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Abstract 
 

Innate immunity is key to defense against infections. Its high complexity and 

interactions with other systems make it relatively difficult to study in mammals. The 

nematode C. elegans is particularly useful for studying innate immunity due to its 

conserved biology and genetic manipulability. However, our knowledge of C. elegans 

immunity is still limited, especially on what is the upstream stimulus that controls innate 

immune responses in the worms.  

 

In this study, we used C. elegans as the model to investigate how immune responses 

are triggered. First, we found that the nucleolar protein fibrillarin, a rRNA 2'-O-

methyltransferase indispensable for rRNA maturation, plays an important role. 

Fibrillarin reduction is able to confer resistance in wild-type animals and also infection 

sensitive mutants. Upon infection, it was observed that fibrillarin levels decrease. Since 

fibrillarin is a major nucleolar protein, nucleolar size was also examined. Infection leads 

to a shrinkage of nucleoli, suggesting reduction of fibrillarin and nucleolar size is a 

beneficial host response promoting resistance. Fibrillarin reduction inhibits rRNA 

maturation, and therefore leads to reduced levels of mature rRNA and reduced 

translation. Using ifg-1 and ife-1 loss of function mutants, we found that reduction of 

translation is sufficient to prolong survival upon infection. Further, knocking down 

fibrillarin does not significantly enhance the ifg-1 mutant survival, suggesting they may 

function in overlapping pathways, probably translation. Similar to the observations in 

worms, infection also reduces fibrillarin protein levels in human epithelial cells and also 

murine macrophages. Reduction of fibrillarin is also able to promote survival in 

mammalian cells after infection. Interestingly, fibrillarin RNAi suppresses pro-

inflammatory cytokine secretion but promotes production of anti-inflammatory 

cytokines and clearance of intracellular bacteria. These data suggest that reduction of 

fibrillarin is an evolutionarily conserved host response to initiate protective mechanisms. 

 

Second, we identified that the essential splicing factor rnp-6 also controls innate 

immunity. Infection alters splicing of the ret-1 splicing reporter and tos-1 transcript, 

suggesting an interesting connection between splicing and infection. It was found that 

a novel gain of function mutation of rnp-6 results in immunodeficiency in C. elegans. 

Both resistance and induction of anti-microbial genes are compromised in the mutant. 
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Activity of RNP-6 negatively correlates with resistance. Overexpression of RNP-6 

compromises survival upon infection while reducing its expression by RNAi is sufficient 

to activate immune responses and drive resistance. Further investigations revealed 

that the effect is mediated by pmk-1, the worm’s homolog of p38 MAPK. RNAi 

mediated reduction of RNP-6 activates PMK-1. On the other hand, gain of function of 

rnp-6 suppresses P. aeruginosa induced PMK-1 activation. Intriguingly, the mutation 

of rnp-6 is able to suppress the splicing remodeling induced by infection. Further, RNAi 

against other splicing factors also induces infection resistance and activation of PMK-

1, indicating that the splicing machinery may be a general control factor for innate 

immune responses, and perturbing splicing is an inducer of immunity. 

 

The data present in this study highlight the critical roles of rRNA biogenesis and mRNA 

splicing in innate immunity. We suggest that reduction of fibrillarin and perturbation of 

splicing are two of the upstream stimuli for innate immunity in C. elegans.  A tight 

connection exists between initiation of immune responses and RNA metabolism, which 

is previously underappreciated.  
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Zusammenfassung 

 

Angeborene Immunität ist der Schlüssel zur Abwehr von Infektionen. Die hohe 

Komplexität und die Interaktion mit anderen Systemen macht es jedoch relativ 

schwierig diese in Säugetieren zu studieren. Der Nematode C. elegans ist daher 

wegen seiner konservierten Biologie und genetischen Manipulierbarkeit besonders gut 

geeignet um angeborene Immunität zu untersuchen. Unser Verständnis von Immunität 

in C. elegans ist jedoch nach wie vor limitiert – besonders die Stimuli, welche die 

Immunantwort in Würmern regulieren sind nur rudimentär beschrieben.  

 

In dieser Arbeit haben wir C. elegans als Modell genutzt, um zu untersuchen wie 

Immunantworten ausgelöst werden. Unsere erste Entdeckung war, dass das 

nucleoläre Protein Fibrillarin, eine rRNA 2’-O-methyl Transferase, welche unabdingbar 

für die rRNA-Produktion ist, eine wichtige Rolle spielt. Gesenkte Fibrillarin Level führen 

zu einer höheren Infektionsresistenz in Wild Typ Würmern und auch in Würmern, 

welche normalerweise eine höhere Infektionssensitivität aufweisen. In infizierten 

Würmern konnten wir gesenkte Fibrillarin Level messen.  Da es sich bei Fibrillarin um 

ein großes nucleoläres Protein handelt, untersuchten wir ebenfalls die nucleoläre 

Größe. Eine Infektion führte zu einer Verkleinerung von Nukleoli, was zu der Annahme 

führt, dass reduzierte Fibrillarin Level und eine Verkleinerung der Nucleoli sich positiv 

auf die Immunantwort des Wirtes auswirken und Infektionsresistenz fördern. Die 

Verringerung von Fibrillarin inhibiert die rRNA-Reifung und führt deshalb zur Reduktion 

von fertiger rRNA und einer herabgesetzten Translationsrate. Indem wir ifg-1 und ife-

1 Würmer, beides loss-of-function-Mutationen, nutzten fanden wir heraus, dass eine 

verringerte Translationsrate ausreichend ist, um das Überleben bei einer Infektion zu 

verlängern. Außerdem fanden wir heraus, dass eine zusätzliche Verringerung von 

Fibrillarin das überleben von ifg-1 Mutanten nicht signifikant verlängerte. Dies legt 

Nahe, dass beide in überlappenden Signalwegen eingeordnet werden können, wobei 

es sich hierbei wahrscheinlich um die Tranlationsregulation handelt.  

 

Ähnlich zu unseren Beobachtungen im Wurm, konnten wir ebenfalls beobachten, dass 

eine Infektion die Fibrillarin Level auch in menschlichen Epithel Zellen und aus Mäusen 

isolierten Makrophagen verringerte.  Die Senkung von Fibrillarin führte außerdem zu 
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einer höheren Überlebensrate von Säugetierzellen bei einer Infektion. 

Interessanterweise unterdrückte eine Senkung von Fibrillarin durch RNAi die Sekretion 

von pro-inflammatorischen Zytokinen, und führte zu einer erhöhten Produktion von 

anti-inflammatorischen Zytokinen und einer Reduktion intrazellulärer Bakterien. Diese 

Daten implizieren, dass eine Reduzierung von Fibrillarin ein evolutionär konservierter 

Mechanismus der Immunantwort des Wirtes ist, um protektive Mechanismen zu 

initiieren.  

 

Als zweiten Punkt identifizierten wir, dass der essenzielle Spleiß-Faktor rnp-6 ebenfalls 

ein Regulator von angeborener Immunität ist. Bei einer Infektion beobachteten wir ein 

verändertes Spleißen des ret-1 Spleiß-Reporters und des tos-1 Transkripts. Beides 

legt nahe, dass es eine interessante Verbindung zwischen Spleißen und einer Infektion 

geben könnte. Wir beobachteten, dass eine neue Gain-of-function Mutation von rnp-6 

in einer Immunschwäche in C. elegans resultiert.  Sowohl Resistenz, als auch die 

Induktion von anti-mikrobiellen Genen sind in diesen Mutanten gestört. Die Aktivität 

von RNP-6 korreliert negativ mit Infektionsresistenz. Eine Überexpression von RNP-6 

kompromittiert nicht nur das Überleben bei einer Infektion sondern auch eine 

Reduktion des Proteins durch RNAi reicht aus, um eine Immunantwort zu aktivieren 

und Infektionsresistenz zu fördern. Weitere Untersuchungen zeigten, dass der Effekt 

durch pmk-1, das Wurm Homolog von p38 MAPK, reguliert wird.  Die Reduktion von 

RNP-6 durch RNAi aktiviert PMK-1. Auf der anderen Seite unterdrückt die gain-of-

function Mutation in rnp-6 die P. aeruginosa induzierte Aktivierung von PMK-1. 

Interessanterweise führt die Mutation von rnp-6 nicht zu einer Um-Modellierung des 

Spleißens, welche normalerweise durch eine Infektion herbeigeführt wird.  Weiterhin 

führt die Verringerung weiterer Spleiß-Faktoren durch RNAi ebenfalls zu einer 

Infektionsresistenz und der Aktivierung von PMK-1. Dies signalisiert dass die Spleiß-

Maschinerie möglicherweise ein genereller Kontrollmechanismus der angeborenen 

Immunantwort ist und dass ein gestörtes Spleißen ein Induktor von Immunität ist.  

 

Die in dieser Arbeit präsentierten Daten heben die kritische Rolle der Biogenese von 

rRNA und des Spleißens von mRNA für die angeborene Immunität hervor. Wir 

proponieren, dass eine Verringerung von Fibrillarin und eine Störung des Spleißens 

zwei wichtige Regulatoren von angeborener Immunität in C. elegans sind. Es existiert 
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eine enge Verbindung zwischen der Initiation einer Immunantwort und RNA-

Metabolismus, welche bisher nicht genug Beachtung gefunden hat.  
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Introduction 

 

1.1 An overview on the metazoan immune system 

 

The immune system defends against microbial infections and is critical for the survival 

and fitness of the organisms. The two main immunity strategies are innate immunity 

and adaptive immunity. While the innate immune system can be found in all animals, 

the adaptive immune system is only found in vertebrates (Hirano, Das et al., 2011).  

 

The innate immune system utilizes nonspecific defense mechanisms. These 

mechanisms include physical barriers, bacteria-digesting enzymes, and phagocytic 

cells (Tomlin & Piccinini, 2018). Some distinct characteristics of innate immunity will 

be discussed in the later section. 

 

The adaptive immune system refers to the mechanism that operates antigen-specific 

immune responses. Pathogen specific antigens first must be processed by antigen-

presenting cells. Processed antigens are then present to a class of specialized immune 

cells called lymphocytes (Osorio, Lambrecht et al., 2018). Activation of the antigen-

specific lymphocytes leads to clonal expansion of T- and B-lymphocytes. A subset of 

T-cells called cytotoxic T-cells induces death of the cells that are infected by pathogens 

or are otherwise damaged or dysfunctional. The other set of T-cells called helper T-

cells establishes and maximizes the capabilities of the immune system by producing 

immunomodulatory cytokines. Activated B-cells produce antibodies, which can bind 

specifically to the antigen and neutralize the antigen bearing pathogens. A minority of 

the activated lymphocytes are differentiated into memory cells, which can be swiftly 

activated when the same antigen is encountered again (Hirano et al., 2011).  

 

1.2 Characteristics of innate immunity 

 

Innate immunity is an evolutionarily ancient form of defense mechanism. In higher 

organisms, such as mammals, innate immunity cooperates with adaptive immunity to 

achieve the optimal protection. On the other hand, lower organisms, such as 

nematodes, depend solely on innate immunity. When compared to adaptive immunity, 
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which is regarded as more sophisticated and more recent in evolution (Mogensen, 

2009), innate immunity has several distinct characteristics. 

 

First, innate immunity exerts its effects extremely rapidly. Innate immunity does not 

require a previous exposure to the pathogen. The host can initiate a response 

immediately after detecting pathogen associated molecular patterns (PAMPs). PAMPs 

refer to molecules associated with pathogens but are missing in the hosts. Examples 

are long double strand RNA derived from viral replication (Liu, Olagnier et al., 2016a), 

bacterial cells’ components, such as lipopolysaccharide (LPS), flagellin and 

peptidoglycan (Mogensen, 2009). Molecules which are normally present in the host 

but detected in a wrong cellular compartment are also recognized as PAMPs. For 

instance, cytosolic DNA is a potent stimulus of innate immunity. Presence of DNA in 

cellular compartments other than the nucleus or mitochondria indicates an infection by 

a DNA virus (Dhanwani, Takahashi et al., 2017). 

 

Second, innate immunity is a relative simple mechanism and is not restricted to 

specialized immune cells. Most cells in a human body can mount an innate immune 

response. For example, epithelial cells produce interferons upon viral infection without 

assistance from the adaptive immune system (Liu et al., 2016a). The simplicity of 

innate immunity makes it the ideal evolutionary choice for lower organisms, such as 

plants, nematodes and insects, whose relatively simple body structures do not allow 

the accommodation and specialization of immune cells (Rajamuthiah & Mylonakis, 

2014). 

 

Third, Innate immunity is not a highly specific process. Unlike adaptive immunity, which 

involves activation of antigen specific immune cells, effectors of innate immunity are 

not specific for a particular antigen but are effective against a wide range of pathogens. 

Interferons are well-known to inhibit replication of virtually all viruses (Liu et al., 2016a). 

Another example would be lysozyme, which can be found in secretions, such as tear 

and saliva. Lysozyme kills bacteria non-specifically by digesting bacterial cell wall 

(Ragland & Criss, 2017).  

 

Fourth, innate immunity does not provide long-lasting immunity to the host. Adaptive 

immunity is known to provide long-term, sometimes even perpetual, protection. The 
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most famous example would be the smallpox vaccine. After immunization, the adaptive 

immune system gains unlimited full immunity to the smallpox virus (Fulginiti, Papier et 

al., 2003). Such protection is not seen in innate immunity presumably because the 

innate immune system does not have immunological memory 

 

1.3 C. elegans as a genetic model for biological studies 

 

Caenorhabditis elegans is used extensively as a genetic model for various biological 

investigations. It belongs to a large animal phylum called Nematodes. In nature, C. 

elegans feeds on bacteria and can be found in different ecological niches, including 

soil and rotting vegetative material (Felix & Duveau, 2012). The animal was originally 

introduced by Sydney Brenner decades ago as a model for development and neural 

science (Brenner, 1974). Nowadays, C. elegans is widely used in the scientific 

community for every aspect of biology. Some of the most important biological 

advancements in the last century were first discovered using C. elegans, such as the 

first complete cell lineage of an animal (Deppe, Schierenberg et al., 1978, Sulston & 

Horvitz, 1977), discovery of programmed cell death (Sulston & Horvitz, 1977), 

microRNAs (Lee, Feinbaum et al., 1993, Wightman, Ha et al., 1993), RNA interference 

(RNAi) (Fire, Xu et al., 1998) and genetics of ageing (Friedman & Johnson, 1988, 

Kenyon, Chang et al., 1993, Klass, 1983). More recently, C. elegans has also been 

used to investigate innate immunity and pathogenesis of microbial infections (Tan, 

Mahajan-Miklos et al., 1999a, Tan, Rahme et al., 1999b). 

 

The success of C. elegans as a model organism comes from its various advantages. 

First, the worm normally exists as hermaphrodites, reproducing by self-fertilizing, thus 

allowing a colony of isogenic animals to be generated from one individual. Males can 

however be induced by heat shock, and this enables the generation of new strains by 

mating, making genetics incredibly easy in the worms. Second, the nematode has a 

very short generation time, about 3 days at 20C (Brenner, 1974), as well as a short 

life-span of about 4 weeks (Kenyon et al., 1993). This enables rapid expansion of the 

population for screening and experiments. Third, methods for genetic manipulation are 

well-established, including transgene injection, RNAi by feeding and genome editing 

(Friedland, Tzur et al., 2013). Lastly, the transparent body of the worms enables real 

time in vivo imaging of internal structures and fluorescent reporters. 
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1.4 C. elegans as a model host for infection 

 

C. elegans, as a bacterivore, encounters numerous different microorganisms in the 

wild. Many of these microorganisms can actually infect and cause diseases in the 

worms (Jiang & Wang, 2018). The worms can also be infected with pathogens from 

other animals, such as pathogenic bacteria from human (Kim & Ewbank, 2015). Due 

to its simple body structure and limited cell number, adaptive immunity is lacking in C. 

elegans. Therefore, to protect against infection, innate immunity is crucial for the 

worms. Importantly, the molecular mechanism, especially the signal transduction 

pathways, is well-conserved from human to C. elegans. Examples are pmk-1, which 

encodes the ortholog of mammalian mitogen-activated protein kinase (MAPK), and 

hlh-30, which encodes the ortholog of transcription factor EB (TFEB). All these genes 

play indispensable roles in mediating innate immunity in both worms and human (Kim, 

Feinbaum et al., 2002, Visvikis, Ihuegbu et al., 2014). The immune system of C. 

elegans can be viewed as a simplified and minimalistic version of that of higher 

organisms. Therefore, C. elegans could be a highly useful and relevant model for 

elucidating the molecular mechanism of innate immunity and the complex interaction 

between hosts and pathogens, which is extremely difficult to study in higher organisms. 

 

1.5 Pathogens of C. elegans 

 

Diverse pathogens are capable of infecting C. elegans. Some of them are natural 

nematode pathogens, while others do not naturally infect the worms but are used as 

an experimental tool for scientific investigations. These include diverse species of 

bacteria, fungi, viruses and unicellular eukaryotic parasites.  

 

In 1999, a creative and pioneering study demonstrated that C. elegans can be used 

as a model host for Pseudomonas aeruginosa (Tan et al., 1999a), which is a human 

bacterial pathogen. Since then, other human pathogenic bacteria were shown by 

different laboratories to be able to infect C. elegans. These bacteria include Salmonella 

enterica (Aballay, Yorgey et al., 2000), Yersinia pestis (Joshua, Karlyshev et al., 2003), 

pathogenic Escherichia coli strains (Diard, Baeriswyl et al., 2007), Enterococus 

faecalis (Garsin, Sifri et al., 2001) and Staphylococcus aureus (Sifri, Begun et al., 
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2003). Non-human pathogens were also used to infect the worms. One noticeable 

example is Bacillus thuringiensis, which produces pore-forming crystal proteins with 

nematocidal and insecticidal activities (Wei, Hale et al., 2003). Generally, pathogenic 

bacteria and their associated toxins are ingested by the worms, which leads to 

colonization by the bacteria and destruction of the gut epithelium. Therefore the 

bacterial infection models of C. elegans are thought to be an excellent system for 

studying intestinal immunity (Cohen & Troemel, 2015). 

 

Other than bacteria, fungus is also commonly employed as a C. elegans pathogen. 

Drechmeria coniospora is an endoparasitic nematophagous fungus and a non-human 

pathogen (Jansson, 1994). In contrast to bacteria, which the worms usually ingest, D. 

coniospora attaches to the surface of the worms. The hyphae penetrate the cuticle and 

the epidermis, spreading into the entire body of the worms. Studies have successfully 

utilized it to model innate immunity of the epidermis (Zugasti, Bose et al., 2014, Zugasti, 

Thakur et al., 2016). 

 

A C. elegans model for antiviral innate immunity is a relatively new idea in the field. 

This could be partially explained by the lack of natural viruses capable of infecting the 

worm. Early experiments utilized viruses from other animal hosts to infect C. elegans. 

Flock House Virus and Vesicular Stomatitis Virus, which naturally cannot infect C. 

elegans, can be injected into the worms and establish an infection (Martin, Rex et al., 

2017). Recently, the first natural C. elegans virus, Orsay virus, was identified (Felix, 

Ashe et al., 2011). The virus can transmit horizontally in the population without the 

need of injecting. It is supposed that Orsay virus would be a useful tool for future 

studies. 

 

Microsporidia and oomycete, both are spore-forming unicellular eukaryotic parasites 

highly similar to fungi, can also infect C. elegans. Microsporidia were classified as 

protozoans or protists, but now are considered as fungi (Hibbett, Binder et al., 2007). 

The first microsporidia infection model of C. elegans was established in 2008. In the 

study, a novel species of microsporidia, Nematocida parisii, was isolated from a wild-

caught worm. The parasite invades intestinal cells, where it replicates and undergoes 

sporogenesis (Troemel, Felix et al., 2008). Recently, an oomycete parasite was also 

found in a wild isolate of C. elegans. This novel oomycete pathogen, Myzocytiopsis 
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humicola, infects the worms through the body surface. Attachment of the oomycete 

initiates penetration of the nematode cuticle by the hypha, leading to spreading of the 

pathogen throughout the entire body of the worm (Osman, Fasseas et al., 2018). 

 

1.6 Signaling pathways of innate immunity in C. elegans 

 

Since C. elegans lacks the adaptive immune system, it solely relies on innate immunity. 

Other animals, including evolutionarily diverse species, such as insects and mammals, 

heavily rely on Toll-like receptors (TLRs) and nuclear factor-kB (NF-kB) for activation 

of immune responses (Buchon, Silverman et al., 2014). TLRs are a class of 

membrane-spanning proteins that recognize PAMPs derived from microbes. In 

mammals, the TLRs include TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, 

TLR9, TLR10, TLR11, TLR12, and TLR13, though the latter three are missing in 

humans (Vijay, 2018). Interestingly, the fruit fly Drosophila melanogaster also relies on 

the homolog of TLR, Toll (also known as Toll-1), to initiate antimicrobial immune 

responses. D. melanogaster have nine Toll proteins. They recognize a secreted 

cytokine called Spätzle or PAMPs, such as viral glycoproteins (Buchon et al., 2014). It 

is worth mentioning that antimicrobial peptides and Toll/TLRs, which both have very 

conserved sequences from insects to mammals, were first discovered in D. 

melanogaster (Boman, Nilsson et al., 1972, Lemaitre, Nicolas et al., 1996), highlighting 

the usefulness of genetically trackable invertebrate animal models in immunological 

research. Further, transcription of antimicrobial genes in D. melanogaster is mediated 

by the NF‑κB transcription factors Dif and Relish. NF‑κB transcription factors also 

mediate expression of immune genes downstream of TLRs in mammals (Buchon et 

al., 2014). 

 

In the C. elegans system, both TLRs and NF-kB are missing (Kim & Ewbank, 2015). 

Unlike mammals and D. melanogaster, which possess multiple TLRs, the involvement 

of tol-1, the only TLR homolog in C. elegans, is not well-understood. Contradictory 

results can be seen in the literature. It was initially suggested that it does not have a 

function in the immune response (Pujol, Link et al., 2001) but later another study 

indicates that tol-1 is required for C. elegans innate immunity (Tenor & Aballay, 2008). 

Nevertheless, tol-1 is also required for pathogen avoidance and early embryonic 

development (Brandt & Ringstad, 2015, Chuang & Bargmann, 2005). Also, sequence 
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homolog fails to identify a homolog of NF-kB in the worm’s genome, suggesting that 

NF-kB may not be conserved in C. elegans (Kim & Ewbank, 2015). 

 

While the functions of TLR and NF-kB are not conserved in C. elegans, immune 

response signaling is transduced by other evolutionarily conserved cascades. The first 

identified pathway in C. elegans is the MAPK pathway (Kim et al., 2002), which is an 

ancient cascade involved in stress resistance and immunity. In C. elegans, this 

pathway functions similarly as in other organisms, such as mammals and D. 

melanogaster. It is a linear phosphorylation cascade, where NSY-1 (MAP3K) 

phosphorylates SEK-1 (MAP2K), which in turns phosphorylates PMK-1 (MAPK). 

Phosphorylation of PMK-1 activates its activity. Activated PMK-1 further 

phosphorylates multiple transcription factors to modulate their activities. These 

transcription factors include ATF-7 and SKN-1 (Kim & Ewbank, 2015). The activation 

of the cascade depends on another gene called tir-1, an homolog of mammalian 

sterile-alpha and Armadillo motif containing protein (SARM) (Kim & Ewbank, 2015). It 

is suggested that the MAPK pathway mainly functions cell autonomously in the 

intestine against bacterial infection (Kim & Ewbank, 2015) and in the epidermis against 

fungal infection (Zugasti et al., 2014).  

 

HLH-30, also known as TFEB in mammals, is another evolutionarily conserved 

mediator of innate immunity in C. elegans. HLH-30 is required for autophagy induction, 

lysosome biogenesis, lipid metabolism and lifespan extension in multiple longevity 

models, including dietary restriction, reduced insulin signaling, gonadal longevity and 

mitochondrial function impairment (Lapierre, De Magalhaes Filho et al., 2013). 

Intriguingly, this transcription factor is also involved in host defense responses. Upon 

infection, HLH-30 is activated and translocated into the nucleus. Loss of hlh-30 results 

in severely hampered immune responses and compromised survival upon infection in 

C. elegans (Visvikis et al., 2014). HLH-30 binding elements are commonly found in 

antimicrobial and cytoprotective genes, whose expression is dependent on HLH-30. 

Importantly, TFEB is also required for expression of antimicrobial genes and cytokines 

in mammalian macrophages (Visvikis et al., 2014), highlighting the fundamental roles 

of HLH-30/TFEB in innate immunity across evolution. The upstream signaling is also 

conversed evolutionarily. In both mammals and C. elegans, pathogens induced HLH-
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30/TFEB activation requires protein kinase D (dkf-1 in worms), phospholipase C (plc-

1) and G protein (egl-30) (Najibi, Labed et al., 2016).  

 

The insulin like signaling (IIS) pathway also plays a crucial role in innate immunity in 

nematodes. DAF-2 is the receptor for insulin like peptides. Mutations in daf-2 are well-

known for inducing longevity and stress resistance in C. elegans. Its inactivation leads 

to the activation of its downstream transcription factor DAF-16 (Kenyon, 2011). 

Mutations of daf-2 lead to constitutive activation of DAF-16, which is responsible for 

promoting expression of genes involved in innate immunity, stress resistance and 

longevity (Evans, Chen et al., 2008). Accordingly, daf-2 mutants have enhanced 

resistance against multiple pathogens, in a manner completely dependent on daf-16 

(Garsin, Villanueva et al., 2003). Infection also induces expression changes in different 

insulin like peptides, which can affect DAF-2/DAF-16 activity (Evans, Kawli et al., 2008).  

  

GATA factors are also required for host defense in C. elegans. GATA motif is frequently 

found in the promoter regions of genes that are induced by P. aeruginosa infection. 

The GATA factors ELT-2 and ELT-3 are required for normal resistance to bacterial 

intestinal infection and D. coniospora epidermal infection respectively (Head & Aballay, 

2014, Pujol, Zugasti et al., 2008, Shapira, Hamlin et al., 2006). Loss of function of elt-

2 significantly reduces basal and infection-induced expression of immune genes. Other 

than infection resistance, the GATA factors also mediate resistance to osmotic stress. 

Interestingly, there is a substantial overlap between the up-regulated genes by 

infection and osmotic stress responsive genes (Rohlfing, Miteva et al., 2010). The roles 

of GATA factors in immune responses are conserved in mammals and D. 

melanogaster (Senger, Harris et al., 2006, Shapira et al., 2006). 

 

Further, ATFS-1, which is activated upon mitochondrial stress, also mediates host 

responses to infection. During mitochondrial function impairment, import of ATFS-1 

into the mitochondria is inhibited, which allows it to be transported into the nucleus and 

function as a transcription factor (Nargund, Pellegrino et al., 2012). Interestingly, 

infection by P. aeruginosa also triggers activation of ATFS-1. Worms lacking atfs-1 are 

hyper-sensitive to P. aeruginosa infection and have hampered transcriptional 

responses, whereas hyper-activation of ATFS-1 improves survival, suggesting 
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mitochondria stress and ATFS-1 control innate immune responses in C. elegans 

(Pellegrino, Nargund et al., 2014). 

 

Transforming growth factor beta (TGF-β) signaling has also been shown to control 

defense gene expression. Deletion of dbl-1, the ligand for DAF-4, which is one of the 

TGF-β receptors in worms, severely diminishes induction of antimicrobial genes upon 

fungal infection (Zugasti & Ewbank, 2009). Interestingly, TGF-β signaling controls 

immune responses in a non-cell autonomous manner, since expression of dbl-1 under 

a neuronal promoter is sufficient to rescue the phenotype in the epidermis (Zugasti & 

Ewbank, 2009). Similarly, dbl-1 mutants have reduced resistance to bacterial infection 

(Mallo, Kurz et al., 2002). The expression of some of the downstream targets is 

controlled by the canonical TGF-β pathway, which involves SMA proteins (Mochii, 

Yoshida et al., 1999). TGF-β signaling also plays an important role in immunity in 

mammals (Travis & Sheppard, 2014) and D. melanogaster (Clark, Woodcock et al., 

2011).  

 

β-catenin signaling is also required for immunity in C. elegans (Irazoqui, Ng et al., 

2008). The pathway is controlled by the availability of Wnt, which is detected by cell 

surface receptors. The system is best known as the master controller of development 

in various animals. Mutation of the bar-1, the C. elegans homolog of β-catenin, or its 

downstream effectors, the homeobox gene egl-5, leads to a compromised immune 

response and reduced survival upon bacterial infection (Irazoqui et al., 2008). 

Importantly, the role of β-catenin signaling and homeobox transcription factors in anti-

bacterial immunity is also conserved in mammals (Irazoqui et al., 2008) and fruit flies 

(Ryu, Nam et al., 2004). 

 

Other than β-catenin signaling, another family of developmental genes, the apoptotic 

genes are also implicated in innate immunity in C. elegans. Upon infection, a network 

of a noncanonical unfolded protein response (UPR) are activated and required for 

resistance to pathogenic infections. This induction requires the apoptotic receptor 

CED-1 (Haskins, Russell et al., 2008). However, this result should be interpreted with 

cautions, since it may be an experimental artifact (see the following sections for more 

discussion) (Kim & Ewbank, 2015). Further, cep-1, the homology of the tumor 

suppressor p53, which plays multiple roles in apoptosis, ageing and cell cycle 
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progression (Chira, Gulei et al., 2018), also functions as a positive regulator of innate 

immunity (Fuhrman, Goel et al., 2009). 

 

RNAi is a highly conserved biological phenomenon in different species. It is proposed 

that the natural function of RNAi is antiviral defense (Wilkins, Dishongh et al., 2005). 

In C. elegans, double-stranded RNAs derived from viral replication are recognized and 

cleaved by a complex consisting of DRH-1, DCR-1, and RDE-4 into 23 nt long primary 

small interfering RNAs (siRNAs). One strand of the duplex siRNA is then loaded into 

the Argonaute protein RDE-1 (Grishok, 2013). The RDE-1-siRNA complexes then bind 

to viral RNA targets based on sequence complementarity. This binding recruits RNA-

dependent RNA polymerase to generate secondary siRNAs, which have the length of 

22 nt instead of 23 nt. These secondary siRNAs complex with, and guide Argonaute 

proteins to viral RNA species, which are complementary to the siRNAs. The Argonaute 

proteins then initiate target RNA cleavage and inhibit virus replication (Grishok, 2013). 

 

1.7 Detection of infection 

 

To initiate an immune response, a potential threat must be first detected by the host. 

In mammals, it is usually achieved by pattern recognition receptors (PRRs), which 

recognized PAMPs, special molecules from the pathogens (Mogensen, 2009). 

Recently, the idea of damage-associated molecular patterns (DAMPs) has also raised. 

DAMPs refer to normal host molecules, whose mislocalization represents damages of 

host cells. Examples include extracellular DNA and ATP, which are normally restricted 

intracellularly. DAMPs can also be recognized by PRPs and trigger immune responses 

(Schaefer, 2014).  

 

How C. elegans can detect infection is poorly understood. It is very intriguing that C. 

elegans, which normally feed on bacteria, is able differentiate different bacteria and 

induces immune responses only when feed on pathogenic bacteria (Kim & Ewbank, 

2015). Both benign and pathogenic bacteria contain similar molecular patterns, such 

as LPS and peptidoglycan, suggesting the worms may not be reliant on classical 

PAMPs detection. However, in one study, it was found that wild-type Salmonella LPS 

is required for the elicitation of host responses (Aballay, Drenkard et al., 2003). How 

C. elegans worms specifically detect LPS from Salmonella bacteria remains to be seen. 
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Detection of pathogens by C. elegans likely involves G-protein couple receptors 

(GPCRs). GPCRs are cell surface receptors with seven transmembrane domains 

coupled with G proteins (Hanlon & Andrew, 2015). Studies have shown that factors 

downstream to GPCRs affect immune responses. These factors include G proteins 

and arrestin. Loss of G proteins in C. elegans compromises immunity (Kawli, Wu et al., 

2010, Najibi et al., 2016), while loss of arrestin, the negative regulator of GPCR 

signaling, provokes immune responses (Singh & Aballay, 2012). However, only three 

GPCRs have been shown to be involved in activation of innate immune responses. 

NPR-1, a G protein-coupled neuropeptide receptor, was found to contribute to host 

responses (Styer, Singh et al., 2008), although it is also suggested that the effect 

maybe due to differences in behavioral avoidance to the bacteria (Kim & Ewbank, 2015, 

Reddy, Andersen et al., 2009). Mutations in octr-1, which encodes an octopamine 

receptor, confer increased resistance to bacterial infection. OCTR-1 negatively 

regulates the non-canonical unfolded protein response involving the abu class of 

genes (the abu genes will be discussed in the later section) (Liu, Sellegounder et al., 

2016b, Sun, Singh et al., 2011). However, latter studies indicate that these genes 

appear to be involved in pharyngeal grinder structural integrity but not immunity 

(George-Raizen, Shockley et al., 2014). Also, the reported reduced expression of abu 

genes in the octr-1 mutants can be explained by the differences in developmental rate. 

Therefore the role of OCTR-1 in immunity has been disputed (Kim & Ewbank, 2015). 

GPCR DCAR-1 acts locally in the epidermis to regulate antimicrobial gene expression 

through the PMK-1 pathway upon fungal infection. Interestingly, the ligand for this 

GPCR is a tyrosine derivative 4-hydroxyphenyllactic acid (HPLA), which is not from the 

fungal pathogen but rather derived from the worm itself as an endogenous ligand 

(Zugasti et al., 2014). Other GPCRs responsible for activation of innate immunity 

remain to be seen. The inability of further identification could be explained by the 

unusual expansion of the GPCR family in C. elegans. There are more than one 

thousand of GPCRs in the worms’ genome (Gupta & Singh, 2017). Presumably, they 

work in a co-operative and redundant manner, making the classical one-gene-one-

phenotype genetics impossible to reveal the causative GPCRs. 

 

A relatively new concept is the “effector-triggered immunity”, whereby the host is 

alerted to the associated damage caused by the pathogen instead of the molecular 
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patterns associated with the pathogen (Rajamuthiah & Mylonakis, 2014). Toxins 

produced by pathogens often interrupt essential cellular processes to inhibit anti-

microbial mechanisms and, in some cases, to hijack cellular machineries to assist 

replication and transmission of the pathogens. Examples are Pseudomonas exotoxin 

(or exotoxin A) (Iglewski, Liu et al., 1977) and Shiga toxin from pathogenic E. coli 

strains (Pacheco & Sperandio, 2012). Both toxins inhibit protein translation of the host. 

Because these toxins have extremely diverse structures, it would be inefficient to have 

PRRs to recognize each individual toxin. Therefore, instead of having different PRRs 

for individual toxin, detecting the downstream damages caused by the pathogens and 

the associated toxins is more efficient and evolutionarily advantageous. The notion of 

effector-triggered immunity has been long appreciated in plants (Jones & Dangl, 2006, 

Rajamuthiah & Mylonakis, 2014) and more recently in animal models, such as C. 

elegans (Dunbar, Yan et al., 2012, Melo & Ruvkun, 2012), as well. In the absence of 

pathogens, RNAi or toxin-mediated disruption of core cellular processes, including 

proteostasis, mitochondrial respiration, and protein translation, induces expression of 

innate immune effectors and detoxification genes. RNAi of these essential processes 

also triggers behavioral avoidance to non-pathogenic bacteria (Melo & Ruvkun, 2012). 

These data suggest core cellular pathways are closely surveilled, and perturbations 

are interpreted as a sign of infection. A recent study shows that the bZIP transcription 

factor ZIP-2 is activated during pathogen induced translation blockage by P. 

aeruginosa. The regulation is mediated by the alternative upstream open reading 

frame (ORF). A reduction in translation promotes skipping of the upstream ORF and 

enhances translation of the downstream functional ORF. Expression of irg-1 is then 

activated by the elevated level of ZIP-2 and CEBP-2 (Dunbar et al., 2012).  
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Figure 1. A simplified summary of the molecular signaling pathways of innate 

immunity in C. elegans. Major players are shown, namely the MAP kinase cascade, 

HLH-30/TFEB, -catenin, TGF-, GATA factors, CED-1/CEP-1, ATFS-1, ZIP-2 and 

insulin-like signaling pathway. Interestingly, in many cases, the exact stimulus which 

activates the pathways is unknown.  
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Figure 2. A brief summary of the evolutionary conservation of the molecular 

components of innate immunity discussed in the previous sections. Tick marks 

indicate evolutionary conservation. Crosses indicate the factors are not conserved. ? 

means inconclusive due to contradictory literature or insufficiency study. 
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1.8 Immune response effectors in C. elegans 

 

Detection of infection and its downstream signaling eventually lead to activation of 

immune effectors, which help to alleviate the stress. In C. elegans, the secretion of 

antimicrobial proteins represents a major evolutionarily conserved mechanism of 

innate immunity. Many of these small proteins, such as lysozymes or amoebapores, 

are highly bactericidal. The nematode possesses a large arsenal of antimicrobial 

proteins, including saposin-like amoebapores (23 SPP proteins), antibacterial factor-

related proteins (6 ABF proteins), lysozymes (10 LYS and 6 ILYS proteins), thaumatins 

(8 THN proteins), C-type lectin (265 CLEC proteins), neuropeptide-like proteins (75 

NLP proteins), nematode specific peptide (12 NSPB and 20 NSPC proteins) and 

caenacin (11 CNC proteins) (Kim & Ewbank, 2015). 

 

The UPR also functions as a major immune response effector in C. elegans. UPR 

maintains endoplasmic reticulum (ER) homeostasis. ER stress is induced by 

accumulation of unfolded proteins in the ER, which can be caused by agents inhibiting 

protein folding, such as tunicamycin, or a sudden surge of ER dependent protein 

synthesis. Interestingly, infection with P. aeruginosa activates ER stress and XBP-1, 

which is a conserved transcriptional regulator of UPR. Genetic analysis revealed an 

indispensable role of XBP-1 in survival of C. elegans on P. aeruginosa specifically 

during larval development (Richardson, Kooistra et al., 2010). Infection induces 

massive production of secretory antimicrobial proteins, whose production causes ER 

stress, which can arrest development of the animals. In response, XBP-1 and UPR are 

activated to cope with the stress and facilitate normal development. Loss of xbp-1 

arrests development due to the unalleviated ER stress. Intriguingly, abolishing immune 

responses by deleting pmk-1 reverses the phenotype of the xpb-1 mutants. This 

suggests that a decrease in immune effector synthesis in the pmk-1 mutant lessens 

ER stress in the absence of XBP-1, so promoting survival (Ewbank & Pujol, 2010, 

Richardson et al., 2010).  

 

In addition to the above mentioned xbp-1 mediated UPR, there is a non-canonical UPR 

comprised of the abu (Activated in Blocked Unfolded protein response) family of genes. 



 17 

The abu family was first identified to be specifically upregulated in xbp-1 mutants upon 

ER stress (Urano, Calfon et al., 2002) and was suggested to play a role in immunity 

(Haskins et al., 2008). However, as discussed in the previous section, this idea has 

been seriously disputed (Kim & Ewbank, 2015). The abu genes have fluctuations in 

expression during molting, which can potentially explain their transcriptional changes. 

The previously reported changes in abu gene expression upon mutations, bacterial 

infection, and ER stressors cannot be observed anymore in tightly synchronized 

populations. Further, reduction of abu gene may cause susceptibility to pathogenic 

bacteria indirectly through alterations of pharyngeal morphology rather than immune 

responses (George-Raizen et al., 2014). Therefore, great caution should be taken 

while interpreting the potential roles of non-canonical UPR in immunity.  

 

Upon bacterial infection, C. elegans worms also respond by activating autophagy. 

Autophagy has been shown to be required for resistance to different bacteria, including 

P.aeruginosa (Kirienko, Ausubel et al., 2015), S.typhimurium (Curt, Zhang et al., 2014) 

and S. aureus (Visvikis et al., 2014). Also, as mentioned, infection also induces 

autophagy transcriptional regulator HLH-30 (the homolog of vertebrate TFEB) (Visvikis 

et al., 2014). 

 

1.9 Commensal bacteria in C. elegans 

 

C. elegans is very special among model organisms because they feed on live bacteria, 

which can be both the food source and pathogens to the worms. Live bacteria can 

greatly influence the worms’ physiology independently of pathogenicity through 

metabolites and nutrient content. In the laboratory, C. elegans worms are normally 

cultured with a single strain of E. coli bacteria. OP50, the standard food source for C. 

elegans (Brenner, 1974), actually cannot be found in the natural habitat of the worms 

(Samuel, Rowedder et al., 2016). It was selected because it is an uracil auxotroph, 

which forms thin lawns on the uracil deficient nematode growth media (NGM) plates to 

allow easy manipulation and visualization of the worms (Macneil & Walhout, 2013). It 

is possible to culture the worms with other benign bacteria without causing infection. 

Culturing C. elegans with different bacteria can greatly affect physiology of the worms. 

Diet-induced phenotypes include numbers of offspring, developmental rate, metabolic 

profile and lifespan (Macneil & Walhout, 2013). For example, when grown on Bacillus 
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subtilis, which exists in the natural habitat of the worms and is the more preferable food 

than OP50, worms live longer than on E. coli OP50. Nitric oxide (NO) produced by B. 

subtilis was found to be the signaling molecule for activation of HSF-1 and DAF-16 

transcription factors in the worms to extend lifespan (Donato, Ayala et al., 2017).  

 

A living bacteria diet is metabolically active, and therefore is able to metabolize or 

modify drugs or other chemicals which are added to treat the worms (Macneil & 

Walhout, 2013). Chemicals can be inactivated or metabolized into biologically active 

agents. Also, it is possible that some factors exert their effects on the worms indirectly 

by altering physiology of the bacterial food source. For example, metformin can extend 

lifespan in different model organisms, including C. elegans. Interestingly, the lifespan 

extension can only be seen when the animals are fed with live bacteria. It was later 

found that metformin actually inhibits folate synthesis in the bacteria, and reduced 

folate intake causes extended lifespan in C. elegans (Cabreiro, Au et al., 2013).  

 

The laboratory conditions may not perfectly model the natural habitat of the worms, 

since in the wild the worms proliferate on decaying organic material, where an 

extremely diverse microbiome can be found. Metagenomics of wild C. elegans isolates’ 

gut content reveals thousands of operational taxonomic units of bacteria, including 

species from phyla of Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. 

When culturing with these bacteria individually, the worms show vastly different 

developmental timing, body size and stress reporter induction, suggesting that the 

natural commensal bacteria of C. elegans profoundly affect its physiology, and some 

induces stresses like pathogens (Samuel et al., 2016).  

 

1.10 Functions of the nucleolus  

 

The nucleolus is a special compartment in the nucleus of eukaryotic cells. This 

organelle is a non-membrane bound highly dynamic structure (Boisvert, van 

Koningsbruggen et al., 2007). It is best known for its role in ribosomal RNA (rRNA) 

synthesis and ribosome assembly. Ribosomal DNA (rDNAs), which encodes for 

precursor ribosomal RNA (pre-rRNA), is contained in the nucleolus. Pre-rRNA is 

transcribed within the nucleolus by RNA polymerase I (Hernandez-Verdun, Roussel et 

al., 2010). The pre-rRNA is then further processed by nucleolar factors, including 
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methyl transferase, pseudouridine synthase and nuclease, into mature 28S (26S in C. 

elegans) and 18S rRNA. These operations occur co-transcriptionally or immediately 

after transcription. Methyl transferases, such as fibrillarin, add methyl groups to ribose 

and the bases of the RNA. Pseudouridine synthase converts uridine to pseudouridine. 

Nuclease cleaves and removes linker RNA within the pre-rRNA. The modified rRNA is 

then assembled with 5s rRNA and ribosomal protein components, which are 

synthesized outside the nucleolus, into pre-ribosomal units. These complexes are then 

exported into the cytoplasm (Hernandez-Verdun et al., 2010).   

 

Although ribosome biogenesis is the most well-known function of the nucleolus, in the 

last two decades, a number of studies suggest that the nucleolus has some 

unexpected functions in addition to ribosome biogenesis. One such unexpected 

functions is messenger RNA (mRNA) splicing. Splicing factors can be found in the 

nucleolus (Bubulya, Prasanth et al., 2004, Lin, Chu et al., 2017). Nucleolar specific 

splicing events have also been observed (Falaleeva, Pages et al., 2016). Signal 

recognition particle (SRP) maturation also requires the nucleolus. SRP is a cytosolic 

and highly conserved ribonucleoprotein, which recognizes signal peptides and delivers 

specific proteins to the ER for targeting to the plasma membrane or secretion. The 

SRP core proteins and the SRP RNA are imported into the nucleolus, in which the 

assembly process takes place (Boisvert et al., 2007). Processing of certain transfer 

RNAs (tRNA) and small nuclear RNAs (snRNAs) also occurs in the nucleolus. These 

RNA species also require modifications, such as methylation and pseudouridylation, 

similar to rRNA (Boisvert et al., 2007).  

 

Nucleoli are easily recognizable in C. elegans under differential interference contrast 

(DIC) microscopy. The organelle exits as a discrete circular structure within the nucleus 

(Fig. 3). The nucleolar size of germ cells, and intestinal cells are relatively large, with 

diameters ranging from 3 to 7 μm, partially due to the high activity of translation and 

ribosome biosynthesis in these tissues (Lee, Lee et al., 2012). On the other hand, 

neuronal nucleoli are much smaller, presumably because neurons do not need high 

level of protein translation. Hypodermal cells are ideal for studying nucleolar size in the 

worms because they exist as a single layer of cells with nucleoli of intermediate sizes, 

ranging from 2 μm to 3 μm in diameter (Lee et al., 2012, Tiku, Jain et al., 2016). Genetic 

screens were done to identify C. elegans mutants with abnormal nucleolar morphology. 
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These mutants were names ncl (abnormal NuCLeoli) (Hedgecock & Herman, 1995). 

ncl-1 is a negative regulator of nucleolar size and will be discussed in more detail later 

in this thesis. ncl-2, a mutant with defects in germline nucleoli, has not yet been 

molecularly characterized (Lee et al., 2012). 

 

 

 

 

 

                                   

 

 

 

Figure 3. Nucleolar morphology in hypodermis of C. elegans.  The image of wild-

type C. elegans was acquired with DIC microscopy. Red arrows indicate nucleoli.  

 

 

 

 

 

 



 21 

 

Because the nucleolus is the primary controller of ribosome biogenesis and protein 

synthesis, it is therefore reasonable to postulate that it has a significant role in different 

diseases and other physiological processes. Indeed, dysregulation of the nucleolus is 

a common feature of cancerous cells, which usually possess enhanced ribosome 

biogenesis and other anabolic activities (Boisvert et al., 2007). Many aggressive 

cancers show abnormal and enlarged nucleolar morphology. Nucleolar proteins, such 

as fibrillarin, also become more abundant in these cancer cells (Rodriguez-Corona, 

Sobol et al., 2015). In cells from patients with Hutchinson-Gilford progeria syndrome 

(HGPS), a rare form of genetic pre-mature ageing pathology, nucleoli are hyper-

activated and expanded. As a consequence, global protein synthesis is elevated 

(Buchwalter & Hetzer, 2017). Interestingly, on the other hand, longevity-inducing 

interventions or mutations reduce nucleolar size and ribosome biogenesis (Demontis, 

Patel et al., 2014, Neumuller, Gross et al., 2013, Sheaffer, Updike et al., 2008, Tiku et 

al., 2016). The nucleolus is also a target for viruses. Viral proteins, such as human 

immunodeficiency virus (HIV) Rev protein (Daelemans, Costes et al., 2004), influenza 

A virus NS1 protein (Melen, Tynell et al., 2012) and herpes simplex virus-1 (HSV-1) 

US11 (Greco, Arata et al., 2012), preferentially localize to the nucleolus. These viral 

nucleolar proteins facilitate replication of the viruses and are necessary for the optimal 

fitness of the parasites.  

 

1.11 Functions of fibrillarin 

 

Fibrillarin is an evolutionarily conserved nucleolar protein. It was named fibrillarin 

because it exists mainly in fibrillar centers (FCs) and dense fibrillar component (DFC) 

of nucleoli, where rDNA transcription occurs (Rodriguez-Corona et al., 2015). The size 

of fibrillarin ranges from 34 to 38 KDa in different species. In C. elegans, it is around 

36 kDa (Tiku et al., 2016). Fibrillarin is a methyl transferase, which uses S-

adenosylmethionine (SAM) as a methyl donor. Fibrillarin mediates methylation of the 

2-hydroxyl group of ribose targets on pre-rRNA and is indispensable for the maturation 

of rRNA and ribosome biogenesis. This process is highly complicated and is carried 

out in more than 100 sites for each pre-rRNA molecule. The precise location is directed 

by small nucleolar ribonucleoproteins (snoRNPs), which use a class of specialized 

RNA called small nucleolar RNA (snoRNA) to guide the modification machinery. 
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Fibrillarin also methylates histone H2A at the 35S ribosomal DNA locus. This 

epigenetic mark can facilitate the transcription of pre-rRNA by RNA polymerase I 

(Rodriguez-Corona et al., 2015). 

 

In C. elegans, fibrillarin is encoded by fib-1. The gene is contained in the operon 

CEOP5428 which encodes fibrillarin (FIB-1) and RPS-16 (Lee et al., 2012). Deletion 

of fib-1 is lethal and reduction by RNAi also leads to larval arrest. Intriguingly, FIB-

1/fibrillarin levels affects lifespan. Various long-lived mutants possess small nucleoli 

and reduced levels of FIB-1/fibrillarin, which leads to reduced ribosome biogenesis. A 

modest reduction of FIB-1/fibrillarin in wildtype animals is sufficient to increase their 

lifespan. Interestingly, the lifespan extending effects and the small nucleolus 

phenotype of the long-lived mutants are reversed by deleting ncl-1 (Tiku et al., 2016). 

NCL-1 is a cytoplasmic ring finger, B-box zinc finger and NHL repeat protein, which is 

homologous to Brat (brain tumor) in fruit flies and TRIM2/3/32 of mammals. Deletion 

of the brat gene causes enlarged nucleoli (Lee et al., 2012). In worms, NCL-1 inhibits 

fib-1 expression by inhibiting fib-1 translation (Yi, Ma et al., 2015). Deletion of ncl-1 

abolishes long-lived phenotypes of all long-lived mutants tested, and therefore this 

gene acts as a convergent factor of longevity. The ncl-1 mutants also show increased 

nucleolar size and abundance of fibrillarin (Tiku et al., 2016).  

 

As mentioned in the previous section, the nucleolus is involved in different pathology, 

and fibrillarin, as a major nucleolar protein, inevitably participates in such conditions. 

Fibrillarin is required for biogenesis of the machinery necessary for protein translation 

and ultimately cell proliferation. Fibrillarin has been shown to be overexpressed in 

numerous kinds of cancer, including adenocarcinoma, leukaemia and breast cancer 

(Rodriguez-Corona et al., 2015). Fibrillarin is also a common target for viral proteins. 

Binding of ORF3 protein from nut rosette virus to fibrillarin is required for viral 

ribonucleoprotein function (Kim, Macfarlane et al., 2007). Tat protein from HIV (Ponti, 

Troiano et al., 2008) and NS1 protein from influenza A also bind to fibrillarin to 

modulate antiviral responses of the hosts (Melen et al., 2012).  
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1.12 Introduction to mRNA splicing 

 

Splicing is a modification of mRNA commonly found in eukaryotic cells. It occurs co-

transcriptionally or immediately after transcription inside the nucleus. Non-coding 

regions called introns are removed, and exons, the protein coding sequences, are 

joined together to form the mature mRNA (Berget, Moore et al., 1977, Chow, Gelinas 

et al., 1977). Discovery of splicing is regarded as one of the most significant discoveries 

in modern molecular biology as it explains how the information is transferred between 

different layers of the central dogma. Splicing is catalyzed by the spliceosome, which 

is composed of a large variety of splicing factors (Wani & Kuroyanagi, 2017). Some of 

these splicing factors will be discussed more detailly in the next section. 

 

One significant consequence of splicing is an increase in the numbers of possible 

transcripts encoded by a genome. In many cases, splicing creates multiple different 

proteins with different functions from the same pre-mRNA by varying the exon 

composition. This phenomenon is termed alternative splicing. Certain exons can be 

skipped while some introns can be included. In some rare scenario, splicing can also 

occur inter-molecularly. Trans-splicing is a unique form of splicing, where exons from 

two different pre-mRNA molecules are joined together, creating a novel mRNA 

molecule (Burgess, 2013). Alternative splicing greatly enhances complexity of the 

genome. Indeed, splicing tends to be more prominent in higher organisms. In human, 

over 95% of the transcripts undergoes certain forms of alternative splicing, while in C. 

elegans only 25% of the transcripts is alternatively spliced (Wani & Kuroyanagi, 2017). 

In simple lifeforms life like prokaryotic cells, splicing is a rare event (Reinhold-Hurek & 

Shub, 1992). 

 

1.13 Functions of PUF60/RNP-6 

 

Poly(U) Binding Splicing Factor 60 (PUF60) is an RNA binding protein involved in pre-

mRNA splicing and transcriptional regulation. Splicing is achieved by cooperation of 

five different small nuclear ribonucleoproteins (snRNPs) (U1-U5) and a large variety of 

associated factors (Maniatis & Tasic, 2002). 5’ splice donor sites are recognized by the 

U1 snRNP. 3’ splice acceptors are recognized by U2 auxiliary factor (U2AF), which 
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recognizes a long polypyrimidine sequence located at the 3’ end of the introns. The 

activity of U2AF facilitates the recruitment of the U2 snRNP. Another factor, splicing 

factor one/branch-point binding protein (SF1/BBP) facilitates the recognition of the 

highly conserved branch-point sequence in the middle of the introns (Reed, 2000).  

 

The initial characterization of PUF-60 was done in 1999 when it was first discovered 

as a 60-kDa splicing factor with poly-U binding affinity that works cooperatively with 

U2AF to promote splicing by facilitating association of the U2 snRNP with primary 

transcripts.(Page-McCaw, Amonlirdviman et al., 1999). PUF60 also interacts 

physically with splicing factor 3b (SF3b) (Rahmutulla, Matsushita et al., 2014). PUF60 

is also known as far-upstream element binding protein. The far-upstream element 

(FUSE) regulates expression of c-myc. PUF60 binds to FUSE binding protein (FBP), 

which is a transcription factor that stimulates c-myc expression. Binding of PUF60 to 

FBP hinders functions of FBP and therefore inhibits c-myc expression (Duncan, Bazar 

et al., 1994). Myc proteins are transcription factors that activate expression of 

proliferation promoting genes (Dang, 2012). The function of PUF60 is conserved in 

invertebrates. Mutations in the PUF60 homolog of Drosophila, Half Pint (Hfp), also lead 

to aberrant splicing of mRNAs (Van Buskirk & Schupbach, 2002) and also increased 

abundance of d-myc protein (Quinn, Dickins et al., 2004).  
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Figure 4. Pre-mRNA splicing by the snRNPs.  snRNPs are sequentially recruited to 

the RNA molecule and evidences suggest RNP-6 is involved in the recruitment of U2 

complex.  
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PUF60 is widely implicated in human diseases. Auto anti-PUF60 antibodies are highly 

produced in patients with autoimmune diseases, including Sjögren’s syndrome and 

dermatomyositis (Fiorentino, Presby et al., 2016). Titre of serum anti-PUF60 antibodies 

correlates with disease severity, suggesting the auto antibodies contribute to 

pathogenesis (Fiorentino et al., 2016). PUF60 is an essential gene, and homozygous 

knockout leads to embryonic lethality (Matsushita, Kitamura et al., 2015). 

Heterozygous loss of function causes a rare genetic disease called Verheij syndrome. 

Sequencing of RNA from the patients’ cells reveals aberrant splicing patterns. 

Developmental phenotypes could be observed in most of the patients. Examples 

include short stature, spinal segmentation anomalies, congenital heart disease, ocular 

colobomata and hand anomalies (Low, Ansari et al., 2017). PUF60 is also involved in 

viral infection. PUF60 promotes hepatitis B viral RNA transcription and splicing (Sun, 

Nakashima et al., 2017).  

 

In the nematode C. elegans, splicing is also regulated by the conserved snRNPs and 

associated factors. However, one interesting discrepancy is that there is no consensus 

branch-point sequence at the middle of the introns or long polypyrimidine sequence at 

the 3’ end (Zorio & Blumenthal, 1999). U2AF instead recognizes an alternative 

consensus UUUUCAGR sequence at the 3’ splice acceptor site (Hollins, Zorio et al., 

2005). Intriguingly, splicing plays a critical role in regulation of ageing in C. elegans. 

Splicing homeostasis deteriorates during ageing. Dietary restriction and mTOR 

inhibition extend lifespan partially by maintaining good splicing capacity. Also, 

overexpressing splicing factor SFA-1 is sufficient to extend lifespan (Heintz, Doktor et 

al., 2017). 

 

The homolog of PUF60 is encoded by rnp-6 in C. elegans. This gene is poorly studied 

in C. elegans. At the amino acid sequence level, RNP-6 is a relatively conserved 

protein, especially the two RNA recognition motifs (RRMs). The transcript undergoes 

differential splicing, yielding three different isoforms with molecular weight of 37, 39 

and 81 kDa. Interestingly, alternative splicing of rnp-6, which itself is a splicing factor, 

is controlled by another splicing factor, called sym-2 (Barberan-Soler & Zahler, 2008).  
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1.14 Aims of the study 

 

C. elegans has been a useful model for studying innate immunity. As discussed in the 

earlier sections, the worm has a very conserved innate immune system. Nevertheless, 

despite years of research, our knowledge of innate immunity in C. elegans is limited 

and fragmentary, especially how host responses are initiated. Benign bacteria have 

virtually the same chemical composition as pathogenic bacteria, making simple 

detection of PAMPs unlikely to be the sole mechanism. Similar situation also exists in 

higher organisms. Microbiome is well tolerated by our immune system although it also 

possesses immunostimulatory PAMPs. Exactly how pathogens can stimulate host 

responses remains to be elucidated. Understanding the molecular mechanism of 

immune responses in C. elegans then should shed light on how higher organisms, 

including humans, detect and fight infections. 

 

As we mentioned in the earlier sections, RNA binding proteins, such as fibrillarin and 

PUF60/RNP-6 play essential roles in RNA metabolism. RNA is an essential component 

of all life. RNA binding proteins are responsible for biogenesis and quality control of 

various RNA species, which affect every biological process. Therefore, it is reasonable 

to speculate that RNA metabolism also plays a critical role in the regulation of innate 

immunity in C. elegans.  

 

In this study, we aim to identify novel regulators of innate immunity in C. elegans. We 

are particularly interested to investigate how immune responses are initiated. Special 

focus is given to two candidate genes, namely fib-1 and rnp-6. Both of them encode 

RNA binding proteins. Pathogenic infection disrupts core cellular processes. It has 

been reported that disturbing different organelles, such as mitochondrial functions 

(Pellegrino et al., 2014), proteasomal activity, cytoskeletal dynamics (Melo & Ruvkun, 

2012) and ribosomal translation (McEwan, Kirienko et al., 2012), induces immune-

responses. The potential involvement of the nucleolus in innate immunity against 

bacterial infections remains largely unexplored. We therefore aim to: 1) investigate how 

fibrillarin and the nucleolus behave and affect host responses during infection. Also, 

the functions of splicing in general and RNP-6 in particular is poorly studied in C. 

elegans. We intend to 2) determine the role of rnp-6 and splicing in infection responses 
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and identify the downstream signaling pathways. Finally, we also aim to 3) extend the 

findings to mammalian cell culture system in order to test whether these functions are 

evolutionarily conserved.  
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Materials and Methods 

 

2.1 Maintenance of C. elegans cultures 

 

The worms were maintained using the standard protocols, which are modified from the 

original methods (Brenner, 1974). The animals were grown on NGM plates, which 

consists of 3 g/L NaCl, 2.5 g/L peptone and 17 g/L agar in H2O supplemented with 

1mM MgSO4, 1mM CaCl2, 5 g/mL cholesterol and 25mL/L potassium phosphate 

buffer. E.coli strain OP50, which serves as the food source for the worms, was grown 

in lysogeny broth (LB) at 37C overnight with gentle shaking to obtain a saturated 

culture. The culture was seeded and spread on NGM plates. After drying, animals were 

put on the bacterial lawn and incubated at 20C.  

 

The strains used for the experiments were: N2 (wildtype), ncl-1(e1865), ncl-1(e1942), 

daf-16(mu86), hlh-30(tm1978), adIs2122(lgg-1::gfp; rol-6(su1006)) (Kang, You et al., 

2007),  cguIs001 (FIB-1::GFP) (Lee, Lo et al., 2010), ife-2(ok306),  ifg-1(cxTi9279), 

pmk-1(km25), agIs17 (myo-2p::mCherry + irg-1p::GFP) (Estes, Dunbar et al., 2010), 

rnp-6(dh1127), rnp-6(dh1125), rnp-6(dh1127);pmk-1(km25), tir-1(tm3036), lin-

15(n765);ybIs2167[eft-3::RET-1E4E5(+1)E6-GGS6-mCherry eft-3::RET-

1E4E5(+1)E6-(+2)GGS6-EGFP lin-15(+) pRG5271Neo] X (Heintz et al., 2017) and 

rnp-6(dh1127);lin-15(n765);ybIs2167[eft-3::RET-1E4E5(+1)E6-GGS6-mCherry eft-

3::RET-1E4E5(+1)E6-(+2)GGS6-EGFP lin-15(+) pRG5271Neo] X. 

 

2.2 C. elegans killing assay  

 

The protocols for C. elegans killing assay are based on the previously published 

protocols (Powell & Ausubel, 2008) with some modifications. S. aureus (Strain MW2-

WT), E. faecalis (Strain ATCC 29212) and P. aeruginosa (strain PA14) were used to 

infect C. elegans. For each bacterium, a single colony was inoculated into the 

appropriate medium. S. aureus, E. faecalis and P. aeruginosa were inoculated in tryptic 

soy broth (TSB) medium, brain heart infusion (BHI) medium and LB respectively. The 

bacteria were grown at 37C with gentle shaking overnight. For each bacterium, 20 μl 

of the overnight bacterial cultures were seeded on the killing assay plates, tryptic soy 
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agar (TSA) plates with 10 μg/mL nalidixic acid (Sigma, NAL) for S. aureus, BHI plates 

with 10μg/mL NAL for E. faecalis and modified NGM, which has an enriched peptone 

content (3.5 g/L instead of 2.5 g/L), for P. aeruginosa. After drying, the seeded killing 

assay plates were then incubated at 37°C overnight. On the next day, the plates were 

allowed to equilibrate to room temperature before transferring worms. 20-25 age 

synchronized young adult worms were transferred to the killing plates with 3 replicate 

plates for each condition. The plates were then incubated at 25C. Survival was 

monitored every 12 hours for S. aureus and P. aeruginosa and every 24 hours for E. 

faecalis. Worms that did not respond to gentle touch by a worm pick are defined as 

dead and were removed from the plates. Worms that crawled off the plate or had 

severe ruptured vulva phenotypes were censored from the analysis. 

 

2.3 RNAi in C. elegans 

 

Standard feeding protocol was used (Hammell & Hannon, 2012). The dsRNA 

expressing HT115 bacteria were from the Vidal (Rual, Ceron et al., 2004) and Ahringer 

library (Kamath & Ahringer, 2003). The bacteria were grown in LB medium with 100 

μg/mL ampicillin overnight at 37°C with gentle shaking. The culture was then 

concentrated for 5 times and spread on RNAi plates, which are NGM plates 

supplemented with 100 μg/mL ampicillin and 0.4 mM Isopropyl β-D-1-

thiogalactopyranoside (IPTG). The seeded plates were then incubated at room 

temperature for at least 12 hours to allow expression of the dsRNA. For egg on RNAi, 

young adults were transferred to the RNAi plates spread with the designated RNAi 

bacteria. The worms were then allowed to lay eggs for 3-6 hours before being removed 

from the plates. For L3 on RNAi (temporal fib-1 RNAi), egg laying was done on normal 

NGM plates, and the larvae were allowed to feed and grow on the same plates until 

larval stage L3. The L3 larvae were then transferred to the RNAi plates. 

 

2.4 Immunoblotting 

 

Standard protocols of western blot were employed for detection of proteins. Worms 

were picked into ice-cooled M9 buffer. Laemmli lysis buffer with 5% 2-mercaptoethanol 

was then added to the buffer, and the mixture was immediately snap-frozen in liquid 

nitrogen. For mammalian cell samples, cells were lyzed using 



 32 

radioimmunoprecipitation assay (RIPA) buffer. 20 µg of protein was mixed with 

Laemmli lysis buffer with 5% 2-mercaptoethanol. The samples were then heated to 

95°C for 10 minutes for denaturation of proteins. Denatured samples were then 

sonicated in a sonicating water bath for 10 minutes and loaded on 4-15% 

MiniPROTEAN® TGXTM Precast Protein Gels (Bio-Rad). Electrophoresis was 

conducted at constant voltage of 200V for around 40 minutes. Separated proteins were 

then transferred to PVDF membranes using Trans-Blot® TurboTM Transfer System 

(BioRad). The membranes were then blocked at room temperature in 5% Bovine 

serum albumin (BSA) or 5% milk in Tris-buffered Saline and Tween20 (TBST) for at 

least 1 hour. Primary antibody incubation was performed at 4C overnight. On the next 

day, the membranes were washed with TBST for 45 minutes. After that, secondary 

antibodies were added, and the membranes were incubated at room temperature for 

1 hour. The membranes were then washed again with TBST for 45 minutes. The 

membranes were imaged with ChemiDoc Imager (BioRad). Western Lightning® Plus 

Enhanced Chemiluminescence Substrate (PerkinElmer) was used as the 

chemiluminescence reagent.  

 

Antibodies used in this study: 

Target Manufacturer Reference Dilution 

Anti-Fibrillarin Novus Biologicals NB300-269 1:1000 

Anti-Histone H3 Abcam ab1791 1:4000 

Anti-β-Actin Abcam ab8224 1:5000 

Anti-GAPDH Santa Cruz sc47724 1:2500 

Anti-Ubiquitin Cell Signaling P4D1 1:1000 

Anti-Puromycin Merck Millipore 12D10 1:10000 

Anti-Phospho-p38 
MAPK 

Cell Signaling 9211 
 

1:1000 

Anti-GFP Takara 632381 1:2000 

Anti-Mouse HRP ThermoFisher G-21040 1:5000 

Anti-Rabbit HRP ThermoFisher G-21234 1:5000 

 

 

 

 



 33 

 

2.5 C. elegans sample preparation for RNA analysis 

 

C. elegans samples used for polymerase chain reactions (PCRs) and RNA sequencing 

were prepared as described below. Egg laying was done, and the animals were 

allowed to grow at 20C for around 72 hours to obtain age synchronized young adults. 

The adults were then washed in M9 buffer and transferred to 10cm TSA plates spread 

with either S. aureus or heat-inactivated E. coli OP50. These plates were also 

supplemented with 10 μg/mL NAL. S. aureus and E. coli OP50 were grown in TSB and 

LB medium respectively. Heat inactivation of E. coli culture was achieved by first 

concentrating the bacteria 10 times. The concentrated culture was then boiled for 10 

seconds. 100 μl of the culture was spread on a LB plate, which was then incubated at 

37C overnight. Absence of colonies indicates a complete inactivation of the bacteria. 

500 μl of S. aureus and heat-inactivated E. coli OP50 were then spread on the TSA 

plates, which were then incubated at 37C for 6 hours. After that, the plates were 

allowed to equilibrate to room temperature before seeding C. elegans. TSA plates with 

heat-inactivated OP50 serve as the non-infection control here.  The animals were 

incubated on the plates at 25C for 4 hours. The worms were then washed off with M9 

buffer before lysis with QIAzol Lysis Reagent (Qiagen).  

 

2.6 RNA extraction and cDNA synthesis 

 

C. elegans were lyzed with QIAzol Lysis Reagent. RNA was extracted using the 

standard chloroform extraction method (Rio, Ares et al., 2010). The RNA was purified 

using RNeasy Mini Kit (QIAGEN). DNA impurities were removed by DNase digestion 

using RNase-Free DNase Set (Qiagen). Concentration and purity of the RNA samples 

were analyzed by NanoDrop 2000c (peqLab). cDNA synthesis was done using iScript 

cDNA synthesis kit (Bio-Rad). For all the kits mentioned, standard protocols provided 

by the manufacturer were followed. 

 

2.7 Quantitative PCR 

 

Power SYBR Green master mix (Applied Biosystems) was used for quantitative PCR 

(qPCR). The reagents and samples were pipetted onto a 384 well plate using JANUS 
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automated workstation (PerkinElmer). The reactions were run on a ViiA7 384 Real-

Time PCR System machine (Applied Biosystems). snb-1 was used as the endogenous 

control for normalization. Quantification was performed using the comparative CT 

method (Schmittgen & Livak, 2008).  

 

qPCR primers used in this study: 

Target Forward Reverse 

fib-1 CAAACGTTGTCCCAATTGTCG GGAAGTTTTGGGCATTGAGAG 

ilys-2 GTTGGATCGCTTTCTTGTGG CGTCAGCACATCTCTTCCAG 

irg-1 TGATCTTGTTCCGTACCCATG ATCCTCTCCAGTTTCGTTCATC 

spp-1 GGTGTTTTCTGTGATGTCTGC ATAGTCCAGCAAAGAGTTCCG 

nlp-34 TCATCGCTTGCCTGTTGG CATGGGCGGTAGTATGGG 

lys-3 CCAAGATATGATTAGAAGTGCGAAG ACTAAACGTGTTCCAGCCTC 

lgg-1 ACCCAGACCGTATTCCAGTG ACGAAGTTGGATGCGTTTTC 

irg-2 TGTTCGACGAGTTTTACTTCCG CAATTGTGCCTTCAGTTTTCATG 

hlh-30 GGCAGCGACAAAATTCACAG TCATCTTCCATGCCCATGAG 

fmo-2 TGCCAAACAAGTCTACCTAGTC TGTAGAGTGAGAAGAAACGCG 

clec-7 TGTTTATGGGACGATTCGACG TCCTGTCAATGCACCTTGTAC 

clec-218 GTTGGCAAGTGAAGGAAATGG TGATATTTACGAGGACAGAAGCAG 

#1 (pre-
rRNA) 

CTGTGTTTACACCCGAATGATTCTAG CTAATCGTGAGATGGGACACTCATACA 

#2 (pre-
rRNA) 

CGCAGACATATAGTCTAGCGAG GATCCATAGATATTGCTGATGATTC 

#5 (pre-
rRNA) 

AACGCATAGCACCAACTG TCCGAAGAGAAGCCTAAG 
 

#6 (pre-
rRNA) 

AATACTGGGATTCGTCTA 
 

GAGTTCAGGTTGAGATTAG 
 

nlp-30 TTCTCGCCTGCTTCATGG GTCCATAACCTCCATATCCGC 

C18D11.6 AGTGGAAGCTAGTCAAACGC GTGAAATCCCCAACCGAATG 

M01G2.9 CAGTATTGAAGGCGCATGTTC TGATACTTTGTTAGCCCTCCATTG 

hpo-15 CGCTCTCCCATATTTCTCACTC TCTGCGACCACTCAAATAACC 

frm-7 CTGCCAATGTGCTTTGAGTG TCCAGTTTCCGCTTCACC 

fbxa-24 GAAGTACATTTCAAGGTTGCCG GCATTTAATTACAAAGTTTGCATTATCG 

F47B8.4 TTGAGTATACATTGAATAAAATAGCATTCG TCAGTTCTAATACGACGCCTTG 

F18G5.6 GAATTGAAGAGCTGAGAATGGC TGGTGTTGGTATTGCTGAGTC 

F11E6.11 ACAGCTCTTTTGTCAATCTTTCAG AGCAATCGGGCATTATACTTCC 

C07A4.3 AAGAATGTATCCGTCAGTGCC AGATGAGAGGATTGCGTTGG 

M03B6.5 TGGAGCTTTCTGATTCATATCCTAG ATTGAATTCCACTTTCTTCATCGTC 

lipl-2 TTACCAACTCAGAGTGCAGC GCCATTTCATCCCAACTGAAC 

H11E01.2 CTGCGTACTGGGCTACATTC GAGATAGGACAAAGTGGGAGTG 

cyp-37B1 AAGAATGTATCCGTCAGTGCC AGATGAGAGGATTGCGTTGG 

cpz-2 GAAATCGGAAATGTGCTAGAGC GTGTAGTTGGTAAGGGAGAAGC 

R10E8.8 AATCTTATAAAACAGGGATCGATTATACG TCAGGTGCATTTCCGTATTCG 

rnp-6 CAGAAACAGCAACAGGAGAATC GAAGCATATCTTCGCGGATTTC 

snb-1 GAATCATGAAGGTGAACGTGG CCAATACTTGCGCTTCAGGG 
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The design of qPCR primers for pre-rRNA was adapted from a recent publication (Zhou, 

Feng et al., 2017).  

 

2.8 RNA sequencing and bioinformatic analysis 

 

Sample preparation was described in the sections “2.5 C. elegans sample preparation 

for RNA analysis” and “2.6 RNA extraction and cDNA synthesis”. Library preparation 

was done using 1g of total RNA as an input. We followed the protocol of Illumina 

TruSeq stranded RiboZero. After purification and validation (2200 TapeStation; Agilent 

Technologies), all 12 libraries (3 biological replicates, with control N2, control rnp-

6(dh1127), infected N2 and infected rnp-6(dh1127) in each biological replicate) were 

pooled which was then quantified by using the KAPA Library Quantification kit (Peqlab) 

and the 7900HT Sequence Detection System (Applied Biosystems). The libraries were 

then sequenced on one lane of an Illumina HiSeq4000 sequencing system using a 

paired end 2x75nt sequencing protocol. The data generated was subsequently 

analyzed. Alignment of the reads was done using the Hisat version 2.0.4 software 

against the Wormbase genome (WBcel235_89). For differential gene expression 

analysis between different samples, the stringtie version 1.3.0 was used followed by 

Cufflinks version 2.2. The dispersion between each condition was calculated 

(genotypes and infection), and differentially expressed genes (DEGs) (q-value<0.05) 

were identified. The DAVID (Database for Annotation, Visualization and Integrated 

Discovery) bioinformatics resources database was used for Gene Ontology (GO) 

annotation and enrichment analysis. 

 

2.9 rRNA analysis 

 

100 animals were harvested for each sample. The Worms were washed in M9 buffer 

and lysed in QIAzol Lysis Reagent. Total RNA was extracted as described in the 

section “2.6 RNA extraction and cDNA synthesis”. The RNA samples, each extracted 

from equal number of worms, were analyzed on an Agilent 2200 TapeStation System 

analyzer using the High Sensitivity RNA ScreenTape System protocol provided by the 

manufacturer (Agilent).  
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2.10 Puromycin incorporation assay 

 

Worms were incubated in S-basal medium, which consists of 5.85 g/L NaCl, 1 g/L 

K2HPO4 and 6 g/L KH2PO4 in H2O, supplemented with 0.5 mg/mL puromycin and E.coli 

OP50 as the food source at 20°C with shaking for 3 hours.  For the cycloheximide 

control, 2 mg/mL of the chemical was included in the incubation mixture. After the 

incubation, 30 animals per condition were harvested using the same method described 

for worm immunoblotting in the earlier section. The samples were then analyzed using 

western blot for detection of incorporated puromycin.  

 

2.11 Mammalian cell cultures 

 

HeLa cells and THP-1 cells were obtained from American Type Culture Collection 

(ATCC). All cells were maintained at 37°C with 5% CO2 in a humid atmosphere.  HeLa 

cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented 

with 10% fetal calf serum (FCS). THP-1 cells were maintained in Roswell Park 

Memorial Institute (RMPI) medium supplemented with 10% FCS. Bone marrow derived 

macrophages (BMDMs) were isolated from 8-12 weeks old female C57BL/6J mice 

provided by the animal facility of Center for Molecular Medicine, University of Cologne, 

Germany. Briefly, femurs were obtained from mice sacrificed by cervical dislocation. 

Bone marrow cells were flushed out from the bone using RPMI medium. The cells were 

then centrifuged, washed and re-suspended in RPMI supplemented with 10% FBS.  

Differentiation was done by incubating the cells in medium consisted of RPMI with 10% 

FBS supplemented with 20% murine fibroblast L929 culture supernatant for 7 days. 

Cells which failed to differentiate remained in suspension and were removed by 

replacing the medium. 

 

THP1 cells were differentiated into macrophages using the following protocol. The cells 

were incubated in 10% FCS RPMI medium supplemented with 25ng/ml of 12-O-

tetradecanoylphorbol-13-acetate (PMA) for 24 hours.  
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2.12 Fibrillarin knockdown and overexpression in mammalian cell cultures 

 

siRNA against fibrillarin was purchased from Dharmacon (GE Healthcare Life 

Sciences). Dharmafect-2 (GE Healthcare Life Sciences) was used to deliver the siRNA 

into HeLa cells and BMDMs using the manufacturer’s protocol. Human fibrillarin-GFP 

fusion expression plasmid was ordered from Addgene (Catalog Number: 26673). 

Lipofectamine 3000 (ThermoFisher Scientific) was used as the transfection reagent for 

the plasmid following the manufacturer’s protocol.  

 

2.13 Infection of mammalian cells 

 

S. aureus (MW2-WT), E. faecalis (ATCC 29212), S. Typhimurium (SL1344), and L. 

monocytogenes (EGDe) were used for infection at multiplicity of infection (MOI) 50 and 

MOI 10 for HeLa and macrophages (THP-1 derived and BMDM) respectively. Late 

logarithmic phase grown bacterial cultures were diluted in cell culture media (DMEM 

or RPMI) with 10% FCS to the desired MOI. The mixture was then incubated with the 

cells for 10 minutes at room temperature and then for 30 minutes at 37°C with 5% CO2 

in a humid atmosphere. After the incubation, the bacteria containing medium was 

removed, and the residual extracellular bacteria were killed by incubation with medium 

with 10% FCS and 50μg/ml gentamicin for 2 hours. After that, medium with lower 

concentration of gentamicin (10μg/ml) was used for continued culture.  

 

2.14 Cell viability assays 

 

Lactate dehydrogenase (LDH) release assay and trypan blue exclusion assay were 

used to measure viability of cells. LDH Cytotoxicity Assay Kit (CytoTox 96 Non-

Radioactive Cytotoxicity Assay; Promega) was used for measuring released LDH. At 

the indicated time points after infection, cell culture medium was harvested, and LDH 

in the medium released by dead cells was measured according to the manufacturer’s 

protocol. For the trypan blue method, dead cells were first washed off with phosphate-

buffered saline (PBS). Viable cells were then dissociated by incubation with 0.5% 

trypsin. Cells were then mixed with trypan blue and counted using a hemocytometer. 

Cells that did not uptake trypan blue were counted as alive. 
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2.15 Bacterial burden assay  

 

HeLa and BMDM cells were infected as described with S. aureus. At the indicated 

time-points, infected cells were washed with PBS and then lysed with 0.3% Triton X-

100 in PBS at room temperature for 5 minutes. The lysate was then diluted in a 10-fold 

series, and the dilutions were plated on BHI plates. Colony-forming units (CFUs) were 

counted after overnight incubation at 37°C. To obtain bacterial burden per cell, the 

results were normalized to the number of cells seeded.  

 

2.16 Immunocytochemistry 

 

GFP expressing S. aureus was used to infect HeLa cells using the same protocol 

described. 250 nM lysotracker deep red (Invitrogen) was added to the cell cultures 24 

hours after infection for visualization of lysosomes. The cells were incubated with the 

reagent for 15 minutes at 37°C with 5% CO2 in a humid atmosphere. Excessive 

lysotracker was removed by washing with pre-warmed sterile PBS. 4% 

paraformaldehyde in PBS was used for cell fixation at room temperature for 15 minutes. 

The fixed samples were then washed with PBS and mounted on standard imaging 

glass slides with ProLong Gold mounting medium containing DAPI (ThermoFisher 

Scientific). Olympus IX81 inverted confocal microscope was used for image acquisition. 

Olympus Fluoview-10 ASW 4.2 was used for image processing and calculating 

Pearson’s correlation. 

 

2.17 Enzyme-linked immunosorbent assay (ELISA) 

 

At the indicated time points, supernatants from infected and uninfected cells were 

harvested and immediately frozen in liquid nitrogen. ELISA of IL-6, IL-8 and IL10 was 

performed to gauge the levels of the cytokines using DUOSet ELISA kits from R&D 

Biosystems for human IL-6, IL-8 and IL-10, following the manufacturer’s protocol. 
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2.18 tos-1 alternative splicing PCR assay 

 

Worms were treated as described in “2.5 C. elegans sample preparation for RNA 

analysis”. cDNA was synthesized from infected and control worms in the same way as 

described in the “2.6 RNA extraction and cDNA synthesis” section. DreamTaq DNA 

Polymerases (ThermoFisher) was used to amplify the tos-1 segment.  

Forward primer sequence: ATCTACGGATTCGAGTCGTCACCATC.  

Reverse primer sequence: GAAGAAATCTTCCAGTCCGAAGGG.  

The primer design is based on a recent publication (Ma, Tan et al., 2011). The 

annealing temperature was 57C. PCR reactions were cycled for 35 cycles. The 

products were analyzed by agarose electrophoresis, and DNA was visualized by 

staining with Roti®-GelStain (Carl Roth).  
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Roles of fibrillarin in host responses during infection 

 

3.1 Introduction 

 

As discussed in the introduction of the thesis, one of the two focuses is fibrillarin, an 

evolutionarily conserved nucleolar protein responsible for methylation modification of 

rRNA (Rodriguez-Corona et al., 2015). Fibrillarin was found to be downregulated in 

multiple stress resistant long-lived mutants (Tiku et al., 2016). These mutants, such as 

the IIS mutants (Garsin et al., 2003) and gonadally ablated mutants (Wu, Cao et al., 

2015), display enhanced resistance to pathogenic insults as well. However, the role of 

fibrillarin and the nucleolus in host response to infection has not yet been characterized. 

We reasoned that downregulation of fibrillarin may alter host responses. We 

investigated the effects of fibrillarin on infection responses in both C. elegans and 

mammalian cells. Results suggest that the nucleolus and fibrillarin play a critical role 

in the initiation of protective responses from the host in both nematodes and 

mammalian cells, suggesting that this effect is evolutionarily highly conserved.  

 

3.2 Results 

 

3.2.1 FIB-1/fibrillarin reduction enhances resistance against bacterial infection 

in C. elegans 

 

FIB-1/fibrillarin is a highly conserved nucleolar methyltransferase necessary for the 

maturation of rRNA. It has been recently reported that long-lived mutants of C. elegans 

have reduced levels of FIB-1 protein and smaller nucleoli. Further, knocking-down fib-

1 is already sufficient to extend lifespan in worms (Tiku et al., 2016). Lifespan extending 

conditions often also induce resistance to stresses, including infections. Therefore we 

tested whether fib-1 reduction could confer infection resistance. Worms were grown 

on normal NGM plates with OP50 bacteria. RNAi was initiated by transferring the 

worms to RNAi plates 30 hours before the experiment in order to prevent the 

deleterious effects of fib-1 reduction on development. This treatment led to a significant 

reduction of FIB-1 protein with no obvious developmental phenotype (Fig. 6A). 

Intriguingly, when these worms were infected, they showed enhanced resistance 
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against multiple pathogens, namely S. aureus (Fig. 5A), E. faecalis (Fig. 5B) and P. 

aeruginosa (Fig. 6B). Interestingly, the effect was specific to pathogenic stress 

because fib-1 knockdown did not affect resistance to other stresses, including heat 

(Fig. 6C), cold (Fig. 6D) and oxidative stress (Fig. 6E). Bacterial intake, indicated by 

pharyngeal pumping rate, was unaffected by fib-1 knockdown (Fig. 6F), suggesting the 

observed effects are not due to dietary restriction or differential ingestion of the bacteria.  

The protection conferred by fib-1 knockdown was not due to increased aversion 

behavior, because similar level of resistance was observed using full lawn plates, 

whose entire agar surface was covered by bacteria (Fig. 6G,H). Next, ncl-1 loss-of-

function mutants were tested for their resistance. NCL-1 is a negative regulator of FIB-

1, and the mutants possess elevated level of FIB-1 (Tiku et al., 2016, Yi et al., 2015). 

ncl-1 mutants showed higher susceptibility to infection (Fig. 5C,D). This suggests that 

increased levels of FIB-1 in the ncl-1 mutants compromised survival upon infection.  
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Figure 5. (A,B) Temporal RNAi against fib-1 prolongs survival of wildtype N2 C. 

elegans upon S. aureus and E. faecalis infection (P<0.0001). (C,D) ncl-1 mutants 

(e1865 and e1942) are sensitive compared to wildtype N2 worms upon infection with 

S. aureus and E. faecalis (P<0.0001). hlh-30(tm1978), a well-established sensitive 

mutant, served as a control and reference for the experiments. P-values were 

calculated by log-rank test. 
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Figure 6. (A) FIB-1 protein was significantly reduced after the temporal (30 hours) 

RNAi treatment. (B) fib-1 RNAi prolongs survival of wildtype N2 worms upon P. 

aeruginosa infection (P<0.0001, log-rank test). (C,D,E) fib-1 RNAi does not affect heat 

resistance, cold shock recovery, or oxidative stress tolerance in wildtype worms. (F) 
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Pharyngeal pumping rate is not affected by fib-1 RNAi. Error bars represent mean ± 

s.d. ****P<0.001, unpaired t-test. (G,H) Survival assay using full lawn bacterial plates 

which eliminate behavioral avoidance (P<0.0001, log-rank test).  

 

3.2.2 Bacterial infection induces FIB-1/fibrillarin reduction and nucleolar 

shrinkage  

 

Since FIB-1 levels affect infection resistance, it was hypothesized that infection may 

perturb FIB-1.  Western blot was performed to detect the endogenous levels of FIB-1 

of infected C. elegans. After 12-hours of infection with S. aureus, E. faecalis (Fig. 7A) 

and P. aeruginosa (Fig. 8A), FIB-1 protein levels were significantly down-regulated in 

wildtype animals. Infected ncl-1 mutants also exhibited a reduction of FIB-1, although 

the level of reduction was milder, and the relative levels remained significantly higher 

compared to infected wildtype animals (Fig. 7A,B). Similar results were also obtained 

using a FIB-1::GFP translational fusion reporter. After infection, FIB-1::GFP was 

greatly reduced, suggesting a decrease of FIB-1 abundance (Fig. 7C). Infection 

induced FIB-1 reduction is likely to be a post-transcriptional response, as no significant 

changes in fib-1 mRNA level were detected using qRT-PCR (Fig. 8B). Because FIB-1 

is an essential nucleolar protein, reduction of FIB-1 can lead to a perturbation of the 

nucleolus. Morphology of nucleoli of infected worms was examined under DIC 

microscopy. As expected, nucleoli shrunk significantly after 12-hours of infection with 

S. aureus and E. faecalis (Fig. 7D,E). This phenomenon seems to be driven by active 

bacteria because heat killed bacteria did not induce nucleolar shrinkage (Fig. 8C,D). 

Unlike wildtype, nucleolar size of ncl-1 mutants appeared to remain as the uninfected 

size (Fig. 7D,E). Since the nucleolus is the site of rRNA transcription and maturation, 

and FIB-1 is indispensable for this process, we hypothesized that rRNA levels would 

also be affected by pathogen infection. Indeed, S. aureus infection caused a reduction 

of mature rRNA levels (Fig. 7F).   
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Figure 7. (A,B) Decrease of FIB-1 protein levels in wildtype N2 and the ncl-1 mutants 

infected with S. aureus or E. faecalis. Error bars represent mean ± s.e.m. of three 

independent biological replicates. (C) Expression of FIB-1 translational GFP reporter 

decreases after infection of S. aureus. (D,E) Nucleolar size of hypodermal cells is 

reduced after 12-hour of infection with S. aureus or E. faecalis in wildtype N2 worms 

while nucleolar size of hypodermal cells in the ncl-1 mutants remains largely unaffected. 

Error bars represent mean ± s.d. (F) Wildtype C. elegans infected with S. aureus 

possesses less 26S and 18S mature rRNA. RNA was extracted from equal number of 

uninfected and infected worms. The RNA was then analyzed using a bioanalyzer. 

Scale bars represent 20 μm (C) and 5 μm (D). *P<0.05, **P<0.01, ns non-significant, 

unpaired t-test. 
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Figure 8. (A) After infection with P. aeruginosa, FIB-1 protein abundance is 

significantly reduced in wildtype animals. Error bar represents mean ± s.e.m. of three 

independent biological replicates. *P<0.05, unpaired t-test (B) S. aureus infection does 

not change the transcript levels of fib-1 while expression of ilys-2, an infection 

responsive gene, is highly induced. Error bars represent mean ± s.e.m. from three 

independent biological replicates ***P<0.001, one-way ANOVA. (C,D) Unlike active 

bacteria, heat-killed S. aureus and E. faecalis do not alter nucleolar size of hypodermal 

cells. Error bars represent mean ± s.d. ns non-significant, unpaired t-test. Scale bar 

represents 5 μm.       
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3.2.3 FIB-1/fibrillarin reduction also confers resistance to infection sensitive 

mutants  

 

It has been shown in previous studies that some C. elegans mutants show increased 

sensitivity upon bacterial infection, suggesting the genes play an indispensable role in 

innate immunity (Garsin et al., 2003, Kim et al., 2002, Visvikis et al., 2014).  We sought 

to investigate whether these established mediators of innate immunity interact with fib-

1. RNAi knockdown of fib-1 was performed on mutants of pmk-1, hlh-30 and daf-16. 

Interestingly, fib-1 reduction was able to confer resistance against both S. aureus (Fig. 

9A,B,C) and E. faecalis (Fig. 10A) in all these mutants, suggesting fib-1 regulates 

innate immunity independently or acting downstream of these known regulators. pmk-

1 encodes the worm’s ortholog of p38 MAP kinase, which is a key evolutionarily 

conserved signal transducer of innate immunity (Kim et al., 2002). hlh-30, which 

encodes the ortholog of mammalian TFEB, is an essential transcription factor for 

induction of immune response genes and autophagy during infection in both worms 

and mammalian macrophages (Visvikis et al., 2014). fib-1 RNAi did not affect HLH-

30::GFP fusion reporter localization (Fig. 11A,B) nor autophagic flux (Fig. 11C). In both 

control and infected animals, autophagic flux was the same after fib-1 RNAi as 

indicated by the cleavage of the autophagosomal membrane protein LC3/LGG-1 (Fig. 

11C). Next, the potential involvement of ubiquitin-proteasome system (UPS) was 

examined. No difference in the abundance of ubiquitinated proteins was observed after 

reduction of FIB-1 under both control and infected conditions (Fig. 11D). These results 

suggest that the enhanced survival by fib-1 reduction is unlikely due to improved 

proteolytic mechanisms. Further, fib-1 reduction also rescued the reduced survival of 

the ncl-1 mutants (Fig. 9D, Fig. 10B,C). All in all, these results suggest that FIB-1 is a 

novel mediator of host response, probably functioning independently or downstream 

of the established pathways. 
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 Figure 9. (A,B,C,D) fib-1 RNAi promotes the survival of the sensitive mutants pmk-

1(km25) (P=0.0001), hlh-30(tm1978) (P=0.0021), daf-16(mu86) (P<0.0001) and ncl-

1(e1865 and e1942) (P<0.0001) upon S. aureus infection. P-values were calculated 

by log-rank test. 
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Figure 10. (A,B,C) fib-1 RNAi promotes the survival of the sensitive mutants pmk-

1(km25) (P<0.0001), hlh-30(tm1978) (P<0.0001), daf-16(mu86) (P<0.0001) and ncl-

1(e1865 and e1942) (P<0.0001) upon E. faecalis infection. P-values were calculated 

by log-rank test. 
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Figure 11. (A,B) fib-1 RNAi does not affect HLH-30::GFP localization. The positive 

control, let-363/TOR RNAi and 3 hours of starvation induce HLH-30::GFP localization 

into the nucleus. HLH-30::GFP signal is indicated by the white arrows. (C) Western 

blots detection of LC3/LGG-1::GFP and cleaved GFP in control and fib-1 RNAi animals 

upon infection with S. aureus. No obvious effects of fib-1 RNAi on LGG-1::GFP 

cleavage can be observed. Infection increases the abundance of the free GFP band 

suggestive of enhanced autophagic flux. Starvation serves as a positive control here. 

(D) Western Blot detection of ubiquitinated protein levels in control and fib-1 RNAi 

treated animals under control or infected conditions. Again, no effects for fib-1 RNAi 

on the abundance of ubiquitinated proteins. rpn-6 RNAi serves as a positive control.  

 

 

 

 

 

 

Supplementary Figure 4
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3.2.4 FIB-1/fibrillarin reduction leads to reduced translation  

 

Fibrillarin mediates the critical steps of ribosome maturation. We therefore investigated 

how ribosome biogenesis and translation are affected by fib-1 knockdown and whether 

translation could be the mechanistic explanation for the resistance phenotype. First, 

we utilized the irg-1 transcriptional reporter. Expression of irg-1 is induced by the 

transcription factor ZIP-2 upon infection. Pathogen induced translational blockage 

leads to a global reduction of protein synthesis, but also triggers preferential translation 

of ZIP-2 in a manner dependent on its upstream 5’ UTR. Therefore, an increase in irg-

1 expression would indicate suppression of translation. We observed a moderate 

induction of the reporter after infection of S. aureus (Fig. 12A,B). As a control, 

cycloheximide treatment also activated irg-1 reporter expression in a similar manner 

(Fig. 13A). Similar induction of the reporter was also observed upon fib-1 reduction by 

RNAi (Fig. 12C,D). Induction of irg-1 was confirmed using RT-qPCR (Fig. 12E). 

Although irg-1 was induced, other infection related genes were not affected by fib-1 

RNAi (Fig. 13B), suggesting it is specific for irg-1 and unlikely to be a generalized 

inflammatory response. All these data support fib-1 reduction decreases translation. 

Indeed, fib-1 knockdown induced translation suppression as indicated by a reduction 

of puromycin incorporation (Fig. 12G,H). It was also observed that mature rRNA levels 

decreased (Fig. 12F), and pre-rRNA levels increased upon fib-1 knockdown (Fig. 13C). 

This can be explained by a blockage in rRNA maturation resulted by FIB-1 reduction. 

This also suggests that the reduction of the levels of mature rRNA levels occurs post-

transcriptionally. Next, we tested whether reduced translation is sufficient to confer 

resistance. For this, ifg-1 and ife-2 partial loss of function mutants were used. ifg-1 

encodes the eIF4G, and ife-2 encodes the cap binding initiation factor eIF4E. Both 

proteins are translation initiation factors. The mutants exhibited enhanced resistance 

compared to wild-type (Fig. 12I, Fig. 13D), suggesting reducing translation can confer 

resistance. Moreover, fib-1 RNAi only slightly enhanced the survival of the ifg-1 

mutants (Fig. 12J,K). Collectively, these results indicate that the resistance conferred 

by fib-1 reduction might mechanistically overlap with the resistance conferred by 

translational reduction.    
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Figure 12. (A,B) Pirg-1GFP transcriptional reporter is induced after 12-hour S. aureus 

infection. Error bars represent mean ± s.e.m. (C,D,E) fib-1 knockdown induces Pirg-

1GFP transcriptional reporter and the transcript levels of irg-1. Error bars represent 

mean ± s.e.m. (F) fib-1 RNAi leads to a reduction of 26S and 18S mature rRNA levels 

in worms. Total RNA extracted from equal number of animals was analyzed using a 

bioanalyzer. (G,H) fib-1 RNAi treatment reduces puromycin incorporation in worms. 

No puromycin and cycloheximide treatments serve as controls here. Error bars 

represent mean ± s.e.m. (I) ifg-1(cxTi9279) shows improved survival upon S. aureus 

infection (P<0.0001, log-rank test). (J,K) fib-1 knockdown significantly enhances the 

survival in wildtype N2 animals (P<0.0001, log-rank test) but not in the ifg-1(cxTi9279) 

mutant (P=0.74, log-rank test) upon S. aureus infection. Scale bars represent 100 μm. 

*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001, ns non-significant, unpaired t-test.  
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Figure 13. (A) Cycloheximide (2mg/ml) treatment induces Pirg-1GFP transcriptional 

reporter. (B) fib-1 RNAi does not generally induce expression of infection responsive 

genes. Error bars represent mean ± s.e.m. from three independent biological replicates, 

ns non-significant one-way ANOVA. (C) qRT-PCR detection of pre-rRNA species. fib-

1 RNAi increases the abundance of pre-rRNA species. The illustration shows the 

annealing sites of the primers used. snb-1 was used for normalization. Error bars 

represent mean ± s.e.m. **P<0.01, ***P<0.001. One-way Anova was used for statistics 

(D) ife-2(ok306) shows enhanced resistance upon S. aureus infection (P=0.0034, log-

rank test). Scale bar represents 200 μm.  
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3.2.5 Fibrillarin reduction protects against bacterial infection in mammalian cells  

 

The above data suggest that reduction of fibrillarin is a protective host response in C. 

elegans. We wondered whether mammalian fibrillarin may have similar functions in 

innate immunity during bacterial infection. 

 

To begin with, we checked whether bacterial infection also leads to a reduction of 

fibrillarin in human cells. Indeed, human cervical cancer cell line HeLa cells infected 

with S. aureus exhibited decreased levels of fibrillarin (Fig. 14A). Similar effects can 

also be observed in BMDM, which are primary macrophage cells differentiated from 

murine bone marrow, infected with S. aureus, E. faecalis (Fig. 14B), S. typhimurium 

and L. monocytogenes (Fig. 14C). Infection by these bacteria diminished fibrillarin after 

24 hours of infection. Because infection leads to shrinkage of nucleoli in infected C. 

elegans, nucleolar size of infected mammalian cells was also imaged. For this 

experiment, THP-1 derived macrophages were chosen because of their clear and non-

fragmented nucleolar morphology. After 24 hours of infection with S. aureus, a modest 

reduction of nucleolar size could be observed (Fig. 14D,E). All in all, these data suggest 

that reduction of fibrillarin and shrinkage of nucleoli are an evolutionarily conserved 

host response to infection.  

 

Next, the potential regulation of resistance by fibrillarin reduction was investigated. 

siRNA against fibrillarin was transfected into BMDM and HeLa cells before infection 

(Fig. 15A). After infection with S. aureus, cell survival of fibrillarin knockdown HeLa 

cells was significantly improved compared to control siRNA transfected cells as 

assayed by LDH cytotoxicity assay (Fig. 15B) and trypan blue exclusion assay (Fig. 

15C). Similar results were also observed in BMDM after knockdown of fibrillarin (Fig. 

14F). Fibrillarin knockdown also improved clearance of intracellular S. aureus in BMDM 

(Fig. 14G). On the other hand, over-expression of fibrillarin in HeLa cells slightly 

increased the number of dead cells after infection (Fig. 15D). The effects of fibrillarin 

knockdown and overexpression cannot be explained by differential bacterial uptake by 

the cells as bacterial burden was comparable at the beginning of the infection (Fig. 

15E,F). In addition, fibrillarin knockdown prior to infection suppressed infection induced 

production of pro-inflammatory cytokines IL-6 and IL-8 (Fig. 14H), but further 
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stimulated the secretion of anti-inflammatory cytokine IL-10 (Fig. 14I) in BMDM. Similar 

results were also obtained with HeLa cells (Fig. 15G). This indicates that fibrillarin 

reduction promotes immune homeostasis and reduced inflammation. Improved 

survival and better clearance of bacterial cells can be due to augmented intracellular 

bacteriolytic activity. To test this possibility, GFP labelled S. aureus was used to infect 

HeLa cells. Increased colocalization of the intracellular GFP labelled bacteria and 

lysosomes was observed in fibrillarin siRNA transfected BMDM compared to control 

siRNA transfected cells (Fig. 14J,K), which indicates increased digestion of bacteria 

and might explain the better intracellular bacterial clearance and enhanced cell survival 

upon fibrillarin knockdown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 58 

 

 

 

 

 

 

U
ni
nf

ec
te

d

S
. a

ur
eu

s 
in
fe

ct
io
n

(2
4 

H
P
I)

0.0

0.1

0.2

0.3

0.4

N
u

c
le

o
la

r 
/ N

u
c
le

a
r

 A
re

a
 R

a
tio

***

IL-6

IL-8

**

Fibrillarin

Histone H3

Fibrillarin

Actin

37 kDa37 kDa

15 kDa 42 kDa

UI 10 MOI 50 MOI 100 MOI

S. aureus Infection (24 HPI)

24 (HPI)6 1 24 6 1 

S. aureus Infection 

(10 MOI)

E. faecalis Infection 

(10 MOI)

Uninfected THP1 macrophages

S. aureus infected THP1 macrophages (24 HPI)

D

A

E

B

C

F

Figure 5. Fibrillarin reduction protects mammalian cells against bacterial pathogens 

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8

Pearson`s correlation Coefficient (r)

Control siRNA

Fibrillarin siRNA

G H

Control siRNA

Fibrillarin siRNA

DAPI MergedLysotracker GFP Labelled S. aureus

2 2 

24 6 1 

UI

UI 24 (HPI) 6 1 UI

S. typhimurium Infection 

(10 MOI)

L. monocytogenes Infection 

(10 MOI)

J

Fibrillarin

GAPDH

37 kDa

36 kDa

C
on

tro
l s

iR
N
A

Fib
ril
la
rin

 s
iR

N
A

0

10

20

30

40

50 **

%
 C

y
to

to
x
ic

ity

S. aureus Infection

(24 HPI)

**

**

0

5000

10000

15000

20000

C
F

U
/m

L
 

S
. 

a
u
re

u
s
 i
n
fe

c
ti
o

n

 C
on

tro
l s

iR
N
A

 F
ib

ril
la
rin

 s
iR

N
A

 C
on

tro
l s

iR
N
A

 F
ib
ril
la
rin

 s
iR

N
A

6 HPI 24 HPI

K

p
g
 /
 m

l

0

20000

40000

60000

80000 ***

 C
on

tro
l s

iR
N
A

 F
ib
ril
la
rin

 s
iR

N
A

 C
on

tro
l s

iR
N
A

 F
ib
ril
la
rin

 s
iR

N
A

S. aureus Infection (6 HPI)

0

500

1000

1500

**

 C
on

tro
l s

iR
N
A

 F
ib
ril
la
rin

 s
iR

N
A

IL-10

p
g
 /
 m

l

S. aureus 

Infection (24 HPI)S. aureus Infection 

I



 59 

 

Figure 14. (A) Reduction of fibrillarin protein levels after S. aureus infection in HeLa 

cells. (B,C) BMDM also shows a reduction of fibrillarin 24 hours post-infection with S. 

aureus, E. faecalis, S. typhimurium and L. monocytogenes. (D,E) A shrinkage of 

nucleoli was observed after 24-hour infection with S. aureus in THP-1 derived 

macrophages. Error bars represent mean ± s.d. (F) LDH release assay suggests 

fibrillarin knockdown reduces cell death after 24 hours of S. aureus infection (MOI 10) 

in BMDM. Error bars represent mean ± s.e.m., unpaired t-test (G) Lower intracellular 

bacteria counts indicate fibrillarin siRNA leads to a better clearance of the bacteria after 

6 and 24 hours of S. aureus infection (MOI 10) in BMDM. Error bars represent mean 

± s.e.m., unpaired t-test. (H) Pro-inflammatory cytokines IL- 6 and 8 in supernatant 

from S. aureus infected BMDM were quantified using ELISA method. Fibrillarin 

transfected cells show reduced secretion of IL-6 and 8. Error bars represent mean ± 

s.e.m. (I) ELISA results show an increased production of anti-inflammatory cytokine 

IL-10 after 24 hours of infection with S. aureus in fibrillarin siRNA transfected BMDM. 

Error bars represent mean ± s.e.m, **P<0.01 unpaired t-test. (J,K) GFP expressing S. 

aureus was used to infect HeLa cells. The cells were stained with lysotracker and show 

enhanced co-localization of bacterial cells with lysosomes, when treated with fibrillarin 

siRNA. **P<0.01, ***P<0.001, unpaired t-test. Scale bars represent 4 μm (D) and 10 

μm (J). UI – Uninfected, HPI – Hours Post Infection, MOI – Multiplicity of Infection  
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Figure 15. (A) 50 and 100 nM fibrillarin siRNA significantly reduces abundance of 

fibrillarin protein in HeLa cells. (B) Fibrillarin knockdown reduces cell death in S. aureus 

infected HeLa cells as measured by LDH release assay (***P<0.001, unpaired t-test, 

error bars represent mean ± s.e.m.). (C) Fibrillarin knockdown protects HeLa cells from 

cell death after 6 and 24 hours of S. aureus infection as assayed by trypan blue 

exclusion assay. Error bars represent mean ± s.e.m., one-way ANOVA. (D) Over-

expression of fibrillarin in HeLa cells moderately reduces cell survival after 6 and 24 

hours of S. aureus infection. Error bars represent mean ± s.e.m.  *P<0.05, one-way 
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ANOVA. (E,F) Fibrillarin knockdown and over-expression do not affect bacterial uptake 

in HeLa cells. Intracellular CFU was immediately assayed after infection and is 

comparable in both control and fibrillarin siRNA transfected cells. Error bars represent 

mean ± s.d., ns non-significant, unpaired t-test. (G) Fibrillarin knockdown enhances IL-

10 production in S. aureus infected HeLa cells. The measurement was done 24 hours 

post-infection. Error bars represent mean ± s.e.m, **P<0.01 unpaired t-test. 

 

3.3 Discussion 

 

In this part of the study, we identified novel functions of fibrillarin in innate immunity.  

 

Fibrillarin reduction confers resistance to worms infected with S. aureus, E. faecalis, 

and P. aeruginosa, suggesting reducing fibrillarin is sufficient to initiate protective host 

responses. On the other hand, ncl-1/TRIM2 mutants that overexpress fibrillarin (Tiku 

et al., 2016, Yi et al., 2015) are more sensitive. The results indicate that fibrillarin 

inhibits innate immunity against bacterial pathogens. Bacterial infection naturally 

induces reduction of fibrillarin levels in the host. Also, bacterial infection leads to a 

shrinkage of nucleoli in C. elegans. This suggests that a reduction in nucleolar size 

and fibrillarin levels is a beneficial host response triggered by bacterial infection. Innate 

immunity of C. elegans is mediated by a number of factors including PMK-1/p38 MAPK 

(Kim et al., 2002), HLH-30/TFEB (Visvikis et al., 2014) and DAF-16/FOXO (Garsin et 

al., 2003). Nevertheless, it is unlikely for these factors to act downstream of fibrillarin 

as the resistance conferred by fibrillarin reduction is not dependent on them. It still 

remains unclear how these different factors coordinate to mediate protective 

mechanisms and confer pathogen resistance. The results present in this study suggest 

that fibrillarin regulates bacterial infection resistance as a convergent factor 

downstream or parallel to these major players. Bacterial infection similarly reduces 

fibrillarin levels and nucleolar size in mammalian cells. Reduction of fibrillarin also 

improves survival and reduces inflammation in mammalian cells, meaning the roles of 

fibrillarin in immunity is conserved. Importantly, these results vividly demonstrated the 

incredible conservation of the regulators of innate immunity in C. elegans and also the 

usefulness of using the worms as a model for studies of innate immunity 
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Cellular organelles, including lysosome, ER, and mitochondria have long been known 

as signaling hubs that help manage infection. However, the role of nucleoli in mediating 

innate immunity against bacteria is relatively unstudied. Reduction of fibrillarin and 

nucleolar size suggests a general decrease in nucleolar functions, and this is sufficient 

to trigger protective responses. This puts nucleoli as one of the signaling hubs 

functioning in the signal transduction pathway. Theoretically, the nucleoli or fibrillarin 

can be targeted with systemic siRNA delivery or small molecules to fight infection, 

especially prophylactically, as we demonstrated reduction of fibrillarin before infection 

greatly improves resistance in both worms and mammalian cells. For example, 

prophylactic antibiotics is commonly taken before surgery or by people with weaken 

immune system (Rosen, Getz et al., 2016). Fibrillarin or nucleolus targeting drugs can 

potentially replace prophylactic antibiotics. This can reduce the use of antibiotics and 

slow down the rise of antibiotic resistant bacteria. Nucleolar size has already been 

proposed as a biomarker for longevity (Tiku et al., 2016). Also, as shrinkage of nucleoli 

is a protective host response, it could be possibly used as a prognosis marker for 

bacterial infection.  

 

Further, it would be very interesting to investigate what is the up-stream stimulus for 

fibrillarin reduction. Also, how fibrillarin levels are regulated is another important 

question. Possible ways to regulate fibrillarin could include proteolytic mechanisms, 

such as proteosomal or autophagic degradation. In terms of downstream effectors, our 

results do not support that the currently well-studied effectors, namely PMK-1/p38 

MAPK, HLH-30/TFEB and DAF-16/FOXO, play an important role. The down-stream 

mechanistic details still remain to be seen. Our results from epistasis experiments 

suggest suppression of translation may be involved, since mutants that diminish 

translation rate trigger pathogen resistance, and fibrillarin knockdown only slightly 

improves survival of such mutants, suggesting overlapping mechanisms. Nevertheless, 

it should be mentioned that the possible involvement of other nucleolar functions 

cannot be excluded. Other than ribosome biogenesis, the nucleolus also modifies 

tRNA, snRNA and also SRPs, and their roles in innate immunity would be an intriguing 

question to study.  Pathogens commonly disrupt core cellular processes in order to 

disable such pathways and processes, which would otherwise help mount a defense 

response. It has been reported that disruption of major cellular processes including 
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mitochondrial functions, proteasomal activity and microtubular dynamics can activate 

transcription of immune-responsive genes (Melo & Ruvkun, 2012, Pellegrino et al., 

2014), corroborating the notion of effector-triggered immunity. Reduction of fibrillarin 

seems to follow the same framework. Nucleolar functions and translation, like other 

essential cellular processes, are supposed to be closely monitored. Our work presents 

a novel connection between the nucleolus and anti-bacterial innate immunity. This also 

demonstrates a vital role played by translation and nucleolar functions in imparting 

effector-triggered immunity. 

 

Although genetic epistasis indicates the involvement of translation, it remains to be 

seen what really triggers protection downstream of translation. It is well-known that 

viral infection leads to a rapid decrease of translational activity (Li, MacDonald et al., 

2015). The reason can be easily understood. Viruses are obligate parasites, which 

must hijack the host’s translational machinery to replicate, and therefore reducing 

translation can efficiently reduce viral replication rate. However, the role of reduction 

of translation in bacterial infection is less well-understood since bacteria possess its 

own translation machinery. It is proposed that a reduction of translation may lead to 

preferential translation of selected genes, which are required for protection. Similar 

situation can be seen in both human and C. elegans. Reduction of translation by 

enxotoxin A leads to preferential translation of zip-2 transcript in C. elegans (Dunbar 

et al., 2012). It is possible that reduction of fibrillarin also leads to more production of 

some beneficial proteins, while general translation decreases. Proteomics and 

transcriptomics of infected cells or worms with fibrillarin knockdown should help to 

address these questions. By comparing the data from the two omics approaches, the 

differentially produced proteins could be identified. 

 

Interestingly, in murine macrophages, depletion of fibrillarin dampened the production 

of pro-inflammatory cytokines, namely IL-6 and IL-8, upon S. aureus infection, which 

also correlated with diminished cell death. On the other hand, anti-inflammatory 

cytokine IL-10 was induced by fibrillarin reduction. Consistently, fibrillarin knockdown 

in C. elegans does not induce a general transcriptional inflammatory response, but 

only specifically stimulates irg-1 expression. Very often, the severity of infection is 

guided by inflammation, but not directly by the bacteria. Although an appropriate 

inflammatory response is required to defend against infection, overt inflammation 
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causes massive collateral damage and compromises survival of the host. For example, 

highly pathogenic avian influenza virus and Staphylococcus bacteria induce cytokine 

storm and sepsis, which are uncontrollable inflammation devastating to the survival of 

the hosts (Chousterman, Swirski et al., 2017). Therefore, for a beneficial and 

controllable immune response, pathogen resistance mechanisms usually encompass 

also negative regulators of inflammation, which are required to elicit optimal protection. 

Our data suggests reduction of fibrillarin is one of such anti-inflammatory mechanisms. 

Novel therapies for sepsis and cytokine storm are needed and under heavy research. 

Reduction of fibrillarin may potentially be used clinically in the future to alleviate 

inflammation. 

 

Digestion of bacteria by fusion of the pathogen containing phagosomes with lysosomes 

plays a vital role in eliminating infection (Siqueira, Ribeiro et al., 2018). Interestingly, 

we observed an increased co-localization of intracellular bacteria with lysosomes in 

cells after fibrillarin knockdown, suggesting more efficient removal of intracellular 

bacteria by lysosomal mechanism. This is consistent with the data from the bacterial 

burden assay, in which the fibrillarin RNAi transfected cells showed less intracellular 

bacteria. This intriguing observation points towards a potential role of fibrillarin in 

regulating lysosomal biogenesis or acidification. Further, the enhanced capacity to 

remove bacteria and the resulted lower bacteria burden may explain the observed 

reduction in pro-inflammatory cytokine levels and increased cell survival. On the other 

hand, in C. elegans, fibrillarin RNAi does not significantly change the lysosomal 

pathway as assayed with cleavage of LGG-1::GFP. This raises the interestingly 

possibility that the effects of fibrillarin on lysosomal functions maybe species specific. 

Another possible explanation would be such effect is specific to specialized immune 

cells, such as macrophages, which are missing in C. elegans. 

 

It is well-known that many long-lived mutants of C. elegans are also resistant to 

pathogenic stress. Examples are IIS mutants (Garsin et al., 2003) and glp-1 mutants 

(Wu et al., 2015). Recently, it has been identified these long-lived mutants also have 

reduced fibrillarin level (Tiku et al., 2016). This raises the question of whether the 

mutants have enhanced resistance because of their lower level of fibrillarin. Current 

results do not address this point. Conceivably, epistasis between fibrillarin and the 

various longevity mutations could be tested.  
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Fig 16. A summary of the roles played by fibrillarin in innate immunity. In both 

nematodes and mammals, bacterial infection leads to reduction of fibrillarin. Reduction 

of fibrillarin is sufficient to confer protection to the host in both nematodes and 

mammals. Reducing fibrillarin in mammals also suppresses inflammation. 
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3.4 Work contribution 

 

The experiments present in this chapter were a collaboration between me, Dr. Varnesh 

Tiku (MPI-AGE), Dr. Parul Methrotra (MPI-AGE) and Dr. Raja Ganesan (CECAD, 

University of Cologne). I and Dr. Varnesh Tiku initiated the project, and I was involved 

in experimental design and data analysis of all the experiments. 

 

All qPCR experiments, the puromycin incorporation assay, rRNA analysis, LGG-

1::GFP cleavage  and ubiquitin western blots, were performed by me independently.  

 

C. elegans survival assays were performed together by me and Dr. Varnesh Tiku. 

Survival of the animals were scored at different time points, which were shared by us. 

For nucleolar size measurement, HLH-30::GFP localization, FIB-1::GFP reporter 

imaging and fibrillarin western blots in C. elegans, sample preparation (e.g. 

synchronization of animals, RNAi treatment, infection and harvesting) was done by me. 

Imaging and western blotting were done by Dr. Varnesh Tiku. Dr. Varnesh Tiku also 

performed the irg-1 transcriptional reporter experiments, pharyngeal pumping rate 

measurement, and also the stress resistance assays. 

 

All experiments involving HeLa cells were performed together by me and Dr. Parul 

Methrotra. Nucleolar size measurement in THP-1 derived macrophages was 

performed by Dr. Varnesh Tiku. The BMDM experiments were performed by Dr. Raja 

Ganesan. 

 

 

 



 67 

 

 

 

CHAPTER 4  

ROLES OF RNP-6 IN 

INNATE IMMUNITY 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 68 

 

Roles of RNP-6 in innate immunity 

 

4.1 Introduction 

 

This chapter focuses on rnp-6, which encodes the nematode’s homolog of the 

mammalian splicing factor PUF60. Despite other cellular processes have been 

intensively studied in the context of infection, the effects of pathogens on splicing is 

relatively unexplored. Using different approaches, we identified an interesting link 

between splicing and immunity. Recently, Dr. Wenming Huang (MPI-AGE) from our 

laboratory identified a novel mutation in rnp-6, which causes longevity and resistance 

to cold stress (unpublished data). Interestingly, we found that the activity of RNP-6 

inhibits immunity while reducing RNP-6 or splicing activity in general is sufficient to 

activate immune responses. These data suggest a tight connection exists between 

initiation of immune responses and splicing, which is previously underappreciated.  

 

4.2 Results 

 

4.2.1 Infection alters splicing pattern 

 

As discussed in the previous section, infection leads a perturbation of rRNA maturation. 

It is unknown whether infection also affect other RNA metabolism pathways. Splicing 

is an essential modification for mRNA, and its roles in innate immunity are relatively 

unexplored. To begin with, we tested whether infection with S. aureus affects splicing 

of the splicing reporter strain of ret-1, which consists of a pair of reporter minigenes of 

ret-1 exon 5 with different frameshifts. Both minigenes are driven by the ubiquitous 

promoter of eft-3. Inclusion of exon 5 leads to GFP expression, whereas expression of 

mCherry indicates skipping of the exon (Heintz et al., 2017). Interestingly, the ratio of 

GFP to mCherry signals decreased dramatically after S. aureus infection when 

compared to control (Fig. 17A,B), suggesting infection promotes skipping of exon 5. 

Next, splicing of tos-1 was also examined using RT-PCR method. tos-1 stands for 

target of splicing-1 and is a sensitive endogenous reporter for in vivo studies of splicing 

(Ma, Gao et al., 2012, Ma et al., 2011). Similar to what we observed in ret-1, infection 

also induced a shift of splicing isoforms in tos-1 (Fig. 17 C,D). S. aureus induced 
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exclusion of a region between exon 1 and 2, resulting in increased abundance of the 

smaller transcript. These data suggest an interesting connection between infection and 

splicing.  

 

 

 

 

Fig 17. (A,B) The ret-1 splicing reporter strain shows reduced expression of GFP and 

increased expression of mCherry after a 12-hour infection of S. aureus. The scale bar 

represents 50 μm. Error bars represent mean ± s.d. (C,D) RT-PCR shows that splicing 

of endogenous tos-1 transcript is altered after 4 hours of infection with S. aureus. Error 

bars represent mean ± s.e.m. *P<0.05, ****P<0.0001, unpaired t-test. The experiments 

were done three times independently.  
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4.2.2 A mutation in the splicing factor rnp-6 causes immunodeficiency 

 

Because of the interesting connection between infection and splicing, we tested 

whether mutants of splicing factors can impact host responses to infection. A novel 

point mutation of rnp-6 was tested. rnp-6 encodes the homolog of mammalian PUF60, 

which is a splicing factor with poly-U binding affinity that works cooperatively with U2AF 

for efficient splicing. The mutation rnp-6(dh1127) is a missense mutation with the 

conversion of glycine to aspartate, which is located in the second RRM. Intriguingly, 

the mutated glycine and also its surrounding amino acids are highly conserved across 

different species (Fig. 18), suggesting it is an important functional motif. The mutant 

was originally identified from an ethyl methanesulfonate (EMS) mutagenesis screening 

for cold resistant mutants, which can survive after a prolonged incubation at 2C. The 

mutant shows resistance to stresses and also longevity at 20C (Dr. Wenming Huang, 

unpublished data). 

 

Survival assays of rnp-6(dh1127) were conducted with different pathogenic bacteria, 

namely S. aureus (Fig. 19A), E. faecalis (Fig. 19B) and P. aeruginosa (Fig. 19C). The 

rnp-6 mutants showed reduced survival on all three bacteria. This effect is specific to 

pathogenic bacteria as the mutant had a normal lifespan when cultured with OP50 

under 25C (Fig. 20A). Using another strain rnp-6(dh1125), which together with rnp-

6(dh1127) are two independent strains carrying the same point mutation and created 

by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology, 

we confirmed that the rnp-6 mutation is causative for the reduced survival phenotype 

(Fig. 20B,C,D). Reduced survival can be potentially explained by a failure to mount 

defensive responses. To test this possibility, qRT-PCR was performed. Interestingly, 

in rnp-6(dh1127), induction of many infection responsive genes was severely 

hampered upon S. aureus infection, including genes encoding anti-microbial proteins 

nlp-30, nlp-34, ilys-2 and spp-1, detoxification proteins cyp-37B1, hpo-15, lipl-2 and 

cpz-2, and also many other infection responsive genes (Fig. 19D). However, the 

transcript level of rnp-6 remained constant after S. aureus infection whereas 

expression of ilys-2 significantly increased (Fig. 20E). These data suggest that the 

mutation in rnp-6(dh1127) disrupts immune responses, and therefore leads to reduced 

survival upon infection.  
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Fig 18. Depiction of the primary structure of RNP-6. The mutation is located at the 

second RRM. The missense mutation causes a conversion of glycine change to 

aspartic acid at the site highly conserved across evolution (amino acid 281 in C. 

elegans and amino acid 300 in human, indicated by the red star).  
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Figure 19. (A,B,C) rnp-6(dh1127) shows compromised survival upon infection of S. 

aureus (P<0.0001, log-rank test), E. faecalis (P<0.0001, log-rank test) and P. 

aeruginosa (P=0.0022, log-rank test). The mutants of hlh-30(tm1978) serve as a 

control for infection sensitivity. (D) qRT-PCR results of infection responsive genes in 

N2 wild-type and rnp-6(dh1127) animals. When infected with S. aureus, induction of 

the genes is blunted in the rnp-6(dh1127) mutants when compared to N2 (* P<0.05, 

**P<0.01, ***P<0.001, ****P<0.0001). Error bars represent mean ± s.e.m. from three 

independent biological replicates. Statistics: one-way ANOVA.  
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Figure 20. (A) rnp-6(dh1127) shows a normal lifespan when cultured with E. coli OP50 

at 25C (P=0.3102, log-rank test). (B,C,D) rnp-6(dh1125) shows reduced survival while 

infected with S. aureus (P=0.0008, log-rank test),  E. faecalis (P=0.0049, log-rank test) 

and P. aeruginosa (P<0.0001, log-rank test). The mutants of hlh-30(tm1978) serve as 

a control for infection sensitivity. (E) qRT-PCR results of rnp-6 transcript levels. The 

level of rnp-6 expression remains constant after infection with S. aureus, while immune 
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response gene ilys-2 serves as a positive control for immune induction. ***P<0.001, 

****P<0.0001, ns non-significant. Error bars represent mean ± s.e.m. from three 

independent biological replicates, ns non-significant. Statistics: one-way ANOVA.  

 

4.2.3 Transcriptomic profiling reveals substantial effects of the rnp-6 mutation 

on infection induced transcriptional and splicing changes 

 

To gain further insight into the roles of rnp-6 in infection responses, we performed 

RNA-sequencing of S. aureus infected N2 and rnp-6(dh1127) animals. As expected, 

when comparing the infected samples with the control samples, the DEGs are highly 

enriched for immune and defense response genes. This is true for both N2 and rnp-

6(dh1127) (Fig. 21, 22). We also compared the transcriptome of N2 and rnp-6(dh1127) 

under both control and infected conditions. In both cases, the rnp-6 mutation resulted 

in numerous DEGs, which are enriched with defense response genes (Fig. 23, 24). 

This is consistent with the idea that rnp-6(dh1127) mutation compromises immune 

responses. Interestingly, under non-infected condition, DEGs of immune response are 

still significantly enriched, suggesting the rnp-6 mutation might also affect the basal 

expression of these genes. 

 

Next, we sought to take a more careful look on the infection responsive genes that are 

dependent on rnp-6. Among the 665 genes that are upregulated upon infection in wild-

type animals, 117 are significantly down in infected rnp-6(dh1127) (Fig. 25) (Table. 1). 

GO term analysis also found that among these rnp-6 dependent genes, defense 

response genes are highly enriched (Table. 2), suggesting rnp-6(dh1127) greatly 

diminishes the induction of defense response genes upon infection. On the other hand, 

1529 genes are significantly downregulated in wild-type animals upon infection. Within 

this set of genes, 158 are upregulated in infected rnp-6(dh1127) when compared to 

infected wild-type (Fig. 26) (Table. 3). These genes are highly enriched for GO terms 

of organic acid metabolism (Table. 4), such as organic acid metabolic process, 

carboxylic acid metabolic process, oxoacid metabolic process, fatty acid metabolic 

process and monocarboxylic acid metabolic process. 
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Since rnp-6 encodes a splicing factor, we also analyzed the differentially spliced 

transcripts. We reasoned that genes whose splicing is affected by infection only in N2 

but not in rnp-6(dh1127) might be the mediators of innate immunity downstream of rnp-

6. We took the list of genes that undergo alternative splicing upon infection in wild-type 

animals and deduced the genes from the list that also have alternative splicing in rnp-

6(dh1127) upon infection. We also prioritized genes that have the same splicing 

pattern in rnp-6(dh1127) and N2 under non-infection condition as this would mean that 

the alternative splicing events are specific to infection. By doing this, we ended up with 

a list of 147 genes (Fig. 27) (Table. 5). GO term analysis reveals an enrichment of 

genes implicated in developmental process, including regulation of cell cycle, 

regulation of developmental growth and regulation of cell division (Table. 6).  
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Figure 21. GO enrichment analysis. The DEGs upon infection in wild-type N2 worms 

were analyzed using DAVID. The enrichment score (x axis), fold change (colour coding) 

and number of genes are shown. 
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Figure 22. GO enrichment analysis. The DEGs upon infection in rnp-6(dh1127) worms 

were analyzed using DAVID. The enrichment score (x axis), fold change (colour coding) 

and number of genes are shown. 
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Figure 23. GO enrichment analysis. The DEGs in infected rnp-6(dh1127) worms 

compared to infected wild-type N2 worms were analyzed using DAVID. The 

enrichment score (x axis), fold change (colour coding) and number of genes are shown. 

 

 

 

 

 



 80 

 

 

 

 

 

Figure 24. GO enrichment analysis. The DEGs caused by rnp-6(dh1127) under non-

infection condition were analyzed using DAVID. The enrichment score (x axis), fold 

change (colour coding) and number of genes are shown. 
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Figure 25. The Venn diagram showing the numbers of upregulated genes from the 

comparison of infected N2 versus non-infected N2 and downregulated genes from the 

comparison of infected rnp-6(dh1127) versus infected N2. 
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Gene ID Gene Name Gene ID Gene Name 

WBGene00000372 cyp-13A7 WBGene00012443 Y15E3A.4 

WBGene00000558 cnc-4 WBGene00012750 faah-6 

WBGene00000789 cpz-2 WBGene00012778 Y42A5A.3 

WBGene00000981 dhs-18 WBGene00012819 Y43F8B.9 

WBGene00001105 dsl-3 WBGene00013008 clec-146 

WBGene00001391 far-7 WBGene00013145 cutl-2 

WBGene00001493 frm-7 WBGene00013694 Y106G6A.1 

WBGene00001577 gem-4 WBGene00015048 faah-2 

WBGene00001591 glc-1 WBGene00015131 B0303.11 

WBGene00001819 haf-9 WBGene00015388 C03F11.2 

WBGene00001906 his-32 WBGene00015392 nspc-7 

WBGene00001908 his-34 WBGene00015597 fbxa-162 

WBGene00001923 his-49 WBGene00016061 hpo-15 

WBGene00001925 his-51 WBGene00016669 ilys-2 

WBGene00001926 his-52 WBGene00016670 ilys-3 

WBGene00001927 his-53 WBGene00016883 C52E2.4 

WBGene00001939 his-65 WBGene00017340 F10D7.3 

WBGene00002016 hsp-16.2 WBGene00017361 F10E9.12 

WBGene00002018 hsp-16.41 WBGene00017582 F18G5.6 

WBGene00002026 hsp-70 WBGene00017964 F31F7.1 

WBGene00003766 nlp-28 WBGene00018044 F35D11.3 

WBGene00003768 nlp-30 WBGene00018731 F53A9.8 

WBGene00003828 nuc-1 WBGene00018803 fbxa-24 

WBGene00003878 pept-3 WBGene00019068 faah-3 

WBGene00004727 sax-1 WBGene00019187 H11E01.2 

WBGene00004779 ser-4 WBGene00019376 lipl-4 

WBGene00004993 spp-8 WBGene00019409 K05F1.8 

WBGene00005228 srh-2 WBGene00019788 M116.1 

WBGene00006681 twk-29 WBGene00019902 R05G6.10 

WBGene00006684 twk-32 WBGene00020075 math-35 

WBGene00007365 C06B3.6 WBGene00020256 T05C3.6 

WBGene00007398 C07A4.3 WBGene00020446 T12B3.3 

WBGene00007409 C07B5.4 WBGene00020672 T22B7.3 

WBGene00007682 C18D11.6 WBGene00021167 cyp-32B1 

WBGene00007725 C25F9.5 WBGene00021497 Y40C5A.4 

WBGene00007766 C27C7.1 WBGene00021852 Y54F10AM.8 

WBGene00007919 cup-16 WBGene00021977 Y58A7A.3 

WBGene00008425 D2045.8 WBGene00022181 pho-9 

WBGene00008485 ugt-43 WBGene00022200 fard-1 

WBGene00009008 F21D5.3 WBGene00022326 fbxa-14 

WBGene00009226 cyp-37B1 WBGene00022781 pmt-1 
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WBGene00009692 F44E5.5 WBGene00022893 ZK1290.13 

WBGene00009773 lipl-2 WBGene00023501 F11E6.11 

WBGene00009785 F46C5.10 WBGene00044078 tag-243 

WBGene00009805 F47B8.4 WBGene00044455 F23F12.13 

WBGene00009899 efl-3 WBGene00044478 K06B9.6 

WBGene00009957 F53B2.8 WBGene00044728 Y53F4B.45 

WBGene00010174 F56H9.2 WBGene00044807 R106.5 

WBGene00010422 H32K16.2 WBGene00077490 M03A1.8 

WBGene00010545 cbp-2 WBGene00077757 E02H4.7 

WBGene00010717 K09C8.7 WBGene00173345 21ur-12912 

WBGene00010822 M01G12.9 WBGene00195005 ZK809.10 

WBGene00010837 M03B6.5 WBGene00201370 C07A12.14 

WBGene00011213 R10E8.8 WBGene00219801 C05E4.16 

WBGene00011423 ipla-7 WBGene00219860 C51F7.4 

WBGene00011596 T07G12.5 WBGene00220048 R106.6 

WBGene00011727 T12A7.6 WBGene00220051 R160.11 

WBGene00011951 T23F6.3 WBGene00206419 R106.5 

WBGene00012420 Y7A9D.1   
 

Table 1. A list of infection inducible genes that are rnp-6 dependent. The genes are 

from the intercept of the Venn diagram in Figure. 25. 
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Term Count P-Value 

Defense response 9 1.6E-3 

Defense response to other organism 5 4.2E-3 

Response to other organism 5 4.6E-3 

Response to external biotic stimulus 5 4.6E-3 

Response to biotic stimulus 5 4.7E-3 

Oxidation-reduction process 9 6.5E-3 

Lipid metabolic process 7 1.1E-2 

Defense response to Gram-positive bacterium 3 1.5E-2 

Defense response to bacterium 4 1.8E-2 

Response to bacterium 4 1.9E-2 

Transmembrane transport 10 2.0E-2 

Ion transport 9 2.0E-2 

Anion transport 5 2.3E-2 

 

Table 2. GO term enrichment analysis of the genes from Table.1 using DAVID. 

 

 

 

 

 

Figure 26. The Venn diagram showing the numbers of downregulated genes from the 

comparison of infected N2 versus non-infected N2 and upregulated genes from the 

comparison of infected rnp-6(dh1127) versus infected N2. 
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Gene ID Gene Name Gene ID Gene Name 

WBGene00000083 adt-2 WBGene00010426 H37A05.2 

WBGene00000175 aqp-7 WBGene00010593 gsnl-1 

WBGene00000373 cyp-14A5 WBGene00010646 K08C7.1 

WBGene00000656 col-80 WBGene00010834 mct-3 

WBGene00000671 col-96 WBGene00010959 nduo-1 

WBGene00000673 col-98 WBGene00010960 atp-6 

WBGene00000675 col-101 WBGene00010988 metr-1 

WBGene00000677 col-103 WBGene00011006 ugt-47 

WBGene00000699 col-125 WBGene00011474 aldo-1 

WBGene00000708 col-135 WBGene00011487 T05E12.6 

WBGene00000716 col-143 WBGene00011713 T11F9.12 

WBGene00000733 col-160 WBGene00011831 T19B10.2 

WBGene00000768 cor-1 WBGene00012163 VZK822L.2 

WBGene00000779 cpn-3 WBGene00012247 W04E12.2 

WBGene00000977 dhs-14 WBGene00012253 clec-50 

WBGene00001000 dim-1 WBGene00012382 ttr-16 

WBGene00001116 dyc-1 WBGene00012538 Y37A1B.5 

WBGene00001244 elo-6 WBGene00012583 clec-4 

WBGene00001385 far-1 WBGene00012757 Y41C4A.11 

WBGene00001387 far-3 WBGene00013227 Y56A3A.6 

WBGene00001397 fat-5 WBGene00013293 Y57G11A.5 

WBGene00001398 fat-6 WBGene00013489 col-42 

WBGene00001399 fat-7 WBGene00014003 ZK593.3 

WBGene00001468 flr-4 WBGene00014254 cyp-13A10 

WBGene00001581 gfi-1 WBGene00014666 C05D12.3 

WBGene00001650 gon-1 WBGene00014732 F09F3.8 

WBGene00001725 grl-16 WBGene00014941 Y67H2A.9 

WBGene00002268 lec-5 WBGene00015709 cyp-33A1 

WBGene00003055 lon-1 WBGene00015780 C14F11.4 

WBGene00003090 lys-1 WBGene00015791 C15C7.5 

WBGene00003169 mec-5 WBGene00015913 C17F4.7 

WBGene00003175 mec-12 WBGene00015956 C18B2.5 

WBGene00003369 mlc-1 WBGene00016027 C23H5.8 

WBGene00003511 mxl-3 WBGene00016095 C25E10.5 

WBGene00003573 ncx-8 WBGene00016172 C27H5.2 

WBGene00003602 nhr-3 WBGene00016759 C49A9.5 

WBGene00003652 nhr-62 WBGene00016786 cyp-35A4 

WBGene00003658 nhr-68 WBGene00016845 C50F7.5 

WBGene00003891 osm-11 WBGene00016892 C53A3.2 

WBGene00003934 pat-10 WBGene00016943 acdh-1 

WBGene00003959 pcp-4 WBGene00017060 D2063.1 
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WBGene00004062 pmp-5 WBGene00017065 D2092.4 

WBGene00004172 pqn-92 WBGene00017681 slc-17.5 

WBGene00004513 rrn-1.2 WBGene00017691 ilys-5 

WBGene00004997 spp-12 WBGene00017772 clec-1 

WBGene00005644 srp-3 WBGene00017892 F28B4.3 

WBGene00005655 srr-4 WBGene00017969 F32A5.3 

WBGene00006404 tag-10 WBGene00018138 folt-2 

WBGene00006408 tag-18 WBGene00018293 F41E6.12 

WBGene00006418 tag-38 WBGene00018353 fbxa-182 

WBGene00006764 unc-27 WBGene00018701 pccb-1 

WBGene00006801 unc-68 WBGene00018707 oac-31 

WBGene00006876 vab-10 WBGene00018910 F56A4.2 

WBGene00006928 vit-4 WBGene00019017 F57F4.4 

WBGene00006938 wee-1.1 WBGene00019105 asp-8 

WBGene00007660 pals-6 WBGene00019489 K07E1.1 

WBGene00007687 C18E9.7 WBGene00019540 K08D12.6 

WBGene00007964 cyp-25A2 WBGene00019727 zig-12 

WBGene00008032 C39E9.8 WBGene00019738 clec-265 

WBGene00008205 sams-1 WBGene00020128 R193.2 

WBGene00008393 D1086.6 WBGene00020237 phat-4 

WBGene00008436 DH11.2 WBGene00020836 lgc-34 

WBGene00008566 acox-1.3 WBGene00020886 ttr-6 

WBGene00008567 acox-1.4 WBGene00020891 T28C12.4 

WBGene00008575 scl-24 WBGene00021448 Y39D8A.1 

WBGene00008602 oac-14 WBGene00021625 Y47D7A.13 

WBGene00008629 cpt-5 WBGene00021779 Y51H7C.1 

WBGene00008741 F13D12.6 WBGene00021895 clec-84 

WBGene00008803 lips-10 WBGene00022610 ZC416.6 

WBGene00008824 F14H3.5 WBGene00022645 ZK6.11 

WBGene00009048 cth-1 WBGene00044316 F41G3.21 

WBGene00009237 F28H7.3 WBGene00045416 Y37H2A.14 

WBGene00009628 tatn-1 WBGene00047764 21ur-975 

WBGene00009645 F42G10.1 WBGene00049765 21ur-4346 

WBGene00009812 suca-1 WBGene00171449 21ur-10648 

WBGene00009982 F53F1.4 WBGene00173414 21ur-13288 

WBGene00010066 F54F7.6 WBGene00195050 T22D1.17 

WBGene00010085 F55B11.3 WBGene00219215 F13B12.15 

WBGene00010256 hrg-3 WBGene00235310 R02D1.2 

 

Table 3. A list of infection downregulated genes with rnp-6 dependency. The genes 

are from the intercept of the Venn diagram in Figure. 26. 
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Term Count P-Value 

Organic acid metabolic process 13 3.8E-5 

Carboxylic acid metabolic process 12 8.6E-5 

Oxoacid metabolic process 12 8.8E-5 

Fatty acid metabolic process 6 9.8E-4 

Monocarboxylic acid metabolic process 8 1.0E-3 

Oxidation-reduction process 13 1.5E-3 

Actin cytoskeleton organization 8 2.0E-3 

Actin filament-based process 8 2.5E-3 

Muscle structure development 7 4.8E-3 

Carboxylic acid biosynthetic process 5 5.8E-3 

Myofibril assembly 6 7.7E-3 

Organic acid biosynthetic process 5 7.9E-3 

Actomyosin structure organization 6 8.7E-3 

Striated muscle cell development 6 8.9E-3 

Muscle cell development 6 9.3E-3 

Striated muscle cell differentiation 6 9.3E-3 

Lipid metabolic process 9 9.8E-3 

Sensory perception of mechanical stimulus 3 1.1E-2 

Muscle system process 4 1.1E-2 

Muscle cell differentiation 6 1.3E-2 

Fatty acid beta-oxidation using acyl-CoA 

dehydrogenase 3 1.4E-2 

Cellular lipid metabolic process 7 1.6E-2 

Homeostatic process 7 1.7E-2 

Small molecule biosynthetic process 5 1.9E-2 

Lipid homeostasis 3 2.4E-2 

Cellular component assembly involved in 
morphogenesis 6 2.5E-2 

Cytoskeleton organization 8 2.7E-2 

Mechanosensory behavior 3 2.8E-2 

Long-chain fatty acid biosynthetic process 2 3.0E-2 

Chemical homeostasis 5 3.3E-2 

Long-chain fatty acid metabolic process 2 3.7E-2 

Fatty acid beta-oxidation 3 3.8E-2 

Locomotion 21 3.8E-2 

Fatty acid biosynthetic process 3 3.9E-2 

Response to mechanical stimulus 3 4.3E-2 

Monocarboxylic acid biosynthetic process 3 4.3E-2 

Lipid oxidation 3 4.6E-2 

Fatty acid oxidation 3 4.6E-2 

Lipid localization 11 4.9E-2 
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Table 4. GO term enrichment analysis of the genes from Table. 3 using DAVID. 

 

 

 

 

 

 

 

Figure 27. The Venn diagram showing the numbers of alternatively spliced genes from 

the comparison of infected N2 versus non-infected N2, infected rnp-6(dh1127) versus 

infected N2 and non-infected rnp-6 versus non-infected N2. 
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Gene ID Gene Name Gene ID Gene Name 

WBGene00000201 arx-3 WBGene00010350 H01G02.3 

WBGene00000218 asp-5 WBGene00010724 K09E9.1 

WBGene00000383 cdc-14 WBGene00010867 tag-260 

WBGene00000390 cdc-42 WBGene00011218 R10E11.6 

WBGene00000465 cpg-1 WBGene00011239 pges-2 

WBGene00000517 cki-2 WBGene00011397 T03E6.8 

WBGene00000669 col-94 WBGene00011648 cni-1 

WBGene00000776 cpl-1 WBGene00011856 T20D3.2 

WBGene00000981 dhs-18 WBGene00012033 T26C5.3 

WBGene00001160 efk-1 WBGene00012326 W07E11.1 

WBGene00001398 fat-6 WBGene00012633 Y38H6C.21 

WBGene00001595 gld-1 WBGene00012953 fbxa-216 

WBGene00001622 glt-4 WBGene00013216 Y54G11A.7 

WBGene00001999 hrp-1 WBGene00013597 gpi-1 

WBGene00002008 hsp-4 WBGene00014666 C05D12.3 

WBGene00002054 ifb-2 WBGene00014947 Y71A12B.14 

WBGene00002132 inx-10 WBGene00015366 C03A7.2 

WBGene00002213 kin-32 WBGene00015471 lmp-2 

WBGene00002245 lag-1 WBGene00015692 ugt-25 

WBGene00002269 lec-6 WBGene00015801 C15H9.5 

WBGene00002272 lec-9 WBGene00016033 C24A3.2 

WBGene00003055 lon-1 WBGene00016158 ari-1 

WBGene00003169 mec-5 WBGene00016809 C50D2.6 

WBGene00003235 mif-2 WBGene00017025 D1037.1 

WBGene00003374 mlk-1 WBGene00017028 dex-1 

WBGene00003497 mup-4 WBGene00017641 csr-1 

WBGene00003567 ncx-2 WBGene00017881 asp-13 

WBGene00003738 nid-1 WBGene00017934 F30B5.4 

WBGene00003936 pat-12 WBGene00018094 F36F12.3 

WBGene00003961 pct-1 WBGene00018222 F40A3.7 

WBGene00003964 pdi-3 WBGene00018335 F42A9.6 

WBGene00003996 pgp-2 WBGene00018435 btb-9 

WBGene00004031 pis-1 WBGene00018879 F55D10.4 

WBGene00004178 prg-1 WBGene00018897 zipt-2.4 

WBGene00004248 pus-1 WBGene00018910 F56A4.2 

WBGene00004414 rpl-3 WBGene00019298 K02D7.1 

WBGene00004443 rpl-29 WBGene00019322 ahcy-1 

WBGene00004444 rpl-30 WBGene00019521 dmd-7 

WBGene00004447 rpl-33 WBGene00019697 M01B12.4 

WBGene00004477 rps-8 WBGene00019720 M01H9.4 

WBGene00004491 rps-22 WBGene00019746 M03A1.3 
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WBGene00004703 rsp-6 WBGene00019747 ipla-1 

WBGene00004890 smp-2 WBGene00019779 endu-2 

WBGene00004928 soc-1 WBGene00020131 gcy-28 

WBGene00004951 spc-1 WBGene00020393 T10B5.7 

WBGene00005025 sqv-7 WBGene00020891 T28C12.4 

WBGene00006220 str-176 WBGene00020936 hrpf-1 

WBGene00006438 nrfl-1 WBGene00021043 pck-1 

WBGene00006801 unc-68 WBGene00021057 W06B4.2 

WBGene00006888 vbh-1 WBGene00021236 pud-1.2 

WBGene00006927 vit-3 WBGene00021344 Y37B11A.2 

WBGene00006928 vit-4 WBGene00021503 ctsa-2 

WBGene00006974 zen-4 WBGene00021594 tig-3 

WBGene00007122 B0250.5 WBGene00021814 Y53G8AR.7 

WBGene00007153 clec-41 WBGene00021852 Y54F10AM.8 

WBGene00007362 cyp-35C1 WBGene00022067 Y67D8C.3 

WBGene00007622 C16C10.1 WBGene00022200 fard-1 

WBGene00007624 hrde-1 WBGene00022300 Y76B12C.6 

WBGene00007764 C27B7.7 WBGene00022313 Y77E11A.12 

WBGene00008130 fbxa-140 WBGene00022331 fbxa-19 

WBGene00008132 gale-1 WBGene00022351 Y82E9BR.19 

WBGene00008218 nasp-2 WBGene00022358 Y92H12A.2 

WBGene00008400 drh-3 WBGene00022584 ZC266.1 

WBGene00008430 hgap-2 WBGene00022592 klu-2 

WBGene00008436 DH11.2 WBGene00022620 rde-8 

WBGene00008570 kcnl-2 WBGene00044073 tag-244 

WBGene00008901 nhr-27 WBGene00044107 F58G6.9 

WBGene00008999 myrf-2 WBGene00044290 B0035.18 

WBGene00009057 cept-1 WBGene00077714 R102.11 

WBGene00009493 hrg-4 WBGene00169117 21ur-12350 

WBGene00009563 F39H2.3 WBGene00219700 linc-6 

WBGene00010130 vha-14 WBGene00219959 F52D2.14 

WBGene00010263 wago-4 WBGene00255596 Y37B11A.8 

WBGene00010308 F59B2.3   

 

Table 5. A list of infection specific alternatively spliced genes with rnp-6 dependency. 

For the Venn diagram please refer to Figure. 27. 
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Term Count P-Value 

Regulation of cell cycle 10 1.7E-3 

Regulation of cell cycle process 8 2.7E-3 

Regulation of developmental growth 11 7.4E-3 

Cell cycle arrest 3 7.7E-3 

Regulation of cell division 4 8.1E-3 

Regulation of growth 11 1.0E-2 

Mitotic cell cycle 9 1.4E-2 

Mitotic cell cycle process 8 1.8E-2 

Negative regulation of cell cycle 5 1.8E-2 

Developmental growth 11 1.9E-2 

Growth 13 2.0E-2 

Positive regulation of multicellular organismal 
process 11 2.0E-2 

Mitotic nuclear division 6 2.4E-2 

Translation 9 3.0E-2 

Positive regulation of growth 9 3.2E-2 

Peptide biosynthetic process 9 3.2E-2 

Regulation of multicellular organism growth 9 3.3E-2 

Cell division 7 3.5E-2 

Positive regulation of developmental process 10 3.5E-2 

Hexose metabolic process 3 3.8E-2 

Amide biosynthetic process 9 4.0E-2 

Cytoskeleton-dependent cytokinesis 3 4.2E-2 

Monosaccharide metabolic process 3 4.4E-2 

Organonitrogen compound biosynthetic process 12 4.9E-2 

 

Table 6. GO term enrichment analysis of the genes from Table. 5 using DAVID. 
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4.2.4 RNP-6 inhibits immunity 

 

As discussed in the previous sections, a point mutation rnp-6(dh1127) compromises 

innate immunity. To further investigate the effects of RNP-6 activity on immunity, RNAi 

was used to knockdown rnp-6 activity in wild-type N2 animals. Surprisingly, reduction 

of RNP-6 by RNAi was sufficient to improve survival upon S. aureus infection (Fig. 

28A). We hypothesized that the effects could be due to pre-activation of immune 

responses induced by rnp-6 RNAi prior to infection. To test this idea, qRT-PCR was 

performed on wild-type N2 worms subjected to RNAi against rnp-6. Indeed, several 

infection responsive genes, including nlp-34, lys-3, irg-2, irg-1, M01G12.9, fmo-2 and 

cyp-37B1, were highly induced by rnp-6 knockdown (Fig. 28B). Further, the conserved 

mediator of immune responses, PMK-1, was activated upon rnp-6 RNAi as indicated 

by increased phosphorylation of the protein (Fig. 28C). These data strongly support 

the idea that RNP-6 activity negatively regulates immunity. In agreement with this 

interpretation, overexpression of RNP-6 significantly compromised survival upon S. 

aureus infection to an extent similar to rnp-6(dh1127) (Fig. 28D). Since RNAi 

knockdown enhanced immunity while rnp-6(dh1127) mutation compromised immunity, 

we suggest that the original mutation represents a gain of function that inhibits 

immunity and survival during infection. 
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Figure 28. (A) RNAi against rnp-6 confers resistance in wild-type N2 animals against 

S. aureus infection (P<0.0001, log-rank test). (B) qRT-PCR results reveal infectious 

responsive genes are induced upon rnp-6 RNAi (nlp-34 P=0.0184, lys-3 P=0.0132, irg-

2 P<0.0001, irg-1 P=0.0002, M01G12.9 P=0.0002, fmo-2 P=0.0021, cyp-37B1 

P<0.0001, unpaired t-test.) (C) Reduction of RNP-6 by RNAi induces activation of 

PMK-1 as indicated by an increase of phosphorylated PMK-1. *P<0.05 unpaired t-test. 

Error bars represent mean ± s.e.m. from three independent biological replicates. (D) 

RNP-6 overexpressing strains show enhanced sensitivity upon infection with S. aureus 

(P=0.0003, log-rank test). 
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4.2.5 RNP-6 mediates immunity through PMK-1 

 

We observed that reduction of RNP-6 triggers activation of PMK-1 (Fig. 28C). This 

immediately suggests PMK-1 may act downstream of RNP-6. To test this hypothesis, 

RNAi against rnp-6 was performed in both wild-type N2 worms and also pmk-1(km25) 

mutants. Reduction of rnp-6 expression improved survival of N2 but not the pmk-

1(km25) mutants upon S. aureus infection (Fig. 29A), supporting the idea of PMK-1 

acting downstream of RNP-6 to mediate resistance. Similar results were also obtained 

with tir-1(tm3036) (Fig. 29B), which encodes the worm’s homolog of SARM. Notably, 

TIR-1 functions upstream of PMK-1 in a linear kinase signaling pathway that controls 

innate immunity in C. elegans.  

 

Next, we tested how rnp-6;pmk-1 double mutants behave in infection. While both pmk-

1 and rnp-6 single mutants showed reduced survival when infected with S. aureus, 

rnp-6;pmk-1 double mutants showed survival curves similar to pmk-1 single mutant 

alone (Fig. 29C). This lack of additivity is consistent with the idea that pmk-1 is epistatic 

and acts downstream of rnp-6. Similar observations were also made in P. aeruginosa 

infection. Both pmk-1 and rnp-6 mutants died faster compared to wild-type N2 animals 

during P. aeruginosa infection, though rnp-6;pmk-1 double mutants showed a slightly 

higher resistance than pmk-1 mutants (Fig. 29D). 

 

Next, we tested how the gain of function mutation of rnp-6 can affects PMK-1 activity. 

P. aeruginosa infection is known to simulate PMK-1 activity (Kim et al., 2002, Liu, He 

et al., 2013). Interestingly, when wild-type N2 and rnp-6(dh1127) animals were infected 

with P. aeruginosa, an induction of phospho-PMK-1 was seen in N2 but not in rnp-

6(dh1127) mutants (Fig. 29E). This result suggests that increased activity of RNP-6 

hampers activity of PMK-1, which might potentially explain why the rnp-6 mutants show 

compromised survival upon infection.  

 

The potential involvement of other known regulators of innate immunity was also tested, 

namely daf-16 and hlh-30. Unlike pmk-1, rnp-6 RNAi was still able to confer resistance 

to the mutants of daf-16 (Fig. 30A) and hlh-30 (Fig. 30B), suggesting daf-16 and hlh-

30 are unlikely to mediate the resistance phenotype of rnp-6 knockdown. 
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Figure 29. (A,B) RNAi against rnp-6 confers resistance in wild-type N2 animals 

(P<0.0001, log-rank test),  but not pmk-1(km25) (P=0.1043, log-rank test) and tir-

1(tm3036) (P=0.1074, log-rank test) against S. aureus infection. (C,D) The effects of 

rnp-6 and pmk-1 are not fully additive. (C) Upon S. aureus infection, both rnp-6(dh1127) 

(P<0.0001, log-rank test) and pmk-1(km25) (P<0.0001, log-rank test) are sensitive, but 

the double mutant has sensitivity similar to pmk-1(km25) alone (P=0.1847, log-rank 

test). (D) Upon P. aeruginosa infection, both rnp-6(dh1127) (P=0.0056, log-rank test) 

and pmk-1(km25) (P<0.0001, log-rank test) are sensitive. The double mutant is slightly 

more resistant relative to pmk-1(km25) alone (P<0.0001, log-rank test). (E) rnp-

6(dh1127) suppresses induction of phospho-PMK-1 upon P. aeruginosa infection. 

Animals were harvested for western blot 2 hours post-infection. 

 

 

 

 

 

Figure 30. (A,B) daf-16 and hlh-30 are not required for resistance conferred by RNP-

6 reduction. RNAi against rnp-6 similarly confers resistance in wild-type N2 animals 

(P<0.0001, log-rank test), daf-16(mu86) (P<0.0001, log-rank test) and hlh-30(tm1978) 

(P<0.0001, log-rank test) against S. aureus infection.  
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4.2.6 Mutual regulation of splicing and host responses to infection 

 

Given that RNP-6, a splicing factor, plays an important role in innate immunity, we next 

wondered whether other splicing factors also have similar effects on pathogen 

resistance and PMK-1 activation. RNAi against prp-38 and uaf-1 was performed in 

wild-type N2 animals. prp-38 encodes a highly conserved splicing factor (mRNA-

processing factor 38 in Saccharomyces cerevisiae), which functions as an interaction 

platform for protein assembly, activation, and catalysis of the spliceosome complex 

(Tan & Fraser, 2017). uaf-1 encodes the large subunit of splicing factor U2AF, 

orthologous to mammalian and Drosophila U2AF65. U2AF recognizes a long 

polypyrimidine sequence located at the 3’ end of the introns. PUF-60, the ortholog of 

RNP-6 in mammals, works cooperatively with U2AF for efficient splicing (Page-McCaw 

et al., 1999). Reducing expression of either splicing factor elicited improved survival 

upon S. aureus infection (Fig. 31A). Similar to rnp-6, RNAi against the splicing factors 

also triggered activation of PMK-1 as indicated by the increased phosphorylated PMK-

1 levels (Fig. 31B). The results demonstrate that the splicing machinery may more 

generally control the immune response and suggest that perturbing splicing could 

induce immunity. 

 

We next sought to further investigate the link between splicing and infection and how 

rnp-6 affects the connection. Infection is able to perturb alternative splicing of tos-1 

(Fig. 17C,D). We therefore wondered whether alternative splicing would be similarly 

affected in the rnp-6 mutant after infection. Interestingly, at the non-infected state, the 

rnp-6(dh1127) and rnp-6(dh1125) mutants already showed a drastically different 

splicing pattern of tos-1 compared to wild-type N2 animals (Fig. 31C,D). The larger 

isoform became more abundant in the mutants. After infection, splicing of tos-1 was 

altered as the abundance of the smaller isoform increased. Strikingly, the rnp-6 

mutants were refractory to the change induced by infection; i.e., the relative quantity 

between the larger and smaller isoforms remained the same (Fig 31C,D). Taken 

together, our results reveal a mutual regulation between splicing and host responses 

to infection in which RNP-6 plays a critical role. 
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Fig 31. (A) prp-38, uaf-1 and rnp-6 RNAi all induce similar resistance phenotype upon 

S. aureus infection. (P<0.0001, log-rank test) (B) PMK-1 phosphorylation is increased 

upon RNAi knockdown of rnp-6, prp-38 and uaf-1, suggesting an activation of PMK-1. 

(C,D) RT-PCR shows that splicing of endogenous tos-1 transcript in wild-type N2 

animals is altered after 4 hours of infection with S. aureus. Intriguingly, splicing remains 

unchanged in rnp-6(dh1125) and rnp-6(dh1127) after S. aureus infection.  *P<0.05, ns 

non-significant, unpaired t-test. 

 

 

 

 

 

 

 



 99 

 

4.3 Discussion 

 

In the second part of the study, we identified rnp-6 as a novel regulator of innate 

immunity. In C. elegans, bacterial infection alters alternative splicing of ret-1 and tos-

1, suggesting an interesting connection between infection and splicing. A novel 

missense mutation of rnp-6 causes compromised survival during infection with S. 

aureus, E. faecalis, and P. aeruginosa. Further investigations revealed that the mutant 

of rnp-6 shows dampened transcriptional responses to infection and also reduced 

activity of PMK-1, as indicated by the reduced levels of the phosphorylated form of the 

protein. Overexpression of RNP-6 phenocopies the sensitive phenotype of the 

missense mutant, while knocking down rnp-6 results in enhanced resistance and 

activation of immune responses, suggesting that the mutation is a gain-of-function. 

Genetic epistasis is consistent with the idea of PMK-1 acting downstream of RNP-6, 

since RNA-6 RNAi induced infection resistance in a PMK-1 dependent manner, and 

PMK-1 phosphorylation was induced in an RNP-6 dependent manner. Finally, 

knocking down other splicing factors also induces similar resistance phenotype and 

PMK-1 activation, indicating that the splicing machinery may be a general control factor 

for induction of innate immune responses, and perturbing splicing is an inducer of 

immunity. An important question to be addressed in the future is whether infection 

regulates the protein or activity levels of RNP-6 and other splicing factors as part of an 

adaptive host response. 

 

In mammals, splicing of pre-mRNAs yields key proteins in the adaptive immune system 

that regulate lymphocyte differentiation, apoptosis and activation (Yabas, Elliott et al., 

2015). For example, antibody production is regulated by splicing. In B cells, IgM and 

IgD are co-expressed through alternative splicing of a long primary mRNA transcript 

from the Igh locus (Maki, Roeder et al., 1981). T cell activation also leads to an 

alteration of splicing in numerous target genes. The Bcl2l11 gene, a pro-apoptotic 

protein, undergoes alternative splicing to yield three different isoforms that differ in their 

capacity to induce immune cell apoptosis (Yabas et al., 2015). However, our 

knowledge of the role of splicing in innate immunity is still limited. In this study, using 

C. elegans, we provide novel evidences of the involvement of splicing in innate host 

responses against bacterial infection. 
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The results of rnp-6 can be considered as another example of effector-triggered 

immunity. Splicing is an essential cellular process. Other essential cellular processes 

are closely monitored, and perturbations of such processes have been shown to 

activate immune responses (Melo & Ruvkun, 2012). The results present here suggest 

RNP-6 activity specifically and splicing in general are also novel players in effector- 

triggered immunity. How perturbing splicing can lead to activation of PMK-1 and 

immune responses is not well-understood at this point. One possible way is that some 

important regulators of PMK-1 is controlled by splicing. For example, the active isoform 

is preferentially generated by splicing under splicing stress. Such downstream 

mediators remain to been seen. 

 

Transcriptomic analysis suggests that rnp-6(dh1127) diminish expression of infection 

inducible immune defense genes. One interesting observation is that some infection 

downregulated genes are also dependent on rnp-6. GO analysis reveals the functions 

of these genes are enriched for metabolic process, especially for organic acid. The 

involvement of these metabolites in innate immunity is not well-understood. However, 

this suggests that rnp-6 may affect immunity through metabolic control. The 

immunometabolism aspect of rnp-6 or splicing in general merits further investigations. 

 

In C. elegans, enhanced splicing activity has been shown to be sufficient to increase 

lifespan. Also, dietary restriction and inhibition of mechanistic target of rapamycin 

(mTOR) extend lifespan partially by maintaining high splicing capacity during ageing 

(Heintz et al., 2017). Results also indicate the gain of function mutation of rnp-6 is long-

lived at 20C (unpublished data from Dr. Wenming Huang). Therefore, it seems that 

there is a tradeoff between longevity and immunity in the rnp-6 mutant. This is 

interesting because long-lived mutants are usually resistant to pathogenic stress 

(Garsin et al., 2003, Wu et al., 2015), and the long-lived rnp-6 mutant seems to be one 

exception. Also, it would be very interesting to see whether strains with enhanced 

splicing capacity, such as the SFA-1 overexpressing strains, which were shown to be 

long-lived (Heintz et al., 2017), are sensitive to pathogenic bacteria like the rnp-6 

mutant. Splicing fidelity deteriorates over age, and chronic inflammation is a common 

phenotype associated with ageing. Age-associated inflammation may be caused by 

decreased splicing capacity. Furthermore, it is well-known that dietary restriction has 
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a mixed effect on immunity rather than a beneficial one (Hale, Spencer et al., 2015). 

This could be due to improved splicing induced by dietary restriction, which inhibits 

activation of immunity.  

 

How infection triggers changes in splicing is also an interesting question. Bacteria are 

known to produce small molecules to interfere cellular functions of the host. For 

example, exotoxins produced by P. aeruginosa inhibit translation of host cells 

(McEwan et al., 2012). It is possible that bacteria also produce small molecules to 

inhibit splicing. In fact, some antibiotics produced by bacteria are described as splicing 

inhibitors, namely tetracycline, streptomycin, and erythromycin. These molecules are 

known to inhibit translation by binding to specific RNA structures in the ribosome. The 

spliceosome is also an RNA-dependent enzyme, which could be inhibited by the 

antibiotics through a similar mechanism (Effenberger, Urabe et al., 2017). Another 

potential explanation is the kinetic competition for splicing machineries by nascent 

transcripts. Splicing is a co-transcriptional event, and the emerging RNA transcripts 

compete the limited splicing machineries (Coulon, Ferguson et al., 2014). Infection 

may trigger a surge of transcription, which overruns the splicing capacity of the cells. 

The results would be a change of splicing patterns. Alternatively, nucleic acid moieties 

from pathogens could affect splicing and trigger the innate immune response. 

 

De novo variants in PUF60, the homolog of RNP-6 in mammals, can be found in human 

population. Loss of function mutations of PUF60 in heterozygous form cause Verheij 

syndrome, whose phenotypes include intellectual disability and developmental defects, 

such as delayed development and short stature (El Chehadeh, Kerstjens-Frederikse 

et al., 2016). As RNP-6 plays a crucial role in immunity in C. elegans, it would be very 

interesting to investigate whether the Verheij syndrome mutations also cause defects 

in immunity in the patients, or whether the pathology of Verheij syndrome is in fact 

driven by immune responses. Reduction of RNP-6 activity in C. elegans activates 

immune responses. It is predicted that the partial loss of function of PUF60 in human 

cells may also activate inflammatory responses which may exaggerate the pathology 

of Verheij syndrome. 

 

Recently, discoveries from cancer research have raised the potential of the splicing 

machinery as a target for chemotherapeutics. Mutations in splicing factors can been 
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found in different cancer cells. For example, specific SF3B1 mutations are frequent in 

cancerous cells from patients with different kind of malignancy, such as chronic 

lymphocytic leukemia, breast cancer, and pancreatic cancer (Effenberger et al., 2017). 

SF3B1 is the subunit 1 of the splicing factor 3b protein complex, which is a key 

component of the U2 small nuclear ribonucleoproteins complex of the spliceosome. 

Changes in SF3B1 functions perturb normal gene expression and contribute to 

transformation and metastasis (Effenberger et al., 2017). For this reason, several 

splicing inhibitors targeting SF3B1 have been developed. Importantly, SF3B1 inhibitors 

arrest growth of most cancer cells at low nanomolar concentrations. Cells derived from 

normal tissues show higher resistance to SF3B1 inhibitors relative to cancer cells 

(Effenberger et al., 2017). Our results of the effects of splicing on immunity indicate a 

possibility of modulating immune responses by manipulating splicing. A recent study 

also suggests SF3A1 and SF3B1 can modulate immunity through alternative splicing 

of MyD88 (De Arras & Alper, 2013). If splicing is inhibited by splicing inhibitors, this 

may already be sufficient to activate immune responses. In cancer patients, this may 

lead to enhanced inflammation and contribute to cancer progression. Therefore, the 

use of splicing inhibitors as anti-cancer chemotherapeutics should be carefully tested 

before clinical applications. On the other hand, splicing inhibitors may function as a 

booster of immunity. For example, splicing inhibitors may function as a good adjuvant 

to vaccine to optimalize the immune response. Also, splicing inhibitors may also be 

taken as anti-bacterial drugs to reduce the use of antibiotics.  
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Fig 32. A summary of the study of rnp-6. In C. elegans, bacterial infection leads to 

alternative splicing, which is inhibited by the activity of RNP-6. Alternative splicing 

induced by infection or perturbing splicing activates PMK-1 and immune responses. 

Increased activity of RNP-6, on the other hand, inhibits activation of PMK-1 and 

immunity. 
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4.4 Work contribution 

 

Except for RNA sequencing and bioinformatic analysis, all experiments included in this 

chapter were performed independently by me. Samples for RNA sequencing were 

prepared by me, and the sequencing reaction was performed by Cologne Center for 

Genomics (CCG), University of Cologne. Bioinformatic analysis was performed 

together by me and Dr. Rafael Cuadrat (MPI-AGE). 
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Future perspectives 

 

5.1 Investigating the mechanism of nucleolar functions in innate immunity 

 

Our findings point to the direction of mediation of immunity by nucleolar functions of 

rRNA biogenesis and translation. As nucleolar size reduces significantly after infection 

in both nematodes and mammalian cells, it is reasonable to presume other nucleolar 

functions also decrease. Whether other nucleolar functions also contribute to the 

phenotypes observed should be examined. Survival assays after knock-down of SRP 

subunits or tRNA modifying enzymes can be done.  

 

We will also investigate the downstream mechanisms of the resistance conferred by 

fibrillarin reduction. As fibrillarin reduction leads to suppression of translation, it is 

predicted that a remodeling of proteome may occur. We propose an omics approach 

to tickle this question. Fibrillarin and control knockdown murine macrophages will be 

infection with S. aureus or mock infected. The samples will be harvested for both RNA 

and proteins. RNA sequencing and proteomics will be performed. By comparing the 

data from the two approaches, we can test how the proteome is changed upon fibrillarin 

knockdown and infection. It is possible to identify candidates, whose translation is 

preferentially affected by fibrillarin, which may be further pursued in the future studies.  

 

5.2 Investigating the mechanism of fibrillarin reduction 

 

Reduction of fibrillarin is an evolutionarily conserved host response to bacterial 

infection. How fibrillarin is reduced remains to be investigated. Possible mechanisms 

are proteasomal or autophagic degradation. To test these possibilities, proteasomal 

inhibitors, such as MG132, or autophagic inhibitors, such as bafilomycin, can be used 

to treat macrophages prior to infection. If the processes are involved in fibrillarin 

reduction, the fibrillarin levels should be unaltered in the respective treated cells. An 

unbiased approach can also be performed. We will perform RNAi screening in C. 

elegans to identify RNAi clones that can revert the infection induced reduction of FIB-

1::GFP. 
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5.3 Probing nucleolar regulation of immunity in animal models 

 

The functions of fibrillarin are well-conserved in both C. elegans and mammalian cells. 

The next step would be to test whether they are also conserved in mammalian animal 

models. A mouse model is ideal for this purpose. First, we will infect mouse with S. 

aureus, and cells will be isolated for nucleolar size measurement and fibrillarin western 

blot detection. Macrophages or peripheral blood mononuclear cells could be used. A 

decrease of nucleolar size and fibrillarin protein levels is predicted. Local in vivo 

administration of siRNAs can also be done in lung (Li, Tang et al., 2005). S. aureus 

pulmonary infection will be established in mice treated with fibrillarin or control siRNA. 

Pathology, survival and inflammation will be compared. An alternative to siRNA would 

be to generate a heterozygous fibrillarin knockout mouse strain.  

 

5.4 Elucidating splicing control of innate immunity 

 

Infection alters alternative splicing, and changes of splicing also impacts host 

responses to infection. How perturbing splicing can affect immune responses is 

unknown. Very likely, some important regulators of innate immunity are controlled by 

splicing. For examples, alternative splicing can yield different isoforms of the same 

gene that differ in their activity. We will perform a RNAi screening for such genes. 

Genes that undergo splicing changes upon infection in wild-type N2 animals but not in 

the rnp-6 mutant (Table. 5) will be knock-down in the rnp-6 mutant. Infection resistance 

against S. aureus will then be tested. RNAi clones that can reverse the sensitivity 

phenotype of the rnp-6 mutant will be investigated further. 

 

5.5 Studying control of innate immunity by splicing under other circumstances 

 

Other than rnp-6 gain-of-function and knocking-down rnp-6, splicing activity can be 

affected by other means. For example, partial loss of function alleles of mfap-1 and 

uaf-1 (Ma & Horvitz, 2009, Ma et al., 2011), which both are essential splicing factors, 

are viable. We will test whether these mutants exhibit the similar resistance phenotype. 

On the other hand, SFA-1 overexpressing animals were shown to have enhanced 

splicing capacity and extended lifespan (Heintz et al., 2017). Resistance of this strain 
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will also be tested in S. aureus infection experiments, and we predict it may have the 

similar sensitive phenotype as the RNP-6 overexpressing strains. Dietary restriction 

and inhibition of mTOR can also improve splicing capacity similarly to overexpression 

of SFA-1. How dietary restriction affects innate immunity is not very well-studied in C. 

elegans. We propose to perform survival studies and transcriptional profiling of dietary 

restricted animals under both control and infected condition. 

 

5.6 Extending the findings of rnp-6 to higher organisms 

 

It is highly desirable to test whether the effects of rnp-6 or splicing in general on 

immunity is conserved in higher organisms. We will knockdown and overexpress 

PUF60, the homolog of RNP-6, in murine macrophages and test whether activation of 

p38, the ortholog of PMK-1, secretion of cytokines and also cell survival are affected 

upon S. aureus pathogenic challenges. Also, effects of other splicing factors will also 

be tested. For example, the effects of knocking-down SF3B1 on immunity will be tested. 

Pharmacological inhibition of splicing is also feasible. Splicing inhibitors, such as 

spliceostatin A, will be used to treat murine macrophages. Signs of activation of 

immune responses, including phosphorylation of p38 and production of cytokines, will 

be examined.  

 

The potential impact of Verheij syndrome mutations on immunity should also be 

carefully investigated. We propose to measure cytokine levels from serum of the 

patients to test whether the mutations of PUF60 cause any inflammation. The mutation 

can also be introduced in cell lines or C. elegans using CRISPR technology. The 

mutant strains can then be used for in depth studies of the effects of the mutations on 

immunity. 

 

An in vivo mammalian model will also be very useful. Macrophages or peripheral blood 

mononuclear cells from infected mice will be isolated, and the RNA would be 

sequenced. Alternative splicing events induced by infection will be identified and 

characterized. Also, to manipulate splicing in vivo, administration of splicing inhibitors, 

such as spliceostatin A, can be done. Cytokine levels will then be measured and 

compared to the control. Effects of splicing inhibitors on survival and pathology upon 

S. aureus infection will also be observed.  
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5.7 Exploring possible links between the nucleolus, splicing and immunity 

 

Lastly, we plan to explore the potential connection between fibrillarin and rnp-6 in the 

regulation of innate immunity. To begin with, we propose to use a genetic approach. 

RNAi against fib-1 will be done on rnp-6(dh1127) mutants to test for epistasis. Next, 

RNA sequencing will be used to profile alternative splicing in C. elegans subjected to 

fib-1 RNAi and infection. The possible effects of fib-1 RNAi with or without infection on 

splicing will be examined. On the other hand, nucleolar size, mature and pre-rRNA 

levels and translation rate will be measured in rnp-6(dh1127) mutants and also wild-

type animals with rnp-6 knockdown under both control and infection conditions.  
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