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Abstract 
 
Organisms need to constantly adapt their behavior to the changing environment as well as react 

towards changes in their internal state. The nervous system perceives and processes such stimuli 

and coordinates the corresponding reactions of the body. This system is based on regulated cell-

cell communication, utilizing a wide range of different chemical signaling molecules and 

receptors. If one wants to fully grasp how neural circuits process, modulate and relay incoming 

information, then the involved neuroactive substances, their cellular distribution, temporal and 

quantitative dynamics have to be analyzed on single cell resolution. Single cell mass 

spectrometry (SCMS) allows the interrogation of chemical profiles from individual cells, 

including neuroactive substances such as neuropeptides and biogenic amines. Matrix assisted 

laser desorption/ionization – time-of-flight mass spectrometry (MALDI-TOF MS) has 

established itself as a fast and reliable tool for the analysis of neuropeptides from single neurons 

of invertebrates and vertebrates alike. However, the detection of small signaling molecules, 

such as biogenic monoamines, by MALDI-TOF SCMS has been challenging. Biogenic 

monoamines play key roles in orchestrating and modulating neural circuits, therefore a 

MALDI-TOF SCMS based method for their detection and quantification is highly desirable. 

Additionally, biogenic monoamines can be co-localized with neuropeptides. Therefore the 

development of a MALDI-TOF SCMS based method capable of detecting both neuroactive 

substances would help to reveal such overlapping expression profiles. 

 

In the current thesis, I focused on the development of a MALDI-TOF SCMS based method that 

allows the detection and quantification of biogenic monoamines from single somata of insect 

neurons. The study focused on the insect octopaminergic/tyraminergic system, with an 

emphasis on octopamine (OA), which is considered to be homologous to the vertebrate 

noradrenalin/adrenalin system. By using chemical derivatization of amine moieties of OA and 

tyramine (TA) and an optimized sample preparation, I was able to lower the respective detection 

limits to single cell concentrations. Additionally, I could show that the chemical derivatization 

does not interfere with the detection of neuropeptides from the same sample, hence allowing 

the simultaneous detection of both substance classes. Further, I could show that absolute 

quantification of OA and TA is possible from single cell sample volumes using isotopically 

labeled synthetic standards. I used the developed protocol for the qualitative and quantitative 

analysis of OA/TA from genetically labeled and manually microdissected somata of 

interneurons from the fruit fly Drosophila melanogaster. Using the newly developed approach, 
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I analyzed intracellular OA/TA ratios, compared somatic OA titers between sexes and two 

different OAergic cell clusters and revealed that prolonged cooling of animals has an increasing 

effect on detectable OA titers in the analyzed neurons. 

Furthermore, I used the developed protocol to analyze changes in somatic OA titers of 

aggression modulating OAergic neurons from the gnathal ganglion in socially naive and 

experienced adult male D. melanogaster. I could show that the somatic OA titer increases in 

these neurons when flies had social contact with the same sex compared to naive flies, which 

is possibly mediated by an input from pheromone detecting gustatory receptor neurons. To my 

knowledge, this is the first study to report a quantified increase of a somatic biogenic 

monoamine titer detected directly from individual isolated neurons of intact insect brains 

between two behavioral states by mass spectrometric analysis. 

In a collaborative study, I employed the developed protocol to intracellular recorded descending 

dorsal unpaired median neurons from the Indian stick insect Carausius morosus and was able 

to confirm that these neurons contain OA and TA and thus could be OAergic. 

Finally, as a starting point in an effort to create a map of neuropeptidergic neurons and their 

repertoire of neuroactive substances in adult D. melanogaster, I was involved in the analysis of 

single genetically labeled neuropeptidergic neuron somata using MALDI-TOF SCMS. In 

summary, we could describe a total of 10 different cell types characterized by their expressed 

neuropeptides and their location in the CNS. Future studies will focus on analyzing these cell 

types towards potential co-localized aminergic transmitters using the developed protocol. 
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Zusammenfassung 
 

Organismen müssen ihr Verhalten ständig an die sich verändernde Umwelt anpassen sowie auf 

Veränderungen in ihrem physiologischen Zustand reagieren. Das Nervensystem nimmt solche 

Reize wahr, verarbeitet sie und koordiniert die entsprechenden Reaktionen des Körpers. Dieses 

System basiert auf einer geregelten Zell-Zell-Kommunikation, bei der eine Vielzahl 

verschiedener chemischer Signalmoleküle und Rezeptoren zum Einsatz kommen. Um zu 

verstehen, wie neuronale Schaltkreise eingehende Informationen verarbeiten, modulieren und 

weiterleiten, müssen die beteiligten neuroaktiven Substanzen auf zellulärer Ebene 

charakterisiert und ihre zeitliche und quantitative Dynamik auf Einzelzellnivaeu analysiert 

werden. Die Einzelzell-Massenspektrometrie (SCMS) ermöglicht die Analyse von chemischen 

Profilen einzelner Zellen, einschließlich neuroaktiver Substanzen wie z.B. Neuropeptide und 

biogene Monoamine. Die matrixgestützte Laser Desorption/Ionisation – Flugzeit 

Massenspektrometrie (matrix assisted laser desorption/ionization mass spectrometry; MALDI-

TOF MS) hat sich als schnelle und zuverlässige Methode zur Analyse von Neuropeptiden aus 

einzelnen Neuronen von Invertebraten und Vertebraten etabliert. Die Detektion von kleinen 

Signalmolekülen, wie z.B. biogenen Monoaminen, durch MALDI-TOF SCMS stellt jedoch bis 

heute eine analytische Herausforderung dar. Da biogene Monoamine eine Schlüsselrolle bei der 

Orchestrierung und Modulation neuronaler Schaltkreise haben, ist eine MALDI-TOF SCMS 

gestützte Methode für deren Nachweis und Quantifizierung äußerst erstrebenswert. Biogene 

Monoamine können zu dem mit Neuropeptiden kolokalisiert seien. Somit würde eine neu 

entwickelte durch MALDI-TOF SCMS gestützte Methode, mit der ein Nachweis beider 

neuroaktiven Substanzklassen aus einer Zellprobe möglich ist, es deutlich erleichtern 

entsprechend überlappende Expressionsmuster nachzuweisen. 

 

In der vorliegenden Arbeit konzentrierte ich mich auf die Entwicklung einer MALDI-TOF 

SCMS basierten Methode, die den Nachweis und die Quantifizierung von biogenen 

Monoaminen aus einzelnen Insektenneuronen ermöglicht. Die Studie konzentrierte sich auf das 

octopaminerge/tyraminerge System von Insekten, mit dem Schwerpunkt auf Octopamin (OA), 

das als homolog zum Noradrenalin/Adrenalin-System der Wirbeltiere gilt. Durch die chemische 

Derivatisierung der Aminogruppe von OA und Tyramin (TA) und eine optimierte 

Probenvorbereitung konnte ich die jeweiligen Nachweisgrenzen auf Einzelzellkonzentrationen 

senken. Zudem konnte ich zeigen, dass die chemische Derivatisierung den Nachweis von 

Neuropeptiden aus derselben Probe nicht stört und somit den gleichzeitigen Nachweis beider 
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Substanzklassen ermöglicht. Außerdem konnte ich zeigen, dass die Quantifizierung von OA 

und TA aus Einzelzellprobenvolumina mit isotopenmarkierten synthetischen Standards 

möglich ist. Ich entwickelte das Protokoll zur qualitativen und quantitativen Analyse von 

OA/TA mittels genetisch markierten und manuell mikrodissektierten Somata von 

Interneuronen der Taufliege Drosophila melanogaster. Mit dem neu entwickelten Ansatz 

untersuchte ich intrazelluläre OA/TA Verhältnisse, verglich somatische OA-Titer zwischen den 

Geschlechtern sowie zwei verschiedenen OAergen Zellclustern und zeigte, dass eine Kühlung 

der Tiere vor der Präparation zu einem Anstieg der nachweisbaren OA-Titer in den analysierten 

Neuronen führt. 

Darüber hinaus habe ich das entwickelte Protokoll verwendet, um Veränderungen in 

somatischen OA-Titern von aggressionsmodulierenden OAergen Neuronen aus dem gnathalen 

Ganglion in sozial naiven und erfahrenen erwachsenen männlichen D. melanogaster zu 

analysieren. Ich konnte zeigen, dass der somatische OA-Titer in diesen Neuronen zunimmt, 

wenn Fliegen sozialen Kontakt mit dem gleichen Geschlecht hatten, verglichen mit naiven 

Fliegen. Dies ist möglicherweise auf einen Input von gustatorische Rezeptorneuronen 

zurückführen welche Pheromone detektieren. Nach meiner Kenntnis ist dies die erste Studie, 

die einen quantifizierten Anstieg eines somatischen biogenen Monoamin-Titers zeigt, der direkt 

aus einzelnen isolierten Zellen eines intakten Insekten Gehirns zwischen zwei 

Verhaltenszuständen  mittels massenspektrometrischer Analyse nachgewiesen wurde. 

In einem Kooperationsprojekt untersuchte ich mit Hilfe des entwickelten Protokolls 

intrazellulär abgeleitete dorsal ungepaarte mediane Neurone der indischen Stabheuschrecke 

Carausius morosus in Bezug auf ihre aminerge Zusammensetzung. Ich konnte nachweisen, 

dass diese Neurone OA und TA enthalten und somit OAerg seien können. 

Als Ausgangspunkt für die Erstellung einer Karte neuropeptiderger Neurone und ihrer 

Repertoires an neuroaktiven Substanzen in adulten D. melanogaster, war ich an der Analyse 

einzelner genetisch markierte neuropeptiderge Neuronenzellkörper mittels MALDI-TOF 

SCMS beteiligt. Insgesamt konnten wir 10 verschiedene Zelltypen beschreiben, die sich durch 

ihre Neuropeptidzusammensetzung und ihre Lage im Gehirn auszeichnen. Zukünftige Studien 

werden sich darauf konzentrieren, diese Zelltypen mit Hilfe des entwickelten Protokolls zur 

biogenen Monoamincharakterisierung auf mögliche Kolokalisierungen aminerger Transmitter 

zu analysieren.  
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1,5-DAN   1,5-diaminonaphtalene  
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ACh    acetylcholine 
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CHCA    α–cyano-4-hydroxycinnamic acid 
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cAMP    3’,5’-cyclic adenosine monophosphate 
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Cha    choline acetyltransferase 

CID    collision-induced dissociation 

CNiFERs   cell-based neurotransmitter fluorescent engineered reporters 

CNS    central nervous system 

cVA    11-cis-vaccenyl acetate 

CPG    central pattern generator 

DA    dopamine 

DAG    diacylglycerol 

DESI    desorption electrospray ionization 

DPD    2,5-dimethyl-1H-pyrrole-3,4-dicarbaldehyde 

desDUM   descending dorsal unpaired median  

DHB    2,5-dihydroxybenzoic acid 

DIM    DIMMED (transcription factor) 

DMS    drosomyosuppressin 
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ECD    electrochemical detection 
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ER    endoplasmatic reticulum 
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FDA    US Food and Drug Administration 

FRET    fluorescence resonance energy transfer 

FSCV    fast-scan cyclic voltammetry 

GABA    γ-aminobutyric acid 

GFP    green fluorescent protein 
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GPCR    G-protein-coupled receptors 

GRASP   GFP reconstitution across synaptic partners 

GRN    gustatory receptor neuron 

HA    histamine 

HPLC    high performance liquid chromatography 

ICLI    inferior contralateral interneuron 

IP3    1,4,5-triphosphate 

IS    internal standard 

ISD    in-source decay 

LDCV    large dense core vesicle 

LEAP large, episodically-releasing, amidating peptide producing cells, 

that contain the transcription factor DIMMED 

LIF    laser-induced fluorescence detection 

LINF    laser-induced native fluorescence detection 

LOD    limit of detection 

LOQ    limit of quantification 

LLOQ    lower limit of quantification 

MALDI   matrix-assisted laser desorption/ionization 

MBON   mushroom body output neurons 

MEKC    micellar elektrokinetic capillary chromatography 
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MS    mass spectrometry 

MS²    tandem mass spectrometry 

MSI    mass spectrometry imaging 
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PVK    periviscerokinin 

rpm    revolutions per minute 

RSD    relative standard deviation 

SCMS    single cell mass spectrometry 

SIMS    secondary ion mass spectrometry 
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1. General Introduction 
 
Organisms need to constantly adapt their behavior to the changing environment as well as react 

towards changes in their internal state. The nervous system perceives internal and external 

stimuli, integrates this information in the context to the current state of the organism and 

generates an appropriate reaction of the body. Regulated cell-cell communication is the basis 

for such targeted transduction, integration and modulation of information in the nervous system. 

For cell-cell communication in the nervous system, neurons can convert their electrical activity 

into the release of neuroactive substances targeting neurons and/or other cell types. Target cells 

express receptors which bind neuroactive substances with high specificity and selectivity. 

When a receptor binds to its specific ligand, intracellular signal cascades are activated altering 

the physiology and “behavior” of the corresponding cell, for example by changing gene 

expression or activation of membranous ion channels. A plethora of different neuroactive 

substances have been identified from nervous systems of invertebrates and vertebrates, and it 

has been shown that the cellular expression patterns, receptors and corresponding functions of 

a single neuroactive substance can be conserved throughout different evolutionary lineages 

(Bräunig & Pflüger 2001; Roeder 2005; Nässel & Wegener 2011).  

 

In order to fully comprehend how the nervous system and underlying neural circuits shape and 

control the reactions of an organism, it is essential to analyze involved neuroactive substances, 

their cellular distribution, temporal and quantitative dynamics on a single cell resolution. 

However, neuroactive substances often show overlapping expression patterns in nervous 

system, e.g. biogenic monoamines and neuropeptides (Merighi 2011; Fricker 2012; Nässel 

2018), which makes it challenging to reveal the full signaling capabilities of a given neuron. 

Thus, methodological approaches that enable the simultaneous detection of multiple classes of 

substances in a single experiment are highly desirable. Ideally, such methods would be 

quantitative to allow the analysis of changing neuroactive substance concentration in a given 

cell in relation to other signaling molecules, drugs or different behavioral states of the analyzed 

organism. Mass spectrometry (MS) offers the possibility to simultaneously detect and quantify 

different substance classes from biological samples such as single cells. For example, matrix 

assisted laser desorption/ ionization – time-of-flight single cell mass spectrometry (MALDI-

TOF SCMS) is a widely used tool for the detection of neuropeptides from neuron somata of 

invertebrates and vertebrates alike (e.g. Li, Garden, et al. 2000; Neupert & Predel 2005; 

Rubakhin & Sweedler 2007; Neupert et al. 2007). However, the detection of potentially co-
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localized small neuroactive substances, like biogenic monoamines, has been challenging using 

this approach.  

 

The main focus of the current thesis was the development of a MALDI-TOF SCMS based 

strategy for the detection and quantification of biogenic monoamines from single insect neuron 

somata. The focus laid on the insect octopamine (OA)/tyramine (TA) system, with an emphasis 

on OA, which is considered to be homologous to the vertebrate noradrenalin/adrenalin system. 

Moreover, since biogenic monoamines can be co-localized with neuropeptides in neurons, the 

simultaneous detection of these substance classes was investigated. To set the context of my 

work, I want to introduce insect nervous systems, OA and TA, neuropeptides and mass 

spectrometry as an analytical method in more detail in the following sections.    

 
 
Insect nervous systems and their role in neuroscience  
 
Insect nervous systems are arranged in single units called ganglia organized in a metameric 

fashion, which is based on their segmental body plan. These ganglia can represent fusion 

products of so called neuromeres or represent a single neuromere. Neuromeres represent a 

segment specific part of the central nervous system (CNS) that contains the neural circuitry 

which processes sensory information and controls movement of segmental appendages and 

segmental muscles (Niven et al. 2008). Single neuromeres are linked by a pair of connectives, 

which are still present in fused ganglia as axonal tracts. The insect CNS is comprised of a brain 

(supraesophageal ganglion), the gnathal ganglion (GNG; old name subesophagial ganglion; Ito 

et al. 2014), and the ventral nerve cord (VNC). The brain is a fusion product of four pregnathal 

neuromeres, while the GNG represents a fusion product of the three gnathal neuromeres 

(Urbach & Technau 2003; Niven et al. 2008). The VNC consists of three thoracic ganglia, the 

pro-, meso- and metathoracic ganglion, connected to a varying number of abdominal ganglia. 

Ganglia in the VNC can be fused or remain free depending on the examined insect lineage, but 

in general represent a total of eleven neuromeres (Niven et al. 2008). Further, comparable to 

the vertebrate autonomic nervous system, a system of peripheral ganglia exists in insects, the 

stomatogastric nervous system. It is comprised of four main parts: the frontal ganglion, the 

hypocerebral ganglion and the paired/unpaired ingluvial and proventricular ganglia (Bilingsley 

& LeHane 1996; Hartenstein 1997).  
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Even though insect nervous systems are only comprised of a small number of neurons compared 

to mammal nervous systems, they produce a wide variety of complex behavior patterns such as 

mating, collision avoidance and spatial navigation as well as many properties of insect neurons 

show striking resemblance in their mammalian counterparts (Namiki et al. 2009). Moreover, 

extensive similarities of neuronal circuits underlying sensory systems, synaptic plasticity and 

neuromodulation between invertebrates and vertebrates suggest a deep homology between 

central parts of their distinct CNS (Strausfeld & Hirth 2013; Haberkern & Jayaraman 2016). 

The investigation of these “simple” nervous systems, therefore, facilitates our understanding of 

nervous systems in general on a broader scale (Namiki et al. 2009). Aside from these benefits, 

a multitude of practical advantages exist when working with insects and their nervous systems. 

Especially, their low cost mass rearing and short generation times facilitate fast repetition rates 

of experiments. Furthermore, the limited size and accessibility of insect nervous systems is 

highly beneficial for modern microscopy based methods, like immunohistochemistry or in vivo 

imaging, as well as electrophysiological applications. It is therefore not surprising that insects 

have established themselves as model organisms for the functional analysis of behavior and 

neuronal networks throughout the last century. 

 

Another more recent driving force has been the development of non-invasive genetic tools for 

the targeted expression of reporter and effector genes like the GAL4/UAS system (Jarman et 

al. 1993) or the LaxA-LexAop system (Lai & Lee 2006) and their ongoing extension in the 

small fruit fly D. melanogaster (Yoshihara & Ito 2012). The combination of these tools with 

the fully sequenced D. melanogaster genome (Adams et al. 2000), enables the targeted analysis 

of gene expression by genetic labeling, as well as the targeted interference of gene expression 

rates via methods such as RNA interference (Roignant et al. 2003). Moreover, the system allows 

the activation or silencing of single neurons by light (Lima & Miesenböck 2005), temperature 

(Kitamoto 2001; McGuire et al. 2003) or the expression of ion channels (Luan et al. 2006) for 

the analysis of neuronal network functions. Furthermore, the GAL4/UAS system has been 

transferred to another insect model the red flour beetle Tribolium castaneum (Schinko et al. 

2010), which will allow to use the depicted genetic tools in this insect species.  

 

Finally, large scale projects which aim to decipher a high number of various insect 

transcriptomes and genomes, like the 1kite project (www.1kite.org) or the i5k project 

(i5k.github.io), in combination with the newly discovered CRISPR/Cas gene editing method 

(Jinek et al., 2012; Gasiunas et al., 2012) will allow the transfer of the already developed genetic 
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tools to other insect species. In the current thesis, I used the GAL4/UAS system to label 

different subsets of neurons in adult D. melanogaster to allow their repeatable dissection and 

identification between different individual flies. 

 
 
Biogenic monoamines 
 
Biogenic monoamines are small biogenic neuroactive substances which have a single functional 

amine moiety. The group of biogenic monoamine transmitter includes: the imidazole amines 

(histamine [HA]), catecholamines (adrenaline [AD], noradrenaline [NAD], dopamine [DA]), 

indolamines (serotonin [5-HT]), tryptamines (tryptamine), phenethylamines (e.g.: TA, OA, 

synephrine) and thyronamines (3-Iodothyronamine). Biogenic monoamines are versatile in 

their mode of action and can function as neurotransmitters, neuromodulators and/or 

neurohormones. They are involved in the regulation of nearly all vital functions in vertebrates 

and invertebrates alike, such as cardiovascular control, movement, endocrine regulation, 

circadian rhythms, learning and memory (e.g. Nässel & Winther, 2010). 

  

All biogenic monoamines are synthesized from proteinogenic amino acids and their derivates, 

like tyrosine (Tyr), phenylalanine, tryptophan or histidine, via amino acid decarboxylases 

(Brady et al. 2012). They are synthesized in the cytosol of the neuron cell body as well as the 

nerve terminals, where they are stored and released from synaptic vesicles or large dense core 

vesicles (LDCV) by stimulus induced Ca2+ dependent exocytosis. Cytosolic biogenic 

monoamines are actively transported into small synaptic vesicles or LDCVs by vesicular H+ 

dependent monoamine transporters and can be co-localized with other neuroactive substances, 

like neuropeptides (Brady et al. 2012; Gallo et al. 2016). Nearly all biogenic monoamines are 

recognized by GPCR receptors, with the exception of 5-HT which binds to an ionotropic 

receptor (Wu et al. 2015). Secreted biogenic monoamines are inactivated either by degradation 

or reuptake. The primary mechanism for inactivation is cytosolic reuptake by specialized 

Na+/Cl- dependent plasma membrane transporters (e.g.: DA transporter; Giros & Caron 1993; 

Ueno & Kume 2014). Cytosolic catabolism of monoamine transmitters after reuptake is mainly 

mediated by monoamine oxidases (Westlund et al. 1985; Eisenhofer 2004; Yamamoto & 

Vernier 2011) whereas extra-neuronal inactivation is mediated by catechol-o-

methyltransferases (Eisenhofer 2004; Yamamoto & Vernier 2011). However, in invertebrates 

biogenic monoamine inactivation is enzymatically diverse and can also be mediated by N-
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acetylation, N-methylation, sulfation and other mechanisms (Sloley & Juorio 1995; Sloley 

2004; Sotnikova & Gainetdinov 2010).  

 

The analysis of the wide range involvement of biogenic monoamine signaling in complex 

behaviors and emotions led to the understanding that impairment of these systems can lead to 

severe disease and disorders such as depression, obsessive-compulsive disorder, neuropathic 

pain, and others (Pitman et al. 2011; Yousuf & Kerr 2016). Therefore, methods which allow us 

to foster our understanding of their cellular distribution, intracellular dynamics and effects on 

target cells are highly desirable. In this thesis I focused on two biogenic monoamines OA and 

TA in insect nervous systems, with an emphasis on OA. 

 

 

Figure 1.1 Synthesis pathway of OA. Tyrsoine is decarboxylated into TA, and TA is subsequently hydroxylated 
into OA. 

 

 
Octopamine 
 
Octopamine, or p-hydroxyethanolamine, was first discovered in the salivary glands of Octopus 

vulgaris (Erspamer & Boretti 1951). It is synthesized by hydroxylation of its precursor TA, via 

the tyramine-β-hydroxlase (Tβh) in invertebrates (Fig. 1.1). OA is the most abundant biogenic 

monoamine transmitter in invertebrates (Verlinden et al. 2010; Fang et al. 2011), however, in 

vertebrates it is considered a trace amine and only found in very small amounts (Berry 2004). 

While OA function in the CNS of invertebrates is a subject of numerous studies and serves as 

a perfect model to investigate general features of neuromodulation, only recently interest in 

trace amine function in vertebrate nervous systems has resparked due to the discovery of 

mammalian trace amine receptors (Borowsky et al. 2001; Lindemann et al. 2005; khan & nawaz 

2016). A growing body of evidence suggests an involvement of OAergic signaling in 

neurosynaptic transmission and seems to be connected to vertebrate neurological disorders like 

depression, migraine or Parkinson´s disease (khan & nawaz 2016).  The chemical structure of 

OA is analogous to the vertebrate NAD and the invertebrate OA/TA signaling system is often 
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seen as homologous to the vertebrate NAD/AD signaling system, due to similar functions in 

physiology and behavior as well as structural features (Roeder 2005; Verlinden et al. 2010). 

Furthermore, a recent phylogenetic analysis of biogenic monoamine receptors suggested that 

OAergic and adrenergic systems coexisted in the last common ancestor of bilaterians (Roeder 

2005; Bauknecht & Jékely 2017). Adrenergic signaling seems to be unique to the deuterostome 

lineage and has no physiological relevance in invertebrates to date, while OA signaling in 

vertebrates was believed to be physiologically irrelevant as well (see above). Due to this lineage 

specificity and the fact that OA signaling has regulating effects in virtually all tested organs and 

tissues of insects it has been the subject of a plethora of studies as a potential target for 

insecticides (Roeder 2005; Verlinden et al. 2010; Farooqui 2012) 

 

In insects, only a small number of neurons express OA as neuroactive substance, which has 

also been reported for other biogenic monoamines, projecting to most neuropil regions of the 

brain, the thoracic nervous system and peripheral organs. In the larval D. melanogaster CNS, 

for example, only around 80 OAergic neurons have been identified (Monastirioti et al. 1995; 

Selcho et al. 2012; Selcho et al. 2014), whereas the imago yields about 100 OAergic neurons 

(Monastirioti et al. 1995; Sinakevitch & Strausfeld 2006; Busch et al. 2009). Furthermore, the 

distribution and number of OAergic neurons has been studied in various insects including honey 

bees (Sinakevitch & Strausfeld 2006; Schröter et al. 2007), blowflies (Sinakevitch & Strausfeld 

2006), cockroaches (Eckert et al. 1992; Sinakevitch et al. 2005), hawkmoths (Dacks et al. 2005), 

crickets (Sporhase-Eichmann et al. 1992), and locust (Konings et al. 1988). The projection 

patterns and terminal areas of these OAergic neurons seem to be conserved and analogous 

counterparts can be identified between different insect species (Braunig 1991; Bräunig & 

Pflüger 2001; Schröter et al. 2007; Busch et al. 2009; Busch & Tanimoto 2010). Mainly two 

populations of OAergic neurons have been described in insect nervsous systems; paired median 

(PM) and non-median neurons that can be located in the brain, the GNG and some segmental 

ganglia, as well as unpaired median neurons (UM) located solely in segmental ganglia and the 

GNG of insects (Bräunig & Pflüger 2001; Busch et al. 2009; Selcho et al. 2014). UM neurons 

can be subdivided into dorsal UM (DUM) and ventral UM (VUM) neurons depending on the 

cell body position at the midline of the respective ganglion (Bräunig & Pflüger 2001; Busch et 

al. 2009; Selcho et al. 2014). In D. melanogaster three clusters comprised of VUM and ventral 

PM (VPM) neurons located in the GNG have been described, with VUM neurons of the 

mandibular (VMmd) and maxillary (VMmx) cluster (8-9 VUM neurons in each cluster; Busch 

et al. 2009; Schneider et al. 2012) showing only innervation of the brain in various higher brain 
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regions as well as the GNG. Individual VUMs of different clusters show very similar 

ramifications and projection patterns in the brain and it is suggested that they developed through 

a duplication of an evolutionary older set of OAergic VUMs (Busch et al. 2009; Busch & 

Tanimoto 2010). Because of their similarities in their projection patterns these neurons are 

characterized into morphological groups (Busch et al. 2009). Most VUMs of the labial cluster 

(VMlb; ~4-5 neurons) in adult D. melanogaster, however, send their projections towards the 

VNC with unknown targets (VUMd1-3; Busch et al. 2009; Schneider et al. 2012). Aside from 

these descending VUM neurons of the VMlb cluster, one pair of VPM neurons of the VMmd 

cluster, VPM1, project asymmetrical to the ipsilateral side of the thoracic neuromeres and the 

abdominal neuromeres (Busch et al. 2009). In the adult locust, homologous OAergic cells, so 

called descending DUM (desDUM) neurons, project to neuropil regions processing information 

of leg sensory organs (Bräunig & Burrows 2004). Finally, five sets of VPM neurons exist in D. 

melanogaster, with VPM1 and 2 neurons being located in the close vicinity of the VMmd 

cluster, VPM3 neurons at the VMmx cluster and VPM4 and 5 neurons at the VMlb cluster 

(Busch et al. 2009; Busch & Tanimoto 2010; see Fig. 1.2). Each VUM cluster develops from a 

single median precursor cell of the embryonic midline, while it has been suggested that VPM 

neurons develop from paired lateral neuroblasts (see Fig. 1.2; Klämbt et al. 1991; Busch & 

Tanimoto 2010). 

 

OA solely mediates its regulatory and modulatory functions through G protein coupled 

receptors (GPCR) in insects. In the genetic model organism D. melanogaster, for example, five 

OA GPCRs have been identified with different binding affinities, second messenger cascades 

and distributions (Farooqui 2012; El-Kholy et al. 2015; Qi et al. 2017). These five OA receptors 

(OAR) are grouped into three classes based on their structural and signaling similarities to 

vertebrate adrenergic receptors: α-adrenergic-like receptors (OAMB [OctαR; two isoforms, 

OAMB-K3; OAMB-AS]; Octα2R [two isoforms, Octα2R-L; Octα2R-S]), β-adrenergic-like 

receptors (Octß1R; Octß2R; Octß3R) and octopamine/tyramine receptors (Farooqui 2012; El-

Kholy et al. 2015; Qi et al. 2017). OAR elicit their function though G-proteins activating various 

second messenger cascades including cAMP, inositol 1,4,5-triphosphate (IP3), and 

diacylglycerol (DAG). The latter second messenger cascades affect intracellular Ca2+ 

concentrations, via IP3 for example, or regulate phosphorylation via the protein kinase A, by 

cAMP, or protein kinase C by DAG (Farooqui 2012). 
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Octopamine in insect behavior and physiology 
 
DUM/VUMs are considered the main source of OA in the brain and the thoracic nervous system 

of insects. Subpopulations of gnathal DUM/VUMs innervate most neuropil regions of the insect 

brain and it has been shown that these are involved in controlling and regulating various 

complex behaviors, whereas thoracic and segmental DUM/VUM populations project to the 

periphery and are hypothesized to be the main source of peripheral OA signaling (Bräunig & 

Pflüger 2001; Roeder 2005; Farooqui 2007; Farooqui 2012). 

 

 

Figure 1.2 Development of VUM/VPM neurons in D. melanogaster. (A) Development of the midline during 
four embryonic stages in D. melanogaster. Four midline precursor cells are located at both ends of the mesodermal 
anlage, forming the mesectoderm. During gastrulation, the mesoderm invaginates so that the midline precursor 
cells become juxtaposed at the ventral midline. During germ band elongation these precursor cells become a single 
line with eight cells per segment. Before these stem cells divide, they delaminate from the neuronal ectoderm into 
the neuroblast layer. (B) Schematic drawing of the development of the midline as described in (A). The midline 
consists of 7 medial precursor cells and the medial neuroblast. The medial precursor cells 5-7 develop into VUM 
neurons in D. melanogaster. (C) Outline of gnathal OAergic cell clusters and their VUM/VPM neurons in adult 
D. melanogaster. Numbers indicate a distinct morphological cell type with similar projections. Modified from 
(Klämbt et al. 1991; Busch & Tanimoto 2010). 

OA signaling in the CNS involves modulating a plethora of different behaviors and underlying 

neuronal circuits such as reward and appetitive reinforcement (D. melanogaster: Schwaerzel et 

al. 2003; Schroll et al. 2006; Burke et al. 2012; Apis mellifera: Hammer 1993; Hammer & 

Menzel 1998; Gryllus bimaculatus: Unoki et al. 2005; Unoki et al. 2006), taste (D. 

melanogaster: LeDue et al. 2016), aggression (D. melanogaster: Hoyer et al. 2008; Zhou et al. 

2008; Hoopfer 2016; Watanabe et al. 2017; G. bimaculatus: Stevenson et al. 2000; Stevenson 
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2005) and vision (A. mellifera: Erber & Kloppenburg 1995; Locusta migratoria: Stern et al. 

1995; Stern 2009). Other processes modulated by OA in the CNS include the initiation, 

maintenance and modulation of motor patterns and motor circuits as described for walking and 

flying in locusts (Schistocerca americana: Sombati & Hoyle 1984; Schistocerca gregaria: 

Rillich et al. 2013), flight in the hawk moth (Manduca sexta: Claassen & Kammer 1986), larval 

locomotion and adult flight in the fruit fly (D. melanogaster. larvae: Saraswati et al. 2004; Fox 

et al. 2006; Selcho et al. 2012; Imago: Brembs et al. 2007; van Breugel et al. 2014), and walking 

in the stick insect (Carausius morosus, Büschges et al. 1993). Furthermore, the role of OA in 

sensitization and dishabituation has been studied in various insects such as in the visual system 

of the locust (L. migratoria: Stern 2009) or the honey bee proboscis extension reflex (PER; 

Mercer & Menzel 1982; Braun & Bicker 1992).  

 

OA has also modulating effects in the periphery on skeletal and visceral muscles, organs and 

glands. In homology to the vertebrate adrenergic system, OA is involved in the physiological 

body adaptation during energy demanding tasks such as the fight or flight response (Stevenson 

et al. 2000). As response to “stressful” stimuli and subsequent hyperglycemia, OA can be 

released into the hemolymph, were it acts as a neurohormone, to increase hemolymphatic lipid 

and sugar concentrations by either affecting energy storages in the fat body directly (Fields & 

Woodring 1991) or by regulating the release of the neuropeptide adipokinetic hormone (Akh) 

from the corpora cardiaca (Pannabecker & Orchard 1986; Lorenz & Gäde 2009). Other 

peripheral effects of OA signaling involve the insect immune system, where OA mediates 

haemocyte activity, such as phagocytosis and nodule formation (Baines et al. 1992), and bounds 

to the surface of bacterial pathogens for better recognition (Dunphy & Downer 1994). 

Furthermore, OA can modulate sensory organs and neurons by increasing or decreasing 

receptor sensitivity, receptor density or affecting neurotransmitter release (Farooqui 2007). For 

example, it has been shown that OA sensitizes sensory neurons of the forewing stretch receptor 

in locust (Ramirez et al. 1993). Finally, OA acts on a wide range of different muscles e.g. on 

oviduct contraction (D. melanogaster.: Rodríguez-Valentín et al. 2006; L. mirgatoria: Orchard 

& Lange 1986), extensior-tibiae muscles in S. gregaria (Evans & O’Shea 1977) and body wall 

muscle in D. melanogaster larvae (Monastirioti et al. 1995; Selcho et al. 2012).  
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Tyramine 
 
Tyramine, or 4-Hydroxy-phenylethylamin, is not only the chemical precursor of OA but can 

rather act as neuroactive substance on its own. TA modulation is often described as antagonistic 

to OA mediated effects, homologous to adrenergic system in vertebrates. TA is synthesized by 

decarboxylation of Tyr via the tyramine-decarboxylase (Tdc, Fig. 1.1; Cole et al. 2005; Roeder 

2005; Farooqui 2012). In Drosophila, two Tdc genes were described and subsequent gene 

products show Tdc activity in vivo, however Tdc1 is expressed non-neurally, e.g. in malpighian 

tubules, rectal papillae and digestive tract musculature, whereas Tdc2 is expressed solely in 

neurons (Cole et al. 2005). 

 

Studies focusing on the effects of OA signaling often reduced TA to an intermediate product in 

the synthesis pathway of OA (Lange 2009; Farooqui 2012). Nowadays, a growing body of 

evidence is starting to overturn this picture and more studies focus on potential roles of TA 

signaling in physiology and behavior. However, unraveling the functions of TA signaling is 

difficult due to dependency of OA synthesis on TA and only limited access to selective and 

strong TA receptor antagonists (Lange 2009). Nevertheless, the identification of three 

Drosophila TA GPCRs (Oct/TyrR [TyrR], TyrRII, III; Saudou et al. 1990; Cazzamali et al. 

2005; El-Kholy et al. 2015) and characterization of some of their signaling properties 

(Cazzamali et al. 2005; Bayliss et al. 2013; Farooqui 2012), as well as the analysis of their 

expression pattern in the CNS by creation of specific transgenetic driver lines in D. 

melanogaster (El-Kholy et al. 2015) has led to first insights in TA signaling in the fly and to 

the understanding that TA acts as independent neuroactive substances in the CNS.  

 
 
Tyramine in insect behavior and physiology 
 
Tyramine is co-localized with OA in DUM/VUM neurons and it has been speculated that both 

substances can be co-released from OAergic neurons (Lange & da Silva 2007; Lange 2009; 

Pyakurel et al. 2016). Aside from co-releasing, neurons expressing exclusively TA have been 

described in the D. melanogaster larval brain and VNC by immunostainings against TA, OA 

and synthesizing enzymes (Monastirioti et al. 1995; Nagaya et al. 2002; Selcho et al. 2014). 

Furthermore, studies on the TA/OAergic innervation of the locust oviduct from abdominal 

DUM/VUMs and paired dorsal neurons revealed also potentially exclusive TAergic neurons 

(Stevenson et al. 1994; Donini & Lange 2004; Lange & da Silva 2007; da Silva & Lange 2008). 
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TA signaling has often been described as antagonistic to OA signaling, homologous to the 

adrenergic system in vertebrates. TA signaling is involved in regulating motor patterns and 

circuits, as it has been shown that increased neuronal TA titers decrease larval crawling distance 

in D. melanogaster (Nagaya et al. 2002; Saraswati et al. 2004; Fox et al. 2006) as well as reduce 

flight duration in adults (Brembs et al. 2007; Ryglewski et al. 2017). In the locust S. gregaria 

it has been shown that TA is modulating central pattern generators for walking and flight (Buhl 

et al. 2008; Rillich et al. 2013). Sensory systems can also be the target of TA modulation, which 

has been shown by a D. melanogaster tyramine receptor mutant honoka, which showed reduced 

behavioral responses to odorant repellents compared to wild type flies (Kutsukake et al. 2000). 

Furthermore, TA signaling modulates appetitive regulation as shown in the blowfly Phormia 

regina, where injections of TA led to a decreased PER with regard to experiences of appetitive 

and nonappetitive food flavors (Nisimura 2005). In A. mellifera, however, thoracic injection of 

TA led to an increased sugar responsiveness and a better performance in appetitive learning 

(Scheiner et al. 2002; Scheiner, Reim, et al. 2017), which is suggested to be mediated by caste 

specific differential expression of TA GPCRs in the honey bees fat body (Scheiner, Entler, et 

al. 2017).  

 
 
Neuropeptides 
 
Neuropeptides are the most diverse neuroactive substances found in metazoan organisms and 

are involved in controlling and modulating a plethora of physiological processes and behavioral 

patterns such as food intake, reproduction or muscle control (Nässel 2002; Nässel & Winther 

2010; Wegener & Veenstra 2015; Schoofs et al. 2017). The term neuropeptide was coined by 

David de Wied in the 70s who studied the activity of pituitary peptide hormones in rats on 

motivation, learning and memory (de Wied 1971; de Wied 2000). The proposed definition was 

that neuropeptides are produced and secreted by neurons and affect functions of the CNS (de 

Wied et al. 1974; de Wied 2000). A more recent and better fitting definition states that a 

neuropeptide is defined as a bioactive peptide, secreted by neurons or non-neuronal cells, with 

similarities in their expressed genetic information, synthesis, processing as well as their binding 

to similar receptor families affecting neuronal tissue (Kastin 2000; Fricker 2012).  

 

Neuropeptides usually contain 2-100 amino acids and are produced by neurosecretory cells and 

interneurons in the nervous system but can also be expressed by various non-neuronal cells of 

the endocrine system (Zitnan 1996; Kingan & Adams 2000; Fricker 2012; Wegener & Veenstra 
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2015). A single cell is not limited to the expression of a distinct neuropeptide gene but can 

express multiple neuropeptide genes at the same time, sometimes even co-localized with 

classical neurotransmitter or biogenic monoamines (Fricker 2012; Nässel 2018). Neuropeptides 

are versatile in their mode of action and can act as neurotransmitter, neuromodulator and/or 

neurohormone depending on the secreting synapse or neuroheamal site (Nässel 2009; Nässel & 

Winther 2010). 

 

Neuropeptides are produced in the cell body and are matured throughout the regulated secretory 

pathway, in contrast to classical neurotransmitters which are in general enzymatically 

synthesized at the synapse (Merighi 2011; Fricker 2012). Neuropeptide synthesis starts with the 

translation of a peptide-precursor, the prepropeptide or preprohormone, containing a signal 

peptide which guides the preproprotein to the rough endoplasmic reticulum (ER; Perone et al. 

1997). As a first enzymatic step a signal peptidase removes the N-terminal signal sequence, 

which is rapidly degraded (Tuteja 2005). The resulting propeptide or prohormone can undergo 

further modification (e.g.: glycosylation) and is transported to the Golgi network, passing the 

network from the cis- to the trans-face, and subsequently packaged in LDCVs for further 

maturation, storage and ultimately secretion (Merighi 2011; Fricker 2012). During Golgi transit 

and maturation in LDCVs the propeptide is cleaved by endoproteases (furins, prohormone 

convertases) at designated internal dibasic and/or monobasic cleavage sites, such as Lys-Arg 

(KR), Lys-Lys (KK), Arg-Arg (RR), Arg (R) and Lys (K) (Veenstra 2000; Rholam & Fahy 

2009; Fricker 2012). C-terminal basic amino acids, remaining from the endoprotease enzymatic 

cleavage, are subsequently removed by exoproteases (carboxyproteases) leading to mature 

and/or immature peptides (Merighi 2011; Fricker 2012). Often, a precursor is cleaved into 

multiple neuropeptides (isoforms) with structurally related C-terminal motifs. The C-terminal 

motif plays a crucial role during interaction of the neuropeptide and its designated receptor, in 

general a GPCR (Nässel & Winther 2010; Merighi 2011; Fricker 2012). Neuropeptides with a 

conserved structural motif are classified into neuropeptide families (Coast & Schooley 2011).  

 

Subsequently, resulting peptides can be subjected to further modification during maturation. 

Such post-translational modifications (PTM) affect the activity and degradation of mature 

neuropeptides. Amidation of the C-terminus is a widespread PTM of neuropeptides and is 

necessary for proper receptor recognition (Kolhekar et al. 1997; Prigge et al. 2000). Cyclization 

of N-terminal Gln into pyroglutamate is another frequently observed PTM in neuropeptides 

(e.g.: corazonin; Veenstra 1989). Other PTMs involve the addition of functional groups to 
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amino acid side chains such as sulfation of Tyr (Holman et al. 1986), phosphorylation (Browne 

et al. 1981; Gäde et al. 2006) and glycosylation (Lu et al. 2002).  

 

This multifarious synthesis, processing and packaging of neuropeptides leads to a vast 

repertoire of different potential bioactive neuroactive substances. To unravel such 

neuropeptidergic systems it is vital to gain knowledge of their expressed and processed mature 

products as well as other co-expressed neuroactive substances on a single cell level in nervous 

systems. 

 
 
An introduction to mass spectrometry 
 
The identification, structural characterization and quantification of organic and inorganic 

chemical compounds from complex sample mixtures, such as organs/tissues/cells and their 

extracts, is today mainly achieved by MS and adjacent technologies such as chromatography. 

All mass spectrometers are based on the same principle, which is the separation of ionized 

molecules by means of their mass-to-charge ratio (m/z) in the gas-phase. In order to achieve 

this separation, mass spectrometers are working under high vacuum to circumvent potential 

collisions or diversions of produced ions with air molecules such as nitrogen. All mass 

spectrometers have three main components; (1) an ion source, which produces negatively or 

positively charged analyte ions, (2) the mass-analyzer, which separates the produced ions by 

their m/z ratio, and (3) a detector, detecting the separated ions (Fig. 1.3). Finally, a mass 

spectrum is generated by plotting the relative abundance of detected ions in a defined scanned 

mass range against their m/z ratio (Figure 1.3 A). This basic outline, also termed MS-mode or 

MS1, illuminates the chemical complexity of a given sample, with information regarding 

relative abundance and masses of ionized analyte molecules. Ultimately, masses of detected 

ions can be compared to databanks, such as METLIN (metlin.scripps.edu) or UNIPROT 

(www.uniprot.org), in which already identified substances are deposited and identified via 

“mass match”. However, this identification solely rests on the comparison of recorded masses 

without any information on the chemical structure of a recorded ion and is often seen as a non-

conclusive verification.  

 

To obtain information on the chemical structure of an analyte of interest, mass spectrometers 

utilize a second mode called MS² or tandem mass spectrometry, which involves fragmentation 

of the ion of interest, the so called precursor ion, into specific and reproducible product ions. 
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This process involves multiple sequential steps of MS analysis according to their m/z ratio (Fig. 

1.3). After the generation of analyte ions in the source, they are separated by their m/z ratio in 

a first mass analyzer (MS1). Distinct precursor ion species can now be filtered from the 

remaining ion background and subjected to fragmentation. A second mass analyzer (MS²) than 

separates the produced ion fragments or product ions and ultimately guides them to the detector 

(Fig. 1.3). To date various fragmentation methods have been observed and developed, which 

can be exclusive to a given instrumentation, such as in-source decay (ISD; Brown & Lennon 

1995; Sellami et al. 2012), post-source decay (PSD; Spengler et al. 1992; Kaufmann et al. 

1994), collision-induced dissociation (CID; Levsen & Schwarz 1976; Mitchell Wells & 

McLuckey 2005), photodissociation methods (Brodbelt 2015), electron capture and transfer 

methods (Qi & Volmer 2016; Lermyte et al. 2018) and others. 

 

The detection of specific analytes can be hampered from biological samples due to isometric 

and/or isobaric chemical compounds, substances with concentrations lower than the limit of 

detection (LOD) or ion suppression effects caused by salts, ion-pairing agents, endogenous 

compounds, and additives such as drugs or metabolites. In order to tackle such sample-derived 

problems and enable a successful detection by MS, mass spectrometers are often combined with 

chromatographic or electro kinetic separation techniques, enzymatic digestions, chemical 

derivatizations or a combination of these.  

 

While MS or even MS² can give information about relative concentrations of sample analytes 

an absolute quantification of these compounds can be achieved by the addition of a known 

internal standard (IS) or reference with a defined concentration to the sample. While synthetic 

isotopically marked standards of a known substance are the gold standard, these can be very 

expensive or unavailable for purchase. To fill this gap, chemically related substances can be 

used instead, however, to guarantee a precise quantification their ionization properties and 

linear correlation compared to the ion of interest have to be assessed carefully. Another 

possibility for absolute quantification is to analyze synthetic standards of the analyte of interest 

before the main experiment, in a corresponding sample matrix with the identical 

instrumentation, and compare the obtained signal intensities from both experiments. 

 

A variety of different ion sources, analyzers and detectors have been developed and combined 

in the last decade, leading to numerous analytical platforms with unique features and 

drawbacks. In this study, I used MALDI-TOF MS as the main analytical tool. 
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Matrix-assisted laser desorption/ionization – time of flight mass spectrometry 
(MALDI-TOF MS) 
 
MALDI is a soft ionization technique that allows the ionization of large organic molecules with 

little or no fragmentation during gas phase transition and ionization. The term was first coined 

by Michael Karas and colleagues 1985 (Karas et al. 1985), however, another group around 

Koichi Tanaka, who worked on the ionization of glycerin via cobalt-particles and a pulsed N2 

laser, received a quarter of the 2002 chemistry Nobel prize for their contribution to the 

development of MALDI. 

 

 

Figure 1.3 Schematic of a MALDI-TOF mass spectrometer. In MALDI-TOF MS, analyte ions are created by 
pulsed laser desorption of matrix and analyte molecules from the co-crystalized matrix sample spot in the MALDI 
ion source. Ions are electromagnetically accelerated from the source into the time-of-flight mass analyzer were 
they are separated by their m/z ratio. In linear mode ions directly hit the linear detector (light grey line) at the end 
of the flight tube. Detected ions generate Gaussian like signals in the mass spectrum (upper mass spectrum). In 
reflectron mode, ions of the same m/z ratio with differing kinetic energies are focused by the reflectron onto the 
reflectron detector (dark grey line), producing isotopically resolved signals (lower mass spectrum). For MS² 
experiments ions can be separated at the ion gate, after passing a first mass analyzer, and fragmented by e.g. a 
collision gas in the collision cell. Product ions are than separated in a second mass analyzer and detected by linear 
or reflectron mode.  

In order to analyze biological samples, either intact tissues/cells (direct profiling), extracts of 

these or biofluids are placed on a sample carrier and are mixed with a dissolved matrix. During 

evaporation of the matrix solvent the matrix and sample co-crystallize and a dried-droplet 

sample spot results which is subsequently introduced into the mass spectrometer under a high 

vacuum. Matrix substances show strong optical absorption in ultraviolet (UV) or infrared 

wavelength ranges for excitement by corresponding pulsed lasers. Most matrices are acidic, 

however, they are often mixed with strong acids, such as trifluoroacetic acid (TFA) as an 

additional proton donator and to obtain a good crystallization (Hillenkamp & Peter-Katalinic 

2007). The excited matrix molecules induce desorption of co-crystallized analyte and matrix 

molecules into the gas phase. Ionization of the analyte molecules is postulated to happen at least 
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through two models: (1) the thermal model, high temperatures during laser irradiation facilitate 

proton transfer between the liquid matrix and the analyte (Lu et al. 2015), and the (2) lucky 

survivor model (Karas et al. 2000; Karas & Krüger 2003), which postulates ion formation by 

charge separation during fragmentation of analyte/matrix clusters. Due to the soft ionization, 

MALDI mainly produces singly charged ions [M+H]+ (Karas et al. 2000), however, salt adduct 

ions can be observed which lead to increased ion masses ([M+Na]+, + m/z 23; [M+K]+, + m/z 

39). Ionized analyte molecules are accelerated by an electric field, from the source into the TOF 

mass analyzer (Fig. 1.3). The TOF mass analyzer is a vacuum tube in which the accelerated 

ions can drift freely until they reach the detector or the reflectron. The TOF between the moment 

of acceleration and the detector of an ion is dependent on the m/z ratio and can therefore be 

used to separate ions. Due to the predominantly single charged ions produced by MALDI-TOF 

MS, it is possible to directly infer the molecular mass of an ion through their detected m/z ratio 

(Fig. 1.3). 

 

Modern MALDI-TOF instruments have two measurement modes with separate detectors. The 

first mode is called linear mode. In linear mode ions drift through the TOF analyzer and hit the 

detector at the end of the flight tube. This mode generates ion signals with a relatively low 

resolution but is very sensitive especially in higher mass ranges larger than m/z 6000. Recorded 

ion signals in linear mass spectra usually show a Gaussian shaped “peak” without resolving 

isotopic patterns (Fig. 1.3). Deduced masses are given as average masses, since all possible 

isotopes are cumulated in a single signal. The second mode utilizes a second detector and an 

ion reflector, hence called reflectron mode. This mode enhances resolution via compensating 

small distribution-related differences of transmitted kinetic energy during acceleration in the 

ion source, for ions of the same m/z ratio, by reversing the ion flight direction through an electric 

field ion reflector (reflectron). Ions of the same m/z ratio but different kinetic energies penetrate 

the field of the ion reflector in an energy dependent manner, with higher energetic ions flying 

deeper into the field. Thus, ions are reflected at different depth leading to a nearly simultaneous 

impact at the second detector, which is located on the opposite site of the reflector. Ultimately, 

this leads to an improved ion signal resolution capable of resolving isotopic patterns. Deduced 

masses of ions detected with resolved isotopic patterns are given as monoisotopic mass 

([M+H]+), which is composed only of the most abundant isotopes (Fig. 1.3). All masses are 

given as monoisotopic masses in this thesis. 
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Common fragmentation methods applied in MALDI-TOF MS to elucidate the chemical 

structure of analyte ions are: laser induced dissociation (Macht et al. 2004) and connected 

methods such as ISD and PSD, in which the laser transmitted energy leads to fragmentation of 

the ion of interest in the source (ISD; Brown & Lennon 1995; Sellami et al. 2012)  or after the 

source (PSD; Spengler et al. 1992; Kaufmann et al. 1994), and CID, where the precursor ions 

are fragmented by collision with an applied chemical inert gas such as argon or nitrogen 

(Levsen & Schwarz 1976; Mitchell Wells & McLuckey 2005).  

 

MALDI-TOF MS offers some advantages over other MS techniques when analyzing minute 

volume samples such as single cells. Due to its high salt and buffer tolerance as well as its 

overall sensitivity, it is not only possible to directly interrogate the chemical profile of a given 

sample but also to obtain structural information of single analytes of interest from this sample, 

without the need for precedent sample fractionation and desalting (Li, Garden, et al. 2000; 

Hummon et al. 2006; Ong et al. 2015a). Furthermore, MALDI offers a straight forward sample 

preparation which is very time efficient and thus enables the rapid preparation of multiple 

samples in a single batch. Moreover, only small amounts of the chosen MALDI matrix are 

needed to allow a successful measurement, thus limiting dilution of the sample and enabling 

even detection of low concentrated analytes (Li, Garden, et al. 2000; Hummon et al. 2006; Ong 

et al. 2015a). Another advantage is the low sample consumption of MALDI in combination 

with the temporal disconnection of possible precedent chromatographic separation techniques, 

which allows not only the storage of prepared samples for longer periods of time, but also the 

repeated analysis of a given sample in different measuring modes and mass ranges as well as 

high sample throughputs (Li, Garden, et al. 2000; Hummon et al. 2006; Ong et al. 2015a).  

 
 
Neuropeptidomics 
 
The identification and characterization of neuropeptides used to be a time and sample 

consuming complex undertaking. Neuropeptides had to be separated from the sample matrix, 

concentrated and often be subjected to further chemical processing in order to elucidate their 

primary structure by Edman degradation (Niall 1973). The identification and characterization 

of a single peptide could gulp up regularly thousands of individual animals to generate enough 

material for sequence analysis. In contrast to this, modern MS based neuropeptidomics are 

capable of detecting and characterizing many neuropeptides from small samples such as a single 

cell. The suffix “-omics” labels biological sub disciplines which focus on the global analysis of 



Chapter 1 
 
 

18 
 

similar individual elements such as genes (genomics), metabolites (metabolomics), mRNA 

(transcriptomics), or the proteome (proteomics) of a single cell, cell cluster, organ, or organism 

at a defined point of time. Neuropeptidomics therefore, aims to unravel the complement of 

neuropeptides from a cell, tissue or extract of the nervous system (Yin et al. 2011; Lee 2016). 

Neuropeptidomics use MS based methods for the identification and sequence analysis of mature 

neuropeptides often in combination with genomic and/or transcriptomic data.  

 

 

Figure 1.4 Hypothetical fragmentation of the peptide FMRFamide by MS². (A) Nomenclature of peptide 
fragments after Roepstorff & Fohlman, 1984. (B) Exemplary b- and y- fragments of the peptide FMRFamide and 
monoisotopic mass of the intact peptide. (C) Hypothetical MS2 mass spectrum of the fragmented FMRFamdie 
peptide. 

Neuropeptides consist of amino acids interconnected by peptide bonds, which can be 

fragmented during MS² experiments. Fragmentation can be observed at various positions of the 

peptide bond and even at amino acid side chains, depending on the energy and fragmentation 

method (Fig. 1.4).  The resulting product ions can be used to deduce the amino acid sequence 

of an analyzed peptide. Sequencing by MS mainly rests on product ions generated by 

continuous fragmentation of peptide-bonds, giving rise to b- and y-fragments, whereas other 

fragmentation products such as short immonium ions and internal product ions, which derive 

from multiple backbone fragmentation, can serve as additional sequence confirmation (Fig. 1.4 

A). The mass difference between two detected adjacent product ions of the same series (e.g.: 

b1-b2) allows to conclude the appropriate amino acid (Fig. 1.4 B, C). Often, resulting product 

ion/MS² mass spectra provide sufficient product ion information to allow de novo sequencing 

of the analyzed peptide by hand or appropriate computer algorithms. Furthermore, modern 

neuropeptidomics utilize different bioinformatic approaches for sequence elucidation and 

identification which involve in silico prediction of product ions from amino acid sequences, in 
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silico prediction of cleavage sites and cleavage products from identified neuropeptide genes, 

databank driven comparative sequence identification, and cross validation and identification of 

sequences between mass spectrometric data and genomic and/or transcriptomic data sets. 

 
 
Single cell mass spectrometry (SCMS) 
 
Cellular variability and heterogeneity is a necessity for individual biological and behavioral 

traits of organisms and targeted SCMS offers the possibility to elucidate how individual cells 

contribute to physiology and behavior, as well as pathologies and diseases, in multicellular 

organisms by determining their chemical profiles (e.g. Ong et al. 2015a). However, the analysis 

of single cells is still challenging due to the fragile nature of single cells, the low sample volume 

and the highly complex chemical composition. MS-based technologies are often the method of 

choice in small volume sample bioanalytical analysis because of a wide scope of detectable 

analyte classes, low sample consumption, low detection levels and combinability to numerous 

separation and concentration methods. Furthermore, MS allows not only identification but also 

structural characterization, quantitation, targeted and even untargeted analysis of given single 

cell chemical features. Chemical analysis can be focused on intracellular or secreted 

extracellular analytes, since the study at hand focuses on whole cell analyses, mostly methods 

dedicated to such are introduced in more detail. 

 

The first step in single cell analysis is the identification of a cell of interest. Various approaches 

exist, depending on the sampled organism and the experimental setup. For identification the 

shape, color or position of a cell can be sufficient for a clear identification and subsequent 

isolation (Neupert & Predel 2005; Rubakhin et al. 2011). The uptake or intracellular injection 

of fluorescent neuronal markers (El Filali et al. 2003; Neupert & Predel 2005), the expression 

of fluorescent gene reporters in genetic model organisms (Neupert et al. 2007), CRISPR/Cas9 

mediated gene tagging in non-model organisms or immunolabeling (Neupert et al. 2012) can 

be used in vivo or ex vivo to identify desired cell clusters or single cells and help to guide sample 

isolation.  

 

Cell identification is followed by the isolation or extraction of the desired sample which can be 

achieved by various techniques. Manual microdissection with sharp needles and micro scissors 

of desired cell bodies is a fast and robust method and enables documentation and spatial 

localization, but relies heavily on an experienced experimentalist to prevent rapture-induced 
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loss of analytes (Neupert & Predel 2005; Rubakhin & Sweedler 2007). Other recent developed 

solutions try to circumvent such bias by using computer assisted laser capture dissection and 

laser trapping for the isolation of cells from thin tissue sections (Espina et al. 2006; Park et al. 

2016). A very elegant method is the direct sampling of cytoplasm from the cell body via patch-

clamp capillaries, which enables pl volume samples with only limited danger of potential 

contaminations from the cellular matrix (Aerts et al. 2014). Often enzymatic treatments with 

collagenases or dispases for tissue dissociation are used to generate large amounts of single 

cells. When used in conjunction with fluorescent labeling techniques, this approach can be used 

to visually discriminate between cells of interest, and even automated cell sorting by flow 

cytometry is possible (Yew et al. 2009). Nevertheless, a change of environmental conditions, 

such as temperature or extracellular matrix, by enzymes, culture mediums or lasers can lead to 

significant changes in intracellular compositions of single cells and has to be evaluated with 

great caution (Nemes et al. 2012; Qi et al. 2017). 

 

Since MALDI-TOF was the main analytical method of this study, therefore, SCMS approaches 

utilizing MALDI are discussed in more detail, with a few examples covering electrospray 

ionization (ESI), even though a wide array of different MS approaches has been subjected to 

SCMS (for review see Ong et al. 2015a; Armbrecht & Dittrich 2017). A frequently used method 

to analyze single neuron somata is direct SCMS by MALDI-TOF MS, which has been used to 

detect neuropeptides from single neurons with varying size and organismic origin such as rats 

(Rubakhin & Sweedler 2007; Ong et al. 2015), the great pond snail Lymnaea (Li et al. 1994; 

Jiménez et al. 1998; El Filali et al. 2003), the Californian sea hare Aplysia californica (Garden 

et al. 1996; Li et al. 1999; Li, Romanova, et al. 2000) and numerous insects (Periplaneta 

americana: Neupert & Predel 2005; Neupert & Gundel 2007; Neupert et al. 2009; Neupert et 

al. 2010; D. melanogaster: Neupert et al. 2007; M. sexta: Neupert, Huetteroth, et al. 2009; 

Rhodnius prolixus: Neupert et al. 2010; L. migratoria: Redeker et al. 2017). Furthermore, 

quantification with direct MALDI-TOF MS of neuropeptides from single A. californica 

neurons has been reported, using isotopic labeling and internal standards combined (Rubakhin 

& Sweedler 2008). However, to date no direct MALDI-TOF SCMS approach has been reported 

for the detection of small molecule neuroactive substances, like biogenic monoamines and 

others. 

 

MALDI mass spectrometric imaging (MSI) represents another MALDI driven approach to 

investigate single cells. In MALDI MSI, a thin tissue section or a mixture of single cells is 
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placed on a sample carrier, a stainless steel plate or a conductive glass slide, and registered by 

a scanner or a high resolution camera. The sample is then placed in the MS source and analyzed 

via MALDI in a continuous step-wise manner, whereby a mass spectrum is recorded at each 

laser position on the sample. Finally, by combining the registered photo and the localized mass 

spectra it is possible to obtain a spatial representation of a given mass on the sample, in a 

detection dependent and therefore semi quantitative manner. MALDI MSI with coarse spatial 

resolution (50-25 µm) has been used by studies focusing on lipids and neuropeptides from 

cultured single cells such as large A. californica neurons (Rubakhin et al. 2003), single mice 

peritonal macrophages (Yang et al. 2018) or single human breast cancer cells (Wang et al. 

2016). 

 

By using new developed ion source configurations (Koestler et al. 2008; Kompauer et al. 2016), 

laser optics (Römpp et al. 2010) and sophisticated sample preparation methods (Svatoš & 

Ibáñez 2014) the lateral resolution can be lowered to 10 µm or even below and thereby enable 

SCMS analysis directly from tissue sections. Moreover, these high resolution methods can be 

used to analyze lipids, peptides and metabolites at the subcellular level in unicellular organisms 

like Paramecium caudatum (Kompauer et al. 2016) or even three dimensional subcellular 

SCMS of early stage Danio rerio embryos (Dueñas et al. 2017).  

 

Prior to SCMS, preceding separation and concentration methods, such as capillary 

electrophoresis (CE), nano liquid chromatography (nanoLC) or microfluidic devices, can be 

used expand the range of detectable analytes and quantification via extracted migration profiles 

can be achieved from low volume samples such as single cells. Even though the combination 

of CE-MALDI MS has been used to study a variety of different samples (Zuberovic et al. 2009; 

Pourhaghighi et al. 2011; Ye et al. 2015; Týčová et al. 2017), it is surprising that only few 

studies focus on CE-MALDI SCMS. Rubakhin and colleagues used CE-MALDI-TOF MS to 

analyze neuropeptide releasates from single A. californica neurons (Rubakhin et al. 2001; Fan 

et al. 2013), while another study focused on the detection of neuropeptides from single Aplysia 

neurons via a combination of CE-MALDI-TOF MS and radionuclide detection (Page et al. 

2002).  

 

A more frequently used combinatorial method is CE-ESI MS, which has been used successfully 

by different groups to detect not only proteins and neuropeptides but also small molecule 

metabolites, such as neuroactive substances, from single cells. Cao and Moini studied the α- 
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and β-chains of hemoglobin by subjecting a single human erythrocyte to CE-ESI MS (Cao & 

Moini 1999). Other studies focused on the metabolomic analysis of different single A. 

californica neurons and could detect >300 single chemical features including acetylcholine 

(ACh), DA and 5-HT (Lapainis et al. 2009; Nemes et al. 2011). Furthermore, CE-ESI SCMS 

guided comparative metabolomics with multivariate statistics has been used to elucidate small 

molecules that potentially affect blastomere cell fate in the 16-cell stage of Xenopus leavis 

(Onjiko et al. 2015). Proteomic approaches can be combined with CE-ESI SCMS and led 

recently to the identification of a total of 1709 protein groups from three different blastomeres 

of the 16-cell stadium of X. leavis (Lombard-Banek et al. 2016). Finally, CE- laser-induced 

fluorescence detection (LIF) and – native laser-induced fluorescence detection (LINF) have 

been used to analyze neuroactive substances, peptide and proteins of single cells with very low 

LODs (sub nM range; Kim et al. 2002; Lapainis et al. 2007; Cecala et al. 2012).  

 
 

Identification, localization and quantification of OA/TA and other biogenic 
monoamines in insect nervous tissues 
 
In order to study biogenic monoamine function in behavior and physiology a wide variety of 

bioanalytical methods have been applied and developed to identify, locate and quantify these 

small neuroactive substances in the insect CNS. Localization of biogenic monoamines such as 

OA and TA in insects has been studied by means of immunohistochemistry directed against 

synthesizing enzymes or the molecule of interest directly (e.g. OA/TA, Monastirioti et al. 1995; 

Busch et al. 2009; Selcho et al. 2014). In genetic model organisms, such as D. melanogaster 

and T. castaneum, genetic labeling methods can be used to label potentially monoaminergic 

neurons, by targeting synthesizing enzyme genes (Busch et al. 2009; Selcho et al. 2014). Even 

though antibody guided immunohistochemistry is a reliable method, antibodies can cross react 

with alternate epitopes due to similar chemical structures, e.g. OA and TA, while stainings or 

labeling techniques focusing on synthesizing enzymes only give indirect evidence of the 

molecule of interest.  

A common method for the identification and quantification of biogenic monoamines from 

biological samples, such as nervous tissue or body fluids, is the separation and purification by 

high performance liquid chromatography (HPLC) or CE coupled to electrochemical (ECD), 

LIF, or MS detection (Shin et al. 2018). While HPLC systems have been used to quantify 

biogenic monoamines in pooled samples of whole brains (Hardie & Hirsh 2006; Chen et al. 
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2013), CE has proven to be a more sensitive separation method with very low sample 

consumption (nl range). The combination of micellar elektrokinetic capillary chromatography 

(MEKC), which represents a modification of conventional CE by adding a surfactant as pseudo-

stationary phase (micelles, e.g. SDS), amperometric ECD and synthetic standards led to the 

detection of 14 biogenic monoamines and their metabolites in single adult D. melanogaster 

head homogenates (Ream et al. 2003; Paxon et al. 2005). Furthermore, in a more recent study 

MEKC-ECD was used to quantify 24 metabolites and biogenic monoamines, such as TA, OA, 

DA and 5-HT from single D. melanogaster head homogenates (Kuklinski et al. 2010). A more 

recent study from the group of B. J. Venton combined CE with fast-scan cyclic voltammetry 

(CE-FSCV), which has the advantage of selective identification by recording analyte specific 

oxidation voltammograms, and quantified a total of four biogenic monoamines from single 

Drosophila brain homogenates from larvae, pupa and adults (Denno et al. 2016). Another 

promising method is the detection and quantification of amino acids and their corresponding 

neuroactive substances via LINF or flourescamine supported LIF coupled to CE (for review see 

Tseng et al. 2010). Piyankarage and colleagues, for example, described the detection and 

quantification of 13 amino acids from heamolymph samples of D. melanogaster larvae using 

CE-LIF (Piyankarage et al. 2008; Piyankarage et al. 2010). Furthermore, the detection of 

biogenic monoamines has been reported for pooled head homogenates of D. melanogaster, by 

CE coupled to MS (Phan et al. 2013). 

 

Even tools for the real-time measurement of biogenic monoamine exocytosis and re-uptake in 

vivo have been developed and applied in vertebrates and invertebrates and often utilize carbon-

fiber mircoelectrodes (CFME) in combination with ECD such as FSCV and amperometry (Shin 

et al. 2018). In general, these methods measure the change in current (nano amps) during 

oxidation and reduction of the molecule of interest at the CFME. Makos and colleagues used 

CFME-FSCV to analyze monoamine reuptake of exogenously applied DA in the D. 

melanogaster protocerebral anterior medial brain region and compared observed reuptake 

between wild type flies and a genetic driver line with a defective DA transporter gene (Makos 

et al. 2009). CFME-FSCV has also been used in conjunction with channelrhodopsin-2 

mediated, neuron specific stimulation in order to analyze release and clearance of DA in the 

larval VNC of Drosophila (Borue et al. 2009; Vickrey et al. 2009). Finally, Majdi and 

colleagues could show, in a pioneering experiment, the successful measurement of 

optogenetically controlled OA release from single nerve varicosities of the body wall muscle 

in Drosophila larva (Majdi et al. 2015).  
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A quiet recently developed method is the endogenous imaging of biogenic monoamines and 

other neuroactive substances via selective fluorescent sensors, which can either be protein based 

and directly synthesized in model organisms or exogenously applied (for review see Liang et 

al. 2015). Some biosensors have been developed in the last years, targeting either glutamate or 

GABA, with varying sensitivity, from low nM to µM ranges and only two were tested in vivo; 

in Caenorhabditis elegans (Marvin et al. 2013) and mice (Okubo et al. 2010). However, 

Patriarchi and colleagues developed just recently an intensity-based genetically encoded DA 

sensor, dLight1, for endogenous imaging of DA in mice, with high spatiotemporal resolution 

and low LODs (nM range, switch on ~10 ms; Patriarchi et al. 2018). This was possible by 

cloning a circularly permuted GFP, which is also used in GcAMP6 (Chen et al. 2013), to a 

cytosolic loop of a human DA receptor. Furthermore, by using the same strategy they were able 

to produce similar constructs for the detection of other biogenic monoamines and neuropeptides 

alike. This potentially groundbreaking development will allow the direct imaging of releasing 

events of neuroactive substances in intact nervous systems.  

 

A similar approach is the implantation of so called cell-based neurotransmitter fluorescent 

engineered reporters (CNiFERs) in vivo, which are altered HEK 293 cells.  These cells express 

selective GPCRs in combination with fluorescence resonance energy transfer (FRET) based 

reporter system. Furthermore, they exhibit high selectivity and sensitivity, in the nM range, and 

their application has been shown to detect DA and NAD in vivo in mice (Muller et al. 2014). 

However, the use of CNiFERs is limited to larger organisms since the implanted cells have a 

size of about 50 µm, which is equivalent to a whole Drosophila antennal lobe.  

 

Ultimately, MSI via MALDI or desorption electrospray ionization (DESI) has been used to 

investigate the localization and quantities of biogenic monoamines and other neuroactive small 

molecules from nervous tissue sections. DESI MS is a recently developed matrix free ionization 

technique which uses a capillary ejecting solvent via electrospray directly on the sample tissue, 

which is mounted on a moveable 3D sample stage (Ifa et al. 2007). By the repeated impact of 

fresh solvent droplets, secondary analyte containing droplets are ejected from the sample, 

ionized and ultimately sampled by the mass spectrometer through an elongated inlet capillary 

or sniffer positioned close to the sample surface. While modern MALDI MSI combines low 

µm-spatial resolution with a high degree of sensitivity and selectivity, analysis of small 

molecule neuroactive substacnes like biogenic monoamines by MALDI-TOF MS in general is 

a challenging task since most of these substances show poor ionization characteristics, 
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fragmentation during ionization, overlaying or suppression by matrix clusters, and problematic 

mass isomers, e.g. OA and DA, which need further analysis like MS² for proper identification 

and detection. The development of new matrices and chemical derivatization compounds and 

procedures tackle these problems. Manier and colleagues used 4-hydroxy-3-

methoxycinnamaldehyde (CA) as a targeted derivatization agent for metabolites and 

neuroactive substances containing amine moeties and reported the successful simultaneous 

detection of nine amino acids and neuroactive substances from pig brain and adrenal gland 

tissue sections (Manier et al. 2014). Another promising approach is the usage of pyrylium salts 

as derivatization agent and matrix alike, leading to the simultaneous detection and 

quantification of eleven neuroactive substacnes (seven amines) and their metabolites in rat brain 

sections (Shariatgorji et al. 2014; Shariatgorji et al. 2015). Pyrylium salts, however, are very 

expensive and difficult to obtain on the open market, in contrast to cheap derivatization agents 

like CA.  

 

Two recent studies used DESI MS to detect and quantify GABA, glutamate and DA from rat 

brain tissue sections (Bergman et al. 2016; Fernandes et al. 2016). The detection of small 

molecule neuroactive substances by DESI can also be improved by targeted chemical 

derivatization, which has been shown for nine small molecule neuroactive substances, including 

DA, 5-HT and glutamate (Shariatgorji et al. 2016). The DESI ionization process is very soft 

and can be compared to normal ESI, bypassing the laser induced fragmentation of small 

molecule neuroactive substances and their metabolites observed during MALDI ionization. 

However, modern DESI systems show a very coarse spatial resolution, between 200-150 µm 

(Shariatgorji et al. 2016; Bergman et al. 2016), compared to low µm resolution (ca. 50-10µm) 

MALDI-TOF systems (Shariatgorji et al. 2014; Spengler 2015), which is a prerequisite to 

analyze insect nervous systems.          
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Aim of this study 
 

The main aim of this thesis is the development of a MALDI-TOF MS based method for the 

routine detection, identification and quantification of biogenic monoamines from single 

dissected neuron somata of intact insect nervous systems. The focus of the thesis lies on the 

insect OAergic/TAergic system, which is seen homologous to the vertebrate 

noradrenalin/adrenalin system. A prerequisite was that the newly developed method should be 

as simple, fast, cost effective and safe as comparable direct profiling MALDI-TOF SCMS 

approaches and work, if possible, without requiring prior sample fractionation. Moreover, due 

to the possible co-localization of biogenic monoamines and neuropeptides in neurons, the 

simultaneous detection of both substance classes from the same sample using such an approach 

should be investigated. The method should be established using single cells of the genetic model 

organism D. melanogaster, to enable a stable identification of single cells or cell clusters for 

dissection and have the possibility to alter neuroactive substance expression by using the large 

genetic Drosophila toolbox and also benefit from the extensive research on neuroactive 

substance expression patterns and neuronal circuits driving behavior in this model organism. 

Assuming a successful development and establishment, the protocol should be used to analyze 

expression patterns of OA/TA and/or neuropeptides in identified subsets of neurons, as well as 

analyze potential dynamic quantities of somatic OA/TA titers between cell clusters, sex, age, 

and behavioral states in D. melanogaster and other insects.  
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The thesis at hand is organized in five chapters (chapter 1 Introduction): 

 

Chapter 2 is dedicated to the development of a MALDI-TOF SCMS protocol for the detection 

and quantification of OA and TA from single genetically labeled D. melanogaster neuron 

somata using on-plate chemical derivatizations, isotopically labeled internal standards and an 

advanced sample preparation. 

 

Chapter 3 is dedicated to the analysis of changing somatic OA titers from gnathal D. 

melanogaster VMlb neurons in social driven male aggression using the developed MALDI-

TOF SCMS approach.   

 

Chapter 4 is dedicated to a collaborative study, in which the developed MALDI-TOF MS 

approach was used to identify somatic OA and TA from intracellular recorded desDUM 

neurons of the Indian stick insect C. morosus. 

 

Chapter 5 is dedicated to the effort of creating a map of neuropeptidergic cells and their 

repertoire of neuroactive substances in adult D. melanogaster using conventional MALDI-TOF 

SCMS.   
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2. Development of a MALDI-TOF MS based workflow for the 
identification and quantification of octopamine and tyramine from 
single identified D. melanogaster neurons 

 
 
 

 
The results of this chapter are already published in the following peer-reviewed article:  

Diesner, M; Neupert, S. Quantification of Biogenic Amines from Individual GFP-Labeled 
Drosophila Cells by MALDI-TOF Mass Spectrometry. Analytical chemistry, 2018, 90, 13, 

8035-8043, DOI: 10.1021/acs.analchem.8b00961. 
 

The authors contributions are as followed: MD and SN conceptualized experiments, MD and 
SN performed experiments (SN performed DPD VMlb experiments and dissected 9 samples 

from the VMlb 60 min data set, all other samples MD). MD analyzed the data, prepared 
figures and tables. MD and SN wrote the manuscript, SN funding. Text passages and figures 

of this chapter are taken or modified from the published article.   
 

Parts of this chapter are adapted/modified/copied with permission from: Quantification of 
Biogenic Amines from Individual GFP-Labeled Drosophila Cells by MALDI-TOF Mass 

Spectrometry, Diesner M, Neupert S, Analytical chemistry, 2018, 90, 13, 8035-8043. 
Copyright 2018 American Chemical Society 

 
A license for the adaptation/modification/copying was given to Max Diesner. 
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2.1 Introduction 
 
Neuroactive substances such as biogenic monoamines and neuropeptides are central players in 

shaping physiology and behavioral patterns in metazoan organisms. These substances are 

produced in specific subpopulations of neurons throughout the CNS, however, they can be co-

localized in specific neurons. In order to understand and investigate the distribution, quantities 

and functional effects of these substances in well-defined neuronal circuits and underlying 

single neurons, robust and highly sensitive measurement tools are needed. SCMS has become 

a key technology to interrogate the molecular profile of isolated cell samples, including 

neuroactive substances such as peptides, proteins, amino acids, and biogenic monoamines 

(Romanova et al. 2014; Qi et al. 2018; Zhang & Vertes 2018). The detection and quantification 

of biogenic amines from biological samples has been studied with various analytical techniques 

such as CE coupled to FSCV (Denno et al. 2016; Pyakurel et al. 2016), HPLC coupled to ECD 

(Hardie & Hirsh 2006; Chen et al. 2013), CE coupled to ESI-TOF MS (Aerts et al. 2014; Onjiko 

et al. 2015) and CE coupled to LIF or LINF (Kim et al. 2002; Lapainis et al. 2007; Cecala et al. 

2012) even up to the level of single cells. 

 

While the detection of neuropeptides using MALDI-TOF MS from single isolated neurons is a 

commonly used tool in neurobiology (e.g. Neupert et al. 2007; Rubakhin et al. 2011; Ong et al. 

2015b), the analysis of small molecule neuroactive substances, such as biogenic monoamines, 

from single cells using MALDI-TOF MS is still challenging from an analytical point of view. 

The detection of these molecules by MALDI-TOF MS is limited due to the generation of intense 

matrix signals in the corresponding mass ranges of interest, in-source analyte instability, 

insufficient molecule ionization, or putative ion suppression events. Various studies focused on 

overcoming these persisting hurdles by developing chemical derivatization protocols (Chacon 

et al. 2011; Manier et al. 2014; Toue et al. 2014), alternative matrices (Shanta et al. 2012; 

Shariatgorji et al. 2012; Shariatgorji et al. 2014) and sample preparation protocols (Persike & 

Karas 2009) to increase ion stability and molecule ionization for an improved MALDI-TOF 

MS detection of small molecule substances. Furthermore, different groups reported the 

successful quantification of small molecules from dried droplet samples using MALDI-TOF 

MS in combination with internal standard application and an improved matrix preparation 

(Persike & Karas 2009; Persike et al. 2010; Chaptal et al. 2017).  
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Neuroactive substances, such as biogenic monoamines and neuropeptides, can be co-localized 

in specific neurons, but a method based on MALDI-TOF MS to identify and map single neurons 

regarding their aminergic compositions within an intact brain is still lacking. Therefore, the 

main goal of the thesis at hand was to develop a MALDI-TOF MS based method for the 

detection and quantification of biogenic monoamines from single cell samples. Furthermore, 

the developed protocol should also allow the detection of neuropeptides and related precursor 

peptides from the same sample.  

 

Here, I focused on single neurons of the OA/TA system of the genetic model animal D. 

melanogaster, as it offers the possibility to use promoter-specific GAL4 driver lines to express 

fluorescent gene reporters in defined subsets of single cells or cell populations in the CNS. In 

D. melanogaster and other invertebrates, the biogenic monoamine OA, equivalent to 

norepinephrine in vertebrates, is synthesized in a two-step process; Tyr is decarboxylated by 

Tdc2 into TA (Cole et al., 2005), which is followed by the hydroxylation of TA into OA by 

Tβh (see chapter 1, Fig. 1.1; Livingstone & Tempel 1983; Monastirioti et al. 1996). The 

functions and localizations of OA and TA in Drosophila have been studied extensively, mainly 

using genetic tools and immunohistochemistry (Python & Stocker 2002; Cole et al. 2005; 

Sinakevitch & Strausfeld 2006; Vömel & Wegener 2008; Busch et al. 2009; Selcho et al. 2012; 

Selcho et al. 2014); and is described in more detail in the general introduction (see chapter 1) 

of this thesis.  

 

The detection and quantification of biogenic amines such as OA and TA from D. melanogaster 

tissue samples has been the focus of several studies using mainly HPLC or CE coupled to FSCV 

(Denno et al. 2016) or ECD (Ream et al. 2003; Paxon et al. 2005; Hardie & Hirsh 2006; Chen 

et al. 2013). However, all of these studies used whole brains in combination with sample 

homogenization which renders identification and quantification of biogenic amines from a 

single cell as well as unambiguous cell localization in an intact brain impossible. Moreover, 

when analyzing whole brains, or larger tissue parts, potential changes in biogenic monoamine 

concentration in single soma or cell populations could be concealed due to a potential 

upregulation or release in other neurons, reuptake by glia cells and inactivation mechanisms 

leading to a compensatory effect in the sample (Zhou et al. 2008). 

 

The present study assessed the performance of two commercially available derivatization 

agents for enhancing MS sensitivity and stability of biogenic monoamines and investigated 
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detection and quantification limits by combining on plate derivatization with isotopically 

labeled internal standards. Furthermore, fluorescence-guided microdissections in combination 

with a Tdc2-GAL4 driver line crossed to a UAS-mCD8::GFP reporter line was used for a 

reliable identification and isolation of TA and OA synthesizing neurons. Moreover, the 

developed protocol was used to compare concentrations of OA and TA from individual isolated 

VMlb neurons of the GNG between females and males, investigated temperature-dependent 

changes in somatic OA/TA concentrations, and determined OA/TA titer differences in two cell 

populations at the single-cell level. Finally, to demonstrate that the application of the developed 

protocol is not interfering with the detection of neuropeptides, single neuropeptidergic D. 

melanogaster neurons were analyzed. The developed protocol for the characterization and 

quantification of biogenic monoamines of individual D. melanogaster neurons will help to 

foster our understanding of neuromodulation, plasticity and single neuron function in discrete 

neuronal circuits in the CNS. 

 
 

2.2 Materials and Methods 
 
Chemicals 

All used chemicals were purchased from SIGMA-Aldrich (Steinheim, Germany), if not stated 

otherwise. 

 

Synthetic solutions 

Stock solutions of OA-hydrochloride,  TA-hydrochloride, (±)-p-octopamine-α,β,β-d3 

hydrochloride (OA[d3]), (CDN Isotopes, Pointe-Claire, Canada) and 2-(4-

hydroxyphenyl)ethyl-1,1,2,2-d4-amine hydrochloride (TA[d4]; CDN Isotopes) were prepared 

in 50% MeOH/TraceSELECT® water at a concentration of 10 nmol/µl, stored at 4°C in 

darkness and were used to prepare dilution series. Stock solutions of synthetic biogenic amines 

were replaced after two months, dilution series after three weeks. 

 

Derivatization reagents 

4-hydroxy-3-methoxycinnamaldehyde (CA) was prepared in 100% MeOH at a concentration 

of 23 mg/ml, as described by Manier and colleagues (Manier et al. 2014), and centrifuged at 

13000 rpm at 4°C for 10 min. 5 µl of the supernatant was diluted in 150 µl 50% 

MeOH/TraceSELECT® water at a concentration of 0.76 mg/ml. According to Gatti and 
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colleagues (Gatti et al. 2012), 2,5-dimethyl-1H-pyrrole-3,4-dicarbaldehyde (DPD) was 

dissolved in 50% MeOH/TraceSELECT® water at a concentration of 0.415 mg/ml. The 

mixture was vortexed for 30 s and sonicated for 2 min in ice water. Both solutions were 

centrifuged at 15000 rpm for 10 min at 4°C and stored at 4°C and darkness upon usage. Both 

derivatization solution were prepared fresh daily. 

 

Fly strains 

Adult flies ≥ 5 days old of both sexes were used. Flies were raised on standard cornmeal, 

molasses, yeast, agar medium on a 12 h/12 h light-dark cycle at 25°C and 60% humidity. The 

following fly strains were used: Tdc2-GAL4 (Cole et al. 2005); UAS-mCD8::GFP (Burke et al. 

2012); TßhnM18-GAL4 (Monastirioti et al. 1996; kindly provided by Manuela Ruppert, 

University Cologne); c929-Gal4 (Hewes et al. 2003; kindly provided by Christian Wegener, 

University Würzburg); TßhnM18,FM7; Tdc2-GAL4, Tdc2-GAL4 (TßhnM18/Tdc2-GAL4, this 

work). For visualization GAL4 lines were crossed to UAS-mCD8::GFP. 

 

Quantification and standard curve calculation 

Preparation of dried droplet samples was modified from Persike and colleagues (Persike et al. 

2010) and adapted for small volume samples. To calculate standard curves, either 300 nl or 18.4 

nl of synthetic OA, TA, or a mixture of both, was applied onto a MALDI sample plate in a 

concentration range from 1000 to 0.1 fmol/µl. For standard curves measured in parent mode 

MS² (pMS²), only samples in a range of 100 to 1 fmol/µl were analyzed. After applied synthetic 

solutions were allowed to air-dry, sample spots were covered with an equal volume (300/18.4 

nl) of OA(d3), TA(d4), or a mixture of both with a constant concentration of 100 fmol/µl. After 

letting the spot air-drying a second time, each spot was covered with either 126 nl or 9.2 nl of 

CA or DPD. The resulting spot was allowed to air-dry again and ultimately covered with 300 

nl or 18.4 nl α–cyano-4-hydroxycinnamic acid (CHCA) and dried under a constant airflow. 

CHCA was prepared fresh daily in 80% MeOH/TraceSELECT® water at a concentration of 

1.43 mg/ml. The resulting mixture was centrifuged for 10 min at 15.000 rpm at 4 °C and stored 

at 4 °C and darkness until usage. 

 

Single cell dissection 

Flies were either immobilized for 60 min or 15 min on ice, or directly removed from the vials 

using forceps. The brain was removed in dissection buffer (NaCl 126mM, KCl 5.4mM, 
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NaH2PO4 0.17mM, KH2PO4 0.22mM, pH 7.4) under an epifluorescence stereomicroscope. For 

single-cell dissections, brain samples were transferred to a fresh drop of ice cold dissection 

buffer containing 33% glycerol. To access single somata, the ganglionic sheath was carefully 

opened close to the position of the cell of interest using ultra-fine scissors, without changing 

the neuroarchitecture of the brain. Before the removal of the uncovered cell soma a pulled glass 

capillary with a tapered tip was connected to a rubber-tube and fitted to a mouthpiece. Then, 

the tip of the glass capillary was positioned over the cell soma of interest. By gently applying 

negative air pressure on the capillary by inhaling, the cell soma was removed from the tissue 

and loaded into the glass capillary. Subsequently, the isolated cell soma was transferred to a 

stainless steel MALDI-TOF target plate and released by applying gentle air pressure. Excessive 

dissection saline was removed using the same glass capillary and the remaining soma was left 

to dry at room temperature (rt). Residual glycerol surrounding the isolated soma was washed 

off with 50% MeOH/TraceSELECT® water. Washing was performed multiple times with a 

fresh glass capillary until the glycerol was completely removed. However, the placed cell soma 

was left uncovered by the washing solution to prevent a possible loss of analytes. Only one 

neuron soma was isolated from a single brain sample. Furthermore, a single dissection block, 

processing multiple brains, did not exceed one hour. 

 

Single cell sample preparation for quantitative MALDI-TOF MS 

Dissected single cell samples were covered with 18.4 nl of an equimolar mixture of OA(d3) 

and TA(d4) with a concentration of 100 fmol/µl. After air-drying, 9.2 nl of CA or DPD were 

added to the sample spots and left to air-dry. Finally, the sample spots were covered with 18.4 

nl of CHCA and dried under a constant stream of air. All solutions were applied using a pulled 

glass capillary fitted in a nanoliter micro injector (nanoliter 2000, World Precision Instruments, 

FL, USA). Between each application step, the remaining solution in the glass capillary was 

removed and the capillary rinsed two-times with 100% TraceSELECT® water, 50% 

MeOH/TraceSELECT® water followed by 100% MeOH before air-drying.  

 

MALDI-TOF MS 

Mass spectra were acquired using an UltrafleXtreme MALDI-TOF/TOF mass spectrometer 

(Bruker Daltonik GmbH, Bremen, Germany). All MS acquisitions were performed under 

manual control in reflector positive ion mode. The instrument settings were optimized for the 

mass ranges of m/z 0-400 and m/z 600-4000, respectively. The instrument was calibrated for 

the mass range m/z 0-400 using prominent internal CHCA matrix ion signals as described earlier 



Chapter 2 
 
 

34 
 

(Persike & Karas 2009). For the mass range m/z 600-4000 the instrument was calibrated using 

an external synthetic peptide standard (Table 2.1). All mass spectra were acquired with 2000 

laser shots with a laser frequency of 333 Hz.   

 

MALDI-TOF/TOF tandem mass spectrometry 

Tandem mass experiments were performed using LIFT technology, with an acceleration set to 

1 kV. The number of laser shots for a single MS² spectrum varied from 1000 to 2000 shots for 

biogenic monoamines and from 2000 to 5000 shots for neuropeptides, depending on ion signal 

quality. To verify OA and OA(d3), tandem mass spectra were acquired without collision gas. 

For the validation of TA and TA(d4), fragmentations were performed in CID mode, with argon 

as the collision gas. Resulting fragments of underivatized biogenic monoamines were compared 

to data provided in the Scripps Center for Metabolomics database (METLIN, 

https://metlin.scripps.edu/index.php). Peptide identities were verified by comparison of 

predicted (http://prospector.ucsf.edu) and experimentally obtained fragment ions. For 

quantification experiments of OA and TA, mass spectra were acquired in parent ion mode with 

fixed laser intensity. The parent ion window was set from m/z -0.4 to +6. Each mass spectrum 

was acquired with 2000 laser shots. In general, a signal was considered to be detected with an 

S/N ratio ≥ 3. The data obtained in these experiments were processed with the FlexAnalysis 3.4 

software package (Bruker Daltonik GmbH, Bremen, Germany). For quantitative analysis, only 

unprocessed data were used. 

 

Table 2.1 Synthetic peptides used for instrument calibration in the range of m/z 600 - 4000. 
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Method validation and Statistics 

Validation of standard curves followed the ±15/20 criteria published by the US Food and Drug 

Administration (FDA) for bioanalytical methods (FDA 2013). All data points for standard curve 

calculation are averages of at least three replicates. Linear ranges, accuracy, relative standard 

deviations (RSD) and linearity (R²) were calculated with Microsoft Excel 2010 and/or R 3.1.3 

(R Development Core Team). To compare OA titers between different octopaminergic cell 

populations, data points were tested for normal distribution using a one-sample Kolmogorov-

Smirnov test and were either analyzed by student’s t-test or one-way analysis of variance 

(ANOVA) for datasets with more than two groups. Comparative statistics were calculated in R 

3.1.3.  

 

Imaging of GFP expression 

For imaging of native GFP expression, brains were handled as described by Pitman and 

colleagues (Pitman et al. 2011). Brains were dissected in ice-cold phosphate-buffered saline 

(PBS, 1.86 mM NaH2PO4, 8.41 mM Na2HPO4, 175 mM NaCl) and fixed in 4% 

paraformaldehyde diluted in PBS for 90 min at rt (~21 °C) under vacuum (300 mbar). Then, 

samples were washed three times for 10 mins in PBS containing 0.1% Triton X-100 and one 

time in PBS before mounting in 90% glycerol/1% DABCO/9% PBS. Imaging was performed 

on a Zeiss LSM Meta 510 microscope (Zeiss AG, Jena, Germany), and resulting images were 

processed in Amira 5.4.2 (FEI, Hillsboro, OR). Reconstruction of brain surfaces was performed 

manually in Amira, while GFP-marked cells were visualized using voltex rendering. 

 
  

2.3 Results and Discussion 

2.3.1 Analysis of non-derivatized and derivatized synthetic OA and TA 

In order to evaluate the used analytical platform, a Bruker UltrafleXtreme MALDI-TOF/TOF 

mass spectrometer, and to assess ion stability and LODs for underivatized biogenic 

monoamines, different concentrations of synthetic TA and OA were analyzed with CHCA. 

Recorded mass spectra showed that TA as well as OA are unstable and undergo fragmentation 

during ionization (Fig. 2.1 A1, B1). OA (m/z 154.1) losses a mass equal to a water molecule 

(H2O, m/z -18), producing a fragment ion at m/z 136.0, while TA (m/z 138.0) losses a mass 

equal to ammonia (NH3, m/z -17), producing a fragment ion at m/z 121.0. From the ratios of the 

detected ion signals it can be deduced that OA shows a more unstable configuration compared 
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to TA. Mass spectra of subsequent tandem experiments revealed product ions identical to 

fragments observed in the latter MS analysis (Fig. 2.1 A1, B1), which is also in consistency 

with fragmentation spectra deposited in the METLIN database. Furthermore, METLIN predicts 

fragmentation of the hydroxyl group at the phenol ring for OA and the fragmentation of the α-

amine group of TA, matching the observed neutral losses. The mass spectrometric analysis of 

a dilution series of synthetic TA and OA with CHCA revealed a LOD of 100 fmol/µl for OA 

and 10 pmol/µl for TA, in MS and MS² mode. These relatively high detection limits are 

probably a direct result from the observed instability and poor ionization. To allow an 

unequivocal identification of TA and OA from biological samples as small as a single D. 

melanogaster neuron, the ion stability and ionization properties of resulting ions had to be 

notably increased.   

 

 

Figure 2.1 Mass spectrometric analysis of underivatized synthetic OA and TA. Both analyzed synthetic 
biogenic monoamines, OA (m/z 154.1; A) and TA (m/z 138.1; B), are unstable during ionization as represented by 
product ions at m/z 136.1 (OA) and m/z 121.0 (TA) in MS mode, which was confirmed by subsequent MS² 
experiments. Arrow = Product ion used for identification. 

 
In recent years, derivatization reagents in corresponding protocols for the detection of 

monoamine neuroactive substances by MALDI-TOF MS have been developed, improving ion 

stability and ionization and leading ultimately to an improved specificity and sensitivity 

(Chacon et al. 2011; Shanta et al. 2012; Toue et al. 2014; Manier et al. 2014; Shariatgorji et al. 

2015). Two derivatization agents, targeting primary amine groups, were tested in this study: 

CA which has been used for the detection of biogenic monoamines from rat frozen tissue 

section using MALDI-TOF MSI (Manier et al. 2014) and DPD which has been used for the 

improved detection of TA and OA using HPLC with diode array detection (Gatti et al. 2012). 

Both derivatization agents were picked because of their simple derivatization procedures which 

have been reported to occur at rt and need no additional chemical treatments of the sample 
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(Gatti et al. 2012; Manier et al. 2014). An exemplary reaction scheme of CA and DPD with OA 

is given in Figure 2.2.  

 

 

Figure 2.2 Schematic reaction scheme of CA and DPD with OA (after Manier et al. 2014 and Gatti et al. 2012). 

On-plate derivatization of synthetic biogenic monoamines with CA resulted in a mass shift of 

m/z +160 in resulting mass spectra (Fig. 2.3), as reported earlier (Manier et al. 2014). Recorded 

mass spectra of CA derivatized OA, OA-CA, revealed an intense ion signal at m/z 314.1, while 

MS analysis of TA-CA revealed an intense ion signal at m/z 298.1 (Fig. 2.3 A1, B1). Subsequent 

MS² analysis of OA-CA revealed a single product ion at m/z 296.1, mass identical to a water 

loss fragment. This fragment results probably from the same localized water loss which has 

been proposed earlier for underivatized OA. Comparison to recorded MS² mass spectra of an 

isotopically labeled synthetic OA standard, OA(d3), revealed a corresponding product ion at 

m/z 299.1 (Fig. 2.3 A2). Tandem mass spectra of TA-CA showed a fragmentation pattern 

consisting of four distinct product ions at m/z 120.8, 178.0, 243.0 and 296.0 using CID (Fig. 

2.3 B1). To allow an unambiguously identification of TA-CA, recorded MS² mass spectra of 

TA-CA were compared to tandem mass spectra of a baseline ion signal at m/z 298.1 from 

samples containing only CA, leading to the discovery that only the ion signal at m/z 120.8 could 

be used to clearly identify TA-CA. To analyze the structural origin of this product ion from TA-

CA, isotopically labeled synthetic TA(d4) was derivatized with CA and analyzed in MS and 

MS² mode (Fig. 2.3 B2). Recorded mass spectra of CA derivatized TA(d4) revealed a single 

major ion signal at m/z 302.1, matching putative TA(d4)-CA. Subsequent MS² experiments 

revealed that the product ion at m/z 120.8 used for identification of TA-CA originates of the 

TA side of TA-CA, since a corresponding fragment ion at m/z 124.8 was observed in TA(d4)-

CA tandem mass spectra (Fig. 2.3 B1, B2). Furthermore, the resulting product ion used for TA-

CA identification at m/z 120.8 probably results from a cleavage between the TA α-carbon and 

the amino group in TA-CA. While analyzing high concentrated, CA derivatized, synthetic OA 

and TA, small additional ion signals were recorded in the close vicinity of the major OA-CA 
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and TA-CA ion signals (Fig. 2.3 A1, B1). Comparison to mass spectra recorded from 

derivatized deuterized standards, OA(d3) and TA(d4), revealed that these ion signals originate 

from the derivatized substances and were not related to the used derivate (Fig. 2.3 A2, B2). The 

ion signals were only detectable in high concentrated samples and were not detected in samples 

with concentration ≤ 1000nM (analyzed sample range).  

 

 

Figure 2.3 MS and MS² mass spectra of OA-CA, OA(d3)-CA, TA-CA and TA(d4)-CA with suggested 
chemical structure of detected product ions used for identification. (A1) MS and MS² mass spectra of CA 
derivatized synthetic OA and (A2) OA(d3) with suggested chemical structure of detected product ions used for 
OA/OA(d3) identification. (B1) MS and MS² mass spectra of CA derivatized synthetic TA and (B2) TA(d4) with 
suggested chemical structure of detected product ions used for TA/TA(d4) identification. Arrow = product ion 
used for identification. 

Mass spectrometric analysis of different concentrations of TA and OA derivatized with CA 

revealed a striking increase in ion stability and ionization resulting in increased detection ratios 

with LODs as low as 5 fmol/µl for TA-CA and 25 fmol/µl for OA-CA. By using the MS² it was 
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even possible to lower the LODs for the detection of TA-CA and OA-CA to 2.5 fmol/µl for 

TA-CA and 1 fmol/µl for OA-CA (Table 2.2). 

 

 

Figure 2.4 MS and MS² mass spectra of DPD derivatized OA, OA(d3), TA and TA(d4) with suggested 
chemical structure of detected product ions used for identification. (A1) Recorded MS and MS² mass spectra 
of DPD derivatized synthetic OA and (A2) OA(d3) with suggested chemical structure of detected product ions 
used for OA/OA(d3) identification. (B1) Recorded MS and MS² mass spectra of CA derivatized synthetic TA and 
(B2) TA(d4) with suggested chemical structure of detected product ions used for TA/TA(d4) identification. Arrow 
= product ion used for identification. 

Mass spectrometric analysis of synthetic samples derivatized with DPD revealed a mass shift 

of m/z +133 for both TA (m/z 138.1 → m/z 271.1) and OA (m/z 154.1 → m/z 287.1; Fig. 2.4). 

Subsequent fragmentation spectra of OA-DPD showed three distinct ion signals at m/z 136.1, 

152.1, and 269.1 and an ion pattern consisting of three ion signals at m/z 121.1, 136.1, and 151.1 

for TA-DPD (Fig. 2.4). These results are in accordance with previous findings obtained by ESI 
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MS experiments (Gatti et al. 2012). To determine product ions for the clear identification of 

TA-DPD and OA-DPD, baseline ion signals matching TA-DPD and OA-DPD were analyzed 

by tandem mass spectrometry from samples containing only DPD. Comparison of the recorded 

MS² spectra of TA-DPD, OA-DPD and corresponding base line ion signals revealed that only 

the ion signals at m/z 152.1 for OA-DPD and m/z 121.1 for TA-DPD represent unique product 

ions for reliable identification. Tandem mass spectrometric analysis of isotopically labeled 

synthetic standards OA(d3) and TA(d4) revealed that the observed product ion at m/z 121.1 

corresponds to the recorded product ion at m/z 120.8 observed in TA-CA samples and originates 

at the TA side of TA-DPD, whereas the product ion used for identification of OA-DPD (m/z 

152.1) originates on the DPD side of OA-DPD (Fig. 2.4 A2, B2). Experimental determination 

of corresponding LODs revealed also a significant decrease in detection limits up to 10 fmol/µl 

in MS mode and 1 fmol/µl in MS² mode for both substances (Table 2.2). 

Table 2.2 Summary of experimentally determined LODs and LLOQs for OA-CA and TA-CA analysis in MS, 
MS², and pMS² mode. (*) = 300-nl samples; (**) = 18.4-nl samples. 

calculated 
values 

MS  
[fmol/µl] 

MS2/pMS² 
[fmol/µl] 

LOD   
   OA-CA 25 1 
   TA-CA 5 2.5 
   
   OA-DPD 10 1 
   TA-DPD 10 1 
LLOQ   
   OA-CA 25*/25** 2.5*/10** 
   TA-CA 5*/10** 5*/10** 

 
 

The observed LODs should be sufficient to detect TA and OA from biological samples, 

however, the analyzed sample volume of 300 nl was too large for SCMS, since addition of such 

a high volume to a single cell with a sample volume of about ~4-1.5 pl (cell diameter 7-10 µm) 

would lead to an extreme dilution of chemical features. Therefore, experiments were repeated 

with CA or DPD derivatized synthetic TA and OA with a sample volume of 18.4 nl. The 

recorded mass spectra confirmed previously determined LODs for both substances at 10 

fmol/µl in MS mode and 1 fmol/µl (TA-CA 2.5 fmol/µl) in MS² mode (Table 2.2).   
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2.3.2 Detection of OA and TA from individual Drosophila neurons 

To allow a reproducible cell identification among different brains, the Tdc2-GAL4 line was 

crossed to a UAS-mCD8::GFP reporter line (Fig. 2.3 A1, A2). This line labels neurons that 

express Tdc2 and should therefore contain TA, and earlier studies, utilizing 

immunocytochemistry as well as genetic reporter lines, showed that most of these neurons also 

contain OA (Monastirioti et al. 1995; Busch et al. 2009). In order to evaluate the performance 

 

 

Figure 2.5 Analysis of OA and TA from CA and DPD derivatized single D. melanogaster somata using direct 
MALDI-TOF MS. Anterior (A1) and posterior (A2) views of a 3D reconstruction of a Tdc2>GFP labeled adult 
brain. VM, ventral midline; VL, ventrolateral cells; VMmx, VM maxillary cluster; VMmd, VM mandibular 
cluster; VMlb labial cluster. Scale bar = 25 µm. Inset A2: Isolated GFP-labeled soma on a sample plate. Scale bar 
= 10 µm. Detection (MS) and confirmation (MS²) of OA from individual dissected VMlb somata after (B) CA and 
(C) DPD derivatization. (D) Recorded tandem mass spectra for the confirmation of CA and DPD derivatized TA 
from single VMlb soma samples. (E) Mass spectra of a single CA derivatized TβhnM18/Tdc2>GFP VMlb soma 
yielding a prominent ion signal matching putative TA-CA at m/z 298.1 and subsequent confirmation by MS² of 
the corresponding precursor ion. Arrows = product ions used for identification. 
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of the developed protocol at the single cell level, VMlb neurons of the GNG were targeted (Fig. 

2.3 A2). The VMlb clusters can be subdivided into two morphologically differentiable neuron 

subtypes according to their primary projection pathways: VPM and VUM neurons (see chapter 

1; Busch et al. 2009). The primary projections of VPMs run toward the ventral foramen and 

develop asymmetric ramifications in the brain and the GNG, while VUM primary neurites run 

via one of three median tracts toward the posterior ventral area of the esophagus foramen from 

where they innervate the GNG and the thoracicoabdominal ganglia (Busch et al. 2009). These 

ascending and descending neurons seem to be involved in the neuronal pathway controlling 

aggression as well as reinforcing short-term memory among other behaviors (Zhou et al. 2008; 

Burke et al. 2012). Somata of these neurons are located close to the neuronal sheath and are 

therefore easily accessible for manual dissection. Moreover, these neurons showed an intense 

and consistent GFP labeling throughout nearly all dissected Tdc2>GFP brains, which is crucial 

for the reproducible dissection of neurons of interest under a fluorescence stereomicroscope. In 

the present study it was not possible to discriminate between the two neuron types, thus both 

neuron types were analyzed. 

 

Single somata for SCMS were isolated in dissection buffer containing 33% glycerol, stabilizing 

neuron integrity and reducing the potential release of neuroactive substances from the soma 

into the axon without changing the biochemical profile of the neuron of interest (Rubakhin et 

al. 2003; Miao et al. 2005; Rubakhin et al. 2006; Rubakhin & Sweedler 2008). Only samples 

showing an intact fluorescence-labeled cell soma on the MALDI plate with no visible debris 

were chosen for further treatment and subsequent SCMS analysis (Fig. 2.5 A2, inset). Mass 

spectrometric analysis of CA treated single dissected VMlb somata revealed an ion signal at 

m/z 314.1 (Fig. 2.5 B). Subsequent tandem mass experiments confirmed this ion signal as OA-

CA (Fig. 2.5 B). Recorded mass spectra of VMlb somata derivatized with DPD revealed an ion 

signal m/z 287.1, matching putative OA-DPD (Fig. 2.5 C). MS² mass spectra of this latter ion 

signal confirmed it as OA-DPD (Fig. 2.5 C). The detection of TA from CA or DPD derivatized 

samples, however, turned out to be inconsistent. In some derivatized VMlb samples a minor 

ion signal mass identical to TA-CA or TA-DPD was identified (not shown). Subsequent MS² 

experiments confirmed these ion signals as TA-CA and TA-DPD, respectively (Fig. 2.5 D). 

Furthermore, recorded MS² spectra of DPD derivatized single soma samples yielded additional 

ion signals of an unidentified origin compared to MS² mass spectra obtained from synthetic 

TA-DPD samples (Fig. 2.5 D; Fig. 2.4 B1).  
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To rule out whether this inconsistency of detection was caused by the applied derivatization 

protocol or resulted from a low titer of TA in the analyzed neurons, a second OA-devoid genetic 

driver line was analyzed. This TßhnM18/Tdc2-GAL4 driver line is expressed in the same neuronal 

subpopulations as Tdc2-GAL4, moreover, the gene Tßh for the OA synthesizing enzyme is 

knocked out and labeled neurons therefore cannot synthesize OA. Furthermore, it has been 

shown that the initial TßhnM18 line has elevated TA levels compared to wildtype flies and is 

completely devoid of OA (Monastirioti et al. 1996; Iliadi et al. 2017). Mass spectra of single 

VMlb somata of TßhnM18/Tdc2>GFP treated with CA revealed a clear ion signal at m/z 298.1, 

corresponding to putative TA-CA but no ion signal matching OA-CA (Fig. 2.5 E). Subsequent 

structure elucidation by MS² confirmed the ion signal as TA-CA (Fig. 2.5 E). This corroborates 

the hypothesis that the inconsistency of TA detection is due to a very low titer of TA in the 

analyzed VMlb neurons, which is at the lower boundary of the LOD (~2.5 fmol/µl) of the 

developed protocol. 

 

 

Figure 2.6 Observed linearity, precision, and accuracy for 300-nl samples of OA-CA/OA(d3)-CA in MS and 
pMS² mode as well as TA-CA/TA(d4)-CA in MS mode. (A, B) Observed Linearity, accuracy, and precision for 
OA-CA with OA(d3)-CA as IS in MS mode, (C, D) for OA-CA with OA(d3)-CA as internal standard in pMS² 
mode and (E, F) for TA-CA with TA(d4)-CA as IS in MS mode. 

2.3.3 Quantification of synthetic OA and TA 

In order to enable robust quantification of TA and OA from biological samples, standard curves 

had to be constructed from experimentally analyzed synthetic samples. For initial testing, 300 

nl sample spots consisting of either synthetic OA, TA or a mixture of both were applied in a 

concentration range of 1000 fmol/µl to 0.5 fmol/µl and covered by 300 nl of an internal standard 



Chapter 2 
 
 

44 
 

comprising OA(d3), TA(d4) or a mixture of both at a fixed concentration of 100 fmol/µl. 

Finally, sample spots were treated with 126 nl CA or DPD and covered with 300 nl CHCA as 

matrix. For the construction of standard curves, each analyzed concentration was measured with 

at least three replicates and the average ion intensity ratios were calculated. Experimentally 

determined standard curves for samples derivatized with CA showed robust RSDs (<15/20%), 

excellent precision (<15/20%), and nearly perfect linearity values (OA-CA, R² = 0.9997; TA-

CA, R² = 0.9999) in MS mode, which fulfilled the criteria set up by the FDA for bioanalytical 

method validation (FDA, 2013; Fig. 2.6 A, B, E, F). The experimentally determined lower limit 

of quantification (LLOQ) for OA-CA was 25 fmol/µl and 5 fmol/µl for TA-CA (Table 2.2, Fig. 

2.6 B, F). The detection of small molecules can suffer from internal matrix ion signals, 

overlapping potential ion signals of interest as described earlier. A matrix ion signal at m/z 

 

 

Figure 2.7 Quantification of synthetic OA and TA from CA derivatized 18.4 nl samples. (A) Representative 
pMS² mass spectrum of an OA-CA/OA(d3)-CA sample and standard curves constructed from 18.4 nl volume 
samples for quantification of (B) OA-CA in pMS2 and (D) TA-CA in MS mode with observed linearity, accuracy, 
and precision (C, E). 

313.1 interfered with the OA-CA signal by overlapping the OA-CA ion signal with its second 

isotope. To resolve this problem, standard curve and LLOQs were determined by analyzing 

synthetic samples in a range from 100 fmol/µl to 1 fmol/µl in parent MS² mode (Fig. 2.6 C, D). 

By setting the precursor ion window from m/z -0.4 to +6 it was possible to quench the 

interference of the matrix ion signal from the analysis (Fig. 2.7 A). This resulted in an even 

lower LLOQ for OA-CA at 2.5 fmol/µl (Table 2.2, Fig. 2.6 C, D). Standard curves for TA-CA 

created from pMS² measurements showed no improvements and yielded the same LLOQ at 5 
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fmol/µl as recorded from MS mode experiments, which was expected since no matrix ion 

signals interfere with the TA-CA ion signal at m/z 298.1 (Table 2.2).  

 

The determined LLOQs and observed standard curve parameters were quiet encouraging, 

however, again the approach had to be scaled down to single cell volumes. Experiments for the 

construction of standard curves and determination of LLOQs were repeated with a sample 

volume of 18.4 nl for synthetic TA, OA, internal standards, matrix and 9.2 nl of derivatization 

agent.  

 

 

Figure 2.8 Observed linearity, precision, and accuracy for 300-nl samples of OA-DPD/OA(d3)-DPD in MS 
and pMS² mode. (A, B) Observed Linearity, accuracy, and precision for OA-DPD with OA(d3)-DPD as IS in MS 
mode and (C, D) pMS² mode.  

 

Experimentally determined standard curves for OA-CA showed nearly identical values in RSD 

(<15/20%), linearity (MS mode, R² = 0.9997; pMS² mode, R² = 0.9995) and precision 

(<15/20%) as reported for 300 nl samples (Fig. 2.7 B, C). However, in pMS² mode the LLOQ 

was increased to 10 fmol/µl due to day-to-day variation, possibly resulting from varying matrix 

interference (Table 2.2). Analysis of determined standard curves and LLOQs for TA-CA 

samples in MS and MS² mode were consistent with determined values from earlier analyzed 

300 nl samples (Table 2.2, Fig. 2.7 D, E). A comparison to other quantitative techniques 

showedthat the developed protocol for OA and TA quantification is among the most sensitive 

methods published to date (Table 2.3). Furthermore, the presented protocol can operate with 

extremely low sample volumes (low nl range), which enables the direct interrogation of small 
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biological samples like single cells. Often, extracts of such small samples have to be diluted to 

higher volumes in order to be introduced into separating or analyzing instruments, which can 

lead to analyte concentrations lower than the LOD of the used setup and ultimately missing 

them in the analysis. 

Table 2.3 Determined LOQs for OA (A) and TA (B) using different quantitative approaches. Abbreviations: 
MALDI-TOF MS, matrix assisted laser desorption/ionization - time of flight mass spectrometry; MALDI-TOF 
pMS², matrix assisted laser desorption/ionization - time of flight precursor tandem mass spectrometry; HPLC-
DAD-UV, high performance liquid chromatography with UV detection by diode array detector; UPLC-TUV, 
ultra-performance liquid chromatography with tunable ultra violet detector; CE-DAD-UV, capillary 
electrophoresis with UV detection by diode array detector; HPLC-FLD, high performance liquid chromatography 
with fluorescence detector; HPLC-MS/MS, high performance liquid chromatography with tandem mass 
spectrometric detection; CE-FSCV, capillary electrophoresis with fast-scan cyclic voltammetry detection; MEKC-
EC, micellar electrokinetic capillary chromatography with electrochemical detection; CE-LINF, capillary 
electrophoresis with laser induced natural flouresence detection. 

 

 

Analysis of constructed standard curves of 300 nl DPD derivatized OA samples revealed RSD 

values exceeding the 15/20% rule, showing poor precision and/or declined linearity (Fig. 2.8 

A-D). This could result from an incomplete turnover, which is limited by the short reaction time 
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during drying of the small volume of applied DPD, and therefore not qualifying for a robust 

quantification in conjunction with the developed protocol. 

2.3.4 Stability of stored samples 

Often it is desirable to store prepared samples for later analysis, however, storage under the 

wrong conditions can lead to a change in sample composition by sample degradation or 

unwanted chemical reactions driven by external effects like light or heat. To evaluate a potential 

degradation of OA-CA and TA-CA during sample storage, four triplicates of 18.4 nl sample 

spots were prepared and stored at either darkness or at the laboratory bench with access to light 

(no direct sunlight) for up to 69 h. The triplicate sample sets were analyzed at four different 

time points: immediately after sample preparation and after 6, 22.5, and 69 h. Samples stored 

 

in darkness showed no change in ion ratios between any of the measured time points from 0 h 

to 69 h (ANOVA, OA: p = 0.56, TA: p = 0.67; Fig. 2.9 A, B). Furthermore, no significant 

decrease in ion signal intensity (ANOVA, OA: p = 0.48; TA: p = 0.90) was detected, and RSDs 

showed robust values <15% for all samples (Fig. 2.9 E, F, I). The sample set which was stored 

at a lab bench with indirect access to daylight, however, showed a significant increase in signal 

ratios for OA-CA/OA(d3)-CA between 22.5 h and 69 h (ANOVA, p = 0.03; post-hoc-test, 

22.30 h and 69.00 h, p = 0.037), while ratios recorded for TA-CA/TA(d4)-CA showed no 

significant changes over the analyzed time periods (ANOVA, p = 0.59; Fig. 2.9 C, D). 

Furthermore, observed RSDs exceeded the <15% rule for TA-CA/TA(d4)-CA samples after 69 

h of storage under light conditions (Fig. 2.7 I), and ion signal intensities decreased significantly 

for both substances after 22.5 h (ANOVA, OA: p = 3.10e-6; TA: p = 0.023) and even more 

dramatically after 69 h (ANOVA, OA: p = 2.41e-7; TA: p = 3.26e-6; Fig. 2.7 G, H).  

 

The observed degradation is possibly mediated by the absorption of photon energy from the 

indirect sunlight. Substances with aromatic rings have high optical (photon) absorption 

characteristics, which for example is a prerequisite for MALDI matrices (e.g. CHCA) to allow 

desorption and ionization of analyte molecules during laser excitation (Hillenkamp & Peter-

Katalinic 2007). However, aromatic ring systems can be found in many organic substances, for 

example in OA, TA and CA (Fig. 2.1). Moreover, it is known that the level of absorption is 

dependent on the connected ligands of the core ring (Hillenkamp & Peter-Katalinic 2007). 

Thus, an explanation for the overall loss of signal intensity for samples stored with access to 
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indirect sunlight points towards a preliminary excitation of the deposited matrix during storage 

and a direct degradation of CA derivatized OA and TA. 

 

 

Figure 2.9 Effect of sample storage in light and dark conditions on detected OA-CA/OA(d3)-CA and TA-
CA/TA(d4)-CA ratios, signal intensities and RSDs. Samples stored in darkness showed no significant changes 
in sample/standard ratios (OA, A; TA, B; ANOVA, OA: p = 0.56, TA: p = 0.67), signal intensities (OA, E; TA, 
F; ANOVA, OA: p = 0.48; TA: p = 0.90) or RSDs (I). Samples stored with indirect access to day light showed 
an significant increase in detected OA-CA/OA(d3)-CA ratios (C) while TA-CA/TA(d4)-CA samples were 
unaffected (D). Signal intensities of samples stored in light conditions showed significantly decreased ion 
intensities after 22.5 h for both substances and increased RSDs with TA values exceeding 15% (I).  

In summary, prepared samples can be stored for up to 69 h in darkness without any detectable 

sample degradation and storage in light conditions should be avoided. 
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2.3.5 Isomeric ion species and neuropeptide profiling 

Isomeric molecules of derivatized TA and OA, originating from the cell metabolism of D. 

melanogaster neurons, can potentially hamper robust quantitative analysis from these 

biological samples. They can contribute to detected ion signal ratios and thereby interfere with 

calculated substance concentrations. To resolve the problem of isomeric molecules originating 

from the sample background of D. melanogaster neurons, single somata of neuropeptidergic 

drosomyosuppressin (DMS)-expressing neurons, which do not belong to the OAergic/TAergic 

system labeled by c929>GFP (see chapter 5), were isolated and treated with CA and DPD 

before SCMS analysis.  

 

Recorded mass spectra of CA or DPD treated DMS cell samples revealed only baseline ion 

signals matching derivatized TA and OA (CA, Fig. 2.8 B; DPD, Fig. 2.9 B). Subsequent MS² 

experiments of these baseline ion signals revealed no additional product ions, when compared 

to MS² spectra of corresponding baseline ions from samples containing only CA or DPD, which 

would correspond to isomeric molecules (CA, Fig. 2.10 E, F, I, J; DPD, Fig. 2.11 E, F, I, J). 

Therefore, interfering ion signals of isomeric molecules from the sample background, which 

are mass identical to the ion signals of interest, cannot be detected, however, their presence 

cannot be completely ruled out. Moreover, even though such molecules could be present their 

interference seems to be very limited and outside of the detection limit of the used instrument. 

To test a possible effect of the applied derivatization agents on the detection of neuropeptides, 

CA and DPD treated DMS cell samples were also analyzed in the mass range at m/z 600-4000. 

Recorded mass spectra of CA derivatized DMS samples revealed two ion signals at m/z 1247.6 

and m/z 1407.5 (Fig. 2.10 C). Recorded mass spectra from tandem mass experiments of both 

precursor ions revealed product ions matching to predicted fragments of DMS and DMS-CA, 

and product ion spectra obtained from CA derivatized synthetic DMS (Fig. 2.10 D, G, H, K, 

L). Mass spectra obtained from DMS samples treated with DPD yielded similar results, with 

ion signals at m/z 1247.6 and m/z 1380.7, matching DMS and putative DMS-DPD (Fig. 2.11 

C). Comparison of recorded MS² spectra to tandem mass spectra obtained from synthetic DMS 

derivatized with DPD confirmed the identity of the ion signals as DMS and DMS-DPD (Fig. 

2.11 D, G, H, K, L). Furthermore, only minor ion signals of derivatized DMS were observed 

for both derivatization agents (CA, Fig. 2.10 C; DPD, Fig. 2.11 C). Hence, the developed 

protocol enables the detection of biogenic monoamines and neuropeptides from the same 

derivatized cell sample using either derivatization substance. 
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Figure 2.10 Effect of sample derivatization by CA on the detection of neuropeptides and evaluation of 
possible isomeric species from the sample background of D. melanogaster neurons. (A) Posterior view of a 
c929>GFP brain sample. Right circle: DMS cell body is marked. Left circle: Single DMS soma was isolated and 
placed onto a MALDI sample plate (insert). Scale bar = 25 µm. (B) Mass spectrum of a CA derivatized DMS cell 
in the mass range of m/z 0-400. (C) Mass spectrum of a CA derivatized DMS neuron in the mass range of m/z 600-
2000 revealed two ion signals at m/z 1247.6 (put. DMS) and m/z 1407.5 (put. DMS-CA). (D) Amino acid sequence 
of DMS with predicted y-, and b-fragments. (E, F) Subsequent MS² analysis of background ion signals revealed 
no product ions matching (E) TA-CA or (F) OA-CA. Comparison to corresponding MS² spectra from samples 
containing only CA revealed no additional product ions (I, J). Tandem mass spectra of precursor ions m/z 1247.6 
(G) and m/z 1407.5 (H) confirmed the ion signals as DMS and DMS-CA. (K, L) MS² mass spectra of syn. DMS 
and CA derivatized synthetic DMS matching the observed product ions from biological samples. 

2.3.6 Discrimination of OA and DA 

DA is another biogenic monoamine synthesized by D. melanogaster neurons and is mass 

identical to OA (METLIN; Wright 1987). Co-localization of the two biogenic monoamines has 

not been reported to date, however, to allow a clear distinction between the two substances and 

exclude a potential interference of DA in analyzed samples, synthetic DA was analyzed by the 

developed derivatization protocol in MS and MS² mode. Recorded mass spectra of CA 

derivatized synthetic DA revealed a major ion signal at m/z 314.1, matching putative DA-CA 

and OA-CA (Fig. 2.12 A). Tandem mass experiments of the latter precursor ion revealed 

numerous prominent product ion signals at m/z 137.0, 178.0, 190.0 and 259.0 (Fig. 2.12 B). is 

in consistency with results from an earlier study (Manier et al., 2014). Synthetic DA samples 
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Comparison to recorded MS² mass spectra of OA-CA and of samples only containing CA 

revealed that the product ion at m/z 259.0 can be used to unambiguously identify DA-CA. This 

 

 

Figure 2.11 Effect of sample derivatization by DPD on the detection of neuropeptides and evaluation of 
possible isomeric species from the sample background of D. melanogaster neurons. (A) Posterior view of a 
c929>GFP brain sample with unmanipulated (right) and isolated DMS neuron soma (left circle). Inset = isolated 
soma on MALDI-TOF sample plate. Scale bar = 25 µm. (B) Mass spectrum of a DPD derivatized DMS cell in the 
mass range of m/z 0-400. (C) Mass spectrum of a DPD derivatized DMS neuron in the mass range of m/z 900-
1800 revealed two ion signals at m/z 1247.6 (put. DMS) and m/z 1380.7 (put. DMS-DPD). (D) Amino acid 
sequence of DMS with predicted y-, and b-fragments. (E, F) Subsequent MS² analysis of background ion signals 
revealed no product ions matching (E) TA-CA or (F) OA-CA. Comparison to corresponding MS² spectra from 
samples containing only CA revealed no additional product ions (I, J). Tandem mass spectra of precursor ions m/z 
1247.6 (G) and m/z 1380.7 (H) confirmed the ion signals as DMS and DMS-CA. (K, L) MS² mass spectra of 
synthetic DMS and CA derivatized synthetic DMS matching the observed product ions from biological samples. 

derivatized with DPD showed an ion signal at m/z 287.1, matching putative DA-DPD and OA-

DPD (Fig. 2.12 C). Subsequent MS² experiments of the ion signal revealed product ions at m/z 

136.1, 151.1, 164.1, 242.1, 257.0 and 269.0 (Fig. 2.12 D). Comparison to MS² mass spectra 

recorded from samples containing OA-DPD or only DPD revealed that only the product ion at 

m/z 151.1 represents a unique fragment for a clear identification of DA-DPD. Thus, it is possible  

to discriminate between DA and OA in MS² mode using both derivatization agents, when 

analyzing OAergic neuron samples. Since no specific fragments of DA were detected in any 

analyzed neuron sample and VMlb neurons were never described as DAergic neurons, a 
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possible interference of DA on OA measurements can be excluded with high certainty.  

 

 

Figure 2.12 MS and MS² mass spectra of underivatized, CA and DPD derivatized synthetic DA with 
suggested chemical structure of detected product ions used for DA identification. (A) MS and MS² mass 
spectra of synthetic DA with suggested chemical structure of detected product ion used for DA identification. 
Comparison to product ion data obtained from METLIN database suggested an ammonia loss, originating from 
the amine group of the α-carbon. (B) MS and MS² mass spectra of CA derivatized synthetic DA with suggested 
product ion used for identification. MS² spectra of CA derivatized DA showed multiple major product ions 
identical to previously reported data by Manier et al., 2014. The product ion used for DA identification, m/z 259.0, 
suggests a breakage of one of the aromatic ring systems of DA-CA, however, which side is fragmented could not 
be confirmed. (C) MS and MS² mass spectra of DPD derivatized synthetic DA with suggested chemical structure 
of detected product ion used for DA identification. Comparison of MS² spectra of OA-DPD and DA-DPD revealed 
a unique product ion for identification (OA-DPD, m/z 152.1; DA-DPD, m/z 151.1). Arrow = product ion used for 
identification. 

2.3.7 Quantification of OA and TA in VMlb somata 

To test the efficiency of the developed quantification protocol on biological samples, I prepared 

Tdc2>GFP-labeled VMlb neurons again. Single VMlb neurons of flies cooled for 1 h were 

isolated and treated with 18.4 nl IS, 9.2 nl CA and subsequently covered with 18.4 nl of CHCA. 

To minimize potential interference from repeated laser excitation of such a small sample and 

thereby guarantee reproducible measurements, data was acquired in the following order: (1) 
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pMS2 mode for OA-CA quantification, (2) MS mode for TA-CA quantification and 

fingerprinting, (3) MS² mode for OA-CA and OA(d3)-CA confirmation, and (4) MS² mode TA-

CA and TA(d4)-CA confirmation. Quantitative mass spectrometric analysis of 1 h cooled VMlb 

soma samples showed clear ion signals for OA-CA with an average concentration of 29.67 

fmol/µl (n = 14, ± 7.49 fmol/µl; Fig. 2.13 A). Recorded TA-CA concentrations, however, were 

below the determined LLOQ, but MS² analysis revealed identification of TA-CA in 3 out of 14 

samples. These findings corroborate the earlier stated hypothesis that VMlb neurons contain 

high levels of OA and only small quantities of TA, probably due to an ongoing conversion of 

TA into OA.   

2.3.8 Temperature-dependent variability of detectable OA titers in VMlb 
neurons 

Anaesthetization by cooling of animals prior to dissection or for transfer is a widely used 

technique, especially when working with insect models. Furthermore, some behavioral 

experiments use cold-shock anesthesia for blocking reconsolidation of trained memory 

(Krashes & Waddell 2008; Felsenberg et al. 2017; Cognigni et al. 2018). However, if and how 

exactly cooling influences single neuron biogenic monoamine titers of treated animals remains 

elusive. To test whether cooling has a pronounced effect on recordable TA/OA titers, two 

additional experimental groups were analyzed: (1) uncooled animals (t = 0) and (2) animals 

cooled for 15 min (t = 15). Quantitative mass spectrometric analysis of single VMlb soma 

samples from uncooled animals (1) revealed an average OA-CA concentration of 13.67 fmol/µl 

(n = 21, ± 3.25 fmol/µl; Fig. 2.13 A). Recorded TA-CA titers were lower than the determined 

LLOQ, but tandem MS revealed clear evidence for TA-CA in 13 of 21 cells (male, 7 of 11; 

female, 6 of 10). For the second experimental group, which was subjected to cooling for 15 min 

(2), recorded OA-CA titers had an average concentration of 17.38 fmol/µl (n = 17, ± 1.94 

fmol/µl; Fig. 2.13 A). Again, recorded TA-CA titers lay below the determined LLOQ, however, 

in 10 of 17 cell samples (male, 7 of 9; female 3 of 8) the presence of TA-CA was verified by 

MS² spectra. Statistical comparison of recorded VMlb OA-CA titers from uncooled, 15 min 

cooled and 60 min cooled flies revealed significant higher OA titers in cooled animals compared 

to uncooled flies, and a significant higher OA titer in 60 min cooled flies compared to 15 min 

cooled and uncooled flies (ANOVA, uncooled x 15 min, p = 0.02; uncooled x 60 min, p = 

8.59e-14; 15 min x 60 min, p = 1.01e-9; Fig. 2.13 A). These results demonstrate a direct 

correlation between the applied duration of cooling and detectable OA concentrations in the 

VMlb neurons. This could be mediated by a reduced neurotransmitter vesicle transport from 
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the soma into the axon, whereas the synthesis process remains intact. In general, lower 

temperatures lead to a reduced activity in neurons which has been shown for the H1 neuron in 

the blowfly Calliphora erythrocephala (Warzecha et al. 1999) or the generation of action 

potentials in sensory neurons of the base of the tactile spine of P. americana (French 1985).  

 

 

Figure 2.13 Effect of cooling on recorded OA VMlb titers and statistical analysis of a potential sexual 
dimorphism in VMlb OA titers. (A) Cooling of animals prior to dissection resulted in an increase of recordable 
VMlb OA titers over time. Significant differences were found between all three VMlb sample groups. (ANOVA, 
uncooled~15-min cooling, p = 0.02; uncooled~60-min cooling, p = 8.59e-14; 15 min~60 min, p = 1.01e-9). No 
sexual dimorphism was observed for (B) uncooled (t-test, p = 0.17) or (C) 15-min-cooled (t-test, p = 0.97) flies. 

2.3.9 Sexual dimorphism of VMlb OA concentrations 

OA is a key player in modulating neuronal circuits and involved in reproduction, mating, and 

aggression in D. melanogaster in general (see chapter 1; Roeder 2005). However, it has been 

shown that sexual dimorphic OAergic neurons exist in females, controlling postmating 

behaviors (Rezával et al. 2014) and males, which are potentially involved in male specific 

aggression behavior (Certel et al. 2007; Certel et al. 2010; Hoopfer 2016). Furthermore, it has 

been shown that females contain less total neuronal OA in comparison to their male 

counterparts, while males contain less TA (Denno et al. 2016). To test whether such a sexual 

dimorphism is also pronounced in VMlb neurons, samples from uncooled male and female flies 

as well as 15 min cooled flies were analyzed towards their VMlb OA concentration and 

statistically compared. Recorded quantitative mass spectra of female VMlb neurons showed an 

average OA-CA concentration of 12.65 fmol/µl (n = 10, ± 2.04 fmol/µl) for uncooled animals 

and 17.37 fmol/µl (n = 8, ±1.79 fmol/µl) for 15 min cooled animals (Fig. 2.13 B, C). 

Quantitative SCMS of male VMlb soma samples revealed average OA-CA concentrations of 

14.59 fmol/µl (n = 11 ± 3.70 fmol/µl) for uncooled animals and 17.40 fmol/µl (n = 9, ± 1.96 
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fmol/µl) for animals which had been subjected to 15 min cooling (Fig. 2.13 B, C). Statistical 

comparison of OA titers between sexes revealed no sexual dimorphism for both sample groups 

(uncooled, t-test, p = 0.17; 15 min cooled, t-test, p = 0.97; Fig. 2.13 B, C). Thus, no sexual 

dimorphism has been observed in the analyzed VMlb OA titers. The discrepancy of total OA 

content between males and females as shown by Denno et al., 2014 could arise from potentially 

male exclusive OAergic neurons, or from OAergic neurons which have sex specific releasing 

and synthesizing properties. One VUM neuron of the VMlb cluster, for example, has been 

shown to express the male variant of the sex determination factor fruitless (fruM) and knock 

down of fruM via RNAi in three OAergic GNG neurons, including this fruM VUM VMlb neuron, 

led to higher male-male attraction in a behavioral test analyzing male-male aggression (Certel 

et al., 2010). In the presented study, however, it was not possible to discriminate between 

specific VMlb neurons, and therefore a subcluster specific quantification was not possible. 

Future studies using more sophisticated UAS/GAL4 combinations will enable the targeted 

interrogation of somatic OA titers in this fruM OAergic VMlb neuron. Furthermore, it would be 

highly interesting to see whether knockdown of fruM leads to an altered somatic OA titer in 

these neurons. 

2.3.10 Quantification of OA from two OA/TA cell populations 

Different cell populations are involved in different neuronal circuits, exhibiting variating 

activity frequencies and release modes, hence could have potentially the necessity for different 

somatic quantities of involved neuroactive substances. To test for variating OA/TA 

concentration between different OA/TA expressing cell populations, observed VMlb cell titers 

were compared to data obtained from somata of the ventrolateral cluster (VL), which is also 

labeled by Tdc2>GFP (Fig. 2.5 A). The VL population is comprised of two descending neurons 

per hemisphere with different projection patterns (OA-VL1 and OA-VL2) located between the 

antennal lobe and the ventrolateral protocerebrum in each brain hemisphere (Busch et al. 2009). 

OA-VL1 neurons project through the gnathal zone and the connective into all three thoracic 

neuromeres, whereas OA-VL2 runs posteriorly along the lateral margin of the gnathal zone 

(Busch et al. 2009). However, a discrimination between OA-VL1 and 2 was not possible during 

dissections. It has been shown that VL neurons directly modulate bitter gustatory receptor 

neurons (GRNs) output via a potential co-release of OA and TA, acting on the receptor Oct-

TyrR (LeDue et al. 2016). However, whether VL neurons are indeed OAergic has been a matter 

of scientific discussion. Immunocytological stainings against Tβh showed no labeling of these 

cells (Zhou et al. 2008; Burke et al. 2012; Schneider et al. 2012), while other studies showed 
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immunofluorescence against OA and TA in this cluster (Busch et al. 2009). To answer this 

question and compare OA titers between cell populations, VL neurons from male and female 

flies which were cooled for 15min on ice were analyzed by MALDI-TOF SCMS. Mass spectra 

from VL neurons revealed ion signals for OA-CA and TA-CA (n=9) lower than the LLOQ, 

however MS² experiments confirmed the presence of OA-CA in all samples and the presence 

of TA-CA in 5 out of 9 samples analyzed (Fig. 2.14 A, B). These results confirm the 

immunocytological findings that VL neurons contain OA - despite the lack of anti-Tβh 

immunofluorescence (Busch et al. 2009). Moreover, the confirmed presence of TA as the 

 

 

Figure 2.14 Detection of OA-CA and TA-CA in VL neurons and comparison of OA-CA concentrations from 
VMlb and VL samples. (A) MS² spectrum of putative OA-CA from a single isolated VL neuron. The ion identity 
was confirmed as OA-CA by the product ion m/z 296.1. (B) Confirmation of TA-CA from VL samples by tandem 
MS. The product ion m/z 120.7 confirmed the parent ion as TA-CA. (C) Statistical comparison of OA titers from 
VMlb and VL samples revealed a highly significant difference between the two cell populations (t-test, p = 1.19e-
10). 

precursor of OA consolidates these findings even further. An explanation for the lack in Tβh 

immunofluorescence could be a timed expression of Tβh, rendering the soma Tβh free at given 

time points with an amount of OA stored in the VL somata. Another explanation would be a 

very low expression of Tβh, which would potentially also result in unlabeled VL neurons using 

immunohistochemistry. Furthermore, the target cells of VL neurons express Oct-TyrR, a 

receptor which reacts to both substances TA and OA in a similar fashion (Robb et al. 1994). 

This suggests that VL neurons probably do not need to produce large quantities of OA to 

modulate their downstream targets in comparison to OAergic VMlb neurons, since a co-release 

of TA and OA could be possible and sufficient to regulate downstream GRNs (LeDue et al. 

2016). 
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Statistical comparison of recorded OA-CA titers was difficult since VL OA-CA titers were 

below the OA LLOQ based on FDA criteria. In order to circumvent this problem and render a 

statistical comparison of OA-CA titers between neuron populations possible, corresponding VL 

OA-CA concentrations were calculated from recorded pMS² spectra with an average 

concentration of 3.98 fmol/µl (n = 9, ± 2.03 fmol/µl). Statistical comparison of recorded VMlb 

and VL OA-CA titers showed a highly significant difference between the two cell clusters (t-

test, p = 1.19e-10), highlighting that somata concentrations of neuroactive substances such as 

OA can vary tremendously between cell clusters with different functions, whereas intra-cluster 

variation seems to be limited (Fig. 2.14 C).  

 
 
 

2.4 Conclusion 
 
The developed protocol allows the identification and quantification of OA and TA from small-

volume samples such as a single D. melanogaster soma (cell diameter 7-9 µm). Furthermore, 

the developed protocol is highly sensitive, reproducible, cost-effective, and fast and should be 

adaptable, with slight optimizations in terms of analytes of interest, soma size and type as well 

as organismic origin, to various single cell samples and other biogenic monoamines. Moreover, 

it allows the simultaneous detection of biogenic monoamines and neuropeptides in a single 

experiment without major interference on neuropeptide detection rates and fragmentation 

possibilities. Altogether, the developed protocol offers a wide range of application such as the 

characterization of cell-to-cell and cluster heterogeneity of neuroactive substance expression 

patterns and quantities, analyzing potential changes in neuroactive substance cell titers in 

behavioral analysis, physiological processes and natural or induced neuronal dysfunctions and 

pathologies. Following this idea, in Chapter 3 I focused on the analysis of potentially changing 

OA cell titers of VMlb neurons in socially driven aggression of male D. melanogaster.   
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3. Quantification of Drosophila VMlb octopamine titers in social driven 
male aggression by MALDI-TOF SCMS 

 
 

The contributions are as followed: MD and SN conceptualized experiments, MD performed 
experiments, MD analyzed the data, SN funding. 
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3.1 Introduction 
 
Aggression is an innate social behavior that can be observed in most sexually propagating 

metazoan animals (Lorenz 1963; Hoopfer 2016). This agnostic behavior commonly occurs 

between males trying to establish dominance, securing resources like food sources, territory or 

to enable access to reproductively active females. Aggression is not limited to the male sex; 

however, males often show a quantitatively higher aggression compared to females (Lorenz 

1963). While aggression represents a part of the normal repertoire of behavior in animals and 

humans alike, violent aggression and maladaptive aggressive behavior in humans represents a 

major threat to public health and social cohesion (Craig & Halton 2009). Consistent with the 

observation in animals, human males show higher rates of aggressive behavior compared to 

females as they are ten times more likely to commit murder in comparison to females and are 

five times more likely to be under “correctional supervision” for criminal offences (data from 

the USA; Craig & Halton 2009).   

 

In D. melanogaster, male aggressive behavior has been shown to be robust with different 

distinct behavioral actions such as wing threat, lunging, tussling and boxing (Dow & Schilcher 

1975; Chen et al. 2002). This observed male aggression reflects, as in other species, competition 

over territory, resources or reproductive active females (Chen et al. 2002; Hoyer et al. 2008; 

Hoopfer et al. 2015), is genetically specified (Dierick & Greenspan 2006; Zwarts et al. 2011), 

connected to the fly’s social experience (Zhou et al. 2008; von Philipsborn et al. 2011; Inagaki 

et al. 2014; Andrews et al. 2014) and dependent on the internal state (Dickson 2008; Clowney 

et al. 2015; Hoopfer 2016). In D. melanogaster male and female show gender specific patterns 

in aggression, however, some agnostic actions are gender-independent (Nilsen et al. 2004). 

These sexually dimorphic behavioral aggression patterns require gender specific neuronal 

circuits or at least sex specific expression of neuronal effectors, such as receptors, in aggression 

promoting neuronal circuits. In D. melanogaster it has been shown that the male variant of the 

sex specific transcripts of fruitless (fruM), a master regulator of sexual differentiation of the 

brain (Burtis 1993; Lee & Hall 2000), is needed for proper male aggressive behavior towards 

conspecific males, but also for courtship behavior towards females (Certel et al. 2007; Certel et 

al. 2010; Wang et al. 2012; Watanabe et al. 2017), suggesting a high interplay of the underlying 

neuronal circuits. Indeed, a recent study could show that a subset (8-10 neurons P1a) of a male 

specific cluster of ~20 P1 neurons located at the lateral protocerebral complex, which have been 

shown to control and initiate male courtship behavior and song production (von Philipsborn et 
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al. 2011; Kohatsu et al. 2011; Pan et al. 2012; Kallman et al. 2015; Clowney et al. 2015), 

promote also aggression when being activated by heat sensitive dTrpA1 (Hoopfer et al. 2015). 

D. melanogaster transient receptor potential cation channel A1 (TrpA1) is a temperature 

sensitive cation channel that can be expressed via the GAL4/UAS system and allows artificial 

activation of neurons by shifting corresponding flies to temperatures >28°C (Hamada et al. 

2008). P1 neurons receive multiple sensory input from neurons involved in olfaction, gustation 

and audition and are seen as a central integrator for orchestrating courtship behavior and 

potentially aggression (Hoopfer et al. 2015; Auer & Benton 2016; Hoopfer 2016; Watanabe et 

al. 2017). Slow (<20 Hz) optogenetically activation of P1a neurons via red activatable 

channelrhodopsin (Inagaki et al. 2014) led to an increase in male-male aggression, while high 

optogenitcally activation (>30 Hz) of P1a neurons led to an increase in male-male courtship 

(Hoopfer et al. 2015). Furthermore, after optogenetically activation of P1 neurons male flies 

showed enhanced male-male aggression even after 10 mins, suggesting that activation of the 

P1a neurons leads to a persistent, fly-intrinsic internal state that enhances aggression (Hoopfer 

et al. 2015). However, how this state is maintained on a circuit level remains to be elucidated.  

 

The decision to court or fight in male flies depends on the detection of cuticular hydrocarbons, 

which are produced in oenocytes (Kohl et al. 2015; Hoopfer 2016). These define a sex and 

species-specific pheromonal signature, which controls social behaviors such as aggression and 

courtship among others (Billeter et al. 2009; Fernandez et al. 2010; Kohl et al. 2015). Two 

specific male cuticular hydrocarbons, (z)-7-tricosense (7-T), which is detected by GRNs 

expressing Gr32a, and 11-cis-vaccenyl acetate (cVA), which is detected by olfactory receptors 

neurons (ORNs) expressing Or67d, have been shown to promote aggression and suppress male 

courtship behavior (Kurtovic et al. 2007; Wang et al. 2011). However, presentation of the two 

male pheromones alone is not sufficient to elicit normal levels of male aggression, a second cue 

such as a food source or a female has to be present in order to initiate male fighting (Yuan et 

al. 2014; Lim et al. 2014). By using GFP reconstitution across synaptic partners (GRASP), a 

technique in which two complementary fragments of GFP are expressed in different subsets of 

neurons and upon contact are fused to ubiquitous transmembrane proteins emitting light by 

excitation (Feinberg et al. 2008), recent studies could show that Gr32a GRNs project towards 

the GNG and form synaptic contacts with OAergic neurons in the GNG (Andrews et al. 2014). 

The same study showed that activation of Gr32a expressing GRNs via male cuticular 

hydrocarbon extracts evoked intracellular Ca2+ response in subsets of OAergic GNG neurons, 

however, which of the Tdc2-GAL4 labeled neurons were activated has not been specified yet 
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(Andrews et al. 2014). Furthermore, fruM second and third order neurons of these Gr32a GRNs 

project onto P1 neurons, regulating their activity (Clowney et al. 2015; Kallman et al. 2015). 

These fruM Gr32a pathways also converge onto tachykinin (TK) expressing fruM neurons, which 

have been shown to promote aggression (Asahina et al. 2014). Moreover, activation of these 

fruM/TK neurons induces an arousal state, which induces aggressive behavior without the need 

for second cues such as food or male pheromones (Asahina et al. 2014).  

 

Aside from the already mentioned peptidergic influence, a variety of different neuromodulators 

have been described to influence aggression. 5-HT and DA have been shown to regulate 

aggression in vertebrates and invertebrates alike (for review see Nelson & Trainor 2007; Zwarts 

et al. 2011). Two recent studies identified subsets of 5-HTergic (Alekseyenko et al. 2014) and 

DAergic neurons (Alekseyenko et al. 2013) that modulate aggression in D. melanogaster. 

Activation of 5-HT-PLP neurons via dTRPA1 led to an increased number of lunges, while 

silencing these neurons via expression of tetanus neurotoxin light chain (TNT), a proteolytic 

toxin cleaving synaptobrevin and thereby eliminating evoked synaptic vesicle release (Sweeney 

et al. 1995), reduced the total number of lunges in socially naive males (Alekseyenko et al. 

2014). Furthermore, thermo-sensitive activation via TrpA1 or silencing via TNT of two 

DAergic subsets from the T1 cluster and from the PPM3 cluster lead to an increase in 

aggression. These two clusters project towards different areas of the central complex showing 

overlapping areas with expression of two different DA receptors, DD2R and DopR suggesting 

a modulatory role on aggression through these pathways (Alekseyenko et al. 2013).  

 

Beside of 5-HT and DA, OA is also involved in shaping aggression in D. melanogaster and 

other invertebrates (see chapter 1; Roeder 2005). A recent study showed that fruM aSP2 neurons, 

which are located downstream of P1 neurons, are modulated by OA, probably via the OAMB 

receptor, and promote aggression when being genetically activated independently from general 

arousal (Watanabe et al. 2017). FruM aSP2 neurons, however, seem not to influence aggression 

in a command like fashion, but rather exert a modulatory influence on agnostic behavior 

(Watanabe et al. 2017). FruM aSP2 neurons receive input from P1 neurons, which also project 

downstream to cells specific for courtship (von Philipsborn et al. 2011), and from OAergic 

neurons (Watanabe et al. 2017). Flies fed with an OA receptor blocker mianserin and 

optogenetically activated P1 neurons showed reduced aggression, while genetic activation of 

aSP2 via NaChBac, a bacterial voltage-gated Na+ channel that upon expression leads to the 

activation of the corresponding neuron (Ren et al. 2001; Luan et al. 2006), led to a partial rescue 
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of the observed phenotype (Watanabe et al. 2017), suggesting a modulatory role of these 

neurons in aggression. By using GRASP in fruM aSP2 neurons and OAergic neurons of the 

Tdc2-GAL4 line, a potential OAergic input from Tdc2 neurons was shown (Watanabe et al. 

2017). Furthermore, retrograde labeling experiments of synaptic regions of fruM aSP2 neurons, 

utilizing photoactivatable GFP (Schneider et al. 2005), suggest that aside from other OAergic 

neurons, VUM/VPM neurons are possibly part of the OAergic input to these neurons (Watanabe 

et al. 2017). 

 

Two subpopulations of VUM/VPM neurons of the Tdc2-GAL4 line have been shown to be 

required for normal levels of aggression. For three VUM/VPM neurons, the VPM1, VPM2 and 

VUMd3 (Busch et al. 2009), expression of the male specific fruM  transcription factor has been 

shown (Certel et al. 2007; Certel et al. 2010). Feminization by expression of transformer 

(Mundiyanapurath et al. 2009) in these neurons led to an increased male-male courtship, 

impairing male action selection (Certel et al. 2010). These neurons are interesting candidates 

for modulation of fruM aSP2 neurons by OA, due to their expression of fruM and their promotion 

of male-male courtship when being feminized. VPM1 and VPM2 neurons are located in the 

close vicinity of VMmd, whereas the VUMd3 neuron is located in the VMlb cluster (Busch et 

al. 2009). Another interesting VUM/VPM population, which has been shown to be essential for 

aggression, is a small subset of the VMlb cluster located in the GNG (Zhou et al. 2008). By 

using the yeast repressor GAL80, which blocks GAL4 activity by binding to its transcriptional 

activation domain (Suster et al. 2004), in OAergic neurons co-expressing choline 

acetyltransferase (Cha), the rate limiting enzyme for the production of acetylcholine (Salvaterra 

& McCaman 1985), they limited the GAL4 expression to a small subset of 2-5 VMlb OAergic 

neurons (Zhou et al. 2008). By a combination of this GAL4 expression in an OA devoid TβhnM18 

line (Monastirioti et al. 1996) and subsequent activation of this labeled subset by NaChBac, 

they were able to rescue the TβhnM18 mediated phenotype, which showed highly reduced 

aggression behaviors (Zhou et al. 2008). However, a clear identification of the activated VMlb 

neurons in these experiments, their projections and targets remains unresolved.  

 

As introduced, a subset of OAergic VMlb neurons are suggested to play an integral part of the 

neuronal circuit promoting male aggression in D. melanogaster, probably mediated by the 

activation of Gr32a expressing GRNs (Certel et al. 2007; Certel et al. 2010; Andrews et al. 

2014). Since it has been shown that social experience/contact has a tremendous effect on 

aggression levels in males via male-specific pheromones, the question arouses whether such 
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social experience/contact has a direct effect on detectable VMlb OA titers, which would 

corroborate a change of activity and hint towards a change in releasing frequency of OA from 

these neurons. In order to tackle this question, in this chapter single VMlb neurons, labeled by 

Tdc2>GFP (see chapter 2), were isolated from socially naïve and experienced male D. 

melanogaster and analyzed towards their OA content by using the protocol for quantitative 

MALDI-TOF SCMS (see chapter 2). 

 
 

3.2 Materials and Methods 
 
Chemicals 

All used chemicals were purchased from SIGMA-Aldrich (Steinheim, Germany), if not stated 

otherwise. 

 

Synthetic solutions 

Stock solutions of OA-hydrochloride, TA-hydrochloride, OA(d3), (CDN Isotopes, Pointe-

Claire, Canada) and TA(d4) (CDN Isotopes) were prepared in 50% MeOH/TraceSELECT® 

water at a concentration of 10 nmol/µl, stored at 4°C in darkness and were used to prepare 

dilution series. Stock solutions of synthetic biogenic amines were replaced after two months, 

dilution series after three weeks. 

 

Derivatization reagent 

CA was prepared in 100% MeOH at a concentration of 23 mg/ml and centrifuged at 13000 rpm 

at 4°C for 10 min. 5 µl of the supernatant was diluted in 150 µl 50% MeOH/TraceSELECT® 

water at a concentration of 0.76 mg/ml and finally centrifuged for 10 mins at 13000 rpm and 4 

°C, as described by Diesner & Neupert (Diesner & Neupert 2018; see chapter 2). The 

derivatization solution was prepared fresh daily. 

 

Fly Strains  

5 days old adults of both sexes were used. Flies were raised on standard cornmeal, molasses, 

yeast, agar medium on a 12 h/12 h light-dark cycle at 25°C and 60% humidity. The following 

fly strains were used: Tdc2-GAL4 (Cole et al. 2005; Bloomington #9313); 10xUAS-IVS-

mCD8::GFP (Bloomington #32186).  
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Isolation experiments 

Initial experiments were conducted on 5 d old adult males and females which were reared in 

groups of about 20-30 flies. For isolation experiments, late male pupae were transferred into 

clean 1.5 ml Eppendorf tubes with a small hole in the cap for ventilation and filled with a small 

amount of standard Drosophila food. Isolation fly tubes were positioned in the climate chamber 

with at least 5 cm space between adjacent tubes to prevent potential “grouping effects”. For 

social experiments, 4-day old isolated males were grouped in pairs for 24 h in a fresh isolation 

vial.  

 

Single cell dissection 

Single cell dissections were prepared as described earlier (Diesner & Neupert 2018; see chapter 

2): Flies were immobilized 15 min on ice prior to dissection. The brain was removed in ice cold 

dissection buffer (NaCl 126 mM, KCl 5.4 mM, NaH2PO4 0.17 mM, KH2PO4 0.22 mM, pH 7.4) 

under an epifluorescence stereomicroscope. For single-cell dissections, brain samples were 

transferred to a fresh drop of ice cold dissection buffer containing 33% glycerol. The ganglionic 

sheath around the area of a GFP-labeled cell of interest was removed and the cell soma manually 

picked and transferred to a MALDI-TOF sample plate, by an uncoated glass capillary. 

Excessive dissection saline was removed using the same glass capillary. Residual glycerol 

surrounding the isolated soma was washed off with 50% MeOH/TraceSELECT® water. 

Washing was performed multiple times with a fresh glass capillary until the glycerol was 

completely removed. However, the placed cell soma was left uncovered by the washing solution 

to prevent a possible loss of analytes. Only one neuron soma was isolated from a single brain 

sample. Furthermore, a single dissection block, processing multiple brains, did not exceed one 

hour. 

 

Single cell sample preparation for quantitative MALDI-TOF MS 

Samples were prepared as described by Diesner & Neupert (Diesner & Neupert 2018; see 

chapter 2). Dissected single cell samples were covered with 18.4 nl of an equimolar mixture of 

OA(d3) and TA(d4) with a concentration of 100 fmol/µl. After air-drying, 9.2 nl of CA were 

added to the sample spots and left to air-dry. Finally, the sample spots were covered with 18.4 

nl of CHCA and dried under a constant stream of air. All solutions were applied using a pulled 

glass capillary fitted in a nanoliter micro injector (nanoliter 2000, World Precision Instruments, 

FL, USA). Between each application step, the remaining solution in the glass capillary was 
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removed and the capillary rinsed two-times with 100% TraceSELECT® water, 50% 

MeOH/TraceSELECT® water followed by 100% MeOH before air-drying. CHCA was 

prepared fresh daily in 80% MeOH/TraceSELECT® water at a concentration of 1.43 mg/ml. 

The resulting mixture was centrifuged for 10 min at 15.000 rpm at 4 °C and stored at 4 °C and 

darkness until usage. 

 

Quantification and standard curve calculation 

Preparation of dried droplet samples was modified from Persike and colleagues (Persike et al. 

2010) and used as described in Diesner & Neupert, 2018 (see chapter 2). To calculate standard 

curves, 18.4 nl of an equimolar mixture of synthetic OA and TA was applied onto a MALDI 

sample plate in a concentration range from 100 to 2.5 fmol/µl. After applied synthetic solutions 

were allowed to air-dry, sample spots were covered with 18.4 nl of an equimolar mixture of 

OA(d3) and TA(d4) with a constant concentration of 100 fmol/µl. After letting the spot air-

drying a second time, each spot was covered with 9.2 nl of CA. The resulting spot was allowed 

to air-dry again and ultimately covered with 18.4 nl CHCA and dried under a constant airflow.  

 

MALDI-TOF MS 

Mass spectra were acquired using an UltrafleXtreme MALDI-TOF/TOF mass spectrometer 

(Bruker Daltonik GmbH, Bremen, Germany). All MS acquisitions were performed under 

manual control in reflector positive ion mode.  The instrument was calibrated for the mass range 

m/z 0-400 using prominent internal CHCA matrix ion signals as described earlier (Persike & 

Karas 2009). All mass spectra were acquired with 2000 laser shots with a laser frequency of 

333 Hz.   

 

MS² experiments 

MS² experiments were performed using LIFT technology, with an acceleration set to 1 kV. The 

number of laser shots for a single MS² spectra varied from 1000 to 2000 shots, depending on 

ion signal quality. To verify OA and OA(d3), tandem mass spectra were acquired without 

collision gas. For the validation of TA and TA(d4), fragmentations were performed in CID 

mode, with argon as the collision gas. For quantification experiments of OA and TA, mass 

spectra were acquired in parent ion mode with fixed laser intensity. The parent ion window was 

set from m/z -0.4 to +6. Each mass spectrum was acquired with 2000 laser shots. In general, a 

signal was considered to be detected with an S/N ratio ≥ 3. The data obtained in these 
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experiments were processed with the FlexAnalysis 3.4 software package (Bruker Daltonik 

GmbH, Bremen, Germany). For quantitative analysis, only unprocessed data were used. 

 

Method validation and Statistics 

Validation of standard curves followed the ±15/20 criteria published by the FDA for 

bioanalytical methods (FDA 2013). All data points for standard curve calculation are averages 

of at least three replicates. Linear ranges, accuracy, RSDs and linearity (R²) were calculated 

with Microsoft Excel 2010 and/or R 3.1.3 (R Development Core Team). Data points were tested 

for normal distribution using a one-sample Kolmogorov-Smirnov test and were analyzed by 

one-way analysis of variance (ANOVA). Comparative statistics were calculated in R 3.1.3.  

 
 

3.3 Results and Discussion 

3.3.1 Influence of age, sex and genetic construct on OA VMlb titers 

The age, sex and inserted genetic constructs can affect total neuroactive substance titers in 

nervous systems, which has been shown for biogenic monoamines in different developmental 

stages and various genetic lines in D. melanogaster (Fang et al. 2011; Denno et al. 2016). In 

the present chapter a different UAS-mCD8::GFP reporter line and age synchronized flies were 

used compared to previous experiments (see chapter 2; Diesner & Neupert 2018). To analyze a 

potential influence of the alternatively used genetic construct and the age on male and female 

VMlb OA titers, single VMlb somata of 5 d old male and female Tdc2>GFP D. melanogaster 

were dissected, their OA titers analyzed by MALDI-TOF SCMS and recorded results compared 

to an previously obtained dataset (see chapter 2; Diesner & Neupert 2018; Fig. 3.1 A, B). 

Recorded mass spectra of single VMlb somata of 15 min cooled 5 d old male flies revealed an 

average concentration of 16.13 fmol/µl OA (n =7; ± 3.55 fmol/µl; Fig. 3.1 B), while mass 

spectra of 5 d old females showed an average concentration of 17.25 fmol/µl OA (n = 7; ± 3.23 

fmol/µl; Fig. 3.1 B). Statistical comparison to the data set from Diesner & Neupert 2018 (see 

chapter 2) from flies which were ≥ 5 d old and inhibited a different UAS-mCD8::GFP construct 

showed no significant differences in VMlb OA titers between all analyzed groups (ANOVA, p 

= 0.995; Fig. 3.1 B). The recorded results corroborate earlier findings of the dataset from 

Diesner & Neupert (2018), which did not show any sexual dimorphism in somatic VMlb OA 

titers (see chapter 2; Diesner & Neupert 2018). Additionally, the alternatively used genetic 

construct, the 10xUAS-IVS-mCD8::GFP reporter, as well as the synchronization of the age did 
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also not affect somatic OA VMlb levels compared to previous results (Diesner & Neupert 2018; 

see chapter 2). 

 

 

Figure 3.1 OA VMlb titers do not differ between sexes, fly age and inserted genetic construct. (A) Posterior 
view of a 3D reconstruction of a Tdc2>GFP labeled adult Drosophila brain. The VMlb cluster is highlighted. Scale 
bar = 25 µm (B) Statistical comparison of OA VMlb titers of groups of female and male flies with either fixed age 
and alternatively used reporter line (5d) or mixed age (≥5d) revealed no significant differences (ANOVA, p = 
0.995). Asterisk = data adapted from chapter 2, Diesner & Nerupert, 2018. 

3.3.2 Influence of social experience on VMlb OA titers 

In order to analyze a potential effect of social contact on VMlb OA titers, late stage male 

Tdc2>GFP pupae were transferred to 1.5 ml Eppendorf tubes filled with a small drop of 

standard food and a small ventilation hole in the cap. After eclosion and a 5 d long social 

isolation, single VMlb neurons were dissected from these isolated males and OA titers analyzed 

by MALDI-TOF SCMS. Recorded mass spectra of VMlb neurons showed an average OA titer 

of 12.08 fmol/µl (n = 12; ± 1.63 fmol/µl), which was close to the LLOQ of the used quantitative 

MALDI-TOF SCMS technique (see chapter 2; Diesner & Neupert 2018). Statistical comparison 

to VMlb OA titers from 5 d old males reared in mixed groups showed a significant lower OA 

VMlb titer in isolated males (ANOVA, p = 0.003; Fig. 3.2). To verify that this decreased OA 

VMlb titer is a direct result of social experience, 4 d old isolated males were grouped in pairs 

for 24 h prior to OA VMlb analysis by MALDI-TOF SCMS. Mass spectra recorded by MALDI-

TOF SCMS of single VMlb neurons of pairwise regrouped males revealed an average OA 

VMlb titer of 15.53 fmol/µl (n = 10; ± 2.43 fmol/µl; Fig. 3.2), which did not differ significantly 

compared to the observed titers from mixed group reared males (ANOVA, p > 0.05). However, 
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comparison of OA VMlb titers between socially isolated males and pairwise regrouped flies 

showed a significant higher OA titer in regrouped flies (ANOVA, p = 0.005), suggesting a 

direct impact of social experience on OA VMlb titers.  

 

 

Figure 3.2 Statistical comparison of OA VMlb titers recorded by MALDI-TOF SCMS in socially naïve and 
experienced 5 d old male D. melanogaster. OA VMlb titers of male flies that were raised in mixed groups differed 
significantly from socially naïve males (ANOVA, p = 0.003). Pairwise regrouping of 4 d old males for 24 h led to 
a significant increase, compared to socially isolated males (ANOVA, p = 0.005), in OA VMlb titers, to about the 
same level as observed in grouped males (ANOVA, p > 0.05).      

Finally, female OA VMlb titers from mixed grouped raised females (17.25 fmol/µl; ± 3.23 

fmol/µl) showed nearly identical OA titers recorded from males which had been paired for 24 

h (16.13 fmol/µl; ± 3.55 fmol/µl; Figure 3.1 B). This is not too surprising, since only three 

VUM/VPM neurons as well as second and third order downstream targets of Gr32a expressing 

GRNs express fruM, and therefore show male specific characteristics (Certel et al. 2010; Weiss 

et al. 2011). It can be speculated that the neuronal circuit driving social interaction via Gr32a 

expressing GRNs, is somewhat similar in females and males and shows a similar upregulation 

of somatic OA titers in VMlbs. Furthermore, it is likely that the downstream targets of OAergic 

VUM/VPM neurons differ between males and females, leading to the activation or modulation 

of different microcircuits in the two sexes and ultimately to the sexual dimorphic behavioral 

output. However, whether female OAergic VMlb neurons indeed show a similar upregulation 

of somatic OA titers upon social interaction will be the focus of future studies. 
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The increased VMlb OA titer is likely a direct result by a higher activity of VMlb neurons 

which is mediated via the input from male pheromone sensing Gr32a expressing GRNs 

(Andrews et al. 2014). So far a direct correlation of a higher activity and increased somatic 

neuroactive substance content has not been shown, however, such a physiological reaction 

would be quiet conceivable. The higher activity of a neuron leads to a more frequent release of 

neuroactive substance and the faster diminished pool of the corresponding neurotransmitter, -

modulator or -hormone has to be replenished accordingly, which ultimately leads to an 

increased synthesis rate and thus a higher somatic OA titer. Another explanation would be that 

the higher somatic concentration corresponds to a higher OA concentration per releasing event, 

with an unchanged activity frequency of VMlb neurons. Both possibilities would enable a 

longer activation of OA receptors on downstream targets and/or a more widespread volume 

transmission potentialy affecting other hitherto unreached targets.  

 

The data presented in this chapter was recorded from single VMlb neurons, the same cell cluster 

which was analyzed in experiments described in chapter 2. The VMlb cluster can be separated 

into distinct subpopulations, VPM4 and 5, each comprised of 2 cells per brain as well as 4 VUM 

neuron classes (VUMd1-3, VUMa4; ~4-5 cells; see chapter 1;  Busch et al. 2009; Busch & 

Tanimoto 2010; Schneider et al. 2012). However, in the presented experiments, as well as in 

experiments of chapter 2 (Diesner & Neupert 2018), it was not possible to differentiate between 

the different cell types during dissections. Moreover, although it is suggested that VPMs and 

VUMs do not share the same developmental origin (Klämbt et al. 1991; Busch & Tanimoto 

2010) and due to the fact that different neuron clusters can have variating somatic neuroactive 

substance titers (see chapter 2; Diesner & Neupert 2018), it is interesting that all analyzed VMlb 

neurons share similar somatic OA concentrations. This hints towards similar capacities in OA 

synthesis, storage and release as well as similar inputs and activation of the analyzed neurons. 

 

While the exact actions of single neurons comprised in this cluster have not been characterized, 

some functional data exists. VPM4 and 5 have been shown to be involved in short-term 

appetitive memory formation, partly via the α-adrenergic like OAMB receptor which is 

expressed in a subset of mushroom body targeting DA neurons, located in the protocerebral 

anterior medial (PAM) cluster (Burke et al. 2012). A more recent study showed that VUMa4 

neurons, which are present in all three clusters, are involved in shifting the preference for 

ethanol containing food sources to a less attractive ethanol free food source upon activation, 

however, when activated with a broader subset of OAergic neurons this decision was reversed 
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(Claßen & Scholz 2018). The authors therefore argue that cell specific OA signaling 

orchestrates, in combination with olfactory cues, the decision of contrary behavioral outputs. 

Such a proposed principal could also hold true in the case of aggressive behavior, since socially 

naive flies show a more intense aggressive behavior, in combination with a lower OA titer in 

analyzed VMlb neurons compared to socially experience flies, which exhibited higher OA 

VMlb titers. Thus, a more intense OA signaling from VMlb neurons and potentially other co-

activated OAergic VUM/VPM neurons in socially experienced flies could lead to a shift from 

a highly aggressive to a more moderate aggressive behavioral output.   

 

While it has been shown that sexual experience can result in a long lasting state decreasing 

male-male aggression (Yuan et al. 2014) the question arises how such states are maintained in 

the CNS. Are these states maintained for example by a prolonged or increased release of 

neuromodulators from activated neurons, are target neurons affected in their signaling 

characteristics over such long time periods by activation of the corresponding receptors and 

their signaling cascades, and/or does the potentially altered aminergic signaling leads to a 

change in synaptic wiring in downstream neural circuits? A good example how experience can 

influence male specific synaptic wiring through aminergic signaling during development comes 

from the nematode C. elegans. In C. elegans it has been shown that OA and 5-HT control 

feeding related behaviors such as locomotion and aversive memory. 5-HT is responsible for 

controlling well-fed conditions while OA is involved in signaling starvation mediated behaviors 

(Harris et al. 2010; Churgin et al. 2017). Bayer & Hobert could show in a recent study that 

starvation of juvenile C. elegans leads to an altered male-specific pruning of neuronal 

connections, allowing the adult to retain juvenile sensory acuity and results in the loss of an 

adult behavioral sexual dimorphism (Bayer & Hobert 2018). Moreover, it was shown that 

during starvation the OA synthesizing gene tßh-1 is upregulated in the sex-shared RIC 

interneuron and at the same time the OA receptor expressing downstream ADF neuron exhibits 

a downregulation of the 5-HT synthesizing enzyme tryptophan hydroxylase-1 (Noble et al. 

2013; Bayer & Hobert 2018). Finally, they could reveal that the pruning of male-specific 

connections depend on the expression of the ser-4/5-HT1A receptor in the downstream PHB 

neuron, thus suggesting that a higher OA release leads to a low 5-HT release and ultimately an 

low activation of ser-4/5-HT1A which directly controls synaptic connectivity (Bayer & Hobert 

2018). 
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In male D. melanogaster it has been shown that repetitive fighting promotes a winning or losing 

state, which has also been shown in other species (Hsu et al. 2006; Kim et al. 2018). By coupling 

a winning or losing state to olfactory cues through classical conditioning, it has been shown 

that male flies can associate valence with these states and thus, such states could be maintained 

by the neuronal circuits responsible for appetitive and aversive memory (Kim et al. 2018). 

These circuits involve subsets of DAergic neurons of the PAM and protocerebral posterior 

lateral 1 (PPL1) clusters that target mushroom body Kenyon cells and it has been shown that 

PAM neurons receive modulating input by OA in adults, which is potentially released from 

VMlb neurons (Burke et al. 2012; Kim et al. 2018). Kenyon cells in the mushroom body receive 

sensory input from olfactory projection neurons while aversive valence is relayed via DAergic 

PPL1 neurons and appetitive valence is signaled by DAergic PAM neurons (Schwaerzel et al. 

2003; Cognigni et al. 2018). It has been shown that olfactory cues are represented by the activity 

of small subpopulations of these Kenyon cells (Campbell et al. 2013; Lin et al. 2014; Cognigni 

et al. 2018). Furthermore, aversively reinforcing DAergic PPL1 neurons overlap with approach-

promoting mushroom body output neurons (MBONs), while DAergic PAM neurons which 

have been described as largely appetitively reinforcing overlap with avoidance-promoting 

MBONs (Cognigni et al. 2018). It has been suggested that DA released by PPL1 or PAM 

neurons modulates synaptic plasticity between Kenyon cells and MBONs thus shaping MBON 

activity leading to aversive or approaching behaviors (Cognigni et al. 2018). In D. melanogaster 

larvae, which show a greatly reduced neuron number with a similar outline of connections 

between DAergic input neurons, Kenyon cells and MBONs, optogenetically activation of 

OA/TAergic neurons leads to induced appetitive memory formation and there is evidence that 

a physiological activation is mediated by sucrose detecting GRNs to OA/TAergic VUM 

neurons in the GNG (Schwaerzel et al. 2003; Schroll et al. 2006; Honjo & Furukubo-Tokunaga 

2009). In summary, this suggests that the social interaction mediated enhanced VMlb OA 

concentration and an potentially corresponding enhanced OA release directly modulate 

appetitive PAM neurons and Kenyon cells and thus could lead to the formation of appetitive 

memory and long lasting internal states affecting the behavioral output (Burke et al. 2012; 

Cognigni et al. 2018). Aside from this, OAMB expressing fruM aSP2 neurons, which are located 

downstream of P1a neurons, have been shown to be activated by bath-applied OA in brain 

explants and optogenetical activation of P1a neurons with fed OA led to enhanced aggression 

in adult male D. melanogaster (Watanabe et al. 2017). Furthermore, first evidence has been 

provided that OAergic VUM/VPM neurons converge on fruM aSP2 neurons, aside from other 

OAergic neurons, and thus would hint towards a circuit that connects pheromone detecting 
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GRNs, OAergic VUM/VPM neurons and aggression promoting neurons (Zhou et al. 2008; 

Watanabe et al. 2017).  

 
 
3.4 Conclusion 
 
The protocol developed as part of this thesis (Diesner & Neupert 2018; see chapter 2) was used 

to elucidate an upregulation of somatic OA VMlb titers through social interaction in adult male 

D. melanogaster. To my knowledge this represents the first reported case of a mass 

spectrometric quantified change in somatic OA concentrations detected directly from individual 

cells of intact brains, between two behavioral states. While the upregulation of somatic 

neuroactive substance titers hints towards a more concentrated or prolonged release of these 

molecules, such a relationship has to be proven in future studies. Such studies could involve 

qualitative and quantitative measurement of released substances via cyclic voltammetry (Majdi 

et al. 2015; Pyakurel et al. 2016) or genetically encoded selective fluorescent sensors (Liang et 

al. 2015; Patriarchi et al. 2018) but also genetic encoded markers of neuronal activity such as 

GCaMP (Chen et al. 2013). Aside from analyzing somatic biogenic monoamine titers between 

behavioral states, the presented strategy yields also the possibility to analyze the temporal 

course of modulated somatic neuroactive substance titers in single neurons. Moreover, by 

combing the demonstrated SCMS protocol with the controlled application of neuroactive 

substances or drugs to brain explants or cell cultures their effect on somatic titers in neurons of 

interest could be studied.  
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4. Mass spectrometric detection of octopamine and tyramine from 
intracellular recorded desDUM neurons of Carausius morosus 

 
 
The results of this chapter are part of the manuscript: Stolz T, Diesner M, Neupert S, Hess M, 

Delgado E, Pflüger HJ, Schmidt J. Descending octopaminergic interneurons modulate leg 
load evoked motor neuron activity in stick insects. 2018, in preparation. 

 
The results are also discussed in the connected  
Ph.D. Thesis of Dr. Thomas Stolz (Stolz 2018).  

 
The authors contributions to this collaborative project are as followed: TS, JS general 

conceptualization, TS and JS electrophysiological experiments, MD and SN single cell 
dissection and mass spectrometric experiments (MD contributed 12 samples and the blind 

sample, SN 2 samples), MH backfill experiments, ED and HJP anti-OA 
immunohistochemical experiments, the respective authors analyzed their collected data, TS 

and MD created figures, TS, JS, MD, SN, HJP wrote the manuscript.   
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4.1 Introduction 
 
For animals locomotion is essential for their success and survival in their respective habitat. By 

using targeted locomotion it is possible to access food sources, find mating partners, evade 

predators or unfavorable environmental obstacles. However, neuronal systems coordinating 

locomotion have to be flexible due to their constant adaptation to a changing environment. This 

is especially true for animals using terrestrial based locomotion, due to the variable nature of 

the ground and encountered obstacles as well as due to the different locomotor modes such as 

walking, climbing and running.  

 

Locomotion in general is coordinated by motor neurons (MNs) activating and inhibiting 

different subsets of skeletal muscles. MNs themselves are controlled by various interneurons 

that are part of larger neuronal circuits coordinating and generating rhythmic motor activity, so 

called central pattern generators (CPGs). In arthropods these CPGs are situated in the thoracic 

ganglions, while in vertebrates, CPGs are located in the spinal cord (Chrachri & Clarac 1987; 

Büschges et al. 1995; Marder & Rehm 2005; Kiehn 2006; Büschges et al. 2011). CPGs receive 

input from descending neurons of the brain and the GNG, which are crucial for the initiation, 

cessation, temporal coordination and selection of task-specific motor programs (Bidaye et al. 

2014; Bidaye et al. 2017). Additionally, feedback from sensory leg organs, such as 

campaniform sensilla or femoral chordontonal organs, is used for the coordination of 

interneurons or MNs directly, thus offering the system a mechanism for adaptation and 

plasticity (Bässler & Büschges 1998; Windhorst 2007; Tuthill & Wilson 2016; Bidaye et al. 

2017). Furthermore, the properties and connections of these single neuronal components of 

locomotor systems can be altered and tuned by neuromodulatory input (Katz & Harris-Warrick 

1990; Marder 2012). This neuromodulatory input is essential for the needed flexibility and 

adaptation of these systems.  

 

Neuromodulation of neuronal systems can be classified as intrinsic or extrinsic depending on 

whether the neuromodulatory neuron is an integral part of the target circuit or whether it is 

located outside of such (Katz 1995; Marder 2012). The release of corresponding neuroactive 

substances in intrinsic neuromodulation is depending on the activity of the neuronal circuit 

itself, whereas in extrinsic neuromodulation the release is decoupled of the activity of the target 

circuit (Katz 1995). A fitting example for intrinsic neuromodulation of locomotor systems are 

serotonergic neurons of a CPG controlling escape swimming in the mollusk Tritonia diomedea 
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(McClellan et al. 1994). A good example for extrinsic neuromodulation of locomotor systems 

represents the neuropeptidergic modulation of a multifunctional CPG controlling ingestion and 

egestion in Aplysia. (Jing et al. 2007). Here, the aplysian orthologue of the neuropeptide Y 

(aNPY) released from gut afferents within the CNS acts on a specific CPG interneuron to 

promote egestion (Jing et al. 2007; Taghert & Nitabach 2012). 

 

While different neuroactive substances have been shown to affect the activity of locomotor 

systems (e.g. neuropeptides, amino acid derived transmitters; Katz 1995; Marder 2012) the 

focus in this study lied on the biogenic monoamine OA. In insects, the invertebrate noradrenalin 

homologue OA has been shown to affect various neuronal components of locomotor systems 

such as the activity of MNs, CPG neurons, coordinating neurons and sensory organs (Bräunig 

& Pflüger 2001; Roeder 2005; Marder 2012; see chapter 1). In the Indian stick insect C. 

morosus the activity of MNs is controlled by tonic depolarization as well as rhythmic excitatory 

and inhibitory inputs (Büschges 1998; Ludwar et al. 2005; Westmark et al. 2009; Rosenbaum 

et al. 2015), however, the underlying neural source of this tonic depolarization drive to MNs 

during walking is largely unknown. In order to elucidate potential neuroactive substance 

candidates Westmark and colleagues analyzed the pharmacological characteristics of the 

described tonic depolarization and suggested a modulatory role of OA in this system (Westmark 

et al. 2009). However, only limited data is available concerning the neuronal basis of this 

OAergic modulation in insect nervous systems.  

 

The main sources of OA in insect nervous system are VPM/VUM/DUM neurons of the brain, 

GNG and segmental ganglia (see chapter 1). Gnathal OAergic desDUM neurons of the Locust 

have been shown to project to neuropil regions in the thoracic ganglia, which processes 

information of leg sensory organs and therefore represent interesting candidates for extrinsic 

OA modulation on thoracic locomotor systems controlling walking (Bräunig & Burrows 2004). 

Retrograde labelling experiments of GNG posterior connectives in C. morosus revealed a 

potentially homologous cluster of ~6 large neurons in the posterior part of the GNG with 

bilaterally descending axons (Heß 2008). Because of their morphological homology to the 

aforementioned desDUM neurons in the Locust, these neurons could be the source of thoracic 

OA modulation, however, whether these neurons indeed synthesize OA was not elucidated.  

 

This chapter is dedicated to unravelling whether aforementioned desDUM neurons in C. 

morosus indeed contain somatic OA/TA. Simultaneously, the given aim allowed to test whether 
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the developed MALDI-TOF SCMS protocol (see chapter 2; Diesner & Neupert 2018) is also 

applicable to single neurons which underwent intracellular recording. Therefore, 

electrophysiologically identified desDUM neurons were injected with dextran-

tetramethylrhodamine for identification, dissected and subsequently analyzed by MALDI-TOF 

SCMS.  

 

The described experiments were part of a larger effort to characterize the morphological and 

electrophysiological properties of C. morosus desDUM neurons and their impact on thoracic 

locomotor systems. My part of this project was to analyze the intracellular recorded desDUM 

neurons towards a potential OA/TA content by MALDI-TOF SCMS, therefore mainly these 

results are discussed. Readers who are interested in the electrophysiological in- and output of 

these neurons are referred to the doctoral thesis by T. Stolz (Stolz 2018; Stolz et al., 2018 in 

preperation). 

 
 

4.2 Materials and Methods 
 
Chemicals 

All used chemicals were purchased from SIGMA-Aldrich (Steinheim, Germany), if not stated 

otherwise. 

 

Synthetic solutions 

Solutions of OA-hydrochloride, TA-hydrochloride, OA(d3), (CDN Isotopes, Pointe-Claire, 

Canada) and TA(d4) (CDN Isotopes) were prepared in 50% MeOH/TraceSELECT® water at 

a concentration of 100 fmol/µl, stored at 4°C in darkness. Prepared solutions of synthetic 

biogenic amines were replaced after three weeks. 

 

Derivatization reagents 

CA was prepared in 100% MeOH at a concentration of 23 mg/ml and centrifuged at 13000 rpm 

at 4°C for 10 min. 5 µl of the supernatant was diluted in 150 µl 50% MeOH/TraceSELECT® 

water at a concentration of 0.76 mg/ml and finally centrifuged at 15000 rpm for 10 min at 4° C 

and stored at 4° C and darkness upon usage, as described by Diesner & Neupert (Diesner & 

Neupert 2018; see chapter 2).  
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Animals 

For all experiments female C. morosus from a colony maintained at the University of Cologne 

were used. Animals were reared at 28°C under a 12 h/12 h light-dark cycle, had access to water 

and were fed ad libitum with fresh cut parts of Rubus sp.. 

 

Semi intact C. morosus preparations 

From adult female C. morosus all legs were removed at the mid-level of the coxa, except of one 

middle leg. The animal was attached to a platform using dental cement (Protemp II, 3M ESPE 

Dental AG, Seefeld, Germany) with the dorsal side pointing up. To gain access to the brain, the 

GNG, the mesothoracic ganglion and attached lateral nerves, the head capsule and thorax were 

opened dorsally by cutting corresponding rectangular windows into the cuticle. Subsequently, 

surrounding fat tissue, the gut and attached trachea were removed and the body cavity was 

rinsed and filled with saline (NaCl 180 mM; KCl 18 mM; CaCl2 8 mM; MgCl2 25 mM; HEPES 

buffer 10 mM; pH 7.2; Weidler & Diecke 1969). 

 

Intracellular recordings 

For intracellular recordings of desDUM neurons, the still attached GNG was placed onto a wax 

coated steel platform. Small crystals of Pronase E (Merck, Darmstadt, Germany) were placed 

onto the ganglionic sheath for about 10-20 s to allow an optimal electrode penetration. 

Excessive enzyme was thoroughly washed off with fresh saline. Intracellular recordings were 

obtained from desDUM somata, located at the posterior part of the GNG. Borosilicate glass 

micropipettes (GB100-TF8P; Science Products, Hofheim, Germany) with resistances of 15-35 

MΩ were manufactured on a filament puller (P-97; Sutter Instruments, Novato, CA, USA). The 

electrodes were filled with a mixture of 0.1 M KCl and 3 M CH3CO2K. Cells were identified 

by their large-amplitude (>70 mV), overshooting soma action potentials (APs), pronounced 

undershoot (>7 mV) and the generation of APs in response to gentle touch of the abdomen with 

a paintbrush. Membrane potentials were amplified with an intracellular amplifier (SEC-10L; 

NPI Electronics, Tamm, Germany) in bridge mode. Recordings were stored on a PC using Spike 

2 software (Version 7.09, Cambridge Electronic Design, Ltd., Cambridge, UK). 

 

Single cell dissection 

After intracellular recordings identified desDUM neurons, individual somata were marked by 

dextran-tetramethylrhodamine (5%, 3000 Dalton [MW], Invitrogen, Eugene, Oregon, USA) 



Chapter 4 
 
 

78 
 

injection. After a successful staining the whole GNG was removed from the animal and 

transferred to a small silgard filled dissection dish with fresh saline. After a 30 min recovery 

time on ice, the isolated GNG was again transferred to an identical dissection dish filled with 

saline containing 33% glycerin (v/v). Marked cell bodies were visualized and dissected under 

a fluorescence stereomicroscope (Lumar V12; Carl Zeiss AG) using fine forceps (Dumont #5; 

Fine Science Tools, Heidelberg, Germany) and, immediately after isolation, transferred onto a 

MALDI sample plate using a glass capillary. Any excess dissection buffer was removed with 

the same glass capillary. Subsequently, remaining glycerol was washed off with 50% 

MeOH/H2O using a fresh glass capillary.  

 

Sample preparation 

Sample preparation was adapted from Diesner & Neupert, 2018 (see chapter 2). Intact 

individual desDUM somata or small tissue parts of the anterior GNG were covered with 18.4 

nl of isotopically marked internal standard, containing 100 fmol/µl OA(d3) and 100 fmol/µl 

TA(d4) dissolved in 50% MeOH/H2O. Each sample was air-dried in darkness at room 

temperature. Subsequently, 9.2 nl of CA was applied and samples were air-dried again. In the 

last step, 18.4 nl of CHCA was applied as matrix solution and rapidly dried under a constant 

air-stream. For control experiments, biological samples were either replaced by 18.4 nl 100 

fmol/µl synthetic OA and TA or, for blanks, only internal standard was used. CHCA was 

prepared fresh daily in 80% MeOH/TraceSELECT® water at a concentration of 1.43 mg/ml. 

The resulting mixture was centrifuged for 10 min at 15.000 rpm at 4 °C and stored at 4 °C and 

darkness until usage. All solutions were pipetted using a micro injector (Nanoliter 2000; World 

Precision Instruments, Sarasota, FL, USA) under a stereomicroscope (STEMI 2000; Carl Zeiss 

AG) equipped with a KL 1500 LED light source (Schott, Mainz, Germany). 

 

MALDI-TOF MS 

Samples were analyzed with an UltrafleXtreme MALDI-TOF/TOF mass spectrometer (Bruker 

Daltonik Gmbh, Bremen, Germany) under manual control in reflectron positive ion mode in a 

mass range of m/z 0-400. All mass spectra were acquired with a fixed laser intensity. The 

instrument was calibrated using prominent matrix signals as reported earlier (Persike & Karas 

2009; Diesner & Neupert 2018). 2000 laser shots per sample spot were accumulated for one 

MS spectrum. Fragmentation data to verify OA and OA(d3) were acquired in LIFT mode. MS2 

experiments to identify TA and TA(d4) were recorded in CID mode, with argon as the collision 
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gas. All recorded data was analyzed using the FlexAnalysis 3.4 software package (Bruker 

Daltonik GmbH, Bremen, Germany).  

 

4.3 Results and Discussion 
 
To verify OA and TA in intracellular recorded desDUM neurons, electrophysiological 

identified and dextran-tetramethylrhodamine injected neurons were dissected, covered with 

18.4 nl of IS, derivatized with 9.2 nl of CA, covered with 18.4 nl of CHCA and subsequently 

analyzed by MALDI-TOF SCMS. Intracellular labeling with dextran-tetramethylrhodamine 

was sufficient to identify labeled desDUM neurons under a fluorescence stereomicroscope, 

which is a prerequisite for manual dissection (Fig. 4.1 A, B). Recorded mass spectra of CA 

derivatized desDUM samples treated with internal standard revealed intense ion signals for 

putative OA-CA (m/z 314.1, n = 14) and low ion signals for TA-CA (m/z 298.1, n = 5) as well 

as the derivatized internal standards OA(d3)-CA (m/z 317.2) and TA(d4)-CA (m/z 302.2; Fig. 

4.1 C). In order to verify a successful derivatization and identify the internal standards, ion 

signals of putative OA(d3)-CA (m/z 317.2) and TA(d4)-CA (m/z 302.2) were analyzed by 

tandem MS. Recorded product ion spectra of latter precursor ion signals confirmed these as the 

derivatized internal standards (Fig. 4.1 D). Subsequent fragmentation of putative OA-CA (m/z 

314.1) and TA-CA (m/z 298.1) ion signals from desDUM samples revealed product ions 

matching signals obtained from CA derivatized samples containing synthetic OA and TA (Fig. 

4.1 E-G). Control experiments from CA derivatized samples containing only IS revealed 

baseline ion signals matching putative OA-CA/TA-CA, however, subsequent tandem mass 

experiments revealed no product ions associated with OA-CA or TA-CA.  

 

Finally, to rule out any potential interference from potentially isometric substances of OA-

CA/TA-CA originating from the sample background, a small part of the anterior lateral GNG 

was dissected, treated with IS, derivatized with CA and subsequently analyzed by MALDI-

TOF MS (Fig. 4.1 A). The recorded mass spectrum of the blind sample showed only baseline 

ion signals matching OA-CA/TA-CA and distinct ion signals for the derivatized IS (Fig. 4.2 

B). The identity of the IS was confirmed by MS² (Fig. 4.2 C, D). Product ion spectra of baseline 

ion signals at m/z 298.1 (put. TA-CA) and m/z 314.1 (put. OA-CA) revealed no OA-CA/TA-

CA specific product ions as well as no additional ion signals compared to blank samples (Fig. 

4.2 C, D; Fig. 4.1 H). Thus, an influence from isomeric ion signals originating from the sample 
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background can be excluded. In summary, these results confirm the presence of OA and TA in 

the intracellular recorded desDUM neurons.  

 

 

Figure 4.1 Detection of OA and TA from an individual desDUM soma from the GNG of C. morosus by 
MALDI-TOF SCMS after intracellular recording and tetramethylrhodamine dextran injection. (A) Isolated 
GNG with a dextran-tetramethylrhodamin injected desDUM soma after electrophysiological characterization; 
scale bar = 100 μm. (B) Intact dextran-tetramethylrhodamin labeled desDUM soma after dissection und transfer 
to a MALDI sample plate. Scale bar = 10 µm (C) Representative MALDI-TOF MS spectrum of a dissected single 
desDUM neuron soma after internal standard addition (m/z 302.2, TA[d4]-CA; m/z 317.2 OA[d3]-CA) and 
derivatization with CA. A clear ion signal for OA-CA (m/z 314.1) and a weak ion signal for TA-CA (m/z 298.1) 
were observed. (D) Tandem MS experiments of potentially derivatized ISs confirmed a successful derivatization. 
(E) Validation of putative OA-CA/TA-CA in desDUM soma samples by tandem MS. Product ion spectra showed 
unique product ions for each substance in accordance to standards (TA-CA, m/z 120.8; OA-CA, m/z 296.1). (F) 
Mass spectrum obtained of a CA derivatized control sample containing a mixture of synthetic 100 fmol/μl TA/OA 
and TA(d4)/OA(d3). (G) Tandem mass spectra of derivatized synthetic OA-CA and TA-CA with the major 
product ion signals for OA-CA (m/z 269.1) and TA-CA (m/z 120.8). (H) Mass spectra of a blank sample containing 
100 fmol/μl deuterated TA(d4)-CA and OA(d3)-CA after chemical derivatization with CA. (I) Recorded tandem 
mass spectra of putative OA-CA/TA-CA ion signals from blank samples showed no product ions. 

The SCMS results presented here confirm the presence of somatic OA and TA in the analyzed 

desDUM neurons. Moreover, immunohistochemical stainings against OA in the GNG of C. 
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morosus, which were carried out in the course of this study, revealing 4 to 10 (n = 4) OA-like 

immunoreactive cell bodies in the posterior GNG, further corroborate the here presented 

findings (Stolz et al., 2018 in preparation). However, the question remains whether these 

neurons indeed secrete OA and/or TA during activation. The release of OA from DUM neurons 

has first been studied in DUM neurons innervating the extensor-tibiae muscle (DUMETi) in the 

locust, using high K+ saline activation and a radioenzyme assay for identification of OA 

(Morton & Evans 1984). A study by Martin Hammer could show that activation of the 

potentially OAergic ventral UM maxilar neuron 1 via intracellular current injection in 

honeybees mimicked OA effects on associative olfactory learning (Hammer 1993). Finally, in 

a recent study Majdi and colleagues could show the optogenetically controlled release of OA 

from Type II varicosities of OAergic VUM neurons in D. melanogaster larvae using cyclic 

voltammetry (Majdi et al. 2015). These studies indicate that activation of OAergic UM neurons 

indeed leads to a release of OA, however, it has been shown that DUM neurons can also co-

release tyramine. Donini and Lange (2004) could show that DUM neurons of the 7th abdominal 

ganglion in female Locusts innervates the oviducts and release tyramine when activated by high 

K+ concentrations (Donini & Lange 2004). Furthermore, in D. melanogaster larvae it was 

shown by CFME-FSCV that optogenitcally activation of Tdc2 expressing neurons, which 

contain OA and TA, leads to a high release of OA in the VNC but also a potential co-release of 

TA (Pyakurel et al. 2016).  

 

Biogenic monoamines can be co-localized and co-released with other neuroactive substances 

like neuropeptides or classical transmitters (Fricker 2012; Nässel 2018). However, co-

localization of OA/TA with other neuroactive substances in DUM neurons seems to appear 

only rarely (Bräunig & Pflüger 2001). In the locust, for example, a co-localization of OA and 

the neuropeptide FMRFamide has been shown for the DUM-heart 1 neuron located in the 

abdominal ganglia 4-6 using immunohistochemistry (Stevenson et al. 1994; Bräunig & Pflüger 

2001). Nevertheless, two recent independent studies analyzed neurons of the adult D. 

melanogaster brain using single cell transcriptomics and their results suggest a potential co-

expression of eight different neuropeptides in OAergic neurons in general (Davie et al. 2018; 

Croset et al. 2018; Nässel 2018). Furthermore, experiments limiting the GAL4 expression in 

the OA/TA neuron labeling Tdc2-GAL4 line using the Cha-GAL80 line, hint potentially 

towards a co-localization of acetylcholine in a subset of OAergic gnathal neurons (Zhou et al. 

2008; Watanabe et al. 2017).  
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In the course of the project electrophysiological results showed that desDUM neurons not only 

show excitatory but also inhibitory effects on MN activity in C. morosus (Stolz 2018; Stolz et 

al., 2018 in preparation). Thus, it can be speculated that desDUM neurons contain a second 

neuroactive substance that would elicit such an inhibitory effect. Preliminary results from an 

immunhistchemical study in C. morosus using an antibody raised against P. americana MIP 

(GWQDLQGGW-NH2) revealed 4 large cell bodies at the posterior end of the GNG, suggesting 

a potential co-localization of MIP and OA in some desDUM neurons (Sander Liessem, personal 

communication). A study using a genetic driver line labeling MIP expression in adult 

 

 

Figure 4.2 Screening for potential OA-CA/TA-CA isomeric ion signals originating from nervous tissue of 
C. morosus. (A) GNG of C. morosus after dissection and desDUM dextran-tetramethylrhodamine injection. The 
circle marks the area where the blind sample was cut out. Scale bar = 100 µm. (B) Detail view of the mass spectrum 
taken of the blind sample after IS application and derivatization by CA. Clear signals were recorded for TA(d4)-
CA (m/z 302.2) and OA(d3)-CA (m/z 317.2). No distinct ion signals for either OA-CA or TA-CA were recorded. 
(C) MS² mass spectra after fragmentation of TA(d4)-CA (m/z 302.1) and the base ion signal at m/z 298.1. 
Fragmentation of m/z 302.1 revealed the unique product ion at m/z 124.8 identifying the signal as TA(d4)-CA. 
Fragmentation of m/z 298.1 showed no specific product ion for TA-CA. (D) Fragmentation spectra recorded from 
MS² experiments of OA(d3)-CA (m/z 317.2) and m/z 314.1. Mass spectrum recorded after fragmentation of m/z 
317.2 revealed a product ion at m/z 299.1 confirming the ion signal as OA(d3)-CA. Fragmentation of m/z 314.1 
showed no distinct signals for OA-TA. 

D. melanogaster show similar results, as this driver line labels multiple neurons at the midline 

of the GNG, which could overlap with OA/TAergic VUM neurons (Min et al. 2016). Moreover, 
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the transcriptomic analysis of single OAergic neurons suggest that some of these neurons also 

express MIP (Croset et al. 2018; Nässel 2018). However, the analysis of potentially co-localized 

neuropeptides in desDUM neurons using the developed MALDI-TOF SCMS approach were 

unsuccessful. This could be due to the utilized matrix as previous experiments analyzing single 

C. morosus neuron somata with CHCA were also unsuccessful, while experiments using DHB 

were successful in the detection of multiple neuropeptides from similar samples (Sander 

Liessem, personal communication; Liessem et al. 2018). Thus, it would be interesting to repeat 

the here conducted experiments with DHB, in order to prove a potential co-localization of MIP 

and OA in desDUM neurons. 

 
 

4.4 Conclusion 
 

The developed MALDI-TOF SCMS approach (Diesner & Neupert 2018; see chapter 2) was 

used to detect and identify OA and TA from intracellular recorded gnathal desDUM neurons of 

adult C. morosus. The presented results not only confirmed the presence of OA and TA in the 

analyzed neurons but showed also that the within this thesis developed MALDI-TOF SCMS 

protocol can be combined with electrophysiological recordings. Therefore, the presented 

strategy enables the analysis of the chemical composition as well as the electrophysiological 

characteristics of a specific neuron in a single workflow. Such combinatorial workflows are 

highly desirable since they allow the in-depth analysis of the function of a given neuron in their 

corresponding neuronal circuits.  
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5. Mass spectrometric survey and mapping of neuropeptides in 
DIMMED neurons from the adult Drosophila brain 

 
The results of this chapter are already published in the following peer-reviewed article:  

Diesner, M; Predel, R; Neupert, S. Neuropeptide mapping of Dimmed cells of adult 
Drosophila brain. Journal of the American Society of Mass Spectrometry, 2018, Epub ahead 

of print, DOI: 10.1007/s13361-017-1870-1. 
 

The author contributions are as followed: SN conceptualized experiments, MD and SN 
performed experiments (Dissection of brains with removed single cells for mapping and 
subsequent 3D reconstruction SN, visual imaging of brains and 3D reconstructions MD; 

Repetition of single cell analysis SN and MD), MD and SN analyzed data, prepared figures 
and tables. MD, RP and SN wrote the manuscript. SN and RP funding.  

 
Parts of this chapter have been adapted/modified/copied from the article with permission from 
Springer Customer Service Centre GmbH: Springer Nature, Journal of The American Society 
for Mass Spectrometry, Neuropeptide Mapping of Dimmed Cells of Adult Drosophila Brain, 

Diesner M, Predel, R, Neupert S, ©, 2018. 
 

A license for the adaptation/modification/copying was given to Max Diesner with the licence 
number 4390870926882. 
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5.1 Introduction 
 
Neuropeptides are key players in many physiological processes such as development, 

homeostasis, and reproduction and thereby shape the behavioral output of metazoan organisms 

in general (Nässel & Winther 2010). They represent the structurally most diverse group of 

neuroactive substances to date and mainly act on GPCRs. In D. melanogaster about 50 

neuropeptide encoding genes have been identified to date, which give rise to an astonishing 96 

potential bioactive products (Nässel & Winther 2010; Ida, Takahashi, Tominaga, Sato, Kume, 

Ozaki, et al. 2011; Ida, Takahashi, Tominaga, Sato, Kume, Yoshizawa-Kumagaye, et al. 2011; 

Jiang et al. 2013; Jung et al. 2014; Yeoh et al. 2017). The expression of a specific neuropeptide 

gene is not exclusive in a given neuron and extensive research on co-localization of 

neuropeptides exists (e.g. Nässel & Winther 2010; Nässel 2018). For example, in D. 

melanogaster, co-localized expression of five different neuropeptide genes has been shown in 

insulin producing cells of the pars intercerebralis (Brogiolo et al. 2001; Söderberg et al. 2012; 

Huang et al. 2016). Moreover, neuropeptides can further be co-localized with classical 

neurotransmitters but also with biogenic monoamines (Fricker 2012; Nässel 2018). 

 

While neuropeptides can act as neurotransmitter, neuromodulator or neurohormone their 

function is often related to a modulatory or hormone like activity (Nässel & Winther 2010; 

Taghert & Nitabach 2012). In the D. melanogaster CNS most of these neurohormones are 

produced and secreted from large cells that display episodic release of amidated peptides 

(LEAP) cells (Park et al. 2008). Neurosecretory LEAP cells express the transcription factor 

DIMMED (DIMM), which promotes a neurosecretory/endocrine cell phenotype with an 

increased cell soma size. This increase in soma size in DIMM expressing neuroendocrine cells 

is accompanied by an upscaled capacity for neuropeptide production, storage and release which 

is necessary to raise or keep hemolymph titers of neurohormones at physiologically relevant 

concentrations. The DIMM mediated neurosecretory phenotype is independent of the expressed 

neuropeptide. Moreover, it has been shown that ectopic expression of DIMM in non-

neuroendocrine cells, such as photoreceptors or motor neurons, activates the regulated secretory 

pathway and converts such cells from fast neurotransmission towards a neurosecretory 

phenotype (Hewes 2003; Hamanaka et al. 2010; Luo et al. 2017).  Other described 

transcriptional roles of DIMM are regulating effects on cell growth and inhibiting apoptosis at 

different developmental stages in a cell type-specific manner (Liu et al. 2016). Finally, it has 

been reported that DIMM expression is not restricted to neuroendocrine cells, but has also been 
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observed for neuropeptidergic interneurons with complex arborizations. However, even though 

most DIMM cells are peptidergic, not all peptidergic cells express DIMM (Park et al. 2008). 

 

The reproducible identification of a neuron is one of the basic steps in characterizing its function 

in the CNS. While this can be achieved by e.g. retrograde dye labeling in larger insects, such 

classical approaches are of limited use in smaller insects like D. melanogaster due to the sheer 

limitation in size. It has to be noted that some studies tackled these size hurdles and were 

successful in labeling single neurons in developing and adult D. melanogaster (Rajashekhar & 

Singh 1994; Bossing & Technau 1994; Landgraf et al. 1997; Hsu & Bhandawat 2016). 

However, modern fly genetics with its thousands of genetic driver and reporter lines enables 

the routine fluorescent labeling and genetic modification of subpopulations or even single 

neurons with high accuracy and reproducibility. The creation of a D. melanogaster DIMM-

GAL4 driver line (c929-GAL4) in combination with fluorescent UAS reporter lines enables the 

systematic interrogation of co-localized neuroactive substances in neurosecretory neurons of 

the fly CNS (Hewes et al. 2000; Hewes et al. 2003; Park et al. 2008). For example, one study 

used affinity cell-capture or fluorescence activated cell sorting (FACS) to collect GFP-

expressing DIMM neurons from adult D. melanogaster brain cell suspensions and subsequent 

MS analysis to elucidate neuropeptide expression among these neurons, identifying 42 peptides 

from 16 neuropeptide precursors (Yew et al. 2009). However, the analysis of pooled samples 

only allows conclusions to be drawn about the general expression of neuroactive substances in 

this cell population and render it impossible to correlate specific neuroactive substance profiles 

to specific DIMM neurons. In another study, Park and colleagues mapped the expression and 

co-localization of neuropeptides by immunohistochemistry and other neuropeptide labeling 

GAL-4 lines in 3rd instar D. melanogaster larva, by using the c929-GAL4 line as reference (Park 

et al. 2008). Finally, even though a large body of data exists on neuroactive substance 

expression in the adult D. melanogaster CNS, a comprehensive map of DIMM neurons and 

their neuroactive substance profiles is missing to date. 

 

Aside from immunohistochemistry, SCMS represents another powerful tool for the 

interrogation of neuroactive substances in a given neuron, as it allows the simultaneous 

detection and identification of a multitude of different chemical features from a single neuron 

sample in comparison to immunohistochemistry or genetic labeling (Li, Romanova, et al. 2000; 

Neupert et al. 2007; Nemes et al. 2013; Romanova et al. 2014; Ong et al. 2015b; Zhang & 

Vertes 2018; Qi et al. 2018; Diesner & Neupert 2018). The elegant combination of genetic 
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labeling driven single neuron identification, somata microdissection and subsequent MALDI-

TOF SCMS analysis has been successfully used to analyze neuropeptide expression in single 

neuron somata of adult pdf-expressing neurons and larval hugin-expressing neurons from intact 

D. melanogaster CNS preparations (Neupert et al. 2007). A similar approach which has been 

developed as part of this thesis, uses chemical derivatization and isotopically labeled ISs to 

detect, identify and even quantify the biogenic monoamines OA and TA from genetically 

labeled single dissected neuron somata of adult D. melanogaster (see chapter 2; Diesner & 

Neupert, 2018). Furthermore, the study could show that the used derivatization has only a 

limited effect on the detection of neuropeptides, hence allowing their simultaneous detection 

from a single sample (see chapter 2; Diesner & Neupert 2018).  

 
This chapter is dedicated towards the creation of a map of DIMM neurons and their 

corresponding neuroactive substance repertoires in the adult brain of D. melanogaster. As a 

starting point, we used derivatization free MALDI-TOF SCMS to analyze the neuropeptidome 

of single GFP-expressing DIMM neurons from adult D. melanogaster brains of the c929-GAL4 

driver line with a soma size of ≥7 µm. Ten subpopulations of different DIMM neurons were 

analyzed on a single cell level and a total of 52 neuropeptide related products of 13 different 

neuropeptide precursors were identified. The resulting mass spectra provided information on 

(1) co-localization of neuropeptide products from differing neuropeptide genes as well as (2) 

major processing products of translated neuropeptide genes. Finally, the recorded SCMS data 

was compared with previously published results from studies using immunohistochemistry or 

genetic labeling to analyze neuropeptide expression. Altogether, this allowed us to map 

neuropeptide expression profiles to single DIMM cells and cell clusters.  

 
 

5.2 Materials and Methods 
 
Chemicals 

All used chemicals were purchased from SIGMA-Aldrich (Steinheim, Germany), if not stated 

otherwise. 

 

Fly strains 

Adults of both sexes of D. melanogaster were used for experiments. Flies were reared on a 

standard agar, cornmeal, and yeast medium at 25 °C, 60% relative humidity and a 12 h: 12 h 

light-dark cycle. For cell identification, c929-GAL4 was crossed to UAS-mCD8::GFP (C929-
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GAL4 was a present from Christian Wegener, University of Würzburg, Germany and UAS-

mCD8::GFP was a present from Manuela Ruppert, University of Cologne, Germany). 

 

Single cell dissection for mass spectrometry 

Cell dissection was adapted from Neupert et al., 2007 and Diesner & Neupert 2018 (see chapter 

2). Adult flies were immobilized on ice and brains were rapidly dissected in ice-cold saline 

buffer (125.94 mM NaCl, 5.37 mM KCl, 0.17 mM NaH2PO4, 0.22 mM KH2PO4, pH 7.2) with 

forceps and ultra-fine scissors under a stereofluorescence microscope (SteREO Lumar V12, 

Carl Zeiss AG, Goettingen, Germany). The dissected brains were transferred to a fresh drop of 

either saline buffer or saline buffer containing 33% glycerol. The ganglionic sheath around the 

area of a GFP-labeled cell of interest was removed and the cell soma manually picked and 

transferred to a MALDI-TOF sample plate, by an uncoated glass capillary (see chapter 2; 

Neupert et al. 2007; Diesner & Neupert 2018). Excessive dissection saline was removed using 

the same glass capillary. Residual dissection saline and/or glycerol surrounding the isolated 

soma was washed off with ice cold 50% MeOH/TraceSELECT® water. Washing was 

performed multiple times with a fresh glass capillary. However, the placed cell soma was left 

uncovered by the washing solution to prevent a possible loss of analytes. Finally, the dried 

sample was covered with matrix. Only samples with an intact cell body and no visual 

contaminations were prepared for further sample preparation.  

 

Matirx application 

Solutions of 10 mg/ml 2,5-dihydroxybenzoic acid (DHB) dissolved in 20% acetonitrile (ACN), 

1% formic acid, 79% HPLC grade water, 10 mg/ml CHCA dissolved in 60% ethanol, 36% 

ACN, 4% HPLC grade water or 10 mg/ml 1,5-diaminonaphtalene (1,5-DAN) dissolved in 50% 

ACN, 0.1% trifluoroacetic acid, 49.9% HPLC grade water were used as matrices. Prior to 

matrix application, the CHCA stock solution was diluted 1:3 with 50% methanol/water. 

Depending on the soma size, 9.2-18.4 nl of matrix was applied onto the dried samples using a 

nanoliter injector (World Precision Instruments, Berlin, Germany). For an even crystallization 

of DHB, freshly covered samples were rapidly dried using a conventional hairdryer.  

 

MALDI-TOF MS 

Mass spectra were acquired in reflector positive ion mode under manual control on an 

UltrafleXtreme TOF/TOF mass spectrometer (Bruker Daltonics, Bremen, Germany) in a 
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detection range of m/z 600–10,000. The instrument settings were optimized for the mass ranges 

of m/z 600–4000 and 3000–10,000, and calibrated using suitable synthetic peptide mixtures 

(Table 5.1; Table 2.1). Laser fluency was adjusted to provide the optimal signal-to-noise ratio. 

Data were collected using a laser beam diameter of 50 μm and random walk laser setting over 

the entire matrix spot. The data obtained in these experiments were processed with the 

FlexAnalysis 3.4 software package. MS/MS was performed with LIFT technology. LIFT 

acceleration was set at 1 kV. The number of laser shots used to obtain a spectrum varied from 

5000 to 10,000, depending on signal quality. Peptide identities were verified using MS/MS 

fragmentation of corresponding ion signals, determination of the molecular mass of the 

fragments, and comparison of predicted (http://prospector.ucsf.edu) and experimentally 

obtained fragmentation patterns.  

 

Table 5.1 Synthetic peptides used for instrument calibration in the range of m/z 3000 – 10,000. 

 

 

 

Drosophila peptide precursor sequences 

Neuropeptide precursor sequences were either obtained from blast searches at NCBI database 

(https://www.ncbi.nlm.nih.gov/) or from flybase (https://www.flybase.org). Signal peptides 

were predicted using the SignalP 4.1 server (www.cbs.dtu.dk/services/SignalP/). Potential 

cleavage sites were either manually assigned according to Veenstra 2000 (Veenstra 2000) or 

predicted in silico using the online suite Neuropred (http://stagbeetle.animal.uiuc.edu/cgi-

bin/neuropred.py; Southey et al. 2006).  

 

Documentation and single cell verification 

For documentation, microphotographs of corresponding brains were taken before and after 

single cell dissection with a stereo fluorescence microscope equipped with a digital camera 

(AxioCam MRc, Zeiss, Germany). For a more detailed mapping approach dissected brains were 

prepared after Pitman et al., 2011 (Pitman et al. 2011) for confocal microscopy. Therefore, brain 

samples were fixed in 4% paraformaldehyde dissolved in phosphate buffer solution (PBS) (1.86 
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mM NaH2PO4, 8.41 mM Na2HPO4, 175 mM NaCl) for 120 min at room temperature under 

vacuum. Samples were washed three times for 10 min in PBS containing 0.1% Triton-X 100 

and two times for 10 min in PBS to remove excessive fixation solution and prevent over 

fixation. After mounting in glycerol containing 20% PBS and 50 mg/ml 1,4-

diazabicyclo(2.2.2)octane, samples were analyzed using a Zeiss LSM 510 Meta confocal 

microscope equipped with a Plan-Apochromat 20x/0.75 objective. GFP was excited with an 

Argon laser at 488 nm and emission collected via a broad pass 505–550 filter. Serial optical 

sections were analyzed with a thickness of 0.3 to 0.8 μm. Contrast adjusted image stacks were 

used to reconstruct the brain surface whereas GFP expression was visualized by voltex function 

using the Amira 5.4.2 software package (FEI, Hillsboro, OR). The final figures were exported 

and processed to adjust brightness and contrast with Adobe Photoshop CS6 software (Adobe 

Systems, San Jose, CA). 

 
 

5.3 Results and Discussion 
 
The analysis of different adult c929>GFP brains by confocal microscopy showed a high degree 

of variation in GFP-labeled cell numbers (Fig. 5.1 A1-B2). This variation can probably be 

attributed to the fact that flies were not synchronized in age, sex or physiological state (hunger, 

mating etc.). While most of the larger DIMM positive neurons (≥10 µm) showed constant GFP-

labeling, the number of GFP-labeled smaller neurons (<10 µm) varied tremendously, however, 

some smaller neurons showed also constant GFP-labeling between preparations (Fig. 5.1 B1, 

B2). Cells with a constant labeling could also be identified under the stereomicroscope with a 

high degree of certainty, which was a prerequisite for the repeated SCMS analysis of a specific 

neuron (Fig. 5.1 C1, C2). Due to the limitations in size for manual dissection, only neurons with 

cell soma of about 7 µm or larger were chosen for SCMS. Taken this altogether, a total set of 

10 different single cells and cell populations were chosen for dissection and subsequent 

MALDI-TOF SCMS.  

 

A total of 52 mature products of 13 different neuropeptide precursor genes from the 10 different 

cell types (Table 5.2) were detected. In the following sections each analyzed cell type is 

introduced and discussed.  
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Figure 5.1 Optical survey of the c929>GFP expression pattern in adult D. melanogaster brains. (A1) Three 
dimensional reconstruction of detected c929>GFP labeling in an adult D. melanogaster brain and GNG. (A2) 
Maximum projection view of c929>GFP expression in an adult D. melanogaster brain and GNG recorded with 
confocal laser microscopy. (B1, B2) c929>GFP positive cell numbers vary considerably between different brain 
dissections. Schematic three dimensional reconstruction of c929>GFP-positive cell bodies in two different adult 
D.melanogaster brain and GNG preparations. Cell bodies which showed consistent labeling are marked in blue, 
while cell bodies showing fluctuating labeling are marked in yellow. Red size-markers from right to left: 3.5, 5.2, 
6.8, 8.2, 9.6, 12.4, 14.0 µm. (C1) Anterior and posterior (C2) view of a dissected adult c929>GFP brain and GNG 
preparation under a fluorescence stereomicroscope as used for single cell dissection. Scale bar = 50µm.  

 

 

 



Chapter 5 
 
 

92 
 

5.3.1 Cell type #1: Allatostatin-C (Ast-C) neurons 

SCMS analysis of a single large bilateral cell (soma size: 18-20 µm; n = 6) in the posterior 

medio-lateral protocerebrum revealed ion signals matching products of the Ast-C precursor and 

was therefore classified as Ast-C neuron (Fig. 5.2 A; FlyBase ID: FBgn0032336). The D. 

melanogaster precursor encodes a single putative Ast-C sequence. Two almost equimolar 

amounts of Ast-C with N-terminal Gln and N-terminal pyroglutamate were detected (Fig. 5.2 

A). Both isoforms were identified earlier by mass spectrometry using an immunoaffinity cell 

enrichment of GFP-labeled DIMM neurons from the same c929-GAL4 line (Yew et al. 2009). 

MS² experiments of the ion signal at m/z 1921.8 confirmed the ion signal as Ast-C with N-

terminal Gln (Fig. 5.3 A). Comparison to results from a published immunocytochemical study 

showed a most likely match to the PMP2 neuron described in the protocerebrum of adult D. 

melanogaster (Zitnan et al. 1993). However, an assignment of this neuron to the mapped Ast-

C immunopositive DIMM neurons of the larval brain is not possible, since no cell was co-

labeled by anti-Ast-C immunolabeling and c929>GFP driven fluorescence close to the position 

observed in the adult brain (Park et al. 2008). However, the described Ast-C cell could belong 

to a larval neuron lineage described as corpus allatum innervating neurosecretory neuron of the 

lateral protocerebrum 1 (CA-LP 1) innervating the larval ring gland (Siegmund & Korge 2001). 

Moreover, Price and colleagues described a single neuron as PMP2 neuron in brains of third 

instar D. melanogaster larvae and adult D. melanogaster brains (Price et al. 2002). However, 

whether these larval PMP2 neurons represent the same neuron or the same lineage as the adult 

DIMM positive Ast-C cell remains elusive. To date no direct function for the analyzed PMP2 

neuron has been described. Ast-C in general is associated with an allatostatic function (Wang 

et al. 2012) which is dependent on the stage and age of the insect analyzed (Bendena & Tobe 

2012; Verlinden et al. 2015). Furthermore, it has been shown that Ast-C has myoinhibitory 

effects on the heart rate and crop contraction in D. melanogaster larvae and adults (Merte & 

Nichols 2002). Finally, a recently published study analyzing clock neurons showed a potential 

role of Ast-C in the circadian rhythm of the fly (Abruzzi et al. 2017). Non–amidated Ast-C 

products were the only neuropeptide products detected in this cell and therefore this DIMM cell 

do not likely process amidated peptides. This is interesting, since DIMM cells have been 

associated in general with the production and secretion of amidated peptides (Hewes et al. 2003; 

Park et al. 2008). However, in previous studies it was shown that some DIMM neurons express 

non-amidated peptides (Hamanaka et al. 2010; Park et al. 2008). Finally, this was the only 

analyzed DIMM cell type which processes non-amidated neuropeptides in this study.  
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Table 5.2 Detected mature neuropeptides and precursor peptides (PP) by SCMS from identified DIMM neurons 
of the adult brain with GNG of D. melanogaster. * = peptides which were detected as sodium adduct in mass 
spectra 
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5.3.2 Cell type #2: Myosuppressin (DMS) neurons 

Medial of cell type #1 a second very large bilaterial cell (soma size: 22-24 µm; n = 20) in the 

medio-lateral protocerebrum was analyzed by SCMS and revealed ion signals matching 

predicted products of the DMS precursor, and therefore was classified as DMS neuron (Fig. 5.2 

B; FlyBase ID: FBgn0011581). The DMS precursor encodes a single putative DMS sequence 

and a putative long precursor peptide sequence (Vanden Broeck 2001). Both sequences were 

confirmed by SCMS of analyzed DMS neurons (Fig. 5.2 B). Comparison to a published 

immunocytochemical study, using an antibody directed against the peptide TDVDHVC in 

various developmental stages of D. melanogaster, revealed a most likely match of the analyzed 

MS neuron to the bilaterial medial protocerebral neurons 2 (MP2) in the imago and larva 

(McCormick & Nichols 1993). During development, the two MP2 neurons are the first neurons 

showing MS-immunopositive labeling, however, during metamorphosis one neuron is lost and 

in the imago only a single large MP2 neuron remains MS-immunopositive (McCormick & 

Nichols 1993). MP2 neurons project into to the ventral nerve cord with intense arborizations 

along the midline. MP2 DIMM neurons with MS-immunopositive labeling were also described 

in the larval D. melanogaster brain, resembling probably the same cell lineage (Park et al. 

2008). A suggested co-localization with short neuropeptide F (sNPF) or other neuropeptides in 

MP2 neurons as described from larva, however, was not observed in our experiments. This 

finding is corroborated by the fact that immunostainings against sNPF in adults showed no 

labeling of a large cell in the same region as the described cell type #2 (Nässel et al. 2008). To 

date no functional description of the MP2 neuron has been published. However, it has been 

shown that DMS immunoreactive fibers innervate the heart, crop and anterior gut and that DMS 

has an inhibitory effect on these muscles (Dickerson et al. 2012).   

5.3.3 Cell type #3: Allatostatin-A (Ast-A) + myoinhibiting peptide (MIP) + 
Natalisin (Nat) neurons 

Analysis with SCMS of a single bilateral cell located in the anterior ventro-lateral brain (soma 

size: 12-14 µm; n = 7) revealed ion signals matching predicted products of three different 

neuropeptide precursors, Ast-A, MIP and Nat, and the cell was therefore classified as Ast-

A/MIP/Nat neuron (Fig. 5.2 C; FlyBase IDs: FBgn0015591, FBgn0036713, FBgn0085417). 

All four Ast-A paracopies encoded by the Ast-A precursor (Vanden Broeck 2001) as well as 

the first N-terminal precursor peptide were confirmed by mass spectra. The second present  
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Figure 5.2 Mapping of cell type #1-3. (A) Localization of cell type #1, Ast-C neuron, corresponding mass 
spectrum and Ast-C precursor. The recorded mass spectrum shows ion signals for the N-terminal blocked [pQ] 
and unblocked [Q] form of Ast-C. (B) Localization of cell type #2, DMS neuron, corresponding mass spectrum 
and precursor. The recorded mass spectrum shows ion signals for the [pQ] form of DMS and the C-terminal PP. 
(C) Localization of cell type #3, Ast-A/MIP/Nat neuron, corresponding mass spectrum and related precursors. The 
recorded mass spectrum shows ion signals of mature peptide products and PP from all precursors and confirmed 
the co-localization of the three neuropeptide genes in these neurons for the first time. Asterisk: sodium adduct; 
arrowhead: localization unmanipulated soma; circle: localization dissected soma; scale bar = 50 µm. Signal peptide 
is given in bold italic, cleavage sites are given in red, identified sequences are given in blue, amidation sites are 
given in blue italic.  

 
precursor, MIP, encodes five paracopies (Vanden Broeck 2001) which were all confirmed by 

SCMS in cell type #3. Furthermore, MIP-1, which is mass identical to MIP-2, was 

biochemically identified for the first time (Fig. 5.3 B, C). MIP-1 and 2, as well as 3 and 4, 

contain no Arg and were primarily detected as sodium adducts. Fragment spectra of mass 

identical MIP-1 and -2 as [M+Na]+ revealed sufficient product ion signals for the confirmation 

of both peptides, however, a high number of unknown background ion signals were recorded. 

Unknown background ion signals can complicate manual and automated interpretation of 

product ion spectra by increasing possible false positive assignments of amino acids to ion 

signal pairs during de novo sequencing or by obscuring ion signals needed for sequence 

confirmation during matching of in silico predicted fragments to recorded product ion spectra. 

Thus, strategies to minimize occurring unknown background ion signals in product ion spectra 

can help to allow their fast and correct interpretation. A repeated analysis of the same cell type 

and corresponding fragmentation experiments of the putative MIP-1/2 [M+Na]+ ion signal at 

m/z 1113.5 with 1,5-DAN, a matrix used for on-plate reducing of disulfide bonds (Fukuyama 

et al. 2006), resulted in much clearer MS² spectra. Even though the overall number of 

identifiable fragments was diminished, the extreme reduction of unknown background signals 

clarified the spectrum enormously (Fig. 5.3 B, C). Whether this effect is a general feature of 

1,5-DAN on fragmentation of peptide sodium adducts, or if the amino acid sequence analyzed 

here resembles a unique case, remains elusive and will be the subject of future studies. Finally, 

products of a third multicopy peptide precursor, Nat, were detected in cell type #3 samples. 

Four of the five putative Nat paracopies were identified in corresponding mass spectra (Fig. 5.2 

C; Jiang et al. 2013). Furthermore, only an N-terminal fragment of Nat-1 was recorded (Nat-11-

14), suggesting cleavage of the putative internal Nat-1 Lys motive (Fig. 5.2 C). The analyzed 

cell type #3 likely corresponds to one of the few described Nat-immunopositive neurons from 

adult D. melanogaster brains, the inferior contralateral interneuron (ICLI; (Jiang et al. 2013). 

Moreover, a recent study investigating peptidergic control of satiety described the identical 
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ICLI neurons as part of an MIP-GAL4 line, suggesting MIP expression in these cells (Min et al. 

2016). Additionally, a third study described a tyraminergic input of these neurons by utilizing 

a genetic tyramine-receptor-GAL4 (TyrR-GAL4) line, suggesting a key role of these ICLI 

neurons in male courtship (Huang et al. 2016; here IPS neuron). Additionally, the same study 

reported that these neurons also express MIP, confirming earlier results and corroborating the 

assumption that these neurons are identical to the analyzed cell type #3. Finally, comparison to 

a published immunocytochemistry study focusing on Ast-A, suggests that a single described 

neuron, the anterolateral tritocerebrum neuron 2 (ALT-2), is identical to the aforementioned 

ICLI neurons and to the described cell type #3 (Yoon & Stay 1995). The same study revealed 

that these neurons are visible for the first time during metamorphosis and explain their absence 

from the larval neuropeptidergic DIMM neuron map (Park et al. 2008). Cell type #3 represents 

the only observed cell type co-expressing three different neuropeptide genes in this study. 

5.3.4 Cell type #4: CAPA neurons 

Mass spectrometric analysis of two large DIMM neurons (soma size: 16-17 µm; n = 6) in the 

GNG showed ion signals matching predicted products of the CAPA precursor and were 

therefore determined as CAPA neurons (Fig. 5.4 A; FlyBase ID: FBgn0039722). It has been 

shown that the capa and pyrokinin (hugin; see huginPK/ #5 cells) genes share a common 

evolutionary origin and it has been suggested that they result from a gene duplication during 

the emergence of hexapods (Derst et al. 2016). The proposed ancestor was a single gene 

encoding three distinct receptor ligands, which have separate designated names in insects: 

pyrokinins (PKs; Predel et al. 1999), periviscerokinins (PVKs; CAP2B, (Predel et al. 1995; 

Huesmann et al. 1995), and the tryptoPKs (Veenstra 2014; Redeker et al. 2017). In D. 

melanogaster and other insects it has been shown that each of these neuropeptides activates a 

separate receptor (Park et al. 2002; Iversen et al. 2002; Kean et al. 2002; Meng et al. 2002; 

Rosenkilde et al. 2003; Cazzamali et al. 2005; Predel & Wegener 2006). However, the D. 

melanogaster CAPA precursor encodes two PVKs and one tryptoPK (Kean et al. 2002). 

Recorded mass spectra of CAPA neurons revealed only two ion signals, identifying an N-

terminally truncated tryptoPK form and an N-terminally adjacent PP. This is not surprising 

since earlier studies suggested a cell type specific differential processing of the CAPA precursor 

in neuroendocrine cells from the abdominal ganglia of the VNC and corresponding cells from 

the GNG. Mass spectrometric analysis of adult abdominal hormone release sites 

(perisympathetic organs) revealed two mature PVKs and the mature tryptoPK, while mass 
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Figure 5.3 MS² spectra of N-terminal unblocked AST-C, MIP-1 and MIP-2 from cell type #3 preparations. 
Fragmentations of AST-C [Q] (A), mass identical MIP-1 and -2 with CHCA (B)  and (C) 1,5-DAN as matrix. b- 
,y-,a- and c-fragments are labeled which confirm the predicted sequence of Ast-C [Q], MIP-2, and MIP-1. The 
usage of 1,5-DAN as matrix simplifies the sequence reconstruction of the analyzed sodium adducts of MIP-1 and 
-2 in resulting MS² mass spectra. Black fragment labels = mass identical for MIP-1 and 2. 

spectrometric analysis of the adult retrocerebral complex yielded only truncated tryptoPK 

(Predel et al. 2004; Wegener et al. 2006). Therefore, the here obtained results corroborate these 

findings by confirming the absence of PVKs and the presence of the N-terminally truncated 

form of tryptoPK in the analyzed DIMM neurons. Transcriptomic analysis of abdominal 

ganglia and GNG showed no differences in detected CAPA transcripts (Neupert, Ragionieri, 

Predel, unpublished), hence this differential processing seems to be mediated by an expression 

of different processing enzymes in corresponding CAPA neurons. This represents the only 

reported case of differential neuropeptide precursor processing in D. melanogaster to this date.  

5.3.5 Cell type #5: Hugin/Pyrokinin (huginPK) neurons  

Three DIMM cell populations in the GNG with a total of eight neurons (soma size 7-10 µm; n 

= 10; FlyBase ID: FBgn0028374) showed ion signals matching the huginPK precursor and thus 

were designated as huginPK neurons (Fig. 5.4 B). The huginPK precursor encodes two putative 

PKs, hug γ and PK (Meng et al., 2002). Recorded mass spectra of analyzed DIMM neurons 

yielded ion signals for PK (SVPFKPRLamide, m/z 942.58) and a larger PP, the latter 

confirming the predicted length of the signal peptide (Fig. 5.4 B). Identical cells, identified by 

a hugin-GAL4 line, were analyzed by SCMS in an earlier study, identifying also only PK in 

recorded mass spectra (Neupert et al. 2007). The here presented results corroborate these earlier 

findings. A previous study predicted also the cleavage of a second peptide from the precursor, 

hugin γ (QLQSNGEPAYRVRTPRLamide, m/z 1984.08; Meng et al. 2002). However, no 

corresponding ion signal were either detected in this study or an earlier study (Neupert et al. 

2007). The expression patterns of huginPK neurons have been studied in great detail by 

immunocytochemistry and huginPK-GAL4 driver lines in larvae and adults. Gnathal huginPK 

neurons send projections in the protocerebrum, the VNC, the retrocerebral complex as well as 

on to pharyngeal muscles (Siegmund & Korge 2001; Melcher & Pankratz 2005; Bader et al. 

2007; Schlegel et al. 2016; Hückesfeld et al. 2016; King et al. 2017). The analyzed DIMM 

neurons are likely identical to these described GNG huginPK neurons. Furthermore, huginPK 

expression has been reported exclusively to DIMM neurons in larva (Park et al. 2008). Finally, 

huginPK neurons have been associated with linking the D. melanogaster circadian clock to 
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locomotor activity in adults (King et al. 2017) as well as are necessary for the avoidance of 

bitter food sources and corresponding locomotor activity in larvae (Schlegel et al. 2016; 

Hückesfeld et al. 2016).     

5.3.6 Cell type #6: Sulfakinin (SK) neurons 

Recorded mass spectra of two bilateral neurons located in the dorsal medium protocerebrum 

(soma size 11-14 µm, n = 3) showed ion signals matching products of the SK precursor and 

were thus designated as SK neurons (Fig. 5.4 C; FlyBase ID: FBgn0000500). The SK precursor 

encodes two putative SK paracopies and a smaller amidated peptide (Nichols et al. 1988). The 

two paracopies of SK, SK-1 and SK-2, were confirmed in recorded mass spectra of analyzed 

SK neurons, however, no ion signals were observed for the smaller peptide, SK-0, or PPs (Fig. 

5.4 C). Moreover, SK-1 and 2 were only detected without sulfation, which was reported earlier 

and is needed for proper recognition by their corresponding receptor (Kubiak et al. 2002; Yew 

et al. 2009). This is due to the fact that detection of Tyr sulfation with MALDI-TOF MS 

operating in ion positive mode is not possible. The analyzed DIMM neurons are likely 

corresponding to the two medial protocerebrum cells (MP1), exhibiting extensive arborizations 

along the entire VNC, which were described in a study analyzing SK expression in different D. 

melanogaster developmental stages using a SK specific antiserum (Nichols & Lim 1996). MP1 

neurons are also designated protocerebral descending neurons and seem to be highly conserved 

between insect taxa (Agricola & Braunig 1995). MP1 neurons are likely identical to the 

described SK-immunopositive DIMM neurons in larvae (Park et al. 2008). However, a 

suggested co-localization with AST-C in larvae could not be confirmed in the mass 

spectrometric analyzed adult neurons (Park et al. 2008). To date no function of the MP1 neurons 

has been published. However, a knockdown of DSK in DSK producing insulin cells in the pars 

intercerebralis has been shown to cause defective regulation of food intake, food choice and 

decreasing overall satiety (Söderberg et al. 2012; Nässel & Williams 2014). Furthermore, 

another study revealed that the Drosophila obesity-linked homologs Transcription factor AP-2 

and Tiwaz regulate octopamine signaling to initiate feeding (Williams et al. 2014; Nässel & 

Williams 2014).  Octopamine then, in a negative feedback loop, induces expression of DSK to 

inhibit consummatory behavior (Williams et al. 2014; Nässel & Williams 2014). Finally, this 

transcription factor AP-2 and Tiwaz controlled OA circuit regulating DSK secretion seems also 

to be involved in male aggression in D. melanogaster (Williams et al. 2014). Finally, the 

analyzed DIMM neurons are likely identical to the described larval CC-MS 2 neurons, which 

project into the larval ring gland (Siegmund & Korge 2001; Kean et al. 2002; Wegener et al. 
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2006). These neurons have also been described as DIMM positive in larvae (Park et al. 2008). 

CAPA in general has been shown to stimulate secretion in Malphighian tubules in D. 

melanogaster and other insects (Terhzaz et al. 2012; Halberg et al. 2015). Finally, this CAPA 

mediated secretion impacts desiccation and cold tolerance in D. melanogaster (Terhzaz et al. 

2015). 

5.3.7 Cell type #7: Corazonin (Cor)/short Neuropeptide F (sNPF) neurons 

Recorded mass spectra of single cells of a dorso-lateral DIMM cell population (soma size 7-9 

µm, n = 7), comprised of four neurons, revealed ion signals matching to products of the Cor 

and sNPF precursor and were therefore defined as Cor/sNPF neurons (Fig. 5.5 A; FlyBase ID: 

FBgn0013767). The Cor precursor encodes a single putative corazonin peptide with an N-

terminal Gln for potential pyroglutamyl formation (Veenstra 1994). Recorded mass spectra 

could only confirm the presence of the pyroglutamyl form of corazonin, while the unprocessed 

form with a free Gln was not detected (Fig. 5.5 A). The sNPF precursor encodes four putative 

sNPF paracopies, which were all confirmed in corazonin/sNPF neuron mass spectra (Vanden 

Broeck 2001; Fig. 5.5 A). sNPF-1 has an internal single Arg cleavage site and the potential 

usage would result in an truncated sNPF-1 form which would be sequence and therefore mass 

identical to sNPF-2. Comparison of the recorded relative ion signal intensities of sNPF 

precursor products indicate the usage of this internal cleavage site, since only small ion signals 

of the intact sNPF-1 form have been detected from the analyzed cells. Furthermore, a long 

precursor related peptide was identified, which follows directly the signal peptide in the sNPF 

precursor, in a complete and truncated form, missing the first N-terminal amino acid. This 

indicates a potential usage of the signal peptide with different lengths. The ion signal of mature 

Cor was always the most intense ion signal recorded in mass spectra of analyzed Cor/sNPF 

neurons. Comparison to a study analyzing expression patterns of corazonin 

viaimmunocytochemistry and in situ hybridization showed that the analyzed Cor/sNPF neurons 

are likely identical to the described DLP neurons (Choi et al. 2005). Moreover, another study 

analyzing sNPF expression patterns using immunohistochemistry, a sNPF-GAL4 driver line 

and in situ hybridization, described a cell population in the same location as DLN1 (Nässel et 

al. 2008). A third study suggested a co-expression of Cor and sNPF in the DLP/DLN1 neurons 

by immunocytochemistry and a Cor-GAL4 driver line (Kapan et al. 2012). The co-localization 

of Cor and sNPF has also been reported for the same neurons expressing DIMM in the larva 

(Park et al. 2008). The recorded mass spectra of analyzed Cor/sNPF neurons thus corroborate 
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these earlier findings. It has been shown that these neurons are part of the circadian clock in D. 

melanogaster (Helfrich-Förster 2003; Schubert et al. 2018).  
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Figure 5.4 Mapping of cell type #4-6. (A) Localization of cell type #4, CAPA neuron, corresponding mass 
spectrum and CAPA precursor. The recorded mass spectrum shows ion signals of truncated CAPA-typroPK and 
a CAPA-PP, confirming the differential processing of the CAPA precursor in neuroendocrine cells of the GNG 
(shown here) and abdominal ganglia. (B) Localization of cell type #5, hugin/PK neuron, corresponding mass 
spectrum and hugin/PK precursor. The recorded mass spectrum shows ion signals for mature PK and a PK-PP. 
(C) Localization of cell type #6, DSK neuron, corresponding mass spectrum and DSK precursor. The recorded 
mass spectrum shows ion signals for DSK-1 and -2 without sulfation. Sulfation of Tyr cannot be detected in 
positive ion mode MALDI-TOF MS. Asterisk: sodium adduct; arrowhead: localization unmanipulated soma; 
circle: localization dissected contralateral soma; scale bar = 50 µm. Signal peptide is given in bold italic, cleavage 
sites are given in red, identified sequences are given in blue, amidation sites are given in blue italic. 

5.3.8 Cell type #8: Pigment dispersing factor (PDF) neurons 

Mass spectrometric analysis of four medium sized (soma size: 9-11 µm, n = 5) neurons in the 

lateral protocerebrum revealed a single ion signal matching the PDF precursor and these 

neurons were therefore classified as PDF neurons (Fig. 5.5 B; FlyBase ID: FBgn0023178). The 

PDF precursor contains a single putative neuropeptide which was identified in recorded mass 

spectra. The analyzed DIMM neurons correspond to the described PDF-immunopositive large 

ventral lateral clock neurons (l-LNv; Helfrich-Förster 2003), which are part of the neuronal 

circadian clock in D. melanogaster. These cells were already analyzed by SCMS in an earlier 

study, using a pdf-GAL4 line to mark these neurons (Neupert et al. 2007). Our results 

corroborate the prior findings, since recorded mass spectra were nearly identical. Even though 

a potential co-localization with NPF has been suggested for some l-LNvs, by a study using an 

npf-GAL4 line and immunocytochemistry (Choi et al. 2005), mass spectra from this study as 

well as the previous study could not confirm this (Neupert et al. 2007). However, since NPF 

expression is controlled in a time depending manner it is possible that the analyzed neurons 

were not in the right time window or only cells which does not express NPF have been analyzed. 

Finally, L-LNv activity has been associated with arousal and promoting a waking state during 

the morning phase of D. melanogaster (Shang et al. 2008; Shang et al. 2013; Liang et al. 2017). 

5.3.9 Cell type #9: Neuropeptide-like precursor 1 (NPLP1) neurons 

SCMS of two bilateral DIMM neurons in the dorso-lateral protocerebrum (soma size 11 µm, n 

= 2) revealed ion signals matching the NPLP1 precursor and were therefore determined as 

NPLP1 neurons (Fig. 5.5 C; FlyBase ID: FBgn0035092). The NPLP1 precursor encodes two 

putative sequences with a C-terminal amidation motif and several more without an amidation 

motif as PTM (Baggerman et al. 2002). However, the predicted sequences show a high degree 

of variation in their amino acid composition when compared to each other. Recorded mass 

spectra showed ion signals of 11 NPLP1 related peptides, with all of them being already 



Chapter 5 
 
 

104 
 

reported in earlier peptidomic studies of the D. melanogaster CNS (Baggerman et al. 2002; 

Schoofs & Baggerman 2003; Predel et al. 2004; Yew et al. 2009; Salisbury et al. 2013). In 

contrast to other analyzed cell types, NPLP1 neurons showed multiple additional ion signals 

matching truncated forms of identified NPLP1 peptides (Fig. 5.5 C). Two peptides were 

identified with a C-terminally remaining Lys, (NIATMARLQSAPSTHRDPK-OH, m/z 

2094.09; SVAALAAQGLLNAPK-OH, m/z 1423.83) from the dibasic cleavage site Arg-Lys, 

as reported earlier (Baggerman et al. 2002). A likely homologous NPLP1 peptide with the same 

remaining Lys has been reported from the yellow fever mosquito, Aedes aegypti 

(NIQSLLRTGMLPSIAPK-OH, NPLP1-6; Predel et al. 2010). Furthermore, one peptide 

(NVAAVARYNSQHGHIQRAGA-OH, GAE1-20, m/z 2120.77) showed a C-terminally 

truncated form with an amidated C-treminus (NVAAVARYNSQHGHIQRA-NH2). This 

suggests an additional C-terminal processing by exopeptidases until the amidation motif is 

unblocked and can be subsequently processed. Moreover, this is supported by the detection of 

other C-terminal truncated NPLP1 peptides from the same cell type (VQQ, Fig. 5.5 C, Table 

5.2).  Comparison to results from an immunocytochemical study using an antisera raised against 

the D. melanogaster NPLP1 peptide IPNamide revealed a highly possible match between the 

two analyzed DIMM neurons and two described adult IPNamide-immunopositive interneurons 

in the dorso-lateral protocerebrum (Verleyen et al. 2003). In the larva three IPNamide-

immunopositive cell populations were described from the brain, the SP3, MP2 and DC cell 

clusters, however, none of these neurons exhibited any processes (Verleyen et al. 

2003).Furthermore, no DIMM cells expressing NPLP1 were described for larva (Park et al. 

2008). To date only VQQ of the NPLP1 derived peptides has been attributed with a function in 

Drosophila. VQQ activates a receptor guanylate cyclase and thereby stimulates fluid transport, 

increases cGMP in Malphigian tubules and ultimately signals environmental salt stress to the 

whole organism (Overend et al. 2012). Furthermore, a potential role in the D. melanogaster 

circadian clock has been suggested since IPNamide is expressed in DN1 clock neurons (Shafer 

et al. 2006). 
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Figure 5.5 Mapping of cell type #7-9. (A) Localization of a Cor/sNPF neuron described as cell type #7, recorded 
mass spectrum and peptide precursors. The mass spectrum shows ion signals of Cor, the four predicted sNPF 
sequences and two additional sNPF PPs. (B) Localization of cell type #8, PDF neuron, corresponding mass 
spectrum and precursor. The recorded mass spectrum shows ion signals for mature PDF and its sodium adduct. 
(C) Localization of cell type #9, NPLP-1 neuron, corresponding mass spectrum and precursor. The recorded mass 
spectrum shows ion signals for various different NPLP-1 peptides and some truncated forms of these. Asterisk: 
sodium adduct; arrowhead: localization unmanipulated soma; circle: localization dissected contralateral soma; 
scale bar = 50 µm. Signal peptide is given in bold italic, cleavage sites are given in red, identified sequences are 
given in blue, amidation sites are given in blue italic. 

5.3.10 Cell type #10: Neuropeptide F (NPF) neurons 

Recorded mass spectra of a single bilateral DIMM neuron in the dorsal medium protocerebrum 

(soma size  13-14 µm, n = 3), postereo-lateral of the DIMM positive pars intercerebralis cell 

group, revealed ion signals of the NPF precursor and was thus identified as NPF neuron (Fig. 

5.6; FlyBase ID: FBgn0027109). The NPF precursor encodes a single putative NPF sequence 

and one putative precursor related sequence which have never been properly identified and 

confirmed by peptidomics to date (Brown et al. 1999). MS² experiments of putative mature 

NPF from designated DIMM NPF neurons revealed that the processed mature NPF is shorter 

than suggested, indicating a complete proteolytic processing of a monobasic Arg cleavage site 

at position 30 of the precursor (Fig. 5.6 B). Furthermore, two precursor related sequences were 

identified in recorded mass spectra unraveling the complete processing of the NPF precursor in 

the analyzed DIMM neurons for the first time (Fig. 5.6). Comparison to other studies using 

antisera directed against D. melanogaster NPF or an npf-GAL4 driver line showed a correlation 

between the analyzed NPF DIMM neurons and described interneurons, either anti-NPF-

immunopositive or GFP positive, innervating the dorsal and lateral protocerebrum as well as  

the ventral nerve cord (Brown et al. 1999; Wen et al. 2005; Krashes et al. 2009). Furthermore, 

the analyzed NPF neurons likely correlate to the described larval NPF-immunopositive DIMM 

neurons (Park et al. 2008). However, a co-localization of NPF and DH-31 as described for one 

larval DIMM neuron could not be convincingly confirmed (Park et al. 2008), even though a 

small ion signal matching mature DH-31 was found in a single recorded mass spectrum. While 

to date no study focused on the function of the described cell type #10 a large body of 

knowledge has been published on NPF function in invertebrates (Nässel & Wegener 2011). In 

D. melanogaster larvae, NPF signaling regulates motivation to feed (Wu et al. 2003; Wu et al. 

2005), gustatory mediated food ingestion (Shen & Cai 2001) and feeding in general (Wu et al. 

2003) . Furthermore, it has been associated with modulating alcohol sensitivity (Wen et al. 

2005), behavioral and sensory responses to stress (Xu et al. 2010), aggression (Dierick & 

Greenspan 2007) and learning (Krashes et al. 2009). 
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Figure 5.6 Mapping of cell type #10. (A) Localization of cell type #7, NPF neuron, corresponding mass spectrum 
and precursors. The recorded mass spectra show ion signals of NPF and two PP, confirming the complete 
processing of the NPF precursor. A small ion signal of DH31 was recorded in one sample preparation, however, 
it is not clear whether this signal originates from a contamination or represents a co-localization of the two 
precursors in cell type #10. (B) Recorded MS² mass spectrum of fragmented NPF from a cell type #10 sample 
preparation. The identified mature NPF is shorter in comparison to the originally predicated sequence. Arrowhead: 
localization undissected soma; circle: localization dissected contralateral soma; scale bar = 50 µm. Signal peptide 
is given in bold italic, cleavage sites are given in red, identified sequences are given in blue, amidation sites are 
given in blue italic. 
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Figure 5.7 Overview of SCMS analyzed DIMM neurons in the brain and GNG of adult D. melanogaster. 
Scale bar = 50 µm; red size-markers from left to right: 3.5, 5.2, 6.8, 8.2, 9.6, 12.4, 14.0 µm. 

5.4 Conclusion 
 
By using GFP guided single cell microdissections and SCMS, the neuropeptidome of a total set 

of 10 clearly identified DIMM cell populations and single neurons were analyzed in the adult 

D. melanogaster brain and GNG (Fig. 5.7). Analyzed DIMM populations included not only 

neuroendocrine cells that project into the retrocerebral complex but also a number of 

interneurons with varying projections in the brain and/or the VNC. Mass spectrometric analysis 

of DIMM neurons revealed a total of 52 neuropeptide related products from 13 neuropeptide 

precursors, covering all mature neuropeptides from the observed precursors which have been 

described in earlier studies. In some cases, mature neuropeptides could be biochemically 

identified and confirmed for the first time, such as the natalisins, NPF and MIP-1. Overall 18 

neuropeptides and PPs were detected for the first time. Furthermore, the here detected and 

identified neuropeptides and PPs allow to unravel cell specific processing of individual 

neuropeptide precursors. The here presented data can be implemented into existing virtual 

standard brain atlases such as Virtual Fly Brain (https://www.virtualflybrain.org/) or Fly Circuit 

(http://www.flycircuit.tw/).   

 

With the presented results the basis for a map of DIMM neurons and their neuroactive substance 

repertoires has been laid. The now available data can be used as reference when analyzing 

potentially co-localized neuroactive substances, such as biogenic monoamines or classical 

neurotransmitter in neuropeptidergic DIMM neurons. For example, the within this thesis 
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developed MALDI-TOF SCMS protocol could be used to analyze possible co-localized 

biogenic monoamines in DIMM neurons, using the presented data as a control (see chapter 2; 

Diesner, Predel, et al. 2018). Furthermore, the presented SCMS approaches could be applied to 

the c929-GAL4 driver line in combination with other GAL4 driver lines, labeling neurons 

expressing aminergic or classical transmitter synthesizing enzymes to corroborate presented 

and future SCMS results and ease data interpretation. Ultimately, the presented data created by 

such complementary methods can help to increase our understanding of the distribution and 

interaction of neuroactive substances and thus of their functions in the CNS. 
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6. General Discussion  
 

In the current thesis I developed a new MALDI-TOF MS approach for the detection and 

quantification of two biogenic monoamines, OA and TA, from single isolated neuron somata. 

Moreover, it was shown that the developed approach also holds the possibility to detect 

neuropeptides from the same single cell sample. In the following sections I want to point out 

the methodological aspects, limitations and drawbacks of this method, as well as discuss the 

obtained results in the light of possible applications and future research. 

 

 

6.1 Methodological aspects of the developed MALDI-TOF MS based 
approach 

 

In order to overcome persisting challenges in MALDI driven qualitative and quantitative 

biogenic monoamine analysis several different approaches, such as chemical derivatization of 

biogenic monoamines for their improved detection (Manier et al. 2014; Gatti et al. 2012), 

isotopically labeled ISs and an optimized sample preparation for a robust quantification (Persike 

& Karas 2009; Persike et al. 2010) were combined in a single workflow for the first time. In 

order to allow the qualitative and quantitative analysis of OA and TA of single neuron somata 

samples this workflow was successfully miniaturized to low nl volumes (see chapter 2; Diesner 

& Neupert 2018). Moreover, the developed workflow holds the possibility to interrogate 

potentially co-localized neuropeptides from the same single cell sample, which is based on the  

utilized MALDI matrix CHCA, which is capable of sufficiently ionizing derivatized biogenic 

monoamines and neuropeptides alike (see chapter 2; Diesner & Neupert 2018). The enhanced 

detection of the targeted biogenic monoamines OA and TA, the miniaturization of the workflow 

and the limited chemical complexity of the single cell samples further enabled to omit a sample 

fractionation by CE, as utilized in other analytical setups (e.g. Paxon et al. 2005; Lapainis et al. 

2007; Nemes et al. 2013; Aerts et al. 2014; Denno et al. 2016; Lombard-Banek et al. 2016). 

Finally, the straight forward sample preparation and scalability of the developed workflow 

should allow to analyze biogenic monoamines and/or neuropeptides from single isolated neuron 

somata of variating size and organismic origin, as shown for single neuron somata of D. 

melanogaster and C. morosus in this thesis, as well as shown for the similar derivatization free 

MALDI-TOF approach used in this thesis and previous studies (see chapter 2-5; Li, Garden, et 
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al. 2000; Neupert & Predel 2005; Neupert et al. 2007; Rubakhin & Sweedler 2007; Diesner, 

Predel, et al. 2018).   

6.1.1 Range of detectable analytes 

The developed approach utilizes derivatization of the amine moieties of the targeted biogenic 

monoamines, OA and TA, in combination with the widely used CHCA matrix to improve their 

detection and quantification by MALDI-TOF SCMS. Furthermore, the developed protocol also 

allows the detection of neuropeptides from the same sample. While this approach has been 

successfully applied to detect amol amounts of OA and TA from biological samples as shown 

throughout this thesis (see chapter 2-4; Diesner & Neupert 2018), the question arises whether 

this approach is also beneficial for the detection of other amine containing metabolites as well 

as neuroactive substances from single cell samples. The first utilized derivatization agent CA 

has been used to derivatize other amine containing metabolites and neuroactive substances, 

such as amino acids, DA, GABA, and 5-HT, as well as the second utilized derivatization agent 

DPD has been used to derivatize amino acids, aside from OA and TA (Gatti et al. 2010; Manier 

et al. 2011; Gatti et al. 2012; Manier et al. 2014). These earlier findings in combination with 

the presented results for OA, TA as well as DA from this thesis (see chapter 2; Diesner & 

Neupert 2018) let one hypothesize that both derivatization agents should also be beneficial for 

an enhanced MALDI-TOF MS driven detection of other amine containing metabolites and 

neuroactive substances from single cell samples. Nevertheless, the derivatization as well as the 

overall developed workflow house some drawbacks that can hamper the detection of other 

amine containing metabolites and neuroactive substances. The high number of intense CHCA 

matrix related ion signals observed in the low mass range limits the overall number of 

potentially detectable low mass analyte ion signals (Persike & Karas 2009; Persike et al. 2010; 

Shariatgorji et al. 2012; Shariatgorji et al. 2014). Moreover, the ionization properties of the 

MALDI matrix as well as the chemical composition of the sample can lead to ion suppression 

effects, hampering a successful detection of certain analytes (Krause et al. 1999; Duncan et al. 

2008). While the developed workflow as well as the derivatization free MALDI-TOF SCMS 

approach profit from the overall reduced chemical complexity of a single cell sample and are 

thus probably not as affected as multi-cell samples, such effects cannot be completely ruled out 

as they can be apparent in every multi-analyte sample analysis using MALDI-TOF MS (Duncan 

et al. 2008). Furthermore, the derivatization of a targeted biogenic monoamine by the utilized 

derivatization agents not only affects the absolute mass of a targeted analyte, but can also 

potentially lead to the detection of high intensity product ions upon fragmentation that not 
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directly relate to the targeted analyte (Manier et al. 2014). These high intensity product ions can 

render it difficult or impossible to validate an unambiguous identification of the targeted analyte 

in relation to other isobaric/isometric analytes (Manier et al. 2014). However, this seems to be 

limited to small molecule analysis, as it was shown that the CA and DPD derivatized 

neuropeptide DMS, analyzed from synthetic samples as well as single DMS expressing 

neuropeptidergic neuron somata of adult D. melanogaster, showed the successful generation of 

b- and y- product ions upon fragmentation (see chapter 2; Diesner & Neupert 2018). 

Additionally, the utilized derivatization agents only showed a limited turn-over of the analyzed 

neuropeptide in biological samples (CA-DMS signal intensity 15% compared to underivatized 

DMS signal; DPD-DMS signal intensity 2.75% compared to underivatized DMS signal, chapter 

2; Diesner & Neupert 2018), thus allowing the detection and fragmentation of the underivatized 

neuropeptide from a corresponding sample (see chapter 2; Diesner & Neupert 2018). However, 

if this applies to neuropeptide analysis in general using the developed approach will have to be 

investigated by future studies. Moreover, the CHCA matrix utilized in the developed workflow 

enables the detection of neuropeptides in a mass range up to m/z 4000 (e.g. Neupert & Predel 

2005; Neupert et al. 2005; Neupert, Huetteroth, et al. 2009; Diesner, Gallot, et al. 2018). 

However, CHCA shows a preference towards Arg containing peptides and thus Arg free 

sequences can be potentially missed when using the developed approach (Leszyk 2010). 

 

As a consequence of these drawbacks each new targeted biogenic monoamine or amine 

containing substance has to be evaluated carefully for an unambiguous identification and 

detection in biological samples using the developed approach. This evaluation should rest on 

analyzing synthetic samples in a range of multiple magnitudes in conjunction with an 

isotopically standard, in order to allow an experimental determination of the LOD and LLOQ 

as well as to investigate possible product ions for a unambiguous identification, as shown in 

this thesis and a previous study (see chapter 2; Manier et al. 2014; Diesner & Neupert 2018). 

Further, possible isobaric/isometric analytes should be ideally investigated in a similar fashion. 

After a successful experimental determination of the LOD/LLOQs as well as suitable product 

ions for an unambiguous identification, biological samples should always be cross validated by 

analyzing a cell or tissue sample that should be devoid of the respective analyte as well as screen 

resulting product ion spectra towards unidentified ion signals, as shown in this thesis (see 

chapter 2, 4; Diesner & Neupert 2018; Stolz 2018; Stolz et al. 2018 in preparation). Thus, 

unaccounted isobaric/isometric analytes can further be excluded from the sample analysis that 

can potentially originate from the sample background. 



General Discussion 
 
 

113 
 

Nevertheless, future studies could overcome parts of the presented limitations in terms of 

qualitative analysis of a given targeted analyte by switching between the two tested 

derivatization agents. Moreover, future studies could also use alternative MALDI matrices such 

as DHB, which produces another set of matrix background ions compared to CHCA, potentially 

allowing the successful detection of a masked derivatized analyte, as well as expanding the 

range of detectable neuropeptides to mass ranges > m/z 4000 and Arg free sequences, as used 

within this study for the derivatization free detection of neuropeptides from single 

neuropeptidergic D. melanogaster neuron somata and previous studies (see chapter 5; e.g. Li, 

Garden, et al. 2000; Rubakhin et al. 2003; Rubakhin & Sweedler 2007; Redeker et al. 2017; 

Liessem et al. 2018; Diesner, Predel, et al. 2018). However, whether DHB shows the same 

performance in qualitative and quantitative analysis of derivatized biogenic monoamines has to 

be investigated by future studies. 

6.1.2 Limit of detection and quantification 

The developed workflow shows LODs as low as 18.4 amol (1 fmol/µl, in 18.4 nl samples) for 

the two analyzed biogenic monoamines, OA and TA, when using DPD, and 18.4 amol for OA 

and 46 amol for TA when using CA as chemical derivatization agent (OA, 1 fmol/µl; TA, 2.5 

fmol/µl; in 18.4 nl samples; see chapter 2; Diesner & Neupert 2018). These experimentally 

determined LODs are in the range of the most sophisticated analytical setups that have been 

used to investigate biogenic monoamines and small metabolites in general from single cells or 

neuronal tissues: CE-µESI-MS (LOD 60 amol, experimentally determined for ACh and His, 

Met; Nemes et al. 2013; Onjiko et al. 2015), MEKC-ECD (LOD 3.4 amol for OA, calculated 

from regression plots; Paxon et al. 2005), CE-FSCV (LOD 78 fmol for OA, calculated from 

regression plots; Denno et al. 2015), CE-LIF (LOD 11 fmol/µl for OA, experimentally 

determined but no absolute detection limit given, Lapainis et al. 2007). In the latter techniques 

the LOD corresponds to the LLOQ, however, this holds not true for the developed MALDI-

TOF MS approach (see chapter 2; Diesner & Neupert 2018). Nevertheless, the determined 

LLOQ of 184 amol for OA and TA (10 fmol/µl, in 18.4 nl samples) using CA as derivatization 

agent, is still within the grasp of the latter chromatographic supported methodological 

approaches (see chapter 2; Paxon et al. 2005; Lapainis et al. 2007; Nemes et al. 2013; Romanova 

et al. 2014; Onjiko et al. 2015; Denno et al. 2015; Diesner & Neupert 2018). Aside from the 

LLOQ the developed MALDI-TOF SCMS approach shows a good working range over three 

orders of magnitudes in MS and two orders of magnitudes in MS² mode (see chapter 2; Diesner 

& Neupert 2018). 
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The developed workflow also enables the detection of co-localized neuropeptides from the 

same sample, however, only qualitative analysis was performed in this thesis and no exact 

LODs were determined (see chapter 2; Diesner & Neupert 2018). A previous study has reported 

low amol LODs for the analysis of neuropeptides from single neurons, using CHCA driven 

MALDI-TOF MS analysis (~20 amol; Neupert & Predel 2005), as utilized in the derivatization 

free MALDI-TOF SCMS analysis as well as in the developed workflow (see chapter 2, 5; 

Diesner et al. 2018; Diesner & Neupert 2018). The MALDI-TOF MS analysis of CA and DPD 

derivatized single somata from neuropeptidergic neurons of adult D. melanogaster showed only 

a limited turn-over of the expressed DMS neuropeptide by the respective derivatization agents 

(CA-DMS signal intensity 15% compared to underivatized DMS signal; DPD-DMS signal 

intensity 2.75% compared to underivatized DMS signal, chapter 2; Diesner & Neupert 2018). 

Under the assumption that the observed limited turn-over applies to other neuropeptides as well, 

the developed workflow should also allow detection of neuropeptides in the amol range with 

slightly increased values compared to previously reported LODs (Neupert & Predel 2005). 

6.1.3 Sample isolation 

Single neuron somata were isolated manually from insect nervous systems using tapered glass 

capillaries for subsequent qualitative and quantitative MALDI-TOF MS analysis in this thesis 

(see chapter 2-5; Diesner & Neupert 2018; Diesner, Predel, et al. 2018). This approach has been 

used extensively in the analysis of single cells and offers a straight forward sample isolation 

(e.g. Li, Garden, et al. 2000; Neupert & Predel 2005; Rubakhin & Sweedler 2007; Neupert et 

al. 2007; Nemes et al. 2013), however, some drawbacks remain. The manual dissection and 

transfer of a single cell can lead to mechanical stress, which can induce exocytosis of 

neuroactive substances from the targeted neuron or even lead to membrane raptures with 

subsequent loss of cytoplasm or complete cell disintegration (Rubakhin et al. 2003; Ye et al. 

2006; Rubakhin & Sweedler 2007; Rubakhin & Sweedler 2008; Nemes et al. 2012). In order to 

minimize the potential exocytosis of biogenic monoamines from targeted neuron somata during 

manual isolation and transfer, dissections were performed in a buffer containing 33% glycerol 

(see chapter 2-4; Diesner & Neupert 2018; Stolz 2018; Stolz et al. 2018 in preparation). 

Glycerol has been shown to increase neuron integrity as well as to reduce the exocytosis of 

neuroactive substances during isolation of single neurons, without significantly changing the 

cells metabolic profile (Rubakhin et al. 2003; Miao et al. 2005; Rubakhin et al. 2006; Rubakhin 

& Sweedler 2008). Moreover, cell integrity was visually controlled throughout the dissection 

and transfer process and only intact cell somata were analyzed. To further limit the potential 
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loss of analytes by exocytosis, insects were anaesthetized by cooling and dissected in ice cold 

dissection buffer, which leads to a reduced action potential generation and a general halt of 

neuronal activity and thus a reduced exocytosis (French 1985; Warzecha et al. 1999; Cognigni 

et al. 2018). These applied precautions should reduce the overall loss of neuroactive substances 

during sample isolation, however, they can also potentially lead to an artificial rise of somatic 

neuroactive substances. Enzymatic activity has been shown to be preserved in glycerol 

stabilized cells, however, such an stabilization can also lead to enhanced enzyme activity 

(Raibekas & Massey 1997; Rubakhin et al. 2003). Such a preserved or even enhanced 

enzymatic activity in combination with the reduced exocytosis due to the applied cooling and 

ice cold dissection buffers can lead to an enhancement of somatic biogenic monoamine titers in 

analyzed neuron somata, as suggested by the results from single VMlb neurons of adult D. 

melanogaster that had been subjected to different time of cooling prior to somata isolation (see 

chapter 2; Diesner & Neupert 2018). In order to minimize this effect, but still benefit from the 

anaesthetization of the flies as well as the reduced exocytosis during dissections, the cooling 

time was kept to a maximum of 15 mins in all further quantitative experiments (see chapter 2; 

Diesner & Neupert 2018). Furthermore, excessive glycerol can hamper sample preparation as 

well as the subsequent detection of analytes and has to be removed prior to the addition of other 

chemicals or MALDI-TOF MS analysis (Rubakhin et al. 2003). Excessive glycerol is washed 

off with 50% MeOH/50% water applied by a glass capillary to minimize such effects (chapter 

2-4; Diesner & Neupert 2018; Diesner, Predel, et al. 2018). However, to exclude a preliminary 

extraction of neuroactive substances from a respective sample due to this washing procedure, 

extra care was taken that the dissected somata are not covered by the washing solution in 

quantitative experiments (see chapter 2, 3; Diesner & Neupert 2018). Another potential problem 

during somata isolation is small debris from adjacent neuronal and glial projections as well as 

presynaptic terminals which can remain on the extracellular surface of the targeted cell soma 

after dissection. These structures may be small in size but can contain vesicles in which 

neuroactive substances are highly concentrated, thus leading to their detection and false positive 

qualitative and quantitative results (Aerts et al. 2014). Even though somata were visually 

examined after the transfer to the sample plate for such debris, it cannot be completely ruled 

out that the analyzed samples were completely debris free. Aside from this, the length of the 

remaining axon attached to the dissected soma could also potentially affect the recordable 

biogenic amine titers, as axons yield large numbers of vesicles, which are packed with high 

concentrations of neuroactive substances and are trafficked towards the release sites of a neuron 
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(Brady et al. 2012). In order to minimize such a potential effect, the length of the axon was 

always kept as short as possible during dissections throughout all experiments. 

 

All of the discussed methodological drawbacks from the sample isolation and preparation 

procedures can affect the detectable somatic titers of the targeted biogenic monoamines, even 

though the applied workflow tries to minimize such effects by addressing each drawback 

individually. However, due to the mixed nature of the different effects (increase/decrease of 

somatic titers), it cannot be clearly determined if and to what extend the recorded titers differ 

from somatic in vivo concentrations. Nevertheless, the robust quantitative results obtained from 

the analysis of single VL and VMlb OA/TAergic neuron somata of adult D. melanogaster 

within this thesis suggest that these effects are stable between different sample preparations and 

thus does not limit the capability to detect and quantify stable and changing somatic OA/TA 

titers from manually isolated single insect neuron somata (see chapter 2, 3; Diesner & Neupert 

2018). 

 

A very elegant way to overcome most of these drawbacks is the direct sampling of cytoplasm 

from the neuron soma of interest by a patch clamp or a sharp capillary (Aerts et al. 2014; Onjiko 

et al. 2017a; Onjiko et al. 2017b). This approach minimizes the risk of contaminations from the 

remaining cell matrix debris as well as leakage of cytoplasm. Such an sampling approach has 

been successfully used to analyze metabolites by CE-ESI-MS from mouse thalamic neuron and 

astrocyte somata (extracted sample volume ~3 pl; Aerts et al. 2014) as well as single 

blastomeres of 8-32 cell stages of X. laevis embryos (extracted sample volume ~10 nl; Onjiko 

et al. 2017a; Onjiko et al. 2017b). Future studies will have to investigate whether this technique 

is also applicable to the here analyzed OA/TAergic interneurons of D. melanogaster, which 

have an even smaller sample volume compared to the aforementioned analyzed mouse thalamic 

neuron and astrocyte somata (VMlb cell diameter 10-7 µm, total somatic volume ~4-1.5 pl). 

Moreover, such future studies have also to assess whether this sample isolation process can be 

successfully combined with the developed workflow. 
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6.2 Applications and implications for further research 
 

The developed MALDI-TOF MS workflow enables the detection and quantification of OA and 

TA from single neuron somata that were isolated from intact brain dissections. The workflow 

was established and validated using single genetically labeled OA/TAergic neurons of the 

model organism D. melanogaster. Moreover, by using this approach it was possible to reveal 

for the first time differences in somatic OA titers among single D. melanogaster neurons from 

two distinct cell populations, the VMlb and VL cluster, as well as an upregulation of somatic 

VMlb OA titers upon social contact in socially isolated male D. melanogaster (see chapter 2, 

3; Diesner & Neupert 2018). VL neurons showed in average a significantly lower somatic OA 

titer in comparison to VMlb neurons, while both neuron populations showed TA detection only 

in some of the analyzed samples (see chapter 2; Diesner & Neupert 2018). These results match 

to previous findings of immunohistochemical studies that showed that VL neurons were 

immunopositive for OA and TA but showed no immunoreactivity against the OA synthesizing 

enzyme Tßh, whereas VMlb neurons showed positive immunoreactivity against OA, TA as 

well as Tßh (Busch et al. 2009; Schneider et al. 2012). This significant difference in somatic 

OA titers between the two analyzed cell populations suggests a differential release of OA/TA 

ratios from these neurons, as downstream targets express different sets of OA receptors. VL 

neurons target bitter sensing GRNs in the GNG, enhancing the excitability of these neurons 

through the Oct-TyrR (LeDue et al. 2016). The Oct-TyrR has been shown to be activated by 

OA as well as TA and leads in both cases to similar CA2+ responses in targeted bitter sensing 

GRNs (Robb et al. 1994; LeDue et al. 2016). Thus, it can be concluded that VL neurons do not 

need high OA concentrations in order to modulate bitter GRNs, but rather can co-release OA 

and TA in similar concentrations, reflecting the recorded OA/TA titers (see chapter 2; Diesner 

& Neupert 2018). Subpopulations of VMlb neurons on the contrary, have been shown to 

modulate OAMB receptor expressing DAergic PAM neurons that control appetitive reward and 

Octβ2R expressing DAergic neurons that control appetitive motivation (Burke et al. 2012). 

OAMB and Octβ2R show an 2-3 magnitude lower EC50 value for OA compared to TA (Han et 

al. 1998; Maqueira et al. 2005), leading to the conclusion that VMlb neurons use preferentially 

OA to modulate downstream targets, also reflecting the detected OA/TA titers. Moreover, the 

detection of an enhanced VMlb OA titer in regrouped males point towards a similar direction. 

Socially isolated D. melanogaster males have been reported to show a more intense aggressive 

behavior towards conspecifics, which is accompanied by a lower OA VMlb titer in comparison 

to grouped raised males (see chapter 3; Zhou et al. 2008). When isolated males are regrouped 
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for 24 h this discrepancy in OA VMlb titers is abolished (see chapter 3). However, it has to be 

noted that it was not possible to discriminate between different specific VMlb neurons during 

the dissections, as the utilized Tdc2-GAL4 line labels all subsets of VMlb neurons in this cluster 

(see chapter 2, 3; Busch et al. 2009; Schneider et al. 2012; Diesner & Neupert 2018). 

Furthermore, it has been shown in D. melanogaster that the activation of single OA VUM 

neurons can lead to a shift of preference towards a less attractive food source while the 

activation of a broader set of OAergic VUM neurons can reverse this decision (Claßen & Scholz 

2018). Thus, one could speculate that this change of the behavioral output also holds true for 

the analyzed aggression paradigm and thus could hint towards a higher frequency in OA release 

from VMlb neurons upon social interaction in male D. melanogaster (see chapter 3). Moreover, 

to this day no OA or TA specific pre-synaptic transporter for a rapid re-uptake of OA and TA 

has been identified in D. melanogaster, thus hinting further towards a direct correlation between 

the detected somatic OA and TA titers and their release in corresponding neurons (Donly & 

Caveney 2005). However, future studies have to prove such a correlation and investigate to 

what extent this correlation applies. This would be possible by monitoring the release of the 

targeted biogenic monoamines by using cyclic voltammetry (Majdi et al. 2015; Pyakurel et al. 

2016) or newly developed genetically encoded selective fluorescent sensors in vivo (Liang et 

al. 2015; Patriarchi et al. 2018), in combination with the subsequent analysis of the 

corresponding somatic titers by MALDI-TOF MS in single neurons.  

 

Moreover, the question arises how this enhanced OA titer is achieved upon social contact in 

male D. melanogaster. Andrews et al. (2014) could show that male cuticular hydrocarbons 

evoke intracellular Ca2+ responses in OA VUM neurons via Gr32a expressing sensory neurons.  

Furthermore, Pyakurel et al. (2016) could show that the release of OA in a VNC preparation of 

the third larva of D. melanogaster is correlated with the activation frequency of OA/TAergic 

neurons, using FSCV and optogentic activation of OA/TAergic neurons. By interpreting these 

results in the light of the postulated hypothesis that there is a direct correlation between the 

detected somatic OA/TA titers and the released content, it can be further speculated that the 

enhanced OA titer is a direct result of the activation of the analyzed neurons. In order to prove 

such a correlation, in future studies single VMlb neurons could be artificially activated with 

different frequencies, using the targeted expression of light activatable ion channels such as 

ReaChR or CsChrimson (Inagaki et al. 2014; Titlow et al. 2015), and subsequently analyzed 

towards their somatic OA titers using the developed workflow. Furthermore, it would be 

interesting to see whether the enhanced OA titer is accompanied by an upregulation of the OA 
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synthesis enzyme Tßh, which could be investigated by using fluorescent protein tags in vivo or 

single cell qPCR in combination with artificial VMlb neuron activation and analysis of somatic 

OA/TA titers from these or identical manipulated neuron somata (Inagaki et al. 2014; Bayer & 

Hobert 2018).  

 

Assuming that the somatic biogenic monoamine titers correlate with the released content of a 

respective neuron, the developed MALDI-TOF MS approach could be a valuable tool in further 

dissecting the function of single OAergic D. melanogaster neurons in physiological and 

behavioral studies, such as the analyzed VMlb neurons in the male social driven aggression 

paradigm (see chapter 3; Zhou et al. 2008). As previous studies have shown that a subpopulation 

of the VMlb cluster is necessary for driving socially mediated male aggression, it would be 

interesting to further dissect this cluster using the developed approach. As it was not possible 

to reproducibly determine which single VMlb neurons were analyzed in this study, due to the 

utilized Tdc2-GAL4 line, future studies could use the ChaT-GAL80 repressor line to specifically 

limit the labeling to aggression mediating neurons in the VMlb cluster (Zhou et al. 2008; 

Schneider et al. 2012; Claßen & Scholz 2018). Thus, it would be possible to determine whether 

these aggression modulating VMlb neurons show the same enhanced OA titer upon social 

contact or whether these neurons are unaffected and the shift in the behavioral response towards 

a reduced aggression to conspecifics indeed results from the upregulation of OA signaling in 

other VMlb neurons. Moreover, it would also be possible to investigate the temporal dynamics 

of the observed upregulation of somatic OA titers in VMlb neurons, by analyzing different sets 

of VMlb neurons after a timed social contact and subsequent analysis of corresponding VMlb 

OA titers after different time intervals. 

 

As shown throughout this thesis, the developed workflow allows a solid framework for the 

detection and quantification of biogenic monoamines from single dissected neurons (chapter 2-

4; Diesner & Neupert 2018). However, so far only the detection and quantification of OA and 

TA have been analyzed in greater detail, thus future studies should investigate in what extent 

this developed approach is beneficial for the detection and quantification of other biogenic 

monoamines. Preliminary results from this thesis, analyzing DA derivatization, as well as a 

previous study show that other biogenic monoamines are also derivatized by the utilized 

derivatization agents, thus theoretically allowing also their low detection by the developed 

approach, with previously discussed drawbacks taken into account (see chapter 2; Manier et al. 

2014; Diesner & Neupert 2018). Nevertheless, by potentially expanding the range of detectable 
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biogenic monoamines using the developed workflow, it will be possible to analyze other 

corresponding signaling pathways in D. melanogaster.  

 

Other future applications of the developed MALDI-TOF MS workflow could aim at more basal 

questions, such as how a given genetic construct affects the somatic and potentially correlating 

released quantities of biogenic amines in a targeted neuron. Besides this, it would further be 

interesting to see how the synthesis of OA is influenced by artificially altering the balance 

between Tyr, TA and OA in OAergic neurons. This analysis would allow to directly elucidate 

whether and how a change of the precursors of TA and OA directly affect the turnover of the 

subsequent product. This could be achieved by genetically altering the expression of the TA 

synthesizing enzyme Tdc2 or neuronal Tyr transporters combined with subsequent MALDI-

TOF MS driven analysis of the corresponding neuron soma. Assuming a successful detection 

and quantification of DA and 5-HT from single D. melanogaster somata samples by the 

developed workflow, it would also be possible to analyze the effect of biogenic monoamine 

recycling on somatic titers. This could be addressed by pharmacologically blocking or 

genetically altering the expression of corresponding biogenic monoamine presynaptic 

transporters in combination with artificial activation of the targeted neuron by light or 

temperature (Asahina et al. 2014; Inagaki et al. 2014) and subsequent MALDI-TOF driven 

analysis of the resulting somatic titers. 

 

All of the aforementioned applications of the developed MALDI-TOF approach, however, are 

based on the genetic labeling tool box in D. melanogaster. However, the detection and 

quantification of biogenic monoamines using this workflow is not limited to genetic model 

organisms like D. melanogaster or T. castaneum, but can also be applied to other organisms in 

which comparable genetic tools have not been established. By identifying single neurons by 

electrophysiology and subsequent intracellular dye labeling, as shown for the analysis of 

desDUM neurons of the Indian stick insect C. morosus (see chapter 4; Stolz 2018; Stolz et al. 

2018 in preparation), it is possible to apply this workflow also to other organisms. In the current 

thesis, the derivatization supported MALDI-TOF MS driven analysis of electrophysiological 

identified and intracellular labeled desDUM neurons from C. morosus could unambiguously 

show that these neurons contain OA and TA (see chapter 4; Stolz 2018; Stolz et al. 2018 in 

preparation). Thus, there is a high probability that at least the majority of the observed effects 

of these neurons on targeted CPGs is mediated by OA signaling, which is in accordance with 

previous reports from C. morosus (see chapter 4; Westmark et al. 2009; Stolz 2018; Stolz et al. 



General Discussion 
 
 

121 
 

2018 in preparation). Moreover, the developed workflow also potentially allows the 

quantification of OA and TA from these neurons, however, in respect to the utilized intracellular 

recording technique it remains open how the penetration and removal of the recording capillary, 

as well as the utilized capillary buffer alters the intracellular quantities of neuroactive substance 

titers. Future studies could address this issue by analyzing somatic biogenic monoamine titers 

of genetically labeled and intracellular recorded neurons as well as corresponding unpenetrated 

neurons from brain dissections of physiological and age synchronized adult D. melanogaster 

using the developed approach (Juusola et al. 2016; Diesner & Neupert 2018). However, a more 

practicable way to allow quantification of such neurons would be to use the workflow in 

combination with perforated patch-clamp recordings that do not have the need for cell 

penetration and have been shown to have minimal impact on intracellular pathways (Lippiat 

2008; Linley 2013). Furthermore, a previous study could show that neurons that have been 

analyzed with perforated patch-clamp recordings are suitable for MALDI-TOF MS analysis, in 

combination with intracellular dye labeling (Neupert et al. 2018). 

 

Aside from biogenic monoamines, neuropeptides represent another class of important 

neuroactive substances. Moreover, it has been shown that biogenic monoamines and 

neuropeptides can be co-localized in neurons throughout the CNS in vertebrates and 

invertebrates alike (Hökfelt et al. 1987; Nässel 2018). Thus, a potential simultaneous detection 

of biogenic monoamines and neuropeptides by the developed workflow was investigated in this 

thesis (chapter 2; Diesner & Neupert 2018). By analyzing single somata of DMS expressing 

neuropeptidergic neurons of adult D. melanogaster as well as synthetic DMS samples with the 

developed workflow, it was shown that the utilized derivatization agents only leads to a minimal 

turn-over of the tested neuropeptide and that even derivatized neuropeptides can be successfully 

identified by tandem mass spectrometric analysis (chapter 2; Diesner & Neupert 2018). 

Moreover, by using the DIMM-GAL4 driver line (c929-GAL4) crossed to a suitable UAS-

mCD8::GFP reporter line in combination with subsequent derivatization free MALDI-TOF 

SCMS allowed to systematically analyze the neuropeptidome of single neurosecretory neurons 

of the adult D. melanogaster brain. By using this approach a total of 10 different cell types were 

described based on their location in the brain and their expressed neuropeptidome (chapter 5; 

Diesner, Predel, et al. 2018). Moreover, this approach further allowed to investigate the cell 

specific processing of corresponding neuropeptide precursors in the targeted neurons. While 

this analysis showed that such a mapping approach is suitable to reveal co-localization of 

neuropeptides, future studies can use the now available data in combination with the newly 
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developed approach to investigate potential co-localizations of biogenic monoamines and 

neuropeptides in these neurosecretory neurons. Furthermore, future studies could also expand 

this mapping approach to other driver lines labeling neurons that express biogenic monoamines 

synthesizing enzymes, such as the utilized Tdc2-Gal4 line. Additionally, future studies could 

also utilize the more sophisticated genetic tools available in D. melanogaster, such as the 

intersectional split-GAL4 technique (Dionne et al. 2018), in order to label neurons from 

overlapping expression profiles of different driver lines such as aminergic and peptide labeling 

GAL4 lines. This would allow to limit the number of labeled neurons and ease data 

interpretation.  
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7. Conclusion 
 

In this thesis a new derivatization supported MALDI-TOF MS workflow was developed that 

enables the routine detection and quantification of two biogenic monoamines, OA and TA, from 

single isolated neuron somata. The workflow is highly sensitive, reproducible, fast, and cost-

effective as well as exhibits only minimal interference on the detection and identification of 

potentially co-localized neuropeptides from the same sample. It further holds the potential to 

be beneficial in the detection and quantification of other biogenic monoamines such as DA from 

corresponding single neuron somata samples. The ability to qualify and quantify neuroactive 

substances such as OA and TA from genetically labeled neurons of model organisms such as 

D. melanogaster offers a wide range of applications like characterizing cell-to-cell and cluster 

heterogeneity, analyzing potential changes in neuroactive substance cell titers among different 

physiological and behavioral states, natural or induced neuronal dysfunctions and pathologies, 

as well as in relation to artificially applied neuroactive substances or drugs.  

 

However, this workflow is not limited to the analysis of neurons from model organsims with a 

genetic labeling toolbox. It can be combined with electrophysiological recordings and 

subsequent intracellular dye application for the identification of single neurons from organisms 

where no comparable genetic tool box has been established. Moreover, such combinatorial 

approaches are highly desireable as they hold the possibility to characterize neurons in their 

physiological, morphological and neurochemical properties. 

 

Future studies should combine this approach with techniques that allow to monitor the releasing 

of neuroactive substances in vivo, such as FSCV (Majdi et al. 2015; Pyakurel et al. 2016) or 

genetically encoded selective fluorescent sensors (Liang et al. 2015; Patriarchi et al. 2018), to 

investigate how the somatic neuroactive ratios of OA and TA and other neuroactive substances 

relate to the actual released quantities. 
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