreted proteins (Sarkari et al., 2014; Stock et al., 2012; Terfruchte et al., 

2017). This is an advantage for the production of biopharmaceutics because improper 

glycosylation might lead to immune reactions (Gerngross, 2004). However, many 

eukaryotic proteins need specific glycosylation patterns for correct folding and protein 

activity (Corchero et al., 2013; Nevalainen & Peterson, 2014).  

Depending on the properties of the protein and the required modifications different 

organisms must be tested for optimal protein production, purification and activity 

(Corchero et al., 2013). The establishment of a protein production system in an 

endophytic fungus of the Agaricomycota might bring complementing properties which 

can be advantageous not only for the production of homologous but also heterologous 

proteins especially of the Basidiomycetes. S. indica has been established as the model 

organism of the Sebacinales (Agaricomycota) over the last years (Gill et al., 2016; Weiss 

et al., 2016). Its genome is sequenced, the fungus is transformable and can easily grow 

in axenic culture (Verma et al., 1998; Zuccaro et al., 2009; Zuccaro et al., 2011). Vassilev 

et al. showed that S. indica can be used in a repeated-batch fermenter (Vassilev et al., 

2017). S. indica has the potential to obtain the “Generally Recognised As Safe” status 

because of its non-pathogenic nature and since there were no genes for the production 

of toxic secondary metabolites and cyclic peptides identified in its genome (Zuccaro et 

al., 2011). This fact is important for the production of proteins in the food and 

biopharmaceutical industry (Ward, 2012). Moreover, S. indica naturally produces many 

cell wall-degrading enzymes (Lahrmann et al., 2015; Zuccaro et al., 2011) whose 

production could be optimised.  
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1.7 Aim of the thesis 

The aim of this thesis was to shed light on how Sebacinoid core effectors are involved in 

establishing and maintaining root symbiosis. In order to functionally characterise the 

Sebacinoid effectors, the toolbox of the model fungus and root endophyte S. indica of 

the order Sebacinales was further developed. A protein production system was 

established by optimising vectors and conditions for expression and secretion of 

homologous and heterologous proteins in S. indica. A gene deletion system using 

homologous recombination with a split resistance cassette was developed. Besides, the 

colonisation abilities of the homokaryotic versus the dikaryotic S. indica strains were 

studied.  

The cell death-associated colonisation phase of S. indica was further analysed by 

cytological studies and by functional characterisation of a fungal effector protein with 

nuclease features named SiNUCA. The protein domains, phylogeny and gene expression 

patterns of SiNUCA were depicted. SiNUCA was heterologously expressed in the model 

Basidiomycete U. maydis to analyse protein secretion and enzyme activity. Enzymatic 

specifications were further determined by purification of the native protein with a C-

terminal HA:His tag from culture filtrate. SiNUCA was overexpressed and deleted in S. 

indica to study the effect on Arabidopsis and barley colonisation. On top, SiNUCA was 

ectopically expressed in Arabidopsis for protein localisation studies and to analyse its 

effect on colonisation and its involvement in host cell death.  

The tools developed in this thesis will help to further characterise fungal key factors in 

plant-microbe interactions. These data provide a deeper insight into how cell death is 

involved in symbiotic plant-microbe interactions.  
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2 Results 

2.1 S. indica as a protein production system 

2.1.1 The SiFGB1 promoter is strong and inducible in axenic culture 

For gene expression in S. indica the S. indica constitutive promoters GPD or TEF were 

routinely used (Hilbert et al., 2012; Zuccaro et al., 2009). This led for example to good 

expression of S. indica codon-optimised green fluorescent protein (oGFP, Hilbert et al., 

2012) but only to weak expression of endogenous genes like FGB1 probably due to gene 

silencing (Wawra et al., 2016). Therefore, inducible or heterologous promoters for gene 

expression in S. indica were tested. First of all, the promoter of S. vermifera TEF was 

cloned in front of GFP. Transformation with random integration of the plasmid led to 

strong cytoplasmic GFP expression in S. indica (Fig. 2.1) indicating that this promoter is 

a good alternative for constitutive gene expression in S. indica.  

 

 

 

Fig. 2.1: GFP expression driven by the S. 

vermifera TEF promoter in S. indica. 

S. indica strain expressing cytosolic GFP 

under the control of the constitutive S. 

vermifera TEF promoter. Fluorescence 

microscopy of living S. indica grown for 6 

days in liquid CM. Bars = 100 µm. 

 

In a next step, the S. indica promoter of FGB1 was tested as an inducible promoter in 

axenic culture. FGB1 is one of the most abundant secreted proteins in complete medium 

(CM) but not in yeast nitrogen base (YNB) medium (Wawra et al., 2016). In accordance, 

S. indica strains expressing FGB1 with a C-terminal GFP driven by its own promoter had 

a strong GFP signal in CM medium whereas only a weak signal was visible in fungal 

mycelium grown in YNB medium (Fig. 2.2A). An anti-GFP Western blot confirmed a 

strong FGB1 promoter activity in cultures growing in CM but not in YNB and secretion 

of the fusion protein (Fig. 2.2B). Notably, proteolytic stability of the fusion protein was 

higher in YNB than in CM medium. In CM medium, the presence of a GFP fluorescence 

signal in vesicles moving towards hyphal tips was detected by confocal laser scanning 

microscopy (CLSM) showing protein secretion for this fusion protein (Fig. 2.2C). 
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Moreover, the FGB1 promoter was active in germinating spores and in fungal hyphae 

colonising Arabidopsis and barley roots in both extra- and intracellularly growing hyphae 

(Fig. 2.2C/D).  
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Fig. 2.2: Comparison of FGB1:GFP expression in S. indica in axenic culture and in planta. 

A) FGB1:GFP fusion protein is strongly expressed in S. indica grown in CM medium compared to YNB 

medium. CLSM live cell images of cultures grown for 7 days in  liquid CM medium, crushed and grown in 

CM or YNB for 3 days. Bars= 25 µm. B) Anti-GFP Western blot of mycelium (M) and culture filtrate (CF). 

Cultures used in A) after 5 days of growth in CM or YNB. Coomassie stained SDS-PAGE of the same samples 

as loading control. C) CLSM live cell images of FGB1:GFP expression in S. indica spores germinated on glass 

slide and a hyphal tip in CM. Maximum projection of z-stacks. Bars= 10 µm. D) S. indica FGB1:GFP strain 

colonising Arabidopsis and barley roots. The cell wall of extracellular hyphae were counterstained with 

the chitin dye Wheat Germ Agglutinin Alexa Fluor 594 conjugate (WGA-AF 594), which cannot enter living 

plant cells (Lahrmann et al. 2013). Bars= 10 µm. 

 

2.1.2 Optimisation of media conditions and tags for fusion protein stability and 

secretion 

To optimise protein production and secretion the following fungal growth media were 

tested: CM, MYP, YEPS light and MEP. Fungal plugs of a S. indica FGB1:GFP strain were 

grown in liquid CM medium, subsequently crushed, regenerated in CM medium and 

then switched to different media. Differences in protein secretion were observed 

depending on the media composition (Fig. 2.3 A/B). In MYP and YEPS light GFP signal 

was strongest at the cell wall, septa and in the culture filtrate fraction on the SDS-PAGE 

implying that the fusion protein was secreted. At the same time, native FGB1 production 

was inhibited according to the SDS-PAGE. In contrast, in CM and MEP medium GFP signal 

was mainly detected in the ER. Since also native FGB1 was detected on the SDS-PAGE in 

large amounts under these conditions one can speculate that the native protein and the 

fusion protein compete for the same binding sites at the cell wall. Therefore, a GFP signal 

could not be detected there. In contrast to MEP medium, less secreted GFP was 

observed in CM medium. In a next step, we tested if a pre-cultivation step in CM 

followed by cultivation in MYP medium is a prerequisite for high protein secretion. Only 

growth, crushing and regeneration in CM medium followed by growth in MYP medium 

led to vast amounts of secreted FGB1:GFP (Fig. 2.3C). However, most of the secreted 

fusion protein was cleaved and mainly free GFP was detected indicating that under 

these conditions also a large number of proteases were produced.  
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Fig. 2.3: FGB1:GFP secretion depends on medium composition. 

A) FGB1:GFP expressing S. indica grown in CM medium, crushed, regenerated for 2 days in CM and grown 

for 1 day in CM, YEPS light, MYP or MEP medium. Depending on the medium GFP signal was mainly 

detected at the cell wall and septa (YEPS light, MYP) or in the ER (CM, MEP). Live cell imaging by CLSM. 

Maximum projection of z- stacks. Bars = 10 µm. B) Coomassie-stained SDS-PAGE of mycelium (M) and 

culture filtrate (CF) of cultures in A) after 5 days in the respective medium. C) anti-GFP Western blot of 

FGB1:GFP expressing S. indica grown for 7 days in the first medium, crushed, regenerated for 2 days in 

the same medium and grown for 3 days in the second medium. Ponceau S stained nitrocellulose 

membrane as loading control below.  
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To increase fusion protein stability of secreted proteins the modular vector pFGB1, 

based on pGoGFP from Hilbert et al. (2012), was generated to facilitate cloning and 

testing of different constructs (Fig. 2.4). Each module was designed to be exchangeable 

by the use of unique restriction sites. The FGB1 promoter is followed by the gene of 

interest and if necessary the SP can be individually exchanged using the ClaI restriction 

site between the SP and the rest of the gene. Therefore, a SP can be easily added to 

genes without SP for protein secretion. The PreScission site, a selective proteolytic 

cleavage site for the HRV 3C protease, was added between the gene of interest and the 

tags (Waugh, 2011). Consequently, tags can be specifically removed after protein 

purification by digestion with the HRV 3C protease. For protein purification a 2x 

hemagglutinin (HA) and a hexahistidine tag were added after oGFP followed by a Stop 

codon and the tnos terminator. For selection in S. indica the Hygromycin B resistance 

cassette driven by the S. indica TEF promoter and the Ampicillin resistance for selection 

in E.coli were used. The Hygromycin B resistance cassette is also interchangeable due to 

the flanking SfiI sites. As alternative a version with N-terminal HA:His:GFP was 

constructed too.  
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Fig. 2.4: Map of the modular vector pFGB1 used for expression of secreted proteins in S. indica.  

The gene of interest is driven by the strong and inducible S. indica promoter FGB1. The SP for protein 

secretion might be cloned separately. A C-terminal GFP (codon-optimised for S. indica), a 2x HA and 

His6 tags can be cleaved after protein production and purification using the PreScission site after the 

gene. A stop codon and the tnos terminator were added after the tags. The selection markers are the 

Hygromycin B resistance cassette driven by the S. indica TEF promoter for S. indica and Ampicillin for 

E. coli.  

 

Besides the PreScission site as linker between the gene of interest and the tags also 

vector variants without any added linker (restriction sites HindIII and EcoRV translating 

to KLDI) and a flexible linker (KLYSSGSGSSAQSLN including restriction sites HindIII and 

PmeI) were tested. However, no significant improvements were achieved regarding 

linker cleavage. Comparing Western blots of the same samples probed with either anti-

HA or anti-GFP antibodies suggested that cleavage occurred not only between the gene 

of interest and GFP but also between GFP and HA:His. Therefore, GFP was replaced by 

the monomeric red fluorescent protein (mRFP) because the beginning and end of the 

protein sequence are highly different. However, we did not manage to get high amounts 

of intact secreted protein despite strong signals were detected in the ER in S. indica 

expressing FGB1:mRFP:HA:His and FGB1:GFP:HA:His (data not shown). The reason 

might be that FGB1 was binding to a matrix surrounding the cell wall and therefore was 

not detected in the culture filtrate fraction by Western blots. To test this hypothesis the 

native purified FGB1 labelled with fluorescein isothiocyanate (FITC) was added to the 

mycelium for localisation (labelled protein was kindly provided by Dr. S. Wawra). Using 

FGB1-FITC a matrix surrounding the cell wall of different fungi growing in axenic culture 

and in planta could be visualised (Fig. 2.5).  

A handful of other proteins were tested for protein expression using this system. 

Expression attempts of a secreted E3 ubiquitin ligase from S. vermifera (Sebve1_14646) 

in E. Coli and P. Pastoris were not successful. A reason could be the 20 cysteines present 

in the protein sequence that might form a complex pattern of disulphide bridges and 

incorrect or no disulphide bridge formation could lead to protein degradation. In 

contrast, expression of this protein with a C-terminal GFP fusion in S. indica was 

successful (data not shown) suggesting that heterologous proteins can be produced in 

this system too. However, secretion into the culture filtrate was not observed. The 
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homologues protein of FGB1 from the plant pathogenic fungus Bipolaris sorokiniana was 

expressed in S. indica with the C-terminal tags GFP:HA:His, mRPF:HA:His and HA:His. 

Similar to FGB1 production of BsFGB1 was more stable in YNB compared to CM and MYP 

medium (data not shown). Other successfully overexpressed proteins from S. indica 

were the SSPs WSC3 (a glucan-binding lectin), DLD1 (a metal ion-binding zipper protein) 

and SiNUCA (an endonuclease). The expression of DLD1 and WSC3 in S. indica was not 

successful under the GPD promoter and WSC3 was not possible to express in U. maydis 

(personal communication Dr. P. Fesel and Dr. S. Nizam).  
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2.1.3 SiNUCA protein production and purification 

The S. indica 21 kDa protein SiNUCA (see 2.2.2) was tested in this system because 

heterologous expression in E. coli led to protein accumulation in inclusion bodies. 

SiNUCA C-terminally fused with an HA:His tag and driven by the FGB1 promoter was 

secreted into the culture filtrate (Fig. 2.6A). A S. indica strain expressing cytosolic GFP 

(from Hilbert et al., 2012) was processed in parallel to confirm that the detected protein 

originated from active secretion and not from mycelium leakage. Inhibition of the FGB1 

promoter activity by ammonium sulphate was shown as reduced protein levels were 

detected in YNB with ammonium sulphate compared to YNB without ammonium 

sulphate but supplemented with asparagine as nitrogen source (Fig. 2.6B). In contrast 

to FGB1, the largest amount of secreted fusion protein was detected in CM medium. 

Therefore, the culture filtrate of cultures grown in CM was further used for 

SiNUCA:HA:His purification.  

As the His tag was cleaved for most of the fusion protein in all tested conditions, an 

alternative method to protein purification by Nickel Nitrilotriacetic acid columns was 

chosen. Therefore, the supernatant of dense 500 ml cultures in CM medium was 

precipitated with 80 % ammonium sulphate and the resulting protein pellet was 

resuspended in 20 mM Tris pH 8/ 150 mM NaCl buffer. The soluble protein was further 

purified by size exclusion chromatography (Fig. 2.6C). SiNUCA:HA:His was enriched in 

fractions corresponding to a retention volume of 90- 100 ml on a Sephadex G 200 

column. The fractions containing the target protein were concentrated, desalted and 

loaded on an SDS-PAGE to estimate yield and purity. With this purification method a 

fusion protein purity of circa 70 % and a protein yield of 13 mg/L was obtained. In 

Fig. 2.5: FITC-labelled native FGB1 localises to the fungal cell wall and matrix surrounding it in 

different fungi.  

CLSM live cell imaging of FITC-FGB1 staining compared to the chitin staining WGA-AF 594 of A) different 

fungi grown in axenic liquid cultures. S. indica grown for 7 days in CM, crushed and regenerated for 2 

days in CM. S. vermifera was growing for 5 days in MYP, crushed and regenerated for 1 day in MYP. The 

plant pathogenic Ascomycete Bipolaris sorokiniana was growing for 3 days in MYP, crushed and 

regenerated for 1 day in MYP. B) S. indica and B. sorokiniana colonising Arabidopsis roots. Arabidopsis 

is a non-host of B. sorokiniana.  

Maximum projection of z-stacks.  Bars= 10 µm.  
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collaboration with Dr. S. Metzger (Mass spectrometry platform CEPLAS, University of 

Cologne), liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of 

the sample confirmed the identity of SiNUCA by matching of four unique proteins. The 

activity of the protein was assayed and confirmed in chapter 2.2.4.  
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Fig. 2.6: SiNUCA:HA:His expression and secretion in different media. 

A) S. indica SiNUCA:HA:His (OE 1, 7, 10, 15) and the empty vector strain 3 (EV 3) were grown for 5 days in 

CM medium followed by 2 days in MYP medium. Protein expression and secretion was analysed with 

mycelium (M) and culture filtrate (CF) on coomassie-stained SDS-PAGEs and anti-HA Western blots. Right 

side: control for protein leakage from M into CF with S. indica strain expressing cytosolic GFP processed 

in parallel. B) Anti-His and anti-HA Western blots of S. indica SiNUCA:HA:His strain 15 grown in CM for 5 

days, crushed, grown for 1 day in CM with YNB and subsequently for 1 day in different media (CM, MYP, 

YNB or YNB without ammonium sulphate (∆AS) plus asparagine). Right side: Ponceau S stained 

nitrocellulose membrane as loading control. C) SiNUCA:HA:His protein enrichment from CF precipitated 

with 80% ammonium sulphate (AS) and separated by size exclusion chromatography (SEC, fractions 5- 15 

shown). Fractions 10 and 11 were confirmed to contain SiNUCA:HA:His by an anti-HA Western blot, were 

concentrated and loaded on an SDS-PAGE gel again (right side) to analyse its purity and yield.  

 

2.2 Molecular characterisation of the S. indica effector protein SiNUCA 

2.2.1 Cell death in S. indica colonised Arabidopsis roots 

S. indica has a biphasic lifestyle with an early biotrophic phase and a later cell death-

associated phase (Deshmukh et al., 2006; Jacobs et al., 2011; Zuccaro et al., 2011). 

Deshmukh et al. showed that nuclei of barley root cells disappear with the ongoing of 

colonisation by S. indica indicating cell death of the colonised cells (Deshmukh et al., 

2006). In Arabidopsis, Jacobs et al. observed the lack of ER and nucleus in colonised cells 

(Jacobs et al., 2011). Cell death in colonised Arabidopsis roots was further investigated 

by looking at plant nuclei by CLSM over time. The nucleic acid dyes 4ʹ,6-Diamidine-2ʹ-

phenylindole dihydrochloride (DAPI) and SYTOX Orange and Arabidopsis lines 

expressing Histone H2B:mCherry were used to visualise plant nuclei. Disappearance of 

plant nuclei with progression of S. indica colonisation in epidermal and cortex cells was 

confirmed with all three nucleus-visualisation methods (Fig. 2.7). Nuclei stained with 

SYTOX Orange were visible five to six dpi suggesting that the plasma membrane was 

permeable enough for the dye to enter the cell. Nuclei were absent in heavy colonised 

root parts. The nuclei were often stretched, faded and finally disappeared (Fig. 2.7B). 

Moreover, S. indica hyphae embedded within the plant nuclei were observed.  
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Fig. 2.7: Arabidopsis root nuclei disappear with progression of S. indica colonisation. 

CLSM live cell imaging of S. indica-colonised Arabidopsis roots. A) Arabidopsis UBQ10::H2B:mCherry 

expressing root 10 dpi. Fungal hyphae outside living plant cells stained with WGA-AF 488. Nuclei in 

epidermal and cortex cells of S. indica-colonised root parts are almost completely absent. Bars = 100 µm. 

Maximum projection of z-stacks. B) Nuclei stained with DAPI and fungal cell wall and matrix with FITC-

FGB1. With progression of S. indica colonisation nuclei get stretched and fade. S. indica hyphae are 

embedded in the plant nucleus. 6 dpi. Pictures by S. Wawra. Bars = 10 µm, 20 µm respectively 5 µm. 

 

Jacobs et al. showed that S. indica is colonising the maturation but not elongation and 

meristematic root zones (Jacobs et al., 2011). We noticed by direct imaging on the plate 

where colonised Arabidopsis roots were growing that S. indica extracellularly colonised 
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the whole root including root tips. (Fig. 2.8). However, intracellular growth in the root 

cap cells or border- like cells (BLC), which are loosely attached to the root tip, was never 

observed. Moreover, fading nuclei were also detected in BLC of root tips in contact with 

S. indica mycelium.  

 

 
Fig. 2.8: S. indica growth around Arabidopsis BLC. 

CLSM live cell imaging of S. indica colonised Arabidopsis roots. Nuclei stained with DAPI and fungal cell 

wall and matrix with FITC-FGB1. Roots directly stained and imaged on plate where the root was growing. 

Therefore, only nuclei of BLC are visible. S. indica is growing around the root tip and BLC of the root cap. 

Last picture: The root was growing towards and just reaching a layer of germinating S. indica spores on 

the plate. Nuclei of the outer BLC layer are blurred. Bars = 100 µm (First picture), Bars = 20 µm 

 

2.2.2 An apoplastic S. indica nuclease 

In order to find fungal factors which trigger cell death the apoplast proteome of 

colonised barley roots was analysed. At 5 dpi, where the transition from the biotrophic 

to the cell-death associated colonisation stage happens, a predicted nuclease 

(PIIN_02121, named S. indica Nuclease A (SiNUCA)) was found. The open reading frame 
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of SiNUCA was verified by rapid amplification of cDNA-ends with polymerase chain 

reaction (RACE-PCR). This revealed a 30 bp earlier start and a single nucleotide 

polymorphism (SNP) at base pair number 33 compared to the genome sequence derived 

from a consensus sequence from the dikaryotic S. indica wt strain. Therefore, the 

protein is 211 amino acids long. According to simple modular architecture research tool 

(SMART) analysis SiNUCA has a predicted SP and Pfam DUF 1524 domain, which belongs 

to the His- Me finger endonuclease superfamily (Fig. 2.9A). Characteristics of these 

endonucleases are a histidine in their catalytic side, binding of one divalent metal ion 

and having a HNH or HNN sequence motif (Jablonska et al., 2017). Moreover, SiNUCA 

has four cysteines suggesting the presence of two disulphide bridges. A homologous 

protein of SiNUCA was found in the closely related fungus S. vermifera with 89 % protein 

sequence identity. Further homologs were mainly detected in the bacterial class 

Actinobacteria, in the Basidiomycetes of the class Agaricomycetes and in the classes 

Dothideomycetes, Sordariomycetes, Leotiomycetes and Eurotimycetes belonging to the 

Ascomycetes. A multiple alignment with the top Basic Local Alignment Search Tool 

(BLAST) hits on protein level for Actinobacteria, Agaricomycetes and Ascomycetes 

showed that not only the DUF 1524 domain but also the first part of the protein (except 

the SP) is conserved (Fig. 2.9B). Additionally, the HNN sequence motif was highly 

conserved.  

SiNUCA expression was induced in S. indica colonising Arabidopsis and barley roots 

compared to axenic growth according to microarray data (Lahrmann et al., 2013). This 

data was verified by quantitative PCR (qPCR) analysing SiNUCA expression relative to 

TEF expression of S. indica colonising Arabidopsis or barley roots over time (Fig. 

2.10A/B). SiNUCA expression peaked in barley at 7 dpi whereas in Arabidopsis SiNUCA 

expression was highest at 14 dpi. The expression of the homologous gene in S. 

vermifera, Sebve1_12299, was highest in barley at 3 dpi and in Arabidopsis at 7 dpi (Fig. 

2.10C/D). In summary, SiNUCA shows typical effector characteristics as it is a small 

secreted protein and its expression is induced in planta. Therefore, SiNUCA was chosen 

for further molecular characterisation and its involvement in plant cell death was 

investigated.  
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Fig. 2.9: SiNUCA is predicted to be a secreted endonuclease.  

A) SiNUCA (PIIN_02121) is 211 amino acids long, has a predicted SP (first 20 amino acids) and the Pfam 

domain DUF 1524 belonging to the His-Me finger endonuclease superfamily. Two unique peptides were 

found in the APF of inoculated barley roots at 5 dpi by LC-MS/MS B) Protein logo of multiple alignment of 

SiNUCA and ten best protein BLAST hits for bacteria, Basidiomycetes and Ascomycetes each. Amino acids 

M1-W100 and Y101-L204 (DUF 1524 domain) shown. With the exception of the SP, the protein sequence 

is highly conserved. Arrows show the conserved HNN motif.  
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Fig. 2.10: SiNUCA and Sebve1_12299 are expressed in planta. 

A) SiNUCA expression levels of S. indica grown in barley roots on PNM  3, 7 and 14 dpi compared to 

growth in axenic culture after 7 days (CM, YNB and PNM medium). B) SiNUCA expression of S. indica 

grown in Arabidopsis roots on ½ MS medium 3- 14 dpi and in ½ MS for 7 days. C) Sebve1_12299 

expression levels of S. vermifera-inoculated barley roots grown on PNM medium 3, 7 and 14 dpi and S. 

vermifera grown on PNM medium for 7 days. D) Sebve1_12299 expression levels of S. vermifera-

inoculated Arabidopsis roots grown on ½ MS 3, 7 and 14 dpi and S. vermifera grown on ½ MS for 7 

days. 

The expression levels of SiNUCA and Sebve1_12299 were normalised to TEF. Error bars represent the 

standard error of the mean (SEM) of three biological replicates.  
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2.2.3 SiNUCA heterologously expressed in U. maydis is secreted and has nuclease 

activity 

SiNUCA was heterologously expressed in the model Basidiomycete U. maydis to study 

its function. U. maydis has no homologue of SiNUCA and SiNUCA was constitutively 

expressed using the U. maydis otef promoter (Aichinger et al., 2003). SiNUCA:mCherry 

was expressed and efficiently secreted in axenic culture as detected by an anti- mCherry 

Western blot of pellet and supernatant samples (Fig. 2.11A). Correct prediction of the 

SP length was confirmed using the construct SPSiNUCA:mCherry as mCherry was detected 

in the supernatant fraction on the Western blot. An U. maydis strain expressing cytosolic 

mCherry was processed in parallel to exclude protein detection in the supernatant 

fraction due to leakage and not active protein secretion. In order to test nuclease 

activity, linearised plasmid, genomic DNA or RNA from S. indica was added to the 

supernatant of the cultures, incubated and the samples loaded on an agarose gel. 

Nucleic acids were only digested in supernatant of the strains secreting SiNUCA thus 

showing nuclease activity of SiNUCA (Fig. 2.11B). Culture supernatants of SiNUCA 

expressing strains were also able to digest barley and Arabidopsis gDNA and RNA 

therefore giving evidence for an unspecific nuclease activity (Fig. 2.11C). Addition of 

ethylenediaminetetraacetic acid (EDTA) inhibited gDNA digestion exhibiting a metal ion-

dependent catalytic activity. Moreover, RiboLock, a non-competitive RNase inhibitor, 

also partially inhibited SiNUCA activity.  

 

2.2.4 Native SiNUCA activity  

SiNUCA:HA:His driven by the FGB1 promoter was overexpressed in S. indica and shown 

to be secreted into axenic culture medium (see 2.1.3). First, nuclease activity was 

directly confirmed in the culture filtrate of the overexpressing strains growing in axenic 

conditions. Linearised plasmid was incubated in culture filtrate of the SiNUCA:HA:His 

strains 7 and 15 compared to the empty vector strains 3 and 6 (Fig. 2.12A). Second, the 

fusion protein was purified from culture filtrate (see 2.1.3) and used for further 

biochemical characterisation.  
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Fig. 2.11: SiNUCA heterologously expressed in U. maydis is secreted into the medium and is able to 

digest fungal and plant gDNA and RNA. 

A) Anti-mCherry Western blot of pellet (P) and supernatant (S) of liquid cultures. U. maydis SG200 

expressing mCherry, SiNUCA:mCherry or SPSiNUCA:mCherry. Coomassie-stained SDS-PAGE as loading 

control below. B) gDNA or RNA of S. indica or linearised plasmid incubated in supernatants used in A) and 

subsequently loaded on an agarose gel. 1-3 independent transformants per strain were tested. C) gDNA 

and RNA of barley and RNA of S. indica were inoculated with supernatants used in A). Additionally, the 

strain SiNUCA was tested. U. maydis SG200 (wt), YEPS light only (medium) and 1 U DNase I or 10 μg RNase 

A were used as controls. Addition of 1 mM EDTA or 20 U RiboLock RNase inhibitor partially inhibited 

digestion by SiNUCA:mCherry and SiNUCA.  

 

For optimal SiNUCA enzyme activity, different pH and salt conditions were tested with 

linearised plasmid. SiNUCA was more active at pH 8 than 5 and addition of 

microelements, 1mM CaCl2 and 1mM MgCl2 increased its activity (Fig. 2.12B). In 

contrast, 25 mM of MgSO4, MgCl2, NaCl or NaPO4, EDTA or RiboLock RNase inhibitor 

blocked enzyme activity. The unspecific nuclease activity, as seen by heterologous 

expression in U. maydis, was confirmed by digestion of S. indica and Arabidopsis gDNA 

and RNA (Fig. 2.12C).  

 

2.2.5 Establishment of gene deletion via homologous recombination in S. indica  

In order to test if SiNUCA downregulation has an effect on plant colonisation, S. indica 

RNAi strains were produced using the protocol in Hilbert et al., 2012. A 550 bp fragment 

of SiNUCA was expressed from both sides by the constitutive S. indica promoters of GPD 

and TEF to obtain a double stranded SiNUCA fragment for gene silencing. SiNUCA 

expression was verified in six transformed S. indica strains compared to six empty vector 

strains. Neither growth of the different strains in axenic culture nor in barley roots 

showed significant lower SiNUCA expression levels in RNAi strains indicating that gene 

silencing did not occur (data not shown).  
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Fig. 2.12: SiNUCA:HA:His protein activity in culture filtrate and of enriched protein fraction.  

A) Culture filtrate (CF) of S. indica SiNUCA:HA:His overexpression strains OE7 and OE15 and empty vector 

strains EV3 and EV6 incubated with 100 ng linearised plasmid for 30 min and loaded on an agarose gel. 

Cultures grown in CM medium for 5 days, crushed and grown for 3 days. 20 ml CF precipitated with 

trichloroacetic acid and loaded on SDS-PAGE as control for total protein amount in CF. B) 100ng linearised 

plasmid added to 10 nM SiNUCA in 5 mM Tris pH 8 or 5 mM MES pH 5 with 1mM MgCl2, 1mM CaCl2 and 

microelements incubated at RT for 5 min and loaded on an agarose gel. Right side: 100 ng linearised 

plasmid added to 10 nM SiNUCA in buffer 5 mM Tris pH8 supplemented with microelements. The 

influence of the addition of different salts, EDTA and RiboLock RNase inhibitor on protein activity was 

tested. The linearised plasmid in the different solutions with SiNUCA was incubated for 4 min at RT and 

loaded on an agarose gel. C) Specificity of protein activity tested with S. indica (fungal) and Arabidopsis 

(plant) RNA and gDNA. 10 nM SiNUCA in buffer 5 mM Tris pH8 with 1mM MgCl2, 1mM CaCl2 and 

microelements incubated with RNA or gDNA for the indicated time points at RT and loaded on agarose 

gel.  
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Next, gene deletion in S. indica via homologous recombination was established to 

produce a SiNUCA gene deletion strain for studying its effects on plant colonisation. A 

homokaryotic S. indica strain was used to improve deletion efficiency. The S. indica wt 

strain is dikaryotic and therefore has two gene copies to target. The homokaryotic strain 

GenR C2 16/3 (GenR C2) was used as a reference homokaryotic S. indica strain because 

its genome was sequenced (Wawra et al., 2016 and unpublished data G. Jeena and Dr. 

G. Langen).  

For homologous recombination a fragment of 1-2 kb up- and downstream of the SiNUCA 

open reading frame with the Hygromycin B resistance cassette in between was 

constructed and transformed. In order to lower the chance of random fragment 

integration into the genome the fragment was cut into two pieces with an overlapping 

region of 410 bp in the Hygromycin B resistance cassette and both fragments were 

mixed for transformation (Fig. 2.13A). One gene deletion strain was obtained after 

screening of 447 transformants in total (transformed with one or two fragments of 

different lengths). Using at least 1.8 kb of the up- and downstream regions, splitting the 

fragment and adding more than 10 μg of each fragment for the transformation 

appeared to be the critical points for successful homologous recombination reaching a 

frequency of approximately 3-10 %. The obtained SiNUCA gene deletion strain (∆sinucA) 

was confirmed by PCR, sequencing of the whole region and Southern blot using one 

probe on the left border (Fig. 2.13A) and one on the right border of SiNUCA. There was 

no ectopic fragment integration or additional SNPs in ∆sinucA. Therefore, ∆sinucA was 

used for in planta studies.  
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Fig. 2.13: Colonisation of barley and Arabidopsis roots with S. indica GenR C2 and ∆sinucA strains. 
A) Scheme of the two fragments used for SiNUCA deletion in S. indica homokaryotic strain GenR C2 via 

homologues recombination. 1.8 kb left and right border of SiNUCA fused to a split Hygromycin B cassette 

with 410 bp overlap. Right side: Southern blot to confirm gene deletion with probe on left border of 

SiNUCA. B) and C) Expression of SiNUCA in S. indica GenR C2 and ∆sinucA strains in colonised barley (B) or 

Arabidopsis (C) roots. Expression normalised to SiTEF. D) and E) Colonisation of barley (D) or Arabidopsis 

(E) roots with S. indica GenR C2 and ∆sinucA strains measured as relative expression of SiTEF to ubiquitin 

(UBI). Paired t-tests: no significant differences between colonisation of GenR C2 and ∆sinucA.  

SEM of 3-6 biological replicates for barley colonisation and 3 replicates for Arabidopsis colonisation. 
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2.2.6 SiNUCA gene deletion does not alter barley or Arabidopsis colonisation  

The ∆sinucA strain was compared to its background GenR C2 strain in plant colonisation 

over time. The absence of SiNUCA expression in the ∆sinucA strain was confirmed by 

qPCR (Fig. 2.13B/C). There was no significant difference in barley and Arabidopsis 

colonisation between the ∆sinucA and GenR C2 strain at the different evaluated time 

points (Fig. 2.13D/E). S. indica PIIN_05889, a xylanase used as marker gene for 

saprotrophic growth in barley (Lahrmann et al., 2013), was induced in the ∆sinucA 

compared to the GenR C2 strain in barley (Fig. 2.14A). No significant differences were 

observed in the expression of the pathogenesis- related gene PR10, a marker for plant 

immunity activation by S. indica in barley, and VPE activity, used as marker for root cell 

death (Lahrmann et al., 2013) (Fig. 2.14B/C).  

SiNUCA has neither homologous proteins nor proteins with a homologous S. indica DUF 

1524 domain in S. indica. Bioinformatic analysis using the predicted secretome of S. 

indica (Lahrmann et al., 2013) depicted at least four additional secreted nucleases 

(PIIN_00073, PIIN_03873, PIIN_06794 and PIIN_09504) unrelated to SiNUCA. Among 

them, PIIN_00073 and PIIN_09504 were induced in planta. PIIN_00073 was additionally 

found in the APF of inoculated barley roots at 10 and 14 dpi but not at 5 dpi like SiNUCA. 

This indicates that gene redundancy might play a role in the colonisation of S. indica with 

altered SiNUCA expression levels. However, PIIN_00073 and PIIN_09504 were not 

significantly differently regulated in ∆sinucA in planta to compensate for SiNUCA gene 

deletion (Fig. 2.14D-G).  

The capability of ∆sinucA to digest DNA was tested by growing the S. indica strains on 

plates with salmon testis DNA as sole nitrogen source. The SiNUCA overexpression strain 

was growing faster compared to the empty vector control strain or wt (Fig. 2.15). 

Staining of the plates with ethidium bromide for visualisation of the DNA under UV light 

showed digestion of the DNA where the strains were growing with the biggest hallow 

for the SiNUCA overexpression strain. The diameter of the ∆sinucA strain was not 

smaller but the mycelium was thinner compared to the GenR C2 strain. However, DNA 

digestion was not completely absent in the ∆sinucA strain. These results suggest the 

presence of other secreted nucleases in the ∆sinucA strain in axenic culture, which might 

be active in planta too.  

 



  Results 

_____________________________________________________________________________________ 

   45 

   



  Results 

_____________________________________________________________________________________ 

   46 

Fig. 2.14: Gene expression of marker genes and other secreted nucleases in S. indica GenR C2 compared 

to ∆sinucA strains in planta. 

A and B) Marker gene expression in S. indica GenR C2 and ∆sinucA strains colonising barley roots 3- 14 

dpi. SEM of 3- 6 biological replicates. A) S. indica PIIN_05889 (xylanase) expression as marker for 

saprotrophic growth. PIIN_05889 expression relative to SiTEF and normalised to GenR C2 B) barley PR10 

expression, a marker for plant immunity activation by S. indica,  measured relative to HvUBI and 

normalised to GenR C2 C) VPE activity in colonised barley roots indicates root cell death. 

Spectrophotometric measurement of fluorescent substrate for VPE (Ac-ESEN-MCA), which was added to 

the root extracts. Relative fluorescence units (RFU) normalised to GenR C2 D to G) Gene expression of 

two predicted S. indica secreted nucleases (PIIN_00073 and PIIN_09504). Expression relative to SiTEF and 

normalised to GenR C2 D) and F) Comparison of S. indica GenR C2 and ∆sinucA strain colonising barley 

roots 3-14 dpi. SEM of 3-6 biological replicates. E) and G) Comparison of S. indica GenR C2 and ∆sinucA 

strain colonising Arabidopsis roots 7 dpi. SEM of 3 biological replicates.  

Paired t-tests with * p< 0.05. 

 

 

Fig. 2.15: Nuclease activity of S. indica strains.  

Growth of S. indica wt, SiNUCA overexpression strain 15, empty vector strain EV6, △sinucA and GenR 

C2 strain on DNA as nitrogen source. S. indica grown for 5 days on YNB medium or YNB without 

ammonium sulphate supplemented with 100 µg/ml salmon testis DNA as nitrogen (N) source. Right 

side: Plate in middle stained with Ethidium bromide (EtBr) to visualise DNA in plate (grey).   

 

2.2.7 Characterisation of homokaryotic and dikaryotic S. indica strains in planta 

The homokaryotic GenR C2 strain, which was used as background for SiNUCA gene 

deletion, was further characterised to evaluate its suitability for deletion of SSPs. Its 

behaviour in barley colonisation was compared to wildtype. The colonisation rate was 

lower in the GenR C2 strain compared to wt in an early phase, then reaching the same 

level und later having a lower colonisation rate again (Fig. 2.16A). Interestingly, at the 



  Results 

_____________________________________________________________________________________ 

   47 

same time points where colonisation by the GenR C2 strain was impaired SiNUCA 

expression levels were higher (Fig. 2.16B). No significant differences were detected for 

xylanase expression speaking for no differences in saprotrophic growth until 14 dpi (Fig. 

2.16C). PR10 expression was increased at 7 dpi and VPE activity was tendentially higher 

at later time points in the GenR C2 strain (Fig. 2.16D/E). Whether a gene was hit by 

random integration of the fragment with the Geneticin resistance cassette was checked 

in the genome sequence of the GenR C2 strain (analysis provided by Dr. G. Langen). 

PIIN_08972, a hypothetical secreted protein, was disrupted. This was confirmed by qPCR 

showing that in wt but not in GenR C2 PIIN_08972 was induced over time in colonised 

barley roots (Fig. 2.16F). The fact that the GenR C2 strain was impaired in colonisation, 

showed higher PR10 expression levels at 7 dpi and disruption of a putative secreted 

protein induced in barley made it difficult to dissect the effects derived by deletion of 

SiNUCA. Thus, this strain is not suitable for characterisation of SiNUCA gene deletion.  

Other homokaryotic and dikaryotic strains were used to verify if the differences in the 

GenR C2 compared to the wt strain were specific or a general difference between 

homokaryotic and dikaryotic strains. Therefore, two homokaryotic and two dikaryotic 

strains with an average growth behaviour on plate were selected (data from bachelor 

thesis B. Griebel). Single integration of the Geneticin resistance cassette into the 

genome was confirmed by Southern blot and the behaviour of this strains during barley 

colonisation was analysed over time (Fig. 2.16G). The differences observed between wt 

and GenR C2 could not be detected in other dikaryotic and homokaryotic strains 

colonising barley.  
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Fig. 2.16: Behaviour of dikaryotic versus homokaryotic S. indica strains in barley. 

A)-F) Colonised barley roots by S. indica wt and GenR C2 strain 3- 14 dpi. Paired t-tests with * p< 0.05, 

** p<0.01. SEM of 3 biological replicates (mock 1 biological replicate). A) Colonisation rate measured 

as relative expression of the genes SiTEF to HvUBI. B) SiNUCA expression relative to SiTEF and 

normalised to GenR C2 for each biological replicate. C) S. indica PIIN_05889 (xylanase) expression as 

marker for saprotrophic growth. PIIN_05889 expression relative to SiTEF and normalised to GenR C2 

D) barley PR10 expression, a marker for plant immunity activation by S. indica, relative to HvUBI and 

normalised to GenR C2. Expression compared to mock-treated roots. E) VPE activity of colonised roots 

in A) as indication for cell death. Spectrophotometric measurement of fluorescent substrate for VPE 

(Ac-ESEN-MCA), which was added to the root extracts. F) Relative expression of PIIN_08972 relative to 

SiTEF. G) Colonisation of barley roots 3, 7 and 14 dpi of two homokaryotic strains (h1, h34) and three 

dikaryotic strains (d23, d38 and wt) harbouring the Geneticin resistance cassette. Relative expression 

of SiTEF to HvUBI and normalised to wt. Statistical analysis done with ANOVA. SEM of three biological 

replicates.  

 

2.2.8 SiNUCA overexpression has no influence on Arabidopsis colonisation  

Three SiNUCA overexpression (SiNUCA:HA:His) and empty vector control strains were 

selected for plant colonisation. All strains were homokaryotic as verified by PCR on 

mating type genes. In Arabidopsis a 7-19- fold increase in SiNUCA expression was 

reached in the SiNUCA overexpression strains compared to the empty vector strains and 

GenR C2 strain 7 dpi (Fig. 2.17B). Nevertheless, SiNUCA overexpression did not alter 

Arabidopsis colonisation levels (Fig. 2.17A). Therefore, SiNUCA was heterologously 

expressed in Arabidopsis to reach higher SiNUCA levels and avoid effects due to be 

homokaryotic.  

 

2.2.9 SiNUCA heterologously expressed in Arabidopsis increases colonisation by S. 

indica  

SiNUCA was heterologously expressed in Arabidopsis using the 35S promoter and 

homozygous T3 lines with high SiNUCA expression levels were selected. From 

segregating T2 seedlings neither growing on Hygromycin B nor having the SiNUCA gene 

(PCR verified) were selected and its T3 progeny used as control lines. SiNUCA expression 

levels were up to 6800 times higher compared to the control lines at 7 dpi (Fig. 2.17C). 

The lines expressing SiNUCA showed a higher S. indica wt colonisation rate at 7 dpi but 
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not at 14 dpi compared to the control lines (data not shown). The better colonisation at 

7 dpi was confirmed with the two best SiNUCA expressing lines 53 and 56 compared to 

the control lines 4, 18 and wt (Fig. 2.18A/B). However, seedling growth was impaired in 

the lines expressing SiNUCA. They showed shorter root length and lower shoot fresh 

weight in non-inoculated and inoculated seedlings (Fig. 2.18C). Therefore, an effect of 

the delayed development of SiNUCA expressing lines compared to control lines on 

colonisation cannot be ruled out. VPE activity was measured in roots to unravel the 

influence of SiNUCA expression on cell death. Induction of VPE activity in Arabidopsis 

roots colonised by S. indica compared to mock inoculation was confirmed (Fig. 2.18D). 

Additionally, VPE activity was induced in colonised SiNUCA expressing line 53 compared 

to the control line 4 calculated relative to mock-inoculated roots. Therefore, expression 

of SiNUCA and inoculation with S. indica led to more cell death in Arabidopsis roots.  
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Fig. 2.17: Colonisation of Arabidopsis roots with S. indica SiNUCA overexpression strains compared to 

S. indica empty vector strains and SiNUCA expression levels in S. indica versus in Arabidopsis. 

A) Colonisation of Arabidopsis roots with SiNUCA:HA:His expressing (OE1, OE7 and OE15) compared to 

the empty vector (EV3 and EV6) and the GenR C2 strains 7 dpi. Measured as relative expression of SiTEF 

to AtUBI and each biological replicate normalised to GenR C2. B) SiNUCA expression relative to SiTEF and 

normalised to GenR C2 of strains used in A) 7 dpi. C) SiNUCA expression relative to SiTEF and normalised 

to Col-0 of SiNUCA expressing Arabidopsis lines (18, 53, 56) and control lines (Col-0, contr 4, contr 18) 

inoculated with S. indica wt 7 dpi.  

SEM of three biological replicates.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.18: Arabidopsis lines expressing SiNUCA colonised by S. indica wt. 

Arabidopsis lines expressing SiNUCA driven by the 35S promoter (lines 53 and 56) compared to control 

lines (lines contr 4 and contr 18 segregating from T2 generation and wt (Col-0)). Roots inoculated with 

S. indica wt and analysed 7 dpi. A) SiNUCA expression normalised to AtUBI. B) Colonisation rate 

measured as relative expression of SiTEF to AtUBI. ANOVA with posthoc Tukey test p< 0.001 C) Shoot 

fresh weight of colonised and mock-treated roots. Two-way ANOVA with posthoc Tukey test p< 0.05 

D) VPE activity of colonised relative to mock-treated roots. Spectrophotometric measurement of 
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fluorescent substrate for VPE (Ac-ESEN-MCA), which was added to the root extracts. Paired t-test with 

** p< 0.01. 

SEM of 5- 6 biological replicates (mock-inoculated plants three biological replicates) 

 

2.2.10 SiNUCA localisation in Arabidopsis 

In order to localise SiNUCA in plant colonisation a S. indica strain expressing 

SiNUCA:GFP:HA:His was constructed. Weak expression and only free GFP was detected 

on the Western blot (data not shown). Next, the high expressing strain SiNUCA:HA:His 

15 (see 2.1.3) was inoculated with Arabidopsis roots and SiNUCA visualised by 

immunolocalization. Whole- mount Arabidopsis seedlings were labelled with Anti-His-

AF 488 or Anti-HA/Anti-mouse-AF 488 antibodies and analysed by CLSM. Signals were 

only detected with Anti-His-AF 488 in hyphae and not in planta probably due to too 

much dilution in the plant cell or cleavage of the His tag in planta. Therefore, 

heterologous expression of a SiNUCA:mCherry fusion in Arabidopsis was applied for 

SiNUCA localisation.  

SiNUCA:mCherry driven by the 35S promoter was expressed in Arabidopsis and the plant 

roots were analysed by CLSM. mCherry signal was mainly found surrounding the plant 

cell (Fig. 2.19A). Plasmolysis was performed to distinguish between cell wall and plasma 

membrane localisation. Interestingly, SiNUCA:mCherry localised at the cell wall but also 

accumulated in the whole protoplast. To confirm that the localisation outside the plant 

cell was not an artefact of the fusion protein unable to re-enter the plant cell SiNUCA 

without SP and C-terminally fused to mCherry was analysed as well. SiNUCA(w/o 

SP):mCherry localised to the cytoplasm (Fig. 2.19B). Therefore, we concluded that 

SiNUCA localised outside the plant cell and not the plant nucleus. However, 

SiNUCA:mCherry rearranged around the penetrating hyphae when SiNUCA:mCherry 

expressing roots were inoculated with S. indica wt (Fig. 2.20A). At later colonisation 

stages, SiNUCA:mCherry was found at disintegrated nuclei of colonised cells but not at 

intact nuclei of adjacent cells (Fig. 2.20B).  
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Fig. 2.19: Localisation of SiNUCA in Arabidopsis heterologously expressing SiNUCA:mCherry. 

CLSM live cell imaging of Arabidopsis roots. A) Arabidopsis root expressing SiNUCA:mCherry. 

Plasmolysis with 1M NaCl. B) Arabidopsis root expressing SiNUCA (w/o SP):mCherry. Plasmolysis with 

1 M sorbitol. Maximum projection of z-stacks. 
Bars = 20 µm.  
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Fig. 2.20: Localisation of SiNUCA in colonised Arabidopsis heterologously expressing 

SiNUCA:mCherry. 

CLSM live cell images of Arabidopsis root expressing SiNUCA:mCherry inoculated with S. indica wt. 

Fungal cell wall of hyphae stained with WGA AF-488 and nuclei with DAPI. A) SiNUCA:mCherry localises 

to the cell wall and accumulates around penetrating hyphae (intracellular hyphae in living cells not 

stainable with WGA AF-488 in the biotrophic interaction phase) B) In a later phase, SiNUCA:mCherry is 

mainly present at bursting nuclei in colonised cells.  
Projection of z-stacks. Bars = 20 µm. 
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2.2.11 Antibacterial properties of SiNUCA  

SiNUCA was hypothesised to be a bacterial-derived gene. Therefore, its antibacterial 

properties were tested. 20 μM purified SiNUCA protein was added to liquid E. coli 

cultures, incubated for 5 h and dilution series were dropped on plates (Fig. 2.21A). No 

differences in growth were observed between the SiNUCA treatment and control 

treatments of E. coli liquid cultures. Next, SiNUCA protein was pipetted on a filter 

platelet on plates inoculated with E. coli (Fig. 2.21B). No hallows around the platelets 

with SiNUCA were observed. Furthermore, it was possible to express SiNUCA in E. coli. 

In summary, no antibacterial activity of SiNUCA against E. coli was noticed in the 

different experiments.  

 

Fig. 2.21: Antibacterial activity of SiNUCA.  

A) E. Coli was growing in the presence of 20 µM SiNUCA, 130 µg/ml ampicillin, 3 µg/ml RNase A or 

buffer (20 mM Tris pH 8) for five hours before plating of 1:10 dilution series on plates. B) E. Coli was 

sprayed on plates and filter rondels with different SiNUCA concentrations, 3 µg/ml RNase A or buffer 

(20 mM Tris pH 8) were put on the plates.  

Pictures were taken after overnight growth.  
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3 Discussion 

3.1 Application of S. indica as a protein production system 

A protein production system was established in S. indica in order to express and secrete 

homologous and heterologous proteins for further protein purification from culture 

filtrate. For high protein production the choice of the promoter for gene expression is a 

key factor (Ward, 2012). As the use of established promoters from other species failed 

the endogenous constitutive promoters TEF and GPD were applied for gene expression 

in S. indica so far (Hilbert et al., 2012; Zuccaro et al., 2009). However, problems with 

gene silencing of endogenous genes emerged using these promoters (Wawra et al., 

2016). In order to strongly express genes in S. indica other promoters were screened for 

their suitability.  

First of all, the TEF promoter of the closely related fungus S. vermifera was cloned in 

front of GFP to test its performance in S. indica. Strong GFP signals were detected under 

the microscope confirming its functionality in S. indica (Fig. 2.1). Yet it remains to be 

tested whether constitutive expression of endogenous genes under this promoter can 

be achieved without gene silencing. FGB1 is one of the most abundant secreted proteins 

in CM but not in YNB medium (Wawra et al., 2016). The repressibility and strong activity 

of the FGB1 promoter was confirmed by analysing S. indica strains harbouring FGB1 with 

a C-terminal GFP fusion driven by the FGB1 promoter (Fig. 2.2). Therefore, the FGB1 

promoter was picked as first choice for protein production.  

Next, media conditions were improved for optimal protein expression and secretion. 

Using the FGB1:GFP expressing strains large amounts of protein secretion into the 

culture medium was achieved by specifically growing S. indica in CM to gain biomass 

and then switching to MYP medium for protein secretion (Fig. 2.3). However, mainly free 

GFP was detected urging the improvement of fusion protein stability. Therefore, 

different tags and linkers between the gene of interest and tags were tested.  

The modular vector pFGB1 was generated to facilitate cloning and testing of different 

constructs (Fig. 2.4). In the FGB1:GFP strains only a small linker consisting of the 

restriction site was applied. Linkers are not only important for protein flexibility and 

stability but can also improve their activity and yield (Chen et al., 2013; Waugh, 2011). 

Therefore, a flexible linker and the PreScission site for cleavage of the tags after protein 
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purification were tested. Moreover, mRFP instead of GFP was used as its sequence 

differs at the beginning and end of the protein, which might lead to less protein 

cleavage. However, no significant improvements were achieved. The advantage of 

flexible linkers is the mobility of the different protein domains to allow correct protein 

folding and activity (Chen et al., 2013). On the other hand, testing of a rigid linker, which 

separates and reduces the interference between the protein domains, can lead to higher 

stability and activity in some fusion proteins (Chen et al., 2013). Linker design is not 

trivial and databases or bioinformatic tools should be considered for assistance in linker 

optimisation (Crasto & Feng, 2000; C. Liu et al., 2015).  

Protease activity in the culture medium is one of the biggest draw backs of fungal 

expression systems (Ward, 2012). Edman degradation might be performed to identify 

putative cleavage sites between the protein of interest and tags or between the tags. 

Consequently, these sequences could be avoided to prevent fusion protein cleavage by 

proteases. Proteomic analysis revealed that S. indica secretes metalloproteinases, 

serine proteases, aspartic proteases and aminopeptidases into the culture filtrate. 

Therefore, deletion of the major secreted proteases or protease regulators might be a 

big step forward and is frequently applied in optimised protein production systems 

(Sarkari et al., 2014; Ward, 2012). Establishment of CRISPR/Cas9 in S. indica could make 

it feasible to delete more than one protease (Schuster et al., 2018). Alternatively, a 

proteinase inhibitor can be expressed in parallel with the protein of interest to protect 

its cleavage (Erjavec et al., 2012). FGB1:GFP production was low but stable in YNB 

medium (Fig. 2.2). In order to overcome this observed trade-off of protein production 

versus stability the YNB medium might be adjusted for higher protein yields or the CM 

medium for less protease activity. It was shown that the pH and the metabolites in the 

culture medium have influence on protease activity (Ward, 2012).  

FGB1:GFP moved in vesicles towards the hyphal tip (Fig. 2.2). This and the predicted SP 

of FGB1 were hints for conventional secretion of FGB1 via the ER and Golgi apparatus 

(Nevalainen & Peterson, 2014; Rodrigues et al., 2011). Interestingly, higher expressing 

FGB1:GFP(:HA:His) strains tended to secrete less fusion protein compared to lower 

expressing strains. Therefore, conventional secretion of fusion proteins might reach a 

limit. The major bottlenecks of high protein production in filamentous fungi are not only 

at the transcriptional and translational level but also protein secretion (Ward, 2012). 
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Proteins can get trapped or lost during protein translocation, folding, processing and 

transport in the ER respectively the Golgi apparatus (Nevalainen & Peterson, 2014; 

Ward, 2012). Therefore, the overexpression of foldases and chaperones, which help 

correct protein folding, or fusion to highly secreted carrier proteins might improve 

protein secretion (Nevalainen & Peterson, 2014; Ward, 2012).  

As shown by addition of FITC-FGB1 to the hyphae FGB1 localised at the cell wall and a 

matrix surrounding the hyphae (Fig. 2.5). Therefore, production of a large amount of cell 

wall-binding lectins in the culture filtrate is an additional task to solve. The capacity of 

S. indica to produce this matrix around its hyphae seemed to be culture condition 

dependent. Hence, the culture medium might also be optimised regarding matrix 

production to increase the amount of proteins like FGB1 in the culture filtrate. 

Alternatively, a method for matrix collection and protein purification thereof could be 

developed.  

Despite the drawbacks of the present protein production system homologous and 

heterologous expression of several proteins was successful. The tested heterologous 

proteins were an E3 ubiquitin ligase form S. vermifera and the FGB1 homolog in B. 

sorokiniana. Proteins overexpressed in S. indica besides FGB1 were the SSPs DLD1, 

WSC3 and SiNUCA. Some of these proteins were not possible to express in the 

commonly applied systems P. pastoris or E. coli.  

High amount of secreted protein in the culture filtrate was achieved for SiNUCA:HA:His. 

Since cleavage of the His tag in a large fraction of the secreted protein protein 

purification relied on ammonium sulphate precipitation and subsequent size exclusion 

chromatography (Fig. 2.6). Applying this method a protein purity of ca. 70 % and a 

protein yield of 13 mg/L was achieved. If higher purity is needed for specific biochemical 

assays the protein might be further purified using alternative methods like HA affinity 

beads since this tag was still intact. To increase fusion protein stability the mentioned 

methods above for FGB1 might be implemented. In U. maydis expression of 

mCherry:SiNUCA instead of SiNUCA:mCherry was non-functional. Therefore, C-terminal 

protein tags were also used in S. indica for SiNUCA expression. However, it is still 

possible that small N-terminal tags like the His-tag might be functionally tolerated by 

SiNUCA and lead to higher fusion protein stability. Moreover, the reversed tag His:HA 

might be constructed with the idea that only HA would be cleaved and therefore, 
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protecting the His tag for protein purification. On top, other tags commonly used for 

protein purification like the Glutathione S-transferase tag could be tested (Kimple et al., 

2013).  

In conclusion, a protein production system was established in S. indica by implementing 

the FGB1 promoter, optimising culture conditions, linkers and tags for fusion protein 

production. Not only homologous but also heterologous proteins were successfully 

expressed in this system. SiNUCA was produced in S. indica, purified from the culture 

filtrate with a yield of 13 mg/L and its activity was confirmed. With further improvement 

of fusion protein stability this system has the potential for upscaling, cheap protein 

production and easy purification from culture filtrate complementing the few 

established systems in Basidiomycetes. Protein production in S. indica can bring an 

added value as especially proteins of Basidiomycete are difficult to express in 

prokaryotic, yeast and even filamentous fungal systems (Corchero et al., 2013; Erjavec 

et al., 2012).  

 

3.2 Homokaryotic versus dikaryotic S. indica strains 

To increase gene deletion efficiency, a homokaryotic S. indica strain was used. 

Additionally, the transformed strains derived from wt were often homokaryotic 

including the SiNUCA overexpression strains in this thesis. Thus, homokaryotic and 

dikaryotic S. indica strains were characterised in more detail. Griebel showed in her 

Bachelor thesis that homokaryotic strains are affected in saprotrophic growth compared 

to dikaryotic strains (Griebel, 2016). Impairment of growth on plates was shown in many 

wood decay Basidiomycetes but exceptions are known too (Fryar et al., 2002; Hiscox et 

al., 2010; Meng et al., 2013; Nazrul & YinBing, 2011). Moreover, homokaryons show 

differences in morphology and gene expression (Meng et al., 2013; Nazrul & YinBing, 

2011) but not in competitivity and enzyme activity (Fryar et al., 2002; Hiscox et al., 2010). 

Barley colonisation by the S. indica homokaryotic GenR C2 strain was impaired at 5 and 

14 dpi but not at 7 dpi compared to the dikaryotic wt strain (Fig. 2.16). At these time 

points, SiNUCA expression was higher in the GenR C2 strain and barley responded with 

a second peak of PR10 expression at 7 dpi. As the GenR C2 strain proved to have a 

deletion in the hypothetical SSP PIIN_08972 we speculated that PIIN_08972 might be 

involved in plant immunity suppression at 7 dpi. With impaired PIIN_08972 expression 
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the plant defence response was increased at 7 dpi and consequently, less colonisation 

was observed at later stages in the GenR C2 strain. At the same time, SiNUCA was 

induced at later stages probably attempting to increase colonisation or to allocate 

nutrients. However, these differences could not be confirmed by comparing other 

homokaryotic and dikaryotic S. indica strains. Therefore, SiNUCA gene deletion might be 

repeated in another homokaryotic strain. However, it must be further confirmed if S. 

indica homokaryotic strains are generally suitable for plant colonisation analysis before 

using them as substitution for the wt strain.  

 

3.3 Disappearance of plant nuclei upon S. indica colonisation 

S. indica has a biphasic lifestyle with an early biotrophic and a cell death-associated 

phase (Deshmukh et al., 2006; Jacobs et al., 2011; Zuccaro et al., 2011). The 

disappearance of plant nuclei in colonised Arabidopsis roots was observed by cytological 

studies (Fig. 2.7). S. indica was detected to grow through the nucleus suggesting that the 

fungus was actively feeding on the nucleus.  

S. indica was extracellularly growing around the whole Arabidopsis root and interacting 

with BLC but colonisation of the root tip or BLC was not observed (Fig. 2.8 and Jacobs et 

al., 2011). Protection of root tip infection by border cells was shown for the root 

pathogens Aphanomyces euteiches and Nectria haematococca in pea, where border cell 

production is increasing upon pathogen infection (Cannesan et al., 2011; Gunawardena 

& Hawes, 2002). Hyphae in contact with border cells are fragmented and unable to reach 

the root cap itself (M. C. Hawes et al., 2011). Moreover, microbes are attracted by 

border cells but not able to colonise them (M. Hawes et al., 2016a). A connection 

between border cell production and mycorrhizae was suggested but its functional 

interaction is unknown (Driouich et al., 2013). Arabidopsis BLC are released in sheets 

and not as single cells like the border cells of other plant species (Vicre et al., 2005). 

However, it was suggested that BLC function in a similar way to border cells and are 

involved in pathogen response too (Driouich et al., 2010; Plancot et al., 2013). Therefore, 

BLCs could protect Arabidopsis root tips from colonisation by S. indica as well.  

Nuclei fading was not only observed in colonised epidermal and cortex cells but also in 

BLC, which just have come in contact with S. indica (Fig. 2.8). Border cells were described 

as living cells, which are metabolically active (M. C. Hawes et al., 2011; Wen et al., 2007). 



  Discussion 

_____________________________________________________________________________________ 

   61 

Therefore, nuclei fading, probably followed by cell death, in BLC in contact with S. indica 

might be due to the normal turn-over of BLC. It was shown that Arabidopsis BLC stay 

only alive for few days (Plancot et al., 2013; Vicre et al., 2005).  

 

3.4 The features of the S. indica endonuclease SiNUCA  

The S. indica endonuclease SiNUCA was found in the APF of S. indica-colonised barley 

roots at 5 dpi, where the transition from the biotrophic to the cell death-associated 

phase happens. SiNUCA expression was induced in barley with highest expression levels 

at 7 dpi (Fig. 2.10). In Arabidopsis, SiNUCA expression was highest at 14 dpi. However, 

SiNUCA expression of S. indica in Arabidopsis was not significantly higher than on ½ MS 

medium but significantly increasing over time. SiNUCA is 211 amino acids long, has a 

predicted SP and Pfam DUF1524 domain, which belongs to the His-Me finger 

endonuclease superfamily (Fig. 2.9). Therefore, SiNUCA shows typical features of 

effector proteins as it is small, has a SP, four cysteines and is induced in planta. In 

contrast, it is highly conserved in the Agaricomycetes, Ascomycetes and Actinobacteria. 

High conservation of effectors is uncommon but has been shown before (Lo Presti et al., 

2015). Jablonska et al. suggested horizontal gene transfer as highly conserved genes 

with the DUF 1524 domain were found in the Actinomyces bacteria (belonging to the 

Actinobacteria) and Agaricomycetes fungi (Jablonska et al., 2017). Consequently, 

SiNUCA might be a bacterial-derived gene.  

The homologous gene in S. vermifera was expressed in Arabidopsis and barley too but 

at earlier time points compared to SiNUCA. In accordance, Lahrmann et al. suggested 

that Arabidopsis colonisation by S. vermifera is faster than by S. indica (Lahrmann et al., 

2015). As the homologous protein in S. vermifera has a SP and DUF1524 domain as well 

a nuclease effector function was suggested. Therefore, SiNUCA as a putative conserved 

effector was chosen for further molecular characterisation and its involvement in plant 

cell death was investigated.  

First, secretion and nuclease activity were confirmed by expression of SiNUCA in U. 

maydis (Fig. 2.11). SiNUCA emerged to be an unspecific endonuclease as in U. maydis 

culture supernatant containing SiNUCA fungal and plant genomic DNA and RNA was 

digested. Moreover, EDTA inhibited digestion confirming the metal ion- dependent 

catalytic activity of the protein.  
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Second, SiNUCA driven by the FGB1 promoter was overexpressed in S. indica. Here, 

secretion and nuclease activity were observed in the culture filtrate of SiNUCA 

overexpressing S. indica strains compared to empty vector strains (Fig. 2.12). Further 

characterisation of SiNUCA was performed with the purified protein. Unspecific 

endonuclease activity was confirmed with the purified SiNUCA:HA:His as the protein 

was able to digest fungal and plant gDNA and RNA and linearised plasmids. Furthermore, 

low pH and high salt conditions reduced SiNUCA activity. It is unknown which metal ion 

SiNUCA is binding and also the HNN motif as catalytic side is not confirmed. Mg2+ is a 

common cofactor of His-Me finger endonucleases (Jablonska et al., 2017; M. J. Mate & 

Kleanthous, 2004; Rangarajan & Shankar, 2001). As small amounts of MgCl2 and CaCl2 

increased SiNUCA activity, Mg2+ might bind SiNUCA. On the other hand, the protein 

showed a brown colour, which was lost upon addition of the reducing agent glutathione 

(data not shown). Therefore, an iron-sulphur complex might be responsible for this 

colour as demonstrated for other proteins (Huang et al., 2008; Yeeles, 2009). However, 

it was shown for nucleases that they are active with interchangeable metal ions 

(Garforth et al., 2001; Okafor et al., 2017). The DNase Ehe A from the bacteria 

Exiguobacterium sp. yc3 is the only biochemically characterised homologue of SiNUCA 

to our knowledge. This extracellular 20 kDa DNase with 48 % sequence identity to 

SiNUCA on protein level exhibits high activity with Mg2+, Mn2+ and Co2+ (Zhou et al., 

2015). Ehe A shows activity from pH 5- 10 and thermostability (Zhou et al., 2015). 

Moreover, mutation of the conserved HNN motif disrupts DNase activity (Zhou et al., 

2015).  

 

3.5 SiNUCA overexpression and deletion has no effect on plant colonisation 

Gene deletion was established in S. indica to delete SiNUCA and analyse its effect on 

plant colonisation. By using 1.8 kb up- and downstream of the gene, splitting the 

fragment and adding more than 10 μg of each fragment for the transformation a 

homologous recombination frequency of 3-10 % was reached (Fig. 2.13). A higher 

homologous recombination frequency was shown in different fungal systems with 

longer flanking regions and when the flanking regions show 100 % homology at their 

ends (Bird & Bradshaw, 1997; Kamper, 2004; Krappmann et al., 2006; Ninomiya et al., 

2004). A major increase in homologous recombination frequency was achieved by 



  Discussion 

_____________________________________________________________________________________ 

   63 

deleting KU genes involved in non-homologous end-joining for example in A. fumigatus 

and Neurospora crassa (Krappmann et al., 2006; Ninomiya et al., 2004). Therefore, the 

rate of homologous recombination in S. indica might be further increased by preventing 

non-homologous end-joining. As the GenR C2 strain already harbours the Geneticin 

resistance cassette and on top only the hygromycin B resistance cassette is routinely 

used more antibiotics must be screened for selection purposes in S. indica. The attempt 

applied here to prevent non-homologous end-joining was to split the fragment as 

integration of the two fragments without homologous recombination led to a non-

functional split resistance cassette. The established gene deletion system could be 

applied to delete other genes of interest in S. indica or could be adapted for S. vermifera.  

The obtained ∆sinucA strain was compared to the background GenR C2 strain in its 

ability to colonise barley and Arabidopsis roots. No significant differences were 

observed at all analysed time points. Moreover, there were no differences detected in 

plant immunity response (analysed by PR10 expression) or root cell death (analysed by 

VPE activity) in barley (Fig. 2.14). PIIN_05889 expression, a marker for saprotrophic 

growth, was higher in the ∆sinucA strain in barley at 14 dpi probably compensating for 

SiNUCA. Moreover, no differences were observed in the timing of nuclei disappearance 

of stained nuclei with SYTOX orange or H2B:mCherry expressing Arabidopsis plants 

inoculated with the SiNUCA overexpression or ∆sinucA strain compared to the control 

strains (data not shown).  

The S. indica secretome was analysed to find other secreted nucleases induced in planta, 

which could compensate for SiNUCA deletion. PIIN_00073 (an endonuclease 

exonuclease phosphatase family protein) and PIIN_09504 (a s1p1 nuclease) were 

confirmed to be induced in barley and Arabidopsis although their expression was not 

significantly elevated in the ∆sinucA strain in planta (Fig. 2.14). The ability of ∆sinucA to 

digest DNA in plates was not completely abolished (Fig. 2.15). These results suggested 

additional secreted nucleases playing a role and maybe compensating for SiNUCA 

deletion. There is the possibility of predicted nucleases without SP to be unconventially 

secreted or secreted proteins with unknown function exhibiting nuclease activity in S. 

indica, which should also be taken into consideration.  

Despite the large variety and low sequence conservation of effectors, functional 

redundancy is recognised as a major problem in studying effector proteins (Plett & 
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Martin, 2015; Rafiqi et al., 2012; Win et al., 2012). Functional redundancy does not only 

include targeting of the same host protein by more than one effector but also the same 

host pathway by several effectors (Win et al., 2012). Saitoh et al. disrupted 78 putative 

effectors in the rice pathogen Magnaporthe oryzae but they only see a phenotype with 

one of the deleted effectors (Saitoh et al., 2012). The deletion of all six mig2 genes in U. 

maydis, which show effector characteristics, does not alter tumour formation in maize 

(Farfsing et al., 2005). Furthermore, Kettles et al. showed that the fungal secreted 

ribonuclease Zt6 is phytotoxic but does not influence Zymoseptoria tritici virulence on 

wheat (Kettles et al., 2018). In addition, no differences in colonisation of the different 

strains might be due to not high enough sensitivity of the assays to see subtle effects 

(Lo Presti et al., 2015). Indeed, a tendency for lower colonisation by ∆sinucA correlated 

with tendentially higher expression of the two other tested nucleases in ∆sinucA 

compared to GenR C2 in barley at 3 dpi (Fig. 2.13& 2.14).  

The effect of SiNUCA overexpression on plant colonisation was analysed as well. 

Arabidopsis colonisation at 7 dpi did not reveal any differences between SiNUCA 

overexpressor and empty vector strains (Fig. 2.17). Therefore, SiNUCA was 

heterologously expressed in Arabidopsis to analyse its effect on colonisation.  

 

3.6 SiNUCA expression in Arabidopsis enhances colonisation and cell death 

SiNUCA driven by the strong and constitutive 35S promoter was expressed in 

Arabidopsis. Arabidopsis lines harbouring SiNUCA showed induced colonisation of S. 

indica wt at 7 dpi (Fig. 2.18). This is in contrast to SiNUCA overexpression on fungal side, 

which had no effect on Arabidopsis colonisation (Fig. 2.17). A 3930- 6820-fold increase 

in SiNUCA levels were reached in the two highest expressing lines compared to a 7- 19-

fold increase in SiNUCA overexpressing S. indica strains at 7 dpi. However, the SiNUCA 

expressing seedlings also showed shorter roots and less shoot weight suggesting a delay 

or impairment in seedling development (Fig. 2.18). Therefore, an effect of the seedling 

developmental stage on root colonisation could not be ruled out.  

VPE activity was measured in the different Arabidopsis lines inoculated with S. indica to 

unravel the influence of SiNUCA on RCD. In general, colonisation by S. indica elevated 

VPE activity in roots as shown before (Fig. 2.18 and Lahrmann et al., 2013; Qiang et al., 

2012b). VPE activity was higher in the colonised SiNUCA expressing plant line relative to 
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mock compared to the control line relative to mock. The calculation relative to mock 

inoculated plants revealed a normalisation for developmental effects of the different 

plant lines. This might be necessary as increased root cell death with root age was 

described in different plant species (Bagniewska-Zadworna & Arasimowicz-Jelonek, 

2016; Liljeroth & Bryngelsson, 2001). Whether SiNUCA was directly involved in RCD and 

hence, a higher colonisation level resulted or SiNUCA was indirectly increasing 

colonisation that led to more RCD is unknown.  

 

3.7 SiNUCA localisation 

Since in planta localisation of SiNUCA with SiNUCA:GFP:HA:His and SiNUCA:HA:His 

expressing strains was not successful SiNUCA localisation was analysed via heterologous 

expression in Arabidopsis using a C-terminal mCherry fusion. mCherry signals were 

detected at the cell wall but after plasmolysis also in the whole protoplast (Fig. 2.19). In 

general, a cell wall localisation and a high background in vacuoles was detected. In order 

to verify secretion, plant lines expressing SiNUCA(w/o SP):mCherry were analysed as 

control. In this plant lines a clear cytoplasmic localisation was revealed and no specific 

accumulation in the nucleus. Accordingly, SiNUCA has no nuclear localisation signal in 

its protein sequence. These results suggested an extracellular localisation of the protein.  

Upon inoculation of the SiNUCA:mCherry expressing Arabidopsis seedlings with S. indica 

mCherry signal translocated from the cell wall to focal accumulation around penetrating 

hyphae (Fig. 2.20). At later colonisation stages, SiNUCA:mCherry was observed at 

bursting nuclei of colonised host cells suggesting digestion of nuclear DNA.  

However, the accuracy of SiNUCA localisation must be questioned as SiNUCA:mCherry 

was heterologously expressed under the strong and constitutive 35S promoter. The 

mCherry fusion might lead to artefacts in localisation and it is currently unknown where 

secreted mCherry alone localises in Arabidopsis roots. Wang et al. showed that 

localisation differed in their case if the mRFP fused effector was expressed in the host 

plant or in the fungus (Wang et al., 2017). Reitz et al. faced problems with different 

fusion protein localisation in Arabidopsis depending on where in the protein the GFP 

sequence was added (Reitz et al., 2013). 
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3.8 Function of SiNUCA in planta 

Secreted nucleases are not only abundant in bacterial and fungal pathogens but also in 

soil microbes (Hadwiger et al., 2013; M. Hawes et al., 2016a; M. C. Hawes et al., 2011). 

Searching the literature, these secreted nucleases are connected to host immunity, 

microbial competition, protection from foreign DNA, nutrition and biofilm modulation 

with some proteins having dual function. Therefore, the experimental data of SiNUCA 

was compared to other characterised secreted nucleases to hypothesise on its function.  

 

3.8.1 Nucleases with cell death executor function 

Nucleases were shown to localise in the nucleus and degrade chromosomal DNA upon 

apoptosis in animal systems (Hsia et al., 2005). CAD/FDD40 is activated by caspase-3, 

enters the nucleus and digests chromosomal DNA, which finally leads to cell death (Enari 

et al., 1998; X. Liu et al., 1997). Moreover, endoG in the mitochondria is translocated to 

the nucleus to degrade chromosomal DNA upon induction of apoptosis (Li et al., 2001). 

In plants, the nuclease ZEN1 degrades nuclear DNA in tracheary elements following 

vacuolar collapse (Ito & Fukuda, 2002). Host nuclear localisation and induction of the 

DNA damage response was shown for the pathogenic oomycete effector nucleases 

CRN13 of the legume root pathogen Aphanomyces euteiches and amphibian pathogen 

Batrachochytrium dendrobatidis (Ramirez-Garces et al., 2015). Therefore, SiNUCA might 

be involved in host cell death as shown for the above-mentioned nucleases.  

In accordance, VPE activity was induced in SiNUCA-expressing Arabidopsis lines upon 

inoculation with S. indica, a mCherry fusion localised at the degrading nucleus at late 

colonisation stages, SiNUCA activity was higher at pH 8 and SiNUCA transcript levels 

were highest in Arabidopsis at later colonisation stages. In contrast, SiNUCA was present 

in the barley APF already at 5 dpi and its expression was highest at 7 dpi. Since SiNUCA 

was successfully expressed in Arabidopsis and these plants did not show extensive cell 

death SiNUCA might be a cell death executor and not a cell death trigger. However, 

cytosolic SiNUCA:mCherry signal was much weaker than extracellular SiNUCA:mCherry 

signal and a high signal background in the vacuole was detected, which speaks for a 

certain phytotoxicity of SiNUCA.  
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Many nucleases inducing cell death have an immunity protein to inhibit enzyme activity 

before arrival at the place of action (Meiss et al., 1998; Woo et al., 2004). However, no 

clear protein interaction with SiNUCA was found in yeast two hybrid assays (Bachelor 

thesis Charura, 2016). In contrast, a protein of ca. 50 kDa was co-eluted with SiNUCA by 

size exclusion chromatography in all prepared samples. This protein could interact with 

SiNUCA and needs to be sequenced. The type of cell death related to SiNUCA or even 

the function of SiNUCA might be different in barley and Arabidopsis. The involvement 

of SiNUCA in cell death execution and the type of cell death induced by S. indica in planta 

might be further investigated using Arabidopsis cell death mutants and specific stainings 

for cytological analysis.  

 

3.8.2 Nucleases in immunity and cooperation with nucleotidases 

The release of nucleic acid extracellular traps (NETs) from root border cells was 

described as response to environmental stimuli (Cannesan et al., 2011; Driouich et al., 

2013; M. Hawes et al., 2016a; M. C. Hawes et al., 2016b; Tran et al., 2016). NETs are 

composed of DNA, proteins, polysaccharides and antimicrobial compounds (Cannesan 

et al., 2012; Driouich et al., 2013; Wen et al., 2007; Wen et al., 2009). The soil-borne 

bacterial plant pathogen Ralstonia solanacearum was shown to get trapped by pea root 

border cell NETs but can escape by digestion of the NET with the help of two secreted 

DNases (Tran et al., 2016). In contrast, the double DNase mutant of R. solanacearum is 

not able to escape NETs and besides has reduced virulence on tomato plants (Tran et 

al., 2016).  

Nucleases responsible for bacterial release from neutrophil extracellular traps (the 

pendant to plant border cell NETs in animal systems) was originally shown for group A 

Streptococcus and later for many other bacterial animal pathogens (Buchanan et al., 

2006; M. Hawes et al., 2016a; Sumby et al., 2005). Trapping by NETs was demonstrated 

for the fungal human pathogen Candida albicans and the fungal plant root pathogen 

Nectria haematococca (Urban et al., 2006; Wen et al., 2009). Therefore, the question 

arose if SiNUCA is involved in NETs escape. SiNUCA was not induced in planta at early 

colonisation time points and induction of NETs was not observed in Arabidopsis upon S. 

indica colonisation. However, in the APF of S. indica-colonised barley histone H4 was 

detected, which is a component of NETs (Wen et al., 2007). The model plant for NETs, 
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pea, might be utilised for further studies of NETs in connection with S. indica and its 

SiNUCA.  

Thammavongsa et al. revealed that not only the nuclease Nuc is involved in NETs 

counter defence by Staphylococcus aureus but also the nucleotidase AdsA is required to 

induce apoptosis of macrophages (Thammavongsa et al., 2013). Nuc digests DNA of 

NETs and produces 3’-phosphomononucleotides and -dinucleotides (Berends et al., 

2010). AdsA can not only process the substrates adenosine tri-, di- and monophosphate 

(ATP, ADP and AMP) to the immunosuppressive adenosine but also 2’-deoxyadenosine 

monophosphate (dAMP) to 2’-deoxyadenosine (dAdo) (Thammavongsa et al., 2013; 

Thammavongsa et al., 2011). dAdo is toxic and leads to apoptosis in macrophages 

(Thammavongsa et al., 2013). A similar mechanism was shown for the Streptococcus 

pyogenes nucleotidase A (S5nA) working together with the nuclease SpnA to produce 

toxic dAdo (Zheng et al., 2015).  

Interestingly, a S. indica ecto-5'-nucleotidase (SiE5’NT) is homologous to AdsA. The 

effector SiE5’NT was shown to hydrolyse ATP, ADP and AMP and to be involved in 

suppression of the DAMP extracellular ATP (eATP) upon S. indica plant colonisation 

(Nizam et al., 2018). Analogous to AdsA and S5nA, it would be interesting to see if 

SiE5’NT can produce dAdo from substrates digested by SiNUCA. dAdo but not adenosine 

was shown to be toxic to Arabidopsis seedlings too (personal communication Dr. H. 

Rövenich). Therefore, SiNUCA and SiE5’NT might work together to trigger cell death. As 

S. indica only induced cell death in colonised cells after the biotrophic phase (Jacobs et 

al., 2011), dAdo production would need to be tightly controlled regarding time and 

location. SiE5’NT was found in the APF of barley at all analysed colonisation time points 

and Arabidopsis seedlings heterologously expressing SiE5’NT leads to increased 

colonisation at all time points. This is in contrast to SiNUCA, which was only found at 5 

dpi in the APF and colonisation was only enhanced at 7 dpi in Arabidopsis seedlings 

expressing SiNUCA. Therefore, SiE5’NT might have a dual function involved in eATP-

triggered immunity and production of phytotoxic dAdo. In accordance, eATP levels in 

the apoplast decrease after the early colonisation phase (Nizam et al., 2018). The open 

question is which DNA would be the substrate for SiNUCA- NETs, plant or fungal 

extracellular DNA?  
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In soil, DNA is abundant and it was shown that many organisms can distinguish between 

self and non-self extracellular DNA (exDNA) as only self exDNA is inhibiting growth 

(Duran-Flores & Heil, 2015; Mazzoleni et al., 2015a; Mazzoleni et al., 2015b). Duran-

Flores and Heil suggested that self exDNA acts as DAMP inducing ROS and mitogen-

activated protein kinase signalling (Duran-Flores & Heil, 2017). Only self exDNA 

fragments with a size of less than 700 bp are inhibiting growth and digestion by DNase I 

abolishs the effect (Duran-Flores & Heil, 2017). However, it is unknown if this self exDNA 

is released from living cells (NETs?) or upon RCD, which tissue and cells are involved and 

if exDNA is recognised by receptors or toxic per se (Bhat & Ryu, 2016; Duran-Flores & 

Heil, 2015). If self exDNA acts as DAMP SiNUCA might digest plant exDNA to avoid 

DAMP-triggered immunity response.  

 

3.8.3 Nucleases and nutritional aspects 

Involvement of secreted nucleases in nutrition was shown for different organisms. A 3’ 

nucleotidase/nuclease of Leishmania sp. is not only acting in digestion of NETs but also 

in nutrient acquisition (Guimaraes-Costa et al., 2014; Sacci et al., 1990). A secreted 

DNase of P. aeruginosa is induced under phosphate limiting conditions and allocates 

phosphate, nitrogen and carbon (Mulcahy et al., 2010). Nucleases and nucleotidases are 

also induced under phosphate starvation in the marine bacteria Shewanella ssp., which 

are able to grow on DNA as phosphate, nitrogen and carbon source (Pinchuk et al., 

2008). However, it was also shown that extracellular DNA digestion by secreted enzymes 

is not needed as DNA fragments itself can be taken up by E. coli and root hairs for 

nutrition (Finkel & Kolter, 2001; Paungfoo-Lonhienne et al., 2010).  

As S. indica was growing through plant nuclei, which disappeared with progression of 

colonisation and the sugar non-specific nuclease SiNUCA was secreted the involvement 

of SiNUCA in plant or fungal nutrition must be considered. Lahrmann et al. showed that 

the cell death-associated phase in barley is triggered by nitrogen starvation sensed by 

the fungal transporter Amt1 (Lahrmann et al., 2013). Interestingly, transcriptomic 

analysis of S. indica wt compared to downregulated Amt1 strains exhibited 

downregulation of SiNUCA at the same time (Ding, 2014). Therefore, growth of S. indica 

strains with different SiNUCA levels were analysed growing on DNA as nitrogen source. 

A S. indica strain overexpressing SiNUCA was growing better on these plates compared 
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to empty vector strains or wt and these were growing with denser mycelium compared 

to the ∆sinucA strain (Fig. 2.15). These results suggest a nutritional aspect of SiNUCA. 

The nitrogen and amino acid status of colonised plants expressing SiNUCA compared to 

control plants could be measured by inductively coupled plasma-mass spectrometry. 

However, SiNUCA was not induced under nitrogen starvation in contrast to Amt1. Next, 

the influence of ∆sinucA was tested on phosphate and sulphate uptake in colonised 

Arabidopsis seedlings in collaboration with Prof. Dr. S. Kopriva. No differences in uptake 

of radioactively labelled phosphate or sulphate into Arabidopsis roots or shoots in 30 

min was observed between colonisation with ∆sinucA, control or wt strains (data not 

shown). However, compartmentalised experiments over days might reveal differences. 

As starvation and RCD are connected through autophagy (Üstün et al., 2017) 

disentangling SiNUCA function in nutrition and RCD might be difficult.  

 

3.8.4 Antimicrobial nucleases  

Nucleases with the role of antimicrobial toxicity for competition are well known for 

colicins. Colicins are stress induced, secreted proteins from E. coli with different 

functions like membrane pore formation, RNase or HNH endonuclease activity (James 

et al., 2002). The colicins E2, 7, 8, and 9 exhibit DNase activity and enter competing 

bacterial cells through a pore forming complex (Cascales et al., 2007). They enter the 

hostile nucleus to unspecifically degrade chromosomal DNA, which leads to cell death 

(M. J. Mate & Kleanthous, 2004; Pommer et al., 2001). Kettles et al. proposed for the 

secreted ribonuclease Zt6 a second role in antimicrobial competition and niche 

protection as the purified protein shows antimicrobial activity against E. coli and yeasts 

in vitro (Kettles et al., 2018). Nucleases as antimicrobial effectors in the microbiome of 

plants might have an important role in nutritional and niche competition and against 

invading pathogens (Hacquard et al., 2017; Rövenich et al., 2014). Therefore, the toxicity 

of SiNUCA was tested in different assays against E. coli. No antibacterial activity of 

SiNUCA was observed but activity against other microbes cannot be ruled out (Fig. 2.21). 

However, Ma et al. showed that antimicrobial activity can be environment dependent 

as the Agrobacterium tumefaciens secreted DNases Tde are only effective against P. 

aeruginosa in planta (Ma et al., 2014). 
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3.8.5 Conclusion 

The cell death-associated colonisation phase of S. indica was further depicted by 

cytological studies and by using the S. indica effector nuclease SiNUCA. SiNUCA emerged 

as a conserved small secreted protein with sugar non-specific nuclease activity. 

Expression in Arabidopsis revealed a higher colonisation rate, more cell death and a final 

localisation in host nuclei upon S. indica colonisation. A function of SiNUCA in digestion 

of the DAMP self exDNA in the apoplast to avoid plant immunity was proposed (Fig. 

3.1A). SiNUCA might work together with the nucleotidase SiE5’NT to produce toxic 

dAdo, which triggers host cell death. In addition, SiNUCA could be a cell death executor 

by degradation of chromosomal DNA in the plant nucleus (Fig. 3.1.B). Both could also 

have a benefit in the generation of fungal or plant nutrients.  

These data provide a deeper insight into effector biology and how cell death is involved 

in symbiotic plant-microbe interactions. Understanding the function of highly abundant 

secreted nucleases in microbes in interaction with plants is important to develop new 

strategies against plant diseases.  
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Fig. 3.1: Model for the SiNUCA function in planta. 

A) As plant immune response to S. indica colonisation the plant could release the DAMP self exDNA. 

S. indica secretes the endonuclease SiNUCA into the apoplast to digest this exDNA and therefore, 

avoiding DAMP-triggered immunity. Digested exDNA could serve as nutritional building blocks for the 

plant and/or the fungus. Moreover, digested exDNA in form of dAMP could be further processed by 

the S. indica nucleotidase SiE5´NT producing toxic dAdo. dAdo might trigger host regulated cell death 

(RCD). B) SiNUCA could also degrade nuclear plant DNA and therefore, being a cell death executor. 

Digested nuclear DNA could serve as nutrition for the plant or fungus too.  
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4 Material and Methods 

4.1 Chemicals, media and buffers 

Chemicals and media components were mainly ordered from Carl Roth (Karlsruhe, 

Germany), Sigma Aldrich (Taufkirchen, Germany) and VWR (Darmstadt, Germany). 

Arabidopsis growth media was ordered from Duchefa (Haarlem, The Netherlands). In 

general, media and buffer were autoclaved at 121°C for 20 min 1.5 bar. Heat sensitive 

components were sterile filtrated through 0.22 μm Rotilabo syringe filters (Carl Roth, 

Karlsruhe, Germany) or for bigger volumes through 0.22 μm bottle top vacuum filtration 

systems (VWR, Darmstadt, Germany).  

 

4.2 Bacterial, fungal and plant material 

4.2.1 E. coli strains 

The Escherichia coli strains Top10 or Mach1 (Invitrogen, Thermo Fisher Scientific, 

Schwerte, Germany) were used for experiments in this thesis.  

 

4.2.2 A. tumefaciens strain 

The Agrobacteria tumefaciens strain GV3101 was used for Arabidopsis transformation.  

 

4.2.3 U. maydis strains 

All transformed Ustilago maydis strains in this thesis derived from the haploid 

solopathogenic strain SG200 (Kämper et al., 2006).  
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Table 4.1 U. maydis strains used in this thesis 

Name Description 

mCherry Cytosolic mCherry expression driven by the otef promoter (provided by Dr. S. 

Nizam) 

SiNUCA Expressing full length SiNUCA driven by the otef promoter 

SiNUCA:mCherry Expressing full length SiNUCA with C- terminal mCherry fusion driven by the otef 

promoter 

SPSiNUCA:mCherry Secreting mCherry by using the SP of SiNUCA driven by the otef promoter 

 

4.2.4 B. sorokiniana strain 

The Bipolaris sorokiniana strain ND90Pr (Deutsche Sammlung von Mikroorganismen 

und Zellkulturen, Braunschweig, Germany) was cultivated for microscopy.  

 

4.2.5 S. indica strains 

The tranformed Serendipita indica strains used in this thesis all derived from the 

dikaryotic S. indica strain DSM11827 (Deutsche Sammlung von Mikroorganismen und 

Zellkulturen, Braunschweig, Germany).  

 

Table 4.2 S. indica strains mentioned in this thesis 

Name Karyotype Description 

GFP  Dikaryotic Cytosolic GFP expression driven by the GPD promoter 

(Hilbert et al., 2012) 

SvTEF::GFP n.d. Cytosolic GFP expression driven by the TEF promoter 

from S. vermifera 

FGB1:GFP Homokaryotic Expressing full length FGB1 (PIIN_03211) with C- 

terminal GFP driven by the FGB1 promoter (This 

thesis and Wawra et al., 2016) 

FGB1:GFP:HA:His n.d. Expressing full length FGB1 with C- terminal 

GFP:HA:His driven by the FGB1 promoter 

FGB1:mRFP:HA:His n.d. Expressing full length FGB1 with C- terminal 

mRFP:HA:His driven by the FGB1 promoter 

SPFGB1: Sebve1_14646:GFP n.d. Expressing Sebve1_14646 without SP with SP of FGB1 

and C- terminal GFP driven by the FGB1 promoter 
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Name Karyotype Description 

BsFGB1:GFP:HA:His n.d. Expressing the full length FGB1 homologue of B. 

sorokiniana (19137836) with C- terminal GFP:HA:His 

driven by the FGB1 promoter 

BsFGB1:mRFP:HA:His n.d. Expressing the full length FGB1 homologue of B. 

sorokiniana (19137836) with C- terminal 

mRFP:HA:His driven by the FGB1 promoter 

BsFGB1:HA:His n.d. Expressing the full length FGB1 homologue of B. 

sorokiniana (19137836) with C- terminal HA:His 

driven by the FGB1 promoter 

SiNUCA:HA:His Homokaryotic Expressing full length SiNUCA (PIIN_02121) with C- 

terminal HA:His tag driven by the FGB1 promoter 

HA:His Homokaryotic Control strains for SiNUCA:HA:His 

GenR C2 16/3  Homokaryotic Sequenced, homokaryotic reference strain 

harbouring LBFGB1:GPD::GenR: RBFGB1 (Wawra et al., 

2016) 

∆sinucA Homokaryotic SiNUCA gene deletion in GenR C2 16/3 strain, SiNUCA 

replaced by Hygromycin B resistance cassette 

RNAi-SiNUCA Dikaryotic Fragment of SiNUCA between the GPD and TEF 

promoter for gene silencing 

GPD::GenR Dikaryotic/ 

Homokaryotic 

Dikaryotic and homokaryotic strains harbouring the 

Geneticin resistance cassette (Griebel, 2016) 

 

4.2.6 S. vermifera strain 

The S. vermifera strain MAFF305830 (National Institute of Agrobiological Sciences, 

Tsukuba, Japan) was used for microscopy.  

 

4.2.7 Arabidopsis lines 

The Arabidopsis thaliana ecotype Columbia 0 (Col-0) was used for most of the 

experiments. The other used lines had the background Col-0.  
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Table 4.3 A. thaliana lines used in this thesis  

Name Description Reference 

atg5 atg5 mutant line (N674040, 

SALK_020601C)  

Dr. C. Masclaux-Daubresse 

(INRA, Versaille, France) 

atg10 atg10 mutant line (N39994, SALK_084434)  Dr. C. Masclaux-Daubresse 

(INRA, Versaille, France) 

H2B:2xmCherry Constitutive expression of Histone H2B 

fused to mCherry in root cells under the 

UBQ10 promoter 

(Marquès-Bueno et al., 

2016) 

SiNUCA  Constitutive expression of SiNUCA driven 

by the 35S promoter 

This thesis 

SiNUCA:mCherry  Constitutive expression of SiNUCA C- 

terminally fused to mCherry driven by the 

35S promoter 

This thesis 

SiNUCA(w/o SP):mCherry  Constitutive expression of SiNUCA without 

SP C- terminally fused to mCherry driven by 

the 35S promoter 

This thesis 

 

4.2.8 Barley line 

The line Hordeum vulgare L. cv. Golden Promise was used (Prof. R. Hückelhoven, 

Technical University of Munich, Germany).  

 

4.3 Microbiological and plant biological methods 

4.3.1 E. coli 

4.3.1.1 Cultivation 

E. coli was growing in low salt lysogeny broth (LB) medium (0.5 % (w/v) yeast extract, 1 

% (w/v) tryptone, 0.5 % (w/v) NaCl) with 1.5 % (w/v) agar for pouring of plates. 

Depending on the required selection 100 μg/ml ampicillin or 50 μg/ml kanamycin were 

added. E. coli was growing at 37 °C on plates or in Erlenmeyer flasks at 37 °C 220 rpm.  

 

4.3.1.2 Heat shock transformation 

For the preparation of chemo competent E. coli the RbCl/CaCl2 method was applied. A 

1 ml of a 5 ml E. coli overnight liquid culture was added to 600 ml medium with 10 mM 

MgSO4 and 10 mM MgCl2 and this culture grown to OD600= 0.4- 0.6. Afterwards, the 
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culture was put on ice for 20 min and all the following steps were performed with pre-

cooled equipment and solutions. The cells were centrifugated at 3000 rpm for 15 min 

and resuspended in 100 ml RF I solution: 

100 mM RbCl 

50 mM MnCl2 x 4H2O 

30 mM CH3CO2K 

10 mM CaCl2 x 2H2O 

15 % (w/v) glycerol 

The pH was set to 5.8 with acetic acid and the solution was sterile filtered.  

The resuspended cells were left on ice for 15- 30 min, centrifugated at 3000 rpm for 15 

min and resuspended in 6 ml RF II solution:  

 10 mM MOPS 

 10 mM RbCl 

 75 mM CaCl2 x 2H2O 

 15 % (w/v) glycerol 

 The pH was set to 6.8 with NaOH and the solution was sterile filtered.  

The suspension was put on ice for 15 min, divided into 50 µl aliquots and flash-frozen in 

liquid nitrogen before stored at -80 °C.  

For heat shock transformation, an aliquot was thawed on ice and 1 μl plasmid or 5 μl 

Gibson assembly mix were added. The tube was left on ice for 5 min followed by 45 s at 

42 °C and another 5 min on ice. 250 μl low salt LB was added, the transformed cells were 

incubated for 30-45 min at 37 °C and plated on low salt LB with appropriate antibiotics.  

 

4.3.2 U. maydis 

4.3.2.1 Cultivation 

U. maydis was cultivated on potato dextrose agar (PDA) plates or in liquid YEPS light 

medium (0.4 % (w/v) yeast extract, 0.4 % (w/v) peptone, 2 % (w/v) sucrose) at 28 °C with 

220 rpm shaking for liquid cultures. For selection, 2 μg/ml carboxin was added to the 

medium.  
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4.3.2.2 Transformation 

A 2 ml YEPS light pre-culture was diluted 1:1000 into 55 ml YEPS light and grown until 

an OD600 of 0.6-0.8 was reached. The culture was centrifugated at 3000 rpm for 10 min 

and the pellet resuspended in 25 ml SMC (1.33 M sorbitol, 50 mM CaCl2, 20 mM MES 

pH 5.8). The suspension was centrifugated again and resuspended in 40 mg lysing 

enzymes from Trichoderma harzianum (Sigma Aldrich, Taufkirchen, Germany) dissolved 

in 2 ml SMC and sterile filtrated. The process was checked every 10 min until 30- 40 % 

of the cells were protoplasted. Subsequently, 10 ml cold SMC was added and the 

protoplasts centrifugated at 2400 rpm at 4 °C for 10 min. The pellet was resuspended in 

10 ml cold SMC. This washing step was repeated twice but at last resuspended in 10 ml 

cold STC (100 mM CaCl2, 10 mM Tris-HCl pH= 7.5, 1M sorbitol). The suspension was 

centrifugated again and the pellet was resuspended in 500 μl cold STC. The protoplasts 

were divided into 50 μl aliquots on ice and directly used for transformation or frozen at 

- 80 °C.  

A protoplast aliquot was thawed on ice and 1 μl heparin (15 mg / ml) and 5 μg plasmid 

(in 10 μl, linearised with SalI) added. 500 μl 40 % polyethylene glycol PEG 3350 in STC 

(0.45 μm sterile filtered) were add and the protoplasts were gently resuspended. This 

was incubated for 15 min on ice and plated by pipetting and gently spreading. The plates 

consisted of a first layer of 10 ml regeneration agar with antibiotics (4 μg/ml carboxin) 

and a second layer of 10 ml regeneration agar without antibiotics. The regeneration agar 

contained: 

 1 % (w/v) yeast extract  

2 % (w/v) bacto peptone 

2 % (w/v) sucrose 

18.22 % (w/v) sorbitol 

1.5% (w/v) agar 

The plates were incubated at 28 °C until emerging colonies appeared to transfer on PDA 

plates with antibiotics. Transformation of single colonies was confirmed by PCR on the 

inserted plasmid.  
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4.3.3 B. sorokiniana  

4.3.3.1 Cultivation 

B. sorokiniana was cultivated on CM plates for 10- 12 days at 25 °C to get spores.  

 CM medium for B. sorokiniana:  1 % (v/v) Solution A 

1 % (v/v) Solution B 

0.05 % (v/v) Srb’s micronutrients 

0.05 % (v/v) iron solution 

0.1% (w/v) yeast extract 

0.05% (w/v) peptone 

0.05% (w/v) Casamine acids 

1 % /w/v) glucose 

1.5% (w/v) Agar 

 

Solution A:     10% (w/v) Ca(NO3)2 x 4H2O 

 

Solution B:     2 % (w/v) KH2PO4 

2.5 % (w/v) MgSO4 x 7H2O 

1.5 % (w/v) NaCl 

 

Srb’s micronutrients:   0.006 % (w/v) MnSO4 x H2O 

0.0057 % (w/v) H3BO3 

0.049% (w/v) ZnSO4 x 7H2O 

0.0013% (w/v) KI 

0.0037 (w/v) (NH4)6M07O24 x 4H2O 

0.039% (w/v) CuSO4 x 5H2O 

Iron solution:     94.8 % (w/v) FeCl3 x 6H2O 

 

B. sorokiniana was cultivated in MYP medium (0.7 % (w/v) malt extract, 0.1 % (w/v) 

peptone, 0.05 % (w/v) yeast extract) at 28°C 120 rpm. The fungus was incubated for 3 

days, the culture filtered with miracloth (Millipore Merck, Darmstadt, Germany), 

crushed in new medium (MicrotronR MB550 homogenizer (Kinematica, Luzern, 

Switzerland) and regenerated for 1 day. This young mycelium was used for microscopy.  
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4.3.3.2 Spore collection 

Spores from 10-12-day old plates were scratched from the plate with a spreader and 5 

ml 0.002 % Tween20 was added. The spore solution was filtered through miracloth and 

centrifugated for 10 min at 4000 rpm. The spores were washed twice and were finally 

resuspended in 10 ml ddH2O. The concentration was adjusted to 5000 spores / ml using 

a Neubauer improved counting chamber.  

 

4.3.4 S. vermifera cultivation 

S. vermifera was cultivated in MYP medium (see 4.3.3.1) at 28°C with 120 rpm agitation. 

The fungus was incubated for 5 days, the culture filtered with miracloth, crushed in new 

medium (MicrotronR MB550 homogenizer (Kinematica, Luzern, Switzerland) and 

regenerated for 1 day. This young mycelium was used for microscopy.  

 

4.3.5 S. indica 

4.3.5.1 Cultivation 

S. indica was growing in complete medium (CM):  5 % (v/v) 20x Salt solution  

0.1 % (v/v) Microelements  

0.2 % (w/v) Peptone 

0.1 % (w/v) Yeast extract 

0.1 % (w/v) Caseinhydrolysat 

1.5 % (w/v) Agar (for solid medium 

only)  

After autoclaving 2 % (w/v) Glucose (filter sterilised) was added.  

20x salt solution:   12 % (w/v) NaNO3 

1.04 % (w/v) KCl 

1.04 % (w/v) MgSO4 x 7H2O 

3.04 % (w/v) KH2PO4 

Microelements:  0.6 % (w/v) MnCl2 x 4H2O 

0.15 % (w/v) H3BO3 
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Microelements (continued): 0.265 % (w/v) ZnSO4 x 7H2O 

0.075 % (w/v) KI 

0.24 ‰ (w/v) Na2MO4 x 2H2O 

0.013 % (w/v) CuSO4 x 5H2O 

 

S. indica was growing at 28 °C and 120 rpm for liquid cultures. 80 μg/ml Hygromycin B 

or 100 μg/ml Geneticin (G418) were added to solid medium for selection purpose (Carl 

Roth, Karlsruhe, Germany). To set up liquid cultures, spores or small plugs punched from 

plates were added to CM in an Erlenmeyer flask.  

The following protocol was used for medium tests and microscopy if not otherwise 

described: A seven-day old 50 ml liquid culture was filtered with miracloth and the 

mycelium was washed with 50 ml 0.9 % NaCl. The mycelium was crushed in new medium 

in a blender (MicrotronR MB550 homogenizer (Kinematica, Luzern, Switzerland) and the 

culture was grown for two days to regenerate. The mycelium was filtered, washed and 

cultured again in different media. The tested media besides CM were MYP (see 4.3.3.1), 

YEPS light (see 4.3.2.1), MEP (2 % (w/v) malt extract and 0.2 % (w/v) peptone), YNB 

without amino acids (Sigma Aldrich, Taufkirchen, Germany) supplemented with 2 % 

(w/v) glucose and YNB without amino acids and ammonium sulphate (BD Difco, Fisher 

Scientific, Schwerte, Germany) supplemented with 5 mM asparagine and 2 % (w/v) 

glucose. YNB and asparagine were sterile filtrated.  

 

4.3.5.2 Collection of chlamydospores 

Chlamydospores were harvested from three- to four-week old plates by adding few ml 

of 0.002 % (v/v) Tween20 and scratching with a scalpel. The spore suspension was 

filtered through miracloth to get rid of mycelium and medium. The spores were 

centrifugated at 3500 rpm for 7 min. The pellet was washed with 20 ml 0.002 % (v/v) 

Tween20 twice and after the last washing step the pellet was resuspended in 1 ml 

ddH2O. The spore concentration was counted with a Neubauer Improved counting 

chamber and the concentration was adjusted to 500000 spores per ml.  
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4.3.5.3 PEG-mediated transformation 

S. indica transformation was adapted from Hilbert et al., 2012. A seven-day old S. indica 

liquid culture was filtered with miracloth and the mycelium was washed with 50 ml 0.9 

% NaCl. The mycelium was crushed in 20 ml medium in a blender and added to 130 ml 

fresh medium. The culture was grown for three days to regenerate. The mycelium was 

filtered with miracloth, washed with 50 ml 0.9 % NaCl and added to 20 ml lysing enzymes 

from Trichoderma harzianum solution (Sigma Aldrich, Taufkirchen, Germany, 0.4 g 

solved in 20 ml SMC (1.33 M sorbitol, 50 mM CaCl2, 20 mM 2-(N-

morpholino)ethanesulfonic acid (MES) pH 5.8) and sterile filtered). This mix was shaken 

for 2 h at 32 °C for 100 rpm for protoplastation. Protoplast formation was verified under 

the microscope and the protoplasts were filtered through miracloth. To stop enzyme 

activity 20 ml cold STC (50 mM CaCl2, 10 mM Tris-HCl pH= 7.5, 1M sorbitol) was added. 

The protoplasts were centrifugated at 4 °C 4000 rpm for 10 min and gently resuspended 

in 1 ml cold STC. The protoplasts were centrifugated at 4 °C 4000 rpm for 5 min and 

resuspended in 1 ml cold STC again. This washing step was repeated twice and the 

protoplast resuspended in the required volume for transformation.  

In advance, the plasmid to be transformed was linearised by restriction digest overnight. 

The linearised plasmid was precipitated with 0.5 volumes 7.5 M ammonium acetate and 

2 volumes isopropanol for 15 min and centrifugated for 30 min. The pellet was washed 

twice with 70 % ethanol and then air dried. The pellet was resuspended in 12 μl ddH2O. 

5- 10 μg linearised plasmid in a volume of 10 μl were added to 70 μl protoplasts on ice. 

1 μl (15 mg/ml) heparin and 1 μl restriction enzyme used to linearise the plasmid was 

added and the tube left on ice for 10 min. 500 μl 40 % (w/v) PEG 3350 in STC (0.45 μm 

filter sterilised) were added and mixed by inversion of the tube for a few times. The tube 

was left on ice for another 15 min and the mix transferred to a 15 ml falcon tube. 5 ml 

42 °C top medium (MYP medium supplemented with 0.3 M sucrose and 0.6 % (w/v) 

agar) was added, gently mixed and poured on plates with 20 ml bottom medium (MYP 

medium with 0.3 M sucrose and 1.2 % (w/v) agar and appropriate antibiotics). First 

transformants emerged around two weeks later and were transferred to CM plates with 

antibiotics using toothpicks.  
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Strains were confirmed by PCR on the inserted plasmid (see 4.4.2). The mating type was 

determined by PCR on the four mating type genes HD 1.1, HD 1.2, HD 2.1 and HD 2.2 

(Wawra et al. 2016).  

 

4.3.5.4 Growth on DNA as nitrogen source 

For growth assays with DNA as nitrogen source, a medium composed of YNB without 

amino acids and ammonium sulphate, 100 μg /ml salmon testis DNA, 2 % (w/v) glucose 

and 1.5 % (w/v) agar was used. The agar was solved in H2O, buffered with MES pH 5.6 

and autoclaved. The other components were added prior to plate pouring. As a control, 

plates with YNB without amino acids (instead of YNB without amino acids and 

ammonium sulphate and DNA) were used. Plugs without remaining agar from old plate 

were put on plates and the plates incubated for 5- 7 days. The plates were stained with 

Ethidium bromide (500 ng/ml) to visualise DNA under UV light.  

 

4.3.5.5 Germination of spores on glass slide 

Collected S. indica spores (see 4.3.5.2) were pipetted on sterile cover slides on wet filter 

paper in petri dish. Cover slides were directly put on microscopy slide after overnight 

incubation to observe germinated spores by CLSM.  

 

4.3.6 Arabidopsis 

4.3.6.1 Agrobacteria-mediated transformation 

A. tumefaciens was transformed by electroporation and the transformants checked by 

colony PCR. For Arabidopsis transformation 200 ml LB supplemented with 50 μg/ ml 

Kanamycin, 25 μg/ ml Gentamycin and 25 μg/ ml Rifampicin was inoculated with the A. 

tumefaciens strains overnight at 28 °C 220 rpm. At an OD600 of 1.5- 2 the cultures were 

centrifugated for 10 min at 5500 rpm and the pellet resuspended in 2 ml 5 % (w/v) 

sucrose. The suspension was diluted to 400 ml with 5 % (w/v) sucrose and 0.02 % (v/v) 

Silwet L-77 (Obermeier, Bad Berleburg, Germany) was added.  

A. thaliana Col-0 was grown on soil in the greenhouse and the inflorescence was cut. 

When the inflorescence was regrown, the flowers were dipped in the A. tumefaciens 

suspension for 1 min and the plants left overnight in the dark at RT with high humidity. 

Plants were returned to the green house for seed building.  
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4.3.6.2 Selection of Arabidopsis lines 

Arabidopsis was grown on soil in the greenhouse and dried seeds were collected. An 

aliquot of the seeds was sterilised and single seeds put in lines on ½ MS plates with 

sucrose (and 15 μg/ ml hygromycin B (Invitrogen, Thermo Fisher Scientific, Schwerte, 

Germany) (see 4.3.6.3). Seeds were stratified on plates at 4 °C in the dark and then put 

upright into the phytochamber. T1 seeds germinating and seedlings growing on plates 

with and without selection were transferred to soil. gDNA was extracted from leaves to 

confirm insertion of the plasmid by PCR (see 4.4.3). For T2 seeds the germination and 

seedling growth rate was calculated on plates with and without selection to calculate 

the segregation rate. Plant lines with a 3:1 segregation were selected for propagation 

and non-segregating T3 lines were used for the experiments. RNA was extracted from 

T3 plant lines and synthesised cDNA used for qPCR to compare expression levels of the 

inserted gene between the plant lines (see 4.4.4/6).  

 

4.3.6.3 Growth under sterile conditions 

Arabidopsis seeds were surface sterilized for 10 min with 70 % ethanol followed by 7 

min with 100 % ethanol. Seeds were tried under the sterile bench and distributed on 

half-strength Murashige and Skoog medium (including modified vitamins, pH was 

adjusted with KOH to pH 5.7) supplemented with 1 % (w/v) sucrose and 0.4 % (w/v) 

Gelrite. Seeds on plates were stratified for 2- 3 days at 4°C in the dark. Afterwards, the 

plates were put into the phytochamber for 7 days and the seedlings were grown under 

short day conditions (8 h light, 16 h dark) with 130 μmol m-2 s-1 of light and 22 °C/18 

°C.  

 

4.3.6.4 S. indica – Arabidopsis interaction studies 

Seven-day old seedlings were transferred to ½ MS plates without sucrose. Twenty 

seedlings of the same size were put in one row per plate. S. indica spore solution 

(500000 spores/ml) (see 4.3.5.2) was equally pipetted on, beside and below the roots. 

Mock-inoculated plants were treated with ddH2O. The plates were dried under the 

sterile bench and then put upright into the phytochamber. Root parts were covered 

from light. 2- 3 plates were pooled for one biological replicate. Colonised roots were 
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washed with water and a paper towel several times, a root part of 4 cm starting below 

0.5 cm of the shoot was cut and immediately frozen in liquid nitrogen.  

 

4.3.6.5 S. vermifera – Arabidopsis interaction study 

Seven-day old seedlings were transferred to ½ MS plates without sucrose. Twenty 

seedlings of the same size were put in one row per plate. S. vermifera plugs were set in-

between the seedlings. Plates were put up right into the phytochamber. Root parts were 

covered from light. Root parts were covered from light. 2- 3 plates were pooled for one 

biological replicate. Colonised roots were washed with water and a paper towel several 

times, a root part of 4 cm starting below 0.5 cm of the shoot was cut and immediately 

frozen in liquid nitrogen.  

 

4.3.6.6 B. sorokiniana – Arabidopsis interaction study 

The protocol for Arabidopsis inoculation with B. sorokiniana spores was analogous to 

inoculation with S. indica spores (see 4.3.6.4). The spore concentration was set to 

5000/ml (see 4.3.3.2).  

 

4.3.7 Barley 

4.3.7.1 S. indica- barley interaction studies 

Barley seeds were surface sterilised with 70 % ethanol for 1 min, washed with ddH2O 

and sterilized with 12 % sodium hypochlorite for 1.5 h while shaking. Afterwards, seeds 

were washed for 5- 10 times for 20 min with ddH2O. Seeds without seed coat were put 

on wet filter paper in square petri dishes and germinated at room temperature for three 

days in the dark. Four germinated seeds of the same size were put into one 1062 ml 

Weck jar (Weck, Wehr- Öflingen, Germany) filled with 100 ml 1/10 PNM medium:  

0.5 mM KNO3 

3.7 µM KH2PO4 

1.4 µM K2HPO4 

2 mM MgSO4 x H2O 

0.2 mM Ca(NO3)2 

0.25% (v/v) Fe-EDTA 
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4.3 µM NaCl 

0.4% (w/v) Gelrite 

Fe-EDTA: 0.55 % (w/v) FeSO4 x 7H2O and 0.75% (w/v) Na2EDTA x 2H20  

boiled and stirred for 30 min.  

The pH was adjusted to 5.6 with HCl. 10 mM MES pH 5.6 (filter sterilised) was 

added after autoclaving.  

3 ml S. indica spore solution (see 4.3.5.2) was pipetted along the roots on the medium 

and the open jars dried under the sterile bench. Mock-inoculated seedlings were treated 

with ddH2O. Barley seedlings in jars were growing in the phytochamber under long day 

conditions (16 h light, 8 h dark) with 60 % humidity and 130- 165 μmol m-2 s-1 at 22 

°C/16 °C. Colonised roots were thoroughly washed with water, the first 4 cm of the root 

cut and flash-frozen in liquid nitrogen. One jar was pooled for one biological replicate.  

 

4.3.7.2 S. vermifera- barley interaction study 

This study was performed like in 4.2.7.1. Instead of spores, mycelium was crushed, 

washed and pipetted on the barley roots.  

 

4.4  Molecular biological methods 

4.4.1 DNA isolation 

Plant or fungal material was ground with a mortar in liquid nitrogen, up to ¼ of a 2 ml 

Eppendorf tube filled with ground material and 1 ml extraction buffer was added: 

 100 mM TrisHCl pH 7.5 

 50 mM EDTA pH 8 

 1.5 M NaCl 

 2 % (w/v) Cetyl trimethylammonium bromide 

 0.05 % (v/v) ß- mercaptoethanol  

Tubes were mixed on a Stuart SB3 rotator (Cole-Parmer, Staffordshire, UK) at RT for 10 

min and afterwards, 1 ml of a chloroform:isoamylalcohol mixture (24:1) was added and 

the tubes mixed for another 5 min. The tubes were centrifugated for 20 min at 10000 g. 

800 μl of the upper phase were transferred to a new tube and 160 μl ethanol were 

added. Before and after the addition of 960 μl chloroform:isoamylalcohol mixture 



  Material and Methods 

_____________________________________________________________________________________ 

   87 

(24:1), the tubes were mixed for 5 min. The tubes were centrifugated at 10000 g for 20 

min and the upper phase was transferred to a new tube. 1 volume isopropanol was 

added and the DNA precipitated for one hour at 4 °C. The tube was centrifugated at 

5000 g for 20 min and the pellet washed with 70 % cold ethanol. The pellets were air-

dried and dissolved in 50 μl TE buffer (10 mM TrisHCl, 1mM EDTA pH 8). 1 μl RNAse A 

(10 mg/ml pH 7.4, Sigma Aldrich, Taufkirchen, Germany) was added and incubated for 

30 min at 37 °C.  

 

4.4.2 Quick and dirty DNA isolation S. indica 

A small piece of mycelium was scratched from a plate and ground with a pestle in liquid 

nitrogen. 100 μl extraction buffer (10 mM Tris pH 8, 1mM EDTA and 0.1 % (w/v) SDS) 

was added and boiled for 10 min at 100 °C immediately after grinding. After 

centrifugation at 13300 rpm for 20 min, 0.5 volumes 7.5M ammonium acetate and 2 

volumes isopropanol were added to the supernatant. The DNA was precipitated for one 

hour or overnight at 4 °C and subsequently, centrifugated for 30 min at 13300 rpm. The 

pellet was washed with cold 70 % ethanol, air-dried and dissolved in 30 μl ddH2O. 1 μl 

was used as template for the PCR (see 4.4.5).  

 

4.4.3 Quick and dirty DNA isolation Arabidopsis 

A piece of a leave was ground with a pestle in a 1.5 ml Eppendorf tube. 400 μl extraction 

buffer were added: 

 250 mM TrisHCl pH 7.5 

 250 mM NaCl 

 25 mM EDTA 

 0.5 % (w/v) SDS 

The leave was ground again and the tube vortexed for 5 s. 150 μl 3 M potassium acetate 

(pH5.5, adjusted with formic acid) was added, the tube inverted and centrifugated at 

13300 rpm for 3 min. 500 μl supernatant was transferred to a new Eppendorf tube and 

1 volume isopropanol was added. The tube was inverted and centrifugated at 13300 

rpm for 10 min. The pellet was washed with 70 % ethanol, air-dried and 50 μl TE buffer 

(pH 7.5) added. 1 μl was used as template for PCR.  
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4.4.4 RNA isolation and cDNA synthesis  

Plant or fungal material was ground with a mortar in liquid nitrogen, up to ¼ of a 2 ml 

Eppendorf tube was filled with ground material and 1 ml TRIzol (Invitrogen, Thermo 

Fisher Scientific, Schwerte, Germany) was added. The tube was vortexed at 1 500 rpm 

with a vibrax shaker (IKA, Staufe, Germany) until all material was solved. 200 μl 

chloroform were added and the tubes vortexed for 20 s. The tubes were centrifugated 

at 13300 rpm for 30 min at 4 °C and 500 μl supernatant were transferred to a new tube. 

The RNA was precipitated with 1 volume isopropanol for 1 h at 4 °C. The samples were 

centrifugated again and the pellet was washed with 75 % ethanol (water supplemented 

with 0.1 (v/v) % Diethyl pyrocarbonate (DEPC)) two times. The pellet was air-dried, 30 

μl RNAse- free water were added and the pellet was solved by incubation at 65 °C for 5 

min. The concentration was measured with a nanodrop 2000c (Thermo Fisher Scientific, 

Schwerte, Germany).  

2 μg RNA were digested with 2 U DNase I in 10 x DNase I buffer (Thermo Fisher Scientific, 

Schwerte, Germany) for 30 min at 37 °C. 5 mM EDTA were added and the tubes 

incubated at 65 °C for 10 min to stop the reaction. The RNA was precipitated with 0.5 

volumes of 7.5 M ammonium acetate (solved in DEPC water) and 2 volumes isopropanol 

for 1 h at 4 °C. The samples were centrifugated for 30 min at 13300 rpm and 4 °C and 

the pellets were washed with 75 % ethanol (diluted with DEPC water). The pellets were 

air-dried and 13.5 μl RNAse-free water were added. The pellet was suspended at 65 °C 

700 rpm for 5 min. The concentration and purity of the RNA were verified at the 

nanodrop. The integrity was checked by loading of 1 μl RNA on a 2 % agarose gel (see 

4.4.5).  

cDNA was synthesised with the Fermentas First Strand cDNA Synthesis Kit (Thermo 

Fisher Scientific, Schwerte, Germany). 1 μg RNA in 9 μl were added to 1 μl Oligo dT18 

primer and 1 μl random hexamer primers. This mix was incubated at 65 °C for 5 min. 

Then, 4 μl 5 x reaction buffer, 2 μl 10 mM dNTP mix, 1 μl RiboLock RNase inhibitor and 

2 μl M-MuLV reverse transcriptase were added on ice. The tubes were incubated at 25 

°C for 5 min followed by 1 h at 37 °C (42 °C for RNA from S. indica) and 5 min at 70 °C. 

The RNA was diluted to 5 ng/ μl for qPCR.  
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4.4.5 PCR and gel electrophoresis 

PCRs were performed with the GoTaq G2 Flexi DNA Polymerase (Promega, Mannheim, 

Germany) or the Taq DNA Polymerase (New England BioLabs, Frankfurt, Germany) 

according to the manufacturer’s manuals. PCR on quick and dirty purified DNA from S. 

indica was performed with Tag DNA Polymerase from New England BioLabs using self-

made Pfu buffer (see 4.7.1), 2.5 mM MgCl2 and 2 % dimethyl sulfoxide (DMSO) instead 

of the ThermoPol reaction buffer. The PCR reaction proceeded in a C1000 Touch 

Thermal Cycler (Biorad, Munich, Germany). 6x loading dye was added to the samples for 

loading on an agarose gel.  

6x loading dye: 10 mM TrisHCl pH 8 

60 mM EDTA pH 8 

60 % glycerol 

0.03 % bromophenol blue 

0.03 % xylene cyanol FF 

0.8- 2 % agarose gels using the TAE buffer (40 mM Tris, 40 mM acetic acid, 1 mM EDTA 

pH 8) system were applied for gel electrophoresis at 110 V for 30- 40 min with a Power 

Pac Basic device (Biorad, Munich, Germany). The GeneRuler 1 kb DNA ladder was used 

to compare band sizes (Thermo Fisher Scientific, Schwerte, Germany). Ethidium 

bromide (500 ng/ ml) was added directly into the gels for subsequent band detection 

under UV light.  

 

4.4.6 qPCR 

For quantitative real-time PCR the 2x GoTaq qPCR master mix (Promega, Mannheim, 

Germany) was applied. 500 mM primer forward and reverse each and 10- 20 ng 

template cDNA or gDNA were added. The reaction was running in a CFX connect real 

time system (BioRad, Munich, Germany) with the following program:  

1. 95 °C 3 min 
2. 95 °C 15 s 
3. 59 °C 20 s 
4. 72 °C 30 s 
5. Go back to step 2 39x 
6. 95 °C 15s 
7. Melt curve measurement: 65 °C – 95 °C with 0.5 °C per 0.05 s 



  Material and Methods 

_____________________________________________________________________________________ 

   90 

Three technical replicates were pipetted per biological replicate. If possible, all 

replicates were analysed on one plate. Otherwise, the baseline was adjusted on the 

second plate according to the first plate. Relative expression was calculated using the 2-

ΔΔCT method (Livak & Schmittgen, 2001). Primer efficiencies were checked with 1:5 

template dilution series and determined efficiencies used for calculation of relative 

expression levels.  

 

4.4.7 RACE-PCR 

The RACE-PCR was performed with the Ambion First Choice RLM-RACE kit (Thermo 

Fisher Scientific, Schwerte, Germany) according to the manual. RNA from an S. indica 5-

day old liquid CM culture was used. The obtained fragments from 5´and 3´ RACE-PCR 

were cloned into the pJet 1.2 vector (Thermo Fisher Scientific, Schwerte, Germany) and 

sequenced.  

 

4.4.8 Southern blot 

100 μg extracted gDNA (see 4.4.1) was digested with EcoRI (for verification of gene 

deletion) or EcoRV (for verification of single integration of strains) restriction enzyme 

(New England BioLabs, Frankfurt, Germany) overnight. The digested DNA was 

precipitated with 0.5 volumes 7.5 M ammonium sulphate and 2 volumes isopropanol. 

The samples were incubated for 1 h and then centrifugated for 30 min at 13 300 rpm. 

The pellet was washed with 70 % ethanol, air-dried and dissolved in 25 μl ddH2O. The 

samples were loaded on a 0.8 % agarose gel (see 4.4.5) and the gel run at 80 V for 3 h. 

The gel was depurinated in 0.25 N HCl for 15 min followed by denaturation in 0.4 M 

NaOH for 15 min. The transferring apparatus was built the following: A plate was laid on 

top of a tray filled with 0.4 M NaOH. A filter paper was soaked in 0.4 M NaOH and laid 

on the plate with the ends dipped in 0.4 M NaOH of the tray. The gel was laid on the 

filter paper upside down and the membrane (GE Healthcare Amersham Hybond-N+, 

Sigma Aldrich, Taufkirchen, Germany) was put on top. The edges were sealed with 

parafilm, another wet filter paper and paper towels were laid on top and this tower fixed 

with a weight. The transfer of the DNA lasted for 3 h. The membrane was crosslinked in 

a UV crosslinker and transferred into a hybridisation tube with 30 ml hybridisation buffer 
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(0.5 M sodium phosphate pH 7, 7 % (w/v) SDS). The membrane was prehybridised at 65 

°C for 1 h in a HB-1000 Hybridizer hybridisation oven (UVP, Analytik Jena, Jena, 

Germany).  

The probe was produced with the PCR Dig labelling mix (Roche, Mannheim, Germany). 

A 50 μl PCR was performed with the Q5 High Fidelity DNA Polymerase (New England 

BioLabs, Frankfurt, Germany) according to the manual. Instead of dNTPs, labelled dNTPs 

from the PCR Dig labelling mix (Roche, Mannheim, Germany) were added. The probe 

was denatured for 10 min at 100 °C and added to 50 ml hybridisation buffer. 

Hybridisation took place overnight at 65 °C. The membrane was washed twice with 30 

ml wash buffer (0.1 M sodium phosphate pH 7, 1 % (w/v) SDS) for 20 min at 65 °C and 

then with DIG wash buffer (0.3 % (v/v) Tween20, 0.1 M maleic acid and 0.15 M NaCl, pH 

adjusted to 7.5) for 5 min at RT. Afterwards, the membrane was incubated in 30 ml DIG 

II buffer (1 % blocking reagent (Roche, Mannheim, Germany) in 0.1 M maleic acid, 0.15 

M NaCl, pH adjusted to 7.5) for 30 min. The membrane was incubated with 10 ml 

antibody solution (Anti-Digoxigenin AP Fab fragments (Roche, Mannheim, Germany) in 

DIG II buffer 1: 10000) for 30 min and then washed twice with 30 ml DIG wash buffer for 

1 h and once for 15 min. The membrane was equilibrated with 30 ml DIG III buffer (0.1 

M NaCl, 0.05 M MgCl2 x 6 H2O, pH adjusted to 9.5) for 5 min and subsequently, incubated 

for 5 min in CDP Star solution (1:100 in DIG III buffer, (Roche, Mannheim, Germany)). 

The membrane was transferred to a plastic foil and incubated for 15 min at 37 °C in the 

dark. The membrane was developed with a Fujifilm LAS4000.  

 

4.4.9 VPE assay 

The VPE assay was performed according to Lahrmann et al., 2013. 1 ml extraction buffer 

(10 mM sodium acetate pH 5.5, 100 mM NaCl, 1 mM EDTA, 2 mM dithiothreitol (DTT) 

and 1 mM phenylmethylsulfonyl fluoride (PMSF)) was added to 100 mg in liquid nitrogen 

grinded material. For colonised Arabidopsis roots, 3- 6 plates were pooled per biological 

replicate. One jar with 4 barley plants was pooled per biological replicate. The tubes 

were centrifugated at 13 300 rpm for 10 min at 4 °C, the supernatant transferred to a 

new tube and centrifugated again. 100 μl supernatant was pipetted into a 96 well plate 

and 100 μM VPE substrate (Ac-ESEN-MCA, Peptide Institute, Osaka, Japan) added on ice. 

Fluorescence intensities were immediately measured in a Tecan infinite 200 plate reader 
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(Tecan, Männedorf, Switzerland) with 360 nm excitation wavelength and 465 nm 

emission wavelength. The increasing fluorescence intensities were measured over 1h 

for barley roots and 2h for Arabidopsis roots. Time point zero was subtracted from the 

end time point for each of the three technical replicates.  

 

4.5 Biochemical methods 

4.5.1 Protein sample preparation  

For the preparation of samples from U. maydis for Western blot and nuclease activity, 

an overnight culture was diluted to OD600= 0.2 and grown until an OD600= 0.6 was 

reached. 1 ml of this culture was centrifugated at 8000 rpm for 2 min, the pellet resolved 

in 50 μl SDS sample buffer (0.1 M Tris pH 6.8, 2 M thiourea, 8 M urea, 8 % (w/v) SDS, 

bromophenol blue and 2 % (v/v) ß-mercaptoethanol) and cooked for 10 min at 95 °C. 20 

ml culture was centrifugated at 3500 rpm for 5 min and the supernatant sterile filtered 

(0.45 μm). The proteins in the supernatant were precipitated with 10 % trichloroacetic 

acid overnight at 4 °C. The tubes were centrifugated at 10000 g for 30 min and the pellet 

was washed twice with acetone. The pellet was tried at 95 °C, 50 μl SDS sample buffer 

were added and the samples were cooked for 10 min at 95 °C.  

S. indica liquid cultures were filtered with miracloth. An aliquot of the mycelium was 

cooked for 10 min at 95 °C in 100 μl SDS sample buffer. The proteins in the culture filtrate 

were precipitated with 10 % trichloroacetic acid overnight at 4 °C. The tubes were 

centrifugated at 10000 g for 30 min and the pellet was washed twice with acetone. The 

pellet was tried at 95 °C, SDS sample buffer was added and the samples were cooked 

for 10 min at 95 °C. 

 

4.5.2 SDS-PAGE  

SDS-PAGE was performed with self-made 10 % Bis-Tris gels: 

 323 mM Bisamino-trismethan (Bis Tris) pH 6.4 

 10 % (v/v) acrylamide/bisacrylamide (30 %, 37.5:1) 

0.1 % (w/v) ammonium persulfate (APS) 

0.001 % (v/v) Tetramethylethylenediamine (TEMED) 
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The stacking gel contained 5 % acrylamide/bisacrylamide. Besides the protein samples, 

the protein marker Page Ruler (Plus) Prestained (Thermo Fisher Scientific, Schwerte, 

Germany) was loaded on the gel. The gel was run in MES- SDS running buffer: 

50 mM MES 

50 mM Tris 

1 mM EDTA 

0.1 % (w/v) SDS 

5 mM Na2S2O5  

The gel run at 180 V for 35 min in a Mini PROTEAN Tetra cell system (BioRad, Munich, 

Germany) with a Life technologies Powerease 90 W device (Thermo Fisher Scientific, 

Schwerte, Germany). Afterwards, the gel was stained overnight in Coomassie solution: 

30 % (v/v) methanol 

17.5 % (v/v) ethanol 

10 % (v/v) acetic acid 

2 % (w/v) Coomassie R-250 

0.2 % (w/v) Coomassie G-250  

The gel was destained in destaining solution (50 % (v/v) methanol and 10 % (v/v) acetic 

acid) and water.  

 

4.5.3 Western blot 

For Western blotting, an SDS-PAGE was run (see 4.5.2) and the gel blotted on GE 

Healthcare Amersham nitrocellulose blotting membrane Protran 45 μm NC (Sigma 

Aldrich, Taufkirchen, Germany) using the semidry Fastblot B44 device (Biometra, 

Göttingen, Germany). The following transfer buffer was used: 

 48 mM Tris 

 20 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) 

 1 mM EDTA pH 8 

 1.3 mM Na2S2O5 

 1.3 mM dimethylformamide 

The proteins were blotted at 375 mA for 30 min. Subsequently, the membrane was 

washed in membrane wash buffer (0.3 % (v/v) Tween20, 0.1 mM maleic acid and 0.15 

mM NaCl, pH adjusted to 7.5 for 5 min. The membrane was stained with Ponceau S 
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solution (0.1 % (w/v) Ponceau S, 1 % (v/v) acetic acid) to confirm equal loading and then 

destained in phosphate-buffered saline (PBS) buffer: 

0.138 M NaCl 

2.7 mM KCl 

10.14 mM Na2HPO4 x 2H2O  

1.76 mM KH2PO4 

The membrane was incubated with the primary antibody in PBS buffer supplemented 

with 2.5 % (w/v) milk powder and 0.1 % (v/v) Tween20 for 1h. The membrane was 

washed three times for 5 min with PBS buffer and then, the secondary antibody in PBS 

buffer supplemented with 2.5 % (w/v) milk powder and 0.1 % (v/v) Tween20 was applied 

for 1h. The membrane was washed again, transferred to a plastic foil and Pierce ECL 

Western Blotting substrate (Thermo Fisher Scientific, Schwerte, Germany) was 

distributed on the membrane. The chemiluminescence was detected with a GelDoc XR+ 

device (BioRad, Munich, Germany) or Fujifilm LAS4000.  

 

Table 4.4 Antibodies used for Western blot 

Name Description Working 

concentr

ation 

Company 

Anti-Penta His-

HRP conjugate 

Directly coupled 1:10000 Qiagen (Hilden, Germany) 

Anti-HA Primary antibody, mouse 1:5000 Sigma Aldrich (Taufkirchen, Germany) 

Anti-GFP Primary antibody, mouse 1:1000 Roche (Mannheim, Germany) 

Anti-mCherry Primary antibody, rabbit 1:1000 Biovision (Biozol Diagnostica, Eching, 

Germany) 

Anti-mouse Secondary antibody 1:1000 Sigma Aldrich (Taufkirchen, Germany)  

Anti-rabbit Secondary antibody 1:1000 Sigma Aldrich (Taufkirchen, Germany) 

 

4.5.4 Purification of SiNUCA from S. indica culture filtrate 

A 100 ml CM culture from spores was filtered with miracloth and the mycelium grown 

in 200 ml new CM and after another medium exchange in 500 ml CM. Subsequently, the 

mycelium was crushed and regenerated for two days. The culture filtrate was filtered 

with miracloth and through a 0.45 μm membrane filter (Hartenstein, Würzburg, 
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Germany). 1 mM Phenylmethanesulfonyl fluoride (PMSF) was added, the pH set to 7 

with 1M Tris pH 8 and the culture filtrate precipitated with 80 % ammonium sulphate 

for 1h while stirring. The precipitate was centrifugated for 20 min at 43000 g and the 

resulting protein pellet was resuspended in 20 mM Tris pH 8. The soluble protein was 

concentrated with a 5 kDa Spin-X UF Concentrator (Corning, Flintshire, UK) to 1 ml 

volume. The soluble protein was further purified by size exclusion chromatography with 

a Sephadex G 200 column (Hiload 6/600) in collaboration with Prof. Dr. J. Riemer. The 

buffer 20 mM Tris pH8/150 mM NaCl was used and 5 ml elution fractions were collected. 

The fractions were verified by anti-HA Western blot to contain the target protein. The 

selected fractions were concentrated, desalted (dialysis tubing visking cellulose 12-14 

kDA, Carl Roth, Karlsruhe, Germany) and loaded on an SDS-PAGE to estimate yield and 

purity. The protein was stored in 20 mM Tris pH 8 at – 20 °C. Trypsin-digested protein in 

20 mM Tris pH 8 was analysed by LC-MS/MS.  

 

4.5.5 Nuclease assays 

To test nuclease activity in U. maydis supernatant, cultures of the same OD600 were 

prepared as described in 4.4.1. 50 μl supernatant was pipetted in 96 well plates, 

linearised plasmid, gDNA or RNA was added and the mixtures incubated for several time 

points. The reaction was stopped by adding loading dye and the samples were loaded 

on an agarose gel (see 4.4.5). As controls, 1 U DNase I, 10 μg RNase A, 1 mM EDTA or 20 

U RiboLock RNase inhibitor were used (all purchased from Thermo Fisher Scientific, 

Schwerte, Germany).  

S. indica cultures were grown in CM medium for 5 days, crushed and incubated for 

another 3 days (see 4.3.5.1). The culture was filtered with miracloth. 50 μl culture filtrate 

was pipetted on 96 well plates and 100 ng linearised plasmid was added. The mixture 

was incubated for several time points in parallel and the reaction stopped with loading 

dye. The samples were loaded on a 1 % agarose gel (see 4.4.5).  

Generally, nuclease activity assays with 10 nM purified SiNUCA were performed in 5 mM 

Tris pH 8 supplemented with 0.1 % (v/v) microelement solution (see 4.3.5.1), 1 mM 

MgCl2 and 1 mM CaCl2. 100 ng linearised plasmid, 1 μg gDNA or 1 μg RNA were added, 

the mix incubated for several time points in parallel and the reaction stopped with 

loading dye. The samples were loaded on a 1- 2 % agarose gel. 1.25 mM EDTA or 20 U 
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RiboLock RNase inhibitor were used for inhibition (purchased from Thermo Fisher 

Scientific, Schwerte, Germany).  

 

4.5.6 Antibacterial tests with SiNUCA 

A E. coli overnight culture was set to OD600=0.2 and grown for 1.5 h. The culture was 

diluted to an OD600= 0.01 and 10 μl aliquots were pipetted in a 96 well plate. 20 μl 20 

mM Tris pH8 supplemented with 30 μM SiNUCA, 200 μg/ml ampicillin or 5 mg/ml RNAse 

A were added. The plate was shaken at RT for 5h and 1:10 dilutions were dropped on 

plates. The plates were incubated overnight at RT. The diluted culture with an OD600= 

0.01 was also sprayed on plates, dried under the sterile bench and filter platelets 

distributed. 10 μl SiNUCA in 20 mM Tris pH 8, 10 μl RNAse A (10 mg/ml) in 20 mM Tris 

pH 8 or 10 μl 20 mM Tris pH 8 were pipetted on the filter platelets. The plates were 

incubated overnight at RT. 

 

4.6 Microscopy 

4.6.1 Fluorescence microscopy 

Light and fluorescence microscopy of living fungal and plant material was performed 

with a Leica DM2500 light microscope (Leica, Wetzlar, Germany).  

 

4.6.2 Sample preparation 

For microscopy of living fungal mycelium, young crushed cultures with 1- 2 days 

regeneration phase were used (see 4.3.3, 4.3.4, 4.3.5.1). Stainings were applied in 

Eppendorf tubes, samples were washed with ddH2O and the mycelium was directly put 

on the microscopy slide. The cover slide was carefully added on top without pressure.  

S. indica spores germinated on glass slides were directly subjected to the microscope.  

Inoculated Arabidopsis plants were transferred to an Eppendorf tube with the staining 

solution. The plants were carefully washed with PBS pH 7.4 and put on the microscopy 

slide. The cover slide was carefully added on top of the root part only without pressure. 

For microscopy of inoculated barley roots, side roots were cut and transferred to an 
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Eppendorf tube for staining. Otherwise, the procedure was equal to Arabidopsis plants. 

For plasmolysis, 1 M NaCl or 1 M sorbitol were directly added on the slide.  

For visualisation of BLC, microscopy slides were poured into the ½ MS plate. Therefore, 

inoculated Arabidopsis roots were growing on top of the slide with a layer of ½ MS 

medium. The slide was carefully cut from the plate without moving the plant. Staining 

solution was directly added on the root, incubated for 15 min and a cover slide put on 

top.  

 

Table 4.5 Stainings for microscopy 

Dye Description Working 

concentration 

Company 

WGA-AF 594 Fungal cell wall staining (chitin), 

Wheat Germ Agglutinin Alexa 

Fluor 594 conjugate 

5 μg/ml in PBS pH 7.4 

(plant roots) or 

ddH2O (mycelium) 

Life technologies 

(Thermo Fisher Scientific, 

Schwerte, Germany 

WGA-AF 488 Fungal cell wall staining (chitin), 

Wheat Germ Agglutinin Alexa 

Fluor 488 conjugate 

5 μg/ml in PBS pH 7.4 

(plant roots) or 

ddH2O (mycelium) 

Life technologies 

(Thermo Fisher Scientific, 

Schwerte, Germany 

FGB1-FITC Fluorescein isothiocyanate 

-labelled FGB1, labelling 

efficiency= 30 %  

1 μM in ddH2O, 

incubation for 15 min 

(0.2 μM for direct 

staining on slide) 

SureLINK Fluorescein-X 

(FAM-X) Labeling Kit 

(SeraCare Life Sciences, 

Milford, USA) 

DAPI 4ʹ,6-Diamidine-2ʹ-phenylindole 

dihydrochloride, Nuclei staining 

250 ng/ml, 2h 

incubation 

Provided by Dr. S. Wawra 

SYTOX Orange Nuclei staining of dead cells 500 nM in ddH2O Life technologies 

(Thermo Fisher Scientific, 

Schwerte, Germany 

 

4.6.3 Confocal laser scanning microscopy 

A TCS SP8 confocal microscope (Leica, Wetzlar, Germany) was used for live cell CLSM. 

For excitation of AF488, GFP and FITC fluorescence an Argon laser at 488 nm was used 

and the signal detected with a hybrid detector at a wavelength of 500- 550 nm. AF594, 

mCherry and SYTOX orange fluorescence was excited at 561 nm with a DPSS laser and 

the emitted light was detected with a hybrid detector at a wavelength of 590-660 nm. 

DAPI was excited with a diode laser at 405 nm and the signal was detected with a hybrid 
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detector at a wavelength of 415-460 nm. The picture resolution was 1024 x 1024 pixels 

with a line average of 4. Z stacks were accumulated using the Fiji software version 2.0 

(Schindelin et al., 2012). Background subtraction was done with the rolling ball method 

and brightness and contrast were adjusted.  

 

4.7 Vectors 

4.7.1 Cloning 

Plasmids were purified form E. coli liquid cultures with the DNA QIAprep Spin Miniprep 

Kit (QIAGEN, Hiden, Germany), Nucleo Spin plasmid kit (Macherey-Nagel, Düren, 

Germany) or in bigger amounts with the PROMEGA PureYield Plasmid Midiprep 

(Mannheim, Germany) kit according to the manuals. Plasmid digests were performed 

with restriction enzymes from New England Biolabs (Frankfurt, Germany) according to 

the manual. For amplification of fragments by PCR, the proof reading self-made Pfu 

polymerase was used with the following protocol for a total reaction volume of 20 μl: 

  2 μl 10x Pfu buffer 

 0.4 μl dimethyl sulfoxide (DMSO) 

 0.4 μl dNTPs (10 mM) 

 0.4 μl primers each (10 μM) 

 2 μl MgCl2 (25 mM) 

 0.6 μl Pfu (1:4 diluted) 

 1 μl template 

 12.8 μl ddH2O 

 

10x Pfu reaction buffer:  200 mM Tris pH 8.8 

100 mM (NH4)2SO4 

100 mM KCl 

1% (v/v) Triton X-100 

1 mg/ml BSA (Bovine serum albumin) 

20 mM MgSO4 
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Buffer of Pfu polymerase: 20 mM Tris 

1mM DTT 

0.1 mM EDTA 

100 mM KCl 

0.1 % (v/v) Nonidet P40 

0.1 %  (v/v) Tween20 

50 % (v/v) glycerol 

pH 8.2 

The following PCR protocol was applied: 

1. 98 °C 1 min 

2. 98 °C 15 s 

3. Annealing temperature 30 s 

4. 72 °C elongation time (1 kb/ min) 

5. Back to step 2. for 25-35 times 

6. 72 °C 4 min 

Plasmid or PCR fragments were cleaned up from agarose gels with the PROMEGA Wizard 

SV Gel and PCR Clean-Up System (Mannheim, Germany) or NucleoSpin Gel and PCR 

Clean-up (Macherey-Nagel, Düren, Germany). Fragments and plasmid backbones were 

ligated with the Gibson assembly method (Gibson, 2011). Fragments to be inserted into 

the restriction enzyme-digested backbone were designed with 20 bp overlaps. 100 ng 

backbone and 3 times more insert(s) were added to the 2x Gibson assembly mix: 

40 % 5x Isothermal reaction mix 

0.08 % T5 Exonuclease (10U/µl) (New England Biolabs (Frankfurt, Germany) 

2.5 % µl Phusion DNA-Polymerase (2U/ µl) (Thermo Fisher Scientific, Schwerte, 

Germany) 

20 % Taq DNA-Ligase (40U/ µl) (New England Biolabs (Frankfurt, Germany) 
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5x Isothermal reaction mix: 

 0.5 M TrisHCl pH 7.5 

 0.05 M MgCl2 

 1 mM dNTPs each 

 0.05 M DTT 

 250 μg/ml PEG-8000 

 5 mM NAD+ (Nicotinamide-Adenine-Dinucleotide) 

The tube was incubated at 50 °C for 1 h and 5 μl mix were used for E. coli transformation 

(see 4.3.1.2). The obtained plasmids were confirmed by restriction digest and 

sequencing of the modified plasmid region (GATC, Eurofins Genomics, Ebersberg, 

Germany).  

 

4.7.2 Vectors for U. maydis 

p123-SiNUCA: p123-DLD1 (harbouring the otef promoter, DLD1 gene and carboxin 

resistance, provided by Dr. S. Nizam) was digested with BamHI/NotI and DLD1 replaced 

with PCR-amplified SiNUCA from cDNA.  

p123-SiNUCA-mCherry: PCR- amplified SiNUCA and mCherry amplified from p123-

E5NTSP-mCherry-E5NTwoSP (provided by Dr. S. Nizam) were inserted into the 

BamHI/NotI cut p123 backbone.  

p123-SPSiNUCA-mCherry: To obtain p123-SPSiNUCA-mCherry-SiNUCA, PCR- amplified 

mCherry and SiNUCA (without SP) were inserted into the BamHI/NotI cut p123 

backbone. This new vector was digested with BamHI/NcoI and the SP inserted by ligation 

with denatured 5´- phosphorylated primers using the T4 ligase (New England Biolabs, 

Frankfurt, Germany). The obtained vector was digested with XbaI/NotI and religated 

with a denatured 5´- phosphorylated primer mix to get rid of SiNUCA.  

 

4.7.3 Vectors for S. indica 

pFGB1-FGB1-oGFP: The vector pGoGFP harbours the GPD promoter, oGFP and the 

Hygromycin B resistance cassette (Hilbert et al., 2012). pGoGFP was modified by 

addition of a second SfiI site at the beginning of the Hygromycin B resistance cassette 

(provided by Dr. S. Wawra). Therefore, the resistance cassette can be exchanged using 
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the SfiI sites. This vector was digested with ApaI/ClaI to remove the GPD promoter and 

insert the FGB1 promoter. The first part of the FGB1 promoter was PCR- amplified from 

gDNA, the second part was synthesised including the SP of FGB1 and the ClaI site was 

added (also compare to supplementary in Wawra et al., 2016). These two fragments 

were inserted into the digested vector. Afterwards, the obtained vector was digested 

with ClaI/HindIII to insert PCR- amplified FGB1 without SP from cDNA.  

pSvTEF-oGFP: pFGB1-FGB1-oGFP was digested with ApaI/HindIII to insert the TEF 

promoter of S. vermifera, which was PCR-amplified from gDNA.  

pFGB1-SPFGB1-Sebve1_14646-oGFP: The vector pFGB1-FGB1-oGFP was digested with 

ClaI/HindIII and Sebve1_14646 without SP was inserted (PCR-amplified from cDNA).  

pFGB1-SiNUCA-2HA-His6: pFGB1-FGB1-oGFP was digested with ApaI/ClaI and the FGB1 

promoter replaced by the FGB1 promoter with an additional NheI site before the ClaI 

site. Afterwards, this vector was digested with NheI/EcoRV and a synthesised piece 

containing SPDLD1-2HA-His6-oGFP-PreSc-FGB1 was inserted to obtain the vector pFGB1-

SPDLD1-2HA-His6-oGFP-PreSc-FGB1. This is the pFGB1 version with N- terminal tags.  

This vector was cut with SwaI/PmeI and religated to get read of the N- terminal tags. 

Subsequently, the vector was opened with SnaBI and oGFP was inserted with the flexible 

linker (YSSGSGSSAQ) in front of it. The vector was digested with SnaBI again and the 

2HA-His6 tag was inserted to obtain the vector pFGB1-SPDLD1-FGB1-oGFP-2HA-His6.  

The vector pFGB1-SPDLD1-FGB1-oGFP-2HA-His6 was cut with NheI/PmeI and SiNUCA was 

inserted into the vector to obtain pFGB1-SiNUCA-2HA-His6.  

pFGB1-2HA-His6: To obtain the empty vector pFGB1-SiNUCA-2HA-His6 was digested 

with NheI/PmeI and ligated with a denatured 5´-phosphorylated primer mix using the 

T4 ligase.  

pFGB1-Bs19137836-PreSc-oGFP-2HA-His6: The vector pFGB1-SPDLD1-FGB1-oGFP-2HA-

His6 was digested with NheI/PmeI and the B. sorokiniana gene 19137836 and PreSc-

oGFP were inserted (in collaboration with Dr. S. Wawra).  

pFGB1-FGB1-PreSc-oGFP-2HA-His6: The pFGB1-Bs19137836-PreSc-oGFP-2HA-His6 

vector was digested with NheI/HindIII to replace Bs19137836 with FGB1 (in 

collaboration with Dr. S. Wawra).  
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pFGB1-Bs19137836-PreSc-mRFP-2HA-His6: The oGFP was exchanged with mRFP by 

digestion with PmeI of pFGB1-Bs19137836-PreSc-oGFP-2HA-His6. mRFP was PCR-

amplified from pET21b-nterHAHismRFP (provided by Dr. S. Wawra).  

pFGB1-Bs19137836-PreSc-2HA-His6: The PmeI digested vector pFGB1-Bs19137836-

PreSc-oGFP-2HA-His6 was religated.  

pFGB1-FGB1-PreSc-mRFP-2HA-His6: pFGB1-FGB1-PreSc-oGFP-2HA-His6 was digested 

with PmeI and oGFP replaced by mRFP.  

pPiRNAi-SiNUCA: The vector pPiRNAi contains the GPD and TEF promoters with an 

EcoRV restriction site in the middle to clone a gene fragment (Hilbert et al. 2012). The 

gene fragment is expressed from both sites with the promoters to obtain a double 

stranded RNA for RNAi. pPiRNAi was digested with EcoRV and a 550 bp fragment of 

SiNUCA was inserted.  

pJet-LBSiNUCA-HygB-RBSiNUCA: For construction of the fragments used for transformation 

to obtain ∆sinucA, 1 kb upstream (LB) and 1 kb downstream (RB) of the SiNUCA open 

reading frame were amplified from gDNA by PCR. Moreover, the Hygromycin B 

resistance cassette including the TEF promoter and Nos terminator were amplified from 

pGoGFP (Hilbert et al., 2012). These three fragments were joined by Gibson assembly, 

the new big fragment amplified by PCR and cloned into pJet (linearised with EcoRV, 

Thermo Fisher Scientific, Schwerte, Germany) to obtain the vector pJet-LBSiNUCA-HygB-

RBSiNUCA.  

This vector was digested with BglII to obtain one fragment or ClaI/EcoRI+ XhoI to obtain 

two fragments for S. indica transformation. The fragments were cleaned up from an 

agarose gel, precipitated for an additional cleaning step and used for transformation.  

pJet-LBSiNUCA,1.8kb-HygB-RBSiNUCA,1.8kb: The vector pJet-LBSiNUCA-HygB-RBSiNUCA was 

digested with SacI/ClaI and the LB replaced with a 1.8 kb fragment of the LB amplified 

from gDNA. This new vector was cut with BamHI in the RB region and the RB prolonged 

to 1.8 kb by insertion of a PCR-amplified RB piece from gDNA. The obtained vector pJet-

LBSiNUCA,1.8kb-HygB-RBSiNUCA,1.8kb was digested with ClaI/NaeI for transformation of one 

fragment or with ClaI/SacII + EcoRI/NaeI for transformation of two fragments.  
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4.7.4 Vectors for Arabidopsis 

pCXSN-SiNUCA, pCXSN-SiNUCA-mCherry, pCXSN-SiNUCA(w/o SP)-mCherry: The 

vector pCXSN harbouring the CaMV 35S promoter and Hygromycin B resistance cassette 

(provided by Dr. S. Nizam) was digested with BamHI. SiNUCA, SiNUCA:mCherry or 

SiNUCA(w/o SP):mCherry were PCR-amplified from p123-SiNUCA or p123-

SiNUCA:mCherry and inserted.  

 

4.8 Oligonucleotides 

Oligonucleotides were purchased at Sigma Aldrich (Taufkirchen, Germany).  

 
Table 4.6 Oligonucleotides used in this thesis 
Name Sequence (5´-3´) Purpose 
AtUBI_F CCAAGCCGAAGAAGATCAAG qPCR AtUBI 
AtUBI_R ACTCCTTCCTCAAACGCTGA qPCR AtUBI 
HvUBI_F CAGTAGTGGCGGTCGAAGTG qPCR HvUBI 
HvUBI_R ACCCTCGCCGACTACAACAT qPCR HvUBI 
Hv_U35_15826_for GGAGGGCGACAAGGTAAGTG qPCR HvPR10 
Hv_U35_15826_rev CGTCCAGCCTCTCGTACTCT qPCR HvPR10 
TEF_Piri_QPCR_F GCAAGTTCTCCGAGCTCATC qPCR SiTEF 
TEF_Piri_QPCR_R CCAAGTGGTGGGTACTCGTT qPCR SiTEF 
PIIN02121_5inner TCCAGATGCACCAGACCTCCA qPCR SiNUCA, also RACE PCR 
PIIN02121_3outer GGTACTCAAGCGTGACGGAA qPCR SiNUCA, also RACE PCR 
05889_QPCR_F CTTCTCAGCAGCAAACAAGC qPCR PIIN_05889 
05889_QPCR_R AGAGTACCAGGCGTTCGAGT qPCR PIIN_05889 
PIIN_00073_fw2 ATCCATGGAGATGCTCGTCC qPCR PIIN_00073 
PIIN_00073_rv2 TCAAAGACAGCACCCGTTTG qPCR PIIN_00073 
PIIN_09504_fw GGATCCAACCAAGTTTGCGT qPCR PIIN_09504 
PIIN_09504_rv CCATCGTCAAAGCTACCGTG qPCR PIIN_09504 
PIIN_08972_fw TTCATGACCACCAACACGAC qPCR PIIN_08972 
PIIN_08972_rv AGCGGCAAGAATATCCCTGA qPCR PIIN_08972 
Sebve1_TEF_qPCR_new_FW ATCCCAAGCAAGCCAATGTG qPCR SvTEF 
Sebve1_TEF_qPCR_new_RV TGCCGTCAGTCTTCTCAACA qPCR SvTEF 
K284_Sebve12299_qPCR_fw ACCCTGCTAAATGGATGCC qPCR Sebve1_12299 
K285_Sebve12299_qPCR_rv CGTTGTACTCTGCTTGGTCG qPCR Sebve1_12299 
K174_NewHD1.2 left AGATATCCGGAGGCGAGTTT Mating type HD 1.2 
K175_NewHD1.2 right CCTGAATCTGCTGTTCGTCA Mating type HD 1.2 
K176_NewHD2.2 left ACATCTGGCTCCCATTTACG Mating type HD 2.2 
K177_NewHD2.2 right GTTGAGCTTTGGCTCGTTTC Mating type HD 2.2 
K178_NewHD2.1 left ATGAGTACGATTGCCCAAGG Mating type HD 2.1 
K179_NewHD2.1 right TCGTCTCGTAGGCGACTTTT Mating type HD 2.1 
K180_NewHD1.1 left CGATACCTACCCGCCTACAA Mating type HD 1.1 
K181_NewHD1.1 right CTTTTTAAGCGGTGCTGGAG Mating type HD 1.1 

K403_RNAi_PIIN02121_fw CAACCTCATGGAGAGTCGTG PCR SiNUCA, also plant line 

screening, cloning for RNAi  

K404_RNAi_PIIN02121_rv CTTGTACAATGCATTGTACTCG PCR SiNUCA, also plant line 

screening, cloning for RNAi 
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Name Sequence (5´-3´) Purpose 
PIIN02121_5outer GCGATGAGTTGAGGACGAGT RACE PCR SiNUCA 
PIIN02121_3inner CGACCATCTTGTTCCATTAGCC RACE PCR SiNUCA 
K262_PIIN02121_5UTR_fw GCGTTTCTGGCTATAAGAACTGCG ∆sinucA screening 

K263_PIIN02121_3UTR_rv 
TAAACAGACCAAGAACGATTGTATT
GCG 

∆sinucA screening 

Hyg-03211RBcPCR primer FW AGCGCGCAAACTAGGATAAA ∆sinucA verification  
TEFprom_begR  CAGAGGAACCGATGCTGAAT ∆sinucA verification 
PIIN_02121_upstream_fw TGAATAGCGCGTCAATTGTCTA ∆sinucA verification 
PIIN_02121_downstream_rv CACAGGTGGACCCTGGAGGT ∆sinucA verification 
PIIN_02121_fw2 CCCCGAAAATAGCAGTGTCG ∆sinucA Southern blot probe 
PIIN_02121_rv2 GGGGTGCCAAACATGAAGG ∆sinucA Southern blot probe 
PIIN_02121_RB_rv TAAGCATGCACGCTTCTTC ∆sinucA Southern blot probe 
PIIN_02121_RNAi_qPCR_fw2 GCTAGGAAGAGGCAGAATTTCG ∆sinucA Southern blot probe 
Kan_FWD TGGAGAGGCTATTCGGCTAT Southern blot probe GenR  
Kan_REV AACTCGTCAAGAAGGCGATA Southern blot probe GenR  

K417_SP02121_NcoI_fw 
catggATGATACCTACTTTCTCTTTTGC
CGCCCTCATACTCGGCATGCTTGCAA
CCGTGAGCGCTGC 

Verification of A. tumefaciens 
transformants 

mCherry_Rev_2 AGCCCATCGTCTTCTTCTGC 
Verification of A. tumefaciens 
transformants 

mCherry_Fwd_1 GGGCGAGGAGGATAACATGG 
Verification of A. tumefaciens 
transformants 

K409_Potef_02121_fw ACAGACAACATCATCCACGGGATCC
ATGATACCTACTTTCTCTTTTGC 

Cloning of SiNUCA into p123 

K410_Potef_02121_rev TGAACGATCTGCAGCCGGGCGGCCG
CCTAGCATGCGTACAAATACTTG 

Cloning of SiNUCA into p123 

K411_mcherry_02121_rv ATGGCGGTGGCGATCGAGCGGCATG
CGTACAAATACTTGTAC 

Cloning of SiNUCA:mCherry 

into p123 

K412_02121_mcherry_fw GCCGCTCGATCGCCACCGCCATGGT
GAGCAAGGGCGAGG 

Cloning of SiNUCA:mCherry 

into p123 

K413_Potef_mcherry_rv TGAACGATCTGCAGCCGGGCGGCCG
CCTACTTGTACAGCTCGTCCATGC 

Cloning of SiNUCA:mCherry 

into p123 

K414_Potef_mcherry_fw ACAGACAACATCATCCACGGGATCC
GCCATGGTGAGCAAGGGCGAGG 

Cloning of SPSiNUCA:mCherry: 

into p123 

K415_02121_mcherry_rv AGCCGGAGCCGGAGGAtgctctagaTG
CCTTGTACAGCTCGTCCATGCCGC 

Cloning of SPSiNUCA:mCherry: 

into p123 

K416_mcherry_02121_fw gagcaTCCTCCGGCTCCGGCTCCTCCG
CGCAAGCTCCGCTCAACCTCATGG 

Cloning of SPSiNUCA:mCherry: 

into p123 

SP02121_BamHI_fw 
gatccATGATACCTACTTTCTCTTTTGC
CGCCCTCATACTCGGCATGCTTGCAA
CCGTGAGCGCTGC 

Cloning of SPSiNUCA:mCherry: 

into p123 

02121SP_NcoI_rv_2 
CATGGCAGCGCTCACGGTTGCAAGC
ATGCCGAGTATGAGGGCGGCAAAA
GAGAAAGTAGGTATCATg 

Cloning of SPSiNUCA:mCherry: 

into p123 

XbaINotI_fw ctagagctagttcactgGC Cloning of SPSiNUCA:mCherry: 

into p123 

XbaINotI_rv GGCCGCcagtgaactagct Cloning of SPSiNUCA:mCherry: 

into p123 
K89>Prom03211_NotI RV AACGTGCGGCCGCTGAAT FGB1 promoter cloning 
Altern Prom03211_ApaI FW CGATAGAGTTGGAGGCAAATC FGB1 promoter cloning 
RV_03211 ORF+SP HindIII 
dStop 

CAG TAA GCT TGC ACG AGA GCT 
TCC CGC AC 

Cloning of pFGB1-FGB1-oGFP 

K13703211_ORF ClaI FW 
ACTA AT CGAT 
GATGACGAAACAGCGGTCATTG 
 

Cloning of pFGB1-FGB1-oGFP 
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SebaTEFprom_ApaI_fw 
GGGAACAAAAGCTGGTACCGGGCCC
GTTTATAGATGCGCTGCTTTTG 

Cloning of pSvTEF-oGFP 

SebaTEFprom_HindIII_rv 
CCTTGGAGACCATGATATCGCTAGCT
TTTGAGAGAAAAAAGTGTGTGAG 

Cloning of pSvTEF-oGFP 

Sebve1_14646_RV_dStop_Hin
dIII 

gttgaagcttCTGATCGTACTGACCGCG
C 

Cloning of Sebve1_14646:GFP 
into pFGB1 

Sebve1_14646_FW_dSP AGCAAACTTGTTCCCGCCCTCCC 
Cloning of Sebve1_14646:GFP 
into pFGB1 

K405_FGB1promApaI_fw GGGAACAAAAGCTGGTACCGGGCCC
TATGTCCAAATGATCACATAAC 

Cloning of pFGB1- SPDLD1-
2HA:His6-oGFP-PreSc-FGB1 

K406_FGB1promNheIClaI_rv GACCGCTGTTTCGTCATCATCGATGC
TAGCGACTGTTTTTGGAGTGATGC 

Cloning of pFGB1- SPDLD1-
2HA:His6-oGFP-PreSc-FGB1 

K407_synthnterNheI_fw CATCACTCCAAAAACAGTCGCTAGCA
TGCGCGTCGGT 

Cloning of pFGB1- SPDLD1-
2HA:His6-oGFP-PreSc-FGB1 

K408_synthnterStop_rv CCGGGCTGCAGGAATTCGATCTATA
CGTAAAGCTTGCACG 

Cloning of pFGB1- SPDLD1-
2HA:His6-oGFP-PreSc-FGB1 

GFP_linkerPmeI_fw 
AGCTCTCGTGCAAGCTTTACTCCTCC
GGCTCCGGCTCCTCCGCGCAAAGTTT
AAACATGGTCTCCAAGGG 

Cloning of pFGB1-SPDLD1-FGB1-
oGFP-2HA-His6 

GFP_PmeISnaBI_rv 
TGCAGGAATTCGATCTATACGTAGTT
TAAACTCTTGTAGAGCTCGTCCATAC
C 

Cloning of pFGB1-SPDLD1-FGB1-
oGFP-2HA-His6 

HAHis_EcorV_fw TCTACAAGAGTTTAAACTACGATATC
TACCCATACGATGTTCC 

Cloning of pFGB1-SPDLD1-FGB1-
oGFP-2HA-His6 

HAHis_EcoRV_rv TGCAGGAATTCGATCTATACGATATC
CTAgTGGTGGTGGTG 

Cloning of pFGB1-SPDLD1-FGB1-
oGFP-2HA-His6 

PIIN2121_olK91_fw CATCACTCCAAAAACAGTCGCTAGCA
TGATACCTACTTTCTCTTTTGC 

Cloning SiNUCA into pFGB1 

PIIN2121_olK91_EcorV_rv ATGGGTAGATATCGTAGTTTGAGCA
TGCGTACAAATACTTGTAC 

Cloning SiNUCA into pFGB1 

P-pGoGFPHaHis_fw CTAGCTTGATCGCTAGGTTT 
Cloning of empty vector 
pFGB1 

P-pGoGFPHaHis_rv AAACCTAGCGATCAAG 
Cloning of empty vector 
pFGB1 

>K605_BiPo7697489.1_FW GCATCACTCCAAAAACAGTCGCTAGC
ATGCATTTCCAACACGCGCTATCTC 

Cloning of Bs19137836 into 
pFGB1 

>K606_BiPo7697489.1_RV TTGGCCCCTGGAACAGAACTTCCAG
AAGCTTATTCGGTGAACCCTGTCGGC 

Cloning of Bs19137836 into 
pFGB1 

>K607_GFP+Nterm_PreS 
CTGGAAGTTCTGTTCCAGGGGCCAA
GTTTAAACATGGTCTCCAAGGGCGA
GG 

Cloning of Bs19137836 into 
pFGB1 

>K608_RV_PmeI/EcoRV for 
K91 CGTATGGGTAGATATCGTAGTTT Cloning of Bs19137836 into 

pFGB1 
K627_3211dSP_RV_Gibs_Hind
_K106 

GGAACAGAACTTCCAGAAGCTTGCA
CGAGAGCTTCCCGCACTTC 

Cloning of pFGB1-FGB1-PreSc-
oGFP-2HA-His6 

K624_3211SP_FW_Gibson_Nh
eI_K106 

GCATCACTCCAAAAACAGTCGCTAGC
ATGAAGTTCACTACCGTCTTCG 

Cloning of pFGB1-FGB1-PreSc-
oGFP-2HA-His6 

mRFP_PmeI_fw 
CTGTTCCAGGGGCCAAGTTTAAACat
ggcctcctccgagg 

Cloning of Bs19137836:mRFP 
into pFGB1 

mRFP_PmeI_rv 
ATGGGTAGATATCGTAGTTTAAACTg
gcgccggtggagtggc 

Cloning of Bs19137836:mRFP 
into pFGB1 

PIIN_02121_LB_fw 
 

CACATGCGTTCCATAACCG 
 

Cloning of LB SiNUCA for 
∆sinucA vector 

PIIN_02121_LB_Hyg_rv AAAGTAGGTCCCTGGACAAACAAGG
GGAC 

Cloning of LB SiNUCA for 
∆sinucA vector 
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PIIN_02121_RB_Hyg_fw CAAACATGAGGAAGAGGCAGAATTT
CGATAG 

Cloning of RB SiNUCA for 
∆sinucA vector 

PIIN_02121_RB_rv TAAGCATGCACGCTTCTTC Cloning of RB SiNUCA for 
∆sinucA vector 

PIIN_02121_Hyg_LB_fw TTTGTCCAGGGACCTACTTTTGATGA
GATTATTC 

Amplification of HygB cassette 
for ∆sinucA vector 

PIIN_02121_Hyg_RB_rv CTGCCTCTTCCTCATGTTTGACAGCTT
ATC 

Amplification of HygB cassette 
for ∆sinucA vector 

LB2121_SacI_fw GACAAACAAGGGGACTGAAAG 
Cloning of LB 1.8 kb SiNUCA 
for ∆sinucA vector 

LB2121_ClaI_rv 
agagaataaaagaagaacatcgatATGTAC
GAACGATCATCAAGTC 

Cloning of LB 1.8 kb SiNUCA 
for ∆sinucA vector 

RB2121_BamHI_rv CGCCATCCACATGTCGAGAG 
Cloning of RB 1.8 kb SiNUCA 
for ∆sinucA vector 

PIIN2121_RBlong_NaeI_fw 
GCGACCTTGATCACCCAATGCCGGC
GTGTCCTCGCAAGGGTATCA 

Cloning of RB 1.8 kb SiNUCA 
for ∆sinucA vector 

pCXSN_2121_fw TACGAACGATACTCGAGGGGGATCC
ATGATACCTACTTTC 

Cloning of SiNUCA into pCXSN 

pCXSN_2121_rev ATCGGGGAAATTCGCTAGTGGATCC
CTAGCATGCGTACAAATACTT 

Cloning of SiNUCA into pCXSN 

pCXSN_2121woSP_fw TACGAACGATACTCGAGGGGGATCC
GCTCCGCTCAACCTCATGG 

Cloning of SiNUCA (w/o SP) 
into pCXSN 

pCXSN_2121mcherry_rv ATCGGGGAAATTCGCTAGTGGATCC
CTACTTGTACAGCTCGTCCAT 

Cloning of SiNUCA:mCherry 
into pCXSN 

 

4.9 Programs 

Homologous proteins were found with the NCBI blastp algorithm using the non-

redundant protein sequences (nr) database.  

SP were analysed using SignalP 4.1 with default settings for eukaryotes (Petersen et al., 

2011). Protein domains were detected with the SMART tool (Letunic & Bork, 2018). 

A protein logo was created with WebLogo using default settings (Crooks et al., 2004).  

Statistical analysis was performed with R studio mainly using the multcomp and car 

packages (RCoreTeam, 2017).  

 

  



  References 

_____________________________________________________________________________________ 

   107 

5. References 

Achatz, B., Kogel, K. H., Franken, P., & Waller, F. (2010). Piriformospora indica mycorrhization 
increases grain yield by accelerating early development of barley plants. Plant Signal 

Behav, 5(12), 1685-1687.  
Adrio, J. L., & Demain, A. L. (2010). Recombinant organisms for production of industrial products. 

Bioeng Bugs, 1(2), 116-131. doi:10.4161/bbug.1.2.10484 
Aichinger, C., Hansson, K., Eichhorn, H., Lessing, F., Mannhaupt, G., Mewes, W., & Kahmann, R. 

(2003). Identification of plant-regulated genes in Ustilago maydis by enhancer-trapping 
mutagenesis. Mol Genet Genomics, 270(4), 303-314. doi:10.1007/s00438-003-0926-z 

Akum, F. N., Steinbrenner, J., Biedenkopf, D., Imani, J., & Kogel, K. H. (2015). The Piriformospora 
indica effector PIIN_08944 promotes the mutualistic Sebacinalean symbiosis. Front 

Plant Sci, 6, 906. doi:10.3389/fpls.2015.00906 
Alves, A. M., Record, E., Lomascolo, A., Scholtmeijer, K., Asther, M., Wessels, J. G., & Wosten, H. 

A. (2004). Highly efficient production of laccase by the basidiomycete Pycnoporus 
cinnabarinus. Appl Environ Microbiol, 70(11), 6379-6384. doi:10.1128/AEM.70.11.6379-
6384.2004 

Bagniewska-Zadworna, A., & Arasimowicz-Jelonek, M. (2016). The mystery of underground 
death: cell death in roots during ontogeny and in response to environmental factors. 
Plant Biol (Stuttg), 18(2), 171-184. doi:10.1111/plb.12391 

Bakshi, M., Vahabi, K., Bhattacharya, S., Sherameti, I., Varma, A., Yeh, K. W., . . . Oelmuller, R. 
(2015). WRKY6 restricts Piriformospora indica-stimulated and phosphate-induced root 
development in Arabidopsis. BMC Plant Biol, 15, 305. doi:10.1186/s12870-015-0673-4 

Banhara, A., Ding, Y., Kuhner, R., Zuccaro, A., & Parniske, M. (2015). Colonization of root cells 
and plant growth promotion by Piriformospora indica occurs independently of plant 
common symbiosis genes. Front Plant Sci, 6, 667. doi:10.3389/fpls.2015.00667 

Bao, Y., & Howell, S. H. (2017). The Unfolded Protein Response Supports Plant Development and 
Defense as well as Responses to Abiotic Stress. Frontiers in Plant Science, 8, 344. 
doi:10.3389/fpls.2017.00344 

Barazani, O., Benderoth, M., Groten, K., Kuhlemeier, C., & Baldwin, I. T. (2005). Piriformospora 
indica and Sebacina vermifera increase growth performance at the expense of herbivore 
resistance in Nicotiana attenuata. Oecologia, 146(2), 234-243. doi:10.1007/s00442-005-
0193-2 

Barazani, O., von Dahl, C. C., & Baldwin, I. T. (2007). Sebacina vermifera promotes the growth 
and fitness of Nicotiana attenuata by inhibiting ethylene signaling. Plant Physiol, 144(2), 
1223-1232. doi:10.1104/pp.107.097543 

Berends, E. T., Horswill, A. R., Haste, N. M., Monestier, M., Nizet, V., & von Kockritz-Blickwede, 
M. (2010). Nuclease expression by Staphylococcus aureus facilitates escape from 
neutrophil extracellular traps. J Innate Immun, 2(6), 576-586. doi:10.1159/000319909 

Berlec, A., & Strukelj, B. (2013). Current state and recent advances in biopharmaceutical 
production in Escherichia coli, yeasts and mammalian cells. J Ind Microbiol Biotechnol, 

40(3-4), 257-274. doi:10.1007/s10295-013-1235-0 
Bhat, A., & Ryu, C. M. (2016). Plant Perceptions of Extracellular DNA and RNA. Mol Plant, 9(7), 

956-958. doi:10.1016/j.molp.2016.05.014 
Bird, D., & Bradshaw, R. (1997). Gene targeting is locus dependent in the filamentous fungus 

Aspergillus nidulans. Mol Gen Genet, 255(2), 219-225.  
Bonfante, P., & Genre, A. (2010). Mechanisms underlying beneficial plant-fungus interactions in 

mycorrhizal symbiosis. Nat Commun, 1, 48. doi:10.1038/ncomms1046 
Brundrett, M. C. (2009). Mycorrhizal associations and other means of nutrition of vascular 

plants: understanding the global diversity of host plants by resolving conflicting 
information and developing reliable means of diagnosis. Plant and Soil, 320(1), 37-77. 
doi:10.1007/s11104-008-9877-9 



  References 

_____________________________________________________________________________________ 

   108 

Brundrett, M. C., & Tedersoo, L. (2018). Evolutionary history of mycorrhizal symbioses and global 
host plant diversity. New Phytologist. doi:10.1111/nph.14976 

Buchanan, J. T., Simpson, A. J., Aziz, R. K., Liu, G. Y., Kristian, S. A., Kotb, M., . . . Nizet, V. (2006). 
DNase expression allows the pathogen group A Streptococcus to escape killing in 
neutrophil extracellular traps. Curr Biol, 16(4), 396-400. doi:10.1016/j.cub.2005.12.039 

Cameron, D. D., Neal, A. L., van Wees, S. C., & Ton, J. (2013). Mycorrhiza-induced resistance: 
more than the sum of its parts? Trends Plant Sci, 18(10), 539-545. 
doi:10.1016/j.tplants.2013.06.004 

Cannesan, M. A., Durand, C., Burel, C., Gangneux, C., Lerouge, P., Ishii, T., . . . Vicre-Gibouin, M. 
(2012). Effect of arabinogalactan proteins from the root caps of pea and Brassica napus 
on Aphanomyces euteiches zoospore chemotaxis and germination. Plant Physiol, 

159(4), 1658-1670. doi:10.1104/pp.112.198507 
Cannesan, M. A., Gangneux, C., Lanoue, A., Giron, D., Laval, K., Hawes, M., . . . Vicre-Gibouin, M. 

(2011). Association between border cell responses and localized root infection by 
pathogenic Aphanomyces euteiches. Ann Bot, 108(3), 459-469. 
doi:10.1093/aob/mcr177 

Casarrubia, S., Daghino, S., Kohler, A., Morin, E., Khouja, H. R., Daguerre, Y., . . . Martino, E. 
(2018). The Hydrophobin-Like OmSSP1 May Be an Effector in the Ericoid Mycorrhizal 
Symbiosis. Front Plant Sci, 9, 546. doi:10.3389/fpls.2018.00546 

Cascales, E., Buchanan, S. K., Duche, D., Kleanthous, C., Lloubes, R., Postle, K., . . . Cavard, D. 
(2007). Colicin biology. Microbiol Mol Biol Rev, 71(1), 158-229. 
doi:10.1128/MMBR.00036-06 

Charura, N. (2016). Identification of potential protein interactions of putative P. indica effector 
proteins Bachelor Thesis, University of Cologne.  

Chen, X., Zaro, J. L., & Shen, W. C. (2013). Fusion protein linkers: property, design and 
functionality. Adv Drug Deliv Rev, 65(10), 1357-1369. doi:10.1016/j.addr.2012.09.039 

Choi, H. W., & Klessig, D. F. (2016). DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC 

Plant Biol, 16(1), 232. doi:10.1186/s12870-016-0921-2 
Corchero, J. L., Gasser, B., Resina, D., Smith, W., Parrilli, E., Vazquez, F., . . . Villaverde, A. (2013). 

Unconventional microbial systems for the cost-efficient production of high-quality 
protein therapeutics. Biotechnol Adv, 31(2), 140-153. 
doi:10.1016/j.biotechadv.2012.09.001 

Couto, D., & Zipfel, C. (2016). Regulation of pattern recognition receptor signalling in plants. Nat 

Rev Immunol, 16(9), 537-552. doi:10.1038/nri.2016.77 
Crasto, C. J., & Feng, J.-a. (2000). LINKER: a program to generate linker sequences for fusion 

proteins. Protein Engineering, Design and Selection, 13(5), 309-312. 
doi:10.1093/protein/13.5.309 

Crooks, G. E., Hon, G., Chandonia, J. M., & Brenner, S. E. (2004). WebLogo: a sequence logo 
generator. Genome Res, 14(6), 1188-1190. doi:10.1101/gr.849004 

Demain, A. L., & Vaishnav, P. (2009). Production of recombinant proteins by microbes and higher 
organisms. Biotechnol Adv, 27(3), 297-306. doi:10.1016/j.biotechadv.2009.01.008 

Deshmukh, S., Hueckelhoven, R., Schaefer, P., Imani, J., Sharma, M., Weiss, M., . . . Kogel, K. H. 
(2006). The root endophytic fungus Piriformospora indica requires host cell death for 
proliferation during mutualistic symbiosis with barley. Proceedings of the National 

Academy of Sciences of the United States of America, 103(49), 18450-18457. doi:DOI 
10.1073/pnas.0605697103 

Dickman, M. B., & Fluhr, R. (2013). Centrality of host cell death in plant-microbe interactions. 
Annual Review of Phytopathology, 51, 543-570. doi:10.1146/annurev-phyto-081211-
173027 

Distefano, A. M., Martin, M. V., Cordoba, J. P., Bellido, A. M., D'Ippolito, S., Colman, S. L., . . . 
Pagnussat, G. C. (2017). Heat stress induces ferroptosis-like cell death in plants. J Cell 

Biol, 216(2), 463-476. doi:10.1083/jcb.201605110 



  References 

_____________________________________________________________________________________ 

   109 

Driouich, A., Durand, C., Cannesan, M. A., Percoco, G., & Vicre-Gibouin, M. (2010). Border cells 
versus border-like cells: are they alike? J Exp Bot, 61(14), 3827-3831. 
doi:10.1093/jxb/erq216 

Driouich, A., Follet-Gueye, M. L., Vicre-Gibouin, M., & Hawes, M. (2013). Root border cells and 
secretions as critical elements in plant host defense. Current Opinion in Plant Biology, 

16(4), 489-495. doi:10.1016/j.pbi.2013.06.010 
Duran-Flores, D., & Heil, M. (2015). Growth inhibition by self-DNA: a phenomenon and its 

multiple explanations. New Phytologist, 207(3), 482-485. doi:10.1111/nph.13542 
Duran-Flores, D., & Heil, M. (2017). Extracellular self-DNA as a damage-associated molecular 

pattern (DAMP) that triggers self-specific immunity induction in plants. Brain Behav 

Immun. doi:10.1016/j.bbi.2017.10.010 
Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., & Nagata, S. (1998). A caspase-

activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature, 

391(6662), 43-50. doi:10.1038/34112 
Erjavec, J., Kos, J., Ravnikar, M., Dreo, T., & Sabotic, J. (2012). Proteins of higher fungi--from 

forest to application. Trends Biotechnol, 30(5), 259-273. 
doi:10.1016/j.tibtech.2012.01.004 

Fakhro, A., Andrade-Linares, D. R., von Bargen, S., Bandte, M., Büttner, C., Grosch, R., . . . 
Franken, P. (2010). Impact of Piriformospora indica on tomato growth and on 
interaction with fungal and viral pathogens. Mycorrhiza, 20(3), 191-200. 
doi:10.1007/s00572-009-0279-5 

Farfsing, J. W., Auffarth, K., & Basse, C. W. (2005). Identification of cis-active elements in Ustilago 
maydis mig2 promoters conferring high-level activity during pathogenic growth in 
maize. Mol Plant Microbe Interact, 18(1), 75-87. doi:10.1094/MPMI-18-0075 

Feldbrugge, M., Kellner, R., & Schipper, K. (2013). The biotechnological use and potential of plant 
pathogenic smut fungi. Appl Microbiol Biotechnol, 97(8), 3253-3265. 
doi:10.1007/s00253-013-4777-1 

Fesel, P. H., & Zuccaro, A. (2016). Dissecting endophytic lifestyle along the parasitism/mutualism 
continuum in Arabidopsis. Curr Opin Microbiol, 32, 103-112. 
doi:10.1016/j.mib.2016.05.008 

Finkel, S. E., & Kolter, R. (2001). DNA as a nutrient: novel role for bacterial competence gene 
homologs. J Bacteriol, 183(21), 6288-6293. doi:10.1128/JB.183.21.6288-6293.2001 

Franken, P. (2012). The plant strengthening root endophyte Piriformospora indica: potential 
application and the biology behind. Appl Microbiol Biotechnol, 96(6), 1455-1464. 
doi:10.1007/s00253-012-4506-1 

Fryar, S. C., Kirby, G. C., & Hyde, K. D. (2002). Interspecific competitive ability of homokaryotic 
and heterokaryotic wood decay basidiomycetes. Austral Ecology, 27(3), 343-349. 
doi:doi:10.1046/j.1442-9993.2002.01186.x 

Galluzzi, L., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., Agostinis, P., . . . Kroemer, G. 
(2018). Molecular mechanisms of cell death: recommendations of the Nomenclature 
Committee on Cell Death 2018. Cell Death Differ, 25(3), 486-541. doi:10.1038/s41418-
017-0012-4 

Garforth, S. J., Patel, D., Feng, M., & Sayers, J. R. (2001). Unusually wide co-factor tolerance in a 
metalloenzyme; divalent metal ions modulate endo-exonuclease activity in T5 
exonuclease. Nucleic Acids Res, 29(13), 2772-2779.  

Garg, N., Bieler, N., Kenzom, T., Chhabra, M., Ansorge-Schumacher, M., & Mishra, S. (2012). 
Cloning, sequence analysis, expression of Cyathus bulleri laccase in Pichia pastoris and 
characterization of recombinant laccase. BMC Biotechnol, 12, 75. doi:10.1186/1472-
6750-12-75 

Garnica, S., Riess, K., Bauer, R., Oberwinkler, F., & Weiss, M. (2013). Phylogenetic diversity and 
structure of sebacinoid fungi associated with plant communities along an altitudinal 
gradient. FEMS Microbiol Ecol, 83(2), 265-278. doi:10.1111/j.1574-6941.2012.01473.x 



  References 

_____________________________________________________________________________________ 

   110 

Gerngross, T. U. (2004). Advances in the production of human therapeutic proteins in yeasts and 
filamentous fungi. Nat Biotechnol, 22(11), 1409-1414. doi:10.1038/nbt1028 

Ghimire, S. R., Charlton, N. D., & Craven, K. D. (2009). The Mycorrhizal Fungus, Sebacina 
vermifera, Enhances Seed Germination and Biomass Production in Switchgrass 
(Panicum virgatum L). BioEnergy Research, 2(1), 51-58. doi:10.1007/s12155-009-9033-
2 

Ghimire, S. R., & Craven, K. D. (2011). Enhancement of switchgrass (Panicum virgatum L.) 
biomass production under drought conditions by the ectomycorrhizal fungus Sebacina 
vermifera. Appl Environ Microbiol, 77(19), 7063-7067. doi:10.1128/AEM.05225-11 

Gibson, D. G. (2011). Enzymatic assembly of overlapping DNA fragments. Methods Enzymol, 498, 
349-361. doi:10.1016/B978-0-12-385120-8.00015-2 

Gill, S. S., Gill, R., Trivedi, D. K., Anjum, N. A., Sharma, K. K., Ansari, M. W., . . . Tuteja, N. (2016). 
Piriformospora indica: Potential and Significance in Plant Stress Tolerance. Front 

Microbiol, 7, 332. doi:10.3389/fmicb.2016.00332 
Griebel, B. (2016). Homokaryons vs. heterokaryons of Serendipita indica and their ability to 

colonize the host. Bachelor Thesis, University of Cologne.  
Guimaraes-Costa, A. B., DeSouza-Vieira, T. S., Paletta-Silva, R., Freitas-Mesquita, A. L., Meyer-

Fernandes, J. R., & Saraiva, E. M. (2014). 3'-nucleotidase/nuclease activity allows 
Leishmania parasites to escape killing by neutrophil extracellular traps. Infect Immun, 

82(4), 1732-1740. doi:10.1128/IAI.01232-13 
Gunawardena, U., & Hawes, M. C. (2002). Tissue specific localization of root infection by fungal 

pathogens: role of root border cells. Mol Plant Microbe Interact, 15(11), 1128-1136. 
doi:10.1094/MPMI.2002.15.11.1128 

Hacquard, S., Spaepen, S., Garrido-Oter, R., & Schulze-Lefert, P. (2017). Interplay Between 
Innate Immunity and the Plant Microbiota. Annual Review of Phytopathology, 55, 565-
589. doi:10.1146/annurev-phyto-080516-035623 

Hadwiger, L. A., Druffel, K., Humann, J. L., & Schroeder, B. K. (2013). Nuclease released by 
Verticillium dahliae is a signal for non-host resistance. Plant Sci, 201-202, 98-107. 
doi:10.1016/j.plantsci.2012.11.011 

Han, F., Liu, Y., Guo, L. Q., Zeng, X. L., Liu, Z. M., & Lin, J. F. (2010). Heterologous expression of 
the immunomodulatory protein gene from Ganoderma sinense in the basidiomycete 
Coprinopsis cinerea. J Appl Microbiol, 109(5), 1838-1844. doi:10.1111/j.1365-
2672.2010.04811.x 

Hatsugai, N., Yamada, K., Goto-Yamada, S., & Hara-Nishimura, I. (2015). Vacuolar processing 
enzyme in plant programmed cell death. Front Plant Sci, 6, 234. 
doi:10.3389/fpls.2015.00234 

Hawes, M., Allen, C., Turgeon, B. G., Curlango-Rivera, G., Minh Tran, T., Huskey, D. A., & Xiong, 
Z. (2016a). Root Border Cells and Their Role in Plant Defense. Annual Review of 

Phytopathology, 54, 143-161. doi:10.1146/annurev-phyto-080615-100140 
Hawes, M. C., Curlango-Rivera, G., Wen, F., White, G. J., Vanetten, H. D., & Xiong, Z. (2011). 

Extracellular DNA: the tip of root defenses? Plant Sci, 180(6), 741-745. 
doi:10.1016/j.plantsci.2011.02.007 

Hawes, M. C., McLain, J., Ramirez-Andreotta, M., Curlango-Rivera, G., Flores-Lara, Y., & Brigham, 
L. A. (2016b). Extracellular Trapping of Soil Contaminants by Root Border Cells: New 
Insights into Plant Defense. Agronomy-Basel, 6(1). doi:ARTN 5 
10.3390/agronomy6010005 

Hilbert, M., Voll, L. M., Ding, Y., Hofmann, J., Sharma, M., & Zuccaro, A. (2012). Indole derivative 
production by the root endophyte Piriformospora indica is not required for growth 
promotion but for biotrophic colonization of barley roots. New Phytologist, 196(2), 520-
534. doi:DOI 10.1111/j.1469-8137.2012.04275.x 

Hiruma, K., Gerlach, N., Sacristan, S., Nakano, R. T., Hacquard, S., Kracher, B., . . . Schulze-Lefert, 
P. (2016). Root Endophyte Colletotrichum tofieldiae Confers Plant Fitness Benefits that 
Are Phosphate Status Dependent. Cell, 165(2), 464-474. doi:10.1016/j.cell.2016.02.028 



  References 

_____________________________________________________________________________________ 

   111 

Hiscox, J., Hibbert, C., Rogers, H. J., & Boddy, L. (2010). Monokaryons and dikaryons of Trametes 
versicolor have similar combative, enzyme and decay ability. Fungal Ecology, 3(4), 347-
356. doi:https://doi.org/10.1016/j.funeco.2010.02.003 

Hsia, K. C., Li, C. L., & Yuan, H. S. (2005). Structural and functional insight into sugar-nonspecific 
nucleases in host defense. Curr Opin Struct Biol, 15(1), 126-134. 
doi:10.1016/j.sbi.2005.01.015 

Huang, Q., Hong, X., & Hao, Q. (2008). SNAP-25 IS ALSO AN IRON-SULFUR PROTEIN. FEBS Lett, 

582(10), 1431-1436. doi:10.1016/j.febslet.2008.03.028 
Hückelhoven, R. (2004). BAX Inhibitor-1, an ancient cell death suppressor in animals and plants 

with prokaryotic relatives. Apoptosis, 9(3), 299-307.  
Ito, J., & Fukuda, H. (2002). ZEN1 is a key enzyme in the degradation of nuclear DNA during 

programmed cell death of tracheary elements. Plant Cell, 14(12), 3201-3211.  
Jablonska, J., Matelska, D., Steczkiewicz, K., & Ginalski, K. (2017). Systematic classification of the 

His-Me finger superfamily. Nucleic Acids Res, 45(20), 11479-11494. 
doi:10.1093/nar/gkx924 

Jacobs, S., Zechmann, B., Molitor, A., Trujillo, M., Petutschnig, E., Lipka, V., . . . Schafer, P. (2011). 
Broad-spectrum suppression of innate immunity is required for colonization of 
Arabidopsis roots by the fungus Piriformospora indica. Plant Physiol, 156(2), 726-740. 
doi:10.1104/pp.111.176446 

James, R., Penfold, C. N., Moore, G. R., & Kleanthous, C. (2002). Killing of E coli cells by E group 
nuclease colicins. Biochimie, 84(5-6), 381-389.  

Joint Genome Institute (JGI) Retrieved from http://jgi.doe.gov/fungi, 20.08.2018 
Jones, J. D., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323-329. 

doi:10.1038/nature05286 
Jung, S. C., Martinez-Medina, A., Lopez-Raez, J. A., & Pozo, M. J. (2012). Mycorrhiza-induced 

resistance and priming of plant defenses. J Chem Ecol, 38(6), 651-664. 
doi:10.1007/s10886-012-0134-6 

Kabbage, M., Kessens, R., Bartholomay, L. C., & Williams, B. (2017). The Life and Death of a Plant 
Cell. Annu Rev Plant Biol, 68, 375-404. doi:10.1146/annurev-arplant-043015-111655 

Kabbage, M., Williams, B., & Dickman, M. B. (2013). Cell death control: the interplay of apoptosis 
and autophagy in the pathogenicity of Sclerotinia sclerotiorum. Plos Pathogens, 9(4), 
e1003287. doi:10.1371/journal.ppat.1003287 

Kamper, J. (2004). A PCR-based system for highly efficient generation of gene replacement 
mutants in Ustilago maydis. Mol Genet Genomics, 271(1), 103-110. doi:10.1007/s00438-
003-0962-8 

Kämper, J., Kahmann, R., Bolker, M., Ma, L. J., Brefort, T., Saville, B. J., . . . Birren, B. W. (2006). 
Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. 
Nature, 444(7115), 97-101. doi:10.1038/nature05248 

Kettles, G. J., Bayon, C., Sparks, C. A., Canning, G., Kanyuka, K., & Rudd, J. J. (2018). 
Characterization of an antimicrobial and phytotoxic ribonuclease secreted by the fungal 
wheat pathogen Zymoseptoria tritici. New Phytologist, 217(1), 320-331. 
doi:10.1111/nph.14786 

Kikuchi, M., Kitamoto, N., & Shishido, K. (2004). Secretory production of Aspergillus oryzae 
xylanase XynF1, xynF1 cDNA product, in the basidiomycete Coprinus cinereus. Appl 

Microbiol Biotechnol, 63(6), 728-733. doi:10.1007/s00253-003-1436-y 
Kilaru, S., Hoegger, P. J., Majcherczyk, A., Burns, C., Shishido, K., Bailey, A., . . . Kues, U. (2006). 

Expression of laccase gene lcc1 in Coprinopsis cinerea under control of various 
basidiomycetous promoters. Appl Microbiol Biotechnol, 71(2), 200-210. 
doi:10.1007/s00253-005-0128-1 

Kim, K. S., Min, J. Y., & Dickman, M. B. (2008). Oxalic acid is an elicitor of plant programmed cell 
death during Sclerotinia sclerotiorum disease development. Mol Plant Microbe Interact, 

21(5), 605-612. doi:10.1094/MPMI-21-5-0605 



  References 

_____________________________________________________________________________________ 

   112 

Kimple, M. E., Brill, A. L., & Pasker, R. L. (2013). Overview of affinity tags for protein purification. 
Curr Protoc Protein Sci, 73, Unit 9 9. doi:10.1002/0471140864.ps0909s73 

Kloppholz, S., Kuhn, H., & Requena, N. (2011). A secreted fungal effector of Glomus intraradices 
promotes symbiotic biotrophy. Curr Biol, 21(14), 1204-1209. 
doi:10.1016/j.cub.2011.06.044 

Kohler, A., Kuo, A., Nagy, L. G., Morin, E., Barry, K. W., Buscot, F., . . . Martin, F. (2015). 
Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in 
mycorrhizal mutualists. Nat Genet, 47(4), 410-415. doi:10.1038/ng.3223 

Krappmann, S., Sasse, C., & Braus, G. H. (2006). Gene targeting in Aspergillus fumigatus by 
homologous recombination is facilitated in a nonhomologous end- joining-deficient 
genetic background. Eukaryot Cell, 5(1), 212-215. doi:10.1128/EC.5.1.212-215.2006 

Kumar, M., Yadav, V., Kumar, H., Sharma, R., Singh, A., Tuteja, N., & Johri, A. K. (2011). 
Piriformospora indica enhances plant growth by transferring phosphate. Plant Signal 

Behav, 6(5), 723-725.  
Lahrmann, U., Ding, Y., Banhara, A., Rath, M., Hajirezaei, M. R., Dohlemann, S., . . . Zuccaro, A. 

(2013). Host-related metabolic cues affect colonization strategies of a root endophyte. 
Proceedings of the National Academy of Sciences of the United States of America, 

110(34), 13965-13970. doi:DOI 10.1073/pnas.1301653110 
Lahrmann, U., Strehmel, N., Langen, G., Frerigmann, H., Leson, L., Ding, Y., . . . Zuccaro, A. (2015). 

Mutualistic root endophytism is not associated with the reduction of saprotrophic traits 
and requires a noncompromised plant innate immunity. New Phytologist. 
doi:10.1111/nph.13411 

Lahrmann, U., & Zuccaro, A. (2012). Opprimo ergo sum-Evasion and Suppression in the Root 
Endophytic Fungus Piriformospora indica. Molecular Plant-Microbe Interactions, 25(6), 
727-737. doi:Doi 10.1094/Mpmi-11-11-0291 

Latef, A. A. H. A., Hashem, A., Rasool, S., Abd_Allah, E. F., Alqarawi, A. A., Egamberdieva, D., . . . 
Ahmad, P. (2016). Arbuscular mycorrhizal symbiosis and abiotic stress in plants: A 
review. Journal of Plant Biology, 59(5), 407-426. doi:10.1007/s12374-016-0237-7 

Leary, A. Y., Sanguankiattichai, N., Duggan, C., Tumtas, Y., Pandey, P., Segretin, M. E., . . . Bozkurt, 
T. O. (2017). Modulation of plant autophagy during pathogen attack. J Exp Bot. 
doi:10.1093/jxb/erx425 

Letunic, I., & Bork, P. (2018). 20 years of the SMART protein domain annotation resource. Nucleic 

Acids Res, 46(D1), D493-D496. doi:10.1093/nar/gkx922 
Li, L. Y., Luo, X., & Wang, X. (2001). Endonuclease G is an apoptotic DNase when released from 

mitochondria. Nature, 412(6842), 95-99. doi:10.1038/35083620 
Liljeroth, E., & Bryngelsson, T. (2001). DNA fragmentation in cereal roots indicative of 

programmed root cortical cell death. Physiol Plant, 111(3), 365-372.  
Liu, C., Chin, J. X., & Lee, D.-Y. (2015). SynLinker: an integrated system for designing linkers and 

synthetic fusion proteins. Bioinformatics, 31(22), 3700-3702. 
doi:10.1093/bioinformatics/btv447 

Liu, X., Zou, H., Slaughter, C., & Wang, X. (1997). DFF, a heterodimeric protein that functions 
downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell, 89(2), 
175-184.  

Liu, Y., Schiff, M., Czymmek, K., Talloczy, Z., Levine, B., & Dinesh-Kumar, S. P. (2005). Autophagy 
regulates programmed cell death during the plant innate immune response. Cell, 121(4), 
567-577. doi:10.1016/j.cell.2005.03.007 

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time 
quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4), 402-408. 
doi:10.1006/meth.2001.1262 

Lo Presti, L., Lanver, D., Schweizer, G., Tanaka, S., Liang, L., Tollot, M., . . . Kahmann, R. (2015). 
Fungal effectors and plant susceptibility. Annu Rev Plant Biol, 66, 513-545. 
doi:10.1146/annurev-arplant-043014-114623 



  References 

_____________________________________________________________________________________ 

   113 

Luo, H., Laluk, K., Lai, Z., Veronese, P., Song, F., & Mengiste, T. (2010). The Arabidopsis Botrytis 
Susceptible1 Interactor defines a subclass of RING E3 ligases that regulate pathogen and 
stress responses. Plant Physiol, 154(4), 1766-1782. doi:10.1104/pp.110.163915 

Ma, L. S., Hachani, A., Lin, J. S., Filloux, A., & Lai, E. M. (2014). Agrobacterium tumefaciens 
deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial 
competition in planta. Cell Host Microbe, 16(1), 94-104. 
doi:10.1016/j.chom.2014.06.002 

Marquès-Bueno, M. d. M., Morao, A. K., Cayrel, A., Platre, M. P., Barberon, M., Caillieux, E., . . . 
Vert, G. (2016). A versatile Multisite Gateway-compatible promoter and transgenic line 
collection for cell type-specific functional genomics in Arabidopsis. Plant J, 85(2), 320-
333. doi:10.1111/tpj.13099 

Martin, B. D., & Schwab, E. (2013). Current Usage of Symbiosis and Associated Terminology. 
International Journal of Biology, 5(1).  

Mate, D. M., & Alcalde, M. (2017). Laccase: a multi-purpose biocatalyst at the forefront of 
biotechnology. Microb Biotechnol, 10(6), 1457-1467. doi:10.1111/1751-7915.12422 

Mate, M. J., & Kleanthous, C. (2004). Structure-based analysis of the metal-dependent 
mechanism of H-N-H endonucleases. J Biol Chem, 279(33), 34763-34769. 
doi:10.1074/jbc.M403719200 

Mazzoleni, S., Bonanomi, G., Incerti, G., Chiusano, M. L., Termolino, P., Mingo, A., . . . Lanzotti, 
V. (2015a). Inhibitory and toxic effects of extracellular self-DNA in litter: a mechanism 
for negative plant-soil feedbacks? New Phytologist, 205(3), 1195-1210. 
doi:10.1111/nph.13121 

Mazzoleni, S., Carteni, F., Bonanomi, G., Senatore, M., Termolino, P., Giannino, F., . . . Chiusano, 
M. L. (2015b). Inhibitory effects of extracellular self-DNA: a general biological process? 
New Phytologist, 206(1), 127-132. doi:10.1111/nph.13306 

Meiss, G., Franke, I., Gimadutdinow, O., Urbanke, C., & Pingoud, A. (1998). Biochemical 
characterization of Anabaena sp. strain PCC 7120 non-specific nuclease NucA and its 
inhibitor NuiA. European Journal of Biochemistry, 251(3), 924-934. 
doi:doi:10.1046/j.1432-1327.1998.2510924.x 

Meng, L., Yan, J., Xie, B., Li, Y., Chen, B., Liu, S., . . . Jiang, Y. (2013). Genes encoding FAD-binding 
proteins in Volvariella volvacea exhibit differential expression in homokaryons and 
heterokaryons. Microbiol Res, 168(8), 533-546. doi:10.1016/j.micres.2013.02.009 

Molitor, A., Zajic, D., Voll, L. M., Pons, K. H. J., Samans, B., Kogel, K. H., & Waller, F. (2011). Barley 
leaf transcriptome and metabolite analysis reveals new aspects of compatibility and 
Piriformospora indica-mediated systemic induced resistance to powdery mildew. Mol 

Plant Microbe Interact, 24(12), 1427-1439. doi:10.1094/MPMI-06-11-0177 
Mulcahy, H., Charron-Mazenod, L., & Lewenza, S. (2010). Pseudomonas aeruginosa produces an 

extracellular deoxyribonuclease that is required for utilization of DNA as a nutrient 
source. Environ Microbiol, 12(6), 1621-1629. doi:doi:10.1111/j.1462-2920.2010.02208.x 

Nautiyal, C. S., Chauhan, P. S., DasGupta, S. M., Seem, K., Varma, A., & Staddon, W. J. (2010). 
Tripartite interactions among Paenibacillus lentimorbus NRRL B-30488, Piriformospora 
indica DSM 11827, and Cicer arietinum L. World Journal of Microbiology and 

Biotechnology, 26(8), 1393-1399. doi:10.1007/s11274-010-0312-z 
Nazrul, M. I., & YinBing, B. (2011). Differentiation of homokaryons and heterokaryons of 

Agaricus bisporus with inter-simple sequence repeat markers. Microbiol Res, 166(3), 
226-236. doi:10.1016/j.micres.2010.03.001 

Nevalainen, H., & Peterson, R. (2014). Making recombinant proteins in filamentous fungi- are 
we expecting too much? Front Microbiol, 5, 75. doi:10.3389/fmicb.2014.00075 

Ninomiya, Y., Suzuki, K., Ishii, C., & Inoue, H. (2004). Highly efficient gene replacements in 
Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci U S A, 

101(33), 12248-12253. doi:10.1073/pnas.0402780101 



  References 

_____________________________________________________________________________________ 

   114 

Nizam, S., Qiang, X., Wawra, S., Nostadt, R., Getzke, F., Schwanke, F., . . . Zuccaro, A. (2018). 
Effector-Mediated Suppression of extracellular ATP-Triggered Immunity by the Root 
Endophyte Serendipita indica. EMBO J, submitted.  

Nongbri, P. L., Johnson, J. M., Sherameti, I., Glawischnig, E., Halkier, B. A., & Oelmuller, R. (2012). 
Indole-3-acetaldoxime-derived compounds restrict root colonization in the beneficial 
interaction between Arabidopsis roots and the endophyte Piriformospora indica. Mol 

Plant Microbe Interact, 25(9), 1186-1197. doi:10.1094/MPMI-03-12-0071-R 
Oberwinkler, F., Riess, K., Bauer, R., Selosse, M.-A., Weiß, M., Garnica, S., & Zuccaro, A. (2013). 

Enigmatic Sebacinales. Mycological Progress, 12(1), 1-27. doi:10.1007/s11557-012-
0880-4 

Okafor, C. D., Lanier, K. A., Petrov, A. S., Athavale, S. S., Bowman, J. C., Hud, N. V., & Williams, L. 
D. (2017). Iron mediates catalysis of nucleic acid processing enzymes: support for Fe(II) 
as a cofactor before the great oxidation event. Nucleic Acids Res, 45(7), 3634-3642. 
doi:10.1093/nar/gkx171 

Parniske, M. (2008). Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev 

Microbiol, 6(10), 763-775. doi:10.1038/nrmicro1987 
Paungfoo-Lonhienne, C., Lonhienne, T. G., Mudge, S. R., Schenk, P. M., Christie, M., Carroll, B. J., 

& Schmidt, S. (2010). DNA is taken up by root hairs and pollen, and stimulates root and 
pollen tube growth. Plant Physiol, 153(2), 799-805. doi:10.1104/pp.110.154963 

Peškan-Berghöfer, T., Shahollari, B., Pham Huong, G., Hehl, S., Markert, C., Blanke, V., . . . 
Oelmüller, R. (2004). Association ofPiriformospora indicawithArabidopsis thalianaroots 
represents a novel system to study beneficial plant–microbe interactions and involves 
early plant protein modifications in the endoplasmic reticulum and at the plasma 
membrane. Physiologia Plantarum, 122(4), 465-477. doi:10.1111/j.1399-
3054.2004.00424.x 

Petersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: discriminating signal 
peptides from transmembrane regions. Nat Methods, 8(10), 785-786. 
doi:10.1038/nmeth.1701 

Pinchuk, G. E., Ammons, C., Culley, D. E., Li, S. M., McLean, J. S., Romine, M. F., . . . Beliaev, A. S. 
(2008). Utilization of DNA as a sole source of phosphorus, carbon, and energy by 
Shewanella spp.: ecological and physiological implications for dissimilatory metal 
reduction. Appl Environ Microbiol, 74(4), 1198-1208. doi:10.1128/AEM.02026-07 

Plancot, B., Santaella, C., Jaber, R., Kiefer-Meyer, M. C., Follet-Gueye, M. L., Leprince, J., . . . Vicre-
Gibouin, M. (2013). Deciphering the responses of root border-like cells of Arabidopsis 
and flax to pathogen-derived elicitors. Plant Physiol, 163(4), 1584-1597. 
doi:10.1104/pp.113.222356 

Plett, J. M., Kemppainen, M., Kale, S. D., Kohler, A., Legue, V., Brun, A., . . . Martin, F. (2011). A 
secreted effector protein of Laccaria bicolor is required for symbiosis development. Curr 

Biol, 21(14), 1197-1203. doi:10.1016/j.cub.2011.05.033 
Plett, J. M., & Martin, F. (2015). Reconsidering mutualistic plant-fungal interactions through the 

lens of effector biology. Current Opinion in Plant Biology, 26, 45-50. 
doi:10.1016/j.pbi.2015.06.001 

Plett, J. M., & Martin, F. M. (2018). Know your enemy, embrace your friend: using omics to 
understand how plants respond differently to pathogenic and mutualistic 
microorganisms. Plant J, 93(4), 729-746. doi:10.1111/tpj.13802 

Pommer, A. J., Cal, S., Keeble, A. H., Walker, D., Evans, S. J., Kuhlmann, U. C., . . . Kleanthous, C. 
(2001). Mechanism and cleavage specificity of the H-N-H endonuclease colicin E9. J Mol 

Biol, 314(4), 735-749. doi:10.1006/jmbi.2001.5189 
Qiang, X., Weiss, M., Kogel, K. H., & Schafer, P. (2012a). Piriformospora indica-a mutualistic 

basidiomycete with an exceptionally large plant host range. Molecular Plant Pathology, 

13(5), 508-518. doi:10.1111/j.1364-3703.2011.00764.x 
Qiang, X., Zechmann, B., Reitz, M. U., Kogel, K. H., & Schafer, P. (2012b). The mutualistic fungus 

Piriformospora indica colonizes Arabidopsis roots by inducing an endoplasmic reticulum 



  References 

_____________________________________________________________________________________ 

   115 

stress-triggered caspase-dependent cell death. Plant Cell, 24(2), 794-809. 
doi:10.1105/tpc.111.093260 

Rafiqi, M., Ellis, J. G., Ludowici, V. A., Hardham, A. R., & Dodds, P. N. (2012). Challenges and 
progress towards understanding the role of effectors in plant-fungal interactions. 
Current Opinion in Plant Biology, 15(4), 477-482. doi:10.1016/j.pbi.2012.05.003 

Rai, M., Acharya, D., Singh, A., & Varma, A. (2001). Positive growth responses of the medicinal 
plants Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica 
in a field trial. Mycorrhiza, 11(3), 123-128. doi:10.1007/s005720100115 

Ramirez-Garces, D., Camborde, L., Pel, M. J., Jauneau, A., Martinez, Y., Neant, I., . . . Gaulin, E. 
(2015). CRN13 candidate effectors from plant and animal eukaryotic pathogens are 
DNA-binding proteins which trigger host DNA damage response. New Phytologist. 
doi:10.1111/nph.13774 

Rangarajan, E. S., & Shankar, V. (2001). Sugar non-specific endonucleases. FEMS Microbiol Rev, 

25(5), 583-613.  
RCoreTeam. (2017). R: A Language and Environment for Statistical Computing. R Foundation for 

Statistical Computing.  
Record, E., Punt, P. J., Chamkha, M., Labat, M., van Den Hondel, C. A., & Asther, M. (2002). 

Expression of the Pycnoporus cinnabarinus laccase gene in Aspergillus niger and 
characterization of the recombinant enzyme. Eur J Biochem, 269(2), 602-609.  

Reitz, M. U., Pai, S., Imani, J., & Schafer, P. (2013). New insights into the subcellular localization 
of Tubby-like proteins and their participation in the Arabidopsis-Piriformospora indica 
interaction. Plant Signal Behav, 8(8). doi:10.4161/psb.25198 

Rodrigues, M. L., Nosanchuk, J. D., Schrank, A., Vainstein, M. H., Casadevall, A., & Nimrichter, L. 
(2011). Vesicular transport systems in fungi. Future Microbiol, 6(11), 1371-1381. 
doi:10.2217/fmb.11.112 

Rövenich, H., Boshoven, J. C., & Thomma, B. P. (2014). Filamentous pathogen effector functions: 
of pathogens, hosts and microbiomes. Current Opinion in Plant Biology, 20, 96-103. 
doi:10.1016/j.pbi.2014.05.001 

Sacci, J. B., Jr., Campbell, T. A., & Gottlieb, M. (1990). Leishmania donovani: regulated changes 
in the level of expression of the surface 3'-nucleotidase/nuclease. Exp Parasitol, 71(2), 
158-168.  

Saddique, M. A. B., Ali, Z., Khan, A. S., Rana, I. A., & Shamsi, I. H. (2018). Inoculation with the 
endophyte Piriformospora indica significantly affects mechanisms involved in osmotic 
stress in rice. Rice (N Y), 11(1), 34. doi:10.1186/s12284-018-0226-1 

Saitoh, H., Fujisawa, S., Mitsuoka, C., Ito, A., Hirabuchi, A., Ikeda, K., . . . Terauchi, R. (2012). 
Large-scale gene disruption in Magnaporthe oryzae identifies MC69, a secreted protein 
required for infection by monocot and dicot fungal pathogens. Plos Pathogens, 8(5), 
e1002711. doi:10.1371/journal.ppat.1002711 

Sarkari, P., Reindl, M., Stock, J., Muller, O., Kahmann, R., Feldbrugge, M., & Schipper, K. (2014). 
Improved expression of single-chain antibodies in Ustilago maydis. J Biotechnol, 191, 
165-175. doi:10.1016/j.jbiotec.2014.06.028 

Schafer, P., Pfiffi, S., Voll, L. M., Zajic, D., Chandler, P. M., Waller, F., . . . Kogel, K. H. (2009). 
Manipulation of plant innate immunity and gibberellin as factor of compatibility in the 
mutualistic association of barley roots with Piriformospora indica. Plant J, 59(3), 461-
474. doi:10.1111/j.1365-313X.2009.03887.x 

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., . . . Cardona, A. 
(2012). Fiji: an open-source platform for biological-image analysis. Nat Methods, 9(7), 
676-682. doi:10.1038/nmeth.2019 

Schmidt, F. R. (2004). Recombinant expression systems in the pharmaceutical industry. Appl 

Microbiol Biotechnol, 65(4), 363-372. doi:10.1007/s00253-004-1656-9 
Schuster, M., Schweizer, G., & Kahmann, R. (2018). Comparative analyses of secreted proteins 

in plant pathogenic smut fungi and related basidiomycetes. Fungal Genetics and 

Biology, 112, 21-30. doi:10.1016/j.fgb.2016.12.003 



  References 

_____________________________________________________________________________________ 

   116 

Selin, C., de Kievit, T. R., Belmonte, M. F., & Fernando, W. G. (2016). Elucidating the Role of 
Effectors in Plant-Fungal Interactions: Progress and Challenges. Front Microbiol, 7, 600. 
doi:10.3389/fmicb.2016.00600 

Serfling, A., Wirsel, S. G., Lind, V., & Deising, H. B. (2007). Performance of the Biocontrol Fungus 
Piriformospora indica on Wheat Under Greenhouse and Field Conditions. 
Phytopathology, 97(4), 523-531. doi:10.1094/PHYTO-97-4-0523 

Shahollari, B., Varma, A., & Oelmuller, R. (2005). Expression of a receptor kinase in Arabidopsis 
roots is stimulated by the basidiomycete Piriformospora indica and the protein 
accumulates in Triton X-100 insoluble plasma membrane microdomains. J Plant Physiol, 

162(8), 945-958. doi:10.1016/j.jplph.2004.08.012 
Sherameti, I., Shahollari, B., Venus, Y., Altschmied, L., Varma, A., & Oelmuller, R. (2005). The 

endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase 
and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis 
roots through a homeodomain transcription factor that binds to a conserved motif in 
their promoters. J Biol Chem, 280(28), 26241-26247. doi:10.1074/jbc.M500447200 

Sherameti, I., Tripathi, S., Varma, A., & Oelmuller, R. (2008). The root-colonizing endophyte 
Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the 
expression of drought stress-related genes in leaves. Mol Plant Microbe Interact, 21(6), 
799-807. doi:10.1094/MPMI-21-6-0799 

Stock, J., Sarkari, P., Kreibich, S., Brefort, T., Feldbrugge, M., & Schipper, K. (2012). Applying 
unconventional secretion of the endochitinase Cts1 to export heterologous proteins in 
Ustilago maydis. J Biotechnol, 161(2), 80-91. doi:10.1016/j.jbiotec.2012.03.004 

Stotz, H. U., Mitrousia, G. K., de Wit, P. J., & Fitt, B. D. (2014). Effector-triggered defence against 
apoplastic fungal pathogens. Trends Plant Sci, 19(8), 491-500. 
doi:10.1016/j.tplants.2014.04.009 

Sumby, P., Barbian, K. D., Gardner, D. J., Whitney, A. R., Welty, D. M., Long, R. D., . . . Musser, J. 
M. (2005). Extracellular deoxyribonuclease made by group A Streptococcus assists 
pathogenesis by enhancing evasion of the innate immune response. Proc Natl Acad Sci 

U S A, 102(5), 1679-1684. doi:10.1073/pnas.0406641102 
Sun, C., Shao, Y., Vahabi, K., Lu, J., Bhattacharya, S., Dong, S., . . . Oelmuller, R. (2014). The 

beneficial fungus Piriformospora indica protects Arabidopsis from Verticillium dahliae 
infection by downregulation plant defense responses. BMC Plant Biol, 14, 268. 
doi:10.1186/s12870-014-0268-5 

Suzuki, T., Dohra, H., Omae, S., Takeshima, Y., Choi, J. H., Hirai, H., & Kawagishi, H. (2014). 
Heterologous expression of a lectin from Pleurocybella porrigens (PPL) in 
Phanerochaete sordida YK-624. J Microbiol Methods, 100, 70-76. 
doi:10.1016/j.mimet.2014.02.016 

Sygmund, C., Gutmann, A., Krondorfer, I., Kujawa, M., Glieder, A., Pscheidt, B., . . . Kittl, R. (2012). 
Simple and efficient expression of Agaricus meleagris pyranose dehydrogenase in Pichia 
pastoris. Appl Microbiol Biotechnol, 94(3), 695-704. doi:10.1007/s00253-011-3667-7 

Terfruchte, M., Reindl, M., Jankowski, S., Sarkari, P., Feldbrugge, M., & Schipper, K. (2017). 
Applying Unconventional Secretion in Ustilago maydis for the Export of Functional 
Nanobodies. Int J Mol Sci, 18(5). doi:10.3390/ijms18050937 

Thammavongsa, V., Missiakas, D. M., & Schneewind, O. (2013). Staphylococcus aureus degrades 
neutrophil extracellular traps to promote immune cell death. Science, 342(6160), 863-
866. doi:10.1126/science.1242255 

Thammavongsa, V., Schneewind, O., & Missiakas, D. M. (2011). Enzymatic properties of 
Staphylococcus aureus adenosine synthase (AdsA). BMC Biochem, 12, 56. 
doi:10.1186/1471-2091-12-56 

Toruno, T. Y., Stergiopoulos, I., & Coaker, G. (2016). Plant-Pathogen Effectors: Cellular Probes 
Interfering with Plant Defenses in Spatial and Temporal Manners. Annual Review of 

Phytopathology, 54, 419-441. doi:10.1146/annurev-phyto-080615-100204 



  References 

_____________________________________________________________________________________ 

   117 

Tran, T. M., MacIntyre, A., Hawes, M., & Allen, C. (2016). Escaping Underground Nets: 
Extracellular DNases Degrade Plant Extracellular Traps and Contribute to Virulence of 
the Plant Pathogenic Bacterium Ralstonia solanacearum. Plos Pathogens, 12(6), 
e1005686. doi:10.1371/journal.ppat.1005686 

Tsuzuki, S., Handa, Y., Takeda, N., & Kawaguchi, M. (2016). Strigolactone-Induced Putative 
Secreted Protein 1 Is Required for the Establishment of Symbiosis by the Arbuscular 
Mycorrhizal Fungus Rhizophagus irregularis. Mol Plant Microbe Interact, 29(4), 277-286. 
doi:10.1094/MPMI-10-15-0234-R 

Urban, C. F., Reichard, U., Brinkmann, V., & Zychlinsky, A. (2006). Neutrophil extracellular traps 
capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol, 8(4), 668-676. 
doi:10.1111/j.1462-5822.2005.00659.x 

Üstün, S., Hafren, A., & Hofius, D. (2017). Autophagy as a mediator of life and death in plants. 
Current Opinion in Plant Biology, 40, 122-130. doi:10.1016/j.pbi.2017.08.011 

Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A., & Dufresne, A. (2015). The 
importance of the microbiome of the plant holobiont. New Phytologist, 206(4), 1196-
1206. doi:10.1111/nph.13312 

Varma, A., Savita, V., Sudha, Sahay, N., Butehorn, B., & Franken, P. (1999). Piriformospora indica, 
a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol, 65(6), 
2741-2744.  

Vassilev, N., Eichler-Lobermann, B., Flor-Peregrin, E., Martos, V., Reyes, A., & Vassileva, M. 
(2017). Production of a potential liquid plant bio-stimulant by immobilized 
Piriformospora indica in repeated-batch fermentation process. AMB Express, 7(1), 106. 
doi:10.1186/s13568-017-0408-z 

Verma, S., Varma, A., Rexer, K.-H., Hassel, A., Kost, G., Sarbhoy, A., . . . Franken, P. (1998). 
Piriformospora indica, gen. et sp. nov., a New Root-Colonizing Fungus. Mycologia, 90(5), 
896-903. doi:10.2307/3761331 

Vicre, M., Santaella, C., Blanchet, S., Gateau, A., & Driouich, A. (2005). Root border-like cells of 
Arabidopsis. Microscopical characterization and role in the interaction with 
rhizobacteria. Plant Physiol, 138(2), 998-1008. doi:10.1104/pp.104.051813 

Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., . . . Kogel, K. H. (2005). 
The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, 
disease resistance, and higher yield. Proc Natl Acad Sci U S A, 102(38), 13386-13391. 
doi:10.1073/pnas.0504423102 

Wang, S., Boevink, P. C., Welsh, L., Zhang, R., Whisson, S. C., & Birch, P. R. J. (2017). Delivery of 
cytoplasmic and apoplastic effectors from Phytophthora infestans haustoria by distinct 
secretion pathways. New Phytologist, 216(1), 205-215. doi:10.1111/nph.14696 

Warcup, J. (1988). Mycorrhizal associations of isolates of Sebacina vermifera. New Phytologist, 

110, 27-231.  
Ward, O. P. (2012). Production of recombinant proteins by filamentous fungi. Biotechnol Adv, 

30(5), 1119-1139. doi:10.1016/j.biotechadv.2011.09.012 
Waugh, D. S. (2011). An overview of enzymatic reagents for the removal of affinity tags. Protein 

Expr Purif, 80(2), 283-293. doi:10.1016/j.pep.2011.08.005 
Wawra, S., Fesel, P., Widmer, H., Timm, M., Seibel, J., Leson, L., . . . Zuccaro, A. (2016). The fungal-

specific beta-glucan-binding lectin FGB1 alters cell-wall composition and suppresses 
glucan-triggered immunity in plants. Nat Commun, 7, 13188. 
doi:10.1038/ncomms13188 

Weiss, M., Selosse, M. A., Rexer, K. H., Urban, A., & Oberwinkler, F. (2004). Sebacinales: a 
hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. 
Mycol Res, 108(Pt 9), 1003-1010.  

Weiss, M., Sykorova, Z., Garnica, S., Riess, K., Martos, F., Krause, C., . . . Redecker, D. (2011). 
Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes. PLoS 

One, 6(2), e16793. doi:10.1371/journal.pone.0016793 



  References 

_____________________________________________________________________________________ 

   118 

Weiss, M., Waller, F., Zuccaro, A., & Selosse, M. A. (2016). Sebacinales - one thousand and one 
interactions with land plants. New Phytologist, 211(1), 20-40. doi:10.1111/nph.13977 

Wen, F., VanEtten, H. D., Tsaprailis, G., & Hawes, M. C. (2007). Extracellular proteins in pea root 
tip and border cell exudates. Plant Physiol, 143(2), 773-783. doi:10.1104/pp.106.091637 

Wen, F., White, G. J., VanEtten, H. D., Xiong, Z., & Hawes, M. C. (2009). Extracellular DNA is 
required for root tip resistance to fungal infection. Plant Physiol, 151(2), 820-829. 
doi:10.1104/pp.109.142067 

Win, J., Chaparro-Garcia, A., Belhaj, K., Saunders, D. G., Yoshida, K., Dong, S., . . . Kamoun, S. 
(2012). Effector biology of plant-associated organisms: concepts and perspectives. Cold 

Spring Harb Symp Quant Biol, 77, 235-247. doi:10.1101/sqb.2012.77.015933 
Woo, E. J., Kim, Y. G., Kim, M. S., Han, W. D., Shin, S., Robinson, H., . . . Oh, B. H. (2004). Structural 

mechanism for inactivation and activation of CAD/DFF40 in the apoptotic pathway. Mol 

Cell, 14(4), 531-539.  
Yadav, V., Kumar, M., Deep, D. K., Kumar, H., Sharma, R., Tripathi, T., . . . Johri, A. K. (2010). A 

phosphate transporter from the root endophytic fungus Piriformospora indica plays a 
role in phosphate transport to the host plant. J Biol Chem, 285(34), 26532-26544. 
doi:10.1074/jbc.M110.111021 

Yeeles, J. T. P. (2009). An Iron-Sulfur Cluster Is Essential for the Binding of Broken DNA by. 
284(12), 7746-7755. doi:10.1074/jbc.M808526200 

Yu, X., Feng, B., He, P., & Shan, L. (2017). From Chaos to Harmony: Responses and Signaling upon 
Microbial Pattern Recognition. Annual Review of Phytopathology, 55, 109-137. 
doi:10.1146/annurev-phyto-080516-035649 

Zhang, F., Anasontzis, G. E., Labourel, A., Champion, C., Haon, M., Kemppainen, M., . . . Martin, 
F. (2018). The ectomycorrhizal basidiomycete Laccaria bicolor releases a secreted beta-
1,4 endoglucanase that plays a key role in symbiosis development. New Phytologist. 
doi:10.1111/nph.15113 

Zheng, L., Khemlani, A., Lorenz, N., Loh, J. M., Langley, R. J., & Proft, T. (2015). Streptococcal 5'-
Nucleotidase A (S5nA), a Novel Streptococcus pyogenes Virulence Factor That Facilitates 
Immune Evasion. J Biol Chem, 290(52), 31126-31137. doi:10.1074/jbc.M115.677443 

Zhou, H., Li, P., Wu, D., Ran, T., Wang, W., & Xu, D. (2015). EheA from Exiguobacterium sp. yc3 
is a novel thermostable DNase belonging to HNH endonuclease superfamily. FEMS 

Microbiol Lett, 362(24), fnv204. doi:10.1093/femsle/fnv204 
Zipfel, C., & Oldroyd, G. E. (2017). Plant signalling in symbiosis and immunity. Nature, 543(7645), 

328-336. doi:10.1038/nature22009 
Zuccaro, A., Basiewicz, M., Zurawska, M., Biedenkopf, D., & Kogel, K. H. (2009). Karyotype 

analysis, genome organization, and stable genetic transformation of the root colonizing 
fungus Piriformospora indica. Fungal Genetics and Biology, 46(8), 543-550. doi:DOI 
10.1016/j.fgb.2009.03.009 

Zuccaro, A., Lahrmann, U., Guldener, U., Langen, G., Pfiffi, S., Biedenkopf, D., . . . Kogel, K. H. 
(2011). Endophytic life strategies decoded by genome and transcriptome analyses of 
the mutualistic root symbiont Piriformospora indica. Plos Pathogens, 7(10), e1002290. 
doi:10.1371/journal.ppat.1002290 

 
  



  Acknowledgement 

_____________________________________________________________________________________ 

   119 

Acknowledgement 

I would like to greatly thank Prof. Dr. Alga Zuccaro for giving me the opportunity to write 

this thesis on this very interesting topic under her supervision. Thank you for your 

support, time and interest to always discuss my project.  

 

I would like to express my gratitude to Prof. Dr. Stanislav Kopriva for being a committee 

member and my supervisor in the CEPLAS graduate school. In addition, I would like to 

thank you for the cooperation in the nutrient uptake experiments.  

I am thankful to Prof. Dr. Jan Riemer not only for being member of my thesis committee 

but also for collaboration in size exclusion chromatography.  

A special thank is dedicated to Dr. Stephan Wawra for being a thesis committee 

member, the supervision, support and collaboration in the FGB1 project.  

I would like to thank Dr. Sabine Metzger for collaboration in LC-MS/MS.  

 

Many thanks to my students Theresa Schneider, Ling Dong and Sebastian Kloubert for 

generating data for my project.  

I want to especially thank Lisa Leson and Dr. Hanna Rövenich for contributing to my 

project. I would like to thank all other former and current group members for their 

support and lunch breaks: Dr. Philipp Fesel, Dr. Shadab Nizam, Dr. Gregor Langen, 

Margaret Kox, Debika Sarkar, Alan Wanke, Ganga Jena, Dr. Xiaoyu Qiang, Petra Dhein, 

Miki Feldmüller, Nyasha Charura, Bianca Griebel and Florian Wanke.  

 

I am grateful to Dr. Justine Groenewold from the CEPLAS Graduate School for her 

constant support and the CEPLAS members, especially the young researchers, for very 

constructive and encouraging scientific and non-scientific seminars, courses, retreats, 

excursions and symposia.  

 

I would like to thank for the friendships outside the lab here in Cologne and bringing me 

to the point to say, yes, I felt at home arriving in Cologne over the Hohenzollerbrücke 

and seeing the Dom.  

I would like to deeply thank my family and friends for all the support and love from afar.   



 

 _____________________________________________________________________________________ 

   120 

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die 

benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit − 

einschließlich Tabellen, Karten und Abbildungen −, die anderen Werken im Wortlaut 

oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich 

gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität 

zur Prüfung vorgelegen hat; dass sie − abgesehen von unten angegebenen 

Teilpublikationen − noch nicht veröffentlicht worden ist, sowie, dass ich eine solche 

Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde. Die 

Bestimmungen der Promotionsordnung sind mir bekannt. Die von mir vorgelegte 

Dissertation ist von Frau Prof. Dr. Alga Zuccaro betreut worden.  

 

Die folgenden Teilpublikationen liegen vor:  

 

Wawra, S., Fesel, P., Widmer, H., Timm, M., Seibel, J., Leson, L., Kesseler, L., Nostadt, R., 

Hilbert, M., Langen, G. & Zuccaro, A. (2016). The fungal-specific β-glucan- binding lectin 

FGB1 alters cell-wall composition and suppresses glucan-triggered immunity in plants. 

Nature Communications, 7, 13188 

 

Wawra, S., Fesel, P., Widmer, H., Neumann, U., Lahrmann, U. and Zuccaro, A. (2018). 

FGB1 and WSC3 are fungal β-glucan binding lectins with different functions. New 

Phytologist, submitted 

 

 

 

 

 

Ort, Datum    Unterschrift 

 

 

-------------------------------------  ------------------------------------------- 

 


