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Abstract 

Endosomes are key sorting compartments in the endomembrane system, including the sorting 

of transmembrane proteins for degradation. This is achieved by a endocytic event in which the 

cargo-enriched endosomal membrane buds away from the cytosol and releases an intraluminal 

vesicle (ILV) into the endosomal lumen. Endosomes that contain ILVs are called multivesicular 

bodies (MVBs) and ILVs together with their cargo are finally degraded by the fusion of MVBs 

with the vacuole.  

ILV formation is executed by evolutionary conserved multi-protein complexes that are called 

the Endosomal Sorting Complex Required for Transport (ESCRT) system. The late steps of 

ILV formation are regulated by the ESCRTIII core and associated complex, in which the AAA-

ATPase SUPPRESSOR OF K(+) TRANSPORT GROWTH DEFECT 1 (SKD1) is the key 

enzyme. Recent studies in Arabidopsis thaliana showed that SPIRRIG, a stimulator of SKD1 

function in MVB formation, has also a function in the stress-dependent formation of Processing 

bodies (P-bodies). P-bodies, together with stress granules, are two classes of mRNA-

ribonucleoprotein (mRNP) granules that sequester mRNAs during stress-induced polysome 

disassembly. 

To see, if other late acting ESCRTIII proteins are associated with mRNP granules, an 

exhaustive colocalization study was performed. This study showed that SKD1 changes its 

subcellular localization after heat stress to mRNP granules, independent of MVBs. Other 

ESCRTIII associated proteins, but none of the tested ESCRTIII core proteins, colocalized to 

mRNP granule markers. The sequestration of SKD1 and some of its cofactors in mRNP 

granules led to the hypothesis, that ESCRT trafficking might be temporarily blocked during 

heat stress. First evidence supporting this hypothesis was gained by the study of the subcellular 

localization of PIN-FORMED 2, which is transported by ESCRT, after heat stress. In a broader 

approach, the interactome of SKD1 was analyzed. Several proteins known to associate with 

mRNP granules were identified, such as members of the chaperonin-containing T-complex or 

the P-body protein VARICOSE. In addition, new potential interactions with other membrane 

trafficking proteins, such as members of the homotypic fusion and vacuole protein sorting 

(HOPS)/class C core vacuole/endosome tethering (CORVET) complex, were identified. A 

subcellular localization analysis confirmed the association of some candidates with mRNP 

granules after heat stress and indicated that proteins of other membrane trafficking routes might 

also be recruited to mRNP granules by heat stress.  
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Zusammenfassung 

Eine zentrale Funtion von Endosomen ist das Sortieren von Proteinen für den Transport 

innerhalb des Endomembransystems. Dies beinhaltet das Sortieren von 

Transmembranproteinen für den Abbau in der Vakuole. Ein kompletter Abbau wird ermöglicht, 

indem durch eine vom Zytosol abgewandte Abschnürung der endosomalen Membran, in der 

die Transmembranproteine angereichert sind, ein intraluminäres Vesikel (ILV) geformt wird. 

Endosomen, die ILVs enthalten, werden als „multivesicular bodies” (MVBs) bezeichnet. ILVs 

und die sich darin befindenden Transmembranproteine werden schließlich komplett abgebaut 

durch die Fusion des MVBs mit der Vakuole.  

Die Bildung von ILVs wird durch mehrere evolutiv konservierte Multiprotein-Komplexe 

reguliert, welche zusammen als das „Endosomal Sorting Complex Required for Transport“ 

(ESCRT) System bezeichnet werden. Die letzten Schritte der ILV Bildung werden durch den 

ESCRTIII Kern und assoziierten Komplex reguliert. In diesem Prozess ist die AAA-ATPase 

„SUPPRESSOR OF K(+) TRANSPORT GROWTH DEFECT 1” (SKD1) das zentrale Enzym. 

Neue Studien in Arabidopsis thaliana zeigten, dass SPIRRIG, ein Regulator von SKD1, auch 

eine Funtion in der stressabhängigen Formation von sogenannten „processing bodies“ (P-

bodies) hat. P-bodies sowie „stress granules“ repräsentieren zwei Klassen von mRNA-

Ribonukleoproteinaggregaten, die als „mRNP granules“ bezeichnet werden und Transkripte 

nach dem stressinduzierten Zerfall von Polysomen in sich konzentrieren. 

Um zu untersuchen, ob auch andere spät agierende ESCRTIII Proteine in Assoziation mit 

mRNP granules sind, wurde eine umfassende Kolokalisationsstudie durchgeführt. In dieser 

Studie wurde gezeigt, dass SKD1 seine subzelluläre Lokalisation nach Hitzestress ändert und 

mit mRNP granules kolokalisiert. Diese Umlagerung der Lokalisation ist unabhängig von 

MVBs. Die beobachtete Konzentrierung von SKD1 und einiger seiner Kofaktoren in mRNP 

granules führte zu der Hypothese, dass ESCRT-abhängige Transportprozesse möglicherweise 

während akutem Hitzestress blockiert werden. Durch die Analyse der subzellulären 

Lokalisation des durch ESCRT transportierten Proteins „PIN-FORMED 2“ nach Hitzestress 

wurden erste Ergebnisse gesammelt, die in diese Richtung deuten. In einem weiteren, 

allgemeineren Experiment wurde das Interaktom von SKD1 untersucht. Hierbei wurden einige 

Proteine identifiziert, von denen bekannt ist, dass sie eine Funktion in mRNP granules haben, 

wie zum Beispiel Proteine des „chaperon-containing T-complex“ oder das P-body Protein 

„VARICOSE“. Zusätzlich wurden neue potentielle Proteininteraktionen zwischen SKD1 und 
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anderen Membrantransportproteinen identifiziert, wie beispielsweise mit Komponenten des 

„homotypic fusion and vacuole protein sorting (HOPS)/class C core vacuole/endosome 

tethering (CORVET)“ Komplexes. Die subzelluläre Lokalisationsanalyse einiger 

Interaktomkandidaten bestätigte deren Assoziation mit mRNP granules nach Hitzestress und 

deutete darauf hin, dass auch Proteine aus anderen Membrantransportprozessen durch 

Hitzestress in mRNP granules gelangen. 
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1 Introduction 

1.1 Membrane trafficking in A. thaliana 

A hallmark of all eukaryotic cells is the presence of a sophisticated membrane system that 

tightly regulates cellular uptake and transport of macromolecules and proteins, biosynthetic and 

degradation processes, as well as signaling cascades. This system is called the endomembrane 

system and consists of several membrane-enclosed organelles which constantly exchange 

content either via vesicle trafficking, direct interactions or maturation processes. The 

endomembrane system includes the nuclear envelope, the endoplasmic reticulum (ER), the 

Golgi apparatus, the trans-Golgi network (TGN), the plasma membrane (PM), endosomes and 

lysosomes or vacuoles in fungi and plants. The exchange of lipids, proteins or macromolecules 

between the compartments is called protein or membrane trafficking. 

Membrane trafficking routes between the different compartments can be classified according 

to the directionality of cargo transport. For example, transport from the PM over endosomes to 

the TGN, from the Golgi to the ER, or from late endosomes to the TGN is classified as 

retrograde or endocytic transport. Trafficking from the ER to the Golgi network and 

subsequently to the PM is called anterograde or secretory transport. Another mode of 

anterograde protein trafficking is transport of enzymes to the lytic compartment, which is often 

called vacuolar protein sorting in plants. Cargo vesicles are generated by membrane 

deformation which is mediated by different coat proteins. With the help of adaptor complexes, 

vesicle coat subunits polymerize at the donor membrane and thereby introduce necessary 

membrane curvature for vesicle budding (Lee and Hwang et al., 2014).  

Nearly all trafficking routes lead over endosomes. This circumstance makes endosomes the 

primary sorting compartment of eukaryotes. Endosomes, which fuse with endocytic vesicles, 

are called early endosomes (EEs) in yeast and animals an exhibit a tubular shape. From there, 

internalized cargo, such as activated receptors or ion channels, can either be directed to the 

TGN, to lysosomes/vacuoles for degradation via late endosomes (LEs, also called 

multivesicular bodies/MVBs) or back to the PM via recycling endosomes (REs). The different 

classes of endosomes are categorized based on different attributes such as lipid composition, 

accessory proteins, luminal acidification and morphology. Cargo transport between the 

different endosomal classes mainly occurs via maturation of the endosomal structure (Huotari 

and Helenius, 2011). This is initiated by the subsequent exchange of associated Rab (Ras-
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related in brain) GTPases. For example, the outer membrane of EEs is enriched with the Rab 

GTPase Rab5, which regulates vesicle to EE fusion (Gorvel et al., 1991). Subsequently, Rab5 

is exchanged for Rab7 which initiates the recruitment of additional MVB-specific accessory 

proteins (Méresse et al., 1995, Rink et al., 2005). Another Rab-regulated step of endosome 

maturation is the recruitment of specific fusion machineries which allow homo- and heterotypic 

membrane fusions between endosomes (Nickerson et al., 2009). 

 

Figure 1.1. Membrane trafficking in the endomembrane system of A. thaliana. This scheme represents the 

main trafficking routes of transmembrane proteins in the endomembrane system. After synthesis and membrane 

integration in the ER, transmembrane proteins are transported via vesicles to the Golgi. From there, they enter the 

TGN either via cisternal maturation or vesicle transport. The TGN also functions as EE and RE in plants. At the 

TGN/EE, vesicles are formed that carry the transmembrane proteins and release them into the PM by fusion. The 

protein trafficking from the ER to the PM is called anterograde or secretory transport. Transmembrane proteins 

can also be removed from the cell surface via endocytosis and vesicle fusion with the TGN/EE. This direction of 

transport is called retrograde transport. If transmembrane proteins are determined to be degraded (e.g. via 

ubiquitination), they remain in the membrane of a TGN/EE, which matures into an LE/MVB. In a second 

invagination event, which is executed by the ESCRT system, the transmembrane proteins are internalized into an 

ILV. The final fusion of the LE/MVB releases ILVs into the lumen of the vacuole, where they are completely 

degraded.  
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The morphology of endosomes correlates with the function they exert. A morphological 

hallmark of MVBs is the presence of intraluminal vesicles (ILVs). ILVs are an architectural 

necessity for the complete degradation of transmembrane proteins by fusion with 

lysosomes/vacuoles. They are formed by invagination and fission of the MVBs´ outer 

membrane, away from the cytosol (Huotari and Helenius, 2011). This process is regulated by 

highly ordered multi-protein complexes which functions together as the Endosomal Complex 

Required for Transport (ESCRT) system, which will be explained in detail in Chapter 1.2 and 

1.3. 

The general membrane transport processes and the regulating proteins are conserved between 

yeast, animal and plant cells. However, plant endosomes exhibit some differences compared to 

their mammalian or yeast counterparts (Contento and Bassham, 2012). Plants do not contain 

endosomal structures reminiscent of the tubular EEs and REs. Instead, the TGN provides the 

first contact site for endocytosed content and also sorts cargo back to the PM. Therefore, the 

plant TGN is often called TGN/EE (Bolte et al., 2004; Viotti et al., 2011, Figure 1.1).  

The importance of membrane trafficking in plant development is demonstrated by the protein 

sorting of the PIN (PIN-FORMED) auxin efflux channels. PIN proteins regulate the directed 

efflux of auxin out of cells, thereby building up spatial auxin minima and maxima which are 

crucial for embryogenesis, cell polarity and gravitropism (Grunewald and Friml, 2010). 

Mutants of the PIN1 protein reveal severe developmental defects (e.g. lack of stem organs) 

while pin2 roots show no gravitropism (Gälweiler et al., 1998; Chen et al., 1998; Luschnig et 

al., 1998; Müller at al., 1998). The directionality of auxin efflux mediated by PIN proteins 

depends on their polar distribution at the PM. For example, PIN1 localizes to the basal PM 

(towards the shoot) in root vascular tissue while PIN2 accumulates at the apical site of root 

epidermal cells (Gälweiler et al., 1998; Müller et al., 1998). PIN1 and 2 undergo constant 

endocytic recycling from the PM to the TGN and are partially degraded in the vacuole via MVB 

trafficking. This was shown by experiments with Brefeldin A (BFA), a fungal toxin and 

inhibitor of ARF-GEFs (ADP-RIBOSYLATION FACTOR GUANINE-EXCHANGE 

FACTORS, general regulators of vesicle coat formation), and by staining with the styryl dye 

FM4-64, which is internalized via endocytosis and subsequently stains all membranous 

compartments (Geldner et al., 2001; Bolte et al., 2004; Paciorek et al., 2005; Kleine-Vehn et 

al., 2006; Dhonukshe et al., 2007; Spitzer et al., 2009).  
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1.2 Vacuolar protein sorting by the ESCRT system 

Plant vacuoles are multifunctional organelles. Not only do they provide a storage or degradation 

compartment for the cell, but also generate, together with the cell wall, the necessary turgor for 

cell growth and cell rigidity. In vegetative tissues, such as leaves, mature cells contain a central 

lytic vacuole which takes up nearly all of the cells volume. Therefore, the maintenance of the 

vacuole´s volume and metabolic activity is of upmost importance for plants. This is achieved 

by constant vacuolar trafficking of proteins and membranes via endosomal structures (Xiang et 

al., 2013). Vacuolar enzymes, such as proteases and hydrolases, are transported from the TGN 

to the plant vacuole by binding to VSRs (VACUOLAR SORTING RECEPTORS), which are 

integrated in the outer membrane of MVBs. The fusion of the MVB outer membrane with the 

tonoplast releases the enzymes in the vacuolar lumen. V-ATPases (Vacuolar ATPases), which 

acidify the lytic vacuole, are transported in a similar way (Contento and Bassham, 2012). The 

fusion of MVBs with the tonoplast also releases ILVs in the vacuolar lumen, where they are 

completely degraded. The majority of PM transmembrane proteins, such as PINs, are degraded 

via ILVs. The cargo sorting, membrane invagination and the final release into the MVB lumen 

is regulated by the ESCRT system.  

The ESCRT system was first characterized in the context of vacuolar protein sorting (VPS) in 

yeast and ongoing research showed that the majority of ESCRT proteins are conserved among 

eukaryotic species. In addition, more and more cellular processes, which involve membrane 

invagination and abscission events away from the cytosol, are found to depend on the ESCRT 

machinery (e.g. enveloped virus budding, exosomes, cytokinetic abscission, nuclear envelope 

reassembly, and autophagosomes, Gao et al., 2017). The identification of the ESCRT system 

in yeast was achieved by classical mutant screens, which focused on aberrant endosomal 

morphologies. A subset of the mutants (17 genes) exhibited a distinctive phenotype of enlarged 

and malformed MVBs which were termed class E compartments (Rieder et al., 1996; Conibear 

and Stevens, 1998). The careful and systematic analysis of vacuolar cargo transport (e.g. soluble 

Cpy/Carboxypeptidase Y) in these mutants revealed the different steps of MVB cargo sorting 

and led to the description of the ESCRT system.  

The ESCRT system can be divided in 5 multi-protein complexes based on their function: 

ESCRT0, ESCRTI, ESCRTII, ESCRTIII core, and ESCRTIII associated. The early functioning 

ESCRT complexes are involved in cargo recognition via ubiquitin and sequestration (ESCRT0 

to II) while the late acting ESCRT complexes regulate membrane invagination and fission 

(ESCRTIII and associated). The proteins of the complexes are present in the cytosol and are 
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subsequently recruited to the endosomal membrane in a hierarchal manner (Gao et al., 2017, 

Figure 1.2).  

 

Figure 1.2. The ESCRT system in A. thaliana. The complete degradation of ubiquitinated transmembrane 

proteins is achieved by their internalization into ILVs. ILV formation is a part of the maturation of EEs to MVBs 

and is executed by the ESCRT system. The ESCRT system is divided into 5 multi-protein complexes, which 

regulate the different steps of cargo recognition and enrichment (ESCRT0 to ESCRTII), as well as invagination 

and fission (ESCRTIII core and associated) in a hierarchal manner. No plant homologs of the ESCRT0 proteins 

have been identified. TOL proteins are thought to recognize ubiquitinated cargo (e.g. transmembrane proteins) and 

to subsequently recruit the pre-assembled ESCRTI complex to the endosomal membrane. ESCRTI consist of 

VPS23, VPS37, VPS28 and the plant-specific FREE1, which directly binds to membranes via its FYVE domain. 

VPS28 recruits the preassembled ESCRTII (VPS36, VPS22, and VPS25) complex via interaction with VPS36, 

which also directly binds to ubiquitinated cargo. The ESCRTIII core complex (VPS20, VPS32, VPS24, and VPS2) 

is not pre-assembled in the cytosol and subunits are subsequently recruited. During invagination, the in the 

membrane enriched cargo is deubiquitinated by additional factors. ILV formation is finalized by recruitment of 

the ESCRTIII associated complex (VPS4/SKD1, LIP5, VPS60, VPS46, and ISTL1), which removes the 

oligomerized ESCRTIII core subunits from the membrane. For A. thaliana VPS60, no direct function in ESCRT 

trafficking has been shown yet, but is expected based on homology. Model and graphical representation based on 

Gao et al., 2017. 

In yeast and animals, the ESCRT0 complex consists of 2 subunits, the Vps27/HRS 

(HEPATOCYTE GROWTH FACTOR-REGULATED TYROSINE KINASE SUBSTRATE) 

protein and the Hse1/STAM1/2 (Hbp STAM EAST1, SIGNAL TRANSDUCING ADAPTOR 

MOLECULE 1 AND 2) protein (Bilodeau et al., 2002). Both proteins bind directly to 

membranes and also contain an ubiquitin-binding motiv that allows the recognition of K63 

polyubiquinated cargo (Ren and Hurley, 2010; Lange et al., 2012). Homologs of the ESCRT0 

complex have not been identified in plants and in the majority of other eukaryotic lineages. The 
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A. thaliana genome encodes several TOL (TARGET OF MYB1-LIKE) proteins which contain 

a similar membrane-binding domain as ESCRT0, bind ubiquitin and have been shown to 

regulate the vacuolar trafficking of PIN2 (Blanc et al., 2009; Korbei et al., 2013).  

After cargo recognition and sequestration, ESCRT0 recruits the pre-assembled ESCRTI 

complex from the cytosol (Bache et al., 2003; Katzmann et al., 2003; Lu et al., 2003). Yeast 

and animal ESCRTI consists of 4 proteins: Vps23/TSG101 (TUMOR SUSCEPTIBILITY 

GENE 101), Vps28, Vps37 and Mvb12p (Multivesicular Body 12, Katzmann et al., 2001; 

Garrus et al., 2001; Kostelansky et al., 2007). Ubiquitin and ESCRT0 recognition is mediated 

via Vps23/TSG101 (Bilodeau et al., 2003; Katzmann et al., 2003). The recruitment of the 

ESCRTII complex is mediated by a C-terminal helical bundle structure (Pineda-Molina et al., 

2006). 

No Mvb12-like protein has been identified in A. thaliana but two protein versions of Vps23 

(ELCH/VPS23.1 and VPS23.2), Vps28 (VPS28.1 and VPS28.2) and Vps37 (VPS37.1 and 

VPS37.2) are present (Leung et al., 2008). Mutants of the A .thaliana ELCH protein show 

defects in cytokinesis and trichome development (Spitzer et al., 2006). Single mutants of vps37-

1 and vps28-2 show no growth phenotype under normal conditions but are compromised in the 

endosomal uptake and degradation of the FLS2 (FLAGELLIN SENSING 2) receptor which 

mediates plant immune responses (Spallek et al., 2013). Several studies showed that the 

A.thaliana ESCRTI complex contains an additional, plant specific component which is called 

FREE1 (Fab-1, YGL023, Vps27, and EEA1/FYVE, FYVE DOMAIN PROTEIN REQUIRED 

FOR ENDOSOMAL SORTING). FREE1 binds PI(3)P (Phosphatidylinositol 3-phosphate) via 

its conserved FYVE domain and ubiquitin with a C-terminal domain. Loss of FREE1 function 

leads to seedling death, which coincides with the presence of aberrant endosomal structures 

(Gao et al., 2014, Kolb et al., 2015).  

The ESCRTII complex provides the link between the early acting and the late acting ESCRT 

complexes. It consists of Vps22/EAP30 (ELL ASSOCIATED PROTEIN 30), Vps36/EAP45 

and two Vps25/EAP20 proteins which together form a Y-shaped structure (Schmidt et al., 1999; 

Kamura et al., 2001; Babst et al., 2002a; Teo et al., 2004; Wernimont and Weissenhorn, 2004). 

Vps36 mediates PI(3)P and ubiquitin binding and is the contact site for the ESCRTI protein 

Vps28. (Slagsvold et al., 2005; Teo et al.; 2006; Gill et al., 2007). Recruitment of the ESCRTIII 

complex is mediated by association of the two Vps25 proteins with Vps20 (Teo et al., 2004). 

In contrast to the other ESCRT proteins, only one homolog of each ESCRTII protein exists in 

A. thaliana. VPS25 and VPS22 have not been functionally characterized yet, but a recent study 
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from Wang and colleagues showed that they form, together with VPS36, a putative ESCRTII 

complex in plants (Wang et al., 2017). Furthermore, this study showed that the ubiquitin binding 

activity of VPS36 is conserved in plants and that it regulates MVB biogenesis and protein 

trafficking to the vacuole.  

1.3 The ESCRTIII core and associated protein complex 

The ESCRTIII complex and its associated proteins only assemble into functional complexes 

when they associate with the endosomal membrane. This dynamic polymerization distinguishes 

the ESCRTIII subunits from the ones of ESCRTI and II, which are already assembled in stable 

heteropolymers in the cytosol. The ESCRTIII complex consists of four core subunits and three 

related subunits in yeast. It finalizes, together with the ATPase Vps4/SKD1 (SUPPRESSOR 

OF K(+) TRANSPORT GROWTH DEFECT 1) and its regulator Vta1/LIP5 (Vacuolar protein 

sorting-associated protein 1, LYST INTERACTING PROTEIN 5), the invagination and fission 

of ILVs (Hurley and Hanson, 2010). Since the ESCRTIII related proteins regulate Vps4/SKD1 

activity and are not essential for the first steps of membrane invagination and fission, they are 

referred to as the ESCRTIII associated complex in this study.  

Babst and colleagues were the first to study the recruitment of the four ESCRTIII core proteins 

in yeast: Vps20, Snf7 (Sucrose Non Fermenting 7)/Vps32, Vps24 and Vps2/ Did4 (DOA4-

independent degradation protein 4, Babst et al. 1998 and 2002b).They showed by co-

immunoprecipitations that the ESCRTIII components preferably interact with each other at 

membranes. Vps20 and Snf7 are required for membrane association of the ESCRTIII complex 

while Vps24 and Vps2 are necessary for Vps4 recruitment. Vps20 nucleates the oligomerization 

of Snf7 in a filamentous spiral structure, which forms a curved dome and is the driving force of 

membrane invagination (Lin et al., 2005; Hanson et al., 2008; Shen et al., 2014; McCullough 

et al, 2015). The oligomerization of Snf7 is terminated by Vps24-dependent recruitment of 

Vps2, which in turn initiates the disassembly of the ESCRTIII complex via Vps4 recruitment 

(Teis et al., 2008).The human ESCRTIII core homologues are called CHMP (CHARGED 

MULTIVESICULAR BODY PROTEIN) and their structural characterization, together with 

the yeast proteins, revealed the physical attributes that allow ESCRTIII to assemble and 

polymerize specifically on membranes (Howard et al., 2001; von Schwedler et al., 2003).  

The ESCRTIII proteins are similar in size and share a specific architecture. The N-terminus is 

enriched in basic amino acids while the C-terminus is acidic (Muzioł et al., 2006). They do not 

contain known membrane binding domains (e.g. PH or FYVE) and only Vps20 is myristoylated 

and binds directly to the ESCRTII complex (Babst et al., 2002b; Bowers et al., 2004). 



Introduction 

22 

Membrane binding is mediated by the basic N-terminal part of the ESCRTIII proteins and is 

based on electrostatic interactions (Lin et al., 2005). In addition, a small N-terminal membrane 

insertion motif was identified, which contributes to membrane association (Buchkovic et al., 

2013). The membrane-interacting, basic N-terminus forms a flexible helical hairpin structure, 

which is built up by four α-helices (Muziol et al., 2006; Shen et al., 2014). The acidic C-terminal 

region also contains an α-helix and one or two MIM (Microtubule Interacting and Transport, 

MIT Interacting Motif) domains which mediate the interaction with the MIT domain of 

Vps4/SKD1 and Vta1/LIP5 (Scott et al., 2005; Obita et al., 2007; Stuchell-Brereton et al., 2007; 

Skalicky et al., 2012). The C-terminal region has an autoinhibitory effect on ESCRTIII 

membrane binding and oligomerization since its competing for interaction with the N-terminal 

hairpin (Muziol et al., 2006; Zamborlini et al., 2006; Shim et al., 2007). All ESCRTIII proteins, 

with the exception of Vps20, are present in the cytosol in a “closed”, monomeric state in which 

the C-terminus is folded against the N-terminal hairpin. Membrane association and interaction 

with the other ESCRTIII core subunits releases the C-terminal helix and allows 

oligomerization. This conformational shift is initiated by Vps20, which was shown to maintain 

an open conformation in the cytosol (Henne et al., 2012; Schuh et al., 2015).  

The three ESCRTIII associated proteins Did2/Vps46/CHMP1, Vps60/CHMP1 and Ist1 share 

the coiled-coil structure of the ESCRTIII core components. They are not primarily involved in 

membrane invagination but recruit and regulate the activity of the Vps4/SKD1 ATPase (Amerik 

et al., 2000; Kranz et al., 2001; Babst et al., 2002b; Nickerson et al., 2006; Dimaano et al., 

2007). Yeast studies revealed that the weak class E phenotype of Δist1, Δdid2 andΔvps60 

mutants is only partially synergistic (Rue et al., 2008). This indicated that the three ESCRTIII 

associated proteins modulate Vps4/SKD1-activity differently. 
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Figure 1.3. Removal of the ESCRTIII core complex by the ESCRTIII associated complex. The ESCRTIII 

core complex introduces membrane curvature for ILV formation by oligomerization. ESCRTIII core and 

associated proteins are not pre-assembled in the cytosol, but form oligomers when in contact with the endosomal 

membrane and with each other. VPS20 nucleates the oligomerization of VPS32, which form filamentous and 

restricting spirals. Oligomerization is finalized by VPS24-dependent VPS2 recruitment, which finally recruits the 

ESCRTIII associated complex. The AAA-ATPase SKD1 forms an active barrel structure together with its cofactor 

LIP5 when bound to ATP and when in physical contact with other ESCRTIII proteins. The MIT domains of SKD1 

and LIP5 interact with the MIM domains of the ESCRTIII core proteins. Hydrolysis-driven conformational 

changes of SKD1 remove the core proteins from the endosomal membrane. The ESCRTIII core subunits are 

released in the cytosol in a closed conformation that inhibits oligomerization. The other ESCRTIII associated 

proteins ISTL1, VPS46, and VPS60 are thought to stimulate SKD1 oligomerization and thereby its´ ATPase 

function. The removal of ESCRTIII core proteins from the endosomal membrane is a prerequisite for the final 

scission of the ILV and its release into the endosomal lumen. Model and graphical representation based on Schmidt 

and Teis, 2012. 
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Vps4/SKD1 and its cofactor Vta1/Lip5 do not share the classical ESCRTIII protein structure. 

Vps4/SKD1 is an ATPase of the AAA (ATPases Associated with diverse cellular Activities) 

class I. It contains one central ATPase cassette which is built up by one large, highly conserved 

AAA-ATPase domain and a smaller, less conserved AAA-ATPase domain (Scott et al., 2005b; 

Azmi et al., 2006; Vajjhala et al., 2006; Xiao et a., 2007). Endosomal recruitment and the 

majority of protein interactions occur via an N-terminal MIT-domain, which is connected to 

the ATPase cassette by a long, flexible linker (Babst et al., 1998; Lottridge et al., 2006; Stuchell-

Brereton et al., 2007; Obita et al., 2007). When inactive (ADP bound or absence of nucleotides), 

Vps4/SKD1 is present in the cytosol as a monomer or homodimer. Recruitment to the 

endosomal membrane by ESCRTIII core and associated proteins as well as ATP binding initiate 

the oligomerization of Vps4 in a barrel shaped, double ring structure consisting of 12 or 14 

subunits (Hartmann et al., 2008; Landsberg et al., 2009). The activated Vps4/SKD1-oligomer 

disassembles the ESCRTIII complex by sequential interactions via its MIT-domain. 

Conformational changes, which are driven by ATP hydrolysis, detach the proteins from each 

other and from the membrane, and release them in their “closed”, monomeric conformation into 

the cytosol (Scott et al., 2005a, Figure 1.3). The disassembly of the ESCRTIII complex by 

Vps4/SKD1 is essential for the final step of membrane fission in the process of ILV formation. 

When Vps4/SKD1 function is diminished, abnormally large MVBs with incomplete ILVs are 

formed, vacuolar or lysosomal transport is blocked and the upstream ESCRT proteins 

accumulate at MVBs (Finken-Eigen et al., 1997; Babst et al., 1998; Fujita et al., 2003). If 

Vps4/SKD1 actively participates in membrane fission or simply guarantees, that enough 

ESCRTIII subunits are present in the cytosol for multiple rounds of ILV formation, is part of 

the current discussion (Alonso Y Adell and Teis, 2011). 

The cofactor Vta1/LIP5 co-assembles in the Vps4/SKD1 barrel structure and enhances its 

hydrolytic activity (Scott et al., 2005a; Azmi et al., 2006; Lottridge et al., 2006; Xiao et al., 

2008; Azmi et al., 2008). Vta1/LIP5 contains two N-terminal MIT domains for ESCRTIII 

interaction and a C-terminal Vps4/SKD1-binding domain which are connected via a long, 

flexible linker. The co-assembly of Vta1/LIP5 subunits into the Vps4/SKD1 barrel increases 

the number of free MIT-domains that interact with the ESCRTIII proteins and thereby enhances 

substrate engagement. In parallel to the last steps of ESCRTIII-driven membrane invagination 

fission, the sequestered cargoes of the MVB pathway are deubiquitinated (Alonso Y Adell and 

Teis, 2011). 
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All 4 ESCRTIII core proteins are present in A. thaliana with two or three homologues (in this 

study referred to as VPS20.1/VPS20.2, VPS32.1/VPS32.2, VPS24.1/VPS24.2, and 

VPS2.1/VPS2.2/VPS2.3, Winter and Hauser, 2006). So far, only mutants of the VPS2.1 and 

VPS2.2 protein were isolated, which are embryonic lethal or have a root growth phenotype, 

respectively (Katsiarimpa et al., 2011; Ibl et al., 2012). Studies of yeast and human proteins 

showed that C-terminal modification of ESCRTIII components can have a dominant-negative 

effect on ESCRT disassembly and thereby on MVB maturation and cargo transport (Martin-

Serrano et al., 2003; Strack et al., 2003; Zamborlini et al., 2006; Teis et al. 2008).This was 

confirmed for A thaliana in transient expression assay with C-terminal deletion/ modification 

versions of the ESCRTIII proteins (Richardson et al., 2011; Katsiarimpa et al., 2011; Cai et al., 

2014).  

Similar to the ESCRTIII core proteins, all isoforms of the associated proteins are present with 

at least one homolog in A. thaliana (in this study referred to as VPS46.1/VPS46.2, 

VPS60.1/VPS60.2, and ISTL/IST1-like, Winter and Hauser, 2006; Leung et al., 2008; Buono 

et al., 2016). Interestingly, gene duplication and diversification led to the presence of 12 ISTL 

proteins from which only ISTL1 has been shown to synergistically function to LIP5 in ESCRT 

trafficking. Mutant lip5 plants exhibit overall normal growth under non-stress conditions but 

are impaired in basal pathogen defenses responses, heat and salt stress responses as well as root 

gravitropism (Wang et al., 2014 and 2015, Buono et al., 2016). The double mutants of istl1 and 

lip5 are impaired in growth, fertility and show early senescence. Furthermore, MVBs of the 

double mutant contain fewer, but larger ILVs than the wild type or single mutants (Buono et 

al., 2016). Double mutants of the two Did2 homologs VPS46.1 and VPS46.2 also show a 

reduced number of ILVs which coincides with PIN mislocalization. The disruption of polar 

auxin transport causes severe embryo deformation and early seedling death (Spitzer et al., 

2009). Although no mutants of the A. thaliana AAA-ATPase SKD1 were isolated so far, studies 

using dominant-negative versions confirmed its involvement in MVB formation. In-vitro assays 

confirmed its ATPase activity, which is also stimulated by the addition of LIP5 (Haas et al., 

2007; Shahriari et al., 2010a). The transient or inducible expression of ATPase-dead versions 

of SKD1 causes the formation of aberrantly large MVBs with reduced ILV numbers and inhibits 

the transport of vacuolar cargo. Furthermore, the expression of mutated SKD1 under the control 

of the epidermal cell-specific promoter of GL2 (GLABRA 2) revealed that the loss of SKD1 

causes cell expansion phenotypes, vacuolar fragmentation and inhibits seed coat mucilage 

production (Shariaria et al., 2010a and b). Those severe phenotypes led to the assumption that 

SKD1 loss is lethal for A. thaliana.  
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A plant specific and late acting ESCRTIII associated protein was identified in a yeast two 

hybrid screen. PROS (POSITIVE REGULATOR OF SKD1, Reyes et al., 2014) contains an 

internal MIM domain, stimulates the ATPase activity of SKD1 in vitro and causes a cell 

expansion phenotype when silenced. With the A. thaliana SPI (SPIRRIG) proteins, another 

positive regulator of SKD1 function was recently identified in our group (Steffens et al., 2017). 

SPI is a member of the BEACH (Beige and Chediak Higashi) domain protein family, which is 

associated with and involved in membrane trafficking events (Cullinane et al., 2013). A. 

thaliana spi mutants have cell expansion phenotypes which includes twisted trichomes, short 

root hairs and reduced complexity of epidermal pavement cells (Saedler et al., 2009). In 

addition, the central vacuoles of root hairs are fragment, which points to a function of SPI in 

vacuolar trafficking. Protein interaction studies confirmed a direct interaction of SPI with SKD1 

and LIP5. Furthermore, spi and lip5 double mutants exhibit defects in cargo trafficking of the 

vauolar proteases CPY and AALP (ALEURAIN-LIKE PROTEASE) as well as a seed coat 

mucilage phenotype reminiscent of the one in plants expressing ATPase-deficient SKD1 under 

the GL2 promoter (Shahriari et al 2010b; Steffens et al., 2017).  

Interestingly, a new cellular function of SPI was identified, which is thought to be unrelated to 

ESCRT-dependent trafficking. It was shown that the SPI protein is involved in the 

posttranscriptional regulation of salt-stress responsive mRNAs via the recruitment to and the 

formation of so-called Processing bodies (P-bodies, Steffens et al., 2015). P-bodies are a class 

of microscopically visible, membrane-less mRNA-ribonucleoprotein (mRNP) granules, which 

are involved in the selective degradation of transcripts, especially after the onset of cellular 

stress. Their function and composition, as well as the function of the related stress Granules 

(SGs) are explained in detail in the next chapter.  

1.4 Composition and function of P-bodies and SGs 

After transcription and maturation, eukaryotic mRNAs in conjunction with mRNPs are shuttled 

out of the nucleus. At the nuclear pore, transcripts have to pass quality-control which determines 

whether they enter the cytosol for translation or if they are subjected to degradation. Once in 

the cytosol, the eukaryotic translation initiation complex binds the 5’ cap structure (7-

methylguanosine 5'-triphosphate, m7Gppp) of transcripts and initiates ribosome assembly. 

PABs (Poly(A) Binding Proteins) which bind the 3’ poly(A) tail of transcripts, have been shown 

to interact with proteins of the translation initiation complex. This protein interaction across the 

length of the transcript leads to mRNA circulation which reduces ribosome disassociation and 

enhances protein synthesis (Gallie, 2014; Chantarachot and Bailey-Serres, 2018). The 
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complexes formed by translation initiation proteins, functional ribosomes and additional 

accessory proteins such as PABs are called polysomes and are the active sites of protein 

translation.  

Cellular stresses such as starvation, hypoxia or heat stress trigger the phosphorylation of eIF2α 

(eukaryotic translation Initiation Factor 2 α), which causes polysome disassembly. From there, 

mRNAs are either transported in association with a stalled pre-initiation complex to SGs or are 

transported to another, closely related class of mRNP granules, the so-called P-bodies (also 

known as GW182-containing bodies, Anderson and Kedersha, 2008). Both classes of mRNP 

granules share some associated proteins and have been shown to exchange protein and mRNA 

content via docking and fusion events in mammals and yeast (Kedersha et al., 2005; Buchan et 

al., 2009, Figure 1.4). The formation of mRNP granules depends on the presence of polysome-

released transcripts in the cytosol. This is demonstrated by the observation that treatment of 

cells with cycloheximide, a translation elongation inhibitor which “traps” transcripts in 

polysomes, prevents mRNP granule formation. Treatment with the early translation 

termination-inducing drug puromycin increases the number of mRNP granules (Anderson and 

Kedersha, 2008).  

Though they are considered to be somewhat similar, P-bodies are distinguishable from SGs by 

the presence of DCPs (Decapping Proteins), which initiate 5’ to 3’ mRNA decay. Therefore, P-

bodies are thought to primarily function in transcript degradation while SGs provide a transient 

cytosolic storage compartment for mRNAs (Buchan and Parker, 2009). However, transport into 

P-bodies does not always lead to mRNA degradation since transcripts can re-enter translation 

after stress removal (Brengues et al., 2005; Bhattacharyya et al., 2006; Aizer et al., 2014).  
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Figure 1.4. Sequestration of mRNAs and proteins into mRNP granules during cellular stress. Mature mRNAs 

(m7Gppp cap and poly(A) tail) are shuttled out of the nucleus in conjunction with different mRNPs (e.g. export 

factors, quality control components). In the cytosol, the translation initiation complex (eIF4E, eIF4G, eIF2, eIF3, 

and 40S ribosomal subunit, green proteins) assembles onto mRNAs. The additional recruitment of the 60S 

ribosomal subunits and enhancing factors such as PABs initiate protein translation in polysomes. Cellular stress 

(e.g. starvation, infection, heat stress, red arrow) induces the disassembly of polysomes and promotes the 

sequestration of mRNAs into P-bodies or SGs, which are two classes of mRNP granules. P-bodies, that contain 

proteins of the Decapping complex (e.g. Dcp1, Dcp2, Dhh1, red/brown proteins)/ Decay machinery (e.g. Xrn1, 

Pat1, Lsm1-7, orange/yellow proteins), are also present in the absence of stress, and are a place of mRNA 

degradation. SGs, that contain several proteins of the translation initiation complex and PABs, are specifically 

formed after stress, and are thought to function in transcript stabilization. SGs and P-bodies have been shown to 

exchange proteins and mRNAs, and are also found in physical contact with each other. The dynamic in- and efflux 

of proteins into mRNP granules has been described as a mode of liquid-liquid phase separation. This is thought to 

depend on weak IDR-driven interactions in SG shells (light grey), while more stable, globular domain driven 

interactions with proteins and mRNAs are predominant in SG cores (dark grey). After stress removal, mRNAs 

from both granules can re-enter translation and the granules disassemble. Alternatively, they are removed from the 

cell via autophagy. Model and graphical representation based on Protter and Parker, 2016.  



Introduction 

29 

As mentioned, the hallmark of P-bodies is the presence of DCPs. In mammals and yeast, the 

Dcp1/Dcp2 holoenzyme, with Dcp2 being the catalytic subunit, cleaves the 5’-cap of mRNAs 

(Beelman et al., 1996; Dunckley et al., 1999 and 2001; Lykke-Andersen, 2002; Steiger et al., 

2003). Several decapping activators and mRNA decay components have been shown to be 

enriched in P-bodies such as the RNA helicase Dhh1(DExD/H-box helicase 1), the 

deadenylated mRNA binding Lsm1-7 (Sm-like) -Pat1 (Protein Associated With 

Topoisomerase1)-complex, Edc3 (Enhancer of Decapping 3) as well as the 5’ to 3’ 

exoribonuclease Xrn1 which executes the final transcript decay (Hatfiled et al., 1996; Bouveret 

et al., 2000; Tharun et al., 2000; Bonnerot et al., 2001;Sheth and Parker, 2003; Cougot et al., 

2004; Fenger-Grøn et al., 2005). Decapping is preceded by the deadenylation of the 3’ poly(A) 

tail via the Ccr4-Caf1-Not complex (Carbon201 Catabolite Repressor 4, Ccrf Associated 

Factor, Negative on Tata, Chen et al., 2002; Tucker et al., 2001; Parker and Song, 2004).  

The transcript degradation machinery and its localization to P-bodies is conserved in plants 

(Chantarachot and Bailey-Serres, 2018). In A. thaliana, the DCP1 protein, together with VCS 

(VARICOSE)/EDC4, stimulate the enzymatic activity of DCP2 and forms the core decapping 

complex. Mutants of the three decapping complex proteins share similar phenotypes consisting 

of reduced cell expansion (dwarfism), disorganization of vascular tissues and epidermal cell 

growth defects, which are finally lethal after cotyledon emergence (Xu et al., 2006). With 

DCP5, an additional co-factor of mRNA decapping activity was identified. Although DCP5 

does not directly stimulate DCP2 activity, it promotes mRNA degradation via interaction with 

DCP1 and VCS, accumulates in P-bodies and is necessary for targeted translational repression 

during seed germination (Xu and Chua, 2009). The final step of 5’ to 3’ mRNA decay is 

mediated by XRN4 in plants (Kastenmayer and Green, 2000). Although xrn4 mutants do not 

share the drastic phenotypes of the other decapping components, the loss of XRN4 function 

effects the regulation of seed dormancy, heat stress responses as well as viral infection (Jaag 

and Nagy, 2009; Peng et al., 2011; Merret et al., 2013; Nguyen et al., 2015; Basbouss-Serhal et 

al., 2017). 

Yeast and mammalian SGs have been distinguished from P-bodies by the presence of the 40S 

small ribosomal subunit, proteins of the stalled translation initiation complex (tenary complex-

deficient) such as eIF3, the eIF4F complex (eIF4E, eIF4A and eIF4G) and eIF4B as well as 

PABs such as PAB1 (Kedersha et al., 2005; Anderson and Kedersha, 2008). In contrast to the 

other translation initiation complex components, the 5’-cap binding eIF4E protein has also been 

found in yeast and mammalian P-bodies (Ferraiuolo et al., 2005; Kedersha et al., 2005). The 
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mammalian TIA1 (T-CELL RESTRICTED INTRACELLULAR ANTIGEN 1) and TIA1-R 

(TIA1-RELATED) proteins contain three N-terminal RRMs (RNA Recognition Motifs), bind 

to poly(A)-tail of mRNAs and have been shown to function downstream of eIF2α 

phoshorylation by mediating the enrichment of stalled translation initiation complexes in SGs 

(Tian et al., 1991;Kedersha et al., 1999). Under normal conditions, TIA1 and TIA1-R constantly 

shuttle between the cytosol and nucleus. Upon the onset of stress, they accumulate in the 

cytosol. Here, a prion-like domain enables self-aggregation that promotes SG assembly (Gilks 

et al., 2004). Although not always essential for SG formation, TIA1 and TIA1-R as well as their 

yeast counterparts have been shown to be of high importance for granule formation since 

overexpression of TIA1 alone can induce the formation of SGs in the absence of stress (Gilks 

et al., 2004; Protter and Parker, 2016). Another core SG protein, which initiates granule 

nucleation, is the endonuclease G3BP (Ras-GAP SH3 domain Binding Protein). G3BP contains 

a C-terminal RRM and an N-terminal NTF2-like (NUCLEAR TRANSPORT FACTOR 2) 

domain which mediates recruitment to SGs (Tourrière et al., 2003; Jain et al., 2016).  

The analysis of A. thaliana SGs is still an emerging field in plant science, yet several studies 

investigated their composition and function (Chantarachot and Bailey-Serres, 2018). For 

example, the translation initiation factors eIF4E and eIF3B have been shown to localize in 

distinct cytosolic foci upon heat stress treatment (Weber et al.,2008; Suzuki et al., 2015). The 

UBP1 (OLIGOURIDYLATE BINDING PROTEIN 1) and the RBP45/47 (RNA-BINDING 

PROTEIN 45/47) family proteins are related to human TIA1 and share the overall domain 

structure of 3 RRMs and a prion-like domain (Lorkovic et al., 2000; Weber et al., 2008; 

Sorenson and Bailey-Serres, 2014). Similar to the TIA1 proteins, RBP47b has been shown to 

change its localization from a nuclear and cytoplasmic to a granular localization during heat, 

salt and hypoxia stress (Weber et al., 2008; Lokdarshi et al., 2016). Furthermore, it was shown 

that the prion-like domain of RBP47b is necessary for SG association, similar to the one of 

TIA1 (Gilks et al., 2004; Weber et al., 2008). Three A. thaliana UBP1 proteins have been 

characterized in the context of mRNP granules. The UBP1c protein was shown to reversibly 

localize in distinct cytosolic granules during hypoxia which contained poly(A)-mRNAs as well 

as the PAB2 protein and UBP1a. Seedling survival during hypoxia was reduced in ubp1c 

mutant plants and this loss in viability correlated with the selected sequestration of mRNAs 

(Sorenson and Bailey-Serres, 2014). The UBP1b protein was shown to aggregate into SGs upon 

heat stress treatment and mutant plants are salt-stress sensitive (Weber et al., 2008; McCue et 

al., 2012; Nguyen et al., 2016). Furthermore, overexpression lines of UBP1b are hyposensitive 

to heat stress while they exhibit an enhanced sensitivity to abscisic acid signaling. Both 
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phenotypes were linked to an enhanced stabilization of stress-relevant transcripts (Nguyen et 

al. 2016 and 2017). A. thaliana PAB proteins are also classified as closely related to the human 

TIA1 protein. PAB2 as well as PAB8 have been shown to localize in SGs during hypoxia or 

after heat stress treatment (Weber et al., 2008; Sorenson and Bailey-Serres, 2014; Bhasin and 

Hülskamp, 2017). A putative plant homolog of the NTF2-like RRM containing protein G3BP 

was also identified in A. thaliana (Krapp et al., 2017). The authors showed in transient 

expression assays that A. thaliana G3BP localizes to SGs in a heat stress-dependent manner.  

In addition to classical RNA binding proteins, an increasing number of studies show that a 

variety of proteins with no known DNA or RNA binding activity are sequestered in SGs during 

cellular stress (Jain et al., 2016). One example in A. thaliana is the calcium sensor protein 

CML38 (CALMODULINLIKE 38) which localizes in SGs during hypoxia in a calcium-

dependent manner. This change in localization correlates with a reduced tolerance of hypoxia 

in cml38 mutant plants as well as the co-precipitation of known mRNP granule components in 

an interactome study (Lokdarshi et al., 2016). Another example is the AN (ANGUSTIFOLIA) 

protein (Bhasin and Hülskamp, 2017). It contains a CtBP (C-terminal Binding Protein) domain 

found in translational co-repressors that sense the redox state of the cell and a BAR (BFA-ADP 

RIBOSYLATED SUBSTRATE) domain known to function in membrane trafficking events 

(Colanzi et al., 2013). AN localizes in distinct cytoplasmic foci during salt and heat stress. 

Moreover, the association and interaction with SG proteins depends on the NAD(H) binding 

site within the CtBP domain. SG size was reduced and number was increased in an mutants and 

they were hyposensitive to changing salt and osmotic growth conditions. This led to the 

hypothesis that AN is a cellular redox sensor that modulates SG formation (Bhasin and 

Hülskamp, 2017). Previous studies showed that the AN protein also partially co-localizes to the 

TGN (Minamisawa et al., 2011). Thus, in addition to the previously mentioned SPI protein, AN 

provides another example for a protein that is involved in or associated with membrane 

trafficking events as well as mRNP granule formation. 

A prominent example of a protein with no known RNA binding or modification activity that is 

integrated into SGs during cellular stress is TORC1 (TARGET OF RAPAMYCIN COMPLEX 

1, Kedersha et al., 2013). TORC1 and TORC2 are two multiprotein complexes that together 

form the conserved TOR kinase, which regulates the metabolic state of eukaryotic cells. 

TORC1 is located at the lysosomal/vacuolar membrane under normal growth conditions where 

it is active and promotes biosynthetic processes. Amino acid deprivation, hypoxia as well as 

heat stress inhibit TOR signaling, leading to the halt of biosynthesis and the promotion of 
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catabolic processes (Efeyan et al., 2013). Studies in yeast and human cells revealed that the 

inhibition of TOR signaling during heat stress or arsenite induced hypoxia correlates with the 

sequestration of TOC1 in SGs (Takahara and Maeda, 2012; Wippich et al., 2013). The 

disassembly of SGs after stress removal correlated with the relocalization of TORC1 to 

lysosomal/vacuolar membranes and re-activation of TOR signaling.  

Prion-like domains have been shown to be a driving force in the formation of mRNP granules 

(e.g. TIA1). They represent a subclass of Intrinsically Disordered Regions (IDRs), also known 

as Low Complexity (LC) regions. IDRs are amino acid stretches within a protein sequence that 

are not organized in secondary structures and are considered to be flexible linker regions 

between globular domains (Protter and Parker, 2016). IDRs are overrepresented in proteins 

known to be in mRNP granules. In-vitro studies using protein fragments of IDRs from mRNP 

granule components showed that they form dynamic aggregates with molecular diffusion rates 

reminiscent of liquid-liquid-phase separation, thus leading to the hypothesis that weak, but 

broad multivalent interactions of IDRs are the driving force of mRNP granule formation (Lin 

et al., 2015; Molliex et al., 2015). Proteomic analysis of mammalian and yeast SGs further 

showed that mRNP granules consist of a core and a shell structure whereby interactions between 

core components are thought to be mainly globular domain driven (e.g. RRM interaction with 

mRNAs) and specific while associated proteins of the shell structure rely on dynamic, but weak 

IDR interactions (Jain et al., 2016). 

The same study showed that stability of SGs is ATP dependent and that specific ATP-dependent 

remodeling complexes such as the CCT complex (chaperonin-containing T complex) or the 

RNA helicase complex Rvb (RuvB-like) actively modulate assembly and disassembly of SGs. 

Furthermore, different chaperone proteins, such as Hsp70 (Heat shock protein 70) and Hsp40, 

have been found in mRNP granules and were shown to regulate the disassembly of SGs (Protter 

and Parker, 2016). The AAA-ATPase Cdc48 (Cell Division Cycle 48) was shown to remove 

ubiquitinated proteins from SGs, thereby contributing to their disassembly. This subsequent 

removal of proteins is discussed to prime SGs for clearance via autophagy, which provides an 

additional mode of mRNP granule clearance from the cytosol. (Buchan et al., 2013)
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1.5 Aim of work 

Previous studies in our group revealed a connection between ESCRT-dependent protein 

trafficking and mRNP granule formation in A. thaliana. It was shown that the SPI protein is 

involved in vacuolar transport by stimulating the activity of SKD1 in the process of MVB 

formation. An additional function of SPI was found in the regulation of salt stress responses by 

selective sequestration of mRNAs into P-bodies, thereby modulating transcript levels. An initial 

yeast two hybrid experiment indicated several potential protein interactions between P-body 

and ESCRTIII core and associated proteins, providing evidence for a general link between 

ESCRT-dependent trafficking and mRNP granules. To further investigate this potential, and so 

far unknown, link between the two cellular pathways, the repetition and extension of the yeast 

two hybrid study was carried out. The study was complemented by an exhaustive cellular 

localization and co-localization study of ESCRTIII core and ESCRTIII associated components 

with P-body and SG components after heat stress treatment, which is known to promote the 

formation of mRNP granules. The cellular localization of SKD1 was hereby of particular 

interest, since it executes the rate-limiting and essential step of ESCRTIII removal from MVBs. 

Another objective was the study of the effect of heat stress on ESCRT-dependent PIN2 

trafficking and how it would correlate to potential protein relocalizations. Finally, with the help 

of an interactome approach, the general influence of heat stress on SKD1 protein interactions 

was tested. 
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2  Material and Methods 

2.1 Plasmids 

Table 2.1. General plasmids used in this study 

Name Attributes and use 
Resistance in 

E. coli 
Reference/Origin 

pDONR201 Gateway cloning; Donor vector Kanamycin Invitrogen 
pDONR207 Gateway cloning; Donor vector Gentamycin Invitrogen 

pENTRA-w/o-

ccdB 

Gateway cloning; Generation of 
empty backbones as control; Donor 
vector 

Kanamycin Campeu et al., 2009 

pAS 

N-terminal fusion of GAL4-BD; 
Tryptophan biosynthesis gene; 
expression in yeast; Y2H 

Ampicillin/ 
Carbenicillin 

Clontech 

pACT 

N-terminal fusion of GAL4-AD; 
Leucine biosynthesis gene; 
expression in yeast; Y2H 

Ampicillin/ 
Carbenicillin 

Clontech 

pENSG-YFP 

N-terminal fusion of YFP; 
35S CaMV plant expression; 
Subcellular localization analysis 

Ampicillin/ 
Carbenicillin 

Feys et al., 2005 

pEXSG-YFP 

C-terminal fusion of YFP; 
35S CaMV plant expression; 
Subcellular localization analysis 

Ampicillin/ 
Carbenicillin 

Feys et al., 2005 

pEXSG-CFP 

C-terminal fusion of CFP; 
35S CaMV plant expression; 
Subcellular localization analysis 

Ampicillin/ 
Carbenicillin 

Feys et al., 2005 

pPACIFIC 

C-terminal fusion of 
mTURQUOISE; 35S CaMV plant 
expression; Subcellular localization 
analysis 

Ampicillin/ 
Carbenicillin 

M. Jakoby 

pAMARENA 

N-terminal fusion of 
mCHERRY;35S CaMV plant 
expression; Subcellular localization 
analysis 

Ampicillin/ 
Carbenicillin 

M. Jakoby 
GenBank ID: 
FR695428 

pAMARENA-

UBQ10 

N-terminal fusion of mCHERRY; 
UBQ10 plant expression; 
Subcellular localization analysis 

Ampicillin/ 
Carbenicillin 

M. Jakoby 

pAUBERGINE 

C-terminal fusion of mCHERRY; 
35S CaMV plant expression; 
Subcellular localization analysis 

Ampicillin/ 
Carbenicillin 

M. 
Jakoby,GenBank ID: 
FR695428 

pTREX-dest30-

ProtA 

N-terminal fusion with protein-A; 
expression in HEK cells; LUMIER 
assay 

Ampicillin/ 
Carbenicillin 

Blasche et al., 2013 

pTREX-dest-30-

YFP 

N-terminal fusion with YFP; 
expression in HEK cells; LUMIER 
assay 

Ampicillin/ 
Carbenicillin 

A. Steffens 

pcDNA3-RLuc 

N-terminal fusion with Renilla 
luciferase; expression in HEK cells; 
LUMIER assay 

Ampicillin/ 
Carbenicillin 

Blasche et al., 2013 
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All vectors used in this study contain a Gateway cassette that allows the introduction of genes 

of interest via recombination. Table 2.1 summarizes the attributes of the general donor and 

destination vectors used in this study. The plasmid expressing SKD1 under its endogenous 

promoter (not listed, ProSKD1:: SKD1-YFP) was generated by removal of the 35S Cauliflower 

mosaic virus (CaMV) promoter (restriction digestion with AscI/XhoI) from the pEXSG-YFP 

plasmid and the ligation of a fragment which contained the upstream sequence of the SKD1 

gene (1.2 kb) upstream of the ATG, generated with J1439 AscI-proVPS4 5’-

ggggcgcgcCTTGGTTAATTATCACCTAAAATAG-3’ and J1440 XhoI-proVPS4 5’-

ccctcgAGGGTTTTACAAGAGAAATTGAAATTC-3’ primers, M. Jakoby, unpublished). The 

specific vectors, which were generated and used in this study, are listed in Table A.1.  

2.2 Primers 

Table 2.2 summarizes the primer sequences, which were used for the coding sequence (CDS) 

amplification of the interactome candidates and the addition of gateway sites (bolt sequences). 

Furthermore, the used sequencing primers are listed. All primers were purchased from Sigma-

Aldrich/Merck. 

Table 2.2. Sequences of primers used in this study. 

Gene/Primer ATG (isoform) 5‘ to 3‘ sequence 

VPS18 fwd AT1G12470.1 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGATCAAGGAA
GGCAAGT 

VPS18 rew AT1G12470.1 GGGGACCACTTTGTACAAGAAAGCTGGGTATCMAACAGGCAAA
GAAATGGTCCTCTG 

VPS41 fwd AT1G08190.1 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCTGCGGTTC
CGCCTGAAAACGG 

VPS41 rew AT1G08190.1 GGGGACCACTTTGTACAAGAAAGCTGGGTATCMCCGAGCGGAC
GCAGCGGCGGC 

GRF2 fwd AT1G78300.1 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCGTCTGGGC
GTGAAGAGTTCGT 

GRF2 rew AT1G78300.1 GGGGACCACTTTGTACAAGAAAGCTGGGTATCMCTGCTGTTCCT
CGGTCGGTTTTGG 

SEC13A fwd AT3G01340.1 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGCCTCCTCAGA
AGATTGAAACTGG 

SEC13A rew AT3G01340.1 GGGGACCACTTTGTACAAGAAAGCTGGGTATCMTGGCTCAACA
ACAGTCACTTGTTC 

ISTL1 fwd AT1G34220.1 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGTCGATGCTCG
ATTCCTTCTTCAA 

ISTL1 rew AT1G34220.1 GGGGACCACTTTGTACAAGAAAGCTGGGTATCMCGAATCATGG
GCGGGTCTTGTATT 

GRF9 fwd AT2G42590.3 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGGTTCTGGAA
AAGAGCGTGACAC 

GRF9 rew AT2G42590.3 GGGGACCACTTTGTACAAGAAAGCTGGGTATCMATTTGATTTAC
CCCGAGTAAAGGA 

PIP1-1 fwd AT3G61430.1 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGAAGGCAAG
GAAGAAGACGTTAG 

PIP1-1 rew AT3G61430.1 GGGGACCACTTTGTACAAGAAAGCTGGGTATCMGCTTCTGGACT
TGAAGGGGATGGC 

VCL1/VPS16 

fwd 
AT2G38020.1 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCAAACGTGT

CTGTTGCTGCGGA 
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Gene/Primer ATG (isoform) 5‘ to 3‘ sequence 

VCL1/VPS16 

rew 
AT2G38020.1 GGGGACCACTTTGTACAAGAAAGCTGGGTATCMGGAGGCTCCTT

GGAAAGGCATTAA 

FLOT1 fwd AT5G25250.1 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGTTCAAAGTTG
CAAGAGCGTCACA 

FLOT1 rew AT5G25250.1 GGGGACCACTTTGTACAAGAAAGCTGGGTATCMGCTGCGAGTC
ACTTGCTTCGGTTC 

eIF4B1 fwd AT3G26400.1 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGTCGAAAGCTT
GGGGTGGAATTGG 

eIF4B1 rew AT3G26400.1 GGGGACCACTTTGTACAAGAAAGCTGGGTATCMCCATCCTTCCC
TAGAGGAAGACCT 

RUXF fwd AT4G30220.2 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCGTTTGTAT
GTATGTGTGTTTT 

RUXF rew AT4G30220.2 GGGGACCACTTTGTACAAGAAAGCTGGGTATCMGTCTTGATCAG
CGTCTTCAAGCTC 

UAP56A fwd AT5G11170.1 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGGAGACGCTA
GAGACAACGAAGC 

UAP56A rew AT5G11170.1 GGGGACCACTTTGTACAAGAAAGCTGGGTATCMAGAAGGCATG
TAGGTTGAAGTATC 

UBP12 fwd AT5G06600.1 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGACTATGATGA
CTCCGCCTCCCGT 

UBP12 rew AT5G06600.1 GGGGACCACTTTGTACAAGAAAGCTGGGTATCMATTGTATATTT
TTACCGGCTTCTC 

NTF2 fwd AT5G60980.2 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCACAGCAGG
AAGCTAGTCCTTC 

NTF2 rew AT5G60980.2 GGGGACCACTTTGTACAAGAAAGCTGGGTATCMAGATGAACCA
CCACCTCGAGCTCC 

LOS4 fwd AT3G53110.1 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCGGATACGG
TAGAGAAAGTTCC 

LOS4 rew AT3G53110.1 GGGGACCACTTTGTACAAGAAAGCTGGGTATCMCTCGTCCAGCA
GGCCAGCTTCCTT 

RRM fwd AT3G23900.1 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCTTCAGATC
GTGGTTCTGCAGC 

RRM rew AT3G23900.1 GGGGACCACTTTGTACAAGAAAGCTGGGTATCMTGACTTAAGA
ATAATCCTTTTCTC 

CML10 fwd AT2G41090.1 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCGAATAAGT
TCACTAGACAACA 

CML10 rew AT2G41090.1 GGGGACCACTTTGTACAAGAAAGCTGGGTATCMAGAAAACAAC
GCTTCGAACAAATT 

eIF4B seq AT3G26400.1 ATTATCAACATCATCAGCTC 

VPS18 seq1 AT1G12470.1 AGTGATGGAACTGAAGCAGT 

VPS18 seq2 AT1G12470.1 GACATAGGCGCAATGCATAT 

UBP12 seq1 AT5G06600.1 ATAAGTGTGCTGCTTCGACA 

UBP12 seq2 AT5G06600.1 AGTATGTTGAAGTTGAACGT 

RRM seq AT3G23900.1 CTTTGTTTTCCTCATCATCT 

eIF4B1 seq2 AT3G26400.1 GTGCTTGCCTTTTCCCTGCA 

Seqencing 

primer 1 
 TCGCGTTAACGCTAGCATGGATCTC 

Sequencing 

primer 2 
 GTAACATCAGAGATTTTGAGACACGGGCCAGAGCTGCAGCTG 
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2.3 Organisms 

Table 2.3 summarizes all organisms used in this study. The different transgenic A. thaliana 
lines, which were used or generated in this study, are listed separately in Table 2.4.  

Table 2.3. List of used organisms 

Species Name/Strain/Line Attributes Reference/Origin 

A. thaliana Columbia (Col-0) wild type WT-02, TAIR 

E. coli DH5-α 

F-, ϕ80lacZ ΔM1, Δ(lacZYA-argF), 
U169, deoR, recA1, endA1, hsdR17, (rk 
-, mk+), phoA, supE44, thi-1, gyrA96, 
relA1, -λ 

(Hanahan, 1983). 

E. coli DH10B 

F-, gyrA462endA1, glnV44, Δ(sr1-
recA), mcrBmrr, hsdS20,(rB-, mB-), 
ara14, galK2, lacY1, proA2, 
rpsL20(Smr), xyl5Δleumtl1  

(Miki et al. 1992). 

S. cerevisiae AH109 

MATatrp1-901, leu2–3,112 ura3-52, 
his3-200, gal4Δ, gal80Δ, 
LYS2::GAL1UAS-GAL1TATA-HIS3, 

MEL1 GAL2UAS-GAL2TATA-ADE2, 

URA3::MEL1UAS-MEL1TATA-lacZ 

(CLONTECH, 
James et al. 1996) 

H. sapiens HEK293TN 
Pseudoviral Lenti Particle Producer Cell 
Line  

BioCat/SBI 
LV900A-1) 
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Table 2.4. List of used and generated A. thaliana transgenic lines 

Name of line 
Recombinant Protein 

(ATG) 

Plasmid 

(selection in plants) 
Reference/Origin 

35S::GFP-SKD1 

(Col-0) 

GFP-SKD1 
(AT2G27600) 

pCambia 1300 
(Hygromycin B or 
Kanamycin) 

Haas et al., 2007 

35S::PAB2-mRFP 

(Col-0) 

PAB2-mRFP 
(AT4G34110) 

pGWB 554 
(Hygromycin B) 

Sorenson and Bailey-
Serres, 2014. 

35S::mCHERRY-

ARA7 (Co-0) 

mCHERRY-ARA7 
(AT4G19640) 

pAMARENA 
(Glufosinate) 

A. Steffens, 
unpublished 

35S::DCP5-

TURQUOISE 

(Col-0) 

DCP5-TURQUOISE 
(AT1G26110) 

pPACIFIC 
(Glufosinate) 

M. Jakoby, 
unpublished 

35S::YFP-RHA1 

(Col-0) 

YFP-RHA1 
(AT5G45130) 

pNIGEL07 
(Glufosinate) 

Geldner et al., 2009 

35S::YFP-w/o 

(Col-0) 

YFP 
CFP (not visible) 

pENSG-YFP-w/o 
(Glyphosate) 
pENSG-CFP-w/o 
(Glufosinate) 

I. Schultheiß Araújo, 
unpublished 

ProPIN2::PIN2-GFP 

(eir1-1) 

PIN2-GFP 
(AT5G57090) 

pBRL Abas et al., 2006 

35S::GFP-SKD1x 

35S::PAB2-mRFP 

(Col-0) 

GFP-SKD1 
PAB2-mRFP 

pCambia 1300 
pGWB 554 

This study 

35S::GFP-SKD1x 

35S::mCHERRY-

ARA7 (Col-0) 

GFP-SKD1 
mCHERRY-ARA7 

pCambia 1300 
pAMARENA 

This study 

35S::DCP5-

TURQUOISEx 

35S::mCHERRY-

ARA7 (Co-0) 

DCP5-TURQUOISE 
mCHERRY-ARA7 

pPACIFIC 
pAMARENA 

This study 

35S::YFP-RHA1x 

35S::PAB2-mRFP 

(Col-0) 

YFP-RHA1 
PAB2-mRFP 

pNIGEL07 
pGWB 554 

This study 

35S::DCP5-

TURQUOISEx 

35S::PAB2-mRFP 

(Col-0) 

DCP5-TURQUOISE 
PAB2-RFP 

pPACIFIC 
pGWB 554 

This study 

ProPIN2::PIN2-GFPx 

35S::mCHERRY-

ARA7  

PIN2-GFP 
mCHERRY-ARA7 

pBRL 
pAMARENA 

This study 
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2.4 Plant techniques 

2.4.1 Plant growth conditions  

A. thaliana seeds were put on soil or on ½ MS agar plates (Murashige and Skoog, 1962, 2.2 g 

MS powder [Duchefa], pH 5.6-5.8 with 1 M NaOH, 8 g/l agar, with H2O to 1 l, autoclave) and 

stratified for at least 2 d) at 4°C in the dark. Afterwards, the plants were grown under long day 

conditions (16 h light, 8 h darkness) at 21°C and with an average light intensity of 100 ± 

20 μmol/m2s.  

2.4.2 Seed sterilization  

A. thaliana seeds were surface sterilized before they were placed on ½ MS agar plates. For this, 

seeds were submerged in 70% ethanol for 5’, followed by 2% NaOCl for 3’. Finally, the seeds 

were washed twice with sterile H2O. 

2.4.3 Crossing 

Transgenic lines were crossed by removing the anthers of the receiving flower with forceps. 

Then, the stigma of the receiving flower is pollinated with the anthers of the crossing partner. 

All steps were executed under a binocular microscope. The female, receiving line is noted first, 

the pollen donor second. 

2.4.4 Heat stress treatment 

The subjection of A. thaliana plants to a heat stress of 40°C has been shown to trigger the 

formation of SGs. Heat stress treatment at 40°C for 50’ was used to induce mRNP granules. 

For confocal imaging, transiently transformed rosette leaves were placed on ½ MS plates, 

sealed with surgical tape and put in an incubator for 50’ at 40°C. Imaging occurred immediately 

after treatment. The same procedure was used for rosette leaves of transgenic lines. 

For the imaging of root epidermal cells, 5-10 d old seedlings grown on vertical ½ MS plates 

were transferred in tubes with liquid ½ MS and placed into a heating block. Here, the control 

plants were also submerged in liquid ½ MS, but kept at RT. 

2.4.5 Transient transformation by particle bombardment 

For subcellular localization and colocalization analysis, epidermal cells of non-flowering A. 

thaliana (Col-0) rosette leaves were transiently transformed using a particle gun (Biolistic 

Particle Delivery system PDS-1000 / He™, BIO RAD). This method uses DNA-coated micro 

particles, here gold particles, which are accelerated by a burst of high-pressure helium gas to 
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penetrate plant cells. If the nucleus is hit, plasmid DNA gets expressed but is not stably 

integrated into the genome. 

For single and double transformations, 5 µl gold particles (30 mg/μl, diameter 1 μm, 

Biolistic®1.0 Micron gold, BioRad) were coated with plasmid DNA (0.6 μg for each construct) 

using 2.5 M CaCl2 (10 µl) and spermidine (4 µl). The reaction was filled up with H2O to a final 

volume of 20 µl and shaken vigorously for 10’. Coated gold particles were sedimented (9300 g 

for 10’’) and subsequently washed with 70% ethanol (50 µl), ethanol absolute (20 µl) and 

finally resuspended in 12 µl ethanol absolute. The coated gold particles were loaded onto macro 

carriers (plastic discs) and placed in the particle gun. A helium burst of 900 psi accelerated the 

gold particles and allowed cell wall penetration. Rosette leaves were placed on ½ MS agar 

plates, sealed with tape and incubated in the dark at RT for 14-17 h until confocal microscopy 

analysis  

2.4.6 Confocal microscopy  

Subcellular protein localization and colocalization was analyzed by confocal microscopy using 

a Leica TCS SP8 (Leica Mircosystems). Images were collected with an HC PL APO 20x/0.75 

IMM CORR CS2 combinatorial objective (H2O for immersion in this study) or an HCX PL 

Fluotar 10x/0.30 dry objective. CFP and mTURQOUISE (mTQ) were exited at 405 nm (Diode 

405) and emission was detected between 460 and 500 nm. GFP and YFP were exited at 488 nm 

(Argon laser) and detected between 500 nm and 530 nm, and 510 and 540 nm, respectively. 

Monomeric RFP (mRFP) and mCHERRY were exited at 561 nm (DPSS561) and detected 

between 590 and 640 nm. FM4-64 dye was exited at 514 nm (Argon laser) and emission was 

detected between 600 and 680 nm. Emitted signals were detected with hybrid detectors (Leica 

HyD) or photomultiplier (PMT) detectors. 

In double transformations, the signals of fluorescent proteins were captured with separate 

detectors and by sequential scanning (between lines) to prevent crosstalk. Samples were 

scanned bidirectional, with a speed of 700 Hz or 1000 Hz and with a line average of 1-3 (stacks) 

or 3-16 (single planes). Stacks of leaf epidermal cells were scanned every 1.04 µm and total 

stack size depended on cell thickness (approximately 15-60 µm). Stacks were depicted and 

analyzed as signal maximum projections. If not described otherwise, laser intensities were kept 

constant for imaging before and after heat stress. The pictures were not modified, except for 

brightness and contrast. If not described otherwise, CFP and mTQ signals are depicted in cyan, 

GFP and YFP signals in yellow, and mRFP, mCHERRY, and FM4-64 in magenta. The ImageJ 

1.51 freeware was used for image composition and preparation (Schneider et al., 2012). 
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2.4.7 FM4-64 staining and BFA treatment 

Roots of A. thaliana seedlings grown on ½ MS plates (5-7 d) were stained with FM4-64 dye 

(Synaptored™ C2, Merck) for the identification of membranous structures by confocal 

microscopy. For this, FM4-64 was added to liquid ½ MS medium to a final concentration of 50 

µM (Ueda et al., 2002). For Figure 3.3, Chapter 3.2 , roots were incubated in medium containing 

the dye for 5’, incubated in dye-free medium for 2 h at RT and were finally subjected to heat 

treatment before imaging. For Figure 3.27, the roots were incubated 10’ in liquid medium with 

the dye and then subjected to heat treatment in the same medium. The BFA-treated roots were 

incubated with FM4-64 and BFA in parallel for 50’. Roots were treated with a final 

concentration of 50 µM BFA (stock 35 mM in EtOH, Roth) either for 90’ (Figure 3.26) or 50’ 

(Figure 3.27) before imaging (Kleine-Vehen et al., 2008). The corresponding amount of ethanol 

(1 µl to 711 µl liquid ½ MS) was given to the control roots.  

2.5 Molecular biology techniques 

2.5.1 RNA extraction and cDNA synthesis 

Total RNA was extracted from A. thaliana Col-0 seedlings or flowers with the RNeasy kit 

(Qiagen) following the manufacturer’s protocol. For the transcription of mRNA into cDNA, 

the First Strand cDNA Synthesis Kit (ThermoScientific) was used according to the instructions 

of the manufacturer. Hereby, the synthesis was done with oligo(dT) primer for total poly(A) 

mRNA amplification.  

2.5.2 Polymerase Chain Reaction (PCR) 

The CDS of the interactome candidates was generated from flower or seedling cDNA by PCR. 

Hereby, primers were used which added recombinant attB Gateway sites to the ends of the 

CDS. Furthermore, the primer contained a degenerate site allowing the introduction of a stop 

codon or a glycine for C-terminal fusions. Table 2.5 lists the different interactome candidate 

versions, which were generated. CDS were amplified using the Phusion High-Fidelity DNA 

Polymerase (Thermo Scientific). 
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Table 2.5. PCR reaction and program 

Reaction Amplification program 

Component Amount/Concentration Step Temperature Duration 

Phusion 

Buffer 
4 µl 1. 98°C 30’’ 

dNTP 0.8 µl (10 mM) 2. 98°C 10’’ 

Forward 

Primer 
0.8 µl (10 mM) 3. 

primer annealing 

temperature 
30’’ 

Reverse 

Primer 
0.8 µl (10 mM) 4. 72°C 

CDS length (1000 bp 

in 30’’) 

cDNA 0.8 µl 5. 72°C 10’ 

Phusion 0.2 µl 
Repeat step 2 to 4 35 times 

H2O 13 µl 

 

2.5.3 Gateway cloning 

The Gateways cloning system (Invitrogen) is a quick alternative for classical cloning. It is based 

on site specific recombination of the bacteriophage lambda, which exchanges its DNA via a 

specific sequence (attP) into the chromosome of its bacterial host (attB). The recombination is 

carried out by phage integrase and a bacterial host integration factor. After recombination and 

the integration of phage DNA, the integration specific sequences are changed (attL for left, attR 

for right). Gateway-compatible donor vectors (e.g. pDONR201) contain attP sites and PCR 

products, which are flanked by attB sites, can be integrated by a BP-reaction. The resulting 

entry vectors contain a DNA fragment of interest flanked by attL sites, which can be introduced 

into a Gateway-compatible destination vector (e.g. pENSG-YFP, contains attR sites) by an LR-

reaction. Donor and Destination vectors contain a toxic ccdB gene between the recombination 

sites, which enhances the selection of positive clones. Empty donor and destination vectors are 

amplified in the E.coli strain DB3.1, which is resistant against the ccdB gene. PCR products 

were integrated into entry vectors by a BP-reaction. The genes of interest in the donor vectors 

were integrated in different destination vectors by LR-reactions. After 1-16 h at RT, the 

reactions were transformed in competent E. coli DH5α cells.  
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Table 2.6. Composition of BP- and LR-reactions. 

BP-reaction LR-reaction 

Component Amount/Concentration Component Amount/Concentration 

PCR product 1.75 µl (100  ng/µl) Donor vector 0.5 µl (150 ng/µl) 

Donor vector 0.25 µl (150 ng/µl) Destination vector 0.25 µl (150 ng/µl) 

BP Clonase  

(ThermoScientific) 
0.5 µl 

LR Enzyme Mix 

(ThermoScientific) 
0.5 µl 

 H2O 1.25 µl 

 

2.5.4 Plasmid purification, restriction digestion and sequencing 

After transformation and amplification in E. coli DH5α cells, plasmids were extracted from the 

cells using the GeneJET Plasmid MiniPrep Kit (ThermoScientific) according to the 

manufacturer’s protocol. Approximately 200-400 ng/µl plasmid DNA was extracted from 

DH5α cells and subjected to restriction digestion (3 µl plasmid DNA, 0.3 µl BsrGI, 2 µl Tango 

Buffer, ThermoScientific) and gel electrophoresis. Plasmids, which showed correct band 

patterns after restriction digestion, were sent for sequencing to GATC (Light Run, Eurofins 

Genomics) using plasmid DNA and sequencing primer. 

2.5.5 Generation of chemical competent E. coli cells 

DH5α and DB3.1 cells were made competent for heat shock-induced transformation by the 

RbCl2 method. For that, an o/n culture (10 ml ѱbroth medium) was inoculated and incubated at 

37°C under agitation. The main culture (200 ml ѱbroth medium, 20 g BactoPeptone, 5 g Bacto 

yeast extract, 4 g MgSO4 x 7H2O, 0.746 g KCl, with H2O to 1 l) was inoculated with 3 ml of 

the o/n culture and cells were grown at 37°C under agitation until an OD600 of 0.5 was reached 

(approximately 2-3 h). The cells were put on ice (15’), collected by centrifugation (10’, 4°C at 

650 g) and resuspended in 1 ml TfB1 medium (1.21 g RbCl2, 0.99 g MnCl2 x 4H2O, 0.15 g 

CaCl2x 2H2O, 15 ml glycerol 100%, with H2O to 1 l). After resuspension of the cell pellet, 

TfB1 medium was added to a final volume of 15 ml and kept on ice for 2 h. The cells were 

collected (10’, 4°C at 650 g), resuspended in 2 ml TfB2 (0.024 g RbCl2, 0.221 g CaCl2x 2H2O, 

0.042 g 3-(N-morpholino)-propanesulfonic acid, 3 ml glycerol 100%, with H2O to 20 ml) 

medium and aliquots of 50 µl were generated. The aliquots were frozen in liquid nitrogen and 

kept at -80°C. 
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2.5.6 Transformation of E. coli cells 

E. coli DH5α (amplification of plasmids generated by BP or LR reactions) and DB3.1 

(amplification of empty Gateway cassette-containing plasmids) cells were transformed with 

plasmid DNA using the following protocol: 50 µl of chemically competent cells were added to 

the LR or BP reaction mix and incubated on ice for 20’. For retransformations, 0.5 µl of plasmid 

DNA was used. After the incubation on ice, cells were subjected to a heat shock at 42°C for 1’ 

and subsequently placed on ice for 5’. The cells were mixed with 800 µl LB medium (10 g 

BactoPepton, 5 g Bacto yeast extract, 10 g NaCl, with H2O to 1 l, Bertani, 1951) w/o antibiotics 

and incubated at 37°C for 1 h. Afterwards, cells were collected (6000 g for 5’), resuspended in 

50 µl LB medium and plated on LB agar plates (16 g agar to 1 l LB medium) containing 

corresponding antibiotics for selection. The plates were kept at 37°C o/n and colonies were 

picked on the next day. For a standard MiniPrep, 4 ml of LB medium (with corresponding 

antibiotics) were inoculated and grown at 37°C o/n under agitation.  

2.6 Biochemical techniques 

2.6.1 Co-immunoprecipitation  

The co-immunoprecipitation experiment was performed to study the interactome of SKD1. For 

that, the GFP Isolation kit (Miltenyi Biotec) was used. The immunoprecipitation was performed 

with the provided solutions and following the manufacturer´s protocol with modifications. Until 

protein elution, all centrifugation, incubation, and flow-through steps were performed at 4 °C. 

Rosette leaves of 2.5 week old soil grown plants (not flowering) of the 35S::GFP-SKD1 and 

the 35S::YFP-w/o line were either subjected to heat treatment or kept at RT (control) before 

harvest (3 replicates each, 12 samples in total). During the heat treatment (40°C 50’), the pots 

were covered with a petridish to prevent evaporation. For each sample, leaves of 5 plants were 

combined and quickly frozen in liquid nitrogen. 

The leaf material was grinded in a mortar with liquid nitrogen, weighed and mixed with 

modified GFP Isolation kit lysis buffer (940 µl lysis buffer, 10 µl 1 M Dithiothreitol/DTT, 50 µl 

of a Roche cOmplete™ Protease Inhibitor Cocktail Pill dissolved in 2 ml lysis buffer). The 

grinded leaf material (120-160 mg) was mixed with the corresponding volume of lysis buffer 

(500 µl lysis buffer to 100 mg material) and incubated for 30’ whereby the samples were 

inverted every 5’ to prevent sedimentation of the material. Cell debris was removed by 

centrifugation (1000 g, 5’) and the supernatant was collected. An additional centrifugation step 

(12000 g, 5’) removed all remaining residues and input controls were taken for the test of 

immunoprecipitation (3.5.1, Figure 3.18) Same amounts of lysates (450 µl) were mixed with α-
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GFP magnetic beads (90 µl) and incubated for 60’ under slow agitation. The µMACS columns 

were placed in a magnetic separator and equilibrated with 550 µl unmodified lysis buffer. The 

columns were loaded with the samples, the flow through was collected and reloaded onto the 

columns for a second time. The columns were washed four times with washing buffer 1 (200 µl) 

and one time with washing buffer 2 (100 µl). Afterwards, the magnetic separator with the 

columns was transferred to RT. 

For the immunoprecipitation test, 20 µl preheated elution buffer (90°C) were added to the 

columns and incubated for 5’. The repeated addition of 50 µl hot elution buffer released the 

bound proteins from the beads and final samples were collected and subjected to SDS-PAGE 

(sodium dodecyl sulfate polyacrylamide gel electrophoresis). 

For the analysis of the SKD1 interactome, 20 µL urea buffer (8 M urea in 50 mM 

triethylammonium bicarbonate/TEAB) were added to the columns, removed from the magnetic 

separator and incubated for 10’. The proteins, together with the beads, were eluted from the 

columns by the addition of 50 µl urea buffer (final volume of samples: 50 µl).  

2.6.2 In solution/on-bead digest  

To analyze all co-precipitated proteins by liquid chromatography and tandem mass 

spectrometry analysis (LC-MS/MS analysis), an in-solution/on-bead digest of the proteins was 

performed. The protocol and the used solutions were provided by the Proteomics Core Facility 

Cologne.  

To each sample, DTT was added to a final concentration of 5 mM (0.25 µl 1 M DTT), mixed 

and incubated at 37°C for 1 h. Next, chloroacetamide (2.54 µl 750 mM) was added to the 

samples to a final concentration of 40 mM, mixed and incubated in the dark at RT for 30’. The 

first digestion was perfomed by Lys-C protease (0.5 µg/µl). For that, 0.5 µl Lys-C protease 

were added and the samples were incubated at 25°C for 4 h. The samples were diluted with 150 

µl TEAB (pH 8.5, 50 mM) to a final urea concentration below 2 M. The second digestion was 

started with the addition of 2.5 µl Trypsin (1 µg/µl) and was finished after o/n incubation at 

25°C. On the next day, the digestion was stopped by acidification with formic acid to a final 

concentration of 1% (4 µl of 50% formic acid). The beads were removed from the samples by 

centrifugation at 15.000 g for 5’. The centrifugation was repeated until no beads were present 

in the supernatant (yellow-brownish color).  
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2.6.3 StageTip purification 

The next step was the loading of the samples onto StageTips for removal of salts and other 

contaminants before MS/MS analysis. Protocol, chemicals and styrene-divinylbenzene–

reversed phase sulfonate discs-containing C18 StageTips were provided by the Proteomic Core 

Facility Cologne. 

The StageTips were equilibrated by subsequent addition and removal of methanol (20 µl, 600 g 

1’), 0.1% formic acid in 80% acetonitrile (20 µl, 600 g 1’), 0.1% formic acid in H2O (20 µl, 

600 g 1.5’) and 0.1% formic acid in H2O (20 µl, 600 g 2’). The acidified and bead-free samples 

were centrifuged (15700 g, 5’) and samples were loaded onto the StageTips and centrifuged at 

600 g for 5’. The StageTips were subsequently washed with 30 µl 0.1% formic acid in H2O 

(600 g 3’) and two times with 30 µl formic acid in 80% acetonitrile (600 g 3’). The StageTips 

were dried with a syringe and stored at 4°C until LC-MS/MS analysis.  

2.6.4 LC-MS/MS analysis 

The LC-MS/MS analysis and the bioinformatical analysis were performed by the Proteomics 

Core Facility Cologne. The following paragraphs summarize the technical information 

provided by the facility. 

The samples were subjected to LC using an EASY nLC 1200 UPLC (Thermo Scientific) which 

was connected to a Q-Exactive Plus (Thermo Scientific) mass spectrometer. Chromatographic 

separation occurred on an analytical column which was prepared by the Proteomic Facility. The 

column was 50 cm high and 75 µm in diameter and packed with 2.7 µmPoroshell EC 120 C18 

(Agilent). The peptides were loaded with 0.1% formic acid in H2O and separated at a constant 

flow rate (250 nl/min) using a gradient ( 8-40% of 0.1% formic acid in H2O within 40’, 95% of 

0.1% formic acid in H2O within 10’). This was followed by washing and the equilibration of 

the column. The Q-Exactive Plus mass spectrometer was set to the data-dependent acquisition 

mode and scans were started with following settings: 300-1750 m/z (resolution 70000), 

isolation of the 10 most abundant peptides within a 1.8 Tz window, higher-energy collisional 

dissociation fragmentation of isolated peptides at 27% of the normalized collision energy. The 

maximum injection time was 108 ms as the automatic gain control target was 5e5 charges. 

Orbitrap detection of product ions had a resolution of 35000 and precursors were excluded 

dynamically for 20’’.  

The raw data of the MS2 spectra was analyzed by S. Müller, Proteomics Core Facility Cologne, 

using Maxquant software (version 1.5.2.8.) set to default parameters. As a reference, the 
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Uniprot ARATH.fasta database (download 16.06.2017) was used, which included common 

contaminants. The protein and peptide spectrum matches (PSM) false discovery rates (FDRs) 

were estimated using the target-decoy approach (1% Protein FDR and 1% PSM FDR). Only 

peptides that had a length of at least 7 amino acids were counted and the carbamidomethylation 

of cysteins was included as a fixed modification. Variable modifications (Oxidation and Acetyl) 

were included in the analysis. The match between runs option was enabled and used to boost 

the number of identifications and label-free quantification (LFQ) was performed using default 

settings.  

2.6.5 SDS-PAGE 

Proteins extracted from leaf tissue or HEK293TN cells were mixed 1:1 (volume/volume) with 

SDS sample buffer (50 mM Tris/HCl pH 6.8; 10% Glycerol, 2% SDS, 0.1% Bromophenol 

Blue; 100 mM DTT) and cooked for 10’ at 99°C. The PAGE was performed with 10% SDS 

sepatarion gels (5 ml gel:1.9 ml H2O, 1.7 ml acryalmide mix [Rotiphorese Gel 30, Roth], 1.3 ml 

1.5 M Tris pH 8.8, 50 µl 10% SDS, 50 µl 10% ammoniumpersulfate, 2 µl 

tetramethylethylenediamine). The stacking gels (1 ml) were composed as following: 0.68 ml 

H2O, 0.17 acryalmide mix, 0.13 ml 1.5 M Tris/HCl pH 6.8, 10 µl 10% SDS, 10 µl 10% 

ammoniumpersulfate, 1 µl tetramethylethylenediamine). As a marker, the PageRuler Prestained 

was used (10 to 180 kDa, ThermoScientific). For the test of the immunoprecipitation, 15 µl of 

input control and eluate were applied to the gel. For the test of SKD1 expression in HEK cells, 

15 µl of the diluted supernatants and 2 µl of the pellets were applied. The PAGE ran in SDS-

electrophoresis buffer (3.03 g Tris, 18.1 g glycin, 10 ml 10% SDS, up to 1 l with H2O) at 

20 mA/gel for 1.5 h. 

2.6.6 Coomassie staining 

To detect the total protein amount in samples, SDS gels were stained with colloidal Coomasie 

solution (0.02% Coomassie Brilliant Blue G250 [Serva], 5% aluminiumsulfate-18-hydrate, 

10% ethanol absolute, 2% orthophosphoric acid). Gels were submerged in the staining solution 

and incubated at RT over night under agitation. On the next day, excessive staining was 

removed by washing with H2O until clear protein bands were visible. 

2.6.7 Immunoblotting (Western blotting) 

For semi-dry immunoblotting, gels were rinsed in cathode buffer (100 ml Roti®Blot 2K [Roth], 

50 ml methanol, 850 ml H2O) and placed onto a polyvinylidenfluoride-membrane (Roth), 

which was activated with methanol. The gel and membrane were placed between two Whatman 

papers, which were rinsed in cathode or anode (100 ml Roti®Blot 2A [Roth], 50 ml methanol, 
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850 ml H2O) buffer, and proteins were transferred from the gel to the membrane by semi-dry 

blotting at 40 mA over 17 h at 8°C. Membranes were blocked in 5% milk in phosphate buffer 

saline and 0.1% Tween20 (PBST, 8 g NaCl, 0.2 g KCl, 1.44 g Na2HPO4, 0.24 g KH2PO4, with 

H2O to 1 l, 1 ml Tween20) for 30’. YFP and SKD1-YFP were detected using mouse α-GFP 

antibody (1:2000, Roche) diluted in 5% milk (PBST) for 1 h under agitation. After washing (3 

times with 15 ml PBST for 10’), the membrane was incubated with the second goat α-mouse 

antibody (1:10000, Sigma–Aldrich/Merck), which was coupled to hourseredish peroxidase for 

chemiluminescence detection (West Femto Maximum Sensitivity Substrate Kits, Thermo 

Scientific) with a LAS4000 (Amersham). 

2.7 Protein-protein interaction assays 

2.7.1 Protein-protein interaction analysis by Y2H 

The yeast-two-hybrid (Y2H) method is an in-vivo assay to test protein-protein interactions. First 

described by Fields and Song (1989), it utilizes the eukaryotic transcription factor GAL4 to 

drive the protein-protein interaction-dependent expression of a histidine (H) biosynthesis. The 

yeast strain AH109 is incompetent of leucine (L), tryphophan (W) and H biosynthesis. Yeast 

cells are transformed with the pAS vector, which encodes for a recombinant version of the bait 

protein in fusion with the DNA Binding Domain of GAL4 (GAL4-BD). The prey protein is 

encoded on the pACT vector as a recombinant fusion version with the GAL4 Activation 

Domain (GAL4-AD). The vectors encode for W (pAS) and L (pACT) biosynthesis genes which 

are used for selection of transformed cells. The GAL4-BD and GAL4-AD are only in a 

functional distance when the bait and prey protein interact with each other. If this is the case, 

the functional GAL4 transcription factor binds to the GAL4 promoter, which drives the 

expression of an H biosynthesis gene (stably transformed in the AH109 yeast strain). The 

identification of protein interactions was determined by colony growth on selection dropout 

(SD) agar plates without L, W and H, also termed interaction medium (5 g ammonium sulfate, 

1.7 g yeast nitrogen base, 0,6 g drop-out supplement w/o leucine, histidine, tryptophan [Difco], 

100 mg adenine, and 18 g agar, with H2O to  l, pH 5.8, autoclave, addition of glucose to a final 

concentration of 2%). 3-Amino-1,2,4-triazole (3-AT), which is a competitive inhibitor of the 

upstream activating sequence of the GAL4 promoter, can be added to the SD-LWH plates to 

adjust for autoactivation (0 mM, 5 mM, 15 mM, 30 mM). Autoactivation of the bait protein 

was detected by colony growth of the negative control (GFP-AD). 

The yeast cells were transformed with the two vectors using the LiAc method (modified from 

Gietz et al., 1995). For that, cells were grown in 10 ml liquid YPAD medium (10 g yeast extract, 
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20 g Difco peptone, 100 mg adenine, pH 5.8, with H2O to 950 ml, autoclave, addition of 

glucose to final a concentration of 2%) o/n. To inoculate the main YPAD culture (50 ml), 0.5-

1 ml of the suspension were used. After incubation at 30°C for approximately 3-4 h under 

agitation, the culture reached an OD600=0.7-1, which is sufficient for 10-15 transformations. 

The cells were collected from the medium by centrifugation (2600 g for 5’) and washed with 

0.1 M LiAc (pH 7.5). After an additional centrifugation step (2600 g for 5’), the transformation 

agents were added to the cells: 240 µl polyenthylene glycol 3350, 36 µl 1 M LiAC, 50 μl 

ssDNA [2 mg/ml, cooked at 100°C for 10’], and 25 μl H2O per transformation. The suspension 

was mixed and 350 μl were added to approximately 0.6 µg of plasmid DNA for each construct. 

Transformation occurred at 42°C for 40’ under agitation. Afterwards, the cells were collected 

by centrifugation (3300 g, 30’’) and resuspended in 100 µl H2O and plated on SD-LW medium 

(addition of 20 mg/l H) to identify positive transfomants.  

After 5-7 d, colonies were picked from the SD-LW plates, resuspended in water and transferred 

onto SD-LWH plates by stamping. In addition to the stamping onto the interaction medium, the 

resuspended cells were also transferred to an SD-LW plate to confirm the viability of the cells. 

Technical replicates were defined as two pools of 3-7 colonies from one transformation, which 

are separately transferred to the interaction medium. A biological replicate was defined as an 

independent transformation of yeast cells. An interaction of a bait and prey protein was defined 

as positive, if the corresponding negative control showed no colony growth at the same 3-AT 

concentration at the day of evaluation (7-11 days after transfer). For the interaction test of the 

ESCRTIII core and associated proteins with mRNP granule components, each interaction was 

tested with at least 2 biological and 2 technical replicates (Chapter 3.1and Appendix, Table 

A.2). Here, a tested combination was considered positive if half of the transferred colonies 

showed growth. For the analysis of the interactions of SKD1 with the interactome candidates, 

each interaction was tested in 3 biological with 3 technical replicates. Here, a combination was 

considered positive if it showed the same degree of colony growth as the weakest, established 

positive control (LIP5 with SKD1, 2 out of 9 colonies, Chapter 3.5.7 and Appendix, Table 

A.11). 

Used positive controls for ESCRTIII core and associated protein with mRNP granule proteins: 

LIP5 versus SKD1 and DCP5 versus DCP1. 

Used positive controls for SKD1 and interactome candidates: SKD1 versus 

LIP5/VPS32.1/VPS32.2/ VPS60.1/ VPS60.2. 
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2.7.2 Protein-protein interaction analysis by LUMIER 

The LUMIER (Luminescence-based mammalian interactome mapping) assay was initially 

described by Barrios-Rodiles and colleagues and modified by Pesch and colleagues (Barrios-

Rodiles et al., 2005; Pesch et al., 2013). LUMIER is a pulldown-based assay in which a bait 

protein fused to protein A (ProtA) from Staphylococcus aureus (pTREX) and a prey protein 

fused to the luciferase of Renilla reniformis are coexpressed in HEK293TN cells. Protein 

interaction is detected by luminescence after precipitation.  

Constructs of modified bait (ProtA-SKD1, pTREX) and prey proteins (Renilla-interactome 

candidates, pcDNA3) were cotransfected into HEK293TN cells (1×106, 6-well plates) using 

0.6 µg plasmid DNA of each construct and 20 µl TurboFect transfection reagent 

(ThermoScientific). DNA and transfection reagent were mixed with 1.5 ml serum-free medium 

(Dulbecco's Modified Eagle Medium, Merck), incubated for 15’ at RT and added to the cells. 

Another 2 ml medium were added and the cells were incubated for 48 h at 37°C. Medium was 

removed and the cells were collected and washed twice with 1 ml ice cold PBS. In between, 

cells were gently pelleted at 600 g for 5’. All centrifugation steps were done at 4°C. Cell lysis 

was induced by the addition of 450 µl ice cold lysis buffer (79.1 ml H2O,11 ml 10% Triton-X, 

5.5 ml 5 M NaCl, 2.2 ml Na2EDTA pH 8.0, sterile filtrate, add 200 µl of a Roche cOmplete™ 

Protease Inhibitor Cocktail Pill dissolved in 10 ml H2O to 10 ml lysis buffer). The cells were 

shaken and incubated for 1 h on ice. Cell debris was removed from lysates by centrifugation 

(21,380 g 15’). Input samples were taken (test of general expression levels of interactome 

candidates) and 100 µl of the lysates were mixed with 5 µl sheep anti-rabbit IgG-coated 

magnetic beads (Dynabeads M280 [Invitrogen], prewashed with PBS, 2 or 3 technical 

replicates). Lysates and beads were incubated for 2 h on ice. Afterwards, the beads were 

collected using a magnetic stand and washed 5 times with 50 µl ice cold PBS). The beads were 

resuspended in 50 µl PBS and luminescence was measured by a microtiter plate reader 

(FLUOstar OPTIMA, BMG Labtech) after the addition of 70 µl Renilla buffer (27.44 ml H2O, 

11 ml 5 M NaCl, 11 ml K2PO4 pH 5.1, Na2EDTA pH 8.0, 0.225 ml 10 % bovine serum albumin 

[weight/volume], substrate: Coelenterazine synthesized , 1 µl/ ml [P.J.K]). Protein interactions 

were determined to be present, if the Relative Luminescence Intensity (RLI) was 1.5 fold higher 

than the background control (ProtA-SKD1 with Renilla-w/o). As positive controls, the 

interaction of SKD1 with VPS32.1, VPS60.1, and LIP5 were tested. As control for the assay, 

the in LUMIER established interaction of TTG1 (TRANSPARENT TESTA GLABRA 1) and 

GL3 was used (B. Zhang unpublished). 
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2.8 Computational analysis 

2.8.1 Colocalization quantification 

The quantitative colocalization studies of Chapter 3.3.2 and Chapter 3.4.5 were performed with 

transiently double transformed epidermal leaf cells, the study in Chapter 3.3.3 was performed 

with epidermal leaf cells of stable transgenic lines. Maximum projections of stacks were 

generated by confocal microscopy. Laser intensities were kept constant within datasets and kept 

in a range that minimized overexposure but allowed the detection of as many granules as 

possible. For each combination, 10 cells (transient transformation) or 10 equally sized leaf areas 

(stable lines) were analyzed. Unlabeled extracellular background signals and labeled cellular 

structures, which are not of interest in the respective study, can artificially inflate quantified 

overlaps (Dunn et al., 2010). Therefore, three regions of interest (ROIs) per cell/leaf area were 

defined, which excluded the majority of membrane and nuclear signals and contained at least 

five granular structures (if granules were formed) in each channel. Examples of ROIs are given 

in the respective figures. For the quantification of the signal overlap, the Pearson’s correlation 

coefficient (PCC) was used which is defined as following: 
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where �� and 
� are signal intensities of pixel � in the two compared channels. � 
 and 
�  refer to 

mean signal intensities of the whole image for each channel (Manders et al., 1992; Dunn et al., 

2011). A PCC of 1 indicates perfect co-occurrence of two signals, a PCC of 0 a random 

distribution, and a PCC of -1 indicates perfect negative correlation. PCCs for the different ROIs 

were calculated with the ImageJ Plugin JACoP (Just Another Colocalization Plugin, Bolte and 

Cordelieres, 2006). As positive control, the same protein (UBP1b) was expressed in cells with 

two different fluorescent tags (YFP and mCHERRY). As a negative control, one channel of the 

positive control was tilted by 180° and again analyzed for colocalization.  

2.8.2 Intrinsically Disordered Region (IDR) analysis of protein sequences 

A subset of A. thaliana P-body, SG, ESCRTIII core, and ESCRTIII associated proteins were 

analyzed for the presence of IDRs. For this, protein sequences of the representative gene models 

taken from TAIR (The Arabidopsis Information Resource) were subjected to the DisEMBL 1.5 

and GlobPlot 2.3 online tools (standard settings, Linding et al., 2003; Linding, 2003). DisEMBL 

predicts the presence of loops and H-loops, a class of secondary structures that fall not in the 

category of structured α-helices, 310-helices or β-strands. GlobPlot defines disordered regions 
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based on the likelihood of a residue to be in a second structure or in a random coil. Percentages 

of disorder were calculated based on the total protein length. The exact sequence stretches, 

which were predicted to be disordered by DisEMBL and GlobPlot, are given in Appendix, 

Table A.7 for the different analyzed proteins.  

2.8.3 Filtering and classification of interactome candidates 

To identify interactors of SKD1 under control condition and after heat treatment, proteins from 

GFP-SKD1-expressing and YFP-expressing plants were isolated by co-immunoprecipitation 

and analyzed by LC-MS/MS (Chapter 3.5). LFQs, a normalized relative measurement for 

protein abundance, were calculated if at least 2 peptides were identified for one protein. This 

was also the criterion for the presence of a protein within a sample. Table 2.7 summarizes the 

number of detected and identified peptides for each sample and the number of proteins, which 

were identified.  

Table 2.7. Summary of detected and identified peptides in the LC-MS/MS analysis 

Sample MS/MS 

MS/MS 

identified 

[%] 

Peptide sequences 

identified 
Proteins identified 

YFP control 1 15834 32,60 4534 530 
YFP control 2 14886 26,27 3455 511 
YFP control 3 12180 23,99 2765 527 

YFP heat 1 15863 32,16 4408 636 
YFP heat 2 11262 18,43 2028 414 
YFP heat 3 14663 25,73 3426 599 

GFP-SKD1 control 1 14295 32,55 4408 1169 
GFP-SKD1 control 2 16384 43,91 6272 1592 
GFP-SKD1 control 3 15800 41,96 5705 1432 

GFP-SKD1 heat 1 13116 24,79 3105 913 
GFP-SKD1 heat 2 15769 38,77 5599 1322 
GFP-SKD1 heat 3 16076 41,87 6102 1420 

 

In all samples combined, 2409 different proteins were identified. The highest iBAQ value 

(normalized measurement of protein abundance between samples, Schwanhäusser et al., 2011) 

was calculated for SKD1 (in all GFP-SKD1 samples). All proteins, which were present in at 

least one replicate of the YFP control or heat samples, were removed from the candidate list. 

From the remaining 1425 proteins, only the ones, which were present in three GFP-SKD1 

replicates of one condition, were included (control: 146, heat: 132). The majority of proteins 

were present in both lists. (159, in at least two replicates) while 15 were control specific and 18 

were heat specific (in none or one replicate of the other condition). Differences in relative 
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protein abundances between control and heat treated samples were analyzed, if at least two 

values were measured for each condition (Students-T analysis, present in two replicates). No 

significant differences were identified between the samples and q-values (p-values corrected 

for multiple testing) were all above the cutoff value (5% false discovery rate, q-value ≤ 0.05).  

Gene ontology (GO) analysis was performed using the PANTHER classification System 

(Thomas et al., 2003; Mi et al., 2010). The classification was performed using default settings 

and candidate lists were compared to the whole A. thaliana genome. Overrepresented classes 

(q-value ≤ 0.05) within the PANTHER GO-Slim Biological Process and Cellular Component 

categories were listed with the number of identified proteins and the fold enrichment relative to 

the number of all A. thaliana protein in this class.  

In addition to the GO analysis, the interactome candidates were individually classified. For this, 

annotations and literature were analyzed for each candidate using TAIR (Appendix, Table 

A.10). Based on the identified annotations and the aim of analysis (identification of membrane 

trafficking and mRNP granule proteins), proteins were grouped in following categories: protein 

folding, protein processing, membrane trafficking, RNA metabolism, mitochondria and 

chloroplast, and others. Proteins in the others category are not necessarily lacking description 

or are not annotated, but were not able to be grouped in one of the before mentioned classes. 

The subcellular localization of the candidates was either described in the literature or predicted 

by SUBA4 consensus prediction (Subcellular Localization Database For Arabidopsis Proteins, 

Hooper et al., 2017).  

2.8.4 Statistical analysis 

Statistical analysis was done with RStudio (RStudio: Integrated Development for R. RStudio, 

Inc., Boston, MA). Datasets were tested for normality using Shapiro-Wilk-test. The Welch’s 

two sample t-test was used for significance analysis between normally distributed datasets. The 

Wilcoxon-Mann-Whitney-test was used to compare normally distributed set to not normally 

distributed sets.  
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3 Results 

3.1 Y2H of ESCRTIII core and associated proteins with mRNP granule 

components. 

A recent study in our group showed that the SPI protein is a positive regulator of protein 

transport from MVBs to the lytic vacuole in A. thaliana. This positive effect is executed by 

direct interaction with LIP5 and their synergistic activation of SKD1 enzyme activity (Steffens 

et al., 2017). Furthermore, the SPI protein was found to directly interact with the P-body core 

protein DCP1 and to regulate P-body assembly during salt stress (Steffens et al., 2015). This 

link of MVB protein trafficking and P-body formation raised the question whether other 

proteins involved in MVB biogenesis and P-body formation interact with each other. This 

question was addressed by an Y2H assay which pointed to a potential protein-protein 

interaction network between members of the ESCRT system and proteins found in P-bodies (A. 

Steffens, unpublished). 

Table 3.1. Previously identified protein interactions of ESCRTIII and P-body components. 

        

  

 

P-bodies 

DCP1 DCP2 DCP5 VCS eIF4E1 XRN4 
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 LIP5 - - - - - - 

SKD1 interaction interaction interaction - interaction - 

VPS46.1 interaction - interaction - - - 

VPS46.2  - interaction - - - 
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VPS20.1 - - interaction - - - 

VPS24.1 - - interaction - - interaction 

VPS32.1 interaction - - - - interaction 

VPS32.2 - - - - interaction interaction 

 

Table 3.1 summarizes the preliminary results testing interactions of ESCRTIII core and 

associated proteins with P-body proteins. The proteins SKD1, VPS46.1, VPS46.2, VPS20.1, 

VPS24.1, VPS32.1, and VPS32.2 showed interactions with at least one P-body protein. SKD1 
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showed the highest number of interactions (DCP1, DCP5, DCP2, and eIF4E) while LIP5 

showed no interactions.  

To confirm and further investigate a potentially broad interaction between ESCRTIII and P-

body proteins, an exhaustive Y2H assay was performed. ESCRTIII core (VPS20.1, VPS24.1, 

VPS32.1, VPS32.2, VPS2.1, VPS2.2, and VPS.2.3) and ESCRTIII associated proteins (SKD1, 

LIP5, VPS46.1, VPS46.2, VPS60.1, and VPS60.2) were tested for potential protein interactions 

with known P-body proteins (DCP1, DCP2, DCP5, XRN4, and eIF4E). The analysis was 

extended to proteins found in SGs (UBP1b, PAB2, RBP47bb, GRP7, RBP45bb, and GRP2). 

The mammalian homolog of eIF4E has been found in both, P-bodies and SGs (Ferraiuolo et al., 

2005; Kedersha et al., 2005). In the context of this study, it is classified as a P-body protein. 

The ESCRTIII proteins were fused to the GAL4-BD while the mRNP granule components were 

fused to the GAL4-AD.  

Table 3.2.Summary of tested ESCRTIII protein interactions with mRNP granule proteins.  
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VPS20.

1 
- - - - - - - - - - - - 

VPS24.

1 
- - - - - - - - - - - - 

VPS32.

1 
- - - - - - - - - - - - 

VPS32.

2 
- - - - - - - - - - - - 

VPS2.1 - - - - - - - - - - - - 

VPS2.2 - - - - - - - - - - - - 

VPS2.3 - - - - - - - - - - - - 
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Table 3.2 summarizes the obtained results of this study. Each interaction was tested with at least 

two biological and two technical replicates. A combination was determined as a positive protein 

interaction if in at least half of the tests colony growth was present on the interaction medium. 

Further, colony growth needed to occur at a higher 3-AT concentration than in the 

corresponding negative control (GFP fused to the GAL4-AD). The highest 3-AT concentration, 

which still allowed colony growth, is indicated in the Table. 

In contrast to the previously assessed data, only few potential interactions were identified. 

While none of the tested ESCRTIII core proteins showed interactions with the different mRNP 

granule components, some interactions were observed for the ESCRTIII associated proteins: 

LIP5 interacts with DCP1, DCP5, PAB2, RBP47b, GRP7, and RBP45b. The VPS46.1 protein 

interacts with RBP45b, VPS60.1 with DCP1, VCS, PAB2, and RBP45b. VPS60.2 interacts 

with DCP1, VCS, UBP1B, PAB2, and RBP45b. The positive interactions of VPS60.1 and 

VPS60.2 have to be taken with caution since both proteins showed autoactivation in the 

negative controls, reaching even a 3-AT concentration of 30 mM in one experiment (Appendix, 

Table A.2). SKD1, which showed the highest number of potential interactions in previous 

studies, showed none in this analysis. However, several potential protein interactions with P-

body and SG proteins were identified for its direct interactor and regulator LIP5. 

 Similar to their yeast and mammalian homologues, the A thaliana LIP5, VPS46 and VPS60 

proteins have been categorized as ESCRTIII associated proteins based on their function in 

SKD1 activity regulation (Hurley and Hanson et al., 2010, Richardson et al., 2011). The loss of 

LIP5, VPS46.1, or VPS46.2 (single mutants) has no consequences for plant growth under 

normal conditions (Haas et al., 2007; Spitzer et al., 2009). In contrast to that, SKD1 loss seems 

to be lethal in A. thaliana since no homozygous mutant has been isolated so far. Further, studies 

in plant cells using a dominant-negative variant of SKD1 showed that the loss of SKD1 function 

inhibits protein trafficking to the vacuole and causes the formation of aberrantly large MVBs 

called class E compartments (Haas et al, 2007; Shahriari et al., 2010). These attributes make 

SKD1 a key component of ESCRT-mediated trafficking in A. thaliana. 

Though this study did not confirm direct potential interactions of SKD1 with mRNP granule 

components, the essential role of SKD1 in MVB trafficking, combined with the fact that 

regulators of SKD1 interact with mRNP components, make it an interesting candidate to further 

study the relation between ESCRTIII proteins and mRNP granules.  
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3.2 Heat-dependent subcellular protein localization of SKD1 

The investigation of a potential link between ESCRTIII proteins and mRNP granules was 

continued by studying the subcellular localization of SKD1 after a treatment which is known 

to induce and/or increase mRNP formation. 

SKD1 in its native form and in fusion with fluorescent proteins has been described to be evenly 

distributed in the cytosol and to occasionally localize in dot-like structures representing MVBs 

(Haas et al., 2007). The majority of the signal is found in the cytosol, illustrating the transient 

association of SKD1 with MVBs (Shahriari et al., 2010). Further, a nuclear localization of 

SKD1 has been described. This has been interpreted as partial degradation artifact of SKD1 in 

fusion with GFP (Haas et al., 2007). However, new studies reveal that the mammalian homolog 

of SKD1 and other ESCRTIII proteins function in nuclear envelope maintenance, providing an 

alternative explanation for SKD1 signal in A. thaliana nuclei (Olmos et al., 2015; Vietri et al., 

2015). 

For the localization study by confocal microscopy, SKD1 was fused with YFP at the C-terminus 

(SKD1-YFP). A putative SKD1 promoter fragment (1.2 kb upstream of the A. thaliana SKD1 

start codon) was used for gene expression. A. thaliana epidermal leaf cells were transiently 

transformed by particle bombardment.  

 

 

Figure 3.1. Subcellular localization of SKD1-YFP. Epidermal cells of A. thaliana Col-0 rosette leaves were 

transiently transformed by particle bombardment with a construct expressing SKD1-YFP under the control of the 

putative A. thaliana SKD1 promoter. Cells were imaged by confocal microscopy with the same laser intensities 

before (left column) and after heat treatment at 40°C for 50’ (right column). Depicted are maximum projections 

of stacks. Arrow heads indicate SKD1-YFP labeled granules after heat treatment. Bar = 20 µm. 
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As shown in Figure 3.1, SKD1-YFP was mainly present in the cytosol and nearly no dot-like 

structures were visible, which is in accordance with previous localization studies. In addition, 

a nuclear signal was visible. 

The localization analysis was extended to stress conditions known to initiate mRNP granule 

formation. An easily applicable and robust way to induce mRNP granule formation is heat 

treatment. For this, a temperature of approximately 40°C is usually used in A. thaliana 

localization studies. Treatment duration is more variable (40’ to 90’, Bhasin and Hülskamp, 

2017, Motomura et al., 2015). A heat stress treatment at 40°C for 50’ was chosen for this study.  

Upon heat stress, the overall signal intensity of SKD1-YFP was comparable to the one of non-

stressed cells, indicating no drastic increase of protein levels. However, the localization 

changed. In addition to the cytosolic and nuclear signal, structures, which can be described as 

dot-like or granular, were observed. Their size averaged at 0.547 ± 0.333 µm2 (50 

structures/cell, data from two cells).  Plane-by-plane analyses of the stacks point to a distribution 

of the dots at the cell periphery rather than within the central vacuole. Therefore it is likely that 

the granular structures are located within the cytosol.  

In order to exclude the possibility that the heat-dependent shift of localization is caused by the 

method of transformation (particle bombardment), an A. thaliana line stably expressing SKD1 

was analyzed. The established Col-0 line overexpressing GFP-SKD1 under the 35S CaMV 

promoter was used (Haas et al., 2007). 

Figure 3.2 shows the localization of GFP-SKD1 in epidermal leaf (upper row) and root cells 

(lower row). Again, under non-stress conditions, the GFP-SKD1 protein localizes to the nucleus 

and cytoplasm and is found in granular structures after heat treatment. This result reinforces the 

observation that the SKD1 protein changes its subcellular localization upon heat treatment 

independent of transformation method, tissue, expression strength, or the orientation of 

modification (C-terminal or N-terminal modification).  
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Figure 3.2. Subcellular localization of GFP-SKD1 in transgenic A. thaliana plants. Col-0 plants stably 

overexpressing GFP-SKD1 (35S::GFP-SKD1) were used for analysis (Haas et al., 2007). The localization of the 

GFP-SKD1 protein was evaluated by confocal microscopy in epidermal cells of rosette leaves (upper row) and 

roots(lower row) of 7 d old seedlings grown on vertical ½ MS plates before (left colums) or after (right column) 

heat treatment (40°C for 50’). Same leaves/roots, but not the exact same areas were analyzed before and after heat 

treatment and laser intensities were adjusted. Depicted are maximum projections of stacks for epidermal leaf cells 

and single planes for epidermal root cells. Arrow heads indicate GFP-SKD1 granules after heat treatment. 

Bar = 20 µm 

The next step was to further investigate the identity of the granular structures in which SKD1 

localizes in. SKD1 is known to mediate the final step of intraluminal vesicle formation at late 

endosomes, thereby creating MVBs (Gao et al., 2017). Further, SKD1 has been described to be 

occasionally visible at MVBs in fluorescent studies (Haas et al., 2007, Shahriari et al., 2010). 

Therefore, it is conceivable that the heat-induced granular structures might represent MVBs. 

To test this hypothesis, roots of the stable 35S::GFP-SKD1 line were stained with the styryl 

dye FM4-64. FM4-64 is a well-known and widely used membrane staining dye to study 

endocytic processes and endomembrane system dynamics. Upon exposure to FM4-64, the 

plasma membrane is immediately stained and the dye is distributed via endocytic processes 

throughout the vesicular network (including the tonoplast). When integrated into the outer layer 
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of phopholipid bilayer membranes, FM4-64 becomes fluorescent (Bolte et al., 2004). If the 

heat-induced SKD1 granules are membranous (like MVBs), a local increase of FM4-64 signal 

is expected.  

A representative staining result (five roots analyzed) is depicted in Figure 3.3. Again, GFP-

SKD1 is visible in heat-induced granules in the cytosol. The FM4-64 signal is in distinct dot-

like structures. In addition, signal is detectable at the periphery of the cells, outlining the cell 

shape (staining of tonoplast and/or PM). Interestingly, no local FM4-64 signal increase at the 

site of GFP-SKD1 granules is observable. This suggests that the distinct structures stained by 

FM4-64 and the GFP-SKD1 labeled granules represent two different populations. These 

findings suggest that heat stress-induced SKD1 granules are membrane-free structures. 

 

 

Figure 3.3. FM4-64 staining of 35S::GFP-SKD1 roots. Roots of 35S::GFP-SKD1 plants grown for 5 or 7 d on 

vertical ½ MS were stained with 50 µM FM4-64 in ½ MS liquid medium for 5 minutes. Roots were incubated at 

room temperature for 2 h and then subjected to heat treatment (40°C for 50’). Root epidermal cells of the proximal 

transformation zone/early elongation zone were analyzed by confocal microscopy. Depicted are single planes. 

Arrow heads indicate GFP-SKD1 labeled granules and empty arrow heads indicate structures stained by FM4-64. 

Bar = 20 µm. 
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3.3 Colocalization of SKD1 with P-body, SG, and endosomal marker 

proteins 

The above described results suggest that heat stress triggers SKD1 to localize in membrane-

free granular aggregates in the cytosol. A hallmark of mRNP granules is the absence of a 

structure-limiting membrane and since SPI, the direct interactor of SKD1, localizes to P-bodies 

upon cellular stress, it is conceivable to presume that SKD1 also localizes to mRNP granules. 

This part of the study tested a potential association of SKD1 with mRNP granules by 

colocalization analyses with different marker proteins of P-bodies and SGs. In addition, the 

localization of well-established endosomal marker proteins in the context of mRNP granules 

was examined. 

3.3.1 Colocalization of SKD1 with mRNP proteins in transient double transformations 

In a first step to further assess the identity of the heat stress-induced SKD1 granules, a 

colocalization study was performed. For this, epidermal cells of Col-0 rosette leaves were 

double transformed by particle bombardment with a construct overexpressing SKD1 in C-

terminal fusion with YFP or mCHERRY and a construct overexpressing either the P-body 

protein DCP1 in C-terminal fusion with CFP, DCP5 in C-terminal fusion with YFP or 

eIF(iso)4E in N-terminal fusion with YFP. DCP1 and DCP5 are both positive regulators of the 

decapping enzyme DCP2 and crucial components of the decapping complex in A. thaliana (Xu 

et al., 2006, Xu and Chua, 2009). As mentioned before, the mammalian elongation initiation 

factor eIF4E has been found in SGs and P-bodies and was used as a P-body protein in the 

context of this study (Ferraiuolo et al., 2005; Kedersha et al., 2005). Here, the plant-specific 

family member eIF(iso)4E was used for colocalization analysis.  

Figure 3.4 depicts representative results for DCP1, DCP5 and eIF(iso)4E localization. DCP1-

CFP localized in large and distinct granular aggregates in the cytosol which represent P-bodies 

(Xu et al., 2006). As seen before, SKD1-YFP showed a cytosolic distribution and a nuclear 

signal. In contrast to single transformations, few large aggregates of SKD1-YFP protein were 

visible under non-stress conditions and these aggregates colocalized with DCP1-CFP. Previous 

observations of DCP1 overexpression in plant cells showed that DCP1 can recruit even weakly 

interacting proteins into P-bodies (D. Gagliardi, personal communication). This phenomenon 

might also be seen here for SKD1-YFP. After heat stress treatment, more granular SKD1-YFP 

structures were visible which strongly colocalized with DCP1-CFP. 

 



Results 

62 

 

Figure 3.4. Colocalization of SKD1 with P-body marker proteins. Epidermal cells of A. thaliana Col-0 rosette 

leaves were transiently transformed by particle bombardment with a construct overexpressing either SKD1-YFP 

(row 1-2) or SKD1-mCHERRY (row 3-6). In addition, cells were either cotransformed with a construct 

overexpressing DCP1-CFP (row1-2), DCP1-YFP (row3-4), or YFP-eIF(iso)4E (row 5-6). The same cells were 

imaged by confocal microscopy with the same laser intensities before and after heat treatment at 40°C for 50’. 

Depicted are representative maximum projections of stacks. Arrow heads indicate colocalizing structures. 

Bar = 20 µm. 



Results 

63 

Similar to DCP1, DCP5-YFP localized to granular structures in the cytosol. In comparison to 

DCP1, they appeared to be smaller in size and to increase in number upon heat stress. In contrast 

to DCP1, the coexpression of DCP5-YFP did not induce any aggregation of SKD1-mCHERRY 

in the absence of stress. Heat stress induced the colocalization of SKD1-mCHERRY and DCP5-

YFP in granules. 

The YFP-eIF(iso)4E proteins exhibited a different localization than DCP1 and DCP5. It was 

evenly distributed in the cytosol and nucleus and shifted to a granular localization, which 

coincided with SKD1, upon heat stress treatment. This pattern of localization is reminiscent of 

SG marker proteins (aggregation under stress) rather than P-body proteins (aggregation also in 

the absence of stress, Stoecklin and Kedersha, 2013). Thus, the A. thaliana eIF(iso)4E protein 

might not be primarily found in P-bodies but in SGs.  

In addition to the P-body marker proteins, SKD1 was tested for colocalization with the stress 

granule proteins UBP1b, RBP47b, and PAB2. UBP1b is a component of pre-mRNA splicing 

and shares sequence homology with the mammalian TIA1. It localizes in the nucleus and is 

transported into the cytoplasm where it aggregates in stress granules upon heat stress. RBP47b 

is also a TIA1 homolog and has been shown to localize to SGs upon heat stress (Lambermon et 

al., 2000; Weber et al., 2008). PAB proteins are universal core components of SGs in eukaryotes 

and the A. thaliana PAB2 protein localizes in the cytosol under non-stress conditions and is 

found in SGs upon hypoxia as well as heat stress (Anderson and Kedersha, 2008; Sorenson and 

Bailey-Serres, 2014; Bhasin and Hülskamp, 2017). 

As described in the literature, mCHERRY-UBP1b is visible in the nucleus under non-stress 

conditions and undergoes a localization shift to granular structures in the cytosol (SGs) under 

heat stress (Figure 3.5). Cotransformed SKD1-YFP is also present in granular structures after 

heat stress which strongly colocalize with the mCHERRY-UBP1b protein. This shift in SKD1 

localization can be accounted to the protein characteristics of SKD1 rather than the fused YFP, 

since localization studies of overexpressed free YFP with mCHERRY-UBP1B do not show 

aggregation of YFP upon heat stress treatment (see Appendix, Figure A.1).  
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Figure 3.5. Colocalization of SKD1 with SG marker proteins. A. thaliana Col-0 rosette leaves were transiently 

transformed with a construct overexpressing SKD1-YFP. In addition, cells were either cotransformed with a 

construct overexpressing mCHERRY-UBP1b (row1-2), mCHERRY-RBP47b (row3-4), or mCHERRY-PAB2 

(row 5-6). The same cells were imaged by confocal microscopy with the same laser intensities before and after 

heat treatment at 40°C for 50’. Depicted are representative maximum projections of stacks. Arrow heads indicate 

colocalizing structures. Bar = 20 µm. 
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A. thaliana RBP47b was shown to localize in the nucleus and to SGs upon heat stress (Weber 

et al., 2008). In this study, mCHERRY-RBP47b was not present in the nucleus but dispersed in 

the cytosol. Nonetheless, heat stress induced the formation of mCHERRY-RBP47b-labeled 

granules which colocalized with SKD1-YFP. The mCHERRY-PAB2 protein localized to the 

cytosol and in granules after heat stress treatment which also coincided with SKD1-YFP 

granules. 

In addition to the double transient transformations, the stable 35S::GFP-SKD1 line was 

transiently transformed with the construct overexpressing mCHERRY-UBP1b. The fact that 

the particle bombardment method transforms only single cells allowed a side-by-side 

comparison of cells only expressing GFP-SKD1 and a cell additionally expressing mCHERRY-

UBP1b. 

 

 

Figure 3.6. Transient transformation of 35S::GFP-SKD1 leaves with mCHERRY-UBP1b. Epidermal leaf 

cells of the stable 35S::GFP-SKD1 line were transiently transformed by particle bombardment with a construct 

overexpressing mCHERRY-UBP1b. Different cells were imaged by confocal microscopy before and after heat 

treatment at 40°C for 50’. Depicted are representative maximum projections of stacks. Arrow heads indicate 

colocalizing structures. Bar = 20 µm. 
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The single transient transformation of mCHERRY-UBP1b exhibited the same localization as 

the double transient transformation: The mCHERRY-UBP1b protein is in the nucleus before 

and in granules after heat stress. Again, GFP-SKD1 strongly colocalizes with mCHERRY-

UBP1B in the granules (Figure 3.6). The GFP-SKD1 labeled granules in the neighboring cells 

resemble the ones in the transiently transformed cell in size and number, providing evidence 

that the coexpression of UBP1B does not influence the localization of GFP-SKD1.  

In summary, the observed colocalization of SKD1 with P-body and SG granule marker indicates 

that the SKD1 protein does associate with mRNP granules during heat stress.  

3.3.2 Colocalization quantification of SKD1 with mRNP granule markers  

To further evaluate the association of SKD1 with different mRNP granule marker proteins, their 

colocalization after heat treatment was quantified. By this, potential differences in 

colocalization were investigated. Stacks of transiently double transformed leaf epidermal cells 

were generated and ROIs containing granules were defined as described in Chapter 2.8.1. The 

Pearsons’s correlation coefficient (PCC) was used for granule colocalization quantification 

(Manders et al., 1992). 

Positive and negative controls are recommended in quantitative colocalization studies to permit 

a meaningful interpretation of the obtained results. Here, constructs overexpressing YFP-

UBP1b and mCHERRY-UBP1b were double transformed and evaluated for colocalization. The 

images of mCHERRY-UBP1b were rotated by 180° and again analyzed for colocalization, 

mimicking random colocalization. In addition to the double transformation of YFP-UBP1b and 

mCHERRY-UBP1b, cells were double transformed with YFP-UBP1b and mCHERRY-PAB2. 

Thereby it was possible to estimate the colocalization coefficient that can be expected for two 

proteins known to localize to SGs. 

A PCC of 1 indicates absolute co-occurrence of signals in two channels, a value of -1 represents 

exclusive signal occurrence (negative correlation), and a value of 0 indicates a random 

distribution of signals. In this study, the highest level of colocalization was detected for the 

positive control (YFP-UBP1b/mCHERRY-UBP1b) with a mean correlation coefficient of 0.75 

(± 0.1 standard deviation). This value represents maximal measurable colocalization within the 

experimental setup. The measurement of the negative control (UBP1b/UBP1b tilt) gave a 

coefficient of 0.02 (± 0.08) and all measured coefficients were significantly higher than the 

negative control (Table 3.3).  
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Figure 3.7. Colocalization quantification of SKD1 with mRNP granule markers after heat stress. Epidermal 

leaf cells of Col-0 plants were transiently double transformed by particle bombardment for colocalization 

quantification. All used constructs overexpressed the respective protein under the control of the 35S CaMV 

promoter. The SKD1 protein was expressed in C-terminal fusion with YFP or mCHERRY and an mRNP granule 

marker fused to another fluorescent protein was cotransformed (YFP-UBP1b, mCHERRY-RBP47b, mCHERRY-

PAB2, YFP-eIF(iso)4E, DCP1-CFP, or DCP5-YFP). The transformed cells were subjected to heat stress treatment 

at 40°C for 50’ and maximum projections of stacks were generated. For each combination, 10 cells were imaged 

and three ROIs were analyzed for fluorescent signal overlap using the PCC (ImageJ, JACoP). Representative ROIs 

of the different combinations are depicted on the left. The mean overlaps of the different combinations are shown 

in the histogram on the right. Error bars indicate standard deviation. As positive controls, cells were cotransformed 

with YFP-UBP1b and mCHERRY-UBP1b or mCHERRY-PAB2. As a negative control, one channel of the 

YFP/mCHERRY-UBP1b pictures was rotated by 180° before analysis. 

The UBP1b and PAB2 overlap was similar to the one of the positive control (0.71 ± 0.11). 

Interestingly, the colocalization coefficient of SKD1 and UBP1b was also not significantly 

lower (0.73 ± 0.08). The colocalization of SKD1 with the other two SG markers, RBP47b 

(0.64 ± 0.11) and PAB2 (0.55 ± 0.09), was significantly lower than with UBP1b. The 

colocalization coefficient of SKD1 and eIF(iso)4E overlap (0.55 ± 0.11) was similar to the one 

with PAB2. 

The P-body proteins DCP1 (0.5 ± 0.14) and DCP5 (0.46 ± 0.13) were comparable to each other 

in their overlap with SKD1 and showed no significant differences. Intermediate PCCs are often 

ambiguous and hard to interpret in terms of positive correlation. Since the maximal coefficient 

in this study was 0.754, all of the obtained values are relatively high and can be considered to 

represent positive correlation.  
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Table 3.3. Statistical analysis of colocalization between transient double transformations. All datasets were 

normally distributed with the exception of UBP1b-UBP1b (Shapiro-Wilk-test). Normally distributed datasets were 

evaluated for significant colocalization differences using the Welch’s two sample t-test. For comparisons with the 

UBP1b/UBP1b dataset, the Wilcoxon-Mann-Whitney-test was used. Significance level are indicated as following: 

n.s. = not significant, p < 0.05 = *, p < 0.01 = **, p<0.001 = ***). Detailed p-values are listed in Appendix, Table 

A.4. 

 
UBP1b 

UBP1b 

UBP1b 

PAB2 

UBP1b 

SKD1 

RBP47b 

SKD1 

PAB2 

SKD1 

eIF(iso)4E 

SKD1 

DCP1 

SKD1 

DCP5 

SKD1 

UBP1b 

UBP1b tilt 

UBP1b 

UBP1b 
 n.s. n.s. *** *** *** *** *** *** 

UBP1b 

PAB2 
n.s.  n.s. * *** *** *** *** *** 

UBP1b 

SKD1 
n.s. n.s.  *** *** *** *** *** *** 

RBP47b 

SKD1 
*** * ***  *** *** *** *** *** 

PAB2 

SKD1 
*** *** *** ***  n.s. n.s. ** *** 

eIF(iso)4E 

SKD1 
*** *** *** *** n.s.  n.s. * *** 

DCP1 

SKD1 
*** *** *** *** n.s. n.s.  n.s. *** 

DCP5 

SKD1 
*** *** *** *** ** * n.s.  *** 

UBP1b 

UBP1b tilt 
*** *** *** *** *** *** *** ***  

 

Overall, the quantification of SKD1 colocalization with mRNP granule markers showed a non-

random localization of the observed overlaps. Furthermore, the localization of SKD1 correlates 

strongly with the localization of UBP1b and RBP47b after heat stress and, to a lesser extent, 

with PAB2, eIF(iso)4E, DCP1 and DCP5. The reduced colocalization of SKD1 with proteins 

known to be mainly present in P-bodies might indicate that the SKD1 localizes primarily to 

SGs after heat treatment and partially to P-bodies.  

 

 



Results 

69 

3.3.3 Colocalization quantification in transgenic marker lines  

The results of the transient colocalization study showed that the SKD1 protein colocalizes to 

mRNP granules upon heat stress. To further validate these results, the localization of SKD1 in 

respect to an SG marker protein in stable transgenic lines was investigated. For this, the stable 

35S::GFP-SKD1 line was crossed to a line overexpressing the PAB2 protein C-terminally fused 

to mRFP (35S::PAB2-mRFP, Sorenson and Bailey-Serres, 2014). The generated 35S::GFP-

SKD1x35S::PAB2-mRFP line was analyzed for colocalization in the F2 generation.  

Representative images of leaf and root epidermal cells of the 35S::GFP-SKD1x35S::PAB2-

mRFP line before and after heat stress treatment are presented in Figure 3.8. GFP-SKD1 and 

PAB2-mRFP localize to the cytosol under non-stress conditions in both cell types. Similar to 

the transient results, PAB2-mRFP does not localize to the nucleus. Under heat stress, PAB2-

mRFP changes its localization and is found in granular structures with GFP-SKD1. The 

majority of granules are labeled by both proteins. This result confirmed once more the heat-

dependent colocalization of the SKD1 protein with SGs. 
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Figure 3.8. Confocal imaging of 35S::GFP-SKD1x 35S::PAB2-mRFP. The previously analyzed 35S::GFP-

SKD1 line was crossed to a line expressing PAB2-mRFP under the 35S CaMV overexpression promoter 

(35S::PAB2-mRFP, Sorenson and Bailey-Serres, 2014) and plants of the F2 generation were analyzed for 

subcellular protein localization. Epidermal cells of rosette leaves and root epidermal cells of 7 d old seedlings 

grown on vertical ½ MS plates were imaged by confocal microcopy before and after heat treatment (40°C for 50’). 

The same leaves/roots but not the exact same areas were analyzed before and after heat treatment. Depicted are 

maximum projections of stacks for leaf epidermal cells and single planes for epidermal root cells. Arrow heads 

indicate colocalizing structures. Bar = 20 µm. 
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Figure 3.9. Confocal imaging of the 35S::GFP-SKD1x35S::mCHERRY-ARA7 line. The previously analyzed 

35S::GFP-SKD1 line was crossed to a line overexpressing mCHERRY-ARA7 (35S::mCHERRY-ARA7, A. 

Steffens, unpublished) and plants of the F2 generation were analyzed for subcellular protein localization. The same 

leaves/roots but not the exact same areas were analyzed before and after heat treatment (40°C, 50’). Depicted are 

maximum projections of stacks for epidermal leaf cells and single planes for epidermal root cells. Bar = 20 µm. 
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Another, so far not discussed, potential explanation for the granular localization of SKD1 after 

heat stress might be inhibited dissociation of SKD1 from MVB membranes. Under these 

circumstances, the colocalization of SKD1 with mRNP granules would rather represent a 

general colocalization of MVBs with mRNP granules. The observation that GFP-SKD1 

granules are not stained by the membrane dye FM4-64 in A. thaliana roots (Chapter 3.2, Figure 

3.3) weakens this hypothesis. Nonetheless, this possible explanation was further tested by 

analyzing the localization of heat-induced SKD1 granules in relation to the late endosomal 

marker protein ARA7/RabF2b, a plant Rab5-related GTPase (Ueda et al., 2001; Lee et al., 

2004). The transgenic 35S::GFP-SKD1 line was crossed to a stable line expressing 

mCHERRY-ARA7 under the 35S overexpression promoter (35S::mCHERRY-ARA7, A. 

Steffens unpublished). Epidermal leaf and root cells of the F2 generation were analyzed by 

confocal microscopy for heat-dependent protein localization. 

As depicted in Figure 3.9, the simultaneous overexpression of mCHERRY-ARA7 does not 

influence the localization of GFP-SKD1, which is still present in the nucleus and evenly 

distributed in the cytosol under non-stress conditions. The ARA7 protein localizes to punctate 

structures in the cytosol, which have been characterized as MVBs in previous studies (Lee et 

al., 2004). Upon heat stress, GFP-SKD1 is localized in granules which do not colocalize with 

the mCHERRY-ARA7-labeled structures. This result indicates that the SKD1 protein alone, 

rather than in association with MVBs, colocalizes to mRNP granules upon heat stress 

conditions.  

The study was extended to a direct analysis of colocalization of well established mRNP granule 

markers and late endosomal markers. To this end, transgenic lines either expressing a 

fluorescently marked endosomal protein or a marked mRNP granule protein were crossed and 

F2 plants were analyzed by confocal microscopy. The SG marker line 35S::PAB2-mRFP was 

crossed to a line overexpressing YFP-RHA1 (35S::YFP-RHA1, Gelder et al., 2009). RHA1 

shares high amino acid similarity with ARA7 and is also involved in vacuolar trafficking and 

localizes to MVBs (Sohn et al., 2003, Lee et al., 2004). Further, the P-body marker line 

35S::DCP5-TURQUOISE (DCP5-mTQ, M. Jakoby unpublished) was crossed to the 

35S::mCHERRY-ARA7 line. In addition, a 35S::DCP5-mTQx35S::PAB2-mRFP line was 

generated. P-bodies and SGs are highly dynamical structures known to interchange proteins 

and mRNAs (Buchan and Parker, 2009). Thus, the DCP5 and PAB2 protein overlap was of 

interest.  
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Figure 3.10. Confocal imaging of crossed mRNP granule and endosomal marker lines. Following stable lines 

expressing an endosomal marker (YFP-RHA1, mCHERRY-ARA7) and/or and mRNP granule marker (PAB2-

mRFP, DCP5-mTQ) were generated by crossing: 35S::YFP-RHA1x35S::PABP-mRFP (row 1-2), 35S::DCP5-

mTQx35S::mCHERRY-ARA7 (row 3-4), and 35S::DCP5-mTQx35S::PAB2-mRFP (row 5-6). Plants of the F2 

generation were analyzed for subcellular protein localization before and after heat treatment (40°C for 50’). The 

same leavess but not the exact same areas were analyzed before and after heat treatment. Depicted are maximum 

projections of stacks. Arrow heads indicate colocalizing structures. Bar = 20 µm. 
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Representative pictures of the generated lines are shown in Figure 3.10. In the 35S::YFP-

RHA1x35S::PABP-mRFP transgenic line, the YFP-RHA1 protein localizes to distinct punctate 

structures in the cytosol, similar to ARA7. After heat stress treatment, PAB2-mRFP is also 

found in cytosolic granules, yet the YFP-RHA1 and PAB2-mRFP structures do not appear to 

co-occur within the cell. In the 35S::DCP5-mTQx35S::mCHERRY-ARA7, both proteins 

localize in granular structures independent of heat stress, but neither under non-stress conditions 

nor after heat stress treatment, the structures appear to colocalize. In contrast, the DCP5-mTQ 

and PAB2-mRFP proteins showed a considerable degree of co-occurrence after heat treatment.  

Similar to the transient colocalization study, the signal overlap of the different marker proteins 

after heat treatment was quantified using the PCC. The leaf epidermal cells of the transgenic 

lines were imaged by confocal microscopy. As a negative control, images of the mRFP channel 

of the 35S::GFP-SKD1x35S::PAB2-mRFP line were tilted by 180° and analyzed for signal 

overlap. 

 

Figure 3.11. Colocalization quantification of stable lines after heat stress treatment. Epidermal leaf cells of 

the crossed stable lines 35S::GFP-SKD1x35S::PAB2-mRFP, 35::GFP-SKD1x35S::mCHERRY-ARA7, 

35S::DCP5-mTQx35S::PAB2-mRFP, 35S::YFP-RHA1x35S::PABP-mRFP, 35::GFP-SKD1x 35S::mCHERRY-

ARA7, and 35S::DCP5-mTQx35S::mCHERRY-ARA7 were imaged for colocalization quantification. Leaves were 

subjected to heat stress treatment at 40°C for 50’ and maximum projections of stacks were generated. For each 

combination, 10 leaf areas were imaged and three ROIs were analyzed for fluorescent signal overlap using the 

PCC. Representative ROIs of the different combinations are depicted on the left. The mean overlaps for the 

different combinations are shown in the histogram on the right. Error bars indicate standard deviation. As a 

negative control, pictures of one channel of the 35S::GFP-SKD1x 35S::PAB2-mRFP line were rotated by 180° 

before analysis. 
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Table 3.4. Statistical significance analysis of colocalization between the stable lines. All datasets were 

normally distributed (Shapiro-Wilk-test). Significant colocalization differences were tested by the Welch’s two 

sample t-test (n.s. = not significant, p < 0.05 = *, p < 0.01 = **, p<0.001 = ***). Detailed p-values are listed in 

Appendix, Table A.6. 

 SKD1x 

PAB2 

DCP5x 

PAB2 

RHA1x 

PAB2 

SKD1x 

ARA7 

DCP5x 

ARA7 

SKD1/ 

PAB2 tilt 

SKD1x 

PAB2 
 ** *** *** *** *** 

DCP5x 

PAB2 
**  *** *** *** *** 

RHA1x 

PAB2 
*** ***  n.s. *** *** 

SKD1x 

ARA7 
*** *** n.s.  *** *** 

DCP5x 

ARA7 
*** *** *** ***  *** 

SKD1/ 

PAB2 tilt 
*** *** *** *** ***  

 

The strongest positive correlation of localization was identified for GPF-SKD1 and PAB2-

mRFP with a mean value of 0.49 (± 0.10, Figure 11). This overlap is significantly lower than 

the overlap identified for the transient double transformation (0.55 ± 0.09, p-value 0.018). A 

previous quantitative colocalization study of PAB2 and the AN protein showed that the overlap 

in transient cells was higher than in transgenic cells (Bhasin and Hülskamp, 2017). This 

observation was not exhaustively explained, but different protein proportionality and altered 

signal intensity were discussed as an explanation. Nevertheless, a PCC of 0.49 indicates a 

considerable degree of co-occurrence in the context of this study (highest obtained coefficient 

is 0.75 for YFP-UBP1B/mCHERRY-UBP1B in transient colocalization study). The overlap of 

DCP5-mTQ and PAB2-mRFP (0.43 ±  0.05) is significantly lower than the overlap of GFP-

SKD1 and PAB2-mRFP, but is still considerably high. This indicates a partial overlap of the P-

body marker protein DCP5 with PAB2, which so far has only been described to localize to SGs. 

The quantification of YFP-RHA1 and PAB2-mRFP co-occurrence results in a PCC of 

0.31 ± 0.10, which is significantly lower than the coefficient of GFP-SKD1/ PAB2-mRFP and 

DCP5-TURQUOISE/ PAB2-mRFP, but comparable to the result of GFP-SKD1/mCHERRY-

ARA7 (0.28 ± 0,07). This fits the hypothesis that the heat induced GFP-SKD1 structures 
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represent mRNP granules (similar to PAB2-mRFP) while mCHERRY-ARA7 and YFP-

RHA1 label late endosomal structures. The lowest overlap was shared between DCP5-

TURQUOISE and mCHERRY-ARA7 (0.16 ± 0.06).  

Altogether, the analysis of the transgenic marker lines confirmed the observation that SKD1 

localizes to mRNPs upon heat stress. In addition, it was demonstrated that known marker 

proteins of late endosomal structures do not colocalize with heat-induced SKD1 granules or 

mRNP granule proteins. These results provide further evidence that the association of SKD1 

with mRNP granules upon heat stress is independent of endosomal structures.  

3.4 Subcellular localization of ESCRTIII core and associated proteins 

So far, the results of this study showed that the SKD1 protein localizes to mRNP granules upon 

heat stress. This shift in localization appears to be independent of membrane association, since 

formed SKD1 granules are neither enriched in FM4-64 staining (Chapter 3.2, Figure 3.3) nor 

colocalize to the late endosomal marker protein ARA7 (Chapter 3.3.3, Figure 3.9). The 

previously obtained Y2H data and the Y2H data generated in this study (Chapter 3.1, Table 3.1 

and Table 3.2) indicate potential interactions between several ESCRTIII core and associated 

proteins and mRNP granule components.  

All ESCRTIII core proteins as well as the associated proteins VPS46.1/VPS46.2, 

VPS60.1/VPS60.2, and ISTL1 share similar architectural features: an N-terminal α-helical 

hairpin which is supported by additional shorter helical structures and a flexible C-terminal α-

helix which can fold back and mask the hairpin structure (closed conformation, auto-inhibition). 

The hairpin is overall negatively charged and provides the membrane-binding interface of 

ESCRTIII proteins. Further, it contains residues which are essential for protein interactions 

amongst the ESCRTIII subunits. Only upon release of the C-terminal α-helix from the hairpin 

structure (open conformation), endosomal membrane association and polymer formation can 

occur (Muzioł et al., 2006; Bajorek et al., 2009;). In general, the ESCRTIII proteins are in the 

monomeric closed state when present in the cytosol and in the open oligomerized state when 

bound to membranes. The cycling of the ESCRTIII subunits from the membrane-bound to the 

monomeric state in the cytosol is executed by SKD1 and its associated regulators (Babst et al., 

1998, Shim et al., 2007). The A. thaliana LIP5 protein does not share the typical domain 

structure of the ESCRTIII core and most of the ESCRTIII associated proteins. It has been shown 

that the yeast LIP5 homolog Vta1 interacts with SKD1 via a conserved C-terminal region. 

Interactions with other ESCRTIII components are mediated over two N-terminal MIT-domains 

(Azmi et al., 2008; Xiao et al., 2008). 
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This part of the study addressed the question whether other ESCRTIII proteins exhibit a heat-

dependent localization shift similar to the one of SKD1. Another part of the study was to see 

whether the different ESCRTIII core and associated components localize differently after heat 

stress treatment, despite their overall high similarity in domain structure. 

3.4.1 In-silico analysis of IDRs in ESCRTIII core and associated proteins 

A part of the current discussion about the dynamic nature of mRNP granules involves the 

question whether their assembly represents liquid-liquid phase separation and what role IDRs 

(Intrinsically Disordered Regions) play in this process. IDRs, also known as LC (Low 

Complexity) regions, are linear peptide stretches outside of globular domains without regular 

secondary structure elements. Most of the time, IDRs have a low amino acid complexity and 

do not contain stretches of hydrophobic amino acids, which could initiate protein folding. 

Functions of IDRs include being flexible linker between globular domains, sites of 

posttranslational modification and serving as “interaction hubs” since they allow specific, but 

weak and variable protein-protein interactions (Dunker et al. 2002, Protter and Parker, 2016). 

IDR-enriched proteins have been shown to be relevant in diverse cellular processes such as cell 

cycle-control, chaperone activity or transcription regulation (Iakoucheva et al., 2002; Tompa et 

al., 2006; Xie et al., 2007). Further, IDRs are enriched in mRNP granule components and are 

relevant for aggregation and granule formation (Gilks et al., 2004; Decker et al., 2007; Reijns 

et al., 2008; Kato et al., 2012; Jain et al., 2016).  

The implication that the presence of IDRs increases the likelihood of a protein to locate to 

mRNP granules raised the question, whether there is a considerable degree of disorder in A. 

thaliana ESCRTIII proteins and if this disorder correlates with aggregation upon heat stress. 

To investigate this aspect, protein sequences of ESCRTIII core and associated proteins were 

analyzed with two different online tools: DisEMBL and GlobPlot (Linding et al., 2003; Linding, 

2003). The machine-learning based DisEMBL tool predicts the presence of loops (or coils) and 

hot loops (H-loops) within an amino acid sequence. Loops are defined as secondary structures 

which do not fall in the category of α-helices, 310-helices or β-strands (Kabsch and Sander, 

1983). H-loops are a subset of the loops defined by DisEMBL and are predicted to have a higher 

degree of mobility and thus are more likely to be disordered. The GlobPlot predictor calculates 

the sum of propensities (probability of a residue to be in a secondary structure or in a random 

coil) of amino acids and defines regions of globularity and disorder within protein sequences.  

The IDR analysis was performed on amino acid sequences of ESCRTIII core and associated 

proteins which have been previously analyzed in the Y2H experiment (Chapter 3.1). To 
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compare the degrees of disorder to a group of proteins known to aggregate in mRNP granules, 

the A. thaliana mRNP granule components, which were also analyzed in the Y2H experiment, 

were included in the analysis. The protein sequences (representative gene models) were 

extracted from The Arabidopsis Information Resource (TAIR) and subjected to analysis with 

the DisEMBL and GlobPlot tool.  

Table 3.5 summarizes the results of the IDR analysis. The exact protein regions, which were 

predicted to be disordered, are given in Appendix, Table A.7. To compare the degree of 

disorder, the percentage of residues in IDRs is used. Another criterion to evaluate protein 

disorder is the presence of long continuous IDRs (≥ 30 residues) since they are more likely to 

have functional relevance (Ward et al., 2004).  
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Table 3.5. Percentages of predicted IDR content within ESCRTIII, P-body and SG proteins. The Percentages 

of IDRs in respect to total protein length predicted by DisEMBL and GlobPlot are indicated. Percentages of amino 

acids (aa) in long IDRs are indicated in bolt and italic. The total number of aa in IDRs or long IDRs are shown in 

brackets.  

  DisEMBL GlobPlot 

 
Protein length [aa] % of aa in loops 

% of aa in 

H-loops 

% of aa in disordered 

region 

E
S

C
R

T
II

I 
co

re
  

VPS20.1 243 29% (70) 

24% (58) 

30% (72) 

18% (43) 

5%( 11) 

none 

VPS24.1 229 16% (37) 

none 

34% (77) 

none 

none 

none 

VPS32.1 194 26%(51) 

15%(30) 

21% (41) 

none 

7% (13) 

none 

VPS32.2 219 26% (57) 

none 

28% (63) 

16% (35) 

9% (20) 

none 

VPS2.1 225 24% (53) 

none 

27% (60) 

none 

6% (13) 

none 

VPS2.2 243 32% (77) 

14% (35) 

44% (108) 

31% (76) 

3% (7) 

none 

VPS2.3 210 24% (51) 

none 

36% (75) 

19% (39) 

8% (16) 

none 

E
S

C
R

T
II

I 
a

ss
o
ci

a
te

d
  

LIP5 421 73% (308) 

55% (230) 

31% (54) 

none 

58% (253) 

54%(227) 

SKD1 435 54% (233) 

32% (141) 

14% (62) 

9% (41) 

23% (101) 

9% (41) 

VPS46.1 203 20% (41) 

none 

30% (60) 

20% (41) 

10% (20) 

none 

VPS46.2 203 19% (39) 

none 

35% (72) 

26% (53) 

9% (19) 

none 

VPS60.1 235 53% (124) 

26% (62) 

29% (67) 

15% (35) 

32% (75) 

17% (40) 

VPS60.2 272 52% (141) 

23% (63) 

20% (54) 

12% (33) 

29% (80) 

15% (42) 

P
-b

o
d

y
  

DCP1 367 54% (198) 

43% (157) 

21% (76) 

none 

46% (168) 

46%(168) 

DCP2 386 60% (230) 

23% (89) 

39% (151) 

15% (56) 

15% (56) 

none 
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  DisEMBL GlobPlot 

 
Protein length [aa] % of aa in loops 

% of aa in 

H-loops 

% of aa in disordered 

region 

DCP5 611 96% (584) 

92%(561) 

33% (204) 

21% (131) 

72% (438) 

59% (362) 

VCS 1344 60% (793) 

47% (629) 

19% (258) 

4% (56) 

25% (336) 

10% (130) 

eIF4E1 235 63% (148) 

60% (140) 

15% (35) 

none 

25% (58) 

none 

XRN4 947 66%(626) 

45% (426) 

18% (173) 

9% (88) 

34% (318) 

15% (145) 

S
G

  

UBP1b 419 64% (270) 

45% (187) 

9% (36) 

none 

23% (95) 

8% (33) 

PAB2 629 64% (405) 

37% (234) 

25% (159) 

5% (33) 

25% (179) 

13% (81) 

RBP47b 435 76% (332) 

64% (280) 

22% (97) 

16% (69) 

32% (141) 

11% (46) 

GRP7 176 77% (135) 

62% (109) 

41% (73) 

none 

56% (99) 

52% (92) 

RBP45b 405 71% (286) 

58% (235) 

25% (103) 

13% (52) 

43% (176) 

17% (70) 

GRP2 158 40% (64) 

21% (33) 

23% (37) 

none 

53% (83) 

33% (52) 
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In a first step, the overall degree of disorder between the different functional protein groups 

(ESCRTIII core, ESCRTIII associated, P-body and SG) as well as the different prediction 

categories (DisEMBL: loop and H-loop, GlobPlot: disordered region) were compared. For this, 

mean values of each functional protein group, for ESCRTIII total and mRNPs total was 

generated. The obtained mean percentages of amino acids in IDRs and in long IDRs are plotted 

in Figure 3.12.  

 

Figure 3.12. Comparison of predictor categories based on mean IDR content in analyzed functional protein 

groups. Histograms of the mean percentages of aa in IDRs and long IDRs within the functional group of ESCRTIII 

core, ESCRTIII associated, P-body, and SG proteins. ESCRTIII total indicates the mean IDR/long IDR content of 

all tested ESCRTIII proteins, mRNP total indicates the content for all tested P-body and SG proteins. IDRs were 

predicted by the DisEMBL (loop, H-loop) and GlobPlot (disordered region) tool (Linding et al., 2003; Linding, 

2003). Long IDRs are defined as all stretches of disorder that include 30 or more residues. Error bars represent 

standard deviation. 

The highest degree of disorder for nearly all functional protein groups was predicted by the 

DisEMBL loop category, followed by the disordered region category of GlobPlot and the H-

loop category (DisEMBL). Only for the ESCRTIII core proteins more residues were predicted 
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to be disordered by the H-loop (31 ± 7%) than the loop (25 ± 5%) category. This is surprising 

since the H-loop category is described as a subset of the loop category.  

The loop category of the DisEMBL tool seems to be less conservative than the other two 

prediction groups. Nonetheless, the same trends in disorder are observable when comparing the 

predictions of the loop category and the disordered region category: P-body and SG proteins 

share a similar degree of disorder (mRNP total, loop: 66 ± 13%, disordered region: 37 ± 18%) 

while ESCRTIII core and associated proteins are less disordered (ESCRTIII total, loop: 

33 ± 19%, disordered region: 15 ± 16%). These strong differences are no longer present in the 

H-loop category (H-loop ESCRTIII total: 29 ± 19%, mRNP total: 24 ± 9). 

As mentioned before, an additional aspect of protein disorder evaluation is the presence and 

percentage of residues in long IDRs. The mean percentages of amino acids in long IDRs are 

depicted in the lower histogram in Figure 3.12. Logically, the overall percentage of residues in 

IDRs is decreased if only stretches of 30 amino acids or more are considered. Strikingly, the 

same trends in disorder percentage between the different functional proteins groups are still 

present in the loop category (ESCRTIII total: 15 ± 17%, mRNP total: 45 ± 23%). This is not 

the case for the H-loop and disordered region category. Thus, the correlation between degree 

of disorder and presence of long IDRs is only reflected by the loop category. This might be 

explained by more conservative parameters of the H-loop and disordered region algorithms.  

After the comparison of the different prediction tools and categories with each other, the degree 

of disorder within each ESCRTIII core and associated protein was analyzed. For this, the 

absolute percentages of amino acids in the different classes of IDRs or long IDRs were plotted 

(Figure 3.13).  
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Figure 3.13. Percentages of IDRs and long IDRs in ESCRTIII core and associated proteins. The percentages 

of aa in IDRs or long IDRs predicted by DisEMBL (loop, H-loop) and GlobPlot (disordered region) for the 

analyzed A. thaliana ESCRTIII core and associated proteins are presented in the histograms. As a reference, the 

mean percentage of disorder of all tested mRNP granule components is indicated as vertical dashed lines for each 

predictor category.  
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The vertical lines in the histograms indicate the mean percentage of disorder of the analyzed 

mRNP granule proteins. By plotting the individual ESCRTIII proteins, it becomes evident that 

the majority of them shares a comparable degree of disorder over all analyzed categories (loops, 

H-loops and disordered region). The exceptions are LIP5, SKD1 and, to a lesser extent, 

VPS60.1 and VPS60.2. LIP5 and SKD1 do not share the same domain structure as the other 

analyzed ESCRTIII proteins (N-terminal α-hairpin and C-terminal α-helix connected by a 

flexible linker) and therefore, it is not surprising that they display a different degree of disorder. 

A particularly low percentage of VPS24.1, VPS46.1, and VPS46.2 residues are predicted to be 

in IDRs.  

The percentage of amino acids that are predicted to be in long IDRs (Figure 3.13, bottom) is 

once more elevated in LIP5, SKD1, VPS60.1 and VPS60.2 in comparison to the other 

ESCRTIII proteins. For VPS24.1 and VPS2.2, no long IDR was identified and for VPS32.1, 

VPS2.3, VPS46.1 and VPS46.2 only one predictor category found long IDRs.  

A large-scale study from 2013 by Pietrosemoli and colleagues examined the prevalence of IDRs 

in the A. thaliana proteome (Pietrosemoli et al., 2013). They showed that approximately 60% 

of the A. thaliana proteins contain one long IDR and a degree of disorder between 0- 30%. A 

protein was considered highly disordered, if over 50% of the amino acids were predicted to be 

in an IDR and roughly 30% of the A. thaliana proteins fall in this category. All but one (GRP2) 

of the analyzed P-body and SG proteins fulfill this requirement for the loop category. As 

mentioned, the mRNP granule components were included in the analysis as a reference and this 

result strengthens the confidence in the predictions for the ESCRTIII core and associated 

proteins. The LIP5, SKD1, VPS60.1, and VPS60.2 protein can be considered highly disordered 

while the other analyzed ESCRTIII proteins display an average degree of disorder. SKD1, 

similar to the mRNP granule components, has been shown to form granules upon heat stress 

and to colocalize to mRNP granules. It is now of interest to see whether the high degree of 

disorder of LIP5, VPS60.1 or VPS60.2 correlates with a tendency to form granules.  

3.4.2 Heat stress-dependent localization of ESCRTIII core and associated proteins.  

This part of the study addressed the question whether other ESCRTIII proteins show a similar 

shift in localization upon heat stress treatment like SKD1. For this, the localization of the 

ESCRTIII core components VPS2.2, VPS24.1, and VPS32.1 as well as the associated proteins 

LIP5, VPS60.2, VPS46.1, and its homolog VPS46.2 were analyzed. An additional objective 

was to investigate if the ATPase function of SKD1 is relevant for a heat-dependent localization 

shift. The exchange of Lys178 to Ala (K178A) and Glu234 to Gln (E234Q, combined referred 
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to as SKD1-AQ) diminishes ATP binding and hydrolysis activity of SKD1 which leads to the 

block of MVB biogenesis and endosomal swelling (Babst et al. 1998; Haas et al. 2007; Shahriari 

et al. 2010).  

Epidermal leaf cells of Col-0 plants were transiently transformed with constructs 

overexpressing ESCRTIII core and associated proteins in fusion with fluorescent proteins. 

Representative subcellular localizations of the recombinant proteins before and after heat stress 

are shown in Figure 3.14. For clarity, all fluorescent signals (YFP and mCHERRY) are depicted 

in green. 

It has been reported that C-terminal fusions of mammalian VPS32 (CHMP4) and VPS46 

(CHMP1) with GFP cause endosomal swelling reminiscent of the dominant-negative effect of 

SKD1-AQ. This has been explained with the loss of the autoinhibitory effect of the C-terminal 

α-helix, which results in increased membrane association. Further, this increased filament 

formation at the MVB membrane reduces the accessibility of VPS32 and thus it cannot be 

removed by SKD1 (Howard et al., 2001; Zamborlini et al., 2006; Hanson et al., 2008). This 

effect was also observed in this study by transiently transforming epidermal leaf cells of the 

transgenic 35S::GFP-SKD1 line  with a construct overexpressing VPS32.1-mCHERRY 

(Appendix, Figure A.3). Larger aggregates of VPS32.1-mCHERRY were visible which seemed 

to “trap” the GFP-SKD1 protein. By using an N-terminal fluorescent fusion of VPS32.1, this 

effect was no longer observed (Appendix, Figure A.3). 

As shown in Figure 3.14, heat-stress had no apparent effect on the localization of mCHERRY-

VPS32.1. The majority of signal was evenly distributed throughout the cytosol and some larger 

punctuate structures, presumably MVBs, were visible.  

Contrary to the subcellular localization of C-terminal modified VPS32.1, no large aggregates 

were observed when VPS24.1-YFP was coexpressed with SKD1-mCHERRY (Appendix, 

Figure A.3). This implies that the A.thaliana VPS24.1 protein is not sensitive to C-terminal 

recombination. As depicted in Figure 3.14, VPS24.1-YFP was visible in the cytosol and 

changed upon heat-stress to a granular localization, similar to SKD1. 
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Figure 3.14. Heat-dependent subcellular localization of ESCRTIII core and associated proteins. A. thaliana 

epidermal leaf cells were transiently transformed by particle bombardment with a construct overexpressing 

ESCRTIII core or associated protein fused to YFP or mCHERRY. For clarity, all imaged cells are depicted in 

green, independent of the fused fluorescent protein. The following recombinant versions of the ESCRTIII proteins 

were analyzed: mCHERRY-VPS32.1, VPS24.1-YFP, VPS2.2-YFP, YFP-VPS2.2, mCHERRY-VPS46.1, YFP-

VPS46.2, VPS60.2-YFP, and LIP5-YFP. In addition, the localization of the mutated ATPase variant SKD1-AQ 

was studied (YFP-SKD1-AQ, Shahriari et al. 2010). The same cells were imaged by confocal microscopy with the 

same laser intensities before and after heat treatment at 40°C for 50’. Depicted are representative maximum 

projections of stacks. Arrow heads indicate granules which formed after heat treatment. Bar = 20 µm. 

The A. thaliana VPS2.2 protein was previously analyzed in a study by Ibl and colleagues. They 

showed that C-terminal fusion of VPS2.2 does not diminish its cellular function since the root 

growth phenotype of vps2.2 -/- mutants expressing VPS2.2-GFP was restored. Further, the 

subcellular localization of VPS2.2-GFP expressed under its endogenous promoter was 

described as predominantly endosomal with some signal in the nucleus and plasma membrane 

(Ibl et al., 2011). Here, VPS2.2-YFP showed a strong, granular signal with some larger 

aggregation in proximity to the nucleus (Figure 3.14). Heat-stress did not alter the granular 

localization.  
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The strong aggregation of VPS2.2-YFP was striking and raised the question whether 

overexpression of the protein might cause a dominant-negative effect similar to the one of 

VPS32.1-mCHERRY. This hypothesis was tested by coexpression of the SKD1 protein. As 

shown in Appendix, Figure A.3, overexpression of VPS2-2-YFP causes the formation of 

SKD1-mCHERRY labeled granules which colocalize to VPS2.2-YFP. Hence it is likely that 

the C-terminal modification in combination with the overexpression of VPS2.2 causes an 

inhibition of ESCRTIII protein recycling from the endosomal membrane.  

The trapping of the VPS2.2 protein at endosomal membranes might block a potential 

localization shift upon heat treatment. Therefore it was tested, if the N-terminal modification 

of VPS2.2 is not limiting the mobility of the protein. A previous study analyzed the localization 

of A. thaliana VPS2 proteins in protoplasts and showed that N-terminally modified versions 

mainly localize to the cytosol (no inhibitory effect, Katsiarimpa et al., 2011). By overexpressing 

YFP-VPS2.2 in epidermal leaf cells, a different localization was observed (Figure 3.14, 

maximum projection). Here, the cells showed bright patches of fluorescent signal. The analysis 

of the imaged cells slide by slide revealed that the YFP-VPS2-2 signal was concentrated at the 

rims of the cell. This localization might represent a concentration of YFP-VPS2.2 at distinct 

plasma membrane regions. In contrast to the C-terminally modified version of VPS2.2, YFP-

VPS2.2 was visible in granules after heat treatment. Further, it did not cause SKD1-mCHERRY 

to localize in aggregates when coexpressed (Appendix, Figure A.3).  

VPS46.1 and VPS46.2 were both fused N-terminally with mCHERRY or YFP (Figure 3.14). 

The two homologs share 95% sequence similarity (blastp, Altschul et al., 1997) but show some 

differences in their stress dependent localization. Both proteins were evenly distributed in the 

cytosol. After heat stress, YFP-VPS46.2 formed very pronounced granules while YFP-VS46.1 

granules were less apparent and defined. These results indicate that the VPS46.2 protein might 

be more prone to aggregation than VPS46.1.  

The C-terminal fusion of VPS60.2 to fluorescent proteins caused no large cellular aggregation 

(Appendix, Figure A.3). Before heat stress treatment, VPS60.2-YFP localized in the cytosol 

and in few punctate structures which presumably represent MVBs (Figure 3.14). The 

localization of VPS60.2 did not change drastically upon heat stress treatment, but a few very 

small granular structures were visible in some cells  

Previous studies showed, that C-terminal modification of LIP5 does not influence its 

functionality since lip5-1 mutants transformed with a construct overexpressing LIP5-GFP 



Results 

88 

showed restored resistance against Pseudomonas syringae (PstDC3000) infection (Wang et al., 

2014). Figure 3.14 demonstrates that LIP5-YFP localized evenly in the cytosol and the nucleus. 

This localization of LIP5 has been previously described and coexpression of either wild type or 

mutant SKD1 enhances its endosomal localization (Wang et al., 2014). In addition, Wang and 

colleagues described in 2015 an increase in granular LIP5-GFP localization after heat-stress 

treatment in 2015 (Wang et al., 2015). Surprisingly, a shift in localization was not observed in 

this study.  

As previously mentioned, the localization of a non-functional ATPase version of SKD1 (SKD1-

AQ) was investigated. Figure 3.14 shows that the subcellular localization of YFP-SKD1-AQ 

deffered strongly from the wild type protein (Chapter 3.2, Figure 3.1 and Figure 3.2). In addition 

to the cytosolic and nuclear signal, large aggregates were visible throughout the plant cell. The 

expression of SKD1-AQ has a dominant-negative effect and causes the formation of aberrantly 

large endosomal structures called class E compartments (Babst et al., 1998; Haas et al., 2007; 

Shariari et al., 2010). These large aggregates were still visible upon heat-stress treatment, yet 

additional small granules were present, similar to those seen for wild type SKD1. Thus, it seems 

like the ATPase function is not relevant for SKD1 granule formation.  

In summary, the ESCRTIII core protein VPS24.1 and the ESCRTIII associated protein 

VPS46.2 changed their localization from predominantly cytosolic to granular upon heat stress. 

VPS46.1 and VPS60.2 showed some granulation upon heat treatment. These results are 

unexpected in view of the results of the IDR analysis (Chapter 3.4.1). Following the assumption 

that a high degree of protein disorder correlates to the likelihood to form aggregates, it was 

expected to see a localization shift of LIP5 and VPS60.2. Only VPS60.2 showed some mild 

granulation upon heat stress. In addition, the rather highly ordered VPS46.2 showed stronger 

aggregation than expected. Hence, the degree of disorder seems to be a weak predictor for heat 

stress-dependent aggregation in the case of ESCRTIII proteins.  

3.4.3 Colocalization study of ESCRTIII core and associated proteins with SKD1-AQ 

The previous Chapter analyzed the localization of recombinant ESCRTIII core and associated 

proteins under non-stress condition as well as after heat stress treatment (Figure 3.14). Further, 

the influence of fluorescently labeled ESCRTIII proteins on SKD1 localization was tested when 

the modifications were suspected to cause a dominant-negative effect. However, this approach 

did not test whether an N- or C-terminal modification diminishes the capability of the ESCRTIII 

core and associated proteins to interact with each other and to localize to MVBs in A. thaliana 
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cells. A potential loss of membrane association might also influence their localization behavior 

under heat stress. 

Babst and colleagues showed that the majority of ESCRTIII core proteins are not found in 

association with membranes but are dispersed in the cytosol under normal conditions in yeast. 

This was attributed to the highly efficient ESCRTIII disassembly activity of VPS4 (yeast SKD1 

homolog). Indeed, over 90% of ESCRTIII proteins were found to be associated with endosomal 

membranes in vps4 Δ cells by localization and biochemical studies (Babst et al., 2002). Hence, 

the easiest way to investigate the capacity of the modified ESCRTIII proteins to associate with 

membranes would be their localization analysis in skd1 mutants. Unfortunately, the loss of 

SKD1 is lethal in plants since no homozygous skd1 mutants was ever successfully isolated (M. 

Jakoby, personal communication). An elegant solution to this problem is the coexpression of 

the dominant-negative SKD1-AQ variant. SKD1-AQ expression has been shown to mimic the 

effect of Vps4 protein loss in yeast (Babst et al., 1998; Haas et al., 2007; Shariari et al., 2010). 

A similar approach was used in a study by Katsiarimpa and colleagues in which they 

coexpressed SKD1-EQ in A. thaliana protoplasts and analyzed the colocalization of VPS2.1, 

VPS2.2, VPS2.3, and VPS24.1 with the SKD1-EQ induced class E compartments (Katsiarimpa 

et al., 2011).  

Epidermal leaf cells of A. thaliana plants were once more transiently transformed with a 

construct overexpressing an ESCRTIII core or associated protein (same fusion orientation as in 

Chapter 3.4.2) and a construct either expressing YFP-SKD1-AQ or mCHERRY-SKD1-AQ. 

Representative pictures of the colocalization analysis are shown in Figure 3.15. For clarity, all 

ESCRTIII core and associated proteins are depicted in green and SKD1-AQ is depicted in 

magenta, independent of the fused fluorescent protein.  
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Figure 3.15.Colocalization of ESCRTIII core and associated proteins with SKD1-AQ. Epidermal cells of A. 

thaliana Col-0 leaves were transiently transformed with a construct overexpressing SKD1-AQ in N-terminal 

fusion with a fluorescent protein and a construct overexpressing an ESCRTIII core or associated protein. The 

following recombinant versions of the ESCRTIII proteins were analyzed: mCHERRY-VPS32.1, VPS24.1-YFP, 

VPS2.2-YFP, YFP-VPS2.2, mCHERRY-VPS46.1, YFP-VPS46.2, VPS60.2-YFP, and LIP5-mCHERRY. The 

cells were imaged by confocal microscopy and maximum projections generated from stacks are depicted. Arrow 

heads indicate colocalization with SKD1-AQ. Bar = 20 µm. 

As expected, the YFP/mCHERRY-SKD1-AQ protein localized in large aggregates in the 

transformed plant cells, inducing and labeling class E compartments. The ESCRTIII core 

proteins mCHERRY-VPS32.1 and VPS24.1-YFP colocalized to the SKD1-AQ labeled 

structures. Since neither VPS2.2-YFP nor YFP-VPS2.2 showed the expected mainly cytosolic 

localization under normal conditions, both recombinant variants were tested for colocalization 

with SKD1-AQ. Figure 3.15 demonstrates that both proteins colocalize with the dominant-

negative version of SKD1. As mentioned, the subcellular localization of YFP-VPS2.2 was 

tested previously in A. thaliana protoplasts. There, no association of VPS2.2 with class E 

compartments was observed (Katsiarimpa et al., 2011). This discrepancy might be explained 

by the cell model (epidermal cells versus protoplasts).  
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The coexpression of SKD1-AQ also induced the colocalization of ESCRTIII associated 

proteins mCHERRY-VPS46.1, YFP-VPS46.2, VPS60.2-YFP, and LIP5-mCHERRY with 

SKD1-AQ in larger cytosolic structures. Thus it is likely that the here used N- and C-terminally 

modified ESCRTIII proteins are still able to bind to MVB membranes and to each other.  

3.4.4 Colocalization study of ESCRTIII core and associated proteins with UBP1b 

So far, the localization of the ESCRTIII core and associated proteins was analyzed in respect 

to heat and during coexpression of a dominant-negative version of SKD1. It was shown that 

some of the ESCRTIII proteins change their localization upon heat treatment in a similar way 

as SKD1. To see, whether this shift in localization also indicates a relocalization to mRNP 

granules, a colocalization study was performed. For this, epidermal leaf cells of A. thaliana 

Col-0 plants were transiently double transformed with a construct overexpressing one of the 

previously tested ESCRTIII core or associated proteins and a construct overexpressing YFP- or 

mCHERRY-UBP1b. Figure 3.16 shows representative pictures of the analyzed cells. For 

clarity, all ESCRTIII core and associated proteins are depicted in green and UBP1b in magenta, 

independent of the fused fluorescent protein.  

Chapter 3.4.2 demonstrated that N-terminally modified VPS32.1 did not change its localization 

upon heat treatment and was visible in larger, punctate structures independent of heat stress. 

Further, it was shown that these structures are not caused by a dominant-negative effect of N-

terminal modification of VPS32.1 (Appendix, Figure A.3). The coexpression of mCHERRY-

UBP1b did not change the distinct localization of YFP-VPS32.1 and the two structures did not 

colocalize after heat stress (Figure 3.16). This result indicates that VPS32.1 does not relocalize 

to SGs upon heat stress and remains at MVBs.  

In contrast to VPS32.1, VPS24.1-YFP did change its localization upon heat stress treatment 

from cytosolic to granular (Figure 3.14). This shift in localization was also visible in 

coexpression with UBP1b (Figure 3.16). Nevertheless, the formed VPS24.1-YFP and the 

mCHERRY-UBP1b labeled granules seemed to represent two distinct populations with no 

apparent overlap. One explanation for this might be that VPS24.1-YFP associates with P-bodies 

rather than with SGs. However, it is known that several P-body and SG proteins are not 

exclusively found in their respective compartment (Buchan and Parker, 2009). Further, this 

study provided evidence that the P-body marker protein DCP5 and SG marker protein PAB2 

share a considerable degree of overlap in a transgenic A. thaliana line (Chapter 3.3.3, Figure 

3.10 and Figure 3.11). Therefore, the hypothesis that VPS24.1-YFP exclusively localizes to P-
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bodies after heat stress is unlikely. Another explanation for the granular localization might be 

an enhanced association with MVB membranes.  

 

Figure 3.16. Colocalization of ESCRTIII core and associated proteins with UBP1b after heat stress. A. 

thaliana Col-0 leaves were transiently transformed with a construct overexpressing YFP- or mCHERRY-UBP1 

and a construct overexpressing an ESCRTIII core or associated protein fused to YFP or mCHERRY. The following 

recombinant versions of the ESCRTIII proteins were analyzed: YFP-VPS32.1, VPS24.1-YFP, VPS2.2-YFP, YFP-

VPS2.2, mCHERRY-VPS46.1, YFP-VPS46.2, VPS60.2-YFP, LIP5-YFP, and YFP-SKD1-AQ. The transiently 

transformed leaf cells were subjected to heat stress treatment (40°C 50’) and imaged by confocal microscopy. 

Maximum projections of stacks are depicted. Arrow heads indicate colocalization with UBP1b. Bar = 20 µm. 

Both fusion versions of VPS2.2 were tested for colocalization with mCHERRY-UBP1b. 

VP2.2.-YFP was shown to localize strongly to granular structures independent of heat treatment 

(Figure 3.14). These structures are likely to represent enlarged MVBs. Coexpression of 

mCHERRY-UBP1b did not change the localization of VPS2.2-YFP and the granular structures 

labeled by the proteins did not colocalize after heat stress (Figure 3.16). This result further 

strengthens the hypothesis that MVBs and mRNP granules do not colocalize after heat stress.  
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The coexpression of N-terminally modified VPS2.2 had no apparent effect on SKD1 

localization (Appendix, Figure A.3) and probably no dominant-negative effect on MVB 

biogenesis. Yet the localization was still unexpected since the protein localized to distinct 

patches, presumably at the plasma membrane (Figure 3.14).This localization partially changed 

after heat stress treatment and YFP-VPS2.2 was visible in granular structures. This shift in 

localization was also visible when mCHERRY-UBP1b was coexpressed and some of the 

formed YFP-VPS2.2 granules co-occurred with mCHERRY-UBP1b labeled granules. This 

result suggests that VPS2.2 localizes to SGs upon heat treatment if its membrane-affinity is not 

altered. However, the localization of both VPS2.2 versions, which were used in this study, is 

different from what is expected (cytosolic localization or moderate endosomal association). 

Therefore, a definite statement about the heat-dependent localization of VPS2.2 cannot be 

made. In future, an additional localization study of VPS2.2 in stable lines, protoplasts, or 

labeled by a specific antibody might resolve this question.  

The ESCRTIII associated proteins mCHERRY-VPS46.1 and YFP-VPS46.2 change their 

localization upon heat stress from mainly cytosolic to granular (Figure 3.14). The coexpression 

of YFP- or mCHERRY-UBP1b showed that the mCHERRY-VPS46.1 and YFP-VPS46.2 

labeled granules partially colocalized with the SG marker protein. In the previous transient 

localization study, the C-terminally modified VPS60.2-YFP protein showed some minor 

granulation after heat stress treatment. The coexpression analysis revealed that mCHERRY-

UBP1b granules did not coincide with the few VPS60.2-YFP labeled granules (Figure 3.16). 

LIP5-YFP did not change its mainly cytosolic localization upon heat treatment in single-

transformed leaf epidermal cells, as well as when mCHERRY-UBP1b was coexpressed. 

The single transient transformation study showed that SKD1-AQ localized in large aggregates 

and in small granular structures after heat treatment (Figure 3.14). The coexpression study 

revealed that YFP-SKD1-AQ colocalized with mCHERRY-UBP1b in smaller granules while 

some larger YFP-SKD1-AQ structures were not or only partially labeled by the SG marker 

protein (Figure 3.16). An explanation for this observation could be that only the population of 

YFP-SKD1-AQ proteins, which is present in the cytosol, changes its localization to mRNPs 

upon heat stress. The YFP-SKD1-AQ proteins, which are in larger aggregates, are trapped due 

to the lack of ATPase activity and remain in association with MVB membranes. This result 

suggests once more that the SKD1 protein and not MVBs as a whole localizes to mRNP 

granules upon heat stress.  
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3.4.5 Colocalization quantification of ESCRTIII core and associated proteins with 

UBP1b 

To further validate the obtained colocalization results of the ESCRTIII core and associated 

proteins with UBP1b, a quantification study, similar to the one of Chapter 3.3.1, was performed. 

Epidermal leaf cells of A. thaliana Col-0 plants were transiently double transformed by particle 

bombardment with a construct overexpressing YFP- or mCHERRY-UBP1b and a construct 

overexpressing an ESCRTIII core or associated protein fused to a fluorescent protein. The 

quantification was performed as described in Chapter 2.8.1.  

 

Figure 3.17. Colocalization quantification of ESCRTIII core and associated proteins with UBP1b. Epidermal 

leaf cells of A. thaliana Col-0 plants were transiently double transformed by particle bombardment with a construct 

overexpressing YFP- or mCHERRY-UBP1b and a construct overexpressing an ESCRTIII core or associated 

protein modified by fusion to YFP or mCHERRY. The same fusion versions of the ESCRTIII core and associated 

proteins were used as in Chapter 3.4.4. The transformed leaves were subjected to heat stress treatment (40°C 50’) 

and imaged by confocal microscopy. 10 cells were imaged for each combination and maximum projections of 

stacks were generated. In each cell, three ROIs were defined and analyzed for signal overlap (PCC). On the left, 

representative ROIs are indicated for each analyzed combination. The histogram on the right represents the mean 

coefficients for the different combinations (error bars = standard deviation). The overlap of SKD1 with UBP1b 

(indicated as SKD1) and the negative control UBP1b/ UBP1b tilt from Chapter 3.3.2 are included in the histogram 

for comparison.  
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Table 3.6. Statistical analysis of colocalization between ESCRTIII core and associated proteins and UBP1b. 

All datasets were normally distributed with the exception of VPS46.2 (Shapiro-Wilk-test). Normally distributed 

datasets were evaluated for significant colocalization differences using the Welch’s two sample t-test. For 

comparisons with the VPS46.2 dataset, the Wilcoxon-Mann-Whitney-test was used. Significance level are 

indicated as following: n.s. = not significant, p < 0.05 = *, p < 0.01 = **, p < 0.001 = ***). Detailed p-values are 

available in Appendix, Table A.9. 

 
VPS 

32.1 

VPS 

24.1 

VPS2.2 

YFP 

YFP 

VPS2.2 

VPS 

46.1 

VPS 

46.2 

VPS 

60.2 

LIP5 

 

SKD1 

AQ 

SKD1 

 

UBP1b 

UBP1b tilt 

VPS32.1  n.s. * ** *** *** n.s. n.s. *** *** *** 

VPS24.1 n.s.  *** *** *** *** n.s. *** *** *** *** 

VPS2.2 

YFP 
* ***  n.s. n.s. *** n.s. n.s. *** *** *** 

YFP 

VPS2.2 
** *** n.s.  n.s. *** * n.s. *** *** *** 

VPS46.1 *** *** n.s. n.s.  n.s. *** ** *** *** *** 

VPS46.2 *** *** *** *** n.s.  *** *** ** *** *** 

VPS60.2 n.s. n.s. n.s. * *** ***  n.s. *** *** *** 

LIP5 n.s. *** n.s. n.s. ** *** n.s.  *** *** *** 

SKD1 

AQ 
*** *** *** *** *** ** *** ***  *** *** 

SKD1 *** *** *** *** *** *** *** *** ***  *** 

UBP1b 

UBP1b tilt 
*** *** *** *** *** *** *** *** *** ***  

 

Figure 3.17 depicts the analyzed combinations, examples of the analyzed ROIs and the mean 

PCCs in a histogram. The previously determined coefficient of the SKD1-mCHERRY/ YFP-

UBP1b overlap as well as the negative control UBP1b/ UBP1b tilt (Chapter 3.3.2) are plotted 

for comparison.  

The overlap quantification confirmed the impressions gained in the colocalization study of 

Chapter 3.4.4. The ESCRTIII core components VPS24.1 (0.23 ± 0.08) and VPS32.1 

(0.26 ± 0.08) share little signal overlap with UBP1b. A similar weak correlation of localization 

is observable for the ESCRTIII associated proteins VPS60.2 (0.27 ± 0.12) and LIP5 

(0.31 ± 0.10) with UBP1b. Though all measured PCCs are significantly higher than the negative 
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control, they are less than half of the coefficient determined for SKD1 and UBP1b (0.73 ± 0.08) 

and probably indicate no or very weak positive correlation. 

The PCC of VPS46.1 (0.40 ± 0.15) and VPS46.2 (0.48 ± 0.16) are comparable to each other 

and are significantly higher than the ones of the other tested ESCRTIII core and associated 

proteins. The overlap of VPS46.2 with UBP1b is higher than for VPS46.1, although the 

difference is not significant due to high standard deviation. Nonetheless, this result is in 

agreement with localization in the experiment described in Chapter 3.4.2 and 3.4.4, in which 

VPS46.2 showed stronger heat-dependent granulation than VPS46.1. 

As previously discussed, the C-terminally modified variant of VPS2.2 seems to be inhibited in 

endosomal membrane dissociation and does not change its localization upon heat stress 

treatment. When N-terminally modified, VPS2.2 localizes in distinct patches presumably at the 

PM but still forms granules which partially coincide with UBP1b granules after heat stress 

treatment (Figure 3.16). This difference in localization is not reflected by the PCC. The 

coefficients of VPS2.2-YFP (0.33 ± 0.13) and YFP-VPS2.2 (0.34 ± 0.11) were not significantly 

different from each other and in general rather low. This can be explained by the large portion 

of YFP-VPS2.2 which still remained in the unusual patches after heat stress. This result points 

out once more that the usage of a different transformation system or antibody staining of the 

endogenous protein might be necessary to determine the heat-dependent subcellular 

localization of VPS2.2. 

Finally, the colocalization coefficient of SKD1-AQ with UBP1b was determined. The signal 

overlap of this SKD1 variant with UBP1b was still considerably high (0.58 ± 0.12) but 

significantly lower than the coefficient of the wild type protein. Again, this is in accordance 

with the observation that some larger SKD1-AQ labeled structures do not or only partially 

coincide with heat-induced UBP1b granules.  

To summarize, the homologous ESCRTIII-associated proteins VPS46.1 and VPS46.2 as well 

as the dominant-negative SKD1-AQ protein colocalized to a considerable degree with the SG 

marker protein UBP1b after heat stress treatment. The ESCRTIII core proteins VPS24.1, 

VPS32.1 and both tested recombinant versions of the VPS2.2 protein showed little signal co-

occurrence with UBP1b. The same applies to the ESCRTIII associated components VPS60.2 

and LIP5. This is particularly surprising in the case of LIP5 since it contains a considerable 

degree of disorder (Chapter 3.4.1) and is a strong interactor and stimulator of SKD1 function 

(Haas et al., 2007; Shahriari et al., 2010). An interesting aspect of this study is that the VPS24.1 
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protein (and to a lesser extent VPS60.2) shifts its localization from mainly cytosolic to granular 

after heat stress treatment but does not colocalize significantly with the SG marker UBP1b. All 

in all, the picture emerges that the heat-triggered association with mRNP granules is not a 

general feature of ESCRTIII proteins but rather of a subset of proteins. 

3.5 Heat-dependent interactome of SKD1 

So far this study showed that the SKD1 protein changes its localization from the cytosol to 

mRNP granules after heat stress. The relocalization seems to be independent of endosomal 

structures and is reduced when SKD1 association with membranes is enhanced. It was further 

shown that the ESCRTIII associated proteins VPS46.1 and VPS46.2 undergo a similar shift in 

localization. However, not all ESCRTIII components exhibit this localization behavior.  

The first chapter of this study tested potential protein interactions of the ESCRTIII proteins 

with known marker proteins of P-bodies and SGs. Some interactions were identified for SKD1 

regulating proteins, but none for SKD1 itself. This might indicated that the SKD1 localization 

shift is dependent on ESCRTIII proteins which interact with mRNP components. An alternative 

explanation is provided by the nature of mRNP granule formation: A hallmark of mRNP 

granules is their highly dynamic assembly and ongoing exchange of proteins and mRNAs with 

other granules or the cytosol. These characteristics are thought to be facilitated by low-affinity 

protein-protein interactions between IDRs of mRNP granule components (Kedersha et al., 

2013). Thus, SKD1 might interact with mRNP granule proteins with low affinity and only under 

certain cellular conditions. Further, only a subset of proteins was tested for protein interactions 

and SKD1 might interact with other mRNP granule components. To address this aspect, the 

heat-dependent in-vivo interactome of SKD1 was investigated. 

3.5.1 Experimental approach and statistics of the heat-dependent SKD1 interactome  

For the identification of in-vivo interactors of SKD1, the established 35S::GFP-SKD1 line was 

used. The strategy was to co-immunoprecipitate potential interactors of GFP-SKD1 from cell 

extracts of untreated or heat treated rosette leaves and to analyze the eluted proteins by mass 

spectrometry. A line overexpressing free YFP without a fused protein (35S::YFP) was used as 

a negative control and subjected to the same treatment regime as the 35S::GFP-SKD1 line. The 

general outline of the interactome approach is depicted in Figure 3.18. 

First, it was tested if the used extraction method and immunoprecipitation allowed the 

enrichment of free YFP and GFP-SKD1 in respect to total protein content. Further, it was 

important to see that the GFP-SKD1 protein remained intact and was not degraded to a larger 
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extent before or in the process of immunoprecipitation. Hence, the total protein content of 

rosette leaves of the 35S::GFP-SKD1 and the 35S::YFP line were extracted following the 

protocol given in chapter 2.6.1. For the immunoprecipitation, magnetic α-GFP µMACS 

(Miltenyi Biotec) were added to the lysates, incubated and applied to the columns. Bound 

proteins were eluted after several washing steps and subjected to SDS-PAGE followed by 

immunoblotting with an antibody against GFP or Coomassie staining. Used materials and 

volumes were kept constant for the protocol test.  

 

Figure 3.18. Strategy, test blot, and candidate filtering of the SKD1 interactome approach. To identify the 

heat-dependent SKD1 interactome, proteins of rosette leaves of control or heat treated transgenic 35S::GFP-SKD1 

plants were extracted and subjected to α-GFP immunoprecipitation. As a control, leaves from 35S::YFP plants 

were used. The enrichment of the target proteins compared to the total protein amount was tested by SDS-PAGE. 

Same volumes of input and eluate samples were used. YFP (26 kDa) and GFP-SKD1 (77 kDa) were detected with 

an α-GFP antibody via immunoblotting (exposure time: 70’’) and total protein amount was visualized by 

Coomassie staining. After confirmation of enrichment, three replicates of each genotype and condition (total: 

twelve samples) were digested (Lys-C, Trypsin) and subjected to LC-MS/MS analysis. In total, 2409 proteins were 

identified in all samples. Proteins, which were identified in the YFP replicates, were removed from the candidate 

list. From the remaining 1425 candidates, only proteins which were indentified in three replicates of one condition 

were considered. This approach resulted in two lists which shared a significant overlap. Proteins, which were 

present in three replicates of one condition and in two replicates of the other, were combined to the SKD1 shared 

list (159). Proteins, which were not identified or only in one replicate in the heat treated samples, were listed as 

SKD1 control candidates (15) and vice versa (SKD1 heat: 18). The scheme of the rosette leaves was modified 

from H. Wolff, 2016, CEPLAS Planter´s Punch.  
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Figure 3.18 depicts the results of the protocol test for the immunoprecipitation of GFP-SKD1 

and free YFP. The molecular weight of GFP-SKD1 amounts to approximately 77 kDa and 

26 kDa for free GFP/YFP. In the input control as well as in the eluate of the 35S::GFP-SKD1 

plants, a distinct band at approximately 100 kDa is visible. The gel, which was used for blotting, 

ran slightly uneven and the visible bands of the 35S::GFP-SKD1 samples are more likely to 

migrate at a height representing a protein size between 70 and 100kDa, which is the range in 

which GFP-SKD1 is expected. In addition, no strong signals were detected at lower molecular 

weights, indicating that the majority GFP-SKD1 protein did not undergo degradation during 

protein extraction or immunoprecipitation. A few very weak additional bands were visible in 

the eluate of the GFP-SKD1 sample. However, a similar pattern of bands was visible in the 

eluate of the YFP sample and therefore might be an artifact caused by the used beads. In the 

35S::YFP samples, a distinct band between 25 and 35 kDa was detectable, which fits the 

expected size of YFP. In the eluate, a second band with slightly lower molecular weight was 

detected. Though YFP degradation cannot be ruled out, an artifact caused by uneven gel 

polymerization or movement during protein transfer (e.g. air bubble) could explain this 

observation since the protein bands show evidence for that (“hole” in the bands). 

The comparison of the signal intensities of GFP-SKD1 and YFP to the total protein amount 

(Coomassie staining) demonstrates that the immunoprecipitation successfully enriched the 

tagged proteins. The input samples of the 35S::GFP-SKD1 and 35S::YFP lysates both showed 

strong staining while nearly no protein was detected in the corresponding eluate (exemplified 

by the band representing the large Rubisco subunit, approximately 55 kDa).  

After the confirmation that the GFP-SKD1 protein was not degraded and successfully enriched 

compared to total protein content, samples were prepared for mass spectrometry. For each 

genotype (35S::GFP-SKD1 versus 35S::YFP) and condition (control versus heat treatment), 

proteins from three biological replicates were extracted and subjected to α-GFP 

immunoprecipitation (in total twelve samples). Instead of eluting the bound proteins, an in-

solution digest was performed on the beads (for details, see Chapter 2.6.2). The generated 

peptides were subjected to liquid chromatography and tandem mass spectrometry (LC-MS/MS, 

S. Müller, Proteomics Core Facility Cologne).  

In summary, 2409 A.thaliana proteins were identified. A prerequisite for a successful 

interactome analysis is that the target protein is sufficiently enriched in comparison to all 

identified proteins. The highest intensity-based absolute quantification value (iBAQ value, a 
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normalized measurement for protein abundance) was measured for peptides of SKD1, making 

it the most abundant protein in the analyzed 35S::GFP-SKD1 samples. 

To increase the stringency of the GFP-SKD1 interactome, all proteins which were identified in 

one of the six control samples (35S::YFP control and heat treatment) were excluded. This 

eliminated 984 proteins from the potential interactome list. The remaining 1425 proteins were 

further filtered with the criteria that a protein needed to be identified in all three replicates of 

one condition of the 35S::GFP-SKD1 samples. This approach resulted in two lists of potential 

SKD1 interactors: Proteins which were indentified in each of the GFP-SKD1 control replicates 

(146 proteins) and proteins which were identified in each of the GFP-SKD1 heat replicates (132 

proteins, for details, see Appendix, Table A.10). 

159 proteins were shared between control and heat samples (present in at least 2 replicates). 

Only 15 proteins of the control samples and 18 proteins of the heat samples were exclusive for 

the respective condition (found in none or one replicate of the opposite treatment). No heat-

dependent significant differences in the list of shared interactors were identified. This indicates 

that the identified heat-dependent interactome does not differ drastically from the control 

interactome. This might be explained by transient interactions during heat.  

The confidence in an interactome is increased, if known interactors of the bait protein are 

identified by the used method. Here, two well-established A. thaliana ESCRTIII proteins and 

known SKD1 interactors were identified: ISTL1 and VPS46.2 (Spitzer et al., 2009; Buono et 

al, 2016). The ISTL1 protein was identified in three control replicates and two heat treated 

replicates, while the VPS46.2 protein was identified in one control replicate and in three heat 

replicates.  

3.5.2 Characterization of the SKD1 interactome by GO and functional classification 

To further elucidate, if potential interactors of SKD1 are involved in a specific biological 

process or are present in a particular subcellular compartment, a gene ontology (GO) 

enrichment study was performed. For that, the three interactor sets (SKD1 share, control, and 

heat) were analyzed with the PANTHER classification System (Thomas et al., 2003; Mi et al. 

2010). The frequencies of identified GO categories in the interactome sets were compared to 

the whole A.thaliana genome and overrepresented terms were given with an estimation of 

significance. Smaller sets of genes decrease the likelihood to identify significant category 

enrichment. Indeed, for the SKD1 control set, no overrepresented GO terms (biological process 

and cellular component) were identified and only one for the SKD1 heat set (biological process: 
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protein folding). For the SKD1 shared interactor set, several overrepresented categories for 

biological processes and cellular components were identified (Table 3.7). 

Table 3.7. PANTHER GO enrichment analysis of SKD1 shared interactors. All categories of the PANTHER 

GO-Slim Biological Process and Cellular Component, which were significantly enriched in the SKD1 shared 

interactor list (q-value ≤ 0.05) compared to the A. thaliana genome, are indicated with the respective fold of 

enrichment.  

PANTHER GO-Slim Biological Process Proteins in category 
Fold 

enrichment 

gluconeogenesis 2 20.10 

mitochondrion organization 11 17.73 

protein folding 13 15.64 

tRNA aminoacylation for protein translation 4 11.39 

protein targeting 7 7.03 

protein complex assembly 7 6.61 

protein complex biogenesis 7 6.50 

monosaccharide metabolic process 4 6.33 

translation 8 4.44 

homeostatic process 5 4.38 

intracellular protein transport 14 4.21 

protein transport 14 3.99 

vesicle-mediated transport 11 3.61 

protein metabolic process 36 3.51 

organelle organization 19 3.46 

cellular component organization 22 2.77 

cellular component organization or biogenesis 25 2.60 

cellular component biogenesis 12 2.59 

catabolic process 18 2.38 

transport 18 2.13 

localization 18 1.95 

cellular process 77 1.92 

primary metabolic process 57 1.82 

metabolic process 72 1.78 

PANTHER GO-Slim Cellular Component Proteins in category Fold enrichment 

mitochondrion 18 7.37 

cytosol 30 6.60 

vacuole 8 4.15 

protein complex 30 3.73 

macromolecular complex 34 3.03 

cytoplasm 60 2.83 

intracellular 68 1.97 

cell part 68 1.88 

organelle 46 1.72 
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The top enriched GO categories of the shared SKD1 interactors described unexpected biological 

functions (e.g. gluconeogenesis, mitochondrial organization, protein folding), yet also several 

categories were enriched which reflect the known function of SKD1 (intracellular protein 

transport, vesicle-mediated transport, protein targeting). In terms of enrichment in a specific 

cellular compartment, the most enriched categories were mitochondrion, cytosol and vacuole.  

GO enrichment analyses can give a first impression of the identity and general cellular function 

of a set of proteins. However, category annotations might not be applicable to a certain 

experimental question and be fairly superficial. Therefore, the proteins in the different sets were 

individually analyzed and classified on the basis of database annotations (TAIR) and available 

literature. Short descriptions of the potential interactors are given in Appendix, Table A.10.  

 

Figure 3.19. Individual functional classifications of the SKD1 interactome candidates. Individual descriptions 

of the SKD1 interactome candidates were made on the basis of database annotations (TAIR) and available literate. 

On the basis of the descriptions, proteins were sorted in following categories: mitochondria and chloroplast, protein 

folding, protein processing, membrane trafficking, RNA metabolism, and others. The pie chart depicts the 

percentage of all proteins which fall in the respective category. The table indicates the number of proteins which 

fall in these categories.  

The SKD1 interactors were grouped based on the individual protein descriptions (Figure 3.19). 

A high number of proteins was described to be chloroplastic or mitochondrial and might 

represent false positives since SKD1 is not described to be in these organelles. Thus, they were 

excluded from further characterization and analysis.  
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Several interactors were described to be involved in protein folding (chaperones, T-complex 

protein 1/TCP-1 chaperonins, HSPs) or protein degradation. Proteins of both functional classes 

have been described to associate with mRNP granules and to prevent abnormal aggregation and 

promote granule disassembly (Weber et al., 2008; Lokdarshi et al., 2016; Jain et al., 2016; 

Muthuramalingam et al., 2017; Mateju et al., 2017). A comparison of the identified SKD1 

interactors with the interactomes of two characterized SG proteins in A.thaliana (RBP45b and 

CML38) showed some overlap of the interactomes (RBP45b: seven proteins, CML38, 15 

proteins, see Appendix, Table A.10). Interestingly, most of the shared interactors were in the 

protein folding category (Lokdarshi et al., 2016; Muthuramalingam et al., 2017). 

SKD1 exerts a well established function in protein trafficking via MVB maturation. Therefore 

it was interesting to see, which membrane trafficking proteins co-precipitated with SKD1. As 

previously mentioned, the ESCRTIII associated components ISTL1 and VPS46.2 were 

indentified. Several vesicle-coating proteins or adaptor proteins were in the list of potential 

interactors. Further, proteins which are localized over an ESCRT-dependent trafficking route 

or are involved in this process were identified (PIN polarity establishment proteins, Aquaporin 

PIP1 family proteins, Spitzer et al., 2009, Keicher et al., 2017; Wang et al., 2017). An 

interesting finding was that several components of the endosomal tethering complexes 

CORVET (class C core vacuole/endosome tethering) and HOPS (homotypic fusion and vacuole 

protein sorting) were identified (Solinger and Spang, 2013). Further, subunits of vacuolar H+-

ATPases (V-ATPases) which acidify the endosomal lumen in the process of endosomal 

maturation were among the potential interactors (Nishi and Forgac, 2002).  

One aim of the SKD1 interactome analysis was to identify proteins, which associate to mRNP 

granules, and by that to further elucidate the nature of the relationship of SKD1 with mRNP 

granules. Therefore, all proteins, which are involved with RNA metabolism, were grouped. 

This group included several RNA helicases, a CML38 homolog, nucleo-cytoplasmic shuttle 

proteins, 60S and 30S ribosomal proteins as well as translation initiation factors. Further, the 

well established P-body protein VCS was identified.  

A large number of proteins were not further categorized on the basis of their cellular functions. 

The majority of those candidates are described to be involved in biosynthetic or metabolic 

processes. In future, the in-depth classification of these candidates based on their involvement 

in particular cellular processes might reveal new connections between different pathways and 

ESCRT-dependent trafficking.  
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All in all, several interesting potential interactors of SKD1 were identified by this in-vivo 

interactome approach. Though no striking differences between unstressed and heat-induced 

interactors were identified, there are indications that SKD1 interacts with proteins identified in 

interactomes of mRNP granule proteins. Further, several proteins which are involved with RNA 

metabolic processes and potentially localize in mRNP granules were among the interactor 

candidates.  

3.5.3 Selection and cloning of SKD1 interactome candidates 

The next step after the identification of new potential SKD1-interacting proteins was the 

analysis of their subcellular localization in respect to SKD1 and an mRNP granule marker. 

Furthermore, the confirmation of their interaction with SKD1 via protein-protein interaction 

assays was planned. For that, the CDS of the representative candidate genes were amplified and 

cloned in the Gateway-compatible vectors (Chapter 2.5.3 and Appendix, Table A.1). 

Several candidates from the group of proteins classified to be involved in RNA metabolism 

were selected. Further it was of interest to investigate the subcellular localizations and 

interactions of some of the identified membrane-trafficking proteins. Table 3.8 summarizes the 

selected candidates from each of the two groups.  
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Table 3.8 List of SKD1 interactome candidates selected for further analysis. For the interactome candidates, 

the used names, identifier (ATG), CDS sequence length, and short annotations are given. The subcellular 

localization is either based on literature or on the SUBA consensus prediction (SUBA4, Hooper et al., 2017). 

Membrane trafficking 

Full name Name  ATG 
CDS 

(bp) 

Annotations and 

descriptions 

Subcellular 

localization 

VACUOLAR PROTEIN 
SORTING 18 

VPS18 

AT1G 
12470.

1 
 

2967 
CORVET/HOPS  

complex, endosome to 
vacuole fusion 

cytosol, endosomal 
structures, 
tonoplast 

GENERAL 
REGULATORY 

FACTOR 2 
GRF2 

AT1G 
78300.

1 
780 

14-3-3 protein, PIN 
polarity establishment 

cytosol 

GENERAL 
REGULATORY 

FACTOR 9 
GRF9 

AT2G 
42590.

3 
831 

14-3-3 protein, PIN 
polarity establishment 

cytosol 

PLASMAMEMBRANE 
INTRSINSIC PROTEIN 

1-1 
PIP1-1 

AT3G 
61430.

1 
861 

transmembrane water 
transporter, transport 
ESCRT-dependent 

PM 

SECRETORY13 A 
(homolog) 

SEC13A 
AT3G 
01340.

1 
909 

COPII vesicle budding, 
protein transport 

ER 

FLOTTILIN-LIKE 
PROTEIN 1 

FLOT1 
AT5G 
25250.

1 
1413 

membrane invagination, 
endocytosis 

PM, endosomes, 
cytosol 

INCREASED SODIUM 
TOLERANCE1-LIKE 1 

ISTL1 
AT1G 
34220.

2 
1860 

Regulator of SKD1 
activity, ESCRTIII 

associated 

nucleus, cytosol, 
endosomes 

RNA metabolism 

Full name 
Name  

 
ATG 

CDS 

(bp) 

Annotations and 

descriptions 

Subcellular 

localization 

EUKARYOTIC 
TRANSLATION 

INITIATION FACTOR 
4B1 

eIF4B1 AT3G 
26400.1 

1599 translation initiation cytosol 

HOMOLOG OF 
HUMAN U2AF65- 

ASSOCIATED 
PROTEIN 

UAP56A 
AT5G 

11170.1 
1284 

DEAD-box RNA helicase, 
interacts with nuclear 
export factors, mRNA 

splicing 

nucleus 

LOW EXPRESSION OF 
OSMOTICALLY 

RESPONSIVE GENES 4 
LOS4 AT3G 

53110.1 
1491 

DEAD-box RNA helicase, 
nuclear envelope and 

cytosol, mRNA export 
from nucleus 

nuclear envelope, 
cytosol, 

CALMODULIN-LIKE CML10 
AT2G 

41090.1 
576 

calmodulin-like calcium-
binding protein, calcium-

sensor 
nucleus, cytosol 

UBIQUITIN-SPECIFIC 
PROTEASE 12 

UBP12 AT5G 
06600.1 

3351 
deubiquitination, involved 

in JA signaling and 
circadian clock regulation 

nucleus, cytosol 

SMALL NUCLEAR 
RIBONUCLEOPROTEI

N F 
RUXF AT4G 

30220.2 
291 mRNA splicing nucleus, cytosol 

RRM-containing protein RRM 
AT3G 

23900.1 
2964 

RRM-containing protein, 
RNA binding 

nucleus 

NUCLEAR 
TRANSPORT FACTOR 

2  
NTF2 AT5G 

60980.4 
1380 

RRM-containing protein, 
nucleocytoplasmic 

transport 
nucleus, cytosol 
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From the membrane trafficking components, seven proteins were cloned for further analysis. 

VPS18 is a component of the conserved HOPS/CORVET multiprotein tethering complex which 

mediates vacuole-to-vacuole fusions (HOPS) and MVB-vacuole fusions (CORVET) in plants 

(Takemoto et al., 2018). Several components of this protein complex, or proteins associated 

with it, were identified in the interactome (VPS18, VPS41, VCL1/VPS16, SYP41 interactor 

TNO1, Rojo et al., 2001; Vukašinović and Žárský, 2016; Roy and Bassam, 2017). The attempt 

to ampily VPS41, VCL1, and TNO1 was not successful in this study. Thus, VPS18 was the 

only HOPS/CORVET component further characterized. 

Two 14-3-3 proteins, GRF2 and GRF9, were identified in the interactome. The protein class of 

14-3-3 proteins is involved in diverse cellular processes in eukaryotes and regulates the activity 

and localization of respective target proteins via protein-proteins interactions (Mackintosh, 

2004). In A. thaliana it was shown that 14-3-3 proteins are involved in the establishment of 

polar cellular localization of PIN proteins via regulating trafficking processes (Keicher et al., 

2017). Another cargo protein of ESCRT-dependent trafficking is the PM aquaporin PIP1-1 

(Boursiac et al., 2005; Wang et al., 2017).  

The A. thaliana SEC13A protein is a WD-40 repeat family protein and has not been 

characterized so far. It is one of two paralogs of the conserved, eukaryotic Sec13 proteins which 

is a well-known component of the COPII (COAT PROTEIN COMPLEX II) vesicle coat (ER 

to Golgi protein trafficking, Chung et al., 2016). FLOT1 is a membrane microdomain protein 

which regulates Clathrin-independent endocytosis and is directed to vacuolar degradation 

during pathogen attack (Li et al., 2012; Yu et al., 2017). The established ESCRTIII associated 

component ISTL1 was not analyzed in terms of heat-dependent localization in this study so far 

(Buono et al. 2016). Therefore, ISTL1 was added to the list of membrane trafficking candidates 

and cloned for the subcellular localization and protein interaction analysis. 

From the list of identified RNA metabolic proteins, eight candidates were chosen and cloned 

for further analysis. Among them was the translation initiation factor eIF4B1. The eIF4B1 

protein is part of the eIF4 group of initiation factors, has RNA binding activity and stimulates 

the RNA unwinding activity of eIF4A and eIF4F (Bi et al., 2000; Rogers et al., 2001; Mayberry 

et al., 2009). Mammalian homologs of eIF4B1 and other members of the eIF4 group are 

regularly found in mRNP granules, making the A. thaliana eIF4B1 protein an interesting 

candidate for further analysis (Buchan and Parker, 2009).  
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The DEAD-box RNA helicase UAP56A has been described to function in mRNA slicing as 

well as mRNA export from the nucleus to the cytosol in A. thaliana (Kammel et al., 2013, Pfaff 

et al., 2018). LOS4 is another DEAD-box RNA helicase, which has been shown to regulate 

mRNA export from the nucleus (Gong et al., 2002 and 2005). Similar to translation initiation 

factors, RNA helicases are regularly found in granules (Buchan and Parker, 2009; Jain et al., 

2016; Bailey-Serres, 2017). UAP56A has even been identified by an interactome approach as 

potential interactor of CML38, which was shown to localize to mRNP granules during hypoxia 

in the same study (Lokdarshi et al., 2016). In the SKD1 interactome, another member of the 

CML protein family was identified. The CML10 protein has been described to regulate the 

biosynthesis of ascorbic acid in a calcium-dependent manner (Cho et al., 2016).  

The deubitinase UBP12 was included in the analysis since the inhibition of the ubiquitin-

dependent proteasome system affects mRNP granule formation in human cells (Mazroui et al., 

2007). In plants, UBP12 was shown to regulate the protein stability of transcription factors 

(Jeong et al., 2017; Cui et al., 2013). The RUXF protein is a small nuclear mRNP. It contains 

an LSM domain and has been shown to regulate alternative splicing in A.thaliana (Kanno et 

al., 2017).  

Finally, two RRM-containing proteins were chosen from the candidate list to be further 

examined. The first one has not been described yet and is simply named RRM in the context of 

this study. This particular RRM-containing protein was chosen, because it was exclusively 

identified as an SKD1 interactor after heat stress. The second RRM-containing protein chosen 

for further analysis was NTF2. In A. thaliana, it was shown that NTF2 interacts with a 

component involved in RNA-mediated gene silencing (Parida et al., 2017). The essential SG 

component G3BP contains NTF2-like RRMs in mammals and in plants (Tourrière et al., 2003; 

Krapp et al., 2017). Further, NTF2 was identified in an interactome study of A. thaliana SG 

protein RBP45b as well as in an interactome of the ESCRTIII core component VPS2.2 

(Muthuramalingam et al., 2017; Ibl et al., 2012). 

The CDS of all listed proteins was successfully amplified from seedling or flower cDNA. For 

ISTL1 and NTF2, an alternative splice variant (40 aa shorter and 1 aa shorter) was amplified 

instead of the representative gene model. All sequences were amplified with primers adding 

Gateway-sites to facilitate the cloning process via BP and LR reactions. Further, the primers 

contained a degenerate site which allowed the introduction of either a stop codon or a glycin 

for future C-terminal fusions.  
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3.5.4 Heat stress-dependent subcellular localization of the SKD1 interactome 

candidates 

The analysis of the selected candidates was started with the study of their subcellular 

localization under normal conditions and after heat stress treatment. For this, the amplified CDS 

of the candidates were cloned in vectors overexpressing the genes under the control of the 35S 

CaMV promoter and in N- or C-terminal fusion with YFP. Epidermal cells of A. thaliana Col-

0 rosette leaves were transiently transformed and imaged before and after heat treatment by 

confocal microscopy. For each candidate, at least five cells were evaluated and representative 

images are depicted in Figure 3.20 (membrane trafficking candidates) and Figure 3.21 (RNA 

metabolism candidates). 

YFP-VPS18, YFP-GRF2, and YFP-GRF9 exhibited a similar localization: all three proteins 

were visible in the cytosol and (to some extend) in the nucleus before heat treatment and showed 

some degree of aggregation after heat treatment (YFP-GR2 rather weak, YFP-GRF9 stronger). 

These results are in agreement with their predicted or in the literature described localization 

(Table 3.8). 

In contrast to that, the localization of the water channel protein PIP1-1-YFP was not as 

expected. PIP1-1-YFP was previously shown to localize evenly at the PM of transgenic A. 

thaliana root cells (Wang et al., 2017). In this study, the PIP1-1-YFP protein localized in a net-

like structure which presumably represents the ER. This unexpected localization might be 

caused by defective vesicular transport of PIP1-1 out of the ER. It is not likely that the C-

terminal fusion of the fluorescent protein causes PIP1-1 retention in the ER since the same 

recombinant version was previously used in localization studies (Wang et al., 2017). A possible 

explanation might be the transient transformation, which sometimes causes proteins to 

mislocate. The N-terminal fusion version of PIP1-1 showed the same localization as PIP1-1-

YFP (data not shown) and was therefore not further analyzed in respect to its subcellular 

localization. 

SEC13A-YFP is predicted to localize to the ER, but showed a cytosolic and nuclear localization 

in this study. Upon heat stress, the protein was visible in granular structures. FLOT1-YFP was 

visible in the cytosol and, similar to the other analyzed candidates, showed some weak granular 

localization after heat stress. The ESCRTIII associated protein ISTL1-YFP was visible in the 

cytosol and in some dot-like structures which presumably represent MVBs. Heat stress 

treatment did not change the localization drastically, yet sometimes a few more granular 

structures were visible.  
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Figure 3.20. Heat stress-dependent subcellular localization of membrane trafficking candidates. Epidermal 

A. thaliana Col-0 cells were transiently transformed with a construct overexpressing an SKD1 interactome 

candidate in N- or C-terminal fusion with YFP. The same cells were imaged by confocal microscopy with the 

same laser intensities before and after heat stress treatment (40°C 50’). Depicted are representative maximum 

projections of stacks. Arrow heads indicate cytosolic granules. Bar = 20 µm. 
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Figure 3.21. Heat stress-dependent subcellular localization of the RNA metabolism candidates. Epidermal 

A. thaliana Col-0 cells were transiently transformed, treated, and imaged as described in Figure legend Figure 

3.20. For UBP12-YFP, different cells are depicted before and after heat treatment. Arrow heads indicate cytosolic 

granules. Bar = 20 µm. 

The translation initiation factor eIF4B1-YFP was visible in very distinct cytosolic granules 

before and, in slightly stronger ones, after heat treatment. The RNA-helicase YFP-UAP56A 

was visible in the cytosol and nucleus, though only a nuclear localization has been described so 

far in A. thaliana (Kammel et al., 2013). The second analyzed RNA-helicase, LOS4, was 

described to localize in the cytosol and to be specifically enriched at the nuclear rim (Gong et 

al., 2005). A similar localization was observed in this study for LOS4-YFP. Both RNA-

helicases did not change their localization upon heat treatment. 
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The calcium sensor CML10 is predicted to localize to the cytosol and the nucleus. A similar 

localization was observed in this study for CML10-YFP with additional distinct granules in the 

cytosol. Heat stress treatment increased the aggregation of CML10-YFP and several smaller 

granules were visible. The deubiquitination enzyme UBP12 localized to the cytosol and nucleus 

and did not change its localization after heat stress. Under normal conditions, RUXF-YFP was 

either visible in larger aggregates (not shown) or evenly distributed in the cytosol. After heat 

treatment, it localized in distinct small granules. 

YFP-RRM was also visible in granules before and after heat treatment, yet its granulation was 

not very pronounced. In contrast to that, the other analyzed RRM-containing protein, YFP-

NTF2, was nearly exclusively in granules before and even stronger after heat treatment. 

In summary, all of the analyzed membrane trafficking candidates and six of the eight analyzed 

RNA metabolism candidates exhibited some degree of granule formation upon heat stress 

treatment. However, all of the membrane trafficking candidates showed only weak granulation 

and were evenly distributed in the cytosol under control conditions. The RNA-metabolism 

candidates localized in more distinct granules, sometimes even in the absence of heat stress. 

3.5.5 Colocalization analysis of SKD1 interactome candidates with UBP1b 

The next step was to see, whether the observed granular localization of the SKD1 interacting 

proteins represents an association with mRNP granules. For this, leaf epidermal cells were once 

more transformed with the constructs overexpressing the candidate genes in fusion to YFP. In 

addition, mCHERRY-UBP1b was co-transformed as SG marker. The Figure 3.22 and Figure 

3.23 show representative pictures of transformed cells before and after heat treatment. 
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Figure 3.22. Colocalization analysis of membrane trafficking candidates with mCHERRY-UBP1b. 

Epidermal A. thaliana Col-0 cells were transiently double-transformed with a construct overexpressing an SKD1 

interactome candidate in fusion with YFP and a construct overexpressing mCHERRY-UBP1b. The same cells 

were imaged by confocal microscopy with the same laser intensities before and after heat stress treatment at 40 °C 

for 50’. Depicted are representative maximum projections of stacks. Arrow heads indicate colocalizing structures. 

Bar = 20 µm. 

The expression of YFP-VPS18 in combination with mCHERRY-UBP1b was very weak and no 

imaging in a sufficient quality was possible. Therefore, the colocalization of VPS18 with other 

proteins was not continued in the context of this study.  

The 14-3-3- proteins YFP-GRF2 and YFP-GRF9 were previously observed to localize in 

granules after heat stress, whereby GRF2 granule formation was weaker. In coexpression with 

mCHERRY-UBP1b, nearly no YFP-GRF2 granulation was observed while GRF9 colocalized 

with mCHERRY-UBP1b granules after heat stress treatment. SEC13A-YFP localized in heat-
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triggered granules in single transformed cells as well as in coexpression with mCHERRY-

UBP1b (mid vein cell). Furthermore, SEC13A-YFP and mCHERRY-UBP1b colocalized 

strongly.  

The YFP-FLOT1 protein showed some aggregation after heat stress treatment and partial 

colocalization with mCHERRY-UBP1b granules. In contrast to that, ISTL1-YFP did not co-

localize with mCHERRY-UBP1b. 

As mentioned before, several candidates of the RNA metabolism category localized in cytosolic 

granules independent of treatment. This was also the case for the translation initiation factor 

eIF4B1-YFP in coexpression with mCHERRY-UBP1b (Figure 3.23). Interestingly, this 

coexpression caused mCHERRY-UBP1b to co-localize to eIF4B1-YFP granules in the absence 

of heat stress. After heat stress treatment, significantly more mCHERRY-UBP1b was present 

in cytosolic granules.  

The two analyzed RNA helicases YFP-UAP56A and LOS4-YFP did not show a shift in 

localization upon heat stress treatment when coexpressed with mCHERRY-UBP1b. In contrast 

to that, CML10-YFP strongly colocalized with mCHERRY-UBP1b in granules after heat stress. 

Some CML10-YFP granules showed faint mCHERRY-UBP1b signal even in the absence of 

heat stress, indicating that CML10 has the capability to recruit mCHERRY-UBP1b to cytosolic 

granules in the absence of stress. 

Similar to the two RNA-helicases, the deubiquitination protein UBP12-YFP and the putative 

RNA binding protein YFP-RRM did not change their localization when coexpressed with 

mCHERRY-UBP1b. The other analyzed RNA-binding protein, NTF2-YFP, was previously 

shown to localize in granules before heat treatment and in even stronger, more defined granules 

after heat treatment (Chapter 3.5.4 Figure 3.21). The same was observed in coexpression with 

mCHERRY-UBP1b. The effect of mCHERRY-UBP1b recruitment in granules in the absence 

of stress was even stronger for NTF2-YFP than for eIF4B1-YFP or CML10-YFP. 
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Figure 3.23. Colocalization analysis of RNA metabolism candidates with mCHERRY-UBP1b. Epidermal A. 

thaliana Col-0 cells were transiently double-transformed, treated and images as described in Figure legendFigure 

3.22. An additional example of a heat treated cell is depicted for RUXF-YFP. Arrow heads indicate colocalizing 

structures. Bar = 20 µm. 
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The RUXF-YFP protein localized either evenly distributed in the cytosol or in a few larger 

aggregates in the absence of stress. The same pattern of localization was observed when 

mCHERRY-UBP1b was coexpressed (Figure 3.23). Interestingly, cells which showed the 

aggregated state prior to heat treatment did not form a large amount of granules after heat stress. 

Further, this pre-induced aggregation changed the localization of mCHERRY-UBP1b so that it 

co-aggregated in these large structures instead of smaller cytosolic SGs. Not all cells showed 

this pattern and RUXF-YFP and mCHERRY-UBP1b also colocalized in normal-sized granules 

in some cells (second heat treated cell).  

To summarize, the membrane trafficking candidates GRF2 and ISTL1 did not co-localize in 

granules with UBP1b. SEC13A, GRF9 and, to a lesser extent, FLOT1 changed their localization 

upon heat stress treatment and colocalized with UBP1b in granules. Only half of the RNA 

metabolism candidates colocalized with UBP1b granules. However, when they did, the 

colocalization was strong and the granules were more distinct than for the membrane trafficking 

candidates. Furthermore, three of the four colocalizing proteins even induced UBP1b 

aggregation in the absence of heat stress, which might point to an mRNP granule promoting 

activity of these components.  

3.5.6 Colocalization analysis of interactome candidates with SKD1 

A prerequisite for protein interaction is spatial proximity. All of the analyzed components (with 

the exception of PIP1-1) showed at least a partial cytosolic localization, similar to SKD1. This 

part of the study aimed to answer the question whether the membrane trafficking and RNA 

metabolism candidates of the interactome also localize to heat-induced SKD1 granules. For 

that, similar to the colocalization study with UBP1b, double-transformations of epidermal leaf 

cells with interactome candidates and SKD1-mCHERRY were performed. Treatment and 

imaging was done as described before and representative cells are shown in Figure 3.24 and 

Figure 3.25. Similar to VPS18, no good fluorescent signals of UBP12-YFP and YFP-RRM 

were detected in coexpression with SKD1 and they were therefore not included in the 

colocalization analysis.  

As in the previous localization studies, YFP-GRF2 did not change its localization upon heat 

treatment drastically and did not colocalize with heat-induced SKD1-mCHERRY granules. The 

other 14-3-3 protein, YFP-GRF9, colocalized with SKD1-mCHERRY granules and the same 

was true for the putative adaptor complex component SEC13A-YFP.  
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Figure 3.24. Colocalization analysis of membrane trafficking candidates with SKD1-mCHERRY. Epidermal 

A. thaliana Col-0 cells were transiently double-transformed with an SKD1 interactome candidate in fusion with 

YFP and SKD1-mCHERRY. The same cells were imaged by confocal microscopy with the same laser intensities 

before and after heat stress treatment (40°C 50’). Depicted are representative maximum projections of stacks. 

Arrow heads indicate colocalizing structures. Bar = 20 µm. 

The YFP-FLOT1 protein, which showed only weak granule formation when expressed alone 

or with UBP1b, showed stronger aggregation when coexpressed with SKD1-mCHERRY after 

heat stress treatment.  

A surprising observation was made for the ISTL1-YFP localization in coexpression with 

SKD1-mCHERRY. Though ISTL1-YFP showed no strong granule formation when expressed 

alone and did not co-localize with UBP1b granules, it localized to SKD1-mCHERRY granules 

after heat stress.  
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Figure 3.25. Colocalization analysis of RNA metabolism candidates with SKD1-mCHERRY. Epidermal A. 

thaliana Col-0 cells were transiently double-transformed as described in Figure legend Figure 3.24. Arrow heads 

indicate colocalizing structures. Bar = 20 µm. 

The coexpression of SKD1-mCHERRY did not change the localization of eIF4B1-YFP and 

vice versa (Figure 3.25). While eIF4B-YFP was able to recruit UBP1b into the cytosol and into 

granules, this was not the case for SKD1-mCHERRY.The two proteins colocalized only after 

heat stress treatment in granules. 

An interesting observation was made for the two analyzed RNA-helicases YFP-UAP56A and 

LOS4-YFP. Both proteins did not undergo a heat-dependent shift in localization when 

expressed alone or together with UBP1b. However, in coexpression with SKD1-mCHERRY, 

both proteins showed some weak granulation and weakly colocalized with SKD1-mCHERRY 

labeled granules (Figure 3.25).  
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CML10-YFP localized in dots before and after heat stress whereby SKD1-mCHERRY only 

associated with those granules after heat stress treatment. RUXF-YFP showed once more a 

cytosolic localization. Heat stress induced granule formation and SKD1-mCHERRY 

colocalization. 

YFP-NTF2 showed the same localization as before and was visible in very distinct granules, 

independent of the treatment. SKD1-mCHERRY only colocalized with NTF2-YFP granules 

after heat stress.  

These results show that several of interactome candidates colocalized with SKD1 in heat-

induced structures, which most likely represent mRNP granules. In contrast to the 

colocalization with UBP1b, the coexpression of eIF4B1, CML10 or NTF2 did not recruit SKD1 

to granules in the absence of stress. 

In addition to the heat-dependent subcellular localization of the interactome candidates in 

respect SKD1, it was of interest to see whether they are involved in ESCRT-dependent 

trafficking and localize to MVBs. To investigate that, leaf epidermal cells were co-transformed 

with the dominant-negative SKD1-AQ protein. As explained in Chapter 3.4.2, this ATPase-

defective version of SKD1 inhibits the recycling of ESCRT components from endosomal 

membranes, thereby blocking MVB biogenesis and ESCRT-dependent trafficking. This block 

causes ESCRTIII components and interacting proteins to remain at MVBs. An enrichment of 

interactome candidate signal at SKD1-AQ-labeled structures (in the absence of stress) could 

indicate a function or general association at MVBs in an ESCRT-dependent manner. 

As shown in Appendix, Figure A.4 and Figure A.5, only two candidate proteins colocalized with 

SKD1-AQ-labeled structures. One of them was ISTL1, which is not surprising since this protein 

is a well established ESCRTIII associated component (Azmi et al., 2008; Nickerson et al., 2010; 

Buono et al., 2016). The other candidate, which was found at SKD1-AQ-induced class E 

compartments, was RUXF. This is not easily explained since RUXF functions as a splicing 

factor. 

3.5.7 Validation of candidate interactions with SKD1 by Y2H and LUMIER assays 

An important step to identify true interactions within a list of interactome candidates is the 

confirmation of protein interactions by additional methods. Therefore, a Y2H was performed. 

The selected membrane trafficking and RNA metabolism candidates were cloned in vectors 

allowing the N-terminal fusion of the GAL4-AD and were cotransformed with SKD1 in fusion 

with the GAL4-BD in yeast cells. As positive controls, the interactions of SKD1 with LIP5, 
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VPS32.1, VPS32.2, VPS60.1, and VPS60.2 were included in the analysis. As negative control, 

SKD1 in fusion with the GAL-BD was cotransformed with GFP in fusion with GAL4-AD. In 

total, nine biological replicates were evaluated for each combination and most of them were 

analyzed in three individual assays (see Appendix, Table 2.1).  

Colony growth on the interaction medium was evaluated after nine to eleven days. For all 

combinations (including positive controls) colony growth was rather weak and nearly no 

combinations showed any growth on interaction medium which contained 5 mM 3-AT. 

Therefore, the combinations were evaluated on the plates without 3-AT. This was possible since 

the negative control of SKD1 showed no auto-activation in the absence of 3-AT. 

From all positive controls, LIP5 showed the weakest colony growth (two out of nine replicates) 

and this number was used as a cut-off to determine positive growth. The membrane trafficking 

candidates VPS18, PIP1-1, SEC13A, FLOT1, and ISTL1 showed colony growth above the cut-

off. From the RNA metabolism candidates, CML10 and UBP12 showed significant colony 

growth.  

Nearly half of the candidate proteins showed interaction with SKD1 in the Y2H experiment. In 

order to further validate the interactions, a second protein interaction assay was performed. 

Similar to Y2H assays, the LUMIER assay is a high-throughput quantitative method for protein 

interaction determination (Barrios-Rodiles et al., 2005). In principle, the LUMIER assay is a 

pulldown-based method, in which human HEK293TN cells are double transfected with a 

construct expressing a ProtA tagged bait protein (pTREX-ProtA) and a prey protein fused to 

Renilla reniformis luciferace (pcDNA3-Renilla, see Chapter 2.7.2). As a negative control, 

SKD1 fused to ProtA and unfused luciferase were co-transfected. LIP5, VPS32.1, and VPS60.1 

were used as positive controls for SKD1 interaction. All combinations were tested in at least 

two separate experiments and with at least two technical pulldown replicates (Appendix, Table 

A.12).  

Two proteins were considered to interact, if a measured Relative Luminescence Intensity (RLI) 

was 1.5 times higher than the background (SKD1-ProtA with Renilla-w/o). Surprisingly, this 

was only the case for three interactome candidates (GRF2: 2.81, LOS4: 1.93, UBP12: 3.44) and 

for none of the positive controls. 

The LUMIER assay was repeated in two initial experiments in which either fusions were 

switched (SKD1-Renilla, candidates fused to Prot-A) or cells were single transformed and cell 

lysates were mixed before immunoprecipitation. However, no interactions were identified by 
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these approaches (data not shown). To exclude a systemic problem, a protein interaction, which 

is well characterized in LUMIER assays, was included in one of the performed assays: 

TRANSPARENT TESTA GLABRA 1 (TTG1) and GLABRA3 (GL3), B. Zhang, 

unpublished). This combination yielded in a RLI 26.14-fold higher than the background, thus 

excluding a systemic error.  

Another possible explanation for overall low or no SKD1 interactions might be that A. thaliana 

SKD1 is not well expressed or degraded in HEK293TN cells. Further, since SKD1 is known to 

associate with membranes, it is possible that the majority of protein is lost during cell debris 

removal. To answer this, cells were transformed with a construct expressing SKD1 in N-

terminal fusion with YFP (pTREX-YFP) and cell lysates were prepared following the LUMIER 

protocol. The pellet, which was obtained during cell debris removal by centrifugation, was 

dissolved in the same volume as the supernatant. Lysate and pellet samples were prepared for 

SDS-PAGE and the YFP-SKD1 protein was detected via immunoblotting (see Appendix, 

Figure A.6). No strong degradation bands were detected, however, a large portion of SKD1 

protein seemed to be lost in the pellet of the lysed cells. This result might explain the overall 

weak detected interactions of SKD1. This is even more likely in the case of the used positive 

control since they are known to interact with SKD1 primarily at membranes. Thus, the 

LUMIER method is not optimal for evaluating interactions of ESCRT components. 

To the end of this study, the FLIM-FRET (Fluorescence Lifetime Imaging-Fluorescence 

Resonance Energy Transfer) method was started to be established for the SKD1 interaction 

analysis. This method allows the in-vivo analysis of protein interactions in A. thaliana and 

circumvents lysis steps in which proteins could be lost. Further, it allows the distinction between 

structures in which two proteins interact. Therefore, this method will provide a valuable tool 

for the future characterization of SKD1 interactions.  

Altogether, several interactions for the interactome candidates with SKD1 were confirmed with 

at least one method. These results are summarized in Table 3.9 together with the localization 

results of Chapter 3.5.4-3.5.6.  
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Table 3.9. Summary of localizations and interactions of the SKD1 interactome candidates.n.d. = not 

determined. Symbols in brackets indicate weak granule formation, ++ indicates recruitment of UBP1b in granules 

without stress. Green and red backgrounds indicate positive or negative granule formation/colocalization/protein 

interaction, respectively.  

Membrane trafficking 

Protein 

in 

granules 

before 

heat 

in granules 

after heat 

in granules 

with 

UBP1b 

in granules 

with SKD1 

at classE 

compartments 

Interaction 

in 

Y2H/ 

LUMIER 

VPS18 - (+) n.d. n.d. n.d. +/- 

GRF2 - (+) - - - -/+ 

GRF9 - + + + - -/- 

PIP1-1 ER ER n.d. n.d. n.d. +/- 

SEC13A - + + + - +/- 

FLOT1 - (+) (+) + - +/- 

ISTL1 (+) (+) - + + +/- 

RNA metabolism 

Protein 

in 

granules 

before 

heat 

in granules 

after heat 

in granules 

with 

UBP1b 

in granules 

with SKD1 

at class E 

compartments 

Interaction 

in 

Y2H/ 

LUMIER 

eIF4B1 + + ++ + - -/- 

UAP56A - - - (+) - -/- 

LOS4 - - - (+) - -/+ 

CML10 + + ++ + - +/- 

UBP12 - - - n.d. - +/+ 

RUXF (+) + + + + -/- 

RRM (+) (+) - n.d. - -/- 

NTF2 + + ++ + - -/- 

 

Nearly all of the tested membrane trafficking candidates interacted with SKD1 in one of the 

two assays. Also, nearly all showed some degree of granule formation, in particular when 

coexpressed with SKD1. This might indicate that the membrane trafficking candidates associate 

only weakly with mRNP granules and need additional factors for colocalization. Same might 

be true for the RNA helicases UAP56A and LOS4, which only showed mild granule formation 

in coexpression with SKD1.  

For the RNA metabolism candidates, only three were confirmed to interact with SKD1. This 

could be explained by only weak interactions with SKD1 or interactions which depend on 

specific plant co-factors. The future analysis of interactions with FLIM-FRET might answer 

this question. Independent of their associations with SKD1, several putative mRNP granules 

components were identified in this study. The translation initiation factor eIF4B1, the calcium-
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sensor CML10 and the RNA-binding protein NTF2 form strong granules and are able to recruit 

the SG component UBP1b into granules in the absence of stress. Their further characterization 

in the context of mRNP granule formation might give new insight in this process in A. thaliana.  

3.6 Impact of heat stress on PIN2 protein trafficking 

This study showed so far that the ESCRTIII associated protein SKD1 localizes to mRNPs 

granules after heat stress. A similar shift in localization was observed for the two ESCRTIII 

associated proteins VPS46.1 and VPS46.2, but not for the other analyzed ESCRTIII 

components. The ISTL1 protein did colocalize in strong granules after heat stress, but only in 

coexpression with SKD1. Furthermore, SKD1 co-precipitates with several proteins which 

function in RNA metabolism and some of these proteins have been shown to localize to mRNP 

granules. Altogether, these observations consolidate the hypothesis that SKD1 changes its 

localization from the cytosol and MVBs to mRNP granules after heat stress. 

The removal of SKD1 from the cytosol might temporarily block the MVB pathway, which 

might be favourable for cells during acute heat stress . A similar mechanism was described for 

the TORC1 kinase in yeast and mammals after heat stress (Takahara and Maeda, 2012; 

Thedieck et al., 2013; Wippich et al., 2013). Active TORC1 promotes protein synthesis and cell 

growth while blocking catabolic processes such as autophagy. Upon nutrient starvation or 

stress, TORC1 is recruited from the vacuolar membrane (where it is active) into stress granules 

and thereby rendered inactive. This provides an extremely fast and reversible mechanism to 

switch the metabolic status of cells in stress situations. 

So far, only one study has been published which analyzed ESCRT proteins in the context of 

heat stress in A. thaliana (Wang et al. 2015). This study showed that lip5 mutants are 

susceptible to heat stress, accumulate more ubiquitinated proteins and that the LIP5 protein 

associates stronger with endosomal membranes during heat stress (Wang et al., 2015). 

However, the transport of ESCRT cargo to the vacuole during or shortly after heat stress was 

not analyzed.  

In a first attempt to explore, if heat-induced SKD1 removal from the cytosol to mRNP granules 

correlates with blocked MVB trafficking, the localization of the ESCRTIII cargo PIN2 was 

studied (Spitzer et al, 2009). This auxin efflux carrier localizes to the PM in A. thaliana 

epidermal root cells, whereby it is enriched at the apical site. Under normal conditions, PIN2 

undergoes constant endocytic cycling from the plasma membrane to endosomes and is finally 

internalized into MVBs for vacuolar degradation. The transition of PIN2 protein from recycling 
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endosomes to MVBs is dependent on BFA-sensitive ARF-GEFs and treatment with BFA 

causes PIN2 proteins to accumulate in so-called BFA-induced compartments (Geldner et al., 

2001; Kleine-Vehn et al., 2008). If heat treatment causes an inhibition of MVB trafficking, an 

accumulation of PIN2 proteins in structures reminiscent of BFA-induced compartments should 

be visible.  

To monitor PIN2 trafficking under normal conditions and after heat stress treatment, a stable 

rescue line which expressed the PIN2-GFP under its own promoter was used (ProPIN2::PIN2-

GFP, Abas et al., 2006). As a reference for blocked PIN2-GFP trafficking, some seedlings were 

treated with 50 µM BFA for 90’ (Kleine-Vehn et al., 2008, Chapter 2.4.7). The roots of the 

seedling were imaged directly after treatment and representative pictures are shown in Figure 

Figure 3.26. 

 

Figure 3.26. Subcellular localization of PIN2-GFP after heat stress or BFA treatment. ProPIN2::PIN2-GFP 

(eir1-1) seedlings were grown vertically on ½ MS for 5-7 d. Before imaging, the seedlings were transferred to 

tubes containing liquid ½ MS medium and were kept either at room temperature or were subjected to heat treatment 

(40°C 50’). For BFA treatment, the chemical was added to the medium to a final concentration of 50 µM. 

Epidermal cells of the root transition zones (demonstrated in upper row) were imaged by confocal microscopy 

immediately after treatment. Representative pictures of single planes are given. Arrow head indicate PIN2-GFP 

aggregates. Bar = 50 µm (upper row) or 10 µm.  
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The localization of PIN2-GFP was studied in epidermal cells of the root transition zone 

(Verbelen et al., 2006). The approximate area is indicated in Figure 3.26 in the upper row. The 

PIN2-GFP protein exhibited the expected plasma membrane localization with a noticeable 

enrichment at apical cell boundaries. The application of heat treatment effected the localization 

of PIN2-GFP in the majority of roots: PIN2-GFP-labeled structures were now visible in the 

cytosol of epidermal root cells. After heat treatment, 10-times more PIN2-GFP-labeled 

structures were visible than in control roots (heat: 108 aggregates in 348 cells, control: 9 

aggregates in 379 cells, Appendix, Table A.13). In comparison with the BFA samples, fewer 

cytosolic structures were visible in the heat-treated roots and the majority was smaller than 

BFA-induced compartments. Nonetheless, this phenotype was reminiscent of at least partially 

blocked PIN2 trafficking. 

To further access the nature of the heat-induced PIN2-GFP structures, roots were stained with 

FM4-64 in addition to heat or BFA treatment in an initial experiment. Representative pictures 

of the staining results are given in Figure 3.27 

 

Figure 3.27. FM4-64 staining of heat or BFA treated ProPIN2::PIN2-GFP roots. Seedlings were grown and 

prepared for treatment as described in Figure legend Figure 3.26. Before(10‘)heat treatment, the FM4-64 dye was 

added to the medium (final concentration: 50 µM, total staining time: 60’). BFA treatment and FM4-64 staining 

were done simultaneously, whereby the incubation time with the drug and dye was reduced to 50’. Imaging was 

done as described before. Arrow heads indicated colocalizing structures. Bar = 7.5 µm. 
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The BFA-induced compartments showed an enrichment of FM4-64 staining. However, the 

heat-induced PIN2-GFP structures were not stained by the dye (five roots analyzed each). One 

explanation might be that heat treatment influences FM4-64 internalization differently than 

BFA treatment does. Indeed, it was previously shown that heat stress delays FM4-64 staining 

of late endosomal structures and the vacuolar membrane while it promotes accumulation in 

early endosomes in yeast (Meaden et al., 1999). Furthermore, a study in tobacco cell culture 

showed that BFA-treatment stimulates initial dye uptake by two-fold (Emans et al., 2002). 

Therefore, an adjustment of the staining time of the heat stressed roots might be necessary to 

see FM4-64 labeling of PIN2-GFP structures. In addition, the ProPIN2::PIN2-GFP line was 

crossed to the stable 35S::mCHERRY-ARA7 line. To the end of this study, seeds of the F1 

generation were collected and a future colocalization analysis will show, if the heat-induced 

PIN2 structures co-localize with the MVB marker ARA7. 
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4 Discussion 

As sessile organisms, plants have to quickly adapt to the onset of unfavorable conditions such 

as infection, salinity, drought, or significant temperature changes. The ongoing global climate 

change is predicted to significantly affect agricultural production by increasing regional 

weather extremes. This has been exemplified by the observation that the 2003 heat and drought 

wave in Europe caused a 30% decrease of crop production (Ciais et al., 2005). Thus, 

understanding abiotic stress responses is discussed to be one of the most important plant 

research fields (Hirayama and Shinozaki, 2010). 

Although physiological outputs may vary, core processes of cellular heat stress responses are 

conserved among eukaryotes (Richter et al., 2010). In general, the onset of elevated 

temperatures triggers the global adjustment of gene transcription and translation. This is 

partially achieved by the enhanced transcription of aggregation protective proteins, such as 

chaperones and HSPs, by the transcription factor HSF1 (HEAT SHOCK FACTOR 1, 

Vihervaara and Sistonen, 2014). In addition to that, the pool of preexisting mRNAs is 

modulated by selective degradation in the cytosol or in P-bodies, and by the sequestration of 

transcripts in SGs (Anderson and Kedersha, 2008). Acute heat stress also affects membrane 

integrity and permeability. In addition, intracellular trafficking of proteins and membranes is 

affected, which has been linked to the impaired reorganization of the cytoskeleton (Richter et 

al., 2010). 

Recent studies showed that the A. thaliana SPI protein regulates membrane remodeling in the 

process of MVB formation together with the ESCRTIII associated protein LIP5 (Steffens et al., 

2017). Furthermore, it positively regulates P-bodies during salt stress and thereby modulates 

salt responsive transcript levels (Steffens et al., 2015). An initial Y2H experiment pointed to a 

potential interaction between ESCRTIII core and associated proteins and mRNP granule 

components. Therefore, this study investigated the connection between A. thaliana ESCRTIII 

proteins, in particular SKD1, and mRNP granules to find a potential crosslink between 

membrane trafficking processes and posttranscriptional regulation in the context of heat stress. 
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4.1 SKD1 associates with mRNP granules after heat stress independent of 

endosomes 

This study extensively analyzed the subcellular localization of ESCRTIII core and associated 

proteins before and after heat treatment by confocal microscopy. The main focus was the 

essential ESCRTIII associated protein SKD1, since this AAA-ATPase executes the only energy 

consuming and rate-limiting step in MVB biogenesis (Haas et al., 2007; Shahriari et al., 2010). 

The importance of SKD1 for this process is demonstrated by the fact that the loss of SKD1 is 

lethal for A. thaliana (M. Jakoby, personal communication). Because SKD1 functions at MVBs, 

a dot-like subcellular localization would be expected in confocal studies. However, no 

association with MVBs under control conditions was visible (Chapter 3.2). This is in 

accordance with previously published localization studies and reflects the transient nature of 

the membrane association of ESCRTIII proteins (Shahriari et al., 2010). For example, 

membrane fractionation experiments showed that over 90% of the yeast SKD1 homolog is 

detected in the cytosol. A significant amount of SKD1 can only be detected in the membrane 

pellet after artificially enhancing membrane association, for example by mutating upstream 

ESCRTIII proteins (Babst et al., 1998; Babst et al., 2002b).  

A similar approach was used to demonstrate, that the here used versions of SKD1 were still 

able to bind to MVBs. SKD1 was coexpressed with a C-terminally modified version of the 

ESCRTIII core protein VPS32.1 (Appendix, Figure A.3). C-terminal modifications of VPS32 

proteins diminish the autoinhibitory effect of the C-terminal hairpin structure, thus leading to 

an increased association with endosomal membranes (Howard et al., 2001; Zamborlini et al., 

2006; Hanson et al., 2008). Coexpression of VPS32.1-mCHERRY caused SKD1 to colocalize 

with it in large aggregated structures that represented class E compartments (enlarged MVBs).  

The localization of SKD1 changed upon heat stress and granular structures became visible 

(Chapter 3.2). This was not caused by the fluorescent tag since free YFP did not form granules 

after heat stress (Appendix, Figure A.1). The shift in localization was independent of expression 

strength, transformation method, analyzed tissue and fusion orientation of the tag. Since SKD1 

is known to function at MVBs, one would expect that this localization represents an enhanced 

association with membranes. However, heat-induced SKD1 granules were neither marked by 

FM4-64 staining nor shared a significant overlap with the two late endosomal markers ARA7 

or RHA1 (Chapter 3.2 and Chapter 3.3.3). Instead, SKD1 granules significantly overlap with 

SG granules (UBP1b, RBP47b, and PAB2) and, to a lesser extent, P-bodies (DCP1, DCP5 and 

eIF(iso)4E, Chapter 3.3.3). The reciprocal test, if ARA7 or RHA1 co-localize with PAB2 or 
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DCP5 after heat treatment, showed no considerable degree of co-localization (Figure 3.11). 

This demonstrates that the association of SKD1 with mRNP granules is independent of 

endosomal structures. Further evidence for this observation might be given by mRNP granule 

purification and subsequent detection of SKD1, or by treatment with cyclohexamide, a 

translational inhibitor that reduces P-body and SG numbers (Xu et al., 2006; Weber et al., 2008; 

Jain et al., 2016). 

P-bodies and SGs are both classes of mRNP granules. They are similar in size, share an overlap 

in proteins, and are often in proximity to each other (Buchan et al., 2008; Protter and Parker, 

2016). These circumstances make it difficult to distinguish them in colocalization studies. One 

clear difference is that P-bodies are microscopically visible and mediate mRNA decay in the 

absence of stress (Stoecklin and Kedersha, 2013). SKD1 localized to granules only after heat 

stress, which suggests an association with SGs and no general function in P-bodies or mRNA 

decay. So far, there is no information about the presence of transcripts in SKD1 granules and 

their adenylation state (deadenylated: P-bodies, adenylated: SGs). Thus, no definite 

classification can be made and SKD1 is here described to associate with mRNP granules in 

general. 

An interesting result of this study was that the ATPase-defective SKD1 version SKD1-AQ still 

localizes to mRNP granules (Chapter 3.4.4, Figure 3.16). This provides evidence that ATP 

binding and ATP hydrolysis are not essential for granule association. Instead, they might be 

mediated by other factors, such as interactions with granule recruiting factors or modifications 

such as phosphorylation. The quantification of the SKD1-AQ overlap with UBP1b showed a 

high, but significantly reduced overlap compared to wild type SKD1 (Figure 3.17). Large 

SKD1-AQ labeled structures, which represent class E compartments, were less often in 

colocalization with UBP1b than the heat-induced, small SKD1-AQ granules. This indicates that 

only the free cytosolic pool of SKD1-AQ is recruited to mRNP granules, while the membrane-

associated pool remains at MVBs. 

A key to understand the biological function of SKD1 recruitment to mRNP granules may lie in 

the identification of components or domains that regulate its relocalization. A possible 

recruiting factor is the SPI protein, which has been shown to directly interact with SKD1 and 

P-body components (Steffens et al., 2015 and 2017). SPI is discussed to contribute to P-body 

formation as a scaffolding component, thus increasing the interconnection of proteins. 

However, preliminary results of transient cellular localization studies showed that SKD1 is still 

present in granules after heat stress in epidermal leaf cells of spi mutants (data not shown). If 
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SPI is a stress-specific scaffolding factor (only during salt stress) or SKD1 depends on other 

factors or modifications, remains to be elucidated. First localization studies using SKD1 protein 

fragments suggest that the relevant domain for SKD1 recruitment lies in the highly structured 

ATPase domain and not in the MIT domain or the flexible linker region (data not shown). 

Further testing might confirm this observation and provide a starting point to search for relevant 

modifications or interaction sites. 

4.2 Some ESCRTIII associated, but no core proteins localize to mRNP 

granules  

After the extensive analysis of the heat-dependent association of SKD1 with mRNP granules, 

it was questionable, whether other ESCRTIII proteins show a similar localization. Previous 

research showed that IDRs within protein sequences are a driving force in the formation of 

mRNP granules, such as for human TIA1 (Gilks et al., 2004). Furthermore, IDRs are 

overrepresented in proteins that form mRNP granules (Protter and Parker, 2016). This was 

confirmed for 12 A.thaliana mRNP granule components in this study using online prediction 

tools (Chapter3.4.1, Table 3.5). While approximately 30% of the A. thaliana proteome are 

considered highly disordered (over 50% of aa in IDRs), over 90% of mRNP granule proteins 

fulfilled this criterion in this study (loop category, Pietrosemoli et al., 2013). 

The same prediction tools were used to test, if the ESCRTIII core and associated proteins are 

highly disordered. From the analyzed subset, four of the ESCRTIII associated (SKD1, LIP5, 

VPS601, and VPS60.2) and none of the ESCRTIII core components were predicted to be highly 

disordered. Thus, a localization shift after heat stress was anticipated for LIP5 and VPS60.2. 

VPS60.2 showed some granules after heat stress, but did not colocalize to UBP1b (Chapter 

3.4.4, Figure 3.16). LIP5 did not change its cytosolic localization after heat treatment. Instead, 

the less disordered VPS46.1 and VPS46.2 showed granulation and heat-induced colocalization 

with UBP1b. These results indicate that the IDR content of ESCRTIII proteins can only give a 

hint towards mRNP granule association but is not a good predictor on its own. This assumption 

is strengthened by the observation that a flexible linker in SKD1, which is highly disordered, is 

not essential for mRNP granule association (preliminary data, not shown). 

The observed localization of LIP5 after heat stress was particularly surprising for two reasons. 

One was the fact that a heat-induced increase in LIP5 dots has been described previously (Wang 

et al., 2015). The authors showed that the formation of LIP5 dots correlated to an increase in 

ARA6–labeled structures (MVB marker) and a higher percentage of LIP5 protein in membrane 

fractions. Therefore, heat treatment enhanced the association of LIP5 with MVB membranes. 
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Their study used elevated temperatures (45°C) and longer incubation times (4 h). Thus, a 

change in LIP5 localization might only be visible at later time points. The other reason, why a 

heat-induced separation of SKD1 and LIP5 is surprising, is the fact that they form a tightly 

connected barrel structure, which is needed for full activity (see Chapter 1.3 Figure 1.3, Scott 

et al., 2005b; Azmi et al., 2006; Haas et al., 2007; Shahriari et al., 2010). LIP5 is not essential 

for SKD1 function, but becomes crucial for plant survival after prolonged stress (Wang et al., 

2014 and 2015). The results of this study point to a separation of LIP5 and SKD1 during stress. 

This discrepancy is not easily resolved, but might be explained by different stages of stress 

responses. This study focused on early effects of heat stress on protein localization. It might be 

that an early separation of LIP5 and SKD1 downregulates MVB biogenesis while it is later on 

reactivated. However, this assumption is highly speculative and needs further confirmation by, 

for example, studying the number and morphology of MVBs at different timepoints after heat 

stress by electron microscopy.  

VPS46.1 and VPS46.2 colocalized in mRNP granules, while LIP5 and VPS60.2 did not 

(Chapter 3.4.4, Figure 3.16). Thus, the ESCRTIII associated proteins are diverse in their 

response to heat stress and not all of them are simply sequestered in mRNP granules. Although 

they all stimulate SKD1 activity, they are not all synergistic in function. For example, yeast Ist1 

forms a subcomplex with Did2 (VPS46) while Vta1 (LIP5) is synergistic to Vps60 (Rue et al., 

2008). Therefore, the differential localization of ESCRTIII associated proteins might represent 

different modes of SKD1 activity regulation.  

The ESCRTIII core proteins VPS32.1 and VPS24.1 did not colocalize to mRNP granules after 

heat stress (Chapter 3.4.4, Figure 3.16). This might be explained by their stronger association 

to membranes (e.g. filament formation, direct interaction with myristoylated VPS20, Babst et 

al., 2002b; Bowers et al., 2004; Lin et al., 2005). Interestingly, VPS24.1 was in distinct dots 

after heat stress, but they did not overlap with UBP1b. An explanation for this might be an 

enhanced association of VPS24.1 with membranes after heat stress, as it was observed for LIP5 

by Wang and colleagues (Wang et al., 2015). It is known that the loss of SKD1 function or the 

coexpression of a dominant-negative version enhances membrane association of upstream 

ESCRT components (Babst et al., 2002b; Cai et al., 2014). Therefore, one could speculate that 

the heat-triggered reduction of cytosolic SKD1 inhibits the removal of ESCRTIII core 

components from MVBs. This would also fit to the observed weak formation of VPS60.2 dots 

after heat stress (Chapter 3.4.2, Figure 3.14). However, since VPS24 functions downstream of 

VPS32 in the process of MVB formation, a similar effect would be expected for VPS32 (Babst 
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et al., 2002b; Teis et al., 2008). Therefore, future experiments should clarify the identity of the 

heat-induced VPS24.1 and VPS60.2 structures.  

In addition to the subcellular localization study, a systematic Y2H assay was carried out to 

identify interactions between ESCRTIII core and associated proteins with mRNP granule 

components (Chapter 3.1). Previous studies pointed to a broad interaction between ESCRT 

components and P-body proteins (Table 3.1). The results of this study did not confirm the 

previous results but found some other interactions, especially for LIP5 (Table 3.2). In the 

context of the subcellular colocalization study, this was not expected since LIP5 did not 

associate with mRNP granules. As the interaction assay was performed in yeast and not in 

plants, and in the absence of stress, a definite statement about specific protein interactions 

cannot be made. The results can rather be considered as a hint towards protein interactions 

between members of the two pathways. However, this demonstrates that additional methods, 

such as FLIM-FRET, are necessary to define direct interactions and that several approaches are 

needed to get a comprehensive idea about the connection of ESCRT and mRNP granule 

proteins.  

4.3 Membrane trafficking and new mRNP granule proteins are in the 

SKD1 interactome 

The identification of the heat-dependent interactome of SKD1 was another approach to further 

investigate the localization shift of SKD1. To this end, proteins were extracted from leaves of 

stable lines and subjected to immunoprecipitation, followed by LC-MS/MS analysis (Chapter 

3.5). By filtering, a total of 192 potential SKD1 interactors were identified, whereby 15 of them 

were control-specific and 18 specific for the heat treated samples. There were no treatment-

specific significant differences in relative protein abundance between the shared interactors. 

This could be explained by the transient nature of protein-protein interactions within mRNP 

granules (Jain et al., 2016). The here used protocol was a first approach to identify new SKD1 

interactors and although no striking heat-specific differences were observed, several new 

putative interactors were described. As a next step, formaldehyde fixation prior to cell lysis 

might be used to highlight treatment-specific differences in interactor abundances. 

From the interactome candidates, 46 proteins were annotated to be or to function in 

mitochondria or chloroplasts (Figure 3.19). This number of organelle proteins is not unusual 

for the used material and extraction protocol (leaf material, no centrifugation to remove 

organelles, S. Müller, Proteomics Core Facility Cologne, personal communication). Without 

the organelle proteins, 146 candidates remained. This is somewhat higher but comparable to 
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similar interactome studies of A. thaliana VPS2.2 and CML38 (89 proteins: Ibl et al., 2012; 

106 proteins: Lokdarshi et al., 2016). The majority of candidates was annotated to be involved 

in diverse metabolic or biosynthetic processes (termed “others”). Future studies might reveal 

crosslinks between candidates of this list and SKD1 function, yet their analysis was beyond the 

scope of this study.  

19 candidates with protein folding activity were identified in the interactome, the majority of 

them being HSPs and TCP-1 chaperones (Appendix, Table A.10). All of the seven identified 

TCP-1 proteins were also identified in the interactomes of the A. thaliana SG protein RBP45b 

and CML38 (Lokdarshi et al., 2016; Muthuramalingam et al., 2017). TCP-1 proteins, also 

known as CCT complex proteins, form cytosolic ring complexs and assist in the protein folding 

of a variety of cytosolic proteins (Leitner et al., 2012). They have been identified in purified 

yeast SGs and were shown to negatively regulate SG formation in mutant studies (Jain et al., 

2016). The presence of several TCP-1 proteins in the SKD1, RBP45b, and CML38 interactome 

might hint towards a similar role of this class of chaperones in plant mRNP granules. Therefore, 

their role in mRNP granule formation is worth testing in the future.  

The SKD1 interactome also contained 17 proteins which participate in RNA-related processes 

such as splicing, transport, topology, or translation. Some of them contained known RNA-

binding domains or are known to localize in mRNP granules (Appendix, Table A.10). VCS, a 

large scaffolding protein and core component of P-bodies, was also among the potential 

interactors, further confirming the microscopically visible association of SKD1 with mRNP 

granules. From the 17 RNA-associated proteins, eight were further characterized. Interestingly, 

three of the eight tested proteins already formed distinct granules, which also recruited UBP1b, 

in the absence of stress (Figure 3.23, eIF4B1, CML10, NTF2). The overexpression of mRNP 

granule components, such as mammalian TIA1, G3BP, or yeast Pab1, can induce granule 

formation in the absence of stress and can induce the association of other components 

(Stoeckling et al., 2004; Kedersha et al., 2005; Takahara and Maeda, 2012). Thus, the recruiting 

effect of eIF4B1, CML10, and NTF2 overexpression onto UBP1b might indicate a function in 

granule induction. Their overexpression did not recruit SKD1 in the absence of stress and only 

additional heat treatment induced colocalization (Figure 3.25). Thus, it might be that stress 

directly triggers modifications of SKD1 (e.g. phosphorylation), which are essential for the 

localization shift, and that the presence of mRNP granules alone is not sufficient for 

recruitment.  
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Some of the other analyzed RNA metabolism proteins showed little or no granule formation 

after heat treatment (UBP12, UAP56A, RRM, and LOS4, Figure 3.21). It might be that these 

tested candidates do not associate with mRNP granules. Another explanation might be that the 

fluorescent tag interferes with their localization. Interestingly, the coexpression of SKD1 

seemed to increase the granulation of UAP56A and LOS4 slightly, although the majority of 

protein signal remained cytosolic (Figure 3.24). This effect was not observed by coexpression 

with UBP1b, making it unlikely that the increased protein load caused their granulation (Figure 

3.22). Thus, SKD1 itself might influence the localization of interacting components to mRNP 

granules after stress.  

Since SKD1 regulates MVB biogenesis, one focus was what other membrane trafficking 

proteins are present in the interactome and a total of 23 proteins have been identified (e.g. 

putative coat proteins, tethering complex proteins, cargo transport proteins, Appendix, Table 

A.10). Two ESCRTIII associated proteins, ISTL1 and VPS46.2, were identified, which 

increases the confidence in the identified interactors. Interestingly, VPS46.2 was present in all 

heat treated samples, but only in one of the control replicates (Appendix, Table A.10). This 

could be interpreted as an increased interaction of SKD1 with VPS46.2 after heat treatment, 

which in turn correlates with the observed shift in localization of SKD1 and VPS46.2. 

An interesting group of membrane trafficking candidates are the HOPS/CORVET complex 

proteins. This conserved tethering complex functionally connects Rab GTPases with SNAREs 

(Soluble NSF Attachment protein REceptor) and is of high importance for MVB to vacuole 

(CORVET) and homotypic vacuole to vacuole (HOPS) fusions (Vukašinović and Žárský, 2016; 

Takemoto et al., 2018). They share a common set of four core proteins consisting of VPS11, 

VPS18, VCL1/VPS16, and VPS33. From those, VCL1/VPS16 and VPS18 were identified in 

the SKD1 interactome. Furthermore, the HOPS specific VPS41 protein was identified. 

HOPS/CORVET complexes are essential for the regulation of endosomal maturation and have 

been speculated to directly interact with other endosomal maturation machineries such as the 

ESCRT machinery (Solinger and Spang, 2013). Evidence for a direct interaction is still missing 

in the literature, but an antagonistic function of HOPS and ESCRT has been described in yeast 

(Bugnicourt et al., 2004). The identification of several HOPS/CORVET proteins in the SKD1 

interactome provides first evidence that a functional link with the ESCRT machinery might be 

based on direct protein interactions. Since the cloning of VPS41 and VCL1/VPS16 was not 

successful in this study, only the interaction of VPS18 with SKD1 was confirmed by Y2H 

(Table 3.9). Further analysis of SKD1 interaction with HOPS/CORVET proteins might confirm 
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the results of this study and provide insights on how this interaction influences maturation and 

fusion of MVBs.  

The subcellular localization of seven membrane trafficking candidates was analyzed in the 

context of heat-induced mRNP granules. With the exception of ISTL1, none of the membrane 

trafficking proteins colocalized to Class E compartments (SKD1-AQ coexpression, Appendix, 

Figure A.4 and Figure A.5). Since the inhibition of SKD1 function causes an accumulation of 

ESCRT trafficking proteins at MVBs, this indicates that their function lies not in ESCRT-

trafficking. Surprisingly, the small mRNP RUXF colocalized with SKD1-AQ aggregates. 

However, since RUXF formed aggregates on its own in some cells, the observed co-localization 

might be an artifact.  

Six of the analyzed membrane trafficking proteins showed some degree granulation after heat 

treatment (Figure 3.20). The granules were not as distinct as for the RNA metabolism 

candidates. Only the putative coat protein SEC13A and the 14-3-3 protein GRF9 showed a 

stronger granulation and colocalization with UBP1b (Figure 3.22). It remains to be determined, 

if this weak granule formation of some of the membrane trafficking proteins is also visible when 

the proteins are not overexpressed, as it was shown for SKD1 (Figure 3.1). In this case, the here 

obtained results might indicate that components from several membrane trafficking routes are 

sequestered in mRNP granules in response to heat stress.  

Apart from the subcellular localization study, the identified interactome candidates were 

subjected to Y2H and LUMIER assays to confirm their interaction with SKD1 (Chapter 3.5.7). 

The interaction of six out of seven membrane trafficking candidates with SKD1 was confirmed. 

From the RNA metabolism candidates, only two out of the eight tested combinations were 

positive. This difference might be explained by weak interactions of SKD1 with other mRNP 

granules proteins. Also, the tests were not made in plants and in the absence of stress. The 

LUMIER assay was not optimal to test interactions with A. thaliana SKD1 since the majority 

of protein got lost in the process of sample preparation, presumably due to enhanced membrane 

association (Appendix, Figure A.6). Additional modifications of the assay would be needed to 

use it for SKD1 interaction confirmation. However, since the use of heterologous assays always 

bares the risk to fail to confirm species-specific interactions, the use of another in-vivo method, 

such as FLIM-FRET, is more promising. 
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4.4 What is the functional relevance of SKD1 relocalization under heat 

stress? 

At the end of this study the following question remains: What is the function of SKD1 

association with mRNP granules during heat stress? Although some approaches were made to 

address this aspect, no definite answer can be given. The following paragraphs will point out 

working hypotheses, which are being followed up in further studies.  

One possibility is an active and direct function of SKD1 in mRNP granule formation or stability. 

An argument for this hypothesis is the function of the direct SKD1 interactor SPI in P-bodies 

(Steffens et al., 2015). SPI has no known enzymatic function but contains several protein-

protein interaction domains (e.g. five WD40 repeats). Therefore, it was speculated that SPI 

functions as a scaffolding factor in P-bodies. SKD1 is no scaffolding factor and has a highly 

structured AAA-ATPase cassette with enzymatic activity (Haas et al., 2007; Shahriari et al., 

2010). Therefore, an enzymatic function of SKD1 in mRNP granules would be expected. A 

direct function of AAA-ATPases in SGs has been described in yeast (Jain et al., 2016). The 

study demonstrated that cellular availability of ATP is essential for granule formation and also 

largely influences their movement, fusion and exchange of protein content after formation. In 

this context, proteins of the AAA-ATPase complexes MCM (MINI-CHROMOSOME 

MAINTENANCE) and Rvb have been shown to inhibit SG disassembly by removing 

disassembly factors of remodeling SG content to facilitate the association of additional SG 

components. MCM and Rvb are DNA/RNA helicases that are known to modulate nucleic acid-

protein complexes. SKD1 is well established in its function to disassemble large proteins 

complexes. Therefore, a remodeling function in mRNP granules is imaginable. The observation 

that SKD1 coexpression can enhance granule association for some putative mRNP granule 

components might point in that direction (UAP56A and LOS4, Figure 3.25). The co-

localization studies using the ATPase-defective version SKD1-AQ did not indicate an 

inhibitory effect on mRNP granule formation (Figure 3.17). However, this study did not 

evaluate the dynamics of mRNP granule formation or disassembly. In epidermal leaf cells of 

stable lines, PAB2-labeled granules appear after 10 min of heat stress and are completely 

dissoveled after 4 h (H. Bhasin, personal communication). The comparative analysis of granule 

numbers within this time frame in PAB2 and the SKD1-overexpressing PAB2 line might 

provide evidence for a direct involvement of SKD1 in granule dynamics.  

Independent of a direct function at mRNP granules, one consequence of the recruitment of 

SKD1 to mRNP granules might be a temporary inhibition of ESCRT-dependent trafficking to 
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the vacuole. VPS24.1 and, to a lesser extent, VPS60.2 can be seen in dots after heat stress, 

which do not colocalize with mRNP granule marker (Figure 3.16). This supports the hypothesis 

as the loss of SKD1 activity at MVBs causes an enhanced association of ESCRT proteins with 

membranes (Babst et al., 2002).  

To test this potential inhibition, an experiment was performed in which the heat-dependent 

localization of the transmembrane protein PIN2 was tested (Chapter 3.6). PIN2 is a well 

established marker for ESCRT-trafficking and its accumulation in cytosolic structures is an 

indicator for defects in vacuolar trafficking (Geldner et al., 2001; Spitzer et al, 2009). Epidermal 

cells of heat treated roots contained 10-times more PIN2-labeled cytosolic structures than 

untreated cells (Figure 3.26). A first attempt to demonstrate that these structures are 

membranous by FM4-64 staining failed (Figure 3.27). Therefore, the positioning of the heat-

induced PIN2 structures within the endomembrane system still needs to be done. Colocalization 

studies with different endosomal markers might clarify at which step PIN2 trafficking might be 

inhibited by heat.  

The analysis of PIN2 localization provided first evidence that heat might block vacuolar 

trafficking. Therefore, the additional analysis of ESCRT-dependent cargo trafficking to the 

vacuole, such as for the vacuolar enzymes CPY or AALP, would be interesting (Rojo et al., 

2003; Shahriari et al., 2010). The future study of heat-dependent MVB morphology and number 

by electron microscopy is crucial to strengthen the hypothesis of a heat-induced block of 

ESCRT trafficking. However, these kind of studies could only demonstrate a correlation of 

SKD1 recruitment to mRNP granules and a blockage of MVB trafficking. The investigation of 

a causative link is much more complicated. A classical approach would be the complementation 

with an SKD1 version that does not relocate to mRNP granules during heat stress. Preliminary 

results of the interactome candidate study indicated that membrane trafficking proteins of other 

transport processes associate with mRNP granules after heat stress. Therefore, blocked MVB 

trafficking during heat might not only depend on SKD1 recruitment. An approach, which could 

provide a first functional link between general recruitment of membrane trafficking proteins to 

mRNP granules and the block of cellular transport processes, might be the combinatorial 

treatment of cells with heat and cyclohexamide to prevent granule formation.  

Acute, sublethal heat stress affects nearly every cellular process. Membrane trafficking has been 

described to be mainly affected by changes in membrane fluidity and permeablility. 

Furthermore, the reorganization or the loss of cytoskeletal organization impairs proper 

membrane trafficking, which finally leads to aberrant organelle structures, e.g. fragmentation 
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of the Golgi or ER and a reduced number of lysosomes (Welch and Suhan, 1985; Richter et al., 

2010). Heat stress also triggers the association of HSP70 with membranes, which stimulates the 

endocytosis of PM receptors. This has been discussed to modulate cellular homeostasis during 

heat stress in mammalian cells (Vega et al., 2010). Heat stress can also cause the misfolding of 

transmembrane proteins, which in turn triggers their degradation. This is thought to be mediated 

by the ESCRT machinery, since yeast and plant ESCRT mutants have been shown to be heat 

stress sensitive (Jarolim et al., 2013; Wang et al., 2015). Thus, one would expect an increase in 

vacuolar trafficking via MVBs during heat stress, which is contradictory to the hypothesis of a 

temporal ESCRT trafficking block. 

Interestingly, it seems that different steps of trafficking are differently regulated by heat stress. 

Previous studies in yeast showed that heat treatment delays FM4-64 staining of late endosomal 

structures and of the vacuolar membrane, indicating a specific inhibition of late trafficking 

events (Meaden et al., 1999). A similar observation was made in a study investigating the 

function of the Huntington’s disease protein HUNTINGTIN during heat stress (Nath et al., 

2015). The authors showed that heat stress induces the rapid association of HUNTINGTIN with 

EEs, which causes the arrest of EE to LE and EE to RE maturation. This effect was quicker 

than other canonical heat stress responses, such as mRNP granule formation or the induction of 

the unfolded protein response. This block is speculated to save energy for the later heat stress 

responses. 

But how are cell surface receptors then degraded during heat stress when endosomal maturation 

or MVB trafficking is inhibited? Two studies from 2017 showed that an ESCRT-independent 

degradation pathway for PM receptors and channels is activated in yeast during cellular stress 

such as heat stress or general TOR signaling (McNally et al., 2017; McNally and Brett, 2017). 

This pathway relies on the homotypic fusion of lysosomes, whereby the cargo is enriched in 

the lysosomal membrane at the vertex of the fusing lysosomes, making the step of membrane 

invagination dispensable and thus the process potentially more energy-efficient. The authors of 

the study speculated that this mechanism of ESCRT-independent protein degradation might be 

present in other eukaryotes since the underlying machinery is conserved. Future studies will 

show, if a similar, energy-saving mechanism is active in A. thaliana during heat stress and if 

this process coincides or even depends on SKD1 recruitment to mRNP granules.  
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5 Appendix 

Table A.1. List of specific plasmids used or generated in this study. The plasmids contained the CDS of the 

listed genes either with a stop codon (+) or a glycin (-) for C-terminal fusion. For some genes, CDS with and 

without stop codon were available. 

Gene name ATG Vectors Reference/Origin 

LIP5 (+/-) AT4G26750 pDONR201 Shahriari et al., 2010 
  pAS Shahriari et al., 2010 
  pACT Shahriari et al., 2010 
  pEXSG-YFP Steffens et al., 2017 
  pAUBERGINE A. Steffens 
  pcDNA3 This study (LR) 
SKD1 (+/-) AT2G27600 pDONR201 Shahriari et al., 2010 
  pAS Shahriari et al., 2010 
  pACT Shahriari et al., 2010 

  
pEXSG-YFP (SKD1 
promoter fragment) 

M. Jakoby 

  pEXSG-YFP A. Steffens 
  pAUBERGINE A. Steffens 
  pTREX This study (LR) 
  pTREX-YFP This study (LR) 
SKD1-AQ (+) AT2G27600 pENSG-YFP Shahriari et al., 2010 

  
pAMARENA-
UBQ10 

A. Steffens 

VPS46.1 (+) AT1G17730 pDONR201 Shahriari et al., 2010 
  pAS Shahriari et al., 2010 
  pAMARENA A. Steffens 
VPS46.2 (+) AT1G73030 pDONR201 Shahriari et al., 2010 
  pAS Shahriari et al., 2010 
  pENSG-YFP A. Steffens 
VPS60.1 (+) AT3G10640 pDONR201 M. Jakoby 
  pAS M. Jakoby 
  pACT M. Jakoby 
  pcDNA3 This study (LR) 
VPS60.2 (+/-) AT5G04850 pDONR201 M. Jakoby 
  pAS M. Jakoby 
  pACT M. Jakoby 
  pEXSG-YFP M. Jakoby 
VPS20.1 (+) AT5G63880 pAS Shahriari et al., 2010 
  pACT Shahriari et al., 2010 
VPS24.1 (+/-) AT5G22950 pAS Shahriari et al., 2011 
  pEXSG-YFP A. Steffens 
VPS32.1 (+/-) AT2G19830 pDONR201 Shahriari et al., 2010 
  pAS Shahriari et al., 2010 
  pACT Shahriari et al., 2010 
  pENSG-YFP A. Steffens 
  pAMARENA A. Steffens 
  pAUBERGINE A. Steffens 
  pcDNA3 This study (LR) 
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Gene name ATG Vectors Reference/Origin 

VPS32.2 (+) AT4G29160 pAS Shahriari et al., 2011 
  pACT Shahriari et al., 2011 
DCP1 (+/-) AT1G08370 pACT Steffens et al., 2015 
  pEXSG-CFP Steffens et al., 2015 
DCP2 (+) AT5G13570 pACT Steffens et al., 2015 
DCP5 (+/-) AT1G26110 pAS Steffens et al., 2015 
  pACT A. Steffens 
  pEXSG-YFP A. Steffens 
VCS (+) AT3G13300 pACT Steffens et al., 2015 
eIF4E1(+) AT4G18040 pACT A. Steffens 
XRN4(+) AT1G54490 pACT A. Steffens 
UBP1b (+) AT1G17370 pDONR201 Bhasin and Hülskamp, 2017 
  pACT This study (LR) 
  pENSG-YFP Bhasin and Hülskamp, 2017 
  pAMARENA H. Bhasin 
PAB2(+) AT4G34110 pDONR201 Bhasin and Hülskamp, 2017 
  pACT This study (LR) 
  pAMARENA Bhasin and Hülskamp, 2017 
RBP47b(+) AT3G19130 pDONR201 Bhasin and Hülskamp, 2017 
  pACT This study (LR) 
  pAMARENA H. Bhasin 
RBP45b(+) AT1G11650 pDONR201 Bhasin and Hülskamp, 2017 
  pACT This study (LR) 
GRP7(+) AT2G21660 pDONR201 Bhasin and Hülskamp, 2017 
  pACT This study (LR) 
GRP2(+) AT4G13850 pDONR201 Bhasin and Hülskamp, 2017 
  pACT This study (LR) 
eIF(iso)4E(+) AT5G3562 pENSG-YFP H. Bhasin 
VPS18 (+) AT1G12470 pDONR201 This study (BP) 
  pACT This study (LR) 
  pENSG-YFP This study (LR) 
  pcDNA3 This study (LR) 
GRF2 (+/-) AT1G78300 pDONR207 This study (BP) 
  pACT This study (LR) 
  pENSG-YFP This study (LR) 
  pcDNA3 This study (LR) 
GRF9 (+/-) AT2G42590 pDONR201 This study (BP) 
  pACT This study (LR) 
  pENSG-YFP This study (LR) 
  pcDNA3 This study (LR) 
PIP1-1 (+/-) AT3G61430 pDONR207 This study (BP) 
  pACT This study (LR) 
  pENSG-YFP This study (LR) 
  pEXSG-YFP This study (LR) 
  pcDNA This study (LR) 
SEC13A (+/-) AT3G01340 pDONR201 This study (BP) 
  pACT This study (LR) 
  pEXSG-YFP This study (LR) 
  pcDNA3 This study (LR) 
FLOT1 (+/-) AT5G25250 pDONR201 This study (BP) 
  pACT This study (LR) 
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Gene name ATG Vectors Reference/Origin 

  pENSG-YFP This study (LR) 
  pcDNA3 This study (LR) 
ISTL1 (+/-) AT1G34220 pDONR201 This study (BP) 
  pACT This study (LR) 
  pEXSG-YFP This study (LR) 
  pcDNA3 This study (LR) 
eIF4B1 (+/-) AT3G26400 pDONR201 This study (BP) 
  pACT This study (LR) 
  pEXSG-YFP This study (LR) 
  pcDNA3 This study (LR) 
UAP56A (+/-) AT5G11170 pDONR207 This study (BP) 
  pACT This study (LR) 
  pENSG-YFP This study (LR) 
  pcDNA3 This study (LR) 
LOS4 (-) AT3G53110 pDONR201 This study (BP) 
  pACT This study (LR) 
  pEXSG-YFP This study (LR) 
  pcDNA3 This study (LR) 
CML10 (+/-) AT2G41090 pDONR201 This study (BP) 
  pACT This study (LR) 
  pEXSG-YFP This study (LR) 
  pcDNA3 This study (LR) 
UBP12 (-) AT5G06600 pDONR201 This study (BP) 
  pACT This study (LR) 
  pEXSG-YFP This study (LR) 
  pcDNA3 This study (LR) 
RUXF (+/-) AT4G30220 pDONR201 This study (BP) 
  pACT This study (LR) 
  pEXSG-YFP This study (LR) 
  pcDNA3 This study (LR) 
RRM (+) AT3G23900 pDONR201 This study (BP) 
  pACT This study (LR) 
  pENSG-YFP This study (LR) 
  pcDNA3 This study (LR) 
NTF2 (+/-) AT5G60980 pDONR207 This study (BP) 
  pACT This study (LR) 
  pENSG-YFP This study (LR) 
  pcDNA3 This study (LR) 
GFP - pACT A. Steffens 
w/o - pcDNA This study (LR with pENTRA) 
TTG1 AT5G24520 pTREX B. Zhang 
GL3 AT5G41315 pcDNA B. Zhang 
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Table A.2. Y2H of ESCRTIII core and associated proteins with mRNP granule proteins. Raw data of Table 

3.2. Constructs expressing ESCRTIII core and associated proteins in fusion with GAL4-BD and an mRNP granule 

protein in fusion with the GAL4-AD were cotransformed in yeast. Colonies were transferred to plates selecting 

for successful double transformation (SD-LW) as a control and onto plates with the interaction medium (SD-LWH, 

0 mM, 5 mM, 15 mM, 30 mM). Colony growth was evaluated after 7-9 days on SD-LWH plates with different 

concentrations of 3-AT. Colony growth on the day of analysis is indicated with an X, no growth is indicated by a 

0. All combinations were tested with at least two technical replicates and in two repititions. A tested combination 

was considered positive, if half of the transferred colonies grew on a 3-AT concentration which was higher than 

for the corresponding negative control (GFP-AD). Pictures of the evaluated plates are documented in the laboratory 

journal number IV, pages 143-144, H. Wolff, AG Hülskamp, University of Cologne. 

 pAS pACT 
L
W 

0 
mM 

5 
mM 

15 
mM 

30 
mM 

LW 
0 

mM 
5 

mM 
15 

mM 
30 

mM 
     

 pAS pACT Set 1 day 7 Repeat Set 1 day 7 

1 LIP5 DCP1 x x x x x x 0 0 x 0 x x x x x x 0 0 0 0 
2 SKD1 DCP1 x x 0 x 0 x 0 x 0 x x x 0 0 0 0 0 0 0 0 
3 VPS46.1 DCP1 x x 0 x 0 x 0 x 0 0 x x 0 0 0 0 0 0 0 0 
4 VPS46.2 DCP1 x x 0 0 0 0 0 0 0 0 x x 0 x 0 0 0 0 0 0 
5 VPS60.1 DCP1 x x x x x x x x x 0 x x x x x x x x x x 
6 LIP5 DCP2 x x x x 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 
7 SKD1 DCP2 x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
8 VPS46.1 DCP2 x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
9 VPS46.2 DCP2 x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
10 VPS60.1 DCP2 x x x x x x x x 0 0 x x x x x x 0 0 0 0 
11 LIP5 DCP5 x x x x x x 0 0 0 0 x x x x x x 0 0 0 0 
12 SKD1 DCP5 x x 0 x 0 x 0 0 0 0 x x 0 0 0 0 0 0 0 0 
13 VPS46.1 DCP5 x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
14 VPS46.2 DCP5 x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
15 VPS60.1 DCP5 x x x x x x x x 0 0 x x x x x x x x 0 0 
16 LIP5 VCS x x x x 0 x 0 0 0 0 x x x x 0 0 0 0 0 0 
17 SKD1 VCS x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
18 VPS46.1 VCS x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
19 VPS46.2 VCS x x 0 0 0 0 0 0 0 0 x x 0 x 0 0 0 0 0 0 
20 VPS60.1 VCS x x x x x x x x x x x x x x x x x x x x 
21 LIP5 XRN4 x x x x 0 0 0 0 0 0 x x x x x 0 0 0 0 0 
22 SKD1 XRN4 x x 0 0 0 0 0 0 0 0 x x x 0 0 0 0 0 0 0 
23 VPS46.1 XRN4 x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
24 VPS46.2 XRN4 x x 0 0 0 0 0 0 0 0 x x 0 x 0 0 0 0 0 0 
25 VPS60.1 XRN4 x x x x x x x x x 0 x x x x x x x 0 0 0 
26 LIP5 GRP2 x x x x 0 0 0 0 0 0 x x x x x 0 0 0 0 0 
27 SKD1 GRP2 x x x 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
28 VPS46.1 GRP2 x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
29 VPS46.2 GRP2 x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
30 VPS60.1 GRP2 x x x x x x x x 0 0 x x x x x x x x x 0 
31 LIP5 UBP1b x x x x 0 0 0 0 0 0 x x x x x x 0 0 0 0 
32 SKD1 UBP1b 0 0 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
33 VPS46.1 UBP1b x x 0 0 0 x 0 0 0 0 x x 0 0 0 0 0 0 0 0 
34 VPS46.2 UBP1b x x 0 0 0 0 0 0 0 0 x x x 0 0 0 0 0 0 0 
35 VPS60.1 UBP1b x x x x x x x x x x x x x x x x x x x x 
36 LIP5 GFP x x x 0 0 0 0 0 0 0 x x x 0 0 0 0 0 0 0 
37 SKD1 GFP x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
38 VPS46.1 GFP x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
39 VPS46.2 GFP x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
40 VPS60.1 GFP x x x x x x x x 0 0 x x x x x x x 0 x 0 
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 pAS pACT 
L
W 

0 
mM 

5 
mM 

15 
mM 

30 
mM 

LW 
0 

mM 
5 

mM 
15 

mM 
30 

mM 
41 DCP2 DCP1 x x 0 x 0 x 0 x 0 x x x x 0 x 0 x 0 0 0 
42 DCP5 DCP2 x x x x x x 0 x 0 0 x x x x x x 0 0 0 0 
43 DCP2 DCP5 x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
44 DCP2 VCS x x x x x x x x x x x x 0 0 0 0 0 0 0 0 
45 DCP2 XRN4 x x 0 0 0 0 0 0 0  x x 0 0 0 0 0 0 0 0 
46 UBP1b GRP2 x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
47 UBP1b UBP1b x x 0 0 0 0 0 0 x 0 x x 0 0 0 0 0 0 0 0 
48 LIP5 SKD1 x x x x x x 0 0 0 0 x x x x x x 0 0 0 0 

 Set 2 day 7 Repeat Set 2 day 9 

 pAS pACT 
L
W 

0 
mM 

5 
mM 

15 
mM 

30 
mM 

LW 
0 

mM 
5 

mM 
15 

mM 
30 

mM 
1 LIP5 PABP2 x x x x x x 0 0 0 0 x x x x x x 0 0 0 0 
2 SKD1 PABP2 x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
3 VPS46.1 PABP2 x x 0 0 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 
4 VPS46.2 PABP2 x x x 0 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 
5 VPS60.1 PABP2 x x x x x x x x x x x x x x x x x x x x 
6 VPS60.2 PABP2 x x x x x x x x x x x x x x x x x x x x 

7 LIP5 
RBP47

b 
x x x x x x 0 0 0 0 x x x x x x 0 0 0 0 

8 SKD1 
RBP47

b 
x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 

9 VPS46.1 
RBP47

b 
x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 

10 VPS46.2 
RBP47

b 
x x 0 0 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 

11 VPS60.1 
RBP47

b 
x x x x x x x x x x x x x x x x x x x x 

12 VPS60.2 
RBP47

b 
x x x x x x x x 0 0 x x x x x x x x x x 

13 LIP5 
RBP45

b 
x x x x x x 0 0 0 0 x x x x x x 0 0 0 0 

14 SKD1 
RBP45

b 
x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 

15 VPS46.1 
RBP45

b 
x x 0 0 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 

16 VPS46.2 
RBP45

b 
x x x x 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 

17 VPS60.1 
RBP45

b 
x x x x x x x x x x x x x x x x x x x x 

18 VPS60.2 
RBP45

b 
x x x x x x x x x x x x x x x x x x x x 

19 LIP5 GFP x x x x 0 0 0 0 0 0 x x x x x x 0 0 0 0 
20 SKD1 GFP x x 0 0 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 
21 VPS46.1 GFP x x 0 0 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 
22 VPS46.2 GFP x x 0 0 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 
23 VPS60.1 GFP x x x x x x x x 0 0 x x x x x x x x x x 
24 VPS60.2 GFP x x x x x x x x 0 0 x x x x x x x x x x 
25 PABP2 GFP 0 0 0 0 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 
26 RBP45b GFP 0 0 0 0 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 
27 RBP47b GFP 0 0 0 0 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 
28 DCP5 GFP x x x x x x 0 0 0 0 x x x x x x x x 0 0 
29 DCP2 GFP x x 0 0 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 
30 UBP1b GFP x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
31 LIP5 SKD1 0 0 0 0 0 0 0 0 0 0 x x x x x x x x 0 0 
32 PABP2 PABP2 0 0 0 0 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 

33 RBP45b 
RBP47

b 
0 0 0 0 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 

34 RBP47b 
RBP45

b 
0 0 0 0 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 

35 DCP5 DCP1 x x x x x x x 0 x x x x x x x x x x x 0 
36 DCP5 DCP2 x x x x x x x 0 x 0 x x x x x x x x 0 0 
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 pAS pACT 
L
W 

0 
mM 

5 
mM 

15 
mM 

30 
mM 

LW 
0 

mM 
5 

mM 
15 

mM 
30 

mM 
37 DCP2 DCP5 x x 0 0 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 
38 DCP5 VCS x x x x x x 0 0 x 0 x x x x x x x x x x 
39 DCP5 XRN4 x x x x x x 0 0 0 0 x x x x x x x x x 0 
40 UBP1b GRP2 x x 0 0 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 
41 UBP1b UBP1b x x 0 0 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 
42 VPS60.2 DCP1 x x x x x x x x x x x x x x x x x x x x 
43 VPS60.2 DCP2 x x x x x x x 0 x 0 x x x x x x x x x x 
44 VPS60.2 DCP5 x x x x x x x x 0 0 x x x x x x x x x x 
45 VPS60.2 VCS x x x x x x x x x x x x x x x x x x x x 
46 VPS60.2 XRN4 x x x x x x x x x 0 x x x x x x x x x x 
47 VPS60.2 GRP2 x x x x x x x x 0 0 x x x x x x x x x x 
48 VPS60.2 UBP1b x x x x x x x x x x x x x x x x x x x x 

 Set4 day 8 Repeat Set4 day 7 

 pAS pACT 
L
W 

0 
mM 

5 
mM 

15 
mM 

30 
mM 

LW 
0 

mM 
5 

mM 
15 

mM 
30 

mM 
1 LIP5 PABP2 x x x x x x 0 0 0 0 x x x x x 0 0 0 0 0 
2 SKD1 PABP2 x x 0 0 0 0 0 0 0 0 x x x 0 0 0 0 0 0 0 
3 VPS46.1 PABP2 x x x 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
4 VPS46.2 PABP2 x x x x 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
5 VPS60.1 PABP2 x x x x x x x x x x x x x x x x x x x x 
6 VPS60.2 PABP2 x x x x x x x x x x x x x x x x x x x x 

7 LIP5 
RBP47

b 
x x x x x 0 0 0 0 0 x x x x 0 0 0 0 0 0 

8 SKD1 
RBP47

b 
x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 

9 VPS46.1 
RBP47

b 
x x 0 0 0 0 0 0 0 0 x x x 0 x 0 x 0 0 0 

10 VPS46.2 
RBP47

b 
x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 

11 VPS60.1 
RBP47

b 
x x x x x x x x x x x x x x x x x x x x 

12 VPS60.2 
RBP47

b 
x x x x x x x x x x x x x x x x x x x x 

13 LIP5 
RBP45

b 
x x x x x x 0 0 0 0 x x x x x x 0 0 0 0 

14 SKD1 
RBP45

b 
0 0 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 

15 VPS46.1 
RBP45

b 
x x x 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 

16 VPS46.2 
RBP45

b 
x x x x 0 0 0 0 0 0 x x x 0 0 0 0 0 0 0 

17 VPS60.1 
RBP45

b 
x x x x x x x x x x x x x x x x x x x x 

18 VPS60.2 
RBP45

b 
x x x x x x x x x x x x x x x x x x x x 

19 LIP5 GFP x x x x x 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
20 SKD1 GFP x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
21 VPS46.1 GFP x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
22 VPS46.2 GFP x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
23 VPS60.1 GFP x x x x x x x x x x x x x x x x x x x 0 
24 VPS60.2 GFP x x x x x x x x x 0 x x x x x x x x x 0 
25 PABP2 GFP x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
26 RBP45b GFP x x x 0 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 
27 RBP47b GFP x x 0 0 0 0 0 0 0 0 x x x 0 0 0 0 0 0 0 
28 DCP5 GFP x x x x x x x x 0 0 x x x x x x 0 0 0 0 
29 DCP2 GFP x x x x x x x x x x x x x x x x x x x 0 
30 UBP1b GFP x x 0 0  0 0 0 0 0 x x x 0 0 0 0 0 0 0 
31 LIP5 SKD1 x x x x x x x 0 0 0 x x x x x 0 0 0 0 0 
32 PABP2 PABP2 x x 0 0 0 0 0 0 0 0 x x x 0 0 0 0 0 0 0 
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 pAS pACT 
L
W 

0 
mM 

5 
mM 

15 
mM 

30 
mM 

LW 
0 

mM 
5 

mM 
15 

mM 
30 

mM 

33 RBP45b 
RBP47

b 
x x x x 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 

34 RBP47b 
RBP45

b 
x x x x 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 

35 DCP5 DCP1 x x  x x x x x x 0 x x x x x x x x 0 0 
36 DCP5 DCP2 x x x x x 0 x 0 0 0 x x x x x x x 0 0 0 
37 DCP2 DCP5 x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
38 DCP5 VCS x x x x x x x x x 0 x x x x x x x 0 0 0 
39 DCP5 XRN4 x x x x x x x x 0 0 x x x x x x 0 0 0 0 
40 UBP1b GRP2 x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
41 UBP1b UBP1b x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
42 VPS60.2 DCP1 x x x x x x x x x x x x x x x x x x x x 
43 VPS60.2 DCP2 x x x x x x x x 0 0 x x x x x x x x x 0 
44 VPS60.2 DCP5 x x x x x x x 0 x 0 x x x x x x x x 0 0 
45 VPS60.2 VCS x x x x x x x x x x x x x x x x x x x x 
46 VPS60.2 XRN4 x x x x x x x x x 0 x x x x x x x x x x 
47 VPS60.2 GRP2 x x x x x x x x x 0 x x x x x x x x x 0 
48 VPS60.2 UBP1b x x x x x x x x x x x x x x x x x x x x 

   SET5 day 7 SET5 repeat day 9 

 pAS pACT 
L
W 

0 
mM 

5 
mM 

15 
mM 

30 
mM 

LW 
0 

mM 
5 

mM 
15 

mM 
30 

mM 
1 LIP5 eIF4E1 x x x x x 0 0 0 0 0 x x x x x 0 0 0 0 0 
2 SKD1 eIF4E1 x x 0 0 0 0 0 0 0 0 x x x 0 x 0 0 0 0 0 
3 VPS46.1 eIF4E1 x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
4 VPS46.2 eIF4E1 x x x 0 x 0 0 0 0 0 x x x 0 0 0 0 0 0 0 
5 VPS60.1 eIF4E1 x x x x x x x 0 0 0 x x x x x x x x x x 
6 VPS60.2 eIF4E1 x x x x x x x x 0 0 x x x x x x x x x x 
7 LIP5 GRP7 x x x x x x 0 0 0 0 x x x x x x x x 0 0 
8 SKD1 GRP7 x x 0 0 0 0 0 0 0 0 x x x 0 0 0 0 0 0 0 
9 VPS46.1 GRP7 x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
10 VPS46.2 GRP7 x x 0 0 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 
11 VPS60.1 GRP7 x x x x x x x x 0 0 x x x x x x x x x x 
12 VPS60.2 GRP7 x x x x x x x x 0 0 x x x x x x x x x x 
13 LIP5 GFP x x x x 0 0 0 0 0 0 x x x 0 0 0 0 0 0 0 
14 SKD1 GFP x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
15 VPS46.1 GFP x x 0 0 0 0 0 0 0 0 x x x 0 0 0 0 0 0 0 
16 VPS46.2 GFP x x 0 0 0 0 0 0 0 0 x x x 0 0 0 0 0 0 0 
17 VPS60.1 GFP x x x x x x x x 0 0 x x x 0 x x x x x x 
18 VPS60.2 GFP x x x x x x x 0 0 0 x x x x x x x x x x 
19 VPS20.1 eIF4E1 x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
20 VPS24.1 eIF4E1 x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
21 VPS22 eIF4E1 x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
22 VPS32.1 eIF4E1 x x x x 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 
23 VPS32.2 eIF4E1 x x x x 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 
24 VPS2.1 eIF4E1 x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
25 VPS2.2 eIF4E1 x x 0 0 0 0 0 0 0 0 x x x 0 0 0 0 0 0 0 
26 VPS2.3 eIF4E1 x x x x 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 
27 VPS20.1 GRP7 x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
28 VPS24.1 GRP7 x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
29 VPS22 GRP7 x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
30 VPS32.1 GRP7 x x x x 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 
31 VPS32.2 GRP7 x x x x 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 
32 VPS2.1 GRP7 x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
33 VPS2.2 GRP7 x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
34 VPS2.3 GRP7 x x x x 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 
35 VPS20.1 GFP x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
36 VPS24.1 GFP x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
37 VPS22 GFP x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
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 pAS pACT 
L
W 

0 
mM 

5 
mM 

15 
mM 

30 
mM 

LW 
0 

mM 
5 

mM 
15 

mM 
30 

mM 
38 VPS32.1 GFP x x x x 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 
39 VPS32.2 GFP x x x x 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 
40 VPS2.1 GFP x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
41 VPS2.2 GFP x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
42 VPS2.3 GFP x x x x 0 0 0 0 0 0 x x x 0 0 0 0 0 0 0 
43 UBP1b GFP x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
44 GRP2 GFP x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
45 UBP1b eIF4E1 x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
46 GRP2 GRP7 x x 0 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0 
47 LIP5 SKD1 x x x x 0 0 0 0 0 0 x x x x x 0 x 0 0 0 
48 VPS32.1 SKD1 x x 0 0 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 

 

 

 

 

 

Figure A.1. Subcellular localization of free YFP and mCHERRY-UBP1b before and after heat. Epidermal 

cells of A. thaliana Col-0 rosette leaves were transiently transformed by particle bombardment with a construct 

overexpressing free YFP and mCHERRY-UBP1b. The same cells were imaged by confocal microscopy with the 

same laser intensities before and after heat treatment at 40°C for 50’. Depicted are representative maximum 

projections of stacks. Bar = 20 µm.  
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Figure A.2. Representative pictures of the positive controls for the colocalization quantification. Epidermal 

cells of A. thaliana Col-0 rosette leaves were transiently transformed by particle bombardment with a construct 

overexpressing YFP-UBP1b and mCHERRY-PAB2 or mCHERRY-UBP1b. The cells were imaged by confocal 

microscopy after heat treatment at 40°C for 50’. Depicted are representative maximum projections of stacks. 

Arrow heads indicate colocalizing structures. Bar =20 µm.  
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Table A.3. PCCs of transiently double transformed epidermal leaf cells. Epidermal leaf cells of Col-0 plants 

were transiently double transformed for colocalization quantification. All used constructs overexpressed the 

respective protein under the control of the 35S CaMV promoter. The transformed cells were subjected to heat stress 

treatment at 40°C for 50’ and maximum projections of stacks were generated (confocal microscopy). For each 

combination, ten cells were imaged and three ROIs were analyzed for fluorescent signal overlap using the PCC 

(ImageJ, JACoP). Raw data from Figure 3.7. 

UBP1b 

UBP1b 

UBP1b 

PAB2 

UBP1b 

SKD1- 

RBP47b 

SKD1 

PAB2 

SKD1 

eIF(iso)4E 

SKD1 

DCP1 

SKD1 

DCP5 

SKD1 

UBP1b 

UBP1b tilt 

0.776 0.565 0.789 0.771 0.428 0.654 0.614 0.609 -0.032 

0.783 0.578 0.749 0.703 0.637 0.55 0.706 0.578 0.187 

0.706 0.653 0.747 0.696 0.636 0.555 0.83 0.346 -0.015 

0.538 0.717 0.751 0.752 0.508 0.516 0.575 0.416 0.101 

0.564 0.76 0.72 0.789 0.432 0.586 0.522 0.617 0 

0.551 0.79 0.816 0.826 0.474 0.502 0.452 0.411 0.148 

0.727 0.681 0.717 0.582 0.357 0.499 0.567 0.401 0.015 

0.861 0.723 0.702 0.565 0.484 0.527 0.597 0.333 0.019 

0.684 0.67 0.813 0.481 0.431 0.409 0.395 0.487 -0.032 

0.857 0.63 0.744 0.616 0.502 0.63 0.27 0.399 0.154 

0.834 0.542 0.753 0.62 0.614 0.436 0.42 0.144 0.023 

0.856 0.553 0.823 0.581 0.619 0.404 0.314 0.269 -0.087 

0.633 0.692 0.638 0.449 0.589 0.388 0.526 0.597 -0.061 

0.853 0.717 0.617 0.636 0.584 0.43 0.457 0.481 -0.136 

0.764 0.721 0.623 0.546 0.647 0.495 0.414 0.508 -0.016 

0.686 0.743 0.737 0.685 0.65 0.577 0.482 0.618 0.006 

0.61 0.786 0.679 0.689 0.599 0.496 0.516 0.432 -0.016 

0.837 0.743 0.773 0.58 0.718 0.552 0.399 0.584 0.103 

0.78 0.563 0.694 0.34 0.583 0.682 0.443 0.51 -0.026 

0.8 0.502 0.611 0.614 0.581 0.771 0.536 0.646 0.069 

0.81 0.556 0.705 0.515 0.53 0.74 0.252 0.38 -0.087 

0.719 0.754 0.741 0.809 0.598 0.65 0.476 0.346 0.153 

0.763 0.864 0.87 0.781 0.614 0.575 0.607 0.721 0.043 

0.832 0.84 0.676 0.628 0.598 0.692 0.421 0.337 0.032 

0.83 0.81 0.828 0.645 0.476 0.646 0.678 0.445 0.046 

0.806 0.84 0.59 0.665 0.578 0.571 0.421 0.661 0.147 

0.735 0.811 0.623 0.679 0.535 0.551 0.579 0.366 -0.004 

0.754 0.814 0.806 0.645 0.488 0.425 0.317 0.377 -0.009 

0.823 0.845 0.799 0.626 0.603 0.384 0.422 0.362 0.008 

0.85 0.876 0.854 0.738 0.424 0.443 0.718 0.55 -0.094 
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Table A.4. Statistical analysis of colocalization between transient double transformations. All datasets were 

normally distributed with the exception of UBP1b/UBP1b (Shapiro-Wilk-test). Normally distributed datasets were 

evaluated for significant colocalization differences using the Welch’s two sample t-test. For comparisons with the 

UBP1b/UBP1b dataset, the Wilcoxon-Mann-Whitney-test was used.  

 
UBP1b 

UBP1b 

UBP1

b 

PAB2 

UBP1

b 

SKD1 

RBP47b 

SKD1 

PAB2 

SKD

1 

eIFiso4E 

SKD1 

DCP1 

SKD1 

DCP5 

SKD1 

UBP1b 

UBP1b 

tilt 

UBP1b 

UBP1b 
 0.1296 0.158 

0.000158

4 

1.557

e-08 

2.952e-08 
 

9.247e-
09 

1.41e-09 3.014e-11 

UBP1b 

PAB2 
0.1296  0.379 0.01708 

4.363

e-08 
1.296e-07 

9.362e-0

9 

1.371e-1

0 
2.2e-16 

UBP1b 

SKD1 
0.158 0.379  

0.000496

8 

4.599

e-10 
1.608e-10 1.05e-10 1.05e-10 2.2e-16 

RBP47b 

SKD1 

0.000158

4 

0.0170

8 

0.0004

968 
 

0.000

7267 

0.000936
8 

3.114e-0

5 

6.266e-0

7 
2.2e-16 

PAB2 

SKD1 
1.557e-08 

4.363e-

08 

4.599e-

12 

0.000726

7 
 0.8085 0.07488 0.004401 2.2e-16 

eIFiso4E 

SKD1 
2.952e-08 

1.296e-

07 

1.608e-
10 

0.000936
8 

0.808

5 
 0.1386 0.01245 2.2e-16 

DCP1 

SKD1 
9.247e-09 

9.362e-

09 

1.05e-1
0 3.114e-05 

0.074

88 
0.1386  0.3419 2.2e-16 

DCP5 

SKD1 
1.41e-09 

1.371e-

10 

1.05e-1
0 6.266e-07 

0.004

401 
0.0124 0.3419  2.2e-16 

UBP1b 

UBP1b 

tilt 

3.014e-11 2.2e-16 2.2e-16 2.2e-16 
2.2e-1

6 
2.2e-16 2.2e-16 2.2e-16  
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Table A.5. PCCs of stable lines. Epdermal leaf cells of crossed stable marker lines were imaged by confocal 

microscopy for colocalization quantification. The following lines were used: 35S::YFP-RHA1x35S::PAB2-mRFP, 

35S::DCP5-mTQx35S::mCHERRY-ARA7, and 35S::DCP5-mTQx35S::PAB2-mRFP. Leaves were subjected to 

heat stress treatment at 40°C for 50’ and maximum projections of stacks were generated. Raw data from Figure 

3.11. 

SKD1-GFP 

x 

PABP2-

mRFP 

DCP5-mTQ 

x 

PABP2-

mRFP 

YFP-RHA1 

x 

PABP2-

mRFP 

SKD1-GFP 

x 

mCHERRY-

ARA7 

DCP5-mTQ 

x 

mCHERRY-

ARA7 

SKD1-GFP 

x 

PABP2-mRFP 

tilt 

0.536 0.546 0.222 0.271 0.199 0.014 

0.534 0.409 0.292 0.194 0.115 0.035 

0.646 0.428 0.138 0.159 0.227 0.14 

0.596 0.401 0.299 0.171 0.186 0.172 

0.435 0.463 0.321 0.256 0.121 0.023 

0.544 0.408 0.323 0.296 0.128 -0.136 

0.403 0.389 0.208 0.276 0.121 0.045 

0.545 0.446 0.376 0.416 0.174 0.092 

0.601 0.535 0.341 0.328 0.212 -0.085 

0.423 0.351 0.35 0.297 0.068 0.064 

0.368 0.371 0.495 0.266 0.138 0.008 

0.389 0.385 0.271 0.23 0.088 -0.018 

0.5 0.463 0.15 0.192 0.189 -0.13 

0.568 0.429 0.313 0.269 0.19 0.052 

0.425 0.448 0.228 0.313 0.213 0.068 

0.415 0.34 0.222 0.338 0.057 -0.063 

0.267 0.47 0.368 0.267 0.199 0.033 

0.548 0.43 0.383 0.282 0.072 0.206 

0.578 0.358 0.454 0.243 0.204 -0.014 

0.657 0.374 0.471 0.404 0.102 0.059 

0.679 0.36 0.252 0.247 0.168 0.082 

0.392 0.435 0.39 0.314 0.201 -0.031 

0.464 0.434 0.373 0.266 0.122 -0.043 

0.591 0.435 0.371 0.138 0.149 0.183 

0.459 0.382 0.134 0.384 0.161 -0.017 

0.413 0.485 0.32 0.423 0.22 -0.025 

0.44 0.496 0.394 0.354 0.246 0.007 

0.53 0.416 0.234 0.258 0.094 0.194 

0.406 0.479 0.234 0.274 0.104 0.07 

0.417 0.393 0.318 0.24 0.35 -0.002 
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Table A.6. Statistical analysis of colocalization between the stable lines. All datasets were normally distributed 

(Shapiro-Wilk-test). Significant colocalization differences were tested by the Welch’s two sample t-test. 

 
SKD1x 

PAB2 

DCP5x 

PAB2 

RHA1x 

PAB2 

SKD1x 

ARA7 

DCP5x 

ARA7 

SKD1x 

PAB2 tilt 

SKD1xPAB2  0.001975 5.879e-10 3.666e-13 2.2e-16 2.2e-16 

DCP5xPAB2 0.001975  3.084e-07 2.489e-12 2.2e-16 2.2e-16 

RHA1xPAB2 5.879e-10 3.084e-07  0.179 3.174e-09 2.2e-16 

SKD1xARA7 3.666e-13 2.489e-12 0.179  8.039e-09 2.2e-16 

DCP5xARA7 2.2e-16 2.2e-16 3.174e-09 8.039e-09  3.136e-08 

SKD1/PAB2 tilt 2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16  
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Table A.7. Predicted IDR content within A. thaliana ESCRTIII core, ESCRTIII associated, P-body, and SG 

proteins. A. thaliana ESCRTIII core and associated, P-body and SG proteins were analyzed by DisEMBL and 

GlobPlot for their IDR content (Linding et al., 2003; Linding, 2003). The specific identifiers, protein lengths and 

amino acid (aa) stretches, which were predicted to be disorders, are indicated. Long IDRs (30 or more residues) 

are depicted in bolt and italic. Percentages of IDRs are given in respect to the total length of the analyzed proteins. 

The total number of aa in IDRs or long IDRs are shown in brackets.

 DisEMBL GlobPlot 

 AGI aa loops H-loops disordered region 

E
S

C
R

T
II

I 
co

re
  

VPS20.1 
AT5G 

63880 
243 1-12, 186-243 

1-16, 63-75, 201-

243 
209-219 

VPS24.1 
AT5G 

22950 
229 1-16, 151-160, 190-200 

1-19, 33-43, 51-
62, 67-77, 177-

200 

none 

 

none 

VPS32.1 
AT2G 

19830 
194 

98-105, 125-137, 151-

180 
11-39, 94-105 161-173 

VPS32.2 
AT4G 

29160 
219 

1-11, 116-123, 145-154, 
173-200 

1-17, 36-70, 113-
123, 

178-197 

VPS2.1 
AT2G 

06530 
225 

1-11, 149-160, 178-194, 
201-213 

1-17, 31-42, 50-
59, 80-87, 202-

214 
2-6, 206-213 

VPS2.2 
AT5G 

44560 
243 

1-15, 76-85, 95-102, 
149-157, 173-207 

1-39, 48-56, 74-
86, 93-102, 175-

211 
195-201 

VPS2.3 
AT1G 

03950 
210 1-12, 147-159, 175-200 

1-39, 48-58, 176-
200 

1-10, 180-195 

E
S

C
R

T
II

I 
a

ss
o

ci
a

te
d

  

LIP5 
AT4G 
26750 

421 
20-27, 38-51, 65-80, 91-
106, 119-131, 147-376, 

411-421 

41-52, 146-162, 
167-177, 408-421 

1-6, 70-76, 123-127, 
148-374, 412-419 

SKD1 
AT2G 

27600 
435 

17-29, 74-113, 121-135, 
148-179, 222-229, 234-
248, 261-268, 291-301, 

311-379, 389-400 

73-113, 240-250, 
391-400 

74-112, 168-178, 
237-244, 313-323, 
328-336, 362-379, 

431-435 

VPS46.1 
AT1G 

17730 
203 136-152, 164-187 13-53, 173-191 141-149, 168-178 

VPS46.2 
AT1G 

73030 
203 139-152, 164-188 1-53, 173-191 142-149, 168-178 

VPS60.1 
AT3G 

10640 
235 

1-22, 49-58, 75-89, 149-
163, 174-235 

1-35, 46-61, 220-
235 

9-23, 151-162, 178-

217, 228-235 

VPS60.2 
AT5G 

04850 
272 

1-21, 47-57, 75-89, 149-
169, 188-197, 210-272 

1-33, 40-60 
5-22, 153-164, 216-

257, 265-272 

P
-b

o
d

y
  

DCP1 
AT1G 

08370 
367 

1-17, 64-73, 92-105, 
139-185, 191-300 

1-16, 64-82, 139-
165, 287-300 164-262, 266-334 

DCP2 
AT5G 

13570 
386 

1-23, 31-40, 58-72, 83-
91, 99-114, 127-147, 

203-214, 224-241, 259-
275, 282-370 

1-19, 34-41, 99-
106, 127-144, 

174-181, 203-212, 
263-273, 283-338, 

343-355 

6-19, 131-142, 264-
270, 285-293, 353-

366 

DCP5 
AT1G 

26110 
611 

1-15, 24-31, 38-72, 80-

392, 399-611 

1-16, 38-47, 55-
70, 319-331, 400-

445, 487-571, 
594-611 

3-13, 54-69, 89-264, 

271-305, 320-369, 
374-387, 412-453, 
482-500, 517-532, 

553-611 

VCS 
AT3G 

13300 
1344 

1-107, 115-202, 214-221, 
268-279, 290-306, 317-

364, 384-427, 437-467, 
499-509, 520-535, 553-
573, 580-786, 797-819, 
827-896, 905-917, 945-
954, 1179-1212, 1248-
1260, 1293-1303, 1318-

1326 

1-14, 141-153, 
269-280, 325-343, 
405-417, 582-599, 
706-731, 747-757, 
763-818, 860-870, 
875-894, 945-955, 

966-975, 1046-
1059, 1228-1237 

2-64, 82-112, 117-
127, 139-156, 397-
409, 501-507, 523-
532, 557-567, 583-
602, 626-653, 659-
667, 684-695, 721-
742, 775-781, 802-
810, 838-873, 882-

896, 1180-1193 
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 DisEMBL GlobPlot 

 AGI aa loops H-loops disordered region 

eIF4E1 
AT4G 

18040 
235 1-92, 103-150, 228-235 1-26, 218-226 

4-8, 22-26, 35-61, 
130-143, 227-233 

XRN4 
AT1G 

54490 
947 

11-75, 104-113, 153-166, 
196-207, 217-231, 256-

298, 312-324, 338-351, 
371-378, 413-462, 485-

580, 612-623, 631-655, 
660-749, 763-847, 855-
877, 888-927, 937-947 

8-43, 104-117, 
132-140, 393-444, 
450-465, 719-739, 
821-831, 934-947 

22-51, 59-74, 158-
163, 200-204, 219-
229, 271-288, 422-
439, 523-537, 543-
555, 638-656, 667-
676, 695-704, 719-
728, 767-845, 858-
872, 888-923, 939-

945 

S
G

 

UBP1b 
AT1G 

17370 
419 

22-60, 68-103, 113-151, 
160-190, 211-230, 238-
258, 265-275, 319-360, 

374-389, 394-408 

217-232, 238-257 
30-54, 219-227, 240-
254, 326-358, 377-

384, 401-405 

PAB2 
AT4G 

34110 
629 

1-51, 73-87, 98-148, 
157-169, 188-213, 223-
239, 247-264, 275-296, 
315-333, 338-369, 407-

538, 545-553 

1-19, 75-89, 200-

232, 274-300, 
311-322, 340-360, 
406-422, 615-629 

7-33, 116-121, 160-
164, 250-259, 345-
362, 417-497, 513-

538, 624-629 

RBP47b 
AT3G 

19130 
435 

1-30, 62-109, 120-135, 
145-153, 169-256, 264-
290, 300-365, 388-435 

1-19, 172-180, 
220-257, 375-405 

2-29, 69-79, 171-
182, 202-208, 239-
249, 299-324, 390-

435 

GRP7 
AT2G2

1660 
176 32-57, 68-176 

30-58, 69-78, 85-
98, 157-176 

69-75, 83-174 

RBP45b 
AT1G 

11650 
405 

1-59, 97-106, 123-158, 
176-185, 193-205, 216-

275, 287-304, 326-405 

144-153, 175-226, 
231-242, 248-259, 

389-405 

4-24, 29-54, 125-
132, 144-155, 220-
239, 248-266, 326-

395 

GRP2 
AT4G 

13850 
158 1-33, 40-49, 68-88 

10-20, 71-87, 92-
100 

4-8, 12-24, 42-47, 
76-82, 105-156 
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Figure A.3. Colocalization of ESCRTIII core and associated proteins with SKD1. Epidermal leaf cells were 

transiently transformed. For colocalization analysis of VPS32.1 with SKD1, epidermal leaf cells of the stable 

35S::GFP-SKD1 line were transformed either with a construct overexpressing VPS32.1-mCHERRY or 

mCHERRY-VPS32.1 (row 1-2). For the colocalization of VPS24.1-YFP (row3), VPS2.2-YFP and YFP-VPS2.2 

(row 4-5), and VPS60.2-YFP (row6), Col-0 cells were transiently double transformed with the respective 

ESCRTIII protein and SKD1-mCHERRY. The cells were imaged by confocal microscopy and representative 

maximum projections of stacks are depicted. Arrow heads indicate colocalization with SKD1. Bar = 20 µm. 
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Table A.8. PCCs of ESCRTIII core or associated proteins and UBP1b. Epidermal leaf cells of Col-0 plants 

were transiently double transformed. In addition to the indicated ESCRTIII proteins, the cells were transformed 

with UBP1b in N-terminal fusion with the opposing fluorescent proteins (YFP or mCHERRY). For each 

combination, ten cells were imaged after heat stress and three ROIs were analyzed for fluorescent signal overlap 

using the PCC (ImageJ, JACoP). Raw data from Figure 3.17. 

VPS24.1 VPS32.1 VPS2.2 YFP YFP VPS2.2 VPS46.1 VPS46.2 VPS60.2 LIP5 SKD1-AQ 

0.279 0.181 0.417 0.41 0.345 0.215 0.3 0.344 0.41 

0.254 0.268 0.342 0.086 0.251 0.315 0.277 0.386 0.763 

0.358 0.367 0.438 0.316 0.335 0.338 0.102 0.581 0.626 

0.126 0.178 0.562 0.492 0.608 0.473 0.341 0.115 0.424 

0.185 0.143 0.645 0.416 0.688 0.373 0.32 0.156 0.443 

0.157 0.24 0.424 0.48 0.582 0.453 0.295 0.265 0.476 

0.299 0.181 0.311 0.395 0.536 0.534 0.289 0.272 0.643 

0.139 0.38 0.324 0.393 0.672 0.453 0.297 0.221 0.652 

0.243 0.388 0.181 0.109 0.348 0.46 0.162 0.303 0.604 

0.226 0.309 0.271 0.324 0.363 0.601 0.159 0.311 0.651 

0.207 0.188 0.266 0.261 0.356 0.591 0.384 0.375 0.643 

0.384 0.243 0.398 0.17 0.385 0.622 0.216 0.393 0.569 

0.272 0.267 0.252 0.38 0.241 0.421 0.157 0.341 0.69 

0.15 0.287 0.136 0.362 0.535 0.323 0.144 0.296 0.749 

0.385 0.259 0.24 0.337 0.36 0.312 0.233 0.197 0.765 
0.152 0.428 0.253 0.358 0.453 0.647 0.411 0.396 0.676 
0.175 0.27 0.17 0.362 0.475 0.62 0.375 0.375 0.632 

0.3 0.259 0.275 0.265 0.475 0.65 0.413 0.397 0.602 

0.184 0.19 0.299 0.422 0.485 0.36 0.131 0.197 0.456 

0.201 0.132 0.225 0.42 0.453 0.385 0.495 0.195 0.297 

0.169 0.221 0.296 0.438 0.376 0.327 0.149 0.4 0.385 

0.159 0.248 0.296 0.327 0.255 0.427 0.029 0.376 0.527 
0.22 0.385 0.44 0.44 0.129 0.407 0.115 0.364 0.499 

0.112 0.38 0.534 0.291 0.171 0.39 0.222 0.246 0.545 

0.334 0.205 0.195 0.271 0.419 0.799 0.279 0.33 0.633 
0.23 0.17 0.187 0.309 0.339 0.829 0.185 0.224 0.585 

0.309 0.325 0.107 0.162 0.289 0.815 0.402 0.234 0.513 

0.161 0.273 0.441 0.357 0.497 0.434 0.311 0.231 0.548 
0.21 0.275 0.488 0.511 0.486 0.458 0.461 0.27 0.642 

0.211 0.247 0.495 0.212 0.072 0.468 0.379 0.446 0.708 
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Table A.9. Statistical analysis of colocalization of ESCRTIII core and associated proteins with UBP1b. All 

datasets were normally distributed with the exception of VPS46.2 (Shapiro-Wilk-test). Normally distributed 

datasets were evaluated for significant colocalization differences using the Welch’s two sample t-test. For 

comparisons with the VPS46.2 dataset, the Wilcoxon-Mann-Whitney-test was used. The obtained PCCs were 

compared to the values of the SKD1-mCHERRY/YFP-UBP1b overlap and the negative control YFP-

UBP1b/mCHERRY-UBP1b tilt (Chapter 3.3.2).  
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Table A.10. List of filtered SKD1 interactome candidates.List of proteins, which were identified by LC-MS/MS 

analysis in at least three replicates of one condition of the 35S::GFP-SKD1 samples and not present in any of the 

35S::YFP samples. Names, UniProt Protein IDs and ATG gene identifier are given. The columns SKD1 control 

and SKD1 heat indicate the number of replicates in which the respective protein was identified (0- 3). Annotations 

and short descriptions are based on TAIR annotations and available literature. Proteins were grouped based on 

functional classification. Gray = mitochondria and chloroplast, orange = membrane trafficking, pink = protein 

processing, lilac = RNA metabolism, green = protein folding, no color = others. The column “in other 

interactome” indicates, if an identified SKD1 interactor was found in an A. thaliana interactome of the SG proteins 

CML38 (Lokdarshi et al., 2016), RBP45b (Muthuramalingam et al., 2017) or VPS2.2 (Ibl et al., 2012).  

Protein names/Gene 

names 

Protein 

IDs 
ATG 

SKD1 

control 

SKD1 

heat 
Annotations and descriptions 

In other 

interact

ome 

SKD1 shared interactors 

 F4HY33 
AT1G2

1630 
3 2 

calcium-binding EF hand family 
protein 

 

Formate dehydrogenase, 
mitochondrial, FDH1 

Q9S7E4 
AT5G1

4780 
3 2 

NAD-dependent formate 
dehydrogenase 

 

ADP-ribosylation factor 2-A Q9M1P5 
AT3G6

2290 
3 2 

ARF GTPase family,vesicle 
coating/ uncoting function 

 

26S proteasome non-ATPase 
regulatory subunit 14 

homolog 
Q9LT08 

AT5G2
3540 

3 2 
26S proteasome regulatory subunit, 

putative 
CML38 

Puromycin-sensitive 
aminopeptidase 

F4I3R4 
AT1G6

3770 
3 2 

peptidase M1 family protein, 
proteolysis 

 

 F4HNU6 
AT1G0

6900 
3 2 metalloendopeptidase, cytosol  

VPS18 homolog F4IDS7 
AT1G1

2470 
3 2 

Vps18,CORVET/HOPS  complex, 
endosome to vacuole fusion 

 

NADP-dependent 
glyceraldehyde-3-phosphate 
dehydrogenase,ALDH11A3 

F4INS6 
AT2G2

4270 
3 2 oxidation-reduction processes  

Small nuclear 
ribonucleoprotein F,RUXF 

F4JPK5 
AT4G3

0220 
3 2 mRNA splicing  

Proteasome subunit beta 
type,PBA1 

F4JRY2 
AT4G3

1300 
3 2 

plant caspase-3-like enzyme, ER-
stress, apoptose 

 

DEAD-box ATP-dependent 
RNA helicase 56, UAP56A 

F4JWF3 
AT5G1

1170 
3 2 

RNA helicase, interact with mRNA 
export factors 

CML38 

nuclear transport factor 2 
(NTF2) family protein 

F4K1Y4 
AT5G6

0980 
3 2 

(RRM)-containing protein, 
nucleocytoplasmic transport 

RBP45b, 
VPS2.2 

Serine 
hydroxymethyltransferase 4, 

SHM4 
O23254 

AT4G1
3930 

3 2 L-serine metabolic process CML38 

Superoxide dismutase [Cu-
Zn] 2, chloroplastic,CSD2 

O78310 
AT2G2

8190 
3 2 

zinc superoxide dismutase, 
choloroplast 

 

Reticulon-like protein B5,  
RTNLB5 

O82352 
AT2G4

6170 
3 2 

ER-Golgi trafficking, vesicle 
formation and membrane 

morphogenesis 
 

glutamate-tRNA ligase, 
putative 

O82462 
AT5G2

6710 
3 2 glutamyl-tRNA aminoacylation  

T-complex protein 1 subunit 
alpha, ATTCP-1 

P28769 
AT3G2

0050 
3 2 TCP-1 chaperonine CML38 

Calnexin homolog 1, CNX1 P29402 
AT5G6

1790 
3 2 protein folding, calcium ion binding  

3-oxoacyl-[acyl-carrier-
protein] reductase, 

chloroplastic 
P33207 

AT1G2
4360 

3 2 
fatty acid biosynthetic process, 

oxidation-reduction process 
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Protein names/Gene 

names 

Protein 

IDs 
ATG 

SKD1 

control 

SKD1 

heat 
Annotations and descriptions 

In other 

interact

ome 
Glucose-1-phosphate 

adenylyltransferase small 
subunit, chloroplastic, APS1 

P55228 
AT5G4

8300 
3 2 glycogen biosynthetic process  

Vacuolar protein sorting-
associated protein 41 

homolog, VPS41 
P93043 

AT1G0
8190 

3 2 
Vps41,HOPS  complex, endosome 

to vacuole fusion 
 

14-3-3-like protein GF14 
omega, GRF2 

Q01525 
AT1G7

8300 
3 2 

post golgi protein trafficking, PIN 
polarity establishment 

 

Probable glycerol-3-
phosphate acyltransferase 

8,GPAT8 
Q5XF03 

AT4G0
0400 

3 2 
CDP-diacylglycerol biosynthetic 

process 
 

COP9 signalosome complex 
subunit 5b, CSN5B 

Q8LAZ7 
AT1G2

2920 
3 2 

COP9 signalosome,regulation of 
photomorphogensis, cell cycle 

 

Rhodanese-like/PpiC 
domain-containing protein 12 

Q93WI0 
AT5G1

9370 
3 2 cytokinin response  

ABC transporter G family 
member 22, ABCG22 

Q93YS4 
AT5G0

6530 
3 2 water transport  

Tetratricopeptide repeat 
(TPR)-like superfamily 

protein 
Q93ZI7 

AT5G3
5430 

3 2   

DEAD-box ATP-dependent 
RNA helicase 2, eIF4AIII 

Q94A52 
AT3G1

9760 
3 2 RNA helicase,  

ATP-dependent Clp protease 
proteolytic subunit 4, 
chloroplastic, CLPP4 

Q94B60 
AT5G4

5390 
3 2 caseinolytic protease, chloroplast  

ZKT Q94BS2 
AT1G5

5480 
3 2 binding / protein binding  

Copper transport protein, 
ATX1 

Q94BT9 
AT1G6

6240 
3 2 

copper chaperone,  metal ion 
homeostasis 

 

Pentatricopeptide repeat-
containing protein , 

mitochondrial 
Q9C977 

AT1G8
0270 

3 2 mitochondrial RNA editing  

importin beta-2, putative Q9FJD4 
AT5G5

3480 
3 2 protein import to nucleus  

CBS domain-containing 
protein CBSCBSPB1 

Q9FMV
3 

AT5G6
3490 

3 2 integral membrane component  

WEB family protein, 
chloroplastic 

Q9LFE4 
AT5G1

6730 
3 2 microtubule-associated  

BAK1-ASSOCIATING 
RECEPTOR-LIKE KINASE 

1, BARK1 
Q9LK43 

AT3G2
3750 

3 2 
protein kinase family protein, cell 

surface receptor 
 

Peroxiredoxin-2F, 
mitochondrial, PRXIIF 

Q9M7T0 
AT3G0

6050 
3 2 cell redox homeostasis  

Fructose-1,6-bisphosphatase, 
cytosolic 

Q9MA79 
AT1G4

3670 
3 2 carbon metabolism  

Delta-aminolevulinic acid 
dehydratase 1, chloroplastic, 

HEMB1 
Q9SFH9 

AT1G6
9740 

3 2 chlorophyll biosynthesis.  

26S proteasome non-ATPase 
regulatory subunit 8 homolog 

A, RPN12A 

Q9SGW
3 

AT1G6
4520 

3 2 
ubiquitin mediated 26 proteasome 

degradation, 
 

SOUL heme-binding family 
protein 

Q9SHG8 
AT1G1

7100 
3 2 antioxidant pathway  

TPX2 Q9SJ62 
AT2G3

5880 
3 2   

CRS2-associated factor 1, 
chloroplastic, CAF1 

Q9SL79 
AT2G2

0020 
3 2 

RNA binding, mRNA processing in 
chloroplast 

 

SEC13A homolog Q9SRI1 
AT3G0

1340 
3 2 

COPII vesicle budding, protein 
transport 

 

ISTL1 Q9XIC8 
AT1G3

4220 
3 2 

Regulator of SKD1 activity, 
ESCRTIII associated 

 

 Q8VYF2 
AT4G1

5790 
2 3   
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Protein names/Gene 

names 

Protein 

IDs 
ATG 

SKD1 

control 

SKD1 

heat 
Annotations and descriptions 

In other 

interact

ome 

Phospholipase A I F4HX14 
AT1G6

1850 
2 3 non-specific lipase  

Protochlorophyllide 
reductase C, chloroplastic, 

POR C 
F4I2F8 

AT1G0
3630 

2 3 chlorophyll biosynthetic processes  

Alanine--tRNA ligase,  
ALATS 

F4I4Z2 
AT1G5

0200 
2 3 alanyl-tRNA aminoacylation CML38 

 F4IDE8 
AT1G7

2640 
2 3   

alpha/beta-Hydrolases 
superfamily protein 

F4J447 
AT3G2

3600 
2 3 hydrolase activity  

E3 ubiquitin-protein ligase, 
KEG 

F4K3Z6 
AT5G1

3530 
2 3 

RING E3 ligase, promotes ubiquitin 
dependent 26S proteasome 

pathway. 
 

26S proteasome non-ATPase 
regulatory subunit 12 

homolog A, EMB2107 
F4KFD7 

AT5G0
9900 

2 3 proteasome complex regulation  

2,3-bisphosphoglycerate-
independent 

phosphoglycerate mutase 1, 
PGM1 

O04499 
AT1G0

9780 
2 3 glucose catabolic process  

Glycine--tRNA ligase 1, 
mitochondrial, GLYRS-1 

O23627 
AT1G2

9880 
2 3 glycine-tRNA ligase  

Metacaspase-4, AMC4 O64517 
AT1G7

9340 
2 3 

stress-induced programmed cell 
death (PCD), metacaspase 

 

Aspartate aminotransferase, 
mitochondrial, ASP1 

P46643 
AT2G3

0970 
2 3 biosynthetic process, mitochondrion  

Aldehyde dehydrogenase 
family 2 member C4, 

ALDH2C4 
Q56YU0 

AT3G2
4503 

2 3 oxidation-reduction process  

serine/threonine protein 
phosphatase 2A regulatory 

subunit B gamma, 
BGAMMA 

Q8VZQ4 
AT5G2

8900 
2 3 

Calcium-binding EF-hand family 
protein 

 

Pyruvate dehydrogenase E1 
component subunit alpha-2, 

mitochondrial, IAR4 
Q8H1Y0 

AT1G2
4180 

2 3 acetyl-CoA biosynthetic process  

COP9 signalosome complex 
subunit 4, CSN4 

Q8L5U0 
AT5G4

2970 
2 3 COP9 signalosome complex  

S-formylglutathione 
hydrolase, SFGH 

Q8LAS8 
AT2G4

1530 
2 3 formaldehyde catabolic process  

Probable clathrin assembly 
protein 

Q8S9J8 
AT4G3

2285 
2 3 

adaptor protein , membrane 
trafficking 

 

Beta carbonic anhydrase 4, 
BCA4 

Q94CE4 
AT1G7

0410 
2 3 regulation of stomatal movement  

Ferritin/ribonucleotide 
reductase-like family protein 

Q94JV2 
AT3G2

7050 
2 3   

Nucleosome assembly 
protein 1, NAP1 

Q94K07 
AT5G5

6950 
2 3 nucleosome assembly  

Peroxisome biogenesis 
protein 5, PEX5 

Q9FMA
3 

AT5G5
6290 

2 3 peroxisomal protein translocation  

RAN GTPase-activating 
protein 1, RANGAP1 

Q9LE82 
AT3G6

3130 
2 3 

RAN GTPase activator,  involved in 
nuclear import 

 

Alpha-glucan phosphorylase 
1, PHS1 

Q9LIB2 
AT3G2

9320 
2 3 starch metabolism, plastidic  

Developmentally-regulated 
G-protein 1, 

Q9LQK0 
AT1G1

7470 
2 3 

SMALL GTPase, associates with 
Heat Shock proteins and ribosomes 

 

Obg-like ATPase 1, ENGD-1 Q9SA73 
AT1G3

0580 
2 3 

GTP binding, negativ regulator of 
salt stress response 

 

photosystem II 5 kD protein Q9SYE2 
AT1G5

1400 
2 3 photosynthesis  

Outer envelope pore protein 
16-1, chloroplastic, OEP161 

Q9ZV24 
AT2G2

8900 
2 3 

protein transmembrane transporter,  
import into chloroplast stroma 
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Protein names/Gene 

names 

Protein 

IDs 
ATG 

SKD1 

control 

SKD1 

heat 
Annotations and descriptions 

In other 

interact

ome 
Glyoxylate/succinic 

semialdehyde reductase 1 
Q9LSV0 

AT3G2
5530 

3 3 phosphogluconate dehydrogenase  

Probable UTP--glucose-1-
phosphate uridylyltransferase 

2 
Q9M9P3 

AT3G0
3250 

3 3 UDP-glucose pyrophosphorylase  

haloacid dehalogenase-like 
hydrolase family protein, 

chloroplastic 
Q8VZ10 

AT1G5
6500 

3 3 thylakoid membrane protein  

DNAJ heat shock protein, 
putative 

Q0WN5
4 

AT1G8
0030 

3 3 
Molecular chaperone Hsp40/DnaJ 

family protein 
 

DnaJ protein ERDJ2B F4JIN3 
AT4G2

1180 
3 3 

DNAJ heat shock N-terminal 
domain-containing protein, protein 

folding 
 

disease resistance protein 
(TIR-NBS class), putative, 

RLM3 
Q9FT77 

AT4G1
6990 

3 3   

Organellar oligopeptidase A, 
chloroplastic/mitochondrial, 

OOP 
Q94AM1 

AT5G6
5620 

3 3 metalloprotease  

DNA damage-binding 
protein 1a, DDB1A 

Q9M0V3 
AT4G0

5420 
3 3 DNA damage repair  

Heat shock 70 kDa protein 
14, HSP70-14 

Q9S7C0 
AT1G7

9930 
3 3 protein folding/chaperone  

 F4HZS8 
AT1G2

2060 
3 3   

S-adenosyl-L-methionine-
dependent methyltransferases 

superfamily protein 
Q9ZVU4 

AT1G5
5450 

3 3   

myosin-related, SYP41 
interactor, TNO1 

F4I9A1 
AT1G2

4460 
3 3 

putative tethering factor,interacts 
with SYP41, vacuolar 

trafficking/HOPS 
 

threonyl-tRNA synthetase,  
mitochondrion and 

chloroplast, EMB2761 
F4IFC5 

AT2G0
4842 

3 3   

14-3-3-like protein GF14 mu, 
GRF9 

F4IP53 
AT2G4

2590 
3 3 PIN polarity establishment  

Chaperonin CPN60-like 1, 
mitochondrial, HSP60-2 

F4IVR2 
AT2G3

3210 
3 3   

Phosphoinositide 
phospholipase C, PLC2 

F4IX90 
AT3G0

8510 
3 3 phospholipase C, ER stress response  

Magnesium-protoporphyrin 
IX monomethyl ester cyclase, 

chloroplastic, CRD1 
F4J0U9 

AT3G5
6940 

3 3   

Clustered mitochondria 
protein homolog 

F4J5S0 
AT3G5

2140 
3 3 

tetratricopeptide repeat (TPR)-
containing protein, 

 

Ubiquitin carboxyl-terminal 
hydrolase, UBP12 

F4K3X1 
AT5G0

6600 
3 3 

deubiquitination, involved in JA 
signaling and circadian clock 

regulation 
 

pleckstrin homology (PH) 
domain-containing protein 

F4JNE4 
AT4G1

7140 
3 3   

Myosin-6, MYA2 F4K7C5 
AT5G4

3900 
3 3   

1-deoxy-D-xylulose 5-
phosphate reductoisomerase, 

chloroplastic, DXR 
F4K7T6 

AT5G6
2790 

3 3 
isopentenyl diphosphate 

biosynthetic process 
 

TRANSDUCIN/WD40-2 
PROTEIN, TWD40-2 

F4KIH8 
AT5G2

4710 
3 3   

T-complex protein 1 subunit 
epsilon 

O04450 
AT1G2

4510 
3 3 TCP-1 chaperonine RBP45b 

Biotin carboxylase, 
chloroplastic, CAC2 

O04983 
AT5G3

5360 
3 3 fatty acid biosynthetic process CML38 

NADPH-dependent 
thioredoxin reductase 3, 

NTRC 
O22229 

AT2G4
1680 

3 3 cell redox homeostasis, chloroplast  
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Protein names/Gene 

names 

Protein 

IDs 
ATG 

SKD1 

control 

SKD1 

heat 
Annotations and descriptions 

In other 

interact

ome 
Zinc-metallopeptidase, 
peroxisomal, PXM16 

O22941 
AT2G4

1790 
3 3 peptidase M16 family protein  

Calmodulin-binding 
transcription activator 5, 

CMTA5 
O23463 

AT4G1
6150 

3 3 Calcium transcription activator  

KINESIN LIGHT CHAIN-
RELATED 1, KLCR1, 

O81629 
AT4G1

0840 
3 3 microtubule, calcium sensing  

Phosphomethylpyrimidine 
synthase, chloroplastic, THIC 

O82392 
AT2G2

9630 
3 3 thiamine biosynthesis  

Phosphoglycolate 
phosphatase 1B, 

chloroplastic, PGLP1B 
P0DKC4 

AT5G3
6790 

3 3 
Haloacid dehalogenase-like 

hydrolase (HAD) superfamily 
protein 

 

Chaperone protein dnaJ 2, 
ATJ2 

P42825 
AT5G2

2060 
3 3 

chaperone, protein folding, response 
to heat 

 

26S proteasome non-ATPase 
regulatory subunit 4 

homolog, RPN10 
P55034 

AT4G3
8630 

3 3 proteasome subunit, autophagy  

60S ribosomal protein L10a-
3, RPL10AC 

P59231 
AT5G2

2440 
3 3 60S ribosomal protein L10A  

Aquaporin PIP1-1 P61837 
AT3G6

1430 
3 3 

transmembrane water transport at 
PM, transport ESCRT-dependent 

 

Thylakoid lumenal 19 kDa 
protein, chloroplastic 

P82658 
AT3G6

3540 
3 3 calcium-ion binding, thylakoid  

ATP synthase protein MI25, 
AtMg00640 

Q04613 
ATMG
00640 

3 3 itochondrial ATP synthase  

Aquaporin PIP1-3 Q08733 
AT1G0

1620 
3 3 

transmembrane water transport at 
PM 

 

Serine/threonine-protein 
phosphatase  regulatory 
subunit A alpha isoform, 

RCN1 

Q38845 
AT1G2

5490 
3 3 

role in PIN polarity by regulation 
vesicle trafficking of PIN 

 

Myosin-5, XI-1 Q39160 
AT1G1

7580 
3 3 motor protein  

Cell division protein FtsZ 
homolog 1, chloroplastic, 

FTSZ1 
Q42545 

AT5G5
5280 

3 3 cell cycle, chloroplast fission  

Phosphoenolpyruvate 
carboxylase 2, PPC2 

Q5GM68 
AT2G4

2600 
3 3 carbon fixation RBP45b 

dihydrolipoamide S-
acetyltransferase, putative, 

mitochondrial 
Q5M729 

AT1G5
4220 

3 3 pyruvate dehydrogenase  

Fe-S cluster assembly factor 
HCF101, 

chloroplastic,HCF101 
Q6STH5 

AT3G2
4430 

3 3 chloroplast scaffold protein  

Aldehyde dehydrogenase 
family 3 member F1, 

ALDH3F1 
Q70E96 

AT4G3
6250 

3 3 aldehyde metabolic processes  

T-complex protein 1 subunit 
gamma 

Q84WV
1 

AT5G2
6360 

3 3 TCP-1 chaperonine CML38 

Monothiol glutaredoxin-S16, 
chloroplastic, GRXS16 

Q8H7F6 
AT2G3

8270 
3 3 calcium transporter chloroplast  

sodium/calcium exchanger 
family protein 

Q8L636 
AT1G5

3210 
3 3 Calcium homeostasis  

TCP-1/cpn60 chaperonin 
family protein 

Q9M888 
AT3G0

2530 
3 3 TCP-1 chaperonine 

CML38, 
RBP45b 

Thioredoxin-like 2-2, 
chloroplastic 

Q8LCT3 
AT4G2

9670 
3 3 cell redox homeostasis  

 Q8VZ74 
AT5G6

6470 
3 3   

elongation factor P (EF-P) 
family protein, chloroplast, 

Q8VZW
6 

AT3G0
8740 

3 3 elongation factor chloroplast  

MA3 domain-containing 
protein 

Q8W4Q
4 

AT4G2
4800 

3 3 MA3 domain-containing protein  
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Protein names/Gene 

names 

Protein 

IDs 
ATG 

SKD1 

control 

SKD1 

heat 
Annotations and descriptions 

In other 

interact

ome 
V-type proton ATPase 
subunit a3, VHA-a3 

Q8W4S4 
AT4G3

9080 
3 3 vacuolar proton transport  

Protein VACUOLELESS1, 
VCL1 

Q93VQ0 
AT2G3

8020 
3 3 

CORVET/HOPS  complex, late 
endosome to tonoplast 

transport/fusion 
 

GDP-mannose 3,5-epimerase Q93VR3 
AT5G2

8840 
3 3 L-ascorbic acid biosynthetic process  

Coatomer subunit delta Q93Y22 
AT5G0

5010 
3 3 protein transport, COPI vesicles  

DEAD-box ATP-dependent 
RNA helicase 38, LOS4 

Q93ZG7 
AT3G5

3110 
3 3 

DEAD-box RNA Helicase, nuclear 
envelope and cytosol,mRNA export 

from nucleus 
 

Chaperonin CPN60-like 2, 
mitochondrial, HSP60-3A 

Q93ZM7 
AT3G1

3860 
3 3 chaperonin, putative  

Phosphomethylethanolamine 
N-methyltransferase, NMT2 

Q944H0 
AT1G4

8600 
3 3 

phosphatidylcholine biosynthetic 
process 

CML38 

Multicopper oxidase LPR2 Q949X9 
AT1G7

1040 
3 3 copper ion binding  

TCP-1 chaperonine, putative Q94K05 
AT3G0

3960 
3 3 TCP-1 chaperonine RBP45b 

30S ribosomal protein, 
putative 

Q94K97 
AT5G2

4490 
3 3   

Plasma membrane-associated 
cation-binding protein 

1,PCAP1 
Q96262 

AT4G2
0260 

3 3 
plasmamebrane associated, binds 

calmodulin 
 

Mitochondrial 
dicarboxylate/tricarboxylate 

transporter DTC 
Q9C5M0 

AT5G1
9760 

3 3 mitochondrial carrier protein  

myosin heavy chain-related Q9C7V7 
AT1G6

4330 
3 3   

DNA helicase, putative Q9FJW0 
AT5G6

7630 
3 3 transcription  

TIM-barrel signal 
transduction 

protein,chloroplast 
Q9FJZ7 

AT5G6
6420 

3 3   

Magnesium-chelatase subunit 
ChlH, chloroplastic, GUN5 

Q9FNB0 
AT5G1

3630 
3 3 

magnesium chelatase, plastid-to-
nucleus signal transduction. 

 

Translation factor GUF1 
homolog, chloroplastic 

Q9FNM
5 

AT5G0
8650 

3 3 translation elongation  

6-phosphogluconate 
dehydrogenase, 

decarboxylating 3 

Q9FWA
3 

AT3G0
2360 

3 3 peroxisomal dehydrogenase CML38 

Chaperonin 60 subunit beta 
2, chloroplastic, CPN60B2 

Q9LJE4 
AT3G1

3470 
3 3 chaperonin, putative  

V-type proton ATPase 
subunit d1,VHA-d1 

Q9LJI5 
AT3G2

8710 
3 3 

ATPase, V0/A0 complex, subunit 
C/D 

 

26S proteasome non-ATPase 
regulatory subunit 3 homolog 

A, RPN3A 
Q9LNU4 

AT1G2
0200 

3 3 26S proteasom component  

Enhancer of mRNA-
decapping protein 4, VCS 

Q9LTT8 
AT3G1

3300 
3 3 P-body, decapping 

CML38, 
RBP45b 

T-complex protein 1 subunit 
delta 

Q9LV21 
AT3G1

8190 
3 3 TCP-1 chaperonine 

CML38, 
RBP45b 

26S protease regulatory 
subunit S10B homolog B, 

RPT4B 

Q9MAK
9 

AT1G4
5000 

3 3 26S proteasom component  

6-phosphofructo-2-
kinase/fructose-2,6-

bisphosphatase, FKFBP 
Q9MB58 

AT1G0
7110 

3 3 photosynthetic carbon metabolism  

Serine/threonine-protein 
kinase STN7, chloroplastic, 

STN7 
Q9S713 

AT1G6
8830 

3 3 kinase/ protein kinase  

Inosine-5-monophosphate 
dehydrogenase 2 

Q9SA34 
AT1G1

6350 
3 3 aldolase TIM barrel protein CML38 
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Protein names/Gene 

names 

Protein 

IDs 
ATG 

SKD1 

control 

SKD1 

heat 
Annotations and descriptions 

In other 

interact

ome 
Alpha-glucan water dikinase 

1, chloroplastic, SEX1 
Q9SAC6 

AT1G1
0760 

3 3 starch metabolism/degradation  

AP-4 complex subunit mu, 
AP4M 

Q9SB50 
AT4G2

4550 
3 3 

clathrin adaptor complex, vacuolar 
sorting of storage proteins 

 

Methylenetetrahydrofolate 
reductase 1, MTHFR1 

Q9SE60 
AT3G5

9970 
3 3 methionine biosynthetic process  

TCP-1/cpn60 chaperonin 
family protein 

Q9SF16 
AT3G1

1830 
3 3 TCP-1 chaperonine CML38 

DEK domain-containing 
chromatin associated protein 

Q9SMM
8 

AT3G4
8710 

3 3 GTP binding / RNA binding  

Elongation factor Tu, 
mitochondrial, TUFA 

Q9ZT91 
AT4G0

2930 
3 3  CML38 

SKD1 control interactors 

Protein names/Gene 

names 

Protein 

Ids 
ATG 

SKD1 

control 

SKD1 

heat 
Annotations and descriptions 

In other 

interact

ome 

Spactacsin carboxy terminus 
protein 

F4JW21 
AT4G3

9420 
3 0 spatacsin carboxy-terminus protein  

Kinesin-like protein KCA2 Q9FKP4 
AT5G6

5460 
3 0 motorprotein  

eukaryotic translation 
initiation factor 4B1, EIF4B1 

Q9LIN5 
AT3G2

6400 
3 0 translation initiation  

transcription elongation 
factor protein 

(computational), mRNA 
binding 

F4J0L7 
AT3G5

0370 
3 1   

semialdehyde dehydrogenase 
family protein 

Q8VYI4 
AT1G1

4810 
3 1 

lysine and threonine/methionine 
biosynthesis 

 

Phosphatidylinositol 4-kinase 
alpha 1, PI4KA1 

Q9SXA1 
AT1G4

9340 
3 1 

phosphatidylinositol 
phosphorylation 

 

Phosphoglycerate kinase F4I3L1 
AT1G5

6190 
3 1 glycolytic process  

Eukaryotic translation 
initiation factor 3 subunit M 

F4J2B4 
AT3G0

2200 
3 1 proteasome family protein  

DNAJ heat shock N-terminal 
domain-containing protein 

F4J6A8 
AT3G1

1450 
3 1 putative Hsp40  

V-type proton ATPase 
subunit B2 

F4JTQ0 
AT4G3

8510 
3 1 vacuolar transporter  

NAD(P)H-quinone 
oxidoreductase subunit M, 

chloroplastic, ndhM 
Q2V2S7 

AT4G3
7925 

3 1 
NADH dehydrogenase complex 

(plastoquinone) assembly 
 

AP-2 complex subunit alpha-
2,ALPHAC-AD 

Q8LPK4 
AT5G2

2780 
3 1 

adaptor protein complex, 
endocytosis, vesicle transport 

 

S-adenosyl-L-methionine-
dependent tRNA 4-

demethylwyosine synthase 
Q8RXN5 

AT1G7
5200 

3 1 tRNA processing, mitochondrion  

LINC3 (LITTLE NUCLEI3) Q9CA42 
AT1G6

8790 
3 1 nulcear lamina regulation  

Bidirectional sugar 
transporter SWEET11 

Q9SMM
5 

AT3G4
8740 

3 1 sugar transport at pm and tonoplast  

SKD1 heat interactors 

Protein names/Gene 

names 

Protein 

Ids 
ATG 

SKD1 

control 

SKD1 

heat 
Annotations and descriptions 

In other 

interact

ome 

RNA recognition motif 
(RRM)-containing protein 

F4J5A9 
AT3G2

3900 
0 3 RNA binding  

Myosin-14, XI-H F4JM19 
AT4G2

8710 
0 3 motor protein,  

17.6 kDa class II heat shock 
protein, HSP17.6 

P29830 
AT5G1

2020 
0 3 chaperone  
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Protein names/Gene 

names 

Protein 

IDs 
ATG 

SKD1 

control 

SKD1 

heat 
Annotations and descriptions 

In other 

interact

ome 
Calmodulin-like protein 10, 

CML10 
P30187 

AT2G4
1090 

0 3 
calmodulin-like calcium-binding 

protein 
 

23.6 kDa heat shock protein, 
mitochondrial, HSP23.6 

Q96331 
AT4G2

5200 
0 3 chaperone  

15.7 kDa heat shock protein, 
peroxisomal, HSP15.7 

Q9FHQ3 
AT5G3

7670 
0 3 

HSP20-like chaperones superfamily 
protein, response to heat stress 

 

17.8 kDa class I heat shock 
protein, HSP17.8 

Q9LNW
0 

AT1G0
7400 

0 3 
HSP20-like chaperones superfamily 

protein, response to heat stress 
 

UDP-glycosyltransferase 
85A2, UGT85A2 

F4I1C6 
AT1G2

2360 
1 3 metabolic processes  

leucine-rich repeat protein 
kinase, putative 

F4IB63 
AT1G5

1805 
1 3 kinase activity  

Jacalin-related lectin 34, 
JAL34 

O04310 
AT3G1

6460 
1 3   

SAP domain-containing 
protein 

O65655 
AT4G3

9680 
1 3 DNA binding  

Peptidyl-prolyl cis-trans 
isomerase CYP18-4 

Q42406 
AT4G3

4870 
1 3 

cyclophilins, including roles as 
chaperones 

 

Flotillin-like protein 1, 
FLOT1 

Q501E6 
AT5G2

5250 
1 3 

hypoxia response, membrane 
invagination, endocytosis 

 

Phosphoethanolamine N-
methyltransferase 3, NMT3 

Q9C6B9 
AT1G7

3600 
1 3 

phosphatidylcholine biosynthetic 
process 

 

Proline-rich receptor-like 
protein kinase PERK15, 

Q9C821 
AT1G5

2290 
1 3 

protein kinase family protein,  
eIF2α phosphorylation 

 

phosphatidylinositol 3-kinase 
complex, chloroplast 

Q9LPK9 
AT1G2

1500 
1 3   

fructose-bisphosphate 
aldolase, putative 

Q9SJQ9 
AT2G3

6460 
1 3 gluconeogenesis  

VPS46.2 Q9SSM4 
AT1G7

3030 
1 3 

Regulator of SKD1 activity, 
ESCRTIII associated component 

VPS2.2 

 

 

Figure A.4. Colocalization of membrane trafficking candidates with mCHERRY-SKD1-AQ. Epidermal A. 

thaliana Col-0 cells were transiently transformed with a construct overexpressing an SKD1 interactome candidate 

in fusion with YFP and a construct overexpressing (UBQ10 promotor) mCHERRY-SKD1-AQ. Cells were imaged 

by confocal microscopy and representative maximum projections of stacks are depicted. Arrow heads indicate 

colocalizing structures. Bar = 20 µm. 
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Figure A.5. Colocalization of RNA metabolism candidates with mCHERRY-SKD1-AQ. Epidermal A. 

thaliana Col-0 cells were transiently double-transformed and imaged as described in Figure legend Figure A.4. 

Arrow heads indicate co-localizing structures. Bar = 20 µm. 
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Table A.11. Results of SKD1 interactome Y2H assays. Constructs expressing SKD1 in fusion with GAL4-BD 

and an interactome candidate in fusion with the GAL4-AD were transformed in yeast. Colonies were transferred 

to plates selecting for successful double transformation (SD-LW) as a control and onto plates with the interaction 

medium (SD-LWH). Colony growth was evaluated after 9-11 days on SD-LWH plates without 3-AT since no 

auto-activation was detected for the negative control (SKD1 versus GFP). X indicates colony growth. The majority 

of combinations was tested in three replicates (xxx) over three sets. VPS18, UBP12 and RRM were tested in two 

sets with three and six biological replicates. SEC13A and eIF4B1 were tested in one set with nine biological 

replicates. The lowest number of colony growth among the positive controls was observed for LIP5 (2). All 

combinations, which showed the same or higher number of growth on the interaction medium, were considered 

positive (gray background). Pictures of the evaluated plates are documented in the laboratory journal number IV, 

pages 103-104, 117, and 122, H. Wolff, AG Hülskamp, University of Cologne.  

GAL4-

BD 

GAL4-

AD 
SET 1 day 10 SET 2 day 9 SET 3 day 11 total 

pAS pACT 
SD-

LW 

SD-LWH 

0mM 

SD-

LW 

SD-LWH 

0mM 
SD-LW 

SD-LWH 

0mM 

SD-

LW 

SD-LWH 

0mM 

SKD1 LIP5 xxx x xxx 0 xxx x 9 2 

SKD1 
VPS32.

1 
xxx xx xxx 0 xxx x 9 3 

SKD1 
VPS32.

2 
xxx xxx xxx xxx xxx xxx 9 9 

SKD1 
VPS60.

1 
xxx xx xxx xxx xxx xx 9 7 

SKD1 
VPS60.

2 
xxx x xxx xx xxx xxx 9 8 

SKD1 GFP xxx 0 xxx 0 xxx 0 9 0 

SKD1 VPS18 n.d. n.d. xxx x xxxxxx xxx 9 4 

SKD1 GRF2 xxx 0 xxx 0 xxx x 9 1 

SKD1 GRF9 xxx 0 xxx 0 xxx 0 9 0 

SKD1 PIP1-1 xxx xx xxx x xxx xxx 9 6 

SKD1 
SEC13

A 
n.d. n.d. n.d. n.d. 

xxxxxx

xxx 
xx 9 2 

SKD1 FLOT1 xxx x xxx 0 xxx xxx 9 4 

SKD1 ISTL1 xxx xx xxx xxx xxx xx 9 7 

SKD1 eIF4B1 n.d. n.d. n.d. n.d. 
xxxxxx

xxx 
0 9 0 

SKD1 
UAP56

A 
xxx 0 xxx x xxx 0 9 1 

SKD1 LOS4 xxx 0 xxx 0 xxx 0 9 0 

SKD1 CML10 xxx xx xxx 0 xxx 0 9 2 

SKD1 UBP12 n.d. n.d. xxx x xxxxxx xxx 9 4 

SKD1 RUXF xxx 0 xxx 0 xxx 0 9 0 

SKD1 RRM n.d. n.d. xxx 0 xxxxxx x 9 1 

SKD1 NTF2 xxx 0 xxx 0 xxx 0 9 0 
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Table A.12. Results of SKD1 interactome LUMIER assay. Constructs expressing SKD1 in fusion with ProtA 

(pTREX) and an interactome candidate in fusion with the Renilla luciferase (pcDNA3) were transfected in 

HEK293TN cells. After 48 h, total proteins were extracted from the cells and the Relative Luminescence Intensity 

(RLI) was measured (Input). Afterwards, cell lysates were incubated with α-ProtA magnetic beads, washed and 

pulldown RLI was measured. All combinations were tested in at least two sets with at least two technical pulldown 

replicates. As a negative control, cells were co-transfected with SKD1-ProtA and unfused Renilla luciferase. As 

positive controls, SKD1-ProtA was co-transfected with VPS32.1, VPS60.1, and LIP5 in fusion with Renilla. 

Further, the combination TTG1-ProtA with GL3-Renilla was included in one set to exclude systemic problems. A 

combination was considered to interact if the measured RLI was 1.5 times higher than the background (marked by 

gray background).  

 
Relative Luminesence Intensity [RLI]   

SET1 SET2 SET3   

ProtA Renilla Input Pulldown Input Pulldown Input Pulldown total 

pTREX pcDNA3 
1:10 

diluted 
rep1 rep2 rep3 

1:10 
diluted 

rep1 rep2 
1:10 

diluted 
rep1 rep2 

Mean 
RLI 

fold 
background 

SKD1 VPS32.1 1330 241 242 240 1135 235 232 n.d. n.d. n.d. 238 0,98 

SKD1 VPS60.1 3504 260 265 261 1397 233 233 n.d. n.d. n.d. 250 1,03 

SKD1 LIP5 1585 244 244 243 1417 237 239 n.d. n.d. n.d. 241 1,00 

SKD1 wo 2422 238 239 237 3489 230 231 4724 264 258 242 1,00 

SKD1 VPS18 497 242 245 250 674 238 240 n.d. n.d. n.d. 243 1,00 

SKD1 GRF2 41878 547 618 624 n.d. n.d. n.d. 62279 801 822 682 2,81 

SKD1 GRF9 827 243 239 n.d. 1006 230 230 n.d. n.d. n.d. 236 0,97 

SKD1 PIP1-1 3286 264 267 269 2911 230 239 n.d. n.d. n.d. 254 1,05 

SKD1 SEC13A 725 250 247 250 1137 236 237 n.d. n.d. n.d. 244 1,01 

SKD1 FLOT1 2272 289 292 274 1513 236 235 n.d. n.d. n.d. 265 1,09 

SKD1 ISTL1 864 241 239 245 1268 235 235 n.d. n.d. n.d. 239 0,99 

SKD1 eF4B1 514 235 235 242 1100 230 231 n.d. n.d. n.d. 235 0,97 

SKD1 UAP56A 16979 243 247 261 34213 244 242 n.d. n.d. n.d. 247 1,02 

SKD1 LOS4 3186 428 420 442 7311 395 399 13943 559 634 468 1,93 

SKD1 CML10 1354 239 238 237 3194 235 237 n.d. n.d. n.d. 198 0,82 

SKD1 UBP12 3222 535 585 587 937 1126 1206 6678 932 868 834 3,44 

SKD1 RUXF 1011 277 283 273 2297 306 319 n.d. n.d. n.d. 292 1,20 

SKD1 RRM 520 240 236 236 519 255 232 n.d. n.d. n.d. 240 0,99 

SKD1 NTF2 3335 245 242 243 2833 233 234 n.d. n.d. n.d. 239 0,99 

TTG1 GL3 n.d. n.d. n.d. n.d. 2205 6463 6209 n.d. n.d. n.d. 6336 26,14 
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Figure A.6. Test of SKD1 expression and purification from HEK293TN cells by SDS-PAGE and 

immunoblotting. Human HEK293TN cells were transfected with a construct expressing YFP-SKD1 (pTREX-

YFP-SKD1). After 48 h, transfected and untransfected cells (as a control) were lysed and cell debris were removed 

by centrifugation (15000 g for 15’). The generated pellets (P) were dissolved in the same volumes as the 

supernatants and prepared for SDS-PAGE followed either by immunoblotting (α-GFP 1:2000, exposure 

time = 100’’) or Coomassie staining. For blotting, supernatants were used in 1:10 to 1:100 dilutions and equal 

protein amounts were applied for SDS-PAGEs (1:10 dilution 15 µl, P 2 µl, approximately same protein amount in 

Coomassie staining). YFP-SKD1 is expected to migrate at approximately 77 kDa. 
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Table A.13. Quantification of PIN2-GFP aggregates. ProPIN2::PIN2-GFP seedlings were grown vertically on 

½ MS plates for 5 d. The seedlings were transferred to ½ MS liquid and either kept at RT or subjected to heat 

treatment (40°C 50’). For each condition, seven roots were analyzed for the presence of PIN2-GFP aggregates in 

the cytosol. For that, single plane pictures of the transition zone of each root were taken by confocal microscopy. 

All cells for which the cell boundaries were clearly visible were counted and the number of aggregates was 

determined. 

No treatment 40°C 50' 

Root No. 
PIN2-GFP 

aggregates 
Cells Root No. 

PIN2-GFP 

aggregates 
Cells 

1 0 62 1 17 53 

2 2 77 2 37 50 

3 3 57 3 9 64 

4 0 54 4 18 48 

5 3 41 5 12 45 

6 0 39 6 7 32 

7 1 49 7 8 51 

MEAN 1.29 54.1 MEAN 15.43 49 

STDEV 1.38 13 STDEV 10.44 9.6 

SUM 9 379 SUM 108 343 
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