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Abstract 

A complete simulation for the regional water cycle and the catchment-scale 

hydrological response to climate change requires hydro-meteorological models, which 

represent the relevant processes taking place in the atmosphere, at the land surface, and 

in the subsurface, as well as their interactions. In this study, a coupled Atmospheric and 

Hydrological Modelling System (AHMS) is developed by two-way coupling the 

atmospheric model WRF and the distributed hydrological model HMS via the land 

surface model Noah-MP LSM. This fully coupled system enables to explicitly describe 

hydrological processes for the atmospheric modelling at catchment and continental 

scale. The Huaihe basin in China is selected as a study case.  

A new parameterization of hillslope runoff is developed by considering the effect of 

hillslope topography on infiltration capacity. This new parameterization is first applied 

in the coupled land surface and hydrological model NoahMP-HMS that is offline driven 

by surface meteorological data. The offline simulations with and without the new 

parameterization are compared to the observations. The comparison shows that this new 

parametrization significantly enhances the production of surface runoff. By including 

this enhancement in the runoff estimates, the NoahMP-HMS can reproduce the 

hydrological processes within the Huaihe basin and the regional water balance at high 

precision. It is revealed by the statistical evaluations. The Nash-Sutcliffe efficiency 

coefficients (NSIs) are 0.67, 0.81, and 0.80 for the simulated daily streamflow from 

1980 to 1987 at three hydrological stations in the main river; and their water balance 

indexes (WBIs) are close to 1.0.  

The spatiotemporal variability of hydrological processes in the basin is studied, based 

on the NoahMP-HMS simulation from 1979 to 2003. On monthly scale, the change of 

water storage in the aquifer is linearly correlated to net precipitation. Due to a large 

amount of net precipitation from June to August, the groundwater table starts uplifting 

from June and reaches its maximum in September. Over the basin, deep groundwater is 

found in the mountains, and shallow groundwater at the foothills of the mountains and 

in the downstream plains. The monthly precipitation largely determines the monthly 

runoff in the basin, nevertheless, the runoff shows a larger temporal variability. 

Throughout the year, the groundwater continuously supplies water for the rivers, while 

the surface runoff shows an obvious monthly variation. Furthermore, the runoff 

coefficients in the mountains are significantly higher than in the plains, which implies 

a high flood risk by the intense rainfall in this region. 

The AHMS with the new parameterization is used for the coupled atmospheric and 
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hydrological simulation in the Huaihe basin from July to November 1991. The 

evaluation of AHMS results with the observations indicates that the AHMS performs 

well in modelling atmospheric variables and provides reasonable daily streamflow 

estimates (NSIs = 0.55, WBIs = 0.63–0.79). Compared to the stand-alone WRF 

simulation, the soil water dynamics behaves differently in the AHMS simulation, on 

which the impact of hydrological processes is associated with groundwater depth. 

Under suction of deep unsaturated soil and gravity effect, soil drainage occurring at the 

bottom of soil model domain is higher than gravitational drainage (in WRF); it results 

in drier soil conditions in the mountains. Groundwater is capable of moistening 

overlaying soil by capillary rise; these capillary fluxes widely occur in the relatively 

deep groundwater region, especially in dry soil conditions, which efficiently recharges 

soil water content. Besides, gravitational water can accumulate above groundwater 

table and laterally flows, which is described in the AHMS but not in the WRF; 

consequently, the soil moisture in the shallow groundwater region (depths of 0–2 m) is 

significantly higher (increased by 26%) in the AHMS.  

Due to the spatial variation of groundwater depth in the basin, the impact of the coupled 

atmospheric and hydrological simulation on soil moisture presents a large spatial 

variability. Consistently, the shift of evaporation and air temperature exhibits a similar 

spatial patter as that of soil moisture. On average, the embedment of hydrological 

processes into the AHMS results in higher soil moisture (by 7%) and evaporation (by 

8%), as well as lower air temperature (-0.2 ºC) in the Huaihe basin. Their effect on 

basin-averaged precipitation is insignificant, but results in a spatial redistribution of 

precipitation in the basin, with local changes up to ±30%.  

In summary, the simple, but efficient parameterization of hillslope runoff is achieved. 

Benefiting from it, the model captures well the hydrological processes in the Huaihe 

basin. The AHMS can appropriately simulate the atmospheric and the hydrological 

processes at catchment scale, and their interaction.   
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Zusammenfassung 

Zur Simulation des vollständigen regionalen Wasserkreislaufs und der hydrologischen 

Reaktion auf Klimaänderungen auf der Skala von Wassereinzugsgebieten werden 

hydro-meteorologische Modelle benötigt, die die relevanten Prozesse der Atmosphäre, 

an der Landoberfläche und des Erdbodens, sowie ihre Wechselwirkungen darstellen. In 

dieser Arbeit wird ein gekoppeltes atmosphärisches und hydrologisches 

Modellierungssystem (AHMS) entwickelt, das die beidseitigen Wechselwirkungen 

zwischen dem hydrologischen Modell HMS und dem regionalen Atmosphärenmodell 

WRF über das Landoberflächenmodell Noah-MP LSM realisiert. Das vollständig 

gekoppelte System erlaubt die explizite Beschreibung der hydrologischen Prozesse auf 

Skalen von Wassereinzugsgebieten bis zu Kontinenten. Das Einzugsgebiet des Huaihe 

in China dient als Fallstudie. 

Eine neue Parametrisierung für den Überlandabfluss wird mit Berücksichtigung der 

Auswirkungen der Hangverteilung auf die Infiltrationskapazität entwickelt. Diese neue 

Parametrisierung wird zunächst in dem Modell NoahMP-HMS angewendet, welches 

"offline" mit meteorologischen Bodendaten angetrieben wird. Die "offline" 

Simulationen mit und ohne die neue Parametrisierung werden mit Beobachtungsdaten 

verglichen. Dabei zeigt sich, dass die neue Parametrisierung die Generierung von 

Überlandabfluss deutlich erhöht. Durch diese überarbeitete Abschätzung des 

Überlandabflusses kann das Modell NoahMP-HMS die hydrologischen Prozesse im 

Einzugsgebiet des Huaihe und die Wasserbilanz auf regionaler Skala mit hoher 

Präzision reproduzieren. Dies zeigt sich für den simulierten täglichen Abfluss des 

Flusses Huaihe zwischen 1980 und 1987 für drei hydrologische Messstationen am 

Hauptfluss anhand des Nash-Sutcliffe Effizienzköffizienten (NSIs) von 0,67, 0,81 und 

0,80, und die Wasserbilanzindizes (WBIs) nahe 1,0. 

Die raumzeitliche Variabilität der hydrologischen Prozesse im Einzugsgebiet wird mit 

einer NoahMP-HMS Simulation für den Zeitraum von 1979 bis 2003 untersucht. Auf 

Monatsskala besteht ein linearer Zusammenhang zwischen der im Boden gespeicherten 

Wassermenge im Aquifer und der Nettoniederschlagsmenge. Aufgrund der hohen 

Nettoniederschlagsmenge von Juni bis August steigt der Grundwasserspiegel ab Juni 

und erreicht sein Maximum im September. Im Untersuchungsgebiet liegt in den 

Gebirgsregionen tiefes Grundwasser vor, während es im Vorgebirge und im Flachland 

relativ hoch ist. Der monatliche Oberflächenabfluss wird hauptsächlich durch den 

Monatsniederschlag bestimmt, weist jedoch eine größere zeitliche Variabilität als 

dieser auf. Während die Zufuhr von Grundwasser in den Fluss stetig über das ganze 

Jahr geschieht, unterliegt der Überlandabfluss einer klaren monatlichen 
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Variabilität. Des Weiteren wird aus der gleichen Menge Niederschlag im Gebirge 

deutlich mehr Überlandabfluss generiert als im Flachland. Dies fuehrt zu einer erhöhten 

Flutgefahr durch Starkniederschläge in den Gebirgsregionen. 

Das AHMS mit der neuen Parametrisierung wird zur Simulation der gekoppelten Hy-

drologie und Atmosphäre des Huaihe Einzugsgebiet der Zeitraum von Juli bis Novem-

ber 1991 verwendet. Die Evaluation des AHMS mit Beobachtungsdaten zeigt, dass das 

Modell die atmosphärischen Variablen gut darstellt und die täglichen Flussa-

blussmengen vernuenftig abschätzt (NSIs = 0,55, WBIs = 0,63–0,79). Im Vergleich mit 

der WRF-Simulation weist die AHMS-Simulation eine unterschiedliche 

Bodenwasserdynamik auf, wobei der Einfluss hydrologischer Prozesse mit der 

Grundwassertiefe zusammenhängt. In tiefgelegenen Grundwasserregionen sinkt, durch 

das Zusammenwirken von Gravitation und Saugwirkung ungesättigter Böden, das 

Wasser stärker ab als bei der WRF Simulation, wo nur der Einfluss der Gravitation eine 

Rolle spielt. Dies fuerht zu trockeneren Böden in den Gebirgsregionen bei der AHMS-

Simulation. Dieser kapillare Feuchtefluss ist insbesondere unter trockenen 

Bedingungen im relativ tiefen Grundwasserbereich relevant, wo es die 

Bodenfeuchtigkeit wieder auffuellt. Des Weiteren kann sich absinkendes Bodenwasser  

über dem Grundwasserspiegel akkumulieren und lateral abfließen. Dieser Prozess ist in 

AHMS dargestellt, jedoch nicht in WRF. Infolgedessen simuliert AHMS im Vergleich 

zu WRF im flachen Grundwasserbereich (Tiefen von 0–2 m) eine deutlich größere 

Bodenfeuchte (26%). 

Aufgrund der räumlichen Variation der Grundwassertiefe im Einzugsgebiet zeigt die 

gekoppelte atmosphärische und hydrologische Simulation eine große räumliche 

Variabilität der Bodenfeuchte auf. Entsprechend weisen die Änderungen der 

simulierten Evaporation und der Lufttemperatur ähnliche räumliche Muster wie die 

Änderungen der Bodenfeuchte auf. Im Mittel ist für den Simulationszeitraum die 

Bodenfeuchte um 7% und die Evaporation um 8% erhöht, sowie die Temperatur um 

0,2°C verringert. Die Auswirkungen des gekoppelten Models auf den gemittelten 

Niederschlag im Einzugsgebiet sind unbedeutend. Es fuehrt jedoch zu einer räumlichen 

Neuverteilung des Niederschlags im Becken mit lokalen Änderungen von bis zu ±30%. 

Insgesamt konnte in der vorliegenden Studie eine einfache aber effiziente 

Parametrisierung für den Hangabfluss gefunden werden. Mit dieser kann das Modell 

die hydrologischen Prozesse im Flusseinzugsgebiet gut erfassen. Mit dem AHMS 

können Atmosphäre und Hydrologie, sowie ihre Wechselwirkungen, für ein gesamtes 

Flusseinzugsgebiet simuliert werden.  
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1 Introduction 

The water cycle is a key agent in the climate system (Mölders and Raabe, 1997) acting 

from global to regional scale and linking land, atmosphere, ocean and subsurface 

dynamics. Over land, its major components include precipitation, evapotranspiration, 

ice and snowmelt, soil water in aquifers, and river runoff. Rivers and lakes store a small 

amount of water, but river networks enable water to be transported laterally within 

catchments. Globally, they provide a critical link returning water from land to ocean 

(Miller et al., 1994). The stored water in aquifers is a key factor that controls numerous 

processes and feedbacks within the climate system.  

The importance of hydrological components in land surface models (LSMs) has been 

recognized in the one-way-coupled atmospheric-land surface-hydrological modelling. 

For instance, the inclusion of surface runoff and groundwater in LSMs changes sensible 

and latent heat fluxes at the land surface (Habets et al., 1999; Stieglitz et al., 1997; Clark 

and Gedney, 2008; Chen and Kumar, 2001; Niu and Yang, 2003). Whereas, the 

evolution of the atmospheric boundary layer is directly affected by the spatial pattern 

of heat fluxes from and to the land surface (Shrestha et al., 2014). Hence, the integration 

of surface and subsurface hydrological processes into atmospheric models can help to 

understand the land-atmosphere interactions, which results in a better boundary 

condition for hydrological simulation.  

Coupled land surface-hydrological models are a common tool to investigate the impact 

of climate change on water resources. These models are usually driven by external 

meteorological forcing data, isolating the terrestrial water cycle from the climate system. 

In fact, climate change can affect the hydrological cycle, but the changes in the 

hydrologic cycle, particularly the terrestrial system, in return alters the climate at local 

and possibly larger scale by land-atmosphere interactions (Maxwell et al., 2011). These 

interactions are not only crucial for assessing renewable water resources under current 

conditions, but also for exploring the potential impacts of climate change on water 

resources and terrestrial ecosystems. Thus, a model with an ability to describe the 

interactions between climate change and terrestrial water cycle is required to simulate 

the effects of future climate change on the sustainable development of regional water 

resource and ecosystem.   

For hydrological modelling, a major challenge is the scale inconsistency between 

hydrological and atmospheric processes (Hostetler, 1994). Reconciling the discordant 

scales of hydrological and atmospheric models can be addressed by two-way coupling 

the models and by improving the resolution of hydrological sub-model within the 
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atmospheric models. Regional climate models (RCMs) provide rainfall forecasts with 

large spatial coverage and high temporal resolution. Benefited by the high resolution of 

nested domains in RCMs, some small-scale atmospheric feature, e.g. orographic 

precipitation, can be simulated. More importantly, the development of nested, limited-

area, regional climate model allows one to capture regional and local scale features, 

which can also be transferred to higher resolution simulations. Since climate-induced 

hydrological processes are strongly associated with precipitation characteristic (Booij, 

2005) (e.g. amount, intensity, duration, type, and distribution), air temperature, etc., this 

development is critical for hydrological modelling.  

Many coupled atmospheric-hydrological models have been developed (Shrestha et al., 

2014; Wagner et al., 2016; Maxwell et al., 2011; Butts et al., 2014), and their complexity 

differs upon the research focus and temporal scale. Coupled modelling system with 

high complexity, e.g. three-dimensional variably saturated surface and subsurface flow 

model (ParFlow), are mainly applied for small watershed and/or short-term simulation. 

On the contrary, low complex models were developed by incorporating one or more 

hydrological components, e.g. groundwater (Seuffert et al., 2002; York et al., 2002) 

and/or surface runoff (Habets et al., 1999; Niu et al., 2005), into climate models.  

This study aims at developing a coupled atmospheric and hydrological modelling 

system with intermediate complexity for describing a closed water cycle on catchment-

scale (and continental scale). This coupled system can be used for coupled atmospheric 

and hydrological simulations, the short-term or long-term forecasts of catchment-scale 

hydrological events, the assessment for the potential effects of climate change on the 

availability of water resources and the sustainable development of ecosystem, the study 

of the dynamic feedback mechanism between the atmosphere, land surface, and 

subsurface.  

The objectives of this study are: 

1. To improve the runoff simulation by a new parameterization of hillslope runoff; 

2. To develop an intermediate complex coupled Atmospheric and Hydrological 

Modelling System (AHMS), by incorporating a physical-based, mesoscale 

hydrological model to the Weather Research Forecasting (WRF) Model;  

3. To evaluate the performance of the AHMS; 

4. To understand how the hydrological processes in the AHMS affect the surface 

fluxes, and their feedback to the atmosphere.  

This thesis is divided into 6 chapters. In Chapter 2, a relevant research review and 

motivation are presented. In Chapter 3, the AHMS is described along with the 

introduction of the study area. In Chapter 4, a new parameterization for hillslope runoff 

is developed, in which the influence of topography on the generation of surface runoff 
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is considered. The land surface and hydrological simulation by the NoahMP-HMS in 

the Huaihe basin is compared with the observation to determine the effectiveness of the 

new parameterization. Further, the spatiotemporal variability of the hydrological 

processes in the basin is analyzed based on the long-term hydrological simulations. In 

Chapter 5, the AHMS is used for the coupled atmospheric and hydrological simulation 

in the Huaihe basin. Meanwhile, the impact of this coupled simulation on surface fluxes 

and atmospheric variables is discussed and quantified by comparing with the stand-

alone atmospheric simulation. In the last chapter, the discussion, conclusion, and 

outlook are given.  
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2 Research Review and Motivation 

2.1 Climate change and hydrological response  

Climate change has been widely observed over recent decades in various aspects, such 

as rising global mean surface temperature, large-scale atmospheric circulation 

variability, large regional variations in precipitation trends, increasing tropospheric 

water vapor, and so on. Consistent with the growth of water vapor in air, an increasing 

number of heavy precipitation events are observed in many land regions (Trenberth et 

al., 2007). Furthermore, the combination of slightly changed annual precipitation and 

the disproportionately large increase in intense rainfall events (e.g. Easterling et al., 

2000; Klein Tank et al., 2003; Klein Tank et al., 2006; Song et al., 2015) indicates a 

growing frequency of no/little precipitation days (Groisman and Knight, 2008). This 

tendency, unfortunately, increases the risks of both drought and floods, for two reasons: 

(1) long-duration episodes of below-average precipitation potentially cause droughts, 

especially if accompanying a high temperature; (2) the infiltration-excess runoff 

resulted from highly concentrated rainfall in a short period and the saturation-excess 

runoff stemmed from long-duration rainfall are highly likely to cause floods, especially 

if they exceeds the storage capacity of rivers, lakes, and reservoirs. Therefore, the land 

surface conditions are of major importance to hydrological extreme events.  

The Land surface models (LSMs) with hydrologic components, usually offline driven 

by meteorological forcing data, is a common way to monitor terrestrial conditions and 

to evaluate the effects of climate change on water resource as well as extreme 

hydrological events, i.e. floods and drought. For example, Arnell (2003) used a macro-

scale hydrological model to simulate global runoff under current and future climate 

conditions. The results suggest that the change of runoff pattern is largely determined 

by precipitation variations and evaporation offsets. Their consequent effects for global 

and regional water resources show that for some regions, especially in southern and 

eastern Asia, the increase of runoff during wet seasons may not provide more usable 

water resource (Arnell, 2004). 

It is acknowledged that climate change may raise the risk of hydrological extremes and 

the pressure of regional water resource (Lehner et al., 2006). Also, some researchers 

(e.g. Yu et al., 2002; Yang et al., 2012; Xu et al., 2013) detected signs in some regions 

that runoff increases during high-flow periods and runoff decreases during low-flow 

periods. This change tendency of runoff in rainfall-dominated regions is generally 

caused by enhanced inter-seasonal variability of precipitation; while in rainfall-
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snowmelt or snowmelt-dominated regimes, it is resulted from surface warming 

primarily. For example, it has been confirmed that winter discharges increase as a result 

of increased precipitation and intensified snowmelt in winter for some sub-catchments 

of the Rhine basin, and summer discharges decrease due to reduced snow storage 

aggregated in winter and an increase of evapotranspiration by detailed hydrological 

simulation (Middelkoop et al., 2001). These hydrological changes induced by climate 

variability, especially the variation in precipitation characteristic – including amount, 

frequency, intensity, duration, and type – and increasing temperature, could increase the 

risks of floods (Booij, 2005) and droughts (Calanca, 2007; Strzepek et al., 2010), and 

also change local water resources (Guo et al., 2002), impacting further on domestic use, 

industry, agriculture as well as inland navigation, water quality and ecology.   

2.2 Representation of hydrological components in LSMs 

The main function of LSMs is to partition incoming radiation into latent and sensible 

heat flux, ground heat flux and snowmelt energy, as well as to separate precipitation to 

evapotranspiration, runoff, and infiltration. The land surface parameterization scheme 

was first developed in the 1960s, i.e. a leaky-bucket parameterization (Manabe et al., 

1965), to represent land surface processes as the lower boundary condition of the 

atmosphere. Since then, the importance of land surface representation in atmospheric 

models on time scale ranging from days to centuries has been increasingly recognized. 

Thereafter, LSMs have considerably advanced by the incorporation of various physical 

processes, such as soil hydrology, vegetation growth, evapotranspiration, snow 

sublimation and melt, etc. Meanwhile, some hydrological components, e.g. surface 

runoff and groundwater, were described in LSMs to more realistically represent 

terrestrial water balance.  

2.2.1 Surface runoff  

The LSMs in global and regional climate modelling generally prognoses the average 

soil moisture for each grid cell by computing water fluxes, such as runoff and 

infiltration rate. This one-dimensional vertical treatment neglects soil moisture 

heterogeneity within one grid cell. This deficiency deserves serious attention, because 

the heterogeneity issues concerning soil moisture and resulting runoff generation 

strongly influence the heat and water budgets at the land surface (Warrach et al., 2002). 

Fortunately, researchers have attempted to consider the subgrid variability in soil 

moisture prognostication and runoff production. In the following, several frequently 

used approaches are elaborated in detail, as well as their integration in LSMs.  

The variable infiltration capacity (VIC) model is a large-scale, semi-distributed 
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hydrologic model in which the direct runoff (surface runoff) is calculated based on the 

concept of the Xinanjiang model (Zhao, 1992). Different from the definition in soil 

physics, the infiltration capacity in the VIC model is defined as the total volumetric 

capacity of a soil column to store water. The VIC model (Liang et al., 1994, 1996) 

includes a parameterization of the variability of infiltration storage capacity to represent 

the subgrid variability of topography, soil type, and vegetation. It allows the generation 

of surface runoff before the land surface is entirely saturated. 

Habets et al. (1999a) employed the VIC model-based runoff formulation in the coupled 

macroscale ISBA (Interaction between the Soil, the Biosphere and the Atmosphere) and 

MODCOU (a hydrological model). First, this coupled model was test in the Hydrologic 

Atmospheric Pilot Experiment area (Habets et al., 1999b). It has been turned out that 

this coupled model properly simulated daily streamflow in this region. Subsequently, 

this model was applied to the Rhone River basin with a drainage area of 86496km2 

(Habets et al., 1999c); this simulation illustrated that the aggregation method 

concerning the subgrid scale variability led to annual estimation of evaporation and 

runoff closer to that in their reference high-resolution run.   

TOPMODEL (a TOPography based hydrological MODEL), a conceptual rainfall-

runoff model developed by Beven and Kirkby (1979), was used to simulate catchment-

scale hydrological processes. The model combines the distributed effects of channel 

network topography and dynamic contributing areas within basin to emphasize the 

topographic control over the saturated fraction of a watershed and surface and 

subsurface runoff production. With this hint, Famiglietti and Wood (1994) utilized the 

catchment-scale TOPMODEL approach to present the horizontally heterogeneous 

runoff and energy balance processes in LSMs. Following his approach, Stieglitz et al. 

(1997) incorporated an analytic form of TOPMODEL equation into one-dimensional 

soil column frame in LSMs. It can be easily applied at large spatial scale because this 

approach only needs the statistics of topography, rather than the higher-resolution 

topography itself. This analytical TOPMODEL method that uses a three-parameter 

gamma distribution function was more widely used to represent the discrete distribution 

of topographic index (Stieglitz et al., 1997; Chen and Kumar, 2001; Niu and Yang, 

2003).  

In the soil-vegetation-atmosphere transfer (SVAT) model, Warrach et al. (2002) taken 

the subgrid variability of soil moisture into account by incorporating the VIC model-

based runoff formulation and the TOPMODEL approach. Moreover, this SVAL model 

was applied to the Sleeper River watershed (111 km2), and the result shows a significant 

improvement in the daily runoff simulation from January 1970 to September 1974.  

Niu et al. (2005) have proposed a simple TOPMODEL-based runoff parameterization 
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(SIMTOP) with two main modifications: (1) SIMTOP uses an exponential function 

instead of a three-parameter gamma distribution function to represent the discrete 

distribution of topographic index, improving the saturated fraction, especially in 

mountainous regions. (2) The subsurface runoff is reproduced by an exponential 

function of water table depth and a single coefficient for maximum subsurface runoff, 

which facilitates its application on global scale. This SIMTOP is used to take replace 

of baseline runoff scheme in Community Land Model version 2.0 (CLM 2.0) and its 

subsequent updates. It has been confirmed that the SIMTOP performed better than the 

baseline runoff scheme.  

According to the descriptions above, the presented surface runoff generation schemes 

concern an assumption that a grid cell can be partly saturated, thereby generating 

saturated-excess runoff to participate in overland routing. It refers to the subgrid 

variability of soil moisture which is mainly controlled by topography. This soil moisture 

heterogeneity exists within a watershed at almost any scale (Stieglitz et al., 1997), 

which allows wide application of VIC and TOPMODEL at regional scales. The subgrid 

runoff parameterization in LSMs has been proved to considerably impact on the timing 

and intensity of river discharge as well as surface fluxes (Clark and Gedney, 2008; Chen 

and Kumar, 2001; Niu and Yang, 2003).  

2.2.2 Groundwater 

LSMs cannot be expected to reproduce water budget correctly if they do not involve 

the significant hydrologic components, as the parameterization schemes are developed 

based on water balance (Yeh et al., 2005a). In early LSMs, the flux at the bottom of soil 

hydrological model domain is simply parameterized as a constant or as a function of 

overlying moisture gradient, but without any consideration of groundwater in aquifers. 

In 1960s, however, the regional groundwater flow has been found to account for the 

loss through the vadose zone (Toth, 1962). And the interactions of land surface, vadose 

zone, and groundwater affects the prediction of storm runoff, evapotranspiration, water 

table fluctuation (Levine and Salvuccci, 1999). Thereafter, researchers have been trying 

to incorporate the unconfined aquifers into LSMs, often by the inclusion of the lateral 

groundwater distribution and the interactive flux between water table and the vadose 

zone.  

A two-way coupling of the mesoscale weather prediction model (Lokal Modell (LM), 

German Weather Service) with the land surface hydrologic model ‘TOPMODEL’-

Based Land Surface-Atmosphere Transfer Scheme (TOPLATS, Princeton University) 

was carried out by Seuffert et al. (2002). In TOPLATS, the subsurface flow from the 

aquifers is parameterized as a value that depends on the catchment mean water-table 

depth (Beven and Kirkby, 1979). The simulation results demonstrate that the lateral soil 
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water transport between neighboring soil columns is important for weather prediction, 

as horizontally redistributed soil moisture can affect evaporation and precipitation.  

To study aquifer-atmosphere interaction on decadal timescales, York et al.  (2002) 

developed a coupled aquifer-land surface-atmosphere model where the USGS 

groundwater model MODFLOW (McDonald et al., 1988) was integrated into the 

atmospheric model. The simulation shows that about 5% (wet year) to 20% (dry year) 

of annual evapotranspiration is drawn from aquifers, and the evapotranspiration is 

found to be highest in cells located in topographic depressions where the water table is 

in the root zone.  

The lumped and statistical-dynamics based models that describes the water balance in 

unconfined aquifers are interactively coupled to Land Surface Transfer Scheme (LSX) 

of NCAR (Pollard and Thompson, 1995). Based on the dataset of large-scale water table 

and streamflow in Illinois from 1984 to 1994, a regression equation was proposed to 

estimate groundwater discharge for reasonably simulating water table, soil saturation, 

runoff, evaporation, etc. (Yeh and Eltahir, 2005a). However, some certain 

disagreements still occurred, probably stemming from the spatial variability of water 

table depth. Hence, a statistical-dynamics method was used to describe the subgrid 

variability of water table depth (WTD) in the grid-scale groundwater runoff (Yeh and 

Eltahir, 2005b). In this approach, the dynamic probability distribution function (PDF) 

of WTD is specified as a two-parameter gamma distribution that is derived from the 

observation, which results in well-matched simulations in the test of Illinois.  

Maxwell et al. (2005) replaced the soil moisture computation in CLM (Common Land 

Model (Dai et al., 2003)) by a mixed formulation of Richards equation in a variably 

saturated groundwater model (ParFlow; Ashby and Falgout, 1996). This combined 

model (CLM.PF) is a physically based and dynamically coupled land surface 

groundwater model. The study shows that CLM.PF performs more realistically in the 

simulation of runoff and soil moisture than the uncoupled CLM, although two models 

behave similarly for evapotranspiration prediction.  

There are more studies (e.g. Maxwell et al., 2008; Tian et al., 2012) to investigate 

surface heat and water fluxes under water table dynamics. These researches have 

confirmed two general findings: (1) The saturated soil in aquifers, interacting with 

unsaturated soil through soil drainage and capillary flux, changes the local water supply 

to the atmosphere; (2) Laterally transported subsurface runoff redistributes the 

groundwater in aquifers and changes the spatial pattern of soil moisture. These two 

processes impact on soil moisture and surface energy and water balance, which 

consequently alters the atmospheric boundary layer and possibly the precipitation 

development. Briefly, the groundwater as an essential storage of water resource and its 
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redistribution play an important role in climate modelling as well as weather forecasting.  

2.3 Atmosphere-Land Surface-Hydrology coupling 

The implementation strategies for linking atmospheric and hydrological models can be 

classified into two categories: an integrated modelling approach and a coupled one. The 

integrated approach is a method of coupling that specific models are combined directly 

using some subroutines in the codes. Using this method, some atmosphere-land surface-

hydrology systems, e.g. PF.WRF (Maxwell et al., 2011), were successfully developed. 

The simplified flowchart of PF.WRF is shown in Fig. 2-1. The land surface model Noah 

LSM provides an interface for the combination of the subsurface hydrological model 

(ParFlow) and the atmospheric model (WRF), communicating surface energy and 

moisture fluxes between ParFlow and WRF. Wherein, ParFlow entirely replaces the 

surface soil moisture simulation in the Noah LSM by its incorporation as a subroutine. 

With the integrated ParFlow, PR.WRF can describe three-dimensional subsurface water 

flow and two-dimensional shallow overland flow.  

 

Fig. 2-1 Simplified flowchart of PF.WRF, including WRF, Noah LSM, and 

ParFlow. [Adopted from Maxwell (2011), Figure 1] 

The coupled approach involves the coupling of two independent models via an external 

coupler. For example, Shrestha et al. (2014) developed a highly modular and scale-

consistent terrestrial systems modelling platform (TerrSysMP, see in Fig. 2-2) that 

consists of COSMO, CLM, ParFlow, and an OASIS3 coupler. This OASIS3 coupler 

uses a technique based on the message passing interface standards MP1/MP2 and the 

Project for the Integrated Earth System Modeling (PRISM) for the parallel 
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communication of two-dimensional arrays between the main process (OASIS3) and the 

participating component models (more details in Valcke, 2013). The configuration file 

of OASIS3 enables itself to determine the sequence and frequency of coupling, 

coupling fields and their spatial grid as well as the transformation for 2D coupled fields. 

Accordingly, the sending and receiving between the component models can be done 

sequentially.  

 

Fig. 2-2 Schematic diagram of TerrSysMP. OASIS3 provides the interfaces for 

the coupling of the atmospheric model (COSMO), the land surface 

model (CLM), and the subsurface model (ParFlow). [Adopted from 

Shrestha (2014), Figure 1] 

The scientists use these approaches to build atmospheric-land surface-hydrological 

modelling systems. For instance, Maxwell et al. (2011) developed a coupled 

hydrological-atmospheric model PF.WRF, a combination of the Weather Research and 

Forecasting (WRF) Model and a parallel hydrology model (ParFlow). Based on 

PF.WRF, an idealized simulation (with a 3D domain size of 15 km × 15 km × 14.462 

km) was run for 48 hours at 5s resolution, and a series of semi-idealized simulations 

were performed for the Little Washita watershed in Oklahoma (with a 45×32 km2 

domain). The idealized simulations illustrate that more precise runoff mechanism and 

lateral water flows change the spatial pattern of land surface fluxes. 

Shrestha et al. (2014) presented a highly modular and scale-consistent terrestrial 
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systems modeling platform (TerrSysMP), which consists of an atmospheric model 

COSMO, a land surface model CLM3.5, and a 3D variably saturated groundwater flow 

model ParFlow. Using this TerrSysMP, they performed a short-time real data simulation 

for the Rur catchment in Germany (150 km × 150 km, from July 21 to 27, 2012). The 

results show that the integrated 3D ParFlow model slightly improves the prediction of 

land-atmosphere exchange fluxes and is strongly sensitive to initial soil moisture 

content.  

Gochis et al. (2015) provided a WRF-hydro model coupling extension package by 

including channel routing models and groundwater models in the atmospheric model 

WRF. The WRF-hydro is designed to simulate land surface hydrology, energy states 

and fluxes at a high spatial resolution (typically 1 km or less). Butts et al. (2014) 

developed a dynamically coupled climate-hydrological modeling system based on a 

regional climate modeling system HIRHAM and a comprehensive hydrological 

modelling system MIKE SHE. The coupled system was applied to a managed 

groundwater-dominated catchment, the Skjern River catchment in Denmark, for the 

continuous simulations from May 1, 2009 to April 30, 2010 (12 months). The small 

difference in net precipitation and runoff is found in the catchment during this single 

hydrological year.  

Overall, recent research efforts have focused on coupling of distinct models, such as 

WRF-ParFlow (Maxwell et al., 2011), ARPS-ParFlow (Maxwell et al., 2007), 

COSMO-ParFlow (Shrestha et al., 2014), WRF-HMS (Wagner et al., 2016), WRF-

hydro (Gochis et al., 2015).  

2.4 Issues on the surface runoff production 

The distributed hydrological model system HMS was firstly developed by Yu et al. 

(2006) for mesoscale and large-scale hydrological simulations. Based on it, Yang et al. 

(2010) obtained a coupled land surface-hydrological model system (CLHMS) and used 

this CLHMS to simulate monthly hydrological processes in the Huaihe basin of China 

(Yang et al., 2012). Furthermore, Li et al. (2014) modified the CLHMS by considering 

the spatial inhomogeneity of hydrological parameters and incorporating a subgrid direct 

surface runoff scheme to improve the ability of the CLHMS to predict daily mean river 

discharge.  

For representing the spatial variability of hydrological parameters, Li et al. (2015) 

calibrated the Manning roughness coefficient and the hydraulic conductance of stream-

aquifer interconnection in subbasins using the topographical and hydrogeological 

characteristics. These calibrated parameters in the subbasins form a new parameter 

database; their specific values are listed in Table 2.1. Meanwhile, the default parameter 
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values in the model are defined as an old parameter database (see in Table 2.1). 

Table 2.1 Old and new parameter databases of the Manning roughness coefficient 

and the hydraulic conductance in the Huaihe basin. [Adapted from 

Table 2 and Table 4 of Li et al. (2015)] 

 
the old parameter database the new parameter database 

roughness 
coefficient

hydraulic 
conductance

 roughness 
coefficient

hydraulic 
conductance 

WJB subbasin 0.02 10-5 0.01 10-8 

WJB-LTZ subbasin 0.02 10-5 0.02 10-6 

LTZ-BB subbasin 0.02 10-5 0.02 10-5 

downstream area 0.02 10-5 0.02 10-3 

Note: Wangjiaba (WJB), Lutaizi (LTZ), and Bengbu (BB) are three important hydrological monitoring 

stations in the Huai River. The drainage area above the Wangjiaba station is viewed as the upstream area 

of the Huai River.  

With different parameter databases in Table 2.1, CLHMS was used to simulate the 

hydrological processes from 1980 to 1987 in the Huaihe basin. The accuracy of 

streamflow estimates is evaluated by the water balance index (WBI), Pearson product-

moment correlation coefficient (PMC), Nash-Sutcliffe coefficient of efficiency index 

(NSI), index of agreement (IOA), and normalized root-mean-square error (NRSE). 

Their calculation formulas are listed in Appendix 7.2. The evaluation indexes of 

simulated daily streamflow in two simulations are shown in Table 2.2. The comparison 

shows that the parameter database with the consideration of spatial inhomogeneity 

improves the simulation accuracy of CLHMS for daily mean streamflow. But the 

CLHMS still has a limited ability to reconstruct the hydrological processes in the 

upstream area with complex topography, e.g. in the Wangjiaba subbasin.  

Table 2.2 Evaluation of daily simulated streamflow by the CLHMS using old and 

new parameter database. [Adapted from Table 5 of Li et al. (2015)] 

Station 

CLHMS 
with the old parameter database 

 
CLHMS 

with the new parameter database 

WBI PMC NSI IOA NRSE  WBI PMC NSI IOA NRSE

WJB 1.81 0.68 0.24 0.79 -0.92  1.74 0.70 0.29 0.81 -0.75 

LTZ 1.78 0.90 0.30 0.88 -0.25  1.65 0.93 0.46 0.91 -0.07 

BB 1.68 0.92 0.44 0.90 -0.06  1.59 0.94 0.60 0.93 0.02 

Also, the mean river discharge at the Wangjiaba station in 1980 and the contributing 

ratios of different component runoff were computed based on the simulations. The 

calculation results are presented in Table 2.3.  
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Table 2.3 Simulated annual mean streamflow at the Wangjiaba station in 1980, 

and annual mean amount of various component runoffs as well as their 

ratios to annual mean streamflow.  [Adapted from Table 6 of Li et al. 

(2015)] 

 CLHMS 
with old parameter database

CLHMS 
with new parameter database 

 annual mean 
water flow (m3/s)

contributing
ratio (%)

annual mean 
water flow (m3/s) 

contributing
ratio (%) 

outflowing streamflow 496 478  

surface runoff 143 28.8 198 41.4 

groundwater supply 305 61.5 237 49.6 

net precipitation 21 4.1 19 4.0 

More surface runoff and less underground water flow are simulated by the CLHMS 

with the new parameter database. The contributing proportion of surface runoff to river 

discharge increases from 28.8% to 41.4%, while the contribution of groundwater supply 

decreases from 61.5% to 49.6%. However, it still mismatches with the fact that 

rainwater is the main recharge of rivers in the Huaihe basin. The river discharge in the 

southern region of the Huai River is composed by rainwater (accounting for 70–80%) 

and groundwater supply. In the northern region of the Huai River, rainwater also 

dominates in the river runoff, although with slightly larger contribution of groundwater 

supply (Huang, 1992). Hence, Li at al. (2015) believed that the influence of topographic 

slope on surface runoff should be better represented to improve the ability of the 

CLHMS.  

2.5 Motivation  

The water balance cannot be reproduced correctly if LSMs do not involve significant 

hydrological components, as the parameterization schemes in LSMs are developed 

based on water balance (Yeh et al., 2005a). To reasonably describe the generation of 

surface runoff, the VIC model-based runoff formulation and TOPMODEL-based runoff 

calculation are often used. But these two approaches use empirical or statistical methods 

to depict the distribution of catchment responses, rather than representing explicitly 

hillslope runoff processes. With the recognition of the importance of groundwater and 

its redistribution, the embedment of groundwater and its lateral transport between grid 

cells are widely implemented. For computationally efficient modelling at regional and 

global scale, only the hydrological components such as surface runoff and groundwater 

are described in these low complex models, instead of explicitly tracking surface and 

subsurface flows.  

Recently, some researchers have attempted to incorporate the complete surface and 
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subsurface hydrological processes into the atmospheric models. The three-dimensional 

variably-saturated subsurface and surface flow model ParFlow is popularly used to 

describe hydrological processes in the atmospheric models, e.g. ARPS-ParFlow, WRF-

ParFlow, COSMO-Noah-ParFlow. Given the computational demands of ParFlow, these 

high complexity models are more often used for short-term simulations in small 

watersheds or idealized simulations. Another often used hydrometeorological model is 

WRF-hydro (Gochis et al., 2015). The WRF-Hydro is designed to enable improved 

simulation of land surface hydrology and energy states and fluxes at a fairly high spatial 

resolution (typically 1 km or less) using a variety of physics-based and conceptual 

approaches.  

Hence, a coupled atmospheric and hydrological modelling system with intermediate 

complexity is required to bridge the gap between the low and high complex coupled 

models. In this study, a physical-based, mesoscale hydrological model will be two-way 

coupled with the regional atmospheric model WRF. Furthermore, the influence of slope 

topography on runoff generation is required to be described in the hydrological model 

to improve its ability of simulating hydrological processes.  
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3 Model Description and Study Area 

Description 

The Weather Research and Forecasting (WRF) Model with the Advanced Research 

WRF dynamic solver solution is used for atmospheric simulations. In which, Land 

Surface Models (LSMs) predicts heat and moisture fluxes at the land surface as the 

lower boundary of the atmosphere; the Noah-Multiparameterization Land Surface 

Model (Noah-MP LSM) is employed in this study. Meanwhile, the mesoscale 

distributed hydrological model has been improved and used. In this chapter, the 

coupling of WRF, Noah-MP LSM, and HMS forms a coupled Atmospheric and 

Hydrological Modelling System (AHMS). The mathematical descriptions of the 

hydrological physical processes involved in the AHMS and their numerical solutions 

are exhibited. Lastly, a brief introduction for the Huaihe basin of China is given.  

3.1 Model Structure 

In the coupled Atmospheric and Hydrological Modelling System (AHMS), a physical-

based, spatially distributed hydrological model HMS is integrated into the dynamic 

regional atmospheric model WRF (version 3.7, Skamarock et al., 2008) via the land 

surface model Noah-MP LSM by two-way coupling. The schematic diagram of the 

AHMS is shown in Fig. 3-1.  

The WRF model is a non-hydrostatic, mesoscale numerical weather prediction, and 

atmospheric simulation system. It offers multiple physics options to parameterize 

subgrid-scale physical processes, e.g. convection, microphysics, radiation, or the 

planetary boundary layer. The surface atmospheric conditions prognosticated by the 

WRF, including precipitation, radiation, pressure, wind, etc., are used to drive the Noah-

MP LSM. The standard Noah-MP LSM is a four-layer soil temperature and moisture 

model with canopy moisture and snow cover prediction, describing the interactions of 

the atmospheric boundary layer, the vegetation, and the soil. The thicknesses of soil 

layers are 0.1 m, 0.3 m, 0.6 m, and 1.0 m in order.  

In the AHMS (as illustrated in Fig. 3-1), the hydrological model has been linked to the 

Noah-MP LSM, where the hydrological modules can be activated by surface fluxes. In 

a fully coupled mode, the two-dimensional groundwater model (GW2D) and the two-

dimensional terrestrial hydrological model (RT2D) are used to simulate groundwater 

and terrestrial hydrological processes, respectively, as well as their interaction (GCI). 
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In turn, the change of hydrological conditions such as water level in lakes and rivers 

and groundwater table affects soil moisture and surface fluxes, and further feedbacks to 

atmospheric processes.  

 

Fig. 3-1 Schematic diagram of the coupled Atmospheric and Hydrological 

Modelling System (AHMS). WRF: Weather Research and Forecasting 

Model with the Advanced Research WRF dynamics solver solution, 

Noah-MP LSM: Noah-Multiparameterization Land Surface Model, 

GW2D: two-dimensional groundwater model, RT2D: two-dimensional 

terrestrial hydrological model, GCI: interaction of groundwater and 

channel water.  

The schematic diagram of the terrestrial water cycle in the AHMS is shown in Fig. 3-2, 

which highlights a full description of the hydrological processes at the land surface and 

in the subsurface. In addition to the water fluxes at the land surface (evaporation, 

infiltration, runoff, and so on) and the dynamics of surface soil water, the AHMS 

enables to simulate the interaction between unsaturated soil water and groundwater, 

lateral groundwater flows, terrestrial runoff routing, and the exchange of stream water 

and groundwater. The infiltration and the infiltration-excess runoff (i.e. Horton runoff) 

can be determined according to the precipitation rate at the land surface and its 
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infiltration capacity, as formulated in Section 3.2. The four-layer soil model (with a soil 

layer thickness of 0.1, 0.3, 0.6, 1.0 m) in the Noah-MP LSM is used to predict the 

dynamics of the soil moisture in the surface soil layer (first two meters), as elaborated 

in Section 3.3. The lateral groundwater movement and the terrestrial hydrological 

processes are described by two-dimensional groundwater model (see in Section 3.4) 

and two-dimensional surface water routing model (Section 3.6), respectively. The 

interactive flux between groundwater and stream water is calculated as in Section 3.5. 

As elaborated in Section 3.7, the interaction of unsaturated soil water and groundwater, 

the redistribution of unsaturated soil water in the vadose zone, the dynamics of 

groundwater table, and the calculation of the saturation-excess runoff (i.e. Dunne runoff) 

are expressed.  

 

Fig. 3-2 Schematic diagram of the terrestrial water cycle in the AHMS.  

3.2 Infiltration and surface runoff scheme 

3.2.1 Simplified infiltration scheme  

Infiltration is a process occurring at the interface the atmosphere and the ground surface, 

normally quantified as the rate at which soil can absorb rainfall or irrigation, i.e. 

infiltration rate. The actual infiltration is determined by different boundary conditions 

(see in Eq. 3-1): (1) rainfall intensity is less than the capacity of soil to transmit water 

(infiltration capacity), in which case the infiltration rate is governed by water supply 
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(supply controlled); (2) precipitation rate exceeds infiltration capacity, thus the 

infiltration rate is limited by the infiltration capacity of the near-surface soil (surface 

controlled).  

 p p f
I

f p f



 

 
 


  3-1 

where I is the actual infiltration rate [m/s], p is the precipitation rate at the soil surface 

[m/s], f* is the infiltration capacity [m/s].  

Darcy's law is one of the methods to calculate infiltration; Eq. 3-6 shows its calculation 

formula in detail. In the case of adequate rainfall/irrigation, the near-surface soil is 

assumed to be wet enough and approach its maximum soil moisture (θmax), and hence 

the gradient of matric potential can be neglected (i.e. 0m

z





). Consequently, the one-

dimensional vertical Darcy’s law can be simplified as f* = K(θmax). In this study, the 

Clapp and Hornberger model (Clapp and Hornberger, 1978) is used to estimate the 

hydraulic conductivity at one certain soil moisture (see Eq. 3-8). This maximum 

infiltration rate is normally called infiltration capacity.  

Given enough water rainfall/irrigation to a horizontal soil grid, the near-surface soil is 

supposed to reach saturation, i.e. θmax = θs. Thus, the infiltration capacity is simplified 

as the hydraulic conductivity of the near-surface soil at the saturated soil moisture (θs), 

i.e. f* = K(θs). In the infiltration scheme of the AHMS, it is expressed as the saturated 

hydraulic conductivity of the top-layer soil (0–10 cm).  

3.2.2 Infiltration-excess runoff  

In this study, the infiltration-excess runoff is jointly determined by precipitation rate 

and infiltration capacity. If the precipitation rate (including rainfall, snowmelt, etc.) at 

the soil surface exceeds the infiltration capacity, that part of precipitation beyond the 

infiltration capacity becomes runoff, viewed as infiltration-excess runoff; if the 

precipitation rate is lower than the infiltration capacity, infiltration-excess runoff does 

not occur. The calculation of infiltration-excess runoff can be formulated as  

ins

0 p f
R

p f p f



 

 
 
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  3-2 

where Rins is the infiltration-excess runoff [m/s].  
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3.3 Multi-layer soil model 

3.3.1 Richards equation 

The prognostic equation for soil moisture is the one-dimensional Richards equation 

 = K S
z z z

         
  3-3 

where θ is the volumetric soil water content [m3/m3], K is the hydraulic conductivity 

[m/s], φ is the hydraulic potential [m], z is the vertical coordinate [m], S represents 

sources and sinks for soil water. 

Eq. 3-3 is a convective-diffusive equation derived from the one-dimensional 

conservation equation of water mass 

 
q

S
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with the substitution of Darcy's Law for vertical water flux 
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The hydraulic potential in Eq. 3-5 consists of gravitational potential (φg) and soil matric 

potential (φm), i.e. φ = φm +φg. Assumed that the reference elevation is the soil surface 

with positive downwards, then, Eq. 3-5 can be written as  
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and Eq. 3-3 can be transformed to  

 m= K K S
z z z

         
  3-7 

Hydraulic conductivity (K) and soil matric potential (φm) are highly nonlinear functions 

of soil moisture, whose closure relationships are essential for the solution of Richards 

equation. And some researchers, e.g. Brooks and Corey (1964), Clapp and Hornberger 

(1978), and Van Genuchten (1980), have proposed many different functions for the 

water retention and hydraulic conductivity curves. The Clapp and Hornberger model, 

often used in LSMs, is adopted in the Noah-MP LSM. In the Clapp and Hornberger 

model, the hydraulic conductivity is estimated as 
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where Ks is the saturated hydraulic conductivity [m/s], θs is the saturated soil moisture 

[m3/m3], b is a curve-fitting parameter.  

And the water retention function is  
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where φs is the air-entry matric potential [m].  

Additionally, the hydraulic diffusivity is defined as  
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With the expressions of the hydraulic conductivity and soil matric potential, the 

hydraulic diffusivity can be written as:  
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Combining Eq. 3-7 and Eq. 3-8, 3-9, 3-11, the mass conservation-based form of 

Richards equation (Eq. 3-3) can be formulated in a diffusivity form:  

    =- D K S
z z z
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  3-12 

Also, the vertical water flux is expressed as  

    q D K
z

 
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
  3-13 

The hydraulic properties in Eq. 3-12 and 3-13, including the saturated hydraulic 

conductivity (Ks), the soil porosity (θs), the saturated soil matric potential (φs), and the 

exponent parameter (b),  can be determined according to the researches of Clapp and 

Hornberger (1978) and Cosby et al. (1984), i.e.  
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where Psand and Pclay are the percent composition of sand and clay, respectively [kg/kg].  

3.3.2 Richards equation with equilibrium soil matric potential 

Theoretically, the matric potential of soil in the saturated soil zone varies although soil 

moisture has little change (saturated). Thus, the numerical solution of the θ-based 

Richards equation (e.g. Eq. 3-12) only suits the simulation of the soil moisture in the 

unsaturated zone, not applicable for the saturated zone. Zeng and Decker (2009), 

therefore, have introduced a hydrostatic equilibrium soil moisture distribution to obtain 

the steady-state solution of Richards equation, no matter where groundwater table 

locates. Accordingly, Eq. 3-6 is written as  
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where C is a constant hydraulic potential above the water table zwith 

 E SC z z        3-16 

So that 
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where φE is the equilibrium soil matric potential [m], which is estimated by 
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And the equilibrium volumetric water content θE(z) can also be derived as 
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Combining Eq. 3-4 and Eq. 3-17, one can obtain the modified Richards equation with 
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equilibrium soil matric potential 

  m EK S
t z z

     
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3.3.3 Numerical solution 

In the Noah-MP LSM, the partial differential equation for volumetric soil water content, 

such as Eq. 3-12, is numerically solved by a multi-layer model as shown in Fig. 3-3, 

with the upper boundary condition at the soil surface (q0 = I - esoil) and the lower 

boundary condition at the model domain bottom. In the AHMS, the Darcy-flux 

boundary condition is used to estimate the water flux (i.e. qn in Fig. 3-3) at the bottom 

of the multi-layer soil model domain, as  

   

1

1

n n n

n n

n n

q D K
z

z z z

 

   



    
  
 

 

where θn+1 is the volumetric soil water content at z = zn+1 [m3/m3], and its estimation is 

related to the location of groundwater table, which is expressed in Eq. 3-39.  

The soil water in the soil model domain interacts with deeper unsaturated soil water 

and/or groundwater by the bidirectional flux calculated by the Darcy-flux boundary 

condition. In the Noah-MP LSM, the numerical solution with an implicit method by 

expanding and integrating the diffusivity form of Richards equation (Eq. 3-12) over one 

layer is produced, as following:  

  
1

1 1
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t
t ti

i i i iz q q e
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 
 




    


  3-21 

where t and t+1 represent current and next time step, respectively, i means soil layer, 

∆t is the interval of the time step.  
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Fig. 3-3 Schematic diagram of the multi-layer soil model. I: infiltration at land 

surface; esoil: soil evaporation from top layer; qi: vertical flux crossing 

the bottom of soil layer i; ei: transpiration from soil layer i; zi:  z-

coordinate of the center of soil layer i; θi: average soil moisture in soil 

layer i; ∆zi: the thickness of soil layer i. And n: number of soil layers 

defined by user; n+1: unconfined aquifer below the multi-layer soil 

model domain. 

By substitution and transformation, Eq. 3-21 is formulated as a tridiagonal equation:  
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With the solution of this tridiagonal equation set over soil layers, soil moisture within 

the soil model domain can be updated using 1 1t t t
i i i      .  

3.4 2D groundwater model  

3.4.1 Boussinesq equation 

The upper groundwater surface in an unconfined aquifer is called water table. The 

vadose zone locates above the water table, and there is a subsurface layer called a 

capillary fringe in which groundwater seeps up from water table by capillary action to 

fill pores. The saturated soil water below the water table in an unconfined aquifer is 

considered as the unconfined groundwater. The three-dimensional movement of the 

unconfined groundwater is described by the partial-differential equation (McDonald 

and Harbaugh, 1988) as  

 p p p p
x y z s

H H H H
K K K W S

x x y y z z t
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                   
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where Kx, Ky, Kz represent the saturated hydraulic conductivity in the direction of x, y, 

z [m/s], respectively, Hp is the potentiometric head [m], Ss is the specific storage of the 

porous material [m-1], W is sources and sinks [s-1]. 

Owing to the complexity of the three-dimensional model and its time-consuming 

computation, the groundwater simulation is divided into two steps: (1) the horizontal 

two-dimensional groundwater motion solved by Boussinesq equation (in this section), 

and (2) the description of groundwater table dynamics (see more details in Section 3.7).  

With the Dupuit-Forchheimer assumption, the horizontally two-dimensional 

groundwater flow equation can be derived from Eq. 3-23 as  

    x y s

H
q q S

x y t

   
      

  3-24 

where q is the Darcy flux in a saturated condition [m/s], H is the groundwater head [m].  

Darcy’s law can also be expressed in terms of the transmissivity in unconfined aquifers 

as  
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where T is the transmissivity [m2/s], the rate at which groundwater flows horizontally 

through an aquifer, h is the thickness of the unconfined groundwater [m], i.e. the height 

of free water surface above the bottom of the unconfined aquifer.  

Combining Eq. 3-24 and Eq. 3-25 gives 

 
x y
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where μ is the specific yield [m3/m3], also known as the drainable porosity.  

This equation is usually called as Boussinesq equation, which governs the saturated 

flow in unconfined aquifers under the Dupuit-Forchheimer approximation.  

3.4.2 Numerical solution 

To numerically solve Eq. 3-26 with higher efficiency, the time-implicit Alternating 

Direction Implicit (ADI) method is adopted, and the specific schemes are shown as 

following:  

Step 1: x-derivative taken explicitly, and y-derivative taken implicitly 
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which is simplified to be a tridiagonal equation set of the form as 
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Step 2: x-derivative taken implicitly, and y-derivative taken explicitly 
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which can also be formulated as  
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where t and t+1 represent separately current and next time step, and t+1/2 indicates half 

time step between t and t+1.  

After solving successively the equation sets of 3-27 and 3-28, the groundwater head is 

then updated to be 1t
i , jH  .  

3.5 Interaction of groundwater and channel water 

Groundwater and surface water are not isolated components in the hydrological system, 

instead, they interact. A lot of methods, such as model construction and field 

measurement, have already been carried out to quantify the stream-aquifer interaction. 

Osman et al. (2002) pointed out that it is necessary to take the effect of the suction head 

beneath the streambed layer into account if one needs to calculate the stream-aquifer 

flux properly. Hence, the deterministic modelling method, MODFLOW (McDonald and 

Harbaugh, 1988), is implemented to estimate the interactive flux between streams and 

aquifers.  

In the MODFLOW stream package (McDonald and Harbaugh, 1988), the open water 

in streams is assumed to be separated from the aquifer by a clogging streambed layer 

with low permeability (as shown in Fig. 3-4 and Fig. 3-5). The interactive flux between 

them is simplified as a function of streambed conductance and head gradient.  
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Fig. 3-4 Conceptual representation of direct stream-aquifer interconnection.   

As shown in Fig. 3-4, the groundwater is directly connected with surface water, in 

which case flowing water between them is predominantly through a saturated medium. 

This interactive flux, qcg, is linearly related to the difference of groundwater head and 

water level in streams as  

    b
cg r g s r g

K
q h h C h h

M
      3-29 

where Cs is the hydraulic conductance of stream-aquifer interconnection [s-1], Kb is the 

hydraulic conductivity of streambed material [m/s], L is the length of the stream [m], 

W is the width of the stream [m], M is the streambed thickness [m], hr is the elevation 

of water level in the stream [m], hg is the groundwater head [m].  

 

Fig. 3-5 Conceptual representation of indirect stream-aquifer interconnection.   

Once the groundwater head falls below the streambed, the direct connection between 

groundwater and stream water disappears, as shown in Fig. 3-5. In this case, the flow 

from streams to groundwater is assumed proportional to the depth of water in the 



3   Model Description and Study Area Description 

28 
 

channel (detailed in Eq. 3-30).  

  cg s r botq C h h    3-30 

where hbot is the elevation of the streambed [m]. 

McDonald and Harbaugh (1988) have pointed out that the formulation of a single 

conductance term to account for a three-dimensional flow process is inherently an 

empirical exercise, and the calibration for it is almost always required. 

3.6 2D terrestrial hydrological model 

3.6.1 A subgrid channel two-dimensional model  

The storage cell approach was first proposed in 1970, and widely used to simulate 

floodplain inundation; based on this approach, the two-dimensional subgrid channel 

model (Neal et al., 2012) was developed where each discretized cell is viewed as one 

storage compartment. To present a hydraulic model for both channel flow and 

floodplain flow, there are two major extensions in the model: (1) a subgrid channel is 

given in each grid cell (as shown in Fig. 3-4 and Fig. 3-5); (2) the hydraulic 

characteristics of the subgrid channel (e.g. channel depth and width, see in Fig. 3-6) are 

estimated using the hydraulic geometry theory (Leopold and Maddock, 1953).  

 

Fig. 3-6 Conceptual diagram of the subgrid cross-section (adopted from Neal et 

al. (2012), Figure 1) 

In the subgrid channel model, the simulation of the water level, wave propagation, and 

inundation extent in one grid cell is implemented by combining the continuity of mass 

in cell and the momentum equation between cells. The continuity equation is  

 
H Q
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  3-31 
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And the momentum equation to calculate the flow between cells is based on Manning’s 

equation:  
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n dl
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where H is the water free surface height [m], Q is the volumetric flow rates into or out 

of the cell [m3/s], A is the water surface area [m2], t is the time [s], h is the water depth 

[m], w is the width of flowing water [m], m is a constant, n is the Manning roughness 

coefficient [s/(m1/3)], l is the length of flowing path [m], R is the hydraulic radius [m], 

dH
J

dl
  is the slope of the linear hydraulic head loss along the flowing path [m/m]. For 

wide and shallow channels, the wetter perimeter approximately equals to the channel 

width, and thus the hydraulic radius is represented by the depth of water flow.  

In the case of low water level, i.e. water level maintains below the ground elevation (as 

shown in Fig. 3-6), the flow between grids in the continuity equation is supposed to 

compute as channel flow:  
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where hc is the water depth in the channel [m], wc is the width of the channel [m], nc is 

the Manning roughness coefficient of channel flow [s/(m1/3)], zc is the streambed 

elevation [m].  

In the case of high water level as shown in Fig. 3-6, the channel flow can be calculated 

from Eq. 3-33, and the floodplain flow can be calculated from Eq. 3-34. The 

combination of channel flow and floodplain flow, i.e. Q = Qc + Qf, provides the cell 

discharge. The continuity equation (Eq. 3-31) accounts for the conservation of water 

mass in  each grid cell; the water surface area (A) equals to wc·∆x if water flows in the 

channel and A=∆x2 if water is above the channel bank.  
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where wf is the width of floodplain flow [m], hf is the water depth of floodplain flow, 
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[m], wl is the width of flowing water [m], nf is the Manning roughness coefficient of 

floodplain flow [s/(m1/3)], zf is the ground elevation [m], ∆x is the width of grid cell [m].  

3.6.2 Numerical solution 

In the two-dimensional terrestrial hydrological model, the equations are implicitly 

solved using a finite difference discretization of the time derivative term. Considering 

the flows in eight directions (see in Fig. 3-7) and sink/source, the continuity equation 

(Eq. 3-31) for each grid cell(i,j) over a time step ∆t is expressed as  
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where Si,j signifies the sink and source item, including the interactive flux between 

channel water and groundwater, infiltration-excess runoff and saturation-excess runoff.  

With predefined flowing directions (k=1 - 8 in Fig. 3-7), Eq. 3-35 is shortened to 
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The time implicit term, 1t
i , jQ   , is contributed by the slope item of the momentum 

equation (i.e. Eq. 3-32), as 
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Fig. 3-7 Diagram of flow directions between one cell and its eight neighboring 

cells. Predefined inflowing direction (red arrows): k = 1–4, from (ik,jk) 

to (i,j); predefined outflowing direction (blue arrows): k = 5–8, from (i,j) 

to (ik,jk). For k = 1, water flows from (i-1,j) to (i,j) with ∆l = ∆x; for k = 

2, (i,j-1) to (i,j) with 22l x   ; for k = 3, (i,j-1) to (i,j) with ∆l = ∆x; 

for k = 4, (i+1,j-1) to (i,j) with 22l x   ; for k = 5, (i,j) to (i+1,j) with 

∆l = ∆x; for k = 6, (i,j) to (i+1,j+1) with 22l x   ; for k = 7, (i,j) to 

(i,j+1) with ∆l = ∆x; for k = 8, (i,j) to (i+1,j-1) with 22l x   .  

For the defined inflowing directions (k = 1–4 in Fig. 3-7), the slope of the linear 

hydraulic head loss at a grid cell (i,j) is written as  
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and for the defined outflowing directions (k = 5–8 in Fig. 3-7), the slope is expressed 

as  
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Therefore, the two-dimensional surface water routing scheme can be formulated as  
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After solving this equation, one can obtain the change of water level over one time-step 

for each grid cell (i.e.   1t

i , j
H

 ), and then renew the water level and the inundation 

extent.  

3.7 Coupling of unsaturated soil water and groundwater  

The hydrostatic equilibrium soil moisture distribution is usually described by a steady 

state solution of Richards equation that is deduced from the situation that the hydraulic 

potential above water table is constant, i.e. φ=φm+φg=C. It is to say that Darcy's law 

(Eq. 3-5) is in a zero-flux condition where the upward diffusive flux equals to the 

downward gravitational flux, i.e.  

     gmK K
z z

 


 
 

  3-37 

where K is the hydraulic conductivity [m/s], θ is the volumetric soil water content 

[m3/m3], φm is the soil matric potential [m], φg is the gravitational potential [m], z 

signifies the vertical coordinate [m].  

With the expressions of φm (see in Eq. 3-9) and K(θ) (see in Eq. 3-8) in Clapp and 

Hornberger model (Clapp and Hornberger, 1978), Eq. 3-37 is reformulated as  

1

1 1

s

b b
s

b

z


  


  


 

where φs is the air-entry matric potential [m], θs is the saturated soil moisture [m3/m3]. 
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Integrating from the groundwater table, zg, to one position above the groundwater table 

(with an elevation of z), gives   
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
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  3-38 

By substituting the redefinition of the effective saturation into Eq. 3-38, one rearranges 

the terms to express the equilibrium volumetric water content, θE, as  

    
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g
E r s r
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z z
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
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  3-39 

where θr is the residual water content [m3/m3].  

Using Eq. 3-39, the equilibrium profile of soil moisture can be determined according to 

the specified groundwater depth and soil property parameters. This profile is used for 

the redistribution of the unsaturated soil water content in the near-groundwater-table 

zone and the dynamics of the groundwater table. When the aquifer is fully saturated, 

i.e. groundwater table approaches to or reaches the ground surface, saturation-excess 

runoff occurs. In the model scheme, the soil water exceeding the water storage capacity 

of the aquifer will be squeezed out, which is viewed as saturation-excess runoff.  

As mentioned in Section 3.3, the flux at the bottom of the soil model domain is 

calculated using Darcy’s law (q in Fig. 3-8(a)). But in the case of shallow groundwater 

(i.e. groundwater table located within the soil model domain), the flux at the domain 

bottom is zero; instead, the flux at the upper boundary of the layer where groundwater 

table is located (q in Fig. 3-8(b)) is used in this module.  

Therefore, the change of soil water in the near-groundwater-table zone, ∆wt+1, is 

contributed by the interactive flux between unsaturated and saturated soil water (𝑞 in 

Fig. 3-8), the stream-aquifer interactive flux (see in Section 3.5), and lateral 

groundwater flows (see in Section 3.4). Hence, one can calculate inversely the updated 

groundwater head, 1tz


 , by balancing  

   1

1 1 up

t

zt t t
bot s Ez

w w z z z dz 



 
       

where zbot is z-coordinate of the bottom of the unconfined aquifer [m], zup is z-coordinate 

of the upper boundary of the groundwater-table-located layer [m], wt is the soil water 

storage between zup and zbot at current time step [m].   
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Fig. 3-8 Schematic diagram for unsaturated soil water, groundwater, and their 

coupling. (a): groundwater table is located below the soil model domain; 

(b): groundwater table is located within the soil model domain.  

3.8 Introduction to the studied basin  

3.8.1 Geographical features 

The Huaihe basin, situated about the midway between the Yellow River and the Yangtze 

River (as shown in Fig. 3-9) and located in eastern China (11155–12125 E, 3055–
3636 N), has a drainage area of 2.7×105 km2. The landforms in the basin are divided 

into three types: mountains, hills, plains, which account for 9.7%, 6.5%, and 83.8% of 

the basin area, respectively.  
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Fig. 3-9 Topography and geomorphology of the Huaihe basin. WJB (Wangjiaba), 

LTZ (Lutaizi), and BB (Bengbu) are three hydrological station in the 

Huai River.  

The Funiu Mountains are a mountain range in southern Shanxi and western Henan in 

China (Shanxi and Henan are two provinces in China); the elevation generally ranges 

from 200 to 300 m, with a top elevation of 2153 m. A part of the Funiu Mountains is in 

the Huaihe basin (northwestern basin, see in Fig. 3-9). The Tongbai Mountains are a 

mountain range in Henan Province and Hubei Province in China, part of which are in 

the western Huaihe basin (see in Fig. 3-9); and these mountains mostly has an elevation 

from 200 to 300 m, with a maximum elevation of 1140 m. The Dabie Mountains are a 

major mountain range located in central China, part of which are in the southern Huaihe 

basin (see in Fig. 3-9). Running northwest-to-southeast, they form the main watershed 

between the Huai River and the Yangtze River. The elevation in the Dabie Mountains 

primarily ranges from 300 to 500 m, with the highest peak of 1774 m. The Yimeng 

Mountains are a mountain range in the Shandong Province of China, and the elevation 

mostly ranges from 200 to 500 m, with the highest peak at an elevation of 1155 m. The 

plains are located in the northern region of the Huai River (15–50 m elevation), in the 

western region of Nansi Lake (15–50 m elevation), and in the downstream area (2–10 
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m elevation). The hills are mainly situated in the extension of the mountains, with an 

elevation of 100–200 m in the western basin, 50–100 m elevation in the southern basin, 

and about 100 m elevation in the northeastern basin.  

The Huaihe basin includes two independent catchments: the combined catchment of Yi 

River, Shu River, and Si River in the northeastern part (the YSS basin in Fig. 3-9) with 

a drainage area of 0.8×105 km2, and the catchment of the Huai River with a drainage 

area of 1.9×105 km2 (the Huai River basin, the remaining area in Fig. 3-9). The Huai 

River, the main stream of the Huai River basin, originates from the Tongbai Mountains 

and flows into the Yangtze River, and ends up to the ocean, running from west to east. 

The Huai River is separated to upstream, midstream, and downstream parts. The section 

of the Huai River above the Honghekou station (2 km to the Wangjiaba hydrological 

station (WJB in Fig. 3-9 )) is defined as the upstream; it has a length of 360 km, a 

drainage area of 30630 km2, a gradient of 980 m/360 km. The section from the 

Honghekou to the Zhongdu (i.e. the outlet of Hongze Lake (see in Fig. 3-9)) is the 

midstream of the Huai River, with a length of 490 km, a gradient of 16 m/490 km, and 

a drainage area of 128784 km2. The remaining part is the downstream with a drainage 

area of 30660 km2; the major part of the Huai River’s flow via the Hongze Lake enters 

the Yangtze River along a stream with a length of 150 km and a gradient of 6 m/150 

km.  

3.8.2 Climatology and hydrology 

The Huaihe basin locates in the climate transition zone, where the northern region of 

the Huai River is in the warm temperature semi-humid zone and the southern region of 

the Huai River in the subtropical humid zone. The rain band caused by the East Asian 

summer monsoon is characterized by stepwise northward advance from southern China 

and the western North Pacific in early-mid May to the Yangtze River valley and 

southern Japan in mid-June, then to north China and the Yellow Sea as well as the 

southern Japan Sea in late July. When the monsoon rain band is located in the Yangtze-

Huaihe River basin, it is normally called Meiyu (Zhang et al., 2005). Summer monsoon 

rain band has a coherent physical feature associated with the occurrence of heavy and 

persistent precipitation. Mainly caused by the geographic difference and largely 

influenced by the inter-decadal variations of East Asian Summer Monsoon in the 

eastern China, the precipitation in the basin describes a high spatial and temporal 

variability (Ye and Li, 2017). The Huaihe basin is prone to extreme events, such as 

drought and flood.  

According to the observed precipitation from meteorological stations (Ye and Li, 2017), 

the mean annual precipitation from 1961 to 2010 is 896 mm/a in the Huaihe basin. 

Spatially, it ranges from 600 to 1400 mm/a (see in Fig. 3-10), with a notably decreasing 
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trend from southeast to northwest. There is maximum annual rainfall in the region of 

the Dabie Mountains (> 1100 mm/a). The rainfall in the Huaihe basin occurs 

predominantly in summer months (JJA), occupying 52.1% of annual precipitation. The 

mean precipitation in spring (MAM), autumn (SON), and winter (JJA) are 185, 174, 

and 70 mm, respectively. Also, the precipitation from 1961 to 2010 shows a high inter-

annual variability, with a maximum annual precipitation (1240 mm/a) in 2003 and a 

minimum annual precipitation (598 mm/a) in 1978.  

 

Fig. 3-10 Spatial distribution of the mean annual precipitation observed from 1961 

to 2010. [Adopted from Ye and Li (2017), Figure 2(a)] 

According to monthly global gridded high-resolution air temperature data (Willmott et 

al., n.d.), the spatial distribution of the mean air temperature from 1961 to 2010 in the 

Huaihe basin is depicted as Fig. 3-11. Spatially, the air temperature in the basin 

gradually decreases from south to north and from coastal to inland. The mean air 

temperature in the basin is mostly in the range of 13.0 to 16.2 °C, with the highest mean 

monthly temperature in July (27.7 °C) and the lowest in January (1.0 °C). There is a 

relatively high mean air humidity (66–81%) in the basin, with the highest value in 

summer (> 80%) and the lowest in winter (about 65%).  
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Fig. 3-11 Spatial distribution of the mean air temperature (ºC) in the Huaihe basin 

observed from 1961 to 2010 (Willmott and Matsuura, n.d.). 

According to the measurements from 1956 to 2000, the mean annual runoff in the 

Huaihe basin is 220 mm/a, with 238 mm/a in the Huai River basin and 181 mm/a in the 

catchment of the Yi-Shu-Si Rivers. The runoff in the basin shows an uneven 

spatiotemporal distribution. Benefiting from intense precipitation and the topographic 

condition, the runoff in the mountainous regions is higher; the mean annual 

precipitation in the mountains and the southern region of the Huai River exceeds 300 

mm/a. Conversely, the runoff in the plains is small; for example, the mean annual runoff 

in the plains north of the Huai River and west of Nansi Lake (see in Fig. 3-9) is lower 

than 100 mm/a.  

Like the distribution of precipitation in the Huai River basin, the runoff is also 

concentrated in the flood season (June - September), which accounts for about 60% of 

the annual runoff. In the basin of Yi-Shu-Si Rivers, this ratio is even higher (70–80%). 

The inter-annual variability of runoff is more significant than that of precipitation. The 

ratios of maximum to minimum annual runoff at the observation stations range from 5 

to 30, but this ratio is smaller (< 10) in the mountains.  

The Wangjiaba, Lutaizi, and Bengbu stations are three important outlets of the Huai 

River, which are abbreviated as WJB, LTZ, and BB, respectively, in this study. Their 

specific locations in the basin are shown in Fig. 3-9. The mean annual runoff flowing 

through these three stations is calculated according to the observed river discharges 

from 1956 to 2000 and the areas of the subbasins. The results are listed in Table 3.1. 

The BB subbasin occupies 64% of the total area of the Huai River basin, and the 
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generated runoff in this subbasin contributes 67% of flood water in the Huai River. 

Whereas, 84% of the river runoff at the BB station stems from the drainage area above 

the LTZ station.  

Table 3.1  The observed mean annual river discharge from 1956 to 2000 at the WJB, 

LTZ, and BB hydrological stations, and the mean annual runoff in the 

corresponding subbasin.  

hydrological 
station 

mean annual 
discharge (× 104 m3) 

subbasin 
drainage area 

(km2) 
mean annual 
runoff (mm) 

WJB 1018285 WJB subbasin 30630 333 

LTZ 2550734 LTZ subbasin 88630 288 

BB 3049256 BB subbasin 121000 252 

/ / Huai River basin 190000 238 

Note: the mean annual discharges at the three hydrological stations are cited from Yan et al. (2010); the 

mean annual runoff is calculated based on the mean annual discharges and the drainage areas. 
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4 Hillslope Runoff Parameterization and its 

Application 

In the previous chapter, the coupling of the Weather Research and Forecasting (WRF) 

Model, the Noah-Multiparameterization Land Surface Model (Noah-MP LSM), and the 

distributed hydrological model (HMS) is presented; several coupled models are 

available, e.g. the coupled land surface and hydrological model NoahMP-HMS that is 

offline driven by meteorological forcing data. In this chapter, a new parameterization 

for hillslope runoff is developed, where the influence of hillslope topography on runoff 

production has been considered. In order to evaluate the effectiveness of the new 

parameterization and to validate the model, the offline simulations by the NoahMP-

HMS with and without this parameterization are compared to the observation. 

Furthermore, the spatiotemporal variability of the hydrological processes in the Huaihe 

basin is investigated based on the long-term simulation.  

4.1 A new parameterization for hillslope runoff 

As mentioned in Chapter 2, the heterogeneity of soil moisture and resulting runoff 

generation strongly effects the heat and water budget at the land surface. The infiltration 

and surface runoff scheme shown in Section 3.2 is based on a homogeneous horizontal 

grid, neglecting the sub-grid soil moisture variability. Whereas, soil moisture is 

associated with relative elevation and topography, such as slope aspect and position 

(Qiu et al., 2001). Consequently, it is very necessary to represent the impact of subgrid-

scale topography on soil moisture to better describe the generation of surface runoff.  

As illustrated in Section 3.2, the actual infiltration and the infiltration-excess runoff are 

determined by the precipitation rate and the infiltration capacity; the infiltration 

capacity is simplified as the hydraulic conductivity of the near-surface soil at its 

maximum wetness, i.e. f*=K(θmax). Based on homogeneous horizontal grids in the 

original scheme, the maximum soil water volumetric content is the saturated soil 

moisture (Fig. 4-1(a)). However, significant deviations have been detected between and 

the observation and the simulation of the original NoahMP-HMS (as elaborated in 

Section 4.3).  
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Fig. 4-1 Schematic diagram of infiltration capacity in the original (a) and the 

modified (b) schemes. In this figure, P represents precipitation intensity, 

Ic is infiltration capacity, Rins is infiltration-excess runoff.  

As any soil water in excess of field capacity drains away due to gravity, the soil water 

holding capacity is reduced under hillslope topography (as illustrated in Fig. 4-1(b)). 

Field capacity is the upper limit of storable water in the soil. he maximum soil moisture 

(θmax) is hence assumed as a weighted average of saturated soil moisture (θs) and field 

capacity (θfd), i.e.  

1 2max s fdw w       

By introducing field capacity into the formula of the maximum soil moisture, the 

infiltration capacity in hillslope topography is weakened, and its ability of generating 

infiltration-excess runoff is strengthened. As such, the production of hillslope runoff in 

hillslope topography is parameterized via the infiltration capacity.  

Table 4.1 lists the calculation formulas for infiltration capacity and infiltration-excess 

runoff in the original and the modified scheme. In the original scheme, the infiltration 

capacity is estimated as the saturated hydraulic conductivity of the top-layer soil, which 

adopts for the whole basin. The occurrence of infiltration-excess runoff and its amount 

depend on precipitation intensity and the infiltration capacity.  
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Table 4.1 The calculation of infiltration capacity and infiltration-excess runoff in 

the infiltration and surface runoff schemes.  

scheme infiltration capacity
*f  

infiltration-excess  

runoff insR  

original      *f K s  
whole 
basin 

0 p f
Rins p f p f


   





 

modified 

 
2

s fd
K*f

K s

 







  
     



 

 
mountains 
and hills 0 p f

Rins p f p f


   





 

plains 

In the modified infiltration and surface runoff scheme, the new parameterization is used 

to calculate the infiltration capacity under hillslope topography. Hence, the infiltration 

capacity in mountainous and hilly areas is estimated as the hydraulic conductivity of 

the top-layer soil at the wetness averaged of saturated soil moisture and field capacity. 

For plains, the calculation of infiltration capacity is identical to that in the original 

scheme. The implement of the new hillslope runoff parameterization is expected to 

improve the runoff simulation in the NoahMP-HMS.  

4.2 Model setup of the NoahMP-HMS 

To calibrate and validate hydrological parameters and to illustrate the reliability of the 

new parameterization, the coupled land surface and hydrological model NoahMP-HMS 

is first applied to the Huaihe basin in China. For the simulation in the Huaihe basin, a 

domain is selected to cover the whole basin, and the ocean to the east to capture the 

water flow along the Huai River and Yangtze River and it ends up to the ocean, as 

shown in Fig. 4-2. The domain consists of 48 × 54 grids with a resolution of 20 km in 

Lambert conformal conic projection. The time step is 30 minutes for the land surface 

simulation and the hydrological simulation. Spin-up of decade is required to achieve a 

quasi-equilibrium condition, when the hydrological variable fields are used as initial 

conditions for the NoahMP-HMS simulation.  
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Fig. 4-2 Domain diagram of the simulation for the Huaihe basin.  

The NCEP/NCAR reanalysis global datasets, including air temperature, humidity, 

surface pressure, wind, cloud cover, radiation (No. 1–11 in Table 4.2), are used to drive 

the NoahMP-HMS. To reduce the uncertainty of input, the gridded precipitation 

observation (No. 12 in Table 4.2) is used as precipitation input; this dataset is spatially 

and temporally interpolated from the measured precipitation in 833 meteorological 

stations in China, with the consideration of the impact of topography on precipitation 

interpolation (Li et al., 2015). The land surface parameters, e.g. soil type, land use type, 

etc. (No. 13–20 in Table 4.2) are extracted by the WRF preprocessing  

For groundwater modelling, the thickness of unconfined aquifer and drainable porosity 

are required to characterize subsurface hydrological conditions. In this study, the 

drainable porosity is represented by porosity. The aquifer thickness (No. 22 in Table 

4.2) is deduced according to the geological data of China, based on the known 

relationship between geological type and hydrological parameters in American (Yang 

et al., 2011). The average groundwater head at 5' resolution (~ 9 km) (No. 21 in Table 

4.2) simulated by global groundwater model (De Graaf et al., 2017) is used to initialize 

groundwater head.  

For terrestrial hydrological modelling, terrain elevation, catchment division, channel 

depth and width (No. 24–27 in Table 4.2) are in need to characterize surface 

hydrological conditions. These hydrological characteristic parameters can be obtained 

with ZB algorithm (Yu et al., 2006), with hydrologically correct DEM (Digital 

Elevation Model) and flow accumulation data (from USGS geographic database 

HYDRO1K).  
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The Manning roughness coefficient (No. 28 in Table 4.2) and the hydraulic conductance 

of stream-aquifer interconnection (No. 29 in Table 4.2) are important parameters for 

terrestrial hydrological simulations. But there is a lack of effective ways to collect the 

spatial distributions of these parameters, and hence calibration and validation for them 

are required. Li et al. (2015) calibrated the hydraulic conductance of stream-aquifer 

interconnection in different subbasins according to the hydrogeological characteristics: 

10-8 s-1 in the WJB subbasin, 10-6 s-1 in the WJB-LTZ subbasin, 10-5 s-1 in the LTZ-BB 

subbasin, 10-5 s-1 in the downstream area. The Manning roughness coefficient in the 

Huaihe basin is selected as 0.02 on the basis of the studies of Bao and Zhao (2011) and 

Yu et al (2016). And the approximate Bayesian computation method is used to optimize 

the Manning roughness coefficient (see details in Appendix 7.3).  

The subgrid-average slope is calculated based on the USGS HYDRO1K slope dataset 

at a resolution of 1 km (No. 23 in Table 4.2). In the Huaihe basin, the grids with average 

slope higher than 0.10 degree is defined as hillslope topography. It covers the 

mountainous and hilly areas, which are in the southern, northeastern, and western 

region of the basin. Fig. 4-3 depicts the distribution of hillslope and plain areas in the 

basin.  

 

Fig. 4-3 The spatial distribution of hillslope areas and plains within the Huaihe 

basin.  
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Table 4.2 Inputs and parameters for the NoahMP-HMS.  

No. Variable Unit File/Variable Name Source 

1 air temperature at 2 m  K air.2m.gauss.#.nc 

NCEP/NCAR  
reanalysis data 

2 specified humidity at 2 m kg/kg shum.2m.gauss.#.nc 

3 surface pressure N/m2 pres.sfc.gauss.#.nc 

4 U-wind at 10 m m/s uwnd.10m.gauss.#.nc 

5 V-wind at 10 m m/s vwnd.10m.gauss.#.nc 

6 total cloud cover m2/m2 tcdc.eatm.gauss.#.nc 

7 downward longwave radiation flux W/m2 dlwrf.sfc.gauss.#.nc 

8 visible beam downward solar flux W/m2 vbdsf.sfc.gauss.#.nc 

9 near IR beam downward solar flux W/m2 nbdsf.sfc.gauss.#.nc 

10 visible diffuse downward solar flux W/m2 vddsf.sfc.gauss.#.nc 

11 near IR diffuse downward solar flux W/m2 nddsf.sfc.gauss.#.nc 

12 gridded observation precipitation m/s precipitation 
833 meteorological 

sites in China

13 terrain height m topo_* 

WRF  
Geographical  

database 

14 top layer soil type — soiltype_top_* 

15 bottom layer soil type — soiltype_bot_* 

16 deep soil temperature K soiltemp_1deg 

17 monthly leaf area index — lai_modis_* 

18 monthly green fraction — greenfrac_fpar_modis

19 land use type — landuse_* 

20 monthly surface albedo % albedo_ncep 

21 groundwater head m gw_head_5m_1L.msp
global model (De 

Graaf, 2017) 

22 unconfined aquifer thickness m aqthick 
geological data, 
empirical model 

23 Subgrid-average slope degree slope  USGS HYDR1K 

24 hydrological terrain height m elevation  USGS HYDR1K 

25 channel depth m bank 

ZB algorithm (Yu 
et al., 2006) 

26 channel width m width 

27 drainage basin boundaries — maskbasin 

28 The Manning roughness coefficient s/m1/3 rough 
calibrated  

in subbasins 29 
The hydraulic conductance of  
stream-aquifer interconnection 

s-1 Cs 

Note: # signifies specified year for data, * represents the spatial resolution of data.  
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4.3 Performance evaluation and model verification 

With the model configurations aforementioned in Section 4.2, the NoahMP-HMS with 

the original and the modified infiltration and surface runoff scheme are separately used 

to simulate the hydrological processes of the Huaihe basin from 1980 to 1987. Unlike 

the original scheme, the modified version includes a new hillslope runoff 

parameterization where the effect of hillslope topography on the generation of surface 

runoff is considered. The reliability of this new parameterization is examined, and the 

performance of the NoahMP-HMS is validated, by comparing both simulations and the 

observation. The comparisons are carried out concerning streamflow estimates and 

water budget.  

4.3.1 Water budget 

The partitioning of precipitation into runoff and infiltration strongly affects regional 

water balance, and the analysis of water budget is an essential way to improve the 

parameterization scheme. Therefore, the terrestrial water budget (see details in 

Appendix 7.1) in the simulations are compared to the observation, including 

precipitation, evapotranspiration, runoff, and water storage change. The precipitation in 

the terrestrial water budget only involves the observation precipitation which is used to 

drive the NoahMP-HMS.  

The simulated water budgets in the subbasin of WJB, LTZ, and BB (see their specific 

locations in Fig. 4-2) are computed separately and listed in Fig. 4-4(a)–(c). Meanwhile, 

Fig. 4-4(d) shows the partitioning of precipitation to evapotranspiration, runoff, and the 

change of water storage. It is found that in these three basins, the change of water 

storage in the watershed is largely contributed by the change of water storage in the 

aquifer, with ratios exceeding 99%. In addition, Table 4.3 shows the observed and 

simulated mean annual runoff from 1980 to 1987 in the watershed of WJB, LTZ, and 

BB.   

Table 4.3  The mean annual discharge at the WJB, LTZ, and BB station observed 

from 1980 to 1987, and the mean annual runoff in the corresponding 

watersheds.  

station 

observed 
mean annual  

discharge  
(× 104 m3)  

drainage  
area  

(km2) 
subbasin

mean annual runoff (mm/a) 

observed 
original 
scheme 

modified 
scheme 

WJB 1071310 30630 WJB 350 102 329 

LTZ 2427378 88630 LTZ 274 97 288 

BB 3062803 121000 BB 253 89 245 
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Since the NoahMP-HMS is offline driven by the meteorological forcing data, the 

amounts of precipitation in the simulation using the original and the modified scheme 

are identical. The mean annual precipitation from 1980 to 1987 in the WJB, LTZ, and 

BB subbasin is 1037, 985, and 933 mm/a, respectively. While using the modified 

scheme, the simulated mean annual runoff increases from 102 to 329 mm/a in the WJB 

subbasin, from 97 to 288 mm/a in the LTZ subbasin, and from 89 to 245 mm/a in the 

BB subbasin. As shown in Table 4.3, the observed mean annual runoff from 1980 to 

1987 in these three subbasin is 350 (WJB), 274 (LTZ), and 253 (BB) mm/a, respectively.  

The comparison shows that using the original scheme, all the simulated runoff in three 

subbasin are lower than the observation, with relative biases higher than 60%; the 

simulated runoff with the modified scheme is comparable to the observation, with a 

relative bias of -6%, 5%, and -3% in the WJB, LTZ, BB subbasin, respectively. This 

contrast indicates that the implement of hillslope runoff parameterization in the 

NoahMP-HMS improves the model ability to reproduce the runoff. By this 

improvement, simulated runoff of the Huaihe basin approaches to the observation.  

Table 4.4 shows the mean annual value of different runoff components in the modified 

simulation and their contributions to total runoff. The total runoff is composed of 

surface runoff and groundwater supply to streams; surface runoff results from rainfall 

events, while groundwater supply occurs by groundwater seepage to streams. In the 

WJB, LTZ, and BB subbasin, the surface runoff accounts for 91.3%, 89.9%, and 89.0% 

of the total runoff, while the groundwater supply occupies 8.7%, 10.1%, and 11.0%, 

respectively. It is to say that the runoff resulted from rainfall events is dominated in the 

river runoff of these three subbasins. This finding agrees to the study of Huang (1992) 

that rainwater is the main recharge source in the Huai River.  

Table 4.4 The mean annual runoff from 1980 to 1987 simulated by the NoahMP-

HMS with the modified scheme, and the contributions of various 

runoff components.  

 
WJB subbasin LTZ subbasin BB subbasin 

runoff 
(mm/a) 

ratio 
(%) 

 runoff 
(mm/a) 

ratio 
(%) 

 runoff 
(mm/a) 

ratio 
(%) 

R 329  288 245  

Rsf 300 91.3 259 89.9 218 89.0 

Qcg 29 8.7 29 10.1 27 11.0 

Note: Rtotal: total runoff, Rsf: surface runoff, Qcg (+): groundwater supply to streams.  

Fig. 4-4(d) shows the partitioning of precipitation to evapotranspiration, runoff, and 

water storage change in term of percentage. In the simulation with the modified scheme, 

the runoff which outflows from the subbasin via river discharge accounts for 32%, 29%, 
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and 26% of annual precipitation in the WJB, LTZ, BB subbasin, respectively; in the 

original simulation, the annual runoff-precipitation ratios in all three subbasins are 10%. 

A part of annual precipitation returns to the atmosphere through evapotranspiration in 

the modified simulation, reaching 62%, 64%, and 67% in the WJB, LTZ, and BB 

subbasin, respectively; while the annual evaporation-precipitation ratios in the original 

simulation are 72%, 72%, and 75%, respectively. For each of the subbasins only about 

1% of precipitation is retained in the watershed in the modified simulation, but a higher 

proportion of precipitation – 12% (WJB), 11% (LTZ), and 8% (BB) – is stored in 

aquifers in the original simulation.  

 

Fig. 4-4 Mean annual terrestrial water budget from 1980 to 1987 simulated by 

the NoahMP-HMS with the original and the modified scheme – (a) WJB 

subbasin, (b) LTZ subbasin, (c) BB subbasin – and the partitioning 

percentage of precipitation (d). P: precipitation, E: evapotranspiration, 

R: runoff, dw/dt: the change of water storage.   

Overall, in the coupled land surface and hydrological simulation with the original 

scheme, the water storage from 1980 to 1987 presents an unreasonably large increase 

in three subbasins, while the simulated runoff is significantly lower than the observation. 

According to the water budget (Fig. 4-4), we know that is mainly because the 

infiltration in the original scheme is excessively high, which constrains the generation 

of infiltration-excess runoff. On the contrary, the changes of water storage in the three 

subbasins are insignificant in the modified simulation, and almost all the precipitation 
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is released from the watershed by river discharge and evapotranspiration. This is in 

accordance with the long-term water balance dynamic.  

4.3.2 Streamflow estimates 

Streamflow is an important prognostic variable in the model. In this study, three 

common statistical indices are used to evaluate the agreement of the simulated 

streamflow and the observation: (1) Nash-Sutcliffe coefficient of efficiency index (NSI), 

(2) Pearson product-moment correlation coefficient (PMC), and (3) water balance index 

(WBI). Their definitions are shown in Appendix 7.2. The efficiency coefficient (NSI) 

is a measure of fitness for simulated and observed river discharge, in the range of -∞ 

and 1.0 (a perfect fit), which mainly reflects the ability of the model to simulate the 

observed peak flow. The NSI value of zero indicates that the model is capable to 

describe the mean of observed streamflow; the coefficient between 0 and 1 implies that 

the deviation of simulated and observed streamflow cam be appropriately described. 

The correlation coefficient (PMC), valued between 0 and 1 (perfect positive 

correlation), describes the correlation between observed and simulated streamflow in 

timing. The water balance index (WBI) measures the model ability to reconstruct water 

balance processes, and a value close to 1 means a high-precision simulation for it.  

Fig. 4-5 shows the performance indices between the observed and the simulated daily 

streamflow at the hydrological station of WJB, LTZ, and BB from 1980 to 1987. Fig. 

4-6 shows the time series of the observed and the simulated daily streamflow at these 

three hydrological stations from 1980 to 1987.  

 

Fig. 4-5 Goodness-of-fit indexes between the observed river discharge and the 

simulated daily streamflow at the WJB, LTZ, and BB station.  
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As shown in Fig. 4-5, the correlation coefficients of the simulated daily streamflow 

using the original scheme are 0.76, 0.85, 0.86 at the WJB, LTZ, and BB station, 

respectively; while their coefficients in the modified simulation are 0.87, 0.90, and 0.91. 

These correlation coefficients are high, which indicates a good agreement of temporal 

variation between the observed and the simulated daily streamflow. And the modified 

simulation shows a slightly better agreement. As illustrated in Fig. 4-6, the temporal 

variations of simulated daily streamflow in two simulations are consistent with the 

corresponding observations at the three hydrological stations.  

The efficiency coefficients and water balance indexes of daily streamflow provide 

further evidences to the improvement by the modified scheme. In the modified 

simulation, the efficiency coefficients of simulated daily streamflow at the WJB, LTZ, 

and BB station, are 0.67, 0.81, and 0.80, respectively; while those are about 0.22 in the 

original simulation. As shown in Fig. 4-6, the daily streamflow simulated by the 

modified model well matches the observation at three stations, notably better than that 

of the original simulation; the flood peaks are seriously underestimated in the latter 

simulation. Accordingly, the NoahMP-HMS with the modified scheme has a great 

ability to reproduce the peak flow of the hydrograph.  

The case of the water balance index is very similar to that of the efficiency coefficient 

mentioned above. The WBI values at the WJB, LTZ, and BB station with the modified 

scheme are 1.16, 0.96 and 0.90, respectively, while those with the original scheme are 

around 0.35. The low WBI value (0.35) illustrates that the river runoff from 1980 to 

1987 simulated by the NoahMP-HMS with the original scheme is significantly lower 

than the observation at three stations. Conversely, the WBI value in the modified 

simulation is close to 1.0, which means that the NoahMP-HMS with the modified 

scheme simulates water balance processes well.  

Overall, the evaluation indices of daily streamflow show that the performance of the 

NoahMP-HMS with the modified scheme is better than that with the original scheme. 

It indicates that the implementation of the hillslope runoff parameterization enables the 

NoahMP-HMS to behave better in simulating the hydrological processes of the Huaihe 

basin, especially during the high-flow period. By describing the hillslope runoff, the 

NoahMP-HMS is able to capture the observed daily river discharge in a high accuracy, 

with a high precision estimating the occurrence and the intensity of floods. 

Consequently, the NoahMP-HMS has a greater ability to reproduce the hydrological 

processes and terrestrial water balance in the Huaihe basin. 
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Fig. 4-6 Comparisons of the observed and the simulated daily streamflow from 1980 to 1987 at the hydrological station of WJB (a), LTZ 

(b), BB (c). Black solid line: the observation, blue dash line: the NoahMP-HMS simulation with the original scheme, red dash line: 

the simulation with the modified scheme.
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4.4 Spatiotemporal variability of hydrological processes 

In the previous section, the NoahMP-HMS with the new parameterization of hillslope 

runoff is validated, and it shows a good agreement with the observation in terms of 

water budget and streamflow estimates. In this section, the model is used for a long-

term land surface and hydrological simulation from 1979 to 2003 in the Huaihe basin 

at the same temporal and spatial resolution as that of the validation simulation. It is 

aimed to investigate the spatiotemporal variability of the hydrological processes in the 

basin, and their response to climate variability.  

4.4.1 Precipitation 

It is worth to inspect the spatial and temporal pattern of precipitation over the basin 

because hydrological processes are strongly sensitive to this crucial input. Fig. 4-7 

depicts the seasonal mean of observed precipitation from 1979 to 2003 within the 

Huaihe basin. In Fig. 4-7, Fig. 4-9, Fig. 4-15, millimeters per day is adopted as the unit 

in order to eliminate the impact of the inconsistency of number of days in four seasons.  

 

Fig. 4-7 Spatial distribution of the 25-year-averaged seasonal precipitation 

amount in the Huaihe basin: (a) spring, (b) summer, (c) autumn, and (d) 

winter.  
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As shown in Fig. 4-7, the precipitation within the basin generally decreases from 

southeast to northwest. Throughout four seasons regions with higher precipitation are 

located in the southern and eastern basin, i.e. the southern region of the Huai River and 

the downstream plains. An obvious characteristic in the annual pattern of precipitation 

is that the highest rainfall is found in summer while the least in winter. Meanwhile, the 

statistical calculation of precipitation intensity (not exhibited herein) shows that intense 

rainfall (> 25 mm/d) occurs more frequently in summer, while low-intensity rainfall (< 

10 mm/d) dominates in winter.  

In a similar manner, the monthly mean precipitation observed from 1979 to 2003 are 

spatially averaged and shown in Fig. 4-8, as well as the corresponding contributions to 

annual precipitation. The 25-year-averaged annual precipitation is 912 mm/a. In the 

basin, heavy rainfall is obtained in the Meiyu season due to the associated rain band 

over eastern China from June to August. Precipitation in summer accounts for 53% of 

annual precipitation; the precipitation during wet season (i.e. May – September in the 

Huaihe basin) contributes 70%.  

 

Fig. 4-8 Mean monthly precipitation amount (Pmonthly) in the Huaihe basin from 

1979 to 2003, and the corresponding percentage to annual precipitation 

(Pmonthly/Pannual).  

4.4.2 Evapotranspiration 

Evapotranspiration (ET) is the sum of evaporation and plant transpiration from the land 

and ocean surface to the atmosphere. In the NoahMP-HMS, the evapotranspiration over 

land is the sum of the contribution from each of three types of evaporation: direct 

evaporation from bare soil, plant transpiration, and evaporation of precipitation 

intercepted by the vegetation canopy (Godfery et al., 2010). In this study, the 

evaporation over lakes is not calculated using lake model but being equal to the 

potential evaporation around lakes. The potential evaporation is the maximum possible 
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evaporation that could occur over an open water surface under existing atmospheric 

condition. The calculation of potential evaporation involves an energy balance 

approach based on the Penman relationship. Hence, the evaporation of water surface at 

lakes reflects the evaporation capacity of the regions around them in the NoahMP-HMS 

simulation.  

The simulated evapotranspiration from 1979 to 2003 is averaged in season and their 

spatial distributions within the basin are depicted in Fig. 4-9. Similar to precipitation, 

there is the highest evapotranspiration in summer (Fig. 4-9(b)) and the lowest in winter 

(Fig. 4-9(b)) within the basin. Concerning the spatial distribution of evapotranspiration, 

the evapotranspiration decreases southeastwards over the Huaihe basin. The region with 

the lowest evapotranspiration is in the northern mountainous area, i.e. the Yimeng 

Mountains (see in Fig. 3-9), while the most intense in the downstream plains.  

 

Fig. 4-9 Spatial distribution of 25-year-averaged seasonal evapotranspiration 

amount in the Huaihe basin: (a) spring, (b) summer, (c) autumn, (d) 

winter.  

As shown in Fig. 4-9, the evaporation at Hongze Lake distinguishes from the 

evapotranspiration at its surrounding land, especially in spring. The evaporation at 

Hongze Lake is 4.61 mm/d in spring, which is comparable to that of summer (4.70 

mm/d). However, the evapotranspiration in the region around Hongze Lake is obviously 

lower. It illustrates that in this region the evaporation capacity significantly exceeds the 
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actual evapotranspiration, implying a high risk of drought. Moreover, the simulated 

mean monthly evapotranspiration from 1979 to 2003 (not shown here) shows that in 

the region of Hongze Lake this significant disparity mainly occurs from April to June. 

It is consistent with the fact that this region frequently experienced spring-summer 

drought (Chen et al., 2013).  

The mean monthly evapotranspiration simulated from 1979 to 2003 is spatially 

averaged over the basin and depicted as Fig. 4-10, composed of bare soil evaporation, 

canopy interception evaporation, and plant transpiration. The 25-year-averaged mean 

annual evapotranspiration is 686 mm/a, which matches well the mean annual 

evaporation (673 mm/a) from 1980 to 2011 estimated by Global Land Evaporation 

Amsterdam Model (GLEAM). In the study of Yang et al. (2005), the accuracy and 

applicability of the GLEAM evapotranspiration data has been verified based on the 

water balance in the Huaihe basin.  

 

Fig. 4-10 Mean monthly evapotranspiration amount (Emonthly) in the Huaihe basin 

from 1979 to 2003 with the detailed amounts for various components, 

and the percentage of monthly to annual evapotranspiration 

(Emonthly/Eannual). 

As shown in Fig. 4-10, The highest amount of evapotranspiration occurs in summer 

(June–August), which accounts for 45% of annual evapotranspiration. The 

evapotranspiration in spring is higher than that in autumn, and they contribute 28% and 

22% to annual evapotranspiration, respectively. It slightly differs the GLEAM data 

(Yang et al., 2015), where the evapotranspiration in summer, spring, autumn, and winter 

occupies 40.4%, 28.4%, 21.4%, and 9.7%, respectively.  

From the height of the bars corresponding to those contributions (Fig. 4-10), it is 

noticed that the sum of canopy interception evaporation and plant transpiration, which 

refers to canopy evapotranspiration, shows higher inter-monthly variations than that of 
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soil evaporation. Statistically, the standard deviation of canopy evapotranspiration from 

March to November is 0.72, which is almost twice that of bare soil evaporation (0.32). 

This implies that the monthly variability of total evaporation in the Huaihe basin is 

strongly affected by plant evaporation and canopy interception evaporation. Researches 

(Bastiaanssen et al., 1998; Yang et al., 2015) illustrates that monthly variability of 

canopy evapotranspiration is associated with the growth period of vegetation and crops 

in the Huaihe basin.  

4.4.3 Groundwater 

Underground hydrological processes are an essential part of water cycling, and the 

groundwater in aquifers is one of the most important water sources within the watershed. 

The spatiotemporal variation of groundwater table and the water storage in aquifers 

affect hydrological processes through altering water balance.  

(1) Spatial distribution 

Fig. 4-11 shows the height (above the sea level) and the depth (i.e. the distance from 

the ground surface) of the mean groundwater table from 1979 to 2003 in the Huaihe 

basin simulated by the AHMS. As depicted in Fig. 4-11(a), there is relatively high 

groundwater table in the mountainous regions of the basin and relatively low water 

table in the plains; the groundwater table near rivers is especially lower. This spatial 

pattern of groundwater height enables it to laterally transport within the basin, gradually 

converging to rivers and lakes. As shown in Fig. 4-11(b), the groundwater table in the 

mountains is far below the land surface with a depth exceeding 20 m, while relatively 

shallow groundwater table is spotted in the downstream plains, at the foothills of the 

western mountains as well as in its adjacent plains.  
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Fig. 4-11 Spatial distribution of the height (a) and the depth (b) of mean 

groundwater table in the Huaihe basin simulated from 1979 to 2003. 

Black and red dash isohypses denote the terrain height of 100 and 50 m, 

respectively.  

(2) Temporal variability 

The simulated groundwater table from 1979 to 2003 is averaged by season and the 

whole simulation period, and the differences between the seasonal averages and the 

mean are shown in Fig. 4-12. In it, the positive (negative) sign of a deviation signifies 

that the seasonal groundwater table locates above (below) the mean one, and the 

magnitude represents the distance between them.  

As shown in Fig. 4-12, the deviation's extent in the mountains is small, implying that 

the seasonal variation of groundwater table in the mountains is insignificant. That is 

because atmospheric and surface hydrological processes rarely involves deep 

groundwater. On the contrary, pronounced seasonal variability occurs in the plains, and 

there is highest groundwater table in autumn and the lowest in spring. On the other hand, 

the groundwater near rivers is frequently recharged or discharged, which is reflected by 

the strong seasonal fluctuations of the deviation magnitudes in the adjacent-river areas 

(see in Fig. 4-12).  
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Fig. 4-12 Deviation of the mean seasonal groundwater table from the mean 

groundwater table: (a) spring, (b) summer, (c) autumn, and (d) winter. 

Both are taken from the simulation from 1979 to 2003.  

The soil water storage in an unconfined aquifer includes the unsaturated soil water in 

the vadose zone and the saturated soil water below the groundwater table. Fig. 4-13 

gives the correlation between monthly net precipitation and the corresponding change 

of soil water storage in the Huaihe basin estimated from the simulation.  

 

Fig. 4-13 The correlation between monthly net precipitation (P-E) and monthly 

change of soil water storage in the aquifer (dwug) in the Huaihe basin 

simulated from 1979 to 2003.  
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The result shows that the soil water storage change is highly linear correlated with the 

net precipitation, with a determination coefficient of 0.88 and a statistical significance 

less than 0.05. It illustrates that on monthly scale, the net precipitation within the basin 

largely determines the change of soil water storage in the aquifer.  

The monthly mean of the net precipitation, soil water storage change, and groundwater 

depth are shown in Fig. 4-14. Consistent with the seasonal variability of groundwater 

table in the non-mountainous regions, the spatially averaged lowest and highest 

groundwater table occurs in spring and autumn, respectively. The variation of monthly 

mean soil water storage is associated with the change of monthly mean net precipitation. 

In July, the soil water storage dramatically increases in response to a large amount of 

net precipitation; conversely, the water storage decreases in April and May when the 

corresponding net precipitation is negative. The soil water storage slightly changes in 

other months when a relatively small amount of net precipitation occurs.  It thus can be 

known that the inter-month variation of soil water storage in the aquifer agrees with 

that of net precipitation.  

 

Fig. 4-14 The monthly mean net precipitation (P-E), the change of soil water 

storage in the aquifer (dwug), and groundwater depth (dgw) simulated 

from 1979 to 2003 in the Huaihe basin.  

As shown in Fig. 4-14, the change of soil water storage in the aquifer fluctuates with 

the varying net precipitation. Whereas, the groundwater table shows a gentle variation 

pattern. Following positive net precipitation from June to August, the groundwater table 

uplifts from June to September, and then gradually decreases. As a result of it, the 

groundwater table reaches a maximum in September, and reduces to a minimum in June. 

Accordingly, the soil water storage in aquifers responses to climate variability timely 

in the Huaihe basin, while groundwater table varies relatively slowly.  
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4.4.4 Runoff 

In the NoahMP-HMS simulation, total runoff is defined as the sum of surface runoff 

and the aquifer-channel interactive water flux. The seasonal mean surface runoff (a1–

d1), the interactive flux between groundwater and stream water (a2–d2), and the ratio 

of total runoff to precipitation (a3–d3) are shown in Fig. 4-15. The surface runoff is 

taken as negative (as shown in Fig. 4-15(a1–d1)) when the evaporation of water surface 

exceeds the precipitation. The positive interactive flux is taken as the groundwater 

seepage to streams, while the negative flux is the leakage of river water to groundwater 

(as shown in Fig. 4-15(a2–d2)).  

(1) Spatial distribution 

Despite the seasonal changes of runoff amount (will be discussed hereafter), the surface 

runoff and underground runoff within the Huaihe basin are differently characterized in 

term of spatial distribution (a1–d1, a2–d2). Surface runoff exists in the whole basin, but 

particularly high in the southern region of the Huai River and in the mountains (see 

Column 1 of Fig. 4-15). Groundwater seepage mainly occurs at the foothills of the 

mountains and in the plains, especially over the adjacent-river regions (see Column 2 

of Fig. 4-15).  

Fig. 4-15(a3–d3) shows the seasonal change of the ratio of mean runoff to mean 

precipitation. The ratios in four seasons share a common characteristic: high ratio over 

the mountains and in the southern region of the Huai River, and low in the remaining 

areas. On the other hand, in the region along the rivers where groundwater seepage 

occurs fiercely, the runoff coefficient is high especially in autumn and winter (≥ 0.6). 

Overall, the runoff coefficient in the southern region of the Huai River is high in 

summer (0.4–0.5). It can be explained by the intensive precipitation in summer and the 

runoff over hillslope regions where adequate conditions are provided for its genesis. 

This high runoff coefficient implies a severe flood risk, especially when extremely 

intense rainfall occurs in this region.  
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Fig. 4-15 Spatial and temporal distribution of the mean simulated surface runoff 

(Rsf, a1–d1), groundwater-stream water interactive flux (Qcg, a2–d2), 

and runoff-precipitation ratio (R/P, a3–d3) in spring, summer, autumn, 

winter from 1979 to 2003 in the Huaihe basin. Positive value in a2–d2 

represents the flow from groundwater to stream, or vice versa.  

(2) Temporal variability 

From Fig. 4-15(a2–d2), it can be known that the groundwater seepage mainly exists in 

the up-to-middle stream area; and the groundwater seepage itself from the aquifer to 

rivers is higher in summer and autumn, but lower in winter. In spring, a reverse flux 

from river to the aquifer dominates due to the lower groundwater table. The 
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groundwater seepage continually happens from summer to winter, which shows a lower 

seasonal variability compared to surface runoff (see in Fig. 4-15(a1–d 1) and (a2–d2)). 

However, the magnitude of groundwater seepage is evidently lower than that of surface 

runoff. Hence, the river runoff in the Huaihe basin majorly stems from the surface 

runoff resulted from rainfall events.  

To visualize the temporal variation of runoff, spatially averaged mean monthly surface 

runoff and total runoff are calculated and depicted in Fig. 4-16 as well as their 

contributions to the annual runoff. The surface runoff in summer months (JJA) is 

significantly higher than those in other seasons, which altogether contributes 66% of 

annual surface runoff. The generation of surface runoff during winter is limited, only 

accounting for 3% of annual surface runoff.  The surface runoff in spring and autumn 

are approximately identical, which explains 15% and 16% to the annual surface runoff, 

respectively. As surface runoff dominates the runoff in the Huaihe basin, its temporal 

variability largely determines that of total runoff. Similar to surface runoff, a majority 

of annual runoff occurs in summer months (JJA), secondly in autumn and spring.  

In spring, a reverse flux from rivers to the aquifer dominates (see in Fig. 4-14(a2–d2)) 

due to the lower groundwater table. As a result, the spatially average of total runoff in 

the basin are smaller than surface runoff in spring months and in June, as shown in  Fig. 

4-16. In autumn and winter, the river leakage mostly occurs in the river section between 

Hongze Lake and the mouth of the Yangtze River. And in winter the magnitude of river 

leakage is comparable to that of surface runoff generated in the upstream areas. On 

spatially average, the consumption of river leakage exceeds the amount of winter runoff. 

In this case, the total runoff in winter is negative, as shown in Fig. 4-16.  

 

Fig. 4-16 Mean monthly surface runoff (Rsf) and total runoff (Rt) simulated from 

1979 to 2003 in the Huaihe basin, and the percentage of monthly to 

annual surface runoff (Rmonthly/Rannual). 
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According to the precipitation and the simulated runoff in the Huaihe basin from 1979 

to 2003, the correlation of monthly precipitation and monthly runoff is investigated, as 

shown in Fig. 4-17(a). A nonlinear relationship is found between monthly mean runoff 

and monthly mean precipitation, with a determination coefficient of 0.93 and a 

significance less than 0.05. Mainly because surface runoff varies nonlinearly with the 

change of precipitation amount and its intensity.  

As shown in Fig. 4-17(b), the tendency of monthly runoff is consistent with the 

precipitation. The standard deviation of monthly-annual ratio of runoff (10.4) is higher 

than that of precipitation (6.2), which indicates a higher temporal variability of runoff 

than that of precipitation in the Huaihe basin. The long-term hydrological simulation in 

the Huaihe basin shows that the mean runoff coefficient is about 0.08, 0.24, and 0.18 in 

spring, summer, and autumn, respectively (see in Fig. 4-17(b)).  

 

Fig. 4-17 (a) The correlation of monthly precipitation and monthly runoff from 

1979 to 2003 in the Huaihe basin; (b) mean monthly precipitation (P) 

and mean total runoff (R) in the Huaihe basin as well as corresponding 

runoff-precipitation runoff (R/P).  

4.5 Conclusion  

In this chapter, the coupled land surface and hydrological model (NoahMP-HMS) is 

successfully applied to the Huaihe basin in China. The land surface and hydrological 

simulation is driven by the surface meteorological data from the NCEP reanalysis 

dataset (except precipitation) and the precipitation observation of meteorological 

stations.  

Based on the formulation of infiltration capacity and infiltration-excess runoff for a 

homogeneous grid, a new parameterization of hillslope runoff is proposed to take the 

impact of hillslope topography in runoff into account. The implementation of this new 

parameterization in the model provides a modified scheme to calculate infiltration and 
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surface runoff. The NoahMP-HMS simulations from 1980 to 1987 using the original 

scheme and the modified one are compared to the observations. The comparison shows:  

1) Using the parameterization developed here, simulated annual runoff in the 

subbasin of WJB, LTZ, and BB approaches to the observation, with relative 

biases lower than 6%; the long-term water balance dynamic in the basin is well 

simulated. Without this parameterization, the NoahMP-HMS underestimates 

the runoff amounts in these subbasins (their relative biases to the observations 

exceed 60%); and the soil water storage in the basin is significantly increased, 

which is unreasonable from the long-term water balance dynamic perspective. 

It is because the latter neglecting the influence of hillslope topography results 

in excessively high rainwater infiltration, which thereby constrains the 

occurrence of infiltration-excess runoff.  

2) The incorporation of the hillslope runoff parameterization into the NoahMP-

HMS enables it to capture daily observed river discharges in a high accuracy, 

regarding both intensity and timing. The efficiency coefficients (NSIs) of 

simulated daily streamflow at the hydrological station of WJB, LTZ, and BB are 

0.67, 0.81, and 0.80, respectively, and their water balance indexes (WBIs) are 

close to 1.0 (0.90–1.16).  

3) Consequently, the hillslope runoff parameterization significantly enhances the 

production of surface runoff. By including this enhancement in runoff estimates, 

the NoahMP-HMS has a great ability to reproduce the hydrological processes 

and terrestrial water balance in the Huaihe basin.   

The land surface and hydrological processes in the Huaihe basin from 1979 to 2003 are 

simulated using the validated NoahMP-HMS. According to this long-term simulation, 

the spatiotemporal variability of the hydrological processes in the Huaihe basin is 

investigated, as well as the hydrological response to climate variability.  Key outcomes 

are:  

4) The precipitation in the Huaihe basin presents a high spatial and temporal 

variability. The mean annual precipitation from 1979 to 2003 is 912 mm/a in 

the Huaihe basin. In the Meiyu season, heavy rainfall from June to August is 

obtained in the Huaihe basin due to the associated monsoon rain band over 

eastern China, which accounts for 53% of the annual precipitation. The 

precipitation in the basin decreases from southeast to northwest, with higher 

precipitation in the southern region of the Huai River and in the downstream 

plains.   

5) The total evaporation increases southeastward over the Huaihe basin, with the 
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lowest in the northern mountains and the highest in the downstream plains 

(southeastern part). The 25-year-averaged evapotranspiration in the basin is 686 

mm/a, and the evapotranspiration in summer, spring, and autumn accounts for 

45%, 28%, and 22%, respectively. The simulated mean annual 

evapotranspiration and its seasonal distribution match with those deduced from 

the GLEAM data. The monthly variation of total evapotranspiration is largely 

attributed by vegetation evapotranspiration, which is associated with the growth 

period of vegetation and crops in the basin. 

6) Over the basin, relatively shallow groundwater table is found at the foothills of 

the mountains and in the plains. The groundwater in the non-mountainous 

regions shows a large seasonal variability, with the highest groundwater table in 

autumn and the lowest in spring. The mean groundwater table in the basin 

increases from June to September due to a large amount of net precipitation in 

summer, and then decreases gradually from October to next June. As a result, 

the mean groundwater table reaches a maximum in September, and reduced to 

a minimum in June.  

7) The river runoff in the Huaihe basin is composed of surface runoff and 

groundwater seepage to streams, where the surface runoff dominates. A small 

amount of groundwater seepage continuously and stably occurs at the foothills 

of mountains and in the plains, while the surface runoff shows a large spatial 

and temporal variability. The monthly runoff in the basin is largely determined 

by monthly precipitation, but the runoff shows a larger monthly variation than 

that of precipitation. The runoff coefficient in the southern region of the Huai 

River is large in summer, ranging from 0.4 to 0.5, which implies a high flood 

risk caused by the intense rainfall in this region.  
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5 Application of the AHMS 

In the previous chapter, the coupled land surface and hydrological model (NoahMP-

HMS) exhibits its capability of reproducing hydrological processes. The new hillslope 

runoff parameterization in the model enhance the reliability for the prognostication of 

hydrological variables which are crucial for describing regional water balance. Hence, 

this new parameterization and the parameter values used in the NoahMP-HMS 

simulation are used in this chapter. Herein, the distributed hydrological model HMS is 

integrated into the Weather Research and Forecasting (WRF) Model to form an 

integrated model called the coupled Atmospheric and Hydrological Modelling System 

(AHMS). The evaluation for the performance of the AHMS is carried out, according to 

the coupled simulation from July to November 1991 in the Huaihe basin. In the AHMS, 

the hydrological processes can interact with the land surface processes, which further 

feedbacks to the atmosphere; to investigate its effect on surface fluxes and on 

atmospheric variables, a comparison is conducted with the stand-alone WRF simulation. 

5.1 Model setup and experiment design 

The Huaihe basin experienced a severe flood in June and July 1991 (Shi et al., 1992), 

and followed by a drought in autumn (Bao et al., 2011). A simulation involved 

atmospheric and hydrological processes by the AHMS is used to reproduce these 

extreme hydrological events. The coupled simulation uses the same domain setup as in 

the offline NoahMP-HMS simulation (see in Section 4.2), with a period from July 1 to 

November 30, 1991. The time resolutions of the WRF and the hydrological simulation 

are 90 seconds and 30 minutes, respectively. The configuration of the AHMS is 

mentioned below in detail.  

The global reanalysis data from NECP Climate Forecast System Reanalysis (CFSR) is 

used to provide atmospheric boundary conditions every 6 hours. Numerous studies 

showed that the performance of the WRF simulation is sensitive to physics 

parameterization schemes (Berg et al., 2013; Fersch and Kunstmann, 2014). Based on 

the sensitivity analysis (not demonstrated herein), the following physics schemes are 

selected for the WRF simulation: the WRF Single-Moment five-class scheme (WSM5) 

microphysical parameterization, the Betts-Miller-Janjic scheme (BMJ), the Yonsei 

University (YSU) parameterization for the planetary boundary layer, the MM5-Dudhia 

shortwave scheme, and the Rapid Radiative Transfer Model (RRTM) longwave 

radiation scheme. Due to the coupling approach, the Noah-Multiparameterization Land 

Surface Model (Noah-MP LSM) is used as the land surface parameterization scheme.  
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In addition to the standard WRF setup, surface and subsurface hydrological conditions 

are needed to specify in the AHMS. The land surface parameter dataset (No. 13–20 in 

Table 4.2) and the hydrological characteristic dataset (No. 22–27 in Table 4.2) used in 

the NoahMP-HMS simulation are also adopted. This AHMS simulation uses identical 

values of the Manning roughness coefficient (No. 28 in Table 4.2) and the hydraulic 

conductance  (No. 29 in Table 4.2) as in the offline simulation.  

The simulated groundwater head and water level on July 1, 1991 in the offline 

NoahMP-HMS simulation are used to initialize the groundwater head and water level 

of rivers and lakes in this simulation.  

Table 5.1 Model configuration for the coupled atmospheric and hydrological 

simulation (RAHMS) and the stand-alone atmospheric simulation (RWRF) 

Run 
boundary condition 

in the multi-layer soil model 

hydrological modules 

GW2D RT2D GCI 

RAHMS Darcy-flux yes yes yes 

RWRF free drainage no no no 

GW2D: two-dimensional groundwater model, RT2D: two-dimensional terrestrial hydrological model, 

GCI: interaction of groundwater and channel water.  

Apart from the AHMS simulation, a stand-alone WRF simulation is also performed in 

the Huaihe basin as a control experiment. The model configurations in the coupled 

atmospheric and hydrological simulation (RAHMS) and the stand-alone atmospheric 

simulation (RWRF) are presented in Table 5.1. The use of Darcy-flux boundary condition 

in the multi-layer soil model (in the Noah-Multiparameterization Land Surface Model) 

and the activation of hydrological modules in the AHMS allows a fully coupled 

atmospheric and hydrological simulation (RAHMS). The simulation by the WRF (RWRF), 

uses the free drainage boundary condition (i.e. gravitational drainage) by which the soil 

water in LSM drains downwards under the effect of gravity. Furthermore, the land 

surface and atmospheric processes in RWRF is not affected by the hydrological processes.  

The RAHMS experiment starts at 0000 UTC on July 1, 1991 and ends at 2400 UTC on 

November 30, 1991. The simulated groundwater table, water level in rivers and lakes, 

and soil moisture on July 1, 1991 in the NoahMP-HMS simulation are used for the 

initial conditions in the AHMS simulation. The RWRF experiment starts at 0000 UTC on 

July 1, 1991 as a restart run to have the same initial conditions as in the AHMS 

simulation. The results in the two simulations (i.e. RWRF and RAHMS) from July 3 to 

November 30, 1991, excluding the spin-up of the first two days, are used for the 

comparative analysis as following.  



5   Application of the AHMS 

68 
 

5.2 Statistical evaluation  

To evaluate the AHMS performance in the coupled atmospheric and hydrological 

simulation of the Huaihe basin, the model verification is carried out regarding the 

accuracy of the estimates of temperature, precipitation, and streamflow. For the 

validation of these variables, some publicly available observational datasets and the 

reanalysis product are used.  

For temperature and precipitation, monthly global precipitation and air temperature at 

0.5ºresolution from University of Delaware (UDel; Willmott and Matsuura, n.d.) are 

used. For precipitation, global monthly precipitation with a spatial resolution of 0.5º

from the Global Precipitation Climatology Centre (GPCC; Schneider et al., 2011) are 

additionally used. Regarding rainfall, it was found that GPCC as well as UDel 

represents the mean and variability of rainfall throughout the series from 1979 to 2000; 

in relation to the air temperature standards, the precision of UDel was low, but the 

accuracy was moderate (Tostes et al., 2017). For air temperature, 6-hourly 

NCEP/NCAR reanalysis global dataset with T62 Gaussian grid is used. Moreover, the 

observed daily river discharge over the period of July to November 1991 at the 

hydrological station of WJB, LTZ, and BB are employed to compare with the simulated 

daily streamflow by the AHMS. The locations of these hydrological stations in the Huai 

River are shown in Fig. 4-2.  

5.2.1 Precipitation estimates 

The simulated precipitation in the Huaihe basin from July to November 1991 in RAHMS 

and RWRF are spatially and monthly averaged, and the results are shown in Table 

5.2(top). Monthly precipitation observation from the UDel and the GPCC are spatially 

averaged and used for statistical evaluation. In Table 5.2(top), the observed 

precipitation from meteorological stations in the period of July to November 1991 is 

also included, as well as their anomaly to the mean monthly precipitation from 1979 to 

2003.  

As listed in Table 5.2(top), the monthly precipitation in July 1991 is obviously higher 

than the mean precipitation of July, with an anomaly percentage of 36.5%; in 

comparison to the 25-year-averaged monthly precipitation, there is a significantly lower 

amount of precipitation in October and November 1991, with an anomaly percentage 

of -94.0% and -67.4%, respectively.  

Table 5.2(bottom) presents the statistical evaluation for simulated total precipitation in 

the period of July to November 1991. Both the AHMS and the stand-alone WRF 

overestimate the amount of total precipitation over the period by 1–5% upon the 
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validation dataset. For instance, the relative bias of total precipitation of the AHMS 

simulation to the UDel is 4.33%, and 4.27% for the WRF simulated precipitation. Their 

relative biases to the GPCC dataset are about 1.0%, and about 1.5% relative to the 

meteorological observation. This shows that the WRF itself fairly describes the amount 

of precipitation in the basin over the period.  

The monthly precipitation simulated by the AHMS are generally higher than its 

counterpart in the UDel during the period, i.e. 21.7 mm (9%) in July, 4.4 mm (3%) in 

August, -6.8 mm (-7%) in September, 0 mm in October, and 2.0 mm (19%) in 

November. When comparing to the GPCC monthly precipitation, the AHMS 

underestimates the precipitation by 17.4 mm (-6.2%) in July, but overestimates the 

precipitation by 23.4 mm (26.3%) in August; from September to November, simulated 

monthly precipitation fluctuates around the observation. Comparing to the precipitation 

observation from meteorological sites, there is a bias of -15.5 mm (-5.6%) in July and 

26.3 mm (21.6%) in August in the RAHMS, while the absolute bias is small from 

September to November.  

In addition, the difference of simulated monthly precipitation in the AHMS and the 

WRF simulation is -1.6, 0.8, 0.5, 0.1, and 0.4 mm/month from July to November, 

respectively. Obviously, the simulated monthly precipitation amount by the AHMS and 

the WRF are nearly identical in the Huaihe basin during the period.  

Table 5.2 (top) Monthly precipitation (mm) in the AHMS simulation (RAHMS), the 

WRF simulation (RWRF), the UDel dataset, the GPCC dataset, and the 

observation; (bottom) total precipitation bias in the period of July to 

November 1991 in the Huaihe basin.  

Month 
RAHMS 
(mm) 

RWRF 
(mm) 

UDel 
(mm) 

GPCC 
(mm) 

Pobs 
(mm) 

Pmean 
(mm) 

anomaly 
(%) 

July 263.1 264.7 241.4 280.5 278.6 204.1 36.5 

Aug 148.1 147.3 143.7 120.1 121.8 142.6 -14.6 

Sep 91.4 90.9 98.2 96.3 93.8 78.8 19.0 

Oct 1.7 1.6 1.7 3.0 3.5 58.4 -94.0 

Nov 12.4 12.0 10.4 11.4 11.3 36.9 -67.4 

Pobs: monthly precipitation observation of meteorological sites, Pmean: mean monthly 

precipitation observation from 1979 to 2003, anomaly = (Pobs - Pmean)/Pmean*100%.  

 
 abs. bias rel. bias abs. bias rel. bias 
 mm/month % mm/month % 

RAHMS-UDEL 4.29 4.33 RWRF-UDEL 4.23 4.27 

RAHMS-GPCC 1.10 1.08 RWRF-GPCC 1.04 1.02 

RAHMS-Obs 1.55 1.52 RWRF-Obs 1.49 1.46 
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5.2.2 Air temperature estimates 

The near-surface air temperature is treated in the same way as the precipitation in the 

section above, but compared to the UDel dataset and the NCEP reanalysis dataset. Table 

5.3(top) lists the monthly mean air temperature from July to November 1991 simulated 

by the AHMS and the WRF, and the monthly mean temperature in the UDel dataset and 

in the NCEP reanalysis product. Table 5.3(bottom) presents the statistical evaluation 

for simulated mean air temperature in the period of July to November. Over the period, 

the simulated mean temperature by the AHMS and the WRF are lower than the 

measured temperature of the UDel data, with an absolute bias of -1.22 and -0.95 ºC, 

respectively, while higher than the NCEP temperature, with an absolute bias of 0.55 

and 0.82 ºC. It shows that the selected WRF setup is able to predict mean air 

temperature.   

Since the NECP reanalysis data is used to provide atmospheric boundary conditions, 

the simulated monthly mean temperature is further compared to the NCEP data (see in 

Table 5.3). Both the AHMS and the WRF overestimate air temperature from July to 

November while comparing to the NCEP monthly mean temperature. In these five 

months, the bias ranges from 0.1 to 0.8 ºC in the AHMS simulation, while those are in 

the range of 0.4 to 1.2 ºC in the WRF simulation (as shown in Table 5.3(top)). It 

illustrates that the AHMS performs better in simulating near-surface air temperature in 

the Huaihe basin.  

Table 5.3 (top) Monthly mean air temperature (ºC) of the AHMS simulation 

(RAHMS), the WRF simulation (RWRF), the UDel data set, the NECP 

reanalysis data; (bottom) the bias of monthly mean air temperature in the 

Huaihe basin over the period of July to November 1991.  

Month RAHMS RWRF UDel NCEP 
RAHMS-
NCEP 

RWRF-
NCEP 

July 26.4 26.5 28.1 25.8 0.6 0.7 

Aug 24.9 25.1 26.0 24.5 0.4 0.6 

Sep 21.1 21.4 22.2 21.0 0.1 0.4 

Oct 15.3 15.7 16.3 14.5 0.8 1.2 

Nov 8.7 9.0 9.7 7.8 0.9 1.2 

 
 abs. bias rel. bias abs. bias rel. bias 

 ºC % ºC % 

RAHMS-UDEL -1.22 -5.97 RWRF-UDEL -0.95 -4.66 

RAHMS-NCEP 0.55 2.92 RWRF-NCEP 0.82 4.36 

5.2.3 Streamflow estimates 
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Fig. 5-1 depicts the observed daily river discharge and the simulated daily streamflow 

at the hydrological station of WJB, LTZ, and BB from July 1 to November 30, 1991, as 

well as the daily precipitation in the corresponding subbasins.  

According to the observation (red solid line in Fig. 5-1), there are two flood peaks 

during the period. The first flood peak occurs at the WJB station on July 8, 1991 with 

a peak discharge of 5790 m3/s, and reaches the LTZ station on July 11 with a discharge 

of 7350 m3/s, and then arrives at the BB station on July 13 with a discharge of 7750 

m3/s. In the RAHMS (blue solid line of Fig. 5-1), the flood occurring at the WJB station 

in July is not well captured. On July 3, the simulated streamflow (3110 m3/s) at the WJB 

station almost equals to the observed river discharge (3160 m3/s). Subsequently, the 

latter river discharge increases to a peak value of 5790 m3/s on July 8, while the former 

decreases gradually. In the AHMS simulation, the timing of the flood at the station of 

LTZ and BB in July are well captured, however, the simulated flood discharge is lower.  

 

Fig. 5-1 Time series of observed (Qobs) and simulated (QAHMS) daily streamflow 

by the AHMS from July 1 to November 30, 1991 at the hydrological 

station of WJB (a), LTZ (b), BB (c), as well as the simulated daily 

precipitation by the AHMS (PAHMS) and the observed daily precipitation 

of the meteorological sites (Pobs) in the corresponding basins.  
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As shown in Fig. 5-1 (red solid lines), the second flood peak occurs at the WJB station 

on August 9, 1991 with a 4710 m3/s discharge, and arrives at the LTZ station on August 

12 with a 3840m3/s discharge, and then reaches the BB station on August 13 with a 

4630 m3/s discharge. As a whole, the second flood in August 1991 is well simulated by 

the AHMS. The simulated flood peak also occurs on August 9 with a discharge of 5179 

m3/s (with a relative bias of 10% to the observation). Although slightly lower than the 

observation, the simulated daily streamflow in August at the LTZ and BB station match 

the observed hydrograph. In addition, the simulated daily streamflow by the AHMS 

during the low flow periods shows a good agreement with the observations at the three 

hydrological stations, as depicted in Fig. 5-1.  

With the observation and the simulation, the performance of AHMS in simulating daily 

streamflow is evaluated using the Nash-Sutcliffe coefficient of efficiency index (NSI), 

the Pearson product-moment correlation coefficient (PMC), and the Water Balance 

Index (WBI), as shown in Table 5.4. The definitions and calculation formulations for 

these statistical indices are shown in Appendix 7.2. 

Table 5.4 Statistical evaluation of simulated daily streamflow by the AHMS 

Station 
RAHMS 

NSI PMC WBI 

WJB 0.57 0.76 0.79 

LTZ 0.59 0.90 0.63 

BB 0.54 0.88 0.63 

Table 5.4 shows that the correlation coefficients (PMC) between the simulated and the 

observed daily streamflow are 0.76, 0.90, and 0.88 at the WJB, LTZ, and BB station, 

respectively. It illustrates that the simulated daily streamflow and the observation at the 

station of LTZ and BB is highly correlated in timing; as shown in Fig. 5-1, the AHMS 

captures the temporal variation of observed daily river discharge at the station of LTZ 

and BB. At the WJB, LTZ, and BB station, the water balance index (WBI) values 

between the simulated and the observed daily streamflow are 0.79, 0.63, and 0.63, and 

the efficiency coefficients (NSI) are 0.57, 0.59, and 0.54, respectively. Accordingly, the 

AHMS has an ability of reasonably modelling daily hydrological processes in the 

Huaihe basin.  

5.3 Influence on surface soil hydrological processes 

In the AHMS, the hydrological model is integrated into the WRF via the land surface 

model (Noah-MP LSM). Specifically, the four-layer soil model in the Noah-MP LSM 

(the thickness is 0.1m, 0.3m, 0.6m, and 1.0m, respectively) is coupled with the 
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groundwater model by Darcy-flux boundary condition and soil water characteristic 

curve (see details in Section 3.7). Thus, the surface soil water of the soil model domain 

(i.e. 0–2 m from the land surface) in the Noah-MP LSM can interact with deeper 

unsaturated soil water and groundwater. It can then be argued that the surface soil 

hydrological processes are supposed to be impacted by hydrological processes, and the 

influence is associated with its relative location of groundwater table.  

In general, groundwater table changes slowly. As illustrated in Fig. 4-12, the seasonal 

variation of groundwater table in the Huaihe basin is insignificant, mostly ranging from 

-0.18 m to 0.20 m. Therefore, the location of groundwater table in the AHMS simulation 

is determined principally by initial conditions, and it fluctuates slightly over the 

simulation period. Fig. 5-2 shows the height (relative to the sea level) and the depth (the 

distance from the surface) of mean groundwater table in the period of July to November 

1991 within the Huaihe basin simulated by the AHMS.  

 

Fig. 5-2 Spatial distribution of the height (a) and the depth (b) of mean 

groundwater table over the period of July to November 1991 in the 

Huaihe basin simulated by the AHMS.  

As shown in Fig. 5-2(b), the depth of groundwater table in the mountains is obviously 

higher than other regions, which is thus categorized as deep groundwater region. To 

highlight the influence of shallow groundwater, regions with shallow groundwater table 

are investigated individually. In this study, shallow groundwater is a condition where 

the groundwater table is less than 2 meters from the land surface, i.e. the groundwater 

table is located within the LSM soil model domain.  In addition, once the groundwater 

depth exceeds 10 m, the upward capillary flux rarely occurs at the bottom boundary of 

LSM soil domain in the AHMS simulation. Hence, regions with groundwater depth 
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between 3 and 10 m are treated as relatively deep groundwater region. The groundwater 

depth of 3 m is selected as the lower limit to ensure that the groundwater table is located 

below the LSM soil model domain over the simulation period.  

Therefore, the comparison of surface soil hydrological processes in the AHMS 

simulation (marked as RAHMS in the following contents) and in the WRF simulation 

(RWRF) is conducted, respectively, in the deep groundwater region, in the relatively deep 

groundwater region, and in the shallow groundwater region. The fluxes at the top and 

the bottom of LSM soil model domain are the upper and the lower boundary conditions 

for simulating the dynamics of surface soil moisture. The flux at its lower boundary is 

called recharge flux with positive downwards. A positive recharge value means a 

drainage (downwards) from LSM soil layers to deeper soil column; a negative recharge 

is a capillary moisture flux (upwards) into LSM soil layers from deeper soil column. At 

the upper boundary (i.e. ground surface), the sum of infiltration, soil evaporation, and 

plant transpiration is called net infiltration (positive downwards). A positive value of 

net infiltration is the net amount of water infiltrated into soil from the upper boundary, 

while a negative value is the net amount of water evaporated from soil.  

5.3.1 In the deep groundwater region  

Fig. 5-3 shows the spatially averaged monthly mean fluxes at the upper (a, i.e. net 

infiltration) and the lower boundary (b, i.e. recharge flux) of LSM soil model domain 

for the deep groundwater region, and the change of surface soil water (c) in RAHMS and 

RWRF, as well as the deviation between RAHMS and RWRF. As shown in Fig. 5-3(b), the 

monthly mean recharge fluxes from July to November and daily mean recharge fluxes 

(not shown) are positive in both simulations. It demonstrates that in the deep 

groundwater region downward drainage occurs at the bottom of LSM soil model 

domain, no matter which boundary condition is used. Owing to the free drainage 

boundary condition in RWRF, downward gravitational drainage happens regardless of 

soil moisture and groundwater depth. In RAHMS, the Darcy-flux boundary condition in 

the LSM soil model allows for bidirectional flux at the lower boundary, but only minor 

upward flux (about -0.02 mm/d) is spotted in a small percentage (6%) of the deep 

groundwater regions. It implies that deep groundwater seldomly moisten surface soil 

by capillary rise.  

For regions with deep groundwater table, the dynamics of surface soil moisture in LSM 

soil model domain is determined by net infiltration at its upper boundary and recharge 

flux at its lower boundary. Besides in September, the surface soil water storage 

decreases from July to November (as shown in Fig. 5-3(c)), which results from a larger 

amount of soil drainage than net infiltration in these four months. In September, net 

infiltration slightly exceeds soil drainage, leading to a small increment in surface soil 
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water. Overall, the surface soil water storage exhibits a decreasing trend during the 

simulation period. It is demonstrated in Fig. 5-4, which shows the time series of mean 

soil moisture of LSM soil model domain (i.e. four soil layers) in the deep groundwater 

region for RAHMS and RWRF.  

 

Fig. 5-3 Comparisons of spatially averaged monthly mean net infiltration (a, 

denoted by Inet), recharge flux (b, qre), and the change of soil water in the 

LSM soil model domain (c, dwsoil) in the deep groundwater region for 

RAHMS and RWRF, as well as the difference between RAHMS and RWRF (d, 

marked as ∆).  

As shown in Fig. 5-4, the soil moisture in RAHMS and RWRF decreases markedly during 

the first two months (i.e. July and August), and the soil moisture in RAHMS declines 

more rapidly. As a result, the soil moisture in RAHMS (0.25 m3/m3) becomes apparently 

lower than RWRF (0.27 m3/m3) at the end of August. In the following months, the soil 

moisture in RAHMS and RWRF changes gradually, with a stable deviation between them 

(about 0.02 m3/m3). As the initial conditions are identical in RAHMS and RWRF, it can be 

argued that the difference of soil moisture between them mainly stems from surface soil 

hydrological processes, especially in July and August.  
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Fig. 5-4 Time series of mean soil moisture of four soil layers in the deep 

groundwater region for RAHMS and RWRF.  

The combination of water balance equations (see in Appendix 7.1) in LSM soil model 

domain for RAHMS and RWRF gives Δ(dwsoil) = Δ(Inet) - Δ(qre), where Δ means the 

difference of RAHMS and RWRF, dwsoil is the change of surface soil water storage, Inet is 

the net infiltration, qre is the recharge flux. This equation illustrates that the difference 

of soil water change between RAHMS and RWRF can be explained by their difference in 

net infiltration (at the upper boundary) and recharge flux (at the lower boundary), as 

shown in Fig. 5-3(d).  

According to Fig. 5-3(c), the surface soil water in RAHMS is reduced by 2.05 and 1.87 

mm/d in July and August, and reduced by 1.05 and 1.76 mm/d in RWRF. It is to say that 

the reduction of surface soil water in RAHMS is higher than in RWRF in July (e.g. Δ(dwsoil) 

= -1.0 mm/d) and August (e.g. Δ(dwsoil) = -0.11 mm/d). As shown in Fig. 5-3(a), the 

difference of net infiltration between RAHMS and RWRF is positive in July (Δ(Inet) = 0.04 

mm/d) and August (Δ(Inet) = 0.21 mm/d), which indicates a larger amount of water into 

soil from the upper boundary in RAHMS. The comparison of recharge flux in Fig. 5-3(b) 

demonstrates that the soil drainage of LSM soil model domain is more intense in RAHMS 

in comparison to RWRF (e.g. Δ(qre) = 1.05 mm/d in July and 0.13 mm/d in August).  

Based on the detailed data above, it can be known that the proportion of recharge flux 

difference to the surface soil water change difference exceeds 100%, i.e. -

Δ(qre)/Δ(dwsoil) > 100%, in July and August. This is to say that more substantially 

reduced soil moisture in RAHMS compared to RWRF, is caused by the more intense soil 

drainage that occurs at the lower boundary of LSM soil model domain.  

5.3.2 In the relatively deep groundwater region 

The surface soil processes are not directly impacted by relatively deep groundwater (3–
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10 m depth) that is located beneath the LSM soil model domain. And in RAHMS, only a 

small amount of saturation-excess runoff (0.01 mm/d) occurs in August in the relatively 

deep groundwater regions. Therefore, the soil water dynamics in the LSM soil model 

domain is determined by net infiltration at its upper boundary and recharge flux at its 

lower boundary. Fig. 5-5 depicts the spatially averaged monthly mean net infiltration 

(a), recharge flux (b), and the change of surface soil water (c) in the relatively deep 

groundwater region.  

 

Fig. 5-5 Comparisons of spatially averaged monthly mean net infiltration (a, 

denoted as Inet), recharge flux (b, qre), and the change of soil water in 

LSM soil model domain (c, dwsoil) in the relatively deep groundwater 

region for RAHMS and RWRF, as well as the difference of RAHMS and RWRF 

(d, marked as ∆).  

Monthly recharge flux remains positive (downwards) in RWRF from July to November 

owing to the free drainage boundary condition, while negative recharge fluxes (upwards) 

are spotted in RAHMS. Their detailed statistics are listed in Table 5.5. The negative flux 

at the bottom of LSM soil model domain means that deep soil water and/or groundwater 

move upwards by capillary rise, and recharge surface soil moisture. As shown in Table 

5.5, in RAHMS upward recharge flux occurs in the relatively deep region, especially from 

September to November; due to their wide occurrence, the monthly recharge in this 

region is negative (upwards) in these three months. It illustrates that the soil water in 

the LSM soil model domain can be sufficiently recharged by capillary fluxes from 



5   Application of the AHMS 

78 
 

groundwater or deep soil, when groundwater table is relatively deep.  

Table 5.5  Statistical calculation for monthly recharge in the relatively deep 

groundwater region.  

Year-Month 
RAHMS RWRF 

area percentage (%) 
with negative recharge flux

upward flux (mm/d)
area percentage (%) 

with negative recharge flux

1991-07 42 -0.3324 0 

1991-08 33 -0.3335 0 

1991-09 65 -0.3234 0 

1991-10 78 -0.2889 0 

1991-11 85 -0.2632 0 

Fig. 5-6 shows the time series of mean soil moisture of four soil layers and mean soil 

moisture of the bottom layer in the relatively deep groundwater region for RAHMS and 

RWRF. As shown in Fig. 5-6, the soil moisture in RAHMS and RWRF almost overlaps in 

July and August: it increases from 0.29 m3/m3 on July 3 to 0.34 m3/m3 on August 7, and 

drastically decreases to 0.27 m3/m3 on August 31, 1991. From September, the soil 

moisture remains stable (about 0.27 m3/m3) in RAHMS, while still declines slowly in 

RWRF. Hence, the soil moisture in RAHMS is increasingly higher than that in RWRF, and 

their difference enlarges gradually from 0.005 to 0.018 m3/m3 from September to 

November. This amplification of soil moisture deviation exists more evidently in the 

bottom soil layer (see dashed line in Fig. 5-6).  

 

Fig. 5-6 Time series of mean soil moisture of four soil layers (SM) and of bottom 

layer (SM4) in relatively deep groundwater region for RAHMS and RWRF. 

As shown in Fig. 5-5(c), in RWRF the surface soil water (i.e. in LSM soil model domain) 

is reduced by 0.05 mm/d in September, 0.58 mm/d in October, and increased by 0.002 

mm/d in November; in RAHMS the surface soil water is increased by 0.34 and 0.26 mm/d 
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in September and November, and reduced by 0.30 mm/d in October. Thus, the 

difference of the change of surface soil water between RAHMS and RWRF is positive from 

September to November, i.e. Δ(dwsoil) is 0.392, 0.284, and 0.254 mm/d, respectively. 

As shown in Fig. 5-5(d), from September to November monthly net infiltration differs 

slightly in RAHMS and RWRF, e.g. Δ(Inet) is 0.036, -0.039, and -0.035 mm/d, respectively. 

As depicted in Fig. 5-5(b), from September to November monthly recharge fluxes are 

positive (downwards) in RWRF, while they are negative (upwards) in RAHMS. By contrast, 

the difference of recharge flux between RAHMS and RWRF is negative in these three 

months, e.g. Δ(qre) is -0.358, -0.323, and -0.297 mm/d, respectively.   

Accordingly, the calculation of -Δ(qre)/Δ(dwsoil) shows that the difference of recharge 

flux explains 91% of the change of surface soil water change in September, and more 

than 100% in October and November. It implies that the higher soil moisture in RAHMS 

from September to November results from the upward fluxes at the bottom of LSM soil 

model domain, while only downward gravitational drainage occurs in RWRF.  

5.3.3 In the shallow groundwater region 

Fig. 5-7 shows the time series of mean soil moisture of four soil layers in the LSM soil 

model domain in the shallow groundwater region for RAHMS and RWRF, as well as the 

time series of mean groundwater depth in RAHMS. The mean groundwater depth is 

constantly less than 2 m, indicating that the groundwater table in this region is mostly 

located within the LSM soil column.  

 

Fig. 5-7 Time series of mean soil moisture of four soil layers in the relatively 

shallow groundwater region for RAHMS and RWRF, as well as the mean 

groundwater depth in RAHMS.  

As shown in Fig. 5-7, the soil moisture increases before early August and slightly 
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decreases in mid-to-late August in RAHMS, while in RWRF it shows an obviously 

decreasing trend in July and August. In this case, their difference increases to 0.09 

m3/m3 at the end of August, despite the soil moisture in RAHMS and RWRF are more or 

less same on July 3, 1991. Afterwards, the soil moisture declines slowly in both 

simulations. On spatially and temporally average, the soil moisture is 0.31 and 0.39 

m3/m3 in RWRF and RAHMS, respectively, which shows an increased soil moisture by 26% 

in RAHMS. It can thus be assumed that the simulations of surface soil water in RAHMS 

and RWRF are strongly differentiated for shallow groundwater region.  

In RAHMS, surface soil hydrological processes involve groundwater, and groundwater 

can interact with water in rivers and lakes. Especially when the groundwater table is 

shallow (depth < 2 m), surface soil water in the LSM soil model domain can be directly 

impacted by groundwater. Thus, the unsaturated and saturated soil water in aquifers is 

viewed as a whole in RAHMS, impacted by net infiltration, saturation-excess runoff, and 

interactive flux between groundwater and channel water. In RWRF groundwater is not 

involved, and hence the dynamics of surface soil water is determined by net infiltration 

at its upper boundary and recharge flux at its lower boundary. Fig. 5-8 depicts the 

spatially averaged monthly means related to the water balance of the LSM soil model 

domain in RWRF (a) and that related to the water balance of the aquifer in RAHMS (b). 

 

Fig. 5-8 (a) Water budget of the LSM soil model domain in RWRF, including net 

infiltration (Inet), recharge flux (qre), and the change of soil water (dwsoil), 

(b) water budget of the unconfined aquifer in RAHMS, including net 

infiltration (Inet), saturation-excess runoff (Rsat), groundwater-channel 

water interactive flux (Qcg), and the change of soil water in the aquifer 

(dwug). 

In RWRF, the soil drainage at the bottom of the LSM soil model domain exceeds the net 

infiltration at its top in July and August, as shown in Fig. 5-8(a). It must lead to a 

reduction of surface soil water in the LSM soil model domain, which explains why the 

soil moisture in RWRF shows a decreasing trend in these two months (see in Fig. 5-7). 
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Compared to RWRF, there is slightly different net infiltration in July and August for 

RAHMS, but significantly less water drained from the aquifer. Specifically, the recharge 

flux in RWRF is 8.16 and 3.33 mm/d, respectively; in RAHMS, the sum of saturation-

excess runoff and groundwater seepage is 3.83 and 1.53 mm/d (see in Fig. 5-8(b)). 

Consequently, the soil water storage of aquifers in RAHMS is increased by 2.30 mm/d in 

July and decreased by 0.36 mm/d in August, while the surface soil water in RWRF is 

significantly decreased in July (-2.53 mm/d) and August (-1.81 mm/d). It can be known 

that with a large amount of net infiltration, the surface soil hydrological processes in 

the shallow groundwater region are differentiated in RAHMS and RWRF. In RWRF, intense 

soil drainage is simulated at the lower boundary of the LSM soil model domain at the 

same time. Different from RWRF, infiltration water accumulates in the aquifer and 

laterally flows in RAHMS; if the aquifer is fully saturated, saturation-excess runoff occurs 

during the rainfall events.  

 

Fig. 5-9 Comparisons of spatially averaged monthly mean net infiltration (a, 

signified as Inet), recharge flux (b, qre), saturation-excess runoff (Rsat) and 

groundwater-surface water interactive flux (c, Qcg), and the change of 

surface soil water (d, dwsoil) in the shallow groundwater region for RAHMS 

and RWRF.  

Fig. 5-9 depicts the spatially averaged monthly means for various components in the 

water budget of the LSM soil model domain for RAHMS and RWRF, including net 

infiltration at its upper boundary (a), recharge flux at its lower boundary (b), and the 
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change of surface soil water (d), and saturation-excess runoff and interactive flux 

between groundwater and channel water (c). In July and August, the monthly recharge 

flux is 0.64 and 0.26 mm/d in RAHMS, while 8.16 and 3.33 mm/d in RWRF, respectively. 

The contrast suggests that the drainage at the bottom of the LSM soil model domain in 

RAHMS is considerably confined in comparison to RWRF. It is because when groundwater 

table is located above the bottom of the LSM soil model domain, the gravitational 

drainage at its bottom ceases. In July and August, therefore, the change of surface soil 

water is 1.76 and -0.52 mm/d in RAHMS, respectively, while -2.53 and -1.81 mm/d in 

RWRF, respectively. This also elaborates why the surface soil moisture of July and 

August increases in RAHMS, however, decreases in RWRF.  

Accordingly, it can be known that in RWRF the drainable water can be released from the 

LSM soil model domain under gravity. Apparently, it is unreasonable in the case of 

shallow groundwater table. The embedment of groundwater in the AHMS enables soil 

water to accumulate above groundwater table, which results in significantly higher soil 

moisture in the shallow groundwater region.  

5.3.4 Section Conclusion 

The analysis mentioned above shows that the surface soil hydrological processes is 

affected by the hydrological processes, in which case the simulation of soil moisture is 

altered in RAHMS. The influence of the coupled atmospheric and hydrological simulation 

on soil moisture is manifested by compared to RWRF, as shown in Table 5.6.  

Table 5.6 Comparison of simulated soil moisture in RAHMS and RWRF for regions 

with various groundwater depths.  

Year-  
Month 

Deep groundwater  Relatively deep gw.  Shallow groundwater 

RAHMS RWRF diff.  RAHMS RWRF diff.  RAHMS RWRF diff. 

m3/m3 m3/m3 % m3/m3 m3/m3 % m3/m3 m3/m3 % 

1991-07 0.29 0.30 -4.19 0.30 0.30   -0.16 0.40 0.35 13.14

1991-08 0.27 0.29 -6.24 0.30 0.30 0.41 0.41 0.33 24.34

1991-09 0.26 0.28 -7.62 0.28 0.28 2.82 0.39 0.30 31.49

1991-10 0.24 0.26 -7.75 0.28 0.27 4.69 0.38 0.29 29.53

1991-11 0.24 0.26 -7.72 0.28 0.26 6.31 0.37 0.29 28.04

mean 0.26 0.28 -6.66  0.29 0.28 2.69  0.39 0.31 24.95

Note: Relative difference (%) = (RAHMS - RWRF)/RWRF × 100 

In RAHMS, simulated soil moisture by the AHMS shows a reduction of 4–8% in the deep 

groundwater region, and an augment of 13–31% in the shallow groundwater region. 

For the relatively deep groundwater region, the mean soil moisture in RAHMS and RWRF 
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is nearly the same in July and August, and in RAHMS, the soil moisture from September 

to November is increased by 3–6%. The change of soil moisture in RAHMS differs 

significantly in regions with various groundwater depths. It demonstrates that the 

impact of hydrological processes on soil moisture is associated with groundwater depth.  

5.4 Influence on surface fluxes and atmospheric states 

According to the previous section, the simulation for surface soil hydrological 

processes by the WRF and the AHMS differs, which must lead to altered soil moisture 

in two simulations. The change of surface soil moisture affects the processes at the land 

surface, and further feedbacks to atmospheric variables. In this section, the comparison 

between the AHMS and the WRF simulations within the Huaihe basin is undertaken, 

regarding soil moisture, evapotranspiration, near-surface air temperature, and 

precipitation.  

5.4.1 Soil moisture  

Fig. 5-10 shows the spatial distribution of mean soil moisture of four soil layers over 

the period of July 3 to November 30, 1991 in the Huaihe basin simulated by the AHMS 

(a, RAHMS) and the WRF (b, RWRF), as well as the corresponding difference of RAHMS 

and RWRF. The mean soil moisture that is averaged over the basin and over the period 

is increased by 6.7% in RAHMS, from 0.29 (RWRF) to 0.31 m3/m3 (RAHMS). But, the soil 

moisture difference shows a large spatial variability, as shown in Fig. 5-10(c).  

In a large portion of the basin (besides in the mountains), higher soil moisture is 

observed in RAHMS. Combined with the spatial distribution of groundwater depth (Fig. 

5-2(b)), it can be found that the soil moisture is obviously higher for RAHMS in regions 

where groundwater depth is less than 3 m (red solid line in Fig. 5-10(c)). Spatially 

averaged over the downstream area with shallow groundwater (black dashed line in Fig. 

5-10(c)), for example, the soil moisture difference of RAHMS and RWRF is 0.08 m3/m3, 

from 0.32 m3/m3 in RWRF (the relative saturation is 70%) to 0.40 m3/m3 in RAHMS (the 

relative saturation is 86%). The mean soil moisture in RAHMS is increased by 25%. It is 

because in RAHMS, in shallow groundwater regions the soil water can accumulate in the 

LSM soil model domain (above the groundwater table), instead of being drained 

downwards. As discussed in Section 5.3.1, higher soil drainage (in RAHMS) than 

gravitational drainage (in RWRF) occurs in the deep groundwater region, which results 

in drier soil conditions in the mountains in RAHMS.  
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Fig. 5-10 Spatial distribution of mean soil moisture (m3/m3) over the period of July 

3 to November 30, 1991 simulated by AHMS (a) and the WRF (b), and 

the corresponding difference (c) between RAHMS and RWRF. In this figure, 

the area framed by grey dashed line, red solid line, and black dashed line 

represents the mountainous regions, the regions with groundwater depth 

less than 3 m, and the downstream area of the Huai River, respectively.  

5.4.2 Evapotranspiration 

Fig. 5-11 shows the spatial distribution of mean evapotranspiration over the period of 

July 3 to November 30, 1991 within the Huaihe basin simulated by the AHMS (a) and 

the WRF (b), and the difference of RAHMS and RWRF. It can be seen from Fig. 5-11(a) 

and (b) that the evapotranspiration in RWRF shows a smaller spatial variation, while the 

spatially distributed evapotranspiration in RAHMS significantly differs within the Huaihe 

basin. Statistically, the evapotranspiration in RAHMS has a spatial standard deviation of 

0.43, spatially varying in the range of 1.19 to 3.72 mm/d; apart from the evaporation of 

water surface (over lakes), the evapotranspiration in RWRF is less than 2.67 mm/d, with 

a spatial standard deviation of 0.21. It demonstrates that the simulated 

evapotranspiration by the AHMS shows a larger spatial variability.  

On average, the simulated evapotranspiration by the WRF and the AHMS is 2.29 and 

2.47 mm/d, respectively, indicating that evapotranspiration is increased by 8% (0.18 

mm/d) in RAHMS. Similar to that of soil moisture difference, there is higher evaporation 
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in RAHMS in a large part of area in the basin (see in Fig. 5-10(c)). Especially in the 

regions with groundwater depth less than 3 m, the difference mainly ranges from 0.23 

(0.1 quantile) to 1.01 mm/d (0.9 quantile). In the downstream area with shallow 

groundwater, the spatially averaged evapotranspiration is increased by 35% (0.8 mm/d) 

in RAHMS. Conversely, the spatially averaged evapotranspiration in the mountains 

decreases from 2.28 mm/d in RWRF to 2.19 mm/d in RAHMS, showing a reduction of 0.09 

mm/d (-4%) in RAHMS.  

 

Fig. 5-11  Spatial distribution of mean evapotranspiration (mm/d) over the period 

from July 3 to November 30, 1991 simulated by the AHMS (a) and the 

WRF (b), and the corresponding difference (c) between RAHMS and RWRF. 

The representations of the lines in this figure are same as Fig. 5-10.  

5.4.3 Air temperature 

Fig. 5-12 shows the spatial distribution of mean air temperature over the period of July 

3 to November 30, 1991 for the Huaihe basin simulated by the AHMS (a) and the WRF 

(b), and the corresponding difference (c) between RAHMS and RWRF. In RAHMS and RWRF, 

the mean air temperature that is averaged over the basin and over the period is 19.31 

and 19.50 ºC, respectively, indicating that the air temperature in RAHMS is reduced by -

0.19 ºC (0.96%). As shown in Fig. 5-12(c), a lower air temperature of RAHMS than RWRF 

is observed in 85% of the basin, especially in the regions with groundwater depth less 

than 3 m. It matches with the change of soil moisture and evapotranspiration. As same 

atmospheric boundary conditions are used in RWRF and RAHMS, the amounts of incoming 
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radiation in both simulations are supposed to be identical. In RAHMS, higher soil water 

content in shallow groundwater regions enhances soil evapotranspiration, which 

consumes more heat energy. In the downstream areas, for instance, the spatially 

averaged air temperature decreases from 19.47 ºC in RWRF to 18.74 ºC in RAHMS, with 

a reduction of 0.73 ºC (-4%). Whereas, the spatially averaged air temperature in the 

mountains simulated by the AHMS (19.05 ºC) approximately equals to that in RWRF 

(19.06 ºC).  

 

Fig. 5-12 Spatial distribution of mean air temperature (ºC) over in the period from 

July 3 to November 30, 1991 simulated by the AHMS (a) and the WRF 

(b), and the corresponding difference (c) between RAHMS and RWRF. The 

representations of the lines in this figure are same as Fig. 5-10.  

5.4.4 Precipitation 

Fig. 5-13 shows the spatial distribution of simulated precipitation over the period of 

July 3 to November 30, 1991 for the Huaihe basin in RAHMS (a), RWRF (b), and the 

corresponding difference (c) between RAHMS and RWRF. The amounts of mean 

precipitation over the basin from July to November are almost identical for RAHMS and 

RWRF, only with a difference of 0.06 mm/d. On monthly scale, this difference is also 

small, e.g. -1.6 mm in July, 0.8 mm in August, 0.5 mm in September, 0.1 mm in October, 

and 0.4 mm in November (see in Table 5.2). This indicates that the impact of 

hydrological processes on basin-averaged precipitation is minor.  
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In both simulations, intense precipitation occurs in the regions along the mainstream of 

the Huai River, while a relatively small amount of precipitation exists in the northern 

basin. But, as shown in Fig. 5-13(c), the spatially distributed differences between RAHMS 

and RWRF indicate regional changes up to ± 0.9 mm/d (± 30%). Hence, the spatial 

pattern of precipitation within the basin is redistributed in a certain extent in RAHMS 

compared to RWRF. But there is no general tendency of higher or lower precipitation 

amounts in RAHMS. Due to the fact that the initial conditions and the inflow of moisture 

at the domain boundaries is the same for both simulations, the spatial redistribution of 

precipitation within the basin can be attributed to the hydrological processes in RAHMS.  

 

Fig. 5-13 Spatial distribution of mean precipitation (mm/d) over the period of July 

3 to November 30, 1991 simulated by the AHMS (a) and the WRF (b), 

and the corresponding difference (c) between RAHMS and RWRF. The 

representations of the lines in this figure are same as Fig. 5-10.  

5.5 Conclusion 

The AHMS is applied to the Huaihe basin for a coupled atmospheric and hydrological 

simulation in the period of July 1 to November 30, 1991. In the fully coupled simulation, 

the AHMS enables surface and subsurface hydrological processes in the watershed to 

affect surface fluxes, and further feedbacks to atmospheric variables; whereas, this 

influence is not simulated in the atmospheric simulation of the stand-alone WRF. The 

evaluation with the observation dataset shows that the AHMS can performance well in 

the atmospheric modelling. The statistical evaluation indices for simulated daily 
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streamflow at three hydrological stations (NSIs ≈ 0.55, PMCs = 0.76–0.90, WBIs = 

0.63–0.79) demonstrate that the AHMS has an ability of reasonably reconstructing daily 

river discharge within the Huaihe basin.  

The simulation of surface soil hydrological process in the LSM soil model domain in 

RAHMS and RWRF are discussed seperately. Furthermore, their water budgets are 

compared to quantitively analyze the impact of hydrological processes in the coupled 

simulation. It is worth noted that the surface soil hydrological processes in two 

simulations behaves differently, and the influence of surface and subsurface 

hydrological processes on it varies with groundwater depth. In details,  

1) Deep groundwater, mainly located in the mountains, rarely supplies moisture to 

surface soil layers. Conversely, under suction of deep unsaturated soil and 

gravity effect, soil drainage occurring at the bottom of LSM soil model domain 

is higher than gravitational drainage (in WRF). It results in drier soil conditions 

in the mountains.  

2) In the AHMS simulation, groundwater is capable of moistening overlaying soil 

layers by capillary rise. In relatively deep groundwater regions (3–10 m), 

upward capillary fluxes are widely spotted from September to November. After 

experiencing a dramatic decline in mid-to-late August, the soil water content 

simulated by the WRF continues to decrease slowly in the following three 

months, while the soil moisture in the AHMS simulation remains stable (about 

0.27 m3/m3). It is mainly because of the wide occurrence of capillary fluxes, 

which efficiently provides moisture for surface soil layers in dry soil conditions.  

3) The surface soil hydrological processes in shallow groundwater regions (0–2 m) 

strongly differs in both simulations. In the WRF simulation, gravitational 

drainage occurs at the bottom of soil model domain regardless of groundwater 

depth. In the AHMS, the description of groundwater in aquifers enables 

gravitational soil water to accumulate above the groundwater table. As a 

consequence, the simulated soil moisture of this region is significantly higher 

(by 26%) in the AHMS simulation.  

The impact of the coupled atmospheric and hydrological simulation on soil moisture 

presents a large spatial variability, due to the spatial variation of groundwater depth in 

the basin. The change of soil moisture alters surface fluxes and atmospheric variables, 

e.g. evapotranspiration and air temperature; their shifts show a similar spatial pattern as 

that of soil moisture. For instance, soil moisture and evaporation in the downstream 

plains are increased by 25% and 35%, respectively, and near-surface air temperature is 

reduced by 0.73 ºC (4%). On average, the embedment of hydrological processes into 

the AHMS results in higher soil moisture (by 7%) and evaporation (by 8%), as well as 
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lower air temperature (-0.2 ºC) in the Huaihe basin. Their effect on basin-averaged 

precipitation is insignificant, but results in a spatial redistribution of precipitation in the 

basin, with local changes up to ± 30%.  
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6 Discussion, Summary and Outlook 

6.1 Discussion 

The evaluation of the coupled Atmospheric and Hydrological Modelling System 

(AHMS) has been conducted in Chapter 5, while the validation of the coupled land 

surface and hydrological model (NoahMP-HMS) has been achieved in Chapter 4. The 

hydrological processes within the Huaihe basin in July 1991 have been simulated 

respectively by the AHMS (see in Section 5.2) and the NoahMP-HMS (see in Section 

4.4).  

In the NoahMP-HMS simulation and in the AHMS simulation, the setups for the land 

surface module and the hydrological module, and the values of the hydrological 

parameters are identical. Hence, Their difference results from the atmospheric 

conditions. The NoahMP-HMS is driven by 6-hourly NCEP reanalysis dataset (except 

precipitation) and the precipitation from meteorological stations, while in the AHMS 

simulation the WRF dynamic downscaling provides surface meteorological conditions. 

The simulated daily streamflow by both models at the BB station in the period of July 

1 to July 31, 1991 are depicted in Fig. 6-1, as well as the observations.  

 

Fig. 6-1 Time series of observed and simulated daily streamflow by the NoahMP-

HMS and the AHMS at the BB hydrological station.  

According to the observed flood hydrograph (red line in Fig. 6-1) of the BB station, the 

river discharge gradually increases from July 1 to July 13 and then slowly decreases. 
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The simulated daily streamflow by the AHMS (black line in Fig. 6-1) is obviously lower 

than the observation. The water balance index is 0.59. It can be argued that the AHMS 

underestimates the amount of runoff in the BB subbasin in July 1991. As shown in Fig. 

6-1 (blue line), the simulated streamflow by the NoahMP-HMS differs from the 

observed flood hydrograph. But its water balance index is 1.08, compared to the 

observation. It can be seen that the runoff amount in the BB subbasin during July 1991 

is well simulated by the NoahMP-HMS. Therefore, combined with the NoahMP-HMS 

simulation, the underestimation of flood peak and river runoff in July 1991 by the 

AHMS is discussed in the following.  

The monthly precipitation, evaporation, net infiltration, and runoff in July 1991 in both 

simulations are spatially averaged over the BB subbasin and listed in Table 6.1. There 

is almost the same amount of monthly net precipitation in two simulations, and even 

more precipitation in the AHMS simulation. But compared to the NoahMP-HMS 

simulation, the runoff generated in the BB subbasin is obviously lower in the AHMS 

simulation, with a difference of 73.4 mm/month.  

Also, Table 6.1 shows the monthly runoff amount for various components in both 

simulations, including infiltration-excess runoff, saturation-excess runoff, and 

groundwater supply to streams. The difference of infiltration-excess runoff is -68.5 

mm/month, explaining 93% of their total runoff difference. It demonstrates that the 

shortage of infiltration-excess runoff in the AHMS simulation leads to the large 

difference of total runoff.  

Table 6.1  Monthly precipitation, evapotranspiration, net precipitation, net 

infiltration, and runoffs in July 1991 in the BB subbasin in the AHMS 

and the NoahMP-HMS simulation.  

 P 
(mm) 

E 
(mm) 

P-E 
(mm) 

Inet 
(mm) 

R 
(mm) 

Rins  
(mm) 

Rsat  
(mm) 

Qcg  
(mm) 

RAHMS 244.0 141.3 102.7 77.0 46.5 25.4 0.2 20.9 

RNoahMP-HMS 204.7 99.2 105.5 11.8 119.5 93.9 3.4 22.6 

difference 39.3 42.1 -2.8 65.2 -73.4 -68.5 -3.2 -1.7 

Note: P: precipitation, E: evapotranspiration, P-E: net precipitation, Inet: net infiltration, R: total runoff, 

Rins: infiltration-excess runoff, Rsat: saturation-excess runoff, Qcg (+): groundwater supply to streams, 

difference = RAHMS - RNoahMP-HMS.  

The 25-year offline simulation shows that the amount of monthly runoff in the Huaihe 

basin is largely determined by monthly precipitation (see Section 4.4). Furthermore, 

infiltration-excess runoff occurs only when precipitation intensity exceeds infiltration 

capacity in the scheme (see Section 3.2). Consequently, the analysis focus on the spatial 

distribution of precipitation and its intensity. Fig. 6-2(a) depicts the spatial distribution 
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of monthly mean precipitation in July 1991 simulated by the AHMS, and Fig. 6-2(b) 

presents the observed precipitation used in the NoahMP-HMS simulation. According 

to the observation (Fig. 6-2(b)), a large amount of precipitation occurs in the mountains 

of southern BB subbasin and in the downstream plains in July 1991. The spatial pattern 

of rainfall that occurs in July 1991 is captured by the AHMS, as illustrated in Fig. 6-

2(a).  

 

Fig. 6-2 Spatial distribution of monthly mean precipitation (mm/d) in July 1991 

in the AHMS (a) and the NoahMP-HMS (b) simulation.  

Given that the runoff coefficient is significantly higher in the southern region of the 

Huai River (illustrated in Section 4.4), the statistical calculation are carried out 

separately for the northern and the southern parts of the Huai River in the BB subbasin 

(Table 6.2). For comparison, all the values in Table 6.2 are spatially averaged over the 

area of the BB subbasin.  

In the northern subbasin, the precipitation simulated by the AHMS is higher than in the 

WRF simulation, with a 37.4 mm/month difference (averaged over the BB subbasin). 

But the occurrence of infiltration-excess runoff in this region is limited in the AHMS 

simulation (8.6 mm/month) and the NoahMP-HMS simulation (19.4 mm/month). In the 

southern part, the monthly precipitation amounts approximately equal in the two 

simulations, however, the infiltration-excess runoff by the AHMS is lower, with a 

difference of 57.6 mm/month.  

The combination of Table 6.1 and Table 6.2 reveals that the difference of infiltration-

excess runoff in the BB subbasin south of the Huai River accounts for 84% of the 

infiltration-excess runoff difference and 79% of total runoff in the BB subbasin. Hence, 

the underestimation of flood flow in July 1991 at the BB station in the AHMS 

simulation is mainly caused by inadequately generated infiltration-excess runoff in the 

southern region of the Huai River.  
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Table 6.2  Monthly precipitation, evapotranspiration, net infiltration, and 

infiltration-excess runoff in July 1991 in the BB subbasin southern and 

northern of the Huai River, as well as their percentage to monthly 

precipitation.  

  P 
(mm) 

Rins 
(mm) 

E 
(mm) 

Inet 
(mm) 

Rins/P 
(%) 

E/P 
(%) 

Inet/P 
(%) 

southern 

RAHMS 115.3 16.8 47.3 51.1 15 41 44 

RNoahMP-HMS 113.4 74.4 32.2 6.9 66 28 6 

difference 1.9 -57.6 15.1 44.2 / / / 

northern 

RAHMS 128.7 8.6 94 26 7 73 20 

RNoahMP-HMS 91.3 19.4 67 4.9 21 73 5 

difference 37.4 -10.8 27 21.1 / / / 

Note: all the values in this table are spatially averaged over the BB subbasin;  

The precipitation intensity in the BB subbasin south of the Huai River from July 1 to 

July 31 is statistically calculated and depicted in Fig. 6-3(a). The amount of infiltration-

excess runoff resulted from the corresponding rainfall events are shown in Fig. 6-3(b). 

In the NoahMP-HMS simulation, 85% of the precipitation in July is contributed by 

rainstorms, especially the rainfall events with intensity higher than 50 mm/day; and 

these intense rainfall events contributes a majority of infiltration-excess runoff (as 

shown in Fig. 6-3(b)). On the contrary, the simulated precipitation by the AHMS is 

distributed more evenly regarding intensity (see in Fig. 6-3(a)), which negatively affects 

the generation of infiltration-excess runoff. Therefore, in July 1991, the infiltration-

excess runoff amount by the AHMS is 16.8 mm, while it is 74.4 mm in the NoahMP-

HMS simulation.  

 

Fig. 6-3 Statistical calculation for precipitation in July 1991 in the BB subbasin 

southern of the Huai River, as well as the amount of infiltration-excess 

runoff resulted from the corresponding rainfall events.  
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In summary, the AHMS underestimates the river discharge at the BB station in July 

1991. On the contrary, the runoff amount in the BB subbasin is well estimated by the 

NoahMP-HMS. According to the aforementioned analysis, the underestimation by the 

AHMS is mainly caused by the inadequately generated infiltration-excess runoff in the 

mountains of the southern subbasin. The infiltration-excess runoff results from 

rainstorms, and its occurrence and quantity are dependent on the characteristics, i.e. 

intensity, duration and spatial distribution. The amount of precipitation in the 

mountainous regions are nearly identical in both simulations. The precipitation 

simulated by the AHMS is distributed more evenly regarding intensity, in comparison 

to the precipitation observation that is used to drive the NoahMP-HMS. Whereas, a 

larger proportion of low-intensity rainfall affect adversely the occurrence of infiltration-

excess runoff.  

6.2 Summary 

In this study, a coupled Atmospheric and Hydrological Modelling System (AHMS) is 

developed, which consists of the Weather Research and Forecasting (WRF) Model, the 

Noah Multi-parameterization Land Surface Model (Noah-MP LSM), and the 

distributed hydrological model HMS. Meanwhile, the coupled land surface and 

hydrological model (NoahMP-HMS) that can be driven by meteorological forcing data 

is available.  

A new parameterization of hillslope runoff is achieved based on the calculation of 

infiltration capacity under hillslope topography. This new parameterization is first used 

in the NoahMP-HMS, for the land surface and hydrological simulation in the Huaihe 

basin of China. According to the simulation of the Huaihe basin from 1980 to 1987, the 

effectiveness of this new parameterization is assessed, and the NoahMP-HMS is 

validated. The results show that the relative bias of simulated annual runoff to the 

observation decreases from -60% to 6%, when using the new hillslope runoff 

parameterization; including it, the NoahMP-HMS has a great ability of reproducing 

hydrological processes and terrestrial water balance. Specifically, the Nash-Sutcliffe 

efficiency coefficients (NSIs) of the simulated daily streamflow at the three 

hydrological stations of the main stream are 0.67, 0.81, and 0.80, respectively; their 

water balance indexes (WBIs) are close to 1.0. Furthermore, the spatiotemporal 

variability of the hydrological processes in the basin is investigated based on the long-

term simulation from 1979 to 2003. The findings are shown in the conclusion section 

of Chapter 4.  

The AHMS with the new parameterization is used to simulate the coupled atmospheric 

and hydrological simulation in the Huaihe basin from July to November 1991. The 
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performance of the AHMS is evaluated in terms of the accuracy in estimating 

precipitation, air temperature, and daily streamflow. The NSIs of the simulated daily 

streamflow are about 0.55, and their WBIs ranges from 0.63 to 0.79. It demonstrates 

that the AHMS can appropriately simulate the daily streamflow in the Huaihe basin. In 

addition, the impact of the fully coupled atmospheric and hydrological simulation is 

investigated by comparison with the stand-alone atmospheric simulation (by WRF). 

The more outcomes are presented in the conclusion section of Chapter 5.  

6.3 Outlook 

Based on the results of this study, it is proposed to focus future work on:  

1) Regional atmospheric and hydrological simulation at a finer resolution and in 

different regions. The nesting technique of WRF enables the AHMS to simulate 

atmospheric and hydrological processes at higher resolution, e.g. 10 km, 5 km. 

With a finer resolution, the geographical features can be better captured, and the 

atmospheric processes may be more precisely predicted, which potentially 

improves hydrological forecasts.  

2) Further improvement for the hillslope runoff parameterization. In this study, the 

infiltration capacity is simplified as the hydraulic conductivity at the maximum 

soil wetness. The maximum soil moisture under the hillslope topography is 

presumed as the average of the saturated soil moisture and field capacity. The 

topography position index (TPI) can be used to categorize the topography in a 

more detailed way. Using the TPI, the landscape is classified into discrete slope 

position classes, including low slope (flat), moderate slope, high slope (cliff), 

very positive slope (ridge), and very negative slope (valley).  

3) This AHMS can be used to simulate the spatial distribution of water resource at 

catchment- or continental scale, to assess the availability of regional water 

resources, and to predict the effects of future climate change on the sustainable 

development of ecosystem, as well as their interaction.  



7   Appendix 

96 
 

7 Appendix 

7.1 Water balance equation 

The water balance involved in the coupled land surface and hydrological model 

(NoahMP-HMS) and in the coupled Atmospheric and Hydrological Modelling System 

(AHMS) are as shown as following:  

(1) Water balance in the multi-layer soil model domain (i.e. LSM soil model domain) 

us
net re

dw
I q

dt
   

net soil soil trans satI I E E R     

(2) Water balance in the aquifer 

ug
net cg

dw
I Q

dt
   

(3) Water balance in rivers and lakes 

sf
inf sat cg out

dw
R R Q Q

dt
     

(4) Water balance at the land surface 

snow can
net sf

dw dw
P E I R

dt dt
      

sf ins satR R R    

can soil trans snowE E E E E      

(5) Terrestrial water balance 

ug snow can
dw dw dw

P E R
dt dt dt

      

ins sat cgR R R Q     
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ugtrr snow can
dwdw dw dw

dt dt dt dt
    

(6) Total water balance in the catchment 

t
out

dw
P E Q

dt
    

ug sft snow can
dw dwdw dw dw

dt dt dt dt dt
     

tdw

dt
: the change of water storage in the catchment [m/s]; 

usdw

dt
: the change of unsaturated soil water in the LSM soil model domain [m/s]; 

ugdw

dt
: the change of soil water storage in the aquifer [m/s]; 

sfdw

dt
: the change of water storage in rivers and lakes [m/s]; 

snowdw

dt
:the change of snow storage [m/s];  

candw

dt
: the change of canopy stored water [m/s]; 

P: the precipitation [m/s]; 

Isoil: the total infiltration which is calculated in the land surface model [m/s]; 

E: the evapotranspiration [m/s]; 

Qout: the outflowing water flow from the catchment [m/s]; 

R: the total runoff [m/s]; 

Inet:  the net infiltration [m/s];  

qre: the flux at the bottom of the LSM soil model domain [m/s]; 

Esoil: the direct evaporation from bare soil [m/s]; 

Etrans: the plant transpiration extracted from soil layers [m/s]; 
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Ecan: the evaporation of precipitation intercepted by vegetation canopy [m/s]; 

Rsf: the surface runoff [m/s], including infiltration-excess runoff and saturation-

excess runoff;  

Rsat: the saturation-excess runoff [m/s]; 

Rins: the infiltration-excess runoff [m/s]; 

Qcg: the interactive flux between groundwater and channel water [m/s], positive Qcg 

represents the flow from groundwater to streams.   
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7.2 Evaluation indexes for streamflow estimates 

In hydrology, some statistical indices are used to measure the goodness of fit between 

two series dataset, e.g. simulated streamflow and measured discharge. The water 

balance index (WBI) represents the ability of model to reconstruct water balance 

processes. Pearson product-moment correlation coefficient (PMC) describes the 

correlation of two time series. Nash-Sutcliffe coefficient of efficiency index (NSI) is 

frequently used to reflect the ability to simulate the peak of time series. The index of 

agreement (IOA) represents the similarity degree of two time series. Normalized root-

mean-square error (NRSE) measures the differences between two time series. Their 

detailed formulas are:  

  
   
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where i
sQ   and i

oQ   signify time series of simulated and observed daily streamflow 

[m3/s], sQ   and oQ   denote time-averaging streamflow [m3/s], N is the number of 

samples in the time series. 
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7.3 Automatic calibration using ABC-DREAM algorithm 

Based on the sensitivity analysis for the hydrological parameters of the sub-basins, the 

Manning roughness coefficients in the WJB subbasin and the WJB-LTZ subbasin are 

automatically calibrated using the differential evolution adaptive Metropolis (DREAM) 

algorithm. The DREAM algorithm is one algorithm of approximate Bayesian 

computation (ABC) methods which is usually used to optimize the model parameters. 

Its detailed algorithm is elaborated in Section 7.4.  

For calibrating Manning roughness coefficients, the Nash-Sutcliffe coefficient of 

efficiency index (NSI) of daily streamflow at the LTZ station is selected as the 

optimization target. Hence, the observed daily streamflow in 1980 at the LTZ station is 

viewed as a reference time series for the ABC-DREAM automatic calibration program. 

Using the Manning roughness coefficient values determined by the ABC-DREAM 

algorithm, the coupled land surface and hydrological model (NoahMP-HMS) simulates 

the hydrological processes of the Huaihe basin in 1980. When all the parameters 

converge to a stable scope, the iteration in the ABC-DREAM algorithm stops. The 

samples in the second half of the iterations are used to estimate the posterior distribution 

for parameters, as shown in Fig. 7-1.  

 

Fig. 7-1 Probability density function for the Manning roughness coefficient in the 

WJB subbasin (a) and in the WJB-LTZ subbasin (b).  

The peak value in the probability distribution function of Fig. 7-1 is selected as the 

parameter value of the Manning roughness coefficient, i.e. 0.008 for the WJB subbasin 

and 0.025 for the WJB-LTZ subbasin. The peak value in the probability distribution 

function of parameters is selected as the value for the Manning roughness coefficient, 

i.e. 0.008 for that in the WJB subbasin (Fig. 7-1(a)) and 0.025 for that in the WJB-LTZ 

subbasin (Fig. 7-1(a)). Using these automatically calibrated parameter values, the 

NoahMP-HMS is used to simulate the hydrological process of the Huaihe basin in 1980. 
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The simulated daily streamflow by the NoahMP-HMS using the automatically 

calibrated parameter values are compared with the observation, as shown in Fig. 7-2; 

meanwhile, the simulated daily streamflow by the NoahMP-HMS using the default 

Manning roughness coefficient (0.02 in the Huaihe basin) is also included in Fig. 7-2. 

The Nash-Sutcliffe coefficient of efficiency index (NSI), Pearson product-moment 

correlation coefficient (PMC), and Water Balance Index (WBI) of simulated daily 

streamflow at the hydrological station of WJB, LTZ, and BB are calculated and 

presented in Table 7.1.  

 

Fig. 7-2 Comparison of observed and simulated daily streamflow by the 

NoahMP-HMS at the hydrological station of WJB (a), LTZ (b), and BB 

(c).  
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As shown in Fig. 7-2, using the automatically calibrated Manning roughness coefficient, 

the simulated daily streamflow at the LTZ and BB station matches well with the 

observed river discharge in term of both intensity and timing. And there are very high 

efficiency coefficient values (NSI, 0.872 and 0.828) and the correlation coefficient 

values (PMC, 0.947 and 0.957) at these two stations. It illustrates that the ABC-

DREAM algorithm works well in automatically calibrating the Manning roughness 

coefficient in the hydrological model.  

Table 7.1  Evaluation indices of simulated daily streamflow at the WJB, LTZ, and 

BB station by the NoahMP-HMS with the ABC-calibrated Manning 

roughness coefficient and other default parameter values.  

station 

ABC-calibrated parameter 

nWJB = 0.008, nWJB-LTZ = 0.025 

default parameter 

n = 0.02 

NSI PMC WBI NSI PMC WBI 

WJB 0.569 0.841 1.121 0.818 0.913 1.084 

LTZ 0.872 0.947 0.926 0.868 0.946 0.927 

BB 0.828 0.957 0.837 0.823 0.954 0.836 

Compared with the default values, the NoahMP-HMS using the ABC-calibrated 

parameter values behaves slightly better in reproducing streamflow at the LTZ and the 

BB stations. The efficiency coefficient (NSI) and the correlation coefficient (PMC) at 

two stations are slightly higher (see in Table 7.1). But the efficiency coefficient (NSI) 

of simulated daily streamflow at the WJB station decreased from 0.82 to 0.57, when 

using the ABC-calibrated Manning roughness coefficient.  

According to the measured hydrograph (red line in Fig. 7-2(a)), the first flood peak 

reaches at the WJB station on June 26, 1980, with flood peak flow of 5300 m3/s. In the 

NoahMP-HMS simulation with default parameter values, the simulated first flood peak 

flow at the WJB station is 7126 m3/s, which take places on June 26, 1980. In the 

NoahMP-HMS simulation with calibrated parameter values, the first flood peak arrives 

on June 25, with peak flow of 10150 m3/s. Obviously, because of the lower Manning 

roughness coefficient in the WJB subbasin, the runoff congregates to the outlet more 

quickly and results in higher flood peak.  

Accordingly, it can be known that when the LTZ station is selected as the optimization 

target, the simulated streamflow of this station after the calibration by the ABC-

DREAM algorithm matches well with the observation. But it is less beneficial to the 

simulation at the WJB station. The usage of multi-target optimization in the ABC-

DREAM algorithm (e.g. the efficiency coefficients at more stations) probably improves 

the effectiveness of the calibration.   
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7.4 ABC-DREAM algorithm 

In common, hydrological models are calibrated by optimizing model parameters to 

enable the model outputs to match an observed reference time series (e.g. river 

discharge) as closely as possible. Two methods are usually used for the calibrating 

hydrologic models. One is a user-guide trial and error procedure, where the user 

controls the change of parameter values and determines whether the calibration target 

has been met by comparing simulation and observation. The user is supposed to have 

adequate knowledge about the model and know how each parameter affects the 

simulation. The second is automatic calibrations, in which the simulation is iteratively 

carried out with parameter values calculated using one certain algorithm. The iteration 

stops only when the statistical results meet the calibration requirement. This automatic 

method mainly depends on the algorithm for sampling parameter values and statistical 

assessment for determining the simulation accuracy.  

Traditionally, the parameters are manually tuned by comprehensive comparison of 

simulated and observed time series. But this approach is subjective, labor-intensive, and 

difficult to extend. Instead, automatic calibration techniques have the advantages of 

efficiency, effectiveness, and extensibility, which results in a broad application and 

great progress. The automatic calibration method mainly includes three categories, data 

assimilation technique, optimization algorithm, and probability distribution function 

(PDF) method. The PDF method is the only one that aims to obtain an estimation of the 

posterior distributions for uncertain parameters based on Bayesian statistics and a 

likelihood function.  

During recent years, a likelihood-free inference using Markov Chain Monte Carlo 

(MCMC) technique has been widely used. This method is especially useful for cases 

where the likelihood is intractable, too expensive to be evaluated, or impossible to be 

formulated explicitly. The likelihood-free method is also referred to Approximate 

Bayesian Computation (ABC).  

7.4.1 Approximate Bayesian Computation 

In a common calibration problem, one expects to estimate the parameter values of a 

model given an observation of system behavior. The observation,    1Y ny ,..., y , is 

recorded from the physical system,   , related to the unknown system parameters 

 1 d,...,    in reality:  

    Y εθ*  
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where  1 n,...,   is a vector of measurement errors; d is the dimension of unknown 

parameters.  

With a model, , representing the physical process, one can simulate the response of 

the system to forcing data    1u nu ,...,u   at an initial state 0x  , and obtain the 

corresponding results  1Y ny ,..., y over simulation period  1t nt ,...,t :  

  0Y u x, ,   

where  1 d,...,   is proposal parameter values. 

The difference between the observed system behavior and the simulated model results 

is defined as an error residual:  

  e Y YF F     

where F[·] allows for a transformation of the observation and the simulation; 

 1e ne ,...e signifies the residual vector. The residual originates from a variety of error 

sources, including inadequate knowledge about system parameters (θ*  ), incorrect 

information in inputted forcing data ( u ), initial states ( 0x ), numerical error, spatial 

discretization, and improper model formulation (Vrugt and Sadegh, 2013).   

Assumed that model parameters (θ) are the only source of uncertainty, the posterior 

parameter distribution can be estimated by Bayes theorem:  

     
 

Y
Y

Y

p p
p

p


 
  

For convenience, which is written as the un-normalized density  

     Y Yp p L    

where  Yp   signifies the posterior parameter distribution, p(θ) is the prior parameter 

distribution,    Y YL p   denotes the likelihood function that describes the 

probability of the data given parameter values.  

Rooted in Bayesian theory, Approximate Bayesian Computation (ABC) method 
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approximates the likelihood function by the comparison between the observation and 

the simulation, which is considered as a “likelihood-free” inference. Another point 

behind ABC is that the trial parameter value (θ) becomes a sample of the posterior 

parameter distribution as long as the distance between observed data and simulated data, 

   Y Y,  , is smaller than a small positive value, i.e.    Y Y,  . The sampled 

distribution converges to the true posterior distribution,  Yp  , in the limit situation 

of 0  (Beaumont et al., 2002). 

The sampling algorithms of the approximate Bayesian computation (ABC) method can 

be classified into three categories: the rejection sampling algorithm, the sequential 

Monte Carlo method, and the Markov chain Monte Carlo method. The Markov chain 

Monte Carlo sampling method is easily embedded to Approximate Bayesian 

Computation being the ABC-MCMC algorithm, which has sufficient advantages in 

both computational efficiency and estimation accuracy.   

7.4.2 Markov chain Monte Carlo method  

The basic point of the Markov chain Monte Carlo method is a Markov chain that 

generates a transition from one state to another state throughout the search space using 

the random-walk Metropolis algorithm. Given that the current state is
tX  and the 

previous states are signified by  0 1X X X X t, ,...,  , the random-walk Metropolis 

algorithm intends to create a Markov chain by sampling candidate parameter values (θ) 

from the proposal distribution based on sampled states, i.e. 

 q ~ X  

With Markov property that the probability distribution of parameter at next state 

depends that on current state instead of all the previous states, the proposal parameter 

distribution can be simplified as  

   t
X Xq q   

In the Metropolis-Hasting algorithm (Hasting, 1970), the acceptance probability of the 

candidate vector θ at current state 
tX is given by 

     
   
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 where  tX ,  is the probability to accept the trial parameter vector, θ, from current 

state, 
tX  ;     denotes the probability density function of the target distribution; 

 q   is the conditional proposal distribution to perform a trial jump from current state 

to another state.  

For cases with a non-symmetrical jumping distribution, i.e.    t tX Xq q  , we 

calculate the acceptance probability by  

          t tX X, max I f f , I f         

 and the fitness between the observation and the simulation is defined as  

     f    Y Y   

where   is a threshold coefficient;  f   is defined as the fitness of the observed 

data (Y ) and the simulated data (Y) using proposal parameter values (θ);   I  is an 

indicator function;    , Y Y   is a function to quantify the distance between the 

observation and the simulation, and a smaller distance means that both match better.  

Thus, the condition of    , Y Y   is changed into  f     with    , 

which indicates that the candidate parameter values will be accepted under the 

conditions of non-negative fitness, i.e.   0f   . Based on it, a reversible Markov 

chain is created, and the successive samples are used to approximate the posterior 

parameter distribution.  

With the computed acceptance probability,  tX ,   , the new state 
t+1X   can be 

determined by  

 
 

1

0

tt
t+1

t

XX
X

X

if ,

if ,






 





 
 

In the ABC-MCMC method, these steps above are repeated until the samples converge 

to a stationary posterior distribution.  

With the widespread implement of the basic MCMC method, researchers have found 

that an effective proposal distribution is essential that helps to converge to a reasonable 
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distribution in a limited amount of time. If the proposal distribution is too wide, too 

many candidate parameter values are rejected, and hence chains cannot mix sufficiently 

and results in a slow convergence. On the contrary, when the proposal distribution is 

too narrow, the searching space is so small that it takes a large number of iterations to 

find a solution. Moreover, the convergence efficiency is related to the scale and the 

orientation of the proposal distribution.  

Some adaptive MCMC methods are sequentially proposed to automatically tune the 

size and the shape of a proposal distribution and overcome the slow convergence of the 

MCMC which is frequently caused by an inappropriate selection of the proposal 

distribution. These adaptive methods, such as the Adaptive Metropolis algorithm 

(Haario et al., 2001), are modified from the Adaptive Proposal (Haario et al., 1999) by 

a covariance adaption strategy.  

In the Adaptive Proposal algorithm, the proposal parameter distribution is automatically 

tuned using a Gaussian distribution with the mean at current state, 
tX  , and the 

covariance that is calculated from a finite number of historical states as  

   2 t
dq ~ N ,c R t tX X  

where Rt is a d×d-covariance matrix determined by the H state,  t t -H+2 t -H+1X X X,... , , 

cd is a scaling factor that depends on the dimension of parameters, d.  

It has been proved that the covariance adaptation affects significantly both the size and 

the spatial orientation of the proposal distribution and adapts continuously to the target 

distribution.  

7.4.3 Differential evolution adaptive Metropolis algorithm  

The differential evolution adaptive Metropolis (DREAM) method is first used by Vrugt 

et al. (2008) in hydrologic modelling. DREAM is a follow up on the Differential 

Evolution Markov chain (DE-MC) (Ter Braak et al., 2006) whose advantages over other 

MCMC methods are simplicity and convergence speed, even for nearly collinear 

parameters and multimodal densities. To describe clearly DREAM, we have a closer 

look at DE-MC algorithm first.  

7.4.3.1 Differential evolution Markov chain 

The DE-MC algorithm integrates the point of Differential Evolution (Price and Storn, 

1997) and the MCMC algorithm, resulting in a population MCMC algorithm where 
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multiple chains can run parallelly.  

In the DE-MC method, several different chains run simultaneously in parallel, instead 

of one single chain. Then all the parameter values sampled from all chains at the current 

state form a population, conveniently stored as a m×d matrix  1X X X Xt t t
j m,..., ,...,     

and  1X t t t t
j j ij djx ,...,x ,...,x   , where m is the number of chains, d is the number of 

parameter dimensions. One trial point in one certain chain, 1t
ij
  , is generated by 

weighted adding the difference of two members to the sample at current state, which is 

called mutation, as  

 
1 2

1
1 1

t t t t
ij ij r rx x x e       

where r1,r2 are one pair of randomly selected members from the population, 

 1 2 1r r j ,m   ;   is a scaling factor that depends on the parameter dimension d, and 

2 38 2. d    is an optimal taken value; e  is one value drawn from a symmetric 

distribution with a small variance compared to that of  the target distribution, i.e. 

 0e ~ N ,b  with a minor value b; t
ijx  signifies the value of  parameter i in Chain j at 

current state t; 1t
ij
 represents a trial value for parameter i in Chain j for next state t+1.  

As mentioned in this section, DE-MC directly uses parameter values at the current state 

to produce a candidate parameter vector, instead of the covariance adaption that is used 

in the MCMC algorithm.  

The combination of DE and MCMC solves an important problem in real parameter 

spaces for MCMC, namely that of choosing an appropriate scale and the orientation for 

the jumping distribution (Ter Braak et al., 2006). 

7.4.3.2 Differential evolution adaptive metropolis algorithm 

The differential evolution adaptive Metropolis (DREAM) algorithm extends the usage 

of the DE-MC method to improve search efficiency. For example, one pair of randomly 

selected members in the DE-MC method is replaced by higher-order pairs to increase 

diversity. Since it is not optimal to update all dimensional parameters simultaneously, 

the randomized subspace sampling strategy selects parameter(s) to be modified 

according to a certain probability. The DREAM algorithm works as following:  

(1) Draw an initial population for each chain,  1 1 1
1X X X Xt t t

j m,..., ,...,  
     and 

 1 1 1 1
1X t t t t

j j ij djx ,...,x ,...,x   
  , using the prior distribution, which is uniform distribution 
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in our case. 

DO evolution of Markov chain for all the chains  1j ,...,m : 

(2) Randomized subspace sampling:  

a. sample P from a discrete multinomial distribution,  P ~ F pCR , where CR is 

a crossover constant vector in the range of 0 and 1, and 1 2
1CR

CR CR

, ,...,
n n

 
  
 

 

with a user-defined parameter nCR.  

b. draw d-labels, Z, from a multivariate uniform distribution, i.e.  0 1dZ ~ U , .  

c. If  1 1Z P ,i ,...,d   , the ith parameter is added to the subset Aj and being 

updated with the proposal distribution.  

(3) Trial vector generating:  

a. a trial jump distance for ith parameter in Chain j, 1t
i , jD   , is determined using 

similar evolution in DE-MC as  

   1
1 1

1

0

k k

t t t
g , j r , j i , j jt

k ki , j t
i , j j

,d X X X A
D

X A

 

   
 

  
         



   

where   signifies the number of chain pairs used to generate the jump; g and r 

are  -dimensional vectors with integer values drawn without replacement from 

 1 1 1,..., j , j ,...,m   , normally 2   ; 2 38 2. d    is the jump rate;   

and   are sampled respectively, according to  ~ U c,c    and  0~ N ,c 

with c (typically, c=0.1) and c which is small compared to the width of the 

target distribution (
1210c  ).  

b. the candidate parameter vector in Chain j is calculated as  

1X Dt t
j j j


     

c. the acceptance probability,  X t
j j,    , of the candidate vector, j  , is 

computed and then determine sample values at next state, as  
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 
 

1
1

0

XX
X

X

tt
j jjt

j t
j j j

if ,

if ,





 


  

  




 
 

END DO for chain evolution 

(4) Convergence judgement: the diagnostic statistic of Gelman and Rubin (1992), R , is 

chose to monitor whether parameter samples in chains converges to a stable range, as  

 
i iR V W  

where iR  is the potential scale reduction factor of ith parameter; iV  is the variance of the 

stationary distribution for ith parameter, estimated by a weighted average of within-

chain variance, Wi, and between-chain variance, Bi, by 

 1 1
1i i iV W B

n n
    
 

 

 2

1 1

1 1

1
ij

m n
k

i ij
j k

W x x
m n 

 
   

   

 2

11
ij

m

i i
j

n
B x x

m 

 
   

1

1 m

iji
j

x x
m 

   

1

1 n
k

ij ij
k

x x
n 

   

where n is the number of last half samples in every chain (each chain has a length of 

2n); m is the number of chains (m≥ 2); k
ijx is one sampled parameter value; ijx  is the 

mean of sampled values for ith parameter in Chain j; ix  is the mean of ith parameter in 

all last half chains.   

(5) If   1 2 1iR . i ,...,d  , stop iteration; otherwise, keep iterating for chain evolution 

from Step (2).  
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7.4.4 Application to a parabolic regression model 

As a test, the DREAM algorithm (in Fortran) is used to automatically calibrate 

parameters for a simple parabolic regression model, y=Ax2+Bx+C. A synthetic dataset 

with a number of equidistant points (n=100) between x1=0 and x2=10 is created using 

A=-0.8, B=8.0, C=1.0. Taken this synthetic dataset as the reference time series (as 

shown in Fig. 7-5 (black line)), the DREAM program is employed to automatically 

calibrate the parameters of the parabolic regression model, with 

(1) The number of chain pairs for mutation, δ = 3; 

(2) Multinomial distribution with crossover constant, nCR = 3; 

(3) The threshold of Nash-Sutcliffe efficiency coefficient, φ = 75%. Nash-Sutcliffe 

efficiency coefficient is only selected to quantify the goodness-of-fitness between the 

observation and the simulation.  

The time series of the multivariate potential scale reduction factor ( R) over the iteration 

process is depicted in Fig. 7-3. It can be known from Fig. 7-3 that the potential scale 

reduction factors fluctuate during the first half length and then stably decrease during 

the last half iterations until convergence (  1 2 1iR . ,i ,...,d  ). 

Additionally, how well the chains are mixing and how they move around the searching 

space are displayed by visual inspection, as shown in Fig. 7-4(a), (c), and (e). Fig. 7-4 

shows that sampled values for three parameters gradually converge to concentrated 

areas from initially broad ranges. It indicates that this calibration model works well for 

the parabolic regression model.  

 

Fig. 7-3 Trace plot of R-statistics with increasing iterations.  
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Owing to the stable convergence, the marginal distributions are able to represent the 

posterior distributions for parameters. The sampled values in the second half iterations 

are used to estimate the posterior distribution for the parameters of the parabolic 

regression model, as shown in Fig. 7-4.  

 

Fig. 7-4 Trace plots and probability density function for three parameters in the 

defined parabolic regression model. (a) and (b) for parameter A, (c) and 

(d) for parameter B, (e) and (f) for parameter C.  

The mean of normal distribution is selected as the parameter value in the parabolic 

regression model, i.e. A = -0.807 (as shown in Fig. 7-4(b)), B = 8.096 (as shown in Fig. 

7-4(d)), C = 0.719 (as shown in Fig. 7-4(f)). Hence, the estimated parabolic regression 

model by calibrated parameter values is shown as Fig. 7-5 (red line); the estimated 

curve nearly coincides with the synthetic curve. This illustrates that this automatic 

calibration program based on the DREAM algorithm performs excellent for calibrating 

parameters in the parabolic regression model.  
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Fig. 7-5 Comparison of observed and estimated parabolic regression models.  
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