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1. INTRODUCTION AND MOTIVATION

The following work is based on the Papers ”Testing for structural breaks in factor copula

models“, Manner, Stark, and Wied (2019) published in the Journal of Econometrics and

the working Paper ”A monitoring procedure for detecting structural breaks in factor copula

models“, Manner, Stark, and Wied (2018) such as my sole working Paper “On the applicability

of a nonparametric test for constant copula-based dependence measures: Dating break points

and analyzing different dependence measure sets”, Stark (2018). The first two papers are

joint works with Hans Manner and Dominik Wied. Especially, I focused on the theoretical

details and the implementation of the procedures in Matlab such as the realization of the

simulation studies and the empirical applications. The joint works are presented in Section 3

and Section 4, where my sole work is presented in Section 5.

Further, during my Ph.D. studies I participated in the work of the working paper ”A non-

parametric CUSUM-type test for testing relevant change in copulas“, Kutzker, Stark, and

Wied (2018). All the work was supported by the Deutsche Forschungsgemeinschaft (DFG).

Dependence models based on copula functions have been an important topic for researchers

and practitioner in the last 20 years (see Patton, 2012 and Fan and Patton, 2014 for reviews).

These models offer an elegant approach for modelling multivariate distributions that has

proven to be useful in many fields such as risk management, asset allocation or option pricing.

Multivariate GARCH models (e.g. Engle, 2002 or Bauwens, Laurent, and Rombouts, 2006) or

multivariate stochastic volatility model (Yu and Meyer, 2006) are the traditional way to model

multivariate asset prices, but these models typically come with the drawback that they rely on

the multivariate normal distribution, which contrasts stylized facts about the distribution of

asset prices, in particular regarding the dependence structure. A number of parametric copula

models exist that can capture the tail dependence and asymmetric dependence structure

present in financial time series. More recently there have been two key advances in the
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literature on parametric copula modelling. First, the need for time-varying dependence has

been recognized and a number of modelling approaches have been proposed. Patton (2006)

extended Sklar’s theorem for conditional distributions and proposed a simple observation

driven model for the evolution of the copula parameter over time. Dias and Embrechts (2004)

test for structural breaks at unknown dates using a sup LR statistic, whereas Garcia and

Tsafack (2011), Stöber and Czado (2014) or Chollete, Heinen, and Valdesogo (2009) rely on

Markov switching models assuming regime dependent parameters. A model that assumes

a smooth evolution over time is proposed by Hafner and Reznikova (2010). A state space

approach in which the copula parameter is driven by a latent process was advocated by

Hafner and Manner (2012), whereas Creal, Koopman, and Lucas (2013) suggest a generalized

autoregressive score model for time varying dependence.

A second innovation in the copula literature has been the availability of parametric models

that are applicable in higher dimensional settings. Besides the obvious choice of elliptical

copulas, typically Gaussian and Student copulas, three main approaches can be found in the

literature. Within the class of Archimedean copulas hierarchical models have been studied

by Savu and Trede (2010) and Okhrin, Okhrin, and Schmid (2013). However, in larger

dimensions these models are still rather restrictive. A more popular approach is the class of

vine copulas studied in Bedford and Cooke (2002), Aas, Czado, Frigessi, and Bakken (2009),

Stöber and Czado (2011), Stöber, Joe, and Czado (2013) or Brechmann and Czado (2013). A

time varying vine copula model has been proposed by Almeida, Czado, and Manner (2016).

Finally, Oh and Patton (2017) and Krupskii and Joe (2013) introduced the class of factor

copula models. Factor copulas are the copulas implied by a latent factor model, where the

difference to traditional factor models is the fact that one is only interested in the copula

implied by the factor structure, discarding its marginal information. The advantage of these

models is that they can be used in relatively high dimensional applications and nevertheless

capture the dependence structure by a low number of parameters. However, the estimation of
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this model is complicated by the fact that the factors are not observable. Several approaches

have been proposed to tackle this problem. Oh and Patton (2013) suggest a simulated method

of moments estimator, an approach that we adapt in this work. Krupskii and Joe (2013)

propose maximum likelihood estimation by numerically integrating out the latent factor.

This approach has the drawback that it is only applicable when the number of factors is

relatively small. Murry, Dunson, Carin, and Lucas (2013) estimate a Gaussian Factor copula

model with Bayesian methods. Factor copula models that allow for time-varying parameters

have been proposed by Creal and Tsay (2015), who allow for stochastic autoregressive factor

loading estimated with a Bayesian approach. An alternative approach can be found in Oh

and Patton (2018) where the dynamics of the factor loadings are driven by a generalized

autoregressive score model. This model is estimated using a multi stage maximum likelihood

approach.

The aim of this work is to propose a different approach to allow for time-variation in factor

copula models by testing for and dating breakpoints at unknown points in time. Several tests

for constant dependencies have recently been developed, see e.g. Bücher and Ruppert (2013)

for the case of copulas or Dehling, Vogel, Wendler, and Wied (2017) for the case of Kendall’s

tau. The main motivation for such tests is that dependencies usually increase in times of

crises. Therefore, they can be applied to detect and quantify contagion between different

financial markets or to construct optimal portfolios in portfolio management.

For the estimation of the model parameters, we rely on the simulated method of moments

(SMM), which is different to standard method of moments applications, since the theoretical

moment-counterparts are not available analytically and therefore need to be simulated. This

complicates the derivation of results regarding the consistency and asymptotic distribution of

the estimators. The reason is that the objective function is not continuous and furthermore

not differentiable in the parameters and standard asymptotic approaches cannot be used
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here.

We first propose a new retro perspective fluctuation test, where successively parameter

estimators are compared to the parameter estimates of the full sample and we then analyse

the behaviour of the test under the null hypothesis of no parameter change (Section 3). In

contrast to formerly proposed non-parametric tests for constant copulas by e.g. Bücher,

Kojadinovic, Rohmer, and Segers (2014), our test is of parametric nature. The asymptotic

distribution of the test statistic is non-trivial. Due to the non-smoothness of the objective

function, we cannot make use of a Taylor expansion approach to derive the distribution under

the null. To tackle this issue we propose a new construction principle inspired by Newey and

McFadden (1994). These new functional limit theorems hold in general for SMM estimation

and are therefore of broader interest. As the asymptotic distribution depends on unknown

quantities we propose a bootstrap to estimate these.

In the context of retro perspective testing, i.e. no real time testing, we propose two possible

tests, namely a fluctuation test based on parameter estimates and a test directly based on the

dependence measure vector used to estimate the model. We analyze size and power properties

of our tests in Monte Carlo simulation in various situations and compare our tests with the

copula constancy test proposed by Bücher et al. (2014). While the Bücher et al. (2014) test

has better properties for low dimensions, our test performs better in high dimensions. This

reflects the fact that the drawback of having to estimate the model with simulated methods

is more and more compensated with increasing dimensions. If the number of dimensions is

kept fixed, one simply has more data for estimating the model, while, on the other hand,

in a nonparametric copula constancy test, the complexity of the estimated objects increase.

Finally, we provide an application to a set of stock returns from the Eurostoxx50.

After dealing with a retro-perspective approach for detecting changes in the copula parameters

we are interested in deriving a procedure for real time applicability. There are many papers
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which deal with monitoring procedures for detecting structural changes, for instance Hoga

and Wied (2017), who construct a sequential monitoring procedure for changes in the tail

index and extreme quantiles of beta-mixing random variables, which can be based on a large

class of tail index estimators. Furthermore, Pape, Wied, and Galeano (2017) propose a

model-independent multivariate sequential procedure to monitor changes in the vector of

componentwise unconditional variances in a sequence of p-variate random vectors, where

Galeano and Wied (2013) developed a monitoring procedure to test for the constancy of

the correlation coefficient of a sequence of random variables. Here the basic idea is that a

historical sample is available and the goal is to monitor for changes in the correlation as new

data become available. All these proposed monitoring procedures have in common that they

are all of non parametric kind. A parametric approach for detecting structural breaks is

shown for example in Chu, Stinchcombe, and White (1996), who construct real-time CUSUM

based monitoring procedures to detect changes in the parameters of linear regression models,

where they assume parameter constancy for an initial period. Also, Kurozumi (2017) propose

a monitoring test for parameter change in linear regression models with endogenous regressors.

In this article they consider a CUSUM-type test based on the instrumental variable (IV)

estimation, as the IV method is standard for models with endogenous regressors.

The second aim of this work is to construct a new parametric monitoring procedure, based on

moving sums (MOSUM), for the parameters in factor copula models, where rolling window

parameter estimates are compared to a parameter estimate of an historical data sample, where

we can assume constant parameter values (Section 4). By using rolling window parameter

estimates, based on moving sums, new data has more impact on the estimated parameter,

yielding higher power of our procedure. Further, a similar non-parametric monitoring proce-

dure based on the dependence measure vector used in the SMM procedure is proposed. The

pre proposed retro perspective parameter test and the non-parametric dependence measure

test are useful to test the assumption of no parameter or dependence measure change within
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the historical data set. We then analyze size and power properties of our procedures in

single and multi break situations in Monte Carlo simulations. Finally, we use the parameter

monitoring procedure in a real-data application during the last financial crisis.

Given the growing need for managing financial risk, risk prediction plays an increasing role

in banking and finance. The value-at-Risk (VaR), is the most prominent measure of financial

market risk. Despite it has been criticized as being theoretically not efficient and numerically

problematic compare Dowd and Blake (2006), it is still the most widely used risk measure in

practice. The number of methods for such calculations continues to increase. The theoretical

and computational complexity of VaR models for calculating capital requirements is also

increasing. Some examples include the use of extreme value theory see McNeil and Frey

(2000), quantile regression methods see Manganelli and Engle (2004) and Markov switching

techniques see Gray (1996) and Klaassen (2002). In the empirical application of the monitor-

ing procedure in this work we propose a online procedure for evaluating the value at risk for

the next time step, by simulating from the considered factor model.

Again note, that Section 3 and 4 are joint works with Hans Manner and Dominik Wied.

Lastly, we investigate the non-parametric dependence measure test, which compares different

vectors of dependence measures jointly estimated using the whole sample information to

successively estimated counterparts, where the dependence vectors consists of Spearman’s

rank correlation and quantile dependencies. The test is proposed in Section 3, where here the

focus lies on the parameter test for detecting structural breaks in factor copula models. In

Section 5 we want to pay more attention to the non-parametric dependence measure vector

based test. The test is constructed to analyze the hypothesis of no dependence change in a

pre-specified vector of dependence measures. We consider residual data from pre-estimated

marginal time series models, namely ARCH and GARCH models such that the test is of

non-parametric nature once we determined the residuals.
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The asymptotic distribution of the test statistic is mainly obtained in Lemma 5 in the

appendix and follows from a combination of the asymptotic behavior of the sequential copula

process (cf. Bücher et al., 2014) and results from Bücher and Kojadinovic (2016), as well

as Remillard (2017) to give a convergence result for the usage of residual data determined

by pre-estimated time series models. For this reason it is important to use dependence

measures which can be expressed in terms of the copula. Due to the fact that the asymptotic

distribution is not known in closed form we have to estimate critical values by an i.i.d.

bootstrap procedure. We extend previous simulation studies from Section 3 by analyzing size

and power properties of the test for different skewed and fat tailed distributions for different

settings of the used vector of dependence measures. We also propose a heuristic procedure to

be able to make a statement for equality of two estimated break point locations, scaled to the

uniform interval, using different dependence settings. Here, the (pivot) confidence intervals

for both break point estimates have to be determined using a (percentile) bootstrap procedure

and we consider two estimated break points as equal if they both lie in the intersection of

the two confidence intervals. Finally, we use the test in a real-data application on daily

log-returns of ten large financial firms during the last financial crisis, in which we use the test

on the whole period and in a rolling window of a fixed window size.

The rest of this work is structured as follows. Section 2 gives an overview of the basic

concepts of copula theory, dependence modeling, copula families and models such as parameter

estimation with the SMM. Section 3 presents the retro perspective parameter and dependence

measure test, where Section 4 deals with the online testing procedures to test for structural

breaks in the copula parameters or the dependence measure vector in real time. Section 5

includes the investigation of the non-parametric dependence measure test for different settings

of the considered dependence measure vector and a heuristic procedure to test for common

breaks. A conclusion and an outlook are given in Section 6. All proofs can be found in the

appendix in Section 7.
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2. COPULA THEORY

In this section we want to introduce basic concepts of copula theory. Simply said: A copula is

a function that couples marginal distribution functions to their multivariate distribution. We

introduce the copula theory in a functional sense, without using random variables at all, the

transition from the functional consideration to the usage of random variables is then straight

forward. We define a random variable X as a quantity, whose values x are described by a

known or unknown right-continuous probability distributon function F (x) = P (X ≤ x). In

the same sense this definition can be used for the multivariate case, where we have random

variables (X1, . . . , XN ), whose values x1, . . . , xN are described by a joint distribution function

F (x1, . . . , xN) = P (X1 ≤ x1, . . . , XN ≤ xN).

2.1. Basic Concepts

This section is about definitions and properties of N -dimensional copulas. The main goal

is to achieve the existence of a Copula from Sklar’s Theorem. The whole subsection is

based on the book from Nelson (2006). First we want to introduce some notations. Let

R̄ := [−∞,∞] and with this define the N -space R̄N := R̄× · · · × R̄, where the operator ”× ”

is the Cartesian product and N the dimension. We use vector notations for points in the

space R̄N , i.e. aaa = (a1, . . . , aN) and aaa ≤ bbb means ai ≤ bi for all i. With [aaa, bbb] we denote the

N -box [a1, b1] × . . . ,×[aN , bN ]. The vertices of the N -box are denoted as ccc = (c1, . . . , cN),

where ci can be equal to ai or bi. Let III = [0, 1] and define the unit N -cube IIIN := III × · · · × III.

We define the N -place real function H as a function, whose domain DH is a subset of R̄N

and whose range RH is a subset of R̄.

Definition 1 (H-Volume). Let A1, . . . , AN be non-empty subsets of R̄N and let H be an

N -place real function with domain DH = A1 × · · · ×AN . Let B = [aaa, bbb] be an N -box and all
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of whose vertices are in DH , then the H-volume of B is defined by

VH(B) :=
∑
c∈B

sgn(ccc)H(ccc)

with

sgn(ccc) :=


1, if ci = ai for an even number of i’s

−1, if ci = ai for an odd number of i’s.

For example consider the two dimensional case where we have the domain DH = A1 × A2

and B = [x1, x2]× [y1, y2]. Then the H-Volume is given by

VH(B) = H(x2, y2)−H(x1, y2)−H(x2, y1) +H(x1, y1),

here aaa = (x1, y1), bbb = (x2, y2) and all vertices ccc ∈ B are given by {(x1, y1), (x1, y2), (x2, y1), (x2, y2)}.

In the following some properties of the N -place real function H:

Definition 2 (N -increasing). An N -place real function H is N -increasing if VH(B) ≥ 0 for

all N -boxes B whose vertices lie in the domain DH .

Definition 3 (Grounded). We say that an N -place real function H is grounded, if H(c̃̃c̃c) = 0

for all c̃̃c̃c ∈ DH = A1 × · · · × AN , such that c̃i = ai for at least one k and each Ai has at least

one element ai.

Definition 4 (Margins). Consider the domain DH = A1×· · ·×AN and each Ai is nonempty

and has a greatest element bi, then we say that H has margins and the one-dimensional

margins of H are the function Hi given by

Hi(x) = H(b1, . . . , bi−1, x, bi+1, . . . , bN),

with domain DHi = Ai for all x ∈ Ai.

Note that higher dimensional margins are defined by fixing fewer places in H. With these
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definitions we derive the following Lemma, where the proof can be found in B.Schweizer and

A.Sklar (1983).

Lemma 1 (Lipschitz Continuity for H). Let A1, . . . , An be nonempty subsets of R̄ and H is

a grounded N -increasing function with domain DH = A1 × · · · × AN and one dimensional

margins Hi. Let xxx = (x1, . . . , xN) and yyy = (y1, . . . , yN) be arbitrary points in DH then we

have

|H(xxx)−H(yyy)| ≤
N∑
i=1
|Hi(xi)−Hi(yi)| .

We can later show that N - dimensional copulas are uniformly continuous by using Lemma

1. With these definitions in hand we can now define N -dimensional subcopulas and copulas,

where subcopulas are a subclass of grounded N -increasing functions with margins and copulas

are subcopulas with domain IIIN .

Definition 5 (Subcopulas). An N -dimensional subcopula is a function C̃ with the following

properties:

1) DC̃ = A1 × · · · × AN , where each Ai is a subset of III containing 0 and 1.

2) C̃ is grounded and N -increasing

3) C̃ has one dimensional margins C̃i(u) = u, for i = 1, . . . , N and all u ∈ Ai

Because C̃ is grounded and N -increasing such as C̃i(u) = u ∈ III = [0, 1] it follows that for

every uuu ∈ DC̃ , 0 ≤ C̃(uuu) ≤ 1. Now we can define copulas as a special case of subcopulas,

whose domain is IIIN .

Definition 6 (Copulas). A Copula C : IIIN −→ III is a function with the following properties:

1) For every uuu ∈ IIIN , C(uuu) = 0 if at least one coordinate of uuu is 0 and if all coordinates of

uuu are set to 1 except ui, then C(uuu) = ui.
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2) For every aaa and bbb in IIIN such that aaa ≤ bbb, C is N -increasing with VC([aaa, bbb]) ≥ 0.

With Definition 6 and Lemma 1 in Hand we can easily follow the following theorem for

subcopulas C̃ and as a special case also for copulas C.

Theorem 2 (Lipschitz Continuity C̃). Let C̃ be an N -dimensional subcopula. Then for every

uuu and vvv in DC̃ , we have

∣∣∣C̃(uuu)− C̃(vvv)
∣∣∣ ≤ N∑

i=1

∣∣∣C̃i(ui)− C̃i(vi)∣∣∣ =
N∑
i=1
|ui − vi| .

Because all norms are equivalent in RN , the subcopula C̃ fulfills a Lipschitz condition

and thus we can establish the continuity of C̃. From Theorem 2 we can directly follow the

continuity of copulas C by considering the domain IIIN . Before we want to state Sklar’s

theorem we first define N -dimensional distribution functions.

Definition 7 (Distribution Function). An N -dimensional distribution function is a function

F with domain RN such that F is N -increasing and F (ttt) = 0 for all ttt ∈ RN if ti = −∞ for

at least one i and F (∞, . . . ,∞) = 1.

Note, the N -dimensional distribution function F has the same characteristics (N -increasing,

grounded and 0 ≤ F ≤ 1) as the defined copula function. Furthermore there exist margins

Fi for i = 1, . . . , N , by setting all inputs of F to infinity except the i’s input. We can now

state Sklar’s theorem.

Theorem 3 (Sklar’s Theorem). Let F be anN -dimensional distribution function with margins

F1, . . . , FN , then there exists an N -dimensional copula C such that for all xxx = (x1, . . . , xN ) ∈

RN

F (x1, . . . , xN) = C(F1(x1), . . . , FN(xN)).

Furthermore, if F1, . . . , FN are continuous, then C is unique, otherwise C is uniquely de-
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termined on the Cartesian product of the ranges of the margins. Conversely, if C is an

N -dimensional copula and F1, . . . , FN are marginal distribution functions, then the func-

tion F (x1, . . . , xN) = C(F1(x1), . . . , FN(xN)) is an N -dimensional distribution function with

margins F1, . . . , FN .

A proof of Sklar’s theorem can be found for example in Nelson (2006), where the theorem

is first proven for the two dimensional case and then expanded to the N -dimensional case.

If the inverses F−1
1 , . . . , F−1

N of F1, . . . , FN exist then for any uuu ∈ IIIN we derive the copula

function by

C(u1, . . . , uN) = F (F−1
1 (u1), . . . , F−1

N (uN)).

Lastly, we want to state some important properties of copula functions.

Remark 1 (Properties). 1) Let C(·) be an N -dimensional copula function, then

max(u1 + · · ·+ uN −N + 1, 0) ≤ C(uuu) ≤ min(u1, . . . , uN ), for all uuu = (u1, . . . , uN ) ∈ IIIN

(lower/upper Fréchet-Hoeffding boundary).

2) Let (X1, . . . , XN) be a vector of continuous random variables with copula C(·), then

X1, . . . , XN are independent if and only if C(u1, . . . , uN ) = ∏N
i=1 ui for uuu = (u1, . . . , uN ) ∈

IIIN .

3) Let (X1, . . . , XN) be a vector of continuous random variables with copula C(·). If

α1, . . . , αN are strightly increasing functions on the range ofX1, . . . , XN , then α1(X1), . . . , αN (XN )

has the same copula C(·).

2.2. Empirical Versions and asymptotic behavior

In this section we want to introduce the empirical version of the copula and study the

asymptotic behavior of copula processes, which we later need to derive the asymptotics of

our considered parameter process. We start by defining the empirical version of the copula
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function C(uuu) = C(u1, . . . , uN), following Bücher et al. (2014). Let XXX1, . . . ,XXXT be random

vectors of dimension N × 1, then for 1 ≤ k ≤ l ≤ T and uuu ∈ IIIN , we define the empirical

copula of the sample xxxk, . . . ,xxxl as

Ĉk:l(uuu) = 1
l − k + 1

l∑
t=k

1{F̂̂F̂F k:l
t ≤ uuu}, (2.1)

where

F̂̂F̂F k:l
t = (F̂ k:l

1t , . . . , F̂
k:l
Nt), for t ∈ {k, . . . , l}

and empirical distribution function

F̂ k:l
it (xti) = 1

l − k + 1

l∑
j=k

1{xij ≤ xit} for t ∈ {k, . . . , l} and i ∈ {1, . . . , N}.

Note that the empirical distribution function is computed using only information of the

subsample xxxk, . . . ,xxxl and not using the whole information xxx1, . . . ,xxxT .

Define the two-sided sequential empirical copula process CT (n,m,uuu) as

CT (n,m,uuu) =
√
TλT (n,m)

(
Ĉ1+bnT c:bmT c(uuu)− C(uuu)

)
= 1√

T

bmT c∑
t=bnT c+1

(
1{F̂̂F̂F bnT c+1:bmT c

t ≤ uuu} − C(uuu)
)
, (2.2)

where n < m and n,m ∈ [0, 1], identifying k = 1 + bnT c and l = bmT c, such as λT (n,m) :=
bmT c−bnT c

T
.

We assume that the partial derivatives of C(·) exist, defined by Ċj(·) = ∂C
∂uj

, where Ċj is

continuous on Vj = {uuu ∈ IIIN |uj ∈ (0, 1)} for every j ∈ {1, . . . , N} and that XXX1, . . . ,XXXT are

drawn from a strictly stationary sequence (XXXj)j∈Z with continuous margins and whose strong

mixing coefficients satisfy αr = O(r−α) and α > 1.

Let (UUU j)j∈Z be a strictly stationary sequence obtained from (XXXj)j∈Z by using the probability

integral transform Ui· = Fi(Xi·) for i ∈ {1, . . . , N}, then we know from Bücher et al. (2014)
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that the empirical process CT converges in distribution to a special Gaussian process

CC = BC(n,m,uuu)−
N∑
i=1

Ċj(uuu)BC(n,m,uuu(j)), (2.3)

where BC(n,m,uuu) = ZC(m,uuu)− ZC(n,uuu), ZC a tight centered Gaussian process with covari-

ance function

Cov [ZC(n,uuu),ZC(m,vvv)] = min{n,m}
∑
k∈Z

Cov [1{UUU0 ≤ u},1{UUUk ≤ v}]

and uuu(j) a vector in IIIN defined by u(j)
i = uj if i = j and 1 otherwise. Note that ZC(0,uuu) = 0

for all uuu ∈ IIIN . The convergence result is later extended for the usage of residual data from

pre estimated marginal time series models.

2.3. Dependence modeling with Copulas

In this section we present dependence measures which can be expressed by terms of the copula

C(·). We are focusing on the two dimensional case where we have two random variables X

and Y . This section follows Embrechts, Lindskog, and McNeil (2001), McNeil, R.Frey, and

P.Embrechts (2010) and Oh and Patton (2013).

The most widely used dependence measure between two random variables X and Y is

Pearson’s linear correlation coefficient defined as

ρ(X, Y ) = Cov(X, Y )√
V ar(X)V ar(Y )

.

The main problem is, that it only captures linear dependence and does not capture dependence

in higher orders, for example let X ∼ N(0, 1) and Y = X2, obviously X and Y are perfectly

dependent, but ρ(X, Y ) = 0. Additionally it is only invariant under linear increasing

transformations, but e.g. ρ(eX , Y ) 6= ρ(X, Y ). These disadvantages demonstrate why it might

be useful to focus on pure dependence measures with better properties.

In this section we will present the dependence measures Spearmans’s rank correlation, quantile
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dependence, Kendall’s tau, and tail dependence, where we focus on the first two in later

considerations. For continuous random variables X and Y , with distribution functions FX

and FY , whose copula is Cij(·), Spearman’s rank correlation coefficient in terms of the copula

is defined as

ρS(X, Y ) =12
∫ 1

0

∫ 1

0
Cij(u, v)dudv − 3

=12E(FX(X)FY (Y ))− 3 = ρ(FX(X), FY (Y )), (2.4)

where u = FX(x) and v = FY (y). Simply said: ρS is the linear correlation coefficient of the

underlying marginal distribution functions of X and Y .

For an empirical version of ρS we use the standard estimates for the expectation (mean) and

the marginal distribution function (empirical distribution function) and receive

ρ̂S(X, Y ) = 12
T

T∑
t=1

F̂X(xt)F̂Y (yt), (2.5)

for realizations x1, . . . , xT of X and y1, . . . , yT of Y , where

F̂Z(z) = 1
T + 1

T∑
t=1

1{zt ≤ z}

is the rescaled empirical distribution function of Z evaluated for realizations z1, . . . , zT at

point z.

Let (X, Y ) and (X∗, Y ∗) be independent vectors of continuous random variables with joint

distribution function FXY , then Kendall’s Tau between the variablesX and Y is the probability

of concordance minus the probability of discordance between (X, Y ) and (X∗, Y ∗) and can

be expressed by terms of the copula

τ(X, Y ) =P ((X −X∗)(Y − Y ∗) > 0)− P ((X −X∗)(Y − Y ∗) < 0)

=2P ((X −X∗)(Y − Y ∗) > 0)− 1 = 4E(Cij(U, V ))− 1, (2.6)
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where U = FX(X) and V = FY (Y ).

For the empirical version of τ we use the standard estimates for the expectation, the copula

(empirical copula) and the marginal distribution function and receive

τ̂(X, Y ) = 4
T

T∑
t=1

Ĉij(F̂X(xt), F̂Y (yt)), (2.7)

for realizations x1, . . . , xN of X and y1, . . . , yN of Y , where

Ĉij(u, v) = 1
T

∑T
t=1 1{F̂X(xt) ≤ u, F̂Y (yt) ≤ v} is the bivariate empirical copula.

Note that ρS, τ ∈ [−1, 1] and that ρS = −1, τ = −1 and ρS = 1, τ = 1 is equivalent to

countermonotonicity and comonotonicity of X and Y . If X and Y are independent then

ρS = 0, τ = 0.

The quantile dependence between two continuous random variables X and Y for a specific

quantile q, is the conditional probability that X is higher than the quantile value QX(q) given

that Y exceeds the corresponding quantile QY (q) for q ∈ (0.5, 1) (upper quantile dependence)

and the conditional probability that X is lower than the quantile value QX(q) given that Y

is smaler then the corresponding quantile QY (q) for q ∈ (0, 0.5] (lower quantile dependence),

i. e.

λq(X, Y ) =


P (FX(x) ≤ q|FY (y) ≤ q), for q ∈ (0, 0.5]

P (FX(x) > q|FY (y) > q), for q ∈ (0.5, 1).

The quantile dependence λq(X, Y ) can be expressed in terms of the copula Cij(u, v) as

λq(X, Y ) =


Cij(q,q)

q
, for q ∈ (0, 0.5]

1−2q+Cij(q,q)
1−q , for q ∈ (0.5, 1).

(2.8)

16



We can estimate λq(X, Y ) in a fintite sample setting x1, . . . , xT and y1, . . . , yT as

λ̂q(X, Y ) =


Ĉij(q,q)

q
, for q ∈ (0, 0.5]

1−2q+Ĉij(q,q)
1−q , for q ∈ (0.5, 1),

(2.9)

where Ĉij(q, q) = 1
T

∑T
t=1 1{F̂X(xt) ≤ q, F̂Y (yt) ≤ q}.

The upper and lower tail dependence coefficients are the limit cases of the quantile dependence

coefficient λq(X, Y ), where q −→ 0 or q −→ 1. These limit cases play an important role in

the study of extreme events, noting that in the finite sample case q should be chosen close to

0 or 1. For a more detailed discussion see for example Joe (1997) and Nelson (2006).

2.4. Multivariate Copula Families

In this section we want to define some common families of copula functions, where the copula

is known in closed form, considering elliptical copulas (Gaussian and Student’s t) and the

class of Archimedean copulas (Clayton, Gumbel and Frank), following Cherubini, Luciano,

and Vecchiato (2004).

Starting with the class of elliptical copulas, whose contour plots are symmetric ellipses, we

first introduce the multivariate Gaussian copula, for u = (u1, . . . , uN) ∈ IIIN defined as

CGa
Σ (uuu) = ΦΣ

(
Φ−1(u1), . . . ,Φ−1(uN)

)
,

where ΦΣ is the standardized multivariate normal distribution with covariance matrix Σ and

Φ−1 the inverse of the standard univariate normal distribution function Φ. If the marginals

are standard normal, we know from Sklar’s theorem, that the Gaussian copula generates

the joint standard Gaussian distribution. The density of the Gaussian copula can be easily

17



derived by using the representation

1
(2π)N2 det(Σ) 1

2
exp

(
−1

2x
xx′Σ−1xxx

)
= cGaΣ (Φ(x1), . . . ,Φ(xN))

N∏
i=1

1√
2π

exp
(
−1

2x
2
i

)

⇔ cGaΣ (Φ(x1), . . . ,Φ(xN)) =
1

(2π)
N
2 det(Σ)

1
2
exp

(
−1

2xxx
′Σ−1xxx

)
∏N
i=1

1√
2πexp

(
−1

2x
2
i

)
and defining ui = Φ(xi), so that xi = Φ−1(ui), we receive

cGaΣ (Φ(x1), . . . ,Φ(xN)) = 1
det(Σ) 1

2
exp

(
−1

2Φ−1(uuu)′(Σ−1 − I)Φ−1(uuu)
)
,

where Φ−1(uuu) := (Φ−1(u1), . . . ,Φ−1(u2))′ and I the identity matrix of dimension N ×N .

Figure 2.1: Realisations of the Gaussian Copula

Note: Realisations of the Gaussian copula CGa
Σ (u1, u2), with Cov[u1, u2] = 0.9.

The next copula we want to take a look at, in the class of elliptical copulas, is the multivariate
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Student’s t copula. For uuu ∈ IIIN we have

CSt
Σ (uuu) =

∫ t−1
ν (u1)

−∞

∫ t−1
ν (u2)

−∞
· · ·

∫ t−1
ν (uN )

−∞

Γ
(
ν+N

2

)√
det(Σ)

Γ
(
ν
2

)
(νπ)

(
1 + 1

ν
xxx′Σ−1xxx

)− ν+N
2
dx1dx2 . . . dxN ,

where t−1
ν is the inverse of the univariate Student’s t c.d.f with ν degrees of freedom, Σ the

covariance matrix of the standardized multivariate Student’s t distribution, Γ(·) the Gamma

function and xxx := (x1, . . . , xN)′. The density of the multivariate Student’s t copula is given

by

cStΣ (uuu) =
Γ
(
ν+N

2

) (
Γ
(
ν
2

))N−1

√
det(Σ)

(
Γ
(
ν+N

2

))N (
1 + 1

ν
t−1
ν (uuu)′Σ−1t−1

ν (uuu)
)− ν+N

2 N∏
i=1

(
1 + t−1

ν (ui)
ν

) ν+1
2

,

where t−1
ν (uuu) := (t−1

ν (u1), . . . , t−1
ν (uN))′.

Figure 2.2: Realisations of the Student Copula

Note: Realisations of the Student copula CSt
Σ (u1, u2), with Cov[u1, u2] = 0.9 and ν = 0.5.

Both, the multivariate Gaussian copula and the multivariate Student’s t copula, are symmetric

and the correlation matrix Σ is a symmetric, positive definite matrix with diag(Σ) = (1, . . . , 1)′.
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In contrast to the Gaussian copula, the Student’s t copula allows for joint heavy tails with

ν ∈ (2,∞). The biggest disadvantage of these copulas is that they both are symmetric and

hence unable to capture negative concurrent asymmetric extremal events.

The next family of copulas we want to define is the class of Archimedean copulas. Basically

the copulas within this class are constructed via a generator function

ϕ(u) : [0, 1] −→ [0,∞],

where ϕ is a strightly decreasing, convex and continuous function with monotonic generalized

inverse ϕ−1(q) = {u|ϕ(u) ≤ q} on [0,∞] and properties ϕ(1) = 0 and lim
u→0

ϕ(u) −→∞. Then

we know from Kimberling (1974), that the function

C(uuu) = ϕ−1
(

N∑
i=1

ϕ(ui)
)

is a copula for uuu ∈ IIIN , where ϕ(·) is a valid generator function with several properties

discussed in detail in McNeil and Nes̆lehová (2009). In the following, three examples of

Archimedean copulas.

The Clayton copula is generated with the generator function ϕ(u) = u−α− 1, with parameter

α > 0 and is given by

CCl
α (uuu) =

[
N∑
i=1

u−αi −N + 1
]− 1

α

.

The Clayton copula is asymmetric and has zero upper and positive lower tail dependence

2− 1
α . Note that the copula parameter α can be expressed by Kendall’s τ (McNeil et al., 2010)

and can therefore be estimated by the generalized method of moments.

The Gumbel copula is generated with the generator function ϕ(u) = (−log(u))α, with
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Figure 2.3: Realisations of the Clayton Copula

Note: Realisations of the Clayton copula CCl
α (u1, u2), with α = 10.

parameter α > 0 and is given by

CGu
α (uuu) = exp

−( N∑
i=1

(−log ui)α
) 1
α

 .
The Gumbel copula is asymmetric and has zero lower and positive upper tail dependence 2−2 1

α .

The Frank copula is generated with the generator function ϕ(u) = log
(

exp(−αu)−1
exp(−α)−1

)
, with

parameter α > 0 and is given by

CFr
α (uuu) = − 1

α
log

(
1 +

∏N
i=1(exp(−αui)− 1)
(exp(−α)− 1)N−1

)
.

The Frank copula, in contrast to the Clayton or Gumble copula, is symmetric with zero tail

dependence. Compared to the class of elliptical copulas the copulas within the Archimedean

class allow for asymmetric effects.
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Figure 2.4: Realisations of the Gumbel Copula

Note: Realisations of the Gumbel copula CGu
α (u1, u2), with α = 6.

Figure 2.5: Realisations of the Frank Copula

Note: Realisations of the Gaussian copula CFr
α (u1, u2), with α = 15.

2.5. Vine Copulas

This Section follows Aas et al. (2009), Brechmann and Schlepsmeier (2013), Czado (2010)

and introduces R-vine, C-vine and D-vine copula construction. Considerable efforts have
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been undertaken to increase the flexibility of multivariate copula models beyond the scope of

elliptical and Archimedean copulas which were discussed in the last section. Despite the factor

copula models to model multivariate dependence we first take a look at another well known

approach the vine copulas. With the help of Sklar’s theorem we are able to separate the

modeling of the marginal distributions and the joint distribution behavior. The main problem

here is how to choose the copula model to model the multivariate dependence structure for

higher dimensions. The literature is full of bivariate copula models, which are well investigated

see for example Joe (1996) or Nelson (2006). For the multivariate case in higher dimension

(N > 2) the variety of copula models is limited. Some examples of multivariate copula models

were given in the last Section 2.4. The main problem here is that these copula families lack

of flexibility to accurately model the dependence structure among larger numbers of variables.

Generalizations of these models can offer some improvement, but become a rather intricate

structure and other limitations arise for example parameter restrictions. Vine copulas give an

approach to overcome these problems. Following Brechmann and Schlepsmeier (2013), ”vines

are a flexible graphical model for describing multivariate copulas built up using a cascade

of bivariate copulas, so called pair-copulas first introduced by Joe (1996) and developed in

more detail in Bedford and Cooke (2002) and in Kurowicka and Cooke (2006)“. With the

help of Sklar’s theorem and pair copula construction we are able to decompose multivariate

densities into marginal densities and bivariate conditional/unconditional copula densities.

The great advantage to standard multivariate models is that every bivariate copula can be

chosen independently from each other and we can use the wide range of bivariate copula

models. The great flexibility in the choice of bivariate copula models gives us the chance

to account for asymmetries and tail dependence. We want to start with a three variables

example to show the basic concepts of vine copula construction. Consider a multivariate

23



density function with N = 3 variables, i.e. f(x1, x2, x3). We can write

f(x1, x2, x3) = f3|1,2(x3|x1, x2)f2|1(x2|x1)f1(x1), (2.10)

where fp|q denotes the conditional density of the variables expressed by the number string p

conditioned on the variables expressed by the number string q. Rewriting the densities with

the belonging copula densities using Sklar’s theorem leads to

f2|1(x2|x1) = f12(x1, x2)
f1(x1) = c12(F1(x1), F2(x2))f1(x1)f2(x2)

f1(x1)

= c12(F1(x1), F2(x2))f2(x2)

f3|12(x3|x1, x2) = f123(x1, x2, x3)
f12(x1, x2) = f23|1(x2, x3|x1)f1(x1)

f2|1(x2|x1)f1(x1)

= c23|1(F2|1(x2|x1), F3|1(x3|x1))f2|1(x2|x1)f3|1(x3|x1)
f2|1(x2|x1)

= c23|1(F2|1(x2|x1), F3|1(x3|x1))c13(F1(x1), F3(x3))f3(x3).

This leads to the bivariate copula decomposition

f(x1, x2, x3) = f1(x1)f2(x2)f3(x3)c23|1
(
F2|1(x2|x1), F3|1(x3|x1)

)
c13 (F1(x1), F3(x3)) c12 (F1(x1), F2(x2)) .

Thus, we decomposed the joint density function f(x1, x2, x3) in the bivariate conditional

copula density c23|1 and bivariate unconditional copula densities c12 and c13 such as the

marginal densities f1, f2 and f3. Note that the decomposition of the joint density in equation

(2.10) is not unique. The decomposition can be classified by using a tree structure to arrange

the N(N−1)
2 pair copulas in N − 1 linked trees called vines, for example see Kurowicka and

Cooke (2006) and Kurowicka and Joe (2011). The first vine structure we want to introduce

is the regular vine (R-vine) construction principle. In the first step we have a node for each

variable x1, . . . , xN and we construct a tree (an undirected acyclic connected graph) with

N − 1 edges, where every edge corresponds to an unconditional pair copula density for the

considered node connection. The tree structure is not unique and can be determined by using
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minimal spanning tree algorithms from the field of graph theory, where the edge weights can

for example be chosen as the values of Spearman’s rank or Kendall’s tau of the considered

variables. In the second tree every edge of the first tree becomes a node and two nodes are

connected with an edge if the corresponding edges shared a node in the first tree. Every

edge in the second tree corresponds to a conditional bivariate copula density conditioned

on the shared node of the first tree. Further trees are constructed in the same way. Every

edge in tree Ti becomes a node in tree Ti+1 and every edge in tree Ti+1 corresponds to a

conditional bivariate copula density conditioned on the corresponding shared node variables

of the previous tree Ti.

The second vine structure we consider is the canonical (C-vine) tree representation. In the

first tree each of the N variables again has a representative node. We choose a root node

and connect all other nodes to this node. Each pair of nodes connected with an edge is than

modeled using unconditional bivariate copulas. In the second tree the edges (i, j) connecting

the nodes i and j in the first tree become a node. We now condition all previous connections

with the last root node variable. This can be expressed with the edges in the second tree.

”In general, a root node is chosen in each tree and all pairwise dependencies with respect to

this node are modeled conditioned on all previous root nodes“, following Brechmann and

Schlepsmeier (2013). For the considered three variables example we have the following two

C-vine trees T1 and T2.

T1:

x1

x3

x1 , x3

x2
x1, x2

25



T2:

x1, x2 x1, x3
x2, x3|x1

The edges of the trees T1 and T2 correspond to the bivariate unconditional/conditional copula

densities in the multivariate density decomposition. The decomposition of a multivariate

density in terms of bivariate copula densities and marginal densities for the C-vine structure

with ordered root nodes 1, . . . , N can in general be written as

f(x1, . . . , xN) =
N∏
k=1

fk(xk)
N−1∏
i=1

N−i∏
j=1

ci,i+j|1:(i−1) (F (xi|x1, . . . , xi−1), F (xi+j|x1, . . . , xi−1)) ,

where fk for k = 1, . . . , N denotes the marginal densities and ci,i+j|1:(i−1) denotes bivariate

copula densities of the variables xi and xi+j conditioned on the variables x1, . . . , xi−1. Note,

a copula density is unconditioned if i = 1. Similar to the C-vine decomposition we can

construct a drawable vine (D-vine) decomposition. For this we choose an order of the variables

and connect two ordered nodes i and j with an edge (i, j) in the first tree. In the second

tree every pair of nodes from the first tree becomes a node. Following Brechmann and

Schlepsmeier (2013) ”conditional dependence of the first and third given the second variable

(the pair (x1, x3|x2)), the second and fourth given the third (the pair (x2, x4|x3)), and so on,

is modeled“, indicated with an edge in the second tree. In the following trees the pairwise

dependencies of two variables a and b is modeled in the same way. Different to the C-vine

star structure the D-vine results in a path structure. For the considered example we have

the following two D-vine trees T1 and T2, where the variable (node) ordering is chosen as

x2, x1, x3.

T1:

x2 x1 x3x1, x3x1, x2
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T2:
x1, x2 x1, x3

x2, x3|x1

Obviously, for this simple example the C-vine and D-vine trees are the same but in general,

the corresponding trees are different, see for example Czado (2010). The decomposition of

a multivariate density in terms of bivariate copula and marginal densities for the D-vine

structure with ordered root nodes 1, . . . , N can in general be written as

f(x1, . . . , xN) =
N∏
k=1

fk(xk)
N−1∏
i=1

N−i∏
j=1

cj,j+i|(j+1):(j+i−1) (F (xj|xj+1, . . . , xj+i−1), F (xj+i|xj+1, . . . , xj+i−1)) .

Note, the node order for the closed C-vine and D-vine representations can be changed without

loss of generality.

To fit a vine copula one first has to choose a vine tree structure. The structure may be given

by the data or has to be chosen manually. For example for a C-vine structure we can follow

the optimal C-vine structure selection by Czado, Schepsmeier, and Min (2012), where for a

D-vine structure the traveling salesman problem for D-vines can be applied. In both cases

the edge weights in the corresponding graphs can for example be selected as the values of

Kendall’s tau or Spearman’s rho of the considered variables. After determining the tree

structure one selects and estimates adequate bivariate copula models. Copula selection can be

done via Goodness-of-fit tests, Independence test, AIC/BIC-criterion or graphical tools like

contour plots, where one can choose for example from elliptical, one-parametric Archimedean

copulas introduced in the previous Section 2.4 or two-parametric Archimedean copulas. The

estimation of the copulas can then be done for example by maximum likelihood estimation.

2.6. Marginal Distributions and Factor Copula Models

In this section we want to introduce the used marginal time series models and the class of

factor copula models, which is the key copula model we focus on in this work.
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We are interested in modeling the dependence between the 1×T dimensional random variables

YYY 1, . . . ,YYY N , following Oh and Patton (2013) and Oh and Patton (2017), where we assume

the following model for all time points t = 1, . . . , T

Yit = µit(φi) + σit(φi)ηit,

ηηηt = [η1t, . . . , ηNt]′ ∼ Fηηη = C(F1(η1), . . . , FN(ηN); θ), (2.11)

with time varying conditional mean µit(φi) and standard deviation terms σit(φi) for i =

1, . . . , N and t = 1, . . . , T , φ = [φ1, . . . , φN ]′ the conditional mean and standard deviation

parameter vector, θ the parameter vector of the copula model and residuals ηi = [ηi1, . . . , ηiT ]

with marginal distributions Fi for i = 1, . . . , N . With this model we can filter out the time

varying conditional mean and variance from each time series of the variables YYY 1, . . . ,YYY N .

The cross sectional dependence structure over the dimension N is implied by the assumed

dependence structure of the standardized residuals and is modeled with the copula C.

In a first stage we estimate the data parameter vector φ of the conditional mean µit and

conditional standard deviation σit terms. For example we choose a AR-GARCH model and

the estimator is denoted as φ̂ = [φ̂1, . . . , φ̂N ], consisting of all parameter estimates of the

AR(P)-GARCH(P,Q) model defined below. For a conditional mean term we use the AR(P)

process

Yit = φi0 +
P∑
p=1

φi0Yi(t−p) + σitηit

and for a conditional variance term we use the GARCH(P,Q) process

σ2
it = ωi +

P∑
p=1

αipσ
2
i(t−p)η

2
i(t−p) +

Q∑
q=1

βiqσ
2
i(t−q).
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After estimating the conditional mean and conditional standard deviation terms, we can

compute standardized residuals for i = 1, . . . , N and t = 1, . . . , T

η̂it = Yit − µit(φ̂i)
σit(φ̂i)

.

Note, the asymptotic distribution of the copula parameter estimate θ̂ is independent of the

conditional dynamics of the marginal models, shown by Chen and Fan (2006), such that any

misspecification in the conditional mean and variance models will asymptotically not have an

impact on the estimation of the copula parameter θ.

For the residuals ηηηt we know from Sklar’s theorem that

ηηηt = [η1t, . . . , ηNt]′ ∼ Fηηη = C(F1(η1), . . . , FN(ηN); θ),

where F1, . . . , FN are the marginal distributions of η1, . . . , ηN . Note, we are only interested

in the copula C and discard the marginal distributions F1, . . . , FN . The idea of the factor

copula model is that the copula C is not only a copula of the vector ηηηt, but also a set of N

latent variables Xit for i = 1, . . . , N , which are linear functions of the factors. In the following

we are interested in the implied copula of the factor model. First we want to introduce the

simple one factor copula model, using only one common factor Zt and N idiosyncratic factors

qit

Xit = Zt + qit, i = 1, . . . , N

XXX t = [X1t, . . . , XNt]′ ∼ FXXX = C(FX1(θ), . . . , FXN (θ); θ)

Zt ∼ FZ(γ), qit
i.i.d.∼ Fq(α), qit is independent of Zt for all i, (2.12)

where θ = (γ, α)′. Note, the copula C is the copula we use to model the cross sectional

dependence of the residuals ηtηtηt. In general the marginal distributions FXi and Fi are different.

We use the structure of the vector XXX t only for the implied copula. The above defined

dependence structure is called equidependence structure, as the dependence between any
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two variables Xit and Xjt for i 6= j is the same. The advantage of these models is that

the dependence structure is independent of the dimension N and is captured by just a

few parameters. Unfortunately, only in rare cases, for example if FZ and Fq are normal

distributions, the implied copula from the factor structure is known in closed form and is

the multivariate normal copula defined above in Section 2.4. In general there is no closed

form copula function given. An economic interpretation of the model could be as follows: If

we consider data from an asset portfolio, the common factor Z could represent the state of

economy (market factor) where the idiosyncratic terms qi represent the state of the individual

firms for i = 1, . . . , N .

The simple one factor copula model, defined above, can be extended by adding loadings on

the common factor Zt

Xit = βiZt + qit, i = 1, . . . , N

XXX t = [X1t, . . . , XNt]′ ∼ FXXX = C(FX1(θ), . . . , FXN (θ); θ)

Zt ∼ FZ(γ), qit
i.i.d.∼ Fq(α), qit is independent of Zt for all i, (2.13)

where θ = (β1, . . . , βN , γ, α)′. An economic interpretation of such models could be as follows:

If we consider data from an asset portfolio, than different stocks react differently to changes

on the the common (market) factor Z.

Figure 2.6 shows scatter plots of the bivariate t(ν)−N(0, 1), t(ν)−t(ν), Skewed t(ν, λ)−N(0, 1)

and Skewed t(ν, λ) − t(ν) factor copulas with βi = 2 ∀i, ν = 4 and λ = −0.5. The scatter

plots reveal that all copulas have more mass in the tails and that Skewed t(ν, λ)−N(0, 1)

and Skewed t(ν, λ)− t(ν) have asymmetric properties. The Skewed t(ν, λ) distribution first

introduced by Hansen (1994) is described in the Appendix.

The main problem of the model decribed in (2.13) is, that the estimation of the parameters

βi could be extremly costly in high dimensional settings, where N is large. To overcome
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Figure 2.6: Realisations of Factor Copulas

Note: Realisations of the Factor copula with factor loading βi = 2 for all i and different
distributions FZ and Fq for Z and q.

this issue we can split the variables in different groups S(i), which have the same factor

loading parameter βS(i). Precisely, S(i) sorts the variable with index i to its pre determined

group. For example from an economic perspective it makes sense to sort the assets within

the portfolio in their belonging industry sectors. Following Oh and Patton (2017) the block

equidependence model is given as

Xit = βS(i)Zt + qit, i = 1, . . . , N

XXX t = [X1t, . . . , XNt]′ ∼ FXXX = C(FX1(θ), . . . , FXN (θ); θ)

Zt ∼ FZ(γ), qit
i.i.d.∼ Fq(α), qit is independent of Zt for all i, (2.14)

where θ = (β1, . . . , βG∗ , γ, α)′, with G∗ being the amount of groups.
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Another extension is to use more than only one common factor, i.e we can use K common

factors and consider the following model

Xit =
K∑
k=1

βS(i)kZkt + qit, i = 1, . . . , N

XXX t = [X1t, . . . , XNt]′ ∼ FXXX = C(FX1(θ), . . . , FXN (θ); θ)

Zkt ∼ FZk(γk), qit
i.i.d.∼ Fq(α), (2.15)

where qit is independent of Zkt for all i, k and Zkt is independent of Zlt for all k 6= l, with

θ = (vec
(
[β1k, . . . , βG∗k]Kk=1

)
, γ, α)′, with G∗ being the amount of groups.

For an economic application of such models we could use a joint market factor with different

loadings and additionally add an industry factor for each industry group. An application of

this model is later used in our real data application in Section 3.8.

2.7. Parameter estimation with Simulated Method of Moments (SMM)

In general, the factor copula model density function is not known in closed form, this prevents

the application of direct Maximum Likelihood estimation. To overcome this issue we use

the SMM proposed by Oh and Patton (2013). This section introduces the SMM procedure

and its properties, which is the main estimation procedure for the estimation of the copula

parameters in this work. Note, the SMM is not restricted to factor copula models and could

also be used for other copula models.

In comparison to the method of moments or the generalized method of moments, where the

to be estimated parameters are known functions of the moments, the SMM is used if this

mapping from the parameters to the moments is unknown. The basic idea is to simulate data

from the underlying copula model we want to fit to the data and minimize the difference of

the moment vectors computed using the data and the moment vectors using the simulated

data. The moment vectors we consider are vectors of dependence measures or their linear

combinations, which makes sense if one is interested in analyzing the dependence structure
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of random variables. A specific structure of the moment vectors is explained later in this

section, using the dependence measures introduced in Section 2.3.

We consider sample residuals η̂̂η̂η = [η̂1, . . . , η̂N ]′ from pre estimated time series models of size

N × T with probability transformed series û̂ûu = [û1, . . . , ûN ]′ in [0, 1]N , using the marginal

empirical distribution function, where the dependence structure is modeled with the copula

C(·; θ). Let m̂T denote the m∗×1 vector, consisting of the copula based dependence measures

introduced in Section 2.3 or linear combinations thereof, computed using û̂ûu. Analogously,

let m̃S(θ) be the simulated counterpart using simulated data ũ̃ũu = [ũ1, . . . , ũN ]′ from η̃̃η̃η =

[η̃1, . . . , η̃N ]′ of size N × S for a specific parameter vector θ of the copula with dimension

p× 1, where S is the number of simulations from the assumed copula model. We define the

vector of difference as

gT,S(θ) := m̂T − m̃S(θ). (2.16)

Then we can define the objective function of the SMM as the weighted sum squared difference

between the empirical and simulated moments

QT,S(θ) := gT,S(θ)′ŴTgT,S(θ), (2.17)

where Ŵ is a positive definite weighting matrix of dimension m∗×m∗. The task is then, find

θ in a compact parameter space Θ such that QT,S(θ) is mimimized. The SMM estimator of

the true paramater vector θ0 is defined as

θ̂T,S := arg min
θ∗∈Θ

QT,S(θ∗). (2.18)

For an optimal choice of the weighting matrix ŴT one can use the inverse of the asymptotic

covariance matrix of m̂T or simply the m∗ ×m∗ identity matrix.

Oh and Patton (2013) showed, that under some assumptions (defined similar later in this
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work) the SMM estimator is consistent

θ̂T,S
a.s.−→ θ0 (2.19)

and asymptotically normal distributed

√
T (θ̂T,S − θ0) d−→

(
1− 1√

k

)
N (0,Ω) , (2.20)

for S
T
→ k ∈ (0,∞] and T, S →∞. With

Ω = (G′WG)−1
G′WΣWG (G′WG)−1

, (2.21)

where Σ is the asymptotic covariance matrix of m̂T and G = ∂g0(θ)
∂θ |θ=θ0

the derivative matrix

of the asymptotic limit version g0(θ) of gT,S(θ) evaluated at θ = θ0. Consequently one of

the assumptions to derive the asymptotic normality needs to be the differentiability of g0(θ)

at θ0. Note, in finite sample settings gT,S is in general not differentiable. To overcome this

problem, Oh and Patton (2013) propose a two sided numerical derivative with appropriately

chosen step size εT,S. The step size εT,S is chosen larger than usually used step sizes when

dealing with numerical derivatives. Oh and Patton (2013) suggest to use a step size εT,S = 0.1

leading to the most accurate estimates. The estimator for the k-th column of the m × p

numerical derivative matrix ĜT,S is given by

ĜT,S,k = gT,S(θ̂T,S + εT,Sek)− gT,S(θ̂T,S − εT,Sek)
2εT,S

, (2.22)

where ek denotes the k-th unit vector of dimension p× 1.

As mentioned the moment vectors m̂T and m̃S(·) consist of averaged pairwise dependence

vectors, where the pairwise copula based dependence measures ρ̂S, τ̂ and λ̂q introduced in

Section 2.3 are used. Let δdij denote the d-th selected pairwise dependence measure (ρ̂S, τ̂

or λ̂q) between random variables i and j. If we have N variables we can define the N ×N
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pairwise dependence matrix

Dd =



1 δd12 . . . δd1N

δd21 1 . . . δd2N
... ... . . . ...

δN1 δdN2 . . . 1


.

For the estimation of equidependence models, we take the average above all elements of Dd.

Using the fact that Dd is symmetric, we consider the averaged d-th dependence measure

δ̄d = 2
N(N − 1)

N−1∑
i=1

N∑
j=i+1

δdij. (2.23)

We stack all δ̄d in the moment (dependence) vector, depending on how many different

dependence measures we use. For the estimation of block equidependence multi factor models,

where we have our variables grouped into G∗ groups with kg members in group g, such that

N = ∑G∗

g=1 kg, we use the fact that all variables in the same group have an equidependence

property and any pair of variables (i, j) in groups (r, s) has the same dependence as any other

pair (i∗, j∗) in the same two groups (r, s), following Oh and Patton (2017). Having this in

mind, we can now decompose the N ×N matrix Dd into a matrix of submatrices Dd
rs of size

kr × ks for r, s ∈ {1, . . . , G∗}

Dd =



Dd
11 Dd

12 . . . Dd
1G∗

Dd
21 Dd

22 . . . Dd
2G∗

... ... . . . ...

Dd
G∗1 Dd

G∗2 . . . Dd
G∗G∗


.
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Because Dd
rs is symmetric, we can transform Dd in the G∗ ×G∗ matrix

Dd =



δd∗11 δd∗12 . . . δd∗1G∗

δd∗21 δd∗22 . . . δd∗2G∗

... ... . . . ...

δd∗G∗1 δd∗G∗2 . . . δd∗G∗G∗


using δd∗rr := 2

kr(kr−1)
∑kr
i=1

∑kr
j=i+1 δ̂

d
ij for matricesDd

rr and δd∗rs := 1
krks

∑kr
i=1

∑ks
j=1 δ̂

d
ij for matrices

Dd
rs with r 6= s. Lastly create the vector

[δ̄d∗1 , . . . , δ̄d∗G∗ ]′ (2.24)

,where δ̄d∗g := 1
G∗
∑G∗

j=1 δ
d∗
gj for g = 1, . . . , G∗.

Let M denote the number of used dependence measures (d ∈ {1 . . . ,M}) for a group g then

we get a total number of m∗ = M ·G∗ dependence measures.
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3. TESTING FOR STRUCTURAL BREAKS IN FACTOR COPULAS

In this section we describe our results of the retro perspective parameter and dependence

measure testing. Factor copula models and estimation by the SMM are reviewed in Section

3.1. Our null hypothesis and test statistic can be found in Section 3.2, whereas in Section

3.3 the asymptotic behaviour of the test is analysed. Our bootstrap algorithm is presented

in Section 3.4. The broader applicability of our results is shortly explained in Section 3.5,

whereas Section 3.6 discusses an important assumption that is made. All the proofs are

included in Section 7.1.1 in the Appendix. The content in this section is a joint work with

Hans Manner and Dominik Wied, supported by the DFG. The work belongs to the paper

“Testing for structural breaks in factor copula models” Manner et al. (2019) published in the

Journal of Econometrics.

3.1. Factor Copula Models and their Estimation

We consider the same model setup as in Oh and Patton (2013) and Oh and Patton (2017)

with the difference that we allow underlying dependence parameter to be time-varying. The

dynamics of the marginal distributions are determined by a parameter vector φ0 and each

variable can have time varying conditional mean µit(φ0) and standard deviation σit(φ0) for

i = 1, . . . , N . The dependence of the joint distribution of the residuals ηt, captured by the

parametric copula C(., θt), depends on the unknown parameters θt for t = 1, . . . , T . The

data-generating process is given by

[Y1t, . . . , YNt]′ =: YYY t = µµµt(φ0) + σσσt(φ0)ηηηt,

with conditional mean µµµt(φ0) := [µ1t(φ0), . . . , µNt(φ0)]′, conditional standard deviation

σσσt(φ0) := diag{σ1t(φ0), . . . , σNt(φ0)} and [η1t, . . . , ηNt] =: ηηηt ∼ FFF η = C(F1(η1), . . . , FN (ηN ); θt),
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with marginal distributions Fi, where µµµt and σσσt are Ft−1-measurable and independent of ηηηt.

Ft−1 is the sigma field containing information from the past {YYY t−1,YYY t−2, . . . }. Note that the

r×1 vector φ0 is
√
T consistently estimable, which is fulfilled by many time series models, e.g.

ARMA and GARCH models and the estimator is denoted as φ̂. The marginal distributions

of the residuals Fi(.) for i = 1, . . . , N are estimated by the empirical distribution function F̂i.

Using the residual information {η̂ηηt := σσσ−1
t (φ̂φφ)[YYY t−µµµt(φ̂)]}Tt=1 from the data, we are interested

in estimating the p × 1 vectors θt ∈ Θ of the copula C(., θt) for all t. The copula we are

interested in is the factor copula that is implied by the following factor structure

[X1t, . . . , XNt]′ =: Xt = βββtZZZt + qqqt, (3.1)

with Xit =
K∑
k=1

βtikZkt + qit, where qqqt := [q1t, . . . , qNt]′, qit i.i.d.∼ Fq(αt) and Zkt i.i.d.∼ FZk(γkt) for

i = 1, . . . , N , t = 1, . . . , T and k = 1, . . . , K. Note that Zkt and qit are independent ∀i, k, t

and the copula for XXX t is given by

XXX t ∼ FFFXXXt = C(G1t(x1t; θt), . . . , GNt(xNt; θt); θt),

with marginal distributions Git(., θt) and θt =
[
{{βtik}Ni=1}Kk=1, α

′
t, γ
′
1t, . . . , γ

′
Kt

]′
. Note that the

marginal distributions of the factor model Git(., θt) are not of interest and are discarded as

one is only interested in the copula implied by this model. We assume that this implied

copula governs the dependence of YYY t.

In principle, the copula implied by (3.1) offers many possibilities regarding the type and

heterogeneity of the dependence. Through the choice of appropriate distributions FZk of

the common factors and Fq of the idiosyncratic errors one has a lot of flexibility concerning

the asymmetry and tail dependence properties of the copula; see Oh and Patton (2017) for

details. Furthermore, by imposing the restriction of common factor loadings for specific

groups of variables, e.g. those belonging to the same industry, one can reduce the number of

parameters in higher dimensional applications.
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As the notation suggests, we allow θt to be time-varying, having a piecewise constant model in

mind. We directly consider the recursive estimation of the model for increasing sample sizes.

For this, we denote s ∈ (0, 1] the fraction of the sample considered and we are interested in

the recursively estimated parameter θ̂sT,S of θbsT c = θt. Note that the full sample estimator

is recovered for s = 1. For the estimation we use the SMM estimator, introduced in Section

2.7, defined as

θ̂sT,S := arg min
θ∈Θ

QsT,S(θ), (3.2)

where the objective function is defined as QsT,S(θ) := gsT,S(θ)′ŴsTgsT,S(θ) with gsT,S(θ) :=

m̂sT − m̃S(θ) and ŴsT a k× k positive definite weight matrix. The k× 1 vectors m̂sT consist

of appropriately chosen dependence measures that are potentially averaged from the pairwise

measures m̂ij
sT , computed from the residuals {η̂t}bsT ct=1 . As the dependence measures implied by

the model are typically not available in closed form they have to be obtained by simulation.

Hence, m̃S(θ) is the corresponding vector of dependence measures computed from {η̃l}Sl=1,

using S simulations from FFFXXXt . For the dependence measures of the pair (ηi, ηj) we need to

consider copula based dependence measures that do not depend on the marginal distribution

of the data. Following Oh and Patton (2013) we consider Spearman’s rank correlation ρij

and quantile dependence λijq . These are defined in Section 2.3. The sample counterparts

based on recursive samples are defined as

ρ̂ij := 12
bsT c

bsT c∑
t=1

F̂ s
i (η̂it)F̂ s

j (η̂jt)− 3

λ̂ijq :=


Ĉsij(q,q)

q
, q ∈ (0, 0.5]

1−2q+Ĉsij(q,q)
1−q , q ∈ (0.5, 1)

,

where F̂ s
i (y) := 1

bsT c

bsT c∑
t=1

1{η̂it ≤ y} and Ĉs
ij(u, v) := 1

bsT c

bsT c∑
t=1

1{F̂ s
i (η̂it) ≤ u, F̂ s

j (η̂jt) ≤ v}.
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This means that F̂ s
j denotes the marginal empirical distribution function of the j-th component

calculated from data up to time point [sT ]. Hence, we are using sequential ranks. The sample

moments for the simulated data {η̃l}Sl=1 are defined analogously and are denoted by ρ̃ij and

λ̃ijq .

Depending on the precise model specification the pairwise dependence measures can be

averaged for pairs that are assumed to have the same factor loading as is the case in

equidependence or block equidependence models; see Oh and Patton (2017). This reduces

the number of moment conditions accordingly.

3.2. Null Hypothesis and Test Statistics

The null hypothesis we are interested in is a constant copula parameter vector against the

alternative of a single breakpoint at an unknown point in time,

H0 : θ1 = θ2 = · · · = θT H1 : θ1 = θ2 = · · · = θt 6= θt+1 = · · · = θT for some t = {1, . . . , T − 1}.

The test statistic we propose is based on the difference between the recursive estimates of

the parameter vector and its full sample analogue. Formally, it is defined as

P := PT,S := sup
s∈[ε,1]

PsT,S := sup
s∈[ε,1]

s2T (θ̂sT,S − θ̂T,S)′(θ̂sT,S − θ̂T,S) (3.3)

' max
bεT c≤t≤T

(
t

T

)2
T (θ̂t,S − θ̂T,S)′(θ̂t,S − θ̂T,S),

where θ̂sT,S is the recursive SMM estimator defined above that used the information up to

time t = bsT c, T the sample size of the data, S the number of simulations in the SMM and

ε > 0 a trimming parameter. Note, analytically ε has to be chosen strictly greater than

zero and thus s ∈ [ε, 1] to apply the required limit theorems for our proof of the asymptotic

distributions. In the finite sample case ε should be chosen large enough so that the model

parameters can be estimated in a reasonable way using bεT c observations.

Large values of the test statistic (3.3) indicate that the successively estimated parameter
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vector fluctuates too much over time compared to the full sample estimator, indicating

instability.

The test statistic could also be applied to a subset of the parameter vector θ. For example,

one may only be interested in testing the stability of the factor loadings assuming constant

shape parameters. Another possibility is to consider a block-equidependence model and test

for changing factor loadings only for a specific sector such as the financial sector during a

financial crisis.

We consider an alternative test statistic that is based on the same principle as (3.3), but is

based directly on the moment conditions used to estimate the model.

M := MT := sup
s∈[ε,1]

MsT := sup
s∈[ε,1]

s2T (m̂sT − m̂T )′(m̂sT − m̂T ) (3.4)

' max
bεT c≤t≤T

(
t

T

)2
T (m̂sT − m̂T )′(m̂sT − m̂T ).

This statistic is of nonparametric nature and has the advantage that is does not require recur-

sive estimation of the model, which is computationally quite demanding. The disadvantage is

that it does not allow testing the constancy of a subset of the parameters, but only can detect

breaks in the whole copula. One may, however, consider an appropriate subset of the moment

conditions and test for, e.g., breaks in the lower tail quantile dependence. The asymptotic

distribution of M comes as a by product when deriving the asymptotic distribution of P .

The corresponding asymptotic results can be found in the next subsection.

3.3. Asymptotic Analysis

For deriving analytical results for the asymptotic distribution of our test statistic we need the

following assumptions. The first two ensure that the estimated rank correlation and quantile

dependencies converge to their respective population counterparts.
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Assumption 1. i) The distribution function of the innovations Fη and the joint distri-

bution function of the factors FX(θ) are continuous.

ii) Every bivariate marginal copula Cij(ui, uj; θ) of C(u; θ) has continuous partial deriva-

tives with respect to ui ∈ (0, 1) and uj ∈ (0, 1).

The assumption is similar to Assumption 1 in Oh and Patton (2013), but the assumption

on the copula is relaxed in the sense that the restriction of ui and vi is relaxed to the open

interval (0, 1).

Assumption 2. Define γ0t := σ−1
t (φ̂) .µt(φ̂) and γ1kt := σ−1

t (φ̂) .σkt(φ̂), where .
µt(φ) := ∂µt(φ)

∂φ′

and .
σkt(φ) := ∂[σt(φ)]k-th column

∂φ′
for k = 1, . . . , N . Define

dt = ηt − η̂t −
(
γ0t +

N∑
k=1

ηktγ1kt

)
(φ̂− φ0),

where ηkt is the k-th row of ηt and γ0t and γ1kt are Ft−1-measurable and Ft−1 containing

information from the past as well as possible information from exogenous variables.

i) 1
T

bsT c∑
t=1

γ0t
p−→ sΓ0 and 1

T

bsT c∑
t=1

γ1kt
p−→ sΓ1k, uniformly in s ∈ [ε, 1], ε > 0, where Γ0 and

Γ1k are deterministic for k = 1, . . . , N .

ii) 1
T

T∑
t=1

E(‖γ0t‖), 1
T

T∑
t=1

E(‖γ0t‖2), 1
T

T∑
t=1

E(‖γ1kt‖) and 1
T

T∑
t=1

E(‖γ1kt‖2) are bounded for

k = 1, . . . , N .

iii) There exists a sequence of positive terms rt > 0 with
∞∑
i=1

rt <∞, such that the sequence

max
1≤t≤T

‖dt‖
rt

is tight.

iv) max
1≤t≤T

‖γ0t‖√
T

= op(1) and max
1≤t≤T

|ηkt|‖γ1kt‖√
T

= op(1) for k = 1, . . . , N .

v) (αT (s),
√
T (φ̂−φ0)) weakly converges to a continuous Gaussian process inD([0, 1]N )×Rr,
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where D is the space of all càdlàg-functions on [0, 1]N , with

αT (s) := 1√
T

bsT c∑
t=1

{
N∏
k=1

1{Ukt ≤ uk} −C(u; θ)
}
.

vi) ∂Fη
∂ηk

and ηk ∂Fη∂ηk
are bounded and continuous on RN = [−∞,∞]N for k = 1, . . . , N .

vii) For u ∈ [0, 1]N and F̂
s(η̂t) = (F̂ s

1 (η̂1t), . . . , F̂ s
N(η̂Nt)), the sequential empirical copula

process
1√
T

bsT c∑
t=1

1{F̂
s(η̂t) ≤ u} − C(u)

 (3.5)

converges in distribution to some limit process A∗(s,u).

Parts i) to vi) of this assumption are similar to Assumption 2 in Oh and Patton (2013),

only part (i) is more restrictive. We need this because we consider successively estimated

parameters. Part vii) ensures that the empirical copula process of the residuals has some

well defined limit. Given the literature on this topic, the assumption is plausible, which is

discussed in more detail in Subsection 3.6.

The next assumption is needed for consistency of the successively estimated parameters. It

is the same as Assumption 3 in Oh and Patton (2013) with the difference that part (iv) is

adapted to our situation.

Assumption 3. i) g0(θ) = 0 only for θ = θ0.

ii) The space Θ of all θ is compact.

iii) Every bivariate marginal copula Cij(ui, uj; θ) of C(u; θ) is Lipschitz-continuous

for (ui, uj) ∈ (0, 1)× (0, 1) on Θ.

iv) The sequential weighting matrix ŴsT is Op(1) and sup
s∈[ε,1]

‖ŴsT −W‖
p−→ 0 for ε > 0,

where W is probability limit of WsT .
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Figure 3.7: Quotient q(h)

Note: Quotient q(h) for h = 1
i
for i = 1, . . . , 1000, θ2 = 1.0 and N = 10 such as T =

{250(blue), 500(orange), 1000(yellow), 2000(purple), 4000(green)}. Results for m̂ij = ρ̂ij (upper
panel) and m̂ij = λ̂ij0.1 (lower panel) using Model 3.7.

v) It holds for the moment simulating function m̃S(θ) that, for θ1, θ2 ∈ Θ,

|m̃S(θ1)− m̃S(θ2)| ≤ CS‖θ1 − θ2‖

with a random variable CS that is independent of θ1− θ2 and that fulfills E(C2+δ
S ) <∞

for some δ > 0.

We checked Assumption 3 v) for the case of m̂ij = ρ̂ij and m̂ij = λ̂ij0.1 using Model 3.7. We

considered θ1 = θ2 + h where h = 1
i
for i = 1, . . . , 1000, θ2 = 1.0 and N = 10. We varied

T = {250, 500, 1000, 2000, 4000} and the Results can be seen in Figure 3.7.
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Figure 3.7 reveals that the quotient q(h) := |m̃S(θ1)−m̃S(θ2)|
|θ1−θ2| seems to be bounded for increasing

sample size T independently of the parameter difference 1
i
.

Finally, we need an assumption for distributional results, which is the same as Assumption

4 in Oh and Patton (2013) with a difference in part iii).

Assumption 4. i) θ0 is an interior point of Θ.

ii) g0(θ) is differentiable at θ0 with derivative G such that G′WG is non singular.

iii) ∀s ∈ [ε, 1], ε > 0 : gsT,S(θ̂sT,S)′ŴsTgsT,S(θ̂sT,S) = inf
θ∈Θ

gsT,S(θ)′ŴsTgsT,S(θ)+o∗p((s2T )−1),

where o∗p((s2T )−1) (instead of op((s2T )−1)) indicates that the remainder term on the

right hand side tends to zero and is non-negative.

With these assumptions, we can formulate our main theorem:

Theorem 4. Under the null hypothesis H0 : θ1 = θ2 = · · · = θT and if Assumptions 1-4 hold,

we obtain for ε > 0

s
√
T
(
θ̂sT,S − θ0

)
d=⇒ A∗(s)

as T, S → ∞ in the space of càdlàg functions on the interval [ε, 1] and S
T
→ k ∈ (0,∞) or

S
T
→∞. Here, A∗(s) = (G′WG)−1G′W (A(s)− s√

k
A(1)), A(s) is a Gaussian process defined

in the proof of Lemma 11 in the appendix and θ0 the value of all θt under the null.

With Theorem 4 we obtain the asymptotic distribution under the null of our parameter

test statistic.

Corollary 1. Under the null hypothesis H0 : θ1 = θ2 = · · · = θT and if Assumptions 1-4

hold, we obtain for our test statistic

P = sup
s∈[ε,1]

s2T (θ̂sT,S − θ̂T,S)′(θ̂sT,S − θ̂T,S) d−→ sup
s∈[ε,1]

(A∗(s)− sA∗(1))′(A∗(s)− sA∗(1))

as T, S →∞ and S
T → k ∈ (0,∞) or S

T →∞.
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The estimation of the change point location is embedded in calculating the test statistic

and is given by bs̃T c, where s̃ is the maximum point of the quadratic left side of Corollary 1,

i.e.

s̃ = argmax
s∈[ε,1]

s2T (θ̂sT,S − θ̂T,S)′(θ̂sT,S − θ̂T,S).

For our nonparametric moment (dependence measure) test we derive the following asymptotic

distribution:

Corollary 2. Under the null hypothesis H0 : θ1 = θ2 = · · · = θT and if Assumptions 1-2

hold, we obtain for our test statistic

M = sup
s∈[ε,1]

s2T (m̂sT − m̂T )′(m̂sT − m̂T ) d−→ sup
s∈[ε,1]

(A(s)− sA(1))′(A(s)− sA(1))

as T, S →∞ and S
T → k ∈ (0,∞) or S

T →∞.

The location of the changepoint is estimated in the same fashion as for P . Note, the

asymptotic distribution of the moment test, as well as the asymptotic distribution of the

parameter test, are not known in closed form and depend on the underlying sample. For

this reason we cannot compute or simulate the critical values directly and need a bootstrap

procedure to overcome this issue.

3.4. Bootstrap Distribution

The bootstrap distributions of the test statistics P and M are obtained by calculating B

versions of the moment process t
T

√
T
(
m̂

(b)
t − m̂

(b)
T

)
, which can be calculated fast and directly

from the data. It is therefore not necessary to solve B minimization problems which would

produce a high computational effort.

We estimate the distribution under the null by using an i.i.d. bootstrap with the following

steps:

i) Sample with replacement from the standardized residuals {η̂i}Ti=1 to obtain B bootstrap
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samples {η̂(b)
i }Ti=1, for b = 1, . . . , B.

ii) Use {η̂(b)
i }ti=1 to compute m̂(b)

t for b = 1, . . . , B and t = εT, . . . , T and {η̂i}Ti=1 to obtain

m̂T .

iii) Calculate the bootstrap analogue of the limiting distribution of Corollary 1.

K(b) := max
t∈{εT,...,T}

(
A(b)
∗

(
t

T

)
− t

T
A(b)
∗ (1)

)′ (
A(b)
∗

(
t

T

)
− t

T
A(b)
∗ (1)

)
,

with A(b)
∗
(
t
T

)
:= (Ĝ′ŴT Ĝ)−1Ĝ′ŴTA

(b)( t
T

) and A(b)( t
T

) = t
T

√
T
(
m̂

(b)
t − m̂T

)
, where Ĝ

is the two sided numerical derivative estimator of G, evaluated at point θ̂T,S, computed

with the full sample {η̂i}Ti=1. We can compute the k-th column of Ĝ by

Ĝk = gT,S(θ̂T,S + ekεT,S)− gT,S(θ̂T,S − ekεT,S)
2εT,S

, k ∈ {1, . . . , p},

where ek is the k-th unit vector, whose dimension ist p× 1 and εT,S has to be chosen in

a way that it fulfills εT,S → 0 and min{
√
T ,
√
S}εT,S →∞.

iv) Compute B versions of K(b) and determine the critical value K such that

1
B

B∑
b=1

1{K(b) > K} = 0.05.

For our simulation study and the empirical application we use a step size εT,S = 0.1, which

worked best following Oh and Patton (2013). Critical values of the moment based test M

are obtained similarly by adapting step iii) of the algorithm.

The intuition for the validity of the bootstrap, beside the fact that we only use the natural

estimators for the respective terms, is as follows: Under the null hypothesis, we draw with

replacement from the empirical distribution function which is close to the true distribution

function. Due to the structure of the limit distribution of the test statistic, we can directly

generate realizations from this without having to care about a suitable centering. Under the

alternative of one fixed break at time t, the bootstrap quantiles remain bounded because
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the bootstrap procedure mimics a stationary distribution. By randomly drawing from either

the data before or after the break, we effectively draw from stationary distribution which

takes the parameters before the break with probability t/T and the ones after the break

with probability 1-t/T. Using the above described bootstrap procedure the simulation results

indicate that the test results in a reasonable sized and powered testing procedure, cf. Table 1,

Table 2 and Table 3 in Section 3.7. A formal proof of the bootstrap validity is left for future

research.

3.5. Discussion on Broader Applicability

Although the focus of this work lies on factor copulas, our tests are not restricted to this case.

For example, if the factor copula structure in equation (3.1) is replaced by another copula,

say an Archimedean copula, the parameter test (3.3) can be performed in a similar way. To

obtain a valid test (size control and consistency under fixed alternatives), it is necessary

that the SMM procedure yields consistent parameter estimators of the model under the null

hypothesis of constant parameters. Oh and Patton (2017) show that many commonly used

copulas can be expressed as factor copulas, whereas in Oh and Patton (2013) the estimation

of other types of copula models by SMM is considered. On the other hand, we would like to

stress that we consider factor copula models as the main application of SMM estimation, at

least in financial econometrics. Simpler models can be estimated by ML or GMM, for which

the literature already provides change point tests (see e.g. Wied, 2013).

If the model is misspecified (i.e., that the simulated moments do not arise from the correct

model), it cannot be expected that the test is valid. We investigate this case in the simulation

section and we find that the tests are, in fact, correctly sized in the case of misspecification.

On the other hand, the moment-based test (3.4) can be interpreted as a general constancy

test for dependence measures such as Spearman’s rho or quantile dependencies (compare e.g.

Wied, Dehling, van Kampen, and McFadden, 2013). It is in fact only indirectly linked to
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the factor copula model, i.e., this test detects changes in the moments which are induced by

changes in the parameters. Therefore, the presence of a factor copula model is not necessary

for this test.

3.6. Discussion of Assumption 2.7

Bücher et al. (2014) derive a result similar to the one we have in Assumption 2.7. In particular,

in their Proposition 3.3, the limit process is given by

B(s,u)−
N∑
j=1

∂jC(u)B(s,u(j)).

Here, u(j) ∈ [0, 1]N is defined by u(j)
i = uj, if i = j and 1 otherwise. Moreover B(s,u) is a

tight centered continuous Gaussian process with B(0,u) = 0 and

Cov(B(s,u),B(t,v)) = min(s, t)Cov(1(F(η) ≤ u),1(F(η) ≤ v)).

The difference between their setting and ours is that they do not consider residuals, but

the original observations. However, we can transfer this result by combining a result by

Remillard (2017) and Bücher and Kojadinovic (2016). Remillard (2017) considers the case of

residuals. We cannot use his copula results directly, because he only considers the case of

F̂ 1
j , i.e., the case, where the ranks are not calculated sequentially. Nevertheless, Theorem

1 in Remillard (2017) gives a convergence result for the residuals themselves and thus also

for the residuals transformed by the (unknown) limit of the empirical distribution function

of the residuals. Combined with Theorem 3.4 in Bücher and Kojadinovic (2016), under the

additional assumption that the residuals are strictly stationary, we obtain that the process in

(3.5) converges to

A∗(s,u) := B∗(s,u)−
N∑
j=1

∂jC(u)B∗(s,u(j)),

where B∗(s,u) = B(s,u) + sB∗∗(u) and details about B∗∗(u) can be found in Theorem 1 in
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Remillard (2017). In particular, it follows that the limit of the sequential empirical copula

CUSUM process (where C(u) is replaced by 1
T

∑bT c
t=1 1{F̂

s(η̂t) ≤ u}) does not depend on

whether residuals or the original observations are used.

3.7. Monte Carlo Simulations

In order to study the behaviour of our tests in finite samples and the quality of the bootstrap

approximations we perform a small set Monte Carlo simulations. To this end we consider the

one factor copula model

[X1t, . . . , XNt]′ =: Xt = βββtZt + qqqt, (3.7)

with βββt = (βt, . . . , βt)′ a vector of size N , Zt ∼ Skew t (ν−1, λ)1 and qt
i.i.d.∼ t (ν−1) for

t = 1, . . . , T . We fix ν−1 = 0.25 and λ = −0.5, such that our model is parametrized by the

single factor loading θt = βt.

For the estimation of the sequential parameters βt for t = εT, . . . , T in the test statistic we

use the SMM approach with S = 25 · T simulations to match the simulated dependence

measures with the dependence measures computed from the data. For this we use five

dependence measures, namely Spearman’s rank correlation and the 0.05, 0.10, 0.90, 0.95

quantile dependence measures, averaged across all pairs. Note that the burn-in period bεT c

has to be chosen sufficiently large in order to obtain reasonable parameter estimates for θbεT c

in our test statistic. Unreported simulations suggested that for samples with less than 100

observations highly unreasonable estimates can occur that severely affect the behaviour of our

test. We decided to use ε = 0.2. While this is a limitation of our test in the sense that breaks

at the beginning of the sample cannot be identified, truncating the sample is common in

some tests for structural breaks, see Andrews (1993) or Qu and Perron (2007). Furthermore,

breaks at the beginning and the end of the sample are typically hard to detect in any case.
1As in Oh and Patton (2017) this refers to the skewed t-distribution by Hansen (1994).
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We consider three tests in this simulation exercise, namely the parameter based fluctuation test

(P ) given in equation (3.3), the test based on the moment condition (M) given in (3.4) and

the nonparametric test for copula constancy proposed by Bücher et al. (2014) abbreviated as

BKRS. The change point detection in the latter test is sensitive to changes in the copula of the

multivariate continuous observations and is included as a benchmark. We do note, however,

that this test is purely nonparametric in contrast to our test P that is based explicitely on

factor copula models. Critical values of our tests are computed using the bootstrap algorithm

from Section 3.4 with B = 1000 bootstrap replications. The tests are performed at the

α = 0.05 significance level and we use 301 Monte Carlo replications. The computational

complexity of the simulations was extremely high due to the fact that for each test θ̂sT,S needs

to be estimated a large number of times using the computationally heavy SMM estimator

and because critical values have to be bootstrapped. This explains why we had to restrict

ourselves to a limited number of situations for a fairly simple model. Furthermore, numerical

instabilities were present in more complex models when repeatedly estimating the model

parameters. Such problems can be dealt within empirical applications, but further restrict the

potential model complexity in simulations. The computations were implemented in Matlab,

parallelized and performed using CHEOPS, a scientific High Performance Computer at the

Regional Computing Center of the University of Cologne (RRZK) funded by the DFG.
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We begin by studying the size of the tests for three parameter values θ0 = 0.5, θ0 = 1 and

θ0 = 2, sample sizes T = 500, 1000, 1500 and cross sectional dimensions N = 5, 10, 20. Results

are presented in Table 1. All tests have acceptable size properties except the parameter

based test for small dimensions and sample sizes in the case θ0 = 0.5. However, as N and T

increase the size clearly tends to the nominal level of 5%.2

Furthermore, we study the size of the tests when the DGP is not a factor copula. Here we

again consider N = 5, 10, 20, but only T = 1000. For the parameter based test this means

that the model is misspecified. The first case is a Clayton copula with parameter θ = 1, a

model implying equidependence with kendall’s τ equal to 1/3 and lower tail dependence.

The second DGP is a (truncated) D-vine copula model (see Aas et al., 2009). One the first

tree all pairs are connected with a Clayton copula with θ = 2, the second tree has Gaussian

copulas with ρ = 0.5 and the third tree survival Gumbel copulas with parameter γ = 1.25.

All remaining trees have conditional independence, implying the truncation of the model.

This model does not imply equidependence, but lower tail dependence is still present for all

pairs. The parametric test P is based on the same one-factor copula model (3.7) for both

cases. The results in Table 2 show that all tests have good size properties. The parameter

based test P is slightly undersized for N = 5. From the two examples (Clayton and D-vine

copula), it seems that the test is also reliable when the underlying model is misspecified.

To study the power of the test, we generate data with a break point at T
2 for all sample sizes,

where the data is simulated with θt = 1 for t ∈ {εT, . . . , T2 }, denoted by θ0, whereas after

the break we increase the parameter to θt = {1.2, 1.4, 1.6, 1.8, 2.0} for t ∈ {T2 + 1, . . . , T},

denoted by θ1. Here we consider N = 5, 10, 20, 40, but restrict the sample size to the cases

T = 500, 1000. The results can be found in Table 3. Note that the first column of the table
2Note that a larger burn-in period εT leads to a slightly better size properties, in particular for small

values of T and N , which can be explained by a lower degree of variation in the numerical minimization
procedure.
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Table 2: Size under alternative copula DGPs

N = 5 N = 10 N = 20 N = 5 N = 10 N = 20
T = 1000 Clayton copula D-vine copula

P 0.033 0.037 0.049 0.033 0.056 0.059
M 0.043 0.047 0.069 0.033 0.063 0.063

BKRS 0.057 0.049 0.043 0.043 0.053 0.073

Note: Table 2 reports the rejection rate under H0 for alternative data generating processes
for the parameter Test (P ) with ε = 0.2 and assuming a one-factor copula, the moment
function test (M) and the nonparametric test of Bücher et al. (BKRS), where a Clayton and
a D-vine copula are used for the DGP.

reports the size of the tests again. For N = 40 the tests have good size properties for T = 500,

but are slightly oversized for T = 1000. The BKRS test has the most severe size distortions

in this case. We observe that all tests have good power that increases with θ1 and sample size

T . The parameter based test P and the moment test M have increasing power as N increases

from 5 to 40, whereas the power of the BKRS test decreases for the higher dimensional case.

For N = 5, 10, 20 the BKRS test has the highest power followed by the parameter based test.

For N = 40, however, the P test performs better and even the M test has (mostly) more

power than the nonparametric BKRS test. This indicates that the tests based on the factor

copula model are preferable for higher dimensional situations. This can be explained by the

fact that more available data improves the SMM estimation, while in a nonparametric copula

constancy test the complexity of the estimated objects increase.

3.8. Empirical Application

In this section we apply our test to a financial dataset. We use daily stock return data

over a time span ranging from July 2005 to May 2009 from the EURO STOXX 50 of the

four largest industry sectors Finance, Energy, Telecom and Media and Consumer Retail and
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Table 3: Power retro perspective Testing

θ0 = 1 θ1 = 1.2 θ1 = 1.4 θ1 = 1.6 θ1 = 1.8 θ1 = 2.0
N = 5,T = 500

P 0.066 0.272 0.551 0.833 0.963 0.993
M 0.030 0.173 0.452 0.771 0.940 0.987

BKRS 0.049 0.272 0.727 0.946 0.996 1.000
N = 10,T = 500

P 0.056 0.266 0.658 0.887 0.993 1.000
M 0.039 0.236 0.558 0.877 0.983 0.997

BKRS 0.053 0.285 0.764 0.973 1.000 1.000
N = 20,T = 500

P 0.053 0.299 0.704 0.907 1.000 1.000
M 0.056 0.259 0.628 0.900 0.993 1.000

BKRS 0.049 0.275 0.750 0.966 1.000 1.000
N = 40, T = 500

P 0.043 0.302 0.691 0.910 0.996 1.000
M 0.059 0.282 0.635 0.920 0.993 1.000

BKRS 0.059 0.225 0.588 0.903 0.996 1.000
N = 5,T = 1000

P 0.056 0.352 0.781 0.980 1.000 1.000
M 0.049 0.285 0.717 0.966 1.000 1.000

BKRS 0.066 0.481 0.946 1.000 1.000 1.000
N = 10,T = 1000

P 0.046 0.415 0.874 0.993 1.000 1.000
M 0.043 0.352 0.801 0.993 1.000 1.000

BKRS 0.056 0.478 0.963 1.000 1.000 1.000
N = 20,T = 1000

P 0.069 0.455 0.887 1.000 1.000 1.000
M 0.076 0.389 0.834 0.993 1.000 1.000

BKRS 0.076 0.465 0.943 0.996 1.000 1.000
N = 40, T = 1000

P 0.076 0.4751 0.927 1.000 1.000 1.000
M 0.073 0.399 0.844 0.993 1.000 1.000

BKRS 0.093 0.398 0.880 0.993 0.996 1.000

Note: Table 3 reports the rejection rate for θ0 = 1.0 and θ1 = 1.2, 1.4, 1.6, 1.8, 2 in the
model (3.7) for the parameter Test (P ) with ε = 0.2, the moment function test (M) and the
nonparametric test of Bücher et al. (BKRS).
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we choose the subdivision in Table 4, implying T = 1000 and N = 32, with group sizes

k1 = 13, k2 = 8, k3 = 5 and k4 = 6.

Table 4: Included Stocks by Industry

Finance Allianz, Axa, Banco Bilbao, Banco Santander,
BNP Paribas, Deutsche Bank, Deutsche Börse, Generali,
ING Groep, Intesa, Münchener Rück, Société Générale, Unicredit

Energy E.ON, ENEL, ENI, SUEZ, Iberdrola, Repsol, RWE, Total
Telecom and media Deutsche Telekom, France Telecom, Telecom Italia, Telefonica, Vivendi
Consumer retail Anheuser Busch, Carrefour, Danone, L’Oreal, LVMH, Unilever

To model the conditional mean and variance we estimate an AR(1)-GARCH(1,1) model for

each return series and compute the standardized residuals,

ri,t = αi + βiri,t−1 + σi,tηit,

σ2
it = γi0 + γi1σ

2
i,t−1 + γi2η

2
i,t−1,

for t = 1, . . . , 1000. The marginal distribution of the residuals are estimated using the empirical

CDF. Following Oh and Patton (2017) we specify the following block-equidependence five

factor copula model:

[X1t, . . . , XNt]′ =: Xt =



βββ1t

βββ2t

βββ3t

βββ4t


Z0t +



βββ5tZ1t

βββ6tZ2t

βββ7tZ3t

βββ8tZ4t


+ qqqt, (3.8)

with βββit = (βit, . . . , βit)′ of size ki for i = 1, 2, 3, 4, where Z0t ∼ Skew t (ν−1, λ) and Zit ∼

t (ν−1) for i = 1, 2, 3, 4 and qqqt i.i.d.∼ t (ν−1) for t = 1, . . . , T . Thus, we have have one common

factor with industry specific factor loadings βββit for i = 1, . . . , 4 and four industry specific

factors with corresponding loadings βββit for i = 5, . . . , 8. We assume identical degrees of
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freedom for the common factors and the idiosyncratic errors implying a model with tail

dependence strictly between zero and one.

For the estimation of the model we use the SMM approach described above with S =

25 · T simulations. The moment conditions are based on five dependence measures, namely

Spearman’s rank correlation and the 0.05, 0.10, 0.90, 0.95 quantile dependence. In the block

equidependence model with four groups and five dependence measures this gives us a total

number of 4× 5 = 20 dependence measures.

The full sample estimates can be found in Table 5. For studying the time-variation we fix λ

and ν at their full sample estimates to avoid numerical problems as these parameters are

difficult to estimate for small samples. As a preliminary analysis, we estimate the model over

a rolling window of 200 days. Figure 3.8 shows that there is some variation over time in the

factor loadings with an apparent increase in most parameters towards the end of the sample.

The results of the tests for a structural break in the factor copula parameters can be found

in Table 6. The moment based test M finds a significant breakpoint on January 8, 2008.

The BKRS test finds a similar break data (Jan. 17), but the statistic is only significant at

the 10% level. The parameter test P applied to all factor loadings indicates a break slightly

later on March 7, 2008. This is a little earlier than the peak of the financial crisis with

Lehman Brothers filing bankruptcy on September 15. Some of the estimated parameters

after the break are larger than before the break while other decrease. This makes the direct

interpretation of the change in dependence difficult. We return to the implied dependence of

the model before and after the break below.

As the dataset contains companies from different sectors we applied the P test to a number

of subvectors of the factor loadings. To be precise, we tested for a break in the loading of the

market factor alone and of the loadings on the market and group specific factors for each

respective sector, while fixing the remaining model parameters at their full sample estimates.
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Figure 3.8: Rolling Window Parameter Estimates

Note: Rolling window parameter estimation for the factor loadings βi for a window of size
200.
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For all subsets we find evidence of a structural break. However, the estimated break dates are

later than for the full set of loading mainly around the peak of the financial crisis. The break

for the loading corresponding to the energy sector is later in December 2008. Comparing

the estimated parameters before and after the break, some of the loadings decrease after

the estimated breakpoint. Part of the apparent discrepancies between the results for the

full loading vector and the analysis on the subsets can be explained by the differences in

estimated break dates coupled with the fact that the estimation uncertainty for the relatively

small post-break period is quite large, which is due to the fact that factor copulas are difficult

to estimate on such small samples.

A direct interpretation of the change in the factor loadings is difficult due to the complex

interactive effect the different factors have on the overall dependence structure. Therefore,

we computed (by simulation) the rank correlations implied by the different break models.

The result can be found in Table 7. As we have a block-equidependence model the implied

dependence for assets within each sector is the same, as is the dependence between assets from

two sectors. The within sector dependence is given on the main diagonal of the presented

matrices, while the between sector dependences are given by the off-diagonal elements.

The results based on the break in all factor loadings indicate increasing (Energy, Telecom) or

almost stable (Finance, Consumer) within sector rank correlations and slightly increasing rank

correlations between the sectors. The break for the market factor loadings implies a similar

change in dependence, but a stronger increase between the Telecom and Energy sectors. For

the sector specific breaks we note that the results for the finance sector indicate a slight

decrease within the finance sector, but increased dependence with the other sectors, which

can be interpreted as an indication of contagion from the finance sector to the other sectors.

For the energy sector specific case we observe an increase both within the sector and across

sectors. The case of the telecommunication sector indicates an increase within the sector, but

mostly stable dependence with the other sectors. For the consumption sector-specific breaks
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Table 5: Full sample Parameter Estimates of the Model (3.8)

ν̂ λ̂ β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8

θ̂T,S 9.263 -0.157 1.491 0.970 1.253 0.889 1.095 0.517 0.678 1.668
std 1.249 0.065 0.132 0.048 0.082 0.073 0.433 0.159 0.169 0.082

we again see stable within sector dependence, but increased dependence across the sectors.

Overall, we conclude from this that dependence has indeed increased after the break but

the increase in dependence is not as strong and clear cut as one might expect. Estimation

uncertainty for the sub-periods may partly explain the mixed results.

In order to get a clearer picture of the evolution of the size and structure of the dependence

with respect to the breakpoint we computed the (averaged) dependence measures that were

used for estimation before and after the breakpoint indicated by the M test, see Table 8.

The results indicate that the overall dependence measured by the rank correlation ρ increases.

Similarly, the upper quantile dependence measures λ0.9 and λ0.95 increase after the break.

Surprisingly, the lower quantile dependence stays approximately constant indicating that the

dependence of the (left) tail risk for the data at hand has not increased after the estimated

breakpoint while overall the diversification benefits have decreased.
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Table 6: Breakpoint Test Results

test stat p-val Break date θ̂pre θ̂post

θfactor



β1
β2
β3
β4
β5
β6
β7
β8


2008.50 0.000 07.03.2008



1.36
0.77
1.16
0.86
1.55
0.73
0.76
0.93





1.32
1.16
1.28
1.00
1.22
1.10
1.31
0.56



θmarket


β1
β2
β3
β4

 49.71 0.000 15.08.2008


1.38
0.74
1.14
0.82




1.24
1.41
1.30
0.93


θfinance

(
β1
β5

)
1297.10 0.000 02.09.2008

(
1.24
1.88

) (
1.35
1.16

)

θenergy

(
β2
β6

)
323.98 0.001 05.12.2008

(
0.76
0.65

) (
1.41
1.33

)

θtele

(
β3
β7

)
907.39 0.000 02.09.2008

(
1.20
1.44

) (
1.52
0.75

)

θconsum

(
β4
β8

)
583.23 0.000 02.07.2008

(
0.65
1.47

) (
0.95
1.20

)
M 5.72 0.000 09.01.2008
BKRS 8.25 0.065 17.01.2008

Note: Table 6 reports tests for a structural break in the factor copula model (3.8). The
penultimate row gives the results of the moment based test M . The last row gives the
results of the nonparametric test of Bücher et al. (BKRS).The other rows show the results of
the parameter based test P for the given subsets of the parameter vector while fixing the
remaining parameter values at the full sample estimates. θ̂pre and θ̂post denote the parameter
estimates before and after the estimated break dates, respectively. We use 1000 bootstrap
replications.
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Table 7: Implied Rank Correlations

Pre-break Post-break
Finance Energy Telecom Consumer Finance Energy Telecom Consumer

Break all factors loadings
Finance 0.79 0.30 0.38 0.30 0.74 0.37 0.37 0.40
Energy 0.52 0.34 0.27 0.70 0.36 0.38
Telecom 0.63 0.34 0.74 0.39
Consumer 0.59 0.55

Break market factor loadings
Finance 0.73 0.36 0.44 0.25 0.71 0.47 0.44 0.27
Energy 0.44 0.36 0.21 0.67 0.54 0.32
Telecom 0.61 0.26 0.66 0.30
Consumer 0.75 0.76

Break financial sector loadings
Finance 0.82 0.32 0.35 0.20 0.74 0.41 0.45 0.27
Energy 0.53 0.45 0.26 0.53 0.45 0.26
Telecom 0.64 0.29 0.65 0.29
Consumer 0.76 0.76

Break energy sector loadings
Finance 0.75 0.36 0.48 0.28 0.75 0.43 0.48 0.28
Energy 0.49 0.37 0.22 0.77 0.44 0.26
Telecom 0.64 0.29 0.65 0.29
Consumer 0.76 0.76

Break telecommunication sector loadings
Finance 0.75 0.44 0.38 0.28 0.75 0.44 0.52 0.28
Energy 0.53 0.35 0.26 0.53 0.48 0.26
Telecom 0.75 0.23 0.72 0.31
Consumer 0.76 0.76

Break consumption sector loadings
Finance 0.75 0.44 0.48 0.23 0.75 0.44 0.48 0.35
Energy 0.53 0.45 0.22 0.53 0.45 0.32
Telecom 0.64 0.24 0.65 0.36
Consumer 0.69 0.68

Note: Table 7 shows the model implied rank correlations before and after the estimated
breakpoint corresponding to the subsets of factor loading allowed to break in Table 6 and using
the corresponding break date and parameter estimates. The entries on the main diagonal
are implied rank correlations between assets within the respective sector, the off-diagonal
elements are the implied rank correlations between the sectors.
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Table 8: Average Dependence Measures

Full sample Pre-break Post-break
ρ1 0.46 0.45 0.48
ρ2 0.39 0.36 0.43
ρ3 0.45 0.43 0.48
ρ4 0.39 0.37 0.43
λ1

0.05 0.31 0.29 0.27
λ2

0.05 0.27 0.21 0.25
λ3

0.05 0.28 0.27 0.25
λ4

0.05 0.25 0.24 0.21
λ1

0.1 0.40 0.37 0.36
λ2

0.1 0.33 0.29 0.34
λ3

0.1 0.38 0.35 0.34
λ4

0.1 0.35 0.30 0.31
λ1

0.9 0.34 0.30 0.39
λ2

0.9 0.28 0.24 0.35
λ3

0.9 0.31 0.28 0.36
λ4

0.9 0.28 0.25 0.34
λ1

0.95 0.27 0.19 0.33
λ2

0.95 0.22 0.14 0.27
λ3

0.95 0.23 0.15 0.29
λ4

0.95 0.22 0.13 0.26

Note: Table 8 contains the (average) empirical moments used for the model estimator for
the full sample and the subsamples implied by a structural break on Jan. 9, 2008 that was
detected by the moment based structural break test. ρi denotes the rank correlation, whereas
λiq is the quantile q dependence measure for the sectors i = 1, . . . , 4, i.e. finance, energy,
telecom and media, consumer retail.

63



4. A MONITORING PROCEDURE FOR DETECTING STRUCTURAL BREAKS IN

FACTOR COPULA MODELS

In this section we describe our results of the parameter and dependence measure monitoring

procedure. Different to the retro perspective test presented in Section 3 the proposed

procedures can be used in real time applications. The section is structured as follows: Section

4.1 presents the null hypothesis and monitoring procedure, whereas in Section 4.2 we study

its asymptotic distribution under the setting of simulated method of moments estimation.

Results from the Monte Carlo simulations can be found in Section 4.3. Section 4.4 presents

our empirical application with an application for the evaluation of the Value at Risk (VaR)

and the main proof can be found in Section 7.1.2 in the appendix. The work belongs to

the working paper “A monitoring procedure for detecting structural breaks in factor copula

models”, Manner et al. (2018).

4.1. Null Hypothesis and Testing Procedure

We are again interested in testing the hypothesis of no parameter change within the residual

dependence model. The main idea is now to compare a parameter estimate from a historical

data set of size bmT c to sequential estimated parameters from a rolling data window of the

same size, where T is the length of the monitored time period and m a value between (0, 1].

Since we are interested in sequentially monitoring whether or not the parameter θt changes in

t = bmT c+ 1, . . . , T , we assume that the parameters remain constant over the initial sample

t = 1, . . . , bmT c, meaning that:

Assumption 5.

θ1 = · · · = θbmT c. (4.1)

In practice, if a sufficient amount of initial data is available, this assumption can be tested

by using the test for parmeter constancy in factor copulas proposed in Section 3.
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We are interested in testing the null hypothesis

H0 : θ1 = · · · = θbmT c = θbmT c+1 = . . .

versus the alternative

H1 : θ1 = · · · = θbmT c = · · · = θbmT c+k∗−1 6= θbmT c+k∗ = θbmT c+k∗+1 = . . . ,

by using the detector

DT (s) :=m2T (θ̂1+(s−m)T :sT − θ̂1:mT )′(θ̂1+(s−m)T :sT − θ̂1:mT ), (4.2)

where k∗ ≥ 1 and bmT c+ k∗ is the unknown change point and θ̂t1:t2 a consistent estimator

for θ that is based on the subsample ranging from t1 to t2. Note that for the sake of thrift,

we use the same parameter m for the initial period and further rolling window periods.

Furthermore we do not need a certain weighted deviation factor, due to the fact we consider a

MOSUM-type test statistic in contrast to for example Pape et al. (2017), where an expanding

window is used. We stop our monitoring procedure if the MOSUM-type detector defined

in (4.2) exceeds the appropriately chosen constant critical value c for the first time k. This

yields the stopping rule

τT := inf
k

{
k ≤ T : DT

(
k

T

)
> c

}
,

where τT is the stopping time of the monitoring procedure. Here c is chosen in a way that

under H0 the monitoring procedure holds the size level lim
T,S→∞

P (τT < ∞|H0) = α, with

α ∈ (0, 1). We write τT < ∞ to indicate that the monitoring has been terminated during

the testing period, meaning that the detector crossed the boundary value c at a time point

k ≤ T . On the other hand, we write τT =∞, if DT does not cross the boundary value during

the testing period.

Note that the detected stopping time τT is not meant to be an estimator of change point, as
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the actual change point is likely to be earlier. This is due to the fact the monitoring procedure

needs a sufficient number of observations after a change point before it can be detected. In

the next chapter we present a procedure for estimating the change point conditional on H0

having been rejected.

4.2. Estimation and Asymptotics

In this section we describe our theoretical results. The estimation of the factor copula model

by SMM is reviewed in Section 4.2.1, whereas the asymptotic behaviour of our monitoring

procedures is studied in Section 4.2.2. A bootstrap algorithm to approximate the asymptotic

distribution is presented in Section 4.2.3 and a procedure for detecting multiple breaks is

described in Section 4.2.4.

4.2.1. SMM Estimation. We are interested in estimating the parameter vector θuT :vT for the

subsample ranging from buT c to bvT c, where u < v and u, v ∈ [ε, 1], with ε > 0. This is

again achieved by using the SMM, where the estimator is defined as

θ̂uT :vT,S := arg min
θ∈Θ

QuT :vT,S(θ),

where QuT :vT,S(θ) := guT :vT,S(θ)′Ŵ(uT :vT )guT :vT,S(θ) is the objective function, guT :vT,S(θ) :=

m̂uT :vT − m̃S(θ) and Ŵ(uT :vT ) a positive definite weight matrix with probability limit W , for

simplicity one can chose the k × k identity matrix. The moment conditions (dependence

vectors) m̂uT :vT are k×1 vectors of appropriately chosen pairwise dependence measures m̂ij
uT :vT

(possibility averaged over equidependent pairs), computed from the residuals {η̂t}bvT ct=buT c,

whereas m̃S(θ) can be thought of the corresponding vector of true dependence measures.

The residuals are obtained in the same way as in Section 3.1. Note that the dependence

measures implied by the factor copula model are typically not available in closed form and

they have to be obtained by simulation. Therefore, the classical method of moments (MM)

or generalized method of moments (GMM) cannot be used here. The true dependence
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measures are approximated using S simulations {η̃t}St=1 from FFFXXXt , and hence the objective

function, the estimator, and consequently our detector defined in equation (4.2) depend on

the number of simulations S. Following the simulation studies in Oh and Patton (2013), we

chose S = 25 · (vT − uT ) and we need to ensure that the sub-sample ranging from buT c

to bvT c is large enough to receive reasonable SMM estimates. In our simulation studies

we find that our procedure still results in reasonable size and power properties by choosing

buT c − bvT c = mT = 250 data points. For the dependence measures of the pair (ηi, ηj), we

use again Spearman’s rank correlation ρij and the quantile dependence λijq , defined in Section

2.3. The considered sample counterparts for the observations between buT c and bvT c are

defined as

ρ̂ij := 12
bvT − uT c

bvT c∑
t=buT c

F̂ uT :vT
i (η̂it)F̂ uT :vT

j (η̂jt)− 3

λ̂ijq :=


ĈuT :vT
ij (q,q)

q
, q ∈ (0, 0.5]

1−2q+ĈuT :vT
ij (q,q)

1−q , q ∈ (0.5, 1)
,

where F̂ uT :vT
i (y) := 1

bvT−uT c

bvT c∑
t=buT c

1{η̂it ≤ y} and ĈuT :vT
ij (u, v) := 1

bvT−uT c

bvT c∑
t=buT c

1{F̂ uT :vT
i (η̂it) ≤

u, F̂ uT :vT
j (η̂jt) ≤ v}. The simulated counterparts of these dependence measures based on the

simulations {η̃t}St=1 are defined analogously and are denoted by ρ̃ij and λ̃ijq .

In summary, the SMM estimator minimizes the weighted difference between suitable sample

dependence measures and their model counterparts obtained by simulation. Depending on the

precise model specification, the pairwise dependence measures are averaged for groups, which

have the same factor loadings. For more information on SMM estimation and a suitable way

to average the pairwise dependence measures for equidependence or block equidependence

models see Section 2.7 or in more detail Oh and Patton (2013) and Oh and Patton (2017).
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4.2.2. Asymptotics. To derive the asymptotic distribution of our detector (4.2), we consider

Assumption 5 and Assumptions 6-9 (given in the appendix) and follow similar steps as in

Manner et al. (2019). The difference is that we replace the scale factor s
√
T by m

√
T and

that we derive the following distributional limit for the process s 7→ m
√
Tg1+(s−m)T :sT,S(θ),

for S
T
→ k ∈ (0,∞] and T, S →∞,

m
√
Tg1+(s−m)T :sT,S(θ) = m

√
T
(
m̂1+(s−m)T :sT − m̃S(θ)

)
=m
√
T
(
m̂1+(s−m)T :sT −m0(θ)

)
−m
√
T (m̃S −m0(θ))

=m
√
T
(
m̂1+(s−m)T :sT −m0(θ)

)
−
√
T

S
m
√
S (m̃S −m0(θ))

d=⇒A(s)− m√
k
B.

Here A(s) is a Gaussian process defined in the proof of Theorem 5 in the appendix and

B := N(0,Σ0) a centered Gaussian distribution with covariance matrix Σ0, for details see Oh

and Patton (2013). The limit result follows by using the independence of the moment process

calculated from the data and the moment process corresponding to the simulated data. Note

that the term m√
k
B cancels out in later considerations, e.g to determine the critical value c

using the bootstrap procedure proposed in Section 4.2.3.

Theorem 5. Under the null hypothesis H0 : θ1 = · · · = θmT = θmT+1 = . . . and under

Assumption 5 and Assumptions 6-9 in the appendix, we obtain for m ≥ ε > 0

m
√
T
(
θ̂1+(s−m)T :sT,S − θ0

)
d=⇒ A∗(s)

as T, S → ∞ in the space of càdlàg functions on the interval [m, 1] and S
T
→ k ∈ (0,∞].

Here, A∗(s) = (G′WG)−1G′W (A(s)− m√
k
B) and θ0 is the (constant) value of θt under the

null. Note that G is the derivative matrix of g0, which is the probability limit of g.,S.
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With Theorem 5 we obtain for T, S →∞

m
√
T (θ̂1+(s−m)T :sT,S − θ̂1:mT,S)

=m
√
T (θ̂1+(s−m)T :sT,S − θ0)−m

√
T (θ̂1:mT,S − θ0)

d=⇒A∗(s)− A∗(m).

From this we can conclude the asymptotic behaviour of our detector under H0, which we

state in Corollary 3.

Corollary 3. Under the null hypothesis H0 : θ1 = · · · = θmT = θmT+1 = . . . and if all

mentioned Assumptions hold, we obtain for our detector

DT,S(s) =m2T (θ̂1+(s−m)T :sT,S − θ̂1:mT,S)′(θ̂1+(s−m)T :sT,S − θ̂1:mT,S)

d=⇒(A∗(s)−A∗(m))′(A∗(s)−A∗(m)) =: Q(s)

as T, S →∞ and S
T → k ∈ (0,∞].

Similarly, we may define a monitoring detector that is based directly on the moment

conditions (dependence vector). This allows for monitoring of the corresponding dependence

measures in a model-free way. Under the assumed factor copula model it can be used to

monitor the stability of the model parameters. Furthermore, it has the additional advantage of

being computationally much less demanding since no model parameters have to be estimated

and it does not depend on any simulated quantities. The following corollary defines such a

detector and describes its asymptotic behaviour.
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Corollary 4. Under the null hypothesis H0 : θ1 = · · · = θmT = θmT+1 = . . . and if all

mentioned Assumptions hold, we obtain

MT (s) :=m2T (m̂1+(s−m)T :sT − m̂1:mT )′(m̂1+(s−m)T :sT − m̂1:mT )

d=⇒(A(s)−A(m))′(A(s)−A(m)) =: R(s)

as T →∞.

With the limit distribution of our detector Q(s), we define the boundary value c in our

monitoring procedure as the upper α-quantile of

sup
s∈[m,1]

Q(s) = sup
s∈[m,1]

(A∗(s)− A∗(m))′(A∗(s)− A∗(m)), m ≥ ε > 0. (4.3)

Thus, lim
T,S→∞

P (τT <∞|H0) = lim
T,S→∞

P (inf
k
{k ≤ T : DT,S(k) > c} <∞|H0) = α.

In the same way the critical value of the moment monitoring procedure is determined as the

upper α-quantile of sup
s∈[m,1]

R(s).

For the estimation of the break point mT + k∗, once H0 is rejected, we propose mT + k̂, with

k̂ := argmax
bγ(τT−mT )c≤i≤τT−mT

i2

τT −mT
(θ̂1+mT :mT+i−1,S − θ̂1+mT :τT−1,S)′(θ̂1+mT :mT+i−1,S − θ̂1+mT :τT−1,S),

(4.4)

where we only consider the information from mT + 1 to τm − 1. Note that we need to trim a

sufficient fraction bγ(τT −mT )c of the beginning, where γ > 0 to receive reasonable SMM

estimates. In a similar way, the size of the rolling window mT should not be chosen too

small. Note that the stopping time and the break point estimator for the moment monitoring

procedure are defined analogously to the parameter monitoring procedure. As mentioned

above, the moment based monitoring procedure is easy to implement and can be calculated

fast, but in general it has lower power than the parametric procedure. Furthermore, as

outlined in Manner et al. (2019), another disadvantage is that it does not allow testing the

constancy of a subset of the parameters, but only can detect breaks in the whole copula. It
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may, however, be used to test for breaks in the dependence in selected regions of the support

such as the lower tail. We leave this possibility for future research.

The limit distributions of DT,S and MT are not known in closed form. To overcome this issue

we have to simulate the critical values using an i.i.d. bootstrap procedure, which is described

in the next section.

4.2.3. Bootstrap Distribution. First note that the limit result mainly consists of the limit

distribution of the moment vectors, which can be computed relatively fast, compared to the

detector that requires solving a minimization problem. This fact is used for the construction

of the bootstrap. In order to approximate the limiting distribution under the null we use an

i.i.d. bootstrap consisting of the following steps:

i) Sample with replacement from {η̃i}Ti=1 to obtain B bootstrap samples {η̃(b)
i }Ti=1, for

b = 1, . . . , B, where {η̃i}Ti=1 stacks the initial residual data {η̂i}mTi=1 and simulated data

{η̃∗i }Ti=mT+1 from the assumed model, using the parameter estimate θ̂1:mT,S from the

initial sample period.

ii) Use {η̃(b)
i }ti=1+t−mT to compute m̂(b)

1+t−mT :t for t = mT, . . . , T and use {η̃(b)
i }Ti=1 to obtain

m̂
(b)
1:T , for b = 1, . . . , B.

iii) Calculate the bootstrap version of the limiting distribution of our detector

K(b) := max
t∈{mT,...,T}

(
A∗(b)

(
t

T

)
− A∗(b) (m)

)′ (
A∗(b)

(
t

T

)
− A∗(b) (m)

)
,

with A∗(b)
(
t
T

)
:= (Ĝ′ŴT Ĝ)−1Ĝ′ŴTA

(b)( t
T

) and A(b)( t
T

) = m
√
T
(
m̂

(b)
1+t−mT :t − m̂

(b)
1:T

)
,

where Ĝ is the two sided numerical derivative estimator of G, evaluated at point θ̂1:mT,S,

computed with the historical sample {η̂i}mTi=1. We can compute the k-th column of Ĝ by

Ĝk = gT,S(θ̂1:mT,S + ekεT,S)− gT,S(θ̂1:mT,S − ekεT,S)
2εT,S

, k ∈ {1, . . . , p},
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where ek is the k-th unit vector, whose dimension is p× 1 and εT,S has to be chosen in

a way that it fulfils εT,S → 0 and min{
√
T ,
√
S}εT,S →∞.

iv) Compute B versions of K(b) and determine the boundary value c such that

1
B

B∑
b=1

1{K(b) > c} != 0.05.

This bootstrap method is similar to the bootstrap used in Section 3, where iii) is adapted to

the monitoring situation. The same intuitive argument holds for the validity of the bootstrap,

which is only based on natural estimators of the respective terms. Furthermore, draws

from the empirical distribution are close to draws from the population distribution and the

structure of the limiting distribution allows for a direct computation without the need for

centering. Under the alternative of a change point the bootstrap quantiles are bounded

because the i.i.d. bootstrap destroys the temporal structure of the time series and thus

mimicks a stationary distribution. Critical values of the moment based test M are obtained

similarly by adapting step iii) of the algorithm. Our Monte Carlo simulations below confirm

that the bootstrap indeed results in reasonably sized and powered tests.

4.2.4. Multiple Break Testing. In practice if one is interested in detecting multiple structural

breaks in factor copula models in real time, we propose the following procedure that consists

of steps applying the monitoring procedure proposed in this Section 4 and the retrospective

change point test for factor copulas from Section 3. In particular, the retrospective test is

used to test for the constant parameter Assumption 5 in the initial sample period and to

detect the break point location once the monitoring procedure stops.

1) Compute the restrospective change point statistic sup
s∈[ε,m]

PsT,S from Section 3 for the

initial mT observation. If a changepoint is detected go to step 2a). If no changepoint

is detected go to step 2b).
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2a) Estimate the breakpoint location and remove all pre-change observations. Restock

the subsample to mT observations and return to step 1). If there are not enough

observations left to restock the subsample to mT observations go to step 4).

2b) Take the sample as initial sample period. Apply the monitoring procedure to the

residuals, i.e. compute DT,S(s) for s ∈ (m, 1]. Compute the bootstrap critical value c as

described in Section 4.2.3. If a changepoint is detected go to step 3). If no changepoint

is detected go to step 4).

3) Estimate the location of the changepoint. Then, remove the pre-change observations,

use the first mT observations of the resulting dataset as the new initial sample and

return to step 1). If there are not enough observations left to restock the subsample to

mT observations go to step 4).

4) Terminate the procedure.

In the same way this procedure can be adapted for the moment monitoring procedure.

Simulation results for single and multiple break testing, using the moment or the parameter

monitoring procedure can be found in the next section. An obvious issue with this procedure

is its multiple testing nature, in particular given that a pre-test has to be applied to the

initial sample period to ensure that Assumption 5 holds. One should adapt the confidence

levels accordingly and be aware of this when interpreting testing results.

4.3. Simulations

We now want to investigate the size and power and the estimation of the break point location

of our monitoring procedure. We again consider the simple one factor copula model

[X1t, . . . , XNt]′ =: Xt = βtZZZt + qqqt, (4.5)
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where Zt ∼ Skew t (σ2, ν−1, λ) and qt i.i.d.∼ t (ν−1) for t = 1, . . . , T . We fix σ2 = 1, ν−1 = 0.25

and λ = −0.5, so that our model is parametrized by the factor loading parameter θt = βt.

The sequential parameter estimates θ̂t = θ̂1−mT+t:t,S for t = mT, . . . , T in the detector are

computed using the SMM approach with S = 25 · mT simulations. For this we use five

dependence measures, namely Spearman’s rank correlation and the 0.05, 0.10, 0.90, 0.95

quantile dependence measures, averaged across all pairs. Critical values for the monitoring

procedure are computed using B = 1000 bootstrap replications.

The nominal size of the tests is chosen to be 5% and we use 700 Monte Carlo replications for

all settings.3

4.3.1. Size and Single Break Case. The size of the testing period is always fixed to be T = 1500.

Table 9: Size Monitoring Procedure

N = 10 N = 20 N = 30
mT = 250 0.051 0.052 0.051

i) mT = 400 0.055 0.054 0.050
mT = 500 0.057 0.047 0.054
mT = 250 0.062 0.064 0.061

ii) mT = 400 0.062 0.065 0.065
mT = 500 0.061 0.054 0.055

Note: Empirical size for θ0 = 1.0, T = 1500 and 700 simulations, using i) the whole sample
up to time point T and using ii) the initial data set and simulated data from mT + 1 up to T .

3The computational complexity of the simulations was extremely high due to the fact that for every
monitoring procedure the parameter values need to be estimated a large number of times using the computa-
tionally heavy SMM estimator and because critical values have to be bootstrapped. This explains why we
had to restrict ourselves to a limited number of situations for a fairly simple model. Furthermore, numerical
instabilities were present in more complex models when repeatedly estimating the model parameters. Such
problems can be dealt within empirical applications, but further restrict the potential model complexity in
simulations. The computations were implemented in Matlab, parallelized and performed using CHEOPS,
a scientific High Performance Computer at the Regional Computing Center of the University of Cologne
(RRZK) funded by the DFG.
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We begin with the case of testing against a single break. The rejection rate under the null are

presented in Table 9 for θ0 = 1, for various combinations of the length of the initial sample

mT and dimension N , where the critical values are calculated using one of the following two

possibilities:

i) Calculate the critical value c using the whole, in general not known, data up to time

point T . This mimics the situation that the test is used in a retrospective fashion, i.e.

once all T observations are available.

ii) Calculate the critical value c using the initial data set together with simulated data

from mT + 1 up to T , based on the estimated parameter vector θ̂1:mT,S.

The test is slightly oversized for both settings. The empirical size is slightly higher for

the second procedure ii), due to the fluctuation in the parameter estimation in the SMM

procedure, but overall between 0.05 and 0.1.

To study the power of the procedure, we generate data with a break point at T
2 , where the data

is simulated with θt = 1 for t ∈ {1, . . . , T2 }, denoted as θ0 and with θt = {1.2, 1.4, 1.6, 1.8, 3.0}

for t ∈ {T2 +1, . . . , T}, denoted as θ1. With power we mean the probability that our monitoring

procedure stops within the monitored testing period (τT <∞). The upper panel of Table 10

reveals that the power of the procedure increases with the size of the initial sample for the

two possibilities i) and ii). The moment monitoring procedure based on MT has similar size

characteristics but lower power compared to the parameter-based procedure. This result is in

line with the results for the retrospective test in Section 3.

The second and third panels of the table present the (average) relative stopping times and

break point estimates using (4.4). The table reveals, that the averaged stopping time, given

that a break has been detected, occurs with a significant delay after the true break point. It

is closer to the true location 1
2 for a smaller monitoring window, due to the greater impact of

new data and, of course, for an increase of the step size between θ0 and θ1. If the step size is
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large enough (θ1 = 3.0) the monitoring procedure consistently stops shortly after the true

break point.

The averaged estimated break point locations based on equation (4.4) are closer to the true

break point. It always detects the break before the stopping time. For small shifts in θ it

estimates the break too late, whereas for large shifts in θ breaks are estimated a little too

early. It seems that a larger initial sample always results in slightly later stopping times, that

can be explained due to the greater impact on the detector by new observed data in small

rolling window sample sizes. However the usage of smaller window sizes imply lower power of

the procedure. Note that the moment monitoring tends to result in later stopping times and

break point estimates in all cases.

4.3.2. Multiple Breaks. For the analysis of multiple breaks we allow for breaks at T
3 and 2T

3

with sample size T = 1500, and dimensions N = 10 and N = 20. The parameter varies

from θ0 = 1.0 for t ∈ {1, . . . , T3 } to θ1 = 1.5 for t ∈ {T3 + 1, . . . , 2T
3 } and θ2 = 0.8 for

t ∈ {2T
3 + 1, . . . , T}. The results using the procedure proposed in Section 4.2.4 can be found

in Table 11. The tables report the averaged stopping times, averaged break point estimates

and rejection rates for the first, second, and the joint first and second break events.

The rejection rates increase with the size of the initial sample period mT . Power increases in

the dimension N , although this effect is only moderate for both tests. As before, the tests

based on DT,S has larger power than the one based on MT . We also note that the second

break point is detected more frequently than the first one, that is of course due to the higher

magnitude of the second break compared to the first break. Furthermore, if the monitoring

procedure detects the first break point it is very likely that the second break point is detected

as well, which can be seen by the almost identical rejection rates of rej1 and rejall. Again,

the average stopping time is much later than the true break, but the estimated break point k̂
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Table 10: Power Monitoring Procedure

θ0 = 1.0 θ1 = 1.2 θ1 = 1.4 θ1 = 1.6 θ1 = 1.8 θ1 = 3.0
mT = 250 0.059 0.375 0.787 0.973 1.000 1.000

i) mT = 400 0.066 0.435 0.877 0.993 1.000 1.000
mT = 500 0.066 0.465 0.910 1.000 1.000 1.000
mT = 250 0.079 0.409 0.787 0.967 1.000 1.000

rej ii) mT = 400 0.069 0.468 0.860 0.990 1.000 1.000
mT = 500 0.076 0.485 0.894 1.000 1.000 1.000
mT = 250 0.053 0.193 0.482 0.780 0.944 1.000

mT mT = 400 0.076 0.223 0.671 0.944 0.993 1.000
mT = 500 0.063 0.306 0.738 0.960 1.000 1.000
mT = 250 0.715 0.667 0.625 0.579 0.513

i) mT = 400 0.751 0.689 0.629 0.588 0.523
mT = 500 0.767 0.677 0.639 0.596 0.525
mT = 250 0.698 0.660 0.619 0.581 0.518

τT
T

ii) mT = 400 0.733 0.675 0.626 0.587 0.525
mT = 500 0.759 0.699 0.638 0.595 0.527
mT = 250 0.718 0.695 0.662 0.627 0.525

mT mT = 400 0.738 0.725 0.672 0.625 0.528
mT = 500 0.765 0.741 0.679 0.626 0.530
mT = 250 0.516 0.487 0.483 0.473 0.457

i) mT = 400 0.544 0.508 0.493 0.487 0.479
mT = 500 0.562 0.522 0.497 0.492 0.487
mT = 250 0.511 0.484 0.479 0.471 0.464

k̂
T

ii) mT = 400 0.538 0.502 0.491 0.485 0.483
mT = 500 0.562 0.518 0.497 0.491 0.489
mT = 250 0.517 0.495 0.487 0.486 0.485

mT mT = 400 0.541 0.518 0.500 0.495 0.492
mT = 500 0.561 0.534 0.507 0.499 0.496

Note: Rejection frequency (rej), average stopping time τT
T

and average breakpoint estimate k̂
T

for θ0 = 1, T = 1500 N = 10 and 301 simulations for the parameter monitoring procedure,
where critical values c computed with the two possibilities i) and ii) and for the moment
monitoring procedure. Data was generated with a break in T

2 and post-break parameter θ1.

is able to detect the breaks reasonably well. Thus, we can conclude that the procedure works

fairly well for the case of multiple breaks and that both the power of detecting changes and

estimating the break locations can be achieved in a fairly reliable manner.
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Table 11: Multibreak Power Monitoring Procedure

τ1
T
T

k̂1

T rej1
τ2
T
T

k̂2

T rej2 ( τ
1
T
T

τ2
T
T ) ( k̂1

T
k̂2

T ) rejall

Parameter based
N = 10 mT = 250 0.458 0.336 0.800 0.805 0.667 0.851 (0.458 0.801) (0.337 0.665) 0.777

mT = 400 0.479 0.365 0.861 0.836 0.711 0.954 (0.479 0.836) (0.365 0.716) 0.854
N = 20 mT = 250 0.457 0.338 0.810 0.799 0.661 0.864 (0.456 0.794) (0.339 0.659) 0.787

mT = 400 0.475 0.363 0.874 0.827 0.708 0.970 (0.475 0.827) (0.362 0.713) 0.867

Moment based
N = 10 mT = 250 0.493 0.343 0.570 0.806 0.663 0.618 (0.495 0.796) (0.344 0.661) 0.558

mT = 400 0.517 0.369 0.691 0.843 0.721 0.834 (0.517 0.840) (0.369 0.729) 0.691
N = 20 mT = 250 0.491 0.338 0.591 0.808 0.660 0.671 (0.493 0.797) (0.338 0.658) 0.588

mT = 400 0.513 0.366 0.730 0.839 0.714 0.884 (0.513 0.834) (0.366 0.721) 0.730

Note: Average detected break point location k̂i

T
, stopping time τ iT

T
and rejection frequency

using 301 simulations for the parameter monitoring procedure. Data was generated with
breaks at T

3 and 2T
3 , with T = 1500, N = 10, 20, θ0 = 1.0, θ1 = 1.5, θ2 = 0.8. Results are

based on the parameter based detector DT,S (top panel) and the moment based detector MT

(bottom panel).

4.4. Empirical Application

In this section we apply our test to a real data set. We use daily log-returns of stock prices

over a time span ranging from 29.01.2002 to 01.07.2013 of ten large firms, namely Citigroup,

HSBC Holdings ($), UBS-R, Barclays, BNP Paribas, HSBC Holdings (ORD), Mitsubishi,

Royal Bank, Credit Agricole and Bank of America. This implies a monitored period of size

T = 2980 and N = 10. Figure 4.9 is a plot of the stock values in US-$ of the ten assets over

the whole monitored period.

We use the same factor copula model as in (4.5) and we fix ν = 2.855 and λ = −0.0057 for

the monitoring procedure, i.e. we only monitor the factor loading parameter. These fixed

values correspond to the parameter estimates from the initial sample period of size mT = 400.
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Figure 4.9: Asset values of the Portfolio

Note: Asset values Sit in US-$ in our considered portfolio for data between 29.01.2002 and
01.07.2013, T = 2980 and N = 10.

For the conditional mean and variance we specify the following AR(1)-GARCH(1,1).

ri,t = α + βri,t−1 + σi,tηit,

σ2
it = γ0 + γ1σ

2
i,t−1 + γ2η

2
i,t−1,
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for t = 2, . . . , 2980, and i = 1, . . . , 10. Note that for the monitoring procedure the parameters

of the conditional mean and variance models are always re-estimated on the corresponding

rolling window sample of size mT .

4.4.1. Monitoring Procedure. A rolling window parameter analysis of the whole data set with

window size 400 can be seen in Figure 4.10, indicating parameter changes between 2006 and

2009.

The results of the monitoring procedure of the whole considered period can be seen in Table

12. We choose the historical period mT = 400 from 29.01.2002 to 11.08.2003, where we

first estimate the marginal AR(1)-GARCH(1,1) model to obtain the residuals. We use the

retrospective constant parameter test from Section 3 to test the hypothesis of no parameter

change within the historical data set and the null hypothesis cannot be rejected. Note that

for the retrospective parameter test a burn-in period of 20 % of the behold data is used. We

then apply our constructed monitoring procedure. The monitoring procedure stops at the

21.11.2008 and the estimated break point location is found at the 19.07.2007, where we used

the retrospective parameter break point estimate with data from the end of the historical

data set 12.08.2003 to the stopping time 21.11.2008.

Figure 4.11 is a plot of DT,S for every time point between mT + 1 (12.08.2003) and the

stopping point, where DT,S exceeds the 0.95-quantile value of (4.3) equal to 4.4512.

We then cut of all the data in front of the estimated break point location (19.07.2007) and test

for the null hypothesis of no parameter change in the period from 20.07.2007 to 29.01.2009 of

size mT = 400, using again the retrospective parameter test and the null is rejected. The

estimated break point is found at the 11.08.2008.

For the next subsample we try the period from 12.08.2008 to 23.02.2010 and get a retrospective

test statistic value ST,S of 1.4442 and a quantile value of 2.5156, hence the null hypothesis
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Figure 4.10: Rolling Window Parameter Estimate

Note: Rolling window estimate of θmT for mT = 400 and N = 10 between 11.08.2003 and
01.07.2013, with parameter values estimated from break to break. Each parameter value is
associated to the end time point of the rolling window.

Table 12: Testing Results empirical Application

Monitored/Testing Period τT k̂ T
29.01.2002-11.08.2003 400
12.08.2003-01.07.2013 21.11.2008 19.07.2007 2580
20.07.2007-29.01.2009 11.08.2008 400
12.08.2008-23.02.2010 400
24.02.2010-01.07.2013 874

Note: Stopping time τT , estimated break point location k̂ and associated sample size T for
monitored or tested periods using the monitoring procedure or the retrospective parameter
test.

cannot be rejected and we choose this period as our new historical period and restart our

monitoring procedure from 24.02.2010 to 01.07.2013. The detector DT,S does not cross the

boundary value c = 12.0020 and the procedure stops at the end of the monitored period,
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Figure 4.11: Value Detector DT,S(s)

Note: DT,S(s) for T = 2980, mT = 400 and N = 10. Stopping date at 21.11.2008 and
c = 4.4512.

without rejecting the null.

4.4.2. Value-at-Risk Predictions. Given the growing need for managing financial risk, risk

prediction plays an increasing role in banking and finance. The value-at-Risk (VaR), is the

most prominent measure of financial market risk. Despite it having been criticized as being

theoretically not efficient and numerically problematic (see Dowd and Blake, 2006), it is still

the most widely used risk measure in practice. The number of methods for such calculations

continues to increase. The theoretical and computational complexity of VaR models for

calculating capital requirements is also increasing. Some examples include the use of extreme

value theory (see McNeil and Frey, 2000), quantile regression methods (see Manganelli and

Engle, 2004), and Markov switching techniques (see Gray, 1996 and Klaassen, 2002).

First, we want to define the Value at Risk (VaR). We define the log-return of a single asset i

to a time point t as rit = ln(Sit)− ln(Sit−1), where Sit is the stock value of asset i to a specific
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time point t. The change in the portfolio value over the time interval [t− 1, t] is then

∆Vt =
N∑
i=1

wir
i
t,

where wi are portfolio weights. The (negative) α-quantile of the distribution of ∆V :=

{∆Vt}Tt=1 is the day t Value-at-Risk at level α.

Here we want to show that our monitoring procedure can help improve the day-ahead

predictions of the VaR based on a factor copula model.

The VaR predictions based on the monitoring procedure for the factor copula model are

computed as follows. In general, based on Ft, the information available at time t, we want to

predict the VaR for period t+ 1. The prediction of the VaR is always based on the following

four steps.

1. SimulateM draws from the copula model ũt+1 ∼ C(·, θ̂t), where ũt+1 = [ũ1,t+1, . . . , ũN,t+1]

is anM×N matrix of simulated observation and θ̂t is an appropriate parameter estimate

based on information up to time t.

2. Use the inverse marginal distribution function of the standardized residuals η to

transform every component of ũt+1 to η̃̃η̃ηt+1 =
[
F−1

1 (ũ1,t+1), . . . , F−1
N (ũN,t+1)

]
, where

F−1
i (·) is estimated by the inverse integrated kernel density estimator of the residuals η̂̂η̂η

with a sufficiently large number of evaluation points.

3. Compute the simulated returns r̃t+1 := [r̃1
t+1, . . . , r̃

N
t+1]′ = µµµ(φ̂t) + σσσ(φ̂t)η̃̃η̃ηt+1, where φ̂t

are the estimated parameters from models for the conditional mean and variance using

information up to time t.

4. Form the portfolio of interest from the simulated returns and compute the appropriate

quantile from the distribution of the portfolio to obtain the VaR prediction for time

t+ 1.
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This procedure for predicting the VaR is generic. The monitoring procedure for the copula

parameter θt is used to determine the appropriate information set on which the parameter

estimate in Step 1. is based. The basic idea is to use as much information as possible as

long as no changepoint is detected. In case a changepoint is found only the most recent

observations should be used to estimate θt. Recall that mT observations for which the

dependence is assumed to be constant are available at the beginning of the sample. Further,

denote θ̂s:t the estimator of the copula parameter based on the observations from time s to t.

At each point in time t, compute DT,S(t).

i. Before a changepoint is detected, i.e. as long as DT,S(t) < c the draws from the copula

in Step 1 above are based on θ̂1:t

ii. Assume the monitoring procedure stops at time t = τ̂ , i.e. when DT,S(t) > c. Compute

the breakpoint estimate k̂ using (4.4). Use the estimate θ̂k̂:t in Step 1 above. If

t− k̂ < 400, i.e. if less than 400 observations are available use θ̂t−400:t. In other words,

after a breakpoint is identified use either all observations after the breakpoint estimate

or the most recent 400 observations to estimate the copula parameter.4

iii. If t− k̂ ≤ mT proceed as in Step ii. Otherwise use the window [k̂, k̂ +mT ] as the new

initial sample and apply the monitoring procedure. As long as no further breakpoint is

detected the parameter estimate θ̂k̂:t is used. When the monitoring procedure stops

again return to Step ii.

The results for the online VaR evaluation based on M = 1500 simulations for each period

and for α = 0.05 can be seen in Figure 4.12. As an alternative, we consider the same model

without the monitoring procedure. In that case the copula parameter is estimated using the
4The minimum number of observations required for model estimation depends on the complexity of the

chosen model. However, for the type of model we found that one needs at least 400 observations to obtain
reliable and numerically stable parameter estimates.
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full sample available at time t using an expanding window. The model for the margins is an

AR(1)-GARCH(1,1) in both cases.

Figure 4.12: Portfolio Returns and Value at Risk

Note: Portfolio returns ∆Vt and the α = 0.05 predicted Value-at-Risk based on the monitoring
procedure, allowing for structural breaks (upper panel) and without (lower panel) for the
period between 29.01.2002 and 01.07.2013.

Visually, the online procedure tracks the 5 % VaR well. The empirical VaR exceedance

rate is, in fact, 6.05% (156 exceedances in 2580 days) and therefore reasonably close to 5

%. In the model without structural breaks, where the parameters are estimated from the

beginning of the sample on, the exceedance rate is higher with 7.71% (199 exceedances). With

a binomial test (compare Berens, Wied, Weiß, and Ziggel, 2014), we test the null hypothesis

of unconditional coverage, i.e.,

E
(

1
T

T∑
t=1

It(0.05)
)

= α = 0.05,
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where α is the VaR coverage probability and

It(0.05) =


0, if ∆Vt ≥ −V aR0.05

1, if ∆Vt < −V aR0.05.

One expects 129 exceedances under H0 and at the 1% significance level the critical value of

the test is 158 exceedances. This implies that the null of unconditional coverage is rejected

in the model without structural breaks, but not in the model with structural breaks.

86



5. ON THE APPLICABILITY OF A NONPARAMETRIC TEST FOR CONSTANT

COPULA-BASED DEPENDENCE MEASURES: DATING BREAKPOINTS AND

ANALYZING DIFFERENT DEPENDENCE MEASURE SETS

In this section we want to investigate the non-parametric dependence measure test with

test statistic (3.4) for different dependence measure settings proposed in Section 3. The

section is structured as follows: Section 5.1 presents the null hypothesis, test statistic, a

bootstrap procedure and a heuristic to test for common breaks. Results from the Monte Carlo

simulations can be found in Section 5.2 and Section 5.3 presents the empirical application.

The work belongs to the working paper “On the Applicability of a nonparametric Test for

constant Copula-based Dependence Measures: Dating Breakpoints and analyzing different

Dependence Measure Sets”, Stark (2018).

5.1. Null Hypothesis and Test Statistic

The null hypothesis which is considered is a constant dependence measure vector against the

alternative of a single breakpoint at an unknown point in time,

H0 : m1 = m2 = · · · = mT H1 : m1 = · · · = mt 6= mt+1 = · · · = mT for some t = {1, . . . , T − 1}.

The CUSUM-type test statistic is based on the maximum difference between the recursive

estimates and the full sample estimate of the dependence measure vector. Formally, it is

defined as

M := sup
s∈[ε,1]

MsT := sup
s∈[ε,1]

s2T (m̂sT − m̂T )′(m̂sT − m̂T ) (5.1)

' max
bεT c≤t≤T

(
t

T

)2
T (m̂t − m̂T )′(m̂t − m̂T ),

where m̂sT is the recursive dependence measure vector defined above that uses the information

up to time point t = bsT c and m̂T the full sample dependence measure vector analogue such

as ε > 0 a trimming parameter. In Section 3 it is noted that ε has to be chosen strictly
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greater than zero and in finite sample cases it should be chosen in a way that we have enough

data information to receive reasonable dependence measure vector estimates. For the finite

sample case in Section 3 we propose ε = 0.2 in the context of the copula parameter test for a

better comparison of the two proposed tests here. Note that it is sufficient to use ε = 0.1 for

the non parametric dependence measure test in the later considered simulation study and

empirical application. The test rejects the null hypothesis of a constant dependence measure

vector, if the sequential estimated dependence vectors fluctuate to much over time, which is

measured by sup
s∈[ε,1]

s2T (m̂sT − m̂T )′(m̂sT − m̂T ). The term s2T puts less weight on deviations

at the beginning of the observed period, due to the fact that m̂sT fluctuates more for smaller

sequential sample sizes sT . As mentioned, the statistic is of non-parametric nature and one

can consider an appropriate subset of dependence measure settings and test for, e.g. breaks

in the lower/upper quantile dependencies, Spearman’s rank correlation or a combination of

both quantile dependencies and rank correlation. An analysis of different selected dependence

measure settings, where residual data is simulated from different fat-tailed and skewed copula

distribution models can be found in the simulation section.

The analytical results for the asymptotic distribution of the test statistic M can be found in

Corollary 2 in Section 3. Here the asymptotic results can be obtained by using two main

assumptions (Assumption 1 and 2 from Section 3) where these ensure that the estimated rank

correlation and quantile dependencies converge to their respective population counterparts,

using residual data from pre-estimated marginal time series models. Then under the null

hypothesis H0 : m1 = m2 = · · · = mT and if these assumptions hold, it follows that

M = sup
s∈[ε,1]

s2T (m̂sT − m̂T )′(m̂sT − m̂T ) d−→ sup
s∈[ε,1]

(A(s)− sA(1))′(A(s)− sA(1)), (5.2)

as T →∞, where A(s) is a Gaussian process defined in the proof of Lemma 11 from Section

3. The proof of the limit result in equation (5.2) follows by a steady transformation of the
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result from Section 3 in Lemma 11. We reject the null if

M > q1−α, (5.3)

where q1−α is the (1−α)-quantile of sup
s∈[ε,1]

(A(s)− sA(1))′(A(s)− sA(1)). If we reject the null

hypothesis we speak of a structural break. The estimation of the change point location, once

we detected a structural break, is embedded in calculating the test statistic and is given by

k̂ := bŝT c, where ŝ is the maximum point of the quadratic left side of (5.2), i.e.

ŝ = argmax
s∈[ε,1]

s2T (m̂sT − m̂T )′(m̂sT − m̂T ). (5.4)

The distribution term A(s) in the asymptotic distribution of the test statistic is in general not

known in closed form and depends on the underlying sample. For this reason critical values

cannot be computed or simulated directly. To overcome this issue a bootstrap procedure

similar to the one in Section 3 is used. The bootstrap distribution of the test statistic M is

obtained by calculating B versions of the process t
T

√
T
(
m̂

(b)
t − m̂

(b)
T

)
, which can be calculated

fast and directly from the data, where t = sT . The following steps are used:

i) Sample with replacement from the standardized residuals {η̂i}Ti=1 to obtain B bootstrap

samples {η̂(b)
i }Ti=1, for b = 1, . . . , B.

ii) Use {η̂(b)
i }ti=1 to compute m̂(b)

t for b = 1, . . . , B and t = εT, . . . , T and {η̂i}Ti=1 to obtain

m̂T .

iii) Calculate the bootstrap analogue of the limiting distribution in equation (5.2)

K(b) := max
t∈{εT,...,T}

(
A(b)

(
t

T

)
− t

T
A(b) (1)

)′ (
A(b)

(
t

T

)
− t

T
A(b) (1)

)
,

with A(b)
(
t
T

)
:= t

T

√
T
(
m̂

(b)
t − m̂T

)
.
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iv) Compute B versions of K(b) and determine the critical value K such that

1
B

B∑
b=1

1{K(b) > K} = α,

for a confidence level α ∈ (0, 1), e.g. α = 0.05.

In Section 3 an intuition for the validity of the bootstrap is given. A formal proof of the

bootstrap validity is left for future research.

For a better comparison of the break point location estimates in empirical applications,

determined by different dependence measure settings within the testing procedure, we

propose a heuristic procedure. With this we are able to make a statement whether two

estimated break point locations ŝa and ŝb, with a 6= b, belong to the same class of break

points, choosing different subsets of the used dependence measures. Here, the subscripts a

and b denote the choice of the different vector of dependence measures m̂ij
a and m̂ij

b . Note that

we consider the break point location estimator defined in equation (5.4), which is a scalar

in the uniform interval (0, 1]. We determine (pivot) confidence intervals K̂a := [K̂−a , K̂+
a ] :=

[2ŝa − ĉa1−α2
, 2ŝa − ĉaα

2
] and K̂b := [2ŝb − ĉb1−α2

, 2ŝb − ĉbα
2
], where ĉa(·) and ĉb(·) are estimated

quantiles of the bootstrap distribution of ŝa and ŝb which can be determined by using the

following (percentile) bootstrap procedure.

We consider the residual sample {ηηηt}Tt=1 in which we detected two break point locations ŝa

and ŝb, using the dependence measure setting m̂ij
a and m̂ij

b .

i) Split the sample in {η̂ηηt}ŝaTt=1 and {η̂ηηt}Tt=ŝaT+1 for setting m̂ij
a and {η̂ηηt}ŝbTt=1 and {η̂ηηt}Tt=ŝbT+1

for setting m̂ij
b .

ii) Sample separately with replacement from {η̂ηηt}ŝaTt=1 and {η̂ηηt}Tt=ŝaT+1 such as {η̂ηηt}ŝbTt=1 and

{η̂ηηt}Tt=ŝbT+1 to obtain B bootstrap samples {η̂ηη(p)
t,a}Tt=1 and {η̂ηη(p)

t,b }Tt=1, for p = 1, . . . , B.

iii) Estimate the break point location ŝ(p)
a for each bootstrap sample {η̂ηη(p)

t,a}Tt=1 and ŝ(p)
b for
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each bootstrap sample {η̂ηη(p)
t,b }Tt=1for p = 1, . . . , B, using (5.4).

iv) Compute the quantiles of the bootstrap distribution ĉaα
2
, ĉbα

2
and ĉa1−α2 , ĉ

b
1−α2

of {ŝ(p)
a }Bp=1

and {ŝ(p)
b }Bp=1, where α ∈ (0, 1).

We say that two estimated break point locations ŝa and ŝb can be considered equal if both lie

in the intersection of the two determined confidence intervals, i.e.

ŝa, ŝb ∈ K̂a ∩ K̂b. (5.5)

Note, this procedure is only plausible if we consider the same testing period for both

dependence settings m̂ij
a and m̂ij

b . Therefore, in the empirical application the procedure

can only be applied for a break comparison in the full sample testing and cannot be used

in the rolling window testing procedure, due to the fact that similar break point locations

may belong to different tested periods. Further, notice that the estimation error between

the estimated break point ŝ and the true break point s0 is approximately the same as the

difference between the estimated break location ŝ and the bootstrap break estimate ŝ(p), i.e.

1− α ≈ P (ĉα
2
≤ ŝ(p) ≤ ĉ1−α2 )

= P (ŝ− ĉ1−α2 ≤ ŝ− ŝ(p) ≤ ŝ− ĉα
2
)

≈ P (ŝ− ĉ1−α2 ≤ s0 − ŝ ≤ ŝ− ĉα
2
)

= P (2ŝ− ĉ1−α2 ≤ s0 ≤ 2ŝ− ĉα
2
).

The construction of the confidence intervals is for example similar to the one in Hušková and

Kirch (2008).

5.2. Simulations

In this section we want to analyze size and power properties of the proposed test for

different dependence measure settings in Monte Carlo simulations. We consider the following
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dependence measure settings

m̂ij
1 = (ρ̂ij λ̂ij0.05 λ̂

ij
0.1 λ̂

ij
0.9 λ̂

ij
0.95)′

m̂ij
2 = (λ̂ij0.05 λ̂

ij
0.1 λ̂

ij
0.9 λ̂

ij
0.95)′

m̂ij
3 = (λ̂ij0.9 λ̂ij0.95)′

m̂ij
4 = (λ̂ij0.05 λ̂

ij
0.1 )′

m̂ij
5 = ρ̂ij,

where we average all pairwise dependence measures in an equidependence way, i.e. m̂ =
2

N(N−1)
∑N−1
i=1

∑N
j=i+1 m̂

ij, due to m̂ij = m̂ji for i 6= j and m̂ii = 1.

For our investigations, we consider a level of 5% and repeat the test 301 times for every

scenario. Due to the fact that we are mainly interested in comparing the different dependence

settings, we fix the data size and cross sectional dimension to T = 1000 and N = 10. An

analysis for different combinations of T and N in the case of m̂ij
1 = (ρ̂ij λ̂ij0.05 λ̂

ij
0.1 λ̂

ij
0.9 λ̂

ij
0.95)′

can be found in Section 3. For the simulations we simulate data from different skewed and

fat tailed distributions. We first consider our data ηηηt to be jointly distributed with a simple

one factor copula model following Oh and Patton (2013) and Oh and Patton (2017), where

the copula is implied by the following factor structure

ηηηt = [η1t, . . . , ηNt]′ = θθθtZ + qqq, (5.6)

with θθθt = (θt, . . . , θt)′ a parameter vector of size N , Z ∼ Skew t (ν−1, λ)5 and qqq = [q1t, . . . , qNt]′

with qit
i.i.d.∼ t (ν−1) for i = 1, . . . , N and t = 1, . . . , T . We fix ν−1 = 0.25 and vary

λ = {−0.5, 0, 0.5}, such that our model is parametrized by the single factor loading θt.

For the power analysis we generate data with a break point at T
2 for different sample sizes,

where the data is simulated with θt = 1 for the first T
2 data points, denoted by θ0, whereas

5As in Oh and Patton (2017) this refers to the skewed t-distribution by Hansen (1994).
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Table 13: Size and Power Factor Copula

T = 1000, N = 10 θ0 = 1 θ1 = 1.1 θ1 = 1.2 θ1 = 1.3 θ1 = 1.4 θ1 = 1.5
λ = −0.5

m̂ij
1 0.0465 0.1628 0.3887 0.6013 0.8007 0.9269

m̂ij
2 0.0498 0.1462 0.3189 0.5249 0.6944 0.8704

m̂ij
3 0.0365 0.0897 0.2259 0.4784 0.7043 0.8571

m̂ij
4 0.0498 0.1329 0.2724 0.4286 0.5781 0.7176

m̂ij
5 0.0532 0.2558 0.6645 0.9435 0.9934 1.0000

λ = 0

m̂ij
1 0.0532 0.1993 0.4485 0.7010 0.9003 0.9767

m̂ij
2 0.0532 0.1927 0.3787 0.6213 0.8538 0.9358

m̂ij
3 0.0432 0.1229 0.2625 0.4385 0.6478 0.8206

m̂ij
4 0.0565 0.1495 0.2857 0.4485 0.6146 0.8641

m̂ij
5 0.0598 0.2791 0.7176 0.9668 0.9967 1.0000

λ = 0.5

m̂ij
1 0.0565 0.1661 0.3322 0.5781 0.8538 0.9635

m̂ij
2 0.0764 0.1495 0.2890 0.4917 0.7342 0.9203

m̂ij
3 0.0731 0.1395 0.2658 0.3854 0.5781 0.7741

m̂ij
4 0.0332 0.1096 0.2558 0.4651 0.6611 0.8538

m̂ij
5 0.0498 0.2658 0.7043 0.9502 1.0000 1.0000

Note: Table 13 reports the rejection rate for θ0 = 1.0 and θ1 = {1.1, 1.2, 1.3, 1.4, 1.5} for the
different dependence measure combinations m̂ij

a for a = 1, . . . , 5 and λ = {−0.5, 0, 0.5} in the
DGP (5.6).
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after the break we increase the parameter to θt = {1.1, 1.2, 1.3, 1.4, 1.5}, denoted by θ1. The

results for the factor copula model (5.6) using λ = {−0.5, 0, 0.5} can be seen in Table 13.

Table 13 reveals that m̂ij
5 = ρ̂ij gains overall the highest power, directly followed by the

setting m̂ij
1 considering Spearman’s rho, lower and upper quantile dependence measures. The

cases where only upper m̂ij
3 or lower quantiles m̂ij

4 are considered suffer from poor power

properties compared to the other dependence settings. Considering both upper and lower

quantile dependencies in m̂ij
2 has better power properties than the separated cases. For

a clearer comparison of the different dependence vector settings, especially for the cases

where only lower or upper quantile dependence measures are used, we consider two more

data generating processes. First we consider residual data generated by a Clayton copula,

where we vary the parameter from θ0 = 2.5 to θ1 = {3.0, 3.5, 4.0, 5.0, 5.5}. Second we

consider residual data generated from a Gumbel copula, where we also vary θ0 = 2.0 to

θ1 = {2.2, 2.4, 2.6, 2.8, 3.0}. In both cases again θ1 denotes the parameter value after the

break at T
2 and θ0 the parameter value before the break. Note, with the choice of θ0 and θ1

the implied upper quantile dependence for the Clayton copula and implied lower quantile

dependence for the Gumbel Copula is in the same magnitude for better comparability. Due

to the heavy tailed behavior of the Clayton (strong lower quantile dependence) and Gumbel

Copula (strong upper quantile dependence), the dependence structure in the lower (Clayton)

and upper (Gumbel) cases just changes slightly by varying the parameter values after the

break. This yields poor power properties of the test by only using lower quantile dependencies

m̂ij
4 , where the Clayton Copula is used as the data generating process (DGP) (cf. Table 14).

On the other hand, only allowing for upper quantile dependencies m̂ij
3 , where the Gumbel

Copula is used as the DGP, the test suffers also from poor power properties (cf. Table 15).

Similar results, only using upper or lower quantile dependencies can be seen for the factor

copula model in the case of λ = {−0.5, 0.5}, see Table 13. A combination of lower and upper
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Table 14: Size and Power Clayton Copula

T = 1000, N = 10 θ0 = 2.5 θ1 = 3.0 θ1 = 3.5 θ1 = 4.0 θ1 = 4.5 θ1 = 5.0

m̂ij
1 0.0532 0.1960 0.4518 0.7342 0.9336 0.9701

m̂ij
2 0.0565 0.1761 0.3488 0.6179 0.8372 0.8970

m̂ij
3 0.0631 0.1827 0.4219 0.7010 0.8738 0.9402

m̂ij
4 0.0565 0.1694 0.2924 0.3821 0.5382 0.6047

m̂ij
5 0.0332 0.3854 0.9468 1.0000 1.0000 1.0000

Note: Table 14 reports the rejection rate for θ0 = 2.5 and θ1 = {3.0, 3.5, 4.0, 4.5, 5.0} for
different dependence measure combinations, where the DGP is a Clayton Copula with
parameter α (more mass on lower tail).

quantile dependence measures (m̂ij
2 ) again yields therefore better power properties. Yet,

the dependence vector settings m̂ij
1 and m̂ij

5 , where Spearman’s rank correlation is included,

imply again better power properties of the test. This can be explained due to the fact that

quantile dependencies suffer from a poor data amount in the tails, i.e. for a data size of

T = 1000 we consider only 100 or 50 data points by choosing the 0.1/0.9 or 0.05/0.95 quantiles.

Consequently, a larger data size is required to gain better power properties, compared to

the usage of Spearman’s rho, where the final rank correlation coefficient is computed out

of the whole data information and is a global dependence measure. Before taking a look

at the simulation results one would expect that the usage of more dependence measures

within the dependence measure vector increases the power of the test (5.3). However, it

is not the case for the setting m̂ij
1 . It seems that the dependence vector compounded of a

mixture of quantile dependencies and rank correlation inherits the bad power properties of

the quantile dependencies and the better performance, compared to the settings m̂ij
2 , m̂

ij
3 and

m̂ij
4 , is mainly driven by the usage of the rank correlation coefficient.

However, the usage of various dependence settings may give us different break point estimates,

which can be seen in the empirical application, cf. Section 5.3. In times of clearer structural

break, i.e. periods which can be assigned to events that effected the financial market, one
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can be more sure whether the detected break is plausible if several dependence settings result

in the same break event. Another possibility is to divide the data in sensible subsets and

separately test for structural breaks using different combinations of the considered dependence

measures. For example, one could split the data in different industry sectors. To test for

equality of two found break points use the confidence interval procedure explained in the

previous Section.

Table 15: Size and Power Gumbel Copula

T = 1000, N = 10 θ0 = 2.0 θ1 = 2.2 θ1 = 2.4 θ1 = 2.6 θ1 = 2.8 θ1 = 3.0

m̂ij
1 0.0399 0.1628 0.4352 0.8671 0.9668 1.0000

m̂ij
2 0.0365 0.1329 0.3654 0.7874 0.9003 0.9834

m̂ij
3 0.0399 0.1229 0.2492 0.4618 0.5648 0.6678

m̂ij
4 0.0565 0.3522 0.6445 0.8571 0.9402 0.9734

m̂ij
5 0.0532 0.5282 0.9435 1.0000 1.0000 1.0000

Note: Table 15 reports the rejection rate for θ0 = 2.0 and θ1 = {2.2, 2.4, 2.6, 2.8, 3.0} for
different dependence measure combinations, where the DGP is a Gumbel Copula with
parameter α (more mass on upper tail).

In the following we include a small simulation study for the confidence interval procedure,

proposed in Section 5.1, using the dependence measure settings m̂ij
1 and m̂ij

3 , where the break

estimates of these settings are later compared in the full sample testing in the empirical

application. We simulate a residual data set, using the DGP in (5.6) with λ = −0.5, where

we constructed a break at T
2 , i.e. s0 = 0.5. We fix the cross sectional dimension to N = 10

and vary the sample size T = {500, 1000, 1500} and the break size by θ1 = {1.5, 2.0, 2.5}. For

all simulations we use B = 500 bootstrap replications. We present the coverage probability

P (0.5 ∈ K̂1), the coverage probability P (0.5 ∈ K̂3) and the probability that the constructed

break at s0 = 0.5 lies in the intersection of K̂1 ∩ K̂3, i.e. P (0.5 ∈ K̂1 ∩ K̂3), using again

301 Monte-Carlo simulations and a confidence level of 5 percent. Table 16 reveals that the

96



coverage probability of K̂1 and K̂3 tends to 1− α = 0.95 for increasing sample size and break

size. The probability that the actual break at s0 = 0.5 lies in the interval K̂1 ∩ K̂3 tends to

(1− α)2. Note, that the practitioner can control the size level α∗ of the common break test

by considering (1− α)2 = 1− α∗.

Table 16: Coverage Probability same Breakpoints

(
P (0.5 ∈ K̂1) P (0.5 ∈ K̂3) P (0.5 ∈ K̂1 ∩ K̂3)

)
B = 500, N = 10 T = 500 T = 1000 T = 1500
θ1 = 1.5 (0.80 0.78 0.64) (0.93 0.87 0.81) (0.94 0.90 0.84)
θ1 = 2.0 (0.91 0.88 0.80) (0.95 0.93 0.89) (0.95 0.92 0.89)
θ1 = 2.5 (0.93 0.94 0.88) (0.93 0.94 0.88) (0.95 0.95 0.91)

Note: Table 16 reports the coverage probability of 301 simulated confidence intervals K̂1 and
K̂3 for a break constructed at 0.5 such as the coverage probability of 0.5 ∈ K̂1 ∩ K̂3 where
the factor copula model (5.6) is used as the DGP and α = 0.05.

Next, we simulate two residual data sets, using again the DGP in (5.6), where we constructed

break points, lying nearby at s(1)
0 = 6

14 = 0.429 in the first set and a break at s(2)
0 = 7

14 = 0.5

in the second set. Note, this simulation setting mimics the situation where we split our

sample in subsets. For all simulations we consider the same scenarios as before and we

present the coverage probability P (0.429 ∈ K̂1), the coverage probability P (0.5 ∈ K̂3) and

the probability that both constructed breaks 0.429 and 0.5 lie in the intersection of K̂1 ∩ K̂3,

i.e. P (0.429, 0.5 ∈ K̂1 ∩ K̂3). The results can be seen in Table 17.

Here, the coverage probability of K̂1 for a break at 0.429 and K̂3 for a break at 0.5 tends to

1− α = 0.95 for increasing sample size and break size, where the results of P (0.5 ∈ K̂3) are

obviously the same as in Table 16. On the other hand, the probability that the two break

points 0.429 and 0.5 lie in the interval K̂1 ∩ K̂3 tends to zero for increasing sample size and

break steps, where the convergence is much faster in the break step θ1. Note that for example
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Table 17: Coverage Probability different Breakpoints

(
P (0.429 ∈ K̂1) P (0.5 ∈ K̂3) P (0.429, 0.5 ∈ K̂1 ∩ K̂3)

)
B = 500, N = 10 T = 500 T = 1000 T = 1500
θ1 = 1.5 (0.81 0.78 0.46) (0.91 0.87 0.52) (0.92 0.90 0.31)
θ1 = 2.0 (0.93 0.88 0.21) (0.95 0.93 0.01) (0.96 0.92 0.00)
θ1 = 2.5 (0.95 0.94 0.01) (0.95 0.94 0.00) (0.95 0.95 0.00)

Note: Table 17 reports the coverage probability of 301 simulated confidence intervals K̂1 and
K̂3 for a break constructed at 0.5 and 0.429 such as the coverage probability of 0.429, 0.5 ∈
K̂1 ∩ K̂3 where the factor copula model (5.6) is used as the DGP and α = 0.05.

a break step of θ1 = 1.5 implies a rank correlation change before and after the break of 0.17,

where a break change of θ1 = 2.0 implies a rank correlation change of 0.25. Thus we conclude,

that our procedure to test for equality of two estimated break point locations results in a

reasonable sized and powered testing procedure, if the break steps and the sample size are

high enough.

5.3. Empirical Application

To analyze the applicability of the proposed test we apply the test to the same financial data

set as in Section 4 and determine structural breaks in the vector of dependence measures.

We are interested in the similarity and diversity of the estimated break point locations using

different dependence measure settings analyzed in the simulation Section 5.2. For a better

comparison of similar break dates we use the confidence interval procedure presented in

Section 5.1 and analyzed in Section 5.2. Again we have a sample size of T = 2980 and cross

sectional dimension N = 10. By taking a look at the time evolution of the log-returns of the

portfolio in Figure 5.13, one can immediately see the strong fluctuations between 2002-2003,

2007-2008 and 2011-2012 in nearly all assets, indicating a joint behavior during these periods

within the portfolio. To get a better understanding of the joint dependence behavior we

calculated the pairwise averaged Spearman’s rank correlation coefficient in a rolling window
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of size 150, the result can be seen in Figure 5.14.

Figure 5.13: Log-returns of the Portfolio

Note: Daily log-returns of our considered portfolio between 29.01.2002 to 01.07.2013.

The strongest joint fluctuations and increase of the correlation coefficient appear between the

time span of the heights of the last financial crisis between the beginning of 2007 and the

end of 2008. The other strong fluctuations and increase of the correlation can be explained
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Figure 5.14: Rolling Window Spearman’s Rank Correlation Coefficient Approach 1)

Note: Pairwise averaged Spearman’s rank correlation coefficient in a rolling window of size
150 with averaged estimated break point location (vertical line) at 17.07.2007 using approach
1) as well as the estimated rank correlation coefficient from break to break (thick blue line).

by the downturn in stock prices in stock exchanges across the United States, Canada, Asia

and Europe in October 2002 and the euro crisis peek in 2011.

Due to the fact that we consider residual data, we first have to estimate a time series model

for each log-return series i = 1, . . . , N . Therefore we use an AR(1)-GARCH(1,1) model to

model the conditional mean and variance

ri,t = αi + βiri,t−1 + σi,tηit,

σ2
it = γi0 + γi1σ

2
i,t−1 + γi2σ

2
i,t−1η

2
i,t−1,

for t = 1, . . . , 2980.
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Using the estimated parameters we are able to compute the standardized residuals. Note

that the marginal distributions of the residuals are estimated using the empirical CDF. We

apply the test to the residual data considering the five dependence vector settings from the

simulation section. We consider two approaches, where approach 2) can be applied to test

for multiple breaks:

1) We apply the test to the pre-determined residual data considering information between

1 and T .

2) We apply the test in a rolling window setting where we consider periods of size 400. If

a breakpoint is detected in the period [t1, (t1 − 1) + 400] we estimate the break point

location k̂ and [t1 + 1, t1 + 400] is the next considered period, where t1 = k̂. If no

break point is detected consider the next time step t1 + 1. We start the procedure by

setting t1 = 1 and terminate the procedure if t1 + 400 > T . The marginal models are

re-estimated for every considered period.

The break detection results for approach 1) can be found in Table 18 and Figure 5.14 where

the results for approach 2) can be found in Table 19 and Figure 5.15. First we take a look

Table 18: List of found Breakpoints Approach 1)

m̂ij
1 m̂ij

2 m̂ij
3 m̂ij

4 m̂ij
5 avg

ŝaT 09.07.2007 09.07.2007 08.08.2007 09.07.2007 09.07.2007 17.07.2007

K̂−a 21.12.2006 31.08.2006 07.03.2006 30.03.2006 22.02.2007
K̂+
a 25.10.2007 22.11.2007 20.06.2008 28.02.2008 18.10.2007

Note: Table 18 reports the found break points and confidence intervals [K̂−a ,K̂+
a ] for the five

dependence vector setting within the test using approach 1) such as the averaged break point
location.

at the results for approach 1), here nearly all dependence settings found the same break at
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09.07.2007 (transformed to the uniform interval ŝ1 = 0.476) except the setting choosing the

upper quantiles, here the break is found close by at 08.08.2007 (transformed to the uniform

interval ŝ3 = 0.484). It seems obvious that the different estimated break point also belongs to

the other four break events, which can be explained by the last financial crisis. Nevertheless

we check the suspicion using the confidence interval procedure from Section 5.1 with the

settings m̂ij
1 and m̂ij

3 . We find that the two estimated break point locations ŝ1 = 0.476 and

ŝ3 = 0.484 lie in the intersection of both confidence intervals and thus conclude that the

estimated break point locations belong to the same break event. As we will see by using

approach 2), there might be more break point locations, but approach 1) gives us the most

significant break in our data set. By taking a look at Figure 5.14, where we plotted the

pairwise averaged Spearman’s rank correlation coefficient in a rolling window of size 150, we

see a strong increase of the rank correlation coefficient after the break (indicated by the black

line) from 0.31 up to 0.44 (indicated by the thick blue line), where the overall maximum

change of the rolling window estimates is even higher between 0.27 and 0.49.

Table 19: List of found Breakpoints Approach 2)

year m̂ij
1 m̂ij

2 m̂ij
3 m̂ij

4 m̂ij
5 avg

2002/2003 30.12.2002 08.01.2003 20.12.2002 23.12.2002 27.12.2002
2004 19.02.2004 26.02.2004 05.03.2004 04.03.2004 01.03.2004
2005
2006 11.05.2006 11.05.2006
2007 24.07.2007 11.07.2007 17.07.2007 16.02.2007 09.07.2007 15.06.2007
2008 16.07.2008 08.08.2008 16.07.2008 17.07.2008 23.07.2008
2009
2010 21.04.2010 15.06.2010 29.04.2010 10.06.2010 19.05.2010
2011 28.06.2011 28.06.2011 21.09.2011 14.06.2011 20.05.2011 05.07.2011
2012 14.08.2012 15.08.2012

Note: Table 19 reports the found break points for the five dependence vector setting within
the test using approach 2) as well as the averaged break point locations.
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Next, we take a look at the results for approach 2), where we tested the whole period

sequentially in a rolling window of size 400, where we found some more breaks. Note that

an obvious issue with this procedure is its multiple testing nature. In particular one should

adapt the confidence levels accordingly and be aware of this when interpreting testing results.

By taking a look at the breakpoints (cf. Table 19) most detections can be explained by well

known financial market crashes from the last twenty years. First as already mentioned the

downturn in stock prices in stock exchanges across the United States, Canada, Asia and

Europe in October 2002, the start of the Iraqi war 2003/2004, start of the last financial

crisis in 2007 as well as the bankruptcy of Lehman Brother’s in 2008 and last the Euro

crisis starting at the end of 2009 with its height in 2011. The break point estimates of the

dependence settings m̂ij
1 , m̂

ij
2 and m̂ij

3 seem to be really closely related and belong to the

above mentioned events, where the break event in 2004 seems not to be significant for the

upper quantile setting. In contrast to the simulation study, where the setting m̂ij
5 gains the

highest power over all other settings, the test with the setting m̂ij
5 detects only four significant

break dates at 2002, 2004, 2007 and 2011, which are overall the most significant. A slightly

different break result is given by the lower quantile setting m̂ij
4 , where the tested periods in

2002/2003 seem not to be significant. On the other hand, breaks are detected in the mid of

2006 and 2012.

One advantage of the use of different dependence settings is that we are able to conclude

that a detected break point is in a way more relevant in specific regions of the distribution, if

it is detected by more than one setting. The break events in 2002, 2004, 2007, 2008, 2010

and 2011 are such break points and the breaks in 2002, 2004, 2008 and 2010 are detected

by four settings where the break events in 2007 and 2011 are detected by even five settings,

corresponding to the most significant breaks and can be explained by the pre-mentioned well

known financial market crashes. The detected break point in 2007 is also in line with the

detected break event using approach 1), corresponding to the highest dependence change in
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the considered testing period. On the other hand we also get a different break picture as

in the case of using the setting m̂ij
4 , motivating the usage of flexible dependence measure

settings for a clearer and wider interpretation of the results. Due to the fact that the found

break dates correspond over all to the same break events and being really close to each other

in the most cases, we average the break dates over all settings (cf. last column in Table 19).

Figure 5.15: Rolling Window Spearman’s Rank Correlation Coefficient Approach 2)

Note: Pairwise averaged Spearman’s rank correlation coefficient in a rolling window of size
150 and averaged break point locations (averaged over five similar detected break points
(black line), averaged over four similar detected break points (red line) and single detected
break points (green line)) using approach 2) such as the estimated rank correlation coefficient
from break to break (thick blue line).

We again plot the pairwise averaged Spearman’s rank correlation coefficient in a rolling

window and mark the averaged break point estimates together with the rank correlation

estimates from break to break. Here five similar averaged break dates marked with the black
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line, four averaged detected break dates marked with the red line and single detected break

points corresponding to the green line. The horizontal blue lines correspond to the values of

the estimated rank correlation coefficient from break to break, see Figure 5.15. Noticeable

are the high jumps of the rank correlation in the periods of the most significant breaks

in 2007 and 2011, where the correlation jumps from 0.35 to 0.45 (2007) and 0.42 to 0.51

(2011) considering break to break estimates. Note that the overall increase, considering the

rolling window rank correlation estimates, is even higher. Furthermore the upper quantile

dependence measures increase strongly here (cf. Figure 5.16).

Figure 5.16: Dependence Measure Estimates from Break to Break

Note: Dependence measure estimates (Spearman’s rank correlation and (0.05, 0.1, 0.9, 0.95)-
quantile dependencies) from break to break.

In general, nearly all detected break events correspond in an increase of the considered

dependence measures (cf. Figure 5.16), except the first detected break in 2002/2003, where
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the peak in this period of nearly all dependencies is reached. Also in the time span after the

last financial crisis, we see a decrease of the rank correlation and the 0.9-quantile dependence.

However, we see an overall increase of the dependencies within the portfolio. From a portfolio

manager point of view the increase of the dependencies within our considered portfolio is

disadvantageous and one is rather interested to decrease the dependencies by changing the

portfolio to lower the risk of losses, which is known as the diversification effect.

Lastly, we are interested in the break behavior if we divide our considered portfolio in subsets

of assets. For this we split our portfolio in two groups of five assets, where we collected the

assets with the highest unconditional variance in the first group. For the group with the

highest variance we consider Cititgroup, Barclays, Royal Bank, Credit Agricole and Bank of

America (Group 1), where the other group consists of HSBC Holdings, UBS-R, BNP Paribas,

HSBC Holdings (ORD) (Group 2). We apply the test separately for each group of assets,

considering the five dependence vector settings, where we only consider approach 1). Table

20 shows the estimated break point locations and confidence intervals for Group 1 (upper

panel) and Group 2 (lower panel).

Table 20: List of found Breakpoints Approach 1) splitted Sample

Group 1 m̂ij
1 m̂ij

2 m̂ij
3 m̂ij

4 m̂ij
5

ŝaT 09.07.2007 16.02.2007 26.11.2007 16.02.2007 09.07.2007

K̂−a 24.11.2006 22.02.2006 09.12.2005 23.12.2005 14.03.2007
K̂+
a 27.09.2007 25.05.2007 05.12.2008 06.07.2007 26.09.2007

Group 2 m̂ij
1 m̂ij

2 m̂ij
3 m̂ij

4 m̂ij
5

ŝaT 09.07.2007 09.07.2007 31.05.2006

K̂−a 23.11.2005 18.02.2005 13.07.2004
K̂+
a 19.06.2008 10.10.2008 14.03.2007

Note: Table 20 reports the found break points and confidence intervals [K̂−a ,K̂+
a ] for Group 1

(upper panel) and Group 2 (lower panel).
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Using the first group data all dependence measure settings find a significant break at the

α = 0.05 level, whereas in the second group only the breaks of the settings m̂ij
1 , m̂

ij
2 and

m̂ij
5 are significant. The results are more varied than in Table 18. Most of the found breaks

correspond to the summer of 2007 and the same break date is detected at 09.07.2007 using

the settings m̂ij
1 , m̂ij

5 for Group 1 and m̂ij
1 , m̂ij

2 for Group 2. Considering the first group

data the settings m̂ij
2 , m̂

ij
4 find an earlier break at 16.02.2007, while the setting m̂ij

3 detects a

break at 26.11.2007. A more separated break is detected within the second group data at

31.05.2006 using the setting m̂ij
5 , where only Spearman’s rank correlation coefficient is used.

Using the common break procedure we find that the break event at 31.05.2006 is clearly

separated from the break event at 09.07.2007. The found break in 2006 may correspond to

the early beginning of the last financial crisis in the summer of 2006. Further, the break

event at 16.02.2007 is also separated to the one at the mid of 2007, whereas the separation is

not that clear.
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6. CONCLUSION AND OUTLOOK

In this work we proposed and investigated retro-perspective and online applicable monitoring

procedures to test for constant parameters in factor copula models. Further, we developed

and investigated a non parametric dependence measure test to test for constancy in a vector

of copula based dependence measures like Spearman’s rank correlation and quantile depen-

dencies.

First, we proposed a new fluctuation tests for detecting structural breaks in factor copula

models and analysed the behaviour under the null hypothesis of no parameter change. This is

the work presented in Section 3, which is based on the published paper ”Testing for structural

Breaks in Factor Copulas“, Manner et al. (2019). Due to the discontinuity of the SMM

objective function this requires additional effort to derive a functional limit theorem for the

model parameters. General approaches like Taylor expansions of first or second order are not

applicable here. Further we proposed a non-parametric retrospective test to test for a constant

vector of dependence measures. The presence of nuisance parameters in the asymptotic

distribution of the two proposed test statistics requires a bootstrap approximation for parts

of the asymptotic distribution. The proposed tests show good size and power properties in

finite samples. An empirical application to a set of 32 stock returns indicates the presence

of a breakpoint early in 2008, before the Lehman Brothers bankruptcy. Dependence has

increased after this break providing evidence of a diversification breakdown and contagion

among different stocks.

To apply the test in real time we further developed a new monitoring procedure for detect-

ing structural breaks in factor copula models and analysed the behaviour under the null

hypothesis of no change. Additionally, we extended the proposed non-parametric dependence

measure test to online applicability. This is the work presented in Section 4, which is based

on the paper ”A Monitoring Procedure for detecting structural Breaks in Factor Copula

Models“, Manner et al. (2018). Again, the presence of nuisance parameters in the asymptotic
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distribution of the two proposed detectors requires a bootstrap approximation for parts of the

asymptotic distribution. The case of detecting multiple breaks is also treated. In simulations,

the proposed procedures show good size and power properties in single and multiple break

settings in finite samples. An empirical application to a set of 10 stock returns of large

financial firms indicates the presence of break points around July 2007 and August 2008,

time points of the heights of the last financial crisis. The proposed online Value-at-Risk

procedure shows the usefulness of the monitoring procedure in portfolio management. Here,

we simulate residual data from the assumed factor copula model and transform the simulated

returns in a second step to simulated log-returns, using the estimated time series models.

After transforming the log-returns into general returns and a reasonable aggregation, we

can calculate the VaR for the next time step. The proposed monitoring procedures gives us

information about the periods of data we should use for our residual simulations. The real

data example showed the usefulness to allow for structural breaks for the VaR evaluation

especially in the time span of the last financial crisis. The presented works in Section 3 and 4

are joint works with Hans Manner and Dominik Wied. In these two sections we focused on

the parametric test to test for a constant parameter vector of the considered factor copula

model. In Section 5 we wanted to focus on the non-parametric dependence measure vector

test first proposed in Section 3, which is based on the paper ”On the Applicability of a

nonparametric Test for constant Copula-based Dependence Measures: Dating Breakpoints

and analyzing different Dependence Measure Sets“, Stark (2018).

We investigated the test for a constant copula based dependence measure vector, considering

pairwise averaged Spearman’s rho and quantile dependencies in equidependence settings.

Again, the asymptotic null distribution is not known in closed form and therefore estimated

by an i.i.d. bootstrap procedure. A size and power anaylsis, using different dependence

measure settings for different simulated fat and skewed distributed data, is considered. Here

the best power properties are gained by considering solely Spearman’s rank correlation and a
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combination of Spearman’s rank correlation and quantile dependencies, where the simple

setting using only the rank correlation coefficient works best. The settings using only upper

or lower quantile dependencies suffer from poor power properties. Further we found that the

use of upper quantile dependencies results in better power properties at present strongly left

skewed data compared to lower quantile dependencies and on the other way around lower

quantile dependencies result in better power properties by considering right skewed data

compared to the usage of upper quantile dependencies. Considering jointly lower and upper

quantile dependencies always results in better power properties as the separate considerations.

The test is also applied to a real data application to show the usefulness of the flexibility

by the choice of different dependence measure settings. We use historical data of ten large

companies during the last financial crisis from 2002 to the mid of 2013. One advantage

of the use of different dependence settings is that we are able to conclude that a detected

break point is in a way more significant than another, if it is detected by more than one

setting. On the other hand we also get a different break picture, motivating the usage of

flexible dependence measure settings and the combination of rank correlation and quantile

dependencies. Further we propose a heuristic procedure to be able to make a statement for

equality of two estimated break point locations, transformed to the uniform interval, using

different dependence vector settings.

Inspired by the motivation that dependence within a portfolio usually increases in times

of financial crisis and the well known diversification strategy to optimize the portfolio, the

tests can be used to detect and quantify contagion between different financial markets or to

construct optimal portfolios in portfolio management.

In future research, our work could be extended in several interesting directions. First, one

could extend the known model of factor copulas with time-varying exogenous regressors and

discuss estimation methods. To be precise, the factor loadings should depend on a known
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function of observable regressors and a parameter vector κ. For example, in the context of

returns on risky securities, regressors could be macroeconomic variables such as GDP or the

central bank’s interest rate. Also time-delayed market returns, volatility measures (such as

the VIX) or deterministic trigonometric functions may also be useful. Challenging will be the

estimation of the time-independent parameter vector κ. For this we will investigate to what

extend the SMM procedure can be applied in this context. A theoretical demanding task will

be to derive the consistency and asymptotic behavior of the derived parameter estimator κ̂.

An interesting question in this connection will be, how the regressors change the shape of the

asymptotic distribution.

In a next step the new theoretical founding can be used to extend the test and monitoring

procedures from Section 3 and Section 4 to the case of time-varying exogenous regressors

and test for structural breaks in the parameter vector κ. Asymptotic distribution of the

considered test statistic has to be derived and discussed. An extensive simulation study and

empirical application should conclude the findings.

So far, factor copulas have always been considered to model cross sectional dependency.

Another approach could be to model dependencies over time. We could examine how many

time lags should be considered and which assumptions are required on the parameters. The

next step would be the development of a factor copula VAR model, which models dependence

of time and cross section.

111



7. APPENDIX

7.1. Proofs

This section contains all the proofs needed to proof Theorem 4 and Theorem 5.

7.1.1. Proof Theorem 4. Theorem 4 is proved in different steps. First, we provide a consistency

result in Lemma 6. Then, Theorem 8, which is based at Theorem 7, yields a general

convergence result for SMM estimators. Lemma 10, which is based at Lemma 9 provides

stochastic equicontinuity for the objective function in a general SMM setting. Finally, Lemma

11 yields distribution results for the empirical moments in our specific problem. All these

results are then used for proving Theorem 4. Note, that we use the abbreviation c.s. to

indicate the usage of the Cauchy–Schwarz inequality.

Lemma 6. If θ̂T,S a.s.−→ θ0, T, S →∞, then

sup
s∈[ε,1]

‖θ̂sT,S − θ0‖
p−→ 0, ∀ε > 0, T, S →∞.

Proof. Let δ > 0 , θ̂T,S a.s.−→ θ0 and choose any ε > 0

⇒ ∀γ > 0 there exists T ∗0 , S∗0 ∈ N+, such that for all T ≥ T ∗0 , S ≥ S∗0 , ‖θ̂T,S − θ0‖ < γ

⇒ there exists T0, S0 ∈ N+ such that for all T ≥ T0, S ≥ S0, ‖θ̂T,S − θ0‖ < δ

Choose T, S with εT ≥ T0 ⇔ T ≥ T0
ε
, S ≥ S0, ∀ε > 0 (in all cases T ≥ T0)

⇒ ∀s ∈ [ε, 1] : ‖θ̂sT,S − θ0‖ < δ, for all T ≥ T0
ε
, S ≥ S0, ∀ε > 0

⇒ sup
s∈[ε,1]

‖θ̂sT,S − θ0‖ < δ, for all T ≥ T0
ε
, S ≥ S0, ∀ε > 0

⇒ sup
s∈[ε,1]

‖θ̂sT,S − θ0‖
p−→ 0, ∀ε > 0, T, S →∞.

Theorem 7. Under the null hypothesis H0 : θ1 = θ2 = · · · = θT , suppose that

∀s ∈ [ε, 1], ε > 0 QsT,S(θ̂sT,S) = sup
θ∈Θ

QsT,S(θ)− o∗p((s2T )−1), sup
s∈[ε,1)

‖θ̂sT,S − θ0‖
p−→ 0,

T, S →∞ and:

i) Q0(θ) is maximized on θ0(= θ1 = · · · = θT )
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ii) θ0(= θ1 = · · · = θT ) is an interior point of Θ

iii) Q0(θ) is twice differentiable at θ0 with non singular second derivative H = ∇θθQ0(θ0)

iv) s
√
TD̂sT (θ0) d=⇒ A(s)

v) ∀δ → 0 sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

∣∣∣∣ R̂sT (θ)
1+s
√
T‖θ−θ0‖

∣∣∣∣ p−→ 0

with R̂sT = s
√
T [QsT,S(θ)−QsT,S(θ0)−D̂sT (θ−θ0)−(Q0(θ)−Q0(θ0))]

‖θ−θ0‖

⇒ s
√
T (θ̂sT,S − θ0) d=⇒ A∗(s) ∀s ∈ [ε, 1], ε > 0 and A∗(s) = H−1A(s),

where A(s) is a continuous Gaussian process.

Proof. For simplification set Q := Q0 and Q̂ := QsT,S. We first show that s
√
T‖θ̂sT,S − θ0‖ =

Op(1). With a Taylor-expansion of Q(θ) around θ0 and knowing ∇θQ(θ0) = 0, due to

condition i), we receive Q(θ) = Q(θ0) + 1
2(θ − θ0)′H(θ − θ0) + o(‖θ − θ0‖3). We also know

from condition i) and iii), that ∃C > 0 : (θ − θ0)′H(θ − θ0) + o(‖θ − θ0‖3) ≤ −C‖θ − θ0‖2

⇒ Q(θ̂sT,S) ≤ Q(θ0)− C‖θ̂sT,S − θ0‖2 and we obtain

0 = Q̂(θ̂sT,S)− Q̂(θ0) + o∗p((s2T )−1)

= Q(θ̂sT,S)−Q(θ0) + D̂′sT (θ̂sT,S − θ0) + 1
s
√
T
‖θ̂sT,S − θ0‖R̂sT (θ̂sT,S) + o∗p((s2T )−1)

c.s.
≤ −C‖θ̂sT,S − θ0‖2 + ‖D̂′sT‖‖θ̂sT,S − θ0‖

+ ‖θ̂sT,S − θ0‖(1 + s
√
T‖θ̂sT,S − θ0‖)op(s−1T−

1
2 ) + o∗p((s2T )−1)

= −(C + op(1))‖θ̂sT,S − θ0‖2 + ‖θ̂sT,S − θ0‖(‖D̂′sT‖+ op(s−1T−
1
2 )) + o∗p((s2T )−1)

≤ −(C + op(1))‖θ̂sT,S − θ0‖2 + ‖θ̂sT,S − θ0‖Op(s−1T−
1
2 ) + o∗p((s2T )−1)

⇒ ‖θ̂sT,S − θ0‖2 ≤ ‖θ̂sT,S − θ0‖Op(s−1T−
1
2 ) + o∗p((s2T )−1), ∀s ∈ [ε, 1]. (1)
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Consider

(
‖θ̂sT,S − θ0‖+Op(s−1T−

1
2 )
)2

= ‖θ̂sT,S − θ0‖2 + ‖θ̂sT,S − θ0‖Op(s−1T−
1
2 ) +Op(s−2T−1)

(1)
≤ ‖θ̂sT,S − θ0‖Op(s−1T−

1
2 ) + o∗p((s2T )−1) +Op(s−2T−1)

≤ Op(s−2T−1)

⇒
∣∣∣‖θ̂sT,S − θ0‖+Op(s−1T−

1
2 )
∣∣∣ ≤ Op(s−1T−

1
2 ), ∀s ∈ [ε, 1] (2)

and we get

‖θ̂sT,S − θ0‖ = |‖θ̂sT,S − θ0‖+Op(s−1T−
1
2 )−Op(s−1T−

1
2 )|

c.s.
≤ |‖θ̂sT,S − θ0‖+Op(s−1T−

1
2 )|+ | −Op(s−1T−

1
2 )|

(2)
≤ Op(s−1T−

1
2 )

⇒ s
√
T‖θ̂sT,S − θ0‖ = Op(1), ∀s ∈ [ε, 1]. (3)

Note that for the numerator of the remainder Term R̂sT , without the factor s
√
T , we get

with condition v) the scale

op(1)(1 + s
√
T‖θ̂sT,S − θ0‖)‖θ̂sT,S − θ0‖

1
s
√
T

=op

‖θ̂sT,S − θ0‖
s
√
T

+ ‖θ̂sT,S − θ0‖2


(3)=op

(
Op((s2T )−1 +Op((s2T )−1)

)
=op((s2T )−1). (4)

Now we can show the asymptotic behavior of s
√
T (θ̂sT,S−θ0). First let θ̃sT,S = θ0−H−1D̂sT ⇒
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D̂sT = −H(θ̃sT,S − θ0) (5) be the maximum of the approximation

Q̂(θ) ≈Q̂(θ0) + D̂′sT (θ − θ0) +Q(θ)−Q(θ0)

≈Q̂(θ0) + D̂′sT (θ − θ0)′ + 1
2(θ − θ0)H(θ − θ0) (6)

and by construction s
√
T -consistent.

From the previous result (4), we know the rate of convergence of the remainder term of the

approximation in (6). So we receive

2[Q̂(θ̂sT,S)− Q̂(θ0)] = 2D̂′sT (θ̂sT,S − θ0) + (θ̂sT,S − θ0)′H(θ̂sT,S − θ0) + op((s2T )−1)
(5)= (θ̂sT,S − θ0)′H(θ̂sT,S − θ0)− 2(θ̃sT,S − θ0)′H(θ̂sT,S − θ0) + op((s2T )−1)

and analogously for θ̃sT,S

2[Q̂(θ̃sT,S)− Q̂(θ0)] = 2D̂′sT (θ̃sT,S − θ0) + (θ̃sT,S − θ0)′H(θ̃sT,S − θ0) + op((s2T )−1)
(5)= −(θ̃sT,S − θ0)′H(θ̃sT,S − θ0) + op((s2T )−1).

Because θ̂sT,S, θ̃sT,S ∈ Θ, the rate of convergence of the remainder terms are known and
H = H(θ0) is negative definite and non singular

⇒ o∗p((s2T )−1) =2[Q̂(θ̂sT,S)− Q̂(θ0)]− 2[Q̂(θ̃sT,S)− Q̂(θ0)]

=(θ̂sT,S − θ0)′H(θ̂sT,S − θ0)− 2(θ̃sT,S − θ0)′H(θ̂sT,S − θ0) + (θ̃sT,S − θ0)′H(θ̃sT,S − θ0)

=(θ̂sT,S − θ̃sT,S)′H(θ̂sT,S − θ̃sT,S) ≤ −C‖θ̂sT,S − θ̃sT,S‖2

⇒s
√
T‖θ̂sT,S − θ̃sT,S‖ = o∗p(1). (7)
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So we have ∀s ∈ [ε, 1], ε > 0

‖s
√
T (θ̂sT,S − θ0)− (−s

√
TH−1D̂sT )‖

(5)=‖s
√
T (θ̂sT,S − θ0)− s

√
T (θ̃sT,S − θ0)‖

=‖s
√
T (θ̂sT,S − θ̃sT,S)‖

=s
√
T‖(θ̂sT,S − θ̃sT,S)‖ (7)= o∗p(1)

⇒ s
√
T (θ̂sT,S − θ0) p=⇒ −H−1s

√
TD̂sT

d=⇒
iv)
−H−1A(s) = A∗(s).

Theorem 8. Under the null hypothesis H0 : θ1 = θ2 = · · · = θT , suppose that

∀s ∈ [ε, 1], ε > 0 : gsT,S(θ̂sT,S)′ŴsTgsT,S(θ̂sT,S) = inf
θ∈Θ

gsT,S(θ)′ŴsTgsT,S(θ) + o∗p((s2T )−1),

sup
s∈[ε,1]

‖θ̂sT,S − θ0‖
p−→ 0, sup

s∈[ε,1]
‖ŴsT −W‖

p−→ 0, T, S →∞ and:

i) There is a θ0(= θ1 = · · · = θT ) such that g0(θ0) = 0

ii) θ0(= θ1 = · · · = θT ) is an interior point of Θ

iii) g0(θ) is differentiable at θ0 with derivative G such that G′WG is non singular

iv) s
√
TgsT,S(θ0) d=⇒ A(s)

v) ∀δ → 0 sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s
√
T
‖gsT,S(θ)−gsT,S(θ0)−g0(θ)‖

1+s
√
T‖θ−θ0‖

p−→ 0

⇒ s
√
T (θ̂sT,S − θ0) d=⇒ A∗(s) ∀s ∈ [ε, 1], ε > 0

and A∗(s) = (G′WG)−1G′WA(s),

where A(s) is a continuous Gaussian process.

Proof. Theorem 8 follows by verifying the conditions of Theorem 7. Set Q̂(θ) := QsT (θ) :=

−1
2 ĝ(θ)

′ŴsT ĝ(θ) + ∆̂sT (θ) with ĝ(θ) := gsT,S(θ) and Q(θ) := Q0(θ) := −1
2g(θ)

′Wg(θ) with
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g(θ) := g0(θ). With a Taylor-expansion of g(θ) around θ0

g(θ) = g(θ0) +G(θ − θ0) + o(‖θ − θ0‖2) = G(θ − θ0) + o(‖θ − θ0‖2) (8),

we obtain

Q(θ) = −1
2g(θ)′Wg(θ) (8)= −1

2[G(θ − θ0) + o(‖θ − θ0‖2)]′W [G(θ − θ0) + o(‖θ − θ0‖2)]

and comparing this with a Taylor-expansion of Q(θ) around θ0

Q(θ) = Q(θ0) + 1
2(θ − θ0)′H(θ − θ0) + o(‖θ − θ0‖3),

noting that Q(θ) is maximized at θ0, it follows H(θ0) = −G′WG, where H is a non singular

negative definite matrix. Because H is by construction a nonsingular negative definite matrix,

∃ neighborhood of θ0, where Q(θ) has a unique maximum at θ0 with Q(θ0) = 0.

⇒ Conditions i), ii) and iii) of Theorem 7 are satisfied. By choosing D̂sT = −G′ŴsTgsT,S(θ0)

it follows, ∀s ∈ [ε, 1],

s
√
TD̂sT = −s

√
TG′ŴsTgsT,S(θ0) d=⇒

iv)
−G′WA(s),

thus condition iv) of Theorem 7 is fulfilled. Now we define

ε̂(θ) := ĝ(θ)− ĝ(θ0)− g(θ)
1 + s

√
T‖θ − θ0‖

⇔ ĝ(θ) = [1 + s
√
T‖θ − θ0‖]ε̂(θ) + ĝ(θ0) + g(θ) (9)

and we get

ĝ(θ)′ŴsT ĝ(θ) (9)=[1 + 2s
√
T‖θ − θ0‖+ s2T‖θ − θ0‖2]ε̂(θ)′ŴsT ε̂(θ)

+g(θ)′ŴsTg(θ) + ĝ(θ0)′ŴsT ĝ(θ0) + 2g(θ)′ŴsT ĝ(θ0)

+2[g(θ) + ĝ(θ0)]′ŴsT ε̂(θ)[1 + s
√
T‖θ − θ0‖] (10)
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Next we define the remainder term of Q̂(θ)

Q̂(θ) = −1
2 ĝ(θ)′ŴsT ĝ(θ) + ∆̂sT (θ) = −1

2 ĝ(θ)′ŴsT ĝ(θ) + 1
2 ε̂(θ)

′ŴsT ε̂(θ) + ĝ(θ0)′ŴsT ε̂(θ).

The remainder term is just chosen in this way, that Q̂(θ) is consistent with −1
2 ĝ(θ)′ŴsT ĝ(θ),

which is shown in the next window and that we get the right rate of convergence, when checking

condition v) of Theorem 7. First notice that by condition v) ∀δ > 0 sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

‖ε̂(θ)‖ =

op(s−1T−
1
2 ), furthermore

sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

‖ĝ(θ0)‖ = op(s−1T−
1
2 ) , sup

s∈[ε,1]
sup

‖θ−θ0‖<δ
‖ŴsT‖ = Op(1) and

‖g(θ)−g(θ0)‖
‖θ−θ0‖ = Op(1) (11).

⇒∀δ > 0 sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

∣∣∣∣Q̂(θ)− (−1
2 ĝ(θ)′ŴsT ĝ(θ))

∣∣∣∣
= sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

∣∣∣∣12 ε̂(θ)′ŴsT ε̂(θ) + ĝ(θ0)′ŴsT ε̂(θ)
∣∣∣∣

c.s.
≤ sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

1
2‖ε̂(θ)‖‖ŴsT‖‖ε̂(θ)‖+ ‖ĝ(θ0)‖‖ŴsT‖‖ε̂(θ)‖

(11)= Op(1)(op(s−2T−1) + op(s−2T−1)) = op(s−2T−1). (12)

With the consistency of Q̂(θ) we can show the initial condition of Theorem 7

∀s ∈ [ε, 1], ε > 0 ĝ(θ̂sT,S)′ŴsT ĝ(θ̂sT,S) = inf
θ∈Θ

ĝ(θ)′ŴsT ĝ(θ) + o∗p((s2T )−1)

⇔∀s ∈ [ε, 1], ε > 0 − 1
2 ĝ(θ̂sT,S)′ŴsT ĝ(θ̂sT,S) = − inf

θ∈Θ

1
2 ĝ(θ)′ŴsT ĝ(θ)− o∗p((s2T )−1)

(12)⇔∀s ∈ [ε, 1], ε > 0 Q̂(θ̂sT,S) = sup
θ∈Θ

Q̂(θ)− o∗p((s2T )−1).
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Finally we have to check condition v) of Theorem 7, for that we calculate∣∣∣∣∣ R̂sT (θ)
1 + s

√
T‖θ − θ0‖

∣∣∣∣∣
=s
√
T

∣∣∣∣∣Q̂(θ)− Q̂(θ0)− D̂sT (θ − θ0)− (Q(θ)−Q(θ0))
‖θ − θ0‖(1 + s

√
T‖θ − θ0‖)

∣∣∣∣∣
=s
√
T

∣∣∣∣∣∣−
1
2 ĝ(θ)′ŴsT ĝ(θ) + 1

2 ε̂(θ)
′ŴsT ε̂(θ) + ĝ(θ0)′ŴsT ε̂(θ) + 1

2 ĝ(θ0)′ŴsT ĝ(θ0)
‖θ − θ0‖(1 + s

√
T‖θ − θ0‖)

+ −D̂sT (θ − θ0)− (Q(θ)−Q(θ0))
‖θ − θ0‖(1 + s

√
T‖θ − θ0‖)

∣∣∣∣∣ (ε̂(θ0) = 0),

inserting (10) and Q(θ) = −1
2g(θ)′Wg(θ), sorting, triangle inequality,

choosing D̂sT = −G′ŴsT ĝ(θ0) and size up the resulting terms, leads to

≤
s
√
T [2s
√
T‖θ − θ0‖+ s2T‖θ − θ0‖2]

∣∣∣ε̂(θ)′ŴsT ε̂(θ)
∣∣∣

‖θ − θ0‖(1 + s
√
T‖θ − θ0‖)

(=: r1(θ))

+
s
√
T
∣∣∣(−g(θ) +G(θ − θ0))′ŴsT ĝ(θ0)

∣∣∣
‖θ − θ0‖(1 + s

√
T‖θ − θ0‖)

(=: r2(θ))

+
s2T

∣∣∣(g(θ) + ĝ(θ0))′ŴsT ε̂(θ)
∣∣∣

1 + s
√
T‖θ − θ0‖

(=: r3(θ))

+
s
√
T
∣∣∣g(θ)′ŴsT

ˆε(θ)
∣∣∣

‖θ − θ0‖
(=: r4(θ))

+
s
√
T
∣∣∣g(θ)′[W − ŴsT ]g(θ)

∣∣∣
‖θ − θ0‖(1 + s

√
T‖θ − θ0‖)

. (=: r5(θ))

Now we have

∀δ → 0 sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

∣∣∣∣∣ R̂sT (θ)
1 + s

√
T‖θ − θ0‖

∣∣∣∣∣
≤ sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

5∑
i=1

ri(θ) = op(1)

and we just have to check the convergence of the ri(θ) terms for i ∈ {1, 2, 3, 4, 5}. For r1, we
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have

sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

r1(θ) = sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s
√
T [2s
√
T‖θ − θ0‖+ s2T‖θ − θ0‖2]

∣∣∣ε̂(θ)′ŴsT ε̂(θ)
∣∣∣

‖θ − θ0‖(1 + s
√
T‖θ − θ0‖)

c.s.
≤ sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s
√
T (s
√
T‖θ − θ0‖(2 + s

√
T‖θ − θ0‖))‖ε̂(θ)‖2‖ŴsT‖

‖θ − θ0‖(1 + s
√
T‖θ − θ0‖)

≤ sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

cs2T‖ε̂(θ)‖2‖ŴsT‖ (for a constant c > 1)

(11)= op(1).

For r2, we obtain

sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

r2(θ) = sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s
√
T
∣∣∣(−g(θ) +G(θ − θ0))′ŴsT ĝ(θ0)

∣∣∣
‖θ − θ0‖(1 + s

√
T‖θ − θ0‖)

c.s.
≤ sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s
√
To(‖θ − θ0‖2)‖ŴsT‖‖ĝ(θ0)‖

‖θ − θ0‖

≤ sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s
√
To(‖θ − θ0‖)‖ŴsT‖‖ĝ(θ0)‖

(11)= op(1).

Considering r3 yields

sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

r3(θ) = sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s2T
∣∣∣(g(θ) + ĝ(θ0))′ŴsT ε̂(θ)

∣∣∣
1 + s

√
T‖θ − θ0‖

c.s.
≤ sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

(
s2T‖ĝ(θ0)‖+ sT

1
2
‖g(θ)‖
‖θ − θ0‖

)
‖ŴsT‖‖ε̂(θ)‖

≤ sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

(
s2Top(s−1T−

1
2 ) + sT

1
2Op(1)

)
‖ŴsT‖‖ε̂(θ)‖

≤ sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

sT
1
2Op(1)‖ŴsT‖‖ε̂(θ)‖

(11)= op(1).
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For r4, it holds

sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

r4(θ) = sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s
√
T
∣∣∣g(θ)′ŴsT

ˆε(θ)
∣∣∣

‖θ − θ0‖
c.s.
≤s
√
TOp(1)‖ŴsT‖‖ε̂(θ)‖

(11)= op(1).

Finally, for r5,

sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

r5(θ) = sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s
√
T
∣∣∣g(θ)′[W − ŴsT ]g(θ)

∣∣∣
‖θ − θ0‖(1 + s

√
T‖θ − θ0‖)

c.s.
≤ sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s
√
T‖g(θ)‖2‖W − ŴsT‖
s
√
T‖θ − θ0‖2

= sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

(
‖g(θ)‖
‖θ − θ0‖

)2

op(1)

=op(1).

Lemma 9. Under Assumption 1, 2, 3.ii) and 3.iii)

i) gsT,S(θ) is stochastically Lipschitz-continuous ∀s ∈ [ε, 1], ε > 0, i.e.,

∃B = Op(1) such that ∀θ1, θ2 ∈ Θ : ‖gsT,S(θ1)− gsT,S(θ2)‖ ≤ B‖θ1 − θ2‖

ii) ∃δ > 0 such that

lim sup
T,S→∞

E
(
B2+δ

)
<∞.

Proof. Without loss of generality suppose gsT,S(θ) is a one-dimensional function, otherwise

show the Lipschitz-continuity for every entry of the vector gsT,S(θ).

i) We know m̃S(θ) = m0(θ) + op(1) (13), and from Assumption 3.iii), m0(θ) is Lipschitz-

continuous, due to combination of Lipschitz-continuous bivariate copulas Cij(θ). Further
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from Assumption 3. v) we have

|m̃S(θ1)− m̃S(θ2)| ≤ CS‖θ1 − θ2‖. (14)

Now consider

|gsT,S(θ1)− gsT,S(θ2)| =|m̂sT − m̃S(θ1)− m̂sT + m̃S(θ2)|

=|m̃S(θ2)− m̃S(θ1)| = |m̃S(θ1)− m̃S(θ2)|
(14)
≤ CS‖θ1 − θ2‖.

ii) For some δ > 0

⇒ lim sup
T,S→∞

E
(
C2+δ
S

)
<∞.

Lemma 10. Under Assumption 1, 2, 3.ii) and 3.iii), for S
T
→∞ or S

T
→ k ∈ (0,∞),

vsT,S(θ) =
√
sT [gsT,S(θ)− g0(θ)] is stochastically equicontinuous ∀s ∈ [ε, 1], ε > 0

Proof. By Lemma 9)i) {gsT,S(θ) : θ ∈ Θ} is Lipschitz-continuous ∀s ∈ [ε, 1], ε > 0 and so a

Type II class of functions in Andrews (1994). By Theorem 2 of Andrews {gsT,S(θ) : θ ∈ Θ}

satisfies Pollard’s entropy condition with envelope

max{1, sup
θ∈Θ
‖gsT,S(θ)‖, B}, ∀s ∈ [ε, 1], ε > 0.

⇒ Assumption A of Andrews (1994) is satisfied.

Furthermore gsT,S(θ) is bounded and by Lemma 9)ii) it holds

lim sup
T,S→∞

E
(
B2+δ

)
<∞.

⇒ Assumption B of Andrews (1994) is satisfied. Then with Theorem 1 of Andrews (1994)
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and noting, that Assumption C is fulfilled by construction

vsT,S(θ) =
√
sT [gsT,S(θ)− g0(θ)] is stochastically equicontinuous ∀s ∈ [ε, 1], ε > 0.

Lemma 11. We consider the dependence measures Spearman’s rho and quantile dependence

measures, which are functions only depending on bivariate copulas.

Under the null and Assumption 1 and 2, for T →∞,

s
√
T (m̂sT −m0(θ0)) d=⇒ A(s), T →∞, ∀s ∈ [ε, 1], ε > 0

where A(s) is defined in the proof and θ0 the value of all θt under the null.

Proof. By Assumption 2.7 (15) the sequential empirical copula of the N -dimensional random

vectors fulfills

CsT :=s
√
T
[
Ĉs(u)− C(u)

]
= 1√

T

bsT c∑
t=1

1{F̂
s(η̂t) ≤ u} − C(u)


d=⇒

(15)
A∗(s,u), T →∞, ∀s ∈ [ε, 1], ε > 0,

Note that Spearman’s rho between the i-th and j-th component is given by

12
∫ 1

0

∫ 1

0
C(1, . . . , 1, ui, 1, . . . , 1, uj, 1, . . . , 1)duiduj − 3

and that the quantile dependencies are projections of the N -dimensional copula onto one

specific point divided by some prespecified constant. Define the function mij(C) as the

function which generates a vector of all considered dependence measures (Spearman’s rho

and/or quantile dependencies for different levels) between the i-th and j-th component out

of the copula C. Without loss of generality consider the equidependence case (in the same
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way the argumentation holds for the block equidependence case, only that we average all

intra- and inter-group dependence measures), then the function

m(C) : D[0, 1]N → Rk

C → m(C) = 2
N(N − 1)

N−1∑
i=1

N∑
j=i+1

mij∗(C)

is continuous and we directly obtain

s
√
T (m̂sT −m0(θ)) = s

√
T [m(Cs)−m(C)] d=⇒ 2

N(N − 1)

∑
i,j

mij(A∗(s,u))
 =: A(s)

as T → ∞ with s ∈ [ε, 1], ε > 0. Here, mij(·) is the same function as mij∗(·) with the

only difference that the formula for Spearman’s rho between the i-th and j-th component is

replaced by

12
∫ 1

0

∫ 1

0
C(1, . . . , 1, ui, 1, . . . , 1, uj, 1, . . . , 1)duiduj.

Proof of Theorem 4

The proof follows by checking the conditions of Theorem 8. The initial conditions of Theorem

8 follow by Assumption 4.iii) and Lemma 6.

i) g0(θ0) = 0 follows directly by construction, because g0(θ) = m0(θ0)−m0(θ).

ii) θ0(= θ1 = · · · = θT ) is an interior point of Θ given by Assumption 4.i).

iii) g0(θ) is differentiable at θ0 with derivative G such that G′WG is non singular, given by

Assumption 4.ii).
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iv) 1) If S
T
→∞ as T, S →∞,

s
√
TgsT,S(θ0) =s

√
T (m̂sT − m̃S(θ0))

=s
√
T (m̂sT −m0(θ0)) + s

√
T (m0(θ0)− m̃S(θ0))

=s
√
T (m̂sT −m0(θ0))−

√
T√
S
s
√
S(m̃S(θ0)−m0(θ0))

d=⇒
Lemma 11

A(s)

2)If S
T
→ k ∈ (0,∞) as T, S →∞,

s
√
TgsT,S(θ0) =s

√
T (m̂sT − m̃S(θ0))

=s
√
T (m̂sT −m0(θ0)) + s

√
T (m0(θ0)− m̃S(θ0))

=s
√
T (m̂sT −m0(θ0))−

√
T√
S
s
√
S(m̃S(θ0)−m0(θ0))

d=⇒
Lemma 11

A(s)− s√
k
A(1),

combined we get

s
√
TgsT,S(θ0) d=⇒A(s)− s√

k
A(1), T, S →∞, ∀s ∈ [ε, 1], ε > 0.

v) We know by Lemma 10, that for S
T
→∞ or S

T
→ k ∈ (0,∞)

vsT,S(θ) =
√
sT [gsT,S(θ)− g0(θ)] is stochastically equicontinuous ∀s ∈ [ε, 1], ε > 0.

⇒ ∀ε > 0, η > 0, ∃δ > 0 : lim sup
T→∞

P

[
sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

‖vsT,S(θ)− vsT,S(θ0)‖ > η

]

=lim sup
T→∞

P

[
sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

√
sT‖gsT,S(θ)− gsT,S(θ0)− g0(θ)‖ > η

]
< ε.(16)

Furthermore the inequality

s
√
T
‖gsT,S(θ)− gsT,S(θ0)− g0(θ)‖

1 + s
√
T‖θ − θ0‖

≤ s
√
T‖gsT,S(θ)− gsT,S(θ0)− g0(θ)‖ (17)

is valid ∀s ∈ [ε, 1].
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Finally we obtain

lim sup
T→∞

P

[
sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s
√
T
‖gsT,S(θ)− gsT,S(θ0)− g0(θ)‖

1 + s
√
T‖θ − θ0‖

> η

]

≤lim sup
T→∞

P

[
sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

√
sT
‖gsT,S(θ)− gsT,S(θ0)− g0(θ)‖

1 + s
√
T‖θ − θ0‖

> η

]
(17)
≤ lim sup

T→∞
P

[
sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

√
sT‖gsT,S(θ)− gsT,S(θ0)− g0(θ)‖ > η

]
(16)
< ε.

Note that, for the first inequality, we use that 0 < s ≤
√
s ∀s ∈ [ε, 1], ε > 0.

This completes the proof. �

126



7.1.2. Proof Theorem 5. For the proof of Theorem 5 we first state our assumptions. Assumption

6 and Assumption 7 ensure that the estimated rank correlation and quantile dependencies

converge to their respective population counterparts.

Assumption 6. i) The distribution function of the innovations Fη and the joint distri-

bution function of the factors FX(θ) are continuous.

ii) Every bivariate marginal copula Cij(ui, uj; θ) of C(u; θ) has continuous partial deriva-

tives with respect to ui ∈ (0, 1) and uj ∈ (0, 1).

The assumption is similar to Assumption 1 in Oh and Patton (2013), but the assumption

on the copula is relaxed in the sense that the restriction of ui and vi is relaxed to the open

interval (0, 1).

Assumption 7. The first order derivatives of the functions φ 7→ µt(φ) and φ 7→ σt(φ) exist

and are given by .
µt(φ) := ∂µt(φ)

∂φ′
and .

σkt(φ) := ∂[σt(φ)]k-th column
∂φ′

for k = 1, . . . , N . Moreover,

define γ0t := σ−1
t (φ̂) .µt(φ̂) and γ1kt := σ−1

t (φ̂) .σkt(φ̂) such as

dt := ηt − η̂t −
(
γ0t +

N∑
k=1

ηktγ1kt

)
(φ̂− φ0),

with ηkt being the k-th row of ηt and γ0t such as γ1kt are Et−1-measurable, where Et−1 contains

information from the past as well as possible information from exogenous variables.

i) 1
T

bsT c∑
t=1

γ0t
p−→ sΓ0 and 1

T

bsT c∑
t=1

γ1kt
p−→ sΓ1k, uniformly in s ∈ [ε, 1], ε > 0, where Γ0 and

Γ1k are deterministic for k = 1, . . . , N .

ii) 1
T

T∑
t=1

E(‖γ0t‖), 1
T

T∑
t=1

E(‖γ0t‖2), 1
T

T∑
t=1

E(‖γ1kt‖) and 1
T

T∑
t=1

E(‖γ1kt‖2) are bounded for

k = 1, . . . , N .

iii) There exists a sequence of positive numbers rt > 0 with
∞∑
i=1

rt < ∞, such that the

sequence max
1≤t≤T

‖dt‖
rt

is tight.
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iv) max
1≤t≤T

‖γ0t‖√
T

= op(1) and max
1≤t≤T

|ηkt|‖γ1kt‖√
T

= op(1) for k = 1, . . . , N .

v) (αT (s,u),
√
T (φ̂−φ0)) weakly converges to a continuous Gaussian process in D((0, 1]×

[0, 1]N )×Rr, where D((0, 1]×[0, 1]N ) is the space of all càdlàg-functions on (0, 1]×[0, 1]N ,

with

αT (s,u) := 1√
T

bsT c∑
t=1

{
N∏
k=1

1{Ukt ≤ uk} −C(u; θ)
}
.

vi) ∂Fη
∂ηk

and ηk ∂Fη∂ηk
are bounded and continuous on RN = [−∞,∞]N for k = 1, . . . , N .

vii) For u ∈ [0, 1]N , s ∈ [m, 1] and

F̂
1+(s−m)T :st(η̂t) = (F̂ 1+(s−m)T :st

1 (η̂1t), . . . , F̂ 1+(s−m)T :st
N (η̂Nt)), the sequential empirical

copula process

1√
T

 bsT c∑
t=1+b(s−m)T c

1{F̂
1+(s−m)T :st(η̂t) ≤ u} − C(u)


converges in distribution to some limit process A∗(s,u) on [0, 1]N × [m, 1]

Parts i) to vi) of this assumption are similar to Assumption 2 in Oh and Patton (2013),

only part (i) is more restrictive. We need this because we consider successively estimated

parameters. Part vii) ensures that the empirical copula process of the residuals has some

well defined limit. Note that Assumption vii) is plausible and follows from a combination of

the results in Bücher et al. (2014) and Remillard (2017). The next assumption is needed for

consistency of the successively estimated parameters. It is the same as Assumption 3 in Oh

and Patton (2013) with the difference that part (iv) is adapted to our situation. Note that

part i) ensures the identifiability of the factor model.

Assumption 8. i) g0(θ) is the probability limit function of g.,S(θ) for T, S → ∞, e.g.

g.,S(θ) = g1:mT,S(θ) and it holds g0(θ) = 0 only for θ = θ0 (the value of all θt under the

null).

128



ii) The space Θ of all θ is compact.

iii) Every bivariate marginal copula Cij(ui, uj; θ) of C(u; θ) is Lipschitz-continuous

for (ui, uj) ∈ (0, 1)× (0, 1) on Θ.

iv) The sequential weighting matrix Ŵ(s−m)T :sT is Op(1) and sup
s∈[m,1]

‖Ŵ(s−m)T :sT −W‖
p−→ 0

for m ≥ ε > 0.

v) It holds for the moment simulating function m̃S(θ) that, for θ1, θ2 ∈ Θ,

|m̃S(θ1)− m̃S(θ2)| ≤ CS‖θ1 − θ2‖

with a random variable CS that is independent of θ1− θ2 and that fulfills E(C2+δ
S ) <∞

for some δ > 0.

Finally, we need an assumption for distributional results, which is the same as Assumption

4 in Oh and Patton (2013) with a difference in part iii).

Assumption 9. i) θ0 is an interior point of Θ.

ii) g0(θ) is differentiable at θ0 with derivative G such that G′WG is non singular.

iii) ∀s ∈ [m, 1], ε > 0 : g.,S(θ(s−m)T :sT,S)′Ŵg.,S(θ(s−m)T :sT,S) = inf
θ∈Θ

g.,S(θ)′Ŵg.,S(θ) + dT ,

where dT = o∗p((m2T )−1) (instead of op((m2T )−1)) indicates that the remainder term

on the right hand side tends to zero and is non-negative.

Proof of Theorem 5

We consider the dependence measures Spearman’s rho and quantile dependence measures,

which are functions only depending on bivariate copulas.

Under the null and all mentioned assumptions, we first want to show

m
√
T (m̂(s−m)T :sT −m0(θ0)) d=⇒ A(s), T →∞, ∀s ∈ [m, 1],m ≥ ε > 0

where A(s) is a Gaussian process and θ0 the value of all θt under the null.
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By Assumption 7 vii) (1) the sequential empirical copula of the N -dimensional random

vectors fulfills

CT :=m
√
T
[
Ĉ1+(s−m)T :sT (u)− C(u)

]
= 1√

T

 bsT c∑
t=1+b(s−m)T c

1{F̂
1+(s−m)T :sT (η̂t) ≤ u} − C(u)


d=⇒

(1)
= A∗(s,u), T →∞, ∀s ∈ [m, 1],m ≥ ε > 0,

where u ∈ [0, 1]N and F̂
1+(s−m)T :sT (η̂t) := (F̂ 1+(s−m)T :sT

1 (η̂1t), . . . , F̂ 1+(s−m)T :sT
N (η̂Nt)). Here,

F̂
1+(s−m)T :sT
j denotes the marginal empirical distribution function of the j-th component and

Ĉ := Ĉ1+(s−m)T :sT (u) the empirical copula both calculated from the data between the time

point 1 + b(s−m)T c and time point bsT c. Note that Spearman’s rho between the i-th and

j-th component is given by

12
∫ 1

0

∫ 1

0
C(1, . . . , 1, ui, 1, . . . , 1, uj, 1, . . . , 1)duiduj − 3

and that the quantile dependencies are projections of the N -dimensional copula onto one

specific point divided by some prespecified constant. Define the function mij(C) as the

function which generates a vector of all considered dependence measures (Spearman’s rho

and/or quantile dependencies for different levels) between the i-th and j-th component out

of the copula C. Without loss of generality consider the equicontinuity case (averaging over

all possible pairs, for details see Oh and Patton (2017)), then the function

m(C) : D[0, 1]N → Rk

C → m(C) = 2
N(N − 1)

N−1∑
i=1

N∑
j=i+1

mij∗(C)
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is continuous and we directly obtain

m
√
T (m̂1+(s−m)T :sT −m0(θ)) =m

√
T
[
m(Ĉ)−m(C)

]
d=⇒ 2
N(N − 1)

∑
i,j

mij(A∗(s,u))
 =: A(s)

as T →∞ with s ∈ [m, 1],m ≥ ε > 0. Here, mij(·) is the same function as mij∗(·) with the

only difference that the formula for Spearman’s rho between the i-th and j-th component is

replaced by

12
∫ 1

0

∫ 1

0
C(1, . . . , 1, ui, 1, . . . , 1, uj, 1, . . . , 1)duiduj.

Then we receive for S
T
→ k ∈ (0,∞] and T, S →∞

m
√
Tg1+(s−m)T :sT,S(θ) = m

√
T
(
m̂1+(s−m)T :sT − m̃S(θ)

)
=m
√
T
(
m̂1+(s−m)T :sT −m0(θ)

)
−m
√
T (m̃S −m0(θ))

=m
√
T
(
m̂1+(s−m)T :sT −m0(θ)

)
−
√
T

S
m
√
S (m̃S −m0(θ))

d=⇒A(s)− m√
k
B,

where B = N(0,Σ0) is a centered Gaussian distribution with covariance matrix Σ0, for details

see Oh and Patton (2013). The limit result then follows with the same steps as in the proof

of Theorem 4 from Section 3, using the given limit result for m
√
Tg1+(s−m)T :sT,S(θ) and

replacing the scale factor s
√
T by m

√
T .

This completes the proof. �
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7.2. Skewed t Distribution

The Skewed t distribution, introduced by (Hansen, 1994), has the following density function:

fν,λ(x) =


bc
(

1 + 1
ν−2

(
bx+a
1−λ

)2
)− v+1

2
, for x < −a

b

bc
(

1 + 1
ν−2

(
bx+a
1+λ

)2
)− v+1

2
, for x ≥ −a

b
,

where

Figure 7.17: Skewed t(ν, λ) Density Plots

Note: Skewed t(ν, λ) density plots for different values of λ and ν.
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a = 4λcν − 2
ν − 1

b = 1 + 3λ2 − a2

c =
Γ
(
ν+1

2

)
√
π(ν − 2)Γ

(
ν
2

)
and Γ(·) is the Gamma function given by

Γ(t) =
∫ ∞

0
yt−1e−ydy.

The degrees of freedom parameter ν takes values between 2 and ∞ and controls the tail

behavior of the distribution. The skeweness parameter λ takes values between -1 and 1

and controles the skewness of the distribution, while λ > 0 implies right-skewness, λ < 0

implies left-skewness and λ = 0 implies symmetry of the distribution. The Skewed Student’s

t distribution is able to capture asymmetry and heavy-tailedness which is beneficial for

analyzing financial data.

Note that the normal and Student’s t distribution can be received easely as special cases

of the Skewed t distribution by setting λ = 0 and ν = ∞ for the normal case and λ = 0

and ν 6=∞ for the Student’s t case. Density plots of the Skewed-t distribution for different

combinations of ν and λ can be seen in Figure 7.17.
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10. LIST OF SYMBOLS

General notations

R̄ The extended real line [−∞,∞]

X × Y The Cartesian product of a space X and Y

R̄N The N dimensional space constructed using the Cartesian product

R̄× · · · × R̄

I The unit interval [0, 1]

IN The N dimensional space constructed using the Cartesian product

I× · · · × I

A−1 Inverse of a matrix A

A′ The transposed of a matrix A

bac Lower Gaussian brackets of a skalar a

X
d−→ Y Convergence in distribution of X to Y

X
p−→ Y Convergence in probability of X to Y

X
a.s.−→ Y Almost sure convergence of X to Y

X
d=⇒ Y Process convergence in distribution of X to Y

det(A) Determinant of a matrix A

exp(A) Exponent of a matrix A

vec(A) Columns of the matrix A stacked on top of each other in one vector

ek The k-th unit vector for the underlying dimension

Op(·) Denotes a sequence which is bounded in probability

op(·) Denotes a sequence which converges to zero in probability

o∗p(·) Denotes a sequence which converges to zero in probability

and is nonnegative

aaa Denotes an N -dimensional vector aaa = (a1, . . . , aN)
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aaa ≤ bbb If ai ≤ bi for all entries of aaa and bbb

Cov(X,Y) Covariance between the random vectors X and Y

Var(X) Variance of the random vector X

E(X) The expectation of a random vector X

f = O(a) f
a
is bounded (Landau-Symbol)

1{·} Equals one if the expression in brackets is true
∂f(x)
∂x |x=x0

The partial derivative of a function f(x) in x at x = x0

sup
x∈D

f(x) Supremum of a function f(x) over all elements x ∈ D

inf
x∈D

f(x) Infimum of a function f(x) over all elements x ∈ D

max
x∈D

f(x) Maxmimum of a function f(x) over all elements x ∈ D

min{A} Minimum of an amount A

arg min
x∈D

f(x) Determines the point where f(x) reaches its minimum

arg max
x∈D

f(x) Determines the point where f(x) reaches its maximum

Copulas and cdf

C̃(u1, . . . , uN) The N -dimensional subcopula

C(u1, . . . , uN) The N -dimensional copula

F (x1, . . . , xN) The N -dimensional joint distribution function

Fi(xi) The i-th marginal distribution function

Ĉk:l(u1, . . . uN) The N -dimensional empirical copula using data information from k to l

F̂ k:l
ti (Xti) The i-th empirical distribution function using data information

from k to l evaluated at time point t

Cij(u, v) Bivariate copula for inputs u and v

Ĉ
(·)
ij (u, v) Empirical bivariate copula, using data for a specific time span

for inputs u and v

Dependence measures
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ρ(Xi, Xj) Pearson’s linear correlation coefficient between Xi and Xj

ρijS (Xi, Xj) Spearman’s rank correlation coefficient between Xi and Xj

ρ̂ijS (Xi, Xj)/ρ̂ij(Xi, Xj) Empirical Spearman’s rank correlation coefficient between Xi and Xj

τ(Xi, Xj) Kendall’s tau between Xi and Xj

τ̂(Xi, Xj) Empirical Kendall’s tau between between Xi and Xj

λijq (Xi, Xj) Quantile dependence between Xi and Xj for a

quantile value q ∈ (0, 1)

λ̂ijq (Xi, Xj) Empirical quantile dependence between Xi and Xj

for a quantile value q ∈ (0, 1)

Model and parameters

φ0 Marginal data model parameter vector

φ̂ Estimated marginal data model parameter vector

θt Time varying factor copula model parameter for the time point t

θ0 True factor copula model parameter under the null

θ̂(·),S Factor copula model parameter estimate using data for a

specific time span and S simulations from the copula model,

αq Parameter vector of the idiosyncratic factor q within

the factor copula model

γk Parameter vector of the k-th common factor Zk within

the factor copula model

β(·) Factor loading paramaters within the factor copula model

S(i) Sorts an asset i of the portfolio to its determinated group

rit log-return value of asset i at a time point t

µit(φi) i-th time varying conditional mean term with

data parameter vector φi at time point t

σit(φi) i-th time varying conditional standard deviation term with
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data parameter vector φi at time point t

ηit(φi) i-th residual of the time series model at time point t

η̂it i-th sample residual from the inversed pre estimated time series model

at time point t = {1, . . . , T}

η̃ij i-th simulated residual from the copula model

for simulation j = {1, . . . , S}

Numbers and scaling

T Sample size

S Number of simulations from the copula model

N Number of cross sectional dimensions

s A scalar between ε > 0 and 1, for locating t = sT

λT (n,m) Scaling factor for the empirical processes

εT,S Step size used within the numerical derivative

kg Number of elements in group g for the block equidependence model

m∗ Number of moments used in the dependence vectors

p Number of parameters within the copula model

ε Lower bound of the location scalar s

B Number of bootstrap replications

s̃ Retro-perspective break fraction estimate

τT Stopping time of the monitoring procedure for a monitored

period of size T

m A scalar, between ε > 0 and 1, determining the size of

the initial sample

k Ratio between S and T

G∗ Number of groups of the block equidependence model

k∗ True unknown break point within the period spanned by
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mT and τT (monitoring)

k̂ Estimated break point within the period spanned by

mT and τT (monitoring)

ŝa Estimated break fraction using the dependence setting a

K̂a Pivot confidence interval using the dependence setting a

SMM and asymptotics

g(·),S(θ) Difference of the data and simulated dependence vectors using data for a

specific time span and S simulations from the copula model,

with parameter θ

m̂(·) Data dependence vector using data for a specific time span

m̃S(θ) Simulated dependence vector, using S simulations from the copula model

and parameter θ

Q(·),S(θ) Objective function of the SMM procedure using data for a specific time

span and S simulations from the copula model with copula parameter θ

W The positive definite weighting matrix used in the objective function

within the SMM procedure

Ŵ(·) The positive definite weighting matrix estimate used in the objective

function within the SMM procedure

G The derivative matrix of g0(θ) in θ0

Ĝ The estimated derivative matrix of g(·),S(θ) in θ(·),S

A∗(s) Limiting distribution of the parameter process for a value s

between ε > 0 and 1

A(s) Limiting distribution of the dependence vector process for a value s

between ε > 0 and 1
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