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Abstract

Along with being consequential for evolution, epistasis is also quite preva-
lent in nature. Thus, it is important to study it. Till date, there exist many
methods of inferring epistasis from experimental and theoretical fitness land-
scapes. The theory of shapes of fitness landscapes is another addition to that
list. In this thesis, the shape theory of fitness landscapes is first introduced
and then compared to pre-existing methods of gauging epistasis. From such
a comparison for 3 locus landscapes, it turns out that landscapes of different
interaction types differ in ruggedness, number of reciprocal sign epistasis mo-
tifs and presence of higher order epistasis. Next, the applicability of shapes
in studying empirical fitness landscapes is explored. Here the theory proves
to be useful because the additional tests suggested by the Markov basis fur-
ther corroborate the diminishing returns epistasis hypothesis, especially for
the β-lactamase landscape with synonymous mutations. Moreover, the trian-
gulation of the landscape of large effect mutations has a particular genotype
as vertex of every tetrahedra in the triangulation, indicating the presence of
that genotype in all fittest populations. Finally, the effect of the shape on the
evolutionary dynamics is discussed. For two locus landscapes, the equilibra-
tion time of the mutation-selection dynamics has a sharpness exactly at the
transition point between the two shapes. Further, it was found that Eshel
and Feldman’s results regarding the advantage of recombination in two locus
permutation invariant landscapes can be extended to three locus landscapes.
It turns out that in three out of the six shapes of permutation invariant land-
scapes, recombination is "advantageous", while in the other three, it is "dis-
advantageous". This extensive analysis of its applicability indicates that the
shape theory offers useful insights while studying empirical landscapes, how-
ever additional constraints are needed to predict evolution on landscapes of
different shapes.

2



Erklärung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selb-
stständig und ohne die Benutzung anderer als der angegebenen Hilfsmit-
tel angefertigt habe. Alle Stellen, die wörtlich oder sinngemäßaus veröf-
fentlichten und nicht veröffentlichten Schriften entnommen wurden, sind als
solche kenntlich gemacht. Die Arbeit ist in gleicher oder ähnlicher Form oder
auszugsweise im Rahmen einer anderen Prüfung noch nicht vorgelegt wor-
den. Ich versichere, dass die eingereichte elektronische Fassung der eingere-
ichten Druckfassung vollständig entspricht.

Köln, April 2, 2019

Malvika Srivastava



Acknowledgements

First and foremost, I would like to express my deepest gratitude to my super-
visor, Prof. Dr. Joachim Krug, for indicating the starting point of my thesis
and then giving me the rare freedom and the accompanying opportunity to
find my own path, for always giving useful inputs and for being extremely
thoughtful and supportive throughout.

Next, I would like to thank all my group members and colleagues here–
Alex, Benjamin, David, Jonas, Lucy and Suman, for always being there to
listen, talk and help. Lucy deserves a special mention for never failing to lift
my spirits when they were flagging. I want to additionally thank Benjamin
for always agreeing to debug Julia and translate German documents. I would
also like to thank Lara Bössinger from the mathematics department, for I
learnt more from her in 2 hrs than I learnt from textbooks in 2 months. And
finally Nikhil, for always pushing me to improve and develop confidence in
myself, by being my best friend and my harshest critic.

Last, but definitely not the least, I want to thank my family and friends in
India and elsewhere, who were yet just a phone call away. Especially, my par-
ents for their unwavering support and love– I can never thank them enough
for that, and my little sister Manya, who’s now old enough to help me under-
stand concepts from group theory. They make it all worthwhile.

4



Contents

1 Introduction 7
1.1 Forces of evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Fitness landscapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Epistasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Causes of epistasis . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Measures of epistasis . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 The shape theory 13
2.1 Mathematical preliminaries . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Elements of the theory . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 The Genotope . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Triangulations of the Genotope . . . . . . . . . . . . . . . . 16
2.2.3 Tools for triangulation . . . . . . . . . . . . . . . . . . . . . 18

2.3 Examples of shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 2 locus case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 3 locus case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Shapes and their contemporaries 28
3.1 Applications of shapes . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Shapes in comparison to graphs . . . . . . . . . . . . . . . . . . . . 29
3.3 Shapes in comparison to the Walsh spectra . . . . . . . . . . . . . 30
3.4 Shapes in comparison to the γ measure . . . . . . . . . . . . . . . 34

4 Application to empirical landscapes 36
4.1 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 New results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Shapes and evolution: Mutation-Selection 44
5.1 Mutation-selection dynamics . . . . . . . . . . . . . . . . . . . . . . 44

5



Contents

5.2 Two locus case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Three locus case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Shapes and evolution: Recombination 58
6.1 Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 The evolution of recombination . . . . . . . . . . . . . . . . . . . . 60

6.2.1 Direct models . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2.2 Indirect models . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3 The effect of shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.3.1 Two locus case . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3.2 Three locus case . . . . . . . . . . . . . . . . . . . . . . . . . 64

7 Final remarks 78
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6



Chapter 1

Introduction

By attributing our existence to accident, and not design, evolution, both re-
moves and adds meaning to life. On one hand, it strips the human race of
its narcissism, while on the other, it makes life valuable, by highlighting its
sheer improbability. Also, by offering explanantions for a variety of natural
phenomena, evolution makes the world we see around us, a little less surpris-
ing. So in short, evolution is the best answer we have to some of the most
profound questions we have about ourselves and our surroundings. Moreover,
evolution not only lends us perspective on our lives, it also serves as a guide
to solving complex problems– as was testified by the recent Nobel prize in
chemistry, that was awarded for using directed evolution in the lab to develop
useful chemicals [1].

1.1 Forces of evolution
In a nutshell, evolution is driven by the forces of selection, mutation, recom-
bination, genetic drift and migration. While mutation, recombination and mi-
gration are responsible for introducing diversity on which selection can act,
genetic drift accounts for the inevitable fluctuations in the dynamics of finite
populations. In this thesis, only the forces of selection, mutation and recombi-
nation are included and the population size is considered to be infinite, which
means that the population dynamics is deterministic.

1.2 Fitness landscapes
Evolutionary processes span many length and time scales. Even events oc-
curring on small scales, for instance mutation in a single base pair, can have
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1.2. Fitness landscapes

Figure 1.1: The one, two, three, four and six dimensional Hamming spaces.
Source: [2]

cascading effects on the overall fitness of an organism [3]. So a natural ques-
tion that arises is how can we study this multi-scale process? This is where
the concept of fitness landscapes comes into the picture.

The term fitness can mean different things in different contexts [4]. While
it typically refers to the fecundity of an organism, it could also refer to the
viability in studies of age structured populations or the minimum inhibitory
concentration (MIC) in studies of antibiotic resistance. Regardless of its def-
inition, fitness of an organism is co-determined by its DNA sequence or its
genotype and the environment in which it evolves. This means that for a con-
stant environment, there exists a map from the genotype of an organism to
its fitness.

The genotype of a haploid organism can be simply modelled as a sequence
of a fixed number of sites L, with a fixed number of alleles a, at each site. Each
site can represent, for example, a nucleotide (i.e. A,G,T or C ⇒ a = 4) or even
an entire gene. The genotype space G, is then the set of all possible sequences
of length L that can be formed by combining the a alleles at each site and
|G| = aL. Further, a metric can be defined for the genotype space in terms of
the number of sites at which two sequences differ. In the case of a alleles, the
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1.2. Fitness landscapes

genotype space can be mapped to the L dimensional, a-allelic Hamming space
(HL

a ) [5] and the metric then is the Hamming distance

d(σ,γ)=
L∑

i=1
(1−δσiγi ) (1.1)

where σ and γ are sequences of length L , δi j is the Kronecker delta function
and σi,γi are the alleles at the ith sites on the sequences σ and γ respectively.

In this thesis, the discussion will be confined to bi-allelic sequences, where
the L dimensional binary Hamming space HL

2 can be represented by the ver-
tices of the L-dimensional hypercube (figure 1.1).

Figure 1.2: An illustration of a fitness landscape. The white arrows represent
evolutionary trajectories. Source:[6]

With that we have all three "ingredients" [7] required to define a fitness
landscape, namely, a configuration space i.e. G, a notion of distance between
the elements of the space i.e. d(σ,γ) and a map from every element σ of G to
the fitness, F(σ) ∈R. A fitness landscape is then defined as F : G →R.

Figure 1.2 shows a fitness landscape, like it was first imagined by Sewall
Wright [8]. Wright himself realized that it is an inadequate representation of
the true higher dimensional picture because it constrains the genotype space
to be only two dimensional.

Theroetical fitness landscapes can be modelled in several ways [6]. Fol-
lowing are two of the most commonly used models:

• HoC model: The simplest model is called the House of Cards (HoC)
model [9] and it assumes every fitness value to be an independent iden-
tically distributed (i.i.d) random variable.

9



1.3. Epistasis

• NK model: The NK model generates landscapes with tunable rugged-
ness and was first introduced in [10]. Here, N stands for the number
of loci in the sequence (=L) and each locus interacts with K-1 other loci.
Within each set of the K interacting loci, fitness contributions are as-
signed at random to the 2K possibilities. The HoC model is a limiting
case of the NK model when K=N.

1.3 Epistasis
Epistasis, to quote Weinreich et al. [11], is the "surprise at the phenotype
when mutations are combined, given the constituent mutations’ individual ef-
fects". This just means that mutations don’t have independent effects. Rather,
their effects depend upon the background sequence on which they occur. This
makes epistasis highly consequential for evolution. In fact, many studies have
already recognised the importance of epistasis for adaption, evolutionary pre-
dictability and the evolution of sexual reproduction [12, 13, 6]. Epistasis has
also been linked to the topography of fitness landscapes [14, 15], which de-
termines the accessibility of adaptive walks in sequence space. Moreover,
epistasis is highly prevalent in nature and empirical fitness landscapes are
known to be topographically complex [6]. This makes its inclusion in theoret-
ical studies necessary. Lastly, the recent hypothesis that complex traits may
be omnigenic [16] and that the effect of "core" genes also depends upon all
the "peripheral" genes, just highlights the presence of epistasis between these
genes.

1.3.1 Causes of epistasis
In [17], possible proximate and evolutionary causes of epistasis are discussed.
In the past, people have used metabolic models and the concept of pleiotropy
and robustness to predict and explain epistasis. In theoretical studies, epis-
tasis has also been thought of as a dynamic variable that is subjected to evo-
lutionary forces of selection, drift, mutation and recombination. The motiva-
tion for that is most probably Malmberg’s [18] experimental system where re-
combination alleviated epistasis between beneficial alleles. However, despite
many forward steps, the origin and dynamics of epistasis are still enigmatic.
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1.3. Epistasis

1.3.2 Measures of epistasis
Unidimensional epistasis

One can either study unidimensional epistasis or multidimensional epista-
sis [19]. The unidimensional study entails looking at the mean log fitness
as a function of the number of mutations. Deviations from linearity is then
interpreted as epistasis. Due to the ease of measurements, most experimen-
tal studies use the unidimensional definition of epistasis. However, it fails
to provide a complete picture of the underlying interactions because despite
the presence of interacting loci, unidimensional epistasis can be zero. This is
where multidimensional epistasis comes to use.

Multidimensional epistasis

By considering interactions between all possible combinations of loci, multidi-
mensional epistasis provides crucial information about the number of peaks
and the accessibility of fitness landscapes. It can be classified into 2 types:

1. Pairwise epistasis, as the name suggests, refers to epistasis between
loci pairs. It can further be classified into a) Magnitude and b) Sign epis-
tasis, based on whether the effect of a mutation has a different magni-
tude on a different background or whether it has an altogether different
sign. A special case of sign epistasis is called reciprocal sign epistasis,
wherein the sign of the mutational effect of either mutation changes in
the presence of the other.

2. Higher order epistasis refers to interactions between more than 2 loci
and it has been relatively less studied [11]. It essentially means that
only knowledge of the fitnesses of the wild type, the single mutants and
the double mutants is not enough to determine the rest of the fitness
landscape. Like pairwise epistasis, higher order epistasis can also be
classified into sign and magnitude epistasis.

In order to assess its ubiquity, Weinreich et al. [11] analysed 14 pub-
lished fitness landscapes and found that in nearly every case, the mean
magnitude of higher order contributions were larger than or equal to
the pairwise effects, implying that higher order epistasis is quite preva-
lent in nature. More recently, abundance of higher order epistasis was
also found in [20] and its indispensibility in determining evolutionary
trajectories was identified in [21, 22]. However, despite that, there is no
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1.3. Epistasis

unique way of extracting information or classifying landscapes based on
these interactions.

Since fitness landscapes with multiple loci have complex high dimen-
sional structures, it is important to be able to characterize them based
on simpler and preferably scalar measures. The following ways to study
and classify higher order epistasis exist in the literature:

• For combinatorially complete fitness landscapes, the Walsh coeffi-
cients [23] can be obtained by a linear transformation of a vector
containing the fitness values of all the genotypes. The first order
Walsh coefficients represent the individual mutational effects av-
eraged over all possible backgrounds, the second order coefficients
represent pairwise epistasis averaged over all backgrounds and the
higher order coefficients have similar interpretations.

• In [24] and [22], Crona et al. showed that higher order epista-
sis can also be inferred from fitness graphs which are basically di-
rected acyclic hypercube graphs. What makes this interesting is
that their analysis requires only the partial order of fitness values
and not the actual values themselves. From fitness graphs, one can
also extract indirect measures of epistasis, such as the number of
peaks, the fraction of sign/reciprocal sign epistasis motifs etc.

• Another measure based on the correlation of mutational effects
was developed in [25]. They defined an epistasis measure γ =
Cor(s(g),s(g1)), where s(g[i]) is the fitness effect of a mutation oc-
curring at site i on the genotype g and g1 represents neighbouring
genotypes of the genotype g. Like fitness graphs, this method can
also be employed to incomplete fitness landscapes, although the
error in the estimate of γ increases with the fraction of unknown
fitness values. But unlike fitness graphs, it can also be used to in-
fer magnitude epistasis. Further, it proves to be different from the
non-linear part of the Walsh spectrum [14] because it gives more
weight to higher order epistasis than pairwise epistasis.

• Last, but hopefully not the least, is the shape theory of fitness land-
scapes [26]. It is also the first study that considered higher order
epistasis to be important. Herein, the authors identified pairwise
and higher order epistasis tests (i.e. circuits and Markov bases)
that should be relevant for classifying fitness landscapes based on
the kind of epistatic interactions that they exhibit. Studying the
usefulness of these epistasis tests and the classification prescribed

12
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by the authors, in comparison to the other measures, comprises one
of the main motives of this thesis.

1.4 Overview of the thesis
To summarize, epistasis strongly affects both the static properties of fitness
landscapes, like its ruggedness, and the dynamic properties of populations
evolving on these landscapes. Although the fitness landscape is a coarse
grained concept, that glosses over several intermediate levels, a lot can still
be learnt from it because it’s possible to extract information about mutational
interactions from it. However, for multi-loci (L > 2) landscapes, there is no
unique way of doing this. Furthermore, it is also of interest to be able to clas-
sify landscapes based on these interactions. The hope that landscapes with
similar interactions will show similar static properties and population dynam-
ics is implicit in the attempts to classify landscapes. This very hope will drive
the discussion in the following chapters and the primary focus will be on the
recently developed shape theory of fitness landscapes.

The organisation of the next chapters is as follows: In chapter 2, the geo-
metric theory of fitness landscapes is introduced. Then in chapter 3, shapes
are compared to other ways of classifying epistatic fitness landscapes. In chap-
ter 4, the shape theory is applied to some empirical fitness landscapes, in or-
der to see if some additional insights are gained from doing so. In chapter
5, the focus is on mutation-selection dynamics of populations on landscapes
with different shapes. Next, the question of evolution of recombination, in the
context of the shape theory, is addressed in chapter 6. Finally, in chapter 7,
conclusions and the future directions are discussed.

13



Chapter 2

The shape theory

The shape theory of fitness landscapes was developed in [26]. The motiva-
tion of the authors was to highlight the underlying combinatorial geometry of
fitness landscapes. The basic idea is that epistatic interactions between mul-
tiple loci can take place in a finite number of ways. The regular triangulations
of the Genotope, encode these finite possibilities of interaction. Therefore, to
quote the authors, “The biological problem of studying the genotype interac-
tions for a fitness landscape is thus equal to the combinatorial problem of
finding the shape of the fitness landscape...". However, to be able to fully
understand and appreciate this statement, some mathematical foundation is
built in the first section.

2.1 Mathematical preliminaries
In the following: For n points v1,v2, ...,vn in Rd A := [

v1 v2 ... vn
] ∈Rd×n

Definition 2.1.1. An affine space is {x ∈Rn : B·x = b} where B is a m×n matrix
and b ∈Rm.

Definition 2.1.2. An affine combination of a set of points {vi} equals
∑
λi · vi

where
∑
λi = 1 and λi ∈R ∀i

Definition 2.1.3. A set of points is said to be affinely independent if no point
in the set can be expressed as an affine combination of all the other points in
the set. Else the points are affinely dependent.

Definition 2.1.4. A convex combination of a set of points is an affine combi-
nation with λi ≥ 0 ∀i.

14



2.1. Mathematical preliminaries

A conv(A)

Figure 2.1: The convex hull of a given point configuration.

Definition 2.1.5. The convex hull of a set of points A is the set of all convex
combinations of the points. It is denoted as conv(A) and is illustrated in figure
2.1.

Definition 2.1.6. There are two equivalent1 ways of defining a polytope:

1. A (V-) polytope is the convex hull of a finite set of points.

2. An (H-) polytope is the intersection of half spaces2 that must be bounded.

Definition 2.1.7. An n-simplex is the convex hull of n+1 affinely independent
points, e.g. a 0-simplex is a point, 1-simplex is a line, 2-simplex is a triangle
and 3-simplex is a tetrahedron.

Definition 2.1.8. A polyhedral subdivision of a point configuration A is a
set of polytopes C such that:

1. If c ∈ C, each face of c belongs to C (closure property)

2. The union of c is equal to conv(A) (union property)

3. For c, c′ ∈ C and c 6= c′, the intersection of c and c′ doesn’t contain any
interior points of c or c′. (intersection property)

Definition 2.1.9. A polyhedral subdivision is a triangulation if all the poly-
topes in C are simplices.

1Main Theorem of Polytope Theory [27]
2Any hyperplane ~a ·~x = b in Rd defines two half-spaces ~a ·~x ≤ b and ~a ·~x ≥ b

15



2.1. Mathematical preliminaries

(a) The poset of subdivisions (b) The secondary polytope

Figure 2.2: Subdivisions of a pentagon.

Definition 2.1.10. A regular triangulation is one that can be induced by a
lifting construction (see figure 2.3), which in our case is a fitness landscape.

Definition 2.1.11. A GKZ (Gelfand, Kapranov and Zelevinsky) vector of a
triangulation ∆ of A is the vector:

φ∆ :=
n∑

i=1
(vol(τ) : τ ∈∆ and i ∈ τ)~e i ∈Rn (2.1)

where, vol(τ) is the normalised volume of the simplex τ, i.e. the absolute
value of the determinant of Aτ divided by the greatest common divisor (g.c.d.)
of the maximal minors of A.

Definition 2.1.12. A secondary polytope of a given point configuration A
is the convex hull of the GKZ vectors corresponding to the triangulations of
A. In simpler terms, a secondary polytope is a polytope whose vertices are in
bijection with regular triangulations of A (see figure 2.2 b) ).

Actually, the poset3 of regular polyhedral subdivisions of a point set A
equals the face poset4 of the secondary polytope of A. Thus, triangulations are
minimal elements in the poset of subdivisions.

Definition 2.1.13. If a subdivision is only refined5 by triangulations then it
is refined by exactly two of them. These two triangulations are then said to
differ by a bistellar flip.

3with partial ordering induced by refinement
4This is the set of all faces of a polytope ordered by set inclusion.
5If sets S = {S1...Sl} and T = {T1...Tm} are two subdivisions of conv(A), then T is a refine-

ment of S if ∀ j,1≤ j ≤ m,∃i,1≤ i ≤ l such that T j ⊆ Si
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2.2. Elements of the theory

These flips constitute the next to minimal elements in the poset of polyhe-
dral subdivisions of A [28]. The poset of subdivisions of a pentagon is shown
in figure 2.2 a). Essentially, flips are the minimal possible changes in the
shape and are detected by minimal affine dependences in the point configu-
ration. An interesting result is that the graph of triangulations of n points
in convex position in R3 is connected [29]. This means one can go from one
triangulation to any other by means of repeated number of flips.

2.2 Elements of the theory

2.2.1 The Genotope
As described before, the genotype space G is a set of aL points in RL.

Definition 2.2.1. The Genotope ΠG is the convex hull of the genotype space.

The convex hull of any finite point configuration is nothing but a convex
polytope. In this case, the vertices of the convex polytope represent the aL

possible sequences. For instance, in the 2 loci bi-allelic case, the Genotope is
simply a square with vertices (0,0), (0,1), (1,0), (1,1).

Definition 2.2.2. An allele frequency vector~ν for a bi-allelic population is
an L-dimensional vector and its ith entry (νi) represents the fraction of the
population that has the mutated allele 1 at its ith site.

The vertices of the Genotope can also be viewed as the allele frequency
vectors of homogeneous populations composed of only one genotype. Then,
each point enclosed by the Genotope represents the allele frequency vector of
a heterogeneous population that is composed of several genotypes. Thus, the
Genotope is basically a set of all possible allele frequency vectors. Note that
the concept of the Genotope can also be extended to diploids.

2.2.2 Triangulations of the Genotope
The Genotope is merely a set of all possibilities. Which possibilities get re-
alised in nature is governed by evolutionary forces. The structure of the fit-
ness landscape encodes one such force, which is the force of natural selection.

Applying the fitness landscape map to the vertices of the Genotope amounts
to lifting the configuration to one higher dimension, by raising each vertex by
an amount equal to the fitness of the genotype that is represented by that
vertex. The convex hull of these raised vertices is also a convex polytope.
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2.2. Elements of the theory

Rd

Rd+1

Figure 2.3: An example of a lifting construction that induces regular triangu-
lations, although in this case the lower surface (instead of the upper surface)
of the higher dimensional polytope is projected. Adapted from: [28]

The projection of the upper surface of this higher dimensional polytope on the
Genotope then gives rise to a triangulation of the Genotope.

This can be formalised as follows: We can extend the definition of the fit-
ness landscape to also assign a fitness value to every allele frequency vector
lying inside the Genotope. This can be done by assigning the maximum fit-
ness that a population with the given allele frequency vector can have. This
new continuous fitness landscape is a piece-wise linear convex function and
the domains of linearity of this function are actually the simplices in the tri-
angulation.

The number of possible triangulations of a given Genotope is finite. For
2 loci, there are 2, for 3 loci there are 74, while for 4 loci, there are already
87959448. Fitness landscapes that induce the same triangulation are said to
have the same shape.

Definition 2.2.3. The shape of a fitness landscape is the triangulation of the
Genotope that is induced by it.

It will become obvious later that landscapes of the same shape have simi-
lar epistatic interactions between their loci.

Another important information provided by the shape is that the vertices
of the simplex to which the allele frequency vector of a population belongs,
are the genotypes that will be present in the maximally fit population,
given that the allele frequency vector remains fixed during the dynamics. This
is not obvious at first glance, but it can be proved using results from linear
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2.2. Elements of the theory

000 001

010

100
101

111

011

110

(⌫1, ⌫2, ⌫3)

Figure 2.4: A triangulated Genotope

programming6. For example, for the allele frequency vector shown in figure
2.4, the maximally fit population will contain the genotypes 000, 011, 110 and
010. This is a useful fact for dynamics like recombination in which the allele
frequency vectors remain unchanged. This also implies that the ith entry of
the GKZ vector represents the probability that the corresponding genotype
occurs in fittest populations conditioned upon allele frequency vectors.

2.2.3 Tools for triangulation
Testing whether a set of subsets of a point configuration comprises a triangu-
lation of that point configuration, is a non-trivial computational problem [28].
This is where circuits and Markov bases come to use. While circuits are com-
binatorial tools that lead to a fully algorithmic definition of a triangulation,
Markov bases exploit the rich link between algebraic geometry and triangu-
lations to construct triangulations. Moreover, these two tools for constructing
triangulations reveal patterns of multidimensional epistasis exhibited by the
fitness landscape.

In order to better explain these concepts, one needs to introduce the fol-
lowing others:

• Additive epistasis can be measured by looking at linear combinations of
genotype fitnesses. Certain sets of these linear combinations form inter-
action coordinates and both magnitude and sign of these coordinates are
relevant when examining the landscape of a biological organism. Now,

6Namely, the fundamental theorem of linear programming, which states that the extremal
values of a linear function over a convex polytope are attained at its vertices.[30]
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2.2. Elements of the theory

Figure 2.5: A cartoon illustrating the map ρ. ∆G represents the probability
simplex corresponding to the genotype space G.

any fitness landscape can be represented as a vector ~w ∈R|G|, where |G|
is the number of genotypes. Let LG ⊂R|G| such that every ~w ∈ LG is com-
pletely non-epistatic, i.e. there exists an affine-linear form on the Geno-
tope, whose values are wG at the vertices ⇒ LG = {~w :~v · ~G+ c = wG ∀~G}
where~v ·+c is an affine linear form on ΠG , ~G represents a vertex of ΠG
and wG is the corresponding fitness of vertex ~G.

Definition 2.2.4. The interaction space is then defined as the dual
vector space of the quotient of RG modulo LG i.e. IG = (RG /LG)∗. Thus,
elements of IG are linear forms that vanish on LG .

Definition 2.2.5. Finally, circuits are linear forms that (redundantly)
span the interaction space and have non-empty but minimal support.
The number of circuits is usually larger than the dimension of IG (d(IG)=
2L −L−1) but is bounded above by

( |G|
d(IG )−1

)
.

• Let’s define ρ to be a map that takes population frequency vectors (that
lie in a 2L − 1 dimensional simplex) to their corresponding allele fre-
quency vectors (that are contained in the Genotope) i.e. ρ :~x 7→~ν, where
~x = (x00...0, ...., x11...1) and~ν= (ν1, ....,νL). This map is clearly not a bijec-
tion and therefore the pre-image of any ~ν ∈ Genotope (ΠG) is ρ−1(~ν) =
{~x : ρ(~x)=~ν}. This is illustrated in figure 2.5. The dimensions of ρ−1(~ν)=
2L−L−1= d(IG). ρ when written as a matrix, turns out to be the matrix
whose columns are the vertices of the Genotope.
For instance, in the 2 loci case:

ρ =
[
0 0 1 1
0 1 0 1

]
,

while in the 3 locus case:

ρ =
0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

.
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2.2. Elements of the theory

• The integral kernel of ρ i.e. kerZ(ρ) = {~k : ρ(~k) = 0}∩Z2L−1 defines the
interaction space for the genotypes. The Markov basis or the circuits
are a non-independent basis for the interaction space. I will henceforth
omit the subscript of kerZ(ρ), however unless otherwise stated, ker(ρ)
will still refer to the integral kernel and not the entire kernel.

• A more concrete definition of Markov bases exists in the context of Toric
ideals.

Definition 2.2.6. A Toric ideal, Iρ = 〈p~u − p~v : ρ(~u) = ρ(~v)〉, where, p~a =
pa1

1 pa2
2 ...pan

n represents a monomial in n variables p1, p2...pn and 〈P〉
represents the ideal7 generated by a set of polynomials P. In other
words, a Toric ideal is the ideal generated by binomials of the form
p~u − p~v where ~u and~v satisfy the above mentioned property.

Definition 2.2.7. A finite set of binomials, with the above stated prop-
erty, that generates the Toric ideal Iρ is called a Markov basis for the
Toric ideal, i.e. if Iρ = 〈{x~m+ − x~m− : ρ(~m+) = ρ(~m−)}〉 then, the finite set
of all ~m = ~m+− ~m− is called a Markov basis.

• From this definition, it can be seen that ~m ∈ ker(ρ) ∵ ρ(~m+) = ρ(~m−) ⇒
ρ(~m+− ~m−) = ρ(~m) = 0. Therefore, a Markov basis can alternatively be
defined as a subset B of ker(ρ) that satisfies the following conditions:

1. If ∀~u,~v satisfying ρ~u = ρ~v, ∃{ ~mi}l
i=1, such that ~u+∑

i ~mi =~v and

2. ∀ j satisfying 1≤ j ≤ l, ~u+∑ j
i=1 ~mi ≥ 0

If conditions 1. and 2. are met, then B is a Markov basis and every m ∈
B is called a move. Markov basis can be used to do Monte-Carlo simula-
tions. For example, in our context, adding a move to a probability vector
will give a new probability vector with the same allele frequency vector
as the original probability vector. This way, one can hop in the subset of
the probability simplex which maps to a particular allele frequency vec-
tor. Further, with some pre-knowledge about the stationary probability
distribution, one can get the probability of taking a certain step. This
can then be used to compute equilibrium averages of quantities.

• Lastly, circuits measure additive epistasis while Markov basis elements
measure multiplicative epistasis.

7For more information on polynomial rings and ideals, see [27]
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2.3. Examples of shapes

2.3 Examples of shapes

2.3.1 2 locus case

Figure 2.6: Possible shapes for 2 loci landscapes. Landscapes with e < 0 have
the shape shown in the left most figure, while those with e > 0 have the shape
shown in the right most figure. The central figure corresponds to non-epistatic
landscapes that do not triangulate the Genotope and hence have no shape.

Triangulations for the 2-loci Genotope are almost trivial because there is
only one possible interaction between the 2 loci. This interaction is measured
by the circuit: e = w00 +w11 −w01 −w10. This circuit gives rise to two shapes
that are shown in figure 2.6.

The shape of a two locus fitness landscape is not very informative about
its topography because the probability of exhibiting a particular type of sign
epistasis (either simple, reciprocal or no sign epistasis) remains independent
of the shape of the landscape. This is because for example:

P(reci)= P(reci | shape1)P(shape1)+P(reci | shape2)P(shape2) (2.2)

where, P(reci) represents the probability of having reciprocal sign epsiatsis.
Now, for HoC fitness landscapes P(shape1)= P(shape2)= 0.5.

⇒ P(reci)= 0.5 ·P(reci | shape1)+0.5 ·P(reci | shape2) (2.3)

Now, P(reci | shape1) = P(reci | shape2) because the two shapes differ merely
by labelling. Exchanging the labels w11 ←→ w10 and w00 ←→ w01 exchanges
the shape as well.

⇒ P(reci | shape)= P(reci) (2.4)

All we can know from the shape is the location of the two peaks, given
that there is reciprocal sign epistasis. This however is not surprising because
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2.3. Examples of shapes

in the 2 loci case, shapes are distinguished only by the sign of a circuit mea-
suring magnitude epistasis. Therefore, the more useful knowledge about sign
epistasis (and thus the number of peaks) is not contained in the shapes of the
2-loci landscape.

2.3.2 3 locus case
As previously mentioned, there are 74 possible triangulations for the bi-allelic,
3 locus case. These belong to 6 symmetry classes or interaction types. I will
explain why there are 74 shapes and 6 types, through a small story about
Newton polytopes and hyperdeterminants. This story has been completely bor-
rowed from [31].

• The Newton polytope N(G) of a polynomial G is the convex hull of the
exponent vectors of the monomials which appear in the expansion of G.

• The hyperdeterminant of a 2×2×2-tensor, D222 is an irreducible poly-
nomial in eight variables with twelve monomials of degree four and is
called a tangle in physics literature. Note that it is the higher dimen-
sional analog of the determinant of a 2×2 matrix which is the polynomial
D22 = x00x11 − x01x10 in four variables.

• N(D222) is the convex hull in R8 of the six rows of the following matrix:



1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1
2 0 0 0 0 0 0 2
0 2 0 0 0 0 2 0
0 0 2 0 0 2 0 0
0 0 0 2 2 0 0 0


This is because the exponents of these monomials are vertices of N(D222).
This makes them extreme monomials. The exponents of the remaining 6
monomials lie in the interior of N(D222) and do not contribute to the con-
vex hull. The f-vector records the number of faces of dimension 0,1,2...d-
1 and f (N(D222))=(6,14,16,8), meaning that N(D222) has 6 vertices, 14
edges, 16 2-dimensional faces and 8 3-dimensional faces.
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2.3. Examples of shapes

• A final relevant character in the story is the principal determinant of
the 3-cube i.e.

E222 = D222 · (x000x011 − x001x010) · (x000x101 − x001x100)·
(x000x110 − x010x100) · (x001x111 − x011x101)·
(x010x111 − x011x110) · (x100x111 − x101x110)·

x000 · x001 · x010 · x011 · x100 · x101 · x110 · x111.

This is a polynomial of degree 24 with 231 monomials out of which 74 are
extreme monomials. It turns out that N(E222) is the secondary polytope
of the 3 cube. It is 4-dimensional and its f-vector is (74,152,100,22).
Further, its 74 vertices are in bijection with the regular triangulations
of 3 cube. Moreover, the symmetry group of the 3-cube is the Weyl group
B3 of order 48 and it turns out that the 74 extreme monomials come in
6 orbits8. And that solves the mystery of 74 shapes and 6 types!

The tight spans of the 6 types of shapes are shown in figure 2.7.
The following is a brief description of the types:

1. Type 1 contains 2 shapes that divide the cube into five tetrahedra, one
central tetrahedron of normalized volume two surrounded by four of nor-
malized volume one.

2. Type 2 contains 8 shapes that are generated by slicing off the three
vertices adjacent to a fixed vertex and cutting the remaining bipyramid
into three tetrahedra.

3. Type 3 contains 24 shapes that are generated by picking a diagonal
and two of the other six vertices that are diagonal on a facet, and slicing
them off.

4. Type 4 has 12 shapes which are indexed by ordered pairs of diagonals.
The end points of the first diagonal are sliced off, and the remaining
octahedron is triangulated using the second diagonal.

5. Type 5 has 24 shapes that are indexed by a diagonal and one other
vertex which is sliced off, and the remaining polytope is divided into a
pentagonal ring of tetrahedra around the diagonal.

6. Type 6 has 4 shapes that are indexed by the diagonals. The cube is
divided into a hexagonal ring of tetrahedra around the diagonal.
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2.3. Examples of shapes

Figure 2.7: Top to bottom: The types of tetrahedra that appear in the trian-
gulation of the 3 cube, the six types of triangulations of the 3 cube and the
tight spans of the 6 types– the vertices represent the tetrahedra in the tri-
angulation and two vertices are connected if the tetrahedra share a common
triangle. Source: [32]

The distributions of shapes and types of HoC fitness landscapes are shown
in figures 2.9 and 2.8 for the uniform distribution and the exponential distri-
bution. As is evident, the distribution depends upon the probability distribu-
tion from which the fitness values are assigned.

For uniformly distributed HoC landscapes, each shape of a particular type
is equally likely to occur. This is because shapes of a particular type can be
obtained from one another by re-labelling of the indices. Moreover, one could
naively expect each type to be equally likely to occur. This however cannot be
the case because the probabilities would not be normalised any more. Type
3 and type 5 are actually the most abundant types with an abundance of ap-
proximately 25% each. The other four types have an abundance of nearly
12.5% each. Another way to obtain the shape distribution and verify the re-

8For a group G that acts on a set X, the orbit of every x ∈ X is Orbx = {g.x : g ∈G}⊂ X .
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sults obtained by triangulating the fitness landscape is to look at the circuits.
The 20 circuits for the 3-loci case are as follows:

a := w000 −w010 −w100 +w110

b := w001 −w011 −w101 +w111

c := w000 −w001 −w100 +w101

d := w010 −w011 −w110 +w111

e := w000 −w001 −w010 +w011

f := w100 −w101 −w110 +w111

g := w000 −w011 −w100 +w111

h := w001 −w010 −w101 +w110

i := w000 −w010 −w101 +w111

j := w001 −w011 −w100 +w110

k := w000 −w001 −w110 +w111

l := w010 −w011 −w100 +w101

m := w001 +w010 +w100 −w111 −2w000

n := w011 +w101 +w110 −w000 −2w111

o := w010 +w100 +w111 −w001 −2w110

p := w000 +w011 +w101 −w110 −2w001

q := w001 +w100 +w111 −w010 −2w101

r := w000 +w011 +w110 −w101 −2w010

s := w000 +w101 +w110 −w011 −2w100

t := w001 +w010 +w111 −w100 −2w011

Circuits a-f check for pairwise epistasis, g-l for marginal epistasis between
two pairs of loci and m-t for three way epistasis in relation to total pairwise
epistasis.

The shapes are characterized by the sign pattern of a selected number
of circuits. For instance, for a fitness landscape to have shape 1, circuits t,
q, o and m must be positive. Thus, the shape abundances can also be com-
puted by looking at probabilities that a random landscape will have a circuit
sign pattern that characterises that particular shape. One more motivation
for computing the abundances differently was to check if the abundances are
rational numbers (i.e. 1/4 and 1/8).

Since circuits are nothing but linear combinations of i.i.d random vari-
ables, one can estimate the probability of obtaining a set of 8 random vari-
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Figure 2.8: The relative abundances of the 6 types for HoC landscapes gener-
ated from a uniform distribution and an exponential distribution.

ables that satisfy a certain circuit sign pattern by computing the volume of
the polytope bounded by hyper-planes given by the circuit sign pattern, e.g.

P(shape1)=
∫ 1

0
...

∫ 1

0
Π8

i=1dwiΘ(t({wi}))Θ(q({wi}))Θ(o({wi}))Θ(m({wi})) (2.5)

These integrals were easily computed by using the Monte-Carlo method.
The resultant abundances matched the previously obtained ones (shown in
table 3.1), however it still could not be ascertained whether these abundances
were rational numbers.

Finally, figure 2.10 summarises the GKZ vectors, defining circuits and
neighbours on the secondary polytope of all the 74 shapes.
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(a) Shape distribution for HoC landscapes with uniformly dis-
tributed fitness values.
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(b) Shape distribution for HoC landscapes with exponentially dis-
tributed fitness values.

Figure 2.9
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2.3. Examples of shapes

Figure 2.10: All 74 shapes of the 3-cube with their GKZ vectors and the circuit
sign patterns that they show; a means circuit a > 0 while ā means circuit
a < 0. Also, mentioned are the neighbouring shapes that differ only by the
sign of one particular circuit.
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Chapter 3

Shapes and their
contemporaries

Whenever a new theory is developed, it becomes important to assess its use-
fulness and to also compare it to pre-existing theories. This is what I strive to
do in this chapter.

3.1 Applications of shapes
So far, it seems that this new theory can be interesting in the following areas:

1. Analysing empirical data: As was mentioned previously, shape the-
ory helps in studying all possible interactions between a given set of
loci. This enables a more fine scaled study of the interactions in em-
pirical fitness landscapes. Further, triangulating empirical landscapes
can give information about the composition of fittest populations– a fact
that can be tested experimentally. It can also reveal which genotypes
are "sliced off" in the triangulation. Moreover, shape theory is also ap-
plicable to combinatorially incomplete, multi-locus landscapes. This is
useful because for long sequences (L > 20), not all genotypes are realized
in nature.

2. Studying purely recombining populations: Allele frequency pre-
serving dynamics, like recombination, can be studied only on a subset of
the population simplex, which is given by ρ−1(~ν).

3. Studying evolution with mutation and selection: One can study
what the shape tells us about general evolutionary processes like deter-
ministic mutation-selection dynamics.
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4. Studying the evolution of recombination: It is known that the de-
terministic evolution of recombination depends upon the epistatic in-
teractions between the loci [33]. Since shapes are a way of classifying
the various types of possible interactions, it can be interesting to study
whether a particular shape opposes or supports the evolution of recom-
bination.

The last two applications are only valid for 2 and 3 locus landscapes be-
cause there are too many shapes for 4 and more loci. For the sake of complete-
ness, I’ll mention that this theory has also been used to compute the human
Genotope, in order to describe the shapes of landscapes associated with mea-
surements of phenotypes across populations [34].

In the remaining part of this chapter, shapes of three locus landscapes
are compared to graphs, the Walsh spectrum and the γ measure that was
introduced in [25].

3.2 Shapes in comparison to graphs
I compared shapes with graphs in three different contexts:

Type Abundance Reciprocal SE Simple SE No SE

1 0.12 3.68 1.66 0.66
2 0.12 2.57 1.85 1.58
3 0.24 1.86 2.04 2.1
4 0.13 1.49 2.25 2.26
5 0.25 1.6 1.96 2.43
6 0.12 1.46 2.27 2.28

Table 3.1: Column two shows the relative abundance of each of the 6 types,
for HoC landscapes with uniformly distributed fitness values. The remaining
columns show the average number of reciprocal, simple and no sign epistasis
(SE) motifs in representative landscapes of the 6 types.

1. Ruggedness of fitness landscapes: In order to compare shapes with
graphs, for HoC landscapes of each type (with uniformly distributed fit-
ness values), I counted the number of times reciprocal sign epistasis,
simple sign epistasis and no sign epistasis motifs occur. The sum of the
number of these occurrences must add up to 6, because there are 6 faces
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of the cube. Table 3.1 summarises these results. Here, unlike the 2-loci
case, the types favour certain motifs more than others. In other words,
P(reci|type) is no longer independent of the type (and thus the shape).
Type 1 landscapes are very likely to show reciprocal sign epistasis and
should thus be quite rugged [14]. The probability to exhibit recipro-
cal sign epistasis nearly monotonically decreases with the type (type 4
being an exception).

The difference in occurrence of various sign epistasis motifs immedi-
ately tells us that the number of peaks will also differ between the land-
scapes of various types. Results relating to the number of peaks are
shown in figure 3.1. The mean number of peaks shows a trend similar
to the probability of occurrence of reciprocal sign epistasis. While type 1
landscapes have nearly three peaks on average, type 6 have a little less
than 2.

While graphs unequivocally tell us about the number of peaks in the
landscape, shapes give rise to distributions of number of peaks. Given
that the evolutionary dynamics (e.g. length of adaptive walks) and the
stationary state (if it exists) depend strongly on the number of peaks,
shapes cannot be of as much use in tackling problems related to adaptive
walks.

2. Experimental applications: In the context of experiments, it is easier
to determine the fitness orders than the exact fitness values. Moreover,
it was recently shown in [24] that information about higher order epis-
tasis can also be obtained from graphs. This is good news because often
partial orders are the best one can expect from experimental measure-
ments. That said, shapes too can be used to study partially determined
fitness landscapes but merely the ordering of fitnesses is not sufficient–
knowing the absolute values of those fitnesses is a prerequisite. Also, of-
ten times, only the knowledge of whether or not a landscape has higher
order epistasis is not enough, one must also know the strength of that
epistasis in order to infer something about population dynamics (as will
be seen in chapter 5). This information about the strength of epistasis
is contained in the circuits or the Markov bases of the interaction space
but not in graphs. Moreover, fitness orders and consequently graphs
are not enough to compute the shapes of three locus landscapes [24].
This is not surprising given that absolute fitness values are required to
compute shapes while only partial fitness orders to compute graphs.

3. Classifying fitness landscapes: Finally, when it comes to segregating
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multi locus landscapes, the number of both shapes and graphs grows
hopelessly. As opposed to 74 shapes for the three locus case that fall
into 6 types, there are 1,862 fitness graphs of 54 types.

It is important to note that graphs and shapes are not opposing viewpoints
but complementary. Kristina Crona nicely sums up this comparative study of
graphs and shapes by saying, “...graphs provide information that cannot be
obtained from the geometric classification, and vice versa..." [35].

3.3 Shapes in comparison to the Walsh spectra
As previously mentioned, the Walsh coeffiecients can be calculated from a fit-
ness landscape by a linear transformation i.e. ~e = V̂ · ĤL · ~w, where ~w is the
vector of the fitness values ordered by the binary number that the correspond-
ing bi-allelic sequence represents,~e is the vector of the Walsh coefficients, ĤL
is the Hadamard matrix of order 2L and V̂ is a diagonal matrix for the pur-
pose of normalisation. The epistatic order of the Walsh coeffcients is also
determined by the binary number to which that coefficient corresponds e.g.
e3 is the third element of ~e so it corresponds to the binary number 011 and
represents the second order (pairwise) interaction between loci 2 and 3.

The Walsh coefficients are actually intimately connected to circuits. The
coefficents of order≥ 2 form a basis of the interaction space (and are referred to
as interaction coordinates in [26]). However, they can be expressed as linear
combinations of circuits, which as previously mentioned, span the interaction
space, e.g. e8 = b−a. Thus, circuits contain more fine scaled information than
Walsch coefficients. Moreover, for combinatorially incomplete landscapes, cir-
cuits are more canonical than interaction coordinates.

Now, the contribution of the nth epistatic order can be summarised by
Wn = ∑

e2
j where e j represents the elements of ~e corresponding to nth order

epistasis. Then,

Ftotal =
∑L

n=2 Wn∑L
n=1 Wn

(3.1)

represents the total fraction of epistatic contribution. Thus, Ftotal = 0 for ad-
ditive landscapes while Ftotal −→ 1 as L −→∞ for HoC landscapes. Similarly,

Fhigh =
∑L

n=3 Wn∑L
n=1 Wn

(3.2)

represents the contribution of solely higher order epistasis and excludes
pairwise epistasis.
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(a) (1-6): Distributions of number of peaks for each of the six types
of landscapes
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Figure 3.1: Topography of landscapes of different types.
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(a) The distribution of Ftotal for landscapes of each of the six types.
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(b) The distribution of Fhigh for landscapes of each of the six types.

Figure 3.2: Comparison of shapes with Walsh coefficients.
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Figure 3.3: Comparison of the means of Ftotal and Fhigh for all the 6 types.

I investigated these two quantities for landscapes of each of the 6 types.
The results are shown in figures 3.2 and 3.3. Since these are HoC landscapes,
as expected, Ftotal is very close to one for all the types, however the mean
becomes smaller as we go from type 1 to type 6, indicating that type 6 land-
scapes have relatively greater additive contribution than type 1 landscapes.
A more interesting trend is observed for Fhigh distributions. For types 1-3, the
distribution is peaked close to 1, while for types 4-6 the peak shifts to a value
close to zero. This indicates that types 1-3 show greater higher order epistasis
than types 4-6. In [26], it was indicated that type 1 is likely to either show
very high or very low higher order epistasis, however on average its Fhigh is
still larger than all the other types. In fact, the mean contribution to higher
order epistasis reduces as we go from type 1 to type 6. The decline is strik-
ingly similar to what is observed for Ftotal, but the magnitude of the decline is
much greater for Fhigh. Not too surprisingly, this trend is also correlated with
the trend seen for the mean number of peaks in the previous section (figure
3.1). Further, the minimum number of peaks, total sign epistasis and higher
order epistasis, on average, consistently occur at type 4.

To summarize, the comparison with the Walsh spectra furthers our intu-
ition about what kind of landscapes are encompassed by each of the 6 types.

3.4 Shapes in comparison to the γ measure
The γ measure measures the correlation of mutational effects on different
backgrounds. As mentioned before, γ=Cor(s(g),s(g1)). Since it is a correlation,
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Figure 3.4: The mean of the γ measure for landscapes of each of the six types.
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Figure 3.5: The distribution of the γ measure for landscapes of each of the six
types.

−1≤ γ≤ 1. Consequently, landscapes with magnitude epistasis have 0≤ γ< 1,
landscapes with simple sign epistasis have −1/3 ≤ γ < 1 and landscapes with
reciprocal sign epistasis have −1≤ γ< 0.

The results for landscapes belonging to different types are shown in figures
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3.4. Shapes in comparison to the γ measure

3.4 and 3.5.
For landscapes generated by the NK model, E[γ] ' 1− K

L−1 [25]. Now for
HoC landscapes, K = L−1⇒ E[γ]' 0. For additive landscapes, γ= 1. Finally,
for landscapes with maximal number of peaks1, γ = −1. So in some sense, γ
and Ftotal measure opposite effects. This explains why the plots of their means
versus types (figures 3.3 (top) and 3.4) look like mirror images. Moreover, the
results shown in figure 3.5 basically reinforce the fact that landscapes of type
6 are on average more correlated than those of type 1. The mean of γ is
negative for types 1 and 2. This indicates the presence of sign and reciprocal
sign epistasis motifs and agrees with what was seen in the section on fitness
graphs. Moreover, for types 4-6, γ does not exceed 0.3. This indicates the
departure from additivity due to magnitude epistasis.

1These are called egg-box landscapes
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Chapter 4

Application to empirical
landscapes

4.1 Previous work
In an accompanying paper [36], Beerenwinkel et al exhibited the utility of
their shape theory in analysing empirical data. They analysed pre-existing
data of Elena and Lenski and showed that the new theory gave more insights
into gene interactions in the fitness landscape than were previously known.

(a) The distribution of standard and
non-standard tests

(b) The correlation of epistasis
and the effect size of the muta-
tions

Figure 4.1: Main results of [36]

They looked at a partial 9 locus landscape with 9 single mutants (all dele-
terious) and a restricted set of only 27 double mutants. Triple or higher mu-
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4.1. Previous work

tants were not considered in their analysis. As mentioned before, the Markov
basis for a landscape is a non-independent basis of the interaction space. Put
differently, it is a generalisation of the concept of pairwise epistasis. For their
landscape, the Markov basis comprised of 243 elements (or tests of interac-
tions) including 27 standard tests (i.e. pairwise tests) and 216 non-standard
tests. Although the non-standard tests were dependent (and this must be ac-
counted for in the conclusions), the authors claimed that it was important to
consider these tests as well. The reason for that was that the non-standard
tests spanned greater Hamming distances than 2. In some sense, epistasis
is implicitly assumed to be predominantly due to pairwise interactions and
thus, measuring epistasis between pairs of loci (i.e. between genotypes that
constitute vertices of the facets of the hypercube) appears intuitive. This is
perhaps why Elena and Lenski too, had only looked at the smaller subset of
27 pairwise tests. However, there is no prima facie reason to neglect the non-
standard tests of higher order epistasis. Further, some of these non-standard
tests showed that certain mutations "mix" better than others, in the sense
that they do not cancel the effect of the other mutation with which they occur.
This difference in "mixability" causes some elements of the Markov basis to
be more likely to have a particular sign and as a result, such landscapes are
more likely to have a particular shape. This may also have some consequences
for the evolution of recombination.

Using a certain subset of the non-standard tests that the authors called
double-double (d-d) tests (since they compared double mutants with each other),
the authors showed that the distribution of epistasis for these d-d tests was
slightly more skewed towards positive values than the corresponding distri-
bution of standard tests (figure 4.1). From this observation and from the
previous empirical evidence of the existence of compensatory mutations, the
authors predicted that the "extent of compensation" or in other words, the
strength of positive epistasis must be proportional to the deleterious effect
of the mutations. In order to test this prediction, the authors plotted the
strength of epistasis ( i.e. the standard and non-standard d-d tests e.g e=ar
· bs-as · br ) against the mean deleterious effect of mutations (e.g. ∆=bs-
(as+br)/2, where a, r, b and s label the fitness of distinct single mutations, the
fittest genotype comes with a positive sign because we are looking for positive
epistasis between deleterious mutations) and also accounted for the statisti-
cal dependence of the two. As a result, they found a marginally significant
correlation (one-tailed p value was 0.105 for the standard tests and 0.056 for
the non-standard tests) between epistasis and mutational effect. The fact that
the correlation was more significant for the non-standard tests renders them
indispensable.
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4.2. New results

Some recent studies have also found support for a model of antagonistic
epistasis between beneficial mutations and this epistatic interaction is larger
for mutations with larger benefit. This phenomena is called diminishing re-
turns epistasis. Interestingly, Fisher’s geometric model also predicts a similar
pattern of epistasis [37].

Actually, both diminishing returns epistasis and compensatory mutations
hypothesis seem to be intuitively clear when one assumes that the combined
effect of mutations (whether deleterious or beneficial) must saturate at some
point. That is, if two highly beneficial mutations combine, their net effect
should be less than the sum of the independent contributions (negative epistatic
interaction) and this suppression of the effect must increase as the effect of
the mutations increases. Under the saturation assumption, same should hold
for the effect of deleterious mutations, only in this case there would be positive
epistasis.

Taking a cue from [36], I decided to test the diminishing returns hypothe-
sis using shape theory for other empirical landscapes. Since they had already
considered a landscape with deleterious mutations, I chose three 4 locus land-
scapes, one comprising of synonymous mutations1 [38], one of small effect
beneficial mutations and one of large effect beneficial mutations [39]. I dis-
cuss my results in the next section.

4.2 New results
The landscapes that I considered are shown in figures 4.2 and 4.3. The mu-
tations were in the antibiotic resistance enzyme TEM-1 β−lactamase. This
enzyme provides resistance by inactivating penicillin and cephalosporin an-
tibiotics by hydrolyzing their beta-lactam ring. However, further mutations
in this gene allows it to attack an extended spectrum of β-lactam antibiotics
like cefotaxime (Ctx) [38]. In fact, the resistance to Ctx was taken as a proxy
for fitness.

I generated the Markov basis for 4-loci landscapes using the computer
algebra system Macaulay22. It comprises of 55 (= 24+ 24+ 7) elements or
epistasis tests. Further, the landscapes I considered weren’t singly peaked
like Elena and Lenski’s, rather they were quite rugged. Thus, it didn’t make
sense to distinguish standard tests from non-standard ones, as was the case in

1Synonymous mutations arise due to the redundancy of the genetic code leading to multi-
ple codons corresponding to the same amino acid. They were originally thought to make no
difference on the phenotypic level but this was proved otherwise.

2http://www.math.uiuc.edu/Macaulay2/
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4.2. New results

Figure 4.2: The large and small effect β−lactamase landscapes. Source: [39]

Figure 4.3: The synonymous effect β−lactamase landscape. Source: [38]

the paper. Therefore, I considered all the tests as measures of the strength of
epistasis. These tests span distances 2, 3 and 4 in the Hamming space. There
are 24 distance 2 and distance 3 tests, while only 7 distance 4 tests. For the
sake of consistency, I placed the monomial with the genotype farthest from
the wild type (and consequently also the genotype nearest to the wild type)
on the left-hand side of the negative sign (as is typically the case in epistasis
tests).

The epistasis distributions for the three landscapes are shown in figures
4.4, 4.5 and 4.6.

For the synonymous landscape, most of the tests, regardless of the dis-
tance they cover, show negative epistasis. For the record, 14/24 distance 2
tests, 15/24 distance 3 tests and 5/7 distance 4 tests exhibit negative epista-
sis. This is also evident from the abundance of the negative epistasis motif in
the higher dimensional structure of the fitness landscape which is shown in
figure 4.3. That said, the strength of the episatsis (e) per se is not very strong
and |e| < 0.009.

The small effect landscape shows nearly the same strength of epistasis
as the synonymous landscape but the distribution is more strongly skewed to-
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Figure 4.4: Distributions of epistasis for the synonymous landscape.
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Figure 4.5: Distributions of epistasis for the small effect landscape.

wards negative values. Here, 16/24 distance 2 tests, 21/24 distance 3 tests and
7/7 distance 4 tests show negative epistasis. This pattern is expected in light
of the diminishing returns hypothesis because all the individual mutations
have beneficial effects and so we expect them to interact antagonistically.
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Figure 4.6: Distributions of epistasis for the large effect landscape.

In contrast, the large effect landscape shows much higher strengths of
epistasis. Moreover, the distributions are even more skewed towards negative
values: 18/24 distance 2 tests, 22/24 distance 3 tests and 7/7 distance 4 tests
show negative epistasis. In fact, the distance 2 test w0001 ·w0111−w0011 ·w0101
shows an exceptionally high value of epistasis. This test and the concerned
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4.2. New results

genotypes are identified in figure 4.7. The test is between the second and the
third loci, with the first and fourth loci held fixed at 0 and 1 respectively. Very
strong reciprocal sign epistasis is observed, which is not surprising because
the intermediate genotypes (1010 and 1100) are local maxima. The biological
reason for this exceptionally high epistasis ought to be investigated further.

Figure 4.7: The strong epistatic interaction motif is highlighted in yellow in
the fitness graph of the large effect landscape that was presented in [39].

All these epistasis distributions point towards a correlation between the
strength of negative epistasis and the size of the beneficial effect of the muta-
tions. This is investigated in figure 4.8, where the epistasis strength is plotted
against the mutational effect. In the plot for the synonymous landscape, a
clear correlation between epistasis and mutational effect can be seen. When
the mutations have deleterious effects, the correlation is in agreement with
the trend of compensatory mutations, while when the effects are beneficial,
the diminishing returns epistasis trend can be observed. A similar correla-
tion is observed for the weak effect landscape, although the values are more
scattered. The large effect landscape also appears to roughly follow this trend,
although the epistasis seems to be constrained to only negative values, even
when the mutational effect is negative.

Finally, let’s look at the shapes of these three fitness landscapes. The ver-
tices of the simplices in the triangulation of the landscapes are shown in fig-
ure 4.9. In each case, the 4-D hypercube is triangulated into 24 simplices.
The shape of the large effect landscape is a good example of how the shape
informs us about the underlying interactions. All the simplices in the trian-
gulation contain the genotype 1010 (highlighted in red), which makes sense
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4.2. New results

(a) The synonymous landscape

(b) The small effect landscape

(c) The large effect landscape

Figure 4.8: Epistatic strength versus mutational effect for all the three land-
scapes.
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4.2. New results

Figure 4.9: The vertices of the simplices in the triangulation of the synony-
mous, small effect and large effect landscapes (left to right).

given that it is the fittest genotype and is also involved in the strongest pair-
wise interaction. Similar, but not so striking, is the recurrence of the genotype
1111 in the triangulation of the synonymous landscape and of the genotype
1110 in that of the small effect landscape. This indicates that maximally fit
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4.2. New results

populations are very likely to contain these genotypes. Moreover, the geno-
type 0000 only occurs as the vertex of one simplex in the triangulation of the
synonymous landscape. This means that it is "sliced off" or very unlikely to
occur in maximally fit populations. The genotype 1111 is similarly "sliced off"
in the triangulation of the small effect landscape. This makes intuitive sense
because as can be seen from the landscapes in figures 4.2 and 4.3, the sliced
off genotypes have very low fitness.

It is indeed nice to see how merely the shape of the landscape can tell us
something about the outcome of evolution on the landscape.
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Chapter 5

Shapes and evolution:
Mutation-Selection

In the next chapters, the hypothesis that the shape of a fitness landscape
determines the evolutionary trajectory is tested. We expect this hypothesis to
be true because we know that epistasis plays a crucial role in evolution and
shapes are simply a way of summarising epistatic interactions. This chapter
focuses on the simpler case of deterministic evolution with only mutation and
selection. The effect of recombination is included in the next chapter.

5.1 Mutation-selection dynamics
The recursion relation for mutation-selection dynamics in discrete time is as
follows:

xi(t+1)=∑
j
µd(σi ,σ j) · (1−µ)L−d(σi ,σ j)

w j

w̄(~x, t)
x j(t) (5.1)

where, ~x is the vector of genotype frequencies, xi is the frequency of the ith
genotype, µ is the mutation probability, L is the length of the sequences and
d(σi,σ j) is the Hamming distance between the sequences σi and σ j, wi is the
fitness of the ith genotype and w̄(~x, t) is the mean population fitness at time t.

Since the dynamics with only selection and mutation can be linearised
[40], many interesting facts about the evolution can be inferred solely from
the mutation-selection matrix. Linearising the dynamics proves to be a very
powerful step because it considerably reduces the computational time. The
linearisation can be done by a transformation of variables which leaves the
mutation selection dynamics un-normalised.
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5.1. Mutation-selection dynamics

Substituting, zi(t)= xi(t)∏t−1
τ=1 w̄(~x,τ)

linearises the evolution and we get:

zi(t+1)=∑
j
µd(σi ,σ j) · (1−µ)L−d(σi ,σ j)w j z j(t) (5.2)

After working with the un-normalised frequencies ~z, one can retrieve the
actual frequencies by using the fact that~x =~z/(

∑
i zi ).

One can also study the dynamics in matrix form, where:

• The mutation matrix M has elements Mi j =µd(σi ,σ j) · (1−µ)L−d(σi ,σ j).

• The selection matrix S is a diagonal matrix with Sii = wi where wi is
the Wrightian fitness of sequence σi.

• The dynamics assumes that selection acts first and the census is taken
after the mutation step that follows. Thus, the matrix of evolution is
M ·S.

Since all the elements of the transformed mutation-selection matrix are
strictly positive, by the Frobenius-Perron theorem [41], the existence of a
unique, globally stable equilibrium is guaranteed. The stationary state is
given by the eigenvector corresponding to the largest eigenvalue of the matrix
(which the theorem guarantees to be real). Further, the rate of convergence
to equilibrium is governed by the real part of the second largest eigenvector
of the matrix.

Another result is that all eigenvalues of the un-normalised mutation-selection
matrix are real. This was shown in [42] as follows:

M ·S~z =λ~z (5.3)

⇒ S1/2 ·M ·S~z =λS1/2 ·~z (5.4)

⇒ S1/2 ·M ·S1/2(S1/2 ·~z)=λ(S1/2 ·~z) (5.5)

Let S1/2 · M · S1/2 = F. Then, FT = F i.e. F is a symmetric matrix with
eigenvalue λ and eigenvector S1/2 ·~z. This implies that all eigenvalues λ of F
must be real. Since F and M ·S share the same eigenvalues, all eigenvalues
of the un-normalised mutation-selection matrix are therefore also real.
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5.2. Two locus case

5.2 Two locus case
As was mentioned before, shapes are almost trivial for the 2 locus case. Since
there is only one circuit and two shapes of the same type, it is easy to antici-
pate how the shape will effect the dynamics. However, finding the stationary
state of even the two locus mutation selection matrix for general fitness land-
scapes and mutation probabilities is a complicated problem [43]. Therefore, I
considered simpler fitness landscapes. Without loss of generality, I assumed
the double mutant sequence, 11, to be the fittest genotype with fitness 1 and
its antipodal sequence 00, the wild type, to have a fixed fitness of 0.5 (unless
mentioned otherwise), so that the range of epistatic variation is symmetric.
Also, I considered permutation invariant landscapes, leading to sequences 01
and 10 having the same fitness i.e. w01 = w10 = w and 0< w < 1.

Let us see what the stationary state looks like after making certain as-
sumptions about the mutation probability, µ:

(a) µ→ 0

As the mutation probability becomes negligibly small, the mutation-
selection matrix reduces to the diagonal selection matrix because all
non-diagonal terms depend on µ and consequently go to zero. In this
case, w11 is the leading eigenvalue and the corresponding eigenvector is
(0,0,0,1)T.

(b) µ= 0.5

For µ = 0.5, 1−µ = µ and therefore, µ(σ j → σi) := µi, j = µ2. Thus the
recursion relation becomes xi = (µ2 ∑

j x jw j)/w̄ =µ2 = 0.25 ∀i ⇒ the lead-
ing eigenvalue is 0.25 ·∑i wi and the corresponding eigenvector is
(0.25,0.25,0.25,0.25)T.

(c) w11 À wi ∀i 6= 11

In the case of a singly, highly peaked landscape (assumed WLOG to be
peaked at 11), all terms of the type wi/w11 → 0 ∀i 6= 11. Under this
assumption,

xeq
11 = (

∑
j
µ11, jw jx

eq
j )/w̄

= w11(
∑

j
µ11, j(w j/w11)xeq

j )/w̄

≈ (w11µ11,11xeq
11)/(xeq

11w11)=µ11,11

= (1−µ)2
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5.2. Two locus case

Similarly,

xeq
10, xeq

01 =− (1−µ)2

2wi
+ (1−µ)

2

√√√√ (1−µ)2

w2
i

+ 4µ(1−µ)
wi

(5.6)

where i = 01 or 10 respectively and

xeq
00 =− (1−µ)2

2w00
+ (1−µ)

2

√
(1−µ)2

w2
00

+ 4µ2

w00
(5.7)

These expressions can be further simplified for small wi and µ. An ex-
pansion of the square root till second order leads to :

xeq
i ≈µ(1−µ(1+wi)) for i = 01,10 (5.8)

and

xeq
00 ≈µ2 − µ4w00

(1−µ)2 . (5.9)

After the brief introduction to mutation-selection dynamics, I will now dis-
cuss some results.

Figure 5.1 shows how the shape affects the mean fitness at equilibrium.
By "shape" here I mean the magnitude of the circuit e = w00 ·w11 −w10 ·w01,
even though all landscapes with e > 0 have one shape and those with e < 0
have the other shape. Obviously, this comparison only makes sense when
the shape is varied minimally, i.e. the height or the location of peaks in the
fitness landscape are not changed significantly. The variation is only enough
to change the value of the epistasis e.

The results in figure 5.1 are not surprising. Given the assumptions, all
selection does is to drive the entire population to the fittest genotype while
mutation tries to hinder this adaptation by spreading the population away
from the peak. Now, for shapes with e < 0, the single mutants are quite fit
themselves and thus the spreading of the population by mutation doesn’t cost
too much. Similarly, e > 0 implies that the single mutants have a low fitness
and thus population spreading becomes very costly, causing a significant de-
cline in the mean equilibrium fitness for large mutation probabilities. Thus,
under my assumptions, populations evolving on shapes with negative epista-
sis have larger equilibrium mean fitnesses than those with positive epistasis.
Further, this effect is obviously more prominent for relatively larger muta-
tion probabilities because for small mutation probabilities, selection is strong
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Figure 5.1: Variation of the equilibrium mean fitness with the shape of the
permutation invariant landscape for different values of µ.

enough to drive the entire population to the peak and hence the shape (more
precisely the value of e) has no effect on the equilibrium mean fitness.

However, a larger equilibrium mean fitness does not in the least imply
ease of evolution, i.e. the relaxation time to equilibrium. This is the quantity
that I investigated in figure 5.2.

The equilibration time (Teq) can be estimated from the linearised dynam-
ics as follows:

~z(t)= (M ·S)t ·~z(0)

The initial un-normalised frequency vector~z(0) can be written as a linear
combination of the eigenvectors of the matrix M ·S i.e. ~z(0)=∑

i ci~vi, where ci
represents the contribution of the ith eigenvector.

⇒ (M ·S)t~z(0)=∑
i

ciλ
t
i~vi

Let λ1 be the largest eigenvalue, λ2 the second largest and so on. Then:

~z(t)= c1λ
t
1[~v1 +

∑
i=2

(ci/c1)(λi/λ1)t~vi]

Now, as t → ∞ the sum above gets dominated by the term containing
(λ2/λ1)t. This gives:
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Figure 5.2
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5.2. Two locus case

~z(t)∼ c1λ
t
1[~v1 + (c2/c1)(λ2/λ1)t~v2]

Consequently,

xi(t)=
λi

1 + (c2/c1)(λ2/λ1)tλi
2∑

j(λ
j
1 + (c2/c1)(λ2/λ1)tλ

j
2)

Here, the superscript on vk
1 represents the kth component of ~v1. This

implies the speed of convergence to the equilibrium state is determined by
(λ2/λ1). The time scale of convergence (λ2/λ1)t can be expressed as et·ln(λ2/λ1),
leading to:

Teq = 1
ln(λ1/λ2)

(5.10)

The general trends in figures 5.2 a) and b) are in keeping with expecta-
tions: Teq expectedly decreases as µ increases and it is larger for negatively
epistatic landscapes, which makes sense because in negatively epistatic land-
scapes, the single mutants are themselves quite competent and this makes
it harder for the population to concentrate on the fitness peak. However, the
variation of Teq with the shape is not smooth and incidentally, a sharpness in
the curve occurs exactly at the transition point between the two shapes, i.e.
when the epistasis becomes zero. For small mutation probabilities, this corner
in the curve appears at two places- one at zero and one at some positive value
of epistasis. For very small mutation probability, µ < 0.01, the curves nearly
coincide.

The pointedness of the curves can be explained and understood by look-
ing at the eigenvalues and eigenvectors of the un-normalised matrix M ·S.
Teq depends on the ratio of the largest and second largest eigenvalues, λ1/λ2.
While λ1 varies smoothly with the shape, the variation of λ2 exhibits this non-
differentiability exactly at zero epistasis. This is shown in figure 5.3 a). The
reason behind this non-differentiability is that the curves of the second and
third largest eigenvalues cross at zero epistasis, causing them to interchange
their ranks. The implication of this non-differentiability for the population
dynamics is as follows: Negatively epistatic landscapes have relatively fitter
single mutants, so in this regime, the state corresponding to the single mu-
tants being abundant in the population most strongly competes with the ac-
tual stationary state. This also means that this state contributes most to the
relaxation time of the dynamics. As one transitions to the positively epistatic
landscapes, the single mutants have lower fitnesses and the main contender
of the stationary state becomes the state with the population concentrated at
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the wild type sequence and contributes most to the relaxation time. It is basi-
cally this change in the primary contender of the actual stationary state that
is reflected in the non-differentiability of the Teq curves.

A similar argument suffices to explain what we see in figure 5.3 b) for
small mutation probabilities. However, in this case, all three eigenvalues
apart from the largest one eventually interchange their ranks. For negatively
epistatic landscapes, the strongest competing state is the one in which the
population is concentrated on either of the single mutants. As we cross zero
and move to more positive values of epistasis, this state becomes the one in
which the population is equally distributed amongst the two single mutants.
Finally, for larger values of positive epistasis, this state represents one in
which the population is concentrated on the wild type sequence. This can be
better understood in terms of the mutation-selection matrix. For very small
µ, M ∼ 1, where 1 is the identity matrix. ⇒ M ·S ∼ S. The eigenvalues of S
are just the fitness values. Thus, the largest eigenvalue is λ11 = w11 = 1 and
the corresponding state is the population concentrated on the double mutant.
Since, I’m using permutation invariant landscapes, w01 = w10 ⇒ λ22 ∼ λ33,
but they are not equal. Near zero epistasis, the eigenvalues become equal and
then they switch their order. For positive enough epistasis, w01 = w10 < w00
and this explains the second crossing and the corresponding change in the
strongest competing state.

Next, I decided to relax the constraint of permutation invariance of fit-
nesses. In that case, for fixed values of epistasis and the fitnesses w00 and w11,
one gets a range of possible equilibrium mean fitnesses (w̄eq). This is depicted
in figure 5.4 for two different mutation probabilities. The bounds on w̄eq can
be found by maximising and minimising it w.r.t w01 and w10 under the con-
straint that w10 ·w01 = w00 ·w11 − e. It turns out that w̄eq is bounded from be-
low by permutation invariant landscapes and from above by landscapes with
maximally distant fitness values, i.e. w01 = 1 and w10 = w00 ·w11 − e or vice
versa. Obviously, for smaller mutation probabilities, the range of variation for
a given value of epistasis is much smaller, i.e. max(∆w̄eq) ∼ 10−2 ∼ µ (figure
5.4 b) ), as opposed to max(∆w̄eq) ∼ 0.3 ∼ µ (figure 5.4 a) ) for larger mutation
probabilities. Another observation is that ∆w̄eq remains nearly constant for
all values of epistasis for small µ, while it broadens for large µ. These re-
sults indicate that for small µ, the shape doesn’t really affect the stationary
state of the dynamics because selection is strong enough to attain its motive of
pulling the population to the peak so at equilibrium, the rest of the landscape
becomes irrelevant. The broadening of the envelope for large µ and positive
values of epistasis indicates that the shape constrains the equilibrium state
of the dynamics more strongly for negatively epistatic landscapes as opposed
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(a) µ = 0.25; green dots represent landscapes with w00 =
0.1,w11 = 1 while purple dots represent those with w00 =
0.6,w11 = 1
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(b) µ = 0.01; green dots represent landscapes with w00 =
0.1,w11 = 1 while purple dots represent those with w00 =
0.6,w11 = 1.

Figure 5.4: The bounds on mean equilibrium fitness of landscapes of a given
shape for two different mutation probabilities. The red line represents permu-
tation invariant landscapes while the black one represents landscapes with
maximally distant single mutants. Note that for very large negative epista-
sis, maximally distant landscapes become permutation invariant, as is evi-
dent from the convergence of the red and black lines.
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to positively epistatic landscapes.
In figure 5.5, the relaxation time (Teq) appears to be similarly bounded, but

the bounds in this case are not as straightforward. On increasing µ from 0.01
to 0.45, we see an interesting trend for the landscapes with w00 = 0.6: Permu-
tation invariant landscapes (red dashed lines) and landscapes with maximally
distant single mutants (black dashed lines) reverse their roles as the lower
and upper bound on the range respectively. Already at µ= 0.2, the black line
ceases to be the upper bound, then at µ = 0.25, the red and black lines cross
each other and they continue to do so as µ is increased. Finally at µ = 0.45,
they interchange their roles for positive enough values of epistasis.

First of all, the average Teq decreases as µ increases, which is what is ex-
pected. Further, the range of variation of Teq reduces with increasing µ. This
is because the structure of the fitness landscape becomes increasingly less
consequential for Teq as µ becomes sufficiently high to overcome most hin-
drances. Now, the reversal of bounds occurs only for landscapes with a fairly
fit wild type sequence (here, w00 = 0.6) and for high enough mutation proba-
bilities. The reason for this is that for w00 > 0.5 and positive enough e, the
landscape is very likely to have at least one valley. Now, for very small muta-
tion probabilities, we expect the final state to be strongly peaked at 11 and the
dynamics can only reach this state by crossing the single mutants. Assuming
the dynamics starts with the entire population sitting on the wild type and
mutation occurs first and then selection, after the first mutation step, a small
fraction of the population will move to the single mutants. Next, depending
upon its strength, selection will sweep a fraction of the population uphill, to
the sequence 11. Since the strength of selection will be stronger in the per-
mutation invariant case, the stationary state will be reached faster for these
landscapes. On the other hand, for large mutation probabilities, we expect
the entire population to be uniformly spread over the genotype space. Since
selection is strong for permutation invariant landscapes, equilibration takes
longer due to the strongly competing forces of mutation and selection. Weak
selection along one pathway in landscapes with maximally distant genotypes,
enables faster equilibration. This explains the observed trends.

5.3 Three locus case
As before, to make sensible conclusions about the dynamics, I fixed the fit-
nesses of the wild type and its antipodal sequence to 0.1 and 1 respectively.
After fixing these values, I generated several realisations of such landscapes,
where all the undetermined fitness values were picked from a uniform dis-
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(c) µ= 0.25
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(d) µ= 0.45.

Figure 5.5: The bounds on the relaxation time of landscapes of a given shape
for four different mutation probabilities. Blue dots represent landscapes with
w00 = 0.1,w11 = 1 while green dots represent those with w00 = 0.6,w11 = 1;
red line represents permutation invariant landscapes while black represents
landscapes with maximally distant single mutants.
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5.3. Three locus case

tribution U(0,1). The resultant distribution of shapes, shown in figure 5.6,
expectedly looks different from the one observed for HoC landscapes (2.9 a)).
Majority of the generated landscapes (∼ 30%) belong to type 1 while only ∼ 4%
are of type 6.

Figure 5.6: The distribution of shapes for landscapes whose wild type and its
antipodal sequence have fixed fitness values, here w000 = 0.1 and w111 = 1

I evolved populations on these restricted landscapes of each type and stud-
ied the same two quantities that I looked at in the previous section: Equilib-
rium mean fitness (w̄eq) and the time to equilibrium (Teq).

The variation of w̄eq with the type for three mutation probabilities is shown
in figure 5.7. At least for small mutation probabilities (µ≤ 0.1), the mean equi-
librium fitness increases with the type. While comparing shapes with graphs,
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Figure 5.7: Variation of equilibrium mean fitness with the type of the land-
scape for three mutation probabilities. Error bars represent one half of the
standard deviation.
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Figure 5.8: Variation of mean of the relaxation time (Teq) with the type.

I found that type 1 landscapes, on average, have maximum ruggedness (or
number of peaks) and type 6 landscapes have the least (see figure 3.1). This
variation in ruggedness over the types can explain the observed variation of
the equilibrium mean fitness because having a small mutation probability
means being below the mutational threshold and thus single peaked land-
scapes fare better than relatively "flat" ones with multiple peaks. As the mu-
tation probability increases beyond 0.1, the monotonic increase becomes less
pronounced. However, one must not overlook the fact that for small mutation
probabilities, where this monotonic increase is more apparent, the magnitude
of increase is very small. The variation in the equilibrium mean fitness in-
creases with increasing the mutation probability. This signifies that the equi-
librium mean fitness becomes more sensitive to the type of the landscape for
higher mutation probabilities.

Figure 5.8 shows the variation of the mean of Teq for two mutation proba-
bilities. Naturally, Teq is larger for smaller mutation probabilities. Moreover,
for µ = 0.01, no striking pattern can be inferred due to the large variance of
the distributions, while for µ= 0.1, a clearer trend emerges wherein the mean
of Teq decreases with the type. It is more interesting to note how different the
distributions for each type look for the two mutation probabilities (figure 5.9).
For small µ, the distribution is very heavy tailed, while for large µ, it is more
symmetric and lighter tailed.

A similar feature observed for both the quantities is that the intra type
variance changes significantly with µ. While in the case of w̄eq, it increases
with increasing µ, for Teq, it decreases with increasing µ. This is in keeping
with one’s intuition. Despite using a restricted set of landscapes, the wide
variance about the mean values of w̄eq and Teq highlights that the types do
not constrain the dynamics so much.
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Figure 5.9: Distributions of the relaxation time (Teq) for the different types.
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Chapter 6

Shapes and evolution:
Recombination

In this chapter, an additional step of recombination has also been included in
the dynamics. The primary focus will be on the effect of shape on the evo-
lution of recombination. This study is motivated by the fact that for 2 locus
landscapes, recombination is "advantageous" in landscapes of one shape- the
shape corresponding to negative epistasis, while it is "disadvantageous" in
landscapes of the other shape [44]. But before exploring shapes, I will briefly
introduce the process of recombination and previous results regarding the
question of its evolution.

6.1 Recombination
During Meiosis1, recombination between non-sister homologous chromosomes2,
leads to the offspring having novel traits that cannot be found in either par-
ent. This is facilitated by chromosomal crossover, which is depicted in figure
6.1.

Further, the probability of recombination between 2 loci on a chromosome
depends on the distance between them. Genes that are close to each other
are unlikely to produce recombinant gametes, only sufficiently distant ones
undergo crossover that can destroy correlations between them. This means,
if genes A and b recombine with probability r, then they produce the non

1It is a type of cell division that is characteristic of sexual reproduction.
2Sister chromatids are formed during cell division and contain the exact same genes and

alleles, while non-sister chromatids form homologous pairs and have the same genes but may
contain different alleles [45]
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Figure 6.1: The process of chromosomal crossover between homologous chro-
mosomes during Meiosis I. Due to this, the offsprings have a different set of
alleles and genes than their parents do. In the diagram, genes B and b are
crossed over with each other, making the resulting gametes AB, ab, Ab and
aB.

recombinant gametes Ab and aB with probability (1−r)/2 and the recombinant
gametes ab and AB with probability r/2.

If the two genes are as far apart as possible, or even on different chromo-
somes r = 0.5, which is the maximum possible value of r [46]. Genes that have
r < 0.5 are said to be linked. More concretely, linkage refers to the deviation
of genotype frequencies from their expected values under the assumption of
random association of alleles. Linkage disequilibrium (D) is a measure of how
linked two genes are. Mathematically,

D := x00 · x11 − x01 · x10 (6.1)

where xi represents the frequency of the ith genotype.
Moreover, for a purely recombining population, D(t) decays as:

D(t)= (1− r)tD(0) (6.2)

Which basically means that recombination breaks down linkage by reduc-
ing D by the same fraction in each time step.
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6.2. The evolution of recombination

In the mathematical models used in this thesis, I have considered uni-
form crossover between haploid sequences, meaning that when two length
L sequences σ and τ recombine, each bit from the offspring’s genome is in-
dependently chosen from the two parents with equal probability. Then the
probability of producing non-recombinant sequences is (1− r)/2 each, while
the probability of each recombinant sequence is r/(2L −2).

Thus, the recursion relation for evolution due to recombination is the fol-
lowing:

xi =
2L∑

j,k=1
Ri| jkx jxk (6.3)

where Ri| jk is the probability that sequences σ j and σk produce an off-
spring σi.

6.2 The evolution of recombination
The prevalence of sexual reproduction in nature is difficult to explain, given
its obvious disadvantages– for example, the famous two fold cost of sex in com-
parison to asexual reproduction, the breaking up of linkage between favourable
gene combinations and the excess time, energy and risks associated with sex.
Although, a complete explanation for the origin and maintenance of sex still
remains elusive, there have been several good attempts.

6.2.1 Direct models
Such models include factors due to which sexual reproduction might have had
a direct impact on the mean fitness of the organism and would have had an
immediate advantage. One hypothesis that falls under this category is that
sex could be a by-product of double strand DNA repair. These models are
however difficult to study and test empirically [47]. Moreover, they can only
explain the origin of sexual reproduction but not so much its maintenance.
Therefore, in this thesis, the term ‘advantage of sex’ will refer primarily to
the indirect advantage of sex, which is described in the following section.

6.2.2 Indirect models
Such models are relevant for explaining the maintenance of sex. One way
in which sex can have an indirect advantage is by increasing variation (by
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6.3. The effect of shapes

breaking linkage between genes) on which directional selection can subse-
quently act. Doing so either accelerates adaptation or decelerates maladapta-
tion. However, this is only helpful in the presence of negative linkage disequi-
librium (D). Negative D means that the double mutant is less common in the
population than is expected from random associations of alleles. Given that
this is the case, the obvious question to ask is about the origin of this negative
D. The most popular answers to this question are: Negative epistasis, genetic
drift or a combination of both.

Moreover, several models exist in the literature that try to justify the evo-
lution of recombination by attributing the linkage to different sources. While
the classic Fisher-Muller hypothesis (figure 6.2) relies on genetic drift, the
Red Queen hypothesis relies on fitness fluctuations over time and the spatial
heterogeneity hypothesis on fitness fluctuations over space. [48]

Empirical studies have tried to find evidences for each of the possibilities,
but it is not yet clear which is the main cause of negative D [47]. Since my
motive is to study the contribution of epistasis, I will only focus on infinite
populations because it was found in [49] that for small populations, the con-
tribution of drift outweighs that of epistasis.

6.3 The effect of shapes
Naturally, recombination will evolve and persist in populations only if it con-
fers some advantage. Now there are several ways of quantifying the advan-
tage of recombination and I will be considering the following three:

1. The difference of the mean fitnesses of a population that evolves via
mutation, selection and recombination and another that evolves only by
mutation and selection, as a function of time.

2. The difference of genotype frequencies of the fittest mutant of a popula-
tion that evolves via mutation, selection and recombination and another
that evolves only by mutation and selection.

3. Spread of a recombination modifier gene that increases the recombina-
tion rate.

6.3.1 Two locus case
The effect of shapes in the two locus case is already known. Most of the im-
portant conclusions have been drawn by Eshel and Feldman in [51]. Firstly,

66



6.3. The effect of shapes

Figure 6.2: Pictorial representation of the Fisher-Muller hypothesis. A, B and
C are three individually beneficial mutations that compete with each other
due to the finite size of the population. Consequently, they can only sequen-
tially fix in asexual populations. Recombination expedites their incorporation
by increasing the abundance of gene combinations. [50]

they showed that under deterministic mutation-selection dynamics, for a pop-
ulation with initial D(t = 0) = 0, D(t) · ε(t) > 0 at all t > 0, where ε represents
the epistasis [44]. This result can be proved by the principle of mathematical
induction. One needs to additionally employ the recursion relations for the
change in D due to mutation and selection that were developed in [52]. The
following is an outline of the proof:

Assuming that x00(0)= 1

⇒ D(0)= x00(0) · x11(0)− x01(0) · x10(0)= 0

Further, assuming mutation occurs before selection, change in D after the
first mutation step,

∆µD =−4 ·D(0)µ(1−µ)= 0
⇒ Dµ(1)= 0
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6.3. The effect of shapes

Next, after the first selection step,

D(1)= Dµ(1)+∆sD(1)=∆sD(1)

= p2(1− p)2ε/(1+2ps1 + p2A)2

=α ·ε

where, w00 = 1,w01 = w10 = 1+ s1,w11 = 1+ s2, p is the allele frequency for
the allele 1, A = s2 −2s1 and α= p2(1− p)2/(1+2ps1 + p2A)2 > 0

⇒ D(1) ·ε=α ·ε2 > 0

This proves that D · ε > 0 after the first step of the dynamics. Now, let
us assume that this is the case after m steps, i.e. D(m) · ε > 0 := β. Then,
D(m)=β/ε.

The effect of the mutational step,

∆µD =−4 ·D(m)µ(1−µ)
=−4 ·β/εµ(1−µ)⇒ Dµ(m+1)
=β/ε−4 ·β/εµ(1−µ)

and after selection,

D(m+1)= x00(m+1) · x11(m+1)− x01(m+1) · x10(m+1)

= (w11w00 · xµ00(m+1)xµ11(m+1)−w2(xµ(m+1))2)/(w̄2)

= w2 ·Dµ(m)+ x00x11 ·ε
⇒ D(m+1) ·ε= w2Dµ(m+1)ε+ x00x11 ·ε2 > 0 ∵ Dµ(m+1) ·ε> 0

Thus, by the principle of mathematical induction,

D(t) ·ε> 0 ∀t ≥ 1

Further, since the mutation selection equilibrium is independent of the
initial condition, D(Teq) · ε> 0 in general. This is also seen in simulations on
random landscapes with particular values of epistasis (figure 6.3).

This result is important because it proves that negative epistasis is a
source of negative D in two locus landscapes. This also indicates that neg-
atively epistatic landscapes, by generating negative D, can potentially con-
fer some advantage to recombination. Eshel and Feldman formalised this
by proving that for 2 locus, permutation invariant, negatively epistatic fitness
landscapes, such that wild type is the least fit and double mutant is the fittest,
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6.3. The effect of shapes

Figure 6.3: Linkage disequilibrium and epistasis (shape) always have the
same sign at the mutation-selection equilibrium. Shown here for four dif-
ferent mutation probabilities.

if the dynamics begins with a wild type monomorphic population, at all sub-
sequent times, the double mutant frequency for an asexual population will be
smaller than that for a sexual population. The converse is true when epistasis
is positive. They thus countered the view that recombination always acceler-
ates evolution. Moreover, they highlighted the importance of the shape of the
2 locus landscape in the evolution of recombination– particularly the fact that
recombination is advantageous for negatively epistatic landscapes.

6.3.2 Three locus case
Linkage disequilibirum

As was shown in the previous section, in the two locus case, negative epistasis
is a source of negative D. It is also of interest to know if such is the case for
3 locus landscapes. However in the 3 locus case, the problem of measuring
D becomes equivalent to the problem of measuring epistasis, i.e. one doesn’t
know which tests to consider. Thus, one intuitive way to measure D could be
to employ the Markov basis of the interaction space here as well. In fact, as
shown in figure 6.4, each of the nine elements of the Markov basis that exist
for 3 locus landscapes correlates with the corresponding disequilibrium tests.
Further, they seem to nearly always satisfy D i · e i > 0, where i ∈ {1,2, ..,9},
meaning that the signs of the epistatic interactions in the fitness landscape
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6.3. The effect of shapes

guide the signs of D is at mutation-selection equilibrium. The deviations from
this inequality occur only for small values of epistasis. Moreover, the relation
between D i and e i looks very similar for all i.
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Figure 6.4: Disequilibrium tests (y axis) versus epistasis tests (x axis) for
µ= 0.25. D i · e i > 0 seems to hold for most landscapes.

Permutation invariant (PI) fitness landscapes

It can be inferred from the 3 locus results of the previous chapter, that the
shape of a landscape is a relatively weak constraint. Thus, further constraints
on the landscape are needed to study characteristic dynamics of populations
on particular shapes. Apart from fixing the fitness values of the wild type
(to 0.1) and the triple mutant (to 1), I introduced an additional symmetry,
namely the permutation invariance of the rest of the genotype to fitness map.
This reduces the number of shapes to six and they belong to four types (1,2,4
and 6). The reduced distribution is shown in figure 6.5. It is interesting to
note that nearly half of the randomly generated landscapes have shape 1 and
none of them belong to type 3 or 5. As a side note, the number of shapes for 4
locus permutation invariant landscapes turned out to be just 41, which is also
a significant reduction from the original number of 87,959,448.
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Figure 6.5: Distribution of shapes of permutation invariant landscapes.

It is easy to see why only six possible shapes emerge. Permutation invari-
ance implies w001 = w010 = w100 := w1 and w101 = w011 = w110 := w2. This
causes the Markov bases to have only three distinct elements: a := w000 ·
w111 −w1 · w2 which is a measure of the overall epistasis in the landscape,
b := w000 · w2 − w2

1 which is a measure of the epistasis between the double
mutants and the wild type and c := w111 · w1 − w2

2 which is a measure of
the epistasis between the triple mutant and the single mutants. Further,
a = (w000 · c+w2 · b)/w1, which means that the sign of a is determined by that
of b and c. From simple combinatorics one can infer the possible sign patterns
of a,b and c. It is evident that when both b and c have the same sign, a is also
compelled to have that sign. This gives rise to 2 shapes. On the other hand,
when b and c have different signs, a can have either sign, leading to another
four possible sign patterns.

In the remaining part of this chapter, I have relabelled the shapes in figure
6.5 (from left to right) as 6, 4, 5, 2, 3, 1 so that neighbouring shapes differ only
by the sign of one element of the Markov basis. This becomes clearer from
figure 6.6. Sign patterns of the six shapes are summarised in table 6.1 and
some sample landscapes of each shape are plotted in figure 6.7. Moreover,
from the characteristic sign patterns of the shapes, it becomes evident that the
first four shapes cannot have multiple peaks. This is because having multiple
peaks in three locus PI landscapes implies

w1 > w2 and w1 > w0 (6.4)
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where wi is the fitness of genotypes with i mutations. Shapes 1, 2 and 3
must have

c = w3 ·w1 −w2
2 < 0

⇒ w1 −w2
2 < 0 (∵ w3 = 1)

⇒ w1 < w2
2 < w2 (∵ w2 < 1)

(6.5)

This means shapes 1, 2 and 3 do not satisfy the requirements of equation
6.4 and hence cannot have multiple peaks. Similarly, shape 4 must have

b = w0 ·w2 −w2
1 > 0 (6.6)

while equation 6.4 ⇒ w2
1 > w0 ·w2. This directly contradicts equation 6.6

and hence shape 4 cannot have multiple peaks either.

Shape a b c

1 < 0 < 0 < 0
2 < 0 > 0 < 0
3 > 0 > 0 < 0
4 > 0 > 0 > 0
5 > 0 < 0 > 0
6 < 0 < 0 > 0

Table 6.1: The sign patterns of the remaining elements of the Markov basis
(a, b and c) for the 6 shapes

The reduction in the number of shapes permits an exhaustive analysis of
the evolution of recombination on these landscapes. One can already guess
the outcome based on the results of Eshel and Feldman [44] for the two locus
case because the present case is essentially a concatenation of 2 two locus
landscapes.

I started by looking at the difference in mean fitness of sexual and asex-
ual populations as a function of time i.e. ∆w̄(t) = w̄sex.(t)− w̄asex.(t). I set my
initial condition to be a monomorphic population consisting only of wild type
sequences. The results are depicted in figure 6.8. The average over several
landscapes is shown in red. In most cases, there is very little difference be-
tween the equilibrium mean fitness of the sexual and asexual populations. On
the contrary, in the doubly negative landscapes (both b < 0 and c < 0) of shape
1, a noticeable advantage of recombination persists even at long times. At
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Figure 6.6: The secondary polytope of the shapes of PI landscapes. The la-
belling on the edges indicate the Markov basis elements in which the neigh-
bouring shapes differ.

the other end of the spectrum is shape 6, where sexual populations on certain
landscapes remain significantly maladapted even at equilibrium. This pulls
the difference of average mean fitness below zero at long times. Shape 6 also
shows the maximum heterogeneity in the response to recombination. This
could be because nearly half of the random landscapes have shape 6. The
overall behaviour of shapes however is in accordance with what we would
expect from Eshel and Feldman’s results [44]:

1. The mean fitness of the sexual population remains higher in the begin-
ning for the doubly negative landscapes of shape 1. In that sense, recom-
bination is advantageous for this shape. However, ∆w̄(t) decreases with
time. The advantage is in accordance with what one would expect by
extension of the 2 locus result. By a similar extension, one would expect
recombination to be disadvantageous for the doubly positive landscapes
of shape 4. This is exactly what we see in figure 6.8(d). In fact, ∆w̄(t) is
significantly negative in the beginning, but it very soon reduces to zero.

2. Recombination in both shapes 2 and 3 is initially detrimental due to the
positive epistasis in the first part but as the population evolves to see
the negatively epistatic second half of the landscape, it begins to benefit
from the effect of recombination and this effect then gradually dimin-
ishes to zero. This is exactly as we would expect from the extension of
the 2 locus results. However, these two shapes differ in the sign of the
overall value of epistasis (a). This results in the slightly better perfor-
mance of recombination in shape 2 landscapes, in terms of the lower
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(a) Shape 1 (b) Shape 2

(c) Shape 3 (d) Shape 4

(e) Shape 5 (f) Shape 6

Figure 6.7: Some example landscapes of each shape. The mean of 100 reali-
sations is plotted in green.
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average deleterious effect of recombination in the beginning and a more
persistent beneficial effect at long times.

3. Shapes 5 and 6 are interesting because they are most likely to have 2
peaks and recombination is known to do a terrible job in multi-peaked
landscapes [53]. This is also partly what we see in figure 6.8(e) and (f),
where in some cases, ∆w̄(t) is highly negative. However, in shape 5, we
do not see any maladapted landscapes at long times, as opposed to shape
6 where some landscapes do not recover from the maladapted state at
all.

The dependence of the results on r and µ is as follows: The peak of the
∆w̄(t) plot for each shape increases with increasing r, while retaining the
characteristic form of the curves. The effect of increasing µ is to expedite the
process, as a result of which the curves shift to the left. At the same time,
the peak ∆w̄(t) decreases. This is because large values of µ cloud the effect of
recombination. These trends for shape 1 are shown in figure 6.9.

I later realized that by virtue of being an average quantity, ∆w̄(t) lacks
full information about the dynamics. Thus, in order to get more fine scaled
results, I looked at the time variation of the difference of the frequencies of
the triple mutants in either population i.e. ∆x111 = xsex.

111 − xasex.
111 . As is evident

from figure 6.10, shapes 1,2,3 and 4 landscapes have a fairly homogeneous
response. However, considerable heterogeneity is seen for shape 5 and shape
6 landscapes. In both shapes 1 and 2, the recombining population performs
better, even at long times. Despite having positive epistasis in the first half
of the landscape, recombining populations on shape 2 landscapes still reach
higher frequencies of x111. In shape 3 landscapes there is a transitory advan-
tage on average, but this declines over time. Similarly, in shape 4, there is a
strong transitory disadvantage which declines over time. On average, recom-
bination does not have any effect at long times in shape 5 and 6 landscapes,
but in some specific landscapes, the triple mutant doesn’t arise at all in the
sexual population. Again, this is not surprising given that the disadvantage
of recombination has already been noted in multi-peaked landscapes [53].

Next, I considered modifier models to get conclusive results about the
spread of recombination modifier alleles on PI landscapes of different shapes.

Modifier Model for PI landscapes

The following is a brief description of the modifier model:

1. It tracks the evolution of 4 locus sequences, wherein the fourth locus
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Figure 6.8: Variation of ∆w̄(t) with time for all the 6 possible shapes of PI
landscapes. µ= 0.01, r = 0.5
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(b) Variation with µ.

Figure 6.9: The mean of ∆w̄(t) for shape 1 landscapes for different values of r
and µ.

determines the recombination rate but doesn’t contribute to the overall
fitness of the genotype.

2. The fitness landscape of the first three loci is permutation invariant. An
example of such a fitness landscape is shown in figure 6.11.

3. The initial population comprises only of sequences with the recombina-
tion modifier turned off (i.e. σ4 = 0 ⇒ an asexual population) and they
are in mutation-selection equilibrium (with µ=0.1).

4. This equilibrium composition is then invaded in some fraction (here 0.5)
by sequences with the recombination modifier turned on (i.e. σ4 = 1 ⇒
a sexual population). The role of the modifier locus is to modify the re-
combination rate (r) of two recombining sequences. If both recombining
sequences have their modifier locus turned on, r=2dr, where dr is the
modification rate. If only one of them has it on, r=dr. Finally, if neither
of them has it on, r=0.

5. The population then undergoes cycles of selection and recombination,
until the stationary state is reached. In keeping with models found in
literature, no mutations were considered post the invasion. This makes
sense because the quenching of the effect of recombination by mutations
is undesirable.

6. The aim is to study the dynamics of the allele frequency of the modifier
locus (i.e. ν4 =∑

σ:σ4=1 xσ) and the frequency of the fittest genotypes (i.e.
x1111 and x1110) for all the 6 possible shapes.
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Figure 6.10: Variation of triple mutant frequency difference with time for all
the 6 possible shapes of PI landscapes.
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Figure 6.11: An example of a fitness landscape in the modifier model. The
three locus sub-landscapes are of shape 6. The blue one is for sequences with
σ4 = 0, while the green one is for sequences with σ4 = 1.

I studied the evolution of the modifier allele frequency, ν4 for each of the
shapes. The results are shown in figure 6.12. I started with equal fractions
of asexual and sexual genotypes, meaning that ν4(t = 0) =: a = 0.5. Both the
sexual and asexual populations were individually in mutation-selection equi-
librium. Judging by the observed correlation between D and epistasis at equi-
librium (figure 6.4), the signs of the different tests of D at the beginning of the
dynamics are very likely to be equal to the sign of the corresponding epistasis
tests. With the knowledge of the sign of D, one can already start guessing the
outcome of the modifier dynamics for each shape. Since I’m ignoring muta-
tions in the dynamics, the stationary state strongly depends upon the initial
conditions. The initial conditions are determined by a and for every a there
is a unique ν4(t −→∞) = νeq. However, ∆ν4 = ν

eq
4 −a remains conserved and

is the relevant quantity to study. The sign of ∆ν4 is an indicator of whether
recombination is advantageous or not. It turns out that ∆ν4 is positive for
shapes 1, 2 and 3 and negative for shapes 4, 5 and 6.

In figure 6.13, I have plotted the means of ν4(ν̄4) for each shape. This
figure gives a clear picture about which shapes are advantageous for recom-
bination.

I also looked at landscapes close to the transition point between shapes to
see if any stark transition in the response curves occurs as one moves from
one shape to the other. Figure 6.14 summarises that study by showing the
variation of νeq

4 i.e. ν4(Teq) as a function of the shape of the landscape. Evi-
dently, the stationary state of the dynamics shows scant regard for the shape

79



6.3. The effect of shapes

(a) Shape 1 (b) Shape 2

(c) Shape 3 (d) Shape 4

(e) Shape 5 (f) Shape 6

Figure 6.12: Time variation of ν4 for several landscapes of each possible
shape. br = 0, dr = 0.25, µ= 0. Mean is shown in blue.
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Figure 6.13: The inter-shape difference of the mean of the response curves

of the landscape on which the population evolves. Moreover, nothing exciting
happens at the boundary between two different shapes. This leads us to con-
clude that the fate of the recombination modifier is not a characteristic of the
shape of the fitness landscape.

⌫4(Teq)

w1

w2

Figure 6.14: The variation of the stationary state of the modifier dynamics as
a function of the shape of the fitness landscape. The dotted lines demarcate
the different shapes.
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Further, one must also note that the plots for shape 1 and 2 look nearly
identical, although shape 1 has a larger variance, while on the other hand,
shape 6 shows a very heterogeneous response. The extent to which the re-
sponses of shape 6 landscapes differ can be seen from figure 6.15. One may
naively imagine the following two classes of PI landscapes to have different
"shapes": ( f0, f1, f2, f3) = (0.1,1−α,1−α,1) and ( f0, f1, f2, f3) = (0.1,1−α,0.1+
α,1), where 0 < α <<< 1. However, both landscapes have shape 6 and thus
it is not surprising that their responses differ so much. This result implies
that nothing concrete about the spread of ν4 can be inferred from shape 6
landscapes.

200 400 600 800 1000
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0.4

0.5

0.6

 increases
 decreases

0.5

Figure 6.15: The heterogeneity in the response of shape 6 becomes evident
from this plot. Plotted here for two shape 6 PI landscapes: (0.1, 0.99, 0.99, 1)
in blue and (0.1, 0.99999, 0.11, 1) in orange.

Due to the initial diversity and the subsequent absence of mutations the
populations end up reaching the global maxima, so at long times, ⇒ x1111 +
x1110 = 1. The only interesting question is how the population is split between
1111 and 1110. One can qualitatively guess these results from the dynamics
of ν4 and also predict which shapes will be more heterogeneous.

Finally, I studied the variation of the stationary state (νeq
4 ) as a function of

the recombination rate modifier (dr) and the mutation probability (µ). The re-
sults for different shapes are shown in figures 6.16 and 6.17. Not surprisingly,
|∆ν4| = |νeq

4 −ν4(t = 0)| = |νeq
4 −0.5| (i.e. the magnitude of advantage or disad-

vantage of recombination) increases as dr increases. The effect of switching
on mutations is more interesting- |∆ν4| first increases, then reaches a max-
imum at some intermediate value of µ and then begins to decrease to zero.
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This makes sense because at sufficiently high mutation rates (µ > µc), the
steady state of the population starts tending to a uniform distribution and
thus ν

eq
4 → 0.5. The initial increase can be interpreted as occurring due to

rare mutations aiding the effect of recombination. Adding mutations also sig-
nificantly increases the equilibration time.
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Figure 6.16: Dependence of the mean of the equilibrium modifier allele fre-
quency on dr, µ= 0.
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Figure 6.17: Dependence of the mean of the equilibrium modifier allele fre-
quency on µ, dr = 0.25. The sharp edges in the plot are because I changed µ

in steps of 0.01.
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Chapter 7

Final remarks

7.1 Conclusions
The idea of classifying fitness landscapes based on how they triangulate the
Genotope is an intriguing one. Moreover, the connection that triangulations
have to signs of circuits and Markov bases, allows them to be interpreted as
summaries of epistatic interactions in the fitness landscape. At first glance,
this interpretation makes the idea look promising and worth exploring.

However, the first thing to note is that the concept of shapes is only use-
ful for 3 locus landscapes because they are almost trivial for 2 locus land-
scapes and unmanageably numerous for 4 locus landscapes and beyond. The
74 shapes of 3 locus landscapes can be classified into 6 types, but these types
were initially difficult to understand. They became clearer on comparison
with other more intuitive measures such as the number of peaks, sign epista-
sis motifs and the strength of higher order epistasis. The comparisons enabled
us to learn that type 1 landscapes are on average most rugged, with maximum
number of reciprocal sign epistasis motifs and maximum strength of higher
order epistasis. On the other hand, type 6 landscapes have most correlated
fitness values, causing them to be more likely to be single peaked.

After having gained more intuition about what the shapes mean, the next
step was to assess the theory’s utility. Broadly speaking, the theory can be
used in two ways:

1. Inferring epistatic interactions from theoretical and empirical
fitness landscapes: This is done by using the basis of the interaction
space. This could either be the circuits or the Markov basis and they are
particularly useful for multi-locus landscapes (even L>3) because they
indicate which epistasis tests to consider. For combinatorially complete
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fitness landscapes, the circuits are similar to Walsch coefficients, but
they are more fine scaled, in the sense that the Walsch coefficients are
averages of circuits. Circuits and Markov bases are also more useful
because they can also be generated for landscapes with incomplete fit-
ness values, which is usually the case for empirical fitness landscapes.
The application of this theory to the three four locus β- lactamase land-
scapes enabled a more exhaustive study of the distributions of epistatic
effects and the diminishing returns hypothesis. While the former re-
vealed a peculiar, heavy tailed distribution for the landscape of large
effect mutations, the latter seemed to hold very well for the landscape
of synonymous mutations.

2. Classifying landscapes into shapes, with the underlying assump-
tion that same shapes share common properties: As mentioned
before, the classification is useful only for 2 and 3 locus landscapes, how-
ever shapes do provide some deeper insights.

From the study of mutation-selection dynamics, we found that for two
locus landscapes, the shape corresponding to negative epistasis has a
larger equilibrium mean fitness (w̄eq) but also a longer time to equili-
bration (Teq) than the shape corresponding to positive epistasis. We ad-
ditionally found bounds on the w̄eq and Teq for fixed values of epistasis.
Further, we found a sharpness in Teq at exactly the transition point be-
tween the two shapes. For 3 locus landscapes, for µ< 0.1, we found w̄eq
to increase on average with the type of the landscape, although the intra
type variance was quite significant. On the other hand, the distribution
of Teq per type looks very different for small (∼ 0.01) and large (∼ 0.1) µ
and also shows considerable variance. Here, for µ= 0.1, we found Teq to
decrease with the type on average. These two results concord with the
results on the average number of peaks in each type. The main message
from the 3 locus mutation-selection study was that the pattern in which
the fitness landscape decomposes the Genotope into tetrahedra does not
have a very strong influence on the population dynamics on that land-
scape. This led us to add an additional constraint on the landscapes,
namely permutation invariance.

The analysis of the advantage of recombination for 3 locus PI landscapes
led to a generalisation of Eshel and Feldman’s two locus results– the
three locus PI landscapes behaved like two independent two locus land-
scapes concatenated together, in the sense that sexual populations had
a higher w̄(t) in the negatively epistatic parts of the landscape and vice
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versa. This resulted in ∆xeq
111 being positive in shapes 1, 2 and 3 and

negative in shapes 4, 5 and 6. This effect also reflected in the spread of
the modifier allele in shapes 1, 2 and 3 and it being flushed out of the
population in shapes 4, 5 and 6. The fact that different shapes showed
characteristically different dynamics could be counted as a success of
the shape theory, but at the same time one must note that the stationary
state of the dynamics didn’t show any strong dependence on the shape
of the landscape. Added to that, shapes 1 and 2 had a very similar re-
sponse, while shape 6 exhibited a very heterogeneous response. This
hints that the shape is probably not the best way to classify landscapes.
Finally, turning on mutations had a rather interesting effect – small µ
enhanced the (dis)advantage of recombination, while large µ quenched
it by trying to have equal proportions of sexual and asexual individuals.

To sum up, the shape theory definitely has relevance in the study of em-
pirical fitness landscapes but when it comes to studying population dynamics,
its use is confined to only 2 and 3 locus landscapes. Moreover, additional con-
straints are needed to actually infer something about the dynamics because
the shape imposes too weak a constraint on the fitness landscape.

7.2 Future directions
There are a number of directions in which one can proceed from here.

On the experimental side, it will be interesting to firstly find out the bio-
logical reason behind the outlier epistatic interaction motif that was found for
the landscape of large effect mutations. Additionally, one can test the predic-
tions made by the shape of the landscape about the compositions of the fittest
populations.

On the theoretical side, it remains to be seen if the different population
dynamics models can be solved either exactly or approximately, in order to
explain the simulation results. Perhaps, the most interesting will be to see
if the small perturbation in the fitness landscape that lead to a drastically
different response can be explained by looking at the stability of the fixed
points. Further, one ought to explore how the results on the advantage of
recombination change for finite populations, where there is more competition
due to limited capacity. One can also study the advantage of recombination
by comparing the time to adaptation for sexual and asexual populations.

Other potential applications of the shape theory can be in studying evolu-
tion by tracking the allele frequencies (by looking at paths in the Genotope)
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and the disequilibrium measures or in studying the evolution of epistasis, by
looking at the evolution of shapes as random adaptive walks on secondary
polytopes. One can also look at shapes of empirical landscapes (preferably
3 locus landscapes), to see which are the most commonly occurring shapes
in nature and to check if that can be explained by an evolutionary model of
shapes.
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