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Computational Homogenization with Million-way Parallelism
using Domain Decomposition Methods

Axel Klawonn · Stephan Köhler · Martin Lanser · Oliver Rheinbach

Abstract Parallel computational homogenization us-
ing the well-known FE2 approach is described and com-
bined with fast domain decomposition and algebraic
multigrid solvers. It is the purpose of this paper to
show that and how the FE2 method can take advan-
tage of the largest supercomputers available and those
of the upcoming exascale era for virtual material test-
ing of micro-heterogeneous materials such as advanced
steel. The FE2 method is a computational micro-macro
homogenization approach which incorporates microme-
chanical finite element simulations into macroscopic fi-
nite element simulations. In this approach, at each Gauß
integration point of the macroscopic finite element prob-
lem a microscopic finite element problem, defined on a
representative volume element (RVE), is attached. Note
that the FE2 method is not embarassingly parallel since
the RVE problems are coupled through the macroscopic
problem. Numerical results are presented considering
different grids on both, the macroscopic and micro-
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scopic level. Unstructured as well as structured grids
with different irregular domain decompositions are con-
sidered on the microscale. Finally, weak scaling results
from a few nodes up to a million parallel processes are
presented.

1 Introduction

In this paper, we present algorithms and software for
the direct computational homogenization of micro-het-
erogeneous media in nonlinear structural mechanics.
Our approach is based on the combination of an MPI-
parallel implementation of the well-known FE2 com-
putational homogenization method with efficient MPI-
parallel iterative solvers, e.g., from domain decompo-
sition (DD) and algebraic multigrid, for the problems
on the micro- as well as on the macroscale. An earlier
version of our software has already been demonstrated
to be applicable to problems in the simulation of dual-
phase steel [36,34]. It is the purpose of this paper to
show how the FE2 method can take advantage of the
largest supercomputers available for the computational
homogenization of micro-heterogeneous materials using
million-way concurrency and beyond.

The FE2 approach is well-established in engineer-
ing and has been validated to experiments in numerous
publications, e.g., by our collaborators in the EXAS-
TEEL project [12, Fig. 10]; see below for a short de-
scription of EXASTEEL. It is our goal, to pave the
way for predictive simulations in virtual material test-
ing, with a focus on modern multiphase steels as a
show-case, through robust and scalable computational
algorithms, optimized software, and advanced model-
ing; see [53] for a discussion of mathematics-based ad-
vanced computing as a means of discovery and innova-
tion. Our project EXASTEEL is part of the German ex-
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ascale initiative SPPEXA1 (Software for Exascale Com-
puting) to develop algorithms and software for the next
generation of supercomputers of the exascale era with
parallelism beyond 107 parallel processes or threads.

The FE2 method is a computational micro-macro
homogenization approach which incorporates microme-
chanical finite element simulations into macroscopic fi-
nite element simulations. It is well established in the
engineering community for many years; see, e.g., [61,
23,48,59,45,24,25,60]. In [49], a comparison of the FE2

method with Direct Numerical Modeling (DNM), i.e.,
full simulation without homogenization, was given, for
a problem of a heterogenous hyperelastic layer. Later,
in [50], computational homogenization for an interface
problem based on the same implementation, but using
a staggered approach different from FE2, was scaled to
393 216 computing cores.

In this approach, at each Gauß integration point of
the macroscopic finite element problem a microscopic
finite element problem, defined on a representative vol-
ume element (RVE), is attached. The meshes for the
finite element simulations on the RVEs are chosen such
that they are able to resolve the micro-heterogeneities.
The computational micro-macro approach replaces a
phenomenological material law on the macroscale; see
[60] for an introduction to the FE2 method. Compu-
tational homogenization approaches such as the FE2

method rely on the assumption of scale separation, i.e.,
the features of the microstructure are assumed to be
magnitudes smaller than the diameter of the macro-
scopic finite elements. However, detailed micro-macro
simulations using the FE2 method were still out of reach
until recently when supercomputers with million-way
concurrency became available.

For certain materials the discretization of the macro-
scopic mechanical part down to its microstructure may
become feasible as the computational power grows to-
wards the exascale era. Such approaches are then also
sometimes referred to as direct numerical simulations in
solid mechanics [9,10]. Note that in [9,10] a voxel ap-
proximation (using hexahedral finite elements) of the
grain structure is used in order to avoid difficulties in
the construction of reliable meshes for realistic grain
structures.

In the present paper, to avoid this problem we make
use of statistically similar RVEs (SSRVEs); see [12,7,
6], where different SSRVEs were also validated, first
against virtual experiments and then against experi-
ments. This approach allows us to replace RVEs with
complicated microstructure geometries (either from EBSD
– Electron Backscatter Diffraction – measurements or
synthetically constructed, e.g., by a tessalation algo-

1 http://www.sppexa.de

rithm) by RVEs using simple geometric bodies such as
embedded ellipsoids; see, e.g., Fig. 1. The SSRVE ap-
proach also helps to reduce the problem size; see Fig. 4.

The resulting algorithm is still computationally ex-
pensive but highly parallelizable since the microscopic
problems on the RVEs are only coupled through the
macroscopic finite element problem. To solve the non-
linear implicit structural mechanics problems on the
RVEs efficient implicit solvers are still needed. In our
case, we apply parallel domain decomposition solvers,
adding an additional layer of concurrency. Recently,
in [47], a closely related software framework was pre-
sented, combining the FE2 method with FETI domain
decomposition solvers. The framework includes dynamic
scheduling and was tested for three-dimensional prob-
lems with unstructured meshes on a compute server
with two Xeon E5-2650 processors with 8 cores each.

2 Computational homogenization

The FE2 computational homogenization method, see,
e.g., [61,23,48,59,45,24,25,60], is well known and widely
used. In this method, the numerical simulation of a
micro-heterogeneous medium is separated into two scales:
a macroscopic finite element problem where the mi-
crostructure is not resolved and many microscopic fi-
nite element problems, each attached to a Gauß point
of the macroscopic finite element problem. The micro-
scopic boundary value problems in the FE2 method are
based on the definition of a representative volume el-
ement (RVE). While the boundary conditions for the
microscopic problems are imposed by the deformation
gradients on the macroscale, the upscaling is performed
by averaging the stresses over the microscopic problems;
see also Fig. 1.

If the microscopic problems are small, the tangent
problems on the RVEs can be solved using a sparse
direct solver for each RVE problem. For larger RVEs,
efficient parallel nonlinear finite element solvers, which
should also be robust for heterogeneous problems, have
to be incorporated, e.g., a Newton-Krylov method with
an appropriate preconditioner such as (algebraic) multi-
grid or domain decomposition. Recent nonlinear do-
main decomposition approaches can also be used as,
e.g., ASPIN [13,43,31,14,30,28,27,26] or Nonlinear-FE-
TI-DP [35,33,40] and the related Nonlinear FETI-1 or
Neumann-Neumann methods [52,11]. In our implemen-
tation of the FE2 method, the FE2TI package, we fo-
cus on Newton-Krylov-FETI-DP and Nonlinear-FETI-
DP approaches. We can, however, currently use also
PARDISO [54], UMFPACK [15], MUMPS [2], or the
algebraic multigrid implementation BoomerAMG [29,
4] from the hypre [20] package. Fast Fourier transform
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(FFT) based solvers would also be possible for struc-
tured meshes but are out of the scope of this paper; see
the discussion in Section 3.

Domain decomposition methods of the FETI-DP
type are fast solvers for linear and nonlinear problems
in solid and structural mechanics and highly scalable to
half a million cores [35] and beyond [36]. BoomerAMG
is also highly scalable [3], also for linear elasticity [4] if
improved interpolations are used.

Using parallel solvers for the microscopic boundary
value problems (BVPs) results in several levels of par-
allelism. On the first level, we have the parallel RVEs,
coupled through the macroscopic problem. Each RVE is
attached to a Gauß integration point of the macroscopic
problem. On the second level, a parallel approach for
the solution of the nonlinear PDEs on the RVEs or SS-
RVEs is used. Third, we will also consider paralleliza-
tion of the macroscopic problem. Note that the FE2

method is not embarassingly parallel since the RVE
problems are coupled through the macroscopic prob-
lem.

2.1 Description of the FE2 approach

Our description of the computational homogenization
FE2 method follows [60], and more details can be found
in [23,60]; also see our earlier works on computational
homogenization in the EXASTEEL project [34,36,8].
A similar description can also be found in the disserta-
tion [46].

We first assume that we have a macroscopic bound-
ary value problem or, more precisely, a problem from
the field of solid mechanics with typical length scale
L. The characteristic length scale of the microstructure
of the material is defined by l. Therefore, we assume
that the microscopic and heterogeneous structure of the
material can be resolved in the scale l and that L is
larger by orders of magnitudes, i.e., L ≫ l. Addition-
ally, we assume that we have a representative volume
element (RVE), which can effectively describe the mi-
croscopic and heterogeneous material properties. The
detailed discussion of the notion of a representative vol-
ume element [60] is out of the scope of this paper.

Based on the underlying assumptions, it is sufficient
to discretize the macroscopic BVP on a domain B with
finite elements in the scale of L without considering
the microscopic structure. Then, at each Gauß point
of the macroscopic finite elements, a microscopic BVP,
representing the microstructure, is attached. To define
an appropriate microscopic BVP, a finite element dis-
cretization of the RVE in the scale of the microstructure
l is necessary. The appropriate boundary conditions

are induced from the macroscopic deformation gradi-
ent at the corresponding Gauß point. A related method
for multiscale problems, more established in the math-
ematical community, is the Heterogeneous Multiscale
Method (HMM) [17,1]. A recent interesting paper [18]
highlights the close relations to the FE2 method.

Throughout this paper, we will mark macroscopic
quantities with bars, as, e.g., the deformation gradi-
ent F and the first Piola-Kirchhoff stress tensor P . On
the microscale, we use P for the stress and F for the
deformation gradient. We do not have a phenomenolog-
ical material law on the macroscale, instead, the macro-
scopic quantities are assumed to be volumetric averages
of quantities on the microscale. In Fig. 1, a schematic il-
lustration of the homogenization approach FE2 is given.

Let us remark that in recent years an approach to
reduce the computational effort of an FE2 simulation
was to use RVEs with simplified geometries, e.g., con-
sisting of ellipsoids; see [56,55]. These statistically sim-
ilar RVEs (SSRVEs) can be discretized with a coarser
mesh. In Fig. 1, we depict a typical RVE (top right) as
well as a typical SSRVE (bottom right).

2.1.1 Microscopic boundary value problems

We first introduce the microscopic boundary value prob-
lem defined on a reference configuration B0, which rep-
resents our microscopic RVE, using the corresponding
reference variables X. Let us assume that in a deformed
state B, the deformation of our reference configuration
can be described by ϕ : B0 → B and the deformation
gradient is defined by F := ∇ϕ. Then, without any
further external forces, the balance of momentum in a
weak formulation with a test function δx writes

−

∫

B0

δx · (DivX P (F )) dV = 0. (1)

The tensor P (F ) is the first Piola-Kirchhoff stress ten-
sor and in contrast to the macroscale, the relation be-
tween P and F has to be described by a phenomenolog-
ical material law, which describes the considered mate-
rial sufficiently.

In our numerical experiments, we consider dual-phase
steels and use an implementation [42] of a J2-elasto-
plasticity model in FEAP as a material law on the
microscale. Work on crystal plasticity is in progress.
The parameter choices and different yield stresses for
the martensitic and ferritic phases can be found in [12,
Fig. 10]. The nonlinear equation (1) is then solved by
Newton’s method. More precisely, we typically apply
a Newton-Krylov-FETI-DP or Nonlinear-FETI-DP ap-
proach to (1); see Section 3 for details.
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Fig. 1 Illustration of the FE2 homogenization approach. Top left: Realistic and heterogeneous macroscopic boundary value
problem of length scale L. Top right: Zoom into the microstructure of the material of length scale l; we have L ≫ l. From
the microstructure, an RVE or SSRVE can be constructed (see bottom right for SSRVE). Bottom Left: Macroscopic and
simplified boundary value problem on the domain B with quantities P and F . The deformation gradient F induces the boundary
conditions of the microscopic BVP on the right. Bottom right: Microscopic boundary value problem on domain B, which
can be an RVE or SSRVE.

As mentioned before, the boundary conditions on
the microscale are induced from the macroscopic defor-
mation gradient F at the corresponding Gauß integra-
tion point. In the case of Dirichlet conditions, we simply
enforce x := FX for each boundary node X ∈ ∂B0 on
the microscale. Here, X are the variables in the ref-
erence configuration B0 and x is the microscopic solu-
tion, i.e., x describes the deformed configuration B. As
many homogenization approaches do, the FE2 method
assumes that the material can be characterized suffi-
ciently by a repetitive periodic RVE and therefore the
use of periodic boundary conditions is more reasonable.
We first split the boundary ∂B into two parts

∂B = ∂B+ ∪ ∂B−.

For each node X+ ∈ ∂B+ exists an associated X− ∈
∂B− and both have opposing outer normal vectors.
With fluctuation fields w̃+ = x − FX+ and w̃− =
x− FX− we enforce the periodic boundary condition

w̃+ = w̃− ∀ pairs X+ ∈ ∂B+ and X− ∈ ∂B−.

To obtain regular systems, we additionally enforce w̃+ =
w̃− = 0 in the eight corners of each RVE.

2.1.2 Homogenization and macroscopic boundary value

problem

Similarly to the microscopic boundary value problems,
we can formulate the macroscopic problem in a given

reference configuration B0 and reference variables X.
Again, the balance of momentum in the weak formula-
tion with a test function δx writes

∫

B0

δx · (DivX P (F )− f) dV = 0, (2)

where f is a volume force. We here disregard surface
forces for simplicity.

On the macroscale, we do not have a material law
to deliver an explicit relation between the deformation
gradient F and the stress tensor P . Instead, the first
Piola-Kirchhoff stress tensor P at a macroscopic Gauß
point is obtained by homogenization, i.e., as a volu-
metric average over the Piola-Kirchhoff stresses P of
the corresponding RVE. Therefore, we have

P :=
1

V

∫

B0

P (F ) dV, (3)

where V := |B0| is the volume of the corresponding
RVE. With (3) and the fact that we consider nonlinear
material laws on the microscale, also (2) is nonlinear in
the desired solution F . Thus, also on the macroscale, a
Newton approach is used to solve (2). Standard tech-
niques for the globalization of Newton’s method can
be applied. In our computations, load stepping (pseudo
time stepping) is utilized as a homotopy method; see
below.

Let us briefly derive the Newton iteration formu-
lated in the macroscopic displacement u, such that F =
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∇ϕ = I+∇u, where I is the identity and ϕ the macro-
scopic deformation. We assume that we have an initial
value u(0). Given finite element shape functions NT and
their derivatives BT , we can derive a nonlinear residual
in the k-th iteration of Newton’s method on a certain
finite element from (2):

rT

(
u(k)

)
:=

∫

T

B
T

T P
h
(
I + u(k)

)
− N

T

T f dV.

Here, P
h
marks the discretized stress tensor on element

T available in all Gauß points of the element. For the
macroscopic tangent, we then have

dkT

(
u(k)

)
=

∫

T

B
T

T A
h
(
I + u(k)

)
BT dV, (4)

where A
h
is the discretized macroscopic tangent mod-

ulus, which again writes

A :=
∂P

∂F
=

∂

∂F

(
1

V

∫

B0

P (F )dV

)
(5)

and is thus defined in each Gauß point. Using stan-
dard finite element routines to assemble the tangent
DK

(
u(k)

)
from dkT

(
u(k)

)
and R

(
u(k)

)
from rT

(
u(k)

)
,

we obtain the Newton iteration

u(k+1) = u(k) −DK
(
u(k)

)−1
R
(
u(k)

)
. (6)

We now provide a brief description how to compute A.
Let us therefore remark that F is constant on a single
RVE. We assume a decomposition of the microscopic
deformation gradient F =: F+F̃ on a single RVE into F
and a fluctuating part F̃ . Using the chain rule and (3),
this immediately leads to

A :=
∂P

∂F
=

∂

∂F

(
1

V

∫

B0

P (F ) dV

)
(7)

=
1

V

∫

B0

∂P (F )

∂F
:
∂F + F̃

∂F
dV (8)

=
1

V

∫

B0

A dV +
1

V

∫

B0

A :
∂F̃

∂F
dV ; (9)

see also [60, equation (89)]. The first term in the sum (9)
is a volumetric average over the tangent modulus A of
the microscopic problem.

We only have to compute P and A after Newton’s
method has converged on the microscale. Therefore, we
can assume an equilibrium state of the weak formu-
lation in (1). Exploiting this fact and using the finite

element basis of the RVE, a reformulation of the dis-

cretized tangent modulus A
h
was provided in [60, Sec-

tion 3.2]:

A
h
:=

1

V

(
∑

T∈τ

∫

T

A
h dV

)

−
1

V
LT (DK)−1 L. (10)

Here, τ is the finite element discretization of B0 into
finite elements and Ah the discrete microscopic tangent
modulus defined in the Gauß points of the finite ele-
ments. Then,

1

V

(
∑

T∈τ

∫

T

A
h dV

)

is simply the discrete representation of 1
V

∫
B0

A dV in (9).
The second term in (10)

1

V
LT (DK)−1 L (11)

is the discrete form of 1
V

∫
B0

A : ∂F̃

∂F
dV exploiting the

balance of momentum on the microscale; see [60] for
the derivation. Here, the tangential matrix DK of the
microscopic BVP is obtained from assembly of finite
element matrices

kT :=

∫

T

B
T
TA

h
BT dV,

where T ∈ τ are finite elements and BT are the deriva-
tives of the shape functions. The matrix L has to be
assembled also from the element contributions

lT :=

∫

T

A
h
BT dV.

Here, L has the dimension n × s, where n is the num-
ber of degrees of freedom in the RVE and s = 4 in
two dimensions and, respectively, s = 9 in three spatial
dimensions.

Let us remark that DK is simply the tangent in the
final Newton step on the RVE and thus the application
(DK)−1L can be interpreted as solving a linear sys-
tem with s right hand sides. If a direct solver is used,
a mode for multiple right hand sides can be used or s

additional forward backward substitutions have to be
performed. However, if using an iterative solver such as
a Nonlinear- or Newton-Krylov-FETI-DP method, the
iterative solver has to be called s times; of course, infor-
mation reuse and recycling techniques can be applied to
reduce computational cost for the later iteration phases;
see Section 4 for details.

We finally provide an algorithmic description of a
single load step in Fig. 2, where a Nonlinear- or Newton-
Krylov-FETI-DP type method is used to solve the mi-
croscopic RVEs. Let us remark that usually the desired
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macroscopic deformation cannot be applied in a sin-
gle step but has to be applied in several consecutive
load steps. This often is denoted as pseudo time step-
ping. The step shown in Fig. 2 has to be repeated for
each load step with increasing load. It is possible to use
the solution un from the n-th load step plus additional
Dirichlet boundary conditions as an initial value u

(0)
n+1

for the Newton iteration in the (n + 1)-th load step.
Alternatively, an extrapolation approach using several
former solutions can be beneficial; see also Section 4.
Let us remark that we do not consider volume forces
f in this paper but prescribe a fixed deformation as
Dirichlet boundary conditions on parts of the bound-
ary ∂B0,D ⊂ ∂B0 in incremental load steps.

2.2 Implementation remarks

Our C/C++ implementation, the FE2TI software, uses
PETSc 3.5.2 [5] and MPI.

2.2.1 Solving the macro problem

In most of our numerical examples, the macroscopic
problem is solved by a sparse direct solver, i.e., UMF-
PACK or MUMPS, where this is still feasible. In this
case, we solve the macroscopic problem redundantly on
all MPI ranks. For large FE2 simulations, the macro-
scopic problem can also be solved in parallel. We can
use a Krylov method combined with, e.g., an algebraic
multigrid (BoomerAMG) approach from the hypre li-
brary [29] as a preconditioner. Here, the Krylov sub-
space method and the AMG preconditioner will run on
small MPI communicators obtained by anMPI Comm -

split, the macro problem is thus solved redundantly on
the subcommunicators. A parallel domain decomposi-
tion method could also be applied on the macroscale
but this approach has not been utilized in this paper.
We often reuse the communicators created for the mi-
croscopic solvers (see below for details), but for small
RVEs an additional split into communicators of efficient
size is also possible. The complete macroscopic solution
is finally collected on all MPI ranks of the subcommu-
nicator and thus all MPI ranks. Let us also remark that
the assembly process of the macroscopic problem is also
parallelized and, as should be expected, scales perfectly.

2.2.2 Solving the micro problems

For each Gauß point of the macroscopic problem and
thus for each microscopic problem, we introduce a sep-
arate MPI communicator. In our implementation, we
use MPI Comm split to create subcommunicators of
equal size. Inter-communicator communication is not

necessary during the microscopic solves and the aver-
aging of the different microscopic quantities; see points
1 to 4 in Fig. 2. To solve the microscopic BVPs, we use
a Nonlinear- or Newton-Krylov-FETI-DP method; see
Section 3 for details.

In order to compute LT (DK)−1L (see (10)), we
solve s linear systems with DK as left hand side, i.e.,
we have nine right hand sides in 3D or four right hand
sides in 2D. If an iterative solver is used, this can be an
expensive step and, in extreme cases, in our numerical
experiments, the computation of the consistent tangent
moduli can take up more than 50% of the total time to
solution. Approximating LT (DK)−1L or even discard-
ing the matrix LT (DK)−1L completely can be feasible
alternatives even though superlinear convergence may
be lost for the macroscopic problem.

A discussion of different strategies is provided in
Section 4. Finally, we use collective communication to

provide A
h
and P

h
on all MPI-ranks in order to as-

semble the linearized macroscopic problem (6). This is
efficiently performed by first collecting and summing
up all averaged values on the first rank of each micro-
scopic subcommunicator and a consecutive collection
step using only those first ranks. Thereby, we avoid
global communication involving all MPI ranks but only
communicate on independent subsets of MPI ranks at
the same time.

3 Parallel domain decomposition solvers

We use iterative multilevel methods to solve our nonlin-
ear solid mechanics problems on the RVEs, i.e., mostly
parallel domain decomposition methods of the linear
or nonlinear FETI-DP type or algebraic multigrid. Our
implementations of nonlinear FETI-DP domain decom-
position methods, developed within the SPPEXA EX-
ASTEEL project, have scaled to the full 786 432 cores [36]
of the Mira BG/Q Supercomputer (Argonne National
Laboratory, USA) for a heterogeneous nonlinear hy-
perelasticity problem with 60 billion unknowns; also
see [35], for details on the method and implementation.
In [35], also results for nonlinear domain decomposi-
tion on the SuperMUC supercomputer (LRZ, Munich,
Germany), the Vulcan supercomputer (Lawrence Liver-
more National Laboratory, USA), and the JUQUEEN
supercomputer (JSC, Jülich, Germany) are included.
For robustness, especially for heterogeneous problems,
we usually apply sparse direct solvers, i.e., PARDISO [54],
UMFPACK [15], or MUMPS [2] as local subdomain
solvers. Here, to speed up the Krylov iteration phase,
accelerating the forward-backward substitution in the
sparse direct solver is of interest [65]. In our implemen-
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Choose initial macroscopic deformation F which fulfils the boundary conditions
Repeat until convergence (Newton iteration):
1. Apply boundary conditions to RVE based on macroscopic deformation gradient; e.g. enforce

x = FX on the boundary of the microscopic problem ∂B in the case of Dirichlet constraints.
2. Solve microscopic nonlinear boundary value problem using Nonlinear-FETI-DP, Newton-Krylov-

FETI-DP, or related methods.
3. Compute and return macroscopic stresses as volumetric average over microscopic stresses Ph:

P
h
=

1

V

∑

T∈τ

∫

T

P
h
dV.

4. Compute and return macroscopic tangent moduli as average over microscopic tangent moduli
A

h:

A
h
=

1

V

⎛

⎝
∑

T∈τ

∫

T

A
h
dV

⎞

⎠ −
1

V
L

T (DK)−1
L

5. Assemble tangent matrix and right hand side of the linearized macroscopic boundary value prob-

lem using P
h

and A
h
.

6. Solve linearized macroscopic boundary value problem.
7. Update macroscopic deformation gradient F .

Fig. 2 Algorithmic description. Overlined letters denote macroscopic quantities. Blue parts are computations on the microscale
and thus the MPI subcommunicators obtained by MPI Comm split. Red parts are macroscopic computations performed on
all MPI ranks. Algorithmic description taken from [36].

tation it is also possible to use efficient preconditioners
such as multigrid for the local problems in nonlinear do-
main decomposition; see [37,38]. Shared-memory par-
allelization on the node is an option in our software
if a shared-memory parallel subdomain solver (such as
PARDISO or BoomerAMG) are used; see [39]. There,
parallelization of the finite element assembly, combin-
ing PETSc and OpenMP, and the solution of the subdo-
main problems, using PARDISO, was performed. Good
scalability using up to four OpenMP threads for each
MPI rank on an Intel Ivy Bridge architecture was ob-
served and incremental improvements were obtained us-
ing up to ten threads.

For voxel meshes, see, e.g., Fig. 3 and Fig. 4, geomet-
ric multigrid methods or Fast Fourier (FFT) transform
based solvers would be efficient alternatives, since they
can profit from the tensor structure of such meshes.
In [19], the authors compare an FFT-based solution
method with standard Q1 finite elements for a crystal
plasticity problem defined on an RVE. As the FFT-
based method exploits the tensor structure of the prob-
lem, the authors use structured meshes (voxel meshes)
for, both, the FFT-based approach as well as for the Q1
finite element meshes. For the FEM problems, a com-
mercial code was applied. The authors concluded that
with respect to computational cost the FFT-based ap-
proach can be computationally cheaper by one to two
orders of magnitude. Indeed, FFT-based computational
homogenization approaches have successfully been used
by different authors in recent years; see, e.g., [62,32,58,
44,57,16] and references therein. The FFT approaches
are valued for the high efficiency when applied to voxel-

based RVEs with millions of degrees of freedom, and
because voxel meshes from EBSD measurements, as in
Fig. 3, can directly be used without further processing.
In FFT homogenization, e.g., based on [51], the number
of iterations will depend on the contrast; see, e.g., [32].

Note that the approach presented in this paper dif-
fers from other approaches, including those using FFT
solvers on the microscale. In order to obtain better ap-
proximations on the microscale, especially for plastic-
ity, we use second order (P2) finite elements instead of
simple linear tets (P1) or trilinear hexahedral elements
(Q1). We then use an approach (SSRVEs) to construct
RVEs using simple geometries, e.g., ellipsoids. However,
the advantages of SSRVEs can only be exploited fully
when using unstructured meshes, and we therefore use
unstructured tetrahedral meshes, well adapted to the
geometry. Our parallel domain decomposition methods
can cope with these unstructured meshes, and the num-
ber of Krylov iterations will be only slightly higher. We
also use direct sparse solvers on the subdomains for high
robustness of the numerical methods and usually obtain
quadratic convergence of the overall Newton scheme; cf.
Fig. 18. We will see in our numerical results that, for
our SSRVEs, unstructured meshes are clearly favorable;
see Section 4.2. We will also see that the unstructured
meshes can also be allowed to be significantly, i.e., more
than an order of magnitude, smaller than the structured
meshes. Using adaptive mesh refinement could further
expand the advantage but this is out of the scope of
this paper.

Recent versions of PETSc include an efficient im-
plementation of iterative substructuring methods [66].
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However, we apply our own parallel implementation [35,
41] which is earlier and also includes our most recent
versions of nonlinear domain decomposition methods [40].

Let us briefly describe the linear and nonlinear FETI-
DP domain decomposition methods, which we will uti-
lize to solve the RVE problems on the microscale. In
our computational homogenization approach, the micro
problems are usually more challenging than the macro
problem as a result of the heterogeneities, which have
to be homogenized.

3.1 Parallel linear and nonlinear domain
decomposition of FETI-DP type

Given a nonoverlapping domain decomposition Ω1, . . . ,

ΩN of the computational domain Ω ⊂ R3, we introduce
the (generally) nonlinear operatorsK1, . . . ,KN , defined
on the subdomains, and the corresponding right hand
sides f1, . . . , fN . In nonlinear domain decomposition,
we usually obtain the operators K1, . . . ,KN from the
minimization of a nonlinear (e.g., hyperelastic) energy
on the subdomains; see [33, equation (2.4)]. In Newton-
Krylov-DD methods, the operators K1, . . . ,KN are lin-
ear as the domain decomposition is performed after
Newton linearization.

In our FE2 simulations, the domain Ω will be an
RVE B0 andK1, . . . ,KN as well as f1, . . . , fN are deter-
mined by (1). We define the block vectors u = (u1, . . ., uN ),

K(u)T = [K1(u1)
T . . .KN (uN )T ]T , fT = [fT

1 , . . . fT
N ]T .

Using finite element assembly in primal variables, we
obtain the partially assembled nonlinear operator K̃,

K̃(ũ) = RT
ΠK(RΠ ũ)

and the corresponding right hand side f̃ = RT
Πf. As in

linear FETI-DP methods, the global coupling by partial
finite element assembly is introduced to make the local
problems invertible and to obtain numerical scalability.
As a result, the Jacobian DK̃(ũ) can be assumed to be
invertible, while it still maintains a favorable, partially
decoupled, structure, i.e.,

DK̃(ũ) =

⎛

⎜⎜⎜⎜⎝

DK
(1)
BB(ũ) DK̃

(1)
BΠ(ũ)

. . .
...

DK
(N)
BB (ũ) DK̃

(N)
BΠ (ũ)

DK̃
(1)
ΠB(ũ) . . . DK̃

(N)
ΠB (ũ) DK̃ΠΠ(ũ)

⎞

⎟⎟⎟⎟⎠
.

We now define nonlinear FETI-DP methods as iter-
ative methods for the solution of the nonlinear system
(see [33,40])

A(ũ,λ) :=

[
K̃(ũ) +BTλ− f̃

Bũ

]
=

[
0
0

]
. (12)

Since the nonlinear problem K̃(ũ) = f̃ − BTλ can
very efficiently be parallelized, such methods can be
highly scalable and nonlinear problems with billions of
degrees of freedom [35] can be solved in a few min-
utes. As in standard, linear FETI-DP methods [64,22,
21,41] the linear constraint Bũ = 0 enforces the conti-
nuity across the subdomain boundaries, using Lagrange
multipliers λ. However, as opposed to linear FETI-DP
methods, the continuity is only achieved at convergence
of the Newton iteration; see [33] for details.

The (generally) nonlinear system (12) can be solved
using different strategies; see [40]. These methods are
all equivalent to the classical FETI-DP method if K is
a linear operator.

For our problems on the RVEs, we can apply New-
ton’s method directly to (12). This was denoted Nonlinear-
FETI-DP-1 in [33]. We will either use a classical Newton-
Krylov FETI-DP approach, i.e., the microscopic BVP
is first linearized and the FETI-DP method is applied
to the linearized system, or Nonlinear-FETI-DP-1 is
used, i.e., Newton linearization is applied to (12), and

the Newton correction
[
δũ(k); δλ(k)

]T
can be computed

from

[
DK̃(ũ(k)) BT

B 0

] [
δũ(k)

δλ(k)

]
=

[
K̃(ũ(k)) +BTλ(k) − f̃

Bũ(k)

]
.

(13)

A reduction to the Lagrange multipliers leads to a linear
system of the form

F δλ(k) = d, (14)

which is solved iteratively by a Krylov method, e.g.,
GMRES, throughout this paper, preconditioned by the
standard FETI-DP Dirichlet preconditioner [64].

4 Numerical results

If not marked otherwise, we use a Newton-Krylov-FETI-
DP approach for the solution of the microscopic RVE
problems, i.e., we have used the most conservative choice
among our FETI-DP methods. We also present results
using Nonlinear-FETI-DP-1 on the Theta supercom-
puter later on. This is the most conservative choice
among the recent Nonlinear-FETI-DP and Nonlinear-
BDDC methods [35,33,40]. In our numerical experi-
ments, if not denoted otherwise, the macroscopic prob-
lem is discretized using piecewise linear triangular ele-
ments (P1) in 2D and piecewise trilinear or quadratic
brick elements (Q1 or Q2) in 3D. In all our experiments
we stop the macroscopic Newton iteration if the norm
of the update is smaller than 1e−6. We use a tolerance
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#subdomains unstructured meshes
#elements #degrees of freedom

30 23 537 103 266
64 47 296 199 125
110 222 489 921 648

#subdomains structured meshes
#elements #degrees of freedom

30 20 480 95 523
64 69 120 311 475
110 214 375 945 108

Table 1 Meshes for the SSRVEs. We use P2 finite elements.

of 1e− 8 for the microscopic Newton iteration and use
a relative stopping tolerance of 1e − 9 for all Krylov
subspace methods.

We use computing time on the JUQUEEN super-
computer (Jülich Supercomputing Centre), a large BG/Q
(PowerBQC 16C 1.6 Ghz) installation with a total of
458 752 cores and 1 GB of memory for each core. JU-
QUEEN was Europe’s fastest supercomputer in 2015
and is still ranked 22nd in the TOP500 list of Novem-
ber 2017.

4.1 Simulation using a voxel-based RVE from EBSD
measurements

In this section, we consider FE2 simulations using a
structured mesh based on voxel data obtained from
EBSD (Electron Backscatter Diffraction) measurements
as an RVE. We use P2 finite elements on the microscale,
where each voxel is decomposed into six ten-noded tetra-
hedra. The RVEs consisting of 663 552 finite elements
and 2 738 019 degrees of freedom. Each RVE is decom-
posed into 512 subdomains. We consider a plate with a
hole discretized with 64 finite elements and thus using
512 RVEs. The sum of the number of degrees of free-
dom on the microscale is thus approximately 1.4 billion.
We simulate four different deformations. We twist the
plate and apply different pulling and pressing forces;
see Fig. 3 (top).

Each of the simulations has been performed using
262 144 MPI ranks using 131 072 cores of the JUQUEEN
supercomputer. The numerical scheme remained stable
and reliable results have been obtained; see Fig. 3. The
I/O-time to write all data for all RVEs to the file system
always stayed below 2% of the total runtime.

These results show the scalability of our implemen-
tation and demonstrate its ability to run efficiently on
large supercomputers, consistent with the earlier re-
sults from [34,36,8]. Therefore, in the following sec-
tions, we fokus on further optimizing and tailoring the
RVE solver. We also investigate if we can reduce the
size of the RVEs.

4.2 Considering different discretizations of the
microscale

In this section, we study the influence of the structure
and resolution of the discretization of a chosen RVE or
SSRVE on the homogenized solution on the macroscale.
The construction of the SSRVEs using a fixed number of
ellipsoidal inclusions based on EBSD measurements is
discussed in [55]; also see [12]. Nonetheless, the resolu-
tion of the discretization of the SSRVEs is comparably
coarse in [55]. Here, we present a comparison of macro-
scopic and microscopic results using meshes of differ-
ent refinement levels; see Fig. 4 and Fig. 5 for different
SSRVE meshes. We consider structured grids (Fig. 4),
which cannot resolve the ellipsoidal inclusions very well,
as well as unstructured grids (Fig. 5). These investiga-
tions also provide us with a grid convergence study. As
a macroscopic problem, we extend a symmetric plate
discretized with 72 finite elements in x-direction; see
Fig. 6 (left) for the undeformed geometry. We first ap-
ply 11 load steps with a deformation of 0.025 percent of
the current deformed state in each load step; see Fig. 6
(right) for a visualization of the load.

For our meshes, see Table 1. Our largest unstruc-
tured mesh, discretizing the SSRVE using two ellip-
soids [55], consists of 222 489 finite elements (see Fig. 5
right) and is chosen as our reference. When we to refer
to the error (see Fig. 8), we mean the difference to the
solution on the reference mesh.

In Fig. 7, we present the von Mises stresses in the
macroscopic problem after 11 load steps using the ref-
erence discretization. To compare the effects of using
different SSRVE meshes on the macroscopic results, in
Fig. 8, we depict the relative difference in the von Mises
stresses between the reference solution from Fig. 7 and
solutions obtained using coarser unstructured and struc-
tured grids.

For the unstructured grids – see Fig. 8 (rows four to
five) – we see only small differences for both grids and
also observe convergence to the reference solution from
the coarser grid (row four) to the finer one (row five).
On the other hand, we obtain significant differences us-
ing structured grids, even though the finest structured
SSRVE is of the same size as the unstructured refer-
ence SSRVE; see Fig. 8 (rows one to three). Therefore,
we can conclude that the choice of the discretization
of the SSRVE has a significant impact. Our unstruc-
tured grids result in a significant better approximation
of the reference solution than all structured grids, even
if the number of finite elements is an order of magnitude
smaller.

All in all, in our experiments, the von Mises stresses
have been slightly higher when structured grids are
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Fig. 3 Four different types of macroscopic deformations. Simulations performed with RVEs with 663 552 finite elements and
2 738 019 degrees of freedom. The geometry of the RVEs corresponds to a small cubic part of a larger structure obtained from
EBSD measurements of a dual-phase steel. The computations have been performed with 262 144 MPI ranks on 131 072 cores
of JUQUEEN. Based on data from [12].

used. First, this is a result of high stress peaks caused
by the unsmooth resolution of the surfaces of the el-
lipsoids. Second, the minimal stresses in the SSRVEs
appear to be slightly higher in the case of structured
meshes. The first effect can be observed in the stress
distributions in Fig. 9, where we depict the unstruc-
tured SSRVE alongside the structured ones. In Fig. 9,
four different Gauß points A,B,C, and D are considered
as well as two different grid resolutions.

We additionally provide data on the stress peaks
and the average stresses in Gauß points A and C in
Fig. 10 (left and middle). The second effect is depicted
in Fig. 10 (right) for the same two Gauß points A and
C.

4.3 Improvements of the numerical scheme

In this section, we study techniques to improve the effi-
ciency of our simulation. We also discuss the use of an
approximate tangent in the solution of the macroscopic
problem.

Our macroscopic test problem in this section con-
sists of only 16 macroscopic finite elements, resulting
in 128 microscopic RVE problems. Here, we always use
the unstructured SSRVE with 47 296 finite elements de-
composed into 64 FETI-DP subdomains; see Table 1.
In this section, a 1% deformation in x-direction using
21 load steps was applied on the macroscale; see also

Fig. 11 for the macroscopic solution. We keep the stop-
ping criterion of the macroscopic and microscopic New-
ton iterations fixed at 1e − 6 and, respectively, 1e − 8.
We keep the relative stopping criterion of the FETI-DP
solver at 1e− 9 since the high accuracy is necessary for
fast Newton convergence on the microscale.

We consider three improvements of our numerical
scheme.
1. Lambda-recycling in FETI-DP:We reuse the so-
lutions λ of earlier Newton steps as initial values for the
FETI-DP solvers; see (14).
2. Approximate tangent modulus:We vary the stop-
ping tolerance for the linear FETI-DP solves necessary
for the computation of the consistent macroscopic tan-
gent moduli; see (11). Stopping early leads to an ap-
proximate tangent on the macroscale.
3. Extrapolation on the macroscale: We use an ex-
trapolation approach to obtain a proper initial value for
the Newton iteration on the macroscale.

Lambda-recycling In general, the idea of lambda-recycling
in Newton-Krylov-FETI-DP is to use the solution λ(k)

of the linear system from the k-th Newton iteration as
an initial value for FETI-DP in the (k + 1)-th Newton
iteration, e.g., to compute λ(k+1).

We apply Newton-Krylov-FETI-DP on each RVE
in each macroscopic step and use lambda-recycling on
each RVE individually. Additionally, we use the solu-
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Fig. 4 Structured discretization with similar numbers of finite elements as the unstructured in Fig. 5 and domain decompo-
sition of an SSRVE with two ellipsoidal inclusions. The colors show the decomposition of the lower half of the cube and the
ellipsoids. Left: 20 480 finite elements and 30 subdomains. Middle: 69 120 finite elements and 64 subdomains. Right: 214 375
finite elements and 110 subdomains.

Fig. 5 Unstructured discretization and domain decomposition of an SSRVE with two ellipsoidal inclusions. The colors show
the decomposition of the lower half of the cube and the ellipsoids. Left: 23 537 finite elements and 30 subdomains. Middle:
47 296 finite elements and 64 subdomains. Right: 222 489 finite elements and 110 subdomains.

Fig. 6 Macroscopic Problem. Left: undeformed Geometry; Right: scaled deformation (factor 50) after 10 steps.

Fig. 7 Von Mises stresses after 10 load steps using the largest
of the three SSRVE.

tion from the last Newton-Krylov-FETI-DP iteration
of the previous macroscopic step as an initial value for
the first Newton-Krylov-FETI-DP iteration of the cur-
rent macroscopic step. Let us remark that nonlinear
FETI-DP methods do not need any lambda-recycling
strategies since the reuse of information automatically
arises from the nonlinear scheme.

It is interesting to note that when solving for the
nine right hand sides in (14), these right hand sides are
rather different and the lambda-recycling approach be-
tween those nine solves does not seem to be beneficial. It
turns out that it is more efficient to use lambda-recyling
from the nine individual solutions from the previous
macroscopic iteration. This strategy is thus standard
in our FE2TI software.
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Fig. 8 Pointwise relative error in von Mises stresses on the macroscale using different SSRVEs after 7 (left column) and 11
load steps (right column). The reference solution is obtained using an SSRVE with a large unstructured mesh (see bottom right
in Fig. 5). For the results in the first three rows, we use SSRVEs with structured meshes and for the last two rows SSRVEs with
unstructured meshes - First row: SSRVE with structured mesh decomposed into 30 subdomains and 20 480 finite elements.
Second row: SSRVE with structured mesh decomposed into 64 subdomains and 69 120 finite elements. Third row: SSRVE
with structured mesh decomposed into 110 subdomains and 214 375 finite elements. Fourth row: SSRVE with unstructured
mesh decomposed into 30 subdomains and 23 537 finite elements. Fifth row: SSRVE with unstructured mesh decomposed
into 64 subdomains and 47 296 finite elements.

Approximate tangent modulus The nine additional lin-
ear FETI-DP solves to obtain a consistent tangent mod-
ulus and thus a consistent tangent on the macroscale
(see (14)) can exhibit a significant portion of the run-
time, especially when using iterative solvers. Neverthe-
less, it is necessary in order to obtain quadratic conver-
gence of Newton’s method on the macroscale. We sug-
gest to reduce the accuracy of the nine linear solves and
thus use an approximate tangent on the macroscale. We
therefore tested different stopping tolerances for FETI-
DP for the computation of the consistent tangent mod-
ulus.

Extrapolation of macroscopic solutions This approach
is rather simple. If an extrapolation of the macroscopic
iterates is activated in the FE2TI package, the initial

value for the (k+2)-th macroscopic load step u
(0)
macro,k+2

is chosen as a linear extrapolation from the solutions of
the k-th and (k+1)-th load steps u∗

macro,k and, respec-
tively, u∗

macro,k+1, i.e.,

u
(0)
macro,k+2 = 2u∗

macro,k+1 − u∗
macro,k .

4.4 Effects of the improvements

Without any of the improvements introduced in the
previous section, the FE2 simulation takes 10 445.5s
to perform 21 macroscopic load steps using a total of
82 macroscopic Newton steps. Using lambda-recycling
alone, the runtime can be reduced to 7 693.0s, which is
1.36 times faster.
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Fig. 9 From left to right: von Mises stresses in four Gauß points A,B,C, and D after 10 load steps - the locations of the
points A to D is depicted above. The deformation of the SSRVEs is scaled by a factor of 20. Rows one and two: coarse
structured and unstructured discretizations with 20 480 and, respectively, 23 537 finite elements, both decomposed into 30
irregular subdomains. Rows three and four: fine structured and unstructured discretizations with 214 375 and, respectively,
222 489 finite elements, both decomposed into 110 irregular subdomains.
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Fig. 10 Maximal stress (left), average stress (middle), and minimal stress (right) after 10 load steps in structured and
unstructured SSRVEs attached to Gauß points A and C - see Fig. 9 for location of Gauß points; see Table 1 for the number
of finite elements.

Fig. 11 Macroscopic solution of a small model problem after
17 load steps.

Choosing different accuracies for the computation
of the consistent tangent modulus (1e− 9, 1e− 6, 1e−
3, 1e − 1), quadratic convergence of the macroscopic
Newton iterations was lost only for 1e − 1, where the
total number of Newton iterations in 21 load steps in-
creases slightly from 82 to 88; see also Table 2.

The runtime is reduced from 7 693.0s to 5 573.5s for
the tolerance 1e − 3, which is our best choice and cor-
responds to a factor of 1.38 of reduction in runtime.

In Fig. 12, we provide a comparison of three vari-
ants, namely without lambda-recycling and with lambda-
recycling and different tolerances 1e− 9 and 1e− 3 for
the consistent tangent.

Finally, adding the macroscopic extrapolation of so-
lutions, the number of macroscopic Newton iterations
is further reduced to 66, and thus also the runtime is
reduced to 4 721.0s; see Table 2. Combining all three
improvements, we can accelerate the computations by
a factor of 2.2.

4.5 Large run using the improvements

Combining our different strategies, i.e., λ-recycling, ap-
proximation of the consistent tangent moduli, and ex-
trapolation of macroscopic solutions, we are able to sim-

Fig. 12 Runtime of the macroscopic Newton iterations.
Comparison between our software FE2TI without optimiza-
tion, with lambda-recycling, and with lambda-recycling plus
using an approximate tangent modulus with tolerance 1e−3.
Additionally, the macroscopic load steps are marked in red
on the x-axis.

ulate 81 load steps with a 2.1% total deformation in 4
hours and 39 minutes using 18 432 JUQUEEN cores.
Here, we use the unstructured SSRVE with 47 296 fi-
nite elements, since the approximation of the reference
solution showed to be accurate enough. We depict the
final state of the solution in Fig. 13.

4.6 Improving scalability by exploiting parallelism on
the macroscale

As mentioned above, the capability to solve the macro-
scopic problem in parallel with an iterative Krylov sub-
space method (e.g., CG or GMRES) and, e.g., the Boo-
merAMG preconditioner [29] was included. When us-
ing BoomerAMG, we always use HMIS coarsening, long
range ext+i interpolation, and a nodal coarsening ap-
proach; see [4] for a discussion of efficient parameters
for elasticity.

The macroscopic problem is assembled and solved in
parallel on a subset of ranks of the MPI communicators
which are assigned to the RVEs. In our tests, these com-
municators have a reasonable size, e.g., 64 MPI ranks
if the RVE is decomposed into 64 subdomains. In the
following tests, we always use between 2 and 64 MPI
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load lambda stopping tol. Newton It. Total
steps recycling consistent tangent extrapolation Macroscale Runtime
21 no 1e-9 no 82 10 445.5s
21 yes 1e-9 no 82 7 693.0s
21 yes 1e-6 no 82 6 484.2s
21 yes 1e-3 no 82 5 573.5s
21 yes 1e-1 no 88 5 688.5s
21 yes 1e-3 yes 66 4 721.0s

Table 2 Improvements using lambda-recycling, inexact macroscopic Newton’s method, and extrapolation of the macroscopic
problem.

Fig. 13 Von Mises stresses after 81 load steps and a total deformation of approximately 2.1% of the macroscopic reference
configuration. Four SSRVEs A,B,C, and D (from left to right) are depicted.

ranks and thus AMG is only applied on a small num-
ber of ranks. The result of the macroscopic problem
is distributed to the complete communicator and then
available on all MPI ranks. We perform two different
weak scaling tests using the unstructured SSRVE with
64 subdomains and the best parameter settings found
before, i.e., λ-recycling, approximation of the consis-
tent tangent moduli, and extrapolation of macroscopic
solutions are used.

We perform 13 load steps for an uniaxial tension test
of a macroscopic cube. In the first weak scaling test, we
use four MPI ranks for each JUQUEEN core and use up
to 1.04 million MPI ranks; see Fig. 14 (top left and top

right) and Fig. 15 for the results. The results in Fig. 15
show significant improvements using parallelization of
the macro problem.

In the second test, we use two MPI ranks per core
and scale up to the complete machine; see Fig. 14
(bottom left and bottom right). Considering the av-
erage time per macroscopic Newton iteration, we ob-
tain an excellent efficiency of 74% on 1.04 million MPI
ranks using AMG for the macroscopic problem and, re-
spectively, for the setup using two MPI ranks per com-
pute core, 78% parallel efficiency on the whole machine.
In both cases the scalability is increased drastically in
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comparison to the approach using a direct solver on the
macroscale.

4.7 Production runs on Theta using
Nonlinear-FETI-DP-1

In this section, we present some results for large pro-
duction runs using Nonlinear-FETI-DP-1 to solve the
microscopic problems.

Theta is a large Intel Xeon Phi (Xeon Phi 7230, 64
Cores, 1.3 Ghz, “Knights Landing”) x86 installation at
Argonne Leadership Computing Facility (ALCF) with
a total of 231 424 cores and ranked 18th in the TOP500
list of November 2017. Theta is a very capable su-
percomputer. Unfortunately, Intel has discontinued its
Xeon Phi line and Theta’s successor named Aurora,
planned to be the first exascale system of the USA in
2021, will use a different architecture.

Analogously to the last subsection, we use the ex-
trapolation approach and an approximate consistent
tangent. With Nonlinear-FETIDP-1, λ-recycling is not
necessary. Indeed, the most conservative nonlinear FETI-
DP method – Nonlinear-FETI-DP-1 – shows to be as
robust and efficient as Newton-Krylov-FETI-DP with
λ-recycling.

4.8 First run on Theta

We are able to simulate 171 load steps with a total
deformation of 4.3% in exactly 4 hours walltime us-
ing 36 864 cores of Theta (Argonne National Labora-
tory, USA). Here, we use the unstructured SSRVE with
47 296 finite elements (see Table 1) since the approxi-
mation of the reference solution showed to be accurate
enough. The problem has 302 million degrees of free-
dom in the microscale and 570 degrees of freedom on
the macroscale

We depict the final state of the solution in Fig. 16
and the development of the von Mises stresses over time
in Fig. 17 for six different vertices.

We also show the number of necessary Newton and
FETI-DP iterations on the microscale. In Fig. 18 the
effect of plastification of certain RVEs can be observed
nicely by observing the number of Nonlinear-FETI-DP-
1 and GMRES iterations in different load steps. Clearly,
starting at load step number four, RVEs A and B need
more Newton steps to converge than C and D, which
marks the point in time when these two RVEs start to
show a plastic behavior.

This introduces a certain load imbalance and can
also be observed in the corresponding runtimes; see

Fig. 19. This load imbalance shows to be of minor inter-
est and does not affect the performance severly, since,
after approximately 20 load steps, all RVEs in the crit-
ical region show a plastic behavior and the load imbal-
ance vanishes. To illustrate this effect, we also present
the Newton iterations and Nonlinear-FETI-DP-1 run-
times of load steps 70 to 79; see Fig. 18 (right) and
Fig. 19 (right). We also present the number of GMRES
iterations per Nonlinear-FETI-DP-1 solve in Fig. 20.
The average number of GMRES iterations per linear
solve is approximately 40 for each of the four RVEs,
which is a satisfactory result.

4.9 Second run on Theta

We finally present results for a refined macroscopic mesh
with 1 792 SSRVEs computed on Theta using Nonlinear-
FETI-DP-1. We simulate 319 load steps using 114 688
cores of Theta and obtain a deformation of 7.7% in x-
direction. The problem has 693 million degrees of free-
dom in the microscale and 1 305 degrees of freedom on
the macroscale. Some results for different RVEs and
different load steps are presented in Fig. 21.

4.10 Conclusion

We have presented a framework for parallel computa-
tional homogenization using the FE2 approach. The us-
age of parallel domain decomposition solvers on the
microscale and parallel algebraic multigrid solvers on
the macroscale allows large multiscale simulations for
micro-heterogeneous media. We have shown FE2 simu-
lations with million-way parallelism and billions of de-
grees of freedom. Larger simulations will be possible
once exascale supercomputers will become available.
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Fig. 14 Top Left: Average Time for each macroscopic Newton iteration scaling to 1.02 million MPI ranks on JUQUEEN
using CG plus AMG preconditioner or a direct solver, respectively. Top Right: Corresponding efficiency to runtimes presented
in top left figure. Bottom Left: Average Time for each macroscopic Newton iteration scaling up to the complete JUQUEEN.
Bottom Right: Corresponding efficiency to runtimes presented in bottom left figure.

Fig. 15 Weak parallel scalability on JUQUEEN. Total time to solution of our FE2 implementation FE2TI for 13 load steps
using CG with an AMG preconditioner or, respectively, a direct solver on the macroscale. The largest problem has 3.3 billion
degrees of freedom on the microscale and 7.8 thousand degrees of freedom on the macroscale.
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59. J. Schröder. Homogenisierungsmethoden der nicht-
linearen Kontinuumsmechanik unter Beachtung von
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