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Abstract 
Cell-penetrating peptides (CPPs) are an inhomogenic class of peptides with the ability to translocate in 
cells and to carry attached cargos with them inside. Owing to this striking ability the further 
development and application of CPP-based delivery strategies have steadily emerged during the past 
years. The following review aims to summarize some of these recent concepts and to higlight the 
current role of CPPs in cancer therapy.  
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1. Introduction 

Cancer is still one of the most threatening diseases with the most cases of death worldwide. 

Not only is the early diagnosis of cancer of high importance, but also an effective therapeutic 

strategy. This is realized by means of surgical excision of the affected tissue often combined 

with radiation therapy and chemotherapy. Several drugs are commonly used for this purpose; 

however, upcoming resistances and the need for a more personalized treatment strategy still 

let researchers develop novel anti-cancer compounds. Although several of such new 

compounds show excellent activity profiles, often their further development is hampered by 

an only poor pharmacokinetic profile. Often this is based on their occasionally poor 

bioavailability due to limited cellular uptake. In fact, overcoming the cell’s plasma membrane 

and reaching the intracellular target site resemble the major hurdles for an efficacious 

therapeutic agent. The plasma membrane surrounds all living cells and acts as a protective 

barrier that controls the in- and outflow of compounds within the environmental media. Drug 

molecules usually must overcome this barrier to reach their site of action. Once inside the 

cell, they act via different mechanisms, as e.g. the selective interruption or activation of a 

signal transduction pathway, or by direct interaction with the DNA in the nucleus. Beside the 

use of small molecule drugs, the current trend involves the use of macromolecules as anti-

cancer agents, such as proteins, monoclonal antibodies, nucleic acids and nanoparticles, and 

the combination thereof. Despite the numerous advantages, the biodistribution and 

translocation of these hydrophilic macromolecular drugs is still a big challenge, prevented by 

the low permeability due to the intrinsic characteristics of the biological membranes. In the 

course of time multiple approaches have been developed, such as the use of liposomes, 

microinjection, electroporation or also viruses and bacteria that are used particularly for gene 

transfer. Although through all these systems it is possible to import macromolecules into 



living cells, each of them presents a series of limitations that preclude their use in in vivo 

studies, in particular for possible therapeutic applications in clinic. The greatest obstacles can 

be summarized in their low internalization efficiency, complexity of manipulation, demand 

for expensive equipment, difficulty of release into the cytosol, and sometimes in cell toxicity 

and immunogenicity. 

Recently, the direct transfer of macromolecules into cells has been obtained by so-called 

"cell-penetrating peptides" (CPP), a class of short peptides rich in basic amino acids, 

characterized by exceptional translocation properties across cell membranes. [1, 2] Usually, 

CPPs consist of less than 35 amino acids, hold a positive net charge, and possess the ability to 

translocate across the plasma membrane. Thereby, CPPs can carry with them associated 

ligands, from small chemical molecules to nano-sized particles and large fragments of DNA, 

into the cell interior. The most studied CPP is the domain of the protein TAT (transactivating 

regulatory protein) of human immunodeficiency virus type 1 (HIV-1). The first evidence 

emerged in two articles published in the same issue of Cell in 1988 [3, 4], which underlined 

the possibility for the protein TAT to enter mammalian cells when simply added to the culture 

medium. A domain between the amino acids 47 and 57, having the sequence 

YGRKKRRQRRR, is the region of the protein responsible for the translocation. Some other 

examples found in nature, in addition to the TAT peptide, are presented by penetratin, a 

transcription factor from Drosophila [5, 6], VP22 from virus Herpes simplex [7] and pVEC, a 

peptide of 18 amino acids derived from the cadherin of murine vascular endothelium [8]. It is 

interesting to note that these peptides have very different amino acid sequences and secondary 

structures while the mechanism of transfer within the cells seems to be similar. Trying to 

change these residues it was understood that the arginine (R) plays a fundamental role. Indeed 

same results in cell internalization were obtained with synthetic oligopeptides consisting in 

homoarginine, highlighting in particular maximum efficiency with R8/9. [9, 10] Since the 

discovery of CPPs, intensive research has been carried out on the underlying entry 

mechanism in order to be able to totally exploit their transport properties but till now, in the 

literature, conflicting data are shown [11, 12]. It cannot be excluded that different 

internalization mechanisms are used concomitantly; furthermore, the permeation properties 

can vary in relation to the type of the associated cargo molecule and in respect to different 

cell types used. Despite this process of translocation remains unresolved, the effectiveness of 

the method is unequivocal, which promises to open new frontiers for research, holding great 

potential as in vitro and in vivo delivery vehicles.  

However, although this strategy is very elegant and works well from a theoretical point of 

view, it has its difficulties and pitfalls in practice. First of all, it is important to choose a 

suitable conjugation method for each molecule that has to be carried by the CPP. 

Furthermore, the CPP to cargo ratio and the employment of peculiar linker systems are of 



relevance. Moreover, CPPs are normally not specific and they are consequently taken up in a 

variety of certain cells and tissues, leading to increased toxicity and side effects. That is why 

new strategies are now being developed in order to enhance their selectivity, and it is essential 

to understand which method is the best in every distinct context. Finally, there are different 

classes of cell-penetrating peptides, each of which works better for certain types of cells and it 

is important to choose the optimal sequence for the envisaged goals. [13] In particular, 

different sequences (exhibiting cationic or amphipathic characteristics) imply also distinct 

properties regarding internalization efficiency but also toxicity. [14] 

 

The community seems to evolve really vast, but still many details have to be taken in 

consideration for planning an optimal strategy when using CPPs. In this review, we 

summarize some of the innovative approaches that have been studied in order to go beyond 

the limitations with CPP application. In particular we focus on the selective delivery of drugs 

in the field of anti-cancer therapy, with specific emphasis on very recently published papers. 

We will first describe the different strategies that have been followed for synthesizing CPP-

cargo conjugates, focusing our attention on covalent binding and fusion techniques. The 

cargoes described herein include small molecule drugs, peptides and proteins. Also non-

covalent complexes and some applications for intracellular delivery of nanoparticles will be 

shortly depicted. In addition, we will cover strategies to obtain a targeted delivery towards 

cancer tissues. The last part of this review will deal with recently obtained advances of CPPs, 

to show how this new technique is actually reaching an increasing success in the treatment or 

diagnosis of cancer. Also drawbacks connected with the use of CPPs will be considered and 

discussed. 

 

2. Different strategies for the synthesis of CPP-cargo constructs 

Depending on the type of molecule that has to be transported inside the cell, there are various 

methods used to allow the conjugation between the carrier moiety and the cargo of the drug 

delivery system. These different conjugation procedures involve a distinct synthetic pathway 

and may have impact on the route of administration, cell entry mechanisms, distribution 

inside the cell, and on other different effects on the cellular level. In addition, based on the 

therapeutic question and nature of the target, which the drug must act on, the choice of 

conjugation way plays a very important role. [15] This paragraph will contemplate in 

particular the formation of conjugates by covalent binding between CPPs and small molecule 

drugs, proteins and peptides. But also fusion techniques are described, which allow the 

synthesis of constructs including proteins. Other methods comprehending non-covalent 

complexes and nanoparticles constructs are finally shortly mentioned. 



 

2.1 Covalent CPP-cargo conjugates 

Most CPP-cargo conjugates synthesized so far, particularly that one including small molecule 

drugs, are characterized by covalent bonding, including stable as well as cleavable linkages. 

However, this kind of conjugation method can be achieved by chemical reactions with or 

without the employment of such linker molecules. Thus, disulphide bond formation, thioether 

formation or amide bonding were often utilized for connecting small molecule drugs to CPPs, 

[16] but also for coupling proteins and peptides, peptide nucleic acids (PNAs) and 

morpholino oligonucleotides to CPPs (for examples see Tabel 1). [17] 

Table 1: Examples of covalently connected CPP-cargo constructs. For more information refer 
to main text. 

Name Sequence Cargo Connection via Ref 

Oligoarginine 

RRRRRRRRRRR BSH disulfide bond [18]  
RRRRRRRR Taxol disulfide bond [19]  
RRRRRRRR Doxorubicin thioether bond [20]  

RRRRRRRR Doxorubicin 
disulfide 

bond/oxime 
linkage 

[21]  

RRRRRRRR inhibitors of 
CyclinE/A-CDK 

amide bond [22]  

RRRRRRRRR APTSTAT3 peptide bond [23]  
Tumor homing 

CPP 
RLYMRYYSPTTRRYG Taxol ester bond [24]  

Maurocalcine 
GDCLPHLKLCKENKDCCSKKCKRRGTN
IEKRCR Pt chelator amide bond [25]  

sC18 GLRKFRLRKFRNKIKEK 
Cymantrene 
complexes 

amide bond [26]  

Low molecular 
weight 

protamine 
VSRRRRRRGGRRRR L-asparaginase disulfide bond [27]  

Penetratin CRQIKIWFQNRRMKWKK 
KLA  disulfide bond [28]  

LP4  peptide bond [29]  

FHV RRRRNRTRRNRRRVR 
p53 C-terminal 

domain 
peptide bond [30]  

p53 C-terminal 
domain 

analogue with 
CPP 

characteristics 

GKKHRSTSQGKKSKL   [31]  

TAT YARVRRRGPRR 

PLHSpT peptide bond [32]  

peptides 
inhibiting 

autophosphorylati
peptide bond [33]  



on of EGFR 

transportan 10 
(TP10) 

AGYLLGKINLKALAALAKKIL SRC1LXXLL peptide bond [34]  

 

Disulfide linkage is one of the most widely used methods for linking small molecule drugs to 

CPPs. For example, in the context of boron neutron capture therapy, 

mercaptoundecahydrododecaborate (BSH) was fused to the CPP R11 by a disulfide bond in 

order to allow cell penetration. The resultant conjugate was localized in the nuclei of glioma 

cells and showed a higher biological effect compared with the group treated with pure BSH, 

which stayed outside the cell. On the other hand, the compound could not be detected in the 

normal brain area. [18] In another study by Wender et al. R8 was conjugated to the drug taxol 

using again a disulfide linkage that is cleaved in the reducing environment of the cytosol, 

releasing there the free drug. This conjugate, in the treatment of human ovarian carcinoma, 

possessed comparable cytotoxicity and a better activity than the active drug alone, avoiding 

the efflux pump resistance. [19] Also peptides were coupled via disulphide linkage to CPPs. 

For example He et al, coupled the CPP “low molecular weight protamine” to L-asparaginase 

by using the bifunctional cross-linker 3-(2-pyridyldithio)propionic acid N-

hydroxysuccinimide (SPDP) leading to the formation of a disulfide bridge. This compound 

was then encapsulated into red blood cells for the treatment of acute lymphoblastic 

leukaemia, interrupting L-asparagine supply in malignant cells. [20] Another example in 

which the conjugation was done by formation of a disulfide bridge between two cystein 

residues incorporated in two peptidic moieties was presented by Alves et al. To facilitate 

cellular uptake of the apoptotic peptide KLA it was conjugated to the CPP penetratin. The 

construct had a cytotoxic effect against cancer cell lines, including multidrug resistant cells, 

but not towards healthy ones, showing a selective effect in vitro, probably owing to 

differences in membrane composition. The mechanism of action of this conjugate was 

directed against mitochondria, in particular damaging their metabolic activity, and it could 

bypass the apoptosis resistance becoming an optimal alternative of synergistic strategy 

together with traditional chemotherapy. [21] 

Nakase et al. used the CPP R8 again for conjugation with doxorubicin in order to prove the 

accumulation of the system in tumours. In this case the authors first prepared a doxorubicin-

maleimide compound that was then coupled with R8 [(D-Arg)8-Gly-Cys-amide], leading to 

the formation of a thioether bond. [22] 

The use of heterobifunctional crosslinkers was investigated by Lelle et al, who exploited a 

novel linking method containing a thiol and an aminooxy group. The CPPs used had two 

distinct sequences (R8 and a proline-rich amphipathic peptide), while the final conjugate 



contained both a cleavable disulfide bond that can be reduced inside the cell, and a stable 

oxime linkage to bind the drug doxorubicin. [23] 

Some other strategies like amide and ester coupling have also been applied. An example is the 

conjugation of taxol to a tumor homing CPP by a succinic acid linker, as described by Tian et 

al. Taxol has excellent self-assembly properties that permit the formation of a nanospherical 

construct. The taxol molecules are released by ester bond hydrolysis and can then exert the 

activity inside the cell. This system could be used for the co-delivery of other therapeutic 

molecules to cancer cells, like for example doxorubicin, in order to exhibit a synergistic 

effect. [24] 

During the last years there emerged a steady increasing interest in the use of metal-containing 

drug molecules. One of the most prominent example is cisplatin that is frequently used as 

anti-cancer drug in combination therapy, and one of the best therapeutics against 

glioblastoma. Notably, cisplatin and related compounds are often characterized by their high 

toxicity and several side effects. Moreover, problems with solubility and water stability of 

such metal-containing compounds often limit the application of also novel developed 

compounds that show interesting new activity spectra. These drawbacks can be significantly 

reduced by the attachment to a CPP, as it has been shown in the work by Aroui et al. They 

synthesized a novel platinum-maurocalcine conjugate by using an amide bond linkage. The 

conjugate showed a higher activity in U87 cells than cisplatin itself by targeting the 

intracellular redox system at lower doses and inhibiting the activity of ERK and AKT 

cascades. These additional activities could be essential in the treatment of resistant cancer 

cells. [25] Recently, we synthesized several cymantrene-peptide conjugates by coupling 

functionalized cymantrene complexes via amide bonds to the CPP. [26, 27] Cymantrenes are 

cyclopentadienyl manganese tricarbonyl metal complexes that exert cytostatic effects when in 

combination to CPPs. [28, 29] The CPP used in this study was the sC18 peptide, previously 

developed in our group. [30] In some cases, a cathepsin B sensitive cleavage site was also 

introduced between the peptide and the metal complex. [31] Cathepsin B is known to be over-

expressed in several cancer cells, and thus, the selective release of the drug inside the cells 

can be enhanced. In fact, our study demonstrated high activity of these CPP-conjugates even 

again drug-resistant cells. [31] Amide bond formation was also used for for the conjugation of 

the CPP R8 with novel inhibitors of cyclinE/A-CDK (cyclin-dependent kinases) in order to 

analyze the activity of the constructs against cancer cells. In fact, the conjugation via an 

amide bond of this potent inhibitor resulted in an accumulation of tumor suppressor p27, 

blockage of cell cycle progression and cell survival. Furthermore, the presence of the CPP 

allowed the inhibitor to easily permeate the cells reaching a promising activity in several 

tumor cell lines. [32] 



In another study presented by Ueda et al. in 2012, a multifunctional D-isomer peptide for the 

treatment of glioblastoma multiform (GBM) was designed. This was composed by a CPP 

(FHV, derived from flock house virus), a penetration accelerating sequence (Pas, derived 

from the retro sequence peptide of the cathepsin D cleavable sequence) and the C-terminus 

domain of p53, a biologically active tumor suppressor protein. The whole peptide was 

prepared by traditional solid phase peptide synthesis in line. As shown by in vivo studies it 

could inhibit the growth of GICs (glioma-initiating cells) and glioma cell lines with no effect 

on normal cells. [33] In the same year, p53 being frequently mutated in various human cancer 

types, was studied by Suhorutsenko et al, too. The research group synthesized short p53 

protein analogues, starting from their C-terminal domain, and varying them by using CPP 

prediction algorithms. After modification with stearic acid to increase the transfection 

efficiency, they observed an increase in cellular uptake in vitro and certain selectivity in 

apoptotic activity against p53-mutant cells. [34] Not only had the protein p53 attracted the 

attention of scientists involved in the search for new possible appealing targets in tumor 

therapy. Plk 1 (Polo-like kinase 1), for example, plays key roles in regulating cell cycle events 

and is over-expressed in many cancer cell lines. For instance Plk 1 is essential during mitosis 

and in the maintenance of genomic stability. Its inhibition by specific phosphopeptide 

sequences has been proposed as an interesting strategy to inhibit tumor growth. In this 

framework, Kim et al. synthesized by solid phase peptide synthesis a new delivery system by 

conjugating PLHSpT, the minimal sequence necessary for the binding, to TAT peptide with 

the purpose of increasing the cell membrane penetration. In vitro studies showed inhibited 

cancer cell proliferation by blocking mitosis but also inducing apoptosis. [35] In addition to 

these examples, also the steroid receptor coactivator-1 (SRC-1) could be included in this 

group of proteins over-expressed in cancer, especially in breast cancer cells. This cofactor is 

characterized by the presence of a recognition motif LXXLL that is directly responsible for 

the binding to nuclear receptors. In this view, Tints et al. synthesized one of these sequences, 

able to bind estrogen receptors, and conjugated it to a cell-penetrating peptide transportan 10 

(TP10), as an effective vehicle for the delivery of the active peptide to cellular targets. In vitro 

studies revealed high cytotoxicity in breast cancer cells with the induction of apoptosis. 

Importantly this effect was not affected by the estrogen receptors status, so that ER-negative 

breast cancer cells could be also treated by this strategy. [36] With this in mind, many other 

representative peptides exhibiting selectivity to attractive tumor targets could be found; 

among all the cases, we mention STAT3-binding peptides [37], the voltage-dependent anion 

channel 1 (VDAC1) - based peptides [38] and oligopeptides inhibiting autophosphorylation 

of EGFR [39]. All these active peptides against tumor disease have a hydrophilic sequence 

and cannot easily permeate the cell membrane. In these circumstances, a covalently 



conjugated cell-penetrating peptide represents an efficient carrier to enhance the cellular 

uptake and to obtain a potent anti-tumor activity. Within all of these studies dealing with 

cancer active peptides, the peptides were often simply attached to the CPP sequence by using 

solid phase peptide synthesis obtaining a final product without any inconvenient intermediate 

purification procedure.  

 
Table 2: Examples of fusion proteins including a CPP. For more information refer to main 

text. 
CPP name Sequence Cargo Ref 

HBHAc KKAAPAKKAAAKKAPAKKAAAKK arginine deiminase [40]  
BR2 RAGLQFPVGRLLRRLLR scFv Ab against mutated K-ras [41]  

TAT GRKKRRQRRRPQ 
Gelonin toxin [42]  

apoptotic protein BID [43]  

One other important strategy for the delivery of proteins by the help of CPPs is the formation 

of fusion proteins generated by recombinant expression (see Table 2). As promising 

anticancer treatment, Yeh et al. reinvented the already known arginine depletion strategy 

trying to overcome the arginine deiminase (ADI) resistance in MDA-MB-231 cells. A pH-

sensitive CPP-based fusion protein delivery system, which is able to carry ADI inside the 

cells, was constructed. The CPP HBHAc was incorporated with the pH-sensitive peptide HE 

and fused to ADI achieving tumor selective delivery in the mildly acidic tumor 

microenvironment of breast cancer cells. [40] In 2013, Lim et al. designed a new CPP starting 

from the sequence of the anticancer peptide, buforin IIb. This CPP, BR2, can efficiently enter 

cancer cells by endocytosis thanks to the interaction with negatively charged gangliosides on 

the outer cell surface. Notably it shows no toxicity to normal cells. The ability of efficient 

drug delivery was proven by fusion to a single-chain variable fragment (scFv) antibody 

directed towards a mutated K-ras. The experiments were conducted with HCT116 cells 

causing a high level of apoptosis. This could be a useful and innovative drug delivery system 

with a high selectivity toward cancer cells. [41] Antibody targeting strategy and genetically 

engineered fusion technique were also employed by Shin et al, who proposed a new method 

to fight colorectal cancer by fusing to the sequence of TAT a molecule of so called gelonine, 

a very potent toxin that inhibits protein synthesis, but with an extremely poor cellular uptake. 

In order to obtain selectivity for this compound, a heparin conjugated anti-carcinoembryonic 

antigen (CEA) monoclonal antibody was associated via reversible electrostatic interaction. In 

this way, this CPP-fused chimeric protein was evaluated and showed a significant therapeutic 

efficacy against colorectal cancer therapy with a reduced toxicity to healthy tissues. [42] 

Additionally, in a recent study by Orzechowska et al, cells were sensitized to cytotoxic drugs 

by delivery of the apoptotic protein BID (BH3-interacting domain death agonist) fused to the 

CPP TAT. This method gave good results in prostate and non-small human lung cancer cells 



providing a possible tool to improve the efficiency of therapeutic agents against this cancer 

cell types. [43]  

2.2 Generation of non-covalent CPP-cargo complexes  

Covalent linking methods are sometimes limited by the concern that the synthetic covalent 

bond between CPP and the active moiety may alter the biological activity of the latter. This is 

the reason why many systems are often planned as non-covalent complexes, where all the 

entities are independent but at the same time connected to each other. Nowadays, this strategy 

is often performed with cell-penetrating peptides applied in gene therapy, e.g. for the delivery 

of genes, antisense oligodeoxynucleotides (ODNs), or small interfering RNA (siRNA). [44, 

45] The negatively charged nucleic acids can in fact be easily complexed by electrostatic 

interaction with the often positively charged CPP, forming a stable complex. Frequently an 

excess of peptides is used that not only protects the nucleic acids from degradation but also 

helps to improve distribution, targeting and penetration of the nucleic acid in cells or tissues. 

Examples of recent works show how the systematically degradation of siRNA molecules can 

be avoided and their intracellular delivery promoted. [46-48] Non-covalent complexes have 

been also used for the delivery of small molecule drugs, even if the covalent conjugation is 

prevalently employed (see above). Li et al. described the formation of a complex between the 

active molecule doxorubicin and a particular CPP called CADY-1 that is a self-assembled 

peptide. This stable complex led to a longer blood residence time of the construct and better 

permeability of the drug with the subsequent improvement in therapeutic index. [49] Cyclic 

CPPs are known to be less susceptible to degradation and in a work by Mandal et al. cyclic 

cell-penetrating nuclear-targeting sequences were complexed with doxorubicin leading to 

efficient and targeted molecular transport. [50] Also we have recently investigated the impact 

of cyclization for the activity of CPPs. A shorter version of the CPP sC18 was cyclized using 

copper (I) - catalyzed alkyne - azide click reaction. The cyclized peptide exhibited increased 

proteolytic resistance and cytosolic cellular distribution. However, when complexed with 

plasmid DNA encoding for the enhanced green fluorescent protein (EGFP) the cyclized 

version demonstrated highly improved complexation and uptake of the plasmid in contrast to 

the linear CPP that was not able to transfect the used cancer cells at all. [51] In another study, 

such cyclized CPPs containing a triazole were used to complex the drug daunorubicin in 

breast cancer MCF-7 cells. Also in this case the cyclization improved the transport efficiency 

of the herein used CPP. [52] 

 
2.3 Generation of multimodal nanoparticles for anti-cancer therapy 

Nanoparticles are increasingly being studied as multimodal platforms at the same time for the 

possibility of grafting bioactive molecules, as a diagnostic tool (fluorescence, magnetism) or 



therapeutic treatment (energy production). To get a deeper view into this emerging field and 

the use of NPs in anti-cancer therapy and diagnosis, the readers should refer to these excellent 

recent reviews. [53-56] However, the inability to pass through the lipid membranes of cells 

greatly limits their in vitro and in vivo use. To bypass this pitfall, CPPs can be set on their 

surface to facilitate and accelerate the cellular uptake, and to reduce possible cytotoxic 

effects. Moreover, owing to their size several other ligands or functionalities can be fixed on 

the same nanoparticle. Vehicles as polymeric nanoparticles or liposomes are typically used to 

develop a controlled release system. This approach can be used to improve the distribution, 

the absorption and the targeting of molecules which otherwise would be quickly eliminated or 

would not be able to reach the target tissue. [57] 

Among the simplest polymeric systems on the market, the classic example is the combination 

of liposomes with doxorubicin. Since the application of doxorubicin as anti-cancer drug may 

cause cardiac toxicity problems, researchers try to find solutions to circumvent these side 

effects. By releasing the drug more slowly, a lower dose can be used and global toxicity can 

be reduced. These systems, however, after a certain time become ineffective because 

doxorubicin is a substrate for Pgp (glycoprotein P, an efflux pump) and the affected cells 

become resistant. [58] Beside the addition of Pgp inhibitors, [59] the use of CPPs can be 

essential to overcome this resistance. In this context, mesoporous silica nanoparticles 

derivatized with an activatable CPP polyarginine and doxorubicin were synthesized by Liu et 

al. and the activity was efficiently demonstrated in vivo proving no side effects and tumor 

growth inhibition. [60] In another study conducted by Wang et al. against multi drug 

resistance, low molecular weight protamine was used as CPP connected with poly(lactic-co-

glycolic acid) (PLGA) nanoparticles additionally loaded with doxorubicin. The presented data 

suggest that this system could actually act against upcoming resistance by various 

mechanisms, like enhanced cellular uptake, accumulation in nuclei and diminished efflux. 

[61]  Low molecular weight protamine with MMP2 cleavage site was also connected to 

paclitaxel-loaded PEG-co-PCL nanoparticles for targeted glioblastoma therapy inducing 

enhanced selectivity, cytotoxicity and cellular uptake in C6 glioma cells. [62]  

 

3. Different strategies for targeted CPP-cargo delivery 

One of the main problems when using CPPs is their lacking target specificity. Avoiding 

unspecific uptake is mandatory to limit and exclude loading of healthy cells with CPP-drug 

conjugates. During the last years, different strategies have been described to obtain more 

selective CPPs in order to circumvent pathological changes in particular tissues provoked by 

the unspecific distribution of CPP-cargo conjugates. To circumvent such unspecific CPP 

uptake, also masking of the positive charges of the CPPs might be necessary and can be 



realized by the formation of so called activatable cell-penetrating peptides (ACPPs). Here, the 

CPPs are often fused to a polyanionic sequence, pH-sensitive polyethylene glycol (PEG) 

chains, or proteins.  

 
3.1 Active delivery strategies 

Changes in the local environment typically seen in cancer tissues can be used to actively 

deliver CPPs to the tumor tissue avoiding cellular uptake to normal cells. The following 

conditions may count to this, as reduced pH, presence of over-expressed metalloproteinases, 

and the accumulation of particular receptors on cell surfaces. However, also external triggers 

like heat, ultrasound and magnetic field can be used for a targeted drug uptake. Systems that 

combine both concepts of active and passive addressing of tumors are more and more 

popular, and in the following paragraphs some of these methods are taken into account. 

A possible strategy that is often followed by researchers in order to obtain a selective CPP 

that can target tumor tissue without involving normal cells is the insertion of particular 

cleavage sites to the sequence of the CPP. These can be cleaved e.g. by metalloproteinases 

like MMP-2/-9, which play an important role in angiogenesis and metastasis of tumors, and 

are frequently over-expressed in cancer tissues. Another possibility is to make advantage of 

pH change in cancer tissue, which is normally characterized by mildly acidic conditions, 

differently from the neutral pH of the rest of the cells. For instance, an MMP-2 cleavage site 

was introduced by Li et al. between a CPP and a polyanionic peptide in order to block the 

penetration in normal tissue building an activatable pro-form. The ACPP was conjugated to 

protoporphyrin IX, a light-sensitive molecule, therefore utilized as therapy against different 

forms of cancer by photodynamic therapy. After cleavage and activation of the CPP in cancer 

tissue, this photosensitizer could be introduced inside the cells generating by irradiation 

reactive oxygen species. Tumor size was decreased without any systemic toxicity. [63] Many 

other examples of similar ACPPs, containing a metalloproteinase cleavage site, describe the 

conjugation to different cargoes like methotrexate [64] and hTERT siRNA [65]. Moreover, 

this method can be also be used in order to control drug delivery and precisely track drug 

release in living cells. For example, Cheng et al. designed a novel drug delivery system made 

of three different components, in particular a fluorophor, a functionalized CPP with a 

cleavable site for metalloproteinase MMP-2 and the active drug doxorubicin. In the cancer 

tissue the structure is cleaved and the drug can easily pass through the cell membrane thanks 

to the activity of the CPP. Meanwhile the fluorophor will self-aggregate because of 

hydrophobic interactions, and turn on yellow fluorescence. By means of that, they could 

observe real time in vivo delivery of the drug. [66] Similarly, Savarian et al. projected an 

ACPP in order to evaluate the presence of metastases by means of Cy5 that is quenched by 

Cy7 till the linker between the two fluorophors is cut by MMP2 and 9 in tumor tissues. The 



fluorescence emission is increased and the presence of the tumor and corresponding 

metastases can be easily detected. [67] The same ratiometric activatable CPP system was also 

used by Hauff et al. in order to improve tumor identification. [68] 

Not only metalloproteinases can be involved in the selective cleavage of CPPs in cancer 

tissue as was shown in the work by Liu et al, where TAT-liposomes loaded with doxorubicin 

were activated by the endoprotease legumain. This is a lysosomal cystein protein, whose 

expression directly corresponds to the malignancy of the tumor itself. Furthermore, the 

legumain, normally present in the cellular plasma, moves to the cell surface if conditions like 

starvation or hypoxia occur. The CPP TAT loses some of the permeation ability when 

conjugated to the legumain cleavage site, but this capacity is restored when in contact with 

this enzyme so that the CPP can enter efficiently and selectively in tumor cells but not in 

normal cells. [69]  

As already mentioned, also the difference in environmental pH between normal and tumor 

tissue can be exploited to favour the selective therapeutic delivery. In fact, the tumor tissue is 

characterized by a slightly lower pH and many acid-labile systems have been designed in the 

last years. [70] In this work by Fei et al, a (HE)10 peptide was combined to the CPP MAP to 

mask the positive charges till reaching the tumor tissue. At this point, the lower pH would in 

fact protonate the histidine residues and allows the CPP to express its positive charges and the 

ability to pass over the cell membrane. [71] 

Another approach is to combine CPPs with receptor targeting moieties. Indeed, a 

great number of receptors are over-expressed in tumor tissue, and cells and can be targeted 

with extremely diverse ligands. Regarding their size as well as chemical structure these 

molecules are characterized by a very high heterogeneity. For instance, drug conjugates of the 

glycoprotein transferrin enable an efficient accumulation of drugs in cancer cells. Li et al. 

synthesized lipid nanoparticles for the delivery of siRNA loaded with the CPP R8 and the 

targeting ligand transferrin [72], showing excellent gene silencing activity in vitro and in vivo. 

Transferrin can also be targeted by receptor-targeting sequences directly located within the 

CPP sequence, as showed by Youn et al. in a work about neuro-targeted siRNA delivery. [73] 

Folic acid receptor is overexpressed in a variety of malignant cells. Vitamin folic acid can 

bind to this receptor with a high affinity and thus makes it an attractive target for the targeted 

drug delivery in tumors. Gao et al. used a combination of folate targeting and tumor 

microenvironment-sensitive polypeptides (with the presence of metalloproteinases cleavage 

sites) to deliver docetaxel loaded nanoparticles to tumor cells. The enhanced cellular uptake 

was caused by both the folate receptor and MMP2 overexpression in tumor tissue. [74] 

On the other hand, another possible approach could be to address tumoral endothelial 

cells by targeting receptors, such as integrins. Integrins are one of the major families of 

transmembrane cell adhesion receptors; they are overexpressed on the surface of cancer cells 



and they are involved in tumor angiogenesis, progression and metastasis. In particular, they 

can be selectively targeted with cyclic and linear RGD peptide sequences. By inhibiting the 

endothelial cell proliferation, vital nutrients and oxygen will be no longer adequately 

provided from the tumoral blood vessel system. In this way, the tumor growth and the 

formation of metastases would be suppressed. Many researchers are working in this field, and 

the interested in synthesizing different variables of RGD increased more and more since the 

development of cilengitide by Kessler et al. that failed in the phase III in the clinical 

development. [75] Chen et al. developed albumin-based nanoparticles composed of a CPP 

moiety, a targeting moiety (cRGD) and the active drug doxorubicin with pH dependent self-

assembly behaviour. After coming in contact with the endosomal environment the drug could 

be easily released and accumulated inside the nuclei. [76] Liposomes were also loaded with 

paclitaxel and selectively targeted to tumor cells by a multifunctional CPP with a targeting 

moiety cyclic RGD showing selectivity to integrin receptors. This strategy was then applied 

in glioma cells inducing the strongest inhibition and apoptosis. [77] The targeting of integrin 

αvβ3 by the ligand cRGD was connected by Crisp et al. to the use of MMP2 cleavage site in 

the CPP sequence to deliver the chemotherapeutic monomethylauristatin E. [78] Moreover, a 

dual targeting strategy was used to deliver paclitaxel loaded liposomes. The two targeting 

ligands were selective towards integrin and neuropilin I receptors, having a synergistic action 

and increasing the selectivity for glioma cells. [79]   

NGR was also used as a ligand for the delivery of doxorubicin by thermosensitive pegylated 

liposomes. In this work the drug delivery system was selectively targeted to tumor cells by 

the double action of NGR and thermosensitive liposomes that hinder the action of the CPPs 

till reaching the tumor tissue where the temperature is a bit higher. [80]  

As another example of targeting ligands a breast tumor homing cell penetrating 

peptide was also used for the selective delivery of the drug (-)-epigallocatechin-3-gallate. 

Silica nanoparticles were used as vectors in this case. [81]  

Since already used in prostate cancer detection, the two receptor prostate-specific 

antigen (PSA) and prostate specific membrane antigen (PSMA) can be utilized in the targeted 

delivery of anticancer drugs, in this case for the delivery of siRNA. Xiang et al. designed 

liposomes exposing an activatable CPP, which can be activated by PSA cleavage in the tumor 

tissue, and a folate moiety, selective to PSMA receptors. When the folate moiety attracts the 

liposome to the cancer cell surface, the CPP is activated and the system is taken up. [82] 

During the last years, photosensitive approaches have gained increasing interest 

among researchers. In particular Yang et al. published some interesting work about this 

subject. siRNA molecules were delivered by cationic liposomes bearing an NGR peptide as 

targeting ligand and a CPP, shielded by photolabile groups able to neutralize its positive 

charges. In this study, they used NIR illumination, because of its characteristics of deep tissue 



penetration and being less harmful to cells. After light treatment, the CPP was exposed, and 

its functionality restored allowing cellular penetration. [83] The year after, the same group 

published another work in the same direction but this time adding a pH-responsive 

polypeptide. The de-shielding of the CPP occurred in this case through the double action of 

intrinsic lowered pH in tumor tissue and external NIR illumination. [84] The same research 

group synthesized thermal and magnetic dual-responsive liposomes for siRNA delivery, too. 

In particular, magnetic fluid Fe3O4 was combined with thermosensitive lipids; the liposomes 

would accumulate at the tumor site by a magnetic force, replaced then by an alternating 

current magnetic field that induced the iron nanoparticles to produce heat. By this heat the 

thermos-sensitive lipids could undergo to a gel to liquid phase transition and the CPP-siRNA 

conjugate could pass inside the cell. Arriving in the cytosol the disulfide bond between CPP 

and nucleic acid would be reduced and the siRNA could silence the corresponding mRNA in 

the cytosol. [85] Hyperthermia was also employed by Ryu et al. in an experiment consisting 

in the synthesis of a construct based on an elastin-like polypeptide (ELP), a CPP named Bac 

and the C-terminal domain of the p21 peptide. Upon external application of localized mild 

hyperthermia, the ELP aggregates and accumulates in tumor tissue. [86] 

 

3.2 Taking advantage of the enhanced permeability and retention effect 

Typically, tumors are characterized by strongly increased angiogenesis, which means that the 

new formation of blood vessels around the malignant tissue increases in order to satisfy the 

enhanced nutrient requirement of the cancer cells. However, these vascular systems 

significantly differ from the healthy one since the endothelium has a series of defects that 

make it permeable. Furthermore, the pressure of the interstitial tissue fluid of tumors is 

increased, with the result that the efficiency of small drug molecules is dramatically reduced, 

since these are easily eliminated. Nevertheless, precisely these two factors provide the 

solution approach for a possible targeted addressing of tumors. In fact, the principle of 

passive addressing of tumors with nanotherapeutics that are able to passively and selectively 

accumulate in the permeable tumor tissue has become the gold standard in our time and is 

often used with the term established by Matsumura and Maeda "enhanced permeability and 

retention (EPR)" effect. [87] 

For instance, PEG has the ability to shelter complexes that consist of CPPs and active 

molecules until they reach the tumor tissue, thereby prolonging their half-life in the blood 

circulation and avoiding unwanted metabolism. In addition, PEG induced steric hindrance 

may favour the accumulation in tumor tissue by the above-mentioned EPR effect. In a work 

by Veiman et al. the MMP cleavage site was introduced between a CPP molecule, complexed 

with a plasmid DNA, and a PEG molecule. As soon as the nanoparticles passively 

accumulated in the tumor environment through the EPR effect, the metalloproteases would 



cleave the substrate and the PEG would finally allow the CPP to come in contact with the cell 

surface. Then the CPP would penetrate inside, while transporting the gene inside the cell 

interior. [88] Recently, Wang et al. followed the same strategy for the delivery of siRNA 

targeting Plk1 (polo-like kinase 1) mRNA. [89] Also the work of Zhu et al. went in the same 

direction: here the nanoparticles were composed by self-assembling PEG and the active drug 

was paclitaxel, but the high tumor accumulation of the system was, here again, the result of 

the combined EPR effect with the up-regulated MMP2 in the tumor. [90] Koren et al, on the 

contrary, investigated PEGylated liposomes containing doxorubicin, TAT and a targeting 

ligand mAb. The carried PEG molecules are characterized by different lengths and were 

conjugated by a pH-sensitive hydrazone bond. When liposomes accumulated in tumor tissue 

by the EPR effect and mAb active targeting, the mildly acidic environment led to the cleavage 

of the degradable bond and exposition of the CPP to the cell surface, enhancing cellular 

uptake of the small molecule drug. [91] 

 In summary all these examples show that particularly during the last years a 

multimodal approach is more and used. Combination of a delivery unit, with a cytotoxic 

payload and a targeting sequence may be the right way to support a successful and efficient 

fight against tumoral cells. 
 

4. Concluding remarks 
One can observe that many recent publications are including in vivo experiments with CPPs, 

both for imaging or therapeutic applications. This fact highlights the increasing interest in 

developing peptide-based delivery vectors. Anyway, still many problems are connected with 

this kind of strategy. It is important to understand all the disadvantages and side effects in 

order to overcome them and synthesize a new effective drug delivery system that is active 

also in vivo. In fact, although many CPPs are being tested, only one CPP, called p28, has 

reached phase I in clinical trial in the context of cancer treatment, in particular against solid 

tumors expressing p53, as well as for CNS malignancies. [92]  

Problems connected with the use of CPPs include upcoming immunogenicity, since the 

sequences are novel to the organism to which they are being administered, as well as 

cytotoxicity, caused by the perturbation of plasma membrane dynamics. [93] Both side effects 

are deeply related to the particular sequences; for this reason, one cannot talk about a general 

problem of this class of peptides, since each CPP is defined by a distinct amino acid 

composition. Many studies have been recently done to establish a possible action on the 

immune system and a consequent immunological reaction in the organism, but no general 

immune response was observed. About toxicity one can state that in general cationic CPPs are 

less toxic than amphipathic CPPs, even if in vivo studies show positive results about the 

safety at the employed doses. Nevertheless, it is important to always analyze both 



immunogenicity and toxicity since, as already mentioned, every CPP is different from the 

others and their effect can also change in the presence of a cargo. 

Another issue is the lack of selectivity, as already described in the previous paragraphs. Many 

are the strategies adopted but sometimes the penetrating activity of the CPP is so strong that 

the targeting ability of the specific targeting moieties used can be completely hidden, and no 

positive result in selectivity to cancer tissue would be gained. [94] Together with the use of 

targeting molecules, the ability of CPPs should be shielded by using pro-drug strategies based 

on electrostatic interactions or PEG systems that could block penetration by steric hindrance. 

[95] 

Blood stability is also a very important attribute that a drug should possess in order to reach 

the target without being destroyed by blood proteases before arriving to the tissue. [96] This 

obstacle can be circumvented applying different shielding strategies in order to protect the 

structure of the CPPs till reaching the desired tissue, utilizing for instance more stable D-

amino acid configurations, [97] backbone cyclization [51, 52, 98] or, finally, backbone 

stabilization through β- and γ-peptoids inside the sequence. [2] In a recent study, Shen et al. 

tried to overcome all the problems connected with the systemic administration of CPPs, 

proposing a more favourable cell-based platform for local peptide or protein production 

within the target tissue. To improve the intercellular transport, they designed a new CPP 

based on a triple repeat of modified TAT and a secretory signal peptide, with improved 

transduction activity and secretion efficacy. This is still a developing method but it can lead to 

a big improvement in cell-based delivery of CPPs precluding degradation by proteases in the 

blood, metabolism and too early excretion. [99]  

Endosomal escape is also a decisive concern, since for many CPPs the main entry pathways 

proceeds via endocytotic mechanisms. In fact, the CPP construct must be taken up by cells, 

but more importantly, cargoes have to be released and to reach their extra-endosomal targets 

in the cytosol or in the nucleus. This could be made by using endosomolytic sequences or 

fusogenic compounds. [17, 100, 101] It is also true that, even if the majority of the active 

molecules remain inside the lysosomes, the small quantity that succeeds in escaping and get 

to the cytosol can be sufficient for the biological activity. [102] 

Specific attention should be also paid on small molecule drug delivery with the aim to 

overcome the problem of multidrug resistance (MDR) that develops in tumor cells after 

repeating exposures to the same drugs. MDR can often be attributed to the up-regulation of 

efflux pumps, particularly active with lipophilic drugs inserted in the membrane. CPPs could 

help in this sense by changing the solubility properties of the drugs, favouring their entrance 

in the cytosol and releasing them by different mechanisms. [103] [104] [16] Such CPP-

conjugates were also designed to promote some particular routes of administration. In the 

context of small molecule drugs delivery, docetaxel cyclodextrin inclusion-loaded PLGA 



nanoparticles were administrated with CPPs to enhance its oral bioavailability. Bu et al. 

demonstrated how this system displayed the maximal cytotoxicity against breast cancer MCF-

7 cells, enhancing absorption and bioavailability of the drug itself as a promising oral delivery 

carrier. [105] Oral administration by new formulation approaches has been also studied in 

recent works even if this field is still growing and many more experiments have to be done. 

[106] [107] Transdermal delivery capability could be also enhanced by cell-penetrating 

peptides. The proapoptotic peptide KLA, for example, was delivered by Gautam et al. to 

different cancer cells in vitro and into the skin in vivo by a new CPP IMT-P8. After 

internalization, the construct, containing a compartment-specific localization sequence, could 

localize to mitochondria causing cell death thanks to the peptide ability of disrupting the 

mitochondrial membrane. These results suggest that this could actually be used as topical 

delivery vehicle in dermal diseases. [108]  

In general, cell-penetrating peptides offer a number of distinctive merits and can be 

involved in many strategies for the delivery of anticancer active drugs, the latter being easily 

conjugated in many different ways via either chemical or genetic engineering method without 

affecting their intrinsic activity. Furthermore, they can efficiently transport attached cargos 

into almost all types of cells and this property makes cell-penetrating peptides a very eclectic 

element in the design of new drug delivery systems. CPPs will be used to revolutionize drug 

design and development by providing better bioavailability of the traditional 

chemotherapeutics at a much earlier stage of drug development, facilitating effective 

transition from preclinical to clinical phase in drug development. The research is still 

increasing and many pitfalls are being overcome and solved by new strategies; so, very soon 

conjugation of old and new active drugs to cell-penetrating peptides will become a more 

widely established clinical modality for the treatment of those malignancies for which there 

currently are no good treatment options.  
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